

Minerals yearbook: Metals and minerals (except fuels) 1952. Year 1952, Volume I 1955

Bureau of Mines

Washington, D. C.: Bureau of Mines : United States Government Printing Office, 1955

https://digital.library.wisc.edu/1711.dl/PPYAWXJZXOESO8L

http://rightsstatements.org/vocab/NoC-US/1.0/

As a work of the United States government, this material is in the public domain.

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

MINERALS YEARBOOK

METALS AND MINERALS (EXCEPT FUELS)

Volume 1

1 9 5 9

Prepared by the staff of the BUREAU OF MINES
MINERALS DIVISION
Paul Zinner, Chief

Charles W. Merrill, Assistant Chief

UNITED STATES DEPARTMENT OF THE INTERIOR

DOUGLAS McKAY, Secretary

BUREAU OF MINES

JOHN J. FORBES, Director
THOMAS H. MILLER, Assistant Director for Operations

OFFICE OF THE DIRECTOR:

ARNO C. FIELDNER, Chief Fuels Technologist
E. D. GARDNER, Chief Mining Engineer
O. C. RALSTON, Chief Metallurgist
PAUL W. McGANN, Acting Chief Economist
DONALD G. WELSH, Chief Counsel
ALLAN SHERMAN, Chief, Office of Minerals Reports
H. J. SLOMAN, Assistant to the Director
J. H. HEDGES, Special Assistant to the Director

DIVISIONS:

PAUL ZINNER, Chief, Minerals Division
LOUIS C. McCABE, Chief, Fuels and Explosives Division
JAMES WESTFIELD, Chief, Health and Safety Division
W. E. RICE, Chief, Administrative Division

REGIONAL OFFICES:

SINCLAIR H. LORAIN, Regional Director, Region I (Juneau, Alaska)
STEPHEN M. SHELTON, Regional Director, Region II (Albany, Oreg.)
HAROLD C. MILLER, Regional Director, Region III (San Francisco, Calif.)
JOHN H. EAST, Jr., Regional Director, Region IV (Denver, Colo.)
MELDEN E. VOLIN, Regional Director, Region V (Minneapolis, Minn.)
CLIFFORD W. SEIBEL, Regional Director, Region VI (Amarillo, Tex.)
P. T. ALLSMAN, Regional Director, Region VII (Knoxville, Tenn.)
HAROLD P. GREENWALD, Regional Director, Region VIII (Pittsburgh, Pa.)
ELMER W. PEHRSON, Regional Director, Region IX (Washington, D. C.)

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1955

For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. — Price \$4 (cloth)

MNK
.HA
1952
The pumes in

941711

NOV 8 1955

FOREWORD

The presentation of the Minerals Yearbook, 1952, in three volumes initiates a change made necessary by an increase in Yearbook material that could no longer be published under a single cover without increasing the book to a thickness that caused binding problems and to a weight that inconvenienced the reader. The change is one of several made over the years to meet expansion in the mineral industry and new needs of the reading public.

From initiation of this series as "Reports Upon the Mineral Re-

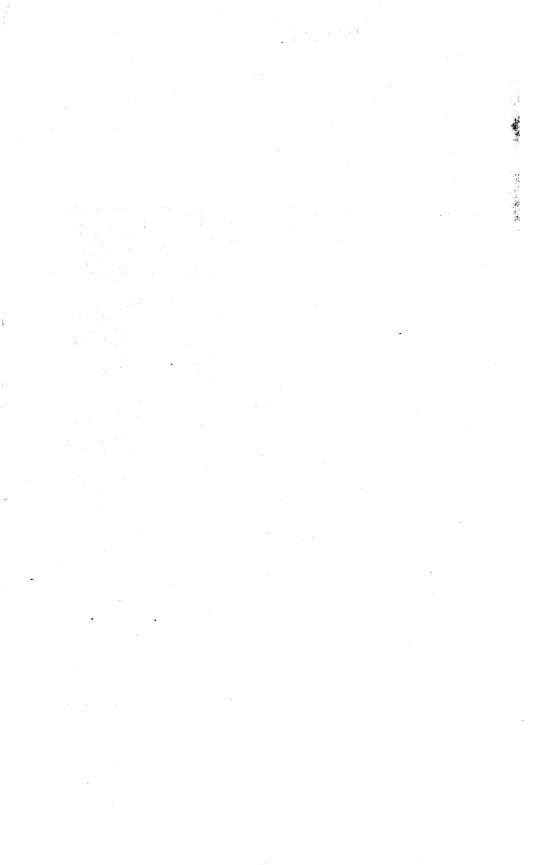
From initiation of this series as "Reports Upon the Mineral Resources of the United States" published in 1867 by the Treasury Department, the series has appeared as "Mineral Resources West of the Rocky Mountains," as a part of the "Annual Report of the Geological Survey," as "Mineral Resources of the United States," and as the "Minerals Yearbook," the first volume of which covered 1932 and

carried the title, "Minerals Yearbook, 1932-33."

In the current three-volume presentation, volume I is made up of chapters on mineral commodities, both metals and nonmetals, but exclusive of the mineral fuels. Included also are a chapter reviewing these mineral industries, a statistical summary and recapitulation, and chapters on mining technology, metallurgical technology, and employment and injuries.

Volume II, which is devoted to the mineral fuels, consists of chapters on each mineral-fuel commodity, as well as chapters reviewing the industry as a whole, a statistical summary, and an employment

and injury presentation.


Volume III is made up of chapters covering each of the 48 States, plus chapters on Alaska, the Territories and island possessions in the Pacific Ocean, and the Territories and island possessions in the Caribbean Sea, including the Canal Zone. Volume III also has a chapter recapitulating its statistics in summary form on a regional basis and another presenting employment and injury data regionally.

The MINERALS YEARBOOK will continue to present the year's development in the mineral industry with enough background data to give significance to the current record. The three-volume Yearbook permits fuller coverage in all phases of the reports, but major expansion has been undertaken in the regional presentation (volume III)

and in the review of technologic developments and problems.

The Bureau of Mines wishes to acknowledge again the cooperation of industry and of many Government groups in the preparation of the yearbook. Among the latter, some of the State geological surveys and mining bureaus are of great importance, particularly in their help in gathering and preparing the material that appears principally in volume III.

J. J. Forbes, Director.

ACKNOWLEDGMENTS

The chapters in this volume of the Minerals Yearbook, except for the four review chapters, were prepared by the staff of the Minerals The following supervised preparation of the chapters: Division. C. H. Johnson, chief, Base Metals Branch; N. B. Melcher, chief, Ferrous Metals and Ferroalloys Branch; F. J. Cservenyak, chief, Light Metals Branch; H. D. Keiser, chief, Rare and Precious Metals Branch; G. W. Josephson, chief, Construction and Chemical Materials Branch; and W. F. Dietrich, chief, Ceramic and Fertilizer Materials Branch. Overall supervision for the volume and its coordination with the chapters appearing in volume III was carried out by Charles W. Merrill, assistant chief, Minerals Division.

The Bureau of Mines, through cooperative agreements with State and Territorial agencies, has been assisted in the collection of domestic mine-production data and supporting information appearing in this volume. For this assistance acknowledgment is made to the

following cooperating State organizations:

Alabama: Geological Survey of Alabama Alaska: Alaska Territorial Department of Mines

Arkansas: Division of Geology

California: Division of Mines Delaware: Delaware Geological Survey

Florida: Florida Geological Survey Georgia: Department of Mines Illinois: Illinois State Geological Survey

Indiana: Indiana Department of Conservation

Iowa: Iowa Geological Survey

Kansas: State Geological Survey of Kansas Kentucky: Kentucky Geological Survey Louisiana: Louisiana Geological Survey

Maine: Maine Geological Survey Maryland: Department of Geology

Michigan: Michigan Department of Conservation
Mississippi: Mississippi Geological Survey
Missouri: Division of Geological Survey
Montana: Montana State Bureau of Mines and Geology
Nevada: Conservation and Survey Division

New Hampshire: Mineral Resources Committee

New Hampshire: Mineral Resources Committee
New Jersey: Bureau of Geology and Topography
New York: New York State Science Service
North Carolina: Division of Mineral Resources
North Dakota: North Dakota Geological Survey
Oklahoma: Oklahoma Geological Survey
Oregon: State Department of Geology and Mineral Industries
Pennsylvania: Bureau of Topographic and Geologic Survey
South Carolina: South Carolina Geological Survey
South Dakota: State Geological Survey
Tennessee: Tennessee Department of Conservation

Tennessee: Tennessee Department of Conservation

Texas: Bureau of Economic Geology Utah: Utah Geological and Mineralogical Survey

Virginia: Department of Conservation and Development Washington: State of Washington Division of Mines and Geology West Virginia: West Virginia Geological and Economic Survey

Wisconsin: Wisconsin Geological and Natural History Survey

Wyoming: Geological Survey of Wyoming

The data presented in the Minerals Yearbook are largely based upon information obtained from mineral producers, processors, and users, and acknowledgment is made of this indispensable cooperation given by industry.

PAUL ZINNER.

CONTENTS

Foreword, by J. J. Forbes
Acknowledgments
Acknowledgments
Herbert E. Striner and Gabrielle Sewell Review of metallurgical technology, by P. M. Ambrose, J. E. Conley, J. C. Barrett, F. D. Lamb, and H. H. Greger
J. C. Barrett, F. D. Damb, and H. H. Gogding
Review of mining technology, by E. D. GardnerStatistical summary of metal and nonmetal production, by Kathleen J.
D'Amico
ReeseAbrasive materials, by Henry P. Chandler and Annie L. Marks
Aluminum, by Delwin D. Blue
Arsenic, by Abbott Renick
Arsenic, by Abbott Renick ————————————————————————————————————
Regite by Losenh C. Arundale and Flora D. McHuch
Bauxite, by Horace F. Kurtz
Bauxite, by Horace F. Kurtz
Bismuth, by Abbott RenickBoron, by Joseph C. Arundale and Flora B. Mentch
Boron, by Joseph C. Arundale and Flora B. Menten
Proming by Joseph C. Arundale and Flora B. Wentch.
Calcium, by Joseph C. Arundale and Flora B. Mentch
Calcium, by Joseph C. Arundale and For Bolton B. Menten
Cement, by Oliver S. North and Esther V. Balser
Chromium, by Charles Katlin and Hilda V. Heidrich
Clays, by Brooke L. Gunsallus and Bernice V. Russ
Cobalt, by Hubert W. Davis and Charlotte R. Buck
Columbium and tantalum, by Robert F. Griffith
Copper, by Helena M. Meyer and Gertrude N. Greenspoon
Diatomite, by Henry P. Chandler and Annie L. Marks
Feldspar, by Brooke L. Gunsalus and Frances F. Uswaid
Ferroalloys, by Robert W. Geehan Fluorspar and cryolite, by John E. Holtzinger and Joseph C. Arundale
Fluorspar and cryolite, by John E. Holtzinger and Joseph C. Alundaie
Gem stones, by George Switzer and Robert D. Thomson
Gold and silver, by James E. Bell Graphite, by Frank D. Lamb and Eleanor V. Blankenbaker
Graphite, by Frank D. Lamb and Eleanor V. Diankenbaker
Gypsum, by Oliver S. North and Nan C. Jensen
Iodine, by Joseph C. Arundale and Flora B. Mentch
Iron ore, by Jachin M. ForbesIron and steel, by James C. O. Harris
Iron and steel, by James C. U. narris
Iron and steel, by James C. O. Harris- Iron and steel scrap, by James E. Larkin Jewel bearings, by Robert D. Thomson and Eleanor V. Blankenbaker Jewel bearings, by Robert D. Thomson and Eleanor V. Blankenbaker
Kyanite and related minerals, by Brooke L. Gunsallus and Frances P.
Hewald
UswaldLead, by O. M. Bishop and Edith E. den Hartog Lead and zinc pigments and zinc salts, by Robert L. Mentch
Lead, by U. M. Bisnop and Edith E. den Hartog
Lead and zinc pigments and zinc saits, by Robert D. Wiellott
Lime, by Oliver Bowles, Flora B. Mentch, and Annie L. Marks
Lithium, by Joseph C. Arundale and Flora B. Mentch
Magnesium, by H. B. Comstock Magnesium compounds, by Donald R. Irving and Frances P. Uswald The Head and Fidence I. Cooks
Magnesium compounds, by Donaid R. Irving and Flances F. Uswaid
Manganasa by Gilbert L. Defill 300 Fugar J. Utaly
Mercury, by Helena M. Meyer and Gertrude N. Greenspoon
Tucker
MOUVEDON DV KODET, W. CECUMII.

MINERALS YEARBOOK, 1952

Natural and manufactured iron oxide pigments, by Robert D. Thomson and Frances P. Uswald	
Nickel by Hybert W. Design	
Nickel, by Hubert W. Davis	
Nitrogen compounds, by E. Robert Ruhlman	
Perlite, by Oliver S. North and Annie L. Marks	
Phosphate rock, by E. Robert Ruhlman and Gertrude E. Tucker	
Platinum-group metals, by James E. Bell and Kathleen M. McBroop	
Potasn, by E. Robert Ruhlman and Gertrude E. Tucker	
Pumice and pumicite, by Henry P. Chandler and Annie L. Marks	
Radio-grade quartz, by Waldemar F. Dietrich and Gertrude E. Tucker	
Salt, by Joseph C. Arundale and Flora R. Mentch	
Sand and gravel, by L. M. Otis and Nan C. Jensen	
Secondary metals—nonferrous, by Archie L. McDermid	
Slag—iron blast-furnace, by Oliver S. North	
Slate, by Oliver Bowles and Nan C. Jensen	
Sodium and sodium compounds, by Joseph C. Arundale and Flora B.	
MentchB.	
Stone, by Oliver Bowles and Nan C. Jensen	
Strontium, by Joseph C. Arundale and Flora B. Mentch	
Sulfur and pyrites, by G. W. Josephson and Flora B. Mentch	
Talc, pyrophyllite, and ground soapstone, by Donald R. Irving and	
Frances P. Uswald	
Frances P. UswaldTin, by Abbott Renick and John B. Umhau	
Titanium, by Alfred F. Tumin and Frank J. Cservenyak	
Uranium, radium, and thorium, by H. D. Keiser	
Varmiculity by Hungry P. Chandler and Non C. I.	
Vermiculite, by Henry P. Chandler and Nan C. Jensen	
Zinc, by O. M. Bishop and Esther B. Miller	
Zirconium and hafnium, by Robert F. Griffith	
Minor metals, by E. J. Carlson, H. D. Keiser, and J. D. Sargent]
Minor nonmetals, by Joseph C. Arundale and Oliver S. North	
Index, by Mabel E. Winslow	1

Review of the Mineral Industries

(Metals and Nonmetals Except Fuels)

By Herbert E. Striner² and Gabrielle Sewall³

HE NATIONAL economy in 1952 reached a plateau at full employment under the continued stimulus of the war in Korea. The rate of expansion of defense-plant facilities, and defensegoods inventories, began to decrease in 1952. This slower rate of expansion was reflected in the mineral industries. In 1952 the national income derived from the metal-mining and nonmetallicmining and quarrying industries was 4 percent above the 1951 level. Such income in 1951 had been 21 percent above that in 1950, which, in turn, had been 20 percent above that in 1949. value of metallic-mineral production in 1952 was \$1.6 billion as compared with \$1.7 billion in 1951. The value of the production of nonmetallic minerals was \$2.2 billion in 1952 compared with \$2.1 billion in 1951.

Pronounced fluctuations in output of metals and metal products occurred during 1952. These fluctuations were related, in very large part, to the steel strike during the middle of the year which sharply curtailed output of steel. During the long period of highlevel steel output that preceded the strike, metal fabricators built up substantial working stocks, which enabled most manufacturers to maintain output through June. The shortage of steel did curtail production in many lines that depend upon steel as a raw material; these included automobiles, heavy equipment, and certain types of farm equipment.

With continuance of the Korean emergency, the Federal Government maintained a high degree of regulation and control in those minerals fields where national security was involved. Such regulatory functions involved allocation of critical materials and provided incentives to private industry for higher production levels of necessary raw materials and finished goods, encouragement of mineral exploration, and the analysis and planning of future pro-

duction goals.

World production of minerals and metals was, in general, greater in 1952 than in 1951; most principal commodities showed an increase over that year in output. The United Nations' world mining index (fuels and nonfuels) average for 1952 was 3 percent greater than that for 1951.

NATIONAL INCOME ORIGINATED

An important economic indicator that relates the rate of growth of an industry to that of the entire economy is the proportion of national income originating within each specified industry. National income originated in an industry is the sum of business income

General economist.

¹ Fuels are covered in several instances in this chapter but only where specifically indicated. This occurs where data on the particular subject were available only for the mining industry as a whole, not broken down into the fuels and nonfuels components.

² Economic analyst.

and payments to employees. The data in table 1 indicate that the various mining and primary metal industries did not, in 1952, account for as much of the national income as they had in 1951. Indeed, while national income increased absolutely during this period, the majority of the industries shown in table 1 had absolutely decreasing industry incomes. There is no doubt that part of this was due to the steel strike in 1952.

TABLE 1.—National income originated within the mineral industries in the United States, 1943-47 (average) and 1948-52, by industries ¹
[Millions of dollars]

[Millions of donars]										
Industry	1943–47 (average)	1948	1949	1950	1951	1952	Change from 1951 (percent)			
All industries, total	183, 038 431 0. 24 250 0. 14 1, 378 0. 75 7, 758 4. 24 1, 845 1. 01	223, 469 686 0. 31 434 0. 19 2, 154 0. 96 8, 713 3. 90 2, 079 0. 93	216, 259 568 0. 26 448 0. 21 2, 089 0. 97 7, 629 3. 53 2, 138 0. 99	240, 632 5, 202 2. 16 496 0. 21 2, 663 1. 11 10, 109 4. 20 2, 478 1. 03	278, 373 6, 010 2. 16 574 0. 21 3, 062 1. 10 12, 402 4. 46 3, 151 1. 13	291, 629 5, 984 2. 05 595 0. 20 2, 865 0. 98 11, 474 3. 93 3, 150 1. 08	$ \begin{array}{c} +5 \\ (2) \\ -5 \\ +4 \\ -5 \\ -6 \\ -11 \\ -7 \\ -12 \\ (2) \\ -4 \end{array} $			

¹ Survey of Current Business, vol. 33, No. 7, July 1953, p. 16, and National Income Suppl., 1951, pp. 150-175.

Of all the industries shown in the table, only nonmetallic mining and quarrying increased its income absolutely, by 4 percent. The nonferrous metals-and-their-products industry income remained about the same during 1951–52, while its portion of the national income was reduced from 1.13 to 1.08 percent. This latter figure was still, however, higher than the 1950 figure (1.03 percent). The total metal-mining figure (2.05 percent of the 1952 national income) was below both the 1951 and 1950 figures (2.15 and 2.16 percent, respectively).

Largely on account of the 1952 strike, the iron and steel income dropped sharply from 4.46 percent of national income in 1951 to 3.93 percent in 1952. In absolute terms iron and steel income was

7 percent below the level it attained in 1951.

BUSINESS POPULATION

The average number of mining and quarrying firms, including those mining fuels, in operation during 1952 was the highest for any year for which data are available (1929–52). The number of entries in 1952 was at the same high level of 1951. The number of firms discontinuing operations during 1952 was slightly higher than in 1951. (See table 2.) Mining and quarrying firms were 1 percent of the total number of United States firms in all industries. (Similar data for mineral manufacturing firms were not available.)

Table 3 shows the number of establishments (not firms) in the primary metal industries. Most of the increase that took place occurred in the group of establishments employing 1 to 249 people.

^{159-175.}Less than 0.5 percent.
Including ordnance.

TABLE 2.—Number of mining (including fuels) and quarrying firms in operation, newly entered, and discontinued in the United States, 1940-52 12 [In thousands]

[III thousands]			
Year	Average number in operation	Total newly entered	Total discon- tinued
1940 1941 1942 1943 1944 1945 1946 1947 1948	35. 6 37. 2 35. 4 32. 1 31. 4 32. 2 33. 8 35. 2 37. 0	5. 3 4. 6 1. 7 2. 4 3. 5 4. 7 4. 9 5. 3	3.6 3.9 5.2 4.7 3.1 3.1 4.0 4.5
1950	37. 0 (3) (3)	2.3 2.0	3.7 1.8 1.8
Total	37.4	4.3	3.6
1st half	(3) (3) 38.1	2. 5 1. 8 4. 3	2.0 1.8 3.8

¹ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business, vol. 34,

No. 1, January 1954, p. 6.

2 Units counted are "firms" as opposed to "establishments" such as plants in the ease of manufacturing.

A firm is defined as a business organization under one management with either an established place of business or at least one paid employee. However, no attempt is made to combine corporations owned or controlled by the same interests. Discontinued businesses include closures of all kinds without reference to the reason for going out of business. New businesses include only firms which have been newly established. the reason for going out of business. New businesses include only firms which have been newly established. A firm which is maintained as a business entity but which undergoes a change of ownership is not counted

as a discontinuance.

3 Data not available.

The number of plants employing the much larger numbers of employees remained relatively stable. This, of course, says little concerning the mortality of establishments within each of the industry groups. That is, it is conceivable that the turnover rate of firms within a group could be relatively high while the total number in the group remained fairly stable.

TABLE 3.—Number of establishments and employees in primary metal industries in the United States, 1951-52, by average employment of establishment 1

Average employment of establishment ²	Number of establishments	All employees
1-249 employees:	4 500	100 400
1951 1952 250-499 employees:	4, 592 4, 621	198, 460 197, 990
1951	418 401	150, 200
500-999 employees: 1951	234	144, 764 162, 380
1952	228	160, 457
1951	161 165	252, 955 259, 645
2,500 and more employees:	85	480, 215
1952	85	476, 714
1951	5, 490 5, 500	1, 244, 210 1, 239, 570

¹ U. S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures: Ser. MAS-52-6, Nov. 27, 1953.

² Average employment is based on reported employment totals for the payroll periods ended nearest the 15th of March, May, August, and November.

VALUE OF SHIPMENTS OF MINERAL MANUFACTURES

The value of shipments of aluminum and aluminum-base alloy wire increased 33 percent in 1952—the most sizable percentage increase for the selected mineral manufactures shown in table 4. The value of shipments of aluminum wire, aluminum plate, sheet, and strip, and all other aluminum products, rolled, drawn, and

extruded, rose steadily for the years shown.

Natural graphite displayed the largest percentage drop (17) percent) among the items that declined in value of shipments in Pig iron, other blast-furnace products, gray-iron castings, and malleable iron castings, commodities affected by the steel strike, also dropped sharply in shipment value. The greatest dollar-volume drop occurred for pig-iron, a decrease of approximately \$255 million. Among the nonferrous metals, almost without exception, the value of shipments in 1952 either remained close to the 1951 level or increased. In the nonmetallic-mineral-manufacturing group, for construction products as a whole, there was also an increase.

TABLE 4 .- Value of shipments of selected mineral manufactures in the United States, 1950-52 1 [Millions of dollars]

Product	1950	1951	1952	Change from 1951 (percent)
Pig iron	2, 366. 8	2, 814, 1	2, 559. 3	9
Other blast-furnace products		144.3	123.8	-14
Ferroalloys and other additives	345. 9	405.7	413.3	+2
Grav-iron castings		1, 762. 4	1, 555. 2	
Gray-iron castings Malleable iron castings	213.4	289. 6	255.9	
Steel castings	474.6	790. 9	862. 5	+9
Copper rolled, drawn, and extruded, copper and copper-base-	71717			
alloy mill products	1,044.3	1, 096. 3	1, 163. 9	+6
Aluminum plate, sheet, and strip	329.6	343.8	359.0	+6 +4
All other aluminum products, rolled, drawn, and extruded	193.8	249.7	292.3	+17
Magnesium products, rolled, drawn, and extruded	10.7	17.9	18.7	+17 +4 +5
Iron and steel forgings	666. 9	939. 9	989.7	+5
Aluminum and aluminum-base-alloy wire	19.0	24.8	33.1	+33
Copper and copper-base-alloy wire	260.3	272.0	270.0	-1
Nonferrous forgings	52. 9	83. 2	108.8	+31
Nonferrous castings, including die	726.8	915. 2	905.0	-1
Hydraulic cement, excluding cost of shipping containers	604.0	685.3	712.0	+4
Clay refractories	126. 7	171.1	161.9	-5
Concrete products		733.6	746.8	+2
Gypsum products	206. 4	234. 6	223.4	-5
Lime, excluding cost of shipping containers	84.6	93. 7	92.8	-1
Mineral wool (from rock, slag, and glass)		134. 1	138.3	+3
Abrasive products		376. 4	346. 4	-8 -1
Asbestos products	276. 7	334. 5	332.2	
Natural graphite, ground, refined, or blended		12.7	10.6	-17
Nonclay refractories		155.8	138.6	-11
Sheet-mica products, except radio parts	29. 2	48.9	45.1	-8

¹ U. S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures: 1949 and 1950 volume, pp. 90-91 and Ser. MAS-52-1, Aug. 27, 1953, pp. 13-15.

What is undoubtedly of most significance is the comparison between 1950-51 and 1951-52 levels of shipments. Most 1951 shipments were markedly greater than those in 1950, even after allowance for higher dollar values, while in 1952 a tapering-off of shipments over those in 1951 is in evidence. There is little doubt that the steel strike did affect output in related industries, to what extent for each industry is difficult to assess, but a number

of the products in table 4 display a degree of leveling off in 1952 that cannot solely reflect a shortage of steel. When other indicators of economic activity, to be found elsewhere in this chapter, are considered along with "value of shipments" data it becomes even more clear that 1952 mineral demand was tapering off because of a general curtailment in the rate of increase of economic activity in the United States. It is, of course, important to realize that an absolute increase can take place but that the rate of increase is perhaps a more important indicator of future markets.

STOCKS

Physical Stocks.—As is indicated by figures compiled by the Bureau of Mines shown in table 5, more physical stocks of mineral ores and primary production rose in 1952 than declined. The most radical stock increases took place in manganese, nickel, molyb-

TABLE 5.—Stocks of ore and primary mineral products in the United States at end of year, 1943-47 (average) and 1948-52 ¹

Item (1943–47 (average) 1948 1949 1950 1951 1952	Change from 1951 (percent)
	-1
Iron ore at mines (thousand long tons) - 5,023 6,285 5,334 5,726 5,600 5,528 Manganese ore at plants including bond-	
ed warehouses (thousand short tons) 722 641 928 827 546 1, 249 Tungsten ores and concentrates at pro-	+129
ducers, consumers, and dealers (short tons, 60 percent WO ₃ basis) 3,551 6,145 5,313 5,608 4,477 3,178 Chromite. all grades. at consumers 3,551 6,145 5,313 5,608 4,477 3,178	-29
Chromite, all grades, at consumers plants (thousand short tons) 336 602 757 606 638 754	+18
Nickel (thousand pounds): 20, 116 21, 600 17, 868 11, 813 11, 417 16, 233 In transit 1, 454 1, 938 472 488 411 185	+42 -55
Total	+39
And consumers plants (thousand pounds, Mo content)	+36
Copper at primary smelting and refining plants (thousand short tons, Cu content):	
Refined copper 87 67 61 26 35 26 Blister and materials in solution 270 183 261 232 182 185	-26 +2
Total 357 250 322 258 217 211	-3
Lead at or in transit to primary smelters and refineries (thousand short tons, Pb content):	
Refined 27 29 61 29 18 31 Antimonial 6 10 9 7 7 12	+72 +71
In base bullion 28 32 36 32 31 40 In ore, matte, and in process 86 76 96 70 68 66	+29 -3
Total 147 147 202 138 124 150	+21
Zinc, slab, at primary smelters (thousand short tons). [180 19 91 8 21 81 Bauxite at processors, producers, and	+286
Bauxite at processors, producers, and consumers (thousand long tons, dried equivalent)	+17
(short tons)	-10
Beryl at principal consumers plants (short tons, 10 percent BeO content) 517 1, 042 2, 322 2, 621 1, 417 2, 492 Cement at mills (thousand barrels) 16, 068 11, 084 14, 706 13, 217 18, 224 16, 066	+76 -12
Fluorspar, finished, at mines and plants (thousand short tons)	+53

¹ Stocks in the National Stockpile are not included.

denum, lead, zinc, beryl, and fluorspar. The severest stock decreases took place in tungsten ores and concentrates and refined copper. Iron ore was relatively stable, with a decrease of 1 percent, and cement and primary aluminum were down 12 and 10 percent. respectively.

The stock picture in 1952 was very different from the 1950–51 situation. In 1951 only six major group items appearing in table 5 increased over 1950 stocks. These items were chromite, molybdenum, refined copper, zinc, bauxite, and cement. In 1952, 12 items showed stock increases; they included those that had stock

increases in 1951, except for refined copper and cement.

Manufacturers' Inventories.—Table 6 compares the value of inventories at the end of 1952 and 1951 in the hands of selected mineral manufacturing industries. (Increases in inventories, together with expenditures on new plant and equipment, constitute business investment.) These inventories are broken down into two classes: (1) Finished products and (2) materials, supplies, and work in process. For the manufacturing portion of the United States economy as a whole, the total inventories at the end of 1952 amounted to \$39.9 billion, an increase of 4 percent over the \$38.3 billion reported for the end of 1951. Since the wholesale price index, on an average monthly basis, for all commodities was 111.6 in 1952 as compared with 114.8 in 1951, the 4-percent increase in inventories would have to be adjusted for the lower wholesale prices in 1952. Such an adjustment would then result in an estimated physical inventory increase of approximately 7 percent for all manufacturing industries. With regard to the mineral industries shown in table 8 only minor changes in the wholesale price index occurred between 1951 and 1952. The monthly average wholesale price index for iron and steel went from 123.2 in 1951 to 124.7 in 1952, for nonferrous metals from 124.2 to 123.5, for concrete from 112.3 to 112.5, and for gypsum the index was unchanged during the 1951–52 period. Thus, the percentage value changes in 1952, as shown in table 6, can be viewed as fairly close to what the adjusted physical change figures would be.

As a possible indicator of a leveling off of market demand, perhaps the "finished-products" category is more informative than the total inventory change or change in the inventory of "materials, supplies, and work in process." This last group could indicate a changing rate of production activity. Aside from such limiting factors as unavailable transportation, strikes, etc., when "finished-goods" inventory begins to increase sizably, it usually

indicates a relative easing of demand.

Among the industries shown the primary zinc producers undoubtedly faced increasing market difficulties in 1952. The 1952 year-end inventory of primary zinc was approximately 2½ times that of 1951, indicating a serious slowdown in the rate of sale of the finished product. The inventory of materials, supplies, and work in process rose only 17 percent in 1952. No other industry in table 6 even approximated the degree of increase in inventory of finished goods which occurred in primary zinc.

TABLE 6.—Value of manufacturers' inventories for selected mineral manufacturing industries in the United States, at end of year, 1947 and 1950-52 1

[Millions of dollars]

		1947			1950			1951			1952		Change	e from 195	1 (percent)
Industry	Total	products	Materials, supplies, and work in process			Materials, supplies, and work in process	Total		Materials, supplies, and work in process	Total	Finished products	Materials, supplies, and work in process	Total		Materials, supplies, and work in process
Blast furnaces and steel mills Iron and steel foundries Primary nonferrous metals:	997. 7 178. 6	218. 2 48. 8	779. 5 129. 8	1, 318. 1 216. 7	307. 3 50. 4	1, 010. 8 166. 3	1, 488. 6 281. 8	340. 5 72. 0	1, 148. 1 209. 8	1, 786. 5 289. 7	399. 5 74. 5	1, 387. 0 215. 2	+20 +3	+17 +3	+21 +3
Copper Lead Zinc Aluminum Other Seondary nonferrous metals Nonferrous metal rollling and	61. 3 52. 1 38. 5 19. 8 5. 2 80. 9	18. 1 9. 0 6. 6 3. 6 2. 9 26. 0	43. 2 43. 2 31. 9 16. 2 2. 3 54. 9	65. 9 58. 7 31. 5 26. 2 10. 3 95. 8	20. 5 17. 7 3. 2 4. 4 1. 7 38. 1	45. 3 41. 0 28. 2 21. 8 8. 5 57. 7	54. 0 59. 9 37. 4 31. 8 17. 3 94. 0	15. 1 13. 5 5. 6 2. 8 8. 2 31. 7	38. 9 46. 4 31. 8 29. 0 9. 1 62. 3	58. 3 55. 8 51. 5 40. 8 18. 2 95. 2	14. 6 13. 8 14. 2 2. 2 5. 6 36. 1	43. 7 42. 1 37. 3 38. 6 12. 6 59. 1	+8 -7 +38 +28 +5 +1	-3 +2 +154 -21 -32 +14	+12 -9 +17 +33 +38 -5
drawing: Copper	125. 6 57. 0 34. 6 52. 8 34. 8 11. 9 8. 6 8. 4 72. 5	19. 9 6. 4 12. 7 13. 1 22. 4 2. 8 1. 3 2. 3 13. 4	105. 7 50. 6 21. 9 39. 7 12. 4 9. 1 7. 3 6. 0 59. 1	108. 5 82. 7 44. 1 72. 6 64. 0 13. 1 7. 4 9. 0 90. 8	14. 1 11. 4 12. 8 15. 0 (2) 4. 0 1. 1 2. 2 (2)	94. 4 71. 3 31. 3 57. 6 (2) 9. 1 6. 4 6. 8	107. 3 78. 9 54. 5 86. 3 79. 8 17. 4 10. 6 12. 8 116. 9	13. 2 9. 0 14. 4 17. 6 (2) 5. 5 1. 7 3. 9	94. 1 69. 9 40. 1 68. 7 (2) 11. 9 8. 8 8. 9	134. 4 91. 9 59. 4 93. 5 83. 9 16. 2 10. 3 12. 1 116. 1	17. 9 11. 5 15. 1 17. 3 (2) 6. 1 1. 7 4. 4	116. 5 80. 4 44. 3 76. 2 (2) 10. 1 8. 6 7. 7	$\begin{array}{c} +25 \\ +16 \\ +9 \\ +8 \\ +5 \\ -7 \\ -3 \\ -5 \\ -1 \end{array}$	+36 +28 +5 -2 +11 0 +13	+24 +15 +10 +11 -15 -2 -13

¹ U. S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures: Ser. MAS-51-2, Nov. 25, 1952, and MAS-52-2, Oct. 1, 1953. Withheld because the estimate did not meet Census publication standards.

Primary copper, aluminum, and other primary nonferrous metals except lead and zinc were in a position of a reduced finished-goods inventory at the end of 1952. The construction-materials industries were generally well off, in that inventories of finished goods either remained the same or were up 13 percent at the most, while the materials, supplies, and work in process inventories were down from 2 to 15 percent.

In the case of the iron and steel categories, inventories of finished products might have been higher if the strike had not taken place. As it was, iron and steel foundry inventories were only

slightly above those a year earlier.

FOREIGN TRADE

Imports and Exports.—In 1952 both the value of United States imports and that of exports of metallic and nonmetallic minerals and their products increased over those in 1951, with the percentage increase for imports being over three times that for exports (see table 7). (A rough calculation indicates that about three-quarters of the increase in value of imports resulted from a net overall in-

TABLE 7.—Foreign trade of the United States in metallic and nonmetallic minerals and their products, 1950–52, by commodity group ¹
[Thousands of dollars]

Commodity group	1950	1951	1952	Change from 1951 (percent)
IMPORTS FOR CO	NSUMPTIO	N		<u>' </u>
Nonmetallic minerals: Stone, cement, lime, gypsum. Clays and clay products. Precious stones and imitations. Other nonmetallic minerals 2. Total.	14, 357 155, 509	13, 684 21, 664 175, 753 119, 284 330, 385	12, 180 17, 389 176, 610 111, 222	-11. 0 -19. 7 +. 5 -6. 8
Metallic minerals: Iron ore and concentrates. Ferroalloys. Nonferrous metals except precious. Total.	111, 869 854, 819	59, 555 132, 905 829, 801 1, 022, 261	82, 903 200, 228 1, 362, 287 1, 645, 418	+39. 2 +50. 7 +64. 2 +61. 0
Total imports	1, 286, 386	1, 352, 646	1, 962, 819	+45.1
EXPORTS OF DOMESTIC	O MERCHA	ANDISE		<u> </u>
Nonmetallic minerals: Stone, cement and lime	41, 564	12, 401 59, 601 114, 238	13, 983 56, 956 109, 002	+12.8 -4.4 -4.6
Total	140, 086	186, 240	179, 941	-3.4
Metallic minerals: Iron ore Ferroalloys, ores, and metals. Nonferrous metals except precious.	3,001	30, 997 5, 575 186, 565	37, 404 7, 796 240, 854	+20.7 +39.8 +29.1
Total	165, 543	223, 137	286, 054	+28. 2
Total exports	305, 629	409, 377	465, 995	+13.8

U. S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States, 1954: Washington, 1954, pp. 917 and 919.
 Excludes fuels, glass, and related products.

crease in the volume of imports, while the remainder resulted from a preponderance of unit-value increases over unit value decreases.) The disparity in the increases widened the relative gap between imports and exports of such commodities to the extent that in 1952 there was \$4½ of mineral imports per dollar of exports while in 1951 there had been only about \$3½ of imports per dollar of exports. The overall increase in trade in minerals and their products was due to a substantial increase in trade in metallics, which more than compensated for a slight slackening of trade in non-metallics. For metallics the percentage increase for imports was over twice that in exports, while for nonmetallics both imports and exports decreased by about the same limited extent.

Tariffs and Other Regulations.—Suspension of the import excise tax on copper, copper scrap, copper-bearing ores, and copper concentrates was continued during 1952. On February 12, 1952, Public Law 257 suspended the duties on lead (except scrap, already duty free); but, because of the lead price decline, they were reimposed on June 26, and the suspension of duty on lead scrap was revoked on July 1. The rates reinstated were $1\frac{1}{16}$ cents per pound on refined lead, $\frac{3}{4}$ cent per pound on the lead content of ores and concentrates, and $1\frac{1}{16}$ cents per pound on the lead content of lead scrap, dross, and reclaimed lead.

Duties on zinc in zinc-bearing ores (% cent per pound), and in blocks, pigs, and slabs (%0 cent per pound) were suspended February 12 under Public Law 258 but reimposed July 23 because of the price situation. The duty suspension on zinc scrap continued through 1952 as did those on ferrous scrap and aluminum scrap.

Under the new terms of the supplementary trade agreement with Venezuela, effective October 11, 1952, the duties on iron ore, granular or sponge iron, and pig iron and iron kentledge (pig iron used for ballast), which were established under the General Agreement on Tariffs and Trade, were generalized to that country. Venezuela, not being a member of GATT, had not previously been granted these duty rates. The rates are as follows: Granular or sponge iron, $62\frac{1}{2}$ cents per long ton; pig iron and iron kentledge, 60 cents per long ton; and iron ore, including manganiferous iron ore, free.

The Export Control Act of 1949 continued to be administered by the Office of International Trade, U. S. Department of Commerce, to limit the strategic materials exported from the United States (See Defense Mobilization, Office of International Trade).

In addition, under the Battle Act of 1951 (Mutual Defense Assistance Control Act), approved October 26, 1951, and administered by the Director of Mutual Security, Executive Office of the President, efforts were continued to control the strategic exports from the entire Free World to the Soviet bloc. Embargo provisions of this act went into effect on January 24, 1952, and considerable progress was made during the year toward a more effective control system, involving development of alternative markets and sources of supply.

⁴ Director of Mutual Security, 1st and 2d semiannual reports to the Cong. on Mutual Defense Assistance Control Act of 1951: Oct. 15, 1952 and Jan. 16, 1953.

The number of minerals under international allocation by the International Materials Conference was reduced in 1952 because of improved supply-demand situations. (See Defense Mobilization, International Materials Allocation.)

LABOR

The tapering off of the defense economy during 1952 is evidenced by decreasing production-worker employment in most industrial segments shown in table 8. Iron mining experienced the most serious drop—14 percent—while lead-zinc mining and nonferrous foundries were the only industries showing gains (2 and 3 percent, respectively) during 1952. Lead-zinc mining was the only one of the metal-mining group to show a continual increase in its production-worker force during 1950–52; the 1950–52 trend for the entire metal-mining group was downward. In the primary-metal-industry group only nonferrous foundries in 1952 increased over 1951 in its production-worker force, but 1951 had been severely lower than 1950—approximately 8 percent.

TABLE 8.—Annual average employment of production and related workers in the mineral industries in the United States, 1948-52, by industries ¹

[In thousands]								
Industry	1948	1949	1950	1951	1952	Change from 1951 (percent)		
Metal mining	88.6	89. 0	89. 4	88.4	83.8	-5		
Iron	20. 0 19. 2 87. 6 1, 082. 8 536. 8 230. 9 46. 8 (3) 86. 0	30. 4 24. 3 18. 1 83. 7 939. 9 476. 7 188. 9 43. 3 (3) 70. 6 63. 3	31. 9 24. 8 17. 2 85. 2 1, 052. 9 535. 6 204. 0 45. 4 (3) 80. 7 78. 8	33.8 22.4 17.8 89.2 1,132.1 560.2 237.1 42.3 10.2 90.8 72.8	29. 1 22. 3 18. 1 88. 6 1, 039. 7 486. 5 223. 4 42. 0 9. 2 90. 1 74. 9	-14 (2) +2 -1 -8 -13 -6 -1 -10 -1 +3		
Other primary metal industries	109.1	97. 1	108.4	118. 9	113.7	+3 -4		

¹ U. S. Department of Labor, Bureau of Labor Statistics.

Less than 0.5 percent.
Data not available.

The general upward trend in wages continued in 1952, as can be seen in table 9. Both hourly earnings and average weekly earnings of production and related workers in the mineral industries rose, on the average, approximately 6 percent. The increase in hourly earnings was slightly higher than the increase in weekly earnings because of the slight decrease in the average length of the workweek.

Average weekly earnings rose most sharply in iron mining and the least in iron and steel foundries. Average hourly earnings increased most in the copper-mining industry (11 percent), while the smallest increase took place in the hydraulic-cement-manufacturing industry (4 percent). Both average weekly and average hourly earnings for all mining and manufacturing categories shown in table 9 increased over 1951.

TABLE 9.—Average earnings and hours of production and related workers in the mineral industries in the United States, 1948-52, by industries

[U. S. Depart	ment of	Labor]				
Industry	1948	1949	1950	1951	1952	Change from 1951 (percent)
AVERAGE WEE	KLY E	ARNIN	GS			
Iron mining	65. 81 61. 37 55. 31 54. 76	\$58. 91 63. 96 64. 79 56. 38 57. 49	\$61. 96 72. 05 66. 64 59. 88 60. 13	\$72. 68 78. 54 76. 11 67. 05 65. 21	\$80.34 85.73 81.60 71.10 67.72	+11 +9 +7 +6 +4
turing Blast furnaces, steelworks, and rolling mills Iron and steel foundries Primary smelting and refining of copper, lead, and	56. 49 62. 41 58. 45	57. 77 63. 04 55. 09	62. 64 67. 47 65. 32	68. 25 77. 30 71. 66	70, 65 79, 60 72, 22	+4 +3 +1
zinc Primary refining of aluminum	57. 14 58. 95	58. 99 61. 95	62. 37 63. 97	69. 38 70. 97	75. 06 76. 08	+8 +7
AVERAGE W	EEKLY	HOUR	8			·
Iron mining Copper mining Lead-zinc mining Nonmetallic mining and quarrying Cement, hydraulic, manufacturing Concrete, gypsum, and plaster products, manufac-	45. 2 41. 3 44. 5	39. 8 42. 3 41. 4 43. 3 41. 6	40. 9 45. 0 41. 6 44. 0 41. 7	42. 5 46. 2 43. 0 45. 0 41. 8	43. 9 45. 6 42. 5 45. 0 41. 8	+3 -1 -1 0 0
turing. Blast furnaces, steelworks, and rolling mills. Iron and steel foundries. Primary smelting and refining of copper, lead, and	40.7	43. 8 38. 3 37. 2	45. 0 39. 9 41. 9	45. 2 40. 9 42. 4	45. 0 40. 0 40. 8	(1) -2 -4
zinePrimary refining of aluminum	40.9	40. 1 41. 3	40. 9 40. 9	41.3 41.5	41. 7 41. 8	‡1
AVERAGE HOU	RLY E	ARNIN	GS			
Iron mining	1. 456 1. 486	\$1. 484 1. 512 1. 565 1. 302 1. 382	\$1. 52 1. 60 1. 60 1. 36 1. 44	\$1. 71 1. 70 1. 77 1. 49 1. 56	\$1.83 1.88 1.92 1.58 1.62	+7 +11 +8 +6 +4
turing	1. 261 1. 580 1. 436	1.319 1.646 1.481	1. 39 1. 69 1. 56	1. 51 1. 89 1. 69	1.57 1.99 1.77	+4 +5 +5
rimary smelting and renning of copper, lead, and zinc	1.397 1.424	1. 471 1. 500	1. 53 1. 56	1. 68 1. 71	1.80 1.82	+7 +6

¹ Less than 0.5 percent.

The leveling off of the economy during 1952 is reflected in the average weekly hours worked in the mining and primary-metal

industries (see table 9). Except for iron mining, primary smelting and refining of copper, lead, and zinc, and primary refining of aluminum, the average workweek of the mining or manufacturing industries either remained unchanged over 1951 or was shortened. Iron and steel foundries had an average workweek in 1952 that was 4 percent shorter than in 1951—the most extreme reduction of the group.

PRICES⁵

The wholesale price-index movements for metallic and non-metallic minerals formed varied patterns during 1952. For iron and steel, the wholesale price index was 127 in December 1952, as opposed to 123 in December 1951 (1947–49=100). The price index for iron and steel remained stable throughout 1952 until August, when it went from 122 to 127.

The nonferrous-metals wholesale price index declined from the December 1951 figure of 124 to 122 in December 1952. The monthly indexes moved up and down, with a high of 125 in February and a low of 120 in June 1952. The July recovery to 124 lasted through September, when the index reached 125, and then

in October dropped to 123.

Clay-products prices rose during 1952. The wholesale price index was 121.4 in December 1951 and varied only a tenth of a point during the first 9 months of 1952, until October, when it rose to 124.6. The indexes for concrete products and gypsum products remained stable throughout 1952. The wholesale price index for concrete products was 112.4 in December 1951 and 112.7 in December 1952. The same index for gypsum products was 117.7 in December 1951 and remained there throughout 1952.

Price movements of commodities purchased by the mining and primary-metal industries were also mixed. The wholesale price index of coal rose from 108.9 in December 1951 to 116.1 in December 1952. Most of this increase took place during the fourth quarter of 1952. The price index for electricity rose only slightly during 1952—from 98.0 in December 1951 to 98.5 in December 1952. During the same period, the petroleum and products index declined from 110.8 to 107.9. Also during the same period the lumber and wood-products index declined from 120.3 to 119.7.

BUSINESS INCOME, TAXES, AND DIVIDENDS

Although there was an absolute increase in metal- and non-metal-mining corporate-dividend payments in 1952, business income, and taxes, as can be seen in table 10, were lower than in 1951. The table presents income, tax, and dividend data, with an average for the 5-year period, 1943–47, and annual figures for 1948–52.

Table 11 shows the incomes, taxes, and dividend rates of the metallic-mineral-manufacturing industries. For these enterprises

⁵ Wholesale price indexes referred to are those of the Bureau of Labor Statistics, U. S. Department of Labor.

TABLE 10.—Income, taxes, and dividend payments of mining industries in the United States, 1943-47 (average) and 1948-52, by industries ¹

[Millions of dollars]

Item and industry	1943–47 (average)	1948	1949	1950	1951	1952	Change from 1951 (percent)
Income of unincorporated enterprises: Metal mining Nonmetallic mining and quarrying	8	15	7	13	17	15	-12
	6	14	12	13	14	13	-7
TotalAll industries	14	29	19	26	31	28	-10
	32, 284	40, 146	33, 774	38, 225	41, 980	40, 862	-3
Corporate income before taxes: ² Metal mining Nonmetallic mining and quarrying_	163	352	206	384	451	441	-2
	69	137	129	165	175	165	-6
Total	232	489	335	549	626	606	-3
All industries	24, 611	33, 762	27, 107	40, 976	43, 663	39, 216	-10
Tax liability: Metal mining Nonmetallic mining and quarrying	45	97	54	116	166	168	+1
	27	47	43	64	75	63	-16
TotalAll industries	72	144	97	180	241	231	-4
	12, 134	13, 028	10, 817	18, 247	23, 595	20, 635	-13
Corporate income after taxes: 3 Metal mining Nonmetallic mining and quarrying	118 42	255 90	152 86	268 101	285 100	273 102	$-4 \\ +2$
TotalAll industries	160	345	238	369	385	375	-3
	12, 497	20, 734	16, 290	22, 729	20, 068	18, 581	-7
Net corporate dividend payments: Metal mining Nonmetallic mining and quarrying.	62 22	118 34	92 33	130 42	136 44	133 53	$^{-2}_{+20}$
Total	84	152	125	172	180	186	+3
All industries	5, 248	7, 250	7, 469	9, 125	9, 208	9, 107	-1
Undistributed corporate income: Metal mining Nonmetallic mining and quarrying	55	137	60	138	149	140	-6
	21	56	53	59	56	49	-13
TotalAll industries	76	193	113	197	205	189	-8
	7, 229	13, 484	8, 821	13, 604	10, 860	9, 474	-13

Survey of Current Business, vol. 33, No. 7, July 1953, pp. 17-18, and National Income Suppl., 1951, pp. 164-175.
 Depletion charges are not deducted in arriving at corporate income for national income purposes.

dividend rates in 1952 were below those of 1951 and the decline in income and taxes was even greater. Income retained by corporations after taxes and dividends also decreased. For the iron and steel group this drop was sharp—approximately 41 percent. The nonferrous segment dropped about 18 percent. This, of course, might affect rates of expansion or replacement by internal financing should this drop in undistributed income continue over a long period. It would certainly appear that the minor drop in the dividend rate as opposed to the serious income drop for incorporated enterprises bespeaks an attempt to maintain the previous dividend rate paid stockholders. It is interesting to note that, for all the incorporated enterprises, although the 1952 income levels were well below those in 1951 and 1950, the dividends paid in 1952 were only 2 percent below the 1951 figure and only 0.3 percent below that in 1950. For nonferrous-metal firms, the dividend rate of 1952, which was 2 percent below the 1951 rate, was still 16 percent above that in 1950 for these firms.

TABLE 11.-Income, taxes, and dividend payments of metallic mineral manufacturing industries in the United States, 1943-47 (average) and 1948-52, by industries 1

[Millions of dollars] Change from 1951 1943-47 Item and industry 1048 1949 1050 1951 1952 (average) (percent) Income of unincorporated enterprises: Iron and steel and their products 2...

Nonferrous metals and their prod-108 77 59 95 109 83 -24 nets 63 20 20 47 54 41 -24 Total 191 115 142 163 124 -24 All industries_____ 32, 284 40, 146 38, 225 41, 980 40, 862 33, 774 Corporate income before taxes:3 Iron and steel and their products 2 1,670 2, 434 1,682 2, 954 3, 597 2, 165 _40 Nonferrous metals and their prod-441 556 467 910 1, 122 872 -224, 719 43, 663 2, 990 33, 762 2, 149 27, 107 3, 037 39, 216 -36 Total 2 111 3,864 All industries____ 24,611 40, 976 -10Tax liability: Iron and steel and their products 2___ Nonferrous metals and their prod--48 903 964 684 1,400 2, 185 1,128 214 209 196 431 -30880 2,849 23,595 Total 1, 117 12, 134 1, 173 13, 028 1, 831 18, 247 1, 594 20, 635 -44 All industries____ -13 10. 817 Corporate income after taxes: Iron and steel and their products 2___ Nonferrous metals and their prod-767 1,470 008 1,554 1.412 1.037 -27228 347 271 479 458 -11 Total 005 1, 817 20, 734 1,269 2,033 22,729 1,870 1, 443 18, 581 -23All industries_____ 20,068 12, 497 16, 290 Corporate dividend payments: Iron and steel and their products 2... Nonferrous metals and their prod-301 413 381 538 523 511 -298 125 141 158 187 183 -2 nets 532 Total 399 522 696 710 9, 208 694 -2 All industries___ 9, 107 7, 250 7, 469 9, 125 5, 248 Undistributed corporate income Iron and steel and their products 2. 466 1,057 617 1,016 889 526 -41 Nonferrous metals and their prod-130 222 130 321 271 223 -18 1, 160 1, 279 13, 484 1, 337 749 -35 596 All industries 7.2298,821 13,604 10,860 9.474-13

Depletion charges are not deducted in any corporate income for national income purposes.

INVESTMENT

Expenditures for New Plant and Equipment.—In 1952 miningindustry (fuels and nonfuels) expenditures for new plant and equipment were estimated at \$880 million, a 5-percent decline from This contrasts with all manufacturing and public utilities, which increased 11 and 5 percent, respectively, but roughly matches the decreases for transportation and other businesses-7 and 3 percent. (The total for all industry increased 3 percent.) The successive quarterly investments for mining seasonally adjusted and expressed in annal rates, were \$930, \$900, \$830, and \$870 million.6

¹ Survey of Current Business, vol. 33, No. 7, July 1953, pp. 17-18, and National Income Suppl., 1951, pp. 164-175.
² Including ordnance.

⁶ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business: Vol. 33, No. 12, December 1953, p. 4.

During 1952 the expenditures for new plant and equipment by the mineral-manufacturing industries in table 12 exceeded the 1951 expenditures of these industries by \$409 million, an increase of 35 percent. The 1951 expenditures for new plant and equipment, for the industries shown in table 12, were approximately twice as high as total expenditures in 1950.

TABLE 12.—Expenditures for new plant and new equipment for selected mineral manufacturing industries in the United States, 1947 and 1949-52, by industries ' [Millions of dollars]

(Minions	of dollar	oj.							
Industry	1947	1949	1950	1951	1952	Change from 1951 (percent)			
NEW STRUCTURES AND ADDITIONS TO PLANT									
Blast furnaces and steel mills	20. 7 6. 5 2. 6 7. 5 6. 2 9. 2 28. 9	108. 5 11. 6 9. 0 2. 7 10. 4 3. 9 8. 8 10. 4	89. 4 12. 2 11. 0 1. 4 4. 9 6. 0 10. 3 (²)	244. 3 43. 1 29. 8 2. 9 7. 6 7. 3 20. 9 12. 5	326. 9 25. 7 117. 9 3. 2 11. 5 7. 7 12. 0 11. 9	+34 -40 +296 +10 +51 +5 -43 -5 -40			
NEW MACHINERY AND EQUIPMENT									
Blast furnaces and steel mills	55. 0 10. 8 4. 6 26. 3 12. 8 33. 3	244. 4 34. 7 18. 5 5. 0 52. 5 7. 9 36. 1 32. 7	249. 2 41. 5 25. 9 4. 1 24. 5 10. 2 40. 5 (²)	477. 4 101. 8 72. 2 5. 8 29. 3 15. 9 56. 2 48. 7	737. 3 70. 7 110. 2 5. 6 47. 5 14. 1 32. 8 49. 7	+54 -31 +53 -3 +62 -11 -42 +2			
Total	416. 5	431.8	2 395. 9	807.3	1, 067. 9	+32			
TOTAL									
Blast furnaces and steel mills Iron and steel foundries Primary nonferrous metals Secondary nonferrous metals Nonferrous-metal rolling and drawing Nonferrous foundries Hydraulic cement Concrete and plaster products	75. 7 17. 3 7. 2 33. 8 19. 0 42. 5 [84. 0	352. 9 46. 3 27. 5 7. 7 62. 9 11. 8 44. 9 43. 1	338. 6 53. 7 36. 9 5. 5 29. 4 16. 2 50. 8 53. 1	721. 7 144. 9 102. 0 8. 7 36. 9 23. 2 77. 1 61. 2	1, 064. 2 96. 4 228. 1 8. 8 59. 0 21. 8 44. 8 61. 6	+47 -33 +124 +1 +60 -6 -42 +1			

U. S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures: Ser. MAS-52-3, Oct. 1, 1953, and MAS-51-1, Nov. 21, 1952.
 No breakdown between types of expenditures available for the concrete and plaster products industry.

Percentagewise there was a greater increase in 1952 in expenditures for "new structures and additions to plant" than for additional machinery and equipment. However, in terms of dollars, the greater increase took place for "new machinery and equipment."

In expenditures for new structures and additions to plant the primary-nonferrous metals increased most percentagewise to almost four times the 1951 level. On the other hand, hydraulic cement showed a marked decrease (43 percent) in such expenditures. In the expenditures for new machinery and equipment the nonferrous-metal rolling and drawing industry showed the largest percentage increase (62 percent). The blast-furnace and steel-mills group also showed a large increase, both percentagewise (54 percent) and dollarwise. As in the case of expenditures for new structures and additions to plant, the hydraulic-cement industry showed the greatest percentage decline (42 percent). It is interesting to note that, for the hydraulic-cement industry, the 1952 percentage cuts in expenditures for both plant and equipment were within 1 point of each other.

United States Foreign Mining and Smelting Investment.—Outflows of capital for mining and smelting investments abroad in 1952 were \$278 million—higher than in any previous year. Much of this foreign investment was connected with a few large-scale projects, although a great deal of activity was carried out on a small scale to develop new sources of essential raw materials. The amount of reinvested earnings was below that in 1951, since earnings were reduced by price declines for several metals and minerals.

Several of the largest investments were made in Canada, as can be seen in table 13; these included the iron-ore developments in Labrador. Large investments were also made in Venezuela.

TABLE 13.—Value of United States direct private investment in foreign mining and smelting industries, 1950-52, by areas¹

Millions	of dollars:	reduction	of investment	()1

[Minions of donars; reduction of investment (-)]					
Area and addition to value	1950	1951	1952	Change from 1951 (percent)	
All areas:					
Value at beginning of year	1.011	1, 129	1,317	+17	
Net capital movements	87	100	278	+178	
Undistributed subsidiary earnings	1 33	56	45	-20	
Other changes	-2	32	2	-20 -94	
Value at end of year	1, 129	1,317	1,642	+25	
Canada:	i	1,011	1,012	T-20	
Value at beginning of year	287	334	400	+20	
		36	134	+272	
Undistributed subsidiary earnings	1 18	30	14	-53	
Other changes	1	00	1.2		
Value at end of year	334	400	550	+38	
Latin-American Republics:	l .	100	000	7.00	
Value at beginning of year	595	628	736	+17	
Net capital movements	29	60	120	+100	
Undistributed subsidiary earnings	4	16	15	-6	
Other changes		32	1 10		
Value at end of year	628	736	871	+18	
Western Europe:	020		0.1	110	
Value at beginning of year	19	21	23	+10	
Net canital movements	1 (2)	(2)	(2) ²⁰	120	
Undistributed subsidiary earnings	2	`′3	3	0	
Other changes	1	_ĭ		•	
Value at end of year	21	23	26	+13	
Western European dependencies:				1 10	
Value at beginning of year	75	88	95	+8	
Net capital movements	13	2	18	+800	
Undistributed subsidiary earnings	2	5	4	-20	
Other changes	$-\bar{2}$		-		
Value at end of year	88	95	117	+23	
All other countries:				1	
Value at beginning of year	33	56	61	+9	
Net capital movements	16	2	6	+200	
Undistributed subsidiary earnings	7	2	ğ	+350	
Other changes	l	ī		1 000	
Value at end of year	56	61	76	+25	
•	1	1		1 -0	

¹ U. S. Department of Commerce, Office of Business Economics, Survey of Current Business, vol. 34, No. 1, January 1954, p. 6.

² Less than \$500,000.

DEFENSE MOBILIZATION

Defense Production Act.—The Defense Production Act of 1950 was renewed as Public Law 429, 82d Congress, on June 30, 1952. The same powers over priorities, allocations, and expansion of production as the act originally contained were continued in essentially unmodified form, as far as minerals-expansion assistance was concerned. However, in reviewing the act, Congress made clear that it wished continuation of the policy of relaxing and removing controls as they became no longer necessary to assure attainment of the objectives of the act.

The act as amended authorized designated agencies to incur obligations (borrowing authority) up to \$2.1 billions. When borrowing authority was certified for any given program, the total amount certified was to cover either an estimate of the eventual cost of the assistance to the Government, the working capital, or a

combination of the two.

The coordinating authority in the materials field remained with the Defense Production Administration. Two interagency committees established in December 1951 were employed to coordinate activities of various Government agencies in the work of pro-

viding expansion of supplies of basic materials.7

One of these—the Defense Materials Policy Committee—first met in January 1952 to consider and act upon significant materials-policy problems. The principal functions of the committee were the review of the following types of policies and problems: (1) Positions to be taken by the United States representatives in the International Materials Conference; (2) objectives, policies, and programs for procuring materials needed for defense at home or abroad; (3) plans and methods to control or limit price increases for needed materials, including multination action; and (4) plans, programs, and problems referred to the committee by the Office of Defense Mobilization, the DPA Administrator, and the Defense Materials Operating Committee.

The other interagency group—the Defense Materials Operating Committee—exercised functions previously performed by the Vital Materials Coordinating Committee. At its weekly meetings it reviewed the supply-requirements data for National Stockpile materials and planned coordination of supply expansion, distribution of available quantities, and restriction of nonessential

uses.

Defense Materials Procurement Agency.—The Defense Materials Procurement Agency, with the assistance of the General Services Administration, continued to offer assistance under the Defense Production Act for the expansion of supply of critical metals and minerals. This assistance was in the form of:

1. Certificates of necessity for rapid tax amortization, permitting the portion of the cost of a facility attributable to the defense program to be written off for tax purposes over 5 years instead of the normal depreciation period.

⁷ Joint Committee on Defense Production, Activities: 2d Ann. Rept., Rept. 3, 83d Cong., Oct. 20, 1952, pp. 59-60.

2. Guaranteed markets at guaranteed prices by contract, which could be either a commitment to purchase the output of a project at a negotiated price (in some cases, a premium price) or a general floor-price guarantee for the output produced which could not be sold on the commercial market at or above the floor price.

3. Direct loans, guarantees of loans, and advances against production for investment in facilities or working capital, when pri-

vate financing was unavailable due to the risk involved.

4. Grants for research and development to stimulate development of new methods that might lead to greater output or conservation of scarce materials.

5. Priorities and allocation of scarce materials.

6. Construction of access roads to sources of strategic minerals. The agency continued to develop and revise programs for minerals expansion, recommending measures for augmenting supply and negotiating means for developing foreign and domestic projects through various types of assistance, with a view toward supporting mobilization as well as current needs. Revised detailed resourceexpansion programs for over 40 minerals were recommended to and approved by DPA. Under the machinery of the overall resources-expansion program, accelerated tax amortizations were certified to the Bureau of Internal Revenue, essentiality of domestic loans certified to the Reconstruction Finance Corporation, and essentiality of foreign loans certified to the Export-Import Bank for final approval of terms. Procurement and floor-price contracts and advances against production were negotiated, executed, and administered within DMPA.

During the year purchase programs at guaranteed prices were authorized, with designation of depots in the United States for purchasing domestic beryl, mica, small lots of manganese, and These were in addition to the purchase programs underway for tungsten, manganese, and chromite. Several agents were designated to purchase domestic and foreign columbite-tantalite

By June 30, 1952, certificates of necessity granted on facilities for metal mining amounted to over \$700 million and for mining and quarrying nonmetallic minerals, nearly \$25 million.8 By the end of the year, the total for these two categories amounted to over \$1 billion, most of which applied to facilities for expanding iron-

ore supply.

Since development of mineral bodies requires several years before rated production can be achieved, it was too soon by the end of 1952 for the material-expansion programs to have made significant contributions to increased supplies, but several noteworthy increases in supply can be mentioned. The increased output under domestic tungsten expansion facilitated meeting the requirements of essential programs and continuing additions to the National Stockpile. The supply situation of many scarce commodities began to ease in particular, lead, zinc, fluorspar, and, late in the year, copper. Indications were that stockpile-addition rates for most materials

⁸ Defense Production Administration, Federal Aids for Facilities Expansion: July 10, 1952, p. 6.

Defense Materials Procurement Agency, Defense Production Act, Review of Tax Amortization Program: Progress Rept. 25, Apr. 20, 1953, p. 13 (unpublished report).

would continue to rise during the next few years as a result of expansion programs initiated, and special programs had been instituted when it appeared that extraordinary measures were required to insure completion of the stockpile in a reasonable time.

Defense Minerals Exploration Administration. 10—The Defense Minerals Exploration Administration continued to analyze exploration proposals and to negotiate and administer exploration expensesharing contracts. A marked decrease in the number of new applications took place during April, May, and June. This was attributed to the fact that 44 percent of all contracts were for leadzinc and lead-zinc-copper projects, and a sharp drop in the price of lead-zinc caused an abrupt braking of exploration for these metals.

However, the search continued for domestic deposits of other strategic and critical minerals. Under the DMEA program, exploration projects were carried on in 27 States. Twenty-four minerals were sought, including the titanium minerals, rutile and brookite, which were added to the critical list in January 1952.

Office of Price Stabilization. 11—The Office of Price Stabilization made major adjustments in its price-control program during the third quarter of 1952, when pressure developed to increase the prices of three basic metals—steel, aluminum, and copper. On the basis of maintaining pre-Korea margins for primary aluminum production, a price increase of 1 cent a pound was allowed on primary pig and ingot aluminum, and a rise of 5 percent was granted in the ceiling prices of primary aluminum products.

To assure continued imports of Chilean copper, the OPS authorized an increase in the prices of copper and brass-mill products. while maintaining the ceiling on domestic copper. Chilean copper, under an agreement with the Chilean Government, was commanding a price 3 cents above the domestic price but below the world market price. The agreement was rescinded by the Chilean Government, and an embargo was announced May 8. To retain the flow of Chilean copper with the least effect on the domestic economy and without resort to subsidies, OPS permitted United States buyers to pass on 80 percent of any excess paid over the domestic ceiling of 24.5 cents per pound. The price of Chilean copper to private purchasers later rose to 36.5 cents.

Price increases in the three basic materials—steel, aluminum, and copper—spread cost increases throughout metal fabrication. and with no adjustment the metalworking industries would have had to bear the brunt of all increases due to increased costs of basic metals, labor, and rail freight. In recognition of this problem. OPS issued General Overriding Regulation 35, enabling purchasers of base metals to pass through price advances to customers at

secondary and subsequent stages of fabrication.

Authority was granted for increases of \$1 a ton for iron ore. and \$40 a ton for ferromanganese.

¹⁰ Secretary of the Interior, Annual Report, Fiscal Year Ended June 30, 1952: Pp. 493-494. 11 Director of Defense Mobilization, 7th Quarterly Report to the President: Oct. 1, 1952, pp.

Joint Committee on Defense Production, Activities: House Rept. 1097, 83d Congress, Jan. 7, 1954, pp. 79-80.

In contrast to these increases, the prices of lead and zinc declined below the ceiling price in May owing mainly to unusually large imports and a decreased demand at home and abroad. Price control

was not removed from metals during the year.

National Production Authority.—Immediately after the start of the steel strike, June 2, 1952, a number of directions were issued under the appropriate National Production Authority orders to insure that the dwindling supplies of steel would be available for the defense programs during the strike and until production again caught up with demand.

Among the many regulations and directions issued, one of the most important, M-6 A (Direction 3, July 28), provided for maintaining a flow of steel products to military contractors who ordinarily obtained their requirements from warehouse stocks; it also assured small business a portion of the available warehouse stocks and provided, where possible, both small and larger consumers with steel. In addition, it limited the quantity of steel available to any one consumer in order to spread new steel supplies. Direction 15 to CMP Regulation 1 was issued July 29, providing that all scheduled second-quarter and all third-quarter military, atomic energy, and machine-tool orders, bearing the allotment symbol ABCEZ-2 or B-5, for steel, must be filled by November 30 and that, if any conflict developed, the mills must defer nonmilitary orders.

With resumption of steel production, the necessary steps were taken to implement the policy decision to "maintain the CMP pattern essentially as it was on June 2, with the minimum of disruption to mill schedules," and "that the application of special assistance measures would be limited to military and atomic energy programs, the vital machine tool program, and the delivery of tin-

plate for cans needed to save perishable foods."

National Strategic Stockpile.¹²—Deliveries to the National Stockpile in 1952 were larger than in any previous year. Of the 57 items still incomplete by June 30, progress was made in adding to the inventories of 54. Only 14 percent of the obligations incurred over the 6½ years of the stockpile were incurred in 1952, although 35 percent of the cumulative expenditures were made in that year. For 10 items of the metals and minerals group the stockpile objec-

tive had been met by December 31, 1952.

Despite the widely improved supply situation, aluminum, copper, and nickel remained scarce, necessitating diversions to industry of tonnages under contract for delivery to the stockpile. Other diversions, particularly in the early part of the year, included cobalt, acid-grade fluorspar, tungsten, zinc, and later a small quantity of rare earths, as a result of a temporary shortage. Materials released from inventory by Presidential order (all during the early months of the year) were aluminum, copper, cryolite, lead, rutile, and zinc, for allocation to industry. However, the quantities involved were small compared to defense requirements.

Deliveries of material to the stockpile improved during the second half of the year. Material added during the 12-month period was

²² Department of Defense, Munitions Board, Stockpile Reports to the Congress: Aug. 15, 1952, and Feb. 15, 1953.

valued at \$918 million, and the total value December 31, 1952, was

\$3.8 billion, after adjustment for price changes.

The review of materials-purchase specifications continued to reveal the necessity for changes in grades, packaging, and marking and for changes to give consideration to current technological processes and to world supplies currently available for stockpile purchases.

A review of all stockpiling policy was initiated. This review was aimed at devising policies that would encompass the stockpiling program during partial mobilization periods as well as during

full mobilization.

Commodity Credit Corporation.—The Commodity Credit Corporation continued to accept strategic and critical materials produced abroad in exchange for agricultural commodities acquired by that corporation. During the year, approximately \$17 million 13 worth of material was transferred to the stockpile, part of which was metals or minerals.

Mutual Security Administration.14—Mutual Security Administration's strategic-materials program providing for direct purchase of critical commodities and loans and/or grants for development projects for scarce material resources continued to be administered by the Defense Materials Procurement Agency. To permit DMPA to make purchases or development contracts on behalf of MSA (formerly Economic Cooperation Administration), funds were transferred from time to time in local currency. Through December 1952 the cumulative total commitment amounted to \$223 mil-Of this total, the equivalent of \$89 million was for the purchase of strategic items for the United States stockpile. All expenditures for these purchases were made from the United States portion of counterpart funds. A total of \$134 million was committed for developmental projects. Most of this represented loans from the United States portion of counterpart funds, repayable in strategic materials.

Two other assistance programs were administered directly by MSA: (1) Technical aid to underdeveloped areas in the form of geological surveys, aerial photography and mapping projects, and research, training, and professional advice for specific problems encountered in materials recovery; and (2) large sums authorized for the purchase of machinery and equipment under general country programs, some of which was undoubtedly used for mining

purposes.

Export-Import Bank.¹⁵—During 1952 the Export-Import Bank under its own enabling act established credits abroad totaling \$114 million for the production of cobalt, copper, manganese, nickel, uranium, tungsten, and sulfur. Another \$44 million of credits was established under the Defense Production Act to assist production of zinc, cobalt, copper, and manganese and large additional loans for the development of strategic materials were under consideration at the end of the year.

Berived from Department of Defense, Munitions Board, Stockpile Reports to Congress: Jan. 23, 1952, p. 13, and Feb. 15, 1953, p. 11.
 Foreign Operations Administration, Monthly Operations Report: Data as of Aug. 31, 1953,

pp. 4-6, 32.

Export-Import Bank of Washington, Fourteenth Semiannual Report to Congress for 1952:

Pp. 30-31; Fifteenth Semiannual Report: Pp. 24-25.

Office of International Trade. The Office of International Trade. United States Department of Commerce, under its export-control authority severely limited the quantities of critical and short-supply materials that could be exported from the United States. During the year, some changes were made in degree of control for certain strategic minerals, and antimony, cadmium, bismuth, and graphite Controls were relaxed somewhat on were released entirely. kyanite, chromite, most forms of copper, industrial diamonds, lead, molybdenum, tin, vanadium, and some forms of zinc and aluminum. Restrictions were increased on cryolite, nickel, and some forms of copper.

International Materials Allocation. 17—The world-wide emergency shortage of raw materials stimulated the United States, the United Kingdom, and France to organize international machinery for maintaining some order between supply and demand. The three countries published a joint declaration on January 12, 1951, stating their agreement to propose international commodity groups to certain other governments; as a result of this action, the International Materials Conference was set up. The Conference had a Central Group with 10 members: Australia, Brazil, Canada, France, India, Italy, the United Kingdom, the United States, and representatives of the Organization of the American States (OAS) and of the Organization of European Economic Cooperation (OEEC). Group provided geographical representation as well as representation for producer and consumer countries; it set up specific commodity committees, which included the main producers and main consumers and formed a company of responsible government representatives gathered to consider what could be done to deal with whatever seemed to be the immediate problems for particular Four of the seven committees created covered mincommodities. erals: The Copper, Zinc, and Lead Committee; the Manganese, Nickel, and Cobalt Committee; the Tungsten and Molybdenum Committee; and the Sulfur Committee. The committee membership included over 85 percent of the Free World production and consumption of the scarce minerals involved.

The committees had powers only to make recommendations to The emergency allocations recommended by them were designed to achieve an orderly and fair distribution of available supplies, with attention to needs for defense, strategic stockpiling, and essential civilian consumption. Under allocating procedure, the total estimated production available to the Free World, both real and potential, was taken into account. Then, an analysis was made of available information to determine whether requirements in a particular quarter would exceed production. The allocations for each participating country were in the form of a "total Entitlement for Consumption"—the quantity of primary material that could be processed or consumed by the country concerned, The quotas were either from domestic production or imports.

Department of Defense, Munitions Board, Stockpile Reports to the Congress: Jan. 23, 1952, pp. 17-19, and Feb. 15, 1953, p. 18.

Winant, Frederick, Summary Statement on the International Materials Conference (through Dec. 31, 1952): Jan. 5, 1953, Hearings, Subcommittee on Minerals, Materials, and Fuel Economics of the Committee on Interior and Insular Affairs, U. S. Senate, 82d Cong., 1st and 2d Sess.; part 4, International Materials Conference, 1954, pp. 1135-1142.

merely limits on exports and imports, which permitted countries, within those limits, to buy from or sell to any countries of the Free World and encouraged them to do so with the least disturbance to normal patterns of trade. In accepting the plan, Governments assumed the responsibility for seeing that their allocations were not exceeded. The methods of distribution and the control of prices within a country were matters for determination by that country. Responsibility for United States representation to the International Materials Conference was placed in the Defense Production Administration by direction of the Office of Defense Mobilization.

During 1952 the International Materials Conference continued in operation and assisted in improving supply-demand balance in a number of materials under review. Allocation of zinc by the IMC was discontinued during the second quarter and of tungsten and cobalt at the end of the fourth quarter. This left only four minerals—sulfur, nickel, molybdenum, and copper—on which allocations were to be continued. While none were made for lead and manganese, both metals had been kept under constant scrutiny until improved supply made this unnecessary.

Review of Metallurgical Technology

By P. M. Ambrose, J. E. Conley, J. C. Barrett, F. D. Lamb, and H. H. Greger 5

S A RESULT of research and development spurred by the constantly increasing demand for metals and metallurgical products, many new methods were developed and metallurgical changes made in 1952. This chapter does not purpose to record all the innovations in practice, since such a report would require volumes for a complete detailed presentation. It is intended to present highlights—many supported by adequate references—and to bring before producers and consumers a summary of the apparent outstanding developments in the metallurgical industries.

This, the first consolidated metallurgical review to appear in the Minerals Yearbook, is planned to be continued in succeeding years. Many developments in laboratories will be put in plant practice in the near future, and old methods will be adapted to new uses. For purposes of simplification, this presentation is made under the broad headings of Mineral Dressing, Extractive Metallurgy, and Physical

Metallurgy.

MINERAL DRESSING

In mineral dressing there was the usual active interest in improvements in crushing and grinding. New mills under construction and expansion of older plants included some of the world's largest crushing and grinding equipment. The largest primary gyratory crusher, with a 60-inch feed opening, was installed at the Climax Molybdenum Co. plant in Colorado, and construction was begun on an even larger one, also with a 60-inch opening, to be installed at the Reserve Mining Co. plant, Babbitt, Minn.⁶ This crusher, when completed, will be capable of crushing run-of-mine taconite ore from a 5- to 6-foot top size at the rate of 3,500 tons an hour.

There was a decided trend during the year toward replacing fine crushers with rod mills. The Bunker Hill & Sullivan Mining & Concentrating Co. installed a 9½- by 12-foot peripheral-discharge rod mill at Kellogg, Idaho, and the Consolidated Mining & Smelting Co. used an 11½- by 12-foot rod mill at its Sullivan plant in British

¹ Chief, Metallurgical Division, Eastern Experimental Station, Region VIII.

² Chief, Minerals Processing Branch, Eastern Experimental Station, Region VIII.

3 Acting chief, Physical Metallurgy Branch, Eastern Experimental Station, Region VIII.

4 Chief, Ore Dressing Section, Eastern Experimental Station, Region VIII.

5 Consulting ceramic engineer.

⁶ Engineering and Mining Journal, Reserve Mining Co. Starts Taconite Plant at Babbitt: Vol. 153, No. 11, November 1952, pp. 72-79.

Columbia for open-circuit rod-mill crushing. The Tennessee Copper Co., Copperhill, Tenn., and the Kennecott Copper Corp., Hayden, Ariz., also used open-circuit rod mills for fine crushing ahead of ball mills. Advantages claimed were that the rod mills produce more finished product per ton of feed, lower costs, and permit easier operation without dust nuisances, screens, elevators, etc. Anaconda Copper Mining Co., Yerington, Nev., and Butte, Mont., planned to install open-end rod mills for fine crushing; at Butte the mills replace roll crushers, screens, elevators, etc.

Larger ball mills operating at higher speeds were installed in some plants to reduce the installed cost per horsepower for grinding. The new mill under construction for the White Pine Copper Co., in Michigan was equipped with 12½- by 13-foot low-pulp-level ball mills driven by 1,500-hp. synchronous motors and are probably the world's largest to date. Some Canadian gold mills converted their ball mills to grinding with pebbles, claiming substantial savings in grinding

costs, although at some sacrifice in capacity.

Dry crushing and grinding found favor for handling some materials. It was found that impact crushing produced a minimum of fines when crushing perlite. The Aerofall mill, a dry, combined crushing-grinding unit employing air classification to remove the ground material from the mill, won favor in Canada, where it was used on asbestos ore with a resulting increase in the yield of Premium-grade

long-fiber asbestos.

Along with the larger crushing and grinding units installed in new mills in 1952, record-size classifiers and sizing equipment were also constructed. The largest simplex spiral classifiers built to date were the 84-inch-diameter spirals scheduled for use at the West Hill mine, Western Mining Co., near Colerain, Minn. Larger heavy-duty vibrating grizzlies and screens were in use in 1952 and both electric and hot-air-heated screens were widely used, particularly on sticky materials.

The Dutch State Mines cyclone, variously known as the Driessen cone, Dorrclone, and hydrocyclone was used as a classifier and gave promise of being an important device to close grinding circuits, deslime ores before concentration, dewater tailings for mine fill, and

deslime waste or return water.

Great Lakes iron-ore-beneficiation developments continued at a rapid pace, and the size of the "pilot plants" was astounding. Not since the days of active development of copper concentration after World War I were such large units used as pilot plants, and the iron plants dwarfed the copper plants. Magnetic separation was the primary concentrating method employed in the magnetic taconite plants, but flotation and gravity-separation processes also were involved. Magnetic roasting for nonmagnetic ores was being thoroughly investigated by all major iron-ore producers. Magnetic-separation studies employed both dry and wet separators, but because most of the ores require extremely fine grinding for liberation the drum-type wet machines found most favor. Humphreys-spiral concentrators were found to be useful in concentrating fine nonmagnetic iron ores

⁷ Ramsey, R. H., White Pine Copper: Eng. and Min. Jour., vol 154, No. 1, January 1953, pp. 72–87.

⁸ West, W. W., Impact Crushing for Reduction of Hard Abrasive Ores: Min. Eng., vol. 4, No. 6, June 1952, pp. 563–564.

³⁴²⁰⁷⁰⁻⁻⁵⁵⁻⁻⁻⁻³

as well as other minerals. Dense-medium separators, including the Dutch State Mines cyclone, were an important part of the iron-ore-beneficiation program. The M. A. Hanna Co. operated a Dutch State Mines cyclone plant on fine iron ore in 1952 and a 50-ton-per-hour pilot plant was also operated by the Mesaba-Cliffs Mining Co. at the Holman Cliffs mine. A number of such plants were being designed or actually constructed for operation in 1953.

The work with the Dutch State Mines cyclone on iron ore sufficiently indicated the potentialities of this new process so that it seems evident that the cyclone separation with a dense medium will be applied to the treatment of base-metal and other heavy-mineral-

bearing ores.

The trend in dense-medium separation plants for coarse metallic ores was to employ drum-type separators, although where the difference in specific gravity between the sink-and-float products is slight the older cone-type separator was still preferred. Most plants were using ferrosilicon as the dense medium, but the new plant of the St. Joseph Lead Co., at Hayden Creek, Mo., employed a galena medium.

Improvements at the mills of the Utah Copper Division of the Kennecott Copper Corp. included installation of new and larger flotation machines, and the flowsheets at the Arthur and Magna mills in Utah were modified to recover molybdenum from the copper-plant tailings instead of from a concentrate produced in the copper section of the mills. The Bagdad Copper Co. in Arizona also expanded its flotation plant and included recovery of molybdenite in its flowsheet. 10

The International Minerals & Chemical Corp. announced the development of a new dry-concentration process for potash, phosphate, and other ores. The method, called the Lebaron-Lawver process, was not described in detail, but enough information was available to indicate that it was essentially an electrostatic separation process. The two great ilmenite plants at Starke and Jacksonville, Fla., continued to be the main installations of electrostatic separation, but much research testing was underway. In nearly all cases, electrostatic separation as a primary step is not economic, but the values in mixed concentrates are frequently great enough to permit the cost of drying for electrostatic separation.

The greatest interest in thickening centered around the cyclone classifier or thickener, particularly for thickening mill tailings for mine backfill. Numerous applications for the hydrocyclone were found, but the most important used in 1952 were for thickening and classifying. Centrifugal filters continued to attract attention by their high capacities and wide range of applications. New vacuum filters, including horizontal and panel types, were installed in some milling

plants where special conditions warranted their use.

The number of milling plants using infrared lamps for drying concentrates increased during the year, particularly among the tungsten producers. Larger plants using the lamps included the Getchell mill at Red House, Nev., and the Tungsten Mining Co. plant at Henderson, N. C.

[•] Corfield, R. J., and Johnson, A. G., Electrical and Metallurgical Improvements at Kennecott's Utah Copper Division Mills: Min. Eng., vol 5, No. 3, March 1953, pp. 274-276. 1º Bagdad Copper Co., Bagdad Expands Copper Mill—Recovers By-Product Molybdenite—Ups Copper Recovery by pH Control: Min. World, vol. 14, March 1952, pp. 30-33.

Methods for agglomerating fine concentrates received a large amount of attention, and many large companies set up special testing units for sintering, nodulizing, pelletizing, etc. Much of the work was concerned with methods for agglomerating fine iron-ore concentrates being produced in the large pilot plants treating taconite ores in Minnesota. Rotary kilns and sintering machines were the preferred equipment for agglomerating the magnetic iron concentrates.

EXTRACTIVE METALLURGY

One of the most important metallurgical developments of the year was the disclosure of its autoclaving process by Chemical Construction Corp. in several technical articles 11 covering the technique for extracting and recovering various metals from their ores as fine metal powders. The use of a chemical method to produce metal powders without the necessity of using ore concentrates and smelting-recovery procedures has some far-reaching potentialities.

The process has been considered applicable for recovering nickel, cobalt, copper, and manganese from their low-grade ores in the form of fine metal powders, except for manganese, which would be as a hydrous oxide. All metals above zinc in the electromotive series are alleged to be recoverable in the elemental form, but cobalt, nickel,

and copper are the most important.

The process comprises leaching cobalt-nickel-copper ores or copper and brass scrap in acid or alkaline solutions under pressure. ore is treated in a water slurry by passing air, oxygen, or sulfur dioxide or their mixtures through the heated mixture; ammonia is used on scrap copper or brass. The metals are precipitated from the filtered solutions by reducing with hydrogen and recovered as fine powders of high purity. Selective precipitation is attained successively by careful pH control during reduction. Commercial exploitation of the process has been begun by the Sherritt-Gordon Mines, Ltd., Edmonton, Canada; by the National Lead Co., at Fredericktown, Mo., and by Howe Sound Mining Co., near Salt Lake City, Utah. Details of the process are further disclosed in a series of United States patents (2,647,819 and 2,647,825 and 2,647,827-2,647,832) issued August 4, 1953, and assigned to the Chemical Construction Co. of New York and in Patent 2,647,820 assigned to Sherritt-Gordon Mines, Ltd., Canada. Other developments in the recovery of cobalt, nickel, and copper from grosses have been reported, 12 and details of developments on electrolytic extraction of manganese, chromium and cobalt have been published.¹³ The major nickel producers were very active on research and development of recovery methods, and a patent was issued for the recovery of nickel from its oxide ores.14

Important advances have been made in the technology of aluminum in an industry accustomed to keeping its operating techniques

¹¹ O'Connor, Joe. Chemical Refining of Metals: Chem. Eng., vol. 59, No. 6, June 1952, pp. 164-168, 368, 370, 372-374, 376.

Mining Engineering, New Chemical Method Recovers Nickel, Cobalt, Copper Metal; Vol. 4, No. 6, June 1952, pp. 565-567; Jour. Metals, vol 4, No. 6, June 1952, pp. 589-591; Eng. and Min. Jour., vol. 153, No. 6, June 1962, pp. 84-87, 176.

12 Sherman, A. H., and Pesses, Marvin, Alnico Recovery Process Salvages Valuable Nickel, Cobalt: Iron Age, vol. 170, No. 1, July 3, 1952, pp. 115-119.

12 Cuthbertson, J. W., Recent Advances in Electrolytic Extraction of Manganese, Chromium, and Cobalt: Chem. and Ind. (London), No. 48, Nov. 29, 1952, pp. 1165-1170.

14 Forward, F. A. (assigned to Sherritt-Gordon Mines Ltd.), Treatment of Nickeliferous Oxide Concentrates for Recovery of Nickel Values Therefrom: U. S. Patent 2,616,781, Nov. 4, 1952.

unpublicized. Progress has been made in metal production and fabrication, electrodeposition on other metals, and production of metallurgical alumina from ores difficult to process. An electrolytic furnace with alleged advantages, including better power economy, was announced.¹⁵ A new process being developed by the British Columbia Aluminum Co., at a small plant at Westminster near Vancouver, British Columbia, is reported to effect 30 percent economy in power consumption. Power in "square waves" at 8 volts and 1,600 amperes is used on the furnace.16

The direct reduction of aluminous material, such as clays, low-grade bauxites, pyrophyllite, and similar materials, has been investigated by the Bureau of Mines at its Albany, Oreg., station in cooperation with the Apex Smelting Co., of Chicago, Ill. As a result of the research Apex is constructing a small plant in Lane County, Oreg., to produce aluminum-silicon alloys. These alloys can be used as master alloys for producing other alloys or for subsequent treatment by molten zinc or mercury for extracting the aluminum by a simulated Sohxlet extraction with final removal of the solvent metal by distillation. Rough separation by filtration of crystals from liquid metal slightly above its melting point is also contemplated.

Intensive research on the electrodeposition of aluminum on steel and certain base metals has opened up some interesting possibilities for acquiring a corrosion-resistant coating over a metal having greater strength and other more desirable physical properties.¹⁷ Another development pertaining to the electrolytic coating of light metals was

discussed by O'Keefe. 18

Exploitation of the Jamaican bauxite deposits made progress in 1952, when the Jamaica Bauxites, Ltd., a subsidiary of Aluminium, Ltd., of Canada constructed an alumina plant at Mandeville in

Manchester Parish.¹⁹

The Jamaica bauxites are lower in alumina than the Guiana ores and require extraction with alkali solutions similar to a modified European Bayer procedure rather than the conventional American Bayer process. Two other American producers, Reynolds Metals Co. and the Kaiser Aluminum & Chemical Corp., through their respective subsidiary mining companies, by their construction of new plants and expansion of existing facilities have advanced the production of alumina from these ores.20 21

The recovery of manganese from low-grade ores and waste products received special attention in 1952. Early in the year details of the Dean ammonium carbamate process were published,²² and its exploitation by K. M. Leute was reported. The Manganese Chemical

¹⁶ Ferrand, M. L., Large Modern Electrolytic Furnace for Manufacture of Aluminum: Private Prospectus Presented to National Inventors Council, U. S. Department of Commerce, March 1952.

18 Steel, New Aluminum Process Disclosed: Vol. 130, No. 8, Feb. 25, 1952, p. 51.

17 Collins, F. R., Aluminum Electroplated on Steel from a Fused-Salt Bath: Iron Age, vol. 169, No. 2, Jan. 17, 1952, pp. 100-101.

18 O'Keefe, Philip, Electroplated Coatings on Light Metals: Materials and Methods, vol. 35, No. 6, June 1952, pp. 119-130.

19 Engineering and Mining Journal, New Alumina Plant Will Treat Jamaica Bauxite: Vol. 153, No. 3, March 1952, pp. 49-96.

March 1952, pp. 94-96.

March 1952, pp. 94-96.

Knoerr, A. W., Reynolds Jamaica Bauxite Project Ships First Load of Ore to U. S.: Eng. and Min. Jour., vol. 153, No. 9, September 1952, pp. 108-113.

Lee, J. A., Corpus Christi: From Bauxite to Alumina to Pig Metal: Eng. and Min. Jour., vol. 153, No. 12, December 1952, pp. 80-82.

Dean, R. S., Manganese Extraction by Carbamate Solutions and the Chemistry of New Manganese-Ammonia Complexes: Min. Eng., vol. 4, No. 1, January 1952, pp. 55-60. Aqueous Solutions Containing Manganese in a Complex Ion and Processes of Making the Same and Making Manganese Compounds Therefrom: U. S. Patent 2,608,463, Aug. 26, 1952.

Co., organized to develop the process, was awarded a Defense Production Authority contract for \$1.5 million to erect a plant near Riverton, Minn., to process 200 tons per day of the Cuyuna low-grade manganiferous iron ores.²³ On December 31, 1952, the Defense Materials Procurement Agency announced signing of a contract with Mangaslag, Inc., to construct and operate a plant at Coxton, Luzerne County, Pa., to determine the feasibility of the process developed at the Central Experiment Station of the Bureau of Mines at Pittsburgh, Pa., for recovering ferromanganese from open-hearth slags. Anthracite will be substituted as much as possible for coke as a blast-furnace fuel and reducing agent, however. Production of approximately 1,000 long tons of ferromanganese is planned during demonstration runs. Essential steps of the process comprise low shaft blast-furnace smelting of the slag to produce a high-phosphorus spiegeleisen and subsequent selective oxidation of the spiegel in a special converter to leave a high-phosphorus pig iron and produce a high-manganese slag meeting the requirements of ore for making standard ferromanganese. Blastfurnace operations were planned for late 1953.

Important developments resulted in 1952 in the advancing exploitation of the deposits of taconite in the Great Lakes iron-mining region. The operations, although considered to be pilot scale for the iron and steel industry, would rate as commercial installations in less Three major operations dominate the field. extensive industries. The status of the Reserve Mining Co. operation was reported 24 late The Reserve Mining Co. is owned by Armco Corp. and the Republic Steel Corp. The Oliver Iron Mining Division of the U. S. Steel Corp. was operating its agglomeration plant on nontaconite concentrates and fine ores while its new Pilotac plant at Mountain Iron, Minn., was nearing completion. The Erie Mining Co., owned jointly by Bethlehem Steel Corp., Youngstown Sheet & Tube Co., Interlake Iron Corp., and Pickands, Mather & Co., also announced the proposed construction of a \$300 million plant to produce 10.5

million tons of taconite pellets per year.25 Based upon an old principle, some outstanding applications of

ion exchange were made during the year.26

Another innovation with far-reaching possibilities is conversion of the regular downdraft sintering machine to operate with an updraft.27 This modified machine was announced by the Broken Hill Associated Smelters Pty., Ltd., South Australia, and it is believed that plans for constructing commercial machines of this type are being effectuated by American manufacturers. Several important advantages are being claimed for the innovation. The installation of multiple windboxes or gas collectors above the grate makes it practical to produce high-SO₂ gases and recycle the gases low in SO₂ to enrich them. Plans are to construct a 10- by 77-foot machine. In a similar operation, the first Dorrco FluoSolids reactor was installed

²³ Engineering and Mining Journal, To Process Low-Grade Manganese Ore-Deposits: Vol. 4, No. 11, November 1952, p. 1023.

²⁴ Engineering and Mining Journal, Reserve Mining Co. Starts Taconite Plant at Babbitt: Vol. 153, No. 11, November 1952, pp. 72-79.

²⁵ Mining World, Huge Taconite Plant Proposed for Minnesota: Vol. 14, No. 4, April 1952, p. 85.

²⁶ Engineering and Mining Journal, Ion Exchange: Does it Have a Role in the Mineral Industry: Vol. 153, No. 11, November 1952, pp. 80-85.

²⁷ Burrow, W. R., Continuous Updraft Sintering Recovers More SO₂ for Smelter: Eng. and Min. Jour., vol. 153, No. 11, November 1952, pp. 90-94.

for producing rich SO₂ by roasting pyrrhotite at the Berlin, N. H. plant of the Brown Co., manufacturers of paper.28 The SO₂ gas is used to make sulfuric acid. Other new applications of the FluoSolids reactor have been described.29 Oxygen flash smelting of copper concentrates, in which all smelting heat requirements are met by reacting the concentrates with oxygen, was carried out on a commercial basis at Copper Cliff, Canada. Large-scale production of liquid sulfur dioxide, obtained as a byproduct, was initiated in 1952. The process was described in a recent publication.³⁰

Another outstanding application of the FluoSolids reactor is reported by the Aluminum Co. of Canada, Ltd., which has constructed a plant to process 150 tons per day of zinc sulfide concentrates at its Arvida aluminum plant 150 miles north of Quebec City, Quebec, Canada. 30a

This installation is the first successful commercial-scale roasting in North America of zinc sulfide flotation concentrates in a FluoSolids reactor to produce a zinc oxide calcine for electrolytic leaching and at the same time to produce sulfuric dioxide gas for a contact sulfuric acid plant. The operation is also a "first" in respect to size (22 feet i. d. by 22 feet high), as the reactor has almost two and one-half times the hearth area of any previously built for use on other ores. Attention is called particularly to design problems brought about by the close thermodynamic balance of the reactions and the lack of commercial experience with this type of operation. Enough operating data have been included to illustrate typical results obtained by the plant as a whole.

Improvements in the recovery of copper by an acid-leaching process is reported by Schlechten.31 After preliminary laboratory testing, a plant was constructed to treat 2,000 long tons per day of minus-1/2-inch raw Mavrovouni ore with 4-percent sulfuric acid containing 2 grams per liter of ferric iron. After the slime and sand fractions are treated in separate countercurrent-decantation washing thickeners, the solids are reclaimed and sent to the flotation plant and the pregnant liquor is treated by iron cementation. Overall recoveries are increased 10 percent. Another hydrometallurgical process for copper recovery following preroasting in a Dorrco FluoSolids reactor is reported on ores from the mine of the Kilembe Mines, Ltd. 32 The copper in the leachate obtained from the roasted ores is recovered by electrodeposition.

The electric smelting process to produce a high-titania slag and a special type of iron from the Allard Lake ilmenite ores of Canada, as under development by the Quebec Iron & Titanium Corp., gained considerable impetus early in 1952. The development corporation is owned jointly by Kennecott Copper Co. and New Jersey Zinc Co., with the electric smelter situated on the St. Lawrence River at Sorel, Details of the operation, which will produce a titanium slag

Chemical Week, A Captive Source of Sulfur Insurance: Vol. 72, No. 10, Mar. 7, 1953, pp. 57-58.
 Copeland, G. G., New FluoSolids Experience: Min. Cong. Jour., vol. 38, No. 3, March 1953, pp. 42-

³⁰ Copeanu, G. G., 1969 Platochas Laplace Cliff: Vol. 86, No. 5, May 1952, pp. 315-316.
³⁰ Mining Magazine, Sulphur Recovery at Copper Cliff: Vol. 86, No. 5, May 1952, pp. 315-316.
³⁰ Anderson, T. T. and Bolduc, Raymond, Fluosolids Roasting of Zine Concentrates for Contact Acid: Chem. Eng. Progress, vol. 49, No. 10, October 1953, pp. 527-530.
³¹ Schlechten, A. W., and Bruce, J. A., A New Acid-Leaching Section Raises Cyprus Copper Recovery by 10%: Eng. and Min. Jour., vol. 153, No. 12, December 1952, pp. 88-91.
³² Mining World, Production at Kilembe Copper-Cobalt Mine to Start in 1955: Vol. 14, No. 12, November 1952, pp. 60

suitable for producing pigment-grade titanium oxide, have been discussed in a recent article.33 The deposits were discovered over 10 years before, and the mining program and development of the smelting technique have proceeded over the past several years. However, important progress was made on the smelting operation in 1952. special grade of this slag is also being tested for making titanium tetrachloride suitable for extraction of titanium metal. Although not entirely a 1952 development, the Sterling Electric Furnace developed by the New Jersey Zinc Co. for smelting zinc ores was described during the year.34 Numerous advantages of the process are cited. The process as used is covered by United States patents 2,598,741-2,598, 744, assigned to the New Jersey Zinc Co.

The use of nitric acid to replace sulfuric acid, in short supply in 1952, to process superphosphate is an innovation in the American phosphate industry. The use of nitric acid adds nitrogen, one of the "big three" essential fertilizer ingredients, to the superphosphate. Two commercial plants are planning to exploit the process. plant is to be at Sheffield, Ala., and the other will be constructed by the Allied Chemical & Dye Corp. at South Point, Ohio. Other technologic advances in phosphatic fertilizers during the year are discussed

by Waggaman.35

The synthesis of strategic minerals, such as mica and particularly radiograde quartz crystals, received much attention, and considerable progress was made by the Brush Development Co., Cleveland, Ohio, and the Bell Telephone Laboratories, Inc., Murray Hills, N. J. 36 The hydrothermal synthesis of quartz crystals, although conducted on a pilot-plant scale, resulted in the production of substantial quantities of material. The successful development of the process has extremely important significance from the viewpoint of national Research of a fundamental nature pertaining to crystal growth is being extensively pursued at several of United States universities and in other countries. Although still in the laboratory stage and not yet entirely ready for expansion to a commercial scale, the synthesis of phlogopite mica by hydrothermal techniques is meeting with much success at the Bureau of Mines Electrotechnical Experiment Station, Norris, Tenn.

A new process for treating the carnotite ores of Colorado, to recover the strategic uranium and vanadium compounds, has been reported.37 Likewise, some details of the conversion of zirconium oxide to its chloride by a special chlorination technique is disclosed in a recent

article.38

A new development of special importance was initiated by the Foote Mineral Co. at Sunbright, Va., where a plant is being constructed to apply lime sintering of spodumene ore in a rotary kiln to

^{**} Knoerr, A. W., World's Major Titanium Mine and Smelter Swing Into Full-Scale Production: Eng. and Min. Jour., vol. 153, No. 3, March 1952, pp. 72-79.

** Engineering and Mining Journal, Sterling Furnace Smelts Zinc With Electric Arc: Vol. 153, No. 7,

July 1952, pp. 78-78.

Waggaman, W. H., Phosphoric Acids, Phosphates and Phosphatic Fertilizers: Am. Chem. Soc. Mon. 34, Reinhold Publishing Co., 1952, p. 683.

Hale, D. R. The Properites of Synthetic Quartz Crystals and Their Growing Technique: Brush Strokes, Brush Development Co., Cleveland, Ohio, December 1952, pp. 1-6.

Mining Engineering, U. S. Vanadium's Uravan, Colo., Mill Doubles Output: Vol. 4, No. 11, November 1952, pp. 1958, 1908.

^{1952,} pp. 1025-1026.

3 Stephens, W. M., and Gilbert, H. L., Chlorination of Zirconium Oxide: Trans. Am. Inst. Min. and Met. Eng., Jour. Metals, vol. 4, No. 7, July 1952, pp. 733-737.

solubilize the lithium content. Operation of the plant is expected to begin in late 1953. Another new development is that of the Carborundum Co. at its Niagara Falls, N. Y., plant, where the product "Fiberfrax", a cottonlike mineral fiber, is produced essentially from equal proportions of alumina and silica by high-temperature fusion in an electric furnace followed by blowing of the molten mixture. The product can withstand temperatures up to 2,300° F. and can be

made into brick, board, or paper and other forms.

Considerable progress was made on the development and production of cermets during the year. Cermets are a combination of ceramic and metallic materials in useful shapes for high-temperature applications. Research on cermets by private industry, research organizations, universities, and Government agencies in the last few years has been to a large extent exploratory; but, as results become available, it is evident that a broad, new field of great promise is being uncovered. The need for new and unusual materials originates largely from developments in the fields of nuclear energy, high-temperature applications in rockets and jet engines, and in electrical and magnetic applications.

The objective is in most cases a combination of useful properties of the components, sometimes also conservation of scarce materials. In some instances the modifying properties of the components on each other are very striking, such as is the case with the well-known tungsten carbide-cobalt combination for cutting tools where solubility and good wetting by the metal develop enough toughness for high-

speed cutting.

In metals, the refractoriness, high-temperature strength, and oxidation resistance are usually poor but are good in some groups of ceramic materials. Outstanding in metals is their tensile strength and thermal-shock resistance, which are poor in ceramics. Similarly opposed properties are found in thermal and electrical conductivity. Cermets usually receive from their ceramic components a certain brittleness but also a good compressive strength.

The ceramic raw materials for cermets include, among the more important groups of compounds, the oxides, carbides, borides, nitrides, and silicides. Favored among the metals are those of the iron group, iron, cobalt, and nickel, further silicon, and more recently chromium and molybdenum. These materials represent a very broad area of diverse properties and opportunities of research for new applications.⁴⁰

The cermets so far successfully developed include cobalt-bonded tungsten carbide, chrom-alumina and iron-alumina bodies, nickel-bonded titanium carbide, and silicon-bonded silicon carbide. In 1952 nickel-bonded titanium carbide was announced with small additions of tantalum and columbium carbide for increased oxidation resistance and 20 to 30 percent nickel as the binder. This material is said to resist satisfactorily temperatures of 2,200° F. and is being tested for gas-turbine-wheel construction. Similar results were obtained in Europe with up to 40 percent chrom-nickel and chrom-cobalt bonds. Titanium carbide cermets may offer possibilities of increasing the gas turbine temperatures.⁴¹

Chemical Engineering, Ceramic Fiber Resists 2,300° F.: Vol. 59, No. 9, September 1952, p. 198.
 Westbrook, J. H., Metal-Ceramic Composites, I: Am. Ceram. Soc. Bull. 31, 1952, pp. 205–208.
 Harwood, J. J., Powder Metallurgy Parts in High-Temperature Applications: Materials and Methods, vol. 36, No. 2, August 1952, pp. 87–91.

The last few years have witnessed a tremendous growth in the production and use of ferrites as components in electronic equipment. The rather slow progress in developing these technically useful materials up to this point can be explained, at least partly, by the relatively small number of investigators in the field. In view of the critical need for high-frequency magnetic materials brought about by the rapid advance of the electronic age, it seems strange that a suggestion for utilizing ferrites in this respect made 40 years ago by S. Hilpert ⁴² went unheeded for so long. It remained for Snoek ⁴³ to arouse the first technical interest in magnetic ferrites in 1946 by announcing the development of mixed ferrites having exceptionally high permeability values. By 1952, interest has grown to such an extent that, with increasing development of materials and applications, no electronic-minded concern can afford to avoid the ferrite field.

Chemically, the magnetic ferrites, sometimes termed "ferrospinels," are a modern derivation of magnetite, the oldest magnetic material known. They are achieved when certain iron atoms in the cubic crystal of magnetite (ferrous ferrite) are replaced by other metal atoms, such as nickel and zinc, to form, in this case, nickel-zinc ferrite. They are prepared using conventional ceramic techniques. Constituent oxides are mixed, pressed into shapes, and fired to high temperatures (1,000°-1,400° C.), where the ferrite is formed by solid phase

reaction.

Ferrites have distinct advantages over conventional magnetic materials above the power-frequency range. Their high volume resistivity reduces eddy current losses to values negligible when compared to the finest silicon-steel laminated materials. This property

eliminates the necessity for laminating or powdering.

Ferrites have been used extensively by the television and radio industries. Classic examples are sweep-circuit transformer cores and antenna cores. Other applications include magnetostrictive component, induction heating cores, and computer and memory systems. In the microwave frequency range, the properties of Faraday rotation, phase shifting, absorption, and nonreciprocity have allowed many vital commercial and Armed Service applications to be realized.

In view of the foregoing, it is obvious that one particular ferrite material could not be optimum for all applications. Considerable research is now in progress to develop materials with desirable properties characteristic to specific specialized applications. At the same time many commercial concerns, universities, and Government agencies are conducting fundamental research in an effort to correlate the magnetic properties to the atomic and crystalline structures. In so doing, the possibility of preparing ferrites with special characteristics will be more closely approached.

Complete information on the latest developments in ferrites is not readily available. This is due to the highly competitive nature in the commercial field and the fact that most of the government research

is conducted on a classified basis.

⁴⁸ Hilpert, S., Genetische und konstitutive Zusammenhange in den magnetischen Eigenschaften bei Ferriten und Eisenoxyden: Ber. deut. chem. Gesell., vol. 42, 1909, p. 2248.
48 Snoek, J. L., Nonmetallic Magnetic Materials for High Frequencies: Phillips Tech. Rev., vol. 8, 1946, pp. 353-360.

PHYSICAL METALLURGY

Many advances in physical metallurgy were made during 1952.

Steels containing boron progressed beyond the experimental stage, as approximately 5 percent of engineering alloy steels now contain it. When boron is added to steel the increased hardenability permits lower alloy content; hence, scarce alloying elements can be conserved.44 In addition to this advantage, it is claimed that boron-treated steels are softer than many alloy steels in the annealed condition and hence more easily worked and machined; the scale formed on them is loose and flaky, simplifying hot-forming problems; and lower annealing temperatures and shorter annealing times are possible with these steels.45

The necessity for conserving nickel has led to development of new stainless steel alloys, with manganese replacing the nickel content. A steel proved to be a good alternate for 18-8 (Cr 18 percent -Ni:8 percent) developed by the Allegheny-Ludlum Steel Co., contains 16 percent manganese, 16 percent chromium, and less than 1 percent Acceptance of this steel has placed greater demands on the fast-growing process for electrolytic manganese. As electrolytic manganese has a purity of at least 99.9 percent and is virtually free from carbon, it is highly desirable for the manufacture of manganesecontaining stainless steels, as well as low-carbon steels, where increased ductility results.47

In the aluminum industry, one of the most spectacular developments was the design and initiation of construction of huge presses for the Air Force, both for forging and for extrusion. The status of this program at the end of 1952 is listed; extrusion presses begin at 8,000 tons, and forging presses go to a maximum capacity of 50,000 tons.48 There are several trends in aircraft design that forecast the production of large forgings. Weight and labor savings are realized because of the reduction in the number of small pieces and in the number of fasteners required. There are also structural advantages to be gained in using large continuous forgings and extrusions.49 The first of the large extrusion presses on which installation was begun in 1952, at Alcoa's Lafayette, Ind., works, was scheduled to go into operation about the middle of 1953. With a load capacity of 13,200 tons—21/2 times greater than any other equipment now in production this press is expected to extrude solid shapes up to a maximum size of 90 feet long, 23 inches in diameter, with a weight of 2,300 pounds.⁵⁰

Advances in the technique of impact extruding of aluminum were made in 1952. High-strength aluminum alloys can be worked into a variety of shapes by this method. High pressures are required

 ⁴⁴ Panel on Substitution of Alloying Flements in Engineering Steels, Recommended Research Projects on Boron Steels: Rept. MMAB-11-M, Minerals and Metals Advisory Board, National Research Council, National Academy of Sciences, Washington, D. C., Mar. 12, 1953, 6 pp.
 ⁴⁵ Gertsman, S. L., Substitution for Strategic Metals in Steel Production: Canada Dept. Mines and Tech. Surveys, Ottawa, Canada, Feb. 1, 1952, pp. 9-11.
 ⁴⁶ Hatschek, R. L., New Austentic Steel Good Alternate for 18-8: Iron Age, vol. 171, No. 11, Mar. 12, 1953, pp. 125, 126

pp. 135-138.
4 Mantell, C. L., Electrolytic Manganese Acceptance Grows: Iron Age, vol. 70, No. 12, Sept. 18, 1952,

pp. 168-172.

48 Materials and Methods, Heavy Press Program Pushed for Forged Aircraft Parts: Vol. 37, No. 1, Jan-

uary 1953, pp. 7-8.

Large Forgings Will Slash Fabrication Costs: Iron Age, vol. 170, No. 13, Sept. 25, 1952, pp. 128-130.

McCormick, T. F., Techniques and Problems in Large Extrusion Production: Iron Age, vol. 170, No. 24, Dec. 11, 1952, pp. 158-161.

because of the high tensile strength of the metal, but heat generation during the process aids extrusion. Raw-material savings often run as high as 85 percent, and the resultant product is lighter than a

comparable forging.51

Use of ultrasonic vibrations while soldering aluminum serves to break up the tenacious oxide and allows the soldering to occur without flux. Development of this method came to fruition in 1952.52 Perfected also was the new process for hard-coating aluminum and its alloys. These anodic coatings, produced from acid electrolytes at low temperature and high current density, provide for better resistance to wear and abrasion than ever before possible with aluminum. Replacement of coated aluminum alloys in aircraft for heavier materials in such applications as gears, pistons, and slides is now possible.⁵³

Several years research on the development of magnesium casting alloys containing zirconium resulted in the production in 1952 of large 16-foot aircraft wing sections, cast from a zirconium-bearing magnesium alloy. Zirconium was found to be primarily useful because of its grain-refining quality, which through small additions not only made it possible to cast otherwise difficult alloys but also improved the ductility and toughness of these alloys.54 Investigations were also continued in the improvement of magnesium-thorium alloys for improved creep strength above 400° F. One such alloy showed such promise that development work was begun in adapting it to castings in the newer jet engines.55

As would be expected, the technology of titanium and its alloys grew by leaps and bounds during the year. Rem-Cru Titanium, Inc., produced the largest titanium ingot to date; weighing 2 tons, it was easily adaptable to continuous rolling techniques in a mill used normally on stainless steels.⁵⁶ Lowering of fabrication costs will result from this. The same company introduced a new titanium alloy containing 2½ percent tin and 4 percent aluminum, purported to be ductile after welding, a property not usually associated with alloy titanium.⁵⁷ A titanium alloy containing 36 percent aluminum proved superior for high-temperature performance and presaged the day when titanium alloys will be developed for use at temperatures over 1,000°

Many applications of titanium came into being during the year. Titanium was adopted as standard material for the 81-mm. mortar base plate, approved by Army Ordnance for use in Korea. weighs only 23 pounds compared to 45 for its steel counterpart, the mortar crew could be cut from 3 to 2 men. Douglas Aircraft began using 1,000 pounds of titanium per ship in its new DC-7, in the form

at Meinel, M. P., High-Strength Aluminum Impact Extrusions: Materials and Methods, vol. 36, No. 5, November 1952, pp. 110-113.

Menpiras, E. A., Ultrasonic Soldering: Metal Ind., vol. 81, No. 6, Aug. 8, 1952, pp. 103-106.

VandenBerg, R. V., Hard Aluminum Finishes Resist Wear and Abrasion: Iron Age, vol. 170, No. 18, Oct. 30, 1952, pp. 81-83.

Stricter, F. P., Magnesium Casting Alloys Containing Zirconium: Metal Prog., vol. 63, No. 3, March 1953, pp. 75-82

<sup>Stricter, F. P., Magnesium Casting Alloys Containing Zirconium: Metal Prog., vol. 63, No. 3, March 1953, pp. 75-82.
McDonald, J. C., Rare-Earth Metals Improve Elevated-Temperature Properties of Magnesium Castings: Materials and Methods, vol. 36, No. 1, July 1952, pp. 162-165.
Iron Age, Metal Show Documents Technical Progress: Vol. 170, No. 19, Nov. 6, 1952, pp. 170-173.
Finlay, W. L., Parcel, R. W., and Durstein, R. C., Initial Experience With a New-Type Titanium Alloy, the All-Alpha: Talk at annual fall meeting, Inst. Metals Div., Am. Inst. Min. and Met. Eng., Cleveland, Ohio, October 1952, to be pub. in Jour. Metals.
McAndrew, J. B., and Kessler, H. D., Investigation of the Metallurgical Characteristics of the 36% Aluminum Titanium-Base Alloy: Wright Air Development Center, Quart. Rept. 1, submitted by Armour Research Inst., Project 90-1233B.</sup>

of sheets with thicknesses of 0.016 to 0.051 inch. The sheets are to be used in engine nacelles. These are but two of the many new applications for this metal. The same article that describes these applications also touches on advances made in titanium technology, in fabri-

cation, forging, welding, machining, and melting.59

A new process for producing titanium sponge by electrolysis of titanium dioxide was developed by United International Research, Inc., Long Island City, N. Y. Savings of \$3 a pound of sponge are claimed by the process as compared with the Kroll process, and titanium of a high degree of purity is produced. The company initiated the building of a pilot plant for this process in 1952.60 Research in levitation melting at Westinghouse may result in the development of a method ⁶¹ of melting for reactive metals such as titanium, zirconium, vanadium, and tantalum.

In levitation melting, the molten metal is suspended in a vacuum or in an inert gas without touching anything; proper size, shape, and number of inductive coils hold the material in suspension and also provide the heat for melting. Limitations of melt size are yet to be determined. The purpose of the method, of course, is to allow melting of reactive metals without contamination with refractories or

gases.

The metal germanium came into its own in 1952, when the junction transistor was developed. Germanium, an integral part of the transistor, has the property of semiconduction necessary to operation of the transistor, which can replace vacuum tubes in many electronic applications. The Bell Telephone Co., improved its long distance dialing facilities at Englewood, N. J., by the use of transistors, and a pilot plant was reported under construction by Western Electric Co. to manufacture 240,000 germanium transistors per year. 62 63 64

A process forgotten for half a century was revived in 1952 with promising results. This is vapor deposition, formation of a coating by chemical reaction at a heated surface. The coatings are obtained from gaseous compounds, usually halides, and hence can be deposited at temperatures below the melting point of the resultant coating material. Besides metals, refractory coatings such as carbides, borides, silicides, and oxides can be formed. Possible applications include nitride and boride superconductors for use in sensitive heat elements, thermocouple resistor thermometers, and corrosion-resistant chemical ware. Tubes and sheets composed of deposited material

are produced by coating core material, which can be removed later. 65
Alloys of indium with lead, tin, cadmium, and bismuth were perfected for such applications as bearings, solders, and for glass welding. In aircraft bearings indium is sprayed and diffused on a steel-backed bearing previously sprayed with layers of silver and lead; the indium-

⁵⁰ Brown, D. I., Titanium, Our No. 1 Problem Metal; part 1: Iron Age, vol. 170, No. 15, Oct. 9, 1952, pp.

^{280-279.}Modern Metals, New Process for Titanium Production: Vol. 9, No. 7, August 1953, p. 79.

O'Kress, E. K., and Wroughton, D. U., Metals Melted Without Crucibles: Iron Age, vol. 170, No. 5, July 31, 1952, pp. 83-86.

Sparks, Morgan, The Junction Transistor: Sci. American, vol. 187, No. 1, July 1952, pp. 29-32.

American Telephone & Telegraph Co., Annual Report for 1952: P. 9; Jour. Metals, vol. 4, No. 12, Decem-

ber 1952, p. 1261.

44 American Metal Market, Germanium—the Stranger Metal: Vol. 59, No. 93, May 14, 1952, p. 2.

45 Campbell, I. E., and Powell, C. F., Vapor Deposition May Solve Today's Coating Problems: Iron Age, vol. 169, April 10, 1952, pp. 113–117.

lead layer serves the primary purpose of improving the corrosion resistance of the bearing in acid lubricating oils. When indium is added to lead-tin solders, improvements in strength and in corrosion resistance to alkalis are realized. An alloy containing equivalent quantities of tin and indium is used for making glass-to-glass or glassto-metal seals.66

There were some interesting developments in powder metallurgy during 1952. Production of iron powder spurted as industry realized its potentialities for parts competing with screw machine products, castings, and stampings. In powder parts machining is reduced or eliminated. Ordnance uses of iron powder also increased, with such applications as rotating bands for hypervelocity projectiles, 50 caliber steel cartridge cases drawn from sintered cups, and ball ammunition.67 Improvement of the ductility of iron powder parts gave impetus to this program. Chrysler Corp. reported that parts made of steel powder now have the ductility and strength of low-carbon steel. Such material is being used in parts for industrial machinery, home appliances, textile machinery, and automotive applications.68 velopments in chrome carbide assured this material a place where resistance to corrosion, erosion, and abrasion is paramount, such as in gage blocks, bushings, and wear slides. Made by the same powdermetallurgy process as tungsten carbide, chrome carbide is lightweight, nonmagnetic, and wear resistant and has high resistance to hightemperature oxidation. 69 Increased interest in high-density alloys for such uses as static and dynamic balancing, rotating inertia members, and radioactive shielding led P. R. Mallory Co. to develop a new method for producing parts from these alloys. Called contour pressing, the method provides for production of parts of uniform density, even though many are of unusual or unsymmetrical shape. Distortion and cracking are eliminated, but the tooling is expensive, requiring large production runs.

<sup>Jaffee, R. I., and Weiss, S. M., Indium Alloys Finding Important Commercial Uses: Materials and Methods, vol. 36, No. 3, September 1952, pp. 113-115.
Iron Age, Iron Powder Use Grows, Output Spurts: Vol. 170, No. 14, Oct. 2, 1952, pp. 37-38.
Patton, W. S., Ductility of Metal-Powder Parts Increased: Iron Age, vol. 171, No. 11, Mar. 12, 1953, pp. 140-141.
Iron Age, Chrome Carbide Has Unusual Properties: Vol. 170, No. 7, Aug. 14, 1952, p. 129.</sup>

Review of Mining Technology

By E. D. Gardner 1

URING 1952 all branches of the mining industry made continued efforts to improve techniques, so that the tons produced per man-shift could be increased. Mining practices were also improved to conserve timber and effect other economies. Although no notable innovations were introduced during the year, there was progress all along the line; the trend toward increased mechanization

The outstanding development in mining practice during the year appeared to be widespread adoption of rock bolting in underground metal mines. The practice has proved satisfactory in some situations

where previously it was not thought applicable.

The year 1952, like 1951, was marked by high labor costs, labor shortages, and high costs of materials in the mineral industries. These disadvantages were offset, in part, by full production and by relatively high prices received for most mineral products. metals field, however, gold mining was far from being prosperous. The price of lead and zinc suddenly declined in the early part of the year, and at the year's end many lead and zinc mines were in distress. A prolonged strike, which plagued the iron industry during the year, also affected consumption of the ferrous alloy metals.

An active search for new mines, especially by established mining companies, continued during the year. Added production was provided for at a relatively large number of mines; exploration of un-

developed mineral deposits continued at a high rate.

The diamond drill remains the most common tool for sampling mineral deposits. It has the field to itself for drilling inclined holes and sampling buried hard deposits; churn drills, however, remain in the competition for sampling deep deposits that will not core.

A diamond-drill hole was completed to a depth of 6,010 feet during the year; a separate high-speed hoist was provided, and the standard driving mechanism was rearranged. This is reported to be the

deepest diamond-drill hole drilled in North America.2

The use of circulating mud instead of clear water, especially through overburden, increased during the year. A new device for cementing diamond-drill holes was reported. Experiments with the reverse circulation of water and sludge in diamond drilling were continued.

A considerable number of diamond bits cast-set with the stones oriented to take advantage of their greatest resistance to wear, according to crystal planes, were undergoing tests at the end of the The bits were cast in commercial shops. Experimental work by the Bureau of Mines at its Mount Weather, Va., station has shown that such setting is feasible and that it increases drilling speeds and prolongs the life of the bits.4

¹ Chief mining engineer, Bureau of Mines.
2 Longyear, R. J., Trends in Diamond Drilling in the United States: Jour. Chem., Met., and Min. Soc. South Africa, April 1952.
2 Ross, A. E., Cementing in Deep Diamond-Drill Holes: Min. Eng., vol. 4, No. 11, November 1952, pp. 1061-1064.
4 Long, A. E., and Slawson, C. B., Diamond Orientation in Diamond Bits: Bureau of Mines Rept. of Investigations 4853, 1952, 6 pp.

Procedures were improved for collecting drill cuttings from sample holes put down by wagon drills. With improved techniques and equipment available, auger drills found increased favor during the year for sampling surface deposits in ground susceptible to this type

of drilling

At a Canadian mine, the ore bodies were completely indicated by diamond drilling, and a complete mining plan was projected from the results of the drilling before the shaft was sunk.⁵ After 3 years of operation and after mining 500,000 tons of ore, it is reported (1) the ground is competent as foreseen, and no timbering is necessary; (2) the walls of the ore bodies are not quite as regular as anticipated; (3) the mine is dry, as expected, with only 50 gallons of water per minute: (4) the plan of stoping with long-hole blasting has proved successful (with 12 tons per man-shift underground); (5) concentration of operations permits the entire daily tonnage (2,000 tons) to come from a single level, as foreseen; (6) there has been virtually no unnecessary drifting, crosscutting, or raising; (7) mill recovery has been 80 percent, compared to an estimated 80 to 83 percent; (8) the grade of ore has been 8 percent below the estimate before dilution allowance; (9) operating costs are below the 1946 estimate if corrected for the 50-percent increase for labor and supplies; and (10) capital costs were higher than estimates because of the large increase in the cost of construction labor and supplies.

The trend continued during the year of using more track-mounted drill carriages or jumbos for driving mine drifts and crosscuts. The increased adoption of tungsten carbide bits, which permit completion of a long hole with a single bit, encouraged the practice of mounting development drills on long feed carriages, permitting faster drilling of drift rounds. Alloy drill steel was tested and employed more widely in underground mines. There was more extensive use of tractormounted jumbos and loading machines and diesel trucks or shuttle

cars to extend large development headings.

Shaft mucking machines for driving both inclined and vertical shafts were improved. It was demonstrated that roof-bolting the hanging wall when sinking inclined shafts permits safe working conditions farther ahead of the regular shaft support, with resulting economies. Successful shaft sinking through quicksands, using the freezing method, was completed in the Carlsbad, N. Mex., district during the year. Grouting was successfully used in sinking shafts at a Nevada copper mine, a New Jersey lead-zinc mine, and a New Mexico potash mine.

Gold dredging, like lode-gold mining, was relatively quiet during the year. Dredge mining of monazite-bearing placer deposits in Idaho has gone far to make the United States self-sufficient in monazite; it has also brought about some technical development in dredging.

Open-pit mining has a common interest with the construction industry so far as earth- and rock-moving equipment is concerned. The construction industry is highly competitive and provides a ready market for new or improved equipment that promises to reduce costs. The result has been the introduction of much new or improved equipment into open-pit mining. More construction firms actively entered

Lipsey, G. C., The Development of a Mining Operation From Diamond-Drill Data: Min. Eng., vol. 4, No. 8, August 1952, pp. 784-788.

6 Latz, J. E., Freezing Method Solves Problem in Carlsbad, N. Mex., Shaft: Min. Eng., vol. 4, No. 10, October 1952, pp. 942-947.

into the mining field during the year. Underground mining does not have the advantage of an allied industry to help the development of new machines for underground use, but there was a continued trend during the year to introduce quarry equipment and procedures underground where conditions were favorable.

Opencut mining practices have been changed over the years principally to permit taking full advantage of improved types of equipment. An innovation in general procedure was introduced during the year at an Arizona copper mine. The fringe ore of a deposit that previously had been exploited by block caving was being mined by opencuts. An efficient haulage system was intact in the underground mine. Ore mined at the surface was dumped over the immediate draw points of a block-caving stope and thence hauled to the mine shaft. system worked so well that a block-caving stope was developed in virgin ground and after being pulled received the surface ore from a surrounding area.

No brand-new underground mining methods have been developed for many years; improvements of existing methods, however, have

been constant, and important advances were made in 1952.

Top slicing is being partly replaced with other mining methods in underground iron mines. There also was a trend to replace sublevel caving and sublevel stoping by block caving where feasible.

Block caving at a new Canadian asbestos mine is featured by concreted draw points and slusher drifts, with the slushers discharging directly into mine cars on the main haulage level; there are no transfer Blast holes for undercutting the 200- by 200-foot blocks are drilled with diamond drills. The mine is planned for an ultimate daily capacity of 12,000 tons. This is in marked contrast to a new block-caving copper mine in Montana, where the conventional transfer raises are used. The mine also is planned for 12,000 tons a day.

Machines developed for continuous mining of coal were successfully introduced in a potash mine in New Mexico. Pillars are being successfully removed from a mine, also in this field, without causing

breaks in the overlying salt.

The trend continued of adapting quarry practices underground for mining flat-bedded deposits where conditions are favorable. zinc mine in Tennessee is entered through a 1,100-foot minus-111/2percent entry.8 A 1,700-foot minus-10-percent haulage entry at a Wisconsin zinc mine has proved very successful.9 The haulage cost for 1.1 miles in 1952 was \$0.22 per ton. At this mine the advance heading is taken at the bottom of the ore body, which ranges up to 70 feet in thickness. Incline slices are then developed by drilling in the back. The broken ore is leveled with a bulldozer, and a tractormounted jumbo travels on the broken ore to drill the next slice. effect, the method is shrinkage stoping.

An innovation in extracting sulfur from the ground by the Frasch process was made in the Gulf Coast area. 10 Large quantities of heated water are required in the process. Some of the new sulfur deposits

⁷ Lindell, K. V., World's Largest Asbestos Producer: Min. Eng., vol. 4, No. 3, March 1952, pp. 265–271.

§ Langley, M. J., Development and Diesel Haulage at the New North Friends Station, Slope Mine of American Zinc Co. of Tennessee: Paper pres. at meeting of Southeastern Section, Am. Inst. Min. and Met. Eng., Chattanooga, Tenn., June 1952.

§ Allen, V. C., Use of Diesel Equipment in a Zinc-Lead Mine: Paper pres. at Am. Min. Cong., Metal and Nonmettalic Mining Convention, Denver, Colo., September 1952.

§ Bartlett, Z. W., Lee, C. O., and Feierabend, R. H., Development and Operation of Sulfur Deposits in the Louisiana Marshes: Min. Eng., vol. 4, No. 8, August 1952, pp. 775–783.

being developed are far from a fresh-water supply. The first installation to use untreated sea water has been completed 65 miles southwest of New Orleans. Another unusual feature of this operation is transportation of the molten sulfur in insulated barges to a storage

site on dry land.

The hard-rock miner has been called upon to help solve some storage problems of the petroleum industry. Large quantities of liquefied petroleum gas have been pumped back underground in salt domes, but storage space is needed nearer the points of consumption. Some companies have built or were in the process of building underground reservoirs. The problems of design, excavation, and sealing of the chambers apparently are being met.

Rotary drills have replaced churn drills at a number of places for drilling blast holes in surface work. A new rotary drill using a Tricone

bit was showing much promise in open-pit mining.11

The use of auger drills with carbide cutters increased for surface-

drilling blast holes in ground suitable to this kind of drilling.

A new mobile drill unit was put under test in mid-1951 at a large copper mine in Utah; it appears to be an innovation at surface mines. 12 The unit comprises a 4-inch drill on a 12-foot slide and an air compressor mounted on a tractor; it relaces standard wagon drills and tripod drills. Flat toe holes as well as vertical holes can be drilled. During a 119-day run, the drill averaged 343 feet per 8-hour shift, compared to 112 for the wagon and tripod drills in the same kind of rock; 19 feet was drilled per man-shift at a cost of \$0.09 per foot. compared to 6 at \$0.30 for the standard drills.

As in 1951, considerable attention was paid during 1952 to drill supports, drill bits, and drill steel in underground mines. jumbos is increasing in stopes as well as in development headings. To go with trackless haulage, jumbos mounted on tractors or rubbertired vehicles have nearly replaced track-mounted jumbos for mining flat deposits; improved models came on the market during the year. Jumbos and jacklegs have largely replaced the old-fashioned columns

for supporting drills.

Airleg-mounted drills have been tried at most metal mines and widely but not universally adopted. The trend is toward jumbos in stopes where they are feasible, but otherwise jacklegs are largely replacing the columns. Airleg drilling with jackhammers and carbidetipped steel or carbide detachable bits continues to grow in favor. advantages are numerous: Drilling is faster; less time is spent in setting up drills; the drills are easier to handle; and a better drill pattern can be made, resulting in more tons per man-shift and lower costs. can companies brought out a number of models to compete with the Swedish jackleg during the year.

It was found at an iron mine in Michigan that bit life in hard ore was increased 50 percent, with no loss of speed of penetration by reducing the diameter of holes to 1\% to 1\% inches and using lighter machines than were formerly employed for the larger diameter holes drilled. The trend toward drilling smaller diameter blast holes in stopes, how-

ever, appears to have halted.

¹¹ Putman, G. E., Blast-Hole Rotary Drilling in Open-Pit Mining: Paper pres. at Am. Min. Cong. Metal and Nonmetallic Mineral Mining Convention, Denver, September 1952.

Mining World, Rotary Blast-Hole Drilling Now Feasible in Igneous Rocks: Vol. 14, No. 10, September 1952, pp. 42-43.

12 Pett, L. F., and Snow, L. E., The Mobile Drill Unit in Use at the Utah Copper Pit: Min. Eng., vol. 4, No. 8, August 1952, pp. 799-803.

Percussion drills using jointed rods and carbide bits continued to replace diamond drills during the year for drilling long blast holes up

to about 60 feet.

Millisecond delays for blasting stope rounds continued to gain during the year. A mine in British Columbia modified its blasting practice in stopes where long-hole ring drilling was used. Each ring was primed with Primacord, and millisecond delays were used for detonating each ring or part of a ring in the proper sequence. practice eliminated the complicated hookup required when millisecond delays were used in all holes.

Some new models of relatively small capacity special-duty loading machines designed for surface work became available during the year. A continuous loader first developed for mining coal was used in more rock mines during the year. Improved models of other underground loading machines also became available. Track-mounted loaders still have a place in narrow workings but have been largely replaced by more mobile types where room for the larger machines is available. Conventional shovels continue to be preferred in flat stopes where working room is available. A diesel-powered loader works under a height of 12 feet in the Tri-State district. Standard types of shovels, however, require greater working heights.

The trend toward putting crushers underground at shaft mines Where the ore tends to break into large fragments, growing practice was to load the ore mechanically into the haulage units from mill holes at the haulage level, eliminating grizzlies and chute At some underground mines trucks loaded directly by shovels

in the stopes dump into a crusher at the hoisting shaft.

Rock bolting made outstanding gains in underground metal mines during 1951 and 1952; further expansion is expected. From roof bolting of the backs of open stopes and other wide openings, the technique has spread to both top and side support in development workings and cut-and-fill, shrinkage, and other stopes. instead of steel bolts are used in an Idaho mine in both shrinkage and

cut-and-fill stopes to support both the walls and the ore.

The use of rock bolts has effected savings in the use of timber and afforded other economies in metal mining. The practice has made it possible in some instances to use shrinkage stopes by rock-bolting the walls, where otherwise a more expensive stoping method would be Rock bolting of walls in long-hole stoping before rings of holes are blasted has increased safety at a Canadian mine. bolting instead of timbering in flat deposits has permitted more efficient operation of mechanical equipment, as in coal mines. Roof bolting instead of timber offers advantages in ventilation circuits.

Roof bolting in one instance indicates that the practice may offer protection from rock bursts. A severe rock burst occurred in a crosscut on the 3.840 level in an Idaho mine in July 1952; it knocked down a large quantity of rock, but in a 100-foot section that had been rock-

bolted no fall of rock occurred, and no roof bolts loosened.13

Although it has many uses, experimental studies have demonstrated that the roof bolting cannot supplant timber or other roof supports everywhere.

¹³ Foster, W. B., Rock-Bolting Program at the Sunshine Mine, Kellogg, Idaho: Paper pres. at the Am. Min. Cong., Metal and Nonmetallic Mineral Mining Convention, Denver, Colo., September 1952.

The use of sand from mill tailings for filling stopes increased during the year. At an Idaho mine a successful technique was worked out for using unclassified mill tailings for filling in cut-and-fill stopes.¹⁴

The tendency in surface mines is toward larger hauling units for off-highway work. New models of 50-ton diesel trucks came on the market during the year. Truck haulage, rather than rail, is being selected for most new opencut mining. Added importance was given to truck maintenance and road maintenance during the year.

Diesel power is supplanting gasoline engines, especially in large trucks. A new 40-ton haulage unit, however, with a radical departure in construction and powered with a butane engine, is an innovation

in the mine haulage field.

Where quarry practices have been taken underground, diesel trucks are preferred for transportation if the working height is 12 feet or over. Usually the largest size truck is used that underground conditions permit, especially for hauls over about ½ mile. Where the working height is insufficient for trucks, more diesel and electric shuttle cars came into use in noncoal mines during the year.

Diesel locomotives also were placed in operation in more metal mines during the year. In new mines with track haulage, the trend was to larger mine cars; a number of mines use 10-ton cars, and cars with 15-ton capacity are in use. Mine cars and dumping arrange-

ments also were improved during the year.

Belt conveyors for mainline haulage underground held their own. A new installation was put in a potash mine in New Mexico, which has an hourly capacity of 500 to 600 tons. The potash ore is crushed before going on the belt. Belt haulage was planned for a new iron mine in Canada and a new copper mine in Michigan. A Mesabi operator installed a complete conveyor system for mining an ore body ranging from 6 to 38 feet in height. Belt haulage in an inclined shaft, instead of hoisting, was installed at a Washington zinc mine; the hoisting cost was \$0.06 per ton. The system includes 1,500 feet of 17° incline and 12,000 feet of 10° incline.

The use of deep-well pumping for mine drainage increased during the year. The life of a small mine pump in a Michigan mine was

increased greatly by lining it with liquid Neoprene.

Plastic pipe is being used in some metal mines both for air and

water lines.

Radiotelephone service between working units, office, and supervisors' automobiles has proved its worth in operating opencut mines. Improvements in communications systems in hoisting and haulage underground were made during the year. Line-carrier-type telephone systems were installed in a number of metal mines, serving not only to control haulage but for general underground communications. The units of the systems take power from a d. c. trolley line or a storage battery locomotive. The telephones are installed on locomotives and at strategic points in the mine.

Recognition of the importance of mining research is evidenced by the increasing number of large operating mining companies that maintain research facilities and the growing interest of the mining industry

¹⁴ Toepfer, P. H., Filling With Unclassified Tailings in Modified Cut-and-fill Stopes, Dayrock Mine, Wallace, Idaho: Bureau of Mines Rept. of Investigations 7649, 1952, pp. 14.
¹⁸ Rayner, N. H., Pend Oreille's Inclined Conveyor Reduces Ore-Hoisting Costs: Eng. and Min. Jour., Vol. 153, No. 7, July 1952, pp. 90-93.

in this subject in recent years. Most experiments pertain to breaking ground and improving details of mining practices, but the field of

interest is consistently broadening.

Pipeline transportation of solids has been used in the phosphate fields of Florida for several years. A coal-mining company conducted experimental work in Ohio to determine the economics of transporting

coal on the surface in competition with rail haulage.

An experimental installation for hydraulic hoisting was continued into 1952 at a zinc mine in Wisconsin, with encouraging results. Addition of a second pipe column converted the system to a U-tube, with some of the water circulating down to augment the hoisting capacity. Operating as a U-tube in balance, the power requirement was reported to be about one-third of that with a comparable balanced skip hoist. With 2,500 g. p. m. rising in the 10-inch pipe, hoisting capacity per hour was reported to be 240 tons of ore.

Ground subsidence and rock bursts are becoming more of a problem as many mines reach greater depths or where large cavities exist resulting from stoping. The Bureau of Mines is cooperating with a number of companies in active studies looking toward solution of

such problems.

Active research was continued by the Bureau of Mines during the year on the physical characteristics of rocks as related to design of mine structure and to mining problems. The studies also included the mechanics involved in rock movements resulting from stoping. Techniques have been developed for testing rocks in uniform deposits to ascertain safe spans ahead of mining. Studies were in progress regarding safe spans in open stopes where the time element is involved.

Statistical Summary of Metal and Nonmetal Production

By Kathleen J. D'Amico 1

PRESENTATION of the mineral statistics in this chapter represents a departure from the procedure followed in earlier years to permit publication of the Minerals Yearbook in three volumes. This chapter gives a detailed summary of metals and nonmetals

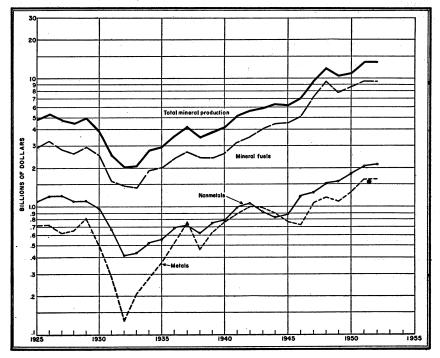


Figure 1.—Value of mineral production in continental United States, [1925-52.

(except fuels). A summary chapter for mineral-fuels statistics is included in volume II, and a detailed summary chapter for all minerals will be found in volume III of this series.

² Publications editor.

Mineral production may be measured at any of several stages of extraction and processing. The stage of measurement used in the chapter is normally, what is termed "mine output." It usually refers to minerals in the form in which they are first extracted from the ground but customarily includes for some minerals, the product of auxiliary processing operations at or near mines.

Because of inadequacies in the statistics available, some series deviate from the foregoing definition. In particular, the limestone, cement rock, and clay that are processed into cement are reflected in the series on cement rather than being included in their originally extracted form; similarly, limestone used for lime is reflected in the series on lime rather than that on stone. The quantities of gold, silver, copper, lead, zinc, and tin are recorded on a mine basis—that is, as the recoverable content of ore sold or treated; the values assigned to these quantities, however, are based on the average selling price of refined metal, not the mine value. Mercury is measured in the form of recovered metal and valued at the average New York price for metal.

The weight or volume units shown are those customary in the particular industries producing the respective commodities. No adjustment has been made in the dollar values for changes in the purchasing power of the dollar.

TABLE 1.—Value of mineral production in continental United States, 1925-52, by mineral groups ¹

	[Millions of dollars]													
Year	Mineral fuels ²	Nonmet- allic min- erals (ex- cept fuels)	Metals	Total	Year	Mineral fuels ²	Nonmet- allic min- erals (ex- cept fuels)	Metals	Total					
1925. 1926. 1927. 1928. 1929. 1930. 1931. 1932. 1933. 1934. 1935. 1936. 1937.	2, 910 3, 371 2, 875 2, 666 2, 940 2, 500 1, 460 1, 413 1, 947 2, 7013 2, 405 2, 798 2, 436	1,187 1,219 1,201 1,163 1,166 973 671 412 432 520 564 685 711 622	715 721 622 655 802 507 287 128 205 277 365 516 756 460	4, 812 5, 311 4, 698 4, 484 4, 908 3, 980 2, 578 2, 000 2, 050 2, 744 2, 942 3, 606 4, 265 3, 518	1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951	2, 423 2, 662 3, 228 3, 568 4, 028 4, 574 4, 569 5, 090 7, 188 9, 502 7, 920 8, 689 9, 79 9, 615	754 784 989 1,056 916 836 888 1,243 1,338 1,552 1,559 1,815 2,075 2,156	631 752 890 999 987 900 774 729 1,084 1,219 1,101 1,351 1,670 1,611	3, 808 4, 198 5, 107 5, 623 5, 931 6, 231 7, 062 9, 610 12, 273 10, 580 11, 852 13, 524					

Data for 1925-46 are not strictly comparable with those for subsequent years, since for the earlier years the value of heavy-clay products has not been replaced by the value of raw clays used in such products.
 Beginning with this volume asphalt, carbon dioxide, helium, and peat are included with mineral fuels.

TABLE 2.—Mineral production in continental United States, 1949-52, by individual minerals 12

	19	949	19	950	19	51	19	52
Mineral .	Short tons (unless other- wise stated)	Value	Short tons (unless other- wise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless other- wise stated)	Value
METALS								
auxite	475 433 673, 773 1, 020 752, 746 1, 762, 367 84, 174, 398 409, 857 126, 135 1, 078, 395 1, 078, 395 1, 58, 902 9, 830 23, 282, 98, 300 34, 638, 896 17 389, 234 10, 559 2, 765 593, 201	129, 514, 812 5, 178, 564 4, 040, 155 (*) 781, 092 19, 332, 000 31, 349, 949 37, 410 6, 212, 348 489, 798 4, 377, 066 148, 912, 878	1, 334, 527 559 404 660, 025 1, 000 909, 337 2, 104, 959 97, 150, 704 430, 678 134, 451 1, 087, 587 183, 842 4, 535 44, 544, 000 42, 406, 376 452, 370 (*) 4, 807	2, 150 378, 284, 192 73, 673, 665 483, 358, 130 116, 283, 060 6, 229, 985 4, 600, 432 (°) 368, 514 37, 729, 000 38, 379, 912 31, 165 5, 607, 584 (3) 8, 156, 758 178, 667, 197	1, 848, 676 484 7, 056 755, 631 925 928, 329 1, 741, 026 115, 621, 556 388, 143 105, 007 1, 223, 964 267, 751 7, 293 37, 954, 544 39, 733, 909 510, 840 (*) 6, 265	\$12, 477, 516 161, 361 510, 741 (2) 1, 528 449, 311, 235 60, 935, 935 134, 297, 478 6, 045, 452 5, 385, 986 (3) 1, 532, 478 36, 176, 900 35, 961, 195 55, 757 7, 689, 272 (3) 22, 936, 638 249, 330, 389	515 21, 304 836, 372 5, 885 925, 377 1, 652, 704 97, 236, 397 390, 161 115, 379 1, 009, 018 215, 255 12, 519 42, 717, 443 39, 419, 344 17 522, 514	5, 116, 98 (3) 2, 492, 53 40, 844, 57 35, 676, 49 45, 32
Total metals								

TABLE 2.—Mineral production in continental United States, 1949-52, by individual minerals 1 2—Continued

	1949		195	0	195	1	198	52
Mineral	Short tons (unless other- wise stated)	Value	Short tons (unless other- wise stated)	Value	Short tons (unless other- wise stated)	Value	Short tons (unless other- wise stated)	Value
NONMETALLIC MINERALS (EXCEPT FUELS)								
Abrasive stone: 4 Grindstones and pulpstones Millstones Pebbles (grinding) Tube-mill liners (natural) Asbestos Barite (crude) Boron minerals Bromine Calcium-magnesium chloride75-percent (Ca, Mg) Cl ₂ basis. Cement	(3) 2, 374 1, 166 43, 387 717, 313 467, 592 88, 725, 709 205, 142, 364 28, 473, 844 4, 909 369, 378 236, 704 6, 578 (5) 5, 213 6, 608, 118 12, 115 6, 302, 551 4, 838 287, 315	505, 231 450, 000 475, 264 18, 318, 555 403, 166 68, 907, 866 345, 977 1, 950, 155	(*) 1, 923 1, 523 42, 434 695, 414 647, 735 98, 502, 300 299, 821 228, 787, 765 32, 301, 425 5, 949 301, 510 9, 304 (*) 5, 605 8, 192, 625 (*) 7, 462, 109 9, 306 429, 392 89, 300	\$232, 562 11, 300 53, 007 62, 535 2, 925, 050 6, 193, 900 15, 890, 000 18, 704, 975 3, 801, 505 537, 651, 522 89, 675, 530 2, 558, 390 10, 619, 717 793, 555 450, 000 24, 734, 561 (e) 82, 847, 301 57, 283, 001, 131 7, 283, 001	(*) 3, 062 1, 408 51, 845 860, 669 862, 797 129, 563, 073 328, 042 240, 331, 112 8 35, 612, 343 11, 634 40, 439 347, 024 14, 050 (*) 8, 808 8, 665, 534 (*) 8, 226, 422 12, 897 670, 167	\$315, 871 6, 000 84, 306 77, 027 3, 912, 500 7, 988, 023 20, 030, 000 26, 179, 556 4, 756, 542 611, 751, 089 120, 669, 827 140, 369, 521 1, 246, 947 450, 047 450, 047 450, 047 96, 507, 144 8, 966, 000 4, 506, 712 8, 996, 198	1, 083 53, 864 941, 825 583, 828 156, 201, 577 (9) 250, 821, 410 33, 847, 609 10, 352 420, 831 331, 273 11, 390 (9) 8, 415, 300 (9) 8, 055, 609 15, 611 510, 750 143, 795	\$247, 434 9, 285 96, 537 66, 218 4, 713, 032 8, 797, 944 14, 105, 000 30, 639, 292 (8) 637, 746, 171 122, 385, 736 141, 911 3, 696, 018 15, 353, 634 981, 841 490, 000 594, 618 22, 896, 051 (6) 94, 795, 435 1, 052, 000 2, 871, 548 12, 229, 234 187, 148
Greensand	6, 128 32, 856 513, 994	276, 564 795, 782 132, 097	3, 935 69, 360 7 578, 818	304, 32 1, 742, 61	5, 067 71, 871 594, 884	263, 944 1, 884, 087 160, 322	75, 236	177, 847 1, 954, 286 908, 135 (6)
Olivine Perlite (crude) Phosphate rock	71, 203 8, 986, 933 1, 120, 653 716, 742 888, 388 107, 552 15, 559, 551	510, 64 51, 415, 02 35, 105, 79 2, 369, 08 3, 904, 00 475, 49 53, 548, 91	101, 536 7 10, 253, 552 9 1, 276, 164 2 719, 356 0 931, 163 1 160, 508 6 16, 616, 264	649, 16: 59, 027, 84: 39, 774, 44: 2, 661, 05: 4, 059, 00: 706, 72: 59, 774, 11	2 8 153, 502 11, 095, 204 7 1, 408, 408 7 49, 192 0 1, 17, 769 281, 047 8 20, 196, 565	8 858, 099 66, 158, 078 44, 788, 880 2, 739, 907 4, 656, 000 1, 165, 370 69, 615, 662	164, 845 11, 324, 158 1, 598, 354 597, 044 994, 342 246, 604 19, 532, 276	1, 002, 920 68, 120, 918 53, 754, 316 2, 266, 981 4, 947, 000 1, 013, 637 70, 870, 767

Sand and sandstone (ground) Slate Sodium carbonate (natural). Sodium sulfate (natural). Stone 10. Sulfur: Ore for direct agricultural use	5, 392 4, 789, 311 461, 896 25, 525 168, 819 500	12, 164, 276 9 4, 163, 714 2, 733, 853 339, 442, 316 101, 910 86, 208, 000 7, 523, 478 690, 564 1, 686, 419 7, 000 8, 104, 563	930, 370, 351, 075, 186, 537, 250, 844, 240, 3, 247, 5, 504, 714, 620, 756, 43, 720, 208, 096, 800	15, 047, 481 7, 543, 769 2, 199, 336 387, 910, 538 60, 115 104, 000, 000 10, 620, 743 1, 173, 647 2, 122, 427 16, 200 9, 824, 259	\$ 819, 360 350, 688 (6) 8 284, 155, 499 3, 945 4, 988, 101 636, 068 37, 476 209, 008	* 14, 534, 327 8, 368, 037 (e) * 433, 924, 525 75, 609 107, 300, 000 11, 322, 830 1, 106, 135 2, 093, 953 (e)	739, 640 323, 479 236, 825 299, 005, 371 4, 686 5, 141, 392 593, 147 35, 459	12, 706, 651 7, 828, 033 3, 217, 000 461, 064, 048 91, 310 110, 925, 000 11, 347, 317 1, 043, 124 2, 081, 993 (6)
Total nonmetallic minerals		1, 559, 000, 000		1, 815, 000, 000		2, 075, 000, 000		2, 156, 000, 000
MINERAL FUELS								
Asphalt and related bitumens (native): Bituminous limestone and sandstone Gilsonite	51, 462 489, 000	1, 303, 584	1, 184, 676 66, 186 472, 334	1, 774, 330	1, 378, 434 65, 521 547, 436	4, 159, 259 1, 895, 374 161, 000	1, 570, 698 60, 740 737, 000	1, 779, 815
Bituminous ¹¹ Lignite Pennsylvania anthracite. Helium (shipments)	3, 092, 130 42, 701, 724 51, 501, 421 5, 419, 736, 000	358, 008, 451 688, 795	3, 369, 966 44, 076, 703 80, 888, 990	8, 111, 730 392, 398, 006 1, 027, 913	529, 879, 295 3, 291, 104 42, 669, 997 108, 970, 000 7, 457, 359, 000	2, 614, 219, 188 8, 043, 962 405, 817, 963 1, 387, 000 542, 964, 400	3, 017, 300 40, 582, 558 145, 492, 000	379, 714, 076 1, 891, 000
Natural gasoline and cycle products	57, 869, 000 129, 532 1, 841, 940, 000	99, 054, 000 1, 020, 014 4, 674, 770, 000	109, 679, 000 72, 282, 000 130, 723 1, 973, 574, 000	97, 773, 000 1, 142, 566	86, 377, 000	369, 718, 000 138, 443, 000 1, 489, 225 5, 690, 410, 000	102, 033, 000 210, 582	161, 692, 000
Total mineral fuels		7, 920, 000, 000		8, 689, 000, 000				
Grand total mineral production		10, 580, 000, 000		11, 855, 000, 000		13, 524, 000, 000		13, 382, 000, 000

¹ Production as measured by mine shipments or mine sales (including consumption by producers), except that fuels and the following additional minerals are strictly production: Gypsum, iodine, magnesite, pyrites, bauxite, and mercury. Excludes uranium ores and monazite.

Weight not recorded.

8 Revised figure.

Final figure. Supersedes preliminary figure given in commodity chapter.

J Beginning with this volume asple t and related bitumens, carbon dioxide, helium and peat are included with mineral fuels.
J Value included with "Metals, undistributed."
Excludes sharpening stones, value for which is included with "Nonmetallic minerals, undistributed."

Value included with "Nonmetallic minerals, undistributed."

 $^{^7}$ Excludes clays sold or used for cement as follows: 1949-6,676,000 short tons, \$4,573,000; 1950-7,080,000 tons, \$5,574,000; 1951-7,804,000 tons, \$8,052,000; 1952-8,439,000 tons, \$8,646,000.

⁹ Excludes production from Wyoming, value for which is included with "Nonmetallic minerals, undistributed,"

 ¹⁰ Excludes abrasive stone, bituminous limestone, bituminous sandstone, and ground soapstone, all included elsewhere in table. Also excludes limestone for cement and lime.
 11 Includes small quantity of anthracite mined in States other than Pennsylvania.

TABLE 3.—Metals and nonmetals (except fuels) produced in continental United States and principal producing States in 1952

Rank		Principal proc	ducing States
in value	Mineral	In order of quantity	In order of value
	Abrasive stone:		
60	Grindstones and pulpstones	Ohio, West Virginia, Washington	Rank same as for quantity.
75	Millstones	Not available	North Carolina. Minnesota, Wisconsin, North Carolina, Texas.
66	Pebbles (grinding)	Minnesota, North Carolina, Wisconsin, Texas Arkansas, New Hampshire, Indiana	Rank same as for quantity.
71	Sharpening stones	Arkansas, New Hampshire, Indiana	Do.
69	Tube-mill liners (natural)	Minnesota, North Carolina, WisconsinIdaho, Nevada, Washington, California	Do. Do.
55	Antimony ore and concentrate	Idaho, Nevada, Washington, California	Do. Do.
59	Aplite	Virginia	
36	Asbestos	Vermont, Arizona, Georgia	Do. Do.
27	Barite (crude)	Arkansas, Missouri, Georgia, Nevada	Do.
26	Bauxite	Arkansas, Alabama, Georgia South Dakota, New Mexico, Colorado, New Hampshire	Do.
61	Beryllium concentrate		Do.
21	Boron minerals	Texas, Michigan, California, West Virginia	Michigan, Texas, California, West Virginia.
17	Bromine	Nevada	Rank same as for quantity.
68	Brucite	Michigan, California, West Virginia, Ohio	Do.
35	Calcium-magnesium chloride	Pennsylvania, California, Texas, New York	Do.
1	Cement	California, Oregon	Do.
45	Chromite	Ohio Bannaviyania Georgia Miccouri	Georgia, Ohio, Pennsylvania, Missouri.
8	ClaysCobalt (content of ore)	Ohio, Pennsylvania, Georgia, Missouri Pennsylvania, Idaho	Rank same as for quantity.
57	Columbium-tantalum concentrate	North Carolina Colorada South Dakata	Do.
72	Columbium-tantalum concentrate	North Carolina, Colorado, South Dakota. Arizona, Utah, New Mexico, Montana. California, Nevada, Oregon, Washington	$\overline{\mathbf{Do}}$
4	Copper (in ores, etc.)	Colifornia Nevada Oregon Washington	Do. ,
31	Emery	Now York	
65 37	Feldspar (crude)	New York North Carolina, South Dakota, Colorado, New Hamp-	North Carolina, New Hampshire, Colorado, South Dakota
01	reidspar (crude)	shira	
20	Fluorspar	Illinois, Kentucky, Colorado, Utah New York, Idaho, Florida	Illinois, Kentucky, Colorado, New Mexico.
53	Garnet (abrasive)	New York, Idaho, Florida	Rank same as for quantity.
58	Gem stones	Not available	California, Oregon, Texas, Nevada.
13	Gold (in ores, etc.)	South Dakota, Utah, California, Colorado	Rank same as for quantity.
55	Graphite:		
	Amorphous	Rhode Island	Do.
	Crystalline	Texas, Alabama	Do.
19	Gypsum (crude)	Michigan, California, New York, Iowa California	Michigan, New York, Iowa, California.
46	Iodine	California	Rank same as for quantity.
2	Iron ore (usable)	Minnesota Michigan, Alabama, Utah	Minnesota, Michigan, Alabama, New York. Rank same as for quantity.
49	Kyanite	Virginia, South Carolina	Rank same as for quantity.
7	Lead (in ores, etc.)	Missouri, Idaho, Utah, Colorado	Do. Do.
10	Lime (open-market)	Ohio, Pennsylvania, Missouri, Illinois	
47	Lithium minerals	South Dakota, North Carolina, California	
39	Magnesite (crude)	Washington, Nevada, California	
22	Magnesium chloride (for magnesium metal)	Texas	1 10.

24	Magnesium compounds from sea water and brines (except for metal).	Michigan, California, New Jersey	Do.
28	Manganese ore	Montana, California, New Mexico, Arkansas	Montana, California, Nevada, Arkansas.
33	Manganiferous ore	Minnesota, New Mexico, Michigan, Montana	Rank same as for quantity.
44	Manganiferous residuum	New Jersey	Do.
**	Marl:	11011 001007	100.
63	Calcareous	Michigan, Virginia, Wisconsin, Indiana	Michigan, Virginia, Nevada, Indiana,
64	Greensand	New Jersey	Rank same as for quantity.
41	Mercury	California Navada Idaho Gragon	Do.
40	Mica	California, Nevada, Idaho, Oregon North Carolina, Georgia, Arizona, Colorado	North Carolina, Georgia, Idaho, Arizona.
70	Scrap	do	North Carolina, Georgia, Arizona, Pennsylvania.
	Sheet	North Carolina, New Hampshire, Idaho, Connecticut	North Carolina, Idaho, New Hampshire, South Dakota.
15	Molybdenum (content of ore and concentrate)	Colorado, Utah, Arizona, New Mexico	Rank same as for quantity.
62	Olivine	Colorado, Utah, Arizona, New Mexico North Carolina, Washington	Do.
52	Perlite (crude) Phosphate rock	New Mexico, Nevada, California, Colorado	Nevada, New Mexico, California, Colorado.
12	Phosphate rock	Florida, Tennessee, Idaho, Montana	Florida, Tennessee, Montana, Idaho.
73	Platinum-group metals (crude)	California	Rank same as for quantity.
14	Potagginm galte	New Mexico, California, Utah, Michigan	Do.
42	Pumice and pumicite	New Mexico, California, Idaho, Colorado Tennessee, California, Virginia, Montana	California, New Mexico, Oregon, Idaho.
34	Pyrites	Tennessee, California, Virginia, Montana	Rank same as for quantity.
50	Quartz from pegmatites and quartzite	Washington, California, North Carolina, Connecticut	Do.
11	Salt (common)	Michigan, New York, Ohio, Texas	Michigan, New York, Louisiana, Kansas.
5	Sand and gravel	California, Michigan, Wisconsin, Ohio	California, Ohio, Michigan, Pennsylvania.
32	Sand and sandstone (ground)	Illinois, New Jersey, West Virginia, Ohio	Illinois, West Virginia, New Jersey, Ohio.
16	Silver (in ores, etc.)	Idaho, Utah, Montana, Arizona Pennsylvania, Vermont, New York, Georgia	Rank same as for quantity.
23	Slate	Pennsylvania, Vermont, New York, Georgia	Pennsylvania, Vermont, New York, Virginia. Rank same as for quantity.
30	Sodium carbonate (natural)	California, Wyoming	Rank same as for quantity.
38	Sodium sulfate (natural)	California, Wyoming California, Texas, Wyoming Pennsylvania, Ohio, Illinois, Michigan	Do.
3	Stone Sulfur (Frasch-process)	Pennsylvania, Ohio, Illinois, Michigan	Pennsylvania, Ohio, Illinois, New York.
.9	Sulfur (Frasch-process)	Texas, Louisiana Nevada, California, Wyoming	Rank same as for quantity.
67	Sulfur ore for direct agricultural use	Nevada, California, Wyoming	Do.
25	Talc, pyrophyllite, and soapstone (ground) Tin (content of ore and concentrate)	New York, California, North Carolina, Vermont Colorado, North Carolina	Do.
70	Tin (content of ore and concentrate)	Colorado, North Carolina	Do.
••	Titanium concentrate:	NY . NY . 1 TO . 11 NY . 1-1 NY . 15 CT 15	
29	limenite		Do.
54	Rutile	Florida	Do.
48	Tripoli	Illinois, Missouri, Pennsylvania	Missouri, Illinois, Pennsylvania.
18	Tungsten concentrate	California, Nevada, North Carolina, Colorado	Rank same as for quantity.
43 72	Vermiculite	Montana, South Carolina, Wyoming, North Carolina	Do.
12	Wollastonite Zine (in ores, etc.)	New York, California	
51	Zirconium concentrate	Montana, Idaho, New Jersey, Oklahoma	Do. Do.
OI	MI COMMAN COMPONIONO	Florida	Du.

TABLE 4.—Value of metals and nonmetals (except fuels) produced in continental United States, 1949-52, by States, in thousands of dollars and principal minerals produced in 1952

							1952
State	1949	1950	1951	Value	Rank	Percent of U.S. total	Principal minerals, in order of value
Alabama	181,070 20,145 171,197	68, 606 207, 379 26, 424 201, 682 72, 472	79, 197 243, 856 28, 468 1 247, 311 85, 848	84, 623 231, 669 28, 682 244, 508 87, 588	15 3 33 2 14	2. 25 6. 15 . 76 6. 49 2. 32	Iron ore, cement, stone, lime. Copper, zinc, lead, silver. Bauxite, sand and gravel, barite, stone. Cement, sand and gravel, stone, boron minerals. Molybdenum, zinc, lead, cement.
Connecticut. Delaware District of Columbia. Florida. Georgia	335 63 54, 257	5, 640 522 60 66, 745 44, 016	1 6, 213 1 584 82 77, 285 1 47, 509	7, 063 677 7 79, 080 52, 200	43 48 49 16 25	.19 .02 (²) 2.10 1.39	Stone, sand and gravel, lime, clays. Sand and gravel, stone, clays. Clays. Phosphate rock, stone, cement, sand and gravel. Clays, stone, cement, sand and gravel.
Idaho	70, 411 47, 123 30, 529	79, 077 80, 320 57, 714 34, 777 52, 221	82, 795 93, 225 65, 135 41, 488 54, 508	77, 060 97, 606 63, 719 47, 074 56, 423	17 12 20 29 23	2. 05 2. 59 1. 69 1. 25 1. 50	Zinc, lead, silver, sand and gravel. Stone, cement, sand and gravel, fluorspar. Cement, stone, sand and gravel, clays. Cement, stone, sand and gravel, gypsum. Cement, stone, zinc, salt.
Kentucky Louisiana Matine Maryland Massachusetts	37, 226 6, 663 16, 956	20, 422 42, 464 7, 399 19, 516 16, 006	23, 249 47, 279 8, 479 1 22, 683 16, 946	25, 151 56, 811 8, 923 23, 692 17, 715	35 22 42 36 39	.67 1.51 .25 .63 .47	Stone, clays, cement, sand and gravel. Sulfur, cement, salt, sand and gravel. Cement, sand and gravel, stone, slate. Sand and gravel, stone, cement, clays. Stone, sand and gravel, lime, clays.
Michigan Minnesota Mississippi Missouri Montana	257, 486 3, 276 96, 190	185, 275 331, 554 4, 285 100, 672 74, 221	217, 920 433, 096 6, 698 121, 712 94, 998	217, 450 397, 441 6, 902 128, 825 91, 663	5 1 44 10 13	5.77 10.55 .18 3.42 2.43	Iron ore, cement, sand and gravel, salt. Iron ore, sand and gravel, stone, manganiferous ore. Clays, cement, sand and gravel, stone. Lead, cement, stone, lime. Copper, zinc, manganese ore, lead.
Nebraska Nevada New Hampshire New Jersey New Mexico	37, 372 1, 390 38, 403	10, 720 48, 499 1, 711 46, 205 73, 904	11,678 1 57,674 1,295 58,809 97,497	12, 853 64, 231 1, 941 57, 117 107, 384	41 19 45 21 11	.34 1.70 .05 1.52 2.85	Cement, sand and gravel, stone, clays. Copper, tungsten, zinc, gold. Sand and gravel, stone, feldspar, mica. Zinc, stone, sand and gravel, iron ore. Potassium salts, copper, zinc, lead.
New York North Carolina North Dakota Ohio Oklahoma	19,650 1,787 99,223	140, 032 26, 156 1, 825 111, 506 35, 450	1 169, 993 29, 474 2, 389 137, 839 44, 422	161, 716 34, 713 1, 866 137, 448 47, 288	8 30 46 9 28	4, 29 . 92 . 05 3, 65 1, 26	Cement, iron ore, stone, sand and gravel. Stone, sand and gravel, tungsten, feldspar. Sand and gravel, clays, stone. Stone, cement, lime, sand and gravel. Zinc, cement, stone, lead.

Oregon Pennsylvania Rhode Island South Carolina South Dakota	26, 653	21, 483 195, 204 1, 425 11, 394 32, 593	28, 374 226, 567 1, 278 11, 286 1 29, 553	26, 637 213, 243 1, 250 14, 531 30, 455	34 6 47 40 31	.71 5.66 .03 .39	Stone, sand and gravel, cement, diatomite. Cement, stone, sand and gravel, lime. Stone, sand and gravel, graphite. Stone, clays, cement, sand and gravel. Gold, stone, cement, clays.
Tennessee	55, 390	62, 295	72, 855	74, 908	18	1. 99	Cement, stone, zinc, phosphate rock. Sulfur, cement, sand and gravel, bromine. Copper, lead, gold, iron ore. Stone, asbestos, slate, copper. Stone, cement, sand and gravel, zinc.
Texas	142, 536	169, 947	188, 487	198, 368	7	5. 27	
Utah	145, 237	193, 049	219, 395	227, 256	4	6. 03	
Vermont	17, 384	18, 563	118, 516	17, 891	37	. 47	
Virginia	33, 905	40, 774	45, 224	49, 509	27	1. 31	
Washington	34, 779	43, 176	48, 396	50, 003	26	1.33	Cement, sand and gravel, zinc, stone.
West Virginia	23, 820	26, 893	33, 001	29, 743	32	.79	Sand and gravel, stone, cement, lime.
Wisconsin	35, 868	41, 683	48, 345	55, 706	24	1.48	Sand and gravel, stone, iron ore, zinc.
Wyoming	11, 926	12, 368	16, 192	17, 873	38	.47	Clays, cement, sand and gravel, stone.
Total	2,660,000	3, 166, 000	3, 745, 000	3, 767, 000		100.00	Cement, iron ore, stone, copper.

¹ Revised figure.
2 Less than 0.005 percent.

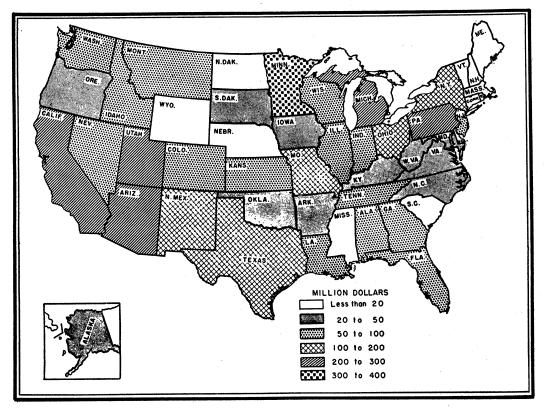


Figure 2.—Value of metals and nonmetals (except fuels), produced in continental United States and Alaska, 1952, by States.

	A	LABAMA						
	1	949	1	950	1	951	19	952
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
ement 2 376-pound barrels_ lays (except for cement) long tons, gross weight_ une (open-market) gross weight_ anganese ore (35 percent or more Mn) gross weight_ and and gravel.	9, 394, 348 856, 719 7, 314, 204 359, 446	\$20, 320, 658 934, 262 27, 553, 175 3, 203, 564	10, 574, 955 992, 836 7, 402, 208 389, 071 138	\$23, 175, 772 1, 045, 217 28, 932, 801 3, 577, 850	10, 586, 825 918, 598 8, 181, 737 455, 953	\$24, 523, 073 1, 367, 545 34, 799, 951 4, 395, 922	10, 642, 409 921, 588 7, 243, 214 424, 028	\$25, 084, 379 1, 560, 858 37, 940, 412 4, 458, 604
indistributed: Bauxite, puzzolan cement, graphite, mica (1952), salt	3, 296, 582 2, 636, 930	2, 268, 013 6, 039, 867	3, 616, 363 2, 587, 500	2, ¥63, 722 6, 038, 220	3, 535, 871 2, 818, 421	2, 806, 540 7, 254, 671	3, 722, 555 3, 052, 150	2, 955, 630 7, 948, 410
years (indicated in appropriate column by footnote reference 3)						4, 048, 936		4, 674, 458
Total Total mineral fuels	1	63, 211, 000 80, 694, 000		68, 606, 000 90, 369, 000		79, 197, 000 85, 083, 000		84, 623, 000 73, 759, 000
Total Alabama		143, 905, 000		158, 975, 000		164, 280, 000		158, 382, 000
	I	RIZONA						
laysopper (recoverable content of ores, etc.)	846 108, 993 (³) 33, 568	\$432, 813 141, 449, 940 (a) 3, 814, 755 (b) 10, 607, 488 607, 709 (a)	223, 586 403, 301 952 118, 313 (4) 26, 383 51, 530 222	\$512, 025 167, 773, 216 (3) 4, 140, 955 (3) 7, 123, 410 717, 885 (3)	226, 672 415, 870 1, 623 116, 093 (8) 17, 394 54, 023	\$471, 973 201, 281, 080 (8) 4, 063, 255 (3) 6, 018, 324 772, 899 (3)	247, 329 395, 719 434 112, 355 11, 314 16, 520 53, 019 203	\$579, 175 191, 527, 996 (3) 3, 932, 425 28, 285 5, 319, 440 757, 390 (3)
ilea (scrap)	(3) (3) 519	(3) (2) 2, 670 970, 813 4, 498, 767 203, 295 (3)	(3) (3) 1, 923 2, 498, 777 5, 325, 441 228, 490	(3) (3) 10, 487 1, 590, 001 4, 819, 793 139, 810 (3)	224 1, 763 1, 172, 740 (3) 2, 691, 100 5, 120, 985 308, 881	(3) 50, 030 1, 101, 641 (3) 2, 203, 345 4, 634, 750 353, 872 36, 663	(3) 2, 022, 832 (3) 1, 824, 330 4, 701, 330 235, 020 71	(3) 1, 987, 418 (8) 1, 635, 903 4, 254, 941 355, 709 251, 136

TABLE 5.—Mineral production in the United States, 1949-52, by States ¹—Continued ARIZONA—Continued

ARIZONA—Continued												
	19	049	19	050	19	51	195	52				
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value				
Zinc (recoverable content of ores, etc.) Undistributed: Asbestos, barite, beryllium concentrate (1949-51), cement, feldspar, gem stones, lithium (1951), mercury (1951), pumice (1949, 1951-52), quartz, vanadium, and minerals whose value must be concealed for particular years (indicated in appropriate column by	70, 658	\$17, 523, 184	60, 480	\$17, 176, 320	52, 999	\$19, 291, 636	47, 143	\$15, 651, 476				
footnote reference 3)		958, 882		3, 374, 993		6 3, 577, 171		5, 388, 080				
Total Total mineral fuels		181, 070, 000 24, 000		207, 379, 000 27, 000		243, 856, 000 30, 000		231, 669, 000 33, 000				
Total Arizona		181, 094, 000		207, 406, 000		243, 886, 000		231, 702, 000				
	A	RKANSAS	-									
Barite (crude) long tons, dried equivalent Clays (except for cement)	400.909	\$2,907,056 6,433,964 1,067,033 7 1,000	343, 168 1, 307, 335 460, 826	\$3,088,512 7,531,535 996,253	407, 085 1, 815, 274 483, 059	\$3, 765, 536 12, 259, 742 1, 198, 458	428, 522 1, 603, 833 546, 334	6 \$3, 963, 828 10, 235, 254 1, 507, 692				
Gem stones and industrial diamonds	2, 851 5, 555 2, 507, 244 (3) 8 1, 279, 250	316 (3) (3) 2, 128, 474 (3) 8 2, 247, 236 248	1, 444 9 1, 224 6, 359 4, 118, 080 (3) 3, 952, 720 8	(3) 2, 430 (3) (3) 3, 446, 578 (3) 7, 419, 110 2, 272	1, 343 33 3, 718 1, 429 3, 868, 940 27, 080 2, 535, 746 50	(3) 11, 418 (3) (3) 3, 569, 114 174, 329 3, 216, 426 18, 200	2, 246 5, 011, 095 (3) 8 2, 967, 479 26	(3) (3) (4) (4) (77, 219 (3) (3) (4) (3) (4) (4) (5) (6) (6) (6) (7) (7) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9				
Undistributed: Abrasive stones, cement, gypsum, lime, sand and gravel (1949), stone (unclassified 1949, dimension miscellaneous 1952), and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote reference 3)		5, 359, 172		3, 936, 998		4, 254, 895		4, 641, 801				
Total Total mineral fuels		20, 145, 000		26, 424, 000 92, 218, 000		28, 468, 000 90, 226, 000		28, 682, 000 87, 653, 000				
Total Arkansas				118, 642, 000		118, 694, 000		116, 335, 000				

Antimony ore and concentrate	467, 592 11,166 23, 201, 982 417, 231 584, 109 10, 318 1584, 109 10, 318 1584, 109 10, 318 1584, 109 10, 318 1584, 109 10, 318 1584, 109 27, 600 280 386 4, 493 4, 043 149, 873 964, 807 36, 279, 816 783, 880 200, 496 11, 373, 490 11, 373, 4	204, 024 57, 464, 213 11, 662 2, 744, 069 255, 706 (3) 14, 603, 085 1, 852, 452 (3) 3, 260, 488 2, 516, 262 1, 770, 000 (3) (3) 357, 014 27, 158 799, 602 4, 110, 271 30, 198, 924 709, 451 4, 163, 71 12, 594, 048 26, 444 1, 434, 046 (3) 1, 787, 832	(3)	(3) 65, 258, 675 (3) 2, 904, 750 268, 736 (3) 14, 424, 130 2, 462, 604 (3) 4, 274, 370 2, 722, 835 2, 730, 000 (3) 5, 766 312, 851 (3) 970, 828 970, 139 (7) 13, 998, 432 27, 797 2, 069, 211 3, 392, 244 2, 144, 484	(a) 28, 956, 470 6, 302 1, 615, 241 921 (10) 339, 732 1, 102, 883 1, 182, 799 13, 967 203, 344 53, 900	(3) 1, 228, 569 5, 261, 780 41, 279, 835 1, 036, 481 14, 714, 524 (3) 2, 269, 771 11, 557, 325 3, 495, 128	(3) 29,786,245 14,713 1,886,649 800 (10) 258,176 1,236,430 1,463,239 11,199 238,957 50,204 8,081 56	(a) 79, 457, 745 (a) 1, 269, 000 (a) 9, 936, 160 (a) 7, 721, 134 (b) 3, 606, 078 (a) 752, 738 (b) 793, 716 (c) 4481, 683 (d) 793, 716 (e) 803, 125 (e) 905, 246 (f) 907, 085 (g) 2, 868, 255 (g) 2, 868, 255 (g) 2, 868, 255 (g) 3, 127, 108
TotalTotal mineral fuels		904, 415, 000				5 247, 311, 000 962, 070, 000 5 1,209,381,000	l	

TABLE 5.—Mineral production in the United States, 1949-52, by States ¹—Continued COLORADO

	1	949	1	950	1	951	1952	
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Beryllium concentrate	254, 691 2, 403 60, 966 22, 324 102, 618 (4) 26, 853 4, 168 10, 482, 600 12, 729	\$43, 200 499, 294 946, 782 341, 049 763, 296 3, 591, 630 (a) 8, 485, 548 60, 072 (b) 89, 105	97 310, 130 3, 141 59, 457 18, 489 130, 390 62, 150 27, 007 24, 090, 200 13, 691	\$30, 500 618, 814 1, 306, 656 329, 120 654, 089 4, 563, 650 183, 976 7, 291, 890 27, 068 (3) 95, 842	97 . 443, 403 3, 212 50, 451 20, 661 116, 503 (*) 30, 336 	\$32, 339 958, 115 1, 554, 608 283, 153 820, 322 4, 077, 605 10, 496, 256 32, 901 (3) (4)	413, 386 3, 606 38, 268 29, 185 124, 594 (2) 30, 066 (4) 24, 557, 149 (3)	\$24, 588 931, 810 1, 745, 304 224, 385 1, 505, 968 4, 360, 790 (4) 9, 681, 252 (3) (3) (4) (4) (5) (6) (8) (8)
Silver (recoverable content of ores, etc.) troy ounces. Stone (except limestone for cement and lime) long tons. Tin (content of ore and concentrate) long tons. Tungsten concentrate 60-percent WO; basis. Zinc (recoverable content of ores, etc.)	2, 894, 886 8 1, 816, 790 17 222 47, 703	2, 620, 018 2, 803, 538 37, 410 (*) 11, 830, 344	(3) 5,154,287 3,492,278 8 1,679,960 15 196 45,776	3, 940, 439 3, 160, 688 2, 776, 331 31, 165 302, 248 13, 000, 384	(3) 6, 916, 631 2, 787, 882 1, 470, 123 18 336 55, 714	(4) 4, 452, 489 2, 523, 174 2, 334, 376 54, 033 1, 092, 780 20, 279, 896	(3) 8, 461, 039 2, 813, 643 1, 708, 872 13 625 53, 203	(3) 6, 268, 367 2, 546, 489 2, 566, 401 33, 723 2, 354, 664 17, 663, 396
(1949), pumice and pumicite (1950-52), stone (dimension, unclassified 1949-50), sulfur ore (1949-50), vanadium, vermiculite (1949-50), and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote reference 3)		19, 647, 411		34, 159, 514		36, 856, 248		37, 680, 235
TotalTotal mineral fuels		54, 774, 000 85, 099, 000		72, 472, 000 82, 426, 000		85, 848, 000 93, 587, 000		87, 588, 000 100, 001, 000
Total Colorado		139, 873, 000		154, 898, 000		179, 435, 000		187, 589, 000

CONNECTICUT

Clays. Feldspar (crude)	289, 090 12, 659 16, 225 2, 648, 343 1, 695, 650	\$216, 829 95, 044 97, 350 1, 587, 446 2, 460, 547	292, 367 13, 580 27, 560 2, 998, 424 8 1, 860, 700	\$236, 317 101, 851 166, 810 1, 861, 741 8 2, 789, 532	275, 900 13, 811 29, 273 5 2, 321, 715 2, 278, 466	\$252, 725 107, 083 175, 638 1, 708, 910 3, 360, 378	157, 500 10, 929 (3) 2, 581, 247 2, 837, 045	\$157, 500 87, 432 (*) 1, 933, 214 4, 101, 060
Iootnote reierence 3)								783, 691
Total Total mineral fuels		4, 854, 000 33, 000		5, 640, 000 35, 000		⁸ 6, 213, 000 34, 000		7, 063, 000 62, 000
Total Connecticut		4, 887, 000		5, 675, 000		⁵ 6, 247, 000		7, 125, 000
	D	ELAWARE						
Clays	233 977	\$46, 293 196, 451 92, 100	41, 000 367, 524 77, 050	\$40, 375 291, 715 190, 113	35, 950 5 454, 563 99, 201	\$35, 450 5 303, 643 245, 002	(3) 515, 399 94, 911	(8) \$382, 484 251, 759
footnote reference 3)								42, 805
Total Delaware		335, 000		522, 000		⁵ 584, 000		677, 000
•		FLORIDA		;		, as <u>unum transa a casa, a</u>		
Clays (including fuller's earth) Phosphate rock Sand and gravel Stone (except limestone for cement and lime) Undistributed: Cement, abrasive garnet (1951-52), lime, calcareous marl (1949), titanium concentrate, and zirconium concentrate.	7 7/2 202 1	\$1, 446, 544 37, 857, 983 1, 879, 733 4, 748, 253 8, 324, 380	126, 852 8, 085, 870 2, 793, 865 5, 313, 400	\$1, 954, 641 45, 377, 842 2, 806, 431 6, 885, 394 9, 720, 532	132, 563 8, 496, 831 4, 418, 573 8, 032, 966	\$2, 288, 855 50, 262, 562 4, 300, 682 9, 419, 682 11, 013, 358	112, 113 8, 781, 125 4, 154, 613 7, 836, 634	\$1, 985, 587 51, 541, 799 3, 848, 077 9, 577, 541 12, 126, 587
TotalTotal mineral fuels		54, 257, 000						79, 080, 000 1, 255, 000
Total Florida								80, 335, 000

TABLE 5.—Mineral production in the United States, 1949–52, by States ¹—Continued GEORGIA

	1949		1950		1951		1952	
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Barite (crude) Clays (including fuller's earth) 9 Cloys (including fuller's earth) 9 Cloys (trough fuller troy ounces troy oun	50, 267 1, 983, 001 18	\$465, 325 16, 653, 426 630	(3) 2, 325, 292	\$20, 937, 991	(3) 2, 528, 599 3	(3) \$23, 090, 280 105	2, 490, 167	(⁸) \$23, 033, 977
Iron ore (usable)	228, 689 7, 028 (3) 11 984, 488 771 8 4, 156, 226 49, 338	692, 649 67, 252 (8)	202, 427 11, 998 (3) 11 1, 211, 782 1, 176 8 6, 144, 980 70, 749	677, 248 121, 556 (\$) 11 936, 726 11, 760 8 11, 917, 482 774, 148	357, 754 10, 616 (3) 1, 226, 231 1, 874 5 5, 234, 131 77, 895	1, 339, 248 104, 626 (³) 1, 041, 561 18, 740 § 14, 813, 413 823, 133	319, 959 7, 854 13, 010 2, 133, 970 1, 765 7, 141, 923 56, 491	1, 439, 251 87, 587 18, 852 2, 029, 367 17, 650 18, 114, 604 653, 144
commercial, 1949–50), slate, stone (marble and dimension unclassified, 1949–50), and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote reference 3)		7, 700, 505		8, 639, 256		6, 277, 955		6, 805, 259
Total Total Total fuels		35, 353, 000 155, 000		44, 016, 000 141, 000		⁵ 47, 509, 000 46, 000		52, 200, 000 198, 000
Total Georgia		35, 508, 000		44, 157, 000		⁸ 47, 555, 000		52, 398, 000
		IDAHO						
Antimony ore and concentrategross weight	4, 838 24, 850	\$1,053,177 30,780	6, 868 25, 858	(³) \$30, 811	8, 805 28, 281	(3) \$42, 545	4, 173 23, 533 196, 516	(³) \$24, 683
Copper (recoverable content of ores, etc.) troy ounces	1, 438 77, 829	566, 572 2, 724, 015	2, 107 79, 652	876, 512 2, 787, 820	2, 160 45, 064	1, 045, 440 1, 577, 240	3, 213 32, 997	(8) 1, 555, 092 1, 154, 895
Jypsum (crude)	79, 299	25, 058, 484	100, 025	27, 006, 750	76, 713 357	293 26, 542, 698 75, 016	73, 719 887	1, 200 23, 737, 518 176, 602
Scrappounds.							170	5, 100
Phosphate rock long tons	(8)	(8)	(3)	(3)	694, 446	1, 748, 074	20,020	115, 572 (³)

Pumice and pumicite Sand and gravel. Sand and sandstone (ground)		2, 482, 678 64, 267, 000 25, 000	16, 095, 019 8 644, 020 222 87, 890	79, 077, 000	83, 528 4, 057, 391 11, 968 14, 753, 023 1, 457, 182 78, 121	82, 795, 000	333 74, 317	77, 060, 000
]	LLINOIS						
Cement	3, 128 17, 054, 110 18, 157		7, 857, 969 2, 302, 330 154, 623 2, 729 367, 485 18, 695, 433 263, 122 2, 001 17, 911, 480 26, 982	\$16, 920, 234 3, 242, 577 6, 110, 765 736, 830 4, 465, 413 16, 531, 797 2, 278, 237 1, 811 21, 970, 537 7, 662, 888 398, 558	21, 776		22, 334, 887 18, 816	\$20, 600, 347 3, 690, 099 9, 481, 223 1, 372, 364 5, 917, 038 19, 214, 195 2, 342, 549 3, 422 28, 326, 060 6, 246, 912 411, 940
TotalTotal mineral fuels		70, 411, 000 379, 482, 000		80, 320, 000 407, 824, 000		93, 225, 000 396, 709, 000		97, 606, 000 362, 399, 000
Total Illinois		449, 893, 000		488, 144, 000		489, 934, 000		460, 005, 000

For footnotes, see end of table.

TABLE 5.—Mineral production in the United States, 1949-52, by States 1—Continued INDIANA

	1949		1950		1951		1952			
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value		
Clays (except for cement) Marl, calcareous (except for cement) Pyrites Sand and gravel Stone (except limestone for cement and lime) Undistributed: Abrasive stones, cement, lime, stone (sandstone, 1949; dimension sandstone, 1951), and minerals whose value must be concealed for particular years (indicated in appropriate column by foot-	44, 026 559 8, 887, 231 8 6, 332, 360	\$1, 197, 982 49, 543 1, 873 6, 695, 426 8 15, 227, 818	1, 159, 257 20, 380 (3) 9, 723, 033 6, 994, 670	\$1, 395, 662 13, 977 (*) 7, 516, 509 20, 686, 160	1, 267, 159 12, 960 (³) 11, 030, 814 8 8, 641, 670	\$1, 656, 885 18, 129 (a) 8, 763, 936 8 23, 729, 433	1, 020, 840 16, 414 (3) 11, 546, 014 9, 126, 837	\$1, 389, 751 9, 021 (3) 9, 279, 908 21, 965, 454		
note reference 3)		23, 950, 991		28, 101, 638		30, 966, 381		31, 074, 713		
Total Total mineral fuels		47, 123, 000 93, 902, 000		57, 714, 000 108, 918, 000		65, 135, 000 109, 253, 000		63, 719, 000 98, 206, 000		
Total Indiana		141, 025, 000		166, 632, 000		174, 388, 000		161, 925, 000		
		IOWA					·			
Cement	571, 505 858, 464 7, 978, 229	\$14, 602, 554 628, 674 2, 188, 002 4, 446, 661 8, 663, 201	7, 231, 807 579, 423 981, 647 8, 994, 822 8 8, 425, 490	\$16, 157, 979 645, 057 2, 507, 651 4, 795, 835 8 10, 668, 427 2, 151	8, 024, 492 576, 955 1, 127, 705 9, 943, 372 9, 261, 317	\$19, 800, 084 719, 785 2, 881, 150 5, 916, 950 12, 170, 082	9, 336, 727 519, 918 1, 122, 409 10, 796, 979 9, 899, 404	\$22, 849, 597 2, 332, 283 2, 797, 704 6, 032, 898 13, 036, 726 24, 750		
Total Total mineral fuels		30, 529, 000 6, 929, 000				41, 488, 000 6, 218, 000		47, 074, 000 5, 407, 000		
Total Iowa		37, 458, 000		41, 773, 000		47, 706, 000		52, 481, 000		
KANSAS										
Cement 12376-pound barrels	7, 640, 540 302, 208 9, 772	\$16, 880, 156 260, 318 3, 087, 952	8, 759, 103 351, 756 9, 487	\$19, 400, 068 320, 869 2, 561, 490	8, 163, 916 373, 365 8, 947	\$19, 413, 144 370, 326 3, 095, 662	8, 811, 762 349, 418 5, 916	\$20, 956, 886 473, 129 1, 904, 952		

Salt (common)	719 3, 327, 920 420 8 7, 951, 490	846, 374 9, 781, 123 7, 630, 300 27, 176	5, 914, 514 6, 782, 285 8, 920, 207 7, 717, 984	900, 917 7, 676, 888 7, 191, 483 28, 904	6, 639, 343 4, 747, 544 9, 058, 512 10, 521, 056	911, 744 8, 380, 065 8, 830, 871 25, 482	6, 850, 027 5, 023, 593 12, 051, 740 8, 460, 024
Undistributed: Natural cement, gypsum, pumicite, and stone (di- mension sandstone, 1949)	502, 347		603, 624		662, 541		703, 011
Total	44, 528, 000 292, 634, 000		52, 221, 000 316, 393, 000		54, 508, 000 345, 579, 000		56, 423 , 000 34 6, 947, 000
Total Kansas	337, 162, 000		368, 614, 000		400, 087, 000		403, 370, 000
	KENTUCKY	<u></u>					
Sand and gravel 2, 375, 9 Stone (except limestone for cement) 7, 100, 1	438 2, 018, 209 187 59, 092 906 2, 168, 626	660, 550 80, 137 66 2, 382, 672 87, 417, 200 731	\$3, 552, 718 2, 554, 668 17, 820 2, 262, 964 8 8, 865, 913 207, 604	816, 585 68, 635 107 2, 801, 639 7, 048, 771 3, 457	\$5, 210, 630 2, 334, 485 37, 022 2, 434, 799 8, 609, 609 1, 258, 348	782, 099 48, 308 60 3, 334, 261 8, 817, 859 3, 280	\$5,002, 491 1,863, 262 19,320 2,656,053 10,816,707 1,088,960
mension sandstone, 1952)	2, 982, 571		2, 960, 768		3, 364, 116		8, 704, 433
Total	18, 950, 000 353, 279, 000		20, 422, 000 439, 534, 000		23, 249, 000 419, 015, 000		25, 151, 000 373, 295, 000
Total Kentucky	372, 229, 000		459, 956, 000		442, 264, 000		398, 446, 000
	LOUISIANA						
Clays (except for cement) 134,	076 5, 837, 714 148 11 6, 107, 311 115 20, 000, 000	209, 433 2, 278, 811 5, 505, 362 1, 256, 026	\$184, 890 6, 902, 502 6, 310, 425 23, 700, 000	152, 906 2, 737, 149 6, 384, 328 1, 152, 821	\$152, 906 7, 662, 179 7, 419, 570 25, 400, 000	157, 025 2, 553, 448 6, 005, 119 1, 449, 668	\$200, 697 7, 807, 693 6, 736, 524 32, 015, 000
			<u> </u>				10, 051, 053
Total Total mineral fuels			42, 464, 000 651, 143, 000		47, 279, 000 740, 399, 000		56, 811, 000 791, 448, 000
Total Louisiana	631, 813, 000		693, 607, 000		787, 678, 000		848, 259, 000

TABLE 5.—Mineral production in the United States, 1949-52, by States 1—Continued MAINE

	. 1	949	1	1950		1951	1	952
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Cement	27, 918 18, 286 45 4, 605, 172 258, 810	\$2, 526, 182 24, 568 130, 275 1, 087 1, 393, 676 2, 025, 870	23 4, 897, 143 8 309, 740	\$2,705,034 26,561 124,821 1,726,217 8 2,214,164	1, 236, 299 21, 885 19, 273 (3) 5, 366, 694 644, 594	\$3, 182, 918 21, 885 154, 695 (3) 1, 817, 317 2, 582, 541	1, 457, 250 26, 050 18, 644 (3) 7, 078, 078 8 316, 874	\$3, 750, 483 26, 050 147, 371 (3) 2, 187, 531 8 1, 795, 768
dicated in appropriate column by footnote reference 3)				601, 873		⁵ 720, 095		1, 015, 827
Total		79, 000		7, 399, 000 62, 000		8, 479, 000 37, 000		8, 923, 000 58, 000
Total Maine		6, 742, 000		7, 461, 000		8, 516, 000		8, 981, 000
	M	ARYLAND						
Clays (except for cement)	586, 453	\$922, 822	675, 749 20	\$1, 158, 031 700	697, 528 1	\$1, 354, 883 35	709, 248	\$1, 363, 882
Stone (except limestone for cement and lime) Undistributed: Cement, potassium salts, quartz (1949 and 1952), non- commercial sand and gravel (1949-50), slate, stone (dimension granite, 1949, and dimension limestone and crushed marble, 1952) tale and	64, 299 11 4, 776, 815 8 1, 789, 830	617, 696 11 6, 028, 791 8 3, 036, 410	64, 687 5, 864, 472 1, 975, 690	691, 843 7, 789, 764 3, 459, 605	67, 684 7, 054, 488 3, 181, 434	722, 011 8, 170, 851 5, 983, 380	72, 885 6, 956, 640 8 3, 391, 679	746, 893 8, 136, 697 8 6, 330, 443
ground soapstone.		6, 350, 471		6, 416, 645		⁵ 6, 451, 707		7, 113, 819
Total Total mineral fuels		16, 956, 000 3, 505, 000		19, 516, 000 3, 209, 000		⁵ 22, 683, 000 3, 465, 000		23, 692, 000 3, 155, 000
Total Maryland		20, 461, 000		22, 725, 000		5 26, 148, 000		26, 847, 000

MASSACHUSETTS

							· · · · · · · · · · · · · · · · · · ·	
Clays	156, 017 107, 931 577 5, 504, 841 1, 514 2, 290, 940	\$135, 813 1, 360, 328 4, 265 4, 379, 030 9, 650 6, 552, 935	155, 279 139, 357 2, 145 7, 111, 067 1, 829 8 3, 284, 470	\$139, 060 1, 830, 625 23, 646 5, 430, 790 9, 882 8 8, 484, 999 87, 230	150, 370 143, 316 2, 186 7, 232, 088 (3) 8 3, 225, 839	\$167, 646 1, 930, 225 17, 489 5, 592, 640 (8) 8 9, 172, 425 65, 761	140, 148 132, 135 (3) 7, 645, 728 (3) 8 3, 355, 819	\$160, 371 1, 999, 545 (3) 6, 128, 744 (3) 8 9, 331, 871 93, 935
Total Total mineral fuels		12, 442, 000 7, 000		16, 006, 000 8, 000		16, 946, 000 5, 000		17, 715, 000 4, 000
Total Massachusetts		12, 449, 000		16, 014, 000		16, 951, 000		17, 719, 000
	М	ICHIGAN						-
Bromine	368, 578 19, 506 1, 264, 511 10, 993, 239 23, 700 1, 500 4, 064, 106 20, 475, 996 16, 546, 670	\$7, 023, 211 28, 823, 055 333, 249 7, 685, 364 3, 470, 294 55, 237, 126 2, 719, 000 16, 109, 117 13, 992, 903 13, 387, 334 4, 383, 892	(3) 12, 854, 423 416, 023 25, 608 1, 474, 210 12, 821, 344 34, 000 117, 619 218, 429 4, 446, 667 24, 556, 911 19, 095, 540	\$29, 619, 766 380, 511 10, 652, 928 4, 090, 777 72, 358, 821, 000 (3) 122, 212 18, 178, 765 16, 699, 203 15, 391, 366	(*) 14, 112, 639 391, 134 24, 979 1, 566, 276 13, 611, 621 45, 692 178, 010 5, 137, 639 27, 540, 921 20, 851, 733		(8) 14, 760, 783 436, 939 21, 699 1, 487, 642 11, 779, 366 (2) 22, 095 164, 519 4, 778, 347 29, 193, 763 17, 973, 685	(3) \$36, 819, 042 471, 938 10, 502, 316 4, 200, 418 76, 088, 935 (3) (3) 86, 529 21, 446, 382 22, 400, 879 15, 770, 816
Total Total mineral fuels		153, 166, 000 48, 094, 000		185, 275, 000 44, 667, 000		217, 920, 000 40, 017, 000		217, 450, 000 37, 082, 000
Total Michigan		201, 260, 000		229, 942, 000				

TABLE 5.—Mineral production in the United States, 1949-52, by States ¹—Continued MINNESOTA

		INTEROLA						
	1	949	1	950	1	1951		
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Clays Gem stones (estimated)	133, 565 (10)	\$153, 446 5, 000	129, 220	\$151,074	129, 942	\$187, 605	113, 492	\$160, 408
Gem stones (estimated)	19 09 909	239, 858, 902 (³) 7, 244 4, 903, 908 5, 278, 716	64, 538, 759 869, 838 19, 375	311, 716, 341 (3) 7, 600 5, 903, 025 8 5, 334, 028	1, 132, 250 2, 925 17, 229, 526	411, 468, 895 (*) 1, 549 6, 008, 994 8 5, 613, 157	912, 118 1, 449 19, 825, 157	375, 765, 251 (*) 722 6, 808, 763 8 5, 498, 177
column by footnote reference 3)		1		8, 442, 083		9, 815, 600		9, 207, 947
Total Total mineral fuels		257, 486, 000 54, 000		331, 554, 000 13, 000		433, 096, 000		397, 441, 000
Total Minnesota						433, 096, 000		
	M	ISSISSIPPI			<u> </u>			
Clays (including fuller's earth) • land and gravel		\$1, 653, 473 11 1, 330, 413 (3) 292, 186	561, 951 2, 764, 444 100, 000	\$2, 184, 429 1, 985, 908 115, 000	,	\$4, 250, 237 2, 279, 034 168, 933	504, 799 2, 296, 577 90, 000	\$2, 677, 263 1, 833, 306 103, 500 2, 287, 612
Total Total mineral fuels		3, 276, 000 100, 435, 000		4, 285, 000 98, 660, 000		6, 698, 000 96, 332, 000		6, 902, 000 94, 973, 000
Total Mississippi		103, 711, 000		102, 945, 000				

MISSOURI

	14.	LIDDOCTUL						
Barite (crude) Cement	3, 670 144, 549 127, 522 878, 561 5, 193, 672 123, 413 9, 562, 720 15, 888 2 5, 911	\$1, 497, 985 19, 347, 814 3, 962, 674 1, 445, 980 (2) 40, 296, 952 8, 035, 117 4, 346, 681 111, 695 13, 969, 008 (2) 1, 465, 928	212, 736 9, 779, 657 1, 532, 685 532, 685 194, 138 134, 626 1, 035, 176 6, 232, 176 10, 300, 400 (4) 8, 189	\$1, 924, 520 22, 751, 226 4, 329, 456 1, 240, 512 36, 349, 020 9, 447, 669 5, 267, 939 14, 406, 627 (3) 2, 325, 676 2, 415, 964	281, 895 10, 217, 421 1, 904, 015 2, 422 172, 466 123, 702 1, 122, 299 6, 809, 857 184, 424 11, 294, 227 (3)	\$2, 697, 200 25, 760, 473 10, 098, 711 1, 172, 248 (3) 42, 800, 892 11, 285, 877 5, 969, 849 166, 913 15, 255, 427 (4) 4, 177, 264 2, 326, 981	304, 080 10, 086, 850 2, 159, 576 268, 218 129, 245 1, 130, 970 6, 790, 422 517, 432 15, 106, 544 (3)	\$2, 919, 795 26, 523, 038 11, 226, 794 1, 246, 784 (3) 41, 616, 890 11, 326, 941 6, 122, 195 468, 302 20, 676, 958 (4) 4, 643, 352 3, 053, 839
Total Total Total mineral fuels				100, 672, 000 12, 519, 000		121, 712, 000 13, 537, 000		128, 825, 000 12, 152, 000
Total Missouri		111, 293, 000		113, 191, 000		135, 249, 000		140, 977, 000
	M	ONTANA						
Antimony ore and concentrate	53, 914 56, 611 422 52, 724 17, 996 122, 382 5, 517 355, 169 6, 682, 144 6, 327, 025 8 602, 890 9 54	\$124, 314 22, 304, 734 (3) 1, 845, 340 5, 686, 736 5, 068, 425 (3) 2, 574, 330 3, 365, 472 5, 726, 277 8 563, 465 (4) 13, 440, 360	37, 617 54, 478 41 51, 764 19, 617 131, 201 6, 810 210, 165 9, 044, 125 6, 590, 7, 678	\$37, 617 22, 662, 848 (3) 1, 811, 740 5, 296, 590 (3) (8) 1, 496, 537 5, 140, 207 5, 964, 959 949, 545	39, 231 57, 406 30, 502 21, 302 100, 562 7, 598 304, 507 9, 582, 843 6, 393, 768 871, 508 1 85, 551	(3) \$41, 631 27, 784, 504 1, 067, 570 7, 370, 492 (3) (2) 2, 353, 381 6, 201, 888 5, 786, 683 986, 327 2, 832 31, 140, 564	51, 304 61, 948 16, 160 24, 161 21, 279 100, 070 9, 357 332, 299 6, 765, 955 6, 138, 185 8 690, 081	\$73, 601 29, 982, 832 (3) 845, 635 6, 851, 838 (3) 2, 620, 764 3, 579, 932 5, 555, 367 6 792, 897
Undistributed: Barite (1951-52), cement, gem stones (1949-51), gypsum, lime, pumice and pumicite (1950-51) pyrites, sodium sulfate (1951) stone (basalt and unclassified, 1949, and dimension granite, 1952), talc, vermiculite, and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote reference 3) Total Total mineral fuels Total Montana		65, 636, 000 32, 434, 000		74, 221, 000 29, 168, 000				
				1 100, 009, 000				121.400.000

TABLE 5.—Mineral production in the United States, 1949-52, by States ¹—Continued NEBRASKA

		EDKASKA								
	1	949	1	950	1	.951	19	052		
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value		
Clays (except for cement) Pumice and pumicite Sand and gravel. Stone (except limestone for cement). Undistributed: Cement, stone (sandstone, 1949-50), and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote reference 3).	1 7 000	\$85, 347 40, 000 2, 911, 734 8 840, 758	100, 299 (3) 5, 077, 792 8 736, 660	\$109, 294 (3) 3, 167, 659 9 1, 042, 035	86, 186 (3) 4, 969, 243 942, 967	\$86, 686 (3) 3, 477, 409 1, 437, 899	90, 245 (3) 5, 436, 540 1, 245, 106	\$90, 720 (3) 3, 874, 106 1, 946, 448		
column by footnote reference 3)		5, 493, 674		6, 400, 618		6, 676, 419		6, 941, 871		
TotalTotal mineral fuels		9, 372, 000 730, 000		10, 720, 000 3, 302, 000		11, 678, 000 6, 791, 000		12, 853, 000 7, 744, 000		
Total Nebraska		10, 102, 000		14, 022, 000		18, 469, 000		20, 597, 000		
NEVADA										
Antimony ore and concentrate gross weight Barite (crude) Clays (including fuller's earth) Copper (recoverable content of ores, etc.) Fluorspar Gold (recoverable content of ores, etc) troy ounces Gypsum (crude) Iron ore (usable) Lead (recoverable content of ores, etc.) Manganese are (35 percent or more Mn) gross weight	70, 576 (3) 38, 058 5, 847 130, 399 495, 229 3, 094	\$76, 964 416, 416 (3) 14, 994, 852 (3) 4, 563, 965 1, 347, 666 (3) 3, 357, 816	20 47, 608 (3) 52, 569 7, 577 178, 447 604, 604 5, 465 9, 408	(3) \$268, 874 (3) 21, 868, 704 (2) 6, 245, 645 1, 614, 107 (3) 2, 540, 160	156 63, 201 3, 220 56, 474 (a) 121, 036 643, 637 299, 010 7, 148 328	(3) \$387, 026 33, 420 27, 333, 416 (3) 4, 236, 260 1, 811, 757 898, 306 2, 473, 208	152 68, 062 3, 958 57, 537 (3) 117, 203 608, 284 911, 657 6, 790 695	(3) \$391, 242 36, 278 27, 847, 908 (3) 4, 102, 105 1, 666, 938 3, 991, 970 2, 186, 380		
Manganieso ore (35 percent or more Mn)	1, 800, 209 518, 510 860 8, 837 740 20, 443	52, 990 331, 348 1, 212, 166 1, 629, 280 668, 960 15, 050 147, 148 (3) 5, 069, 864	8, 942 680 2, 617, 052 1, 537, 217 8 274, 460 867 8, 581 1, 123 21, 606	102, 348 55, 257 2, 253, 253 1, 391, 259 8 269, 478 15, 173 170, 736 (3) 6, 136, 104	328 1, 250 1, 400 2, 616, 629 981, 669 834, 807 (3) 6, 919 1, 482 17, 443	(3) 294, 182 2, 657, 654 888, 460 959, 815 (2) 152, 878 4, 780, 237 6, 349, 252	695 7, 947 3, 523 2, 098, 211 941, 195 830, 712 (*) 7, 580 2, 329 15, 357	2, 186, 380 (3) (3) 701, 429 2, 380, 419 851, 829 1, 158, 608 (3) 180, 328 8, 820, 598 5, 098, 524		
iar years (indicated in appropriate column by lootnote reference 3)								4, 816, 659		
Total Nevada		37, 372, 000		48, 499, 000		⁵ 57, 674, 000		64, 231, 000		

NEW HAMPSHIRE

Beryllium concentrate	6, 910	381, 141	106 22, 719 13 1, 713, 284 15, 760	\$40, 310 17, 115 13 226, 424 8 383, 667	28, 501 2, 260, 410 8 62, 355	\$16, 670 28, 501 517, 927 8 349, 606	(8) 30, 135 3, 200, 232 69, 850	(3) \$30, 135 1, 001, 591 546, 177
mercial, 1949-50), stone (crushed unclassified, 1950, and crushed granite, 1951), and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote reference 3)		751, 699		1, 043, 718		382, 691		362, 214
Total New Hampshire		1, 390, 000		1, 711, 000		1, 295, 000		1, 941, 000
	. N	EW JERSEY						
Clays. Iron ore (usable)			602, 369 588, 199 183, 842 3, 935 11 7, 620, 422 131, 744 8 4, 672, 050 55, 029	\$1, 277, 860 5, 651, 563 (3) 304, 321 11 8, 636, 141 936, 817 8 9, 119, 251 17, 258, 637	683, 439 657, 930 267, 751 5, 067 6, 652, 383 144, 098 6, 457, 248 62, 917	\$2, 106, 628 7, 810, 776 (3) 263, 944 9, 106, 052 1, 053, 991 10, 987, 705 24, 279, 745 3, 200, 574	598, 775 685, 466 215, 255 4, 600 7, 660, 074 138, 434 6, 102, 324 59, 190	\$1, 962, 599 6, 760, 467 (3) 177, 847 9, 473, 428 1, 011, 844 12, 307, 480 21, 520, 612
Total		38, 403, 000 181, 000		46, 205, 000 186, 000		58, 809, 000 214, 000		57, 117, 000 192, 000
Total New Jersey		38, 584, 000		46, 391, 000		59, 023, 000		57, 309, 000

TABLE 5.—Mineral production in the United States, 1949–52, by States ¹—Continued NEW MEXICO

	1	949	1	.950	1	951	1:	952
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Beryllium concentrate	12, 844 3, 249 4, 652 65, 511 932, 497 351, 368 883, 223 380, 855 138, 290 29, 346	(3) \$69, 002 21, 822, 872 446, 086 113, 715 1, 470, 032 (3) 27, 950, 111 1, 026, 479 610, 839 344, 693 106, 135 7, 277, 808	(a) 63, 337 66, 300 20, 036 3, 414 14, 284 4, 150 1, 320 74, 348 1, 072, 772 351, 642 937, 653 338, 581 364, 930 29, 263	(4) 1, 120, 500 (8) (8) (8) 31, 944, 365 1, 109, 883 923, 270 306, 433 243, 841 8, 310, 692	141 75, 653 73, 558 24, 402 3, 959 32, 210 5, 846 226 79, 844 1, 217, 617 245, 564 443, 267 1, 022, 901 45, 419	\$47, 008 148, 876 35, 602, 072 1, 163, 098 138, 565 (3) 2, 022, 716 (4) (3) 37, 209, 740 884, 311 1, 087, 857 401, 179 592, 179 16, 532, 516	101 57, 668 76, 112 16, 443 2, 949 7, 793 2, 360 52, 934 1, 411, 125 217, 482 496, 921 479, 318 \$ 317, 894 50, 975	\$29, 185 107, 633 36, 838, 208 823, 320 103, 215 (3) 2, 260, 762 (3) (46, 385, 452 755, 139 499, 589 433, 807 8 191, 642 16, 923, 700
Total Total mineral fuels		62, 138, 000 136, 687, 000		73, 904, 000 136, 390, 000		97, 497, 000 158, 805, 000		107, 384, 000 181, 116, 000
Total New Mexico		198, 825, 000		210, 294, 000		256, 302, 000		288, 500, 000

Cement 12	1, 317 550 2, 951, 750 18, 543, 071 18, 378 122, 180 13, 022, 070 115, 636 37, 973	\$28, 483, 681 769, 290 60, 917 2, 805, 154 22, 184, 757 416, 172 3, 000 12, 709, 819 15, 116, 833 1, 617, 097 18, 160, 387 2, 658, 774 7, 000 9, 417, 304 7, 408, 070 121, 835, 000 138, 493, 000 H CAROLIN		140, 032, 000 16, 497, 000		\$34, 687, 090 1, 297, 635 1, 160, 212 4, 010, 766 39, 819, 368 519, 000 (3) 16, 552, 890 19, 285, 299 43, 051 52, 000, 106 24, 326, 118 4, 170, 987 (3) 14, 578, 564 8, 542, 154 6 169, 993, 000 18, 797, 000 6 188, 790, 000		\$36, 679, 379 945, 463 141, 911 3, 816, 148 34, 514, 879 360, 640 (3) 16, 746, 462 18, 287, 623 35, 202 1, 810, 865 25, 244, 245 4, 069, 771 (3) 10, 835, 152 8, 227, 647 161, 716, 000 19, 025, 000
A brasive stone: Millstones	(10) 1,181,047 160,916 13 24,801 470,072	\$8,000 1,335,954 973,431 455 640,374 121,270	(10) 1, 437, 202 183, 027 48, 193 483, 736	\$9, 500 1, 766, 785 1, 107, 061 	(10) 1, 462, 030 166, 361 	\$6,000 2,177,515 1,230,404 1,441,886 127,204	(10) 1, 357, 700 240, 364 	\$9, 285 2, 080, 172 2, 416, 031
Olivine Sand and gravel. Stone. Talc, pyrophyllite and soapstone (ground). Tin (content of ore and concentrate)long tons. Titanium concentrate (limenite). Tungsten concentrate60-percent WO; basis	2, 458 5, 092, 929	(3) 3, 553, 180 10, 077, 976 1, 344, 767	4, 063 8, 352, 475 7, 711, 580 116, 895	(3) 5, 465, 067 11, 894, 745 1, 855, 163	7, 656, 370 8 8, 612, 967 113, 950 1	(3) 4, 435, 702 8 13, 292, 690 1, 982, 927 1, 724	(8) 8,724,748 8 9,647,513 115,481 4 (3) 1,254	5, 665, 169 14, 694, 698 1, 771, 518 11, 601
Tungsten concentrate		(a) (a) (a) (b)	1, 240 2, 366	(a) (3) 66, 627 2, 607, 072	(3) 1,041 (3)		(3)	(3) (3) (3) (3) 5, 849, 314
Total Total Total Mortal fuels		105,000						

TABLE 5.—Mineral production in the United States, 1949-52, by States ¹—Continued NORTH DAKOTA

	THE DIRECT						
1	949	1	1950	1	951	1	952
Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
4, 370, 521	\$1,638,293 (3)	4, 270, 838 193, 250	\$1,660,371 135,698	18, 250 4, 573, 341 281, 219	\$35, 250 2, 140, 466 213, 061	(3) 6, 557, 069 67, 064	(3) \$1,841,216 4,968
							19,900
	1, 787, 000 7, 031, 000		1, 825, 000 7, 789, 000		2, 389, 000 7, 858, 000		1,866,000 10,191,000
-	8, 818, 000		9, 614, 000		10, 247, 000		12, 057, 000
	оню						
1,712,248 2,195,778 14,955,657	\$22, 388, 726 7, 447, 829 20, 321, 321, 325 5, 134, 923 14, 428, 820 8 27, 419, 158	10, 512, 004 4, 497, 550 2, 142, 344 2, 515, 205 15, 664, 175 20, 466, 350	\$24, 012, 983 8, 695, 537 26, 273, 098 5, 491, 553 16, 209, 267 28, 628, 678	11, 872, 278 5, 146, 531 2, 289, 473 3, 112, 472 19, 430, 898 \$25, 190, 277	\$29, 498, 956 13, 223, 958 29, 046, 196 5, 848, 478 21, 394, 891 8 36, 436, 081	11, 377, 806 5, 003, 870 2, 205, 432 2, 827, 455 20, 751, 493 8 24, 693, 189	\$28, 488, 500 13, 153, 782 28, 393, 260 5, 991, 626 23, 069, 458 8 36, 197, 485
			2, 194, 910		2, 390, 845		2, 154, 151
-	99, 223, 000 142, 857, 000		111, 506, 000 163, 066, 000				137, 448, 000 155, 241, 000
	242, 080, 000						
	Short tons (unless otherwise stated) - 4,370,521 - 4,370,521 - (3) - 4,043,999 - 1,712,248 - 2,195,778 - 14,955,657 - 819,364,230	(unless otherwise stated) - (3) (3) (3) (4) (7) (52) (8) (8) (8) (8) (9) (10) (10) (10) (10) (10) (10) (10) (10	Short tons (unless otherwise stated)	Short tons (unless otherwise stated)	Short tons (unless otherwise stated)	Short tons (unless otherwise stated)	Short tons (unless otherwise stated) Short tons (unless otherwise stated) Short tons (unless otherwise stated) Value Short ons (unless otherwise stated) Value Short tons (unless otherwise stated) Value Stated) Value Short tons (unless otherwise stated) Value Short ons (unless of the unless (stated) Value Short ons (uless (stated) Value Stated) Value Short ons (

Clays (except for cement). Lead (recoverable content of ores, etc.). Stone (except limestone for cement and lime). Zinc (recoverable content of ores, etc.). Undistributed: Cement, gypsum, lime, pumice and pumicite (1949-50 and 1952), salt, ground sand and sandstone, and stone (dimension	2, 921, 157 4, 341, 930 44 033	\$222, 256 6, 275, 128 1, 525, 415 4, 027, 409 10, 920, 184	315, 512 20, 724 3, 286, 834 5, 021, 660 46, 739	\$313, 360 5, 595, 480 2, 356, 853 4, 848, 223 13, 273, 876	345, 566 16, 575 3, 183, 251 6, 966, 676 53, 450	\$356, 207 5, 734, 950 2, 321, 653 6, 917, 548 19, 455, 800	249, 819 15, 137 3, 769, 663 9, 636, 475 54, 916	\$307, 189 4, 874, 114 2, 911, 845 8 8, 974, 334 18, 232, 112
limestone, 1952)		8, 198, 693		9, 061, 737		9, 635, 445		11, 988, 603
Total		31, 169, 000 453, 095, 000		35, 450, 000 491, 645, 000		44, 422, 000 563, 064, 000		47, 288, 000 574, 063, 000
Total Oklahoma		484, 264, 000		527, 095, 000		607, 486, 000		621, 351, 000
	'	REGON			<u> </u>		1	
Antimony ore and concentrategross weight_	54	\$2,851						
Chromite do contentrate gross weight do Clays (except for cement). Copper (recoverable content of ores, etc.). Gold (recoverable content of ores, etc.) troy ounces. Lead (recoverable content of ores, etc.). Mercury 76-pound flasks. Purples and purplets.	109, 405	89, 931	112, 313	\$90,906	754 94, 963	\$62, 972 105, 285	6, 591 213, 711	\$507, 981 506, 607
Gold (recoverable content of ores, etc.) troy ounces_	20 16, 226	7,880 567,910	19 11,058	7, 904 387, 030	7, 927	5, 324 277, 445	5, 509	484 192, 815
Mercury	1,167	3, 792 92, 730	17 5	4, 590 406	$\begin{array}{c}2\\1,177\end{array}$	692 247, 323	868	322 172, 819
		(3) 273, 427	17, 397 79, 653	69, 616 320, 530	(3) 47, 026	(³) 137, 136	(3) 59, 578	(3) 201, 809
Sand and gravel Silver (recoverable content of ores, etc.) troy ounces Stone (except limestone for cement and lime) Tungsten concentrate 60-percent WO2 basis	7, 134, 751 12, 195	7, 682, 272 11, 037	8, 199, 900 13, 565	8, 168, 293 12, 277	10, 504, 339 6, 218	9, 117, 343 5, 628	12, 219, 486 4, 037	8, 556, 218 3, 654
Stone (except limestone for cement and lime)	8 4, 397, 390	8 6, 479, 164	8 3, 836, 550	8 5, 559, 010	8, 721, 799	10, 831, 483	6, 250, 849	8, 893, 368
Undistributed: Asbestos (1949-51), cement, diatomite, gem stones, lime (1950-52), quartz, stone (dimension granite, 1949, and dimension and crushed granite, 1950), and minerals whose value must be concealed	3 6	(3) 1,488	21	5, 964	1 3	2,795 1,092	1	15, 960 332
for particular years (indicated in appropriate column by footnote reference 3)		6, 582, 965		6, 856, 725		7, 579, 511		7, 584, 727
Total		21, 795, 000 50, 000		21, 483, 000 59, 000		28, 374, 000 28, 000		26, 637, 000 37, 000
Total Oregon		21, 845, 000		21, 542, 000		28, 402, 000		26, 674, 000

TABLE 5.—Mineral production in the United States, 1949-52, by States ¹—Continued PENNSYLVANIA

	PEN	NOILVANIA	a.					
	1	949	1	.950	1	951	1	952
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Cement	911, 065 11, 698, 939 10, 827 228, 170 21, 226, 480 452	\$84, 839, 175 7, 527, 012 (3) 57, 575 9, 324, 197 10, 190, 679 14, 398, 577 9, 799 4, 578, 644 34, 855, 664 9, 713	39, 450, 611 3, 300, 859 660, 025 1, 764 1, 116, 338 1, 086, 451 13, 858, 154 10, 563 285, 120 25, 493, 230 (3)	(3)	268, 830 \$27, 399, 564 (3)	\$107, 035, 506 13, 663, 764 (3) 76, 265 (3) 14, 260, 054 21, 488, 540 12, 286 5, 688, 870 8 46, 668, 590	14, 696, 106 9, 247 214, 860 \$25, 609, 812 (3)	\$103, 388, 586 12, 308, 828 (9) 52, 500 (3) 13, 842, 213 19, 920, 003 8, 369 4, 487, 648 8, 44, 676, 456
				l			l	
Total Total mineral fuels		168, 103, 000 867, 867, 000		195, 204, 000 991, 008, 000		226, 567, 000 1, 062, 659, 000		213, 243, 000 932, 355, 000
Total Pennsylvania		1, 035, 970, 000		1, 186, 212, 000		1, 289, 226, 000		1, 145, 598, 000
	RH	ODE ISLANI	D					
Sand and gravel	398, 487 8 74, 670	\$378, 896 8 451, 029 98, 760	579, 528 239, 400	\$580, 322 798, 186 46, 500	534, 785 239, 248	\$576, 781 651, 931 48, 945	589, 451 168, 993	\$557, 396 654, 782 37, 500
Total Rhode Island		929, 000		1, 425, 000		1, 278, 000		1, 250, 000

SOUTH CAROLINA

Clays (except for cement) Sand and gravel Stone Undistributed: Barite, cement, kyanite, sand and gravel (noncommercial 1000 etc. (company properties)	2, 110, 010	\$3, 795, 657 11 145, 142 8 3, 628, 596	955, 072 348, 060 8 2, 557, 510	\$4,995,971 166,710 8 3,836,056	902, 603 320, 195 8 2, 828, 868	\$4, 689, 609 139, 258 8 3, 690, 114	869, 819 1, 048, 099 8 2, 914, 839	\$4, 597, 802 892, 312 8 3, 881, 178
cial, 1949), stone (crushed unclassified, 1949-50, and dimension granite, 1951-52), topaz (1949), and vermiculite.		1, 456, 480		2, 394, 796		2, 767, 017		5, 159, 307
Total South Carolina		9, 026, 000		11, 394, 000		11, 286, 000		14, 531, 000
	sou'	TH DAKOTA	•					
Beryllium concentrate	139 151, 341 32, 272 464, 650	\$39, 772 1, 529, 542 156, 548 16, 262, 750 1, 264	96 205, 585 43, 875 567, 996	\$29, 920 2, 207, 827 249, 176 19, 879, 860	138 ⁵ 254, 116 48, 559 458, 101 2	\$46, 007 \$2, 917, 952 290, 520 16, 033, 535 692	334 227, 934 40, 163 482, 534 2	\$166, 251 2, 575, 783 220, 954 16, 888, 690 644
Mica: Scrap	1, 125 8, 367 5, 456, 742 109, 383 8 1, 023, 710	31, 285 3, 388 2, 315, 430 98, 997 4, 473, 432	1, 902 13, 018 5, 392, 247 142, 065 8 1, 205, 910	24, 989 1, 684 2, 750, 847 128, 576 8 4, 860, 858	2, 292 5, 037, 384 139, 590 1, 263, 322	42, 714 2, 502, 340 126, 336 4, 660, 074	915 4, 308 5, 846, 140 132, 102 1, 671, 187	24, 14 32, 03 2, 478, 31 119, 55 4, 806, 88
Undistributed: Cement, columbium-tantalum concentrate (1951-52), lime, lithium minerals, and stone (crushed granite, 1949; crushed unclassified, 1950)		1, 741, 194		2, 459, 716		2, 932, 392		
Total		26, 653, 000 92, 000		32, 593, 000 123, 000		⁸ 29, 553, 000 99, 000		30, 455, 000
· Total South Dakota		26, 745, 000		32, 716, 000		⁸ 29, 652, 000		30, 455, 000

TABLE 5.—Mineral production in the United States, 1949-52, by States ¹—Continued TENNESSEE

	1	949	1	950	1	951	1	952
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Barite (crude) Cement	13, 376 5, 992, 571 623, 774	\$137, 120 12, 857, 600 2, 399, 337	6, 663, 427 787, 403	(³) \$14, 682, 487 3, 093, 526	7, 162, 841 820, 835 140	\$17, 203, 080 2, 956, 759 (3)	7, 428, 604 702, 393 348	\$17, 834, 060 3, 179, 297
Gold (recoverable content of ores, etc.) troy ounces rron ore (usable) long tons, gross weight Lead (recoverable content of ores, etc.) Lime (open-market) manganese ore (35 percent or more Mn) gross weight	257 117, 053 175	5, 985 81, 212 1, 108, 139	160 113 98, 232 133	5, 600 30, 510 958, 325 (³)	35, 908 14 108, 970	3, 780 142, 447 4, 844 1, 097, 874	(³) 18 100, 189 126	(3) 5, 796 1, 005, 235 (3)
Lime (recoverable content of ores, etc.) Lime (open-market) Manganese ore (35 percent or more Mn) Phosphate rock long toms Sand and gravel Silver (recoverable content of ores, etc.) Stone (except limestone for cement and lime) Zing (recoverable content of ores, etc.)	1, 342, 252 4, 056, 398 41, 833 8 7, 613, 530	9, 065, 588 4, 054, 463 37, 861 8 13, 026, 948	1, 384, 473 4, 152, 684 39, 958 7, 978, 590	10, 028, 404 4, 411, 105 36, 164 13, 802, 288	1, 419, 892 4, 645, 041 24, 960 8 8, 838, 796	10, 604, 638 5, 186, 617 22, 590 8 14, 765, 988	1, 452, 508 5, 173, 401 57, 569 10, 377, 320	10, 874, 760 5, 303, 321 52, 103 17, 652, 763
Zinc (recoverable content of ores, etc.). Undistributed: Copper, pyrites, stone (crushed sandstone, 1949, and dimension sandstone, 1951), and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote reference 3).	29, 100	7, 387, 424 5, 228, 005	35, 326	10, 032, 584 5, 214, 265	38, 639	14, 064, 596	38, 020	12, 622, 640 6, 370, 037
Total Total mineral fuels		55, 390, 000		62, 295, 000				74, 908, 000 25, 601, 000
Total Tennessee		77, 333, 000		89, 694, 000				100, 509, 000

Abrasive stone: Pebbles, grinding	226	\$2,900	343	\$4,709	350	\$4,710	510	\$3,100
Abrasive stone: Pebbles, grinding. Cement	14, 741, 805 1, 234, 607	33, 409, 347 3, 001, 975	17, 281, 521 1, 454, 485	39, 677, 804 3, 576, 797	17, 642, 654 1, 544, 064	42, 648, 536	19, 849, 455 1, 389, 434	48, 042, 901
Copper (recoverable content of ores, etc.) Feldspar (crude) long tons	(3)	9,456	(3)	(8) 832	(2)	(3)	18 2,600	3, 790, 596 8, 712 31, 200
Fluorspar	1,770	(3)	719	(3)			l	
		1,400 2,178,569	1,076,251	1,715 2,771,812	32 1, 136, 824	1,120 2,987,890	39 1,021,161	1,365 2,682,019
Gypsum (crude)	568, 722	(3) 41,712	1, 189, 415	(3)	1,053,131	(3)	787, 193	2, 682, 019 (3) 18, 032
Lime (open-market)	132 173, 724	1, 739, 185	129 216, 439	34, 830 2, 074, 367	279, 957	14, 878 2, 532, 387	281, 604	2, 622, 975
Manganese ore (35 percent or more Mn)gross weight_	1,641,171	2,419,963	1, 852, 138	2, 846, 789	2,401,063	4,000,100	2, 640, 209	(³) 4, 402, 032
Salt (common) Sand and gravel Silver (recoverable content of ores, etc.)	14, 997, 506	13, 467, 849	17, 972, 105	15, 707, 724	18, 488, 463	15, 651, 531	18, 661, 403	17, 275, 255
Stone (except limestone for cement and lime)troy ounces_	2, 691 4, 158, 430	2, 435 5, 289, 647	2, 454 8 4, 893, 150	2, 221 8 5, 580, 463	1, 381 8 7, 351, 069	1, 250 8 7, 626, 122	4, 672 7, 604, 468	4, 228 8, 664, 633
Sulfur (Frasch-process)long tons	3, 678, 196	66, 208, 000	4, 248, 688	80, 300, 000	3, 835, 280	81, 900, 000	3, 691, 724	78, 910, 000
Zinc (recoverable content of ores, etc.)	(3)	(3)	(3)	(3)	(3)	(3) 8, 736	17, 800 3	216, 569 996
Undistributed: Bromine, gem stones, graphite, magnesite (1949), magnesium chloride (for metal), magnesium compounds (except for metal,						,		
1949), mercury (1951), pumice and pumicite, sodium sulfate, stone						·		*
(crushed basalt and dimension granite, 1950-51), and minerals whose value must be concealed for particular years (indicated in appro-								
priate column by footnote reference 3)		, ,						
Total mineral fuels		142, 536, 000		169, 947, 000		188, 487, 000		198, 368, 000
Total mineral fuels		2, 237, 257, 000		2, 504, 003, 000		3, 080, 068, 000		3, 180, 189, 000
Total Texas		2, 379, 793, 000		2, 673, 950, 000		3, 268, 555, 000		3, 378, 557, 000
					l			

TABLE 5.—Mineral production in the United States, 1949–52, by States ¹—Continued UTAH

	1	949	1	950	1	951	19	952
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Clays (including fuller's earth) Copper (recoverable content of ores, etc.) Fluorspar Gold (recoverable content of ores, etc.) Line (open-market) Line (open-market) Manganiferous ore (35 percent or more Mn) Manganiferous ore (5 to 35 percent Mn) Morerite (crude) Phosphate rock Pumice and pumicite Salt (common) Sand and gravel Silver (recoverable content of ores, etc.) Tungsten concentrate Tungsten concentrate Stone (except limestone for cement and lime) Tungsten concentrate Undistributed: Cement, diatomite (1950), gem stones (1949), gypsum, molybdenum, potassium salts, quartz crystal (1950), stone (crushed marble, 1952), vanadium, and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote reference 3) Total Total Total mineral fuels	8, 334, 458 2, 698, 632 53, 072 36, 082 4, 981 731 (1) 78, 611 2, 331, 688 6, 724, 880 283, 020 1 40, 670	386, 935 1, 553, 408 6, 086, 356 427, 418 (4) 10, 086, 160 15, 613, 281 145, 237, 000	293, 958 278, 630 18, 936 457, 551 3, 111, 167 44, 753 49, 419 120 3, 041 2, 585 (g) 116, 694 3, 435, 277 7, 083, 808 929, 410	193, 049, 000	285, 128 271, 086 17, 827 432, 216 4, 637, 239 50, 451 (7) 1, 369 3, 422 131, 444 2, 971, 268 7, 310, 665 1, 1, 226, 710	-, -	180, 066 282, 894 17, 304 435, 507 3, 996, 505 50, 210 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	\$1, 115, 642 136, 920, 696 438, 699 15, 242, 745 15, 025, 899 16, 167, 620 (3) (4) (4) (522, 721 2, 350, 412 6, 511, 032 1, 123, 108 10, 938, 404 20, 889, 335 227, 256, 000 38, 246, 000
Total Utah		177, 825, 000		229, 956, 000		257, 145, 000		265, 502, 000

VERMONT

Gold (recoverable content of ores, etc.) troy ounces	120 28, 914	\$4, 200 356, 381	146 32, 843	\$5, 110 415, 910	156 32, 179	\$5, 460 432, 483	162 (3) 17, 892	\$5, 670 (3)				
Lime (open-market) Pyrites long tons. Sand and gravel Silver (recoverable content of ores, etc.)	1, 581, 614 27, 446 184, 040 441, 770 64, 508	728, 394 24, 840 3, 624, 230 8, 276, 287 788, 341	1, 040, 977 28, 205 238, 740 447, 310 72, 135	661, 994 25, 527 4, 471, 869 8, 038, 892 906, 396	965, 702 41, 300 (4) 450, 980 78, 694	646, 702 37, 379 (*) 7, 253, 824 998, 792	1, 264, 490 45, 361 (3) 404, 391 71, 027	749, 835 41, 054 (3) 6, 016, 530 926, 646				
must be concealed for particular years (indicated in appropriate column by footnote reference 3)		3, 581, 645		4, 037, 573		⁸ 9, 141, 814		10, 150, 945				
Total Vermont		17, 384, 000		18, 563, 000		⁸ 18, 516, 000		17, 891, 000				
VIRGINIA												
Clays (except for cement) Feldspar (crude) Iron ore (usable) Lead (recoverable content of ores, etc.) Lime (open-market) Manganese ore (35 percent or more Mn) Manganese ore (5 to 35 percent Mn) Manganese ore (5 to 35 percent Mn)	ו צוצצו	\$403, 598 234, 442 (*) 1, 046, 908 3, 213, 897 (*) (*) 117, 251	545, 984 26, 879 5, 245 3, 254 428, 339 56	\$519, 641 188, 153 (²) 878, 580 3, 861, 932 (³)	544, 147 30, 979 7, 248 1, 508 452, 680	\$593, 999 232, 099 (*) 521, 768 4, 551, 656	648, 334 (3) (4) 3, 792 442, 845 1, 011	\$704, 189 (8) 1, 221, 024 4, 448, 924 (8)				
Lime (open-market) Manganese ore (35 percent or more Mn) Manganiferous ore (5 to 35 percent Mn) Marl, calcareous (except for cement) Sand and gravel Stone (except limestone for cement and lime) Zinc (recoverable content of ores, etc.) Undistributed: Abrasive stone (millstones, 1949-50), aplite, cement, gypsum, kyanite, mica, phosphate rock (1949), pyrites, salt, ground sand and sandstone, slate, talc and ground soapstone, titanium concentrate, and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote reference 3)	13, 166	4, 049, 157 12, 442, 765 3, 265, 168	52, 181 4, 373, 984 9, 272, 740 12, 396	53, 861 4, 144, 846 16, 434, 602 3, 520, 464	(*) 5, 772, 781 9, 277, 252 7, 332	(2) 5, 750, 409 16, 621, 116 2, 668, 848	(*) 7, 136, 112 9, 670, 961 13, 409	(8) 5, 556, 953 16, 969, 952 4, 451, 788				
Total Total mineral fuels												
Total Virginia		116, 408, 000		137, 806, 000		161, 252, 000		164, 679, 000				

TABLE 5.—Mineral production in the United States, 1949-52, by States ¹—Continued WASHINGTON

	1	.949	1	1950	1	.951	1	952
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Abrasive stone: Pebbles (grinding) Pulpstones Antimony ore and concentrate Clays (except for cement). Copper (recoverable content of ores, etc.) Gold (recoverable content of ores, etc.) Lead (recoverable content of ores, etc.) Manganese ore (35 percent or more Mn) Manganiferous ores (5 to 35 percent Mn) Clivine Octobre 1 Octobre 2 Octobre 3 Octobre 3 Octobre 3 Octobre 4 Octobre 3 Octobre 4 Octob	0,417	\$240 1, 975 1, 425 267, 300 2, 078, 350 2, 519, 790 2, 027, 772	25 33 216, 886 . 5, 057 92, 117 (3) 10, 334	\$300 2, 100 251, 850 2, 103, 712 3, 224, 095 2, 790, 180	28 22 110 205, 187 4, 089 67, 405 (3) 8, 002	\$336 1,970 (3) 285,631 1,979,076 2,359,175 (2,768,692	20 12 100 225, 277 4, 357 54, 776 7, 900 11, 744 436 142	\$240 908 (3) 286, 719 2, 108, 788 1, 917, 160 29, 625 3, 781, 568 (3) (3) (3)
Olivine Pumice and pumicite Sand and gravel Silver (recoverable content of ore, etc.) Tungsten concentrate Zinc (recoverable content of ores, etc.) Light (recoverable content of ores, etc.) Light (recoverable content of ores, etc.) Light (recoverable content of ores, etc.)	1, 070 8, 610 9, 215, 914 357, 853 8 3, 688, 890	(3) 18, 221 6, 391, 412 323, 875 8 4, 105, 516	11, 013 10, 605, 791 363, 656 4, 930, 820	(3) 22, 672 7, 435, 340 329, 127 5, 734, 563	(3) 5, 105 10, 546, 949 334, 948 5, 029, 735	(3) 10, 832 7, 595, 837 303, 145 5, 664, 433 33, 417	(3) 3, 604 13, 322, 279 315, 645 4, 523, 234	(3) 8, 089 9, 422, 117 285, 675 5, 491, 525 14, 008
Zinc (recoverable content of ores, etc.) Undistributed: Cement, diatomite (1949-50, 1952), epsom salt made from epsomite (1949-51), gem stones, lime, magnesite, quartz, ground sand and sandstone, stone (dimension unclassified, 1949), talc, and minerals whose value must be concealed for particular years indicated in appropriate column by footnote reference 3)			14, 807	4, 205, 188 17, 076, 954	18, 189	6, 620, 796	20, 102	6, 673, 864 19, 982, 946
Total		34, 779, 000 6, 084, 000		43, 176, 000 5, 879, 000				50, 003, 000 6, 126, 000
Total Washington		40, 863, 000						56, 129, 000

WEST VIRGINIA

Clays (except for cement) Lime (open-market) Salt (common) Sand and gravel Stone (except limestone for cement and lime) Undistributed: Abrasive stones, bromine, calcium magnesium chloride, cement, calcareous marl, sand and gravel (noncommercial, 1949), ground sand and sandstone, stone (dimension limestone, 1950–52), and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote reference 3)	355, 515 11 3, 284, 805 4, 854, 590	\$759, 065 3, 535, 352 1, 288, 471 11 5, 491, 274 6, 960, 191 5, 786, 036	569, 615 (3) 367, 942 3, 613, 046 8 5, 367, 510	\$925, 305 (8) 1, 238, 588 6, 241, 057 8 7, 825, 653	992, 599 (3) 379, 299 4, 735, 271 8 5, 754, 378	\$2, 183, 979 (3) 1, 314, 818 8, 314, 195 8 8, 472, 639	865, 077 (3) 392, 519 4, 120, 105 8 4, 869, 442	\$2, 304, 716 (3) 1, 438, 490 7, 275, 370 6, 826, 113			
Total Total mineral fuels		23, 820, 000 694, 299, 000		26, 893, 000 802, 731, 000		33, 001, 000 908, 722, 000		29, 743, 000 795, 932, 000			
Total West Virginia		718, 119, 000		829, 624, 000		941, 723, 000		825, 675, 000			
WISCONSIN											
Abrasive stone: Pebbles, grinding	0, 250	8, 861, 346	530 80, 293 1, 701, 619 532 124, 530 22, 025 19, 117, 115 6, 999, 630 5, 722		1, 327 48, 376 1, 745, 120 1, 391 124, 852 20, 625 19, 391, 772 7, 609, 323 15, 754		723 31, 817 1, 485, 845 2, 000 107, 813 17, 000 24, 895, 947 8, 678, 882 20, 588	\$17, 352 31, 857 (3) 644, 000 1, 368, 556 8, 833 16, 938, 228 16, 754, 675 6, 836, 216			
Total Total mineral fuels		35, 868, 000 10, 000		41, 683, 000 10, 000		48, 345, 000 5, 000		55, 706, 000 4, 000			
Total Wisconsin		35, 878, 000		41, 693, 000		48, 350, 000		55, 710, 000			

TABLE 5.—Mineral production in the United States, 1949-52, by States 1-Continued WYOMING

	1	949	1950			1951 19		952
Mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Clays (except for cement) Gem stones (estimated) Gold (recoverable content of ores, etc.) Iron ore (usable) Phosphate rock Iong tons, gross weight Phosphate rock Iong tons. Pumice Sand and gravel Silver (recoverable content of ores, etc.) Stone (except limestone for cement) Sulfur ore for direct agricultural use Undistributed: Cement, feldspar (1949), gypsum, sodium carbonate and sulfate, vermiculite (1950-52), and minerals whose value must be concealed for particular years (indicated in appropriate column by footnote	2, 352, 493 21 1, 802, 580 3, 112	\$3, 567, 044 20, 000 13, 615 (*) 1, 912, 838 19 2, 227, 096 57, 322	(3)	\$4, 102, 122 (3) (4) 6, 353 1, 251, 220 2, 214, 037	483, 050 (10) 9 616, 949 178, 948 1, 867 2, 347, 078 2, 347, 078 (8)	\$ \$5, 999, 451 (8) 315 (1) 186, 523 9, 141 1, 730, 900 2 1, 857, 267	706, 748 (10) 1 484, 945 137, 675 2, 851 2, 426, 999 1, 466, 567 (3)	\$9, 176, 507 (a) 35 (b) 35 (c) 919, 987 10, 918 1, 738, 548 1, 688, 890 (a)
reference 3) Total Total Internal fuels		11, 926, 000		12, 368, 000		16, 192, 000		4, 337, 869 17, 873, 000
Total Wyoming				177, 577, 000		⁸ 201, 838, 000		186, 622, 000 204, 495, 000

¹ Production as measured by mine shipments or mine sales (including consumption by producers), except that fuels and the following additional minerals are strictly production: Gypsum, iodine, magnesite, pyrites, bauxite, and mercury. Excludes uranium ores and monazite.

Value included with "Undistributed."

5 Revised figure.

6 Estimate.

8 Excludes certain stone, value for which is included with "Undistributed."

² Excludes puzzolan cement, value for which is included with "Undistributed."

⁴ Less than 1 ton.

⁷ Sales in 1948 included with 1949.

Except clays sold or used for cement. 10 Weight not recorded.

weight not recorded.

"Commercial." Value of "Noncommercial" included with "Undistributed."

Excludes natural cement, value for which is included with "Undistributed."

Noncommercial." Value of "Commercial" included with "Undistributed."

Value reported for zinc in New Jersey is estimated smelting value of recoverable zinc content of ore after freight, haulage, smelting, and manufacturing charges are added.

TABLE 6.—Mineral production in Territories of the United States, 1949-52, by individual minerals

	1	949	1	950	1	951	19	952
Territory and mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Alaska: Antimony ore and concentrategross weight. Copper (recoverable content of ores, etc.)troy ounces. Lead (recoverable content of ores, etc.)	74 4 229, 416 51 100	\$31, 356 1, 576 8, 029, 560 16, 116 7, 946	289, 272 149	\$2, 496 10, 124, 520 40, 230	301 239,637 221	(1) \$387 8, 387, 295 7, 266	420 240, 557 1 28	(1) \$8, 419, 495 386 5, 575 8, 650, 582
Sand and gravel Silver (recoverable content of ores, etc.)	2	(1) 32, 633 114, 800 	3, 050, 020 52, 638 79 13 6	2, 377, 407 47, 640 170, 281 (1) 1, 704	6, 887, 646 32, 870 69 10 2 1	3, 738, 516 29, 749 197, 163 (1) 218	10, 781, 926 32, 986 82 8	29, 854 220, 956 (¹)
reference 1)		12, 240, 000		14, 819, 000				3, 195, 336 20, 523, 000 5, 779, 000
Total Alaska		15, 549, 000		17, 852, 000		19, 569, 000		26, 302, 000
Hawaii: ³ Lime (open-market) Sand and gravel		226, 926	8, 141	219, 861	8, 740 2, 561	236, 052 5, 710	8, 894 1, 069	240, 786 936
Stone		4 718, 705 42, 826	696, 310	1, 554, 906	4 650, 094	4 1, 337, 474 147, 063	705, 994	1, 545, 301 17, 164
Total Hawaii		988, 000						1, 804, 000 28, 106, 000

¹ Value included with "Undistributed."

² Produced in 1950, but not shipped until 1951 from a mine not active in 1951.

Includes Palmyra, Johnston and Jarvis Islands.
 Excludes certain stone value for which is included with "Undistributed."

TABLE 7.—Mineral production in possessions of the United States, 1949-52, by individual minerals

		1949	1	950	1	951	19	52
Possession and mineral	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value	Short tons (unless otherwise stated)	Value
Canal Zone: Sand and gravel 12 Stone (crushed) 12 Stone 12 S	39, 000 109, 200	\$58, 500 163, 800	22, 000 53, 000	\$15, 000 83, 000	32, 000 55, 500	\$26, 000 112, 000	56, 600 86, 000	\$53, 000 152, 000
Total Canal Zone	2, 605, 000 (³)	222, 000 (³) 5, 209, 000 (³)	⁽³⁾ ² 1, 528, 000 ⁽³⁾	98, 000 (3) 2 3, 055, 000 (3)	360 720, 000 (³)	138, 000 900 4 675, 000 (3)	150 948, 000 7, 200	205, 000 375 870, 000 5 6, 000
Puerto Rico: Cement		6, 109, 041 184, 618 77, 322 (e) 7 826, 621 138, 641	3, 187, 451 8, 166 13, 545 101, 013 7 250, 010	8, 299, 186 180, 828 137, 225 103, 806 7 574, 709 1, 375	4, 297, 583 39, 219 10, 350 10, 566 99, 628 283, 697	11, 252, 350 225, 509 191, 415 119, 338 99, 657 613, 751	3, 994, 483 138, 613 8, 575 12, 676 122, 730 7 689, 320	10, 517, 894 797, 025 195, 000 122, 158 164, 166 7 1, 807, 388 6, 328
Total Puerto Rico		7, 336, 000 ⁸ 16, 000 (³)	8 2, 540 (3)	9, 297, 000 ⁸ ⁸ 4, 000 (³)	11, 600 240	12, 502, 000 47, 300 600	12, 900 4, 260	13, 610, 000 51, 900 8, 000
Total		12, 783, 000		12, 454, 000		13, 364, 000		14, 751, 000

Quantities are estimated equivalents of cubic yards reported.
 Data for fiscal years ended June 30.
 Data not available.
 Revised figure.

Estimate.
Value included with "Undistributed."
Excludes certain stone value for which is included with "Undistributed."
St. Croix Island only. Data for St. Thomas Island not available.

TABLE 8.—Comparison of world and United States production of principal minerals and metals, 1951-52

[Compiled by Berenice B. Mitchell, Pauline Roberts, Helen Hunt, and Lee Petersen]

		1951			1952	
Mineral	World	United	States	World	United	States
	Thousar to	nd metric	Percent of world		nd metric	Percent of world
Metals, mine basis: Antimony 1Sb content						
Arsenic 1SD content	62 57	3	5	46	2	4
Bauxite	10, 984	15 1, 878	26 17	46 12, 837	14 1.694	30 13
Beryl ¹ thousand kilograms_	10, 304	(2)	7	12, 007		13
Bismuththousand kilograms_	1,700	(3)	(3)	1, 800	(2)	(3)
Cadmium	6, 120	3, 770	62	6, 280	3,886	62
(!hromita	2,800	1 6	(4)	3, 200	19	(4)
Cobalt 1 contained Columbium thousand pounds. Copper Cu content. Gold thousand fine ounces.	8	(5)	4	10	(5)	4
Columbiumthousand pounds	2,850	(6)	(6)	3, 400	5	(4)
CopperCu content	2,630	842	32	2, 735	839	31
Iron ore	33, 500	1,895	6	34, 200	1,927	6
LeadPb content	294, 000	118, 375	40	297, 000	99, 490	33
Manganese ore	1, 685 7, 100	352 95	21 1	1, 820 7, 700	354	19
Manganese ore thousand flasks	148	7	5	150	105 13	1 9
Molybdenum	21	18	86	22	20	91
NickelNi content.	159	ĭ	(4)	173	ľí	(4)
Platinum group		_	`	2.0	1 -	
thousand troy oz. Pt, Pd, etc.	675	37	5	675	34	5
Silver 1thousand fine ounces	197, 500	39, 907	20	210, 200	39, 840	19
Tantalitethousand pounds	38	_ 1	3	95	(7)	(1)
Tin 1thousand long tons	170	. (8)	(4)	173	(8)	(4)
Ilmenite	000	400		000		
Rutile	893 42	486	54	893	480	54
Tungsten concentrate 60-percent WO. besis	51	(³)	(3)	47 55	(3) 7	(³) 13
Rutile Tungsten concentrate_60-percent WO ₃ basis_ZineZn content_	2, 290	618	27	2, 522	604	24
Metals, smelter basis:	_, _00	010		2, 022	00±	23
Aluminum	1,790	759	42	2,050	850	41
Copper	2, 815	940	33	2, 830	929	33
Iron, pig (including ferroalloys)	150,000	65, 745	44	152,000	57, 507	38
Lead	1,604	376	23	1, 796	429	24
Magnesium Steel ingets	81	37	46	151	96	64
Steel ingotsthousand long tons	211,000 169	95, 435 32	45 19	212,000	84, 520	40
Zinc	2, 097	800	38	171 2, 199	23 821	13 37
Nonmetallic minerals:	2,001	800	30	2, 199	021	91
Asbestos	1,425	47	3	1, 425	49	3
Barite	1,825	767	42	1,900	919	48
Cement	148, 400	42, 548	29	159,000	43,091	27
Corundum	10			10		
Diamondsthousand metric carats	16, 780			18, 694		
Diatomite	530	233	44	520	233	45
Feldspar ¹ Fluorspar	770	407	53	815	428	53
Granhita	1,000 190	315 6	32	1, 190	303	25
Gypsum	24, 700	7, 861	32	190 24, 300	7, 634	3 31
Magnesite	3, 800	608	2	3, 800	463	1
Mica (including scrap)	125	65	52	120	69	58
Nitrogen, agricultural fiscal year	4,011	996	25	4,380	1,099	25
Phosphate rock	24,000	10,948	46	25,500	12, 224	49
Phosphate rock	4, 900	1,288	26	5,500	1,511	27
Pumice	940	680	72	780	542	69
Pyrites	13, 200	1,034	.8	14, 200	1,010	7
Salt	54,000	18, 332	34	54,000	17, 731	33
Sulfur, nativethousand long tons	5, 800	5, 278	91	6,000	5, 293	88
Tare, pyrophymic, and soapstone	1,650 216	581 190	35 88	1, 475 226	545 190	37 84
Vermiculite 1						

World total, exclusive of U. S. S. R.
 United States production was 439 metric tons in 1951 and 467 tons in 1952.
 Bureau of Mines not at liberty to publish United States figure separately.

<sup>Biffeat of mines not at neerty to publish office obsets again separately.
Less than 1 percent.
United States production was 343 metric tons in 1951 and 379 tons in 1952.
Columbium and tantalite production in United States not always differentiated; see tantalite.
Columbium and tantalite production in United States not always differentiated; see columbium.
United States production was 88 long tons in 1951 and 99 tons in 1952.</sup>

Employment and Injuries in the Metal and Nonmetal Industries

By Seth T. Reese 1

THIS CHAPTER of the Minerals Yearbook is confined to employment and injury experience in the metal, nonmetal, and quarry industries of the United States. Each industry is treated separately, and no attempt has been made to combine data to show an overall picture for these sections of the minerals industries. Employment and injury experience for the mineral industries as a whole can

be found in volume III.

Lack of comparable and accurate statistics on injuries in the Nation's mineral industries and the importance of such statistics as a measure of the results of the Bureau's endeavor to reduce mining hazards led the Bureau in 1911 to undertake the collection of such statistics. Statistical data on the injury experience at metal- and nonmetal-mining operations were first compiled by the Bureau of Mines for 1911. The first requests to the operators for information on injuries and related employment at their establishments were made early in 1912. The Bureau's list of operators at that time ranged from the lone prospector to the mine on a dividend-paying basis. No distinction was made regarding the size of the operations. The prospector or one doing assessment work was equally exposed to many of the dangers that surrounded a worker at a larger mine.

The response to the first request for injury and employment data was gratifying; most of the larger companies submitted detailed reports, so that from the production point of view, the first statistical data on injuries and employment were fairly representative of the industry. Coverage of the industry has grown to the present time, and the data that appear in this chapter of the Minerals Yearbook represent approximately full coverage of the industry. There is no Federal law which requires the operators of metal and nonmetal mines to submit reports to the Bureau; however, the mining companies who voluntarily furnished reports on injuries and employment have contributed substantially to the promotion of safety in the mineral

industries of the United States.

Injury and related employment statistics for the quarry industry were first recorded for 1911 as the result of a request for such information by the Bureau in January 1912. As far as can be ascertained, all

¹ Chief, Accident Analyses Branch, Safety Division, Bureau of Mines.

large companies furnished detailed reports, so that, when measured by production, the available data were largely representative of the industry. The small number that did not reply represented about 12 percent of the total known active operators but constituted only a small segment of the industry in the light of their relatively small production. It was realized at the start that a true accident ratio for the whole quarry industry could be obtained only when complete reports were furnished. Although the Bureau was authorized to collect data relating to accidents at quarry operations, no Federal legislation, then and now, require operators to submit reports. It was hoped that voluntary submission of such data, followed by Bureau dissemination of this information, would aid in establishing a uniform basis for reporting and recording quarry injuries and related employment data. Eventually, a standard form was adopted and submitted to quarry operators in the hope that they would use it to report details relating to injuries. The results have been most encouraging; as a result, present data on injury experience at quarries cover the greater part of the industry.

 TABLE 1.—Employment and injury experience at metal mines in the United States,

 1931-52 1 8

Year	Men working	Average active mine-	Man-days worked (in thousands)	Man-hours worked (in	Num inju	ber of cries	Injury rate per million man-hours	
	a daily	days	thousands)	thousands)	Fatal	Non- fatal	Fatal	Non- fatal
1931	71, 991	232	16, 692	138, 237	147	7, 868	1. 06	56. 92
	46, 602	209	9, 748	80, 213	100	4, 486	1. 25	55. 93
	49, 338	201	9, 913	80, 006	87	5, 180	1. 09	64. 75
	58, 411	219	12, 776	100, 959	108	7, 105	1. 07	70. 38
	83, 975	218	18, 284	145, 134	157	9, 393	1. 08	64. 72
1936	90, 552	249	22, 521	180, 803	195	13, 606	1.08	75. 25
	108, 412	252	27, 296	219, 008	206	17, 068	.94	77. 93
	93, 501	227	21, 255	160, 343	150	11, 996	.94	74. 81
	102, 279	233	23, 836	189, 554	163	12, 991	.86	68. 53
	110, 340	241	26, 631	211, 740	209	13, 940	.99	65. 84
1941	114, 202	254	29, 034	230, 453	213	14, 590	.92	63, 31
	99, 769	280	27, 968	223, 093	215	12, 420	.96	55, 67
	87, 880	293	25, 790	206, 242	195	11, 533	.95	55, 92
	70, 480	289	20, 366	163, 169	130	8, 909	.80	54, 60
	61, 470	288	17, 728	141, 295	96	6, 945	.68	49, 00
1946	65, 234	249	16, 238	130, 406	90	7, 345	. 69	56. 32
	71, 228	275	19, 567	157, 024	126	8, 293	. 80	52. 81
	71, 436	282	20, 124	161, 516	104	7, 631	. 64	47. 25
	71, 664	252	18, 067	144, 368	69	6, 940	. 48	48. 07
	68, 292	271	18, 522	147, 765	84	6, 611	. 57	44. 74
1951	71, 603	278	19, 913	159, 417	95	6, 824	.60	42, 81
1952	73, 400	265	19, 443	155, 450	110	6, 705	.71	43, 13

¹ Man-hours not available before 1931.

² 1952 figures are preliminary—subject to revision.

TABLE 2.—Employment and injury experience at metal mines in the United States, by industry groups, 1943-47 (average) and 1948-52

Industry and year	Men working	Average active mine-	we worked	Man-hours worked	Num inju	ber of cries	per n	y rate lillion hours
	daily	days		,, 01100	Fatal	Non- fatal	Fatal	Non- fatal
Iron mines:								
1943–47 (average) 1948	26, 111 27, 116	272	7, 112, 499	57, 112, 776	37	1,418	0.65	24. 83
1949	27, 110		7,786,361	62, 468, 142	34	1,440	. 54	23.05
1950	27, 686		7 407 111	55, 422, 388 59, 406, 348	21	1, 158	.38	20.89
1951	30, 576			67, 931, 038	23 33	1, 126	. 39	18. 95
1951 1952 (preliminary)	31, 700		7 772 000	62, 450, 000	32	1, 264 1, 015	. 49 . 51	18. 61 16. 25
Copper mines:		-10	1,112,000	02, 100, 000	92	1,010	. 51	10. 25
1943-47 (average)	17, 138	307	5, 263, 425	42, 109, 059	37	2, 140	. 88	50, 82
1948	16, 280	305		39, 684, 197	31	1, 572	.78	39. 61
1949		271	4, 341, 202	34, 729, 944	13	1, 190	.37	34. 26
1950	15, 383			37, 345, 430	17	1, 176	. 46	31. 49
1951 1952 (preliminary)	16, 274			39, 676, 673	19	1,304	. 48	32.87
Lead-zinc mines:	14, 800	314	4, 645, 000	37, 200, 000	26	1, 150	. 70	30. 91
1943-47 (average)	16, 771	901	4 715 496	27 004 010	00	0.400		
1948	16, 113		4, 710, 400	37, 604, 610 34, 034, 255	36 22	3, 423 3, 050	. 96	91.03
1949	16, 333			31, 738, 565	24	2, 810	. 65 . 76	89. 62 88. 54
1950	14,038	257	3, 612, 051	28, 878, 165	28	2, 411	.97	83. 49
1951	14, 520	271	3, 937, 874	31, 488, 680	18	2, 497	.57	79. 30
1952 (preliminary)	16, 500	276	4, 553, 000	36, 280, 000	35	2, 925	.96	80. 62
Gold-silver mines:						-,		00.02
1943-47 (average)	4, 215		1,098,925	8, 588, 067	8	751	. 93	87. 45
1948 1949	5, 276 5, 309			11, 328, 421	13	986	1.15	87.04
1950	5, 112		1, 369, 960	10, 651, 525	9	1, 190	. 84	111. 72
1951	4, 261	201	1,000,007	10, 328, 735 8, 294, 331	10 15	1, 270 963	. 97	122.96
1951 1952 (preliminary)	3, 900	254		7, 880, 000	7	795	1.81	116. 10 100. 89
Gold placers:	.,		001,000	1,000,000	' '	190	.09	100. 89
1943-47 (average)	2, 377	200	474, 342	4, 066, 333	1	125	. 25	30. 74
1948	3,772	230	867, 709	7, 423, 065	ī	180	. 13	24. 25
1949	3, 523	216	760, 202	6, 087, 196		187		30. 72
1950	3, 457	218	753, 922	6, 037, 624		184		30.48
1951 1952 (preliminary)	2, 649 2, 100	210	557, 482	4, 475, 624	3	198	. 67	44. 24
Miscellaneous: 1	2, 100	227	477, 000	3,820,000	1	155	. 26	40. 58
1943-47 (average)	4, 598	274	1, 258, 702	10, 118, 062	8	740	70	#0 14
1948	2,879	282	813, 035	6, 578, 055	3	403	. 79 . 46	73. 14 61. 26
1949	2, 680	267	716, 405	5, 738, 514	2	405	.35	70. 58
1950	2,616	278	727, 325	5, 768, 379	6	444	1.04	76. 97
1951 1952 (preliminary)	3, 323	283	941, 591	7, 550, 962	7	598	. 93	79. 20
1952 (preliminary)	4, 400	228	1,005,000	7, 820, 000	9	665	1.15	85. 04
Total:	F1 010	200	40 000 000				1	
1943–47 (average)	71, 210	280	19, 923, 329	159, 598, 907	127	8, 597	. 80	53.87
1949	71, 436 71, 664	282 252	20, 124, 332	161, 516, 135	104	7,631	. 64	47. 25
1950	68, 292	252 271	18, 066, 788 18, 522, 095	144, 368, 132	69	6, 940	. 48	48. 07
1951	71, 603	271	18, 522, 095	147, 764, 681 159, 417, 308	84 95	6, 611 6, 824	. 57	44. 74
1951 1952 (preliminary)	73, 400	265	19, 443, 000	155, 450, 000	110	6,705	. 60	42. 81 43. 13

 $^{^{1}}$ Includes antimony, bauxite, chromite, cobalt, manganese, mercury, molybdenum, pyrite, titanium, tungsten, and vanadium-uranium mines.

METAL MINES

The overall injury record at metal mines was not favorable in 1952. A total of 110 fatal injuries, or 15 more than in 1951, occurred at a rate of 0.71 per million man-hours, an increase of 18 percent. Fatal experience was worse in each group of mines except at gold-silver-lode and gold-placer operations, where the fatality-frequency rates decreased sharply. The total number of nonfatal injuries decreased 119 to 6,705 injuries in 1952; but, owing to a greater percentage of decrease in the man-hours of worktime, the frequency at which lost-time injuries occurred rose to 43.13 from 42.81 per million man-hours.

Nonfatal injuries were less frequent at each group of mines except

lead-zinc and miscellaneous metal operations.

Employment increased slightly to an average of 73,400 men working daily. Employment was higher in 1952 at iron, lead-zinc, and miscellaneous metal mines and lower at copper, gold-silver-lode, and gold-placer operations. The aggregate time worked at metal mines declined 2½ percent from 1951 to a total of 155½ million man-hours. This decline resulted mainly from the smaller number of active mine days, which in 1952 averaged 265, or 13 less than in 1951. The average length of shift for all metal mines was 8 hours, and the average employee worked 2,118 hours during 1952, a reduction of 108 hours from 1951.

Iron.—Although the number of fatal injuries at iron mines declined to 32, compared with 33 deaths in 1951, the rate at which the former number occurred was slightly greater due to an 8-percent decrease in the total man-hours worked. The rate at which nonfatal injuries occurred declined to 16.25 from 18.61 per million man-hours in 1951. This improved performance was due entirely to a 20-percent decrease in the number of nonfatal injuries, which more than offset the decrease in worktime at iron mines in 1952.

The average number of men at work daily at iron mines increased slightly to a total of 31,700 in 1952. Iron mines averaged 245 active days during the year and had a total of 62½ million hours of work-time, or approximately 5½ million man-hours less than in 1951. The average employee at iron mines had a workyear of 1,970 hours, or 252 hours less than the preceding year, owing principally to the fewer active days the mines were operated.

Copper.—Fatality experience at copper mines was worse than in 1951. There were 26 fatal injuries—7 more than in 1951—and the frequency rate increased almost 50 percent to 0.70 per million manhours. As the decline in number of nonfatal injuries was greater proportionately than the decline in the man-hours of exposure, the non-

fatal-injury frequency rate improved 6 percent in 1952.

The average daily employment of 14,800 men at copper mines during the year was a slight reduction from the number of men working at these mines in 1951. As these mines operated an average of 314 days in 1952, the total of 37.2 million man-hours was 6 percent less than in 1951. Each employee averaged 2,514 hours of work during the year, or 76 more than in 1951.

Lead Zinc.—Fatality experience at lead-zinc mines was worse than in 1951. There were 35 fatal injuries in 1952, and the frequency rate increased 68 percent to 0.96 per million man-hours. Nonfatal injuries at lead-zinc mines increased 17 percent in number to 2,925; but the frequency rate, although slightly higher than in 1951, was not similarly affected, as the man-hours of worktime increased 15 percent above the previous year's total.

Employment at lead-zinc mines increased 13½ percent to an average daily working force of 16,500 men in 1952. Although these men worked 5 more days than in 1951, the average employee had only 30 hours more worktime during the year, owing to a 4-percent reduction

in the number of hours worked per shift.

Gold-Silver-Lode.—The fatality record improved sharply at gold-silver-lode mines, and the nonfatal-injury record was also better in 1952 than in 1951. The total of 7 fatals was less than in 1951. They occurred at a frequency of 0.89 per million man-hours, a 51-percent improvement. There was a 17½-percent reduction in the number of nonfatal injuries; but, as the total worktime was reduced in lesser proportion, the nonfatal-frequency rate was reduced 13 percent to 100.89 injuries per million man-hours in 1952.

The average number of men working at gold-silver-lode mines decreased almost 9 percent from 1951. These men worked 3 more days in 1952, 0.2 hour more each day, and were able to accumulate

a total year's work of 2,021 hours, or 74 more than in 1951.

Gold Placer.—The safety record at gold-placer mines improved during 1952. The fatality-frequency rate of 0.26 was 61 percent lower than in the preceding year. The number of nonfatal injuries was reduced 22 percent from 1951, and the resulting frequency rate of 40.58 injuries per million man-hours represented an 8-percent improvement.

The average number of men working daily declined to 2,100 in 1952. The men worked 17 days more but had an aggregate worktime of 3.8 million man-hours, 15 percent below 1951. However, because of the increased number of days, the average employee was able to accumu-

late a total of 1,819 hours or 129 more than in 1951.

Miscellaneous Metal.—This group includes mines producing antimony, bauxite, chromite, cobalt, manganese, mercury, molybdenum, pyrite, titanium, tungsten, and vanadium-uranium. The safety record at miscellaneous metal mines was not as good as in 1951. There were 9 fatal injuries, and the frequency rate increased 24 percent to 1.15 per million man-hours. The number of nonfatal injuries increased 11 percent, resulting in a raise in the frequency rate from 79.20 in 1951 to 85.04 per million man-hours in 1952. The average number of men working daily increased 32 percent above the 1951 working force. However, because these mines operated 55 fewer days, the total manhours worked did not increase in the same proportion. The average worker accumulated 1,777 hours during 1952, or 495 less than in 1951, owing to the smaller number of active plant days and a 3-percent decrease in the average hours worked per day.

NONMETAL MINES (EXCEPT STONE QUARRIES)

Employment gained slightly in 1952 to a total of 12,800 men at work daily in this group of nonmetal mines, which is comprised of barite, feldspar, fluorspar, gypsum, magnesite, mica, phosphate rock, rocksalt, sulfur, and miscellaneous nonmetallic-mineral operations. However, as the operations were active an average of 284 days, or 14 less than in 1951, the total hours of worktime during 1952 were slightly more than in the preceding year. The overall injury record at nonmetal mines improved in 1952. Although no appreciable change was reflected in the fatality experience, the nonfatal-injury experience was improved sharply. The number of nonfatal injuries decreased 31 percent, and the nonfatal-frequency rate declined in the same proportion.

TABLE 3.—Employment and injury experience at nonmetal mines (except stone quarries) in the United States, 1931-52 12

Year	Men working	Average active	Man-days worked	s Man-hours injuries mil			Injury rate per million man- hours	
Ton	daily	mine- days	(in thou- sands)		Fatal	Non- fatal		
1931	8, 949	227	2, 029	17, 941 11, 825	11 7	841 528	0.61 .59	46. 88 44. 65
1932	6, 686	201 225	1, 347 1, 729	11, 825	8	745	.57	52.71
1933	7, 678 8, 234	225 236	1, 729	15, 187	8	787	.53	51.82
1935	8, 339	250	2, 068	16, 168	8 7	813	.43	50. 28
1936	10, 380	259	2, 689	21, 556	4	1,044	.19	48, 43
1937	10, 017	256	2, 561 2, 251	20, 536	13 6	987 726	.63 .34	48.06 40.72
1938	9, 526	236	2, 251	17, 827 17, 281	10	719	.58	41.61
1939 1940	9, 630 9, 780	228 247	2, 196 2, 416	18, 988	14	826	.74	43. 50
1941	11,088	263	2, 920	23, 225	17	1, 182	.73	50.89
1942	12, 677	274	3, 473	28, 093	22	1, 537	.78	54. 71 52. 54
1943	12, 713	269	3, 426	27, 999	25 17	1, 471 1, 283	.89	49, 81
1944	11, 261	282 291	3, 171 3, 016	25, 760 24, 613	16	1, 145	.65	46. 52
1945	10, 371	291	3,010	24,013	10	1, 110		10.02
1946	11, 312	291	3, 297	26, 877	26	1,369	. 97	50.94
1947	12, 176	292	3, 555	28, 809	12	1,308	. 42	45.40
1948	11, 950	287	3, 555 3, 432	27, 784	15	1, 176	. 54	42.33
1949	12,077	277	3,340	26, 948	10	1, 125	.37	41.75 43.51
1950	11, 977	293	3, 512	28, 456	19	1, 238	.67	43.51
1951	12, 500	298	3, 729	30, 130	17	1, 351	. 56	44.84
1952	12,800	284	3, 635	29, 510	17	930	. 58	31. 51
1008			l	, , , , , , , , , , , , , , , , , , ,	l		<u> </u>	<u> </u>

¹ Man-hours not available before 1931.

TABLE 4.—Employment and injury experience at nonmetal mines (except stone quarries) in the United States, 1943-47 (average) and 1948-52 1

Year W	Men working	Average active	Man-days	Man-hours		ber of ries	Injury mill man-	lion ¯
1 Gai	daily	mine- days	worked	worked	Fatal	Non- fatal	Fatal	Non- fatal
1943-47 (average)	11, 567 11, 950 12, 077 11, 977 12, 500 12, 800	285 287 277 293 298 284	3, 292, 897 3, 432, 304 3, 340, 482 3, 512, 094 3, 728, 821 3, 635, 000	26, 812, 584 27, 784, 119 26, 948, 124 28, 455, 936 30, 130, 424 29, 510, 000	19 15 10 19 17 17	1,315 1,176 1,125 1,238 1,351 930	0. 71 . 54 . 37 . 67 . 56 . 58	49. 05 42. 33 41. 75 43. 51 44. 84 31. 51

¹Includes barite, feldspar, fluorspar, gypsum, magnesite, mica, phosphate rock, rock-salt, sulfur, and miscellaneous nonmetallic mineral mines.

METALLURGICAL PLANTS

The overall safety record at metallurgical plants was not as favorable in 1952 as in the preceding year. The combined (fatal and nonfatal) frequency rates of 22.12 and 25.87 per million man-hours at ore-dressing plants and nonferrous reduction plants and refineries, respectively, were higher than the corresponding rates for 1951. There was the same number of fatalities in each year—16—but the number of nonfatal injuries increased 11 percent to a total of 3,015.

^{2 1952} figures are preliminary—subject to revision.

FABLE 5.—Employment and injury experience at metallurgical plants in the	1e
United States, 1931-52 12	

Year			Man-days worked (in	Man-hours worked (in	Number of injuries		Injury rate per million man- hours	
-	daily	days	thousands)	thousands)	Fatal	Non- fatal	Fatal	Non- fatal
1931	21, 999	299 257 267 274 291	8, 642 5, 542 5, 875 7, 366 10, 632	70, 374 44, 856 46, 180 57, 966 83, 874	16 8 13 13 28	1, 393 837 1, 079 1, 320 1, 962	0. 23 . 18 . 28 . 22 . 33	19. 79 18. 66 23. 37 22. 77 23. 39
1936	41, 167	309	12, 727	101, 218	32	2, 240	. 32	22. 13
1937	47, 530	313	14, 899	117, 551	41	3, 217	. 35	27. 37
1938	39, 043	292	11, 383	90, 018	20	2, 273	. 22	25. 25
1939	41, 583	303	12, 594	96, 737	24	2, 171	. 25	22. 44
1940	49, 068	295	14, 484	113, 116	18	2, 582	. 16	22. 83
1941	54, 349	311	16, 916	132, 102	34	3, 410	.26	25, 81
1942	51, 154	334	17, 073	134, 998	29	3, 674	.21	27, 22
1943	64, 735	336	21, 755	173, 633	31	4, 666	.18	26, 87
1944	58, 085	329	19, 113	152, 326	38	4, 158	.25	27, 30
1944	46, 467	329	15, 268	121, 491	19	3, 271	.16	26, 92
1946	44, 954	284	12, 783	101, 673	20	2, 794	. 20	27. 48
	49, 082	313	15, 353	122, 630	21	3, 228	. 17	26. 32
	47, 768	317	15, 121	121, 028	14	2, 749	. 12	22. 71
	47, 663	294	14, 031	112, 095	23	2, 567	. 21	22. 90
	46, 277	314	14, 539	116, 430	29	2, 574	. 25	22. 11
1951	48, 019	318	15, 247	122, 088	16	2, 714	.13	22. 23
1952	48, 200	319	15, 381	123, 040	16	3, 015		24. 50

Overall employment changed only slightly from 1951, and the aggregate man-hours of work was 1 percent higher than in 1951.

ORE-DRESSING PLANTS

This group includes crushing, screening, washing, jigging, magnetic separation, flotation, and other milling operations on metallic ores. Injury experience at metal mills was not as good in 1952 as in 1951. Although there was 1 less death, the number of nonfatal injuries increased 15 percent, resulting in a rise of the frequency rate from 19.86 to 22.00 injuries per million man-hours. Fatality experience was better at iron, gold-silver, and miscellaneous-metal mills and the nonfatal-injury experience was improved at gold-silver, lead-zinc, and miscellaneous-metal mills. The sharp increase in number of nonfatal injuries and subsequent nonfatal-frequency rate at copper mills was responsible for the poorer safety record at metal mills as a whole in 1952. The average number of men working daily increased for each group except iron and gold-silver mills. The overall gain was 5 percent. Although employment was 15 percent lower at gold-silver mills, the plants were active 16 more days in 1952, with the result that manhours worked in this group, while not as numerous as in 1951, was not reduced in the same proportion as the average daily work force. At miscellaneous-metal mills, the gain in employment resulted in an appreciable increase in man-hours worked in 1952, although the plants in this group were active 15 fewer days than in 1951.

Man-hours not available before 1931.
 1952 figures are preliminary—subject to revision.

TABLE 6.—Employment and injury experience at ore-dressing plants in the United States, by industry groups, 1943-47 (average) and 1948-52 1

Industry and year	Men Average active active		Man- days	Man- hours	Number of injuries		Injury rate per million man-hours	
		mill days	worked	worked	Fatal	Non- fatal	Fatal	Non- fatal
Copper: 1943-47 (average)	5, 828	327 317 294 337 336 346	2, 022, 845 1, 998, 932 1, 937, 717 1, 966, 475 2, 025, 542 2, 146, 000	16, 175, 389 15, 998, 431 15, 526, 435 15, 731, 325 16, 205, 429 17, 170, 000	3 4 3 2	356 289 233 243 226 345	0. 19 . 25 . 19 . 13	22. 01 18. 06 15. 01 15. 45 13. 95 20. 09
1943–47 (average) 1948 1949 1950 1951 1952 (preliminary) Gold-silver:	3, 259 3, 701 3, 401 3, 756	243 267 215 239 250 222	812, 117 870, 632 794, 121 814, 406 937, 338 820, 000	6, 595, 876 7, 040, 488 6, 446, 190 6, 568, 250 7, 588, 231 6, 620, 000	3 3	100 101 96 74 69 60	.30	15. 16 14. 35 14. 89 11. 27 9. 09 9. 06
1943-47 (average)	862 919 935 769 708 600	284 287 288 285 287 303	244, 650 263, 644 269, 389 219, 266 203, 161 182, 000	1, 924, 098 2, 064, 381 2, 106, 362 1, 707, 555 1, 579, 353 1, 460, 000	1 1 2	98 106 83 75 55 35	. 52 . 48 1. 27	50. 93 51. 35 39. 40 43. 92 34. 82 23. 97
1943-47 (average) 1948 1949 1950 1951 1952 (preliminary) Miscellaneous metals: 2	3, 998 4, 018	291 263 241 259 270 272	1, 348, 673 1, 050, 895 968, 005 903, 009 930, 091 978, 000	10, 806, 304 8, 430, 578 7, 747, 429 7, 223, 114 7, 444, 528 7, 860, 000	5 3 1 2 2 2 4	349 237 220 226 222 220	. 46 . 36 . 13 . 28 . 27 . 51	32. 30 28. 11 28. 40 31. 29 29. 82 27. 99
1943-47 (average) 1948 1949 1950 1951 1952 (preliminary) Total:	1.469	287 280 270 303 331 316	551, 654 321, 751 391, 600 444, 660 793, 658 948, 000	4, 432, 286 2, 570, 479 3, 147, 204 3, 584, 752 6, 361, 298 7, 580, 000	1 1 2	157 101 166 167 206 235	.23	35, 42 39, 29 52, 75 46, 59 32, 38 31, 00
1043: 47 (average)	16, 950 15, 634 16, 688 14, 956 16, 339 17, 100	294 288 261 291 299 297	4, 979, 939 4, 505, 854 4, 360, 832 4, 347, 816 4, 889, 790 5, 074, 000	39, 933, 953 36, 104, 357 34, 973, 620 34, 814, 996 39, 178, 839 40, 690, 000	12 9 7 7 6 5	1, 060 834 798 785 778 895	.30 .25 .20 .20 .15	26. 54 23. 10 22. 82 22. 55 19. 86 22. 00

Includes crushers, grinders, washers, ore concentration, sintering, cyaniding, leaching, and all other metallic ore-dressing plants and auxiliary works.
 Includes antimony, bauxite, mercury, manganese, tungsten, chromite, vanadium, molybdenum, and other metals.

NONFERROUS REDUCTION PLANTS AND REFINERIES

The reduction plants and refineries in this group are engaged in the primary extraction of nonferrous metals from ores and concentrates and the refining of crude primary nonferrous metals; iron and steel plants are not included. Injury experience at nonferrous smelters and refineries was less favorable in 1952 than in 1951. The total of 11 fatalities occurred at a rate of 0.13 per million man-hours compared with 10 fatalities and a rate of 0.12 in 1951. Nonfatalinjury experience was better at copper and lead smelters, but those improvements were more than offset by less favorable frequencies at zinc and miscellaneous-metal smelters. Employment and man-hours worked declined at copper and lead smelters and rose at zinc and

miscellaneous smelters. The overall decrease in employment was 2 percent, but since the smelters were operated 4 more days than in 1951, the aggregate time worked did not decline proportionately in man-hours.

TABLE 7.—Employment and injury experience at primary nonferrous reduction and refinery plants in the United States, by industry groups, 1943-47 (average) and 1948-52

Industry and year	Men Avera activ		ve Man-days	Man-hours worked	Number of injuries		Injury rate per million man- hours	
Andrew State Communication (Communication Communication Co	daily	days	WOLKCU	WOIREG	Fatal	Non- fatal	Fatal	Non- fatal
Copper:	12, 419 11, 626 11, 756 11, 928 10, 600 3, 652 4, 037 4, 045 3, 946 3, 939 3, 700 10, 381 9, 843 9, 573 9, 106 9, 800 9, 459 5, 835 5, 731 6, 513 6, 653 7, 000 35, 715 32, 134 30, 975 31, 321	335 326 305 323 325 324 312 323 305 305 302 317 350 342 318 350 307 309 317 309 317 323 324 324 325 327 327 332 332 332 332 333 342 342 342 342 342	4, 090, 329 4, 053, 333 3, 549, 484 3, 799, 981 3, 874, 388 3, 436, 000 1, 140, 492 1, 302, 463 1, 202, 755 1, 189, 986 1, 174, 000 3, 636, 558 3, 367, 815 1, 174, 000 3, 636, 558 3, 367, 815 3, 477, 000 3, 636, 558 3, 477, 000 1, 812, 583 3, 477, 000 1, 201, 201 2, 056, 024 2, 220, 000 11, 874, 315 10, 615, 194 9, 669, 686 9, 686, 686 1, 191, 421 10, 357, 073	32, 732, 388 32, 495, 270 30, 401, 750 31, 198, 141 27, 480, 000 9, 121, 575 10, 419, 706 9, 121, 575 10, 418, 334 9, 606, 222 9, 520, 909 9, 380, 000 28, 691, 450 26, 875, 360 28, 691, 450 26, 875, 360 27, 181, 133 25, 314, 896 25, 744, 087 27, 780, 000 23, 871, 160 15, 132, 655 14, 689, 000 23, 871, 160 15, 132, 655 14, 689, 000 94, 416, 573 84, 923, 348 77, 121, 141 77, 800, 000 94, 416, 573 84, 923, 348 77, 121, 141 82, 908, 784 82, 908, 784 82, 908, 784	7 22 8 8 7 3 6 2 1 1 2 2 4 2 2 2 3 3 1 5 9 2 3 3 1 1 2 2 3 3 1 1 4 5 6 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	646 592 5511 521 506 360 177 188 164 166 112 100 947 843 791 779 788 860 800 2, 563 323 530 800 2, 563 1, 789 1, 789 1, 789 1, 936 2, 129	0. 21 .06 .28 .23 .10 .22 .22 .10 .20 .42 .21 .21 .21 .36 .08 .07 .07 .07 .07 .07 .07 .07 .07 .08	19, 74 18, 22 18, 00 17, 14 16, 22 13, 10 19, 40 18, 04 16, 54 17, 28 11, 76 10, 65 33, 01 31, 37 32, 80 30, 77 30, 61 31, 07 30, 27 30, 61 31, 07 32, 23 44, 94 27, 15 22, 55 22, 94 22, 92 23, 35

¹ Includes smelters, refineries, roasting, electrolytic, retort, and all other nonferrous-metal reducing or refining plants.

2 Includes mercury, antimony, tin, and magnesium plants.

STONE QUARRIES

Injury experience in the quarry industries in 1952 was less favorable than in 1951, and the rates of occurrence of both fatal and nonfatal injuries increased over the preceding year. The combined rate of 26.61 injuries (fatal and nonfatal) was higher than the corresponding rate for 1951. Operating activity showed little change, and man-hours of worktime declined less than I percent compared with the previous year. The average number of men working daily was 1,600 less than in 1951, but the number of hours worked per man during 1952 was 27 more, due to an increase of 7 active plant days.

TABLE 8.—Employment and injury experience at stone quarries in the United States, 1924-52 12

Year	Men working	Average active	Man-days worked	Man-hours worked	Number of injuries		Injury rate per million man-hours	
- 	daily	mine days	(in thousands)	(in thousands)	Fatal	Non- fatal	Fatal	Non- fatal
1924 1925 1926 1927 1928	94, 242 91, 872 91, 146 91, 517 89, 667	269 273 271 271 272	25, 328 25, 046 24, 708 24, 783 24, 397	236, 983 233, 222 230, 464 229, 806 224, 953	138 149 154 135 119	14, 777 14, 165 13, 201 13, 459 10, 568	0. 58 . 64 . 67 . 59 . 53	62. 35 60. 74 57. 28 58. 57 46. 98
1929	85, 561 80, 633 69, 200 56, 866 61, 927	268 255 224 195 183	22, 968 20, 559 15, 527 11, 114 11, 362	211, 766 186, 502 133, 750 93, 710 87, 888	126 105 61 32 59	9, 810 7, 417 5, 427 3, 574 3, 637	. 59 . 56 . 46 . 34 . 67	46. 32 39. 77 40. 58 38. 14 41. 38
1934	73, 005 80, 022 84, 094	204 200 236 241 223	13, 108 14, 623 18, 874 20, 264 17, 256	95, 259 110, 033 147, 064 158, 299 133, 766	60 51 91 77 82	3, 924 4, 152 5, 717 6, 348 5, 027	. 63 . 46 . 62 . 49 . 61	41. 19 37. 73 38. 87 40. 10 37. 58
1939 1940 1941 1942 1943	79, 509 86, 123 84, 270	236 240 260 271 274	18, 726 19, 121 22, 370 22, 808 19, 136	143, 847 147, 244 173, 165 180, 836 155, 280	48 72 76 112 80	5, 204 5, 188 6, 870 6, 349 5, 199	. 33 . 49 . 44 . 62 . 52	36. 18 35. 23 39. 67 35. 11 33. 48
1944	58, 180 70, 265	268 264 274 279 284	15, 691 15, 376 19, 262 20, 996 21, 993	129, 302 127, 168 158, 528 171, 979 179, 111	73 53 55 75 75	4, 437 4, 121 5, 137 5, 504 4, 994	. 56 . 42 . 35 . 44 . 42	34. 32 32. 41 32. 40 32. 00 27. 88
1949	85, 730 84, 802	275 272 277 284	22, 569 23, 346 23, 470 23, 664	182, 258 189, 535 191, 113 189, 755	66 54 57 71	4, 826 4, 762 4, 945 4, 980	.36 .28 .30 .37	26. 48 25. 12 25. 87 26. 24

Cement.—The 21 fatalities that occurred in cement mills and quarries represented a sharp increase over the 15 deaths in 1951. The fatality rate of 0.28 per million man-hours was 40 percent higher than the corresponding rate for the preceding year. The nonfatal-injury frequency rate in both years was virtually identical, although 10 fewer injuries were reported in 1952 than in 1951. This improvement had little effect on the rate at which injuries occurred, as there was a proportionate decrease in man-hours of exposure to hazards. Employment in cement quarrries and mills during the year registered a slight decrease, the average daily work force being approximately 500 less than in 1951. Cement plants were worked 10 more days in 1952 than in the preceding year, but the average employee was able to accumulate only 4 hours additional work, owing chiefly to working onequarter hour less each day the plants were active.

Limestone.—Fatality experience at limestone operations was less favorable in 1952 than in 1951. The 25 fatalities occurred at a rate of 0.44 per million man-hours, compared with 21 deaths and a frequency rate of 0.38 in 1951. The nonfatal-injury rate, while slightly higher than in the previous year, was controlled to a large extent by increased employment activity. Although the average daily

¹ Man-hours not available before 1924. ² 1952 figures are preliminary—subject to revision.

TABLE 9.—Employment and injury experience at stone quarries in the United States, by industry groups, 1943-47 (average) and 1948-52

Industry and year	Men working	Average active mine-	Man-days worked	Man-hours worked	Number of injuries		Injury rate per million man-hours	
	daily	days	WOLKOG	WOLKER	Fatal	Non- fatal	Fatal	Non- fatal
Cement: 1								
1043_47 (average)	24, 272	300	7, 270, 599	57, 659, 047	16	733	0. 29	12.71
1948	28, 278 28, 824	328 327	9, 270, 125 9, 411, 961	73, 778, 909 73, 540, 505	24 18	786 597	.33	10.65
1950	29, 003	324	9, 383, 895	73, 758, 750	17	548	. 24	8. 12 7. 43
1948 1949 1950 1951 1952 (preliminary)	29, 096	329	9, 383, 895 9, 561, 969	75, 325, 959	15	480	. 20	6.37
Limestone:	28, 500	339	9, 672, 000	73, 890, 000	21	470	.28	6.36
1943-47 (average)	19, 931	240	4, 790, 760	40, 825, 672	27	1,742	. 66	42, 67
1948	22, 335 25, 710	244	5 445 881	45, 665, 097	26	1,703	.57	37. 29
1949 1950	25, 710 28, 588	232 232	5, 954, 282 6, 621, 221	49, 828, 625 55, 337, 191	27 22	1, 829 1, 922	. 54 . 40	36. 73 34. 73
1951 1952 (preliminary)	27, 626	236	5, 954, 282 6, 621, 221 6, 528, 367	54, 952, 659	21	2.055	.38	37.40
1952 (preliminary)	27, 200	251	6, 817, 000	56, 378, 000	25	2, 170	.44	38. 49
Lime: 1 1943–47 (average)	8, 999	303	9 799 575	21, 959, 389	9	1,066	. 41	48, 54
1948	9, 459	304	2, 722, 575 2, 878, 887	22, 867, 674	ő	931	.39	40. 7
1949	9, 138	297	2, 709, 511	22, 867, 674 21, 344, 370	8	798	.37	37.39
1948 1949 1950 1951 1952 (preliminary)	8, 837 9, 085	295 296	2, 709, 511 2, 607, 969 2, 688, 965 2, 783, 000	20, 970, 469 21, 674, 253	6 9	677 692	. 29 . 42	32. 28 31. 98
1952 (preliminary)	9, 600	290	2, 783, 000	22, 470, 000	4	605	.18	26. 92
marbie:		004			_			
1943–47 (average) 1948	2, 055 2, 747	264 266	543, 004 730, 600	4, 588, 705 5, 876, 884	1	155 167	. 22	33. 78 28. 42
1948 1949 1950	2, 815	255	719, 207	5, 962, 020		227	.11	38. 07
1950	2,600	246	640, 281	5, 962, 020 5, 330, 295 5, 486, 709	3	168	. 56	31. 52
1951 1952 (preliminary)	2, 584 2, 600	254 245	730, 699 719, 207 640, 281 656, 579 637, 000	5, 486, 709 5, 242, 000	1	191 205	. 19	34. 81 39. 11
Granite:	· ·							55. 11
1943–47 (average) 1948	4, 779 5, 818	249 256	1, 188, 978 1, 490, 656	10, 022, 172 12, 467, 119	5	466	. 50	46. 50
1949	6, 972	247	1, 490, 000	14, 216, 896	6 5	590 574	.48	47. 32 40. 37
1950	7,400	249	1, 842, 512	14, 216, 896 15, 237, 563 14, 775, 534	2	587	. 13	38. 52
1951 1952 (preliminary)	7, 211 6, 400	247 245	1, 719, 109 1, 842, 512 1, 777, 947 1, 566, 000	14, 775, 534	7 9	596 540	.47	40.34
Traprock:	0, 100				9)40 	. 69	41. 23
1943-47 (average)	2, 258	235	530, 711 594, 938]	4, 507, 991	3	232	. 67	51.46
1948 1949	2, 505 2, 815	238 / 230	594, 938 3 647, 414	5, 064, 034 5, 503, 529	4 3	257 240	.79	50. 78
1950	3, 066	225	691, 022	5, 829, 466	2	292	. 55	43. 61 50. 09
1951 1952 (preliminary)	2,908	234	680, 826	5, 829, 466 5, 835, 796	3	303	.51	51. 93
Slate:	3,000	228	685, 000	6, 288, 000	3	230	.48	36. 58
1943-47 (average)	1, 275	263	335, 105	2, 973, 695	2	164	. 67	55. 1
1948	1,952	262	512, 126	4, 511, 472	3	188	. 66	41. 6
1949	1, 820 2, 032	260 268	472, 868 544, 213	4, 061, 750 4, 633, 830	3 1	217 203	.74	53. 43 43. 8
1949 1950 1951	2, 093	270	565, 624	4, 773, 785		239	. 22	50.0
1952 (preliminary)	1,800	273	492, 000	4, 268, 000		345		80.83
Sandstone: 1943-47 (average)	2,840	250₹	710, 402	5, 914, 828	4	322	. 68	54.4
1948	4, 250	252	1,070,005	8, 879, 320	2	372	. 23	41. 90
1949 1950	4, 115	227	934, 969	7, 800, 638	2	344	. 26	44. 10
1951	4, 204 4, 199	242 240	1, 015, 370 1, 009, 415	8, 437, 247 8, 288, 499	$\frac{1}{2}$	365 389	.12 .24	43. 26 46. 98
1952 (preliminary)	4, 100	247	1, 012, 000	8, 123, 000	8	415	.98	51.09
Total:	66 400	272		1	f'en	4 000		
1943–47 (average) 1948	66, 409 77, 344	272	18, 092, 134 21, 993, 317	148, 451, 499 179, 110, 509	67 75	4, 880 4, 994	. 45 . 42	32. 87 27. 88
1949 1950	77, 344 82, 209	275	22, 569, 321	179, 110, 509 182, 258, 333	1 66	4, 826	.36	26. 48
1950 1951	85, 730 84, 802	272 277	23, 346, 483 23, 469, 692	189, 534, 811 191, 113, 194	54 57	4, 762 4, 945	. 28	25. 12
1952 (preliminary)	83, 200	284	23, 469, 692	189, 755, 000	71	4, 945	.30 .37	25. 87 26. 24
	, -50		,,	3, . 55, 500		2,000		20.2

¹ Includes burning or calcining and other mill operations.

working force was not as large as in 1951, limestone operations were worked 15 days and 1.4 million man-hours more. As a result of this increased activity, the average employee had a total of 2,073 hours of

work in 1952, or 84 more than in 1951.

Lime.—Fatality experience at lime plants and associated quarries improved remarkably in 1952. There were 4 fatalities during the year, compared with 9 deaths chargeable to 1951. The rate of 0.18 death per million man-hours was significantly lower than the rate of 0.42 for the preceding year. Nonfatal-injury experience likewise was much better in 1952. The rate of 26.92 injuries per million man-hours was appreciably better than the rate of 31.93 for 1951. Employment at lime plants and associated quarries increased to a total of 9,600 men who worked an average of 290 days, 6 less than in 1951. The aggregate worktime at these plants and quarries (22.4 million man-hours) was 4 percent higher than the comparable total for the preceding year.

Marble.—Injury experience at marble operations was less favorable in 1952 than in 1951. One fatality was recorded at these quarries, whereas the previous year was fatality-free. The number of nonfatal injuries was increased by 14; and this increase, coupled with a decrease in the total worktime, resulted in a 12-percent higher nonfatal-injury rate. The average number of men working daily was virtually unchanged from 1951; but, as there was 9 fewer working days in 1952, the total man-hours declined almost 5 percent. The average employee worked 2,016 hours during 1952 and had a shift of

8.23 hours.

Granite.—The safety record at granite quarries was less favorable than in 1951, and the frequency rates for both fatal and nonfatal injuries increased. There were 9 fatalities in 1952—2 more than in the preceding year—and the nonfatal injuries dropped to 540, or 56 less than in 1951. However, the less favorable rates of occurrence resulted from a 11-percent decline in the aggregate worktime in the industry. Employment declined 11 percent, and there were 2 fewer days of work in 1952. The average worker had a shift of 8.36 hours and worked 2,046 hours during the year—3 more than in 1951.

Traprock.—The traprock industry had the sharpest improvement in injury experience among the quarry industries. The combined rate of 37.06 for the 3 fatalities and 230 nonfatal injuries per million manhours was a 29-percent reduction from the corresponding rate of 52.43 in 1951. The 1952 rate was the best annual frequency rate for all injuries in the traprock industry since these rates were first compiled in 1931. Employment increased slightly; but the average length of shift was increased from 8.57 to 9.18 hours, thus enabling the average employee to accumulate a total of 2,096 hours during the year, or 89 more hours than in 1951.

Slate.—No fatal injuries were reported at slate quarries during 1952. The frequency of nonfatal injuries, however, increased 49 percent to 80.83 per million man-hours—the sharpest recession in injury experience among the quarry industries. Activity, as gaged by employment data, was at a lower level in 1952 than in 1951. The average number of men working daily dropped 14 percent, and the total man-

hours of worktime showed a nearly similar decrease of 11 percent. The average employee had a longer shift and worked 90 hours more

during 1952 than he did in 1951.

Sandstone.—The safety record at sandstone quarries was less favorable than in 1951, and the frequency rates of both fatal and nonfatal injuries increased. There were 8 fatalities in 1952, compared with 2 in the previous year, and the rate at which they occurred increased 308 percent to 0.98 per million man-hours. Likewise, the nonfatalinjury rate was raised 9 percent to 51.09. Employment declined to a total of 4,100 men working at sandstone quarries. Days active increased 7 to 247 in 1952; however, the decrease in employment, coupled with a decrease in the length of shift worked, had the effect of reducing the man-hours of worktime to the extent that the average employee accumulated only 7 hours more work in 1952 than he did in 1951.

Abrasive Materials

By Henry P. Chandler 1 and Annie L. Marks 2

OMESTIC production and use of abrasive materials in the United States during 1952 declined, in many instances, from the high levels reached in 1951, when records were established in the production and use of many abrasive commodities, both natural and artificial.

The outstanding gain in 1952 was in the importation of industrial diamonds. A record was established, both in quantity and value, exceeding the previous record year of 1944 by 7 percent in weight

and 123 percent in value.

Production of artificial and metallic abrasives decreased during 1952, corundum imports declined slightly, and no imports of emery

were reported.

This chapter includes data for most materials used for abrasive purposes, but certain clays, carbides, oxides, and other substances noted under Miscellaneous Mineral-Abrasive Materials are not Certain abrasive products for which figures are given also have important nonabrasive uses. Data on the production and use of diatomite and pumice and pumicite, which formerly were included

TABLE 1.—Salient statistics of the abrasives industries in the United States. 1951-52

	1	1951	1	952		ent of nge
	Short tons	Value	Short tons	Value	Short tons	Value
Natural abrasives (domestic) sold or used by producers: Tripoli	818, 479 5, 549 22 (1) 1, 408 3, 062 14, 050 11, 634 100, 498 216, 329 165, 138	1, 970 6, 000 77, 027 84, 306 1, 246, 947 160, 212 11, 734, 812 21, 444, 343 17, 923, 301	35, 459 246, 604 792, 802 3, 962 (1) 1, 083 4, 140 11, 393 91, 531 180, 375	\$1, 043, 124 1, 013, 637 6, 922, 586 246, 526 908 9, 285 66, 218 96, 537 981, 841 141, 911 12, 040, 946 17, 813, 760 17, 582, 275	-5 -12 -3 -29 -45 -23 +35 -19 -11 -9 -17	-54 +55 -14 +15 -21 -11 +3 -17
ImportsExports		³ 65, 267, 112 25, 157, 033		67, 418, 543 19, 196, 200		+2 -24

3 Statistical clerk.

Tonnage not recorded.
 Includes Canadian production.
 Revised figure.

¹ Commodity-industry analyst.

in this chapter, are now shown in separate chapters under their respective titles.

NATURAL SILICA ABRASIVES

Tripoli.—Sales of tripoli, amorphous silica, and rottenstone totaled 35,500 short tons valued at \$1,043,100 in 1952, a decrease of 5 percent in tonnage and 6 percent in value from 1951. These materials were produced in Illinois, Missouri, and Pennsylvania.

The use of tripoli as an abrasive accounted for the decline; its use

as a filler remained the same, while for foundry facings and other

uses its sales increased slightly.

Companies producing tripoli, amorphous silica, and rottenstone in 1952 were: Ozark Minerals Co., Cairo, Ill. (amorphous silica); Tamms Industries, Inc., 228 North LaSalle St., Chicago 1, Ill. (amorphous silica); American Tripoli Corp., Seneca, Mo. (tripoli); Penn Paint & Filler Co., Antes Fort, Pa. (rottenstone); and Keystone Filler & Mfg. Co., Muncy, Pa. (rottenstone).

TABLE 2.—Tripoli 1 sold or used by producers in the United States, 1943-47 (average) and 1948-52, by uses 2

77	Abra	sives	Filler		Other, including foundry facings		Total	
Year	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1943–47 (average)	16, 310 22, 193 20, 972 34, 865 28, 000 25, 000	\$312, 191 606, 402 587, 241 968, 497 869, 000 771, 000	4, 262 2, 723 2, 820 6, 744 7, 000 7, 000	\$76, 801 45, 000 53, 938 147, 379 155, 000 156, 000	2, 451 1, 929 1, 733 2, 111 2, 476 3, 459	\$41, 724 54, 121 49, 385 57, 771 81, 135 116, 124	23, 023 26, 845 25, 525 43, 720 37, 476 35, 459	\$430, 716 705, 523 690, 564 1, 173, 647 1, 105, 135 1, 043, 124

¹ Including amorphous silica and Pennsylvania rottenstone.

Quotations on tripoli in E&MJ Metal and Mineral Markets during 1952 remained the same as in the previous year. The following prices were quoted (per short ton, paper bags, minimum carlot 30 tons, f. o. b. Missouri): Once-ground through 40-mesh, rose and cream, \$30; double-ground through 110-mesh, rose and cream, \$32; airfloated through 200-mesh, \$35.

Quotations appearing in Oil, Paint and Drug Reporter: Airfloated, 2 cents a pound; double-graded, 1.85 cents a pound; single-

graded, 1.75 cents a pound; all prices, in bags, C. L. works.

Importations of tripoli and rottenstone in 1952 totaled 1,461 long tons valued at \$116,407. The more important countries of origin, in order named, were: West Germany, France, Mexico, and British East Africa.

Quartz.—Total sales of crude, crushed, and ground quartz from pegmatite veins or dikes and from quartzite in 1952 decreased 12 percent in tonnage and 13 percent in value compared with 1951. Production figures for both the crushed and the ground quartz declined, while crude quartz increased. The principal uses included glass and ferrosilicon, with smaller quantities for abrasives, filters, pottery, tile, and various other uses.

TABLE 3.—Quartz (crude, crushed, and ground) sold or used by producers in the United States, 1943–47 (average) and 1948–52 $^{\rm 1}$

	Cri	ıde	Crushed		Ground 2		Total	
Year	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1943–47 (average)	21, 255 41, 081 15, 816 11, 062 8, 236 14, 473	\$77, 714 250, 184 74, 562 52, 591 23, 098 79, 317	53, 234 104, 496 72, 432 117, 499 237, 806 207, 935	\$145, 431 374, 781 257, 213 430, 256 890, 918 739, 882	8, 328 16, 284 19, 304 31, 947 35, 005 24, 196	\$94, 498 125, 702 143, 716 223, 877 251, 354 194, 438	82, 817 161, 861 107, 552 160, 508 281, 047 246, 604	\$317, 643 750, 667 475, 491 706, 724 1, 165, 370 1, 013, 637

¹ Does not include sales of quartzite to cement mills or certain sales of quartz or quartzite for use in the

manufacture of ferrosilicon.

2 To avoid duplication, the ground material shown here is only that ground by the original producers of the crude quartz or by grinders who purchase from small miners not reporting their production.

TABLE 4.—Quartz (crude, crushed, and ground) ¹ sold or used by producers ² in the United States, 1950–52, by States

	1950		1951		1952	
State	Short tons	Value	Short tons	Value	Short tons	Value
Arizona	3 89, 290	³ \$318, 720	193, 444	\$747, 161	178, 437	\$670, 061
Connecticut	27, 560 2, 145 41, 513	166, 810 23, 646 197, 548	31, 459 56, 144	193, 127 225, 082	20, 199 47, 968	123, 600 219, 976
Total	160, 508	706, 724	281, 047	1, 165, 370	246, 604	1, 013, 637

¹ To avoid duplication, the ground material included is only that ground by the original producers of the crude quartz or by grinders who purchase from small miners not reporting their production.
² Does not include sales of quartzite to cement mills or certain sales of quartz or quartzite for use in the manufacture of ferrosilicon.
³ Arizona included with "Other States" to avoid disclosure of individual company operations.
⁴ Arizona (1950), Maine, Maryland (1952), North Carolina, and Wisconsin (1951-52).

The average value of the quartz reported in this section was \$4.11

per short ton in 1952 compared with \$4.15 in 1951 and \$4.40 in 1950. Ground Sand and Sandstone.—Sales of ground sand and sandstone in 1952 decreased 3 percent from 1951, both in tonnage and value. The average value per ton in 1952 was \$8.73 compared with \$8.75 in 1951 and \$8.61 in 1950. Illinois, with 34 percent of the total, continued to be the largest ground-sand- and sandstone-producing State; its output in 1952 increased in both tonnage and value over 1951, as contrasted with the national decline in production of that commodity.

TABLE 5.—Ground sand and sandstone sold or used by producers in the United States, 1943-47 (average) and 1948-52

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	570, 802	\$4, 183, 338	1950	750, 673	\$6, 462, 503
1948	692, 773	5, 778, 277		818, 479	7, 163, 343
1949	610, 789	5, 258, 464		792, 802	6, 922, 586

TABLE 6.—Ground sand and sandstone sold or used by producers in the United States, 1950-52, by States

	1	950	1	951	1952	
State	Short tons	Value			Short tons	Value
Georgia	1, 176 3, 700 263, 122 1, 829 131, 744 218, 281 130, 821 750, 673	\$11, 760 29, 600 2, 278, 237 9, 882 936, 817 2, 002, 703 1, 193, 504 6, 462, 503	1,874 11,968 262,488 # (1) 144,098 249,345 148,706	\$18, 740 107, 738 2, 300, 102 (1) 1, 053, 991 2, 305, 825 1, 376, 947 7, 163, 343	1, 765 9, 500 267, 180 (1) 138, 434 227, 878 148, 045 792, 802	\$17, 650 80, 000 2, 342, 549 (1) 1, 011, 844 2, 090, 276 1, 380, 268

Included with "Other States" to avoid disclosure of individual company operations.
 California, Massachusetts (1951-52), Michigan (1951-52), Missouri, North Carolina (1950), Oklahoma, Pennsylvania, Washington, and Wisconsin.

Firms producing 85 percent of the ground sand and sandstone reported the end uses of the material. Of this reported quantity the pottery, porcelain, and tile industries consumed 38 percent; abrasive industries—chiefly cleansing and scouring compounds—23 percent; foundries, 15 percent; fillers, 14 percent; and all others, 10 percent.

A process for removal of iron impurities from industrial and quartz sands has been described.3

The mining and processing of silica sand produced in Illinois were

discussed in a paper presented at a meeting of a technical society.⁴ A supply of high-grade silica for eastern Canadian plants including manufacturers of silicon carbide will be available from a processing plant under construction near Montreal.5

TABLE 7.—Ground sand and sandstone sold or used by producers in the United States in 1952, by uses

	Chant	Va	lue
Use	tons	Short tons Total	
Abrasive: Cleansing and scouring compound Other Enamel Filter Filter Foundry Glass Pottery, porcelain, and tile Other uses ! Use reported, total. Use unspecified Grand total	91, 240 1, 375 101, 154 10, 125 255, 986 29, 707	\$1, 203, 725 67, 168 216, 884 696, 885 11, 512 836, 194 94, 309 2, 493, 309 230, 302 5, 850, 901 1, 071, 685 6, 922, 586	\$8. 03 8. 26 8. 02 7. 64 8. 37 8. 27 9. 32 9. 74 7. 75 8. 67 9. 07

¹ Includes paint, plaster, roofing, and siding.

Hill, Craig C., Removal of Iron Impurities From Sand and Other Nonmetallic Minerals: Ceram. Age, vol. 60, No. 3, September 1952, pp. 24-25.
 Rock Products, Engineers Discuss Nonmetallic Minerals in Chicago Area: Vol. 55, No. 10, October 1952, pp. 118, 120, 140.
 Rock Products, Canadian Silica Plant: Vol. 55, No. 6, June 1952, p. 110.

Abrasive Sands.—Considerable tonnages of natural sands with a high silica content are sold for abrasive purposes, such as glass grinding, stone polishing, and sand blasting. Sales of these sands in 1952 totaled 1,236,000 short tons valued at \$2,939,000 compared with 1,477,000 short tons valued at \$3,112,000 in 1951. The 1952 figures include 605,000 short tons of blast sand valued at \$2,053,000, an increase of 10 percent in quantity and 9 percent in value compared with 1951.

In the Sand and Gravel chapter of this volume, where detailed data regarding tonnages produced in each State appear, the quantity

and value of these sands are included in the figures given.

SPECIAL SILICA-STONE PRODUCTS

Grindstones and Pulpstones.—The sales of grindstones in 1952 declined 29 percent in tonnage and 21 percent in value from the 1951 figure, and the sales of pulpstones declined 45 percent in tonnage and 54 percent in value. Ohio and West Virginia were the only States reporting the manufacture of grindstones. Pulpstones were produced only in Washington.

Oilstones and Other Sharpening Stones.—Output of natural sharpening stones declined during 1952 from the 1951 figure. The Bureau of Mines is not at liberty to publish the exact figures because of the small number of firms engaged in this industry. Producing States in 1952 were: Arkansas—oilstones and whetstones; Indiana—whetstones;

and New Hampshire—scythestones.

Millstones.—The only millstone producer in the United States that reported its production to the Bureau of Mines in 1952 is in Rowan County, N. C. The value of its output increased 55 percent over the preceding year. No firm reported the production of chasers in 1952.

TABLE 8.—Grindstones and pulpstones sold by producers in the United States 1943-47 (average) and 1948-52

	Grind	Istones	Pulpstones		
Year			Quantity		
	Short tons	Value	Pieces	Equivalent short tons	Value
1943-47 (average)	10, 473 7, 921 4, 479 4, 435 5, 549 3, 962	\$425, 244 402, 667 244, 704 230, 462 313, 901 246, 526	172 12 7 12 6 4	1, 353 33 28 33 22 12	\$42, 842 2, 100 1, 975 2, 100 1, 970 908

TABLE 9.—Value of millstones and chasers sold by producers in the United States, 1943-47 (average) and 1948-52 ¹

Year	Number of producers	Value	Year	Number of producers	Value
1943-47 (average)	4	\$14, 385	1950	2	\$11, 300
	3	17, 733	1951	1	6, 000
	2	9, 400	1952	1	9, 285

¹ Produced in Minnesota (1945 only), New York (1943-48 only), North Carolina, and Virginia (1943-50 only).

Grinding Pebbles and Tube-Mill Liners.—The combined output of grinding pebbles and tube-mill liners in 1952 increased 17 percent in tonnage and 1 percent in value over 1951. Grinding-pebble production was reported from the following States: Minnesota, North Carolina, Texas, Washington, and Wisconsin. Tube-mill liners were produced in Minnesota, North Carolina, and Wisconsin.

TABLE 10.—Grinding pebbles and tube-mill liners sold or used by producers in the United States, 1943-47 (average) and 1948-52

V	Grinding pebbles		Tube-mill liners		Total	
Year	Short tons	Value	Short tons	Value	Short tons	Value
1943-47 (average)	7, 413 4, 026 2, 374 1, 923 3, 062 4, 140	\$151, 386 101, 583 64, 038 53, 007 84, 306 96, 537	2,100 1,297 1,166 1,523 1,408 1,083	\$43, 077 41, 555 47, 093 62, 535 77, 027 66, 218	9, 513 5, 323 3, 540 3, 446 4, 470 5, 223	\$194, 463 143, 138 111, 131 115, 542 161, 333 162, 755

NATURAL SILICATE ABRASIVE

Garnet.—Domestic production of garnet declined 19 percent in tonnage and 21 percent in value from the preceding year. The trend in output (sales) of garnet since 1920 is shown in figure 1. New York continued to be the leading State in production, with Idaho second. Small quantities of garnet were produced as byproducts of the concentration of other minerals, but the larger portion of the production came from deposits mined only for their garnet content. Garnet producers reporting sales in 1952 were: Idaho Garnet Abrasive Co., Fernwood, Idaho; Cabot Carbon Co., Willsboro, N. Y.; Barton Mines Corp., North Creek, N. Y.; and Florida Ore Processing Corp., Melbourne, Fla. Garnet mining in Idaho was the subject of a paper presented at a meeting of the American Institute of Mining and Metallurgical Engineers.6

TABLE 11.—Abrasive garnet sold or used by producers in the United States, 1947-52

Year	Short tons	Value	Year	Short tons	Value
1947	8, 722	\$614, 071	1950	9, 304	\$793, 558
1948	8, 039	587, 797	1951	14, 050	1, 246, 947
1949	6, 578	505, 231	1952	11, 390	981, 841

The production and export of garnet have been reported from Madagascar 7 and Brazil.8

The average reported price of garnet at the mine in 1952 was \$86.20 a short ton.

<sup>McDivitt, J. V., Garnets in Idaho: Min. Eng., vol. 4, No. 7, July 1952, pp. 711-712.
Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 1, January 1952, p. 24.
Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 3, March 1952, p. 38.</sup>

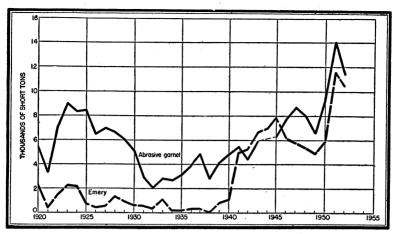


FIGURE 1.—Marketed production of abrasive garnet and domestic emery in the United States, 1920-52.

NATURAL ALUMINA ABRASIVES

Corundum.—The world's largest producer and exporter of corundum continued to be the Union of South Africa; the output in that country was 3,791 metric tons during 1952.

India's production was principally for local consumption.

Geological Survey of India listed 4 producers during 1952.9

Small quantities of corundum were produced in Malaya, 10 Nyasaland, 11 and the Belgian Congo, 12 but the mines of Madagascar, formerly productive, were inactive.18

Promising corundum deposits are reported to exist in Namaqualand,

South Africa.14

No commercial production of corundum was reported in the United States or Canada.

Notes on the occurrence and use of corundum appeared in the

technical press.15

Prices of corundum during 1952, as quoted by an abrasive company, were as follows: Per pound, in ton lots, grinding wheel grain, 12% cents, delivered; optical grain, sizes 120 and coarser, 10½ cents, f. o. b.; optical grain, sizes 140 and finer, 11½ cents, f. o. b.; optical powders, size 500 and finer, 31½ cents, f. o. b.

Emery.—Domestic production of emery in 1952 declined 11 percent from 1951 in both tonnage and value. No importation of emery ore was reported. As in recent years, the only domestic producers of emery in 1952 were Joe DeLuca and DiRubbo & Ellis, both of Peekskill, N. Y.

The average value of domestic emery at the mine in 1952 was \$13.71 a short ton. The sales of emery since 1920 are presented graphically in figure 1.

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 1, January 1952, p. 24.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, p. 28.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 2, August 1952, p. 28.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, p. 48.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, p. 28.
South African Mining and Engineering Journal, Base Metals in Namaqualand: Vol. 62, No. 3077, Feb. 1965, p. 265.</sup> 2, 1952, p. 985. 14 Chemical Engineering and Mining Review, Corundum: Vol. 44, No. 8, May 10, 1952, p.[318.

TABLE 12.—World production of corundum by countries, 1 1947-52, 2 in metric tons [Compiled by Helen L. Hunt]

Country 1	1947	1948	1949	1950	1951	1952
BrazilFrench Equatorial Africa	2 3	(3)	(8)	(3)	(3) (3)	(3) (3) (3)
India Kenya	182	284	1, 493	304	557	(3)
Madagascar Malaya, Federation of 4	1	4	7	10	25	(8)
Mozambique Nyasaland		6	113	16 187	101	(3) (3) 47
Southern Rhodesia		114		10		
Union of South Africa	2, 313	2, 537	2, 464	3, 201	4, 563	3, 791
Total (estimate) 1	8,000	8,000	9,000	9,000	10,000	10,000

In addition to countries listed, corundum is produced in Argentina and U. S. S. R., but data on production are not available, and estimate is included in the total.
 This table incorporates a number of revisions of data published in previous annual reviews of corundum.
 Data not available; estimate by senior author of chapter included in total.

4 Estimate.

TABLE 13.—Emery sold or used by producers in the United States, 1943-47 (average) and 1948-52

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	6, 690	\$66, 611	1950	5, 949	\$75, 308
	5, 405	69, 408	1951	11, 634	160, 212
	4, 909	60, 917	1952	10, 352	141, 911

Production of emery in Turkey during 1952 totaled 8,239 metric tons compared with 7,363 metric tons in 1951. Exports of emery were 6,237 metric tons in 1952 compared with 10,889 metric tons in

Exports of emery from Greece in 1951 totaled 10,056 metric tons

valued at U. S. \$201,320.17

INDUSTRIAL DIAMONDS

World production of diamonds of all types in 1952 totaled approximately 18,700,000 metric carats, of which some 15,800,000 carats was classed as industrial stones. This was a 13-percent increase over 1951 in the production of industrial diamonds. Belgian Congo continued to be, as in recent years, the largest producer of industrial diamonds, contributing in 1952 about 71 percent of the world's supply.

About 99 percent of all the industrial diamonds mined during 1952

originated in Africa.

Bureau of Mines, Mineral Trade Notes: Vol. 37, No. 5, November 1953, p. 56.
 Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 4, April 1952, p. 47.

TABLE 14.—World production of industrial diamonds, by countries, 1951-52, in metric carats

Country	1950	1951	1952
Africa: Angola	237, 000	323,000	305, 000
Belgian Congo	9, 740, 000	10,040,000	11, 200, 000
French Equatorial Africa French West Africa	118,000	122,000	147, 000
French West Airica	94,000	94,000	110,000
Gold CoastSierra Leone	800, 000 433, 000	1,360,000 314,000	1, 860, 000 312, 000
South-West Africa.	24,000	96,000	108, 000
Tanganyika	37,000	53,000	62,000
Union of South Africa:	,	, , , , ,	, , , , , , , , , , , , , , , , , , , ,
"Pipe" mines:			1 000 000
Premier DeBeers group	1	900,000 400,000	1, 000, 000 393, 000
Others.	} 970,000	7,000	7,000
Alluvial mines	J	150,000	140, 000
Total Africa	12, 453, 000	13, 859, 000	15, 644, 000
Brazil 1	120,000	100,000	100,000
British Guiana	10,000	13,000	13, 000
Venezuela.	15,000	25,000	40,000
Australia, Borneo, India, etc. ¹	2,000	3,000	3, 000
World total	12, 600, 000	14, 000, 000	15, 800, 000

¹ Estimate.

While nearly all of the diamond-producing areas continued either to maintain or increase production of industrial diamonds, a substantial gain in the output of the Native Reserve in the Gold Coast was noteworthy.

Statistics giving the production of industrial diamonds in various regions, and descriptions of diamond mining operations, frequently

appeared in trade journals during 1952.¹⁸
Importation of industrial diamonds of all classifications into the United States during 1952 totaled 13,677,248 carats, valued at \$51,818,003, an increase of 11 percent by weight and 11 percent in value over 1951.

The United States Government continued during 1952 to purchase

industrial diamonds for the national stockpile.

The diamond-grinding-wheel industry continued to be the largest consumer of industrial diamonds. A large proportion of these wheels is used in grinding cemented-carbide tools and other objects made of

¹⁸ Mining World, South-West Africa: Vol. 14, No. 2, February 1952, p. 54.
Mining and Industrial Magazine of Southern Africa, Record Diamond Sales in 1951: Vol. 42, No. 2, Feb-

Mining and Industrial Magazine of Southern Airica, Record Diamond Saies in 1951: Vol. 42, No. 2, February 1952, p. 59.

Mining Journal (London), Diamonds: Vol. 238, No. 6086, Apr. 11, 1952, p. 370.

Mining World and Engineering Record (London), DeBeers Group: Vol. 162, No. 4230, Apr. 26, 1952, p. 258.

Mining and Industrial Magazine of Southern Africa, Diamond Statistics: Vol. 42, No. 5, May 1952, p. 203

Mining Journal (London), Anglo-American Interests in British Guiana: Vol. 239, No. 6099, p. 41; Diamond Saies Attain New Peak in First Six Months: July 11, 1952, p. 47.

Mining Journal (London), The Diamond Industry: Vol. 238, No. 6094, June 6, 1952, p. 595.

Mining Journal (London), Diamonds: Vol. 239, No. 6100, July 18, 1952, pp. 65-66.

South African Mining and Engineering Journal, Important Diamond Agreement: Vol. 63, No. 3098, June 28, 1982, p. 761.

June 28, 1952, p. 761.

TABLE 15.—Industrial diamonds (including diamond dust and manufactured bort) imported for consumption in the United States, 1951-52, by countries

[U. S. Department of Commerce]

Country	tured	nanufac- l (dia- l dies)	Bort (glazi gravers' unset, an	ers' and en- diamonds, id miners')		ado and llas	Dust	
	Carats	Value	Carats	Value	Carats	Value	Carats	Value
1951								
Argentina			155	\$4, 337				
Australia			1	\$1,001			500	\$1, 125
Belgian CongoBelgium-Luxembourg			6, 685, 514	12, 959, 227			19,661	52, 057
Belgium-Luxembourg	500	\$19, 217	402, 934	4, 372, 051			43, 448	26, 849
				1 1, 482, 951	2 239	\$31,629	10, 110	20,010
British Guiana			187	2, 404	2,200			
Canada	5	425	1 331, 134	1, 889, 450			7 821	19 874
Colombia			1, 200	3, 840			.,021	10,011
France	3, 824	234, 117	60, 755	1, 180, 971				
Germany	234	8, 549	00,700	2, 200, 011				
Israel	18	114	2, 625	25, 031				
Netherlands	1, 253	127, 989	120, 472	1, 088, 664			5.500	11, 200
Switzerland	537	19,679	1 68, 917	1 889, 816			31, 625	12, 822
Union of South Africa			1 451, 547	1 1, 495, 815				18,043
United KingdomVenezuela	288	2, 615	1 3, 891, 086	1 20,650,161			47, 820	320, 776
Venezuela			1 11, 859	1 251, 275				8, 750
			1 '					
Total	6, 659	412, 705	112, 118, 408	146, 295, 993	2, 239	31, 629	166, 760	471, 496
1952								
Argentina					1 955	20, 405		ĺ
Alistralia		1	1 1778	18, 885		20, 100		
Belgian Congo			6, 862, 047	15, 383, 284			94 570	75, 279
Belgian Congo Belgium-Luxembourg Bermuda	4. 355	55, 411	160, 105	1, 933, 587			12 368	19, 566
Bermuda	-, 000	00, 111	3, 115	36, 111			· 1	, ,
Brazil		1	30, 519	611, 230	8 188	115, 101		
Dritich Chicago		ı	000	5,005	1			
Canada	23	453	687, 885	3, 441, 061			26, 857	68, 225
France	2, 459	148, 380	7,865	121, 981			1, 100	6,000
French Equatorial Africa	- 		3, 703	130, 398	2, 284	19, 557		0,000
Ganada France French Equatorial Africa Germany, West	784	28, 296	12	105			200	1, 334
India		l	3, 101	59, 334				
ISTREI		1	1 1 543	17 234	1			i
Japan			520	8,628				
Japan Netherlands Surinam	3, 429	144, 981	66, 624	723, 920			125	250
Surinam			237	4, 104				
			91	2, 100				
Switzerland	163	4, 129	131, 413	1, 173, 691				
Switzerland Union of South Africa			402, 637	1, 168, 789			9,222	21, 416
United KingdomVenezuela	418	9,750	5, 047, 074	25, 419, 771	131		149, 987	600, 881
venezuela			29, 826	609, 272	11	30		
Total	11 631	301 400	13, 440, 350	50, 868, 490	12, 469	156, 562	994 490	700.051
4 Utal	11,001	091, 200	10, 440, 000	00,000,490	12,409	100, 002	444, 429	792, 951

¹ Revised figure.

TABLE 16.—Industrial diamonds (excluding diamond dust and manufactured bort) imported for consumption in the United States, 1947-52

[U. S. Department of Commerce]

Year	Carats	Val	ue	Year	Carats	Val	ue
		Average	1 ear	Carais	Total	Average	
1947 1948 1949	3, 999, 119 10, 421, 207 6, 279, 096	\$13, 312, 668 32, 581, 385 17, 392, 288	\$3.33 3.13 2.77	1950 1951 1952	11, 039, 036 112, 120, 647 13, 452, 819	\$36, 792, 832 146, 327, 622 51, 025, 052	\$3. 33 1 3. 82 3. 79

¹ Revised figure.

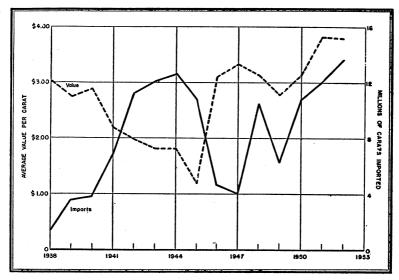


FIGURE 2.—United States imports and average price per carat of industrial diamonds, 1938-52.

The industry anticipates further increases in the demand for industrial diamonds and of diamond dust for finishing carbide parts.19

Owing to the increased price and the high demand for certain types of industrial diamonds, the questions of recovering diamond material from grinding sludges, used diamond wheels, and tools, has been given much consideration, and several firms are now engaged in such recovery.20

Efforts also were made to use diamond grinding wheels and tools more efficiently. 21 and substitute grinding methods are being tried in an attempt to conserve the industrial diamond supply.22

American Metal Market, Increased Volume of Machine Tool Work Lifts Diamond Consumption:
 Vol. 59, No. 230, Dec. 2, 1952, pp. 1, 3.
 Waste Trade Journal, Chrysler Speeds Recovery of Industrial Diamonds: Vol. 93, No. 25, Sept.

²⁰ Waste Trade Journal, Chrysler Speeds Recovery of Industrial Diamonds: Vol. 98, No. 25, Sept. 13, 1952, p. 48.
Modern Industry, Are Diamonds Your Plant's Big Problem?: Vol. 24, No. 5, Nov. 15, 1952, pp. 133-134.
Iron Age, Diamond Conservation Worth Cost: Vol. 170, No. 6, Aug. 7, 1952, p. 89.
Compressed Air Magazine, Norton Co., Industrial Diamonds: Vol. 57, No. 4, April 1952, p. 119.
Iron Age, Diamond-Dust Salvage: Vol. 170, No. 9, Aug. 28, 1952, p. 84.
Screw Machine Engineering, Diamond Dust Reclaimed: September 1952, p. 63.
Product Engineering and Management, Diamond Salvage Pays Dividends: Vol. 30, No. 4, October 1952, p. 80.

Weavind, R. G., and Young, R. S., Diamond Recovery From Grinding-Wheel Sludges: Ind. Diamond Review, vol. 12, No. 135, February 1952, p. 38.
Steel, Industrial Diamonds in Rough: Vol. 131, No. 21, Nov. 24, 1952, p. 75.

Larsen, E. T., How to Conserve Diamond Wheel: Am. Machinist, vol. 96, No. 4, Feb. 18, 1952, pp.

Kauffman, D., Wet Grinding Saves Diamonds: Tool Eng., vol. 29, No. 4, October 1952, pp. 45-47.
Taeyaerts, J., Diamond-Wheel Life Extended by Plunge-Cut Grinding of Carbides: Ind. Diamond Rev., vol. 12, No. 145, December 1952, pp. 266-270.
Ashburn, A., Why and How: We Must Conserve Diamond Boart: Am. Machinist, vol. 96, No. 23, Nov. 10, 1952, pp. 151-153.

American Machinist

 ^{10, 1952,} pp. 151-153.
 American Machinist, Drive on to Conserve Industrial Diamonds: Vol. 96, No. 10, May 12, 1952, p. 190.
 Metzger, L. R., What You Can Do About the Diamond-Wheel Shortage: Iron Age, vol. 169, No. 10, Mar. 6, 1952, pp. 203-207.
 Thibault, N. W., and Anderson, B. H., Electrolytic Grinding of Carbides Fully Tested: Iron Age, vol. 170, No. 20, Nov. 13, 1952, pp. 162-165.
 Beardslee, K. R., Substitutes for Diamonds: Steel, vol. 131, No. 22, Dec. 1, 1952, p. 104.
 U. S. National Production Authority, Diamond-Grinding-Wheel Limitations Proposed: Jour. Compares New York Lept. 11 1952

merce, New York, Jan. 11, 1952.

The supply situation and distribution methods were discussed in

many articles in the public press.23

Reports of the development of methods for increasing recovery during mining operations and efficiency of use in industry have appeared in technical publications.24

A symposium was held in Johannesburg, South Africa, at which

the various phases of diamond core drilling were discussed.25

The correct size and type of diamond set in a bit designed to drill specific rock were discussed in a trade paper.²⁶

A technique has been developed for cutting drill cores with diamond-

faced wheels.27

Recent developments in diamond blast-hole drilling have been

The relative hardness of various abrasive materials, including several types of industrial diamonds, was the subject of a recent publication.29

Standardization received some attention during the year. One writer proposed that the term boart (bort), as applied to certain kinds of diamonds, be applied to diamonds useful only for crushing Another noted the need for diamond-tool standards.31

A review of the subject of synthetic diamonds was given in an

article in a trade paper.32

Further investigation on the orientation of industrial diamonds in setting diamond bits for core drilling was described in a Bureau of Mines report.33

ARTIFICIAL ABRASIVES

Production of all types of artificial abrasives declined in 1952 from the preceding year. Aluminum oxide declined 17 percent both in tonnage and value; silicon carbide declined 9 percent in tonnage, but its value increased 3 percent; and metallic abrasives declined 5 percent in tonnage and 2 percent in value. The production of aluminum oxide included 16,620 short tons of "white high-purity" material valued at \$2,294,960 in 1952, compared with 27,262 short tons valued

²³ Financial Times (London), Marketing of Diamonds: Feb. 2, 1952, p. 2.
Stock Exchange Gazette (London), Diamonds, A Controlled Commodity; Vol. 52, No. 2669, Feb. 22,

Stock Exchange Gazette (London), Diamonds, A Controlled Commodity: Vol. 52, No. 2669, Feb. 22, 1952, pp. 326-327.

Iron Age, No Boost in Diamond Stock Seen: Vol. 169, No. 12, Mar. 20, 1952, p. 63.

Steel, Industrial Diamond Supply: Vol. 131, No. 21, Nov. 24, 1952, p. 75.

American Metal Market, Industrial Diamond Problems Are Discussed: Dec. 6, 1952.

Mining Journal (London), Black Market in Diamonds: Vol. 238, No. 6074, Jan. 18, 1952, p. 77.

South African Mining and Engineering Journal, Black Market in Diamonds: Vol. 62, No. 3077, Feb. 2, 1952, p. 975.

Weavind, R. G., Treatment and Recovery of "Wettable" Diamonds: South African Min. and Eng. Jour., vol. 63, No. 3105, Aug. 16, 1952, pp. 1023-1027.

Wagner, H. W., Cost of Grinding Carbide: Am. Machinist, vol. 96, No. 8, Apr. 14, 1952, p. 183.

Dauncey, G. B., and Young, R. S., Machining of Tungsten Carbide With Diamond Tools: Ind. Diamond Rev., vol., 12, No. 141, August 1952, pp. 161-164.

Mining Magazine (London), Diamond-Drilling Symposium in Johannesburg: Vol. 238, No. 6091, May 16, 1952, pp. 502-503, 533-534, 558-559.

Westman, Burton J., Drilling Tips for Diamond Bits: Min. World, vol. 14, No. 12, November 1952, pp. 32, 39-40.

pp. 32, 39-40.

7 Mining World, Diamond-Drill Cores Sawed for Easy Study and Storage: Vol. 14, No. 11, October

<sup>Mining World, Diamond Diamond Blast-Hole Drilling at Mufulira: Min. and Ind. Mag., 1952, p. 39.
Gayfer, E. R., and Peterson, V. E., Diamond Blast-Hole Drilling at Mufulira: Min. and Ind. Mag., vol. 42, No. 8, August 1952, pp. 186-189.
Kohn, J. A., Survey of the Study of Hardness: Ind. Diamond Rev., vol. 12, No. 137, April 1952; Spec. Suppl., 13 pp. and bibliography.
Grodzinski, P., The Meaning of "Boart": Ind. Diamond Rev., vol. 12, No. 144, November 1952, pp. 232-234</sup>

^{**} Grodinski, r., the Meaning of Louisian Groding Growth Country of The Meaning of Louisian Groding Growth Country of The Meaning Growth Country of Growth Country of The Meaning Growth Country of Growth Country of Chemical Age (London), Synthetic Diamonds: Vol. 67, No. 1739, Nov. 8, 1952, p. 638.
*** Long, Albert E., and Slawson, C. B., Diamond Orientation in Diamond Bits: Bureau of Mines Rept. of Investigations 4853, 1952, 6 pp.

at \$3,749,670 in 1951, a decrease of 39 percent in quantity and 39 percent in value for that item. Of the production of artificial abrasives, 4 percent of the aluminum oxide and 46 percent of the silicon carbide were used for refractories or other nonabrasive purposes. These percentages are the same as in the preceding year.

The ratio of production to annual plant capacity for aluminum oxide was 71 percent compared with 87 percent in 1951; silicon carbide 82 percent compared with 94 percent; and for metallic abrasives

69 percent compared with 68 percent in 1951.

An increase in the capacity of a silicon carbide plant in Washington was reported.³⁴

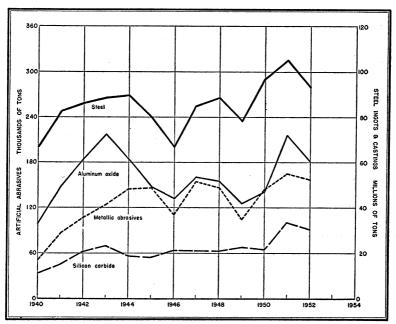


FIGURE 3.—Relationship between ingot-steel and artificial abrasive production.

TABLE 17.—Crude artificial abrasives produced in the United States and Canada, 1948-47 (average) and 1948-52

Y	Silicon	carbide ¹		um oxide ¹ ive grade)	Metallic	abrasives 2	Total	
Year	Short tons	Value	Short tons			Value	Short tons	Value
1943–47 (average) 1948 1949 1950 1951 1952	61, 469 63, 033 67, 539 65, 004 100, 498 91, 531	\$5, 192, 127 5, 874, 731 6, 055, 763 7, 303, 671 11, 734, 812 12, 040, 946	168, 424 154, 972 125, 806 140, 352 216, 329 180, 375	\$10, 505, 358 10, 279, 583 7, 8, 500, 074 11, 958, 035 21, 444, 343 17, 813, 760	136, 393 147, 218 104, 778 144, 333 165, 138 157, 034	\$8, 577, 279 15, 174, 773 9, 312, 368 11, 699, 764 17, 923, 301 17, 582, 275	366, 286 365, 223 298, 123 349, 689 481, 965 428, 940	\$24, 274, 764 31, 329, 087 23, 868, 205 30, 961, 470 51, 102, 456 47, 436, 981

¹ Bureau of Mines not at liberty to publish data for United States separately. Figures include a small quantity used for refractories and other nonabrasive purposes.

² Shipments from United States plants only.

²⁴ News Letter, Raw Materials Survey, Inc., Carborundum to Double Vancouver Plant: Issue 1, Ser. 52, Mar. 10, 1952, p. 1.

The need for careful study of grinding and finishing operations and the use of the correct abrasive and specifications for each operation

has been emphasized in a trade-journal article.35

The use of coated abrasives (paper or cloth, coated with abrasives), more especially those made with aluminum oxide and silicon carbide, is expanding, and new applications of this type of use for artificial abrasives has been described.³⁶

Artificial abrasive grain is finding a wide application in tumbling operations where precision finishes for metal parts are required.³⁷

TABLE 18.—Stocks of crude artificial abrasives and capacity of manufacturing plants, as reported by producers in the United States and Canada, 1943—47 (average) and 1948–52, in short tons

•	Silicon	carbide	Alumint	ım oxide	Metallic abrasives ¹		
Year	Stocks, Dec. 31	Average annual capacity	Stocks, Dec. 31	Average annual capacity	Stocks, Dec. 31	Average annual capacity	
1943–47 (average) 1948 1949 1950 1951	6, 302 5, 387 21, 964 8, 766 11, 786 25, 347	71, 763 73, 250 81, 121 84, 398 106, 741 111, 200	30, 549 34, 177 49, 505 22, 025 32, 428 60, 354	231, 258 233, 500 237, 072 238, 500 249, 000 255, 100	6, 571 9, 907 10, 144 7, 291 9, 843 9, 801	205, 407 240, 129 231, 650 209, 850 244, 178 226, 427	

¹ Figures pertain to United States plants only.

MISCELLANEOUS MINERAL-ABRASIVE MATERIALS

In addition to the natural and manufactured abrasive materials for which data are included herein, many other minerals are used for abrasive purposes. A number of oxides, including tin oxides, magnesia, iron oxides (rouge and crocus), and cerium oxide are employed as polishing agents. Certain carbides, such as boron carbide and tungsten carbide are used for their abrasive properties, especially when extreme hardness is demanded. Other substances with abrasive applications include finely ground and calcined clays, lime, talc, ground feldspar, river silt, slate flour, and whiting.

FOREIGN TRADE 38

Imports.—The total value of imports of abrasive materials, both natural and artificial, for consumption during 1952 increased 3 percent over 1951. Although substantial gains were noted in the imports of industrial diamonds of all types, the imports of artificial abrasives declined. Imports of corundum ore declined slightly, and no importations of emery ore were reported.

³⁶ Glenn, C. R., Use of Abrasives: Am. Machinist, vol. 96, No. 12, June 23, 1952, pp. 102-103.
36 Hyler, John E., Uses for Industrial Coated Abrasives Expanded: Iron Age, vol. 170, No. 4, July 24, 1952, pp. 98-101; and vol. 170, No. 5, July 31, 1952, pp. 91-95.
37 Metal Progress, Abrasive Tumbling Gives Precision Finishes Economically: Vol. 62, No. 4, October 1969, pp. 104-106.

^{1952,} pp. 104-108.

3 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

Exports.—Exports of natural and artificial abrasives declined 24 percent in 1952 from 1951. Exports included 9,984 short tons of aluminum oxide valued at \$2,632,113 and 7,679 short tons of silicon carbide valued at \$2,476,960. Also included were 199,937 reams and rolls of abrasive paper and cloth valued at \$5,400,522.

TABLE 19.—Abrasive materials (natural and artificial) imported for consumption in the United States, 1950–52, by kinds

[U. S. Department of Commerce]

L-								
Kind	198	50	19	51	198	52		
Killu	Quantity	Value	Quantity	Value	Quantity	Value		
Burrstones: Bound up into millstones					-			
short tons Grindstones, finished or unrefined	3	\$514	18	\$3, 142	7	\$1,236		
short tons	297	13, 586	213	15,892	195	16, 367		
Hones, oilstones, and whetstones short tons	19	26, 398	12	28,098	17	39, 058		
Corundum (including emery):	3, 543	194, 427				•		
Corundum oreshort tons_ Emery oredo	1, 726	21, 560			4, 371	273, 527		
Grains, ground, pulverized, or refinedpounds.	21, 097	1, 442	20,872	1, 154	25, 644	1, 791		
Paper and cloth coated with emery	,	193, 305	•			-		
or corundumreams Wheels, files, and other manufac-	18, 552	,	,	,	· ·			
tures of emerypounds_ Wheels of corundum or silicon car-	15, 542	12, 657	59, 829	49, 171	10, 278	10, 591		
bidepounds_ Garnet in grains, ground, etcdo	2,755	1,863 159		4,064	6, 439 3, 000			
Tripoli or rottenstoneshort tons	6, 181 (2)	68		430				
Diamonds: Bort, manufacturedcarats	2, 694	175, 556	6,659	412, 705	11,631	391, 400		
Crushing bortdo Other industrial diamondsdo	111,035862	36, 742, 326	1 12, 118, 408	146, 295, 993	8,806,473 4,633,877	19, 920, 968		
Carbonado and ballasdo	3, 174	50, 506	2, 239	31,629	12, 469	156, 562		
Dustdo Flint, flints, and flintstones, unground	159, 315	207, 846	166, 760	471, 496	224, 429	792, 951		
short tons	34,802	187, 113	17, 780	1 419, 572	7,871	186, 688		
Grit, shot, and sand, of iron and steel pounds	2, 707, 274	281, 067	3, 068, 156	729, 050	434, 693	194, 689		
Artificial abrasives: Crude, n. s. p. f.:								
Carbides of silicon (carborundum,								
crystalon, carbolon, and electro- lon)pounds	79, 862, 853	3,377,890	131, 969, 230	5, 684, 492	101, 367, 729	4,862,990		
Aluminous abrasives, alundum, aloxite, exolon, and lionite								
pounds Otherdo	234, 208, 185			110, 751, 288	266, 541, 342	9, 164, 982		
Otherdodo	2, 225, 600	73,008	1,624,240	59, 130	1,601,853	70, 063		
Grains, ground, pulverized, refined, or manufactured								
pounds	761, 849	80, 791	1,951,005	204, 450	1, 192, 390	125, 221		
Wheels, files, and other manufac- tures, not specifically, provided			ļ			3 . (
forpounds_	28, 372	11, 354	37, 711	28, 960	23, 685	22, 624		
Total		48, 656, 963		165, 627, 112		67, 418, 543		
	١		1	<u> </u>		<u></u>		

¹ Revised figure.
2 Less than 1 ton.

TABLE 20.—Abrasive materials (natural and artificial) exported from the United States, 1948-52

[U. S. Department of Commerce]

Year	Grindsto pulpsi		Diamo	Diamond dust		Diamond grinding wheels		m.t.l.
1 ear	Pounds	Value	Carats	Value	Pounds	Volue	and metallic abrasives, and prod- ucts ¹ (value)	Total value
1948	2, 887, 995 1, 407, 680 1, 027, 599 1, 344, 458 789, 786	\$131, 725 82, 090 55, 283 76, 330 59, 258	52, 600 55, 637 58, 563 60, 621 79, 183	\$80, 352 133, 917 126, 089 166, 539 216, 115	11, 562 10, 285 12, 807 15, 317 (2)	\$270, 929 321, 936 502, 523 539, 770 501, 239	\$14, 784, 664 16, 909, 456 15, 491, 157 24, 374, 394 18, 419, 588	\$15, 267, 670 17, 447, 399 16, 175, 052 25, 157, 033 19, 196, 200

¹ Exclusive of steel wool. ² January 1 through June 30: 4,992 pounds (\$256,946); July 1 through December 31: 47,253 carats (\$244,293).

Aluminum

By Delwin D. Blue 1

ESPITE an increase in the United States production of both primary and secondary aluminum, the demand for this metal exceeded supply, and Government control of prices, distribution and consumption was continued throughout 1952. Market conditions in the United States contrasted with those of the other non-Soviet aluminum-producing countries where supply appeared to be catching up with demand during the latter part of 1952, and a number of countries were actively seeking export markets. Although domestic consumers needed additional supplies, the asking price for foreign aluminum (exclusive of Canadian) was not generally competitive with similar domestic products. The expansion programs in progress in both the production and fabrication segments of the aluminum industry, plus the technologic advances in aluminum fabrication, uses, and products, indicated a continued high level of demand.

TABLE 1.—Salient statistics of the aluminum industry, in the United States, 1943-47 (average) and 1948-52

	1943–47 (average)	1948	1949	1950	1951	1952
Primary production Short tons Value	\$181, 219, 600	\$180, 755, 000	\$190, 303, 000	\$235, 977, 000	\$305, 074, 000	\$344, 320, 000
	15. 0	15. 7	17. 0	17. 7	19. 0	19. 4
Imports	\$38, 115, 602	\$42, 203, 519	\$36, 815, 965	1\$68, 565, 980	1\$63, 469, 555	\$61, 769, 406
	\$47, 887, 804	\$43, 219, 940	\$32, 924, 653	\$22, 152, 985	\$19, 259, 942	2\$12, 888, 013

1 Revised figure.

Data not strictly comparable with previous years due to changes in classification.

DOMESTIC PRODUCTION

PRIMARY

Production of primary aluminum in the United States was at an alltime yearly high in 1952, surpassing the previous peak established in 1943 by over 17,000 tons. The maximum monthly production of 85,175 tons, obtained in August, was still below the production rate of the last 4 months of 1943.

The continued increase in quarterly production that had occurred since the first quarter of 1950 was interrupted in the last quarter of 1952 when a hydroelectric power shortage in the Pacific Northwest and in the Tennessee Valley resulted in production losses from reduction plants at Troutdale, Oreg.; Vancouver, Longview, Wenatchee,

¹ Assistant chief, Light Metals Branch.

and Spokane, Wash.; Alcoa, Tenn.; and Badin, N. C. Production during November at the height of the power shortage decreased 12 percent from August to 74,639 tons despite increased production from new plants at Rockdale and San Patricio, Tex., and Chalmette, La.

TABLE 2.—Production of primary aluminum in the United States 1948-52 by quarters, in short tons

	1948	1949	1950	1951	1952
1st quarter	146, 340	157, 957	161, 213	200, 716	226, 377
	157, 284	165, 169	180, 353	202, 875	235, 158
	161, 145	157, 520	185, 973	215, 943	240, 425
	158, 687	122, 816	191, 083	217, 347	235, 370
	623, 456	603, 462	718, 622	836, 881	937, 330

¹ Quarterly production adjusted to final annual totals.

Although fall and winter hydroelectric power shortages have occurred frequently, the lost production was felt more acutely in the defense economy when requirements were running well ahead of the supply. On September 3, seven-eighths of the Pacific Northwest power supplied to the aluminum industry under contracts that permitted power interruptions during periods of low water supply were withdrawn. On November 1 all such power was withdrawn; and, effective November 17, all industrial users were ordered by the Government to cut consumption of power supplied under firm contracts to 90 percent of the amounts used in the like period of 1951. Production losses in the Pacific Northwest at established reduction plants during the September through December period were estimated at approximately 30,000 tons. In addition, new facilities at Wenatchee (2 potlines) and Spokane (1 potline) that could have initiated production or that had just begun production could not be operated, resulting in an additional estimated production loss of 18,000 tons. In the Tennessee Valley, power shortages resulted in a loss of 13,000 to 14,000 tons at Alcoa and Badin. Earlier in 1952, on June 24, a severe electrical storm at Massena, N. Y., damaged that installation and forced a shutdown of 9 of the 13 operating potlines. During the 5-week period required for repairs and resumption of full-scale operations, production losses were about 6,000 tons.

The 100,000-ton increase over 1951 primary-aluminum production was obtained from three new reduction plants, increased production from new potlines at established plants, a full year's production from facilities that started operating in 1951, and a better power supply (largely high-cost) at the Massena, N. Y., and Listerhill, Ala., plants. The Wenatchee, Wash., and Rockdale, Tex., smelters of the Aluminum Co. of America (Alcoa), tapped the first metal in June and November, respectively; and the San Patricio, Tex., smelter of the Reynolds Metals Co. started production in April. Alcoa placed one new potline in operation during March and a second in June at the Point Comfort, Tex., plant; Kaiser Aluminum & Chemical Corp. opened its eighth potline at Spokane, Wash., in July, and production at Kaiser's Chalmette, La., plant, which was initiated in December 1951, increased throughout the year; in November the fourth and final potline of the first of two 100,000-ton-annual-capacity plants at this location began operation. At Reynolds' Jones Mills plant, the first full year of production was obtained from the new facilities com-

pleted in 1951. Production from new facilities yielded approximately 100,000 tons in 1952. The plants at Rockdale, Wenatchee, Point Comfort, Chalmette, and San Patricio had not reached rated capacity at the end of 1952. Plants being constructed at Chalmette, La. (second 100,000-ton plant), by Kaiser, near Arkadelphia, Ark., by Reynolds, and at Columbia Falls, Mont., by Anaconda Aluminum Co. had not begun production.

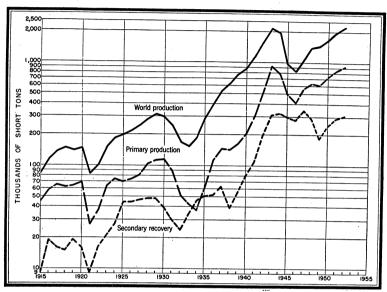


FIGURE 1.—World and domestic primary production and domestic secondary recovery of aluminum, 1915-52.

The threat of a labor strike, which hung over the primary-aluminum industry throughout the first half of 1952, was removed during July and August, when the three primary producers signed agreements with AFL and CIO Unions. Alcoa operated under contracts with the CIO (United Steel Workers of America) and the AFL (Aluminum Workers of America). The Alcoa contract with CIO, due to expire November 30, 1951, was extended to December 31, 1951, the date on which Kaiser's contract with CIO expired. Alcoa's contract with AFL expired on February 3, 1952, and Reynolds' with the CIO on April 15, 1952. Union demands were similar to those being considered by the Wage Stabilization Board in the steel wage dispute, and the unions postponed strikes pending outcome of the steel hearings. On July 9, Alcoa and the AFL signed a contract, with settlement based on recommendations of the WSB in the steel dispute. ments with the CIO Union were made on July 9 by Kaiser and on July 29 by Alcoa and Reynolds. All the agreements followed the pattern set by provisions in contracts that terminated midyear strikes in the steel industry and included (1) a reduction in northsouth wage differentials; (2) establishment of a job-evaluation program; (3) general wage increases; (4) a modified union shop; (5) improved vacations; (6) increases in insurance benefits and hospitalization; and (7) increases in shift differentials.

Expansion.—The aluminum expansion program initiated by the Government in 1950 under authority of the Defense Production Act had provided by the end of 1951 for the construction of 677,000 tons annually of new reduction capacity. All of the new capacity, except for a 50,000-ton plant planned by the Anaconda Aluminum Co., was distributed among the 3 established producers. pansion goal was subject to continual reappraisal; throughout 1952, the Office of Defense Mobilization and the Defense Production Administration solicited the views of industry, the Congress, and various Government agencies on the desirability of increasing aluminum supplies and, if necessary, the best means of obtaining increased supplies. In March the DPA proposed an increase in domestic productive capacity of 140,000 annual tons and increased imports from Canada. The Congress rejected a scheme for a guaranteed increase in Canadian Aluminum imports (see section on Foreign Trade), and on October 1 the Director of Defense Mobilization announced a "third round" of primary-aluminum expansion of 200,000 tons annually and invited American business firms that might wish to participate to send in firm proposals. The new capacity was to come from new producers as far as possible. Olin Industries, Inc., East Alton, Ill., was approved for 110,000 tons of capacity (location undetermined) on November 19, followed by the Harvey Machine Co. of Torrance, Calif., with a 54,000 ton-per-year plant to be located at The Dalles, Oreg. The Wheland Co., Chattanooga, Tenn., was negotiating for entry into aluminum production.

A plan for constructing an aluminum reduction plant in the Taiya Valley district near Skagway, Alaska, was announced by Alcoa on August 25. The plan called for a smelter with an initial capacity of 200,000 tons annually and a potential expansion to 400,000 tons annually. Hydroelectric generating facilities would be supplied by damming the Yukon River and driving a 13-mile tunnel through the mountain range. Alcoa announced that it would undertake construction without governmental guarantee of markets and with a minimum of governmental contractual assistance. Obstacles to the plan were the necessity for obtaining United States Government permission to purchase the approximately 20,000 acres of land needed and agreements with Canada for constructing dams and tunnels

and using Canadian water.

Expansion of fabrication and metal-treating facilities was required for processing the constantly increasing aluminum supply. Although many independent fabricators and consumers were reportedly operating at only a fraction of capacity, there was a need for facilities that could produce larger mill products, especially of the high-strength heat-treatable variety. The Air Force initiated a "heavy press program" for producing larger extrusions and forgings than previously possible. At the end of 1952, 17 presses were included under this program. Six companies were participating in the program; the companies, locations and types of presses were as follows: Alcoa—Cleveland, Ohio, a 35,000- and a 50,000-ton forge press, Lafayette, Ind., an 8,000-ton and a 12,000-ton extrusion press; Reynolds—Phoenix, Ariz., an 8,000- and a 25,000-ton extrusion press; Kaiser—Newark, N. J., a 35,000- and a 25,000-ton extrusion press, Halethorpe, Md., two 8,000-ton extrusion presses; Wyman-Gordon—North Grafton, Mass., a 35,000- and a 50,000-ton forge press—Harvey Machine—Torrance, Calif., a 25,000- and a 35,000-ton forge press and

an 8,000- and a 20,000-ton extrusion press; Curtiss-Wright-Buffalo, N. Y., a 12,000-ton extrusion press. None of the presses had been constructed at the end of 1952, and the largest presses in operation were 15,000- and 20,000-ton German-built presses used by Alcoa and Wyman-Gordon. On October 29 the Defense Production Administration announced expansion goals for aluminum-sheet production and for sheet and plate heat-treating facilities. goals were to increase the 1950 annual aluminum plate, sheet, and foil capacity by 342,000 tons to 1,296,000 and sheet and plate heattreating capacity by 423,000 tons to 774,000 by 1955. Government assistance under the goal was to be restricted to facilities capable of producing sheet 48 inches or wider, with heat-treating facilities capable of processing a minimum of 50 percent of the sheet and plate capacity and so designed that heat-treating facilities for the total capacity could be easily installed. An interim goal of \$15,000,000 capital investment was set for facilities to produce welded-aluminum tubing. The Department of Defense was planning to install rolling facilities for production of tapered sheet at existing fabricating plants.

The Aluminum Co. of America was expanding and modernizing its fabricating facilities during 1952. At Vancouver, Wash., work was progressing on modernization of ingot casting facilities to provide ingots for future product diversification planned at this plant, such as extrusions, special wire-drawing equipment, and modified rod A 15,000-ton, German-made, forge press leased from the Air Force was installed at the Cleveland works; a 25,000-pound spring-suspended steam-powered drop hammer was installed at the Vernon, Calif., plant; and insect-wire-screen manufacturing equipment was purchased from John A. Roebling's Sons Co., New Jersey plant, for installation in one of Alcoa's plants. Alcoa was licensed by the Alfin Division of the Fairchild Engine & Airplane Corp. to use the Alfin process for molecular bonding of aluminum to steel and iron. A stretcher with 3 million pounds of pull was ordered for the Lafayette, Ind., plant to straighten extrusions produced in a 13,200-ton extrusion press leased from the Air Force. A new plant for production of screw machine products, fasteners, rivets, and nails was planned for near Lancaster, Pa., and removal of these operations from Edgewater, N. J., was to provide space for additional sheet, foil, and extrusion facilities. The Air Force was to install a 144-inch, 4-high, hot and cold reversing tapered sheet rolling mill at Alcoa's Davenport, Iowa, works. This mill would produce sheet 10 feet wide

Davenport, Iowa, works. 1 ms mm would partial and 33 feet long; present limits are 5½ feet by 25 feet.

The Reynolds Metals Co. Plant No. 9 at Louisville, Ky., was being the Reynolds Metals Co. Plant No. 9 at Louisville, This plant previously made foil from coil processed at other plants, and the modernization called for billet-casting facilities, new ovens and rolling facilities. A plant for production of fabricated aluminum parts for the air-frame industry was planned for the Los Angeles, Calif., area. The Phoenix, Ariz., plant was being enlarged to provide space for

new extrusion presses included in the Air Force heavy-press program.

The Kaiser Aluminum & Chemical Corp. was installing a new continuous welding pipe mill and a new "plate stretcher" with a pull of up to 5-million pounds at the Trentwood, Wash. (near Spokane), plant. The capacity of Kaiser's foil plant at Permanente, Calif., was being expanded by 50 percent, and the width of available foils was

to be approximately doubled. A new 60-inch, 4-high, high-speed mill capable of rolling foil at 3,000 feet per minute was to be installed. New plants at Halethorpe, Md., and Newark, Ohio, were under construction adjacent to Kaiser's fabricating plants as a part of the

heavy-press program.

Revere Copper & Brass, Inc., the largest nonintegrated aluminum fabricator, doubled the capacity of its extrusion and tube drawing equipment at the Baltimore plant and initiated aluminum fabrication at a plant in Los Angeles. The Bridgeport Brass Co., Bridgeport, Conn., entered the aluminum-products field; Anderson Brass Works, Inc., was planning to build a new aluminum foundry at Leeds, Ala.: and Bohn Aluminum & Brass Corp. was operating the Government-owned experimental aluminum extrusion and forging plant at Adrian, Mich. Willys-Overland was operating a forging plant at Erie, Pa., that had been idle since World War II. The Fabricast Division of General Motors announced construction of a new permanent-mold casting plant at Jones Mills, Ark., and the Chrysler Corp. was planning a new aluminum foundry for the Michaud Ordnance Plant, New Orleans, La. The Wisco Aluminum Corp., Detroit, Mich., contracted for construction of a new 4-high, singlestand cold aluminum-strip rolling mill for strip up to 40 inches wide; Aluminum Foils, Inc., began construction of a 600-ton-per-month capacity hot and cold aluminum strip mill east of Jackson, Tenn., to manufacture coil for further processing to foil. Aluminum Air Seal Mfg. Co. installed a new 2,500-ton extrusion press at Youngstown, Ohio, and Pax Metals Corp. was constructing a new extrusion plant at Van Nuys, Calif. Nichols Wire & Cable Co. of Davenport, Iowa, expanded rod- and wire-production facilities, and Harvey Machine Co. at Torrance, Calif., was expanding its ingot and fabricating plant in addition to that planned under the heavy-press program. South Gate Aluminum & Magnesium Co., Los Angeles, Calif., constructed a plant for high-speed machining of aluminum and magnesium castings; Universal Die Casting Mfg. Corp. purchased a modern aluminum die casting plant at Malvern, Ark.: a new firm, Aluminum Billets, Inc., was established at Youngstown, Ohio, to operate a plant reported to be using a new type of furnace for faster production of standard size billets from both scrap and virgin aluminum; and Enterprise Aluminum Co. built a plant at Oneonta, N. Y., to fabricate aluminum products. Kropp Forge Co., at Chicago, Ill., expanded facilities to provide for all phases of the forging operation, particularly the production of aircraft parts.

SECONDARY

Domestic recovery of aluminum from secondary sources totaled 304,522 short tons in 1952. Recovery from new scrap increased from 216,017 tons in 1951 to 233,258 in 1952; recovery from old scrap decreased from 76,591 tons to 71,264. Recovery from new scrap is largely a function of consumption and increased at the expected rate. A contributing factor in the decreased recovery from old scrap was the ceiling price. Dealers reported that, in many instances, it was not economical to segregate old aluminum—for example, aluminum pistons in motors. The large quantities of aluminum recovered from old scrap during the 1946–48 period were due to the large tonnages available from aircraft and other scrapped war materials; in 1950

and the first half of 1951 recovery from old scrap was promoted by

the high prices offered for scrap metals.

Secondary aluminum was recovered from aluminum-base scrap by the 3 primary aluminum producers, about 70 secondary smelters, and several thousand foundries, chemical producers, and other miscellaneous consumers. Aluminum values were also recovered from other nonferrous alloys-copper, zinc, and magnesium-as an alloy constituent. Aluminum recovered as commercially pure aluminum was 4,897 tons, as aluminum alloys 294,582 tons, in brass and bronze 387 tons, zinc-base alloys 898 tons, and magnesium-base alloys 465 tons, and in chemical compounds 3,293 tons. Recovery of aluminum from non-aluminum-base alloy scrap was calculated by using assumed aluminum contents based on average aluminum content of alloys containing aluminum. The midyear strike in the steel industry caused a depression in the secondary-aluminum industry. Production of deoxidizing ingot in June, July, and August averaged 2,220 tons per month as compared to a 4,660-ton-per-month average for the preceding months. Production of other secondary alloys, especially of the AXS679 and 319 varieties, also dropped during this period.

The high-copper, high-silicon (Cu 3+ percent, Si 5+ percent) casting alloys accounted for approximately 40 percent of secondary ingot produced at independent secondary smelters, deoxidizing grades of ingot 18 percent, high copper-low silicon (No. 12 type) 8 percent and high silicon-low copper (Cu less than 0.6 percent) 6 percent.

Detailed information regarding aluminum scrap and secondary aluminum in 1952 is given in the Secondary Metals—Nonferrous

chapter of this volume.

CONSUMPTION AND USES

Apparent consumption of primary aluminum in 1952 was 1,072,686 short tons, as computed by adding primary production and net imports of pig, ingot, slab, plate, sheet, bar, and other crude and semifabricated forms and adjusting for stock changes at primary reduction plants. This computed apparent consumption included metal going into the National Stockpile, excluded withdrawals from the National Stockpile, and did not reflect stock changes by aluminum-metal consumers.

Secondary aluminum for consumption was obtained from domestic and imported scrap. Imported scrap aluminum was largely in pig form to facilitate handling and shipping but included small quantities of "loose" scrap. Aluminum recovered from "loose" scrap was included in secondary domestic recovery. A recovery factor of 90 percent was used to adjust for duplication and for losses in remelting. The factored net scrap imports were considered as additional metal available for

consumption.

The total new supply of aluminum pig and ingot and ingot equivalent of scrap to United States consumers during 1952 was 1,376,383 tons, an increase of 106,391 tons over 1951. The supply comprised domestic primary production, secondary recovery from both old and new purchased and toll treated scrap, imports of pig and ingot, and ingot equivalent of imported scrap. Home scrap is omitted from this total. Exports of crude forms of aluminum were not considered as a decrease in the supply of crude aluminum but as a form of consump-

TABLE 3.—Apparent consumption of primary aluminum and ingot equivalent of secondary aluminum in the United States, 1943-47 (average) and 1948-52, in short tons

		Primary		Secondary			
Year	Sold or	Imports	Apparent	Domestic recovery		Imports (net)2	
	used by producers (net)1		consump- tion	From old scrap	From new scrap		
1943–47 (average) 1948 1949 1950 1951 1952	633, 376 625, 834 587, 532 731, 087 845, 392 938, 181	47, 651 40, 041 48, 424 167, 249 4 129, 870 134, 505	678, 529 3 684, 575 635, 956 898, 336 4 975, 262 1, 072, 686	67, 537 95, 648 44, 596 76, 358 76, 591 71, 264	244, 644 191, 129 136, 166 167, 308 216, 017 233, 258	6, 249 64, 165 35, 751 60, 443 16, 694 5, 374	

TABLE 4.—Sources of aluminum supply—crude and scrap, 1927-52, in short tons

Year	Primary production	Recovery scrap		Imports 3	Total	Exports 3
	production	Old New			supply	
1927 1928	81, 804 105, 272	46, 20 47, 80		31, 123	159, 127	1, 763
1929 1930	113, 987 114, 519	48, 40 38, 60	0	19, 411 25, 429 12, 706	172, 483 187, 816	1, 195 307
1931 1932	88, 773 52, 444	30, 30 24, 00	0	7, 332 4, 032	165, 825 126, 405 80, 476	304 755
1933	42, 563	33, 50 46, 40	0	7, 539 9, 186	83, 602 92, 675	1, 952 2, 757
1935 1936	59, 648 112, 465	51, 40 51, 50	0	10, 538 12, 579	121, 586 176, 544	4, 026 1, 681 477
1937 1938	146, 341 143, 441	62, 56 38, 80	0	22, 351 8, 756	231, 252 190, 997	2, 360 4, 835
1939 1940	163, 545 206, 280		16, 184 34, 556	13, 525 18, 018	231, 017 304, 660	28, 552 13, 087
1941	309, 067 521, 106	41, 633 1	63, 744 54, 831	12, 880 106, 279	428, 804 823, 849	801 17, 863
1944	776, 446	22,899 3	80, 867 02, 746	135, 722 100, 921	1, 369, 862 1, 203, 012	56, 754 133, 461
945946947	409, 630	90, 535 1	71, 076 87, 538	337, 088 54, 531	1, 130, 535 742, 234	2, 991 1, 683
1948 1949	571, 750 623, 456 603, 462	95, 648 1	80, 990 91, 129	29, 729 147, 723	946, 316 1, 057, 956	12, 807 1, 633
950 951	718, 622 836, 881	76, 358 1	36, 166 67, 308 16, 017	113, 450 237, 941	897, 674 1, 200, 229	8, 375 1, 382
952	937, 330		33, 258	4 140, 430 134, 531	1, 269, 919 1, 376, 383	2, 274 2, 312

1 Ingot equivalent of scrap.

Separate data for old and new scrap not available before 1939.

3 Crude metal (ingot, pig, slabs, etc.) plus ingot equivalent (wt. × 0.9) of scrap.

4 Revised figure.

¹ Crude and semifabricated, excluding scrap and mill shapes. May include some secondary.

² Ingot equivalent of net imports (wt. × 0.9). Imports are largely scrap pig. Some duplication of secondary aluminum occurs because of small amount of loose scrap imported, which is included as secondary recovery from old scrap.

For 1948, apparent consumption modified by changes in stocks held by the Office of Metals Reserve.

Revised figure.

ALUMINUM 123

tion. This supply figure represents the quantity of aluminum available at the ingot of "ingot-equivalent" stage of aluminum consumption; that is, for use in producing castings, semifabricated wrought shapes, for dissipative uses, such as hardeners, deoxidizers, chemicals, etc., and ingot for export, and for increases in stocks. Stock changes at all levels of production and consumption are not included because of the lack of complete statistical data (see Stocks).

In past years statistical information on aluminum consumption by type of manufacture or end-use pattern, other than data on shipments of aluminum wrought products and castings, collected by the Bureau of the Census, United States Department of Commerce, was not available. A distribution pattern for aluminum, as reported by Alcoa and based on its operations has been presented in previous Minerals Yearbook volumes. In 1952, aluminum distribution was under Government control, and although data for allotments by program symbols were restricted, a grouping of the allotment data showed the following percentage distribution, by major use groupings:

Transportation: Land, sea, air	Percent 32
Construction and building	15
Electric and electronic	13
Consumer durables	10
Destructive uses	6
Machinery and equipment: Industrial, agricultural, mining, etc.	6
Packaging and containers	4
Miscellaneous and unclassified	14
Destructive uses Machinery and equipment: Industrial, agricultural, mining, etc Packaging and containers Miscellaneous and unclassified	6

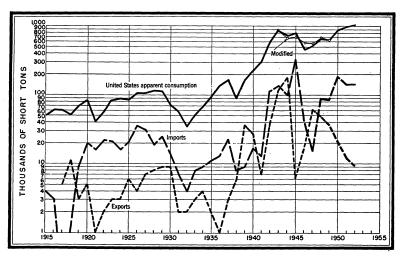


FIGURE 2.—Imports, exports, and apparent consumption of aluminum, 1915-52.

Imports and exports do not include scrap.

Distribution of wrought aluminum by type of mill shape for 1952 as compiled from data collected for the National Production Authority for allocation control was:²

Plate, sheet and strip:	Percent
Non-heat treatable	34, 6
Heat-treatable	15. 6
Foil	4. 6
Roned structural snapes:	
Rod, bar, etc.	10. 7
wire, pare (nonconductor)	9 9
Cable, bare (including steel-reinforced)	9. 4
Wire and cable, covered or insulated and hare conductor wire	1. 3
Extruded shapes (including tube blooms):	1. 0
Soft alloys	11. 3
Hard alloys	4. 2
Tubing:	4. 4
Soft alloys	2, 5
nard anovs	
Powder flake and paste	2.7
F	4. 1

Shipments of aluminum wrought and cast products, as reported by the Bureau of the Census, totaled 1,221,865 short tons in 1952; 259,490 tons was shipped as castings and 962,375 as wrought products. The percentage increase in shipments of mill products (cast and wrought) over 1951 was slightly below that for the aluminum supply;

shipments increased 7.6 and supply 8.4 percent.

The Government controls over distribution and use of aluminum that were in effect at the end of 1951 continued throughout 1952. Amendments and revisions to control orders were issued by the National Production Authority, United States Department of Commerce; they eased or tightened restrictions as dictated by the supply and as found necessary to promote the National defense. Aluminum foil and powder were dropped from the Controlled Materials Plan list in July; inventory restrictions were eased for aluminum distributors for the fourth quarter.

TABLE 5.—Net shipments ¹ of aluminum wrought and cast products by producers, 1948-52, in short tons

1951	1952
536, 683	542, 849
00 172, 582	221, 773
	173, 771 23, 982
	962, 375
3 2 80, 005 2 75, 733	97, 308 73, 442 84, 866 3, 874
1 2 257, 566	259, 490
6 2 1, 135, 688	1, 221, 865
33 2	57 536, 683 90 172, 582 88 156, 472 12, 385 25 878, 122 11 2 96, 689 13 2 80, 005 10 2 75, 733 17 2 5, 139 11 2 257, 566

[U. S. Department of Commerce]

¹ Net shipments consist of total shipments less shipments to other metal mills for further fabrication.

Revised figure.

Bureau of the Census, Facts for Industry: Series M24-2-02. Aluminum Products, July 1951-December 1952.
 Bureau of the Census, Facts for Industry: Series M24-1-02.
 Bureau of the Census, Facts for Industry: Series M24E-02.

125 ALUMINUM

Despite the controls and restrictions on the uses of aluminum, a number of new products was being developed in anticipation of expanded markets. Other aluminum products were being produced in increasing quantities for use in manufactures with new or improved qualities. In the transportation industries new developments in aluminum alloys and fabrication pointed to an ever-increasing number of applications in automotive equipment; experimental cylinder heads for overhead valve engines could be assembled by brazing together relatively simple aluminum castings; iron valve seats were successfully brazed to the aluminum head; aluminum die-cast clutch housings and plaster-cast intricate shapes, such as torque converter parts, were used in commercial automobiles; brazed-aluminum radiators of special brazing sheet were being tested; and decorative and service aluminum hardware was used in increasing quantities.4 A new stranded automotive electrical cable of electricalconductor (E. C.)-grade aluminum wire was being produced by Kaiser. A lightweight freight car with cast-aluminum wheels, corrugatedaluminum ends and an aluminum roof was on exhibition. weighed 19,000 pounds compared to 42,000 pounds for the conventional freight car. In the trailer industry there was a pronounced trend toward "aluminum-built" units. The S. S. United States, which established a new speed record for Atlantic crossings, contained approximately 2,000 tons of aluminum alloys largely concentrated in the superstructure, where light weight contributed to stability. Funnels, deck houses, structural bulkheads, davits, and lifeboats were constructed almost entirely of aluminum.⁵ A 65-foot ferryboat constructed largely from aluminum alloys, in use in Sweden, had a reported speed of 35 knots, with very low fuel consumption. A new method of sealing vehicles for storage and shipment was adopted for use by the Army Ordnance Corps; bituminous mastic, aluminum foil, and aluminum paint were used to prevent damage from dampness and corrosion.6

An aluminum-coated plywood called "Armorply," that would withstand extreme temperature changes, was used in constructing buildings at the Thule Air Base, Greenland; an elastic glue that expanded and contracted with the metal was used to bond the wood and metal surfaces. "Alumber," a new development not yet on the market in 1952, consisted of aluminum strips in 18 extruded shapes for use in building interior walls; the material could be sawed and nailed or held in place by screws. A new aluminum fixed bridge that could span about 180 feet, carry about 50 percent more weight than similar bridges used in World War II, and be erected in one-third of the time and that weighed 60 percent less than similar steel bridges was announced by the Army Engineers. The aluminum honeycomb sandwich consisting of a cellular aluminum-foil core with sheet-metal facings and having high strength, good stability, uniform density, and light weight was being produced in volume. An English company, Booth & Co., Ltd., was producing for export a portable and

⁴ Dunn, J. H., and White, E. P., Aluminum Alloys—Automakers May Use More: Steel, vol. 130, No. 20, May 12, 1952, pp. 95-98.

⁵ Smith, Arthur Q., Aluminum Goes to Sea—a New Era in Shipbuilding: Light Metals Age, vol. 10, Nos. 5 and 6, June 1952, pp. 12, 13, 23.

⁶ Iron Age, Aluminum Foil Stops Corrosion: Vol. 168, No. 18, May 1, 1952, p. 147, Modern Metals, Preserving Tanks and Trucks With Aluminum Foil: Vol. 8, No. 2, March 1952, p. 46.

⁷ O'Keefe, Philip, Aluminum Honeycomb Sandwich Has Light Weight, High Strength, Good Stability, and Uniform Density: Materials and Metals, vol. 36, No. 6, December 1952, pp. 96-98.

Pajek, T. P., Aluminum-Foil Structural Core: Light Metals Age, vol. 9, Nos. 11 and 12, December 1951, pp. 8, 9, 37.

prefabricated "cluster bungalow" made of aluminum and specially designed for tropical use. Increased usage of external aluminum panels, either wrought or cast, backed with a fireproof wall of lightweight concrete, was anticipated when the aluminum supply increased.

The increasing economic advantage of aluminum, plus advances in technology, application engineering, and design were constantly improving aluminum's contribution in the electrical industry. most serious problems encountered in the use of aluminum conductors were those of connections; however, new connectors and techniques were being developed.8 The Conservation Coordinating Committee of the Defense Production Authority urged the use of aluminum instead of copper for electrical conductors in size No. 6 (copper size) and larger for buildings. General Electric Corp. used aluminum bases for approximately 50 percent of its electric-light-bulb production in 1952.

Improved methods for using aluminum foil for containers and packaging were being used and others developed. Convolute plies of kraft paper and aluminum foil capped with steel ends were used in the construction of lightweight drums for chemicals and other liquids.9 Other aluminum containers were the thermoplastic bonded aluminum "tin can," the flex can, spiral-wound tubes, and barrier cartons.10 Aluminum handling boxes weighing 245 pounds (a comparable steel box weighed 620 pounds) capable of carrying a 5,000-pound load and with the added advantages of noncorrosion and absence of rust

stains were being used in Alcoa's Cleveland works.

Aluminum was finding increased uses in the textile industry; although its major contribution was in moving parts, its nonstaining and nonwarping qualities provided many advantages in other plant equipment.¹¹ Aluminum was being used in increasing quantities for ammunition shell cases. Lightweight, portable, sprinkler irrigation systems were one of the more important developing uses of aluminum, and increased consumption for this purpose was awaiting only the availability of pipe. New aluminum-consuming products announced in 1952 were an aluminum paint (Sheffield Bronze Paint Co., Sheffield, Ohio) that was reported to withstand temperatures up to 1,600° F. and be anticorrosive, impervious to most ordinary solvents, and weather-resistant; and a new aluminum paste designated as Alcoa Aluminum Tinting Paste No. 222, which gave a brighter finish than was possible with other aluminum pigments (metal content was 65 Aluminum was the principal ingredient of "Fil Solder" (Swiss Laboratories, Cleveland), a filling solder that required 50 percent less heat than the standard tin-alloy solder and filled without fluxing or shrinkage; "No Torch," a cold solder (A. L. Okum Co., 148 58th Ave., Flushing 54, N. Y.), of powdered aluminum that was quick drying and could be applied with a putty knife, brush, or spray to fill imperfections and as a metallic coating on patterns.

The Swiss invention "Aluphoto" for putting photographic reproductions directly on an aluminum base exhibited a group of unusual

 ⁸ Avilla, C. F., Boston Edison's 15-kv Underground Aluminum Cable. Hayward, J. P., Wanted—Information on Aluminum Connectors.
 Briskborn, H. W., The Outlook for Aluminum in the Electrical Industry: Modern Metals, vol. 8, No. 3, April 1952, pp. 56-62.
 Bergen, M. D., What, Why and How of Connectors for Aluminum: Elect. World, vol. 138, No. 2, July 14, 1952, pp. 129-142.
 Commercial America, Firms Develop Aluminum Drums: August 1952
 Commercial America, Firms Develop Aluminum Drums: August 1952
 Birdsall, G. W., How Aluminum Can Replace Tinplate in Containers: Modern Metals, vol. 8, No. 1, February 1952, pp. 47-51.
 Canadian Chemical Processing, Aluminum in the Textile Industry: Vol. 36, No. 5, May 1952, p. 84.

properties and advantages; it was simple to handle, resisted destruction in water, weather, light, and heat up to 1,100° F. and was unaffected by foodstuffs and food acids. The reproduction was substantially grainless and completely nonpoisonous.¹²

STOCKS

Month-end inventories of aluminum at the primary reduction plants averaged 12,150 tons for the 12 months of 1952. Stocks reported for December 31 were 7,274 tons, the lowest of the year, and repre-

sented less than 1 week's production.

Stocks of ingot at secondary smelters (excluding secondary operations of primary-metal producers) increased from 3,848 tons on January 1 to 11,051 tons on December 31. The increases in stocks were accumulated during the steel strike in the middle of 1952 and were not appreciably reduced when steel production was resumed. Year-end stocks were equivalent to 17 days' production. Stocks of aluminum-base scrap held by secondary smelters, primary producers, consuming fabricators, foundries, and miscellaneous consumers increased from 12,558 tons at the end of 1951 to 18,720 tons at the end of 1952. This increase in stocks was also realized during the steel strike, and the year-end stock represented about one-half month's consumption.

Stocks of aluminum held by primary- and secondary-metal producers were of negligible importance as a contribution to reserve supply. Data on aluminum held by fabricators, manufacturers, and distributors and on scrap-aluminum stocks held in junkyards and by scrap-metal

dealers were not available.

PRICES

The base price of primary-aluminum ingot, 99 plus percent pure, f. o. b. shipping point, was 20 cents per pound at the end of 1952. In July the primary-aluminum producers filed applications for price increases with the Office of Price Stabilization under the provisions of OPS General Overriding Regulation 29, which provided for price increases where necessary to avoid possible interference with the production and supply of essential commodities. The requested increases were based on company-claimed cost increases incurred since January 26, 1951, the effective date of the General Ceiling Price Regulation under which the price of primary aluminum was controlled, plus the cost of an anticipated wage increase. Alcoa and Reynolds requested a 2-cent-per-pound increase in the price of aluminum pig; Kaiser followed with a request for a 2.35-cent-per-pound increase, and Reynolds then increased its request to approximately equal that of Kaiser. Under Supplementary Regulation 113 to the General Ceiling Price Regulation, effective August 4, the ceiling price on aluminum pig and ingot was increased by 1 cent per pound. This action marked the first rise in pig and ingot prices since October 1950, and the new base prices became 19 cents per pound for pig and 20 cents for ingot. In October the primary producers requested an additional price increase based on the clause in the price-control law that allowed contractors to cancel contracts with the Government if the contract price denied the company a reasonable profit. Proposals by the Office of Defense Mobilization that offered a 1/2-cent-per-pound

¹² Wainer, Eugene, Aluminum! Photographic Process has Industrial Applications: Modern Metals, vol. 35, No. 4, April 1952, pp. 176-186.

increase in the base prices in return for cancellation of the "reasonable profit" clause were rejected by the producers, and no further action had been taken by the end of 1952.

TABLE 6.—Prices of aluminum ingot and other major metals, 1941-52 1

Year	Aluminum, primary ingot (cents per pound)	Copper, electrolytic, New York (cents per pound)	Composite finished steel (cents per pound)	Lead, New York (cents per pound)	Zinc, Prime Western, St. Louis (cents per pound)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1951 1952: First quarter Second quarter Third quarter Fourth quarter Average	15. 00 15. 00 15. 00 15. 00 15. 74 17. 00 17. 69 19. 00 19. 00 19. 00	11. 87 11. 87 11. 87 11. 87 11. 87 13. 92 21. 15 22. 20 19. 36 21. 46 24. 37 24. 37 24. 37 24. 37 24. 37	2. 65 2. 65 2. 65 2. 65 2. 73 3. 00 3. 42 3. 91 4. 21 4. 40 4. 71 4. 71 4. 91 4. 98 4. 83	5. 79 6. 48 6. 50 6. 50 8. 11 14. 67 18. 04 15. 36 13. 30 17. 49 19. 00 16. 64 16. 00 14. 23 16. 47	7. 48 8. 25 8. 25 8. 25 8. 25 8. 73 10. 50 13. 58 12. 15 13. 88 17. 99 19. 50 18. 25 14. 36 12. 75 16. 21

¹ Source: Metal Statistics, 1953 (American Metal Market).

Aluminum was the only major metal except steel that showed price increases during 1952. Steel prices (composite index) increased in about the same proportion as aluminum, copper remained constant under ceiling prices, and lead and zinc prices were greatly reduced. Aluminum, however, still showed a price advantage over the other major metals when compared to the 1941–45 World War II period; at the end of 1952, the price for aluminum had increased 31 percent, zinc 54 percent, steel 87 percent, copper 105 percent, and lead 122

percent over the 1941-45 average.

The price of aluminum scrap and secondary ingot throughout 1952 was controlled under Ceiling Price Regulation 54. Revision 1 of CPR-54, effective January 16, raised the ceiling on selected types of scrap and secondary ingot and directed that ceiling prices for wrecked aircraft and irony aluminum should be established on a delivered basis. Amendment 1 to CPR-54, Revision 1, effective December 3, revised the ceiling price on secondary ingot from a delivered basis to a shipping-point basis to give relief from the effects of freight-rate increases. An allowance was made for transportation charges above 75 cents per 100 pounds. Aluminum scrap and secondary ingot were selling at ceiling prices most of the year. Foundry alloys (low-copper alloys excepted) were reported selling for as much as 1 cent per pound below the OPS ceiling in July but returned to the ceiling in August.

Ceiling prices for producers of aluminum-alloy ingot and aluminum mill products were increased 5 percent in Supplementary Regulation 113 to General Ceiling Price Regulation to allow a passthrough of the increase on aluminum pig and ingot. Aluminum castings were priced under CPR-60. Increased ceilings for resellers of primary-aluminum mill products were established under Amendment 11 to CPR-67 effective August 4. General Overriding Regulation 35 to the General Ceiling Price Regulation, effective September 10, permitted manufacturers to pass along the metal cost increases granted to basic metal producers. General Overriding Regulation 41, effec-

tive December 10, provided for price increases 7 percent above the then current manufacturers' selling price for sheet-aluminum cooking utensils and 8½ percent for cast-aluminum utensils.

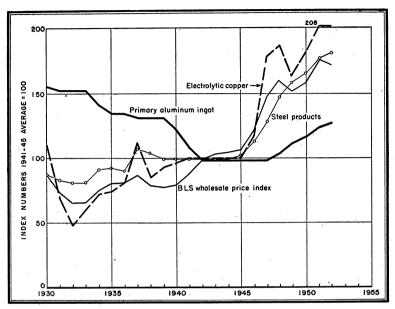


Figure 3.—Price of aluminum ingot, electrolytic copper, and finished steel, compared with Bureau of Labor Statistics general wholesale price index, 1930-52. Index numbers computed for aluminum ingot, electrolytic copper, and finished steel from prices reported by the American Metal Market. Bureau of Labor Statistics index transposed from 1926 to 1941-45 base.

FOREIGN TRADE 13

United States foreign trade in crude and semicrude aluminum (pig, ingot, slab, scrap, and semifabricated shapes) in 1952, as indicated by the value of imports and exports, decreased 11 percent from 1951 to \$62,031,269. The value of exported crude and semifabricated aluminum decreased 27 percent, of similar imported products 8 percent. The Bureau of the Census, United States Department of Commerce, revised the export-classification categories ¹⁴ effective January 1, 1952, and because of this regrouping of aluminum-export products, data for 1952 were not strictly comparable with those of previous years.

Canada, traditionally the major foreign source of aluminum to the United States, supplied 129,557 tons or 86 percent of the tonnage of imports of crude and semicrude (pig, ingot, slab, scrap, and semifabricated shapes). Other countries that supplied over 1,000 tons were Japan (5,059), West Germany (3,660), United Kingdom (3,483), Austria (3,007), Italy (2,179), and the Netherlands (1,855). Crude-aluminum metal and alloys, such as pig, ingot, wirebars, etc., which

¹² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page of the Bureau of Mines, from records of the U. S. Department of Commerce.

¹⁴ U. S. Department of Commerce, Bureau of the Census, Schedule B, Statistical Classificatin of Domestic and Foreign Commodities Exported from the United States: Jan. 1, 1952, ed. and Jan. 1, 1949, ed.

TABLE 7.—Aluminum imported for consumption in the United States, 1950-52, by classes

[U. S. Department of Commerce]

	1950		1951		1952	
Class	Short	Value	Short	Value	Short tons	Value
Crude and semicrude: Metal and alloys, crude	176, 778 67, 959 10, 955	\$48, 366, 733 14, 149, 860 5, 016, 561	1122,422 20,009 19,403	1\$41,400,283 6,376,578 11,486,358	128, 233 6, 998 15, 507	\$43, 504, 88 2, 591, 60 8, 551, 170
Total Manufactures:	255, 692	67, 533, 154	1161,834	159,263,219	150, 738	54, 647, 66
Manuactures: Bronze powder and powdered foil. Foil less than 0.006 inch thick. Leaf (5½ by 5½ inches) Table, kitchen, hospital utensils, etc. Other manufactures	30 297 (2) 163 (3)	30, 791 335, 088 38, 727 256, 523 371, 697	78 810 (2) 548 (3)	83, 706 1, 268, 292 27, 784 1, 010, 295 1, 816, 259	950 (2) 1,614 (3)	11, 97 1, 426, 60 7, 20 2, 734, 62 2, 941, 32
Total	(3)	1, 032, 826	(3)	4, 206, 336	(3)	7, 121, 74
Grand total	(3)	68, 565, 980	(3)	¹ 63, 469, 555	(3)	61, 769, 40

¹ Revised figure.

is the most important import classification both as to value and tonnage, was received from 12 countries and distributed as follows: Canada, 90.3 percent; Japan, 3.3 percent; Austria, 2.3 percent; West Germany, 1.7 percent; Netherlands and Italy, 0.9 percent each; Norway, 0.5 percent; and, United Kingdom, Taiwan, Switzerland, Mexico and Belgium, the remainder. Imports of crude aluminum increased during each succeeding quarter of the year, and receipts for December, the highest month, almost equaled those of the first quarter. All but 420 of the 5,150 tons from West Germany and Austria were received in the latter half of 1952. The average per-pound values of imports of crude from the major exporters were: Canada. 16.2 cents; Japan, 26.7 cents; Austria, 24.3 cents; West Germany, 18.3 cents; Netherlands, 18.0 cents; Italy, 29.2 cents; and Norway, 34.3 cents. Despite an increase of 2,500 tons in semifabricatedaluminum products from Canada, imports of this material dropped 20 percent from 1951. All of the other 1951 suppliers decreased their shipments to the United States; there were no shipments from France. Imports of semifabricated aluminum were as follows: Canada, 9,890 tons; United Kingdom, 3,084 tons; Italy, 1,017 tons; West Germany, 702 tons; Belgium, 475 tons and 5 other countries 339 tons. Highest imports of semifabrications were in December (3,550 tons), and 43 percent was received during the last quarter. Aluminum-scrap imports were about one-third of the 1951 receipts and came from 17 countries as compared to 32 in 1951. Only Canada supplied over 1,000 tons, shipping 3,839 tons to the United States in 1952; receipts from West Germany were 800 tons, Netherlands 688 tons, and Japan 565 tons. Almost half of the scrap was imported during the first quarter.

The reclassification of commodities exported from the United States resulted in major changes in the aluminum materials grouped under "other manufactures" as listed in the Minerals Yearbook. A large group of manufactured-aluminum articles, such as bolts, screws,

Leaves: 1950, 10,515,034; 1951, 7,790,455; 1952, 1,690,814; equivalent weight not recorded.
Quantity not recorded.

nails, builders' and furniture hardware, plumbing fixtures and fittings, prefabricated buildings, portable bridges, etc., which before 1952 were coded according to specific metal, were grouped by type of product in the 1952 classification and were not identifiable as aluminum manufactures. Changes were also made in the "crude and semicrude" classifications. The separate classification of "mill shapes" was dropped; "castings and forgings" and "primary forms n. e. c. (not elsewhere classified)" were added and absorbed part of the former class. This resulted in a discontinuity in the major groups as presented in the Minerals Yearbook; part of the material classified as "primary forms, n. e. c." in 1952 formerly appeared under "other manufactures," and part of the material formerly classified as "mill shapes" appeared in "other manufactures."

TABLE 8.—Aluminum exported from the United States, 1950-52, by classes [U. S. Department of Commerce]

[O. S. Dopartality of Commission]							
	1950		1951		1952		
Class	Short tons	Value	Short tons	Value	Short tons	Value	
Crude and semicrude: Ingots, slabs, and crude	662 800 19, 822 (2) 1, 952 (2) 23, 236	\$259, 408 93, 317 10, 676, 040 (2) 2, 316, 685 (2) 13, 345, 450	960 1, 460 10, 995 (2) 1, 402 (2) 14, 817	\$432, 832 130, 098 7, 544, 458 (2) 2, 052, 040 (2) 10, 159, 428	1, 388 1, 027 1 7, 847 352 (3) (4)	\$519, 071 163, 987 1 5, 853, 746 780, 199 (3) 66, 600	
Manufactures:							
Foil and leaf Powders and pastes, (aluminum and aluminum bronze) (aluminum con-	832 251	720, 885 246, 505	159 552	224, 602 536, 525	152 196	255, 941 227, 281	
tent). Table, kitchen, and hospital utensils_ Other manufactures	678 (4)	1, 319, 548 6, 520, 597	744 (4)	1, 656, 619 6, 682, 768	1 574 (4)	¹ 1, 191, 171 ¹ 3, 830, 017	
Total	(4)	8, 807, 535	(4)	9, 100, 514	(4)	1 5, 504, 410	
Grand total	(4)	22, 152, 985	(4)	19, 259, 942	(4)	12, 888, 013	

¹ Due to changes in items included in each classification, data are not strictly comparable with earlier

The United States major aluminum exports were semifabricated products, such as sheets, plates, bars, castings, forgings, and other mill shapes. Such material was sent to 74 countries, and 81 percent of the total tonnage went to 29 countries of the Western Hemisphere. Canada was the major importer of United States semifabricated aluminum, receiving 3,797 tons (46 percent); Mexico received 339 tons; 8 Central American countries 166 tons; 8 West Indies countries 958 tons, with 798 tons to Cuba; South American countries 1,374 tons, with 572 tons to Brazil and 495 tons to Venezuela. Fifteen countries in Europe received 294 tons, with 255 tons to Finland; 14 Asiatic countries 994 tons, with 553 tons to the Philippines, and 202 tons to Israel; Australia and Oceania 98 tons; and Africa 179 tons. Crude aluminum (pig, ingot, and slab) was exported to 14 countries; 75 percent of the tonnage was shipped to nations of the Western Hemisphere. Mexico received 887 tons and West Germany 234 tons.

years.

2 Not separately classified before Jan. 1, 1952.

3 Beginning Jan. 1, 1952, not separately classified.

4 Quantity not recorded.

Aluminum-base scrap was exported to Canada (531 tons), Haiti (15 tons), United Kingdom (423 tons), and West Germany (58 tons).

During 1952 exports of aluminum and aluminum manufacturers were under embargo or quota controls, depending upon the type of material, administered by the Office of International Trade, United States Department of Commerce. Imports were maintained at the highest levels possible, and a long-term import program from Canada was considered to augment the available supply. In February the Aluminum Co. of Canada (Alcan), at the request of the Office of Aluminum, Defense Production Administration, submitted a proposal to increase its exports of aluminum to the United States. proposal expired in April, and on its expiration a more limited proposal was submitted that expired on May 18, 1952. The first proposal covered 1952-59, with a guaranteed minimum delivery by Alcan on demand of 1,850,000 tons and a United States Government commitment to purchase 900,000 tons. The second proposal covered 1952-58 for minimum delivery of 1,110,000 tons and a commitment to purchase 450,000 tons. Availability of aluminum for export from Canada as stipulated in the proposals was presumably based on the total or second-stage expansion at Kitimat (see World Review-Canada), and large increases in tonnage exports to the United States were not possible before the latter part of 1954. The Joint Committee on Defense Production, Congress of the United States, held hearings on May 26 and June 2 and recommended that "any additional supply of aluminum necessary * * * be obtained when economically feasible from our domestic aluminum industry * * * it is desirable that the United States wait and see how the situation develops." 15 In addition to these proposals, Canada appeared to be making every effort to increase exports to the United States. In July and August emergency shipments of 4,350 tons were sent to help replace the loss of production at Alcoa's storm-damaged Massena, N. Y., plant, and imports were increased slightly during the third and fourth quarters by taking the metal from other world markets served by Aluminium, Ltd.

Part of the aluminum imported from Canada was obtained under a series of loan agreements with the United Kingdom and Canada that provided for diversions to the United States of Canadian aluminum scheduled for delivery to the United Kingdom. The United States in return was to increase allotments of finished steel, premium ingots, and iron and steel scrap to the United Kingdom. agreement was made in November 1951 and provided for delivery of 11,000 tons of aluminum during the first 5 months of 1952 and repayment during the fourth quarter of 1952. In January 1952 the total of diverted aluminum was increased to 27,500 tons (additional 16,500 tons), with repayment scheduled for the second and third quarters A third agreement in October provided for 22,000 additional tons and deferred payment of 16,500 tons of the metal received under the second agreement until 1954 or 1955. At the end of 1952 the total aluminum provided under the US-UK-Canada loan agreements stood at 49,500 tons, of which about 33,000 tons was shipped during 1952.

Duties on aluminum ingot, pig, and semifabrications were unchanged during 1952, being 1½ cents per pound for ingot and pig

¹⁶ Joint Committee on Defense Production, Congress of the United States, Aluminum Program: Defense Production Act, Progress Report 20, Senate Report, 1987 82d Cong., 2d sess., June 30, 1952.

133ALUMINUM

The suspension and 3 cents per pound on semifabricated aluminum. of the 1½ cents per pound duty on scrap aluminum, effective from October 1, 1950, to January 30, 1952 (Public Law 535, 82d Cong.), was renewed on July 14, 1951, to extend to June 30, 1953 (Public Law 869, 82d Cong.). A decision of the United States Customs Court ruled that "aluminum smelter scrap in ingot form" is entitled to free entry as metal scrap. This material was described as aluminum from electric reduction pots containing uncontrollable impurities, not meeting commercial specifications and not fit for use otherwise than for remelting and blending with other aluminum-bearing materials.¹⁶

TECHNOLOGY

The commercial techniques used in the United States for converting aluminum ores to metal were basically unchanged in 1952, although new plants being constructed under the expansion program were using reduction cells of new design and larger capacity; expanded capacity at older plants was realized by enlargement of pot sizes and by adding additional cells to potlines. There was a pronounced trend toward use of continuous, self-baking electrodes (Soderburg type) for new facilities. Aluminum fabrication and finishing technology, casting, forging, extruding, joining, anodizing, plating, and coating advanced during 1952, leading to greater mechanization, the forming of larger semifabricated shapes, and improved products and giving promise of new commercial applications not possible under established fabrication and use technology.

Research on electrolytic reduction techniques was aimed largely at development of methods for reducing electrical energy and anodecarbon consumption in the reduction cells. A new cell designed with an open top and using automatically controlled oscillating anodes was proposed, which was reported to require less energy.17 advantages of the cell appeared to be the numerous and complicated controls required and the added difficulties in relining and repairing such cells which would require dismantling of the more complex superstructure. A new process being developed by the British Columbia Aluminum Co. at a small plant at New Westminister near Vancouver, British Columbia, reportedly will reduce electrical power requirements up to 30 percent. Details of the process were not divulged, but it was stated that the "square"-wave, "long"-wave electrical energy was produced by a "magnaquanta converter" and reached the furnace at about 8 volts and 1,600 amperes.18 A study of the relationship between current efficiency, anode gas composition (CO₂ content), and anode carbon consumption showed that a considerable proportion of the carbon consumed was due to extraneous reactions. 19

The direct reduction of aluminum-bearing ores, such as various domestic clays, low-grade bauxites, and pyrophyllite, in an electric furnace was investigated by the Bureau of Mines to determine optimum ratios of charge materials, operational techniques, and products obtainable by carbothermic reduction. Part of the investigation was

Treasury Decisions, Case 55626, vol. 86, No. 25, June 21, 1951.
 Ferrand, M. Louis, Large, Modern Electrolytic Furnace for Manufacture of Aluminum: Private Prospectives Presented to National Inventors Council, U. S. Dept. of Commerce, March 1952.
 Steel, New Aluminum Process Disclosed: Vol. 130, No. 8, Feb. 25, 1952, p. 51.
 Schadinger, R., [The Consumption of Anode Carbon in the Industrial Production of Aluminum]: Allumino, vol. 21, No. 3, 1952, pp. 252-256.

made in cooperation with the Apex Smelting Co.; that company, as a result of this work, was constructing a small plant in Lane County, Ore., for producing aluminum-silicon master alloys. A patent on the production of aluminum-silicon alloys from graphitic shale was granted in which the graphite from the shale was to provide substantially all of the carbon required for reduction of the metal constituents in the By carbothermal reduction it was possible to produce aluminum-silicon alloys that would have commercial applications for blending with aluminum to produce specification alloys. It appeared feasible to add other metallic minerals, such as titanium, required in some aluminum alloys to the charge to obtain a variety of master The production of commercially pure aluminum by this method required methods for refining the mixed alloy. A number of metallic dissolution schemes for selective leaching of the aluminum have been tested. The zinc dissolution process was tested on a pilotplant scale in France, and a report on this operation stated that aluminum alloys containing controlled percentages of silicon or a

commercially pure aluminum could be produced.²¹

New alloys and clad sheet in production or under test during 1952 were C57S, XC54S, XC56S, SAM alloy (special aluminum mischmetal), SAP alloy (sintered aluminum powder), XA30 brazing sheet, and 75S thinclad. Aluminum Co. of America's C57S had properties that permitted an unusually bright "Alumilite" (anodized) finish and had good mechanical properties. This alloy held great promise as use for automobile trim and had been successfully used in electrical appliances. Alcoa XC54S and XC56S were being developed for heavy-duty structural uses, such as ship superstructure, truck bodies, and tanks; they were of the aluminum-magnesium group of alloys and were developed for improving welding characteristics. The Naval Research Laboratory described an aluminum-mischmetal alloy designated as SAM alloy that showed considerable promise for hightemperature use compared with the conventional age-hardening aluminum alloys that were seemingly limited in long-time use to temperatures of 600° F. or less. SAM alloy had inferior strength properties at room temperatures but was superior at temperatures of 600° C. and above. It could be handled by conventional molding and foundry techniques, except that higher casting temperatures were necessary.²² An alloy, SAP, produced from aluminum powder by sintering was developed by Aluminum Industrie A.-G. (AIAG) of Switzerland in about 1948 and was reported to have unusual strength and stability properties and a high resistance to creep at elevated temperatures. The properties of a number of SAP-type alloys were reported in 1952. The aluminum oxide in the sintered alloy resulted in improved physical properties, and it appeared that further development of such alloys might extend the temperatures at which aluminum alloys would be of service.23 XA30 brazing sheet was developed largely for use in liquid-gas heat exchangers, such as

²⁰ Lichty, Lyall J., assignor to Quebec Metallurgical Industries, Ltd., Toronto, Ontario, Canada, Production of Aluminum-Silicon Alloys: U. S. Patent 2,627,458, U. S. Patent Gaz., vol. 667, No. 1, Feb. 3,

duction of Aluminum-Silicon Alloys: U. S. Patent 2,627,458, U. S. Patent Gaz., vol. 667, No. 1, Feb. 3, 1953, p. 162.

¹ Menegoz, D., and Belon, P., Un Nouveau procédé de fabrication del'aluminium. Le Procédé Loevenstein: Jour. du four électrique et des industries électrochemique, No. 3, 1952, pp. 79-82.

² Loring, B. M., Baerand, W. H., Ackerlind, C. G., A Mischmetal Aluminum Alloy for Elevated Temperature Service: Naval Research Laboratory, Rept. 3871, Nov. 1, 1951.

³ Lyle, John P., Jr., Excellent Properties of Aluminum Powder Metallurgy: Metal Prog., vol. 62, No. 6, December 1952, pp. 109-111.

Gregory, E., and Grant, N. J., Aluminum-Powder Compacts Compared: Iron Age, vol. 170, No. 26, Dec. 25, 1952, pp. 69-73.

ALUMINUM 135

automobile radiators, and consisted of a sheet of 3S alloy core with C43S on one side for brazing and alclad on the other side for protection against the electrolytic action of the liquid.²⁴ Kaiser Aluminum & Chemical Co. announced the commercial production and availability of 75S Thinclad, which had a clad thickness of 1½ percent as compared to a conventional thickness of 4 percent.

In the semifabrication or forming segment of the aluminum industry, one of the most spectacular developments was design and initiation of construction of heavy extrusion and forging presses for the Air Force, Department of Defense. Techniques for forging and extruding aircraft outer skin panels, spars, and ribs in large sections had been investigated for a number of years by aluminum fabricators. aircraft manufacturers, and Air Force technicians. Experimental panels with a net projected area of 973 square inches and integral stiffening ribs were produced on an 18,000-ton forge press. Web thicknesses down to and below 0.09 inch were secured with minimum 1-inch-high ribs.25 In the heavy forge presses the light metals, aluminum and magnesium, flow under constant pressure to form The maximum size of forged shapes from the intricate shapes. new presses being constructed will be determined only when the presses are placed in operation. The first of the heavy extrusion presses under the Air Force program was scheduled to start operation about the middle of 1953 at Alcoa's Lafayette, Ind., works. this 13,200-ton press it was expected that ingots up to 291/4 inches in diameter and 70 inches long would be used compared to maximum extrusion ingots 18 inches in diameter and 44 inches long for presses in use in 1952. The press was 172 inches long, 53 feet wide, and 13 feet to 17 feet deep.²⁶ The forge presses were to be up to 10 stories high; the platen for a 30,000-ton forge press weighed 125 The heavy-press program required larger ingots than any in general use; and a 7,000-pound ingot 32 inches in diameter and 85 inches long, metallurgically and physically sound, was produced. using both mechanical and metallurgical innovations.²⁷

Continuous casting and rolling equipment for making redraw rod used in the manufacture of aluminum and copper wire and cable was simpler and operable on a smaller scale than previously economical. The Properzi process, imported from Italy, was used by the Anaconda Wire & Cable Co., Rome Cable Co., General Cable Co., Essex Wire Co., and Nichols Wire Co. Alcoa reportedly purchased such equipment for experimental purposes. This process permitted continuous casting of "Vee" bars for rolling to redraw rod at a rate of approximately 1,500 pounds per hour. The Apex Smelting Co. acquired rights to a patented continuous casting process for production of bar stock and forging stock. The process required no intermediate forming operations. Machines for continuous production of thin-walled shell molds were being designed and developed to speed production of castings by use of the "C" mold, developed in Germany

during World War II by Johannes Croning.

Light Metals Age, New Aluminum Brazing Sheet: Vol. 10, Nos. 7 and 8, August 1952, pp. 14-15.
 Papen, G. W., and Schroeder, W., Develop New Forging Techniques for Aircraft Parts: Iron Age, vol. 169, No. 6, Feb. 7, 1952, pp. 135-138.
 McCormick, T. F., Extruding Aluminum in Giant Presses: Modern Metals, vol. 8, No. 11, December 1500.

^{1952,} pp. 54-57.

1962, pp. 54-57.

Light Metals Age, Large Ingot Casting Speeds Heavy-Press Program: Vol. 10, Nos. 7 and 8, August

The soldering of aluminum had been inhibited by the tenacious oxide coating that forms on all aluminum shapes when exposed to the atmosphere, and the strong fluxes used to remove this coating were generally highly corrosive. "Ultrasonic" soldering, which breaks up the oxide coating, was proposed as one method for soldering aluminum without flux. The success of this method depended on the ability of ultrasonic vibrations to set up cavitation in the moltensolder covering. The theory of the cavitation destruction of oxide films and the use of portable soldering tools for accomplishing joining by this method were developed further.28 "Aluma-flux" for soldering aluminum was reported as a noncorrosive flux available as a nonhygroscopic powder. A new alloy, said to permit welding and soldering of aluminum and zinc base alloys without flux or special cleaning, was reported.29 The soldering of aluminum had not progressed to the stage where it could be done as easily as with steel, brass, copper, and tin; however, with proper materials and methods it was entirely practical to join many aluminum assemblies by this method. of parts was a critical factor because of the high thermal conductivity that made it difficult to bring large parts to required temperatures. Solders possessing a wide range of melting points were available for joining aluminum.³⁰

A dipping process for coating steel and other ferrous metals with aluminum, known as "Aldip," was announced by General Motors. The process was simple, practical, and inexpensive, the coating was rust resistant and, when diffused by heat treatment, a heat-resistant material was obtained.31 A further development in the "Alfin" process for bonding aluminum to ferrous metals was the use of "prodag," a dispersion of colloidal graphite in water, which prevented selected parts of the work piece from becoming coated. The National Bureau of Standards developed a practical process for electrodepositing aluminum at room temperatures. A solution of aluminum chloride and a metal hydride in ether gave dense ductile deposits, and the method was expected to find important applications in electroforming articles with close inside tolerances, as well as for protective coatings.³² Aluminum was successfully electroplated on steel from a fused aluminum chloride-sodium chloride salt bath at a temperature of 350° F. A smooth matte-type finish was produced at current densities of approximately 15 amperes per square foot.33 High-purity aluminum deposits were produced by Battelle Memorial Institute from a plating bath consisting of a dispersion of toluene in a toluene solution of the fusion product of ethyl pyridinium bromide and aluminum chloride. The major objective of Battelle's investigation was the forming of lightweight waveguides, and further testing of this system for electrodeposition of protective coatings was recommended.34

Neppiras, E. A., Ultrasonic Soldering: Metal Ind., vol. 81, No. 6, Aug. 8, 1952, pp. 103-106.

Materials and Methods, New Alloy for Welding and Soldering Aluminum- and Zinc-Base Metals:

Vol. 35, No. 2, February 1952, p. 136.

Birdsall, G. W., Materials and Procedures for Soldering Aluminum: Materials and Methods, vol. 35, No. 4, April 1952, pp. 116-118.

Patton, W. G., Complex Parts Easily Coated With Aluminum: Iron Age, vol. 169, No. 24, June 12, 1952, pp. 115-118.

Patton, W. G., Complex Parts Easily Coated With Aluminum: Iron Age, vol. 169, No. 24, June 12, 1952, pp. 115-118.
 Crouch, D. E., and Brenner, A., A Hydride Bath for Electrodeposition of Aluminum: Jour. Electrochem. Soc., vol. 99, No. 6, June 1952, p. 234.
 Collins, F. R., Aluminum Electroplated on Steel From Fused Salt Bath: Iron Age, vol. 169, No. 3, Jan. 17, 1952, pp. 100-101.
 Safranek, W. H., Schickner, W. C., and Fauxt, C. L., Electroforming Aluminum Waveguides Using Organo-Aluminum Plating Baths: Jour. Electrochem. Soc., vol. 99, No. 2, February 1952, p. 53.

A number of commercial procedures were available in 1952 for plating aluminum.³⁵ A process for plating aluminum with nickel, called "Alni-Clad" was announced by the Hamilton Standard Division of the United Aircraft Corp. and Bart Laboratories, Inc. A stressfree, hard, resilient, nickel surface was obtained by spraying the aluminum alloy with a synthetic rubber compound and, after drying, plating the piece to the desired thickness by conventional means. The plating process was developed for the Air Force and Navy to protect aircraft propeller blades from the erosion of sea spray on landings and takeoffs. 36 An etchant for preparing aluminum for nickel plating was developed in England that gave promise for a commercially practicable plating method. The laboratory studies indicated the desirability of tests on a pilot-plant scale. Further laboratory tests were planned to evaluate the corrosion resistance of specimens plated by the new process against others plated by the sodium zincate process. 37 A new caustic etching compound, "Diversey Aluminux" virtually eliminated sludge and scale formation in caustic etching tanks. The dissolved aluminum remained in solution as sodium aluminate with resultant lower "down time," more consistent finishes were reported.³⁸ Hard coatings for aluminum were being licensed by Alcoa, which had also acquired patent rights to the Martin hardcoating process. Anodic oxide coatings, which form an integral part of the metal, had high resistance to abrasion and corrosion; they had high dielectric strengths and were harder, thicker, and denser than the anodized coatings ordinarily employed for decorative purposes. Aluminum alloys with hard oxide coatings were used or being considered as replacements in aircraft for parts produced from heavier metals of higher inherent hardness.³⁹ Numerous inorganic finishes were being developed and improved.

World Review

World production of primary aluminum increased for the sixth successive year in 1952 and exceeded 2 million metric tons for the first time in history. Expansion plans in progress and proposed, and new sites being investigated, in many countries indicated that aluminum production would continue to increase for a number of years. A slump in the market for aluminum in Europe and the Far Eastern area during the last half of 1952 indicated that aluminum supply was catching up with demand. There was a trend toward lower prices, particularly for exported metal, and the investigation of new production areas, such as West Africa, Brazil, Borneo, New Guinea, and the Philippines, was based largely on the realization that lower production costs were required to realize expanded consumption.

The United States and Canada continued as the leading producers accounting for 64 percent of world production. European countries (exclusive of U. S. S. R. and Hungary) contributed 20.5 percent, Ù. S. S. R. and Hungary 13 percent, and the Asiatic area about 2.5 percent. Only 5 countries—United States, Canada, U.S.S.R., France, and West Germany-produced over 100,000 tons. The largest per-

^{**} O'Keefe, Philip, Electroplated Coatings on Light Metals: Materials and Methods, vol. 35, No. 6, June 1952, pp. 119-130.

** Steel, Nickel-Aluminum Bond Succeeds: Vol. 130, No. 13, Mar. 31, 1952, p. 85.

** Thomason, A. G., Plating Aluminum With Nickel: Metallurgia, vol. 44, December 1951, pp. 308-310.

** Stell, R. J., Caustic Etch Treats Aluminum Without Sludge or Scale: Iron Age, vol. 169, No. 14, April 2082, p. 124, Page 1952, pp. 308-310. 3, 1952, p. 138.

Note: The property of the pr

centage increases over 1951 were by Germany and Austria, where plants that had been partly destroyed during World War II and later prohibited from operating by decree of the occupation authorities were placed in operation.

TABLE 9.—World production of aluminum, by countries, 1948-52, in metric tons 2

Country 1	1948	1949	1950	1951	1952
AustriaBrazil	13, 319	14, 835	17, 988	26, 380	36, 712
Canada	333,007	335, 172	360, 043	403 405, 600	1,085
France	63 701	54, 140	60, 715	91, 080	453, 370 106, 087
Germany, West	7, 306	28, 848	27, 840	74, 136	100, 037
Hungary	3 9, 400	3 14, 000	(4)	(4)	(4)
India	3, 421	3, 547	`á, 650	3, 960	3,600
Italy	33 081	25, 675	37, 070	49, 750	52, 830
Japan Norway	6, 965	21, 222	24, 764	36, 900	42, 661
Norway	31,041	35, 697	47, 056	50, 261	50, 847
Spain	523	1, 212	2, 167	4, 158	4, 116
Sweden (includes alloys) Switzerland	3, 279	3, 929	4,038	6, 720	8, 040
Taiwan (Formosa)	19, 200 2, 509	21,600	19, 200	27,000	29, 500
U. S. S. R. 3	140,000	1, 312 165, 000	1, 761 190, 000	2, 598	3, 856
United Kingdom	30, 510	30, 832	29, 941	200, 000 28, 170	250, 000
United States	565, 587	547, 449	651, 920	759, 202	28, 455
Yugoslavia	1,884	2, 493	1, 931	2, 828	850, 327 2, 563
Total (estimate)	1, 265, 000	1, 305, 000	1, 495, 000	1, 790, 000	2, 050, 000

Aluminum is also produced in East Germany, but production data are not available; estimate by author of chapter included in total

Australia.—The construction of a primary-aluminum plant at Bell Bay on the Tamar River in Tasmania was promoted during 1952 by the Commonwealth Parliament's passage of the "Aluminum Industry Act, 1952" (operative on a date to be fixed by proclamation), which increased the Commonwealth Government's contribution to the project by A£4,250,000 (\$9,520,000). The plant was constructed under the administration of the Australian Aluminum Production Commission, which was established in 1945 pursuant to an agreement between the Commonwealth and Tasmanian Governments whereby each would contribute A£1,500,000 (\$3,360,000) to erection of a plant for the production of aluminum ingot. The original estimate was found inadequate for finishing the plant scheduled for an annual capacity of 13,000 metric tons of ingot. The Government of Tasmania stated that it could not contribute any more money; and the additional funds considered necessary to finish the plant were to be supplied by the Commonwealth, with changes in the Commission representation to favor the Commonwealth Government.

The Seventh Annual Report 40 of the Commission stated that design of equipment was virtually completed, deliveries of equipment were delayed beyond scheduled dates, and when practicable British contracts were canceled and arrangements made for local manufacturers to supply from steel stocks available within Australia. ery of all steel frameworks for buildings was expected by the end of 1952.

This table incorporates a number of revisions of data published in previous aluminum chapters.

⁴ Data not available; estimate by author of chapter included in total.

⁴⁰ Johnston, L. F., Seventh Annual Report of the Australian Aluminum Production Commission for Year 1st July 1951, to 30th June 1952: Printed and published by the Government of the Commonwealth of Australia, Commonwealth Government Printer, Canberra, No. 127 (Group F)—F.4368, price 9d.

ALUMINUM 139

The raw materials—cryolite, pitch, anthracite, and fluorides (CaF₂, NaF, AlF₃)—were on order from Commonwealth or United Kingdom suppliers. No Australian supply of petroleum coke had been located. The idle Glen Davis shale-oil refinery, in New South Wales, which had been suggested for transfer to Bell Bay, was not available to the Commission, and petroleum coke had been ordered from the United States for delivery early in 1953. Although assurances had been received from the Tasmanian Government that supplies of water and electricity would be available as required, debate on the Aluminum Industry Act in the Commonwealth Parliament indicated that the critical lack of electrical power in Tasmania could not be overcome by the scheduled completion date for the aluminum plant in late 1953 or early 1954.

Austria.—Aluminum production in Austria increased for the sixth successive year, and the 1952 production (37,000 metric tons) was exceeded only in the World War II years of 1943 and 1944. The increases were due largely to better hydroelectric power and fuel supplies at the two reduction plants, at Ranshofen and Lend (Salzberg). Production at Ranshofen was approximately 31,000 tons and at Lend 6,000 tons. At Ranshofen, all 5 potlines installed at the plant (annual capacity, 50,000 tons) were in operation during part of 1952 for the first time since World War II. The maximum monthly production of 4,996 tons was obtained in July. Construction of the new Rauris-Kitzblock power plant of the Lend works was tempo-

rarily suspended because of financial difficulties.

Austria has been reported as having one of the largest potential hydropower sources in Europe. The development of these potentials could result in more efficient utilization of reduction facilities; however, Austria contained no known metal-grade bauxite deposits and no alumina-production facilities; all calcined alumina used in metal production was imported.

About one-third of the Austrian aluminum pig and ingot production was exported, and aluminum producers were sponsoring promotional procedures and tax-relief measures to meet the increasing competition

from other aluminum-producing countries.

The domestic price for aluminum was at the comparatively low

level of 1,170 shillings per 100 kilograms (17.4 cents per pound).

The aluminum-fabrication plant at Ranshofen increased its output of sheet, wire, etc., to 14,000 tons, or 20 percent more than in 1951. Approximately one-third of the semifabrications produced were

exported to 36 countries.

Brazil.—A reduction plant of 2,200 tons annual capacity was being operated by Electroquimica Brasileira at Ouro Preto, Minas Gerais, during 1952, and a second smelter was being constructed at Aluminio, near Sorocaba, 40 miles from the city of São Paulo, by the Companhia Brasileira de Aluminio (C. B. A.). The C. B. A. anticipated production early in 1953 at a rate of 5,000 metric tons of aluminum annually and had programmed an expansion to 10,000 annual tons in 1954, 15,000 tons by 1957, 20,000 tons by 1960, and 25,000 tons by 1962. The ultimate goal, tentatively scheduled for 1965 was 50,000 annual tons. Initial installations were to include an alumina plant, a reduction plant, and an electrode-manufacturing plant. Fabrication

⁴¹ Konigshofer, Dr. E., The Hydroelectric Potentialities of Austria: Engineering, vol. 173, No. 4486, Jan. 18, 1952.

facilities, including a foundry, extrusion and rolling mill, foil mill a wire-drawing and electric cable plant, and an aluminum products and utensil plant, were also being constructed. A hydroelectric project was started in March on the Juquia River, with a planned initial output of 50,000 kw., which was to be increased to 180,000 kw. Bauxite from the Poços de Caldas deposits 225 miles away was to be used for alumina production. Brazilian aluminum consumption was about 16,000 tons in 1951; and, barring increases, the planned production would make Brazil independent of imports by 1954 or 1955.

The Reynolds Metals Co. (United States firm), submitted a proposal to the Brazilian Government for construction of a 100,000-ton-per-year aluminum plant near Paulo Afonso Falls, using power from the Paulo

Afonso hydroelectric project that was under development.

Canada.—Canada increased its production in 1952 at about the same rate as the United States, setting an alltime production record. The increased production was obtained by virtue of a better power supply, absence of strikes, and operation of new reduction facilities at the Isle Maligne plant and marked the sixth successive year in which Canadian production increased. All of the metal was produced by one company, Aluminum Co. of Canada (Alcan), a subsidiary of Aluminium, Ltd. (Alted), at four plants in the Province of Quebec. The two new potlines at Isle Maligne had a total capacity of 45,000 metric tons; the first line was placed in operation in May and the

second in September.

Canada has had reduction-plant capacity in excess of power supply for aluminum reduction since World War II; and the expansion of production in Quebec was, in addition to the increased smelting capacity at Isle Maligne, concerned with the development of additional hydrogenerating facilities. Two power plants were being constructed on the Peribonka River north of Lake St. Charles at Chute du Diable and Chute à la Savanne. Each plant was designed for five 54,000 hp. (40,000-kw.) generators. At Chute du Diable the installation was completed in December; at Chute à la Savanne the first generator was ready for operation at the end of the year. The generating capacity owned by Alted and subsidiary companies in Quebec, including the 2 new plants, was 2,580,000 hp. (1,925,000 kw.) out of a total capacity for the Province of 6,755,000 hp. (5,035,000 This hydroelectric capacity was sufficient to provide power for full utilization of the 465,000 tons of smelting capacity at Arvida, Isle Maligne, and Shawinigan Falls. Power for the fourth plant at Beauharnois (30,000 tons annual capacity) was purchased from the Quebec Hydroelectric Commission.

The Nechako-Kemano-Kitimat project in British Columbia, which included creation of a reservoir area 150 miles long, the driving of tunnels to a powerhouse being constructed at Kemano, a 50-mile transmission line to Kitimat, and smelter, dock, and townsite at Kitimat, was proceeding according to schedule. The Kenney Dam, 1,550 feet long at the crest and 320 feet high, which sealed the eastern watershed, was completed and the diversion tunnel closed in October. The power tunnels and powerhouse excavation were about one-half completed, the transmission line right-of-way over a 5,300-foot mountain pass had been cleared, and a part of the towers was constructed during 1952. At Kitimat port facilities and smelter structures were being constructed. This British Columbia development

was engineered for an ultimate aluminum-production capacity of Although the capacity authorized during 500,000 tons per year. 1952 for the aluminum reduction plant and power-generation facilities provided for only 83,000 tons of aluminum annually, additional smelting capacity of approximately 180,000 tons annually would be possible without substantial enlargement of the hydraulic works or transmission lines.

Canadian industry consumed 18 percent of the ingot produced in 1952; the remainder was exported, the major part going to the United Kingdom and the United States. Canada has for many years been the major world exporter of ingot aluminum. Shipments of aluminum in ingot form by Aluminium, Ltd., during the past 5

vears were as follows:

	1948	1949	1950	1951	1952
United Kingdom	145, 500	146, 500	133, 000	181, 600	234, 300
	79, 800	66, 900	147, 500	93, 700	104, 100
	58, 200	52, 500	60, 000	78, 500	80, 500
	70, 900	48, 100	37, 800	48, 900	35, 600

The United Kingdom Government had first call on 200,000 tons of Alcan's annual output until 1954 and 250,000 tons annually from 1954 to 1971 under agreements in which the United Kingdom Ministry of Supply advanced funds for expanding ingot capacity. In 1952 part of the aluminum scheduled for delivery to the United Kingdom was diverted to the United States (see Foreign Trade).

Aluminium, Ltd., owned or had an interest in bauxite mines, alumina plants, and ingot production and fabricating facilities throughout the world, including United Kingdom, France, Germany, Norway, Sweden, Italy, Netherlands, Denmark, Greece, India, Japan, Australia, British Guiana, Brazil, Mexico, Jamaica, Union of South Africa and West Africa.

The price of aluminum ingot (99+ percent Al) in Canada was 18.0 cents per pound. Government controls on semifabricated aluminum were lifted in June; however, controls similar to those in force in the United States remained on the distribution and use of

primary ingot throughout 1952.

France.—Primary aluminum production in France in 1952 was 106,100 tons, surpassing the alltime high attained in 1951 by 15,000 metric tons and almost double the 1949 production. The increased production was obtained from established reduction plants of the Compagnie de Produits Chimiques et Électrométallurgiques Alais, Froges et Camargue (Pechiney) and the Société d'Électrochimie, d'Électrométallurgie et des Acieries Électriques d'Ugine (Ugine). Pechiney was the major producer and supplied 82 percent of the The major factors responsible for the increased production were modernization of plant facilities and an improved electrical power supply.

The Saint Jean de Maurienne plant of Pechiney was equipped with advanced-type 100,000-ampere reduction cells, making it one of the most up-to-date in the world, with resulting increased plant capacity. The modernization program was to continue at other plants as warranted by improvements in power supplied and by distribution of labor. The modernization program was extended to the fabrication stage, and a new plant at Issoire (Puy-de-Dôme) capable of producing 50,000 tons of aluminum shapes per year was completed and reported to be the most modern fabrication plant in Europe. The power-generating facilities of France were nationalized in 1946, and the Government undertook to provide the aluminum industry with power throughout the year. The use of higher cost thermal power was required during the winter months, but the success of the Government's power program is reflected in the increased production of aluminum in recent years.⁴²

The 19 francs per kilogram (2.5 cents per pound) premium that had been placed on primary aluminum for domestic consumption to cover higher thermal power costs during the winter was reduced by 9 francs in April, giving a price of 191 francs per kilogram (24.8 cents per pound). Effective June 2, the French domestic base price was

reduced to 180 francs per kilogram (23.3 cents per pound).

At the end of 1952 it was reported that French aluminum producers were able to resume exports to traditional markets because of an improved supply position. A large surplus for export was not promising, however, as domestic consumption, estimated at between 100,000 and 110,000 tons, was expected to increase at a greater rate than production. In addition to increased use in established markets, a process for extrusion sheathing of insulated cable, evolved and patented by French technicians, was expected to require additional aluminum.⁴³

French Guinea.—Further large-scale increases in aluminum production in France were limited by inadequate hydroelectric power conditions and the French aluminum industry was actively studying French Guinea (West Africa) as a location for a reduction plant. Large, rich deposits of bauxite were available, and their local exploitation depended on an electrical power supply. Another African project by French interests involved the mining of calcium and aluminum phosphates in Thies, with shipments to begin as soon as phosphate-transport facilities were completed at Dakar. A special process for recovering aluminum from these phosphates was developed by Pechiney and licensed to a number of foreign firms for exploitation.⁴⁴

Germany.—Production of aluminum in Western Germany, although rising steadily since the middle of 1950, was not sufficient to meet the demands of German consumers throughout most of 1952. Imports of 3,000 metric tons from Canada and the 100,000 tons of domestic primary plus an estimated 40,000 tons of secondary metal were consumed in Germany. A large part of this consumption was, however, exported as semifabricated shapes and finished aluminum articles. During the latter part of the year, increasing primary production, which increased from 5,600 tons in January to 9,700 in October, the higher prices for German aluminum products as compared to Canadian and United Kingdom prices for similar articles, and general softening of the European aluminum market contributed to a near balance in demand and supply. The high prices of German aluminum, which

Maurice Moyal, French Aluminum Industry: Metals Ind., vol. 81, No. 10, Sept. 5, 1952, pp. 191–193.
 American Metal Market, vol. 59, No. 236, Dec. 10, 1952, p. 11.
 American Metal Market, vol. 59, No. 71, Apr. 11, 1952, p. 10.

ALUMINUM 143

were of little importance when supplies were scarce in relation to

demand, were increasingly hampering the export business.

A continual improvement in the availability of electrical power promoted the repair and rebuilding of reduction facilities that had been idle since the end of World War II. A third potline at the Luenen (Westphalia) plant was placed in operation during the early part of 1952 and increased production rates at this plant by approximately 25 percent. Further increases could have been realized with an increased power supply. The number of operating electrolytic cells at the Toeging (Bavaria) plant was increased from 90 to 162. The Erftwerke (Rhineland) plant, which was dismantled, was being rebuilt, and production at an annual rate of 10,000 to 12,000 tons (about half the prewar capacity) was anticipated in the latter part of 1953.

The price of primary aluminum was reported as 232 DM per 100

kilograms (25.1 cents per pound) in October.

Aluminum produced in Germany was scheduled for delivery to the United States National Stockpile under a United States Mutual Security Agency contract with Eleusis Bauxite Mines Co. of Greece. Under the contract Greek bauxite was to be delivered to Germany for conversion to metal, and 100,000 tons of aluminum was to be shipped to the United States as repayment for advances made to the

mining company.45

Gold Coast.—Although primary aluminum has never been produced on the African Continent in commercial quantities, Gold Coast, with the large hydroelectric power potentials of the Volta River and bauxite deposits containing reserves estimated at 230 million metric tons, had been proposed as an aluminum-production site as early as 1924. Bauxite production from these deposits started in 1941 and totaled 162,685 tons in 1943. In 1951 the British Aluminium Co. and Aluminium, Ltd. (Canadian), reported that production of aluminium.

num in Gold Coast was technically and economically sound.

In November 1952, a White Paper 46 entitled the "Volta River Aluminium Scheme" was published and presented to the British This paper was the result of exploratory discussions Parliament. between representatives of the United Kingdom and Gold Coast Governments, Aluminium, Ltd., and the British Aluminium Co. A partnership of Government and private enterprise was proposed in which private enterprise would be primarily responsible for aluminum production, mining, alumina production, and smelting, and the two Governments for the hydroelectric development and public works and services, ports, railroads, etc. The proposal called for construction of a dam and power station at Ajena with a calculated output of 564,000 kw. of firm electric power, an alumina plant and smelter with an annual capacity of 210,000 tons of aluminum at Kpong, 12 miles downstream, a new port at Tema, new roads and railways as required for transportation of ore and metal, and townships that would come into being as a result of the new industry. The development would take place in 3 stages; the first stage 80,000 tons of aluminum capacity annually, the second 120,000 tons, and the final stage 210,000 tons.

⁴⁸ Daily Metal Reporter, vol. 52, No. 60, Mar. 27, 1952, pp. 1-8.
48 Her Majesty's Stationery Office (London), Volta River Aluminium Scheme: Cmd 8702, November 1952, 22 pp.

estimated capital costs were: For 80,000-ton capacity annually—£100,500,000 (\$281,400,000), distributed among the participants as follows: United Kingdom Government 43 percent, Gold Coast Government and private investors 36 percent, and aluminum companies 21 percent; for 120,000 tons capacity annually—£114,500,000 (\$320,600,000), with the United Kingdom Government providing 46 percent, Gold Coast Government and private investors 32 percent, and aluminum companies 22 percent; for 210,000 tons capacity annually—£144,000,000 (\$403,200,000), with the United Kingdom Government providing 39 percent, Gold Coast and private investors 27 to 31 percent, and aluminum companies 34 to 30 percent.

In return for the United Kingdom Government's investment, the smelter company would be obligated for 30 years from initial production to offer at least 75 percent of the output to United Kingdom buyers. Acceptance of this scheme would provide a long-sought large supply of aluminum from the Sterling area and make the United Kingdom less dependent on Canadian aluminum. This was a major factor that provided impetus to the Volta River Aluminium Scheme.

Hungary.—The only information available in 1952 that presented statistical data on production of aluminum in Hungary stated that in 1951 production of aluminum was 20 times greater than in 1938. This would make 1951 production 30,000 metric tons.⁴⁷ However, the few reports concerning the Hungarian aluminum industry usually did not differentiate between primary and secondary production, and in some cases alumina- and aluminum-plant locations appeared to be used interchangeably. Thus, it was difficult to analyze the Hungarian aluminum situation. A new alumina plant was completed at Almasfuzito in 1951, and some reports also placed a new reduction plant at this location. Another "new plant" was scheduled for construction at Inota, where a large generating station began operating in late 1951. The nearby electrical power supply indicated that this plant would be for production of primary aluminum.

India.—Expansion of primary aluminum production capacity of India has been proposed ever since the establishment of this industry during World War II. In 1952 two small reduction plants with an annual capacity of approximately 2,500 metric tons each were in operation, but an inadequate electrical power supply hampered

production at both plants.

The Government of India Planning Commission fixed the expansion program for primary-aluminum production during the remaining 4 years of the First Five-Year Plan at 20,000 tons per year from a projected capacity of 25,000 tons. The increased capacity was to be obtained by doubling the capacity of established plants and by erecting a new 15,000-ton-per-year plant near the planned hydroelectric power installations in the Hirakud (Orissa) area. The Government of India further sanctioned proposals to establish thereafter an additional unit of 15,000 tons annually. Expansion of the semifabricating industry was also part of the plan but necessarily had to await completion of some of the major power schemes. The achievement of such an expansion goal presented a number of difficulties. The plant of the Indian Aluminum Co. at Alwaye (Trav-

⁴⁷ Metal Bulletin, No. 3719, Aug. 22, 1952, p. 19.

ALUMINUM 145

ancore) was being expanded, and foundations were completed for a new potline; however, it was thought unlikely that hydroelectric power for the new facilities would be available for several years. At the plant of the Aluminum Corp. of India, Ltd., at Asansol (West Bengal), the thermal power supply for the equipped capacity was being improved by installation of a third boiler. High production costs, lack of semifabrication facilities, and the low and unstable

purchasing power of the country were also inhibiting factors.

The long-term future of the Indian aluminum industry, however, was promising. Undeveloped hydroelectric power sites remained for exploitation. The Damodar (Bihar), Jog (Mysore), and Hirakud (Orissa) schemes offered promise for low-cost electrical energy. The cost of other contributing factors, such as indigenous products, particularly petroleum coke, transportation costs for materials required from abroad, and domestic transportation costs might be reduced, with a general rise in industrial activity. The consumption of aluminum in India was approximately four times the primary production, with about two-thirds going into the manufacture of utensils; other markets were relatively undeveloped. High tariffs and Government subsidies were in force to protect the Indian producers. 48

Italy.—Production of primary aluminum in Italy continued to increase during 1952 due largely to plant modernization and a good power supply. The price of primary aluminum remained at 365 lire per kilogram (24.7 cents per pound) throughout the year. In August the Italian Ministry of Foreign Supply announced that it would permit export from Italy of 1,500 metric tons of aluminum semimanufactures provided that (a) payments were obtained in free United States dollars, Canadian dollars, or Swiss francs and (b)

payment from the sterling area was obtained in pounds sterling. Japan.—The production of primary aluminum in Japan increased about 16 percent over 1951 despite a sharp decline in exports during the middle of the year. Production was 3,926 metric tons in May, a postwar high. The ex mill price of 99.5 percent aluminum was 235,000 to 240,000 yen per ton (30 cents per pound) at the beginning of 1952 and was standardized to 235,000 yen per ton for 99.3 to 99.7 percent aluminum and 225,000 yen per ton for aluminum of less than 99.3 percent quality in July. A discount of 10,000 yen per ton was granted on aluminum sold to rolling mills for the specific purpose of selling rolled aluminum sheets for export. Export quotations were approximately 38 cents per pound in January and declined steadily during the year; in October export quotations were as low as 26 cents per pound. The Japanese aluminum industry was actively seeking new markets during the latter half of 1952. In May the terms of a proposed agreement between Aluminium, Ltd., of Canada and the Japanese Light Metals Co. were announced under which Alted would purchase 50 percent of the shares of the Japanese firm for \$2,000,000 and supply \$1,800,000 in additional capital in the form of a long-term loan. The Canadian company was also to provide technical assistance and to ship bauxite from its holdings in India or

⁴⁸ Light Metals, The Industry in the World Today: Vol. 55, No. 175, September-October 1952, pp. 302, 303, 336, 337.

Malaya. The agreement was opposed by the Japanese Finance Ministry until October, when it was finally approved, with minor amendments, by the Japanese Government. The Canadian company agreed not to acquire over one-half interest in the Japanese company or to inject itself into management policies. It was anticipated that the import price of raw materials, chiefly bauxite, would be lowered and that this, combined with technological improvements and increased output, would result in lower prices in aluminum for export. Japan had a highly developed and integrated aluminum industry during World War II, with an annual capacity of 119,700 tons on the home islands. In 1949–50 the Government initiated a hydroelectric power-development program, and there were indications that Japan could become a significant exporter, particularly to eastern countries, if production costs could be lowered.

Norway.—Production of aluminum in Norway remained at about 50.000 metric tons in 1952 and was almost at capacity throughout the Norway's aluminum requirements are less than one-third of its production, and the major part was exported to other European countries. Despite a total lack of high-grade aluminum ore and the necessity for importing all of its alumina requirements, Norway maintained a highly competitive aluminum industry as compared to other European producers because of its large, low-cost hydro-The aluminum-production capacity of this electric resources. country was to be increased approximately 40 percent in 1955, when a new 40,000 ton-per-year smelter was scheduled for completion at Sunndalsora. Construction on the Sunndalsora plant was begun late in 1951; production from 1 of 2 potlines was expected late in 1954 and from the other early in 1955. Many improved features, learned from construction and operation of the Aardal plant, were to be introduced and were expected to reduce costs appreciably. The electrolytic cells were to draw double the power of those at Aardal, and alumina was to be transported in bulk instead of in sacks. Management estimated that costs of production would be just over \$280 per ton (12.7 cents per pound). Six thousand tons of construction steel was ordered from Germany. Converters and transformers were to be manufactured in Germany and Norway, and a 10-year contract for the supply of alumina had been negotiated with Aluminium, Ltd., of Canada.

Spain.—Spanish production of primary aluminum in 1952 was about the same as in 1951. Production was obtained from the Frenchowned (Pechiney) plant at Savinanigo, Huesca Province, and from the Government-controlled plant at Valladolid. Although the Savinanigo plant had a rated annual capacity of 2,000 metric tons, production had never exceeded 1,300 tons because of the necessity for closing the factory during the winter months when hydroelectric power, generated from water originating in the Pyrenees glaciers, was not available. The Valladolid plant began production in 1950 with an initial capacity of 2,500 tons per year; this plant was being expanded to 5,000 tons per year, and further expansion to 10,000 annual tons was planned. It was reported that a new plant was being constructed at Tarrogona. A new semifabrication plant was to be constructed by Aluminio Iberico, S. A., and Manufactureras Metalicas Madrilenas at Alicante. Initial construction was to begin in September 1952, and operation of at least 1 section of the factory was anticipated within 18 months. Initial capacity was to be 8,000 tons of aluminum products per year. Later expansions to an annual total of 40,000 tons was planned. Plant operators were to be trained in a Canadian factory.

Sweden.—Increases in Swedish aluminum production were obtained from an expansion program that started in 1950. The annual productive capacity at the conclusion of the program in 1954 will be about 10,000 metric tons. The Swedish Metallverken in Vaesteraas, Central Sweden, extended its wire-rolling capacity following increased

demands for its products.

Switzerland.—Production of primary aluminum in Switzerland was maintained at approximate capacity throughout 1952. The production was from two companies—Société Anonyme pour l'Industrie de l'Aluminium at Chippis (Volais Canton) produced at its capacity of 25,000 metric tons and Usine d'Aluminium Martigny, S. A., at Martigny-Ville (Valais Canton) produced 4,500 tons (estimated capacity, 5,000 tons). Imports of pig and ingot were around 5,000 Alumina for the reduction plants was imported from France, Italy, and Germany, petroleum coke for the Chippis plant was imported from the United States, and baked electrodes for the Martigny plant came from Italy. The export demand for semifabricated products, of which Switzerland is a large exporter, decreased during the latter part of the year, and most aluminum fabricators were compelled to reduce their output 25 percent during the last 2 months compared to the same period of 1951 and to return to 2- instead of 3-shift work. In May, when demand was at a high level, the representative price of pure aluminum, delivered Swiss frontier, was 250 Swiss francs per 100 kilograms (26.0 cents per pound).

Taiwan (Formosa).—Production by the Taiwan Aluminum Corp. (the only producer) was hampered by power shortages and the necessity for importing raw materials and spare parts for machinery and equipment. Available power and raw materials permitted the production of 3,856 metric tons of ingot from a plant with an annual capacity

rated at 8,000 tons.

The 800 tons of aluminum ingot exported was valued at NT

\$7,050,000 (25.7 cents per pound).
United Kingdom.—The United Kingdom's production of primary aluminum is small in relation to consumption. In 1952 primaryaluminum shipments from Government holdings were 223,900 metric tons, and deliveries of secondary metal were 112,500 tons (primarymetal content 15,900 tons). Imports were 237,900 tons (Canada shipped 234,300 tons to the United Kingdom in 1952), and production was 28,455 tons. All primary aluminum produced in and imported into the United Kingdom was controlled by the British Ministry of This department controlled the distribution and prices. The demand for aluminum, which exceeded supply throughout 1951 and the first half of 1952, weakened in the latter part of the year; deliveries of virgin metal were about 22,000 tons in May and 11,000 tons in December. In July the Ministry of Supply informed the aluminum industry that large quantities of virgin metal would be made available for direct and indirect export. Effective July 1, the price below which general manufactures of aluminum were restricted

was raised from £180 to £220 per ton (22.5 to 27.5 cents per pound). The base price of primary aluminum (99.0 to 99.5 percent) was £148 per ton (18.5 cents per pound) on January 1, 1952 and was raised in April to £154 per ton and in July to £157. Further increases resulted in a £166-per-ton (20.8-cents-per-pound) price on December 30. Scrap-aluminum ceiling prices were increased in April and again in July. On November 1 scrap price controls were removed; and low grades of scrap, such as borings and turnings, were moving slowly.

U. S. S. R.—In the Soviet Union's fifth Five-Year Plan—for 1951—55—the production goal for aluminum was set at about 2.6 times the 1950 output, or about 500,000 metric tons. The only clue given as to the location of future aluminum-production facilities was the directives that called for development of hydroelectric power in the Angara River area of Siberia. It was estimated that 50 to 60 percent of the 1952 Soviet aluminum production came from 2 plants in the Urals, 1 at Krasnoturinsh in the northern Urals and the other at Kamensk-Uralsky, southeast of Sverloush in the southern Urals.

Electric power for both plants was obtained from steam.49

Yugoslavia.—Production of primary aluminum at Yugoslavia's only producing smelter, Lozovac, Dalmatia, decreased slightly (265 metric tons and 9 percent) from 1951. Construction on the alumina and aluminum plant at Strnisce, Dalmatia, near the Austrian border continued during 1952. Alumina facilities were about 75 percent complete, the main items still needed being motors and pumps; the major construction work left to be done was erection of the sintering equipment. The aluminum smelter was about one-third complete; the buildings were virtually complete; and the steel framework for the furnaces of 1 of 4 potlines was largely in place, but only 1 reduction cell had been constructed. Rectifiers for 30,000 tons of capacity had been installed. Most of the chemical equipment was of German origin, the boilers for the power plant came from Austria, and electric furnaces (reduction cells) were to be shipped from Norway. The Strnisce plant was planned for an ultimate capacity of 30,000 tons; initial annual capacity was to be 15,000 tons. It was estimated that about 1 year would be required to complete the alumina plant and an additional 6 months for the reduction plant. The installation of 4,500 tons of annual reduction capacity was also planned for Razina near the present plant at Lozovac. (The Razina plant was also described as an expansion of the Lozovac plant.)

Yugoslavia thus plans to produce 22,500 tons of primary aluminum by 1954 and to further raise output to 37,500 tons by 1956 (capacity operation). The production of semifabricated (rolled) aluminum products was also to be expanded to 18,000 tons per year in 1954 and 23,000 tons by 1956 through construction of a 15,000 ton-per-year rolling mill at Razina and conversion of a mill at Slovenska Bistrica to aluminum. The Realization of this expansion program would make Yugoslavia a net exporter of both primary aluminum and semi-

fabricated-aluminum products.

 ⁴⁹ American Metal Market, Russia Embarking on Vast Expansion of Aluminum Capacity: Vol. 59,
 No. 179, Sept. 16, 1952, p. 10.
 Mining Journal (London), Yugoslavia Aluminum Industry: Vol. 239, No. 6104, Aug. 15, 1954, p. 174.

Antimony

By Abbott Renick 1 and E. Virginia Wright 2

STIMATED world production of 50,700 short tons of antimony in 1952 was 17,600 tons less than in 1951 and increased 28 percent

over the 1943-47 average (39,700 tons).

Demand for antimony in the United States decreased in 1952, and there was a large increase in available supplies of foreign antimony. Following suspension of operations at the Yellow Pine mine at Stibnite, Idaho, owned and operated by the Bradley Mining Co., domestic mine production dropped to a negligible level. Compared with 1951 domestic production of antimony decreased 38 percent, and smelter production of metal, oxide, sulfide, and primary residues decreased Primary antimony available for consumption was 17 percent less than in 1951. Actual consumption of primary antimony decreased 18 percent; and industry stocks decreased 14 percent. Secondary antimony decreased 4 percent from the 1951 output.

The price of antimony metal and ores dropped sharply in early 1952. Effective April 24, the National Lead Co. announced a reduction in the price of antimony metal from 50 cents to 44 cents a pound, f. o. b. The latter price was quoted until May 19, when the Laredo, Tex. leading smelter announced a reduction in its quotation to 39 cents a pound. A further 4½-cent price cut became effective November 3, 1952, to some extent related to the fact that foreign metal was arriving at levels considerably below the domestic quotations. Quoted prices for antimony, RMM brand in cases, New York City, varied between a low of 36.47 and a high of 51.85 cents per pound. Average price for the metal in bulk, carlots, during 1952, according to the American Metal Market, was 44.02 cents (New York equivalent) per pound compared with 44.17 cents in 1951.

The United States "new supply" of primary antimony in 1952, in terms of recoverable metal, was 17,000 short tons. A breakdown of this supply shows that domestic antimony ores contributed 2,000 tons 3; domestic and foreign lead-silver ores, 2,800 tons; and imports, 12,200 The contained antimony, imported for consumption, arrived as follows: Ore and concentrates (in terms of recoverable metal), 7,300 tons; metal, 3,400 tons; and oxide, 1,500 tons. In addition, 24 tons of antimony sulfide, not included in the total, also was im-The supply from secondary sources was 23,100 tons.

Total consumption of antimony in the United States during 1952 was 40,100 tons, comprising 14,300 of primary, 2,800 tons of antimony contained in domestic and foreign silver and lead ores consumed in the manufacture of antimonial lead by primary lead refineries, and 23,000 tons of secondary antimony.

The Defense Minerals Exploration Administration, acting under authority of the Defense Production Act of 1950, as amended, granted

¹ Commodity-industry analyst.

Statistical assistant.
In terms of recoverable metal content (92 percent of gross meta lcontent).

exploration assistance, amounting to 75 percent of costs, to approved antimony-exploration projects. The following applicants were awarded contracts with DMEA from the beginning of the program to the end of 1952:

		Value		
State and Contractor: Alaska:	Project location	Total	Government participation	
Earl R. Pilgrim	4th Jud. Division	\$62, 000. 00	\$46, 500. 00	
Tillicum Mining Co	Cleveland Peninsula	24, 695. 00	18, 521. 25	
Arkansas: Ashley J. Gold_	Sevier County	16, 913. 00	12, 684. 75	
California: Melvin M.	Kern County	7, 500, 00	5, 625. 00	
Ford and Oscar Lipnitz.			·, ·=··	
Idaho:				
Bradley Mining Co	Valley County	175, 368, 00	131, 526, 00	
Do	do	53, 000. 00	39, 750. 00	
Hermada Mining Co	Elmore County	44, 100, 00	33, 075. 00	
Oscar V. Svensson	do	2, 445, 00	1, 833. 75	
Nevada: E. S. Perry and	Nye County	2, 640, 00	1, 980, 00	
Robert B. McPherson.	5	_, 010. 00	1, 000. 00	
Oregon: (E. E. Stauffer) assigned to Paul W. Wise.	Malheur County	34, 727. 00	26, 045. 25	
Washington: G. O. P. Antimony, Inc.	Okanogan County	23, 200. 00	17, 400. 00	
	do	16, 080. 00	12, 060. 00	

Government Regulations.—Effective May 15, 1952, the National Production Authority revoked Order M-39 (antimony) restricting consumption and stocks. However, monthly reporting on the production, receipts, consumption, shipments, and inventories of antimony (in excess of 1,999 pounds of contained antimony) was retained on a mandatory basis.

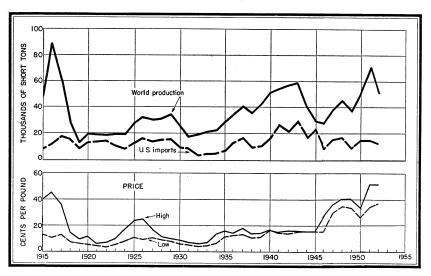


Figure 1.—World production, United States imports, and New York price of antimony, 1915-52.

TABLE 1.—Salient statistics of antimony in the United States, 1943-47 (average) and 1948-52, in short tons (antimony content)

	1943-47 (aver- age)	1948	1949	1950	1951	1952
Production: Primary: Mine (shipments) Smelter, from domestic and foreign ores. Secondary. Imports for consumption Ore and concentrates Suifide. Metal. Oxide. Exports of ore and metal 3. Consumption of primary antimony 4. Average price of antimony at New York 4-cents per pound. World production 5.	4, 008 17, 566 18, 123 18, 796 16, 728 3, 2, 065 (2) 528 20, 637 19, 67 39, 700	6, 489 14, 308 21, 592 17, 038 13, 464 373 3, 201 327 15, 455 36. 67 49, 600	1, 636 8, 099 18, 061 9, 429 7, 473 57 1, 853 46 485 111, 266 38. 73 40, 800	2, 497 9, 471 21, 862 15, 354 9, 746 13 4, 632 963 154 115, 167 29, 41 48, 500	3, 472 12, 228 23, 943 15, 673 111, 746 4 2, 231 1, 692 168 17, 370 44. 17 168, 300	2, 160 11, 860 23, 089 12, 789 7, 245 3, 354 1, 466 161 14, 255 44, 02 50, 700

¹ Revised figure.

3 Gross weight.

DOMESTIC PRODUCTION

MINE PRODUCTION

During 1952 domestic production (shipments) of antimony ores and concentrates totaled 4,900 short tons containing 2,200 tons of antimony of which 2,000 tons were estimated as recoverable. In addition 2,800 tons of antimony in the form of antimonial lead were recovered from silver and lead ores at primary lead refineries. Compared with 1951, the 1952 output from antimony ores and concentrates decreased 38 percent and from silver and lead ores increased 17 percent.

As a result of slackening demand and reduced prices, Bradley Mining Co., Stibnite, Idaho, discontinued mine production of antimony in June 1952, and the smelter was shut down in August. Before suspending operations the company produced 4,000 tons of concentrate containing 1,900 short tons of antimony, 86 percent of the total domestic mine production. The smaller producers were as follows:

Alaska—Stampede mine; Sawtooth Mining Co.

California—Kern County, Bingo Mine, and the Antimony Queen mine.
Nevada—Nye County, Last Chance mine.

Washington—Okanogan County, Lucky Knock and Bales mines.

TABLE 2.—Antimony-bearing ores and concentrates produced (shipments) in the United States, 1943-47 (average) and 1948-52, in short tons

	Gross	Antimony content			George	Antimon	y content
Year	weight		Year	Gross weight	Quantity	Average percent	
1943–47 (average) 1948 1949	15, 847 16, 239 5, 260	4, 008 6, 489 1, 636	25. 3 40. 0 31. 1	1950	6, 888 9, 401 4, 854	2, 497 3, 472 2, 160	36. 3 37. 0 44. 5

¹ Includes Alaska.

² Figures not available 1943. None imported 1944-48.

Gross weight.
 Does not include antimony contained in domestic and foreign silver and lead ores, recovered at primary lead refineries, and marketed in antimonial lead.
 American Metal Market.
 Exclusive of U. S. S. R.

TABLE 3.—Domestic mine production (shipments) and consumption of primary antimony, 1943-52, in short tons, antimony content

Year	Domestic mine pro- duction ¹	Industrial consump- tion	Year	Domestic mine pro- duction 1	Industrial consump- tion
1943 1944 1945 1946	5, 112 4, 356 1, 776 2, 305	19, 508 23, 756 25, 761 17, 515	1950 1951 1952	2, 297 3, 194 1, 987	15, 167 17, 370 14, 255
1947	4, 891 5, 970	16, 647 15, 455	Total	33, 393	176, 700
1949	1, 505	11, 266	Average (10 years)	3, 339	17, 670

¹ In terms of recoverable metal content (92 percent of gross metal content).

SMELTER PRODUCTION

Primary.—Antimony smelters in the United States produced 11.800 short tons of antimony, comprising 2,500 tons of metal, 6,800 tons of oxide, 100 tons of sulfide, and 2,400 tons of residues. Total production decreased 3 percent from the 12,200 tons produced in 1951.

In 1952, 2,800 short tons of antimony was recovered as antimonial lead by primary lead refineries from domestic and foreign silver and lead ores. This was a 17-percent increase over the 2,400 tons recovered in 1951. (See Lead chapter of this volume for detailed discussion of antimonial lead production.)

TABLE 4.—Smelter production of antimony, 1948-52, by type of material, in short tons, antimony content

Year	Metal	Oxide	Sulfide	Residues	Total
1948 1 1949 1950 1951 1952	3, 242 2, 899 3, 870 2, 533	4, 786 6, 492 7, 475 6, 805	71 80 100 108	(2) (2) (2) 783 2, 414	14, 308 8, 099 9, 471 12, 228 11, 860

¹ Figures compiled by Office of Materials Distribution, U. S. Department of Commerce. Breakdown by type of material not available.

Not reported separately.

TABLE 5.—Antimony metal, alloys, and compounds produced in the United States, 1943-47 (average) and 1948-52, in short tons

	Primary	Antir						
metal, oxide, sulfide Year and residues (antimony content)	metal, oxide,			Anti	mony cont	ent		Total second- ary
	weight	From	From From	From	Tot	al	anti- mony (con- tent of	
			domestic ores ¹	foreign ores ²	scrap	Quan- tity	Per- cent	alloys 3)
1943-47 (average)	17, 566 14, 308 8, 099 9, 471 12, 228 11, 860	62, 893 100, 764 41, 402 61, 912 65, 309 58, 203	1, 609 2, 190 1, 214 2, 253 1, 663 2, 210	475 1,031 396 597 693 567	1, 997 2, 539 1, 775 1, 654 2, 060 1, 615	4, 081 5, 760 3, 385 4, 504 4, 416 4, 392	6. 6 5. 7 8. 2 7. 3 6. 8 7. 5	18, 123 21, 592 18, 061 21, 862 23, 943 23, 089

Includes primary residues and small quantity of antimony ore.
 Includes foreign base bullion and small quantity of foreign antimony ore.
 Includes antimony content of antimonial lead produced at primary lead refineries from scrap.

Secondary.—Antimony produced at secondary metal plants in 1952 was 21,400 short tons, plus 1,600 tons recovered from scrap at primary lead refineries, accounting for a total production of 23,000 tons of secondary antimony, a decrease of 4 percent from the 24,000 tons produced in 1951. (See Secondary Metals—Nonferrous chapter of this volume for detailed review.)

CONSUMPTION AND USES

The total consumption of antimony in the United States in 1952 was 40,100 short tons, an 8-percent decrease from the 43,700 tons consumed in 1951. Primary antimony used totaled 14,300 short tons

TABLE 6.—Industrial consumption of primary antimony 1948-52, by type of material, in short tons (antimony content)

Year	Ore and concentrates	Metal	Oxide	Sulfide	Resi- dues	Total
1948 1 1949	2, 472 3, 065 3, 007 1, 776	4. 163 6, 330 4, 645 4, 321	4, 492 5, 600 8, 872 7, 465	139 172 162 117	(2) (2) 684 576	15, 455 3 11, 266 3 15, 167 3 17, 370 14, 255

¹ Figures compiled by Office of Materials Distribution, U. S. Department of Commerce. Breakdown by type of material not available.

Not reported separately.

8 Revised figure.

TABLE 7.—Industrial consumption of primary antimony, 1948-52, in short tons

Product	1948 1	1949	1950 2	1951 2	1952 2
Metal products:					
Ammunition	21	6	9	4	3
Antimonial lead		2, 588	4, 440	2, 282	1,612
Battery metal.		1,521	1,738	2,774	2, 104
Bearing metal and bearings	1,803	873	1,518	1,308	1,119
Cable covering	62	172	72	95	43
Castings		49	126	79	80
Castings Collapsible tubes and foil.	31	14	23	18	32
Sheet and pipe	195	306	300	180	70
Solder	145	155	162	123	145
Type metal	1,019	587	766	709	624
Other	(3)	364	145	52	61
Total metal products	9, 381	4 6, 635	4 9, 299	4 7, 624	5, 893
Nonmetal products:					
	6	9	9	18	24
Ammunition primers. Antimony sulfide (precipitated)	(5)	(5)	(5)	68	67
Fireworks	(5) (6) (6)	(5) (6) (6)	(5) (6) (6)	20	36
FireworksFlameproofed coatings and compounds	(6)	(6)	(6)	463	980
Flameproofed textiles	1 388	273	369	2, 590	2,059
Frits and ceramic enamels	1,561	1, 155	1,462	1, 476	959
Glass and pottery	352	296	579	570	579
Matches	37	28	56	31	22
Paints and lacquers	1,288	874	267	962	853
Pigments		(6)	(6)	705	766
Plastics		498	737	747	632
Rubber products		55	103	19	66
Other 7	2, 173	1, 443	2, 286	2,077	1,319
Total nonmetal products	6, 074	4, 631	5, 868	9, 746	8, 362
Grand total	15, 455	4 11, 266	4 15. 167	4 17, 370	14, 255

Data for 1948 compiled from monthly applications filed with the Office of Materials Distribution, U.S.

Department of Commerce.

² Data include certain intermediate smelting losses, which have been deducted for earlier years.

³ Included with "Antimonial lead."

Revised figure.

Not reported as an end-use product.
 Included with "Other nonmetal products."

⁷ Antimony trichloride and sodium antimonate included to avoid disclosure of individual company operations.

(17,400 in 1951); antimony content of lead-silver ore consumed in the manufacture of antimonial lead by primary lead refineries, 2,800 short tons (2,400 in 1951); and secondary, 23,100 short tons (24,000 in 1951).

Consumption of primary antimony in the manufacture of finished products decreased 18 percent from 1951. Of the quantity consumed 59 percent was used in the manufacture of nonmetallic products and 41 percent in the manufacture of metallic products.

Consumption of secondary antimony, chiefly in metallic products,

decreased 4 percent from 1951.

STOCKS

At the close of 1952 mine and industry stocks totaled 7,700 short tons, a 14-percent decrease from the 9,000 tons reported on hand at the end of 1951. Mine stocks at the beginning and end of 1952 were 480 and 180 tons, respectively. Industry stocks were 8,500 tons at the end of 1951 and 7,500 tons on December 31, 1952.

In addition to the stocks shown in table 8, noteworthy quantities of antimony are held in the National Stockpile. The Munitions Board Stockpile Report to the Congress on February 15, 1953, stated that antimony was one of the 18 commodities for which the stockpile objective had been met as of December 31, 1952.

TABLE 8.—Industry stocks of antimony in the United States at end of year, 1951-52, in short tons of contained antimony

Raw material	Dec	ember 31,	1951	December 31, 1952			
naw material	Mine 1	Other 2	Total 2	Mine 1	Other	Total	
Ore and concentrates. Metallic antimony Antimony oxide. Antimony sulfide (needle). Primary antimony residues and slag	479	3, 015 2, 347 2, 681 107 323	3, 494 2, 347 2, 681 107 323	179	1, 565 2, 041 3, 114 142 632	1, 744 2, 041 3, 114 142 632	
Total	479	8, 473	8, 952	179	7, 494	7, 673	

¹ Includes Alaska.

PRICES

The price of antimony metal, RMM brand, in bulk, f. o. b. Laredo, Tex., averaged 42.09 cents per pound; ranging from a high of 50.00 cents at the beginning of the year to a low of 34.50 cents at the end of the year. The New York price for antimony metal, RMM brand, in bulk carlots, averaged 44.02 cents a pound in 1952, according to the American Metal Market. A review of the 1952 prices of antimony metal (National Lead Co.), carload lots, placed New York, follows:

	RMM brand, cents per pound	Lone Star brand, cents per pound
Jan. 1, 1952	51.85	52. 35
Apr. 25, 1952	45. 85	46. 35
May 20, 1952	40. 97	41. 47
Nov. 4, 1952	$36.\ 47$	36. 97
Dec. 29, 1952	36. 47	36. 97

² Revised figures.

According to E&MJ Metal and Mineral Markets, opening and subsequent changes in nominal quotations for antimony ore during 1952, per unit (20 pounds) of antimony contained, were as follows:

	50-55 percent	55-60 percent	60-65 percent
Jan. 3, 1952	\$5. 50-\$5. 75	\$5. 75-\$6. 00	\$6, 75-\$7, 00
Feb. 7, 1952	5. 00- 5. 25	5. 25- 5. 50	6, 50- 6, 75
Mar. 13, 1952	4. 50- 4. 75	4. 50- 4. 75	6. 50- 6. 60
Apr. 24, 1952	4. 25 – 4. 50	4. 50- 4. 75	6.00-6.25
May 15, 1952	3. 75- 4. 00	4.00-4.25	5. 25- 5. 50
June 12, 1952	3. 25- 3. 50	3. 35- 3. 60	4. 50- 5. 00
Aug. 7, 1952	3. 00- 3. 25	3. 25- 3. 50	3. 50- 3. 75
Sept. 18, 1952		2. 75- 2. 85	3. 00- 3. 25
Nov. 20, 1952	2. 50- 2. 60	2.60-2.70	3.25
Dec. 25, 1952	2. 50- 2. 70	2. 60- 2. 80	3. 50- 3. 75

FOREIGN TRADE 4

Tariff.—There is a duty of 2 cents a pound on imports of antimony metal (unchanged since December 11, 1950); 1 cent a pound on antimony oxide (unchanged since May 22, 1948); and ½ cent per pound, plus 12 percent of the foreign value, on antimony sulfide (unchanged since January 1, 1948). There is no duty on imports of antimony contained in ore.

Imports.—In 1952 the United States imported for consumption 12,200 tons of contained antimony, a 17-percent decrease from the 14,700 short tons imported in 1951. Imports of ore (in terms of recoverable metal), principally from Bolivia and Mexico, decreased 32 percent, the grade of ore averaging 44 percent; imports of metal, chiefly from Mexico, Yugoslavia, Belgium-Luxembourg, and Czechoslovakia, increased 50 percent; imports of antimony oxide, 86 percent of which came from the United Kingdom, decreased 13 percent; and imports of antimony sulfide increased from 4 tons in 1951 to 24 tons in 1952 and were supplied principally by Yugoslavia.

TABLE 9.—Antimony imported for consumption in the United States, 1943-47 (average) and 1948-52 1

		Antimony ore			or liqu- itimony	Antin	nony metal	Type metal and	Antimo	ony oxide
Year	Short tons	Antimony content		Short		Short		anti- monial	Short	
	(gross weight)	Short tons	Value	(gross weight)	Value	tons	Value	lead 2 (short tons)	tons (gross weight)	Value
1943-47 (aver-								•		
age) 1948	40, 533 41, 610	16, 728 13, 464	\$3,344,711 4,312,431	4 533	\$1,617 314,809	2,065 3,201	\$973, 393 2, 022, 676	496 1, 569	(3)	(3)
1949 1950	17, 855 22, 307	7, 473 9, 746	2, 488, 271 1, 850, 162	81 19	42, 537 8, 895	1, 853 4, 632	1, 242, 582 2, 204, 091	654 1, 936	56 1, 160	\$27, 290 428, 386
1951 1952	4 26, 698 18, 246	4 11, 746 7, 945	4 4, 571, 974 3, 200, 889	6 34	5, 936 20, 719	2, 231 3, 354	1, 780, 576 2, 338, 938	4 465 1, 494	2, 039 1, 766	1, 525, 016 1, 056, 286

[U. S. Department of Commerce]

Does not include antimony contained in lead-silver ore.
 Estimated antimony content; for gross weight and value, see Lead chapter of this volume.
 Data not available 1943. None imported 1944-48.

⁴ Revised figure.

⁴ Figures on imports and exports compiled by Mac B. Price and Elsie D. Page of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 10.—Antimony imported into the United States, 1943-47 (average), 1948-50 (totals), and 1951-52, by countries 1

[U. S. Department of Commerce]

	A	Antimon	y ore	Needle ated an	or liqu- timony	Antin	nony metal	Antimo	ny oxide
Country	Short tons (gross weight)	Antimo Short tons	value	Short tons (gross weight)	Value	Short tons	Value	Short tons (gross weight)	Value
1943–47 (average)	41, 610 17, 855	16, 759 13, 464 7, 473 10, 367	\$3, 333, 285 4, 312, 431 2, 488, 271 1, 957, 699	3 533 81 19	314, 809 42, 537	2, 069 3, 317 2, 065 4, 488	\$975, 957 2, 096, 573 1, 357, 634 2, 121, 499	(2) 56	(2) \$27, 290 428, 386
1950	24, 095	10, 367	1, 957, 699	19	8, 895	4, 488	2, 121, 499	1,160	428, 380
Belgium-Luxembourg Bolivia 3 Canada	4 7, 249 (8)		2, 160, 000 (6)	6	5, 936	320 23	267, 890 22, 081	192	127, 858
Chile 3 China Czechoslovakia	760	(5) 492	207, 583	<u>2</u>	1,096	17	7, 275		
France French Morocco	187 164	49 90	18, 505 45, 810			217	139, 159	11	
GreeceHondurasItalyMexico	10	7 5 	2, 565 2, 286 			19	17, 610 833, 635		
Mozambique Netherlands Peru 3		90 4 251	40, 136			22	21, 292 85, 967		
Spain Union of South Africa United Kingdom	3 174	1,904	995, 523			11	9, 870 125, 004		1, 390, 013
Yugoslavia						271	250, 605		
Total	426, 320	411, 517	44, 559, 702	8	7,032	2, 231	1,780,388	2,039	1,.525, 016
1952									
Belgium-Luxembourg_ Bolivia * Chile *	7, 505 133	4, 967 86	2, 281, 717	11	9, 273	536	370, 173	245	131,837
Czechoslovakia		2	55, 899 645			356	126, 707 2, 912		
Germany, West Greece	43	15	3, 231			77	32, 723		
Italy Mexico Netherlands	9, 564	2, 272	556, 759			17 1, 055 56	13, 151 926, 948 47, 887		
Peru 3 Turkev	409	251	107, 180			25 143	20, 935 115, 873		
Union of South Africa United Kingdom	580	348 4	192, 166 3, 292		11 440	320	212, 601	1, 521	924, 449
Yugoslavia		7, 945	3, 200, 889	34	20, 719	798 3,389	489, 615 2, 359, 525	1,766	1, 056, 286
	1	1	1		1	1		1	. ,

Data are general imports, that is, include antimony imported for immediate consumption, plus material entering the country under bond. Table does not include imported antimony contained in lead-silver ores.

2 Data not available 1943. None imported 1944-48.

3 Imports shown from Chile probably were mined in Bolivia or Peru and shipped from a port in Chile,!

Exports.—Exports of antimony ore and concentrates (gross weight) in 1952 were 25 tons valued at \$13,300; and of metal and alloys, 136 tons valued at \$124,400. During 1951 exports (gross weight) included 5 tons of antimony ore and concentrates valued at \$5,100 and 163 tons of metal and alloys valued at \$146,000.

Reexports of ore and concentrates in 1952 were 5 tons valued at \$3,400; and of metal and alloys, 1 ton valued at \$1,000.

⁴ Revised figure. 5 Revised to none.

157 ANTIMONY

TECHNOLOGY

The flameproofing of textiles with titanium-antimony was the sub-The article provides an example ject of an article.5

TiCl₄ is dissolved in cold water to a concentration of 210 g. TiO₂ and 382 g. HCl Sb₂O₃ is dissolved in this liquid to a concentration of 100 g./1. final solution contains 48% Sb₂O₃ (calculated of the weight of TiO₂) or 26% of the HCl. A clear yellow complex solution results that does not decompose in this concentration while an equivalent SbCl₃ solution containing no Ti ions decomposes quickly and is hydrolyzed. The complex character can be scientifically proven by spectrophoto-metric comparison of this solution with solutions of the single components.

The Antimony volume of the Materials Survey series, prepared by the Bureau of Mines for the National Security Resources Board, was published in 1952.6 It describes the occurrence, mining, milling, and smelting of antimony, and gives considerable statistical information on the industry in the United States and abroad.

A review of the Broken Hill (Australia) lead-silver-zinc industry

includes a short description of the extraction of arsenic and antimony

from lead bullion and the production of antimonial lead.7

The use of sacks made of "Dynel" to collect antimony oxide at the Bradley Mining Co. Yellow Pine mine and smelter, Stibnite, Idaho. was the subject of an article.8

WORLD REVIEW

Canada.—A test shipment of 7,232 long tons of antimony sulfide ore from the Bridge River district, British Columbia, property of Gray Rock Mining Co., Ltd., returned a gross value of \$2,043, or \$282.49 per long ton. This material, hand-cobbed from an open cut on the No. 2 vein, assayed 50.2 percent antimony and 0.19 percent arsenic, with traces of lead, zinc, copper, selenium, and tellurium.

India.—The Star Metal Refinery in Bombay, India's only producer

of antimony, suspended operations in May.10

Mexico.—Output of antimony in Mexico during 1952 totaled 5,500 metric tons, a 19-percent decrease from 1951. A comparison of production and exports of antimony is shown in the following table:11

⁵ American Dyestuff Reporter, The Flameproofing of Textiles With Titanium-Antimony: Vol. 41, No. 3,

<sup>American Dyestuff Reporter, The Flameproofing of Textiles With Titanium-Antimony: Vol. 41, No. 3, Feb. 4, 1952, pp. 87-88.
Materials Survey—Antimony: Compiled for the NSRB by the Bureau of Mines, in cooperation with the Geological Survey, Washington, D. C., March 1951.
Woodward, O. H., A Review of the Broken Hill Lead-Silver-Zinc Industry; Australasian Inst. Min. and Met., Inc., Melbourne, Australia, 1952.
Engineering and Mining Journal, New Fiber Gives Excellent Service in Dust-Fume Bags: Vol. 154, No. 1, January 1953, p. 121.
Northern Miner, vol. 153, No. 49, Feb. 28, 1952, p. 24.
Metall Bulletin (London), No. 3712, July 25, 1952, p. 21.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 1, July 1952, pp. 3-5.</sup>

Production and exports of antimony, Mexico, metric tons (metal content)

	Produoticn	Exports		Production	Exports
1941	11, 138	10, 241	1947	6, 926	6,058
1942	11, 695	11, 283	1948	7, 380	6,515
1943	13, 682	12, 567	1949	5, 753	4, 106
1944	10, 930	10, 277	1950	5, 868	3, 494
1945	8, 752	8, 005	1951	6,824	4, 809
1946	6,571	5, 906			

Philippines.—In Batangas Province, on the island of Luzon, a

deposit of antimony was discovered.12

United Kingdom.—In 1952 total consumption of antimony in the United Kingdom declined to 3,168 long tons compared with 6,272 tons in 1951.13

Union of South Africa.—Large reserves of antimony have placed the Union of South Africa in the fore as one of the world's leading producers. Consolidated Murchison (Transvaal) Goldfields & Development Co., Ltd., the only antimony producer in 1951, produced 27,503 short tons of cobbed ore and concentrates averaging 61.9+ percent antimony and 1.224 dwt. gold, from the treatment of 160,392 tons assaying 11.59 percent antimony and 3.298 dwt. gold.14

Production in 1952 totaled 8,000 short tons of contained antimony, a 54-percent decrease from 1951, resulting from the restricted scale of operations caused by depressed world market prices for antimony.

Yugoslavia.—According to a recent report, 15 Europe's most important antimony deposits are located in Yugoslavia. An abstract of the report follows:

Before World War II, Yugoslavia was Europe's largest producer of antimony. The Germans denuded the country of her known antimony reserves, so that in 1944 new reserves had to be created before mining could be restarted. All those now known are the result of post-war prospecting and efforts are being made to find additional occurrences. Europe's first plant to treat antimony ores by the flotation process was constructed at Zajaca, where an antimony smelter is also in operation. In addition to a number of small flotation plants in the vicinity, a large unit is under construction. The capacity of the existing plant at Zajaca is 1,500 tons of metal annually.

- Production of antimony ore is estimated at 74,600 metric tons in 1952, a 35-percent increase from 1951.16

Mining Journal (London), Annual Review: May 1952, p. 35.
 Mining Journal (London), Antimony: Ann. Rev., May 1953, p. 35.
 South African Mining and Engineering Journal, vol. 63, No. 3128, Jan. 24, 1953, p. 863.
 Work cited in footnote 9, p. 159.
 Mining World, vol. 15, No. 5, Apr. 15, 1952, p. 131.

TABLE 11.—World production of antimony (content of ore), 1 by countries, 1943–47 (average) and 1948–52, in metric tons 2

[Compiled by Pauline Roberts]

Country	1943-47 (a verage)	1948	1949	1950	1951	1952
North America:					,	
Canada 3	591	141	72	292	591	1, 134
Honduras	43	6	9	(4)	(4)	
Mexico 3	9, 373	7,380	5, 753	5,868	6,824	5, 531
United States	3,636	5,887	1,484	2, 265	3, 150	1,960
South America:	l			1		1
Argentina		(5)	(5)	(5)	(5)	(5)
Bolivia (exports)	9,755	12, 260	10, 275	8, 781	11,816	9,806
Peru	1,602	1,556	729	971	1, 107	505
Europe:						1
Austria 6		269	379	409	498	389
Czechoslovakia	2,449	4, 100	(5)	7 2,000	(5)	(5)
France	176	275	338	407	611	(8)
Greece	7 0 000		49	350	500	350
Hungary Italy	7 8 660	(5)	(5)	(5)	(5)	(5)
Portugal	460	553	503	671	794	779
Spain	25 195	41 219	21 259	15 200	19	(%, 005
Yugoslavia	7 1, 200		2,789			(5) 9 665 7 2 700
Asia:	1,200	2, 250	2, 189	3, 205	1,973	7 2, 700
British Borneo: Sarawak	1	4	1	2		(5)
Burma 7	515	121	70	40	200	(5)
China	607	3, 251	7 4, 000	7 6, 000	7 8, 000	78,000
Indochina	8	0, 201	1,000	0,000	0,000	(5)
Iran	5		10 175	10 230	7 10 230	160
Japan	256	135	172	161	221	209
Thailand (Siam)	48	92	265	87	65	70
Turkey (Asia Minor)	66	600	460	1, 288	3, 360	1,400
Africa:				-,	-,	, -,
Algeria	351	746	1,326	1, 250	1,462	1, 321
French Morocco	328	520	700	689	957	839
Southern Rhodesia	87	9	41	24	62	100
Spanish Morocco	112	272	150	353	213	(11)
Union of South Africa	2, 554	4, 106	4, 461	8, 311	15,858	7, 211
Oceania:		· ·		· ·	ľ	· ·
Australia	394	188	198	227	310	7 170
New Zealand		. 5	3			(5)
Total (except U. S. S. R.)	36,000	45,000	37, 000	44,000	62,000	46, 000

Approximate metal content of ore produced, exclusive of antimonial lead ores.
 This table incorporates a number of revisions of data published in previous tables.
 Includes antimony content of antimonial lead.

Negligible.

Data not available; estimate by author of chapter included in total.

Excludes Soviet zone, data for which are not available, but estimates for which are included in the totals.

Extinues Soviet zone, data for which are not available, but 7 Estimate.
Trianon Hungary after October 1944.
Including Spanish Morocco.
I Fiscal year ended March 20 of year following that stated.
Included with Spain.

Arsenic

By Abbott Renick 1

RODUCTION of white arsenic in the United States decreased 3 percent in 1952 under that in 1951 and was virtually unchanged from the 1947-51 average (16,000 short tons).

Producers' stocks of white arsenic reached the highest point on record, increasing from 4,800 tons to 11,300 in the course of the year.

Imports for consumption in 1952 decreased 69 percent.

Of the total white arsenic newly available in the United States in 1952, domestic production (from domestic and foreign ores) constituted 78 percent and imports 22 percent. Apparent consumption was

6,400 tons less than supply.

The strong trend in consumer preference for organic chemicals over arsenicals continued unabated in 1952 and, coupled with extended droughts and the generally hot and dry weather which prevailed in the cotton belts, further decreased the use of arsenic in insecticides.

The price of white arsenic (arsenic trioxide) in 1952 held at 6½ cents a pound in barrels, carlots, delivered, until June 16, when it was

reduced to 5½ cents.

TABLE 1.—Salient statistics of the white arsenic industry in the United States, 1943-47 (average) and 1948-52, in short tons 1

Year	Produc- tion	Sales	Imports	Exports 2	Apparent consump- tion 3	Produc- ers' stocks	Price per pound 4
1943-47 (average)	24, 122 18, 639 12, 795 13, 273 16, 190 15, 673	24, 386 14, 965 10, 181 17, 330 14, 351 9, 244	13, 398 9, 336 4, 696 14, 774 14, 518 4, 483	1, 447	36, 337 24, 301 14, 877 32, 104 28, 869 13, 727	1, 541 4, 712 7, 326 2, 479 5 4, 834 11, 263	\$0.048 .060614 .060514 .050632 .065 .065055

Producers' shipments plus imports minus exports.
 Refined white arsenic, carlots, as quoted by E&MJ Metal and Mineral Markets.

For data for earlier years (1910-47), see Arsenic chapter, Minerals Yearbook 1949.
 Figures for 1943-45 from U. S. Department of Commerce; figures for other years reported by producers to Bureau of Mines.

¹ Commodity-industry analyst.

ARSENIC 161

DOMESTIC PRODUCTION

Reports from producers indicate that the output of crude and refined white arsenic in the United States totaled 15,700 tons in 1952, 500 tons less than in 1951.

Crude and refined white arsenic was produced in 1952 by the Anaconda Copper Mining Co. at Anaconda, Mont. (copper smelter); United States Smelting, Refining & Mining Co. at Midvale, Utah (lead smelter); and American Smelting & Refining Co. in plants at Tacoma, Wash. (copper smelter), and Murray, Utah (lead smelter). Arsenic metal was not produced during 1952.

TABLE 2.—Production and shipments of white arsenic by United States producers, 1943-47 (average) and 1948-52

		Crude	•		Refined	l	Total		
Year Production (short tons) 1 Short tons		Shipments		Produc-	Shipments		Produc-	Shipments	
	Value	tion (short tons)	Short tons	Value	tion (short tons)	Short tons	Value		
1943-47 (average) 1948 1949 1950 1951 1952 1952	21, 085 17, 213 12, 289 11, 903 15, 485 15, 046	13, 749 9, 597 15, 778 13, 656	972, 832	1, 426 506 1, 370 705	584 1, 552 695	50, 527 113, 240	18, 639 12, 795 13, 273 16, 190	14, 965 10, 181 17, 330 14, 351	1, 260, 267 764, 511

¹ Excludes crude consumed in making refined.

CONSUMPTION AND USES

During 1952 apparent consumption of white arsenic was 13,700 short tons, a 52-percent decline below 1951. The major portion of white arsenic produced is employed in manufacturing lead and calcium arsenate insecticides.

The reduced consumption was due largely to the generally hot and dry climatic conditions, which discouraged serious insect infestations, and to the greatly expanded use of organic insecticides, such as DDT, benzene hexachloride, chlordane, and toxaphene. The uptrend in the use of organic insecticides has been reported.²

Only a decade ago, the combined output of organic insecticides was a paltry few million pounds a year. Now the annual production capacity is in the neighborhood of 350 million. Production has grown over 250 percent.

Arsenic is also consumed in glass manufacture, sheep dip, poisoned baits, pharmaceuticals, acid-resistant copper, and antimonial lead alloys. Sodium arsenate is used as a weed killer. Wolman salts or tanalite (25 percent sodium arsenate) is used as a wood preservative. Arsenical sprays have been employed since the end of the last century to protect growing tobacco.

Chemical Engineering, Agricultural Chemicals: March 1953, p. 199.

STOCKS

Year-end producers' stocks of white arsenic reached 11,300 short tons compared with 4,800 at the end of 1951 and were the highest since 1939, the first year for which the Bureau of Mines compiled such data. Data are not available on stocks of calcium and lead arsenate held by producers.

TABLE 3.—Production of arsenical insecticides and consumption of arsenical wood preservatives in the United States, 1943-47 (average) and 1948-52

	Production of (short	Consumption of wood pre- servatives (pounds) ²	
	Lead arsenate (acid and basic)	Calcium arse- nate (100 per- cent Ca ₃ (AsO ₄) ₂)	Wolman salts (25 percent sodium arse- nate)
1943-47 (average)	32, 204 12, 316 8, 434 19, 750 12, 708 7, 156	22, 743 13, 618 8, 003 23, 750 20, 450 4, 079	1, 022, 092 1, 286, 302 1, 003, 992 1, 197, 617 1, 544, 181 1, 658, 426

Bureau of Foreign and Domestic Commerce, U. S. Department of Commerce.
 Forest Service, U. S. Department of Agriculture.

4 Preliminary figures.

PRICES

The carlot quotation for refined white arsenic held at 6½ cents per pound the first 5½ months of 1952; effective June 16, the price was reduced to 5½ cents per pound and after that date remained unchanged. The London price of white arsenic, per long ton, 99-100 percent, opened in January at £55½-£57½ and in the latter part of December was quoted at £59%.

FOREIGN TRADE³

Imports.—White arsenic imported totaled 4,500 short tons in 1952 compared with 14,500 tons in 1951, 14,800 tons in 1950, and an average of 9,300 tons in 1947–49.

Imports of metallic arsenic totaled 60,200 pounds, Sweden supplying 52, United Kingdom 37 and Germany 11 percent. In 1952 there were no transactions in arsenic sulfide; arsenical sheep dips came exclusively from United Kingdom.

Revised figures.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U.S. Department of Commerce.

TABLE 4.—White arsenic (As $_2O_3$ content) imported for consumption in the United States, 1943-47 (average) and 1948-52, by countries

[U.S	Department	of Commerce]
------	------------	--------------

		19	948	19	949	1	1950	1	1951	19	952
hort	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
	\$208	5	\$961	30	\$1, 997	952	\$43, 544				
85 11	7,402	83	6, 278	96	11, 816	179 497 11	39, 397	1, 919			\$14, 470 12, 992
		7, 132	598, 989	4, 511	544, 895	12, 659	1, 290, 712	10,899	1, 147, 395	4, 252	520, 112
36 11	4, 985 1, 642	<u>2</u> 8	4, 409	48		50	3, 204				
339	35, 058	449	49, 320								547, 574
- 101	(average (av	2 \$208 85 7,402 11 1,246 	(average) nort Value Short tons 2 \$208 85 7, 402 83 11 1, 246 17, 862 634, 642 7, 132, 867 79, 194 98 36 4, 985 11 1, 642 28 374 41, 322 1, 204 339 35, 058 449	(average) 1948 nort ons Value Short tons Value 2 \$208	(average) 1948 nort ons Value Short tons 2 \$208 85 7, 402 11 1, 246 36 337 57, 479 36 4, 985 4, 985 11 1, 642 28 4, 400 36 4, 985 374 41, 322 374 41, 322 385 49 49 320 389 35, 058	(average) 1948 1949 nort ons Value Short tons Value Short tons Value	(average) 1948 1949 nort ons Value Short tons Value Short tons 2 \$208 \$961 30 \$1,997 952 21 \$208 \$3 6,278 96 11,816 179 11 1,246 11 497 11 497 11 1,246 11 497 11 1,862 634,642 7,132 598,989 4,511 544,895 12,659 36 4,985 11 642 28 4,409 48 4,866 36 374 41,322 31,204 157,233 11 1,261 387 339 35,058 449 49,320 11 1,261 387	(average) 1948 1949 1950 nort ons Value Short tons Value Short tons Value Short tons Value Short tons Value Value Short tons Value Value Short tons Value Value Value Short tons Value Value	(average) 1948 1949 1950 nort ons Value Short tons Value Short tons <t< td=""><td>(average) 1943 1949 1950 1951 1ort ons Value Short tons Value Shor</td><td>(average) 1943 1949 1950 1851 A 1ort ons Value Short tons Value</td></t<>	(average) 1943 1949 1950 1951 1ort ons Value Short tons Value Shor	(average) 1943 1949 1950 1851 A 1ort ons Value Short tons Value

Exports.—Producers of white arsenic reported no direct foreign sales in 1952. Exports of calcium arsenate increased 5 percent from those of 1951, whereas exports of lead arsenate decreased 59 percent. Mexico was the principal recipient of calcium arsenate; Colombia, Peru, Nicaragua, Cuba, Canada, and others followed in order. Their respective proportions of the total were 41, 33, 13, 6, 2, 2, and 3 percent. Canada was the principal recipient of lead arsenate; Cuba, Taiwan, Venezuela, and others followed in order. Their respective proportions of the total were 28, 26, 17, 11, and 18 percent.

TABLE 5.—Arsenicals imported into and exported from the United States by classes, 1943-47 (average) and 1948-52, in pounds

[U. S. Department of Commerce]

Class	1943–47 (average)	1948	1949	1950	1951	1952
Imports for consumption: White arsenic (AssO ₃ content) Metallic arsenic Sulfide. Sheep dip. Lead arsenate. Arsenic acid Calcium arsenate. Sodium arsenate Paris green Exports: Calcium arsenate. Lead arsenate.	26, 794, 836 38, 146 471, 767 88, 505 24, 110 103 26, 649 4, 827, 975 3, 911, 602	18, 671, 621 36, 587 88, 608 38, 275 	9, 392, 699 45, 369 44, 092 55, 830 	29, 547, 402 137, 533 147, 055 77, 219 	29, 036, 555 220, 668 148, 299 62, 050 13, 669 5, 600 1, 554, 207 180, 040 	8, 966, 906 60, 220 102, 415 161, 316 192, 205 65, 221 41, 255 5, 606, 613 255, 268

TECHNOLOGY

Research by the Bureau of Mines on the occurrence of thallium in ores, concentrates, and metallurgical products found that one of the most promising sources was the byproduct "white arsenic" from a lead smelter in Utah.4

From a white arsenic containing 96 percent arsenic trioxide and 0.21 percent thallium, 98 percent of the arsenic was volatilized and more than 99 percent of the thallium was retained in the residue by fuming with 5 percent sulfuric acid and 5 percent lime at 430° C. for 0.5 hour. The physical properties of the residues were satisfactory.

The thallium was recovered satisfactorily from the residue by volatilization

with sodium chloride at 800° C.

WORLD REVIEW

Canada.—Although arsenical ores are widely distributed in Canada, the production of arsenic is limited to a few localities where it is recovered as a byproduct in treating gold or silver-cobalt ores. 750 short tons of white arsenic was produced in 1952 compared with 1,200 in 1951. Canada's output of crude white arsenic continued to come from the O'Brien Gold Mines Co., and consolidated Beattie Mines, Ltd., in Cadillac and Duparquet Townships, Quebec.

Finland.—Output of arsenic concentrates from the Ylojarvi mine

was 496 metric tons in 1952 compared with 726 tons in 1951.5

Mexico.—Byproduct white arsenic was recovered by Cia. Metalurgica Peñoles, S. A. (subsidiary of American Metal Co.), at its Torreon, Coahuila, lead smelter. The American Smelting & Refining Co. produced white arsenic at its San Luis Potosi copper smelter.

Portugal.—Mina de Pintor produced 940 metric tons of white arsenic in 1951 compared with 801 tons in 1950. Domestic sales were 71 tons in 1951 compared with 35 tons in 1950. Most of the arsenic consumed in Portugal is used by the glass industry; the remainder is consumed in insecticides.

Exports decreased from 1,277 tons in 1950 to 865 in 1951; stocks were reported at a minimum at the end of the year. Total anticipated

1952 production has been sold in advance.

The company plans to build a plant at Pintor to calcine and refine arsenic in the near future. Eighty percent of the equipment will come from West Germany, and 20 percent will be manufactured in Portugal from German designs.⁶

 ⁴ Prater, John D., Schlain, David, and Ravitz, S. F., Recovery of Thallium From Smelter Products;
 Bureau of Mines Rept. of Investigations 4900, 1952, 9 pp.
 5 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 6, June 1953, p. 3.
 6 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, pp. 3-4.

TABLE 6.—World production of white arsenic, by countries, 1946-52, in metric tons 2

[Compiled by Pauline Roberts]

Country 1	1946	1947	1948	1949	1950	1951	1952
Australia Belgium-Luxembourg (exports) Brazil Canada France Germany, West (exports) Greece Iran ⁵ Italy Japan Mexico	1, 651 (3) 829 338 3, 140 (3) 8 (3) 436 1, 092 9, 648	1, 210 (3) 1, 001 357 2, 510 (3) 14 (3) 1, 620 1, 407 9, 685	520 151 984 527 2, 256 37 18 (3) 1, 730 1, 765 7, 571	257 527 959 239 1, 964 1, 081 20 4 80 1, 440 2, 489 3, 576	163 1, 909 1, 067 360 2, 454 1, 124 33 4 25 726 1, 627 8, 987	122 325 1, 321 1, 068 (3) 3, 504 56 (3) 1, 769 1, 300 12, 766	1, 003 4 850 694 (3) (3) (3) (3) 2, 144 (3) (3)
New Zealand Peru Portugal Southern Rhodesia Spain Sweden Union of South Africa United Kingdom 6 United Kingdom 6 United States	18 753 508 216 440 10, 109 12 147	8 608 1,005 416 484 16,088 3 91	8 1, 011 1, 616 283 573 16, 979 13 (3) 16, 909	975 148 124 8, 967 (3) 11, 607	608 114 159 14, 512 (3) 12, 041	747 76 375 (3) (3) 14,687	(3) (3) (3) (3) (5) (3) (3) (3) (4) (4) (14, 218
Total (estimate)	42,000	56, 000	54, 000	36, 000	47, 000	57, 000	46, 00

¹ Arsenic is also believed to be produced in Argentina, Austria, China, Czechoslovakia, East Germany, Hungary, Korea, and U. S. S. R., but data are not available. Estimates by the author for Austria and East Germany have been included in the total. There is too little information for estimating the other countries.

2 This table incorporates a number of revisions of data published in previous white arsenic chapters.

3 Data not available; estimate by author of chapter included in total.

4 Estimate.

5 Year ended Mar. 20 of year following that stated.

6 White arsenic, including arsenic soot.

Asbestos

By Oliver Bowles 1 and Flora B. Mentch 2

ALTHOUGH total production of asbestos in Canada, principal source for the United States, was somewhat smaller in 1952 than in 1951, the decline was confined largely to the shorts. Production of the better grades of mill fibers was higher than in 1951. The demand for groups 3 to 5 generally exceeded supply. During the first half of the year the demand for shorts was considerably lower than in 1951, but later in the year it increased until it equaled or exceeded supply.

Domestic sales exceeded those of 1951 by 4 percent and reached an alltime high. Arizona sales, which were a little higher than in 1951, were chiefly of the nonspinning grades. Amphibole asbestos sales,

which were unusually small, were confined to Georgia.

Imports and apparent consumption were smaller than in 1951, but the decline was confined to the shorter grades. Imports of low-iron chrysotile, of spinning grades, from Southern Rhodesia continued to decline. As a great deal of interest is centered in fiber of this type, table 5 has been introduced into this chapter to show imports from Southern Rhodesia by grades.

As the demand for high-grade spinning fibers continues to exceed the supply, prices continued the upward trend that characterized

recent years.

TABLE 1.—Salient statistics of the asbestos industry in the United States, 1943-47 (average) and 1948-52

	1943-47 (average)	1948	1949	1950	1951	1952
Domestic asbestos:			į			
Producedshort tons	12, 932	37, 237	42, 918	41.358	51,730	53, 888
Sold or useddo	12,603	37, 092	43, 387	42, 434		
_ Value	\$516, 903	\$1,806,261	\$2,614,416	\$2,925,050	\$3,912,500	\$4,713,032
Imports (unmanufactured)	'				' '	
short tons	449, 632		509, 366	705, 458	761,873	709, 419
_ Value	\$21, 301, 310	\$37, 974, 092	\$33, 939, 582	\$47, 284, 205	\$58, 521, 046	\$61, 595, 900
Exports (unmanufactured) ¹						
short tons	4,617					
Value	\$552,936				\$3,662,270	
Apparent consumption_short tons	457, 619					
Exports of asbestos products 12	\$7,413,083	\$9, 326, 705	\$9,667,847	\$8, 147, 141	 \$14, 321, 27 8	\$13, 028, 857
	!		1	ľ		l

¹ 1947-52 figures include material that has been imported and subsequently exported without change. ² 1943-45 figures include value of "Magnesia and manufactures."

DOMESTIC PRODUCTION

As indicated in table 1, domestic sales were 4 percent higher in 1952 than in 1951. Chrysotile was produced in Vermont and Arizona and

¹ Commodity specialist. ² Statistical assistant.

¹⁶⁶

ASBESTOS 167

amphibole in Georgia. So few companies have produced amphibole during recent years that separate figures cannot be published.

Production in Arizona was a little higher in 1952 than in the previous year. The following firms and individuals were active: American Asbestos Cement Corp., 115 West Oak St., Globe; Apache Asbestos Mines, Inc., Globe; Bear Canyon Mining Co., P. O. Box 1730, Globe; Ned H. Brown, P. O. Box 1797, Clifton; Arthur Enders, P. O. Box 362, Globe; Jaquays Mining Corp., 1219 South 19th Ave., Phoenix (on June 1, 1952, took over the Regal mine, formerly operated by Arizona Chrysotile Asbestos Co.), also operated the Asbestos King mine; George W. Kohl, P. O. Box 1593, Globe; Kyle Asbestos Mines of Arizona, P. O. Box 302, Globe; Metate Asbestos Corp., P. O. Box 1506, Globe; Phillips Asbestos Mines, Drawer 71, Globe.

In 1952 a majority of the Arizona producers established The Arizona Asbestos Producers' Association, with headquarters in Globe, for the purpose of reviewing marketing problems, securing better transportation facilities in the district, and taking other steps to improve condi-

tions in the industry.

Measures were under way late in 1952 to establish at Globe, Ariz., an asbestos mill and purchasing facilities under Defense Materials Procurement Agency sponsorship, but little progress had been made by the end of the year except the purchase and warehousing of some unmilled asbestos. The purpose of this project is to make available a mill for the production of low-iron asbestos now in strong demand for stockpiling and current consumption.

According to press reports, a carlot of an unusual, platy form of asbestos known as antigorite has been shipped from a deposit near Jamestown, Tuolumne County, Calif., to the Powhatan Mining Co. at Baltimore, Md., for experimental purposes. No commercial production of either amphibole or chrysotile was reported in 1952, but some exploratory work was conducted under Defense Minerals Exploration Administration loans.

The Powhatan Mining Co., Woodlawn, Baltimore, Md., reported a small production of amphibole asbestos in Georgia from deposits at

Gay, Meriwether County, and Dillard, Rabun County.

Some interest has appeared in an asbestos deposit in Warren County, N. Y., consisting of crossfiber veins of chrysotile in limestone. Only

small outcrops of fiber-bearing rock appear.

Mining & Milling Corp. of America, 441 Lexington Ave., New York 17, N. Y., has equipped a mill at Spruce Pine, N. C., for processing anthophyllite obtained chiefly at the Bluerock deposit, which was worked some years ago by Industrial Minerals Corp. The mill, which was nearing completion in 1952, is designed to prepare group 7 fibers to be used in conjunction with Canadian 7R chrysotile in asphaltand vinyl-tile manufacture. Other actual or proposed uses include welding-rod coatings, molded compounds, paints, insulating cements, filtration materials, and underbody coatings.³

The Vermont Asbestos Mines Division of the Ruberoid Co., 500 Fifth Ave., New York 18, N. Y., produced chrysotile on an enlarged scale during 1952 near Hyde Park, Vt. Exploratory work, including

diamond drilling, was continued partly under DMEA loans.

³ Rukeyser, Walter A., Mining & Milling Corp. of America to Begin Production in November 1952: Asbestos, vol. 34, No. 5, November 1952, pp. 26–29.

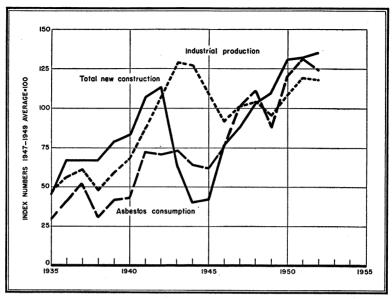


FIGURE 1.—Consumption of asbestos compared with total new construction and industrial production, 1935–52. Statistics on value of construction from Bureau of Foreign and Domestic Commerce and on industrial production from Federal Reserve Board.

CONSUMPTION AND USES

As indicated in table 2, consumption of raw asbestos in the United States was about 6 percent lower in 1952 than in 1951. However, the decline was in the shorter grades, whereas consumption of the longer fibers increased. This condition is reflected in the alltime high value of consumption in 1952 of more than 64 million dollars. As asbestos has a multitude of industrial uses, its consumption moves in consonance with the trend of industrial production. It is also used extensively as a constituent of asbestos-cement building materials and in various heat-insulating products; therefore its consumption is influenced by the volume of building construction. These trends are shown graphically in figure 1.

TABLE 2.—Apparent consumption of raw asbestos in the United States, 1943-47 (average) and 1948-52

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	457, 619	\$21, 265, 277	1950	727, 002	\$46, 124, 871
	675, 746	37, 975, 742	1951	796, 992	58, 771, 276
	532, 708	32, 401, 654	1952	752, 559	63, 637, 962

PRICES

Prices of asbestos continued the periodic advances that have characterized recent years. The substantial increases in Canadian

asbestos prices, as of January 15, 1951, continued in effect through January 1952; but, as quoted in short tons, f. o. b. mines, in the magazine Asbestos, they were advanced in February 1952, as follows: Group 1 (Crude No. 1) remained at \$1,100-\$1,500. Group 2 (Crude No. 2, Crude Run-of-Mine, and Sundry) was increased from a range of \$485-\$900 to \$500-\$1,000; group 3 (Spinning Fiber) from \$275-\$450 to \$300-\$525; group 4 (Shingle Fiber) from \$135-\$151 to \$150-\$200; group 5 (Paper Fiber) from \$95-\$119 to \$100-\$140; group 6 (Waste, Stucco, or Plaster) from \$70 to \$77; and group 7 (Refuse or Shorts) from \$32-\$63 to \$35-\$70.

Vermont prices, quoted in short tons f. o. b. Hyde Park or Morrisville, Vt., which were advanced in October 1951, continued at that level until February 1952, when they were increased as follows: Group 3 (Spinning and Filtering) from \$279.50-\$302 to \$321-\$348; group 4 (Shingle Fiber) from \$135-\$162 to \$156-\$173; group 5 (Paper Fiber) from \$81.50-\$115 to \$110-\$132; group 6 (Waste, Stucco, or Plaster) from \$71.40 to \$78; and group 7 (Refuse or Shorts) from

TABLE 3.—Asbestos (unmanufactured) imported for consumption in the United States, 1948-52, by countries and classes

Country		(including fiber)	Mil	l fibers	Shor	rt fibers	1	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
1948 1949 1950	38, 088 39, 272 27, 803	6, 741, 789	127, 504	\$18, 028, 161 14, 476, 260 21, 381, 704	342, 590	\$14, 525, 331 12, 721, 533 20, 044, 814	509, 366			
Australia	311 324 160 736	121, 085 35, 409		28, 780, 021 1, 632	501, 264	23, 052, 818	311 324 160 726, 770	121, 085 35, 409 52, 194, 914		
Italy Southern British Africa Southern Rhodesia Union of South Africa 3 U. S. S. R. Yugoslavia	712 7, 700	162, 891 2, 237, 654 3, 448, 373	22 25 109	20, 554 6, 344 18, 299 16, 500	26 10	5, 428	23 712	23, 628 162, 891 2, 243, 998 3, 472, 100 188, 029		
Total	35, 289	6, 618, 140	225, 284	28, 844, 485	501, 300	23, 058, 421	761, 873	58, 521, 046		
Australia. Bolivia. Canada. Italy. Fortugal. Southern British Africa. Southern Rhodesia. Union of South Africa. U. S. R. United Kingdom. Venezuela.	607 10, 121 26, 640	157, 289 393, 398 	210, 293 111 	12, 721 178, 763 33, 611 206, 926 2, 234	100	12, 699	11 48 607 10, 543 26, 892 1, 761 5	157, 289 53, 489, 662 12, 721 4, 907 164, 368 3, 564, 696 3, 907, 929 206, 926 1, 815 2, 234		
Total	38, 626	8, 047, 283	212, 644	31, 286, 578	458, 149	22, 262, 039	709, 419	61, 595, 900		

[U. S. Department of Commerce]

¹ Includes 28 tons (\$12,545) of blue (crocidolite) crudes credited by U. S. Department of Commerce to

Chile. Chiles as the Commerce as amosite crude, re-classified by Bureau of Mines as mill fibers.

\$34-\$63 to \$37-\$68.50. The above prices of both Canadian and Vermont fibers remained in effect for the balance of the year.

There are no market quotations for African asbestos. It is sold by negotiation with individual purchasers.

FOREIGN TRADE 4

Imports.—The United States consumed about one-half of the asbestos produced in the world in 1952 but produced only 7 percent of its requirements. Accordingly, foreign supplies are essential to the domestic asbestos-products industries. In 1952 imports were 7 percent lower than in 1951. About 94 percent of total imports originated in Canada, 4 percent in the Union of South Africa, and 1 percent in Southern Rhodesia. On a value basis, however, African imports approached 12 percent of the total.

As there is a growing interest in the types and grades of asbestos imported from the principal sources, tables 4 and 5 have been introduced into this chapter showing importations by grades from Canada and Southern Rhodesia.

Exports.—Exports of unmanufactured asbestos were smaller in 1952 than in any year since 1948. Export controls which were in effect since late in 1951 evidently effected a decline in the volume of asbestos shipped out of the United States.

TABLE 4.—Asbestos (chrysotile) imported for consumption in the United States from Canada, by grades, 1951-52, in short tons

Grades	1951	1952
Crude No. 1 Crude No. 2 Other crudes Spinning and Textile Fiber. Shingle Fiber Paper Fiber Short Fiber	126 226 384 22, 463 104, 419 97, 888 501, 264	144 332 79 24, 072 98, 577 87, 644 458, 012
Total	726, 770	668, 860

[U. S. Department of Commerce]

TABLE 5.—Asbestos (chrysotile) imported for consumption in the United States from Southern Rhodesia, by grades, 1951–52, in short tons

[U. S. Department of Commerce]

Grades	1951	1952
Crude No. 1. Crude No. 2. Other crudes Spinning and Textile Fiber. Shingle Fiber	678 1, 239 5, 783 25	462 1, 363 8, 296 177 245
Total	7, 725	10, 543

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 6.—Asbestos and asbestos products exported from the United States, 1948-52

[U. S. Department of Commerce	ce]	Commer	of	Department		S.	IU.	
-------------------------------	-----	--------	----	------------	--	----	-----	--

	τ	Inmanufactu	Asbestos products				
Year	Don	nestic 1	Foreign 2 Domestic		Domestic 1	Foreign 2	
	Short tons	Value	Short tons	Value	Value	Value	
1948 1949 1950 1951 1952	6, 530 17, 621 18, 980 14, 298 10, 265	\$1, 173, 259 3, 618, 703 3, 646, 828 3, 216, 810 2, 550, 065	2, 697 2, 424 1, 910 2, 228 459	\$631, 352 533, 641 437, 556 445, 460 120, 905	\$9, 321, 351 9, 666, 560 8, 097, 192 14, 320, 389 13, 027, 739	\$5,354 1,287 49,949 889 1,118	

¹ Material of domestic origin, or foreign material that has been milled, blended or otherwise processed in the United States.
² Material that has been imported and subsequently exported without change.

TABLE 7.—Asbestos and asbestos products exported from the United States

TABLE 7.—Aspestos and aspestos products exported from the United States
1951-52, by kinds

[U. S. Department of Commerce]

	19	51	198	52
Product	Quantity	Value	Quantity	Value
Unmanufactured asbestos:	1 4			
Crude and spinning fibersshort tons.	1,306	\$479, 228	1,419	\$551,686
Nonspinning fibersdo	11, 449	2, 567, 289	7,610	1, 845, 154
Waste and refusedo	1, 543	170, 293	1, 236	153, 225
Total unmanufactureddo	14, 298	3, 216, 810	10, 265	2, 550, 065
Asbestos products:				
Brake blocksdo	363	680, 989	195	454, 53
Brake lining:		·	1	
Molded and semimoldeddo	3, 472	6, 017, 473	2,365	4, 657, 696
Not moldedlinear feet	1, 034, 930	661, 474	530, 906	424, 838
Clutch facingnumber	1, 452, 270	935, 913	1,550,644	996, 086
Construction materialsshort tons_		2, 526, 784	16,692	2, 822, 802
Pipe covering and cementdo	2,026	453, 367	2,324	655, 25
Textiles, yarn, and packingdo	1,176	2,391,982	1, 254	2, 428, 12
Manufactures, n. e. s	(1)	652, 407	(1)	588, 409
Total		14, 320, 389		13, 027, 739

¹ Quantity not recorded.

NEW DEVELOPMENTS

Research was continued on methods of removing iron from the ferrous types of chrysotile to make them suitable for electric insulation uses. Experiments conducted by the Naval Research Laboratory included treatment of bulk samples of Canadian chrysotile with a commercial-size Vortrap at the National Bureau of Standards, but the results were unsatisfactory. Only one-third of the iron content had been removed after three passages through the machine. Considerable research remains to be done on fiberization before the effectiveness of the Vortrap as a means of removing iron from asbestos can be determined.

Much progress has been made in the manufacture of glass and related fibers, some of which may be used as substitutes for asbestos in certain applications. The manufacture of an aluminum silicate fiber known as "Fiberfrax" has been announced by the Carborundum Co It is blown by steam or compressed air after fusion with an electric arc. The fibers will withstand temperatures as high as 2,300° F.5

Keasbey & Mattison Co., which has operated an asbestos-products plant at Ambler, Pa., for many years, has expanded its facilities by establishing an asbestos-cement-pipe plant at Santa Clara, Calif., and

an asbestos-textile plant at Meredith, N. H.

DMEA loan applications were approved for exploratory work on asbestos deposits in Gila County, Ariz.; Siskiyou, Nevada, Trinity, and Inyo Counties, Calif.; Madison County, Mont.; Grant County, Oreg.; Marinette County, Wis.; and Natrona County, Wyo. No

noteworthy discoveries were recorded in 1952.

Several publications on various phases of the asbestos industry appeared during the year. Becker & Haag issued a second edition of Asbest.⁶ The first section of the book describes the physical and chemical properties of asbestos. Research in this field was assisted greatly by the electron microscope and electronic apparatus. ing sections deal with the asbestos deposits of the world, the processing of asbestos, and the manufacture of asbestos products.

The Bureau of Mines, in cooperation with the National Security Resources Board, prepared a report covering primarily problems relating to acquisition of adequate supplies of the essential grades of asbestos. It describes the varieties and composition of asbestos, the principal world deposits, mining and milling methods, grading and classification, world production and reserves, international trade, uses,

substitutes, and various other aspects of the industry.

The Department of Geography of the University of Maryland has prepared, in cooperation with the Bureau of Mines, a comprehensive atlas of the mineral resources of the world; one chapter is devoted to asbestos.8

Asbestos floats have been discussed in some detail by Badollet.⁹ Floats are airborne particles collected at various places in asbestosprocessing mills. Their properties, classification, and uses are de-They are useful constituents of automobile-body coatings, adhesives, caulking compounds, joint fillers, paints, plastics, and many other products.

The United States Tariff Commission has published a short report

on asbestos.10

Processes and equipment used in asbestos milling, particularly those employed in Africa, are described in detail in a recent series of articles.11

To conserve supplies of the spinning grades of chrysotile asbestos adequate for the manufacture of products essential to the defense program, the National Production Authority issued Order M-96, effective February 1, 1952. On and after that date, the use of some grades of spinning fiber was prohibited for any other than certain

Chemical Engineering, Ceramic Fiber Resists 2,300° F.: Vol. 59, No. 9, September 1952, p. 198.
 Frank, Karl, Asbest (in German): Becker & Haag, Hamburg, Germany, 1952, 234 pp.
 Bowles, Oliver, Materials Survey—Asbestos: Bureau of Mines, prepared for National Security Resources

Bowles, Oliver, Materials Survey—Asbestos: Bureau of Mines, prepared for National Security Resources Board, 1952, 146 pp.
 Van Royen, William, and Bowles, Oliver, Asbestos: chapter in Atlas of the World's Resources, The Mineral Resources of the World, Prentice-Hall, New York, 1952, pp. 166-169.
 Badollet, M. S., Asbestos Floats: Canadian Min. and Met. Bull., vol. 55, May 1952, pp. 185-189.
 U. S. Tariff Commission, Asbestos: Industrial Mineral Series Rept. M-3, 1951, 46 pp.
 Sinclair, W. E., Milling Asbestos Orc: Asbestos, vol. 33, No. 9, March, 1952, pp. 8-18; No. 10, April, 1952, pp. 4-12; No. 11, May, 1952, pp. 4-10; No. 12, June 1952, pp. 2-10.

Limitations were placed on the use of the material specified end uses. for production of certain other end-use products.

A new although small use for blue asbestos is its employment in

cigarette filters.

WORLD REVIEW

Official statistics of world production for 1952 are far from complete, but estimates for unreported countries are included in the total shown Revisions for previous years have been made in the light of new information that has become available. World output was virtually the same in 1952 as in 1951.

TABLE 8.—World production of asbestos by countries, 1948-52, in metric tons 2 [Compiled by Helen L. Hunt]

Country 1	1948	1949	1950	1951	1952
North America: Canada (sales) ³ United States (sold or used by producers)	650, 239 33, 649	521, 543 39, 360	794, 095 38, 495	882, 866 46, 851	843, 078 48, 864
South America:	ł .	,	'		
Bolivia (exports)	147 1, 499	182 1, 415	166 844	316 1,321	465
Brazil Chile	150	291	172	(4)	(4)
Venezuela	192	192	190	260	394
Europe: Finland 8	10,818	10, 486	10, 949	11,850	5, 801
France	1,309	1,090	6,080	6,940	6,300
Greece	13,044	15, 877	30 21, 433	22, 612	23, 938
Italy Portugal		10, 877	257	312	(4)
Spain	35	40	41	41	(4)
YugoslaviaAsia:	752	1, 138	958	1, 523	2, 506
Cyprus		12, 556	14, 989	17, 180	6 18, 479
India	83 4, 809	148 5, 456	211 5, 664	6, 139	3, 564
Japan Taiwan (Formosa)		410	216	35	24
Turkey	203	250	245	80	
Africa: Egypt	1, 625	117	260	1, 247	(4)
French Morocco	399	402	511	604	576
Kenya		716	229	379 17	354
MadagascarSouthern Rhodesia	62, 502	72, 246	64,888	70, 454	76, 960
Swaziland	29, 421	30, 814	29, 635	31,719	31, 542
Union of South Africa Oceania:	41, 490	64, 334	79, 300	97, 402	121, 416
Australia	1,348	1,671	1,643	2, 599	4, 124
New Zealand			42	826	(4)
Total (estimate)	1,025,000	975, 000	1,300,000	1, 425, 000	1, 425, 000

7 Less than 0.5 ton.

CANADA

Shipments of Canadian asbestos declined 5 percent from the 1951 level, but the value of sales increased 9 percent. As indicated in table 9, the recession in sales was confined primarily to the shorter, lowpriced grades. Asbestos-producing companies in Canada in 1952 were, in order of size of output: Canadian Johns-Manville Corp., Ltd.; Asbestos Corp., Ltd.; Johnson's Co.; Quebec Asbestos Corp.; Bell

¹ In addition to countries listed, asbestos is produced in Argentina, China, Czechoslovakia, Korea, and U. S. S. R. Estimates by authors of the chapter are included in the total.

2 This table incorporates a number of revisions of data published in previous asbestos chapters.

3 Exclusive of sand, gravel, and stone (waste rock only), production of which is reported as follows: 1948, 40,066 tons; 1949, 32,015 tons; 1950, 43,551 tons; 1951, 30,628 tons; 1952, 35,982 tons.

4 Data not available; estimate by authors of chapter included in total.

Includes asbestos flour.

Exports.

Asbestos Mines; Nicolet Asbestos Mines, Ltd.; and Flintkote Mines, Ltd.

The American Smelting & Refining Co. conducted, under option, large-scale milling tests of asbestos-bearing rock from the property of United Asbestos Corp. Ltd., under Black Lake, Quebec. Preliminary mining and milling are being conducted by Lake Asbestos of Quebec, Ltd., a subsidiary of American Smelting & Refining Co. The results of the tests have not yet been announced. The Quebec Legislature has amended the Quebec Mining Act to permit drainage of the lake.

An extensive modernization program of Canadian Johns-Manville Corp., Ltd., at the Jeffrey mine and mill, Asbestos, Quebec, is well advanced. Over 16,000 tons a day of fiber-bearing rock is now being

milled.

The new mill of Dominion Asbestos Co., with a capacity of 2,200 tons of rock a day, was nearing completion at the end of 1952. The property is near St. Adrien about 15 miles from Asbestos, Quebec.

A new mill, the Normandie, of the Asbestos Corp., Ltd., with a capacity of 5,000 tons of rock a day was under construction in 1952.

Lafayette Asbestos Co., Ltd., has purchased the mineral rights, machinery, and equipment of the St. Lawrence Asbestos Co., Ltd. The property is situated in Cranbourne Township, Dorchester County, Quebec. Plans are being made for constructing a mill with a capacity of 2,000 tons of rock a day.

The complex block-caving system of mining in the Quebec area has been described in some detail by Lindell.¹² He also described the

haulage systems employed at Canadian mines.¹³

The McDame Creek asbestos deposit in northern British Columbia is being developed by Cassiar Asbestos Corp., a subsidiary of Conwest Exploration Co. A mill having a capacity of 250 tons of rock a day was completed in 1952. It was designed primarily to process fiber from surface exposures. It was expected that the mill would be in operation by midsummer 1953. A larger mill to handle rock from underground workings is contemplated. Samples of the asbestos tested in the

TABLE 9.—Sales of asbestos in Canada, 1951-52, by grade [Dominion Bureau of Statistics]

		1951			1952	
		Va	lue		Value	
	Short tons	Total	Average per ton	Short tons	Total	Average per ton
Grade: Crudes Fibers Shorts	748 333, 001 639, 449	C \$568, 725 49, 399, 632 31, 615, 988	C \$760. 33 148. 35 49. 44	741 351, 644 576, 954	C \$726, 827 58, 822, 472 29, 705, 614	C \$980. 87 167. 28 51. 49
Total Rock mined Rock milled	973, 198 12, 623, 529 10, 219, 658	81, 584, 345	83.83	929, 339 12, 992, 252 10, 918, 989	89, 254, 913	96. 04

¹² Lindell, Karl V., World's Largest Asbestos Producer Uses Block Caving and Concreted Slusher Drifts: Min. Eng., vol. 4, No. 3, March 1952, pp. 265-272.

¹⁸ Lindell, Karl V., Rail and Truck Haulage at Canadian Asbestos Open Pit: Min. Eng., vol. 4, No. 4, April 1952, pp. 364–368.

United States were found to be of good quality for textile use. It is reported that the iron content of the processed fiber will be low enough to pass specifications for nonferrous fiber. Exploratory work indicates the presence of a large body of asbestos-bearing rock having a relatively high fiber content. The deposit is the most promising occurrence of spinning fiber noted during recent years.

SOUTHERN AFRICA

Southern Rhodesia.—As indicated in table 10, the output of asbestos in Southern Rhodesia in 1952 increased 9 percent in quantity and 22 percent in value. Principal production was from the Shabani mines and in the Mashaba and Filabusi districts, controlled by Turner & Newall, Ltd., of Manchester, England. Rhodesia Monteleo Asbestos, Ltd., has completed its new mill at its property in the Vukwe Hills, 15 miles southeast of Shabani. Fiber shipments on a substantial scale are expected in 1953.

The Johns-Manville Corp., in association with several other companies, is developing two asbestos deposits at Mashaba in the Victoria

district. One mill will handle the product of both deposits.

TABLE 10.—Asbestos produced in Southern Rhodesia, 1948-52

Year	Short tons	Value	Year	Short tons	Value
1948 1949 1950	68, 897 79, 638 71, 527	£2,604, 623 3,986, 703 4,615, 490	1951 1952	77, 663 84, 834	£5, 452, 108 6, 651, 975

Union of South Africa.—Production in the Union continued the remarkable expansion that has characterized recent years. Total production was 25 percent higher than in 1951. Gains were registered in every category. Amosite production increased 17 percent, chrysotile 28 percent, Transvaal blue 30 percent, and Cape blue 35 percent. For the first time in the history of the industry, exports passed the 100,000-ton mark. The new Riley Bridge over the Orange River at Koegas, completed in 1952, has greatly facilitated transportation and tends to stimulate increasing production of blue asbestos.

TABLE 11.—Asbestos produced in and exported from the Union of South Africa, 1948-52

	Produ	etion (short	Exports		
Year	Transvaal	Cape Province	Total	Short tons	Value
1948	37, 434 58, 918 72, 203 89, 290 109, 398	8, 301 11, 999 15, 211 18, 078 24, 441	45, 735 70, 917 87, 414 107, 368 133, 839	38, 550 63, 428 70, 609 89, 735 106, 576	£1, 138, 792 2, 600, 323 3, 475, 200 5, 056, 143 6, 899, 086

TABLE 12.—Asbestos produced in the Union of South Africa, 1948-52, by varieties and sources, in short tons

Variety and source	1948	1949	1950	1951	1952
Amosite (Transvaal) Chrysotile (Transvaal) Blue (Transvaal) Blue (Cape) Anthophyllite (Transvaal)	30, 372 4, 441 2, 608 8, 301 13	41, 974 7, 609 9, 181 11, 999 154	42, 393 14, 334 15, 387 15, 211 89	54, 053 19, 509 15, 581 18, 078 147	63, 280 24, 970 20, 294 24, 441 854
Total	45, 735	70, 917	87, 414	107, 368	133, 839

OTHER COUNTRIES

Australia.—The blue asbestos deposits of western Australia are

discussed in a recent publication.14

Colombia.—The Johns-Manville Corp. is developing a chrysotile asbestos deposit at Antioquia in cooperation with Sociedad Colombiana de Asbestos, Ltda., and the Institute de Fomento Industrial, a Colombian Government organization devoted to promoting the industrial development of the country.

Kenya.—A deposit of anthophyllite was discovered in 1949 in the Teita Hills about 120 miles from the Port of Mombasa. A mill has been built, and some progress has been made in developing uses in such products as chemical filters, compound packings, and thermal

and acoustical insulation.15

Spain.—An output of 30 tons a month of asbestos from a deposit

at Ronda in southern Spain was reported in the press in 1952.

Yugoslavia.—Several widely scattered chrysotile asbestos deposits occur in Yugoslavia. At least four of the properties have been developed, and mills are in operation or are under construction. Most of the fiber is of the shorter grades, but one deposit furnishes hand-cobbed Crudes Nos. 1 and 2. The properties have been described in some detail by Millar. 16

¹⁴ The Mining Journal (London), The Asbestos Deposits of Western Australia: Vol. 238, No. 6095, June

^{15, 1952,} p. 623.

18 Asbestos, The Makinyambu Asbestos Deposits, Kenya, British East Africa: Vol. 34, No. 1, July 1952, pp. 2-8

pp. 2-8.

Millar, W. B., Asbestos in Yugoslavia: Asbestos, vol. 34, No. 2, August, pp. 2-10; No. 3, September, pp. 2-10; No. 4, October, pp. 2-6, 1952.

Barite

By Joseph C. Arundale 1 and Flora B. Mentch 2

THE UNITED STATES has been the world's leading producer of barite since the beginning of World War II. This lead was lengthened in 1952, when a record tonnage was produced. Imports also increased.

New grinding facilities were being built to supply the growing need

for barite in oil-well drilling mud.

TABLE 1.—Salient statistics of the barite and barium-chemical industries in the United States, 1943-47 (average) and 1948-52

	1943–47 (average)	1948	1949	1950	1951	1952
Barite: Primary: Producedshort tons_ Sold or used by producers: Short tons Value Imports for consumption: Short tons Valueshort tons_ Ground and crushed sold by producers: Short tons Value Barium chemicals sold by producers: Short tons Value Britm chemicals sold by producers: Short tons Value	649, 241 638, 693 \$4, 623, 603 44, 533 \$298, 427 665, 620 405, 431 \$6, 581, 421 74, 758 \$7, 323, 683	799, 848 \$6, 693, 413 53, 204 \$443, 515 894, 309 631, 424 \$11, 195, 365	717, 313 \$5, 642, 226 26, 178 \$192, 567 719, 543 554, 028 \$10,156,590 57, 012	695, 414 \$6, 193, 906 58, 381 \$431, 879 1786, 131 573, 359 \$11, 305, 209	\$60, 669 \$7, 968, 023 52, 755 \$419, 494 1 950, 893 703, 014 \$14, 590, 000	941, 825 \$8, 797, 944 107, 918 \$923, 336 11, 033, 843 839, 428 \$16, 608, 546
Lithopone sold or used by producers:	145, 363	140, 033	78, 335	105, 650	1	61, 832

¹ Includes some witherite.

DOMESTIC PRODUCTION

Domestic production of barite in 1952 surpassed that in any previous year and for the first time exceeded 1 million tons. Arkansas remained the leading producer, but output increased from most of the

other producing States.

August 1, 1952, the Defense Production Administration established an expansion goal for barite at an annual capacity of 1,360,000 net tons by 1955. This includes a requirement of about 1 million tons of drilling-grade barite, the remainder being largely chemical grade. The 1955 goal, therefore, represents an increase of about 420,000 tons over 1951 production, of which 405,000 tons is drilling-grade barite.

2 Statistical assistant.

¹ Assistant chief, Construction and Chemical Materials Branch.

In anticipation of increasing demand, two firms applied for certificates of necessity from the Defense Materials Procurement Agency to construct additional grinding facilities. The Magnet Cove Barium Corp. was building a grinding plant at New Orleans, La., and the Baroid Sales Division of National Lead Co. was building a plant at Corpus Christi, Tex. This latter company also was reported to be planning expansion of its Malvern, Ark., plant. The Superbar Co. was reported to be doubling the capacity of its fine-grinding facilities near Potosi, Mo., for processing local barite.

TABLE 2.—Domestic barite sold or used by producers in the United States, 1950-52, by States

State	19	50	19	51	1952		
State	Short tons	Value	Short tons	Value	Short tons	Value	
Arkansas ¹ Georgia South Carolina Tennessee	343, 168 72, 888	\$3, 088, 512 766, 711	407, 085 73, 117	\$3, 765, 536 841, 440	428, 522 97, 540	\$3, 963, 828 1, 162, 249	
Missouri Nevada Other States 2	212, 736 47, 608 19, 014	1, 924, 520 268, 874 145, 289	281, 895 63, 201 35, 371	2, 697, 200 387, 026 276, 821	304, 080 68, 062 43, 621	2, 919, 795 391, 242 360, 830	
Total	695, 414	6, 193, 906	860, 669	7, 968, 023	941, 825	8, 797, 944	

¹ Value estimated.

TABLE 3.—Ground (and crushed) barite produced and sold by producers in the United States, 1943-47 (average) and 1948-52

Year	Dlanta	Production	Sales		
1 ear	Plants (short tons)		Short tons	Value	
1943–47 (average) 1948 1949 1950 1951 1952	21 23 24 26 24 24 24	408, 429 630, 808 561, 258 569, 129 704, 709 839, 457	405, 431 631, 424 554, 028 573, 359 703, 014 839, 428	\$6, 581, 421 11, 195, 365 10, 156, 590 11, 305, 209 14, 590, 000 16, 608, 546	

The Arizona Barite Co. began to strip overburden from a deposit of barite about 20 miles south of Aguila, which was being developed as an open-pit operation. This firm also operates an underground barite mine east of Mesa, Ariz.³

The Nevada Barium Co. was reported to have begun constructing a crushing and screening plant at Beowawe that will custom-mill barite from that area. Meanwhile, the company was producing minerun barite.4

Westvaco Chemical Division, Food Machinery & Chemical Co., was reported to have acquired 8 claims about 45 miles south of Battle Mountain, Nev. Drilling operations were said to be underway to determine the extent and grade of the barite deposit.5

² Arizona, California, Idaho, Montana (except 1950), and New Mexico.

Mining World, vol. 14, No. 6, May 1952, p. 81.
 Mining World, vol. 14, No. 7, June 1952, p. 90.
 Mining World, vol. 14, No. 2, February 1952, p. 90.

179 BARITE

The history of the rare-earth and barite deposit at Mountain Pass. Calif., and the operations of Molybdenum Corp. in this area were reviewed.6

Several thousand pounds of barium metal is produced annually in the United States by Kemet Laboratories Co., Inc. (unit of Union Carbide and Carbon Corp.), Cleveland, Ohio, and King Laboratories, Inc., Syracuse, N. Y.

CONSUMPTION AND USES

The petroleum industry completed 45,840 new wells in the United States in 1952 to set a new record. The average depth of these wells also continued to increase. Another new record has been forecast for 1953 on the basis of wells scheduled.8 This activity was responsible for a record consumption of barite as the weighting agent in drilling More than three-quarters of a million tons of ground barite were consumed for this purpose.

The use of barite for most other purposes was less than in the previous year. Shipments of lithopone decreased sharply to a figure 40 percent below 1951 and the lowest since 1921. This was attributed in part to a decreased volume of business in industries that are important consumers and in part to increased use of substitutes. Most of the decrease was in the use of lithopone in paints, varnishes, and lacquers. This, in turn, was reflected in a somewhat decreased production of black ash, one of the steps in the manufacture of lithopone. Most other barium chemicals also were produced in substantially smaller quantities. However, barium oxide and barium hydroxide, as in 1951, were produced at rates substantially above those for 1950 and previous years. This was attributed largely to increased requirements for the compounds by the lubricating-oil industry.

TABLE 4.—Crude barite (domestic and imported) used in the manufacture of ground barite and barium chemicals in the United States, 1943-47 (average) and 1948-52, in short tons

	In m	anufacture	e of—			In m	anufactur	e of—		
Year	Ground barite 1	Litho- pone	Barium chemicals	· Total	Total	Year	Ground barite ¹	Litho- pone	Barium chemicals	Total
1943-47 (aver- age) 1948	418, 868 640, 284 567, 249	144, 973 153, 987 71, 710	101, 779 100, 038 80, 584	665, 620 894, 309 719, 543	1950 1951 1952	578, 078 711, 531 849, 246	99, 703 107, 094 61, 000	² 108, 350 ² 132, 268 ² 123, 597	786, 131 950, 893 1, 033, 843	

¹ Includes some crushed barite.

² Includes some witherite.

⁶ California State Division of Mines, Mineral Information Service: Vol. 5, No. 7, July 1952, p. 9. Engineering and Mining Journal, A Visit to the Mountain Pass Rare-Earth Enterprise: Vol. 153, No. 10,

October 1952, p. 87.

McCaslin, John C., Operators Completed 45,840 Wells in 1952: Oil and Gas Jour., vol. 51, No. 38, Jan. 26, 1953, pp. 192–195.

Casper, John C., 46,230 Wells Scheduled for This Year: Oil and Gas Jour., vol. 51, No. 38, Jan. 26, 1953, pp. 190–191.

TABLE 5.—Ground (and crushed) barite sold by producers, 1950-52, by consuming industries

•	1950		1951		1952	
Industry	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total
Well drilling Glass Paint Rubber Concrete aggregates Undistributed Total	483, 519 24, 638 28, 000 19, 000 15, 784 2, 418 573, 359	84 4 5 3 1	594, 668 25, 779 28, 000 15, 000 38, 143 1, 424 703, 014	85 4 4 2 5 (1)	758, 240 24, 604 25, 000 18, 000 1, 584 839, 428	90 3 3 2 2 2 100

¹ Less than 0.5 percent.

TABLE 6.—Lithopone sold or used by producers in the United States, 1943-47 (average) and 1948-52

	1943-47 (average)	1948	1949	1950	1951	1952
PlantsShort tonsValue	145, 363 \$12, 364, 540	140, 033 \$16, 135, 976	78, 335 \$8, 977, 178	7 105, 650 \$13, 129, 363	102, 837 \$14, 470, 742	61, 832 \$8, 475, 200

TABLE 7.—Distribution of lithopone shipments, by consuming industries, 1950-52, in short tons

Industry	1950		1951		1952	
Industry	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total
Paints, varnishes, and lacquers	78, 177 5, 297 7, 945 2, 290 4, 092 7, 849	74 5 8 2 4 7	76, 614 4, 620 4, 814 6, 462 3, 295 7, 032	75 4 5 6 3 7	45, 267 3, 009 5, 698 3, 089 1, 523 3, 246 61, 832	73 5 9 5 3 5

The principal use for barium metal is as a "getter." In this application, the pure metal or an alloy with other alkaline-earth metals or magnesium or aluminum is introduced into an electronic tube to absorb residual gases and thus improve the vacuum on which the efficiency of the tube depends.

TABLE 8.—Barium chemicals produced and used or sold by producers in the United States, 1948-52, in short tons

			Used by producers 1	Sold by p	roducers 3
Chemical	Plants	Produced	in other barium chemicals 2	Short tons	Value
Black ash: 4					
1948	16	152, 383	151, 509	459	\$31, 442
1949	15	97, 693	97, 753	246	16, 464
1950	.12	130, 967	130, 305	499	33, 084
1951	12	152, 792	150, 434	455	28, 361
1952	12	121,061	120, 562	649	42, 475
Carbonate (synthetic):	5	43, 227	16, 588	27, 482	1, 927, 599
1948 1949	4	36, 122	10, 077	27, 402	1, 942, 845
1950	4	49, 299	13,063	36, 266	2, 746, 628
1951	4	60, 181	18, 541	40, 568	3, 322, 276
1952	$\hat{4}$	57, 935	21, 591	37, 214	3, 175, 080
Chloride (100 percent BaCl ₂):		1	'		.,,
1948	、 4	13,008	3, 534	8,998	964, 311
1949	3	10, 513	2,872	7,679	848, 637
1950	3	12, 285	3, 324	8,874	992, 722
1951 1952	4	17, 959	4,911	12, 364	1, 830, 070
Hydroxide:	4	14, 157	3, 979	10, 409	1, 407, 986
1948	4	5,030	92	4,849	809, 589
1949	4	3, 849	140	3, 737	694, 097
1950	4	7, 927	82	7, 888	1, 540, 046
1951	5	13, 483	231	12,757	3, 185, 405
1952	5	11, 759	585	10, 848	2, 211, 998
Oxide:	_				
1948	3	7, 247	6,449	577	127, 716
1949	3	5, 795	4,899	1,118	233, 733
1950	3	8, 129 9, 347	6, 021 6, 334	$\frac{2,162}{3,073}$	451, 277 729, 379
1951 1952	3	9, 843	6,081	3, 818	907, 762
Sulfate (synthetic):		0,010	0,001	0,010	301, 102
1948	7	22, 733	(5)	17, 134	1,601,497
1949	7	15, 182		15, 371	1, 436, 557
1950	6	15, 821		15, 676	1, 505, 628
1951	6	14, 237		13, 426	1, 448, 628
1952	7	13, 035		13, 274	1, 492, 324
Other barium chemicals: 6	(7)	19 400	8 8, 994	10.010	1 505 004
1948	(7)	13, 469 5, 320	2, 890	12, 218 1, 851	1, 565, 904 474, 070
1949 1950	X	5, 049	2,878	2, 324	616, 201
1951	X	6, 999	2,545	3, 389	1, 112, 378
1952	(i) (ii) (ii)	8, 893	1,669	6, 944	2, 863, 849
Total: 9	``	.,	,,	-, -	, , -
1948	20			71, 717	7, 028, 058
1949	20			57,012	5, 646, 403
1950	17			73, 689	7, 885, 586
1951	18			86, 032	11, 656, 497
1952	19			83, 156	12, 101, 474

1 Of any barium chemical.
2 Includes purchased material.
3 Exclusive of purchased material and exclusive of sales by one producer to another.
4 Black-ash data include lithopone plants.
5 Included with "Other barium chemicals."

PRICES

According to E&MJ Metal and Mineral Markets, the following prices for barite prevailed throughout 1952: Barytes-f. o. b. mines: Georgia: Barytes ore, crude, jig and lump, \$13-\$13.50 per long ton; beneficiated, \$16-\$18 per net ton, in paper bags; Missouri: Per ton, water-ground and floated, bleached, \$37.60, carlots, f. o. b. works; crude ore, minimum 94 percent BaSO₄, \$10.15 f. o. b. mines.

⁶ Includes barium acetate, chromate, nitrate, perchlorate, peroxide, and sulfide. Specific chemicals may not be revealed by specific years. In 1948 consists mostly of titanium dioxide-barium sulfate pigments.

7 Plants included in above figures.

<sup>Also includes barium sulfate (synthetic).
A plant producing more than 1 product is counted but once in arriving at grand totals.</sup>

Prices on barium metal are not quoted in the trade journals but may be obtained directly from the producers. The price varies with the quantity and purity desired.

TABLE 9.—Range of quotations on barium chemicals in 1952

[Oil, Paint and Drug Reporter]

Barium carbonate, precipitated, bags, 10 tons and up, works		1 \$82. 50	
	pound		38
Barium chloride, technical, bags, carlots, works, freight equaled			² 152. 00
Barium chromate, bags, freight equaled			32
Barium dioxide (peroxide), drums, carlots, works			16
Barium hydrate, crystals, bags	short ton	2 190.00	
Barium nitrate, barrels, carlots, works	pound		.121/2
Barium oxide, ground, drums, carlots, works	short ton	1	² 250.00
Blanc fixe (dry):		1	
Direct process, bags, carlots, works	do		90.00
Byproduct, bags, carlots, works			100,00
Lithopone:	· ·		
Ordinary, bags, carlots, delivered	pound	.071	2079
Less carlots, same basis	do	.081	40890
Titanated (high-strength), bags, carlots, delivered	do	1	.10
Smaller lots		1	.îi
		ı	• • • •
	. 1	i	

¹ As quoted in January and February. Method of reporting was changed in March to carlots. \$85.50 was reported for rest of year.

² As quoted March through December.

FOREIGN TRADE 9

A second second

and ground barite from Canada.

Imports of crude barite into the United States reached an alltime high of 107,918 short tons in 1952. New grinding facilities on the gulf coast created additional requirements for foreign barite. Shipments from Canada (Nova Scotia) and Mexico reached new highs. Shipments from Yugoslavia resumed after being suspended in 1951. For the first time a significant tonnage of crude was received from Brazil

TABLE 10.—Barite imported for consumption in the United States, 1948-52, by countries

	19	1948		49	1950		1951		. 1952	
	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value
Grude barite: AlgeriaBrazil.					(1)	\$2			3 180	\$14, 425
Canada Italy	39, 877 5, 601	\$359, 161 51, 257	8, 813 5, 712	\$60,429 65,024		328, 689	51,447	\$409, 506		571, 196
Mexico Yugoslavia	7, 726	33, 097		9,516	3, 296		1,308	9, 988		97, 347 240, 368
Total crude barite	53, 204	443, 515	26, 178	192, 567	58, 381	431, 879	52, 755	419, 494	107, 918	923, 336
Ground barite: AlgeriaCanada							84	2, 870	179 6, 440	5, 900 112, 265
Greece India	(1)	11	211	2, 241	478	5, 363	31 28			
Italy					200	4, 535			1	25
Total ground barite	(1)	11	211	2, 241	678	9,898	160	4, 567	6,620	118, 190

[U. S. Department of Commerce]

¹ Less than 1 ton.

⁹ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

183

As domestic requirements and production of most barium chemicals declined, there was a corresponding decrease in imports.

BARITE

TABLE 11.—Barium chemicals imported for consumption in the United States, 1948-52

IU.	s.	Department of	of	Commercel
-----	----	---------------	----	-----------

Year	Litho	ppone	Blanc five (precipitated barium sulfate)		Barium chloride		Barium hydroxide	
	Pounds	Value	Short	Value	Pounds	Value	Short tons	Value
1948. 1949. 1950. 1951. 1952.	24,003	\$2, 053 179, 197 151, 165 2, 308	1 53 12 32	\$54 6, 174 1, 616 6, 481	8 1,712,756 167,964	\$8 99, 453 11, 065	279 193	\$55, 344 46, 979
Y			Barium nitrate Barium carbonate precipitated Other bari					
Year			Short tons	Value	Short tons	Value	Short tons	Value
1948 1949 1950 1951 1952			141 84 149 368 456	\$17, 492 7, 819 21, 083 62, 277 80, 654	286 794 499	\$28, 222 72, 977 30, 427	11 11 35 32 82	\$3, 771 5, 651 11, 669 12, 503 35, 944

TABLE 12.—Lithopone exported from the United States, 1948-52

[U.S. Department of Commerce]

Year	Short tons			lue			
1 ear	Short tons	Total	Average	Year	Short tons	Total	Average
1948 1949 1950	21, 015 14, 460 9, 357	\$2, 972, 912 1, 918, 913 1, 248, 538	\$141. 47 132. 70 133. 43	1951 1952	20, 473 9, 985	\$3, 615, 915 1, 632, 106	\$176. 62 163. 46

Imports of witherite from United Kingdom, the only known commercial source, reached a record tonnage. The brick industry, which uses witherite for de-scumming, and the steel industry, which uses it for carburizing, were operating at record levels. No witherite is produced in the United States, except as it may be mined mixed with barite.

TABLE 13.—Witherite, crude, unground, imported for consumption in the United States, 1948-52

[U. S. Department of Commerce]

Year	Short tons	Value 1	Year	Short tons	Value ¹
1948	2, 470 2, 113 2, 089	\$94, 809 63, 369 51, 381	1951 1952	2, 016 5, 174	\$51, 673 184, 003

¹ Valued at port of shipment.

TECHNOLOGY

The development of a new material for permanent magnets was reported; it was said to be an oxide containing iron and barium and was developed by the Philips Research Laboratories at Eindhoven in the Netherlands. The new magnet is claimed to be suitable for use in dynamos, motors, and some special kinds of transformers.¹⁰
Baroid Sales Division of National Lead Co. completed moving its

main offices from Los Angeles, Calif., to Houston, Tex., consolidated its research facilities in this location, and enlarged both its research and service laboratories. The research facilities emphasize work on

drilling fluids.11

Engineers at the Nova Scotia Technical College, Halifax, are reported to have tested concrete made with a barite aggregate in a search for a low-cost material with high resistance to gamma-ray penetration. The aggregate used contained 80 percent barite and 10 percent iron oxide. Concrete was made with a weight of 190 to 200 pounds per cubic foot. It was found that a wall 12 inches thick allowed a penetration of 1 percent of the rays and a wall 1.5 inches thick allowed 50-percent transmission. Ordinary concrete with a weight of 145 to 150 pounds let 50 percent of the gamma rays through a 2-inch wall.¹²

The Bureau of Mines conducted a series of investigations to develop an economic and feasible treatment for two types of barite ore. of these ores from Montgomery County, Ark., consisted of an intimate mixture of barite and quartz. Fine grinding and fatty acid flotation were utilized to effect a good recovery of a drilling-grade product. The other test was made on a sphalerite-barite ore from Morgan County, Mo. In the test the sphalerite responded to activation with copper sulphate and floated with xanthate or Aerofloat promoters. Separation of barite from the dolomite gangue proved more difficult. The problem was solved by using petroleum sulfonate promoters for the barite. By this treatment a chemical-grade barite was produced in the laboratory.13

A patent was issued on a pulverulent asphaltic composition composed of powdered asphalt and finely divided barium sulfate.

material was said to be stable in storage.14

Barium acetate is a widely used electrolyte in the process for depositing phosphor powder on the inside faces of television and other type tubes. An accurate control of the barium acetate solution strength is necessary and rapid analysis is desirable. A new rapid. accurate volumetric method for determining the strength of such barium acetate solutions was described. 15

¹⁰ Mining Journal (London), vol. 238, No. 6077, Feb. 8, 1952, p. 142.

11 Chemical and Engineering News, Old Mud Compounds Being Taught New Tricks in Baroid Lab.:

Vol. 30, No. 23, June 9, 1952, pp. 2400-2401.

12 Shellstad, K. A., Vaughan, V. E., and Cameron, E. L., Barite Aggergate Concrete for Gamma-Ray Shielding: Canadian Jour. Technol., December 1952, p. 334; abs. Engr. News Record, vol. 150, No. 14, Apr. 2, 1953, p. 64.

13 Frommer, D. W., and Fine, M. M., Experimental Treatment of Barite Ores From Montgomery County, Ark., and Morgan County, Mo.: Bureau of Mines Rept. of Investigations 4881, 1952, 11 pp.

14 Puller, H. B. (assigned to Berry Asphalt Co.), Pulverulent Asphaltic Composition, U. S. Patent 2,584,919, Feb. 5, 1952.

15 Manns, Thomas J., Reschovsky, Margaret U., and Certa, Anthony J., Volumetric Determination of Barium: Anal. Chem., vol. 24, No. 5, May 1952, pp. 908-909.

WORLD REVIEW

Australia.—S. A. Barytes, Ltd., was said to be planning to double the output of barite from its mine at Araparinna near Howker in South Australia. This would bring output to 7,000 tons per year. 16

Belgian Congo.—Veins of barite are reported to have been located at Moyen Congo (at Madimba) on the Bangu (in the Mayumbe) and

in Southern Katanga.17

Canada (Nova Scotia).—The deposit of barite at Walton, Nova Scotia, was discovered about 1893; but exploration and development of the deposit were not begun until early in World War II, when supplies of barite from Germany were no longer available. At that time Canadian Industrial Minerals, Ltd., began exploration in the area. Diamond drilling indicated that the ore body was of considerable size, and it was decided to proceed, using a combination of open-pit and glory-hole mining. The history of this operation and the mining and milling methods used were described in an article.18

TABLE 14.—World production of barite, by countries, 1948-52, in metric tons 2 [Compiled by Helen L. Hunt]

Į o o .	nphed by H				
Country 1	1948	1949	1950	1951	1952
Algeria	16,681	16, 874	22, 890	21,021	³ 12, 000
Argentina	(4)	(4)	(4)	(4)	3 13,000
Australia	3,831	5, 552	6,028	6, 277	4,700
Austria	3,842	8, 260	10, 119	9, 645	3 7, 000
Brazil	3 10,000	6,010	6, 860	50	(4)
Canada	86,860	42, 763	70,013	89,006	108, 257
Chile	2, 141	1,461	1,360	1,095	(4) (4)
Colombia	120	58	(4)	(4)	
Egypt		30		41	30
France	56,722	30, 295	33, 349	26, 519	28, 800
France French Morocco		305	4,912	3, 256	3, 111
Germany:			4.5	4.5	<i>(</i> 1)
East	(4)	³ 55, 500	(1)	(4)	(4)
West	\$ 60,068	181, 467	310, 896	417, 479	345, 840
GreeceIndia	18,706	15, 604	20, 799	29, 399	21,679
India	23, 514	21, 457	12, 155	8, 356	7,621
Ireland	7,035	5, 968	4,821	8, 230	(4)
Italy	65,662	51, 583	54, 426	76, 541	55, 256
Japan Korea, Republic of	3,404	9,840	14, 460	16, 704	14, 112
Korea, Republic of					3 1, 300
Peru	1,787	6, 350	3,031	23, 015	9, 104
Portugal	406	427	128	719	(4)
South-West Africa		48			
Southern Rhodesia	51	488	261	85	271
Spain	14,153	7,665	7, 147	12, 449	14,040
Swaziland	98	104	441	477	403
Sweden	1,914	923	50	(4)	(4)
Tunisia	230	630	25	10	25
Union of South Africa	1,734	2, 222	2, 268	2,038	1,718
United Kingdom 6	123,719	119, 216	98, 160	89, 981	(1)
United States	705,642	663, 428	629, 060	767, 092	918, 802
Yugoslavia	28,648	36, 445	29, 730	24, 822	34, 819
Total (estimate)	1, 375, 000	1,400,000	1, 525, 000	1, 825, 000	1, 900, 000

In addition to countries listed, barite is produced in China, Cuba, Czechoslovakia, Mexico, North Korea and U. S. S. R., but data on production are not available. Estimates by authors are included in total.
 This table incorporates a number of revisions of data published in previous Barite chapters.

3 Estimate.

⁴ Data not available: estimate included in total.

<sup>Excludes British zone.
Includes witherite.</sup>

¹⁸ Mining World, vol. 39, No. 3, March 1952, p. 74.

¹⁷ Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, p. 47.

¹⁸ Campbell, G. G., Recovery of Barytes at Walton, Nova Scotia: Canadian Min. and Met. Bull. 485, September 1952, pp. 532-535.

French Morocco.—The only producer of barite in French Morocco in 1952 was the Compagnie Minière et Industrielle du Maroc, which mines a deposit at Djebel Irhoud about 40 miles southeast of Safi. The company has done considerable prospecting in another area approximately 60 miles southeast of Marrakech near the Tichka Pass. Although the mineral is said to be of good quality, transport problems and operating difficulties due to the location of the deposit have prevented exploitation.19

Peru.—Expansion of the oil-drilling industry in Peru has brought an increase in requirements for barite. In an effort to develop sources of barite within the country a new mine was opened near Chiclayo near the Sechura Desert where extensive exploration for oil was

expected to begin.20

United Kingdom.—A temporary setback was reported in barite mining in the United Kingdom; stocks were said to be high, with many mines unable to dispose of their output. At the Devonshire Baryta Co. mine, Bridford, Devonshire, operations had been cut back. In the north of England the Silverband mine was closed down and at Cow Green operations had been slowed down.21

Athole G. Allen, Ltd., announced suspension of development and production operations at the barite mines at Closehouse and Lunehead,

Middletown-in-Teesdale.²²

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 37, No. 1, July 1953, pp. 35-36.
Abs. from information received from B. A. Bramson, United States minerals attaché, Lima, Peru.
Mining World, vol. 14, No. 12, November 1952, p. 66.
Metal Bulletin (London), No. 3718, Aug. 19, 1952, p. 23.</sup>

Bauxite

By Horace F. Kurtz 1

ARGE-SCALE expansion of bauxite mining and processing facilities was proceeding in the West Indies, the Guianas, west Africa, and south-central Europe during 1952. The demand that led to the new developments resulted from a phenomenal expansion of the aluminum industry, particularly in the United States, Canada, Germany, and the U. S. S. R. These major aluminum producers depended on foreign bauxite reserves for important quantities of ore. Investigations of substitutes for bauxite continued in 1952, but none had been proved competitive by commercial production.

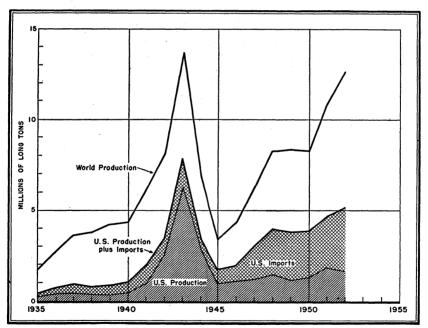


FIGURE 1.—United States supply and world production of bauxite, 1935-52.

¹ Commodity-industry analyst.

TABLE 1.—Salient statistics of the bauxite industry in the United States, 1943-47 (average) and 1948-52, in long tons

	1943–47 (average)	1948	1949	1950	1951	1952
Crude-ore production (dry equivalent) Imports (as shipped) Exports (as shipped) Consumption World production	2, 468, 745	1, 457, 148	1, 148, 792	1, 334, 527	1, 848, 676	1, 667, 047
	1, 104, 296	2, 488, 915	2, 688, 164	2, 516, 247	1 2, 819, 676	3, 497, 939
	176, 412	54, 113	34, 902	45, 406	89, 948	41, 330
	3, 021, 524	2, 725, 140	2, 677, 733	3, 325, 304	3, 945, 667	4, 240, 891
	16, 897, 000	18, 227, 000	18, 344, 000	18, 238, 000	110, 811, 000	1 12, 634, 000

¹ Revised figure.

Bauxite consumption in the United States had risen steadily and rapidly since 1949. Domestic production since World War II had shown only a slightly increasing trend, whereas imports had increased over fourfold. Although the United States had been neither an international supplier nor a self-sufficient nation in regard to bauxite in recent years, it continued to have all of the alumina-production capacity it required. All four alumina plants that were operated since the war were expanded under the aluminum expansion program. One new alumina plant began production in 1952, and a sixth plant was under construction. Aluminum is discussed in the Aluminum chapter of this volume.

DOMESTIC PRODUCTION

Mine production of domestic bauxite declined 10 percent from 1951 to 1952. Arkansas produced 96 percent of the 1952 total, and the remainder was produced in Alabama and Georgia. Despite the reduced mine output, total shipments of crude and processed bauxite to consumers increased. The quantity of crude ore that was dried, calcined, or activated before shipment to consuming plants was only slightly more than half that of the preceding year. Alcoa Mining Co.'s change in operations from shipping dried bauxite to the East St. Louis, Ill., alumina plant to sending crude ore directly to the new alumina plant at Bauxite, Ark., was the principal cause of the decline in processing activity, although the quantity of ore calcined for the abrasive industry was substantially reduced also.

TABLE 2.—Production of bauxite in the United States, 1948–52, by quarter years, in long tons ¹
[Dried-bauxite equivalent]

Quarter ended—	1948	1949	. ∄ 1950	1951	1952
March 31	295, 488 359, 284 437, 457 364, 919 1, 457, 148	320, 157 294, 023 208, 926 325, 686 1, 148, 792	322, 006 368, 256 293, 724 350, 541 1, 334, 527	378, 031 502, 088 453, 564 514, 993	426, 269 458, 612 312, 370 469, 796

¹ Quarterly figures adjusted to final annual totals.

A review of the bauxite industry in Arkansas was published in 1952.2 All of the production came from an area near Little Rock, Ark., in Saline and Pulaski Counties. About 84 percent of the output

BAUXITE

was mined by open-pit methods.

The Alcoa Mining Co., the largest producer in 1952, mined bauxite principally for its affiliated alumina company but also shipped dried and calcined ore from its two plants in Arkansas to nearly all industries that use bauxite. The second largest producer, Reynolds Mining Corp., shipped its entire output in crude form to the Reynolds The Dulin Bauxite Co. and the Riffe Construction Co., Metals Co. associated companies, were the only producers in Arkansas not directly affliated with a company that consumes bauxite. The Dulin crushing, drying, and calcining plant near Sweet Home, Ark., served both companies, and bauxite was sold to most bauxite-consuming

TABLE 3.—Mine production of bauxite and shipments from mines and processing plants to consumers, in the United States, 1948-52, by States, in long tons

	M	ine producti	on	Shipments from mines and processing plants to consumers			
State and year	Crude	Dried- bauxite equiva- lent	Value ¹	As shipped	Dried- bauxite equiva- lent	Value 1	
Alabama, Florida, and Georgia: 2 1948	1, 552, 047 2, 153, 786 1, 903, 101 1, 724, 437 1, 352, 495	61, 807 53, 868 27, 192 33, 402 63, 214 1, 395, 341, 1, 904, 924 1, 307, 335 1, 815, 274 1, 603, 833 1, 457, 148 1, 148, 792 1, 334, 527 1, 848, 677 1, 667, 047	\$397, 222 344, 217 161, 274 217, 774 541, 000 8, 299, 486 6, 433, 964 7, 531, 535 12, 259, 742 10, 235, 254 8, 696, 708 6, 778, 181 7, 692, 809 12, 477, 516 10, 776, 254	59, 520 45, 792 35, 741 39, 122 50, 670 1, 430, 688 1, 222, 883 1, 416, 724 1, 583, 320 2, 067, 1, 42, 465 1, 278, 675 1, 462, 465 1, 622, 442 2, 117, 911	59, 474 46, 407 35, 473 38, 123 48, 463 1, 314, 069 1, 132, 330 1, 301, 374 1, 493, 557 1, 849, 178, 737 1, 336, 847 1, 331, 680 1, 897, 750	\$504, 556 425, 532 272, 320 363, 602 520, 550 9, 458, 476 8, 119, 574 9, 277, 076 11, 994, 882 14, 084, 274 9, 963, 033 8, 545, 106 9, 549, 396 12, 358, 441, 604, 824	

Computed from selling prices and values assigned by producers.
 Bauxite was processed in Florida in 1948–49.

The American Cyanamid Co. and Consolidated Chemical industries. The American Cyanamid Co. and Consolidated Chemical Industries, Inc., mined chemical-grade bauxite in Arkansas during 1952, and the American Cyanamid Co. also shipped dried bauxite to the oil-refining industry. Both chemical companies operated plants The Norton Co. and the Crouch Mining Co. mined near the mines. and calcined bauxite exclusively for the abrasive plants affiliated with each company. The Campbell Bauxite Co. purchased crude ore from Arkansas producers and produced dried bauxite for the chemical industry and activated bauxite for desiccating and oil-filtering pur-

Buskett, E. W., Mining Bauxite in Arkansas: Mine and Quarry Eng., vol. 18, No. 1 January 1952, pp.

poses. Activated bauxite was also produced from purchased crude and dried ore by the Porocel Corp.

TABLE 4.—Recovery of processed bauxite in the United States, 1943-47 (average) and 1948-52, in long tons

		F	Processed bau	xite recovere	ed
Year	Crude ore			To	otal
	treated	Dried	Calcined or activated	As recovered	Dried- bauxite equivalent
1943-47 (average)	1, 238, 808 688, 898 597, 536 657, 798 1, 059, 645 576, 430	845, 764 476, 921 431, 158 480, 623 756, 060 397, 067	168, 562 68, 800 55, 544 63, 713 103, 588 56, 191	1, 014, 326 545, 721 486, 702 544, 336 859, 648 453, 258	1, 094, 608 584, 856 517, 412 579, 884 914, 433 481, 708

Bauxite production in both Alabama and Georgia increased in 1952. The Alcoa Mining Co. produced chemical- and refractory-grade bauxite and operated a drying plant in the Eufaula district of Alabama, and the D. M. Wilson Bauxite Co. mined refractory-grade ore in the same area. The American Cyanamid Co. mined bauxite in central and northwestern Georgia for use in the chemical industry and operated a drying plant near Adairsville, Ga. Bauxite from the southeastern States averaged about 53 percent Al₂O₃, 15 percent SiO₂, and 1.3 percent Fe₂O₃.

CONSUMPTION

Bauxite consumption increased 7 percent to 4½ million long tons (dry basis) in 1952, an annual level surpassed only by the peak war year 1943. Most of the increase resulted from a greater demand for alumina to meet requirements of the expanding aluminum industry. Production of primary aluminum rose 12 percent from 1951–52, despite a severe decrease in the power available for reducing alumina to metal during the last 4 months of 1952.

Reports from consumers showed that 1,130,000 tons of crude bauxite, 2,996,000 tons of dried bauxite, and 197,000 tons of calcined and activated bauxite were used during 1952. Imported bauxite comprised 63 percent of the total bauxite consumed in 1952, compared with 53 percent in 1951. All major consuming industries used greater

quantities of foreign ore.

The geographical distribution of bauxite consumption was largely determined by the location of alumina plants, which used 88 percent of the ore. Two of the alumina plants were located in the bauxite-producing area of central Arkansas, and the others were at Mobile, Ala., Baton Rouge, La., and East St. Louis, Ill. Virtually all bauxite used by the abrasive industry was consumed in the Niagara Falls

BAUXITE 191

TABLE 5.—Bauxite consumed in the United States, 1951-52, by industries, in long tons

[Dried-bauxite	equivalent]
----------------	-------------

Industry		1951		1952			
	Domestic	Foreign	Total	Domestic	Foreign	Total	
Alumina	1, 563, 663 122, 644 90, 568 14, 886 53, 749	1, 801, 260 181, 792 78, 954 33, 687 4, 464	3, 364, 923 304, 436 169, 522 48, 573 58, 213	1, 382, 041 60, 546 75, 670 13, 518 52, 439	2, 339, 588 194, 269 82, 119 39, 861 840	3, 721. 629 254, 815 157, 789 53. 379 53. 279	
Total	1, 845, 510	2, 100, 157	3, 945, 667	1, 584, 214	2, 656, 677	4, 240, 891	

¹ Includes consumption by Canadian abrasives industry.

area of Canada and the United States. Data on calcined bauxite fused and crushed by the abrasive industry in Canada were included with the consumption figures, since most of this material was returned to the United States for manufacture into abrasive wheels and coated The decline in production of abrasives from bauxite during 1952 was attributed to the general decline in metal fabrication resulting from a nationwide steel strike, which began on June 3 and lasted about 2 months. The production of abrasives is discussed more thoroughly in the Abrasives Materials chapter of this volume. Georgia, Louisiana, Alabama, Tennessee, and South Carolina consumed two-fifths of the bauxite used directly in the production of aluminum chemicals. Plants in Delaware, New Jersey, Ohio. and Maryland used another two-fifths. About 84 percent of the refractory-grade bauxite consumed in 1952 was used at plants in Missouri, Kentucky, and Illinois. Although most plants producing aluminous refractories were situated near refractory-clay deposits, the rising demand for high-alumina refractories in recent years and the depletion of suitable raw materials, such as Missouri diaspore, have forced the industry to use increasing quantities of bauxite.

The 5 alumina plants of the aluminum producers had a total output of 1,863,000 short tons of calcined alumina and 123,000 tons of alumina in other forms in 1952. It was calculated that an average of 1.91 long tons (dry basis) of bauxite was required to yield 1 short ton of calcined alumina. An average of 3.65 long tons of bauxite

was used to produce 1 short ton of aluminum.

Much of the construction involved in increasing the alumina capacity of the United States to approximately 3.5 million tons per year was completed during 1952. In October the Aluminum Ore Co. new plant at Bauxite, Ark., began production. The annual capacity of this plant was rated at 400,000 short tons of alumina using the combination Bayer-sinter process for treating Arkansas bauxite. During 1952 the Reynolds Metals Co. began constructing a new plant designed to produce 365,000 tons of alumina per year from Jamaican bauxite. The plant site was at LaQuinta, Tex., adjacent to the aluminum plant near Corpus Christi, Tex.

The 15 primary aluminum plants that operated during 1952 used an estimated 97 percent of the calcined alumina and 91 percent of the total alumina consumed. The other consumers of calcined alumina have been classified into three groups: Producers of ceramic products, including refractories, spark plugs, glass, and porcelain; producers of aluminum chemicals and fluxes and users of alumina for its catalytic and adsorbent properties; and abrasives producers. The chemical group used most of the commercial alumina trihydrate and activated alumina, and nearly all of the tabular alumina was used for refractories and spark plugs.

TABLE 6.—Production and shipments of selected aluminum salts in the United States, 1951-52

			1952					
Type of salt	Produc-	1	Shipped or	used	Produc-	Sh	ipped or	used
	tion (short tons)	Ship- pers 1	Short tons	Value	tion (short tons)	Ship- pers 1	Short tons	Value
Aluminum sulfate: Ammonium Potassium Sodium General: Commercial Municipal Iron-free Sodium aluminate Aluminum chloride: Liquid Crystal Anhydrous	4, 582 18, 837 721, 620 14, 425 50, 124 10, 178 11, 464 } 2 37, 617	3 3 1 15 66 8 8 8 4 4 7	4, 566 } 18, 784 719, 184 14, 287 47, 776 9, 456 11, 158 } 2 36, 752	\$404, 231 1, 574, 134 22, 090, 751 348, 525 2, 514, 897 955, 431 656, 695 210, 167, 442	5, 823 17, 296 673, 420 15, 501 38, 236 11, 390 12, 704 25, 482	\ \begin{cases} 4 \\ 4 \\ 1 \\ 16 \\ 6 \\ 8 \\ 7 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	5, 548 }17, 666 671, 071 15, 501 35, 559 11, 652 12, 474 }25, 812	\$505, 104 1, 498, 298 20, 985, 609 394, 642 1, 836, 753 1, 158, 033 669, 806 6, 563, 227
Total	2 868, 847	37	2 861, 963	238, 712, 106	799, 852	38	795, 283	33, 611, 472

¹ Producing companies reporting aluminum salts shipped or used. A company shipping more than one kind of salt is counted but once in arriving at total.

² Revised figure.

Although bauxite was the principal raw-material source of aluminum for the aluminum salts production shown in table 6, clay, alumina, aluminum, and alunite were used also. The overall decline in production of aluminum salts from 1951 to 1952 was largely a reflection of lower demand for commercial-grade aluminum sulfate, iron-free aluminum sulfate, and anhydrous aluminum chloride.

STOCKS

Inventories at the close of 1952, excluding bauxite in transit, were 17 percent greater than stocks on December 31, 1951. Stocks of processed ore (dried, calcined, and activated) nearly doubled during 1952. The increase largely reflected additions of dried ore to serve the expanded operations at alumina plants. From January to October 1952 the Reynolds Metals Co. exercised its option to purchase crude bauxite from the Government-held nonstrategic stockpiles in Arkansas. A total of 150,000 long tons (dry equivalent) was with-

drawn during 1952, which brought the total since the first purchase in 1950 to approximately 700,000 tons.

TABLE 7.—Stocks of bauxite in the United States Dec. 31, 1948-52, in long tons

	Producers and processors		Consumers		Govern- ment	Total ¹	
Year Crude		Proc- essed ²	Crude	Proc- essed ²	Crude 1	Crude and processed 2	Dried- bauxite equivalent
1948 1949 1950 1951 1952	654, 601 574, 983 543, 284 890, 336 755, 536	7, 441 8, 467 17, 392 18, 552 35, 440	57, 191 34, 183 42, 150 44, 169 45, 840	590, 124 832, 083 723, 103 1, 008, 767 1, 946, 651	3, 277, 090 3, 277, 090 3, 061, 034 2, 630, 792 2, 454, 584	4, 586, 447 4, 726, 806 4, 386, 963 4, 592, 616 5, 238, 051	4, 023, 300 4, 184, 786 3, 809, 765 4, 069, 796 4, 744, 817

<sup>Excludes National Stockpile.
Dried, calcined, activated, and sintered.</sup>

All inventory data in this chapter exclude the National Stockpile. During 1952 both metal-grade and refractory-grade bauxite were on the Government's purchase list of strategic materials for this stockpile.

PRICES

The average book values per long ton of bauxite mined and processed in the United States, as calculated from company reports for 1952, were as follows: Crude, \$5.44; dried, \$8.54; calcined, \$19.92; and activated, \$67.06. The average prices of bauxite shipped to consumers, f. o. b. mines or processing plants, were \$5.70 for crude, \$8.78 for dried, \$19.91 for calcined, and \$67.06 for activated.

Price quotations published in E&MJ Metal and Mineral Markets in 1952, per long ton, were as follows: Domestic ore, chemical, crushed and dried, 55 to 58 percent Al₂O₃, 1.5 to 2.5 percent Fe₂O₃, \$8 to \$8.50 f. o. b. Alabama and Arkansas mines; other grades, 56 to 59 percent Al₂O₃, 5 to 8 percent SiO₂, \$8 to \$8.50, f. o. b. Arkansas mines; pulverized and dried, 56 to 59 percent Al₂O₃, 8 to 12 percent SiO₂, \$14 to \$16, f. o. b. Arkansas mines; abrasive grade, crushed and calcined, 80 to 84 percent Al₂O₃, \$17, f. o. b. Arkansas mines; crude (not dried) 50 to 52 percent (Al₂O₃ on a dry basis), \$4.50 to 5.50, f. o. b. Arkansas mines. Beginning December 18, 1952, crude bauxite was quoted at \$5 to \$5.50 per ton. Also in December, the following quotations, per long ton, were added: Imported bauxite, calcined, crushed (abrasive grade) 83 to 86 percent Al₂O₃, \$19.75 f. o. b. port of shipment, British Guiana; refractory grade bauxite (calcined), \$24.20.

The average value of imported crude and dried bauxite (virtually

The average value of imported crude and dried bauxite (virtually all dried ore), f. o. b. foreign port of shipment on dock, as reported by the United States Department of Commerce, was \$6.63 per long ton in 1952. By countries, the average values were \$6.57 from Surinam, \$7.37 from Jamaica, \$6.83 from British Guiana, and \$4.75 from Indonesia. The average value of imported calcined refractory-grade bauxite, at British Guiana ports, was \$22.45 per ton. Exports

from the United States, largely calcined abrasive-grade bauxite, had

an average value of \$18.26 per ton.

The General Services Administration sold crude bauxite to the Reynolds Metals Co. in 1952 at an average price of \$6.63 per weight equivalent of 1 long dry ton. The average analysis on a dry basis was 50.6 percent Al₂O₃, 11.3 percent SiO₂, and 3.4 percent FeO.

Market prices for alumina and aluminum salts were published in Oil, Paint and Drug Reporter. Throughout 1952 the following quotations remained unchanged: Alumina, calcined, bags, car lots, f. o. b. works, 3.85 cents per pound; hydrate, heavy, bags, car lots, freight equalized, \$60 per ton; and aluminum sulfate, commercial, bulk, car lots, f. o. b. works, \$1.65 per 100 pounds.

FOREIGN TRADE 3

During 1952 United States imports of bauxite, classified by the United States Department of Commerce as crude, but including mostly dried ore, were approximately 3.5 million long tons, the largest quantity in history. An increasing dependence on foreign sources of bauxite became evident as imports comprised 68 percent of the total supply, as determined by adding imports to domestic production, contrasted with 60 percent in 1951; moreover, the 1952 data reflected only the initial phases of the domestic aluminum producers' plans to expand mining operations abroad.

TABLE 8.—Bauxite and aluminum compounds imported for consumption in the United States, 1948-52

Year	Bauxite (crud	le and dried) ¹	Alu	ımina	Other aluminum compounds		
	As imported (long tons)	Value	Short tons	Value	Short tons	Value	
1948 1949 1950 1951 1952	2, 488, 915 2, 688, 164 2, 516, 247 2, 819, 676 3, 497, 939	\$15, 820, 743 16, 353, 298 15, 729, 855 2 17, 794, 192 23, 193, 991	6 2 176 2 217 965 654	\$3, 547 19, 192 20, 038 88, 135 67, 310	5, 559 1, 472 3, 113 5, 334 8, 050	\$124, 167 46, 736 126, 715 275, 238 682, 932	

[U. S. Department of Commerce]

Surinam, the principal foreign supplier since 1928, provided 3,-023,145 tons during 1952. The first shipments of Jamaican bauxite for commercial use began in June 1952 and totaled 264,988 tons for the entire year. All of the Jamaican ore was shipped, partly dried, from the new operations of Reynolds Jamaica Mines, Ltd., to Mobile, Ala., for use at the Hurricane Creek, Ark., plant of the parent Reynolds Metals Co. Receipts of dried bauxite from British Guiana were 178,379 tons. In addition, all imports of refractory-grade calcined bauxite in 1952 came from British Guiana. No shipments of bauxite from Indonesia were reported following 19,425 tons received

¹ Only small quantities of undried bauxite were imported. Complete data on imports of calcined bauxite were not available. Beginning September 1950, calcined bauxite for refractory uses only was imported as follows: 1950, 9 tons (\$329); 1951, 18,642 tons (\$405,438); 1952, 31,412 tons (\$705,166).

² Revised figure.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

195 BAUXITE

in January. Indonesia was the second largest foreign source of bauxite for the United States from 1948 through 1951. and Tobago (probably all South American ore) accounted for the remainder (12,002 tons). Nearly all alumina imported in 1952 came from Canada, and most of the other aluminum compounds came from France and Canada.

About 54 percent of the total bauxite imports entered the United States through the Mobile (Ala.) customs district and 44 percent through the New Orleans (La.) customs district. The following duties on imports remained unchanged throughout 1952: Crude and dried bauxite, 50 cents per long ton; calcined bauxite for use in the manufacture of refractories, \$1 per long ton; other calcined bauxite, 15 percent ad valorem; alumina and refined aluminum hydroxide. ½ cent per pound.

Bauxite exports, classified as aluminum ores and concentrates, declined in 1952 to less than half the preceding year. Canada received about 40,000 tons, largely calcined bauxite, and the remaining 3 percent was divided among 12 other countries. Canada, Colombia, and the Philippines were the chief recipients of the aluminum sulfate exported, and Mexico and Canada were the most important foreign

markets for the other aluminum compounds.

TABLE 9.—Bauxite 1 and aluminum compounds exported from the United States, 1948-52

	[U. S. Department of Commerce]											
	Bauxite (in	acluding bau ates), long to	xite concen- ns	Aluminu	m sulfate	Other aluminum compounds						
Year	Year As ex- ported Dried- bauxite equiva- lent 2		Value	Short tons	Value	Short tons	Value					
1948	54, 113 34, 902 45, 406 89, 948 41, 330	86, 284 57, 628 72, 014 138, 916 62, 979	\$1, 202, 036 512, 779 1, 155, 673 2, 217, 426 845, 452	14, 342 14, 706 13, 010 19, 865 19, 743	\$467, 622 554, 710 461, 653 755, 897 706, 265	3, 539 4, 155 4, 393 4, 601 4, 152	\$599, 210 664, 018 742, 941 1, 067, 050 736, 332					

Classified as Aluminum ores and concentrates by the Department of Commerce.
 Calculated by Bureau of Mines.

TECHNOLOGY

Papers and discussion from the 1951 clay symposium of the American Institute of Mining and Metallurgical Engineers, published in 1952, included information on the origin of bauxite deposits.4 A report on clays and bauxite in northeastern Mississippi, including drill records compiled during World War II and a map showing the occurrences of alumina resources in the Columbia River Basin, were published by the United States Department of the Interior during 1952.5

Research on beneficiation and desilication of low-grade Arkansas

American Institute of Mining and Metallurgical Engineers, Problems of Clay and Laterite Genesis:

^{*}American Institute of Mining and Metamagical Engineers, 7 Colomb & Colomb & Colomb & Symposium, 1952, 244 pp.

*Reed, Donald F., Investigation of High-Alumina Clays and Bauxite of Northeastern Mississippi: Bureau of Mines Rept. of Investigations 4827, 1952, 84 pp.

Sohn, I. G., Geologic Environment Map of Alumina Resources of the Columbia Basin: Geol. Survey Mineral Investigations, Resource Appraisals Map MR 1, 1952.

bauxite was continued at the Bureau of Mines laboratories at Bauxite, A report was released describing a method for treating highiron bauxite to recover both abrasive- and metal-grade bauxite and an iron concentrate.

Extraction of alumina from Jamaican bauxite on a commercial scale was begun at the end of 1952. Although little had been published on the technology of using these ores, the available data indicated that Jamaican bauxite is low in silica, usually less than 3 percent, and frequently less than 1 percent. Analyses showed that the Jamaican ore contained 17 to 23 percent iron as Fe₂O₃, which was considerably greater than most other commercial bauxites in the Western Hemisphere. Alumina occurred predominantly as alumina trihydrate mineral, gibbsite, although the monohydrate, boehmite, was present in significant proportions in most deposits.

On August 19, 1952, the Munitions Board issued a set of specifications that would be used if the Government purchased metal-grade Jamaican bauxite for the National Stockpile. The chemical requirements for the mixed boehmite-gibbsite bauxite from Jamaica compared with the trihydrate ore specifications in use during 1952 as follows:

	Trihydrate, percent	Mixed, percent
Minimum	55.0	47. 0
Maximum		4. 0
do:		1. 0
ďο		3.0
ďo		1. 0
do	2. 0	2. 0
$Minimum_{}$	(1)	(2)
	Minimum	Minimum 55. 0 Maximum 5. 0 do 1. 0 do 3. 0 do 1. 0 2. 0 2. 0

¹ 50 percent of actual Al₂O₃. ² 40 percent of actual Al₂O₃.

The first Jamaican bauxite used was largely gibbsitic. Considerably more starch was needed to flocculate the muds from the digestion operation in producing alumina from these ores than was required for Guiana and Arkansas bauxites; however, rapid settling and a tendency not to deflocculate on washing resulted. The sludges from the Jamaican ore required more wash water and evaporating capacity than would have been needed for Guiana bauxites but less than that for high-silica Arkansas ores. Although the sludges from Jamaican bauxite contained large quantities of iron, there was a low proportion of silica, usually present as sodium-aluminum silicates. The low silica content of the ores also had the effect of reducing alumina and Inasmuch as higher temperatures and caustic concentrations have had to be applied to dissolve European monohydrate bauxites, the efficient use of Jamaican bauxite containing a large proportion of its alumina as boehmite was expected to require more

⁶ Calhoun, W. A., Powell, H. E., and Hodshire, J. F., Beneficiation of High-Iron Arkansas Bauxite Ore: Bureau of Mines Rept. of Investigations 4841, 1952, 12 pp.

⁷ Zans, V. A. Economic Geology and Mineral Resources of Jamaica: Geol. Survey Dept., Jamaica, British West Indies, Bull. 1, 1951, pp. 19-22.

Schmedeman, O. C., First Carribbean Bauxite Development: Eng. and Min. Jour., vol. 151, No. 11, November 1950, pp. 98-100.

197 BAUXITE

soda in-process and different autoclaves from those previously used

to treat gibbsitic ore.8

During 1952 the Bureau of Mines virtually completed modifications and additions to an experimental alumina plant at Laramie, Wyo. Construction of the plant was begun in December 1943, but the project was terminated at the close of World War II before the plant was completed or operated. The project was reactivated to test the feasibility of producing alumina from anorthosite occurring in the vicinity in virtually inexhaustible quantities. The broader objective was to gather information on technology, equipment, product and byproduct purities, and costs that would aid in evaluating the use of clays and other aluminum silicates that have been considered potential sources of alumina. Although the plant did not have a capacity comparable to commercial-size plants, the operation should be large enough to permit translation of the data for industrial applications. Essentially, the process was to consist of leaching a sinter produced from anorthosite, limestone, and soda ash. The liquor was to be autoclaved, carbonated, and calcined to recover alumina; the residue may have potentialities in cement manufacture.

Several studies of titanium and the minor elements occurring in Arkansas bauxite were made during 1952.10 The Bureau of Mines investigated procedures to concentrate the columbium-titanium minerals from black sands removed as waste material from the red

muds at alumina plants treating Arkansas bauxite.

WORLD REVIEW

The development of bauxite-production schemes in the three countries with the largest reserves highlighted the international aspects of the bauxite industry during 1952. In Jamaica, Reynolds Jamaica Mines, Ltd., Kaiser Bauxite Co., and Alumina Jamaica, Ltd., all subsidiaries of North American aluminum producers, virtually completed installations for mining and processing bauxite. Reports from Hungary indicated that it had regained the prominence as a bauxite producer that it achieved during World War II. Bauxite output from Gold Coast declined in 1952, but a proposed aluminum production project based on Volta River hydroelectric power promised greatly expanded bauxite-mining operations on completion.

Bauxite discoveries were made in regions of Australia, India, and Venezuela where bauxite deposits had never been identified before. Exploration continued in most of the other areas where reserves had been known, particularly throughout South America and southeastern

13 pp.
Gordon, M., Jr., and Murata, K. J., Minor Elements in Arkansas Bauxite: Econ. Geol., vol. 47, No. 2, March-April 1952, pp. 169-179.

[§] Tiemann, T. D., Extraction of Alumina From Haiti and Jamaica Bauxites: Jour. Metals, vol. 3, No. 5, May 1951, pp. 389-393.

§ Hagner, A. F., Anorthosite of the Laramie Range, Albany County, Wyo., as a Possible Source of Alumina: Geol. Survey Wyoming, Bull. 43, April 1952, 15 pp.

10 Fleischer, M., Murata, K. J., Fletcher, J. D., and Narten, P. F., Geochemical Association of Niobium (Columbium) and Titanium and its Geological and Economic Significance: Geol. Survey Circ. 225, 1952,

TABLE 10.—World production of bauxite, by countries, 1947-52, in metric tons 1 [Compiled by Lee S. Petersen]

Country	1947	1948	1949	1950	1951	1952
Australia	4, 956	5, 736	5, 377	3, 523 616		7, 344
BrazilBritish Guiana	6, 735 1, 318, 190	5, 324 14, 772 1, 903, 230	6, 526 16, 213 1, 785, 860	18, 570 1, 608, 831	7, 795 19, 033 2, 034, 888	15, 180 (2) 2, 426, 264
France French West Africa.		803, 535	785, 321	805, 228 3 10, 125	1, 124, 400	1, 115, 000 109, 750
Germany, West Gold Coast (exports)	18,000	4 10,000 133,055	2, 439 147, 340	4, 166 116, 793	(2) 131, 404	
Greece_ Hungary 4		44, 238 450, 000	48, 852 550, 000	77, 448 570, 000	197, 060 (2)	348, 591
IndiaIndonesia	18, 835 24, 559	22, 512 437, 822	43, 224 678, 138	65, 433 531, 143	68, 123 642, 316	(2) (2) 560, 671
Italy Jamaica		153, 711	104, 852	153, 384	174, 014	281, 458 4 350, 000
Malaya, Federation of Mozambique	2,960		1, 369			22, 146 (2)
Rumania 4Spain	5, 822	800 6, 805	1,000 11,962	1,000 12,186	(2) 10,581	(2) 5, 952
Surinam Taiwan (Formosa) U. S. S. R.4		2, 149, 906	2, 126, 654	2,080,657	2,671,330	3, 153, 790
United States (dried equivalent of crude ore)	500, 000 1, 221, 348	600, 000 1, 480, 535	650, 000 1, 167, 230	750, 000 1, 355, 946	(2) 1, 878, 347	(2) 1, 693, 803
Yugoslavia	87, 629	136, 476	345, 953	200, 892	453, 357	577, 196
Total	6, 319, 000	8, 359, 000	8, 478, 000	8, 370, 000	10, 984, 000	12, 837, 000

¹ This table incorporates a number of revisions of data published in previous bauxite chapters.
² Data not available; estimate by author of chapter included in total.

8 Exports. 4 Estimate.

Expanded bauxite production in Surinam, Hungary, British Guiana, and Jamaica provided most of the 17-percent world increase from 1951 to 1952. An estimated 59 percent of the total output was mined in the 5 producing countries of the Western Hemisphere (Surinam, British Guiana, United States, Jamaica, and Brazil), 16 percent in the U. S. S. R. and 2 satellite countries (Hungary and Rumania), and 25 percent in 13 other countries.

Of the world production of bauxite, 55 percent was mined in countries that produced no primary aluminum, and only 31 percent was mined in countries that produced 98 percent of the world's aluminum. The largest international movement of bauxite during 1952 was the 3 million tons supplied the United States by Surinam. Among the other major shipments, outside of the U. S. S. R. and its satellites, British Guiana sent approximately 2 million tons of ore to Canada. The United States received about one-tenth of the output of this British colony. All Jamaica's exports in 1952 came to the United West Germany, the largest bauxite importer in the Eastern Hemisphere, received about 1/2 million tons from Yugoslavia, 1/4 million from Greece, and lesser quantities from France and Indonesia. Complete data on the flow of bauxite between other countries in 1952 were not published, but where available, have been presented in the following discussion, by countries.

Australia.—Investigations of bauxite deposits on Marchinbar Island, Wessel Islands group, Northern Territory, during 1952 proved reserves of about 10 million tons. Analysis of these deposits averaged from 48 to 53 percent Al₂O₃, 4 to 9 percent SiO₂, excluding quartz, and 6 to 17 percent Fe₂O₃. Two other large bauxite occurrences were

199 BAUXITE

discovered on the mainland near Cape Arnhem, but their size and content were not measured.

Austria.—The only known bauxite deposit in Austria was at Unterlaussa, Upper Austria. Production increased in both 1951 and 1952, but nearly half of the ore was unsuitable for making alumina. there were no alumina plants in Austria, the metal-grade ore that was produced was shipped to Schwandorf, West Germany.

British Guiana.—The Demarara Bauxite Co., a subsidiary of Aluminium, Ltd., of Canada, exported 1,968,000 long tons of dried bauxite and 145,000 tons of calcined bauxite in 1952. The company installed a new calcining kiln of 100,000 tons annual capacity. Another bauxite calciner, reported to be the largest in the world, was under construction.

The smaller Berbice Co., a subsidiary of the American Cyanamid Co., ceased mining from its deposits near Kwakwani on the Berbice River in 1952. The operation, which had begun 10 years earlier, was intended to provide chemical-grade bauxite, but much of the ore developed was a lower grade. In December it was announced that the Berbice Co. had been sold to the Reynolds Metals Co. The new owners acquired all assets, including mining leases, exploration rights, mining machinery, washing and drying plants, transportation equipment, housing facilities, and a stockpile of ore.

Dominican Republic.—During 1952 the Aluminum Co. of America was constructing facilities to mine bauxite from its concession near Pedernales, Barahona Province. The building of 14 miles of road and a new port at Cabo Rojo on the southwestern coast were among the major projects that remained to be completed. Shipments of ore

were not expected before the latter part of 1953.

France.—France, which historically has been the leading bauxite producer in the Eastern Hemisphere, mined over 1.1 million metric tons in 1952, for the second consecutive year. The following six companies provided nearly all of the production: Société des Bauxites de France, Union des Bauxites, Société Péchiney, Société des Bauxites du Midi, Électro-Chimie d'Ugine, and Comptoir d'Extraction et de Vente des Bauxites. French exports during 1952 included 339,000 tons of bauxite and 65,000 tons of alumina. Alumina production

capacity was estimated at 270,000 tons per year.

French West Africa.11—Aluminium, Ltd., through its wholly owned French subsidiary, Bauxites du Midi, began large-scale mining on the island of Kassa (Los Archipelago), near Conakry on the mainland, in 1952. Mine production from this bauxite operation, the largest in Africa, exceeded 100,000 metric tons during 1952. Shipments were begun in October, and by the end of 1952 nearly 50,000 tons had been delivered at Port Alfred, Canada. Facilities on Kassa included plants for crushing, washing, and drying the bauxite, with a capacity of about ¼ million tons per year.

Germany.—In 1952 West Germany's receipts of bauxite included 489,000 metric tons from Yugoslavia, 281,000 tons from Greece, 117,000 tons from France, 114,000 tons from Indonesia, 10,000 tons from Surinam, 9,000 tons from Austria, 7,000 tons from British

¹¹ American Metal Market, Aluminium, Ltd., Opens New Bauxite Mines in French West Africa: Vol. 59, No. 197, Oct. 10, 1952, pp. 1, 9.

Guiana, 6,000 tons from United Kingdom (probably Gold Coast ore), and 3,000 tons from India. No bauxite production in West Germany was reported. In addition to the alumina produced for domestic consumption, West Germany exported 50,000 metric tons of alumina, including 27,000 tons to Austria, 11,000 tons to Switzerland, 7,000 tons to Sweden, 2,000 tons to Spain, and 1,000 tons to Indonesia.

Gold Coast. ¹²—Representatives of the United Kingdom and Gold Coast Governments, Aluminium, Ltd., and the British Aluminium Co. met in the Gold Coast during 1952 to discuss the feasibility of developing a fully integrated aluminum ingot industry in the Gold Coast. The proposed scheme would utilize the bauxite reserves at Yenahin and Mpraeso, estimated to exceed 200 million tons, and the large hydroelectric potential of the Volta River. The first phase of the project would include an alumina plant and a reduction plant of 80,000 metric tons annual capacity. An eventual smelter capacity of 210,000 tons annually was envisioned.

Greece.—The output of bauxite in Greece during 1952 was nearly double the 1951 production. Most of the ore was converted to aluminum in Germany for the United States, under agreements made with the Mutual Security Agency. United Kingdom and Norway received most of the remainder of the bauxite exports, and consumption in Greece was negligible. The average price of Greek bauxite was \$6.17

(U. S.).

Hungary.—Bauxite production in Hungary, which had the largest known reserves in Europe, was probably more than a million metric tons in 1952. An unknown quantity of ore was exported to the U. S. S. R. and its satellite countries, but Hungary also consumed bauxite in the production of alumina at the Almasfuzitö plant and a smaller plant at Magyarovar. These were the only alumina plants

reported to be in operation.

India.—The discovery of several new bauxite deposits in India was reported during 1952. The largest was in the Surguja district of Madhya Pradesh and was estimated to contain 8 million tons. The following companies had bauxite mines in India: The Aluminium Corp. of India and the Indian Aluminium Co., in the Ranchi district, Bihar; G. P. Sonawala, Thana district, Bombay; Sevalia Cement Works, Kaira district, Bombay; Shevaroy Bauxite Product Co., Salem district, Madras; Pandit Chakorilal Pathak and Sons, Associated Cement Co., K. P. Pandey, N. Venkat Ramara and Sons, Macpherson and Co., and G. H. Cook & Sons, all in the Jubbulpore district, Central Provinces. Two alumina plants, one at Muri, Bihar and the other near Asansol, West Bengal, were owned by the Indian Aluminium Co. and the Aluminium Corp of India, respectively.

Indonesia.—Inventories of bauxite on Bintan Island rose to approximately 200,000 metric tons by the end of 1952, as shipments during the year were considerably less than production and consumption was nil. Japan and West Germany were the principal recipients of bauxite from Indonesia. Exports to the United States ceased at the beginning

of 1952.

¹² Her Majesty's Stationery Office (London), Volta River Aluminium Scheme: Cmd 8702, November 1952, 22 pp.

Italy.—Bauxite production in Italy increased over 100,000 metric tons from 1951 to 1952. The central Apennines, the Gargano peninsula, and Southern Apulia were the principal mining areas. The remaining bauxite requirements were met by imports, largely from Yugoslavia and France. Italy exported about 17,000 tons of alumina to Switzerland and 8,000 tons to Austria.

Jamaica.—The first commercial production of bauxite in Jamaica occurred in 1952. Reynolds Jamaica Mines, Ltd., made its initial shipment to the United States in June and by December was exporting at the rate of over 50,000 long tons per month. Ore was mined in St. Ann Parish, about 6 miles from the new company port on Ocho Rios Bay. A drying plant near the mines removed most of the free moisture before it was carried by aerial tramway to the dock. Reynolds was reported to have purchased or acquired options on 40,000 to 50,000 acres in Jamaica.

The Kaiser Bauxite Co. was almost ready to begin shipments of bauxite from Jamaica by the close of 1952. Its project had been delayed because of landslides, which damaged the railroad and other facilities. It was planned to mine the first ore in St. Elizabeth Parish and transport it over the new 13-mile private railroad to the drying

and shipping facilities at Port Kaiser on Little Pedro Point.

The Aluminium, Ltd., subsidiary, Alumina Jamaica, Ltd. (formerly Jamaica Bauxites, Ltd.), was the first company to produce alumina in the Caribbean area. The alumina plant, near Mandeville, Manchester Parish, began production, using a modified Bayer process, about the end of 1952. The company planned to use the shipping facilities at Kingston until it could use its own new pier at Old Harbor Bay on the southern coast. Bauxite production for 1952 was estimated at 100,000 long tons. The total investment of Aluminium, Ltd., for all facilities was expected to reach \$40 million, the largest single capital investment in the history of Jamaica.

Japan.—It was reported that the capacity of Japanese alumina plants was being expanded from 90,000 metric tons in 1951 to 112,000 tons in 1952. Capacities for 1951 were given as follows: Nippon Keikinzoku K. K. (Nippon Light Metals Co.), Shimizu plant, 45,000 tons; Showa Denko K. K., Yokohama plant, 25,000 tons; and Nisshin Kagaku Kogyo (Nisshin Chemical Industry, Ltd.), Niihama plant, 20,000 tons. A proposed agreement between the Nippon Keikinzoku K. K. and Aluminium, Ltd., whereby the Canadian company would purchase stock in the Japanese company, supply additional capital and technical assistance, and ship bauxite from its holdings in Malaya or India, was approved by the Japanese Government in 1952.

Malaya.—The Ramunia Bauxite Co., which began mining in July, was the only active bauxite producer in Malaya during 1952. The mining operation was in southeast Johore on the Straits of Singapore. Ore produced in 1952 analyzed 57 to 58 percent Al₂O₃ and 4.5 to 4.7 percent SiO₂. Exports went to Taiwan (Formosa) and Japan. The Ramunia Bauxite Co. planned to increase its rate of production as soon as a satisfactory settlement could be made on a title dispute for

an adjoining area, containing over 2 million tons of bauxite.

¹⁸ Knoerr, Alvin W., Reynolds Jamaica Bauxite Project: Eng. and Min. Jour., vol. 153, No. 9, September 1952, pp. 103–112. 18 Baudart, M. G.-A., The Prospects of the Japanese Aluminium Industry: Metal Bull. 3754, Dec. 23, 1952, pp. 14–16; trans. from Revue de l'aluminium.

Surinam.—Bauxite production in Surinam, the world's largest producer, increased 18 percent from 1951 to over 3 million long tons in 1952. Canada received about 41,000 tons, and virtually all of the remainder was shipped to the United States. The Surinam Bauxite Co., a subsidiary of the Aluminum Co. of America, announced that an estimated 7 million tons of bauxite reserves was blocked out on a new

discovery near Ornoribo on the Para River.

The International Bank for Reconstruction and Development recommended a 10-year program, which would cost a minimum of \$53 million, for the establishment of an aluminum production industry in Surinam. A World Bank mission, sent to Surinam at the requests of the Governments of the Netherlands and Surinam, reported that there appeared to be no technical reason why economical hydroelectric power could not be developed for this purpose at Brokopondo on the Surinam River. The Surinam Government was urged to investigate the business aspects further. Surinam's mining bureau continued to survey a bauxite deposit in the Nassau Mountains during 1952.

U. S. S. R.—Official U. S. S. R. information regarding the production of bauxite, as in the case of most other commodities, was not available. One of the few reports on the U. S. S. R. printed in the trade journals during 1952 briefly discussed the growth of the aluminum industries

in all of the satellite countries.15

Venezuela.—Two new bauxite discoveries of undetermined size were reported from Venezuela during 1952. One deposit was at Cerro La Mesa in the Upata region of Estado Bolivar near the Cerro El Chorro deposit found in 1951. The other new discovery was in the Sierra de Perija region southwest of Maracaibo near the Colombian border.

Yugoslavia.—Croatia (Istria and Dalmatia) was the principal source of the large bauxite production in Yugoslavia during 1952; however, two new mines near Bosanka and Stolac in Bosnia and Hercegovina were opened. Most of the output was exported to Germany, with Italy the only other important recipient. The small alumina plants at Lozovac and Moste were operated, and construction of the 50,000-ton-per-year Strnisce plant in Slovenia was about 75 percent completed.

¹⁵ Light Metals, The Industry in the World Today: Vol. 15, No. 168, March 1952, pp. 97-100.

Beryllium

By Robert F. Griffith 1

ERYL supply, the only commercial source of beryllium, was the The increase was from imports; domestic production remained at about its normal level. Recordhigh prices and the beryl expansion program, sponsored by the Defense Materials Procurement Agency, were largely responsible for the increased supply. Even though Government and industry stocks increased during the year, there was no complacency over future supply owing to the uncertainty of continued large imports. It has been estimated that the demand for beryl in the United States will increase by 1975 to about two and one-half times the quantity consumed in $1950.^{2}$

A program for the purchase of beryl from small domestic producers for the National Stockpile was announced by General Services Administration on October 7.

At the year end, construction of a beryllium-copper master-alloy plant at Elmore, Ohio, neared completion. The plant will again provide the country with a second producer of this strategic material.

TABLE 1.—Salient statistics on beryl 1 in the United States, 1943-47 (average) and 1948-52, in short tons

		Exports		G	Stocks		Average price per unit BeO			
Year	Produc- tion ²	Im- ports	Total supply	Beryl	Metal, alloys, and com- pounds ³	Con- sump- tion	Indus- try	Govern- ment	Domes- tic 4	For- eign 5
1943-47 (average) 1948	206 99 475 559 484 515	2, 222 1, 720 3, 811 4, 860 4, 316 5, 978	2, 428 1, 819 4, 286 5, 419 4, 800 6, 493	2.7 .1 .3 .1 .3 1.9	66. 4 13. 0 94. 0 110. 5 94. 8 7196. 6	1, 944 1, 970 1, 029 3, 007 3, 388 3, 476	517 1, 042 2, 322 2, 621 1, 417 2, 492	3, 400 198 1, 076 (6) (6) (6)	\$15. 57 26. 87 32. 10 30. 51 33. 34 38. 55	\$10. 36 17. 41 22. 52 25. 43 31. 67 38. 55

¹ Estimated 10 percent BeO content.

² Mine shipments. 3 Beryl equivalent

F. o. b. mine, Colorado.
C. i. f. United States ports.
Restricted.

⁷ Does not include an undisclosed quantity of secondary material exported to United Kingdom.

¹ Commodity-industry analyst.
2 Resources for Freedom, vol. II, The Outlook for Key Commodities: U. S. Government Printing Office, June 1952, pp. 59-61.

DOMESTIC PRODUCTION

Mine Production.—Mine shipments of beryl in the United States during 1952 were the second largest on record, totaling 515 short tons. However, nearly one-fourth of this quantity was of lower grade than the generally accepted average content of 10 percent BeO.

TABLE 2.—Beryl shipped from mines in the United States, 1943-47 (average) and 1948-52, by States, in short tons

State	1943–47 (average)	1948	1949	1950	1951	1952
Colorado. New Hampshire. New Mexico. South Dakota. Other ²	(1) (1) (1) (1) 149 56	(1) (1) 45 54	144 (¹) 8 139 184	97 106 (1) 96 260	97 50 141 138 58	(1) 101 334 26
Total: Short tons	205 \$29, 93 5 \$146. 02	99 \$26, 600 \$268. 69	475 \$152, 485 \$321. 02	559 \$170, 550 \$305. 10	\$161, 361 \$333. 39	515 \$233, 757 \$453. 90

Included with "Other" to avoid disclosure of individual company operations.
 Arizona (1949-51); Connecticut (1944, 1947); Georgia (1952); Maine (1943-44, 1947-52); Massachusetts (1943-44); North Carolina (1943-44, 1949, 1951); Virginia (1943-44); and States indicated by footnote 1.

The largest shipments recorded from one property were from the Harding mine, near Dixon, N. Mex. Shipments from this mine totaled 100 tons; of this quantity, 40 tons was reported to be subgrade, 6 percent BeO, beryl concentrate. South Dakota was by far the largest producing State, followed by New Mexico, Colorado, New Hampshire, Georgia, and Maine. The Government purchase depot at Rapid City, S. Dak., was active in obtaining beryl for the National Stockpile. Shipments from South Dakota, which included 92 tons by George C. Bland (Beecher lode), containing 8 percent BeO, accounted for nearly two-thirds of the total domestic production. Beryl production was reported by Keystone Feldspar & Chemical Co., Consolidated Feldspar Corp., John Fisher, J. A. Johnson, and eight other producers. Consolidated Feldspar Corp. was acquired by International Minerals & Chemical Corp. in December 1952.3 Principal Colorado producers were Consolidated Feldspar Corp., from unspecified properties, and from lessees of properties controlled by Michael D. Lyons. Beryl Ores Co., Arvada, Colo., was actively engaged as a dealer in beryl ore, and this company continued to beneficiate lowgrade ores and to grind beryl for use in the ceramic industry. Beryl production was reported from the Hogg mine and from the Foley mine in Georgia. A program for exploration, development, and mining of pegmatites in the Newry Mountain district, near Andover, Maine, was initiated by Beryllium Development, Inc., a wholly owned subsidiary of Beryllium Corp., Reading, Pa. A large production of beryl was reported by this company from the Scotty mine on Plumbago Mountain near Bethel, Maine; however, this production was not shipped and is not included in the 1952 totals. A Reconstruction

Mining World, vol. 15, No. 4, April 1953, p. 84.
 American Metal Market, vol. 59, No. 102, May 27, 1952, p. 1.

Finance Corp. loan of \$125,000 was granted Idaho Beryllium & Mica Corp. for the production of mica and beryl from the company property at Deary, Idaho. A sample shipment of 125 pounds of beryl was reported from this property in 1952. In Utah 17 beryl-bearing claims in the Sheep Rock Range, Juab and Tooele Counties, were leased by Brush Beryllium Co.6 The beryl occurs in a large, fine-grained, granitic formation in contrast to the usual pegmatite occurrences. Exploration by diamond drilling is planned. A large beryl-bearing pegmatite dike north of Chewelah, Wash., was explored during 1952 on a property controlled by Earl Cannon and associates ⁷ and on Merikay mines, managed by Arthur Collins.8 No shipments were recorded from either property. No beryl production was recorded from Arizona, California, Connecticut, North Carolina, or Virginia in Tungsten ores from the Hillside mine, Hillside, Ariz., which 1952.were reported to contain 2 to 3 percent of beryl, were investigated.

Exploration under the DMEA program resulted in the following certifications of discovery on beryl in 1952: Lewis W. Collingwood and Campbell & Ventling Mining Co., both in Custer County, S. Dak.; Beryllium Development, Inc., Oxford County, Maine; and Georgia-

Carolina Mica Mining Co., Inc., Troup County, Ga.

The Small Defense Plants Administration announced December 26, 1952, that small business would be urged to expand beryl-ore production by 2,100 tons a year in the next 3 years. Small mine plants desiring to expand will be granted rapid tax writeoffs on the expansion.

Refinery Production.—The principal processors of beryl and manu-

facturers of beryllium products are:

Producer and plant location:

Beryl Ores Co., Arvada, Colo----

Brush Beryllium Co., Cleveland, Luckey, and Elmore, Ohio.

Champion Spark Plug Co., Detroit, Mich.

Lapp Insulator Co., Inc., LeRoy, N. Y.

A. O. Smith Co., Milwaukee, Wis__

Ampco Metal Co., Milwaukee,

Wilber B. Driver Co., Newark,

Riverside Metal Co., Riverside,

Slagle Beryllium Co., Darby Pa___

Products

Beryllium Corp., Reading, Pa____ Beryllium-copper master alloy; beryllium-copper casting ingots, sand castings, strip, rod, wire, bar, forgings, and safety tools; beryllium-aluminum master alloy; beryllium-magnesium-aluminum master alloy, beryllium-nickel casting ingots; beryllium metal and oxide.

Ground beryl; beryllium oxide and ceramic frit.

Beryllium-copper master alloy; beryllium-copper casting alloy ingots; berylliumaluminum master alloy; beryllium metal and metal shapes; beryllium oxide, oxide crucibles, chemicals, and compounds.

Ceramics. Do.

Beryllium-copper mill products.

Do.

Do.

Dο.

Engineering and Mining Journal, vol. 153, No. 5, 1952, p. 142.
 Mining World, vol. 14, No. 9, 1952, p. 95.
 Metal News, vol. 20, No. 3, March 1952, p. 5.
 Engineering and Mining Journal, vol. 153, No. 11, November 1952, p. 165.

Brush Beryllium Co. operated a Government-owned plant at Luckey, Ohio, for the Atomic Energy Commission. The commercial production facilities of the company are in a new plant at Elmore, Ohio, and fabrication work is done at Cleveland.

On November 28, 1952, Defense Production Administration Goals 195 and 196 announced objectives for expansion of production facilities for beryllium-copper alloy mill products and beryllium-copper

master allov.

CONSUMPTION AND USES

Commercial consumption of beryl in 1952 exceeded the 1951 consumption by over 100 tons. Total consumption, government and industry, was the highest in history. Although the Government was active in obtaining beryl for the National Strategic Stockpile and for the Atomic Energy Commission, there was a marked increase in the supply of beryl ore available for commercial use. The Emergency Procurement Service of the General Services Administration served as purchasing agent for the National Stockpile, and Brush Beryllium Co., Cleveland, Ohio, purchased beryl for the Atomic Energy Commission.

Beryllium has important applications in the form of an alloying element with copper, aluminum, nickel, magnesium, and iron; as beryllium oxide in the manufacture of specialized high-temperature refractory material and high-quality electrical porcelains; and as a metal in the atomic energy field as a moderator and as a reflector of neutrons, in radium-beryllium neutron sources, and in X-ray tube windows. In terms of quantity, the largest use is in the manufacture of beryllium-copper alloys. These alloys are unsurpassed in their ability to withstand fatigue and wear and at the same time conduct electrical current under high-temperature conditions. They are unique among copper-base alloys in that they can be worked in a relatively soft state and then brought to their final level of strength and hardness by simple low-temperature heat treatment. tions include springs and contacts in tabulating machines and other electrical and electronic equipment, and use in diaphragms, bellows. and springs for aircraft air-speed indicators and altimeters, weather instruments, pressure gages, and other instruments and controls. Beryllium-copper has applications in large machine parts,9 and beryllium-copper wire is finding increased use in a wide range of industrial applications. Beryllium-copper is readily adapted to sand casting and other foundry techniques. Its ability to reproduce fine detail accounts for the successful application in pressure cast molds for plastics and precision casting. In 1952 an estimated 65 percent of all beryllium products was utilized for defense.

Beryllium oxide has a high melting point, unusual resistance to thermal shock, and thermal conductivity equivalent to that of certain metals and is an excellent electrical insulator at high temperatures. High-quality porcelains containing beryllium oxide are used for aircraft spark plugs and ultra-high-frequency insulators. Beryl is sometimes used directly in the production of high-grade dielectrics.

Richards, John T., Beryllium-Copper Useful for Large Machine Parts: Materials and Methods, vol. 35, No. 6, June 1952, pp. 97-99.
 Wire and Wire Products, vol. 27, No. 2, February 1952.

In the field of refractories, beryllium oxide is used as a liner in rocket combustion chambers and small, high-temperature electric furnaces and in the fabrication of laboratory ware. Although ceramics are usually thought of as heat-insulating materials, the thermal conductivity of beryllium oxide at high temperatures is about the same as nickel and considerably better than stainless steel. Because of its excellent heat transmission, very low neutron absorption, and refractory properties, beryllium oxide has potential applications in nuclear energy power-plant design.11

Beryllium metal has a density of 1.84 and a melting point of 1,284° C. It is the only stable light metal with a high melting point. It is also an excellent transmitter of sound, having a sound-velocity value twice that of aluminum or steel. Advances have been made recently in production of high-purity metal and in the fabrication of large and intricate parts. The metal finds numerous applications in the atomic energy field as a moderator and as a reflector of neutrons, similar to graphite and heavy water. As a construction material in a thermal (slow-velocity neutron) reactor, beryllium metal appears promising; however, this application and its use as a moderator are limited by the high price of reactor-grade material.12

A bibliography on the properties of beryllium is given; the physical, electrical, optical, magnetic, chemical, mechanical, and nuclear properties are reviewed; and methods of purification and fabrication

are discussed.13

STOCKS

Beryl stocks in the hands of commercial consumers were the second largest in history at the end of 1952, having increased over 1,000 tons during the year. Government stocks increased substantially as a result of intensified efforts by the Emergency Procurement Service and Defense Materials Procurement Agency to meet National Stockpile objectives. Stocks of beryllium alloys and compounds held by producers were considerably above the 1951 level. Quantitative data on industry stocks of beryllium products or on Government stocks of beryl are not available for publication.

Although 1952 was a year of peak consumption and a year in which Government agencies were vigorously active in obtaining beryl for the National Stockpile, industry stocks increased substantially. These factors reflect the improved supply situation; principally from in-

creased imports.

PRICES

A program for the purchase of beryl from small domestic producers was announced October 7, 1952, by General Services Administration. Government mica-purchase depots at Custer, S. Dak., Franklin, N. H., and Spruce Pine, N. C., were authorized to buy beryl under this program. Shipments up to 500 pounds of beryl, containing not less than 8 percent BeO, are purchased on the basis of visual inspection at a flat price of \$400 per short dry ton. The beryl must be in

¹¹ Evans, George S., Wanted, Better Materials for Nuclear Reactors: Iron Age, vol. 169, No. 11, Mar. 13,

^{1952,} pp. 93-97.
19 See footnote 11.
19 Udy, Murray C., Shaw, Homer L., and Baulger, Francis W., The Properties of Beryllium: Battelle Memorial Inst., AECD-3382; BMI-T-14, July 15, 1949, declassified with deletions May 20, 1952, 154 pp.

the form of clean crystals, cobbed free of waste. Shipments of 500 pounds or more are subjected to chemical analysis if the producer desires, but the producer is required to stand the cost of analysis. Shipments accepted by sampling and chemical analysis are purchased on the basis of short ton units (20 pounds) of contained BeO as follows: 8-8.9 percent, \$40; 9-9.9 percent, \$45; 10 percent and over, \$50. Purchases of more than 25 tons of bervl a year from individual producers must be negotiated with DMPA through GSA. The program terminates June 30, 1958, or when deliveries under the program total 1,500 short dry tons, whichever occurs first. Quotations for beryl on the commercial market soon followed closely these record high prices. E&MJ Metal and Mineral Markets quoted domestic beryl in 1952, f. o. b. mine, per unit BeO, 10-12 percent BeO, as follows: January, \$34-\$37; December, \$45-47.50. Prices quoted for imported ore, c. i. f. United States ports, were substantially the same. Even with these record high prices domestic production of beryl remained at about the same level. It is becoming increasingly evident that high prices for beryl will not alone greatly increase domestic production.

In addition to the principal consumers of beryl listed under Refinery Production, other markets include the following dealers and importers of beryl: Leonard J. Buck, Inc., New York City; C. G. Trading Corp., 122 E. 42d St., New York City; Derby & Co., Ltd., 285 Madison Avenue, New York City; Foote Mineral Co., 18 E. Chelten Ave., Philadelphia, Pa.; General Engineering and Supply Co., 1265 Dierks Bldg., Kansas City, Mo.; W. B. Groma, New York City; Metal Traders, Inc., 67 Wall St., New York City; Metallurg, Inc., New York City; Wm. H. Muller, New York City; Pewlew-Wilson Sons & Co., Inc., New York City; Philipp Bros., Inc., 70 Pine St., New York City; South American Minerals & Merchandise Corp., New York City; C. Tennant, Sons & Co., Empire State Bldg., New York City; Varlacoid Chemical Co., New York City; Wardell-Hatch & Co., Inc., New York City; and Watson, Geech & Co., Inc., 25

Broadway, New York City.

Beryllium-copper master alloy, 4 percent Be, remained steady throughout the year at \$1.56 per pound of alloy (\$32 per pound of contained Be plus the market price of the contained copper). Five percent Be beryllium-aluminum and beryllium-magnesium-aluminum master alloys were quoted at \$70 and \$60 per pound of contained beryllium, respectively, plus aluminum at market, with no charge for magnesium. Special "50-50" master alloys were quoted at \$70 per pound of contained beryllium plus base metal at market. Beryllium metal was offered as follows: Lump or pebbles (technical) \$65 per pound, (premium) \$85 per pound; powder (technical) \$95 per pound, (premium) \$103 per pound. High-fired refractory-grade beryllium oxide was quoted at \$18 per pound at the beginning of the year; however, in general, prices of oxide, other compounds, and alloys were nominal, depending upon quantity and quality.

Although beryl was exempted from price control the latter part of 1951, beryllium metal, alloys, and products remained under price

control during 1952.

FOREIGN TRADE

United States imports of beryl in 1952 were the highest on record, exceeding by over 1,000 tons the previous high year, 1950. Imports were about equally divided between Western and Eastern Hemispheric sources. Shipments were received from Argentina, the first since 1948, and from India for the second consecutive year since 1946. Brazil, again the principal source of supply, accounted for 43 percent of the total imports, and an equal quantity was received from combined African sources. Since 1950 Portugal has become a small but consistent source of supply. Because of increased prices, the value of beryl imports was nearly double that in the previous high-value year, 1951. An appreciable production of beryl from Madagascar is shipped to France. United States Department of Commerce records indicate that no beryllium metal, oxide, carbonate, or other forms of beryllium were imported by the United States in 1952.

Exports of beryllium ore and concentrates, metal, scrap, primary forms, and alloys (except beryllium-copper) from the United States in 1952 totaled 20,014 pounds valued at \$68,474. The principal recipients were: United Kingdom, Canada, West Germany, and France. Department of Commerce classification included beryllium-copper with copper alloys in 1952; export data were not shown separately. However, 376,838 pounds of primary beryllium-copper master alloy ingots were licensed for export; shipments were principally to United Kingdom. Including secondary forms, the total estimated value of beryllium-copper alloy exports for 1952 was \$700,000. Canada was the only recipient of material classed as beryllium ore and concentrates.

Shipments totaled 3,723 pounds, valued at \$9,563.

TABLE 3.—Beryl imported for consumption in the United States, by countries, 1946-52, in short tons

Country	1946	1947	1948	1949	1950	1951	1952	Total (short tons)	Percent of total
ArgentinaAustralia	53 20	45					550	6 5	0.3
Brazil British East Africa (principally Ugan-	996	722	1,545	3, 264	2, 703	ĺ	ĺ	12, 914	57.0
da)	l			11 22	11 77	47 23	18	87	0.4
French Morocco				22	77	23	118	240	1.1
India	119					449	196	764	
Japan 1				107		12		136	0.6
Mozambique			55	107	130 28	174	308	774	3.4
Portugal					28	97			1.0
Southern Rhodesia Union of South Africa (includes South					464	692	931	2, 087	9.2
West Africa)		1	47	290	1,401	1,722	1, 156	4,616	20.4
Other countries 2			18	10	29	6	1,100	69	0.3
Total:									
Short tons	1, 188	767	1,720	3,811	4,860	4, 316	5,978	22,640	100.0
Value	\$105, 708	\$114,667	\$299, 37 5	\$858, 308	\$1, 235, 639	\$1,366,772	\$2, 548, 423		
	1	l			l	ı	1		l

[U. S. Department of Commerce]

¹ Country of export only; ore produced principally in Brazil and Argentina before, or during World War II. ² 1948, Chile less than 1 ton, Hong Kong (country of export only) 18 tons; 1949, Norway 10 tons; 1950, Canada 29 tons; 1951, Finland 6 tons; 1952, Finland 3 tons; Korea, Republic of, 3 tons.

Beryl is imported into the United States free of duty; a 25-percent duty is imposed on beryllium metal and compounds. metal, compounds, alloys, scrap, ore, and concentrates remained on the positive list of products requiring export licenses to foreign

destinations (excepting Canada).

Available data indicate only two small foreign producers of beryllium-copper, although there are several mills and foundries in a number of foreign countries that process beryllium-copper alloys. Other countries depend almost entirely on the United States for their primary supply of beryllium products.

TECHNOLOGY

The recovery of beryl, the only commercial source mineral of beryllium, has been entirely by hand-sorting (cobbing) methods. Probably not more than 30 percent of the beryl present in any one deposit is recovered because fragments and crystals of beryl less than 1-inch in diameter usually are not sorted from the gangue material. Government and industry were active in 1952 in investigations to recover beryl by modern milling methods. A flotation process for recovery of beryl was developed by the Bureau of Mines at Rapid City, S. Dak.; this process has been successful on a laboratory scale.¹⁴ To span the hiatus between laboratory and commercial mill operation, pilot-plant studies will be conducted. Metallurgical development studies for recovering fine-grained byproduct beryl from the Kings Mountain, N. C., area were initiated by the Bureau of Mines under memorandum agreement with DMPA, dated September 29, 1952.

In processing beryl to BeO and master alloy, the efficiency or recovery of beryllium metal has been on the order of 67 percent. Efforts by industry to improve the recovery ratio have resulted in a reported 11-percent increase in the recovery of BeO and an 8-percent increase in the quantity of beryllium-copper master alloy yielded from a given quantity of BeO. Beryllium-bearing residues from past operations can be recycled for partial recovery of beryllium

previously lost.

Considerable attention was directed toward developing substitutes for beryllium-copper in 1952; however, no entirely satisfactory substitute was developed. The most promising material investigated was a quaternary alloy of copper, nickel, aluminum, and silicon.15 The improved beryl supply situation has resulted in industry directing its efforts toward finding new uses for beryllium-copper rather than developing substitutes.

Beryl is often difficult to identify in the field. Four methods were

described in 1952 for the field identification of beryl.¹⁶

¹⁴ Runke, S. M., Mullen, D. H., and Cunningham, J. B., Progress Report on Pegmatite Investigations in South Dakota: Bureau of Mines Rept. of Investigations 4928, 1952, pp. 30-31.
15 Substitutes for Beryllium Alloys: Nat. Research Council, Div. of Eng. and Ind. Research, Min. and Metals Advisory Board, Library of Congress, Publication Board Project, September 1952, 35 pp.
16 Spector, F. D., and Brown, D. F., Simple Field Tests for Beryl: New Mexico Miner, vol. 14, No. 5, May 1952, p. 5.
Barlow, N. E., Field Tests for Beryl: South African Min. and Eng. Jour., vol. 62, No. 3077, pt. 2, Feb. 2, 1952, p. 987.
Brush Beryllium Co., Quick Spot Test for Beryllium: South African Min. and Eng. Jour., vol. 63, No. 3090, pt. 1, May 3, 1952, p. 363.
Chemical Age, Chemical Test for Beryl: Vol. 66, No. 1699, Feb. 2, 1952, p. 214.

BERYLLIUM 211

Depending on the type of material, the beryllium content, and the equipment available, one of the following analytical methods is used for beryllium assays: Gravimetric, colorimetric, fluorometric, and spectrochemical.

Normally, gravimetric methods are used in ore analyses where speed is not a factor, where a relatively high degree of accuracy is desired on medium- to high-grade ores, and where equipment is not

available for one of the other methods.11

A colorimetric method is used by the Brush Beryllium Co. as a rapid and reliable means of determining the BeO content of prospectors' samples. Although this method does not give as accurate results as are obtainable by several of the gravimetric types of procedure, it is nevertheless usable where a rapid and foolproof method is mandatory.18

A fluorometric method is used by the Atomic Energy Commission for determining the beryllium content of air in relation to health

problems where a high degree of sensitivity is required. 19

Spectrochemical (spectrographic) procedures are used for both qualitative and quantitative analyses. Quantitative analyses by this method are applicable where a large number of determinations are being made to justify the cost of the necessary equipment and the preparation of standard curves.20

RESERVES

United States beryllium reserves in deposits of a grade of 1.0 percent or more equivalent beryl consist of an estimated 12,000 tons of beryl in pegmatites and 3,000 tons of equivalent beryl in nonpegmatitic rocks, a total of 15,000 tons. Over 50 percent of the 12,000ton beryl reserve in pegmatites is in South Dakota, principally in the Southern Black Hills in Pennington and Custer Counties.²¹ Indicated beryl reserves in New England were increased substantially as a result of a Bureau of Mines investigation.²² There is an estimated 270,000 tons of beryl in pegmatite deposits in the United States containing less than 1.0 percent and over 0.1 percent beryl. Of this 270,000-ton reserve, 240,000 tons are in the tin-spodumene belt of the Carolinas. Of the total reserves in pegmatite deposits, only an estimated 7,000 tons can be recovered by cobbing. This comparatively small quantity emphasizes the necessity for developing a metallurgical process to successfully beneficiate low-grade beryl ores.

¹⁷ Hillebrand, W. F., Lundrell, G. E. F., Bright, H. A., and Hoffman, J. I., Applied Inorganic Analysis: John Wiley & Sons, Inc., New York, 2d ed., 1953, pp. 516-523.

Liddell, Donald M., Beryllium: Handbook of Nonferrous Metallurgy. Recovery of the Metals: McGraw-Hill Book Co., Inc., New York, 2d ed., 1945, vol. 2, pp. 66-72.

18 Brush Beryllium Co., Estimation of the Beryllium Oxide Content in Ores by the Colorimetric p-Nitrobenzeneazoorcinol Method: 4301 Perkins Ave., Cleveland 3, Ohio. 8 pp.

19 Welford, George, and Harley, John, Fluorometric Determination of Trace Amounts of Beryllium: Am. Ind. Hygiene Quart., December 1952.

Fletcher, M. H., White, C. E., and Sheftel, M. S., Determination of Beryllium in Ores-Fluorometric Method: Ind. Eng. Chem., anal. ed., vol. 18. March 1946, p. 179.

20 Marks, Graham W., and Jones, Betsy M., Method for the Spectrochemical Determination of Beryllium, Cadmium, Zinc, and Indium in Ore Samples: Bureau of Mines Rept. of Investigations 4363, 1948, 27 pp.

²⁷ pp. 21 Tullis, E. L., Beryl Resources of the Black Hills, S. Dak.: Bureau of Mines Rept. of Investigations 4855, 1952, 19 pp. 21 Newman, G. L., Bumpus Pegmatite Deposit, Oxford County, Maine: Bureau of Mines Rept. of Investigations 4862, 1952, 15 pp.

	1						
	Pe	gmatite depo	sits	Nonpegmatite deposit			
State	1.0 percent or more beryl	0.1 percent or more beryl	Cobbable beryl	1.0 percent or more equivalent beryl	0.1 percent or more equivalent beryl		
Arizona Colorado Connecticut	1, 400	3, 500 2, 100	1,300 50	300	1, 100 100		
Idaho Maine Nevada	100 2, 700	3, 800 300	100 1, 250		100		
New Hampshire	600 600 6,000	1, 100 600 16, 000 200	500 400 3,000 50	3,000	4, 500		
North and South Carolina (tin-spodumene belt)	100	240, 000					
Total	11,500	268, 000	6, 650	3, 300	5, 800		

TABLE 4.—Estimated United States beryl reserves, by States, in short tons

The principal beryllium reserves in nonpegmatitic deposits are in tactite at Iron Mountain, N. Mex. Although these reserves are large, the beryllium industry is not adapted to the use of this type of ore. A large potential beryl reserve has been reported in the Sheeprock Mountains, Tooele County, Utah. The beryl occurs as small crystals disseminated throughout a granite stock over an area of about 1 square mile. The rock must be milled to recover the beryl. Insufficient data are available to include this deposit in reserves.

Reserves of beryl in foreign countries are not known with any degree of certainty. A value for world reserves has been calculated by assuming that the ratio between United States and world production should be the same as the ratio that exists between United States and world reserves. By using this factor, a world total of 210,000 tons of 1.0 percent ore and 3.8 million tons of 0.1 percent ore is obtained. The major sources of 1.0 percent ore are Brazil, 95,000 tons; Argentina, 31,000 tons; South Africa, 19,000 tons; Southern Rhodesia, 13,000 tons; India, 13,000 tons; Madagascar, 7,000 tons; and Australia, 6,000 tons. The principal sources of 0.1 percent ore are Brazil, 1.7 million tons; Argentina, 560,000 tons; South Africa, 350,000 tons; Southern Rhodesia, 230,000 tons; India, 230,000 tons; Madagascar, 120,000 tons; and Australia, 100,000 tons.

WORLD REVIEW

Argentina.—Five hundred metric tons of beryl was purchased from Argentina Trade Promotion Institute (IAPI) by Minerales & Metales Co. for shipment to the United States, the first exports to the United States since 1948. These exports came from an 8-year accumulation of beryl by IAPI, during which exports were not permitted; therefore, these shipments cannot be taken as a measure of production. The production rate is estimated to be about 30 metric tons per month.

TABLE 5.—World production of beryl, by countries, 1946-52, in metric tons 2 [Compiled by Lee S. Petersen]

County 1	1946	1947	1948	1949	1950	1951	1952
Afghanistan					7	2	
Argentina	130	10	3 50				3 498
Australia	19	54	56	36	23	114	91
Brazil (exports)	1, 294	1,027	1,783	3,078	2, 625	1,533	2, 523
Canada			l		³ 26		
Chile			(34)				(5) (5)
France			2	(5)	(5)	(5)	(5)
French Morocco			51	211	56	84	129
India	112	(5) (5) (4)	(5)	(5)	(5)	215	(5)
Korea, Republic of		(5)				(5)	(4)
Madagascar		(4)	9	27	486	530	395
Mozambique	22	81	16	136	264	230	140
Northern Rhodesia					5	4	8
Norway				3 9		(5)	(5)
Portugal	(5)		6 10	3	52	102	78
Southern Rhodesia				23	846	1,007	1,076
South-West Africa		52	90	239	659	753	536
Tanganyika			7.2	34		2	(5)
Uganda		18	44		71	593	375
Union of South Africa		132	90	223 431	844 507	439	467
United States (mine shipments)	91	152	90	431	907	439	407
Total (estimate)	1,700	1, 430	2, 470	4, 587	6, 651	5, 720	6, 530

¹ In addition to the countries listed, beryl has been produced in a number of countries for which no production data are available; except for U. S. S. R., their aggregate output is not significant.

² This table incorporates a number of revisions of data published in previous beryl chapters.

3 United States imports.

4 Less than 0.5 ton Data not available: estimates by author of the chapter included in total.

6 Estimate.

Brazil.—Beryl-bearing pegmatites were discovered in the northern part of the State of São Paulo. Crystals about 1 foot in width were found in Bairro dos Pimentas, 3 miles from the city of São Luiz do Paraitinga.²³ A plant for producing beryllium oxide was scheduled to begin production in 1952. Located at Resende on the Paraiba River in the State of Rio de Janeiro, the plant is to be operated by Proberil, S. A., which was organized in São Paulo and financed by Brazilian and American capital. Initial annual production capacity is stated to be 90 tons of beryllium oxide. Beryl from the State of Minas Gerais will be processed. Deposits also are found in the States of Baia, Rio Grande do Norte, and Paraiba. Sulphuric acid used in the process is made at Barra Mansa in Minas.24

Canada.—Beryl-bearing pegmatites in Renfrew County, Ontario, were described,25 and a beryl discovery in the Las La Hache district,

British Columbia, was reported.26

France.—Pechiney (Compagnie de Produits Chemiques et Electrometallurgiques) processes beryl in France. The company has two ore-processing plants in the Province of Savoie-one at St. Jean de Maurienne, to produce beryllium-copper alloys; the other at Mauri-

<sup>Mining World, vol. 14, No. 4, April 1952, p. 59.
Metal Bulletin (London), No. 3683, Apr. 8, 1952, p. 21.
Graham, A. D., Mineralogy, Internal Structure, and Genesis of Beryl Pegmatites, Renfrew County, Ontario.
Mining Record, vol. 63, No. 44, Oct. 30, 1952, p. 5.</sup>

enne, to produce beryllium metal. Beryl also, reportedly, has been stockpiled by the Government. Sources of ore are Madagascar, French Morocco, Brazil, and India. A small quantity of beryl has been produced from a mine near La Vedrenne, north of Minoges.

French Morocco.—The entire production of beryl came from the Angarf mine of Sociéte des Mines des Zenaga; 142 short tons were Exports to the United States were 118 short tons and to produced.

France, 22 tons.²⁷

Germany.—Heraeus-Vacuumschmelze, A. G., at Hanau a/Main processes beryl to master alloys. The capacity is reported to be small.

India.—Beryl is produced in Madras State from the mica mines at Saidapuram, from near Pattalai, or Padiyur, in the Coimbature district, and from the Nellore district.

Madagascar.—Exports of beryl in 1952 were 309 metric tons; France was the principal recipient. Production was largely by Marc

Rollet from mines in the Malakialina area, near Fitampito.

Mozambique.—Beryl production was from Empresa Mineira do Alto Ligonha. A beryl discovery was reported from Mocuba, Zambesia Province.

Norway.—Beryl deposits occur in southern Norway; at Asedammen near the Swedish border; in the Evje-Iveland district; and in the Landbo-Gjerstad area. Some of the deposits have been worked; however, for the most part they can be developed economically only in conjunction with the sale of byproduct minerals.

Southern Rhodesia.—Beryl production has increased steadily since the initial production in 1949. Principal producing districts are Bikita tin fields, Salisbury Enterprise tin field, Miami mica field, and the Mtoko district.

Spain.—A beryl discovery in the La Coruna Province in north-western Spain was reported.²⁸

Surinam.—Exploration was conducted on beryl-bearing pegmatites near Rama, on the Surinam River, and in an area bordering the Maro-

wijn River.

Union of South Africa (includes South-West Africa).—Since 1949, South Africa has become an important source of beryl. Production was at its peak in 1950 and 1951. The 1952 production declined approximately 35 percent, principally because of the depletion of known surface ores.

United Kingdom.—In England, Mallory Metallurgical Products, Ltd., (Wembley, Middlesex), Telegraph Construction & Maintenance Co., Ltd., (Greenwich), and the Beryllium Smelting Co., Ltd. (London) produced beryllium-alloy products from master alloys imported from the United States.

Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 5, May 1953, p. 3.
 Mining World, vol. 14, No. 4, April 1952, p. 52.

Bismuth

By Abbott Renick 1

N 1952 domestic refinery production of bismuth declined 5 percent compared with 1951. The domestic supply 2 of bismuth metal, however, was virtually unchanged from 1951 owing to larger imports. Exports of bismuth metal during 1952 increased 67 percent above the 1951 figure, and the United Kingdom again received the major portion. Stocks of refined metal held by domestic producers were 7 percent higher on December 31, 1952, than at the end of 1951.

Peru continued in 1952 to be the largest foreign producer of refined metal, supplying 93 percent of the total imports of the United States. The New York market price of metallic bismuth remained through

The New York market price of metallic bismuth remained through the year at \$2.25 per pound in ton lots, unchanged since September 5, 1950.

DOMESTIC PRODUCTION

Most of the bismuth produced in the United States is obtained as a byproduct from smelting domestic and foreign lead ores and by refining imported bismuth bars containing lead as a major impurity. The Bureau of Mines is not at liberty to divulge the quantities produced, but 1952 output declined 5 percent compared with 1951.

Companies reporting output of refined bismuth metal in 1952 were American Smelting & Refining Co., at Omaha, Nebr., and Perth Amboy, N. J.; Anaconda Copper Mining Co., at Anaconda, Mont.; and United States Smelting Lead Refinery, Inc. (subsidiary of United States Smelting, Refining & Mining Co.), at East Chicago, Ind. The Cerro de Pasco Corp., at its Brooklyn, N. Y., plant, is the principal domestic producer of bismuth alloys; the bismuth metal used is obtained from the company lead smelter at La Oroya, Peru.

CONSUMPTION AND USES

Demand for bismuth, particularly in the form of refined metal, was firm in 1952. Its use in pharmaceuticals was the lowest on record, reflecting the continuing trend toward the antibiotics and kaolin-base preparations that have replaced bismuth compounds to some extent since World War II.

Commodity-industry analyst.
 Opening stocks plus domestic refinery production plus imports minus exports minus year-end stocks.

Effective January 15, all limitations on the use of bismuth were withdrawn by the National Production Authority; because the bismuth producing and consuming industry successfully met the needs of the defense program. Order M-48 was revoked on May 15, 1952.

TABLE 1.—Bismuth metal consumed in the United States in 1951-52, by uses

	1951	1	1952		
Use	Pounds	Percent of total	Pounds	Percent of total	
Pharmaceutical	569, 600 100, 200 186, 800 513, 400 222, 000	36 6 12 32 14	406, 800 145, 900 261, 700 871, 400 89, 200	23 8 15 49 5	
Total consumption	1, 592, 000	100	1,775,000	100	

¹ February through December only; compiled by National Production Authority, U. S. Department of Commerce.

2 Principally rectifier coatings.

TABLE 2.—Percentage distribution of bismuth in the United States 1948-52. by major use groups

. Use group	1948	1949	1950	1951	1952
Pharmaceuticals. Metal and alloys ¹	49	31	36	36	23
	51	69	64	64	77

¹ Principally fabricating alloys but includes pure metal, ammunition solder, fuse alloys, aluminum alloys and other minor compositions.

STOCKS

Producers' inventories of refined metal at the end of 1952 increased 7 percent above those at the end of 1951. Consumers' stocks of bismuth were 9 percent less than at the end of 1951.

The Munitions Board Stockpile Report to the Congress on February 15, 1953, stated that bismuth was one of the 18 commodities for which the stockpile objective had been met as of December 31, 1952.

PRICES

The New York price for refined bismuth metal remained unchanged at \$2.25 per pound in ton lots throughout 1952, according to the E&MJ, Metal and Mineral Markets. The Metal Bulletin (London) quotation for high-purity metal, per pound, 2 cwt. minimum, on January 4 was 28s. (equivalent to \$3.92), subsequent fluctuations being recorded as follows: June 6, 21s. (\$2.94); December 30, 17s. 6d. (\$2.45). Bismuth ore, per pound of contained metal c. i. f., was quoted on December 30, 1952, at 9s. 9d. (\$1.37) for 65 percent minimum bismuth content, scaling downward to 2s. 6d. (\$0.35) for ore containing less than 20 percent bismuth.

FOREIGN TRADE³

Imports.—Receipts of refined metal in 1952 showed a rise of 38 percent above 1951. The approximate percentage distribution of receipts by countries of origin was: Peru 93, Yugoslavia 5, and Korea There were no transactions in chemical compounds, 2 percent. mixtures and salts of bismuth in 1952.

Exports.—Exports of bismuth and alloys increased 67 percent in The United Kingdom was again the principal recipient, taking 208,200 pounds. Australia received 11,200 pounds; West Germany, 9,700 pounds; and Canada, 2,500 pounds. Exports of bismuth salts and compounds totaled 233,200 pounds, valued at \$741,300.

TABLE 3.—Bismuth metal and alloys imported into and exported from the United States, 1943-47 (average) and 1948-52

[U. S. Department of Commerce	el
-------------------------------	----

Year	Imports o metallic	f refined ¹ bismuth	Exports of metal and alloys		
	Pounds	Value	Pounds	Value	
1943-47 (average)	386, 444 299, 824 541, 852 781, 670 514, 020 708, 254	\$418, 692 464, 733 833, 940 1, 287, 098 1, 003, 285 1, 451, 729	107, 161 352, 027 190, 882 199, 253 146, 998 244, 797	\$158, 789 711, 354 356, 576 387, 458 376, 246 635, 260	

¹ Excludes imports of bismuth contained in bismuth-lead bars from Mexico; also excludes imports of bismuth contained in concentrates.

TECHNOLOGY

The United States Naval Ordnance Laboratory reported 4 that—

A permanent magnet of high coercive force and maximum energy product was prepared and designated Bismanol. Compacts were prepared of the finely pulverized intermetallic compound MnBi which exhibits permanent-magnet characverized intermetalic compound Mills which exhibits permanent-magnet characteristics and was chosen because it has the highest recorded magnetic crystal anisotropy constant. Some of these pressed magnets showed a maximum energy product as high as 2.9 x 10⁶ gauss-oersteds, a coercive force of 3,100 oersteds, and a residual flux density of 3,400 gauss. Only the high-Co and the Pt-Fe alloys exceed this material in maximum energy product; no known material has a higher coercive force. Bismanol may be valuable as a substitute for magnets requiring Co and for special applications requiring high coercive force.

High-chromium steel's resistance to attack by liquid bismuth alloys was the subject of a report. The report 5 states that-

The use of bismuth alloys in heat-transfer applications depends on the selection of suitable constructional materials to contain them. Investigation of the rate of attack of bismuth-lead alloys on such materials indicates that nickel and highnickel alloys, copper and copper alloys, and cobalt alloys are unsuitable as con-

Among the steels, the high-chromium alloys are more resistant than the nickelchromium materials as a general rule. Little information has been available on the rates of attack of other bismuth alloys.

Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

4 United States Naval Ordnance Laboratory, Bismanol: Navord Rept. 2440, May 20, 1952, 15 pp.

8 Materials and Methods, vol. 34, No. 4, October 1951, pp. 112-114.

The dynamic corrosion of graphite by liquid bismuth was the subject of another report relating to the use of bismuth in heat transfer applications. The authors stated: 6

No corrosion or mass transfer of graphite by bismuth was observed when the liquid metal was circulated by means of thermal convection in an all-graphite system. A calculated linear velocity of approx. 7 in./sec. was maintained for a period of 279 hr. at a max. temp. of 1,400° C. and a min. temp. of 875° C. No metallographic evidence of solution of graphite in bismuth was found and measurement of the inside diameter of the tubes before and after operation showed no change of dimension. No indication of penetration of the graphite by bismuth was found.

WORLD REVIEW

Canada.—The Consolidated Mining & Smelting Co. of Canada, Ltd., Trail, B. C., continued during 1952 in its position as Canada's largest producer. Some shipments of bismuth oxychloride were made by the Molybdenite Corp. of Canada, Ltd., from its operations at La Corne, Quebec.

Peru.—The world's largest producer of refined bismuth metal was the Cerro de Pasco Corp., as a byproduct of its copper- and lead-

smelting operations at Oroya.

South Korea.—Bismuth occurs as the mineral bismuthinite in the tungsten ores of the San Dong mine, South Korea. Bismuth production increased from 13 metric tons in 1951 to 99 tons in 1952.

United Kingdom.—Bismuth ores and residues were smelted and refined by Capper Pass & Son, Ltd., Bristol, and Mining & Chemical

Products, Ltd., London.
Yugoslavia.—The mines formerly operated by Trepca Mines, Ltd., are now one of the world's main bismuth producers. increased from 88 metric tons in 1951 to 99 tons in 1952.

⁶ Hallet, W. J., and Coultas, T. A., Dynamic Corrosion of Graphite by Liquid Bismuth: Nuclear Science Abs. vol. 6, No. 22, Nov. 30, 1952, p. 773.

BISMUTH

TABLE 4.—World production of bismuth, 1947-52, by countries, in kilograms 2 [Compiled by Pauline Roberts]

Country	1947	1948	1949	1950	1951	1952
North America: Canada (metal) ³	128, 988 256, 000 (4)	108, 971 154, 000 (4)	46, 680 249, 000 (4)	86, 918 263, 000 (4)	104, 461 338, 000 (4)	81, 745 304, 952 (4)
Total	(4)	(4)	(4)	(4)	(4)	(4)
South America: Argentina: Metal	5 22, 000 5 20, 000	(6) (6)	(6) (6)	(6) (6)	(6) (6)	(6) (6)
In ore Bolivia (in ore and bullion ex- ported) ⁷	88, 964	35, 142	8, 222	24, 443	69, 081	(6)
Peru: Metal In lead-bismuth alloy	233, 794 3, 043	205, 861 47, 225	215, 707 2, 398	226, 851	262, 655	320, 000 (6)
Total 5	369, 000	289, 000	228, 000	254, 000	335, 000	323,000
Europe: France (in ore)	55, 000 21, 172 10, 998 42, 700	56, 000 24, 269 51, 100	59, 000 19, 854 38, 100	78, 000 11, 344 60, 531	(6) 15, 180 (6) 87, 760	(6) (6) (6) (7) 98, 700
Total	255, 000	256, 000	272, 000	305, 000	⁵ 390, 000	⁵ 420, 000
Asia: China (in ore) Japan (metal) Korea, South Total ⁵		(6) 23, 327 104, 000 135, 000	5 5, 000 25, 946 173, 420 204, 000	(8) 33, 049 (6) 54, 000	(6) 42, 010 12, 500 85, 000	(6) 44, 000 98, 500 200, 000
	20,000	150,000	201,000	=======================================	====	200,000
Africa: Belgian Congo (in ore) South-West Africa (in ore) 5 Uganda Union of South Africa (in ore)	815	456 3, 963 437	540 500 7, 519 5, 045	668 7, 200 3, 658 7, 649	225 100 2,896 3,184	5 700 (6) 5 1,000 5 1,000
Total	815	4, 856	⁵ 14, 000	§ 19, 000	5 6, 000	5 4, 000
Australia (in ore) 8	4, 369	4,064	660	914	1, 372	1, 700
World total (estimate)	1, 500, 000	1, 500, 000	1, 500, 000	1, 400, 000	1, 700, 000	1, 800, 000

¹ Bismuth is believed to be produced also in Brazil, Germany, Rumania, U. S. S. R., and United Kingdom. Production figures are not available for these countries, but estimates by author of chapter are included in total.
2 This table incorporates a number of revisions of data published in previous bismuth chapters
3 Refined metal plus bismuth content of bullion exported.
4 Production included in total; Bureau of Mines not at liberty to publish separately.
5 Estimate.
6 Data not available. Estimate by author included in total.
7 Excludes bismuth content of tin concentrates exported.
8 Partly estimated. Excludes content of some bismuth-tungsten concentrates.

Boron

By Joseph C. Arundale 1 and Flora B. Mentch 2

HE UNITED STATES remained the world's largest producer of boron minerals and compounds; all domestic production comes from California. After rising to a record level in 1951, sales of boron compounds by primary producers dropped sharply at the end of 1951, and total volume in 1952 was 583,828 short tons valued at \$14,105,000. It was reported that consumers were reducing stocks built up during 1950 and 1951.

There was increasing interest in the use of boron in steels, thereby effecting a substantial saving in scarce alloying materials, such as chromium, nickel, and molybdenum. The Bureau of Mines made progress during the year in its study of high-temperature electric furnace techniques for making hard and refractory borides and related compounds and fabricating them into useful components.

TABLE 1.—Salient statistics of boron minerals and compounds in the United States, 1943-47 (average) and 1948-52

	1943–47 (average)	1948	1949	1950	1951	1952
Sold or used by producers: Short tons: Gross weight B ₂ O ₃ content Value ² Imports for consumption (re-	358, 556	450, 932	467, 592	647, 735	862, 797	583, 828
	111, 880	134, 700	139, 200	191, 000	241, 000	169, 100
	\$8, 407, 287	\$11, 147, 735	\$11, 511, 893	\$15, 890, 000	\$20, 030, 000	\$14, 105, 000
fined): Pounds	3 20, 754	3, 056	886	4 1, 224	1, 424	\$ 860
	3 \$1, 056	\$1, 503	\$435	4 \$416	\$497	\$ \$306
	48, 478	70, 940	109, 491	142, 580	213, 445	103, 292
	\$2, 461, 552	\$4, 075, 049	\$6, 862, 928	\$8, 301, 081	\$13, 322, 383	\$6, 723, 925
Apparent consumption: Short tons 6	310, 088	379, 994	358, 101	505, 167	649, 353	480, 536

¹ Borax, anhydrous sodium tetraborate, kernite, boric acid, and colemanite.

DOMESTIC PRODUCTION

Boron minerals production in the United States in 1952 was confined to California. Five firms reported production of boron compounds from natural sources. American Potash & Chemical Corp., 3030 West 6th St., Los Angeles 54, Calif., recovered boron compounds from the brines of Searles Lake at Trona, Calif. Pacific Coast Borax Co., 630 Shatto Pl., Los Angeles 5, Calif., mined kernite (hydrous sodium borate) from a bedded deposit at Boron in the

² Partly estimated.
3 In addition, 252 pounds of crude valued at \$7 in 1943.
4 In addition, 21,286 pounds of crude valued at \$200.
5 In addition, 88 pounds of crude valued at \$20.
6 Quantity sold or used by producers plus imports minus exports.

Kramer district. A portion of this material was refined at the mine and the remainder at the firm's plant at Wilmington, Calif. A subsidiary of this firm, United States Borax Co., produced colemanite (hydrous calcium borate) from a vein deposit near Shoshone, Calif. West End Chemical Co., 608 Latham Square Bldg., Oakland 12, Calif., recovered boron compounds from the brine of Searles Lake. Columbia-Southern Chemical Corp. produced borax in Inyo County, Calif

Companies producing boron alloys and related compositions are as follows:

Producer

American Electro Metal Corp., Yonkers, N. Y. F. W. Berk Co., Inc., Wood-Ridge,

Cooper Metallurgical Associates, Cleve-

land, Ohio

Electro Metallurgical Division, Union Carbide & Carbon Corp., Niagara Falls, N. Y.

Metal Hydrides, Inc., Beverly, Mass...

Molybdenum Corp. of America, Washington, Pa.

Niagara Falls Smelting & Refining Division, Continental-United Indus-

tries, Inc., Buffalo, N. Y.
Norton Co., Worcester, Mass.
Ohio Ferro-Alloys Co., Philo, Ohio...
Titanium Alloy Mfg. Division, National

Lead Co., Niagara Falls, N. Y. S. Atomic Energy Commission,

Oak Ridge, Tenn. Vanadium Corp. of America, Bridge- Grainal alloys. ville, Pa.

Products

Miscellaneous metal borides: experimental.

Boron.

Boron; borides of Zr, Ta, W, Th, Mo, Cb, Al; cobalt aluminum boron; lithium Ti, Cr, boron: aluminum boron; lithium boron; copper boron; aluminum-titanium boron; boron nitride.

Ferroboron, manganese boron, nickel boron, cobalt boron, Silcaz, calcium boride, boron carbide.

Borohydrides of sodium, lithium, beryllium, and other elements.

Ferroboron, manganese boron, cobalt boron, chromium boron, calcium boride.

nickel-Manganese-aluminum boron. aluminum boron.

Boron carbide, boron, ferroboron. Borosil.

Carbortam.

Boron isotopes B-10 and B-11.

CONSUMPTION AND USES

The record volume of purchases in 1950 and 1951 resulted in the accumulation of larger than normal stocks in the hands of some consumers and in 1952 these stocks were being reduced. There was no indication that the decreased volume of sales during 1952 meant a greatly decreased rate of consumption. However, the ceramics industry accounts for an estimated half of the consumption of borax. and there was a slight decrease in volume of production of certain ceramic materials, such as enamel, tile, and pottery.

A list of boron-treated-type steels was published. The list indicates some of the applications in which boron steels reportedly have

substituted successfully for the more highly alloyed grades.3

These applications include core wire for electric cables, propeller blades, bolts and cap screws, and gears, shafts, pinions, springs, and forgings in the automotive, aircraft, truck, and tractor industries.

Boron in steel assumes an importance out of proportion to the quantity of boron actually used. Only a few thousandths of 1 percent by weight of such steel is boron. In 1952 only a little over 24 short tons of boron was used in making over 700,000 tons of steel.

^{*} Materials and Methods, vol. 35 ,No. 2, February 1952, pp. 127-129.

TABLE 2.—Consumption of alloying metals in the manufacture of steel in the United States, 1949-52 ¹

				Pounds of named alloying metal contained					
		1	1949	1950	1951	1952			
Chromium Cobalt Columbium Manganese Molybdenum Nickel Titanium Tungsten Vanadium			(2) 148, 442, 803 991, 645 632, 051 11, 243, 780 51, 882, 941 4, 222, 221 2, 170, 433 1, 079, 024 1, 440, 141	(*) 247, 649, 084 2, 949, 118 752, 121 17, 242, 931 79, 135, 137 4, 932, 319 3, 929, 779 1, 825, 831 1, 834, 977	³ 29, 594 305, 289, 694 2, 581, 689 826, 621 19, 069, 143 75, 914, 210 5, 202, 645 3, 783, 382 3, 310, 898 1, 783, 443	48, 973 278, 085, 534 2, 633, 413 340, 871 930, 541, 611 16, 530, 769 84, 854, 360 4, 909, 339 2, 650, 147 3, 050, 586 1, 449, 282			

¹ American Iron and Steel Institute, Annual Statistical Report: New York, N. Y., 1952, p. 17.

TABLE 3.—Production of alloy-steel ingots (other than stainless steel ingots) in the United States, net tons ¹

			1952	
Grade	1951 total	Without boron	With boron	Total
Nickel	288, 826 294, 563 1, 484, 578 139, 012 116, 450 890, 313 155, 036	29, 811 223, 053 281, 193 189, 221 1, 329, 789 101, 154 88, 565 1, 187, 435 146, 092 1, 388, 068 99, 963 582, 038	143, 024 26, 010 6, 223 99, 503 10 25, 857 4, 405 13, 085 316, 502	29, 811 366, 077 307, 203 195, 444 1, 429, 292 101, 164 114, 422 1, 191, 840 159, 177 1, 704, 570 99, 963 609, 555
Subtotal	7, 091, 252	5, 646, 382	662, 136	6, 308, 518
High-strength steelsSilicon sheet steels	905, 747 1, 064, 456	796, 758 940, 666	40, 739	837, 497 940, 666
Total all grades	2 9, 061, 455	7, 383, 806	702, 875	8, 086, 681

¹ American Iron and Steel Institute, Annual Statistical Report: New York, N. Y., 1952, p. 45.
² Includes 372,131 tons with boron.

The California State Water-Pollution-Control Board has set a temporary upper limit for boron in waste water at 1 p. p. m. Above 1 p. p. m. symptoms similar to those caused by a calcium deficiency are said to occur in plants. A water survey of Ventura County was being conducted by the State Division of Water Resources. This survey may result in revision of the maximum allowable boron content of waste water.

About 2 million pounds of borax is said to be used each year by California citrus packers to prevent decay in fresh fruit. About 7 percent stays on the treated fruit. Treating tanks are emptied periodically (at intervals ranging from once a season to once every 10 days), and fresh solutions are put in. Packing wastes run as high as 6,000 p. p. m.

Four methods have been proposed for coping with the problem: (1) Collecting rinse water for haulage to safe disposal areas; (2) con-

Not available.Revised.

223 BORON

struction of disposal lines running to the ocean; (3) concentration of rinse water for reuse; and (4) development of other processing

materials or techniques.

One research laboratory has experimented with a vapor treatment, using trimethyl borate. Laboratory results reportedly are promising, but conversion to this method would be costly. It is not generally agreed that boron must be eliminated from packing wastes. Examination of wells is said to have shown no correlation between boron content and proximity to packing houses. Other factors to be considered are the natural boron content of indigenous streams and the type of soil in the drainage basin. Experiments with boron weed-killer compounds have shown that it takes 5 to 10 times as much boron to kill weeds in clay soils as in sandy soils.

Twenty-six packing plants in Ventura County are reported to have hired a research laboratory to find a substitute for borax for this purpose or a method for reducing to 1 p. p. m. the quantity of boron

in their waste water.4

Boron trichloride has been found effective in extinguishing magnesium fires in heat-treating and annealing furnaces. It is convenient to use because it vaporizes readily and is therefore easily applied. It acts essentially to smother the fire by limiting access of oxygen to the burning metal. It is therefore best adapted to use in reasonably tight enclosures such as the furnaces mentioned above. Much of the experience with this material to date on magnesium fires has been experimental. Suggested procedures for using boron trichloride for such a purpose were outlined in an article.⁵

PRICES

According to Oil, Paint and Drug Reporter the following prices for boron compounds were quoted during 1952:

Borax, Tech., anhydrous, bags, C. L., works, ton	\$74. 50
Ton lots, ex warehouse, New York or Chicago	120. 2 5
Crystals, 99½ percent, bags, C. L., works	63. 75
Ton lots, ex warehouse, New York or Chicago	109. 50
Granular, 99½ percent, bags, C. L., works	37. 75
Ton lots, ex warehouse, New York or Chicago	83. 50
Powder, bags, C. L., works	42. 75
Ton lots, ex warehouse, New York, or Chicago	88. 50
Borax packed in kegs is \$45.50 per ton higher than borax packed	in paper

bags. U.S. P. borax, \$15 per ton higher than tech. There was no change in the price of borax during 1952.

Boric acid, tech., 99½ percent:
Crystal, bags, C. L., works
Ton lots, ex warehouse, New York or Chicago
Granular, bags, C. L., works
Ton lots, ex warehouse, New York or Chicago 166, 50 U. S. P., \$25 per ton higher. The price of boric acid did not change during 1952.

FOREIGN TRADE 6

The United States supplies much of the world's requirements for boron compounds. Shipments of various boron compounds were made to nearly every country in the World except U. S. S. R. and satellite countries, as shown in table 4.

⁴ Chemical Week, vol. 70, No. 25, June 21, 1952, pp. 35, 36, 38.
5 Foundry, Extinguishing Magnesium Fires with Boron Trichloride, vol. 80, No. 8, August 1952, pp. 257-259.
6 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

In 1952 only 88 pounds of crude borates valued at \$2 was imported (from Chile) into the United States, and 860 pounds of refined borates valued at \$306 was imported (from United Kingdom). In 1952, 31,365 pounds of boron carbide valued at \$46,518 was imported from Canada.

TABLE 4.—Exports of boric acid and borates, crude and refined from the United States in 1952, by countries of destination

Country	Pounds	Value
ustralia	4, 560, 136	\$168, 0
ustria	2, 246, 577	50, 5
Belgium-Luxembourg	3, 357, 517	130, 79
razil	4, 158, 482	144, 59
British Malaya	40,000	1.00
British West Indies	15,000	2, 2
anada	21, 310, 945	826, 70
evlon	37, 632	2, 4
Phile	15, 000	3, 1
Colombia	868, 720	39, 7
Osta Rica	60, 354	2, 68
uba	763, 215	28, 3
Denmark	732, 365	18, 9
Oominican Republic	34, 068	3, 3
Ceuador	20, 500	1, 3
Ggypt	428, 632	12, 1
ll Salvador	12, 932	1, 29
'inland	187, 826	7, 8
rance	19, 217, 002	586, 48
Hermany, West	31, 862, 274	844, 10
łreece	386, 647	10, 0
Ionduras	26, 100	1, 69
Iong Kong	2, 988, 832	91, 2
ndia	669, 893	49, 3
ndonesia	28, 820	1, 1
ran	384, 600	10, 40
reland	1, 968, 960	64, 9
srael-Palestine	154, 024	8, 5
talv	5, 159, 510	164, 4
apan	7, 144, 054	228, 4
Mexico	4, 272, 128	200, 3
Vetherlands	23, 696, 405	703, 5
New Zealand	1, 199, 616	40.4
Vicaragua	69, 100	8, 5
Jorway	969, 789	
		39, 4
Pakistan	892, 456	46, 0
Panama	42, 074	1,3
eru	259, 914	10, 0
Philippines	892, 979	43, 0
'ortugal	1, 357, 270	57, 9
outhern Rhodesia	215, 754	11, 5
pain	2, 018, 160	49, 4
weden	5, 064, 596	154, 1
witzerland	1, 017, 269	38, 3
'aiwan	579, 700	22, 0
'hailand	35, 435	1,8
rinidad and Tobago	18, 270	1, 2
Inion of South Africa.	1, 544, 406	74, 3
Inited Kingdom	53, 010, 457	1,682,8
Jruguay	142, 033	5, 3
venezuela	172, 227	12, 4
/ugoslavia	192, 770	7, 5
Other countries, under \$1,000	81, 244	5, 9
Total	206, 584, 669	6, 723, 9

TECHNOLOGY

A report on boron steels prepared by the Panel on Substitution of Alloying Elements in Engineering Steels of the Minerals and Metals Advisory Board was submitted to the Research and Development Board, United States Department of Defense. In this report it was pointed out that approximately 5 percent of the engineering alloy steel produced contained boron, and therefore boron steels can now be regarded as having progressed beyond the experimental stage. The engineer-

225BORON

ing and technical data that supported this rapid expansion were acquired largely during the past 10 years by research and development done by steel consumers, steel producers, the manufacturers of ferroalloys, and others. This work is being continued. These groups concentrated their efforts on determining the mechanical properties of the boron steels and their behavior in fabricating and heat-treating processes. The panel expressed the opinion that the present development programs have progressed to the extent that the use of boron steels could be broadened to include many additional applications on the basis of established equivalent hardenability. The panel felt, however, that conservation of alloying elements would be achieved more rapidly by placing emphasis on research and development projects dealing with specific properties and applications of the boron The panel recommended 29 research projects (some of which are in progress or contemplated) on the hardenability of boron steels; stress distribution in quenched and tempered steels; the properties of boron steels, the same steel without boron, and higher alloy nonboron steels with equivalent hardenability; and fundamental research, as well as substitutes or materal that alternates for boron.7

The Department of the Air Force initiated a program to evaluate some of the boron-treated low-alloy steels that showed the most promise of being satisfactory substitutes for high-alloy steels. desired to gain information on the susceptibility to temper brittleness, low-temperature impact, fatigue, and other properties of the boron-treated low-alloy steels in the range of 0.30 to 0.45 percent

carbon, which is of vital interest to the aircraft industry.

A steel of American Iron and Steel Institute Specification 80B30 was selected as a possible substitute for AISI4130 and AISI8630. One heat of 80B30 was thoroughly tested in all conditions. found that where Charpy impacts of 10 to 20 foot-pounds are considered adequate 80B30 can be used, except in the normalized condition down to -100° F. At high strength-levels 80B30 shows as good impact values as either AISI4130 or AISI8630, but in the 125,000to 150,000-p. s. i. strength range the older steels are better. heat was susceptible to temper brittleness.8

A number of special features regarding boron steels were summa-

rized as follows:

1. More boron is required in the lower carbon grades to obtain the maximum

hardenability effect.

2. Too much boron may cause the steel to become hot short. In high-carbon steels, this maximum is about 0.005 percent boron; in low-carbon grades, the maximum is 0.008 percent boron.

3. The effect of boron on hardenability decreases with increasing carbon up to about 0.90 percent carbon. Above this carbon level, boron has no further

effect on hardenability.

4. More distortion is likely in heat treating carburized boron steels.

5. Boron is generally effective when the steel is in the steel is in the steel in the steel is in the steel in the Boron is generally effective when the steel is in the liquid quenched condition. Boron steels become embrittled when drawn above 540° C. (1,000° F.).

7. More precise control in heat treating is required with boron steels than with those with high alloy content.

⁷ Panel on Substitution of Alloying Elements in Engineering Steels of the Minerals and Metals Advisory Board, National Research Council, National Academy of Sciences: Recommended Research Projects on Boron Steels: Rept. MMAB-11-M, Washington, D. C., Mar. 12, 1953, 6 pp.

⁸ Imhoff, Lt. R. N., and Poynter, James W., How Good is 80B30?: Iron Age, vol. 169, No. 26, June 26, 1952, pp. 102-107.

Some additional advantages, other than increased hardenability, were reported: 9

1. In substituting AISI1035 boron-treated steel for AISI4140 for cold-headed bolts, the following advantages were realized:

Greater die life; (b) Fewer split heads;

(c) Greater die life for dies used on the rolled threads;

(d) Entire production increased by the use of lower alloy steel which is softer

in the annealed condition.

2. In large sections, flakes and shatter cracks are either absent or seldom occur in boron-treated steels. This is not necessarily due to the boron addition, but to the fact that less nickel, chromium, and molybdenum are usually present in

3. When heated, boron steels acquire a loose, flaky type of scale rather than the tightly adhering scale usually obtained when, for example, a 3½-percent nickel steel is used. Hot-forming problems, therefore, are considerably simplified

when boron steel is used.

4. Boron steel normally contains less molybdenum and chromium than the grade for which it is substituted. These elements tend to form stable carbides; hence, the use of boron steel permits the use of lower temperatures and shorter annealing times.

In the United States, when boron has been added to alloy steels, it usually has been done to obtain equivalent properties in lower alloy steels and thereby conserve scarce materials. However, in studies made in England by United States Steel Cos., Ltd., boron was added to obtain high ultimate tensile strength and yield values in steel in the as-rolled or normalized condition.¹⁰ In a series of tests on 0.05 carbon steel the effect of boron on the mechanical properties in the presence of 0.15 percent molybdenum was negligible. Tensile strength and yield strength increased progressively with increase in molybde-At 0.44 percent molybdenum, ultimate tensile strength had increased 48 percent and yield more than doubled. Further increase in molybdenum content had no significant effect. A second series. steels with 0.14 percent carbon, had similar characteristics. effect of increasing boron in the presence of 0.5 percent molybdenum was found to be beneficial up to about 0.007. Beyond this figure ultimate tensile strength and yield decreased to low values. did not improve low-carbon steels containing respectively, 0.6 percent nickel, up to 1.5 percent chromium, and 0.07 percent and 0.1 percent Tests were also conducted on a 1.0-percent manganesevanadium. molybdenum-boron steel of variable molybdenum content, on 2.0percent nickel steels of varying molybdenum content, and on chromium-molybdenum steels. The best low carbon steel from the point of high ultimate tensile strength and yield point was that containing over 0.35 percent molybdenum with about 0.003 percent boron. lower limit of effective boron was also studied in these tests.

An investigation was conducted to develop low-alloy steels for use where short-life periods are permissible, such as in jet or rocket engines. It was found that boron, nitrogen, and titanium increased the high-temperature strength of ferritic steels. The preparation of a promising titanium-boron steel, its heat treatment, properties, and welding

characteristics were discussed in an article. 11

Gertsman, S. L., Substitution for Strategic Metals in Steel Production: Canada Dept. of Mines and Tech. Surveys, Ottawa, Feb. 1, 1952, pp. 9-11.
 Bardgett, W. E., English Use Boron in Normalized and Drawn Heavy Sections: Iron Age, vol. 169, No. 2, Jan. 10, 1952, pp. 81-84.
 Everhart, John L., New Titanium-Boron Alloy Steel Shows Promise for Jets and Rockets: Materials and Methods, vol. 36, No. 3, September 1952, pp. 96-98.

227BORON

Basic data on boron steels published during the year included discussions of the criteria for selecting the various boron steels; the effects of heat-treating and case-hardening on their properties;¹² hardenability of some of the new boron steels; new steel compositions to conserve critical alloying elements;¹³ techniques in the hardening of a plain carbon-boron steel to assure surface hardness over a tough core;14 the results of research by industry on the properties of the new boron steels;15 the treatment of boron steels and the advantages and limitations of available steels:16 the effect of carbon on boron steel behavior.17

The preparation of diborane from lithium hydride or lithium aluminum and boron trifluoride etherates under different conditions was described. The reactions were shown to proceed through two First a lithium borohydride is formed which reacts with

additional trifluoride to yield diborane and lithium fluoride.18

A patent was granted on a lignin-phenolic-borate tanning material claimed to be suitable for use as a replacement for vegetable tannins. 19

Boron nitride has been used as a thermal insulator in induction vacuum furnaces, as a mold wash in the manufacture of high-tension insulators, and as a coating for refractory supports in automatic welding; a number of other uses have been proposed. The history of boron nitride was reviewed in an article; the chemical, physical and electrical properties were tabulated, and a procedure for producing boron nitride of high purity, and a method of analyzing was described.20

The raw ma-The molybdenum-boron system was investigated. terial and preparation were described, phase diagrams prepared, and

the structure and properties of these borides discussed.21

A project conducted at the Bureau of Mines Electrometallurgical Laboratory at Boulder City, Nev., had as its objective the study of high-temperature electric-furnace techniques for making hard and refractory borides and related compounds and fabricating them into useful components. Test lots were made of the borides of zirconium, chromium, iron, titanium, tungsten, cobalt, nickel, and manganese.

12 Knowlton, H. B., Hardenability as the Criterion for Selecting Boron Steels: Materials and Methods, vol. 35, No. 3, March 1952, pp. 84-87.

13 Materials and Methods, vol. 35, No. 3, March 1952, pp. 121, 123.

14 Yan Camp, George, Induction Hardening Boron-Steel Gears: Materials and Methods, vol. 36, No. 5, November 1952, pp. 121-122.

18 Ruhnke, Donald H., Boron Steels Supplement Scarce Nickel, Moly Alloys: Steel, vol. 130, No. 2, January 14, 1952, pp. 66, 69, 70, 72, 75.

16 d'Arcambal, Alexander H., Alloy Conservation; Boron Fills the Bill: Steel, vol. 130, No. 7, Feb. 18, 1952, pp. 107, 108

WORLD REVIEW

Although California is the present largest source of borates, large deposits occur in other countries. Ulexite is found in South America in Argentina, Bolivia, Chile, and Peru; priceite in Turkey; sassolite in Italy; stassfurtite in Germany; and tincal in Tibet. Ulexite has been found recently in Iran. High-grade boron minerals and boron in solution are found in Inder Lake between the Caspian Sea and the city of Uraljak.

Production of boracite in Turkey in 1952 was reported as 13,730 metric tons as compared with 12,015 metric tons in 1951. Exports of boracite from Turkey in 1952 were 12,161 metric tons as compared

with 12,552 tons in 1951.22

Production of boric acid in Italy in 1952 was reported to be 4,352 metric tons.²³

Bureau of Mines, Mineral Trade Notes: Vol. 37, No. 5, November 1953, p. 40.
 American Embassy, Rome, Italy, State Department Despatch 2621, May 29, 1953.

Bromine

By Joseph C. Arundale 1 and Flora B. Mentch 2

THE NEARLY 184,000,000 pounds of bromine and bromine compounds sold by primary producers in the United States during 1952 was the largest volume of sales ever recorded. As the production of motor fuels increased, the production of ethylene dibromide soared to meet the demand for this compound as an ingredient of gasoline antiknock additive. This and the increasing interest in bromine compounds as soil, seed, and food fumigants were the most significant developments in the bromine industry during the year.

DOMESTIC PRODUCTION

Bromine production in the United States was begun about 1846, but was of scientific interest only, until the 1860's. By that time medicinal and photographic uses had been developed. Germany and the United States were in active competition for the market until the First World War. A requirement for bromine in war gases was added to the other demands, and domestic production from brine-processing plants along the Ohio River increased to nearly 2,000,000 pounds annually. The next impetus to the industry was in the 1920's, when a mixture of tetraethyl lead and ethylene dibromide was introduced as a gasoline antiknock compound. The ethylene dibromide is added to prevent the lead from depositing on the cylinders, valves, and spark points of the motor. Additional supplies rapidly were made available from well brines in Ohio, Michigan, and West Virginia. In 1924 the cruise of the S. S. Ethyl, a floating chemical research plant, demonstrated the feasibility of extracting bromine from sea water, and this inexhaustible source soon was furnishing the bulk of domestic supplies.

Bromine is produced in the United States from sea water, well brines, and saline lake brine. Ethyl-Dow Chemical Co. recovers bromine from sea water at Freeport, Tex., and Westvaco Chemical Division of Food Machinery and Chemical Corp. operates a seawater plant in the San Francisco Bay area. The following firms recover bromine from well brines in Michigan: The Dow Chemical Co., Midland and Ludington; Great Lakes Chemical Corp., Filer City; Michigan Chemical Corp., Eastlake and St. Louis; and Morton Salt Co., Manistee. Pomeroy Salt Co. at Minersville, Ohio, and Westvaco Chemical Division at South Charleston, W. Va., also treat well brines. American Potash & Chemical Corp. recovers bromine

from the brine of Searles Lake in California.

The Dow Chemical Co. was completing a program of expansion which involved drilling additional brine wells and disposal wells and additional facilities for recovering bromine and manufacturing bro-

¹ Assistant chief, Construction and Chemical Materials Branch.
² Statistical assistant.

Michigan Chemical Corp. was rehabilitating mine compounds. additional facilities at Eastlake, Mich., acquired from Rademaker Chemical Corp.

TABLE 1.—Bromine and bromine in compounds sold by primary producers in the United States, 1943-47 (average) and 1948-52

Year	Pounds	Value	Year	Pounds	Value
1943–47 (average)	79, 373, 366	\$15, 402, 730		98, 502, 300	\$18, 794, 978
1948	76, 047, 551	14, 825, 470		129, 563, 073	26, 179, 556
1949	88, 725, 709	16, 267, 908		156, 201, 577	30, 639, 292

TABLE 2.—Bromine and bromine compounds sold by primary producers in the United States, 1951-52

	Pou		
	Gross weight	Bromine content 1	Value
Elemental bromine 1951 Sodium bromide. Potassium bromide. Ammonium bromide Other, including ethylene dibromide. Total.	6, 420, 016	6, 420, 016	\$1, 312, 409
	1, 005, 685	780, 915	278, 500
	3, 287, 821	2, 207, 773	897, 511
	401, 300	327, 381	128, 016
	141, 275, 259	119, 826, 988	23, 563, 120
	152, 390, 081	129, 563, 073	26, 179, 556
I952 Elemental bromine Sodium bromide Potassium bromide Ammonium bromide Other, including ethylene dibromide Total	6, 692, 418	6, 692, 418	1, 273, 659
	909, 637	706, 333	261, 582
	2, 663, 940	1, 788, 836	708, 424
	(2)	(2)	(2)
	173, 452, 068	147, 013, 990	28, 395, 627
	183, 718, 063	156, 201, 577	30, 639, 292

¹ Calculated as theoretical bromine content present in compound. ² Included with "Other, including ethylene dibromide."

CONSUMPTION AND USES

Only a small portion of the output of bromine is sold as liquid elemental bromine. About 90 percent is consumed as ethylene dibromide, the bulk of which is added to antiknock compounds containing tetraethyl lead. More automobiles with engines of higher compression ratios are being operated, and motorists are consuming more and better gasoline. Expanding aircraft production and miles flown increase the demand for higher grade fuel.

This draws attention to two factors in the outlook for the bromine Will better automotive-engine performance be gained by higher octane fuels with more or better additives, or will it come from engines of new design using today's fuels, or even lower grade fuels? Will the trend from reciprocating to jet engines reduce the requirement for high-grade gasoline? The answers to these questions are important to the bromine industry.

In the chemical industry bromine is important in both the organic and inorganic fields. It has many medicinal and pharmaceutical uses,

such as in disinfectants and anesthetics.

BROMINE 231

In the photography industry, silver bromide is an important constituent of photographic film. It is reported to be used in the manufacture of dyes, ink, resins, and leather and rubber products. The Military Establishment has used bromine in poisonous gases. Ethylene dibromide and methyl bromide are useful soil fumigants in the control of nematodes and soil insects. This use is increasing. Bromide mixtures are used as fumigants to protect foodstuffs from infestation by insects. Potassium bromate reportedly is used in breadmaking. Colors made with bromine compounds are used in lipsticks. Some home permanent-wave kits are said to contain bromine compounds as neutralizers. Bromine is, moreover, used in water sterilization and in sanitation.

PRICES

Soon after the technology of bromine production from brine was developed, the price declined and in 1880 was about 25 cents a pound. Since then the wholesale price for bulk elemental bromine has remained at about that price (with fluctuations during the two World Wars). According to Oil, Paint and Drug Reporter, prices for bromine and the principal bromine compounds were unchanged during 1952. Purified bromine in cases, freight allowed, east of the Rockies or in lead-lined drums delivered, was quoted at 25 cents per pound. Potassium bromide, U. S. P., was quoted at 34 cents per pound and sodium bromide, U. S. P., at 34 to 35 cents per pound.

FOREIGN TRADE 3

With domestic capacity adequate to the needs of United States consumers, imports of bromine and bromine compounds were negligible. A total of 2,394 pounds of bromine and bromine compounds valued at \$12,064 was imported, 2,340 pounds of which came from United Kingdom and the remainder from Canada, West Germany, France, and Australia.

A total of 2,789,749 pounds of bromine, bromides, and bromates valued at \$1,436,311 was exported. A little over 2 million pounds of this went to Brazil; the remainder was shipped in smaller lots to

about 46 different countries.

TECHNOLOGY

Bromine is a corrosive liquid that is volatile at room temperature. Both the liquid and the vapor irritate the skin, eyes, and mucous membranes. Inhalation of the vapor can cause injury to the respiratory tract. The hazards in handling bromine can be minimized if precautionary measures are taken. Recommended safeguards and personal protective equipment were outlined and described in a pamphlet.⁴ Some of the precautions suggested are: Avoid contact of bromine with skin, eyes, and clothing; avoid inhaling vapor; wear protective clothing, such as rubber gloves and goggles; provide

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

⁴ Manufacturing Chemists Assocation, Properties and Essential Information for Safe Handling and Use of Bromine: Washington, D. C., Chemical Safety Data Sheet SD-49, 1952, 15 pp.

ventilation in areas where vapors may accumulate; and observe all regulations regarding containers and their loading, unloading, shipping,

and storage.

On May 12 the Food and Drug Administration, Federal Security Agency, issued definitions and standards of identity for several types of bread. Potassium bromate was defined as an optional ingredient, and the Standard designated that it must be named on the label. The Standard specifies that the total quantity of potassium bromate (including the potassium bromate in any bromated flour used) is not more than 0.0075 part for each 100 parts by weight of flour used.5

Methyl bromide fumigation for destroying pink bollworm larvae was authorized by the United States Department of Agriculture for treating sacked cottonseed in 1946 and for bulk cottonseed in storage tanks in A method for fumigating bulk cottonseed in freight cars, developed between 1945 and 1951, was described in a paper. problem to be solved in developing this method was that of attaining satisfactory distribution of methyl bromide throughout the cottonseed. In the method finally adopted, a portable blower pulls air from beneath the load through a specially designed duct system and returns it to the space above the load. The blower is run during gas volatilization and for 2 to 10 minutes thereafter, then disconnected and the cars sealed. The dosage schedule is 7 pounds per 1,000 cubic feet for 24 hours exposure at 60° F. or above and 8 pounds at lower temperatures. This method for treating cottonseed was authorized for use on quarantined cottonseed in February 1950 in a limited area under supervision. In July 1950 this forced-circulation method was authorized as an alternate method for treating cottonseed.6

A patent was issued on a process for recovering bromine from Searles Lake brine. To the brine from which sulfide has been removed silver chloride is added in excess of the stoichiometric equivalent of bromide ion to precipitate silver chloride and silver bromide. The precipitate is removed and treated with chlorine gas which decomposes the silver bromide to silver chloride and an effluent gas consisting of bromine and chlorine. This gaseous mixture is chemically treated to remove the bromine and the chlorine is recycled.7

A patent was issued on a method for improving the growth characteristics of plants, which consists of introducing into the soil around the plant a solution of ethylene bromide in water, the ethylene bromide being supplied in quantity equal to 1.125 to 18.0 pounds per 100 cubic yards of soil wetted by the solution.8

^{*} Federal Security Agency, Food and Drug Administration, Bakery Products, Definitions and Standards Under the Federal Food, Drug, and Cosmetics Act: Service and Regulatory Announcements, Food, Drug, and Cosmetic No. 2, part 17, May 12, 1952, 6 pp.

* Phillips, G. L., Methyl Bromide Fumigation of Cottonseed in Freight Cars for the Destruction of Pink Bollworms: U. S. Department of Agriculture, Agricultural Research Admin., Bureau of Entomology and Plant Quarantine, E-383, June 1952, 16 pp.

* Lindstaedt, Frank F., and Shatto, David L., Process of Removing Bromine From Brine: U. S. Patent 2,622,966, Dec. 23, 1952.

* Kagy, John F., and McPherson, Robert R. (assigned to Dow Chemical Co.), Plant-Growth Improvement: U. S. Patent 2,596,929, May 13, 1952.

BROMINE 233

WORLD REVIEW

Israel.—The potash works at the southern tip of the Dead Sea was expected to resume activity in the summer of 1953. With resumption of potash extraction, it reportedly is planned to recover bromine compounds as well. Satisfactory laboratory tests on bromine utilization in the textile and cellulose industries are said to have been completed.⁹

⁹ Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 3, March 1953, pp. 29, 37–38.

Cadmium

By Robert L. Mentch 1

HE OUTSTANDING feature of the cadmium industry in the United States in 1952 was importation of a record quantity of low-price metal, which displaced a substantial portion of domestic cadmium in the domestic market and brought about a large increase Imports totaled 1,479,000 pounds, over 16 times the quantity imported in 1951 and nearly doubled the previous record high import figure of 1937. Metal producers, compound manufacturers, and distributors had 1,867,000 pounds of metallic cadmium on hand on December 31 compared with year-end stocks of 1,123,000 pounds in 1951. Increased production at United States plants contributed to the large expansion in total supplies. Apparent consumption of primary cadmium, including significant Federal Government purchases for the National Stockpile, increased 26 percent to 9,042,000 pounds in 1952. Nevertheless, supply from all sources exceeded total distribution, including exports, by 639,000 pounds. The market price for commercial sticks declined from \$2.55 a pound to \$2.00 during the vear.

The National Production Authority cadmium conservation order, invoked January 1, 1951, to restrict the use of cadmium almost exclusively to the production of war goods or essential civilian products, was revoked on May 15, 1952, because defense orders were not as large as had been anticipated and production and accumulated stocks were deemed adequate for all purposes.

TABLE 1.—Salient statistics of the cadmium industry in the United States, 1943-47 (average) and 1948-52, in pounds of contained cadmium

	1943-47 • (average)	1948	1949	1950	1951	1952
Production (primary)	8, 121, 956	7, 775, 657	8, 226, 617	9, 190, 394	8, 311, 337	8, 567, 159
	36, 390	9, 809	157, 204	630, 109	90, 065	1, 478, 770
	250, 169	955, 701	566, 135	352, 927	606, 233	300, 918
	7, 919, 832	7, 797, 105	7, 486, 274	1 9, 545, 502	17, 170, 930	9, 042, 052

¹ Revised figure.

DOMESTIC PRODUCTION

The entire domestic supply of primary cadmium is recovered concurrently with the treatment of ores of other metals as a byproduct from the flue dusts of zinc-blende roasting furnaces and lead blast furnaces, from zinc dust collected in the early stages of distillation in zinc retorts, and from the high-cadmium precipitate obtained in purifying zinc electrolyte at electrolytic zinc plants. A relatively

¹ Commodity-industry analyst.

small quantity of secondary metal is recovered from old bearings and other alloys but constitutes no great proportion of the total supply. It is estimated that about 50 percent of the primary cadmium metal produced in the United States is of foreign origin, obtained from imported flue dust and imported zinc ores and concentrates. is the chief source of the foreign cadmium-bearing raw materials, followed by Canada and Peru.

The output of primary metallic cadmium at domestic plants increased 3 percent in 1952, while the production of primary compounds (cadmium content) decreased 9 percent. Recovery of cadmium in

secondary metal and compounds declined 52 percent.

TABLE 2.—Cadmium produced and shipped in the United States, 1943-47 (average) and 1948-52, in pounds of contained cadmium

	1943-47 (average)	1948	1949	1950	1951	1952
Production: Primary: Metallic cadmium Cadmium compounds 1	7, 798, 005 323, 951	7, 582, 961 192, 696	8, 023, 616 203, 001	8, 849, 690 340, 704	8, 114, 238 197, 099	8, 387, 82 4 179, 335
Total primary production Secondary (metal and compounds) 1 2.	8, 121, 956 160, 323	7,775,657	8, 226, 617	9, 190, 394	8, 311, 337	
Shipments by producers: Primary: Metallic cadmiumCadmium compounds 1	7, 770, 004 329, 171	7, 639, 113 192, 696				
Total primary shipmentsSecondary (metal and compounds) 1 2	8, 099, 175 171, 599					
Value of primary shipments: Metallic cadmium Cadmium compounds 3	\$7, 513, 152 345, 088			\$17, 925, 482 689, 926	\$19, 397, 411 492, 215	\$17, 130, 966 396, 581
Total value	7, 858, 240	12, 999, 446	15, 195, 024	18, 615, 408	19, 889, 626	17, 527, 547

Excludes compounds made from metal.

A list of plants producing cadmium metal in the United States in 1952 follows.

Primary metallic cadmium

Colorado: Denver-American Smelting & Refining Co. Idaho:

Bradley—Bunker Hill & Sullivan Mining & Concentrating Co. Kellogg-Sullivan Mining Co.

Depue—New Jersey Zinc Co. East St. Louis—American Zinc Co. of Illinois.

Missouri: Herculaneum—St. Joseph Lead Co. Montana: Great Falls—Anaconda Copper Mining Co.

Oklahoma:

Bartlesville-National Zinc Co., Inc.

Henryetta—Eagle-Picher Co. (Mining & Smelting Div.)

Pennsylvania:

Donora—United States Steel Corp. (American Steel & Wire Div.)

Josephtown—St. Joseph Lead Co. Palmerton—New Jersey Zinc Co. (closed in February). Texas: Corpus Christi-American Smelting & Refining Co. Utah: International—International Smelting & Refining Co.

Excuraces compounds made from metal.
 Bureau of Mines not at liberty to publish figures separately for secondary cadmium compounds.
 Value of metal contained in compounds made directly from flue dust or other cadmium raw materials

Secondary metallic cadmium

Arkansas: Jonesboro—Arkansas Metals Co. Kansas: Coffeyville—Sherwin-Williams Co. New York: Whitestone, L. I.,—Neo-Smelting & Refining Co.

Output of cadmium oxide (cadmium content) increased less than 1 percent during the year, while the cadmium content of sulfide produced decreased 6 percent. Data for the production of other cadmium compounds are largely unavailable.

TABLE 3.—Cadmium oxide and cadmium sulfide produced in the United States, 1943-47 (average) and 1948-52, in pounds

	Oxide Sulfi					Oxide		Sulfide 1	
Year	Gross weight	Cd con- tent	Gross weight	Cd con- tent	Year	Gross weight	Cd con- tent	Gross weight	Cd con- tent
1943–47 (average) ₋ 1948 1949	472, 454 334, 859 570, 993	412, 672 291, 847 497, 876	2, 170, 858 3, 137, 035 2, 631, 888	773, 114 1, 096, 770 999, 386	1950 1951 1952	579, 538 606, 369 608, 236	505, 336 528, 645 531, 018	4, 383, 943 3, 118, 413 2, 665, 955	1, 570, 522 955, 742 898, 629

¹ Includes cadmium lithopone and cadmium sulfoselenide.

CONSUMPTION AND USES

The apparent consumption of primary cadmium in all forms totaled 19,042,000 pounds in 1952, as computed by adding production and net imports of metal and adjusting for producers', distributors', and compound manufacturers' stock changes. This figure represented a 26-percent increase over the quantity apparently consumed in 1951. In 1952, as in the previous 4 years, cadmium metal in substantial quantities was purchased by the Federal Government for the National Stockpile. About 95 percent of the cadmium consumed is used in electroplating, bearing alloys, and pigments. The remaining 5 percent goes into solders, miscellaneous alloys, laboratory reagents, and photographic chemicals.

Electroplating.—The principal use of cadmium metal is as a protective coating for iron and steel and, to a much smaller extent, for

copper-base alloys and other metals and alloys.

Although data on the distribution of consumption by end uses are not available, it is believed that the use of cadmium for plating in 1952 was considerably lower than during World War II and pre-Korea periods. The underlying cause for this fluctuation in demand is the relative ease with which cadmium can be replaced by zinc and other protective coatings.

In 1950 and 1951, when cadmium was in short supply and restrictions on uses were invoked, many platers used substitutes for cadmium wherever possible; in 1952, when the supply was plentiful, they were reluctant to change back to cadmium for fear of the possibility of

recurrent shortages.

Cadmium Bearing Alloys.—The second-largest use of cadmium is as a bearing alloy. Cadmium-base bearing metals are used successfully in internal-combustion engines for service under high pressures and temperatures and at high speeds. The bearing alloys are generally of two types—the cadmium-nickel bearing, composed of 98.5 CADMIUM 237

percent or more cadmium and 1.2 percent nickel, and the cadmium-silver bearing, containing 98.3 percent or more cadmium, 0.7 percent silver, and 0.6 percent copper. "Graphalloy," a cadmium-impregnated graphite containing 30 to 35 percent cadmium, is used in oilless bearings, bushing linings, and for electrical purposes, chiefly brushes and contacts for controller switches.

Cadmium Solders and Other Cadmium Alloys.—Relatively small quantities of cadmium metal are used in the manufacture of low-melting-point alloys (chiefly tin-lead-cadmium, lead-tin-bismuth-cadmium, and zinc-lead-cadmium) for soldering and brazing and fusible alloys, composed largely of lead, bismuth, and cadmium, for sprinkler apparatus, fire-detector systems, and valve seats for high-

pressure gas containers.

Cadmium-Nickel Batteries.—A potentially large use of cadmium is in nickel-cadmium storage batteries. A standard European-type battery contains about 7 pounds of cadmium, but models containing only about 1.4 pounds have been manufactured in the United States. The ultimate utilization of cadmium in batteries is difficult to predict. Production of the battery, however, has not been large since its intro-

duction in the United States after World War II.

Cadmium Compounds.—Compounds of cadmium have a wide variety of uses. Cadmium sulfide and cadmium sulfoselenide are standard agents for imparting high-quality yellow and red colors, respectively, to paint, soap, rubber, glass, ceramic glazes, paper, textiles, artists' colors, luminescent colors, leather, printing ink, and other products. Virtually all the cadmium oxide, hydrate, and chloride produced is used in electroplating solutions. Cadmium bromide, chloride, and iodide are used in photographic films, process engraving, and lithographing. A table listing the more important cadmium compounds, their physical properties, and uses can be found in the Cadmium chapter of Minerals Yearbook, 1949 (pp. 187–188).

STOCKS

Total domestic stocks of cadmium metal and compounds, excluding consumers' stocks, for which data are not available, increased 49 percent. Details are given in table 4.

TABLE 4.—Cadmium stocks at end of year, 1951-52, in pounds of contained cadmium ¹

		1951 2			1952	
	Metallic cadmium	Cadmium compounds	Total cadmium	Metallic cadmium	Cadmium compounds	Total cadmium
Metal producers (primary) Compound manufacturers Distributors 3	859, 630 58, 111 205, 415	246, 555 78, 657	859, 630 304, 666 284, 072	1, 501, 093 189, 482 176, 738	225, 460 58, 554	1, 501, 093 414, 942 235, 292
Total stocks 4	1, 123, 156	325, 212	1, 448, 368	1, 867, 313	284, 014	2, 151, 327

¹ Excludes cadmium in National Stockpile.

Figures partly revised.
 Comprises principally 8 largest dealers and producers of plating salts.
 Excludes consumers' stocks, which were about 1,000,000 pounds at the end of 1944 (latest date for which figures were compiled).

PRICES

The quoted New York price of \$2.55 a pound for commercial sticks of cadmium, established December 1, 1950, continued in effect through May 14, 1952. On May 15 the price for sticks declined to \$2.25 a pound and that for special platers' shapes dropped from \$2.80 a pound to \$2.40. Effective August 1, quotations for sticks and platers' shapes fell to \$2.00 and \$2.15 a pound, respectively. On November 28, 1 domestic producer lowered its selling price for commercial sticks to \$1.50 a pound, subsequently raising it to \$1.75 on December 18. Other sellers adhered to the \$2.00-per-pound basis during this period.

In the London market the quotation for cadmium ranged from 18s. 9d. (\$2.62) to 10s. 9d. (\$1.50) per pound during the year. In general, price changes followed those in the United States market.

FOREIGN TRADE 2

Total imports (for consumption) of metallic cadmium and cadmium contained in flue dust increased 105 percent in weight and 95 percent in value in 1952. The total value of exports, principally metal, decreased 55 percent from 1951.

Imports.—The United States imported a record quantity of cadmium metal in 1952, over 16 times the 1951 total and nearly 9 times the 1946–51 average. Of the 1,479,000 pounds received, Belgium-Luxembourg supplied 81 percent, Japan 18 percent, and Canada and West Germany small quantities. Imports of flue dust (cadmium content), preponderantly from Mexico, were 24 percent greater than in 1951.

Exports.—Exports of cadmium, principally in metallic form, from the United States in 1952 totaled 301,000 pounds compared with metal exports of 606,000 pounds in 1951. Shipments to European Recovery Program "participating countries" accounted for approximately 92 percent of the total. Of the quantity exported, the United Kingdom received 56 percent, France 27 percent, West Germany and Canada 4 percent each, Mexico 2 percent, and 17 other countries the remaining 7 percent.

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U.S. Department of Commerce.

TABLE 5.—Cadmium metal and flue dust imported for consumption in the United States, 1950-52, by countries

[U.S. Department of Commerce]

	19	50	19	51	1952	
Country	Pounds	Value	Pounds	Value	Pounds	Value
METALLIC CADMIUM Australia Belgium-Luxembourg Canada Egypt Germany, West Italy Japan Netherlands Netherlands New Zealand Peru Sweden United Kingdom Total metallic cadmium	4, 400 194, 745 34, 205	\$21, 528 518, 552 472, 322 2, 292 10, 120 368, 084 95, 031 6, 722 6, 624 2, 621 1, 503, 896	9, 627 52, 870 3, 336 	\$30, 962 209, 246 11, 684 	1, 195, 186 10, 080 6, 083 267, 421	\$2, 152, 950 13, 104 10, 666 449, 806
FLUE DUST (CD CONTENT) Canada	1, 601, 640	1,519,104	1, 606, 775	2, 261, 390	2, 506 1, 984, 831 4, 212	6, 645 2, 429, 495 10, 742
Total flue dust	1, 601, 640	1, 519, 104	1, 606, 775	2, 261, 390	1, 991, 549	2, 446, 882
Grand total	2, 231, 749	3,023,000	1, 696, 840	2, 605, 672	3, 470, 319	5, 073, 408

TABLE 6.—Cadmium exported from the United States, 1950-52, by kinds, in gross weight

[U.S. Department of Commerce]

Trim J	19	950	19	951	1952	
Kind	Pounds	Value	Pounds	Value	Pounds	Value
Dross, flue dust, residues, and scrap MetalAlloys	352, 927 9, 106	\$794, 540 11, 575	200, 579 606, 233 5, 639	\$10, 029 2, 198, 311 9, 311	300, 918	\$1,005,370
Total	-	806, 115		2, 217, 651		1, 005, 370

Tariff.—Action taken at the Geneva Trade Conference of 1947 reduced, as of January 1, 1948, the import duty on cadmium metal from 7½ cents per pound as established in the Canadian Trade Agreement of 1939 to 3½ cents per pound. Cadmium contained in flue dust remained duty free in 1952.

TECHNOLOGY

Metallurgy.—Investigations ³ conducted by the Bureau of Mines, to develop methods and determine conditions under which metallic sulfides with lower boiling points than sphalerite might be removed from zinc sulfide concentrates by volatilization, showed that it is possible to remove over 90 percent of the lead, cadmium, and germanium as an enriched sublimate. A higher percentage of extraction of these metals than is common in current practice was sought.

Lead sulfide, cadmium, and germanium, presumably also as sulfides, were successfully removed from Tri-State zinc concentrates by

³ Kenworthy, H., and Absalom, J. S., Separation of Lead, Cadmium, and Germanium Sulfides from Zinc Sulfide Concentrates, Bureau of Mines Rept. of Investigations 4876, 1952, 7 pp.

volatilization. Although 0.5 to 3 percent of the zinc was also volatilized, the volatile product was greatly enriched in lead, cadmium, and germanium. The experiments were performed over a temperature range of 700° to 1,050° C. Volatilizations were made in a partial vacuum, in an inert atmosphere, and in a reducing atmosphere, with highest extractions attained in experiments utilizing the partial vacuum and the reducing atmosphere.

Continuation of the investigations is being directed toward separating the fumed sulfides of cadmium, germanium, and lead by

selective volatilization.

Uses.—In addition to its major uses, cadmium occupies an important place in nuclear physics, where it is employed to control the fissionable elements in reactors. Its specific use in nuclear physics was disclosed under terms of an agreement among the United States. Canada, and the United Kingdom to make public scientific discoveries that have no military value.4 In describing construction of what was termed the smallest reactor yet built, its center was said to be a hollow sphere about 10 inches in diameter filled with water and about 12 pounds of dissolved uranium.

The sphere itself is covered with a layer of beryllium oxide and is enclosed in the center of a 5-foot cube of graphite. The graphite, in turn is enclosed, respectively, in cadmium ½2-inch thick, in lead 4 inches thick, and finally in concrete 5 feet thick. The whole forms a

cube with 15-foot sides.

Of the dissolved uranium, nearly 2 pounds is uranium-235, the splitting variety. The U-235 atoms split continuously, emitting neutrons which, in turn, split other uranium atoms, and the fission builds up so rapidly that the heat generated, if uncontrolled, would melt the steel, the beryllium, and probably the graphite and the lead.

However, the fission is controlled by two rods of cadmium projecting into the water. Cadmium absorbs thermal neutrons readily. so that not enough remain free to start a chain reaction of splitting. The purpose of the reactor is to produce neutrons, and pulling the cadmium rods out starts the water boiling within a few seconds and production of neutrons. Adjustment of the cadmium rods keeps the water at an even temperature.

RESERVES

There are no commercial ore reserves of cadmium. Greenockite (cadmium sulfide), the most common mineral, is associated almost exclusively with sphalerite, the zinc sulfide, and is recovered as a byproduct in connection with the smelting and refining of zincbearing ores. Hence, cadmium reserves depend upon the size of zinc-ore reserves and the cadmium content of these reserves.

An estimate by the Federal Geological Survey in 1944 placed the recoverable cadmium in domestic reserves of zinc ore of all grades (measured, indicated, and inferred) at 100 million pounds.⁵ Estimates of zinc-ore reserves in 1950 ⁶ indicate contained recoverable cadmium in quantities of approximately the same magnitude as in 1944.

III, pp. 7-14.

Canadian Mining Journal, Cadmium Finds New Use: Vol. 73, No. 10, October 1952, pp. 77, 78.
 Fitzhugh, E. F., Jr., McKnight, Edwin T., and Wootton, T. P., Cadmium: Mineral Position of the United States, Appendix to Investigation of National Resources, Hearings Before U. S. Senate National Resources Economic Subcommittee, Committee on Public Lands, May 15, 1947, pp. 226-227.
 Bureau of Mines, Zinc: Materials Survey, prepared for National Security Resources Board, 1951, Ch.

CADMIUM 241

WORLD REVIEW

The United States is by far the world's largest producer of cadmium, annually supplying about two-thirds of the total world output. United States production is not solely from domestic ores, of course; output from domestic ores constitutes about 30 percent of the world total.

Other large producers of cadmium are, with one exception, leading zinc producers. The exception, South-West Africa, is not one of the larger zinc producers but, by virtue of the high cadmium content of the ore mined, ranks among the largest cadmium producers. South-West Africa does not produce refined metal; lead-zinc-copper concentrates containing large quantities of cadmium are exported, principally to the United States, the United Kingdom, Belgium, and

France, where the metals, including cadmium, are recovered.

Mexico, Canada, and Australia, all large zinc producers, are important producers of cadmium. Virtually all of the Mexican cadmium is exported in flue dust and zinc concentrates, chiefly to the United States. Canada and Australia produce refined cadmium metal. Belgium and the United Kingdom, working on imported materials, are also significant cadmium producers. Japan, Norway, and Italy, operating on domestic materials, and France, treating imports, produce sizable quantities of cadmium. Germany formerly recovered large quantities of cadmium from the cadmium-rich zinc ore of Upper Silesia, but with cession of that territory to Poland after World War II, Germany has been relatively unimportant as a source of cadmium.

World production of cadmium in recent years, insofar as data are available, is shown in table 7.

TABLE 7.—World production of cadmium, by countries 1947-52, in kilograms ¹
[Compiled by Berenice B. Mitchell]

Country	1947	1948	1949	1950	1951	1952
Australia (Tasmania)	209, 030	293, 352	263, 767	299, 125	234, 708	292, 978
Belgian Congo	26, 040 86, 300	18, 056 157, 900	24, 635 148, 000	29, 668 365, 000	24, 316 450, 000	2 20,000 600,000
Canada	325, 874	347, 491	383, 983	384, 828	601, 878	455, 687
FranceGermany, West	43,000 1,206	50, 067 3, 500	58, 123 5, 000	71, 591	84, 997 70, 000	2 100,000 2 70,000
Italy	38, 400	47,000	74,000	75, 000	204,000	133,000
Japan Mexico ³	8,710 778,000	18, 874 905, 000	52, 484 820, 000	90, 348 689, 000	117, 687 893, 000	2 130, 000 733, 000
Norway	50,000	62,000	71,400	78, 747	100,000	2 100, 000
Peru Poland	1,407 4 120,000	1,592 4 160,000	4 240, 000	1,365 2 240,000	² 240, 000	2 240, 000
South-West Africa		517, 093	753, 867	609, 625	650, 448	504, 392
Spain	57,000	5, 368 58, 000	5, 116 58, 000	4, 348 70, 000	3, 900 80, 000	2 5,000 90,000
United Kingdom United States:	106, 440	115, 769	102,662	118, 899	139, 026	157, 285
Metallic cadmium Cadmium compounds (Cd con-	3, 632, 025	3, 439, 555	3, 639, 432	4, 021, 254	3, 680, 537	3, 804, 633
tent)	227, 185	87, 405	92, 079	154, 540	89, 402	81,345
Total (estimate)	4, 933, 000	4, 866, 000	5, 219, 000	6, 005, 000	6, 120, 000	6, 280, 000

¹ This table incorporates a number of revisions of data published in previous cadmium chapters.

² Cadmium content of flue dust exported for treatment elsewhere; represents in part shipments from stocks on hand. To avoid duplication of figures, data are not included in the total.

 ⁴ Planned production.
 5 Cadmium content of concentrates exported for treatment elsewhere. To avoid duplication of figures, data are not included in the total.

CALCIUM

By Joseph C. Arundale 1 and Flora B. Mentch 2

ALES of calcium chloride decreased slightly in 1952 but were near the record level of 1951. Imports of calcium metal exceeded those in any previous year, and a new firm was added to the list of domestic calcium-metal producers.

DOMESTIC PRODUCTION

Shipments in 1952 of 421,995 short tons of solid and flake calcium chloride (77-80 percent CaCl₂) and 154,476 short tons of liquid calcium chloride (40-45 percent CaCl₂) were only slightly less than in the previous record year of 1951. These figures include shipments of calcium chloride produced as a byproduct in the manufacture of

soda ash by the ammonia-soda process.

The following firms produced calcium chloride (and calcium magnesium chloride) from natural brines in 1952: California Salt Co., 2436 Hunter St., Los Angeles 21, Calif., plant at Amboy, Calif.; Hill Bros. Chemical Co., 2159 Bay St., Los Angeles, Calif., plant at Saltus, Calif.; National Chloride Co. of America, 354 South Spring St., Los Angeles 13, Calif., plant at Amboy, Calif.; Michigan Chemical Corp., 500 North Bankson St., St. Louis, Mich., plant at St. Louis, Mich.; Wilkinson Chemical Co., Mayville, Mich.; The Dow Chemical Co., Midland, Mich., plants at Midland and Ludington, Mich.; Pomeroy Salt Corp., Pomeroy, Ohio, plant at Minersville, Ohio; Westvaco Chemical Division, Food Machinery and Chemical Corp., South Charleston 3, W. Va.

The production in California is from the brine of Bristol Lake. Michigan, Ohio, and West Virginia, calcium chloride is recovered from well brines, with bromine and magnesia as coproducts.

Commercial calcium-metal production in the United States was begun in 1939 by the Electro Metallurgical Division, Union Carbide & Carbon Corp., Sault Ste. Marie, Mich. New England Lime Co., Canaan, Conn., began production during World War II, and in 1952 the Ethyl Corp. put on the market a crystalline calcium metal made in its plant at Baton Rouge, La.

Interstate Commerce Commission Regulations for Transportation of Explosives and Other Dangerous Articles was amended April 23,

TABLE 1.—Calcium chloride and calcium-magnesium chloride from natural brines sold by producers in the United States, 1943-47 (average) and 1948-52

[In terms of 75 percent (Ca, Mg) Cl₂]

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	230, 487	\$1, 983, 634	1950	299, 821	\$3, 801, 508
1948	309, 660	3, 906, 858	1951	328, 042	4, 756, 242
1949	255, 797	3, 260, 675	1952	(¹)	(1)

¹ Figures withheld to avoid disclosure of individual company operations.

¹ Assistant chief, Construction and Chemical Materials Branch. 2 Statistical assistant.

243CALCIUM

1952, to require that shipments of crystalline metallic calcium be made in wooden boxes of ICC Specification 15A or 15B, with airtight inside metal containers, each of which may not be larger than 1-This material may also be shipped in metal drums gallon capacity. or barrels with the gross weight not to exceed 350 pounds and meeting ICC Specifications 6A, 6B, or 6C. It may also be shipped in singletrip drums meeting ICC Specification 17C. Shipments by rail express may not exceed 25 pounds in a single container.

CONSUMPTION AND USES

The periodic issues of Calcium Chloride Institute News contained information on the many uses of calcium chloride. This material may be added to the liquid ballast in tires on tractors, motor graders, off-the-road equipment, and industrial machines to increase the weight, reduce the freezing temperature of the liquid, and improve the performance of the equipment.3 It has been found that calcium chloride added to concrete at the rate of about 2 percent of the weight of cement contributes to early strength of the concrete and improves the strength at all ages.4 The use of calcium chloride brine in ice making, 5 and in the coal industry for dust control was described. 6

The calcium chloride produced in California reportedly was used in that area for road treatment, dust prevention, weed killer, and portland cement. One firm is said to use this material for treating

seaweed in the manufacture of agar agar.

Calcium metal has many uses in the metallurgical industry. It is a reducing agent in the preparation of thorium, uranium, zirconium, and chromium; an alloying agent for aluminum, bearing metals, copper, lead, and magnesium; a decarburizer and desulfurizer for ferrous metals and alloys; a debismuthizer of lead; and a deoxidizer of iron castings. It is used also in separating argon and nitrogen, dehydrating alcohol, and removing sulfur from petroleum fractions.

PRICES

According to Oil, Paint and Drug Reporter, prices for calcium chloride throughout 1952 were as follows: Flake, 77-80 percent, paper bags, carlots, works, freight equalized, per short ton, \$25; liquor, 40 percent, tank cars, works, freight allowed, \$10.50; pellets, bags, carlots, works, \$31.25; powder, bags, carlots, works, \$35.65; solid, 73-75 percent, drums, carlots, freight equalized, \$23.50; less than carlots, works, same basis, \$32.80-\$69; U. S. P., granular, barrels, per pound, \$0.30.

E&MJ Metal and Mineral Markets quoted calcium metal cast in slabs and small pieces, in ton lots, per pound, at \$2.05 throughout

1952.

FOREIGN TRADE 7

Imports of calcium metal from Canada continued to increase. The only other imports were 20 pounds from France.

^{*} Calcium Chloride Institute News, vol. 2, No. 3, June 1952, p. 12; vol. 2, No. 5, October 1952, pp. 6, 7.

* Calcium Chloride Institute News, vol. 2, No. 6, December 1952, p. 9.

* Calcium Chloride Institute News, vol. 2, No. 2, April 1952, pp. 6, 7.

* Calcium Chloride Institute News, vol. 2, No. 1, February 1952, pp. 6, 7.

* Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce

TABLE 2.—Calcium metal and calcium-silicon imported for consumption in the United States, 1943-47 (average) and 1948-52

	Department	

Year	Calciun	n metal	Calcium-silicon		
	Pounds	Value	Pounds	Value	
1943–47 (average) 1948. 1949.	3, 488 796 3, 510	\$3, 304 2, 483 4, 736	132, 273 429, 488 112, 000	\$17, 534 52, 378	
1950 1951 1952	75, 756 574, 636 751, 215	66, 407 602, 226 807, 997	491, 646	14, 977 11, 479	

In 1952 calcium chloride was imported from Canada, United Kingdom, and Belgium-Luxembourg.

TABLE 3.—Calcium chloride imported for consumption in and exported from the United States, 1943-47 (average) and 1948-52

[U. S. Department of Commerce]

Vaca	Imp	orts	Exports			
Year	Short tons	Value	Short tons	Value		
1943–47 (average)	3, 273	\$41,743 249	10, 032 11, 456	\$345, 643 437, 763		
1949 1950 1951 1952	1, 881 813 1, 333	20 54, 170 37, 451 45, 888	21, 094 15, 624 18, 637 19, 193	507, 845 403, 230 559, 284 594, 904		

¹ Less than 1 ton.

TECHNOLOGY

The technical panel of the Calcium Chloride Institute held its second annual meeting in September 1952. At this meeting it was voted to continue research on road stabilization at the Iowa State Highway Research Board and at the Highway Research Board, Washington, D. C. It was also voted to continue frost studies at Purdue University and concrete studies at the National Bureau of Standards. Further investigations were recommended regarding the use of calcium chloride in concrete curing and costs of highway curing methods. A report on the jointly sponsored ion exchange water treatment project at the University of Texas was approved.

In California a solution of calcium chloride and sodium chloride is collected in trenches dug in the salt beds. It is concentrated by solar evaporation to precipitate sodium chloride, and the calcium chloride liquor is either sold as such or made into flake calcium chloride.

Calcium metal is produced by one firm in the United States by the electrolysis of calcium chloride. A second firm produces calcium by reducing lime with aluminum in a vacuum retort. A third firm recovers calcium from sludges that accumulate in the electrolytic production of sodium metal. In this process the source of the calcium is the calcium chloride in the electrolyte.

Calcium Chloride Institute News, vol. 2, No. 5, October 1952, pp. 3-4.
 California Journal of Mines and Geology, vol. 48, No. 1, January 1952, p. 116.

245 CALCIUM

The Ethyl Corp. reported production on a pilot-plant scale of a material described as "crystalline calcium metal." The material is said to be 94 to 97 percent free calcium metal and to range in particle size from 50- to 400- mesh. A bulletin issued by the firm describes

the properties and potential uses of the new product.¹⁰

The results of tests on the performance of calcium chloride-treated gravel roads in Onondaga County, N. Y., was reviewed at a conference of the Highway Research Board. The use of calcium chloride was said to have saved a considerable tonnage of gravel and substantially lowered the maintenance blading cost. 11

WORLD REVIEW

Before World War II the bulk of the calcium and calcium alloys produced was made in France and Germany. In 1945 commercial production of calcium in Canada was begun by Dominion Magnesium, Ltd., at Haley, Ontario. This firm soon became one of the world's leading producers. The process employed involves thermal reduction of lime.

TABLE 4.—Production (shipments) of calcium metal in Canada, 1945-51 1

Year	Pounds	Year	Pounds
1945	22, 720	1948	895, 203
1946.	53, 548	1949_	520, 069
1947.	602, 665	1950-51	(²)

The Miscellaneous Metal Mining Industry, 1951, Dominion Bureau of Statistics, Department of Trade and Commerce, Ottawa, Canada, 1953, page E-11.
 Not available for publication.

Calcium chloride is produced in Canada by Brunner-Mond & Co., Ltd., at Amherstburg, Ontario. Most of this material was for domestic consumption.

 ¹⁰ Crystalline Calcium Metal, Ethyl Corp., New York, N. Y., 1952.
 Oil, Paint and Drug Reporter, vol. 162, No. 16, Oct. 20, 1952, p. 85.
 ¹¹ Contractors and Engineers Monthly, Calcium Treatment Lowers Blading Costs: Vol. 49, No. 4, April 1952, pp. 107-108.

Cement

By Oliver S. North 1 and Esther V. Balser 2

NEW RECORD output of portland cement was established in the United States in 1952 when 249,256,154 barrels ³ was produced. Shipments were also at an alltime high, reaching

251,368,503 barrels valued at \$638,512,228.

Contrary to the upward trend in portland cement, production of one group of hydraulic cements—natural, masonry (natural), and puzzolan—tapered off for the second successive year. Also declining moderately were output and shipments of prepared masonry mortars, although 107 plants manufactured that material compared to 100 plants in 1951.

The portland-cement industry operated at 87.8 percent of capacity in 1952, compared to 87.4 in 1951. The estimated annual capacity of all portland-cement-producing facilities in the United States and Puerto Rico at the end of 1952 was about 284 million barrels—a

relatively small increase from 1951.

The average net mill realization per barrel of portland cement remained unchanged from 1951 at \$2.54. Also unchanged were the average values of the other hydraulic cements, as a group at \$2.83 per

barrel, and prepared masonry mortars, at \$3.09 per barrel.

The long-term trend, as shown by the moving 12-month total production of finished portland cement in the Bureau of Mines Monthly Cement Reports, declined irregularly through the first half of 1952 before turning upward through the last 5 months and reaching a new high in December.

Consumption trends of portland cement in 1952, as indicated in figure 1, continued to be essentially the same as in 1951. The Middle

States area was again the leading consumer.

States in the regions shown in figure 1 are as follows: Northeastern—Connecticut, Delaware, District of Columbia, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont; Southern—Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia; Middle—Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; Rocky Mountain—Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming; and Pacific—California, Oregon, and Washington.

Commodity-industry analyst.Statistical clerk.

Barrel as used in this chapter, unless otherwise indicated, refers to a 376-pound barrel.

TABLE 1.—Salient statistics of the cement industry in the United States, 1943-47 (average) and 1948-52 1

	1943-47 (average)	1948	1949	1950	1951	1952
Production: Portlandbarrels Masonry, natural, and puzzolan (slag-lime)dodo	135, 543, 581	205, 448, 263	209, 727, 417	226, 025, 849	246, 022, 476	249, 256, 154
	1, 997, 301	3, 440, 248	3, 185, 229	4, 246, 299	3, 449, 463	3, 401, 684
Totaldo Capacity used at portland-cement millspercent. Shipments from mills:percent.	137, 540, 882 55. 8	208, 888, 511 80. 8	212, 912, 646 81. 0	230, 272, 148 84. 3	249, 471, 939 87. 4	252, 657, 838 87. 8
Shipments from mills:	139, 084, 875	207, 679, 797	209, 313, 850	231, 975, 216	244, 628, 695	254, 815, 89
	\$237, 683, 544	\$453, 412, 362	\$481, 183, 393	\$545, 950, 709	\$623, 003, 439	\$648, 264, 06
	\$1, 71	\$2, 18	\$2, 30	\$2, 35	\$2, 55	\$2, 5
Stocks at mills, Dec. 31	16, 279, 926 4, 498 4, 836, 339	11, 303, 591 282, 752	14, 920, 104 109, 821 4, 561, 899	13, 308, 190 1, 409, 974 2, 418, 435	\$ 18, 223, 906 \$ 921, 953 2, 932, 787	16, 065, 85 475, 98 3, 185, 65
Apparent consumption 4 do World production (estimated) do	134, 253, 034	202, 040, 386	204, 861, 772	230, 966, 755	\$ 242, 617, 861	252, 106, 22
	391, 484, 000	3 598, 056, 000	674, 279, 000	3 775, 714, 000	\$ 870, 113, 000	932, 264, 00

Figures include Puerto Rico and Hawaii, 1946; Puerto Rico only, 1947-52. There has been no production in Hawaii since 1946.
 Value received f. o. b. mill, excluding cost of containers.
 Revised figure.
 Shipments from domestic mills minus net exports.

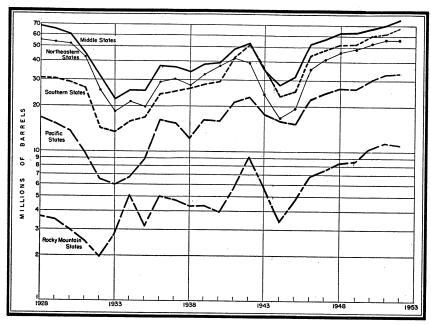


FIGURE 1.—Indicated consumption of portland cement in continental United States, 1928-52, by regions.

PORTLAND CEMENT

PRODUCTION AND SHIPMENTS

Portland cement, which constituted almost 99 percent of the hydraulic cement produced in 1952, was manufactured in 156 active plants in 37 States and Puerto Rico. Production was begun early in the year at a new plant at Brandon, Miss., and near the close of the year at a plant near Bunnell, Fla. The dry-process plant at Devils Slide, Utah, reported that it had no output and made no shipments during the year.

Table 2 is a district breakdown of production, shipments, and stocks in 1951–52. Table 3 shows similar information on a monthly basis. Data in the latter table were compiled from monthly reports—many of which were preliminary estimates by producers—in which totals were rounded to thousands of barrels. No attempt has been made to adjust the data in table 3 to the final annual figures shown in table 2. In all instances, the discrepancy is extremely small percentagewise.

Beginning with this chapter, California has been divided into two cement-producing districts. Plants at Davenport, Permanente, Redwood City, San Andreas, and San Juan Bautista comprise the Northern district, while the Southern district is composed of plants at Colton, Crestmore, Los Angeles, Monolith, Oro Grande, and Victorville.

Output in 1952 was greater in 10 districts and lower in 10 districts, compared to 1951. Changes ranged from a 6-percent decrease in

TABLE 2.—Finished portland cement produced, shipped, and in stock in the United States, 1951-52, by districts

342070-			tive ints	I	Production				Sh	ipments fron	n mills				Stocks at mills on Dec. 31		
1				Ba	rrels			1951			1952				Ва		
5517	District	1951	1952	1951	1952	Change from 1951, per- cent	Barrels	Value)	Barrels	Value)	Change 1951, p in-	ercent	1951 1	1952	Change from 1951, per-
						Conv		Total	Aver- age		Total	Aver-	Barrels	Aver- age value	1		cent
Mary New 1 Ohio	rn Pennsylvania, yland York, Mainern Pennsylvania,	1	21 11 9	36, 322, 651 15, 351, 223 11, 873, 852	I .	-5.8 +4.2 -5.1	35, 694, 374 15, 098, 821 11, 872, 278	\$91, 726, 329 37, 870, 008 29, 498, 956	2.51	34, 971, 324 16, 081, 524 11, 377, 806	\$90, 148, 570 40, 429, 862 28, 488, 500	\$2. 58 2. 51 2. 50	-2.0 +6.5 -4.2	+0.4	2, 528, 108 1, 066, 598 855, 548	1,761,222 980,705 748,173	-30.3 -8.1 -12.6
West Michig	Virginia an a, Kentucky, Wis-	7 7 4	7 7 4	10, 849, 106 14, 393, 599 8, 483, 783	10, 554, 119 14, 790, 587 8, 514, 443	-2.7 +2.8 +.4	11,014,476 14,112,639 8,377,387	27, 444, 268 35, 121, 324 19, 853, 132	2.49 2.49 2.37	10, 471, 497 14, 760, 783 8, 710, 621	26, 156, 314 36, 819, 042 20, 600, 347	2. 50 2. 49 2. 36	-4.9 +4.6 +4.0	+.4 4	790, 602 1, 598, 105 801, 886	873, 224 1, 627, 909 605, 708	+10.5 +1.9 -24.5
Consi	in ma	6	6 7 6	14, 163, 250 10, 772, 991 7, 221, 968	13, 899, 522 10, 609, 234 7, 439, 873	-1.9 -1.5 +3.0	13, 991, 472 10, 586, 825 7, 162, 841	33, 839, 689 24, 523, 073 17, 203, 080	2. 42 2. 32 2. 40	14, 170, 654 10, 642, 409 7, 428, 604	34, 992, 989 25, 084, 379 17, 834, 060	2. 47 2. 36 2. 40	+1.3 +.5 +3.7	+2.1 +1.7	1,125,303 584,816 377,021	854, 171 551, 641 388, 290	-24.1 -5.7 +3.0
Easter	n Missouri, Minne-	1 8	11 5	10, 662, 877 8, 364, 692	14, 513, 923 9, 028, 350	+36.1 +7.9	10, 479, 709 8, 024, 492	27, 312, 775 19, 800, 084	2. 61 2. 47	14, 390, 516 9, 336, 727	37, 257, 041 22, 849, 597	2. 59 2. 45	+37.3 +16.4	8 8	599, 456 1, 176, 973	722, 863 868, 596	+20.6 -26.2
Kansa Wester bras	South Dakotas n Missouri, Ne- ka, Oklahoma,	6	6	11, 807, 958 8, 514, 521	11, 406, 529 8, 672, 883	-3.4 +1.9	11,696,053 8,163,916	29, 725, 620 19, 413, 144	2. 54 2. 38	11, 528, 582 8, 811, 762	29, 416, 600 20, 956, 886	2. 55 2. 38	-1.4 +7.9	+.4	1,028,367 663,739	906, 314 524, 860	-11.9 -20.9
Texas. Colora mina	do, Arizona, Wyo- z. Montana. Utah.	6 13	13	8, 707, 964 18, 132, 373	8, 890, 216 19, 997, 983	+2.1 +10.3	8, 126, 910 17, 642, 654	19, 936, 315 42, 648, 536	2. 45 2. 42	9, 265, 497 19, 849, 455	22, 981, 413 48, 042, 901	2. 48 2. 42	+14.0 +12.5	+1.2	923, 718 987, 520	548, 437 1, 136, 048	-40.6 +15.0
Northe Southe	o	10 5 6 9 2	9 5 6 9 2	8, 569, 555 13, 556, 921 16, 361, 372 7, 671, 760 4, 240, 060	8, 226, 211 13, 676, 126 15, 908, 779 7, 568, 677 4, 088, 199	-4.0 +.9 -2.8 -1.3 -3.6	8, 264, 888 12, 973, 345 15, 983, 125 7, 589, 484 4, 297, 583	25, 503, 189 35, 866, 681 41, 887, 016 22, 744, 914 11, 252, 350	3. 09 2. 76 2. 62 3. 00 2. 62	8, 303, 467 13, 714, 018 16, 072, 227 7, 486, 547 3, 994, 483	24,007,382 36,958,815 42,498,930 22,470,706 10,517,894	2. 89 2. 69 2. 64 3. 00 2. 63	+.5 +5.7 +.6 -1.4 -7.1	-6.5 -2.5 +.8 +.4	649, 876 1, 014, 416 761, 833 514, 260 16, 276	572, 620 976, 524 598, 385 596, 890 109, 992	-11.9 -3.7 -21.5 +16.0 +575.8
	Total		156	246, 022, 476	249, 256, 154	+1.3	241, 153, 272	613, 170, 483	2. 54	251, 368, 503	638, 512, 228	2. 54	+4.2		18, 064, 421	15, 952, 072	-11.7
Penns; Missou	ylvania ri	24 5	24 5	41, 981, 431 10, 230, 449	39, 437, 971 10, 007, 609	-6.1 -2.2	41, 560, 431 10, 217, 421	107, 035, 506 25, 760, 473	2, 58 2, 52	40, 037, 761 10, 086, 850	103, 388, 586 25, 523, 038	2. 58 2. 53	-3.7 -1.3	+.4	2, 980, 404 743, 179	2, 380, 614 663, 938	-20.1 -10.7

¹ Revised figure.

² Mississippi was first included as a cement-producing State in 1952.

Eastern Pennsylvania-Maryland to a 36-percent increase in the Virginia-Georgia-Florida-Louisiana-South Carolina-Mississippi district. Twelve districts reported outputs over 10 million barrels.

TYPES OF CEMENT

A breakdown of total production of portland cement by various types for the 1943–52 period is shown in table 4. Production of lowheat (type IV) declined sharply, while outputs of the white and portland-puzzolan types were somewhat lower than in 1951. Except for production of a comparatively large quantity of sulfate-resisting (type V) cement to take up depleted stocks, output of all other types was moderately higher than in 1951.

Prepared Masonry Mortars.—Prepared masonry mortars are those special cements that are not true portlands but employ portland-cement clinker and finished portland cement as a base. To this base are added considerable quantities of lime or other constituents of various kinds. These specially prepared masonry cements are sold

under proprietary names.

Production of prepared masonry mortars was reported by 107 plants in 1952 and totaled 10,612,502 barrels. Shipments were 10,775,304 barrels valued at \$33,295,977, an average mill value of \$3.09 per barrel. These quantities are shown in equivalent barrels of 376 pounds to maintain uniformity with other data in this chapter.

As the finished portland cement and clinker used in making these types of masonry cement have been reported elsewhere by producers, to avoid duplication these data are not included in the statistical tabulations in this chapter, but the portland cement and clinker used in manufacturing these mixtures is included.

CAPACITY OF PLANTS

The total estimated annual capacity of all portland-cement plants in 1952, as reported to the Bureau of Mines by producers, increased 1 percent over that reported in 1951. The overall rate of operation in 1952 was approximately 0.5 percent of total capacity higher than in 1951.

Opening of the new plant in Mississippi and increased facilities at plants in other States of that district brought capacity in the Virginia-Georgia-Florida-Louisiana-South Carolina-Mississippi district to a figure nearly 4½ million barrels higher than at the end of 1951. The only other district showing marked increases in capacity were Southern California, up 1½ million barrels, and Northern California, up 1 million barrels. Large decreases in capacity were noted in the Indiana-Kentucky-Wisconsin, Western Pennsylvania-West Virginia, and Eastern Missouri-Minnesota-South Dakota districts. Most cement plants listed kiln departments as the factor limiting capacity, while a few reported that their capacities were limited by the raw-grinding or finish-grinding facilities.

As indicated in table 5, the percentage of capacity utilized was higher in 11 and lower in 9 districts, compared to 1951. In continental United States the changes ranged from a 9.5-percent decrease in the

CEMENT

25

Septem-Novem-Decem-February March April Mav June July August October District January ber ber ber PRODUCTION 2, 594 2,625 Eastern Pennsylvania, Maryland..... 2.743 2, 577 2,658 2,852 2,912 3, 113 3.049 3.191 2.914 2,984 1,017 1,036 1,307 1,513 1,487 1, 510 1,498 1,425 1,524 1.385 1,369 944 New York, Maine 854 894 847 831 921 1,034 1,007 944 1,005 1,089 928 917 Ohio____ 792 917 744 830 508 618 1.084 1.060 1, 101 995 943 Western Pennsylvania, West Virginia..... 756 1.456 1.556 1.480 1,628 1,438 1.189 461 591 1.268 1,619 1,510 594 Michigan 525 528 525 610 702 808 864 895 832 745 680 Illinois.... 915 1. 294 828 1.477 1.433 1.475 901 1.176 1.248 810 1.236 1,108 Indiana, Kentucky, Wisconsin 802 833 887 930 917 909 871 930 891 940 830 871 Alabama 650 476 619 630 693 665 598 639 592 669 Tennessee 584 624 Virginia, Georgia, Florida, Louisiana, South Caro-975 901 992 993 1,185 1.157 1,234 1,353 1.343 1.360 1.315 1.474 lina, Mississippi 515 331 562 839 824 1,013 966 900 765 670 707 937 Iowa.... 735 830 772 1.003 880 908 1, 188 1.148 1.069 895 Eastern Missouri, Minnesota, South Dakota..... 780 1,204 601 560 598 643 763 810 749 836 796 842 752 722 Kansas.... 631 709 824 926 688 595 640 780 831 867 875 766 Western Missouri, Nebraska, Oklahoma, Arkansas... 1,637 1,688 1,585 1,574 1.688 1.686 1.750 1,643 1,660 1.632 1,670 1.794 Texas. 793 595 438 389 355 543 844 863 860 816 835 878 Colorado, Arizona, Wyoming, Montana, Utah. Idaho. 1,162 1, 147 Northern California 916 801 1,129 1.119 1, 140 1,198 1.282 1, 210 1.304 1,277 1,457 Southern California 976 1, 227 1,278 1,303 1,307 1,316 1,275 1,354 1,410 1,506 1,497 304 500 589 704 792 689 663 726 703 831 591 475 Oregon, Washington 353 352 365 323 332 362 347 347 346 353 298 311 Puerto Rico 20,881 Total: 1952 17,039 16, 545 18.095 19.817 21,829 20,748 21,342 23, 573 23,010 24.164 22,048 22, 514 19,874 15, 201 18, 708 20, 184 21, 924 21,984 22, 439 22, 269 22, 797 20, 737 1951_____ 17, 434 SHIPMENTS Eastern Pennsylvania, Maryland 1,769 2,041 2,484 3.3283,098 3,441 3.209 3,378 3,639 3,755 2,883 1.949 539 849 1,580 1,614 1,930 1,766 1,675 1,775 1, 331 770 600 1,663 New York, Maine.... 571 1, 241 1, 243 529 498 753 893 940 1,367 1,168 1, 230 942 Ohio_____ 471 542 602 815 996 769 1,347 1,347 1,317 886 452 Western Pennsylvania, West Virginia..... 702 453 572 1,534 1,966 609 431 1,217 1,890 1,660 1,676 1,694 1,058 Michigan 182 290 317 681 892 1, 277 1,097 1,035 1,034 974 673 260 Illinois 653 Indiana, Kentucky, Wisconsin. 570 761 886 1,305 1,442 1,103 1,174 1,784 1,740 1,581 1,174 805 900 768 879 957 971 901 862 972 Alabama 903 895 831 Tennessee.... 563 581 546 726 663 687 709 610 649 698 554 441 Virginia, Georgia, Florida, Louisiana, South Carolina, Mississippi 1 965 888 956 1,083 1,226 1,263 1,265 1,316 1,354 1,463 1.251 1.142 171 252 326 798 1, 262 1,333 1, 183 229 932 1,277 1,045 529 1,360 478 Eastern Missouri, Minnesota, South Dakota..... 421 505 568 942 1,228 1,286 1, 241 1, 253 1,352 899 Kansas 418 499 460 678 784 928 1.053 910 963 969 731 418 Western Missouri, Nebraska, Oklahoma, Arkansas ... 416 515 592 833 878 1.017 1.043 991 1.059 1.023 673 415

See footnote at end of table.

TABLE 3.—Production, shipments from mills, and stocks at mills of finished portland cement in the United States in 1952, by months and districts, in thousands of barrels

TABLE 3.—Production, shipments from mills, and stocks at mills of finished portland cement in the United States in 1952, by months and districts, in thousands of barrels—Continued

District	January	February	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
SHIPMENTS—continued												
Texas Colorado, Arizona, Wyoming, Montana, Utah, Idaho. Northern California. Southern California. Oregon, Washington Puerto Rico.	1, 641 323 838 985 247 308	1, 591 395 994 1, 352 472 316	1, 790 393 962 1, 105 603 329	1, 680 709 1, 101 1, 345 796 297	1, 754 825 948 1, 457 730 370	1, 672 851 1, 175 1, 253 717 395	1, 659 824 1, 353 1, 327 728 374	1, 668 952 1, 490 1, 378 737 361	1, 725 1, 030 1, 319 1, 467 784 311	1, 868 989 1, 570 1, 663 820 327	1, 458 597 1, 133 1, 355 512 301	1, 344 417 836 1, 386 337 307
Total: 1952	12, 696 12, 236	14, 362 11, 294	15, 993 17, 678	21, 764 20, 921	23, 282 24, 867	25, 067 24, 916	25, 084 24, 259	25, 915 25, 841	26, 240 23, 253	27, 223 26, 134	19, 771 17, 994	13, 740 11, 791
STOCKS (END OF MONTH)												
Eastern Pennsylvania, Maryland New York, Maine Ohio. Western Pennsylvania, West Virginia. Michigan Illinois. Indiana, Kentucky, Wisconsin. Alabama. Tennessee. Virginia Georgia, Florida Lovisiana, South Const	1, 274 1, 052 1, 762 1, 145 1, 452 509	4, 004 1, 915 1, 557 1, 302 1, 770 1, 383 1, 607 537 293	4, 181 2, 099 1, 698 1, 616 1, 788 1, 592 1, 898 524 366	3, 705 1, 824 1, 651 1, 546 1, 839 1, 521 1, 841 497 270	3, 524 1, 720 1, 542 1, 380 1, 761 1, 332 1, 693 443 232	2, 681 1, 268 1, 222 1, 186 1, 351 855 1, 400 452 194	2, 101 1, 006 889 1, 041 1, 080 565 1, 054 420 177	1, 840 838 652 778 930 394 750 487 233	1, 254 581 428 492 734 256 441 483 181	693 330 203 275 668 114 336 451 122	727 382 350 384 1,048 186 399 449 160	1, 762 981 748 875 1, 628 606 854 552 388
Virginia, Georgia, Florida, Louisiana, South Carolina, Mississippi I. Iowa Eastern Missouri, Minnesota, South Dakota. Kansas. Western Missouri, Nebraska, Oklahoma, Arkansas. Texas. Colorado, Arizona, Wyoming, Montana, Utah, Idaho. Northern California. Southern California Oregon, Washington. Puerto Rico.	1, 713 1, 387 846 1, 102 937 765 1, 092	585 1, 976 1, 617 908 1, 218 920 759 898 629 593 48	621 1, 981 1, 879 1, 046 1, 266 817 722 1, 065 802 580 81	582 1, 745 1, 709 1, 011 1, 092 823 555 1, 082 761 487 131	541 1, 652 1, 483 989 993 819 574 1, 274 610 549	435 1, 213 1, 077 872 807 790 587 1, 245 674 521 66	404 894 744 567 589 791 623 1, 089 623 457 44	441 583 678 494 523 755 487 882 599 446 29	430 437 467 327 330 701 309 773 542 365	327 192 319 200 182 627 198 506 386 375 42	391 427 489 220 276 857 394 651 528 453 52	723 868 906 525 548 1, 151 573 977 598 591
Total: 1952	22, 336 18, 222	24, 519 22, 224	26, 622 23, 250	24, 672 22, 511	23, 220 19, 566	18, 896 16, 630	15, 158 14, 812	12, 819 11, 491	9, 602 10, 499	6, 546 7, 162	8, 823 9, 910	15, 964 17, 993

¹ Mississippi was first included as a cement-producing State in January 1952.

TABLE 4.—Portland cement produced and shipped in the United States, 1943-47 (average) and 1948-52, by types

				Shipments	
Type and year	Active plants	Production (barrels)	Barrels	Valu	e
			2411015	Total	Average
eneral use and moderate heat (types I					
and II):	150	110 727 000	100 007 101	e001 714 002	010
1943-47 2 (average)	150 150	118, 737, 929	120, 267, 191 173, 365, 414 174, 569, 746	\$201, 714, 223 374, 584, 386 396, 817, 234	\$1.6 2.1
1948 1949	150	174, 909, 904 177, 597, 585	174 560 746	306 817 934	2. 2
1950	150	191, 994, 091	193, 693, 533	449, 842, 513	2.3
1951	155	207, 702, 941	203, 279, 206	510, 975, 002	2.5
1952	156	210, 720, 294	212, 589, 258	534, 252, 252	2. 5
(igh-early-strength (type III): 1943-47 (average) 1948 1949		0.004.084	0.00#.000	10.070.110	
1945-47 (average)	96 87	6, 034, 374 5, 513, 312 5, 979, 435	6, 035, 039 5, 615, 894 5, 649, 482	12, 372, 116 14, 224, 177 15, 047, 036	2. 0 2. 5
1040	87	5, 515, 512	5 640 482	15 047 036	2. 6
1950	90	6, 667, 974	6, 607, 172	18, 094, 386	2.7
1951	96	7, 455, 107	7, 294, 686	21, 494, 894 23, 377, 812	2.9
1952	95	8, 014, 918	7, 982, 072	23, 377, 812	2. 9
w-heat (type IV):		100 500	450 005	004 515	٠
1952 w-heat (type IV): 1943-47 (av∂rage 1948	3	490, 562 135, 871 159, 739	478, 625 153, 994 129, 411	684, 515 306, 962 329, 284	1. 4 1. 9
1948	6	150, 671	199, 411	329 284	2.5
1950	5	328, 879	271, 559	682,008	2.5
1951	6	900, 624	790, 819	2, 647, 460 767, 571	3.3
1952 lfate-resisting (type V):	2	252, 122	272, 062	767, 571	2.8
lfate-resisting (type V):		01 000	00.000	01 770	٠
1943–47 (average) 1948	4 6	31, 933 204, 862	30, 333 162 197	81, 778 505, 710	2. 2 3. 1
1949	5	95, 023	36, 333 163, 127 113, 370	472,016	4.1
1950	4	4,070	49, 152	141, 888	2.8
1951	3	9, 908	87, 635	342, 689	3.9
1952	4	99, 229	78, 276	240, 129	3.0
-well:	10	1 000 626	1 011 700	0 411 041	
1943–47 (average) 1948	16 14	1, 202, 638 1, 817, 746	1, 211, 780 1, 966, 854	2, 411, 041 4, 972, 499	1. 99 2. 5
1949	17	1,714,938	1, 745, 908	4, 554, 603	2. 6
1950	17	1, 829, 651	1, 830, 167	4, 735, 423	2. 5
1951	15	1, 508, 252	1, 630, 305 1, 787, 786	4, 581, 109 5, 099, 335	2.8
1952	18	1,841,470	1, 787, 786	5, 099, 335	2.8
ite:	5	FOF 170	740 000	0 910 966	4. 2
1943–47 (average)	4	535, 170 1, 034, 500	549, 689 1, 005, 356	2, 312, 866 4, 510, 169	4.4
1949	4	1, 071, 100	1, 031, 408	4 985 107	4.8
1950	5	1, 175, 490	1, 187, 202 1, 109, 088	5, 637, 101	4.7
1951	4	1, 139, 500	1, 109, 088	5, 637, 101 5, 631, 518 5, 900, 986	5.0
1952	4	1, 081, 122	1,094,276	5, 900, 986	5.3
rtland-puzzolan:	4	665, 953	667 679	1, 141, 150	1.7
1943–47 (average)	6	1. 545. 584	667, 678 1, 693, 207	3, 733, 436	2. 2
1949	4	1, 545, 584 1, 080, 848	1, 147, 694	2, 602, 853	2. 2
1950	5	1, 369, 764	1, 321, 223	3, 232, 282	2.4
1951	6	2, 279, 023	2, 250, 280	5, 602, 288 4, 646, 078	2.4
1952 -entrained:	6	1, 861, 991	1, 856, 656	4, 646, 078	2.5
1945-47 3 (average)	65	12 230 204	12 174 116	21 102 279	1.7
1948	73	12, 230, 294 19, 421, 610	12, 174, 116 19, 453, 359	21, 102, 279 40, 322, 716	2.0
1948 1949	78	21, 266, 590	20, 940, 562	46, 091, 687	2.2
1950	80	21, 717, 585	21, 860, 316	50, 107, 196	2. 2
1951	79	24, 201, 376	23, 885, 423	59, 247, 898	2.4
1952	81	24, 484, 689	24, 796, 917	61, 432, 052	2.4
scellaneous: 4	19	506 946	519 555	1 102 603	2.1
1943–47 (average)	20	506, 846 864, 874 762, 159	512, 555 887, 457 752, 744	1, 102, 603 2, 518, 018 2, 277, 212	2.8
1948 1949	24	762, 159	752, 744	2, 277, 212	3.0
1950	24	938, 345	936, 312	2, 848, 326 2, 647, 625 2, 796, 013	3.0
1951	23 22	825, 745 900, 319	825, 830 911, 200	2, 647, 625	3.2
1952	22	900, 319	911, 200	2, 796, 013	3.0
and total:	150	135 5/2 521	137 063 350	234 481 650	1.7
1943–47 (average) 1948	150 150	135, 543, 581 205, 448, 263 209, 727, 417	137, 063, 359 204, 304, 662 206, 080, 325	234, 481, 659 445, 678, 073 473, 177, 032	2. 1
1949	150 1	209, 727, 417	206, 080, 325	473, 177, 032	2.30
		222 227 242	007 776 000	ESE 201 102	0.2
1950	150	226, 025, 849	227, 700, 000	535, 321, 123	
1950 1951 1952	150 155 156	226, 025, 849 246, 022, 476 249, 256, 154	227, 756, 636 241, 153, 272 251, 368, 503	613, 170, 483 638, 512, 228	2. 3. 2. 5. 2. 5.

Including Puerto Rico and Hawaii, 1946; Puerto Rico only, 1947-52. There has been no production in Hawaii since 1946.
 Includes air-entrained and Vinsol resin cements classed as modified cements by producers in 1944.
 Figures reported separately for the first time in 1945.
 Includes hydroplastic, plastic, and waterproofed cements.

Southern California district to a 9.5-percent increase in the Indiana-Kentucky-Wisconsin district.

Table 6 shows the percentage of estimated capacity utilized in each month of 1951 and 1952, and the percentage of capacity utilized in the 12-month period ended on the last day of each month of those 2 years.

TABLE 5.—Portland-cement-manufacturing capacity of the United States, 1951-52, by districts

		Capacity		
District	Estimated	l (barrels)	Percent	utilized
	1951	1952	1951	1952
Eastern Pennsylvania, Maryland. New York, Maine. Ohio	39, 642, 627 17, 606, 719 13, 994, 125 14, 821, 300 16, 452, 410 9, 459, 260 18, 431, 172 11, 411, 22, 400 9, 349, 570 9, 510, 984 9, 205, 781 21, 356, 000 10, 241, 800 11, 720, 000 8, 247, 825 4, 107, 220	38, 895, 393 17, 692, 491 13, 244, 125 13, 132, 300 16, 366, 360 9, 549, 290 16, 098, 147 11, 443, 150 8, 030, 000 18, 556, 940 9, 396, 280 13, 064, 400 9, 552, 608 9, 200, 78 21, 856, 000 10, 465, 000 10, 465, 000 10, 220, 000 8, 251, 151 4, 100, 000 284, 014, 416	91. 6 87. 2 90. 7 73. 2 87. 5 89. 7 76. 8 94. 4 92. 3 75. 5 84. 9 83. 7 91. 0 92. 3 93. 2 87. 4	87. 9 90. 4 85. 1 80. 4 89. 2 86. 3 82. 7 92. 7 78. 2 96. 1 87. 3 90. 8 86. 0 86. 0 82. 8 91. 5 78. 6

 $^{^{\}rm 1}$ Mississippi was first included as a cement-producing State in January 1952.

TABLE 6.—Percentage of capacity used in the finished portland-cement industry in the United States, 1951-52

Month	Mon	thly		onths ed—	Month	Mon	thly		onths
	1951	1952	1951	1952		1951	1952	1951	1952
January February March April May June	79 76 82 91 96 99	73 76 78 86 92 90	88 88 87 88 89 89	90 90 90 88 88 88	July	98 98 100 99 93 85	90 99 99 101 95 87	90 89 90 90 90	87 87 87 88 88 88

The capacity of plants utilizing the wet process for manufacturing portland cement was 3 percent higher than in 1951 and now make up over 56 percent of the total productive capacity. On the other hand, the capacity of dry-process plants in operation declined 2 percent from 1951. The percentage of cement produced by wet-process plants in 1952 continued its trend of recent years by gaining slightly. Table 7 shows capacity, capacity utilization, and percentage of total output produced for each of these processes.

TABLE 7.—Capacity of portland-cement plants in the United States, 1 Dec. 31, 1950-52, by processes

		Car	pacity, D	ec. 31	Porce	nt of a	onoa	Percent of total finished cement					
Process	Thousands of barrels				Percent of total			Percent of capacity utilized			produced		
	1950	1951	1952	1950	1951	1952	1950	1951	1952	1950	1951	1952	
Wet Dry	147, 049 121, 224	155, 430 126, 102	159, 812 124, 202	54. 8 45. 2	55. 2 44. 8	56.3 43.7	86. 6 81. 4	89. 3 85. 0	88. 7 86. 5	56.3 43.7	56. 4 43. 6	56. 9 43. 1	
Total	268, 273	281, 532	284, 014	100.0	100.0	100.0	84.3	87.4	87.8	100.0	100.0	100.0	

¹ Includes Puerto Rico.

A grouping of the cement plants based on their annual capacity is shown below. The less-than-1,000,000-barrel-capacity and the 2,000,000-to-3,000,000-barrel-capacity groups were 2 plants and-1 plant, respectively, smaller than in 1951, while the 1,000,000-to-2,000,000-barrel-capacity and 3,000,000-to-10,000,000-barrel-capacity groups were each 2 plants larger than in 1951.

Number of portland-cement plants in the United States (including Puerto Rico) in 1952, by size groups

Estimated annual capacity, Dec. 31, barrels:	Number of plants
Less than 1,000,000	. 21
1,000,000 to 2,000,000	- 88
2,000,000 to 3,000,000	. 33
3,000,000 to 10,000,000	. 15
m-1-1	157
Total	. 101

The total number of plants shown above is 157 instead of the 156 shown in other tables of this chapter because the dry-process plant of Ideal Cement Co. at Devils Slide, Utah, is included here, although no output or shipments were reported from that plant in 1952.

CLINKER PRODUCTION

Output of clinker—the product intermediate between raw materials and the finished cement—was 1 percent greater in 1952 than in 1951. As in the preceding several years, peak production was attained in October, while stocks reached their greatest accumulation in March. Higher stocks of clinker were on hand throughout 1952 than were maintained through 1951. Stocks of clinker on December 31, 1952, were 12 percent higher than those reported at the end of 1951.

TABLE 8.—Production and stocks of portland-cement clinker at mills in the United States in 1952, by months and districts, in thousands of barrels

District	January	Febru- ary	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
PRODUCTION												
Eastern Pennsylvania, Maryland	940 878 1,084 712 1,198	2, 753 1, 057 898 774 1, 054 613 1, 139 851 503	2,834 1,206 1,025 895 977 713 1,228 914 645	2, 773 1, 234 847 733 1, 325 653 1, 195 908 645	2, 924 1, 438 828 762 1, 347 628 1, 229 934 646	2, 537 1, 296 935 557 1, 426 675 775 891 636	2,555 1,337 1,038 617 1,346 763 815 917 662	3,112 1,413 927 960 1,370 756 1,305 919 668	2, 993 1, 396 893 983 1, 358 782 1, 332 899 594	3, 159 1, 430 986 970 1, 520 829 1, 371 941 641	2, 981 1, 377 1, 049 958 1, 346 750 1, 303 866 613	3,043 1,456 1,019 950 1,307 768 1,228 895 695
lina, Mississippi Lowa. Eastern Missouri, Minnesota, South Dakota Kansas. Western Missouri, Nebraska, Oklahoma, Arkansas Texas. Colorado. Arizona. Wyoming. Montana. Utah.	1 600 1	922 646 793 545 793 1,559	1,082 558 939 679 566 1,714	1,034 527 876 712 538 1,678	1,196 816 911 752 726 1,751	1,176 800 784 778 816 1,676	1,329 797 869 780 841 1,669	1,339 821 1,057 812 805 1,611	1, 342 865 1, 013 756 816 1, 658	1, 396 877 1, 099 788 851 1, 803	1,373 763 1,031 746 782 1,689	1,532 751 928 749 699 1,736
Idaho	637 903 1, 221 433 335	580 984 1, 205 556 316	550 1,116 1,325 648 345	536 1, 160 1, 257 657 308	622 1,132 1,317 702 314	695 1,147 1,360 666 324	753 1, 208 1, 366 549 331	742 1,192 1,410 654 360	825 1, 162 1, 425 716 327	886 1, 234 1, 449 695 316	826 1, 273 1, 396 595 322	757 1,149 1,449 562 347
T otal: 1952	19, 569 19, 132	18, 541 16, 995	19, 959 19, 750	19, 596 20, 393	20, 975 21, 341	19, 950 21, 327	20, 542 21, 440	22, 233 22, 010	22, 135 21, 650	23, 241 22, 396	22, 039 21, 164	22, 020 20, 780
STOCKS (END OF MONTH) Eastern Pennsylvania, Maryland New York, Maine	624 400 263	815 530 298	956 696 409	827 642 401	780 597 386	730 429 385	600 279 360	584 216	494 202 217	421 171	478 189	515 294
Western Pennsylvania, West Virginia Michigan Illinois Indiana, Kentucky, Wisconsin Alabama Tennessee	203 420 849 229 522 120 92	298 416 1,431 314 706 135	399 1,857 492 747 151 127	377 1,882 530 676 126 125	386 329 1,755 445 604 134 139	385 331 1,558 319 569 115 118	269 1, 218 264 552 148 72	275 208 1,037 151 380 133 64	217 199 904 29 273 131 48	189 98 701 17 170 127 38	140 117 566 13 237 154 46	224 167 555 100 345 173 61

Virginia, Georgia, Florida, Louisiana, South Carolina, Mississippi. Lowa. Eastern Missouri, Minnesota, South Dakota Kansas. Western Missouri, Nebraska, Oklahoma, Arkansas Texas. Colorado, Arizona, Wyoming, Montana, Utah, Idaho Northern California. Southern California. Oregon, Washington. Puerto Rico.	167 355 376 98 371 184 459 156 780 544	171 469 419 87 546 159 647 344 737 605 78	167 686 553 158 551 177 840 339 776 673 79	145 649 677 214 399 166 893 387 719 630 55	128 617 615 202 332 161 606 386 713 547 37	123 590 537 168 315 175 424 393 742 534 23	197 382 519 189 325 184 309 408 835 423	163 222 415 169 210 155 237 325 917 367 44	140 177 301 133 158 145 215 283 905 365 33	142 123 217 78 142 156 205 218 841 243 63	172 116 205 72 161 155 236 221 717 254 80	211 197 254 83 167 259 392 223 643 346 71
Total: 1952	7, 085	9, 021	10, 833	10, 520	9, 513	8, 578	7, 548	6, 262	5, 352	4, 360	4, 329	5, 280
	5, 473	7, 097	8, 068	8, 194	7, 482	6, 682	5, 601	4, 851	4, 138	3, 544	3, 882	1 4, 729

¹ Revised figure.

TABLE 9.—Portland-cement clinker produced and in stock at mills in the United States, 1951-52, by processes, in barrels 2

Process	Pla	nts	Prod	uction	Stocks on Dec. 31—		
	1951	1952	1951	1952	1951 3	1952 4	
Wet Dry	92 63	92 64	139, 134, 268 109, 243, 568	141, 840, 287 108, 959, 477	2, 257, 639 2, 471, 106	2, 524, 636 2, 755, 294	
Total	155	156	248, 377, 836	250, 799, 764	4, 728, 745	5, 279, 930	

¹ Including Puerto Rico. ² Compiled from monthly estimates of producers,

3 Revised figures. 4 Preliminary figures.

RAW MATERIALS

In table 10, production is classified according to kinds of raw materials from which the cement is manufactured.

Cement produced from argillaceous limestone ("cement rock") or from a mixture of cement rock with pure limestone is shown under This is the combination of materials used in all the first heading. the cement plants of Lehigh and Northampton Counties, Pa. (the so-called "Lehigh district") and at a few plants in certain other States. Cement manufactured from a mixture of comparatively pure

limestone with clay or shale and from mixtures of oystershells (or coquina shells) and clay are shown under the second heading. The

TABLE 10.—Production and percentage of total output of portland cement in the United States, 1904-14, 1926, 1929, 1933, 1935, and 1941-52, by raw materials

Year	Cement ro		Limestone or sha		Marl and	i clay	Blast-furnace slag and limestone		
	Barrels	Percent	Barrels	Percent	Barrels	Percent	Barrels	Percent	
1004 1905 1906 1906 1907 1908 1909 1910 1911 1911 1912 1913 1913 1914 1926 1929 1933 1935 1941 1942 1944 1945 1948 1949 1949 1949 1949 1949 1949 1949	18, 454, 902 23, 896, 951 25, 859, 905 20, 678, 693 24, 274, 047 26, 520, 911 26, 812, 129 29, 333, 490 24, 907, 047 44, 090, 657 51, 077, 034 49, 479, 304 29, 915, 157 46, 534, 193 49, 479, 304 29, 915, 157 177, 609, 055 20, 383, 505 39, 070, 643 3428, 201 47, 559, 783	29. 9 22. 3 31. 0 28. 4 27. 0 22. 4 19. 4 19. 8 23. 8 23. 3 23. 1 21. 8 20. 8	7, 526, 323 11, 172, 389 16, 532, 212 17, 190, 697 23, 047, 707 32, 219, 365 39, 720, 320 40, 665, 332 40, 665, 332 40, 665, 332 40, 67, 776 47, 831, 863 50, 168, 813 50, 168, 813 46, 07, 623, 502 45, 073, 144 102, 285, 699 115, 948, 373 92, 310, 018 65, 478, 178 73, 409, 831 112, 948, 247 144, 855, 487 73, 409, 831 112, 948, 247 144, 855, 487 150, 435, 948 164, 811, 547 169, 204, 269	28. 4 31. 7 35. 6 35. 2 45. 0 49. 6 51. 9 51. 8 54. 1 51. 9 56. 9 61. 8 67. 2 68. 7 72. 6 68. 3 69. 2 72. 0 68. 3 70. 5 71. 4 68. 3 70. 5 71. 5	3, 332, 873 3, 884, 178 3, 958, 201 3, 606, 598 2, 811, 212 2, 711, 219 3, 307, 220 3, 314, 778 4, 038, 310 3, 324, 408 4, 832, 700 11, 402, 744 1, 478, 569 3, 142, 021 3, 009, 562 2, 300, 636 2, 078, 530 2, 720, 500 2, 408, 845 2, 620, 060 3, 310, 270 2, 408, 845 2, 620, 060 3, 310, 270 2, 596, 962 2, 2653, 211 4, 037, 749	12.6 11.0 8.5 7.4 2 4.3 4.1 4.6 2.0 4.1 4.6 2.0 1.7 1.7 2.3 1.6 1.1 1.1	473, 294 1, 735, 343 2, 076, 000 2, 129, 000 4, 535, 300 5, 786, 800 7, 737, 000 9, 116, 000 9, 116, 000 15, 477, 239 17, 112, 800 4, 297, 251 6, 378, 170 12, 068, 646 6, 378, 170 12, 068, 646 6, 378, 170 12, 068, 646 6, 378, 170 12, 08, 044 11, 344, 945 8, 897, 977 5, 739, 933 6, 976, 312 10, 130, 891 11, 344, 054 10, 412, 933 10, 325, 683 11, 497, 198 23, 836, 996 23, 836, 996 23, 836, 996 18, 754, 417	1. 8 4. 4. 4 4. 4. 4 8. 9 9. 2 9. 2 9. 2 10. 3 9. 12. 9 10. 0 6. 8 8. 3 9. 2 9. 9 9. 2 9. 9 9. 2 10. 3 9. 2 9. 2 10. 3 9. 2 9. 2 9. 2 9. 2 9. 2 9. 2 9. 2 9. 2	

¹ Includes Puerto Rico, 1941–51; Hawaii, 1945–46. There has been no production in Hawaii since 1946. ² Includes output of 2 plants using oystershells and clay in 1926; 3 plants in 1929, 1933, and 1935; 4 plants in 1941–45; 5 plants in 1946–49; 6 plants in 1950; 7 plants in 1951; and 8 plants in 1952 (includes 1 plant that uses coquina shells).

CEMENT 259

former mixture is used at the majority of the plants in the United States, while the number of plants utilizing oystershells increased to

eight in 1952.

Cement manufactured from a mixture of marl and clay is listed under the heading "marl and clay." This type of mixture was used at only four plants in 1952; these were in Ohio, Virginia, South Carolina, and Mississippi.

Portland cement made from a mixture of limestone and blastfurnace slag is shown under the last heading. The mixture differs from puzzolan cement in that it is subsequently burned, whereas

puzzolan cement is not burned after mixing.

The tonnages of raw materials (exclusive of fuels and explosives) required to produce portland cement in recent years are given in table 11.

TABLE 11.—Raw materials used in producing portland cement in the United States, 1950-52

Raw material	1950	1951	1952
Cement rock Limestone (including oystershells) Marl Clay and shale ² Blast-furnace slag Gypsum Sand and sandstone (including silica and quartz) Iron materials ³ Miscellaneous ⁴	640, 462 7, 169, 015 971, 125 1, 660, 466 769, 806	Short tons 13, 927, 428 53, 564, 633 627, 013 7, 857, 584 1, 071, 749 1, 863, 018 920, 183 379, 818 173, 902	Short tons 13, 404, 234 53, 828, 942 1, 065, 164 7, 939, 326 1, 017, 976 1, 855, 274 893, 682 375, 852 170, 104
Total	73, 755, 919 Pounds 653	80, 385, 328 Pounds 653	80, 550, 554 Pounds 646

¹ Including Puerto Rico.

2 Includes fuller's earth, diaspore, and kaolin for making white cement.

FUEL AND POWER

Of the fuels consumed by the portland-cement industry, coal used declined 5 percent in quantity from the 1951 figure, whereas all other types of fuels were consumed in greater quantity than in the preceding year. Percentage gains for other fuels were: Fuel oil, 2; natural gas, 9; and byproduct gas, 1.

Stocks of coal and oil rarely were adequate at the average monthly consumption rate to maintain operations for more than 2 months.

The number of plants using electric energy, the number of kilowatthours generated and purchased, and the average electric energy used per barrel of cement produced are shown in table 14. In 1952 a larger percentage of the total electric energy used was purchased, compared to earlier years.

³ Includes iron ore, pyrite cinders and ore, and mill scale.
4 Includes fluorspar, flue dust, pumicite, pitch, red mud and rock, hydrated lime, tufa, calcium chloride, sludge, air-entraining compounds, and grinding aids.

TABLE 12.—Finished portland cement produced and fuel consumed by the portland-cement industry in the United States, 1951-52, by processes

	Finish	ed cement pro	duced	Fuel consumed ²				
Process	Plants	Barrels	Percent of total	Coal (short tons)	Oil (barrels of 42 gallons)	Natural gas (M cubic feet)		
1951 Wet Dry	91 64	138, 805, 654 107, 216, 822	56. 4 43. 6	4, 000, 833 4, 523, 886	4, 649, 870 1, 702, 442	71, 637, 119 3 31, 103, 117		
Total	155	246, 022, 476	100.0	4 8, 524, 719	6, 352, 312	³ 102, 740, 236		
1952 Wet Dry	92 64	141, 821, 019 107, 435, 135	56. 9 43. 1	3, 789, 690 4, 283, 519	4, 859, 406 1, 646, 990	77, 583, 713 3 34, 128, 323		
Total	156	249, 256, 154	100.0	5 8, 073, 209	6, 506, 396	³ 111, 712, 036		

Includes Puerto Rico.
 Figures compiled from monthly estimates of producers.
 Includes by product gas: 1951—231,996 M cubic feet; 1952—233,200 M cubic feet.
 Comprises 18,081 tons of anthracite and 8,506,638 tons of bituminous coal.
 Comprises 170,150 tons of anthracite and 7,903,059 tons of oituminous coal.

TABLE 13.—Portland cement produced in the United States, 1951-52, by kinds of fuel

	Finisl	ed cement pro	duced]	Fuel consumed	3 ,
Fuel	Plants	Barrels	Percent of total	Coal (short tons)	Oil (barrels of 42 gallons)	Natural gas (M cubic feet)
1951 Coal	74 14 16 12 19 9	3 117, 979, 253 3 22, 127, 409 3 23, 415, 074 17, 004, 568 28, 188, 353 22, 227, 639 15, 080, 180	48. 0 9. 0 9. 5 6. 9 11. 5 9. 0 6. 1	6, 760, 011 824, 485 633, 417 306, 806	4, 562, 162 726, 936 763, 205 300, 009	33, 656, 280 4 27, 960, 369 24, 237, 164 16, 886, 422
Total	155	246, 022, 476	100.0.	⁵ 8, 524, 719	6, 352, 312	102, 740, 236
1952 Coal	74 15 16 12 20 11 8	* 116, 074, 806 * 22, 854, 174 * 25, 445, 073 17, 913, 815 31, 222, 710 24, 993, 566 10, 752, 010	46. 6 9. 2 10. 2 7. 2 12. 5 10. 0 4. 3	6, 550, 779 	4, 653, 767 615, 302 1, 043, 834 193, 493	35, 752, 525 6 33, 484, 592 27, 962, 394 14, 512, 525
Total	156	249, 256, 154	100.0	7 8, 073, 209	6, 506, 396	111, 712, 03

4 Includes 231,996 M cubic feet of byproduct gas.
 5 Comprises 18,081 tons of anthracite and 8,506,638 tons of bituminous coal.
 6 Includes 233,200 M cubic feet of byproduct gas.
 7 Comprises 170,150 tons of anthracite and 7,903,059 tons of bituminous coal.

¹ Including Puerto Rico.
2 Figures compiled from monthly estimates of producers.
2 Average consumption of fuel per barrel of cement produced was as follows: 1951—Coal, 114.6 pounds; oil, 0.2005 barrel; natural gas, 1,437 cubic feet. 1952—Coal, 112.9 pounds; oil, 0.2036 barrel; natural gas, 1,405 cubic feet.

TABLE 14.—Electric energy used at portland-cement-producing plants in the United States, 1951-52, by processes, in kilowatt-hours

•			Electric	energy used				Average electric
Process	Generated at port- land-cement plants		Pt	urchased	Total		Finished cement produced	energy used per barrel of cement
	Active plants	Kilowatt- hours	Active plants	Kilowatt- hours		Per- (îk	produced (kilowatt- hours)	
1951 Wet Dry	31 34	817, 594, 309 1, 380, 638, 453			2, 955, 129, 166 2, 457, 206, 301	54. 6 45. 4	138, 805, 654 107, 216, 822	21. 3 22. 9
Total Percent of total elec- tric energy used	65	2, 198, 232, 762 40. 6		3, 214, 102, 705 59. 4	5, 412, 335, 467	00. 0	246, 022, 476	22.0
1952 Wet Dry	30 35	751, 718, 142 1, 373, 153, 231					141, 821, 019 107, 435, 135	21. 3 23. 2
Total Percent of total elec- tric energy used	65	2, 124, 871, 373 38. 6		3, 383, 303, 941 61. 4	5, 508, 175, 314	00.0	249, 256, 154	22. 1

¹ Including Puerto Rico.

EMPLOYMENT AND PRODUCTIVITY

Trends in employment and output per man in the portland-cement industry over the period 1945–49 are shown in tables 15 through 17; table 18 gives a breakdown of output per man-hour on the basis of hours of labor per day for 1947–49, and tables 19 through 21 show breakdowns of employment figures on a producing-district basis for 1948 and 1949.

TABLE 15.—Employment in the portland-cement industry, finished cement produced, and average output per man in the United States, 1945—49

			Employme	ent	Pro				
ber of men ber			Time e	mployed			Avera man (Percent	
	Aver-	Aver-		n-hours	Finished portland			of in- dustry repre-	
	ber of age	Total man- shifts	A ver- age per man per day	Total	(barrels)	Per shift	Per hour	sented 2	
1945	20, 695 25, 044 26, 962 27, 648 28, 430	287 313 318 329 328	5, 937, 680 7, 836, 818 8, 569, 626 9, 088, 519 9, 327, 919	8. 0 8. 0 7. 9 8. 0 7. 8	47, 612, 919 62, 384, 279 67, 836, 375 72, 291, 915 72, 840, 384	101, 340, 500 162, 296, 274 184, 644, 179 203, 007, 875 207, 535, 473	17. 07 20. 71 21. 55 22. 34 22. 25	2. 13 2. 60 2. 72 2. 81 2. 85	100. 0 100. 0 100. 0 100. 0 100. 0

¹ Exclusive of Puerto Rico and Hawaii. There has been no production in Hawaii since 1946.
² Calculated for each year by dividing quantity of finished cement produced at mills included in the employment survey by total production as determined by the production survey.

TABLE 16.—Mill employees in the portland-cement industry, finished cement produced, and average output per man in the United States, 1945-49

		Emplo	yment—ceme	nt mills	only	Pre			
			Time e	mployed			Average per man (barrels)		Percent
Year	Aver- age	Aver-		Ма	n-hours	Finished portland			of in- dustry repre-
	num- ber of men age num- ber of days		Total man- shifts	Aver- age per man per day	Total	cement (barrels)	Per shift		
1945	16, 142 18, 101 18, 327 18, 060 18, 304	299 325 330 345 351	4, 820, 735 5, 874, 801 6, 056, 358 6, 235, 094 6, 427, 853	8. 0 7. 9 7. 9 7. 9 7. 8	38, 551, 413 46, 610, 834 47, 716, 276 49, 437, 335 49, 984, 152	101, 340, 500 162, 296, 274 184, 644, 179 203, 007, 875 207, 535, 473	21, 02 27, 63 30, 49 32, 56 32, 29	2. 63 3. 48 3. 87 4. 11 4. 15	100. 0 100. 0 100. 0 100. 0 100. 0

¹ Exclusive of Puerto Rico and Hawaii. There has been no production in Hawaii since 1946. ² See footnote 2, table 15.

TABLE 17.—Quarry and crusher employees in the portland-cement industry, material handled, and average output of material per man in the United States, 1945-49

	Em	ploymen	t—quarries a	nd crush	ers only	only Material handled—quarry rock				
	Aver-	Time employe					Average per man (short tons)		Percent of in-	
Year	age num-	Aver-	000		n-hours	Short tons			dustry repre-	
	ber of men age number of days	Total man- shifts				Per shift	Per hour	sented 2		
1945	3, 500 4, 307 4, 704 4, 631 4, 697	245 271 282 287 276	857, 117 1, 166, 537 1, 328, 625 1, 330, 780 1, 294, 625	8. 1 8. 0 8. 0 8. 0 8. 0	6, 954, 881 9, 370, 921 10, 638, 458 10, 664, 655 10, 405, 767	29, 122, 715 45, 065, 371 51, 493, 686 57, 344, 472 57, 462, 023	33. 98 38. 63 38. 76 43. 09 44. 39	4. 19 4. 81 4. 84 5. 38 5. 52	90. 8 90. 9 90. 0 89. 3 89. 3	

 ¹ Exclusive of Puerto Rico and Hawaii. There has been no production in Hawaii since 1946.
 ² Calculated for each year by dividing quantity of finished cement produced at mills for which quarry employment reported, by total production as determined by production survey.

TABLE 18.—Number of men employed in the portland-cement industry in the United States, and output per man-hour, 1947-49, classified according to hours of labor per day

		1947		1948				1949		
Hours per day	Men employed		Produc- Men en		ployed	Produc- tion	Men en	ployed	Produc-	
	Num- ber	Fer- cent of total	per man- hour (bar- rels)	Num- ber	Per- cent of total	per man- hour (bar- rels)	Num- ber	Per- cent of total	per man- hour (bar- rels)	
Less than 6. 6 and less than 7. 7 and less than 8. 8 and less than 9. 9 and less than 10.	403 1, 129 877 24, 388 165	1. 5 4. 2 3. 2 90. 5	2. 82 2. 93 3. 36 2. 64 3. 60	202 305 2, 216 24, 925	0. 7 1. 1 8. 0 90. 2	3. 23 2. 22 2. 79 2. 76	225 2, 759 1, 320 24, 126	0.8 9.7 4.6 84.9	2. 41 2. 84 2. 84 2. 81	
Total	26, 962	100. 0	2. 72	27, 648	100. 0	2. 81	28, 430	100.0	2.85	

¹ Exclusive of Puerto Rico.

TABLE 19.—Employment in the portland-cement industry, finished cement produced, and average output per man in the United States, 1948-49, by districts

		·	Employn	ent		Pro	duction		
District	Aver-		Time e	<u> </u>	n-hours	_	per	erage man rrels)	Per- cent of indus-
District	age num- ber of men	Average number of days	Total man- shifts	Average per man per day	Total	Finished portland cement (barrels)	Per shift	Per hour	try repre- sented 2
1948									
Eastern Pennsylvania and Maryland New York and Maine Ohio Western Pennsylvania	4, 465 1, 927 1, 358	339 325 331	1, 512, 733 626, 641 448, 859	8. 0 7. 8 8. 0	12, 098, 427 4, 889, 335 3, 603, 482	1	22. 20 21. 55 22. 36	2. 78 2. 76 2. 78	100. 0 100. 0 100. 0
and West Virginia Michigan Illinois Indiana, Kentucky,	1, 650 1, 456 1, 143	338 318 314	557, 864 462, 869 359, 188	8. 0 7. 7 8. 0	4, 467, 098 3, 552, 662 2, 874, 790	8, 940, 151 11, 410, 085 7, 570, 536	16. 03 24. 65 21. 08	2.00 3.21 2.63	100. 0 100. 0 100. 0
and Wisconsin Alabama Tennessee	1, 981 991 884	343 336 328	680, 027 332, 580 289, 693	8. 0 8. 0 8. 0	5, 455, 390 2, 677, 153 2, 326, 764	12, 333, 325 9, 908, 219 6, 727, 160	18. 14 29. 79 23. 22	2. 26 3. 70 2. 89	100. 0 100. 0 100. 0
Tennessee Virginia, Georgia, Flor- ida, and Louisiana Iowa Eastern Missouri, Min- nesota, and South	1, 156 971	329 317	379, 766 307, 678	8. 0 8. 0	3, 041, 951 2, 461, 431	7, 134, 091 6, 807, 214	18. 79 22. 12	2.35 2.77	100. 0 100. 0
Dakota Kansas Western Missouri, Ne- braska, Oklahoma,	1, 454 1, 226	321 307	467, 168 376, 294	7. 9 7. 6	3, 713, 562 2, 867, 129	9, 654, 828 7, 933, 899	20. 67 21. 08	2. 50 2. 77	100. 0 100. 0
and Arkansas	963 1, 547	342 342	329, 100 529, 414	8. 0 8. 0	2, 630, 168 4, 239, 150	6, 960, 336 13, 700, 633	21. 15 25. 88	2. 65 3. 23	100. 0 100. 0
Idaho Northern California Southern California Oregon and Washington	761 1, 264 1, 523 928	350 301 321 315	266, 679 380, 845 488, 778 292, 343	7. 8 8. 0 8. 0 8. 0	2, 092, 572 3, 044, 243 3, 907, 796 2, 348, 812	5, 456, 272 11, 120, 313 13, 481, 579 6, 740, 050	20. 46 29. 20 27. 58 23. 06	2. 61 3. 65 3. 45 2. 87	100. 0 100. 0 100. 0 100. 0
Total	27, 648	329	9, 088, 519	8.0	72, 291, 915	203, 007, 875	22. 34	2. 81	100. 0
1949									
Eastern Pennsylvania and Maryland New York and Maine Ohio Western Pennsylvania	4, 416 1, 979 1, 461	333 317 323	1, 469, 756 626, 942 471, 840	8. 0 7. 7 8. 0	11, 704, 346 4, 855, 793 3, 784, 116	33, 799, 369 13, 838, 715 10, 313, 496	23. 00 22. 07 21. 86	2.89 2.85 2.73	100. 0 100. 0 100. 0
and West Virginia Michigan Illinois Indiana, Kentucky,	1, 753 1, 481 1, 141	312 351 347	546, 856 519, 960 395, 553	7. 6 7. 2 7. 0	4, 176, 281 3, 725, 601 2, 781, 914	8, 930, 125 12, 767, 500 8, 127, 656	16. 33 24. 55 20. 55	2. 14 3. 43 2. 92	100. 0 100. 0 100. 0
and Wisconsin Alabama Tennessee Virginia, Georgia, Florida, Louisiana, and South Carolina	1, 977 1, 033 836	338 302 322	668, 447 312, 123 269, 030	8. 1 8. 0 8. 0	5, 392, 839 2, 502, 352 2, 153, 088	12, 683, 409 9, 721, 542 6, 077, 549	18. 97 31. 15 22. 59	2. 35 3. 88 2. 82	100. 0 100. 0 100. 0
South Carolina 3 Iowa Eastern Missouri, Minnesota, and South	1, 335 1, 120	335 327	447, 508 366, 625	7. 6 8. 0	3, 387, 175 2, 933, 341	8, 505, 552 6, 834, 445	19. 01 18. 64	2. 51 2. 33	100. 0 100. 0
Dakota Kansas Western Missouri, Ne- braska, Oklahoma,	1, 379 1, 149	329 332	454, 085 381, 366	8. 0 7. 6	3, 647, 829 2, 908, 438	9, 867, 811 7, 824, 620	21. 73 20. 52	2. 71 2. 69	100. 0 100. 0
and Arkansas. Texas. Colorado, Arizona, Wyoming, Montana, Utah, and Idaho	1,015 1,555	340 343	344, 907 533, 429	7. 7 8. 0	2, 649, 703 4, 279, 668	7, 412, 145 14, 949, 812	21. 49 28. 03	2.80 3.49	100. 0 100. 0
Utah, and Idaho Northern California Southern California Oregon and Washington	1,079 1,240 1,356 1,125	344 301 308 317	370, 778 373, 411 418, 135 357, 168	8. 0 8. 0 8. 0 7. 4	2, 966, 531 2, 987, 334 3, 345, 096 2, 658, 939	6, 261, 861 10, 956, 612 12, 261, 744 6, 401, 510	16. 89 29. 34 29. 32 17. 92	2. 11 3. 67 3. 67 2. 41	100. 0 100. 0 100. 0 100. 0
Total	28, 430	328	9, 327, 919	7.8		207, 535, 473	22. 25	2.85	.100. 0

Exclusive of Puerto Rico.
 See footnote 2, table 15.
 South Carolina began full-scale commercial operations in early 1949.
 Arizona first began operating in December 1949.

TABLE 20.—Mill employees in the portland-cement industry, finished cement produced, and average output per man in the United States, 1948-49, by districts

	Е	mployn	nent—ceme	nt mill:	s only	Pro	duction		l
			Time e	mploye	đ		per	rage man	Per-
District	Aver- age	Aver-		Ма	n-hours	Finished	(Bar	rels)	cent of indus- try
	num- ber of men	age num- ber of days	Total man- shifts	Average per man per day	Total	portland cement (barrels)	Per shift	Per hour	represented 2
1948									
Eastern Pennsylvania and Maryland New York and Maine Ohio	3, 002 1, 265 759	360 332 357	1, 080, 446 420, 193 271, 175	8. 0 7. 7 8. 0	8, 639, 172 3, 219, 007 2, 172, 538	33, 589, 877 13, 504, 096 10, 035, 211	31. 09 32. 14 37. 01	3. 89 4. 20 4. 62	100. 0 100. 0 100. 0
Ohio Western Pennsylvania and West Virginia Michigan Illinois Indiana, Kentucky, and Wisconsin	1,040 672	363 338 338	359, 208 351, 870 226, 994	8. 0 7. 4 8. 0	2, 874, 220 2, 597, 260 1, 816, 675	8, 940, 151 11, 410, 085 7, 570, 536	24. 89 32. 43 33. 35	3.11 4.39 4.17	100.0 100.0 100.0
and Wisconsin Alabama Tennessee Virginia, Georgia, Florida, and Louisiana	1, 602 660 564	359 361 334	574, 692 238, 062 188, 502	8. 0 8. 0 8. 0	4, 607, 536 1, 913, 522 1, 508, 065	12, 333, 325 9, 908, 219 6, 727, 160	21. 46 41. 62 35. 69	2. 68 5. 18 4. 46	100. 0 100. 0 100. 0
Eastern Missouri, Min- nesota, and South	844 724	338 335	285, 431 242, 234	7. 9 8. 0	2, 263, 997 1, 937, 872	7, 134, 091 6, 807, 214	24. 99 28. 10	3. 15 3. 51	100. 0 100. 0
Dakota Kansas Western Missouri, Ne- braska, Oklahoma, and Arkansas	832 790	344 324	286, 413 256, 338	8.0 7.6	2, 290, 094 1, 955, 107	9, 654, 828 7, 933, 899	33. 71 30. 95	4. 22 4. 06	100. 0 100. 0
Colorado, Wyoming, Montana, Utah, and	586 1,176	361 357	211, 328 419, 656	8.0	1, 693, 530 3, 368, 187	6, 960, 336 13, 700, 633	32. 94 32. 65	4. 10 4. 07	100. 0 100. 0
Northern California Southern California Oregon and Washington	498 528 904 624	351 298 315 330	174, 598 157, 337 284, 468 206, 149	8. 0 8. 0 8. 0 8. 0	1, 396, 802 1, 258, 693 2, 275, 743 1, 649, 315	5, 456, 272 11, 120, 313 13, 481, 579 6, 740, 050	31. 25 70. 68 47. 39 32. 70	3. 91 8. 83 5. 92 4. 09	100. 0 100. 0 100. 0 100. 0
Total	18,060	345	6, 235, 094	7. 9	49, 437, 335	203, 007, 875	32. 56	4. 11	100.0
1949									
Eastern Pennsylvania and Maryland. New York and Maine Ohio Western Pennsylvania	2, 960 1, 240 834	357 347 340	1, 056, 700 430, 207 283, 874	8. 0 7. 6 8. 0	8, 418, 596 3, 271, 022 2, 274, 563	33, 799, 369 13, 838, 715 10, 313, 496	31, 99 32, 17 36, 33	4. 01 4. 23 4. 53	100. 0 100. 0 100. 0
and West Virginia	979 1,061 751	337 354 365	329, 607 375, 893 273, 772	7. 7 7. 2 6. 7	2, 530, 311 2, 710, 594 1, 825, 573	8, 930, 125 12, 767, 500 8, 127, 656	27. 09 33. 97 29. 69	3. 53 4. 71 4. 45	100. 0 100. 0 100. 0
and Wisconsin Alabama Tennessee Virginia, Georgia, Florida, Louisiana, and South Carolina	1, 534 573 499	360 333 350	552, 442 191, 008 174, 438	8.1 8.0 8.0	4, 453, 869 1, 533, 587 1, 395, 519	12, 683, 409 9, 721, 542 6, 077, 549	22. 96 50. 90 34. 84	2. 85 6. 34 4. 36	100. 0 100. 0 100. 0
Eastern Missouri, Minnesota, and South	952 763	351 357	334, 439 272, 411	7.4 8.0	2, 476, 698 2, 179, 563	8, 505, 552 6, 834, 445	25. 43 25. 09	3. 43 3. 14	100. 0 100. 0
Kansas Western Missouri, Ne- braska, Oklahoma	858 713	358 366	307, 578 260, 734	8. 0 7. 6	2, 461, 673 1, 985, 022	9,867,811 7,824,620	32. 08 30. 01	4. 01 3. 94	100. 0 100. 0
and Arkansas	556 1, 186	360 362	200, 077 429, 286	7. 9 8. 0	1, 580, 863 3, 443, 825	7, 412, 145 14, 949, 812	37. 05 34. 82	4. 69 4. 34	100. 0 100. 0
Utah, and Idaho Northern California Southern California Oregon and Washington.	732 457 874 782	347 339 319 343	253, 704 155, 035 278, 495 268, 153	8. 0 8. 0 8. 0 7. 3	2,029,617 1,240,287 2,227,966 1,945,004	6, 261, 861 10, 956, 612 12, 261, 744 6, 401, 510	24. 68 70. 67 44. 03 23. 87	3. 09 8. 83 5. 50 3. 29	100. 0 100. 0 100. 0 100. 0
Total		351	6, 427, 853	7.8	49, 984, 152	207, 535, 473	32. 29	4. 15	100.0

Exclusive of Puerto Rico.
 See footnote 2, table 15.
 South Carolina began full-scale commercial operations in early 1949.
 Arizona first began operating in December 1949.

TABLE 21.—Quarry and crusher employees in the portland-cement industry, material (quarry rock) handled, and average output of material per man in the United States, 1948-49, by districts

		E	mployn	nent—quar only	ry and o	erusher	Materia quai	l handle ry rock	d	
				Time e	mploye	đ.		Ave	rage	Per-
•		Aver-		1	Ma	n-hours		per (short	man tons)	cent of indus-
	District	age num- ber of men	Average num- ber of days	Total man- shifts	Average per man per day	Total	Short tons	Per shift	Per	try repre- sented 2
_	1948									
N	astern Pennsylvania and Maryland ew York and Maine hio estern Pennsylvania	755 272 261	277 275 269	208, 798 74, 773 70, 324	8.0 8.2 8.1	1, 672, 117 616, 260 572, 059	9, 541, 896 3, 339, 706 2, 556, 036	45. 70 44. 66 36. 35	5. 71 5. 42 4. 47	94. 5 100. 0 100. 0
м	and West Virginiaichiganlinoisdiana, Kentucky, and	432 64 199	303 274 303	130, 949 17, 535 60, 217	8.0 8.5 8.0	1, 050, 436 148, 387 481, 714	4, 375, 445 748, 159 2, 380, 802	33. 41 42. 67 39. 54	4. 17 5. 04 4. 94	57. 6 51. 9 100. 0
A	Wisconsin	207 208 197	284 255 313	58, 754 52, 943 61, 727	8.1 7.9 8.1	478, 728 418, 182 499, 893	2, 342, 773 2, 732, 008 1, 803, 773	39. 87 51. 60 29. 22	4.89 6.53 3.61	58. 1 84. 9 89. 0
10	ennessee irginia, Georgia, Flor- ida, and Louisiana wa	251 172	301 255	75, 602 43, 930	8.1 8.0	614, 517 351, 445	2, 472, 577 2, 231, 625	32.71 50.80	4. 02 6. 35	100. 0 100. 0
K	nesota, and South Dakotaansas estern Missouri, Ne-	180 190	286 268	51, 440 50, 925	8. 2 7. 9	420, 924 401, 843	2, 431, 969 2, 445, 030	47. 28 48. 01	5, 78 6, 08	84. 9 100. 0
т	braska, Oklahoma, and Arkansas	200 159	302 301	60, 451 47, 908	7. 9 7. 8	478, 062 375, 631	2, 327, 845 3, 166, 025	38. 51 66. 09	4. 87 8. 43	100. 0 92. 9
	olorado, Wyoming, Montana, Utah, and Idahoorthern Californiaouthern California	122 234 290	360 281 306	43, 962 65, 783 88, 822	7. 1 8. 0 8. 0	311, 228 523, 754 712, 032	1, 835, 368 4, 026, 374 4, 334, 212 2, 252, 849	41.75 61.21 48.80	5. 90 7. 69 6. 09	96. 3 100. 0 95. 6
ő	regon and Washington.	238	277	65, 937	8.2	537, 443		34. 17	4. 19	100.0
	Total 1949	4, 631	287	1, 330, 780	8.0	10, 664, 655	57, 344, 472	43. 09	5.38	89.3
N	astern Pennsylvania and Marylandew York and Maine hioestern Pennsylvania	727 272 303	272 247 292	197, 544 67, 131 88, 335	8. 0 8. 3 8. 1	1, 579, 484 554, 090 712, 220	9, 678, 881 3, 289, 291 2, 849, 466	49. 00 49. 00 32. 26	6. 13 5. 94 4. 00	95. 4 100. 0 100. 0
M II	ichiganlinois	443 61 188	274 304 291	121, 451 18, 539 54, 724	7. 7 7. 9 7. 7	934, 723 146, 529 419, 807	3, 782, 667 881, 619 2, 494, 043	31. 15 47. 55 45. 57	4. 05 6. 02 5. 94	58. 5 55. 9 100. 0
Δ	diana, Kentucky, and Wisconsin Labama ennessee irginia, Georgia, Flor- ida, Louisiana, and South Carolina	147 189 214	254 247 272	37, 293 46, 616 58, 102	8. 1 7. 9 8. 0	303, 507 367, 406 465, 405	1, 894, 722 2, 672, 770 1, 688, 430	50. 81 57. 34 29. 06	6. 24 7. 27 3. 63	59. 1 83. 8 86. 2
	South Carolina 3astern Missouri, Minnesota, and South	262 172	294 253	76, 939 43, 499	8. 0 8. 0	616, 460 348, 059	3, 004, 277 2, 266, 369	39. 05 52. 10	4.87 6.51	100. 0 100. 0
K	Dakotaansasestern Missouri. Ne-	240 187	285 275	68, 337 51, 484	8. 1 7. 9	551, 697 406, 464	2, 511, 335 2, 440, 568	36.75 47.40	4. 55 6. 00	85. 5 100. 0
T	braska, Oklahoma, and Arkansasexas	217 149	297 317	64, 457 47, 291	7. 7 8. 0	496, 732 380, 464	2, 465, 495 3, 386, 667	38. 25 71. 61	4. 96 8. 90	100. 0 92. 2
S	Utah, and Idaho orthern California outhern California regon and Washington.	151 237 271 267	340 228 295 253	51, 269 54, 133 80, 055 67, 426	8. 0 9. 7 8. 0 8. 1	410, 471 527, 092 640, 450 544, 707	2, 100, 830 3, 958, 595 3, 985, 491 2, 110, 507	40.98 73.13 49.78 31.30	5. 12 7. 51 6. 22 3. 87	99.3 100.0 95.7 91.7
-	Total	4,697	276	1, 294, 625		10, 405, 767	57, 462, 023	44.39	5. 52	89. 3

Exclusive of Puerto Rico.
 See footnote 2, table 17.
 South Carolina began full-scale commercial operations in early 1949.
 Arizona first began operating in December 1949.

TRANSPORTATION

The quantity and proportion of portland cement shipped in 1950-52 by each of the methods of transportation and mode of packing or packaging are given in table 22. The most important 1952 changes shown in the table are an increase in the percentage shipped in bulk and a corresponding decrease in the percentage shipped in bags. Study of producers' reports shows that principal 1952 percentage gains in bulk shipments, as compared to percentages shipped in containers, were made in the Eastern Missouri-Minnesota-South Dakota, Iowa, Illinois, and Kansas districts.

Little change from 1951 was noted in the respective percentages shipped by truck, railroad, and boat.

TABLE 22.—Shipments of portland cement from mills in the United States,1 1950-52, in bulk and in containers, by types of carriers

					• • •			
	in bu	lk		In conta	iners		Total ship	oments
Type of carrier			Bags					
Barrel		Per- cent	Paper (barrels)	Cloth (barrels)	tain- ers ² (bar- rels)	Total (barrels)	Barrels	Per- cent
1950								
Truck Railroad Boat	332, 813, 799 89, 209, 877 2, 495, 582	26. 4 71. 6 2. 0	21, 554, 555 77, 911, 406 400, 752	357, 547 2, 979, 928 21, 418	11, 318 454	21, 912, 102 80, 902, 652 422, 624	54, 725, 901 170, 112, 529 2, 918, 206	24. 0 74. 7 1. 3
Total Percent of total	124, 519, 258 54. 7	100. 0	99, 866, 713 43. 8	3, 358, 893 1, 5	11, 772 (4)	103, 237, 378 45. 3	227, 756, 636 100, 0	100.0
1951								
	\$42, 899, 170 102, 233, 611 1, 940, 483	29. 2 69. 5 1. 3	22, 366, 199 70, 327, 861 496, 895	186, 924 673, 634 18, 416	8, 558 1, 521	22, 553, 123 71, 010, 053 516, 832	65, 452, 293 173, 243, 664 2, 457, 315	27. 2 71. 8 1. 0
Total Percent of total	147, 073, 264 61. 0	100.0	93, 190, 955 38. 6	878, 974 0. 4	10, 079 (4)	94, 080, 008 39. 0	241, 153, 272 100. 0	100.0
1952								
Truck Railroad Boat	345, 690, 842 109, 566, 554 3, 248, 587	28. 8 69. 1 2. 1	22, 948, 530 68, 891, 460 392, 025	138, 702 446, 361 36, 340	8, 218 884	23, 087, 232 69, 346, 039 429, 249	68, 778, 074 178, 912, 593 3, 677 836	27.3 71.2 1.5
Total Percent of total	158, 505, 983 63. 1	100.0	92, 232, 015 36. 7	621, 403 0. 2	9, 102 (4)	92, 862, 520 36. 9	251, 368, 503 100. 0	100.0

¹ Includes Puerto Rico.
² Includes steel drums and iron and wood barrels.

³ Includes cement used at mills by producers as follows—1950: 929,451 barrels; 1951: 1,368,117 barrels; 1952: 1,212,495 barrels.

4 Less than 0.05 percent.

CONSUMPTION

Quantities shown in table 24 are the total number of barrels of portland cement reported by domestic producers to have been shipped to destinations in the respective States and the District of Columbia. They represent shipments both from plants in the State in question and These data are often termed "apparentfrom all other States. consumption" or "indicated-consumption" figures.

Of course, at any time a variable but considerable quantity of cement is in transit, in warehouses at distributing points, and awaiting

TABLE 23.—Destination of shipments of finished portland cement from mills in the United States, 1950-52, by States

			1952	
Destination	1950 (barrels)	1951 (barrels)	Barrels	Change from 1951 percent
Continental United States:				
Alabama	3, 395, 505	3, 736, 413	3, 920, 511	+4.9
Arizona	1, 572, 137	1,681,846	2, 121, 492	+26.1
Arkansas	2, 406, 455	1,854,107	1,941,519	+4.
California	23, 508, 046	25, 191, 516	25, 361, 032	+.7
Colorado	2, 432, 616	2, 858, 840	2, 824, 978	-1.5
Connecticut 1	2, 629, 280	2,770,756	2, 977, 458	+7.5
Delaware 1	806, 434	783, 892	906, 245 1, 155, 923	+15.6 -20.7
District of Columbia 1	1, 484, 834 4, 998, 502	1,457,896 6,051,603	6, 680, 385	+10.4
FloridaGeorgia	3, 313, 750	3, 513, 978	4, 116, 620	1 7.1
Idaho	1,004,858	1, 154, 434	1, 110, 295	-3.8
Illinois	11, 557, 409	12, 286, 321	13, 324, 065	+8.4
Indiana	5, 611, 993	6, 354, 398	6, 222, 861	-2.1
Iowa	4, 828, 232	4, 948, 586	4, 976, 010	+.6
Kansas	4, 793, 853	4, 477, 884	5, 852, 155	+30.7
Kentucky	2, 559, 713	2, 925, 136	3, 621, 414	+23.8
Louisiana	4, 551, 836	5, 282, 319	5, 868, 630	+11.1
Maine	549, 577	711, 192	692,055	-2.7
Maryland	4, 406, 182	4, 398, 730	4, 362, 945	8
Massachusetts 1	4, 161, 610	4, 153, 399	4, 346, 378	+4.6
Michigan	9, 645, 331	10, 693, 060	11, 310, 322	+5.8
Minnesota	4, 896, 145	4, 520, 518	4, 748, 175	+5.0
Mississippi 2	1, 676, 409	1,670,933	1,704,719	+2.0
Missouri	5, 852, 265	5, 663, 459	6, 319, 588	+11.6 -13.9
Montana	1, 405, 328	1,576,885	1,358,350	-13.3 +11.4
Nebraska	2, 538, 361	2, 356, 433 389, 815	2, 626, 741 618, 392	+58.6
Nevada 1	325, 997 520, 977	442, 168	456, 691	+3.3
New Hampshire ¹ New Jersey ¹	7, 239, 023	8, 231, 613	8, 084, 668	-1.8
New Mexico 1	2, 101, 080	1,745,162	1, 645, 426	-5.
New York	15, 537, 337	16, 248, 279	16, 898, 736	+4.0
North Carolina 1	3, 699, 380	3, 683, 471	3, 885, 629	+5.8
North Dakota 1	928, 766	1,004,990	1,071,422	+6.6
Ohio	0, 307, 833	12, 967, 938	13, 095, 380	+1.0
Oklahoma	4, 425, 102	3, 781, 008	4,651,344	+23.0
Oregon	4, 425, 102 2, 603, 223	3, 781, 008 3, 349, 725	2, 927, 040	-12.0
Pennsylvania	15,093,106	16, 133, 233	15, 132, 930	-6.5
Rhode Island 1	845,092	956, 077	923, 860	-3.4
South Carolina	2, 069, 957	2, 313, 122	2, 961, 293	+28.0
South Dakota	1, 354, 744	1,012,080	1, 108, 810	+9.0
Tennessee	4, 565, 588	4, 792, 334	4, 701, 963	-1.9
Texas	16, 671, 621	16, 518, 808	17, 257, 467	+4. +12.
Utah	1, 279, 828	1,191,237	1,342,998	-4.
Vermont 1	317, 345	330, 400 4, 719, 467	316,066 4,649,768	-1.
Virginia	4,068,441	4, 719, 407	4, 954, 171	+9.
Washington	4, 210, 197 1, 898, 334	1, 802, 919	1, 804, 409	+.1
West Virginia Wisconsin	5, 274, 002	5, 226, 527	5, 667, 282	+8.4
Wyoming	649, 695	606, 912	561, 486	
Unspecified	35, 049	7, 536	8,840	+17.3
Motel continental Tinited States	222, 608, 378	235, 047, 389	245, 176, 937	+4.
Total continental United States Outside continental United States 3	5, 148, 258	6, 105, 883	6, 191, 566	\
Total shipped from cement plants	227, 756, 636	241, 153, 272	251, 368, 503	+4.

Non-cement-producing State.
 Mississippi was first included as a cement-producing State in 1952.
 Direct shipments by producers to foreign countries and to noncontiguous Territories (Alaska, Hawaii, Puerto Rico, etc.), including distribution from Puerto Rican mills.

use at jobs. In certain instances much of the cement shipped to a distributing point near a State line is subsequently used in a State other than that listed as its "destination." Some coastal and border States receive cement from foreign countries, and the quantities are not included here. Although shipments into a State in a year do not equal its consumption during that year, shipments over a long period

should afford a fair index of consumption.

As shown in table 23, indicated consumption of portland cement in 1952 increased in 33 States and decreased in 15 States and the District of Columbia, compared to 1951. The major percentage gain was registered by Nevada, but marked increases were indicated in Kansas, South Carolina, Arizona, Kentucky, and Oklahoma. Declines were sharpest in the District of Columbia, Montana, and Oregon. California, Texas, New York, Pennsylvania, Illinois, Ohio, and Michigan, in that order, were the largest consumers of cement in 1952. These 7 States reported 46 percent of the total consumption in continental United States, while the 11 non-cement-producing States and the District of Columbia reported 11 percent.

LOCAL SUPPLY

The surplus or deficiency in the quantity of portland cement locally available is indicated in table 25. The comparison is based on shipments from mills and on consumption as shown by State receipts of mill shipments. The 1952 deficiencies occurred in 2 States and in all 6 divisions.

The total surplus of producing States in 1952 was distributed as follows: 27,286,601 barrels to non-cement-producing States, Alaska, and Hawaii; 2,790,265 barrels to destinations outside continental United States (excluding local consumption of Puerto Rican production); and 8,840 barrels to unspecified destinations.

STOCKS

Shipments in 1952 were considerably higher than production and absorbed a large part of the excess stocks accumulated at the end of 1951. However, stocks in Puerto Rico increased almost sixfold.

Through the first 8 months of the year, stocks of finished portland cement on hand at the end of each month followed essentially the 1951 pattern but at a higher level. However, through the last 4 months they were increasingly lower than in 1951 and by the end of December reached a figure 2 million barrels below that for December 31, 1951.

TABLE 24.—Destination of shipments of finished portland cement from mills in the United States in 1952, by months, in barrels

											,	
Destination	January	February	March	April	Мау	June	July	August	September	October	November	December
Alabama	309, 389	294, 042	307, 761	330, 960	340, 688	297, 936	319, 328	340, 915	371, 894	378, 396	314, 589	277, 387
Arizona	187, 764	184, 405	164. 285	186, 429	200, 351	176, 956	161, 183	157, 031	169, 621	187, 275	155, 108	188, 806
Arkansas	113, 546	108, 324	135, 778	140, 311	194, 663	187, 809	173, 594	201, 275	229, 348	2 15, 993	155, 343	83, 519
California	1, 419, 207	1, 974, 615	1, 747, 495	2, 095, 437	2, 043, 104	2, 056, 381	2, 252, 230	2, 434, 682	2, 434, 363	2, 810, 751	2, 214, 683	1, 884, 034
Colorado	144 212	180, 088	163, 660	238, 107	260, 033	305, 399	274, 935	304, 448	317, 785	298, 433	194, 738	144, 193
Connecticut	127, 741	129, 731	195, 580	293, 822	270, 555	321, 233	305, 965	298, 874	314, 841	307, 734	263, 792	147, 340
Delaware District of Columbia	40, 324	46, 144	50, 095	60, 889	77, 443	63, 414	66, 370	74, 763	118, 285	137, 117	85, 844	40, 776
District of Columbia	101, 702	93, 752	83, 712	92, 070	92, 250	93, 385	96, 659	95, 943	114,009	117, 315	91, 917	83, 164
Florida	503, 032	521, 306	545, 778	550, 481	587, 769	578, 131	579, 744	526, 941	528, 699	503, 985	606, 414	647, 871
Georgia	292, 789	273, 402	273, 180	347, 657	377, 831	381, 745	394, 178	401, 734	396, 468	428, 089	337, 053	256, 954
1daho	58, 405	90, 023	119, 077	121, 542	102, 383	90, 047	95, 961	95, 770	96, 369	113, 926	77, 650	54, 421
Illinois	388, 910	595, 957	652, 035	1, 150, 102	1, 361, 202	1, 373, 586	1, 339, 501	1, 687, 450	1, 678, 652	1, 531, 121	1, 072, 249	496, 092
Indiana	218, 489	297, 437	383, 158	558, 481	605, 587	630, 881	683, 641	757, 943	677, 603	649, 032	507, 723	236, 828
Iowa	64, 283	95, 419	135, 490	317, 913	478, 139	612, 843	664, 884	760, 914	663, 639	734, 609	268, 887	92, 982
Kansas	263, 957	338, 506	298, 459	536, 224	556, 558	595, 882	605, 706	618, 634	664, 570	627, 403	558, 394	274, 447
Kentucky	173, 518	232, 679	236, 900	324, 427	348, 291	360, 087	351, 927	360, 535	364, 859	383, 563	312, 991	171, 242
Louisiana	459, 883	412, 875	479, 333	452, 769	443, 505	564, 709	507, 262	517, 043	561, 744	584, 710	482, 687	402, 159
Maine	15, 203	10,776	15, 265	62, 393	90, 299	95, 284	86, 365	82, 538	91, 668	76, 888	37, 437	27, 915
Maryland Massachusetts	210, 465	307, 131	303, 782	397, 381	417, 627	425, 922	439, 208	432, 657	424, 846	435, 913	329, 695	237, 881
Massachusetts	192, 905	161, 833	267, 598	461, 872	412, 331	450, 053	422, 506	430, 785	438, 478	455, 970	396, 300	256, 134
Michigan Minnesota	350, 037	387, 118	502, 690	971, 462	1, 179, 416	1, 387, 701	1, 370, 379	1, 236, 753	1, 246, 721	1, 283, 794	846, 044	493, 046
Minnesota	92, 085	114, 545	147, 114	356, 364	490, 180	603, 083	690,068	657, 893	616, 779	561, 670	281, 288	137, 183
Mississippi Missouri	122, 224	117, 277	128,650	146, 823	145, 587	152, 161	141, 287	153, 597	155, 524	160, 057	157, 754	123, 715
Missouri	253, 575	341, 691	349, 013	522, 668	615, 101	655, 631	646, 016	636, 166	686, 304	806, 917	504, 789	301, 482
Montana	11,756	20, 864	47, 889	173, 321	209, 352	215, 333	195, 177	163, 802	124, 504	117, 057	53, 119	26, 129
Nebraska	49, 484	78, 452	84, 923	213, 087	286, 928	292, 957	334, 474	340, 532	352, 440	349, 171	196, 729	49, 354
Nevada	32, 794	32, 425	33, 435	40, 097	35, 739	37, 024	54, 990	68,032	87,615	94, 079	61, 142	47, 477
New Hampshire	15, 914	14, 400	20,849	51, 511	45, 766	51, 432	47, 285	47, 975	48,814	53, 391	33, 457	19, 982
Nevada. New Hampshire New Jersey New Mexico	418, 182	448, 106	586, 306	783, 944	746, 068	811, 494	715, 179	774, 502	822, 803	868, 749	685, 672	423, 225
New Mexico	118, 949	113, 262	125, 017	142, 643	151, 504	160, 593	148,650	142, 126	146, 720	157, 442	127, 329	110, 351
New York	632, 621	669, 909	1,001,925	1, 572, 398	1,644,470	1, 925, 271	1, 718, 875	1, 761, 006	1,844,443	1,881,807	1, 427, 800	824, 784
North Carolina	284, 598	277, 903	310, 899	388, 363	384, 021	361, 147	359, 910	339, 747	338, 603	339, 966	292, 246	219,095
North Dakota	5, 898	9, 484	25, 174	119,062	135, 906	168, 797	168, 631	140, 401	128, 715	94, 809	49, 841	14, 958
	540, 968	590, 851	773, 843	1, 042, 164	1, 122, 612	1, 381, 632	1, 449, 639	1, 543, 878	1, 473, 821	1, 475, 140	1,043,866	582, 736
Oklahoma	279, 521 227, 360	314, 723 282, 639	330, 136	358, 632 284, 792	342,006	388, 592 231, 930	418, 098	479, 420	512, 690	549, 210	379, 413	324, 393
Oregon Pennsylvania Rhode Island	221,300	282,039	270, 465		240, 343		270, 181	266, 371	252, 154	293, 461	141,837	140, 881
Dhodo Island	688, 304 35, 854	843, 208 28, 053	918, 023 54, 994	1, 321, 207 120, 441	1, 313, 041 184, 636	1, 401, 136	1, 437, 893	1, 585, 428	1,706,281	1,844,835	1, 200, 315	795, 660
South Carolina	263, 165	232, 797	238, 892	281, 025	269, 349	98, 896 263, 160	97, 618 258, 710	82, 067	92, 666	96, 106	80, 595	43, 440
South Dakota	13, 189	18, 884		281, 025 88, 170				231, 526	235, 829	268, 999	231, 524	186, 084
BOULD DAKUR	10,199	18,884	25, 880	08,170	142, 385	·166, 961	141, 631	129, 633	140, 907	141, 514	76, 294	27,871

TABLE 24.—Destination of shipments of finished portland cement from mills in the United States in 1952, by months, in barrels—Con-

Destination	January	February	March	April	May	June	July	August	September	October	November	December
Tennessee Texas. Utah Vermont. Virginia. Washington West Virginia Wisconsin Wyoming. Unspecified	323, 834 1, 434, 589 23, 409 4, 372 275, 670 149, 471 91, 736 127, 726 19, 241 1, 254	360, 139 1, 362, 175 38, 348 2, 981 306, 953 285, 426 95, 137 159, 460 22, 077	359, 578 1, 556, 206 39, 560 8, 666 347, 305 362, 910 123, 911 177, 110 26, 065 698	436, 354 1, 509, 773 114, 080 29, 773 463, 316 508, 841 157, 454 329, 305 51, 499 5, 490	421, 820 1, 601, 465 136, 769 28, 467 455, 015 478, 766 151, 750 558, 153 57, 411	457, 893 1, 468, 590 133, 501 43, 201 427, 732 466, 488 188, 108 814, 748 75, 244	413, 568 1, 460, 384 142, 355 41, 972 431, 010 501, 619 195, 076 771, 719 65, 109 2, 646	359, 991 1, 430, 039 155, 610 42, 001 438, 005 524, 241 192, 516 705, 388 77, 601 433	411, 312 1, 441, 036 164, 006 36, 159 446, 168 521, 404 187, 142 753, 548 44, 566 10, 166	465, 240 1, 578, 013 226, 955 42, 549 446, 565 547, 334 186, 191 678, 911 62, 345 369	360, 626 1, 230, 623 113, 156 26, 554 342, 566 341, 218 144, 112 417, 212 37, 287	331, 441 1, 176, 322 55, 415 14, 133 271, 530 266, 058 77, 935 179, 854 22, 927 1, 337
Continental United States Outside continental United States 1	12, 173, 504 522, 496	13, 917, 732 444, 268	15, 536, 547 456, 453	21, 303, 326 460, 674	22, 834, 635 447, 365	24, 492, 148 574, 852	24, 511, 296 572, 704	25, 287, 555 627, 445	25, 687, 581 552, 419	26, 650, 869 572, 131	19, 347, 902 423, 098	13, 292, 943 447, 057
Total	12, 696, 000	14, 362, 000	15, 993, 000	21, 764, 000	23, 282, 000	25, 067, 000	25, 084, 000	25, 915, 000	26, 240, 000	27, 223, 000	19, 771, 000	13, 740, 000

¹ Shipments by producers to foreign countries and to noncontiguous Territories of the United States (Alaska, Hawaii, Puerto Rico, etc.), including distribution from Puerto Rican mills.

TABLE 25.—Estimated surplus or deficiency in local supply of portland cement in cement-producing States, 1951-52, in barrels

		1951			1952	
State or division	Shipments from mills	Estimated consumption	Surplus or deficiency	Shipments from mills	Estimated consumption	Surplus or deficiency
Alabama. California. Illinois. Iowa. Kansas. Michigan. Missouri. Ohio. Pennsylvania. Puerto Rico. Tennessee Texas. Colorado, Arizona, Wyoming, Montana, Utah, and Idaho. Oregon and Washington. Georgia, Kentucky, Virginia, Florida, Louisiana, South	8, 377, 387 8, 024, 492 8, 163, 916 14, 112, 639 10, 217, 421 11, 872, 278 41, 560, 431 4, 297, 583 7, 162, 841 17, 642, 654 8, 264, 888 7, 589, 484	3, 736, 413 25, 191, 516 12, 286, 321 4, 948, 581 4, 477, 884 10, 983, 060 5, 663, 459 12, 967, 938 16, 133, 233 2, 519, 095 4, 792, 334 16, 518, 808 9, 070, 154 7, 867, 759	+6, 850, 412 +3, 764, 954 -3, 908, 934 +3, 075, 906 +3, 686, 032 +4, 553, 962 -1, 995, 660 -1, 995, 660 +25, 427, 198 +1, 778, 488 +2, 370, 507 +1, 123, 846 -805, 266 -278, 275	10, 642, 409 29, 786, 245 8, 710, 621 9, 336, 72 8, 811, 762 14, 760, 783 10, 086, 850 11, 377, 806 40, 037, 761 3, 994, 483 7, 428, 604 19, 849, 455 8, 303, 467 7, 486, 547	3, 920, 511 25, 361, 032 13, 324, 065 4, 976, 010 5, 852, 155 11, 310, 322 6, 319, 588 13, 095, 380 15, 132, 930 2, 502, 858 4, 701, 963 17, 257, 467 9, 319, 599 7, 881, 211	+6, 721, 898 +4, 425, 213 -4, 613, 444 +4, 360, 717 +2, 959, 607 +3, 450, 461 +3, 767, 262 -1, 717, 574 +24, 904, 31 +1, 491, 625 +2, 726, 641 +2, 591, 988 -1, 016, 132 -394, 664
Carolina, and Mississippi ¹ - Indiana, Wisconsin, Minne- sota, Nebraska, Oklahoma, South Dakota, and Arkan- sas	22, 162, 808	24, 805, 625 25, 105, 071	-12,891,710 -2,942,263 -1,053,230	23, 313, 194 5, 405, 060	29, 602, 829 26, 966, 732 6, 167, 354	$\begin{bmatrix} -13, 647, 624 \\ -3, 653, 538 \\ -762, 294 \end{bmatrix}$
Maryland and West Virginia. New York and Maine	5, 148, 419 15, 098, 821	6, 201, 649 16, 959, 471	-1,860,650	16, 081, 524	17, 590, 791	-1,509,267
Total	241, 153, 272	209, 938, 376	+31,214,896	251, 368, 503	221, 282, 797	+30,085,700

¹ Mississippi was first included as a cement-producing State in 1952.

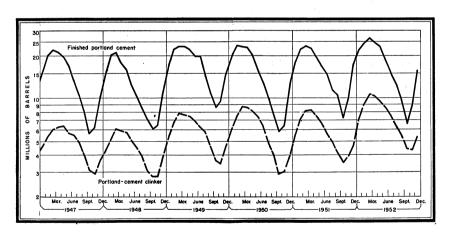


Figure 2.—End-of-month stocks of finished portland cement and portland-cement clinker, 1947-52.

TABLE 26.—Stocks of finished portland cement and portland-cement clinker at mills in the United States on Dec. 31, and yearly range in end-of-month stocks, 1948-52

			Ra	inge	
	Dec. 31 (barrels)	Low		High	
walla Baran Baran Ba		Month	Barrels	Month	Barrels
1948—Cement	11, 093, 690 3, 781, 250 14, 758, 499 4, 586, 746 13, 118, 867 3, 924, 801 2 18, 064, 421 2 4, 728, 745 15, 952, 072 5, 279, 930	October November October November October do do do November	6, 094, 000 2, 781, 000 8, 569, 000 3, 387, 000 5, 945, 000 2, 852, 000 7, 162, 000 3, 544, 000 6, 546, 000 4, 329, 000	March	20, 886, 000 6, 072, 000 23, 104, 000 7, 764, 000 23, 583, 000 8, 821, 000 23, 250, 000 8, 194, 000 26, 622, 000 10, 833, 000

¹ Includes Puerto Rico.

² Revised figure.

PRICES

The average net mill realization of all portland cement shipped from mills in 1952 remained unchanged from 1951 at \$2.54 per barrel. Quarterly canvasses conducted during the year showed an average net mill realization of \$2.55 in each quarter. The discrepancy is accounted for by adjustments made by producers in their annual reports and by rounding fractions to the nearest cent.

The composite wholesale price index of portland cement, f. o. b. destination, according to the Bureau of Labor Statistics index (1947-49

average=100) was $1\overline{1}6.4$ in 1952, the same as in 1951.

Average mill value per barrel, in bulk, of portland cement in the United States, 1943-47 (average) and 1948-52

1943-47 (average)	\$1. 71	1950	\$2, 35
1948	2. 18	1951	2. 54
1949	2. 30	1952	2. 54

¹ Includes Puerto Rico and Hawaii, 1946; Puerto Rico only, 1947-52.

NATURAL, MASONRY (NATURAL), AND PUZZOLAN CEMENTS

Natural, masonry (natural), and puzzolan cements were produced in 8 plants in 1952 compared to 9 plants in each of the preceding several years. Discontinuance of production was reported by the Carney Co., of Mankato, Minn. Puzzolan cements were produced in 1952 by Southern Cement Co., Birmingham, Ala., and Cheney Lime & Cement Co., Graystone, Ala. Masonry (natural) and/or natural cements were manufactured by Louisville Cement Co., Inc., Speed, Ind.; Fort Scott Hydraulic Cement Co., Fort Scott, Kans.; Century

Cement Manufacturing Co., Inc., Rosendale, N. Y., and Louisville Cement Co. of New York, Akron, N. Y. Hydraulic lime, which is included in this classification, was produced by Riverton Lime & Stone Co., Inc., Riverton, Va., and The Western Lime & Cement Co., High Cliff, Wis.

Output, shipments, and stocks during the year were, respectively, 1, 1, and 29 percent lower than in 1951. Producers of this group reported consumption of 39,542 short tons of coal and 139,523,000 cubic feet of gas (equivalent to approximately 2,918 short tons of

coal).

The 8 producing plants reported a total estimated annual capacity on December 31,1952, of 4,007,341 equivalent barrels of 376 pounds each. Raw materials used during 1952 in the production of these cements were 297,858 short tons of cement rock and 298,465 short tons of other materials, principally slag, shale, and lime and limestone.

Quantities in table 27 are shown in equivalent barrels of 376 pounds

to maintain uniformity with other data in this chapter.

TABLE 27.—Natural, masonry (natural), and puzzolan (slag-lime) cements produced, shipped, and in stock at mills in the United States, 1943-47 (average) and 1948-52

	Pro	duction	Ship	Stocks on	
Year	Active plants	Barrels	Barrels	Value	Dec. 31, (barrels)
1943-47 (average)	9 9 9 9 9 8	1, 997, 301 3, 440, 248 3, 185, 229 4, 246, 299 3, 449, 463 3, 401, 684	2, 021, 516 3, 375, 135 3, 233, 525 4, 218, 580 3, 475, 423 3, 447, 390	\$3, 201, 884 7, 734, 289 8, 006, 361 10, 629, 586 9, 832, 956 9, 751, 837	164, 361 209, 901 161, 605 189, 323 1 159, 485 113, 779

¹ Revised figure.

FOREIGN TRADE 4

Imports.—Imports of hydraulic cement amounted to 475,986 barrels in 1952, slightly more than half of the quantity imported in 1951. Imports from Belgium-Luxembourg increased sharply, while imports from West Germany were less than one-fifth as much as in 1951 and purchases from the United Kingdom declined 35 percent. For the first time in recent years, Sweden exported cement to the United States.

TABLE 28.—Hydraulic cement imported for consumption in the United States, 1948-52

Year	Barrels	Value	Year	Barrels	Value
1948 1949 1950	282, 752 109, 821 1, 409, 974	\$785, 120 329, 969 3, 610, 056	1951 1952	¹ 921, 953 475, 986	\$3,162,960 1,397,239

[U. S. Department of Commerce]

¹ Revised figure.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

Imports of all hydraulic cement, except white, nonstaining, and other special cements, for 1950-52 are listed by country of origin in table 29. Imports of white, nonstaining cement in 1952 amounted to 5,917 barrels valued at \$31,644.

TABLE 29.—Roman, portland, and other hydraulic cement imported for consumption in the United States, 1950-52, by countries ¹

[U. S. Department of Commerce]

Country	1	950	19	951	1952	
	Barrels	Value	Barrels	Value	Barrels	Value
Belgium-Luxembourg Canada. Colombia. Denmark	38, 286 16, 896 42, 510	\$102, 774 79, 324 146, 439	10, 856 929 12, 449 53	\$26, 187 4, 176 26, 632 231	194, 350 1, 731 3, 963	\$518, 617 11, 246
France Germany, West Japan Mexico	7 746, 426 71, 797 77, 118	35 1, 981, 880 205, 897 153, 717	722, 478 84 2, 567	2, 494, 679 285 5, 326	132, 710	328, 141 6
Netherlands Sweden United Kingdom Yugoslavia	6, 250	902, 306	2 159, 314 1, 085	536, 269 7, 845	33, 146 103, 289 879	105, 375 379, 222 4, 371
Total	1, 405, 062	3, 584, 936	2 909, 815	3, 101, 630	470,069	1, 365, 595

¹ Excludes "white, nonstaining, and other special cements."

Exports.—Exports of hydraulic cement in 1952 were 9 percent higher than in 1951. Exports to Canada continued to increase and were 45 percent higher in 1952 than in the previous year. Only Mexico and Cuba showed other important increases. Sharp declines were noted in the quantities shipped to the principal cement-importing nations of Central America, Dominican Republic, Venezuela, and Turkey.

Shipments of hydraulic cement to noncontiguous Territories of the United States for 1949-51 are shown in table 32. Beginning in August 1951, comparable data are not available, so this table will be dis-

continued in future chapters of Minerals Yearbook.

TABLE 30.—Hydraulic cement exported from the United States, 1948-52

[U. S. Department of Commerce]

Year	Barrels	Value	Percent of total ship- ments from mills
1948.	5, 922, 163	\$20, 917, 176	2, 9
1949.	4, 561, 899	15, 960, 954	2, 2
1950.	2, 418, 435	7, 274, 564	1, 0
1951.	2, 932, 787	9, 963, 721	1, 2
1952.	3, 185, 651	11, 196, 535	1, 3

² Revised figure.

TABLE 31.—Hydraulic cement exported from the United States, 1950-52, by countries of destination

[U. S. Department of Commerce]

Country	19	50	19	51	1952		
Country	Barrels	Value	Barrels	Value	Barrels	Value	
North America:			1 204	ØE 001	1 950	er 001	
Bermuda	456, 418	\$1, 598, 622	1, 324 971, 824	\$5, 861 3, 767, 895	1, 250 1, 407, 735	\$5, 021 5, 163, 635	
Canada Central America:	400, 410	\$1, 598, 622	971, 824	3, 707, 899	1, 407, 755	5, 105, 055	
British Honduras	1, 180	E 494	325	1 910	2,049	9, 418	
Canal Zone	132	5, 424 881	514	1, 219 2, 501	396	2, 318	
Costa Rica	41, 457	142, 838	38, 604	144, 031	8, 893	35, 451	
El Salvador	10, 260	48, 006	25, 574	99, 490	8, 716	37, 918	
Guatemala	3, 814	25, 581	4, 905	30, 436	1, 888	14, 459	
Handuna	40, 904	141, 971	74, 866	267, 561	58, 437	198, 674	
Nicaragua Nicaragua Panama Mexico	8, 947	35, 254	5, 558	21, 432	6, 692	26, 359	
Panama	1, 885	8, 846	674	4, 601	1,388	10, 091	
Mexico	141, 795	560, 791	218, 845	878, 481	285, 277	1, 128, 373	
West Indies: British:							
Bahamas	1, 741	7,668	7, 282	37, 760	15, 147	68, 306	
Barbados					375	1,754	
Jamaica Leeward and Windward	582	2, 245	18, 493	58, 141	1,985	7, 464	
Leeward and Windward		0.0=-	1 000		1 000	m + 4	
Islands	1, 158	3, 671	1,880	6, 576	1, 936	7, 146	
Trinidad and Tobago	1,078	4,644	3,050	11, 260	1, 232	9, 989 2, 054, 866	
Cuba Dominican Republic	394, 460	1, 115, 206	611, 360	1, 632, 358	667, 981	31, 240	
French West Indies	24, 722	92, 699 5, 075	33, 993	124, 642	10, 403	27, 917	
Haiti	1, 375 42, 448	116, 683	6, 625 102, 220	21, 945 266, 691	8, 550 118, 848	269, 695	
Netherlands Antilles	72, 734	179, 311	99, 036	249, 297	99, 647	280, 014	
Total North America	1, 247, 090	4, 095, 416	2, 226, 952	7, 632, 178	2, 708, 825	9, 390, 108	
South America:	1, 247, 090	4, 093, 410	2, 220, 932	7, 032, 173	2, 100, 020	9, 550, 100	
Argentina	373	6, 370	518	4, 997	780	2, 942	
Bolivia	628	5, 257	462	2,777	704	4, 103	
	3,892	16, 285	10, 558	85, 763	3, 156	15, 090	
Chile	4,340	27, 480	2, 695	21, 082	2, 937	21, 793	
Colombia	26, 701	193, 526	9, 103	72, 857	17.473	107, 288	
Ecuador	8, 400	25, 786	3, 157	14, 883	3,000	13, 260	
Paraguay	370	1.032	250	3,000			
Peru	1, 133	9, 982	1, 335	10, 527	13, 629	52, 895	
Surinam	1, 172	3,827	1, 368	5, 007	6, 325	18, 35	
Uruguay	22	625	50	693			
Brazili. Chile Colombia. Ecuador Paraguay Peru Surinam. Uruguay Venezuela.	1, 027, 011	2, 444, 041	558, 721	1, 597, 675	375, 880	1, 285, 239	
Total South America	1, 074, 042	2, 734, 211	588, 217	1, 819, 261	423, 884	1, 520, 962	
Europe:							
Belgium-Luxembourg	294	2, 096	396	3, 888	795	6, 333	
France	7	106	1,507	6, 446	1,766	13, 233	
Italy Norway	1, 712	12, 172	339	2, 705	149	1, 999	
Norway			68	214	135	11, 013	
Turkey	39, 862	123, 184	59, 532	206, 830	4, 238 639	21, 870 10, 364	
Other Europe	529	4, 298	859	9,064			
Total Europe	42, 404	141, 856	62, 701	229, 147	7,722	64, 812	
Asia:	0 1 7 4	10.000	1 070	5 050	0.001	10.000	
Banrein	3, 154	12, 920	1,372	7, 276 230	3, 231 1, 160	12, 998	
Bahrein India Indonesia	15	12, 920 1, 512 19, 200	9	230	1,160	4, 873 12, 092	
Indonesia	4, 902	19, 200	6, 249	30, 043	2, 750	12, 092	
Iran Iraq	9 175	0 159	2, 980 3, 992	13, 000 19, 128	9, 781	45, 659	
Israel	2, 175 25, 698	9, 152 173, 715	7, 035	43, 147	109	2, 019	
Tanan	25, 098	1, 771	1,000	70, 147	243	9, 667	
Knwait	3, 500	14, 600			38	188	
Philinnines	3, 783	30, 438	6, 171	62, 838	314	3, 14	
Saudi Arabia	8, 503	27, 363	6, 171 18, 323	72, 451	22, 095	104, 087	
	٥, ٥٥٥	,,,,,,,	,	, _01	175	95	
Kuwait	79	1, 147			110	<i>50</i> (

TABLE 31.—Hydraulic cement exported from the United States, 1950-52, by countries of destination—Continued

[U. S. Department of Commerce]

Country	19	50	* 19	951	1952	
	Barrels	Value	Barrels	Value .	Barrels	Value
Africa: Ethiopia					1, 250	\$5, 455
Liberia Tunisia			362	\$1,910	313 625	1, 995 3, 325
Other Africa	92	\$387	333	2, 827	276	1, 125
Total, Africa	92	387	695	4, 737	2, 464	11, 900
Oceania: French Pacific Islands New Zealand Other Oceania	1, 094 856 988	4, 107 2, 998 3, 771	3, 693 3, 499 899	13, 582 12, 460 4, 243	2, 530 330	9, 845 3, 221
Total, Oceania	2, 938	10, 876	8, 091	30, 285	2,860	13, 066
Grand total	2, 418, 435	7, 274, 564	2, 932, 787	2 9, 963, 721	3, 185, 651	11, 196, 535

TABLE 32.—Hydraulic cement shipped to noncontiguous Territories of the United States, 1949-51

[U. S. Department of Commerce]

7	19	49	19	50	1951 1	
Territory	Barrels	Value	Barrels	Value	Barrels	Value
American Samoa	436 2, 189 94, 955 31, 074 83	\$1,687 10,510 315,311 123,471 359	280 3, 750 14, 939 36, 043	\$1,151 22,794 91,125 123,340	527 6, 550 6, 915 16, 123 463	\$2, 209 38, 383 41, 791 55, 065 1, 632

¹ Data cover period January through July; beginning August not separately classified.

TECHNOLOGY

Technical trends in the cement industry include the improvement of methods for feeding materials into mills and kilns, closed-circuiting of secondary crushers with vibrating screens for better regulated range of particle sizes as fed into raw grinding mills, the increased application of control devices for kiln operation, the installation of clinker crushers ahead of finish grinding mills, and introduction of new methods of dust recovery and material handling.⁵

A new process used by Permanente Cement Co. was reported to correct stack dust chemically in making nodules. Dust losses and costs were reduced and clinker output was increased.

The use of clinker grit (coarse-ground cement clinker) was reported to be of value in certain concrete mixes, particularly road concretes, as a means of increasing ultimate strength.

⁵ Nordberg, B., Progress in Cement Manufacture: Rock Products, vol. 55, No. 1, January 1952, pp. 110-121, 201-203.

⁶ Hass, P. S., Nodulizing Stack Dust for Kiln Feed: Rock Products, vol. 55, No. 1, January 1952, pp. 164-166. Permanente's Dust-Nodulizing Process Effects Economies and Higher Output: Pit and Quarry, vol. 45, No. 7, January 1952, pp. 96-98, 101, 152, 164.

⁷ Wadia, D. A., Addition of Clinker Grit to Concrete: Rock Products, vol. 55, No. 3, March 1952, pp. 92-92 110.

277CEMENT

Theories and practices for steam-tempering cement were discussed; * the advantages of steam tempering are said to include more stable and permanent retardation of setting time, reduction in water requirement for normal consistency, lowering of heat of hydration, complete slaking of free lime, and improving resistance to actions of carbon dioxide.

A study of the chemical composition of cements resulted in the conclusion by one investigator that the permissible limit of tricalcium

aluminate in a sulfate-resistant cement is 5.5 percent.9

Articles published in trade magazines described in detail the cementmanufacturing plants of Peerless Cement Corp. at Port Huron and Detroit, Mich.; ¹⁰ Penn-Dixie Cement Corp., Kingsport, Tenn.; ¹¹ Louisville Cement Co., Speed, Ind.; ¹² Lone Star Cement Corp., Lone Star, Va., and Maryneal, Tex.; ¹³ and Ideal Cement Co., Baton Rouge, La.14

Several articles described construction of the new plant of Marquette Cement Manufacturing Co. at Brandon, Miss., the geology of the deposits of raw materials being used, and the production technology. 15

Among the papers presented at a meeting of the American Institute of Mining and Metallurgical Engineers in 1952 were several of interest to the cement industry, including discussions of the economy of froth flotation, economic aspects of forcing capacity, and the reuse of stack dusts.16

A study of the effect of phosphorus pentoxide on the burning of portland-cement clinker and the setting and hardening of the resultant cement showed that the P_2O_5 formed a solid solution with the dicalcium silicate of the clinker and reduced the content of tricalcium silicate. When the P_2O_5 reaches 2.25 percent of the clinker, the cement fails to meet British Standard Specifications.¹⁷

Technical developments in the design and use of sinter-grate kilns in Europe were reviewed; 18 it is stated that no quality differences exist between clinker produced by the rotary kiln and the sinter-band

kiln from the same raw slurry feed.

A study was made of the advantages that might be gained by grinding gypsum retarder separate from portland-cement clinker and

171-173.

Miller, D. G., Sulfate-Resistant Cement—Primary Requirement for Sulfate Resistant Concrete Pipe: Jour. Am. Concrete Inst., vol. 24, No. 3, November 1952, pp. 217-224.

Nordberg, B., More Cement for Detroit Market: Rock Products, vol. 55, No. 10, October 1952, pp.

⁸ Wadia, D. A., Steam Tempering of Cement: Rock Products, vol. 55, No. 4, April 1952, pp. 140, 142,

¹⁰ Nordberg, B., More Cement for Detroit Market: Rock Products, vol. 55, No. 10, October 1952, pp. 84-89.

11 Avery, W. M., Penn-Dixie Switches from Dry to Wet Process at Kingsport, Tennessee: Pit and Quarry vol. 45, No. 3, September 1952, pp. 82-87.

12 Nordberg, B., America's Largest Dry Process Cement Kiln: Rock Products, vol. 55, No. 8, August 1952, pp. 132-138, 211.

13 Van Zandt, C. D., Features Incorporated in the Design of Lone Star's New Dry-Process Cement Plant: Min. Eng., vol. 4, No. 12, December 1952, pp. 1244-1250.

Lenhart, W. B., Lone Star's New Texas Plant: Rock Products, vol. 55, No. 8, August 1952, pp. 142-151.

14 Lenhart, W. B., Lone Star's New Texas Plant: Rock Products, vol. 55, No. 9, September 1952, pp. 76-80.

15 Trauffer, W. E., Marquette's New Mississippi Plant Designed for Unusual Raw Materials: Pit and Quarry, vol. 45, No. 1, July 1952, pp. 104-118.

Webb, S., 4-Component Graphic Control System Used To Make Marquette Cement From "Mississippi Mud": Pit and Quarry, vol. 45, No. 1, July 1952, pp. 140-144.

Nordberg, B., Marquette Builds Mississippi's First Cement Plant: Rock Products, vol. 55, No. 8, August 1962, pp. 116-131, 190.

16 Bowles, Oliver, Cement, Lime, and Gypsum Papers Dominate AIME Meeting: Rock Products, vol. 55, No. 4, April 1952, pp. 132-136, 138, 167.

17 Nurse, R. W., The Effect of Phosphate on the Constitution and Hardening of Portland Cement: Jour. Appl. Chem. (London), vol. 2, part 12, December 1952, pp. 708-716.

18 Pearson, B. M., Calcining Cement Lurry on Continuous Conveyor Grate: Rock Products, vol. 55 No. 10, October 1952, pp. 102-104, 138.

subsequently blending the ground material. 19 The report explores the possibility of using the practice to minimize false set in the cement and to improve control of particle size gradation in the finished product.

Underground mining of cement rock in highly fractured beds. using tungsten carbide bits and millisecond-delay blasting, was

described in an article.20

Finish-mill grinding practices at the Trident, Mont., plant of Ideal

Cement Co. were described.²¹

A trade magazine launched a series of articles on the theoretical chemistry of cement and concrete. It is declared that modern concepts of structural and colloidal chemistry must be applied if progress is to be made toward understanding cement research data. Early articles in the series were devoted to discussions of the chemical elements involved, structure of molecules, chemical combinations that form complex molecular structures, and the structural chemistry of aggregates in and out of concrete.22

Incomplete combustion is reported to be the primary cause of rings in rotary cement kilns. Other factors contributing to ring formation include chemical composition of raw materials, humidity, fineness of grinding, volatile materials, combustion time, heat value of coal, and

insufficient excess air.23

An article on the operation of wet-process rotary kilns states that one of the most decisive factors affecting sulfate (SO₃) content of the clinker seems to be the degree to which maximum capacity of a kiln is utilized;²⁴ the greater the percentage of capacity utilized, the lower the SO₃ content. Other factors affecting sulfate content include the quantity of excess air available, size of nodules, and degree of clinker-

Hollow-flight screw conveyors were reported to cool cement clinker rapidly and effectively.²⁵ An increase in mill output was ascribed to the fact that cool clinker was made available for finishing. clinker formerly ground caused excessive coating of grinding balls,

besides having a detrimental effect on the gypsum retarder.

The technology of fine-grinding cement in tube mills was discussed in a paper.²⁶ Methods of preventing particle agglomeration

and development of static electricity were described.

A number of papers relating to the cement industry were presented at a convention of the Japan Cement Engineering Association.²⁷ Twenty-six papers of interest to the cement chemist and engineer were briefly abstracted in an article in an American trade magazine.

¹⁹ Wadia, D. A., Grinding Gypsum Separate From Clinker: Rock Products, vol. 55, No. 5, May 1952,

pp. 85–86.

²⁰ Rambosek, A. F., Underground Mining of Cement Rock: Rock Products, vol. 55, No. 10, October 1952,

Ramnosser, A. F., Underground Mining of Cement Rock: Rock Products, vol. 55, No. 10, October 1952, pp. 100-101.
 Lamont, H., Finish Mill Grinding at Trident, Mont.: Rock Products, vol. 55, No. 8, August 1952, pp. 155-157, 211-212, 214, 216.
 Rockwood, N. C. "Prospective" Chemistry of Cement and Concrete: Rock Products, vol. 55, No. 7, July 1952, pp. 57-59; vol. 55, No. 8, August 1952, pp. 139-141, 206, 208; vol. 55, No. 9, September 1952, pp. 72-73, 114; vol. 55, No. 11, November 1952, pp. 90-92.
 Pearson, B. M., Ring Formation in Cement Kilns: Rock Products, vol. 55, No. 8, August 1952, pp. 158-150.

^{188-159.}Rutle, J., Notes on Burning of Cements in Wet-Process Rotary Kilns: Pit and Quarry, vol. 45, No. 1, July 1952, pp. 135-136, 138-139, 147-149.

Utley, H. F., Hollow-Flight Screw Conveyor Cools Clinker at Monolith's California Plant: Pit and Quarry, vol. 45, No. 1, July 1952, pp. 122-123.

Pearson, B. M., Fine Grinding in Tube Mills: Rock Products, vol. 55, No. 12, December 1952, pp. 106-

²⁷ Rock Products, Cement Research in Japan: Vol. 55, No. 10, October 1952, pp. 122, 124, 126, 128,

CEMENT 279

A published article discussed the effect of major components of cement on its sulfate-resistance ability and the durability in fresh water of mortar and concrete produced from cements of varying chemical compositions.²⁸ The report also touched briefly on theories of sulfate resistance and on the effect of puzzolans on the strength of portland-cement concrete.

WORLD REVIEW

Available statistics on world production of cement in 1948-52 are shown in table 33.

TABLE 33.—World production of hydraulic cement, by countries, 1948-52 in thousands of metric tons ¹

[Compiled	bу	Helen	L.	Hunt]
-----------	----	-------	----	-------

Country	1948	1949	1950	1951	1952
North America:					
Canada (sold or used by producers)	2,243	2, 527	2,658	2,700	2, 9
Cuba Dominican Republic	285 43	312 54	316	2 383	4:
Guatemala	32	36	70 42	104 57	13
Jamaica	34	90	42	97	
Mexico.	1.080	1,228	1,528	1,615	1.6
Nicaragua	1,080	1, 228	1, 526	20	1,0
Panama	41	54	51	75	
United States	35,626	36, 313	39, 273	42, 548	43,0
outh America:	30,020	00,010	50, 210	12,010	40,0
Argentina	1.252	1,452	1,572	1,543	1,5
Bolivia	39	42	38	39	1,0
Brazil	1,112	1, 281	1,386	1,456	1,6
Chile	540	495	513	698	
Colombia	364	475	580	648	7
Ecuador	40	52	58	79	•
Paraguay					
Peru	282	289	331	367	3
Uruguay	287	293	305	301	3
Venezuela	215	285	501	621	. 8
urope:					
Austria	721	1.091	1,289	1.475	1.4
Belgium	3,331	2, 925	3,557	4,395	4,1
Bulgaria	2 325	(3)	(3)	(3)	(3)
Czechoslovakia	1,650	1.738	11,875	4 2,000	42,5
Denmark	769	834	873	985	1,2
Finland	556	656	743	829	7
France	5,379	6, 443	7,208	8, 125	8,6
Germany:					•
West	5,581	8,460	10,877	12, 204	12, 8
East	765	1,000	(3)	(3)	(3)
Greece	278	330	399	433	5
Hungary 2	300	550	800	800	8
Ireland	398	431	444	426	(3)
Italy	3,144	4,037	5,004	5, 578	6, 6
Luxembourg	102	121	125	132	1
Netherlands	589	552	593	702	. 8
Norway	526	593	582	720	7
Poland	1,824	2, 342	2,512	2,688	2, 6
Portugal	498	521	573	644	7
Rumania	452	560	650	733	(3)
Saar	160	206	208	234	2
Spain	2,331	2, 248	2, 522	2,742	2, 4
Sweden	1,486	1,698	1,936	2,035	2, 0
Switzerland	1,022	977	1,078	1,315	(3)
U. S. S. R.2	6,600	8,000	10, 500	12,400	4 15, 4
United Kingdom	8,657	9, 364	9, 913	10,388	11,3
Yugoslavia	1,188	1, 288	1,219	1.159	1,3

For footnotes, see end of table.

²⁸ Chemical Age (London), Chemical Aspects of Cement Durability: Vol. 67, No. 1733, Sept. 27, 1952, pp. 427-432.

TABLE 33.—World production of hydraulic cement, by countries, 1948-52 in thousands of metric tons 1—Continued

Country	1948	1949	1950	1951	1952
Asia:					
Ceylon				63	61
China 2	200	450	800	1,300	2,000
Hong Kong	53	59	68	72	70
India	1,578	2,136	2,652	3, 252	3,612
Indochina	97	154	144	212	235
Indonesia	38	(3)	(3)	2 100	137
Iran	5 65	5 59	5 64	8 65	65
Iraq		7	66	6.75	2 200
Israel	160	241	380	439	446
Japan	1,859	3, 277	4,463	6, 548	7, 117
Korea, Republic of	17	24	10	7	36
Lebanon	209	233	263	303	281
Pakistan	329	429	421	507	5 <u>4.4</u>
Philippines, Republic of the	120	201	292	309	310
Syria	54	58	68	64	151
Taiwan (Formosa) 2	236	291	332	389	446
Thailand (Siam)	83	127	166	312	247
Turkey	345	375	388	396	459
Africa:					4=0
Algeria	130	128	324	448	470
Belgian Congo	127	144	174	205	240
Egypt	768	889	900	1,145	947
Ethiopia 2	. 8	8	6	6	6
French Morocco	262	264	321	377	435
French West Africa		44	60	55	80
Madagascar	4	7	5	5	(3)
Mozambique	37	46	50	78	2 80
Northern Rhodesia				55	55 2 216
Southern Rhodesia	71	83	156	163	
Tunisia	162	168	169	187	208
Union of South Africa	1,308	1,363	1,847	1,954	2,027
Oceania:	7 1 000	1 070	1 070	1,236	. 1 057
Australia New Zealand	71,030	1,076	1,278 256	1,230	1,357
New Zealand	247	204	200	103	(%)
Total (estimate)	102,000	115,000	132, 300	148, 400	159,000

This table incorporates a number of revisions of data published in previous Cement chapters.
 Estimate.
 Data not available; estimate by senior author of chapter included in total.
 Planned production.
 Year ended March 20 of year following that stated.
 Year ended March 31 of year following that stated.
 Year ended June 30 of year stated.

Chromium

By Charles Katlin 1 and Hilda V. Heidrich 2

ORLD output of chromite reached a new peak of 31/2 million short tons in 1952; almost half was imported by the United States to satisfy the continued high rate of consumption and

to raise inventory levels.

An expanded domestic chromite production originated in California and Oregon. Most of the ore was shipped to the Government Purchase Depot at Grants Pass, Oreg., but a relatively small tonnage of California ore was sold to industry for refractory use. Reactivation of the Mouat mine in Montana gave promise of a much greater domestic output in the future. An additional step toward fuller utilization of domestic resources was represented by the negotiations underway at the close of the year between the Government and a private company for developing and producing from the Red Mountain chromite deposit in Alaska.

Metallurgical consumption of chrome ore increased considerably as the metallurgical applications of chromium became more diver-Reversals in trend were evident, however, in the refractory and chemical industries, which consumed smaller quantities of ore than during the previous year. Consumers' stocks of chromite were

higher in quantity as well as in terms of months' supply.

Toward the end of the year, the Government increased ceiling prices for ferrochromium, chromium metal other than electrolytic, and other chromium products. Quoted prices for most chromite were

relatively steady throughout the year.

Although Turkey retained its position as the world's largest chromite producer, the Republic of the Philippines made the most spectacular output record of the year by increasing its production 62 percent over 1951 to bring the total tonnage over the half-million mark.

.TABLE 1.—Salient statistics of chromite in the United States, 1943-47 (average) and 1948-52, in short tons

unu .	.0 10 0.0,					
	1943-47 (average)	1948	1949	1950	1951	1952
Domestic production (shipments) Imports for consumption	1 44, 955 913, 285	3, 619 1, 542, 125	433 1, 203, 852	404 1, 303, 713	7, 056 1, 427, 900	21, 304 1, 700, 097
Total new supply	9,047 837,857 335,691	1, 545, 744 2, 894 875, 033 602, 491 2, 300, 000	2, 382 672, 773 756, 995	2, 044 980, 369 606, 271	1, 434, 956 2, 030 1, 212, 480 637, 453 3, 100, 000	1, 721, 401 18, 639 1, 185, 460 754, 299 3, 500, 000

¹ Average of annual totals as widely divergent as 160,120 tons in 1943 and 948 tons in 1947.

Commodity-industry analyst.
 Statistical clerk.

DOMESTIC PRODUCTION

With the Government committed to buy specification-grade domestic chrome ore at premium prices at least through 1954, the United States production of chromite during 1952 rose to three times the previous Although California supplied 69 percent of the year's output. United States output, the 105 shippers of chromite were divided almost evenly between California (52) and Oregon (53). Five operators (Ruth Robertson, operating the Cyclone Gap mine in Siskiyou County, Calif.; E. R. Brown, operating the High Plateau mine in Del Norte County, Calif.; Chrome Milling Co. in Josephine County, Oreg.; International Metallurgical Chrome Corp., operating the Sweetwater and Norcross mines in San Luis Obispo County, Calif.; and Helmke, Thomas & Janssen, operating the Lambert mine in Butte County, Calif.) supplied 49 percent of the total ore shipped during the year. Most domestic shipments were received at the Grants Pass Chrome Purchase Depot in Oregon, but a relatively small percentage of the total production was shipped to a private company for refractory use.

The average grade of the chrome ore shipped during 1952 from both Oregon and California was 47 percent Cr₂O₃.

TABLE 2.—Chromite production (shipments) in the United States, 1948-52, by States, in short tons

		1949		19	951	1952		
State	1948		1950	Ship- ments	Value 1	Ship- ments	Value	
California Oregon	274 3,345	433	404	6, 302 754	\$447, 769 62, 972	14, 713 6, 591	² \$1, 269, 000 507, 981	
Total	3, 619	433	404	7, 056	510, 741	21, 304	2 1, 777, 000	

¹ Bureau of Mines not at liberty to publish values for previous years.

No chromite was produced in Montana in 1952, although the State contains the major portion of the United States reserves. Under terms of a Government contract signed in April, however, the American Chrome Co. was actively engaged in developing and equipping the Mouat chrome mine in Stillwater County, with production expected to begin in 1953. Defense Materials Procurement Agency, signer of the contract for the Government, agreed to supply up to \$1,815,000 worth of equipment on a loan basis, in addition to lending \$950,000 at 4-percent interest as an advance against production for construction purposes. The American Chrome Co. agreed to provide \$950,000 as working capital. Once production has begun, the company has agreed to supply the Government with 900,000 tons of chrome ore during an 8-year period. Base price for the ore will be \$34.97 per ton of 38 percent Cr₂O₃ minimum grade.

When development work is completed, the mine will be capable of producing 1,000 tons of ore per day, while the mill is expected to have a daily output capacity of 370 tons of chrome concentrate.

Negotiations were underway between the Kenai Chrome Co. and the United States Government, represented by the Defense Materials Procurement Agency, for the production of chromite from the Red Mountain deposit on the Kenai Peninsula of Alaska. A development and production loan was being sought by the company, to be repaid with production.

TABLE 3.—Chromite shipped from mines in the United States, from before 1880 through 1952

Year	Short tons	Year	Short tons	Year	Shorttons
Before 1880	224, 000 1 45, 215 662 3, 675 52, 679	1921–38 ¹	1 9, 143 4, 048 2, 982 14, 259 112, 876	1947	948 3, 619 433 404 7, 056 21, 304
1917 1918 1919	48, 972 92, 322 5, 688 2, 802	1943 1944 1945	160, 120 45, 629 13, 973 4, 107	Grand total	876, 916
Total 1914-20	206, 800	Total 1939–46	357, 994		

¹ Annual totals published separately in Minerals Yearbooks, 1947-50.

General Services Administration.—As of April 23, 1952, the maximum quantity of ore acceptable to the Government from any one source under the Purchase Program for Domestic Chrome Ore and Concentrates at Grants Pass, Oreg., was raised from 2,000 to 5,000 tons a year. Five tons of ore remained the minimum shipment accepted. Prices paid were based on the chromic oxide content of the ore and the ratio of chromium to iron. The program will terminate on (1) June 30, 1955, or on (2) December 31, 1954, provided that 1 year's public notice is given in advance of that date, or (3) when 200,000 tons of material is received and accepted. Regulations governing the program as well as a table of prices offered by grade, appeared in the Chromium chapter of Minerals Yearbook, 1951.

Defense Minerals Exploration Administration.—Although the DMEA, an agency of the United States Department of the Interior, would finance 50 percent of a sound domestic chromite exploration project, only three loan applications were received during 1952; al!

were denied.

CONSUMPTION AND USES

Despite strikes in the steel industry during 1952, the total consumption of chromite remained at a high level; it was only 2 percent below the 1951 record. Of the total consumed during the year (1951 percentages for comparison shown in parentheses), metallurgical use accounted for 57 percent (47), refractories 33 percent (37), and chemicals 10 percent (16).

Actual comparison of 1952 consumption of chromite by end use with the record highs of 1951 indicates an 18-percent increase in metallurgical use (in the manufacture of ferrochromium, stainless steel, etc.) to set a new record. For refractory purposes (in the

manufacture of chromium bricks, refractory cement, etc.), 12 percent less ore was used. Chemical use of chromite dropped 39 percent. Most of the chromite was consumed in the six adjoining States: Maryland, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. The average chromic oxide content of all grades combined was estimated to have decreased from 42.6 percent in 1951 to 41.9 percent in 1952.

TABLE 4.—Consumption of chromite and tenor of ore used by primary consumer groups in the United States, 1943-47 (average) and 1948-52, in short tons

	Metal	urgical	Refractory		Che	mical	Total		
Year	Gross weight (short tons)	Average Cr ₂ O ₃ (percent)	Gross weight (short tons)	Average Cr ₂ O ₃ (percent)	Gross weight (short tons)	Average Cr ₂ O ₃ (percent)	Gross weight (short tons)	Average Cr ₂ O ₃ (percent)	
1943–47 (average)	440, 781 395, 417 288, 518 491, 685 573, 075 676, 624	48. 5 48. 2 47. 6 47. 8 48. 1 1 46. 1	267, 659 327, 795 268, 925 353, 642 440, 771 387, 085	34. 3 33. 8 33. 5 34. 0 34. 7 1 34. 7	129, 417 151, 821 115, 330 135, 042 198, 634 121, 751		837, 857 875, 033 672, 773 980, 369 1, 212, 480 1, 185, 460	43. 2 42. 7 41. 3 42. 4 42. 6 1 41. 9	

¹ Estimated.

Consumption of chromium alloys and metal in the United States in 1952 totaled 259,000 short tons, 12 percent more than in 1951. Ferrochromium composed the major portion of this tonnage (189,000 tons), while low-carbon ferrochrome silicon and chrome silicide, relatively new steel additivies and substitutes for ferrochromium (no data available for previous years) comprised 35,000 tons. remaining consumption was in the form of exothermic additives used in steelmaking (such as Chrom-X), chromium briquets (crushed and bonded ferrochromium), miscellaneous chromium alloys, and chro-Of the total consumption of chromium alloys and mium metal. metal in 1952, 63.3 percent was consumed in making stainless steels (steels containing over 10 percent chromium), 0.4 percent in high-speed steels, 30.3 percent in other alloy steels, 4.1 percent in high-temperature alloys, and 1.9 percent in other uses. (Consumption data by end uses for previous years are not available.)

Specifications.—Chromite, the only chromium ore mineral, theoretically is composed of chromic and ferrous oxides (Cr₂O₃.FeO). In the natural state, however, the mineral has a wide range of chemical compositions and contains varying proportions of alumina, magnesia, lime, and silica; the percentages of magnesia and alumina generally are greater than that of ferrous oxide. These additional elements, although usually lowering the grade of the ore in terms of chromium content, are essential to certain applications.

For metallurgical use, as in the manufacture of ferrochromium, chromite should contain a minimum of 48 percent Cr_2O_3 , with a chromium-iron ratio of 3:1. Silica is undesirable, and combined alumina and magnesia of over 25 percent may be objectionable. Ore of these specifications, however, is not always obtainable, and the practice is to blend high- and low-grade ores to obtain the most desirable mixture practicable.

TABLE 5.—Chromite purchase specifications for National Stockpile in 1952

[General Services Administration, Emergency Procurement Service]

	Percent by weight, dry basis								
Grade	Cr ₂ O ₃ . mini- mum	Fe, maxi- mum	Cr-Fe, ratio mini- mum	Al ₂ O ₃ + Cr ₂ O ₃ mini- mum	SiO ₂ , maxi- mum	S, max- imum	P, max- imum		
Metallurgical:¹ Low-grade ²- High-grade - Refractory:³ Masinloe. Camaguey Moa Bay. Chemical:⁴ Friable ore	42 46 31 30 34 44	12 12 12 12	1. 5:1 2. 7:1	60 58 60	10 8 5. 5 7 5. 5 5	0.10	0.04		

¹ Specification P-11, June 13, 1951, covers chromite ore suitable for the manufacture of commercial ferrochromium and special chromium alloys. Lumpy ore shall be hard, dense, nonfrable material, of which not more than 25 percent shall pass a l-inch Tyler Standard screen. Material of friable nature, regardless of an initially lumpy appearance, will be classified as fines. No size restrictions apply to fines or concen-

A standard sample of metallurgical chrome ore containing 50.96 percent chromic oxide was established for industry. The standard was the outgrowth of a cooperative study by 11 laboratories in the United States, Canada, and the Union of South Africa.3

Refractory-grade chromite usually contains about 63 percent combined Cr₂O₃ and Al₂O₃. Iron and silica should be low, usually around 10 and 5 percent, respectively. A typical Cr-Fe ratio is 2.2:1. containing 17 to 18 percent magnesia (Philippines and Cuba) are preferred to those containing less than 15 percent (Southern Rhodesia and Union of South Africa). Hard lump ore is desirable for making bricks, and ground material is suitable for cement. Refractory properties of Pacific Northwest (United States) chromites were described by the Bureau of Mines.4

Chemical-grade chromite usually contains 44 to 34 percent Cr₂O₃, with 43 percent the customary minimum. High iron is not harmful within reasonable limits; 1.6:1 is a common Cr-Fe ratio. should be less than 5 percent. In the production of chromium chemicals, lower chromic oxide and higher silica contents than those stated would reduce furnace capacity and increase costs (for soda ash). Fines and concentrates are often preferred because they disintegrate readily in processing.

A summary of General Services Administration chromite purchase

specifications, by grades, is given in table 5.

Metallurgical Uses.—The most apparent use of chromium is for decorative electroplated finishes, but such finishes are very thin and require insignificant quantities of chromium. Heavy electroplating

of an initially lumpy appearance, with the constituent of the considered unless the chemical analyses superior to that stated are desired, and no offers will be considered unless the chemical analyses are at least within the stated limits in all respects. The right is reserved to reject any proposal for which the proposed guaranteed analysis is inferior to that shown for high grade chromite.

3 Specification P-12, October 31, 1950, covers refractory-grade chromium ore that is suitable for the production of all chromium-type refractories. Restricted to Phillippine Islands and Cuba, although material from other sources will be considered. Material shall consist of "lump ore," of which not more than 20 percent shall pass a Tyler Standard 10-mesh screen.

4 Specification P-65, June 1, 1949, covers chromium ore intended for the manufacture of chromium chemicals.

^{*}Hartford, Winslow H., Certificate of Analyses of Metallurgical Chrome Ore: Mutual Chemical Co. of America, March 1952, Baltimore, Md., 1 p.

4 Kelly, H. J., Skinner, K. G., Tyrell, M. E., and Goring, A. W., Refractory Properties of Pacific Northwest Chromites: Bureau of Mines Rept. of Investigations 4929, 1952, 38 pp.

has important military uses, however, and industry is making wider use of chromium plate as a wear-, friction-, corrosion-, and heat-resistant surface. Chromium-plating processes for various industrial applications ⁵ and its many engineering uses in steel mills ⁶ were described.

Chromium is an important constituent of stainless steel (steel containing 10 percent or more Cr), in which a large proportion of the available chromium is consumed as low-carbon ferrochrome. Low-carbon ferrochrome silicon is also used in stainless-steel manufacture, as well as high-carbon ferrochromium and chrome ore. Stainless steel has many essential uses, such as for chemical containers, equipment for manufacturing chemicals, marine parts, turbine blades, valve steel, petroleum-processing equipment, and many other applications where the metal is subjected to corrosive attack. When chromium only is used in steel for purposes other than corrosion resistance, the principal effects are to increase hardness and tensile strength, with high ductility, permitting heat treatment of many products that must be shaped by rolling and forging. Chromium also increases creep strength of steel.

Chromium is added to steel in the furnace and in the ladle. Selection of either low-carbon or high-carbon ferrochrome, low-carbon ferrochrome silicon, or chrome ore as an additive depends on destined

use and economic factors.

Refractory Uses.—Chromite from the Philippines, Cuba, and (in smaller quantities) from other sources is suitable for use as a neutral furnace lining. Most of the ore is manufactured into brick, used chiefly in basic open-hearth steel furnaces. Because chromite refractories resist both acid and basic attacks at high temperatures, common practice is to use a course of chromite brick near the slag line in open-hearth furnaces separating the silica brick of the roof and side and the dolomite or magnesite brick of the hearth and banks. Other chrome refractory uses include ramming mixtures for furnace bottoms and finely ground ore for patching furnace walls.

Chemical Uses.—The chemical industry converts chromite into sodium bichromate, which in turn is made into various compounds. On an average, 1.4 tons of chromite was used in 1952 per ton of chemicals produced. Chromium chemicals are consumed principally in the manufacture of pigments, in metal processing, and in leather tanning; to a lesser extent, they are used in textiles and in chemical and dye manufacture. Chromium metal, also made from chromium chemicals, is employed in making high-temperature alloys for jet

engines.

STOCKS

At the end of 1952 consumers' stocks of all grades of chromite were 18 percent higher than they were at the end of 1951. Based on the annual rates of consumption for those years, the 1952 year-end inventory was equivalent to 7.6-month supply compared with 6.3 months in 1951.

Steel, vol. 130, No. 13, Mar. 31, 1952, pp. 76-77.
 Steel, vol. 131, No. 21, Nov. 24, 1952, pp. 108, 111-112.

TABLE 6.-Stocks of chromite at consumers' plants, December 31, 1943-47 (average) and 1948-52, in short tons

Grade	1943-47 (average)	1948	1949	1950	1951	1952
Metallurgical	154, 835 107, 718 73, 138	256, 770 236, 724 108, 997	325, 881 303, 110 128, 004	248, 872 251, 663 105, 736	305, 134 247, 673 84, 646	364, 013 269, 933 120, 353
Total	335, 691	602, 491	756, 995	606, 271	637, 453	754, 299

PRICES

With one exception, the prices of foreign chromite in 1952 were only slightly higher at the year end than on January 1, according to E&MJ Metal and Mineral Markets. Indian high-grade ore, quoted concurrently with Rhodesian material until December 1952, rose a full 17 percent in that month. Rhodesian high-grade chromite experienced a momentary rise of 20 percent during March but immediately

dropped to a point slightly above its former level.

Although the prices listed in table 7 are fairly representative for Metallurgical- and Chemical-grade chromite, no figures are quoted for Refractory-grade ore, which represented over one-third of the United States imports. It is estimated that refractory-ore prices were about \$25-\$35 per long ton, f. o. b. east coast ports, with the material originating in the Philippines, Cuba, the Union of South Africa, Southern Rhodesia, and India.

Incentive prices paid to domestic producers shipping Metallurgicalgrade chromite to the Government depot at Grants Pass, Oreg., are listed on table 8 in Minerals Yearbook, 1951.

Increased ceiling prices for ferrochromium, chromium metal other than electrolytic, and other chromium products were established by the Office of Price Stabilization effective November 25, 1952, under authority of Ceiling Price Regulation 180. Granted to stimulate production, the new price code increased high-carbon ferrochromium (65-69 percent Cr, 4-9 percent C) from the former 21.75 cents per pound to 24.75 cents per pound, f. o. b. destination, Continental United States, according to E&MJ Metal and Mineral Markets; low-carbon ferrochrome rose from 30.5 cents to 34.5 cents per pound. During November the quoted contract price for 97-percent-grade chromium metal increased first from the formerly stable \$1.07 per pound to \$1.14 per pound, then rose again with the new ceiling to \$1.18 per pound; spot prices were 5 cents higher. Electrolytic chromium metal powder, 99 percent minimum, remained at \$3-\$4.50 per pound (depending on mesh size), f. o. b. Niagara Falls, N. Y. Basic chrome-brick prices were unchanged at \$73-\$78 per short ton for burned brick and \$77-\$82 for chemical-bonded brick, f. o. b. shipping point.

TABLE 7.—Price quotations for various grades of foreign chromite in 1952
[Engineering and Mining Journal]

Source	Cr ₂ O ₃	Cr-Fe	Price per long ton 1		
	(percent)	ratio	Jan, 1	Dec. 31	
Indian Rhodesian	48 48	2 3:1 2 3:1	\$43-\$45 43- 45	\$53-\$54 44- 46	
Do	48 48	2.8:1	40- 42 31- 32	40- 42 32- 33	
Do		2 3:1	34 35 27 28 53 54	34- 35 27- 28 55- 56	

¹ Quotations are on a dry basis, subject to penalties if guarantees are not met. f. o. b. cars, east coast ports. ² Lump ore.

FOREIGN TRADE 7

Imports.—Record chromite imports of 1.7 million short tons were received by the United States in 1952, an increase of 19 percent over 1951. Of this total, 54 percent was metallurgical grade, 35 percent refractory, and 11 percent chemical. The Philippines were the leading source of United States imports, supplying 32 percent of the total. Turkey and the Union of South Africa followed with 27 percent and 18 percent respectively.

Metallurgical ore was supplied by 13 countries, the major ones being Turkey and Southern Rhodesia. Most refractory-grade imports originated in the Philippines, and all chemical-grade ore came from the Union of South Africa. Total imports were valued at foreign ports at an average of \$22.40 a short ton, 25 percent higher than in 1951. Of the three grades of ore, the chromic oxide content averaged 46.1 percent for metallurgical, 34.7 percent for refractory, and 44.3 for chemical in 1952. This represented a slight decrease for metallurgical ore, and slight increases for refractory and chemical grades compared with the previous year's averages.

Ferrochromium imports were 22 percent lower than in 1951 and came almost entirely from Canada (91 percent) and Sweden; Japan shipped a fractional percentage. A total of 21,355 short tons of ferrochromium was received, containing 12,105 tons of chromium, valued at \$4,850,507. The alloy averaged 57 percent chromium contained, compared with 60 percent the previous year.

Tariff.—Chromium ores enter the United States duty free, but products do not. The tariff on high-carbon ferrochromium (3 percent C or over) is % cent per pound of contained chromium. Tariff rates on other chromium metallurgical products—low-carbon ferrochromium, chromium metal, chromium carbide, ferrochrome silicon, etc.—is 12½ percent ad valorem.

Exports.—Over 9 times as much chromite left the United States in 1952 as in 1951, most of it destined for Canada; 18,639 short tons of chromite valued at \$1,041,621 was exported in 1952 compared with 2,030 tons in 1951.

⁷ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

Ferrochromium exports in 1952 totaled 1,274 short tons valued at \$518,721, over 5 times the 1951 total of 240 tons. Canada and Belgium received the major portion of the 1952 tonnage, which was shipped to 12 countries in all.

Chromic acid exports amounted to 622,424 pounds valued at

\$178,528.

Exports of chromite, chromium alloys and metal, and chromic acid are subject to United States export licensing control.

TABLE 8.—Chromite imported for consumption in the United States, 1951-52, by countries, and by grades [U. S. Department of Commerce]

	C	hemical grad	le	Me	tallurgical gr	ade	R	efractory gra	de		Total	
Country	Short	tons		Short	Short tons Short tons Short tons		Short tons		tons			
	Gross weight	Cr ₂ O ₃ content	Value	Gross weight	Cr ₂ O ₃ content	Value	Gross Weight Cr2O3 content	Cr ₂ O ₃ content	Value	Gross weight	Cr ₂ O ₃ content	Value
1951 Cuba				1 11, 424 6, 211 68, 406 2, 016 8, 400 1 193, 977 336, 045 1 68, 019 24, 843	1 4, 426 2, 988 33, 813 968 3, 808 1 90, 621 159, 039 1 31, 301 10, 275	1 \$197, 175 154, 985 1, 626, 393 37, 381 204, 776 1 3, 263, 426 11, 279, 797 1 644, 000 768, 580		¹ 106, 525	222, 568	87, 091 6, 211 68, 406 1 317, 741 8, 400 1 209, 138 336, 045 1 370, 025 24, 843	31, 295 2, 988 33, 813 1 107, 493 3, 808 1 97, 291 159, 039 1 164, 365 10, 275	\$1, 298, 624 154, 985 1, 626, 393 13, 397, 512 204, 776 13, 547, 692 11, 279, 797 13, 215, 450 768, 580
Total	275, 846	121, 713	2, 348, 882	1 719, 341	1 337, 239	1 18, 176, 513	1 432, 713	1 151, 415	1 4, 968, 414	1 1, 427, 900	1 610, 367	1 25, 493, 809
Afghanistan Cuba Greece Guatemala. India New Caledonia ² Pakistan Philippines Sierra Leone ³ Southern Rhodesia Turkey Union of South Africa Yugoslavia	189, 065	83, 732	1, 731, 856	3, 372 41, 175 26, 846 172, 515 453, 000 88, 106 21, 661	464 15, 939 118 846 2, 931 29, 778 1, 577 19, 490 10, 769 82, 514 208, 153 40, 174 9, 511	1, 134, 550 7, 920 51, 050 205, 748 2, 072, 175 132, 355 1, 117, 833 850, 810 4, 813, 553 15, 773, 619 1, 076, 865 865, 699	502, 527 11, 057 3, 343 22, 609	20, 515 170, 662 4, 784 1, 313 9, 355	6, 790, 447 214, 831 33, 441 217, 147	1, 006 96, 754 246 1, 458 6, 581 58, 776 3, 372 543, 702 26, 846 183, 572 456, 343 299, 780 21, 661	464 36, 454 118 846 2, 931 1, 577 190, 152 10, 769 87, 298 209, 466 133, 261 9, 511	25, 875 2, 101, 529 7, 920 51, 050 205, 748 2, 072, 175 132, 355 7, 908, 280 850, 810 5, 028, 384 15, 807, 03 3, 025, 868 866, 699
Total	189, 065	83, 732	1, 731, 856	915, 163	422, 264	28, 128, 052	595, 869	206, 629	8, 222, 845	1, 700, 097	712, 625	38, 082, 75

Revised figure.
 Assumed source; classified in import statistics under "French Pacific Islands."
 Assumed source; classified in import statistics under "British West Africa."

291CHROMIUM

TECHNOLOGIC DEVELOPMENTS

The introduction and successful use of low-carbon ferrochrome silicon is one of the outstanding recent developments in steelmaking.8 The alloy is produced in electric furnaces by carbon reduction of selected ores. A common analysis carries 40 percent chromium, 40 percent silicon, and less than 0.05 percent carbon. Virtually all stainless-steel producers use the alloy to reduce melting time and costs and to improve product quality. The price of the alloy is substantially lower than the price of the low-carbon ferrochrome that it displaces, because the chromium contained in the alloy is charged for at the same rate as in high-carbon ferrochrome—24.75 cents per pound—instead of 34.5 cents a pound for chromium in low-carbon ferrochrome of the same carbon content.

A high-purity chromium metal, malleable enough to forge at low temperatures, has been produced by the Federal Bureau of Mines.9 Ingots of arc-melted hydrogen-reduced electrolytic chromium were successfully hot-forged, and cylinders machined from the ingots were reduced 93 percent in area by rotary swaging with production of sound 2-mm.-diameter rods. The metal was also drilled, sawed, ground, topped, turned and filed in the cold state. Chromium metal sheet was successfully spot welded to chromium and to iron.

A chrome-manganese alloy containing less than 1 percent nickel was developed as a substitute for the nickel-bearing stainless steels.¹⁰ Savings of 79 percent in nickel and 72 percent in molybdenum were reported achieved by the use of chromium-boron steel alloys in the manufacture of crawler-tractor parts.11

Physical properties and applications of chrome carbide grade 608, first of the new series 600 cemented chrome carbides made available by the Carboloy Department of General Electric Co. and described in Minerals Yearbook, 1951, Chromium chapter were discussed. 12 13

A powdered chromium-bearing base coat for molybdenum was developed by the National Bureau of Standards as a protection against rapid oxidation at the high temperatures encountered in jet-engine The scaling characteristics of three Fe-Cr alloys and the nature of the scales were described.15

Steel silo storage facilities for indoor stockpiling of refractory chrome ore were installed at the General Refractory Co., Baltimore The new system eliminates certain preparation processes formerly necessitated by exposure of the ore to the elements. 16

^{*} McFarlane, W. B., Low-Carbon Ferrochrome-Silicon Cuts Stainless Ingot Costs: Iron Age, vol. 169, No. 8, Feb. 21, 1952, pp. 108-110.

O Gilbert, H. L., Johansen, H. A., and Nelson, R. G., Malleable Chromium and its Alloys: Bureau of Mines Rept. of Investigations 4905, 1952, 22 pp.

Daily Metal Reporter, vol. 52, No. 143, July 25, 1952, pp. 1, 4.

E&MJ Metal and Mineral Markets, vol. 23, No. 34, Aug. 21, 1952, p. 7.

Steel, vol. 131, No. 5, Aug. 4, 1952, pp. 92-94.

Chemical Engineering, vol. 59, No. 9, September 1952, pp. 288, 290, 292.

Moore, D. G., Bolz, L. H., Pitts, J. W., Harrison, W. N., Study of Chromium-Frit-Type Coatings for High Temperature Protection of Molybdenum: Nat. Adv. Committee for Aeronautics Tech. Note 2422, July 1951.

¹⁰⁷ High 1 ample action of Notification of Notification 1 Notifica

WORLD REVIEW

Continuing its steady climb upward, world chromite production passed the 3-million-ton mark in 1952, exceeding the previous year's high by 400,000 metric tons. The most important single production gain of the year was made by the Republic of the Philippines, with an output increase of 62 percent over 1951, making it easily the third largest chromite producer known. Turkey surpassed the previous year's total to retain its position as the world's leading producer of The Union of South Africa remained one of the great world chrome sources.

Chromite production throughout the Non-Soviet World was being fostered actively by the United States Government through the Defense Materials Procurement Agency. Agreements for development loans and purchase contracts were negotiated and under discussion in many countries.

Brazil.—A contract calling for exploitation of the chromite deposits at Mazagao was signed by the Governor of Amapá Territory and a Brazilian mining company. Ore reserves at Mazagao have been estimated at 150,000 tons. 17

TABLE 9.—World production of chromite, by countries, 1943-47 (average) and 1948-52, in metric tons 2

[Con	npiled by	Lee S. Pete		<u>anianis</u>		
Country 1	1943-47 (average)	1948	1949	1950	1951	1952
North America:						
Canada	12, 279	1, 556	327	í	1	
Cuba	214, 020	116, 624	97, 368	65, 820	79,065	61, 808
Guatemala	430	444	300	289	1, 138	3 60
United States	40, 783	3, 283	393	367	6, 401	19, 32
South America: Brazil (exports)		1,626	3	(4)	0, 101	(4)
Europe: 5	2,010	1,020	, ,	(-)		(-)
Albania	(6)	7 16, 500	(4)	(4)	(4)	(4)
Greece		1,500	3,381	12,631	25, 333	28, 883
Portugal	974	176	3, 381	45	20, 333	(4)
Yugoslavia	50, 583	62, 613	109, 120	114, 736	99, 639	
Asia:	00, 000	02,013	109, 120	114, 750	99,059	107, 700
Afghanistan			1,000	550	75	1 000
Cyprus (exports)	3, 193	6, 899	14, 875	18, 441	12, 653	1,000 12,082
India	8 41, 689	22, 917	19,728	16, 998	16,056	(4)
Japan	33, 536	9, 340	27, 003	31, 953	40,407	3 47, 000
Pakistan	(8)	18, 160	17, 194	18, 416	18,006	
Philippines	3 88, 800	256, 854	246, 744	250, 511		17, 545
Turkov	148, 870	285, 725	451, 566	420, 792	334, 571	543, 514
Turkey	345, 000	600,000	350,000		602, 220	³ 635, 000
Africa:	345,000	000,000	330,000	500,000	600,000	600,000
Egypt	295	191	50	36		1
Sierra Leone	10, 761	7, 886	22, 101	7, 518	16, 425	00.070
Southern Rhodesia	211, 481	230, 703	243, 506	291, 525		23,870
Union of South Africa		412, 783		496, 324	300, 267	322, 666
Oceania:	107, 010	412, 100	404, 351	490, 324	545, 306	580, 024
Australia	414	564	642	905	1 400	(1)
New Caledonia	47, 497	75, 021			1,402	(4)
TYEW Caleuoma	41,491	10,021	88, 992	84, 801	88, 792	107,660
Total (estimate)	1, 450, 000	2, 100, 000	2, 100, 000	2, 300, 000	2, 800, 000	3, 200, 000

¹ In addition to countries listed, Argentina, Bulgaria, Iran, and United Kingdom produce chromite, but data on output are not available; estimates by senior author of chapter included in total.

² This table incorporates a number of revisions of data published in previous chromite chapters.

⁴ Data not available; estimate by senior author of chapter included in total.
⁵ Output from U. S. S. R. in Europe included with U. S. S. R. in Asia.

⁶ Production in 1943 only.

⁷ Planned production as reported.

⁸ Pakistan included with India.

¹⁷ Mining Journal (London), vol. 238, No. 6094, June 6, 1952, p. 584.

293 CHROMIUM

Canada.—A program of diamond drilling on areas previously outlined by a magnetometer survey of chrome properties in the Bird River region of Manitoba was announced by Gunnar Gold Mines, Ltd. In addition, a satisfactory method for producing chromium metal from the ore will be sought through metallurgical work.18

New Caledonia.—Five companies produced chrome ore from seven operations during 1952. By far the largest production was attained by the Tiebaghi mine. Of the total chrome exports, 45 percent was shipped to the United States and 36 percent to France. production increased 21 percent over 1951.

After achieving the third highest production of chrome ore in New Caledonia during 1952, the Calmet Co., working the Plaine Gaiacs alluvial deposits, ceased operations at the end of the year.

Pakistan.—Pakistan Industries, Ltd., was granted chromite-mining leases at Mamand in the Hindu Bagh area, Baluchistan. According to the director of the company, a 1,500-ton monthly output would be possible by use of the current mining methods, but actual output will be no more than 500 tons a month until transportation difficulties are eliminated.19

Phillipines.—Rapid strides were being taken toward attaining evergreater production of chromite, as the 62-percent rise over the 1951 output indicated. Acoje Mining Co. installed a large concentrating A new high-grade metallurgical chromite deposit in Lourdes, Oriental Misamis, was being developed by Luzon Stevedoring Co.20 Benguet Consolidated Mining Co. planned to improve the mine-to-wharf chromite haulage system at the Consolidated Mines to increase production. A railroad from the mines to the pier was being constructed to eliminate the heavy cost of truck haulage. Over 1 million dollars worth of improvements was planned to cope with the everincreasing production from the mines.21

Southern Rhodesia.—Three companies produced 95 percent of the chromite output of Southern Rhodesia. They were Rhodesia Chrome Mines, Ltd., at Selukwe, the largest producer in the Colony; African Chrome Mines, Ltd., at Banket; and Panadium Corp. of Rhodesia. Mine production is apparently limited only by the availability of transportation, never adequate. Toward the end of 1952, six diesel engines were received by the Rhodesia Railways, thus supplying hope

that the chronic rail shortages will be alleviated.

During 1952 eluvial deposits on the slopes and in the valleys adjoining the Great Dyke were successfully mined and milled by a company operating under the name Rhodesian Mining Enterprises near Kildonan. A concentration of chromite is found in the top 16 inches of soil, which contains 10 to 30 percent of the mineral. soil is washed, deslimed, and screened, and the feed sent to flotation It is then concentrated further by magnetic separation into a product assaying a reported 55 percent Cr₂O₃ with a chrome-iron ratio of 2.6:1. Other such operations were planned.

Turkey.—Again in 1952, as in the previous year, Turkey was the world's greatest chromite producer. The Etibank, organ of the

<sup>Engineering and Mining Journal, September 1952, vol. 153, No. 9, p. 179.
State Department Dispatch 1466: American Embassy, Karachi, Pakistan, May 19, 1952, 2 pp.
Mining World, vol. 14, No. 6, May 1952, p. 65.
Engineering and Mining Journal, vol. 153, No. 11, November 1952, p. 70.</sup>

Turkish Government, mined 27 percent of the total output; independent operators accounted for 73 percent. Chromite mining and export have become factors of considerable importance in the Turkish economy.

Turkish exports of chrome ore during 1952 increased 26 percent compared with 1951. The United States received 67 percent of the

total.

Export totals for recent years are shown on table 10.

A promising new chrome deposit was being operated by the Kromit Mine Co. at Pozanti in the Toros Mountains.22

Union of South Africa.—One of the principal sources of chromite in the world, the Union of South Africa is the only current producer of Chemical-grade ore. The ore is found in the Transvaal in the Bushveld complex and reserves are estimated in the hundreds of millions of

Chrome oxide green pigment was being produced in a new plant at Germiston, Transvaal.2

TABLE 10.—Exports of chromite from Turkey, by destination, 1943-47 (average) and 1948-52, in metric tons ¹

Destination	1943–47 (average)	1948	1949	1950	1951	1952
Austria Belgium	679	2 22, 458	37, 325 390	29, 233	35, 472	39, 70
Canada	302	1, 118 940		6, 696		2, 03
France		24, 596	17,676	10, 729	27, 288	39, 38
Germany (Western) Hungary	14, 643		8, 196 3, 452	8, 743 58	38, 828 100	49, 77
ltaly	2,089	1,509	5, 750	3,702	6, 140	7, 02
Norway	6, 454	7, 245	500	12, 900	7,774	14, 35
Sweden Switzerland	11, 269	2,681	16, 280 50	23, 128	12, 821	16, 16
United Kingdom	6,084	6, 385	11, 017	16, 556	2, 595 15, 959	16, 11 8, 79
United States	52, 695	239, 675	252, 610	241, 415	356, 246	424. 98
Other	406			³ 1, 016	4 1, 386	5 8, 02
Total	102, 554	² 306, 607	353, 246	354, 176	504, 609	626, 40

¹ United States consular reports, Ankara, and other sources.

Yugoslavia.—Discovery of extensive chrome deposits in southwestern Serbia with estimated reserves of 500,000 tons of ore was announced in 1952. This new deposit increases Yugoslavia's estimated reserves of chrome ore to 2 million tons.24

² Revised figure.

⁴ Netherlands (276 tons) and Spain (1,110 tons).
5 Lebanon (500 tons) and Netherlands (7,529).

Mining World, vol. 14, No. 9. August 1952, p. 78.
 Chemical Age (London), vol. 67, No. 1736, Oct. 18, 1952, p. 546.
 Mining Engineering, vol. 4, No. 6, June 1952, p. 543.

Clays

By Brooke L. Gunsallus 1 and Bernice V. Russ 2

TOTAL clay sold or used by producers in 1952 decreased 3 percent in tonnage compared with 1951. Of the six major classifications of clay—namely, china clay or kaolin, ball clay, fire clay, bentonite, fuller's earth, and miscellaneous clays—only bentonite showed an

increase over 1951.

Kaolin output decreased 2 percent in quantity and less than 1 percent in value. Ball-clay output decreased 12 percent in quantity but increased 6 percent in value. Significant increases in kaolin consumption were as follows: Paper coating, 14 percent; linoleum, 10 percent; paint, 40 percent; filtering and clarifying oils, 24 percent; and fertilizers, 12 percent. Decreases in consumption included pottery, 11 percent; high-grade tile, 25 percent; paper filler, 14 percent; cement, 44 percent; and insecticides and fungicides, 30 percent. Of the three largest consumers of ball clay, pottery and high-grade tile showed decreases and refractories an increase in 1952 compared with 1951.

TABLE 1.—Salient statistics of clays in the United States, 1951-52

	19	051	1952		
	Short tons	Value	Short tons	Value	
Domestic clay sold or used by producers: Kaolin or china clay	344, 981 11, 852, 517 1, 218, 868 483, 623 27, 649, 491	\$25, 324, 554 3, 725, 930 48, 740, 596 13, 006, 645 8, 131, 761 29, 692, 830	1, 829, 102 305, 083 11, 285, 173 1, 421, 902 422, 853 27, 022, 960	\$25, 205, 836 3, 955, 958 48, 383, 470 15, 431, 214 6, 875, 483 31, 180, 202	
Total sold or used by producers	43, 415, 779	128, 622, 316	42, 287, 073	131, 032, 163	
Imports: Kaolin or china clay Common blue and Gross Almerode Fuller's earth Other clay	110, 475 35, 613 405 4, 763	1, 581, 378 360, 319 7, 929 71, 629	103, 937 28, 666 157 10, 296	1, 526, 920 299, 597 3, 698 86, 941	
Total imports	151, 256	2, 021, 255	143, 056	1, 917, 156	
Exports: Kaolin or china clay	36, 435 101, 146 185, 963	671, 058 1, 028, 719 5, 744, 490	40, 303 88, 025 175, 663	706, 111 916, 425 5, 391, 956	
Total exports	323, 544	7, 444, 267	303, 991	7, 014, 492	

Except for a small decrease in 1949, bentonite sold or used by producers has increased each successive year for the past 14 years. In 1952 the tonnage output exceeded the previous peak year, 1951, by 17 percent. The petroleum and foundry industries consumed 94

Commodity-industry analyst. Statistical clerk.

percent of the total tonnage in 1952. Rotary-drilling mud and foundry-sand bond reported increases but filtering and decolorizing

oils a decrease in 1952 from 1951.

Fuller's earth sold or used by producers decreased 13 percent in tonnage in 1952 compared with 1951, but output was the second largest on record. In 1952 mineral-oil refining was the largest consumer, with 32 percent of the total, followed by absorbent uses. 24 percent; insecticides, 18 percent; rotary-drilling mud, 15 percent; and vegetable-oil refining, 4 percent.

Although fire clay sold or used by producers decreased 5 percent in 1952 compared with the peak year, 1951, output was the second largest in the history of the industry. The leveling national economy and slackening demand for refractories in the steel trade and heavy clay products in the construction industries were factors governing

the decrease.

Price quotations for clay and clay products in 1952, as shown in

trade papers, remained steady in most instances.

Imports of kaolin for 1952 decreased 6 percent from 1951 and represented only 6 percent of the total domestic consumption of kaolin.

Imports of ball clay (including common blue and Gross Almerode clays) in 1952 decreased 20 percent in tonnage and 17 percent in

value compared with 1951.

Exports of kaolin or china clay in 1952 increased 11 percent over 1951; 73 percent of the quantity was shipped to Canada. Exports of fire clay in 1952 decreased 13 percent in tonnage and 11 percent in value compared with 1951. Canada received 77 percent of the total exports.

CONSUMPTION AND USES

Heavy clay products (building brick, structural tile, sewer pipe, etc.) in 1952 consumed 7 percent less clay than in 1951 and comprised 52 percent of the total clay output compared with 55 percent in 1951. Clays used in portland and other hydraulic cements in 1952 consumed 20 percent of the total clay output; refractories, 17 percent; paper filling, paper coating, and rotary-drilling mud, 2 percent each; and filtering and decolorizing oils and pottery, 1 percent The remainder was consumed for a large number of miscel-

laneous purposes.

Although the total tonnage of clay consumed in 1952 was less than in 1951, many uses gained in 1952. The increases for some of the more important classifications were as follows: High-grade tile, 31 percent; kiln furniture, 7 percent; paper coating, 14 percent; rubber, 8 percent; cement, 8 percent; paints, 43 percent; rotary-drilling mud, 23 percent; chemicals, 3 percent; and absorbent uses, 5 percent. The following uses decreased: Pottery, 13 percent; paper filling, 14 percent; refractories, 5 percent; heavy clay products, 7 percent; filtering and decolorizing oils, 22 percent; and insecticides and fungicides, 17 percent.

TABLE 2.—Clay sold or used by producers in the United States in 1952, by kinds and uses, in short tons

					,		
Use	Kaolin	Ball clay	Fire clay and stone- ware clay	Benton- ite	Ful- ler's earth	Miscella- neous clay, in- cluding slip clay	Total
Pottery and stoneware: Whiteware, etc	95, 281	212, 631	8,059		 		315, 971
stoneware	24, 712 5, 424 500	10, 164	29, 644 42, 739 209			18, 834	54, 756 77, 161 1, 209
TotalTile, high-grade	125, 917 25, 246	223, 695 36, 255	80, 651 152, 811			18, 834 44, 959	449, 097 259, 271
Kiln furniture: Saggers, pins, stiltsWads	5, 927	7, 925	15, 623 3, 527				29, 475 3, 527
TotalArchitectural terra cotta	5, 927	7, 925 1, 195	19, 150 30, 091				33, 002 31, 286
Paper: FillingCoating	459, 184 492, 491		424				459, 608 492, 491
Total Rubber Linoleum	951, 675 240, 982 39, 781		424 9, 322 10, 427				952, 099 250, 304 50, 208
Paints: Filler or extender	29, 142		1,749			898	31, 789
TotalPortland and other hydraulic cements_	2, 642 31, 784 43, 113		1, 749 274			898 8, 396, 077	2, 642 34, 431 8, 439, 464
Refrectories*		19, 003				40, 550	5, 685, 322
Firebrick and block Bauxite, high-alumina brick Fire-clay mortar, including clay processed for laying firebrick Clay crucibles	30, 427 210	2,850	235, 670			2, 104	210
Glass refractories Zinc retorts and condensers Foundries and steelworks Other refractories	1, 250 1, 981 6, 514	800	460 20, 921 664, 533 28, 533	322, 746		19, 594	1, 710 20, 921 1, 009, 654 35, 047
Total	200, 417		6, 435, 650			62, 248	
Heavy clay products: Common brick, face brick, paving brick, drain tile, sewer pipe, and kindred products			4, 444, 807			17, 587, 646	22, 032, 453
Miscellaneous: Rotary-drilling mud			11, 399		64, 072 1154,558	35, 992	816, 743 462, 243
Other filtering and clarifying	65, 417 233 1, 470	i e	56	5, 257	8,675 101,081		79, 349 289 102, 551
Absorbent uses Asbestos products Chemicals Enameling Fertilizers	1, 561 17, 589 5, 456		82, 156	8, 267		450	1, 561 108, 292 2, 500 6, 206
Filler (other than paper or paint) Insecticides and fungicides Plaster and plaster products	9, 340 27, 945 4, 764	10, 280	1, 187	4, 073	12, 336 76, 116	4, 946 160	6, 206 38, 089 108, 294 4, 764
Concrete admixture, sealing dams, etcOther uses	30, 485		5, 019	2, 122 66, 472	6, 015	870, 750	2, 122 978, 741
Total	164, 260	13, 360	99, 817	1, 099, 156	422, 853	912, 298	2, 711, 744
Grand total: 1952 1951	1, 829, 102 1, 866, 299	305, 083 344, 981	11, 285, 173 11, 852, 517	1, 421, 902 1, 218, 868	422, 853 483, 623	27, 022, 960 27, 649, 491	42, 287, 073 43, 415, 779

¹ Comprises the following: Mineral oils, 136,199; vegetable oils, 18,359 short tons.

CHINA CLAY OR KAOLIN

The upward trend in kaolin production that began in 1945 and continued through 1951 terminated in 1952. A 2-percent decrease from the record high of 1951 in tonnage of kaolin sold or used by producers was reported in 1952. The value decrease was less than 1

As has been the pattern for the past several years, the paper, rubber, pottery, and refractory industries were the principal consumers. Paper consumed 52 percent of the total kaolin, 25 percent for filling, The rubber industry consumed 13 and 27 percent for coating. percent; refractories, 11 percent; and pottery, 7 percent. The remaining 17 percent was consumed for a wide variety of purposes, including cement, high-grade tile, fertilizers, chemicals, insecticides, paint filler or extender, calcimine, and linoleum. The following users reported increases: Paper coating, 14 percent; rubber, 4 percent; linoleum, 10 percent; paint, 40 percent; refractories, less than 1 percent; filtering and clarifying oils, 24 percent; chemicals, 1 percent; and fertilizers, 12 percent. Decreases in consumption were reported for pottery, 11 percent; high-grade tile, 25 percent; paper filling, 14 percent; cement, 44 percent; asbestos products, 39 percent; insecticides and fungicides, 30 percent; and plaster products, 13 percent.

TABLE 3.—Kaolin sold or used by producers in the United States, 1951-52, by

	Sold by	producers	Used by	producers	Total	
State	Short	Value	Short tons	Value	Short tons	Value
1951						
Pennsylvania South Carolina Other States 2	65, 776 (1) 1, 191, 767 (1) (1) 434, 937	\$1, 227, 365 (1) 17, 840, 265 (1) (1) 5, 273, 176	(1) 132, 043 (1) (1) 41, 776	(1) (1) 124, 278	65, 776 24, 285 1, 323, 810 75, 415 322, 208 54, 805	\$1, 227, 365 381, 650 18, 699, 735 306, 045 4, 095, 912 613, 847
Total	1,692,480	24, 340, 806	173, 819	983, 748	1,866,299	25, 324, 554
Alabama, Florida, and North Carolina. California. Georgia. South Carolina. Other States 2.	58, 579 (¹) 1, 189, 457 (¹) 428, 938	1, 067, 883 (1) 17, 921, 448 (1) 5, 281, 903	(¹) 138, 798 (¹) 13, 330	(1) 880, 745 (1) 53, 857	58, 579 21, 589 1, 328, 255 322, 778 97, 901	1, 067, 883 256, 906 18, 802, 193 4, 079, 112 999, 742
Total	1, 676, 974	24, 271, 234	152, 128	934, 602	1, 829, 102	25, 205, 836

Ten States shipped kaolin in 1952, the same number as in 1951. As has been the case for several years, Georgia remained first with 73 percent compared with 71 percent in 1951, and South Carolina was second with 18 percent. The Alabama, Florida, and North Carolina group and California each decreased 11 percent compared with 1951. Georgia and South Carolina registered small increases in 1952 over 1951.

Included with "Other States."
 Includes States indicated by footnote 1 and Illinois, Pennsylvania, Utah, and Virginia.

No quotations were reported by E&MJ Metal and Mineral Markets on domestic kaolin in 1952. The last quotations, given in June 1951, were as follows: Georgia kaolin, for filler and ceramic grades, \$8.50 to \$9.50 per ton, depending upon grade for crushed material, and \$13 to \$17 for pulverized, in paper bags. North Carolina china clays, ceramic grades, in bulk, carlots, were quoted at \$20.25 to \$22.25 per ton. Florida kaolins were quoted by the same source at \$18.75 per ton for purified and crushed; \$24.75 for washed and air-floated clays; and \$38.50 for air-floated enamel grade. Crude Pennsylvania kaolin was quoted at \$5 to \$7.50 per ton and "purified" kaolin at \$21 to \$24. These prices were the same as those quoted in December 1950 and are substantially the same as those for 1949.

TABLE 4.—Georgia kaolin sold or used by producers, 1943-47 (average) and 1948-52, by uses

	China clay, paper clay, etc.		Re	efractory us	ses	Total kaolin			
Voor	Year Short tons To	Valu	16		Val	ue		. Val	ue
1 cai		Total	Aver- age per ton	Short tons	Total	Aver- age per ton	Short tons	Total	Aver- age per ton
1943–47 (awerage)	698, 805 1, 006, 325 902, 433 1, 087, 174 1, 147, 865 1, 227, 756	\$7, 754, 121 13, 866, 799 13, 229, 888 16, 533, 582 17, 615, 634 18, 155, 248	\$11. 10 13. 78 14. 66 15. 21 15. 35 14. 79	113, 024 129, 115 100, 958 133, 481 175, 945 100, 499	\$479, 402 775, 899 576, 448 806, 946 1, 084, 101 646, 945	\$4. 24 6. 01 5. 71 6. 05 6. 16 6. 44	811, 829 1, 135, 440 1, 003, 391 1, 220, 655 1, 323, 810 1, 328, 255	\$8, 233, 523 14, 642, 698 13, 806, 336 17, 340, 528 18, 699, 735 18, 802, 193	\$10. 14 12. 90 13. 76 14. 21 14. 13 14. 16

Prices for imported china clay in December 1952 were quoted by the Oil, Paint and Drug Reporter as follows: White lump, carlots, ex dock (Philadelphia, Pa., and Portland, Maine), \$20 to \$40 per long ton; powdered, ex dock, in bags, \$50 per net ton; and powdered, l. c. l., ex warehouse, \$60. The average value of domestic kaolin sold or used as reported to the Bureau of Mines in 1952 was \$13.78, compared with \$13.57 in 1951, \$13.68 in 1950, and \$13.43 in 1949.

Imports of kaolin for 1952 decreased 6 percent from 1951 figures and represented only 6 percent of the total domestic consumption for 1952. Imports represented a like amount in 1951, 7 percent in 1950, and 5 percent in 1949. Over 99 percent of the 1952 imports came from the United Kingdom and the remainder from Canada, Sweden, and Italy.

Exports of kaolin or china clay in 1952 rose 11 percent over 1951; 82 percent was shipped to Canada and 3 percent each to Mexico and Venezuela. Small tonnages also were sent to Central and South America, Europe, Union of South Africa, Japan, and Australia.

The Dragon mine at Eureka, Utah, mined about half of its 300-ton daily output of halloysite by the open-pit method in 1952. Previously all of its halloysite output was mined underground.³

Control of United Clay Mines, with kaolin mines and plants in Georgia, Florida, South Carolina, and Maryland was purchased by W. J. Smith and Associates of Sandersville, Ga.⁴

Mining World, vol. 14, No. 1, January 1952, p. 85.
Engineering and Mining Journal, vol. 153, No. 12, December 1952, p. 166.

The effect of water vapor on the decomposition temperature of kaolinite, halloysite, and dickite was investigated.⁵

FIGURE 1.—Kaolin sold or used by domestic producers for specified uses, 1937-52.

BALL CLAY

Ball clay sold or used by producers in 1952 decreased 12 percent in tonnage but increased 6 percent in value compared with 1951. For the tenth consecutive year, Tennessee led in tonnage output, with 54 percent of the United States total compared with 56 percent in 1951. Kentucky was second with 35 percent in 1952 compared with 32 per-

¹Stone, R. L., Differential Thermal Analysis of Kaolin-Group Minerals Under Controlled Partial Pressures of H₂O: Jour. Am. Ceram. Soc., vol. 35, No. 4, April 1952, pp. 90-99.

cent in 1951. Other States, in order of decreasing output, were Maryland, Mississippi, and New Jersey, the same order as in 1951. Compared with 1951, Tennessee decreased 16 percent and Kentucky 4 percent, respectively, in tonnage in 1952.

TABLE 5.—Ball clay sold by producers in the United States, 1950-52, by States

State	19	50	19	51	19	952		
	Short tons	Value	Short tons	Value	Short tons	Value		
Kentucky Maryland, Mississippi, and	105, 690	\$1, 325, 161	111, 215	\$1, 411, 175	107, 211	\$1, 372, 695		
New Jersey Tennessee	34, 290 184, 434	424, 480 2, 230, 526	39, 575 194, 191	532, 113 1, 782, 642	34, 010 163, 862	455, 989 2, 127, 274		
Total	324, 414	3, 980, 167	344, 981	3, 725, 930	305, 083	3, 955, 958		

The pottery industry consumed 73 percent of the ball clay sold or used in 1952 compared with 78 percent in 1951. The balance of the output was consumed by high-grade tile, 12 percent (12 percent in 1951); refractories, 7 percent (6 percent); and other uses, 8 percent (4 percent). Decreases in ball-clay consumption were reported in 1952 by the following industries: Whiteware, 18 percent; high-grade tile, 14 percent; and architectural terra cotta, 8 percent compared with 1951. The following industries showed increases in 1952 compared with 1951: Enameling, 52 percent; refractories, 14 percent;

and filler other than paper or paint, 2 percent.

Quotations on ball clay did not appear in E&MJ Metal and Mineral Markets in 1952. Quotations in 1951 were unchanged from 1950 and 1949 and were as follows: Tennessee—crude ball clay, \$10 per short ton, and air-floated and pulverized, \$19.50 per ton; and Maryland—shredded, in bulk, \$7 to \$9, and air-floated, in bags, \$14 to \$17.50 per ton. No quotations on Kentucky ball clay have been published since 1949. In 1952 the average value per ton for all ball clay as reported by producers to the Bureau of Mines was \$12.97, compared to \$10.80 in 1951, \$12.27 in 1950, and \$12.31 in 1949. In 1952 the average value for ball clay in Tennessee was \$12.98, compared with \$9.18 in 1951. In Kentucky the average in 1952 was \$12.80, compared with \$12.69 in 1951; and in Maryland, Mississippi, and New Jersey, \$13.40 compared with \$13.45 in 1941.

Imports of common blue and ball clay and Gross Almerode clays in 1952 decreased 20 percent in tonnage and 17 percent in value compared with 1951. Unmanufactured blue and ball clays represented the major share of imports; the United Kingdom supplied 98 percent of this classification and virtually all of the imports of manufactured blue and ball clay. Small tonnages of imports of blue and ball clay came from Canada and West Germany. Imports of Gross Almerode clays (from United Kingdom) in 1952 totaled only 6 short tons. if any, are not separately shown in official foreign trade returns.

Mining methods and processes used in preparing ball clay for the

market were given in detail in an article.6

⁶ Ceramic Industry, vol. 58, No. 2, February 1952. pp. 84-86, 107.

FIRE CLAY

Although fire clay sold or used in 1952 decreased 5 percent compared with the peak year 1951 it was the second largest production in the history of the industry. Leveling of the national economy and slackening demand for refractories in the steel trade and heavy clay products in the construction industries were the factors governing the decrease.

The principal uses of fire clay in 1952 were refractories manufacture, which consumed 57 percent of the national output, and heavy clay products, which consumed 39 percent. These two uses absorbed 96 percent of the 1952 tonnage, compared with 97 percent in 1951. In 1952 fire clay consumed for refractories decreased 7 percent and that consumed by the heavy clay products industry decreased 4

TABLE 6.—Fire clay, including stoneware clay, sold or used by producers in the United States, 1951-52, by States 1

	Sold by	producer	Used by	producer	To	tal
State			l			
	Short tons	Value	Short tons	Value	Short tons	Value
1951			-			
Alabama	128, 781	\$239, 201	74, 558	\$467,829	203, 339	\$707, 030
Arkansas	(2)	(2)	(2)	(2)	319, 941	1,022,326
California	209, 070	567, 777	301, 151	868, 595	510, 221	1, 436, 372
Colorado	201, 746	422,065	131,679	406, 246	333, 425	828, 311
Illinois	248, 482	1, 187, 344	243, 645	587, 526	492, 127	1,774,870
Indiana Kentucky	358, 292 140, 466	517, 792 622, 838	141, 431 442, 825	303, 880 3, 037, 788	499, 723	821, 672
Maryland	10, 812	51, 381	169, 490	580, 798	583, 291 180, 302	3, 660, 626 632, 179
Missouri 3	401, 057	1. 250, 331	1, 171, 465	8, 448, 387	1, 572, 522	9, 698, 718
New Jersey	81, 403	702, 209	344, 658	1, 070, 522	426, 061	1, 772, 731
Ohio	939, 822	2, 789, 217	2, 214, 130	8, 351, 767	3, 153, 952	11, 140, 984
Pennsylvania	327, 381	1, 322, 847	1, 878, 413	10, 330, 887	2, 205, 794	11, 653, 734
Tennessee	(2)	(2)	(2)	(2)	23, 759	226,009
Texas	2,845	19,607	317, 393	744, 621	320, 238	764, 228
Utah	5, 375	28, 125	29, 968	80, 130	35, 343	108, 255
Washington	18, 109	24, 505	47, 368	117, 828	65, 477	142, 333
West Virginia Other States 4	(2) 86, 026	(2) 441, 365	(2)	(2)	732, 492	1, 923, 872
		441, 303	1, 184, 676	3, 157, 188	194, 510	426, 346
Total	3, 159, 667	10, 186, 604	8, 692, 850	38, 553, 992	11, 852, 517	48, 740, 596
1952						
Alabama	145, 567	292, 788	74, 442	464, 663	220,009	757, 451
Arkansas	(2)	(2)	(2)	(2)	386, 111	1, 337, 542
California Colorado	196, 954	631, 351	365, 181	1,086,613	562, 135	1, 717, 964
Illinois	159, 972 193, 076	377, 635 962, 605	140, 902	410, 979	300, 874	788, 614
Indiana	280, 629	440,010	257, 368 116, 707	582, 063 292, 015	450, 444 397, 336	1, 544, 668 732, 025
Kentucky	96, 308	418, 111	429, 930	3, 031, 935	526, 238	3, 450, 046
Maryland	9, 937	45, 319	165, 465	503, 539	175, 402	548, 858
Missouri 3	585, 691	1, 776, 186	1, 265, 111	8, 683, 401	1,850,802	10, 459, 587
New Jersey	80, 225	721, 960	199, 538	877, 789	279, 763	1, 599, 749
Ohio	792, 894	2, 814, 155	2, 074, 563	8, 124, 919	2, 867, 457	10, 939, 074
Pennsylvania	245, 062	972, 854	1, 718, 173	9, 594, 840	1, 963, 235	10, 567, 694
South Carolina	(2)	(2)	(2)	(2)	7, 547	18, 250
Tennessee	(2)	(2)	(2)	(2)	21, 290	203, 845
Texas Utah	15, 716 5, 215	168, 242 28, 682	342, 750	895, 763	358, 466	1,064,005
Washington	8, 300	12, 338	29, 254 71, 671	78, 689 143, 317	34, 469 79, 971	107, 371 155, 655
West Virginia	(2)	(2)	(2)	(2)	621, 996	2, 072, 688
Other States	147, 452	599, 078	1,071,120	3, 351, 631	181, 628	318, 384
Total	2, 962, 998	10, 261, 314	8, 322, 175	38, 122, 156	11, 285, 173	48, 383, 470

 $^{^1}$ Includes stoneware clay as follows: 1951—85,331 tons, \$271,625; 1952—80,651 tons, \$326,408. 2 Included with "Other States."

Included with "Other States."

Includes diaspore and burley clay as follows: 1951—diaspore, 45,020 tons, \$704,151; burley, 73,781 tons, \$745,032; 1952—diaspore, 44,757 tons, \$705,269; burley, 71,433 tons, \$664,358.

Includes States indicated by footnote 2 above and Georgia (1952 only), Idaho, Iowa, Kansas, Michigan, Minnesota, Mississippi, Montana, Nebraska, Nevada, New Mexico, Oregon, and South Carolina (1951—11).

percent, compared with 1951. About 1 percent was consumed in the manufacture of high-grade tile, a little less than 1 percent in chemicals, and the remainder in a wide variety of uses. The principal refractory use of fire clay was for firebrick and block manufacture. This division of the fire-clay industry used 3 percent less fire clay in 1952 than in 1951. Of the less important uses, high-grade tile and architectural terra cotta increased and chemicals decreased in 1952 compared with 1951. Rubber consumed 9,322 short tons of fire

clay in 1952 compared with none in 1951.

In 1952 Ohio ranked first in fire-clay output, followed by Pennsylvania, Missouri, West Virginia, California, Kentucky, and Illinois. These States supplied 78 percent of the total quantity. The remainder was produced in 23 States. Of the 18 principal producing States shown in table 6, Alabama, Arkansas, California, Missouri, Texas, and Washington reported increases, and the other 12 reported decreases. Price quotations on fire clay do not appear in trade journals. However, the average realization per ton reported to the Bureau of Mines by producers indicated that the average value of fire clay sold in 1952 was \$3.46, compared with \$3.22 in 1951, \$3 in 1950, and \$2.91 in 1949. The average value of all fire clay, including both sales and captive tonnage, was \$4.29 in 1952, compared with \$4.11 in 1951, \$3.04 in 1950, and \$2.96 in 1949. Quotations on brick manufactured from fire clay were reported in 1952 in E&MJ Metal and Mineral Markets (comparable 1951 prices in parentheses) as follows: Missouri, Kentucky, and Pennsylvania, superquality, \$116.60 per thousand (\$116.50); high-heat quality, \$94.60 (\$99.60); Ohio firebrick, intermediate grade, \$88 (\$88); and second grade, \$79.20 (\$79.20) per thousand.

Imports of fire clay are not shown separately in foreign trade statistics. Exports of fire clay in 1952 decreased 13 percent in tonnage and 11 percent in value compared with 1951. Canada received 86 percent of the total exports and Mexico, 7 percent. The remainder (7 percent) comprised small tonnages to many destinations in Central

and South America, Europe, Asia, and Africa.

BENTONITE

Bentonite sold or used by producers in 1952 exceeded the previous peak year of 1951 by 17 percent in tonnage and 19 percent in value. The upswing in oil-well drilling activity and the bringing into production of large bentonite deposits in Wyoming were mainly responsible for the large bentonite output. Bentonite was the only classification of clay discussed in the Minerals Yearbook that advanced in 1952

compared with 1951.

The foundry and petroleum industries consumed 94 percent of the total tonnage in 1952—the same percentage as in 1951. Rotary-drilling mud consumed 50 percent (38 percent in 1951); filtering and decolorizing oils, 21 percent (33 percent); foundry-sand bond, 23 percent (23 percent); and the remaining 6 percent was used for a wide variety of purposes. Bentonite tonnage employed as rotary-drilling mud increased 53 percent and foundry-sand bond tonnage increased 14 percent in 1952, but filtering and decolorizing oils tonnage decreased 23 percent, compared with 1951.

Eleven States reported bentonite production in 1952, compared with nine in 1951. Of the States that reported in 1952 and 1951, tonnage increased in Arizona, California, and Wyoming and decreased in South Dakota, Mississippi, Texas, and Utah.

The Wyoming-South Dakota district supplied 63 percent of the total bentonite sold or used by producers in 1952 (Wyoming 49 per-

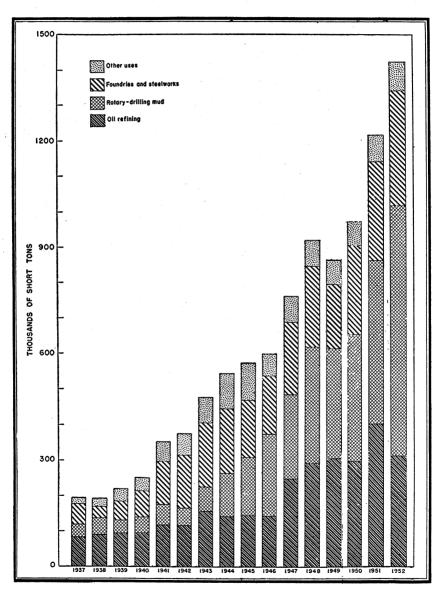


FIGURE 2.—Bentonite sold or used by domestic producers for specified uses, 1937-52.

TABLE 7.—Bentonite sold or used by producers in the United States, 1950-52, by

State	19	50	19)51	19	52
	Short tons	Value	Short tons	Value	Short tons	Value
Montana South Dakota Texas Wyoming Other States ¹	192, 591 24, 574 394, 939 361, 729	\$2, 194, 894 321, 345 4, 091, 571 1, 952, 859	246, 585 38, 425 465, 254 468, 604	\$2, 926, 756 212, 670 5, 981, 655 3, 885, 564	2, 000 205, 934 31, 386 692, 853 489, 729	\$24,000 2,553,783 584,938 9,168,708 3,099,785
Total	973, 833	8, 560, 669	1, 218, 868	13, 006, 645	1, 421, 902	15, 431, 214

¹ Arizona, California, Colorado (1950-51 only), Idaho (1950-51), Louisiana (1952 only), Mississippi, Nevada (1952 only), Oklahoma (1952 only) and Utah.

cent and South Dakota 14), compared with 58 percent in 1951 and 60 in 1950. Texas furnished 2 percent in 1952 compared with 3 in 1951 and 1950. Trends in sales for principal uses are shown in figure 2.

In 1952 bentonite was not quoted in E&MJ Metal and Mineral Markets. The following quotations were given for 1951 on Wyoming bentonite: Dried, crushed, in bulk, \$9 per short ton; and 200-mesh, pulverized, in 100-pound bags, \$12.50. Oil-well grade was quoted at \$14 per short ton. The average value per short ton, as reported by the producers to the Bureau of Mines in 1952, was \$10.85, compared with \$10.67 in 1951, \$8.79 in 1950, and \$8 in 1949.

Bentonite imported in 1952 comprised 100 short tons from Canada

and 54 tons from Italy.

Exports of bentonite are not shown separately in foreign trade statistics but are included under the blanket classification of "Other clays or earths, not especially provided for." It is understood, however, that some domestic producers export part of their production to destinations throughout the world.

Extensive deposits of bentonite east of Greybull, Wyo., were placed in production by the Magnet Cove Barium Corp. This development was made possible by building a 1,600-foot-long, 2-bucket, reversible tramway across the Big Horn River to the plant and transportation

facilities.7

FULLER'S EARTH

Even though the output of fuller's earth decreased 13 percent in tonnage in 1952 compared with 1951, the high year, it was the second

largest in the history of the industry.

In 1952 mineral-oil refining was the largest consumer, although it decreased 22 percent in tonnage compared with 1951. The consumption in 1952 represented 32 percent of the total production compared with 36 percent in 1951, 40 in 1950, and 47 in 1949. It is the consensus that this trend resulted in part from changed methods of oil refining and the marketing of a higher quality of fuller's earth.

Absorbent uses consumed 24 percent of the total in 1952, compared with 20 percent in 1951, 21 in 1950, and 22 in 1949; insecticides, 18 percent, the same as in 1951 and 1950, compared with 12 percent in

⁷ Engineering and Mining Journal, vol. 153, No. 10, October 1952, p. 36. Mines Magazine, vol. 42, No. 3, March 1952, p. 42.

1949; rotary-drilling mud, 15 percent, compared with 16 percent in 1951, 10 in 1950, and 9 in 1949; and vegetable-oil refining, 4 percent, compared with 4 in 1951, 5 in 1950, and 6 in 1949. The remainder was used in other filtering and clarifying, filler other than paper and

paint, and other unspecified uses.

The following States reported decreases in 1952 compared with 1951: Florida, Georgia, Nevada, Tennessee, and Texas. States showing increases were California, Mississippi, and Utah. The Florida-Georgia area consumed 64 percent of the total tonnage sold or used by producers in 1952, compared with 62 percent in 1951 and the same percentage in 1950. Production in Texas represented 25 percent of the total production in 1952, compared with 29 percent in 1951 and 28 in 1950.

Quotations on fuller's earth were not listed in E&MJ Metal and Mineral Markets in 1952. Prices, which had not changed since 1949, were quoted in 1951 as follows: 14- to 30-mesh, \$14 per short ton; 30to 60-mesh, \$14.50; 100-mesh up, \$7; and 200-mesh up, \$10. average value of fuller's earth sold or used, as reported to the Bureau of Mines by producers, was \$16.26, compared with \$16.81 in 1951, \$16.42 in 1950, and \$16.20 in 1949.

TABLE 8.—Fuller's earth sold or used by producers in the United States, 1950-52, by States

QL-L-	19	50	19	51	19	052		
State	Short tons	Value	Short tons	Value	Short tons	Value		
Florida and GeorgiaTennessee	247, 390 (1)	\$4, 273, 890 (1)	299, 071 (1)	\$5, 258, 330	270, 261 25, 974	\$4, 829, 552 358, 752		
TexasOther States 2	112, 466 36, 169	1, 393, 773 837, 070	142, 273 42, 279	1, 952, 304 921, 127	105, 565 21, 053	1, 030, 005 657, 174		
Total	396, 025	6, 504, 733	483, 623	8, 131, 761	422, 853	6, 875, 483		

Imports of fuller's earth in 1952 totaled 157 short tons, all from the United Kingdom. Exports are not given separately in official foreign trade statistics. Reports from the producers to the Bureau of Mines, however, indicated exports of approximately 26,000 short tons in 1952, compared with 35,000 short tons in 1951 and 16,400 in 1950. tions reported included North America, Central and South America, West Indies, several European countries, and the Philippines.

The Attapulgus Clay Co., with mines at Attapulgus, Ga., was purchased in 1952 by the Minerals Separation North American Corp. The name was changed to the Attapulgus Minerals & Chemical Co. This company is the largest producer of fuller's earth in the United

States.8

MISCELLANEOUS CLAYS

This section presents statistics for the large-tonnage clays and shales, other than those discussed in the preceding pages, that are used in the

¹ Included with "Other States." ² Includes State indicated by footnote 1 and California, Mississippi, Nevada, and Utah.

⁸ Pit and Quarry, vol. 45, No. 8, February 1953, p. 59.

FIGURE 3.—Fuller's earth sold or used by producers for specified uses, 1930 and 1942–52.

manufacture of heavy clay products and portland cement. With these clays are grouped small tonnages of slip clay, oil-well drilling mud, pottery clay, and clays that cannot clearly be identified with one of

the types discussed separately in this chapter.

Miscellaneous clays sold or used by producers decreased 2 percent in 1952, compared with 1951. The tonnage of clay used in the production of cement in 1952 increased 9 percent over 1951, owing to a heavy demand for cement, the production of which in 1952 reached a Miscellaneous clays consumed in the manufacture of heavy clay products decreased 8 percent in 1952, compared with 1951. quantity and value of shipments of clay construction products produced showed a similar decrease in 1952. In 1952, 65 percent of the total miscellaneous clays were used in manufacturing heavy clay products and 31 percent in cement. Captive tonnage, clay produced by the mine operators for their own use in manufacturing brick, tile, cement, and other end products and marketed for the first time as such, amounted to 96 percent, the same as for the past 6 years, of all miscellaneous clays and shales. The average value of miscellaneous clays sold as crude or prepared clay in 1952 was \$1.91, compared with \$2.05 in 1951. Some special types of clay included under the miscellaneous clay classification, however, sold for much higher prices. value of the captive tonnage was computed from individual estimates that average about \$1 per ton.

TABLE 9.—Miscellaneous clays, including shale and slip clay sold by or used by producers in the United States, 1951-52, by States

Ct. t.	Sold by p	roducers 1	Used by p	roducers 2	Total		
State	Short tons	Value	Short tons	Value	Short tons	Value	
1951	,						
Arkansas			171, 518 1, 927, 134	\$184,532	171,518	\$184,532	
California	117,142	\$644,775	1, 927, 134	1,947,648	2,044,276	2, 592, 423 340, 558	
Colorado	(3)	(3)	(3)	(3)	323,808	340, 558	
California Colorado Connecticut Georgia			275, 900 1, 083, 952	252, 725 978, 727	171, 518 2, 044, 276 323, 808 275, 900 1, 083, 952 2, 097, 013 1, 025, 008	252, 725 978, 727	
Illinois	(3)	(3)	(3)	(3)	2,097,013	2, 249, 324	
Indiana	(3) 87, 250	95, 321	(3) 937, 758	997, 464	1,025,008	1, 092, 785	
Iowa	3,302	57, 963	1 877, 752	955, 550	001,004	1,013,513	
Kansas			708, 910	680, 821	708, 910	680, 821	
Kentucky Louisiana	1 (2)	(8)	185, 734	202, 484	185, 734 306, 542	202, 484 306, 542	
Maine Maryland Maryland Massachusetts Michigan Michigan Missouri Missouri Mortage Maryland Ma		(-)	(3) 21, 885	21, 885	21,885	21 885	
Maryland	(3)	(3)	(3)	(3)	558,083	21, 885 558, 083	
Massachusetts			143,023	143, 023	1/12/02/2	143,023	
Michigan	(3)	(3)	(3)	(3)	1,509,712	1,579,065	
Minnesota	(3)	(3) (3) (3)	(%)	(%)	111,984	127, 206 859, 720	
Montana	(6)	(9)	(3) 34, 431	(3) (3) (3) (3) 34, 431	1,509,712 111,984 782,335 34,431	34, 431	
Nahraska	(3)	(3)	(3)	(8)	114, 845	114, 845	
New Hampshire New Jersey New Mexico New York			(3)	(3)	114, 845 28, 501 253, 159 56, 780	28, 501 277, 368 89, 918	
New Jersey			253, 159	277, 368	253, 159	277, 368	
New Mexico	(3) (3)	(3)	(3)	(3)	1 550,780	89, 918 1, 632, 878	
North Carolina	875	1,312	1, 432, 505	1, 564, 717	1, 559, 472 1, 433, 380	1, 566, 029	
Ohio	115,351	127, 944	2, 417, 327	2, 495, 129	2, 532, 678	2, 623, 073	
Oklahoma	(3)	(3)	(3)	(3)	551, 200	561, 841	
Oregon Pennsylvania South Carolina			143, 479	148, 479	143, 479	148, 479 2, 127, 771	
Pennsylvania	21, 466	31, 738	1,927,892	2,096,033	1,949,358 619,272	2, 127, 771	
Texas	28, 554	326, 200	619, 272 1, 687, 563	620, 022 1, 689, 563		620, 022 2, 015, 763	
Utah	l	020, 200	203, 809	567, 869	203, 809	567, 869	
Washington West Virginia	(3)	(3)	(3)	(3)	203, 809 220, 887 371, 154 141, 746 17, 796 3, 470, 690	994 475	
West Virginia			371, 154	371, 154	371, 154	371, 154 141, 746 17, 796 3, 345, 455	
Wisconsin	(3)	(3)	(3) 17, 796	(3) 17, 796	141,746	141,746	
Wyoming Undistributed 4	615, 799	740, 659	11, 217, 799	11, 419, 498	3, 470, 690	3 345 455	
		<u></u>		<u>-</u>			
Total	989, 739	2, 025, 912	26, 659, 752	27, 666, 918	27, 649, 491	29, 692, 830	
1952 Arkansas			166, 465	176 209	166 465	176 200	
California	125, 828	117, 515	1, 917, 723	176, 392 1, 828, 177	166, 465 2, 043, 551	176, 392 1, 945, 692	
Colorado	(3)	(3)	(3)	(3)	267, 856	1, 945, 692 298, 540	
Colorado			(3) 157, 500	(3) 157, 500	157, 500	157, 500	
Georgia.			1,050,792	1,020,132	1,050,792	1, 020, 132	
Illinois Indiana	(3) 73, 234	(3) 70, 676	(3) 860, 728	(3) 807 508	1, 050, 792 1, 886, 299 933, 962 835, 120 642, 250 247, 425 380, 218 26, 050 578, 051 140, 148 1, 775, 784 96, 203 1, 140, 217	2, 324, 583 968, 184	
Indiana Iowa	62, 943	658, 751	772, 177	897, 508 1, 984, 104	835, 120	2, 642, 855	
Kansas			772, 177 642, 250 247, 425	738, 481	642, 250	738, 481	
Kentucky Louisiana			247, 425	278, 525	247, 425	278, 525	
Louisiana	(3)	(3)	(3) 26, 050	(3)	380, 218	384, 218	
Maine Maryland Massachusetts	(3)			26,050	26,050	26, 050 651, 622	
Massachusetts	73	(₃) 1, 453	(3) 140, 075	(3) 158, 918	140, 148	160, 371	
Michigan	(3)	(3)	(3)	(3)	1, 775, 784	1, 809, 087	
Minnesota	(3)	(3) (3) (3)	(3)	(3)	96, 203	104, 297	
Missouri	(3)	(3)	(3)	(3)		1, 638, 833	
Montana New Hampshire			44, 205 30, 135	41, 205 30, 135	44, 205 30, 135	41, 205 30, 135	
New Jersey	1,910	3, 820	315, 707	339, 925	317, 617	343, 745	
	(3)	(3)	(3)	(3)	38,048	71, 615	
New Mexico		(4)	(3)	(3)	1, 218, 850	1, 291, 736	
New Mexico New York	(3)	(3)					
Now Hampshire New Jersey New Mexico New York North Carolina	(3)		1, 332, 051	1, 546, 949	1, 332, 051	1, 546, 949	
New Mexico	281, 338	293, 644	2, 345, 035	2, 411, 024	1, 332, 051 2, 626, 373 516, 705	2, 704, 668	
New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania	281, 338 (3)		2, 345, 035	1, 546, 949 2, 411, 024 (3)	1, 332, 051 2, 626, 373 516, 705 256, 692	1, 546, 949 2, 704, 668 527, 245 548, 934	

For footnotes, see end of table.

TABLE 9.—Miscellaneous clays, including shale and slip clay sold or used by producers in the United States, 1951-52, by States-Continued

State	Sold by p	roducers 1	Used by p	oroducers 2	To	tal
State	Short tons	Value	Short tons	Value	Short tons	Value
South Carolina	16,000	\$288,000	616, 953 1, 557, 603 84, 943 937, 156	\$577, 899 1, 503, 234 171, 369	616, 953 1, 573, 603 84, 943	\$577, 894 1, 791, 234 171, 369
Washington West Virginia	(3)	(3)	(3) 360, 034	947, 359 (³) 348, 981	937, 156 211, 163 360, 034	947, 359 196, 921 348, 981
Wisconsin Wyoming	48, 632	48, 672	85, 821 13, 895	85, 821 7, 799	134, 453 13, 895	134, 493 7, 799
Undistributed 4	1, 077, 161	1, 770, 514	9, 892, 087	10, 735, 891	2, 603, 162	2, 658, 774
Total.	1, 734, 178	3, 309, 171	25, 288, 782	27, 871, 031	27, 022, 960	31, 180, 202

¹ Includes slip clay as follows: Indiana, Michigan (1951 only), and New York; figures cannot be shown separately. Purchases by portland cement companies of common clay and shale: 1951—658,450 tons, estimated at \$660,936; 1952—801,854 tons, estimated at \$809,657.

² Includes the following: Common clay and shale used by portland cement companies: 1951—7,060,473 tons, estimated at \$7,205,289; 1952—7,098,154 tons, estimated at \$7,129,669.

³ Included under "Undistributed."

⁴ Figures include Abbatra, Aircrap Delayana District of Columbia Figure 1.

Miscellaneous clays, including shales and the so-called common or surface clays, are of widespread occurrence, and production was reported from all States except Vermont and Rhode Island. States, California and Ohio, reported tonnage exceeding 2 million short tons each. Other States reporting over 1 million tons sold or used by producers were, in order of output: Illinois, Michigan, Pennsylvania, Texas, North Carolina, New York, Missouri, and Georgia. Of the States for which data are shown in table 9, 12 reported increases and 22 decreases in output in 1952 compared with 1951.

As has been the case for the past several years, continued interest was shown in the development of expanded lightweight aggregates from clays and shales. Characteristics of different materials present individual problems. Proper methods allow the use of almost all types of clay to produce lightweight aggregate. The need for proper preparation of the raw materials and for the proper control of the

sintering operation were discussed.9

Sintered aggregate from clay was produced in a highly mechanized This operation, in Kansas City, Kans., produced 600 cubic yards of aggregate daily. 10 Hollow glass bubbles made from clay formed a new lightweight aggregate. The method of manufacture and potential applications were explained. 11 An aggregate plant designed for straight-line material flow was built near Ottawa, Kansas. Kansas State Geological Survey cooperated to find the shale bed used as raw material.12 Sunnyhill Aggregate Co., New Lexington, Ohio, was building a \$500,000 plant to produce expanded shale lightweight aggregate.13 Laboratory tests were made on 27 different Florida clays to determine their suitability in producing lightweight aggregate. From the tests, it appeared that most Florida clays are good bloating

⁴ Figures include Alabama, Arizona, Delaware, District of Columbia, Florida, Idaho, Mississippi, Nebraska (1952 only), Nevada, North Dakota, South Dakota, Tennessee, and States indicated by footnote 3.

Bell, W. C. Proper Pelletizing Technique—Key to Efficient Sintering of Aggregate: Brick and Clay Record, vol. 120, No. 1, January 1952, pp. 46, 49, 52.
 Brick and Clay Record, vol. 120, No. 5, May 1952, pp. 38-39.
 Brick and Clay Record, vol. 121, No. 4, October 1952, pp. 46-47.
 Brick and Clay Record, vol. 120, No. 6, June 1952, pp. 42-45.
 Rock Products, vol. 55, No. 6, June 1952, pp. 42-45.

^{1952,} pp. 101-103.

13 Brick and Clay Record, vol. 120, No. 5, May 1952, p. 23.

materials and that the sintering-machine process may be the most satisfactory.¹⁴ The Bureau of Mineral Research, Rutgers University, tested numerous deposits of shales and clays in New Jersey and found them suitable for lightweight aggregate. ¹⁵ In May 1952, lightweightaggregate producers formed the Expanded Shale Institute, Washington, D. C.16

A completely modern brick plant was placed in operation at Cleveland, Ohio, with a daily capacity of about 140,000 brick. The only manual operation is the removal of brick from the off-bearing belt. 17

HEAVY CLAY PRODUCTS

The high demand for structural clay products that characterized 1950 and 1951 did not carry over into 1952. Clay consumed in producing structural clay products decreased 7 percent in quantity and 8 percent in value of shipments in 1952 from 1951, according to data compiled by the Bureau of the Census, United States Department of The largest percentage decrease occurred in unglazed structural tile, which decreased 21 percent in quantity and 20 percent in the value of shipments in 1952, compared with 1951. Other decreases in shipments were as follows: Unglazed brick (common and face), 11 percent; hollow facing tile, 17 percent; glazed and unglazed floor and wall tile, 17 percent; vitrified clay sewer pipe, less than 1 percent. Drain tile showed a 24-percent increase in shipments in 1952 compared with 1951, the only commodity in the structural clay products field to do so.

The total value of the principal structural clay products in 1952

decreased 8 percent compared with 1951.

The uninterrupted annual increase in the value of clay refractories reported for 1949 through 1951 terminated in 1952, when the value of shipments decreased 5 percent. The overall expansion in the steel and foundry industries in progress in 1951 leveled in 1952, lessening

TABLE 10.—Shipments of principal structural clay products in the United States, 1950-52 1

1	19	50	19	51	19	1952	
	Quantity	Value (thou- sand dollars)	Quantity	Value (thou- sand dollars)	Quantity	Value (thou- sand dollars)	
Unglazed brick (common and face) M stand. brick. Unglazed structural tileshort tons. Vitrified clay sewer pipedo. Drain tiledo. Hollow facing tile, glazed and unglazed M brick equiv. Glazed and unglazed floor and wall tile and accessories, including quarry tile M square feet.	6, 486, 332 1, 316, 972 1, 567, 664 627, 545 432, 027 127, 302		6, 306, 561 1, 166, 879 1, 554, 711 655, 757 467, 767	170, 743 14, 098 58, 238 11, 387 25, 984 71, 277	5, 635, 249 919, 761 1, 544, 809 815, 490 389, 376 117, 544	154, 566 11, 243 58, 943 14, 073 22, 104 60, 962	

¹ Compiled from information furnished by the Bureau of the Census, U. S. Department of Commerce.

<sup>Greaves-Walker, A. F., Bugg, S. L., and Hagerman, R. S., Development of Lightweight Aggregate From Florida Clays: Vol. 35, No. 3, March 1952, p. 39.
Rock Products, vol. 55, No. 7, July 1952, p. 47.
Brick and Clay Record, vol. 120, No. 6, June 1952, p. 27.
Brick and Clay Record, vol. 121, No. 1, July 1952, pp. 39-45.</sup>

the demand for clay refractories. The value of fire-clay brick shipments (except superduty) represented 44 percent of the total value of fire-clay shipments in 1952; superduty fire-clay brick, 10 percent; ladle brick, 8 percent; and insulating firebrick, 7 percent. A number of classifications accounted for the remaining 31 percent, as shown in table 11.

The W. S. Dickey Clay Manufacturing Co., in conjunction with the city of Meridan, Miss., broke ground for a large clay-sewer-pipe plant. The factory was to be municipally owned but operated by

the company.18

A snug, rootproof joint for clay sewer pipe was developed by National Clay Pipe Manufacturers, Inc. The sewer pipe is ground on the interior annular surface of the bell end and the exterior annular surface of the spigot end with a diamond drill. The two ground surfaces forming the joint are sealed with a thin rubber gasket.19 Robinson Clay Product Co., Akron, Ohio, announced a new plastic screw joint for clay pipe which combines a plastic material with vitri-

fied clay to form a leak-proof, infiltration-proof joint.²⁰

Roasted clay heated to about 1,500° F. was found to be superior to brick grog, which is ordinarily used in the manufacture of refrac-Manufacturing activities of the refractories industry were discussed.²² The General Refractories Co. opened a new basic refractories plant in Los Angeles, Calif., in 1952; wherever possible operations were mechanized.²³ Stowe-Fuller Refractories Co., with plants in Strawsburg, Ohio, and Alexandria, Pa., was pure 1962. 24 Robinson Clay Product Co., Akron, Ohio, December 31, 1952.24

TECHNOLOGY

Recent years have witnessed growing recognition of the value and importance of research in the ceramic industry. One issue of Ceramic Industry dealt solely with research and discussed the following aspects: What research is and how much is necessary; how to get the most out of a research program; projects conducted by industry associations: private facilities available for research; the use of universities in a research program; and what the plant research department can accomplish.25

Strength, absorption, and saturation-coefficient relations were determined on several thousand building brick by the National Bureau of Standards, Washington, D. C. These brick included examples of all commercial types of forming and represented a wide range of raw Methods of testing plasticity, drying and firing behavior, and other properties of clay materials for structural clay products were described. Improvement of the finished ware was said to result

¹⁸ Brick and Clay Record, vol. 121, No. 3, September 1952, p. 66.
19 Brick and Clay Record, vol. 120, No. 3, March 1952, pp. 60-61.
20 Brick and Clay Record, vol. 120, No. 3, March 1952, pp. 62-63.
21 West, H. F. and Veale, J. H., Use of Roasted Clay in the Manufacture of Firebrick: Am. Ceram. Soc. Bull., vol. 31, No. 6, 1952, p. 209.
22 Brick and Clay Record, vol. 122, No. 1, January 1953, pp. 67-70.
23 Brick and Clay Record, vol. 121, No. 6, December 1952, pp. 53-55.
24 Pit and Quarry, vol. 45, No. 7, January 1953, p. 78.
25 Ceramic Industry, vol. 59, No. 2, August 1952, pp. 31-117.
26 McBurney, J. W., Richmond, J. C., and Copeland, M. A., Relations Among Certain Specification Properties of Building Brick and Effects of Differences in Raw Materials and Methods of Forming: Jour. Am. Ceram. Soc., vol. 35, No. 12, Dec. 1, 1952, pp. 309-318.

TABLE 11.—Production and shipments of refractories in the United States, by kind, 1951-52

[Bureau of the Census]

			-,				
	,		1951			1952	
Decident	Unit of	Produc-	i -	ments	D1		ments
Product	quantity	tion (quan- tity)	Quan- tity	Value (thou- sand dollars)	Produc- tion (quan- tity)	Quan- tity	Value (thou- sand dollars)
Clay refractories:							
Fire-clay brick, standard and special	1,000 9-in.	725, 659	710, 289	78, 562	628, 262	610, 254	70, 849
shapes except superduty. Superduty fire-clay brick, standard	equiv.	94, 916	92, 783	16, 158	96, 495	93, 428	16, 951
and special shapes. High-alumina brick, standard and special shapes (50 percent Al2O3 and over, except fused alumina and	do	23, 643	23, 414	6, 825	22, 251	21, 655	6, 65
mullite). Insulating firebrick, standard and special shapes.	do	56, 052	56, 605	11, 076	60, 343	60, 127	11, 510
Ladle brick	do	229, 694	226, 918	14, 652	209, 511 49, 148	199, 913 48, 892	13, 490
Hot-top refractories. Sleeves, nozzles, runner brick, and tuyeres.	do	56, 047 65, 809	54, 944 65, 581	5, 517 8, 879	49, 148 55, 085	48, 892 54, 231	13, 490 5, 042 7, 789
Glass-house pots, tank blocks, upper structure, and floaters.	Short tons.	25, 601	25, 763	3, 819	20, 513	19, 404	3, 373
High-temperature bonding mortars	do	100 000	82, 745 99, 577	6, 877 5, 529	71, 402 101, 856	72, 427 101, 893	6, 272 5, 624
and dry ramming mixtures). Cast and castables (hydraulic set-	do	69, 534	69, 138	5, 628	83, 111	82, 387	6, 807
Ground crude fire-clay and high-	do	446, 426	444, 970	4,877	397, 144	397, 860	4, 892
alumina material. Other clay refractories	do	l	l	2, 687			2, 680
Total clay refractories				171, 086			161, 934
·				171,000			101, 934
Nonclay refractories: Silica brick, standard and special shapes.	equiv.	368, 653	374, 237	51, 686	336, 579	327, 997	46, 797
Magnesite and magnesite-chrome (magnesite predominating) brick,	dô	39, 846	39, 132	21, 800	38, 420	38, 150	21, 949
standard and special shapes. Chrome and chrome-magnesite (chrome predominating) brick,	do	57, 133	55, 949	27, 343	48, 708	48, 187	23, 658
standard and special shapes. Graphite and other carbon crucibles and retorts.	Short tons.	13, 737	13, 343	7, 425	9, 810	9, 844	5, 573
Other graphite and carbon refrac- tories.	do	1, 543	1, 527	677	1, 358	1, 329	593
Silicon carbide Mullite and kyanite				10, 940			7, 761
Sillimanite				4, 461 379			3, 766 268
Fused alumina and bauxite	1			3, 538			2, 560
Zirconia, forsterite, fused magnesia, pyrophyllite, and other nonclay shapes.				5, 995			4, 618
High-temperature bonding mortars_ Plastic refractories (including wet and dry ramming mixtures).	Short tons.	47, 136 133, 608	46, 787 133, 292	5, 644 10, 522	45, 802 141, 779	44, 990 141, 836	5, 283 11, 245
Other nonclay fefractory materials, sold in lump or ground forms (in- cluding ground silica and nonclay cast and castables).				5, 346			4, 572
Total nonclay refractories 1				155, 756			138, 643
Grand total refractories 1				326, 842			300, 577
	1	1	l	I	I	l	i

¹ Data for dead-burned magnesia or magnesite excluded to avoid duplication in other refractory products covered in this table (such as magnesite brick and shapes). Quantity and value of shipment of dead-burned magnesia or magnesite totaled 372,000 tons valued at \$16,620,000 in 1951, and 331,000 tons valued at \$15,752,000 in 1952.

The effect from application of the data to methods of manufacture.²⁷ of variations in raw material properties on the firing schedules of tunnel kilns of small cross section was discussed. Large reductions in firing time were said to be attained for slow-firing materials by controlling the particle-size distribution of the grog or by adding other clays or shales to the mix.28

The principles underlying the various processes used in the ceramic field were described with visual aids to make their application clear.²⁹ An article described the clay-preparation methods used at a Pennsylvania fire-clay mine.³⁰ Clay mining by power shovel, dragline, shale planer, scraper, and other mechanical loaders was described and the

advantages of each method were discussed.31

The trend toward plant modernization and improved methods of manufacture evident in 1951 continued in 1952 in the structural clay products industry.32

The record of a symposium on clay dealing with certain problems

of clay and laterite genesis was published in a book during 1952.³³

A book was published to provide studio potters and others with an elementary background of the technology of clays and clay-working processes.34

WORLD REVIEW

Australia.—Australia was said to have clays for every type of ceramic product. Almost every geological age contributed to Australia's ceramic raw materials.35

Canada.—The clay resources of Saskatchewan Province have been the subject of numerous reports and investigations during the last several decades. A report published in 1952 discussed the potentiali-

ties of ball clay and kaolin found in this Province.³⁶

France.—A comparison of the firing and shrinkage tests, X-ray examinations, and microscopic, chemical, and thermal analyses of clays from the bauxite district of southern France with the properties of Missouri flint clays showed that they were similar, although the

geologic age was different.37

Hungary.—Bentonite mining was begun in Hungary in the 1930's. In 1949 a bentonite-research committee was established to find ways to expand production during the 5-year economic development period that began in 1950. In 1952, plans were announced for a new factory to process bentonite on a large scale. It was said that a surplus of the processed material was available for export.³⁸

 ²⁷ Cook, R. L., Properties and Testing of Clay Materials: Brick and Clay Record, vol. 121, No. 3, September 1952, pp. 68-70, 72.
 ²⁸ Robinson, G. C., Limitations Imposed by Raw Materials on Firing Schedules: Jour. Am. Ceram. Soc., vol. 35, No. 1, January 1952, pp. 1-5.
 ²⁹ Norton, F. H., Elements of Ceramics: Addison-Wesley Press, Inc., Cambridge, Mass., 1952, 246 pp.
 ³⁰ Brick and Clay Record, Careful Clay Preparation Improves the Quality: Vol. 120, No. 2, February 1952, pp. 46-40

³⁰ Brick and Clay Record, Careful Clay Preparation Improves the Quality: Vol. 120, No. 2, February 1952, pp. 46-49.
31 Brick and Clay Record, vol. 121, No. 4, October 1952, pp. 44-45.
32 Brick and Clay Record, vol. 120, No. 2, February 1952, pp. 41-49, 50-51; No. 3, March 1952, pp. 45-48.
No. 4, April 1952, pp. 57-60, 62-63; No. 5, May 1952, pp. 34-36; No. 6, June 1952, pp. 46-49; vol. 121, No. 2, August 1952, pp. 45-48, 61-63; No. 3, September 1952, pp. 42-43, 52-55, 56-59; No. 4, October 1952, pp. 56-57; 60-63; No. 5, November 1952, pp. 54-56, 70-77.
33 American Institute of Mining and Metallurgical Engineers, Problems of Clay and Laterite Genesis: New York, N. Y., 1952, 244 pp.
34 Home, R. M., Ceramics for the Potter: Chas. A. Bennett Co., Inc., Peoria, Ill., 1952, 229 pp.
34 Home, R. M., Clay Deposits in Australia: Ceram. Age, vol. 60, No. 2, August 1952, pp. 37-38, 48-49.
35 Crawford, G. S., Whiteware Raw Materials From Saskatchewan: Resources Utilization Laboratory, Dept. of Natural Resources, Regina, Saskatchewan, Canada, September 1952, 7 pp.
47 Hahm, Louise, Comparative Study of American and French Clays: Bull. Am. Ceram. Soc., vol. 31, No. 3, March 1952, pp. 79-84.
38 Chemical Age (London), vol. 67, No. 1735, Oct. 11, 1952, p. 500.

Puerto Rico.—The Federal Geological Survey, in cooperation with the Puerto Rican Economic Development Administration, conducted a preliminary investigation in 1952 of an occurrence of bentonite in Puerto Rico. The deposit is on the western end of the island, 1½ miles southeast of Aguada, Barrio Malpaso.

The report was available on open file, and copies could be inspected at the Geological Survey Library, General Services Bldg., Washington, D. C., and at the Industrial Laboratories of the Puerto Rican Economic Development Administration, Hato Rey, Puerto Rico.³⁹

⁸⁹ Oil, Paint, and Drug Reporter, vol. 163, No. 10, Mar. 9, 1953, p. 46.

Cobalt

By Hubert W. Davis¹ and Charlotte R. Buck²

CHIEFLY as a result of a substantial increase in world production and much larger use of scrap, the cobalt supply position was greatly improved in 1952. World production was 1,700 metric tons larger than in 1951. Consumption of purchased scrap in the United States was 474,000 pounds greater. The improved supply position made it unnecessary for the International Materials Conference to recommend adoption of distribution plans for cobalt for the first quarter of 1953. However, the supply position did not improve enough to permit using cobalt in many less essential products in the United States.

During 1952 the I. M. C. allocated 6,334 metric tons of cobalt

(65 percent of the free-world total) to the United States.

Financial assistance by the Defense Minerals Exploration Administration under the Defense Production Act was provided Northfield Mines and Montana Coal & Iron Co. to explore for cobalt at the Stevenson property and Black Pine mine, respectively, in Lemhi

County, Idaho, during 1952.

In 1952 consumption of cobalt in the United States exceeded 10 million pounds for the first time and was 9 percent more than in 1951. Consumption of cobalt in high-temperature alloys, low-cobalt alloy steels, cemented carbides, and pigments was substantially higher than in 1951. These gains, however, were partly offset by losses in consumption of cobalt in high-speed steel, magnet alloys, alloy hard-facing rods, and ground-coat frit for porcelain enamel.

Cobalt-metal production in the United States in 1952 was 4 percent more than in 1951; but imports, which established a new record, were 47 percent greater. Sales of cobalt metal to consumers gained only 5 percent, but deliveries to the National Stockpile were 117

percent larger.

Production of cobalt oxide in the United States in 1952 exceeded that in 1951 by 18 percent, but imports declined 9 percent; sales gained 4 percent. Production of hydrate, salts, and driers was smaller than in 1951.

Prices of cobalt metal and oxide were unchanged throughout 1952. A comprehensive report on cobalt,³ prepared by the Bureau of Mines with the cooperation of the Geological Survey, was made available in 1952.

1 Commodity-industry analyst.

Statistical clerk.
 Bureau of Mines, Cobalt: Materials Survey, prepared for National Security Resources Board, 1952, 197 pp.

DOMESTIC PRODUCTION

Mine Production.—Despite the fact that the United States is the largest consumer of cobalt in the world, only a small part of its requirements has been furnished by domestic ore. (Table 1 shows domestic production and shipments through 1952.) However, there was a prospect of decreased dependence on foreign sources when full production is attained by Calera Mining Co. in Idaho and Cobalt-Nickel Reduction Co. in Missouri.

Production and shipments of cobalt ore in the United States in 1952 were 51 and 11 percent, respectively, greater than in 1951.

TABLE 1.—Cobalt ore produced and shipped in the United States through 1952

	Proc	luced	Shipped from mines		
			omppour.	OHI HIMOS	
Year	Gross weight (short tons)	Cobalt content (pounds)	Gross weight (short tons)	Cobalt content (pounds)	
Previous to 1921 (partly estimated)	(1) 93 20 31 23 6 24 16 27 5,048 19,127 26,241 27,103 18,407 19,770 15,620 22,348 25,721 19,599 28,660 28,485 21,159	730, 000 9, 300 1, 160 2, 009 1, 995 526 3, 023 1, 075 1, 705 133, 800 505, 377 735, 335 732, 098 828, 515 1, 099, 654 518, 378 645, 295 687, 464 521, 656 809, 328 902, 629 1, 363, 251			
Total	(1)	10, 233, 573	(1)	9, 337, 424	

¹ Data not available.

The Calera Mining Co., a wholly owned subsidiary of Howe Sound Co., displaced the Bethlehem Steel Co. as the chief producer of commercial cobalt ore in the United States in 1952. The company operates the Blackbird mine at Cobalt, Idaho, and the ore carries about 0.6 to 0.8 percent cobalt, about twice as much copper, and a little nickel and gold. The concentrate produced averaged 16.21 percent cobalt in 1952. The concentrate will be feed for the company refinery at Garfield, Utah, which will begin commercial production of metal in early 1953. The metal will be marketed in the form of granules, which, initially at least, will contain 95 parts cobalt and 5 parts nickel. Planned production is 1,650 short tons annually. According to the Howe Sound Co.: 4

Operations at this mine [Blackbird] continued on a standby basis, pending full utilization of its products by the cobalt refinery at Garfield. No large develop-

Howe Sound Co., Annual Report, 1952, pp. 5-7.

317COBALT

ment program was undertaken and underground work was confined to that necessary to prepare stopes for full tonnage production whenever required, largement of the concentrator was completed and the milling process was further tested and improved. During the last six months of the year the concentrator was operated at about 40 percent of capacity. Resulting copper concentrates were sold as produced and cobalt concentrates, except for amounts required for the work at the refinery, were stored. At the year's end there was a substantial

inventory of such concentrate.

Apartments, dormitories, and a community building, representing the last con-Apartments, dormitories, and a community building, representing the last construction of the project, were completed. To provide additional housing, a contract was made with the Defense Housing Authority of the United States Government for the construction of seventy-five dwelling units, without cost to the Company except for the installation of water and sewerage lines, the grading of necessary streets, and the extension of power lines into the area. The Company's portion of the work was completed before the end of the year and preliminary work by the contractor employed by the government agency was started. The administration of this sub-division, including rental or sales of the dwellings, will be handled by an agent of the Government.

Construction of the refinery, which was designed and built for the Company on a contract basis by Chemical Construction Corporation, a subsidiary of American Cyanamid Company, was not substantially completed until August. cal process used is owned by Chemical Construction Corporation. The chemi-

The refining process is completely new. A great deal of the equipment required had never before been constructed for commercial use under the peculiar corroding and eroding conditions incident to the high temperatures, pressures, and acid conditions of the process. The specification for mechanical design required the incorporation in the plant of the contractor's knowledge of the technology of this particular process and their experience in the metals recovery field and in chemical

plant practice.

Since the substantial completion of the plant it has been operated on an inter-Delays were originally caused by the malfunctioning of equipment used in connection with one of the preliminary stages of the actual chemical Subsequently, other mechanical difficulties and the failure of parts and equipment, including among other things, packing, valves, pipe lines, etc., to withstand the corrosive and abrasive conditions to which they were subject, have made continuous operation impossible. Experimentation and research have been required and many material combinations have been tested. At the present writing (March 12, 1953) a great number of the original troubles have been rectified. There are, however, some trouble spots remaining and every effort is being made to solve these problems and the most competent advice which is available is being used to obtain an early and satisfactory solution. Because of these frequent delays the quantity of refined cobalt produced has been small relative to the designed capacity of the plant.

The officers of the Company have been deeply concerned over the delay caused by the difficulties outlined above in bringing the plant to a commercial production stage. The chemistry of the process has, however, proved to be sound. Such chemical difficulties as have developed have been minor and once the remaining mechanical troubles have been eliminated it is our belief that the process will

prove satisfactory.

Bethlehem Steel Co. produced 39 percent less cobalt in 1952 than in 1951. The cobalt-bearing material (averaging 1.31 percent in 1952) is obtained as a flotation sulfide concentrate from the magnetite mined at Cornwall, Pa. The concentrate is shipped to the Pyrites Co., Wilmington, Del., where it is processed into metal and other cobalt products.

The Sullivan Mining Co., Kellogg, Idaho, continued to recover cobalt at its electrolytic zinc plant in 1952 but, as in previous years, made no shipments. In 1952 it recovered 97 short tons of residues

containing 7,114 pounds of cobalt.

The St. Louis Smelting & Refining Division of National Lead Co. continued to produce an iron concentrate carrying cobalt, nickel, and copper at its property near Fredericktown, Madison County, Mo. The cobalt content of the reject concentrate produced averages 3 to 4 percent. Construction of a 50-ton plant (head feed) to process the reject concentrate was begun in early 1952; completion is scheduled for late 1953. The plant will be operated by Cobalt-Nickel Reduction Co., a newly formed subsidiary of National Lead Co., and is expected to produce cobalt, nickel, and copper at an annual rate of 1,386,000,

1,852,000, and 1,418,000 pounds, respectively.

Refinery Production.—Although the United States is a small producer of cobalt ore, the country is an important producer of cobalt products, as is evident from table 2. Production of metal and oxide was 4 and 18 percent, respectively, greater than in 1951. The metal and oxide are produced chiefly from white alloy from Belgian Congo and concentrates from Pennsylvania. Consumption of cobalt contained in white alloy and ore by refiners exceeded that in 1951 by 5 percent. Production of salts and driers was 2 and 11 percent, respectively, smaller than in 1951. The salts and driers are made chiefly from cobalt fines, rondelles, hydrate, and scrap. Consumption of these products in the manufacture of salts and driers was 8 percent less than in 1951.

TABLE 2.—Cobalt products produced and shipped in the United States, 1951-52, in pounds

	Prod	uction	Ship	nents
Product	Gross weight	Cobalt content	Gross weight	Cobalt content
Metal. 1951 Metal. Oxide. Hydrate. Salts: Acetate. Carbonate. Sulfate. Other. Other.	1, 989, 952 637, 456 242, 264 87, 324 153, 308 675, 025 122, 869 8, 739, 612	1, 955, 145 457, 618 98, 444 20, 611 68, 922 144, 084 28, 174 541, 541	2, 022, 560 638, 896 244, 216 105, 875 160, 170 713, 541 124, 976 8, 801, 734	1, 987, 023 458, 455 97, 477 24, 762 71, 924 151, 684 28, 891 532, 141
Metal 1952 Oxide	2, 065, 447 745, 934 244, 656 109, 541 127, 844 609, 274 197, 443 7, 924, 714	2, 028, 964 539, 467 96, 326 25, 612 58, 694 128, 000 43, 917 480, 616	1, 932, 608 708, 674 244, 914 104, 913 111, 408 574, 038 179, 893 7, 409, 610	1, 898, 871 512, 581 98, 046 24, 572 51, 103 118, 120 39, 997 449, 269

TABLE 3.—Cobalt consumed by refiners or processors in the United States, 1948-52, in pounds of contained cobalt

Cobalt material ¹	1948	1949	1950	1951	1952
Alloy and ore	2, 715, 605 393, 725 107, 520 150, 826 4, 608	2, 607, 281 422, 493 95, 759 129, 444 2, 664 17, 565	2, 526, 755 856, 042 137, 822 80, 497 13, 944 48, 261	2, 857, 328 647, 016 70, 620 81, 710 6, 841 48, 549	3, 002, 087 581, 187 61, 921 79, 733 292 53, 081

¹ Total consumption is not shown, since the fines, rondelles, hydrate, and carbonate originated from alloy and ore; combining alloy and ore with these materials would result in duplication.

TABLE 4.—Refiners or processors of cobalt in the United States in 1952

Refiner or processor	Location of plant	Cobalt product 1 made	Cobalt raw ma- terial ¹ used
Advance Solvents & Chemical Corp. African Metals Corp. Allied Chemical & Dye Corp., General Chemical Division. Baker Chemical Co., J. T. Calera Mining Co. Ceramic Color & Chemical Manufacturing Co. Chase Chemical Corp. Cobalt Nickel Reduction Co. Ferro Chemical Corp. Hall Chemical Corp. Hall Chemical Co. Kennametal, Inc. Mallinckrodt Chemical Works. McGean Chemical Co. Mooney Chemicals, Inc. Nuodex Products Co., Inc. Pyrites Company, The Shepherd Chemical Co. Standard Oil Co. of California Stresen-Reuter, Inc., Frederick A. Witco Chemical Co.	Bedford, Omfo. Wickliffe, Ohio. Matawan, N. J. Cleveland, Ohio. Latrobe, Pa. St. Louis, Mo. Cleveland, Ohio. do. tlizabeth, N. J. Long Beach, Calif. Wilmington, Del. Cincinnati, Ohio. Richmond, Calif. Bensenville, Ill	DAC,EAEDD,EDDC,ECEDDC,EDDC,EDDC,ECEDD	A, F A C G A A F A A A A A A A A A A A A A A A A

¹ Abbreviations: A, metal; B, oxide; C, hydrate; D, salts; E, driers; F, ore or white alloy; G, cobalt scrap.

² Refinery under construction.

CONSUMPTION

Consumption of cobalt by industrial consumers increased for the third successive year to establish a new record of 10,818,493 pounds in 1952, a 9-percent gain over 1951, the previous record year. As in 1951, the largest single use for cobalt in 1952 was for cobalt-chromium-tungsten-molybdenum alloys, which represented 59 percent of the total quantity consumed and utilized 31 percent more than in 1951.

total quantity consumed and utilized 31 percent more than in 1951. The second-largest use for cobalt was for magnet alloys, which consumed 16 percent of the total in 1952; however, 20 percent less

was consumed for this purpose than in 1951.

Less cobalt was also used in high-speed steel, alloy hard-facing rods, and ground-coat frit for porcelain enamel, but more was used in low-cobalt alloy steels, cemented carbides, and pigments. Usage of cobalt

in cemented carbides doubled that in 1951. Cobalt salts and driers were utilized at a rate about 14 percent less than in 1951.

TABLE 5.—Cobalt consumed in the United States, 1948-52, by use, in pounds of contained cobalt

					
Use	1948	1949	1950	1951	1952
Metallic:					
High-speed steel	289, 391	283, 496	235, 227	316,064	223, 203
Other steel	132, 803	162, 638	252, 885	79, 885	115, 761
Permanent-magnet alloys	1,352,371	1, 194, 920	2, 834, 040	2, 052, 042	1,664,842
Soft-magnetic alloys	1,302,311	42, 965	37, 552	58, 652	18, 727
Cobalt-chromium-tungsten-molyb-				·	
denum alloys	1, 196, 608	1, 238, 083	2, 226, 199	4, 899, 591	6, 408, 537
Alloy hard-facing rods and materials_	116, 313	82, 965	260, 371	575, 268	505, 367
Cemented carbides	85, 314	118, 522	136, 935	297, 751	610, 750
Other metallic	115, 255	116, 344	208, 574	276, 222	132, 917
Total metallic	3, 288, 055	3, 239, 933	6, 191, 783	8, 555, 475	9, 680, 104
Nonmetallic (exclusive of salts and driers):					
Ground-coat frit	613, 745	424, 051	683, 358	448, 983	309, 167
Pigments	232, 725	188, 606	262, 441	50, 073	85, 262
Other nonmetallic	66, 699	84, 336	43,826	60, 462	42, 960
Total nonmetallic	913, 169	696, 993	989, 625	559, 518	437, 389
Salts and driers: Lacquers, varnishes,	010, 100	000,000	300, 020	000, 010	401,000
paints, inks, pigments, enamels, glazes,		les sa filip			
feed, electroplating, etc. (estimate)	818,000	765,000	1, 102, 000	818,000	701,000
Grand total	5, 019, 224	4, 701, 926	8, 283, 408	9, 932, 993	10, 818, 493

TABLE 6.—Cobalt consumed in the United States, 1948-52, by form in which used, in pounds of contained cobalt

Form	1948	1949	1950	1951	1952
Metal Oride Cobalt-nickel compound Ore and alloy Purchased scrap Salts and driers Total	3, 321, 516 850, 255 9, 413 20, 040 818, 000 5, 019, 224	3, 311, 229 606, 510 4, 315 14, 872 765, 000 4, 701, 926	6, 087, 048 964, 055 3, 434 436 126, 435 1, 102, 000 8, 283, 408	7, 534, 864 680, 452 1, 786 3, 438 894, 453 818, 000	8, 328, 552 418, 211 2, 736 1, 367, 994 701, 000 10, 818, 493

PRICES

Prices of cobalt metal and cobalt oxide remained unchanged throughout 1952. Metal (97–99 percent, in 500–600-pound kegs) was \$2.40 a pound f. o. b. Niagara Falls or New York, N. Y., and ceramic-grade oxide (72½–73½ percent, in 350-pound containers) was \$1.82 a pound (gross weight) east of the Mississippi River. The price for metal has been in effect since October 1, 1951, and that for ceramic-grade oxide since November 8, 1951.

FOREIGN TRADE 5

Imports.—For the third successive year, imports of cobalt into the United States increased to establish a new high of 15,031,000 pounds (cobalt content) in 1952 and were 45 percent larger than in 1951, itself a record year. Belgian Congo continued to be the chief source;

³ Figures on imports and exports (unless otherwise indicated) compiled by Mae B. Price and Elsie D. Page of the Bureau of Mines, from records of the U. S. Department of Commerce.

321 COBALT

in 1952 it supplied 72 percent of the total imports. Belgium supplied 25 percent of the total imports in 1952; however, 89 percent of the metal and oxide was produced from Belgian Congo alloy.

TABLE 7.-Cobalt imported for consumption in the United States, 1943-47 (average), and 1948-52, by class

[U.S. Department of Commerce]

		Alloy 1 ((pounds)	Ore			
Year				Pou	nds		
		Gross weight	Cobalt content	Gross weight	Cobalt content	Value	
1948	3–47 (average)		2, 813, 725 2, 179, 473 1, 657, 788 1, 792, 348 1, 904, 429 2, 841, 210	2, 659, 747 8, 167, 545 109, 009 164, 188 2 537, 309 215, 572	318, 127 870, 519 11, 965 18, 838 40, 303 17, 384	\$376, 928 647, 000 9, 344 16, 003 2 54, 015 2, 281	
	Metal		Ox	ide	Salts an		
Year	Pounds	Value	Pounds (gross weight)	Value	Pounds (gross weight)	Value	
1943–47 (average)	³ 5, 266, 521 5, 588, 327	\$2, 560, 523 7, 743, 679 9, 025, 595 311, 210, 872 16, 302, 356 327, 291, 006	446, 398 790, 300 360, 318 3 904, 650 436, 517 386, 935	\$583, 107 828, 667 384, 879 31, 009, 431 603, 855 620, 955	255 1, 374 359 4, 649 3, 157 12, 759	\$770 4, 514 1, 167 5, 927 4, 048 11, 328	

Reported by importer to Bureau of Mines; not separately classified by U. S. Department of Commerce.
 Value not available.
 Includes 146 pounds of zaffer, valued at \$215.
 Adjusted by Bureau of Mines.

TABLE 8.—Cobalt alloy, ore, metal, and oxide imported for consumption in the United States, 1951-52, by countries, in pounds

[U. S. Department of Commerce]

	Wh	nite alloy (d	(crude) and ore Metal					Oxide (gross weight)	
Country	1951		1952						
	Gross weight	Cobalt content	Gross weight	Cobalt content	1951	1952	1951	1952	
Belgian Congo Belgium	14, 083, 541	11, 904, 429	16, 113, 102	12, 841, 210	24, 929, 512 23, 000, 500	8, 120, 195 3, 539, 210		385, 220	
CanadaFrance	344, 872	36, 478			182, 700 6, 613				
Germany, West Mexico Morocco, French	192, 291	3, 825	214, 402 1, 170					185	
Netherlands Switzerland United Kingdom					1	1, 190		100 3	
	4, 620, 704	1, 944, 732	6, 328, 674	2, 858, 594	28, 119, 326	²12, 014, 920	436, 517	386, 935	

Reported by importer to Bureau of Mines.
 Adjusted by Bureau of Mines.

Historical table 9 shows imports of cobalt for 1923-52, by classes.

Corresponding figures for earlier years are not available.

During the 30 years 1923-52, receipts of metal comprised 54 percent of the cobalt imports, most of which were supplied by Belgium and Belgian Congo. Smaller quantities of metal have been received from Austria, Canada, Finland, France, Germany, Japan, Sweden, and United Kingdom. Imports of alloy represented the second largest quantity (34 percent); virtually all were from Belgian Congo. About 9 percent of the imports of cobalt have been in the form of oxide, chiefly from Belgium. Substantial quantities of oxide have also been received from Germany and Canada, and smaller quantities from Australia, Finland, and France. Cobalt ore has been about 3 percent of total imports; Canada has been the largest source, and most of the remainder comes from Australia and French Morocco.

TABLE 9.—Cobalt imported for consumption in the United States, 1923-52, in pounds

			Gross weight	,		To	tal
Year	Alloy	Ore	Metal	Oxide	Sulfate and other com- pounds	Gross weight	Cobalt cor tent (esti- mated)
923 924 925 925 927 928 927 929 930 931 932 933 934 935 936 937 938 939 940 941	439, 476 378, 848 7, 843, 828 9, 970, 589 10, 313, 867 10, 110, 879 8, 500, 516	101, 486 434, 443 199, 642 83, 895 27, 193 556, 119 748, 513 419, 110 1, 039, 760 587, 499 449, 984 611, 083 2, 643, 797 10, 556, 042 473, 529	225, 639 118, 952 198, 669 387, 076 407, 198 535, 817 806, 640 460, 251 164, 967 123, 112 281, 713 506, 119 563, 866 883, 377 1, 073, 129 938, 476 2, 310, 296 130, 321 554, 030 148, 304 286, 670 73, 088	258, 574 226, 703 287, 626 333, 132 369, 747 364, 154 475, 928 425, 881 321, 891 225, 896 568, 057, 083 813, 642 842, 847 373, 215 680, 644 756, 759 38, 002 58, 928	45, 644 797 13, 256 37, 342 55, 127 68, 281 64, 782 55, 303 46, 317 92, 098 99, 231 43, 787 80, 554 46, 658 56, 585 41, 867 76, 664 11, 468 4, 980 566 566 566 566 566 566 566 566 566 56	588, 576 375, 238 533, 972 912, 018 892, 454 1, 075, 750 1, 781, 793 1, 141, 077 617, 070 468, 299 1, 505, 120 2, 666, 625 1, 999, 461 2, 783, 437 2, 580, 660 1, 803, 542 3, 498, 687 11, 396, 267 113, 011, 326 111, 297, 168 20, 992, 575 9, 272, 857	426, 00 283, 00 408, 00 642, 00 680, 00 819, 00 1, 212, 00 303, 00 769, 00 1, 167, 00 1, 784, 00 1, 784, 00 1, 784, 00 1, 249, 00 1, 784, 00 1, 249, 00 1, 249, 00 1, 249, 00 1, 250, 00 1, 38, 798, 00 5, 626, 00 5, 626, 00 5, 798, 00
945	1, 648, 595 3, 751, 452 4, 879, 413 3, 691, 051 3, 979, 088 4, 083, 541	859, 940 657, 787 751, 438 8, 167, 545 109, 009 164, 188 2 537, 309 215, 572	946, 475 1, 935, 582 6, 035, 153 5, 266, 521 5, 588, 327 6, 706, 875 8, 119, 326 12, 014, 920	120, 672 1, 074, 630 752, 150 790, 300 360, 318 904, 650 436, 517 386, 935	224 350 530 1,374 359 4,649 3,157 12,759	10, 324, 456 5, 316, 944 11, 290, 723 19, 105, 153 9, 749, 064 11, 759, 450 13, 179, 850 18, 743, 288	4, 615, 00 3, 451, 00 8, 206, 00 8, 821, 00 7, 458, 00 9, 095, 00 10, 338, 00 15, 031, 00

In addition to classes shown, 4,796,000 pounds of Burmese speiss containing 335,721 pounds of cobalt were imported.
Includes 146 pounds of zaffer.

Exports.—Exports of cobalt from the United States are small; 61,288 pounds of metal, alloys, and cobalt-bearing scrap valued at \$208,838 was exported in 1952. Some oxide, salts, and driers are also exported, but the figures are not separately recorded by the United States Department of Commerce.

COBALT 323

Tariff.—Since June 7, 1951, the duty on cobalt oxide has been 5 cents a pound, sulfate 2½ cents a pound, and linoleate 5 cents a pound. The duty on salts and compounds continued at 30 percent ad valorem. Cobalt metal and ore enter the United States duty-free.

TECHNOLOGY

The Bureau of Mines conducted important research on cobalt in 1952. Tests were made on copper converter slag produced at the Boleo smelter, Santa Rosalia, Baja California, Mexico, using aluminum-silicon alloy as a reducing agent for recovering the cobalt. The converter slag assayed 1.05 percent cobalt, 6.35 percent Cu, 39.8 percent Fe, 0.15 percent Pb, 1.3 percent Zn, 3 percent Al₂O₃, 5 percent MgO, 3.1 percent CaO, and 17.9 percent SiO₂. These tests were made in a gas-fired, pot furnace at 1,450° C., with additions of 1, 3, and 5 percent aluminum-silicon alloy assaying 50.8 percent Al, 12.8 percent Fe, and 32 percent Si. The various tests gave similar results. Over 90 percent of the cobalt was recovered in an alloy assaying 3.3 to 4 percent Co, 20.3 percent Cu, 68.6 percent Fe, and 0.15 percent Al. The final slags assayed about 0.3 percent Co and 2.5 percent Cu. Further testing is planned, using other reductants to improve the cobalt recovery. Selective oxidation of the iron and fluxing with silica also will be investigated to produce a higher grade alloy.

The Bureau of Mines made ore-dressing tests on cobalt ore from

The Bureau of Mines made ore-dressing tests on cobalt ore from San Bernardo, Sonora; Mexico; the ore contained 3.45 percent Co, 14 percent Fe, 23.5 percent As, 0.04 percent Cu, <0.05 percent Ni, and 0.57 and <0.1 ounce Au and Ag per ton. Elimination of gangue constituents by flotation of the cobalt and gold minerals resulted in concentrates of 7.2 and 7.8 percent cobalt, with 1.3 ounces of gold per ton. Recovery was 86 and 89 percent of the cobalt and about 91 per-

cent of the gold.

Methods of recovering cobalt and nickel from two southeastern Missouri sources were developed at the Mississippi Valley Experiment Station (Rolla, Mo.) of the Bureau of Mines.⁶ According to the report:

Methods of recovery of cobalt and nickel from two southeastern Missouri sources have been developed at the Bureau of Mines Mississippi Valley Experiment Station. One source under investigation was pyrite and copper concentrates from the National Lead Co. mill at Fredericktown, Mo.; the other, copper-lead matte produced by the St. Joseph Lead Co. at Herculaneum, Mo.

It has been estimated that the present annual lead and copper sulfide ore production in southeastern Missouri contains approximately 2,000,000 pounds of

cobalt and 2,700,000 pounds of nickel.

Methods to treat the pyrite and copper concentrates include both hydro- and pyrometallurgy. Hydrometallurgical studies involved gaseous chlorination, oxidation of iron chloride, and water leaching of cobalt, nickel, and copper chlorides, which resulted in the extraction of over 90 percent of the cobalt, nickel, and copper. Separation of these metals and their purification in aqueous solution and studies on the production of high-purity cobalt by electrolysis are described. Pyrometallurgical investigations involved roasting to oxidize sulfides and selective molten reduction to produce a cobalt-nickel-copper regulus and an iron slag.

⁶ Kenworthy, H., and Kershner, K. K., Metallurgical Investigations of Southeastern Missouri Cobalt-Nickel Resources: Bureau of Mines Rept. of Investigations 4999, 1953, 37 pp.

This treatment also gave approximately 90 percent recovery of cobalt, nickel, and copper, in the form of a regulus. Methods for treatment of the matte were limited to pyrometallurgy. Blowing of the molten matte was used to fume off lead and zinc and slag the iron, which resulted in the formation of a high-metal pseudo-matte deficient in sulfur. This material remelted with sulfur and allowed to cool slowly produced a coarsely crystallized mass of sulfides. When remelted with metal oxide and allowed to cool slowly, a mixture of copper sulfide and iron-cobalt-nickel metallics was produced. The sulfide mass was subjected to flotation for separation, and the mixture, to magnetic methods. Overall recoveries in either treatment were about 75 percent for the cobalt and 90 percent for the nickel and copper. Increased recoveries should be attained by return of the converter slag to the lead blast furnace for resulfidization. These hydro- and pyrometal-lurgical investigations are being continued.

A method for recovering cobalt, nickel, and copper from the drosses and residues resulting from the production of Alnico permanent magnets has been described. The cleaned, dried, and crushed waste material is magnetically sorted, then reblended to correct proportions. Aluminum is added as a deoxidizer. Silica and sodium silicate are added to produce a marketable slag. The mix is melted. Just before pouring, iron oxide is added to remove excess carbon and silicon.

New ways of extracting cobalt, nickel, copper, and other metals from ores by chemical rather than by the usual smelting and refining methods have been announced by the Chemical Construction Corp. Some details of the process, which is described as basically new and revolutionary, have been published. According to this article:

Refiners using the new process will prepare ore concentrates by standard flotation methods, introduce the concentrate as a slurry into an autoclave along with water and an acid or ammonia. From the resulting leach solution, recovery of incividual metals is made by use of suitable reducing agents. By varying conditions during treatment, different metals in the ore are produced separately as pure powders, which may be pressed into forms ready to market, or in the case of copper, extruded as rods or pipe. The reagents are generally recovered. By manipulating the variables during reduction, selective separation of nickel, and/or cobalt, and/or copper can be made simultaneously. The separation is a continuous process.

First commercial use of the process was by the Calera Mining Co. at its refinery at Garfield, Utah. The process will also be used by Cobalt-Nickel Reduction Co. at its refinery under construction at Fredericktown, Mo., and by Sherritt Gordon Mines, Ltd., at its refinery under construction at Fort Saskatchewan, Alberta.

Because of the shortage of strategic materials, more attention has been turned toward alloys which could use high-temperature scrap. Haynes Alloy 99 is one development. Approximate composition is 11–13 percent cobalt, 20–22 percent chromium, 2–3 percent tungsten, 17–19 percent nickel, 3–4 percent molybdenum, 0.03–0.08 percent boron, and about 1 percent each silicon and manganese and the remainder iron. This alloy is looked upon by metallurgists as a modified N–155, which contains 20 percent each cobalt, chromium, and nickel, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.32 percent iron, and 0.3 percent carbon. Alloy 99 was used

⁷ Sherman, A. H., and Pesses, Marvin, Alnico Recovery Process Salvages Valuable Nickel, Cobalt: Iron Age, vol. 170, No. 1, July 3, 1952, pp. 115-119.

8 New Chemical Method Recovers Nickel, Cobalt, and Copper Metals: Mining Eng., vol. 4, No. 6, June 1952, pp. 565-567.

9 Steel, vol. 132, No. 1, Jan. 5, 1953, p. 282.

in substantial quantity as an alternate for more strategic alloys in 1952.

Methods of producing cobalt from pyrites were reviewed in a trade iournal article.10

Recent advances in the electrolytic extraction of cobalt have been reviewed.11

WORLD REVIEW

Virtually all cobalt occurs in combination with other metals, such as copper, nickel, iron, arsenic, lead, zinc, manganese, silver, and gold. Belgian Congo and Northern Rhodesia, where cobalt is associated with copper, and French Morocco, where cobalt occurs with nickel, gold, and silver, have been the chief producing countries in recent years, followed by Canada and the United States. These 5 countries These 5 countries supplied about 95 percent of the world output of cobalt in the 3 years 1950-52. Some cobalt production is derived from pyrites residues, but a complete record of such output is lacking.

TABLE 10.—World mine production of cobalt, by countries, 1943-47 (average) and 1948-52, in metric tons of contained cobalt

[Compiled	bу	Berenice	В.	Mitchell

Country	1943-47 (average)	1948	1949	1950	1951	1952
Australia (recoverable cobalt)	10 2 2, 519 88 2	10 2 4, 323 701	9 2 4, 403 281	10 5, 148 265	8 2 5, 715 2 432	(1) 6, 831 592
Finland (recoverable cobalt) Italy (content of ore) Japan (content of concentrates) Mexico (content of ore)	90 8 8	(¹) 1 (⁴)	(1) (4)	(1)	(1)	(1) (1) (1)
Morocco, French (content of concentrates). Northern Rhodesia ⁶ (content of white alloy)	191 753 2	221 367	209 402	420 670	680 678	1, 000 585
United States (shipments) (content of concentrates)	343	263	306	299	343	379
Total (estimate)	4, 300	6, 100	5, 900	² 7, 200	² 8, 300	10, 000

¹ Data not available. Estimate by author of chapter included in total.

Belgian Congo.—Belgian Congo continues to be the leading source of cobalt, and the Union Minière du Haut-Katanga is the sole producer For 6 successive years output has established new records; in 1952 it was 6,831 metric tons, a gain of 20 percent over 1951. A further increase is anticipated in 1953 as a result of putting into service a second 3-phase furnace of 2,160 kv.-a. and enlarging the cobalt refinery at Jadotville.

¹ Data not available. Estimate by author of chapter included in total.

2 Revised figure.

3 Figures comprise Canadian ore processed in Canada and exported (irrespective of year when mined), plus cobalt content of concentrates made at Port Colborne from copper-nickel ore; however, figures exclude the cobalt recovered at Clydach, Wales, from Canadian nickel-copper ores, for which estimate by author of chapter has been included in world total.

4 Less than 0.5 ton.

5 Imports into United States.

6 Vaccanded Line 30 of vaccatated.

⁶ Year ended June 30 of year stated.

¹⁶ Chemical Age (London), Cobalt Production From Roast Pyrites: Vol. 66, No. 1695, Jan. 5, 1952, pp.

<sup>23-25.

11</sup> Cuthbertson, J. W., Recent Advances in the Electrolytic Extraction of Manganese, Chromium and Cobalt: Chemistry and Industry (London), No. 48, Nov. 29, 1952, pp. 1165-1170.

Some of the figures on production of cobalt in Belgian Congo published previously have been in error. In order that an accurate record will be available, the Union Minière has furnished the figures for 1925–52 shown in table 11.

TABLE 11.—Cobalt produced in Belgian Congo from earliest production through 1952 1

Year	Metric tons	Year	Metric ton
1924	273 126 328	1940	
1926 1927 1928 1929	- 435 - 444 - 704	1942 1943 1944 1945	2, 09 1, 94
1930 1931 1932	755 295 201	1945. 1946. 1947. 1948.	2, 15 3, 59
1933	315 181 177	1949 1950 1951	
1936 1937 1938	318 978 1, 131 1, 213	1952Total	50, 91

¹ Figures for 1924-25 represent content of white alloy, those for 1926-44 represent salable production, and those for 1945-52 represent production of recoverable cobait.

The operations of Union Minière in Belgian Congo have been described ¹² in much detail by its chairman. Much information is also given in the chapter of this series for 1951.

Canada.—According to the Dominion Bureau of Statistics, production of cobalt (content) was 1,305,400 pounds in 1952 compared with 951,607 pounds (revised figure) in 1951. These figures, however, do not include the cobalt recovered by Mond Nickel Co. at its Clydach (Wales) nickel refinery from the nickel-copper ores of the Sudbury district.

As a result of increased demand, there was greater activity in cobalt in Northern Ontario in 1952. The new cobalt concentrator (daily capacity, 150 tons) of Silver Miller Mines, Ltd., started operating in September 1952 on ore from the La Rose mine. The company entered into a contract with the United States Government to furnish concentrates containing 5 million pounds of cobalt. A major consolidation, involving the merger of Penn-Cobalt, Cobalt Lode, Hellens Mining & Reduction, Gilgreer Mines, and unspecified assets of Silanco Mining & Refining, was reported 13 being negotiated between a Toronto group and Quebec Metallurgical Industries, Ltd., a subsidiary of Ventures, Ltd., and Frobisher, Ltd. It was also reported that Quebec Metallurgical Industries, Ltd., had completed negotiations for constructing a smelting and refining plant to produce cobalt, nickel, and silver at Cobalt, Ontario.

The smelting, refining, and metallurgical works of Deloro Smelting & Refining Co., Ltd., at Deloro, were being expanded and modernized. The company, which operates no mines, treats ores from Northern

 ¹² Sengier, E. B., Katanga's Mineral Empire Based on Many Metals: Eng. and Min. Jour., vol. 152
 No. 11, November 1951, pp. 86-89; No. 12, December 1951, pp. 92-96.
 American Metal Market, vol. 59, No. 224, Nov. 21, 1952, p. 8.

327 COBALT

Ontario, Northwest Territory, and French Morocco, acts as the sole purchaser of cobalt for the Canadian Government stockpile, and

refines ore to metal for the United States Government.

The International Nickel Co. of Canada, Ltd., continued to produce cobalt concentrate at its Port Colborne refinery. The cobalt is contained in the Sudbury nickel-copper ores. According to the company. recovery of cobalt concentrate has been substantially increased as a result of process improvements at the refinery.

Falconbridge Nickel Mines, Ltd., began commercial recovery of cobalt from the nickel-copper ores of the Sudbury district in July 1952.

A paper on recent developments in Northern Ontario was presented.14 It is reported 15 that an occurrence of cobalt in the Mount Wright area, New Quebec, was being explored by surface work and diamond Hand-picked specimens of the ore were said to assay as high drilling. as 11 percent cobalt, with low values in nickel.

The Eldorado Mining & Refining (1944), Ltd., continued to produce cobalt-nickel speiss at its Port Hope refinery from pitchblende mined at Port Radium, Northwest Territory. The speiss averages about 14

percent cobalt.

Construction was begun in May 1952 on the refinery of Sherritt Gordon Mines, Ltd., at Fort Saskatchewan, Alberta; completion was scheduled December 1953. Annual production planned from concentrates from company mines at Lynn Lake, Manitoba, is 150 tons

of cobalt, 8,500 tons of nickel, and 4,000 tons of copper.

Finland.—The cupriferous pyrite of the Outukumpu mine in eastern Finland contains 0.1 to 0.2 percent cobalt, 4 to 4.45 percent copper, 27 percent iron, 1 percent zinc, and 26 percent sulfur. 16 The sulfur contained in the pyrite concentrate produced is extracted by roasting in Finland. After the roasting process the remaining pyrite sinter, which contains 0.4 to 0.5 percent cobalt, is shipped to Duisburg, Germany, for recovery of the cobalt, iron, zinc, and copper. Production of cobalt derived from roast pyrites in West Germany was 80 to 90 metric tons in 1948 17 and reached nearly 300 tons in 1950.18

French Morocco.—Production of cobalt concentrate in French Morocco was 9,136 metric tons containing 1,000 tons of cobalt in 1952 compared with 6,255 tons containing 680 tons of cobalt in 1951. Société Minière de Bou-Azzer et du Graara, Casablanca, is the sole The cobalt concentrate contains 10 to 12 percent cobalt. During 1952 a substantial quantity of French Morocco concentrate was refined to metal by Deloro Smelting & Refining Co. at Deloro,

Ontario, Canada, for the United States Government.

Northern Rhodesia.—The Rhokana Corp., the sole producer in Northern Rhodesia, has been producing cobalt since 1933. The output of alloy was 1,698 short tons containing 645 tons of cobalt in the year ended June 30, 1952, compared with 1,978 tons containing 747 tons in 1951. The grade of ore treated was 0.156 percent cobalt in 1952 compared with 0.155 percent in 1951. Concentrates produced

¹⁴ Hellens, A. D., Recent Developments in the Cobalt Area; Canadian Min. Jour., vol. 73, No. 6, June 1952, pp. 73-78.

15 Canadian Mining Journal, vol. 73, No. 8, August 1952, p. 64.

16 Young, R. S., Cobalt: Reinhold Publishing Corp., New York, 1948, p. 19.

17 Mining World, vol. 11, No. 11, October 1949, p. 42.

18 Chemical Age (London), Cobalt Production from Roast Pyrites: Vol. 66, No. 1695, Jan. 5, 1952, p. 23.

contained 1.59 percent cobalt in 1952 compared with 1.56 percent in 1951. The company completed its electrolytic cobalt refinery in January 1952, but because of the difficulties usually encountered in a new process production of metal did not begin until August 1952. Initial shipments of granules were made in September. A plant to produce cobalt carbonate was under construction.

Norway.—Falconbridge Nickel Mines, Ltd., began producing electrolytic cobalt at its new refinery at Kristiansand in July 1952. The cobalt is recovered from the matte produced at Falconbridge, Ontario.

from nickel-copper ores.

Uganda.—In its initial exploration of one region of the Ruwenzori Range, Kilembe Mines, Ltd., has located a large tonnage of ore which probably will average 1.95 percent copper and 0.2 percent cobalt. The deposits probably will be in production in 4 years and will produce 2,000 to 3,500 tons of ore daily. The mine and concentrator will get power from the Namwamba River hydroelectric plant, and concentrates will be shipped by the 160-mile railway to Kampala. Both the railway and the power plant are expected to be completed at about the time the mine is ready for production.

¹⁹ Engineering and Mining Journal, vol. 153, No. 1, January 1952, p. 142.

Columbium and Tantalum

By Robert F. Griffith 1

OLUMBIUM and tantalum were among the rare metals most vital in 1952 to the United States defense program. Columbium is one of the key alloying materials used to impart high-temperature strength and stability in alloys suitable for operating temperatures up to 1,500° F. and above. Heretofore, tantalum has been used principally as a metal in the field of electronics and in chemical equipment and as tantalum carbide in the production of wire-drawing dies and sintered cutting tools. Recently, the largest use of tantalum has been in the manufacture of ferrotantalum-columbium, because tantalum was found to be usable in conjunction with, and as a substitute for, columbium in making high-temperature alloys.

During the past decade the United States has depended on foreign sources for over 99 percent of its supply of columbium-tantalum;

Nigeria and Belgian Congo supplied over 90 percent.

The principal mineralogical source of columbium and tantalum is a completely isomorphous mineral series containing columbium, tantalum, iron, and manganese oxides. The mineral is called columbite if the columbium pentoxide content exceeds that of tantalum pentoxide and, conversely, tantalite if the tantalum pentoxide content is in excess. Columbite-tantalite is recovered principally from placer deposits in conjunction with tin (cassiterite). Smaller quantities are recovered as a byproduct of pegmatite mining.

To encourage increased production of columbium-tantalum concentrates of both domestic and foreign origin, the Defense Materials Procurement Agency on May 29, 1952, announced a Government-guaranteed purchase program, which included an incentive bonus to Fansteel Metallurgical Corp., North Chicago, Ill., was designated as purchasing agent. Revision 1 of the announcement, dated July 28, 1952, designated the Wah Chang Corp., New York, and the Emergency Procurement Service, General Services Administration, as additional purchasing agents. Amendment 1 to revision 1, dated October 24, 1952, provided for the purchase of small lots of columbium-tantalum ores from domestic producers. On May 2, 1952, the National Production Authority issued Schedule 5 to Order M-80 modifying controls that had limited the use of columbium and tantalum.

DOMESTIC PRODUCTION

Mine Production.—Columbite recovered as a byproduct of spodumene mining by the Foote Mineral Co., Kings Mountain, N. C., was largely responsible for increased domestic production in 1952. Mine shipments were also reported from Colorado and South Dakota.

¹ Commodity-industry analyst.

Domestic production, however, still accounted for less than 1 percent of the total United States supply. Columbium and tantalum have been recovered in the United States principally as byproducts of pegmatite mining in the form of columbite-tantalite and microlite (a calcium tantalate). The possibility of recovering Cb-Ta in the United States as a byproduct of large-scale placer mining had been overlooked until recently. Extensive deposits of columbium-bearing gravels have been discovered in Valley County, Idaho, and plans are underway to exploit these deposits by dredging. The columbium occurs in columbite and in the following columbates of uranium and the rare earths: Euxenite, samarskite, and fergusonite. A columbite placer deposit was also investigated in Elmore County, Idaho. Recently, monazite placer deposits in the Southeastern States have been found to contain interesting quantities of columbium associated with ilmenorutile.

TABLE 1.—Columbium and tantalum concentrates shipped from mines in the United States, 1943-52

Year	Columbium	concentrates	Tantalum concentrates		
. Vai	Pounds	Value	Pounds	Value	
1943	5, 771 3, 208 1, 149	\$1, 465 917 287	1 9, 411 1 7, 204 5, 500 3, 475	\$27, 621 23, 317 13, 366	
1047. 1048. 1949. 1950. 1951. 1952.	100 (3) (4) (5) 5, 385	(9) (3) (3) (3) (3) (6, 723	3, 475 3, 259 500 4 1, 020 4 1, 000 4 925	8, 793 8, 677 (2) 1, 785 2, 150 1, 528	

1 Principally microlite.

² Bureau of Mines not at liberty to publish.

Columbite and tantalite production not differentiated and given under tantalum concentrates.

4 Tantalite-columbite.

The presence of columbium associated with titanium minerals in the Magnet Cove area and in bauxite in Pulaski and Saline Counties, Ark., has been known for some time. Fractionation of black sand from Arkansas bauxite shows the columbium to be concentrated chiefly in an ilmenite fraction containing as much as 0.86 percent Cb.² The Bureau of Mines is investigating the recovery of columbium from this large potential source under a memorandum agreement with DMPA, dated Oct. 6, 1952.

Refinery Production.—The Electro Metallurgical Division, Union Carbide & Carbon Co., produced ferrocolumbium and ferrotantalum-columbium in 1952 at its plant in Niagara Falls, N. Y. Fansteel Metallurgical Corp., North Chicago, Ill., produced tantalum and columbium sheet, rod, wire, powder, fabricated products, and miscellaneous alloys and compounds. A contract to expand production of columbium and tantalum was negotiated by DMPA with the Fansteel company. Kennametal, Inc., Latrobe, Pa., consumed columbium-tantalum ores to produce various alloys, carbides, and miscellaneous products.

² Fleischer, Michael, Murata, K. J., Fletcher, Janet D., and Narten, PerrylF., Geochemical Association of Niobium (Columbium) and Titanium and its Geological and Economic Significance: Geol. Survey Circ. 225, 1952, 13 pp.

CONSUMPTION AND USES

Domestic consumption of columbium-tantalum minerals, in terms of contained metal, was estimated at 300 to 400 tons in 1952. Columbium is used almost exclusively in ferrous and nonferrous alloys. The largest use is in the form of ferrocolumbium and ferrotantalumcolumbium in the manufacture of stabilized austenitic (chromiumnickel) stainless steels. The carbon in the alloy combines preferentially with the columbium rather than with the chromium. **Crystal** boundaries thus retain their chromium content, and intergranular and intercrystalline corrosion is inhibited. The weldability and creep and impact strength are also increased. American Iron and Steel Institute (AISI) type 347 stainless steel, which contains 18 percent Cr, 11 percent Ni, and Cb equal to 10 times the carbon content, is one of the more important types. The use of columbium in specialized, nonferrous alloys and in cemented carbides is increasing. Kentanium, a titanium-columbium carbide, with or without tantalum, is used in turbine blades and nozzle vanes for jet engines. The ingredients are mixed and ground to very fine particle size in a ball mill, pressed as near to the desired shape as possible, given further shaping as required with or without presintering, and then sintered out of contact with air.3 Columbium has limited applications in electronic tubes, lowvoltage rectifiers, electrodes for welding stainless steels, manufacture of special magnet alloys, and in ceramics, as the oxide. The estimated distribution of columbium in 1952 was as follows, by use: As ferrocolumbium and ferrotantalum-columbium in steel, 60 percent; specialized nonferrous alloys, 30 percent; cemented carbides, 5 percent; welding rods and miscellaneous, 5 percent.

In many respects tantalum is analogous to the noble metals, gold, silver, and the platinum group. Unlike the noble metals, however, tantalum is not found in elemental form in ore deposits. Because of its inert properties, ductility, malleability, and toughness, tantalum was used before 1952 largely in the chemical industry as a material of construction and in electronic applications. With the increased use of hightemperature metals, the demand for columbium exceeded its availabil-To alleviate this shortage, Electro Metallurgical Co. developed a ferrotantalum-columbium alloy containing approximately 20 percent Ta and 40 percent Cb; columbium ores usually contain substantial quantities of tantalum. From the standpoint of high-temperature strength, Cb and Ta can be used interchangeably or in combination; however, on a weight basis Ta has the disadvantage of an atomic weight double that of Cb. As a result of ferrotantalum-columbium being substituted for ferrocolumbium, the largest use of Ta in 1952 was in the steel and alloy industry. Tantalum in metal form continued to have important uses in electronic tubes, electrolytic capacitors,4 chemical equipment, and surgical and dental supplies;5 in the form of the carbide, in dies and cutting tools; and, as K_2 TaF₇, as an activator in the synthetic rubber industry. This latter use has been temporarily discontinued. As a material of construction for corrosive

Redmond, John C., and Graham, John W., Field of Cemented Carbides Expanded by Titanium Compositions: Metal Prog., vol. 61, No. 4, April 1952, pp. 67–70.

Technical Information Filot, Library of Congress, July 24, 1952, p. 3926; Sept. 23, 1952, p. 4085; Nov. 6, 1952, p. 4234.

Science News Letter, vol. 62, No. 17, Oct. 25, 1952, p. 258.

chemicals, tantalum, because of its high thermal conductivity and ability to be rolled in extremely thin foil, is used principally in heat exchangers of the shell-and-tube, coil, and bayonet type. The estimated distribution of tantalum in 1952 was as follows by use: As ferrotantalum-columbium in steel, 28 percent; electronic uses, 25 percent (electronic tubes, 18 percent; electrolytic capacitors, 7 percent) chemical equipment, 20 percent; as tantalum carbide, 16 percent; in the synthetic rubber industry, 6 percent; and for surgical, dental, and other purposes, 5 percent.

STOCKS

Columbium-tantalum ores and concentrates containing not less than 35 percent combined Cb₂O₅ and Ta₂O₅ are purchased for the National Stockpile. Ores of lower grade are considered for purchase if the seller bears the cost of upgrading to the minimum specifications. Quantitative data on industry or Government stocks of columbium-tantalum at the end of 1952 were not available for publication.

PRICES

The columbium-tantalum purchase program announced by DMPA on May 29, 1952, governed largely the market quotations for these ores for the remainder of the year. Specifications and prices were quoted in schedule (a) as follows: For columbium ores and concentrates containing not less than 35 percent combined Cb₂O₅ and Ta₂O₅ and having a Cb₂O₅-Ta₂O₅ ratio of not less than 1 to 1, c. i. f. Atlantic ports or f. o. b. depot of purchasing agent, \$1.40 per pound of combined contained pentoxides, plus \$0.02 per pound for each additional percent above 35 percent, plus a 100-percent incentive bonus to the producer. ties not to exceed the following maximum limits: TiO2, 8 percent; SnO₂, 8 percent; FeO, 25 percent; MnO, 13 percent. Where the seller is not the actual producer, he receives only the base purchase price; and the bonus is paid to the producer. The above schedule, including bonus, is equivalent to the following prices per pound of ore: 35 percent, \$0.98; 50 percent, \$1.70; and 65 percent, \$2.60. Special provisions were made for high-grade tantalum ores; however, the price on the basis of combined pentoxides was comparable to that quoted in schedule (a). Minimum lot acceptable under the original program was 2,000 pounds. Revision 1, amendment 1, dated October 24, 1952, provided for the purchase of small lots from domestic pro-Quantities less than 2,000 pounds are accepted at purchase depots in Custer, S. Dak., Spruce Pine, N. C., and Franklin, N. H., on the basis of visual inspection. Lots accepted are presumed to contain 50 percent combined pentoxides and are purchased at a flat rate of \$3.40 per pound of contained pentoxide or \$1.70 per pound of The seller may request a chemical analysis at his concentrate. expense. Before the Government purchase program, columbite was quoted in the Metal Bulletin (London) at 256s. (about \$35.84) per unit contained pentoxides, c. i. f. Atlantic ports, 50-55 percent com-This quotation is equivalent to \$0.90 per pound for bined oxides. 50-percent ore compared to the \$1.70 per pound Government price.

⁶Chemical Engineering, Tantalum Goes Chemical: Vol. 59, No. 9, September 1952, pp. 252-254.

Ferrocolumbium, 50-55 percent Cb, remained steady at \$4.90 per pound of contained Cb. Ferrotantalum-columbium was quoted at \$3.75 per pound of contained Cb plus Ta. Columbium metal was quoted in American Metal Market as follows: Powder, \$62.75 per pound; rod, \$280 per kilogram; and sheet, \$250 per kilogram. Tantalum metal was quoted in E&MJ Metal and Mineral Markets as follows: Powder, \$33.50 per pound; rod, \$160.60 per kilogram; and sheet, \$143 per kilogram. A leading producer offered tantalum compounds at the following prices, subject to discount: Tantalum carbide (TaC), \$31.50 per pound; tantalum oxide (Ta₂O₅), \$19.85 per pound; and potassium tantalum fluoride (K₂TaF₇), \$9.00 per pound.

In addition to the principal consumers and Government purchasing agents, other buyers of Cb-Ta ores and concentrates include: Ayrton Metal Co., New York, N. Y.; Beryl Ores Co., Arvada, Colo.; Derby & Co., Inc., New York, N. Y.; DeRewal International Rare Metals Co., Philadelphia, Pa.; Foote Mineral Co., Philadelphia, Pa.; Frankel Co., Inc., Detroit, Mich.; Mercantile Metal & Ore Corp., New York, N. Y.; Metal Hydrides, Beverly, Mass.; Metal Traders, Inc., New York, N. Y.; Miles Metal Corp., New York, N. Y.; Philipp Bros., Inc., New York, N. Y.; Transatlantic Metal & Ore Corp., New York,

N. Y.; and Hyman Viener & Sons, Richmond, Va.

FOREIGN TRADE 7

Columbite imports increased about 20 percent compared with those of 1951 but were still over 50 percent under the peak year of 1945. Nearly 80 percent of the supply was from Nigeria. Imports of tantalite, largely from Belgian Congo, also increased substantially over the 1951 figure. The weight of concentrates imported from different countries does not give a true view of relative values because of the wide variance in grade. To present more usable data, an estimate of the pentoxide content of 1952 columbite-tantalite imports, based on analyses of selected lots for a 6-month period, is given in table 4. In addition to columbite-tantalite concentrates, large quantities of Cb-Ta-bearing tin slags were imported from Belgian Congo, Portugal, and United Kingdom (Nigeria). These slags, which contained 14 to 21 percent combined columbium-tantalum pentoxides, were imported by less than three firms, and quantitative data are not available for publication. United States imports of Cb-Ta concentrates were 63 percent of the reported world production; United Kingdom and Belgium are believed to be the other principal recipients. The only United States imports of Cb-Ta in other forms were 11,200 pounds of ferrocolumbium, valued at \$38,220 from United Kingdom.

No columbium ore was exported from the United States. Four pounds of columbium metal valued at \$146 was exported to Canada. Exports of tantalum ore, metal, alloys, and scrap, in crude form, totaled 1,058 pounds valued at \$36,230. Exports of tantalum primary forms were 1,360 pounds valued at \$89,054. These exports were principally to Sweden, France, West Germany, Canada, Switzer-

land, United Kingdom, and Australia.

⁷ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 2.—Columbite imported for consumption in the United States, 1943-52, by countries, in pounds [U. S. Department of Commerce]

Country	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952
rgentina	2, 685									
Belgian CongoBelgium-Luxembourg 1					2, 734	113, 813 27, 125	198, 585	400, 868	177, 273	354, 73
BoliviaBrazil			1 1.034	1 26 834						14,67
ritish Guiana ndia				l			8, 568	10, 981	6,377	5, 01 80
apan 1			1	1	1			31,835		
Mozambique			1							20, 20 21, 20
Jigeria Portugal	1 2, 350, 329	3,658,084	4, 220, 691	2, 411, 695	2, 818, 900		1, 349, 126	1, 280, 930	⁸ 1, 336, 041	1, 450, 78
Jganda 4 Jnion of South Africa	3 111	23,603	33, 381			1 001		L	1 _ 1	4,62
Inited Kingdom 1	4, 020					1,821				6, 03
Total: Pounds Value	2, 382, 050 \$844, 544	3,684,530 \$1,196,899	4, 277, 152 \$1, 312, 346	2, 426, 246 \$742, 804	2, 821, 634 \$857, 550	1, 973, 728 \$658, 950	1, 557, 479 \$561, 945	1, 726, 717 \$752, 926	* 1, 536, 773 * \$1, 362, 393	1, 878, 13 \$2, 368, 76

Presumably country of transshipment rather than original source.
 Classified by U. S. Department of Commerce as from Chile, which is believed to be the country of transshipment only.
 Revised figure.
 Classified by U. S. Department of Commerce as British East Africa.

TABLE 3.—Tantalite imported for consumption in the United States, 1943-52, by countries, in pounds [U. S. Department of Commerce]

Country	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952
Anglo-Egyptian Sudan		98								
Argentina	2, 420	8, 233				1,074				
Australia. Belgian CongoBelgium-Luxembourg 1	157, 073	9, 315 332, 312	21, 125 485, 986	263, 097	9, 468 311, 526 3, 199	93, 939	38, 086	211, 433 85, 683	1, 467 210, 402	1, 590 236, 701
Brazil	416, 874	440, 460 700	68, 229	98, 072	71, 634	9, 202	63, 478	13, 378	20,876	49, 813
ndia		2, 442								
apan 1								10,691		
Malaya										2, 087
Mozambique	3, 567	4, 751								·
Netherlands 1 Nigeria Portugal	5, 757	18, 116	31, 410		7, 998	14, 559	4, 480	7, 543	5, 700	2, 278
outhern Rhodesia.	40, 481	12, 794	9, 967		14, 928	,				35, 428 233 741
Jganda 2 Union of South Africa	3, 063 1, 332	7, 277 632	11, 348 2, 027	1,884						
Total: PoundsValue	643, 080 \$724, 066	837, 130 \$699, 473	630, 092 \$453, 141	363, 553 \$302, 397	418, 753 \$386, 934	127, 688 \$82, 799	136, 664 \$237, 292	328, 728 \$244, 205	238, 445 \$190, 383	328, 866 \$398, 849

¹ Presumably country of transshipment rather than original source. ² Classified by U. S. Department of Commerce as British East Africa.

TABLE 4.—Estimated grade of columbite and tantalite concentrates imported for consumption in the United States, 1952, by countries

			Columbite 1			Tantalite ²				
Country	Cb ₂ O ₅ 3		Ta ₂ O ₅ ³		Value	Та	2O5	Cb ₂ O ₅		
	Percent	Pounds	Percent	Pounds	Value	Percent	Pounds	Percent	Pounds	Value
Australia	40.3 59.6	142, 957 8, 748	30.7 11.2	108, 903 1, 644	\$515, 810 19, 406	47. 1 39. 5	749 93, 497	10.5 31.6	167 74, 798	\$3, 487 259, 812
Brazil British Gulana	48.7 56.0	2, 443 448	25. 8 16. 0	1, 294 128	7, 768	60.1	29, 938	29.1	14, 496	93, 091
Aalaya Jozambique	53. 6 39. 7	10, 862 8, 418	12. 7 32. 5	2, 574 6, 892	34, 146 28, 026	39.9	833	35.2	735	4,059
Nigeria Portugal Southern Rhodesia Spain	58.8	853, 063	8.3	120, 415	1,749,010	54. 0 40. 3 40. 0 40. 0	1, 227 14, 277 93 296	19. 0 30. 5 29. 2 35. 0	432 10,806 68 259	4, 262 33, 119 563 456
Jganda Jnion of South Africa	31.8 37.6	1,470 2,267	16.6 34.7	767 2, 092	4, 863 9, 040					
Total		1, 030, 676		244, 709	2, 368, 769		140, 910		101, 761	398, 849

Average grade of columbite imports is 67.9 percent combined pentoxides.
 Average grade of tantalite imports is 73.8 percent combined pentoxides.
 To obtain metallic content, multiply Cb₂O₅ by 0.699 and Ta₂O₅ by 0.819.

No tariff restrictions apply to columbite-tantalite concentrates imported into the United States. Import duties on refined products range from 12.5 percent ad valorem on ferrocolumbium to 40 percent on special alloys. Columbium-tantalum ore, metal, alloys, scrap, and primary forms remained on the positive list of products requiring export licenses to foreign destinations (excepting Canada).

Dealers and producers of Cb-Ta products in foreign countries include: H. F. Pollock & Co., Ltd., Montreal, Canada; Murex Co., Rainham, Essex, England; Hoboken Works of the Union Minière du Haut-Katanga near Antwerp, Belgium; and Societa per Aziona

Silta, Milan, Italy.

TECHNOLOGY

Columbium was named by its discoverer, C. Hatchett, an English chemist, who discovered it in 1801 while analyzing a mineral from New London, Conn. The following year Ekeberg, a Swedish chemist, discovered and named tantalum. In 1846 H. Rose thought he had found a new element in tantalite and called it niobium; however, it was found later that columbium and niobium were one and the same. Both names have been used interchangeably for many years. Columbium is favored by United States and British mining and metallurgical

engineers.

The density of Cb-Ta minerals enables them to be concentrated with other heavy minerals by gravity methods; sluices, jigs, spirals, and tables are commonly used in conjunction with screen sizing. Columbite-tantalite is separated from other heavy minerals by a combination of high-tension electrostatic and high-intensity electromagnetic means. Concentrates from Nigerian placer deposits, which are worked primarily for cassiterite, are dried and treated by magnetic separators to remove the magnetic constituents: Magnetite, ilmenite, columbite, monazite, and magnetic cassiterite. The magnetic fraction is retreated to separate minerals of different permeabilities. Columbite, monazite, and magnetic cassiterite are weakly magnetic. Columbite and magnetic cassiterite are separated on air flotation tables, whereas columbite and monazite are separated electrostatically.

Concentrates from the open pit pegmatite tin-mining operation of Compagnie Gèologique et Minière des Ingènieurs et Industriels Belges (Geomines), Manono, Belgian Congo, are dried and treated magnetically to remove tantalite-columbite. About 65 to 75 percent of the tantalite-columbite is recovered in a concentrate containing 65 to 75 percent combined pentoxides. The remaining Cb-Ta reports in the final slag from tin smelting and is shipped to the United States for further refining. The recovery of Cb-Ta from tin slags was investigated successfully by industy and by the Bureau of Mines. As a result, the metallic content, Cb plus Ta, of tin slags imported for consumption in the United States from Belgian Congo and other sources during 1952 was comparable to the metallic content of columbite-tantalite concentrates, previously the only source of supply.

Fusion, leaching, digesting, and electrolytic methods are usually

Cothay, Frank H., Columbium—Rarest Jet Metal: Mining World, vol. 14, No. 10, September 1952, pp. 44-47.
 Mining World, How GEOMINES Will Treat 24,000 Tons of "Hard" Tin Ores per Day: Vol. 14, No. 12, November 1952, pp. 32-37.

employed to extract columbium and tantalum from their ores. two metals are extracted together, freed from other metals, and then separated from each other. An estimated 90 percent of the columbium and 80 percent of the tantalum are recovered by current metallurgical procedures. Studies involving extraction and separation of columbium and tantalum by chlorine metallurgy and liquid-liquid separation were conducted by the Bureau of Mines in 1952.

An investigation aimed toward the better understanding of strain hardening phenomena in metals was conducted in 1952 by studying the behavior of large crystals of columbium, tantalum, and other metals.¹⁰ The crystal structure of TaCr₂ and CbCr₂ was studied and described.11 A patent for a method of resistance welding tantalum

was issued in 1952.12

No suitable all-round substitute has been developed for columbium or tantalum as a stabilizer of carbon in stainless steels, although titanium is acceptable in certain applications of 18-8 steels (18 percent nickel-8 percent chromium). Lowering the carbon content and therefore the columbium needed to stabilize certain steels is another means of conserving this metal. The most important substitute for metallic tantalum is probably zirconium, although this metal has not been available to industry in quantities.

One of the more troublesome factors in columbium-tantalum metallurgical investigations has been the lack of a rapid, accurate, analytical procedure. Wet analyses require several time-consuming Techniques developed by the Bureau fractional precipitation steps. of Mines in 1952 employing the X-ray spectrograph make possible the accurate determination of Cb-Ta in a fraction of the time required for wet analyses. Reports are in the process of publication. activation method for assaying Cb-Ta ores was described.¹³

RESERVES

Domestic potential reserves of columbium-tantalum were increased materially with the discovery of columbium-tantalum minerals in placer deposits of Idaho and the Southeastern States. Known placer deposits in Idaho, amenable to dredging operations, are estimated to contain 10 million pounds of Cb-Ta metal. However, concentration, separation, and metallurgical extraction processes must be perfected before these deposits can be exploited. Reserves of columbite in South Dakota, North Carolina, Arizona, and Colorado have been estimated at about 250,000 pounds. This estimate does not include the columbium content of the bauxites of Pulaski and Saline Counties, Ark., or the columbium-bearing titanium minerals in the Magnet Cove, Ark., area. Tantalite reserves have been estimated at 130,000 pounds and microlite at 600,000 pounds.

pp. 58-61.

Maddin, Robert and Chen, N. K., Study Metals Behavior with Large Metal Crystals: Iron Age, vol. 170, No. 17, October 1952, pp. 108-111.
 Duwez, Pol, and Martens, Howard, Crystal Structure of TaCr2 and CbCr2: Jour. Metals, vol. 4,

¹³ Divez, rol, and Martens, Howard, Crystal Structure of Taori and Obor: Jour. Metals, vol. 2, No. 1, January 1952, pp. 72-74.

12 Otto, George (assigned to Fansteel Metallurgical Corp.), Method for Resistance Welding Tantanlum: U.S. Patent 2,620,424, Dec. 2, 1952.

13 Eighholz, G. G., Activation Assaying for Tantalum Ores: Nucleonics, vol. 10, No. 12, December 1952,

Foreign columbite reserves, chiefly in Nigeria, are estimated to be about 30 million pounds. The Belgian Congo has large reserves of low-grade columbite-tantalite ore; estimates in the order of 50 million pounds have been reported. Reserves of high-grade tantalite have been estimated at 5 million pounds, of which 4 million pounds is in Not enough data are available relative to koppite deposits in Germany and Norway, pyrochlore deposits in Nigeria and Northern Rhodesia, and ellsworthite deposits in Ontario, Canada, to include these deposits in world reserves.

WORLD REVIEW

Australia.—An area near Bynoe Harbour, 70 miles east of Darwin, was worked for tapiolite, a tantalum ore (FeTa₂O₆).¹⁴ Economic aspects of the principal tantalum-bearing deposits of the Pilbara Goldfield, Northwest Division, were described. 15

Belgian Congo.—Columbite and tantalite are accessory minerals within the tin-producing areas of the Congo and Ruandi-Urundi. Geomines, at Manono, is the principal producer. tantalite of tin, occurs in Maniema and at Manono. Thoreaulite, a

Bolivia.—Columbite production was reported from the northern

part of the Province of Nuflo de Charez.

British Guiana.—Columbite placer deposits in the Mazaruni River area, which includes the Morabisi and the Rumong-Rumong River basins, were investigated. Production was reported by Kennametal, Inc., and Morabisi Mining Co., Ltd.

Canada.—Investigation of a large columbium-tantalum-uraniumbearing deposit at Lake Nipissing, near North Bay, Ontario, was

initiated by the Inspiration Mining and Development Co.

French Guiana.—Preliminary steps were taken toward the exploration of a tantalite deposit in the Sinnamary River area; no produc-

tion was reported.

Germany.—Koppite-bearing limestone was mined in Kaiserstuhl, near Freiburg, and shipped to France for processing by Fabriques de Produits Chimiques at Thann, Haut-Rhin. Columbic acid, in white powder form, is extracted. Koppite is a rare-earth columbate similar to pyrochlore.

India.—Export controls do not apply to columbium-tantalum concentrates provided that they are certified by the Indian Atomic Energy Commission to be free from associated uranium compounds.¹⁶

Malaya.—Columbite production was 47 long tons compared with 25 tons in 1951. Sample lots of tin slag from Penang and Singapore were shipped to the United States for assaying and metal-lurgical tests. Columbite production was largely from alluvial deposits at Semiling in the northern part of the State of Kedah. The deposits in the State of Johore were not worked because of the low grade of the deposit and because the area was too disturbed from a security point of view.17

Mining World, vol. 14, No. 4, April 1952, p. 57.
 Economic Geology, vol. 47, No. 2, March-April 1952, p. 236.
 State Department Dispatch 1311, American Embassy, New Delhi, India, Dec. 2, 1952.
 State Department Dispatch 11, Singapore, July 3, 1952, 8 pp.

TABLE 5.—World production of columbite concentrates, 1943-52, in pounds

[Compiled by Berenice B. Mitchell and Lee S. Petersen]

Country 1	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952
Argentina ² Belgian Congo Bolivia (exports)	1, 800 332, 955	200 648, 270	1,000 436,590 1,034	(3) 370, 440 6, 834	(3) 5 348, 390	(3) 5 319, 725	⁴ 1, 080 ⁵ 255, 780	(³) 5 297, 675	(8) 5 209, 437 1, 043	(3) 5 231, 042
French Equatorial Africa India	7, 981	4 116, 871 1, 019	10, 584	4 15, 435 2, 200		4 10, 494 3, 461 (3)	4 33, 942 12, 984 (³)	4 26, 709 3, 655 (³)	4 11, 000	6 5, 017 3, 527 (3)
Madagascar Malaya, Federation of. Mozambique Nigeria. Destruct (greente)	11, 023 1, 796, 480	7 3, 000 9, 965 4 , 603, 536	7 3, 000 3, 314 3, 519, 040	3, 472, 000	2, 880, 640	2, 455, 040	550 1, 989, 120	17, 920 7, 700 1, 935, 360	8, 598 56, 000 8 11, 133 2, 419, 200	5, 732 105, 280 40, 518 2, 896, 320
Portugal (exports). Uganda United States (mine shipments).	(⁹) 5, 771	10 20, 552 3, 208	10 13, 194 1, 149	10 4, 883	10 2, 800	10 2, 285 100	4 11 5, 571 (12)	3,009 4 11 11, 413 (12)	4, 526 4 11 42, 560 (12)	4 11 5, 914 13 5, 385
Total (estimate)	2, 250, 000	5, 450, 000	4, 050, 000	3, 900, 000	3, 300, 000	2, 950, 000	2, 500, 000	2, 450, 000	2, 850, 000	3, 400, 000

 $^{^1}$ Concentrate produced in Argentina, Belgian Congo, French Equatorial Africa, Mozambique, and Portugal are frequently termed "columbite-tantalite," this designation being applied because, in general, their composition (Cb₂O₅+Ta₂O₅) lies in an intermediate range, neither Cb₂O₅ nor Ta₂O₅ being strongly predominant. In tabulating production of columbite and tantalite, all output designated "columbite-tantalite" has arbitrarily been placed in the columbite table.

² Estimated average Cb₂O₅ content of concentrates.

7 Estimate.

8 In addition to figure shown, 204,036 pounds of samarskite were produced.

⁹ Tin-columbite-tantalite concentrates, columbite-tantalite content unspecified, produced as follows: 1943, 15,700 pounds; 1947, 329 pounds; 1948, 210 pounds.

10 Contained in 28,334 pounds mixed concentrates in 1944; in 17,687 pounds in 1945; in 7,706 pounds in 1946; in 3,651 pounds in 1947; and in 3,203 pounds in 1948.

11 Columbite-tantalite concentrates.

12 Columbite and tantalite production in the United States not always differentiated; therefore, see tantalite table.

13 A small amount of tantalite is included in the columbite concentrates.

³ Data not available; estimate by author of chapter included in total.

⁴ Exports.

⁵ In addition, tin-columbite-tantalite concentrates were produced as follows: 1947, 597,555 pounds, columbite-tantalite content unspecified; 1948, 1,148,050 pounds; 1949, 1,944,457 pounds; 1950, 2,431,674 pounds; 1951, 2,597,019 pounds; 1952, 2,813,070 pounds; columbite-tantalite content averaging about 10 percent.

⁶ United States imports.

TABLE 6.—World production of tantalite concentrates 1 1943-52, in pounds

[Compiled by Berenice B. Mitchell and Lee S. Petersen]

Country 1	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952
Australia Brazil Nigeria Southern Rhodesia South-West Africa Uganda Union of South Africa United States (mine shipments) Total (estimate)	27, 418 ² 399, 033 ⁴ , 500 13, 820 ⁴ 2 (⁵) ² , 440 ⁷ 9, 411 485, 000	24, 192 ² 443, 125 27, 082 12, 640 ² 56 9, 518 6, 312 7 7, 204 575, 000	1, 053 2 66, 138 29, 792 14, 740 2 5 6 3, 636 776 7 5, 500 127, 000	806 2 98, 035 2, 890 16, 900 (5) 4, 000 7 3, 475 132, 000	1, 411 2 71, 650 8, 310 27, 300 493 (5) 7 3, 259 118, 000	12, 023 2 9, 202 8, 243 16, 120 17 (5) 500 51, 500	3, 502 2 91, 237 4, 980 10, 840 5, 364 (*) 8 1, 020	16, 536 2 18, 700 2, 240 1, 700 12, 570 (*) 4, 000 8 1, 000	5, 125 2 8, 818 6, 720 3, 974 (*) 6, 000 8 925 37, 500	15, 720 8 49, 813 2, 240 10, 360 4, 400 (5) 8, 000 (9) 95, 000

¹ See columbite world production table, footnote 1. Tantalite production of Belgian Congo is included in columbite production figure. United States imports show 98 pounds tantalite received from Anglo Egyptian Sudan in 1944; 700 pounds from Canada in 1944; 1,805 pounds and 2,442 pounds from India, respectively in 1943 and 1944, and 35,428 pounds from Portugal in 1952.

2 Exports.

3 United States imports.

⁵ See columbite production table.

United States imports.
 In addition, the tantalite-columbite concentrates, unspecified tantalite-columbite content, produced as follows: 1943, 560 pounds, and 1944, 2,000 pounds.

⁶ Includes 6,720 pounds bismutotantalite in 1944 and 670 pounds of bismutotantalite in 1945.

⁷ Principally microlite. ⁸ Tantalite-columbite.

A small quantity of tantalite is included in the columbite concentrates (see columbite table).

Nigeria.—Pyrochlore-bearing granites of the Kaffo Valley, Northern Nigeria, were reported to be a potentially large source of columbium and uranium provided that economical extraction methods were developed.¹⁸ Columbite production increased 140 short tons over 1951. The principal producers were Amalgamated Tin Mines, Ltd., Jantar Co., Ltd., Bisichi Tin Co., Ltd., Naraguta Tin Mines, Ltd., Gold Coast Consolidated Lands, Ltd., and Gold & Base Metal Mines, Ltd.

Northern Rhodesia.—A columbite deposit was reportedly discovered in Lusaka State.19

Norway.—A satisfactory method for processing columbium ore discovered at Sove, in Telemark, was reported.²⁰ The ore mineral is koppite, which occurs in limestone. Mutual Security Agency has provided part of the capital for development work and a mill and has agreed to purchase 80 percent of the columbium production for a 5-year period.

Portugal.—Over 35,000 pounds of tantalite concentrates, the first recorded shipments, were imported from Portugal in 1952. The Portuguese-American Tin Mining Co. recovered tantalite-columbite in dredging for cassiterite. The Fontainhas mine of the Cia. Portuguesa de Minas has important reserves of columbite-tantalite ore. Mine development and a 50-ton mill are being financed through MSA assistance.

Southern Rhodesia.—The production of tantalite was resumed in 1952.The occurrence of tantalum-columbium deposits was described.21

South-West Africa.—Columbite-tantalite was found to occur in the pegmatite tin-bearing deposits of the Uis Tin Mining Co. The deposits are reportedly the largest so far discovered. pilot-plant tests were made to recover these minerals.²²

United Kingdom.—Imports of columbite-tantalite concentrates by United Kingdom for the first 9 months of 1952 totaled about 560 long tons; consumption for the same period was 320 long tons.

Mining Journal (London), vol. 238, No. 6094, June 6, 1952, p. 583; vol. 238, No. 6096, June 20, 1952, p. 648.
 Metal Bulletin, (London) No. 3750, Dec. 9, 1952, p. 25.
 Mining World, vol. 14, No. 13, December 1952, pp. 61-63.
 Southern Rhodesia Geological Survey, Tantalum and Niobium: Mineral Resources Ser. 4, 1952, 4 pp.
 Mining Journal (London), vol. 239, No. 6122, Dec. 19, 1952, p. 701.

Copper

By Helena M. Meyer 1 and Gertrude N. Greenspoon 2

THE SUPPLY of copper for defense and total civilian requirements in the United States continued inadequate in 1952. Despite Government and civilian efforts to stimulate the flow of metal, actually slightly less copper was available in 1952 than in 1951. In May, when exports of copper from Chile to the United States were embargoed, the President of the United States authorized the release of 22,000 tons of copper from the National Stockpile to meet the temporary emergency. Following Office of Price Stabilization permission to raise prices for foreign copper and to pass on to consumers most of the increased costs, the situation improved enough so that late in August the Defense Production Administration moved copper from the list of most critical materials to the list of those in approximate balance. Larger imports in July-December had eased the situation, but supplies of copper continued to be inadequate for all needs.

Probably the outstanding feature of the year, and the most controversial, was the multiple prices for copper. Domestic prices continued to be controlled by the General Ceiling Price Regulation, in force since January 26, 1951. There was no specific ceiling for domestic copper; the General Ceiling Price Regulation established prices for individual producers at levels prevailing in the base period (December 19, 1950, to January 25, 1951, inclusive). By midyear foreign copper, which had been selling at 27.5 cents, began to be sold at 36.5 cents a pound.

Mine production in 1952 fell short by a slight margin of the record for 1951. Receipts of copper from abroad in crude form—ores, concentrates, regulus, and blister—were 9 percent above 1951, while imports of refined copper increased 45 percent.

Production of refined copper from scrap declined 7 percent, and total production of alloyed and unalloyed copper from old scrap (of which the refined production from scrap is a part) dropped 10 percent.

Producers' stocks of refined copper at the end of 1952 decreased 26 percent from the end of 1951 and were the same as at the end of 1950, or the smallest since 1906.

Exports of refined copper, under Government control, gained 31 percent over 1951. Foreign material treated in the United States on toll made up most of this tonnage.

Supplies of copper in the second half of 1952 exceeded those in the first 6 months, largely because efforts to increase imports were successful. About 60 percent of total imports came into the United States in the latter half of 1952, and refined copper from scrap increased 1 percent, but domestic mine production declined 2 percent.

¹ Assistant chief, Base Metals Branch.
² Statistical assistant.

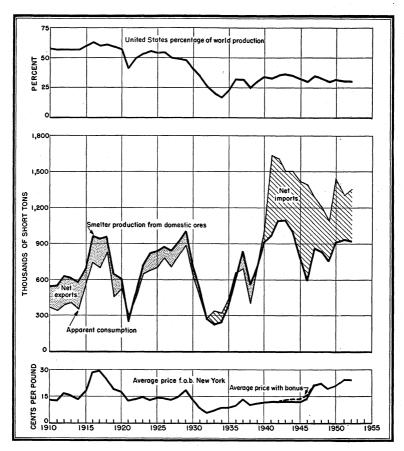


FIGURE 1.—Production, consumption, and price of copper in the United States, 1910-52

Government efforts to expand domestic production through loans, through purchase contracts at specified prices and with escalation provisions, and through permits granting accelerated amortization of capital outlay brought little fruit in 1952, as was expected. new production resulted from these stimuli, and some threatened production losses were prevented by granting over-the-ceiling contracts to marginal producers, but major increases must await the end of 1953 and even later. Government efforts to maintain production at marginal mines and to bring in new production are given in this summary under Defense Production Act Stimulation. Apart from Government-assisted projects, the Greater Butte project in the Summit Valley (Butte) district, Montana, began to produce in the first half of 1952; but despite all gains and the fact that mining operations were almost entirely free of the labor strikes that had impeded production in the past several years, total production was lower in 1952 than in 1951; this drop was largely due to the decreased grade of ore treated at some large properties. Some production was lost because of a

COPPER 345

2-month strike at properties of the Calumet & Hecla, Inc., Michigan, ending November 10 and a strike that lasted about 1 week in August at the Ray mine (Kennecott Copper Corp.), Mineral Creek (Ray)

district, Arizona.

During the early months of the year domestic prices, under Office of Price Stabilization controls, were largely 24.5 cents a pound for electrolytic copper delivered Connecticut Valley, but a few producers had higher ceilings because their base period prices were higher. Foreign copper was sold at 27.5 cents a pound. In May Chile abrogated its agreement with the United States Government, which provided, among other things, that Chile withhold for Government disposition in world markets not over 20 percent of the outputs of American mines operating in that country. Chilean dissatisfaction with the 27.5-cent price caused the break. Exports to the United States were embargoed for a short time; but, after the Office of Defense Mobilization, on May 21, authorized importers to pay higher prices for imported copper and to pass on to consumers 80 percent of costs above 27.5 cents, shipments to the United States were resumed. Later the provision was changed to "increased costs above 24.5." The Chilean price went immediately to 35.5 cents a pound f. a. s. Chilean ports or about 36.5 cents in the United States. On June 24 the OPS exempted from price control refined copper imported and copper refined from imported copper-bearing materials and imported scrap and later issued amendments to orders for wire mills and brass mills, effective July 1, to reflect increases permitted by the ODM directive. The ceilings were to be revised from time to time, based in part on the proportion of foreign to domestic copper available.

The price situation caused considerable confusion, and in some instances much dissatisfaction, in domestic mining circles, in the Government, and elsewhere. The situation described was confused further by the fact that a few domestic high-cost producers had higher ceiling prices than the large majority of producers and that some others had over-the-ceiling Defense Materials Procurement Agency subsidies. In September OPS established a 27.5-cent ceiling price

for Calumet & Hecla, Inc., based on costs of production.

The National Production Administration, in order to make as equitable a distribution as possible of the different-price supplies, decided to allocate copper to all consumers on the basis of estimated supply—60 percent domestic and 40 percent foreign. Prices of products were based on this assumed distribution to the end of the year.

Despite the confusion and dissatisfaction with prices, supplies improved because more foreign copper began to flow to the United States. Fifty-eight percent more copper entered the United States from abroad in the second half than in the first 6 months of 1952. Part of the increase, however, could not be credited to the advanced prices for foreign copper in the United States, because the greater imports from Canada resulted in large part from the diversion to United States refineries of copper from a labor-struck refinery in Quebec.

The price for copper in foreign markets in the latter part of 1952 was under that in the United States, in contrast with the situation that had prevailed for many earlier months, when foreign prices

sharply exceeded those in the United States.

TABLE 1.—Salient statistics of the copper industry in the United States, 1943-47 (average) and 1948-52, in short tons

	1943-47 (average)	1948	1949	1950	1951	1952
New (primary) copper produced—			1 31 4			
From domestic ores, as reported				Maria de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición dela composición del composición del composición dela composición del composición dela composición dela composición dela composición del composición dela composición dela composición dela composición dela composición dela composición dela compo		
Mines Ore produced:	858, 512	834, 813	752, 750	909, 343	928, 330	925, 377
Copper ore 1Average yield of copper,	83, 350, 721	84, 729, 043	76, 032, 531	94, 585, 792	95, 494, 214	99,947,492
percent	. 96 863, 314	. 92 842, 477	.91 757,931	.89 911,352	. 90 930, 774	. 85 927, 365
Percent of world total	34 863, 862	3 33 860, 022	695, 015	920, 748	30 951, 559	30
From foreign ores, matte, etc., refinery reports	285, 674	247, 424	232, 912	319, 086	255, 429	254, 504
Total new refined, domestic and foreign	1, 149, 536	1, 107, 446	927, 927	1, 239, 834	1, 206, 988	1, 177, 696
Secondary copper recovered from old scrap only	458. 231	505, 464	383, 548	485, 211	458, 124	414. 635
Imports (unmanufactured) ³	633, 055 346, 075	507, 449 249, 124	552, 709 275, 811	690, 389 317, 363	2 489, 135 2 238, 972	618, 944 346, 960
Exports of metallic copper * Refined (ingots and bars)	191, 801	207, 022 142, 598	195, 990 137, 827	192, 339 144, 561	166, 274 133, 305	\$ 212,390 174,135
Stocks at end of year (producers) Refined copper	357, 100	250, 000 67, 000	322, 000 61, 000	258, 000 26, 000	217, 000 35, 000	211, 000 26, 000
Blister and materials in solution Withdrawals (apparent) from total	87, 100 270, 000	183,000	261,000	232,000	182,000	185,000
supply on domestic account: Total new copper	1, 420, 000	1, 214, 000	1,072,000	1, 447, 000	21,304,000	1,360,000
Total new and old copper (old scrap only)	1, 878, 000	1,719,000	1, 456, 000		21,762,000	1, 775, 000
Price average 6cents per pound World smelter production, new cop-	14.1	21.7	19.7	20.8	7 24. 2	7 24, 2
per	2, 575, 000	2,580,000	2,600,000	2,915,000	23,105,000	3, 120, 000

¹ Includes old tailings smelted or retreated. Not comparable with mine production figure shown in that latter includes recoverable copper content of ores not classified as "copper."

The British Ministry of Materials official maximum price was £227 per long ton (equivalent to 28.375 cents a pound) when the year began, rose to £287 (35.875 cents) on July 7, was reduced to £285 (35.625 cents) on July 31, and thereafter remained unchanged. Selling prices on the European Continent were reported to be about this level. Selling prices in foreign markets in 1951 were considerably higher than in 1952, but an average world price is not available.

Outside of the United States, a number of strikes impeded production in 1952, in contrast with the relatively undisturbed situation at United States mines. Strikes at the Chuquicamata and Andes properties in Chile began in April and lasted about 15 days each, with the Chilean President effecting a compromise arrangement. Another strike at Andes in October lasted a few days only. Workers at the Braden mine, also in Chile, struck December 20 and were out at the Miners at the four main Northern Rhodesian copper properties—Mufulira, Nchanga, Roan Antelope, and Rhokana—were out of work 3 weeks, ended November 10, because of a strike; the reported loss was 20,000 tons of copper. The Montreal East

that latter includes recoverable copper content of ores not classified as Copper.

Revised figure.

Data are "general" imports; that is, they include copper imported for immediate consumption plus material entering country under bond. Comprises copper in ingots, plates, and bars, ores and concentrates, regulus, blister, and scrap.

Total exports of copper, exclusive of ore, concentrates, composition metal, and unrefined copper. Exclusive also of "Other manufactures of copper," for which quantity figures are not recorded. (See table 28.)

Due to changes in classifications 1952 data are not strictly comparable to earlier years.

Exclusive of bonus payments of the Office of Metals Reserve under Premium Price Plan, which covered the period February 1, 1942, to June 30, 1947, inclusive.

Exclusive of copper produced abroad and delivered in the United States.

347 COPPER

refinery of Canadian Copper Refineries, Ltd., Quebec, Canada, re-

opened late in November after a strike that lasted 18 weeks.

Labor disorders were given by the American Smelting & Refining Co. as the reason for advising the Bolivian Government in July that it planned to suspend operations at the Corocoro mine in 90 days. company leased the mine to the Bolivian Government early in October for an indefinite period.

World smelter production established a new alltime peak for the second successive year—3,120,000 short tons compared with 3,105.000

The previous record was 3,049,000 tons in 1942. in 1951.

DEFENSE PRODUCTION ACT STIMULATION

Among the major Government actions in 1952 directed toward increasing supplies of copper under the Defense Production Act, were

the following:

A contract was signed by DMPA with Falconbridge Nickel Mines. Ltd., in February, for the purchase of tonnages of copper as well as Purchase was to begin immediately, and the nickel and cobalt. contract was to run 10 years.

On February 25 the White Pine Copper Co. entered into a contract with the Government for the production and disposition of 275,000 short tons of refined copper. The Government was to pay 25.5

cents a pound, subject to indicated adjustments.

In July DMPA announced an over-the-ceiling contract with Calumet & Hecla, Inc., for copper from the Osceola mine, Michigan. Production was to begin in mid-1955 and to amount to 53,000 tons. A price of 25.25 cents a pound, subject to escalation, was guaranteed.

In July the Reconstruction Finance Corp. approved a loan of \$94,-000,000 to the San Manuel Copper Corp., wholly owned subsidiary of the Magma Copper Co., for expansion of copper and molybdenum production. Plans called for mining, milling, and smelting 10,000,000 tons of ore annually, with production to begin in 1957. Full operation was expected to yield 70,000 tons of copper and 3,000 tons of molybdenum annually. In August DMPA completed a purchase contract with the company providing for the purchase of totals of 365,000 tons of copper and 16,000 tons of molybdenum.

In October the DMPA entered into a purchase agreement with the Bagdad Copper Corp., guaranteeing a market for up to 13,500 tons of copper a year, at 24.5 cents a pound subject to escalation, and 470 tons of molybdenum. The agreement covered 8 years of production, terminating automatically June 30, 1962. Enlargement of the open pit and installation of an electrolytic refinery were called for. An eventual capacity of 17,500 tons of refined copper and 6,000 tons of recoverable copper in precipitates was envisioned. Current capacity was said

to be 10,000 tons of copper.

In June General Services Administration reached agreement with Campbell Chibougamau Mines, Ltd., for the purchase of 31,600 tons of refined copper from the company property at Merrill Island, Dore Lake, Quebec, by December 31, 1956, at 24.5 cents a pound delivered Connecticut Valley or the market price, whichever is higher.

TABLE 2.—Contracts for expansion and maintenance of supply of copper under the Defense Production Act, as amended, as of Dec. 31, 1952

		s involved inds)	T3.0041 3-4-	D-41		Commitment pur-	
Type of contract, name of contractor, and location of project	Total	Contingent purchase commitment	Effective date of contract	Date produc- tion starts	Approximate term of contract	chase price (per pound)	
Floor price:							
American Smelting & Refining Co., Silver Bell mine, Pima County, Ariz.	197, 000, 000	177, 000, 000	Nov. 28, 1951	Nov. —, 1953	7½ years	\$0.245 or market.1	
Anaconda Copper Mining Co., Yerington, Lyon County, Nev	384, 000, 000 106, 000, 000	256, 000, 000 106, 000, 000	Nov. 10, 1951 July 18, 1952	July 1, 1955	8 years	\$0.255 or market. ¹ 2 \$0.2525. ¹ 2	
Copper Cities Mining Co., Copper Cities, Gila County, Ariz. Phelps Dodge Corp., Bisbee East ore body, Cochise County, Ariz. White Pine Copper Co., White Pine mine, Ontonagon County, Mich Campbell Chibougamau Mines, Ltd., Merrill Island, Dore Lake, Quebec, Canada.	192, 500, 000 300, 000, 000 550, 000, 000 63, 200, 600	170, 000, 000 225, 000, 000 487, 500, 000 63, 200, 600	Sept. 24, 1951 do Feb. 26, 1952 June 10, 1952	Sept. —, 1955 Feb. —, 1955	734 years 8 years 934 years 412 years	\$0.230.1 \$0.220.1 \$0.255.1 2 \$0.245.1	
San Manuel Copper Corp., Pinal County, Ariz. Bagdad Copper Corp., Yavapai County, Ariz.4. Subsidy:	730, 000, 000 216, 000, 000	³ 695, 000, 000 216, 000, 000	Aug. 29, 1952 Oct. 16, 1952	Mar. —, 1957 Oct. 15, 1952	10 yearsdo	\$0.24. ¹ \$0.245. ¹	
Banner Mining Co., Miser's Chest mine, Hidalgo County, N. Mex. Calumet & Hecla Consolidated Copper Co., 3 mines ⁵ in Houghton and Keweenaw Counties, Mich.	5, 400, 000 14, 780, 000		Mar. 3, 1952 Jan. 8, 1952	Dec. 1, 1951	2 years 12-17 months	None.² Do.²	
Copper Range Co., Champion No. 4 east ore body, Houghton County, Mich.	6, 372, 000		Mar. 13, 1952	Jan. 1, 1952	2 years	Do.2	
Howe Sound Co., Holden mine, Chelan County, Wash. Sam Knight Mining Lease, Inc., Christmas mine, Gila County, Ariz Yucca Mining & Milling Co., Inc., Antler mine, Mohave County, Ariz	8, 834, 000 2, 390, 000 5, 205, 000		June 12, 1952 Mar. 14, 1952 Apr. 10, 1952	Feb. 1, 1952 Dec. 1, 1951	1 year 2 years 3 years	Do. ² Do. ² Do. ²	
Purchase: National Lead Co., Madison County, Mo. Falconbridge Nickel Mines, Ltd., McKim and Hardy mines, Ontario, Canada.	7, 087, 500 37, 500, 000	7, 087, 500 37, 500, 000	Oct. 11, 1951 Feb. 14, 1952	Apr. —, 1953 Jan. 1, 19528	6½ years 10 years	\$0.214.1 \$0.19 or market. ²	
Advance—repayment: North Butte Mining Co., Granite Mountain mine, Silver Bow County, Mont.	5, 250, 000		Sept. 19, 1951	Dec. —, 1951	21 months	(⁹).	

Type of contract or assistance, name of contractor and location of project	Approximate amount involved	Effective date of contract
Loan: White Pine Copper Co. White Pine mine Ontonegon County Mich	\$57, 185, 000	Nov. 15, 1951
White Pine Copper Co., White Pine mine, Ontonagon County, Mich. San Manuel Copper Co., Pinal County, Ariz. Yucca Mining & Milling Co., Antier mine, Mohave County, Ariz.	94, 000, 000 50, 000	July 10, 1952 Oct. 30, 1952
Tax amortization: 10 American Smelting & Refining Co., Silver Bell mine, Pima County, Ariz. Anaconda Copper Mining Co., Yerington mine, Lyon County, Nev.	8, 249, 000 24, 565, 000	Jan. 4, 1952 Oct. 15, 1951
American Smelting & Refining Co., Silver Bell mine, Pima County, Ariz. Anaconda Copper Mining Co., Yerington mine, Lyon County, Nev. Phelps Dodge Corp., Bisbee East ore body, Cochise County, Ariz. White Pine Copper Co., White Pine mine, Ontonagon County, Mich. C. L. Maguire, Unida Copper, Yavapai County, Ariz.	12, 401, 000 40, 912, 000 76, 000	July 6, 1951 Nov. 16, 1951 June 15, 1951
Nemerica Copper Coupt. Deen Ruth mine, White Pine County, Nev	3, 988, 000	Apr. 4, 1951
Utah mine, Salt Lake County, Utah 'Do	1, 374, 000	May 20, 1952 July 31, 1952 July 6, 1951
\mathbf{D}_{0}	670,000	Aug. 3.1951
Sierra Copper Co., Calaveras County, Calif Allied Chemical & Dye Co., Grayson County, Va. Telluride Mines, Inc., San Miguel County, Colo. American Smelting & Refining Co., Contra Costa County, Calif.	561,000	Sept. 21, 1951 June 26, 1951
San Manuel Copper Co., Pinal County, Ariz Anaconda Copper Mining Co., Greater Butte project, Silver Bow County, Mont Bagdad Copper Corp., Yayapai County, Ariz	3, 939, 000	May 21, 1952
Daguad Copper Corp., Tavapar Country, Ariz.	11, 134, 000	0 01.5 10, 1002

¹ Includes escalator clause.

¹ Includes escalator clause.
2 Contracted at over celling price (celling price was 24½ cents a pound for most producers).
3 Also 30,660,000 pounds out of 32,120,000 pounds of molybdenum at \$0.60 per pound.
4 Also 3,760 short tons of molybdenum.
5 Original contract covered 4 mines, but contract was amended Aug. 11, 1952, to include only 3 mines
6 Also 9,261,000 pounds of nickel and 6,930,000 pounds of cobalt.
7 Also 75,000,000 pounds of nickel and 1,500,000 pounds of cobalt.
8 Date reflects beginning of term of production.
9 Terms of repayment of \$60,000 loan were 1 cent a pound on first 300,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20, 30,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20, 30,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 20,000 pounds of contained copper and 2 cents thereafter until repaid with interest but not later than 2 June 30, 1953.

10 Amortization, 5 years.

Maintenance of production subsidies were granted by DMPA to the following companies in December 1951 and during 1952:

Calumet & Hecla, Inc.—certain properties.

Copper Range Co.—Champion mine. Sam Knight Mining Lease, Inc.

Yucca Mining & Milling Co.

Banner Mining Co.

Howe Sound Co.

Table 2 was taken from a recent report 3 and brought up to date from records in the office of DMPA.

Bureau of Mines Reports.—The following Bureau of Mines reports of investigations, published recently, relate to copper in whole or in part:

- 4869. Investigation of the Colorado Copper Co. Properties, Mesa and Mont-
- rose Counties, Colo. Investigation of the Millett Copper Deposit, Iliamna Lake, South-4890. western Alaska.
- 4895. Investigation of Shamrock Copper-Nickel Mine, Jackson County, Oreg. 4906.
- 4927.
- MacArthur Copper Deposit; Lyon County, Nev. Concentration Tests on Various Base-Metal Ores. Processes for Beneficiating Great Gossan Lead Ores, Carroll County, Va. 4945.

Preliminary Tests of Nevada Oxidized Copper Ores. 4952.

During the year the Bureau of Mines released a comprehensive report on copper, Materials Survey—Copper. It was prepared by the Bureau of Mines, with the cooperation of the Geological Survey, on behalf of the National Security Resources Board. The primary purpose was to provide information about copper for use of Government officials, particularly those concerned with the defense program. The Bureau proposed to correct, revise, and bring the report on copper up to date every few years.

DOMESTIC PRODUCTION

Statistics on copper production may be compiled upon a mine, smelter, or refinery basis. Mine data are most accurate for showing the geographic distribution of production; smelter figures are better than mine figures for showing the actual recovery of metal and more accurate than refinery figures for showing the source of production; and refinery statistics are best for showing recovery of metal but indicate only in a general way the source of crude materials treated.

TABLE 3.—Copper produced from domestic ores, as reported by mines, smelters, and refineries, 1948-52, in short tons

Year	Mine 1	Smelter	Refinery
1948	834, 813	842, 477	860, 022
	752, 750	757, 931	695, 015
	909, 343	911, 352	920, 748
	928, 330	930, 774	951, 559
	925, 377	927, 365	923, 192

³ Compilation Showing Progress and Status of the Defense Minerals Program, October 10, 1952, 82d Cong., 2d sess. (printed for the use of the Committee on Interior and Insular Affairs), 1952, opposite p. 32.

COPPER 351

Mineral Resources of the United States, 1930, part I (pp. 701-702), discusses differences among the three sets of figures.

PRIMARY COPPER

Mine Production.—The figures for mine production are tabulated from reports supplied by all domestic mines that produce copper. These data are classified geographically, by metallurgical method, and by type of ore. Tables presenting the information in detail are to be

found in the State chapters appearing in volume III.

As usual, Arizona led all other States by a wide margin in production in 1952, supplying 43 percent of the total for the United States, followed by Utah, with 31 percent. Arizona's output comes from a number of important copper-producing districts and mines, whereas Utah's is predominantly from one mine, the largest copper producer in the United States. Production from New Mexico, Montana, Nevada, and Michigan, ranking next in importance as copper producers in 1952, made up 23 percent of the total. These 6 States produced 97 percent of the United States total in 1952 as in 1951.

Classification of production by mining method shows that approximately 77 percent of the recoverable copper and 85 percent of the copper ore came from open pits in 1952. Most domestic copper ore was treated by flotation at or very near the mine of origin, and the resulting concentrates were shipped for smelting. Some copper ores were direct smelted either because of their high grade or because of their fluxing

qualities.

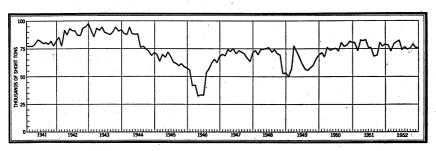


FIGURE 2.—Mine production of recoverable copper in the United States, 1941-52, by months, in short tons.

TABLE 4.—Mine production of recoverable copper in the United States in 1952, by months ¹

Month	Short tons	Month	Short tons
January	78, 128 73, 115 79, 696 80, 995 82, 669 74, 122 76, 482	November	74, 357 75, 127 79, 401 75, 521 75, 764 925, 377

¹ Includes Alaska. Monthly figures adjusted to final annual mine production total.

TABLE 5.—Mine production of copper in the principal districts 1 of the United States. 1943-47 (average) and 1948-52, in terms of recoverable copper in short tons

District or region	State	1943-47 (aver- age)	1948	1949	1950	1951	1952
West Mountain (Bingham) Copper Mountain (Morenci) Globe-Miami Central (including Santa Rita) Ajo Summit Valley (Butte) Robinson (Ely) Mineral Creek (Ray) Warren (Bisbee) Lake Superior Pioneer (Superior) Eureka (Bagdad) Verde (Jerome) Chelan Lake San Juan Mountains Southeastern Missouri Coeur d'Alene Cochise Lordsburg Blackbird Pima (Sierritas, Papago, Twin Buttes) Burro Mountain Lebanon (Cornwall mine) Orange County Orange County	Arizonado	107, 073 90, 810 259, 444 49, 838 90, 794 52, 243 23, 540 33, 087 13, 615 14, 993 22, 268 2, 332 1, 283 1, 283 1, 283 7, 1, 498 (19)	225, 225 148, 316 88, 478 57, 615 57, 712 44, 491 18, 753 19, 204 27, 777 18, 753 1, 865 1, 865 1, 708 8 268 (3) (10) (10)	196, 101 141, 934 80, 189 553, 276 58, 350 55, 945 37, 533 18, 595 9, 840 19, 506 21, 616 17, 215 4 5, 249 1, 974 4, 670 1, 171 1, 171 1, 171 1, 1934 348 (*) (10) (10)	277, 655 154, 689 84, 688 84, 688 63, 694 64, 400 53, 897 52, 087 36, 442 13, 345 25, 608 20, 673 13, 291 4, 904 2, 582 2, 982 1, 896 2, 061 282		282, 094 124, 883 93, 077 74, 006 63, 807 61, 557 57, 144 21, 696 17, 712 9, 222 4, 524 4, 277 3, 157 2, 577 1, 863 1, 471 1, 090 (10) (10)

1 Districts producing 1,000 short tons or more in any year of the period 1948-52.
2 Includes average for Burro Mountain for 1945-46 to avoid disclosing individual company operations.
3 Burro Mountain included with Central to avoid disclosing individual company operations.
4 Includes Peshastin Creek and Wenatchee to avoid disclosing individual company operations.
5 Includes Ferry to avoid disclosing individual company operations.
6 Includes Spring Mountain and Texas to avoid disclosing individual company operations.
7 Average for 1943-44 and 1947; included with Central for 1945-46 to avoid disclosing individual company operations.

Less than 0.5 ton.

Not listed in order of output.

Tigures withheld to avoid disclosing individual company operations.

The first 5 mines in table 7 produced 65 percent of the United States total, the first 10 produced 85 percent, and the entire 25 furnished 98 percent.

Quantity and Estimated Recoverable Content of Copper-Bearing Ores.—Tables 8 through 11 list the quantity and estimated recoverable copper content of the ore produced by copper mines in the United States in 1952. Of the total copper produced from copper ores in the United States during 1952 (1951 percentages were identical), 93 percent was obtained from ores concentrated before smelting, 3 percent from direct-smelting ores, and 4 percent from ore treated by straight leaching.

Close agreement between the output as reported by smelters and the recoverable quantity as reported by mines indicates that estimated recoverable tenor is close to actual recovery. Classification of some of the complex western ores is difficult and more or less arbitrary. "Copper ores" include not only all those that contain 2.5 percent or more recoverable copper but also those that contain less than this percentage if they are valuable chiefly for copper, notably the "porphyry ores." Mines report considerable copper from ores mined primarily for other products. These include siliceous gold and silver ores, lead and zinc ores, and pyritic ores.

TABLE 6.—Mine production of recoverable copper in the United States, 1942-52, with production of maximum year, and cumulative production from earliest record to end of 1952, by States, in short tons

State	Maxin duc	um pro-					Produ	iction by y	ears		,			Total pro- duction from earliest
State	Year	Quantity	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	record to end of 1952
Western States and Alaska: Alaska Arizona. California Colorado Idaho Montana. Nevada New Mexico Oregon South Dakota	1916 1951 1909 1938 1907 1916 1942 1942 1916 1918	59, 927 415, 870 28, 644 14, 171 5, 445 176, 464 83, 663 80, 100 1, 791	22 393, 387 1, 058 1, 102 3, 430 141, 194 83, 663 80, 100 103	27 403, 181 8, 762 1, 028 2, 324 134, 525 71, 068 76, 163	358, 303 12, 721 1, 048 1, 688 118, 190 61, 232 69, 730	5 287, 203 6, 473 1, 485 1, 548 88, 506 52, 595 56, 571 1	289, 223 4, 240 1, 754 1, 038 58, 481 48, 616 50, 191	12 366, 218 2, 407 2, 150 1, 640 57, 900 49, 603 60, 205 14	16 375, 121 481 2, 298 1, 624 58, 252 45, 242 74, 687 2	359, 010 649 2, 403 1, 438 56, 611 38, 058 55, 388 20	6 403, 301 646 3, 141 2, 107 54, 478 52, 569 66, 300 19	1 415, 870 921 3, 212 2, 160 57, 406 56, 474 73, 558 11	395, 719 800 3, 606 3, 213 61, 948 57, 537 76, 112	685, 905 13, 493, 331 631, 728 267, 521 119, 969 6, 924, 948 2, 082, 151 1, 756, 449 112, 410
Texas Utah Washington Wyoming	1928 1943 1940 1900	323, 989 9, 612 2, 102	306, 691 8, 030	323, 989 7, 315	282, 575 6, 169	55 226, 376 5, 821	3 114, 284 4, 527 1	266, 533 2, 240	23 227, 007 5, 665	24 197, 245 5, 275	278, 630 5, 057	271, 086 4, 089	282, 894 4, 357	1, 383 6, 423, 836 105, 609 16, 326
Total			1, 018, 880	1, 028, 469	911, 777	726, 639	572, 367	808, 928	790, 418	716, 125	866, 256	884, 789	886, 205	32, 521, 672
West Central States: Missouri	1949	3, 670	1, 300	1, 340	3, 302	3, 399	1,857	1, 760	2, 370	3, 670	2, 982	2, 422	2, 576	² 35, 458
States east of the Mississippi: Alabama Georgia Maine Maryland Massachusetts Michigan New Hampshire North Carolina Pennsylvania South Carolina Tennessee Vermont Virginia Wisconsin	1907 1917 1918 1917 1906 1916 1930 1942 (3) 1930 1952 1944 1914	42 465 383 146 5 136, 846 4 94 (5) (6) (7) (8) (8) (9) (9) (10) (10) (10) (10) (10) (10) (10) (10	45, 679 (6) (7) 6 14, 174	(°) (°) (°) (°) (°) (°) (°) (°) (°) (°)	(°) (°) (°) 6 12, 860 1, 898 291			24, 184 (°) 6 12, 686 (°) 5	27, 777 (°) 6 14, 248 (°)	(°) (°) (°) (°)	25, 608 (°) ° 14, 497 (°)	24, 979 (6) 6 16, 140 (6)	21, 699 ———————————————————————————————————	(3) (3) (3) (3) (4) 963, 243 (3) (3) (3) (3) (3) (3) (3) (3) (2)
Total			59, 881	61, 009	57, 470	42, 856	34, 513	36, 875	42, 025	32, 955	40, 105	41, 119	36, 596	8 5, 618, 309
Grand total	1943	1, 090, 818	1, 080, 061	1, 090, 818	972, 549	772, 894	608, 737	847, 563	834, 813	752, 750	909, 343	928, 330	925, 377	9 38, 175, 439

For Missouri and States east of the Mississippi, maximum since 1905.
 Small quantity for Wisconsin included with Missouri.
 Data not available.
 The 1908 volume of Mineral Resources credits this figure to Massachusetts and New Hampshire; the 1909 volume credits it to New Hampshire alone.
 Figures withheld to avoid disclosing individual company operations.

Tennessee includes other States indicated by footnote 6 to avoid disclosing individual company operations.
 Less than 0.5 ton.
 For States other than Michigan, figures represent largely smelter output. Excludes small quantity, not separable, for Wisconsin shown with Missouri.
 Largely smelter production for States east of the Mississippi except Michigan.

TABLE 7.—Twenty-five leading copper-producing mines in the United States in 1952, in order of output

Rank	Mine	District	State	Operator	Source of copper
1 2 3 4 5 6 6 7 7 8 9 10 112 114 115 115 12 22 22 22 22 22 22 22 22 22 22 22 22	Utah Copper	Robinson (Ely) Warren (Bisbee) Globe-Miami do. Lake Superior. Pioneer (Superior) Robinson (Ely) Eureka (Bagdad) Robinson (Ely) Polk County Verde (Jerome) Chelan Lake Orange County Lebanon County Lake Superior. Unper San Miguel	Arizona —do Nevada Arizona do	Kennecott Copper Corp. Phelph Dodge Corp. Anaconda Copper Mining Co. Kennecott Copper Corp. Inspiration Consolidated Copper Co. Kennecott Copper Corp. Phelps Dodge Corp. Castle Dome Copper Co., Inc. Miami Copper Co. Calumet & Hecla, Inc. Magma Copper Co. Consolidated Coppermines Corp. Bagdad Copper Corp. Consolidated Coppermines Corp. Consolidated Coppermines Corp. Phelps Dodge Corp. Phelps Dodge Corp. Howe Sound Co. Vermont Copper Co., Inc. Bethlehem Steel Co. Quincy Mining Co. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc	Copper ore. Do. Do. Do. Copper, zinc-lead ores. Copper ore. Do. Copper, zinc-lead ores. Copper ore. Do. Copper ore and tailings. Copper ore. Do. Copper ore. Do. Copper ore. Zinc-copper ore. Zinc-copper ore. Zinc-copper ore. Copper ore. Copper ore. Zinc-copper ore. Copper ore. Copper ore. Copper ore. Copper ore. Magnetite-pyrite-chalcopy rite ore. Copper ore-tailings. Copper-lead-zinc ore. Zinc-copper ore. Copper ore. Copper ore.

TABLE 8.—Copper ore, old tailings, etc., sold or treated in the United States in 1952, with copper, gold, and silver content in terms of recoverable metal 1

	Ore, old tail-	Reco	overable me	etal conten	t	****
State	ings, etc., sold or treated	Copper		Gold	Silver	Value of gold and silver per
	(short tons)	Pounds	Percent	(fine ounces)	(fine ounces)	ton of ore
ArizonaCaliforniaColorado	44, 539, 353 1, 987 73	731, 266, 573 99, 100 8, 610	0.82 2.49 5.90 1.23	84, 439 312 1 729	2, 909, 567 3, 180 251	\$0. 13 6. 95 3. 59
IdahoMichigan	100, 800 3, 870, 182 2, 154, 657 6, 850, 328	2, 470, 521 43, 398, 000 109, 435, 315 114, 099, 000	. 56 2. 54 . 83	3, 745 59, 295	7, 816 1, 541, 348 174, 357	. 32 . 71 . 33
New Mexico Oregon Texas Utah	8, 398, 600 89 111 32, 038, 719	111, 890, 896 1, 600 7, 068 544, 668, 513	.67 .90 3.18 .85	1, 608 83 22 403, 321	85, 335 362 206 3, 290, 788	. 02 36, 33 8, 61 . 53
Washington 2 East of the Mississippi (except Michigan) 2	553, 987 1, 438, 606	8, 650, 100 \$ 29, 794, 000	.78	18, 924 403	81, 748 102, 930	1, 33
Total	99, 947, 492	3 1, 695, 789, 296	.85	572, 882	8, 197, 888	. 27

¹ Excludes copper recovered from precipitates as follows: Arizona, 43,483,108 pounds; California, 177,900 (includes small quantity, not separable from tungsten ore) pounds; Montana, 6,959,260 pounds; Nevada, 391,400 pounds; New Mexico, 38,605,236 pounds; Utah, 17,349,440 pounds.

² Includes ore classed as zinc-copper ore and copper, gold and silver recovered therefrom.

³ Copper from magnetite-pyrite-chalcopyrite ore included with that from copper ores.

TABLE 9.—Copper ore, old tailings, etc., concentrated in the United States in 1952, with content in terms of recoverable copper

State	Ore, old tailings, etc.,	Recoverable copper content		
	(short tons)	Pounds	Percent	
Arizona	1 40, 181, 312	² 614, 334, 926	0. 76	
CaliforniaIdaho	1,000 100,641	36, 000 2, 427, 040	1.80 1.21	
Michigan Montana	3,870,182 2,105,347	43, 398, 000 107, 539, 813	. 50 2. 5	
Nevada New Mexico	6, 762, 158 8, 257, 971	112, 248, 100 108, 861, 076	. 8	
Utah Washington 3	32, 036, 100 553, 916	544, 364, 650 8, 647, 500	. 8	
East of the Mississippi (except Michigan)4	1, 438, 606	⁸ 29, 794, 000		
Total	95, 307, 233	5 1, 571, 651, 105	.82	

In addition, 8,735,773 tons was treated by straight leaching.
 In addition, 65,034,878 pounds of copper was recovered by straight leaching.
 Zino-copper ore.
 Includes copper-zinc ore.
 Includes copper from magnetite-pyrite-chalcopyrite ore.

TABLE 10.—Copper ore, old tailings, etc., shipped to smelters in the United States in 1952, with content in terms of recoverable copper

		Ore, old taili	Ore, old tailings, etc., shipped to smelters				
State		Short tons	Recoverable copper content				
		Short tons	Pounds	Percent			
California		987	51, 896, 769 63, 100	4. 17 3. 20			
idaho		159	8, 610 43, 481 1, 895, 502	5. 90 13. 67 1. 92			
New Mexico		88, 170 140, 629	1, 850, 900 3, 029, 820 1, 600	1. 05 1. 08 . 90			
Texas Utah		111 2,619	7, 068 303, 863	3. 18 5. 80			
<u> </u>		904, 486	2, 600 59, 103, 313	1. 83 3. 27			

TABLE 11.—Copper ores 1 produced in the United States, 1943-47 (average) and 1948-52, and average yield in copper, gold, and silver

	Smelting ores		Concentrating ores		Total				
Year	Short tons	Yield in cop- per (per- cent)	Short tons 2	Yield in cop- per (per- cent)	Short tons 2 3	Yield in cop- per (per- cent)		Yield per ton in silver (ounce)	Value per ton in gold and silver
1943–47 (average) _ 1948	1, 276, 031 877, 748 645, 520 624, 261 776, 558 904, 486	3. 61 3. 78 3. 46 3. 37 3. 63 3. 27	78, 880, 371 80, 098, 098 72, 019, 010 90, 206, 169 91, 021, 243 95, 307, 233	0. 92 . 89 . 89 . 88 . 87 . 82	83, 350, 721 84, 729, 043 76, 032, 531 94, 585, 792 95, 494, 214 99, 947, 492	0.96 .92 .91 .89 .90	0.0052 .0058 .0057 .0062 .0059 .0057	0. 118 . 094 . 093 . 089 . 088 . 082	\$0. 27 . 29 . 28 . 30 . 29 . 27

¹ Includes old tailings, smelted or retreated, etc. ² Includes some ore classed as zinc-copper ore.

3 Includes copper ore leached.

Smelter Production.—The recovery of copper by smelters in the United States from ores of domestic origin totaled 927,400 short tons in 1952, virtually the same as in 1951 (930,800). Output of United States smelters from domestic ores constituted 51 percent of the world production during 1925-29 but dropped sharply in the succeeding years until 1934, when it was only 17 percent. From 1936 to 1941 it fluctuated between 25 and 33 percent; in 1942-44 it was slightly above 35 percent; and in 1945-52 it ranged from 29 to 35 percent; for 1952 alone it was 30 percent.

The figures for smelter production shown in table 12 are based upon returns from all primary smelters handling copper-bearing materials produced in the United States. Blister copper is accounted for in terms of fine-copper content. Some casting and electrolytic copper produced direct from ore or matte is included in the smelter production, as well as in the refinery output. For Michigan, furnace-refined copper is included. Metallic and cement copper recovered by leach-

ing is included in smelter production.

TABLE 12.—Copper produced (smelter output from domestic ores) in the United States, 1943-47 (average) and 1948-52, and total, 1845-1952

Year	Short tons	Value ¹ (thousands of dollars)
1943–47 (average)	868, 314 842, 477 757, 931 911, 352 930, 774 927, 365	242, 567 365, 635 298, 625 379, 122 450, 495 448, 845
Total 1845-1952	38, 264, 012	11, 892, 336

¹ Excludes bonus payments of Office of Metals Reserve under Premium Price Plan in effect Feb. 1, 1942, to June 30, 1947.

The quantity and value of copper produced from domestic ores by smelters in the United States are shown by years for 1845–1930 in

Mineral Resources of the United States, 1930, part I (p. 703).

Refinery Production.—The refinery output of primary copper in the United States in 1952 was made by 13 plants; 9 of these employed the electrolytic method only, 2 the furnace process on Lake Superior copper, 1 the furnace process on western ores, and 1 both electro-

lytic and the furnace methods.

Five large electrolytic refineries are on the Atlantic seaboard, 3 Lake refineries on the Great Lakes, and 4 electrolytic refineries west of the Great Lakes—1 at Great Falls, Mont.; 1 at Tacoma, Wash.; 1 at El Paso, Tex.; and 1 at Garfield, Utah. In 1942 fire-refined copper was produced for the first time at the Hurley, N. Mex., plant of the Kennecott Copper Corp.; virtually all of the plant output was treated by this method in 1949. A small part went as blister to electrolytic refineries in 1952. The El Paso plant of the Phelps Dodge Refining Corp. produced fire-refined copper in addition to the electrolytic grade. Of the plants specified above, the Lake refinery of the Copper Range Co., idle since October 9, 1945, was being dismantled in 1952. That of the Quincy Mining Co., idle since 1933, was reopened in the final quarter of 1948 and continued to produce through 1952.

The leaching plant of the Inspiration Consolidated Copper Co. at Inspiration, Ariz., is not, strictly speaking, a refinery, although so listed here; it produces electrolytic copper direct from leaching solutions. At one time all this copper was shipped as cathodes to other refineries, where it was melted and cast into merchant shapes. In 1946, however, over one-third went directly to consuming plants. In 1947 and 1948 the practice was continued on a considerably reduced scale, virtually ceased in 1949, but was resumed in 1950–52.

These 14 plants constitute what commonly are termed "primary refineries." The electrolytic plants, exclusive of that at Inspiration, have a rated capacity of 1,608,000 tons of refined copper a year. They produced at the rate of 74 percent of capacity in 1952.

Tables 13 and 14 show the production of refined copper at primary refining plants, classified according to source of copper, grade, and

form in which cast.

TABLE 13.—Primary and secondary copper produced by primary refineries in the United States, 1943-47 (average) and 1948-52, in short tons

	1943-47 (average)	1948	1949	1950	1951	1952
Primary: From domestic ores, etc.: Electrolytic Lake Casting	745, 362 32, 405 86, 095	745, 102 26, 511 88, 409	606, 826 17, 608 70, 581	821, 803 29, 555 69, 390	835, 419 25, 309 90, 831	819, 539 21, 681 81, 972
Total	863, 862	860, 022	695, 015	920, 748	951, 559	923, 192
From foreign ores, etc.: Electrolytic Casting and best select	278, 727 6, 947	247, 424	232, 912	319, 086	255, 429	254, 504
Total refinery production of new copper	1, 149, 536	1, 107, 446	927, 927	1, 239, 834	1, 206, 988	1, 177, 696
Secondary: Electrolytic 3 Casting	124, 776 11, 260	222, 602 22, 774	196, 850 15, 542	173, 063 16, 683	127, 347 7, 676	113, 827 8, 549
Total secondary	136, 036	245, 376	212, 392	189, 746	135, 023	122, 376
Grand total	1, 285, 572	1, 352, 822	1, 140, 319	1, 429, 580	1, 342, 011	1, 300, 072

¹ The separation of refined copper into metal of domestic and foreign origin is only approximate, as an accurate separation at this stage of manufacture is not possible.

² Includes copper reported from foreign scrap.

TABLE 14.—Copper cast in forms at primary refineries in the United States, 1950-52

naski ni katema i filojeni. Konsumen sa meningala	1950		1951		1952		
Form	Thousands of short tons		Thousands of short tons	Percent	Thousands of short tons	Percent	
Wire bars Ingots and ingot bars Cathodes Billets Cakes Other forms	799 111 189 172 130 29	56 8 13 12 9	774 142 146 141 119 20	58 11 11 10 9 1	767 139 138 137 108 11	59 11 11 10 8	
Total	1,430	100	1,342	100	1, 300	100	

In addition to the primary refineries, many plants throughout the country operate on scrap exclusively, producing metallic copper and a variety of alloys. The output of these plants is not included in the statements of refined-copper production in tables 13 and 14 but is included in table 16, on secondary-copper production.

Copper Sulfate.—Production and shipments of copper sulfate in 1952 were less than in 1951. Shipments were less than production and stocks at the end of the year increased substantially over those held a year earlier. Of the total shipments of 92,500 tons (104,300 in 1951), producers' reports indicated that 26,100 tons (44,000) were for agricultural, 24,000 (27,000) for industrial, and 42,400 (33,300) for other purposes.

According to a British report, the largest quantities of copper sulfate are used in viticulture and other forms of agriculture. In France, Portugal, and the Mediterranean wine-producing countries, the vine-growers use it in the form of Bordeaux or Burgandy mixture to spray their vines against mildew. Farmers in these and many other coun-

TABLE 15.—Production, shipments and stocks of copper sulfate in 1943-47 (average) and 1948-52, in short tons

garage and a second second	Produ	ıction	Shipments	Stocks at end	
Leading to the Year and the leading to the leadin	Gross weight			of year 1 (gross weight)	
1943–47 (average)	106, 820 96, 700 79, 000 87, 300 106, 944 94, 536	26, 707 24, 186 19, 749 21, 814 26, 736 23, 634	100, 780 93, 100 84, 400 91, 300 104, 260 92, 472	11, 44 11, 80 6, 40 2, 20 4, 88 6, 88	

¹ Some small quantities are purchased and used by producing companies, so that the figures given do

tries spray potatoes to protect them against blight, and a list appended to the report shows many other ways of using copper sulfate on farms in preserving health of plants and animals and in increasing In Greece, Turkey, and Australia it is used in spraying the bushes and vines which provide currants and sultanas. Many thousands of tons are used against leaf spot on banana plantations. In Cevlon, India, and Indonesia it is needed on the tea, coffee, and rubber plantations, and for cocoa in West Africa and coffee in East In some countries it is used in increasing quantities to counteract deficiency of copper in the soil. It plays an outstanding part in helping to stamp out disease in humans and animals in Egypt and the Sudan, among other places, where it is used to kill the snails that harbor the bilharzia and liver fluke parasites.

In the industrial field, copper sulfate is used by mining companies in many parts of the world as a flotation reagent. It is used in various copper-plating processes. The dyeing industry uses it in a number of processes, the paint industry uses it mainly in antifouling paints, and it is used in coloring glass and china. Timber and woodwork may be protected by a preservative containing copper sulfate, and it may be added to plaster to prevent the spread of dry rot or to cement to reduce too-white glare, also in the manufacture of some rayon yarns and in leather-tanning processes. It helps to preserve fishing nets, keeps reservoirs and swimming pools free from algal growths, and is used in some types of hair dyes as well as in the sachets of some permanent-wave systems.4

SECONDARY COPPER

Copper recovered from copper scrap, copper-alloy scrap, and other copper-bearing scrap materials as metal, as copper alloys without separation of the copper, or as copper compounds is known as secondary copper. Quantities are reported in terms of copper content.

Secondary copper is produced from new and from old scrap. scrap" is defined as refuse produced during manufacture of copper articles and includes defective finished or semifinished articles that must be reworked. Typical examples of new scrap are defective castings, clippings, punchings, turnings, borings, skimmings, drosses, and "Old scrap" consists of metal articles that have been discarded

⁴ British Sulphate of Copper Association, Ltd., Uses of Copper Sulphate: London, E. C. I., 30 pp.

after having been used. Such articles may be worn out, obsolete, or damaged. Typical examples are discarded trolley wire, fired cartridge

cases, used pipe, and lithographers' plates.

Table 16 summarizes the production of secondary copper during 1943-52. Refined copper produced from scrap at primary refineries is included in the "unalloyed" class. Detailed information appears in the Secondary Metals—Nonferrous chapter of this volume.

TABLE 16.—Secondary copper produced in the United States, 1943-47 (average) and 1948-52, in short tons

	1943-47 (average)	1948	1949	1950	1951	1952
Copper recovered as unalloyed copper Copper recovered in alloys 1	158, 575 803, 183	284, 026 688, 762	250, 089 463, 054	260, 704 716, 535	186, 462 745, 820	173, 904 729, 293
Total secondary copper	961, 758	972, 788	713, 143	977, 239	932, 282	903, 197
From new scrapFrom old scrap	503, 527 458, 231	467, 324 505, 464	329, 595 383, 548	492, 028 485, 211	474, 158 458, 124	488, 562 414, 635
Percentage equivalent of domestic mine output	112	117	95	107	100	98

 $^{^1}$ Includes copper in chemicals, as follows: 1943–47 (average), 16,614; 1948, 17,612; 1949, 14,840; 1950, 17,413; 1951, 22,905; 1952, 15,388.

CONSUMPTION

Apparent consumption of primary copper, which includes sporadic copper shipments to the national stockpile, increased 4 percent in 1952. As in 1951, the figures do not give an accurate guide to the quantities of new copper that would have been consumed had adequate supplies been available to fill all needs. Copper was subject to complete allocation in 1952, as in the late months of 1951. Government action in regard to prices made more foreign copper available for use in the latter part of 1952 than had been received in a similar period since World War II and promised easing of the scarce supply situation in 1953.

TABLE 17.—New refined copper withdrawn from total year's supply on domestic account, 1948-52, in short tons

	1948	1949	1950	1951	1952
Production from domestic and foreign ores, etc. Imports ¹ . Stock at beginning of year ¹ .	1, 107, 446 249, 124 60, 000	927, 927 275, 811 67, 000	1, 239, 834 317, 363 61, 000	1, 206, 988 2 238, 972 26, 000	1, 177, 696 346, 960 35, 000
Total available supply	1, 416, 570	1, 270, 738	1, 618, 197	2 1, 471, 960	1, 559, 656
Copper exported ¹ Stock at end of year ¹	142, 598 67, 000	137, 827 61, 000	144, 561 26, 000	133, 305 35, 000	174, 135 26, 000
Total	209, 598	198, 827	170, 561	168, 305	200, 135
Apparent withdrawals on domestic account 34	1, 214, 000	1, 072, 000	1, 447, 000	² 1,304,000	1, 360, 000

¹ May include some copper refined from scrap.

² Adjusted for Office of Metals Reserve stock changes; OMR stocks consigned to national stockpile late in 1948.
⁴ Includes copper delivered by industry to the national stockpile.

Figures on apparent consumption of primary copper are available for a long period, whereas compilations on actual consumption of refined copper were begun in 1945. In estimating apparent consumption, it has been assumed that copper used in primary fabrication of copper is consumed. Although the table aims to show primary consumption only, it should be noted that exports and stocks, as well as the import component of "total supply," include some refined secondary copper that cannot be determined separately. Actual consumption of new copper would also differ from the figures shown in the table by changes in consumers' stocks. The figures on apparent consumption in 1947 and 1948 are especially distorted by the fact that during this period unusual quantities of copper were imported as scrap and reexported in refined form. Because refined exports cannot be broken down to show new and old copper, these reexports were necessarily deducted from apparent consumption, even though the scrap from which they were produced was not included in available supply.

Actual consumption of refined copper in 1952 increased 4 percent over 1951 and was the highest since before the end of World War II. Wire mills continued to absorb half of all the refined metal used, with brass mills very closely behind. The distribution in 1952 and in the last months of 1951 was determined by National Production Authority allocations. Unlike table 17, in which all but new copper is eliminated so far as possible, table 18 does not distinguish between new and old

copper but covers all copper consumed in refined form.

Some copper precipitates are used directly in the manuf

Some copper precipitates are used directly in the manufacture of paint and other items. The figures may not be shown separately and are not covered by table 18, which relates to refined copper only.

TABLE 18.—Refined copper consumed in 1950-52, by classes of consumers, in short tons

Class of consumer	Cath- odes	Wire bars	Ingots and ingot bars	Cakes and slabs	Billets	Other	Total
1950: Wire mills Brass mills Chemical plants Secondary smelters Foundries and miscellaneous Total	17	695, 817 67, 379 192 537 763, 925	17, 453 104, 359 110 1, 155 18, 198 141, 275	212, 353 248 70 212, 677	160, 754 426 161, 180	53 1 2, 995 30 5, 635 8, 714	713, 354 675, 100 3, 122 6, 209 26, 649 1, 424, 434
1951: Wire mills Brass mills Chemical plants Secondary smelters Foundries and miscellaneous Total	6, 953	692, 656 72, 415 375 368 765, 814	17, 311 124, 614 261 5, 985 22, 570 170, 741	152 187, 041 216 302 187, 711	135, 058 4 764 135, 826	57 308 2, 962 211 8, 838 12, 376	710, 199 650, 967 3, 223 13, 744 38, 732 1, 416, 865
1952: Wire mills Brass mills Chemical plants Secondary smelters. Foundries and miscellaneous Total		727, 257 57, 456 8 130 784, 851	11, 977 163, 190 279 13, 203 23, 953 212, 602	209 185, 138 326 161 185, 834	134, 223 624 134, 847	33 453 3, 440 562 7, 720 12, 208	739, 487 675, 073 3, 719 22, 918 38, 535 1, 479, 732

STOCKS

Industry stocks of refined and unrefined copper turned upward in 1952 for the first time since 1949.

Year-end producers' inventories of refined copper dropped 26 percent and equaled those held by producers at the end of 1950, the smallest since 1906. Producers' stocks of unrefined copper, however, rose 2 percent over 1951. Of the total stocks at the end of 1952, only 12 percent was in the form of refined copper, the remainder being in smelter shapes at smelters and in transit to refineries and in smelter shapes and materials in process of refining at refineries. Table 19 gives domestic stocks of copper as reported by primary smelting and refining plants. Blister and anode copper in transit from smelters to refineries is included with stocks of blister copper.

TABLE 19.—Stocks of copper at primary smelting and refining plants in the United States at end of year, 1947-52, in short tons

Year	Refined copper 1	Blister and materials in process of refining ²	Year	Refined copper 1	Blister and materials in process of refining 2
1947	60, 000	213,000	1950	26, 000	232, 000
1948	67, 000	183,000	1951	35, 000	182, 000
1949	61, 000	261,000	1952	26, 000	185, 000

Fabricators' stocks of refined metal (including in-process copper and primary fabricated shapes), according to the United States Copper Association, were 331,500 tons at the end of 1952, an 18-percent increase over those on hand at the beginning of the year. ing stocks (see table 20) were 292,200 tons, or virtually unchanged from those at the end of 1951. After accounting for unfilled sales of metal, the deficiencies in stocks in relation to unfilled orders dropped 82,300 tons to 203,600 tons at the end of 1952. The latter figure represented the first decrease since 1949 in the deficit in stocks.

Figures compiled by the Copper Institute show that domestic stocks of refined copper decreased from 71,500 tons at the end of 1951 to 58,900 at the end of 1952. Inventory data of the Bureau of Mines and the Copper Institute always differ owing to somewhat different bases. Before 1947, a primary reason was that the Copper Institute coverage was limited to duty-free copper. The inclusion by the Copper Institute of all copper after January 1, 1947, reduced the differences chiefly to the method of handling metal in process of refining (included as refined by Copper Institute and as unrefined by the Bureau of Mines) and to other minor variations in interpretation until May 1951, when the institute's inventory data began to include tonnages delivered to United States consumers at foreign ports. Bureau of Mines figures are on the basis of metal physically held at primary smelting and refining plants in the United States. In the Bureau of Mines classification, cathodes to be used chiefly for casting into shapes are considered stocks in process and not refined stocks.

May include some copper refined from scrap.
 Includes copper in transit from smelters in the United States to refineries therein.

TABLE 20.—Stocks of copper in fabricators' hands at end of year, 1948-52, in short tons

[TInited	States	Conner	Association]
լ Օшւես	Diales	Copper	ASSOCIATION

	and the second second	and the second second			
	Stocks of refined copper 1	Unfilled pur- chases of refined cop- per from producers	Working stocks	Unfilled sales to customers	Excess stocks over orders booked ²
	(1)	(2)	(3)	(4)	(5)
1948	379, 346 354, 992 290, 241 280, 402 331, 499	81, 496 82, 793 92, 372 32, 147 32, 652	295, 958 285, 298 288, 392 295, 385 292, 157	315, 944 189, 407 313, 052 303, 050 275, 608	-151, 060 -36, 920 -218, 831 -285, 886 -203, 614

¹ Includes in-process metal and primary fabricated shapes. Also includes small quantities of refined copper held at refineries for fabricators' account.

² Columns (1) plus (2) minus (3) and minus (4) equals column (5).

PRICES

Reports to the Bureau of Mines from copper-selling agencies indicated that 945,000 tons of domestic refined copper was delivered to purchasers in 1952 at an average price (f. o. b. refinery except for that part sold by the Kennecott Sales Corp. whose sales were on the basis of copper delivered to consumers' plants) of 24.2 cents a pound. These figures are to be compared with 998,000 tons and 24.2 cents a pound in 1951 but may not be compared with data for earlier years, which included deliveries of foreign copper to United States buyers. The average price of foreign copper delivered in the United States was 33.4 cents in 1952 and 26.2 in 1951.

Throughout 1952 copper from United States mines continued to be controlled by provisions of the General Ceiling Price Regulation. This order limited prices for individual sellers to the highest prices received between December 19, 1950, and January 25, 1951, inclusive. Most producers sold copper at 24.5 cents a pound delivered Connecticut Valley during the base period, and that average thus repre-

TABLE 21.—Average weighted prices of copper deliveries, f. o. b. refinery, 1933-52 ¹

Year	Cents per pound	Year	Cents per pound
1933 1934 1935 1935 1937 1938 1939 1940	6. 4 8. 0 8. 3 9. 2 12. 1 9. 8 10. 4 11. 8	1943. 1944. 1945. 1946. 1947. 1948. 1949. 1950. 1951.	3 11. 8 2 11. 8 2 11. 8 2 14. 4 2 20. 7 19. 7 20. 8 3 24. 2

¹ Covers copper produced in the United States and delivered here and abroad and copper produced abroad and delivered in the United States; excludes copper both produced and delivered abroad whether or not handled by United States selling agencies.

² Excludes deliveries of foreign copper to Metals Reserve Company and bonus payments, applicable from

February 1942 to June 30, 1947.

Excludes deliveries of foreign copper to domestic consumers; average price of such deliveries was 26.2 cents per pound in 1951 and 33.4 in 1952. In 1951 and 1952 includes the copper delivered by Kennecott Copper Corp. on a delivered consumers' plant basis.

TABLE 22.—Average monthly quoted prices of electrolytic copper for domestic and export shipments, f. o. b. refineries, in the United States, 1951-52, in cents per pound

		1951			1952			
Month	Domestic f. o. b. refinery ¹	Domestic f. o. b. refinery ²	Export f. o. b. refinery ²	Domestic f. o. b. refinery 1	Domestic f. o. b. refinery 2	Export f. o. b. refinery ²		
January February March April May June July August September October November December	24. 37 24. 37	24. 200 24. 200	24. 425 24. 425 24. 425 24. 425 25. 471 27. 374 27. 425 27. 425 27. 425 27. 425 27. 425	24. 37 24. 37	24. 200 24. 200	27. 425 27. 425 27. 425 27. 425 27. 908 34. 586 34. 815 34. 904 34. 824 34. 751 34. 681 34. 780		
Average for year	24.37	24. 200	26. 258	24.37	24. 200	31.746		

TABLE 23.—Average yearly quoted prices of electrolytic copper for domestic and export shipments, f. o. b. refineries, in the United States, 1943-52, in cents per pound

	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952
Domestic f. o. b. refinery ¹ Domestic f. o. b. refinery ² Export f. o. b. refinery ²	11.775	11.775	11.775	13.820	20.958	22.038	19, 202	21. 235	24. 200	24. 37 24. 200 31. 746

sented the ceiling for most of the domestic copper sold in 1952. Some smaller producers, however, had ceiling prices that were sub-

stantially higher than the 24.5-cent level.

The price for Chilean copper, under the agreement between the United States and Chilean Governments, was 27.5 cents a pound delivered Connecticut Valley when the year began, and this was also the price for foreign copper refined in the United States. The Chilean Government and not the large American producing companies operating in Chile received the 3-cent advantage over the price for domestic copper. In the early part of 1952 prices for copper sold in foreign markets were substantially above those in the United States; under the agreement, Chile could withhold for sale in such markets not more than 20 percent of the total produced by the large American companies. Dissatisfaction with the 27.5-cent price caused Chile to abrogate the United States-Chile agreement in May and to embargo exports to the United States; following price action by the United States Government the embargo was lifted before the end of May. In February 1952 a law was passed granting the State (Chile) the right to sell the electrolytic, fire-refined, and blister copper produced by American companies. The Banco Central de Chile was empowered to represent the State as exclusive selling agent,

¹ American Metal Market.
2 E&MJ Metal and Mineral Markets.

¹ American Metal Market. ² E&MJ Metal and Mineral Markets.

but the bank's practice was to operate through Anaconda and Kenne-

cott sales agencies.

The Office of Defense Mobilization on May 21 authorized importers to pay higher prices for imported metal and to pass on to domestic users 80 percent of increased costs over 27.5 cents, which was revised early in June to the increase over 24.5 cents. Almost immediately the price for Chilean copper advanced to 35.5 cents a pound f. a. s. Chilean ports, or to roughly 36.5 cents in the United States. On June 24 OPS exempted from price control, in Amendment 21 to GOR 9, refined copper imported and copper refined from imported copper-bearing materials and imported scrap purchased after June 16, and Amendment 23 extended the exemption to such copper imported between May 8 and June 16. From late May beyond the end of the year, the Chilean price remained unchanged. Much foreign copper from other countries sold in the United States at below that level.

Meanwhile, to prevent loss of production from high-cost domestic mines, the DMPA granted over-the-ceiling subsidies to producers of copper from such mines. These mines are listed in the section on Defense Production Act Stimulation. In September the Office of Price Stabilization established a 27.5-cent ceiling for Calumet &

Hecla, Inc., based on costs of production.

The confusion and dissatisfaction caused by the multiprice situation were great, and most elements in the industry were outspoken in favor of the scrapping of copper price controls. The extreme spread in prices was equivalent to 50 percent of the domestic selling

price.

The NPA, in an effort to make the most equitable possible distribution of multipriced supplies, began with the July allocation to allocate domestic and foreign copper to all users on a 60/40 division. Domestic fabricators, whose domestic producing affiliates supplied their needs, through this plan were called upon to fill 40 percent of their needs with foreign copper, and the producing affiliate had to dispose of low-priced domestic copper to a competitive fabricator. Domestic fabricating affiliates of American mining companies producing in Chile, on the other hand, since May 1951 had been absorbing the 3-cent differential in costs between 24.5 and 27.5 cents but during this time were not receiving the higher prices permitted for their Chilean-produced metal. They continued to receive only 24.5 cents for their production but after early June could pass on to consumers 80 percent of increased costs over 24.5 cents.

On February 27 the Office of Price Stabilization issued Order CPR 127, establishing ceiling prices on brass and bronze ingots, effective March 3. The regulation set forth specific ceiling prices for carlots of all the listed alloys of brass and bronze ingot normally produced and made provision for transportation costs and shipping in less than carlots. The regulation obviated the diversity of selling prices that prevailed for these products under the General Ceiling Price Regu-

lation.

In Amendment 2 to Order CPR 46, effective March 12, ceilings were established on dealer-to-dealer sales. The ceilings were identical with those previously provided for other persons. In addition, the

action permitted payment of a maximum premium of 1.75 cents per

pound on sales between dealers.

On June 30 the OPS issued, effective July 1, Amendments 1 to Ceiling Price Regulations 68 and 110 on brass mill products and wire mill products, respectively, establishing higher prices for these products based on the passing through to the consumer of 80 percent of increases in costs of imported copper over 24.5 cents a pound. The increases usually amounted to 3.84 cents a pound of copper in brass-mill products and, allowing for scrap loss, to 4.25 cents for bare wire and, allowing for scrap loss and insulation, to 3.25 cents for weatherproof wire.

On August 14, Amendment 7 to CPR 60 permitted copper and copper-alloy castings producers to pass on increased costs from use

of foreign copper.

SR 125 to GCPR, effective November 24, permitted producers of products in which primary copper was used, and whose ceiling prices were established under GCPR, to adjust their ceiling prices for these

products to reflect the increased cost of foreign copper.

The quoted price for export copper, f. o. b. refinery, was 3,225 cents a pound above the domestic quotation from the latter part of May 1951 to late in May 1952. In June the differential was 10.386 cents; it rose to 10.704 in August and was 10.580 in December, averaging 7.546 cents for the year as a whole. E&MJ Metal and Mineral Markets gives the following description of the foregoing prices:

Our export quotation for copper reflects prices obtaining in the open market and is based on sales in the foreign market reduced to the f.o.b. refinery equivalent, Atlantic seaboard. On f.a.s. transactions we deduct 0.075 cent for lighterage, etc., to arrive at the f.o.b. refinery quotation.

London Price.—The British Ministry of Materials official maximum price was £227 per long ton (equivalent to 28.375 cents a pound) when the year began; it was raised to £231 (28.875 cents), effective April 1, and to £281 (35.125 cents) June 16. In May the British Government announced that it had decided again to base its selling price of metals and other raw materials on New York market prices plus a differential for freight, etc. On June 20 the British Government announced agreement with producers to purchase copper at 33 cents a pound. The British Ministry of Materials price was raised to £287 (35.875 cents) on July 7, reduced to £285 (35.625 cents) on July 31, thereafter remaining unchanged. British purchases from producers were at 33.5 cents a pound f. a. s. New York beginning August 1. Selling prices on the European Continent were reported to be at about this level. Selling prices in foreign markets in 1951 were considerably over those in 1952, but an average world price is not available.

FOREIGN TRADE 5

Imports of copper advanced 27 percent in 1952; receipts in the second half of the year exceeded those in the first half by 58 percent. The larger quantities made available from abroad, chiefly from Chile, were effective in improving the relationship of United States supplies

⁸ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

to requirements in the late months of the year. Most of the larger receipts were in the form of refined copper, with noteworthy quantities coming from infrequent sources of United States supply. The United States continued to be a net importer by a substantial margin, and there were no signs that this situation would change in the foreseeable future.

Much of the foreign copper that entered the country was for refining and exportation or for refining, primary or later fabrication, and exportation. Much of the copper exported could not be measured quantitatively, being in such items as electric motors, automobiles, and

equipment of various types.

The excess capacities of domestic smelting and refining facilities for years were used to treat foreign materials, largely for reexport as refined copper in fabricated shapes and in end products. United States smelters and refineries continue to treat foreign crude materials, both purchased and toll copper.

Exports of copper continued subject to export control in 1952; exports of refined copper rose 31 percent, nonetheless, as compared

with 1951.

TARIFF

The suspension of the 2-cent excise tax on copper was extended from February 15, 1953, to June 30, 1954, by a bill signed by President Eisenhower on February 14.

IMPORTS

Imports of copper in all unmanufactured forms rose 27 percent above 1951. United States Government action permitting the passing on of most of the increased costs of foreign copper to consumers (see Price section) was chiefly responsible for the greater tonnage that entered the United States. The increase is explained in part also by the diversion of Canadian copper from a labor-struck refinery to an American plant for treatment (see section on Canada). Refined copper increased its dominant position among the import classes, furnishing 56 percent of the total receipts and increasing 45 percent over Most of the expansion came from Chile, but noteworthy ad-1951. vances were made also in receipts from Yugoslavia, Mexico, and Peru; and there was a substantial quantity from West Germany, which had sent none in 1951 and other recent years. The increase of 14 percent in imports of unrefined copper resulted largely because sharp expansion in entries from Canada, smaller gains from Chile and Yugoslavia, and

TABLE 24.—Copper (unmanufactured) imported into the United States, 1943–47 (average) and 1948–52 ¹

[U. S. Department of Commercel

			<u> </u>	
	Year	Short tons of contained cop- per	Year	Short tons of contained cop- per
1943–47 (aver 1948 1949	age)	633, 055 507, 449 552, 709	1950 1951 1952	690, 389 2 489, 135 618, 944

Data are "general" imports; that is, they include copper imported for immediate consumption plus material entering country under bond.
 Revised figure.

new entries from Turkey more than offset the noteworthy drop in imports from Northern Rhodesia. Imports of concentrates rose Imports of concentrates rose slightly with larger quantities from the Philippines, Peru, and the Union of South Africa, more than counterbalancing declines from Cuba, Bolivia, and elsewhere. The small-ore class increased 56 percent in 1952.

Chile supplied 59 percent of the total quantity imported; Canada and Mexico sent 13 and 8 percent, respectively.

TABLE 25.—Copper (unmanufactured) imported into the United States, 1948-52. in short tons, in terms of copper content 1

	[U. S. Department of Commerce]									
	Ore	Concentrates	Regulus, black or coarse cop- per, and cement copper	Unrefined, black, blis- ter, and converter copper in pigs or con- verter bars	Refined in ingots, plates, or bars	Old and scrap cop- per, fit only for reman- ufacture; and scale and clip- pings	Total			
1948 1949 1950	8, 197 6, 823 2, 600	81, 301 108, 814 104, 168	3, 657 2, 084 3, 233	155, 836 152, 376 224, 222	249, 124 275, 811 317, 363	9, 334 6, 801 38, 803	507, 449 552, 709 690, 389			
Australia Bolivia Canada Canada Chile Cuba Japan Matta, Gozo, and Cyprus Mexico Northern Rhodesia Peru Philippines Union of South Africa Yugoslavia Other countries Total	818 (³)	2 713 4, 230 24, 728 11, 235 21, 837 5, 556 6, 378 6, 533 3 12, 608 3, 626 147 2 97, 591	1, 946 440 7 3, 051	47, 178 2 300	28, 354 2 208, 444 2 852 2 757 377 (4) 188 2 238, 972	426 664 633 407 756 94 1 8 2,575 5,564	2 1, 143 4, 449 54, 554 2 268, 352 22, 302 2 1, 908 5, 556 2 47, 878 2 43, 717 10, 054 12, 608 2 7, 353 3, 038			
Australia Bolivia Canada Chile Cuba France Germany, West Malta, Gozo, and Cyprus Mexico Northern Rhodesia Peru Philippines Turkey Union of South Africa Yugoslavia Other countries	11, 592 233 	5, 441 6, 355 8, 302 3 14, 787 5, 251	1,804 794	36, 832 28, 224 2 3, 779 3, 326 8, 023	28, 326 294, 425 8, 932 5, 839 1 1, 662 6, 810 965	873	684 3, 097 81, 980 362, 303 19, 934 1, 806 8, 932 5, 441 50, 997 28, 225 11, 317 14, 787 3, 779 8, 588 14, 833 2, 241			
Total	3, 183	98, 191	3, 900	162, 193	346, 960	4, 517	618, 944			

¹ Data are "general" imports; that is, they include copper imported for immediate consumption plus material entering the country under bond. ² Revised figure.

4 Less than 1 ton.

EXPORTS

Most of the copper exported from the United States is in advanced forms of manufacture, in which the copper content in not calculable, and in the form of refined copper. Refined-copper exports increased 31 percent in 1952 and were the largest since 1943. The increase was

accuracy ngure.
 Some copper in "Ore" and "Other" from Republic of the Philippines is not separately classified and is included with "Concentrates."

TABLE 26.—Copper (unmanufactured) imported into the United States, 1948-52, by countries, in short tons, in terms of copper content 1

[U.S. Department of Commerce]

Country	1948	1949	1950	1951	1952
Australia	1, 570	941	1, 307	² 1, 143	684
Belgium-Luxembourg Bolivia	6, 729	273 4, 671 67	386 5, 220	4, 449	646 3, 097
Brazil Canada Newfoundland and Labrador	43, 569	82, 821	82, 365	54, 554	81, 980
Chile	320, 703	285, 386 15, 849	292, 215 22, 891	² 268, 352 22, 302	362, 303 19, 934
EcuadorFrance	482	812	640 3, 801	1, 587	1, 806
GermanyJapanMalta, Gozo, and Cyprus		1, 167	54, 400	² 1, 908	³ 8, 932 223
Mexico	_ 57, 593	6, 888 64, 706 234	6, 530 62, 748 352	5, 556 2 47, 878 47	5, 441 50, 997 41
Netherlands Northern Rhodesia	4 19, 061	4 27, 244	4 87, 300 4, 098	² 43, 717	28, 22
Norway Peru Philippines	19, 318	22, 316 7, 969	28, 502 10, 129	10, 054 12, 608	11, 31, 14, 78
Turkey Union of South Africa	.	4, 572 8, 919	3, 266 9, 859	2 7, 353	3, 779 8, 588
United KingdomYugoslavia	995 2, 298	1, 925 14, 727	940 10, 998	6 6, 223	3 14, 83
Other countries	2, 309	1, 222	2, 398	1, 398	1, 298
Total	507, 449	552, 709	690, 389	² 489, 135	618, 94

¹ Data are "general" imports; that is, they include copper imported for immediate consumption plus material entering the country under bond.

2 Revised figure.

due in part to the return to Canada of copper refined in the United States because a Canadian refinery was closed for 18 weeks by a Otherwise large gains in exports to France, Germany, Italy, India, and Switzerland were about double the combined sharp drop in shipments to the United Kingdom and smaller declines for Netherlands and others.

Exports of rods virtually quadrupled, but continued very small in relation to most recent years before 1951.

TABLE 27.—Copper exported from the United States, 1943-47 (average) and 1948-52

[U. S. Department of Commerce]

Year	Ore, concentrates, composition metal, and unrefined copper (copper content)	Refined copper and semimanu- factures ¹	Total (ex copper ma	cept "Other nufactures")	Other copper manufac- tures 12	Grand total ¹
		Short tons		_	Value	
1943-47 (average)	282 2,473 200 616 234 648	191, 801 207, 022 195, 990 192, 339 166, 274 212, 390	192, 083 209, 495 196, 190 192, 955 166, 508 213, 100	\$80, 134, 117 111, 313, 040 95, 342, 124 86, 934, 184 99, 011, 054 3 155, 690, 015	\$1, 406, 859 2, 249, 857 1, 655, 349 1, 502, 917 1, 982, 042 211, 201	\$81, 540, 976 113, 562, 897 96, 997, 473 88, 437, 101 100, 993, 096 155, 901, 216

¹ Due to changes in classifications 1952 data not strictly comparable to earlier years.

West Germany.

4 Tonnages credited to Southern Rhodesia by the U. S. Department of Commerce have been added to Northern Rhodesia, inasmuch as copper of the grades reported does not originate currently in Southern Rhodesia.

Weight not recorded.
 Includes 62 tons of copper and copper base alloy powders valued at \$73,969; not separately classified before Jan. 1, 1952.

TABLE 28.—Copper exported from the United States, 1948-52, in short tons

[U.S. Department of Commerce]

	Ore, concentrates, composition metal, and unrefined copper (copper content)	Refined in bars, ingots, or other forms	Rods	Old and scrap	Pipes and tubes	Plates and sheets	Wire and cable bare 1	Wire and cable in- sulated	Other copper manufactures 1
1948. 1949. 1950. 1961.	2, 473 200 616 234	142, 598 137, 827 144, 561 133, 305	8, 101 12, 678 10, 073 521	2, 266 8, 284 9, 445 7, 701	5, 246 3, 344 1, 988 2, 160	2, 853 1, 088 581 572	10, 694 7, 881 7, 009 7, 983	35, 264 24, 888 18, 682 14, 032	(2) (2) (2) (2) (2)
Argentina. Australia. Australia. Australia. Austria. Brazil. Canada. Canal Zone. Chile. Colombia. Cuba Denmark. France. Germany, West Greece. India. Indochina. Indochina. Indonesia. Israel. Italy. Japan. Mexico. Netherlands. Netherlands Antilles. Norway. Pakistan Peru. Philippines. Portugal. Saudi Arabia. Spain.	646	166 1, 356 5, 496 12, 884 (3) 6 2 1, 447 35, 573 20, 447 42 17, 040 365 51 5, 94 12 1, 674 959 1 1 5, 944 12 1, 674 959 771	(3) 17 11 127 (3) 8 8 3 8 560 1 1 3 (9) 5 1,092 1 1 2 2 3 3 1	2, 398 (3) 31	85 8 1 91 497 17 4 494 439 6 (3) (3) 9 400 209 209 16 18 81 81 5 5 21 5	(3) 4 17 770 2 12 88 28 (3) 1 1 10 74 (4) 125 (5) 1 1 2 2 11 14 2 6	255 54	240 148 11 503 719 638 834 885 84 419 2 360 130 562 186 284 193 150 594 201 92 216 7 484 1,551 95 885 886 887 887 887 887 887 887 887 887 887	(2)

C
C
۲.
3
Ξ
7

Sweden Switzerland		2, 242 9, 562	28		6 3	(8)	(8)	25 3	1
Taiwan. Turkey. Union of South Africa.		(8)	1		3 5	2	52 24	163 704	
United KingdomUriguay	1	48, 116 95			(8) 14	(3)	1, 071 (³)	304 26 62	
VenezuelaOther countries		3 1,048	3 9	50	182 144	17 53	200 692	2, 479 1, 540	J
Total: Short tonsValue	\$494, 930	174, 135 \$119, 651, 433	1, 937 \$1, 257, 908	8, 941 \$3, 937, 467	2, 591 \$3, 120, 143	553 \$605, 498	7, 163 \$4, 756, 608	17, 070 \$21, 792, 059	(2) 4 \$285, 170

Due to changes in classifications 1952 data not strictly comparable to earlier years.
 Weight not recorded.
 Less than 1 ton.
 Includes copper and copper base alloy powders valued at \$73,969 (62 tons); not separately classified before Jan. 1, 1952.

TABLE 29.—Unfabricated brass (ingots, bars, rods, shapes, plates, and sheets) exported from the United States, 1947-52

[U. S. Department of Commerce]

Year	Short tons	Value	Year	Short tons	Value
1947	12, 622	\$7, 640, 678	1950	2, 334	\$1, 694, 488
1948	6, 395	4, 499, 160	1951	1 3, 820	2, 951, 881
1949	4, 287	3, 080, 509	1952 ²	5, 514	5, 424, 662

¹ Revised figure.

TABLE 30.—Brass and bronze exported from the United States, 1951-52, by classes

[U. S. Department of Commerce]

Class	19	951	1952		
	Short tons	Value	Short tons	Value	
Ingots ¹ Scrap and old ¹ Bars, rods, and shapes ¹ Plates and sheets ¹ Pipes and tubes. Pipe fittings. Plumbers' brass goods. Wire of brass or bronze ¹ Hardware of brass or bronze ¹ Other brass or bronze manufactures ¹	2, 077 4, 857 914 2 829 1, 458 707 2, 242 1, 446 (4)	\$1, 299, 044 2, 090, 573 865, 660 787, 177 1, 679, 240 1, 571, 038 5, 770, 986 1, 959, 620 924, 366 5, 792, 815	2, 377 6, 261 2, 212 925 1, 400 726 (3) 1, 532 (4)	\$1, 944, 896 2, 359, 794 2, 370, 945 1, 108, 820 1, 817, 426 1, 665, 200 5, 247, 886 2, 337, 595 2, 165, 787 1, 034, 570	
Total	(4)	22, 740, 519	(4)	22, 052, 85	

¹ Due to changes in classifications 1952 data not strictly comparable to earlier years.

² Revised figure.

4 Weight not recorded.

TABLE 31.—Copper sulfate (blue vitriol) exported from the United States, 1947-52

[U. S. Department of Commerce]

Year	Short tons	Value	Year	Short tons	Value
1947	34, 021	\$4, 099, 551	1950	30, 149	\$4, 151, 265
	42, 135	6, 514, 960	1951	43, 129	8, 753, 641
	31, 717	4, 320, 726	1952	43, 421	8, 482, 870

TECHNOLOGY

A progress report on experimental work on geochemical prospecting for copper in semiarid regions was recently published.⁶ Results showed a marked increase of copper in plants and soil over the ore body as compared with samples taken from areas beyond the limits of mineralization. On the other hand, the copper content of trees growing in the stream bed below the ore body was lower than expected.

² Due to changes in classifications data not strictly comparable to earlier years.

Weight not recorded January through June; July through December 1,138 tons valued at \$2,841,383.

⁶ Clarke, Otis M., Jr., Geochemical Prospecting for Copper at Ray, Ariz.: Econ. Geol., vol. 48, No. 1, January-February 1953, pp. 39-45.

An article on the Holden mine, Washington, was abstracted by the authors as follows: 7

The Holden mine produces copper, gold, and zinc from a shear zone-replacement deposit in which the control of mineralization was primarily structural. Selective replacement of a sheared siliceous amphibole schist host rock was a contributing factor. Two stages of mineralization are recognized. The ore body has been severely intruded by post-ore plutonics of a dioritic nature. No serious displacements of the economic portion of the mineralized zone have

Recent experiments in Tennessee 8 indicated that there was a place in the blast-hole drilling program for the 2%-inch carbide insert bit where the diamond-bit penetration was 75 feet or less per use, where excessive length of hole was not required, and where a 2-man crew was necessary because the working place was remote from other The findings were reported to indicate also that it was safer to operate a deep-hole percussion drill than a high-speed diamond drill.

According to a recent report, a new versatile mobile drill unit developed and tested at the Utah Copper pit, Utah, resulted in an

improvement of 233 percent in drill performance.

Another article 10 stated that a mechanized method of placing con-

crete for underground supports had been introduced in Africa.

A recent article 11 gave the output from the open-pit operations of the Bagdad Copper Corp., Ariz., as 3,700 tons of ore a day. It described the Bagdad operation.

Open-pit operations at Ray, Ariz., until recently operated by under

ground mining methods only were the subject of an article. 12

At the mine of the Miami Copper Co. two new developments were adapted to the block-caving method in use. 13 One was an integrated system of slusher and conveyor levels to replace the full-gravity system of raises that transferred ore from caving blocks to haulage The other was the use of circular and conventional steel sets for the support of level openings subject to the moving ground pres-

sures developed beneath active blocks.

The program of the International Nickel Co. of Canada, Ltd., according to the 1952 Annual Report to Stockholders, calls for eventual production and treatment of 13,000,000 tons of ore from underground A low-cost adaptation of block caving at the Creighton mine, by which great masses of ore are induced to disintegrate by their own weight, is one factor making the program possible. At the Frood section of the Frood-Stobie mine, another low-cost bulk-mining technique called the "blast-hole" method became the principal This method differs from "induced caving" only method of mining. insofar as explosives are used to break the ore.

The underground methods at International were reviewed.¹⁴

⁷ Youngberg, Elton A. and Wilson, Thomas L., The Geology of the Holden Mine: Econ. Geol., vol. 47, No. 1, January-February 1952, 12 pp.

8 Flournoy, Ezell, Blast-Hole Drilling at the Tennessee Copper Co.: Min. Cong. Jour., vol. 39, No. 4, April 1953, pp. 78-80, 111.

9 Pett, L. F., and Snow, L. E., The Mobile Drill Unit in Use at the Utah Copper Pit: Min. Eng., vol. 4, No. 8, August 1952, pp. 799-803.

10 Mining Journal, (London), Pneumatic Concrete Placing at Nchanga Consolidated Copper Mines: Vol. 240, No. 6134, March 13, 1953, p. 304.

11 Hondrum, Olaf, Mining Copper at Bagdad, Arizona: Explosives Eng., vol. 30, No. 5, September-October 1952, pp. 143-145, 160.

12 Mining World, Copper's Newest Big Open Pit: Vol. 15, No. 1, January 1953, pp. 26-30.

13 Mining World, Miami Block Caving Developments: Vol. 14, No. 11, October 1952, pp. 26-30.

14 Mutz, H. J., Brock, A. F., and Taylor, W. J., Underground Mining Methods at International Co.: Min. Eng., vol. 5, No. 1, January 1953, pp. 57-82.

Improvements at the mills of the Utah Copper Division, Kennecott Copper Corp., were recently described. 15 The new flotation system, under construction when the article was written, comprised new and larger flotation machines, as well as flowsheet revisions resulting from

several years of research aimed at increased recovery.

The hydrometallurgy of copper was described in a recent book, 16 which covered process and plant descriptions and gave operating data, facts on equipment and materials of construction, and other information. The book describes the chemistry of leaching and includes a study of the history, cost, and future of the leaching process. It states that the future probably will see even greater dependence on leaching techniques than at present. It states further:

All one can be sure of in discussing the future of leaching is that new techniques are going to be worked out over the next few years that would have been dismissed as fantastic by the metallurgists of yesterday. Here are some examples of present

It seems likely that sulfide copper ores can be leached with ammonia, as native copper ores are now. H. A. Tobelmann, consulting metallurgist, has done considerable work on this problem and feels that it may be solved one day. Prof. F. A. Forward, of the University of British Columbia, has worked out a process for dissolution of chalcocite with ammonia-leach solutions, and attempts are being made to apply the process commercially. It has been found possible to leach cobalt ores with ammonia and at the time this was being written, a full-scale project using this process was under development. There are problems, such as the requirement that the pulp be digested in an autoclave at high pressure and temperature, but the prospect of finding a solution using this technique is an inviting one. *** (re other metals).

The flowsheet of the new plant of Nchanga Consolidated Coppermines, Ltd., was discussed. 17 The flotation section yields a sulfide concentrate which goes to the smelter and an oxide concentrate containing 15 to 20 percent copper, of which 3 to 4 percent is in the form of sulfides. The leaching process extracts virtually all of the copper contained in the oxides, but the sulfide sludge must be treated

by secondary flotation.

In July 1949 the Cyprus Mines Corp., Cyprus, decided to investigate the possibilities of acid-leaching pyritic Mavrovouni ore to recover basic copper sulfates, insoluble in water, which were not recoverable in the existing flotation plant.18 Following investigations, construction of a plant was begun June 1, 1950. The process consists of leaching 2,000 long tons per 24 hours of minus-1/2-inch raw Mavrovouni ore with 4-percent sulfuric acid containing 2 grams per liter of ferric iron, separating the leached material into sand and slime portions, and washing the sand portion in 4 countercurrent classifiers and the slime in 4 countercurrent thickeners. The combined washed sand and slime go to the existing grinding and flotation plant and the pregnant solution to iron cementation for recovery of the dissolved copper. The process is claimed to have been responsible for a noteworthy increase in recovery of copper.

¹⁴ Corfield, R. J., and Johnson, A. G., Electrical and Metallurgical Improvements at Kennecott's Utah Copper Division Mills: Min. Eng., vol. 5, No. 3, March 1953, pp. 274–276.

16 Van Arsdale, Geo. D., Hydrometallurgy of Base Metals: McGraw-Hill Book Co., Inc., New York, Toronto, London, 1953, 370 pp.

17 Engineering and Mining Journal, Nchanga's New Copper Leach Plant: Vol. 153, No. 8, August 1952, p. 93.

18 Schlechten, A. W., and Bruce, J. L., New Acid-Leaching Section Raises Cyprus Copper Recovery by 10 percent: Eng. and Min. Jour., vol. 153, No. 12, December 1952, pp. 88–91

A new process was developed and proposed for treating ores from the mine of the Kilembe Mines, Ltd.¹⁹ Some of the ore was to be concentrated and some mixed with the flotation concentrate to make a feed of 650 tons per day for the Dorrco fluosolid roasters. The soluble copper and cobalt oxides were then to be leached from the roasted material, and electrolytic copper to be deposited from the solution.

Waste-dump leaching at the Chino Mines Division, Kennecott Copper Corp., was the subject of an article recently published.²⁰

Investigation of the treatment of Greater Butte project (Kelley), Montana, ore showed the desirability of using sponge iron as a precipitant for the copper in solution resulting from desliming of the ore in a dilute sulfuric acid solution. Production of sponge iron at Anaconda was the subject of a recent report.21

An article 22 on new FluoSolids experience discussed sulfatizing of

the base metals, among other things. It stated:

FluoSolids may be described as a radically new metallurgical process by which FluoSolids may be described as a radically new metallurgical process by which reactions between gases and solids can be more readily accomplished at elevated temperatures and at accelerated rates previously not possible. The process is finding application in many fields, but a typical operation is the roasting of sulphide ores or concentrates to produce strong SO₂ gas and, at the same time, a calcine containing less than one percent sulphide sulphur and less than two percent total sulphur. The technique requires that the solids, to be reacted, be fluidized or partially suspended by an upward moving gas stream. When so fluidized, they are in a state of violent agitation and evenly distributed throughout the fluid bed. Fluidized solids in this state obey many of the laws of hydraulics and are efficient heat transfer systems. Close regulation of feed gas rate and temperature is possible. rate and temperature is possible.

Production at the Garfield smelter of the American Smelting &

Refining Co., Utah, was described.²³

Oxygen flash smelting of copper concentrates, in which all smelting heat requirements are met by reacting the concentrates with oxygen, was carried out on a commercial basis at Copper Cliff, Canada.²⁴ Several problems encountered in this new method of smelting are under continuing study. Large-scale production of liquid sulfur dioxide, obtained as a byproduct of the oxygen flash smelting of concentrates, was initiated in 1952. Notes on the process were recently published.25

Experiments in connection with treatment of copper-roaster reverberatory flue dust were the subject of a paper read at a local meeting of the American Institute of Mining and Metallurgical Engineers in Spokane, Wash., and later published.²⁶ The results were summarized

as follows:

Leaching tests were conducted in order to effect an extraction of copper and lead from flue dust and recover the two metals. A sulfatizing roast followed by an acid leach extracted the copper but the lead was unaffected. Chloridized roasting followed by acid-brine leach gave excellent extraction of both copper and lead.

¹⁹ Mining World, Production at Kilembe Copper-Cobalt Mine Scheduled to Start in 1955: Vol. 14, No. 12, November 1952, p. 60.

20 Goodrich, W. H., Waste-Dump Leaching at the Chino Mines Division, Kennecott Copper Corporation, Santa Rita, N. Mex.: Mines Mag., vol. 42, No. 3, March 1952, pp. 65-67.

21 Frick, Frederick F., Sponge Iron at Anaconda: Min. Eng. vol. 5, No. 1, January 1953, pp. 83-84.

22 Copeland, G. G., New FluoSolids Experience: Min. Cong. Jour., vol. 38, No. 3, March 1952, pp. 42-44, 54.

23 Thompson, R., Production at Garfield World's Largest Copper Smelter: Jour. Metals, vol. 4, No. 5, May 1952, pp. 456-459.

24 International Nickel Co. of Canada, Ltd., Annual Report to Stockholers, 1952.

25 Mining Magazine, Sulphur Recovery at Copper Cliff: Vol. 86, No. 5, May 1952, pp. 315-316.

26 Kroha, A. J., and Finley, J. A., Treatment of Copper Roaster Reverberatory Flue Dust: Mines Mag., vol. 42, No. 7, July 1952, pp. 40-42.

Flotation tests showed high reagent consumption for cement copper and sulfide copper and necessitated an additional circuit for recovery of oxidized copper and lead. This work was not completed and does not permit any generalized conclusions. Summary tables are included at the end of this report.

Operations at the White Pine mine, Michigan, being brought to the production stage with Government aid (see Defense Production Act Stimulation) were to consist of mining, milling, and smelting, with the final product fire-refined copper. The entire operation was the subject of a report published in January 1953.27

The general flowsheet at the El Paso, Tex., refinery and descriptions of the plant layout, operations involved, and equipment used, were

included in an article published in 1952.28

A new chemical method of refining consists, according to a recent article,29 of pressure leaching of unroasted sulfide ore concentrates, an almost simultaneous oxidation step, and then direct reduction from aqueous solution of copper or other metal as pure metallic powders. When the article was published three plants using the process were under construction, that is, the nickel refinery of Sherritt Gordon Mines, Ltd., near Edmonton, Alberta, Canada; the plant of the National Lead Co. at Fredericktown, Mo.; and the cobalt refinery of the Howe Sound Mining Co. near Salt Lake City, Utah.

A new copper alloy that may partly replace copper-beryllium alloys was recently described.³⁰ The alloy contains 10 percent nickel, 1.5 percent silicon, and 4 percent aluminum. It was said to be particularly effective for electrical contact springs in large accounting and billing machines. Properties included good electrical conductivity, corrosion

resistance, and springiness.

The use of beryllium-copper for large machine parts was the subject

of an article published during the year.³¹

Small percentages of copper increase strength and hardness and reduce ductility of ductile iron in the "as cast" condition, according to a recent report.³² It was said to be a disadvantage in castings which must meet minimum elongation or optimum machining requirements. It helped where strength and wear resistance were needed.

The Electrical World of July 14 contained several articles on the use of aluminum as a substitute for copper.³³ Other articles on the same

general subject were also published in 1952.34

Ramsey, R. H., White Pine Copper: Eng. and Min. Jour., vol. 154, No. 1, January 1953, pp. 72-87.
 Kunkle, B. B., El Paso Refinery of Phelps Dodge Refinery Corp.: Mines Mag., vol. 42, No. 7, July 1952, pp. 25-23, 59.

20 Chemical Engineering, Chemical Refining of Metals: Vol. 59, No. 6, June 1952, pp. 164-168, 368, 370,

²⁹ Chemical Engineering, Chemical Relations of Section 24, 76.
30 Abs. in American Metal Market, New Copper Alloy with 10 Percent Nickel, 4 Percent Aluminum for Contact Springs: Vol. 60, No. 57, Mar. 27, 1953, pp. 1, 7.
31 Richards, John T., Beryllium-Copper Useful for Large Machine Parts: Materials & Methods, vol. 35, No. 6, June 1952, pp. 97-99.
32 Neemes, J. C., Ductile Iron-Watch Copper Buildup: Iron Age, vol. 171, No. 6, February 5, 1953, pp. 180-164.

Neemes, J. C., Ductile Iron-Watch Copper Buildup: Iron Age, vol. 1/1, No. 0, геогиагу д. 1900, pp. 162-164.
 Hickernell, L. F., and Carter, L. L., Let's Use Aluminum, Not Abuse It! Elec. World, vol. 138, No. 2, July 14, 1952, pp. 123-126.
 All-Aluminum Use Climbs Cautiously: Pp. 127-128.
 Rogoff, J., and Matthysse, I., Making Connections in Underground Aluminum Cable: Pp. 129-132.
 Avila, C. F., Boston Edison Installs First 15-Kv. Aluminum Underground Cable: Pp. 133-136.
 Hayward, J. P., Wanted: Information on Aluminum Connections: Pp. 137-138.
 Bergan, M. D., The What, Why, and How of Connections for Aluminum: Pp. 139-142.
 Holmes, J. R., The Aluminum Auto Radiator: Modern Metals, vol. 9, No. 5, June 1952, pp. 33-34.
 Everhart, John L., Copper-Clad Aluminum Can Conserve Copper in Many Uses: Materials & Methods, vol. 35, No. 2, February 1952, pp. 82-85.

WORLD REVIEW

World mine production in 1952 virtually coincided with the record high rate established in 1943 and was 4 percent higher than in 1951. Northern Rhodesia and Belgian Congo contributed to the attainment of the new high tonnages, both countries having reached new tops for the third successive year. Otherwise, production in Canada, Chile, and the United States, other leading copper-producing countries, fell below records established in earlier years; the record for Chile was in 1944, for Canada in 1940, and for the United States in 1943. Available data indicate that the U. S. S. R. produced more copper than ever before in 1952.

Angola.—The only copper producer is the Mavoio deposit in the northwestern part of the Territory. Ore production in 1952 was 11,700 metric tons (10,100 in 1951), and blister production was 1,000 tons (1,100) and copper matte 200 (100) tons. Exports go to Portugal, presumably for the manufacture of insecticides. The Empresa do Cobre de Angola has the concession to search for copper and most other minerals in an area of approximately 59,000 square kilometers, bounded on the north by Belgian Congo and reported believed to be a favorable area for finding copper. The company has contracted with a Canadian company to make an aerial and ground survey as a

beginning to systematic exploitation of the concession.³⁵

Australia.—Smelter output rose from 13,000 tons in 1951 to 17,000 in 1952. Better supplies of coke at the Mount Lyell, Tasmania, mine, made possible higher production there. The Mount Morgan, Queensland, mine also expanded production, and further expansions at both properties were anticipated. The new copper-concentrating mill and smelter at Mount Isa Mines, Ltd., Queensland, were completed during the year and had begun operation before the year end. Reserves thus far were said to be 3,000,000 tons of ore averaging 4 percent copper. The new operation was expected to add 18,000 tons to production in Australia, to be offset in part by closing in the latter part of the year of the New Occidental Gold Mines, most important producer in New South Wales.³⁶

Belgian Congo.—Production continued the uptrend in progress since 1949 and established a new high record for the third successive year. The Union Minière du Haut Katanga produced the following quantities of ores and metals (comparison with 1951 in parentheses): 205,700 (192,000) metric tons of copper, 6,800 (5,700) tons of cobalt, 189,400 (154,000) tons of zinc concentrates, 20,500 (24,300) kilograms of cadmium, and an undetermined quantity of uranium-radium ores. In the course of the treatment of its copper and other products by the Société Générale Métallurgique de Hoboken, Belgium, 147,000 (118,000) kilograms of silver, 54 (14.7) kilograms of gold, and small quantities of palladium and platinum were recovered.

A comprehensive report on the concentrating operations of the Union Minière du Haut Katanga, but having to do chiefly with concentration of oxide ores by flotation, was prepared during the year. There are large concentrating mills at Panda (Jadotville), Kipushi, and Kolwezi. From the beginning of mining, washers have been

Bureau of Mines, Mineral Trade Notes: Vol. 37, No. 2, August 1953, p. 9.
 Mining Journal (London), Australia: Ann. Rev. No., 1953 ed., May 1953, p. 149.

TABLE 32.—World mine production of copper, 1947-52, in metric tons 1 [Compiled by Pauline Roberts]

Country	1947	1948	1949	1950	1951	1952
North America:						
Canada	208, 750	222, 513	239, 003	239, 685	244, 912	233, 787
Cuba	13, 729	16, 300	17, 400	20, 400	19, 700	17, 900
Mavico	64, 811	59,076	57, 246	61, 699	67, 351	58, 463
United States	768, 892	757, 326	682, 880	824, 938	842, 162	839, 484
Total North America	1, 056, 182	1, 055, 215	996, 529	1, 146, 722	1, 174, 125	1, 149, 634
South America:						
Bolivia 2	6, 241	6, 616	5, 074	4, 704	4, 846	4,703
ChileEcuador	426, 671	444, 967	371, 095	362, 757	379, 726	404, 742
Ecuador	166	474	704	526	2	
Peru	22, 492	18,068	27, 959	30, 275	32, 304	31, 179
Total South America	455, 570	470, 125	404, 832	398, 262	416, 878	440, 624
Europe:						
Austria	259	982	1, 296	1,635	1, 838	2, 643
Finland	15, 409	18, 384	18, 741	15, 600	18, 400	22,000
France	386	458	524	(3)	(3)	(3)
Commonte	i .		021	()		
East West	h	{ (3) 5 364	(3)	(3)	(3)	(3) 2, 352 (3)
West	4 17, 500	5 364	864	(³) 1,360	(³) 1,669	2 352
Hungary	4 300	(3)	(3)	4400	(3)	(3)
Italy	133	` 30	14	49	144	144
Norway	14, 707	15, 112	14, 875	15, 621	14, 003	14, 600
Norway Spain 6 7	6, 454	5, 503	6, 702	6, 171	7, 560	8,977
Sweden	13, 144	14, 835	16, 273	16, 100	14, 447	15, 876
Sweden U. S. S. R. ^{4 8 9}	165, 000	180,000	200,000	218, 000	254,000	295, 000
Yugoslavia 9	32, 350	36, 870	34, 384	40, 080	32, 011	32, 819
Total Europe 4 8	266, 000	287, 000	308, 000	330, 000	360,000	410,000
Asia						
China 9	915	472	1,874	4 4, 000	4 6, 000	4 6, 000
Cyprus 2	12,681	15, 735	23, 936	23, 301	22, 811	26, 820
India	5, 462	6, 316	6, 305	7,000	7, 388	6, 523
Janan	21, 468	25, 752	32, 880	39, 432	42,756	53, 184
Japan Korea, Republic of Philippines	389	66	28	27	12,100	500
Philippines	2, 502	3, 350	7,007	10, 384	12,712	13, 241
Saudi Arabia	253	67	49	41	(3)	(3)
Saudi Arabia Taiwan (Formosa)	(3)	1, 183	(3)	(3) 13, 300	(3) (3)	(3) (3)
Turkey	11,800	12, 300	13, 130	13, 300	11,850	23, 097
U. S. Š. R.	(8)	(8)	(8)	(8)	(8)	(8)
Total Asia 4 8 10	55, 000	65, 000	86,000	99,000	105, 000	130, 000
frica:						
Algeria	1,14			81	120	52
Angola	28	394	742	1, 279	1, 100	1,000
Belgian Congo	150, 840	155, 481	141, 399	175, 920	191, 959	205, 749
French Morocco	49	518	360	18	28	808
Northern Rhodesia	197, 288	226, 472	259, 084	297, 487	319, 373	329, 481
Southern Rhodesia	174	131	80	117	95	109
South-West Africa	4 3, 100	8, 270	9,622	10, 961	12, 355	14, 022
Tanganyika 11				37	137	21
Tanganyika ¹¹ Union of South Africa	29, 330	29, 450	30, 454	33, 982	33, 731	35, 112
Total Africa	4 380, 800	420, 716	441, 741	519, 882	558, 898	586, 354
Australia	13, 334	12, 567	13, 678	15, 144	16, 874	18, 636
	10,004	12, 307	10,078	10, 177	10,014	10,000
World total 4 10	2, 225, 000	2, 310, 000	2, 250, 000	2, 510, 000	2, 630, 000	2, 735, 000
	1			1		

¹ This table incorporates a number of revisions of data published in previous copper chapters.
2 Copper content of exports.
3 Data not available; estimate by authors of chapter included in continental and world totals.
4 Approximate production.
5 American and British zones only.
6 According to Yearbook of American Bureau of Metal Statistics.
7 Does not include content of iron pyrites, the copper content of which may or may not be recovered.
8 Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.
9 Smelter production.
10 Includes estimates for Burma.
11 Copper content of exports and local sales.

TABLE 33.—World smelter production of copper, 1947-52, in metric tons 1

[Compiled by Pauline Roberts]

Country	1947	1948	1949	1950	1951	1952
North America:						
Canada	179, 997	200, 736	205, 098	216, 094	222, 682	178, 659
Mexico United States 2	58, 475	48, 761	49, 359	48, 477	59, 241	51, 167
United States 2	857, 007	839, 550	779, 842	914, 917	940, 416	929, 340
Total North America	1, 095, 479	1, 089, 047	1,034,299	1, 179, 488	1, 222, 339	1, 159, 166
South America:					000 000	000,000
Chile	408, 400	424, 910	350, 737	345, 460	360, 099	383, 283 20, 539
Peru	17, 824	11, 824	21, 119	23, 227	24, 351	20, 559
Total South America	426, 224	436, 734	371, 856	368, 687	384, 450	403, 822
Europe:						
Austria	378	2, 143	3, 761	5, 369	6,450	6, 438
Finland	21, 087	20, 672	18, 224	13, 572	17, 851	18, 317 (4)
France 3	318	277	(⁴)′	(⁴)	(4)	(-)
Germany: East		(4)	(4)	(4)	28, 700	(1)
West 5	⁽⁴⁾ ⁶ 32, 016	6 62, 244	(4) 145, 536	202, 500	212, 868	194, 784
Italy	105	167	30	18	185	190
Norway	7, 920	8, 935	9, 306	9,035	8,656	10,002
Spain	5, 971	5,069	6, 155	5, 211	5, 122	6, 249
Sweden	14, 258	17, 180	14, 359	16, 708	14, 411	16, 239
U. S. S. R. ⁷ 8	165, 000	180, 000	200, 000	218, 000	254, 000	295, 000
Yugoslavia	32, 350	36, 870	34, 384	40, 080	32, 011	32, 819
Total Europe 7 8 9	295, 000	350, 000	445, 000	530, 000	580, 000	605, 000
Asia:						
China 5	915	472	1, 874	7 4, 000	7 6, 000	7 6, 000
India	6, 026	5, 957	6, 493	6, 720	7, 197	6, 176
Japan	28, 812	29, 124	38, 544	37, 176	43, 848	49, 308
Korea:	000	240	270	17	222	34
Republic of	7 3, 000	(4)	(4) 372	(4)	(4) ZZZ	(4)
North Taiwan (Formosa)	456	575	465	360	7 629	720
Turkey	10, 080	10, 979	11, 283	11, 700	16, 445	23, 330
Total Asia 78	50, 000	50, 000	61, 000	62, 000	75,000	86, 000
Africa:			800	1,375	1, 157	1,039
Angola Belgian Congo	150, 840	155, 481	141, 399	175, 920	191, 959	205, 749
Northern Rhodesia	195, 866	217, 044	263, 491	279, 987	314, 103	317, 367
Union of South Africa	29, 026	28, 993	29, 717	33, 342	32, 922	34, 203
			407.407	400 604	E40 141	EE0 0E0
Total Africa	375, 732	401, 518	435, 407	490, 624	540, 141	558, 358 17, 326
Australia	19, 818	11, 572	10, 016	13, 726	12, 683	
World total 7	2, 260, 000	2, 340, 000	2, 360, 000	2, 645, 000	2, 815, 000	2, 830, 000

Exclusive of material from scrap.
 Data not available; estimate by authors of chapter included in continental and world totals.

6 American and British zones only.

utilized to eliminate part of the gangue. The latest and most modern washer installation is at the Ruwe mine, near where a large-capacity plant was treating an argillaceous breccia containing small particles of malachite, rather free and large enough for treatment by this The breccia contained 4-5 percent ores and yielded a 30-34 percent_washed product, and the rejects averaged less than 0.8 percent. The recovery exceeded 80 percent. The Ruwe washer

¹ This table incorporates a number of revisions of data published in previous copper chapters.

² Smelter output from domestic and foreign ores, exclusive of scrap. Production from domestic ores only, exclusive of scrap, was as follows: 1947, 782,780 tons; 1948, 764,278; 1949, 687,580; 1950, 826,760; 1951, 844,379; 1952, 841,287.

⁵ Includes scrap

⁷ Approximate production.
8 Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.
9 Belgium reports a large output of refined copper which is believed to be produced principally from crude copper from Belgian Congo and is not given here, as that would duplicate output reported under the latter

was working 3 shifts and operating at its capacity of 100,000 tons of ore a month. The coarser product went directly to the electrolytic copper plant at Jadotville, the middling was further concentrated in the Kolwezi mill, and the tailing was wasted. A small washer at the Kamoto mine, where low-grade copper-cobalt ores were produced but which was idle, was handling 18,000 tons of ore previously mined. At the Panda mill hand-picked ore was treated first by gravity and then by flotation concentration. During the last years of operation this mill was handling 50,000 to 60,000 tons of products a month, but progressive depletion of the ore bodies of the mines in the central section and exhaustion of the stock of gravity rejects led to closing of the plant July 8, 1951. It was to be held in standby condition for prospective handling of sulfide ores from the Kambove-West mine, an underground mine near Jadotville, under development.

Exhaustion of mines in the central section made it imperative that other mines be brought into operation. The Kolwezi-Musonoi group in the west was chosen, but because of its distance from Jadotville transportation to the Panda mill was uneconomic and a new plant was built at Kolwezi, beginning operations July 14, 1941. Both gravity and flotation concentration were used for a time, but the former was abandoned early. Monthly capacity of the plant was 150,000 tons, and expansion to 200,000 tons was anticipated. Some lower workings in the Musonoi mine were yielding a mixed oxide-sulfide and a sulfide ore, and provision was made for handling these ores in part of the Kolwezi plant. In May 1946 the feed was said to be running 8.24 percent copper, the concentrates 27.39 percent, and the rejects 1.69 percent, with a recovery of 84.07 percent; more recently it was reported as ore 7 percent, concentrates 28 percent, and rejects 1.2 percent. Kolwezi concentrates went to the Shituru electrolytic plant at Jadotville. The Kolwezi mill treated 1,603,000 tons of ore and produced 288,000 tons of copper concentrates, averaging 27.5 percent copper and 1.01 percent cobalt, and 43,000 tons of concentrates, averaging 8.62 percent cobalt, in 1952.

The Kipushi flotation mill treated sulfide ore from Prince Leopold underground mine, producing both copper and zinc concentrates. The monthly capacity of the plant was 80,000 tons.³⁷ This mill produced in 1952 nearly 10,000 tons of copper concentrates, averaging 23.58 percent copper, and 254,000 tons of copper concentrates (28.92 percent copper) and 189,000 tons of zinc concentrates (52.25 percent

In addition to the electric power supplied by the Francqui Central and more recently the Bia Central hydroelectro stations, the Union Minière was to have, probably before the end of 1952, power from the first unit of a new plant, the Delcommune Central, on the Lualaba River. When the last-named plant was completed, the combined capacity was to be 230,000+kilovolt-amperes or over 1 billion kilowatt-hours under conditions of normal rainfall. It was decided in 1951 to construct a second station on the Lualaba, downstream from the Delcommune station. This station, to be known as the Central

^{**} Murdock, Thos. G. (Consul), Ore Concentrating Operations of the Union Minière du Haut Katanga: State Dept. Dispatch 13, Elisabethville, Belgian Congo Oct. 4, 1952, 14 pp.

le Marinel, was to have a probable capacity of 300,000 kilovolt-amperes or about 1½ billion kilowatt-hours in years of moderately good rainfall.

Canada.—Mine output of copper declined 5 percent in 1952, returning to the approximate level of 1949–50 and continuing considerably above 1945–48, inclusive. All important copper-producing Provinces shared the 1952 decline, but only Manitoba showed a noteworthy drop. On the contrary, in Nova Scotia 416 tons of copper was produced compared with none in 1951. Output of refined copper declined from 245,500 tons in 1951 to 196,900 in 1952 owing to a 4-month labor strike at the refinery of Canadian Copper Refiners, Ltd., at Montreal East, Quebec. Copper consumption in Canada declined to 130,300 tons in 1952 from 134,200 in 1951, probably marking only a temporary halt in the growth of the copper-consuming industry in this country.

TABLE 34.—Copper produced (mine output) in Canada, 1943-47 (average) and 1948-52, by Provinces, in short tons ¹

Province	1943–47 (average)	1948	1949	1950	1951	1952 (pre- liminary)
British Columbia Manitoba Newfoundland (not Canadian 1943-48) Northwest Territories	16, 358 19, 215	21, 502 18, 960	27, 055 16, 960 3, 617	21, 088 20, 817 3, 221	21, 932 15, 839 2, 899	21, 858 9, 190 2, 848 2 416
Nova Scotia Ontario. Quebec Saskatchewan	120, 989 49, 682 35, 438	120, 383 48, 813 31, 074	113, 043 67, 822 34, 960	117, 210 72, 891 28, 982	128, 809 68, 866 31, 625	124, 737 68, 300 30, 356
Total	241, 683	240, 732	263, 457	264, 209	269, 971	257, 707

¹ Dominion Bureau of Statistics, Department of Trade and Commerce, Government of Canada, Pre liminary Report on Mineral Production, 1952.

Four fabricating plants handle over 95 percent of the primary copper consumed in the country, that is, Anaconda American Brass, Ltd., New Toronto; Noranda Copper & Brass, Ltd., Montreal East; Canada Wire & Cable Co., Ltd., Montreal East; and Phillips Electrical Works, Ltd., Brockville, Ontario. The first two are brass mills manufacturing sheet, strip, rod, and tubing. The other two are copper-wire-rod rolling mills and the sole suppliers of copper rod for

wire drawing in Canada.38

Ontario is by far the largest copper-producing Province in Canada but in recent years has not accounted for its usual 50 percent or more of the total; in 1952 it produced over 48 percent, virtually all from the copper-nickel ores of the Sudbury area. The International Nickel Co. of Canada, Ltd., easily outranks other producers of copper in Canada. The company delivered 117,200 tons of refined copper in 1952 compared with 118,500 tons in 1951 and 106,500 in 1950. The quantity of nickel was 6 percent larger than that of copper in 1952 and brought a much higher unit price. Noteworthy progress continued during the year in the program to develop underground production to compensate for losses in open-pit output. The 13,200,000 tons of ore mined in 1952 was the largest attained in any year, and consisted of 10,200,000 tons of underground and 3,000,000 tons of surface ore, compared with 7,800,000 and 4,000,000, respectively, in

³⁸ Scott, Albert W., (Consul), Notes on Canadian Copper Fabricating Industry: State Dept. Dispatch 182, Montreal, Canada, Feb. 1, 1952, 3 pp.

1951. The underground goal is 13,000,000 tons. Proved reserves at the end of 1952 were 256,000,000 tons of ore, an increase of 2,000,000 tons from the beginning of the year. The nickel-copper content was

7,800,000 and 7,700,000 tons, respectively.

The Falconbridge Nickel Mines, Ltd.—the other important coppermining company in Ontario—produced 888,000 tons of ore at the main Falconbridge mine in 1952. Output was expanded 45 percent at the McKim mine to 225,000 tons of ore. Company ore processed totaled 1,119,000 tons, establishing a new record tonnage. A total of 10,600 tons from the East Rim and Milnet Nickel mines was treated in Falconbridge plants. Ore reserves were increased markedly; developed ore in the Falconbridge and McKim mines totaled 10,000,000 tons, averaging 1.64 percent nickel and 0.87 percent copper, and indicated ore in Sudbury district holdings totaled 23,000,000 tons, averaging 1.63 percent nickel and 0.95 percent copper, or totals of 33,000,000 tons, containing 1.63 and 0.93 percent, respectively.

Quebec, as usual, ranked as the second most important copperproducing Province in Canada, with slightly over one-fourth of the
total for the country. The largest producer is Noranda Mines, Ltd.,
operating the Horne mine. A total of 1,400,000 tons of ore, of which
over 589,000 was direct-smelting ore averaging 1.90 percent copper,
and 0.174 ounce gold and 0.34 ounce silver per ton, and over 810,000
tons was concentrating ore averaging 1.97 percent copper and 0.143
ounce gold and 0.29 ounce silver, was shipped to the mill or smelter.
A total of 1,250,000 tons of ores, concentrates, and secondary materials was smelted, of which 519,000 tons was for custom accounts.
The estimated recovery from Horne mine ore and concentrate was
25,400 tons of copper, 200,000 ounces of gold and 611,000 ounces
of silver. Indicated ore reserves above the 2,975-foot level were as
follows:

	Tons	Copper percent	Gold (ounce per ton)
Sulfide ore over 4 percent copper	3, 632, 000	7. 08	0. 159
Sulfide ore under 4 percent copper	11, 000, 000	. 66	. 195
Total sulfide oreSiliceous fluxing ore	14, 632, 000 948, 000	2. 25 . 09	. 186
Total ore	15 580 000		

The foregoing does not include tonnages containing little or no copper in the Chadbourne ore body and the No. 5 zone of the Horne mine, as well as 1,500,000 tons of ore averaging 0.7 percent copper and 0.120 ounce gold per ton, in the No. 5 zone.

East Sullivan Mines, Ltd., milled 898,000 tons of ore in 1952. Copper production totaled 14,200 tons. Reserves at the end of the year

were 3,827,000 tons of ore averaging 1.58 percent copper.

The Quemont Mining Corp., Ltd., which adjoins the Horne mine, treated 775,000 tons of ore averaging 1.32 percent copper, 2.74 percent zinc, 0.152 ounce gold, and 1.05 ounces of silver per ton in 1952. Copper and zinc concentrates produced were 51,000 and 32,000 tons, respectively. The copper concentrate was smelted at Noranda, and the zinc was shipped to the United States. Commercial metals in shipments were 9,400 tons of copper, 16,500 tons of zinc, 96,900 ounces of gold, and 416,000 ounces of silver. Ore reserves at the end of 1952

were 9,574,000 tons, averaging 1.39 percent copper, 2.77 percent zinc, 0.158 ounce gold, and 1.06 ounces of silver per ton, an increase of

136,000 tons after allowance for ore mined during the year.

The Normetal Mining Corp., Ltd., milled 360,500 tons of ore, averaging 2.02 percent copper, 7.49 percent zinc, and 0.25 ounce gold and 2.32 ounces of silver per ton. Copper and zinc concentrates produced were 30,000 and 43,000 tons, respectively. Copper concentrate went to the Noranda smelter and zinc concentrate to the United States. Commercial metals in shipments were 6,300 tons of copper, 21,800 tons of zinc, 4,100 ounces of gold, and 412,000 ounces of silver. Ore reserves totaled 2,637,000 tons, averaging 2.63 percent copper and 8.25 percent zinc, an increase of 203,000 tons after allowance for ore

mined during the year.

At the Waite Amulet mine of Waite Amulet Mines, Ltd., 173,000 tons of ore was hoisted and at the Amulet Dufault, 241,000 tons. A total of 428,000 tons of ore, averaging 3.62 percent copper, 4.59 percent zinc, and 0.043 ounce of gold and 1.06 ounces of silver per ton, was milled, and production totaled 14,500 tons of copper, 16,000 tons of zinc, 11,900 ounces of gold, and 283,000 ounces of silver, plus pyrite concentrate. Ore reserves were 1,025,000 tons at Waite Amulet, of which 920,000 contained 4.53 percent copper, 3.60 percent zinc, and gold and silver values. Reserves at the Amulet Dufault mine totaled 650,000 tons of ore, of which 555,000 tons contained 6.81 percent copper, 4.01 percent zinc, and gold and silver values.

Output of Canadian Copper Refineries, Ltd. (controlled by Noranda), was adversely affected by a labor strike that lasted from July

14 to November 19.

Campbell Chibougamau Mines, Ltd., entered into a contract with the Defense Materials Procurement Agency (United States) in August. The company was to supply 31,500 tons of electrolytically refined copper to the United States by December 31, 1956, from its property on Merrill Island in Dore Lake. It agreed to develop the property at its own expense. A mill, with a minimum capacity of 2,000 tons a day, was to be constructed, and production was to begin in not less than 2½ years, and copper production was to reach an annual rate of 18,600 tons. The DMPA was to be permitted to buy any or all of the company output at the market price, or 24.5 cents a pound f. o. b. Connecticut Valley, whichever was higher.

An additional 2 million tons of ore was indicated by exploratory diamond drilling at the property of Gaspé Copper Mines, Ltd., bringing total reserves to 67,000,000 tons, averaging 1.3 percent copper. Construction of mine buildings, townsite, etc., proceeded on schedule, and construction of the mill and smelter was scheduled to start early

n 1953. Gaspé is owned by Noranda.

Saskatchewan and Manitoba together supplied 15 percent of Canada's production in 1952. Output in the past was almost entirely from the mine of the Hudson Bay Mining & Smelting Co., Ltd., at Flin Flon, Manitoba, near the Manitoba-Saskatchewan border and the Sherridon mine of Sherritt Gordon Mines, Ltd., at Sherridon, Manitoba. The Hudson Bay property lies in both Provinces, with the major part of the production coming from the Saskatchewan segment. The Sherridon mine was exhausted in 1951, and in 1952 company operations were in process of being transferred to Lynn Lake.

At Hudson Bay's mine 1,559,000 tons of ore was mined; 1,528,000 tons, containing 2.51 percent copper, 4.9 percent zinc, and gold and silver values, was milled. The company shipped blister copper, containing 39,900 tons of copper, 118,500 ounces of gold, 1,589,000 ounces of silver, and 100,000 pounds of selenium, to the refinery. Ore reserves at the end of the year, including properties wholly owned or controlled and within trucking distance of Flin Flon, but excluding Cyprus Mines, Ltd., were 17,028,000 tons, containing 3.21 percent copper, 4.0 percent zinc, and 0.075 ounce of gold and 1.06 ounces of silver per ton. Cyprus Mines, Ltd., controlled by Hudson Bay, mined 86,000 tons of ore, averaging 2.79 percent copper, 6.3 percent zinc, and 0.042 ounce of gold and 0.82 ounce of silver per ton. Ore reserves totaled 114,500 tons, containing 3.19 percent copper. 5.6 percent zinc, plus gold and silver.

Progress was made by Sherritt Gordon Mines, Ltd., in 1952 in moving buildings from Sherridon to Lynn Lake. A 147-mile railway was being constructed from Sherridon to Lynn Lake, and a hydroelectric power plant was being built on the Laurie River (completed in October 1952). Milling practice was to be the same as that used at Sherridon, and little new equipment was to be required. Copper and nickel contents of the ore were to be separated by flotation con-Early reports that the copper concentrates were to be smelted at the Hudson Bay plant were later revised to the Noranda The nickel concentrates were to be leached at Fort Saskatchewan.39 An article published in June described the new chemical

metallurgical process to be used as follows:

Refiners using the new process will first concentrate ore by conventional flotation methods. Then the concentrate, as a slurry, will be introduced into an autoclave designed to withstand high temperature and pressure. The vessel is equipped with an agitator. In the autoclave, the concentrate is leached with either ammonia or acid, then oxidized. From the resulting aqueous lack solutions are provided will be recovered by suitable reducing agents. By very lack solutions are the concentrate or the concentrate of the concentrate or the concent tion, metals will be recovered by suitable reducing agents. By varying conditions, individual metals can be separated as pure powders. These powders can tions, individual metals can be separated as pure powders. These powders can be pressed, continuously east or, as with copper, extruded. Reagents used in the process are recovered.40

Ore reserves at Lynn Lake remained at 14,100,000 tons, assaying

0.618 percent copper and 1.223 percent nickel.
In British Columbia the Granby Consolidated Mining, Smelting & Power Co., Ltd., and the Britannia Mining & Smelting Co., Ltd., dominated production. At the Copper Mountain mine of Granby Consolidated a total of 1,752,000 tons of ore, averaging 0.9 percent copper, was treated. Copper concentrate contained 12,400 tons of Concentrate was shipped, as usual, to the Tacoma salable copper. smelter of the American Smelting & Refining Co. A substantial tonnage of ore amenable to open-pit mining was developed. ore reserves at the end of the year were 3,824,000 tons, averaging 0.95 percent copper, of which 500,000 tons could be economically mined by open-pit methods.

The Britannia mine produced 858,500 tons of ore and 830,000 tons was concentrated. Copper concentrates produced totaled 23,200 tons and precipitates totaled 575 tons. These products also went to

³⁸ Kilvert, Cory, Lynn Lake—Manitoba's New North: Precambrian, vol. 25, No. 8, August 1952, pp. 20–21.

40 Chemical Engineering, Chemical Refining of Metals: Vol. 59, No. 6, June 1952, pp. 164–168, 368, 370, 372– 374, 376.

the Tacoma plant of American Smelting & Refining Co. Production of zinc concentrate totaled 25,600 tons, which went to Montana for treatment.⁴¹

In Newfoundland the Buchans Mining Co., Ltd., treated 330,500 tons of copper-lead-zinc ore, from which 12,500 tons of concentrate containing 2,900 tons of copper was produced. The Falconbridge Nickel Mines, Ltd., continued active investigations at the old Gull

Pond, Rambler and Tilt Cove properties. 42

In Yukon the Hudson Bay Mining & Smelting Co., Ltd., has staked or holds under option 2 properties which it reports to be of major interest; 1 is the Wellgreen, a copper-nickel deposit containing precious metals, in the Kluane Lake district. Discovery was made in June 1952, and the company holds by staking or under option to purchase from the Yukon Mining Co. (in which Hudson Bay Exploration & Development Co. has a controlling interest) an area roughly 3 miles wide by 12 miles long, comprising 538 claims. Drill results at the time of suspending operation, because of water shortage, had proved 67,000 tons of ore assaying 1.33 percent copper, 1.96 percent nickel, 0.056 percent cobalt, and 0.004 ounce of gold, 0.078 ounce of platinum, and 0.053 ounce of palladium per ton.

Exports of ingots, bars, and billets from Canada in 1952, as compared with 1951, was as follows, by countries of destination, in short

tons:

Destination:	1951	1952
United States	28, 843	52, 630
United Kingdom	51, 918	41, 643
France	5, 700	8, 537
Brazil	2, 688	2, 835
India	3, 649	2,582
Sweden	3, 998	1, 786
Australia		1, 707
Pakistan		1, 119
Other	5, 036	836
Total	101, 832	113, 675

Exports of copper in ore, matte, regulus, etc., totaled 34,437 (36,853 in 1951) tons, of which the United States was the destination of 24,640 (28,941) tons, Norway 8,180 (6,310) tons, the United Kingdom 1,127 (1,044) tons, Germany 471 (558) tons, Japan 18 (no) tons, and Belgium 1 (no) tons. In addition, 22,827 (13,291) tons of rods, strips, sheet, and tubing was shipped from the country; copper-scrap slag skimmings totaling 1,736 tons also was exported in 1952.

Imports of refined copper totaled 12,973 tons in 1952 compared

with 1,511 tons in 1951.

Chile.—Mine production of copper in Chile rose again in 1952 and was the largest since 1948. Output declined slightly at the Chuquicamata mine of the Chile Exploration Co. (Anaconda Copper Mining Co. subsidiary) but rose 14 percent at the Potrerillos mine of the Andes Copper Mining Co. (also an Anaconda subsidiary) and 8 percent at the El Teniente mine of the Braden Copper Co. (Kennecott Copper Corp. subsidiary). At Chuquicamata an 18-day labor strike, from April 25 to May 12 and a series of illegal sectional

⁴¹ Canada Department of Mines and Technical Surveys, Copper in Canada in 1952 (Preliminary): Ottawa, Canada, 8 pp.
42 Work cited in footnote 41

strikes and slowdowns hampered production, which was adversely affected also by a decline in the grade of ore produced. A 22-day strike during the year at Potrerillos resulted in a loss of about 3,000 tons. The labor strike at the Braden mine, beginning December 20 and lasting past the end of the year, was more than offset by the higher grade of ore produced, combined with other factors, and a new high record production was established. Output in 1952 was over 10,000 tons above the earlier record in 1944.

In May, Chile abrogated its agreement with the United States Government, which provided, among other things, for Chile's withholding of not to exceed 20 percent of the outputs of American mines for disposition by Chile. The various aspects of the matter are discussed under Prices.

The Annual Report to Stockholders of the Anaconda Copper Mining Co. stated that the Exchange-Tax Agreement (between the Chilean Government and the American copper companies) had not been acted upon by the Chilean Congress, but that some relief had been afforded by exchange rate adjustments covering certain types of expenditures. It also stated that a law passed by the Chilean Congress in December 1952, provided that taxes on income be paid from January 1, 1953, with an increase of 20 percent. This was to result in increasing income taxes of copper companies from 50 to 60 percent in 1953.

Outputs of the three leading mines in 1951 and 1952 in metric tons were as follows:

	19	51	19	52
	Ore treated	Bar copper produced	Ore treated	Bar copper produced
Andes Braden Chuquicamata	8, 043, 000 8, 842, 000 15, 122, 000	41, 600 155, 600 163, 500	7, 368, 600 8, 867, 900 14, 767, 400	47, 300 167, 800 161, 100

Of the production at Chuquicamata 672,400 tons, yielding 9,500 tons of copper, was sulfide ore.

The Government-owned Paipote smelter treated 94,500 tons of ore and recovered 9,100 tons of blister copper in its first full year of operation.

The first section of the new concentrator at the Chuquicamata mine was started on July 5, and by December 31 six sections were in service. The first blister was produced in the smelter in November. It was expected that the other four sections of the concentrator and the remainder of construction and installations in the smelter would be completed early in 1953. Total expenditures for the project amounted to over \$110,000,000 by the end of 1952, of which \$28,000,000 was spent in 1952.

The December issue of Mining Engineering featured the Chuquicamata enterprise, giving its history, the geology of the deposit, a description of open-pit mining, and descriptions of the new concentrating and smelting plants for the treatment of sulfide ores. In the new smelter were four 30- by 125-foot reverberatory furnaces of 650 tons of charge capacity per day, 8 waste-heat boilers, 4 turbogenerators of 7,500 kilowatts each, operating at 725° F. and 400 p. s. i. g., 4 Pierce-

Smith 13- by 30-foot converters, 2 casting furnaces (13- by 25-foot) of 175 tons capacity each, a casting wheel with 26 anode molds in either of 2 sizes or 52 blister cake molds, and a straight-line casting machine of conventional design, being an endless chain equipped with

molds for the continuous casting of blister cakes.

The Chuquicamata open-pit mine has been in continuous operation since 1915; and in the period 1915 through September 1952, 523,000,-000 tons of ore was removed, of which 363,000,000 was oxide ore and 160,000,000 waste material. Total copper production was 5,106,000 tons to September 30, 1952. When the sulfide plant was completed 105,000 tons was to be mined daily, as follows: 30,000 tons each of sulfide and oxide ore and 45,000 tons of waste. Twenty-one benches were opened as of the September 30 date, and all were still active except the 3 top ones at the northeast limit of the pit. The pit was 8,850 feet long, 3,540 feet wide, and 980 feet deep. Total ore remaining in the pit was given as 120,000,000 tons of oxide and 140,000,000 tons of sulfide ore. Vast reserves of sulfide ore below the pit were not included in the estimates given.42

At the Braden property substantial progress was made in the expansion program started in 1951. Extensive new grinding equipment installed was to make possible increased recovery of copper. Completion of a 40-foot extension to the No. 1 reverberatory furnace enabled the company to reduce the quantity of concentrates in storage.

operations at the property were described during the year. 43

A recent dispatch commented as follows on the operations of small and medium-size producers in Chile in 1952:44

For the small and medium copper producers, 1952 was a banner year, the unusually high output having resulted from high prices, completion of the Paipote smelter (December 1951) and legislation favoring miners. A substantial percentage of production came from the bigger mines (Disputada, M'Zaita, Cerro Negro, Tocopilla and Farrelon Sanchez) while Cía. Minera Merceditas produced over 400 tons per month of 28% concentrates and Cía. Mineral Tamaya nearly 500 tons of concentrates from the old Tamaya dumps. However, a variety of factors (plant capacity, location, water availability, transportation problems, etc.) tend to limit the amounts which these more important operations can produce and the bulk of the new copper came from a great many small operations.

Among these smaller mines, the accent has been upon production of oxide ores,

more readily available than the underlying sulphide deposits, and in the re-working of a great many old mine dumps still containing between one percent and two percent copper. Attempts are being made to develop satisfactory systems of floating the oxide ores for concentration (both the <u>Caja de Crédito Minero</u> and the Santiato representative of American Cyanamid Company are working on this problem and Cía. Minera Cerro Negro is concentrating mixed oxides and sulphides with indifferent success) but the most apparent effect of the new oxide production has been the installation of numbers of small, Jerry-built lixiviation plants in the Norte Grande and the Norte Chico. Substantial deposits of oxide copper are available but a shortage of sulphuric acid acts as a limiting factor on the further development of the lixiviation system.

The most ambitious of the copper development programs is that being undertaken by Cía. Minera Punitaqui at its Tamaya operation. Although over 80,000 tons of material remain on the Tamaya dumps, these tailings assay an average of no better than 1.4 percent copper, the rate of recovery is not high and a good deal of material, mixed sulphides and oxides, may not be recoverable. For this

⁴² Mining Engineering (various articles), vol. 4, No. 12, December 1952, pp. 1161-1214.
43 Turton, F. E., Mining Operations at the Teniente Mine of the Braden Copper Company, Rancagua,
Chile: Min. Eng., vol. 4, No. 6, June 1952, pp. 573-577.
44 Smith, H. Gerald (counselor of Embassy), Annual Report (Chile) Minerais, Iron and Steel, and Petroleum: State Dept. Dispatch 1062, Santiago, Chile, Mar. 19, 1953, 24 pp.

reason, Punitaqui is now reentering the mine itself in order to clean out the old workings and to drill into virgin areas where geological work indicates the presence of better than 2 percent copper. The work is not very far advanced and the reopened Tamaya mine is not expected to be ready for operation until mid-1954.

At the end of 1952, United States refineries were still beneficiating most of the ores and concentrates exported by Chile but the year saw the reappearances of Germany and Japan as important markets. Nearly all of the materials for Germany have gone to the Norddeutsche Affinerie of Hamburg which refines the Paipote National Smelter's blister copper. The Caja de Crédito Minero (administering the sale of Paipote's output) first began shipping ores and concentrates to Norddeutsche late in 1951 because a three months' delay in the opening of the Paipote smelter had prevented delivery on schedule of the first shipments of blister copper which the German firm had contracted to refine. Embarkations of ores and concentrates to Norddeutsche have continued because production has risen far in excess of Paipote's requirements and internal transportation costs are so high that direct exportations of ores and concentrates from the Norte Grande and the central zone are to be desired whenever possible. The shipments to Japan, some in chartered Japanese vessels, began soon after mid-year under an 8,000-ton contract entered jointly by Cía. Minera Y Commercial Sali Hochschild and Mauricio Hochschild y Cía. Ltda., Japan offering premium prices which have constituted a new threat to American ore buyers.

TABLE 35.—Principal types of copper exported from Chile, in 1952 by countries, in metric tons

	Refi	ned	Standard	Matal.
	Electrolytic	Fire-refined	(blister)	Total
United States	3, 909 1, 750 200 282	121, 518 14, 951 330 1, 274 2, 692 3, 510 80 1, 991	51, 087 8, 812 10, 395 1, 321 500	291, 218 16, 081 15, 985 11, 669 4, 013 4, 010 3, 989 1, 991 1, 750 789 1, 207
Total	132, 727	147, 860	72, 115	352, 702

Chilean exports of the chief types of copper, by countries, are shown in table 35. Other copper exports from Chile were 4,057 tons of ore (3,770 to Germany and 287 to the United States), 24,608 tons of concentrates (18,805 to the United States, 4,135 to Japan, and 1,668 to Germany), 1,422 tons of cement copper (805 to Japan and 617 to the United States), 622 tons of precipitates (572 to Germany and 50 to Japan), and 176 tons of remelted scrap bars (169 to Belgium and 7 to Italy). In 1951 other copper exports from Chile were 3,780 tons of ore (1,418 to Germany, 1,200 to Belgium, 1,000 to Japan, and 162 to the United States), 17,613 tons of concentrates (16,460 to the United States, 1,053 to Germany, and 100 to Sweden), 1,091 tons of scrap (570 to Belgium, and 521 to the United States), 1,630 tons of cement copper (800 to Japan, 628 to Belgium, 85 to Argentina, 66 to Germany, and 51 to Italy), and 180 tons of precipitates (all to Germany). Ore and concentrates are in terms of copper content.

Cyprus.—A recent article described operations of the Cyprus Mines Corp. at the Mavrovouni mine. 45 It stated that the corporation had

⁴⁸ Schlechten, A. W., and Bruce, J. L., New Acid Leaching Section Raises Cyprus Copper Recovery by 10 percent: Eng. and Min. Jour., vol. 153, No. 12, December 1952, pp. 88-91.

COPPER 389

been producing cupreous pyrites products since 1922, except for June 1940 to May 1946, during World War II. The new acid-leaching section went into operation in the early months of 1952 and was credited with raising recovery markedly.

Japan.—A comprehensive report on copper metallurgy in Japan

was recently published. 46 The report stated in part:

The copper-mining industry is one of Japan's oldest, dating back about 1,200 years. Until the early 1930's Japan produced sufficient copper to meet domestic requirements. Ore resources were ample, and power and labor in adequate supply. Shortly thereafter, Japan began her military expansion program and consequently imports of copper became necessary in 1933 and increased in quantity progressively through 1940 when they were about ten times the imports of 1933.

Basically, the metallurgy of copper is essentially the same as in other parts of the world, with certain modifications necessary to meet the needs of low tonnage production plants. Japanese metallurgists travelled extensively 1920–1939 and brought back to Japan ideas and equipment used by other copper producers.

Most of the plant equipment is similar to that used in the United States over 20 years ago. One exception is modern electrical power generating and conversion machinery acquired in recent years from England, Switzerland, Germany, and the United States, as well as that manufactured in Japan. It is not uncommon to see two or more motor-generator sets operating side by side, each manufactured in a different country.

Operation of copper metallurgical plants halted with the cessation of hostilities and it was not until several months after the beginning of the Occupation of Japan that operations were resumed. Production since 1945 has averaged 50 percent of designed capacity. Of this production about 50 percent is accounted for by

copper recovered from brass scrap.

During World War II Japanese plants were forced into maximum production without regard to cost. As the war progressed, maintenance and upkeep of plant equipment declined progressively, resulting, during the latter days of the war, in shutting down certain operations. By 1952 the copper plants were operating at almost 80 percent of their capacity.

The copper industry suffered only minor war damage from bombing and shelling.

During 1952 Japanese smelters made increased efforts to obtain necessary raw materials from many sources in the world to permit continued or higher rates of operations, despite dwindling supplies

of scrap.

Northern Rhodesia.—Mine production of copper in Northern Rhodesia established a new alltime peak for the third successive year; output rose 3 percent above 1951 and 11 percent above the earlier record in 1950. 225,000 short tons of blister and 125,000 tons of electrolytic copper were produced. In establishing the new record, further gains were made in the program to produce a substantial part of total production in the form of refined copper. strike of African mine workers at the copper properties prevented an even higher output than the record attained. About 20,000 tons of copper production was said to be lost as a result of the strike. plies of coal continued unsatisfactory, and copper companies again were forced to resort to wood as a substitute. This factor also caused a smaller output of copper than there otherwise would have been. total of 586,000 tons of coal and the equivalent of 206,000 tons in wood was burned in 1952. Interconnection of the power grid was completed during 1952, and all four operating mines in the country were connected to a central switching station near Nkana. To meet increasing power demands of the copper belt, arrangements were in

⁴⁶ SCAP, Copper Metallurgy in Japan: Rept. 155, Tokyo, April 1952, 108 pp.

progress between the Northern Rhodesia Power Corp., Ltd., and the Union Minière du Haut Katanga to obtain hydroelectric power from the proposed Lualaba River station, in the Belgian Congo, expected to be completed in a few years. The Northern Rhodesian corporation, a subsidiary of the producing companies, was also concerned with investigation on the development of further hydroelectric power from either the Kafue or Kariba project.

A 5-year housing improvement program for native workers in the

copper belt, to cost £2,000,000, was announced in December.

It was reported that late in the year 2 shafts were being sunk at each of 2 new copper mines, the Chibuluma and the Baluba, and that diamond drilling was being carried on over a very large area and test holes were to be sunk to determine the best positions for the shafts at the Bancroft mine (Kirila Bomwe and Konkola ore bodies), 15 miles north of the Nchanga mine. The Kirila Bomwe ore body was estimated to contain 46,700,000 tons with an average copper content of 4.39 percent and the Konkola to contain 32,900,000 tons, averaging 2.48 percent. Chibuluma has a smaller, but richer ore body, containing 7,300,000 tons, averaging 5.23 percent copper; Baluba's reserves were 21,000,000 tons averaging 3.47 percent copper. The Rhokana Corp., Ltd., announced in November formation of a new company to develop the Bancroft mine, the Mufulira Copper Mines, Ltd., was contemplating a new company to develop the Baluba mines, and a new company, Chibuluma Mines, Ltd., a wholly owned subsidiary of Mufulira, was formed to develop Chibuluma.

A total of 4,368,000 tons of ore, containing 2.40 percent copper, was mined by Roan Antelope Copper Mines, Ltd., in the fiscal year ended June 30, 1952, or 10 percent higher than in the previous fiscal year. Company concentrates smelted yielded 90,750 tons compared with 83,500 tons in 1951. Both the ore and blister totals represented new alltime peaks for Roan Antelope despite the loss of 5,600 tons of copper production owing to coal shortage. The company smelter also produced 9,500 tons of blister for Nchanga. Ore reserves at the end of June 1952 were reported as 92,100,000 short tons averaging 3.19 percent copper. The increase as compared with 1951 was due to inclusion in the later year of tonnages of low-grade ore averaging

1 to 1.8 percent copper.

Mufulira Copper Mines, Ltd., produced 2,932,000 short tons of ore in the fiscal year ended June 30, a total of 2,922,700 tons was milled, and 76,400 long (85,500 short) tons of blister copper was produced from concentrates and fluxing ore. The decrease of 10,300 long (11,500 short) tons, approximately 12 percent was due largely to the protracted fuel shortage. Concentrates smelted for Nchanga yielded 4,700 long (5,300 short) tons of copper and was in addition to the foregoing. Progress was made at the mine in switching to the block-caving mining, and 65 percent of the output was produced by this method. By the end of the fiscal year the tankhouse for a production of 36,000 long (40,000 short) tons of cathodes was completed. The second stage will double this capacity and enable the plant to turn out various electrolytic shapes. As a result of difficulties in obtaining steel and other items, the second stage probably will not be completed before 1955. The cost of the complete refinery, including copper locked up in it, was expected to be about £4,000,000.

COPPER 391

Estimated ore reserves at the end of the fiscal year were as follows: Mufulira, 139,927,000 short tons, averaging 3.48 percent copper; and Chambishi, 25,000,000 tons, averaging 3.46 percent copper. The large increase in tonnage and lowering in grade of ore at Mufulira was caused by the inclusion of the ground between A and B ore bodies as reserves, resulting from the decision to mine the three ore bodies by block caving. Reserves in the Baluba and Chibuluma mines were reported earlier in the discussion on Northern Rhodesia.

The Rhokana Corp., Ltd., mined 3,730,000 short tons of ore and milled 3,738,000 tons from the Nkana and Mindola mines in the fiscal year ended June 30, 1952. Finished copper produced was 25,900 long (29,000 short) tons of blister and 56,900 (63,700) tons of electrolytic copper. The smelter produced 153,100 tons of copper compared with 137,900 tons in the fiscal year ended June 30, 1951. Of the 1951–52 total 29,000 (6,000 in 1950–51) tons was blister and 55,700 (87,200) was anode copper for Nkana, and 22,900 (9,600) was blister and 45,500 (35,100) was anode copper for Nchanga. In 1951–52, in addition, 33 tons of blister was produced from Broken Hill lead-copper matte. Production at the smelter was affected adversely by the shortage of coal, but nonetheless a new record was established. Ore reserves at the end of June 1952, were as follows:

	Short tons	(percent)
Nkana north ore body	28, 000, 000	2 . 93
Nkana south ore body	20, 000, 000	2. 78
Mindola ore body	48, 000, 000	3. 50
Total	96, 000, 000	3, 18
± O U(A) = = = = = = = = = = = = = = = = = = =	50, 550, 500	J. 10

In the year ended March 31, 1952, 1,530,000 short tons of ore was mined and 1,513,000 tons, containing 6.46 percent copper, was milled by Nchanga Consolidated Copper Mines, Ltd. Finished copper produced totaled 31,000 long (35,000 short) tons of blister and 38,000 long (42,000 short) tons of electrolytic. Company plans called for expansion of production to an annual rate of 108,000 long (121,000 short) tons by the early part of 1953. Ore reserves on April 1, 1952, were 135,000,000 tons, averaging 4.63 percent copper.

TABLE 36.—Exports of copper from Northern Rhodesia 1952, in short tons 1

			Electrolytic		Connor	
Destination '	Blister	Bar and ingot	Cathodes	Wire bars	Copper slimes	
United KingdomUnited States	192, 278 27, 294	1, 119	16, 674	69, 750	4	
Belgium	19, 993			420 15, 006	2, 719	
Union of South Africa	5, 936	914		13, 496 4, 648		
Germany, Federal Republic Netherlands	7, 952 3, 125					
India Kenya	560	112		672		
Southern Rhodesia New Zealand	4		51 22	34 6		
Total	257, 142	2, 145	16, 747	104, 032	2, 723	

¹ Taken from Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 5, May 1953, p. 12.

Rhodesia Copper Refineries, Ltd., produced 102,300 long (114,500 short) tons of electrolytic copper in the year ended June 30, 1952, compared with 96,400 (107,900 short) tons in the 1951 fiscal year. At no time during 1952 was it possible to operate the plant at capacity owing to coal and power shortages. The proportion of the total for Nchanga increased in line with that company's greater output, resulting in some reduction in the quantity handled for Rhokana. When extensions and improvements are completed, the plant should be able to handle all of the output of the two companies.

In addition to the foregoing, 6,761 tons of copper concentrates

were shipped to Sweden.

Peru.—Output of copper declined 3 percent owing in part to the drop in average grade of ores treated. Production of the Cerro de Pasco Corp., leading producer by a substantial margin, was 17,200 short tons from corporation mines and 5,200 from purchased materials, a total of 22,400 tons, compared with 19,100, 7,700, and 26,800 tons, respectively, in 1951. The corporation entered into an agreement with Newmont Mining Corp. for joint exploration of a copper sulfide deposit owned by Cerro de Pasco at Cuajone in the southern part of Peru. Cerro de Pasco was to transfer a 20-percent interest in the Cuajone property in return for cash advances toward cost of a drilling program and for certain technical advice. The exploration program was not expected to be completed before mid-1954.⁴⁷ The property adjoins the Toquepala deposit.

Drilling by the American Smelting & Refining Co. at the Toquepala deposit was completed in 1952 and proved an ore reserve exceeding

400,000,000 tons, averaging slightly over 1 percent copper.

The type of deposit was reported to be such that the grade mined for the first 20 years of operation will be higher than the average. To prepare an open pit for mining at a rate of about 22,000 tons a day, the company stated, approximately 92,000,000 tons of waste capping would have to be stripped. Thereafter, the average stripping ratio of waste to ore would be 1.55 to 1. Engineering and cost estimates are well advanced, based on producing 100,000 tons of blister copper annually for the first 10 years, 85,000 annually for the next 20, and 68,000 for the estimated remaining 16-year life of the operation. Capital requirements, according to preliminary estimates, were about \$160,000,000.48 Toquepala is about 56 miles northeast of the port of Ilo, 10,000 feet above sea level, in the Andes Mountains.

No further work was carried out by American Smelting & Refining Co. at the Quellaveco property in southern Peru, where exploration drilling, completed in 1950, proved a porphyry-type copper deposit containing about 200,000,000 tons of ore, averaging slightly less than

1 percent copper.

South-West Africa.—The only copper producer in the territory is the Tsumeb mine, where copper is produced in conjunction with lead and zinc. The history, management policies, geology, and mining

 ⁴⁷ Cerro de Pasco Corp., Annual Report to Stockholders, 1952.
 ⁴⁸ American Smelting & Refining Co., Annual Report to Stockholders, 1952.

COPPER 393

methods, concentrator, and power plants, were described in two issues

of the Mining World.49

Tanganyika.—Uruwira Minerals, Ltd., signed a contract with the United States Government whereby the company was to receive a loan of \$1,640,000, which, together with 5 percent interest, was to be repaid, in lead and/or copper. The loan was to assist in expanding mine development and installing a 1,000-ton-a-day mill at the Mpanda mine. Repayment deliveries were scheduled to begin January 1, 1954, and to be completed by December 31, 1956. Optional purchases up to 50 percent of Mpanda's lead and copper production, for 10 years after the loan plus interest was repaid, were also covered.

Uganda.—Plans call for the production of copper at the Kilembe mine, on the eastern slopes of the Ruwenzori Mountains, probably by 1955. It was arranged that the Uganda Electricity Board was to erect a transmission power line from the Owen Falls hydro plant. Ore reserves were estimated as 14,800,000 tons averaging 1.92 percent copper and 0.18 percent cobalt, as of January 1953. The engineer's report expressed the view that many additional millions of tons of ore would probably be found at greater depth and along the strike of the ore to the west.⁵⁰

United Kingdom.—Consumption of copper increased 4 percent in 1952; thus the use of copper increased for the third successive year and exceeded every other year since 1944. The United Kingdom ranked, as in recent years, as the second most important consumer of copper in the world. Of a total consumption of 571,800 long tons in 1952, 347,600 tons was virgin copper and 224,200 tons secondary and copper in scrap; 313,400 tons was used in unalloyed and 243,800 tons in alloyed form. A total of 14,600 tons of copper sulfate was produced. Stocks of blister and refined copper (held by Government and consumers) increased to 132,000 tons at the end of 1952 from 113,000 tons on January 1. These inventories include electrolytic (including rods), fire-refined, and blister copper on hand.

Price changes for copper in the United Kingdom are covered under

the section on Prices.

TABLE 37.—United Kingdom imports of copper in 1951-52, by countries and classes of copper, in long tons ¹

		1951		1952			
	Electrolytic	Standard	Total	Electrolytic	Standard	Total	
Northern Rhodesia United States Canada Belgium Germany, West Chile Other	77, 164 64, 154 46, 014 14, 049 16, 493	127, 433 	204, 597 64, 154 46, 014 14, 049 16, 493 8, 848 1, 474	76, 385 44, 624 37, 424 27, 783 16, 002	168, 945 	245, 330 44, 624 37, 424 27, 783 16, 002 4, 953 6, 597	
Total	219, 166	136, 463	355, 629	207, 311	175, 402	382, 713	

¹ Metal Age, No. 15, March 1953, p. 18.

⁴⁰ Ong, J. N., The Tsumeb Story, parts I and II: Min. World, vol. 14, Nos. 6 and 7, May and June 1952, pp. 21–26, 74, and 34–39.

50 Ventures, Ltd., Annual Report to Stockholders, 1952.

³⁴²⁰⁷⁰⁻⁵⁵⁻⁻⁻²⁶

According to the British Bureau of Nonferrous Metal Statistics, United Kingdom exports of copper in 1951 and 1952, in long tons, were as follows:

Dit	1951	1952
Blister or rough	2, 711	6. 273
1 laucs, sheeps, etc	0 956	0 10"
VV 11 C	10 494	0 100
Tubes	4, 846	4, 395

Diatomite

By Henry P. Chandler 1 and Annie L. Marks 2

PRODUCTION of diatomite in the United States declined during 1952 owing to a temporary suspension of operations resulting from labor disputes in an area of large production. A satisfactory wage adjustment was made and normal output resumed before the end of the year.

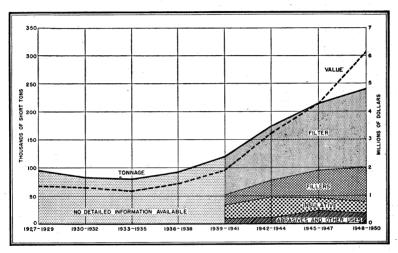


FIGURE 1.—Production, value, and use of diatomite in the United States, 1927-50.

DOMESTIC PRODUCTION

Diatomite, also known as diatomaceous earth or kieselguhr, is an opaline silica material consisting chiefly of the fossil remains of aquatic organisms known as diatoms. Many thousand varieties of diatoms have been recognized. The purest varieties of diatomite are chalklike in appearance, porous, and friable and have, when dry, a specific gravity of less than 1.

California leads in the production of diatomite, followed in order by Nevada, Oregon, and Washington. Diatomite is known to occur in 17 other States and at certain localities has been produced commercially, but production is now restricted to the States mentioned.

The output of diatomite in the United States increased from 81,000 short tons valued at \$1,206,000 in the 3-year period 1933-35 to 241,000 short tons valued at \$6,154,000 in 1948-50. To avoid disclosing

¹ Commodity-industry analyst;

annual statistics of individual companies, the Bureau of Mines publishes only 3-year averages for this commodity.

The average value per ton of diatomite at the mine has advanced from \$14.81 in 1933-35 to \$25.55 in 1948-50, an increase of 73 percent.

CONSUMPTION AND USES

Over a period of years the diatomite industry in the United States has developed new uses for its products, and consequently market demands have increased.

Acceptance of diatomite by consumers depends upon its physical

structure and other properties in relation to use.

Filtration Medium.—Diatomite is used widely in the filtration of sugar, beverages, water, pharmaceuticals, oils and many other liquid materials. For this use the size, shape, purity, and density are important factors in good filter performance. Forty-eight percent of the

1952 production was used for this purpose.

Mineral Fillers.—Diatomite as a filler serves two purposes—it supplies bulk with little increase in weight, and it imparts desirable physical properties to the end products in which it is used. Color, freedom from grit, low density, inertness, and particle size must be carefully controlled for this use. Twenty-nine percent of the 1952 diatomite output was used as filler in rubber, paper, asphalt products, plastics, explosives, insecticides, paints, and many other products.

Insulation Material.—Because of its high percentage of voids and high melting point, diatomite is a good insulating agent, both for sound and heat. It finds many such uses in industrial equipment and structure.

tures. Eleven percent of the production was so used in 1952.

Miscellaneous Uses.—As diatomite is an excellent absorbent without change in form, it finds many uses where this property is required. It is useful also as a mild abrasive, as a catalyst carrier, in ceramics and glazes, as a raw material for ultramarine pigment and sodium silicate, and in various other ways. Twelve percent of the production was consumed for these miscellaneous purposes.

A new motion picture, Celite—The Story of How Diatoms Are Put

to Work, has been shown.3

PRICES

The Oil, Paint and Drug Reporter quoted the following 1952 prices for diatomite: Domestic, bags, c. l., Atlantic coast, ton, \$52-\$55; California, ton, \$42-\$45; l. c. l., warehouse, \$85-\$90; purified, bags, c. l., Atlantic coast, ton, \$65; California, \$53; l. c. l., warehouse, \$95-\$100; Atlantic coast, \$95-\$100; imported Mexican, white, bags, c. l., Atlantic coast, lb., 3 cents; l. c. l., Atlantic coast, lb., 6 cents.

³ Rock Products, vol. 55, No. 10, October 1952, p. 116.

397 DIATOMITE

FOREIGN TRADE

Export and import statistics of diatomite are not reported separately by the Department of Commerce, but significant tonnages are known to be exported.

TECHNOLOGY

The new diatomaceous earth-processing facilities of Great Lakes Carbon Corp. at Lompoc, Calif., were described in the trade press.⁴ Also appearing in the press were articles describing the use of

diatomaceous earth for filtering water, oil, and boiler feed water.

The University of Idaho Agricultural Experiment Station is conducting research on a mixture of sawdust-diatomite-clay as a possible

source of lightweight aggregate.8

A concrete aggregate composed of a mixture of perlite and finely ground diatomaceous earth is claimed to reduce the stratification of aggregate and cement that often occurs in a regular perlite-cement mix, to impart to the concrete marked strength, and to show other desirable characteristics.9

RESERVES

Near Lompoc in northern Santa Barbara County, Calif., are large deposits of high-grade diatomite. Nevada, Oregon, and Washington also have large reserves, and a deposit in Rio Arriba County, N. Mex., is under development. The reserves in other States where deposits are known are relatively small and in many instances of low quality. Reserves are believed to be ample to supply domestic requirements for many years.

WORLD REVIEW

World production of diatomite is shown in table 1.

Exports of kieselguhr—or diatomite—have been reported from Algeria, 10 and a review of the expansion of the diatomite industry in Australia, with a list of producers, appeared in a trade magazine.11

Existence of diatomite deposits in the Belgian Congo has been ${
m noted.^{12}}$

⁴ Paint, Oil and Chemical Review, Dicalite Builds Outdoors; Diatomite Plant of Great Lakes Carbon Corp.: Vol. 115, No. 11, May 22, 1952, p. 40; Chemical Week, Engineered for Efficiency; Lompoc (Calif.) Plant of Great Lakes Carbon's Dicalite Division: Vol. 70, No. 26, June 28, 1952, pp. 37-38; Chemical Engineering, Mechanized Plant Means More Diatomite: Vol. 59, No. 7, July 1952, pp. 272-274, 276-277.

⁵ Martin, D. M., Portable Diatomite Filters for Emergency Use: Water and Sewage Works, vol. 98, No. 11, November 1951, pp. 485-487.

⁶ Baskette, L., Filter Aid Cleans Oil of Heavy Sludge: Elec. World, vol. 138, No. 6, Aug. 11, 1952, pp. 152-154.

<sup>153-154.

7</sup> Norris, T. H., Filtration of Boiler Feed Water Using Diatomaceous Earth: Pulp and Paper Mag. Canada, vol. 53, No. 2, February 1952, pp. 187-193.

8 Kauffman, A. J., Jr., Industrial Minerals of the Northwest: Bureau of Mines Inf. Circ. 7641, 1952,

p. 18. ^o Bollaert, A. R., et al. (assigned to the Great Lakes Carbon Corp.), Lightweight Concrete Mixture: U.S. Patent 2,585,366, Feb. 12, 1952. ¹⁰ Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 3, March 1952, p. 35; vol. 35, No. 1, July 1952,

pp. 36-37.
Il Chemical Engineering and Mining Review, Diatomite Industry in Australia: Vol. 45, No. 1, Oct. 10,

¹² Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, p. 48.

TABLE 1-World production of diatomite, by countries, 1948-52, in metric tons [Compiled by Helen L. Hunt]

42 800 061 795 809 000 084 347 210 765	54 232, 800 3, 313 3, 536 4, 038 70, 000 1, 457 37, 632 29, 335 6, 629 1, 844	1950 44 232, 800 154 3, 285 4, 122 70, 000 1, 025 35, 400 33, 707 (3) 1, 750	3, 894 (2) 95, 000 (3) 37, 000 (4) 37, 000 43, 952 (5) (6) (7)	232, 80 (3) (3) (3) (3) (3) (3)
800 061 795 809 000 084 347 210 765	232, 800 3, 313 3, 536 4, 038 70, 000 1, 457 37, 632 29, 335 6, 629	232, 800 154 3, 285 4, 122 70, 000 1, 025 35, 400 33, 707 (3)	232, 800 (3) 3, 894 (3) 95, 000 (3) 37, 000 43, 952	232, 80 (3) (3) (3) (3) (3) (40, 00 (3)
800 061 795 809 000 084 347 210 765	232, 800 3, 313 3, 536 4, 038 70, 000 1, 457 37, 632 29, 335 6, 629	232, 800 154 3, 285 4, 122 70, 000 1, 025 35, 400 33, 707 (3)	232, 800 (3) 3, 894 (3) 95, 000 (3) 37, 000 43, 952	(3) (3) (3) (3) 40,00
800 061 795 809 000 084 347 210 765	232, 800 3, 313 3, 536 4, 038 70, 000 1, 457 37, 632 29, 335 6, 629	232, 800 154 3, 285 4, 122 70, 000 1, 025 35, 400 33, 707 (3)	232, 800 (3) 3, 894 (3) 95, 000 (3) 37, 000 43, 952	232, 80 (3) (3) (3) (3) (3) (40, 00 (3)
795 809 000 084 347 210 765	3, 313 3, 536 4, 038 70, 000 1, 457 37, 632 29, 335 6, 629	3, 285 4, 122 70, 000 1, 025 35, 400 33, 707	(3) 3, 894 (3) 95, 000 (3) 37, 000 43, 952	(3) (3) (3) (3) (3) (40,00
795 809 000 084 347 210 765	3, 536 4, 038 70, 000 1, 457 37, 632 29, 335 6, 629	3, 285 4, 122 70, 000 1, 025 35, 400 33, 707	3, 894 (3) 95, 000 (3) 37, 000 43, 952	(3) (3) (3) (3) 40,00
809 000 084 347 210 765	4, 038 70, 000 1, 457 37, 632 29, 335 6, 629	4, 122 70, 000 1, 025 35, 400 33, 707	(3) 95, 000 (3) 37, 000 43, 952	(3) (3) (3) 40,00
809 000 084 347 210 765	4, 038 70, 000 1, 457 37, 632 29, 335 6, 629	4, 122 70, 000 1, 025 35, 400 33, 707	(3) 95, 000 (3) 37, 000 43, 952	(3) (3) (3) 40,00
000 084 347 210 765	70, 000 1, 457 37, 632 29, 335 6, 629	70, 000 1, 025 35, 400 33, 707	95, 000 (3) 37, 000 43, 952	(3) (3) 40,00 (3)
000 084 347 210 765	70, 000 1, 457 37, 632 29, 335 6, 629	70, 000 1, 025 35, 400 33, 707	95, 000 (3) 37, 000 43, 952	(3) (3) 40,00 (3)
084 347 210 765	1, 457 37, 632 29, 335 6, 629	1, 025 35, 400 33, 707 (3)	(3) 37, 000 43, 952	40, 00
347 210 765	37, 632 29, 335 6, 629	35, 400 33, 707	37,000 43,952	40, 00
210 765	29, 335 6, 629	33, 707 (3)	43, 952	(3)
765	6,629	(3)	(3) (3)	(3) (3) (3)
765		1,750	(3)	(3) (3)
- 1.	1,844	1,750	(3)	(3)
119				
	10 770	0.700	- 000	
968	10,770	3, 796	7, 338	(3) (3)
700	7, 914	6, 546	8,866	(3)
109	10 701	10 =10		
	13, 581	13,710	20, 992	18, 40
365	1,178	1,062	2,752	71
			4, 286	6,02
10	1, 100	436		1,08
-00	4 100		'	
				6, 98
.05	96	121	121	(3)
				520, 000
3 5	035 310 509 105	310 1, 155 509 4, 128	035 2, 224 2, 613 310 1, 155 436 509 4, 128 6, 321 105 96 121	035 2, 224 2, 613 4, 286 310 1, 155 436 509 4, 128 6, 321 8, 869

Diatomaceous earth believed to be also produced in Argentina, Brazil, Hungary, Japan, Korea, Norway, Portugal, Rumania, Spain, and U. S. S. R., but complete data are not available; estimates by senior author of chapter included in total.
 Average annual production 1948-52.
 Data not available; estimate by author of chapter included in total.
 Estimate.

Feldspar

By Brooke L. Gunsallus 1 and Frances P. Uswald 2

RODUCTION of crude feldspar in 1952 increased 5 percent in tonnage and 31 percent in value, according to reports by producers. Ground feldspar increased 1 percent in quantity but decreased 3 percent in value. Inventories of crude feldspar increased during 1952, following a decrease in 1951. Quantity sales of ground feldspar to the pottery industry decreased 23 percent, and sales to the enamel industry decreased less than 1 percent; but the quantity of ground feldspar shipped to the glass industry increased 27 percent in 1952 over 1951. The uptrend in pottery production in 1950 and 1951 did not continue in 1952, largely because of a decreased production of whiteware caused mainly by competition from other materials and imports. The use of feldspar in sanitary ware and electrical insulators decreased because of greater use of substitute materials.

The removal of certain restrictions in the use of steel by the National Production Authority permitted expanded automobile production, which was accompanied by an increased demand for flat glass, a

large consumer of feldspar.

Realinement of feldspar producers occurred in 1952 when the International Minerals & Chemical Corp. acquired Consolidated Feldspar Corp., the largest feldspar producer in the United States, and the American Encaustic Tile Co. purchased United Feldspar & Minerals Corp. The Consolidated Feldspar Corp. operated 13 plants in the United States and 1 plant in Canada and was reported to have substantial feldspar reserves.3

Imports of crude feldspar from Canada decreased 67 percent in 1952 compared to 1951. Imports of crude nepheline syenite were negligible in 1952, as in 1951. Imports of ground nepheline syenite increased 4 percent in 1952 compared to 1951; Canada was the sole supplier. Total sales of aplite in 1952 decreased 8 percent compared with 1951.

TABLE 1.—Salient statistics of the feldspar industry in the United States, 1943-47 (average) and 1948-52

	1943–47 (a verage)	1948	1949	1950	1951	1952
Crude feldspar: Domestic sales: Long tons Value Average per long ton Long tons Value Average per long ton	395, 386 \$2, 097, 356 \$5. 30 14, 084 \$109, 237 \$7. 76	460, 713 \$2, 564, 387 \$5. 57 31, 047 \$219, 785 \$7. 08	369, 378 \$2, 278, 441 \$6. 17 15, 826 \$107, 925 \$6. 82	407, 925 \$2, 558, 390 \$6. 27 12, 367 \$84, 136 \$6. 80	1 400, 439 \$2, 815, 587 \$7. 03 17, 128 \$146, 565 \$8. 56	1 420, 831 \$3, 696, 018 \$8. 78 5, 576 \$53, 016 \$9. 51
Ground feldspar: Sales by merchant mills: Short tons. Value. Average per short ton.	402, 728 \$4, 581, 841 \$11. 38	506, 451 \$6, 462, 231 \$12. 76	386, 707	446, 523	454, 615	458, 920 \$6, 712, 481 \$14. 63

¹ Includes fiotation concentrates.

Commodity-industry analyst.
 Statistical clerk.
 Rock Products, vol. 55, No. 12, December 1952, p. 108.

DOMESTIC PRODUCTION CRUDE FELDSPAR

Crude feldspar sold or used by producers in 1952 (table 2) increased 5 percent in quantity and 31 percent in value over 1951. The 1952 production was the largest since 1948, and the value reported in 1952 exceeded all previous years. The average value per ton was \$8.78 compared with \$7.03 in 1951. Ten States reported production in 1952 compared with 11 in 1951.

North Carolina was the only State that showed an increase in feldspar production in 1952 compared with 1951 and was the largest producer, with 57 percent of the total quantity (42 percent in 1951). South Dakota was second with 10 percent of the total (12 percent in 1951), and Colorado was third with 9 percent of the total (13 percent in 1951).

TABLE 2.—Crude feldspar sold or used by producers in the United States, 1943-47 (average) and 1948-52

Year	Long tons	Val	lue	Year	Long tons	Value	
		Total	Average	Tear	Dong tons	Total	Average
1943–47 (average) 1948 1949	395, 386 460, 713 369, 378	\$2, 097, 356 2, 564, 387 2, 278, 441	\$5. 30 5. 57 6. 17	1950	407, 925 400, 439 420, 831	\$2, 558, 390 2, 815, 587 3, 696, 018	\$6. 27 7. 03 8. 78

TABLE 3.—Crude feldspar sold or used by producers in the United States, 1950-52, by States

State	1950		19	51	1952		
	Long tons	Value	Long tons	Value	Long tons	Value	
Colorado	59, 457 13, 580 17, 487 183, 027 43, 875 (1) 26, 879 63, 620	\$329, 120 101, 851 124, 821 1, 107, 061 249, 176 (1) 188, 153 458, 208	50, 451 13, 811 19, 273 166, 361 48, 559 (1) 30, 979 71, 005	\$283, 153 107, 083 154, 695 1, 230, 404 290, 520 (1) 232, 099 517, 633	38, 268 10, 929 18, 644 240, 364 40, 163 2, 600 (1) 69, 863	\$224, 385 87, 432 147, 371 2, 416, 031 220, 954 31, 200 (¹) 568, 645	
Total	407, 925	2, 558, 390	³ 400, 439	2, 815, 587	³ 420, 831	3, 696, 018	

Included with Other States in order to avoid disclosure of individual company operations.
 Includes Arizona, California, Georgia (1950-51), New Hampshire, Texas (1950-51), and Virginia (1952).
 Flotation concentrates included in total.

The tonnage of feldspar and feldspathic rock treated in flotation plants became a factor in feldspar production in 1951 and increased in 1952.

The application of froth flotation to pegmatites has provided the feldspar industry with a new source of raw material. Indications are that this process will be more widely used in the future.

GROUND FELDSPAR

Ground feldspar sold by merchant mills in the United States increased 1 percent in 1952 compared with 1951 and was the largest quantity sold since 1948. The total value decreased 3 percent compared with 1951, and the average selling price decreased from \$15.25

to \$14.63. Ground feldspar was reported by mills in 14 States in

1952, the same as for the past several years.

North Carolina again reported the largest quantity of ground feldspar, followed by Tennessee, Colorado, and South Dakota. Ground-feldspar production in Tennessee increased while the quantity in Colorado and South Dakota decreased during 1952 compared to 1951. New Jersey and New York also reported decreases.

The percentage of total shipments of ground feldspar for several States was: North Carolina-Tennessee, 59 percent (43 percent in 1951); New York-New Hampshire, 6 percent (7 percent in 1951); Connecticut-New Jersey, 4 percent (6 percent in 1951); and Maine,

4 percent (5 percent in 1951).

TABLE 4.—Ground feldspar sold by merchant mills 1 in the United States, 1943-47 (average) and 1948-52

		Domestic feldspar			Car	Canadian feldspar			Total	
Year	Active mills	g1	Short		Value		Value			
		tons	Total	Aver- age	Short tons	Total	Aver- age	Short	Value	
1943-47 (average) 1948	28 28 27 23 23 24	391, 254 487, 070 369, 824 429, 787 441, 816 448, 839	\$4, 346, 581 5, 991, 059 5, 212, 246 5, 952, 019 6, 633, 378 6, 473, 203	\$11. 11 12. 30 14. 09 13. 85 15. 01 14. 42	11, 474 19, 381 16, 883 16, 736 12, 799 10, 081	\$235, 260 471, 172 396, 855 391, 600 299, 500 239, 278	\$20. 50 24. 31 23. 51 23. 40 23. 40 23. 74	402, 728 506, 451 386, 707 446, 523 454, 615 458, 920	\$4, 581, 841 6, 462, 231 5, 609, 101 6, 343, 619 6, 932, 878 6, 712, 481	

¹ Excludes potters and others who grind for consumption in their own plants.

TABLE 5.—Ground felds par sold by merchant mills $^{\rm l}$ in the United States, 1950–52, by States

		1950			1951	-		1952	
State	Ac- tive mills	Short tons	Value	Ac- tive mills	Short tons	Value	Ac- tive mills	Short tons	Value
Colorado Connecticut New Jersey Georgia Virginia Maine New Hampshire New York North Carolina Tennessee Texas	2 2 1 (2) (2) (2) (3) (2) (2) (3) 1	62, 879 } 25, 532 (2) (2) 19, 938 (2) (2) (2) (2) } 200, 373	\$663, 712 510, 501 (2) (2) (3) 352, 809 (2) (2) 2, 526, 268	$\left\{\begin{array}{c} (^2) \\ 2 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 3 \\ 1 \end{array}\right.$	(2) } 25, 740 } 47, 755 20, 504 } 34, 149 }197, 704	(2) \$528, 246 668, 347 376, 258 716, 660 2, 886, 655	$\left\{\begin{array}{c} (^2) \\ 2 \\ 1 \\ (^2) \\ 3 \\ 4 \\ 1 \\ 1 \end{array}\right.$	(2) 19, 109 (2) 16, 791 } 28, 592 }270, 775 2, 000	(2) \$386, 191 (2) 317, 365 605, 342 3, 714, 084 30, 000
Other States 3	11	137, 801	2, 290, 329	7	128, 763	1, 756, 712	10	121, 653	1, 659, 499
Total	23	446, 523	6, 343, 619	23	454, 615	6, 932, 878	24	458, 920	6, 712, 481

¹ Excludes potters and others who grind for consumption in their own plants. ² Included with "Other States."

CONSUMPTION AND USES

CRUDE FELDSPAR

Many merchant grinders also mine feldspar, either themselves or through affiliated firms. A large part of their supply of crude feldspar, however, is purchased from small operators.

includes (number of active mills in parentheses) Arizona (1), California (1 in 1950–51, 2 in 1952), Colorado (2 in 1951–52), Georgia (1 in 1950), Illinois (1), New Hampshire (2 in 1950), New York (1 in 1950), South Dakota (2), and Virginia (2 in 1950 and 1952).

Most of the consumers of feldspar buy material already ground, sized, and ready for use in their manufactured products. Some pottery, enamel, and soap manufacturers, however, purchase all or part of their requirements crude and crush and grind it to their own specifications in their own mills. Consumers in the United States buy some crude feldspar from producers in Canada. A small, but carefully selected, tonnage is used in the manufacture of artificial teeth.

GROUND FELDSPAR

Glass, pottery, and enamel industries in 1952 consumed 99 percent of the ground feldspar sold by merchant mills, the same as in 1951, 1950, and 1949 (table 6). In 1952 glass accounted for 55 percent (43 percent in 1951); pottery, 39 percent (51 percent in 1951); and enamel, 5 percent (5 percent in 1951). The remaining 1 percent was consumed in other industries, including soaps and abrasives. The tonnage shipped to the pottery industry decreased 23 percent, but shipments to the glass industry increased 27 percent. Shipments to the enamel industry decreased less than 1 percent. Shipments to all other industries increased about 70 percent in 1952 over 1951.

The percentage of total consumption by States in 1952 (table 7) was as follows; the comparable 1951 figure being shown in parentheses: Pennsylvania, 14 percent (13 percent); Ohio, 13 percent (15 percent); West Virginia, 11 percent (8 percent); Illinois, 11 percent (12 percent); New Jersey, 10 percent (12 percent); and New York, 7 percent (7 percent).

TABLE 6.—Ground feldspar sold by merchant mills in the United States, 1950-52, by uses

	19	50	19	51 .	1952		
Use	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total	
Ceramic: Glass Pottery Enamel Other ceramic uses	212, 481 197, 817 33, 037	47. 6 44. 3 7. 4	197, 483 231, 725 21, 778	43. 4 51. 0 4. 8	251, 489 179, 469 21, 809 2, 478	54. 8 39. 1 4. 8 . 5	
Soaps and abrasivesOther uses	3, 028 160	.7	2, 832 797	.6 .2	3, 267 408	.7	
Total	446, 523	100. 0	454, 615	100.0	458, 920	100. 0	

Names and addresses of merchant grinders of feldspar in the United States are listed below:

Abingdon Potteries, Inc., 801 West Main St., Abingdon, Ill.

Carolina Mineral Co., Inc., Erwin, Tenn.

Clinchfield Sand & Feldspar Corp., 413 Washington Ave., Towson 4, Baltimore,

Consolidated Feldspar Corp., Dept. of International Mineral & Chemical Corp., Erwin. Tenn.

Erwin, Tenn.

Del Monte Properties Co., 620 Market St., San Francisco, Calif.

Dezendorf Marble Co., P. O. Box 121, Austin, Tex.

Eureka Mica Mining & Milling Co., Portland, Conn. (Eureka Flint & Spar Co., Inc., 190 West State St., Trenton, N. J., sales agent).

Feldspar Flotation, Inc., Spruce Pine, N. C.

Feldspar Milling Co., Burnsville, N. C.

Gladding, McBean & Co., 2901 Los Feliz Blvd., Los Angeles, Calif.

Golding-Keene Co., 1401 New York Ave., Trenton, N. J.

J. F. Morton, Inc., P. O. Box 246, Bellows Falls, Vt.

North Carolina Feldspar Corp., Erwin, Tenn.

Standard Flint & Spar Corp., New York Ave., Trenton 8, N. J. Topsham Feldspar Co., Topsham, Maine.
United Feldspar & Minerals Corp., 1104 E. Wendover, Greensboro, N. C. Western Feldspar Milling Co., Box 671, Salida, Colo. Worth Spar Co., P. O. Box 763, Middletown, Conn.

 $Apl \hat{i} te$ Carolina Mineral Co., Inc., Kona, N. C. Dominion Minerals, Inc., Piney River, Va.

TABLE 7.—Ground feldspar shipped, by States of destination, from merchant mills in the United States, 1948-52, in short tons

Destination	1948	1949	1950	1951	1952
California Illinois Indiana Maryland Massachusetts New Jersey New York Ohio Oklahoma Pennsylvania Tennessee West Virginia Wisconsin Other destinations 3	52, 587 20, 887 64, 805	8, 385 51, 202 25, 962 16, 371 1, 944 44, 243 19, 900 52, 533 15, 722 57, 160 7, 917 30, 393 10, 749 44, 226	(¹) 56, 513 28, 875 20, 861 5, 733 53, 430 22, 362 68, 186 (¹) 57, 190 11, 202 37, 246 12, 580 72, 345	(1) 53, 940 25, 692 19, 109 6, 176 54, 968 31, 086 70, 245 (1) 60, 306 10, 679 37, 062 11, 558 73, 794	(1) 51, 808 30, 976 17, 214 4, 715 47, 046 31, 614 60, 884 (1) 65, 167 13, 392 52, 421 9, 880 73, 803
Total	506, 451	386, 707	446, 523	454, 615	458, 920

¹ Included with "Other destinations"; separate figure for State not available.
² Includes Arkansas, California (1950-52), Colorado, Connecticut, Kentucky, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Oklahoma (1950-52), Puerto Rico (1948-50 and 1952), Rhode Island, Texas, Washington (1948-50 and 1952), shipments which cannot be segregated by States, and small shipments to Belgium, Canada, England, France, Mexico, and Peru. Also includes specified shipments to Alabama (1949 and 1952), Ariona (1952), Connecticut (1952), Florida (1949 and 1952), Georgia (1952), Kansas (1948 and 1952), Maine (1948 and 1950), North Carolina (1952), North Dakota (1952), and Virginia (1952).

PRICES

Price quotations for crude feldspar do not appear in the trade press. Average values are computed from the returns of producers reporting their output annually to the Bureau of Mines. In 1952 the average selling price per long ton for all feldspar mined in the United States was \$8.78 compared to \$7.03 in 1951 and \$6.27 in 1950.

The average realization per short ton for ground feldspar in 1952 was \$14.63, a 4-percent decrease from 1951 but a 3-percent increase over 1950. Of the large producing States, the State having the highest average value per short ton was New Jersey, \$27.85 (\$26.64 for 1951), followed by New York, \$23.74 (\$23.40 for 1951), and Illinois, \$21.49 (\$20.47 for 1951). North Carolina, by far the largest producer, realized only \$13.71 per short ton in 1952. The State reporting the

lowest average value per short ton in 1952 was Colorado, \$10.76

(\$11.11 for 1951).

Quotations on ground feldspar appearing in E&MJ Metal and Mineral Market Reports for December 1952 were the same as in each previous year, starting with 1949, as follows: North Carolina, bulk carlots, 200-mesh, \$18.50 per short ton; 325-mesh, \$22.50; glass feldspar, No. 18, \$12.50; and semigranular, \$11.75 (add \$3.00 per ton to bulk quotation for bags and bagging). Quotations on Virginia feldspar were not listed in E&MJ for 1952. The following prices were given for 1951: No. 1, 230-mesh, \$18.50 per ton, and 200-mesh, \$17.50; No. 17 glassmakers' feldspar, \$11.75, and No. 18, \$12.50. Enamelers' feldspar was listed at \$15 to \$18.

FOREIGN TRADE 4

Crude feldspar imports for consumption in 1952 totaled 5,576 long tons (all from Canada), valued at \$53,016. Compared with 1951, there was a 67-percent decrease in tonnage and a 64-percent decrease This was the lowest imported tonnage of feldspar since in value. 1933.

According to reports by the merchant grinders, ground feldspar exported from the United States in 1952 totaled 3,431 short tons, a 43-percent increase above 1951. Countries of destination were Canada, Mexico, France, Belgium, Peru, Puerto Rico, and the United Kingdom.

TABLE 8.—Feldspar imported for consumption in the United States, 1947-52 [U.S. Department of Commercel

	C	rude	Gre	ound	1		Crude		Ground	
Year	Long tons	Value	Long tons	Value	Year	Long	Value	Long tons	Value	
1947 1948 1949	16, 685 31, 047 15, 826	\$124, 587 219, 785 107, 925	(1)	\$328	1950 1951 1952	12, 367 17, 128 5, 576	\$84, 136 146, 565 53, 016	(1)	\$26	

¹ Less than 1 ton.

Cornwall Stone.—Imports for consumption of unmanufactured cornwall stone in 1952 decreased 68 percent compared with 1951. Imports of ground cornwall stone decreased 73 percent. The source of imports. either crude or ground, is the United Kingdom.

TABLE 9.—Cornwall stone imported for consumption in the United States, 1947-52

	Unman	nufactured Ground		red Ground		Unman	ufactured	Ground	
Year	Long tons	Value	Long tons	Value	Year	Long	Value	Long tons	Value
1947 1948 1949	706 1, 124 772	\$9, 522 15, 633 11, 200	148 117 20	\$3, 124 2, 719 572	1950 1951 1952	1, 128 944 300	\$11, 792 9, 453 3, 170	111 110 30	\$2, 160 3, 462 800

[U. S. Department of Commerce]

NEPHELINE SYENITE

Domestic Deposits.—Samples from the only reported occurrence of nepheline syenite in California are being tested. These samples were taken from the Quartz Spring area in the northern Panamint Mountains, near Death Valley.⁵ Nepheline syenite also occurs in New Jersey, Arkansas, and other localities in the United States, but all the domestic material found thus far in any appreciable tonnage has contained too much iron for ceramic purposes.

Uses.—Nepheline syenite originally was used almost entirely in the manufacture of glass when it was first introduced commercially, about

⁴ Figures on imports are compiled by Mae B. Price and Elsie D. Page of the Bureau of Mines, from records of the U. S. Department of Commerce.

⁵ California Department of Natural Resources, Division of Mines, Mineral Information Service, vol. 5,

No. 2, February 1952, p. 7.

1940. During the last decade many other applications have been developed for nepheline syenite in the ceramic industry, resulting in a

steadily increasing demand.

Prices.—Quotations on crude nepheline syenite are not reported in trade journals. Imports of the crude material have been negligible since the American Nepheline, Ltd., of Ontario, Canada, moved its grinding plant from Rochester, N. Y., the only syenite-grinding plant in the United States, to Ontario, Canada, in 1951. Even though this grinding plant no longer existed, the Oil, Paint and Drug Reporter continued to quote nepheline syenite prices f. o. b., works, N. Y. The quotations in 1952 were as follows: Glass grade (24-mesh), bulk, f. o. b., works, N. Y., \$14.25; and Pottery grade (200-mesh), bulk, f. o. b., works, N. Y., \$18.25. An additional cost of \$3.00 per ton was quoted for bagged material. These prices were the same as in December 1950.

Foreign Trade.—Imports of ground nepheline syenite increased 4 percent in 1952 over 1951. The average value per ton (foreign market value) of ground nepheline syenite imported was \$14.39 in 1952. Canada was the sole supplier of both crude and ground material

to the United States.

Although deposits of nepheline syenite have been reported in India and Finland, no activity has been reported. It is known that deposits of nepheline syenite were being worked in U. S. S. R. on a commercial scale, but production data are not available.

TABLE 10.—Nepheline syenite imported for consumption in the United States, 1947-52

	C	rude	Ground			Cı	rude	Ground	
Year	Short tons	Value	Short tons	Value	Year	Short tons	Value	Short tons	Value
1947 1948 1949	54, 382 53, 570 41, 215	\$194, 283 214, 747 167, 567	7, 577 18, 779	\$130, 860 248, 224	1950 1951 1952	8, 966 (1) 4	\$36, 453 (1) 125	54, 242 265, 773 68, 398	\$703, 008 2 936, 256 984, 050

[U. S. Department of Commerce]

APLITE

The tonnage of aplite produced has decreased progressively for the past 4 years, but the Bureau of Mines is not at liberty to publish production or sales data. The only producers of aplite were Dominion Minerals, Inc., Piney River, Nelson County, Va., and Carolina Mineral Co., Inc., Kona, N. C., from mines in Amherst County, Va., near Piney River.

TECHNOLOGY

Samples of granites and pegmatites from several New Jersey localities were investigated by mineral-dressing methods to determine the feasibility of producing marketable grades of feldspar.⁶ The results of tests on samples from three areas indicated potential commercial reserves.

A study of sand samples from the vicinity of Kansas City, Kans.,

¹ Revised to none. ² Revised figure.

⁶ Lodding, William, New Jersey's Potential Feldspar Resources, Mineral, Technology, and Economic Evaluation: Rutgers Univ. Min. Res., Bull. 5, part 2, Rutgers, N. J., 70 pp.

was made by the State geological survey. The samples were treated by flotation methods to determine the feasibility of producing feldspar and silica concentrates suitable for use in glass and allied industries.

A simple procedure for correction of mineral compositions calculated from feldspar analyses was illustrated.8 The fluxing ability of commercial feldspars in glasses, glazes, or enamels and their tendency to produce disruptive expansion as a result of quartz inversion when used in bodies were reported as a function of their mineral The flotation process, as applied to feldspar, was composition. discussed.9

A study of eutectic glasses and fluxes in whiteware bodies was Feldspar is the normal vitrifying agent in most whiteware bodies, and in this research the reaction of the various auxiliary fluxes with various feldspars was studied under commercial plant conditions.

WORLD REVIEW

The estimated world production of feldspar in 1952 increased 6 percent compared to 1951. The output of China and U.S.S.R.,

for which no data are available, is not included in the total.

The ratio of United States output to estimated world output in 1952 was 52 percent compared with 53 percent in 1951 and 58 percent West Germany showed a remarkable increase of 67 percent in 1952 over 1951. The location of Italian feldspar deposits and production figures were given.¹¹

⁷ Bowdish, F. W., and Runnels, R. T., Experimental Production of Feldspar and Silica from Severa River Sands in Kansas: State Geol. Survey of Kansas, Bull. 96, part 6, 1952, 21 pp.

⁸ Cofflen, William W., Simple Procedure for Correction of Mineral Compositions Calculated from Feldspar Analyses: Ceram. Age, vol. 60, No. 6, December 1952, p. 29.

⁹ Ceramic Industry, vol. 58, No. 4, April 1952, pp. 114–115, 175.

¹⁰ Watts, Arthur S., A Study of Eutectic Glasses as Fluxes in Whiteware Bodies: Ceram. Bull., vol. 31, No. 11, November 1952, pp. 456–461.

¹¹ Ceramic Age, vol. 60, No. 2, 1952, p. 441.

TABLE 11.—World production of feldspar by countries, 1 1948-52, in metric tons 2 [Compiled by Helen L. Hunt]

Country 1	1948	1949	1950	1951	1952
North America:					
Canada (sales)	49, 760	33, 518	32, 248	36, 967	19,740
United States (sold or used)	468, 107	375, 307	414, 472	406, 866	427, 585
South America:	•	,	1		'
Brazil	189	11, 111	12,000	(3)	(3)
Chile	885	125	871	1, 200	(3)
Peru	210	300		131	
Uruguay	4,877	811	710	675	898
Europe:		1		i	1
Austria	1, 106	1, 912	3,802	3, 751	2, 578
Finland	6,064	10, 074	8,000	8, 198	9, 790
France	55, 343	47, 514	42,000	66,000	65,000
Germany, West	32, 921	48, 262	76, 712	71, 531	119, 291
Italy Norway	15, 309	13, 522	18, 071	29, 144	25, 476
Norway	33, 117	27, 482	23, 695		23,000
Portugal	1,560	1, 240		470	(3) (3) (4)
Spain (quarry) 5 Sweden	6,600	396	1,650	1,760	(3)
Asia:	3 8, 687	38, 959	36, 031	41,072	(3)
India.	1 000	000			
Japan 6	1,003	863	1,800	3, 195	(3)
Africa:	25, 077	20, 055	13, 187	26, 528	24, 194
Eritrea	300	000		1	-
Kenva	10	200 20			
Southern Rhodesia.	. 10	20	2 500		
Union of South Africa	2, 574	3, 549	3, 520		
Australia 7	9, 767	10, 902	6, 001 13, 276	3,343	7,479
***************************************	9, 101	10, 902	13, 270	14, 473	13, 903
Total (estimate) 1	770, 000	660, 000	720, 000	770, 000	815, 000

¹ In addition to countries listed, feldspar is produced in Argentina, China, Czechoslovakia, Rumania, and U. S. S. R., but data are not available; estimates by senior author of chapter are included in the total except for China and U. S. S. R.

2 This table incorporates a number of revisions of data published in previous feldspar chapters.
3 Data not available; estimate by senior author of chapter included in total.
4 Estimate.
5 In addition, the following quantity of feldspar is reported as ground, but there is no crude production data to support this ground figure: 1948, 7,967 tons; 1949, data not available; 1950, 8,254 tons; 1951, 11,043 tons; 1952, 10,359 tons.
6 In addition, the following quantities of aplite and other feldspathic rock were produced: 1948, 35,840 tons; 1949, 50,943 tons; 1950, 45,679 tons; 1951, 59,919 tons; 1952, data not available.
7 Includes some china stone.

Ferroalloys

By Robert W. Geehan 1

ESPITE a decline in production of ferroalloys during 1952, compared with the alltime high of 1951, the year was marked by major construction of facilities designed to increase capacity. The construction program was designed to provide capacity needed to match the scheduled increase in steelmaking. The steel strikes of 1952 led to a decline in production of ferromanganese and ferrosilicon. Significant developments during the year included substantial use of electrolytic manganese in stainless steel, an increased use of rare-earth products in steel, and an increase in the relative quantity of ferromanganese produced in electric furnaces.

DOMESTIC PRODUCTION

In 1952 ferroalloys were made in 12 blast-furnace plants, 38 electric-furnace plants, and 3 aluminothermic-furnace plants. Pennsylvania again led all other States in production (28 percent), shipments (29 percent), and value (35 percent) of ferroalloys. Ohio was second in production and shipments; however, New York was second in value of shipments. Production was also reported from Alabama, California, Florida, Idaho, Indiana, Iowa, Kentucky, Montana, New Jersey, Oregon, South Carolina, Tennessee, Virginia, Washington, and West Virginia.

Ferromanganese, ferrosilicon, and spiegeleisen are produced in blast furnaces; however, the only ferroalloy containing a high percentage of the alloying metal that is mainly so produced is ferromanganese. Most of the ferromolybdenum, a small part of the ferromanganese and ferrotitanium, and some ferrotungsten are produced by the aluminothermic method. The other ferroalloys and a portion of all those mentioned above, except spiegeleisen, are produced in electric-furnace

plants.

Ferromanganese produced in 1952 averaged 77 percent manganese (76 percent in 1951) and came from 7 blast-furnace plants, 9 electric-furnace plants, and 1 aluminothermic plant. The blast-furnace group contributed nearly 3 times as much material in 1952 as the others combined; however, the ratio of blast furnace to total ferromanganese declined 7 percent from that of 1951. Manganese ore used to produce ferromanganese in 1952 comprised 92 percent from foreign sources and 8 percent from domestic mines. The steel industry consumed nearly all the ferromanganese used in 1952. High-carbon ferromanganese is satisfactory for the bulk of steel production; but the low-carbon alloy is required in some alloy steels, for example, austenitic stainless steels.

¹ Assistant chief, Ferrous Metals and Alloys Branch.
2 Brown, D. I., Ferroalloys; New Plants Shown: Iron Age, vol. 170, No. 5, July 31, 1952, p. 39. Keeley, W. C., Ferroalloys Production to Increase Further in 1953: Daily Metal Reporter, vol. 53, No. 2, Jan. 3, 1953, pp. 1-2. American Metal Market, Expansion Goal for Ferrosilicon Seen Adequate: Vol. 59, No. 212, Nov. 1, 1952, p. 1; Jour. Metals, vol. 4, No. 1, January 1952, p. 19.

TABLE 1.—Ferroalloys produced and shipped from furnaces in the United States, 1951-52

*		1951		1952			
Alloy	Production Shipments			Produc- tion	Shipments		
	(short tons)	Short tons	Value	(short tons)	Short tons	Value	
Ferromanganese Ferrosilicon Ferrochromium Ferrophosphorus Ferrotitanium Ferrovanadium Ferrotungsten Ferromolybdenum Other molybdenum products	791, 260 861, 889 227, 467 52, 145 } 12, 261 } 34, 624	795, 745 846, 111 233, 209 67, 891 12, 165 36, 351	\$122, 346, 198 93, 668, 232 84, 021, 476 1, 573, 215 15, 214, 759 58, 226, 821	758, 721 781, 888 248, 421 50, 850 12, 051 33, 372	738, 088 760, 981 242, 572 53, 960 11, 577 33, 366	\$133, 996, 006 84, 095, 168 88, 937, 103 2, 672, 731 13, 328, 409 52, 019, 126	
Spiegeleisen Silicomanganese Manganese briquets Other ferroalloys ²	194, 707	196, 951 18, 927	29, 397, 032 6, 846, 363	176, 628 20, 768	177, 074 20, 848	26, 586, 156 7, 224, 269	
Total	2, 193, 753	2, 207, 350	411, 294, 096	2, 082, 699	2, 038, 466	408, 858, 968	

1 Includes ferrochrome-silicon.

The Ferromanganese Industry Advisory Committee, National Production Authority, recommended a change in specifications.3 The group reported that standard ferromanganese, containing 78 to 82 percent manganese, was difficult to produce from the lower-grade ore being received. It was suggested that the standard-grade for ferro-

manganese be set at 72 to 76 percent manganese.

Production of spiegeleisen declined 24 percent in 1952 as compared Spiegeleisen is an iron-blast-furnace product of high manganese content (average 20 percent in 1952); it is normally made from manganese-bearing material too low-grade for use in production of ferromanganese. Uses are essentially the same as those of ferromanganese, but more time is required for melting and for removal of carbon from the product if equivalent quantities of manganese are compared.

Silicomanganese is used in the production of low-carbon ferromanganese and for introducing manganese into low-carbon steels. Production of silicomanganese increased 19 percent compared with

1951.

From the standpoint of tonnage, more ferrosilicon is produced than any other ferroalloy. Of the total ferroalloy production in 1952, 38 percent was ferrosilicon. Production and shipments of ferrosilicon listed on table 1 include silvery pig iron, ferrosilicon of various grades, and ferrosilicon briquets. Silvery pig iron is produced in blast furnaces, ferrosilicon is manufactured in electric furnaces, and ferrosilicon briquets are produced from the latter and standardized as to silicon content (normally either 1 or 2 pounds per briquet). During 1952 there was a significant change in foreign trade; a substantial decline in imports of ferrosilicon and an increase in exports reflected increased productive capacity in the United States.

² Ferrocolumbium, ferroboron, zirconium-ferrosilicon, and miscellaneous ferroalloys.

¹ American Metal Market, vol. 59, No. 213, Nov. 4, 1952, p. 1.

TABLE 2.—Producers of ferroalloys in the United States in 1952

Producer	Plant	Alloy
American Agricultural Chemical	South Amboy, N. J.	Ferrophosphorus (byproduct).
Anaconda Copper Mining Co	Anaconda, Mont Black Eagel, Mont	}Ferromanganese.
Bethlehem Steel Co. Chromium Mining & Smelting	Johnstown, Pa Riverdale, Ill	Do. Chrom Sil-X, Chrom-X.
Co., Ltd. Climax Molybdenum Co	Langeloth, Pa	Ferromolybdenum, calcium molybdate, molybdenum silicide, ammonium molybdate, molybdenum oxide, oxide briquets, molybdenum trioxide, sodium molybdate, cobalt molybdenum, molybdenum sulfide.
Electro-Metallurgical Co	Alloy, W. Va. Ashtabula, Ohio. Columbiana, Ohio. Holcomb Rock, Va. Marietta, Ohio. Niagara Falls, N. Y. Portland, Oreg.	Ferromanganese, silicomanganese, manganese briquets, manganese metal, ferrosilicon, sili- con metal, silicon briquets, zirconium-ferro- silicon, ferrochromium, chromium briquets, chromium metal, ferrotungsten, ferrovana- dium, ferroboron, ferrocolumbium, ferrotita- nium.
General Abrasive Co., Inc	Niagara Falls N Y	Ferrosilicon (byproduct). Silvery pig iron, ferrosilicon.
Hanna Furnace Corp Inland Steel Co	Jackson, Ohio Buffalo, N. Y E. Chicago, Ind	Silvery pig iron.
Jackson Iron & Steel Co Kaiser Aluminum & Chemical Corp.	Permanente, Calif	Spiegeleisen. Silvery pig iron. Ferrosilicon.
Keokuk Electro-Metals Co	Keokuk, Iowa Wenatchee, Wash Reusens, Va	Ferrosilicon, silvery pig iron, silicon metal.
E. J. Lavino & Co	Reusens, Va Sheridan, Pa	}Ferromanganese.
Metal & Thermit Corp Molybdenum Corp. of America	Carteret, N. J. Washington, Pa	Ferrotitanium. Ferromolybdenum, molybdic oxide, ferrotung.
Monsanto Chemical Co	Anniston, Ala Columbia, Tenn Memphis, Tenn	sten, manganese boride, ferroboron. Ferrosilicon. Ferrophosphorus (byproduct).
Montana Ferro-Alloys Co New Jersey Zinc Co	Memphis, Tenn	rerrochromium chromo silicido
Ohio Ferro-Alloys Co	Palmerton, Pa Brilliant, Ohio Philo, Ohio	Spiegeleisen, ferromanganese. Ferrochromium, ferrosilicon. Ferrosilicon, ferrosilicon-boron, simanal, silicon
one remove constitution	1	metal. Ferrosilicon, silicon metal.
Oldbury Electro-Chemical Co Pacific Northwest Alloys, Inc	Tacoma, Wash Niagara Falls, N. Y. Mead, Wash Calvert City, Ky	Ferrosilicon.
Pittsburgh Metallurgical Co	Charleston, S. C	Ferrosilicon, silicon metal, ferrochromium, ferrochrome silicon. Ferrosilicon, ferrochromium, ferrochrome silicon.
Fennessee Products & Chemical Corp.	Niagara Falls, N. Y. Chattanooga, Tenn	Ferrosilicon, ferrochromium. Ferrosilicon, ferrosilicon briquets, ferromanganese, ferromanganese briquets.
Tennessee Valley Authority Titanium Alloy Mfg. Div., National Lead Co.	Muscle Shoals, Ala Niagara Falls, N. Y.	Ferrophosphorus (byproduct). Ferrotitanium, ferrocarbontitanium.
• •	Clairton, Pa Etna, Pa Duquesne, Pa	Ferromanganese.
anadium Corp. of America	Ensley, Ala Bridgeville, Pa Graham, W. Va Niagara Falls, N. Y	Ferrotitanium, ferrocarbontitanium, ferrovana- dium, ferrosilicon, silicon briquets, silicon metal, ferrochromium, ferrochromium bri- quets, chrome silicon alloy, alsifer, grainals, alumino vanadium, ammonium meta vana- date, titanium aluminum.
Victor Chemical Works	Mount Pleasant,	Ferrophosphorus (byproduct).
	Charleston, S. C	Do.
Westvaco Chemical Div., Food Machinery & Chemical Corp.	Pocatello, Idaho	Do.

Production of ferroboron in 1952 was about half that of 1951; this, in part, reflected the greater availability of other ferroalloys in 1952. Production and shipments of ferrophosphorus declined 2 percent and 21 percent, respectively, compared with 1951 data.

Table 3 lists the various grades of ferrosilicon and the silicon metal consumed, along with an end-use breakdown based on a tabulation that lists the entire consumption of each reporting plant under the most important use at that location. Silvery pig iron is used chiefly by iron foundries. Standard-grade ferrosilicon (about 50 percent silicon), consumed mainly by the steel industry, is used as a deoxidizer and solidifier in manufacturing most grades of killed and semikilled steel. The higher grade alloys are used in ladle additions in gray-iron foundries, in the manufacture of high-silicon steel for use in electrical equipment and spring steel, and in plants producing magnesium by the ferrosilicon method. Ferrosilicon briquets are used at both steel Silicon alloys containing other elements plants and iron foundries. are produced for special uses.

Silicon metal is used by establishments manufacturing low-carbon alloys, by manufacturers of silicon products, and large quantities are

consumed by the aluminum industry.4

TABLE 3.—Consumption of ferrosilicon, silicon metal, and miscellaneous silicon alloys in the United States in 1952, by end use, in short tons

Alloy	Percent silicon content	Steel ingots and castings	Steel cast- ings ¹	Iron foun- dries and miscella- neous	Total
Silvery pig iron	5-13 14-20 221-55 56-70 71-80 81-89 90-95	12, 456 51, 666 144, 651 20, 522 39, 448 3, 721 4, 948 7 25, 731	23, 197 7, 213 20, 508 182 967 76 104 8 5, 109	185, 194 115, 552 12, 365 384 22, 571 1, 506 2, 195 14, 237 38, 262	220, 847 174, 431 177, 524 21, 088 62, 986 5, 303 7, 247 14, 252 69, 102
Total		303, 150	57, 364	392, 266	752, 780

¹ Data for castings made by companies that also produce steel ingots are included with "Steel ingots and castings" and excluded from "Steel castings."
² Nearly all this material is in the range from 40 to 55 percent silicon.
³ Including Sil-X, Alsifer, and ferrosilicon briquets.

PRICES

A summary of monthly prices for ferromanganese and spiegeleisen since 1936 and 50-percent ferrosilicon since 1939 was published.⁵

⁴ Iron Age, Silicon: Vol. 170, No. 14, Oct. 9, 1952, pp. 282-283. ⁵ Iron Age, vol. 171, No. 1, Jan. 1, 1953, p. 435.

TABLE 4.—Prices of ferroalloys, 1952

Material	Unit	Price		
Misterial	Unit	Jan. 1, 1952	Dec. 31, 1952	
Ferroehrome: High-carbon Low-carbon Ferrocolumbium Ferromanganese: 78-82 percent Mn Ferromohydenum Ferrophosphorus: 18 percent P 24 percent P 24 percent F Ferrosilicon: 50 percent Si 75 percent Si Ferrotungsten: 75-80 percent W Ferrovanadium: Open-hearth grade Crucible grade Low C and Si Slicomanganese Spiegeleisen: 19-21 percent Mn	Gross ton Lb. of Mo Cross ton do Lb. of Si do, 1 Lb. of W Lb. of V do Lb. do	\$0. 2175 . 3050 4. 90 185. 00 1. 32 58. 50 75. 00 . 124 . 156 5. 00 3. 00 3. 10 3. 20 . 099 75. 00	2 \$0. 2475 2. 3450 4. 90 3 225. 00 1. 32 58. 50 75. 00 .124 4. 143 8 4. 85 3. 00 3. 10 3. 20 7. 114 7 85. 00	

Carlots, delivered in Eastern zone.
Change Nov. 25.
Change Aug. 8.
Change Nov. 13.
Change June 26.
Carlots.

FOREIGN TRADE 6

The most significant changes in imports during 1952 as compared with 1951 were decreases of high-carbon ferrochrome, high-carbon ferromanganese, and ferrotungsten; a very marked decrease in imports of ferrosilicon; and increases in imports of chromium metal and ferromanganese from 1 to 4 percent carbon. Sources of ferromanganese and ferrosilicon are listed in table 5.

During 1952 exports greater than those of 1951 included ferrochrome, ferromanganese, and ferrosilicon; those less than 1951 included ferromolybdenum and ferrophosphorus.

⁷ Change Aug. 8.

⁷ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 5.—Ferroalloys and ferroalloy metals imported for consumption in the United States, 1951-52, by varieties

[U. S. Department of Commerce]

		1951			1952	
Variety of alloy	Gross weight (short tons)	Content (short tons)	Value	Gross weight (short tons)	Content (short tons)	Value
Chromium metal	93	(1)	\$149, 808	151	(1)	\$255, 476
Chromium-silicon	(²) ⁵	(1)	438 4, 543	3	(1)	43, 733
Containing 3 percent or more carbon Containing less than 3 percent carbon Ferrochromium tungsten, chromium tungsten, and chromium cobalt tung-	24, 255 3, 036	14, 370 2, 062	5, 209, 687 913, 399	18, 540 2, 814	10, 165 1, 940	3, 672, 671 1, 177, 836
sten (tungsten content)	(1)	(3)	9, 013	(1)	(4)	4, 814
Containing not over 1 percent carbon Containing over 1 and less than 4 per-	235	197	75, 561			
cent carbon	18, 924	15, 618	4, 426, 898	23, 535	18, 890	6, 905, 950
carbon————————————————————————————————————	100, 605	79, 131	15,543,680	40, 560	32, 139	7, 852, 994
other compounds and alloys of molyb- denum (molybdenum content) Ferrosilicon Ferrosilicon-aluminum, ferroaluminum	(1) 29, 482	(5) 10, 997	46 2, 532, 821	(1) 12,824	(6) 2, 235	7, 887 671, 802
silicon and Alsimin Ferrottianium Ferrotungsten Ferroyanadium Manganese-boron, manganese metal, and	248 248 1,009 62	(1) (1) 787 (1)	97, 224 147, 478 3, 535, 033 100, 261	112 315 11	(1) 239 (1)	116, 744 1, 150, 999 22, 132
spiegeleisen not over 1 percent carbon (manganese content)	(1) (1) 37 169	(7) 106 (1)	91 28, 165 20, 548 54, 590	(1) 2 (8) 44	50 (1) (8) (1)	20, 936 988 624 3, 658
Spiegeleisen Tungsten and combinations, in lump, grains, or powder: Tungsten metal (tungsten content) Tungsten carbide (tungsten content) Tungsten nickel, and other compounds of	(1)	43	141, 206	(1) (1)	(°)	7, 123 1, 677
tungsten, n. s. p. f. (tungsten content) Tungstic acid and other alloys of tungsten,				(1)	(10)	658
n. s. p. f. (tungsten content)	(1)	1	13, 020	(1)	3	8, 578

TABLE 6.—Ferromanganese and ferrosilicon imported for consumption in the United States, 1951-52, by countries

[U. S. Department of Commerce]

	Ferro	manganese (r	nanganes	se content)	Ferrosilicon (silicon content)				
Country		1951		1952		1951	19	952	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
Canada France Germany Japan Netherlands	52, 878 10, 444 32 133	\$10, 918, 197 1, 714, 963 5, 198 22, 773	22, 735 2, 995 25	\$5, 473, 927 579, 759 5, 198	8, 942 59 11	\$2, 187, 418 	2, 230 5	\$669, 421 2, 381	
Norway Yugoslavia	31, 344 115	7, 358, 514 26, 494	24, 674 600	8, 550, 625 149, 435	1, 985	320, 148			
Total	94, 946	20, 046, 139	51, 029	14, 758, 944	10, 997	2, 532, 821	2, 235	671, 802	

¹ Not recorded. ² 699 pounds. ³ 114 pounds. ⁴ 64 pounds. ⁵ 70 pounds.

^{6 144} pounds. 7 100 pounds. 8 2 pounds. 9 137 pounds. 10 134 pounds.

TABLE 7.—Ferroalloys and ferroalloy metals exported from the United States, 1948-52, by varieties

[U. S.	Department of	f Commerce]
--------	---------------	-------------

Variety of alloy	1948		1949		1950		1951		1952	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Spiegeleisen Ferrochrome Ferromanganese Ferromolybdenum Ferrophosphorus Ferrosilicon Ferrosilicon Ferrotitanium and ferrocarbontitanium Ferrotungsten Ferrovanadium Other ferroalloys Total	51 6, 754 19, 696 594 52, 988 2, 476 480 628 119 183 83, 969	806, 420 1, 310, 260 427, 259 82, 874 1, 838, 397 390, 428	6, 627 478 5, 050 2, 555 179 310 97 316	1, 360, 279 718, 722 168, 205 436, 402 40, 918 861, 189 350, 558 161, 297	580 589 42, 789 1, 983 171 166 41 88	134, 341 139, 876 927, 271 868, 480 242, 245 42, 741 408, 958 183, 307 31, 969	742 55, 044 2, 775 175 142 61 274	96, 635 206, 614 1, 224, 257 2, 218, 790 387, 664 107, 718 1, 007, 424 190, 346 131, 641	1, 274 1, 453 545 44, 351 7, 240 325 148 147 193	518, 721 474, 686 925, 324 2, 592, 245 1, 439, 465 88, 664 1, 150, 465 529, 360 73, 680

TECHNOLOGY

Ferroalloys are used for introducing alloying elements into iron and steel, as scavengers to remove (or render harmless) impurities, and in fields outside the iron and steel industry. The last group comprises such uses as the production of magnesium using ferrosilicon as the reducing agent, and the use of ferrosilicon in heavy-medium-type beneficiation plants.

New technical developments in production of ferroalloys included experiments with self-baking electrodes 7 and rotating hearth furnaces.8 The Bureau of Mines investigated the use of waste wood products as

a reducing agent in production of silicomanganese.

Ferroalloys containing manganese are used to remove oxygen and sulfur from steel, but an important function is to provide manganese in quantities sufficient to combine with any sulfur that remains in the Steel containing sulfur but low in manganese becomes brittle when hot; if the sulfur is combined with manganese it forms relatively harmless segregations, and the difficulties in hot-working are mini-Another important use is in the production of manganese-type alloy steels and castings. A very significant development in 1952 was the use of large quantities of electrolytic manganese, particularly as the source of manganese in stainless steel containing 16 percent Cr, 16 percent Mn, 1 percent or less Ni, 0.1 percent C, and 0.15 percent N.9 Low-carbon ferromanganese (0.07 percent maximum C) was quoted at 28.45 cents per pound of contained Mn at year's end; at the same time electrolytic manganese was quoted at 30 cents a Two new electrolytic manganese plants were under construction.

Briquets are made from crushed ferromanganese or silicomanganese. Each briquet contains a fixed quantity of manganese and silicon. The normal-size ferromanganese briquet contains 2 pounds of manganese; a normal silicomanganese briquet contains 2 pounds of man-

⁷ Iron Age, Self-Baking Electrodes Spur Development of Bigger, Better Furnaces: Vol. 170, No 9, Aug. 28, 1952, p. 95.
⁸ Iron Age, vol. 171, No. 1, Jan. 1, 1953, p. 297.
⁹ Iron Age, Electrolytic Manganese Acceptance Grows: Vol. 170, No 12, Sept. 18, 1952, p. 168.

ganese and 0.5 pound of silicon. The foundry industry is the principal

Methods for cleaning ferromanganese blast-furnace gas were

described.10

Ferroboron.—Boron is a substitute for other alloying elements if they are intended only to aid hardenability. The quantity of boron added is ordinarily only a few thousandths of 1 percent; it is most effective in the lower carbon steels.

Several other boron compounds were available to the trade in 1952: these include borosil, manganese-boron, nickel-boron, boron carbide,

and calcium boride.

Ferrochromium.—All ferrochromium produced in the United States in 1952 was made in electric furnaces; the average chromium content was 65 percent. Several grades were manufactured, including highcarbon, low-carbon, nitrogen-bearing, and silicon-manganese ferrochromes. 11 Ferrochromium production increased 9 percent in 1952; this was particularly significant because overall production of ferroalloys declined. Production of stainless steel, which consumes important quantities of chromium, was nearly the same as in 1951, whereas

total steel production for 1952 was 11 percent lower.

Production of ferrochrome silicon, also referred to as chrome silicide, continued to increase during 1952. This product serves as a convenient and economical source of chromium and silicon in melts where both are desired. It also provides a means for utilizing high-carbon ferrochrome and some chromium ore in the production of low-carbon steel; these products are lower priced than low-carbon ferrochrome. The exact methods of use vary, but one process involves charging most of the desired chromium as scrap and high-carbon ferrochrome, blowing oxygen to the heat to reduce the carbon content—this also oxidizes much chromium, which then enters the slag-and then charging ferrochrome silicon to supply the balance of the chromium needed and to provide silica to reduce the chromium from the slag.

The Bureau of Mines has conducted extensive research regarding the use of low-grade domestic ores; a summary of the problem and the progress was published,12 including data on ferrochromium produced. Canadian authorities also were concerned with similar problems. 18

The Gwelo ferrochrome plant in Rhodesia was scheduled to be in

production in 1953.14

Ferrocolumbium.—Columbium is used chiefly in manufacturing stabilized austenitic stainless steels. It is also employed to reduce the air-hardening characteristic of straight-chromium steels of the corrosion-resistant type. Production of ferrocolumbium in 1952 increased 32 percent, compared with 1951, and all came from electric furnaces. The average grade was 57 percent columbium.

Molybdenum Products. Ferromolybdenum is used to introduce molybdenum into steel and iron; however, molybdenum in the form of molybdic oxide, calcium molybdate, and other molybdenum compounds is lower priced and technically suitable for the same purpose

<sup>McCabe, Louis C., Atmospheric Pollution: Ind. Eng. Chem., vol. 43, November 1951, p. 135A.
Iron Age, Low Carbon Ferrochromium Cuts Stainless Ingot Costs: Vol. 170, No. 8, Feb. 21, 1952, p. 109.
Poerner, H. A., Can the U.S. Use Its Low-Grade Domestic Chrome Ore?: Eng. and Min. Jour., vol. 153, No. 8, August 1952, pp. 90-92.
Downes, K. W., and Morgan, D. W., The Utilization of Domestic Chromite: Canadian Min. and Met. Bull. vol. 45, No. 479, March 1952, p. 167 (abstract); Report No. 116, Mem. Ser., Mines Branch, Ottawa.
American Metal Market, vol. 59, No. 3, Jan. 4, 1952, p. 1.</sup>

in many alloys. In 1952 there was a slight decline in production and shipments; in part this was the result of National Production Authority allocations and end use restrictions. Domestic raw materials supplied virtually all the molybdenum used to produce the products listed above.

Ferrophosphorus.—Although ferrophosphorus can be produced in the blast furnace or the electric furnace, all ferrophosphorus in 1952 was produced in electric furnaces as a byproduct in the manufacture of phosphate fertilizers and other chemicals. Ferrophosphorus is used primarily as an addition agent in manufacturing certain open-hearth

sheet steels to prevent sticking of sheets on packrolling.

Ferrotitanium.—Most of the ferrotitanium produced in 1952 was manufactured in electric furnaces, but a small quantity was made by the aluminothermic process. Several grades were available. The low-carbon grades were used chiefly for manufacturing stabilized austenitic stainless steels to render them resistant to intergranular corrosion in service. The high-carbon grades were used as deoxidizers, scavengers, to prevent segregation, and in some instances, to control grain size. Ferrotitanium was one of the few ferroalloys with an increase in production during 1952.

Silicon-titanium and manganese-nickel-titanium were also available

in 1952.

Ferrotungsten.—Ferrotungsten is used mainly as a source of tungsten in high-speed steels. High-purity scheelite concentrates and scrap high-speed steel are used for the same purpose. NPA Order M-80 was revoked on December 10, 1952; this action terminated

allocations of ferrotungsten.

Ferrovanadium.—All ferrovanadium produced in 1952 was manufactured in electric furnaces. Production declined 19 percent compared with 1951. The average vanadium content of ferrovanadium produced in 1952 was 53 percent. Fractional percentages of vanadium are used in some engineering steels; from 1.0 to 2.5 percent is used in high-speed steel. Vanadium also is used to prevent age-hardening in low-carbon rimmed steels.

Other vanadium products available for alloying purposes in 1952

included vanadium metal and vanadium pentoxide.

Zirconium-Ferrosilicon.—The zirconium-ferrosilicon produced in 1952 averaged 14 percent Zr, as in the previous 2 years; however, there was a substantial decline in the quantity produced compared with 1951. The alloy is employed in place of ferrosilicon but is more effective as a deoxidizer and scavenger. Zirconium combines readily with oxygen, nitrogen, and sulfur, eliminating them from the steel bath or minimizing their effect. Nickel-zirconium was available in 1952; this product was used for deoxidizing and degasifying nickel alloys.

Other Ferroalloys and Substitutes.—Aluminum is used as a deoxidizer in steel. During 1952, silicon carbide, particularly scraped

grinding wheels, was used for the same purpose.

Rare earth products were marketed for alloying, and considerable research in this field was in progress throughout 1952.¹⁵

¹⁶ Iron Age, Rare Earths Improve Properties of Many Ferrous Alloys: Vol. 169, No. 17, April 24, 1952, p. 129; vol. 169, No. 18, May 1, 1952, p. 141.

Calcium metal, calcium-manganese-silicon, calcium silicon, and barium-silicon were available for deoxidizing.

Exothermic products, designed to prevent chilling of the steel when alloys are added, include exothermic ferrochrome and exothermic

silicon-chrome.

Complex alloying products such as silicon-manganese-zirconium, manganese-nickel-titanium, ferrotantalum-columbium, aluminum-silicon-iron, silicon-aluminum, titanium-aluminum, vanadium-aluminum, silicon-manganese-aluminum, and boron-silicon were used increasingly for special applications in 1952. Also in this group are the hardness intensifiers such as vanadium-aluminum-titanium, and graphitizers such as calcium-silicon-titanium. The use of sodium chloride and mixtures containing this salt as a nodulizing material in ductile iron was reported. 16

¹⁶ Iron Age, vol. 171, No. 1, Jan. 1, 1953, p. 282,

Fluorspar and Cryolite

By John E. Holtzinger 1 and Joseph C. Arundale 2

LTHOUGH demand for fluorspar in 1952 attained a record high, shipments from domestic mines were less than in 1951 and were far short of meeting requirements. The deficit was made up by imports, which established a new record and for the first time exceeded

domestic production of finished fluorspar.

The drop in shipments from domestic mines was partly accounted for by strikes at three major producing installations and a strike in the steel industry which greatly curtailed shipments of metallurgical-grade fluorspar during the middle of the year. Illinois and Kentucky continued to be the leading producing States, but new operations in some Western States were increasing production capacity in that area.

TABLE 1.—Salient statistics of fluorspar in the United States, 1943-47 (average) and 1948-52, in short tons

Year	Ship- ments	Foreign	1 trade		Industry stocks at end of year			
	from domestic	Imports for con- sumption	Exports	Con- sumption	Domestic mines ¹	Con- sumers' plants	Total	
1943-47 (average)	350, 236 331, 749 236, 704 301, 510 347, 024 331, 273	68, 894 111, 626 95, 619 164, 634 181, 275 352, 503	3,075 666 802 740 1,173 675	366, 895 406, 269 345, 221 426, 121 497, 012 520, 197	21, 994 37, 344 37, 039 19, 038 13, 283 27, 464	104, 068 146, 869 130, 621 164, 685 169, 126 252, 193	126, 062 184, 213 2 167, 660 2 183, 723 2 182, 409 2 279, 657	

For the third consecutive year, consumption of fluorspar increased and established a new record. The increased usage was attributed to a record consumption in the manufacture of hydrofluoric acid and other fluorine chemicals.

The increased availability of supplies in 1952 made possible a buildup in consumer stocks to a record high. Mine stocks also

increased.

DOMESTIC PRODUCTION

Production of finished fluorspar totaled 345,400 short tons in 1952, including 178,677 tons of flotation concentrates. This compared with 341,300 tons of finished fluorspar produced in the previous year, of which 183,624 tons was flotation concentrates. In addition, crude fluorspar equivalent to about 13,100 tons of finished fluorspar was

 $^{^1}$ Finished fluorspar only. 2 In addition, importers held 11,000 tons in 1949, 7,500 tons in 1950, 2,845 tons in 1951, and 31,400 tons in 1952 (none in 1943–48).

Commodity-industry analyst.
 Assistant chief, Construction and Chemical Materials Branch.

mined but not milled in 1952, making total new production from domestic mines, expressed in terms of finished fluorspar, 358,500 short tons compared with 339,000 tons in 1951. Of the mine output in 1952, 8 mines (producing over 10,000 tons each) supplied 128,600 tons or 36 percent; 16 mines (producing 5,000 to 10,000 tons each) supplied 117,400 tons or 33 percent; 24 mines (producing 1,000 to 5,000 tons each) supplied 60,300 tons or 17 percent; and 13 mines (producing 500 to 1,000 tons each) supplied 9,300 tons or 2 percent. Thus, 61 mines produced 315,600 tons or 88 percent of the total. The remainder was produced from an undetermined number of small mines or prospects or was derived from tailings of previous milling operations.

Consumer-operated mines produced 95,200 tons of finished fluorspar in 1952 compared with 85,200 tons in 1951. All major producers of aluminum, 2 steel producers, and 2 producers of hydrofluoric acid

operated fluorspar mines and mills in 1952.

TABLE 2.—Fluorspar shipped from mines in the United States, 1951-52, by States

		1951		1952			
State	Short	Val	ue	Short	Value		
	tons	Total	Average	tons	Total	Average	
Colorado	20, 661 204, 328 68, 635 24, 402 17, 827	\$820, 322 9, 294, 703 2, 334, 485 1, 163, 098 398, 480	\$39. 70 45. 59 34. 01 47. 66 22. 35	29, 185 188, 293 48, 308 16, 443 17, 304	\$1, 505, 968 9, 481, 223 1, 863, 262 823, 320 438, 699	\$51.60 50.35 38.57 50.07 25.35	
Montana Nevada Idaho Arizona Tennessee	9, 408 1, 623 140	358, 433	32. 09	16, 160 14, 798 434 348	1, 241, 162	39. 10	
Total	347, 024	14, 369, 521	41.41	331, 273	15, 353, 634	46. 35	

Output from mines in Illinois—the largest producing State—dropped to 192,600 tons of finished fluorspar in 1952, compared with a record production of 205,300 tons in 1951. Strikes at three major fluorspar mills and temporary closing of other producing installations because of the steel strike and resultant decreased market for metallurgical fluorspar virtually stopped production in the Illinois district during the middle of the year.

Ownership of three major fluorspar properties in Illinois changed during the year. The Victory Fluorspar Mining Co., which had operated near Cave in Rock, Hardin County, since 1926, was sold to A. H. Stacey & Sons by Martin Schwerin. The purchase was said to have included the Victory mine, mill, and all equipment.³ Properties of the Crystal Fluorspar Co—the Crystal and Jefferson mines and a heavy-medium separation mill—were sold to Minerva Oil Co. in September after being closed in June. The new owners resumed production of metallurgical-grade fluorspar at the Crystal mine but did not reopen the Jefferson mine. The Minerva Oil Co. also acquired

^{*} Engineering and Minning Journal, vol. 153, No. 7, July 1952, p. 138.

the Rose Creek fluorspar mine, in Hardin County, in a purchase from

the Yingling Oil & Mining Co.

The Illinois fluorspar deposits have been described in a bulletin which also contains a discussion of the geology of the deposits, mining history of the district, mining and beneficiation methods employed by major producers, and general information about the fluorspar industry.⁴ The Bureau of Mines published the results of an investigation of the Knox and Yingling mines in Hardin County, Ill. In this project 2.733 feet of diamond-drill holes were drilled in the hanging wall to test continuation of the fluorspar to a greater depth than that reached by the mine workings and to relate the deposit with the Rosiclare formation.⁵

For the fifth consecutive year, production of finished fluorspar in Kentucky declined; output dropped to 55,600 short tons, compared with 63,700 tons in 1951. Initial shipments of acid-grade concentrates were made from the Pennsylvania Salt Manufacturing Co. mill at Marion, Ky., to its plant at Calvert City, Ky. United States Steel Co. began construction of a new heavy-medium and froth-flotation plant at Mexico, Ky., which was expected to be in operation by

early 1953.

In Livingston County, Ky., the Aluminum Co. of America was reported to have begun development work at the Klondike and Silver-Royal mines, both properties to be ready for operation in about a vear.6 The Nancy Hanks mine, idle for several years, was reopened by A. Tinsley and S. D. Lloyd.

In the West, output in Arizona and New Mexico dropped sharply in 1952 but increased in Colorado, Utah, Nevada, Idaho, and Montana.

Production of finished fluorspar in Colorado was 29,600 short tons in 1952, compared with 20,600 tons in 1951. Most of the 1952 production came from Boulder County, although sizeable quantities were also mined and treated in Jackson and Chaffee Counties. ductive capacity in Colorado was substantially increased during the year, with completion of a new flotation plant at Northgate, Jackson County, which was placed in operation by the Ozark-Mahoning Co. Crude ore from open-pit mining and mine development work, and tailings from previous sink-float operations comprise the mill feed.

Utah continued as a major supplier of metallurgical-grade fluorspar, with an output of 17,300 short tons, a 7-percent increase over the 1951

production.

In the Southwest, production declined considerably. Mines in Arizona and New Mexico produced 400 and 16,200 tons, respectively, in 1952 compared with output of 1,600 and 24,300 tons, respectively, Production was reported from Cochise, Greenlee, and Maricopa Counties in Arizona, and from Dona Ana, Grant, Luna, Sierra, and Valencia Counties in New Mexico.

Substantial increases in production were made in Nevada and Idaho To avoid disclosure of individual company operations, separate production figures for these States may not be shown. However, the combined production in 1952 totaled 15,900 tons,

Weller, J. M., Grogan, R. M., and Tippie, F. E., Geology of the Fluorspar Deposits of Illinois: Illinois State Geol. Survey Bull. 76, 1952, 147 pp.
 Burmeister, H. L., Knox and Yingling Fluorite Mines, Hardin County, Illinois: Bureau of Mines Rept. of Investigations 4856, 1952, 8 pp.
 Engineering and Mining Journal, vol. 153, No. 5, May 1952, p. 144.

compared with 9,500 tons in 1951. In Nevada, a new flotation plant was put into operation_by the Kaiser Aluminum & Chemical Co. to treat ore from the Kaiser mine (formerly known as the Baxter mine), as well as local custom ore. Concentrates produced from the mill are converted to hydrofluoric acid and subsequently to aluminum fluoride used by Kaiser in manufacturing aluminum.

For the first time, Montana became a major supplier of fluorspar. as initial production of metallurgical-grade fluorspar was begun at the Crystal Mountain mine near Darby, Ravalli County. Although the deposit was discovered in 1951, mining operations were not begun at this property until 1952; however, in October, November, and December it was the largest producer of fluorspar in the United States.

Investigations of the deposits by the Bureau of Mines revealed 7 Three of the largest outcrops principal outcrops of fluorite in 2 areas. were trenched, drilled, and sampled, and preliminary metallurgical tests of the ore were made. Samples of the ore indicated an average grade of 97.2 percent CaF₂ and 1.44 percent SiO₂, with indication from the metallurgical tests that it could be concentrated to acidgrade specifications by flotation methods.⁷

Although production increased slightly, shipments of fluorspar from domestic mines declined about 5 percent from 1951. Of the 1952 total, 64,800 tons were shipped by river or river-rail for delivery to consumers, compared with 63,300 tons in 1951.

TABLE 3.—Fluorspar shipped 1 from mines in the United States, by States. 1943-47 (average) and 1948-52, with shipments of maximum year and cumulative shipments from earliest record to end of 1952, in short tons 2

		imum ments			Total shipments 1 from earliest							
State		Short	1943-47					1	1952		record to end of 1952	
	Year	tons	(aver- age)	1948	1949	1950	1951	Short tons	Percent of total	Short tons	Percent of total	
ArizonaCalifornia	1951 1934	1, 623 181		1, 271	846	952	1, 623	434	0.1	19, 151 341	0, 2	
Colorado 4	1944	65, 209		27, 698	22, 324	18, 489	20, 661	29, 185	8.8		7.3	
Idaho	1951	(5)					9, 408			l '		
Nevada	1948	9, 615		9, 615	5, 847	7, 577	J '	,	1	'		
Illinois 4	1951	204, 328					204, 328			4, 536, 799		
Kentucky 4	1941	142, 862	94, 236				68, 635			2, 711, 420	31.9	
Montana	1952	16, 160		318	422	41		16, 160	4.9	16, 941	.2	
New Hampshire New Mexico	1917	1, 274	97 016	04 060	12, 844	200 026	94 400	10 449	5. 0	8, 302		
Tennessee	1944 1906	42, 973 360	27, 916 11	24, 968	12, 044	20, 036	24, 402 140	16, 443 348	3.0	361, 878 1, 685	4, 3 (3)	
Texas.	1944	4, 769		906	1,770	719		940	• • •	14, 779	.2	
Utah	1950	18, 936	2, 118					17, 304	5. 2	87, 390	1.0	
Washington	1945	132	34	0,020	0,002	10,000	11,021	11,001	0.2	382		
Wyoming	1944	19								19	(3) (3)	
Total	1944	413, 781	350, 236	331, 749	236, 704	301, 510	347, 024	331, 273	100.0	8, 508, 282	100.0	

¹ Figures for 1880–1905 represent production.

2 Quantity and value figures, by States, for 1880–1925 in Mineral Resources, 1925, pt. 2, pp. 13–14, and for 1910–40 in Minerals Yearbook, Review of 1940, p. 1297.

3 Less than 0.05 percent.

4 Figures on production not recorded for Colorado before 1905, for Illinois before 1880, and for Kentucky before 1886 and for 1888–95. Total unrecorded production (estimated) included in "Total shipments" column as follows: Colorado, 4,400 tons; Illinois, 20,000 tons; and Kentucky, 600 tons.

8 Figure withheld to avoid disclosure of individual company operations.

¹ Taber, John W., Crystal Mountain Fluorite Deposits, Ravalli County, Mont.: Bureau of Mines Rept. of Investigations 4916, 1952, 8 pp.

Fluorspar shipments in 1952 comprised 136,600 tons of fluxing gravel and foundry lump (including 8,700 tons of flotation concentrates, which were blended with fluxing gravel) and 194,700 tons of ground fluorspar and flotation concentrates. The bulk of the fluxing gravel and foundry lump fluorspar was shipped to steel plants and iron foundries, but small quantities also were sold to ferroalloy plants, cement plants, smelters of secondary metals, and manufacturers of fluxing compounds. Of the flotation concentrates sold, 70 percent went for the manufacture of hydrofluoric acid or the National Stockpile, and 17 percent was shipped to glass and enamel plants. The remainder went to manufacturers of steel and ferroalloys, to aluminum and magnesium reduction works, to welding-rod manufacturers, and to smelters of secondary metals.

TABLE 4.—Fluorspar shipped from mines in the United States, by grades and industries, 1951-52, in short tons

Grade and industry	1951	1952	Grade and industry	1951	1952
Fluxing gravel and foundry lump: Ferrous Nonferrous Cement		1 135, 227 580 50	Ground and flotation concentrates—Continued Exported Total	1,009 1 186,358	625 1 194, 674
Miscellaneous Exported	876 139	702 40	All grades:	173, 399	151, 167
Total	1 160, 666	1 136, 599	Nonferrous Cement	4, 135 330	5, 181 50
Ground and flotation concentrates:			Glass and enamel Hydrofluoric acid	39,392 3 123,125	33, 487 3 136, 949
Ferrous ² Nonferrous Glass and enamel	1 15, 053 3, 160 39, 392	1 15, 940 4, 601 33, 487	MiscellaneousExported	5, 495 1, 148	3, 774 665
Hydrofluoric acid Cement	³ 123, 125	² 136, 949	Grand total	347, 024	331, 273
Miscellaneous	4,619	3,072			

¹ Fluxing gravel includes (and flotation concentrates exclude) the following quantities of flotation concentrates blended with fluxing gravel: 1951, 19,660 tons; 1952, 8,701 tons.

² Includes pelletized gravel.

³ Includes shipments to National Stockpile.

TABLE 5.—Fluorspar shipped from mines in the United States, 1951-52, by uses

		1	.951		1952					
Use	Qua	ntity	Valu	ıe	Qua	antity	Value			
	Percent of total	Short tons	Total	Aver- age	Percent of total	Short tons	Total	Aver- age		
Steel. Iron foundry. Glass. Enamel Hydrofluoric acid Miscellaneous. Exported.	48. 2 1. 2 9. 5 1. 8 35. 5 3. 5	167, 042 4, 139 33, 036 6, 356 1 123, 125 12, 178 1, 148	\$5, 742, 358 170, 051 1, 407, 741 293, 359 1 6, 162, 064 542, 139 51, 809	\$34, 38 41, 09 42, 61 46, 15 1 50, 05 44, 52 45, 13	42. 9 1. 1 9. 0 1. 1 41. 2 4. 5 . 2	142, 058 3, 641 29, 781 3, 706 1 136, 514 14, 908 665	\$5, 013, 018 147, 444 1, 322, 172 181, 018 17, 927, 232 731, 577 31, 173	\$35. 29 40. 50 44. 40 48. 84 1 58. 07 49. 07 46. 88		
Total	100.0	347, 024	14, 369, 521	41.41	100.0	331, 273	15, 353, 634	46.35		

Includes shipments to National Stockpile.

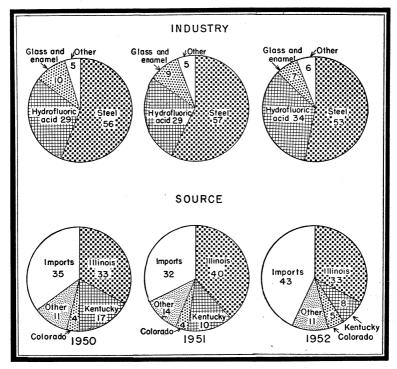


FIGURE 1.—Fluorspar sales (domestic and foreign) to consumers in the United States, 1950-52, by consuming industries and by sources, in percent.

CONSUMPTION AND USES

Fluorspar is an important raw material for the steel and aluminum, chemical, and ceramic industries. The largest single use is as a flux in the manufacture of basic open-hearth and basic-electric steel; a relatively small quantity is consumed in the manufacture of bessemer steel. Small quantities also are used in other metallurgical operations, such as the production of iron castings, ferroalloys, and nickel and its alloys; smelting and casting of aluminum and magnesium; smelting of secondary metals; and manufacture of fluxing compounds.

The second largest use of fluorspar, and one that has increased greatly in recent years, is in the manufacture of hydrofluoric acid, an essential material used in manufacturing aluminum fluoride and synthetic cryolite for the aluminum industry, as a catalyst in the production of high-octane gas, and as the principal source of fluorine in the manufacture of various fluorine chemicals.

In the ceramic industry, fluorspar is used in manufacturing opal or opaque glass and some colored glasses and as an ingredient in enamels for coating iron and steel.

Consumption of fluorspar reached the unprecedented total of 520,200 short tons in 1952, about 5 percent more than that used in the previous record year, 1951. The overall increase in use resulted from record consumption for the manufacture of hydrofluoric acid; consumption in

TABLE 6.—Fluorspar (domestic and foreign) consumed and in stock in the United States, by industries, 1951–52, in short tons

	-	1951		1952				
Industry	Consump- tion	Stocks at consumers' plants Dec. 31	In transit to consum- ers' plants Dec. 31	Consump- tion	Stocks at consumers' plants Dec. 31	In transit to consum- ers' plants Dec. 31		
Basic open-hearth steel	242, 180 34, 058 416 6, 460 2, 888 151, 698 1, 489 1, 262 35, 505 6, 736 213 14, 107	} 138, 113 2, 354 1, 051 15, 253 948 226 6, 731 1, 467 1, 174 1, 809	5,062 41 1,285 170 735 218	237, 483 34, 627 366 7, 005 2, 952 178, 267 3, 731 5, 739 33, 837 5, 205 346 10, 639	3, 428 1, 242 34, 511 1, 629 548 6, 126 1, 151 1, 090 1, 938	416 59 		
Total	497, 012	169,126	7, 549	520, 197	252, 193	724		

I Fluorspar used in making artificial cryolite and aluminum fluoride (aluminum raw materials) is included in the figures for hydrofluoric acid, an intermediate in their manufacture.
 Figures on consumption represent fluorspar used as a flux; see footnote 1.

TABLE 7.—Production of basic open-hearth steel and consumption and stocks of fluorspar (domestic and foreign) at basic open-hearth steel plants, 1943-47 (average) and 1948-52

	1943–47 (average)	1948	1949	1950	1951	1952
Production of basic open-hearth steel ingots and castingslong tons.	65 696 400	70 920 000	69 624 000	76 979 000	02 110 000	75 907 000
Consumption of fluorspar in basic open-	1 ' '	, ,	′ ′	′ ′	' '	' '
hearth steel productionshort tons Consumption of fluorspar per long ton of	l '	207, 342	183, 045	212, 928	242, 180	237, 483
basic open-hearth steel made_pounds_ Stocks of fluorspar at basic open-hearth	5. 6	5.9	5.8	5. 5	5.8	6.3
steel plants at end of yearshort tons_	60, 840	106, 300	97, 400	128, 300	133, 100	195, 700

TABLE 8.—Fluorspar (domestic and foreign) consumed in the United States, by States, in 1952, in short tons

State	1952
Alabama, Florida, Georgia, Mississippi, North Carolina, and South CarolinaArkansas, Kansas, Louisiana, and Oklahoma	13, 963 47, 434
California. Colorado, Utah, and Wyoming	14, 626 17, 551 1, 496
Delaware, District of Columbia, and New Jersey	31,590 94,259 29,155
Iowa, Minnesota, Nebraska, South Dakota, and Wisconsin Kentucky Maryland	5, 609 19, 520 6, 310
Massachusetts and Rhode Island Michigan Missouri	1,757 20,625 5,069
New York. Ohio Oregon and Washington	16, 644 71, 246 4, 256
Pennsylvania	91, 26: 71:
Texas. Virginia West Virginia	20, 612 702 5, 799
Total	520, 197

the manufacture of steel declined slightly, chiefly because of the strike

in the steel industry.

Fluorspar consumption was reported in 39 States and the District of Columbia in 1952, with 3 States—Ohio, Pennsylvania, and Illinois—using about half of the total. Illinois replaced Pennsylvania as the leading consumer in 1952, although the latter State was the leading consumer for the production of steel, glass, and enamel. Illinois was the leading consumer in the manufacture of hydrofluoric acid.

STOCKS

As supplies of fluorspar became more readily available in 1952, stocks held by consumers increased and by the end of the year were at an alltime high of 252,200 short tons. This was equivalent to approximately 6 months' supply at the 1952 rate of consumption.

According to reports of producers, the quantity of fluorspar in stock at mines or shipping points at the close of 1952 totaled 149,600 short tons. These stocks comprised 27,500 tons of finished fluorspar and 122,100 tons of crude fluorspar, estimated as equivalent to about 37,900 tons of finished fluorspar.

TABLE 9.—Stocks of fluorspar at mines or shipping points in the United States by States, at end of year, 1950-52, in short tons

	1950		19	51	1952		
	Crude ¹	Finished	Crude 1	Finished	Crude 1	Finished	
Arizona Colorado Idaho Illinois Kentucky Montana Newada New Mexico Tennessee Utah	6, 837 29, 954 5, 789	869 5,822 10,076 100 392 1,779	14, 986 150 32, 541 6, 598 7, 558	812 6, 781 5, 092 150 348 100	49, 417 100 42, 380 11, 190 6, 351 12, 707	10 1, 263 100 11, 118 12, 404 1, 227 1, 205 119 18	
Total	56,052	19,038	61,833	13, 283	122, 145	27, 464	

¹ This crude (run-of-mine) fluorspar must be beneficiated before it can be marketed.

PRICES

Prices of fluorspar in most areas remained constant during 1952. Metallurgical-grade fluorspar containing 70 percent or more effective CaF₂ was quoted at \$43 a short ton f. o. b. Illinois-Kentucky mines throughout the year; that containing 60 percent or less calcium fluoride was quoted at \$40 and \$41 per ton on the same basis and pellets containing 60 percent calcium fluoride at \$34 per short ton f. o. b. mine. Imported metallurgical fluorspar was quoted throughout 1952 at \$38 to \$40 per short ton at Atlantic seaboard, duty paid. Acid-grade fluorspar was quoted at \$60 per short ton f. o. b. Illinois or Colorado mines throughout the year and at \$65 per short ton f. o. b. Los Lunas, N. Mex., until the middle of the year, when the price dropped to \$60. Ceramic-grade fluorspar, with a minimum of 95 percent calcium fluoride, calcite and silica variable, and maximum 0.14 percent Fe₂O₃, was quoted at \$45 per short ton f. o. b. Rosiclare,

The average selling price for all grades shipped from domestic mines, as reported by producers, was \$46.35 per short ton—\$4.94 more per ton than the previous high average reported in 1951.

Controls on the price of metallurgical and ceramic grades of fluorspar remained in effect throughout 1952. Acid-grade fluorspar

was exempted from price control late in 1951.

TABLE 10.—Fluorspar imported for consumption in the United States in 1952, by countries and customs districts

[U.S. Department of Commerce]

Country and customs district	than 97	ning more 7 percent 1 fluoride	than 9	ng not more 7 percent 1 fluoride		otal
	Short tons	Value	Short tons	Value	Short tons	Value
Canada: Buffalo Ohio Philadelphia	13, 849	455, 537	829 3,857 56	\$32,953 152,039 1,684	829 3,857 13,905	\$32, 953 152, 039 457, 221
Total France: Philadelphia	13,849 1,120	455, 537 53, 764	4, 742	186, 676	18, 591 1, 120	642, 213 53, 764
French Morocco: Buffalo Philadelphia			1,698 551	33, 880 10, 500	1,698 551	33, 880 10, 500
Total			2, 249	44, 380	2, 249	44, 380
Germany: East: New Orleans Virginia West:	497	11,932	442	22,150	497 442	11, 932 22, 150
Galveston Galveston New Orleans Philadelphia Virginia	25, 547	56, 516 1, 257, 516 66, 955	1, 657 28, 535 1, 683	70, 420 703, 713 83, 066	885 1,657 54,082 2,888	56, 516 70, 420 1, 961, 229 150, 021
Total	28, 134	1, 392, 919	32, 317	879, 349	60, 451	2, 272, 268
Italy: New Orleans Philadelphia Virginia	1, 653 12, 928 3, 468	71, 994 535, 783 209, 795	12, 354	229, 405	1, 653 25, 282 3, 468	71, 994 765, 188 209, 795
Total.	18,049	817, 572	12, 354	229, 405	30, 403	1,046,977
Mexico: Arizona. El Paso. Galveston. Laredo. New Orleans. San Diego.	29, 378 ·79 12, 733	1, 536, 579 3, 978 469, 944 1, 513	9, 696 22, 896 45 100, 248 58	144, 465 349, 967 890 1, 919, 434 1, 049	9, 696 52, 274 124 112, 981 58 53	144, 465 1, 886, 546 4, 868 2, 389, 378 1, 049 1, 513
Total	42, 243	2, 012, 014	132, 943	2, 415, 805	175, 186	4, 427, 819
Spain: Maryland New Orleans Philadelphia		1,050,908	2, 800 2, 786 29, 514	130, 000 112, 578 666, 039	2, 800 2, 786 54, 101	130,000 112,578 1,716,947
Total Tunisia: Philadelphia	24, 587	1,050,908	35, 100 2, 259	908, 617 40, 740	59, 687 2, 259	1, 959, 525 40, 740
Union of South Africa: Los Angeles New Orleans Philadelphia	(1)	5	(¹) 2, 557	5 39, 888	(1) (1) 2, 557	5 5 39, 888
Total	(1)	5	2, 557	39, 893	2, 557	39,898
Total: 1952		5, 782, 719 1, 899, 081	224, 521 128, 284	4, 744, 865 2, 211, 000	352, 503 181, 275	10, 527, 584 4, 110, 081

¹ Less than 1 ton.

FOREIGN TRADE⁸

Imports.—In 1952 imports exceeded domestic production of finished fluorspar for the first time, and were almost twice as great as in 1951, the previous record year. Mexico, the leading foreign supplier, shipped almost three times as much fluorspar to the United States in 1952 as in 1951; increased quantities were also shipped by Italy, Germany, Spain, and Africa.

As shown in table 11, which is compiled from data supplied the Bureau of Mines by importers and domestic producers milling or otherwise handling imported material, most of the imported fluorspar delivered to consumers goes to steel plants and hydrofluoric acid manufacturers. The quantities in table 11 represent the finished product recovered from milling or drying foreign ores or concentrates

rather than the crude ore milled or concentrates dried.

TABLE 11.—Imported fluorspar delivered to consumers in the United States, 1951-52, by uses

		1951		1952			
Use	Selling price at tide- water, border, or f. o. b. mill in the United States, in- cluding duty			Short tons	Selling price at tide- water, border, or f. o. b. mill in the United States, in- cluding duty		
		Total	Average		Total	Average	
Steel		\$4, 105, 764 1, 341, 339 33, 894 220, 665 349, 151 6, 050, 813	\$34. 22 50. 61 30. 15 52. 14 40. 75	166, 849 59, 706 240 4, 381 17, 574	\$5, 722, 780 3, 487, 635 7, 340 266, 107 966, 799 10, 450, 661	\$34. 30 58. 41 30. 58 60. 74 55. 01	

Exports.—Fluorspar producers reported exports to Canada and Venezuela of 665 tons of fluorspar in 1952 valued at \$31,173. In addition to the exports reported by producers, dealers exported small tonnages to Mexico, Chile, Netherlands, France, West Germany, and the Union of South Africa.

TABLE 12.—Fluorspar reported by producers as exported from the United States, 1948-47 (average) and 1948-52

V	Short	v	alue	Year	Short	v	alue
Year	tons	tons Total Average		tons	Total	Average	
1943–47 (average) 1948 1949	3, 071 644 783	\$93, 259 24, 819 32, 521	\$30. 37 38. 54 41. 53	1950 1951 1952	728 1,148 665	\$29, 746 51, 809 31, 173	\$40.86 45.13 46.88

⁸ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TECHNOLOGY

Patents assigned to the American Zinc, Lead & Smelting Co. describe methods of producing hydrofluoric acid or ammonium fluoride from fluorine-bearing gases evolved from the treatment of materials containing fluorine; the gases are passed in contact with a bed of crushed magnesium silicate to form magnesium silicofluoride which may be treated with sulfuric acid to produce hydrofluoric acid or reacted with ammonia to form ammonium fluoride.9

Another patent claimed a method of producing synthetic cryolite from fluorine and hydrofluoric acid contained in the waste gases from the electrolytic production of aluminum. The process involves treating the waste gases with a solution of a sodium compound, filtering insoluble impurities from the resultant solution of sodium fluoride, and adding aluminum monohydroxide (AlOOH) to the solution to precipitate cryolite (Na₃AlF₆); additional cryolite may be precipitated by the addition of sodium bicarbonate. 10

Utilization of a photoelectric cell in a device employed to separate optical-grade fluorspar from an impure feed was described.11 The feed is immersed in a liquid having the same index of refraction as fluorite. When passed through the beam of light, crystals having occluded impurities absorb part of the light, causing the cell to activate a mechanical concentrator.

The suitability of sodium fluoride, sodium silicofluoride, hydrofluosilicic acid and hydrofluoric acid as sources of fluoride ion for the fluoridation of public water supplies was discussed in a review of the problems incident to fluoridation. 12

The production and possible applications of several fluorine compounds were reviewed.¹³ According to the article, highly fluorinated materials commonly have unusual chemical and thermal stability, very low surface tensions, low indices of refraction, low dielectric constants, high densities, incompatibility with water and hydrocarbons, and nonflammability.

WORLD REVIEW

Canada.-Most of the output of fluorspar in Canada came from Newfoundland, although a small tonnage was mined in the Province of Ontario.14

Output from Newfoundland is expected to increase substantially as the result of an agreement between the St. Lawrence Corp. of Newfoundland, Ltd., its affiliate, St. Lawrence Fluorspar, Inc., and the Defense Materials Procurement Agency. By the terms of this agreement, the United States Government will advance up to \$1,250,000 to finance proposed expansion programs in Newfoundland and at Wilmington, Del. The programs include construction of a new sinkand-float plant at St. Lawrence, Newfoundland, with a capacity of

⁹ MacIntire, W. H. (assigned to American Zinc, Lead & Smelting Co.), Treatment of Fluoric Effluents to Obtain Magnesium Silicofluoride and/or Hydrofluoric Acid: U. S. Patent 2,584,894, Feb. 5, 1952. Treatment of Fluoric Effluents to Produce Ammonium Fluoride: U. S. Patent 2,584,895, Feb. 5, 1952. ¹⁰ Dale, H. (assigned to Ardal Verk), Process for the Utilization of the Gas Washing Lye From Aluminum Electrolysis in Cryolite Production: U. S. Patent 2,597,302, May 20, 1952. ¹¹ Mining Engineering, Photoelectric Sorting of Optical Fluorspar: Vol. 4, No. 8, August 1952, pp. 803–806. ¹² Industrial and Engineering Chemistry, Review of Practical Fluoridation: Vol. 45, No. 1, January 1953, pp. 105–111.

^{1953,} pp. 105-111.
19 Industrial and Engineering Chemistry, Industrial Fluorochemicals: Vol. 45, No. 1, January 1953.
14 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 6, June 1953, pp. 42-44.

about 40 tons of mill feed per hour to produce concentrates containing 70 to 80 percent CaF₂. This material will be sent to Wilmington for conversion to acid-grade concentrates in a new flotation plant to be built by St. Lawrence Fluorspar, Inc. 15 The new flotation plant will have a capacity of about 300 tons of mill feed per day, with an annual production rate of 50,000 tons of acid-grade concentrates. tract with the Government covers a period of 4 years or until 150,000 short tons of acid-grade concentrates has been produced from the new facilities.

TABLE 13.—World production of fluorspar, by countries, 1947-52, in metric tons 2 [Compiled by Helen L. Hunt]

Country 1	1947	1948	1949	1950	1951	1952
Argentina (shipments)	2,400	(3)	(0)	(3)	(3)	(3)
Australia		520	571	585	497	87
Relgium	2,060	4, 220	(3)	(3)	(3)	(3) (3) (3)
Bolivia (exports)	28	227	264	61	38	(3)
Brazil	841	751	537	4 600	(3)	(3)
Canada	42,710	58, 120	58, 492	58, 253	67, 323	75,616
France	31,596	33, 442	46,029	35, 400	47,082	56,873
French Morocco		10	445	40	1,968	3,304
Germany:						
East		(3)	(3)	(3)	(3)	(3)
West	19, 235	49, 344	46, 942	92, 520	143, 741	157,338
Italy	20,860	40,635	20,810	29, 183	41,019	58,684
Japan	84	68	960	2,425	3,996	3,780
Korea, Republic of	2,600		1,230	(3)	4, 243	5, 948
Mexico	\$ 45,737	5 75, 381	5 55, 772	5 65, 667	5 66, 761	4 180,000
Norway	1,089	1,120	895	838	903	
Southern Rhodesia	154	12	239	447	111	
South-West Africa				73	779	4,418
Spain	13,885	42, 549	59, 594	33, 168		73, 332
Sweden (sales)	2,780	4,303		4, 284	(3)	(3)
Tunisia		560	352			2,970
Turkey			500			(3)
Union of South Africa			4,857			10, 290
United Kingdom	45,016	58, 948	52, 867	50, 767	64, 914	77,040
United States (shipments)	298, 901	300, 956	214, 733	273, 524	314, 813	300, 524
Total (estimate)	655,000	795,000	695, 000	815,000	1,000,000	1,190,000

¹ In addition to countries listed, China, North Korea, and U. S. S. R. produce fluorspar, but data on output are not available; estimates by authors of chapter included in total.

² This table incorporates a number of revisions of data published in previous fluorspar chapters.

³ Data not available; estimate by author of chapter included in total.

5 Exports.

French Morocco.—Most of the fluorspar produced in French Morocco reportedly came from an operation at Djebel Tirremi, near Taourirt; a smaller quantity was mined at Bergamou-El-Hammam in Modernization at the latter site is expected the Oued-Beth Valley.

to result in increased output in 1953.16

Germany.—For the fifth consecutive year, production of fluorspar in West Germany increased. Germany, one of the major suppliers of foreign fluorspar to the United States, exported 54,840 metric tons of fluorspar to this country in 1952, compared with 44,519 metric tons The most important deposits of fluorspar in West Germany are said to be in Bavaria, in the upper Palatinate, and in the Black Forest in Baden.¹⁷

⁴ Estimate.

<sup>Letter to Bureau of Mines, November 1952.
Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 6, June 1953, pp. 44-45.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 2, August 1952, p. 30.</sup>

Mexico.—The record demand for fluorspar in the United States was reflected in greatly increased activity in the Mexican fluorspar indus-Production, as measured by exports, reached 180,000 metric tons in 1952, over twice the record production of 1951. the United States in 1952 and 1951 were 158,850 and 58,082 metric The expansion in the fluorspar industry has benetons, respectively. fited the economy of the Piedras Negras district by giving employment to a large number of persons and increasing sales of materials and equipment.18

Spain. -Fluorspar production in Spain continued to increase in That country was the third largest supplier of foreign fluorspar to the United States and shipped 54,147 metric tons in 1952. It was reported that a large manufacturer of chemicals in Spain had began

to produce synthetic cryolite late in 1951.19

Tunisia.—Renewed foreign demand for fluorspar was said to have stimulated production in Tunisia in 1952 at the fluorspar mine at Hammam Zriba, in the Zaghouan district. Output reached a peak of 2,980 metric tons in 1952, more than the total quantity produced from the mine since 1939.20

CRYOLITE

Demand for cryolite—an essential raw material for the production of aluminum-continued at a high level in 1952 and exceeded the supply available to domestic consumers. To alleviate the shortage, arrangements were made to increase the quantity of natural cryolite imported from the sole producing deposit in Greenland and to expand the output of synthetic cryolite by domestic producers. production goal of 50,000 tons of synthetic cryolite by 1956 was established by the Defense Production Administration.

Synthetic cryolite is produced in the United States by the Reynolds Metal Co. at Hurricane Creek, Ark., and the Aluminum Ore Co. at East St. Louis, Ill. Production at the latter plant is expected to be increased by about 11,000 tons per year as the result of an agreement with the Defense Materials Procurement Agency. Under the agreement, the Government will be supplied with 42,600 tons of cryolite in the period 1952-56 at a base price of \$0.139 per pound for 91

percent cryolite.

The principal use of cryolite is in the electrolytic production of aluminum, where it serves as the electrolyte. Cryolite also has numerous other metallurgical applications and is used in the glass and enamel industries, in bonded abrasive, as a filler, and in insecticides. These uses were described in an article.21 It has been estimated that about 68,700 tons was required by the aluminum industry in 1952 and an additional 3,300 tons by insecticide, enamel, glass, and other industries.22

Imports of natural and artificial cryolite into the United States totaled 34,262 long tons valued at \$3,124,801 in 1952, compared with 34,688 long tons valued at \$2,190,123 in 1951. Of these, 32,966 tons

22 Iron Age, vol. 170, No. 4, July 24, 1952, p. 55.

Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 2, February 1953, pp. 48-49.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 2, August 1952, p. 28.
Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 2, February 1953, pp. 49-50.
Mining Journal (London), Cryolite—Its Properties and Uses: Vol. 238, No. 6088, April 25, 1952, pp.

was from Greenland, 92 tons from Canada, 596 tons from West Germany, and 608 tons from Italy. Exports of cryolite from the United States totaled 75 long tons valued at \$21,778 in 1952, compared with 1,426 long tons valued at \$317,413 in 1951. The bulk of the 1952 exports went to Canada and the Union of South Africa; small quantities were shipped to Mexico and Chile.

A plant for recovering cryolite from scrapped linings of the pots used in the reduction of aluminum was reported under construction

at Mead, Wash., by the Kaiser Aluminum & Chemical Co.23

The National Production Authority issued an order controlling purchases of cryolite by different types of consumers and limiting the quantity of stocks held by consumers.²⁴ Exports of cryolite also were

restricted during the year.

The only commercially workable deposit of natural cryolite known is at Ivigtut, Greenland, where it is mined by a Danish concern under a concession from the Government of Denmark. Cryolite has been mined from this deposit for almost 100 years. Extensive exploration in recent years has revealed no new occurrences. Under an agreement with the Defense Materials Procurement Agency, mining operations at the deposit were to be expanded. A contract negotiated with Pennsylvania Salt Co.—sole distributor of natural cryolite in the United States—involved payment of a premium of \$70 per ton, bringing the total price to \$100 per ton for 19,000 long tons of cryolite ore. About 13,700 short tons of finished cryolite would be produced from this tonnage of ore. All of the concentrate was to be purchased by the Government for \$260 per short ton and resold at the market price (which was then \$190 per short ton) to consumers who require it for defense production. For the production of the concentrate was to be purchased by the Government for \$260 per short ton and resold at the market price (which was then \$190 per short ton) to consumers who require it for defense production.

Mining World, vol. 14, No. 9, August 1952, p. 63.
 National Production Authority Order M-99, U. S. Dept. of Commerce, Feb. 29, 1952.
 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 6, December 1952, pp. 22-23.
 Defense Materials Procurement Agency, DMPA No. 56, June 26, 1952.

Gem Stones

By George Switzer 1 and Robert D. Thomson 2

S in the past, the United States continued to be an unimportant factor in world gem production. A wide variety of gems was produced but in small quantity.

DOMESTIC PRODUCTION

The efforts of thousands of amateur lapidaries, who spend their vacations and weekends searching for gem materials, yield most of the gem materials produced in the United States. The many varieties of quartz, such as agate, jasper, and petrified wood, are the chief materials recovered in this way. The demand for cuttable rough gem stones by these hobbyists also supports a few small gem-mining companies, which operate deposits from time to time, chiefly for turquoise, tourmaline, kunzite, and jade. Since only a small percentage of the total is produced on a commercial scale, no accurate statistics can be compiled on the value of the domestic output of gems; an estimate may approximate \$400,000 to \$500,000.

The many forms of quartz, chiefly the cryptocrystalline varieties, represented the greatest quantity and value of gem stones produced Other gems included were turquoise, topaz, garnet, jade, tourmaline, onyx, chrysocolla, opal, variscite, idocrase, and spinel. Of the producing States, California, Oregon, Texas, Nevada, Washington, Wyoming, and Arizona, in decreasing order, were the leaders.

Agate.—The Marfa-Alpine area in the northern part of Presidio and Brewster Counties, Big Bend area, in Brewster County, and Laredo-Zapata area in Webb and Zapata Counties, Texas, were among the leading producers of agate in 1952, with an estimated output of 50,000 pounds valued at \$0.50 to \$60.00 per pound and a total value exceeding \$35,000.

In Arizona the Saddle Mountain area, covering parts of Maricopa, Pinal, and Graham Counties, reportedly produced 8 to 10 tons of agate valued at \$7,000-\$8,000, and total production from this State may have been as much as 100 tons.

Production of agate in California in 1952, largely from the Mohave

Desert region, had an estimated value of about \$100,000.

Over 10 tons of agate valued at \$10,500 were reported produced in the Bend area, Deschutes County, Oreg. Production at the Fulton agate beds (formerly the Priday ranch, Jefferson County) was not reported. However, each visitor was charged a fee and was permitted

Smithsonian Institution; consulting mineralogist to the Bureau of Mines.
 Commodity-industry analyst, Bureau of Mines.

to gather up to 30 pounds of agate. Hundreds of visitors collected from the Fulton agate beds during the year, and some nodules report-

edly sold for as much as several hundred dollars.

The famous moss-agate deposits along the Upper Yellowstone River in Wyoming produced an estimated 6,000 to 8,000 pounds of agate, valued at \$1 to \$6 per pound and averaging \$2.50 per pound, for a total value of about \$20,000.

New Mexico production was reported as essentially unchanged

from 1951.

Considerable quantities of agate were produced also in Utah, Michigan, Colorado, and Florida, and almost every State yielded small quantities of cuttable forms of chalcedonic quartz.

Information on agates in the Lake Superior area and the history of

the use of agates was published in 1952.

Topaz.—The Streeter-Kotempsie area of Mason County, Tex., known to have produced sizable quantities of gem-quality topaz at various times for over 50 years, produced during all of 1952, largely as the result of the efforts of amateur hobbyists or "diggers" whose findings later were sold to amateurs. Both white and blue topaz were found by washing or sifting stream gravels in small creeks. The 1952 production totaled about 10,000 grams, of which approximately 65 percent was white topaz with a commercial value of about \$0.35 per gram. Twenty-five percent of the topaz found was bluewhite valued at \$0.75 per gram, and about 1,000 grams of high-quality blue material was produced, valued at \$1.25 per gram. Estimated value of the 1952 production ranged from \$5,400 to \$25,000.

A small quantity of fine-quality gem topaz was reported from a

locality near Boise, Idaho.

Turquoise.—Turquoise production continued essentially unchanged from 1951. Lee F. Hand, operating a lease near Battle Mountain, Nev., produced about \$12,000 worth of turquoise. The Miami-Globe district of Gila County, Ariz., reportedly produced about 3,000 pounds valued at \$3 to \$15 per pound. Arizona turquoise was stated to be soft and of inferior quality, but a method of oiling it was discovered, which greatly improved its color. Some of the old mines in the vicinity of Mineral Park, Mohave County, Ariz., were opened, and about 2,000 pounds of oiling grade (chalk) turquoise was produced, valued at \$2.50 to \$3.00 per pound.

A small quantity of turquoise was produced near Villa Grove,

Saguache County, Colo.

The famous turquoise mine near Cerrillos, Santa Fe County,

N. Mex., was described in an article.4

Opal.—During 1952 the famous Rainbow Ridge mine of Virgin Valley, Humboldt County, Nev., produced what is perhaps the world's largest precious opal, weighing 6 pounds. This opal was described as being of exceptional quality and beauty and was valued at \$50,000. In addition to this unusual find, several additional pounds of opal was produced. Unfortunately, the Virgin Valley opal is not durable, and for this reason it is not used in the jewelry trade.

³ Vanasse, T. C., Lake Superior Agate: The Sun, Spring Valley, Wis., 2d. ed., 1952, 66 pp. Pratt, Ethel M., Agate-Gemstone of the Ancients: Mineralogist, vol. 20, No. 11, November 1952, pp. 394, 396

Foster, E. E., Famous Turquoise Mine: Mineralogist, vol. 20, No. 12, December 1952, pp. 452, 454,

Jade.—There was a great decline in jade mining in Wyoming owing to depletion of the known deposits. The 1952 production was estimated at 3 tons of black jade, a few tons of dark-green and gray jade, and about 300 pounds of good apple-green material. The price ranged from \$1 to \$2 per pound up to as much as \$60 per pound for the best quality.

In California a small quantity of jade, none of fine quality, was

produced in Mendocino, Monterey, and San Benito Counties.

Some black jade with green streaks was reported from near Tono-

pah, Nev.

Other Natural Gem Stones.—Some rock-crystal quartz was produced in California, Arkansas, and Idaho, but very little was of gem quality. A small quantity of star-rose quartz was reported from the Bumpus quarry, Albany, Maine. No rose quartz was produced in South Dakota during 1952.

The Barton Mines Corp., North Creek, N. Y., reported a 1952

production of 76 pounds of gem-quality garnet valued at \$132.20.

Tourmaline valued at approximately \$2,000 was produced in San Three mines in San Diego County—the Him-Diego County, Calif. alaya at Mesa Grande and the Reynolds and Ashley mines at Pala were operated part time.

About 5 tons of chrysocolla reportedly was produced at the Inspiration mine, Gila County, Ariz. Only a small proportion of this was

good cutting-grade material that sold for \$5 to \$100 per pound.

Three hundred pounds of californite (idocrase) valued at \$0.50 per pound was produced at the Happy Camp, Siskiyou County, Calif.,

locality.

The Onyx ranch, Murray, Salt Lake County, Utah, reported a production of 20 tons of onyx valued at \$2,400, all used in the lapidary Near Salida, Chaffee County, Colo., 500 pounds of black onvx valued at \$500 was produced.

A small quantity of variscite was mined in Utah.

No sapphire was produced during 1952 from the Yogo Gulch area in Fergus, Judith Basin, and Meagher Counties, Mont., and no diamonds

were mined in Arkansas.

Synthetic Gems.—Synthetic emerald was produced only by the Chatham Research Laboratories in San Francisco, Calif. Production in 1952 was about 60,000 carats, of which 50 percent was very low quality, 40 percent medium quality, and 10 percent fine gem quality. Retail prices of fine-quality stones remained at \$90 to \$120 per carat. Flawless stones of more than 2 carats are not produced.

Diamonds colored by exposure to bombardment of alpha particles in a cyclotron, or to neutron bombardment in an atomic pile to produce green stones, were made before 1952. A quantity of green diamonds produced in this manner appeared on the market in 1952. One dealer reported that he produced and sold about 500 carats of green cyclotrontreated diamonds in 1952, in sizes ranging from ½ carat to 30 carats

each.

Literature.—Articles on gem stones appearing in the press in 1952 discussed amber, beryl, meteorites, obsidian, opal, pearl, peridot, sinhalite, thunder eggs, tourmaline, quartz, and gem stones in California, Connecticut, and Maine.⁵

CONSUMPTION AND USES

Total sales of gem stones by retail jewelers rose slightly in 1952 as a result of greater than usual Christmas buying, which partly offset slow sales in the early months of the year. The greatest consumption of gems was for decorative purposes, mainly in jewelry. Bracelets, brooches, hair ornaments, necklaces, and earrings were very popular.

An outstanding use of gem stones during the year was for gem collections. Enthusiasm of collecting gem stones by thousands of amateur gem collectors for hobby collections or commercial use continued to increase. Supply houses, trading posts, and lapidaries

required sizable quantities for resale.

A unique use of jade in 1952 was in the construction of a church window in Chicago by J. L. Kraft. About 446 pieces of beautifully cut and polished jade from his private collection were used. Kraft stated, "From the beginning of time, jade has symbolized truth, goodness, and beauty," and estimated the jade and labor would

have come to about \$1,500,000.6

For the third consecutive year a new high record was established, when the value of diamonds sold in 1952 totaled an estimated £72,000,000, an increase of about 6 percent above 1951. Sales effected through the Central Selling Organization on behalf of South African and other producers amounted to £69,662,000, an increase of £4,604,000 over 1951. The remainder was divided principally between Brazil, Venezuela, and British Guiana. previous years, the United States was the principal world market for diamonds. There was no significant change in sales volume of diamond jewelry or diamond engagement rings between 1951 and 1952. Jewelers had no difficulty in obtaining enough diamonds, although some reported a short supply of certain sizes and qualities. Diamond engagement rings continued to produce as much revenue for the typical jeweler as all other diamond jewelry combined.

The outstanding feature of diamond sales in 1952 was the strong advance in industrial diamonds. Sales of industrial diamonds

<sup>Blakemore, Jean, Treasure Hunting in Maine—Gems and Minerals: Smiling Cow Shop, Boothbay, Maine, 1st ed., 1952, 118 pp.
California Journal of Mines and Geology, Gem Stones: Vol. 48, No. 1, January 1952, pp. 111-112. Dake, H. C., California Gem Trails: Mineralogist Pub. Co., Portland, Oreg., 1952, 80 pp. Claringbull, G. F., and Hey, M. H., Sinhalite (MgAlBO₄), a New Mineral Mineralogist Mag., (London), vol. 24, No. 217, June 1952, pp. 341-349.
Mihelcic, Lillian, Story of Amber: Mineralogist, vol. 20, No. 9, September 1952, pp. 333-334.
Mineralogist, California Obsidian Deposits: Vol. 20, No. 2, February 1952, pp. 38-90.
Nininger, H. H., Out of the Sky: Univ. of Denver Press, Denver, Colo., 1952, 336 pp. Patchick, P. F., Mineral Collecting at Crestmore, Calif.: Rocks and Minerals, vol. 27, No. 3-4, March-April 1952, pp. 130-135.
Paugh, F. H., A Short Course in Gemology: Jewelers' Circular—Keystone, vol. 122, No. 7, April 1952, pp. 126, 144-148; No. 8, May 1952, pp. 116, 142-146; No. 9, June 1952, pp. 92, 108-109; No. 10, July 1952, pp. 100, 102, 126-127; No. 11, August 1952, pp. 118, 153; and No. 12, September 1952, pp. 122, 161-162; vol. 123, No. 1, October 1952, pp. 132, 143-151; and No. 2, November 1962, pp. 118, 164-168.
Roots, Robert D., Thunder Eggs: Rocks and Minerals, vol. 27, No. 5-6, May-June 1952, pp. 234-236.
Smith, G. F. H., Gem Stones: Methuen & Co., Ltd., London, 12th ed., 1952, 537 pp. Sohon, J. A., Connecticut Minerals, Their Properties and Occurrence: Connecticut State Geological and Natural History Survey, Bull. 77, 1952, 133 pp. Walton, James, Physical Gemology: Sir Isaae Pitman & Sons, Ltd., London, 1952, 304 pp. Wescott, I. P., Some Beryl-Family Gems: Mineralogist, vol. 20, No. 1, January 1952, pp. 3-7.
Time, Jade in Church: Vol. 60, No. 14, Oct. 6. 1952, p. 76.</sup>

amounted to £23,892,000, an advance of more than £5,000,000 over 1951. Sales of gem diamonds amounted to £45,770,000 in 1952, about £1,000,000 less than in 1951.

Although the diamond industry was at a high level, diamond cutting was still troubled by shortage of rough material and some unemploy-

ment

The announcement of the date for Queen Elizabeth's coronation had an impact on fashion at all levels. Precious jewelry responded conservatively with revivals of diamond-set crown brooches, small baskets of jeweled flowers, increased demand for amethyst (the royal purple) and the Tudor rose as a motif. Tiaras and crownlike ornative fall like levels.

ments of all kinds were heavily promoted.

In engagement rings, there was a revival of the use of cushion-cut diamonds mounted in platinum. In lower priced engagement rings baguette solitaires were used set with an extension rim to increase their apparent size. Eighty percent of diamond engagement rings sold were set with center stones of 55 points or less, and the price reported by the typical dealer for engagement rings sold in 1952 was \$167, exclusive of Federal tax.

The so-called "baroque" jewelry, made by tumbling rough fragments of various gem stones to polish them while maintaining their

irregular shape, continued to grow in popularity.

Conditions in the American synthetic corundum and spinel industry continued at low ebb as a result of recovery of the European industry. Sales of synthetic corundum boules manufactured in the United States were very small. There was some sale of synthetic star sapphires and rubies made in the United States, but even this market was impaired by imports of less expensive synthetic star stones made in Europe.

Sales of synthetic rutile remained essentially unchanged. There was no popular acceptance of this material, and it was not a serious

threat to the diamond trade.

FOREIGN TRADE 7

Imports of gem stones, exclusive of industrial diamonds, in 1952 totaled \$124,807,761, compared with \$128,953,866 in 1951, a decrease

of 3 percent (table 1).

Imports of gem-quality diamonds into the United States in 1952 totaled \$103,972,623, compared with \$110,169,603 in 1951. A distribution of these figures into rough or uncut and cut but unset for the past 2 years is shown in table 2.

TECHNOLOGY

The expanding need for industrial diamonds and the present outlook for only a limited increase in production stimulated a great interest in the synthesis of diamonds. Several research programs concerned with this problem were underway, but no successful synthesis so far had been announced. A more than usual number of dubious claims were publicized, the one receiving the most press

⁷ Figures on imports and exports compiled by Mae B. Price and Eisie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 1.—Precious and semiprecious stones (exclusive of industrial diamonds) imported for consumption in the United States, 1951-52

[U.S. Department of Commerce]

	1	951	1952		
Commodity	Carats	Value	Carats	Value	
Diamonds:					
Rough or uncut (suitable for cutting into gem stones),	1 654, 235	1\$48,256,746	795 499	\$52 300 08	
Cut but unset, suitable for jewelry, dutiable	1 480, 602	161, 912, 857		51, 671, 64	
Emeralds:	100,002	01,012,001	100,010	02, 072, 02	
Rough or uncut, duty-free	2, 706	2, 698			
Cut but not set, dutiable	20, 148	264, 527	11, 162	449, 72	
Pearls and parts, not strung or set, dutiable:	l	440 000		405 10	
Natural		449, 379 2, 747, 653		465, 16 3, 373, 38	
Cultured or cultivated Other precious and semiprecious stones:		2, 141, 000		0,010,00	
Rough or uncut, duty-free	1	160, 609		226, 63	
Cut but not set, dutiable		2, 686, 137		2, 125, 45	
Imitation, except opaque, dutiable:		' ' '		, , , , , , ,	
Not cut or faceted		87, 162		97, 50	
Cut or faceted:					
Synthetic		888, 629		536, 65	
Other		111, 378, 844 26, 394		13, 412, 91 39, 14	
Imitation, opaque, including imitation pearls, dutiable		20, 394		39, 14.	
Marcasites, dutiable: Real		88, 395		75, 28	
Imitation		3, 836		11,06	
			<u> </u>		
Total		1128,953,866		124, 807, 76	

¹ Revised figure.

notices being that of Herman Meincke and associates working under the auspices of the German Economic Ministry. The method of production, when carried out under the eyes of Ğovernment investigators, produced no diamonds.

Methods for producing synthetic sapphires, rubies, and emeralds were described, and distinguishing facts were emphasized.8 The thermal conductivity of synthetic sapphire was investigated and found at 100° C. to be about 0.07 calorie per second per centimeter per °C.

Experiments reportedly showed that no gem, either natural or

synthetic, has more dispersion or fire than synthetic rutile.10

Procedures used in cutting a rough diamond into a finished gem and the stages of development of the brilliant cut since the 15th century were described during the year. 11 Details of the index of refraction, angle of total reflection, and inclination of main facets for diamond, zircon, corundum, topaz, and quartz were compiled in 1952.12

Various standard sizes and shapes for cabochons and methods of drilling holes in cabochons using hollow tubes and silicon carbide

and diamond abrasives were described.13

⁸ Webster, R., Synthetic Gem Stones: Gemologist, vol. 21, No. 249, 1952, pp. 66-70.

9 Weeks, J. L., and Seifert, R. L., Thermal Conductivity of Synthetic Sapphire: Jour. Am. Ceram. Soc., vol. 35, No. 1, January 1952, p. 15.

10 Field, D. S. M., Synthetic Rutile: Mineralogist, vol. 20, No. 10, October 1952, p. 378, 380.

11 Jewelers' Circular—Keystone, How a Diamond Is Cut: Vol. 123, No. 2, November 1952, pp. 112, 114.

Dake, H. C., Development of the Brilliant Cut: Mineralogist, vol. 20, No. 10, October 1952, pp. 373-374, 274.

<sup>Boke, H. C., Some Facet Cuts: Mineralogist, vol. 20, No. 11, November, 1952 pp. 421–422.
Sinkankas, John, The Size and Shape of Cabochons: Rocks and Minerals, vol. 27, No. 5–6, May-June 1952, pp. 264–269.
Dake, H. C., Drilling Cabochons: Mineralogist, vol. 20, No. 1, January 1952, pp. 42, 44.</sup>

TABLE 2.—Diamonds (exclusive of industrial diamonds) imported for consumption in the United States, 1951-52, by countries

[U. S. Department of Commerce

Į C	. s. Depar	tment of Co	mmerce	,			
	I	Rough or unc	ut		Cut but unse	et	
Country	Carats	Val	ue	Carats	Value		
	Carata	Total	Average	Carats	Total	Average	
1951 ¹							
Australia	765	\$97,086	\$126.91	12	\$1, 200	\$100.00	
Belgian CongoBelgium-Luxembourg	2,645	215, 173	81.35		201 201 704		
Belgium-Luxembourg	4, 582 2 6, 827	409, 071 2 497, 726	89. 28 2 72. 91	² 251, 703 452	² 31, 331, 704 79, 078	2 124, 48 174, 95	
Brazil British Guiana	1 1 563	55 513	35 52	6	646	107.67	
British Malaya Canada Caylon Czechoslovakia Denmark France Germany India Iran Israel Israel and Palestine Italy Japan Kuwait Liberia Mexico	2,000			161	26, 700	165.84	
Canada	2 1, 371	² 154, 728	2 112.86	7	1,751	250.14	
Ceylon		- -		9	121	13.44	
Uzechoslovakia				10 17	1, 150	115.00	
France	286	13 990	48 92	3, 208	2, 348 425, 507	138, 12 132, 64	
Germany	200	10, 550	40.02	9, 691	789, 720	81.49	
India				', "2	1 260	81. 49 130. 00	
Iran				30	3,600 2 9, 169, 614 12, 372	120.00	
Israel and Palestine	207	1,656	8.00	104, 194	2 9, 169, 614	2 88. 01	
Italy				62	12,372	199.55	
Japan				50 1	5, 670 800	113.40 800.00	
T.ihoria	180	10 000	55, 56	1		300.00	
Mexico.		20,000	00.00	6	1,871 4,398,388 1,259,918 213,863,070	311.83	
Netherlands	19 329	1, 481, 908 2 5, 325, 332 2 1, 810, 483 2 37, 461, 206	1 76.67	35, 940 7, 229 2 64, 691	4, 398, 388	122.38	
Switzerland. Union of South Africa. United Kingdom.	2 62, 328	2 5, 325, 332	2 85. 44 2 30. 93	7, 229	1, 259, 918	174. 29	
Union of South Africa	2 58, 541	2 1, 810, 483	2 30. 93	2 64, 691	2 13, 863, 070	2 214. 30	
United Kingdom	2 470, 598	237, 461, 206	² 79. 60	3, 120 1	536, 944 425	172. 10 425. 00	
Uruguay Venezuela	2 25, 013	2 722, 874	2 28. 90		420	420.00	
Total 1951		² 48, 256, 746	² 73. 76	² 480, 602	261, 912, 857	² 128. 82	
1952							
Australia				142	41,882	294.94	
AustraliaBelgium-Luxembourg	4,852	430, 417	88.71	186, 682	22, 956, 814	122.97	
Bermuda	9,545	1 300, 102	31.44				
Bolivia Brazil	9, 71 9, 719	2, 119 479, 114	29.85 49.30	2,056	242, 763	118.08	
British Guiana	1,061	53 855	50.76	2,000	3,349	152, 23	
British Malaya	1, 723	115, 367	66. 96		0,010	102, 20	
Canada	3,847	53, 855 115, 367 383, 463	99.68	169	36,694	217. 12	
Denmark				15	2, 528 321, 310	168.53	
France Equatorial Africa	50, 490	1,075,560 396,924	21.30	784	321,310	409.83	
French Equatorial Africa	13, 976	396, 924	28.40		602	100.33	
French MoroccoIndia.				2,821	25, 539	9,05	
Indonesia				14	2,532	180.86	
Indonesia	1	47	47.00	128, 206	10.017.374	78.13	
Italy	359		169.38	187	29, 641	158. 51	
Japan				5	1, 250	250.00	
Lebanon				7 111	1, 573 13, 143	224. 71 118. 41	
MexicoNetherlands	2, 271	219, 467	96.64	33, 636	4, 246, 138	126, 24	
Portuguese Asia, n. e. s	2, 211	219, 407	50.04	1,021	7, 476	7.32	
Surinam	135	8, 999	66.66				
Switzerland	103, 447	7,050,320	68.15	3, 319	582, 130	175.39	
Thailand	1,338	153, 564	114.77	968	134, 883 10, 737, 727	139. 34	
Union of South Africa	53, 593	1,300,987	24. 28	54, 011	10, 737, 727	198.81	
United Kingdom	442, 068 26, 926	39, 418, 835 851, 032	89. 17 31. 61	6, 706	902, 044	134. 51	
A CHESTICIS	40, 940	001,002	31.01	17, 658	1, 364, 251	77. 26	
Venezuela West Germany				11,000	1, 304, 231	11.20	

¹ Changes in Minerals Yearbook 1951 are as follows: Bahrein and Southern British Africa revised to none. ² Revised figure.

Information on different abrasives and wheels used in polishing gem stones by lapidaries was given in an article.¹⁴ A very high polish can be obtained on an onyx by using oxalic acid and tin oxide. 15 A book on gem cutting was published in 1952.16

WORLD REVIEW

A new record was set for world production of diamonds in 1952, with a total of 18,694,000 metric carats, compared with 16,917,000 Details are given in table 3. Belgian Congo was again the leading producer by weight, but 95 percent of the Belgian Congo production was industrial quality. South Africa, although producing less by weight, led in value owing to a higher percentage of gem stones.

Angola.—A comprehensive report on the diamond industry in Angola was published in 1952. Geology, tenor, character of the diamonds, reserves, production from 1916 to 1950, and other detailed

information, were discussed.17

TABLE 3.—World production of diamonds, 1949-52, by countries, in metric carats [Including industrial diamonds]

· · · · · · · · · · · · · · · · · · ·				
Country	1949	1950 •	1951	1952
Africa: Angola Belgian Congo. French Equatorial Africa. French West Africa. Gold Coast. Sierra Leone Southwest Africa. Tanganyika. Union of South Africa: Lode. Alluvial. Brazil 2 British Gulana. Venezuela.	122, 928 94, 996 3 972, 976 494, 119 280, 134 191, 787 964, 266 4 289, 756 250, 000 34, 790 56, 362	538, 867 10, 147, 471 111, 407 126, 346 2 950, 000 655, 474 488, 422 1 164, 996 1, 516, 674 200, 000 37, 462 60, 389	101, 000 1 1, 752, 878 475, 759 478, 075 108, 625 1, 967, 272 4 289, 063 200, 000 43, 260 63, 226	743, 302 11, 608, 763 163, 400 136, 680 2, 189, 557 451, 426 541, 023 143, 023 2, 093, 138 4 282, 681 200, 000 38, 305 98, 291
Other countries ²	3,000	3,000	3,000	5, 000 18, 694, 000

¹ Revised. ² Estimate.

Australia.—Australian opal production continued to diminish. The Lightning Ridge and White Cliffs fields were shut down, and only the Andamooka and Coober Pedy areas were supplying any opal. The number of miners working these deposits becomes smaller each vear.

Some Australian sapphires were produced during the year, but they were not of fine quality and did not compete well with Ceylon stones

in the world market.

Belgian Congo.—In addition to the productive area around Bakwanga and Tskikapa, Kasai Province, diamonds are known to occur in Katanga Province and along the Lomami, Ituri, Ubangi, and Uele

⁴ Includes an estimated 100,000 carats for State Mines of Namaqualand.

<sup>Mineralogist, Lapidary Hints: Vol. 20, No. 6-8, June-August 1952, pp. 277-278.
Mineralogist, Polishing Onyx: Vol. 20, No. 9, September 1952, p. 330.
Willems, J. D., Gem Cutting: Chas. A. Bennett Co., Inc., Peoria, Ill., 1952, 224 pp.
Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 4, April 1962, pp. 32-46.</sup>

Rivers, but these localities are regarded to have no economic importance.¹⁸ In Kivu Province, some small concentrations of rubies, white zircons, sapphires, and pink and green tourmalines are known to have been found. Garnets occur around Boma, in the Leopoldville Province, and in the District du Kibali-Ituri. Amethyst is known to occur in the Bas Congo of Leopoldville Province and in Kasai and Agate has been found at Tshala on the Bushimaie Kivu Provinces. River, and often in the alluvials along the rivers of Kasai, Kwango, and Moyen-Congo.¹⁹

Data on diamond production in the Belgian Congo by individual

companies in 1951 was published during the year.20

Brazil.—Brazil continued to produce a large caratage of amethyst, aquamarine, citrine, topaz, and tourmaline, and smaller quantities of chrysoberyl, and alusite, euclase, and other gems.

Canada.—Properties and localities of gem stones, such as zircon,

cat's-eye, tremolite, and scapolite, were discussed in an article.21

Gem-quality serpentine occurs at Kilmar, Quebec, associated with magnesite. The material ranges in color from dark green through pea green to citron yellow. Some of the stones have been made

into ornamental objects, such as book ends.²²

Ceylon.—Ceylon continued to be the principal world producer of ruby, sapphire, chrysoberyl, spinel, and zircon, and produced lesser quantities of garnet, topaz, and tourmaline. The gems came from the alluvial gravels of the Ratnapura district. Mining was done mostly by individuals, and no official production figures were available.23

Colombia.—Operations at the famous Chivor emerald mine, owned by Chivor Emerald Mines, Inc., were suspended. The Governmentowned Muzo and Cosquez mines produced some emeralds, but output was erratic.24

French Equatorial Africa.—According to reports of Grivar Exploration Development Corp., the United States and France agreed to develop jointly a new diamond mine in this country. The mine is near the Ubangi River, about 220 miles southeast of Berberati.²⁵

Madagascar.—Garnet was produced by Syndicat Minier Carlo Borsa near the village of Miary.²⁶ A small quantity of opaque black

tourmaline for industrial uses was produced on the island.

Portuguese West Africa.—Harry Winston, Inc., a New York diamond dealer, was reported to have negotiated for distributor's rights for rough diamonds from Portuguese West Africa. The diamonds are mined by Angola Diamond Co.²⁷

Tanganyika.—It was announced in 1952 that the diamond production from the Williamson mine at Mwadui, Shinyanga, would be sold

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, p. 48.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, p. 50.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, p. 31-37.
Field, D. S. M., Miscellaneous Gem Stones in Canada: Canadian Min. Jour., vol. 73, No. 5, May 1952,</sup> Pp. 78-80.
Field, D. S. M., Miscenaneous Gen Stones in Canadian Min. Jour., vol. 73, No. 5, May 1902, Field, D. S. M., More Canadian Gem Stones: Canadian Min. Jour., vol. 73, No. 11, November 1952, pp. 86-88.
Canadian Mining Journal, vol. 73, No. 11, November 1952, p. 87.
Seymour, John, Gem Mining in Ceylon: Mine and Quarry Eng. (London), vol. 18, No. 11, November 1959, p. 240.

^{1952,} p. 349.

Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 1, July 1952, p. 35. Mining World, vol. 14, No. 2, Bureau of Mines, Mineral Hade Notes. Vol. 66, No. 1, Sul, 1022, p. 62.
 Mining World, vol. 14, No. 1, January 1952, p. 70.
 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 3, September 1952, p. 40.
 Mining World, vol. 14, No. 10, October 1952, p. 75.

on the open market. John T. Williamson stated he refused to agree to new terms to sell the diamonds through the Diamond Trading Corp. controlled by DeBeers diamond interests. Production from this mine has averaged about \$8,400,000 per year. 28

Venezuela.—The Minister of Mines and Hydrocarbons of Vene-

zuela announced that the Government would grant a concession to the Compania Venezolana de Diamantes to exploit diamonds at Perantepuy. These deposits are in the southeastern part of the State of Bolivar near the Brazilian border.29

Mining World, vol. 14, No. 2, February 1952, p. 56.
 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, October 1952, p. 29. Foreign Commerce Weekly, vol. 47, No. 12, June 23, 1952, p. 30.

Gold and Silver

By James E. Bell 1

NITED STATES mine production of recoverable gold and silver declined for the second successive year; the domestic output of gold was 4 percent less in 1952 than in 1951, and that of silver was 1 percent less. The production of both metals remained above postwar lows, however, but far below prewar averages. Most of the drop in gold production was ascribable to a decline in straight gold mining, both lode and placer, because of high costs and depletion of reserves workable under the fixed price of gold; on the other hand, straight underground gold mining gained in two important districts largely because of improvements in mining and treatment plants. The decreased silver output resulted in part from a drop in the prices of lead and zinc, which closed or curtailed operations at some mines producing these metals with silver as a byproduct.

South Dakota again was the leading State in gold production, followed in order by Utah and California, the same since 1950. These 3 States with Alaska supplied nearly 75 percent of the total domestic gold production in 1952. The South Dakota output was obtained almost entirely from gold ore produced at the Homestake mine in Lawrence County; Utah's gold was principally a byproduct from large mining operations of low-grade copper ore in the West Mountain (Bingham) district; California's production resulted mainly from straight gold mining, both lode and placer; and virtually all Alaska's output came from placer mining, mostly bucket-line dredging. Of the domestic gold production of 1952, 22 percent was recovered by placer mining, 36 percent by amalgamation and cyanidation, and 42 percent in smelting ores and concentrates.

Idaho was again the leading silver-producing State by a very large margin, followed, in order, by Utah, Montana, and Arizona, the same since 1943. These 4 States accounted for 84 percent of the total United States silver output of 1952. Nearly two-thirds of the Idaho production was obtained from dry ores mined principally for silver, but most of the remainder of the domestic silver yield was recovered as a byproduct of ores mined principally for base metals. Approximately 99 percent of the total domestic silver output was recovered

in smelting ores and concentrates.

Gold production outside the United States increased 2 percent in 1952 compared with 1951, owing principally to higher output in the Union of South Africa and Australia. Silver production outside the United States rose 8 percent in 1952 over that of 1951, with Mexico and Peru supplying most of the gain. The world production rates of gold and silver in recent years have been far below prewar levels.

¹ Commodity-industry analyst.

TABLE 1.—Salient statistics of gold and silver in the United States, 1943-47 (average) and 1948-52

•	1943-47 (average)	1948	1949	1950	1951	1952
Mine production, fine ounces:						
Gold		2, 014, 257	1, 991, 783	2, 394, 231	1, 980, 663	1, 893, 261
Silver	32, 739, 346	38, 096, 031	34, 674, 952	42, 459, 014	39, 766, 779	39, 452, 330
Ore (dry and siliceous) produced (short tons):	2, 602, 870	3, 261, 194	3, 376, 139	3, 584, 360	2, 606, 202	2, 339, 160
Gold ore Gold-silver ore	390, 186	569, 760	412, 378	433, 461	368, 184	237, 211
Silver ore	366, 260	370, 647	476, 960	627, 349	492, 143	502, 20
Percentage derived from—	, ,			<i>'</i>	,	
ercentage derived from— Dry and siliceous ores:				40	00	
Gold	36 24	39 27	45 24	43 33	39 32	4
Base-metal ores:	24	21	24	99	02	J
Gold	39	31	28	31	36	3
Silver		73	76	67	68	ė
Placers:						
Gold		30	27	26	(2)	(2)
Silver Tet consumption in industry and the arts:	(2)	(2)	(2)	(2)	(2)	(2)
Gold	\$99, 034, 594	\$44, 986, 000	\$108, 842, 471	\$97, 845, 753	\$69, 476, 979	\$96, 350, 54
GoldSilver, fine ounces	109, 980, 000	105, 289, 000	88, 000, 000	110, 000, 000	105, 000, 000	96, 500, 0
mports:	1.				,,	
Gold		\$1, 981, 175, 178	\$771, 390, 261	\$162, 748, 661	\$81, 258, 502	\$740, 254, 16
Silver	\$40, 854, 525	\$70, 884, 513	\$73, 535, 694	\$110, 035, 107	\$103, 468, 510	\$67, 296, 37
Exports: Gold	\$325, 351, 778	\$300, 771, 144	\$84, 935, 678	\$534, 035, 794	\$630, 381, 566	\$55, 921, 20
Silver		\$12, 400, 060	\$23, 281, 043	\$6, 201, 874	\$8, 590, 185	\$4, 921, 20
Interview of year):3	φου, 120, 010	Ψ12, 100, 000	Ψ20, 201, 010	ψ0, 201, 011	φο, ουο, 100	Ψ1, 021, 20
Gold		\$24, 244, 000, 000	\$24, 427, 000, 000	\$22, 706, 000, 000	\$22, 695, 000, 000	\$23, 186, 000, 00
Silver, fine ounces		1, 952, 000, 000	1, 978, 000, 000	1, 983, 000, 000	1, 965, 000, 000	1, 938, 000, 00
rice, average, per fine ounce:	207.00	40 = 00	407.00	A0# 00	40* 00	AD# (
Gold 4	\$35,00 \$0,769+	\$35.00 \$0.905+	\$35.00 \$0.905+	\$35.00 \$0.905+	\$35.00 \$0.905+	\$35. (\$0. 905-
Silver 5	₽ 0.709+	⊅∩ 909 . -	ው ቦ ያ በ2 十	ቅቦ: ዓባን 🕂	Φ0' A09.4-	Φυ. 900
World production, fine ounces (estimated): Gold	27, 540, 000	30, 000, 000	31, 000, 000	32, 700, 000	33, 500, 000	34, 200, 0
Silver	170, 900, 000	174, 900, 000	176, 200, 000	199, 100, 000	197, 500, 000	210, 200, 0

Philippine Islands and Puerto Rico excluded.
 Less than 0.5 percent.
 Owned by Treasury Department; privately held coinage not included.
 Price under authority of Gold Reserve Act of Jan. 31, 1934.
 Treasury buying price for newly mined silver.

'In the Union of South Africa a larger tonnage of ore of slightly higher average grade was milled in 1952 than in the preceding year, reflecting the initial contribution from several mines opened in the new Far West Rand and Orange Free State gold districts. Costs continued to rise in 1952, however, and operating profits were reduced; reportedly, less additional revenue from sales of gold at a premium over \$35 per ounce was realized, also, because of declining prices for gold on the free market. Recovery of uranium as a byproduct of gold mining in the Rand began in October 1952, when the first of a series of plants for this purpose was placed in operation; the returns indicated that the uranium-recovery program will add substantially to working revenue for gold mines in the Union and probably will permit mining of lower grade ore.

The United States Treasury buying price for gold continued at \$35 per fine troy ounce during 1952, and the Treasury price for silver mined domestically after July 1, 1946, was unchanged at \$0.9050505+ per fine troy ounce. The New York market continued to dominate most transactions in silver throughout the world; trading in the London and Bombay silver markets was still subject to Government controls. The New York price for silver ranged from a high of \$0.8800 per ounce to a low of \$0.8275. World consumption of silver for coinage was up 15,000,000 ounces to approximately 104,000,000 ounces in 1952, of

which over half was consumed in the United States.

There was a fairly steady net inflow of gold to the United States in 1952 from January through July and a steady outflow from August through December. The total inflow exceeded the total outflow, however, and resulted in a net gain in United States gold monetary stocks in 1952 of nearly \$500,000,000, despite a net consumption in the arts and industry exceeding the output of domestic mines by 45 percent. Silver also continued to move generally to the United States during 1952, but the excess of imports over exports was 34 percent smaller

in 1952 than in the preceding year.

Propaganda for increasing official national gold prices continued unabated throughout 1952. Since the United States Treasury is the only market strong enough to absorb sales of gold by all comers, the Treasury price as fixed by Congress (\$35 per fine troy ounce) also determines the minimum world price. Postwar hardships of gold mining, due to rising costs and the fixed price of gold, have led to proposals by domestic gold producers for legislation by the Congress to increase the price of gold and to advancement of arguments by gold producers and organizations of foreign countries for such action. Among the arguments made were that revaluation of gold would help to restore currency convertibility, ease the world's dollar shortage, promote international trade, and relieve the United States of some of its foreign-aid burdens. The administration and much public opinion in the United States have remained opposed to raising the dollar price of gold. Secretary Snyder of the Treasury at the annual meeting of the International Monetary Fund in 1949 stated:

I have said on many occasions, and I must say again, that I do not perceive any considerations of monetary policy which would justify me in proposing to my Government a change in the dollar price of gold.

The same views were reiterated by Snyder at the 1952 meeting of the fund. An example of the opinion held by commercial circles of the United States was the following extracted from a treatise issued in

November 1952, entitled "Dollar Sterling Alliance," by the American Chamber of Commerce in London:

The Board of this Chamber is unalterably opposed to raising the dollar price of gold because in its judgment it would provide only a superficial and largely temporary alleviation in the sterling-dollar imbalance. It would not solve the fundamentals of the problem. Besides, it would damage confidence in the U. S. dollar. Further tinkering with the parity of our currency would not only destroy its integrity but would have thoroughly bad psychological and inflationary effects on our monetary system.

The National City Bank of New York in its monthly letter of January 1953 said:

The U. S. Treasury's \$35 an ounce price for gold has now been maintained unchanged for nearly twenty years. The dollar itself has become the cornerstone of postwar currency reconstruction. Confidence in its worth and stability is so vital to reestablishing faith in moneys generally, and the benefits of devaluation are so dubious and so transitory, that any course other than holding firmly to the present gold price and value of the dollar should be banished from our thought.

An article by Bratter on the dollar price of gold was published in 1952.²

LEGISLATION

War Production Board Limitation Order L-208, promulgated in October 1942 and rescinded in July 1945, had the avowed purpose of providing additional manpower and equipment for mines producing metals or minerals, mainly nonferrous metals, essential to the war effort. The principal effect of the order was to restrict domestic gold mining to the extent that many gold mines, both lode and placer, were compelled to close or greatly curtail their operations. The gold-mining industry contended generally that Order L-208 was arbitrary, fore-doomed to failure, accomplished little, and amounted to violation of constitutional rights. Furthermore, it contended that damages were suffered by mining properties because of loss of revenue, caving and flooding of unused mine workings, and deterioration of plant and equipment.

In June 1951, three gold-mining companies filed petitions in the United States Court of Claims for the right to seek compensation from the Government for damages resulting from the imposition of Order L-208. Although the Government took the position that the United States could never be required to pay compensations for damages caused by exercise of a regulatory power, in May 1952 the Court of Claims ruled that it would hold hearings to determine the liability of the Government in the matter of the enforced shutdowns. Encouraged by this decision, 13 additional companies filed similar petitions for the right to sue, acting before the expiration of the periods allowed under the statute of limitations. The majority of gold-mine owners or gold-mining companies had failed to file claims before the legal time limit, however, and to give them opportunity to do so, the Congress passed Public Law 532, S. 3195, quoted below, granting 1 year of additional time by waiving the statute of limitations; the bill was approved by the President on July 14, 1952.

² Bratter, Herbert, An American View of the Official Price of Gold: Optima, vol. 2, No. 4, December 1952, pp. 11-16.

³ The provisions of Limitation Order L-208 are outlined in the Gold and Silver chapter of Minerals Year book 1942.

Public Law 532—82d Congress

An Act granting jurisdiction to the Court of Claims to hear, determine, and

render judgment upon certain claims.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That the United States Court of Claims be, and hereby is, given jurisdiction to hear, determine, and render judgment, nothwith-standing any statute of limitations, laches, or lapse of time, on the claim of any owner or operator of a gold mine or gold placer operation for losses incurred allegedly because of the closing or curtailment or prevention of operations of such mine or placer operation as a result of the restrictions imposed by War Production Board Limitation Order L-208 during the effective life thereof: Provided, That actions on such claims shall be brought within one year from the date this Act becomes effective.

Hearings by the United States Court of Claims were scheduled to begin in the fall of 1953.

PREMIUM PRICE OF GOLD

Developments in transactions in gold at premium prices and in private hoarding of gold have been reported in the chapters on Gold and Silver of Bureau of Mines Minerals Yearbooks for the past several years. Mounting pressure obliged the International Monetary Fund to announce in September 1951 relaxations in policy that permitted the member gold-producing countries to formulate their own regulations for disposal of their gold at premium prices.

As a result of the decision by the fund, greatly augmented supplies of newly mined gold became available for sale on the free market. It was estimated that around 10,000,000 ounces of the 1952 gold production were bought for private hoarding, mostly in France, the Near East, and the Far East. Prices quoted in the free market in Europe in 1952 ranged from around \$39 per fine ounce at the beginning of the

year to a low of \$36.75 in November.

An interesting development in 1952 in the free gold market was the decision in August by the Swiss Federal Court (based on the international agreement of 1929) that private minting of gold coins of coinage withdrawn from circulation in countries of issue is not counterfeiting, provided the coins are of standard weight and fineness. The fact that gold in coin form generally commanded a substantially higher price on the free market than gold in bars, because of greater salability to hoarders, led to private coining of gold coins in Europe, beginning in 1950. With the legality thus accorded private minting by the court verdict referred to and greater availability of gold coins in consequence, the extra premium for gold in coin form declined.

A forecast of the free market demand for gold was as follows: 4

The demand for gold in the free market remains strong and we see no reason to suppose that it will not easily absorb all that is likely to be offered.

So long as the world political situation remains as it is, and so long as the present economic situation maintains a system of currencies that are in part blocked, frozen, bilateral, and inconvertible, the twin spectres of war and devaluation will remain.

The only hedge known to most Europeans and all Asians against this dual calamity is the holding of gold, and at the present price it is reckoned a small insurance premium to pay.

⁴ Samuel Montagu & Co., Ltd., Bankers and Bullion Merchants, London, Annual Bullion Review 1952.

Information available to the Bureau of Mines indicates that the quantity of "natural gold" absorbed by the open market in the United States (including Alaska) was much smaller in 1952 than in previous years, with total sales apparently amounting to less than 2,000 ounces. It was understood that the price received by sellers averaged around \$39.50 per fine ounce, with the advantage of the premium largely offset by extra costs of handling.

DOMESTIC PRODUCTION

Production of gold and silver in the United States is measured at mines and refineries. Both measures are tabulated by States of origin, but there is a small annual variation between them, explained largely by time lag. Over a period of years the deviations are found to be negligible. Compared with the mine reports compiled by the Bureau of Mines, the refinery reports compiled by the Bureau of the Mint in cooperation with the Bureau of Mines for the 48 years. 1905-52 show a total excess of gold of 26,642 ounces (a difference of 0.02 percent) and a total excess of silver of 16,210,651 ounces (a difference of 0.63 percent).

TABLE 2.—Gold and silver produced in the United States,1 1905-52, in fine ounces, according to mine and mint returns, in terms of recoverable metals

V	м	ine	Mint			
Year	Gold	Silver	Gold	Silver		
1905-47. 1948. 1949. 1950. 1951. 1952. Total 1905-52.	2, 014, 257 1, 991, 783 2, 394, 231 1, 980, 663 1, 893, 261	2, 374, 700, 573 38, 096, 031 34, 674, 952 42, 459, 014 39, 766, 779 39, 452, 330 2, 569, 149, 679	147, 620, 371 2, 025, 480 1, 921, 949 2, 288, 708 1, 894, 726 1, 927, 000 157, 678, 234	2, 389, 131, 012 39, 228, 468 34, 944, 554 42, 308, 739 39, 907, 257 39, 840, 300 2, 585, 360, 330		

¹ Includes Alaska.

MINE PRODUCTION

The domestic mine output of recoverable gold declined in 1952 for the second successive year and was smaller than in any postwar year since 1946. The drop in 1952 was due mostly to lower production from dry gold ore and gold placers; it reflected the difficulties experienced by straight gold mining, both lode and placer, in recent years because of mounting costs for labor and supplies, depletion of workable reserves, and the fixed price of gold. Gold production from dry lode ore rose in 1952 in Colorado and South Dakota, however, owing largely to improvements in mining equipment and treatment The domestic output of gold in 1952 amounted to only 39 percent of the all-time peak established in 1940.

The domestic mine output of recoverable silver also declined in 1952 for the second successive year. Lower prices for lead and zinc, which during the year closed some mines producing these metals with silver as a byproduct, caused part of the drop. A feature of the 1952 domestic silver output was the record recovery of byproduct silver from desilverizing bullion smelted from lead ores mined in the southeastern Missouri district. The current rate of silver production

in the United States remains far below the prewar average.

TABLE 3.—Mine production of gold and silver in the United States, in 1952, by months, in fine ounces

	Gold	Silver		Gold	Silver
January February March April May June July	131, 399 126, 562 134, 598 136, 097 151, 203 154, 035 177, 625	3, 424, 057 3, 422, 040 3, 510, 024 3, 456, 777 3, 574, 781 3, 253, 309 3, 048, 400	August September October November December Total	186, 364 181, 995 181, 165 171, 393 160, 825 1, 893, 261	3, 156, 01 3, 065, 66 3, 333, 89 3, 049, 69 3, 157, 670 39, 452, 330

¹ Includes Alaska.

All tonnage figures used in this report are short tons of 2,000 pounds "dry weight"; that is, they do not include moisture. Figures in cubic yards used in measuring material treated in placer operations are "bank measure"; that is, the material is measured in the ground before excavation. The weight unit for gold and silver is the troy ounce (480 grains). The totals are calculated upon the basis of recovered or recoverable fine gold and silver shown by assays to be contained in ore, bullion, and other material produced.

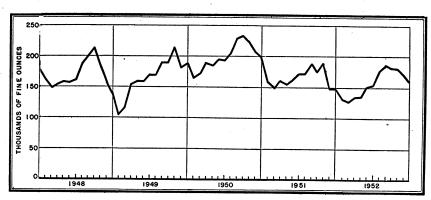


FIGURE 1.—Mine production of gold in the United States, 1948-52, by months, in terms of recoverable gold.

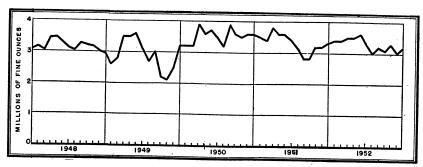


FIGURE 2.—Mine production of silver in the United States, 1948-52, by months, in terms of recoverable silver.

Mines are grouped in two main classes—placers and lodes. placers are those in which gold and silver (and, in a few placers, platinum), are recovered from gravel as native metals or in natural alloy. Except for such small-scale hand methods as those utilizing the gold pan, the rocker, or the dry washer, all placer recovery methods employ sluice boxes; methods are distinguished by the means used for delivering the gravel to the sluices. Those methods where gravel is delivered mechanically include bucket-line dredging, dragline dredging, and treatment in nonfloating washing plants of gravel delivered by power shovel, dragline excavator, truck, slackline scraper, or other mechanical means. In the hydraulic method the gravel is mined from the bank by a powerful jet of water; in some small-scale hand methods the gravel is shoveled into sluices; and in drift operations the gravel is mined underground and delivered to sluices at the surface. mines are those yielding gold and silver from ore (as distinguished from gravel), mainly from underground workings and, in addition to those worked chiefly for one or both of the precious metals, include those that yield ore mined chiefly for copper, lead, zinc, or other metals but contribute the precious metals as byproducts. As far as possible, the mine unit used is not the operator but the mining claim or group of claims.

EPRINCIPAL MINING DISTRICTS AND LEADING MINES

Lawrence County (Lead), S. Dak., again was the leading gold-producing district in 1952, a position held since 1946. The West Mountain (Bingham), Utah, copper district, which held the lead from 1943 through 1945, has remained in second place since 1946. The Grass Valley-Nevada City gold-ore district in California, which ranked third from 1949 through 1951, was surpassed in 1952 by the Fairbanks district in Alaska. Nine of the 25 leading gold-producing mines were lode-gold mines, 6 were placers worked by bucket-line dredges, 3 were copper mines, 3 were lead-zinc mines, 1 was a zinc-copper mine, and 3 produced more than 1 type of ore. The 3 leading gold-producing mines supplied 52 percent of the country's total in 1952, and the leading 25 furnished 82 percent.

For many years the leading silver-producing districts have included many noted more for their base-metal production than for silver output, and this situation remained unchanged in 1952. The three leading silver-producing districts yielded 62 percent of the United States total in 1952. The leading 9 mines, each producing over 1,000,000 ounces of silver in 1952, supplied 56 percent of the United States total, and the leading 25 mines supplied 75 percent. As several mining companies each worked more than one of the leading silver mines in addition to smaller properties, the output by mining companies was

substantially more concentrated than by mines.

TABLE 4.—Mine production of recoverable gold in the United States, 1943-47 (average) and 1948-52, by districts that produced 10,000 fine ounces or more during any year (1948-52), in fine ounces ¹

District or region	State	1943-47 (aver- age)	1948	1949	1950	1951	1952
Lawrence County	South Dakota	178, 690	377, 836	464, 650	567, 996	458, 040	482, 511
West Mountain (Bingham)	Utah	286, 052	332, 588			407, 196	417, 607
Grass Valley-Nevada City	California	(2)	94, 398	(2)	(2)	(2)	(2)
West Mountain (Bingham) Grass Valley-Nevada City American River (Folsom)	do	53,709	104, 196	(2) 98, 435	91, 260	86, 867	73, 354
Robinson Chelan County 3	Nevada	47, 246	37, 453	38, 703	49, 878	60, 055	59, 521
Chelan County 3	wasmington	1 30, 649	41, 826			46, 458	54, 135
i uoa River	California	(2)	(2)	(2)	(2)	(2)	(2)
Cripple Creek	Colorado	42,063	53, 569	13, 460	5, 779	27, 699	48, 527
Ajo	l Arizona	32 402	38, 647	38, 455	37, 632	33, 805	36, 372
Upper San Miguel	Colorado	23, 866	38, 188	35, 217	52, 567	34, 030	34, 822
Warren (Bisbee) Battle Mountain	Arizona	27, 423	19,083	11, 837	13, 695	25, 338	26, 697
Battle Mountain	Nevada	79\	7,982	(2)	(2)	(2)	(2)
California (Leadville)	Colorado	(2)	(2)	(2)	(2)	(2)	18, 405
California (Leadville) Bullion Yellow Pine	Nevada	7 402	(2) 16, 676	16, 791	20, 405	(2) (2) (2)	17, 824
			27, 158	53, 576	48, 472	19,605	17, 638
Big Big	Arizona	1 7 909	11,058	14, 035	19, 328	19, 724	17, 317
Summit Valley (Britte)	Montana	1 12 R24	19, 163	15, 742	23, 092	15, 674	16, 918
Park City Region	Litan	1 16 500	19,087	19, 443	24, 125	18, 476	13, 827
Park City Region Round Mountain Pioneer (Superior)	Nevada	(2)			(2)	(2)	(2)
Pioneer (Superior)	Arizona	7, 475	10, 054	12, 839	14. 392	12, 207	11,664
		(2)	(2)	(2)	14, 314	10, 776	9, 683
Animas	Colorado	21, 182	13, 428	10,658	12,874	9, 407	9, 657
Mother Lode	California	8.995	(2)	21, 948	24, 513	(2)	7, 127
verge (Jerome)	Arizona	1 10 020 1	11, 374	10,790	9, 421	7, 325	4, 328
Oroville	California	13, 818	20,800	22, 701	(2)	(2)	2, 946
Tintic	Utah	16, 321	11,007	5, 133	3, 277	4, 982	2, 942
Fairplay	Colorado	(2)	8, 489	(2)	(2)	(2)	2,019
Merced River (Snelling)	California	(2) (2) (2)	(2)	(2) (2) (2)	(2) (2) (2)	4,768	
Cosumnes River	do	(2)	13, 956	(2)	(2)	(2)	(2) (2)
Boise Basin	Idaho	3.659	11, 732	4, 789	4. 942	5, 009	``60∗
Tuolumne River (La Grange)	California	(2)	(2)	(2)	4, 942 (2)	(2)	30
Comstock	Nevada		11, 591	18,540	9, 691	2 67	10
Scott River	California	(2) (2)	(2)	(2)	12, 289	3, 919	6
Potosi	Nevada	(2)		(2)	(2)		-

1 Exclusive of Alaska.

Figure withheld to avoid disclosure of individual company operations.

Combined in 1952 with Ferry County to avoid disclosure of individual output.

TABLE 5.—Mine production of recoverable silver in the United States, 1943-47 (average) and 1948-52, by districts and regions that produced 200,000 fine ounces or more during any year (1948-52), in fine ounces

			,,				
District or region	State	1943–47 (average)	1948	1949	1950	1951	1952
Coeur d'Alene Region Summit Valley (Butte) West Mountain (Bingham)_ Warren (Bishee)	Idaho	8 195 687	10 598 338	0 146 146	15 056 121	12 620 909	12 750 001
Summit Valley (Butte)	Montana	5 009 204	6 000 700	5 635 101	6 191 964	5 050, 600	13, 702, 081
West Mountain (Bingham)	Utah	4 110 173	4 694 674	4 316 378	4 062 596	4 092 940	5, 514, 550
Warren (Bisbee)	Arizona	1 401 026	1 439 179	1 166 910	1 070 211	1 900 710	0, 338, 291
Warren (Bisbee) Park City Region Lippor Son Missal	Utah	1 365 441	1 703 864	1 061 002	059 699	1, 292, 719 1, 131, 360	1, 242, 935
Upper San Miguel	Colorado	280, 623	596 749	579, 498	730, 860	621, 257	861, 563
Park City Region Upper San Miguel Coso Tintic Warm Springs Pioneer (Superior) Big Bug Southeastern Aio	California	586 286	303 761	352, 482	600, 440		764, 478
Tintic	Utah	1 081 618	1 123 460	914, 150			(1)
Warm Springs	Idaho	528 044	266 226	468, 302			
Pioneer (Superior)	Arizona	334 407	308 448	401, 202	529, 186		
Big Bug	do	303 751	425 070	581, 351	701, 973		
Southeastern	Missouri	92 270	114 187	123, 413	236, 273		
Aio	Arizona	365 503	455, 411	471, 134	472 000	184, 424	
Ajo Pioche	Nevada	406 575	684, 321		473, 020 608, 710	437, 675	
Copper Mountain (Morenci)	Arizona	325, 529	605, 153				
Red Cliff	Colorado	130, 040				612, 336	
Red Cliff California (Leadville)	do	(1)	(1)	(1)	(1)		
Animas.	do	311, 131	417, 887	539, 402	564, 321	272, 352	
Animas	New Mexico	(1)	(1)	(1)	(1)		321, 308
				53, 188	58, 262	236, 484	
Chelan County 2 Verde (Jerome) Flint Creek Mineral Creek (Ray)	Washington	101,000	137, 242	(1)	(1)		
Verde (Jerome)	Arizona	577 476	408, 669	509, 828	456, 254	113, 155	
Flint Creek	Montana	177 364	31, 858		22, 528	408, 891	233, 946
Mineral Creek (Ray)	Arizona	40, 421	30, 985	94 514	120, 660	82, 033	233, 799
				(1)	130, 669 95, 324	172, 765	214, 030
Harsnaw	I Arizona	1 160 031		140, 011	147, 258	189, 110 152, 366	179, 401
Creede	Colorado	451 099	297, 926		345, 247		
Ash Peak	Arizona	74 901	135, 356		227, 342	236, 652	
Creede Ash Peak Pima (Sierritas, Papago,	do	121 862	162, 224			193, 419	136, 072
Twin Buttes).		121,000	102, 224	202, 004	182, 540	145, 941	128, 847
Resting Springs	California	(1)	(1)	(1)	(1)	(1)	an.
Twin Buttes). Resting Springs Virginia City Ten Mile	Montana	87, 528	225, 784	84, 918	(1) 66, 267	(1)	(1)
Ten Mile	Colorado	67, 649	971 044	254, 294	60, 207	32, 427	35, 547 671
Comstock	Nevada	58 319	176, 882	233, 705	68, 289 108, 944		671
ComstockSand Springs	do	55, 512	164, 413		200, 217	3, 512	8
			101, 1101	111, /10	200, 217	111, 529	

Figure withheld to avoid disclosure of individual company operations.
 Combined in 1952 with Ferry County to avoid disclosure of individual output.

TABLE 6.—Twenty-five leading gold-producing mines in the United States in 1952, in order of output

Rank	Mine	District	State	Operator	Source of gold
1 2 3 4 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 22 23 24 25	Homestake Utah Copper Fairbanks Unit. Natomas. Yuba Unit. Brunswick. New Cornella. Nome Unit. Empire Star Group. Copper Queen. Ajax Group. Knob Hill. Treasury Tunnel, etc. Greenan Placers. Holden Group. Goldacres. Yellow Pine. Iron King. Resurrection Group. Portland, Dakota, Clinton. Smuggler Union, etc. Gold King. New York—Alaska Gold Dredging Copp. United States and Lark.	Warren (Bisbee) Cripple Creek Republic Upper San Mignel Battle Mountain Chelan Lake Bullion Yellow Pine Big Bug California Portland, Bald Mountain Upper San Mignel Wenatchee River Aniak	Utah Alaska California do do Arizona Alaska Nevada California Arizona Colorado Washington Colorado Washington Nevada Washington Nevada Udaho Arizona Colorado South Dakota Colorado Washington South Dakota Colorado Washington Alaska	Kennecott Copper Corp. U. S. Smelting, Refining & Mining Co. Natomas Co. Yuba Consolidated Gold Fields Idaho Maryland Mines Corp. Phelps Dodge Corp. U. S. Smelting, Refining & Mining Co. Kennecott Copper Corp. Empire Star Mines, Ltd. Phelps Dodge Corp. Golden Cycle Corp. Knob Hill Mines, Inc. Idarado Mining Co. Natomas Co. Howe Sound Co. London Extension Mining Co. Shattuck Denn Mining Co. Shattuck Denn Mining Co. Bald Mountain Mining Co. Telluride Mines, Inc. Lovitt Mining Co. New York—Alaska Gold Dredging Corp.	Do. Gold ore. Copper ore. Dredge. Copper ore. Gold ore. Zinc-lead, copper ores. Gold ore. Do. Copper-lead-zinc ore. Dredge. Zinc-copper ore. Gold ore. Do. Zinc-copper ore. Gold ore. Lead-zinc ore. Gold ore. Lead-zinc ore. Lead-zinc ore. Gold ore. Lead-zinc ore. Gold ore. Lead-zinc ore. Gold ore.

TABLE 7.—Twenty-five leading silver-producing mines in the United States in 1952, in order of output

Rank	Mine	District	State	Operator	Source of silver
1	Butte Hill mines	Summit Valley (Butte)	Montana	Anaconda Copper Mining Co	Copper, zinc-lead ores.
2	Sunshine	Evolution	Idaho	Sunshina Mining Co	Giltron one
ช	Utah Copper	West Mountain (Bingham)	Utah	Kennecott Copper Corp	Copper ore.
4	Polaris	Evolution	Idaho	Sunshine Mining Co	Silver ore.
5	Bunker Hill	Yreka	do	Bunker Hill & Sullivan Mining & Concentrat-	Zinc-lead ore.
	TT14- J Ct. t		-	ing Co.	
6	United States and Lark	West Mountain (Bingham)	Utah	U. S. Smelting, Refining & Mining Co	Zinc-lead, copper, lead,
	Cilwan Cananit	T 1			gold-silver ores.
6	Silver Summit	Evolution	Idaho	Polaris Mining Co	Silver ore.
0	St. Germaine, Purim	Warren (Bisbee)	do	Sunshine Mining Co	\mathbf{Do} .
10	Copper Queen	warren (Bisbee)	Arizona	Phelps Dodge Corp	Zinc-lead, copper ores.
10		C080	i California	Anaconda Copper Mining Co	Zinc-lead, lead ores.
12	Treasury Tunnel, etc.	Upper San Miguel	Colorado	Idarado Mining Co	Copper-lead-zinc ore
13	Triumph, North Star	Warm Springs	Idaho	Triumph Mining Co	Zinc-lead ore.
10	Magma	Pioneer (Superior)	Arizona	Magma Copper Co	Zinc-copper, copper ores.
15	Iron King Chief No. 1	Big Bug Tintic	do	Shattuck Denn Mining Corp	Zinc-lead ore.
10	Onier IVO. 1	Thuck	Utah	Chief Consolidated Mining Co	
16	New Cornelia	Ain	1	m	ores.
17	Page	Ajo	Arizona	Phelps Dodge Corp	Copper ore.
18	Piocho group	Yreka	Idaho	Federal Mining & Smelting Co	Zinc-lead ore.
19	Pioche group Morenci	Pioche Copper Mountain (Morenci)	Nevada	Combined Metals Reduction Co	Do.
20	Lucky Friday	Copper Mountain (Morenci)	Arizona	Phelps Dodge Corp	Copper ore.
21	Silver Syndicate	Hunter Evolution	Idaho	Lucky Friday Silver-Lead Mines	Zinc-lead ore.
22	Eagle group	Red Cliff	d0	Sunshine Mining Co	Silver ore.
23	Butterfield	West Mountain (Bingham)	Colorado Utah	Empire Zinc Division, New Jersey Zinc Co	Silver-zinc ore.
20	Davou mora	west mountain (Bingnam)	Utan	Combined Metals Reduction Co	Zinc-lead, silver, gold-
24	Park Galena and Mayflower	Park City Region	do	North Doub Minimu Co	silver ores.
25	Kelley Shaft	Summit Valley	Montana	New Park Mining Co	Zinc-lead ore.
		Dummit Vanoy	MIOIII (SHIST	Anaconda Copper Mining Co	Copper ore.

TABLE 8.—Mine production of recoverable gold in the United States, 1942-52, with production of maximum year, and cumulative production from earliest record to end of 1952, by States, in fine ounces

		num pro-					Prod	uction by	years					Total pro- duction from earli-
	Year	Quantity	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	est record to end of 1952
Western States and Alaska: Alaska	1906 1937 1852 1900 1871 1865 1910 1915 1940 1939 1929 1950 1950 1869	1, 066, 030 332, 694 3, 392, 631 1, 391, 384 212, 850 870, 750 913, 265 70, 681 113, 402 618, 536 1, 279 457, 551 92, 117 7, 498	487, 621 253, 651 847, 997 268, 627 95, 020 146, 892 295, 112 11, 961 46, 233 522, 098 391, 544 75, 396	99, 583 171, 810 148, 328 137, 558 30, 808 59, 586 144, 442 5, 563 1, 097 106, 444 4 390, 470 65, 244	49, 296 112, 162 117, 373 111, 455 25, 008 50, 021 119, 056 6, 918 1, 369 11, 621 344, 223 47, 277 20	68, 117 77, 223 147, 938 100, 935 17, 780 44, 597 92, 265 5, 604 4, 467 55, 948 279, 979 57, 860 2	226, 781 79, 024 356, 824 142, 613 42, 975 70, 507 90, 680 4, 009 17, 598 312, 247 9 178, 533 51, 168 105	279, 988 95, 860 431, 415 168, 279 64, 982 90, 124 89, 063 3, 146 18, 979 407, 194 421, 662 34, 965 1, 486	248, 395 109, 487 421, 473 154, 802 58, 454 73, 091 111, 532 3, 414 14, 611 377, 850 57 368, 422 70, 075	229, 416 108, 993 417, 231 102, 618 77, 829 52, 724 130, 399 16, 226 464, 650 40 314, 058 71, 994	289, 272 118, 313 412, 118 130, 390 79, 652 51, 764 178, 447 3, 414 11, 058 567, 996 49 457, 551 92, 117	239, 637 116, 093 339, 732 116, 503 45, 064 30, 502 121, 036 3, 959 7, 927 458, 101 32 432, 216 67, 405	240, 557 112, 355 258, 176 124, 594 32, 997 24, 161 117, 203 2, 949 5, 509 482, 534 39 435, 507 54, 776	27, 610, 693 11, 529, 260 104, 161, 364 39, 855, 129 8, 199, 727 17, 374, 487 26, 264, 681 2, 202, 966 5, 765, 862 23, 804, 626 26, 576, 962 27, 707, 002 80, 041
Total			3, 442, 411	1, 360, 937	995, 799	952, 715	1, 573, 073	2, 107, 188	2, 011, 778	1, 989, 816	2, 392, 141	1, 978, 216	1, 891, 358	282, 499, 784
West Central States: Missouri	1900	33												33
States east of the Mississippi: Alabama Georgia Indiana	1936 1882 (2)	4, 726 12, 094 (2)	1 30	12	5	5	1 21	78	19	18		3		49, 495 870, 663 (³)
Maryland Michigan	1890	1, 040 4, 354									20	1		6, 123 33, 297
North Carolina Pennsylvania South Carolina	1887 1942 1941	10, 884 2, 499 15, 508	4, 077 2, 499 7, 824	131 2, 218 147	21 2, 115	1, 588	1, 150	1, 518	2, 200	13 1,645	1,764	2, 179	1, 500	1, 164, 601 4 36, 090 318, 801
Tennessee Vermont Virginia	1930 1946 1938	696 165 2, 943	159	303 17 50	222 100 132	148 104 12	95 165	303 100	156 104	171 120	160 146	108 156	241 162	22, 104 ⁸ 1, 207 167, 558
Total			14, 699	2,878	2, 595	1,857	1, 432	1, 997	2, 479	1, 967	2, 090	2, 447	1, 903	2, 669, 939
Grand total			3, 457, 110	1, 363, 815	998, 394	954, 572	1, 574, 505	2, 109, 185	2, 014, 257	1, 991, 783	2, 394, 231	1, 980, 663	1, 893, 261	285, 169, 756

¹ For Central and Eastern States figures are peaks since 1880, except Pennsylvania and Vermont, for which the figures are peaks since 1905. For Alaska, Nevada, and Oregon figures are likewise peaks since 1880 only.

2 Figure not available.
2 Small, figure not available.
4 1905-52 only.
3 1905-52 only.

TABLE 9.—Mine production of recoverable silver in the United States, 1942-52, with production of maximum year, and cumulative production from earliest record to end of 1952, by States, in fine ounces

		rimum uction 1					Produ	etion by y	ears					Total pro- duction from earli-
	Year	Quantity	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	est record to end of 1952
Western States and Alaska: Alaska	1892 1913 1885 1941 1900 1938	3, 629, 223 25, 838, 600 19, 587, 766 19, 038, 800 16, 090, 083 2, 343, 800 276, 158 536, 200 1, 433, 008	7, 064, 467 1, 450, 440 3, 096, 211 14, 644, 890 11, 188, 118 3, 723, 435 676, 170 87, 376 186, 937 672, 781 10, 574, 955	5, 713, 889 609, 075 2, 664, 142 11, 700, 180 8, 450, 370 1, 620, 280 463, 583 10, 523 35, 886 10, 284	778, 936 2, 248, 830 9, 931, 614 7, 093, 215 1, 259, 636 535, 275 20, 243 5, 445 5, 355 7, 593, 075	26, 564 23, 265	86, 901 42, 922 4, 118, 453	30, 379 111, 684 20, 547	94, 693 3, 065 8, 045, 329 375, 831	12, 195 109, 383 2, 691 6, 724, 880 357, 853	142, 065 2, 454 7, 083, 808	139, 590 1, 381 7, 310, 665	4, 037 132, 102 4, 672 7, 194, 109	5, 305, 302 10, 417, 526 33, 303, 173 763, 311, 342
Total			53, 854, 574	41, 170, 780	34, 200, 636	28, 823, 331	22, 765, 937	35, 592, 183	37, 880, 673	34, 449, 927	42, 109, 386	39, 451, 487	38, 780, 045	4,086,620,625
West Central States: Missouri	1952	517, 432	69, 106	111, 285	92, 243	94, 822	69, 401	93, 600	114, 187	123, 413	236, 273	184, 424	517, 432	5, 431, 326
States east of the Mississippi; Alabama Georgia Illinois Maryland	1936 1904 1924 1917	869 1,500 8,891 1,092	7 104		<u>-</u>	2, 198	2, 302	13 1,790	4,047	3, 128	2, 001	3,465	3, 781	5, 239 10, 963 155, 554 2, 595
Michigan New York North Carolina Pennsylvania	1916 1951 1906 1942	716, 640 47, 568 30, 769 15, 501	61, 674 40, 012 8, 259 15, 501	48, 479 38, 004 7, 169 13, 095	25, 238 1, 461		15, 786 7, 887	3, 089 22, 409 9, 863	18, 788	- -	32, 628 10, 563	47, 568 13, 575		10, 256, 112 567, 788 357, 223 249, 360
South Carolina Tennessee Vermont Virginia	1940 1920 1952 1944	8, 047 110, 719 45, 361 18, 993	5, 064 34, 671 1, 793	135 52, 058 2, 721 14, 947	45, 907 18, 862	35, 391 20, 586 1, 300	18,016	79, 147 21, 469	39, 692	41, 833	39, 958	24. 960	57, 569	35, 325 3, 321, 509 2 292, 743 79, 389
Total			167, 085	178, 761	180, 661	106, 044	79, 266	137, 780	101, 171	101, 612	113, 355	130, 868	154, 853	15, 333, 800
Grand total			54, 090, 765	41, 460, 826	34, 473, 540	29, 024, 197	22, 914, 604	35, 823, 563	38, 096, 031	34, 674, 952	42, 459, 014	39, 766, 779	39, 452, 330	4,107,385,751

¹ States east of the Mississippi figures are peaks since 1896, except New York and Pennsylvania which are peaks since 1905. The Illinois figure is the peak since 1907. Alaska, California, Nevada, and Oregon are peaks since 1880.

² Includes a small quantity for New Hampshire.

ORE PRODUCTION, CLASSIFICATION, METAL YIELD, AND METHODS OF RECOVERY

Tables 10 to 15 give details of classes of ore, metal yield in fine ounces of gold and silver to the ton, and gold and silver output by classes of ore and by methods of recovery, embracing all ores that yielded gold and silver in the United States in 1952. These tables were compiled from the individual State chapters in volume III, in which more detailed data are presented.

TABLE 10.—Ore, old tailings, etc., yielding gold and silver, produced in the United States and average recoverable content, in fine ounces, of gold and silver per ton in 1952 $^{\rm 1}$

	G	old ore		Gold	-silver	ore	Silv	er ore	Silver ore			
State	Short tons	oun	erage es per	Short tons	ound	erage es per	Short tons	ound	erage ees per			
		Gold	Silver		Gold	Silver		Gold	Silver			
Western States and Alaska: Alaska Arizona. California Colorado Idaho. Montana Nevada. New Mexico. Oregon. South Dakota Texas. Utah. Washington Total. States east of the Mississippi.	8, 091 232, 665 156, 119 322, 027 33, 935 155, 482 568 842 1, 324, 789	. 479 .316 .064 .131 .123 .229 .629 .364 	2 0. 020 . 337 . 269 . 073 . 224 . 325 . 027 . 081 3. 076 . 099 1. 754 . 198	9, 528 775 184, 840 6, 995 9, 981 601 17 	. 283 . 041 . 497 . 215 . 213		19 28, 444 283, 597 46, 338 3, 057 219 	0.034 .421 .064 .003 .013 .043 .021 .013	9. 575 150, 684 16. 704 34. 568 4. 295 2 18. 096 4. 429 			
	Co	pper or	e	L	ead ore		Lead-c	opper o	ore			
State	Short	Av	erage ees per	Short tons	Av	erage es per	Lead-c	Av	erage ees per			
State	Short	Av	erage es per	Short	Av	erage ces per		Av	erage ees per			
Western States and Alaska: Alaska Arizona California Colorado Idaho Montana Newada New Mexico Oregon Texas Utah Washington Total	Short tons 44, 539, 353 2, 152 100, 800 2, 154, 657 6, 850, 825 8, 421, 983	Av ound Gold	erage ees per	Short	0. 159 .066 .031 .002 .033 .065	erage 285 per 201 116.500 4.679 8.171 3.992 3.130 3.432 7.670 .251 -11.964 4.764 4.764 1.535	Short tons 4 6 8 46,488	Av. ound t	erage ees per on			
Western States and Alaska: Alaska Arizona California. Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Texas Utah Washington	Short tons 44,539,353 2,152 73 100,800 2,154,657 6,850,825 8,421,983 89	0.002 34.172 .014 .007 .002 .009	erage es per on Silver 0.065 345.488 978 715 025 010 4.067 1.856 294	Short tons 2	Gold 	erage ces per con Silver 116. 500 4. 679 8. 171 3. 992 3. 130 7. 670 251	Short tons 4 6 8 46,488 114	Av. ound t	silver 31,000 19,667 13,875 1,621 17,035 2,007 12,718			

TABLE 10.—Ore, old tailings, etc., yielding gold and silver produced in the United States and average recoverable content, in fine ounces, of gold and silver per ton in 1952 1-Continued

	z	inc ore		Zinc-lead and zi ores	, zinc- nc-lead	copper, -copper	Total ore		
State	Short tons Average ounces per ton		Short tons	Average ounces per ton		Short tons	Average ounces per ton		
		Gold	Silver		Gold			Gold	Silver
Western States and Alaska: Alaska Arizona California Colorado Idaho Montana Newada New Mexico Oregon South Dakota Texas Utah Washington	5, 646 40, 722 292, 240 5 58, 806 6 34, 270 7 11, 292 636, 294 	.031 .007 .002 7.003 .001	3. 469 . 692 . 639 1. 621 7 1. 511 . 477	120, 560 859, 805 2, 030, 552 2, 319, 202 272, 849 42, 312	.006 .071 .001 .005	5. 246 1. 984 2. 152 1. 753 1. 920 1. 853	424, 784 1, 548, 815 5 3, 008, 230 6 4, 625, 750 7, 313, 697 9, 144, 224 931 1, 324, 817 1, 270 8 32, 875, 034	34. 273 . 079 . 010 . 005 . 012 . 658 . 364 . 031	.104 3 4 2.569 1.816 4.960 1.327 3.127 .052 3.171
TotalStates east of the Mississippi	1, 120, 464 2, 440, 931		. 694	8, 369, 801 2, 467, 855		1. 946 . 041	107, 066, 810 9 9, 039, 669		.362
Total	3, 561, 395		. 218	10, 837, 656					. 335

2 Includes 195 ounces of gold and 51 ounces of silver recovered from mill cleanup at 3 inactive properties.

The classification originally adopted in 1905 on the basis of smelter terminology, smelter settlement contracts, and metal recovery has been used continuously in succeeding years, except for modifications necessitated by the improvement in metallurgy and the lowering of the grade of complex ores treated. The copper ores include those smelting ores that contain 2.5 percent dry assay or more of copper (or less than this percentage if no other metal is present); or those ores concentrated chiefly for their copper content. The lead ores are those that contain 5 percent dry [assay [(minimum lead-smelting charge requires 7.5 to 8.5 percent wet assay) or more of lead, irrespective of precious-metal content; and ore that carries any grade of lead exclusively is called 'a lead ore. Zinc-smelting ores (chiefly oxides) had ranged from 16 to 45 percent zinc; but, with the development of slag fuming, which permits some oxidized ore in the charge, and with high zinc prices, the minimum has declined to as low as 5 percent recoverable zinc. Zinc concentrating ores include any grade of zinc ore that makes marketable zinc concentrate, irrespective of precious-metal content. The mixed ores are combinations of those enumerated.

Includes 195 ounces of gold and 51 ounces or suiver recovered from min cleanup at 3 mactive properties.
 Includes metal recovered from tungsten or or tungsten tailings.
 Includes 58,482 tons of old zinc slag.
 Includes 30,243 tons of old zinc slag.
 Includes 8,346 tons of ore and contained recoverable metal from the former Metals Reserve Company stockpile at Jean, Nev.
 Includes 7,142 tons of old zinc slag.
 Excludes magnetite-pyrite ore and gold and silver therefrom.

Gold, gold-silver, and silver ores containing too little copper, lead, or zinc to be classified as copper, lead, zinc, or mixed base-metal ores are called dry ores, regardless of the ratio of concentration, except low-grade ore milled chiefly for its copper content and having very little or no precious-metal content (chiefly the porphyry coppers) and ores from which separate products of lead concentrates and zinc concentrates are made. The crude ore into the mill in these two exceptional instances thus takes its name from its products—a name that is also justified by the mineralogical content and final recovery of metals. The dry ores thus are ores, chiefly siliceous, valuable for their gold and silver content and, in some instances, for their fluxing properties, regardless of method of treatment. Dry gold ores are those that by inspection are overwhelmingly of gold content; a similar qualification applies to silver ores; decision as to gold-silver ore is made on a basis of value, using the rule that the bimetal classification is not used unless the metal of lower value equals or exceeds one-quarter of the combined value of the gold and silver.

The lead, zinc, and zinc-lead ores in most districts in the States east of the Rocky Mountains carry no appreciable quantity of gold or silver; such ores are excluded from this report unless otherwise indicated.

TABLE 11.—Mine production of gold and silver in the United States, 1943-47 (average) and 1948-52, by percent from sources and in total fine ounces

			Percer	it from—			,
Year	Placers	Dry ore	Dry ore Copper ore		Zinc ore	Zinc-lead, zinc-cop- per, lead- copper, and zinc-lead- copper ores	Total fine ounces
GOLD							·
1943-47 (average)	24. 8	36. 3	30. 1	0.6	0.5	7. 7	1, 400, 094
1948	29. 8	39. 5	22. 4	.5	.2	7. 6	2, 014, 257
1949	26.8	44.8	19.8	.6	.2	7.8	1,991,783
1950	25.5	43.1	23.1	.7		7.5	2,394,231
1951	24. 8	38. 9	27. 5	.5	.2	8. 1	1, 980, 663
1952	22. 5	39. 5	29. 4		.2	8. 0	1, 893, 261
SILVER							
1943-47 (average)	0. 1	23. 5	29.8	8. 1	2.0	36. 5	32, 739, 346
	. 2	26. 6	20.7	5. 9	1.5	45. 1	38, 096, 031
1949	.2	23. 5	20. 0	7. 8	1.5	47. 0	34, 674, 952
1950		32. 8	19. 6	5. 1	1.0	41. 3	42, 459, 014
1951	.1	31. 9	20. 8	4. 2	1. 8	41. 1	39, 766, 779
1952		31. 3	20. 6	4. 4	2. 0	41. 6	39, 452, 330

¹ Includes Alaska.

TABLE 12.—Mine production of gold and silver in the United States in 1952, by States and sources, in fine ounces of recoverable metal

State	Placers	Dry ore	Copper ore	Lead ore	Lead- copper ore	Zinc ore	Zinc-lead, zinc-cop- per, and zinc-lead- copper ores	Total
Colorado Idaho Montana Nevada New Mexico Oregon Pennsylvania South Dakota Tennessee Texas Utah Vermont Washington	142, 343 2, 180 4, 321 78 33, 079 2 4, 896	482, 534	84, 439 2 3 371 1 729 3, 745 59, 295 1, 608 8 3 5 1, 500 241 23 403, 321 162 2		16 2	-	27, 763	240, 557 112, 355 2 258, 176 124, 594 32, 997 24, 161 117, 203 2, 949 5, 509 1, 500 482, 534 241 39 435, 507 162 54, 776
Wyoming	426, 263	748, 341	555, 520	6, 950	40	4, 334	151, 813	1, 893, 261
SILVER Alaska Arizona California Colorado Idaho Illinois Missouri Montana Nevada New York Oregon Pennsylvania South Dakota Tennessee Texas Utah Vermont Washington Wyoming	6 11,011	2, 590 131, 767 	2, 909, 567 2 8 12, 027 251 7, 816 1, 541, 348 174, 357 85, 335 362 5 9, 247 57, 569 3, 290, 788 45, 361 37	233 26, 365 227, 842 108, 919 497, 555 6 517, 432 93, 922 149, 383 10, 733 335 3, 647 74, 007	819 496			32, 986 4, 701, 330 21, 099, 658 2, 813, 643 14, 923, 165 517, 432 6, 138, 185 941, 195 479, 318 38, 895 4, 037 9, 247 132, 1020 57, 599 7, 194, 109 45, 361 315, 645
Total	55, 046	12, 339, 700	8, 134, 271	1, 735, 208	78, 955	777, 354	16, 331, 796	39, 452, 330

Includes 195 ounces of gold and 51 ounces of silver recovered from mill cleanup at 3 inactive properties.
 Includes metal recovered from tungsten ore or tungsten tailings.
 Includes metal recovered from pyritic ore (residue).
 Includes 8,346 tons of ore and contained recoverable metal from the former Metals Reserve Company stockpile at Jean, Nev.
 From magnetite pyrite ore.
 A little silver recovered from lead-copper ore from one mine included with that from lead ore,

TABLE 13.—Gold and silver produced in the United States from ore and old tailings, in 1952, by States and methods of recovery, in terms of recoverable metals ¹

State		Ore and old tailings to mills								
	Total cre, old tailings, etc., treated (short tons)		Recoverable in bullion		Concentrates smelted and recoverable metal			Crude ore to smelters		
		Short tons	Gold (fine ounces)	Silver (fine ounces)	Concen- trates (short tons)	Gold (fine ounces)	Silver (fine ounces)	Short tons	Gold (fine ounces)	Silver (fine ounces)
Western States and Alaska: Alaska. Arizona California. Colorado. Idaho Montana Nevada New Mexico Oregon. South Dakota Texas Utah. Washington Wyoming.	424, 784 1, 548, 815 3 3, 008, 230 4 4, 625, 750 5 7, 313, 697 9, 144, 224 931 1, 324, 817 1, 270 6 32,875, 034	11, 457 2 41,002, 438 401, 050 1, 526, 124 2, 934, 210 4, 504, 448 7, 203, 100 8, 978, 040 1, 324, 789 32, 699, 373 1, 362, 769	1, 186 386 101, 033 66, 435 4, 946 254 18, 733 116 57 482, 534	195 136 40, 994 17, 411 2, 245 111 3, 697 20 10 131, 767	1, 363, 172 36, 412 177, 657 275, 002 521, 847 265, 012 367, 430 175 1, 090, 607 74, 360	81, 86, 879 7, 915 54, 162 23, 055 19, 035 62, 769 1, 789 430, 792 36, 322	3, 421, 122 810, 040 2, 550, 667 14, 720, 616 5, 707, 910 782, 143 432, 122 2, 580 6, 474, 234 263, 222	2 647, 116 23, 734 22, 691 74, 020 121, 302 110, 597 166, 184 89 2, 1, 270 175, 661 39, 703	25, 020 6, 885 1, 817 675 4, 794 2, 622 1, 042 83 39 4, 715 15, 257	1, 280, 06 240, 15 245, 22 198, 71 430, 25 144, 34 47, 17 36 34, 67 719, 87 20, 37
TotalStates east of the Mississippi	103, 331, 037 7 9, 039, 669	101, 948, 640 7 9, 039, 669	678, 874	228, 532	4, 171, 681 631, 144	723, 272 1, 903	35, 164, 686 154, 853	1, 382, 397	62, 949	3, 331, 781
Total	112, 370, 706	110, 988, 309	678, 874	228, 532	4, 802, 825	725, 175	35, 319, 539	1, 382, 397	62, 949	3, 331, 78

Missouri excluded.
 Excludes 3,735,773 tons of ore leached from which no gold or silver was recovered.
 Includes 58,482 tons of old zinc slag.
 Includes 30,243 tons of old zinc slag.
 Excludes tungsten ore.
 Includes 7,142 tons of old zinc slag.
 Excludes 7,142 tons of old zinc slag.
 Excludes magnetite-pyrite ore from Pennsylvania. Includes material classified as fluorspar ore mined in Illinois and Kentucky.

TABLE 14.—Gold and silver produced at amalgamation and cyanidation mills in the United States and percentage of gold and silver recoverable from all sources, 1943-47 (average) and 1948-52 1

		Bullion and precipitates recoverable (fine ounces)			Percent of gold and silver from all sources 1								
Year	Amalg	amation	Cyan	Cyanidation		Amalgama- tion		Cyanida- tion		Smelting 2		Placers	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	
1949 1950 1951	197, 013 378, 590 450, 618 547, 118 445, 466 422, 087	42, 843 104, 598 119, 443 153, 806 93, 958 87, 589	161, 957 278, 237 290, 938 300, 783 224, 968 256, 787	217, 239 481, 406 555, 859 449, 699 274, 974 140, 943	14. 1 18. 8 22. 6 22. 9 22. 5 22. 3	0.1 .3 .3 .4 .2 .2	11. 6 13. 8 14. 6 12. 6 11. 3 13. 6	0.7 1.3 1.6 1.0 .7	49. 5 37. 6 36. 0 39. 0 41. 4 41. 6	99. 1 98. 2 97. 9 98. 4 98. 9 99. 3	24. 8 29. 8 26. 8 25. 5 24. 8 22. 5	0.1 .2 .2 .2 .2 .2	

 ¹ Includes Alaska. Illinois, Michigan, and Missouri excluded, 1943–47; Missouri excluded 1948–52.
 ² Both crude ores and concentrates.

TABLE 15.—Gold and silver produced at amalgamation and cyanidation mills in the United States in 1952, by States

	Amalga	mation	Cyani	idation	Percent of gold and silver from all sources in State				
State	erable	Bullion recoverable (fine ounces)		Bullion and precipitates re- coverable (fine ounces)		Amalgamation		Cyanidation	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	
Western States and Alaska: Alaska Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Washington Wyoming	254 378 116 57 328, 844	116 136 12, 147 8, 278 2, 108 11 144 20 10 64, 584 35	30, 284 48, 528 2, 271 18, 355 153, 690 3, 108	28, 847 9, 133 137 3, 553 	0. 26 . 34 27. 40 14. 37 8. 11 1. 05 . 32 3. 93 1. 03 68. 15 . 16	0. 35 (1) 1. 10 . 29 . 01 (1) . 02 (1) . 25 48. 89 . 01	0. 23 11. 73 38. 95 6. 88 15. 66 31. 85 5. 67	0. 24 2. 62 . 32 (1) . 38 	
TotalStates east of the Mississippi	422, 087	87, 589	256, 787	140, 943	22. 32	. 22	13. 58	. 36	
Grand total	422, 087	87, 589	256, 787	140, 943	22. 29	. 22	13. 56	.36	

¹ Less than 0.01 percent.

PLACERS

The domestic output of gold by placer mining declined 13 percent to 426,263 ounces in 1952; it corresponded to 22 percent of the United States total in 1952 compared with 25 percent in 1951. The drop in production was general to all the various methods of gold placer mining.

Of the total placer gold of 1952, 358,492 ounces (84 percent) was recovered by bucket-line dredges. The quantity of gold recovered by this method since the inception of the industry as a commercial factor in 1896 to the end of 1952 is recorded as 22,581,798 ounces, originating by States as follows: California, 13,317,851; Alaska, 6,492,184 (including the production from single-dipper dredges and some gold by hydraulicking); Montana, 785,419; Idaho, 697,200; and other States, 1,289,144.

The second most important gold-placer-mining method was non-floating washing plants, with mechanical earth-moving equipment for gravel delivery. Production by this method was upward from 1944 through 1950 but declined progressively in 1951 and 1952. Production by dragline dredging remained in third place, and production by small-scale hand methods regained fourth place in 1952 over that of hydraulic mining.

TABLE 16.—Gold production at placer mines in the United States, by class of mine and method of recovery, 1943-47 (average) and 1948-52 ¹

				G	old recoveral	ole
Class and method	Mines producing	Washing plants (dredges)	Material treated (cubic yards)	Fine ounces	Value	Average value per cubic yard
Surface placers: Gravel mechanically handled:						
Bucket-line dredges: 1943-47 (average) 1948- 1949- 1950- 1951	38 57 52 43	49 78 74 63	63, 888, 980 120, 062, 532 110, 897, 581 108, 250, 189	270, 773 475, 228 425, 863 492, 939	\$9, 477, 041 16, 632, 980 14, 905, 205 17, 252, 865 14, 150, 675 12, 547, 220	\$0. 148 . 139 . 134 . 159
1951		56 56	108, 250, 189 93, 214, 943 69, 940, 758	492, 939 404, 305 358, 492		. 152 . 179
1948 1949 1950 1951	42 35 23 25	28 41 31 21 23	2 4, 536, 491 5, 224, 260 4, 583, 055 4, 623, 474 2, 342, 647 1, 936, 587	1 23, 391 31, 446 22, 789 21, 032 8, 820 8, 517	1 818, 664 1, 100, 610 797, 615 736, 120 308, 700	. 180 . 211 . 174 . 159 . 132
1952 Becker-Hopkins dredges: 1943-47 (average) 1948-52	16	16	1, 936, 587	8, 517	298, 095 224	. 154
1948-52. Suction dredges: 1943-47 (average) 1948.	E .	3 9	23, 498	171 473	5, 985 16, 555	. 255
1950	17	13 14 9 9	23, 498 84, 200 278, 765 263, 800 180, 500 74, 100	1, 418 1, 422 717 305	49, 630 49, 770 25, 095 10, 675	. 197 . 178 . 189 . 139
1952. Nonfloating washing plants: 1943-47 (average) 1948. 1949. 1950.	185	1 61 152 183 183	2 1, 987, 514 5, 985, 070 4, 995, 465 8, 510, 139	1 23, 007 65, 856 70, 974 85, 932	1 805, 238 2, 304, 960 2, 484, 090 3, 007, 620	. 405 . 385 . 497 . 353
1961 1952 Gravel hydraulically handled: 1943–47 (average)	117 103 1 112	115 102	8, 510, 139 7, 049, 566 4, 795, 100	69, 592 54, 866	3, 007, 620 2, 435, 720 1, 920, 310	. 346 . 400 . 431
1948 1949 1950 1951 1952 Small-scale hand methods:	137 81 88 51 33		2 1, 578, 022 1, 708, 650 779, 800 639, 585 257, 800 130, 401	16, 976 7, 107 4, 342 3, 460 1, 326	594, 160 248, 745 151, 970 121, 100 46, 410	. 348 . 319 . 238 . 470 . 356
	· ¹ 190 275		² 371, 217 296, 776 248, 076	¹ 5, 156 9, 800	1 180, 460 343, 000	. 486 1. 156
wet: 1943-47 (average) 1948. 1949. 1950. 1951. 1962.	279 250 148 119		248, 076 261, 562 99, 804 101, 152	4, 234 4, 856 3, 106 2, 598	148, 190 169, 960 108, 710 90, 930	. 597 . 650 1. 089 . 899
Dry: 1943–47 (average) 1948. 1949. 1950 1951.	10 10 13 7 4		2, 498 3, 900 2, 870 2, 200 550	114 170 144 88 27	3, 997 5, 950 5, 040 3, 080 945	1. 600 1. 526 1. 756 1. 400 1. 718
1952	1 22		2 7, 701	1 701		3 186
1950 1951 1952	42 26 34 19 14		20, 105 3, 717 12, 790 4, 275 4, 370	551 206 802 498 159	1 24, 542 19, 285 7, 210 28, 070 17, 430 5, 565	. 959 1. 940 2. 195 4. 077 1. 273
Unclassified placers: 1943-47 (average) 1948-52	1		(3)	4, 403	154, 112	(3)
Grand total placers: 1943-47 (average) 1948	4 516 724 4 680		272, 396, 921 133, 385, 493 121, 789, 329 122, 563, 739 103, 150, 085	347, 160 600, 500 532, 735 611, 413 490, 525	12, 150, 586 21, 017, 500 18, 645, 725 21, 399, 455 17, 168, 375	. 168 . 158 . 153
1900 1951 1952	647 413 331		122, 563, 739 103, 150, 085 76, 982, 468	611, 413 490, 525 426, 263	21, 399, 455 17, 168, 375 14, 919, 205	. 175 . 166 . 194

Data for Alaska not separately available; included with "Unclassified placers" for 1943 and/or 1944.
 Data for Alaska not available and not included for years 1943 and/or 1944.
 Data not available for years 1943-44.
 A mine using more than 1 method of recovery is counted but once in arriving at total for all methods.

Alaska produced 56 percent of the domestic placer gold in 1952, followed by California with 33 percent and Nevada with 8. Other States with a considerable yield of placer gold were, in order of output, Oregon, Idaho, and Colorado. Alaska led in production by bucket-line dredges, nonfloating washing plants and hydraulicking; and California by dragline dredging, suction dredging, small-scale hand methods, and underground placer mining. No production by dry placer mining was recorded in 1952.

Table 16 shows the placer gold produced in the United States, classified by mining methods, from 1943-47 (average) and 1948 to 1952. Additional information on placer mining may be found in the

State reviews of volume III.

REFINERY PRODUCTION

Table 17 contains official estimates of production of gold and silver in the United States, made by the Bureau of the Mint, based upon arrivals at United States mints and assay offices and at privately owned refineries. The mints and assay offices determine the State source of all newly mined unrefined material when deposits are received. The State source of material received by privately owned refineries is determined from information submitted by them and by intervening smelters, mills, etc., involved in the reduction processes.

TABLE 17.—Gold and silver refined in the United States, 1943-47 (average) and 1948-52, and approximate distribution by source (State), in 1952, in fine ounces

State or Territory	Gold	Silver	State or Territory	Gold	Silver
1943-47 (average) 1948 1949 1950 1951 1952: Alaska Arizona California Colorado Idaho Illinois Missouri Montana	1, 394, 665 2, 025, 480 1, 921, 949 2, 288, 708 1, 894, 726 249, 800 113, 000 263, 000 125, 000 34, 000 29, 900	33, 060, 953 39, 228, 468 34, 944, 554 42, 308, 739 39, 907, 257 34, 600 4, 615, 000 1, 176, 000 1, 176, 000 4, 000, 000 14, 500, 000 6, 500, 000	1952 (cont.): Newada New Mexico New York Oregon Pennsylvania South Dakota Tennessee Texas Utah Vermont Washington Wyoming Total	125, 500 3, 000 6, 000 1, 500 471, 900 39 450, 000 54, 000 1	1,000,000 500,000 88,700 4,000 9,200 130,000 5,000 7,500,000 46,200 300,000

[U. S. Bureau of the Mint]

CONSUMPTION AND USES IN INDUSTRY AND THE ARTS

Monetary use has claimed by far the largest part of the gold and silver output through the years, but this use to a large extent takes the form of stockpiling in Government and private hoards that can be made available to industry and the arts without smelter or refinery preparation. In contrast, the gold and silver that enter industry and the arts are consumed much as are other metals, any return as secondary metal requiring the usual channels of collection, smelting, and refining. The consumption of gold and silver in the arts antedates written history, but industrial use of these two metals is a comparatively recent development. A process has been developed for plating small mechanical parts with gold or silver to meet rigid specifications as to thickness and adhesion.⁵

⁵ Du Mond, T. C., Silver and Gold Plated Parts Meet Tough Specifications: Mat. and Meth., vol. 36, No. 5, November 1952, pp. 114-115.

TABLE 18.—Gold and silver produced in the United States, 1792-1952 1

Period	Go	old	Silver		
Period	Fine ounces	Value ²	Fine ounces	Value 3	
1792-1847 1848-73 1874-1962 Total	1, 187, 170 60, 021, 278 226, 989, 723 288, 198, 171	\$24, 537, 000 1, 240, 750, 000 5, 542, 180, 080 6, 807, 467, 080	309, 500 146, 218, 600 4, 000, 406, 230 4, 146, 934, 330	\$404, 500 193, 631, 500 8, 026, 052, 881 3, 220, 088, 881	

¹ Includes Alaska. From Report of the Director of the Mint. The estimates for 1792–1873 are by R. W. Raymond, Commissioner of Mining Statistics, Treasury Department, and since then, by the Director of the Mint.

the Mint.

Representation of the Mint.

Gold valued in 1934 and thereafter at \$35 per fine ounce; prior thereto, at \$20.67+ per fine ounce. Silver valued in 1934 and thereafter at Government's average buying price for domestic product.

Gold.—The arts require a much larger quantity of gold than does industry, but the metal's corrosion resistance and other properties have resulted in some industrial demand. Consumption in the arts increased rapidly during the war. A high marriage rate and widespread prosperity have increased the sale of jewelry, watches, and many luxury items made of gold. Comparison of 1952 gold figures with those for 1951 shows a 13-percent decrease in the return from industrial use, a 21-percent increase in issue for industrial use, and a 39-percent increase in net consumption. The net absorption by industry and the arts exceeded the total new gold produced from domestic mines during 1952 by 45 percent.

TABLE 19.—Net industrial ¹ consumption of gold and silver in the United States, 1948–47 (average) and 1948–52

[U. S.	Bureau	of the	Mint]
--------	--------	--------	-------

		Gold (dollars)		Silver (fine ounces)			
Year	Issued for industrial use	Returned from indus- trial use	Net indus- trial con- sumption	Issued for industrial use	Returned from indus- trial use	Net indus- trial con- sumption	
1943-47 (average) 1948 1949 1950 1951 1952	131, 518, 846 90, 128, 764 148, 975, 571 134, 587, 773 105, 012, 094 127, 189, 489	32, 484, 252 45, 142, 764 40, 133, 100 36, 742, 020 35, 535, 115 30, 838, 949	99, 034, 594 44, 986, 000 108, 842, 471 97, 845, 753 69, 476, 979 96, 350, 540	154, 615, 252 129, 186, 173 110, 660, 459 155, 257, 340 151, 650, 905 121, 538, 076	44, 635, 252 23, 897, 173 22, 660, 459 45, 257, 340 46, 650, 905 25, 038, 076	109, 980, 000 105, 289, 000 88, 000, 000 110, 000, 000 105, 000, 000 96, 500, 000	

¹ Including the arts.

Silver.—Although 8 percent smaller than in 1951, the net consumption of silver in the United States continued at a high rate in 1952 and again exceeded any annual output ever achieved by domestic mines.

Silver has many properties that make it valuable in the arts and industries. It is beautiful in color and will take a fine finish. It is highly malleable and ductile and ranks first among metals in conductivity of electricity and heat. It resists corrosion, especially by weak acids and organic compounds.

For many years the principal consumer of silver has been the silverware industry, mostly in the fabrication of tableware in sterling silver. Pure silver is too soft for most uses and is alloyed with 7.5 percent copper to form sterling silver of standard grade. Jewelry, insignia, and many novelties are also made of sterling silver. Second in rank in silver consumption is the photographic industry, followed by the electroplating industry and the manufacture of silver-

clad equipment for the chemical industry.

Of growing importance are the silver solders and brazing alloys, which are made in a wide variety of types containing from 10 to 80 percent silver, with the remainder consisting of copper, zinc, or other metals. Silver-bearing alloys are widely used in joining pipes, making electrical connections, and forming mechanical assemblies. Silver alloyed with about 10 percent copper is often used in electrical contacts; small additions of silver to copper impart hardness to commutator bars. Soft lead-silver solder containing about 2.5 percent silver has advantages over soft lead-tin solders or babbitt metal for some uses.

Compounds of silver are used for caustic, astringent, and antiseptic purposes in medicine. Silver has considerable use in dentistry as dental fillings, and in surgery for suture wires and plates.

MONETARY STOCKS

According to the Federal Reserve Bulletin, gold holdings of the United States Treasury rose from \$22,695,000,000 on January 1, 1952, to \$23,186,000,000 on January 1, 1953. The high for 1952 was reached in July when Treasury reserves had climbed to \$23,350,000,-000, corresponding to a gain of \$655,000,000 from January. flowed away from the United States steadily from August through December, however, with the result that the net gain for 1952 was \$491,000,000. Largely as a consequence of credits extended under the Marshall Plan, gold had moved regularly from the United States from September 1949 to July 1951, with an overall decline in Treasury holdings in this period of \$2,852,000,000. Gold moved to the United States during the last 6 months of 1951, however, with a gain in this period of \$939,000,000. Total world reserves are not positively known. since reports from some countries are not received. However, the Federal Reserve estimated that world monetary reserves of gold rose \$260,000,000 in 1952 to \$36,210,000,000, exclusive of holdings of the Soviet Union.

Silver holdings of the United States Treasury decreased 27,000,000 fine ounces during 1952 to 1,938,000,000 ounces. The holdings do not include 410,553,000 ounces released by the United States during World War II under lend-lease agreements that provide for the return of this silver. By countries, the quantities loaned under these agreements were as follows: Australia 11,773,093 ounces; Fiji Islands 196,000; United Kingdom 88,074,000; India 226,000,000; Ethiopia 5,425,000; Netherlands 56,737,000; Saudi Arabia 22,348,000. consummation of the Japanese Peace Treaty on April 28, 1952, set the date within 5 years afterward of which all lend-lease silver was to be returned to the United States. A complication was introduced by the political separation of India and Pakistan in 1947, and in May 1952 a statement was made by Indian officials that the total loan of silver to undivided India would be repaid by India and Pakistan in a ratio of 82½ and 17½, respectively. It was stated further that India would repay its share from surplus stocks of silver and silver coins withdrawn from circulation.

Coinage requirements of silver by governments were 104,100,000 ounces in 1952, compared with 89,000,000 ounces in 1951. Of the total used, the United States accounted for 57,300,000 ounces, Saudi Arabia 23,000,000, Western Germany 8,800,000, Mexico 8,300,000, Canada 4,200,000, Cuba 2,100,000, and others 400,000.

PRICES

Since January 1934, the price of gold at the United States Mint has been \$35 per fine troy ounce. The Treasury buying price for silver domestically mined after July 1, 1939, was fixed at \$0.711+ per ounce on July 6, 1939; on July 31, 1946, the President approved an act (Public Law 579, 79th Cong.) that provided that the seigniorage to be deducted for silver mined after July 1, 1946, and delivered to the Treasury be reduced from 45 percent to 30 percent. The effect was to raise the price of domestically mined silver to 90.50505+ cents an

ounce; there has been no price change since.

The New York price of silver, per ounce, 0.999 fine, opened in 1952 at \$0.8800, where it remained until early in May. Four drops in May set the low for the year of \$0.8275 on May 28. This price continued to late in July when it recovered to \$0.8325, where it held for the balance of 1952. The average price of pound-sterling exchange in New York (buying rates for cable transfers, as certified by the Federal Exchange Bank of New York) was \$2.7926 in 1952. The London price of silver, per ounce, 0.999 fine, ranged in 1952 from a high of 77d. to a low of 72½d. (equivalent in United States currency to \$0.8983 and \$0.8458).

FOREIGN TRADE 6

The excess of exports over imports of gold that prevailed in 1950 and 1951 was replaced by an excess of imports over exports in 1952. The gain from imports plus domestic output far exceeded consumption in the arts and industries, and gold monetary stocks thus increased. As has been normal for many years, imports of silver exceeded exports by a wide margin.

TABLE 20.—Value of gold and silver imported into and exported from the United States, 1948-52

	Imports	Exports	Excess of imports over exports 1
Gold: 1948	\$1, 981, 175, 178	\$300, 771, 144	\$1, 680, 404, 034
	771, 390, 261	84, 935, 678	686, 454, 583
	162, 748, 661	534, 035, 794	-371, 287, 133
	81, 258, 502	630, 381, 566	-549, 123, 064
	740, 254, 160	55, 921, 206	684, 332, 954
Silver: 1948. 1949. 1950. 1951. 1952.	70, 884, 513	12, 400, 060	58, 484, 453
	73, 535, 694	23, 281, 043	50, 254, 651
	110, 035, 107	6, 201, 874	103, 833, 233
	103, 468, 510	8, 590, 185	94, 878, 325
	67, 296, 379	4, 921, 285	62, 375, 094

[U. S. Department of Commerce]

¹ Excess of exports over imports indicated by minus sign.

⁶ Figures on imports and exports compiled by Mae B, Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 21.—Gold imported into the United States in 1952, by countries of origin

[U. S. Department of Commerce]

_	Ore and b	ase bullion	Bullion	, refined	United	Foreign
Country of origin	Troy ounces	Value	Troy ounces	Value	States coin (value)	coin (value)
Australia	13, 808	\$482, 544				
Austria	14	507				
Belgium-Luxembourg	1, 957	68, 489	114	\$4,001		
Bermuda	35	1, 200				
Bolivia	964	33, 608				
Brazil	10, 406	364, 198				
British Guiana	8, 775	312, 349	į.	l	ļ	
Canada	142, 123	4, 961, 935	17, 736, 317	620, 771, 217		\$471
Chile	25, 326	886, 539	21,100,021			φπ11
Colombia	537	18, 775				
Cuba	881	30, 766				
Dominican Republic	332	11,616				
Ecuador	19, 476	677, 691				
El Salvador	23, 125	808, 719				
French Guiana	13	450				
Germany, West	10	349	18, 524	648, 345		87, 487
Guatemala	4	136	l			0., 20.
Honduras	20, 284	710, 597			l	-
Iran	- 20,201	68			l	
Israel					\$400	
Italy	174	5, 934				
Japan			288, 539	10, 098, 880		
Korea, Republic of	1	34				
Liberia	761	26, 576				
Malta, Gozo, and Cyprus	2, 323	81, 102				
Mexico	96, 839	3, 374, 000				
Nicaragua Northern Rhodesia	79, 435	2, 773, 667				
Normern Knodesia	243	8, 508				
Panama	629	21, 922				
Peru	21, 495	750, 536				
Philippines	128, 294	4, 724, 648	15, 478	624, 524		
Portugal	15, 762	551, 347				
Southern Rhodesia	1, 795	62, 821				
Turkey Union of South Africa	1,856	64, 836				
United Kingdom	558	19, 568	2, 440, 227	85, 407, 975 . 338, 566		
Venezuela	2, 056	71, 299	9,674	338, 566		251
Yugoslavia	471	16, 442				
1 ugustavia	9, 950	348, 267				
Total	630, 714	22, 272, 043	20, 508, 873	717, 893, 508	400	88, 209

GOLD AND SILVER

TABLE 22.—Gold exported from the United States in 1952, by countries of destination

[U. S. Department of Commerce]

	Ore and b	ase bullion	Bullion	, refined	Foreign
Country of destination	Troy ounces	Value	Troy ounces	Value	coin (value)
Argentina					\$12, 419, 533
Bahamas			2	\$108	Ψ12, 110, 000
Belgium-Luxembourg			256	9,829	
Bolivia			249	11, 236	
Brazil			757	29,689	
Canada.			92, 768	3, 403, 347	
Chile			2, 126	74, 996	
Cuba			539	18, 788	
Dominican Republic			1, 251	56, 476	
Ecuador			3	110	
Egypt			13,936	510, 268	
El Salvador			8,070	283, 551	
France			9,337	341, 757	
Germany, West			142,696	5,055,646	·
Greece					14, 400, 384
Guatemala			63	2,857	
Haiti			716	28, 536	
Honduras			75	3,896	
Iran			4, 133	157, 875	
Italy			320	11, 796	
Kuwait			128, 935	4, 757, 446	
Lebanon			88,001	3, 080, 034	
Mexico			127	6,809	
Netherlands			45, 900	1, 622, 161	
Netherlands Antilles			45	1,882	
Nicaragua			3	242	
Norway			37	1,376	
Panama.			1,207	44, 366	
Paraguay.			1 000	204	
Peru			1,022	36,032	
Philippines Portugal			57, 165	2, 989, 030	
Saudi Arabia			50, 306	1, 783, 670	
			189 59, 995	9,879	
				2,099,818	
Tangier United Kingdom	1, 835	\$64,000	11, 350	397, 285	
Uruguay			9, 513	352, 561	
Venezuela			51, 428		
v energeia			51,428	1, 853, 733	
Total	1, 835	64,000	782, 526	29, 037, 289	26, 819, 917

TABLE 23.—Silver imported into the United States in 1952, by countries of origin [U. S. Department of Commerce]

	Ore and b	ase bullion	Bullion	, refined	United	Foreign
Country o origin	Troy ounces	Value	Troy ounces	Value	States coin (value)	coin (value)
Argentina Australia Austria	692 1, 151, 8ŏ9	\$595 991, 101				
Belgium-Luxembourg Bolivia	595, 151 3, 791, 666	506, 162 3, 242, 046	343, 509	\$288,875		\$230
Brazil Canada Ceylon	3, 995 5, 768, 762 49	3, 434 4, 932, 626 42	13, 273, 962	11, 358, 777	\$721, 701	60
Chile Colombia Cuba	748, 006 1, 500 163, 211	640, 430 1, 314 139, 511				
Denmark Dominican Republic			13, 017	11, 141	10. 533	
Ecuador El Salvador France	333, 277	63, 767 283, 090	450 563	385 318		
Germany, West	8, 194	6, 985	450, 563 6, 400	l	2, 961	630 616
Honduras Indonesia	3, 578, 324	101, 323 3, 039, 888	99,848	84, 254	1, 806, 450	14, 912
Iran Italy Japan	5, 485 16, 400 103, 970	4, 633 14, 247 85, 983	109, 653 6, 728, 549	96, 169		
Korea, Republic of Lebanon Malta, Gozo, and Cyprus	2, 921 71, 376 19, 020	2, 476 62, 245 16, 859				
Mexico Netherlands Nicaragua	6, 075, 193 182, 513 137, 309	5, 154, 912 154, 939 117, 927	10, 089, 478 1, 086, 541	8, 508, 792 924, 712	37, 805	
Nigeria Northern Rhodesia	1, 812 62, 063	1, 504 54, 128				
Panama Peru Philippines	5, 566, 796 429, 115	4, 778, 950 372, 777	8,851,717 24,598	7, 573, 897		150, 815
Poland-Danzig Portugal Southern Rhodesia	58, 802	51, 261				119
SwedenSwitzerland			22, 779	19, 276	392 185	
Syria Taiwan Turkey	36, 016	30, 204	31, 115	26, 992		310
Union of South Africa U. S. S. R. United Kingdom	382, 182 628, 278	324, 411 538, 817	2, 990, 396	2, 610, 893	1	į į
Venezuela Yugoslavia	148, 513 511, 818	123, 716 434, 177	615, 684	2, 610, 893 519, 143		362
Total	30, 779, 137	26, 278, 381	44, 737, 809	38, 251, 831	2, 589, 729	176, 438

TABLE 24.—Silver exported from the United States in 1952, by countries of destination

[U. S. Department of Commerce]

	Bullion	, refined	United	
Country of destination	Troy ounces	Value	States coin (value)	Foreign coin (value)
Bahamas Canada Colombia Cuba	167, 359 119, 607	\$141, 171 102, 606	\$5,000 54,850	\$1,580,894
Cuba Ecuador El Salvador France Germany, West	4, 312 20 465, 628 278	3, 782 17 409, 656 245	250, 000	1, 250, 000
Haiti	18	15	3,000	216
Norway Portugal Saudi Arabia Switzerland	341 50, 064 400, 053	299 41, 678 336, 829	34, 500	
Turkey_ Union of South Africa	480 400, 166 386, 504 10, 103	428 353, 146 333, 954 8, 999		
Total	2, 004, 933	1, 732, 825	357, 350	2, 831, 110

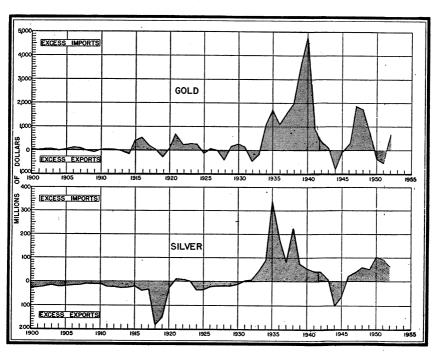


FIGURE 3.—Net imports or exports of gold and silver, 1900-52.

WORLD REVIEW

World output of gold rose 2 percent in 1952 compared with 1951, continuing the uptrend that began in 1946, but the 1952 total was well below the annual quantities produced before World War II. World silver production rose 6 percent in 1952 over 1951, owing mostly to gains in Mexico and Peru.

According to the Bureau of the Mint, the world output of gold and silver from 1493 to 1952 is 1,751,208,100 fine ounces of gold valued at \$45,071,610,800 and 19,590,263,100 fine ounces of silver valued at \$16,896,487,900.

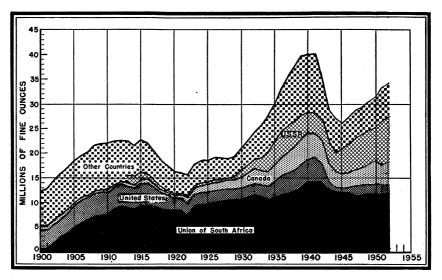


FIGURE 4.—World production of gold, 1900-52.

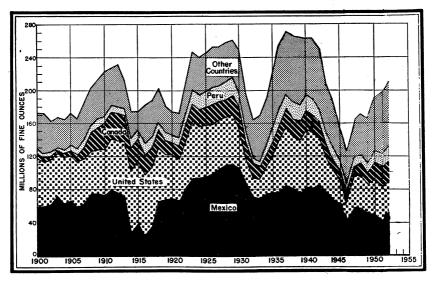


FIGURE 5.—World production of silver, 1900-52.

TABLE 25.—World production of gold, 1948-52, by countries, in fine ounces ²
[Compiled by Pauline Roberts and Berenice B. Mitchell]

Country 1	1948	1949	1950	1951	1952
North America:	0.007.400	1 001 040	9 900 700	1 804 796	1, 927, 000
United States (including Alaska) 3 Canada	2,025,480 3,529,608	1, 921, 949 4, 123, 518	2, 288, 708 4, 441, 227	1, 894, 726 4, 392, 751	4, 419, 570
Costa Rica 4	1,096 334	284 4 5, 692	115 4 6, 915	1 4 835	4 881
Cuba	29	993	475 397	411	332 4
Honduras	16 13, 633	25, 832	36, 545	31, 216	31, 967
Nicaragua (exports)	218, 019 1, 000	219, 139 5 9, 657	229, 206 1, 118	251, 160 2, 897	254, 675
Honduras Nicaragua (exports) Panama Salvador (exports) Mexico	20, 778 367, 612	27, 091 405, 550	29, 053 408, 122	2, 897 27, 097 394, 007	27, 682 459, 370
Total	6, 177, 600	6, 739, 700	7, 441, 900	6, 995, 100	7, 121, 500
South America:			0.000	0.000	0.000
Argentina (estimate)	8,000 6,687	8,000 33,533	8, 000 7, 716	8,000 63,200	8,000 5 9,034
Bolivia Brazil (estimate) British Guiana Chile	156,900	183, 500 19, 368	7, 716 195, 500 11, 800	200, 000 13, 485	180,000 6 21,000
Chile	16, 518 165, 062	179, 144	100 179	173,646	l 176, 025
Colombia	335, 260 79, 207	359, 474 90, 241	379, 412 91 946	446, 314 12, 683	422, 240 24, 267
ColombiaEcuadorFrench Guiana	13, 032	359, 474 99, 241 14, 757	379, 412 91, 946 12, 249 147, 967	12, 683 12, 056	8, 231
Peru	111, 162	113, 754	147, 967 4, 546	158, 270 6 494	134, 865 6, 134
SurinamVenezuela	4, 177 49, 730	113, 754 3, 794 61, 378	34, 462	6, 494 2, 861	6, 134 4, 797
Total	946, 000	1,076,000	1, 084, 000	1,037,000	995, 000
Europe: Finland	11, 317	14, 587	9, 465	18, 500	20, 100
France	47, 519	55, 537	63,015	18, 500 67, 838 1, 479	45, 011 2, 025
Germany, West	18,422	1, 447 10, 385	6 1, 500 10, 674	12.089	14,854
Portugal	11, 799 90, 000	10.385	19, 900	18, 350	10.000
Rumania	90,000 11,375	112, 528 30, 318	(7) 13, 217	12, 777	(7) 8, 944
Sweden	71, 889	80.280	78.866	70, 957	(7)
Finland France Germany, West Italy Protugal Rumania Spain Sweden U. S. S. R. (estimate) \$ Yugoslavia	7,000,000 26,331	7,000,000 34,594	8,000,000 42,760	9, 500, 000 21, 380	9, 500, 000 36, 266
Total (estimate)	7,300,000	7, 400, 000	8, 400, 000	9, 800, 000	9, 800, 000
Asia:	000	150	150	191	(7)
Burma China	230 88, 200	6 60, 000	108, 000	6 100, 000	100,000
India	180, 430 32, 000	6 60, 000 164, 203 35, 000	196,848	6 100, 000 226, 475	243, 629
India Indonesia (estimate) Japan	32,000 69,060	35,000 84,492	42,000 135,033	177, 472	201,392
K orea.	'	, i		1,000	15, 657
Korea, Republic of North Korea (estimate)	3, 466 300, 000	3, 419 300, 000	5, 144 200, 000	(7)	(7) 19, 806
Malaya	10, 212	13, 617 287, 844	18, 436 333, 991	17, 018 17, 018 393, 602	19, 806 469, 408
MalayaPhilippinesSarawak	209, 225 599	287,844 1,523	1, 440	931	843
Saudi Arania	74,000	1, 523 66, 835	66, 202	73, 104 30, 500	69, 394 33, 178
Taiwan (Formosa)	17, 668 (8)	16, 607 (8)	18, 232 (8)	(8)	(8)
Total (estimate)	990,000	1, 040, 000	1, 130, 000	1, 280, 000	1, 420, 000
Africa:	440	210	201	61	40
Angola	443 1, 507	319 256	261	493	1, 245 368, 769
Belgian Congo 9	1, 507 299, 774 3, 853	333, 853	339, 415	352,308	368, 769
Egypt	3, 853 2, 242	7, 045 2, 243	10, 724 1, 042	16, 469 675	17, 059
Ethiopia	41, 595 10, 706 63, 713	45, 102	43, 524 7, 170	32, 937	27, 291
French Cameroon	10,706	8, 938 57, 273	7, 170 54, 996	5, 422 52, 849	2, 604 51, 655
Angola. Bechuanaland Belgian Congo Egypt Eritrea. Ethiopia French Cameroon French Equatorial Africa French Morocco French West Africa Gold Coast Kenya Liberia.	804	643	119	2, 069 5, 700	4, 051
French West Africa 10	100,000 672,388	47,000 676,934	96, 000 689, 441	698, 676	1, 500 715, 036
Kenya	23, 429 13, 797	20,072	1 22, 945	698, 676 19, 765	10, 210 \$ 11 949
	13,797	14,656	11, 025	1 9 11 9, 800	1 700
Liberia	2 005	1 1 663	1.935	1.901	1,708
Liberia. Madagascar Mozambique. Nigeria.	2, 095 4, 734 2, 899 12 1, 180	1, 663 2, 468 2, 515 12 1, 186	1, 935 997 2, 238	1, 951 861 1, 566	1,768 831 61,350

For footnotes, see end of table.

TABLE 25.—World production of gold, 1948-52, by countries, in fine ounces 2— Continued

Country 1	1948	1949	1950	1951	1952
Sierra Leone Southern Rhodesia South-West Africa Sudan Swaziland Tanganyika (exports) Uganda (exports) Union of South Africa	514, 440 455 3, 579 3, 110 57, 557	2, 330 528, 180 32 4, 114 2, 841 68, 989 650 11, 705, 048	3, 484 511, 163 32 3, 503 1, 794 65, 127 509 11, 663, 713	3, 292 486, 907 (7) 1, 495 322 65, 224 223 11, 516, 450	6 2, 700 496, 731 (7) 1, 545 1 64, 693 181 11, 818, 681
Total	13, 415, 000	13, 535, 000	13, 535, 000	13, 275, 000	13, 590, 000
Oceania: Australia: Commonwealth New Guinea Papua Fiji New Zealand	163	889, 057 93, 045 450 104, 036 84, 874	867, 837 80, 099 788 103, 421 76, 527	895, 536 94, 085 248 93, 635 75, 115	980, 435 122, 431 149 \$ 95, 000 59, 373
Total	1, 159, 188	1, 171, 462	1, 128, 672	1, 158, 619	1, 257, 000
World total (estimate)	30,000,000	31,000,000	32, 700, 000	33, 500, 000	34, 200, 000

¹ Figures used derived in part from American Bureau of Metal Statistics. For some countries accurate rigures used derived in part from American Bureau of Metal Statistics. For some countries accurate figures are not possible to obtain owing to clandestine trade in gold (as for example, French West Africa). Data not available for Austria, Bulgaria, Czechoslovakia, Hungary, and Thailand; estimates included in the total. In addition, production in Cyprus and Indonesia was negligible.
 This table incorporates a number of revisions of data published in previous gold chapters.
 Refinery production. Excludes production of the Philippines.
 Imports into United States.

5 Exports.

Data not available; estimate included in total.
 Output from U. S. S. R. in Asia included with U. S. S. R. in Europe.
 Includes Ruanda-Urundi.

10 Estimate based on reported production.
11 Year ended September 30 of year stated.
12 Included is yield from Nkana mine refinery slimes accumulated during the war: 999 ounces in 1948;
972 in 1949; and 1,296 in 1950.

TABLE 26.—World production of silver, 1948-52, by countries, in fine ounces 2 [Compiled by Pauline Roberts and Berenice B. Mitchell]

Country	1948	1949	1950	1951	1952				
North America:									
United States	39, 228, 468	34, 944, 554	42, 308, 739	39, 907, 257	39, 840, 300				
Canada	16, 109, 982	17, 641, 493	23, 221, 431	23, 125, 825	24, 375, 853				
Central America and West Indies:	10, 100, 502	11,011,100	20, 221, 101	20, 120, 020	24,010,000				
Costa Rica 3	3,029	720	215	582					
Cuba	185, 216	8 157, 411	\$ 221,779	3 172, 318	\$ 163, 211				
Guatemala	(4)	81, 502	339, 360	309, 857	371, 679				
Honduras	3, 170, 871	3, 431, 614	3, 514, 556	3, 182, 254	3, 703, 912				
Nicaragua 3	216, 802	191, 082	133, 282	141, 764	137, 309				
Panama	400	(4)	1,940	5, 788	10.,000				
Salvador	5 216, 342	280, 309	462, 973	352, 102	368, 448				
Mexico	57, 519, 703	49, 454, 882	49, 141, 445	43, 797, 734	50, 353, 560				
Total	116, 651, 000	106, 184, 000	119, 346, 000	110, 996, 000	119, 314, 000				
South America:	1			,					
Argentina		1, 249, 421	1, 150, 000	1, 253, 879	962, 948				
Bolivia (exports)		6, 655, 204	6, 558, 751	7, 137, 465	7,065,608				
Brazil	23,095	21,041	21, 155	20, 315	17, 301				
Chile	861, 961	799, 685	746, 765	983, 491	1, 246, 356				
Colombia		106, 590	115, 711	129, 773	123, 175				
Ecuador	205, 800	264, 300	273, 200	33, 600	82, 297				
Peru	9, 288, 703	10, 609, 648	13, 367, 807	17, 379, 148	19, 179, 525				
Total	19, 246, 000	19, 706, 000	22, 234, 000	26, 938, 000	28, 677, 000				
	20, 210, 000	10, 100, 000	22, 201, 000	20, 300, 000	20, 011, 000				

For footnotes, see end of table.

TABLE 26.—World production of silver, 1948-52, by countries, in fine ounces 2— Continued

Country	1948	1949	1950	1951	1952
Europe:					
Austria	(4)	7, 427	8, 681	5, 466	3,858
Czechoslovakia	6 1, 600, 000	(4)	(4)	(4)	(4)
Finland	167, 615	171, 150	115, 939	157, 275	150, 08
France Germany, West	494, 414	570, 888 1, 601, 782	549, 669	546, 550	353, 65
Germany, West	7 867, 459	1, 601, 782	1, 637, 116	1, 819, 957	1, 877, 70
Greece	32,000			64, 300	72,40
Italy	595, 464	793, 545	850, 998	869, 710	1,055,92
Norway	215, 410	170, 399	167, 184	163, 969	176, 18
Portugal	35, 366	31, 958	68, 288	65, 427	67, 69
Spain	339, 396	514, 283	823, 831	735, 908	553, 12
Swadan	1, 137, 943	1, 140, 708	1, 275, 709	1, 145, 890	(4)
SwedenU. S, S. R. (estimate)	12,000,000	20, 000, 000	24,000,000	24,000,000	24,000,00
United Kingdom	15, 942	13, 996	18, 153	26, 777	(4)
Yugoslavia	1, 504, 237	1, 917, 792	2, 386, 839	3, 032, 008	2, 577, 04
i ugosiavia	1, 002, 201	1, 011, 102	2,000,000	0,002,000	
Total (estimate)	19, 500, 000	29, 000, 000	34, 000, 000	35, 000, 000	35, 000, 00
Asia:					
Burma	450,000	8 250, 000	1,800	280, 720	242, 30
China	(4)	160,000	320,000	320,000	6 400, 00
India	12, 797	11, 275	15, 676	17, 180	(4)
India	2, 185, 672	2, 887, 265	3, 964, 572	4, 609, 924	5, 288, 70
Japan Korea, Republic of	2, 100, 072	18, 932	1, 222	5,371	6, 13
Korea, Republic of	38, 505 150, 760	218, 419	216, 034	274, 602	693, 75
Philippines	100,700		124, 287	109, 912	111.94
Saudi Arabia	67, 819	81, 295		26, 388	(4)
Taiwan (Formosa)	14, 133	17, 148	20, 603	20, 300	(-)
Total (estimate)	3,000,000	3, 700, 000	4, 700, 000	5, 700, 000	6, 800, 00
Africa:					
Allgeria	29, 739	32, 472	32,000	9,600	.(4)
Bechuanaland	233	27	39	70	1 28
Belgian Congo	3,805,715	4, 549, 330	4, 459, 951	3, 795, 266	4, 727, 25
Emmah Managa	487, 598	736, 220	1,007,900	1, 569, 000	(4)
French Morocco Gold Coast (exports)	45, 553	40, 051	43.317	52, 542	44.11
Total Coast (exports)	3, 184	2, 279	2, 586	2, 150	17,31
Kenya	616	244	2,00	96	(4)
Mozambique	4, 270	484	325	200	27
Nigeria		134, 920	173, 304	100, 702	312.94
Northern Rhodesia 8	145, 865	84, 495	85, 549	79, 731	81, 35
Southern Rhodesia	81, 404		00,049	1 000 000	1,064,33
South-West Africa	323, 647	642, 500	843, 737	1,030,066	1,004,00
Swaziland	124	120	60	18	
Tanganyika (exports)	25, 010	27, 631	31,014	35, 697	35, 90
Tunisia	16, 011	67, 517	73, 947	61, 119	6 62, 00
Uganda (exports)	56	42	35	14	(4) 1, 176, 43
Union of South Africa	1, 170, 951	1, 159, 375	1, 119, 135	1, 162, 588	1, 176, 43
Total	6, 140, 000	7, 478, 000	7, 873, 000	7, 899, 000	9, 032, 00
Oceania:					1
	l	I .	I	1	i .
Australia: Commonwealth	10,057,519	9, 849, 213	10, 677, 456	10, 792, 032	11, 256, 74
Name Chainea &	31, 739	31, 786	30, 399	33, 603	(4)
New Guinea	29, 187	29, 755	37,736	24, 869	(4)
Fiji New Zealand		232, 599	199, 701	133, 291	8
	232, 563				` <i>`</i>
Total	10, 351, 000	10, 143, 000	10, 945, 000	10, 984, 000	11, 362, 00
World total (estimate) 1	174, 900, 000	176, 200, 000	199, 100, 000	197, 500, 000	210, 200, 00

¹ Silver is also produced in Bulgaria, Cyprus, Hong Kong, Hungary, Federation of Malaya, Indonesia, North Korea, Poland, Rumania, Sarawak, Sierra Leone, and Turkey; production data are not available, but estimates are included in total.

2 This table incorporates a number of revisions of data published in previous silver chapters.

3 Imports into the United States. Scrap is included in this figure in many instances, most notably in the case of Cuba.

4 Data not available; estimate included in total.

5 Exports.

6 Extimate

⁶ Estimate.

<sup>American and British Zones only.
Recovered from an accumulation of refinery slimes.
Year ended May 31 of year following that stated.</sup>

Australia.—Gold production in Australia increased in 1952 to 980,435 ounces, corresponding to an advance of nearly 9 percent over the 1951 output. The gain was due mainly to greater activity in gold mining in Western Australia; in most areas the industry was handicapped by shortages of labor. The premium from sales of gold on the free market was helpful in meeting rising costs, but the additional revenue realized was not up to expectations. Silver production in Australia rose 4 percent in 1952 to 11,256,742 ounces.

Canada.—In comparison with the preceding year, the gold yield in Canada rose 1 percent to 4,419,570 ounces in 1952. Of the minerals produced in Canada, gold continued to lead in output value, closely followed by nickel. Gold mining was handicapped by rising costs for labor and supplies and by lower return realized for gold because of the over-par exchange value of the Canadian dollar in relation to the United States dollar. On the other hand, many producers were aided by sale of their gold at premium prices on the free market, or through subsidy allowed by the Canadian Government under the Emergency Gold Mining Assistance Act. Marginal operations were still hard pressed, however, and a more liberal formula for assistance was authorized for 1953.

By Provinces or Territories the gold output in 1951 and 1952 was as follows, in fine troy ounces:

Province or Territory:	1951	1952
Alberta	97	88
British Columbia	289, 992	285, 545
Manitoba	163, 914	142, 003
Newfoundland	8, 515	8, 030
Northwest Territories	212, 211	246, 245
Nova Scotia	17	1, 564
Ontario	2, 462, 979	2, 458, 359
Quebec	1, 067, 306	1, 109, 677
Saskatchewan	110, 216	89, 190
Yukon	77, 504	78, 869
Total	4, 392, 751	4, 419, 570

Of the total output, 2 percent was obtained by placer gold mining, 13 percent as a byproduct of base-metal mining, and 85 percent from straight lode gold mining.

Silver production in Canada rose 5 percent in 1952, reaching 24,375,853 ounces; most of the output was recovered as a byproduct

or coproduct of base-metal mining.

Colombia.—Colombia leads all other countries in South America in gold production by a wide margin. The output in 1952 dropped 5 percent to 422,240 ounces. The gold-mining industry in Colombia has been beset by rising labor costs, largely those resulting from social legislation; consequently, the subsidy allowed by the Government of Colombia to gold miners for newly mined gold was increased from 12 pesos per ounce to 30 pesos. Nearly 80 percent of the 1952 production was obtained by placer mining, as against 20 percent from gold lode mines. Silver production in Colombia declined 5 percent to 123,175 ounces in 1952; the entire output of silver is recovered as a byproduct of gold mining.

Honduras.—Normal operations were continued at the San Juancito and El Mochito mines of the New York & Honduras Rosario Mining Co., enabling Honduras to maintain its rank of sixth in silver produc-

tion among countries of the Western Hemisphere. Development on deep levels at the El Mochito mine gave favorable results, and ore

reserves increased. .

India.—The Government of India began constructing a silver refinery near Calcutta to recover silver from quartenary coins introduced during World War II, which are being replaced by nickel coins. The coinage withdrawn contains around 300,000,000 ounces of silver; recovery of this silver will enable repayment of lend-lease silver acquired during the war.

Mexico.—Stimulated by favorable prices, silver production in Mexico in 1952 rose 15 percent to 50,353,560 ounces, and once again Mexico maintained its rank as the leading silver producer. Gold out-

put in Mexico showed a gain in 1952 paralleling that of silver.

Nicaragua.—With an output of 254,675 ounces (measured by exports), Nicaragua continued to be the leading gold-producing country of Central America in 1952. Most of the gold and silver of this

country are produced from five mines.

Philippines.—Despite many difficulties, gold-mining companies in the Philippines increased their total output of gold in 1952 substantially (19 percent) to 469,408 ounces. Fifteen prewar producers were in active production in 1952, compared with 11 in the preceding year. Mining operations were hard pressed to meet mounting costs arising from import controls, high taxes, labor demands, and the 4-peso minimum wage law; and, according to the Philippine Gold Producers Association, the gold-mining industry experienced an overall net loss of nearly \$\mathbb{P}900,000\$ during 1952. Remedial measures proposed by mining companies to the Philippine Congress were endorsed by the Philippine Bureau of Mines.

Silver production in the Philippines gained 153 percent to 693,751 ounces in 1952, due largely to new base-metal mining operations

vielding silver as a byproduct.

Union of South Africa.—Reflecting initial production operations at several mines in the new Far West Rand and Orange Free State gold fields, the tonnage of gold ore milled and the gold output of the Union of South Africa was 3 percent greater in 1952 than in 1951. Reversing a downtrend that began in 1949, the average recovery of gold per ton was up slightly. Average working costs per ton of ore rose 2s. 4d. (32% cents), and working profits declined 12 percent. However, disposal of some gold at premium prices on the free market supported the overall revenue received from sales of gold. The first of a series of plants to recover uranium as a byproduct from the gold ores of South Africa was completed, and others were under construction. In common with other industries, gold mining was handicapped by shortages of electric power and labor.

The new gold field in the Orange Free State centers around Oden-daalsrus; diamond drilling and underground development have shown that gold ores of workable grade extend over an area at least 30 miles long and 10 miles across at the widest point. The gold occurs in conglomerate beds or reefs generally similar in character to the gold-bearing formations mined on the Rand. Two mines completed their first year of production operations in 1952, with 4 additional properties scheduled to reach the production stage in 1953. It has been estimated that the field has a potential annual output of around 8,000,000 ounces.

TABLE 27.—Salient statistics of gold mining in the Union of South Africa, 1943-47 (average) and 1948-52

[Transvaal Chamber of Mines]

	1943–47 (average)	1948	1949	1950	1951	1952
Ore milled (tons)	57, 598, 940	55, 285, 700	56, 881, 550	59, 515, 200	58, 645, 800	60, 500, 000
ounces) Gold recovered (dwt. per	12, 081, 269	11, 574, 871	11, 708, 013	11, 663, 713	11, 516, 450	11, 818, 681
ton)	4.028			3.759	3.756	3, 767
Working revenue	£99, 409, 087	£96, 179, 355	£110, 617, 476	£139, 491, 029	£137, 494, 860	£141, 271, 319
Working revenue per ton	34s. 6d.			46s. 11d.		
Working cost per ton of	£09, 305, 860	£72, 383, 938	£76, 667, 643	£87, 956, 643	£93, 494, 860	£102, 525, 003
Ore	24s. 2d.	26s. 2d.	27s. 0d.	29s. 7d.	31s. 10d.	34s. 2d.
Working cost per ounce of metal	119s. 10d.	130s. 7d.	136s. 9d.	157- 03	100- 03	
Working profit		£23, 790, 417	£33, 949, 793			
Working profit per ton	10s. 5d.		11s. 11d.			
Dividends		£13, 419, 443	£17, 394, 046			
	,, , , , , , , , , , , , , , ,	, 110, 110	211,001,010	221,000,011	22, 101, 000	219, 004, 928

Graphite

By Frank D. Lamb 1 and Eleanor V. Blankenbaker 2

STIMATED world production of natural graphite in 1952 was 190,000 metric tons. This equaled estimated production in 1951, the highest annual output since 1943, the peak year of World War II. when an estimated 272,000 metric tons was produced. duction of flake graphite in Madagascar continued to increase, reaching a new high during 1952, and consumers had no difficulty such as they experienced in 1950 and early in 1951 in obtaining adequate supplies of Madagascar crucible flake graphite. Production of amorphous lump graphite in Ceylon, particularly the 97-98 percent carbon grades, was below normal in 1952, and shortages of this variety of graphite existed at times during the year. Supplies of Mexican amorphous graphite were adequate, although 1952 production was 25 percent below that of 1951. Shortage of labor at the mines in Sonora, Mexico, was largely responsible for the decrease in production.

A report 3 published in 1952 described work by the Bureau of Standards on determining the relative merits of crucibles manufactured entirely from Alabama, Pennsylvania, and Madagascar graphite. report indicated that domestic graphite of equivalent flake size and carbon content may be substituted entirely for Madagascar graphite

without impairing the life of the crucible.

Work toward rehabilitating the Government-owned Benjamin Franklin mine and mill at Chester Springs, Pa., was begun by the F. M. Equipment Co. for the National Industrial Reserve Division of the General Services Administration. The mine and mill were to be operated on an experimental basis to demonstrate the quantity and quality of graphite that may be produced.

DOMESTIC PRODUCTION

Production of natural graphite in the United States continued to come from 3 mines—1 each in Alabama, Texas, and Rhode Island. Production in Alabama and Texas was crystalline flake graphite, largely in fine sizes, while that produced in Khode Island was amorphous material. The quantity of crystalline and amorphous graphite produced from domestic mines in 1952 decreased 21 percent from 1951 Shipments decreased 25 percent in quantity and 23 production. percent in value. The manufacture of artificial or electric-furnace graphite continued at Niagara Falls, N. Y., by the Acheson Graphite Division of the National Carbon Co., Inc., and the Great Lakes Carbon Corp., with plants at Niagara Falls, N. Y., and Morganton, N. C., and by the International Graphite & Electrode Corp. in a plant at St. Marys. Pa.

The Bureau of Mines is not at liberty to publish separate statistics on natural crystalline and amorphous graphite but combined figures

for 1943-47 (average) and 1948-52 are shown in table 2.

Metallurgist.
 Statistical clerk.
 Heindl, R. A., Effects of Graphite and Bonding Agents, Foundry Crucible Life: Am. Foundryman September 1962, pp. 40-43.

TABLE 1.—Salient statistics of the graphite industry in the United States, 1951-52

	1951		198	52
	Short tons	Value	Short tons	Value
Natural graphite: Production	7, 135	(1)	5, 606	(1)
	6, 808	\$771, 434	5, 081	\$594, 618
	38, 318	5, 083, 527	26, 911	4, 048, 787
Imports: Crystalline flake Lump, chip, or dust Amorphous (natural) Artificial	10, 227	1, 412, 787	7, 654	1, 259, 541
	336	29, 096	67	10, 733
	43, 830	1, 561, 494	34, 725	1, 569, 949
	90	7, 420	337	18, 502
Total imports	54, 483	3, 010, 797	42, 783	2, 858, 725
Exports: Crystalline flake, lump, or chip Amorphous (natural) Other natural graphite Total exports	213	56, 345	158	57, 068
	612	75, 964	1, 501	139, 020
	679	63, 639	127	15, 037
	1, 504	195, 948	1, 786	211, 125

TABLE 2.—Production and shipments of natural graphite in the United States, 1943-47 (average) and 1948-52

	Produc- tion Shipments			Produc-	Shipr	nents	
Year	(short tons)	Short tons	Value	Year	tion (short tons)	Short tons	Value
1943–47 (average) 1948 1949	6, 039 9, 949 6, 102	6, 150 9, 871 5, 213	\$403, 166 450, 759 475, 264	1950 1951 1952	5, 102 7, 135 5, 606	5, 605 6, 808 5, 081	\$427, 908 771, 434 594, 618

CONSUMPTION

The Bureau of Mines did not obtain data on graphite consumption from many small consumers in 1952, and a strict accounting of the uses for which available graphite was consumed was not possible. One difficulty encountered was the duplication resulting from reporting of the same material as "processed for resale" by one establishment and as "used" by another. The inability of consumers, in some instances, to identify the types and varieties of graphite used reduced the accuracy of the canvass data. However, the coverage is substantially the same from year to year, and the totals obtained indicate at least the minimum quantities used in making various products. For the more strategic uses of graphite, the consumption data shown in table 3 are believed to be reasonably accurate, and the discrepancies in the canvass data relate largely to amorphous graphite used for foundry facings, paints, and other nonstrategic uses.

PRICES

Price quotations decreased during the year on Madagascar graphite but remained constant on graphite from other sources. At the year end, the trade-journal listings were as follows: Per pound, carlots, f. o. b. shipping point, crystalline flake, natural, 85-88 percent carbon, crucible grade, 13 cents; 96 percent carbon, special and dry usage, 22 cents; 94 percent carbon, normal and wire drawing, 19 cents;

Figure not available.
 Minimum quantities as reported by consumers to the Bureau of Mines.

479 GRAPHITE

TABLE 3.—Consumption of natural graphite in the United States in 1952, by uses

Use	Short tons	Value	Use •	Short tons	Value
Foundry facings Crucibles, retorts, stoppers, sleeves, and nozzles Lubricants Dry cell batteries Lead pencils Carbon brushes	11, 098 3, 275 2, 494 2, 372 1, 816 805	\$1, 227, 719 785, 994 287, 124 164, 053 464, 046 294, 101	Packings Paints and polishes Oilless bearings Other Total	754 552 80 3, 665 26, 911	\$248, 348 61, 988 41, 383 474, 031 4, 048, 787

¹ Includes brake linings, roofing granules, recarburizing steel, etc.

98 percent carbon, special for brushes, etc., 26½ cents. Amorphous, natural, for foundry facings, etc., up to 85 percent carbon, 10 cents. Madagascar, c. i. f. New York, "standard grades, 85–87 percent carbon," \$200 per ton; special mesh \$230-\$260; special grade 99 percent carbon, nominal. Amorphous graphite, Mexican, f. o. b. point of shipment (Mexico), per metric ton, \$9 to \$16, depending on grade.

FOREIGN TRADE 4

Imports of all types of graphite decreased during 1952 from the unusually high quantities imported during 1951, when consumers were replenishing stocks used in 1949 and 1950. Imports of crystalline flake graphite from Madagascar in 1952 decreased 27 percent in quantity and 10 percent in value from the 1951 figures. Imports from Ceylon in 1952 decreased 43 percent in quantity and 11 percent in Mexican amorphous graphite imports also decreased substantially, resulting in a decrease of 21 percent in quantity and 5 percent in value for all types of graphite as shown in table 4.

Production of crystalline graphite in Madagascar during 1952 amounted to 14,385 metric tons of flake and 4,093 tons of fines Exports from the island were 13,074 metric tons of flake and 4,311 tons of fines.⁵ The United States received 43 percent of the total exports from Madagascar. Exports from Ceylon amounted to 7,782

metric tons of which the United States received 38 percent.

Production of graphite in Europe was reported in 8 countries, usually for local consumption, and only 2 countries, West Germany and Norway, exported appreciable quantities to the United States. During 1952 West Germany exported 5,086 metric tons, of which only 12 percent went to the United States. Norway, which previously produced only about 2,500 metric tons of graphite a year, increased the capacity of its only producer in the fall of 1952 to about 5,000 tons a year. The consumption of graphite in Norway remained small, and most of the production was exported to other European countries. The United States imported 28 percent of the graphite produced in Norway in 1952.

The United States tariff rates on graphite, effective January 1, 1948, were still in force during 1952. They are: Amorphous, natural and artificial, 5 percent ad valorem; crystalline flake, 15 percent ad valorem, with a specific minimum of 0.4125 cent per pound and a specific maximum of 0.825 cent per pound; crucible flake and dust and other crystalline lump and chip, 7½ percent ad valorem.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

5 Bureau of Mines, Mineral Trade Notes, vol. 36, No. 5, May 1953, p. 37.

TABLE 4.—Graphite (natural and artificial) imported for consumption in the United States, 1948-52

m	g	Department of Commerce]
10		Department of Commerce

	Crystalline				Amorphous						
	F	Flake		o, chip, dust	Natural		Artificial		Total		
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1948	3, 496 2, 228 6, 130	277, 368	235	27, 313	48, 150 29, 298 37, 255	\$1, 529, 312 954, 388 1, 335, 142	44	1, 398	31, 805	\$2, 046, 248 1, 260, 467 2, 080, 346	
1951 Canada Ceylon British East Africa			280	24, 841	28	716, 896	74		28	741, 737 1, 254	
France Germany India Madagascar	100 419 (1) 9, 536	41, 878 71, 496 24 1, 241, 763	56	3, 946	55 173	18, 718			(1) 9, 765	79, 814 24 1, 264, 427	
Mexico Mozambique Norway United Kingdom					35, 337 167 1, 447 58	582, 257 10, 938 114, 654 12, 628			35, 337 167 1, 447 58	582, 257 10, 938 114, 654 12, 628	
Total	10, 227	1, 412, 787	336	29, 096	43, 830	1, 561, 494	90	7, 420	54, 483	3, 010, 797	
1952 Canada			56	9, 664	3, 229	648, 863			30	658, 527 13, 228	
France Germany, West India Madagascar Mexico Mozambique	6, 986	1, 113, 049				213, 975 447, 248			28 8, 209 27, 321	3, 875 1, 327, 024 447, 248	
Norway Switzerland United Kingdom			11	1, 014 55	1, 277	100, 963		1.061	1, 288	101, 977	
Total	7, 654	1, 259, 541	67	10, 733	34, 725	1, 569, 949	337	18, 502	42, 783	2, 858, 725	

Exports of natural graphite, 1948–50, were: 1948, 1,047 tons, \$127,931; 1949, 1,352 tons, \$158,694; 1950, 1,397 tons, \$173,700. Data for 1951 and 1952 are shown in table 5.

TECHNOLOGY

A report describing the corrosion-resistance properties of carbon and graphite and impervious carbon and graphite products, with data on physical properties, forms available, and applications was published. The report describes the carbon and graphite materials available for use as construction materials in the chemical industry.

The work of the Bureau of Standards toward demonstrating the effects of using graphite from various sources and various bonding agents on the life of foundry crucibles was described.⁷ This investigation compared the relative merits of crucibles manufactured from Alabama, Pennsylvania, and Madagascar graphite. The crucibles made from each variety of graphite were manufactured according to the formulas ordinarily used for the regular production of crucibles for use in brass-melting foundries. Six foundries were selected for making the tests, and the crucibles were employed in the regular melting

⁶ Oliver, J. P., Carbon and Graphite: Chem. Eng., vol. 59, No. 9, September 1952, pp. 276-284. ⁷ See footnote 3.

TABLE 5.—Graphite exported from the United States, 1951-52, by countries of destination

[U. S. Department of Commerce]

	Amor	phous	Crystalli lump,	ne flake, or chip	Natural	, n. e. s.
Country	Short tons	Value	Short	Value	Short	Value
1951						
Austria Austria	1	\$187	90	\$9,800 278		
Belgium-Luxembourg Bolivia	4	694 226	1	144		
Brazil	5	2, 173			1	\$140
Canada	238	20,734	18	6,600	575	46, 40 1, 29
Ohile	8	1,600	4	1,542	5	1, 29
ColombiaCuba.	18	518	8 32	2,345	77	9, 60
Denmark	23	2, 174 3, 982	32	8, 709	177	9, 60
Dominican Republic	25	0, 502	1	156		
El Salvador			(1)	126		
France	40	5, 759				
Jermany	32	4, 136				
Juatemala			(1)	125		
[ndia	23	3, 813	21	9, 767		
Israel and Palestine		1 000	1	364	1	547
taly apan	11	1,990				
Mexico	17	2,022 2,328	24	9, 468	15	4, 66
Netherlands	1.	2,020	(1)	244	10	4,00
Peru	2	387	2	961		
Philippines	64	9, 355	6	1,898	3	63
Sweden	29	4, 547				
laiwan			1	1, 458		
Jnited Kingdom	73	9,003	(1)	525		
Jruguay Venezuela	2		1 2	692		
		336		1, 143	2	360
Total 1951	612	75, 964	213	56, 345	679	63, 639
1952						
Argentina	4	1, 935	14	8,050		
Australia			. 11	1, 163		
Austria.	9	1,825	[
Belgium-Luxembourg Danada	1 1 4	502	11	0.007		10.00
Danal Zone	1, 152	88, 578	11	8, 997	(1)	12, 865 116
Chile	17	2,897	16	4, 554	((110
Colombia	1 1	2,001	2	1,877		
Cuba	16	1,922	35	8, 160	1	104
Denmark	6	840	(1)	8, 160 224		
Dominican Republic			3	492	(1)	223
Ecuador			1	291		
France	24	4, 466				
Jermany, West	74	9, 753				
ndia	19	2, 160	(1) 3	158		
Israel and Palestine	6	1,074	6	1,556 1,215		
taly	ĭ	369	١	1, 210		
apan	5	847				
Mexico	5	812	24	9, 159	2	528
Netherlands			1	1, 130		
Yetherlands Antilles			1	576		
Vicaragua	1				1	120
Peru		106	1	842	(1)	593
Philippines laudi Arabia	8	1, 168	21	4, 274	1	189 164
Curkey			4	2, 766	1	104
Jnion of South Africa	1	568	*	2, 100		
	143	18, 204				
Inited Kingdom	140					
Jnited Kingdom Venezuela	6	994	4	1, 584	(1)	138

¹ Less than 1 ton.

operations at the foundries. Conclusions stated in the report are that crucibles made from Madagascar graphite gave no more heats than crucibles manufactured with either Alabama or Pennsylvania graphite; carbon-bonded crucibles gave approximately twice as many heats as

clay-bonded crucibles; and the use of finer flake sizes than ordinarily used by some manufacturers of carbon-bonded crucibles was not detrimental.

The American Society for Testing Materials, Committee D-2, Research Division XII, instigated a program to develop a graphite abrasion tester that may be used as a standard device to measure the abrasive properties of graphite used for lubricating purposes. A "ball-bearing tester" was designed and constructed which gave measurable results that could be reproduced without difficulty. It is believed that, with further development, this device will fill a need that has long been felt for a standard abrasion tester.

WORLD REVIEW

Available statistics on world production of graphite for 1948–52 are shown in table 6. Comparable figures for 1915–39 were published in Minerals Yearbook, Review of 1940 (p. 1414), for 1938–46 in Minerals Yearbook, 1946 (p. 1287), and for 1944–50 in Minerals Yearbook, 1950 (p. 1346).

World production of natural graphite in 1952 was estimated to be the same as in 1951. Decreases in production in Mexico and Korea, ordinarily the two largest producers, and Ceylon were offset by increases in Austria, West Germany, Norway, Madagascar, and other countries.

TABLE 6.—World production of natural graphite, by countries, 1948-52 in metric tons 2

[Com	piled by He	elen L. Hunt]				
Country 1	1948	1949	1950	1951	1952	
North America: Canada Mexico United States (amorphous and crystalline) South America: Brazil Europe: Austria Czechoslovakia Germany, West Italy Norway Spain. Sweden	11, 300 15, 000 5, 757 7, 251 1, 083 241 64	1, 948 23, 812 5, 536 556 14, 400 (3) 5, 097 4, 639 2, 257 256 109	3, 253 24, 626 4, 628 471 14, 685 (3) 6, 563 4, 521 2, 465 310	1, 467 32, 286 6, 473 700 18, 227 (³) (³) 4, 486 3, 453 274	1, 842 24, 152 5, 086 (3) 19, 701 (3) 8, 963 4, 010 4, 120 612	
Yugoslavia Asia: Ceylon (exports) India Japan Korea, Republic of Taiwan (Formosa) Africa: Egypt. French Morocco Kenya Madagascar Mozambique South-West Africa Spanish Morocco Union of South Africa	14, 221 1, 675 9, 132 15, 958 (3) 50 290 	12, 437 988 5, 664 45, 219 (3) 72 9, 141 110 2, 264 15	13, 030 1, 611 4, 003 19, 049 (3) 74 14, 013 1, 380 3	12, 824 1, 603 4, 872 20, 380 (*) 131 18, 338 240 2, 626	(*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	
Australia	170, 000	180, 000	165, 000	190,000	(3)	

¹ In addition to countries listed, graphite has been produced in Argentina, China, and U. S. S. R., but production data are not available, estimates by senior author of chapter included in total.

1 This table incorporates a number of revisions of data published in previous graphite chapters.

Data not available; estimate by senior author of chapter included in total.

Gypsum

By Oliver S. North 1 and Nan C. Jensen 2

CTIVITY in the gypsum industry was generally lower in 1952 than in 1951, as is illustrated by a 3-percent decrease in the quantity of domestic crude gypsum mined and a decline of 8 percent in the tonnage of calcined gypsum produced. However, many of the year's losses were principally concentrated in the first quarter, when housing starts were at a low point, even on a seasonal basis. Some improvement was noted in the second and third quarters, and by the last 3 months of the year several gypsum products were being sold in record quantities.

New nonfarm housing starts in 1952 were about 40,000 above the 1951 total, and public construction and private industrial building continued on a high level. The welfare of the gypsum industry depends on building construction, which annually consumes over 90 percent of the total value of all gypsum products sold or used in the

country.

The demand for wallboard continued high, and a new sales record was established for that commodity. Record quantities of agricultural gypsum and sanded plaster also were sold. The principal gain for agricultural gypsum (and gypsite) was made in California. The increase in sanded plaster was accounted for by the inclusion of perlite premixed plaster in the statistics of that category.

TABLE 1.—Salient statistics of the gypsum industry in the United States, 1943-47 (average) and 1948-52

	1943-47 (average)	1948	1949	1950	1951	1952							
Active establishments 1	82	95	88	87	85	89							
Crude gypsum: 2 Minedshort tons Importeddo	4, 657, 622 939, 347	7, 254, 535 2, 859, 209	6, 608, 118 2, 593, 329										
Apparent supplydo	5, 596, 969	10, 113, 744	9, 201, 447	11, 411, 924	³ 12, 102, 461	11, 483, 205							
Calcined gypsum produced: Short tons	4 3, 317, 309 4 \$22, 213, 183			7, 341, 024 \$60, 479, 573									
Gypsum products sold: 5 Uncalcined uses: Short tons	1, 405, 852 \$4, 323, 795 187, 235	\$7, 927, 266 219, 472	\$7, 127, 497 211, 635	\$7, 911, 988 266, 192	\$9, 413, 098 288, 713	\$9, 616, 780 252, 216							
ValueBuilding uses: Value	\$2, 745, 400 \$73, 041, 882	\$3, 731, 489 \$165, 175, 523	\$3, 562, 017 \$148, 056, 853										
Total value Gypsum and gypsum prod-			\$158, 746, 367										
ucts: Imported for consumption Exported	\$1, 120, 896 \$988, 239				* \$3, 813, 892 \$1, 584, 488								

Each mine, plant, or combination mine and plant is counted as 1 establishment.
 Excludes byproduct gypsum.

3 Revised figure. Includes production from small quantity of byproduct gypsum in 1943-46.
 Made from domestic, imported, and byproduct crude gypsum.

2 Statistical assistant.

Commodity-industry analyst.

At the end of the year the outlook for the gypsum industry in 1953 was considered good by many forecasters. Estimates placed the probable amount of new construction at about \$1 billion more than 1952. Little change was anticipated in building costs; hence, the physical volume of work done was expected to be higher, with housing starts again exceeding 1,100,000 units. Sales of the uncalcined products and industrial plasters also were expected to reach at least their 1952 levels.

DOMESTIC PRODUCTION

Crude.—For the third successive year the output of crude gypsum from mines in the United States exceeded 8 million short tons, although the production in 1952 was 3 percent lower than in 1951, the record year. Compared to 1951, increased tonnages were mined in California and in the Arizona-Arkansas-Kansas-Louisiana group of States, while all other separately recorded States and State groupings showed declines. A total of 56 mines, located in 19 States, reported production during the year; of these, 40 were open-pit operations, 13 were underground mines, and 3 were combination pit-underground mines.

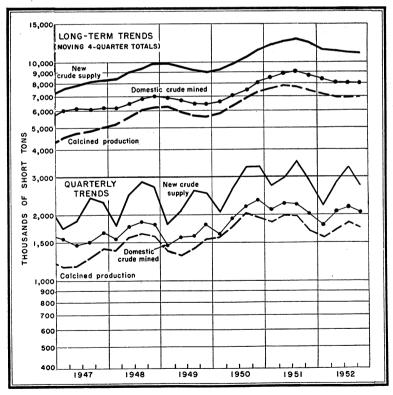


FIGURE 1.—Trends of new crude supply, domestic crude mined, and production of calcined gypsum, 1947-52, by quarters.

485 GYPSUM

Calcined.—Fifty plants, with 224 pieces of calcining equipment, The quantity of calcined gypsum produced in were in operation. 1952 was 8 percent lower than in the previous year. Production of calcined gypsum, the form in which most gypsum is utilized, is considered the most accurate overall measure of the industry, as it includes both domestic and imported raw material.

TABLE 2.—Crude gypsum mined in the United States, 1950-52, by States 1

	Acti	ve n	ines	19	950	19)51	1952	
State			1952	Short tons	Value	Short tons	Value	Short tons	Value
California	11 5 4 4 6 5	10 5 4 5 5 5	13 4 4 4 5 5	962, 373 981, 647 1, 474, 210 604, 604 1, 280, 100 1, 076, 251	\$2, 462, 604 2, 507, 651 4, 090, 777 1, 614, 107 3, 876, 176 2, 771, 812	1, 092, 883 1, 127, 705 1, 566, 276 643, 637 1, 259, 484 1, 136, 824	\$2, 602, 758 2, 881, 150 4, 402, 725 1, 811, 757 4, 010, 766 2, 987, 890	1, 236, 430 1, 122, 409 1, 487, 642 608, 284 1, 143, 920 1, 021, 161	\$2, 721, 134 2, 797, 704 4, 200, 418 1, 666, 938 3, 816, 148 2, 682, 019
Arizona Arkansas Louisiana Colorado	2 1 2 1 4	1 1 2 1 3	1 2 1 3	333, 228	706, 451	392, 863	717, 133	446, 705	777, 975
Idaho	 2 1	1 2 1 1	1 2 1	197, 443	594, 844	173, 341	559, 191	170, 457	546, 373
OhioOklahomaUtahVirginia	1 2 2 3 1	2 2 3 1	2 3 2 1	1, 282, 769	4, 110, 146	1, 272, 521	4, 050, 731	1, 178, 292	3, 687, 342
Total	57	55	56	8, 192, 625	22, 734, 568	8, 665, 534	24, 024, 101	8, 415, 300	22, 896, 051

Production of some States is not shown separately, in order not to disclose individual company

Mine and Calcining-Plant Developments.—Large quantities of agricultural gypsum or gypsite were being mined and sold in California, particularly in the San Joaquin Valley, where it was used to condition soils and aid in alleviating black alkali conditions. Much of the material was produced by relatively small operations from deposits on public lands leased by the Bureau of Land Management to private operators on a bid basis.³ The quickened interest in gypsum in California was indicated by several other items in the press describing newly discovered deposits of the mineral and the filing of new gypsum claims by prospectors.4

Production was reported to have been begun at the gypsum mine of Suwanee Gypsum Products Co. 30 miles west of Albuquerque, The material was to be used to condition the soils of that N. Mex. area.5

The only gypsum-processing plant in operation in Washington was that of Columbia Gypsum Products, Inc., at Spokane. Gypsum rock used at these facilities was obtained from company-owned deposits in British Columbia. A full line of gypsum products except board and lath was being manufactured at the plant.6

Bureau of Land Management, Our Public Lands: Vol. 2, No. 4, October 1952, p. 5.
 California Department of Natural Resources, Division of Mines, Mineral Information Service, Clark Mountain Area Gypsum: Vol. 5, No. 6, June 1, 1952, p. 9; California Journal of Mines and Geology, Gypsum: Vol. 48, No. 1, January 1952, p. 116; Engineering and Mining Journal, vol. 153, No. 3, March 1952, p. 126; vol. 153, No. 7, July 1952, p. 131.
 Engineering and Mining Journal, vol. 153, No. 9, September 1952, pp. 169-170.
 Utley, H. F., Columbia Gypsum Products Uses Kettle of Unusual Design: Pit and Quarry, vol. 44, No. 8, February 1952, pp. 93, 107.

CONSUMPTION AND USES

Expenditures for new construction in the United States totaled approximately \$32.3 billion in 1952 compared with \$29.9 billion in 1951 and \$27.9 billion in 1950. About 1,130,000 new nonfarm dwellings were started during the year—4 percent more than in 1951 and second only to the record 1,390,000 starts of 1950.

The continuing activity in housing construction kept the demand for gypsum building products, particularly sanded plaster and wallboard, at a high level, although perhaps not as high as would have

board, at a high level, although perhaps not as high as would have been anticipated from the number of starts. This may have been due partly to the fact that the number of starts in the last 3 months was considerably higher on a seasonally adjusted basis than in the earlier months; many of these starts had not yet reached by year end the stage of construction at which most gypsum products are used.

Most of the major plant-expansion programs had been completed by members of the industry before the end of the year, and producers apparently had no difficulty in meeting the demand for gypsum products

Gypsum producers were reported to be taking increasing note of developments of new methods of construction and fireproofing practices that make use of lightweight-aggregate plasters and of special construction systems based on gypsum products.⁷ Premixed perlitegypsum plaster was being manufactured and sold by at least 6 large gypsum producing companies.

TABLE 3.—Calcined gypsum produced in the United States, 1951-52, by districts

District	1	951	1952		
District	Short tons	Value	Short tons	Value	
New Hampshire, Massachusetts, and Connecticut	425, 378 793, 562 277, 258 940, 305	\$2, 527, 020 13, 335, 707 11, 296, 735 6, 159, 060 5, 560, 711 6, 028, 271 3, 302, 367 6, 509, 550 2, 766, 854 8, 274, 757	247, 835 1, 285, 101 1, 045, 248 640, 956 606, 406 721, 953 453, 901 707, 654 243, 365 922, 013	\$2, 308, 999 12, 134, 418 10, 507, 203 5, 145, 257 4, 974, 226 5, 382, 295 3, 333, 289 5, 960, 375 2, 336, 283 7, 614, 065	
Total	7, 454, 916	65, 761, 032	6, 874, 432	59, 696, 410	

Gypsum-Products Plant Developments.—The Redwood City, Calif., plant of Kaiser Gypsum Division, Henry J. Kaiser Co., was reportedly one of the two gypsum-products plants in the United States that do not calcine raw gypsum in kettles. At Redwood City the 4-inch lump material obtained from San Marcos Island, in the Gulf of California, was simultaneously pulverized and calcined in special oil-fired hammer mills. Most of the calcined material produced at this plant was used in the manufacture of plasterboard, punched lath, and exterior sheathing.⁸

 ⁷ Rock Products, Gypsum Association Report: Vol. 55, No. 6, June 1952, p. 118.
 ⁸ Utley, H. F., Kaiser Expands Gypsum-Board Plant at Redwood City, Acquired in 1949: Pit and Quarry, vol. 45, No. 1, July 1952, pp. 82-83, 90.

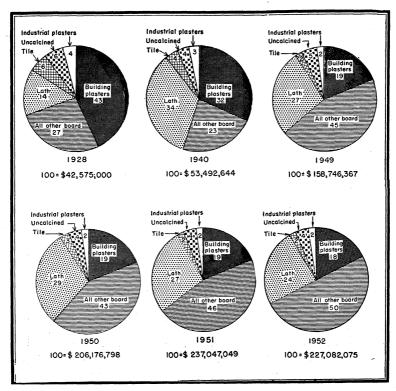


FIGURE 2.—Percentage distribution of total sales value, f. o. b. plant, of gypsum products in 1928, 1940, and 1949-52, by groups of products.

TABLE 4.—Active calcining plants and equipment in the United States, 1950-52, by States

	1950				1951		1952			
State	Calein	Equipment		Calcin-	Equipment		Calcin-	Equipment		
	Calcin- ing plants	Ket- tles	Other cal- ciners ¹	ing plants	Ket- tles	Other cal- ciners 1	ing plants	Ket- tles	Other cal- ciners 1	
California	5 5 4 7 4 26	10 22 20 22 30 74	8 4 1 6 1 23	5 5 4 7 4 25	11 24 20 22 31 74	8 4 1 6 1 23	5 5 4 7 4 25 50	11 24 20 22 30 74	8 4 1 6 1 23 ————	

Includes rotary and beehive kilns, grinding-calcining units, and hydrocal cylinders.
 Comprises calcining plants in 1950-52 as follows: I each in Arizona (none in 1951-52), Connecticut, Florida, Georgia, Indiana, Maryland, Massachusetts, New Hampshire, New Jersey, Oklahoma, and Pennsylvania; 2 each in Colorado, Kansas, Montana, Nevada, Onio, and Virginia; 3 in Utah.

National Gypsum Co., Buffalo, N. Y., revealed details of a \$25 million loan, about one-fourth of which was to be invested in expansion programs at several company plants and in a research center in Buffalo. Plans included technological improvements and the manufacture of new products. During the year National Gypsum Co.

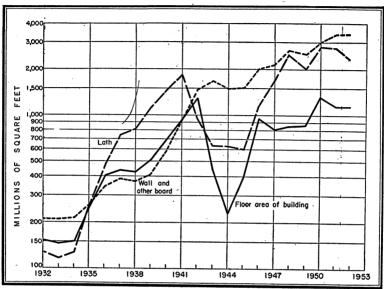


FIGURE 3.—Trends in sales of gypsum lath and wallboard and other boards (includes wallboard, laminated board in terms of component board, and sheathing), compared with Dodge Corp. figures on combined floor area of residential and nonresidential building, 1932-52.

continued diversification of its interests by acquiring the eight plants of Wesco Waterpaints, Inc. 10

Certain-teed Products Corp., Ardmore, Pa., completed in Paoli, Pa., a research building in which product development and testing will be centered.11

<sup>Pit and Quarry, National Gypsum Co. To Use \$25,000,000 Loan in Expansion Program: Vol. 45, No. 5, November 1952, p. 81.
Chemical and Engineering News, vol. 30, No. 15, April 14, 1952, p. 1542.
Rock Products, Gypsum Research Building: Vol. 55, No. 12, December 1952, p. 79.</sup>

TABLE 5.—Gypsum products (made from domestic, imported, and byproduct crude gypsum) sold or used in the United States, 1951-52, by uses

		1951			1952		Perce	nt of
Use		Value			Value	•	change	in—
Use	Short tons	Total	Aver- age	Short tons	Total	Aver- age	Ton- nage	Aver- age value
Uncalcined: Portland-cement retarder	1,808,766 687,620 33,993	\$6, 291, 190 2, 741, 158 380, 750	\$3. 48 3. 99 11. 20	1, 815, 489 866, 005 24, 233	\$6, 232, 230 3, 072, 419 312, 131	\$3. 43 3. 55 12. 88	(1) +26 -29	-1 -11 +15
Total uncalcined uses	2, 530, 379	9, 413, 098	3. 72	2, 705, 727	9, 616, 780	3. 55	+7_	5
Industrial: Plate-glass and terracotta plasters. Pottery plasters. Orthopedic and dental plasters. Other industrial uses ² .	63, 371 48, 365 11, 297 165, 680	813, 020 882, 987 397, 476 3, 374, 320	12. 83 18. 26 35. 18 20. 37	48, 587 43, 991 11, 017 148, 621	626, 771 811, 609 390, 347 3, 171, 052	12. 90 18. 45 35. 43 21. 34	-23 -9 -2 -10	$^{+1}_{+1}$ $^{+1}_{+5}$
Total industrial uses	288, 713	5, 467, 803	18. 94	252, 216	4, 999, 779	19. 82	-13	+5
Building: Cementitious: Plasters: Base-coat Sanded To mixing plants Gaging and molding Prepared finishes. Other 4 Keene's cement	2, 170, 299 124, 504 16, 345 208, 422 18, 323 246, 124 54, 031	30, 166, 130 2, 149, 533 189, 698 3, 310, 641 1, 030, 955 5, 456, 166 1, 227, 768	13. 90 17. 26 11. 61 15. 88 56. 27 22. 17 22. 72	1, 907, 871 177, 679 11, 703 176, 957 16, 000 220, 997 52, 591	26, 596, 087 3, 331, 533 126, 243 2, 943, 304 935, 670 6, 082, 843 1, 158, 703	13. 94 18. 75 10. 79 16. 63 58. 48 27. 52 22. 03	-12 +43 -28 -15 -13 -10 -3	(1) +9 -7 +5 +4 +24 -3
Total cementi- tious	2, 838, 048	43, 530, 891	15. 34	2, 563, 798	41, 174, 383	16.06	-10	+5
Prefabricated: Lath	2, 113, 804 2, 842, 537 122, 907 218, 603	64, 551, 960 105, 128, 204 4, 240, 084 4, 715, 009	5 23. 42 7 32. 39 5 36. 49 8 77. 79	1, 757, 771 2, 964, 381 123, 310 157, 451	54, 402, 346 108, 974, 618 4, 281, 772 3, 632, 397	5 23. 48 7 32. 88 5 36. 57 8 78. 54	6-16 6+2 6+1 6-29	(¹) +2 (¹) +1
Total prefabrica- ted	5, 297, 851	178, 635, 257	33. 72	5, 002, 913	171, 291, 133	34. 24	6 -6	+2
Total building uses		222, 166, 148			212, 465, 516			
Grand total value.		237, 047, 049			227, 082, 075			

Less than 1 percent.
 Includes uncalcined gypsum sold for use as filler and rock dust, in brewer's fixe, in color manufacture, and for unspecified uses.
 Includes statuary, industrial casting and molding plasters, dead-burned filler, granite polishing, and

miscellaneous uses.

4 Includes insulating and roof-deck, joint filler, patching and painter's plaster, and unclassified building

plasters.

5 Average value per M square feet.

6 Percent of change in square footage.

7 Average value per M square feet of wallboard only.

8 Average value per M square feet of partition tile only.

TABLE 6.—Gypsum board and tile sold or used in the United States, 1943-47 (average) and 1948-52, by types

		Lath		Wallboard			
Year	M square	Valu	е	M square	Value		
	feet	Total	Average 1	feet	Total	Average 1	
1943-47 (average)	941, 359 2, 504, 733 2, 015, 638 2, 793, 620 2, 756, 278 2, 317, 191	\$14, 948, 401 53, 596, 957 43, 060, 474 60, 621, 179 64, 551, 960 54, 402, 346	\$15. 88 21. 40 21. 36 21. 70 23. 42 23. 48	1, 536, 779 2 2, 531, 865 2 2, 439, 121 2 2, 901, 947 2 3, 243, 676 2 3, 312, 543	\$35, 924, 005 ² 72, 071, 432 ² 68, 493, 078 ² 84, 693, 753 ² 105, 128, 204 ² 108, 974, 618	\$23. 38 28. 40 28. 03 29. 16 32. 39 32. 88	

		Sheathing	Lai	ninated bo	ard	Tile 4			
Year	M square feet	Value		м	Value		м	Value	
		Total	Aver- age 1	square feet 5	Total	Aver- age 1	square feet	Total	Aver- age 6
1943–47 (average) 1948 1949 1950 1951 1952	126, 017 129, 632 97, 037 113, 785 116, 204 117, 080	\$2, 968, 797 4, 431, 544 3, 267, 935 3, 850, 763 4, 240, 084 4, 281, 772	\$23. 56 34. 19 33. 68 33. 84 36. 49 36. 57	101, 672 (2) (2) (2) (2) (2) (2)	\$3, 032, 475 (2) (2) (2) (2) (2) (2)	\$29. 82 (7) (7) (7) (7) (7)	18, 066 27, 181 28, 518 45, 032 37, 862 27, 044	\$1, 790, 823 3, 091, 547 3, 286, 264 4, 992, 467 4, 715, 009 3, 632, 397	\$52. 45 72. 40 73. 17 75. 26 77. 79 78. 54

Per M square feet, f. o. b. producing plant.
 Laminated board included with wallboard.
 Average value per M square feet of wallboard.
 Includes partition, roof, floor, soffit, shoe, and all other gypsum tiles and planks.
 Area of component board and not of finished product.
 Per M square feet, f. o. b. producing plant, of partition tile only.
 Figure withheld to avoid disclosure of individual company operations.

STOCKS .

Producers reported stocks of crude gypsum totaling 1,688,757 short tons on hand December 31, 1952, compared to 1,547,005 tons on the same date of the preceding year and 1,496,105 tons at the end of 1950.

PRICES

According to reports from producers, the average value of crude gypsum mined was \$2.72 per ton compared to \$2.77 in 1951 and \$2.78 in 1950. Among the uncalcined uses, average values of both cement retarder and agricultural gypsum were lower, but the average value of miscellaneous uncalcined gypsum products was markedly Average values of the industrial plasters in 1952 closely approximated those of 1951. Among the building plasters, the average value of base-coat plaster was unchanged, while that of sanded (and perlited) plasters increased sharply. None of the prefabricated gypsum products showed any appreciable change in average value from the previous year.

FOREIGN TRADE 12

Imports of crude gypsum into the United States in 1952 declined to 3,067,905 short tons—11 percent less than the 1951 total. Canada supplied 91 percent of the total quantity imported and approximately one-fourth of the apparent domestic supply. Imports declined from every foreign source except Jamaica, which exported to the United States approximately 60 percent more than in the preceding year. Imports from the Dominican Republic were lower, although there were indications that it would become an important supplier in the near future.

TABLE 7.—Gypsum and gypsum products imported for consumption in the United States, 1948-52

IU.	S.	Department o	f Commercel

	Crude (including anhydrite)		Ground		Calcined		Keene's cement		Alabas- ter man-		
Year	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	ufac- tures 1 (value)	tures, n. e. s. (value)	Value
1948 1949 1950 1951 1952	2, 593, 329 3, 219, 299	\$2, 977, 809 2, 693, 824 3, 276, 707 23, 535, 747 3, 246, 143	404 613 716 576 605	\$13, 960 14, 209 15, 787 16, 929 20, 821	11 209 237 301 249	\$610 8,036 7,900 12,308 11,379	12 	\$728 	\$83, 245 55, 569 61, 444 97, 858 189, 478	\$38, 410 79, 651 222, 141 150, 609 226, 961	\$3, 114, 762 2, 851, 289 3, 584, 152 23, 813, 892 3, 694, 975

¹ Includes imports of jet manufactures, which are believed to be negligible.

² Revised figure.

TABLE 8.—Crude gypsum (including anhydrite) imported for consumption in the United States, 1950-52, by countries

[U. S. Department of Commerce]

Country	19	50	19)51	1952		
Country .	Short tons Value		Short tons	Value	Short tons	Value	
Canada China Dominican Republic	2, 979, 131 2	\$3, 035, 546 449	1 3, 094, 070 1 6, 685	1\$3, 162, 601 160 23, 874	2, 786, 820 2, 240	\$2, 917, 999 8, 000	
Italy	9, 296 230, 869	34 27, 275 213, 403	22, 563 313, 608	65, 471 283, 641	35, 784 243, 061	102, 963 217, 181	
Total	3, 219, 299	3, 276, 707	1 3, 436, 927	1 3, 535, 747	3, 067, 905	3, 246, 143	

¹ Revised figure.

¹³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 9.—Gypsum and gypsum products exported from the United States, 1948-52

Year	Crude, crushed, or calcined ¹		Plasterboard, wallboard, and tile		Other manufac-	
	Short tons	Value	Square feet	Value	tures, n. e. s. (value)	Total value
1948	10, 797 17, 567 23, 678 25, 045 19, 884	\$259, 728 423, 478 524, 926 608, 940 517, 227	16, 506, 127 53, 313, 138 13, 618, 353 25, 556, 712 19, 571, 037	\$615, 845 1, 336, 269 428, 549 848, 777 577, 780	\$441, 469 176, 401 92, 983 126, 771 121, 287	\$1, 317, 042 1, 936, 148 1, 046, 458 1, 584, 488 1, 216, 294

Effective January 1, 1949, calcined gypsum not separable from crude, crushed, or calcined.
 Due to changes in items included in each classification, data are not strictly comparable with earlier vears.

TECHNOLOGY

Two patents described methods of manufacturing gypsum board and tile from foamed gypsum slurries. 13 A series of patents covered methods for manufacturing building materials from natural rock anhydrite and synthetic anhydrite.14

The incorporation of certain percentages of residual fuel oil, alkali metal rosin soap, and a water-soluble alkali-earth salt in calcined gypsum was claimed to produce a water-repellent material from which wallboard and tile may be fabricated. Other methods of producing water-resistive gypsum compositions were covered in subsequent patents.16

The process by which ammonium sulfate is manufactured from gypsum in a new plant at Sindri, India, was described in the trade press. The ammonium sulfate is produced by reaction of gyp-sum and ammonium carbonate under pressure. Plans have been made to utilize the residual calcium carbonate sludge for cement manufacture. 17

The casting in gypsum-sand molds of light-metal forms for such uses as cylinder-head castings, radar parts, supercharger compressors, and the like was described. 18

A study was made of the advantages that might be gained by grinding gypsum retarder separate from portland cement clinker and subsequently blending the ground material. The possibility of using the practice to minimize false set in the cement and to improve control of particle-size gradation in the finished product was explored.¹⁹

¹³ Chappell, F. L., Jr. (assigned to Hercules Powder Co.), Foamed Gypsum Composition: U. S. Patent 2,593,008, April 15, 1952; Hart, W. H., Modified Starch Product: U. S. Patent 2,585,651, Feb. 12, 1952.

14 Weber, H., Lightweight Porous Building Materials: U. S. Patent 2,606,126, Aug. 5, 1952. Lightweight Building Materials and Their Manufacture From Synthetic Anhydrous Calcium Sulfate: U. S. Patent 2,606,127, Aug. 5, 1952. Nonhydrating Setting and Binding Material: U. S. Patent 2,606,128, Aug. 5, 1952. Setting and Binding Material From Natural Mineral Anhydrite: U. S. Patent 2,606,129, Aug. 5, 1952.

15 Riddell, W. C., and Kirk, G. B. (assigned to Henry J. Kaiser Co.), Water-Repellent Gypsum Product and Process of Making Same: U. S. Patent 2,597,901, May 27, 1952.

16 Riddell, W. C., and Kirk, G. B. (assigned to Henry J. Kaiser Co.), Cementitious Composition: U. S. Patent 2,604,411, July 22, 1952. Water-Repellent Gypsum Product: U. S. Patent 2,601,130, Sept 9, 1952.

17 Chemical Engineering, Shortage Glamorizes Gypsum: Vol. 59, No. 1, January 1952, pp. 250, 252; Chemical Engineering, Ammonium Sulfate From Gypsum: Vol. 59, No. 6, June 1952, pp. 242-245.

18 Metal Progress, Light Metals Cast in Gypsum-Sand Molds: Vol. 61, No. 3, March 1952, pp. 51-52.

19 Wadia, D. A., Grinding Gypsum Separate From Clinker: Rock Products, vol. 55, No. 5, May 1952, pp. 83-86.

pp. 85-86.

493 GYPSUM

Technologic and economic developments in the gypsum industry were discussed in an article that emphasized the advantages of highcost, high-capacity gypsum-products plants strategically located with reference to sources of supply, and to market area.²⁰ Another report summarized the history of a large gypsum-producing company and listed, in chronological order, the important developments in the gypsum industry from 1903 to the present.21

The crystal chemistry of gypsum-plaster hydration was the subject of a study. During photomicrographic examination of crystaltalizing gypsum, the presence of swallowtail-twinned crystals were noted, a phenomenon that had not previously been described by

other investigators.22

An article in a trade magazine discussed the chemistry involved in calcining gypsum and the mechanics of heat transference in gypsum $m kettles.^{23}$

Report of a study on gypsum-anhydrite cap rock was released. Subjects discussed included the process of gypsification, stress effects in the cap rock, process of recrystallization of anhydrite cap rock, and processes of formation of accompanying lesser minerals.²⁴

A report on field investigations of a number of Idaho gypsum deposits was published. Economic factors involved in commercial ex-

ploitation were discussed.25

A published bulletin described in detail the occurrences and geology of the numerous California gypsum deposits. A section of the book is devoted to extensive descriptions of mining, processing, and marketing.26

A Bureau of Mines publication described a diamond-drill sampling program at a gypsum deposit on an island in southern Alaska.27

WORLD REVIEW

Belgian Congo.—Gypsum is mined in Katanga on a small scale for use as cement retarder and in the manufacture of plaster. Other deposits are found near Lake Edward and in Bas Congo.²⁸

²⁰ Lenhart, W. B., Developments in Gypsum Manufacture: Rock Products, vol. 55, No. 1, January 1952, pp. 152-156.

21 Rock Products, U. S. Gypsum's 50 Years of Progress: Vol. 55, No. 2, February 1952, pp. 94-99.

22 Cunningham, W. A., Dunham, R. M., and Antes, L. L., Hydration of Gypsum Plaster: Ind. Eng. Chem.. vol. 44, No. 10, October 1952, pp. 2402-2408.

23 Bauer, W. G., Fundamentals of Gypsum Calcination: Pit and Quarry, vol. 44, No. 10, April 1952, pp. 113-114, 113, 122-123.

24 Goldman, M. I., Deformation, Metamorphism, and Mineralization of Gypsum-Anhydrite Cap Rock, Sulphur Salt Dome, Louisiana: Geol. Soc. America, Memoir 50, Mar. 25, 1952, 169 pp.

25 McDivitt, J. F., Report on Gypsum Deposits in Washington County, Idaho: Idaho Bureau Min. and Geol., Pamph. 93, February 1952, 15 pp.

25 yer Planck, W. E., Gypsum in California: California Dept. Nat. Resources, Div. of Min., Bull. 163, September 1952, 151 pp.

27 Jermain, G. D., and Rutledge, F. A., Diamond Drilling Gypsum Camel Prospect, Iyoukeen Cove, Chicagof Island, Southeastern Alaska: Bureau of Mines Rept. of Investigations 4852, 1952, 6 pp.

28 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, p. 49.

TABLE 10.—World production of gypsum, by countries, 1 1947-52, in metric tons 2 [Compiled by Helen L. Hunt]

North America: Canada. Cuba 3 Dominican Republic Jamaica United States. South America: Brazil Chile. Colombia Ecuador Peru Venezuela 5 Europe: Austria. Bulgaria 3 Finland France Germany, West 6 Greece Ireland Italy Luxembourg Poland Portugal Spain Switzerland United Kingdom:		1948	1949	1950	1951	1952
Canada. Cuba * Dominican Republic. Jamaica United States. South America: Brazil. Chile. Colombia. Ecuador Peru. Venezuela * Europe: Austria. Bulgaria * Finland. France. Germany, West * Greece. Ireland. Italy. Luxembourg. Poland. Portugal. Spain. Switzerland.						
Cuba 3 Dominican Republic Jamaica United States South America: Brazil Chile Colombia Ecuador Peru Venezuela 5 Europe: Austria Bulgaria 3 Finland France Germany, West 4 Greece Ireland Italy Luxembourg Poland Portugal Spain Spain Suitzarland	2 362 365	3, 164, 211	2, 854, 999	3, 429, 332	3, 563, 745	3, 259, 422
Dominican Republic Jamaica United States South America: Brazil Chile Colombia Ecuador Peru Venezuela 5 Europe: Austria Bulgaria 3 Finland France Germany, West 6 Greece Ireland Italy Luxembourg Poland Portugal Spain Spain	14,000	16, 500	13, 880	15, 500	30,000	
Jamaica United States South America: Brazil Chile Colombia Ecuador Peru Venezuela § Europe: Austria Bulgaria § Finland France Germany, West § Greece Ireland Italy Luxembourg Poland Portugal Spain Switzerland	13, 393	7, 304	18, 157	10,000	21, 238	30, 000 12, 863
Onthed States South America: Brazil Chile Colombia Ecuador Peru Venezuela 5 Europe: Austria Bulgaria 3 Finland France Germany, West 6 Greece Ireland Italy Luxembourg Poland Portugal Spain Switzerland	20,000	7, 112	12, 193	23, 369	27, 173	45, 621
South America: Brazil Chile Chile Colombia Ecuador Peru Venezuela §. Europe: Austria Bulgaria ³. Finland France Germany, West §. Greece Ireland Italy Luxembourg Poland Portugal Spain Switzerland	5, 631, 969	6, 581, 169	5, 994, 752	7, 432, 186	7, 861, 199	7, 634, 192
Brazil Chile Chile Colombia Ecuador Peru Venezuela 5 Europe: Austria Bulgaria 3 Finland France Germany, West 6 Greece Ireland Italy Luxembourg Poland Portugal Spain Switzerland	0, 552, 000	0,001,100	0,001,102	1, 102, 100	1,001,100	7,004,192
Chile. Colombia. Ecuador. Feru. Venezuela 5. Europe: Austria. Bulgaria 3. Finland. France. Germany, West 6. Greece. Ireland. Italy. Luxembourg. Poland. Portugal. Spain Switzerland.	(4)	(4)	50, 857	³ 51, 000	(4)	40
Ecuador Peru	83, 928	31, 440	60, 304	65, 509	68, 938	(4) (4)
Ecuador Peru	1, 738	2,000	2, 120	3, 771	4, 886	4, 885
Peru Venezuela 5 Europe: Austria Bulgaria 3 Finland France Germany, West 6 Greece. Ireland Italy Luxembourg Poland Spain Switzerland	1	410	486	3 441	(4)	(4)
Europe: Austria Bulgaria 3 Finland France Germany, West 6 Greece Ireland Italy Luxembourg Poland Portugal Spain Switzerland	41, 330	46, 716	37, 419	31, 917	36, 890	X
Europe: Austria Bulgaria 3 Finland France Germany, West 6 Greece Ireland Italy Luxembourg Poland Portugal Spain Switzerland	3, 451	2,406	3,042	2,050	1, 404	(4) (4)
Austria Bulgaria 3 Finland France Germany, West 5 Greece Ireland Italy Luxembourg Poland Portugal Spain Switzerland	1 5, 252	-, 200	0,012	2,000	1, 101	(-)
Bulgaria 3 Finland France Germany, West 5 Greece Ireland Luxembourg Poland Portugal Spain Switzgrland	15, 096	26, 376	36, 189	42, 300	39, 520	187, 540
Finland France Germany, West 6 Greece Ireland Italy Luxembourg Poland Portugal Spain Switzerland	5,000	5,000	5,000	5,000	5,000	(4)
Ireland	(4)	1,711	(4)	(4)	0,000	(-)
Ireland	2, 229, 940	2, 254, 181	2, 143, 163	2, 100, 000	3 2, 000, 000	(4)
Ireland	150, 700	316, 600	594, 400	733, 711	814, 945	(4) 774, 389
Ireland	850	580	730	820	950	19,000
Italy Luxembourg Poland Portugal Spain Switzerland	1 36.415	62, 693	67 268	82, 668	³ 100, 000	(4)
Poland Portugal Spain Switzerland	298, 224	62, 693 371, 787	67, 268 447, 647	488, 794	578, 205	(4)
Poland Portugal Spain Switzerland	38, 707	4, 113	19, 569	17, 846	12, 320	5, 072
SpainSwitzerland	14, 917	14, 183	26, 361	32, 824	(4)	(4)
SpainSwitzerland	33, 868	42, 842	43, 060	36, 034	29, 993	(4)
Switzerland	1, 337, 662	7 1, 423, 728	1, 293, 552	2, 251, 831	1, 821, 676	(4)
United Kingdom:	165, 000	³ 165, 000	8 80, 000	³ 80, 000	120,000	(4)
	i '	200,000	00,000	00,000	120,000	(-)
Great Britain	1, 773, 733	2, 120, 700	2, 144, 272	2, 241, 711	2, 321, 065	³ 2, 500, 000
Great Britain Northern Ireland	,,	_,,	_,,	2, 2,11, 111	173	- 2, 500, 000
Yugoslavia	(4)	(4)	(4)	(4)	(4)	17, 362
Asia:	1 ''			(/	()	11,002
Ceylon	69	170	187		309	(4)
China	50,000	\$ 55,000	(4)	³ 60, 000	³ 70, 000	³ 80, 000
China Cyprus (exports) India	7,844	19, 500	25, 788	65, 485	23, 171	56, 553
India	51, 381	80, 215	142, 190	209, 678	23, 171 193, 276	(4)
		(4)	3 8 378, 000	8 8 378, 000	(4)	120,000
Iraq Israel Japan	(4)´ (4)	(4)	(4)	250, 000	(4)	(4)
Israel	(4)	(4)	(4)	23, 623	`í, 700	(4) 20, 000
Japan	61, 555	113, 754	117, 123	114, 505	200, 640	196, 788
Pakistan	1 16 191	6,361	15, 896	16, 927	22, 791	29, 663
Philippines		818	2,710	2, 883	399	20,000
Syria	4, 500	3 1,000	1,400	2,000	8, 170	5, 500
Philippines Syria • Taiwan (Formosa)	1, 983	3,889	2, 939	1, 968	2,055	1, 800
Thailand (Siam)	71	200	154	336	79	2,000
Africa:			/			
Algeria Anglo-Egyptian Sudan Polician Congo	38, 345	33, 258	31, 881	46,097	82,000	53, 200
Anglo-Egyptian Sudan		3,045	1,496		183	1, 451
Belgian Congo				3 7, 190	3, 955	3, 955
Egypt	72, 337	95, 243	6, 909	155, 902	112, 056	(4)
French Morocco	17, 285	30, 136	36, 130	620	7, 695	7, 955
Kenya	659	1,016	181	610	83	1, 619
Anglo-Egyptian Sudan Belgian Congo. Egypt	1					503
Tunisia		19, 130	22,066	23,064	24, 385	10, 760
Union of South Africa	17, 650	,	,,	,	=1,000	20, 100
(sales and exports)	17, 650	I			404.000	140 011
Oceania:	17, 650 80, 166	83, 936	88, 232	103, 707	124, 979 1	
Australia	17, 650 80, 166	83, 936	88, 232	103, 707	124, 979	148, 911
New Caledonia	80, 100			, i	·	•
	218, 893	83, 936 280, 852 779	315, 302	340, 869	370, 195	
Total (estimate)1	80, 100	280, 852		, i	·	356, 946 (4)

¹ In addition to the countries listed, gypsum is produced in Angola, Argentina, Mexico, Rumania, and U.S.S.R., but production data are not available. Estimates for these countries are included in the total.

² This table incorporates a number of revisions of data published in previous gypsum chapters.

^{*} Estimate.

Estimate,
 Data not available; estimate by senior author of chapter included in total.
 Production in Government quarries only; beginning 1951 no longer under Government control.
 Crude production estimates based on the following calcined figures: 1947, 125,600; 1948, 263,822; 1949, 495,356; 1950, 611,426; 1951, 679,121; 1952, 645,324.
 Includes Spanish Moroccan production: 1948, 1,829.
 Year ended March 20 of year following that stated.
 Some pure, some 80 percent gypsum and 20 percent limestone.

495 GYPSUM

Canada.—The new gypsum and wallboard plant at Humbermouth, Newfoundland, was reported to have begun operation late in 1952. Construction of the facilities is said to have been financed by the Provincial Government of Newfoundland.29

The Nova Scotia Legislature Assembly passed a bill assessing a tax of 6 cents per ton on those quarries producing over 20,000 tons of gypsum per year. The law went into effect May 1, 1952, and is to

continue for 10 years.30

The Western Gypsum Products, Ltd., mine at Amaranth, Manitoba, is said to be the only gypsum body in western Canada now being worked from a shaft. In the mine area the gypsum bed is 43 feet thick at a depth of 133 feet. Output currently is 7,000 to 8,000 tons per month. Crude gypsum from this source is shipped to Winnipeg and Calgary to be calcined and manufactured into gypsum building products.31

Dominican Republic.—The gypsum-salt deposits 25 miles west of Barahona were being actively developed during the year, and some commercial production was recorded. Reserves of gypsum are said to be immense.³² Although no gypsum was shipped from these deposits to the United States in 1952, several companies were said to have expressed interest in the possibility of importing from that

source.33

India.—Eleven firms were reported to be producing gypsum in

India.34

A development of considerable economic as well as technologic (see Technology section) interest was construction of a plant at Sindri, Bihar, India, for producing ammonium sulfate from gypsum. ammonium sulfate is needed for local use as a fertilizer. plant reaches capacity, it is expected to utilize 1,800 tons of gypsum per day and manufacture 350,000 tons of ammonium sulfate per year.

New Caledonia.—As in the past several years, the only recorded production of gypsum in New Caledonia was that by La Société le

Nickel for use in its nickel-smelting operations.35

²⁸ Rock Products, Cement and Gypsum Plants: Vol. 55, No. 8, August 1952, p. 100; Pit and Quarry, Cement and Gypsum Facilities Sponsored by Newfoundland: Vol. 45, No. 5, November 1952, p. 79.

30 Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 5, May 1952, pp. 35-36.

31 California Mining Journal, Western Gypsum Products: Vol. 73, No. 11, November 1952, pp. 122-124.

32 Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 6, June 1952, pp. 45-46, 48-50.

33 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 3, March 1953, pp. 33-34.

34 Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 4, April 1952, pp. 48-50; Chemical Age (London), Indian Newsletter: Vol. 67, No. 1738, p. 597; Mining World, vol. 14, No. 6, May 1952, p. 67.

35 Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 6, June 1952, p. 46.

lodine

By Joseph C. Arundale 1 and Flora B. Mentch 2

N OUTSTANDING feature of the iodine industry has been the recent expanding output in Japan. This has been achieved through the development of brines rather than the seaweed that was formerly the major source of iodine in that country. Japan has now become an important exporter of iodine, and a substantial portion of its exportable surplus is shipped to the United States.

DOMESTIC PRODUCTION

Current domestic production of iodine is confined to California, where two firms—the Dow Chemical Co. at Seal Beach and Deepwater Chemical Co. at Compton—recover iodine from waste oil-well water. The output of these two firms constitutes a considerable portion of United States supply of iodine, but the Bureau of Mines is not at liberty to publish the data on quantity of domestic production. The last year for which data were published was 1937, when approximately 300,000 pounds was produced. Output in recent years has been substantially greater.

It was reported that Deepwater Chemical Co. had enlarged its capacity by minor changes in the flowsheet and revision of the method of recovering potassium iodide from the ferrous iodide solution.³

CONSUMPTION AND USES

The crude iodine of commerce usually is over 99 percent pure. However, little is consumed in this form; most is either resublimed to greater purity or converted to iodine compounds. Potassium iodide is the principal compound produced; but hundreds of other inorganic and organic compounds are made, and these have numerous and varied uses in industry, agriculture, and medicine. Outstanding applications of iodine include use in antiseptics, photographic film, stock-feed supplements, iodized salt, and titanium metallurgy.

TABLE 1.—Crude iodine consumed in the United States in 1951-52

Compound manufactured	1951			1952		
	Number of	Crude iodine consumed		Number of	Crude iodine consumed	
	plants	Pounds	Percent of total	plants	Pounds	Percent of total
Resublimed iodine Potassium iodide Sodium iodide Other inorganic compounds Organic compounds Total	6 9 5 8 16	137, 918 787, 936 114, 307 45, 198 152, 563 1, 237, 922	11 64 9 4 12	5 10 6 8 13	78, 222 768, 554 64, 332 29, 785 232, 981 1, 173, 874	7 65 5 3 20

¹ A plant producing over 1 product is counted but once in arriving at total.

¹ Assistant chief, Construction and Chemical Materials Branch.

Statistical assistant.
 California Journal of Mines and Geology, vol. 48, No. 1, January 1952, p. 116.

IODINE 497

The Chilean Iodine Educational Bureau, Stone House, Bishopsgate, London (with offices at 120 Broadway, New York, N. Y.), in 1952 issued a bulletin that contains a check list of iodine compounds and preparations used in human medicine. Several hundred iodine pharmaceuticals were described and their therapeutic applications listed.⁴

STOCKS

In additions to stocks of iodine maintained by domestic producers, large stocks normally are held in Chile and at Staten Island, N. Y., by Chilean Nitrate Sales Corp., and are replenished at irregular intervals as they are depleted.

PRICES

According to Oil, Paint and Drug Reporter, the prices quoted during 1952 for crude iodine in kegs was \$1.84 to \$2.04 per pound; resublimed U. S. P., bottles, jars, at \$2.55 to \$2.78; ammonium iodide N. F., jars, at \$4.01 to \$4.13 per pound; sodium iodide U. S. P., bottles, drums, at \$2.69 per pound; potassium iodide in drums at \$2.15 to \$2.20 per pound.

FOREIGN TRADE 5

Crude iodine is imported into the United States from only two countries—Chile and Japan.

TABLE 2.—Crude iodine imported for consumption in the United States by countries of origin, 1943-47 (average) and 1948-52

	[U. S. D	epartment o	f Commerce]			
	Chile		Japan		Total	
Year	Pounds	Value	Pounds	Value	Pounds	Value
1943-47 (average)	1, 463, 369 541, 439 382, 344 582, 562 667, 426 471, 077	\$1, 665, 606 786, 850 577, 810 854, 236 1, 036, 414 858, 092	50, 697 107, 655 142, 296 184, 681 320, 131	\$60, 902 141, 948 201, 710 283, 914 504, 817	1, 463, 369 592, 136 489, 999 724, 858 852, 107 791, 208	\$1, 665, 606 847, 752 719, 758 1, 055, 946 1, 320, 328 1, 362, 909

TABLE 3.—Iodine, iodide, and iodates exported from the United States, 1943-47 (average) and 1948-52

Year	Pounds	Value	Year	Pounds	Value
1943-47 (average)	332, 443 271, 459 268, 925	\$552, 640 550, 493 501, 055	1950	456, 847 320, 165 120, 789	\$784, 578 612, 556 264, 952

TECHNOLOGY

Evidence of the extensive research that has been done on various aspects of iodine may be found in the comprehensive bibliographies on the subject appearing in Iodine Abstracts and Reviews, published regularly by the Chilean Iodine Educational Bureau, Inc., 120 Broadway, New York, N. Y.

Chilean Iodine Educational Bureau, Iodine Pharmaceuticals: London, 1952, 78 pp. Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

Many iodine compounds and radioactive isotopes are potentially

useful for their physiological activity and as diagnostic tools.

The latest edition of the United States Pharmacopoeia describes tincture of iodine as consisting of 1.8-2.2 grams resublimed iodine and 2.1-2.6 grams sodium iodide dissolved in 100 cc. alcohol. However. previous editions specified 7 percent each of resublimed iodine and sodium iodide and still earlier editions 10 percent each. tion in the concentration of iodine was recommended because of the possibility of tissue damage with the higher concentrations. The use of iodine as a local antiseptic has been declining in favor of various antibiotics sprinkled into wounds. However, it has been claimed recently that new combinations of iodine with surface active agents enhance the halogen's germicidal activity and reduce its toxicity.6

A new compound containing about 67 percent by weight of iodine reportedly has given good results in making gall bladders visible in X-ray pictures. It was claimed that this material was 35 percent more opaque than other material used heretofore, with less nausea and

other distress.7

The results of tests on the use of radioactive iodine compounds in localizing brain tumors was reported. The results obtained were said to be merely indicative of an area in the brain in which the tumor is

The results of tests on the effectiveness of iodine as a germicide and its toxicity was outlined in a paper. Although it is an effective germicide, iodine has properties and characteristics that confine its scope of application. Among the principal limitations is the fact that iodine is both a strong primary irritant and sensitizer and it does not distinguish between bacterial and mammalian protein. The relatively high toxicity of iodine also limits its applications in certain fields. Furthermore, numerous organic and inorganic agents have been reported as being capable of neutralizing the effect of iodine. In combination with carriers, the properties of iodine are modified. A mixture of iodine and a carrier is sometimes called a "halophor" or "iodophor." The carrier is a compound that greatly increases the solubility and tends to improve its germicidal activity.9

A number of new processes involving iodine are being developed. For example, a new method for producing pure rare earths was described. The process involves reducing the anhydrous rare-earth chlorides with calcium in a refractory oxide-lined container. Iodine is added to the mixture and by its exothermic reaction with calcium raises the temperature and gives a well-fused mass of the product The formation of calcium iodide gives a low-melting slag. Remelting in a vacuum removes all but a trace of calcium from the Quantities of lanthanum, cerium, praseodymium, and neodymium have been produced in this manner, all with purities greater

than 99.7 percent.10

A patent was issued on a method of converting titanium dioxide to titanium tetraiodide which comprises subjecting titanium dioxide to

<sup>Chemical Week, Iodine Tamed: Vol. 69, No. 25, Dec. 22, 1951, pp. 19-20.
Science News Letter, vol. 61, No. 12, Mar. 22, 1952, p. 184.
Chou, Shelley N., Moore, George E., and Marvin, James F., Localization of Brain Tumors With Radio Iodide: Science, vol. 115, No. 2979, Feb. 1, 1952, pp. 119-120.
Terry, Dr. D. H., and Shelansky, Dr. Herman, Iodine as a Germicide, Part I: Modern Sanitation, vol. 1, No. 1, January 1952, pp. 61-65 Part 2, vol. 4, No. 2, February 1952, pp. 61-64.
Spedding, F. H., Wilhelm, H. A., Keller, W. H., Ahmann, D. H., Doane, A. H., Hach, C. C., and Ericson, R. P., Production of Pure Rare-Earth Metals: Ind. Eng. Chem., vol. 44, No. 3, March 1952, pp. 553-556.</sup>

IODINE 499

a reducing agent passing iodine vapor over the reduced oxide in a reaction zone maintained at a temperature of at least 500° C.; condensing the resulting titanium tetraiodide; and separating it from

unreacted iodine vapor.11

The Commission on Atomic Weights of the International Union of Pure and Applied Chemistry at its meeting in New York in September 1951 adopted a change in the atomic weight of iodine. The previous value 126.92 was adopted in 1933 to replace 126.932. Recent measurements of iodine were said to yield 126.911 for the atomic weight of iodine, with an estimated uncertainty of 1 in the third decimal place. This and other evidence led the commission to accept 126.91 as the present best value. 12

WORLD REVIEW

The growing importance of Japan as a supplier of iodine to the United States makes the following review of the Japanese iodine

industry timely.13

Commercial production of iodine in Japan was begun in 1888, when a small company in Tokyo was organized to extract it from seaweed. By 1916 Japan was the leading producer and exporter of seaweed iodine; after World War I, however, Chile succeeded in capturing the world market and concluded an agreement with Japan in 1937 whereby the exports of iodine from the latter were restricted to 25 metric tons per year. In 1934 the Mikasa Shokai K.K. (now known as the Aioi Industrial Co., Ltd.) was established for the production of iodine from brine. The output of brine iodine increased steadily until the last half of World War II. Production of seaweed iodine virtually ceased until the advent of the war, inasmuch as it is a byproduct in the manufacture of potassium chloride from seaweed. Japanese producers of the latter could not compete successfully against foreign producers until shortly before the war, when the Government revived the industry by affording it special protection in the interest of national self-sufficiency.

Because of the urgent military and civilian need for resublimed iodine for medicine, total production of iodine rose to 150 metric tons in 1943 and 1944, and several new firms entered the field. In 1948 the importation of potassium chloride was resumed at prices substantially below the domestic price, with the result that local production of that chemical declined; consequently, seaweed iodine is no longer being produced in Japan. The output of brine iodine declined after 1943, mainly owing to a postwar decrease in domestic demand until 1948, when the first postwar exports of iodine were made. From 1948 to 1952 the total annual production of this commodity has increased 600 percent; production of brine iodine alone has risen over 800 percent. The estimated output for the Japanese fiscal year 1952 (ended March 31, 1953) is 300 metric tons, and the goal for 1953 is 400 metric tons. Only 6 firms produce iodine in significant quantities; their combined operable capacity is approximately 29 metric tons per month, of which 1 company, Aioi Industrial Co., Ltd.,

has about 60 percent.

¹¹ Reimert, Lawrence J. (assigned to the New Jersey Zinc Co.), Production of Titanium Tetraiodide: U. S. Patent 2,616,784, Nov. 4, 1952.

12 Wichers, Edward, Report of the Committee on Atomic Weights of the American Chemical Society: Jour. Am. Chem. Soc., vol. 74, No. 10, May 24, 1952, pp. 2447-2448.

13 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 4, April 1953, pp. 31-38.

TABLE 4.—Production and exports of iodine in Japan, 1930-52, in pounds
[Ministry of International Trade and Industry]

	Production				
	Brine iodine	Seaweed iodine	Total	Exports 1	
Calendar Year 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1941 1942	32, 540 40, 476 69, 974 85, 381 97, 620 117, 274 129, 457 160, 054	206, 803 220, 052 113, 632	206, 803 220, 052 113, 632 67, 917 52, 902 76, 819 40, 476 69, 974 85, 381 97, 620 117, 274 147, 314 218, 233 331, 810	99, 647 171, 959 211, 201 88, 845 49, 604 16, 004 9, 985 6, 422 (2) (2) (2) (2) (2) (2)	
1944	132, 038 79, 584	208, 313 107, 496	340, 351 187, 080		
1946 F iscai year* 1947	81, 850 80, 615 84, 123 182, 662 302, 861 501, 434 661, 380	34, 722 17, 593 27, 891 44, 577 8, 091 1, 715	116, 572 98, 208 112, 014 227, 239 310, 952 503, 149 661, 380	154, 531 202, 675 232, 870 325, 225 540, 127	

Export figures, except 1950, include crude and refined iodine and potassium iodide in iodine equivalents.
 Records not available.

³ Japanese fiscal year, Apr. 1 to Mar. 31.

TABLE 5.—Japan's principal producers of iodine

[Ministry of International Trade and Industry]

Name	Location of main office	Number and lo- cation of plants	Operative production capacity per month (met- ric tons)
Aioi Kogyo K. K.			
(Aioi Industrial Co., Ltd.)	Tokyo	2; Chiba	17
(Nipp Development Co., Ltd.)	do	1; Chiba	3
Nippon Ten-nen Gas Kogyo K. K. (Nippon Natural Gas Industry Co., Ltd.)	do		4
Ise Kagaku Kogyo K. K. (Ise Chemical Industry Co., Ltd.)	do	do	4
Chiba Yodo K. K. (Chiba Iodine K. K.)	do	do	0.5
Daiichi Yakuhin Kogyo K. K.	Niigata	1; Niigata	.3
Total			29

These producers are small, independent concerns usually engaged exclusively in producing iodine. Frequently there is a close association between the producer and the exporter, with long-term loans extended by the latter in exchange for favorable terms of sale.

The industry is represented by the Brine Iodine Association (Kansui Yodo Kyokai), Saiwai Building, No. 3, Uchisaiwaicho 2-chome, Chiyoda-ku, Tokyo.

With the exception of Daiichi Pharmaceutical Co., Ltd., Niigata Prefecture, which produces iodine as a byproduct in the manufacture of natural gas and has the smallest output of the established producers, the manufacturers of iodine are on the Chiba Peninsula east of Tokyo

501IODINE

in an area where three strata contain brine and natural gas. brine content of these strata is estimated at about 25 percent. and originally 1 liter of brine contained 90 to 140 milligrams of iodine. However, after wells have been operated for several years in areas where layers above the brine are permeable, water dilutes the brine and greatly reduces its iodine content. In other cases, after an area has been exploited for some time the brine content of the strata decreases. It has been found that wells in the northern half of the sector are less subject to these deteriorating factors than those in the southern part of the region, where the average lifetime is only 4 to 5 years.

The 3 strata vary in thickness from 190 to 500 meters and have an estimated combined brine content of 5.01 cubic kilometers or an iodine content of 483,000 metric tons, of which approximately 101,400

tons can be extracted.

Data on iodine resources

[Ministry of International Trade and Industry]

a. Districts: Northern area—Mobara to Seki-mara 140° 20′-35° 25′ Western area—Mobara to Otaki 140° 15′-35° 20′ Southern area—Fumoto mura—Kuniyoshi—Shikiyado 140° 20′-35° 15′ Eastern area—Beach 140° 25′-35° 10′-25′

b. Stratum:

Umegase—Northern and northwestern areas Otashiro—Western and southern areas Kiwada—Southern and southeastern areas

c. Average iodine content: 96.4 milligrams per liter d. Average brine percentage contained in strata: 25
e. Brine amount and iodine content:

Stratum Umegase Otashiro Kiwada	Thickness, (m.) 330 190 500 or more	Volume (cu. km.) 8. 7 20. 6 45. 0	Average percent of brine 25 25	percent of sand in stratum 48 31	Quantity of brine (cu. km.) 1. 05 1. 60 2. 36
					5. 01

Total iodine content: 5.01 cu. km. ×96.4 mg. per liter—482,964 metric tons.

f. Potential production: 483,000 metric tons ______ Total iodine content of brine.

30 percent ______ Estimated producible percentage of brine.

×70 percent ______ Productive percentage of iodine from brine.

101,430 metric tons Quantity of producible iodine.

Most producers operate their own wells and pump the brine and natural-gas solution to a nearby plant, where the iodine is extracted by 1 of 3 processes—the copper method, the active carbon method, or electrolysis. Aioi Industrial Co., Ltd., employs the copper method, for which it has exclusive rights in Japan, while Nippo Kohatsu has received license rights on the active carbon process. Most of the other firms produce iodine by electrolysis.

In each case the natural gas is separated from the brine at the beginning of the process and later used as fuel to sublimate the iodine in the final stages.

The purity of the iodine produced generally is 99.0 to 99.9 percent. Since the Japanese satisfy their physiological requirements for iodine through seaweed, which is a part of their diet, there is no domestic market for iodine-enriched food, salt, or tablets, and the principal uses for iodine in Japan are in the pharmaceutical, photographic, and dvestuffs industries. Although domestic consumption has increased steadily in the last 5 years, it has not paced the rise in exports and absorbs less than 25 percent of production. The Ministry of International Trade and Industry (MITI) has no actual statistics but estimates domestic consumption during the last 5 years as follows: 1948, 12 metric tons; 1949, 25; 1950, 35; 1951, 35 to 40; 1952, 50.

TABLE 6.—Postwar exports of crude iodine, by destination, from Japan, 1948-52,1 in metric tons

[Ministry	٥f	International	Trade and	Industryl
I TATTITISH A				

Country of destination	1948	1949	1950	1951	1952 (AprDec.) (est.)
United States	1.0	69. 1 3. 0 0	9.0 0 0	86.3 12.0 1.5 4.1	107. 9 57. 5 5. 2 3. 8
Sweden. Germany. Netherlands. Switzerland Cuba.	5. 5	5. 9 . 5 0 6. 1	13.0 .3 0 2 41.0	10.6 0 9.0 2 10.0	3.6 1.0 1.0
Mexico Canada Formosa South Africa			7.0 26.0	² 11.0 .5 .5	. 2
ItalyArgentina		1.0 2.0	8.1 7.1 4.0	0	0 0
Total	63.1	87. 9	95.6	145. 5	180. 4

¹ Japanese fiscal year, Apr. ! to Mar. 31. ² Through United States firms.

Japanese producers estimate that Japan could export 500 to 600 metric tons annually.

The exportation of iodine is handled by a small number of Japanese The principal exporters and the firms they and foreign trading firms. have represented are as follows:

-					
H,	371	n	771	ter	••

Takeda Yakuhin Kogyo K. K. (Takeda Pharmaceutical Industries, Ltd.).

Sogo Boeki K. K. Hakuyo Boeki K. K. (Haykuyo Trad-

ing Co., Ltd.).
Bunge Far East Agencies, Inc., 2
Marunouchi 2-chome Chiyoda-ku

Felix Kramarsky Corp., Fukoku Bldg., Chiyoda-ku Tokyo.

Manufacturer

Daiichi Bussan Kaisha, Ltd...... Nippon Tennen Gas Kogye K. K. (Japan Natural Gas Industry Co., Ltd.).

Nippo Kohatsu K. K.

Aioi Kogyo K. K. Do

Do

Aioi Kogyo K. K., Nippon Tennen Gas Kogyo K. K., Ise Kagaku Kogyo K. K.

Bunge Far East Agencies, Inc., exports to the sterling area through Hakuyo Boeki K. K.; and Felix Kramarsky Corp., probably the largest purchaser of Japanese iodine, exports exclusively to the United States, where the main office of the firm is located.

Since iodine is predominantly an export industry, its future growth depends upon long-term overseas demand. The immediate problem, however, is to raise production to meet current requirements.

Iron Ore

By Jachin M. Forbes 1

NITED STATES iron mines, as an integral part of the iron and steel industry, were idle during 2 months of 1952. The major steel strike of June and July cut iron-ore production for 1952 to 84 percent of 1951 output and threatened winter ore supplies of furnaces dependent upon the Lake Superior region. However, new shipping capacity on the Great Lakes, together with emergency allrail shipments to the lower Lakes area, succeeded in building stocks capable of supplying substantially increased requirements during the closed season for navigation on the Great Lakes.

Development of two major foreign sources of new supply in Canada and Venezuela proceeded during 1952 with good prospects for initial shipments as scheduled. The railroad from Quebec-Labrador deposits to Seven Islands on the Gulf of St. Lawrence was expected to be completed in time to begin operations in the summer of 1954, with large-scale shipments expected in 1955. Similarly, Cerro Bolivar in Venezuela is to be served by rail and river facilities which are

being rushed to completion in time for shipments in 1955.

The St. Lawrence Seaway was debated in 1952, with increasing emphasis on its importance to United States iron-ore supply. Hearings before the Senate Foreign Relations Committee in February led to debate on the Senate floor in June. However, legislation authorizing United States participation did not gain approval.

TABLE 1.—Salient statistics of iron ore in the United States, 1943-47 (average) and 1948-52

	1943–47 (average)	1948	1949	1950	1951	1952
Iron ore (usable; 1 less than 5 percent Mn): Production by districts: Lake Superior						
gross tons_ Southeasterndo Northeasterndo Westerndo Undistributed (by prod-	75, 059, 061 7, 140, 963 3, 504, 132 3, 268, 659	4, 422, 971	68, 494, 123 7, 601, 822 3, 863, 833 4, 441, 671	79, 627, 294 7, 507, 508 4, 474, 834 5, 860, 755	8, 587, 408 5, 180, 959	77, 094, 762 7, 623, 779 4, 426, 378 8, 030, 331
uct ore)gross tons	562, 498	479, 998	535, 998	574, 969	² 607, 850	2 742, 754
Totaldo	89, 535, 313	101, 003, 492	84, 937, 447	98, 045, 360	116, 504, 672	97, 918, 004
Production by types of product: Directgross tons Concentratesgross tons	69, 199, 811 16, 388, 241 3, 384, 763	76, 882, 338 19, 055, 357 4, 585, 799	63, 970, 016 16, 412, 639 4, 018, 794	22, 810, 818	25, 708, 840	70, 358, 493 22, 037, 106 4, 918, 264

For footnotes, see end of table.

¹ Commodity-industry analyst.

TABLE 1.—Salient statistics of iron ore in the United States, 1943-47 (average) and 1948-52-Continued

and 1945-52—Continued								
	1943-47 (average)	1948	1949	1950	1951	1952		
Iron ore (usable);¹ less than 5 percent Mn)—Con. Production by types of product—Continued Byproduct material (pyrites cinder and sinter)								
gross tons.	562, 498	479, 998	535, 998	574, 969	568, 631	604, 141		
Totaldo	89, 535, 313	101, 003, 492	84, 937, 447	98, 045, 360	116, 504, 672	97, 918, 004		
Production by types of ore: Hematitegross tons. Brown oredo Magnetitedo. Byproduct material (py-	82, 540, 645 1, 135, 344 5, 296, 332	2, 176, 149	1, 545, 595	87, 156, 235 2, 615, 402 7, 698, 754	3, 014, 761	2, 729, 524		
rites cinder and sinter) gross tons	562, 498	479, 998	535, 998	574, 969	568, 631	604, 141		
Totaldo	3 89, 535, 313	101, 003, 492	84, 937, 447	98, 045, 360	116, 504, 672	97, 918, 004		
Shipmentsdo Value Average value per ton at	89, 228, 057 \$261, 106, 890	100, 821, 714 \$394, 460, 751	84, 687, 275 \$381, 515, 831	97, 764, 410 \$487, 990, 404	116, 230, 052 \$634, 728, 583	97, 972, 584 \$596, 306, 850		
mineStocks at mines Dec. 31	\$2.94	\$3.91	\$4, 50	\$4.99	\$5.46	\$6.09		
Imports do Value gross tons Exports gross tons Value Consumption gross tons	5, 022, 705 1, 936, 726 \$8, 063, 739 2, 192, 664 \$7, 494, 764 90, 969, 666	6, 091, 677 \$27, 271, 681 3, 080, 666 \$13, 744, 979	7, 391, 291 \$36, 707, 534 2, 424, 775 \$14, 653, 817	8, 281, 237 \$43, 968, 426 2, 550, 738 \$15, 716, 509	4 10, 139, 678 4 \$59, 520, 046	9, 760, 625 \$83, 040, 614		
Manganese-bearing ore (5 to			33, 223, 100			200, 020, 000		
35 percent Mn): Shipmentsgross tons Value	1, 263, 904 \$3, 693, 105		962, 853 \$4, 040, 155		1, 092, 825 \$5, 385, 986			

Direct-shipping ore, washed ore, concentrates, sinter, and byproduct pyrites cinder and sinter.
 Includes Puerto Rican ore—39,219 tons in 1951 and 138,613 tons in 1952.
 Includes 494 tons carbonate ore (siderite).

Revised figure.

Bureau of Mines not at liberty to publish figure.

DOMESTIC PRODUCTION

The rate of iron-ore production in 1952 reached record levels, notwithstanding a 16-percent decrease in the total output as compared with 1951. Shipments were adequate to supply furnaces operating at over 100-percent capacity during much of the year. In September, mine shipments reached 16,300,506 gross tons; if this total had been shipped in each of the strike-bound months (June and July), the annual total could have reached 126 million tons. This much iron ore would not have been needed if there had been no strike, but the figure illustrates the improved transportation capacity resulting from recent additions to the ore-carrier fleet.

Crude-ore (mine product before any treatment to eliminate waste constituents) production decreased 16 percent from 1951, as did the Nearly four-fifths of the crude ore was hematite, with magnetite and brown ore constituting 13.4 percent and 7.8 percent, respectively. Similarly, about four-fifths of the crude ore was extracted by open-pit methods, and only 21.9 percent came from underground mines. Trends with respect to types of ore and mining methods were obscured in 1952 because strike effects were more evident in the Lake Superior district. Shipments of crude ore in-

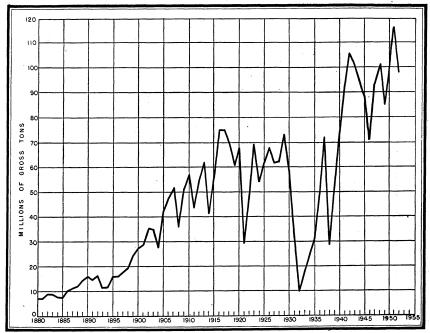


FIGURE 1.—Production of iron ore in the United States, 1880-1952.

cluded 70,351,028 gross tons (54.8 percent of the total), which proceeded to consumers without treatment other than sizing and separation as to various grades. The remaining 45.2 percent went to beneficiation plants, where it was processed by means of log washers, jigs, Wilfley tables, heavy-medium separators, cyclones, Humphreys spirals, and magnetic separators. Some of the concentrates were sintered, and increasing quantities were nodulized and pelletized.

Among the 18 States and Puerto Rico, which supplied the domestic production of crude ore in 1952, Minnesota led with 63 percent of the total. Michigan and Alabama supplied 9 percent each. However, Michigan's tonnage was slightly higher and was virtually all direct-shipping ore, as compared with Alabama's total, which included a substantial tonnage of clay washed from crude brown ore. New York was fourth largest producer with 6 percent and Utah fifth with 3 percent. Here again the percentages apply only to crude ore, inasmuch as nearly all New York's production was for beneficiating plants and all of Utah's production went direct to consumers.

The remaining 10 percent came from 13 States and Puerto Rico. Of these, Texas produced over 2 million tons; California, Georgia, New Jersey, Pennsylvania, and Wisconsin produced over 1 million tons each; and other sources ranged from 600 to 912,084 each. Tables 2 and 3 list crude-ore production by States, varieties, and mining methods. Table 4 shows mine shipments of crude ore to beneficiating plants and consumers, by States. Table 5 lists production of both crude and usable ore by mining districts and types of ore.

TABLE 2.—Crude iron ore mined in the United States, 1951-52, by States and varieties, in gross tons [Exclusive of ore containing 5 percent or more manganese]

			195	51					198	52		
State	Number of mines	Hematite	Brown ore	Magnetite	Total	Rank	Number of mines	Hematite	Brown ore	Magnetite	Total	Rank
llabama rkansas alifornia eorgia florigan flichigan flinnesota fissouri evada eew Jersey ew Mexico ew York ennsylvania ennessee exas tah irginia visconsin yyoming uerto Rico	1 12 39 146 1 6 3 7 1 3 4 6 1	98, 824, 060 518, 221 258, 205 (³) 2, 000	1, 783, 520 641, 846 85, 400 177, 000 3, 447, 275	703, 953 73, 122 1, 166, 495 32, 210	12, 509, 417 6, 047 1, 198, 847 1, 783, 520 13, 918, 614 100, 169, 859 313, 327 1, 166, 495 32, 210 7, 741, 434 1, 878, 743 179, 000 3, 447, 275 4, 726, 159 1, 757, 234 616, 949 39, 219	3 19 100 8 2 1 13 14 111 17 4 7 7 7 15 6 5 18 9 12 16	1 40 1 3 1 13 41 171 1 5 12 5 6 1 3 4 6 1 1	(3)	677, 171 177, 700 	600, 394 602, 394 742, 752 1, 318, 599 7, 793 3 7, 267, 202 1, 596, 191	1,318,399 7,793 7,267,202 1,596,191 4 46,244 2,417,864 4,060,003 (4)	
Totalercent of total	289	³ 123, 339, 750 81. 1	11, 207, 744 7. 4	³ 17, 566, 229 (11. 5	152, 113, 723 100. 0		321	³ 101, 161, 922 78. 8	9, 977, 198 7. 8	³ 17, 250, 520 13. 4	128, 389, 640 100, 0	

Excludes an undetermined number of small pits. Output of these pits included in tonnage given.
 Semialtered magnetite containing varying proportions of hematite.
 Includes small tonnage of hematite for nonmetallurgical use.
 Small tonnage mined in Virginia included with Tennessee.

TABLE 3.—Crude iron ore mined in the United States, 1951-52, by States and mining methods, in gross tons

[Exclusive of ore containing 5 percent or more manganese]

×		1951			1952	
State	Open pit	Under- ground	Total	Open pit	Under- ground	Total
Alabama Arkansas California Georgia Michigan Minnesota Missouri Nevada New Jersey New Mexico New York Pennsylvania Tennessee Texas Utah Virginia Wisconsin Wyoming Puerto Rico	1, 198, 847 1, 783, 520 1, 085, 662 96, 431, 377 506, 161 331, 327 32, 210 4, 310, 190 659, 537 179, 000 3, 447, 275 4, 726, 159 7, 753	12, 832, 952 3, 738, 482 97, 460 1, 166, 495 3, 431, 244 1, 219, 206		7, 793 4, 375, 790 564, 696 1 46, 244 2, 417, 864 4, 060, 003	5, 980, 703 600 10, 956, 654 3, 653, 028 368, 542 1, 318, 599 2, 891, 412 1, 031, 495	11, 244, 472 600 1, 516, 373 1, 687, 532 11, 994, 915 81, 442, 753 912, 084 1, 318, 984 1, 318, 984 1, 318, 986 1, 7, 267, 202 1, 596, 191 1 46, 244 4, 060, 003 (1) 1, 495, 109 484, 945 138, 613
TotalPercent of total	120, 161, 860 79. 0	31, 951, 863 21. 0	152, 113, 723 100. 0	100, 208, 553 78. 1	28, 181, 087 21. 9	128, 389, 640 100. 0

¹ Small tonnage mined in Virginia included with Tennessee.

TABLE 4.—Crude iron ore shipped from mines in the United States, 1951-52, by States and disposition, in gross tons

[Exclusive of ore containing 5 percent or more manganese]

		1951			1952	
State	Direct to consumers	To beneficiation plants	Total	Direct to consumers	To beneficiation plants	Total
Alabama Arkansas California Georgia Minnesota Missouri Nevada New Jersey New Mexico New York Pennsylvania Tennessee Texas Utah Virginia Wisconsin Wyoming Puerto Rico	1, 182, 799 13, 533, 359 56, 394, 129 2, 500 299, 010 193, 143 32, 210 112, 686	6, 303, 185 6, 000 1, 783, 520 292, 975 43, 972, 058 601, 011 989, 544 7, 633, 037 1, 876, 904 179, 000 3, 447, 275	39, 219	5, 089, 437 1, 463, 239 38, 221 11, 710, 737 44, 798, 372 911, 657 166, 962 7, 793 58, 473 1 6, 229 3, 990, 505 (1) 1, 485, 845 138, 613	1, 147, 862 7, 206, 929 1, 595, 256 39, 900 2, 417, 864	11, 245, 558 600 1, 463, 239 1, 687, 532 11, 964, 336 81, 610, 673 758, 348 911, 657 1, 314, 824 91, 657 1, 314, 824 1, 595, 2417, 884 3, 990, 505 1, 46, 129 2, 417, 884 3, 990, 505 1, 485, 845 188, 613
Total Percent of total	84, 996, 127 55. 9	67, 084, 509 44. 1	152, 080, 636 100. 0	70, 351, 028 54. 8	58, 038, 391 45. 2	128, 389, 419 100. 0

¹ Small tonnage mined in Virginia included with Tennessee.

TABLE 5.—Iron ore mined in the United States, 1951-52, by mining districts and varieties, in gross tons

[Exclusive of ore containing 5 percent or more manganese]

<u> </u>					
Variety of ore	Lake Superior district	South- eastern States	North- eastern States	Western States	Total
1951					
Crude ore: Hematite Brown ore Magnetite	114, 499, 908 ² 641, 846 703, 953	7, 446, 467 7, 033, 223	(1)	1, 393, 375 3, 532, 675 6, 036, 385	1 123, 339, 750 11, 207, 744 1 3 17, 566, 229
Total	115, 845, 707	14, 479, 690	10, 786, 672	10, 962, 435	³ 152, 113, 723
Usable iron ore: Hematite. Brown ore Magnetite. Total. 1952	93, 356, 118 ² 452, 405 138, 467 93, 946, 990	7, 144, 625 1, 442, 783 	(1) 1 5, 180, 959 5, 180, 959	1, 030, 211 1, 119, 573 6, 031, 681 8, 181, 465	1 101, 530, 954 3, 014, 761 1 3 11, 390, 326 3 115, 936, 041
Crude ore: Hematite. Brown ore. Magnetite. Total	93, 653, 212 2 677, 171 602, 394 94, 932, 777	6, 273, 785 6, 704, 463 	(¹) ¹ 10, 181, 992 10, 181, 992	1, 234, 925 2, 595, 564 6, 327, 521 10, 158, 010	1 101, 161, 922 9, 977, 198 1 3 17, 250, 520 3 128, 389, 640
Usable iron ore: Hematite	76, 441, 769 ² 476, 242 176, 751	6, 186, 910 1, 436, 869	(1)	886, 882 816, 413 6, 327, 036	1 83, 515, 561 2, 729, 524 13 11, 068, 778
Total	77, 094, 762	7, 623, 779	4, 426, 378	8, 030, 331	³ 97, 313, 863

¹ Small tonnage of hematite included with magnetite to avoid disclosure of individual company operalions.

tions.

Produced in Fillmore County, Minn.; not in the true Lake Superior district.

Total includes Puerto Rican ore; 39,219 tons in 1951 and 138,613 tons in 1952.

Usable ore (from mines and beneficiating plants) production and shipments in 1952 approximated the totals of 1950 when no serious work stoppages hampered operations. The strike in 1952 occurred during June and July, at the peak of the operating season; yet, notwithstanding the time factor, shipments for the year decreased only 16 percent below 1951 and reflected great credit on mine operators and transportation firms. Hematite constituted 85 percent, magnetite 11 percent, brown ore 3 percent, and byproduct ore (obtained as a residue of burned pyrites) 1 percent of all usable iron ore produced. Direct-shipping grades accounted for 72 percent of the total, while the 58,038,391 tons of crude ore shipped to beneficiating plants resulted in 22,037,106 tons of concentrates and 4,918,264 tons of sinter. Concentrates and sinter, together with 604,141 tons of byproduct ore, made up the beneficiated-iron-ore supply from domestic sources and 28 percent of all domestic production.

The Lake Superior district supplied 79.2 percent of all usable ore (excluding byproduct ore) in 1952 compared with 81.0 percent in 1951 and 81.7 percent in 1950. However, the trend indicated by these percentages was accentuated in 1952 because many mines in other districts continued to operate during the strike period. Western States, with the assistance of substantial export trade as well as important strike-free production, displaced Southeastern States as the second largest producing district. The percentage was 8.3 percent

TABLE 6.—Iron ore produced in the United States, 1951-52, by States and types of product, in gross tons [Exclusive of ore containing 5 percent or more manganese]

			1951					1952		
State	Direct- shipping ore	Sinter ¹	Concentrates	Total	Iron content natural (percent)	Direct- shipping ore	Sinter 1	Concentrates	Total	Iron content natural (percent)
Mined ore: Alabama Arkansas California Georgia Michigan Minnesota Missouri Nevada New Jersey New Mexico New York Pennsylvania Tennessee Texas Utah Virginia Wisconsin Wyoming Puerto Rico Total mined ore Byproduct ore: Colorado Michigan Delaware Tennessee Virginia	56, 444, 522 2, 610 331, 327 193, 417 32, 210 111, 737 	91, 993	357, 754 78, 262 21, 846, 362 169, 966 465, 328 240, 814 461, 251 35, 908 1, 010, 061	8, 185, 993 1, 343 1, 198, 847 357, 754 13, 703, 901 78, 485, 855 172, 576 331, 327 658, 745 32, 210 3, 304, 385 1, 217, 829 35, 908 1, 102, 054 4, 726, 159 7, 753 1, 616, 949 39, 219 115, 936, 041	37. 48 54. 36 53. 35 39. 57 54. 13 50. 53 51. 27 56. 19 62. 60 53. 15 62. 12 58. 56 39. 02 46. 46 55. 60 33. 54 48. 30 58. 00	11, 741, 316 44, 628, 318 912, 084	781, 459 2, 367, 693 641, 020 137, 196	1, 164, 840 115 331, 038 68, 629 18, 379, 931 268, 218 529, 723 293, 878 349, 187 7, 943 643, 604	7, 240, 348 1, 516, 373 369, 259 11, 809, 945 63, 789, 708 268, 218 912, 084 706, 955 7, 793 2, 729, 216 2, 900, 207 2 14, 172 780, 800 4, 060, 003 (2) 1, 495, 109 484, 945 138, 613 97, 313, 863	37. 76 52. 17 56. 16 41. 53 51. 06 50. 16 51. 57 59. 44 62. 38 56. 38 62. 49 58. 03 41. 39 45. 41 53. 97 52. 81 48. 20 58. 00 50. 17
Grand total		5, 513, 909	25, 708, 840	116, 504, 672	50.79	70, 358, 493	5, 522, 405	22, 037, 106	97, 918, 004	50. 27

Exclusive of sinter produced at consuming plants.
 Small tonnage mined in Virginia included with Tennessee.
 Cinder and sinter obtained from pyrites treated in, but not necessarily mined in, States indicated.

in 1952 as compared with 7.8 percent for Southeastern States. eastern States output closely approximated last year's percentage of

Minnesota continues preeminent among the iron-ore-producing States and in 1952 supplied 66 percent of the total. Michigan produced 12, Alabama 7, Utah 4, and New York 3 percent. All other States produced less than 2 million tons each and together supplied 8 percent of the total.

The iron content of usable products averaged 50.27 percent and ranged from an average of 37.76 percent in Alabama to 62.49 in New York. Northeastern States produced mainly high-iron-content concentrates and sinter, Western States supplied high-iron-content direct-shipping ore, and Lake Superior ore was close to the United States average.

TABLE 7.—Iron ore produced in the United States, 1951-52, by States and varieties, in gross tons

[Exclusive of ore containing 5 percent or more manganese]

		. 1	951			1	952	
State	Hematite	Brown ore	Magnet- ite	Total	Hematite	Brown ore	Magnet- ite	Total
Alabama Arkansas California Georgia Michigan Minnesota Missouri Nevada New Jersey New Mexico New York Pennsylvania Tennessee Texas Utah Virginia Wisconsin Wyoming Puerto Rico Total Byproduct ore: 3 Colorado Michigan Delaware Tennessee	13, 703, 901 77, 894, 983 75, 057 258, 205 (1) 470 1,757, 234 616, 949	357, 754 452, 405 17, 519 35, 438 1, 102, 054	138, 467 73, 122 658, 745 32, 210 1 3, 304, 385 1, 217, 829 4, 726, 159 39, 219	1, 343 1, 198, 847 13, 577, 754 13, 577, 754 178, 4865, 855 179, 576 331, 213 658, 745 32, 210 13, 304, 385 1, 217, 829 1, 278, 159 7, 753 1, 757, 234 616, 903 39, 219	(1) 47 1, 495, 109 484, 945	369, 059 476, 242 35, 613 2 14, 125 780, 800 (2)	1, 516, 373 176, 751 742, 752 706, 955 7, 793 1 2, 729, 216 990, 207 4, 060, 003	11, 516, 373 369, 259 11, 809, 945 63, 789, 708 63, 789, 708 912, 084 706, 955 72, 729, 216 990, 207 2 14, 172 780, 800 4, 060, 003 (2) 1, 495, 109 484, 945 138, 613
Virginia Grand total.	J ¹ 101, 530, 954	3, 014, 761	111, 390, 32 6	116, 504, 672	183, 515, 561	2, 729, 524	111, 068, 778	604, 141 97, 918, 004

Small tonnage of hematite included with magnetite to avoid disclosure of individual company operations.
 Small tonnage mined in Virginia included with Tennessee.
 Cinder and sinter obtained from pyrites treated in, but not necessarily mined in, States indicated.

TABLE 8.—Shipments of iron ore in the United States in 1952, by States and uses, in gross tons

[Exclusive of ore containing 5 percent or more manganese]

	Ir	on and Ste	el			Mis-	To	otal
State	Direct shipping ore	Sinter 1	Concen- trates	Cement	Paint	cel- lane- ous	Gross tons	Value
Mined ore: Alabama Arkansas California Georgia Michigan Minnesota Missouri Nevada New Jersey New Mexico New York Pennsylvania Tennessee Texas Utah Virginia Wisconsin Wyoming Puerto Rico Undistributed Total Byproduct ore: 5 Delaware Tennessee Tennessee Tennessee Virginia	1, 392, 899 38, 221 11, 689, 339 44, 798, 372 907, 657 166, 962 4, 380 58, 473 3, 989, 679 1, 485, 845 138, 613 	2, 364, 811 641, 137 137, 267	18, 326, 238 268, 169 505, 136 433, 822 350, 973 7, 943 646, 877	13, 272 3, 413 11, 146 	49 96 4 6, 182 3, 049 (4) 30, 774	3 28, 279 3 59, 451	1, 463, 239 319, 959 11, 779, 366 63, 906, 069 268, 218, 911, 657 685, 466 7, 793 2, 896, 531 992, 110 4 14, 172 787, 193 3, 990, 505 484, 945 138, 613 	378, (3), 281 (3), 991, 970 6, 760, 467 (2), 34, 514, 879 (2), 108, 923 (2), (2), (2), (3) (3), 508, 008 591, 143, 995
Grand total	70, 244, 779	5, 516, 162	22, 049, 503	71, 915	30, 774	59, 451	97, 972, 584	596, 306, 850

TABLE 9.—Iron ore mined in the United States in 1952, by States and counties, in gross tons

[Exclusive of ore containing 5 percent or more manganese]

State and county	Ac- tive mines	Crude ore	Usable ore	State and county	Ac- tive mines	Crude ore	Usable ore
Alabama: BlountButlerCalhoun	1 1 8	} 190, 400 388, 700	39, 231 81, 372	California: Riverside San Bernardino	1 2 3	1, 471, 465 44, 908	1, 471, 465 44, 908 1, 516, 373
Cherokee Etowah Franklin	3 1 8	115,000 3,159,067	22, 925 686, 750	Total	5	1, 516, 373	1, 510, 373
Jefferson Marshall St. Clair	11 1 1	6, 270, 336	6, 183, 461 5, 018 20, 660	Bartow Chattooga Floyd Polk	1 1 5	863, 332	203, 537
ShelbyTalladegaTuscaloosa	2 2 1	104,000	200,931	Walker	1 13	824, 200 1, 687, 532	165, 723 369, 259
Total	1 40	11, 244, 472	7, 240, 348	Michigan:		1, 001, 002	
Arkansas: Hot Spring	1	600	115	Baraga Dickinson Gogebic	9	3, 155, 892	153, 534 2, 972, 930

For footnotes, see end of table.

Exclusive of sinter produced at consuming plants.
 Values that may not be shown separately are combined as "Undistributed."
 Small tonnage used as earth pigments included with miscellaneous.
 Small tonnage mined in Virginia included with Tennessee.
 Cinder and sinter obtained from pyrites treated in, but not necessarily mined in, States indicated.

TABLE 9.—Iron ore mined in the United States in 1952, by States and counties, in gross tons—Continued

[Exclusive of ore containing 5 percent or more manganese]

State and county	Ac- tive mines	Crude ore	Usable ore	State and county	Ac- tive mines	Crude ore	Usable cre
Michigan—Con. Iron Marquette Total	15 14 41	4, 076, 446 4, 609, 043 11, 994, 915	4, 074, 438 4, 609, 043 11, 809, 945	New Mexico: Grant Lincoln Total	2 3 5	} 7, 793	7, 798
Minnesota: Crow Wing Fillmore Itaska Morrison St. Louis	23 1 38 1 108	3, 197, 145 677, 171 }24, 819, 537 52, 748, 900	2, 289, 763 476, 242 12, 361, 400 48, 662, 303	New York: Clinton Essex Oneida St. Lawrence	1 3 1 1	} 4, 249, 132 } 3, 018, 070	1, 736, 494 992, 722
Total Missouri:		81, 442, 753	63, 789, 708	Pennsylvania: Leba-	1	7, 267, 202 1, 596, 191	990, 207
Butler Howell St. Francois Total	2 1 2	} 175,000 583,348 758,348	35, 077 233, 141 268, 218	Tennessee: Bradley Monroe	1 2	} 2 46, 244	² 14, 172
Nevada: Churchill Douglas Eureka Humboldt Lander Mineral	1 1 1 2 2	725, 875	725, 875	Total Texas: Cass	3 1 4	46, 244 } 2, 417, 864 2, 417, 864	780, 800 780, 800
Nye Pershing Total	1 3 12	186, 209 912, 084	186, 209 912, 084	Utah: Iron	6 1 2 1	4, 060, 003 (2) 1, 495, 109 484, 945	4, 060, 003 (2) 1, 495, 109 484, 945
New Jersey: Morris Passaic Warren	3 1 1	1, 318, 599	706, 955	Puerto Rico	321	138, 613	138, 613 97, 313, 863
Total	5	1, 318, 599	706, 955				

¹ Excludes undetermined number of small pits. Estimated output of these mines included in tonnage given.

³ Small tonnage mined in Virginia included with Tennessee.

TABLE 10.—Iron ore produced in the Lake Superior district, 1854-1952, by ranges, in gross tons

[Exclusive after 1905 of ore containing 5 percent or more manganese]

Year	Marquette	Menominee	Gogebic	Vermilion	Mesabi	Cuyuna	Total
1854-1944 1945 1946 1947 1948 1949 1950 1951 1951 1952	229, 773, 915 4, 664, 816 3, 455, 961 5, 070, 631 4, 830, 341 4, 392, 732 5, 085, 500 5, 617, 935 4, 668, 550 267, 560, 381	205, 736, 670 4, 140, 239 2, 662, 308 3, 741, 217 4, 259, 378 3, 483, 375 4, 068, 458 4, 864, 831 4, 168, 465 237, 124, 941	242, 702, 380 4, 395, 653 3, 633, 078 5, 227, 005 5, 504, 971 4, 756, 474 5, 238, 781 4, 978, 369 4, 468, 039 280, 904, 750	75, 704, 578 1, 481, 007 1, 232, 008 1, 471, 879 1, 580, 497 1, 381, 327 1, 580, 217 1, 806, 818 1, 573, 748	1, 376, 030, 818 58, 355, 320 46, 678, 679 58, 772, 404 64, 071, 983 52, 551, 346 60, 838, 025 73, 574, 908 59, 370, 538 1, 850, 244, 021	32, 807, 310 1, 784, 010 1, 380, 120 2, 100, 846 2, 030, 281 1, 826, 711 2, 480, 843 2, 651, 724 2, 369, 180 49, 431, 025	2, 162, 755, 671 74, 821, 045 59, 042, 154 76, 383, 982 82, 277, 451 68, 391, 965 79, 291, 824 93, 494, 585 76, 618, 520 2, 773, 077, 197

TABLE 11.—Average analyses of total tonnages (bill-of-lading weights) of all grades of iron ore from all ranges of Lake Superior district, 1943-47 (average) and 1948-52

[Lake Superior Iron Ore Association]

			Content	(natural),	percent	
Year	Gross tons	Iron	Phos- phorus	Silica	Man- ganese	Moisture
1943-47 (average)	75, 509, 600 82, 655, 757 68, 531, 664 79, 150, 719 93, 549, 414 77, 225, 818	51. 45 50. 49 50. 39 50. 38 50. 25 50. 49	0.089 .093 .096 .092 .090	8. 62 9. 30 9. 72 9. 85 9. 87 10. 05	0. 76 . 76 . 78 . 77 . 77 . 77	11. 10 11. 35 11. 12 11. 11 11. 22 10. 78

In table 8, values are shown for those States having over 3 producers and where the output of 1 producer does not predominate. These values are for ore at the mine before transportation costs.

Average analyses of Lake Superior ore shown in table 11 indicate that iron content improved slightly in 1952, while phosphorus and silica contents continued to rise. Moisture dropped slightly, and

manganese remained at the level of the past 3 years.

In addition to the tonnages produced in 1952 from the Lake Superior iron ranges, 476,242 tons of brown ore concentrates was mined in Fillmore County, Minn., which is not considered a part of the true Lake Superior district. Production of manganiferous iron ore containing (natural) 5 percent or more manganese and considered a special grade of iron ore by the trade totaled 843,308 tons, of which 834,119 tons was shipped. Including these tonnages, the Lake Superior district produced 77,938,070 tons and shipped 78,005,399.

TABLE 12.—Beneficiated iron ore shipped from mines in the United States, 1925-29 (average) and 1930-52, in gross tons

[Exclusive of ore containing 5 percent or more manganese]

Year	Benefi- ciated	Total	Proportion of beneficiated to total (percent)	Year	Benefi- ciated	Total	Proportion of beneficiated to total (percent)
1925-29 (av.) 1930. 1931. 1932. 1933. 1934. 1935. 1936. 1937. 1938. 1939. 1940.	8, 653, 590 8, 973, 888 4, 676, 364 407, 486 3, 555, 892 4, 145, 590 6, 066, 601 9, 688, 699 12, 380, 136 4, 336, 435 9, 425, 809 12, 925, 741	66, 697, 126 55, 201, 221 28, 516, 032 5, 331, 201 24, 624, 285 25, 792, 606 51, 465, 648 72, 347, 785 26, 430, 910 54, 827, 100 75, 198, 084	13. 0 16. 3 16. 4 7. 6 14. 4 16. 1 18. 2 18. 8 17. 1 18. 3 17. 2	1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952	19, 376, 120 23, 104, 945 20, 117, 685 20, 303, 422 19, 586, 782 15, 588, 763 21, 407, 760 20, 658, 232 26, 717, 928 30, 664, 648 27, 023, 982	93, 053, 994 105, 313, 653 98, 817, 470 94, 544, 635 87, 580, 942 69, 494, 052 92, 670, 188 100, 274, 965 84, 174, 399 97, 150, 704 115, 660, 775 97, 375, 010	20. 8 21. 9 20. 4 21. 5 22. 4 23. 1 23. 6 24. 5 27. 5 26. 5 27. 8

Of the 321 active mines in 1952, 78 are listed individually with a production over 500,000 tons of crude ore each. Forty-five of these were in Minnesota, 9 in Alabama, 8 in Michigan, 4 each in New York and Utah, 2 in Wisconsin, and 1 each in California, Georgia, Missouri,

TABLE 13.—Iron-ore mines in the United States in 1952, by size of crude output

Name of mine	State	Nearest town	Range or district	Mining method	Production	(gross tons)
	State	Nearest town	Range of district	Willing method	Crude ore	Usable ore
Sherman	Minnesota	Fraser	Mesabi	Open pit	7, 527, 846	7, 509, 695
Rouchleau	do	Virginia	do	do	4, 672, 670	4, 570, 100
Hull Rust		Hibbing			3, 139, 945	3, 083, 910
Mountain Iron		Mountain Iron	do	do	3, 066, 484	2, 643, 509
Mahoning	do	Hibbing		do	3, 014, 717	3, 014, 717
Benson		Star Lake		do	3, 012, 865	989, 662
Monroe	_ Minnesota	Chisholm	Mesabi	do	2, 314, 746	2, 314, 608
Lone Star	Texas	Daingerfield		do	2, 022, 344	571, 963
Wenonah		Bessemer		Underground	1, 929, 082	1, 928, 891
Hill-Trumbull	Minnesota	Marble		Open pit	1, 918, 348	607, 681
Walker		Coleraine	do	- do	1, 790, 068	1, 021, 826
Gross Marble	do	Marble	do	do	1, 759, 577	917, 211
Spruce		Eveleth	do		1, 724, 085	
Mather	Michigan	Ishpeming	Marquette	Underground		1, 667, 820
Holman Cliffs	Minnesota	Taconite	Mesabi	Open pit	1,701,343	1, 701, 343
Cornwall-Lebanon	Pennsylvania	Lebanon	Cornwall	Combined	1, 610, 181	884, 166
Canton	Minnesota	Biwabik	Mesabi		1, 596, 191	990, 207
Canisteo	- dodo	Coleraine		Open pit	1, 595, 766	1, 595, 766
Eagle Mountain	California	Desert Center	Eagle Mountain	-	1, 510, 816	743, 024
Gilbert.		Gilbert			1, 471, 465	1, 471, 465
Iron Mountain	Utah	Cedar City			1, 407, 718	1, 402, 815 1, 305, 684
Auburn Group		Virginia	Iron Mountain		1, 305, 684	1, 305, 684
MacIntyre	Minnesota New York				1, 290, 648	1, 283, 216 505, 095
New Bed Harmony & Old Bed	- New Tork	Tahawus		_ do	1, 280, 250	505, 095
Hill Annex		Mineville		_ Underground	1, 272, 402	846, 505
	- Minnesota	Calumet	Mesabi		1, 267, 436	638, 067
Chateaugay Mesabi Chief	New York	Lyon Mountain			1, 257, 765	346, 952
Hawkins	- Minnesota	Keewatin	Mesabi		1, 156, 866	541, 302
Markins	- do	Nashwauk		do	1, 080, 666	562, 879
Muscoda	- Alabama	Bessemer		_ Underground	1, 078, 889	1, 078, 782 1, 059, 500
Embarrass	_ Minnesota	Biwabik	Mesabi	Open pit	1,059,500	1, 059, 500
Excelsior		Cedar City	Iron Mountain	do	1, 047, 514	1, 047, 514
Ishkooda		Bessemer	Birmingham	Underground	1,041,713	1,041,609
Arcturas		Marble		Open pit	1, 035, 700	539, 345
Patrick		Nashwauk		do	1,018,962	371, 651
Galbraith		do	do	_ do	1,006,007	512, 999
Adkins		Woodstock		- do	999, 710	199, 942
Montreal		Montreal		_ Underground	977, 191	977, 191
Pyne		Bessemer		do	966, 704	966, 704
South Agnew	- Minnesota	Hibbing			965, 425	754, 538
Danube	do	Bovey		_l do l	965, 269	582, 179
Desert Mound	_ Utah	Cedar City	Iron Mountain	_ dol	963, 080	963, 080
Warner	. Alabama	Russellville	Birmingham.	do	950, 000	188, 688
Susquehanna	Minnesota	Hibbing	Mosshi	do	934, 659	802, 343

Blackburn	/ Alahama	Russellville	Birmingham	do	920,000	184, 170
Section 18	Minnesota	Hibbing	Mesabi	do	838, 673	778, 150
Halobe	do	Mochwoule	do	do	798, 289	225, 573
Pioneer	do	Fly	Vermilion	Underground	785, 448	785, 448
Perry	do	Koowatin	Mesabi	Open pit	760, 540	445, 948
Kevin			do	do	758, 239	322, 334
Kevin	do		do	do	757, 203	720, 247
Longyear			do	do	746, 581	559, 199
Bray		Tibbing	do	do	738, 322	731, 916
Scranton	qo	Dimohib		do	727, 020	364, 489
Mary Ellen	<u>qo</u>	No shares	do	do	696, 624	259, 678
Olson	- <u></u> <u>ao</u>	Nasiiwauk	Tuen Mountain	do	689, 747	689, 747
Blowout	Utan	Cedar City	Manabi	do	689, 659	369, 416
Buckeye.	Minnesota	Coleraine	Courtham Minn	do	677, 171	476, 242
Spring Valley	do	Ostrander		do	676, 290	335, 153
Jennison	do	Coleraine	Mesabi	do	663, 535	663, 535
Fayal	do	Eveleth		do	651, 876	651, 876
Canton (St. James)	do		ao	Underground	627, 803	245, 656
Scrub Oaks	New Jersey		N. J. & SE N. Y	Open pit	622, 300	124, 454
Schroeder	Alabama	Russellville	Birmingham	Open pit	612, 724	178, 679
Russellville No. 14	do		do		587, 742	587.742
Geneva	Michigan	Ironwood				430, 527
Portsmouth	Minnesota		Cuyuna	Open pit	584, 211	232, 605
Iron Mountain		Iron Mountain	Iron Mountain		580, 648	232, 605 114, 568
Iron Hill	Georgia		Cartersville	Open pit	572, 840	556, 730
Buck Group	Michigan		Menominee	Underground	556, 730	
Hiawatha	do	do		do	555, 949	555, 949
Cliffs Shaft	do	Ishpeming	Marquette	do	548, 076	548, 076 546, 621
Wauseca	do	Iron River		do	546, 621	
Godfrev	Minnesota	Chisholm	Mesabi	do	545, 218	545, 218
Anvil-Palms-Keweenaw	Michigan	Bessemer	Gogebic	do	532, 884	532, 884
Carv	Wisconsin		do	do	517, 918	517, 918
Bennett	Minnesota	Keewatin	Mesabi	Combined	516, 298	479, 180
Carmi Carson Lake	do	Kelly Lake	do	Open pit	515, 098	515, 098
Newport	Michigan		Gogebic	Underground	514, 448	514, 448
Pennington			Cuvuna	Open pit	514, 196	260, 239
I cutime tour	11211110000001					
	1					
Output of 78 mines producing m	ore than 500,000 tons of cr	ude ore each			96, 335, 218	72, 795, 857
Output of 16 minor producing 10	NA AAA +A +AAA AAA +Ame Af Arii	da ora asch			7, 190, 249	5, 013, 609
Output of 10 minor producing 20	M'000 to 400'000 tone of arm	da ora aach			6, 272, 531	4, 891, 501
Outside of the miner production of	M AAA + A 2AA AAA + Ama Af amii	do are egeb			7, 417, 628	6, 020, 808
Output of El minos producing 10	VA AAA +a 900 AAA +ang af arii	da ara ageh			7, 030, 027	5, 913, 200
O-there of 00 minor producing 50) 000 to 100 000 tone of arms	a ora asan			2, 104, 500	1, 639, 791
Output of 99 mines producing u	nder 50,000 tons of crude o	re each			1, 426, 881	1, 039, 097
					100 000 010	07 010 000
Grand total United States	s (321 mines)				128, 389, 640	97, 313, 86 3
					1	l

New Jersey, Pennsylvania, and Texas. Forty-one of the mines are on the Mesabi range, including the 5 leading producers. The 35 mines producing 1 million tons or more contributed 51 percent of the total crude ore and 53 percent of all usable ore, excluding by-product ore. The 78 mines producing over 500,000 tons each accounted for 75 percent of both crude and usable ore. It should be noted that the order of listing is based on ore tonnage, not iron content of product, and mines producing low-grade crude ore are considered comparable in size with mines producing similar tonnages of direct-shipping ore. The 8 largest mines were open-pit operations; of those listed, 55 were completely above ground, 18 were underground, and 5 were combined operations.

Hematite was the predominant iron mineral in 26 of the millionton mines and magnetite in 8; 1 operation produced a mixed limonite-carbonate ore. The magnetite group includes mines of the Adirondack (New York) district, which recover nonmagnetic martite by gravity concentration, and mines in Western States producing direct-

shipping ore semialtered to hematite.

CONSUMPTION AND USES

Iron ore, as a basic raw material of prime importance and bulk proportions, directly affects a number of industries. Over 99 percent of total consumption is by furnaces manufacturing iron and steel. However, iron oxides constitute a substantial part of mineral-earth pigments produced in the United States, and other uses include chemical functions in the manufacture of portland cement and certain basic refractories. Ferroalloy manufacturers use a small tonnage to add iron in the alloy product; magnetite concentrates are employed as a heavy medium in ore-dressing processes; and lump magnetite is used as ship ballast. Occasionally, small quantities are used as a fluxing agent in nonferrous smelting operations, as constituents of fertilizers, and as mineral supplement to stock feeds. Mining-, smelting-, and transportation-equipment manufacturers are directly interested in the iron-ore industry as well as numerous other auxiliary activities.

Distribution of consumption, in percentage, indicates that blast furnaces continued to use 78 percent of the total, sintering plants 16 percent, steel furnaces 5 percent, and 1 percent is consumed for all other uses. The ore consumed in sintering plants, as noted below,

was later consumed as sinter in iron and steel furnaces.

Sinter.—Sintering plants at mines and blast furnaces, in line with other phases of the iron and steel industry, reduced output 10 percent in 1952. However, increased sintering capacity helped to offset the loss of output during the strike. Consumption of sinter was 93 percent in blast furnaces and 7 percent in steel furnaces. Iron-bearing materials consumed in the manufacture of sinter included 15,694,302 tons of iron-ore fines and concentrates, 23,904 tons of manganiferous iron ore, 654,260 tons of pyrite cinder, 6,567,156 tons of flue dust, and 478,243 tons of mill cinder and roll scale. The total, 23,417,865 tons, resulted in a conversion yield of 87 percent. Sintering plants at mines in 5 States produced 5,522,405 tons—27 percent of the total; and plants at blast furnaces and custom mills in 15 States produced 14,766,710 tons or 73 percent.

TABLE 14.—Consumption of iron ore in the United States in 1952, by States and uses, in gross tons

[Exclusive of ore containing 5 percent or more manganese]

		Metallurg	ical uses		Misc	ellaneous	uses	
State	Iron blast furnaces	Steel furnaces	Sintering plants	Ferro- alloy fur- naces	Cement	Paint	Other	Total ¹
AlabamaCalifornia	6, 977, 833			<u> </u>	69, 658 44, 579	(2)	90 27, 082	8, 265, 547
Colorado	2, 932, 611 8, 476, 032 9, 742, 314	379, 566	271, 604	l	(²) 67	(2)		5, 202, 786 9, 127, 269 11, 205, 934
Indiana Kentucky Maryland Massachusetts	758, 664 6, 185, 212	56, 419						7, 113, 515
Michigan Minnesota New Jersey	968, 149			55, 512	(2)	(2) (2) (2)	(2)	1, 986, 496 (²) 8, 310, 662
New York Ohio Pennsylvania Tennessee	4, 402, 304 15, 812, 840 19, 344, 366 257, 921	943, 841	2, 453, 025	315, 048	4, 521	(2) 41, 957		19, 529, 275 25, 289, 910 268, 648
Texas Virginia West Virginia	803, 843 2, 319, 611		151, 527		29, 566 (2) (2)	(2)		993, 296 (2) 2, 335, 016
Undistributed 3	78, 981, 700	5, 167, 043	15, 694, 302	15, 951 388, 096	·		<u>-</u>	197, 199

TABLE 15.—Production and consumption of sinter in the United States in 1952, by States, in gross tons

		Sinter co	onsumed
State	Sinter produced	In blast furnaces	In steel furnaces
Alabama	1, 230, 380	1, 556, 285	85, 108
Colorado	1, 674, 681	1, 659, 536	
Utah Delaware Ilinois	105, 028 757, 930 1, 574, 221	709, 384 1, 321, 432	142, 561 226, 379
Maryland Kentucky Tennessee	516, 769	675, 0 44	31, 451
West Virginia Michigan Minesota	538, 038 781, 459	564, 193	
New YorkOhio	3, 816, 272 2, 988, 644	1, 672, 686 3, 510, 870 6, 591, 169	54, 019 319, 398 582, 613
PennsylvaniaTexas	6, 168, 497 137, 196	137, 267	
Total	20, 289, 115	18, 397, 866	1, 441, 529

State totals include only tonnages shown. Other tonnages included with "Undistributed."
 Included with "Undistributed."
 Includes States indicated by footnote 2 plus the following: For cement, Arkansas, Arizona, Florida, Idaho, Iowa, Kansas, Louisiana, Missouri, Montana, Oregon, South Dakota and Washington; for paint, Georgia, North Dakota and Wisconsin; and a small tonnage from Nevada used as ship ballast and in making refrectories. refractories.

STOCKS

Usable iron ore in stockpiles at mines on December 31, 1952 is listed by States in table 16. Minnesota and Michigan were the largest holders, with 42 and 36 percent, respectively, of the total. Including Wisconsin, these 3 States, comprising the Lake Superior district, held 81 percent. New York was the third largest holder, with 8 percent. Total stocks were substantially the same as at the end of 1951. Consuming plants held stocks of iron ore and sinter totaling 43,130,833 gross tons on December 31, 1952, as compared with 40,952,788 tons at the end of 1951.

Stocks at Lake Erie Ports.—A total of 6,395,884 gross tons was reported on Lake Erie docks January 1, 1952. By May 1 this tonnage was reduced to 3,104,543 tons, according to the Lake Superior Iron Ore Association. The difference, 3,291,341 tons, represents only approximately actual withdrawals during the period of closed navigation inasmuch as reporting dates do not correspond exactly with the closed season. Stocks were reduced 3,584,864 tons during the same period in 1951.

TABLE 16.—Stocks of usable iron ore at mines, Dec. 31, 1951-52, by States, in gross tons

State	1951	1952	State	1951	1952
Alabama California Georgia Michigan Minnesota Missouri Nevada New Jersey	44, 389 107, 394 1, 985, 840 2, 445, 286 110 32, 317 815	51, 864 160, 678 49, 300 2, 016, 419 2, 328, 925 	New York Pennsylvania Texas Utah Virginia Wisconsin Total	584, 647 8, 153 103, 055 149, 379 1, 081 137, 000 5, 599, 466	418, 097 6, 250 101, 860 204, 403

PRICES 2

The average value per gross ton of iron ore f. o. b. mines was \$6.09 in 1952 as compared with \$5.46 in 1951 and \$4.99 in 1950. Table 17 gives the average value at mines of the different types of product and varieties of ore for each of the producing States, except where there are fewer than three shippers of a certain class of ore in a State and where permission has not been given to publish the value. These data are taken directly from statements of producers and probably represent the commercial selling prices only approximately. Usually the delivered cost is given less transportation costs to the consuming plant. In the Lake Superior district the mine value is the Lake Erie price less freight from mines to lower Lake ports. This value appears to be applied also to ore that is not sold on the open market.

Prices of Lake Superior Iron Ore.—The Office of Price Stabilization lifted control from iron-ore transactions between affiliated corporations, effective April 28, 1952. Merchant ore remained at the Lake Erie base prices, effective December 2, 1950, and through 1951 until July 26, 1952. OPS Ceiling Price Regulation 169, September 12, 1952, established new ceiling prices for sales of ore produced in Michigan,

² For an explanation of the factors affecting the price of iron ore, see Minerals Yearbook, 1948, p. 647.

TABLE 17.—Average value per gross ton of iron ore at mines in the United States. 1951-52

[Exclusive of ore containg 5 percent or more manganese]

				1951				1952						
		Direct		Co	ncent	rates			Direct	;	Cor	centr	ates	
State	Hematite	Brown ore	Magnetite	Hematite	Вгоwп оге	Magnetite	Sinter	Hematite	Brown ore	Magnetite	Hematite	Brown ore	Magnetite	Sinter
Mined ore: Alabama Georgia Michigan Minnesota New Jersey New York Pennsylvania Utah Other States 2 Average, all States Byproduct ore: 3 Colorado Michigan	\$4. 08 6. 01 5. 19 4. 91 5. 23	\$11.04	(1) (1) \$2. 19 6. 52		5. 51	(1) \$11. 86 7. 02 (1) 3. 64	(1) \$11.71 (1) (1) (1) 10.47	6. 46 5. 83 5. 29 5. 87	\$2. 63			4. 75 (1) 4. 13	(1) 4.40	\$12. 8 (¹)
Delaware Tennessee Virginia	}						8. 20	}	-			-		8. 6

Minnesota, or Wisconsin and delivered on or after July 26, 1952. The new prices were: Old Range Bessemer \$9.45, Old Range non-Bessemer \$9.30, Mesabi Bessemer \$9.20, Mesabi non-Bessemer \$9.05, and High-Phosphorus \$9.05. These prices are for ore delivered at lower Lake ports, carrying 51.5 percent natural iron content with 0.045 percent (max.) phosphorus (dry), for Bessemer grades; ores exceeding 0.18 percent phosphorus (dry) are classified as High-Phosphorus. ums and penalties are applied for variations in analyses and physical structure.

To arrive at a representative Pittsburgh value, average value at the mines must be added to transportation charges plus a Federal tax (3) percent) on the transportation charges. For ore from the Mesabi range, these were, respectively, \$5.86, \$4.98, and \$0.15. Thus, the average value per ton of Mesabi iron ore delivered in Pittsburgh was approximately \$11.00 in 1952. This value applies more closely to the non-Bessemer grades, which constitute the bulk of the tonnage shipped.

TRANSPORTATION

The movement of iron ore from mines to mills constitutes an important segment of industrial organization. Traditionally, consuming mills are established near supplies of coking coal, and ore usually is transported over greater distances than coal or fluxing However, with increasing concentration of heavy industries, market location has assumed greater importance in plant location, especially since transportation costs for finished products are much more conspicuous to the consumer than for raw materials.

Included with average for all States.
 Includes Arkansas, California, Missouri, Nevada, New Mexico, Tennessee, Texas, Virginia, Wisconsin, Wyoming, and Puerto Rico.
 Cinder and sinter obtained from pyrites treated in, but not necessarily mined in, States indicated.

Iron ore in the United States moves by rail and water; about three-fourths of the total supply utilizes the Great Lakes waterway system. Consuming plants in Alabama, California, Colorado, Minnesota, Tennessee, Texas, and Utah receive virtually all their supply over all-rail routes, while those furnaces in the lower Lakes area must depend on an 8-month open season of navigation on the Great Lakes. Rail movement is more expensive but is rarely interrupted; thus, transportation is most critical for furnaces in the lower Lakes area and for furnaces depending upon imported ore.

The American fleet of ore vessels operating on the Great Lakes was expected to number 285 by the opening of the 1953 season. Trip capacity will total 3,194,000 tons or an average of 11,200 tons per ship. Many older ships have been modernized and some replaced. The number of ships has decreased from 312 in 1944 and reached a low of 264 in 1950; however, due to larger vessels of recent construction, the capacity of the 1953 fleet will be greater than ever before.

Ore movement on the Lakes in 1952 opened with the departure of the Albert E. Heekin from Escanaba, Mich., on April 2. Upper Lake navigation opened 3 days later, and a total of 6,458,572 tons was shipped from United States ports during April, according to the Lake Superior Iron Ore Association. All-rail shipments during 1952 from the Lake Superior district totaled 5,062,663 tons, of which about 3,500,000 tons was emergency shipments to furnaces normally supplied over water routes.

Freight Rates.—Transportation charges for Lake Superior iron ore specified in the Second Interim Decision, Interstate Commerce Commission Ex Parte 175, effective August 28, 1951, applied until May 2, 1952, when new rates specified in the Third Decision, Ex Parte 175, went into effect. Increases between the Mesabi range and Pittsburgh totaled \$0.2022 per gross ton, bringing total charges to \$4.9806 per ton. Comparable all-rail rates increased \$0.3378 to \$6.3056 per ton, a difference of \$1.325 per ton between the 2 routes.

FOREIGN TRADE 3

Although the tonnage of iron ore received in the United States in 1952 was 4 percent below the previous year, its total declared value increased 40 percent. Average value per ton increased from \$5.87 in 1951 to \$8.51 in 1952, 45 percent above the previous year. Sweden, Chile, Venezuela, Canada, and Brazil were the largest suppliers, in respective order, and the 5 countries together supplied 89 percent of the total; 12 additional sources supplied the remaining 11 percent. Aside from drastic increases indicated in the value figures, the most significant aspect of 1952 foreign trade is the decline of Chile's tonnage, with a concomitant rise in the tonnage from Venezuela. This trend is expected to continue until virtually all of Chile's output is for domestic consumption.

International trade patterns in most commodities take shape gradually as statistical reports from various countries filter through many revisions, checks, and rechecks. When the trade is undergoing development or changes in response to political and economic influences,

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page. of the Bureau of Mines from records of the U. S. Department of Commerce.

TABLE 18.—Iron ore imported for consumption in the United States, 1943-47 (average) and 1948-52, by countries, in gross tons [U. S. Department of Commerce]

~ .	1943–47 (average)	19	48	19	49	19	50	19	51	19	52
Country	Gross tons	Value	Gross tons	Value	Gross tons	Value	Gross tons	Value	Gross tons	Value	Gross tons	Value
AlgeriaargentinaBelgium-Luxembourg	¹ 112, 686 4	1 \$479, 809 27	405, 224	\$2,066,463	415, 501 20	\$2,349,746 24,809	494, 342	\$2, 917, 910	446, 273	\$2, 919, 490	66, 008	\$518, 9
Brazil British West Africa	244 17, 109 4, 594	820 84, 336 38, 344	295, 926 18, 528	1, 524, 539 171, 199	351, 134 59, 548	2, 281, 797 395, 034	701, 329 192, 669	4, 732, 136 1, 615, 728	1, 037, 828 255, 817	1 8, 921, 991 1, 586, 940	1, 010, 919 217, 760	14, 931, 1, 108,
anada Newfoundland-Labrador bile	774, 644 3, 100 594, 508	3, 530, 684 12, 400 1, 513, 912	968, 772 2, 631, 997	5, 779, 942 7, 526, 640	1, 615, 803 2, 627, 007	10, 742, 201 6, 891, 016	1, 852, 508 2, 606, 557	12, 728, 135 6, 821, 829	1 1, 961, 990 2, 767, 207	1 14, 399, 135 8, 587, 746	1, 822, 038 1, 861, 575	14, 076, 8, 240,
Colombia Costa Rica Cuba Cominican Republic		305, 025	34, 500	101, 775	11, 589	24, 763	29, 000	61, 770	1 4, 223	1 29, 926	449 87, 536 18, 408	1, 882, 197,
gypt rance	794	2, 203	9, 041	63, 302	7, 500	88, 650	500					
rench Morocco rench Oceania reece	5, 455 (2) 1 200	27, 608 1 600	8, 690	60, 830								
ran taly .iberia	300 103	8, 400 210	3, 000 9, 450 4	162, 000 64, 938 85	1, 500	90, 000	3,000	180, 000 51	1, 500	60, 000 552, 694	2, 972 572, 485	165, 3, 1 56,
Iexico Vetherlands Vorway	34, 581 1 10, 541	1 85, 589 1 63, 052	163, 149 108, 616	334, 447 634, 602	169, 823 7, 114	284, 557 64, 026	190, 958	475, 299	169, 563	506, 482	114, 309	356
eru hilippines pain	1 2	12	4, 160 6, 449	28, 880 66, 825	5, 250 9, 200	51, 816 78, 658	3, 600	36, 000	74, 306	599, 350	4, 600	33
panish Africa weden 'unisia		1, 828, 281 46, 210	8, 500 1, 358, 962 56, 358	48, 875 8, 317, 362 297, 748	2, 027, 155 82, 815	12, 893, 385 424, 076	39, 680 2, 047, 250 119, 093	250, 717 13, 511, 874 608, 377	8,750	62, 335 116, 920, 468 528, 617	2, 111, 100 19, 200	24, 504 188
nion of South Africa nited Kingdom	1, 787	9, 911 26, 294	351	297, 748	302	22, 895	751	27, 050	9, 450 446	35, 343 28, 837	4, 800 690	43 23 14, 610
enezuela Total	1 1, 936, 726	1 8, 063, 739	6, 091, 677	27, 271, 681	7, 391, 291	36, 707, 534	8, 281, 237	43, 968, 426	635, 416	3, 780, 692	1, 845, 776 9, 760, 625	83, 040

¹ Revised figure. ² Less than 1 ton.

TABLE 19.—Pyrites cinder 1 imported for consumption in the United States, 1943-47 (average) and 1948-52, by countries, in gross tons [U. S. Department of Commerce]

	1943-47 (average)		1948		1949		1950		1951		1952	
Country	Gross tons	Value	Gross tons	Value	Gross tons	Value	Gross tons	Value	Gross tons	Value	Gross tons	Value
Belgium-Luxembourg CanadaFrance	5, 223 140	\$14, 512 148	17, 074	\$88 58, 703	7, 588	\$27,601	15, 735•	\$58, 260	8, 675	\$34, 758	11, 149	\$48,028
Italy			1	10								
Total	5, 363	14, 660	17, 077	58, 801	7, 588	27, 601	15, 735	58, 260	8, 675	34, 758	11, 149	48, 028

¹ Byproduct iron ore.

TABLE 20.-Iron ore exported from the United States, 1943-47 (average) and 1948-52, by countries of destination, in gross tons [U. S. Department of Commerce]

~	1943–47 (average)	19	948	19	49	19	050	19	951	19	52
Destination	Gross tons	Value	Gross tons	Value	Gross tons	Value	Gross tons	Value	Gross tons	Value	Gross tons	Value
AustraliaBrazil	(1)	\$231			12	\$3, 109	7	\$2,748	4 4	\$1, 439 326	4	\$1,918
CanadaCanal Zone	2, 192, 580 2	7, 492, 325 45		\$13, 192, 918	2, 168, 763 9	12, 312, 318 200	2, 550, 712	15, 709, 693	² 3, 340, 170 4	21, 734, 997 138	3, 790, 253 7	24, 507, 789 212
French Morocco Gold Coast Japan			99 60, 869	4, 951 546, 089	251, 791	2, 293, 560	1	463	3 987 814	2 9, 245, 943	1, 330, 977	12, 910, 576
Mexico Netherlands	28	385 139	15	1,021	75	5, 804			46	127		
NorwayPhilippines	l	10			75 4, 047	788 36, 806 1, 232	7	639 2, 966	854 2 5 9	11, 129 485 2, 200	1	120
United KingdomOther countries	(1) 52	1, 627				1, 202		2,900	9	2, 200		
Total	2, 192, 664	7, 494, 764	3, 080, 666	13, 744, 979	2, 424, 775	14, 653, 817	2, 550, 738	15, 716, 509	2 4, 328, 910	230, 996, 784	5, 121, 242	37, 420, 615

¹ Less than 1 ton. ² Revised figure.

the information is disseminated through commercial channels, trade However, the statistical pattern does literature, and official reports. not emerge with acceptable accuracy for at least 2 years. For the first time, MINERALS YEARBOOK presents a table showing exports of iron ore, by country of origin, with country of destination. In table 21, exports and destinations are listed for 1950 as reported by the country of origin wherever possible. In some instances, the figures are listed as reported by the receiving country; where statistics are available from both the exporting and importing country, the figures are correlated. Small discrepancies usually may be attributed to ore in transit at the end of the year, differences in reporting periods, and various allowances. A precise statistical balance is not practicable. However, the pattern for trade outside the Soviet Union and some of its neighbors is reliable.

TABLE 21.—World trade of iron ore in 1950, in thousands of metric tons [Compiled by Berenice B. Mitchell and John E. McDaniel]

		T	1								
					Expor	ts by co	untries	of dest	tination		
Exports by countries	Per-	Produc-			orth ierica			Euro	pe		Asia
of origin	Fe tion		Ex- ports	Can- ada	United States	Bel- gium- Lux- em- bourg	West Ger- many	Saar	United King- dom	Other Euro- pean	Japan
North America: Canada Cuba Mexico United States	55 34 68 49	3, 271 12 420 99, 619	2, 021 29 192 2, 592	(1) 2, 592	1, 843 29 192		48		130		
South America: Brazil Chile Europe:	68 60	1	890 2, 596	106	686 2, 596	7	22 58		18	51	
Austria Belgium-Luxem- bourg France Germany, West	28 33 27	1, 859 3, 891 29, 983 10, 882	58 103 11,201 52		1	6, 871	60	3, 654 42	366	(1) 43 170 10	
Greece Italy Norway Spain	30 50 65 45	5 476 298 2,088	41 9 283 936			14	28 2 198 62		13 9 729	85 131	
Sweden	61 31 45	13, 611 55 826	12,944 54 339	9	2,045	1, 472	3, 877 52 33		3, 475 188	2,066 2 118	
Hong Kong	45 53 45 54 55	3,005 507 599 131	170 56 529 560 67				7			7	170 56 529 560 53
Algeria French Morocco Sierra Leone Spanish Morocco Tunisia	54 46 60 66 54	319	2, 398 290 1, 161 965 701		476 213 40 99	(1) 32	113 		1, 362 279 733 466 467	447 11 427 83	
Oceania: New Caledonia Other countries	57 (4)	15 5667,526	(4) (4)								
Total		⁵ 250, 000	41, 242	2, 707	8, 220	8, 396	4, 964	3, 696	8, 235	3, 651	1, 368

¹ Less than 500 tons.

Including approximately 5,000 tons for East Germany.
 Exports went to Australia.

Data not available.

Includes 50,000,000 tons produced in U. S. S. R. and 16,234,000 tons produced in United Kingdom.

TECHNOLOGY AND INDUSTRIAL DEVELOPMENT

Taconite Review.—If the iron formation is to be considered an ore, there is enough ore in the Lake Superior region to last a thousand years. * * * At the eastern end of the Mesabi range there is an area in which the taconite has been so magnetized; that is to say, so much of the iron oxides has been converted into the mineral magnetite that concentration by magnetic processes becomes possible. The possibility of such concentration has been fully demonstrated by extensive experiments on a commercial scale, made in Duluth, Minn., under the direction of Mr. C. E. Swart.⁴

The foregoing, published in 1919, was by no means the first recognition of the future importance of taconite. Test pits were sunk in eastern Mesabi taconite as early as 1871, and it was obvious to the early Mesabi miners that vast quantities of iron-bearing material would have to be bypassed until economic conditions required its use.

The term "taconite" refers to iron-bearing rocks of the Mesabi range from which virtually none of the silica has been removed. Taconite occurs among sedimentary beds overlying granite. These beds are covered at the surface by glacial drift of varying thickness and dip gently southeast under a thick formation of slate. Within the iron formation are many divisions and subdivisions, according to horizons of varying quality and character. Where conditions were favorable, the leaching action of water over the years has removed most of the silica from the iron-bearing beds leaving commercial grades of ore. Taconite remains in that part of the iron formation that has not been subject to such action, or, as regards surfaces now exposed, has not been exposed long enough to effect enrichment.

Taconite averages 25 to 30 percent iron content, including oxides and a small percentage of silicates. However, the manner in which the iron minerals are present is as important as the iron content. Only oxides may be considered available, and of these only the magnetic variety is important at the present time. Within the magnetic classification, horizons must be selected for mining that have magnetite grains of sufficient size to permit economic liberation from the silica particles. Thus, of an estimated 60 billion tons of taconite within a reasonable depth, only about 5 billion tons are magnetic and amenable to practical grinding for liberation of the iron oxide particles. This tonnage will provide about 1.7 billion tons of concentrate containing 60–65 percent iron.

Mining methods for taconite are similar to other surface practices, with modifications made necessary by its extremely hard and abrasive character. Drilling and blasting are especially difficult. Conventional practice promises to be replaced by a heating and quenching technique referred to as jet piercing, a process developed by Linde Air Products Co. and described in a recent publication.⁵

As it comes from the mine, taconite may be in lumps up to 36 inches in greatest diameter. It is fed to giant crushers of the gyratory or jaw types and broken in stages through fine grinding until a liberation is achieved that will permit satisfactory recovery of the iron particles. Between the crushing units are magnetic separators adjusted to eliminate the larger pieces of barren rock that may be in

⁴ Finlay, J. R., Method of Administering Leases of Iron Ore Deposits Belonging to the State of Minnesota: Bureau of Mines, Tech. Paper 222, 1919, p. 35.

⁶ Aitchison, R. B., Calamon, J. J., and Fleming, D. H., Jet Piercing Costs Cut: Min. World, vol. 14, No. 7, June 1952, pp. 29–33.

IRON ORE 525

the ore, and within the grinding series are hydraulic classifiers that eliminate smaller grains of silica. Final separation of the fine iron oxide powder is accomplished magnetically and followed by filters to remove much of the water. Water acts as a vehicle while inhibiting dust losses.

The filter-cake concentrate soon would become an unmanageable mass if it were not reagglomerated. To accomplish this, various binders are added and the damp concentrates heat treated to produce pellets, nodules, briquets or sinter. The most satisfactory process and product have not been fully determined, although various experimenters favor one or the other. The subject was discussed in several technical papers of special interest. 6 7 8 9

Notes on commercial participation in current taconite development have appeared in recent editions of Minerals Yearbook. Of the three principal organizations, Reserve Mining Co. was most advanced at the end of 1952.10 Oliver Iron Mining Division, U. S. Steel Corp., was operating its agglomeration plant on nontaconite concentrates and fine ores, while its new Pilotac plant at Mountain Iron, Minn., was nearing completion. Erie Mining Co. announced plans for a \$300 million project to produce up to 10.5 million tons per year of taconite pellets.11

RESERVES

It should be borne in mind that reserve data shown in tables 22 and 23 represent only taxable and State-owned reserves and not the total that may be expected to become available. Tonnages are added to the reserve figures each year, and undoubtedly eventual production in the Lake Superior district will greatly exceed that indicated by present reserve tonnages.

TABLE 22.—Iron-ore reserves in Michigan, Jan. 1, 1944–48 (average) and 1949–53. in gross tons

Range	1944–48 (average)	1949	1950	1951	1952	1953
Gogebic	32, 115, 141 56, 304, 814 50, 660, 263 139, 080, 218	30, 511, 502 67, 101, 475 55, 913, 371 153, 526, 348	29, 098, 914 65, 109, 601 55, 594, 843 149, 803, 358	33, 466, 792 68, 323, 382 60, 136, 726 161, 926, 900	34, 162, 005 65, 119, 690 62, 940, 226 162, 221, 921	30, 467, 972 64, 945, 858 62, 188, 665 157, 602, 495

[Michigan Department of Conservation]

<sup>Mitchell, Will, Jr., Sollenberger, C. L., and Miskell, Ford F., Factors in the Economics of Heat-Treated Taconites: Min. Eng., vol. 4, No. 10, October 1952, pp. 962–967.
Kende, Marvin A., The Agglomeration of Taconite Concentrate: Mines Mag., vol. 42, No. 5, May 1952, pp. 39-42.
Cook, S. R. B. and Ban, Thomas E., Microstructures in Iron Ore Pellets: Min. Eng., vol. 4, No. 11, November 1952, pp. 1953–1958.
Wood, G. V., Heat Hardening of Taconite Pellets: Proc., Blast-Furnace Coke-Oven, and Raw Materials Committee, Iron and Steel Div., Am. Inst. Min. and Met. Eng., New York, 1952, pp. 93–100.
Mining World, Reserve Mining Company's Taconite Program Underway: Vol. 14, No. 13, December 1952, pp. 28–32.
Mining World, vol. 14, No. 4, April 1952, p. 85</sup>

TABLE 23.—Unmined iron-ore reserves in Minnesota, May 1, 1943-47 (average) and 1948-52, in gross tons

	1943–47 (average)	1948 1949		1950	1951	1952	
Mesabi Vermilion Cuyuna	974, 707, 617 12, 131, 924 60, 019, 217	915, 220, 248 10, 435, 800 38, 040, 129	900, 959, 665 12, 196, 016 37, 308, 274	912, 226, 039 12, 498, 639 42, 977, 068	893, 007, 833 11, 660, 302 41, 415, 581	854, 280, 596 12, 390, 557 43, 472, 578	
Total Lake Superior district (taxable)	1, 046, 858, 758 135, 590	963, 696, 177 394, 248	950, 463, 955 547, 744	967, 701, 746 582, 820 88, 286	946, 083, 716 908, 996 44, 300	910, 143, 731 574, 908 15, 000	
Aitkin County State ore (not taxable)	16, 218, 062	3, 515, 084	2, 435, 729	2, 642, 853	2, 643, 033	850, 000 2, 486, 297	
Total Minnesota	1, 063, 212, 410	967, 605, 509	953, 447, 428	971, 015, 705	949, 680, 045	914, 069, 936	

EMPLOYMENT

The average number of workers employed in iron-ore mines and mills remained substantially unchanged at 34,000 (preliminary) in 1952. However, because of the steel strike, the total man-hours worked decreased 16 percent below 1951 to 63.4 million (preliminary). Usable iron-ore output per man-hour in 1952, as indicated by the preliminary figures, was 1.527 tons as compared with 1.549 in 1951 and 1.492 in 1950.

Production figures used above and in table 24 include, in the Lake Superior district, manganiferous ore, which is considered a special grade of iron ore.

WORLD REVIEW

CANADA 12

Widespread interest was shown in Canadian iron-ore deposits during 1952. Exploration and development approached boom proportions and included a number of significant projects. Production increased 11 percent over 1951, with ore from British Columbia more than offsetting slight declines in other Provinces. The total (4,647,373 gross tons) came from mines in British Columbia, Newfoundland, and Ontario.

British Columbia.—Magnetite concentrates from Vancouver and Texada Islands totaled 760,000 tons in 1952, most of which went to Japan with small tonnages to domestic consumers and the United States. The Argonaut Co., Ltd., operated the Iron Hill mine at Quinsam Lake, Vancouver Island, and investigated the Iron River deposit, also on Vancouver Island. Texada Mines, Ltd., operated the Prescott and Lake pits and began shipments in May. Both companies are controlled in the United States.

Newfoundland.—Dominion Wabana Mines, Ltd., completed mechanization of its underground mines in 1952 and shipped 1,477,000 tons of hematite ore. The goal for 1953 is 2.5 million tons.

¹² Information in this section is principally from Buck, W. Keith, Iron Ore in Canada in 1952 (Prelimi nary): Canada Department of Mines and Technical Surveys, Ottawa, 1953, 15 pp.

TABLE 24.—Employment at iron-ore mines and beneficiating plants, quantity and tenor of ore produced, and average output per man in 1951, by districts and States 1

	Employment				Production										
			Time employed				Usable ore			Average per man (gross tons)					
	Average number of men em- ployed	Average Tumber of days	Shirts	Man-hours				Iron contained		Crude ore		Usable ore			
				Aver-	Aver-	Crude ore (gross tons)	Gross tons	Gross tons	Per- cent nat- ural	Per shift	Per hour	Per shift	Per hour	Iron contained	
				age per shift	Total									Per shift	Per hour
Lake Superior: 1 Michigan	} 8,766	278	2, 441, 308	8. 00	19, 530, 970	15, 770, 367	15, 555, 654	8, 383, 122	53. 89	6, 460	0. 807	6. 372	0. 796	3. 434	0. 429
Wisconsin Minnesota	14, 638	279	4, 090, 968	8.04	32, 878, 635	101, 142, 724	79, 458, 720	40, 010, 768	50.35	24. 723	3. 076	19. 423	2. 417	9. 780	1. 217
Total	23, 404	279	6, 532, 276	8. 02	52, 409, 605	116, 913, 091	95, 014, 374	48, 393, 890	50. 93	17. 898	2. 231	14. 545	1. 813	7. 408	0. 923
Southeastern States: ² Alabama	5, 519 197 18	241 200 256	1, 327, 600 39, 389 4, 600	8. 16 9. 58 10. 17	10, 837, 341 377, 364 46, 800	12, 509, 417 1, 783, 520 179, 000	8, 185, 993 357, 754 35, 908	3, 068, 452 141, 564 14, 010	37. 48 39. 57 39. 02	9. 423 45. 280 38. 913	1. 154 4. 726 3. 825	6. 166 9. 083 7. 806	. 755 . 948 . 767	2. 311 3. 594 3. 046	. 283 . 375 . 299
Total	5, 734	239	1, 371, 589	8. 21	11, 261, 505	14, 471, 937	8, 579, 655	3, 224, 026	37. 58	10. 551	1. 285	6. 255	. 762	2. 351	. 286
Northeastern States: New Jersey New York Pennsylvania	791 } 2, 913	259 305	205, 164 888, 816	7. 96 8. 00	1, 633, 221 7, 110, 520	1, 166, 495 9, 620, 177	658, 745 4, 522, 214	412, 362 2, 765, 795	62. 60 61. 16	5. 686 10. 824	. 714 1. 353	3, 211 5, 088	. 403	2. 010 3. 112	. 252
Total	3, 704	295	1, 093, 980	7. 99	8, 743, 741	10, 786, 672	5, 180, 959	3, 178, 157	61. 34	9.860	1, 234	4. 736	. 593	2.905	. 363
Western States: California Nevada	} 236	246	58, 001	8. 00	463, 834	1, 530, 174	1, 530, 174	825, 744	53.96	26. 382	3. 299	26. 382	3. 299	14. 237	1.780
Arkansas Missouri	128	190	24, 310	8. 02	194, 880	609, 668	173, 919	89, 215	51.30	25. 079	3. 128	7. 154	. 892	3.670	. 458
New Mexico Texas	385	252	97, 197	8.00	· 777, 577	3, 479, 485	1, 134, 264	529, 105	46.65	35. 798	4. 475	11. 670	1.459	5. 444	. 680
Wyoming Utah	741	279	206, 468	8. 08	1, 668, 127	5, 343, 108	5. 343, 108	2, 925, 476	54. 75	25. 879	3, 203	25. 879	3. 203	14. 169	1.754
Total	1, 490	259	385, 976	8. 04	3, 104, 418	10, 962, 435	8, 181, 465	4, 369, 540	53. 41	28. 402	3. 531	21. 197	2. 635	11. 321	1. 408
Total 1951 2	34, 332	273	9, 383, 821	8. 05	75, 519, 269	153, 181, 107	117, 003, 425	59, 190, 960	50. 59	16. 324	2.028	12. 469	1. 549	6. 308	. 784

¹ Includes manganese-bearing ore from the Lake Superior district.

² Man-hour data for Puerto Rico and Virginia are not available and are therefore excluded from all totals ;however, production data (46,972 tons of usable ore) are included with total production.

TABLE 25.—World production of iron ore, by countries, 1 1943-47 (average) and 1948-52, in thousands of metric tons 2

[Compiled by Lee S. Petersen]

				-		
Country 1	1943-47 (average)	1948	1949	1950	1951	1952
North America: CanadaCuba.	2, 003 28	2, 705 37	3, 334 12	3, 271 12	4, 246	4, 722
Mexico United States South America:	289 90, 972	333 102, 625	363 86, 301	99, 619	17 460 118, 375	101 500 99, 490
Argentina 3 Brazil Chile 5 Venezuela	32 685 976	33 1, 572 2, 545	40 1, 888 2, 597	40 1, 987 2, 976 198	50 2, 407 3, 252 1, 270	(4) 3 2, 972 2, 209 1, 970
Europe: Austria. Belgium.	1, 575 60	1, 269 89	1, 488 42	1,859 46	2, 370 79	2, 653 135
Bulgaria ³ Czechoslovakia France Germany:	(4) 1, 257 18, 722	11 1, 428 23, 061	3 1, 400 31, 424	27 8 1,600 29,983	(4) 3 1, 800 35, 264	³ 2,000 41,176
East Germany 3 West Germany Greece	7, 184	$\left\{\begin{array}{c} 250 \\ 7,276 \end{array}\right.$	250 9, 112	328 10, 882 5	485 12, 923 53	(4) 15, 404 137
Hungary Italy Luxembourg Norway Poland	338 344 2, 762 150 481	318 549 3, 399 199 659	339 554 4, 137 275 699	368 476 3,845 298 790	\$ 370 553 5,625 332 \$ 900	3 370 790 7, 245 769 8 1, 000
Portugal	174 1, 476 7, 552 114	(6) 209 1, 631 13, 286 75	(6) 324 1,876 13,729 70	395 2, 088 13, 611 55	21 478 2, 389 16, 111 86	560 2, 891 17, 381 (4)
U. S. S. R. 37 United Kingdom Yugoslavia Asia:	19,000 14,515 3 312	30, 000 13, 299 879	35, 000 13, 612 835	44, 000 13, 143 826	48, 000 14, 882 581	50, 000 16, 234 676
China3	4, 724 2, 477 1, 969	⁶ 247 1 2, 321	500 60 2, 854 794	2, 000 172 3, 005 927	3,000 164 3,642	4,000 130 3,455
Korea: Korea, Republic of North Korea.		561 {	(4)	(4)	1,168	1, 295
Malaya Philippines Portuguese India Thailand (Siam)	15 3 300	1 18 8	9 370 151	507 599 131	860 903 436 6	1, 031 1, 170 494 3
Turkey U. S. S. RAfrica:	(7)	192 (7)	(⁷)	(7) 234	(7) 226	(7) 482
AlgeriaFrench MoroccoLiberiaNorthern Rhodesia	1, 080 60	1, 872 301 (6)	2, 538 357	2, 573 319	2, 823 533 171	3, 092 651 904
Sierra Leone Southern Rhodesia Spanish Morocco	719	968 30 885	1, 104 51 893	1, 185 57 951	1, 204 52 937	1, 401 65 970
Tunisia Union of South Africa Oceania:	168 878	696 1, 164	712 1, 242	758 1, 189	923 1, 421	977 1, 759
Australia New Caledonia New Zealand	2, 053 19 6	2, 077	1, 484 4	2, 403 15 4	2,468	2, 785 (4) (4)
Total (estimate)	188, 000	219, 000	223, 000	250, 000	294, 000	297, 000

In addition to countries listed Egypt and Madagascar report production of iron ore in past years, but quantity produced is believed insufficient to affect estimate of world total.

In This table incorporates a number of revisions of data published in previous iron ore chapters.

Estimate.

Data not available; estimate by author of chapter included in total.

Production of Tofo mines.

Less than 500 tons.

U. S. S. R. in Asia included with U. S. S. R. in Europe.

Production of National Resources Commission only.

Includes iron sand production as follows: 1948, 2,592 tons; 1949, 33,120 tons; 1950, 101,544 tons; 1951, 213,924 tons; 1952, 262,620 tons.

Ontario.—Algoma Ore Properties, Ltd., Helen mine shipped 1,146,000 tons of siderite sinter, principally to United States consumers, and Steep Rock Iron Mines, Ltd., shipped 1,275,000 tons from the Errington pit. Both companies continued development of their properties, and elsewhere in Ontario exploration for iron ore was intensified.

Marmoraton Mining Co., Ltd., subsidiary of Bethlehem Steel Corp., was developing a magnetite deposit at Marmora and expects initial shipments of concentrates in 1954. Although mill facilities are designed for 500,000-ton annual capacity, no reserve estimates have been released. Oliver Iron Mining Division, United States Steel Corp., was exploring for subsurface magnetite deposits near Simcoe on the north shore of Lake Erie; drilling will continue in 1953. Nipiron Mines, Ltd., explored 2 leases totaling 38 square miles at Lake Nipissing. Magnetometer surveys were made, and drilling will con-The Steel Co. of Canada, Ltd., examined 250 properties during 1952, most of which were in Ontario. Five of these were selected for further investigation. Algoma Ore Properties, Ltd., made concentration tests of magnetite samples from properties drilled in 1951 near Calabogie. Jalore Mining Co., Ltd., a subsidiary of Jones & Laughlin Steel Corp., continued investigations of siderite deposits in the Michipicoten district and magnetite prospects in the Peterborough and Kingston areas. Others active in iron-ore exploration in Ontario included Canadian Cliffs, Ltd., Dominion Gulf Co., Trent River Mines, Ltd., Frobisher, Ltd., and numerous individual property owners and prospectors.

Quebec-Labrador.—The Iron Ore Co. of Canada pushed large-scale construction and development, with emphasis on the 360-mile railway from Burnt Creek to Seven Islands on the Gulf of St. Lawrence. Construction on the ore docks progressed on schedule, and they were in partial use at the end of the year. Crews were test-drilling the Ferriman No. 3 ore body in Quebec and the Ruth Lake No. 3 ore body in Labrador in preparation for initial production, and geological parties were mapping large areas to establish ground control and evaluate ore possibilities. No drilling was done to establish additional

ore reserves.

North and west of the areas under development, several companies were exploring concession tracts for new deposits of commercial ore. Fenimore Iron Mines, Ltd., sank 10,012 feet of drill holes in the region of the Koksoak River. Iron-bearing material was discovered but not of the character sought. Fort Chimo Mines, Ltd., a subsidiary of Frobisher, Ltd., has employed geological parties and trenching crews for the past four seasons. A deposit of manganiferous hematite was discovered that will be further investigated. Quebec-Labrador Development Co., Ltd., discovered two occurrences of high-grade ore along the Kaniapiskau River and plans further investigation.

Elsewhere in Quebec, the Oliver Iron Mining Division, United States Steel Corp., explored subsurface possibilities in the area of Matonipi Lake and staked claims for future exploration in the Mount Wright area near the southwestern Labrador border. Trent River Iron, Ltd., a subsidiary of the W. S. Moore Co. of Duluth, explored the Old Bristol Magnetite property 35 miles northwest of Ottawa.

Plans were being made for producing concentrates. Gravimetric Surveys, Ltd., investigated iron-ore prospects in Gatineau and

Buckingham Counties.

The Quebec Iron & Titanium Corp. at Sorel produced 15,000 tons of iron and steel in 1952 from Allard Lake titaniferous magnetite as a coproduct with titanium oxide slag.

OTHER COUNTRIES

Algeria.—Algeria supplies iron ore both to the United States and Europe. Since 1947, 400,000 to 500,000 gross tons has been exported annually to the United States, and the remainder goes to the Benelux countries, United Kingdom, France, Germany, and Italy. However, in 1952, United States imports dropped to 66,000 tons, notwithstanding a 10-percent increase in production over the preceding year. Inasmuch as United States demand was strong during the year, it is reasonable to assume that price negotiations failed and the resultant surplus was taken by European buyers.

Austria.—The Erzberg and Radmer deposits have been reactivated with Economic Cooperation Administration assistance totaling \$3,111,000.¹³ Production, including that from the Hatenberg and Schaferotz deposits has climbed steadily from 323,000 tons in 1945 to

2,653,000 in 1952.

Brazil.—Cia. Vale do Rio Doce mines and exports near-perfect iron ore, especially suitable for use in open-hearth steel furnaces. The ore commands premium prices and is in strong demand in Europe and the United States. Recent mechanization at Caue Peak mining operations and rail transportation improvements are reflected in increased Brazilian production totals. From 518,000 metric tons in 1946, output rose to 2,407,000 tons in 1951. The Caue Peak mine in Central Minas Gerais was described in two recent articles. 14 15

Chile.—Bethlehem Chile Iron Mines Co. produced 2,209,000 metric tons from the open-pit Tofo mine, a decrease of 32 percent below 1951 which reflects declining reserves and the transfer of shipping facilities

to the Venezuelan trade.

Cuba.—The United States received 87,536 gross tons of ore from Cuba in 1952. However, most of this tonnage is believed to have been nonlateritic and included open-hearth grades of magnetite supplied by independent producers.

Egypt.—A report on the survey of Aswan iron-ore deposits conducted by the Department of Mines and Quarries is in preparation ¹⁶ and is expected to influence decisions concerning a possible iron and steel

industry in Egypt.

French West Africa.—Two iron-ore areas—the Conakry deposits in French Guinea and the Fort Gouraud deposits in Mauretania—were under development and promised substantial contributions to world supply. Conakry was expected to begin shipments by the end of 1952, and Fort Gouraud was in the early stages of development plan-

1952, pp. 67-70.

16 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 1, January 1953, p. 12.

Engineering and Mining Journal, vol. 153, No. 10, October 1952, p. 168.
 Van Denberg, Joseph K. Jr., Itabira Is Breaking Its Bottleneck: Eng. and Min. Jour., vol. 153, No. 7, July 1952, pp. 86-89.
 Packard, W. V., Iron Ore; Brazil Pecks Away at Vast Blue Lode: Iron Age, vol. 169, No. 20, May 15,

531IRON ORE

ning.17 ECA assistance in the development of the Conakry deposits were described.18

India.—Iron ore from mines in India supply domestic furnaces as well as exports to Japan and Europe. Reserves are large enough to support increased exports as well as possible future domestic requirements. However, development of this trade is retarded by inadequate rail facilities. In 1952 considerable activity involved new exploration as well as international negotiations for foreign participation in the expansion of output. United States Technical Cooperation funds were made available in appropriate circumstances, and Japanese importers appeared ready to invest in long-term iron-ore supplies for their furnaces. Production of iron ore by mine, producer, and State were published for 1949 and 1950.19

Japan.—Imports of iron ore from the United States reached an annual rate of nearly 2 million tons during the first half of 1952. However, this trade tapered off in the second half owing to increased exports from British Columbia. Japanese efforts to procure iron ore continued

in India, Malaya, and the Philippines.

Liberia.—Production at Bomi Hills approached 1 million tons in 1952, of which over half came to the United States. Geologic investigations of the area over a period extending from 1944 to 1952 were summarized and the entire report was placed on open file at the Federal Geological Survey in Washington.²⁰ In 1952 the Government of Liberia expressed dissatisfaction with existing royalty contracts and asked for renegotiation. Aspects of the situation were discussed.²¹ The settlement specified that Liberia was to receive a royalty starting immediately, and a share-the-profits plan would go into effect in 1957: 25 percent of the net profits for 5 years, 35 percent for the next 10 years, and 50 percent thereafter.22

Mexico.—Iron ore has been produced in Mexico for domestic consumption as well as export. A number of deposits remain undeveloped which the export market could support. However, the Mexican Government announced recently that new export permits would be granted only on the condition that facilities for domestic beneficiation (smelting) be constructed and operated in conjunction

with exploitation of the deposits.23

Norway.—The Sydvaranger mines near Kirkenes have been rehabilitated following destruction of all facilties during World War II. ECA funds financed the reconstruction which is now complete.24 Norwegian iron ore 1952 output including the Sydvaranger mines more than doubled the 1951 production.

Peru.—The Marcona iron deposit is to be exploited under a provisional contract between the Santa Corp., a wholly owned Government firm, and the Utah Construction Co. A part of the production is to

¹⁷ Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 2, February 1952, p. 7.
18 Moyal, Maurice, The Role of ECA in the Development of French Africa's Mineral Resources: Min.
Jour. (London), vol. 238, No. 6082, Mar. 14, 1952, pp. 267–268.
19 Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 1, January 1952, p. 9.
20 Thayer, Thomas P., Iron-Ore Deposits of Liberia: Econ. Geol., vol. 47, No. 7, November 1952, p. 777.
21 Mining Journal (London), vol. 239, No. 6103, Aug. 8, 1952, pp. 148–149.
22 Steel magazine, vol. 131, No. 15, Oct. 13, 1952, p. 72.
23 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 4, April 1953, p. 13.
24 Metal Bulletin (London) No. 3571, Dec. 12, 1952, p. 21.

be reserved for domestic consumption in a new steel plant and the

remainder is for export.25

Sweden.—Production of iron ore continued to expand in 1952 with an increase of 8 percent over 1951. The increase, however, went to European consumers where the need for this high-grade ore was pressing. Germany and the United Kingdom are the largest users with the United States as third largest, receiving slightly over 2 million tons annually.

Union of South Africa.—A review of the Union's iron ore resources and plans to install Krupp-Renn smelting facilities was published.²⁶

Venezuela.—El Pao production and receipts of El Pao ore in the United States approached 2,000,000 tons in 1952. Development at Cerro Bolivar and dock construction at Puerto Ordaz progressed rapidly during the year. These activities and facilities were reviewed in an illustrated article.²⁷

American Metal Market, vol. 59, No. 233, Dec. 5, 1952, p. 1.
 South African Mining and Engineering Journal, Krupp-Renn Process and Union Iron Ores: Vol. 63, No. 3081, Mar. 1, 1952, pp. 7-11.
 United States Steel News, Ore Is Where You Find It: Vol. 17, No. 4, October 1952, pp. 1-7.

Iron and Steel

By James C. O. Harris 1

•HE IRON and steel industry experienced the most disastrous work stoppages in its history in 1952. In addition to the 54-day strike that started June 3, there were other stoppages in April and The loss of steel production caused workers to be idled in the automotive, railroad, construction, and other industries, which curtailed the production of many finished products. Although the percentage of capacity operating rate for steel and pig iron dropped from 101 and 97, respectively, in 1951 to 86 and 85, respectively, in 1952, steel companies made a strong recovery following the strikes and operated at an average of 105 percent of capacity for the last 4 months of the year, with a high of 107 percent of capacity in October. Contributing to the makeup in lost production was an increased steelmaking capacity of 8,935,000 tons in 1952—the largest annual gain on record—to This was over twice the 1951 exa new high of 117,522,000 tons. pansion of 4,358,000 tons.

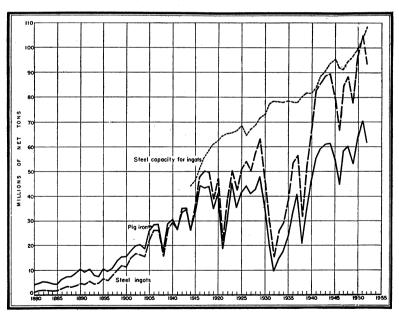


FIGURE 1.—Production of pig iron and steel ingots (1880-1952) and steel-ingot capacity (1914-52) in the United States.

¹ Commodity-industry analyst,

The automotive industry was the largest user of steel in 1952, receiving 11.4 million tons or 17.6 percent of total shipments, valued at 1.5 billion dollars.² Total passenger car, truck, and coach sales

were 5,538,558 units an 18-percent decrease from 1951.

The construction industry received 12.1 percent of steel shipments in 1952. Construction of new houses (permanent, nonfarm dwellings) was high in 1952, with an estimated 1,127,000 units started during the year compared with 1,091,300 in 1951. Total new construction during the year was valued at \$32.6 billion, compared with \$31 billion in 1951, and absorbed 7.8 million tons of steel products.

The container industry used less steel in 1952 than in 1951, but its percentage of total United States domestic shipments was the same (8.6 percent). Railroads received 4 million net tons of steel products in 1952 compared with 5.8 million net tons in 1951. Freight-car loading in 1952 decreased 6.3 percent from 1951. Shipbuilding requirements were the highest since 1945, and exports were the greatest

since 1949, with a 29-percent increase over 1951

United States Department of Commerce statistics show that semimanufactured and manufactured steel products for export exceeded the 1951 figure. There was a marked increase in steel ingots, blooms, billets, slabs, sheet bars, concrete reinforcing bars, iron and steel wire (uncoated), and welded galvanized pipes and tubes. Iron bars and wire nails decreased considerably. Total structural shapes decreased, but fabricated structural shapes increased.

TABLE 1.—Salient statistics of iron and steel in the United States, 1943-47 (average) and 1948-52, in net (short) tons

	1943-47 (average)	1948	1949	1950	1951	1952
Pig iron: Production Shipments Imports Exports	55, 632, 485 55, 698, 378 15, 074 100, 844	60, 051, 350 219, 252	52, 919, 019 99, 804	64, 499, 983 64, 626, 146 804, 799 6, 813	70, 250, 379 1, 066, 513	61, 234, 790 389, 588
Steel: 1 Production of ingots and castings: 'Open-hearth: Basic Acid Bessemer Electric	948, 701	625, 305 4, 243, 172	506, 693	4, 534, 558	779, 071 4, 890, 946	3, 523, 677
TotalCapacity, annual, as of January 1 Percent of capacity	81, 935, 311 92, 625, 600 88. 5	94, 233, 460	96, 120, 930	96, 836, 075 99, 392, 800 97. 4	105, 199, 848 104, 229, 650 100. 9	108, 587, 670
Production of alloy steel: Stainless Other than stainless Total	509, 576 8, 677, 632 9, 187, 208	7, 863, 736	5, 442, 476	7, 737, 796		8, 204, 587
Shipments of steel products: For domestic consumption For export	54, 323, 974 4, 310, 771	62, 728, 250 3, 244, 888	54, 586, 039 3, 517, 971	69, 665, 819 2, 566, 473	76, 164, 539 2, 764, 411	64, 732, 412 3, 271, 200
Total	58, 634, 745	65, 973, 138	58, 104, 010	72, 232, 292	78, 928, 950	68, 003, 612

¹ American Iron and Steel Institute.

 $^{^2}$ Computed using unit value determined from data on all steel shipments as reported by Facts for Industry series M22B-02, pp. 6-7, Bureau of the Census, U. S. Department of Commerce, Aug. 28, 1953.

Average weekly hours worked per employee in the steel industry was 39.7 in 1952, compared with 41.1 hours in 1951 and 37.9 hours in 1949, another strike year. The average number of employees was 489,000, with a high of 570,000 in January and a low of 132,000 in July. There was an increase from 530,000 in August to 561,000 in December. The average, earned hourly, per worker was \$1.98, as compared with \$1.89 in 1951 and \$1.69 in 1950. The average composite price of finished steel, as published by the Iron Age, was 4.237 cents per pound. The price was increased from 4.131 cents to 4.180

in July and to 4.376 in August.

A development of major significance to the world's iron and steel industry was the establishment of the European Coal and Steel Community (Schuman Plan) for Western Europe on July 23, 1952, when the legislative bodies of France, West Germany, Belgium, Italy, Luxembourg, and the Netherlands completed ratification of the treaty that set up this community. This plan is designed to do away with old differences between the countries of western Europe and to eliminate frontier barriers by removing customs duties, quotas, and other restrictions that hinder free movement of goods. The administration of this plan is being carried out by a governing body composed of representatives from each member nation.

GOVERNMENT REGULATIONS

During the year 1952 distribution of iron and steel, in addition to copper and aluminum, was regulated under the Controlled Materials Plan instituted in 1951 by the National Production Authority. The CMP regulations covered those materials for production, construction, and maintenance, repair and operating supplies for industry There were a few cases where those materials were disin general. tributed under the orders of NPA where the peculiar circumstances within an industry made it difficult to use the CMP basic structure. Examples of these were Order M-50 for electric utilities, and the M-46 series for the petroleum and gas industries. Under the Controlled Materials Plan steel was allotted to the Federal units that were designated to act as claimant agencies for certain industries. Federal agencies in turn processed the applications for production and construction materials filed by individual firms and made the allotments of steel to each applicant.

M-1, Steel, governed the steel mills as to production of steel-mill products. It among other things established the lead times required

for placing of orders for the different steel mill products.

M-6A, Steel Distributors, governed the receipt and distribution

of steel-mill products by distributors.

M-80, Iron and Steel, Alloying Materials and Alloy Products, required all processors and melters to prepare and submit to NPA melting or processing schedules and reports on their inventories of these materials. Revisions of the order were issued from time to time governing allocation or use limitation of the individual alloying material.

PRODUCTION AND SHIPMENTS OF PIG IRON

Domestic production of pig iron, exclusive of ferro-alloys, decreased 13 percent from 1951 and was the lowest since 1949. Tennessee and West Virginia, whose production figures are listed together, and California were the only group of States to report an increase in 1952. Pennsylvania, Ohio, Indiana, and Illinois produced 67 percent of the total in 1952 compared with 69 percent in 1951. Pig-iron production in Pennsylvania and Illinois decreased 16 and 17 percent, respectively, while Indiana and Ohio decreased 15 and 10 percent, respectively, in 1952 as compared with 1951. Pig-iron production in 1952 consumed 84,042,000 net tons of domestic iron and manganiferous ores and 5,521,000 tons of foreign ores with 52 percent of the imports coming from Chile and Venezuela. Consumption of Venezuelan iron ore in the blast furnace increased 128 percent, and that of Swedish origin decreased 41 percent compared with 1951. Blast furnaces consumed 20,606,000 tons of sinter and 9,043,000 tons of miscellaneous ironbearing materials. In addition to the above raw materials, 1,808,000 tons of home scrap and 436,000 tons of flue dust were used.

Shipments of pig iron decreased 13 percent in quantity and 10 percent in value from 1951. The figures in table 4 cover total shipments, which consist predominantly of molten pig iron transferred to steel furnaces on the site. Values for merchant pig iron are included; however, the average value per ton of pig iron is lower than market prices published in trade journals because handling charges, selling commissions, freight costs, and other related items are not considered. The term "shipped" as distinguished from "production" refers in the case of on site transfers to departmental transfers, upon which value is placed for bookkeeping purposes rather than to actual sales, as in the case of merchant pig iron.

TABLE 2.—Pig iron produced and shipped in the United States, 1951-52, by States

	Prod	luced	Shipped from furnaces					
State	1951 (net	1952 (net	1	951	1952			
	tons)	tons)	Net tons	Value	Net tons	Value		
AlabamaCalifornia	4, 370, 527 921, 695	4, 172, 583 977, 121	4, 384, 286 919, 877	\$192, 359, 317	4, 108, 562 974, 953	\$185, 300, 714		
Colorado Texas Utah	2, 866, 062	2, 624, 715	2, 881, 411	178, 012, 998	2, 644, 168	177, 409, 364		
Illinois Indiana	6, 575, 674 7, 759, 741	5, 484, 209 6, 594, 197	6, 592, 7 21 7, 699, 783	306, 764, 003 358, 743, 571	5, 461, 716 6, 603, 756	263, 873, 529 318, 029, 698		
Kentucky Maryland	766, 344 3, 658, 335	545, 417 2, 948, 210	766, 344 3, 657, 171	(1)	545, 417 2, 946, 157	(1)		
Massachusetts Michigan Minnesota	186, 296 2, 207, 665	124, 897 2, 083, 677	182, 184 2, 163, 862	(1)	137, 963 2, 130, 969	(1)		
New York	697, 101 4, 512, 389 13, 710, 153	604, 334 4, 067, 393 12, 273, 225	696, 228 4, 542, 343 13, 725, 969	218, 058, 754 626, 822, 217	600, 589 4, 025, 323	198, 482, 363		
Pennsylvania Tennessee	20, 211, 510	16, 890, 004	20, 205, 913	951, 282, 026	12, 265, 698 16, 870, 493	584, 460, 102 829, 288, 94		
West Virginia Undistributed 1	} 1, 834, 446	1, 918, 442	1, 832, 287	(1) 452, 066, 935	1, 919, 026	(1) 408, 564, 618		
Total	70, 277, 938	61, 308, 424	70, 250, 379	3, 284, 109, 821	61, 234, 790	2, 965, 409, 330		

¹ Data that may not be shown separately because they would reveal individual company operations are combined as "Undistributed."

TABLE 3.—Foreign iron ore and manganiferous iron ore consumed in the manufacture of pig iron in the United States, 1951-52, by sources of ore, in net tons

Source	1951	1952	Source	1951	1952
Africa Brazil Canada Chile Cuba India	614, 743 233, 046 910, 639 2, 977, 266 16, 898 2, 095	435, 607 378, 610 959, 256 1, 841, 327 44, 313 615	Mexico	185, 536 1, 067, 691 451, 692 39, 239 6, 498, 845	137, 583 633, 724 1, 031, 891 58, 012 5, 520, 938

TABLE 4.—Pig iron shipped from blast furnaces in the United States, 1951-52, by grades ¹

Grade		1951		1952			
	NT-4 4	Valu	e	NIA toma	Value		
	Net tons	Total	Average	Net tons	Total	Average	
Foundry	3, 371, 400 55, 045, 515 8, 191, 237 327, 570 3, 106, 087 208, 570	\$154, 735, 170 2, 571, 504, 501 383, 395, 106 17, 756, 536 146, 691, 219 10, 027, 289	\$45. 90 46. 72 46. 81 54. 21 47. 23 48. 08	2, 674, 827 48, 378, 353 6, 728, 619 303, 494 2, 965, 932 183, 565	\$122, 952, 546 2, 343, 116, 271 328, 589, 203 16, 655, 961 144, 951, 694 9, 143, 655	\$45. 97 48. 43 48. 83 54. 88 48. 87 49. 81	
Total	70, 250, 379	3, 284, 109, 821	, 46. 75	61, 234, 790	2, 965, 409, 330	48. 4	

¹ Includes pig iron transferred directly to steel furnaces at same site.

Metalliferous Materials Used.—The production of pig iron in 1952 required 110,168,932 net tons of iron ore, sinter, and manganiferous iron ore; 3,182,218 net tons of mill cinder and 10ll scale; 3,391,402 net tons of open-hearth and Bessemer slags; 2,373,823 tons of purchased scrap; and 95,899 tons of other materials—an average of 1.944 tons of metalliferous materials (exclusive of home scrap and flue dust) per ton of pig iron made.

Alabama furnaces used hematite from the Birmingham district, Missouri, and the Lake Superior region, brown ores from Alabama and Georgia, and byproduct ores from Tennessee. Foreign iron ores were from Africa, Brazil, Chile, Cuba, and Sweden and foreign manganese-

bearing ores from Africa, Brazil, and India.

Blast furnaces at Fontana, Calif., used iron ore from Eagle Mountain,

Riverside County, Calif.

Pueblo, Colo., furnaces (Colorado Fuel & Iron Corp.) used iron

ore from Wyoming and Utah.

Seventy-five percent of the iron ore used at Sparrows Point, Md., came from Chile and Venezuela. Other sources besides the domestic supply were Sweden, Africa, Cuba, and Canada. African and Egyptian manganiferous ores were also used.

In addition to the Lake Superior ore used in Pennsylvania, iron ore was used from Brazil, Canada (Algoma sintered ore), Sweden, Africa, Cuba, Venezuela, Puerto Rico, Spain, and Norway. A small quantity

of manganiferous ore came from Africa and Mexico.

Blast furnaces in Illinois, Indiana, Ohio, and West Virginia used iron and manganiferous ores from the Lake Superior region of the United States and Canada almost exclusively. Republic Steel at Cleveland used some Liberian iron ore.

The Everett, Mass., blast furnaces used iron ore from Brazil, Algeria, Newfoundland, and Spain, as well as from the Lake Superior region. In New York, the blast furnaces in the Buffalo district used magnetite from the Mineville district of New York, hematite from Canadian and domestic mines in the Lake Superior region, and a small tonnage of Liberian ore as well as manganiferous ores from Minnesota. The Troy furnace consumed magnetite from Chateaugay mine at Lyon Mountain, N. Y., and manganiferous ore from India and South Africa. Texas furnaces used domestic, treated domestic, and Mexican ores; manganese ore from Mexico was also used.

Utah furnaces used iron ore from Iron County, Utah, and manganiferous ore from Nevada and Utah.

TABLE 5.—Number of blast furnaces (including ferroalloy blast furnaces) in the United States, December 31, 1951-52

[Americ	an Iron a	nd Steel In	stitute]				
]	Dec. 31, 195	1 ,	Dec. 31, 1952			
State	In blast	Out of blast	Total	In blast	Out of blast	Total	
Alabama. California. Colorado. Illinois. Indiana. Kentucky. Maryland Massachusetts. Michigan Minnesota. New York Ohio. Pennsylvania. Tennessee Texas. Utah Virginia. West Virginia.	21 3 8 1 6 3 16 50 74 3 2	2	21 24 422 22 3 8 1 6 3 16 50 77 3 3 3 5	19 2 4 22 22 3 8 7 7 50 74 3 2 5 5	1 1 1 6	21 2 4 22 23 3 3 17 7 51 180 3 2 5 5	
Total	242	9	251	247	11	258	

TABLE 6.—Iron ore and other metallic materials consumed and pig iron produced in the United States, 1951-52, by States, in net tons

		Metallifer	ous materials o	consumed			Materials consumed per ton of pig iron made			
State		anganiferous ores	Sinter	Miscella- neous ¹	Total	Pig iron produced	Ores	Sinter	Miscella- neous	Total
	Domestic	Foreign								
Alabama	8, 407, 299 862, 977	55, 811	1, 870, 622 623, 836	253, 467 121, 854	10, 587, 199 1, 608, 667	4, 370, 527 921, 695	1. 936 . 936	0. 428 . 677	0. 058 . 132	2. 422 1. 745
Texas Utah	11, 762, 281 13, 292, 905	187, 631 106, 520	1, 523, 618 1, 110, 851 1, 578, 502	136, 783 997, 464 619, 489	5, 322, 134 13, 870, 596 15, 597, 416	2, 866, 062 6, 575, 674 7, 759, 741	1. 278 1. 789 1. 727	. 531 . 169 . 203	. 048 . 152 . 080	1.857 2.110 2.010
Kentucky Maryland Massachusetts Michigan	1, 214, 304 550, 696 181, 678 3, 076, 112 1, 269, 460	4, 582, 020 119, 400 2, 852	96, 218 683, 878 623, 458	166, 054 596, 759 20, 092 752, 211 143, 984	1, 476, 576 6, 413, 353 321, 170 4, 454, 633	766, 344 3, 658, 335 186, 296 2, 207, 665 697, 101	1. 585 1. 403 1. 616 1. 395 1. 821	. 125 . 187	. 217 . 163 . 108 . 341 . 207	1. 927 1. 753 1. 724 2. 018 2. 028
Minnesota New York Ohio Pennsylvania Tennessee	5, 903, 809 19, 043, 978 25, 654, 976	33, 896 634, 432 607, 150	2, 036, 261 4, 631, 816 8, 622, 428	667, 870 2, 137, 676 3, 443, 590	1, 413, 444 8, 641, 836 26, 447, 902 38, 328, 144	4, 512, 389 13, 710, 153 20, 211, 510	1. 316 1. 435 1. 299	. 451 . 338 . 427	. 148 . 156 . 170	1. 915 1. 929 1. 896
West Virginia	97, 274, 805	6, 498, 845	23, 511, 636	181, 783	3, 041, 292	70, 277, 938	1, 499	.060	. 099	1.658
1952			23, 311, 030	10, 239, 070	131, 524, 562	10, 211, 958	- 1.477	304	.140	
Alabama California Colorado	7, 734, 858 952, 606	93, 493	1, 743, 039 612, 356	133, 990 172, 227	9, 705, 380 1, 737, 189	4, 172, 583 977, 121	1.876 .975	. 418 . 627	. 032 . 176	2, 326 1, 778
TexasUtah		131, 675	1, 400, 063	139, 492	4, 832, 175	2, 624, 715	1. 255	. 533	. 053	1.841
Illinois Indiana Kentucky Maryland Massachusetts	9, 607, 782 10, 898, 052 849, 905 355, 085 168, 977	61, 790 3, 590, 849 57, 083	794, 510 1, 480, 004 90, 397 522, 458	861, 417 695, 179 128, 122 635, 510 8, 583	11, 263, 709 13, 135, 025 1, 068, 424 5, 103, 902 234, 643	5, 484, 209 6, 594, 197 545, 417 2, 948, 210 124, 897	1. 752 1. 662 1. 558 1. 338 1. 810	. 145 . 225 . 166 . 177	.157 .105 .235 .215 .069	2. 054 1. 992 1. 959 1. 731 1. 879
Michigan Minnesota New York Ohio	2, 946, 089 1, 091, 608 5, 082, 100 17, 388, 909	53, 790 643, 759	631, 896 1, 873, 408 3, 932, 175	390, 499 158, 239 651, 463 2, 030, 875	3, 968, 484 1, 249, 847 7, 660, 761 23, 995, 718	2, 083, 677 604, 334 4, 067, 393 12, 273, 225	1. 414 1. 806 1. 263 1. 469	. 303 . 460 . 320	. 188 . 262 . 160 . 166	1, 905 2, 068 1, 883 1, 955
Pennsylvania Tennessee West Virginia	0 719 925	719, 858 168, 641	7, 382, 109 143, 195	2, 893, 234 144, 512	32, 082, 434 3, 174, 583	16, 890, 004 1, 918, 442	1. 291 1. 505	. 437	. 171	1. 899 1. 655
Total	84, 042, 384	5, 520, 938	20, 605, 610	9, 043, 342	119, 212, 274	61, 308, 424	1. 461	. 336	. 147	1. 944

¹ Excludes recycled materials.

PRODUCTION OF STEEL

Steel production decreased 11 percent in 1952 from 1951, and capacity continued to increase. The capacity increase during 1952 was 8 percent compared with 4 percent during 1951. Steel capacity at the end of the year was 117,522,000 tons. Of the total tonnage of steel ingots produced in the United States in 1952, 89 percent was made in open-hearth furnaces, virtually unchanged from 1951 and 1950; 7 percent was made in the electric furnaces, the same as 1951; and 4 percent was made in the Bessemer converters, compared with 5 percent in 1951 and 1950.

In 1952, 39 percent of the domestic steel was produced in the Pittsburgh-Youngstown district, 21 percent in the Chicago district, 19 percent in the Eastern district, 10 percent in Cleveland-Detroit district, 6 percent in the Western district, and 5 percent in the Southern district, compared with 39, 21, 20, 9, 6, and 5 percent, respectively, in 1951.

The data concerning steel production used by the Bureau of Mines are furnished by the American Iron and Steel Institute. The output from steel foundries that do not produce steel ingots is not included in the production data.

TABLE 7.—Steel capacity, production, and percentage of operations, in the United States, 1943-47 (average) and 1948-52, in net tons ¹

[American fron and Steel Institute]									
Year	Annual			Production					
	capacity as of Jan. 1	Open- hearth	Bessemer	Electric 2	Total	Percent of capacity			
1943–47 (average)	92, 625, 600 94, 233, 460 96, 120, 930 99, 392, 800 104, 229, 650 108, 587, 670	73, 702, 223 79, 340, 157 70, 248, 803 86, 262, 509 93, 166, 518 82, 846, 439	4, 506, 203 4, 243, 172 3, 946, 656 4, 534, 558 4, 890, 946 3, 523, 677	3, 726, 885 5, 057, 141 3, 782, 717 6, 039, 008 7, 142, 384 6, 797, 923	81, 935, 311 88, 640, 470 77, 978, 176 96, 836, 075 105, 199, 848 93, 168, 039	88. 5 94. 1 81. 1 97. 4 100. 9 85. 8			

¹ The figures include only that portion of the capacity and production of steel for castings used by foundries operated by companies producing steel ingots. Omitted portion is about 2 percent of total steel production. ² Includes a small quantity of crucible.

TABLE 8.—Open-hearth steel ingots and castings manufactured in the United States, 1943-47 (average) and 1948-52, by States, in net tons ¹

[Time I can had and over Included]									
· State	1943-47 (average)	1948	1949	1950	1951	1952			
New England States New York and New Jersey Pennsylvania. Ohio Indiana Illinois Other States Total	432, 199 4, 024, 580 22, 165, 554 13, 744, 447 10, 066, 023 5, 943, 456 17, 325, 964 73, 702, 223	454, 524 4, 277, 040 23, 648, 314 14, 045, 722 10, 453, 975 6, 269, 723 20, 190, 859 79, 340, 157	381, 763 4, 020, 711 19, 759, 983 12, 215, 389 9, 099, 413 5, 886, 460 18, 885, 084 70, 248, 803	485, 007 4, 820, 177 24, 610, 259 15, 200, 938 11, 055, 043 6, 831, 337 23, 259, 748 86, 262, 509	535, 014 5, 271, 387 26, 977, 599 16, 842, 144 11, 888, 961 7, 271, 633 24, 379, 780 93, 166, 518	436, 993 2 4, 521, 685 24, 224, 361 14, 759, 616 10, 414, 109 6, 508, 525 21, 981, 150 82, 846, 439			

¹ Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. See table 7.

² New York only in 1952. New Jersey included in other States.

Alloy Steel.—Alloy-steel data include steels in which the minimum of the range specified in one or more of the elements named exceeds the following percentages: Manganese, 1.65 percent; silicon, 0.60 percent; copper, 0.60 percent; or aluminum, boron, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, zirconium, and other alloying elements, any added percent.

The steel output for 1952 includes 9,135,000 net tons of alloy-steel ingots and castings, a decrease of 10 percent from 1951. The production represents 10 percent of the total steel produced, as in 1951, compared with 9 percent in 1950 and 8 percent in 1949. The production of stainless steel increased from 9 percent of total alloy-steel output in 1951 to 10 percent in 1952. There was a 13-percent increase in the production of austenitic stainless steel, AISI 300 series, in 1952 over 1951, while ferritic and martensitic, AISI 400 series, decreased 15 percent. The output of type 501, 502, and other high-chromium

TABLE 9.—Bessemer-steel ingots and castings manufactured in the United States, 1943-47 (average) and 1948-52, by States, in net tons ¹

[American Iron and Steel Institute]									
State	1943-47 (average)	1948	1949	1950	1951	1952			
Ohio	1, 986, 542 1, 489, 730 1, 029, 931	1, 936, 873 1, 355, 934 950, 365	1, 760, 006 1, 174, 866 1, 011, 784	2, 000, 294 1, 293, 746 1, 240, 518	2, 208, 456 1, 345, 297 1, 337, 193	1, 922, 776 751, 297 849, 604			
Total	4, 506, 203	4, 243, 172	3, 946, 656	4, 534, 558	4, 890, 946	3, 523, 677			

¹ Includes only that portion of steel for castings produced in foundries by companies manufacturing steel ingots. See table 7.

TABLE 10.—Steel electrically manufactured in the United States, 1943-47 (average) and 1948-52, in net tons ¹

[American Iron and Steel Institute]

Castings Total 2 Year Ingots Castings Total 2 Year Ingots 111, 499 99, 018 94, 189 6, 039, 008 7, 142, 384 6, 797, 923 97, 579 83, 530 95, 640 3, 726, 885 5, 057, 141 3, 782, 717 1943–47 (average) 3, 629, 306 1948 4, 973, 611 1949 3, 687, 077 5, 927, 509 7, 043, 366 1950. 6, 703, 734

¹ Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. See table 7.

² Includes a very small quantity of crucible steel.

TABLE 11.—Alloy-steel ingots and castings manufactured in the United States, 1943-47 (average) and 1948-52, by processes, in net tons 1

Process	1943-47 (average)	1948	1949	1950	1951	1952
Open hearth: Basic Acid Crucible Electric Total	6, 090, 540	6, 285, 054	4, 192, 344	5, 738, 067	6, 585, 635	5, 807, 191
	342, 486	128, 915	105, 550	123, 253	238, 034	218, 867
	} 2, 754, 182	2, 067, 145	1, £99, 675	2, 708, 785	3, 300, 918	3, 108, 693
	9, 187, 208	8, 481, 114	5, 897, 569	8, 570, 105	10, 124, 587	9, 134, 751

¹ Includes only that portion of steel for castings produced in foundries operated by companies manufacturing steel ingots. See table 7.

heat-resisting steel, included in the stainless-steel production figures, increased 93 percent (to 38,000 net tons) in 1952, over 1951. Of the alloy steel produced in 1952, 64 percent was produced in basic openhearth furnaces, 2 percent in acid open-hearths, and 34 percent in electric furnaces. There was a 1-percent gain in alloy-steel production in electric furnaces, as compared to 1951.

Metalliferous Materials Used.—Scrap and pig iron used in steel furnaces in 1952 totaled 105.7 million net tons. The percentage of each used was 49 and 51, respectively, compared with 48 and 52 in 1951. In addition, steel furnaces used 3,511,000 tons of domestic iron ore and 2,276,000 tons of foreign ore; the latter originated in Africa, Brazil, Canada, Sweden, and Venezuela, with small tonnages from Cuba, Dominican Republic, and Puerto Rico. Also used was 1,615,000 tons of sinter made from both foreign and domestic ores.

Iron ore is employed both as a part of the charge and as a source of oxygen in the refining process. The ore for the first use is termed "charge ore" and for the second "feed ore." The characteristics required of charge and feed ore are similar—hard lump structure, high in iron, with freedom from fines.

TABLE 12.—Metalliferous materials consumed in steel furnaces in the United States, 1943-47 (average) and 1948-52, in net tons

4	Iron ore			Manganese ore				Iron and steel scrap	
Year	Do- mestic	Foreign	Sinter	Do- mestic	Foreign	Pig iron	Ferro- alloys	Home	Pur- chased
1949 1950 1951	3, 808, 155 3, 152, 797 3, 495, 862 3, 774, 770	267, 954 1, 064, 513 1, 107, 625 1, 799, 089 2, 369, 165 2, 275, 868	1, 051, 746 1, 310, 471 1, 701, 404	2, 698 1, 231 2, 877 660	4, 159 3, 033 1, 335 2, 847	52, 177, 785 46, 502, 503 56, 269, 610 61, 750, 383	1, 300, 000 950, 000 1, 320, 000 1, 470, 000	24, 689, 529 22, 675, 212 27, 353, 503 30, 100, 917	18, 367, 775 22, 890, 571 17, 753, 002 23, 738, 078 26, 986, 412 24, 827, 316

CONSUMPTION OF PIG IRON

Consumption of pig iron in 1952 decreased 14 percent from the 1951 figure. Pig iron, a product of the blast furnace, is a semiraw material; except for a small quantity used in direct casting, it moves to steelmaking or iron-melting furnaces for refining, alone or mixed with other ingredients. In 1952, 87 percent of the pig iron went to the steelmaking furnaces (open-hearth, Bessemer, and electric) to be processed into steel, 4 percent was used to make direct castings, and 9 percent was consumed in ironmaking furnaces. The percentage changes that occurred comparing 1951 and 1952 consumption of pig iron are as follows: Open-hearth increased 2 percent; Bessemer decreased 1 percent; cupola, the major iron-furnace consumer, decreased less than 1 percent; and other consumers remained the same. Plants using pig iron in 1950 were located in all 48 States and the District of Columbia, but consumption was concentrated largely in the steelmaking centers of the East North Central, Middle Atlantic, South Atlantic, and East South Central States. These areas in 1952 consumed 93 percent of the pig iron. Pennsylvania (the leading consumer) used 28 percent of the total and Ohio (the second-largest consumer), 19 percent.

TABLE 13.—Consumption of pig iron in the United States, 1949-52, by type of furnace

There at farme as	1949		1950		1951		1952	
	Percent of total	Net tons	Percent of total	Net tons	Percent of total	Net tons	Percent of total	
Open-hearth	41, 782, 506 4, 612, 408 107, 589 4, 764, 003 } 273, 514 1, 052	78. 2 8. 6 . 2 8. 9 . 5	50, 946, 134 5, 169, 835 153, 641 6, 059, 188 334, 613 1, 190	78. 5 8. 0 . 2 9. 3 . 5	56, 055, 103 5, 551, 149 144, 131 6, 559, 800 400, 267 243	78. 5 7. 8 . 2 9. 2 . 5	49, 374, 315 3, 998, 751 118, 668 5, 438, 294 317, 500	80. 2 6. 5 . 2 8. 8 . 5
Puddling Direct castings Miscellaneous	3, 880 1, 901, 760 53	(1) (1) (3. 6 (1)	3, 168 2, 275, 349	(1) (1) 3, 5	2, 703, 624	3.8	2, 303, 281	3.8
Total	53, 446, 765	100.0	64, 943, 118	100.0	71, 414, 317	100.0	61, 550, 961	100.0

¹ Less than 0.05 percent.

TABLE 14.—Consumption of pig iron in the United States, 1948-52, by States and districts

		a.i	iu ui	ouicus.				
		1948		1949		1950	1 1951	1 1952
State and district	Con- sum- ers	Net tons	Con- sum- ers	Net tons	Con- sum- ers	Net tons	Net tons	Net tons
Connecticut Maine Massachusetts	59 15 100	73, 173 14, 882 219, 453	56 11 95	56, 835 10, 304 174, 401	54 13 101	75, 868 9, 657 218, 931	83, 101 9, 647 231, 897	60, 598 4, 072 165, 324
New HampshireRhode IslandVermont	16 11 14	4, 178 23, 520 7, 687	15 11 13	3, 252 32, 217 6, 328	16 15 13	4, 190 41, 223 8, 783	4, 762 57, 792 17, 331	4, 607 46, 842 14, 643
Total New England	215	342, 893	201	283, 337	212	358, 652	404, 530	296, 086
New Jersey New York Pennsylvania	80 174 401	279, 352 2, 948, 785 17, 667, 350	78 170 390	243, 854 2, 652, 854 14, 834, 486	73 163 347	274, 116 3, 060, 001 18, 315, 008	295, 182 3, 416, 408 20, 314, 328	244, 320 3, 128, 013 17, 026, 406
Total Middle Atlantic	655	20, 895, 487	638	17, 731, 194	583	21, 649, 125	24, 025, 918	20, 398, 739
Illinois Indiana Michigan Ohio Wisconsin	216 137 167 327 125	4, 809, 697 7, 075, 885 2, 718, 956 11, 633, 581 260, 572	209 135 169 319 121	4, 498, 693 6, 303, 356 2, 689, 505 10, 134, 409 243, 420	204 132 171 283 123	5, 465, 752 7, 480, 127 3, 687, 724 11, 667, 857 295, 792	5, 948, 201 8, 339, 759 3, 605, 019 13, 230, 964 341, 120	4, 893, 725 7, 044, 738 3, 294, 753 11, 650, 525 278, 670
Total East North Central.	972	26, 498, 691	953	23, 869, 383	913	28, 597, 252	31, 465, 063	27, 162, 411
Iowa Kansas Nebraska	50 25 11	91, 291	$ \begin{cases} 52 \\ 24 \\ 11 \end{cases} $	107, 353	54 { 21 10	101, 702	152, 275 10, 395	101, 833 6, 682
Minnesota North Dakota South Dakota	58 1 1	458, 374	54	383, 952	59 2	542, 101	620, 166	506, 084
Missouri	51	87, 654	49	63, 524	45	86, 939	103, 115	80, 995
Total West North Central	197	661, 729	192	571, 453	193	747, 629	885, 951	695, 594
Delaware District of Columbia Maryland	7 3 23	2, 994, 431	$ \begin{cases} 7 \\ 2 \\ 21 \end{cases} $	3, 058, 103	$ \begin{cases} 6 \\ 1 \\ 18 \end{cases} $	3, 666, 178	3, 871, 880	3, 144, 907
Florida Georgia North Carolina	15 51 44	38, 565 20, 482	14 50 45	70, 171 20, 958	13 49 52	86, 243 30, 658	79, 929	60, 528
South Carolina Virginia	14 51	9, 404	14	7, 360	16	11, 424	29, 946 21, 521	27, 194 12, 911
West Virginia	26	<u>}</u> 1, 670, 691	23	}1, 662, 263	22	}1, 952, 608	1, 929, 435	1, 862, 646
Total South Atlantic	234	4, 733, 573	225	4, 818, 855	226	5, 747, 111	5, 932, 711	5, 108, 186
Alabama Kentucky Mississippi	74 25 8	3, 500, 614	$ \begin{cases} 72 \\ 22 \\ 8 \end{cases} $	3, 152, 311	79 22 8	3, 777, 495	3, 902, 199 1, 041, 910	3, 527, 809 845, 718
Tennessee Total East South Central_	53 160	4, 424, 654	152	3, 913, 460	160	4, 751, 371	4, 944, 109	4, 373, 527
Arkansas	4	1	f 3)	(5	1		
Louisiana Oklahoma	12 9	7,025	12	6,015	11 15	7, 280	13, 981	11, 961
Texas Total West South Central	38 63	230, 947	$\frac{37}{63}$	198, 318	76	356, 724 364, 004	578, 593 592, 574	418, 964
Arizona Nevada New Mexico	} 4	1, 251	4	1, 194	3	1, 520	866	144
ColoradoUtah	30	1, 583, 437	31	1, 364, 097	25	1, 766, 874	1, 864, 848	1, 776, 397
Montana Idaho	4 2	320 315	4 2	305 194	3 2	207 167	276	181
Wyoming	2	4	2	5	2	4	} 689	504
Total Mountain	42	1, 585, 327	43	1, 365, 795	35	1, 768, 772	1, 866, 679	1, 777, 226
California Oregon	111 23	625, 229	108	673, 613	105	937, 740	1, 271, 574	1, 288, 561
Washington	23 29	20, 849	₹ 35	15, 342	{ 24 28	21, 462	25, 208	19, 706
Total Pacific	163	646, 078	166	688, 955	157	959, 202	1, 296, 782	1, 308, 267
Total United States	2, 701	60, 026, 404	2, 633	53, 446, 765	2, 555	64, 943, 118	71, 414, 317	61, 550, 961

 $^{^{\}rm 1}$ Consumption for 1951 and 1952 obtained from sample monthly canvasses; therefore, exact number of consumers by States not available.

PRICES

The average value of all grades of pig iron given in the accompanying table is compiled from producers' reports to the Bureau of Mines. The figures represent value f. o. b. blast furnaces and do not include the value of ferroalloys. The average value for all grades of pig iron at furnaces was \$48.43 in 1952 compared with \$46.75 in 1951.

TABLE 15.—Average value of pig iron at blast furnaces in the United States; 1943-47 (average) and 1948-52, by States, per net ton

State	1943–47 (average)	1948	1949	1950	1951	1952
Alabama California, Colorado, and Utah Illinois. Indiana. New York Ohio. Pennsylvania. Other States ¹ . Average.	\$20. 50 22. 46 24. 24 24. 71 22. 60 24. 40 23. 99 22. 57 24. 41	\$36. 52 40. 93 35. 72 37. 86 32. 70 37. 98 36. 68 38. 77 37. 17	\$35. 79 42. 92 41. 69 41. 26 43. 81 40. 92 43. 04 44. 59	\$39. 00 44. 52 42. 77 42. 43 42. 68 42. 38 43. 09 44. 73	\$43. 87 48. 50 46. 53 46. 59 48. 01 45. 67 47. 08 47. 98	\$45, 10 50, 83 48, 31 48, 16 49, 31 47, 65 49, 16 48, 70

¹ Comprises Kentucky, Maryland, Massachusetts, Michigan, Minnesota, Tennessee, Texas, Virginia, and West Virginia.

TABLE 16.—Average monthly prices per net ton of chief grades of pig iron, 1951-52

-	TATA+al	Statistics.	1052]
- 1	metar	Statistics.	19091

Month	Foundry pig iron at Birmingham furnaces		Foundry at Valley	pig iron furnaces	Bessemer at Valley		Basic pig iron at Valley furnaces	
,	1951	1952	1951	1952	1951	1952	1951	1952
January February March April May June July August September October November December	43. 64 43. 64 43. 64 43. 64 43. 64 43. 64 43. 64 43. 64	\$43. 64 43. 64 43. 64 43. 64 43. 64 43. 64 44. 04 45. 88 45. 88 45. 88 45. 88	\$46. 87 46. 87	\$46. 87 46. 87 46. 87 46. 87 46. 87 47. 28 49. 11 49. 11 49. 11 49. 11	\$47. 32 47. 32	\$47. 32 47. 32 47. 32 47. 32 47. 32 47. 72 49. 55 49. 55 49. 55 49. 55	\$46. 43 46. 43 46. 43 46. 43 46. 43 46. 43 46. 43 46. 43 46. 43 46. 43	\$46. 43 46. 43 46. 43 46. 43 46. 43 46. 83 48. 66 48. 66 48. 66 48. 66
Average	43. 64	44. 61	46. 87	47. 84	47. 32	48. 29	46. 43	47. 39

TABLE 17.—Composite prices of finished steel in the United States, 1945-52, by months, in cents per pound

[Iron Age]

Month	1945	1946	1947	1948	. 1949	1950	1951	1952
January February March April May June July August September October November November	2. 464 2. 464 2. 464 2. 464 2. 464 2. 464	2. 464 2. 555 2. 719 2. 719 2. 719 2. 719 2. 719 2. 719 2. 719 2. 719 2. 719	2. 877 2. 884 2. 884 2. 884 2. 884 2. 914 3. 193 3. 193 3. 193 3. 193 3. 193	3. 193 3. 125 3. 241 3. 241 3. 214 3. 214 3. 293 3. 720 3. 720 3. 720 3. 720 3. 720 3. 720	3. 720 3. 719 3. 715 3. 709 3. 706 3. 705 3. 705 3. 705 3. 705 3. 705 3. 705 3. 756	3. 837 3. 837 3. 837 3. 837 3. 837 3. 837 3. 837 3. 837 3. 837 4. 131	4. 131 4. 131 4. 131 4. 131 4. 131 4. 131 4. 131 4. 131 4. 131 4. 131	4. 131 4. 131 4. 131 4. 131 4. 131 4. 130 4. 376 4. 376 4. 376 4. 376 4. 376
Average	2. 464	2, 747	3. 014	3. 434	3.713	3, 862	4. 131	4. 237

FOREIGN TRADE 3

Pig-iron imports decreased from 1,067,000 tons in 1951 to 390,000 in 1952. Pig-iron exports in 1951 were 7,000 tons (\$352,000), and in 1952 exports were 14,000 tons (\$719,000). Total imports of steel (manufactures and semimanufactures) decreased from 2,289,000 tons in 1951 to 1,231,000 in 1952. Exports of steel rose from 3,429,000 tons in 1951 to 4,412,000 in 1952, an increase of 29 percent.

Seventy-three percent of the total pig iron imported came from Canada and 16 percent from Germany, Norway, and Spain. The United Kingdom received 59 percent of the pig iron exported; Canada

and Mexico received a total of 27 percent.

Steel bars, boiler and other iron and steel plate, and structural iron and steel again headed the principal import list, as they did in 1950 and 1951. Tinplate and terneplate, casing and line pipe, and

structural shapes made up 34 percent of the total exports.

The balance of trade shifted from exports to imports of steel for the United Kingdom and Germany in 1952. Increasing demands for steel far exceeded the supply possibilities. Japan was the chief exporter to Germany during the first half of 1952, but during the second half of the year French and Saar mills had driven Japan from the German market by underquoting it for the dollar area.⁴

TABLE 18.—Pig iron imported for consumption in the United States, 1948-52, by countries, in net tons

Country	1948	1949	1950	1951	1952
North America: CanadaSouth America:	5, 729	12, 270	195, 807	220, 094	282, 990
Argentina	551 		7, 583	33, 936 57, 241	2, 577
Austria Belgium-Luxembourg France Germany Italy	17, 876 24, 558	5, 145 15, 688 340 2, 383	56, 635 8, 086 37, 640 225, 132	82, 628 16, 605 37, 323 331, 244	11, 071 3, 045 343 1 16, 203
Netherlands Norway Spain	45, 020 23, 919	20, 527 146	243, 434 5, 364	123 99, 189 15, 352 34, 048	12, 735 21, 489
Turkey	1,301	436	14, 798	43, 822 36, 587	25, 224 2, 096 622
United Kingdom Asia: India Africa: Union of South Africa	16 101	193 23, 077	2, 816 7, 168 336	3, 957 34, 158	
Oceania: Australia	26, 902	19, 599		20, 206	11. 192

[U. S. Department of Commerce]

Total: Net tons

219, 252

\$11, 810, 853

99, 804 804, 799 1, 066, 513 \$4, 591, 779 \$26, 237, 334 \$49, 169, 985

\$19, 580, 837

¹ West Germany.

Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.
 Metal Bulletin (London), No. 3757, Jan. 6, 1953, pp. 12-13.

TABLE 19.—Major iron and steel products imported for consumption in the United States, 1950-52

[U. S. Department of Commerce]

	19)50	.1	951	19	952
Products	Net tons	Value	Net tons	Value	Net tons	Value
Semimanufactures:						
Steel bars: Concrete reinforcement bars Solid or hollow, n. e. s	108, 527	\$3, 612, 285 6, 435, 303	1 246, 489	1 \$14, 818, 748 1 25, 027, 123	111, 347	\$13, 238, 368 14, 800, 749
Hollow and hollow drill steel	799 387	196, 267 58, 826	1 944 5 695	1 270, 536 765 108, 286	110	241, 121 12, 488 45, 187
Wire rods, nail rods, and flat rods up to 6 inches in width	112,354	7, 341, 986	,		44, 307	5, 636, 629
n. e. s Steel ingots, blooms, and slabs Billets, solid or hollow	163, 301 115, 384 67, 089	4, 200, 255	1 585, 529 40, 227 99, 401	3, 019, 220 8, 470, 562	8, 195 52, 918	17, 466, 883 1, 500, 626 6, 244, 473
Die blocks or blanks, shafting, etc Circular saw plates Sheets of iron or steel, common or black	12, 211 16	780, 128 13, 860		1 '		486, 591 11, 672
and boiler or other plate iron or steel. Sheets and plates and steel, n. s. p. f Tin plate, terneplate, and taggers' tin	27, 301 33, 101 4, 289	2, 806, 693	1 36, 461		11,068	3, 768, 689 1, 106, 692 530, 076
Total semimanufactures	705, 180	49, 277, 253	1 1, 343, 458	1 153, 080,010	530, 610	65, 090, 244
Manufactures: Structural iron and steelRails for railways	178, 007 7, 169	12, 134, 078 318, 545		1 46, 914, 0 54 561, 766		35, 957, 687 236, 444
Rails for railways	295	25, 283	118	9, 343	641	40, 264
Pipes and tubes: Cast-iron pipe and fittings Other pipes and tubes Wire:	1, 215 40, 495		6, 932 1239, 798	733, 645 1 40, 005, 096	5, 308 274, 066	675, 862 64, 506, 357
Barbed Round wire, n. e. s Telegraph, telephone, etc., except copper, covered with cotton jute,	9, 505 17, 829			1, 082, 260 1 3, 793, 165	26, 252 9, 217	3, 981, 349 1, 535, 857
copper, covered with cotton jute, etc	214 8, 082 2, 305	1, 998, 968	41, 219	8, 808, 230	7, 194	262, 266 3, 708, 208 1, 307, 259
fencing Hoop or band iron or steel, for baling Hoop, band and strips, or scroll iron	1,367		1, 466 14, 547	185, 472 1, 436, 478	1, 597 7, 324	234, 207 1, 049, 706
or steel, n. s. p. f	67,524	7, 189, 462	56, 419	7, 795, 986	18, 520	3, 030, 927
Total manufactures		34, 692, 910		1121, 557, 691		119, 742, 58
Grand total	-			1 274, 637, 701	1, 231, 259	184, 832, 82

¹ Revised figure.

TABLE 20.—Major iron and steel products exported from the United States, 1950-52

[U. S. Department of Commerce]

[0, 5	. Depart	ment of Col	nmer cej			
	1	950		1951	19 52 ¹	
Products	Net tons	Value	Net tons	Value	Net tons	Value
Semimanufactures: Steel ingots, blooms, billets, slabs, and sheet bars Iron and steel bars and rods: Iron bars	61, 612 1, 006 18, 589 99, 245 6, 264	\$4, 962, 518 164, 924 1, 820, 988 13, 201, 530 596, 163	2 134, 527 2, 941 44, 426 2 150, 436 4, 148	² \$11,971,343 499,453 4,820,793 ² 21,117,654 481,320	732, 185 1, 479 93, 186 164, 944 29, 681	\$66, 321, 638 216, 940 10, 382, 546 26, 089, 875 3, 312, 103

See footnotes at end of table.

TABLE 20.—Major iron and steel products exported from the United States, 1950-52—Continued

	1950-5	2—Contin	nued			
Decidents		1950		1951		1952 1
Products	Net tons	Value	Net tons	Value	Net tons	Value
Semimanufactures—Continued Iron and steel plates, sheets, skelp, and strips:	1			-		
Plates, including boiler plate, not	110 005	610 111 007	100 710			
Skelp iron and steel	112, 225	\$12,111,005 8, 720, 436	160, 542 107, 878	\$19, 322, 830 8, 946, 310	232, 075 124, 497	\$27, 025, 828 11, 407, 272
Iron and steel sheets, galvanized Steel sheets, black, ungalvanized		16, 663, 184	68, 087	12, 515, 185	64, 045	11, 407, 272 12, 389, 082
Iron sheets, black	501, 175 17, 046	68, 025, 075 2, 086, 764	2 525, 081 14, 050	280, 998, 187 1, 773, 745	600, 994 (3)	92, 260, 838
Strip, hoop, band, and scroll iron and steel:		İ				''
Cold-rolled	43, 289	10, 553, 658	52, 625	13, 903, 833	59, 862	15, 308, 477
Hot-rolled Tin plate and terneplate	49, 592 495, 994	10, 553, 658 5, 598, 381 81, 741, 856	60, 589 558, 664	7, 899, 601 113, 562, 793	69, 765 599, 160	9, 094, 492 116, 325, 825
Total semimanufactures	1,622,979	226,246,482	21,883,994	2297,813,047	2,771,873	390, 134, 913
Manufactures—steel-mill products:						, , , , , , , , , , , , , , , , , , , ,
Structural iron and steel: Water, oil, gas, and other storage						
tanks, complete and knocked-down	20.147	0 441 400				
Structural shapes:	1	8, 441, 499	33, 304	8, 796, 908	37, 732	10, 180, 878
Not fabricatedFabricated	153, 570 110, 348	13, 800, 340 27, 957, 015	232, 035 77, 136	22, 466, 923 23, 535, 603	192, 222 83, 843	19, 133, 730 21, 382, 794
Plates, sheets, fabricated, punched.	1	1			1 .	ŀ
or shaped Metal lath	7, 370 3, 000	1, 733, 857 805, 043	² 13, 015 4, 684	² 3, 621, 664 1, 326, 342	16, 081 2, 693 8, 780	4, 265, 933 788, 648
Frames, sashes, and sheet piling Railway-track material:	12, 264	1, 934, 753	13, 182	2, 136, 551	8, 780	1, 671, 974
Rails for railways	137, 391	10, 105, 145	105, 599	8, 755, 167	168, 101	14, 906, 465
Rail joints, splice bars, fishplates, and tie plates	23, 649	2, 791, 794	33, 779		50, 265	
Switches, frogs, and crossings	2, 505 7, 516	696, 517 1, 064, 531	2, 514 8, 319	4, 411, 717 733, 539 1, 466, 060	6,622	7, 099, 749 2, 079, 720
Railroad spikes Railroad bolts, nuts, washers, and	7, 516	1,064,531	8, 319	1, 466, 060	8, 955	1, 376, 618
nut locks	1,600	371, 125	1, 673	463, 363	2,064	584, 415
Tubular products: Boiler tubes	15, 541 452, 160	3, 760, 427 61, 864, 657	² 18, 205 ² 463, 137	2 5, 299, 047	36, 798	9, 946, 893
Casing and line pipe Seamless black and galvanized pipe	452, 160	61, 864, 657	² 463, 137	270,412,183	502, 611	81, 305, 482
and tubes, except casing, line and boiler, and other pipes and tubes						
weided black pipe and tubes	17, 328 59, 881	3, 112, 500 8, 369, 201	² 17, 196 68, 415	2 3, 785, 263 11, 096, 062 8, 736, 989	27, 307 51, 439 45, 426	5, 875, 067 8, 879, 217
Welded galvanized nine and tubes	1 64 990	10, 683, 312	44,005	8, 736, 989	45, 426	8, 919, 059 3, 156, 293
Malleable-iron screwed pipe fittings_ Cast-iron screwed pipe fittings_	4, 099 620	2, 739, 743 274, 257 2, 538, 927	4, 489 692	3, 554, 624 349, 614	3, 805 3, 143	1 2, 444, 977
Cast-iron pressure pipe fittings Cast-iron soil pipe and fittings	21, 179 5, 802	2, 538, 927 1, 014, 642	² 38, 545 10, 712	349, 614 2 4, 594, 174 2, 083, 057	3, 143 41, 946 9, 874	6, 003, 320 1, 722, 738
fron and steel pipe and fittings,			l '	1	1	ł
n. e. s Wire and manufactures:	39, 394	19, 301, 638	² 53, 884	224,892,631	46, 452	26, 167, 786
Barbed wireGalvanized wire	10, 976	1, 587, 017	13, 900	2, 159, 062	6, 663	1, 018, 347
Iron and steel wire, uncoated Wire rope and strand	11, 123 25, 936	2, 023, 933 5, 214, 337 4, 650, 253	15, 741 54, 574	3, 070, 636 10, 197, 841	19, 578 58, 262	4, 337, 848 9, 735, 093
woven-wire iencing and screen cloth.	11, 632 8, 774	4, 650, 253 3, 205, 089	18, 040 12, 933	8, 200, 077 4, 910, 328	15, 556 6, 512	7, 279, 680 4 3, 277, 644 10, 772, 111
All other Nails and bolts, iron and steel, n. e. s.:	24, 478	7, 547, 144	38, 004	12, 168, 578	33, 141	10, 772, 111
Wire nails	3, 097	554, 609	8, 737	1, 534, 790	6, 990	1, 960, 237
All other nails, including tacks and staples	3, 717	1, 562, 514	5, 520	2, 241, 352	3, 316	1, 634, 850
Bolts, machine screws, nuts, rivets, and washers, n. e. s			•	· ·		
Castings and forgings:	16, 213	8, 595, 585	21, 594	13, 530, 637	25, 672	17, 383, 888
Horsehoes, muleshoes, and calks Iron and steel, including car wheels,	340	62, 588	568	107, 699	(5)	(5)
tires, and axles	87, 491	14, 630, 082	-110, 869	20, 195, 167	118, 269	24, 153, 477
Total manufactures	1,383,131	232,994,074	21,545,000	2290,833,648	1,640,118	319, 444, 931
Advanced manufactures: House-heating boilers and radiators.		704 505		1 700 070		0 501 50-
Oil burners and parts		5, 952, 281		1, 709, 679 8, 333, 848		3, 581, 725 7, 364, 653
House-heating boilers and radiators. Oil burners and parts Tools (iron and steel chief value) Total advanced manufactures		31, 570, 192		42, 999, 558		7, 364, 653 47, 086, 743
Total advanced manufactures		38, 307, 068		53, 043, 085		58, 033, 121

Due to changes in classifications some data not strictly comparable to earlier years.
 Revised figure.
 Effective January 1, 1952, data included with steel sheets, black, ungalvanized.
 Includes wire cloth valued at \$1,542,736 (12,667,342 square feet; weight not available).
 Effective January 1, 1952, not separately classified.

TECHNOLOGY

Several plants in the United States are now using high top-pressure blast furnaces. This process was patented (United States Patent 2,131,031, issued in 1938) by Julian Avery, a chemical engineer with Arthur D. Little, Inc. The process is designed to reduce the velocity of the reducing gas (carbon monoxide), to increase the gaseous reduction of the ore and thus minimize the direct reduction by coke. conditions would cause the blast furnace to be more efficient, since direct reduction is an endothermic reaction, while the gaseous reduction is exothermic. Avery's theory has been tested through the construction or conversion of over 20 blast furnaces to high toppressure type throughout the world. Results of these furnaces have shown up to an 11-percent increase in pig-iron production, 70 pounds less coke required per ton of pig iron produced, and a 50-percent lower flue-dust rate.⁵

Woodward Iron Co., Woodward, Ala., has been using conditioned air in its blast furnaces for the past 14 years, and the company reports a saving of \$1.55 per ton or \$1.45 net after deducting 10 cents per ton for operation of air-conditioning units. The above figure is based on coke at \$15 per ton. There are also other savings, such as increased pig-iron production, probably higher yields, and a more uniform analysis. The equipment used at Woodward is designed to reduce the moisture content of the blast to 3 grains per cubic foot.6

In casting steel ingots, extensions of the mold (the hot tops) are The purpose of the now being gas heated to increase production. hot top is to furnish metal for feeding the cavity formed by shrinkage on cooling in killed steel. By heating hot tops with gas, it is claimed that an extra ingot is made for every 12 or 13 ingots cast.

Republic Steel Corp. has developed a method for automatically pouring ingots. One open-hearth claims that the method increased

the number of good ingots from 83 to 93 percent.

The production of boron steel in the United States increased 43 percent in 1952 over 1951 to 507,000 net tons, or 9 percent of total alloy steel produced. About 90 percent of the boron steel is made in the open-hearth furnaces and the remainder in the electric furnaces.

Boron is added to steel to increase hardenability. In general, the effects of boron on the mechanical properties of steel are similar to those of carbon. Boron increases the elastic limit and the ultimate

strength, but at the same time decreases the toughness.

The new spectrochemical excitation unit used in steel analysis has played an important part in the increased use of boron. Because of the low specification range (0.0005 to 0.005 percent) of boron, very accurate methods are required to insure that the correct quantity of boron is employed.8

In 1952 Bureau of Mines engineers worked on the following projects that will be of great value to the steel industry: (1) Investigated substitutes for manganese in steel, (2) improved methods for adding and removing some elements from the steel-furnace bath by lance

Iron and Steel Engineer, vol. 30, No. 1, January 1953, pp. 123-161.
 Metal Progress, vol. 63, No. 2, February 1953, p. 71.
 AIME, Blast Furnace, Coke-Oven, and Raw Materials Conference: April 1952.
 Metal Progress, vol. 63, No. 2, February 1953, pp. 110-112. Electric-Furnace Steel Conference held in

December 1952.

Dean, R. S., and Silkes, B., Boron in Iron and Steel Inf. Cir. 7363, 1946, 56 pp. Iron and Steel Engineer, p. 138, January 1953.

Materials and Methods, vol. 35, No. 1, January 1953.

injection of certain materials into the bath, (3) determined the effects of various elements on the hot-working characteristics of steel, (4) developed high-damping alloys, and (5) recovered manganese from

open-hearth slag and low-grade manganese ore.

In a laboratory study on possible substitutes for manganese in sulfur control of steel, titanium and zirconium have proved partial substitutes in killed steels. A summary of results, based on sulfur ranges of 0.03 to 0.06 percent and a residual manganese of 0.15 percent, indicate that a ratio of 7.5:1 Mn:S is necessary for heats containing only manganese; a ratio of 5:1 for (Mn+Zr): S is necessary in zirconium heats; and a ratio of 5.5 to 6.1 (Mn+Ti): S in titanium heats was necessary to prevent hot shortness.9

The measurement and control of molten-steel temperatures have been subjects of considerable research for many years. Much progress has been made by the steel industry and by instrument manufacturers with the bath-immersion thermocouple employing platinum vs. platinum-rhodium wires, the blow-tube immersion pyrometer, and the spoon-immersion couple using platinum vs. platinum-rhodium wires. The most widely used is the bath-immersion thermocouple which gives consistant true temperatures with proper care. The advantages derived from proper temperature control are as follows: Longer furnace life, less bottom delays, longer ladle-lining life, less fuel consumption. increased steel production, reduction in the number of skulls, longer mold and stool life, fewer stickers, and improved steel quality.

Most of the steel companies are still trying to improve their methods and equipment for temperature control. Either improvement of present-day methods and equipment or new equipment will be the answer to this problem. A tungsten-molybdenum couple was used by H. T. Greenway, S. T. M. Johnstone, and Marion K. McQuillan at Aeronautical Research Laboratories at Melbourne, Australia, to

measure temperatures up to 3,632° F.¹⁰

A serious defect in present-day steel technology is overspecification. Inadequate knowledge of the effect on steel properties of various elements when used individually or in various combinations is a cause of this grave defect. Increased research to include less common alloying elements would alleviate this problem. Proper distribution of such information would help steel users to buy the correct steel and save critical alloying elements.

WORLD PRODUCTION

World production of pig iron (including ferroalloys) and steel increased 1.3 and 0.5 percent, respectively, in 1952. This compares with a 12-percent increase for both materials in 1951. The Schuman Plan countries in total were second in both pig-iron and steel production, while Russia was third in both materials. United States steel production was 40 percent of world production, compared with 45 percent in 1951 and 46 percent in 1950.

Metals Progress, vol. 61, No. 2, February 1952, p. 162.
 Industrial Heating, vol. 19, December 1952, pp. 2270-2280.

TABLE 21.—World production of pig iron (including ferroalloys), by countries, 1948-52, in thousands of metric tons 2

[Compiled by Lee S. Petersen]

Country 1	1948	1949	1950	1951	1952
North America:					
Canada	2, 140	2, 138	2, 253	2, 557	2, 644
Mexico 3	270	356	249	211	216
United States	56, 214	49, 775	60, 210	65, 745	57, 507
South America:					
Argentina	(4)	(4)	20	28	27
Brazil	552	512	729	776	816
_ Chile	14	19	109	240	270
Europe:			202		
Austria	613	838	886	1,051	1, 175
Belgium	3, 929	3, 749	3, 695	4, 847	4, 774
Czechoslovakia 5	1, 660 31	1, 875 39	2, 052 51	2, 200 33	3, 000 36
Denmark Finland.	90	101	63	102	108
France	6, 630	8, 412	7, 838	8, 839	9, 881
Germany:	0,000	0, 412	1,000	0,000	9,001
East Germany	182	293	335	340	(4)
West Germany	4.662	7, 140	9, 473	10, 697	12, 877
Hungary	403	428	5 500	5 410	(4)
Italy	526	445	573	1,049	1, 206
Luxembourg	2, 626	2, 372	2, 499	3, 157	3, 076
Netherlands	442	434	454	525	539
Norway	215	234	227	245	265
Poland	1, 208	1, 365	1, 488	5 1, 479	⁵ 1, 500
Rumania 4	191	275	335	350	430
Saar	1, 134	1, 582	1,684	2, 364	2, 544
Spain	537	634	680	679	787
Sweden	804	860	837	838	1,040
Switzerland	§ 30	8 32	34 65	40 40	(4) 87
. Trieste	14, 100	61	19, 500	22, 500	25, 000
United Kingdom	9, 425	16, 700 9, 653	9, 818	9, 859	10, 900
Yugoslavia	9, 425	202	226	262	288
Asia:	104	202	220	202	200
China 5	147	317	1,022	1,300	1,800
India	1, 494	1, 637	1, 706	1,853	1,843
Japan	836	1, 602	2, 299	3, 228	3, 585
Korea, North 5	30	50	23	(4)	(4)
Taiwan (Formosa)	9	2	6	` 6	7
Thailand			8	9	5 2
Turkey	102	116	116	166	196
U. S. S. R.	(6)	(6)	(6)	(6)	(6)
Africa:					
Southern Rhodesia	17	28	34	32	(4)
Union of South Africa	651	708	733	805	1, 129
Australia	1, 158	1,046	1, 336	1, 357	1, 560
(Total (agtimata)	112 000	116,000	134,000	150,000	152,000
Total (estimate)	113, 000	110,000	194,000	100,000	102,000

¹ Pig iron is also produced in Belgian Congo and Indonesia, but the quantity produced is believed insufficient to affect estimate of world total

insufficient to affect estimate of world total.

This table incorporates a number of revisions of data published in previous pig-iron chapters.

Excluding ferroalloy production, for which data are not yet available, but estimate has been included in total.

Australia.—Australia planned to increase pig-iron and steel capacity from 1.6 and 2 million tons, respectively, to 1.9 and 2.4 million tons. Part of this increase was accomplished in 1952 in Port Kembla, New South Wales, works of the Australian Iron & Steel Co. when a new third blast furnace was blown in on August 27, 1952. A new openhearth was to be producing early in 1953, with another open-hearth scheduled. When this construction is completed, steel production at this plant will be increased from 800,000 to 1,350,000 tons per year. Plans also call for a 66-inch continuous strip mill to be in operation in 1954. At New Castle, New South Wales, works, the fourth blast

⁴ Data not available; estimate by author of chapter included in total.

⁵ Estimate

⁶ U. S. S. R. in Asia included with U. S. S. R. in Europe.

TABLE 22.—World production of steel ingots and castings, by countries, 1948-52, in thousands of metric tons 1

[Compiled by Lee S. Petersen]

Country	1948	1949	1950	1951	1952
North America:					
Canada	2, 903	2, 894	3,070	3, 237	3, 376
Mexico	264	332	333	453	2 548
United States 3	80, 413	70, 740	87. 848	95, 435	84, 520
South America:	00, 110	.0, .10	01,010	00, 100	01, 020
Argentina 2	170	180	200	250	300
Brazil	483	615	789	843	894
Chile	30	32	56	190	245
Colombia 2	10	10	ĭŏ	10	10
Peru ²	10	10	10	10	10
Europe:					
Austria.	648	835	947	1,028	1,058
Belgium	3, 920	3, 849	3, 777	5,069	5, 051
Czechoslovakia 2	2,650	2,762	3, 011	3, 312	4, 200
Denmark	72	76	123	164	176
Finland	109	114	102	133	151
France	7, 266	9, 152	8, 652	9, 835	10, 868
Germany:	•		. 1		,
East Germany	332	603	995	1, 552	2 1, 800
West Germany	5, 561	9, 156	12, 121	13, 506	15, 806
Greece 2	17	23	26	30	45
Hungary	762	849	1,022	2 1, 234	² 1, 425
Ireland 2	16	16	16	16	16
Italy	2, 101	2,026	2, 323	3, 007	3, 474
Luxembourg	2, 453	2, 272	2, 451	3, 077	3,002
Netherlands	334	428	490	554	685
Norway	71	74	81	88	98
Poland	1, 955	2, 305	2, 515	2, 792	3, 180
Rumania 2	340	459	558	646	700
Saar	1, 228	1, 757	1,898	2, 603	2, 820
Spain	673	684	807	831	1,008
Sweden	1, 257	1,370	1, 437	1, 503	1, 666
Switzerland	120	124 29	130	144	² 150
Trieste U. S. S. R. ²	24		39	56	61
U. D. D. R."	18, 300	23,000	27,000	31, 500	35, 000
United KingdomYugoslavia	15, 115 367	15, 803 401	16, 554 428	15, 889	16, 418
Asia:	907	401	428	434	442
China 2	30	100	550	800	1,000
India	1, 276	1,374	1, 461	1, 524	1,608
Japan	1,714	3, 111	4, 838	6, 502	6, 984
Korea:	1, /14	0, 111	4,000	0, 002	0, 904
Korea, Republic of	8	8	4	1	1
North Korea 2	32	32	(4)	(4)	(4)
Pakistan	2	5	3	3	7
Thailand	(4)	(4)	5	6	2 4
Turkey	102	103	90	135	162
U. S. Š. R.	(5)	(5)	(5)	(5)	(5)
Africa:	` '	` '	` '	`'	``
Egypt 2	10	10	10	10	10
Southern Rhodesia	8	18	22	28	30
Union of South Africa	597	632	755	948	1, 203
Australia	1, 176	1, 149	1, 448	1, 457	1, 548
Total (estimate)	155, 000	160,000	189, 000	211,000	212,000
i orai (commare)	199,000	100,000	199,000	211,000	212,000

¹ This table incorporates a number of revisions of data published in previous steel chapters.

furnace of 300 tons capacity will be completed by 1955, and a new rolling mill is also planned.11

Brazil.—Brazil is the largest steel producer in South America— 894,000 metric tons in 1952. Definite plans are in existence or under discussion for production levels of 1.5 to 2.5 million tons. Of the

² Estimate. Data from American Iron and Steel Institute. Excludes production of castings by companies that do

^{*} Data not available; estimate in total.

* U. S. S. R. in Asia included with U. S. S. R. in Europe.

¹¹ United Nations, European Steel Exports and Demands in Non-European Countries: Geneva. 1953. p. 170. Metal Bulletin (London), No. 3720, Sept. 16, 1952, p. 21. American Metal Market, vol. 59, No. 238, Dec. 12, 1952, pp. 1, 3.

total output for 1952, National Steel Co. (Volta Redonda) produced 40 percent of the pig iron, about 48 percent of the steel ingots, and 45 percent of the finished steel. Volta Redonda plans to install a new blast furnace in 1953 with a daily capacity of 1,100 metric tons of pig iron. The company anticipates an 8.5-percent increase in steel capacity to 467,000 metric tons for 1953. Cia. Siderurgica Belgo Mineira is planning to install two new blast furnaces and to increase steel production from 104,000 metric tons to 127,000. Mineracão Geral do Brasil has a third blast furnace now under construction. Two Siemens-Martin (basic open-hearth) furnaces are planned, and a blooming mill and equipment for seamless steel tubing have been ordered. Metalurgica São Francisco has a 900-ton monthly electric furnace under construction. Usina de Honorio Gurgel is installing an additional electric reduction furnace.

Construction of the new Mannesman plant at Belo Horizonte was begun in 1952, and the plant is scheduled to begin production toward the end of 1954. The plant will use the direct-reduction process, and its principal product will be seamless steel tubing at the initial rate

of 40,000 tons annually.

The Governor of the State of Espirito Santo announced that construction of a new steel mill, Cia. Ferro e Aco de Vitoria, will begin soon at Vitoria. The company is financed jointly by Brazilian and German capital. Output of finished steel products is estimated at 50,000 tons in the first year. Iron ore from Italia and electric power

from the Rio Bonito power station will be used. 12

Cia. Acos Especiais Itabira (Acesita) started production in June 1952. This company operates a charcoal blast furnace with a capacity of 75,000 tons a year, together with a Bessemer converter and electric furnaces for the production of alloy steels. The company owns a hydro-electric plant and is considering installation of an electric reducing furnace. This would increase pig-iron production to about

125,000 tons a year. 13

Canada.—Pig-iron and steel production increased in Canada because of new furnaces. The Steel Co. of Canada in Hamilton, Ontario, added a new blast furnace with a daily capacity of 1,400 tons and four 275-ton open-hearth furnaces the last of the year. This will increase pig-iron output to 1.04 million tons and steel production to 1.7 million tons per year. Another blast furnace was also added by Dominion Foundries & Steel at Hamilton, with a daily capacity of some 800 tons.

The Algoma Steel Corp. at Sault Ste. Marie, with a million tons per year output of both pig iron and steel, is in the midst of an expansion program costing 50 million dollars which calls for new blast furnaces and increasing open-hearth capacity to 1.34 million tons per year. The expansion also includes an increase in blooming-mill capacity to 1.2 million tons and doubling of the rail and structural steel mill output.

The Dominion Steel Corp.'s main plant in Sydney, Nova Scotia, has new open-hearth furnaces under construction which will increase

present capacity by 200,000 tons.

¹² Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 6, June 1953, pp. 14-16.
¹² United Nations, European Steel Exports and Steel Demands in Non-European Countries: Geneva, 1953, p. 185.

³⁴²⁰⁷⁰⁻⁻⁵⁵⁻⁻⁻⁻³⁶

Steel production in Canada is expanding steadily, and when present plans are carried out steel production should reach 4.5 million tons

a year in 1954.14

India.—India produces about a million tons of finished steel annually, against a current demand of 2½ million tons. An expansion program was under consideration in 1945 by the Indian Government and the private steel companies; however, because of financial limitations and the difficulties of obtaining capital, equipment, and technical personnel, this program had to be modified. The Indian Planning Commission has fixed a target of 2.15 million tons of pig iron and 1.5 million tons of steel a year by 1955-56. A World Bank (International Bank for Reconstruction and Development) mission visited India in June 1952 to discuss with the Indian Government a proposal for a loan to increase production of iron and steel. The mission recommended that the two largest steel companies in India—the Indian Iron & Steel Co. and Steel Corp. of Bengal-be merged to aid in the expansion of iron and steel capacity. This was done late in 1952, and a loan of some 30 million dollars was announced to the above integrated company by the World Bank. The following new facilities will be added: Blast-furnace capacity will be increased to 1.4 million tons by the installation of two new blast furnaces with a daily capacity of 1,200 tons, 2 new batteries of coke ovens will be added, and a third 25-ton Bessemer converter will be installed. The iron mines at Gua will be mechanized, and the rolling mills will be expanded and foundry equipment modernized. This expansion will double the quantity of foundry iron and increase finished-steel output by onethird.15

Japan.—During 1952 Japanese pig-iron production increased 11 percent and crude-steel production 7.4 percent compared with 1951. The high rate of iron and steel production was maintained despite difficulties on the world export markets and the high cost of imported The price of rounds fell from \$135 a metric ton raw materials. at the beginning of the year to below \$100 at the end (this compares with a Belgian price change from \$140 to \$85-\$90). normal source of supply for coal and iron ore was China and Manchuria, but this source has been cut off because of the Korean War and the ban on trade with Communist countries. This caused Japan to obtain these materials at higher cost from the United States and During the year coking coal sold for \$20 per ton, and the home scrap price was \$55 to \$60 a ton, which was much higher than in the United States. In 1951 Japan started a Three-Year Rationalization Plan, with an estimated cost of 250 million dollars. To date 83.5 million dollars has been spent to modernize the Japanese steel industry. The anticipated capacity at the end of the plan is as follows, in thousands of metric tons: Blast furnace, 4,550; open-hearth, 6,845; and hot-finished steel, 11,957.16

¹⁴ United Nations, European Steel Exports and Steel Demand in Non-European Countries: Geneva, 1953, pp. 223-224.

Canadian Mining Journal Annual Review of Canada's Mineral Industries, 1952: Vol. 74, No. 2, February

Canadian Mining Journal Annual Review of Canada, 1953, p. 98.

Financial Post, Toronto, Canada, Feb. 21, 1953.

Journal of Metals, March 1952, vol. 4, No. 3, p. 252. Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 6, December 1952, p. 9.

United Nations, European Steel Exports and Steel Demand in Non-European Countries: 1953, p. 139.

Metal Bulletin No. 3764 (London), Jan. 30, 1953, p. 14.

Metal Progress, vol. 63, No. 1, January 1953, p. 113.

FUROPEAN COAL AND STEEL COMMUNITY

To obviate old differences among the countries of western Europe, representatives of France, West Germany, Belgium, Italy, Luxembourg, and the Netherlands signed a treaty on April 18, 1951, to put into effect the so-called Schuman Plan or the European Coal and Steel Community. The treaty became effective on July 23, 1952, after it had been ratified by the legislative bodies of the participating The treaty provided for elimination of all tariffs, differences in transportation rates, and subsidies that have hampered the production and distribution of coal and steel in Western Europe or which discriminated against producers in one country by assisting its competitors in another. The treaty also prohibits price-fixing and other cartel arrangements among coal and steel companies. This is intended to force the mines and mills to pass along to their customers the savings made possible by eliminating tariffs and other artificial trade barriers. The treaty calls for a governing body to insure equal treatment for producers, regardless of country. This body is composed of the High Authority, the Consultative Committee, the Committee of Ministers, the Common Assembly, and the Court. The functions and composition of the component parts of this body are as follows:

The chief powers of the High Authority are to insure maintenance of free competition by prohibiting companies from engaging in restrictive practices that fix prices, control production, or allocate markets; oversee investments and make and guarantee loans for investments; obtain funds by levies on production, by borrowing, and through grants; enforce its decisions through the assessment and collection of fines and penalty payments; regulate production and distribution and fix prices and wages in certain prescribed instances where a serious imbalance between supply and demand exists; and conduct technical research, promote workers' safety, and exchange patents among the various countries. Where technological advances or the closing of uneconomic enterprises creates unemployment, the High Authority can assist in reeducating the employees to other work and in moving them to areas where labor is needed. In this connection, the participating nations agreed to ease passport restrictions to facilitate the free movement of workers in these industries from one

country to another.

The Consultative Committee consists of not fewer than 30 and not more than 51 members and includes producers, workers, and consumers in equal numbers. Its functions are to assist the High Authority when deemed necessary by the High Authority and as prescribed by

the treaty.

The Common Assembly is composed of 78 representatives selected from the parliaments of each country (18 each from Germany, France, and Italy; 10 each from Belgium and the Netherlands; and 4 from Luxembourg). Its chief functions are to conduct an annual review of the High Authority's work; approve the proposed budget of the Authority; and, on a motion of censure by a two-thirds vote, compel members of the Authority to resign as a body.

TABLE 23.—European	production	of	pig iron	and	ferroalloys.	1946-52,	in	thousands of metric tons
--------------------	------------	----	----------	-----	--------------	----------	----	--------------------------

	1946	Percent of total	1947	Percent of total	1948	Percent of total	1949	Percent of total	1950	Percent of total	1951	Percent of total	1952	Percent of total
Schuman Plan countries ¹ England. Russia. All other countries	9, 988 7, 886 10, 000 3, 639	31. 7 25. 0 31. 7 11. 6	13, 365 7, 910 11, 200 4, 780	35. 9 21. 2 30. 1 12. 8	19, 949 9, 425 14, 100 6, 148	40. 2 19. 0 28. 4 12. 4	24, 134 9, 653 16, 700 7, 237	41. 8 16. 7 28. 9 12. 6	26, 216 9, 818 19, 500 7, 779	41. 4 15. 5 30. 8 12. 3	31, 478 9, 859 22, 500 8, 069	43.8 13.7 31.3 11.2	34, 897 10, 900 25, 000 9, 596	43. 4 13. 6 31. 1 11. 9
Total	31, 513	100. 0	37, 255	100.0	49, 622	100. 0	57, 724	100. 0	63, 313	100. 0	71, 906	100.0	80, 393	100.0

¹ Schuman Plan countries—Belgium, France, West Germany, Italy, Luxembourg, Netherlands, Saar.

TABLE 24.—European production of steel ingots and castings, 1946-52, in thousands of metric tons

	1946	Percent of total	1947	Percent of total	1948	Percent of total	1949	Percent of total	1950	Percent of total	1951	Percent of total	1952	Percent of total
Schuman Plan countries ¹ England Russia	12, 427 12, 899 13, 000 5, 984	28. 1 29. 1 29. 3 13. 5	16, 691 12, 929 14, 000 7, 668	32. 5 25. 2 27. 3 15. 0	22, 863 15, 115 18, 300 9, 413	34. 8 23. 0 27. 9 14. 3	28, 640 15, 803 23, 000 10, 724	36. 7 20. 2 29. 4 13. 7	31, 712 16, 554 27, 000 12, 237	36. 2 18. 9 30. 9 14. 0	37, 651 15, 889 31, 500 13, 963	38. 0 16. 1 31. 8 14. 1	41, 706 16, 418 35, 000 16, 176	38. 2 15. 0 32. 0 14. 8
Total	44, 310	100.0	51, 288	100.0	65, 691	100. 0	78, 167	100.0	87, 503	100.0	99, 003	100.0	109, 300	100. 0

¹ Schuman Plan countries—Belgium, France, West Germany, Italy, Luxembourg, Netherlands ,Saar.

The Council of Ministers consists of a member from each of the signatory countries. Its chief functions are to insure coordination between actions of the High Authority and policies of the member governments; have a voice in the decisions of the High Authority whenever a question of market control is involved; request the High Authority to examine all proposals on measures that the council considers necessary; and concur in fixing levies exceeding 1 percent of

the output.

The Community provides for its own Court of Justice to handle problems arising out of the relations among the Community institutions and complaints of governments, companies, or individuals. The court is composed of seven judges, appointed by the member countries. The court will render judgment in cases in which the Authority is alleged to have exceeded its powers by procedual violations or violations of the treaty, and nullify acts of the Council of Ministers or the Common Assembly when they exceed their powers. The court was installed on December 12, 1952, at a formal ceremony in Luxembourg.¹⁷

¹⁷ Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 1, January 1953, pp. 14-15.

Iron and Steel Scrap

By James E. Larkin 1

CRAP and pig iron consumed during 1952 decreased from the record year 1951, owing in part to the major steel strike of 54 days during June and July, preceded by work stoppages earlier in the year. Despite the adverse conditions during 1952, several records were established in the use of ferrous materials. Home-scrap use set a new record month in October (3,572,789 short tons), followed by December (3,490,020 tons), which also exceeded the previous record month (March 1951). The use of pig iron in each of these 2 months of 1952 was also larger than in the earlier record month (October 1951). The 6,509,866 short tons used in October 1952 established a new record. Purchased-scrap stocks held by consumers accumulated during the strike months to 5,291,340 short tons at the end of July and continued to increase to a high for the year of 5,657,615 tons on September 30. after which they began to decline and reached 5,580,424 tons December Despite the tendency of these stocks to drop during the last 3 months of the year, they were 76 percent greater on December 31 than at the beginning of the year—equivalent to a 60-day supply at the 1952 average daily consumption rate of 93,405 short tons.

CONSUMPTION

Of the 1952 consumption of ferrous scrap and pig iron, 69,023,000 short tons was scrap (home and purchase), which represented 53 percent of the total charge. The home scrap was consumed in 1952 at an average monthly rate of 2,903,000 short tons, 10 percent less than the average monthly rate for 1951. Purchased scrap was consumed at a monthly average rate of 2,849,000 short tons, which was also 10 percent less than the average monthly rate for 1951. The drop in the use of ferrous scrap was accompanied by a lesser demand for pig iron during 1952, the total for the year being 12 percent below

the total used during the previous year.

The 11-percent drop in the output of steel ingots and castings during 1952 was accompanied by an 11-percent decrease from 1951 in the use of ferrous scrap and pig iron charged to steelmaking furnaces. This drop in steel output resulted, in part, from a shortage of scrap during the early months of the year, which caused the closing of some open-hearth furnaces; however, a general shutdown of the steel mills was averted through the allocation program of the National Production Authority and the scrap industry's ability to prepare and deliver scrap to the mills. The shortage of scrap in the earlier months of the year did not have as devastating an effect upon the production of steel as did the strikes in the steel industry. Steel operations were reduced to 18.4 percent of capacity in June and to 17.7 percent in Consequently, the total charge of ferrous scrap and pig iron in steelmaking furnaces was at a greatly reduced rate during these 2 months, totaling 6,551,913 short tons, compared with other strike months of January and February 1946 (8,202,000 short tons) and October 1949 (2,417,000 short tons).

¹ Commodity-industry analyst.

TABLE 1.—Salient statistics of ferrous scrap and pig iron in the United States 1951-52

	1951 (short tons)	1952 (short tons)	Change from 1951 (percent)
Stocks, December 31:			
Ferrous scrap and pig iron at consumers' plants:			
Home scrap	1, 198, 556	1, 321, 890	+10
Purchased scrap	3, 167, 501	5, 580, 424	+76
Pig iron	1, 750, 986	1, 964, 087	+12
Total	6, 117, 043	8, 866, 401	+45
Consumption: Ferrous scrap and pig iron charged to— Steel furnaces: 1	i i		
Home scrap	30, 100, 917	27, 389, 744	-9
Purchased scrap	26, 986, 412	24, 827, 316	-8
Purchased scrapPig iron	61, 750, 383	53, 491, 734	-13
Total	118, 837, 712	105, 708, 794	-11
Iron furnaces: 2	8, 707, 235	7, 403, 025	-15
Home scrap	9, 521, 028	8, 239, 006	-13 -13
Purchased scrapPig iron	9, 663, 934	8, 059, 227	-17
		0,000,221	
Total	27, 892, 197	23, 701, 258	-15
Miscellaneous uses 3 and ferroalloy production:			
Home scrap	48, 592	44,025	-9
Purchased scrap	1, 363, 915	1, 120, 008	-18
		1 101 000	
Total	1, 412, 507	1, 164, 033	-18
4.71			
All uses: Home scrap	38, 856, 744	34, 836, 794	-10
Purchased scrap	37, 871, 355	34, 186, 330	-10
Total ferrous scrap	76, 728, 099	69, 023, 124	-10
Pig iron	71, 414, 317	61, 550, 961	-14
Grand total		130, 574, 085	-12
Imports of scrap (including tin plate scrap)		153, 674	-63
Exports of scrap:	· ·	,	1
[ron and steel	229, 718	336, 593	+47
Tin plate, circles, strips, cobbles, etc	15, 622	15, 137	-3
Average prices per gross ton:			
Caron:	\$44, 21	\$42.78	3
No. 1 Heavy-Melting, Pittsburgh	4 \$52.92	\$42.78 \$45.18	-15
No. 1 Cast Cupola, Chicago	402.82	\$39.64	-10
For export	φ11.02	φυυ. 01	
Pig iron, f. o. b. Valley furnaces: ⁵ Basic	\$52,00	\$53.08	+2
Basic No. 2 Foundry	\$52, 50	\$53.75	+2 +2
110. 4 Pullul y	1 7-24-00	1	1

Revised figure.

The proportions of scrap and pig iron used in steel furnaces in 1952 were 49 percent scrap and 51 percent pig iron, compared with 48 and 52 percent, respectively, in 1951. The charge of scrap and pig iron used in iron foundries, mainly cupola furnaces, comprised 65 percent scrap and 35 percent pig iron, the same as 1949-51.

The use of scrap and pig iron decreased 10 and 14 percent, respectively, in 1952, compared to 1951, with decreases in all but 2 districts. Consumption of scrap increased slightly in the South Atlantic district and pig iron in the Pacific Coast district. There was a noticeably greater quantity of scrap than pig iron used in the New England, West North Central, West South Central, and Pacific Coast districts. These districts together used 11 percent of the total scrap and 4 per-

Includes open-hearth, Bessemer and electric furnaces.
 Includes cupola, air, Brackelsberg, crucible, and blast furnaces; also direct castings.
 Includes recoiling, reforging, copper precipitation, nonferrous, and chemical uses.

Iron Age.

cent of the pig iron consumed in 1952, the same percentages as in 1951. The United States as a whole used 12 percent more scrap than pig iron in 1952, compared with 7 percent in 1951. The average ratio of scrap to pig iron in these 4 districts was 2.8:1, whereas the United States average was 1.12:1.

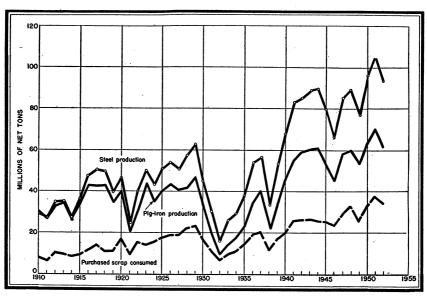


FIGURE 1.—Consumption of purchased scrap and output of pig iron and steel in the United States 1910–52. Figures on consumption of purchased scrap for 1910–32 are from State of Minnesota vs. Oliver Iron Mining Co., et al., Exhibits, vol. 5, 1935, p. 328; those for 1933–34 are estimated by authors; and those for 1935–52 are based on Bureau of Mines records. Data on steel output from the American Iron and Steel Institute.

Open-hearth furnaces continued to be the largest consumers of ferrous scrap and pig iron; however, their consumption decreased from that of 1951 by 4,418,319 tons of scrap and 6,680,788 tons of pig iron. Open-hearth consumption accounted for 62 percent of the total scrap in 1952 and 1951, 69 percent of the home scrap in 1952 compared with 68 percent in 1951, and 56 percent of the purchased scrap in 1952 and 55 percent in 1951. Pig-iron consumption in open hearths accounted for 80 percent of the total pig iron consumed, compared with 78 percent in 1951.

Cupola-furnace consumption in 1952 was as follows: Home scrap 14 percent of the total, compared with 15 percent in 1951; purchased scrap 16 percent, compared with 17 percent in 1951; pig iron 9 per-

cent, the same as for the 5 previous years.

Bessemer converters consumed 6 percent of the pig iron during 1952, compared with 8 percent during 1951 and 1950, and 0.4 percent of the germs the same as for 1951 and 1950, and 1950, and 0.4 percent

of the scrap, the same as for 1951 and 1950.

Electric furnaces consumed 13 percent of the total scrap, or 1 percent more than in 1951 and 1950, and 0.2 percent of the pig iron, unchanged from 1950-51.

TABLE 2.—Ferrous scrap and pig iron consumed in the United States and percent of total derived from home scrap, purchased scrap, and pig iron, 1951-52, by districts

		1	951				1	952		
		Percer	ercent of total consumed Percent of total				al consumed			
District Total sum (sho		Scrap			- Di	Total con- sumed (short	Scrap			Dia
tons)		Home	Pur- chased	Total	Pig iron	tons)	Home	Pur- chased	Total	Pig iron
New England Middle Atlantic 1 East North Central 1 South Atlantic 1 East South Central 2 South Atlantic 1 East South Central 3 Rocky Mountain Pacific Coast 1 Undistributed 1	1, 584, 510 47, 075, 594 66, 266, 770 3, 531, 848 10, 520, 272 9, 042, 798 1, 894, 015 3, 556, 812 4, 588, 400 81, 397	31. 8 25. 9 26. 7 25. 7 24. 4 26. 5 24. 6 26. 6 25. 3 (2)	42. 7 23. 0 25. 8 49. 2 19. 2 18. 8 44. 1 20. 9 46. 4 100. 0	74. 5 48. 9 52. 5 74. 9 43. 6 45. 3 68. 7 47. 5 71. 7 100. 0	25. 5 51. 1 47. 5 25. 1 56. 4 54. 7 31. 3 52. 5 28. 3	1, 236, 665 41, 041, 327 58, 421, 271 3, 015, 357 9, 697, 148 7, 862, 325 1, 624, 508 3, 230, 628 4, 369, 445 75, 411	31. 4 26. 4 27. 2 26. 6 24. 4 27. 4 25. 3 26. 7 25. 2	44. 7 23. 9 26. 3 50. 3 22. 9 17. 0 48. 2 18. 3 44. 9 100. 0	76. 1 50. 3 53. 5 76. 9 47. 3 44. 4 73. 5 45. 0 70. 1 100. 0	23. 9 49. 7 46. 5 23. 1 52. 7 55. 6 26. 5 55. 0 29. 9
Total	148, 142, 416	26. 2	25. 6	51.8	48. 2	130, 574, 085	26.7	26. 2	52. 9	47. 1

¹ Some scrap consumed in the Middle Atlantic, East North Central, South Atlantic, East South Central, and Pacific Coast districts (not separable) is included with "Undistributed."

² Less than 0.05 percent.

TABLE 3.—Consumption of ferrous scrap and pig iron in the United States, 1951-52, by type of furnace, in short tons

m 44		Scrap		Dia inan	Total scrap
Type of furnace or equipment	Home	Purchased	Total	Pig iron	and pig iron
1951 Open-hearth	5, 794, 969 906, 437 94 2, 005, 735	20, 805, 677 45, 973 6, 134, 762 6, 523, 688 525, 128 78 2, 472, 134		56, 055, 103 5, 551, 149 144, 131 6, 559, 800 400, 267 243 2, 703, 624	103, 470, 889 5, 850, 904 9, 515, 919 18, 878, 457 1, 831, 832 41, 477, 869 2, 703, 624 414, 949
Ferroalloy Miscellaneous Total	35, 045	962, 513 37, 871, 355		71, 414, 317	997, 558
Open-hearth Bessemer Electric Cupola Air Crucible Blast Direct castings Ferroalloy Miscellaneous Total	24, 023, 910 203, 865 3, 161, 969 4, 847, 993 749, 373 72 1, 805, 587 12, 149 31, 876	18, 973, 557 42, 905 5, 810, 854 5, 320, 742 449, 646 54 2, 468, 564	42, 997, 467 246, 770 8, 972, 823 10, 168, 735 1, 199, 019 126 4, 274, 151	49, 374, 315 3, 998, 751 118, 668 5, 438, 294 317, 500 152	92, 371, 782 4, 245, 521 9, 091, 491 15, 607, 029 1, 516, 519 2, 303, 281 2, 303, 281 339, 759 824, 274

¹ Includes data for 2 Brackelsberg furnaces.

TABLE 4.—Proportion of home and purchased scrap and pig iron used in furnace charges in the United States, 1951-52, in percent

		198	51		1952			
Type of furnace	ype of furnace Scrap					Dia inan		
	Home	Purchased	Total	Pig iron	Home	Purchased	Total	Pig iron
Open-hearth Bessemer Electric Cupola Air 1 Crucible Blast	25. 7 4. 3 34. 0 30. 7 49. 5 22. 6 44. 8	20. 1 . 8 64. 5 34. 6 28. 6 18. 8 55. 2	45. 8 5. 1 98. 5 65. 3 78. 1 41. 4 100. 0	54. 2 94. 9 1. 5 34. 7 21. 9 58. 6	26. 0 4. 8 34. 8 31. 1 49. 4 25. 9 42. 2	20. 5 1. 0 63. 9 34. 1 29. 6 19. 4 57. 8	46. 5 5. 8 98. 7 65. 2 79. 0 45. 3 100. 0	53. 5 94. 2 1. 3 34. 8 21. 0 54. 7

¹ Includes data for 2 Brackelsberg furnaces during 1951.

TABLE 5.—Consumption of ferrous scrap and pig iron in the United States in 1952, by type of consumer and type of furnace, in short tons

Type of consumer and type of furnace or		Scrap		Pig iron	Total scrap
equipment	Home	Purchased	Total	I ig iion	iron
Manufacturers of steel ingots and castings: Open-hearth Bessemer Electric Cupola Air Crucible Blast 2 Direct castings Miscellaneous	19, 971 22	18, 155, 777 15, 124 4, 751, 059 133, 776 16, 511 2, 468, 564 240, 361	41, 673, 314 204, 589 6, 991, 219 344, 009 36, 482 22 4, 274, 151	49, 142, 925 3, 995, 248 75, 349 488, 757 15, 218 11 1, 422, 078	90, 816, 239 4, 199, 837 7, 066, 568 832, 766 51, 700 33 4, 274, 151 1, 422, 078 265, 548
Total: 1952	28, 008, 162 31, 035, 896	25, 781, 172 27, 778, 878	53, 789, 334 58, 814, 774	55, 139, 586 63, 845, 469	108, 928, 920 122, 660, 243
Manufacturers of steel castings: 3 Open-hearth. Bessemer. Electric. Cupola. Air.	506, 373 12, 955 762, 825 193, 722 168, 267	817, 780 22, 134 939, 187 487, 542 126, 539	1, 324, 153 35, 089 1, 702, 012 681, 264 294, 806	231, 390 3, 055 26, 301 187, 119 66, 419	1, 555, 543 38, 144 1, 728, 313 868, 383 361, 225
Total: 1952	1, 644, 142 1, 750, 711	2, 393, 182 2, 769, 422	4, 037, 324 4, 520, 133	514, 284 555, 280	4, 551, 608 5, 075, 413
Iron foundries and miscellaneous users: Bessemer. Electric. Cupola. Air. Crucible. Direct castings. Ferroalloy. Miscellaneous. Total: 1952.	561, 135 50 12, 149 6, 689 5, 184, 490	5, 647 120, 608 4, 699, 424 306, 596 54 327, 610 552, 037 6, 011, 976	7, 092 279, 592 9, 143, 462 867, 731 104 339, 759 558, 726 11, 196, 466	448 17, 018 4, 762, 418 235, 863 141 881, 203	7, 540 296, 610 13, 905, 880 1, 103, 594 245 881, 203 339, 759 558, 726
1951		7, 323, 055	13, 393, 192	7, 013, 568	20, 406, 760

CONSUMPTION BY DISTRICTS AND STATES

During 1952 iron and steel scrap consumed showed a decrease in all but the South Atlantic district, where the increase was slight. The use of pig iron in all but the Pacific Coast district was less during 1952 than during 1951. The largest consuming districts were East North Central, Middle Atlantic, and South Atlantic. The States having the

Includes only those castings made by companies producing steel ingots.
 Includes consumption in blast furnaces by both integrated and nonintegrated mills.
 Excludes companies that produce both steel castings and steel ingots.

TABLE 6.—Consumption of ferrous scrap and pig iron in the United States, 1948-52, by districts

			Sera	ap			.	
	Ног	ne	Purch	ased	Tot	al	Pig i	ron
District and year	Short tons	Change from pre- vious year (per- cent)	Short tons	Change from pre- vious year (per- cent)	Short tons	Change from pre- vious year (per- cent)	Short tons	Change from pre- vious year (per- cent)
New England: 1948 1949 1950 1951 1952 Middle Atlantic: 1948 1949 1950 1951 1952 East North Central: 1948	442, 821 345, 288 417, 689 504, 157 387, 751	$\begin{array}{r} -3.7 \\ -22.0 \\ +21.0 \\ +20.7 \\ -23.1 \end{array}$	648, 418 420, 160 551, 282 675, 823 552, 828	+15. 5 -35. 2 +31. 2 +22. 6 -18. 2	1, 091, 239 765, 448 968, 971 1, 179, 980 940, 579	$ \begin{array}{r} +6.8 \\ -29.9 \\ +26.6 \\ +21.8 \\ -20.3 \end{array} $	342, 893 283, 337 358, 652 404, 530 296, 086	-2. 7 -17. 4 +26. 6 +12. 8 -26. 8
1948	10, 416, 428 8, 899, 441 10, 585, 951 12, 210, 369 10, 837, 200	+4.5 -14.6 +19.0 +15.3 -11.2	9, 240, 074 7, 147, 852 9, 771, 756 10, 839, 307 9, 805, 388	+9.4 -22.6 +36.7 +10.9 -9.5	19, 656, 502 16, 047, 293 20, 357, 707 23, 049, 676 20, 642, 588	$ \begin{array}{r} +6.7 \\ -18.4 \\ +26.9 \\ +13.2 \\ -10.4 \end{array} $	20, 895, 487 17, 731, 194 21, 649, 125 24, 025, 918 20, 398, 739	$ \begin{array}{r r} +2.0 \\ -15.1 \\ +22.1 \\ +11.0 \\ -15.1 \end{array} $
1949 1950 1951 1 1952 1	13, 821, 486 16, 921, 000 17, 693, 909 15, 918, 704	+.8 -8.2 +22.4 +4.6 -10.0	14, 486, 835 11, 035, 315 15, 137, 680 17, 107, 798 15, 340, 156	+11.9 -23.8	29, 535, 620 24, 856, 801 32, 058, 680 34, 801, 707 31, 258, 860	$\begin{array}{c c} +5.9 \\ -15.8 \\ +29.0 \\ +8.6 \\ -10.2 \end{array}$	26, 498, 691 23, 869, 383 28, 597, 252 31, 465, 063 27, 162, 411	+1.9 -9.9 +19.8 +10.0 -13.7
1949 1950 1951 1952	576, 147 659, 059 908, 344 803, 932	+6. 2 -12. 7 +14. 4 +37. 8 -11. 5	1, 404, 212 1, 175, 904 1, 452, 653 1, 737, 553 1, 515, 831	+7.3 -16.3 $+23.5$ $+19.6$ -12.8	2, 064, 247 1, 752, 051 2, 111, 712 2, 645, 897 2, 319, 763	+7.0 -15.1 $+20.5$ $+25.3$ -12.3	661, 729 571, 453 747, 629 885, 951 695, 594	+3.6 -13.6 +30.8 +18.5 -21.5
South Atlantic: 1948	9 154 561	+11.5 +1.1 +15.6 +3.2 -8.0	2, 078, 125 1, 704, 767 1, 899, 328 2, 017, 421 2, 224, 227	$\begin{array}{c c} +.1 \\ -18.0 \\ +11.4 \\ +6.2 \\ +9.3 \end{array}$	4, 208, 524 3, 859, 328 4, 390, 510 4, 587, 561 4, 588, 962	+5.6 -8.3 +13.8 +4.5 (2)	4, 733, 573 4, 818, 855 5, 747, 111 5, 932, 711 5, 108, 186	+14.8 +1.8 +19.3 +3.2 -13.9
1948	1, 964, 069 1, 740, 298 2, 221, 577 2, 395, 012 2, 151, 837	+5. 5 -11. 4 +27. 7 +7. 8 -10. 2	1, 542, 245 1, 184, 021 1, 576, 898 1, 703, 677 1, 336, 961	+32.9 -23.2 +33.2 +8.0 -21.5	3, 506, 314 2, 924, 319 3, 798, 475 4, 098, 689 3, 488, 798	$\begin{array}{c} +16.0 \\ -16.6 \\ +29.9 \\ +7.9 \\ -14.9 \end{array}$	4, 424, 654 3, 913, 460 4, 751, 371 4, 944, 109 4, 373, 527	+6. 2 -11. 6 +21. 4 +4. 1 -11. 5
1949 1950 1951 1 1952 1	196, 586 345, 371 465, 411 411, 023	+9.3 -16.0 +75.7 +34.8 -11.7	573, 557 488, 576 658, 095 836, 030 782, 560	$\begin{array}{r} +7.7 \\ -14.8 \\ +34.7 \\ +27.0 \\ -6.4 \end{array}$	807, 461 685, 162 1, 003, 466 1, 301, 441 1, 193, 583	+8.1 -15.1 +46.5 +29.7 -8.3	237, 972 204, 333 364, 004 592, 574 430, 925	+89. 1 -14. 1 +78. 1 +62. 8 -27. 3
Rocky Mountain: 1948. 1949. 1950. 1951. 1952.	753, 167 676, 327 903, 368 946, 741 861, 476	$\begin{array}{c c} -1.5 \\ -10.2 \\ +33.6 \\ +4.8 \\ -9.0 \end{array}$	583, 453 548, 626 637, 410 743, 392 591, 926	$\begin{array}{c} +17.1 \\ -6.0 \\ +16.2 \\ +16.6 \\ -20.4 \end{array}$	1, 336, 620 1, 224, 953 1, 540, 778 1, 690, 133 1, 453, 402	+5.9 -8.4 +25.8 +9.7 -14.0	1, 585, 327 1, 365, 795 1, 768, 772 1, 866, 679 1, 777, 226	+4.6 -13.8 +29.5 +5.5 -4.8
Rocky Mountain: 1948 1949 1950 1951 1952 Pacific Coast: 1948 1949 1950 1951 Undistributed:	770, 035 756, 359 979, 910 1, 162, 622 1, 100, 136	+14.6 -1.8 +29.6 +18.6 -5.4	1, 987, 313 1, 466, 509 1, 691, 066 2, 128, 996 1, 961, 042	+15. 2 -26. 2 +15. 3 +25. 9 -7. 9	2,757,348 2,222,868 2,670,976 3,291,618 3,061,178	$\begin{array}{c} +15.1 \\ -19.4 \\ +20.2 \\ +23.2 \\ -7.0 \end{array}$	646, 078 688, 955 959, 202 1, 296, 782 1, 308, 267	-1. 1 -6. 6 +39. 2 +35. 2 +. 9
Undistributed: 1951 ¹ 1952 ¹	39		81, 358 75, 411		81, 397 75, 411			
United States 1943– 47 (average) 1948 1949 1950 1951 1952 1	31, 827, 449 32, 419, 643 29, 166, 493 35, 525, 107 38, 856, 744 34, 836, 794	+2.7 -10.0 +21.8 +9.4 -10.3	26, 080, 494 32, 544, 232 25, 171, 730 33, 376, 168 37, 871, 355 34, 186, 330	+11. 1 -22. 7 +32. 6 +13. 5 -9. 7	57, 907, 943 64, 963, 875 54, 338, 223 68, 901, 275 76, 728, 099 69, 023, 124	+6.7 -16.4 +26.8 +11.4 -10.0	55, 563, 268 60, 026, 404 53, 446, 765 64, 943, 118 71, 414, 317 61, 550, 961	+3. 0 -11. 0 +21. 5 +10. 0 -13. 8

¹ Some scrap consumed in East North Central, East South Central, Middle Atlantic, Pacific Coast, and South Atlantic districts—not separable— is included with "Undistributed."

² Less than 0.05 percent.

largest consumption of scrap, with the percentages consumed, were: Pennsylvania 24, Ohio 18, Illinois 10, and Indiana 9. These States have consumed the same percentages of scrap for 3 consecutive years.

TABLE 7.—Consumption of ferrous scrap and pig iron in the United States in 1952, by districts and States

		1002,		, 05 and				
			Scr	ър			Pig i	ron
District and State	Ног	ne	Purch	ased	Tot	al	I ig i	
	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total
Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont	118, 383 4, 728 202, 852 8, 493 35, 661 17, 634	0.3 (2) .6 (2) .1	198, 271 6, 256 264, 791 9, 635 53, 979 19, 896	0.6 (2) .8 (2) .1	316, 654 10, 984 467, 643 18, 128 89, 640 37, 530	0. 5 (2) . 7 (2) . 1 . 1	60, 598 4, 072 165, 324 4, 607 46, 842 14, 643	$\begin{array}{c} 0.1 \\ {}^{(2)} \\ {}^{(2)} \\ {}^{(2)} \\ {}^{(2)} \end{array}$
Total New England	387, 751	1.1	552, 828	1. 6	940, 579	1. 4	296, 086	. 5
New York 1 Pennsylvania	220, 612 1, 470, 589 9, 145, 999	. 6 4. 2 26. 3	454, 208 1, 597, 892 7, 753, 288	1.3 4.7 22.7	674, 820 3, 068, 481 16, 899, 287	1.0 4.4 24.5	244, 320 3, 128, 013 17, 026, 406	. 4 5. 1 27. 7
Total Middle Atlantic	10, 837, 200	31.1	9, 805, 388	28.7	20, 642, 588	29. 9	20, 398, 739	- 33. 2
Illinois Indiana Michigan O hio ¹ Wisconsin	3, 012, 234 3, 729, 651 2, 522, 966 6, 139, 541 514, 312	8.7 10.7 7.2 17.6 1.5	3, 661, 443 2, 167, 920 3, 037, 180 6, 029, 379 444, 234	10. 7 6. 4 8. 9 17. 6 1. 3	6, 673, 677 5, 897, 571 5, 560, 146 12, 168, 920 958, 546	9. 7 8. 5 8. 1 17. 6 1. 4	4, 893, 725 7, 044, 738 3, 294, 753 11, 650, 525 278, 670	7. 9 11. 4 5. 4 18. 9
Total East North Cen- tral	15, 918, 704	45. 7	15, 340, 156	44.9	31, 258, 860	45, 3	27, 162, 411	44. 1
Iowa Kansas and Ne-	218, 224	.6	325, 845	.9	544, 069	.8	101, 833	.2
braska Minnesota, North Dakota, and South	30, 094	.1	67, 656	.2	97, 750	.1	6, 682	(2)
Dakota Missouri	357, 567 198, 047	1.0 .6	382, 490 739, 840	1. 1 2. 2	740, 057 937, 887	1.1 1.4	506, 084 80, 995	.8
Total West North Cen- tral	803, 932	2, 3	1, 515, 831	4.4	2, 319, 763	3.4	695, 594	1, 1
Delaware, District of Columbia, and Maryland	1, 498, 137 73, 039 27, 593 13, 253 752, 713	4. 3 . 2 . 1 (2)	942, 056 167, 255 21, 572 9, 133 1, 084, 211	2. 7 .5 .1 (²)	2, 440, 193 240, 294 49, 165 22, 386	3. 5 .3 .1 (2)	3, 144, 907 60, 528 27, 194 12, 911	5. 1 .1 .1 (2)
Total South					1, 836, 924		1, 862, 646	
Atlantic	2, 364, 735 1, 549, 747	6.8 4.5	2, 224, 227 ———————————————————————————————————	2. 2	4, 588, 962 2, 307, 192	3, 4	5, 108, 186 3, 527, 809	8, 3 5, 7
Alabama ¹ Kentucky, Mississippi and Tennessee	602, 090	1.7	579, 516	1.7	1, 181, 606	1.7	845, 718	1.4
Total East South Cen- tral	2, 151, 837	6, 2	1, 336, 961	3.9	3, 488, 798	5. 1	4, 373, 527	7.1

See footnotes at end of table.

TABLE 7.—Consumption of ferrous scrap and pig iron in the United States in 1952, by districts and States-Continued

			Sera	ър			Dia i	
District and State	Hor	ne	Purch	ased	Tot	al	Pig i	ron
	Short tons	Percent of total	Short tons	Percent of total	Short	Percent of total	Short tons	Percent of total
Arkansas, Louisiana, and OklahomaTexas	45, 984 365, 039	0. 1 1. 1	117, 109 665, 451	0.3 2.0	163, 093 1, 030, 490	0. 2 1. 5	11, 961 418, 964	(2) 0.7
Total West South Cen- tral	411, 023	1. 2	782, 560	2.3	1, 193, 583	1.7	430, 925	.7
Arizona, Nevada, and New Mexico. Colorado and Utah. Montana.	19, 699 833, 717 6, 103	2. 4 (2)	57, 032 514, 250 11, 520	1. 5 (2)	76, 731 1, 347, 967 17, 623	.1 2.0 (2)	144 1, 776, 397 181	(²) (²)
Idaho and Wyo- ming	1, 957	(2)	9, 124	(2)	11, 081	(2)	504	(2)
Total Rocky Mountain	861, 476	2. 5	591, 926	-1.7	1, 453, 402	2. 1	1, 777, 226	2. 9
California Oregon ¹ and Wash-	992, 475	2.8	1, 477, 694	4.4	2, 470, 169	3.6	1, 288, 561	2. 1
ington	107, 661	.3	483, 348	1.4	591, 009	.8	19, 706	(2)
Total Pacific Coast	1, 100, 136	3. 1	1, 961, 042	5.8	3, 061, 178	4. 4	1, 308, 267	2, 1
Undistrib- uted 1			75, 411	.2	75, 411	.1		
Total United States: 1952 1951			34, 186, 330 37, 871, 355	100.0	69, 023, 124 76, 728, 099		61, 550, 961 71, 414, 317	100. 0 100. 0

¹ Some scrap consumption in Alabama, New York, Ohio, Oregon, and West Virginia—not separable-is included with "Undistributed."

² Less than 0.05 percent.

CONSUMPTION BY TYPE OF FURNACE

Open-Hearth Furnaces.—Ferrous scrap and pig-iron consumption in open-hearth furnaces in 1952 was the third highest total on record of these materials consumed in this type of furnace, despite the various work stoppages. The consumption of ferrous materials (scrap and pig iron) and the production of ingots and steel for castings in the openhearth furnaces during 1952 decreased 11 percent each from 1951. The use of home scrap decreased 10 percent, purchased scrap 9 percent total scrap 9 percent, and pig iron 12 percent. The open-hearth furnace melt in 1952 consisted of 47 percent scrap and 53 percent pig iron, compared with 46 and 54 percent, respectively, in 1951. Of the total scrap consumed, 44 percent was purchased, the same as in 1951.

Pennsylvania again led in the use of scrap in the open-hearth in 1952, followed, in order, by Ohio, Indiana, and Illinois, maintaining the same order since 1936.

TABLE 8.—Consumption of ferrous scrap and pig iron in open-hearth furnaces in the United States in 1952, by districts and States, in short tons

District and State		Scrap		Dia teras	Total
District and State	Home	Purchased	Total	Pig iron	scrap and pig iron
New England: Connecticut, Massachusetts, and Rhode Island	111, 006	283, 134	394, 140	104, 314	498, 454
Total: 1952	111, 006	283, 134	394, 140	104, 314	498, 454
	142, 327	330, 257	472, 584	132, 368	604, 952
Middle Atlantic: New Jersey and New York Pennsylvania	1, 213, 944	952, 365	2, 166, 309	2, 890, 376	5, 056, 685
	7, 206, 952	5, 481, 996	12, 688, 948	14, 529, 565	27, 218, 518
Total: 1952	8, 420, 896	6, 434, 361	14, 855, 257	17, 419, 941	32, 275, 198
	9, 261, 603	6, 926, 335	16, 187, 938	19, 933, 496	36, 121, 434
East North Central: Illinois. Indiana. Michigan and Wisconsin. Ohio.		1, 860, 184 1, 748, 103 771, 498 3, 490, 742	3, 736, 623 4, 990, 264 1, 779, 741 7, 797, 559	3, 666, 160 6, 620, 983 2, 253, 261 8, 560, 706	7, 402, 783 11, 611, 247 4, 033, 002 16, 358, 265
Total: 1952	10, 433, 660	7, 870, 527	18, 304, 187	21, 101, 110	39, 405, 297
	11, 606, 676	8, 641, 811	20, 248, 487	24, 106, 405	44, 354, 892
West North Central: Minnesota and Missouri	290, 277	670, 465	960, 742	478, 633	1, 439, 375
Total: 1952	290, 277	670, 465	960, 742	478, 633	1, 439, 375
	325, 469	812, 135	1, 137, 604	605, 852	1, 743, 456
South Atlantic: Delaware and MarylandGeorgia and West Virginia	1, 312, 298	646, 110	1, 958, 408	2, 761, 201	4, 719, 609
	632, 017	907, 775	1, 539, 792	1, 474, 983	3, 014, 775
Total: 1952	1, 944, 315	1, 553, 885	3, 498, 200	4, 236, 184	7, 734, 384
	2, 090, 825	1, 436, 476	3, 527, 301	4, 833, 215	8, 360, 516
East South Central: Alabama and Kentucky	1, 217, 000	405, 927	1, 622, 927	3, 051, 990	4, 674, 917
Total: 1952	1, 217, 000	405, 927	1, 622, 927	3, 051, 990	4, 674, 917
	1, 373, 955	529, 640	1, 903, 595	3, 363, 738	5, 267, 333
West South Central: Oklahoma and Texas.	158, 699	403, 009	561, 708	249, 569	811, 277
Total: 1952	158, 699	403, 009	561, 708	249, 569	811, 277
	207, 925	467, 335	675, 260	311, 769	987, 029
Rocky Mountain: Colorado and Utah	751, 637	394, 536	1, 146, 173	1, 619, 938	2, 766, 111
Total: 1952	751, 637	394, 536	1, 146, 173	1, 619, 938	2, 766, 111
	849, 248	513, 306	1, 362, 554	1, 660, 574	3, 023, 128
Pacific Coast: California and Washington	696, 420	957, 713	1, 654, 133	1, 112, 636	2, 766, 769
Total: 1952	696, 420	957, 713	1, 654, 133	1, 112, 636	2, 766, 769
1951	752, 081	1, 148, 382	1, 900, 463	1, 107, 686	3, 008, 149
Total United States: 1952	24, 023, 910	18, 973, 557	42, 997, 467	49, 374, 315	92, 371, 782
	26, 610, 109	20, 805, 677	47, 415, 786	56, 055, 103	103, 470, 889

Bessemer Converters.—The ferrous raw materials used in Bessemer Converters in 1952 represented a decrease of 27 percent from the 1951 use of these materials, with the production of ingots in these furnaces showing a 28-percent decrease from the previous year. The greatest decrease in the metallic charge in the Bessemer furnaces occurred in pig iron, which decreased 28 percent from 1951. The ratio of scrap to total metal charge was 1:17, compared with 1:20 during 1951. Of the scrap used, 83 percent was home scrap.

For the first time since 1940, Ohio was the principal consumer of converter scrap, and following the usual pattern, was the largest consumer of pig iron in this type of furnace, using 53 percent of the total.

TABLE 9.—Consumption of ferrous scrap and pig iron in Bessemer converters in the United States in 1952, by districts and States, in short tons

District and State	Scrap				Total
	Home	Pur- chased	Total	Pig iron	scrap and pig iron
New England and Middle Atlantic: Connecticut and New Jersey Pennsylvania	2, 736 65, 935	3, 241 19, 523	5, 977 85, 458	928 932, 761	6, 905 1, 018, 219
Total: 1952	68, 671	22, 764	91, 435	933, 689	1, 025, 124
	99, 772	22, 231	122, 003	1, 614, 977	1, 736, 980
East North Central and West North Central: Illinois. Indiana and Minnesota. Ohio.	2, 718	4, 882	7, 600	204, 933	212, 533
	4, 510	4, 635	9, 145	108, 768	117, 913
	98, 013	317	98, 330	2, 114, 522	2, 212, 852
Total: 1952	105, 241	9, 834	115, 075	2, 428, 223	2, 543, 298
	111, 225	11, 422	122, 647	3, 123, 433	3, 246, 080
South Atlantic: Delaware, Maryland, and West Virginia.	29, 340	5, 358	34, 698	636, 630	671, 328
Total: 1952	29, 340	5, 358	34, 698	636, 630	671, 328
	41, 888	8, 441	50, 329	811, 697	862, 026
East South Central and West South Central: Alabama, Louisiana, and Texas	541	4, 538	5, 079	190	5, 269
Total: 1952	541	4, 538	5, 079	190	5, 269
	878	3, 758	4, 636	1, 036	5, 672
Rocky Mountain and Pacific Coast: Colorado and Washington	72	411	483	19	502
Total: 1952	72	411	483	19	502
	19	121	140	6	146
Total United States: 1952	203, 865	42, 905	246, 770	3, 998, 751	4, 245, 521
	253, 782	45, 973	299, 755	5, 551, 149	5, 850, 904

Electric Steel Furnaces.—The metallic charge of ferrous scrap and pig iron consumed in the electric furnace in 1952 totaled 9,091,491 short tons, a 4-percent decrease from the alltime record year 1951. The ratio of scrap to pig iron used in the electric furnace was 76:1 for 1952, the highest ratio on record. This compares with 65:1 in 1951 and 48:1 in 1950. In the New England, South Atlantic, and Pacific Coast districts, consumption of scrap increased whereas consumption of pig iron decreased. The East North Central and Middle Atlantic districts, which consumed 77 percent of the total scrap and pig iron, showed the largest decrease in consumption.

Cupolas.—Figures released by the Bureau of the Census, United States Department of Commerce, indicate that shipments of gray-iron castings in 1952 decreased 14 percent from 1951. Accordingly, requirements for scrap and pig-iron cupola consumption decreased 17 percent from 1951. The use of home scrap decreased 16 percent, purchased scrap 18 percent, total scrap 17 percent, and pig iron 17 percent.

Charges to cupolas consisted of 31 percent home scrap, 34 percent purchased scrap, and 35 percent pig iron, the same percentages as in

1951.

TABLE 10.—Consumption of ferrous scrap and pig iron in electric steel furnaces in the United States in 1952, by districts and States, in short tons

		Scrap		Total	
District and State	Home	Purchased	Total	Pig iron	scrap and pig iron
New England: Connecticut and New Hampshire Massachusetts	11, 139	11, 195	22, 334	581	22, 91
	21, 057	11, 515	32, 572	1, 022	33, 59
Total: 1952	32, 196	22, 710	54, 906	1, 603	56, 50
	27, 028	21, 084	48, 112	1, 653	49, 76
Middle Atlantic: New Jersey New York Pennsylvania	17, 543	22, 432	39, 975	775	40, 75
	71, 558	79, 379	150, 937	4, 186	155, 12
	767, 441	1, 011, 772	1, 779, 213	18, 197	1, 797, 41
Total: 1952	856, 542	1, 113, 583	1, 970, 125	23, 158	1, 993, 283
	943, 702	1, 422, 453	2, 366, 155	30, 848	2, 397, 003
East North Central: Illinois. Indiana. Michigan Ohio. Wisconsin Total: 1952.	400, 423 43, 149 344, 766 764, 093 90, 101 1, 642, 532	911, 733 43, 784 962, 078 1, 292, 033 101, 057	1, 312, 156 86, 933 1, 306, 844 2, 056, 126 191, 158	50, 275 1, 259 7, 006 14, 525 3, 616	1, 362, 431 88, 192 1, 313, 850 2, 070, 651 194, 774
1951	1, 755, 156	3, 310, 685 3, 534, 996	4, 953, 217 5, 290, 152	76, 681 95, 571	5, 029, 898 5, 385, 723
West North Central: Iowa, Kansas, and Nebraska Minnesota Missouri	62, 489	60, 499	122, 988	1, 221	124, 209
	4, 547	6, 849	11, 396	288	11, 684
	15, 387	61, 233	76, 620	3, 270	79, 890
Total: 1952	82, 423	128, 581	211, 004	4, 779	215, 783
	48, 244	71, 209	119, 453	999	120, 452
South Atlantie: Delaware, District of Columbia, and Maryland. Florida and Georgia. North Carolina, Virginia, and West Virginia. Total: 1952.	35, 646	59, 707	95, 353	1, 983	97, 336
	23, 254	53, 097	76, 351	210	76, 561
	22, 881	20, 714	43, 595	1, 043	44, 638
1991	81, 781	133, 518	215, 299	3, 236	218, 535
	63, 637	80, 354	143, 991	4, 561	148, 552
East South Central: Alabama Kentucky Tennessee	28, 600	67, 690	96, 290	731	97, 021
	50, 923	168, 291	219, 214	424	219, 638
	11, 105	30, 850	41, 955	895	42, 850
Total: 1952 • 1951 • 19	90, 628	266, 831	357, 459	2, 050	359, 509
	82, 510	309, 023	391, 533	2, 091	393, 624
West South Central: Arkansas, Louisiana, and Oklahoma Texas	24, 206	31, 456	55, 662	977	56, 639
	98, 082	130, 322	228, 404	3, 448	231, 852
Total: 1952	122, 288	161, 778	284, 066	4, 425	288, 491
	67, 495	103, 631	171, 126	4, 231	175, 357
Rocky Mountain: Arizona, Colorado, Nevada, and Utah	18, 384	19, 930	38, 314	649	38, 963
Total: 1952	18, 384	19, 930	38, 314	649	38, 963
	19, 820	23, 038	42, 858	902	43, 760
Pacific Coast: California Oregon	183, 348	411, 996	595, 344	1, 689	597, 033
	26, 495	115, 522	142, 017	121	142, 138
	25, 352	125, 720	151, 072	277	151, 349
Total: 1952	235, 195	653, 238	888, 433	2, 087	890, 520
	229, 434	568, 974	798, 408	3, 275	801, 683
Total United States: 1952	3, 161, 969	5, 810, 854	8, 972, 823	118, 668	9, 091, 491
1951	3, 237, 026	6, 134, 762	9, 371, 788	144, 131	9, 515, 919

Michigan was the leading State in consumption of scrap in cupola furnaces.

TABLE 11.—Consumption of ferrous scrap and pig iron in cupola furnaces in the United States in 1952, by districts and States, in short tons

omied States in 1902, by				1.1	
D. 4 . 4 1 G. 4		Scrap		Pig iron	Total scrap and pig
District and State	Home	Purchased	Total	- Ing Hon	and pig iron
New England:		. 1			
Connecticut	55, 531	42, 128	97, 659	50, 912	148, 571
Maine	4, 728 100, 537	6, 256 120, 436	10, 984 220, 973	4, 072 81, 238 2, 461	302, 211
Massachusetts New Hampshire Rhode Island	3, 323 18, 934	8, 495	11, 818	2, 461	15, 056 302, 211 14, 279
Rhode Island	18, 934	8, 495 15, 555	11, 818 34, 489 37, 530	1 21, 383 1	55, 872
Vermont	17, 634	19, 896		14, 643	52, 173
Total: 1952	200, 687 267, 760	212, 766 268, 485	413, 453 536, 245	174, 709 249, 131	588, 162 785, 376
Middle Atlantic:	120.046	046 047	276 002	107 006	572 210
New Jersey New York	130, 046 186, 308	246, 247 170, 497	376, 293 356, 805	197, 026 192, 465	573, 319 549, 270
Pennsylvania	345, 131	468, 636	356, 805 813, 767	192, 465 433, 106	1, 246, 873
Total: 1952	661, 485 881, 657	885, 380 1, 100, 285	1, 546, 865 1, 981, 942	822, 597 1, 061, 015	2, 369, 462 3, 042, 957
East North Central:	801, 001	1, 100, 200			
Illinois	515, 852	408, 819	924, 671 519, 620 2, 094, 115 1, 004, 254 597, 486	342, 182 268, 976 1, 023, 945 441, 444	1, 266, 853 788, 596 3, 118, 060 1, 445, 698
Indiana	1 086 813	1 007 309	2 004 115	1 023 945	3 118 060
Ohio	440, 995	563, 259	1, 004, 254	441, 444	1, 445, 698
Indiana Michigan Ohio Wisconsin	277, 433 1, 086, 813 440, 995 338, 576	242, 187 1, 007, 302 563, 259 258, 910	597, 486	239, 467	836, 953
Total: 19521951	2, 659, 669 3, 039, 088	2, 480, 477 2, 993, 020	5, 140, 146 6, 032, 108	2, 316, 014 2, 630, 353	7, 456, 160 8, 662, 461
West North Central:					
IowaKansas	157, 985	128, 808	286, 793	97, 847	384, 640
Kansas	11, 133	33, 464 12, 141	44, 597 13, 802	0, 313	50, 912 14, 062
Nebraska Minnesota, North Dakota and South Dakota.	1, 661 72, 760 64, 999	12, 141 120, 369 149, 261	13, 802 193, 129 214, 260	55, 712	14, 062 248, 841 257, 165
Missouri	64, 999	149, 261	214, 260	6, 315 260 55, 712 42, 905	257, 165
Total: 1952 1951	308, 538 419, 557	444, 043 553, 400	752, 581 972, 957	203, 039 268, 893	955, 620 1, 241, 850
South Atlantic:	07.050	00 544	FC 009	FO 150	136, 061
Maryland	37, 359 1, 430	3 550	76, 903 4, 980	2, 406	7, 386
Maryland FloridaGeorgia	11,647	39, 544 3, 550 18, 318	99 965	59, 158 2, 406 13, 028	7, 386 42, 993
North Carolina South Carolina	21.030	1 21 1114	42, 134	26, 376	68, 510
South Carolina	13, 253 67, 837	150 876	21, 988	65 206	34, 899 283, 919
VirginiaWest Virginia	5, 557	8, 735 150, 876 17, 705	42, 134 21, 988 218, 713 23, 262	26, 376 12, 911 65, 206 41, 325	64, 58
Total: 1952 1951	158, 113 179, 898	259, 832 278, 191	417, 945 458, 089	220, 410 272, 983	638, 355 730, 172
East South Central:					
Alabama	324, 802	300, 021	624, 823	954, 256	1, 579, 079
Kentucky and Mississippi Tennessee	85, 375 140, 479	38, 422 122, 791	624, 823 123, 797 263, 270	173, 590 190, 292	297, 387 453, 562
Total: 1952 1951	550, 656 651, 082	461, 234 645, 047	1, 011, 890 1, 296, 129	1, 318, 138 1, 577, 653	2, 330, 028 2, 873, 782
West South Central:	174		174	246	420
Louisiana	2, 709	10, 498	13, 207	401	13, 608
OklahomaTexas	14, 967 68, 687	21, 482 131, 599	36, 449 200, 286	9, 476 163, 666	13, 608 45, 925 363, 952
Texas					
Total: 1952	86, 537 118, 517	163, 579 211, 832	250, 116 330, 349	173, 789 272, 133	423, 905 602, 482
Rocky Mountain:					94.05
Arizona and New Mexico	10, 771	23, 288	34,059	26, 984	34, 05 97, 17
Colorado Utah	10, 771 17, 876 29, 987	42, 346	72, 333	53, 212	125, 54
Idaho and Wyoming	1 1.650	52, 318 42, 346 7, 3 79 4, 878	34, 059 70, 194 72, 333 9, 029 10, 981	53, 212 504	9, 53 11, 16
Montana	6, 103		10, 981	181	
Total: 1952	66, 387 65, 278	130, 209 144, 611	196, 596 209, 889	80, 881 116, 268	277, 47 326, 15
IMDI	1 00,278	1 144,011	200,000	1 110,200	020, 10

TABLE 11.—Consumption of ferrous scrap and pig iron in cupola furnaces in the United States in 1952, by districts and States, in short tons—Continued

		Scrap		Total scrap and pig iron	
District and State	Home Purchased		Total		
Pacific Coast: California Oregon Washington	141, 220 7, 087 7, 614	224, 276 23, 270 35, 676	365, 496 30, 357 43, 290	124, 597 1, 770 2, 350	490, 093 32, 127 45, 640
Total: 1952	155, 921 172, 132	283, 222 328, 817	439, 143 500, 949	128, 717 112, 271	567, 860 613, 220
Total United States: 19521951	4, 847, 993 5, 794, 969	5, 320, 742 6, 523, 688	10, 168, 735 12, 318, 657		15, 607, 029 18, 878, 457

Air Furnaces.—The total charge of scrap and pig iron in air furnaces in 1952 was 17 percent less than in 1951. There was no consumption in Brackelsberg furnaces during the year. The use of home scrap, purchased scrap, and pig iron decreased 17, 14, and 21 percent, respectively, from 1951.

The East North Central district led in the use of scrap in air furnaces. Ohio was the principal consumer of scrap in this type of

furnace.

TABLE 12.—Consumption of ferrous scrap and pig iron in air furnaces in the United States in 1952, by districts and States, in short tons

		Scrap		Total	
District and State	Home	Purchased	Total	Pig iron	scrap and pig iron
New England:					
Connecticut	21, 283	6,852	28, 135	8, 015	36, 150
Massachusetts and New Hampshire	14, 376	2, 938	17, 314	7, 262	24, 576
Total: 1952	35, 659	9, 790	45, 449	15, 277	60, 726
1951	48, 151	19, 038	67, 189	21, 057	88, 246
Middle Atlantic:					
New Jersey		548	5, 253	3, 396	9, 189
New York Pennsylvania	35, 728 93, 706	17, 545	53, 273	19, 813	73, 086
remsylvania	93, 700	58, 013	151, 719	54, 303	206, 022
Total: 1952	134, 139	76, 106	210, 245	78, 052	288, 297
1951	178, 005	99, 296	277, 301	97, 568	374, 869
East North Central:					
Illinois	120, 534	69, 289	189, 823	50, 712	240, 535
Indiana	89, 695	46, 699	136, 394	39, 864	176, 258
Michigan.	57, 488	46, 257	103, 745	17, 606	121, 351
Ohio Wisconsin	209, 206	135, 028	344, 234	62, 477	406, 711
	60, 502	41, 011	101, 513	28, 522	130, 035
Total: 1952	537, 425	338, 284	875, 709	199, 181	1,074,890
1951	633, 612	378, 953	1, 012, 565	252, 942	1, 265, 507
West North Central: Iowa, Minnesota, and					
Missouri	10, 975	3, 497	14, 472	9, 141	23, 613
Total: 1952	10, 975	3, 497	14, 472	9, 141	23, 613
1951	12, 380	4, 519	16, 899	10, 179	27, 078
South Atlantic and West South Central:					
Delaware, North Carolina, and West Vir-		1			
ginia	11, 919	7, 611	19, 530	9, 279	28, 809
Oklahoma and Texas	10, 134	7, 015	17, 149	2, 955	20, 104
Total: 1952	22, 053	14,626	36, 679	12, 234	48, 913
1951	26, 629	16, 275	42, 904	14, 407	57, 311
Pacific Coast: California	9, 122	7, 343	16, 465	3, 615	20, 080
Total: 1952	9, 122	7,343	16, 465	3, 615	20, 080
1951 1	7, 660	7,047	14, 707	4, 114	20, 080 18, 821
Total United States: 1952	749, 373	449, 646	£1. 199. 019	317, 500	1, 516, 519
1951	906, 437		1, 431, 565	400, 267	1, 831, 832

¹ Includes California and Colorado. Not listed separately.

Crucible and Puddling Furnaces.—The consumption of scrap and pig iron in crucible furnaces was virtually negligible during 1952. There was no tonnage of iron and steel scrap reported as being melted

in puddling furnaces during 1952.

Blast Furnaces.—Materials other than scrap constitute by far the largest proportion of the blast furnace charge and in 1952 consisted of 110,168,932 short tons of iron ore, sinter, and manganiferous ore; 3,182,218 tons of mill cinder and roll scale; 3,391,402 tons of openhearth and Bessemer slag; and 95,899 tons of miscellaneous materials.

The consumption of scrap in blast furnaces during 1952 was 5 percent less than in 1951. The scrap charged to blast furnaces was 42 percent home and 58 percent purchased, compared with 45 and 55 percent, respectively, in 1951. The proportion of scrap used to pig iron produced was 6.9 percent (home scrap 2.9 percent and purchased scrap 4.0 percent), compared with 6.4 percent in 1951.

TABLE 13.—Consumption of ferrous scrap in blast furnaces in the United States in 1952, by districts and States, in short tons

District and State	Home	Purchased	Total
New England and Middle Atlantic: Massachusetts and New York	34, 229	347, 667	381, 896
	659, 159	646, 624	1, 305, 783
Total: 19521951	693, 388	994, 291	1, 687, 679
	851, 178	907, 538	1, 758, 716
East North Central and West North Central: Illinois Indiana Michigan and Minnesota Ohio	94, 244	219, 461	313, 705
	63, 420	73, 975	137, 395
	143, 837	321, 989	465, 826
	320, 367	472, 066	792, 433
Total: 1952	621, 868	1, 087, 491	1, 709, 359
	619, 292	1, 246, 509	1, 865, 801
South Atlantic and East South Central: Alabama Kentucky, Maryland, Tennessee, Texas, and West Virginia	273, 944	120, 749	394, 693
	190, 749	264, 498	455, 247
Total: 1952	464, 693	385, 247	849, 940
	524, 039	317, 445	841, 484
Rocky Mountain and Pacific Coast: California, Colorado, and Utah.	25, 638	1, 535	27, 173
Total: 1952	25, 638	1,535	27, 173
	11, 226	642	11, 868
Total United States: 1952	1, 805, 587	2, 468, 564	4, 274, 151
	2, 005, 735	2, 472, 134	4, 477, 869

USE OF SCRAP IN FERROALLOY PRODUCTION

The ferroalloy plants operating electric furnaces or aluminothermic units during 1952 used 18 percent less scrap than in 1951.

Purchased scrap accounted for 96 percent of the quantity used and home scrap 4 percent; in 1951, these percentages were 97 and 3, respectively.

Scrap used in blast furnaces in the manufacture of ferroalloys is included in this chapter with blast furnaces.

TABLE 14.—Consumption of ferrous scrap by ferroalloy producers in the United States in 1952, by districts and States, in short tons

District and State Hom	e Purchased	Total
Middle Atlantic: New York 1 Pennsylvania	69 43, 527 1, 626	43, 596 1, 626
Total: 1952	69 45, 153 76 76, 663	45, 222 76, 739
East North Central and West North Central: Iowa and Ohio 1 12,0	080 174, 859	186, 939
Total: 1952		186, 939 215, 199
South Atlantic and East South Central: Alabama, Kentucky, South Carolina, Tennessee and West Virginia.	27, 374	27, 374
Total: 1952	27, 374 35, 698	27, 374 35, 698
Pacific Coast: Oregon ¹ and Washington	4,813	4, 813
Total: 1952	4, 813 5, 916	4, 813 5, 916
Undistributed: 1952	75, 411 39 81, 358	75, 411 81, 397
Total United States: 1952 12,1 1951 13,5		339, 759 414, 949

¹ Some scrap consumption in Alabama, New York, Ohio, Oregon, and West Virginia—not separable—is included with "Undistributed."

MISCELLANEOUS USES

Scrap consumed in 1952 for miscellaneous purposes, such as rerolling, nonferrous metallurgy, and as a chemical agent amouted to 1.2 percent of the total consumption, compared with 1.3 percent during the previous year. The quantity so used decreased 17 percent from that used for these purposes in 1951. Of the quantity used, 96 percent was purchased scrap and 4 percent home scrap.

TABLE 15.—Consumption of ferrous scrap in miscellaneous uses in the United States in 1952, by districts and States, in short tons

District and State	Home	Purchased	Total
New England: Connecticut and Massachusetts	65	15, 795	15, 860
Total: 1952	65 500	15, 795 16, 657	15, 860 17, 157
Middle Atlantic:	0.404		00.00
New JerseyNew York	2, 464 9 7, 653	96, 820 80, 465 65, 098	99, 284 80, 474 72, 751
Pennsylvania	10, 126	.	252, 509
Total: 1952	12, 719	242, 383 304, 769	317, 488
East North Central: Illinois	2, 024	187, 075	189, 099
IndianaIndiana	13, 038	12, 692	25, 730
Michigan and Wisconsin Ohio	2, 489	17, 895 59, 520	20, 384 59, 520
Total: 1952	17, 551 17, 833	277, 182	294, 733
1951	17, 833	316, 008	333, 841
West North Central: Minnesota Missouri	347	396 59, 612	743 59, 612
Total: 1952	347 243	60, 008 79, 563	60, 355 79, 806
South Atlantic:			
GeorgiaVirginia and West Virginia	400 384	899 39, 695	1, 299 40, 079
Total: 1952	784 837	40, 594 57, 218	41, 378 58, 058
East South Central and West South Central: Alabama and Texas	167	56, 418	56, 588
Total: 1952	167 448	56, 418 56, 764	56, 585 57, 212
Rocky Mountain:			
Arizona Colorado, Idaho, and Montana Utah	1, 428 1, 296	31, 154 10, 308 5, 049	31, 154 11, 736 6, 345
Total: 1952	2, 724 2, 356	46, 511 62, 028	49, 235 64, 384
Pacific Coast: California Washington	112	52, 003 1, 504	52, 003 1, 616
Total: 1952	112 109	53, 507 69, 506	53, 619 69, 618
Total United States: 1952	31, 876 35, 045	792, 398 962, 513	824, 274 997, 558

STOCKS

For the first time since December 31, 1944, complete data on stocks of ferrous scrap in the hands of consumers, suppliers, and producers were made available to the Bureau of Mines and totaled 8,425,312 short tons on December 31, 1952.

Data on manufacturers' and railroads' stocks were made available through a canvass by the Bureau of the Census, for the National Production Authority on Form NPAF-33. Data on the dealers', automobile wreckers', and shipbreakers' stocks were collected by the same bureau on Form NPAF-32, a questionnaire for use by the National Production Authority and the Bureau of Mines.

Consumers' Stocks.—Consumers' total home and purchased stocks on December 31, 1952, increased 58 percent over the stocks held at the beginning of the year. Stocks of home scrap had increased 10 percent and purchased scrap 76 percent.

Stocks of pig iron on December 31, 1952, increased 12 percent over

the stocks on hand December 31, 1951.

Suppliers' and Producers' Stocks.—Stocks of iron and steel scrap in the hands of a combined total of 2,084 dealers, automobile wreckers, and shipbreakers, as reported to the Bureau of Mines, totaled 1,343,478 short tons on December 31, 1952.

A total of 1,303 manufacturers and railroads reported having 179,520 short tons of iron and steel scrap on hand December 31, 1952.

Government Control.—During 1952, the two NPA orders in effect that dealt with controls of stocks of iron and steel scrap were M-20 M-20 established inventory limitations for iron and steel and M-92. scrap and subjected such scrap to allocations to assure its distribution in the interest of national defense. On January 30, 1952, M-20 was amended, deleting the words "or automobile wreckers" because controls covering automobile wreckers were covered specifically by M-92 required an inventory report from automobile wreckers covering the number of motor vehicles and the poundage of loose This order limited automobile wreckers in their acceptance of delivery of motor vehicles or car units and required them to comply with NPA allocation directives at any time. On March 26, 1952, M-92 was amended to permit automobile wreckers to retain cars built in 1940 and subsequent years, but they were required to scrap 1939 and older cars on the same basis as set forth in the original order. Motor buses (16,000 pounds and heavier) were excluded. M-92 was again amended on April 14, 1952, exempting auto wreckers in Washington, Oregon, Idaho, and Montana from complying with this order. This action was taken owing to the slow movement of scrap in these

On July 2, 1952, M-92 was revoked, and on July 18, 1952, M-20 was amended, requiring auto wreckers to report in the same manner

in which they did when operating under M-92.

Direction 1 to NPA Order M-20 (alloy scrap) was issued August 14, 1952, requiring persons who generate alloy scrap as a result of a production operation to sort their scrap into groups on the basis of nickel and other alloy content. NPA estimated that 20 percent of low-alloy steel scrap was being lost to the alloy mills, causing drains on the mills' supplies of prime nickel. To stop this loss the segregation direction was issued. The direction ordered that low-alloy scrap be melted only for the production of alloy, stainless, and low-alloy, high-strength steel. It prohibited mingling such scrap except by melters. There was a minor amendment to this direction on October 15, 1952, dealing with reporting and classification of one type of stainless steel scrap.

TABLE 16.—Consumers' stocks of ferrous scrap and pig iron on hand in the United States on Dec. 31, 1951, and Dec. 31, 1952, by States and districts, in short tons

	Dec. 31, 1951				Dec. 31, 1952				
District and State		Scrap Scrap							
	Home	Pur- chased	Total	Pig iron	Home	Pur- chased	Total	Pig iron	
Connecticut	4,745	17, 736	22, 481	9, 951 2, 363	6, 407	20, 371	26, 778	10, 101	
Maine Massachusetts New Hampshire	110 8, 071	3, 344 43, 061	3, 454 51, 132 2, 807 7, 940	2, 363 46, 698	48 7, 307	1, 894 79, 569	1, 942 86, 876	756 54, 484	
New Hampshire	267	2, 540 7, 175	2,807	46, 698 264	7, 307 228	2, 650 7, 773	86, 876 2, 878	281	
Rhode Island Vermont	765 85	7, 175 8, 365	7, 940 8, 450	19, 838 2, 033	2,808 262	8, 689	10, 581 8, 951	8,153 1,338	
Total New England	14, 043	82, 221	96, 264	81,147	17, 060	120, 946	138, 006	75, 113	
New Jersey	9, 228	65, 633	74, 861	46, 595	8, 478	66, 845	75, 323	38, 440	
New York 1 Pennsylvania	66, 317 390, 588	146, 158 582, 846	212, 475 973, 434	76, 361 340, 638	123, 404 362, 801	351, 229 1, 277, 845	75, 323 474, 633 1, 640, 646	116, 435 337, 459	
Total Middle Atlantic	466, 133	794, 637	1, 260, 770	463, 594			2, 190, 602	492, 334	
Illinois	58, 937	369, 863	428, 800	106, 920 139, 956 198, 752	115, 431	622, 138	737, 569	127, 164	
Indiana	48, 427	230, 693	428, 800 279, 120 267, 977	139, 956	115, 431 60, 779 44, 690	459, 338	520, 117	127, 164 130, 191 367, 231	
Indiana Michigan Ohio ¹	230, 319	490, 701	721, 020	216, 654	306, 651	817, 744	1, 124, 395	228, 170	
Wisconsin	58, 937 48, 427 48, 730 230, 319 31, 199	369, 863 230, 693 219, 247 490, 701 71, 568	721, 020 102, 767	32, 866	306, 651 19, 668	65, 992	737, 569 520, 117 372, 412 1, 124, 395 85, 660	36, 854	
Total East North Central	417, 612	1, 382, 072	1, 799, 684	695, 148	547, 219	2, 292, 934	2, 840, 153	889, 610	
Iowa	7, 951	48, 241 15, 587	56, 192 15, 767	24, 104 1, 656	6, 355	53, 859 13, 888	60, 214 14, 073	23, 700 1, 090	
Kansas and Nebraska Minnesota, North Dakota,	180	l .		'	185		i	1	
and South Dakota Missouri	17, 453 3, 168	62, 300 73, 540	79, 753 76, 708	17, 583 18, 844	16, 913 4, 129	169, 486 128, 483	186, 399 132, 612	21, 803 35, 671	
Total West North Central	28, 752	199, 668	228, 420	62, 187	27, 582	365, 716	393, 298	82, 264	
Delaware, District of Co- lumbia, and Maryland									
lumbia, and Maryland Florida and Georgia	30,004 1,104	26, 169	56, 173 14, 600	23, 178 7, 295	32, 135 1, 598	69, 570	101, 705 20, 423	12,061 6,540	
North Carolina	1,138	2,706	3, 844	5, 340	824	1, 386	2, 210	2, 675	
South Carolina	82	13, 496 2, 706 4, 929 84, 500	5, 011 95, 656	5, 340 2, 012 51, 152	76	18, 825 1, 386 3, 904 136, 557	2, 210 3, 980	2, 675 2, 477 24, 237	
Virginia and West Virginia 1_	11, 156				16, 380				
Total South Atlantic.	43, 484	131, 800	175, 284	88, 977	51, 013	230, 242	281, 255	47, 990	
Alabama ¹	85, 757	99, 969	185, 726	162, 490	52, 287	84, 079	136, 366	225, 371	
Tennessee	13, 672	48, 564	62, 236	54, 849	16, 167	50, 819	66,986	55, 763	
Total East South Central	99, 429	148, 533	247, 962	217, 339	68, 454	134, 898	203, 352	281, 134	
Arkansas, Louisiana, and									
Oklahoma Texas	1, 126 38, 379	12, 962 69, 844	14, 088 108, 223	5, 607 58, 410	595 33, 132	11, 675 139, 566	12, 270 172, 698	4, 764 29, 983	
Total West South						100,000	112,000	20,000	
Central	39, 505	82, 806	122, 311	64, 017	33, 727	151, 241	184, 968	34, 747	
Arizona, Nevada, and New		7 010	14 170	000	0.000	10 501	00.164	200	
Mexico	7, 167 30, 176	60 885	14, 179 91 061	282 26, 354	9, 663 29, 678	118 733	23, 164 148, 411	309 18,650	
Montana	793	7, 012 60, 885 2, 989 5, 202	91, 061 3, 782 5, 217	26	659	13, 501 118, 733 4, 724 3, 418	5, 383 3, 418	10	
Idaho and Wyoming	15			454			3,418	289	
Total Rocky Mountain.	38, 151	76,088	114, 239	27, 116	40,000	140, 376	180, 376	19, 258	
Alaska, Washington, and	1 004	6E 070	66 007	9 550	0 500	100 007	100 540	3, 724	
Oregon ¹ California	1, 634 49, 802	65, 273 189, 156	66, 907 238, 958	2, 556 48, 905	2, 536 3 9, 581	100, 007 323, 820	102, 543 363, 401	37, 913	
Total Pacific Coast	51, 436	254, 429	305, 865	51, 461	42, 117	423, 827	465, 944	41, 637	
Undistributed 1	11	15, 247	15, 258		35	24, 325	24, 360		
								1, 964, 087	

 $^{^1\,\}mathrm{Some}$ scrap stocks in Alabama, New York, Ohio, Oregon, and West Virginia—not separable—are included with "Undistributed."

PRICES

During 1952, all iron and steel scrap prices were under Federal control.

The price of No. 1 Heavy-Melting scrap at Pittsburgh, as reported in the Iron Age Annual Review, January 1, 1953, was at an average of \$42.78 per gross ton for 1952. The basing-point price ceiling of \$43 per ton, as set by the Office of Price Stabilization, remained firm during 10 months of the year, being affected during the steel-strike months of June and July, when it dropped to \$42.90 and \$40.45, per gross ton, respectively. Cast-iron scrap remained at the ceiling price

of \$49 throughout the year.

The composite price of iron and steel scrap, as reported in the Iron Age Annual Review, was \$42 per gross ton in January 1952, a drop of \$4.15 per ton from the price quoted at the same time for the previous With price regulations effective throughout the year, this price prevailed until June and July, when it decreased to \$41.37 and \$40.10 per gross ton, respectively. The No. 1 Cast scrap composite price at Chicago was quoted at \$52, the OPS ceiling, shipping-point price, during January and February; this price per ton had held since February 1951. In March, the price per ton for this grade of scrap dropped from the \$52 ceiling price to \$46.63 per ton; from this point it continued to drop to a low during the year of \$39.10 per ton during It rose again during the following 3 months, reaching \$45.90 per ton in October, but by the end of the year had dropped to \$43.30 The average price for the year for No. 1 Cast at Chicago per gross ton. was \$45.18 per ton. No. 1 Heavy Melting at Chicago was quoted at \$41.50 per gross ton in January, remaining firm for each month other than June and July, when it dropped to \$40.75 and \$39.30 per ton, The average price for this grade of scrap for the year respectively. was \$41.25.

OPS issued a supplemental regulation 1 to Ceiling Price Regulation 5, effective June 6, 1952, permitting dealers to unload, store, and reload scrap for consumers at not over \$1.50 per gross ton. The consumer was required to request this service in writing; the unloading must have taken place after June 1 and ended not later than 24 hours after official termination of the strike at the mill for which the service was being performed; intransit scrap or a dealer's own scrap could not be stored under this arrangement; no charge was allowed to be

made for weighing.

The OPS issued Amendment 11, Ceiling Price Regulation, effective October 22, 1952. This provision was designed to recognize that, under certain circumstances, some minor deviation from precise specifications might be permitted. The regulation stated that all grades of scrap must be free of dirt, nonferrous metals, or foreign material of any kind and free of excessive rust and corrosion. Where any shipment failed to meet the exact specifications set forth in the regulation, the burden was on the shipper to prove that the offgrade materials were of a negligible quantity and failed only to a minor extent to meet the specifications, and that its inclusion was accidental and unavoidable in the customary preparation and handling of a particular grade.

1059

FOREIGN TRADE 2

Imports.—Imports of iron and steel scrap, including tin-plate scrap, decreased 63 percent from imports of the previous year, with the value decreasing 64 percent. Of the scrap imported, the largest quantity was received from Canada (36 percent of the total imports), followed by Cuba (15 percent), and India (9 percent); 40 percent was imported from other countries. Of the total imports, 31 percent was tin-plate scrap, mostly from Canada, compared with 14 percent during the previous year.

Exports.—Exports of ferrous scrap from the United States in 1952 showed an increase in tonnage of 43 percent, and a 37-percent increase in value over 1951. Exports exceeded imports by 129 percent; 1952 was the first year since 1947 when exports were greater than imports. The tonnage exported amounted to 11 percent of the 5-year prewar average (1935-39) of 3,298,326 tons a year; the percentage in 1951 was 7. Tin-plate scrap, tin-plate circles, strips, cobbles, and terneplate clippings and scrap exported during 1952 was 4 percent of the total exports, with a value of \$1,387,717. The same materials in 1951 were 6 percent of the 1951 exports, with a value of \$2,279,258.

TABLE 17.—Ferrous scrap imported for consumption in the United States, by countries, 1948-52, in short tons

Country	1948	1949	1950	1991	1952
Algorio	481	548	15, 401	22, 863	799
Algeria	18, 168	12, 469	16, 635	12, 512	8, 755
Australia		5, 731	39, 527	1, 676	328
Belgium-Luxembourg	34, 547	71, 199	87, 981	69, 799	55, 101
Canada		1, 824	1, 163	10, 525	1. 141
Canal Zone		1,024	1,100	1, 119	2, 444
Colombia		10, 337	21, 242	43, 870	22, 800
Cuba		10, 337	5,006	475	128
Denmark France	1	213	162,090	27, 844	258
France French Morocco		1,682	6, 586	3,042	2, 187
		4, 693	0,000	0,012	1,596
French West Indies		532, 850	185, 839	63, 912	2,000
Germany		002,000	8, 915	00,012	
Hong KongIndia		1, 186	325	21, 519	13, 251
Iraq		1,100	7, 466	,	
Italy		16	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Japan		209, 519	113, 436	31, 648	1, 259
Korea	00,000	200,010	110, 100	8, 516	5, 741
Netherlands	9, 863	200, 486	70,001	19, 402	12
Netherlands Antilles		2, 128	3, 609	4, 328	951
New Zealand		1, 634	175	7, 477	431
Norway		28	18	35	2, 576
Panama		ı ĭ	l	65	1, 913
Peru		l			2,722
Philippines	25, 399	75, 955	14, 253	26, 336	
Switzerland			3	6,709	
Union of South Africa	4, 284	4, 461	5, 893	6, 930	4,748
United Kingdom		3, 257	8, 529	6, 225	23
Venezuela		647		55	8,385
Western Pacific Islands		101			6,720
Other countries	20, 540	10, 183	11, 137	19, 976	9, 405

[U. S. Department of Commerce]

Total: Short tons.

480, 724

\$12, 180, 222

1, 151, 294 \$29, 937, 798

785, 230 \$18, 718, 895

1 \$15,013,148

153, 674 \$5, 398, 570

¹ Revised figure.

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 18.—Ferrous scrap exported from the United States, 1948-52, by countries of destination, in short tons

[U. S. Department of Commerce]

Destination	1948	1949	1950	1951	1952
Argentina		3, 866	1, 112	2, 597	741
Brazil British Malaya		12	3, 225 863	1, 018 2, 487	296 1,044
CanadaChile	168, 119	1 162, 631	81,000	89, 632	1 195, 439
China	434	33	230	6	
Colombia Egypt	4	315	217		2 25
Hong Kong	1, 131	1, 558	2, 547	14	
India Italy		808	160 115	797 473	1, 763 1, 300
Japan			1,605	3, 105	4, 362
Malta, Gozo, and Cyprus	39, 291	1 123, 624	124, 537	1,000 1 140, 304	1 136, 271
Netherlands Norway	34	4, 120	355	1, 212	34
Sweden	95			51	
Turkey Union of South Africa	58	503 25	95 236	420 709	846 28
United Kingdom		38			8, 654
Uruguay Other countries	341	1 1, 061	667	230 1, 285	925
Total: Short tons	212, 194	1 298, 594	216, 964	1 245, 340	1 351, 730
Value	\$7, 156, 105	1 \$7, 342, 886	\$6, 013, 719	1 \$9, 094, 473	1\$12, 450, 309

¹ Includes rerolling material as follows: 1949, Canada, 37 tons; Mexico, 1,095 tons; other countries, 74 tons; total, 1,206 tons (\$50,086): 1951, Mexico, 9,813 tons (\$358,146): and 1952, Canada, 69 tons; Mexico, 1,217 tons; total, 1,286 tons (\$77,287).

TABLE 19.—Ferrous scrap imported into and exported from the United States, 1948-52, by classes

[U.S. Department of Commerce]

		Imports				Exports				
Year	Iron and steel scrap	Tinplate scrap	Total	Iron and steel scrap	Tin- plate scrap	Tinplate circles, strips, cobbles, etc.	Terne- plate clippings and scrap	Total		
		SHORT TONS								
1948	434, 710 1, 105, 343 737, 749 359, 099 105, 896	46, 014 45, 951 47, 481 57, 759 47, 778	480, 724 1, 151, 294 785, 230 416, 858 153, 674	208, 246 1 294, 960 208, 355 1 229, 718 1 336, 593	629 907 3, 998	3, 637 3, 380 7, 819 14, 554 11, 139	311 254 161 161	212, 194 1 298, 594 216, 964 1 245, 340 1 351, 730		
				VALUE	C					
1948 1949 1950 1951 1952	\$11, 149, 265 28, 890, 519 17, 834, 543 13, 181, 093 4, 053, 529	\$1, 030, 957 1, 047, 279 884, 352 2 1, 832, 055 1, 345, 041	\$12, 180, 222 29, 937, 798 18, 718, 895 215, 013, 148 5, 398, 570	\$6, 738, 977 ¹ 6, 947, 516 5, 254, 747 ¹ 6, 815, 215 ¹ 11, 062, 592	\$39, 237 33, 498 85, 828	\$391, 421 370, 568 697, 755 2, 227, 549 1, 301, 889	\$25, 707 24, 802 21, 980 18, 211	\$7, 156, 105 1 7, 342, 886 6, 013, 719 1 9, 094, 473 1 12, 450, 309		

¹ Includes rerolling materials as follows: 1949, 1,206 tons valued at \$50,086; 1951, 9,813 tons valued at \$358,146; and 1952, 1,286 tons valued at \$77,287.
² Revised figure,

TECHNOLOGY

By proper scrap preparation, plus close coordination of plant transportation methods, furnace charging time can be decreased materially,

with a corresponding increase in steel production.

Following World War II, the Fontana open-hearth plant of Kaiser Steel Corp. faced serious problems in connection with scrap. The greater portion was light-gage, poorly prepared, and contaminated with nonferrous metals. It was impossible to charge the furnaces quickly; therefore, to get heavier and better prepared scrap, the company developed two scrap-preparation yards. Home scrap (with the exception of heavy structurals and plate) is prepared in one yard and purchased unprepared scrap in the other yard. No attempt is made to separate the light-gage scrap from the heavier gage scrap in the home scrap yard. The length of the cut is controlled to not exceed 15 inches for light-gage and 20 inches for heavy-gage. This maintains a good mixture of light and heavy scrap and provides a good scrap-

buggy (charging box car) weight of 10,000 to 12,000 pounds.

In the purchased-scrap yard, a few simple rules are followed in preparing the scrap. The burners are instructed to cut the light material small (about 15 by 30 inches) and the heavy material larger (24 by 60 inches, maximum). Special attention is given to cross bracings and projections so that the finished material will be flat in a charging box and give maximum weight. By careful preparation, good weights can be provided in the boxes. The recovery of nonferrous metals in this vard is a small but important part of the operations. Nonferrous metals are stripped from the scrap and removed to a cleaning area for classification and storage. Approximately 20 tons is recovered and The scrap-preparation personnel participates in a sold each month. nonferrous bonus each time this metal is sold. The payment of this bonus creates an incentive for removing nonferrous metals and decreases contamination of undesirable elements in the steel furnace. A larger charging box is being tried in an effort to charge furnaces faster, shorten drags (trains for delivery of scrap to furnace charging floor), and eliminate congestion with adjacent furnaces. This box has a capacity of 65 cubic feet, compared to the regular box of 32 cubic feet.

As a result of the above-mentioned preparation and transportation methods, the average charging time has been reduced. In 1945 the average charging time for the year was 3 hours 21 minutes, using approximately 40.8 percent hot metal, on an average charge of 420,000 pounds exclusive of ore. The steel-production rate during 1945 was 15.2 tons per hour. In comparison, 1951, owing to the improved methods, reduced the charging time to 1 hour 42 minutes, using approximately 60 percent hot metal in a total charge averaging 465,000 pounds exclusive of ore. The steel-production rate was increased during 1951 to 21.8 tons per hour.³

In the past, many sources of scrap had to be passed by because of the high cost of cutting large pieces to furnace-charging size. The C-600 heavy-duty oxyacetylene cutting blowpipe mounted on an adjustable

positioning rig supplied by Linde Air Products Co., a division of Union Carbide & Carbon Corp., now makes it possible to reduce large shapes

³ Bowers, William F., Open-Hearth Proceedings: Am. Inst. Min. and Met. Eng., Pittsburgh, vol. 35, 1952, pp. 72-74.

easily and economically. Cast-iron scrap, as well as other scrap, can also be cut rapidly by using the C-60 cutting blowpipe and the powder cutting process.4

One large steel company has reduced its preparation time by approximately one half the time necessary when a lance was used.5

Late in 1952, an effective and efficient method for opening hydraulically compressed bundles for inspection by dynamite blasting was developed by the Bethlehem Steel Co.6 The previous methods used, such as friction sawing, drilling, band sawing, torch cutting, and cold shearing, proved to be impractical for reasons of low production. expense, or distortion and destruction of the bundles' contents.

The trends in recent years has been to lighter and lighter scrap, caused partly by an increase in steel production without corresponding increases in the supplies of Heavy-Melting scrap, and partly by an increase in the proportion of steel production going into sheet and other flat-rolled products, which is reflected in scrap returning to the This has necessitated scrap preparation by baling or hydraulic bundling light-gage scrap and by torch-cutting or shearing plate trimmings and other irregular shapes into smaller pieces, which load more compactly into charging boxes. It may be noted that lightgage is not entirely a liability if the weight per charging box is reasonable.

WORLD REVIEW

Dominican Republic.—According to Embassy Despatch 331, dated October 31, 1952, from Ciudad Trujillo, the export of old iron from the Dominican Republic in any form was prohibited by Presidential Decree on October 24, 1952. The decree specifically included steel scrap and other iron alloys, according to an official of the Ministry of Economics.

The purpose of the degree was to protect the supply of metal needed by the small local foundry industry. The heavy demand for scrap had forced prices up to such an extent that local foundries had diffi-

culty obtaining adequate supplies.

Germany, West 7.—During the first quarter 1952 the German Minister of Economics, Professor Erhard, introduced the expected decontrol of scrap prices. Since the middle of 1951, unsettled market conditions, such as barter transactions, have caused great confusion, and prices could no longer be regulated by Government decrees, so that abolition of the system of controlled prices became necessary. The new measure is the result of long and difficult discussions between the Ministry of Economics, the scrap industry, and consumers.

According to Embassy Despatch 101, dated September 10, 1952, from Duesseldorf, the price of scrap doubled and scrap collection picked up as a result of the removal of price controls on steel scrap. Scrap collection increased from 499,990 metric tons in June to 511,000 metric tons in July. Of this amount, 39,000 metric tons was exported, 400,000 tons was delivered to steel mills, and 72,000 metric tons went to foundries. The scrap agreement between the United States, Great Britain, and the Federal Republic, which terminated July 30,

⁴ Blast Furnace and Steel Plant, vol. 40, No. 1, January 1952, p. 132. ⁵ Work cited in footnote 4. ⁶ Bethlehem Steel Co., Internal Inspection of Bundle Scrap: May 1953, ⁷ The Metal Bulletin (London), No. 3687, Apr. 25, 1952, p. 28.

1952, also helped to increase the domestic supply. A contract between the dealers and consumers provided for 1,640,000 metric tons

for the last 4 months of 1952.

India.8—Indian firms contracted to sell about 250,000 tons of scrap iron to the United States, the United Kingdom, Japan, and European continental countries, with Japan and the United States as the principal buyers. The Government of India decided to permit the export of scrap only when it was understood that steel manufacturers in India found it more economical to use iron ore, rather than go to the expense of crushing the huge blocks of scrap and processing them for further use.

Indonesia.—According to the Embassy Despatch 92, dated July 28, 1952, from Djakarta, the Ministry of Economic Affairs announced that the export of scrap would begin shortly after the date of this despatch. The first shipment was to go to Japan. It was reported that the total quantity of scrap iron in Indonesia was estimated at 400,000 to 600,000 metric tons. Negotiations were underway for

export of scrap iron to Europe and the United States.

Japan.9—Japan is importing an annual supply of 225,000 to 330,000 tons of scrap iron from Korea and the southeast Asian area. Immediately after World War II, the supply of scrap iron from war-torn areas was estimated at around 10,000,000 tons, but this source is now nearly exhausted.

Sweden. 10—It was reported from Stockholm that scrap iron supplies had increased in Sweden since the Scrap Committee began its campaign last autumn. The scrap industry delivered 124,000 metric

tons between November 1951 and April 1952, inclusive.

United Kingdom. 11 12—In the early part of 1952 there was an acute shortage of all types of iron and steel scrap. However, by the end of

the year the scrap situation had improved substantially.

Cast-iron scrap became scarce and brought high prices regardless of The continued scrap drive was extended to include grade or size. household and other light scrap. This helped to raise the supply of home scrap, bought, to a level appreciably above that of 1951. supply of scrap was eked out by additional pig iron, with the ratio used in steelmaking increasing from 0.85 in 1951 to 0.95 in 1952. There was a 5-percent increase in 1952 over the previous year in steel production, whereas the consumption of scrap in steelmaking decreased from 9,124,000 tons to 9,080,000. Imports were also slightly higher than in the previous year. Some 275,000 tons of extra scrap from all sources was used to rebuild the industry's stocks, from which 323,000 tons had been taken in 1951.

⁸ Mining Journal (London), vol. 239, No. 6101, July 25, 1952, p. 92.
9 Metal Progress, vol. 63, No. 1, January 1953, p. 112.
10 Metal Bulletin (London), No. 3697, May 30, 1952, p. 22.
11 Metal Bulletin (London), No. 3692, May 13, 1952, p. 24.
12 Monthly Statistical Bulletin, vol. 27, No. 12, December 1952, pp. 1–2.

Jewel Bearings

By Robert D. Thomson 1 and Eleanor V. Blankenbaker 2

EWEL BEARINGS are made from various substances, principally synthetic ruby and sapphire. Synthetic spinel and glass are used for jewel bearings where maximum hardness is not essential. Jewel bearings are used to reduce friction and to make a hard, smooth

surface that will resist the wear caused by pivot action.

Most of the domestic supply of jewel bearings is obtained from Switzerland. Lack of labor skilled in making jewel bearings, and competition from Swiss bearings of high quality, lower cost, and plentiful supply have handicapped the domestic industry. However, the United States industry has made some progress in commercial production of industrial jewel bearings, which are larger and more amenable to mass-production methods.

The economics of the United States jewel-bearings industry was

discussed in an article published in 1952.3

DOMESTIC PRODUCTION

Domestic production of blanks and finished jewel bearings in 1952 increased 59 percent and 77 percent, respectively, above the 1951 Nevertheless, production of blanks and finished jewels supplied only a small percentage of the total jewel-bearings consumption. A very small quantity of watch jewels was manufactured. Vees (synthetic corundum and glass), instrument rings, cups, and endstones were the principal varieties of industrial jewel bearings man-

TABLE 1.—Salient statistics of the jewel-bearings industry in the United States, 1948-52

[Number of jewel bearings]

	1948	1949	1950	1951	1952
Production: Blanks	680, 400	249, 600	795, 400	1, 200, 503	1, 907, 30
	2, 576, 095	2, 725, 103	3, 327, 206	9, 876, 654	10, 637, 20
Consumption: Blanks. Semifabricated jewelsFinished jewels 1	7, 503, 199	6, 678, 922	7, 008, 289	11, 415, 514	9, 062, 893
	1, 729, 100	1, 603, 900	3, 331, 500	7, 884, 500	1, 892, 000
	66, 212, 629	68, 322, 111	71, 126, 700	85, 030, 037	77, 311, 999
Shipments: Blanks Semifabricated jewels Finished jewels ¹	125, 400	29, 100	85, 400	75, 503	5, 39
	2, 069	1, 771	2, 414	561	1, 43
	28, 816, 351	24, 645, 548	6, 976, 608	14, 031, 386	28, 795, 00
Stocks on hand Dec. 31: Blanks Semifabricated jewels Finished jewels 1	7, 297, 087	7, 684, 765	5, 796, 014	2, 618, 650	4, 327, 95
	405, 225	243, 454	529, 540	710, 479	1, 054, 88
	72, 945, 750	98, 213, 655	107, 432, 348	97, 390, 081	104, 169, 04

¹ Includes finished jewels made from glass.

¹ Commodity-industry analyst.

² Statistical clerk.
³ Weart, S. A., The United States Jewel Bearing Industry: Ind. Diamond Rev., vol. 12, No. 135, February 1952, pp. 27-29.

ufactured domestically during the year. Plants producing jewel bearings are located at Newark, Perth Amboy, and Trenton, N. J.; Lancaster and Morrisville, Pa.; and Waltham, Mass.

CONSUMPTION AND USES

The jewel-bearings industry in 1952 showed an increase in quantity of raw material consumed for manufacturing jewel bearings but a decrease in the consumption of blanks, semifabricated jewels, and finished jewels.

About three times as much raw material was consumed in 1952 as in 1951. Synthetic sapphire and synthetic ruby were the principal

materials used in manufacturing jewel bearings.

Consumption of blanks and finished jewels declined about 21 and 9 percent, respectively, whereas semifabricated jewel consumption decreased 76 percent. Consumption and shipments of finished jewels, by uses, are shown in table 3.

TABLE 2.—Consumption and shipments of raw materials by the jewel-bearings industry in the United States, 1949-52

	Consump-	Shipments		
Type of raw material	tion (carats)	Carats	Value	
4010		120	7. 7	
1949: Synthetic sapphireSynthetic ruby	70, 299 20, 550	284	\$602	
Total	90, 849	284	602	
1950: Synthetic sapphireSynthetic ruby	37, 845 4, 300	10,000	100	
Total	42, 145	10,000	100	
Synthetic sapphire rods (in inches)	1, 152			
1951: Synthetic sapphireSynthetic ruby	1 88, 135 1 18, 651 106, 786			
Synthetic sapphire rods (in inches)	2 210			
1952: Synthetic sapphire Synthetic ruby Other Total	162, 600 149, 500 450 312, 550	300	120	

Partly estimated.Estimated figure.

In watches, jewels are used on the parts that move the fastest and require the finest adjustments. The most common varieties of watch bearings are pallet stones (one on each prong of the Y-shaped lever), roller pin (on the roller table affixed to the shaft of the balance wheel), cap jewel (upper and lower ends of the balance wheel shaft), and hole jewels (at the end of the escapement wheel shaft, the shaft holding

the lever, and at the end of the balance wheel). Usually, these are made from synthetic ruby.

TABLE 3.—Consumption and shipments of finished jewels in the United States, 1952, by uses

	Consun	nption	Shipments		
Use	Quantity (number of jewels)	Market value	Quantity (number of jewels)	Market value	
Vees: Glass. Other. Instrument rings. Watch rings. Cups. Endstones. Caps. Holes. Pallet stones. Jewel pins. Roller pins. Other.	26, 159, 954 11, 510, 601 5, 964, 992 8, 254, 461 4, 403, 626 4, 238, 640 6, 110, 379 2, 138, 391	\$960, 840 255, 194 1, 678, 596 652, 235 589, 048 220, 707 56, 102 246, 680 196, 623 63, 350 22, 287	5, 840, 646 6, 232, 847 6, 537, 557 4, 893, 571 2, 987, 955 168, 000 14, 000 2, 109, 000	\$192, 086 681, 011 1, 073, 390 447, 986 98, 030 43, 630 274, 600	
Total	77, 311, 999	4, 851, 662	28, 795, 001	2, 836, 88	

The principal industrial jewel bearings are as follows: Cup (non-perforated disk in shape of cup which holds oil), vees (nonperforated circular disks with V-shape indenture in one side), ring (perforated disks or hole jewels), and cap (flat surface endstone). Virtually all industrial jewels are made of synthetic sapphire and require a larger quantity of raw material than the watch jewels.

Jewel bearings have a wide variety of uses. They are used for time-keeping devices; electric and water meters; aircraft, marine, and mechanical instruments; compasses; and other instrumentation.

In all, 22 companies in 9 States reported consumption of finished jewels in 1952 (table 4). The major portion of the consumption was in the Central Atlantic States and two of the New England States. About 44 percent of the number of jewels used in the manufacture of end-use products was consumed by 8 companies in New York, Ohio, and Pennsylvania and 4 companies in New Jersey.

TABLE 4.—Consumption of finished jewel bearings in the United States, 1952, by States

State	Number of consumers	Quantity (num- ber of jewels)
Connecticut. Massachusetts. Michigan. New Jersey. New York, Ohio, Pennsylvania. Other States ¹ . Total.	2 3 1 4 8 4	861, 924 2, 056, 446 59, 926 5, 858, 517 28, 007, 916 40, 467, 270 77, 311, 999

¹ Includes Illinois, Indiana, and a quantity unspecified by State.

FOREIGN TRADE 4

The major portion of the United States supply of jewel bearings is imported, principally from Switzerland. Some jewel bearings are produced intermittently in Italy, France, and Germany, and during World War II, Russia and England produced limited quantities. Statistics on imports of jewel bearings are shown for the first time in the Minerals Yearbook in table 5. Imports in 1952 increased 6 percent in quantity and 7 percent in value compared with 1951.

TABLE 5.—Jewel bearings imported for consumption in the United States, 1940-52 IU. S. Department of Commercel

Year	Number	Value	Year	Number	Value
1940	98, 771, 042 92, 547, 236 88, 650, 286 65, 166, 357 38, 324, 422 36, 340, 820 58, 896, 065	\$1,831,007 2,007,012 2,770,866 2,601,256 1,376,675 1,467,547 2,076,391	1947 1948 1949 1950 1951 1952	114, 089, 168 138, 229, 491 140, 742, 977 87, 939, 766 92, 396, 053 98, 021, 914	\$4,016,072 5,614,287 5,117,341 3,737,979 3,965,983 4,226,948

TECHNOLOGY

A contract to establish and operate a jewel-bearings plant at Rolla, N. Dak., near the Turtle Mountain Indian Reservation was awarded to Bulova Watch Co. by the Army Ordnance Corps. plant will be known as Turtle Mountain Ordnance pilot plant and will utilize the skill of the Indians. It is anticipated that a portion of the Armed Forces requirements for jewel bearings in gunsights, tank range finders, bombsights, and other optical instruments will be met by this production.

A detailed description of jewel-bearings recessing (cupping) machines and their operation was presented in an article in which data on coolants, collets, lubrication, broche manufacturing, and inspection were summarized.5

Hardness tests were conducted on synthetic corundum.⁶ Results showed that specimens are hardest on the faces and parallel to the optic axis and the hardness does not depend on the angle formed by the geometric axis and the optic axis as previously believed. Preliminary tests have shown that the direction of greatest abrasion resistance of synthetic corundum coincides with the direction of greatest indentation hardness.7

Figures on imports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.
 Weart, S. A., Jewel Bearing Recessing Machines: Ind. Diamond Rev., vol. 12, No. 141, August 1952,

<sup>Weart, S. A., Jewel Bearing Recessing Machines: Ind. Diamond Rev., vol. 12, No. 141, August 1902, pp. 165-169.
Attinger, C., Orientation and Hardness of Synthetic Corundum: Ind. Diamond Rev., vol. 12, No. 140, July 1952, pp. 136-137.
7 Stern, W., Direction Hardness and Abrasion Resistance of Synthetic Corundum: Ind. Diamond Rev., vol. 12, No. 140, July 1952, pp. 137-140.</sup>

Kyanite and Related Minerals

By Brooke L. Gunsallus 1 and Frances P. Uswald 2

YANITE, sillimanite, and alusite, dumortierite, topaz, and synthetic mullite are discussed under the heading "Kyanite and Related Minerals," because of similarities in properties and end use.

The mullite-containing materials constitute one of the most important types of refractories used in the metallurgical and glass industries. Smaller quantities are used for high-temperature boilers and in the cement and ceramic industries. Mullite (3Al₂O₃.2SiO₂) rarely is found in nature, but when any of the aluminum silicate minerals kyanite, andalusite, sillimanite, dumortierite, or topaz is heated to an appropriate temperature it converts to a mixture of mullite and a form of free silica. Mullite of any desired purity also may be produced by sintering or fusing mixtures of alumina and either kaolin or silica in the correct stoichiometric proportions. As with all refractories, however, correct chemical composition is not the only essential criterion; mineralogical constitution and grain structure are also vitally significant in their influence on the utility of the grain as the predominant raw material to produce a finished refractory.

Domestic kyanite production increased slightly in 1952 over 1951, but the Bureau of Mines is not at liberty to publish detailed figures.

Changing political and economic conditions and the uncertainty of obtaining high-grade material from India increased the demand for high-grade synthetic mullite. As a result, 1952 kyanite imports decreased 54 percent from 1951.

The development of synthetic mullite will insure domestic self-sufficiency in raw materials for mullite refractories in the future.

No production of other minerals in this group was reported in 1952.

DOMESTIC PRODUCTION

Kyanite provides most of the United States production of aluminum

silicate minerals used in producing mullite.

All kyanite produced in the United States is recovered as fine-grained concentrates from disseminated ores. The mullite produced from these concentrates is not suitable for the highest grades of

refractories because of small grain size and low density.

Only two companies produced kyanite in the United States in 1952: Commercialores, Inc., 39 Cortlandt St., New York, N. Y., from deposits at Henry Knob, near Clover, S. C.; and Kyanite Mining Corp., Cullen, Va., from a property on Baker Mountain near Farm-ville, Prince Edward County, Va. The total domestic production was slightly larger in 1952 than in 1951. The Bureau of Mines is not at liberty to publish figures on domestic production inasmuch as there were only two producers in 1952.

No production of andalusite, dumortierite, sillimanite, or topaz was

reported to the Bureau of Mines in 1952.

¹Commodity-industry analyst. ²Statistical clerk.

CONSUMPTION AND USES

Domestic consumption of kyanite from foreign and domestic sources and synthetic mullite during 1950, 1951, and 1952 was about 30,000, 38,000, and 40,000 short tons, respectively, exclusive of material

purchased for the National Stockpile and electrocast mullite.

Mullite, whether obtained from natural ores or synthetically, is used almost entirely in the manufacture of superduty refractories. Although mullite refractories represent only a small percentage of the total tonnage of refractories used in the United States, they are important because of their relatively high softening points, resistance to loads at high temperatures, resistance to thermal shock due to low coefficient of expansion, and resistance to the corrosive action of certain fluxing agents. Mullite refractories are relatively expensive, but industry has found them profitable for many purposes.

Mullite refractories are used in the form of bricks and shapes, cements, mortars, plastics, and ramming mixtures. Mullite bricks and shapes are used chiefly by the refractory industry and require in their manufacture a material that converts, after calcining, to a coarsegrained dense material. Until recently, they have been made mostly from massive kyanite imported from India. In some instances, the relatively fine-grained mullite obtained from concentrates produced from domestic disseminated ores has been blended with coarse-grained mullite in producing refractory bricks and shapes. Domestic kyanite also is satisfactory for making refractory cements and for other uses where large grain size is not required; such applications consume

most of the domestic variety. About 90 percent of all mullite refractories are used for lining furnaces operated by the metallurgical (50 percent) and glass (40 percent) industries. The remaining refractories (10 percent) are used for numerous purposes, chiefly in the ceramic industry. In the metallurgical industry the principal application of mullite refractories is in lining electric furnaces, largely the induction type, used for melting brasses and bronzes, copper-nickel alloys, certain steels, and ferrous alloys. Other metallurgical applications are in zinc smelting and gold-refining furnaces. In the glass industry these refractories are used mainly in the construction of continuous tanks, especially the superstructure, and in making plungers, rings, and tubes for feeding molten glass to the forming machines. In the ceramic industry small quantities of mullite are used to manufacture kiln furniture for stacking ware in kilns, in saggers (open-top refractory boxes) for protecting ware during firing, and in kiln construction.

STOCKS

Stocks of imported kyanite at the end of 1952 totaled 2,844 short tons, compared with 1,891 short tons in 1951. Kyanite imported for consumption in 1952 totaled 9,057 short tons, compared with 19,570 in 1951, a decrease of 54 percent. This large decrease in imports for consumption resulted from the increased use of synthetic mullite produced from domestic raw materials.

Stockpile objectives for kyanite and mullite were contracted for

and no further contracts were contemplated.

PRICES

As reported by E&MJ Metal and Mineral Markets for December 1952, quotations on kyanite were as follows: Per short ton, f. o. b. point of shipment, Virginia and South Carolina, 35-mesh, c. l., in bulk, \$29, in bags, \$32; 200-mesh, in bags, c. l., \$40. Quotations on imported kyanite (55- to 59-percent grade) in bags were \$60 to \$65 per short ton, c. i. f. Atlantic ports.

FOREIGN TRADE

Imports and exports of kyanite and related minerals for 1952 are shown in table 1. India continued to lead as a source of supply with 53 percent, British East Africa supplied 29 percent, and the Union of South Africa supplied 16 percent. The total imports for 1952 decreased 54 percent compared with 1951. Competition from synthetic mullite produced in the United States partly explains this decline; other contributing factors were the unsettled political and economic conditions in India and the uncertainty of obtaining continuing supplies of high-grade massive kyanite. Imports have fluctuated considerably during recent years.

TABLE 1.—Kyanite imported for consumption and kyanite and allied minerals exported from the United States, 1948-52

Imports			Exports				
Year and origin	Short tons	Value	Year and destination	Short tons	Value		
1948 1949 1950 1951 1	12, 119	\$259, 055 324, 856 587, 819	1948. 1949. 1950. 1951	462 1, 039 941	\$21, 813 46, 725 35, 750		
Australia	10,370 2 341	507 ² 439, 171 339, 437 ² 16, 111 17, 060 148	Argentina Canada Chile France Mexico Switzerland	93	12, 000 18, 474 510 4, 395 7, 921 462		
Total	19, 570	² 812, 434	Total	990	43, 762		
1952			1952				
Australia British East Africa Canada India	57 4,835	1, 999 101, 173 4, 598 217, 908	Canada France Mexico	575 60 494	22, 348 3, 443 18, 706		
Union of South Africa	9,057	390, 557	Total	1, 129	44, 497		

[U.S. Department of Commerce]

TECHNOLOGY

Until recent years most of the mullite refractory material used in the United States was obtained by calcining high-grade massive Indian kyanite. During the last few years, however, research by the Bureau of Mines and private concerns utilizing Western Hemisphere

 $^{^{\}rm I}$ In the corresponding table in Minerals Yearbook, 1951, Mozambique, revised to none. $^{\rm 2}$ Revised figure. $^{\rm 3}$ Less than 1 ton.

raw materials has resulted in the development of synthetic-mullite products equal or superior to those derived from high-grade Indian The highest qualities of synthetic mullite have been produced from Bayer-process alumina made from Caribbean bauxite by the fusing process. Mullite of excellent quality has been produced from certain low-iron, siliceous bauxites in the United States by the sintering process. Synthetic-mullite grain produced from these domestic materials is comparable in quality and cost to mullite grain processed from massive Indian kyanite. Size and density of the mullite grain are important.

RESERVES

Reserves of domestic kyanite having the favorable characteristics of high-grade Indian kyanite are negligible. High-grade fibrous kyanite occurs on the slopes of Willis Mountain in western Virginia. Estimates have placed the reserves of high-grade lump kyanite at approximately 5,000 short tons, equal to 1 month's supply at the present rate of consumption. Further exploration of this deposit may disclose additional reserves.

According to the Federal Geological Survey, the kyanite reserves in Virginia, North Carolina, South Carolina, and Georgia are of the order of tens of millions of tons of ore containing 20 to 30 percent

kvanite.

The development of synthetic mullite appeared to offer the best means for future fulfillment of needs now being served by imported kyanite. Raw materials used in producing mullite synthetically by either the fusing or sintering method are sufficient to meet anticipated future demands.

WORLD REVIEW

A large deposit of kyanite was reported 3 to have been found in the Province of Ontario, Canada. The kyanite, associated with quartz, garnet, feldspar, and mica, occurs in bands of gneiss several hundred to a thousand feet thick. Beneficiation will be required to produce a salable product. During 1952 a small quantity of ore was mined.

In 1952 only 57 short tons of kyanite was exported from Canada

to the United States.

A kvanite deposit 4 was being developed about 8 miles from Francistown in the Tati Territory of Bechuanaland Protectorate, Africa. Another was reported near the town of Brokoponda on the Surinam River in Surinam.⁵ Exploration was in progress, but no development work had been started in 1952.

A company was formed to work the Assam sillimanite deposits in India.6

Northern Miner, vol. 38, No. 28, October 1952, pp. 17-18.
 Mining World, vol. 14, No. 2, February 1952, p. 53.
 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 1, July 1952, pp. 37-38.
 Mining World, vol. 14, No. 12, November 1952, p. 77.

Lead

By O. M. Bishop 1 and Edith E. den Hartog 2

•HE OUTSTANDING feature of the United States lead industry in 1952 was the transition from scarcity to plenty. Imports, more than double the 1951 total, established a new record and were the determining factor in the change in the supply position. The great influx of foreign lead resulted from expanded free-world production and price drops in foreign markets, which stimulated shipments to The increased availability of lead was first indithe United States. cated late in 1951 and became more apparent early in 1952. Foreign prices began a steady decline in February, and in April domestic prices dropped for the first time since June 1950. The United States selling price declined from the 19-cent-a-pound ceiling in effect since October 1951 to a low of 13.5 cents, but by the end of the year had risen to 14.75 cents. The National Production Authority revoked all controls on lead May 15 owing to abundant supplies. Free trading was established on the London Metal Exchange on October 1 for the first time in 13 years, and dealings in lead futures were resumed in the New York Commodity Exchange on May 26.

Lead supply totaled 1,477,000 tons in 1952, an increase of 28 percent over 1951, comprising 390,000 tons of recoverable mine production, 471,000 tons of secondary lead, and 616,000 tons of imports (exclusive of scrap). Consumption of lead, including the quantities consumed in pigments and chemicals, totaled 1,131,000 tons compared with 1,185,000 tons in 1951. Producers' stocks of primary refined lead increased from 19,000 tons on December 31, 1951, to 31,000 tons at the end of 1952, and antimonial lead stocks increased from 6,000 tons to 11,000 tons during the year. Consumers' stocks rose 19 percent

In 1952 the five-volume report by the President's Materials Policy Commission, popularly known as the Paley report, was released. Volume II, Resources for Freedom, reviewed the lead supply and demand of the United States and evalued reserves, conservation practices, market demand, and position of the free world. Projected demand for lead in 1975 is estimated at 1,950,000 tons, or approximately 61 percent more than in 1950. Projected supply at that time is estimated at 300,000 tons of domestic mine production, 750,000 tons of secondary lead, and 900,000 tons of imports.

1 Commodity-industry analyst.

to 123,000 tons.

² Statistical assistant.

LEAD 591

GOVERNMENT REGULATIONS

Adequate supplies of lead resulted in an amendment to Order M-38 on March 3, 1952, whereby all restrictions on the use of lead were removed and consumers were permitted to carry a 60-day lead inventory instead of the 30-day supply previously permitted. On May 15 the National Production Authority completely revoked Orders M-38 and M-76, governing the use and distribution of lead, respectively, thus ending all domestic controls on lead. On June 5, 1952, the National Production Authority withdrew all forms of lead from list A, designating scarce materials, and on July 3 the Office of International Trade removed quota restrictions on the quantity of soft pig lead that might be exported. Export licenses were still required, however, for exports to all countries except Canada.

GOVERNMENT PROGRAMS UNDER THE DEFENSE PRODUCTION ACT OF 1950

The Defense Minerals Administration was established in 1950, under provisions of the Defense Production Act, to stimulate the production of critical minerals and metals needed for national defense. Late in 1951 this organization was terminated, being succeeded with respect to exploration activities by the Defense Minerals Exploration Administration and with respect to procurement by the Defense Materials Procurement Agency.

The objective of the Defense Minerals Exploration Administration was to encourage mineral exploration and thus to increase the production of strategic and critical minerals and metals. In connection with this program, the Government financed up to 50 percent of the total cost of approved exploration projects for lead and zinc. At the end of 1952, 151 exploration contracts involving lead or zinc were in force. Government participation in these 151 lead-zinc exploration contracts totaled \$5,595,473 or approximately half of total Government participation in all defense-minerals exploration contracts.

The Defense Materials Procurement Agency in connection with its procurement function made purchase contracts (both foreign and domestic), granted floor-price contracts and subsidies, and made recommendations for production expansion loans, operating loans, and certificates of necessity for accelerated tax amortization programs. The Agency also certified the essentiality of specific access-road programs.

Table 2 in the Zinc chapter of this volume lists individual lead-zinc Defense Minerals Exploration Administration contracts through 1952, and tables 3, 4, and 5 list purchase contracts and certification of tax amortization programs and access roads as they pertain to lead or zinc.

TABLE 1.—Salient statistics of the lead industry in the United States, 1943-47 (average) and 1948-52, in short tons

	1943-47 (average)	1948	1949	1950	1951	1952
Production of refined primary lead: From domestic ores and base bullion From foreign ores and base bullion	366, 388 65, 045			418, 809 89, 505		
TotalRecovery of secondary leadImports (general):	431, 433 388, 261					
Lead in pigs, bars, and old Lead in base bullion	198, 895 1, 271	7, 186	2,373	3,488	2, 281	389
Lead in ores and matte Exports of refined pig lead Consumption of primary and secondary	65, 712 4, 211		107, 279 969	76, 520 2, 735		104, 515 1, 762
leadPrices (cents per pound): New York:	1, 082, 344	1, 133, 895	957, 674	1, 237, 981	1, 184, 793	1, 130, 795
Average for period Quotation at end of period	8. 46 9. 41	21. 50	12.00	17.00	19.00	14. 12
London average for period Mine production of recoverable lead 1 World smelter production of lead	7. 57 396, 140 1, 386, 000	390, 476	409, 908	430, 827		

¹ Includes Alaska.
² Revised figure.

DOMESTIC PRODUCTION

Statistics on lead output may be prepared on a mine or smelter and refinery basis. Mine-production data, compiled on the basis of lead content in ores and concentrates, adjusted to account for average losses in smelting, are a better measure of domestic output from year to year and are more accurate for showing the geographic distribution of production. Pig-lead output, as reported by smelters and refiners, presents a more precise figure of actual lead recovery but indicates only in a general way the source of crude material treated. Smelter and refinery output usually differs from the mine figure owing to the lag between mine shipments and smelter treatment of ores and concentrates.

MINE PRODUCTION

Domestic mine output of recoverable lead increased slightly to 390,000 tons in 1952. Gains were made in the first half of the year, when higher prices stimulated production; during the latter half of the year, when lead and zinc prices were lower, lead was produced at a rate 4 percent below the 1951 rate. Missouri was by far the leading producing State, supplying 33 percent of the total United States output. Idaho and Utah ranked second and third in production, with 19 percent and 13 percent of the total, respectively. Production in 7 of the 16 principal States was higher than in 1951; the largest tonnage increases were in Missouri, Washington, and Virginia, and the largest decreases were in Kansas, Idaho, and California. Lead output in Kansas was the lowest since 1918, and in Arizona, Nevada, Idaho, and New York mine production was the smallest since 1943, 1945, 1946, and 1946, respectively. On the other hand, production in 1952 from Washington was larger than in any year, that from Wisconsin was the largest since 1927, and that of Illinois was the largest in more than 50 years.

LEAD 593

Of the total lead produced in the United States in 1952, 69 percent came from 25 properties. Missouri continued to rank first among the States in the production of lead, and the Southeastern Missouri district continued to be the largest lead-producing region, supplying nearly 32 percent of the total domestic output. Production for the first 6 months from Southeast Missouri was only 2 percent more than the output in the last 6 months, indicating that the price declines, which began in April, had less effect on production than price changes had elsewhere in the lead-mining industry. Development work, however, was curtailed to some extent. The St. Joseph Lead Co. continued as the largest individual lead producer in the district and in the United States. The company operated its 4 mills, having a combined daily capacity of 26,800 tons, and its Bonne Terre, Desloge, Federal (including Doe Run), and Leadwood groups of mines in the Lead Belt throughout the year. It also began production from its Hayden Creek property in September and continued development of its Indian Creek property. In addition, the St. Joseph Lead Co. operated Mine La Motte and its 2,000-ton mill as a joint venture with the National Lead Co. The National Lead Co. (St. Louis Smelting & Refining Division) operated its Madison lead-copper mine and 1,200ton mill throughout the year.

TABLE 2.—Mine production of recoverable lead in the United States, 1943-47 (average) and 1948-52, by States, in short tons

State	19 43–47 (average)	1948	1949	1950	1951	1952
Western States and Alaska: Alaska Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Texas Utah Washington Wyoming		329 29, 899 9, 110 25, 143 88, 544 18, 411 9, 777 7, 653 7 16 170 55, 950 7, 147	51 33, 568 10, 318 26, 853 79, 299 17, 996 10, 626 4, 652 12 4 132 53, 072 6, 417	149 26, 383 15, 831 27, 007 100, 025 19, 617 9, 408 4, 150 17 129 44, 753 10, 334	21 17, 394 13, 967 30, 336 76, 713 21, 302 7, 148 5, 846 2 2 2 43 50, 451 8, 002	1 16, 520 11, 199 30, 066 73, 719 21, 279 6, 790 7, 021 1 2 56 50, 210 11, 744
Total	202, 206	252, 156	243, 000	257, 803	231, 227	228, 608
West Central States: Arkansas Kansas Missouri Oklahoma Total	7, 941 161, 505 14, 866 184, 316	22 8, 386 102, 288 16, 918 127, 614	9, 772 127, 522 19, 858 157, 153	9 9, 487 134, 626 20, 724 164, 846	33 8, 947 123, 702 16, 575 149, 257	5, 916 129, 245 15, 137
States east of the Mississippi River: Illinois	3,867 1,373	3, 695 216 1, 231 	3, 824 187 1, 317 257 3, 313 857	2, 729 66 1, 484 113 3, 254 532	3, 160 107 1, 500 14 1, 508 1, 391	4, 262 60 1, 120 18 3, 792 2, 000
TotalGrand total		10, 706 390, 476	9,755	8, 178 430, 827	7, 680 388, 164	390, 162

Lead production in the Tri-State district increased nearly 2 percent over the 1951 total. Output in Kansas and Oklahoma declined 34 percent and 9 percent, respectively, while output from southwestern Missouri increased markedly and accounted for the overall increase in the district. Production dropped 20 percent in the latter half of the year as compared with the first 6 months; many small mines curtailed production or were closed because of the sharp decline in the zinc price, as zinc constitutes the major values in most of the district. The Quick Seven pit (Brown & Root and American Zinc, Lead & Smelting Co.), the Kelsey Norman pit of the Wild Goose Mining Syndicate, and the Potter-Sims Snap open-pit mine were the major sources of lead and zinc produced in southwestern Missouri. The Eagle-Picher Co. remained by far the largest lead producer in the Tri-State district, followed by the American Zinc, Lead & Smelting Co. Other significant producers were the National Lead Co. (operations were shut down on account of a labor strike during the last 4 months of the year), Beck Mining Co., Potter-Sims Mines, Inc., Federal Mining & Smelting Co., and the Dines Mining Co.

Mine production of recoverable lead in the combined Western States decreased 1 percent in 1952. During the year mines in these States accounted for 59 percent of the total domestic output, or

slightly less than in 1951.

Idaho continued to be the leading producer of lead in the Western States and second only to Missouri in the United States, despite a 4-percent decrease in output in 1952. Declining market prices for lead and zinc and a restriction on the use of electric power were the principal factors contributing to the reduced output. The Signal Mining Co. Hilarity mine and the Idaho Custer Mines, Inc., Livingston mine were shut down, and Day Mines, Inc., Spokane-Idaho Mining Co., and Sunset Minerals, Inc., curtailed operations because of low metal prices. Pacific Northwest consumers of power using more than 8,000 kw.-hr. per week were required to reduce their consumption to 90 percent of that in 1951, owing to the lack of rain during the summer and fall. More than 90 percent of the State total lead output in 1952 came from the Coeur d'Alene region. The remainder was produced chiefly in the Warm Springs, Bayhorse, and Texas districts. The Bunker Hill & Sullivan mine was again by far the largest producer in the State, followed by the Page, Star, Morning, and Triumph mines. Other important producers were the Sunshine, Golconda, Sidney group, and Constitution properties and the Dayrock mine of Day Mines, Inc. These 6 mines accounted for 65 percent of the State lead. Zinc-lead ore yielded about 79 percent of the State output.

Output of recoverable lead in Utah in 1952 was approximately the same as in 1951. Zinc-lead ore supplied 92 percent of the State total lead. About 68 percent of the output came from the West Mountain (Bingham) district, 15 percent from the Park City region, and 9 percent from the Tintic district. The United States & Lark property remained by far the largest producer in the State and was followed by the Chief Consolidated mine, New Park property, West Calumet, Park Utah property, Silver King Coalition mine, and the Butterfield group. In the Park City region the Park Utah Consolidated Mining

595LEAD

Co. property was shut down on June 25 because of a labor strike, and the Silver King Coalition Mining Co. property was closed August 16 because of low metal prices. The Chief Consolidated Mining Co. property in the Tintic district was shut down by a labor strike for

nearly 3 months during the summer.

Mine production of lead in Colorado in 1952 was 1 percent less than that in 1951. Many mines could not operate profitably at the low metal prices in effect the latter part of the year, and a number of them, mostly small producers, shut down. The leading producers in order of output were the Resurrection group, Treasury Tunnel-Black Bear group, Eagle group, Smuggler Union group, and the Rico Argentine group. Zinc-lead and zinc-lead-copper ores yielded 78 percent of the State total lead, zinc ore 15 percent, and lead ore 7 percent.

Montana's production of lead in 1952 was substantially the same The bulk of the output came from the Anaconda Copper Mining Co. owned and leased operations at Butte. Smaller quantities of lead were obtained from the American Smelting & Refining Co. subsidiary, the Mike Horse mine (which was closed in November "due to low prices and a substantial exhaustion of reserves"), and from the Jack Waite and Iron Mountain mines. Nearly 87 percent of the State lead was recovered from zinc-lead ore; most of the rest came from

Lead output in Arizona decreased 5 percent in 1952, the lowest since 1943. Reduced output resulted largely from the closing of the Eagle-Picher Co. San Xavier mine in August because of low metal prices. The chief producers in the State in 1952 in order of output were the Iron King mine, Mammoth-St. Anthony property, Flux group, San Xavier mine, Copper Queen mine and the Aravaipa group. Six districts—Aravaipa, Big Bug, Harshaw, Old Hat, Pima, and Warren—accounted for 88 percent of the State total lead. Zinc-lead ore yielded 93 percent of the total output.

Production of lead in Washington in 1952 set a new record, 47 percent above the 1951 output and 14 percent over 1950, the previous high. The leading producers in order of output were the Pend Oreille mine, Grandview mine, Bonanza mine, and the Deep Creek These four properties accounted for virtually all of the State lead during the year. Over 88 percent of the total lead output was recovered from zinc-lead ore, and most of the remainder came from

lead ore and old lead tailings.

California's lead output in 1952 was 20 percent below the 1951 total. The Anaconda Copper Mining Co. Darwin and Shoshone groups supplied the bulk of the State production. The Shoshone property curtailed production in June to explore for new sources of ore. Coronado Copper & Zinc Co., the only other large producer of lead in the State, terminated mining operations at its Afterthought mine in August owing to ore depletion. Many of the small, high-cost producers ceased operations after midyear owing to the reduced lead There was some exploration for new deposits in 1952, the activity centering mainly in Inyo, San Bernardino, and Shasta Counties. Zinc-lead ore provided about 60 percent of the lead yield and lead ore 36 percent.

Mine production of lead in New Mexico in 1952 increased 20 percent above the 1951 output. Most of the output came from mines in the Central and Magdalena districts; minor tonnages of lead and barite ores were mined in the Hansonberg district. The leading producers in order of output were the Ground Hog group, Bayard group, and the Lynchburg mine. Zinc ore yielded 64 percent of the State total lead, zinc-lead ore 21 percent, and lead ore 15 percent.

TABLE 3.—Mine production of recoverable lead in the United States, 1943-47 (average) and 1948-52, and by districts that produced 1,000 tons or more during any year, 1948-52, in short tons

District	State	1943-47 (aver- age)	1948	1949	1950	1951	1952
Southeastern Missouri region.	Missouri	1 1	100, 654	126, 269	133, 680	122, 318	122, 942
Coeur d'Alene region	Idaho	71, 933	82, 587	74, 152	94, 697	70, 570	67, 330
West Mountain (Bing-ham).	Utah	25, 567	30, 672	32, 600	27, 472	29, 120	34, 328
Tri-State (Joplin region)	Kansas, Southwestern Missouri, Oklahoma.	26, 788	26, 901	30, 883	31, 157	26, 906	27, 356
Summit Valley (Butte)	Montana	4, 480	13, 217	11, 490	15, 679	16, 630	16, 153
Upper San Miguel	Colorado	2,087	3,804	5, 285	7,780	8,008	7,657
Park City region California (Leadville)	Utah	11, 192	12,670	8, 583	7, 538	11,719	7,494
Pioche	Colorado Nevada	4, 891 3, 393	4, 745 5, 613	5,080	6, 392 6, 761	5, 996	5,624
Central	New Mexico	4,005	3,740	6,630 2,479	2, 315	4, 751 3, 133	4,632 4,486
Tintic	Utah	5, 783	5, 970	6, 676	6, 520	5, 553	4, 480
Big Bug	Arizona	1,770	2,676	3, 330	4, 357	4, 035	4, 135
Red Cliff	Colorado	1.078	1,120	1,600	2,110	4, 274	3, 980
Old Hat	Arizona	4,382	5, 406	6,788	5, 980	1 4, 241	3, 913
Austinville	Virginia	3,680	4, 703	3, 313	3, 254	1,508	3, 792
Upper Mississippi Valley.	Wisconsin.	1,690	1,807	2,046	1,801	1,923	3, 532
Animas	Colorado	2, 591	1,886	2, 935	3,069	3,963	3,464
Warm Springs	Idaho Kentucky, Southern Illi-	2, 569	1,304	2, 339	2, 648	3,086	3, 455
Kentucky-Southern Illinois.	l nois	2, 494	2, 965	2,822	1, 526	2, 516	2, 790
Rush Valley and Smelter (Tooele County).	Utah	3, 451	4, 185	2, 953	1,393	2,674	2, 595
Pioneer (Rico)	Colorado	2, 410	2, 430	1,388	1, 138	2, 231	2, 230
Harshaw	Arizona	1,772	1, 999	1,546	1,931	1,668	1,921
Pima (Sierritas, Papago, Twin Buttes).	do	2, 058	3, 917	4, 232	2, 996	2,834	1,864
Warren (Bisbee)	do		11, 253	13,865	7, 790	1,606	1,828
Creede Heddleston	Colorado		451	1, 162	1,422	1,167	1,513
St. Lawrence County	Montana New York	2, 539 1, 486	1,946	2, 335	930	1,398	1, 251
Bayhorse	Idaho	1,489	1, 231 1, 880	1,317 1,073	1,484 1,679	1,497 1,732	1, 120 1, 091
Magdalena.	Idaho New Mexico	1, 489	2,826	1, 162	926	1,004	1,046
Sneffels	Colorado.	(2)	756	1, 064	866	1.094	1.044
Ophir	l Utah	613	791	1,089	948	712	999
Battle Mountain	Nevada	54	234	1, 290	564		907
Aravaipa	Arizona	355	1, 142	1, 271	1,498	1, 294	865
Eureka	Colorado	215	1, 107	578	323	569	759
Tomichi	do	563	1, 788	1, 221	645	761	739
Eagle Modoc	Montana	834	600	1,024	1,013	(2)	733
Ten Mile	California Colorado	266 625	1,061	729	87	317	111
Coso (Darwin)	California	4,906	4, 177 6, 078	3, 671 4, 928	910 8, 479	7 101	(3)
Metaline 3	Washington	9 000	4, 297	4, 928	7, 445	7, 191 5, 234	(2)
Northport (Aladdin) 3	do	198	1, 426	342	237	937	(2)
Bossburg 3	dodo	330	1, 394	2,011	2, 640	1,768	(2) (2) (2) (2)
Resting Springs 3	California	(2)	(2)	(2)	(2)	(2)	(2)

¹ Revised figure.

Figure not shown to avoid disclosure of individual company operations.
 This district is not listed in order of 1952 output.

TABLE 4.—Twenty-five leading lead-producing mines in the United States in 1952, in order of output

Rank	Mine	District	State	Operator	Type of ore
1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25	Federal United States & Lark Bunker Hill & Sullivan Leadwood Butte Hill mines and dumps Mine La Motte Bonne Terre Darwin group Madison Page Star Desloge Pend Oreille Resurrection Morning Treasury Tunnel-Black Bear Combined Metals group Grandview Iron King Eagle Mammoth-Collins Chief Austinville Triumph, North Star Smuggler Union	Southeastern Missouri West Mountain (Bingham) Yreka Southeastern Missouri Summit Valley (Butte) Southeastern Missouri	Idaho Missouri Montana Missouri do California Missouri Idaho Missouri Idaho Colorado Idaho Colorado Nevada Washington Colorado Nevada Washington Colorado Arizona Colorado Arizona	St. Joseph Lead Co. U. S. Smelting, Refining & Mining Co Bunker Hill & Sullivan Mining & Concentrating Co. St. Joseph Lead Co Anaconda Copper Mining Co. St. Joseph Lead Co Anaconda Copper Mining Co. St. Louis Smelting & Refining Co. Federal Mining & Refining Co. St. Joseph Lead Co St. Joseph Lead Co Pederal Mining & Smelting Co. St. Joseph Lead Co. Pend Oreille Mines & Metals Co. Resurrection Mining Co. Federal Mining & Smelting Co. Idarado Mining Co. Combined Metals Reduction Co. American Zinc-Lead Smelting Co. Shattuck-Denn Mining Co. New Jersey Zinc Co. St. Anthony Mining & Development Co. Chief Consolidated Mining Co. New Jersey Zinc Co. Triumph Mining Co Triumph Mining Co Telluride Mines, Inc.	Lead. Zino-lead. Lead. Do. Do. Lead-copper Zino-lead. Do. Lead. Zino-lead. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do

Recoverable lead output in Nevada in 1952 decreased 5 percent below the 1951 tonnage, owing chiefly to the closing of the Copper Canyon Mining Co. Copper Canyon mine in October and the Ely Valley Mines, Inc., mine in August because of low metal prices. The Pioche group of mines was by far the largest producer in the State, followed by the Copper Canyon and Ely Valley properties. Zinc-lead ore supplied 76 percent of the State total lead and lead ore 20 percent.

Mines in States east of the Mississippi River produced 47 percent more lead in 1952 than in 1951. Lead is produced chiefly as a byproduct or coproduct of zinc and fluorspar mining in these States. Increased output was attributed in part to resumption of full-scale operations at the Austinville mine in Virginia and to greatly increased production from mines in Wisconsin and Illinois.

Small quantities of lead were also recovered in 1952 from ores mined

in Oregon, South Dakota, Texas, and Arkansas.

The 25 leading lead-producing mines in the United States in 1952, listed in table 4, yielded 69 percent of the total domestic output; the 10 leading mines produced 51 percent and the 4 leading mines 37 percent.

Detailed information on the production of mines and mining districts in the United States may be found in Volume III of this

Yearbook.

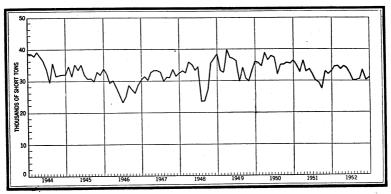


FIGURE 1.—Mine production of recoverable lead in the United States, 1944-52, by months.

TABLE 5.—Mine production of recoverable lead in the United States, 1951-52, by months, in short tons

Month	1951	1952	Month	1951	1952
January February March April May June July	35, 102 32, 864 36, 474 32, 972 33, 537 32, 148 30, 040	34, 551 34, 601 33, 637 34, 724 34, 087 32, 202 30, 090	August	29, 487 27, 494 33, 058 32, 060 32, 928 388, 164	30, 454 30, 633 33, 853 30, 152 31, 178 390, 162

¹ Includes Alaska.

LEAD 599

SMELTER AND REFINERY PRODUCTION

Pig (refined) lead produced in the United States is derived from three principal sources—domestic mine production, imports of foreign ores and base bullion, and scrap materials (treated largely at secondary smelters)—and is recovered at primary refineries that treat ore, base bullion, and small quantities of scrap and at secondary plants that process scrap exclusively. Of the 13 primary lead plants in the United States, 6 combine smelting and refining operations, 5 produce only base bullion (containing approximately 98 percent lead, plus gold and silver, and small quantities of other impurities recovered from the ores smelted), and 2 confine their activities to refining. Refined lead and antimonial or "hard" lead may be produced by both primary and secondary plants. Because of the large quantity of hard lead, such as battery scrap, melted at secondary smelters, the output from this type of operation is principally antimonial lead. Statistics on the production of refined lead and alloys at secondary plants are given in the Secondary Lead section of this chapter.

The 11 primary smelters in operation in 1952 consumed 498,000 short tons (lead content) of primary materials in the form of ores and concentrates, of which 81 percent was domestic and 19 percent was of foreign origin. Consumption was 14 percent greater than in 1951 but

almost 3 percent below that of 1950.

ACTIVE LEAD SMELTERS AND REFINERIES

Primary lead smelters and refineries operating in the United States in 1952 were as follows:

California: Selby—Selby plant, American Smelting & Refining Co. (smelter and

Colorado: Leadville-Arkansas Valley plant, American Smelting & Refining Co. (smelter).

Idaho: Bradley—Bunker Hill Smelter, Bunker Hill & Sullivan Mining & Concentrating Co. (smelter and refinery).

Illinois: Alton-Federal plant, American Smelting & Refining Co. (smelter and refinery). Indiana: East Chicago—U. S. S. Lead Refinery, Inc. (refinery).

Kansas: Galena—Galena plant, Eagle-Picher Co. (smelter and refinery).

Missouri: Herculaneum—Herculaneum plant, St. Joseph Lead Co. (smelter and

Montana: East Helena—East Helena plant, American Smelting & Refining Co. (smelter).

Nebraska: Omaha—Omaha plant, American Smelting & Refining Co. (refinery). New Jersey: Barber—Perth Amboy plant, American Smelting & Refining Co. (smelter and refinery).

Texas: El Paso—El Paso plant, American Smelting & Refining Co. (smelter).

Utah: Midvale—Midvale plant, United States Smelting, Refining & Mining Co. (smelter).

Tooele—Tooele plant, International Smelting & Refining Co. (smelter).

REFINED LEAD

Primary refineries in the United States produced 475,900 short tons of refined lead in 1952, an increase of 13 percent over 1951 production.

Of the 472,900 tons of refined lead produced from primary sources during the year, domestic ores and base bullion were the source of 81 percent and imported ores and bullion of 19 percent (82 and 18 percent, respectively, in 1951). Table 7 gives the production of refined lead by source material and by country of origin. Details of the sources of lead from domestic ores are given in the Mine Production section of this chapter.

TABLE 6.—Refined lead produced at primary refineries in the United States, 1943-47 (average) and 1948-52, by source material, in short tons

Source	1943-47 (average)	1948	1949	1950	1951	1952
Refined lead: From domestic ores and base bullion From foreign ores From foreign base bullion	366, 388 64, 944 101	339, 413 60, 829 6, 452	71, 413	86, 241	71, 984	89, 092
Total from primary sourcesFrom scrap	431, 433 11, 086	406, 694 4, 952				
Total refined lead	442, 519 \$0. 084 \$71, 866, 000	411, 646 \$0. 179 \$145, 600, 000	\$0. 158	\$0. 135	\$0.173	

¹ Excludes value of refined lead produced from scrap at primary refineries.

TABLE 7.—Refined primary lead produced in the United States, 1943-47 (average) and 1948-52, by source material and country of origin, in short tons

Source	1943–47 (average)	1948	1949	1950	1951	1952
Domestic ore and base bullion	366, 388	339, 413	404, 449	418, 809	342, 644	383, 358
Foreign ore: Australia Canada Europe Mexico South America Other foreign	14, 793 6, 344 3, 628 15, 437 24, 742	6, 729 3, 608 43 4, 427 24, 589 21, 433	6, 465 3, 317 30 8, 477 29, 163 23, 961	6, 984 7, 892 5, 992 38, 770 26, 603	9, 056 7, 986 17 3, 620 36, 849 14, 456	5, 888 7, 113 454 2, 344 48, 625 24, 668
Total	64, 944	60, 829	71, 413	86, 241	71, 984	89, 092
Foreign base bullion: Australia. Mexico South America. Other foreign	44 57	466 5, 637 52 297	1,382 36 58	2, 427 435 402	2, 815 27 75 148	70 177 155
Total	101	6, 452	1, 476	3, 264	3,065	402
Total foreign	65, 045	67, 281	72, 889	89, 505	75, 049	89, 494
Grand total	431, 433	406, 694	477, 338	508, 314	417, 693	472, 852

ANTIMONIAL LEAD

Production of antimonial lead at primary refineries in 1952 dropped 11 percent below the 1951 output. Production increased at 2 of the alloy-producing plants but declined at the other 4. Distribution of antimonial lead production at primary refineries in 1948–52 by source material is shown in table 8, as is also the average antimony content.

material is shown in table 8, as is also the average antimony content. Although antimonial lead is an important byproduct of the refining of base bullion, the quantity derived from this source is only a small part of total domestic output. The major production is recovered

LEAD 601

from the smelting of antimonial lead scrap at secondary smelters. Production data from lead-smelting plants treating scrap materials exclusively are summarized in the following section.

TABLE 8.—Antimonial lead produced at primary lead refineries in the United States, 1943-47 (average) and 1948-52

Year	Production (short tons)	Antimony content		Lead content by difference (short tons)			
		Short tons	Percent	From do- mestic ore	From for- eign ore	From scrap	Total
1943–47 (average)	62, 893 100, 764 41, 402 57, 959 65, 309 58, 203	4, 081 5, 760 3, 385 4, 504 4, 416 4, 392	6. 6 5. 7 8. 2 7. 8 6. 7 7. 5	12, 654 29, 561 692 10, 728 17, 372 12, 993	6, 151 15, 918 4, 620 4, 344 9, 218 5, 673	40, 007 49, 525 32, 705 38, 383 34, 303 35, 145	58, 812 95, 004 38, 017 53, 455 60, 893 53, 811

SECONDARY LEAD

Some scrap lead is treated at primary smelters, but the greater part is processed at a large number of plants that specialize in the treatment of secondary materials. Secondary lead is recovered in the form of refined lead, antimonial lead, and other alloys.

Secondary lead recovered in 1952 fell 9 percent below the peak established in 1951 to a total of 471,294 tons and exceeded domestic mine production for the seventh consecutive year. Data on recovery, by type of plant, in 1948–52 are shown in table 9. Detailed information on secondary lead appears in the Secondary Metals—Nonferrous chapter of this volume.

TABLE 9.—Secondary lead recovered in the United States, 1943-47 (average) and 1948-52, in short tons

	1943-47 (average)	1948	1949	1950	1951	1952
As refined metal: At primary plants At other plants	11, 086 60, 854	4, 952 126, 951	23, 230 129, 396			3, 070 137, 032
Total	71, 940	131, 903	152, 626	129, 313	168, 916	140, 102
In antimonial lead: At primary plantsAt other plants	40, 007 162, 282	49, 525 194, 027	32, 705 140, 037	38, 383 187, 257		35, 145 187, 806
Total In other alloys	202, 289 114, 032					222, 951 108, 241
Grand total: Short tonsValue	388, 261 \$69, 017, 982		412, 183 \$130, 249, 828			471, 294 \$151, 756, 668

LEAD PIGMENTS

The principal lead pigments are litharge, white lead, red lead, sublimed lead, leaded zinc oxide, and orange mineral. These products are manufactured for the most part from metal, but some ore and concentrates are converted directly into pigments. Details of the production of lead pigments are given in the Lead and Zinc Pigments and Zinc Salts chapter of this volume.

CONSUMPTION AND USES

Domestic lead consumption (including lead in lead ore consumed directly in the manufacture of lead pigments and salts) totaled 1,131,000 tons in 1952—a 5-percent decline from 1951. Of the total consumed, 726,000 tons was refined soft lead, 275,000 tons was contained in antimonial lead, 29,000 tons in white metal scrap, 43,000 tons in percentage metals, 26,000 tons in copper-base scrap, and 22,000 tons in residues and drosses; and 10,000 tons was recovered from ore in leaded zinc oxide. About 42 percent of all lead consumed was used in metal products, 31 percent in storage batteries, 11 percent in pigments, 13 percent in chemicals, including tetraethyl lead, and 3 percent for miscellaneous and other purposes. Cable covering took about 13 percent (12.6 percent) of the total and tetraethyl lead almost 13 percent (12.9 percent).

In June 1952 Chemical Engineering 3 reported that the Ethyl Corp. had completed a new tetraethyl lead plant with a capacity of 40,000 tons per year on the Houston, Tex., ship channel and noted that the E. I. du Pont de Nemours & Co., was completing new facilities at Deepwater, N. J., that would increase the capacity to 25,000 tons of tetraethyl lead per year. These new plants give the United States a total tetraethyl lead capacity of about 270,000 tons per year. Current trends point to higher octane gasoline requirements, which can be met most economically by the use of ethyl fluid.

TABLE 10.—Consumption of lead in the United States in 1951-52 by products, in short tons

	·			·	
	1951	1952		1951	1952
Metal products:		36, 182	Pigments: White lead	25, 578	22, 943
Bearing metals Brass and bronze Cable covering	29, 858	36, 545 25, 807 142, 571	Red lead and litharge Pigment colors Other 1	12,796	76, 742 12, 839 9, 775
Calking lead Casting metals Collapsible tubes	46, 544 22, 497	45, 150 18, 017 10, 095	Total pigments	139, 504	122, 299
Pipes, traps, and bends Sheet lead	33, 095 31, 210 82, 465	2, 124 29, 465 28, 697 72, 664	Chemicals: Tetraethyl lead Miscellaneous chemicals	128, 407 6, 949	146, 723 3, 996
Terne metal Type metal	2, 051 28, 236	1, 812 27, 413	Total chemicals	135, 356	150, 719
Total metal products	500, 009	476, 542	Miscellaneous uses: Annealing Galvanizing	6, 656 2, 173	5, 084 2, 002
Storage batteries: Antimonial lead Lead oxides	199, 838 175, 546	187, 506 163, 424	Lead plating Weights and ballast	1, 444 7, 913	
Total storage batteries	375, 384.	350, 930	Total miscellaneous uses Other, unclassified uses	18, 186 16, 354	15, 783 14, 522
			Grand total	1,184,793	1, 130, 795

¹ Includes lead content of leaded zinc oxide production.

³ Chemical Engineering, Big Jump for TEL Vol. 59, No. 6, June 1952, p. 274.

TABLE 11.—Consumption of lead in the United States 1951-52, by months, in short tons 1

LEAD

Month	1951	1952	Month	1951	1952
January February March April May June July	126, 022 101, 603 120, 826 118, 372 102, 524 94, 458 81, 427	97, 503 92, 527 88, 664 83, 719 82, 714 87, 679 85, 568	AugustSeptemberOctoberNovemberDecemberTotal	97, 622 78, 999 88, 527 88, 106 86, 307 1, 184, 793	105, 729 107, 728 108, 841 96, 509 93, 614 1, 130, 795

¹ Includes lead content of leaded zinc oxide production.

TABLE 12.—Consumption of lead in the United States in 1952, by class of product and type of material, in short tons

	Soft and antimonial lead	Scrap, percentage metal, drosses, etc.	Total
Storage batteriesPigmentsChemicals	364, 047 345, 001 112, 604 150, 719 15, 420 12, 950	112, 495 5, 929 62 363 1, 572	476, 542 350, 930 112, 666 150, 719 15, 783 14, 522
Total	1,000,741	120, 421	1 1, 121, 162

¹ Excludes 9,633 tons of lead contained in leaded zinc oxide.

STOCKS

Producers' Stocks.—Lead stocks, as reported by the American Bureau of Metal Statistics, are shown in table 13. Stocks of refined and antimonial lead include metal held by all primary refiners and by some of the refiners of secondary metal who produce soft lead. According to reports released by the American Bureau of Metal Statistics, total lead stocks increased during the year from 124,080 to 149.778 tons (21 percent) and refined and antimonial stocks from 25,339 to 43,560 tons (72 percent).

TABLE 13.—Stocks of lead at smelters and refineries in the United States at end of year, 1943-47 (average) and 1948-52, in short tons

[American Bureau of Metal Statistics]

			-			
	1943-47 (a verage)	1948	1949	1950	1951	1952
Refined pig leadAntimonial lead	27, 302 5, 980	29, 050 9, 594	61, 329 9, 095	28, 894 6, 725	18, 518 6, 821	31, 405 12, 155
Total	33, 282	38, 644	70, 424	35, 619	25, 339	43, 560
Lead in base bullion: At smelters and refineries In transit to refineries In process at refineries	8, 139 4, 338 15, 592	9, 697 4, 101 17, 939	16, 364 3, 696 15, 561	11, 993 4, 959 15, 341	11, 315 3, 909 15, 700	17, 583 3, 105 19, 759
TotalLead in ore and matte and in process at smelters	28, 069 85, 527	31, 737 76, 373	35, 621 95, 481	32, 293 69, 757	30, 924 67, 817	40, 447 65, 771
Grand total	146,878	146, 754	201, 526	137, 669	124, 080	149, 778

The Bureau of Mines annual survey of primary smelters and refiners indicated stocks of 31,400 tons of refined soft lead at these plants on December 31, 1952, compared with 18,500 tons on January 1. Stocks of primary antimonial lead (lead content) at these plants increased from 6,400 to 11,000 tons during the year. Stocks of ore and concentrates (in terms of lead content) decreased in 1952 from 44,400 to 34,000 tons, and inventories of base bullion at refineries that receive bullion and smelters that produce bullion for shipment to refineries increased from 12,700 to 13,500 tons. Stocks of in-process base bullion or work lead at four combination smelter-refinery plants are not included in reports to the Bureau of Mines. No direct comparison can be made between these data and the figures of the American Bureau of Metal Statistics. Figures reported to the Bureau of Mines represent physical inventory at the plants, irrespective of ownership, and do not include material in process or in transit.

Consumers' Stocks.—Consumers' stocks of lead increased 19 percent in 1952. On January 1 they totaled 103,000 tons, increased to 132,000 tons at the end of July, dropped to 105,000 tons by October 31, and rose again in November and December to total 123,000 tons on December 31. Stocks of refined soft lead, white metal scrap, lead in copper-base scrap and in the drosses increased 43, 23, 60, and 45 percent, respectively; decreases were reported in antimonial lead and percentage metals.

TABLE 14.—Consumers' stocks of lead in the United States at end of year, 1948-52, by type of material, in short tons, lead content

Year	Refined soft lead	Antimonial lead	Unmelted white scrap	Percentage metals	Copper- base scrap	Drosses, residues, etc.	Total
1948	62, 077	35, 088	4, 828	7, 932	2, 301	6, 972	119, 198
1949	64, 542	16, 837	2, 957	5, 405	2, 087	5, 439	97, 267
1950	87, 285	27, 737	5, 406	6, 446	1, 558	11, 452	139, 884
1951	56, 731	28, 221	3, 140	7, 054	1, 429	6, 185	102, 760
1951	80, 888	20, 309	3, 877	6, 191	2, 282	8, 983	122, 530

PRICES

The two major markets for lead in the United States are New York and St. Louis. The bulk of the lead produced domestically is sold at prices normally based upon quotation in these markets. The differential between St. Louis and New York prices is about 0.2 cent a pound, an amount approximating the freight charges between the two cities, the St. Louis price being the lower. The London market has had no direct influence on New York quotations since suspension of trading on the London Metal Exchange in September 1939; however, on October 1, 1952, free trading in lead on the Exchange was resumed, and United States prices declined to the lowest point of the year, following sharp reductions in the London quotations.

following sharp reductions in the London quotations.

The market price for common lead, New York, held at the ceiling of 19 cents per pound set by the Office of Price Stabilization on October 2, 1951, until April 29, 1952, when increased supplies and lower consumption caused a decline to 18 cents. Later drops brought the price to 15 cents a pound on May 12. The quoted price advanced to 16

605 LEAD

cents on June 24, where it remained until October 7, when it again dropped to 15 cents. Limited buying caused further declines in the following weeks, and on October 22 the price was down to 13.5 cents, the low point of the year. In November and December the market improved, and on December 30 the quotation for lead was 14.75 cents a pound.

TABLE 15.—Average monthly and yearly quoted prices of lead at St. Louis, New York, and London, 1950-52, in cents per pound 1

	1950			1951			1952		
Month	St. Louis	New York	Lon- don 2	St. Louis	New York	Lon- don ²	St. Louis	New York	Lon- don ²
January February March April May June July August September October November December	11. 80 11. 80 10. 76 10. 43 11. 52 11. 61 11. 46 12. 73 15. 60 15. 84 16. 80 16. 80	12. 00 12. 00 10. 96 10. 63 11. 72 11. 81 11. 66 12. 93 15. 80 16. 04 17. 00	12.11 12.11 11.06 10.57 11.61 11.84 11.58 12.84 15.70 16.00 17.00	16. 80 16. 80 16. 80 16. 80 16. 80 16. 80 16. 80 16. 80 18. 72 18. 80 18. 80	17. 00 17. 00 17. 00 17. 00 17. 00 17. 00 17. 00 17. 00 17. 00 18. 92 19. 00	17. 00 17. 00 17. 00 20. 00 20. 00 20. 00 21. 45 22. 49 21. 87 21. 88 21. 84	18. 80 18. 80 18. 80 18. 72 15. 53 15. 06 15. 80 15. 80 14. 20 13. 98 13. 92	19. 00 19. 00 19. 00 18. 92 15. 73 15. 26 16. 00 16. 00 14. 40 14. 18 14. 12	21. 86 21. 23 20. 87 20. 36 17. 29 16. 29 16. 60 16. 36 3 11. 84 3 11. 23 3 12. 10
Average	13. 10	13. 30	13. 29	17. 29	17. 49	20. 25	16. 27	16.47	17.09

The official London price of £175 per long ton of lead (equivalent to 21.86 cents per pound computed on the 279.75-cent base) fixed on October 1, 1951, was lowered to £170 (21.23 cents) on February 1, 1952. Thereafter subsequent drops reduced the price to £131 (16.36) cents) on July 10, where it remained until October. On October 1 the London free lead market was opened, marking the first time the exchanged functioned since August 31, 1939. During the first few weeks of free trading the price ranged from £111 (13.86 cents) to £80 (9.99 cents). At the close of the year the selling price was £102 15s (12.83 cents).

FOREIGN TRADE 4

Imports.—Imports of lead reached an all-time high in 1952; the total, including 12,000 tons of scrap, was 628,000 tons or about 21/2 times greater than the quantity imported in 1951 and 16 percent above the previous record established in 1950. The buyer's market in lead in 1952 was brought about chiefly by this huge increase in imports, which in turn reflected increased world production of lead considerably in excess of foreign demand.

¹ St. Louis: Metal Statistics, 1953, p. 533. New York: Metal Statistics, 1953, p. 527. London: E&MJ Metal and Mineral Markets.
2 Conversion of English quotations into American money based on average rates of exchange recorded by Federal Reserve Board.
3 Free trade in lead on London market resumed October 1. Quoted price based on monthly average o bids as quoted in E&MJ Metal and Mineral Markets.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mincs, from records of the U.S. Department of Commerce.

TABLE 16.—Total lead imported into the United States in ore, matte, base bullion. pigs, bars, and reclaimed, 1948-52, by countries, in short tons 1

[U. S. Department of Commerce] Country 1950 1951 2 1949 1952 2 Ore and matte: 31, 373 8, 983 24, 098 10.142 19, 713 9, 792 13, 336 22, 656 8, 932 18, 473 11, 937 Africa_____Australia_____ 10,673 9,017 7, 423 15, 989 Bolivia_____ 20, 369 9, 452 2, 605 417 Canada... 8, 288 3, 430 10, 326 ⁸ 7, 239 1, 945 3, 395 333 3, 197 El Salvador 250 286 126 2,827 3, 169 Guatemala____ 23 325 721 465 8, 388 61 Honduras_____ 412 381 595 ³ 2, 525 16, 946 2, 702 2, 846 16, 010 2, 487 28, 210 Mexico_____ 14, 970 8, 548 Philippines_____Other countries_____ 279 2, 446 735 1, 061 1,842 663 Total ore and matte_____ 63, 907 107, 279 ³ 67, 471 76, 520 104, 515 Base bullion: 232 266 Japan____ 921 Korea Mexico..... 6, 455 25 Peru____Other countries_____ 619 102 72 47 123 30 (4) Total base bullion 7, 186 2,373 3, 488 2,281 389 Pigs and bars: Africa____ Australia_ 2, 279 6,670 30, 469 8, 911 17, 192 22,009 13, 598 82,800 Belgium-Luxembourg____ 212 166 331 1,785 Bolivia 635 Burma 2, 343 1, 414 56, 432 8, 333 3, 419 Canada 53, 978 107, 673 56,959 Germany.... 8,643 738 ⁸ 6, 052 21, 349 Japan. 2, 108 5, 712 Korea Mexico 51 126, 398 39 98, 460 220, 767 3 36, 987 198, 872 2, 747 42, 169 Netherlands.... 1,826 219 484 Peru_____Spain_____ 23, 559 34, 626 31, 988 31, 528 5, 509 4, 216 53, 997 1,653 440 299 United Kingdom 422 341 49 Yugoslavia_____Other countries_____ 23, 436 43, 855 3 36, 311 2 737 Total pigs and bars_____ 247, 116 275, 240 441, 788 3 179, 032 510, 720 Reclaimed, scrap, etc.: Africa_______Australia_______Bulgium-Luxembourg______Burma______ 479 3,690 2,971 924 1,061 986 329 13 203 205 1, 317 1,856 3 1. 730 6,047 Canal Zone Chile 319 858 384 84 France___ (4) 289 88 Germany 290 663 Italy_____ Jamaica_____ 2,304 346 89 51 252 101 Japan
Malta, Gozo, and Cyprus
Mexico
Netherlands Japan__ 2,765 3 470 14, 769 345155 1,644 845 934 2,089 872 2, 460 223 599 18 454 Panama____ 80 234 92 300 159 297 Philippines.... 1, 144 2, 341 99 114 96 Venezuela... 196 106 668 Western Pacific Islands 81 282 Yugoslavia_ Qther countries_____ 345 1,961 1,585 990 753 1,019 Total reclaimed, scrap, etc.... 28,897 14, 649 20, 039 3 9, 143 12, 339

347, 106

399, 541

541, 835 3 257, 927

Grand total____

¹ Data are "general imports," that is, include lead imported for immediate consumption plus material

entering the country under bond.

2 In addition to data shown, "flue dust or fume containing lead and zinc, and other minerals or metals (lead content)," imported as follows—1951: 13 tons (revised figure), 1952: 40 tons.

3 Revised figure.

4 Less than 1 ton.

9 West Germany.

607 LEAD

Of the total lead imported, 511,000 tons or 81 percent was in the form of pigs and bars, 105,000 tons or 17 percent in ore and matte, 12,000 tons or 2 percent as reclaimed, scrap, etc., and less than 500 tons in base bullion. Mexico supplied 39 percent of the pigs and bars, Canada 20 percent, Australia 16 percent, Yugoslavia 11 percent, and Of the ore and matte imported, 27 percent came from Peru 8 percent. Peru, 22 percent from the Union of South Africa, 18 percent from Bolivia, 11 percent from Canada, and 9 percent from Australia. Canada provided 49 percent of the imports of scrap.

TABLE 17.—Lead imported for consumption in the United States, 1948-52, by classes 1

	[U. S. Department of Commerce]												
Year	dust, a	ores, flue ad mattes, s. p. f.		in base illion	Pigs	and bars	Sheets, pipe. and shot		Not other- wise	Total value			
3 .	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	fied (value)				
1948 1949 1950 1951 1952	121, 848 95, 068 2 31, 359	\$8, 350, 507 34, 397, 026 21, 045, 414 28, 278, 266 32, 755, 497	1, 133 1, 148	193, 356	272, 437 434, 410 2179, 021	\$80, 922, 779 80, 148, 110 104, 340, 645 2 63, 682, 071 165, 018, 991	178 207 255	78, 111 123, 377	29, 830 78, 690	129, 613, 215 2 74, 528, 528			

TABLE 18.-Miscellaneous products containing lead, imported for consumption in the United States, 1948-52

	[0.5.	Department	or commerce	~1			
		tal, solder, w r combinatio		Type metal and antimonial lead			
Year	Gross weight (short tons)	Lead content (short tons)	Value	Gross weight (short tons)	Lead content (short tons)	Value	
1948. 1949. 1950. 1951. 1952.	257 281 4,345 1,533 1,282	184 127 2,744 988 847	\$213, 614 459, 236 2, 814, 264 1, 494, 792 1, 102, 717	14, 732 5, 861 12, 518 1 9, 128 10, 909	13, 163 5, 207 10, 582 1 8, 663 9, 415	\$5, 279, 080 2, 255, 909 3, 431, 650 3, 845, 671 4, 153, 960	

[U.S. Department of Commerce]

Exports.—Total exports of pig lead in 1952 were 1,800 tons compared with 1,300 tons in 1951. Exports of scrap increased from 2,400 to 2,700 tons in 1952. Export restrictions imposed under the Export Control Act of 1940 remained in force throughout 1952.

¹ In addition to quantities shown (value included in total values), "reclaimed, scrap, etc.," imported as follows—1948: 28,897 tons, \$8,320,428; 1949: 14,076 tons, \$4,003,974; 1950: 22,524 tons, \$3,876,999; 1951: Revised figures, 8,020 tons, \$2,183,240; 1952: 11,361 tons, \$3,197,621; and "fine dust or fume containing lead and zinc and other minerals or metals (lead content)," imported as follows—1951: Revised figures, 13 tons, \$87,309; 1952: 40 tons, \$13,412. Figures include lead received by the Government and held in stockpiles but exclude imports for manufacture in bond and export, which are classified as "imports for consumption" by the U. S. Department of Commerce.

¹ Revised figure.

TABLE 19.—Total lead exported from the United States in ores, matte, base bullion, pigs, bars, and scrap, by destinations, 1948-52, in short tons 1

· [U. S. Department of Commerce]

Destination	1948	1949	1950	1951	1952
Ore, matte, base bullion: Belgium-Luxembourg			132		
Canada		1, 616	ĩ	557	836
Total ore, matte, base bullion	9	1, 616	133	557	836
Pigs and bars: Belgium-Luxembourg		76		37	
Brazil	1	126	47	62	433
Canada	2 7	14	306	138	400
Canal Zone		15	19	24	18
Chile		40	35	107	193
Colombia	16	- 6ŏ	123	42	10
Cuba	40	68	61	48	52
Denmark		131			
Ecuador		15	15		84
El Salvador		34	96	35	23
Honduras	28	29	6	14	10
India	. 121	4		11	4
Israel		1	174	112	34
Pakistan			569		
Philippines	1	53	306	17	78
Saudi Arabia		7	1	3	19
Turkey	11	7			280
United Kingdom			_67		
Uruguay Venezuela		69	734	424	231
Other countries	2 63	148	95	62	67
	65	72	81	145	186
Total pigs and bars	2 399	969	2, 735	1, 281	1,762
Scrap:					
Belgium-Luxembourg		362		31	
Canada		95	41	203	20
Germany			264	145	
Japan				195	
Lebanon		11			
United Kingdom		279	1, 271	20	55
Total scrap		747	1, 576	594	75
Grand total	408	3, 332	4, 444	2, 432	2,673

In addition, 86 tons of foreign lead in pigs and bars was reexported in 1949, 53 tons in 1950, none in 1948 and 1951, and 2 tons in 1952.
 Revised figure.

Tariff.—Owing to the shortage of lead in the United States in 1951 and early 1952, import duties were suspended on February 12, 1952, until March 31, 1953, or until the end of the existing emergency. The congressional act suspending the duty stipulated that the rates of June 6, 1951, which were in effect until February 12 (11/16 cents and 34 cent on pig lead and lead in ores and concentrates, respectively) were to be reimposed if the average market price of lead fell to 18 cents a pound for a calendar month. The Tariff Commission informed the President on June 6 that the average price of lead for May was below 18 cents a pound, and on June 26 the President signed the order ending the duty suspension.

LEAD 609

TECHNOLOGY

During 1952 the Bureau of Mines published the following Reports of Investigation which relate in whole or in part to lead:

4876. Separation of Lead, Cadmium, and Germanium Sulfides From Zinc Sulfide Concentrates.

4900. Recovery of Thallium From Smelter Products. 4907. Lead-Zinc Deposits of Southwestern St. Lawrence County, N. Y. 4908. Beneficiation of Sherman Pyromorphite Lead Ore.

4909. Guymard Lead-Zinc Deposit, Orange County, N. Y.

4927. Concentration Tests on Various Base-Metal Ores.

Other Bureau of Mines publications giving technologic information on lead include the lead chapters in the Materials Survey (MS 5) made in cooperation with the United States Geological Survey for the National Security Resources Board; Bulletin 503, which deals with the limits of flammability of gases and vapors and gives such data on lead tetramethyl; and Information Circular 7627, Control of Metallurgical and Mineral Dusts and Fumes in Los Angeles County, Calif.

Publications of the United States Geological Survey published in

1952 and relating to lead include:

Circular 131. Exploratory Drilling in the Prairie du Chien Group of the Wisconsin Zinc and Lead District.

Circular 168. Geochemical Studies in the Coeur d'Alene Mining District, Idaho. Bulletin 978-d. Zinc-Lead Deposits at Shawangunk Mine, Sullivan County, N. Y. Bulletin 978-e. The Wallapai Mining District, Mohave County, Ariz.

Several excellent articles on lead-ore deposits and their exploration appeared in the technical press, among which were:

Huff, Lyman C. Abnormal Copper, Lead, and Zinc Content of Soil Near Metalliferous Veins. Econ. Geol., vol. 47, No. 5, August 1952, pp. 517-542. Triplett, W. H. Geology of the Silver-Lead-Zinc Deposits of the Avalos Provi-

dencia District of Mexico. Min. Eng., vol. 4, No. 6, June 1952, pp. 583-593. Claveau, Jacques, and Others. The Lead and Zinc Deposits of the Bou Beker-Touissit Area, Eastern French Morocco. Econ. Geol., vol. 47, No. 5, August 1952, pp. 481-493.

CREASEY, S. C. Geology of the Iron King Mine, Yavapai County, Ariz. Econ. Geol., vol. 47, No. 1, January-February 1952, pp. 24-55.

Ohle, Ernest L. Geology of the Hayden Creek Lead Mine, Southeast Missouri. Min. Eng., vol 4, No. 5, May 1952, pp. 477-483.

Powers, Harold, and Others. Geophysical Case History, Fredericktown Lead District, Missouri. Min. Eng., vol 5, No. 3, March 1953. Presented as Tech. Paper 3507L, February 1952.

Several articles on new applications or developments in metallurgy were published. One describes a slag-fuming ⁵ plant erected in 1951-52 at the American Smelting & Refining Co. lead smelter, Chihuahua, Mexico, to process monthly 19,000 tons of lead slags containing about 12 percent zinc and 1 percent lead. The American Smelting & Refining Co. was also constructing a slag-fuming plant at its Selby, Calif., smelter during 1952.

Vacuum dezincing of desilverized lead bullion was discussed by Davey 6 in some detail in an article based on the theoretical aspects

of vacuum distillation.

Production of high-purity (99.995) lead by the sulfamate 7 method,

<sup>MacDonald, V. R., Chihuahua Slag Fuming Plant to Process 19,000 Tons per Month: Jour. Metals, vol. 5, No. 6, June 1953, pp. 789-790.
Davey, T. R. A., Vacuum Dezincing of Desilverized Lead Bullion: Jour. Metals, vol. 5, No. 8, August 1953, pp. 991-997.
Chemical Age, Production of High Purity Lead: Vol. 68, No. 1752, Feb. 7, 1953, pp. 251-252.</sup>

evolved by R. Piontelli and coworkers, was 10,000 tons in 1952. Chemical Age, which describes some of the technology of the process, includes a list of references.

During 1951 and 1952, when the price of metals was high, interest in the recovery of flue dusts, grindings, and metal fumes increased. Principles of dust collectors and their application in mining and metallurgical industries was the subject of a technical paper 8 presented before the American Institute of Mining and Metallurgical Engineers.

Several valuable papers dealing with the ore dressing of lead were published in 1952. A recent paper 9 describes the method by which complex copper-lead-zinc ores are treated at the Santa Barbara and Parral mills of Cia. Minera Asarco, Chihuahua, Mexico. At each mill usual flotation practice is followed, but the zinc concentrate is later deleaded with considerable success, using cyanide and zinc sulfate as depressants of the zinc and refloating the lead as a lead concentrate. Another paper 10 presents evidence to disprove the general theory of alkali depression and shows that alkalinity depends upon the nature of the mineral-collector system involved. An interesting development is the use of radiotracers 11 to study the action of dithiophosphate in selective flotation of galena and sphalerite. In 1950 the radiogenic concentration 12 of uranium ores at Port Hope, Canada, was described. More recently, the Atomic Energy Commission has contracted with the Massachusetts Institute of Technology for research on the measurement of artificially induced gamma radiation in ores. Some of the results of that research and an indication of how such radioactivity might be used effectively in separating minerals were reviewed in an article 13 in the November 1952 issue of the Engineering and Mining Journal.

WORLD REVIEW

Lead ores are mined in many countries (approximately 47 in 1952), but four-United States, Mexico, Australia, and Canada-have accounted for about three-fifths of the world output in recent years. On a smelter basis there are about 30 lead-producing countries, the same principal producers accounting for virtually the same percentage of the total world output. Mine and smelter production by countries for 1948-52, insofar as statistics are available, is given in tables 20 and 21.

⁸ Kane, J. M., and Walpole, R. H., Principles of Present-Day Dust Collectors and Their Application to Mining and Metallurgical Industries: Am. Inst. Min. and Met. Eng., Tech. Pub. 3427B, Feb. 20, 1952; Min. Eng., vol. 5, No. 1, January 1953, pp. 85-88, 9 Boeke, C. L., and Gunther, G. G., Deleading Zinc Concentrate at the Parral and Santa Barbara Mills: Min. Eng., vol. 4, No. 5, May 1952, pp. 495-498.

10 Fleming, Marston G., Effects of Alkalinity on the Flotation of Lead Minerals: Min. Eng., vol. 4, No. 12, December 1952, pp. 1231-1236.

11 Judson, C. M., Lerew, A. A., and others, Radiotracer Studies of the Action of Dithiophosphate in the Selective Flotation of Galena and Sphalerite Using CuSO₄ and NaCN: Min. Eng., vol. 4, No. 4, April 1952, pp. 375-380. pp. 375-380.

12 Kaufman, L. A., The Radiogenic Concentration of Uranium Ores: Canadian Min. and Met. Bull. 43,

^{1950,} pp. 450-453.

19 Gaudin, A. M., Senftle, F. E., and Fryberger, W. L., How Induced Radioactivity May Help Separate Minerals: Eng. and Min. Jour., vol. 153, No. 11, November 1952, pp. 95-99, 174, 176.

TABLE 20.—World mine production of lead, by countries, 1948-52, in metric tons 2

[Compiled by Pauline Roberts]

Country 1	1948	1949	1950	1951	1952
North America:				4	
Canada	151, 727	144, 945	150, 317	143, 544	149, 575
Guatemala	(3)	3, 154	3,000	3, 300	4, 200
Honduras	143	449	279	454	538
Mexico	193, 317	220, 763	238, 078	225, 468	246, 027
Salvador 4	200	530	530	470	100
United States 5	354, 232	371, 860	390, 838	352, 135	353, 94
South America:				4 00 000	10.00
Argentina	21,800	16,000	4 20, 000	4 20,000	18,000
Bolivia (exports) 5	25, 610	26, 311	31, 176	30, 558	28, 29
Brazil	(3)	2,000	4,000	3, 500	(3)
Chile	6, 223	2,859	3, 318	7, 801	4 4,00
Ecuador	269	380	229	30	110
Peru	48, 538	65, 357	62, 118	82, 350	98, 069
Europe:		4 00=	4 440	4 500	r ro
Austria	3,482	4, 297	4,440	4, 522	5, 50
Finland	72	130	142	216	210
France	7, 645	9, 936	11,459	10,605	11,81
Germany, West	22, 344	40, 944	44,830	50, 377	51, 59
Greece	1,280	6 1, 200	6 5, 800	6 3, 800	6 6, 00
Hungary		(3)	300	(3)	(3)
Italy	30, 400	35, 800	40, 100	40, 200	40, 10
Norway	265	301	234	414	43
Poland 7	16,874	17,850	18,000	18,000	20, 00
Portugal	635	746	1, 311	1,621	(3)
Spain	27, 073	29, 685	39, 266	40, 500	8 43, 11
Sweden	23, 579	23, 900	22, 673	19,693	20, 59
U. S. S. R. 47	75,000	90,000	111,600	128, 400	154, 20
United Kingdom	2, 432	2, 505	3, 336	4, 925	3, 98
Yugoslavia	62,861	72, 144	86, 039	78, 750	78, 96
Asia:				4 0 000	40.00
Burma	. 36	(3)	4 1,000	4 2,000	4 2,00
Hong Kong				179	17 50
Iran			2,000	1, 100	17, 50
Japan	6,672	9, 132	10, 896	12,876	17, 48 14
Korea, Republic of	260	87	40		2, 30
Philippines	72	550	879	571	2, 30 1, 04
Thailand (Siam)		183	691	1, 321 600	4 1, 00
Turkey	2,756	200	260	000	* 1,00
Africa:			1 400	0.000	4, 22
Algeria	1,047	1, 121	1,408	2,838	4, 22
Belgian Congo	400	180	1 014	2, 504	3, 55
French Equatorial Africa	2,603	731	1,814		83, 60
French Morocco	28,600	37, 200	48, 200	68, 134	20,00
Nigeria	. 273	29	12 005	14 104	12, 80
Northern Rhodesia 7		14, 169	13, 905	14, 194	12,00
Southern Rhodesia		83	22 600	39, 230	52, 84
South-West Africa		38, 400	33,680	4 300	(9)
Spanish Morocco	. 215	159	178 652	1, 561	2, 83
Tanganyika				21, 250	23, 27
Tunisia	13, 219	14, 860	19, 260	21, 200	20, 21
Uganda (exports)	. 14	39	44	900	. 57
Union of South Africa		166	600		231, 82
Australia	. 220, 437	216, 918	222, 694	228, 407	201, 82
	1 405 000	1 505 000	1 670 000	1, 685, 000	1, 820, 00
Total (estimate)	. 1, 425, 000	1, 535, 000	1, 670, 000	1.000.000	1. 04U. U

Lead may be produced in China, Cuba, Czechoslovakia, East Germany, North Korea, and Rumania, but accurate data on production are not available and estimates by the senior author of the chapter have been included in the total.
 This table incorporates a number of revisions of data published in previous lead chapters.
 Data not available; estimate by senior author of chapter included in total.
 Estimate

⁴ Estimate.
5 Tonnage recoverable from ore.
6 Includes lead content of zinc-lead concentrates.

⁷ Smelter production.
8 Includes Spanish Morocco.
9 Included with Spain.

TABLE 21.—World smelter production of lead, by countries where smelted, 1948-52 in metric tons 2 3

[Compiled by Pauline Roberts]

Country	1948	1949	1950	1951	1952
North America:					
Canada	145, 246	132, 608	154, 551	147, 609	166, 367
Guatemala	(4)	68	271	60	316
Mexico	187, 067	212,004	230, 831	219, 107	237, 443
United States (refined) 5	363, 092	431, 692	458, 171	376, 142	428, 597
South America:		1	, , , , , , , , , , , , , , , , , , , ,	, , , , , ,	
Argentina		18, 037	18, 960	24,000	20,000
Brazil	(4)	1,172	4, 200	6 3, 000	(4)
Peru	34, 297	36, 017	31, 693	44, 247	48, 622
Europe: Austria ⁷		1			
Austria '	9, 350	9,841	10, 910	11, 147	10, 316
Belgium ⁷ Czechoslovakia	66, 035	79, 304	62, 094	70, 646	75, 423
Czeciiosiovakia	5, 770	(4)	(4)	(4)	(4)
France Germany, West	38, 288	57, 541	61, 236	47, 970	51, 538
Greece	7 8 49, 382	54, 551	66, 619	76, 063	92, 682
Italy	1,166	2, 389	2, 125	3, 890	2, 460
Poland	26, 734 16, 874	26, 346	37, 469	36,000	34, 931
Portugal	233	17,850 304	18, 000 591	18,000	20,000
Spain	25, 313	33, 021	40, 568	724	(4)
Sweden	6, 228	10, 757	16, 681	44, 711	46, 543
U. S. S. R.6	75,000	90,000	111,600	9, 435	11, 340
United Kingdom 6	2, 312	2, 134	3, 048	128, 400 4, 158	154, 200
Yugoslavia	49, 214	56, 760	57, 204	60,068	3, 986 67, 180
Asia:	10,211	00,100	01,204	00,000	01, 100
Burma	7, 570	230	11	4,966	2, 675
China	834	7 2, 062	6 7 4, 000	8 7 5, 000	6 7 6, 000
India	554	603	639	878	1, 150
Japan Korea, Republic of	6,900	7, 716	9, 984	10,740	15, 156
Korea, Republic of	299	100	(4)	(4) · · · ·	126
Africa:			```	. ''	
French Morocco		7,073	12,097	22, 322	30, 088
Northern Rhodesia		14, 169	13, 905	14, 194	12, 802
South-West Africa	82				,
Tunisia	17, 957	19, 429	23, 536	22, 906	25, 506
Australia	162, 057	152, 464	163, 102	168, 418	197, 447
Total (estimate)	1, 364, 000	1, 505, 000	1, 644, 000	1, 604, 000	1, 796, 000

¹ In addition to countries listed, East Germany, Hungary, North Korea, and Rumania produce lead, but production data are not available; estimates by senior author of chapter included in total.

² Data derived in part from Monthly Bulletin of the United Nations, Statistical Summary of the Mineral Industry (Colonial Geological Surveys, London), and the Yearbook of the American Bureau of Metal

This table incorporates a number of revisions of data published in previous lead chapters.
Data not available; estimate by senior author of chapter included in total.
Figures cover lead refined from domestic and foreign ores; refined lead produced from foreign base bullion not included.

6 Estimate.

Includes scrap.
 American and British zones only.

NORTH AMERICA

Canada.—Mine output of lead in Canada in 1952 exceeded that of 1951 by 4 percent, while smelter output increased almost 13 percent. British Columbia was the most important lead-producing province, and the Consolidated Mining & Smelting Co. in British Columbia was the major producing company. During 1953 this company mined 2,700,000 tons of lead-zinc ore (2,530,000 in 1951) from its Sullivan mine; 136,000 tons of ore from the Bluebell lead-zinc mine, which was put into production in April; and 96,000 tons of zinc-copper-lead ore from its Tulsequah mines in northern British Columbia. In 1952 the company sold 183,000 tons of lead, including metal sold in unrefined form, as against 163,000 tons in 1951. The increase was due wholly to larger custom receipts (269,000 tons of ores and concentrates in 1952 as compared with 190,000 tons in 1951). The Consolidated LEAD 613

Mining & Smelting Co. annual report for 1952 stated that exploration at its zinc-lead property at Pine Point, Northwest Territory, totaled 41,000 feet of drilling and results continued to be encouraging. A shaft site was chosen, and the shaft collar, headframe, and power and

change house were completed.

In New Brunswick the Anacon Lead Mines milled 226,000 tons of ore (219,000 tons in 1951) to recover 4,100 tons of lead (2,200 tons in 1951) and 8,500 tons of zinc (6,100 in 1951). Better recoveries and a substantial increase in the grade of ore accounted for the increased mine output. Ore reserves at the end of 1952 were 1,050,000 tons compared with 1,100,000 tons at the end of 1951. In 1952 a major zinc-lead ore deposit was discovered 14 a few miles south of Bathhurst by a prospecting syndicate which has been incorporated as the Brunswick Mining & Smelting Co. As a result of diamond drilling and geologic study, the ore body was estimated, as of January 1953, to contain 28,800 tons of ore per vertical foot of depth. The ore averages approximately 5.2 percent zinc, 1.6 percent lead, and 2.0 ounces of silver per ton. The accessibility of the area, ore bodies amenable to open-pit mining, and the financial strength of principal claim owners suggest development and exploitation would shortly follow exploration.

Greenland.—Active development of the lead-zinc deposit at Bly-kippen, Mesters Vig, on the eastern shore of Greenland continued throughout 1952. During the summer a year-round camp and landing strip were built, and a new adit was started 325 feet below the exploration adit. Work on the upper level was reported to have indicated an ore shoot 900 feet long and 30 feet wide assaying about

22 percent combined lead and zinc.

Guatemala.—Compañia Minera de Huehuetenango, S. A., in early 1952 contracted with the Defense Materials Procurement Agency to produce, sell, and ship up to 26,250 tons of lead, beginning in 1954 and ending June 30, 1959; work was begun on a \$400,000 expansion program, including a 75-ton-per-day rotation mill. Compañia Minera de Guatemala operated its Caquipec mine near Coban to produce

about 4,000 tons of lead in 1952.

Mexico.—Mexican mine output of lead increased 9 percent in 1952, and smelter output was up 8 percent as compared to 1951. An important factor in the economics of lead and zinc mining in Mexico was the construction of a slag-fuming plant ¹⁵ at the American Smelting & Refining Co. Chihuahua lead smelter. Plant construction was begun February 1951 and completed July 1952. The plant was in operation during the last 2 months of 1952, processing about 19,000 tons of hot slag monthly to recover about 2,000 tons of zinc oxide fumes, which contained 67 percent zinc and about 8 percent lead. Although the lower price of lead and zinc reduced mine income, no large mines were closed. The American Smelting & Refining Co. lead smelters at Chihuahua and San Luis Potosi and the Monterrey refinery operated almost continuously. Operating mines, owned or leased by the American Smelting & Refining Co., that produced lead during the year included the Charcas unit in the State of San

Vol. 154, No. 5, May 1953, pp. 101-104, 202, 206, 208.

Luis Potosi; the Parral, Santa Barbara, Santa Eulalia, and the Plomosas units in the State of Chihuahua; the Aurora-Xichu unit in Guanajuato; and the Angangueo unit in the State of Michoacan.

The Topia unit of the American Metal Co. in Durango commenced The company's annual report for 1952 stated production in 1952. that the Avalos unit in Zacatecas, the largest lead-zinc mine operated by the American Metal Co. in Mexico, could not operate profitably at the metal prices in effect at the end of the year. Other American Metal Co. mines included the Guadalupe unit (Minas Viejas) in Nuevo Leon, the Calabaza unit in Jalisco, and the Ocampo unit in Coahuila.

Another American company operating in Mexico, the Eagle-Picher Co. (Minas de Iquala, S. A.), ¹⁶ works the Esmeralda mine near Parral,

Chihuahua.

SOUTH AMERICA

Argentina.—The principal lead-producing district in the Argentine is Aguilar, where the Compania Minera Aguilar, S. A., a subsidiary of the St. Joseph Lead Co., treated 200,700 metric tons of ore, which yielded 23,100 metric tons of lead concentrates and 30,400 metric tons of zinc concentrates. Comparable figures for 1951 were 199,900, 26,200, and 30,700 metric tons, respectively. The lead concentrates were smelted at the National Lead Co., S. A., smelter at Barranqueras,

Chaco Territory, Argentina.

Bolivia.—The Bolivian revolution in April 1952 resulted in a new Government, which nationalized the 24 producing tin, tungsten, copper, and lead and zinc mines and set up the Corporacion Minera de Bolivia to operate them. Statistical data from Bolivia as to details of mine and smelter production are lacking, but it is known that 28,300 tons of recoverable lead was exported. Four small smelters, one each at La Paz, Cochabamba, Tupiza, and Oruru have an estimated production rate of 700 tons of lead bullion per month, but their actual production is unknown.

Peru.—Mine output of lead increased to 98,000 tons in 1952, almost 20 percent above the 82,000 tons of 1951. Smelter production increased 10 percent to 48,600 tons, as the Cerro de Pasco Corp. operated its Oroya smelter and refinery at the highest level in the corporation's history. During the year the Volcan Mines Co. completed its 350-ton-per-day lead-zinc concentrator. The San Antonio de Esquilache mines 17 were purchased by Compania de Minas del Daily production was increased to 400 tons of low-grade ore from which lead and zinc concentrates are being produced.

The Northern Peru Mining & Smelting Co., a subsidiary of the American Smelting & Refining Co., began operating its new 250-ton selective flotation mill at Chilete, 18 Department of Cajamarca, in May 1952. The camp, a 770-kw. powerplant, and the mill were built in about 10 months at a cost of about \$2,000,000.

¹⁶ Burns, Robert L., Minas de Iquala's 1,000-Ton-per-Day Mill at Parral Treats Esmeralda Lead-Zinc Ore: Min. World, vol. 15, No. 10, September 1953, pp. 52-55.

17 Engineering and Mining Journal, vol. 153, No. 11, November 1952, p. 170.

18 Engineering and Mining Journal, Chilete Mine, Mill Go Into High Gear: Vol. 154, No. 1, January 1953, pp. 129-130; Mining World, vol. 15, No. 1, January 1953, p. 71.

615LEAD

AFRICA

Mine output of lead in Africa increased 22 percent to 184,000 metric tons in 1952, the chief gains being in French Morocco, Algeria,

Tunisia, and South-West Africa.

North Africa.—Algerian lead production increased somewhat, but the most important gains in mine output were in French Morocco, where production of lead concentrate increased 24 percent to 115,300 metric tons containing approximately 84,000 metric tons of metal. The Zellidja mine was the chief source of concentrate, but the Touissit mine of the Compagnie Royale Asturienne des Mines was an important The Zellidja Co. in combination with the Fonderies Peñarroya has constructed a Scotch-hearth smelting plant with 10 Neuman hearths at Oued-El-Heimer, Morocco, and a blast furnace was under construction in 1952. The Zellidja-Peñarroya smelter processed 42,200 metric tons of lead concentrate to yield 28,800 metric tons of lead metal. In Tunisia mine output of lead totaled 23,300 metric tons, while smelter output was 25,500 metric tons. The most important mines with their output were El Grefa (6,300 tons), Djebel Semene (5,900 tons), Sidi Bou Aouane (4,100 tons), and Djebel Hallouf (3,650 tons). The Tunisian concentrate is processed in 3 smelters at Mégrine, Souk-el Khemis, and Bizerte in Tunisia.

Northern Rhodesia.—Rhodesian Broken Hill, Ltd., the only pro-

ducer of lead and zinc, produced 12,800 metric tons of lead at its smelter. A new smelter to have 20 percent greater capacity was in

process of construction.

South-West Africa.—Mine output of lead in South-West Africa totaled 52,800 metric tons, a notable increase over the 39,200 metric tons produced in 1951. The Tsumeb mine was almost the sole source of lead.

Tanganyika.—The Uruwira Minerals, Ltd., produced 4,800 tons of lead concentrate in 1952 as compared to 3,000 tons in 1951. A new plant designed to treat 1,000 tons per day was under construction. Reserves on which the mill will operate contain 3,000,000 tons of ore averaging 3.8 percent lead, 0.8 percent copper, with some gold and silver.

AUSTRALIA

The production of both lead and zinc increased slightly above the 1951 level, as Australian mine output of lead rose to 231,800 metric tons while smelter output was 197,400 metric tons. Producing States

were New South Wales and Queensland.

In New South Wales the New Broken Hill Consolidated, Ltd., 19 mined 240,000 tons of ore and milled 235,000 tons to produce 25,280 tons of lead concentrate containing 75.9 percent lead. In September 1952 the company began hoisting ore through its new haulage shaft and operating its new 30,000-ton-per-month mill. Total ore reserves at the end of 1952 were 2,400,000 tons assaying 10.6 percent lead, 10.9 percent zinc, and 2.6 ounces of silver per ton. Other operators in the Broken Hill district were North Broken Hill, Ltd., Broken Hill South, Ltd., and the Zinc Corp., Ltd. These companies together mine about 90,000 tons of crude ore monthly.

¹⁹ Metal Bulletin (London), June 5, 1953, p. 17.

The Lake George Mines, Ltd., Captain's Flat, New South Wales,²⁰ concentrated about 550 long tons of ore per day; from the beginning of operations through June 1952 it had milled 2,000,000 tons of ore and recovered 319,000 tons of zinc concentrate, 219,000 tons of lead concentrate, 30,000 tons of copper concentrate, 275,000 tons of pyrite concentrate, and 1,800 tons of gold concentrate.

At Mount Isa, Queensland, Mount Isa Mines, Ltd., began to operate its No. 2 ore shaft and the new crushing plant for the lead-zinc concentrator. Drilling the main lead-zinc-copper ore bodies disclosed additional high-grade reserves, and north of the main ore bodies

270,000 tons of 10-percent oxidized lead ore was proved.

EUROPE

France.—During 1952 France imported 59,100 metric tons of lead concentrates chiefly from French Morocco, French Equatorial Africa, and Algeria and about 50,300 metric tons of pig lead principally from Morocco, Tunisia, Algeria, Mexico, Belgium, and Luxembourg. mestic production of lead concentrates totaled 19,400 metric tons; these, with the imported concentrates, were smelted in French smelters to yield 51,500 metric tons of lead. Consumption totaled approx-

imately 92,700 tons.

West Germany.—Lead mine output was 51,600 metric tons, essentially the same as in 1951, but smelter output increased 22 percent to 92,700 metric tons. The 1951 edition of the Jahrbuch des Deutsches Bergbau (Yearbook of German Mining) states that lead and zinc ores are produced in the Harz Mountains, the Rhineland, and to a lesser extent in Southern Germany. Uterharze-Berg-und Huettenwerke, G. m. b. H., in the Harz Mountains produces zinc and lead sulfides from a deposit at Rammelsberg, which is said to average 50 meters in thickness and contain 19 percent zinc, 9 percent lead, and 1 percent copper. In the same area, near Bad Grund, Harzer Berg und Huettenwerke operates the Erzbergwerke Grund mine, producing lead and zinc sulfide concentrates. The crude ore contains 6 percent lead and 2 percent zinc. Concentrates are produced by selective flotation, the lead concentrate being smelted and refined at the company's plant at Clausthal-Lautenthal.

Lead and zinc ores are also found on the right bank of the Rhine River at Ems, Holzappel, the Bergische Land, Ramsbeck, the Siegerland, the Schwelm-Iserlahn district, and others.

The Stolberger Zink, A. G., operates a mine at Holzappel 1,076 meters deep and a mine at Ramsbeck in the Sauerland. mine has an annual output of 23,000 tons of zinc concentrate and 3,200 tons of lead concentrate. Gewerkschaft Mechernicher Werke, a subsidiary of Preussische Bergwerks and Huetten, A. G., owns an extensive ore deposit at Mechernich in the Eifel Mountains. The ore body is estimated to contain 95,000,000 tons of low-grade lead ore. Daily mine output in 1952 averaged 3,200 tons per day. During the summer work was undertaken to increase capacity to 6,000 tons of crude ore daily, or about a fifth of the daily rate of operation in 1943, when approximately 33,000 tons of ore was milled daily.

²⁰ Hungerford, T. A. G., Min. Jour. (London), vol. 240, No. 6128, Jan. 30, 1953, pp. 128-129.

LEAD 617

Yugoslavia.—Mine production of lead was essentially the same as in 1951, but smelter output of refined lead increased 12 percent to 67,200 metric tons. A new lead-zinc mine near Ljubovija, Yugoslavia, was opened in the latter half of 1952. The mine is said to produce 70 tons of 80-percent lead concentrate daily. At the Novo Brdo lead-zinc mine a new flotation mill was erected early in April, so that at least part of the Trepca ores can be concentrated at the mine instead of being shipped 50 miles to the mill at Svecan prior to smelting. The Yugoslav Government reported the discovery of lead-zinc deposits in the Kossovo-Metochia area near the Yugoslav-Albanian border.

Lead and Zinc Pigments and Zinc Salts

By Robert L. Mentch 1

THE OUTSTANDING feature of the lead and zinc pigments industry in 1952 was the continuing decline in volume of business. Shipments of the products covered by this report were well below the 1951 rate. Decreases in shipments of zinc pigments ranged from 4 percent for lead-free zinc oxide to 40 percent for lithopone. Shipments of lead pigments declined from 9 percent for litharge to 25 percent for white lead (dry and in oil). Zinc salts (zinc chloride and

zinc sulfate) decreased 14 and 17 percent, respectively.

Decreases in shipments of pigments and salts were attributable partly to decreases in the volume of business in industries that are important consumers of these products and partly to increased use of substitutes. In 1952 the production of passenger automobiles was 19 percent lower than that in 1951, and output of trucks and buses declined 15 percent from the 1951 total. Consumption of natural and synthetic rubber increased 4 percent compared with 1951. The value of public and private construction was 5 percent greater than in 1951, and the value of sales of paint, varnish, and lacquer materials in 1952 was approximately the same as the 1951 total. Construction

gains reflected, in part, higher material and labor costs.

Lead and zinc, the chief raw materials of the pigments industry, were in plentiful supply during the latter half of the year in contrast with the situation in 1951 and the first several months of 1952, when demand exceeded available supplies. Increased production of both lead and zinc on a worldwide basis permitted greatly expanded imports, which, combined with lower consumption in the United States, resulted in an oversupply situation in both metals and brought about marked reductions in prices as the year progressed. The price for common lead, New York, dropped from the 19-cent-a-pound ceiling established in October 1951 to 18 cents per pound on April 29 and was selling for 14.75 cents at the end of the year. The quotation for Prime Western grade slab zinc, East St. Louis, fell from 19.5 cents, first effective in October 1951, to 17.5 cents on June 2 and thereafter declined to 12.5 cents per pound on October 23, at which level it remained for the balance of the year.

Lead- and zinc-pigment price quotations maintained their historically close relationship to pig-lead and slab-zinc prices throughout the year. Prices for the pigments and zinc salts dropped considerably following the declines in metal prices; decreases averaged about 20 percent compared with reductions of 22 percent and 36 percent in

the selling prices of lead and zinc.

¹ Commodity-industry analyst.

All National Production Authority restrictions on lead and zinc were revoked completely on May 15 and June 27, respectively, owing

to the increased abundance of these metals.

Shipments of white lead (dry) and of the "in-oil" variety dropped 32 and 10 percent, respectively, from 1951 totals. The trend in utilization of white lead is markedly downward; shipments of both varieties in 1952 were the smallest by far since long before the beginning of the present century. Litharge shipments decreased 9 percent in 1952 but were considerably above average yearly shipments during World War II. Shipments of red lead declined 13 percent and were well below the yearly average for World War II years. Figure 1 shows trends in shipments of lead pigments for the period 1910-52.

Zinc oxide (lead-free) shipments declined 4 percent in 1952, the lowest percentage decrease among the products covered by this report, and were comparable in quantity to average annual shipments during the World War II period. Leaded zinc oxide shipments were 15 percent lower than in 1951 and, except for 1949, were the smallest since 1935. Shipments of lithopone dropped sharply; the 1952 total was 40 percent below 1951 and the lowest since 1921. Trends in shipments of zinc pigments are shown in figure 2.

Shipments of zinc salts declined considerably in 1952; zinc chloride decreased 14 percent and zinc sulfate fell 17 percent.

TABLE 1.—Salient statistics of the lead and zinc pigments industry of the United States, 1943-47 (average) and 1948-52

	1943-47 (average)	1948	1949	1950	1951	1952
Production (shipments) 1 of principal pigments:						
White lead (dry and	2 69, 670	46,070	27, 355	45, 176	35, 415	26, 663
in oil)_short tons Red leaddo	44,664	30, 787	24,866	35, 072	35, 352	30, 926
Lithargedo	138, 188	154, 775 150, 958	121, 052 110, 132	177, 658 160, 829	154, 753 147, 716	140, 798 142, 210
Zinc oxidedo Leaded zinc oxide	146, 131	100, 800				· ·
short tons	64,050	67, 441	36, 722 78, 335	63, 973 105, 650	44, 341 102, 837	37, 892 61, 832
Lithoponedo	145, 363	140, 033	18, 555	103, 050	102, 657	01,802
Value of products:	3 \$52, 267, 400	3\$90, 915, 000	3 \$58, 564, 000	3\$79,858,000	\$\$89, 273, 000	3 \$72, 230, 000
All lead pigments All zinc pigments	44, 055, 600	65, 547, 000	43, 152, 000	71, 322, 000	74, 599, 000	63, 950, 000
Total	96, 323, 000	³ 156, 462, 000	³ 101, 716, 000	³ 151, 180, 000	³163, 872, 000	³ 136, 180, 000
Value per ton received by						
producers:			****	400#		0.400
White lead (dry)	\$194 206	\$363 396	\$351 333	\$335 314	\$426 397	\$403 376
Red leadLitharge	187	387	324	292	383	348
Zinc oxide	149 149	218 245	. 230 242	258 262	311 320	307 313
Leaded zinc oxide Lithopone	84	115	115	124	141	137
						
Foreign trade: Lead pigments:		İ	ŀ			
Value of exports	\$1,229,000	\$970,000	\$1, 157, 000	\$950,000 344,000	\$984,000 1,797,000	\$933,000 451,000
Value of imports. Zinc pigments:	36,000	633,000	143, 000		1 ' '	· ·
Value of exports	3, 299, 600	5, 229, 000	3, 426, 000	2, 124, 000	6,855,000	4, 352, 000 90, 000
Value of imports.	9,300	7,000	52,000	1, 275, 000	930, 000	ļ
Export balance	4, 483, 300	5, 559, 000	4, 388, 000	1, 455, 000	5, 112, 000	4, 744, 000

¹ Reported as sales before 1945.

² Data for basic lead sulfate in 1946 included under white lead; Bureau of Mines not at liberty to show separately.

3 Excludes value of basic lead sulfate; Bureau of Mines not at liberty to publish.

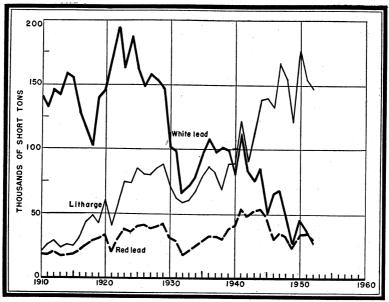


FIGURE 1.—Shipments of lead pigments, 1910-52.

The distribution of shipments of pigments to consumers in 1952 remained essentially the same as in previous years. The paint industry continued the largest user by far of white lead, leaded zinc oxide, and lithopone, receiving approximately 90, 99, and 73 percent, respectively, of shipments. In addition, 43 percent of red-lead shipments, 22 percent of zinc oxide (lead-free) shipments, and 4 percent of litharge shipments went into paint manufacture. Storage-battery makers were the chief users of litharge and red lead, taking 69 and 45 percent, respectively, of producers' deliveries. The rubber industry continued as the largest consumer of zinc oxide, taking 51 percent of total shipments. Relatively small quantities of litharge, lithopone, and leaded zinc oxide were also used in the manufacture of rubber products. The ceramics industry ranks fourth in consumption of lead and zinc pigments and was surpassed only by the paint, storage-battery, and rubber industries. In 1952, 11 percent of litharge shipments, 5 percent of zinc oxide (lead-free) shipments, 4 percent of white lead shipments, and 1 percent of red lead shipments were used in making ceramics.

Titanium pigments continued to furnish the chief competition to lead and zinc pigments in paint making. Production and shipments of titanium pigments dropped 4 and 11 percent, respectively, from the records established in 1951. Insufficient plant capacity and shortages of raw materials had been limiting factors in titanium pigment production in previous years; in 1952, however, the decrease was attributed principally to the general reduction in consumption of all types of pigments. At present, the Bureau of Mines is not at

liberty to publish statistics for titanium pigments.

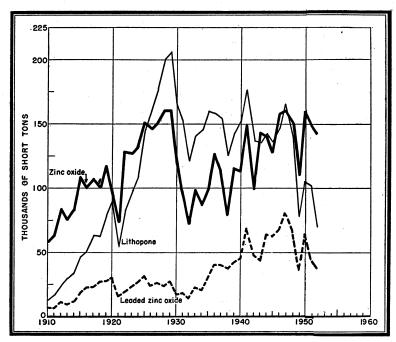


FIGURE 2.—Shipments of zinc pigments, 1910-52.

PRODUCTION

The value of shipments of lead and zinc pigments in 1952 (exclusive of that for basic lead sulfate, which cannot be shown) was \$136,180,000, a 17-percent decrease from the 1951 value. Lead pigments comprised 53 percent of the total value and zinc pigments 47 percent in 1952, compared with 54 and 46 percent, respectively, in 1951.

For many years figures on "sales" were used in this series of reports as a better guide to activity in the pigments industry than production. Beginning with 1945 the base was changed to "shipments" to conform with data compiled on Bureau of Mines lead and zinc schedules. Available information for 1945 (the year of change) indicates little difference between sales and shipments in that year. In reporting tonnages of pigments, an attempt is made to avoid all duplication, one of the chief problems being that finished pigments frequently are blended to make another product. Basic lead sulfate and zinc oxide, for example, are blended to make leaded zinc oxide, and in this instance the pigment weights appear in the total for the last-named class only. Pigments consumed by producing companies to make products beyond those covered by this report—that is, paints, storage batteries, and other articles—are considered shipments.

LEAD PIGMENTS

Shipments of lead pigments decreased 12 percent in quantity and 19 percent in value in 1952. Substantial reductions in average prices received by producers accounted for the disproportionate

decrease in value. Shipments of white lead, red lead, and litharge declined 25, 13, and 9 percent, respectively, from those in 1951.

Average values of lead pigments reported by producers were well below the record selling prices of 1951; the yearly average for white lead (dry) was \$403 per ton, 5 percent under the 1951 average; red lead sold at an average of \$376 per ton, also a decrease of 5 percent; and litharge brought \$348 per ton, 9 percent less than the 1951 average.

White Lead.—The decline in shipments of white lead, first evident in the late 1920's, continued as competitive pigments supplanted both classes in many paint formulations. Total shipments fell 25 percent and were the lowest by far since long before the beginning of the 20th Paint manufacturers that had been using white lead almost exclusively are now using increasing quantities of other pigments.

Basic Lead Sulfate.—The Bureau of Mines is not at liberty to publish figures on basic lead sulfate for 1946-52.

TABLE 2.—Production and shipments of lead pigments 1 in the United States. 1951 - 52

· ·		1	951		1952				
			Shipments		Desiden	3 S	Shipments	hipments	
Pigment		Short	Valu	le ²	Produc- tion (short	Short	Value 2		
		tons	Total	Average	. tons)	tons	Total	Average	
White lead: Dry In oil ³ Red lead Litharge	22, 982 11, 177 34, 065 152, 155	23, 359 12, 056 35, 352 154, 753	\$9, 952, 883 6, 007, 291 14, 025, 182 59, 287, 262	\$426 498 397 383	16, 405 11, 454 32, 620 144, 564	15, 779 10, 884 30, 926 140, 798	\$6, 353, 285 5, 177, 314 11, 634, 969 49, 064, 874	\$403 476 376 348	

¹ Except for basic lead sulfate, figure for which is withheld to avoid disclosure of individual company operations.

² At plant, exclusive of container.

3 Weight of white lead only, but value of paste.

TABLE 3.—Lead pigments shipped by manufacturers in the United States, 1943-47 (average) and 1948-52, in short tons

Year	White lead				d sulfate ned lead	Red lead	Orange mineral	Litharge
	Dry	In oil	Total	White	Blue		mmerai	
1943-47 (average) ¹ 1948. 1949. 1950. 1951.	1 38, 868 26, 551 15, 719 28, 506 23, 359 15, 779	30, 802 19, 519 11, 636 16, 670 12, 056 10, 884	1 69, 670 46, 070 27, 355 45, 176 35, 415 26, 663	\$ 5,642 (3) (3) (3) (3) (3) (3)	2 1, 279 (3) (3) (3) (3) (3) (3)	44, 664 30, 787 24, 866 35, 072 35, 352 30, 926	143	138, 188 154, 775 121, 052 177, 658 154, 753 140, 798

¹ Basic lead sulfate for 1946 included with white lead (dry) in order to avoid disclosure of individual company operations.

3 1941-45 average; see footnote 1.

3 Figure withheld to avoid disclosure of individual company operations.

Red Lead.—Shipments of red lead declined 13 percent in 1952 and were 43 percent below shipments in 1944, the peak year.

Orange Mineral.—No shipments of orange mineral were reported

in 1947–52.

Litharge.—Although declining 9 percent from the 1951 total, litharge shipments remained at a comparatively high level, being exceeded only in 1947, 1948, 1950, and 1951. For many years, litharge has been the largest quantity lead pigment of the group covered by this report.

Battery manufacturers produced 76,000 tons of black or gray suboxide of lead in 1952 for their own use in place of litharge. This quantity compares with 77,000 tons in 1951 and 80,000 tons in 1950. This suboxide production required 73,000 tons of pig lead in 1952,

the same as in 1951, and 77,000 tons in 1950.

ZINC PIGMENTS AND SALTS

Total shipments of zinc pigments decreased 18 percent in quantity and 14 percent in value in 1952. Shipments of lead-free zinc oxide, the most important of the zinc pigments in tonnage and value, declined 4 percent; tonnage shipments of leaded zinc oxide dropped 15 percent; and lithopone shipments fell 40 percent, the largest decrease among the products covered by this report.

Although declining slightly from the peaks established in 1951, producers' average values were the second highest on record. Average values received by primary shippers were as follows: Zinc oxide (lead-free) \$307 per ton, a loss of 1 percent; leaded zinc oxide \$313 per ton, a drop of 2 percent; and lithopone \$137 per ton, a decrease

of 3 percent.

Shipments of the zinc salts, zinc chloride and zinc sulfate, declined 14 and 17 percent, respectively, from 1951 totals. Average values of the two compounds increased; zinc chloride advanced from \$85 per ton in 1951 to \$93 per ton and zinc sulfate rose from \$160 to \$163 per ton.

TABLE 4.—Production and shipments of zinc pigments and salts in the United States, 1951-52

			1951	-		1952				
	Pro-	Shipments			Pro-	Shipments				
Pigment or salt	Pigment or salt duc- tion (short		Short Value 1		duc-		Value 1			
	tons)	tons	Total	Average	tons)	tons	Total	Average		
Zinc oxide ³	158, 714 50, 972 107, 519 62, 527 23, 663	147, 716 44, 341 102, 837 60, 730 23, 524	\$45, 948, 219 14, 179, 993 14, 470, 742 5, 152, 882 3, 769, 825	\$311 320 141 85 160	137, 957 37, 869 60, 220 50, 599 19, 349	142, 210 37, 892 61, 832 51, 966 19, 587	\$43, 614, 186 11, 860, 158 8, 475, 200 4, 822, 995 3, 189, 611	\$307 313 137 93 163		

Value at plant, exclusive of container.
 Zinc oxide containing 5 percent or more lead is classed as leaded zinc oxide. In this table data for leaded zinc oxide include a small quantity containing less than 5 percent lead.

TABLE 5.—Zinc pigments and salts shipped by manufacturers in the United States, 1943-47 (average) and 1948-52, in short tons

Year	Zinc oxide	Leaded zinc oxide	Lithopone	Zinc chlo- ride (50° B.)	Zinc sulfate
1943–47 (average)	146, 131	64, 050	145, 363	58, 064	20, 027
	150, 958	67, 441	140, 033	68, 701	21, 513
	110, 132	36, 722	78, 335	55, 208	20, 065
	160, 829	63, 973	105, 650	64, 564	23, 912
	147, 716	44, 341	102, 837	60, 730	23, 524
	142, 210	37, 892	61, 832	51, 966	19, 587

¹ Reported as sales before 1945.

Zinc Oxide.—Lead-free zinc oxide shipments remained at a relatively high level in 1952, declining only 4 percent from 1951.

TABLE 6.—Production of zinc oxide (lead-free) by processes, 1943-47 (average) and 1948-52, as percent of total

Process	1943–47 (average)	1948	1949	1950	1951	1952
American process (ore and primary residues) French process (metal and scrap)Other	77 16 7	76 15 9	71 17 12	72 18 10	75 18 7	74 20 6
Total	100	100	100	100	100	100

Leaded Zinc Oxide.—Shipments of leaded zinc oxide in 1952 were

15 percent lower than in 1951.

Four grades of leaded zinc oxide, classified according to lead content, are produced in the United States. The bulk of the output, however, is the 5- to 35-percent grade; only relatively small quantities of the other grades—less than 5 percent lead, over 35 to 50 percent lead, and over 50 percent lead—are produced. For publication purposes, the 2 top and 2 lower grades are combined. Production in 1952 (comparison with 1951 in parentheses) was as follows: 32,401 (46,960) tons of 35 percent lead and under and 5,468 (4,012) tons of over 35 percent lead.

Lithopone.—Lithopone shipments fell 40 percent below 1951 deliveries and were much lower than all years from 1922-51, inclusive.

The lithopone statistics in this report are given on the basis of ordinary lithopone sold as such plus the ordinary lithopone content

of the high-strength product.

Consumption of ordinary lithopone in the manufacture of titanated lithopone has diminished to very small proportions. The trend has been downward almost continuously since 1937, when 19,400 tons were used in making the titanated variety. The tonnage consumed for this purpose in 1952 was 42 percent below the quantity used in 1951 and was the smallest on record. The lithopone figures in table 7 are included in the totals for ordinary lithopone in other tables.

Zinc Sulfide.—In 1952 only one company produced zinc sulfide, hence the Bureau of Mines is not at liberty to publish figures for this

pigment.

TABLE 7.—Titanated lithopone produced in the United States and ordinary lithopone used in its manufacture, 1943-47 (average) and 1948-52, in short tons

Year	Titanated lithopone produced	Ordinary lithopone used	Year	Titanated lithopone produced	Ordinary lithopone used
1943–47 (average)	7, 780	6, 610	1950	3, 400	2, 900
	2, 100	1, 700	1951	1, 550	1, 300
	2, 000	1, 700	1952	900	750

Zinc Chloride.—Shipments of 50° B. solution zinc chloride declined 14 percent in 1952 and were the lowest in more than 10 years.

Zinc Sulfate.—Zinc sulfate shipments decreased 17 percent from

the 1951 total and were the smallest since 1944.

RAW MATERIALS USED

Figures covering the raw materials used in making pigments and salts in 1952 and 1951 are shown in the accompanying tables.

Lead pigments and zinc pigments and salts are manufactured from a variety of materials, including ore, refined metal, and such secondary materials as scrap, residues, ashes, drosses, and skimmings. In 1952 approximately 95 percent of the lead in pigments was derived from pig lead and the remainder from ore; in 1951 and 1950 the percentage of contained lead from metal was 94. Of the lead in ore used to make leaded zinc oxide, about 13 percent (12 in 1951) was from foreign sources. The proportion of zinc in zinc pigments was as follows: 76 percent (76 in 1951) from ore and concentrates, 11 (9) percent from slab zinc, and 13 (15) percent from secondary materials; about

26 (19) percent of the ore used was of foreign origin.

Tables 8 and 9 give the source of the metal used in manufacturing each pigment and salt. Pig lead is employed exclusively, either

each pigment and salt. Pig lead is employed exclusively, either directly or indirectly, in manufacturing white lead, litharge, red lead, and orange mineral and is used also in manufacturing basic lead The lead content of leaded zinc oxide made from basic lead sulfate, which in turn is made from pig lead, is credited to pig lead in the table. Zinc oxide is the only pigment in which considerable slab zinc is used. Ore is employed in manufacturing zinc oxide, leaded zinc oxide, lithopone, zinc sulfide, zinc sulfate, and basic lead sulfate. Nearly half of the zinc contained in lithopone (45 percent in 1952 and 53 in 1951) and virtually all of that in zinc chloride (100 percent in 1952 and 1951) produced in the United States are derived from secondary material. The proportion of zinc oxide production derived from metal and scrap increased to 26 percent in 1952 compared with 24 percent in 1951. For a number of years before the United States entered World War II there had been a large increase in the quantity of secondary zinc used in manufacturing zinc oxide. The scarcity of supplies of both metal and scrap caused the proportion of the total oxide made by the French process—which uses only metal and scrap—to drop sharply in 1942 and to continue comparatively low in 1943-46, despite the fact that the total percentage from metal and scrap rose in 1943 and continued upward almost without interruption in 1944-50. The production of zinc oxide from metal and

scrap accounted for the following percentages in relation to total production: 41 percent in 1939, 16 percent in 1942, 19 percent in 1943, 22 percent in 1944, 25 percent in 1945, 26 percent in 1946, 28 percent in 1947, 26 percent in 1948, and 29 percent in 1949 and 1950.

TABLE 8.—Lead content of lead and zinc pigments 1 produced by domestic manufacturers, by sources, 1951-52, in short tons

		198	51		1952				
Pigment	Lead in	n pigment ced from-	s pro-	Total	Lead i		Total		
	o	re	Pig	lead in pig- ments	0	re	Pig	lead in pig- ments	
	Domestic	Foreign	lead		Domestic	Foreign	lead		
White lead Red lead Litharge			27, 409 30, 880 141, 215	27, 409 30, 880 141, 215			22, 287 29, 570 134, 445	22, 287 29, 570 134, 445	
Leaded zinc oxide	11, 237	1, 581		12, 818	8, 358	1, 275		9, 633	
Total	11, 237	1, 581	199, 504	212, 322	8, 358	1, 275	186, 302	195, 935	

 $^{^{1}}$ Excludes lead in basic lead sulfate, data for which are withheld to avoid disclosure of individual company operations.

TABLE 9.—Zinc content of zinc pigments 1 and salts produced by domestic manufacturers, by sources, 1951-52, in short tons

			1951				1952				
Pigment or salt		n pigments and salts roduced from—			Zinc	l salts	Total zinc in				
Ore Domes- For- eign	Slab	Second-	zinc in pig- ments and	Ore		GI-1	r	pig- ments			
			zine	ary ma- terial ²	salts	Domes- tic	For- eign	Slab zinc	ary ma- terial ²	salts	
Zinc oxide Leaded zinc oxide Lithopone	77, 805 21, 364 7, 684	18, 275 4, 046 2, 010	15, 655 59	14, 909 11, 098	126, 644 25, 410 20, 851	57, 839 15, 357 5, 544	23, 811 3, 211 796	16, 240	12, 872 5, 261	110, 762 18, 568 11, 603	
Total pigments	106, 853	24, 331	15, 714	26, 007	172, 905	78, 740	27, 818	16, 242	18, 133	140, 933	
Zinc chloride Zinc sulfate	2, 203	458		14, 078 5, 008	14, 078 7, 669	2, 422	297		11, 399 3, 622	11, 399 6, 341	

Excludes zinc sulfide, data for which are withheld to avoid disclosure of individual company operations.
 These figures are higher than those shown in the report on Secondary Metals—Nonferrous because they include zinc recovered from byproduct sludges, residues, etc., not classified as purchased scrap material.

CONSUMPTION AND USES

LEAD PIGMENTS

White Lead.—The bulk of the white lead used in the United States goes into the making of paint; the paint industry usually accounts for 90 percent or more of total consumption. In 1952, however, the customary percentage was not indicated by available statistics. This situation probably was due to the inability of shippers to give complete data on end-use classification. It is known that in the past

some white lead sold to the Government was reported under "Other," and it is likely that a substantial part of the entire "Other" classification belongs properly under paint. Shipments to ceramic makers and manufacturers of plasticizers and stabilizers each accounted for 4 percent of total distribution in 1952.

TABLE 10.—Distribution of white lead (dry and in oil) shipments, by industry, 1943-47 (average) and 1948-52, in short tons

Industry	1943-47 (average) ²	1948	1949	1950	1951	1952
PaintsCeramicsOther	63, 003 1, 252 5, 415	40, 892 1, 369 3, 809	24, 284 894 2, 177	38, 920 1, 815 3 4, 441	28, 718 1, 548 3 5, 149	21, 223 1, 079 3 4, 361
Total	69, 670	46, 070	27, 355	45, 176	35, 415	26, 663

¹ Reported as sales before 1945.

3 Includes the following tonnages for plasticizers and stabilizers: 1950—1,257; 1951—1,003; 1952—986.

Basic Lead Sulfate.—Statistics covering distribution of basic lead sulfate shipments by uses have not been available for publication since 1945, when 3,000 tons went to the paint industry, 200 tons to the rubber industry, and 700 tons to other industries. Substantial quantities of lead sulfate are used as an intermediate product in manufacturing leaded zinc oxide. Such quantities have always been shown in this chapter under leaded zinc oxide rather than basic lead sulfate.

Red Lead.—Shipments to storage-battery manufacturers again represented the largest proportion of distribution, but by a smaller margin than in previous years. In 1952 shipments for batteries comprised 45 percent of the total compared to 47 percent in 1951, and shipments to the paint industry, the second largest consumer, accounted for 43 percent of the total compared to 42 percent in 1951. Relatively small quantities were used in making ceramics.

TABLE 11.—Distribution of red-lead shipments, by industry, 1943-47 (average) and 1948-52, in short tons

Industry	1943–47 (average)	1948	1949	1950	1951	1952
Storage batteries Paints Ceramics Other	24, 710 15, 493 866 3, 595	14, 854 10, 863 1, 275 3, 795	12, 163 9, 634 603 2, 466	17, 478 14, 103 981 2, 510	16, 722 14, 740 834 3, 056	13, 796 1 3, 149 388 3, 593
Total	44, 664	30, 787	24, 866	35, 072	35, 352	30, 926

¹ Reported as sales before 1945.

Orange Mineral.—No shipments of orange mineral have been reported since 1946 when 123 tons went to various industries.

Litharge.—The use of litharge for storage batteries regularly accounts for roughly two-thirds of total shipments; in 1952 the proportion was 69 percent compared with 61 percent in 1951. The ceramics industry is the second largest consumer of litharge; ship-

² Shipments of basic lead sulfate included with white lead for 1946 to avoid disclosure of individual company operations.

ments for this purpose declined 30 percent from 1951 and comprised 11 percent of the total in 1952. Shipments to insecticide makers fell 52 percent, and deliveries to oil refineries and rubber manufacturers decreased 33 and 20 percent, respectively. The tonnage of litharge used for varnish was about the same as in 1951, whereas shipments for chrome pigments declined 25 percent. Shipments to makers of floor coverings dropped 55 percent but were well above average yearly quantities in previous years.

TABLE 12.—Distribution of litharge shipments, by industry, 1943-47 (average) and 1948-52, in short tons

Industry	1943-47 (average)	1948	1949	1950	1951	1952
Storage batteries	78, 996 13, 057 9, 817 3, 351 6, 325 17, 160 2, 705 115 6, 662	100, 645 19, 979 7, 455 4, 424 7, 248 6, 033 2, 835 152 6, 004	77, 163 13, 299 8, 557 4, 286 5, 720 5, 353 1, 398 62 5, 214	105, 558 27, 771 10, 017 4, 347 6, 488 10, 651 3, 047 220 9, 559	94, 064 22, 815 11, 117 5, 584 6, 068 5, 691 2, 641 1, 772 5, 001	97, 656 15, 906 8, 376 5, 572 4, 080 2, 724 2, 109 791 3, 584
Total	138, 188	154, 775	121, 052	177, 658	154, 753	140, 798

¹ Reported as sales before 1945.

ZINC PIGMENTS AND SALTS

Zinc Oxide.—Shipments of lead-free zinc oxide to consuming industries followed the same distribution pattern in 1952 as in previous years. The rubber industry and paint manufacturers previous years. The rubber industry and paint manufacturers remained by far the leading consumers, accounting for 51 percent (48 in 1951) and 22 percent (22), respectively, of total shipments. Shipments for ceramics and coated fabrics and textiles comprised 5 and 4 percent of the total (7 and 5 in 1951), respectively. Except for the rubber industry, which increased its receipts of zinc oxide slightly, shipments to all consuming industries declined in 1952.

TABLE 13.—Distribution of zinc oxide shipments, by industry, 1943-47 (average) and 1948-52, in short tons

<u> </u>		v				
Industry	1943–47 (average)	1948	1949	1950	1951	1952
Rubber	71, 377 30, 103 6, 470 11, 016 10, 308	82, 895 26, 779 12, 327 9, 474 4, 938	58, 496 26, 205 6, 982 5, 200 2, 665	82, 944 39, 699 12, 679 6, 303 3, 670	71, 507 32, 934 10, 324 7, 265 3, 114	72, 774 31, 424 7, 760 6, 262 2, 413
Other	16, 857	14, 545	10, 584	15, 534	22, 572	21, 577
Total	146, 131	150, 958	110, 132	160, 829	147, 716	142, 210

Leaded Zinc Oxide.—Leaded zinc oxide (all grades) is used almost exclusively as a pigment in paint manufacturing; in 1952 over 99 percent of total shipments was for this purpose. Small quantities (less

Reported as sales before 1945.
 Includes the following tonnages for rayon: 1948—8,209; 1949—4,470; 1950—4,850; 1951—5,275; 1952—5,852.

than 1 percent of shipments) are used by the rubber industry. fact that leaded zinc oxide is produced from ores rather than metal or secondary materials improves its competitive position for paint manufacture when metal and scrap are in short supply.

TABLE 14.—Distribution of leaded zinc oxide shipments,1 by industry, 1943-47 (average) and 1948-52, in short tons

and the contract of the contra						
Industry	1943-47 (average)	1948	1949	1950	1951	1952
Paints Rubber Other	61, 237 132 2, 681	64, 912 218 2, 311	35, 938 124 660	63, 002 240 731	43, 678 82 581	37, 607 9 276
Total	64,050	67, 441	36, 722	63, 973	44, 341	37,892

¹ Reported as sales before 1945.

Lithopone.—The chief use of lithopone is in the manufacture of paints, varnish, and lacquers; approximately three-fourths of total shipments are to these industries. In 1952 this category took 73 percent (75 in 1951) of the total. Shipments for use in coated fabrics and textiles increased 18 percent, the only increase among the lithopone end-use items covered by this report. Shipments for all other purposes—rubber, paper, floor coverings, and printing ink—declined—54, 52, 35, and 24 percent, respectively.

TABLE 15.—Distribution of lithopone shipments, by industry, 1943-47 (average) and 1948-52, in short tons

Industry	1943-47 (a verage)	1948	1949	1950	1951	1952
Paint, varnish, and lacquers 2 Coated fabrics and textiles Paper Floor coverings. Rubber Printing ink	116, 033 6, 092 4, 139 9, 747 1, 494 (3) 7, 858	104, 441 8, 436 4, 814 12, 423 4, 192 (3) 5, 727	56, 146 6, 602 2, 375 6, 380 3, 245 (3) 3, 587	78, 177 7, 945 3, 821 5, 297 4, 092 838 5, 480	76, 614 4, 814 6, 462 4, 620 3, 295 868 6, 164	45, 267 5, 698 3, 089 3, 009 1, 523 657 2, 589
Total	145, 363	140, 033	78, 335	105, 650	102, 837	61, 832

Reported as sales before 1945.

Zinc Chloride.—Statistics on the end-use distribution of zinc chloride shipments are not available. The principal uses of the salt are in wood preserving, battery manufacturing, vulcanized fibre, oil refining, and as a soldering flux.

Zinc Sulfate.—The textile (rayon) industry has ranked first in consumption of zinc sulfate since 1946 when the agricultural use (fertilizers and fungicides) led; in 1952 shipments for rayon decreased 19 percent from 1951 and were the smallest since 1946. Agriculture continued as the second largest use; shipments for this purpose declined 9 percent. Among the smaller uses, shipments for chemicals, textile dyeing and printing, and glue decreased, whereas shipments for flotation reagents, electrogalvanizing, and paint and varnish processing increased.

² Includes a small quantity, not separable, used for printing ink, except in 1950, 1951 and 1952.

Included in "Other" before 1950, except for those quantities reported under "Paint, varnish, and

TABLE 16.—Distribution of zinc sulfate shipments, by industry, 1943-47 (average) and 1948-52, in short tons

Industry	1943–47 (aver- age)		148	19	149	19	950	19	951	19	52
	Gross weight	Gross weight	Dry	Gross weight	Dry basis	Gross weight	Dry basis	Gross weight	Dry basis	Gross weight	Dry basis
Rayon Agriculture Chemicals Flotation reagents Glue Textile dyeing and	6, 613	9, 900	7, 333	10, 591	7, 957	11, 217	8, 322	10, 073	7, 925	8, 181	6, 812
	6, 718	5, 210	4, 248	4, 429	3, 595	5, 841	4, 880	5, 588	4, 847	5, 111	4, 446
	2, 018	1, 734	1, 193	1, 197	851	1, 879	1, 377	2, 871	2, 243	1, 675	1, 489
	1, 168	1, 632	1, 366	921	757	952	727	858	736	1, 070	950
	465	561	462	453	370	579	464	396	337	391	329
printing Electrogal vanizing Paint and varnish	272	102	66	30	21	145	129	1,400	1, 163	350	301
	288	319	205	217	154	324	203	190	129	342	243
processingOther	919	121	104	663	585	189	119	32	20	172	130
	1,566	1, 934	1, 191	1, 564	979	2, 786	1,820	2, 116	1, 274	2, 295	1,422
Total	20, 027	21, 513	16, 168	20, 065	15, 269	23, 912	18, 041	23, 524	18, 674	19, 587	16, 122

¹Reported as sales before 1945.

PRICES

Total and average values received by producers for lead and zinc pigments and zinc salts are given in the tables in the first part of this report. Average values for red lead, white lead, and litharge declined \$21, \$23, and \$35 per ton in 1952 but remained at high levels compared with other years. The average value for white lead was the second highest on record, being smaller only than in 1951; red lead and litharge were higher than in any year except 1948 and 1951. Quotations for lead pigments reached a low for the year during the last week of October when lead was selling at its lowest level (13.5 cents per pound). Pigment prices at that time were about 4 cents a pound or 20 percent under quoted prices at the beginning of the year. When the

TABLE 17.—Range of quotations on lead pigments, and zinc pigments and salts at New York (or delivered in the East), 1949–52, in cents per pound

[Oil, Paint and Drug Reporter]

Product	1949	1950	1951	1952
White lead (basic lead carbonate), dry, carlots, barrels				
Basic lead sulfate (sublimed lead), less than car-	14. 75-22. 10	14.00-18.50	18. 50-20. 10	16. 25–20. 10
lots, barrels_ Red lead, dry, 95 percent or less, less than car-	14. 25-21. 25	13. 25-18. 75	18. 75-20. 19	15. 75–20. 1 9
lots, barrels	15.75-25.25	14, 25-20, 75	20, 75-22, 57	17, 25-22, 57
Orange mineral, American, small lots, barrels	18. 10-27. 60	16.60-23.10	23, 10-24, 92	19. 60-24. 92
Litharge, commercial, powdered, barrelsZinc oxide:	13. 75-24. 25	13. 25–19. 75	19.75–21.65	16. 25-21. 65
American process, lead free, bags, carlots American process, 5 to 35 percent lead, bar-	10.00-15.50	11.00-16.00	16. 00-17. 60	14. 25-17. 60
rels, carlots	10. 25-17. 38	11, 25-16, 88	16, 88-18, 35	14, 40-18, 35
French process, red seal, bags, carlots	11, 50-16, 75	12, 25-17, 25	17, 25-18, 85	15, 25-18, 85
French process, green seal, bags, carlots	11.75-17.25	12, 75-17, 75	17. 75-19. 35	16, 00-19, 35
French process, white seal, barrels, carlots	12.50-18.00	13. 50-18. 50	18, 25-19, 85	16. 50-19. 85
Lithopone, ordinary, small lots, bags	6. 50- 6. 75	6.50-8.50	8, 50- 8, 90	8, 25- 8, 90
Zinc sulfide, less than carlots, bags, barrelsZinc chloride, works:	12. 50-14. 00	13. 50-25. 00	25. 00-26. 30	26.30
Solution, tanks	3. 25	3, 25-4, 10	4.10-5.35	4, 10- 5, 35
Fused, drums	6.75-8.15	7.00- 9.85	9.85	9, 60- 9, 85
Zinc sulfate, crystals, barrels	4.95-6.85	4. 95-10. 15	10. 15-11. 20	10.00-11.20

¹ Includes granulated.

price of lead rose to 14.75 cents in December, pigment quotations

registered proportionate increases.

Although declining slightly in 1952, average values for zinc pigments were the second highest on record, being surpassed only by values in 1951, the peak year. Quotations for zinc oxide (lead-free and leaded) dropped about 3.5 cents per pound during the year as the price of zinc fell from 19.5 cents to 12.5 cents. Lithopone quotations declined about 0.5 cent per pound.

New highs were again recorded for zinc chloride and zinc sulfate; average values were 9 and 2 percent, respectively, above the peaks

established in 1951.

FOREIGN TRADE²

Foreign trade in lead and zinc pigments and salts is of relatively minor importance in relation to domestic shipments of these commodities. A "favorable balance of trade"—that is, value of exports exceeding value of imports—is generally maintained with respect to these products. In 1952 the value of major classes of exports totaled \$5,285,000 compared with imports valued at \$541,000. These figures represented decreases from 1951 figures of 33 percent for exports and 80 percent for imports.

Tonnage imports and exports of lead and zinc pigments and zinc salts in 1952 were also at much reduced rates from those for 1951.

White lead and litharge, usually the chief lead entries, declined 85 and 67 percent, respectively, from 1951 and zinc oxide, lithopone, and zinc chloride, the principal zinc items imported, fell 90, 99, and 61 percent, respectively. Small quantities of zinc sulfate, red lead,

TABLE 18.—Value of foreign trade of the United States in lead and zinc pigments and salts, 1950-52

[U. S.	Department of	Commerce]
--------	---------------	-----------

	Import	s for consu	mption		Exports	
	1950	1951	1952	1950	1951	1952
Lead pigments:						
White lead	\$271,035	\$886,973	\$139, 829	\$243, 344	\$272, 695	\$222, 092
Red lead	27, 114	89, 351	623	194, 939	266, 098	183, 649
Litharge	4,570	788, 064	273, 719	511, 942	445, 201	527, 450
Other lead pigments	40,781	32, 373	36, 386	(1)	(1)	(1)
Total	343, 500	1, 796, 761	450, 557	(1)	(1)	(1)
6.						
Zinc pigments:	1,081,816	779, 299	88,056	875, 829	3, 238, 685	2, 720, 203
Zinc oxide Zinc sulfide	14, 479	110, 200	30,000	(1)	(1)	2, 120, 200
Lithopone	179, 197	151, 165	2, 308		3, 615, 915	1, 632, 106
171thopone		101,100		2,220,000	0,010,010	-,,
Total	1, 275, 492	930, 464	90, 364	2, 124, 367	6, 854, 600	4, 352, 309
Lead and zinc salts:						
Tood arconata		2,664	36, 879	216, 034	165, 215	62, 498
Other lead compounds	1,055	68,609	12,550	(1)	(1)	(1)
Zinc arsenate			22	(1)	(1)	(1) (1) (1)
Zinc chloride	30, 447	194, 595	79, 645	(1)	(1)	(1)
Zinc sulfate	11, 202	15, 565	10, 767	(1)	(1)	(1)
Total	42, 704	281, 433	139, 863	(1)	(1)	(1)
Grand total	1, 661, 696	3, 008, 658	680, 784	(1)	(1)	(1)

¹ Data not available.

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

lead suboxide, lead arsenate, and other lead compounds were also imported for consumption in 1952.

Litharge, white lead, red lead, and lead arsenate are also exported by the United States, but totals constitute only a small portion of

shipments by domestic producers.

Zinc oxide and lithopone are the pigments exported in greatest tonnages from the United States. Exports of these pigments decreased 14 and 51 percent, respectively, from the quantities exported in 1951. Tonnages given comprise 5 and 16 percent, respectively, of total domestic shipments.

TABLE 19.—Lead pigments and salts imported for consumption in the United States, 1948-52

[O. S. Department of Commerce]												
		Short tons										
Year	White lead (basic carbon-ate)	Red lead	Litharge	Lead suboxide	Lead pigments n. s. p. f.	Lead arsenate	Other lead compounds	Total value				
1948	203 161 944 2, 575 390	247 23 70 215 2	1, 064 96 12 1, 855 621	34 23 57 53 53	30 6 27 (1)	7 81	(¹) 2 180 32	\$633, 776 142, 607 344, 555 1, 868, 034 499, 986				

¹ Less than 0.5 ton.

TABLE 20.—Zinc pigments and salts imported for consumption in the United States, 1948-52

U. S. Department o	f Commerce]

		Short tons										
Year	Zinc	Zinc oxide		Zinc	Zine	Zinc	Zine	Total value				
Dry	Dry	In oil	Litho- pone	sulfide	chloride	arsenate	sulfate					
1948	27 239 5, 093 1, 772 173	(1) (1) (1) (1)	12 · 1, 201 · 794 · 11	33	17 210 714 275	(1)	180 120 159 201 66	\$17,758 60,984 1,317,141 1,140,624 180,798				

¹ Less than 0.5 ton.

TABLE 21.—Lead pigments and salts exported from the United States, 1948-52 [U. S. Department of Commerce]

		Short tons						
Year	White lead	Red lead	Litharge	Lead arsenate	Total value			
1948 1949 1950 1951 1952	663 699 815 767 675	953 1,042 549 585 435	644 1, 357 1, 612 1, 038 1, 233	1, 019 430 520 313 128	\$1, 404, 001 1, 343, 513 1, 166, 259 1, 149, 209 995, 689			

TABLE 22.—Zinc pigments and salts exported from the United States, 1948-52
[U. S. Department of Commerce]

	Shor	tons			Short	t tons		
Year	Zinc oxide	Litho- pone	Total value	Year	Zinc oxide	Litho- pone	Total value	
1948 1949 1950	8, 642 5, 040 3, 094	21, 015 14, 460 9, 357	\$5, 228, 962 3, 426, 118 2, 124, 367	1951 1952	8, 895 7, 615	20, 473 9, 985	\$6,854,600 4,352,309	

WORLD REVIEW

France.—The Belgian and French works of the Mines et fonderies de zinc de la Vielle-Montagne produced 12,800 short tons of zinc white in 1952. The New Jersey distillation tower for the production of "snow" zinc oxide (oxyde de zinc "neige") was put into service at the end of 1951 and is working regularly at the Creil (Oise) works.

Germany, West.—Two methods are used in Germany to manufacture zinc oxide of pigment quality: The "indirect" process (that is, producing zinc oxide from virgin metal, remelted zinc, or hard zinc) and the "direct" process (that is, producing zinc oxide from zinciferous products such as zincy slags, residues, or other waste products or byproducts containing zinc mainly in the form of zinc oxide). The indirect process produces a first-quality zinc oxide well suited for pigments. By the direct process a zinc oxide is obtained generally of second quality and largely unsuited for pigments.

The zinc oxide produced in the indirect process is called zinc white in Germany, whereas the zinc oxide obtained in the direct process is called, simply, zinc oxide. If suitable for pigment, the latter is called pigment zinc oxide; if not suitable for pigment it is called technical

zinc oxide or off-grade zinc oxide.

Nearly all German producers of zinc white use the Grillo process, which was developed 80 years ago at the Grillo zinc smelter at Hamborn. This method has been periodically modernized, but its principle has remained the same. Only to a small extent is the crucible process in operation.

Five firms in Western Germany use the Grillo process to manufacture zinc white. These are: Grillo, Hamborn; Bergmann u. Simons, Cologne; Lindgens u. Sohne, Cologne; Gebrüder Rhodius, Burgbrohl; and Zinkhütte Hamburg, Hamburg. These 5 firms have a combined

capacity of about 30,000 tons of zinc white a year.

In its essentials the Grillo process consists of heating zinc metal in clay retorts with producer gas. The zinc vaporizes and mixes with the producer gas; this mixture leaves the retort on the side opposite that which it enters through a combustion chamber arranged outside

Metal Bulletin (London), No. 3796, May 29, 1953, p. 19.

the furnace. There the mixture of gas and vapor comes into contact with air and burns immediately to zinc oxide.

Zinkhütte Hamburg employes the crucible process to produce a special kind of zinc white for the rubber industry. Metall u. Farbwerke, Oker, uses crucibles to produce normal zinc white.

The so-called smelting process, operating in a rotary kiln, is not in use in Germany, although this process produces a zinc white of

excellent quality under close supervision.

Various plants are engaged in producing zinc oxide by the direct process, using zinc-containing materials. The most important of these are at Oker, Langelsheim, Gelsenkirchen, and Siegen. None of these plants produces a zinc oxide equal in its quality and lead content to zinc white. At best the pigment zinc oxide produced by this method is of second quality.⁴

Netherlands.—A mixed Anglo-Netherlands enterprise has put into operation at Bois-le-Duc, a works producing red lead, reports L'Usine nouvelle. Output was put at 3,000 tons a year, most of which at first was to be absorbed domestically.⁵

⁴ Jensen, C. W., Zinc Oxide Manufacture in Germany: Min. Mag. (London), vol. 86, No. 1, January 1952, pp. 15-21. ⁵ Metal Bulletin (London), No. 3570, Feb. 23, 1951, p. 15.

Lime1

By Oliver Bowles. Flora B. Mentch. and Annie L. Marks 4

DECAUSE the major uses of lime are in the chemical and processing industries, the continuing high level of industrial activity throughout 1952 was reflected in an output of lime exceeded only by the record production of 1951. The small decline from 1951 was occasioned by lack of demand for metallurgical and refractory lime during the steel-plant strike. Lime sold or used in 1952 totaled 8,073,000 short tons, a decrease of 2 percent from 1951. Of total sales, 77 percent was in the form of quicklime or dead-burned dolomite and 23 percent hydrated lime. The average sales value of quicklime increased from \$11.42 to \$11.43 per ton in 1952. Hydrated-lime value increased from \$12.81 to \$12.99. The number of plants increased from 155 to 160.

TABLE 1.—Salient statistics of open-market lime in the United States, 1943-47 (average) and 1948-52

	1943-47 (average)			1950	1951	1952						
Active plants	201	181	180	168	155	160						
Sold by producers: By types: Quickline short tons. Hydrated do Total lime: Short tons. Value 1 Per ton By uses: Agricultural short tons. Building do Chemical and other industrial do Refractory (dead-burned dolomite) short tons. Imports for consumption do Exports.	4, 872, 962 1, 479, 525 6, 352, 487 \$51, 707, 972 \$8, 14 403, 791 696, 264 4, 006, 825 1, 245, 607 21, 336 30, 915	1, 822, 663 7, 263, 976 \$75, 162, 879 \$10. 35 323, 300 1, 140, 518 4, 255, 403 1, 544, 755 35, 624	6, 318, 302 \$69, 319, 374 \$10, 97 328, 528 1, 052, 097 3, 618, 969 1, 318, 708 34, 332	7, 478, 416 \$83, 247, 990 \$11. 13 332, 687 1, 248, 989 4, 137, 297 1, 759, 443 34, 284	8, 255, 512 \$96, 934, 611 \$11. 74 343, 619 1, 234, 136 4, 711, 297 1, 966, 460 34, 025	8, 073, 078 \$95, 231, 221 \$11. 80 392, 383 1, 191, 263 4, 561, 407 1, 928, 025 24, 008						

¹ Selling value, f. o. b. plant, excluding cost of containers.

As lime is used extensively in industrial plants, such uses tend to follow the trend of industrial activity. This relationship is shown in figure 1. Similarly the production of building lime follows the course of total new building construction. Since 1948, however, buildinglime sales, as indicated in figure 1, have not paced building construction.

Figure 2 shows the trends in sales of lime by principal uses over a period of years.

¹ Figures in this chapter pertain chiefly to open-market lime, excluding coverage of most captive lime operations.

2 Commodity specialist.

3 Statistical assistant.

4 Statistical clerk.

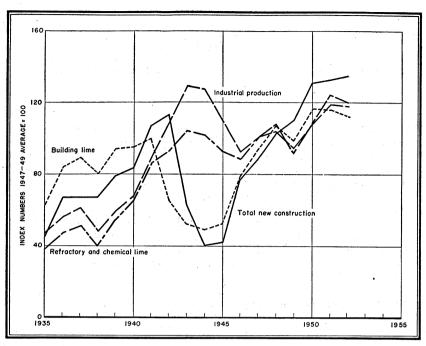


FIGURE 1.—Sales of building lime compared with physical volume of total new construction and sales of refractory and chemical lime compared with industrial production, 1935–52. Units are reduced to percentages of the 1947–49 average. Statistics on new construction from Construction and Building Materials, U. S. Department of Commerce, and on industrial production from Federal Reserve Board.

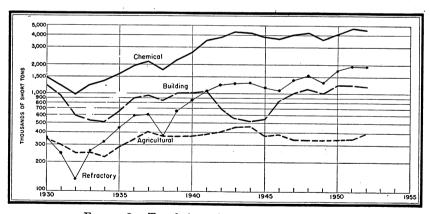


FIGURE 2.—Trends in major uses of lime, 1930-52.

DOMESTIC PRODUCTION

Total production (as indicated by sales) of open-market lime decreased 2 percent in quantity and value from 1951 to 1952. A major gain in volume of output was in agricultural lime, sales of which in-

LIME 637

creased 14 percent. Chemical and industrial lime and lime sold to the building trades each declined 3 percent. Sales of dead-burned dolomite declined 2 percent. Chemical, industrial, and refractory lime combined comprised 80 percent of total sales compared with 81 percent in 1951. Building lime was 15 percent of the total, and ag-

ricultural 5 percent.

In 1952, open-market lime was produced in 33 States and 2 Territories, compared with 32 States and 2 Territories in 1951. The new State was Iowa, which had not appeared among producers since 1931. As in previous years, Ohio, Pennsylvania, and Missouri were the leading producers. Their combined output was 56 percent of the United States total in 1952. Illinois, Virginia, and Alabama were next in order of importance; together they supplied 16 percent of the total. It appears, therefore, that nearly three-fourths of the United States production of open-market lime originated in these six States.

TABLE 2.—Lime (quick and hydrated) sold by producers in the United States, 1951-52, by States

gw 🐔		1951			1952	
State or Territory	Active	Short tons	Value	Active plants	Short tons	Value
labama .rizona .rrizona .donnecticut .rrizona .lorida .lor	4 4 1 6 6 6 1 1 1 1 7 3 3 3 3 3 1 1 2 2 2 8 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	124, 852 1, 247, 286	\$4, 395, 922 772, 899 (1) 104, 626 5, 878, 289 (1) 104, 626 5, 878, 289 (1) 11, 330, 225 (1) (1) 11, 285, 877 (1) (1) 129, 046, 196 (1) 14, 260, 054 191, 415 (1) 14, 260, 054 191, 415 (1) 1, 562, 283 4, 551, 656 (1) 1, 562, 200 14, 567, 486	7 4 1 1 6 1 1 1 1 6 1 1 1 7 7 3 3 3 1 1 2 2 3 3 3 1 1 2 2 2 8 3 3 1 1 2 2 5 5 7 7	424, 028 53, 019 (1) 238, 957 (1) 7, 854 8, 894 460, 775 (1) 1, 130, 970 (1) 1, 130, 970 (1) 1, 130, 970 (1) 1, 120, 981 1, 8, 575 (1) 10, 189 281, 604 (1) 442, 845 (1) 107, 813 1, 194, 122 8, 073, 078	\$4, 458, 60 757, 39 3, 752, 73 (1) 87, 58 240, 78 5, 917, 03 (1) (1) 746, 88 1, 999, 54 (1) (1) (1) 28, 393, 26 (1) (1) 13, 342, 21 195, 00 (1) 1, 005, 22 2, 622, 97 (1) 4, 448, 92 (1) (1) 1, 368, 51 14, 067, 55

¹ Figures that may not be shown separately are combined as "Undistributed" to avoid disclosure of individual company operations.

Captive Tonnage.—The statistics included in this chapter pertain primarily to lime sold in the open market, but in some instances relatively small quantities of captive tonnage are included where it is particularly desirable to show complete figures for consumption by

use. Specifically, the figures for lime sold or used in the United States in 1952 (1951 in parentheses) include a total of 485,600 short tons of captive tonnage, used by producers, distributed as follows: For building, 70,200 tons (53,000); for metallurgical uses, 259,800 (339,500 revised); for miscellaneous chemical uses, 114,300 (98,700); and for refractory lime (dead-burned dolomite), 41,300 (44,000 revised). A more complete figure for total lime production can be obtained by adding to the total given herein the quantity calculated from the limestone tonnages (shown in the chapter on Stone in this volume) consumed in the uses in which limestone is usually calcined.

TABLE 3.—Lime sold by producers in the United States, 1951-52, by type and by major use

			1951				1952			
	Quantity		Value 2		Quant	Quantity		Value 2		
	Short tons	Per- cent of total	Total	A ver-	Short tons	Per- cent of total	Total	Aver- age	Ton- nage	Aver- age value
By type: Quicklime Hydrated lime	6, 335, 729 1, 919, 783	77 23	\$72, 347, 501 24, 587, 110			77 23		\$11. 43 12. 99	-2 -2	(3) +1
Total lime 4	8, 255, 512	100	96, 934, 611	11.74	8, 073, 078	100	95, 231, 221	11.80	-2	+1
By use: Agricultural: Quicklime Hydrated lime Total	118, 673 224, 946 343, 619	$-\frac{1}{3}$	1, 144, 083 2, 568, 525 3, 712, 608	11. 42		2 3 5		8. 18 10. 83 9. 73	+37 +2 +14	-15 -5 -10
Building: Quicklime Hydrated lime	252, 098 982, 038	3 12		12. 80 13. 44	216, 351 974, 912	3 12	2, 733, 996 13, 498, 165	12. 64 13. 85	-14 -1	-1 +3
	1, 234, 136	15	16, 430, 528	13. 31	1, 191, 263	15	16, 232, 161	13.63	-3	+2
Chemical and other industrial: Quicklime Hydrated lime	3, 998, 498 712, 799	48 9	41, 600, 604 8, 815, 558		3, 882, 740 678, 667	48 8	40, 605, 850 8, 478, 152	10. 46 12. 49	-3 -5	+1 +1
Total	4, 711, 297	57	50, 416, 162	10. 70	4, 561, 407	56	49, 084, 002	10.76	-3	+1
Refractory (dead- burned dolomite)	1, 966, 460	24	26, 375, 313	13. 41	1, 928, 025	24	26, 098, 455	13. 54	-2	+1

¹Includes Hawaii and Puerto Rico.

Size of Plants.—The downward trend in the number of lime plants that has been rapid for many years has leveled since 1949. The more stabilized condition is due primarily to the disappearance of most of the small plants. Plants producing less than 1,000 tons of lime a year numbered 375 in 1930 and 12 in 1952. The average output per plant, which has been increasing steadily for some years, shows little change in 1952, compared with 1951. Plants producing 25,000 tons or more per year totaled 78 and produced 92 percent of total output

Selling value, f. o. b. plant, excluding cost of container.
 Less than ±0.5 percent.

⁴ Includes lime used by producers (captive tonnage) as follows—1951: 535,179 tons, \$4,933,013; 1952: 485,635 tons, \$4,952,140.

LIME 639

in 1951. In 1952 the plants in these categories totaled 79 and likewise produced 92 percent of the total. Other relationships of interest are indicated in table 4.

TABLE 4.—Distribution of open-market lime (including refractory) plants, 1950-52, according to size of production

		1950			1951		1952			
Size group (short tons)		Production			Production			Production		
	Plants	Short tons	Percent of total	Plants	Short tons	Percent of total	Plants	Short tons	Percent of total	
Less than 1,000	22 21	6, 199 77, 098 136, 637 480, 555 1, 143, 169 1, 473, 928 4, 160, 830 7, 478, 416	(1) 1 2 6 15 20 56 100	11 23 13 30 28 24 26	4, 483 62, 869 96, 617 497, 545 1, 054, 314 1, 563, 026 4, 976, 658 8, 255, 512	(1) 1 1 6 13 19 60 100	19 25	4, 982 76, 517 116, 896 443, 834 1, 302, 652 1, 248, 714 4, 879, 483 8, 073, 078	(1) 1 1 6 16 16 16 60 100	

¹ Less than 0.5 percent.

Hydrated Lime.—Quicklime (CaO or CaO-MgO) has a strong affinity for water, with which it combines to form hydrated lime (Ca(OH)₂ or Ca,Mg(OH)₂). Hydrated lime has some advantages over quicklime in handling and transportation; and, for certain applications, the hydrated form is preferred. Accordingly, part of the output—22 percent in 1952—was hydrated before it was shipped. Production by States is indicated in table 5.

TABLE 5.—Hydrated lime sold by producers in the United States, 1951-52, by States

		1951			1952	
State or Territory	Active plants	Short tons	Value	Active plants	Short tons	Value
Alabama California. Georgia. Hawaii. Illinois. Maryland. Massachusetts. Missouri Ohio. Pennsylvania. Tennessee. Texas. Vermont. Virginia. Other States 2.	5 1 4 4 3 5 14 15 3 6	46, 254 34, 554 9, 554 8, 736 46, 781 23, 058 56, 215 192, 167 716, 289 341, 625 22, 194 67, 173 9, 264 68, 875 277, 044	\$520, 225 536, 425 99, 431 235, 872 585, 574 249, 865 754, 019 2, 165, 807 9, 330, 363 4, 311, 696 280, 455 769, 702 143, 593 807, 538 3, 796, 545	5 5 1 1 4 4 3 3 5 14 14 13 6 (1) 10 32	62, 480 33, 289 6, 718 8, 858 54, 226 18, 818 53, 375 181, 398 670, 702 332, 009 19, 726 71, 700 (1) 73, 119 296, 406	\$784, 581 498, 097 82, 112 239, 166 687, 487 189, 634 705, 388 2, 145, 140 1, 127, 369 214, 037 820, 076 (1) 841, 842 4, 019, 885
Total	105	1, 919, 783	24, 587, 110	107	1, 882, 824	24, 459, 130

¹ Included with "Other States" to avoid disclosure of individual company operations.
² Includes the following States and number of plants in 1952 (1951 same as 1952 unless shown differently in parentheses): Arizona 3, Arkansas 1, Connecticut 1, Florida 1, Indiana 1, Iowa 1 (0), Maine 1, Michigan 1, Minnesota 1, Montana 1 (0), Nevada 2, New Jersey 2 (1), New York 2, Oklahoma 1, Puerto Rico 1 (2), Utah 2, Vermont 1, Washington 1, West Virginia 3, and Wisconsin 5.

CONSUMPTION AND USES

Geographic data on sales of lime by uses are presented in table 6 on a district rather than on a State basis, in order that more informa-

TABLE 6.—Lime (quick and hydrated) sold by producers in the United States in 1952, by districts 1 and by types

State or Territory	Agricultural		Building		Chemical indu	and other strial	Refra	etory	То	tal
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
District 1: Connecticut, Maine, Massachusetts, and Vermont. Districts 2 and 3: Maryland, New Jersey, New York, Pennsylvania, and West Virginia District 4: Virginia District 5: Ohio. District 7: Illinois, Indiana, and that portion of Missouri east of 93d meridian. Districts 6, 8, and 9: Iowa, Michigan, Minnesota, South Dakota, and Wisconsin. Districts 10-11: Alabama, Florida, Georgia, and Tennessee. District 12: Arkansas, Oklahoma, and that portion of Missouri west of 93d meridian. Districts 13: Texas. Districts 14 and 15: Arizona, California, Montana, Nevada, Oregon, Utah, and Washington. Noncontiguous Territories: Hawaii Puerto Rico. Undistributed 2	(2) 3, 529 (2) 350 (2)	\$165, 881 2, 426, 697 241, 139 637, 589 (2) 39, 485 (2) 3, 162 (2) 302, 650	59, 430 148, 064 11, 566 578, 088 (2) (2) (2) (2) 45, 545 102, 626 (2) (2) (2) (3) (2) (4) (4) (5) (6) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	\$853, 529 1, 966, 801 126, 428 8, 009, 903 (2) (2) (2) (2) (2) (484, 587 1, 870, 015 (2) (2) (2, 920, 898	142, 542 988, 129 411, 128 407, 007 1, 117, 427 301, 488 443, 736 171, 063 235, 709 334, 552 (2) (2) 8, 626	\$2, 144, 084 10, 668, 788 4, 081, 357 4, 139, 066 11, 308, 257 3, 486, 437 4, 646, 583 1, 782, 578 2, 135, 226 4, 476, 160 (2) (2) (2) (215, 466	332, 266 1, 166, 870 (2)	\$4, 434, 788 15, 606, 702 (2) (2) (2) (2) (2)	215, 868 1, 698, 794 442, 845 2, 205, 432 1, 506, 905 353, 478 566, 229 264, 696 281, 604 519, 758 8, 894 8, 575	\$3, 163, 494 19, 497, 074 4, 448, 924 28, 393, 266 16, 545, 454 3, 917, 466 5, 992, 957 2, 596, 944 2, 622, 974 7, 616, 892 240, 786 195, 006
Total	392, 383	3, 816, 603	1, 191, 263	16, 232, 161	4, 561, 407	49, 084, 002	1, 928, 025	26, 098, 455	8, 073, 078	95, 231, 22

The districting is the same as that used by the National Lime Association. Non-lime-producing States are omitted.
 Figures that may not be shown separately are combined as "Undistributed" to avoid disclosure of individual company operations.

641 LIME

tion may be made available than was possible heretofore. presented on a State basis, as in previous years, numerous concealments were necessary to avoid disclosure of individual operations.

Table 7 shows the quantity and value of lime sold to many chemical These applications have attained great and processing industries. importance during recent years. Fifty-seven percent of all lime sold was applied to such uses in 1952, the same percentage as in 1951.

The total quantity of lime applied to chemical and industrial uses in 1952 was 3 percent lower than in 1951. The principal declines were in steel flux, 10 percent; sewage and trade waste, 11 percent; paper mills, 7 percent, insecticides and related products, 11 percent; tanneries, 5 percent; and calcium carbide, 3 percent. Sales of refractory lime (dead-burned dolomite) declined 2 percent. Gains were recorded for ore-concentration uses, 11 percent; water purification, 4 percent; and sugar refining, 2 percent.

The quantity of lime used in agriculture increased 14 percent, while

building-trade uses declined 3 percent.

The sales distribution of hydrated lime by uses is indicated in table 8.

TABLE 7.—Lime (quick and hydrated) sold by producers in the United States, 1951-52, by uses

				<u> </u>		 .		
		1951		1952				
Use	Short	Val	ue	Short	Val	110		
	tons	Total	Average	tons	Total	Average		
Agricultural	343, 619	\$3, 712, 608	\$10.80	392, 383	\$3, 816, 603	\$9. 73		
Building: Finishing lime Mason's lime Prepared masonry mortars Unspecified	469, 101 92, 586 73, 148	8, 524, 569 6, 140, 350 954, 352 811, 257	14. 22 13. 09 10. 31 11. 09	597, 065 469, 507 99, 516 25, 175	8, 643, 902 6, 236, 377 1, 057, 255 294, 627	14. 48 13. 28 10. 62 11. 70		
Total	1, 234, 136	16, 430, 528	13. 31	1, 191, 263	16, 232, 161	13. 63		
Chemical and other industrial: Alkalies (ammonium, potassium, and sodium compounds)	2, 504 23, 517 17, 187 576, 659 26, 988 28, 681	(1) 29, 155 286, 980 226, 444 5, 592, 490 305, 237 317, 035 56, 313	(1) (1) 11. 64 12. 20 13. 18 9. 70 11. 31 11. 05 12. 78	(1) (1) 4, 440 20, 575 17, 616 558, 370 20, 222 29, 060 9, 569	(1) 47, 246 240, 922 225, 882 5, 333, 540 579, 971 314, 896 107, 561	(1) (1) 10. 64 11. 71 12. 82 9. 55 28. 68 10. 84 11. 24		
Food products: Creameries and dairies	6, 444 21, 109 2, 432 237, 479 9, 598	12, 137 78, 340 235, 365 32, 466 2, 403, 987 109, 746 89, 691	16. 38 12. 16 11. 15 13. 35 10. 12 11. 43 11. 61	990 6, 105 21, 258 1, 381 237, 172 7, 844 5, 187	15, 012 73, 863 248, 993 16, 330 2, 350, 536 88, 618 58, 302	15. 16 12. 10 11. 71 11. 82 9. 91 11. 30 11. 24		
infectants Medicines and drugs Metallurgy:	79, 136	988, 996 (¹)	12. 50 (1)	70, 347 (¹)	879, 160 (¹)	12, 50 (¹) 16, 59		
Nonferrous smelter flux. Steel (open-hearth and electric furnace flux). Ore concentration 4. Wire drawing. Other 4.	1, 354, 883 275, 022 21, 495	64, 763 14, 190, 178 2, 869, 987 282, 688 145, 638	15. 94 10. 47 10. 44 13. 15 10. 71	1, 378 1, 222, 543 305, 309 24, 598 10, 399	22, 859 12, 994, 294 3, 376, 010 291, 550 108, 714	10. 63 11. 06 11. 85		

<sup>Included with "Undistributed" to avoid disclosure of individual company operations.
Bleach used in paper mills excluded from "Bleach" and included with "Paper mills."
Includes citrates, tartrates, and miscellaneous food products.
Includes floatation, cyanidation, bauxite purification, and magnesium manufacture.
Includes barium and vanadium processing, cupola, gold recovery, and unspecified metallurgical uses.</sup>

TABLE 7.-Lime (quick and hydrated) sold by producers in the United States, 1951-52, by uses—Continued

		1951		1952			
Use	Short	Val	ue	Short	Value		
	tons	Total	Average	tons	Total	Average	
Chemical and other industrial—Con.							
Paints	28, 536	\$352, 258	\$12.34	25, 926	\$319, 508	\$12.32	
Paper mills	735, 393	8, 103, 544	11.02	683, 628	7, 422, 034	10.86	
Petroleum refining	52, 509	621, 556	11.84	40, 621	466, 869	11.49	
Rubber manufacture	1, 126	13, 579	12.06	2,028	23, 749	11. 7	
Salt refining	9, 852	95, 809	9. 72	9, 677	91, 545	9.46	
Sewage and trade-wastes treatment.	100, 553	1, 181, 644	11. 75	89, 338	1, 084, 262	12. 14	
Soap and fat		9, 310	12.36	815	9, 953	12. 21	
Sugar refining		529, 822	15. 16	35, 492	529, 293	14.9	
Tanneries	68, 239	784, 041	11.49	64, 991	725, 065	11. 10	
Varnish		(1)	(1)	(1)	(1)	(1)	
Water purification		6, 181, 745	10.70	601, 592	6, 447, 682	10. 7	
Wood distillation		61, 563	11. 26	14, 206	126, 073	8. 8'	
Undistributed 6		1, 307, 902	10.68	143, 999	1, 484, 346	10. 3	
Unspecified	259, 846	2, 855, 753	10. 99	274, 731	2, 979, 364	10.84	
TotalRefractory lime (dead-burned dolo-	4, 711, 297	50, 416, 162	10.70	4, 561, 407	49, 084, 002	10. 76	
mite)	1, 966, 460	26, 375, 313	13. 41	1, 928, 025	26, 098, 455	13. 5	
Grand total lime 7	8, 255, 512	96, 934, 611	11. 74	8, 073, 078	95, 231, 221	11.8	
distribution	1, 919, 783	24, 587, 110	12. 81	1, 882, 824	24, 459, 136	12. 9	
	1	1	ı	1	I	Į.	

TABLE 8.—Hydrated lime sold by producers in the United States, 1951-52, by uses

Agricultural 224, 946 \$2, 568, 525 \$11, 42 229, 245 \$2, 482, 819 \$10.80 Building 982, 038 13, 203, 027 13.44 974, 912 13, 498, 165 13.80 Chemical and other industrial: Bleach, liquid and powder 807 10, 123 12.54 2, 428 30, 499 12.5 Brick, sand-lime and slag 8, 255 107, 328 13.00 7, 628 88, 660 11.60 Brick, sliica 14, 911 200, 744 13.46 14, 477 196, 565 13.50 Coke and gas 462 5, 278 11.42 691 7, 981 11.50 Food products 16, 914 209, 292 12.37 15, 721 206, 465 13.11 Insecticides, fungicides, and disinfectants 66, 647 840, 004 12.60 60, 017 763, 300 12.70 Metallurgy 29, 741 402, 777 13.54 25, 452 344, 170 13.55 Paints 18, 222 235, 445 12.92 16, 494 211, 932 12.80 Paper mills 53, 598 678, 446 12.66 88, 988 481, 331 12.30 Petroleum 35, 231 446, 841 12.68 26, 332 324, 531 12.33 Sewage and trade-waste treatment 49, 434 591, 733 11.97 49, 632 596, 669 12.00 Sugar refining 25, 618 421, 176 16.44 26, 132 427, 505 16.33 Tanneries 27, 758 447, 770 18, 542 839 12.05 34, 192 405, 427 11.80 Water purification 249, 102 2, 891, 629 11.61 237, 438 2, 778, 567 11.70 Undistributed 1 36, 68, 944, 782 12.41 43, 830 649, 770 14.80 Unspecified 70, 188 874, 071 12.45 79, 215 964, 810 12.1			1951			1952			
Agricultural 224, 946 \$2, 568, 525 \$11. 42 229, 245 \$2, 482, 819 \$10. 8 Building 982, 038 13, 203, 027 13. 44 974, 912 13, 498, 165 13. 8 Chemical and other industrial: Bleach, liquid and powder 807 10, 123 12. 54 2, 428 30, 499 12, 5 Brick, sand-lime and slag 8, 255 107, 328 13. 00 7, 628 88, 660 11. 6 Brick, silica 14, 911 200, 744 13. 46 14, 477 196, 565 13. 5 Coke and gas 462 5, 278 11. 42 691 7, 951 11. 5 Food products 16, 914 209, 292 12. 37 15, 721 206, 465 13. 1 Insecticides, fungicides, and disinfectants 66, 647 840, 004 12. 60 60, 107 763, 300 12. 7 Metallurgy 229, 741 402, 777 13. 54 25, 452 344, 170 13. 5 Paints 18, 222 235, 445 12. 92 16, 494 211, 932 12. 8 Paper mills 53, 598 678, 446 12. 66 38, 988 481, 331 12. 3 Retroleum 35, 231 446, 841 12. 68 26, 332 324, 551 12. 3 Sewage and trade-waste treatment 49, 434 591, 733 11. 97 49, 632 596, 669 12. 0 Sugar refining 25, 618 421, 176 16. 44 26, 132 427, 505 16. 3 Tanneries 37, 580 452, 891, 692 11. 61 237, 438 2, 778, 567 11. 7 Undistributed 1 36, 089 447, 832 12. 41 43, 830 649, 770 14. 8 Unspecified 70, 188 874, 071 12. 45 79, 215 964, 810 12. 1	Use	Short	Val	ne	Short	Val	ue		
Building 982, 038 13, 203, 027 13. 44 974, 912 13, 498, 165 13. 8 Chemical and other industrial: Bleach, liquid and powder 807 10, 123 12. 54 2, 428 30, 499 12, 5 Brick, sand-lime and slag 8, 255 107, 328 13. 00 7, 628 88, 660 11, 6 Brick, silica 14, 911 200, 744 13, 46 14, 477 196, 565 13, 5 Coke and gas 462 5, 278 11, 42 691 7, 951 11, 5 Food products 16, 914 209, 202 12, 37 15, 721 206, 465 13, 1 Insecticides, fungicides, and disinfectants. 66, 647 840, 004 12, 60 60, 017 763, 300 12, 7 Metallurgy 29, 741 402, 777 13, 54 25, 452 344, 170 13, 5 Paler mills 53, 598 678, 446 12, 66 38, 988 481, 331 12, 3 Petroleum 35, 251 446, 841 12, 68 26, 332 <t< td=""><td></td><td>tons</td><td>Total</td><td>Average</td><td>tons</td><td>Total</td><td>Average</td></t<>		tons	Total	Average	tons	Total	Average		
Bleach, liquid and powder 807 10, 123 12, 54 2, 428 30, 499 12, 5 Brick, sand-line and slag 8, 255 107, 328 13, 00 7, 628 88, 660 11, 61 Brick, silica 14, 911 200, 744 13, 46 14, 477 196, 565 13, 5 Coke and gas 462 5, 278 11, 42 691 7, 951 11, 5 Food products 16, 914 209, 292 12, 37 15, 721 206, 465 13, 1 Insecticides, fungicides, and disinfectants 66, 647 840, 004 12, 60 60, 017 763, 300 12, 7 Metallurgy 29, 741 402, 777 13, 54 25, 452 344, 170 13, 5 Paints 18, 222 235, 445 12, 92 16, 494 211, 932 12, 8 Paper mills 53, 598 678, 446 12, 68 38, 988 481, 331 12, 3 Petroleum 35, 231 446, 841 12, 68 26, 332 324, 531 12, 3 Sewage and trade-							\$10. 83 13. 85		
1'0f81 1712 799 8 815 558 12 37 678 667 8 478 152 12 4	Bleach, liquid and powder Brick, sand-lime and slag Brick, silica	8, 255 14, 911 462 16, 914 66, 647 29, 741 18, 222 53, 598 35, 231 49, 434 25, 618 37, 580 249, 102 36, 089 70, 188	107, 328 200, 744 5, 278 209, 292 840, 004 402, 777 235, 446 646, 841 591, 733 421, 176 452, 839 2, 891, 629 447, 832	13. 00 13. 46 11. 42 12. 37 12. 60 13. 54 12. 92 12. 66 12. 68 11. 97 16. 44 12. 05 11. 61 12. 41	7, 628 14, 477 691 15, 721 60, 017 25, 452 16, 494 38, 988 26, 332 49, 632 26, 132 34, 192 237, 438 43, 830	88, 660 196, 565 7, 951 206, 465 763, 300 344, 170 211, 932 481, 331 324, 531 596, 669 405, 427 2, 778, 567 649, 770	12, 56 11, 62 13, 58 11, 51 13, 13 12, 72 13, 52 12, 23 12, 23 13, 23 14, 24 15, 24 16, 26 17, 26 17, 26 18,		

¹ Includes cement products, glass, glue, grease (lubricating), medicines and drugs, oil-well drilling, rubber, wood distillation, and miscellaneous industrial uses.

Included with "Undistributed" to avoid disclosure of individual company operations.
 Includes alcohol, alkalies, asphalt, medicines and drugs, oil drilling, petrochemicals (glycol), magnesium products, plastics, polishing compounds, retarder, sulfur, tobacco, varnish, and miscellaneous industrial

uses.

7 Includes lime used by producers (captive tonnage) as follows—1951: 535,179 tons, valued at \$4,933,013; 1952: 485,635 tons, \$4,952,140.

LIME 643

To furnish a more comprehensive picture of the various materials used in liming land, table 9 shows, in addition to agricultural lime, the quantities of oystershells, limestone, and calcareous marl that are applied to soil amendment.

TABLE 9.—Agricultural lime and other liming materials sold by producers in the United States. 1951-52. by kinds

	OHID	Ju Diale	3, 1001-6	, by	BIIIGS			
		195	1			195	2	
7771	Short	Short tons		Value		t tons	Value	
Kind	Gross weight	Effective lime content 1	Total	Aver- age	Gross weight	Effective lime content 1	Total	Aver- age
Lime: Quicklime Hydrated lime Oystershells (crushed) ² Limestone Calcareous marl	118, 673 224, 946 75, 528 19, 400, 610 269, 955	157, 460 35, 500 9, 118, 290	31, 051, 933	11. 42 5. 45 1. 60	229, 245 72, 917 21, 147, 295	160, 470 34, 270 9, 939, 220	34, 456, 594	10. 83 5. 75 1. 63
Total		9, 525, 500	35, 409, 944			10, 381, 900	38, 879, 651	

¹ Calculated upon basis of average percentages used by the National Lime Association, as follows: Quick-lime (including lime from oystershells), 85 percent; hydrated lime, 70 percent; pulverized uncalcined limstone and oystershells, 47 percent; calcareous marl, 42 percent.

² Figures compiled by Fish and Wildlife Service.

As the trend for many years has been toward concentration of lime production in fewer and larger plants, it is evident that interstate shipments have been increasing. Some States produce a surplus, while others are deficient in supplies. Furthermore, limes vary considerably in physical and chemical properties, and the specialized needs of consuming industries often demand shipments from distant points. Accordingly, as table 10 indicates, large quantities now enter interstate trade. The principal States that exported lime beyond their borders in 1952 were Ohio, Missouri, Pennsylvania, Virginia, West Virginia, and Illinois.

Data on origin and destination of lime shipments, by States and

groups of States, are given in table 11.

TABLE 10.—Apparent consumption of open-market lime in continental United States in 1952, by States, in short tons

56	ares III Io	UD, Dy Dua	tes, in sin	OI 0 TOMS		
	Sales by	Shipments	Shipments	Appa	rent consum	ption
State	producers	from States 1	Into States	Quicklime	Hydrated lime	Total
Alabama Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Gaorgie	(2) (2)	158, 417 4, 916 (2) 31, 436 (2) (2)	15, 766 5, 830 (2) 78, 288 24, 741 (2) 85, 672 10, 756 (2) 65, 982	265, 431 48, 568 25, 249 212, 143 17, 961 23, 774 47, 708 330 56, 954 46, 119	15, 946 5, 365 7, 321 73, 666 6, 780 28, 732 37, 964 10, 426 60, 226 26, 227	281, 377 53, 933 32, 570 285, 809 24, 741 52, 506 85, 672 10, 756 117, 180 72, 346
Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana	460, 775 (2) (2)	219, 108 (²)	5, 235 357, 846 (2) (2) (2) 72, 877 285, 725 121, 659	2, 830 455, 458 290, 796 98, 266 59, 506 259, 260 80, 084	2, 405 144, 055 41, 798 33, 283 13, 371 26, 465 41, 575	5, 235 599, 513 332, 594 131, 549 72, 877 285, 725 121, 659
Maine Maryland		15, 556	(2) 115, 761	53, 677 132, 015	4, 239 41, 075	57, 916 173, 090

¹ Includes 99,465 tons exported or unclassified as to destination.

² Figures that may not be shown separately are combined as "Undistributed" to avoid disclosure of individual company operations.

TABLE 10.—Apparent consumption of open-market lime in continental United States in 1952, by States, in short tons—Continued

Diales I	1 100%, Dy	States, III	SHOLL TON	re-contin	ueu	
i distribution de la companya di construire						
	Sales by	Shipments		Appa	rent consum	ption
State	producers	from	into		r	
e di ligar mese e se le colo de l'afri	Producord	States 1	States	Quicklime	Hydrated lime	Total
Massachusetts	132, 135	83, 740	53, 918	44 001	FO 0F0	
Michigan				44, 261	58, 052	102, 313
Minnesota	(2)	(2)	(2)	290, 897	67, 459	358, 356
Mississippi	(*)	(4)	38, 867	79, 554	18, 571	98, 125
Missouri	1, 130, 970	972, 936		31, 415	7, 452	38, 867
Montana	1, 100, 970	912, 930	23, 159	126, 752	54, 441	181, 193
Nebraska.	(2)		(2)	29, 944	4, 269	34, 213
Negraska	(9)		11, 996	2, 556	9, 440	11, 996
Nevada	(*)	(2)	(2)	24, 133	2, 114	26, 247
New nampshire			9, 268	2, 723	6, 545	9, 268
New Jersey	-] (2)	(2)	(2)	58, 563	124, 908	183, 471
THEM INTEXTOO			4, 733	574	4, 159	4, 733
New York	. (2)	(2)	(2)	384, 676	156, 692	541, 368
North Carolina			68, 570	34, 600	33, 970	68, 570
North Dakota			6, 893	3, 475	3, 418	6,893
OhioOklahoma	2, 205, 432	1, 555, 077	307, 671	803, 241	154, 785	958, 026
Oklahoma	(2)	(2)	(2)	37, 112	15, 220	52, 332
Oregon	(2)		(2)	43, 941	7,745	51, 686
Pennsylvania Rhode Island	1, 202, 981	512, 482	674, 264	1, 140, 017	224, 746	1, 364, 763
Rhode Island			21,606	7,048	14, 558	21, 606
South Carolina South Dakota			18,709	8, 327	10, 382	18, 709
South Dakota	(2)		(2)	4, 527	1, 775	6, 302
Tennessee	100, 189	84, 556	26, 275	17, 204	24, 704	41, 908
Texas	281, 604	36, 625	31, 530	209, 604	66, 905	276, 509
Utah	(2)	(2)	(2)	66, 683	5, 934	72, 617
Vermont	. (2)	(2)	(2)	334	2,068	2, 402
. V irginia	1 449 845	375, 226	67, 344	82, 521	52, 442	134, 963
Washington	(2)	(2)		39, 311	12, 683	51, 994
West Virginia	(2)	(2)	(2) (2)	283, 413	22, 584	305, 997
West Virginia Wisconsin	107, 813	54, 728	78, 145	91, 676	39, 554	131, 230
W yoming	.1	1 02,.20	2, 439	287	2, 152	2, 439
Undistributed 2	1, 194, 122	614, 583	1, 929, 886	201	2, 102	2, 439
Total	8. 055, 609	4, 720, 876	4. 621, 411	6, 125, 498	1, 830, 646	7, 956, 144
	. 5, 555, 565	. 4, 120, 510	1. 021. 211	0, 140, 190	1 A, 000. 040	1, 900, 144

TABLE 11.—Apparent consumption of open-market lime in continental United States in 1952, by region of origin and destination, in short tons

				·					
					Origin	-			
Destination		Indians an, Ohi	, Michi-	New Y		y Jersey, insylva- rginia	Conne Massa	cticut, chusett mont	Maine, s, Ver-
	Quick- lime	Hy- drated lime	Total	Quick- lime	Hy- drated lime	Total	Quick- lime	Hy- drated lime	Total
Illinois, Indiana, Michigan, Ohio Delaware, District of Colum- bia, Maryland, New Jer-	1, 347, 650	327, 038	1, 674, 688	92, 182	5, 627	97, 809	235	338	573
sey, New York, Pennsylvania, West Virginia Connecticut, Maine, Massa-	570, 859	190, 730	761, 589	1, 111, 485	377, 360	1, 488, 845	62, 512	16, 962	79, 474
chusetts, New Hampshire, Rhode Island, Vermont. Florida, Georgia, North Carolina, South Carolina,	1, 845	35, 118	36, 963	60, 360	17, 854	78, 214	67, 626	61, 049	128, 675
Virginia Alabama, Kentucky, Louisi-	11, 039	82, 665	93, 704	13, 719	7, 068	20, 787	5, 269	40	5, 309
ana, Mississippi, Tennessee Arkansas, Kansas, Ne-	60, 727	39, 813	100, 540	161	152	313			
braska, Oklahoma, Texas Iowa, Minnesota, Missouri,	15, 057	11, 822	26, 879	18		18			
Wisconsin Arizona, California, Colorado, Idaho, Montana,	51, 760	50, 346	102, 106	47		47			- -
Nevada, New Mexico, North Dakota, Oregon,							•		
South Dakota, Utah, Washington, Wyoming	20,010	5, 046	25, 056		1	1			<u></u>

Includes 99,465 tons exported or unclassified as to destination.
 Figures that may not be shown separately are combined as "Undistributed" to avoid disclosure of individual company operations.

TABLE 11.—Apparent consumption of open-market lime in continental United States in 1952, by region of origin and destination, in short tons—Continued

						Origi	n—C	Contin	ıed			
Destination	F	lorida, Vir	Geo	rgia	, A	laba	ma,	Tenne	ssee	Arka	nsas, Ol Texas	clahoma,
	Qui	dr.	[y- ated me	To	tal Q	uick- ime	H dra lin	ted T	otal	Quick lime		d Total
Illinois, Indiana, Michigan, Ohio- Delaware. District of Columb	56,	532 4	, 996	61,	528	7, 831	2,	220 10), 051	1, 88	80 5	1, 931
Delaware, District of Columb Maryland, New Jersey, New Yor Pennsylvania, West Virginia Connecticut, Maine, Massachuset New Hampshire, Rhode Islam	k, 241, ts,	082 21	, 742	262,	824	5, 565	1,	045	3, 610			
Vermont		700	120		820	811		405 100	811	ì	06 14	0 446
Alabama, Kentucky, Louisiai Mississinni Tennessee	ıa, 4		, 174 , 415	ĺ '	829 10 185 32		'	465 13 182 35		Į.		
Arkansas, Kansas, Nebraska, Ok homa, Texas Iowa, Minnesota, Missouri, W	la-	1	, 871	1,	871					250, 33	74, 06	324, 400
consin Arizona, California, Colorado, Idal Montana, Nevada, New Mexi North Dakota, Oregon, Sou	10,									3, 87	75 17	8 4, 053
Dakota, Utah, Washington, Wy	70-									88	51 4, 72	5, 578
				<u> </u>	O	rigin-	–Co	ntinue	d			
				1	Arize	nna. (Calif	ornia,	T			-
Destination	Iowa Missor	, Minn ıri, Wi	esota scon	sin	Color Ne South	rado, vada	Mo Ore cota,	ntana, gon, Utah			Total	
	Quick- lime	Hy- drated lime	To	otal	Quick lime	dra	[y- ated me	Total	Q	uick- ime	Hy- drated lime	Total
Illinois, Indiana, Michigan, Ohio. Delaware, District of Columbia, Maryland, New Jersey, New	334, 082	67, 82	401,	, 909		-			1, 8	40, 392	408, 097	2, 248, 489
York, Pennsylvania, West Virginia Connecticut, Maine, Massachu- setts, New Hampshire, Rhode	55, 219	10, 54	65,	, 768		-	7		7 2, 0	46, 722	618, 395	2, 665, 117
Island, Vermont	475	5		528		1					114, 194	246, 011
lina, South Carolina, Virginia.	4, 429 215, 057	69 16, 64	1 '			-			1		183, 247 116, 142	411, 768 769, 536
Mississippi, Tennessee Arkansas, Kansas, Nebraska, Oklahoma, Texas	68, 621	24, 49							1		112, 257	446, 284
Iowa, Minnesota, Missouri, Wis- consin	340, 566	95, 32	5 435	, 891					_ a	196, 248	145, 849	542, 097
New Mexico, North Dakota, Oregon, South Dakota, Utah, Washington, Wyoming	55, 811	20, 63	5 76	, 44 6	417, 70)5 102	, 056	519, 76	1 4	194, 377	132, 465	626, 845

For many years the figures for domestic shipments of lime to possessions and other areas administered by the United States have appeared in the Minerals Yearbook. Since July 1951 such figures have not been separately classified and therefore are no longer available. The latest published figures are those given in table 13 of the chapter on Lime from Minerals Yearbook, 1951.

PRICES

Prices of lime increased in 1952; the average selling price, f. o. b. plant, was \$11.80 per short ton compared with \$11.74 in 1951. The average selling price of quicklime in 1952 was \$11.43 (\$11.42 in 1951) and of hydrated lime \$12.99 (\$12.81 in 1951). The trend in prices over a period of years is shown in figure 3.

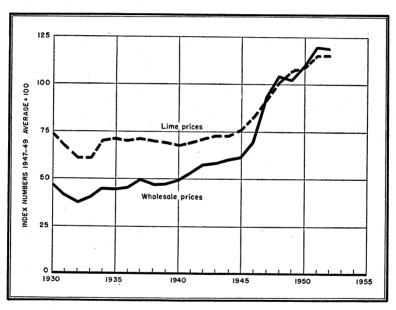


Figure 3.—Average price of lime per ton compared with wholesale prices of all commodities, 1930-52. Units are reduced to percentages of the 1947-49 average. Wholesale prices from U. S. Department of Labor.

FOREIGN TRADE 5

Imports.—As indicated in tables 12 and 13, imports of lime into the United States are relatively small and in 1952 were much smaller than during other recent years. These imports originate chiefly in Canada to satisfy local needs in border areas, particularly in the Niagara district, and in the State of Washington.

⁵ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 12.—Lime imported for consumption in the United States, 1948-52

[U. S. Department of Commerce]

	Hydrat	ed lime	Other lime		lime Dead-l		Total	
Year	Short tons 2	Value	Short tons 2	Value	Short tons 2	Value	Short tons 2	Value
1948 1949 1950 1951 1952	2, 861 1, 674 1, 253 1, 131 109	\$48, 157 35, 129 23, 910 22, 704 2, 940	30, 336 30, 807 30, 904 29, 849 21, 557	\$401, 473 545, 792 524, 132 554, 362 377, 926	2, 427 1, 851 2, 127 3, 045 2, 342	\$91, 613 72, 680 86, 425 128, 207 123, 596	35, 624 34, 332 34, 284 34, 025 24, 008	\$541, 243 653, 601 634, 467 705, 273 504, 462

^{1 &}quot;Dead-burned basic refractory material consisting chiefly of magnesia and lime."

TABLE 13.—Lime imported for consumption in the United States, 1950-52, by countries and customs districts ¹

[U.S. Department of Commerce]

		19	050	19	51	19	52
Country of origin	Customs district of entry	Short tons 2	Value	Short tons 2	Value	Short tons 2	Value
	/BuffaloDakota	7, 847	\$76, 892	8, 946	\$89, 530	5, 857	\$61, 046 5
Canada	Duluth and Superior Maine and New Hampshire Michigan	4 85 6	100 688 485	1 2	32 35		20
Mexico	St. Lawrence Washington Arizona	24, 214	469, 852	22, 031	487, 469	15, 762 44	318, 481 600
United Kingdom	New Orleans New York Virginia	<u>-</u>	25			(3)	713 1
Total		32, 157	548, 042	30, 980	577, 066	21, 666	380, 866

¹ Exclusive of dead-burned basic refractory material. ² Includes weight of immediate container.

Exports.—Exports of lime are larger than imports; but, as indicated in tables 14 and 15, they are still relatively small. They are confined chiefly to points in Canada and to South and Central American countries.

TABLE 14.—Lime exported from the United States, 1948-52

[U. S. Department of Commerce]

Year	Short tons	Value	Year	Short tons	Value
1948 1949 1950	63, 088 59, 927 50, 491	\$865, 157 937, 444 825, 927	1951 1952	63, 295 64, 952	\$1, 157, 652 1, 156, 991

² Includes weight of immediate container.

² Includes weight of immediate container.
3 Less than 1 ton.

TABLE 15.-Lime exported from the United States, 1950-52, by country of destination

IU. S.	Department	οf	Commercel

	19	1950		951	1952	
Country	Short tons	Value	Short tons	Value	Short	Value
Bahamas Canada Canada Canal Zone Chile Colombia Costa Rica Cuba Dominican Republic El Salvador Haiti Honduras Japan Leeward and Windward Islands	18, 725 3, 643 8, 225 20 624 75 309 8, 367 50	\$360 260, 195 174 81, 082 141, 902 141, 654 2, 999 5, 846 136, 554 2, 705	10, 757 138 8 4, 022 15, 494 72 649 100 600 14, 317 25	\$370 248, 072 4, 105 546 85, 902 289, 472 2, 241 12, 539 4, 456 12, 961 251, 822 1, 307	49 23, 771 174 5 5, 430 13, 363 8 124 106 (1) 9, 738 57	\$1, 50£ 322, 562 3, 864 405 107, 8¥6 268, 270 170 2, 389 4, 051 220 176, 338 3, 720
Mexico. Netherlands Antilles. Nicaragua. Panama. Philippines. Saudi Arabia. Venezuela. Other countries.	4, 541 277 231 3, 859	67, 405 5, 112 4, 489 67, 697 6, 939 2, 612 22, 437 5, 124	2, 474 85 281 6, 545 170 119 1, 310 119 63, 295	62, 368 1, 621 5, 715 125, 776 3, 983 1, 782 35, 619 6, 995 1, 157, 652	50 2, 540 55 350 6, 792 60 1, 352 843 85	2, 083 64, 524 1, 286 7, 374 138, 715 1, 510 25, 767 18, 581 5, 781

¹ Less than 1 ton.

TECHNOLOGY

A new type of fuel for lime burning is now being used by the Rock-well Lime Co., Manitowoc, Wis. Wood, formerly used, involved excessive labor, and the supply became more and more uncertain. The costs involved in using coal, oil, or gas would be prohibitive in that area. Accordingly, the company decided upon propane, liquefied petroleum gas. It is delivered to two large tanks at the plant, and is vaporized before use. The change from wood to propane has reduced substantially both fuel and labor costs and has insured a constant and dependable fuel supply.6

The Fluosolids process of lime burning is used successfully by the New England Lime Co. at Adams, Mass. The equipment consists essentially of a Fluodry unit, which discharges sized and dried limestone to a second unit, the Fluosolids reactor, where calcination is accomplished. Fuel economy is one advantage claimed for this process. Approximately 5,000,000 B. t. u. is required to calcine 1 ton of recoverable lime, whereas the rotary kiln requires 7,000,000 to 8,000,000.7

It has been reported that selective calcination of dolomite may be accomplished by introducing steam into the calciner. The MgCO₃ was completely converted to MgO at a temperature range of 550° to 600° C., while the CaCO₃ was virtually unaffected. It is claimed that the steam serves as a catalyst. Not only does the introduction of steam permit selective calcination under controlled temperature, but the CaCO₃ may be calcined at a temperature well below the normal when steam is used to displace gas.8

Atherton, C. R., Rockwell Lime Company Fires Masonry Kilns With Propane: Pit and Quarry, vol. 45, No. 6, December 1952, pp. 76-77.
 White, F. S., and Kinsella, E. L., Solids Fluidization Applied to Lime Burning: Min. Eng., vol. 4, No. 9, September 1952, pp. 903-906.
 Rock Products, Lime Men Talk Quality Control: Vol. 55, No. 11, November 1952, p. 82.

The Kaiser Aluminum & Chemical Corp. has introduced a heavymedium separation process to purify the raw materials used in making lime at Natividad, Calif. The rock is put through a medium of controlled density, which floats the impure high-silica dolomite and The preferred allows the heavier, relatively pure dolomite to sink. medium is a mixture of finely ground magnetite and ferrosilicon which, because of its magnetic properties, is easily recovered for The loss of medium is said to be small. The process is so effective that sink material is being held to less than 1 percent silica, whereas the floats contain 22.7 to 40 percent. Stone that was formerly unusable is now used with a loss of only 8 to 10 percent of the feed. As a result, the life of the quarry has been extended. involved is said to be less than 50 cents a ton.9

The use of lime in stabilizing road soils is attaining increasing Tests at Purdue University indicated that addition of 2 percent of lime had little or no effect upon soil performance, but additions of 5 percent or more significantly increased both strength and durability of the soils. A new departure in testing methods was employment of the soniscope to measure progressive deterioration of the soils. Resonant-frequency tests are commonly conducted with this equipment to measure the deterioration of concrete specimens undergoing freezing and thawing, but it has not been used heretofore

in testing road soils.10

Flash drying of calcium carbonate sludge before calcining in a rotary kiln has decided advantages, according to recent tests. peake Corp. of Virginia at West Point, Va., uses this process in a kraft pulp mill where lime carbonate accumulations are calcined into lime for reuse. Flash drying is the almost instantaneous removal of moisture by intimate contact of the wet material with a turbulent stream of hot air. Maximum agitation is accomplished with a cage mill equipped with a special rotor enclosed in a housing. Before flash drying was used, the vacuum filter cake sent to the kilns contained 40 to 45 percent moisture; in the flash-dried product the water content has been reduced to about 1 percent. Ordinarily the rotary kiln is a combined drier and calciner, but with the use of flash-drying equipment the entire kiln is devoted to calcining; thus its capacity is greatly increased.11

In November 1952 the Bureau of Mines issued a report covering the major technical and economic aspects of the lime industry.12

Thermodynamics of lime manufacture has been discussed in some detail by Ralph Gibbs in a series of articles that began in 1950. Two

numbers of the series appeared during 1952.13

Part V of the series applies the principles developed in the earlier parts to the problem of determining the most economical length of a rotary kiln of a given diameter. Part VI outlines the calculations that should be made to determine the proper diameter and length of a rotary kiln to produce a given output of lime.

Rock Products, Lime Men Talk Quality Control: Vol. 55, No. 11, November 1952, pp. 82-84.

Whitehurst, E. A., and Yoder, E. J., Durability Tests on Lime-Stabilized Soils: Preprint from Proc.,
31st Ann. Meeting, Highway Research Board, January 1952.

Chemical Engineering, Flash Drying Aids a Rotary Kiln: Vol. 59, No. 5, May 1952, pp. 266-268.

Bowles, Oliver, The Lime Industry: Bureau of Mines Inf. Circ. 7651, 1952, 43 pp.

Glibbs, Ralph, Thermodynamics of Lime Manufacture; Part V, Factors to be Considered in Design of Lime Kilns for Best Overall Economy: Rock Products, vol. 55, No. 5, May 1952, pp. 92-94; Part VI, Balancing Economic Factors in the Determination of Optimum Size of Rotary Kilns; No. 6, June 1953, pp. 119-123.

Lithium

By Joseph C. Arundale 1 and Flora B. Mentch 2

THE WIDE use and rapidly growing demand for lithium in its many forms is an outstanding example of successful research and market development. In the lithium industry the year 1952 was characterized by a shortage of lithium minerals and compounds and an expansion of facilities for mining and processing lithium minerals and manufacturing lithium compounds in anticipation of a further increase in requirements. The many important industrial applications for lithium in its various forms have focused considerable attention and interest on this element.

DOMESTIC PRODUCTION

Shipments of 15,611 short tons of lithium minerals with an estimated lithia content of 1,088 short tons was the largest quantity ever shipped from mines in the United States in a single year.

TABLE 1.—Shipments of lithium ores and compounds from mines in the United States, 1943-47 (average) and 1948-52

Year	Ore (short tons)	Value	Li ₂ O (short tons)	Year	Ore (short tons)	Value	Li ₂ O (short tons)
1943–47 (average)	5, 885	\$321, 632	421	1950	9, 306	\$579, 922	747
1948	3, 881	210, 792	291	1951	12, 897	1 896, 000	956
1949	4, 838	345, 970	475	1952	15, 611	1 1, 052, 000	1,088

¹ Partly estimated.

During the early part of 1952 the Defense Production Administration conducted a survey of anticipated requirements for lithium compounds and on June 5 announced a goal of the equivalent of 10,000,000 pounds of lithium carbonate production capacity by January 1, 1955. This goal is an expansion of 6,185,000 pounds over estimated capacity January 1, 1951. Approximately 1,175,000 pounds of the 1951 capacity was based on the utilization of raw material no longer available to some of the processors. Therefore, it was considered necessary to construct an estimated 7,360,000 pounds of new capacity. Some new capacity was added during 1952, and certificates of necessity were issued for additional facilities. The current expansion rate indicates that this objective probably will be reached. Such a tonnage of lithium compounds would require as raw material the equivalent of nearly 50,000 short tons of spodumene averaging 5 percent contained lithia.

¹ Assistant chief, Construction and Chemical Materials Branch.

Statistical assistant.
 Defense Production Administration, press release, DPA-357, June 5, 1952.

LITHIUM 651

Foote Mineral Co. began construction of a lithium chemical plant at Sunbright, Va., which was expected to be completed in 1953. This firm had its first full year of production at its open-pit operation near Kings Mountain, N. C. Spodumene from this mine will be processed

into a line of lithium compounds in the new chemical plant.

Early in the year Lithium Corp. of America completed a new flotation mill near Hill City, S. Dak., and began beneficiating spodumene ore from the Mateen deposit. Future plans reportedly call for treatment of ore from the Beecher and possibly other deposits in the area. The Edison mine and the nearby sink-float mill formerly operated by this firm were abandoned. Metalloy Corp., a wholly owned subsidiary of Lithium Corp. of America, expanded its facilities for lithium chemical manufacture at St. Louis Park near Minneapolis, Minn.

Maywood Chemical Works continued to operate the Etta mine in the Black Hills and was attempting to augment the supply of spodu-

mene for its chemical plant at Maywood, N. J.

Black Hills Tin Mining Co. rehabilitated its flotation mill in the Black Hills and began producing spodumene concentrates for shipment to Maywood Chemical Works. The Holy Terror Gold Mining Co. in the Black Hills was rehabilitating its mill for the production of

spodumene concentrates.

American Potash & Chemical Corp. endeavored to increase the recovery of dilithium sodium phosphate from Searles Lake, Calif. Early in 1952 this firm was ready to convert this raw material into lithium carbonate but at the request of the National Production Authority continued for several months to ship dilithium sodium phosphate to processors whose capacity otherwise would have been idle. Later in 1952 this firm began converting the bulk of its raw material to lithium carbonate.

Others reporting production of lithium minerals in 1952 were Black Hills Keystone Corp. in the Black Hills and Vulture & Berry near

Aguilla, Ariz.

There were numerous reports of other firms and individuals investigating the lithium field and some indication that new producers might engage in this business.

CONSUMPTION AND USES

Producers of lithium minerals and compounds could not meet all demands for these products, but an attempt was made to insure that the available supply was used to satisfy the most urgent requirements.

The two largest uses for lithium compounds—ceramics and greases—are increasing rapidly. It has been estimated that approximately 15 percent of the grease manufactured contains lithium. This application presents a large and growing market. Another large field for expansion in consumption of both lithium minerals and compounds is in the manufacture of ceramics such as glass, sanitary ware, whiteware, glazes, and porcelain enamels.

Another important use for lithium compounds is in Edison nickeliron alkaline storage cells. These cells are used in batteries for electric industrial trucks, mine locomotives, and portable lighting equipment and in standby or emergency power-supply systems.

In the cells that make up these batteries the electrolyte is an aqueous solution of potassium and lithium hydroxides. The lithium hydroxide is added as a catalytic agent and to increase the capacity and life of the cell.

Conventional zinc or ammonium chloride electrolyte dry cells become very inefficient as the temperature drops and become completely inactive at about -20° F. Lithium chloride or bromide in the electrolyte lowers the temperature at which these cells are still active. At -40° F. lithium chloride electrolyte dry cells still can deliver about 10 percent of capacity at 70° F.

Lithium chloride is one of the most hygroscopic of all inorganic compounds and because of this property is utilized in air conditioning and industrial drying. Increased use of lithium compounds for

this purpose is expected.

Lithium fluoride and chloride are used as oxide scavengers and metal cleaners in welding or brazing aluminum and magnesium; the

potential requirements for this purpose is large.

Lithium compounds are also used in preparing dense, oxygen-free, high-conductivity copper, organic synthesis, heat-treating metal, iron castings, powder metallurgy, cosmetics, medicinals, rutile-structure titania pigments; these uses, however, constitute only a small percentage of total consumption.

In addition, there are several other direct military uses for various

lithium products.

An article reviewing recent developments in the lithium industry and the outlook for the industry has been published. An interesting estimated end-use pattern was given as follows: 4

End use	Thousands of pounds, in terms of carbonate		End use	Thousands of pounds, in terms of carbonate	
	1951	1955 (est.)		1951	1955 (est.)
Pharmaceuticals Alkaline storage batteries Air conditioning and refrigeration Lubricating grease	33 393 320 816	30 610 1, 100 3, 300	Aluminum welding and grazing Ceramics Defense and miscellaneous Total	287 779 393 3, 021	1,100 1,600 760 8,500

The Petroleum Administration for Defense made public the results of a survey covering the requirements of the grease industry for lithium compounds. The survey, based on data obtained from grease manufacturers, includes actual consumption figures for lithium compounds in 1951 and estimated requirements for 1952 and 1953, as well as actual and estimated production of lithium greases and end uses. The results of this survey follow:

Lithium hydroxide monohydrate required for manufacture of lithium greases, lbs. per year:

1951 actual	831, 063
1902 CSUIIIAUC	1.676.717
1953 forecast	2, 326, 818

⁴ Chemical Week, Lithium in U. S.: Vol. 71, No. 19, Nov. 8, 1952.

LITHIUM 653

Production of lithium greases, lb. per year:

Troduction of human greases, io. per J	car.		
	Multipurpose	Other	Total
1951 actual	51, 543, 072	2, 580, 660	54, 123, 732
1952 estimate		4, 438, 272	102, 441, 060
1953 forecast	129, 635, 040	5, 711, 700	135, 346, 740
Pounds of lithium grease produced per consumed:	pound of lithiu	ım hydroxide	monohydrate
Average for 1951			65
Percentage breakdown by end use of gr	reases made wit	th lithium hy	droxide:
			1951 1952
Industry		3	6. 0 26. 5
Agriculture and over-the-road tran Service stations, passenger cars, an	sport	2	5. 0 22. 2
military)			9. 0 51. 3

PRICES

Prices for lithium minerals are no longer quoted in the trade journals. The actual selling price of crude lithium minerals is generally determined by direct negotiation between buyer and seller. Spodumene flotation concentrates were sold to manufacturers of lithium compounds during the year at \$10 to \$12.50 per short-ton unit (20 pounds) of contained lithia (Li₂O). The price of dilithium sodium phosphate was reported to be about \$183 per short ton. However, during the latter part of the year most of this material was being converted to lithium carbonate by the producer, and little was sold on the open market.

Southern Rhodesia Geological Survey, Mineral Resources, Series 7, Lithium Minerals, 1952, reports the price of lepidolite, containing 3.5 percent Li₂O, f. o. b., as £6 to £8 per long ton. In the same report amblygonite is quoted at £33 to £34 per long ton, c. i. f., minimum 8 percent Li₂O, in bags. Ocean freight on lithium minerals from Southern Africa to Eastern United States ports is about \$20 per long ton.

According to E&MJ Metal and Mineral Markets, lithium metal, 98 percent pure, was quoted throughout the year at \$9.85 to \$11 a pound, depending on quantity.

Despite the financial inflation, prices of most lithium compounds are approximately the same as they were 20 years ago, owing to

expanding volume and improved technology.

Oil, Paint and Drug Reporter quoted the following prices of lithium compounds: Lithium benzoate, drums, \$1.65-\$1.67 a pound; lithium carbonate, N. F., barrels, bags, \$1.05-\$1.15 a pound to September 15, \$1.15-\$1.35 from September 15 to October, \$0.80-\$1.10 in October to end of year; lithium chloride, crystal, drums, \$0.95-\$1.25 a pound throughout the year; lithium citrate, N. F., barrels, drums, kegs, \$1.05-\$1.40 a pound throughout the year; lithium fluoride, barrels, pound, \$1.80-\$2 to September 15, \$1.85-\$2 September 15 to the end of the year; lithium hydride, drums, works, \$10.25-\$14 a pound to February 4, \$14-\$26 from February 4, to October 6, \$12-\$14 from October 6 to end of year; lithium hydroxide monohydrate, drums, \$0.80-\$1.25 a pound to September 8, \$0.97-\$1 from September 8 to 28, \$0.91-\$1.05 from September 28 to end of year; lithium salicylate, drums, \$1.60-\$1.70 a pound throughout the year.

STOCKS

All the major producers reported a shortage of lithium minerals for conversion to compounds. Current production was being utilized immediately, and consumers were eager to obtain additional supplies. Stocks were at a very low level.

FOREIGN TRADE

Lithium minerals and compounds are not separately classified in import or export schedules, and therefore no official figures are available.

Virtually all imports of lithium are in the crude minerals lepidolite, petalite, and amblygonite originating in South-West Africa, Southern

Rhodesia, and Mozambique.

At present only small quantities of special lithium fluxes or prepared lithium minerals and occasionally small quantities of lithium minerals and compounds are being exported. However, a much larger export market for lithium compounds may develop when domestic capacity is adequate.

Reports show that the most significant foreign trade, exclusive of the United States, constituted small shipments from Africa of amblygonite to United Kingdom and Germany and of lepidolite and spodu-

mene to France.

There were reports of small shipments of spodumene from Geomines in the Belgian Congo to Belgium during 1951.⁵ This material may have been used for experimental or testing work.

TECHNOLOGY

Lithium minerals are recovered from their ores by froth flotation and by hand picking. Both processes are relatively inefficient. An 80-percent recovery probably is the best that is accomplished in actual practice. Because of the many uses for lithium already developed and expanding requirements anticipated, emphasis in research is being placed on new and improved processes. The Bureau of Mines has done considerable work on the beneficiation of pegmatite ores and the recovery of lithium minerals and extraction of lithium compounds. During 1952 the Bureau initiated a project with the objective of separating and recovering spodumene and beryl from the pegmatite ore in the Kings Mountain district of North Carolina.

The tailing from the boron-mineral operation in the Kramer district at Boron, Calif., is a clay containing a fraction of 1 percent of lithia. The mineral has not been identified, but the Bureau undertook some experiments to determine whether the lithium could be extracted.

These experiments have not been concluded.

Amblygonite occurs in the United States, but the size and erratic nature of the deposits give no assurance of a supply adequate to the needs of a plant processing this material alone. Spodumene and amblygonite frequently occur in the same pegmatite, and preliminary investigations indicate that both can be recovered simultaneously by flotation. The Bureau of Mines made an investigation to determine whether or not a commercial form of lithium could be extracted from

⁵ Bureau of Mines, Mineral Trade Notes: Vol. 33, No. 4, October 1951, p. 35,

655 LITHIUM

these minerals and their mixtures without controlling the composition of the material being treated. A publication issued during the year gave the results of the tests and described a new process for recovering lithium sulfate. On a laboratory scale amblygonite, spodumene, and several mixtures of these minerals were roasted with various proportions of lime and gypsum at several temperatures. The sinters were ground and leached with water to recover the portion of lithium converted into the sulfate. It was found that at a temperature of 1,050° C. optimum conditions over the whole range of composition of spodumene-amblygonite mixtures are approximately 1 part of mineral to 1 part of gypsum and 2 parts of lime.6

An article was published dealing with the use of the electron microscope in the study of lubricating greases. At the present time only with this instrument can details of the soap-fiber structure be obtained.

The electron microscope enables researchers to examine the effects of process variables, testing procedures, and mechanical work on fiber structure. Greases are colloidal systems of solid-soap fibers and liquid oil. The gel structure of these systems largely determines the physical characteristics of the greases.

Use of the electron microscope as a tool in grease research has revealed the following interesting information about lithium greases:

1. Well-defined fibers of greases will be oriented in the bulk grease in a moving system.

2. Formation of long fibers in certain lithium greases when heated

to the transition temperature is accompanied by pronounced gelling.

3. Fiber structure of lithium greases varies widely depending on the composition of the grease. There appears to be some correlation between fiber structure as revealed by the electron microscope and physical performance properties.

4. Certain lithium greases with well-defined fiber structures have

very good mechanical stability.7

One steel company's tests and experience with multipurpose grease of the lithium-base type was summarized. This grease is used in 3,000 of the 7,000 lubrication points in the mill and has reduced the number of greases stocked from 17 to 10 brands and types. Its use under the hazards of heat, speed, shock load, and water has effected savings in grease consumption and has reduced downtime, bearing cost, purchasing, and interruptions in production.

A series of lithium aluminosilicate 9 ceramics are produced from blends of lithium-bearing minerals and clay or other materials. It is claimed that these materials have a coefficient of thermal expansion that can be controlled by formulation of the ceramic and that they

have excellent resistance to thermal shock.

A report describing a series of experiments on degassing copper and nickel alloys with lithium was published. In these experiments the lithium in sealed copper tubes was added to the pouring ladle or

Kalenowski, L. H., and Runke, S. M., Recovery of Lithium From Spodumene-Amblygonite Mixtures: Bureau of Mines Rept. of Investigations 4863, 1952, 5 pp.
 Brown, John A., Hudson, Charles N., and Loring, Lewis D., Electron-Microscope Study of Lithium Greases: Petrol. Eng., vol. 24, No. 2, February 1952, pp. C31-C36.
 Binz, A. D., Better Lubrication Boosts Production: Steel, vol. 132, No. 4, Jan. 26, 1953, pp. 88, 90, 92.
 Stark, R. E., and Dilks, B. H., Jr., New Lithium Ceramics Have High Thermal Shock Resistance, Controlled Thermal Expansion, and Chemical Resistance at High Temperatures: Materials and Methods vol. 35, No. 1, January 1952, pp. 98-99.

crucible after the melt had been deoxidized with magnesium. The alloys treated were Monel, nickel-bronze, leaded bronze, and nickelsilver. It was found that an average addition of about 0.005 percent lithium efficiently degassed these alloys and resulted in castings that

polished more easily and had improved surface finish.10

Several patents were granted during the year on products and processes involving lithium. One describes a method of producing lithium hydride. 11 The method involves mixing a lithium halide with a reducing agent, such as magnesium, calcium, barium and the hydrides of calcium and barium; heating the mixture in an atmosphere of hydrogen above the melting temperature of the lithium halide but below the dissociation temperature of lithium hydride in hydrogen to form a molten mass containing the reducing agent; and exposing the molten mass in the form of a thin film to the action of hydrogen to convert the lithium halide to lithium hydride.

Another patent describes a process for producing lithium sulfate from lithium phosphates.¹² In this process lithium phosphates, lithiumsodium phosphates, or mixtures of these are reacted with sulfuric acid in the presence of water. This solution is partly evaporated, thereby crystallizing lithium sulfate and forming a phosphoric acid solution.

A patent was issued on a low-temperature vitreous-enamel frit

containing 5 to 15 mol percent lithia.¹³

As one phase of the research being conducted on heat-transfer agents and possible containers, the Babcock & Wilcox Co. made a study of liquid lithium systems. 14 In this study liquid lithium was circulated at temperatures of about 960°, 1,400°, 1,500°, and 1,600° F. and velocities up to 55 feet per second. The container was 25 Cr-20 Ni stainless alloy. Testing time varied with the temperature of operation, ranging from approximately 369 and 564 hours for the 2 highest temperatures to 1,000 hours for the 3 lowest temperatures. transport was of such severity that plugging with metal crystals terminated the runs at 1,600° F. before the desired 1,000 hours' duration was obtained.

In a similar study by other researchers commercial soft-steel tubes containing lithium were heated at various temperatures up to 1,100° C. 15 Permeability was obvious, even at temperatures below 700° C., by spectrographic analysis of the exterior of the tube. However, tubes previously annealed in hydrogen at 900° C. for a number of hours showed no permeability even at 1,100° C., and steel quenched from 1,100° C. in cold mercury did not exhibit permeability even at 900° C.

¹⁰ Metal Industry (London), Degassing With Lithium: Vol. 80, No. 10, Mar. 7, 1952, pp. 191–192.

11 Alexander, Peter P. (assigned to Metal Hydrides, Inc.), Production of Lithium Hydride: U. S. Patent 2,606,100, Aug. 5, 1952.

12 May, Frank Henderson (assigned to American Potash & Chemical Corp.), Process of Producing Lithium Sulfate From Lithium Phosphates: U. S. Patent 2,608,405, Aug. 26, 1952.

13 Donahey, John W. (assigned to Foote Mineral Co.), Low-Temperature Vitreous Enamel: U. S. Patent 2,608,490, Aug. 26, 1952.

14 Dana, A. W., Jr., Baker, O. H., and Ferguson, M., Erosion and Corrosion Studies of Liquid-Metal Systems. Investigation of Constant Temperature, Forced Circulation, Liquid Lithium Systems: Babcock & Wilcox Co. Tech. Rept. III, Aug. 21, 1952, 73 pp.

15 Hérold, Albert, Miller, Pierre, and Albrecht, Pierre [Permeability of Steel to Lithium]: Compt. rend., vol. 235, Sept. 29, 1952, pp. 658–659; Nuclear Science Abs., Abs. 169, vol. 7, No. 1, Jan. 15, 1953, p. 23.

LITHIUM 657

A patent was granted for a luminescent material consisting essentially of manganese-activated zinc-lithium silicate, the manganese activator being approximately 2 to 5 percent by weight of the

material.16

Experiments on the production of pure lithium by distillation in a glass system were carried on at Knolls Atomic Power Laboratory, Schenectady, N. Y., operated by General Electric Co. for the Atomic Energy Commission.¹⁷ In these experiments lithium metal was placed in a stainless-steel cup fitted with a baffled chimney to prevent spattering of the molten metal. The distillation was carried out in a Pyrex glass tube, using an electronic heater (induction heating). It was found that the walls of the tube above the metal crucible must be kept relatively cool to prevent rapid reaction between the glass and the volatile metal deposited there. A delicate heat balance and careful design of the system are therefore required.

RESERVES

Several lithium minerals are or have been commercially important. They are: Spodumene, lepidolite, amblygonite, petalite, zinnwaldite, triphylite-lithiophilite, and the compound dilithium sodium phosphate. With the exception of zinnwaldite and dilithium sodium phosphate, all of these are recovered only from pegmatites or veins closely related to pegmatites.

Because of its larger reserves, spodumene probably is the most important source of lithium. Measured reserves of spodumene are relatively small when compared with projected demand, but the numerous domestic deposits have not been thoroughly explored. The consensus is that domestic reserves will prove to be adequate to domestic needs

for many years.

WORLD REVIEW

Although the United States is the largest producer and consumer of lithium in its various forms, lithium minerals also are produced or con-

sumed in several other countries.

Canada.—Important lithium-bearing pegmatites occur in Quebec and Manitoba. Northern Chemicals, Ltd., has done some development work on a deposit near Cat Lake, 90 miles northeast of Winnipeg, Manitoba, but no current commercial production has been reported. A small camp was built a few years ago and a road to the property was partly completed by the Province, but future plans for the deposit appear to be uncertain. Developments relating to this project in the past several years were reviewed in a recent article. 18

Southern Rhodesia.—Amblygonite, lepidolite, petalite, and spodumene occur in Southern Rhodesia. Probably the largest concentration is in the Bikita tin field, particularly the southern part in a large pegmatite about 2,000 yards long and 900 feet (average) wide. So far, only amblygonite and lepidolite have been sold, chiefly as a byproduct of the exploitation of the alluvial beryl deposits contained in

McKeag, Alfred H. (assigned to General Electric Co.), Manganese-Activated Zinc-Lithium Silicate Phosphor: U. S. Patent 2,615,850, Oct. 28, 1952.
 Epstein, Leo F., and Howland, W. H., The Distillation of Lithium Metal: Science, vol. 114, No. 2965, Oct. 26, 1951, pp. 443-444.
 The Precambrian Lithium in Manitoba. What About It?: Vol. 26, No. 1, January 1953, pp. 17, 39.

the same mass. Lepidolite also has been produced from an old quarry known as the Bikita quarry originally worked for tin. The faces and floor of this quarry are formed almost entirely of a pale, lilac-colored, fine-grained lepidolite mixed with a little quartz. The mineral occurs in small quantities throughout the tin field and forms a conspicuous capping of a small hill 2,800 yards north of the Bikita quarry known as the Mauve Kop because of the unusually deep mauve color of the lepidolite. Several small masses of amblygonite have been found on the Bikita claims in the vicinity of the Bikita quarry.

A large mass of petalite occurs north of the Bikita quarry on the Al Hayat claims, measuring about 500 yards long and 100 to 200 feet wide, as well as small masses elsewhere. In the Salisbury district lepidolite has been located at the Augustus claims on Willesdon farm, about 14 miles northeast of Salisbury. Here lepidolite associated with beryl and spodumene occurs in a large greisenized pegmatite and forms irregular masses over a strike of 350 feet. The lithia contents in

3 analyses reportedly were 3.07, 3.48, and 3.80 percent.

A long strike of lepidolite is indicated at the Hotspur claims on

Glenforest farm.

East of Salisbury, in the Enterprise mineral belt, small occurrences of lepidolite have been located ½ mile northeast of the Ceylon mines in a narrow greisen dike and near the northern boundary of the

Alderley farm, west of the Mabfeni River.

Coarsely crystallized lepidolite occurs in some abundance at the Pope claims on the western boundary of the Chishawasha farm, about 12 miles east of Salisbury, in a large greisenized pegmatite containing tantalite, microlite, beryl, and topaz. Spodumene and petalite are reported a mile north of the Pope claims on the Partronage tin and tantalum claims. Lepidolite and zinnwaldite are reported to occur in some of the greisenized pegmatites. In the Odzi gold belt of the Untali district at the Grand Dyke claims, 4½ miles east-southeast of Odzi Siding. In this same belt, 24 miles east-southeast of Odzi, lepidolite also occurs with tourmaline and fluorspar. In the Mtoko districts, 20 miles north of Mtoko, pegmatites have been opened up at the Matake and Benson claims for the production of beryl. These bodies contain a little lepidolite, and some contain spodumene and amblygonite associated with tantalite and probably tinstone.

Dikes of lepidolite-bearing greisen occur in the Insiza district over a strike of approximately a mile in the western part of Huntley's farm, 3 miles east of Filabusi Post Office. These also contain a little beryl and molybdenite. This deposit is shown on the geological map attached to Southern Rhodesia Geological Survey Bulletin 27. Lepidolite also is reported on the Embizene claims on Forfar farm, about 35 miles south of Gwelo. In the Matobo district lepidolite has been reported about 300 yards east-northeast of the Antelope mine (Southern Rhodesia Geological Survey Bull. 21, p. 111) in a greisen dike about 300 yards long and 10 to 15 feet wide. The mineral is a very pure mass,

the chief impurity being topaz in tiny crystals.

It is also reported from the Leopard claims on Ntabazamanyoni

Hill, about 3 miles north of the Antelope mine.

659 LITHIUM

In the Mazoe district on Ruia Falls estate, about 32 miles northeast of Bindura Township, greisenized pegmatites have been opened in a search for beryl, but lepidolite and spodumene were found to be more abundant than the beryl. Small quantities of lepidolite also occur in the vicinity of Shamva on Tafuna Hill and near Bindura. Isolated occurrences are reported elsewhere in Southern Rhodesia, as for example, the north Inyanga district and a locality 6 miles north of Gadzonna in the Hartley district.19

According to the Chamber of Mines, production of lithium minerals in 1952 was as follows: Amblygonite, 90 short tons; lepidolite, 1,233

short tons; petalite, 112 short tons; spodumene, 45 short tons.

South-West Africa.—The Quarterly Information Circular of the Union of South Africa reports production of lithium minerals in Southwest Africa in short tons, 1950-52, as follows:

	1900	1901	1902
Amblygonite	292	578	714
Lepidolite	9, 318	11, 090	7, 914
Petalite	180	174	1, 174

Mozambique.—Production of lepidolite in Mozambique in 1950 was reported to have been 244 short tons and in 1951 was 307 short tons.

Figures for 1952 are not yet available.

Other Countries.—Small tonnages of various lithium minerals have been reported in several countries, including Argentina, Spain, Portugal, Sweden, Uganda, Union of South Africa, Finland, British East Africa, and Brazil.

¹⁹ Southern Rhodesia, Geological Survey, Mineral Resources. Lithium Minerals: Salisbury, ser. 7, Sept. 8, 1952.

Magnesium

By H. B. Comstock¹

ECHNICAL advances in magnesium fabrication in 1952 paved the way for increased uses and applications of this lightest of structural metals. The rolling of magnesium sheet at two new rolling mills introduced continuous coil rolling under tension. new mills were capable of producing wider sheet, with closer thickness tolerance and a better finish, as rolled than was previously possible. The new rolling techniques resulted in a new low base price for hotrolled magnesium plate and brought it to the same price per square foot as aluminum plate of the same gage. A heavy press program initiated by the Air Force provided for the construction of larger extrusion and forge presses than any previously in use. Although these presses were designed primarily for the forming of magnesium and aluminum alloys for use in aircraft construction, equipment capable of producing massive extrusions and forgings would logically lead to civilian applications for the type of shapes such presses are capable of producing.

The 160-percent increase in domestic production over 1951 was primarily a result of the operation of six Government-owned magnesium plants throughout 1952; the Dow Chemical Co., only private magnesium producer in the United States, also increased primary magnesium output during 1952 through expanded operations at its Freeport, Tex., plant. Despite the accelerated production rate during 1951 and 1952, it was not until March 1952 that supply and demand for primary magnesium under the rearmament program came into balance and all civilian orders from producers could be filled.

TABLE 1.—Salient statistics of the magnesium metal industry in the United States, 1943-47 (average) and 1948-52

	1943-47 (average)	1948	1949	1950	1951	1952
Production: Primary magnesium 1short tons_ Secondary magnesium 1do Average quoted price per pound, primary 2cents_ Actual domestic consumptionshort tons_ Exports 4do World productiondo	9, 891 20, 5	10, 003 7, 553 20. 5 9, 698 444 34, 000	11, 598 5, 962 20. 5 11, 947 708 39, 000	15, 726 9, 476 22. 0 18, 051 908 45, 000	40, 881 11, 526 24. 5 35, 710 761 5 89, 000	105, 821 11, 477 24. 5 43, 847 1, 163 167, 000

¹ Ingot equivalent. Magnesium ingots (99.8 percent) in carlots. Before Dec. 1, 1947, in New York. Subsequently, f. o. b. Freeport, Tex. (Source: Metal Statistics, 1953).

⁴ Primary magnesium and alloys. ⁵ Revised figure.

¹ Commodity-industry analyst.

TABLE 2.—Production of primary magnesium in the United States, 1948-52, by months, in short tons

\mathbf{Month}	1948	1949	1950	1951	1952
JanuaryFebruary	883	988	1, 002	1, 876	7, 425
	830	884	913	1, 709	7, 794
March	887	988	948	1, 885	8, 893
April	801	958	957	2, 043	8, 800
May	797	987	972	2, 194	9, 093
June	766	950	1, 175	2, 512	8, 670
July	792	985	1, 332	2, 998	9, 529
August	809	970	1, 400	3, 418	9, 771
September	819	974	1, 635	4, 166	8, 422
October	873	941	1, 690	5, 147	8, 990
November	814	969	1, 760	6, 010	9, 122
	932	1, 004	1, 942	6, 923	9, 312
Total	10,003	11, 598	15, 726	40, 881	105, 821

PRODUCTION

Production of primary magnesium in 1952 rose to 105,800 tons, which was 2½ times the production in 1951. Output from the Dow Chemical Co. plant at Freeport, Tex., was 24 percent of 1952 production. This plant had been the sole producer of primary magnesium during the period 1946–50. The remaining 76 percent of the output of primary magnesium in 1952 was produced in 6 of the 7 Government-owned magnesium plants, which had been reactivated in 1951. The seventh, a silicothermic plant at Luckey, Ohio, was not reactivated. Beryllium was produced at that location in 1952.

By the end of 1952, the 6 operating Government-owned plants had produced 43 percent of the maximum quantity of primary magnesium ingot provided for under the defense production contracts executed for their reactivation. Four of the plants (at Velasco, Tex.; Painesville, Ohio; Canaan, Conn.; and Manteca, Calif.) had reported production of 50 percent or more of the quantity of magnesium required under their contracts. The electric power shortage in the Northwest forced shutdown of three-fourths of the Spokane, Wash., plant furnaces on August 31, 1952, and this silicothermic plant was held to one-fourth production capacity for the remainder of 1952. The annual capacity of the Spokane plant was rerated August 1, 1952, by General Services Administration, from 24,000 tons to 20,000 tons.

The rated annual capacity of the Freeport, Tex., electrolytic plant of the Dow Chemical Co. was increased by added facilities in 1952 from 23,000 tons to 26,000.

Table 3 shows the date on which each of the six reactivated plants started production and the percentage of rated annual capacity ob-

tained from each plant during 1952.

Secondary.—Magnesium scrap has a particularly high reclamation value. Each time the metal is melted the grain size is progressively reduced, making it easier to anneal and roll than primary magnesium alloy. Total recovery of secondary magnesium, including its use as an alloying ingredient and as secondary magnesium incorporated in primary ingot, was 11,477 short tons in 1952 compared with 11,526 short tons in 1951. Of this quantity, 9,048 tons was recovered from 10,005 tons of magnesium-base scrap. The remaining 2,429 tons was recovered from aluminum scrap. Old scrap constituted about 70 percent of the scrap consumed. Of the 1952 recovery, 6,411 tons was in ingot form, 716 tons in castings, 1 ton in magnesium alloy shapes, 3,022 tons in aluminum-base alloys, 40 tons in zinc and other

alloys, 1,273 tons in anodes and strip for cathodic protection, and 14 tons in chemicals and other nonrecoverable forms.

More magnesium scrap was consumed in 1952 than was received, as shown in table 5, Stocks of magnesium scrap at the end of 1952 were 384 tons lower than at the beginning of the year.

TABLE 3.—Production of magnesium in reactivated Government-owned magnesium plants during 1952

	Date production started	Rated annual capacity (tons)	Produc- tion (tons)	Percent of capacity produc- tion
Electrolytic process: Velasco, Texas. Painesville, Ohio. Silicothermic process: Canaan, Comn. Manteca, Calif. Spokane, Wash.2. Wingdale, N. Y.1.	Apr. 16, 1951 July 27, 1951 Mar. 27, 1951 June 8, 1951 Aug. 15, 1951 Nov. 15, 1951	36, 000 18, 000 5, 000 10, 000 3 24, 000 5, 000	38, 028 18, 214 4, 063 9, 178 8, 592 2, 814	106 102 82 92 38 56
Total		98, 000	80, 889	83

TABLE 4.—Magnesium recovered from scrap processed in the United States, 1951-52, in short tons

	·				
y conten	Magnesium recovered ¹ from scrap processed				
1951	1952	1951	1952		
	2, 529	Magnesium-alloy ingot ² (gross weight).	5, 662	6, 411	
5, 366	4, 240	weight). Magnesium-alloy shapes	25	716 3, 022	
5, 366 794	6, 519 718	In zinc and other alloys Chemical and other dissipative uses.	55 101	4(14	
6, 160	7, 237	<u> </u>	615	1, 273	
11, 526	11, 477	Grand total	11, 526	11, 477	
	1951 3, 727 1, 639 5, 366 5, 366 794 6, 160	3, 727 1, 639 1, 711 5, 366 4, 240 5, 366 794 6, 160 7, 237	1951 1952 Form of recovery	1951 1952 Form of recovery 1951	

¹ Includes alloying elements.

CONSUMPTION AND USES

Total consumption of primary magnesium in 1952 amounted to 43,847 tons, an increase of 8,137 tons above 1951 consumption and 61,974 tons below 1952 production.

About three-fourths of the magnesium consumed in 1952 was used in fabricating items for defense. In March 1952 supply and demand for primary magnesium came into balance for the first time during the rearmament program. After defense requirements were met there were enough stocks of the metal for the producers to fill all civilian orders that month. Before March 1952, manufacturers of magnesium products for civilian use were receiving about half of the quantity of magnesium they ordered.

Due to military requirements for magnesium castings in 1952 (particularly large castings for aircraft) and due to a shortage of

These plants had not attained rated capacity by the close of 1952.
 Shutdown to one-fourth capacity on Aug. 31, 1952, due to electric power shortage in the Northwest. General Services Administration decreased rated capacity to 20,000 tons on August 1.
 During 1952 rated annual capacity reduced to 20,000 tons.

² Figures include secondary magnesium incorporated in primary magnesium ingot.

facilities for producing wrought products, the use of cast magnesium was 97 percent greater during 1952 than the combined use of magnesium sheet, extrusions, and forgings. The guided-missile program for 1952 increased the demand for very large magnesium castings. Airborne radar equipment accounted for a considerable quantity of increased requirements of thin magnesium castings for defense in 1952.

TABLE 5.—Actual domestic consumption of primary magnesium (ingot equivalent and magnesium content of magnesium-base alloys) by uses, 1944-47 (average) and 1948-52, in short tons

Product	1944–47 (average)	1948	1949	1950	1951	1952
Structural products:						
Castings:	10 047	1 020	2 000	3,090	10, 179	14, 513
Sand	16, 247 623	1, 930 213	3, 088 127	242	994	2, 77
DiePermanent mold	16, 884	12	44	573	646	ĩ, 118
Wrought products:	10,001	12		0.0	010	-,
Sheet	1, 526	1, 261	2, 155	3, 357	5, 761	5, 569
Extrusions (structural shapes, tubing)	2,886	2, 529	3, 364	3, 400	5, 241	3, 756
Forgings	176	103	200	104	735	12
Total structural	38, 342	6, 048	8, 978	10, 766	23, 556	27, 742
Other products:	0.510	(1)		56	482	1, 55
Powder	3, 513 4, 196	2, 171	1, 759	3, 722	5, 994	2 509
Aluminum alloys Other alloys	4, 190	43	39	255	401	8, 598 960
Scavenger and deoxidizer	266	418	404	473	1,332	1, 22
Chemical	189	407	224	373	447	566
Cathodic protection		385	235	1, 937	2,364	2, 100
Other 2		226	308	469	1, 134	1,099
Total other products	10, 016	3, 650	2, 969	7, 285	12, 154	16, 10
	40.050	0.600	11 047	10 051	35, 710	43, 84
Grand total	48, 358	9, 698	11, 947	18, 051	35, 710	43, 84

Less than 0.5 ton.
 Includes primary metal consumed in making secondary alloy.

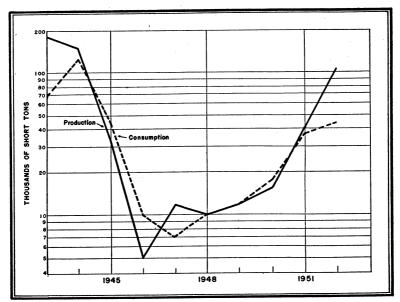


FIGURE 1.-Domestic production and consumption of primary magnesium, 1943-52.

At the beginning of 1952, rolling and forging facilities were inadequate to fill the increased requirements for magnesium sheet skin and forgings for aircraft. At that time only two rolling mills were in operation; both were four-high hand mills limited to rolling sheet to a maximum width of 48 inches. Construction of the rolling mill, which was started at Detroit, Mich., in 1951, was completed during 1952 and the mill started operation in September. rolling mill consisted of three stands of mills ranging from 28 to 84 inches, with an estimated capacity of 100 tons per month of sheets and plates in standard lengths, widths, and gages. Construction of a new 66-inch hand mill, which was begun in 1951 at Madison, Ill., was completed in June, and production of sheet started that month.2

In the automotive industry, the progress that had been made in developing an appreciable market for truck-body construction was reported to have been retarded in 1952 by the scarcity of thin-gage magnesium sheet for commercial uses. However, some interest in magnesium castings was shown by manufacturers of civilian automobiles during 1952; for example, 1 manufacturer of civilian automobiles replaced 13 zinc castings with 13 magnesium castings, saving a total weight of 27 pounds, and with lower metal and machining costs.3

Use of magnesium as a reducing agent in production of titanium and zirconium increased in 1952; titanium-sponge production was more than doubled; and zirconium production, largely for use by the Atomic Energy Commission, also increased from that obtained in 1951.

Requirements for magnesium in aluminum, zinc, and other alloys during 1952 increased an estimated 49 percent above 1951 requirements for magnesium in those alloys.

Curtailment of civilian consumption of magnesium during the first quarter of 1952 was responsible for the estimated 11-percent decrease below 1951 in the use of magnesium for cathodic protection of oil pipelines and steel tanks.

STOCKS

At the close of 1952 consumers' stocks of primary magnesium were slightly below 1 month's supply at the rate of consumption during the year, and producers' stocks were about 6 weeks' supply. ernment agencies continued to hold surplus quantities of magnesium left from stocks accumulated during World War II, and purchases were continued during 1952, as in 1951, for the National Stockpile.

TABLE 6.—Stocks and consumption of new and old magnesium scrap in the United States in 1952, gross weight in short tons

Saran itam	Stocks	D	c	n	Stocks		
Scrap item	beginning of year	Receipts	New scrap	Old scrap	Total	end of year	
Cast scrap	1, 581 109 139	7, 014 1, 277 1, 330	373 1, 231 1, 315	7, 086	7, 459 1, 231 1, 315	1, 136 155 154	
Total	1, 829	9, 621	2, 919	7, 086	1 10, 005	1, 445	

¹ Includes 805 tons consumed in making magnesium castings, 2 tons in wrought products, 563 tons in aluminum alloys, 45 tons in other alloys, 7,089 tons in magnesium alloy ingot, 1,464 tons in cathodic protection and 37 tons in dissipative uses.

Hatscheck, R. L., Magnesium, More Rolling Mills: Iron Age, vol. 170, No. 10, Sept. 4, 1952, p. 90.
 E&MJ Metal and Mineral Markets, Oct. 23, 1952, p. 7.

PRICES

The base price of domestic primary magnesium ingot remained

stable at 24.5 cents per pound throughout 1952.

In November 1952, a new low base price of 50 cents a pound was announced for hot rolled magnesium plate, with all plate from \%6- to 1-inch thicknesses listed at the same per-pound price. This was more than a 20-percent reduction from formerly published prices and brought magnesium plate to the same price per square foot as comparable aluminum plate.4

The price of remelt magnesium ingot remained at 31 cents per

pound throughout 1952.

FOREIGN TRADE 5

Imports.—During 1952 imports of magnesium decreased to 300 tons, less than nine percent of the quantity of imports in 1951. of this metal was scrap, from which duty was suspended on October Tariff rates on other classifications of magnesium during 1952, remained as follows: Metallic, 20 cents per pound; alloys, powder, sheets, tubing, wire, manufactures, etc., 20 cents per pound on magnesium content plus 10 percent ad valorem. The imports were received from 7 countries in 1952, as compared with 28 countries Of the 300 tons of metal and scrap imported, 164 tons was from Norway, 56 from Canada, 39 from Japan, 20 from the Philippine Islands, 19 from India, and one each from the United Kingdom and the Bahamas.

TABLE 7.- Magnesium imported for consumption and exported from the United States, 1948-52

	Imports						Exports						
Year		llic and erap		s (mag- im con- it)	Sheets, tubing, ribbons, wire, and other forms (magnesium content)		Metal and alloys in crude form, and scrap		Primary forms, n. e. c.		Powder		
	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value	Short	Value	Short tons	Value	
1948 1949 1950 1951 1952	678 2, 560 843 3, 871 252	\$184,066 537,113 218,129 998,214 81,635	(i) (i) 3 18 1	\$57 80 5, 056 29, 525 1, 940	(1) (1) 22 90 47	\$943 28 38, 280 190, 050 88, 001	432 586 575	\$122, 374 184, 707 245, 539 308, 865 3618, 005	276 322 186	\$149, 891 214, 732 213, 641 228, 427 3 245, 211	(2) (2) (2) (2) 43	(2) (2) (2) (2) (2) \$59, 843	

[U. S. Department of Commerce]

Exports.—Total exports of magnesium in 1952 were 1,206 tons, a 58-percent increase above the 761 tons shipped in 1951. Export control of this strategic metal was exercised by the Office of International Trade throughout 1952. Of the primary metal, alloys, and scrap

¹ Less than 1 ton.

² Data not separately classified before Jan. 1, 1952. 3 Due to changes in items included in each classification, data are not strictly comparable with earlier vears.

Daily Metal Reporter, Jan. 23, 1953, p. 73.
 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page of the Bureau of Mines, from records of the U. S. Department of Commerce.

³⁴²⁰⁷⁰⁻⁻⁻⁵⁵⁻⁻

exported during 1952, 370 tons was delivered to Mexico, 165 to United Kingdom, 110 to Switzerland, 101 to Canada, 90 to Venezuela, 83 to Sweden, 67 to Germany, 55 each to Spain and Yugoslavia, 38 to Saudi Arabia, 5 to Union of South Africa, 3 each to India and Japan, 2 each to Ceylon, Mozambique, and Colombia, 1 each to Cuba and French Pacific Islands, and 10 to other countries.

Japan received 27 tons of the magnesium powder exported; Sweden received 9 tons; Canada, 3 tons; Belgium and Luxembourg 3 tons;

and other countries, 1 ton.

TECHNOLOGY

During 1952 great stress was laid upon research to provide improved fabrication processes for magnesium. Design engineers working with magnesium explored a number of new fields of application of magnesium alloys. An outstanding example of these investigations was the successful production of magnesium castings 16 feet long and adhering to exacting tolerances. These castings for aircraft wing sections, which were believed to be the largest aircraft castings ever developed, were expected to result in more rapid and economical production than was possible for conventional aircraft wings fabricated by attaching

aluminum skins to spar and ribs with rivets or spotwelds.6

Advanced techniques in fabrication and use of magnesium sheet were noted in 1952, as two large rolling mills at Detroit, Mich., and Madison, Ill., came into production. Before their installation the largest magnesium ingot used in the two-high hand mills for rolling sheet in commercial quantities weighed 140 pounds, and the maximum width of the sheet was 48 inches. The coil-rolling technique of the new hot breakdown mills provided for rolling sheet in widths from 18 to 84 inches, utilizing ingots weighing 2,000 pounds each. Coil rolling permitted easy handling of longer sheets than flat sheets produced on the hand mills. Heavy sheets and plates finished on the four-high mills adhered to closer thickness tolerances than had been possible from the two-high mills. All hot-rolled magnesium sheet produced in the new mills was rolled under tension, which resulted in a smoother and more even surface than it was possible to obtain on the hand mills. Availability of thin-gage magnesium sheet for commercial uses at the close of 1952 was expected to promote a marked increase in its use in body construction of automotive equipment. Research before 1951 had developed the use of magnesium in truck bodies to the point of commercial application before defense orders required curtailment of civilian use of magnesium.

The research that had been done during 1947-52 on development of magnesium casting alloys containing zirconium was largely responsible for the success in 1952, in production of the large 16-foot aircraft wing sections. Zirconium was found to be primarily useful as an alloy constituent because of its grain-refining quality, which made it possible to cast alloys that had otherwise been very difficult to handle in the foundry. This grain-refining action also improved the ductility and toughness of magnesium alloys at both room and

slightly elevated temperatures.7

During 1952 investigations were carried forward into improvement of thorium-magnesium alloys, which showed exceptional strength

Iron Age, Cast Wings: Vol. 170, No. 7, August 1952, p. 176.
 Stricter, F. P., Magnesium Casting Alloys Containing Zirconium: Metal Progress, vol. 63, No. 3, March 1953, pp. 75-82.

up to 600° F. and a degree of usefulness at 700° F., a temperature at which the rare-earth alloys would generally not be considered for This offered a solution to the need for alloys with improved creep strength in service above 400° F. Development work progressed toward commercial applications of castings designed from this alloy in the newer jet engines.8

Research completed during 1952 pointed to development of increased use of magnesium for cathodic protection of marine equipment. Bars of magnesium weighing 60 pounds each were welded to the hull of a 13,000-ton tanker for 12 months. At the close of the year, inspection of the ship in drydock indicated that there was not only no

rust on the hull but that older scale had been detached.9

During 1952 the increased use of magnesium in small fittings for hydraulic systems in aircraft encouraged research, which was expected to lead to the application of light, strong magnesium fittings in home plumbing to replace brass fittings. Magnesium was preferable to brass for these fittings not only to save weight, but because the magne-

sium fittings were found to have less shrinkage than brass.

The large potential domestic supply of magnesium was a determining factor in research during 1952, for development of magnesium alloys with improved physical properties. The Bureau of Mines carried research into the phase system of magnesium-lithium-aluminum alloys to develop information of the cause of rapid deterioration of such alloys at room temperature which might lead to the elimination or modification of the deterioration. Enough valuable information had been acquired to encourage continued investigation of such alloys of high strength-to-weight ratio and exceptional formability.

WORLD REVIEW

Estimated world production of primary magnesium in 1952 was 151,000 metric tons (167,000 short tons), an increase of about 87 percent above the 1951 total. The United States maintained its lead in production and consumption of magnesium, both for military and civilian uses. World markets continued to gain in 1952, with heavier exports of the primary metal coming from the United States, Canada, and Norway.

TABLE 8.—World production of magnesium metal, by countries,1 1946-52, in metric tons 2 [Compiled by Lee S. Petersen]

	looi	iphod by i	300 0. 1 000	room			
Country 1	1946	1947	1948	1949	1950	1951	1952
Canada France Germany, West	145 704	136 1, 043	(3) 546 17	(3) 492	1, 600 446	4, 000 875	4 5, 000 1, 090
Italy Norway	1,005				122	677 120	976 1, 300
Switzerland United Kingdom b United States	200 1, 700 4, 823	2, 200 11, 198	2, 400 9, 075	2, 600 10, 521	250 3, 000 14, 266	250 5, 000 37, 086	300 4, 600 95, 999
Total (estimate)	24, 000	32, 000	31,000	35, 000	41,000	81, 000	151,000

Magnesium is also produced in China, Taiwan, and U. S. S. R., but production data are not available; estimate by author of chapter included in total.
 This table incorporates a number of revisions of data published in previous magnesium chapters.
 Data not available; estimate by author of chapter included in total.

4 Estimate. 5 Primary metal and remelt alloys.

McDonald, J. C., Rare-Earth Metals Improve Elevated Temperature Properties of Magnesium Castings: Materials and Methods, vol. 36, No. 1, July 1952, pp. 162-165.
 Wall Street Journal, vol. 140, No. 102, Oct. 20, 1952, p. 20.

Canada.—Primary magnesium was produced in Canada in 1952 at Haley, Ontario, by Dominion Magnesium Ltd., and at Arvida, Quebec, by Aluminum Co. of Canada. The Haley plant employed the silicothermic process, utilizing dolomite as the source of magnesium. The electrolytic plant at Arvida produced magnesium from magnesium chloride obtained from brucite taken from Alcan's mine at Wakefield, Quebec. 10 Plans were announced in 1952 by Aluminum Co. of Canada for expansion of the annual capacity of the Arvida plant from 3,000 metric tons to 4,000. This expansion program was the result of an agreement entered into in 1952, between Aluminum Co. of Canada and the United Kingdom, whereby Alcan would supply Britain with 2,640 metric tons of magnesium a year for 20 years, beginning in 1954.11

Canada's largest and most modern magnesium foundry was offi-

cially opened at Haley in September 1952. 12

Magnesium alloys were available in Canada in 1952 in the form of castings and extrusions, plate, and tube with a small supply of forg-

There were no facilities in Canada for rolling sheet. 13

Italy.—The plant at Bolzano supplied requirements for primary magnesium in Italy in 1952. This plant, with an annual capacity of approximately 3,000 metric tons, was closed during the period 1947 through 1949. Exports of magnesium during 1951, estimated at 5,000 metric tons, represented in a large measure, recovery of secondary magnesium from scrap accumulated during World War II. The Bolzano plant exported about half of its output of primary magnesium in 1952.

Japan.—No primary magnesium was produced in Japan in 1952. Increased consumption of the metal caused consideration of the feasibility of reactivating the Ube plant of Riken Kinzoku, the only primary magnesium plant intact in Japan; but resumption of production would have required Government financial aid and a large supply of electrical energy. In addition to consumption in pyrotechnics and light-metals alloys, magnesium was used in limited quantities in Japan during 1952 as a reducing agent for production of titanium and

for refining gray cast iron to produce nodular cast iron.

Norway. The only plant producing primary magnesium in Norway in 1952 was the electrolytic plant in south Norway and operated by Heröya Elektrokjemiske Fabrikker, a subsidiary of Norsk Hydro-This plant started production late in 1951 and reported Elektrisk. 120 metric tons that year. Utilizing seawater and dolomite (the latter mined at Bodo in northern Norway) as raw materials, the operators planned to produce 5,000 metric tons yearly by 1953. In October 1952 production was estimated at the rate of 4,000 metric tons a year. Reports indicated almost all of Norway's magnesium output in 1952, was exported, about 50 percent to the United States and 50 percent to Britain.

Switzerland.—One magnesium plant at Valais Canton, with an annual productive capacity of 500 metric tons, was reported in opera-

¹⁰ Canadian Chemical Processing, Magnesium Makers Take on Steam: Vol. 36, No. 6, June 1, 1952, pp.

Canadian Chemical Flocesing, Magnesian States
 Daily Metal Reporter, Aluminum Co. of Canada to Boost Magnesium Output: Vol. 52, No. 129, July 4, 1952, p. 1.
 Sanderson, F., New Magnesium Foundry Starts Up: Iron Age, vol. 170, No. 12, Sept. 25, 1952, p. 85, Smallman-Tew, R., Magnesium in Aircraft: Canadian Metals, vol. 15, No. 7, June 1952, pp. 22-24
 Metal Bulletin (London), Magnesium—Norwegian Output: No. 3734, Oct. 14, 1952, p. 27.

tion during 1952. This was sufficient productive capacity to supply

the country's requirements for primary magnesium in 1952.

United Kingdom.—During 1952, the only plant producing primary magnesium in the United Kingdom, was the electrolytic plant at Clifton Junction, Manchester, with an annual capacity of 4,000 metric tons. The Secretary for Overseas Trade disclosed in the House of Commons, before the summer recess in 1952, that the Aluminum Co. of Canada was to supply 2,640 metric tons of magnesium a year to the United Kingdom for 20 years, beginning in 1954. The Secretary of Overseas Trade stated that the cost of producing magnesium in Britain would be substantially higher than that of the magnesium imported from Canada. 15

On February 1, 1952 the price of primary magnesium ingot in the United Kingdom was increased from 2/4 1/d (33 cents) per pound to 2/ 10 1/d (40 cents) per pound. In announcing the increase the Government stated the higher cost of imported supplies and delivery charges were responsible. 16

Mining Journal (London), Magnesium: Vol. 239, No. 6104, Aug. 15, 1952, p. 181.
 Metal Bulletin (London), Magnesium: No. 3664, Feb. 1, 1952, p. 21.

Magnesium Compounds

By Donald R. Irving 1 and Frances P. Uswald 2

OMESTIC production of crude magnesite, caustic-calcined and refractory magnesia, and dead-burned dolomite decreased during Production of high-grade magnesias and magnesium carbonate also decreased. Magnesium chloride production was more than double the 1951 figure, as demand from the magnesium-metal industry continued to increase.

TABLE 1.—Salient statistics of magnesite, magnesia, and dead-burned dolomite in the United States, 1943-47 (average) and 1948-52

	1943-47 (average)	1948	1949	1950	1951	1952
Crude magnesite:						
Mined: Short tons	470, 675	(1)	287, 315	429, 392	670, 167	510, 750
Value	\$3, 525, 322	(1)	2 \$1, 950, 153	2 \$3, 091, 135	2\$4, 506, 712	\$2,871,548
Average per ton	\$7.49		\$6.79	\$7.20	\$6.72	\$5.65
Caustic-calcined magnesia:		{	1		1	.
Sold or used by producers:					40.001	90.05
Short tons	89, 263	33, 209	32, 505	41, 447	49, 981	38, 05
Value 3	\$5, 169, 235	\$3,380,528	\$3, 109, 381	\$4, 136, 898 \$99. 81	\$4, 810, 379 \$96, 24	\$3, 769, 466 \$99, 0
Average per ton 4	\$57.91	\$101.80	\$95.66	\$99.01	φου. 24	\$55.0
Refractory magnesia:		l	ì	}	ļ	1
Sold or used by producers: Short tons	278, 922	330,069	250, 389	335, 440	432, 197	386, 87
Value	\$8, 508, 181	\$13, 444, 587				\$17, 255, 83
Average per ton 4	\$30.50	\$40.73	\$41.85	\$44.47	\$42.57	\$44.60
Dead-burned dolomite:			1	1	l	1
Sold or used by producers:	}					
Short tons	1, 245, 607	1, 544, 755	1, 318, 708	1,759,443	1,966,460	1, 928, 02
Value	\$11, 539, 081		\$15, 930, 226	\$21, 725, 560		\$25, 965, 45
Average per ton	\$9.26	\$11.55	\$12.08	\$12.35	\$13.41	\$13.4

Figures withheld to avoid disclosure of individual company operations.

2 Partly estimated; most of crude is processed by mining companies, and very little enters open market.
3 Includes specialty magnesias of high unit value.
4 Average receipts f. o. b. mine shipping point.

DOMESTIC PRODUCTION

Magnesite.—Crude magnesite production in the United States decreased 24 percent in quantity and 36 percent in value in 1952 compared with 1951, according to reports by producers. Most of the decrease was attributable to a strike which closed most domestic iron

and steel plants for 2 months or longer.

Magnesia. Refractory magnesia sold and used by producers decreased 10 percent in quantity from the alltime high reported for 1951 and decreased 6 percent in value in 1952. The decrease in production, while not proportional to that reported for crude magnesite, was attributable to the steel strike. The iron and steel industry consumed 100,641,000 long tons of iron ore during 1952, a 12-percent decrease from the 1951 record high. The rated annual

² Statistical clerk.

¹ Commodity-industry analyst.

iron and steel production capacity on December 31, 1952, was 117,547,470 short tons of steel compared with 108,587,670 short tons on December 31, 1951, indicating a future high demand for refractory

magnesia.

Caustic-calcined magnesia sold or used by producers decreased 24 percent in quantity and 22 percent in value in 1952 compared with 1951. The average value per ton of caustic-calcined magnesia is derived from reports by producers of all grades of caustic-calcined magnesia in order to avoid disclosure of individual company operations. Most of the material is sold for a considerably lower price per ton than the average value shown in table 1.

The proportion of magnesia derived from processes utilizing raw sea water, sea-water bitterns, and well brines as a raw-material source (usually with dead-burned dolomite as a causticizer) has been increasing for the past several years, compared with the proportion derived from magnesite, brucite, and dolomite. In 1952, 88 percent of the caustic-calcined magnesia and 40 percent of the refractory magnesia was derived from sea water and well brines compared with 65 percent and 35 percent, respectively, in 1948. Magnesia sold or used by producers in the United States, 1951–52, by kind and source is given in table 2.

TABLE 2.—Magnesia sold or used by producers in the United States, 1951-52, by kind and source

Magnesia	From mag cite, and	nesite, bru- dolomite		brines, raw r, and sea- terns ¹	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1951					·	•	
Caustic-calcinedRefractory	7, 689 295, 243	\$889, 624 10, 610, 788	42, 292 136, 954	\$3, 920, 755 7, 789, 343	49, 981 432, 197	\$4, 810, 379 18, 400, 131	
Total	302, 932	11, 500, 412	179, 246	11, 710, 098	482, 178	23, 210, 510	
1952							
Caustic-calcinedRefractory	4, 528 232, 766	761, 268 8, 057, 848	33, 527 154, 107	3, 008, 198 9, 197, 989	38, 055 386, 873	3, 769, 466 17, 255, 837	
Total	237, 294	8, 819, 116	187, 634	12, 206, 187	424, 928	21, 025, 303	

¹ Magnesia made from a combination of dolomite and sea water is included with that from sea water.

Dolomite.—Dead-burned dolomite sold by producers decreased only 2 percent in 1952, from 1951, despite the steel strike, because of increased consumption in Government-owned plants producing magnesium metal for defense requirements. The iron and steel industry remained the principal consumer of dead-burned dolomite in 1952, with an estimated 70 percent of the total output (table 3).

Additional information on dolomite may be found in the Stone

and Lime chapters of this volume.

Brucite.—Basic Refractories, Inc., 845 Hanna Bldg., Cleveland 15, Ohio, continued to produce brucite from its mine at Gabbs, Nev. A sharp increase in production was reported in 1952, with much of it derived from low-grade ore and rejects processed in a heavy-medium separation plant installed in 1951.³

³ Lenhart, W. B., Heavy-Media Separation Used in Processing Refractory Materials: Rock Products, vol. 55, No. 7, July 1952, pp. 60-62.

TABLE 3.—Dead-burned dolomite sold in and imported into the United States, 1943-47 (average) and 1948-52

	Sales of domestic		Imports 1		omestic Imports 1			Sales o	f domestic	Imp	orts 1
Year	Short tons	Value	Short tons 2	Value	Year	Short tons	Value	Short tons 2	Value		
1943-47 ⁸ 1948 1949	1, 245, 607 1, 544, 755 1, 318, 708	\$11, 539, 081 17, 847, 182 15, 930, 226	166 2, 427 1, 851	\$5, 091 91, 613 72, 680	1950 1951 1952	1, 759, 443 1, 966, 460 1, 928, 025	\$21, 725, 560 26, 375, 313 25, 965, 459	2, 127 2, 719 2, 342	\$86, 425 128, 207 123, 596		

^{1&}quot;Dead-burned" basic refractory material consisting chiefly of magnesia and lime.

² Includes weight of immediate container.

³ Average.

Olivine.—Annual data on olivine, an iron-magnesium silicate, formerly appearing in the Minor Nonmetals chapter of this series are included in this Magnesium Compounds chapter in order to consolidate related materials under one heading. Olivine is a neutral or slightly basic mineral and its major use is for refractories. Data on olivine sold or used by producers in the United States for 1952 is withheld in order to avoid disclosure of individual company operations.

Harbison-Walker Refractories Co., 1800 Farmers Bank Bldg., Pittsburgh, Pa. continued to produce olivine from its Addie Quarry near Addie, N. C. The Wray Mine near Green Mountain, N. C., formerly leased to United Feldspar Minerals Corp., was operated part of the year by C. P. Wray Heirs, Burnsville, N. C. and the remainder of the year by C. R. Wiseman (lessee), Spruce Pine, N. C. The H. P. Scheel Co. operated its Big Slide mine, near Sedro-Wooley, Wash., and reported a mill was being constructed at the mine. The olivine was used in the production of refractories and foundry sand.

Serpentine.—A small quantity of serpentine was used in 1952 in the manufacture of refractories.

Other Magnesium Compounds.—Production of extra-light and light magnesias, U. S. P. and technical grades, decreased 12 percent in 1952, compared with 1951, while sales decreased 9 percent (table 4).

TABLE 4.—Specified magnesium compounds produced, sold, and used by producers in the United States, 1951-52 ¹

		Produced	S	Used	
Product ¹	Plants	(short tons)	Short tons	Value	(short tons)
1951					
Specified magnesias (basis 100 percent MgO), U. S. P. and technical: Extra-light and light	5 2	2, 251 (²)	2, 221 (²)	\$1, 114, 037	(2)
Total Precipitated magnesium carbonate	3 5 10	(2) 60, 530	(2) 8, 415	(²) 1, 177, 999	(2) 51, 987
1952					
Specified magnesias (basis 100 percent MgO), U. S. P. and technical: Extra-light and light	5 2	1, 986 (²)	2, 012 (²)	1, 100, 078	(2)
TotalPrecipitated magnesium carbonate	3 5 7	(2) 43, 267	(2) 5, 380	(2) 870, 003	(2) 37, 882

¹ In addition, magnesium chloride, hydroxide, nitrate, phosphate, sulfate, and acetate were produced; figures withheld to avoid disclosure of individual company operations.

¹ Figures withheld to avoid disclosure of individual company operations.

³A plant producing more than 1 grade is counted but once in arriving at total.

Production and sales of heavy magnesias, U. S. P. and technical grades, and precipitated magnesium carbonate decreased sharply. Production of magnesium chloride more than doubled as demand from the magnesium-metal industry continued to increase.

The mines and plants producing magnesite, brucite, and other magnesium compounds in 1952 in the United States are listed in

table 5.

TABLE 5.—Mines and plants producing magnesite, brucite, and other magnesium compounds in the United States, 1952

CALIFORNIA

Kaiser Aluminum & Chemical Corp. Westvaco Chemical Div., Food Machinery & Chemical Corp. Marine Magnesium Div., Merck & Co., Inc. Michigan Chemical Co. Ludington Midland Epsom salt Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium chloride, carystals. Magnesium carbonate. Michigan Chemical Co. Midland Epsom salt Merch diplicated magnesia, precipitated magnesium carbonate dolomite well brines. Dead-burned dolomite well brines. Well brines. Well brines. Dead-burned dolomite well brines. Magnesium chloride, carystals. Magnesium carbonate arbonate. Well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dead-burned dolomite well brines. Dea					
Chemical Corp. Westvaco Chemical Div., Food Machinery & Chemical Corp. Marine Magnesium Div., Merck & Co., Inc. Michigan Chemical Co. Michigan Chemical Co. Michigan Chemical Co. Michigan Chemical Co. Michigan Chemical Corp. Michigan Chemical Co. Manistee. Precipitated magnesium carbonate. Magnesite magnesium carbonate. Well brines. Wall brines. Well brines. Wall brines. Wall brines. Wall brines. Wall brines. Wall brines. Wall brines. Well brines. Wall brines. Wall brines. Well brines. Wall brines. Calcined dolomite New Bractory magnesia. Magnesitue Allor	Company		Products	Raw materials	
Johns-Manville Products Corp. Magnesium carbonate Dolomite.	Chemical Corp. Westvaco Chemical Div., Food Machinery & Chemical Corp. Marine Magnesium Div.,	Newark Western Mine (near Livermore). Chula Vista	Caustic-calcined magnesia Magnesium hydroxide Refractory magnesia Caustic-calcined magnesia Magnesium hydroxide Magnesium chloride, crystals. Magnesium oxides, extra-light, light, and heavy: magne.	Dead-burned dolomite Sea-water bitterns. Dead-burned dolomite. Magnesite.	
MICHIGAN The Dow Chemical Co. Ludington Magnesium chloride, crystals Magnesium chloride, cell feed Midland Epsom salt Calcined magnesium carbonate; magnesium oxide, extralight and light. Well brines. Well brines. Calcined dolomite magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesium oxide, extralight and light. Precipitated magnesia. Do. Do		_ I	LLINOIS		
The Dow Chemical Co. Midland		Waukegan	Basic magnesium carbonate	Dolomite.	
Michigan Chemical Corp. Midland Epsom salt. St. Louis Caustic-calcined magnesia; precipitated magnesium carbonate; magnesium oxide, extralight and light. The Standard Lime & Stone Co. NEVADA The Standard Slag Co. Basic Refractories, Inc. Magnesite. Refractory magnesia. Magnesite. Magnesite. Magnesite. Refractory magnesia. Magnesite. Refractory magnesia. Magnesite. Magnesite. Magnesite. Magnesite. Magnesite. Magnesite. Magnesite. Refractory magnesia. Calcined dolomite Sea water. Calcined dolomite OHIO		M	ICHIGAN		
Morton Salt Co	Michigan Chemical	Midland	Magnesium chloride, cell feed Epsom salt	Well brines. Calcined dolomite. Well brines.	
The Standard Slag Co Gabbs Magnesite Refractory magnesia Magnesite. Basic Refractories, Inc do Brucite Magnesite. Brucite Magnesite. Brucite Magnesite. Brucite Magnesite. Brucite Magnesite. Brucite Magnesite. Brucite Magnesite. Brucite. Brucite Magnesite. Brucite. B	The Standard Lime &		light and light. Precipitated magnesium carbonate.	Well brines.	
Basic Refractories, Incdododo		. 1	NEVADA		
J. T. Baker Chemical Co. Johns-Manville Corp Northwest Magnesite Co. Description: Manville Manville Manville Refractory magnesia OHIO High-purity magnesium carbon chemicals. Precipitated magnesium carbonate. Refractory magnesia (Sea water. Calcined dolomite)			Refractory magnesia Caustic-calcined magnesia Magnesite Brucite		
Johns-Manville Corp Manville		NE	W JERSEY		
	Johns-Manville Corp	Manville	chemicals. Precipitated magnesium carbonate.	Magnesium carbonate. Calcined dolomite. {Sea water. Calcined dolomite.	
			оню		
Diamond Alkali Co Fairport	Diamond Alkali Co	Fairport	Refractory magnesia	Dolomite.	

TABLE 5.—Mines and plants producing magnesite, brucite, and other magnesium compounds in the United States, 1952-Continued

PENNSYLVANIA

aw Materials	Products	Location of mine or plant	Company			
nite.	Precipitated magnesium car- bonate; magnesia, extra-	p Carey Mfg. Co Plymouth Meeting Precipit				
o.	light. Precipitated magnesium carbonate; magnesia, extralight and heavy.	easbey & Mattison Co. Ambler				
	TEXAS					
ater.	Caustic-calcined magnesia Magnesium chloride, cell feed. Magnesia, heavy	Freeport	The Dow Chemical Co			
	HINGTON	WA				
brine.	Epsom salt	Tonasket				
esite.	G		TOTAL CONTRACTOR OF THE CONTRA			
	VIRGINIA	WES				
ite.	Refractory magnesia	Millville	The Standard Lime & Stone Co.			
brine	Magnesium chloride, cell feed. Magnesia, heavy	WA Tonasket Chewelah WES	The Dow Chemical Co Laucks Chemical Co Northwest Magnesite Co. The Standard Lime & Stone Co.			

PRICES

The prices quoted for various magnesium compounds in 1952, compared with January 1951 quotations, are given in table 6.

TABLE 6.—Prices quoted on selected magnesium compounds, carlots, 1951-52

Commodity	Unit	Con- tainer	F. o. b.	Source	January 1951	January 1952	December 1952
Magnesite: Dead-burned, grain Dead-burned, grain Caustic-calcined, oxy- chloride cement grade, powdered.	do	Bags do	Newark, Calif	(1)	\$36.30 41.80 75.00	\$36. 30 41. 80 75. 00	\$36.30 41.80 75.00
Periclase: Kiln-run, 90 percent.	do	Bulk	do	(2)	55.00	55.00	3 57. 00
Epsom salt: Tech. grade Magnesia, calcined:	100 lb	Bags		(4)	2.15	2.15	2. 15
Tech. grade Synthetic, rubber grade.	Pound	Ctns do	Worksdo	(4) (4)	. 32–. 3475 . 31	. 32–. 3475 . 31	.323475 .31
U. S. P., light U. S. P., heavy Magnesium carbonate:	do	do Bbl		(4) (4)	. 34 36 . 36 38	. 34 36 . 36 38	.3436 .3638
Tech. grade U. S. P. grade Magnesium chloride:	do	Bags do Bbl	(5) (5) Works	(4) (4) (4)	.095 .1125 50.00	.095 .1125 50.00	.095 .1125 50.00
Powdered. Magnesium hydroxide: Medicinal grade.	Pound			(4)	. 29 30	. 29 30	. 265–. 30

E&MJ Metal and Mineral Markets.
 Westvaco Chemical Division, Food Machinery and Chemical Corp.
 Effective April 1.
 Oil, Paint and Drug Reporter.
 Magnesium carbonate is quoted freight allowed to New Jersey (except to Atlantic, Burlington, Cape May, Cumberland, Gloucester, Ocean, and Salem Counties) and to Philadelphia County, Pa. Freight is equalized with New York City on all other destinations.

FOREIGN TRADE 4

Imports of "dead-burned and grain magnesite and periclase" in 1952 decreased 15 percent in tonnage and 17 percent in value, compared with 1951. Austria supplied 74, Italy 10, Canada 8, Norway 6, and the United Kingdom 2 percent of the imports. Imports of "lump and ground caustic-calcined magnesite" decreased in 1952 (table 7). Imports of other magnesium compounds in 1952 are shown in table 8.

TABLE 7.—Magnesite imported for consumption in the United States, 1950-52 by countries

[U. S.	Department of	Commerce]
--------	---------------	-----------

	19	50	19	51	198	52
Country	Short tons	Value	Short tons	Value	Short tons	Value
	CRUDE	MAGNE	SITE	1 1	· · · · · · · · · · · · · · · · · · ·	
Brazil	2	\$28			4	\$184
CanadaGreece	1	22				
IndiaPhilippines	5	75				290
Total	8	125			15	474
LUMP CAUS	TIC-CAL	CINED M	'AGNESI	TE		
Canada	8 399 546 55	\$467 14, 696 25, 911 2, 400	8 1,963 1,277	\$467 71, 792 58, 732	839 828	\$32, 050 28, 391
Total	1,008	43, 474	3, 248	130, 991	1, 667	60, 441
GROUND CA Austria	USTIC-C.	ALCINEI \$245	496	\$19, 949	303	\$10, 003 516
GermanyGreece	44	1, 720	32 209	1, 267 7, 800		
India Netherlands United Kingdom	1,059 9	40, 063 1, 247	204	10, 405 382	22 16 4	1, 297 941 528
Total	1,118	43, 275	944	39, 803	353	13, 285
DEAD-BURNED AND	GRAIN	MAGNE	SITE AN	D PERIC	LASE	
Austria	11,839	\$622, 927	11, 314	\$516, 886	18, 011	\$785, 657
BrazilCanadaGermany	2, 104	188, 690	3, 995 1, 000	1, 995 365, 263 47, 628	2, 074	204, 518
India	177	6, 009	3, 808 1, 000	195, 377 41, 833	2, 379 1, 504	92, 026 64, 113
Norway United Kingdom			7, 612	227, 422	500	15, 400
Total	14,120	817, 626	28, 785	1, 396, 404	24, 469	1, 161, 73

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 8.—Magnesium compounds imported for consumption in the United States, 1948-52

[U. S.	Department	of	Commerce]
--------	------------	----	-----------

Year	calcined carbonate, (a		chlo (anhy	Magnesium chloride (anhydrous and n. s. p. f.) Magnesium sulfate (epsom salt)		Magnesium salts and compounds, n. s. p. f.1		Manufactures of carbonate of magnesia				
	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value
1948 1949 1950 1951 1952	(3)	\$2 496	282 192 234 194 182	51, 043 59, 847	6 8	852	1, 962 2, 547		158 562	24, 851	(3) 3 96 1	\$49 1, 479 31, 914 437

 ¹ Includes magnesium silicofluoride or fluosilicate and calcined magnesium sulfate.
 ² 200 pounds.
 ³ 50 pounds,

TECHNOLOGY

Various aspects of basic refractory raw materials and applications were reported in a number of articles published in 1952. Much of the literature dealt with chromite-magnesia refractories. The durability of these refractories was said to depend on control of the chromite-magnesia ratio, the composition of the gangue, and the grain sizes of the chromite and magnesia fractions.⁵ On the basis of experiments it was inferred that the firing expansions of certain chromite-magnesia products resulted from oxidation of the chromite grains. The expansion was reduced by the addition of serpentine to the batches.6

Applications, performance in open-hearth furnaces, and new developments in production of chromite-magnesia brick were discussed.7 Chromite-magnesia roofs in large open-hearth furnaces were stated to have metallurgical and cost advantages over roofs made from silica refractories, including lower brick consumption, lower labor cost, increased steel output, improved quality, and improved heat transfer.8 The relative merits of basic and silica brick in the basic open-hearth steel furnace were discussed. In the use of basic brick, a trend was noted toward the use of nonspalling magnesia refractories to replace chromite-magnesia.9 The use of basic refractories for steelmaking furnaces, cupolas, and crucibles, and reasons for changing to a comparatively unproved basic cupola operation from a smoothly operating acid cupola were discussed, and data were presented on the suitable types of refractories. 10 Results of life tests on basic open-hearth furnace linings were evaluated and

^{*} Bashforth, G. R., Some Experiences in the Use of Chrome-Magnesite Refractories: Metallurgia (Manchester, England), vol. 45, No. 267, January 1952, pp. 12-16.

* Lovell, G. H. B., The Firing Expansions of Certain Chrome-Magnesite Products: Trans. British Ceram. Soc. (Stoke-on-Trent, England), vol. 51, 1952, pp. 369-386.

* Iron & Coal Trades Review, Chrome-Magnesite Refractories in All-Basic Open-Hearth Furnaces: Vol. 165, No. 4407, Sept. 26, 1952, pp. 697-700.

* Lange, Werner, [Development and Experiences With Basic Chrome Ore-Magnesite Roofs in Large Open-Hearth Tilting Furnaces]: Stahl u. Eisen (Düsseldorf, Germany), vol. 72, No. 16, Mar. 13, 1952, pp. 284-287.

Zimmer, K. O., [Economy of Chromite-Magnesite and Silica Linings of a 70-ton Open-Hearth Furnace]: Radex-Rundschau (Radenthein, Austria), No. 6, November 1952, pp. 227-234. Lynam, T. R., Silica Versus Basic Bricks: British Steelmaker (London), vol. 18, February 1952, pp.

^{1.} Lynam, 1. R., Since Visite 22.3.

10 Holt, J. P., Basic Cupola Operation: Am. Foundryman, vol. 21, No. 1, January 1952, pp. 39-43.

Holt, J. P., Guide for Selection of Basic Refractories: Am. Foundryman, vol. 22, No. 5, November 1952, pp. 63-68, 102.

Demler, M. W., Basic Refractories for Cupola Service: Canadian Metals, vol. 15, No. 8, 1952, pp. 33-34.

variables affecting lining life were enumerated.11 A selected bibliography and the history of the all-basic open-hearth furnace were given in a special report of the Iron and Steel Institute (London).12 Electric-furnace refractories and open-hearth zebra roof experience were reviewed. 13 Operating data on several high-magnesia openhearth bottoms were presented which indicated that rammed bottoms performed more satisfactorily in the first year than sintered magnesia and slag bottoms. Ramming mixtures with 80, 84, and 96 percent magnesia were used, with progressively more satisfactory performance as the percentage of magnesia increased. 14 From a study of various properties of test pieces prepared by mixing sea-water magnesia clinker with raw or calcined chromite, it was determined that the porosity and resistance to spalling of the fired test pieces increased and apparent density and compressive strength decreased as the proportion of clinker was increased. 15 Research and service tests disclosed that chemically bonded magnesia-chromite brick were superior for checkers in glass furnaces and that European glass manufacturers had obtained up to 30 years' service for one set of bottom blocks by covering them with a single course of magnesia brick. 16 The advantages of using high-purity periclase refractories in the hot zone of kilns burning portland cement, dolomite, magnesite, and periclase, and the methods of manufacturing and bonding the refractories were discussed.¹⁷ Methods were described for making magnesia refractory ware for use in investigations on high-temperature alloys. 18 Developments in the design and operation of the Higgins arc furnace for producing fused magnesia and other refractory products were reviewed. 19

Investigation of mortar compositions containing monoaluminum and monomagnesium phosphates indicated they were equivalent to or superior to commercial mortars for which comparable data were available.20 A review of patents on refractory magnesia products was published during 1952.21

A detailed description of the process of recovering magnesia from sea water and analysis of the product was published.22 Satisfactory

II Hutter, Luis, [Progress in the Basic Lining of Open-Hearth Furnaces]: Stah lu. Eisen (Düsseldorf, Germany), vol. 72, No. 21, Oct. 9, 1952, pp. 1285-1298.

Aikens, R. E., Mixer Linings at Columbia-Geneva Steel Div.: Jour. Metals, vol. 4, No. 4, June 1952,

Germany), vol. 72, No. 21, Oct. 9, 1952, pp. 1285-1298.
Aikens, R. E., Mixer Linings at Columbia-Geneva Steel Div.: Jour. Metals, vol. 4, No. 4, June 1952, pp. 577-578.

12 Archibald, W. A., and others, The All-Basic Open-Hearth Furnace: Iron and Steel Inst. (London), Spec. Rept. 46, 1952, 86 pp.
13 Fedock, M. P., Bottom Ramming Materials: Jour. Metals, vol. 4, No. 3, March 1952, pp. 427-429.

14 Harley, T. H., Open-Hearth Zebra Roof Experience Analyzed: Jour. Metals, vol. 4, No. 11, November 1952, p. 1146.

14 Kramer, H. M., Recent Experience With Rammed Hearths at Bethlehem: Open-Hearth Proc., Am. Inst. Min. and Met. Eng., vol. 35, 1952, pp. 97-102.

18 Nagai, Shoichiro, Ota, Zenzo, and Tanemura, Fumikaza, [Chromite-Magnesia Refractories Which Use Sea-Water Magnesia, I]: Jour. Ceram. Assoc. Japan (Tokyo), vol. 60, No. 668, 1952, pp. 60-65; Ceram. Abs., June 1, 1952, p. 110.

Nagai, Shoichiro, Ota, Zenzo, Tanemura, Fumikaza, and Nozaki, Nobuo, [Chromite-Magnesia Refractories Which Use Sea-Water Magnesia, II]: Jour. Ceram. Assoc. Japan (Tokyo), vol. 60, No. 676, 1952, pp. 422-425; Ceram. Abs., Apr. 1, 1953, p. 63.

16 Abbey, R. G., [Refractory Trends in the Glass Industry]: Radex-Rundschau (Radenthein, Austria).

No. 7, Deember 1952, pp. 275-282.

17 Austin, L. W., Periclase Refractories in Rotary Kilns: Trans. Am. Inst. Min. and Met. Eng., vol. 193, 18ch. No. 3398-H (in Min. Eng., vol. 4, No. 10, October 1952, pp. 980-983).

18 Greenaway, H. T., Preparation of Laboratory Ware in Magnesia by a Modification of the Slip-Casting Technique: Metallurgia (Manchester, England), vol. 45, No. 289, March 1952, pp. 159-160.

Stanfield, G. K., Pure Oxide Laboratory Crucibles: Chem. Age (London), vol. 66, No. 1711, Apr. 26, 1952, pp. 641-643.

19 Upper, J. A., Arc-Furnace Practice in the Manufacture of Aluminous Abrasives and Refractories: Jour. Electrochem. Soc., vol. 99, No. 3, 1952, pp. 57-58.

20 Knigery, W. D., Fundamental Study of Phosphate Bonding in Refractories, IV; Mortars Bonded With Monoaluminum and Monomagnesiu

Production of the Refractory Magnesia Products]: Sprechsaal für Keramic-Glas-Email (Coburg, Germany), vol. 85, Jan. 20, 1952, pp. 27-28.

2) Glipin, W. C. and Heasman, N., Magnesia From Sea Water: Refractories Jour., vol. 28, July 1952, pp. 302-307.

results were reported by substituting finely ground magnesite for silica flour as a general mold and core wash in foundries. 23 mental procedures and results of electrical conductivity and density measurements of various mixtures of fused magnesium chloride and other chlorides were reported.²⁴ The theory and practice involved in the preparation and application of a nickel-magnesia cermet coating and its possible use for protecting the sheet metal parts of jet-propelled mechanisms were discussed.²⁵

The properties of olivine and its use for steel castings were discussed in an article published in 1952.26 Results of experiments on the

chlorination of olivine ore were summarized.²⁷

An article was published indicating that, where color is not a factor, serpentine can be substituted for talc in ceramic bodies without impairment of properties.28

Numerous articles of a more theoretical nature were published

during 1952.29

WORLD REVIEW

Estimated world production of crude magnesite was the same in Production data, by countries, are given in table 9. 1952 as in 1951. Austria.—A review of the Austrian magnesite industry was given in a report of the Special Mission for Economic Cooperation, Industry Division, Vienna, Austria, prepared by E. G. Rothblum and made available in June 1953.30 The production data for caustic-calcined and refractory magnesia, and magnesia brick (1948-52), compiled from data of the Austrian Supreme Mining Board, are given in table

to Their Temperature of Preparation: Jour. Appl. Chem. (London), vol. 2, part 12, December 1952, pp. 693-697.

Duwez, Pol, Odell, Francis, and Brown, Frank H., Jr., Stabilization of Zirconia With Calcia and Magnesia: Jour. Am. Ceram. Soc., vol. 35, No. 5, May 1, 1952, pp. 107-113.

Jura, George and Garland, C. W., Experimental Determination of the Surface Tension of Magnesium Oxide: Jour. Am. Chem. Soc., vol. 74, No. 23, Dec. 5, 1952, pp. 6033-6034.

Kahler, F., Haas, H., and Fischer, C. [Spectro-chemical Analysis of Magnesite]: Radex-Rundschau (Radentheim, Austria), No. 1, February 1952, pp. 33-45.

Kogl, Franz [Determination of the Mineralogical Constituents of Sintered Magnesite]: Silikattech, vol. 3, No. 7, 1952, pp. 311-312.

Moteki, Kesakichi and Murotani, Tadao [Ferric Oxide as a Mineralizer in Sintered Magnesia, I]: Jour. Ceram. Assoc. Japan (Tokyo), vol. 60, No. 667, 1952, pp. 17-21; Ceram. Abs., June 1, 1952, p. 117.

Moteki, Kesakichi [Ferric Oxide as a Mineralizer in Sintered Magnesia, I]: Jour. Ceram. Assoc. Japan (Tokyo), vol. 60, No. 671, 1952, pp. 185-186; Ceram. Abs., Oct. 1, 1952, p. 183.

Moteki, Kesakichi [Effects of Calcium Oxide and Silica on the Compounds Formed and the Microstructure of Magnesia Clinker]: Jour. Ceram. Assoc. Japan (Tokyo), vol. 60, No. 677, 1952, pp. 481-485; Ceram. Abs., May 1, 1953, p. 84.

Parravano, G., Solidstate Reaction Between Magnesium and Chromium Oxides: Jour. Am. Chem. Soc., vol. 74, No. 23, Dec. 5, 1952, pp. 6123-6125.

Schreiner, H. [Hydrate Formation in Sintered Magnesites]: Radex-Rundschau (Radentheim, Austria), No. 6, November 1952, pp. 255-260.

Schwartz, Bernard, Thermal Stress Failure of Pure Refractory Oxides: Jour. Am. Ceram. Soc., vol. 35, No. 12, Dec. 1, 1952, pp. 325-333.

Todd, B. S., Low-Temperature Heat Capacities and Entropies at 298.16° K. of Magnesium Orthotitanate and Magnesium Dittanate: Jour. Am. Chem. Soc., vol. 74, No. 18, September 1953, pp. 60-69.

²³ Urane, S. G., Magnesite for Moldings; Am. Foundryman, vol. 21, No. 3, March 1952, pp. 49-50.

24 Huber, R. W., Potter, E. V., and St. Clair, H. W., Electrical Conductivity and Density of Fused Binary Mixtures of Magnesium Chloride and Other Chlorides: Bureau of Mines Rept. of Investigations 4858, 1952, 14 pp.

25 Montgomery, E. T. and Lytle, J. A., Nickel-Magnesia Cermet Coatings: U. S. Air Force, Air Research and Development Command, WADC Tech. Rept., No. 52-166, June 1952, 12 pp.

26 Sissener, J., and Langum, B., Practical Aspects of Olivine as Molding Material: Am. Foundryman, vol. 21, No. 4, April 1952, pp. 138-142.

27 Ketzlach, Norman and Moulton, R. W., Olivine as a Source of Magnesium: Trend in Engineering at the Univ. of Washington, vol. 4, No. 1, January 1952, pp. 21-24.

Greenfield, H. H. and Moulton, R. W., The Chlorination of Olivine Ore: Trend in Engineering at the Univ. of Washington, vol. 4, No. 3, July 1952, pp. 22-24, 28.

28 Schatzer, L. [Use of Serpentine in Ceramic Bodies]: Silikattech, vol. 3, No. 6, 1952, pp. 261-262; Ceram. Abs., Mar. 1, 1953, p. 50.

29 Atlas, Leon [The Polymorphism of MgSiO₃] and Solid-State Equilibria in the System MgSiO₃-CaMgSi₂O₅: Jour. Geol., vol. 60, No. 2, March 1952, pp. 125-147.

Britton, H. T. S., Gregg, S. J., and Willing, E. G. S., The Precipitation of Magnesia From Sea Water by Calcined Dolomite: Jour. Appl. Chem. (London), vol. 2, part 12, December 1952, pp. 701-703.

Britton, H. T. S., Gregg, S. J., and Willing, E. G. S., The Precipitation of Magnesia in Relation to Their Temperature of Preparation: Jour. Appl. Chem. (London), vol. 2, part 12, December 1952, pp. 201-201.

Exports of crude magnesite were mostly to Germany, and were small, increasing from 135 metric tons in 1947 (none in 1948) to 1,000 metric tons in 1952. Exports of caustic-calcined and refractory magnesia, and magnesia brick, 1948-52, by country of destination, are given in tables 11 to 13. Imports of these products were minor during 1948-52, as shown in table 14.

TABLE 9.—World production of magnesite, by countries, 1 1948-52, in metric tons 2

ı	Com	niled	bv	Helen	L.	Hunt]

Country 1	1948	1949	1950	1951	1952
North America: United States	(8)	260, 646	389, 536	607, 962	463, 342
South America: Brazil	850	43, 110	(4)	(4)	(4) (4)
Venezuela	1,900	1,800	1,400	1,600	(*)
Europe:	405, 600	520, 500	543, 817	664, 296	742, 259
Czechoslovakia		(4)	⁵ 173, 000	(4) [']	(4)
Germany, West	(4) (4)	11, 264	1,311	(4)	32, 134
Greece	12, 168	17,090	26, 256	63, 859	81, 591
Italy	1,002	735 1, 108	274 1,850	246 1, 453	(4) 1,000
Norway Spain	1,740 9,897	6, 691	7,632	13, 733	12, 625
Yugoslavia	51, 721	87, 934	59, 269	89, 915	37, 782
Asia:	· ·		1		
Cyprus (exports)	1	20	20	20	20
India	49, 103	92, 018	53, 707 (4)	118, 650 (4)	(4) 328
Korea, Republic of Turkey	3, 621	6, 370	450	505	750
Africa:	0,021	0,010			
Kenya		10	181		
Southern Rhodesia	5, 722	7,640	8,615	14, 814	10, 952
Tanganyika (exports)	10,660	10, 487	83 11, 782	2, 716 18, 773	24, 409
Union of South Africa Oceania:	10,000	10, 407	11, 102	10, 770	21, 100
Australia	32, 963	34, 129	35, 960	39, 762	48, 441
New Zealand	549	568	346	589	(4)
Total 5	2, 400, 000	2,700,000	3, 000, 000	3, 800, 000	3, 800, 000

¹ Unless otherwise stated, quantities in this table represent crude magnesite mined. In addition to countries listed, magnesite is also produced in Canada, China, Poland, and U. S. S. R., but data on tonnage of output are not available; estimates by senior author of chapter included in total.

The Canadian production was actually magnesitic dolomite and brucite, valued as follows: 1948: C\$1,557,09; beginning in 1949, value includes magnesium metal: 1949: C\$1,536,200; 1950: C\$1,717,879; 1951: C\$2,487,773; 1952: C\$2,914,272.

¹ This table incorporates a number of revisions of data published in previous magnesite chapters.

š Figure withheld to avoid disclosure of individual company operation; included in total.

¹ Data not available; estimate by senior author of chapter included in total.

š Estimate.

5 Estimate.

TABLE 10.—Production of caustic-calcined and refractory magnesias and magnesia brick, Austria, 1948-52, in metric tons

Year	Caustic- calcined magnesia	Refractory magnesia	Magnesia brick
1948.	53, 279	133, 445	93, 248
1949.	77, 915	179, 409	109, 017
1950.	74, 563	182, 470	111, 820
1951.	77, 695	215, 212	134, 826
1952.	1 88, 822	1 259, 697	2 163, 400

According to a report drafted by E V. Spielmann, Vienna, May 11, 1953. ² Unofficial

Source: Austrian Supreme Mining Board.

TABLE 11.—Exports of caustic-calcined magnesia from Austria, 1948-52, in metric tons

Country of destination	1948	1949	1950	1951	1952
ArgentinaAustralia.		15	65	42	30
Belgium-Luxembourg Bulgaria	253	75	119	193	240 59
Czechoslovakia	1, 436	1, 926 223	2, 549 221 15	3, 426 268	3, 177 70
France Germany:	3, 141	3, 239	2, 492	2, 866	2, 673
East	5, 313 497	23, 650 351 750	2, 601 34, 993 280	5, 415 44, 145 177	4, 807 44, 094 236
Italy Netherlands New Zealand	865 134	1,408 326	2, 183 2, 092 307	879 2, 562 668	1,379 1,886 139
Norway Rumania	411	317	34 22	7	45
SwedenSwitzerlandTrieste	1, 864	138 1, 055	1, 289	1, 271	15 1, 215 15
United States			6	505	272
Total proceeds in 1,000 schillings 1	15, 278 8, 589	33, 473 18, 819	49, 268 32, 691	62, 439 41, 579	60, 352 45, 063

¹ Rate of exchange: 1948, none quoted; 1949, 14.40 schillings equaled US\$1; 1950–52, incl., 21 to 26 schillings equaled US\$1.

Source: Austrian Central Statistical Office, annual reports

TABLE 12.—Exports of refractory magnesia from Austria, by countries of destination, 1948-52, in metric tons

Country of destination	1948	1949	1950	1951	1952
Argentina	1.954	17 1,055	828 995	688 1, 617	660 2, 841
Brazil Chile	218	148 130	30	600	1, 439
Czechoslovakia Denmark	268 230	664 289	497 257	26 406	51 436
FinlandFrance	172 11, 351	106 9, 868	230	3,015	765
Germany: East	1	v, o08	7, 178	11, 295	13, 422
West Great Britain	16, 735	16, 084	239 23, 624	87 15, 898	4,866 21,547
Greece	5, 046 36	1, 481 25	377 64	1 170	494 96
HungaryIndia	202	3, 410 24	1, 218 108	63 100	115
Italy Netherlands	7111	6, 041 355	6, 694 222	6, 884 3, 422	11,880 287
Norway Peru	147	85 801	124 790	110 1.198	47
PolandRumania	4, 109 438	5, 034 1, 181	6, 477 887	3,726	2, 761
Spain Sweden	7 1, 215			565	1,039
Switzerland Trieste	2, 728	1, 011 1, 236	1, 085 1, 740	881 21, 455	1, 526 3, 171
TurkeyUnited States	217 41	652	93	100 7	70
Yugoslavia	1,813	22, 571 7, 671	7, 887 8, 434	4, 150 7, 094	8, 169 5, 323
Other	37	17	263	183	600
Total Total proceeds, in 1,000 schillings ¹	54, 236 29, 645	79, 956 47, 388	70, 353 63, 490	83, 741 83, 819	81, 605 100, 928

¹ Rate of exchange: 1948, none quoted; 1949, 14.40 schillings equaled US\$1; 1950-52, incl., 21 to 26 schillings equaled US\$1.

Source: Austrian Central Statistical Office, annual reports.

TABLE 13.—Exports of magnesia brick from Austria in 1948-52, by countries, in metric tons

Country of destination	1948	1949	1950	1951	1952
Argentina	298	22 68	1,418	1, 255 . 50	627 19
Belgian Congo Belgium-Luxembourg	8, 563	6, 371	6, 250	7, 433 99	9, 023 68
ChileCzechoslovakia		23 5, 363	138 2,662	877	1, 373
Denmark Finland	828 923	1, 587 643	1, 593 1, 590	2, 836 1, 620	2, 224 1, 850
France Germany:	17, 107	22, 993	16, 791	22, 169	27, 541
East West	9, 678	13, 601	1, 033 17, 407	1, 504 24, 784	2, 414 28, 314
GreeceHungary	435 2, 049	118 3, 673	704 4,076	548 4,039	628 4,826
Italy Netherlands	5, 423 1, 456	4, 822 1, 218	8, 198 1, 433	11, 081 2, 601	17, 358 3, 083
Norway Poland	589 2, 125	527 6, 518	621 6, 753	597 4, 450	583 7, 063
Rumania South Africa	951 171	4, 345 139	4, 982	1,000 1,003	3, 996 1, 360
SpainSweden	76 8, 032	9, 816	10, 162	9, 306	9, 833
Switzerland Trieste	1, 583 146	992	1, 219	1, 598	1,884
TurkeyYugoslavia	858 5, 291	416 5, 294	1, 937 5, 386	643 2, 747	1, 658 7, 551
Other	128	904	1,000	2, 572	3, 882
Total Total proceeds, in 1,000 schillings 1	68, 573 89, 468	89, 571 126, 994	95, 413 199, 191	104, 812 259, 320	137, 158 400, 247
Total proceeds, in 1,000 schillings	00, 400	120, 001	100.101	250,020	100, 211

¹ Rate of exchange: 1948, none quoted; 1949, 14.40 schillings equaled US\$1; 1950-52, incl., 21 to 26 schillings equaled US\$1.

Source: Austrian Central Statistical Office, annual reports.

TABLE 14.—Imports into Austria of caustic-calcined and refractory magnesias and magnesia brick, 1948-52, in metric tons

e e e e e e e e e e e e e e e e e e e	1948	1949	1950	1951	1952
CAUSTIC-CALCINED MAGNESIA					
Germany United Kingdom			1	2 2	22
Total Total value, 1,000 schillings 1			1 8	4 17	2: 3:
REFRACTORY MAGNESIA					
CzechoslovakiaGermany, West		2, 741	399	294	3, 598 513
Total Total value, 1,000 schillings ¹		2, 741 1, 292	399 186	294 294	4, 111 4, 110
MAGNESIA BRICK					
Belgium-Luxembourg Total value, 1,000 schillings ¹		7 10			

¹ Rate of exchange: 1948, none quoted; 1949, 14.40 schillings equaled US\$1; 1950-52, incl., 21 to 26 schillings equaled US\$1.

Source: Austrian Central Statistical Office, annual reports.

Brazil.—Harbison-Walker Minerios, S. A., formed in 1951 to exploit magnesite deposits near Alencar, Ceará, continued development work during 1952.³¹

Magnesita, S. A., operating mines and kilns at Brumado, Bahia, reported orders for 12,000 metric tons of refractory magnesia per year from manufacturers of refractory brick in Europe. The com-

³¹ Brick & Clay Record, vol. 122, No. 1, January 1953, p. 67.

pany stated it was unable to obtain adequate transportation from the mines to the port of Salvador over the East Brazil Railway, with the result that only a small fraction of the scheduled shipments were The East Brazil Railway was being electrified and rebeing made. equipped to provide better transportation. In 1945, the Department of Mineral Production stated the magnesite reserves in Bahia were "enormous and compare favorably. . . . with the world's biggest known deposits."32

Canada.33—Magnesia firebrick and chromite firebrick which are permitted duty-free entry under Canadian tariff item 281 were transferred from the customs category of "a class or kind not made in Canada" to that of "a class or kind made in Canada" effective May 21, 1952, according to the Canadian Department of National Revenue. This ruling did not affect the duty rate but made such imported firebrick subject to dumping-duty penalties if sold in Canada at less than the fair market value in country of export. The ruling also indicated that production in Canada was sufficient to supply 10 percent or more of domestic needs.

A mixture of magnesium chloride and magnesium sulfate was said to occur in some alkali deposits and lakes in Saskatchewan, associated with sodium sulfate. The MgO content of the larger lakes is from 3 to 5 times that of sea water, and a preliminary estimate from a survey of 6 lakes indicated reserves of more than 13 million tons equivalent of MgO.34

Imports of refractory and caustic-calcined magnesia and exports of dead-burned refractories are given in tables 15 and 16.35

Greece.—Output of calcined magnesia (92 percent MgO) totaled 26,678 metric tons valued at US\$1,040,442 in 1952, compared with 20,732 metric tons valued at US\$794,508 in 1951. Exports of crude magnesite and calcined magnesia, 1951-52, are shown in tables 17 and 18.36 The magnesite deposits of Euboea and the Chalkidike Peninsula were described and their importance to the Italian steel industry was emphasized.³⁷

TABLE 15.—Imports of refractory and caustic-calcined magnesia into Canada in 1952, by countries

Country of origin	Short tons	Value, C\$ 1
India Norway United Kingdom United States	27 1, 236 191 8, 824	3, 715 52, 754 16, 732 444, 958
Total	10, 278	518, 159

¹ Rate of exchange, 1952: C\$1 ranged from US\$0.9923 to US\$1.0407.

Source: Dominion Bureau of Statistics, preliminary reports on production and trade, 1952.

³² Mining Journal (London), Brazilian Magnesite: Vol. 239, No. 6123, Dec. 26, 1952, p. 734.
33 Foreign Commerce Weekly, Firebrick: "Made in Canada" Ruling: Vol. 47, No. 7, May 19, 1952, p. 11.
34 Williams, A. J., Saskatchewan's Industrial Minerals: Trans. Am. Inst. Min. & Met. Eng., Tech. Pub. 3286-H (in Min. Eng., vol. 4, No. 4, April 1952, p. 389.
35 Bureau of Mines, Mineral Trade Notes; Vol. 37, No. 2, August 1952, p. 52.
36 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 6, June 1953, pp. 54-55.
37 Capparucci, Riccardo [The Magnesite Deposits of Greece]: L'Industria Mineraria (Rome), vol. 3, No. 6, June 1952, pp. 203-205.

TABLE 16.—Exports of dead-burned refractories from Canada, 1952

Country of destination	Short tons	Value, C\$ 1
Mexico New Zealand Sweden United States	40 11 22 2,887	1, 960 594 1, 196 163, 967
Total	2, 960	167, 717

¹ Rate of exchange, 1952: C\$1 ranged from US\$0.9923 to US\$1.0407.

Source: Dominion Bureau of Statistics, preliminary reports on production and trade, 1952.

TABLE 17.—Exports of magnesite from Greece, 1951-52

	19	951	1952		
Country of destination	Metric tons	Value, 1,000 drachmas ¹	Metric tons	Value, 1,000 drachmas ¹	
Germany United Kingdom Others	600 3, 461 14, 602	107, 649 581, 364 2, 807, 119	12, 040 525 4, 318	2, 210, 863 99, 750 845, 960	
Total	18, 663	3, 496, 132	16, 883	3, 156, 573	

¹ 15,000 drachmas equals US\$1.

Source: Greek Ministry of Commerce, Statistical Service.

TABLE 18.—Exports of calcined magnesia from Greece, 1951-52

	19	951	1952		
Country of destination	Metric tons	Value, 1,000 drachmas ¹	Metric tons	Value, 1,000 drachmas ¹	
Germany Netherlands United States	9, 390 10, 401 90	5, 832, 390 6, 231, 926 60, 450	8, 122 10, 877	4, 950, 580 5, 843, 479	
Others	2, 856	1, 928, 751	3, 957	2, 262, 631	
Total	22, 737	14, 053, 517	22, 956	13, 056, 690	

^{1 15,000} drachmas equals US\$1.

Source: Greek Ministry of Commerce, Statistical Service.

Italy.—Results of chemical analyses, microscopic examinations, Xray powder spectrograms, and differential heating curves of crystalline magnesite from the Ortler region were discussed.³⁸

Netherlands.—Imports of crude magnesite in 1952 are given in Imports of refractory magnesia, 1951-52, are given in table 20; exports are given in table 21.39

Southern Rhodesia. 40—Exports of magnesite, 1951-52, are given in table 22.

 ^{**}S Sersale, Riccardo, and Gregorio, Elvira [Technological Characteristics of Iron-Containing Magnesites From the Ortler]: La Ricerca Scientifica (Rome), Vol. 22, No. 11, November 1952, pp. 2164-2173.
 **B Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 5, May 1953, pp. 37-38.
 **Bureau of Mines, Mineral Trade Notes: Vol. 37, No. 2, August 1953, p. 52.

TABLE 19.—Crude magnesite imports into the Netherlands, by countries, 1952

•	Country of origin	Metric tons	Value, guilders 1
Greece		75	7,000
India United Kingdom		104 24	7,000 9,000 10,000
Omed Kingdom		-	10,000

¹¹ guilder equals about US\$0.263.

Source: Netherlands Central Bureau of Statistics.

TABLE 20.—Refractory magnesia imports into the Netherlands, by countries, 1951-52

•	19	51	1952		
Country of origin	Metric tons	Value, guilders ¹	Metric tons	Value, guilders ¹	
AustriaBelgium-Luxembourg	322	71,000	296 10	83, 000 5, 000	
Germany, West	1,870 9,019	309, 000 1, 526, 000	209 14, 415 1, 546 28	47, 000 2, 683, 000 293, 000 10, 000	
YugoslaviaOthers	7,622	1, 227, 000 13, 000	2,845	557, 000	

¹¹ guilder equals about US\$0.263.

Source: Netherlands Central Bureau of Statistics.

TABLE 21.—Exports of refractory magnesia from The Netherlands, by destination, 1952

Country of destination	Metric tons	Value, 1,000 guilders ¹
Belgium-Luxembourg	460	11
Czechoslovakia		100
Denmark Egypt	, ,	30
Egypt Finland		17
France	0#	2
Germany. West		2, 24
Netherland Antilles	123	4.
New Zealand		1
Norway		11.
Portugal		2
SwedenUnion of South Africa	1,052	25
United Kingdom	0.005	49
Other	2, 020	3
Total	16, 172	3, 94

¹¹ guilder equals about US\$0.263.

SOURCE: Netherlands Central Bureau of Statistics.

TABLE 22.—Exports of magnesite from Southern Rhodesia, 1951-52

	19	51	1952		
Country of destination	Short tons	Value £ ¹	Short tons	Value £ 1	
Belgian Congo	13, 010 13, 068	408 22, 728 23, 136	115 14, 545 14, 660	347 28, 373 28, 720	

^{1 £} equals US\$2.80.

Source: Central African Statistical Office, Salisbury.

Union of South Africa.—The principal deposits in the Union of South Africa were described in Memoir 38, Magnesite in the Union of South Africa, published by the Union of South Africa Government Printer.

Yugoslavia.—Discovery of a new magnesite deposit said to contain sufficient magnesite for domestic requirements and a surplus for export was announced.

42

⁴¹ Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, p. 33. 42 Engineering and Mining Journal, vol. 153, No. 7, July 1952, p. 163.

Manganese

By Gilbert L. DeHuff¹ and Edgar J. Gealy¹

POSITION of the United States with respect to manganese supply improved substantially during 1952, owing principally to a large increase in imports of manganese ore, but unfortunately also in some measure to interruption of steel-industry operations by a prolonged strike. Had there been no such interruption, consumption of manganese ore probably would have set new records. As it was, consumption of ore and of alloys was lower than in 1951. Domestic production of ore, under the stimulus of Government purchase programs, was higher than in 1951 but did not attain the levels of the 8 years immediately preceding. The net result of the above factors showed in the high industry stocks at the close of the year.

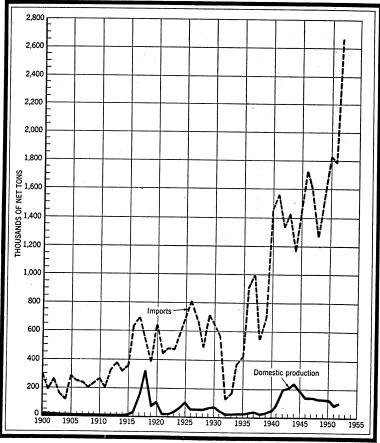


FIGURE 1.—General imports and domestic production (mine shipments) of manganese ore, 1900-52.

¹ Commodity-industry analyst.

TABLE 1.—Salient statistics of manganese in the United States, 1943-47 (average) and 1948-52, gross weight in short tons

	1943-47 (average)	1948	1949	1950	1951	1952
Manganese ore (35 percent or more Mn): Mine shipments:	-					
Metallurgical ore Battery ore Miscellaneous ore	174, 074 7, 745 259	119, 828 10, 845 427	110, 928 14, 983 224	122, 944 11, 507	1 95, 255 9, 752	100, 999 14, 380
Total mine shipments	182, 078 1, 468, 103 1, 444, 620	131, 100 1, 256, 597 1, 538, 398	126, 135 1, 544, 584 1, 360, 042	134, 451 1, 834, 925 1, 650, 429	1105,007 11,767,580 1,892,609	115, 379 2, 668, 557 1, 809, 189
Domestic production Imports for consumption Exports Consumption	626, 295 31, 092 7, 413 654, 375	647, 617 98, 220 19, 696 670, 774	577, 345 65, 014 6, 627 617, 645	719, 680 109, 948 580 774, 852	791, 260 119, 764 633 883, 841	758, 721 64, 095 1, 453 796, 826
Spiegeleisen: Domestic production Imports for consumption	139, 926 2, 104 2, 145	112, 610 51	78, 167 1, 737	42, 375 8, 595 363	77, 017 85	58, 666 44 34
Exports Consumption	143, 545	102, 392	75, 841	76, 280	80, 556	69, 029

¹ Revised figure.

DOMESTIC PRODUCTION

Throughout the year, General Services Administration continued to purchase low-grade manganese ores of domestic origin, amenable to beneficiation to National Stockpile specifications, delivered to depots at Deming, N. Mex., Butte, Mont., and Philipsburg, Mont. Minimum acceptable manganese content was 15 percent for deliveries to Deming and Philipsburg and 12 percent to Butte. Participation in the Montana programs was limited further to ores containing at least 90 percent of the manganese in the form of carbonate. In July, GSA published regulations, similar to those previously issued for Deming, governing purchase of low-grade manganese ores at a new depot to be established at Wenden, Ariz. However, purchases did not begin until 1953. Also in July, GSA announced its "carloadlot" program for the purchase of domestic manganese ores, meeting specifications, shipped in lots of one or more carloads by small producers whose production is less than 10,000 long dry tons per calendar year. A base price of \$2.30 per long-dry-ton unit for ore containing 48 percent manganese was established, with premiums and penalties for variations in analysis and a minimum acceptable manganese content of 40 percent. By the end of the year shippers throughout the country had begun to take advantage of this new program. In September the regulations for the Deming and Wenden depots were amended to permit acceptance of ores with higher lead and zinc contents than previously allowed, provided such ores could be nodulized to bring the content of these impurities within the initial specifications.

Defense Minerals Exploration Administration continued to aid promising exploration projects for manganese ore by providing loans to be repaid out of production, to the extent of 75 percent of the ap-

proved cost of the project.

In addition to the shipments of various grades of manganese-bearing ores given in tables 3 to 5, battery ores containing 35 percent or more manganese were produced in California and Montana, and synthetic battery ore was made from domestic ores at plants in Nevada and

TABLE 2.—Manganiferous raw materials shipped by producers in the United States, 1943-47 (average) and 1948-52, in short tons

		Metallu	gical ore		Battery	Miscellar	neous ore
Year	Manganese ore (35 percent or more Mn)	Ferruginous manganese ore (10 to 35 percent Mn)	Manganifer- ous iron ore (5 to 10 per- cent Mn)	Manganifer- ous zinc residuum	ore (25 percent or more Mn)	35 percent or more Mn	10 to 35 percent Mn
1943-47 (average)	174, 074 119, 828 110, 928 122, 944 195, 255 100, 999	221, 827 139, 580 24, 885 115, 269 106, 203 106, 307	1, 193, 187 1, 198, 523 1, 052, 231 972, 328 1, 117, 761 902, 711	235, 079 291, 383 158, 902 183, 842 267, 751 215, 255	8, 291 10, 845 14, 983 11, 507 9, 752 14, 380	259 427 224	215 2, 462 1, 279

¹ Revised figure.

TABLE 3.—Metallurgical manganese ore shipped from mines in the United States, 1943-47 (average) and 1948-52, by States, in short tons

State	1943-47 (average)	1948	1949	1950	1951	1952
Alabama. Arizona. Arkansas California. Colorado. Georgia. Idabo	4, 207 8, 762 141 932 7	240 212	223 2,851 280	138 222 1, 224 37	173 3,718	203 2, 246 3, 589
Missouri Montana Nevada New Mexico North Carolina Oklahoma	36 136, 212 6, 868 1, 220	119, 339	107, 399		1 91, 080 58 226	90, 772 105 2, 360
Oregon South Carolina South Dakota Tennessee Texas	29 366 2 592	37	175			126
Utah Virginia Washington Wyoming	7 102			120 56		56 95 1,011 436
Total	174, 074	119, 828	110, 928	122, 944	1 95, 255	100, 999

¹ Revised figure.

TABLE 4.—Ferruginous manganese ore shipped from mines in the United States, 1943-47 (average) and 1948-52, by States, in short tons

	1		1			
State	1943-47 (average)	1948	1949	1950	1951	1952
Arizona Arkansas California Colorado Georgia Michigan Minnesota Montana Nevada New Mexico North Carolina South Carolina Tennessee Utah Virginia Washington	187 8, 365 2, 620 17 1, 613 20, 409 75, 309 3, 073 8, 334 85, 740 23 65 1, 716 10, 452 4, 663	1, 165	5, 555 386 3, 482 5, 517 4, 964 4, 981 1, 279	16, 359 640 16, 206 6, 810 8, 942 74, 348	14, 728 7, 598 1, 250 79, 605	896 56 76 31, 502 9, 357 7, 947 52, 934 3, 397
Total	222, 586	142, 042	26, 164	115, 269	106, 203	106, 307

Oregon. Manganiferous zinc residuum was produced from New Jersey zinc ores.

TABLE 5.—Manganiferous iron ore shipped from mines in the United States, 1943-47 (average) and 1948-52, by States, in short tons

State	1943-47 (average)	1948	1949	1950	1951	1952
Michigan Minnesota New Mexico Utah	9, 474 1, 183, 713	1, 198, 523	986, 720 65, 511	117, 619 853, 632 1, 077	1, 117, 522 239	22, 095 880, 616
Total	1, 193, 187	1, 198, 523	1, 052, 231	972, 328	1, 117, 761	902, 711

Shipments of concentrating-grade ore (not included in the production data) were made to GSA depots in Deming, N. Mex., and Butte and Philipsburg, Mont. These ores originated in Arizona, California, Nevada, New Mexico, Montana, and Utah. An additional purchase depot was under construction at Wenden, Ariz., in the

latter part of the year.

Montana continued to occupy the dominant position as the leading manganese-ore-producing State, supplying 86 percent of the domestic production for 1952. The bulk of the material originated with Anaconda Copper Mining Co., which processed carbonate ore from the Emma and Butte Hill mines into nodules containing (dry) 57.5 percent manganese. Ten other States—California, New Mexico, Arkansas, Virginia, Washington, Arizona, Tennessee, Nevada, Utah, and Texas, in descending order—reported shipments of metallurgical manganese ore.

Battery-grade manganese ore was produced by Trout Mining Division of American Machine & Metals, Inc., and Taylor Knapp Co. in Montana. The Teekay Mines, Inc., subsidiary of Taylor Knapp Co., reached full production of battery-grade concentrates from the Ladd mine in California. Synthetic battery-ore was produced throughout the year from domestic ores by Continental Chemical Co., subsidiary of Ray-O-Vac Co., at Salem, Oreg., and by Western

Electrochemical Corp. at Henderson, Nev.

Ferruginous manganese ores were shipped from New Mexico, Minnesota, Montana, Nevada, Utah, Arkansas, Washington, Colorado, and California, in the above order. Manganiferous iron ore was shipped from Minnesota and Michigan.

New operations, designed to produce manganese ore from domestic sources, included Manganese, Inc., which began production of nodules containing 45 percent manganese at Henderson, Nev., Westmoreland Manganese, Inc., constructing a mill in Independence County, Ark., to produce large tonnages of manganese concentrates, and Manganese Chemicals Corp., beginning construction of a semicommercial plant at Riverton, Minn., to extract manganese from Cuyuna range ore by the ammonium carbamate process. In late 1952, DMPA contracted with Mangaslag, Inc., for the erection of a pilot plant in Luzerne County, Pa., using the process developed by the Bureau of Mines in cooperation with the American Iron and Steel Institute for recovering manganese from open-hearth slags.

TABLE 6.—Manganese and manganiferous ores shipped from mines, in the United States in 1952, by States

		Metallurgica	1		Battery			To	tal	
		Shor	t tons		Shor	t tons		Shor	t tons	
	Shippers	Gross weight	Manganese content	Shippers	Gross weight	Manganese content	Shippers	Gross weight	Manganese content	Value
Manganese ore: 1 Arizona. Arkansas. California Montana. Newada. New Mexico. Tennessee Texas. Utah Virginia Washington	5 5 7 1 2 15 1 1 1 5 2	203 2,246 3,589 90,772 105 2,360 126 56 95 1,011	83 1, 007 1, 436 52, 168 41 942 50 28 49 429 206	1 2 1	4, 492 9, 298 590	1, 640 4, 052 332	55 83 33 15 1 1 1 5 2	203 2, 246 8, 081 100, 070 695 2, 360 126 56 95 1, 011 436	83 1, 007 3, 076 56, 220 373 942 50 28 49 429 206	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
Total	45	100, 999	56, 439	4	14, 380	6,024	49	115, 379	62, 463	3 \$8, 251, 774
Ferruginous manganese ore: 4 Arkansas California Colorado Minnesota Montana Nevada New Mexico Utah Washington	1 1 1 2 9 1 4	896 56 76 31, 502 9, 357 7, 947 52, 934 3, 397 142	269 10 15 3, 342 2, 171 1, 895 5, 788 908 28				1 1 1 2 9 1 4	896 56 76 31, 502 9, 357 7, 947 52, 934 3, 397 142	269 10 15 3,342 2,171 1,895 5,788 908 28	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
Total	21	106, 307	14, 426				21	106, 307	14, 426	667, 24
Manganiferous iron ore: ⁶ Michigan Minnesota	1 4	22, 095 880, 616	1, 164 50, 845				1 4	22. 095 880, 616	1, 164 50, 845	(6) (6)
Total	5	902, 711	52, 009				5	902, 711	52,009	4, 449, 74

Containing 35 percent or more manganese (natural).
 Not available; estimate included in total.
 Estimate.

⁴ Containing 10 to 35 percent manganese (natural).
5 Containing 5 to 10 percent manganese (natural).
6 Figure withheld to avoid disclosure of individual company operations.

CONSUMPTION AND STOCKS

Steel capacity continued to expand in 1952; and the steel industry's operations were at a high rate, except for the shutdown period brought about by the summer's strike. A result was that consumption of manganese ore and manganese alloys was lower in 1952 than in 1951. Total consumption of manganese ore decreased 4 percent from that of 1951. Domestic mines supplied 5 percent and foreign sources 95 percent compared with 7 and 93 percent, respectively, in 1951 and 1950. The manufacture of dry cells took 2 percent of the total, chemicals consumed 1 percent, and the remaining 97 percent was used in metal industries. Industry stocks of ore increased 129 percent to 1,249,389 short tons at the end of 1952, but average grade again decreased.

Allocation of manganese ore continued throughout the year under Mineral Order 2, but with modification in March which permitted delivery and acceptance of foreign ores to alloy producers without

formal allocation authority.

TABLE 7.—Apparent consumption of manganiferous raw materials in the United States in 1952

	Ore conta percent Mn	ining 35 or more	contair	residuum ing 10 to ent Mn	Ore contai 10 perce	
	Short tons	Mn content (percent)	Short tons	Mn content (percent)	Short tons	Mn content (percent)
Domestic shipments Imports for consumption	115, 379 2, 203, 594	54. 14 45. 43	321, 562 154, 349	14. 53 26. 35	902, 711	5. 35
Total available for consumption .	2, 318, 973	45. 86	475, 911	18. 36	902, 711	5.35

TABLE 8.—Consumption of manganese ore and manganese alloys in the United States, 1951-52, and stocks Dec. 31, 1952, gross weight in short tons

	Quantity	consumed	In stock De	ec. 31, 1952 ¹
Category of use and form in which consumed	1951	1952	At plant, including bonded ware- houses	In bonded ware- houses only
Manganese alloys and manganese metal: Manganese ore: Domestic. Foreign	116, 864 1, 593, 891	84, 097 1, 629, 895	10, 839 1, 152, 368	549, 440
Total manganese oreFerromanganese, silicomanganese, and manganese	1, 710, 755	1, 713, 992	1, 163, 207	549, 440
metal Spiegeleisen Steel ingots and steel castings: ²			52, 221 3, 434	27, 408
Manganese ore: DomesticForeign	653 1, 937	10 1, 288	15 201	
Total manganese oreFerromanganese:	2, 590	1, 298	216	
High-carbon	773, 776	684, 745	120, 307	
Medium-carbonLow-carbon	51, 235	52, 429	7,873	
Total ferromanganese	825, 011	737, 174	128, 180	l

For footnotes, see end of table.

TABLE 8.—Consumption of manganese ore and manganese alloys in the United States, 1951-52, and stocks Dec. 31, 1952, gross weight in short tons—Con.

	Quantity	consumed	In stock D	ec. 31, 1952 ¹
Category of use and form in which consumed	1951	1952	At plant, including bonded ware- houses	In bonded ware- houses only
Spiegeleisen Silicomanganese Manganese metal and misc. alloys Steel castings: 3	60, 204 77, 916 1, 335	52, 876 76, 602 1, 246	23, 614 12, 797 117	
Manganese ore: Domestic Foreign	7 910	5 647	272 254	
Total manganese ore	917	652	526	
Ferromanganese: High-carbon Medium-carbon Low-carbon	34, 701 2, 748	33, 630 3, 576	6, 879 1, 009	
Total ferromanganeseSpiegeleisenSilicomanganeseManganese briquetsManganese metal and misc. alloys	37, 449 6, 820 11, 851 2, 337 250	37, 206 5, 539 13, 442 2, 073 266	7, 888 1, 438 2, 391 417 38	
Manganese ore: Domestic Foreign	5, 930 101, 024	5, 143 26, 798	4, 057 50, 018	
Total manganese ore	106, 954	31, 941	54, 075	
Domestic Foreign	3, 191 40, 936	4, 720 35, 177	1, 061 16, 745	11, 938
Total manganese ore	44, 127	39,897	17, 806 153	11,938
Domestic Foreign	4, 733 22, 533	5, 251 16, 158	13, 406	
Total manganese ore Miscellaneous products: Ferromanganese:	27, 266	21, 409	13, 559	
High-carbon Medium-carbon Low-carbon	14, 655 6, 726	17, 203 5, 243	4, 958 1, 805	
Total ferromanganese Spiegeleisen Silicomanganese Manganese briquets Grand total:	21, 381 13, 532 3, 003 16, 405	22, 446 10, 614 2, 615 14, 554	6, 763 3, 813 548 4, 043	
Manganese ore: Domestic Foreign	131, 378 1, 761, 231	99, 226 1, 709, 963	16, 397 1, 232, 992	561, 378
Total manganese ore	4 1, 892, 609	4 1, 809, 189	§ 1, 249, 389	561, 378
High-carbon. Medium-carbon. Low-carbon	823, 132 60, 709	735, 578 61, 248	142, 831	(6)
Total ferromanganese Spiegeleisen Silicomanganese	883, 841 80, 556 92, 770	796, 826 69, 029 92, 659	7 142, 831 32, 299 7 15, 736 7 4, 460 7 155	(6) (6)
Manganese briquets Manganese metal and misc. alloys Producers stocks ferromanganese, silicomanganese, and manganese metal	18, 742 1, 585	16, 627 1, 512	7 4, 460 7 155 52, 221	27, 408

Excluding Government stocks.
 Includes only that part of castings made by companies that also produce steel ingots.
 Excludes companies that produce both steel castings and steel ingots.
 The greater part of the consumption of ore was used in the manufacture of ferromanganese and silicomanganese. Combining consumption of ore with that of ferromanganese and silicomanganese would result in duplication.
 Excludes small tonnages of dealers' stocks.
 Included in "Producers stocks ferromanganese, silicomanganese, and Mn metal."
 Excludes producers' stocks.

The consumption in 1952 of manganese as ferroalloys and directly charged ore per short ton of open-hearth, bessemer, and electric steel produced was 13.6 pounds compared to 13.2 pounds in 1951. Of the 13.6 pounds, 12.2 pounds was in the form of ferromanganese, 1.1 pounds silicomanganese, 0.25 pound spiegeleisen, and 0.05 pound ore, manganese metal and miscellaneous alloys. These data apply to the consumption of manganese in the production of steel ingots and that part of steel castings produced by companies that also produce steel ingots. The companies reporting in this part of the survey approximate those reporting production to the American Iron and Steel Institute. If the manganese consumed by those companies producing only castings is also taken into account, the total pounds of manganese consumed per short ton of steel in 1952 becomes 14.5, of which 12.8 represents ferromanganese, 1.3 silicomanganese, 0.3 spiegeleisen, and 0.1 ore, metal, miscellaneous alloys, and briquets.

Electrolytic Manganese and Manganese Metal.—Electro Manganese Corp., Knoxville, Tenn., was the only producer of electrolytic manganese during 1952, but Electro Metallurgical Co. produced manganese metal in electric furnaces. The latter product has a minimum purity of 96 percent manganese, the electrolytic manganese 99.9+percent. Electro Manganese Corp. began construction of a new plant at Knoxville, Tenn., which will double its productive capacity. Electro Metallurgical Co. also began construction of a new ferroalloy plant at Marietta, Ohio, in which electrolytic manganese will be one of the

products.

Bureau of Mines Report of Investigation 4861, Electrolytic Manganese Tests in Cooperation With Industry, was published in May. This summarizes results of industrial tests of various applications of electrolytic manganese made over a number of years by the Bureau of Mines in cooperation with members of the ferrous and nonferrous metal industries, and the manufacturers of welding-rod coatings. The results

speak well for the future of electrolytic manganese.

Ferromanganese.—Production of ferromanganese in the United States was 758,721 short tons in 1952 compared with 791,260 tons in 1951. The following plants were active producers during the year: Anaconda Copper Mining Co., Anaconda and Black Eagle, Mont.; Bethlehem Steel Co., Johnstown, Pa.; Electro Metallurgical Co., Division of Union Carbide & Carbon Corp., Alloy, W. Va., Ashtabula, Ohio, Marietta, Ohio, and Niagara Falls, N. Y.; E. J. Lavino & Co., Reusens, Va., and Sheridan, Pa.; New Jersey Zinc Co., Palmerton, Pa.; Tennessee Coal, Iron & Railroad Co., Ensley, Ala.; Tennessee Products & Chemical Corp., Chattanooga, Tenn.; Tenn Tex Alloy & Chemical Corp., Houston, Tex.; United States Steel Co., Clairton, Duquesne, Etna, Pa. Manganese ore consumed in manufacturing ferromanganese totaled 1,448,232 short tons in 1952, of which 6 percent was of domestic origin and 94 percent foreign. In 1951 and 1950, the domestic contribution was 7 percent. Although the average grade of ore used in producing ferromanganese was lower than that of 1951, recovery of manganese increased to 88.6 percent. Recovery for 1951 was 86.2 percent; for 1950 it was 83.6 percent. Shipments of ferromanganese from producing furnaces decreased 7 percent in quantity but increased 10 percent in value from 1951.

TABLE 9.—Ferromanganese and spiegeleisen imported into and made from domestic and imported ores in the United States, 1951-52

	19)51	19	952	
	Gross weight (short tons)	Mn content (short tons)	Gross weight (short tons)	Mn content (short tons)	
Ferromanganese: 1				*	
Imported	119, 764 791, 260	94, 946 601, 758	64, 095 758, 721	51, 029 583, 731	
From domestic ore ² From imported ore ²	73, 512 717, 748	55, 906 545, 852	55, 356 703, 365	42, 591 541, 140	
Total	911, 024	696, 704	822, 816	634, 760	
Spiegeleisen.³ Imported			44	2 8	
Domestic production 4		15, 735	58, 666	11, 663	
Total	77, 017	15, 735	58, 710	11, 671	
Total available supply of metallic manganese in ferro- manganese and spiegeleisen		712, 439		646, 431	
Open-hearth, bessemer, and electric ⁸ furnace steel produced	105, 199, 848		93, 168, 039		
	Per	cent	Per	cent	
Percent of available supply of metallic manganese in: Ferromanganese and spiegeleisen imported. Ferromanganese made from imported ore. Ferromanganese made from domestic ore. Spiegeleisen made from domestic ore. Ferromanganese and spiegeleisen made from domestic ore. Spiegeleisen made and imported. Spiegeleisen made and imported. Percent of Mn in ferromanganese of domestic origin to	76 7 2	33 62 85 20 05 20	7. 90 83. 71 6. 59 1. 80 8. 39 1. 81		
total Mn in ferromanganese made and imported Percent of Mn in spiegeleisen of domestic origin to total Mn in spiegeleisen made and imported	100	0	99	.7	

Number of domestic plants making ferromanganese: 1951, 14; 1952, 15.
 Estimated.
 Number of domestic plants making spiegeleisen: 1951, 5; 1952, 3.
 No spiegeleisen produced from foreign ore.
 Includes crucible.

TABLE 10.—Ferromanganese produced in the United States and metalliferous materials consumed in its manufacture, 1943-47 (average) and 1948-52

	Ferrom	anganese pr	oduced	Materials	Manganese		
Year	Short tons	Manganese	contained	Mangane percent or natu		Iron and manganif- erous	ore used per ton of ferro- manganese made
		Percent	Short tons	Foreign	Domestic	iron ores	(short tons)
1943-47 (average) - 1948	626, 295 647, 617 577, 345 719, 680 791, 260 758, 721	78. 79 78. 42 78. 33 76. 96 76. 05	493, 496 507, 843 452, 249 553, 834 601, 758 583, 731	1, 095, 262 1, 209, 249 1, 054, 445 1, 311, 421 1, 416, 813 1, 364, 618	128, 247 78, 702 114, 924 105, 382 110, 607 83, 614	3, 040 5, 930 2, 540 	1. 954 1. 989 2. 025 1. 969 1. 930 1. 909

TABLE 11.—Manganese ore used in manufacture of ferromanganese in the United States, 1948-52, by source of ore

	1948		194	9	1950		1951		1952	
Source of ore	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)	Gross weight (short tons)	Mn con- tent, natu- ral (per- cent)
Domestic	78, 702	59. 26	114, 924	59. 13	105. 382	58. 02	110, 607	58. 34	83, 614	56. 95
Foreign:	386, 503	46. 69	367, 339	46, 24	606, 248	46.00	641, 013	44.36	510, 452	45. 59
Brazil	159, 668	40.81	138, 917	40.76	128, 940	40.82	146, 108			
Chile	5, 195	47. 91	3, 838	47.78		47.68				
Cuba	35, 328	42.87	36, 344	38.83	42, 893					39.8
India	304, 607	47.82	258, 372	46.96	447, 749	48.15				46.0
Indonesia					::-:::		801			43. 77 40. 84
Mexico	40, 420	41. 79	27, 952	40.81	25, 851	41.48	40, 402	40.81	51, 571	
New Caledonia							5, 232	44. 76	12, 092 7, 064	41.19
Philippines	7, 763	46. 13	10, 922	45. 12	5, 036 2, 928	46. 84 45. 97				
Turkey		40 00	010 761	44. 91	44, 497				10,000	00.00
U.S.S.R Other	269, 765	46.08	210, 761	44. 91	44, 497	40.00	2, 128		13, 803	37.30
Omer										
Grand total	1, 287, 951	46, 61	1, 169, 369	46.41	1, 416, 803	46. 77	1, 527, 420	45.71	1, 448, 232	45.0

TABLE 12.—Ferromanganese shipped from furnaces in the United States, 1943-47 (average) and 1948-52

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	631, 310	\$81, 024, 690	1950	731, 421	\$116, 043, 055
	659, 193	90, 126, 657	1951	795, 745	122, 346, 198
	560, 180	86, 463, 708	1952	738, 088	133, 996, 006

Silicomanganese.—Consumption of silicomanganese in 1952 was 11.6 percent that of ferromanganese as compared to 10.5 percent in 1951. Analyses quoted for the alloy give a manganese content of 65 to 68 percent, carbon from 1½ to 3 percent, and silicon 12 to 20 percent, with the carbon content increasing as silicon decreases. Silicomanganese is being used increasingly by the steel industry as a furnace control agent, as a deoxidizer, and for manganese additions. It has been found to be particularly useful for manganese additions to low carbon or high manganese steels.

Spiegeleisen.—Production of spiegeleisen in the United States decreased 24 percent in 1952 to 58,666 short tons from 77,017 tons in 1951. Shipments from furnaces decreased 15 percent in quantity and 12 percent in value. Three companies produced spiegeleisen in three plants in 1952: Bethlehem Steel Co., Johnstown, Pa.; New Jersey Zinc Co., Palmerton, Pa.; and United States Steel Co., Clairton, Pa.

TABLE 13.—Spiegeleisen produced and shipped in the United States, 1943-47 (average) and 1948-52

Year (short		Shipped	from furnaces	Year	Produced (short	Shipped from furnaces		
	Shorttons	Value	1 ear	i i mal	Shorttons	Value		
1943–47 (average)	139, 926 112, 610 78, 167	140, 547 108, 960 53, 888	\$4, 712, 258 5, 261, 650 2, 972, 653	1950 1951 1952	42, 375 77, 017 58, 666	65, 163 79, 168 67, 129	\$3,875,823 5,368,989 4,730,631	

Manganiferous Pig Iron.—Pig-iron furnaces used 1,109,385 short tons of manganese-bearing ores containing (natural) over 5 percent manganese in 1952. Of this quantity, 934,768 tons were of domestic origin and 174,617 tons foreign. Of the domestic ores used, 909,061 tons contained (natural) 5 to 10 percent manganese, 20,564 tons contained 10 to 35 percent manganese, and 5,143 tons contained more than 35 percent manganese. Of the foreign ores used, none contained less than 10 percent manganese, 147,819 tons contained (natural) 10 to 35 percent manganese, and 26,798 tons contained over 35 percent manganese.

Battery and Miscellaneous Industries.—Manufacturers of dry cells used 39,897 short tons of manganese ore during 1952, of which 4,720 tons were of domestic origin. Although the total ore used decreased 10 percent from that of 1951, the portion which was of domestic origin actually increased 48 percent. Chemical plants used 21,409 short tons, of which 5,251 tons were domestic. All of the above ore contained (natural) over 35 percent manganese. The principal use of chemical ore is in the manufacture of dyes, manganese sulfate for

fertilizer, hydroquinone, and permanganates.

TABLE 14.—Foreign ferruginous manganese ore and manganiferous iron ore consumed in the United States, 1949-52, in short tons

v e	Source of ore	Fer	ruginous	mangan	ese ore	Manganiferous iron ore				
	Source of one	1949	1950	1951	1952	1949	1950	1951	1952	
Africa Brazil		4, 673	2,034	2	1, 048 361	67, 466	43, 725			
Egypt Mexico		6	92, 905	87, 455	152, 483					
Tot	tal	4, 679	94, 939	87,457	153, 892	67, 466	43, 725			

PRICES

Manganese Ore.—Government prices for domestically mined manganese ore meeting specifications and regulations were calculated on the basis of \$2.30 per long-ton unit for 48 percent of either contained or recoverable manganese. Prices of Indian manganese ore of 46 to 48 percent manganese content, as quoted by E&MJ Metal and Mineral Markets, began the year at \$1.20 to \$1.25 per long-ton unit of manganese, c. i. f. United States ports, duty extra, and closed at \$1.20 to \$1.22 after having reached \$1.22 to \$1.27. Long-term contracts for ore from various sources were quoted at the beginning of the year as nominal at 90 to 95 cents per long-ton unit, c. i. f. duty extra; and nominal at 90 to 93 cents, c. i. f. United States ports, duty extra, at the end of Prices for foreign chemical ores remained essentially the same throughout the year at \$75 to \$80 per ton for ore of 85 percent manganese dioxide content, and \$65 to \$70 per ton for ore of 80 percent content, except for the close of the year when the latter figure increased to \$65 to \$75. Domestic chemical ore, containing 70 to 72 percent manganese dioxide was quoted at \$45 to \$50 for the year. mained at one-fourth cent per pound of contained manganese, except material from Cuba and the Republic of the Philippines, which was exempt from duty, and that from Soviet Russia and certain neighboring countries, for which a 1-cent-per-pound duty applied.

Manganese Alloys.—The average value, f. o. b. producers' furnaces, for ferromanganese shipped during 1952 was \$181.54 per short ton compared with \$153.75 in 1951. According to Iron Age, the selling price of ferromanganese in carlots at eastern centers was held at \$186.25 per gross ton from the end of 1951, until August when OPS allowed an increase of \$40 per ton. The price then remained at \$226.25 for the rest of the year, giving an average for the year of \$202.08. The average value for spiegeleisen, f. o. b. domestic furnaces, was \$70.47 per short ton compared with \$67.82 for 1951. The quoted price on a gross-ton basis, as given by Iron Age, followed the same pattern as that of ferromanganese, holding at \$75 until August, at which time it was increased to \$85 where it remained to the end of the year. The average quoted price per gross ton was \$78.66 in 1952 These alloys were under price control by the OPS throughout the year

FOREIGN TRADE²

Imports of manganese ore for 1952 were the highest on record; but average grade continued to decrease, being 45.2 percent compared with 46.1 percent and 46.6 percent for 1951 and 1950, respectively. As in

1951, no ore was received from the Soviet Union.

Indian receipts, almost double those of 1951, exceeded 1 million short tons, thereby establishing an alltime record for imports of manganese into the United States from any country. The grade was down, however, to 44.9 percent manganese compared to 47.1 percent in 1951. The supply from India for 1952 was 39 percent of the total ore received.

Gold Coast of Africa was again the second largest source of imports, with 14 percent of the total, averaging 48.2 percent manganese, but its shipments of battery- and chemical-grade ores to the United States again decreased. Total imports from Gold Coast showed only a

nominal increase over those of 1951.

Union of South Africa was a close third, with 12 percent of the import total and an average grade of 44.0 percent manganese. Tonnage

was less, but grade better, than in 1951.

Imports from Cuba approached double those of 1951 and kept Cuba in fourth place. The grade (43.6 percent manganese) was lower than in 1951. A relatively small quantity of battery-grade ore was imported from Cuba. Imports from Brazil showed a similar increase in tonnage, also at expense of grade, which was 44.3 percent manganese in 1952. Mexico, in sixth place, increased its exports to the United States to approximately one and one-half times those of 1951. The grade (42.2 percent manganese) was down from that in 1951. Thirteen other countries supplied the remaining 15 percent of the total United States imports. Of these, French Morocco, Angola, Portuguese Asia, Belgian Congo, and Turkey were most important, in the order given.

Import data include receipts of ore classified as battery-grade totaling 57,452 short tons in 1952. Of this quantity, 48,155 tons came from Gold Coast, 4,743 from French Morocco, 4,288 from Cuba, and 266 from Chile; this ore averaged 55.2 percent manganese or 87.4 percent manganese dixoide, and it is known that these imports include some receipts of chemical ore. Imports for consumption of

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 15.—Manganese ore (35 percent or more Mn) imported into the United States, 1951-52, by countries [U. S. Department of Commerce]

		eneral impor		>			Imports for	consumptio	n 2	
Country	Ge	eneral impor	ts 1 (Short to)	18)		Short t	ons			
Country	Gross	weight	Mn e	ontent	Gross weight		Mn co	ontent	Value	
	1951	1952	1951	1952	1951	1952	1951	1952	1951	1952
Angola Belgian Congo Brazil British Malaya. Chile Costa Rica Cuba. French Morocco French Pacific Islands. Gold Coast. Greece. India. Indonesia. Iran Mexico. New Zealand	34 21, 264 147, 086 3 46, 581 3 359, 883 2, 524 565, 557 2, 278 3, 239 92, 227	64, 559 54, 144 169, 372 28, 311 259, 230 85, 316 22, 459 368, 068 8, 372 1, 028, 289 13, 126	\$ 18, 571 4, 737 \$ 43, 329 18 10, 098 65, 319 \$ 24, 157 \$ 173, 060 1, 189 266, 586 1, 093 1, 426 39, 803	31, 501 27, 000 75, 052 12, 596 38 113, 051 42, 608 10, 303 177, 376 461, 763 5, 959 57, 214 265	32, 478 10, 929 97, 624 23, 843 23, 843 147, 086 44, 952 360, 326 2, 524 616, 892 3, 239 99, 927	68, 387 56, 321 174, 241 21, 733 	16, 157 5, 377 44, 247 18 11, 419 65, 319 23, 155 174, 755 1, 189 295, 105	33, 655 28, 032 77, 448 9, 646 113, 051 37, 159 4, 529 135, 350 6, 340 39, 258 39, 258	\$1, 100, 311 421, 211 1, 841, 810 753, 857 4, 849, 172 1, 743, 330 8, 541, 374 83, 130 14, 180, 911	\$3, 030, 600 2, 496, 334 4, 300, 963 757, 713 8, 801, 648 3, 313, 136 355, 533 8, 204, 873 29, 446 22, 329, 239 567, 414 2, 675, 885 24, 887
PeruPhilippines	1, 516 12, 301	3, 687 10, 587	824 5, 830	1, 736 4, 677	1, 244 12, 301 447	3, 755 10, 587	709 5, 830 188	1, 766 4, 677	42, 833 351, 062 8, 567	24, 887 140, 046 321, 594
Portuguese Asia Portuguese Asia Turkey Union of South Africa U. S. S. R. Western Portuguese Africa, n. e. s.	21, 673 347, 659	55, 815 41, 149 319, 719	261 10, 331 147, 999	23, 902 18, 545 140, 552	19, 615 423, 985 2, 586 2, 206	45, 777 18, 908 298, 305	261 9, 213 182, 086 1, 282 1, 180	19, 416 8, 319 129, 567	14, 679 645, 706 7, 630, 216 78, 742 72, 996	1, 686, 791 666, 577 6, 110, 503
Total	³ 1, 767, 580	2, 668, 557	8 814, 631	1, 207, 313	1, 902, 859	2, 203, 594	882, 240	1, 001, 043	45, 019, 630	65, 811, 182

¹ Comprises ore received in the United States during year; part went into consumption, and remainder entered bonded warehouses.
² Comprises receipts during year for consumption and ore withdrawn from bonded warehouses during year.
³ Revised figure.
⁴ Less than 1 ton.

battery ore (including some chemical) totaled 58,482 short tons valued at \$2,380,388 or \$40.70 per short ton f. o. b. foreign ports. Of the total, Gold Coast supplied 49,185 tons valued at \$1,934,306; French Morocco, 4,743 tons at \$230,982; Cuba, 4,288 tons at \$205,100; and Chile, 266 tons at \$10,000.

Imports for consumption of ferromanganese in 1952 decreased 46 percent from 1951; exports increased 130 percent to 1,453 short tons. Exports of manganese ore and concentrates (10 percent or

more manganese) were 9,749 short tons valued at \$504,416.

TABLE 16.—Ferromanganese imported for consumption in the United States, 1950-52, by countries

[U. S.	Department	of	Commerce]
--------	------------	----	-----------

1950				1951			1952			
Country	Gross weight (short tons)	Mn con- tent (short tons)	Value	Gross weight (short tons)	Mn con- tent (short tons)	Value	Gross weight (short tons)	Mn con- tent (short tons)	Value	
D.1.1	01.5	150	400 100							
Belgium-Luxembourg Canada	215 24, 029	170 19, 099			52 878	\$10,918,197	29,020	22 735	\$5, 473, 927	
Chile	110	87	14, 494		02,010	φ10,010,101	20,020	22, 100	40, 1,0,020	
France	19, 965	15, 533		13, 356	10,444	1,714,963	3,834	2, 995		
Germany	110	95	26, 636		32		63	25	5, 198	
Japan	622	504		165	133					
Norway	60, 223	48, 378	9, 542, 794	38,637	31, 344	7, 358, 514	30, 296	24, 674	8, 550, 625	
Sweden	50	45	11, 160							
U. S. S. R. United Kingdom	4, 122 58	3, 215 45								
Yugoslavia	444	322			115	26, 494	882	600	149, 435	
1 ugostavia	111					20, 101				
Total	109, 948	87, 493	16, 237, 775	119, 764	94, 946	20, 046, 139	64,095	51,029	14, 758, 944	

TABLE 17.—Spiegeleisen imported for consumption in the United States, 1943–47 (average) and 1948–52 $^{\rm 1}$

[U. S. Department of Commerce]

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average) 1948	2, 104	\$90, 735	1950	8, 595	\$474, 259
1949	1, 737	86, 217	1952	44	3, 658

¹ Does not include minor quantities of spiegeleisen under 1 percent carbon.

TABLE 18.—Ferromanganese exported from the United States, 1943-47 (average) and 1948-52

[U. S. Department of Commerce]

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	7, 413	\$1, 037, 547	1950	580	\$139, 876
1948	19, 696	2, 990, 645	1951	633	206, 614
1949	6, 627	1, 360, 279	1952	1, 453	474, 686

TECHNOLOGY

The recovery of manganese from open-hearth slags in a form suitable for use in manufacturing standard ferromanganese was determined to be technically feasible by means of a pyrometallurgical

process developed at Pittsburgh by the Bureau of Mines in cooperation with the American Iron and Steel Institute. The first step in this operation is blast-furnace production of a high-phosphorus spiegel-This spiegeleisen is then blown in a basic-lined converter to produce a high-manganese slag of low phosphorus and iron content, control of the phosphorus and iron being obtained by a cyclic operating procedure. The slag product, which is essentially a high-grade synthetic metallurgical ore, is then used for normal production of ferromanganese. Fertilizer material and a high-purity iron for use as steel-furnace melting stock are possible byproducts. Satisfactory spiegeleisen, comparable to that produced when slag is used for feed, was obtained when material from the manganese deposits of Aroostook County, Maine, was fed to the furnace. Flux consumption was much higher than for the runs in which slag was the raw material.

On December 31, Defense Materials Procurement Agency announced that a contract had been signed with Magnaslag, Inc., for constructing and operating an experimental plant at Coxton, Luzerne County, Pa., to prove the commercial feasibility of the process, using slags for feed and anthracite for fuel. The plant is expected to attain a production rate of at least 1,000 long tons of ferromanganese per month. Slags for the feed to the plant will be supplied by major

steel companies.

At College Park, Md., also under cooperative agreement with the American Iron and Steel Institute, the Bureau of Mines continued laboratory and pilot-plant investigation of the lime-clinkering carbonate-leach process for recovering manganese from slags. process produces a lime clinker in a rotary kiln. The pulverized clinker is then reduced with hydrogen and leached with ammonium carbonate, and finally the manganese is precipitated as a carbonate ammonical by distilling off a portion of the ammonium carbonate.

It has been estimated that the quantity of open-hearth slag produced annually at integrated steel plants in the United States could provide nearly half of domestic needs. Since large reserves are already available in dumps situated right at the steel plants, the value of successful methods for the recovery of their manganese content

Research in the College Park laboratory continued on chemical methods for winning manganese from the low-grade deposits of Aroostook County, Maine. Leaching with dilute sulfuric acid showed promise for certain of the materials; manganese chloride volatilization for others. A résumé of the various methods investigated is given in Bureau of Mines Report of Investigation 4921, Maple Mountain-Hovey Mountain Manganese Project, Central District, Aroostook County, Maine.

The Bureau of Mines pilot plant at Boulder City, Nev., was completed and placed in operation for large-scale concentration and leaching tests of Artillery Peak and other low-grade materials, and encouraging results were had. By means of a combination of flotation and dithionate leaching, a product suitable for producing ferromanganese has been obtained from raw material containing 8 to 10

percent manganese.

Experimental work with electric furnaces at the Bureau's Albany, Oreg., station resulted in satisfactory production of standard-grade silicomanganese from rhodonite materials of the Northwest.

At Minneapolis the Bureau of Mines continued research toward

recovery of a ferrograde product from the manganiferous carbonate slates and the lean brown and black manganiferous oxides of the Cuyuna range. Based on encouraging laboratory tests, a shaft-type furnace was constructed for experiments with these materials to produce a water soluble manganese sulfate by means of a sulfur dioxide-air roast.

Toward the close of the year a new manganese-chrome alloy, containing less than 1 percent nickel, was marketed as a substitute for the regular nickel-bearing (18-8) stainless steels, use of which has been restricted as a conservation measure for nickel. Both electrolytic manganese and low-carbon, low-phosphorus ferromanganese have been used in producing the new alloy.

WORLD REVIEW

The data in table 19 are from official statistics of the various countries, supplemented by information from semiofficial and other sources.

Brazil.—Development continued on the Amapa deposits in which Bethlehem Steel Corp. has a 49-percent interest through Industria e Commercio de Minerios (Icomi). As a result of core drilling, reserves of 10,000,000 tons of ore of 45- to 47-percent Mn grade have been estimated, with larger tonnages of lower grade. Mining will be by open pit, with crushing and screening near the mine. Negotiations proceeded during the year for a \$67,500,000 loan from United States Export-Import Bank, successfully culminating in January 1953. Negotiations continued with regard to United States Steel Corp.'s concession to develop the Urucum deposits in the state of Mato Grosso. Reserves of manganese ore are estimated to be 34,000,000 metric tons, averaging 45.6 percent Mn. In addition the concession has iron-ore deposits estimated at 1.3 billion tons, averaging 55 percent Fe. 3 4

British Guiana.—Low-grade manganese ore has been discovered at a number of locations in northwestern British Guiana.⁵ Manganese Co., Ltd., and Union Carbide & Carbon Corp. together engaged in exploration of a concession and are said to have defined a possible area 5 miles long by a maximum width of 1,000 feet. Samples have averaged about 43 percent Mn with high silica content.6 An independent survey was also being carried out in British Guiana by

African Manganese Co., Ltd.7

Chile.—Production of ferromanganese totaled 8,164 metric tons in 1951 and 3,721 tons in the first 10 months of 1952. The 1952 output declined because one furnace was used exclusively to produce calcium Small quantities of medium-carbon ferromanganese and silicomanganese were produced on an experimental basis in 1952 and commercial-scale production of medium and low carbon ferromanganese was planned. Future supplies of manganese ore for the Huachipato plant were far from assured, as most of its ore comes from Manganesos Atacama, which looks to a somewhat uncertain future. Some fairly large deposits of low-grade ores have been located in the Corral

Iron Age, vol. 171, No. 3, Jan. 15, 1953, pp. 37-38.
 Chemical and Engineering News, vol. 30, No. 48, Dec. 1, 1952, p. 5071.
 Mining Journal (London), vol. 238, No. 6081, Mar. 7, 1952, p. 243.
 Northern Miner, vol. 38, No. 45, Jan. 29, 1953, p. 10.
 Northern Miner, vol. 38, No. 26, Sept. 28, 1952, p. 12.

TABLE 19.—World production of manganese ore, by countries, 1946-52, in metric tons 2

[Compiled by Lee S. Petersen]

					-,			
Country 1	Per- cent Mn	1946	1947	1948	1949	1950	1951	1952
North America:								
			204	3		l		
Canada (shipments) Cuba	36-50+	130, 764			62, 503	79, 209	154, 091	3 251, 677
Mexico	42-45	25,000						
United States (shipments)	35+							
South America	1			1	1			· '
Brazil (exports)	38-50	149, 149	142, 092	141, 253	149, 896	148, 339	119, 900	3 160,000
Chile	40-50	21,885		22, 119	28,870	33, 530	36, 578	3 38,000
Peru	62+		l			762	699	597
Europe:				İ	l			
Greece	35+			900	150	320		
Hungary	35-48	14, 780	33, 470		(4)	(4)	(4)	(4)
Italy	30	8, 383	26, 547	25, 233			27, 743	40, 351
Italy Portugal	35-45	5, 932	2, 444	280		798	7,615	11,065
Rumania	130-36	18,807	(4)	3 47, 000	3 65, 000	(4)	(4)	(4)
Spain	40+	29, 589	22, 428	18, 525		19,002	20, 790	
Sweden	. 30+	1, 525	773	28		58		(4)
U. S. S. R. (estimate)	41-48		1,800,000	1,800,000	1,500,000	2,000,000		
Yugoslavia	30+	3 7,000	3 11, 700	³ 12, 000	³ 12, 000	13, 338	12, 743	12, 687
Asia:	l				4.5		- 40	
China India	41	6 9, 600				(4)	(4)	(4)
India	47-52	256, 975	458, 274	534, 316	656, 190	897, 100	1, 304, 536	71, 291, 755
<u>Iran 8</u>					³ 4, 200		(4)	9, 327
Japan	32-40	29, 394	33, 194	55,000			198,000	³ 180, 000
Philippines Portuguese India	35-51		3, 375	25, 565	26, 288		22, 343	20, 627
Portuguese India	32-50+	(4)	[†] 100				86, 793	
Turkey	*	2, 370	5, 833	8, 327	22, 576	32, 178	50, 517	101,808
Africa: Angola		1 000	700	400	10.000	0.200	46 100	FF 004
Poleson Congo	50+	1, 900 12, 231	700 17, 646	400 12, 765		9, 308 16, 990	46, 192 70, 945	55, 094 3 150, 000
Belgian Congo Egypt	30+	12, 251	17,040	59, 919	138, 568	152, 169	155, 364	209, 164
French Morocco	22-50	57, 990			233, 825	287, 265	372, 233	426, 316
Gold Coast (orports) 9	501	37, 590	508 655	640, 088	752, 963	722, 784		794, 187
Gold Coast (exports) 9 Northern Rhodesia Southern Rhodesia	30		000,000	3, 961	4, 039	1, 751		3, 989
Southern Rhodesia	901			10	166		1,200	1, 433
South-West Africa				10	100	993	6, 560	26, 507
Spanish Morocco	50			13	653			(5)
Spanish Morocco Tunisia	35-40		25		000	00	1, 122	
Union of South Africa	40-50	237, 897	288, 213	276, 393	655, 175	790, 937	758, 870	874, 637
Oggania:	.1			2.0,000	000, 210	100,001	100,010	0,1,00
Australia Fiji		1, 407	1,804	3, 502	13, 303	15, 108	8, 096	3 5,000
Fiji		_,		71	102	203	7 641	(4)
New Caledonia	45-50	_ 			2, 100	5, 392	20, 135	ì6,850
New Zealand		408	335	533	310	358	408	(4) [']
New Caledonia New Zealand Papua		44	83	¹⁰ 160	¹⁰ 163	10 60	21	41
								7, 700, 000

¹ In addition to countries listed, Argentina, Bulgaria, and Korea have produced manganese ore; data of output are not available, but estimates for them are included in totals. Czechoslovakia and Germany report production of manganese ore, but it is believed that the product so reported averages less than 30 percent Mn and therefore would be considered ferruginous manganese ore under the classification used in this report, hence the output is not included in this table.

² This table incorporates a number of revisions of data published in previous manganese chapters.

3 Estimate.

Quemado district which appeared on cursory testing to be amenable to concentration, with high manganese recovery.8

Cuba.—Manganese ore that cannot now be exploited commercially were planned to be treated in a \$60,000 pilot plant; the Government to bear half the cost, the Agricultural and Industrial Bank the remainder.9

Data not available; estimate by authors of chapter included in total. Spanish Morocco included in figure for Spain.

⁶ Incomplete data.

⁷ Exports.

⁸ Year ending March 20 of year following that stated. 1952 is a calendar year.

¹⁰ Year ending June 30 of year stated.

Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 2, February 1953, pp. 17-21.
 Engineering and Mining Journal, vol. 153, No. 7, July 1952, p. 166.

Denmark.—Danish authorities have banned exports of bog manganese ore with greater than 10 percent Mn content, in order to conserve the ores for a domestic manganese sulfate industry. Bog ore had been

exported yearly to the Ruhr before the ban. 10

French Equatorial Africa.—An interesting deposit of manganese ore has been located near Tiore, the manganese occurring as pyrolusite A minimum of 700,000 tons grading from 25 to 50 percent Mn has been reported. 11 United States Steel Co. was interested with several French firms in forming a company to develop manganese ore deposits in Gabon.12

French Morocco.—In 1952 French Morocco produced 382,808 metric tons of metallurgical ore and 43,508 tons of chemical ore. metallurgical ore exported, 79 percent was shipped to France and virtually all the remainder to the United States. Of the chemical ore exported, France received the largest portion, followed in decreasing order by West Germany, United States, United Kingdom, Netherlands, and small quantities elsewhere. Metallurgical ore produced at Imini was credited with a 50-percent manganese content and accounted for half of the country's 1952 output of metallurgical ore. Exports of metallurgical ore included 139,963 tons of sinter as follows: 98,579 tons of Imini (56-percent-grade) to France; 27,804 tons of Imini (56percent) to the United States; and 13,580 tons of Bou Arfa (36-percent) to France.13

India.—A special heavy-medium-separation plant for treating manganese ore from the mines of the Central Provinces Manganese Ore Co., Ltd., was scheduled for initial operation in 1952.¹⁴ The Central Provinces Mn Ore Co. is the largest manganese-mining concern in India and is responsible for 50 to 60 percent of the total Indian

Israel.—Manganese ores occur in an area about 25 kilometers north Israel's own manganese requirements will remain compara-

tively small in the foreseeable future. 16

New Caledonia.—During the first half of 1952, a new manganeseore-mining operation was begun near Voh by Lecomte. The mines of Paul Videault supplied the remainder of New Caledonia's output for

New Zealand.—The Otau mine, 30 miles south of Auckland, is believed to be the only manganese producer in New Zealand. shipped 500 tons of ore to the United States in 1952. Previous ship-

ments were to Australia.18

Northern Rhodesia.—Discovery of high-grade manganese ore 12 miles northwest of Fort Roseberry was reported late in 1952. W. Base Minerals (Pty.), Ltd., controls the deposit and expects to produce 500 tons a month of ore assaying over 52 percent manganese by June 1953. A long strike length of narrow, high-grade manganese

Metal Industry, vol. 80, No. 9, Feb. 29, 1952, pp. 174-175.
 Mining World, vol. 14, No. 12, November 1952, p. 67.
 American Metal Market, vol. 59, No. 250, Dec. 31, 1952, p. 1.
 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 5, May 1953, p. 17-19.
 Mining World, vol. 14, No. 2, February 1952, p. 67.
 South African Mining and Engineering Journal, vol. 62, No. 3075, part 2, Jan. 19, 1952, p. 901.
 Mining Journal (London), vol. 238, No. 6081, Mar. 7, 1952, p. 240.
 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, p. 17.
 Mining World, vol. 14, No. 12, November 1952, p. 62.

veins has been determined. All manganese ore produced in Northern Rhodesia in 1952 was sold locally to copper and zinc refineries.¹⁹

Philippine Islands.—The manganese mine in Ivisan, Capiz, was reopened and shipped manganese ore to the United States.²⁰ General Base Metals, Inc., expanded its plant facilities in carrying out its program of mechanization of mine operations. Its principal mining claims are situated on the island of Bohol. Additional loading facilities have been installed at the company pier in Guindulman, Bohol, increasing daily loading capacity to a maximum of 1,200 tons.²¹

Sudan.—A bed of manganese ore was recently discovered in Upper Nile Province, reported to contain a fairly high percentage of man-

ganese and to be 12 feet thick at the point of discovery.22

Union of South Africa.—South African Manganese Ltd. showed interest in acquiring additional properties and prospecting new fields.23

Yugoslavia.—A manganese deposit was reported to have been located near the town of Jossani. It is said to be close to surface and will be mined by open-pit methods.²⁴

Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 5, May 1953, p. 20.
 Mining World, vol. 14, No. 9, August 1952, p. 68.
 Mining World, vol. 14, No. 9, August 1952, p. 63.
 Chemical Age, vol. 66, No. 1719, June 21, 1952. p. 945.
 Mining World, vol. 14, No. 2, February 1952, p. 53.
 Mining World, vol. 14, No. 9, August 1952, p. 75.

Mercury

By Helena M. Meyer 1 and Gertrude N. Greenspoon 2

EAR-RECORD imports of mercury featured the industry in 1952. Only in 1945, when the newly developed mercury dry cell took unprecedented quantities, and in 1949, when surplus supplies were obtained from Italy with Economic Cooperation Administration counterpart funds, were receipts from abroad greater than in 1952. Receipts in 1952 were predominantly from Italy and Spain, the two countries supplying roughly equal shares.

Consumption failed to reach anticipated levels, chiefly because a completed large plant, which was to use mercury cells for electrolytic production of chlorine and caustic soda and which was planned to be producing some months before the end of the year, did not get beyond the test-run stage. Total consumption dropped 25 percent but was relatively high in comparison with all but a few earlier years in the entire history of the industry. Expansion in chlorine and caustic soda capacity in 1952, through construction of new plants at Plymouth, N. C., and McIntosh, Ala., and at some already operating plants, tended to hold consumption at the relatively high level. rather than larger consumption characterized most other uses in 1952.

Production in the United States increased substantially in 1952 but continued low in relation to most earlier years since mercury mining assumed importance a century ago. California, as usual, dominated output and with Nevada supplied 86 percent of the United States total. Despite the stimulation of continuing high

prices there were fewer producers in 1952 than in 1951.

Industry stocks continued abnormally high and were even increased (14 percent) during the year; except for those at the end of 1950 they were probably the greatest for all time, although precise data are not available before World War II. The placing in operation of new chlorine and caustic soda plants at Anniston and Muscle Shoals, Ala., and Calvert City, Ky., is expected in 1953 and should reduce industry inventories to more nearly normal levels.

Mercury is one of the items for which the stockpile objective is not yet complete, but of which further acquisitions were not of the

highest urgency.

Mercury prices in 1952 were 5 percent lower than in 1951 but except for that year were at the highest annual level of all times. The price trend was generally downward until August, when it was reversed, and the highest monthly average of the year was reached in December. Purchases late in the year substantially reduced the quantities of metal available for sale and caused the strength in prices at the year end.

Assistant chief, Base Metals Branch.
 Statistical assistant.

From a world viewpoint supplies of mercury were at about the same level as in 1951 and 1950. Spain's increase in plant capacity was not to be effective before 1953, and output in that country declined 12 percent. The output of Italy and Yugoslavia continued at approximately the 1951 level, which for the latter was very high in relation to its earlier production rate.

TABLE 1.—Salient statistics of the mercury industry in the United States, 1943–47 (average) and 1948–52

	1943–47 (average)	1948	1949	1950	1951	1952
Production	33, 794	14, 388	9, 930	4, 535	7, 293	12, 547
	81	20	23	16	47	39
	\$126, 09	\$76, 49	\$79, 46	\$81. 26	\$210. 13	\$199. 10
	32, 575	31, 951	103, 141	56, 080	47, 860	71, 855
	793	526	577	447	241	400
	45, 392	46, 253	39, 857	49, 215	56, 848	42, 556

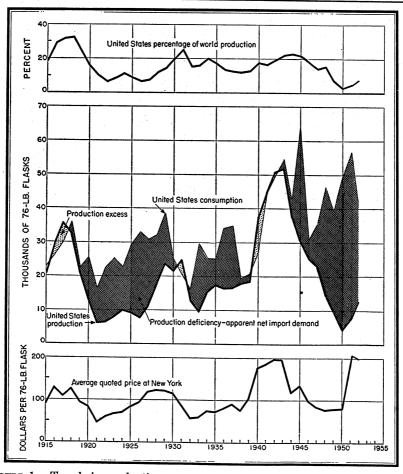


FIGURE 1.—Trends in production, consumption, and price of mercury, 1915-52.

Defense Minerals Exploration Administration.—The chapter on mercury in 1951 indicated that mercury was found to be ineligible for Defense Materials Procurement Agency production expansion assistance under provisions of the Defense Production Act. The Defense Minerals Exploration Administration, however, granted exploration assistance, amounting to 75 percent of costs, to approved mercury-exploration projects. The following applicants were awarded contracts with DMEA from the beginning of the program to the end of 1952:

				Vai	lue
	Project location		Total		Government participation
State and contractor:					
Alaska: Clarence Wren, Frank Waskey, & Chas. Wolfe.	Bristol Bay recording district.	\$2 5,	614.	00	\$19, 210. 50
Arizona: Ord Mercury Mines.	Gila County	28,	000.	00	21, 000. 00
California:					
California Quicksilver Mines.	Lake County	39,	440. (00	29, 580. 00
New Idria Mining & Chemical Co.	San Benito County	243,	349.	00	182, 511. 75
Cordero Mining Co Altoona Quicksilver Min- ing Co.					150, 621, 00 67, 839, 00
Nevada:	T C	_		~~	
W. F. Dunnigan	Esmeralda County		925.		6, 693. 75
Aubrey Minney	Humboldt County		600.		13, 200. 00
Oregon: Owen Pigmon	Crook County	20,	460.	00	15, 345. 00
Texas:					
J. E. Paulsel	Brewster County	75,	900.	00	56, 925. 00
Maravillas Minerals Co.	do	10,	450. (00	7, 837. 50
Amerimex Mining Co	Presidio County	80,	000.	00	60, 000. 00
Washington: Ray R. Whiting, Jr.	Yakima County		425.		13, 818. 75

DOMESTIC PRODUCTION

Throughout 1952 production in the United States continued to be close to the rate in the fourth quarter of 1951 and for the year as a whole was 72 percent higher than in 1951. The output was the largest since 1948 but was small in relation to most earlier years of domestic production history, amounting to only 72 percent of the average annual quantity in 1935–39 and 29 percent of the average annual rate in World War II (1942–45, inclusive). The number of producing mines declined in 1952, contrary to the normal expectation that continuing high prices would bring more properties into production.

A total of 39 mines, compared with 47 in 1951, contributed to pro-

A total of 39 mines, compared with 47 in 1951, contributed to production in 1952; 11 properties each producing 100 flasks or more supplied 97 percent of the total production. The largest producers were

as follows:

California.—Contra Costa County, Mount Diablo; Lake County, Abbott; San Benito County, Juniper and New Idria (including San Carlos); Santa Clara County, Guadalupe; Sonoma County, Culver-Baer, Mount Jackson (including Great Eastern), and Buckman.

Idaho.—Valley County, Hermes mine.

Nevada.—Humboldt County, Cordero mine.

Oregon.—Douglas County, Bonanza mine.

TABLE 2.—Mercury produced in the United States, 1949-52, by States

Year and State	Pro- ducing mines	Flasks of 76 pounds	Value 1	Year and State	Pro- ducing mines	Flasks of 76 pounds	Value 1
1949: Alaska California Nevada Oregon Total 1950: California Nevada Oregon Total Total	15 55 22 23 14 11 1	100 4, 493 4, 170 1, 167 9, 930 3, 850 680 5 4, 535	\$7, 946 357, 014 331, 348 92, 730 789, 038 312, 851 55, 257 406 368, 514	1951: Arizona and Texas California. Idaho. Nevada. Oregon. Total. 1952: Alaska. California. Idaho. Nevada. Oregon. Total. Total. Total.	3 27 1 12 4 47 1 24 1 9 4 39	77 4, 282 357 1, 400 1, 177 7, 293 28 7, 241 887 3, 523 868 12, 547	\$16, 180 899, 777 75, 016 294, 182 247, 323 1, 532, 478 5, 575 1, 441, 683 176, 602 701, 429 172, 819 2, 498, 108

¹ Value calculated at average price at New York.

TABLE 3.—Mercury produced in the United States, 1943-47 (average) and 1948-52, by quarters, in flasks of 76 pounds

Quarter	1943–47 (average)	1948	1949	1950	1951	1952
First	8, 910 9, 000 8, 460 7, 550	5, 300 3, 600 3, 150 2, 050	1, 440 1, 460 } 6, 980	1,700 1,010 1,100 630	880 1, 400 1, 600 3, 270	3, 050 3, 000 3, 320 3, 130
Total: Preliminary Final Final	33, 920 33, 794	14, 100 14, 388	9, 880 9, 930	4, 440 4, 535	7, 150 7, 293	12, 500 12, 547

For many years the grade of mercury ore treated in the United States trended downward, but the downtrend was interrupted in 1944-47, and in 1947 the average tenor of ore more than doubled that in 1941-42. The grade then dropped again to little more than half the 1947 average in 1951 but recovered 0.5 pound in 1952.

TABLE 4.—Mercury ore treated and mercury produced therefrom in the United States, 1927-52 1

[That material from old dumps which is not separable is included with ore]

	Ore	Ore Mercury produced			Ore	Mercury produced		
Year	treated (short tons)	Flasks of 76 pounds	Pounds per ton of ore	Year	treated (short tons)	Flasks of 76 pounds	Pounds per ton of ore	
1927 1928 1929 1930 1931 1931 1932 1932 1933 1934 1935 1936 1937 1937 1938	108, 118 78, 089 126, 931 135, 100 141, 962 186, 578	10, 711 14, 841 19, 461 18, 719 22, 625 11, 770 8, 381 13, 778 15, 280 14, 007 16, 316 17, 816 18, 505	8. 1 7. 0 4. 9 6. 8. 3 8. 2 8. 2 8. 6 6. 8 7. 5 6. 8 7. 3	1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952	449, 940 652, 141 733, 360 613, 111 300, 385 209, 009 157, 469 139, 311 103, 220 71, 977 35, 115 81, 067 135, 197	37, 264 43, 873 49, 066 50, 761 37, 333 29, 754 24, 929 22, 823 13, 891 9, 745 4, 312 6, 934 12, 500	6. 3 5. 1 6. 3 9. 4 10. 8 12. 0 12. 5 10. 2 10. 3 9. 3 6. 5 7. 0	

¹ Excludes mercury produced from placer operations and from clean-up activity at furnaces and other plants.

709

In addition to the mercury produced at the mines in 1952, at least 2,500 flasks was reported produced from old cells and other scrap, compared with 2,000 flasks in both 1951 and 1950. Additional unreported quantities doubtless were recovered.

REVIEW BY STATES

Alaska.—Mercury was reported produced in Alaska for the first time since 1949. At the Red Devil mine in the Sleitmute area, the Decoursey Mountain Mining Co., Inc., recovered 28 flasks of mercury

from 70 tons of ore treated in a 45-ton rotary furnace.

California.—Production of mercury in California increased 69 percent over 1951 and was the largest since 1948; the State retained its rank as the leading mercury producer in the United States. California furnished 58 percent of the total production in 1952 compared with 59 percent in 1951 and 85 percent in 1950. The New Idria (including San Carlos) mine and San Benito County were the leading mine and county, respectively, in the State. Production came from 24 properties (compared with 27 in 1951) of which 7 reported production from cleanup, dump, or placer operations. In addition to San Benito County, output was reported from Contra Costa, Del Norte, Fresno, Lake, Napa, San Luis Obispo, Santa Clara, Sonoma, and Yolo Counties.

The Mount Diablo mine, where a rotary furnace was used,

accounted for the production in Contra Costa County.

The small quantity produced in Del Norte County came from the Patricks Creek (Webb) mine.

All production in Fresno County was from the Archer mine.

The Abbott and Sulphur Bank mines were the producers in Lake County. At the Abbott mine, where a 40-ton rotary furnace was operated, production increased substantially over 1951. At the Sulphur Bank a very small quantity was produced from cleanup operations.

Mercury was recovered from old dumps at the James Creek and Oat Hill mines, Napa County. At the Knoxville mine mercury was

recovered from dumps, and some ore was treated in a retort.

Seven properties contributed to the production in San Benito County, which more than tripled that in 1951. The New Idria (including San Carlos) mine was the leading producer in California and second largest in the United States. Operations were carried on throughout the year, and 22,971 tons of ore was treated in four 5-by 56-foot rotary furnaces; 2,805 flasks of mercury was produced. All of the ore mined and treated came from sections of the mine previously worked. The ore mined at the Juniper and North Star mines was treated in the New Idria plant. Other active properties in the county were the Valley View (Panoche), Aurora, and two others, at all of which retorts were in operation.

In San Luis Obispo County mercury was produced at the Rinconada and La Libertad mines. At the La Libertad, unproductive since 1948, production was begun in April, and the ore was treated both in a rotary furnace and a retort. A retort was in use also at the

Rinconada property.

Mercury was reported produced in retorts at the Guadalupe mine in Santa Clara County. There was a small output from another

property.

The Mount Jackson (including Great Eastern) mine, Sonoma County, was the third largest producer in the United States. This mine dominated output in the United States in the postwar period, during which other large mines were closed from time to time. Mercurv was also produced at the Culver-Baer and Buckman (formerly Dewey-Buckman) mines; rotary furnaces were in operation at both properties. At the Culver-Baer, production was double that reported Construction of the furnace plant at the Buckman was completed during the year, and output substantially exceeded that in 1951. A small quantity of metal was reported produced in a retort at the Ella B. Eureka mine by V. C. Harrison.

A very small quantity of mercury was recovered from cleanup operations at the Reed mine in Yolo County.

Idaho.—The Hermes mine, Valley County, continued to be the only producer in Idaho. The State ranked third in total production and the mine fourth, compared with fourth and fifth, respectively, in 1951. At the Hermes mine 887 flasks of mercury was produced in two 4- by 60-foot rotary furnaces.

Nevada.—Nevada ranked second in production in 1952, a position it has held since 1949. The Cordero mine, Humboldt County, was the leading producer in the State and in the United States as well. Output was also reported in Esmeralda, Mineral, and Nye Counties.

In addition to the Cordero, production in Humboldt County was reported from the Cahill mine, where a rotary furnace was operated until the mine closed March 1.

Mercury was produced in a retort in Esmeralda County.

At the Red Top and one other mine in Mineral County production of small quantities was reported. A report published recently described the quicksilver deposits in the Southern Pilot Mountains district, Mineral County. The first discovery of mercury in the district was made by Thomas Pepper and Charles Keough in June 1913 at the Lost Steers mine. An abstract of the report follows: 3

The Pilot Mountains quicksilver district is in the southeastern part of Mineral County, Nev. Cinnabar was first discovered in 1913, and intermittent production to the end of 1949 yielded about 5,000 flasks of quicksilver.

Sedimentary and volcanic rocks of Mesozoic age underlie most of the area and are locally overlain and intruded by Tertiary igneous rocks. The sedimentary formations include the Middle Triassic Excelsior formation, the Upper Triassic Luning formation, and the Lower Jurassic Dunlap and Dunlap (?) formations. Jurassic thrust faulting and Tertiary normal faulting have produced moderately complicated structures.

The cinnabar mines and prospects, with one exception, are all below northwarddipping, low-angle thrust faults, the Cinnabar Canyon and Lost Steers thrusts. These faults probably constitute the major structural control for the cinnabar mineralization in the district. The cinnabar, the only important ore mineral, occurs as fillings of fractures and is disseminated in the gouge of the faults and through various country rocks. Most of it has filled open spaces, but some has replaced the more limy sediments.

All the known ore bodies lie within an area of about 4 square miles in the central part of the Pilot Mountains. Because the grade and character of each ore body reflect its environment, the deposits have been grouped into the following categories: (1) Deposits localized by normal faults in limestones at the head

³ Phoenix, David A., and Cathcart, James B., Quicksilver Deposits in the Southern Pilot Mountains, Mineral County, Nevada: Geol. Survey Bull. 973-D, 1952, pp. 143-171.

MERCURY 711

These deposits are the largest and the richest of the of Cinnabar Canyon. district; they include the Mina Development Co. and Drew mines, which together have produced 80 percent of the quicksilver of the district. (2) Deposits in sandstone and conglomerate near Dunlap Canyon. These ore bodies, though smaller, are rich; they are localized beneath rolls in normal faults and are generally in the footwall side. (3) Deposits in chert on the south flank of the Pilot Mountains. Although these deposits are the smallest in the district, they are

rich. They are localized along faults by a change in dip or strike at the intersection of faults with bedding planes, and they occur where the chert is most broken. There are no appreciable reserves of low-grade ore in the district. Some mines have small amounts of known high-grade ore, and development work along the controlling structures, as well as additional prospecting in the district, may lead to the discovery of other ore bodies. The district should produce at least a few hundred flacks of quicksilver appually during periods of high prices.

hundred flasks of quicksilver annually during periods of high prices.

The Jackpot, A&B, M&M, and Horse Canyon mines supplied the production in Nye County. At all properties, retorts were in use.

Oregon.—Production in Oregon in 1952 was 26 percent less than in 1951. This State has ranked third in total production since 1949 (it was second in 1948) but dropped to fourth place in 1952. Bonanza mine, Douglas County, which produced most of the State's output, 16,115 tons of ore was mined and treated in rotary furnaces to produce 846 flasks of mercury.

A report on the Bonanza-Nonpareil district, Douglas County, where the Bonanza mine is situated, was published recently.

partial abstract follows: 4

The Bonanza-Nonpareil quicksilver district of Douglas County, Oreg., occupies a narrow belt, about 8 miles long, trending north-northeast. It lies entirely within the Umpqua formation of Eocene age. Mining began between 1865 and 1870 at both the Bonanza and Nonpareil mines, but both were abandoned after 1870 at both the Bonanza and Nonpareil mines, but both were abandoned after a small production. They were reopened at intervals, but until the Bonanza mine was acquired by the present operators in 1936 only a small tonnage of ore had been treated. Reliable figures for the early production are not available, but the total to 1937 did not exceed 2,000 flasks. The main (north) ore body at the Bonanza mine was discovered in 1939 and has supplied all the ore mined since that date. From 1937 to the end of 1944 the mine produced 24,471 flasks of quicksilver, of which approximately 22,500 flasks came from the newly discovered north ore body. Some of the ore ran as high as 120 pounds of mercury to the ton, but it averaged only 7 to 8 pounds.

Mercury was produced in retorts at the Maury Mountain and Lost Cinnabar No. 1 mines in Crook County and at the Deer Creek mine in Grant County.

CONSUMPTION AND USES

Consumption fell 25 percent below 1951, as consumers failed by a considerable margin to take anticipated quantities of mercury. A large, completed chlorine and caustic soda plant, which is to use mercury cells and which was planned to be in production some months before the end of the year, did not get beyond the test stage. change of plans was the chief factor in the reduction in consumption as compared with expectations. As pointed out in previous chapters of this series, the use of mercury for new chlorine installations is not dissipative. If such a plant were dismantled at some time and the metal reused, for statistical purposes the mercury would be considered as secondary or scrap, and its reuse would not be counted as primary consumption.

⁴ Brown, R. E., and Waters, A. C., Quicksilver Deposits of the Bonanza-Nonpareil District, Douglas County, Org.: Geol. Survey Bull. 955-F, 1951, pp. 225-251.

New chlorine and caustic plants, using mercury cells, at McIntosh, Ala., and Plymouth, N. C., began to produce in 1952, and capacity was expanded at some already operating plants.

TABLE 5.-Mercury consumed in the United States, 1943-47 (average) and 1948-52, in flasks of 76 pounds

Use	1943–47 (average)	1948	1949	1950	1951	1952
Pharmaceuticals Dental preparations Fulminate for munitions and blasting caps. Agriculture Antifouling paint Electrolytic preparation of chlorine and caustic soda Catalysts Electrical apparatus	8, 246 1 691 1, 470 3, 507 1, 711 638 4, 247	3, 382 1 994 441 7, 048 996 806 3, 262	3, 443 1 963 149 4, 667 1, 683 755 2, 520	5, 996 11, 458 289 4, 504 3, 133 1, 309 2, 743	2, 761 1 803 494 7, 737 2, 500 1, 543 2, 635	1, 395 11, 027 337 25, 886 1, 178 2, 507 1, 048
Industrial and control instruments Amalgamation General laboratory Redistilled Other Total	1 9, 099 1 4, 140 99 313 1 6, 394 4, 381	1 6, 471 1 5, 653 143 442 1 6, 499 10, 116	1 7, 323 1 5, 016 165 345 1 6, 642 6, 186 39, 857	1 12, 049 1 5, 385 192 646 1 7, 600 3, 911 49, 215	1 10, 250 1 6, 158 154 524 1 8, 776 12, 513 56, 848	1 8, 018 1 6, 412 151 629 1 7, 547 6, 421 42, 556

¹ A partial breakdown of the "redistilled" classification showed ranges of 53 to 28 percent for instruments, 22 to 9 percent for dental preparations, and 53 to 10 percent for electrical apparatus in the period 1943-51, compared with 48 percent for instruments, 5 percent for dental preparations, and 37 percent for electrical apparatus in 1952.

Includes 3,378 flasks in paper and pulp manufacture, previously not separately available.

The items, which were on a partial coverage basis in 1943–44, do not add to the total.

Consumption of mercury for the manufacture of industrial and control instruments and of dental preparations advanced in 1952, and increased quantities of metal were required to replace losses incurred in the manufacture of chlorine and caustic soda (as distinguished from the nondissipative use of putting mercury into place in a new chlorine plant or in one of higher capacity). Otherwise, less metal was required for mercury uses in 1952 than in 1951, outstanding drops being the cutting into half or less of consumption for pharmaceuticals, antifouling paint, and catalysts. A factor in the decrease was that some of the mercury consumed was recovered from a chemical plant where it was used in the process; having been accounted for previously, it was excluded from consumption statistics for 1952.

TABLE 6 .- Mercury consumed in the United States, 1943-47 (average) and 1948-52, by quarters, in flasks of 76 pounds

Quarter	1943–47 (average)	1948	1949	1950	1951	1952
First	11, 400	10,000	10, 400	10, 600	16, 000	10, 100
	13, 400	15,700	7, 600	11, 300	11, 600	9, 500
	10, 920	9,400	8, 000	12, 400	7, 400	13, 200
	9, 800	10,300	13, 900	15, 300	21, 600	10, 200
	45, 520	45,400	39, 900	49, 600	56, 600	43, 000
	45, 392	46,253	39, 857	49, 215	56, 848	42, 556

STOCKS

Industry stocks continued at abnormally high levels for the third successive year, chiefly because of accumulations of metal for large chlorine-plant installations. The 14-percent increase in inventories at the end of 1952 was contrary to an anticipated sharp decline. This reversal was caused by failure of a new installation to be put into operation. If this plant is started in 1953, as expected, stocks should return again to more nearly normal levels.

TABLE 7.—Stocks of mercury in hands of producers and of consumers and dealers, 1948-52, in flasks of 76 pounds

End of year	Producers	Consumers and dealers	Total
1948	5, 165	25, 000	30, 165
	5, 354	15, 600	20, 954
	2, 719	32, 900	35, 619
	1, 072	29, 100	30, 172
	685	33, 700	34, 385

Stocks held by producers, usually small in relation to total industry inventories, declined 36 percent, continuing the downtrend since 1949 and amounting to only 13 percent of the quantity held by producers in that year.

In addition to the stocks shown in table 7, noteworthy quantities of mercury are held in the National Stockpile, but data on such quantities

may not be disclosed.

Mercury was on the list of items for which stockpile objectives are not yet complete, but inventories of which, together with estimated United States supply during total mobilization and under rigid economic controls, could meet the needs of war without serious danger to national security. Although acquisition of such items must continue under existing contracts or by further contracting, such acquisitions are no longer of the highest urgency.⁵

PRICES

The average annual quotation of mercury in 1952 was \$199.10 a

flask and was, except for 1951, an alltime peak.

Mercury prices virtually trebled in the 7-month period following the outbreak of war in Korea (June 1950); the average for 1951 (\$210) exceeded the previous peak of \$196 in 1942 by 7 percent. Domestic production plus imports (general) in 1951 failed to cover consumption; but, after allowance for the abnormal accumulation in stocks (in anticipation of a new installation using mercury), the new metal made available was more than ample for all needs. Moreover, world production was excessive for world requirements. The monthly price quotation for December 1951 was \$213.20 a flask. Prices trended generally downward from January 1952, when the average quotation was \$206.35, to August, when it was \$187.00; an uptrend beginning in the latter part of September was accelerated in November and December when the monthly averages were \$201.82 and \$214.89, respectively. The final quotation for 1952 was a range of \$218 to \$220 a flask.

Large purchases of mercury in the last months of 1952 reduced substantially but temporarily the availability of metal for sale and

were a primary factor in strengthening prices.

Munitions Board, Annual Stockpile Report to Congress: Feb. 15, 1953, p. 3.

TABLE 8.—Average monthly prices per flask (76 pounds) of mercury at New York and London, and excess of New York price over London price, 1950-52

		1950			1951			1952		
Month	New York ¹	Lon- don ²	Excess of New York over London	New York 1	Lon- don ²	Excess of New York over London	New York 1	Lon- don ?	Excess of New York over Londor	
January_ February March April May June July August September October November December	71. 00 71. 00 70. 35 70. 00 73. 44 78. 00 84. 20	\$63. 23 52. 93 52. 16 49. 42 47. 68 47. 26 55. 66 52. 46 72. 82 81. 05 100. 89	\$7. 77 18. 07 18. 07 18. 84 20. 93 22. 32 26. 18 22. 34 21. 74 16. 70 18. 30 25. 35	\$195.00 215.27 217.33 215.60 212.92 210.00 206.80 195.85 206.25 216.96 216.30 213.20	\$167. 37 204. 59 204. 62 204. 66 204. 65 204. 66 204. 62 204. 52 204. 52 204. 57 204. 65 204. 24	\$27. 63 10. 68 12. 71 10. 94 8. 27 5. 34 2. 18 8. 67 1. 73 12. 39 11. 65 8. 96	\$206. 35 202. 00 207. 00 203. 77 199. 62 195. 24 189. 81 187. 00 190. 68 191. 00 201. 82 214. 89	\$205. 14 205. 11 206. 26 206. 03 204. 59 203. 28 181. 79 180. 90 179. 48 180. 15 189. 36 198. 52	\$1. 21 \$ 3. 11 . 74 \$ 2. 26 \$ 4. 97 \$ 8. 04 8. 02 6. 10 11. 20 10. 85 12. 46 16. 37	
Average	81. 26	61.94	19. 32	210.13	203.37	6. 76	199.10	194.89	4. 2	

¹ Engineering and Mining Journal, New York.

² Mining Journal (London) prices in terms of pounds sterling are converted to American dollars by using average rates of exchange recorded by Federal Reserve Board.
³ London excess.

Mercury prices were limited by the General Ceiling Price Regulation from January 26 to August 10, 1951, when an amendment to the regulation freed mercury and some other products from price control. No

such price restrictions were in effect in 1952.

The price for mercury in London was £73 15s. (equivalent to \$205.14) from the latter part of March 1951 through the week ended April 3, 1952, when it dropped 10s. per flask, remaining at that level for a month, and then dropping 5s. a flask to £73, which held from the week ended May 8 through June. The price declined £8 to £65 (equivalent to \$181.23) in the week ended £1y 3, advanced 5s. in the following week, and remained at £65 5s. through the week ended August 14. It fell 15s. more in the week ended August 21, continued at the £64 10s. level through the week ended November 13 and then increased to £70 15s. (equivalent to \$198.11) and continued at that level for the remainder of the year.

FOREIGN TRADE 6

In 1952 imports of mercury for consumption were 50 percent greater than the large quantity that entered the country in 1951 and were the highest ever recorded except for the alltime peak of 103,141 flasks in 1949. The 1952 receipts would have supplied the country's total needs for more than 2 years of greater than average consumption before World War II.

Exports, of little consequence for many years with 1 or 2 exceptions, rose 66 percent in 1952 but continued insignificant in relation to imports.

Reexports, also regularly small, declined 62 percent from 1951 and were smaller than exports, an unusual relationship.

⁶ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

Tariff.—A duty of 25 cents a pound (\$19 a flask) on imports of

mercury has been in effect since 1922.

Imports.—Of total imports for consumption of 71,900 flasks in 1952 (1951 in parentheses), 26,300 (21,900) came from Italy, 27,100 (12,000 revised) from Spain, 10,400 (6,500) from Yugoslavia, 7,900 (5,100) from Mexico, and the small remainder from countries that, so far as is known, produced no mercury in 1952.

TABLE 9.—Mercury imported for consumption in the United States, 1948-52

	19	48	19	49	1950		
Country	Pounds	Value	Pounds	Value	Pounds	Value	
CanadaCzechoslovakia	2 15, 212	\$4 9, 920	484	\$319	8, 105	\$9,407	
Denmark	299, 983 279, 326 265, 140	205, 735 175, 460 179, 266	6, 451, 947 205, 894 234, 935	5, 830, 409 142, 772 179, 206	22, 818 1, 137, 975 60, 277 264, 460	20, 103 738, 217 35, 222 180, 418	
NetherlandsSpainSweden	1, 473, 137	931, 201	704, 074	448, 592	43, 724 2, 163, 123 80, 619 60, 800	32, 289 1, 265, 719 64, 441 49, 600	
United KingdomYugoslavia	95, 448	65, 273	241, 371	160, 635	420, 155	298, 856	
Total: PoundsFlasks	2, 428, 248 31, 951	1, 566, 859	7, 838, 705 103, 141	6, 761, 933	4, 262, 056 56, 080	2, 694, 272	

	19	51	19	52
Country	Pounds	Value	Pounds	Value
Bolivia Canada French Morocco Germany Honduras Italy Japan Mexico Netherlands Spain Sweden Switzerland United Kingdom Yugoslavia Total: Pounds Flasks	1, 409 50, 150 19, 006 760 1, 661, 939 19, 018 388, 257 26, 600 1 908, 490 151, 515 3, 588 490, 911 3, 637, 338 47, 860	\$1, 744 125, 906 39, 904 2, 140 2, 875, 681 14, 980 843, 523 21, 700 11, 673, 982 1 107, 370 23, 450 3, 285 952, 924	1, 516 3, 803 1, 997, 004 603, 486 7, 600 2, 059, 763 787, 765 5, 460, 998 71, 855	\$7, 398 \$, 250 5, 033, 235 1, 302, 837 18, 979 4, 404, 675 1, 771, 052 12, 546, 687

¹ Revised figure.

General imports afford a better measure than imports for consumption of material actually entering the country during a calendar period, being made up of imports for immediate consumption plus entries into bonded warehouses. In 1948 and 1946 the differences between the 2 types of imports amounted to nearly 10,000 flasks; in other years of the past decade, the differences have ranged from a few flasks to nearly 5,000.

Imports of mercury compounds are generally insignificant and were less than one-third the large quantity in 1951. Receipts of mercuric chloride were 7,400 pounds from Yugoslavia, 2,300 from Canada and 700 from the United Kingdom; of mercurous chloride, 6,000 pounds from Canada; of oxide (red precipitate), 2,800 pounds from the

TABLE 10.—Mercury imported (general imports) into the United States, in 1952, by months

[U. S.	Department of	Commercel
--------	---------------	-----------

Month	Flasks of 76 pounds	Month	Flasks of 76 pounds
January Pebruary March April May June July	2, 709 6, 012 4, 588 6, 645 4, 991 4, 701 4, 644	August	3, 940 2, 335 20, 447 4, 206 3, 468

TABLE 11.—Mercury imported (general imports) into the United States, 1948-52, in flasks of 76 pounds

[U. S. Department of Commerce]

	1948	1949	1950	1951	1952
Bolivia				19	
Canada Denmark	(1)	29	107 300	660	20
Germany				250	50
HondurasItaly	4. 994	84, 628	18, 073	10 17, 633	26, 026
Japan Mexico	3,746	2, 777	793	250	
Netherlands	4,063	3, 506	3, 986 825	² 4, 989	7, 971 100
Sweden	27, 114 75	2, 225	29, 439 1, 061	2 13, 707 2 680	24, 333
Switzerland United Kingdom	49			(1)	(1)
Yugoslavia	1, 691	3, 753	5, 980	² 6, 524	10, 186
	41, 732	96, 918	60, 564	² 44, 926	68, 686

¹ Less than 1/2 flask.

United Kingdom, 1,500 from Yugoslavia and 300 from Sweden; and of mercury preparations not specifically provided for, 3,700 pounds from Canada and 400 from the Netherlands.

Exports.—Of the exports of 400 flasks (241 in 1951), 77 (14) went to Brazil, 65 (none) to Belgian Congo, 64 (55) to Venezuela, 35 (22) to Colombia, 28 (40) to Canada, 26 (1) to Mexico, and smaller quantities to 20 other countries.

TABLE 12.—Mercury exported from the United States, 1943-47 (average) and 1948-52

[U. S. Department of Commerce]

Year	Pounds	Flasks of 76 pounds		Year	Pounds	Flasks of 76 pounds	Value
1943–47 (average)	60, 240	793	\$107, 702	1950	33, 977	447	\$37, 985
1948	40, 013	526	42, 620	1951	18, 311	241	57, 502
1949	43, 860	577	54, 413	1952	30, 369	400	85, 974

Reexports were 259 flasks in 1952 (675 in 1951). Of the total, 190 (215) went to Canada, 25 (17) to Colombia, 21 (37) to Brazil, 13 (none) to Cuba, and the remainder in quantities of less than 10 flasks to 3 other countries.

² Revised figure.

TABLE 13.—Mercury reexported from the United States, 1943-47 (average) and 1948-52

[U. S.	Department of Commerce]
--------	-------------------------

Year	Pounds	Flasks of 76 pounds	Value	Year	Pounds	Flasks of 76 pounds	Value
1943-47 (average)	336, 254	4, 425	\$677, 867	1950	67, 311	886	\$63, 839
1948	70, 022	921	52, 849	1951	51, 326	675	111, 274
1949	62, 945	828	53, 057	1952	19, 689	259	46, 721

TECHNOLOGY

At the furnace of Buckman Laboratories, Inc., Buckman mine, Sonoma County, Calif., transferred from the Contact mine in 1951, the usual "hot fan" that pulls the furnace gases through the Sirocco dust collector was replaced by a Rotoclone. In other words, the furnace gases first go through the Sirocco collector and then the Rotoclone. The Rotoclone is both a fan and a secondary dust collector. At this plant the combination was said to work very satisfactorily according to letters from C. N. Schuette and S. J. Buckman.

When mercury was first in demand in substantial quantities in the United States, a century ago, the predominant use by a wide margin was for the recovery of gold; later pigment requirements became important. These uses subsequently were replaced almost entirely by others. In recent years there has been much more stress on high purity for such applications as scientific instruments and industrial control apparatus, which depend much more on the physical than the chemical characteristics of mercury. Methods developed to perfect purification include vacuum distillation, acid washes, electrolytic processes, and the recently developed oxifiers and gold-adhesion filters.7

Mercury was selected as a superior medium for forming metal casts for various body cavities, as well as a contrast medium for studying fine arterial and lymphatic channels with the aid of X-rays.8

An article published in 1952 traces the history of the use of mercuryarc rectifiers in steel mills from the time the first rectifier was installed in 1937 at the South Chicago mill of the Republic Steel Corp. but makes special reference to the use of rectifiers for main roll drives. Considerable progress, accelerated by the economic advantages of rectifiers over motor-generator sets, was reported to have been made. Rectifiers were said to have been applied in the United States only to class I mills (continuous mills). For class II mills (reversing mills) rectifiers have been used in Europe and, for economical reasons, may be used in the future in the United States. Little prospect was seen that rectifiers would be used in future in class III mills (accelerating strip mills).9

It was said that there was a steadily growing volume of orders for sealed-tank air-cooled mercury-arc rectifiers in the United Kingdom and elsewhere. 10

⁷ Lawrence, James B., A Century of the Mercury Market: Purchasing, vol. 33, No. 5, November 1952, pp. 97-100.

8 Science, Mercury as a Casting Medium: Vol. 116, No. 3008, Aug. 22, 1952, p. 207.

9 Larson, H. E., Mercury-Arc Rectifiers for Main Roll Drives: Iron and Steel Eng., vol. 29, No. 11, November 1952, pp. 61-73.

10 Mining Magazine (London), Mercury Arc Rectifiers: Vol. 86, No. 1, January 1952, p. 46.

Progress in the use of mercury-arc rectifiers was reviewed in another article.11

Descriptive articles on mercury chlorine cells were published in

The Schiller mercury-steam station at Manchester, N. H., was said to be the most efficient fuel-burning station of its size in the world

A number of articles dealing with color correction of quartz mercuryvapor lamps and other features of mercury lamps were published during the year.14

Relative costs of various methods of "high-bay" lighting in industrial plants were discussed in a recent article, which showed favor-

able costs per footcandle for mercury lamps.¹⁵

Loveland and Elving 16 summarized and evaluated the use that can be made of recording by the cathode-ray oscillograph in the study of phenomena occurring at the interface between a mercury electrode and the solution in contact with the electrode. The authors stated that, "The study of mercury electrodes, as compared to that of other electrodes, has the advantage that a constant reproducible electrode is assured whose past history—chemical, electrical, and metallurgical will play no part in the observed phenomena." They concluded that current-time, current-potential, and potential-time methods of oscillographic observation of phenomena at stationary, dropping, and streaming mercury electrodes have demonstrated their value for investigating adsorption and redox phenomena and in the future should be of great significance as a means of clarifying some of the multitudinous problems prevalent in the field of electrode mechanisms and kinetics.

A report on an investigation of the cracking of an aluminummagnesium alloy in contact with mercury was abstracted in Metallurgia in 1951.¹⁷ The investigation was carried out on specimens from compressed air cylinders of aluminum-7 percent-magnesium alloy, a number of which had burst in service during which they were exposed to sea air on board ship. The mercurous nitrate test as applied to brass was used in an attempt to discover the cause of this bursting and structural heterogeneities. The mercurous nitrate test can serve as a means of detecting the presence of internal stresses which may bring about stress corrosion should an aluminum-magnesium alloy be otherwise rendered susceptible to it.

¹¹ Read, J. C., Mercury-Arc Rectifiers for Medium-Voltage Applications: Proc. Inst. Elec. Eng., vol. 99, part 1, No. 120, November 1952, pp. 252-270.

12 Chemical Engineering, New Chlorine Cell Built in Four Layers: Vol. 59, No. 7, July 1952, pp. 265-266. Chemical Engineering, Acres of De Nora Chlorine Cells: Vol. 59, No. 8, August 1952, pp. 146-148.

13 Noyes, William, Schiller Mercury-Steam Station Sets Record in First Two Years: Elec. World, vol. 138, No. 23, Dec. 8, 1952, pp. 32-34.

14 Fraser, H. D., and Till, W. S., Color Correction and Other Important Improvements in Mercury Lamps: Illuminating Eng., vol. 47, No. 4, April 1952, pp. 207-213.

Burns, C. H., Freeman, G. A., and Rowten, D. W., Electrical Design Data for Mercury Vapor-Lamp Circuits: Illuminating Eng., vol. 47, No. 3, March 1952, pp. 149-158.

Felzer, Clement A., Mercury Vapor for Tunnel Lighting: Illuminating Eng., vol. 47, No. 8, August 1952, pp. 422.

Felzer, Clement A., Mercury Vapor for Tunnel Lighting: Illuminating Eng., vol. 47, No. 8, August 1952, p. 422.

Noel, E. B., and Lindsay, E. A., Reflectorized Mercury Lamps and Their Industrial Applications: Illuminating Eng., vol. 47, No. 10, October 1952, pp. 547-552.

Beggs, Eugene W., Fluorescent-Mercury Lamp Produces Golden White Light: Elec. World, vol. 136, No. 25, Dec. 17, 1951, pp. 106, 110.

18 Kahler, William H., New Economies in High-Bay Lighting: Mill & Factory, vol. 50, No. 6, June 1952, pp. 90-93.

18 Loveland, J. West, and Elving, Philip J., Cathode-Ray Oscilloscopic Investigation of Phenomena at Polarizable Mercury Electrodes: Chem. Rev., vol. 51, No. 1, August 1952, pp. 67-117.

17 Jacquet, P. A. and Weill, A. R., The Cracking of an Aluminum-Magnesium Alloy in Contact with Mercury: Metallurgia, vol. 44, No. 264, October 1951, p. 206.

Mercury as marketed is one of the purest metals obtainable by normal methods of production and as required for certain purposes has the highest purity of all. Base metals dissolve readily in mercury, forming oxide skins on exposure to air. Articles published during the year deal with methods of cleaning mercury and of bringing it to the purity required for special purposes.18

A method of retrieving spilled mercury 19 is by sprinkling powdered dry ice over the mercury and allowing it to freeze. The mixture can be swept up easily, preferably with stiff paper.

The poisonous nature of mercury vapor and dust and precautions that can assure safe laboratory conditions were recently described.20

WORLD REVIEW

There was little change in the rate of world output in 1952 compared with 1951 and 1950, the noteworthy percentage increase in the United States and the smaller rise in Italy counterbalancing the drop in Spain; Yugoslavia's production continued virtually unchanged at the high rates of 1950-51.

TABLE 14.—World production of mercury, by countries, 1946-52, in flasks of 34.5 kilograms (76 pounds)2

[1	Compiled	by Helen	L. Hunt]				
Country 1	1946	1947	1948	1949	1950	1951	1952
AlgeriaAustria_ Bolivia (exports)	340 (³)	346 (³)	381 (³)	115 6	44	31 19	(3) (3) (3)
Chile	827 1, 189 841	445 290 5 768	467 4 290 800	754 4 290 4 800	319 4 1, 450 (3)	44,000 (3)	(3) (3) (3) (3) (3) (3)
Italy Japan Mexico	50, 822 1, 372 11, 661	53, 984 1, 622 9, 700	38, 233 1, 689 4, 786	44, 527 2, 461 5, 250	53,346 1,312 3,713	53, 839 1, 847 8, 064 (3)	55, 869 2, 997 8, 702 (3)
Peru	41, 801	55, 608 98	22, 684 27	32, 289	51, 808	44, 480 (³)	39, 135 (³)
United States Yugoslavia	25, 348 8, 876	23, 244 9, 457	14, 388 10, 936	9, 930 12, 764	4, 535 14, 368	7, 293 14, 649	12, 547 14, 620
Total 4	154,000	168, 000	107,000	121,000	143,000	148, 000	150,000

¹ Mercury is also produced in Rumania and U. S. S. R., but production data are not available; estimate

by authors of chapter included in total.

This table incorporates a number of revisions of data published in previous mercury chapters.

Data not yet available; estimates by authors of chapter included in totals.

Bolivia.—The Bolivian Tin & Tungsten Corp. exported 638 kilograms (19 flasks) of mercury to the United States in 1951, the first export of mercury reported since 1945, except for 1 flask in 1948.

pp. 174-175.

*** Lawrence, J. B., How Poisonous Is Mercury?: Chem. and Eng. News, vol. 29, No. 35, Aug. 27, 1951, pp. 3529-3531.

⁵ Byproduct of pyrites production in Slovakia only.

¹⁸ Lawrence, J. B., Mercury-The Purest Metal: Instruments, vol. 25, No. 3, March 1952, pp. 310-312,

^{363.}Wheeler, E. L., Apparatus for Triple Distillation of Mercury: Anal. Chem., vol. 24, No. 4, April 1952, pp. 751–752.
Yorke, S. G., An Improved Automatic Mercury-Distillation Apparatus: Jour. Appl. Chem., vol. 2, part 2, February 1952, pp. 77–79.

19 Erwood, E. J., Better Way to Recover Spilled Mercury: Chem. Eng., vol. 59, No. 10, October 1952, pp. 77–79.

Chile.—Mercury is produced in Chile associated with gold. production and descriptions of the deposits are contained in a report published in 1950. An abstract follows: 21

Quicksilver has been mined intermittently in Chile since the end of the 18th century, but only in small quantities for local use until recently, when the large mine at Punitaqui started producing an average of 2,000 flasks annually for

export.

The deposits, most of which are small, are in a narrow strip about 500 kilometers long, extending from Copiapó to Illapel, in north-central Chile. They are with few exceptions in the Porfiritica formation, consisting of Mesozoic andesitic rocks, and are generally near intrusive bodies of granodiorite, which is a facies of the Andean diorite complex. Most of the ore was localized in shattered and crushed zones along steep faults, some of which were formed by strike-slip

shearing.

The principal ore minerals are coarse-grained cinnabar, mercurian tetrahedrite, and powdery cinnabar mixed with oxides of iron and antimony in the weathered veins. The mercurian tetrahedrite and powdery cinnabar are the most characteristic minerals of the deposits. A little native mercury occurs in places. The coarse-grained cinnabar and mercurian tetrahedrite are hypogene minerals, and the powdery cinnabar mixture, which is closely associated with copper carbonates and limonite, is of supergene origin, having been formed by the weathering of the mercurian tetrahedrite. Vein minerals associated with the mercury minerals are, roughly in the order of deposition: calcite, specular hematite, magnetite, barite, quartz, pyrite, chalcopyrite, calcocite, and products of weathering such as azurite, malachite, and limonite. Some of the pyrite encloses gold.

Reserves had been measured at only one mine, where exploitation of mercury

depended on profitable extraction of gold and copper. Reserves even of inferred ore at other places in Chile are small and economically marginal. The quick-

silver districts are described in detail.

India.—Following the outbreak of war in Korea, buyers in India intensified their procurement of mercury. There is little doubt that the metal was largely for the account of speculators, because the quantities involved greatly exceeded India's normal annual requirements. Reports were to the effect that more than a year's supply was on hand at the war's outset and that the large purchases brought stocks up to enough for from 5 to 10 years' needs. The quantities imported in 1950 and 1951 totaled about 42,000 flasks, of which nearly 37,000 was credited to Italy and 3,400 to the United Kingdom. One report placed India's annual requirements at little more than onetenth of the large entries.²² In 1945 to 1949, inclusive, imports of mercury into India averaged 5,000 flasks annually.²³

Importers of mercury obtained the foregoing quantities at considerably under peak prices for the post-Korean period but were prevented from taking large profits when the Government embargoed exports of metal. Exports of mercury in the form of salts and compounds appeared to offer a solution to the problem until these were

made subject to export licensing on November 26, 1951.24

Efforts of holders of mercury to obtain permission to reexport the metal resulted in the Government agreeing in October 1952 to the release of a reported 10,000 flasks. An export duty of 300 rupees (about \$63) was levied. The price for mercury in India was 350 rupees (about \$73.50) and rose to about 400 (\$84.00), which with the tax brought the price in India to 700 rupees or nearly \$150 a flask.25

²¹ McAllister, J. F., Hector, Flores W., and Carlos, Ruiz F., Quicksilver Deposits of Chile: Geol. Survey Bull. 964–E, 1950, 40 pp. (Bull. 964, pp. 361–400).

22 Metal Bulletin (London), No. 3683, Apr. 8, 1952, p. 22.

23 Statistical Summary of the Mineral Industry, London, H. M. Stationery Office, 1952, 342 pp.

24 Deimel, Henry L. (Counselor for Economic Affairs), Report on Mercury in India: State Department Dispatch 1236, New Delhi, India, Dec. 3, 1951, 1 p.

24 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, pp. 16-17.

MERCURY 721

Italy.—Italian production continued little changed from the rate maintained in 1950 and 1951, rising 4 percent. Of the exports of 33,500 flasks, the following distribution was made: United States, 27,800 flasks; United Kingdom, 3,700; Poland, 600; and other, 1,400. Stocks of mercury at the end of the year were 18,200 flasks.

Mexico.—Production in 1952 rose 8 percent above 1951 and was the highest since 1947, reflecting, in large part, at least, stimulation

from high prices.

According to a recent report, the only known valuable mineral deposits at Canoas, in southeastern Zacatecas, are the mercury deposits, discovered in 1878. An abstract of the report follows: ²⁶

The Canoas quicksilver deposits and the manner in which the structure that controlled their localization is reflected by later structures suggest a method of scientific prospecting for deposits that may be buried elsewhere beneath similar

rocks

The deposits at Canoas, in the desert country of southeastern Zacatecas, Mexico, have produced about 30,000 flasks (870,000 kg) of quicksilver since their discovery in 1878. The mines are at an altitude of 2,250 m above sea level in the top of the Mesa de Canoas, which is part of an isolated group of mountains composed of rhyolitic volcanic rocks. These mountains rise about 250 m above the general level of the central plateau of Mexico, which is here underlain chiefly by Jurassic and Cretaceous limestone.

The rhyolite is the most widespread rock in the mapped area, forming all the mesas. It generally inundated the entire region. Flow layering is remarkably well developed in it, consisting of layers 2 to 5 mm thick separated by discontinuous fracture planes that stand open a fraction of a millimeter and are coated with a white powder of feldspar and tridymite. Contours of the contact between the overlying rhyolite and the underlying latite and perlite reveal a pronounced dome, and the field evidence indicates that this dome was formed tectonically after the

formation of the perlite.

The only valuable mineral deposits known at Canoas are the quicksilver deposits; they have been found only in the top of the latite dome, which was much fractured during the doming process. The latite at the top of the dome has been subjected to two alterations. Much of it was altered to halloysite by acid solution. It was then further altered by alkaline solutions which deposited abundant opal and some montmorillonite, chalcedony, and cinnabar. During the alkaline mineralization, which may have been colloidal, a second period of fracturing occurred. The localization of the ore was controlled primarily by the latite dome itself and secondarily by the major zones of fracturing within it.

The ore zone consists essentially of a stockwork in the crest of the dome, at least 400 by 250 m in horizontal extent and grading downward, between 20 and 40 m in depth, into six major lodes of diverse orientation that form its roots. The lodes are zones up to about 10 m wide in which the effects of fracturing, brecciation, alteration, and mineralization are more intense than in the surrounding rock into which the lodes grade laterally. The principal mines are at the places

where two or more of these six major lodes intersect.

The near-surface stockwork has been mined to exhaustion in about a thousand holes, but the dumps, gob, and unmined ground probably constitute a reserve of several million tons of low-grade ore from which the quicksilver might be recovered at a profit by large-scale methods under favorable price conditions. One of the lode intersections has been inadequately explored to a depth of 82 m, but none of the others has been explored below a depth of 40 m. Adequate exploration of these lode intersections might result in the discovery of quicksilver ore, but because of the stockwork-with-roots structure of the ore zone, the lower parts of the deposits cannot be expected to yield more than a fraction of the amount of quicksilver already produced at Canoas.

^{**} Gallagher, David, Geology of the Quicksilver Deposits of Canoas, Zacatecas, Mexico: Geol. Survey Bull. 975-B, 1952, pp. 47-85.

Peru.—For many years Peru was the leading mercury producing country in the world. An abstract of a report describing the mercury district, published in 1951, is as follows: ²⁷

The Huancavelica quicksilver district, the world's largest producer of quicksilver for over a century and a half, is in the Cordillera Occidental of south-central Peru. All the important mines of the district are in a north-trending belt about 1 mile (2 kilometers) wide and 5 miles (8 kilometers) long, but a few small mines and prospects are in north and south extensions of this main belt. During the Spanish colonial period the mines produced over 1,400,000 flasks of quicksilver, most of this coming from one mine, the Santa Bárbara. During the last hundred years little quicksilver has been produced, and in 1946 only one small mine was actively producing. It is not likely that the district will again become an important quicksilver-mining center unless new ore bodies are discovered or unless there prove to be unexhausted ore bodies in the inaccessible caved workings of the Santa Bárbara mine.

The Cordillera Occidental in central Peru is composed of Paleozoic, Mesozoic, and Tertiary sedimentary and volcanic rocks that have been folded, faulted, and intruded by various kinds of igneous rocks. In the Huancavelica district Jurassic limestones, Cretaceous sandstones, limestones, shales, and volcanic rocks, and Tertiary conglomerates, tuffs, and lavas constitute the sedimentary and volcanic rocks. Intruded into these are dacites and volcanic necks filled with pyroclastic material. The dominant structural feature is a north-trending anticline, which has a synclinal core bounded by high-angle reverse faults. Faulting accompanied and followed folding, and was itself followed by igneous intrusion and extrusion.

The quicksilver deposits are classified into three types: (1) deposits occurring in sandstone, (2) deposits occurring in limestone, and (3) deposits occurring in igneous rocks. Cinnabar is the principal ore mineral and occurs mainly as a filling between sand grains in the sandstone, in fractures and porous marly beds in the limestone, and as a filling in fractures in the igneous rocks. Other sulfide minerals are pyrite, arsenopyrite, realgar, and minor amounts of galena, sphalerite, and stibnite. Nonmetallic gangue minerals include quartz, calcite, barite, and hydrocarbons, none of which are abundant. The distribution of the ore bodies was controlled by the distribution of the more permeable sedimentary strata and of fracture openings. The cinnabar deposits are younger than the Tertiary volcanic rocks.

Spain.—Production decreased to 39,100 flasks, a drop of 12 percent, continuing the decline from 1950. The new furnace under construction at the Almaden mine by the Pacific Foundry Co., Ltd., of San Francisco, was nearing completion at the year end. Exports exceeded production, indicating a drawing on stocks for a quantity equivalent to the entire domestic consumption (always small) and part of exports. Stocks were believed to be relatively small at the end of 1952. According to monthly reports, which will be adjusted somewhat when final data are available, exports in 1952 were as follows:

Destination:	Flasks
United States	27 200
United Kingdom	4, 600
Switzerland	3 900
France	3, 800
Germany	1, 800
Netherlands	1,300
Portugal	800
Other	800
	800
	44. 200

²¹ Yates, Robt. G., Kent, Dean F., and Concha, Jaime Fernandez, Geology of the Huancavelica Quicksilver District, Peru: Geol. Survey Bull. 975-A, 1951, 45 pp

MERCURY 723

United Kingdom.—Imports of mercury into the United Kingdom, the second largest consumer of mercury in the world, dropped precipitously after the receipt of unprecedented quantities after war broke out in Korea in June 1950. In 1950, 54,200 flasks were imported, in 1951, 18,800 (revised) flasks; and in 1952, 9,200 flasks. Reexports in the 3 years were 14,300, 6,100, and 3,600 flasks, so the new metal made available for use in these years was 39,000, 12,700, and 5,600 flasks.

Trade reports indicated that industrial stocks of mercury in the United Kingdom were stringent late in 1952 but that the Government was believed to hold "useful" quantities.28 Evidently the British Government, as well as that of the United States, was purchasing

mercury late in 1952.29

Changes in prices for mercury in London are shown in the section

on Prices.

Yugoslavia.—Control since the end of World War II of the Idria mine, near Trieste in the Julian Alps, Province of Gorizia, along the Idria River, made Yugoslavia a significant producer of mercury. During 1952 production was continuing at the high annual rate of nearly 15,000 flasks established in 1951.

The Idria mine has been worked almost continuously since early in the 15th century, and it was reported that it stood second in the world to the Almaden mine, Spain, in total production to the end of World In more recent years the Abbadia San Salvatore and Solforate del Siele mines in the Monte Amiata district, Italy, have been larger producers.

The Idria mine was discovered in 1497 and between 1500 and 1813 passed through various hands as a result of wars or by succession. From 1813 until World War I it remained in Austrian hands but was transferred to Italy as a result of that war. It was under Italian

control until the end of the second world conflict.

In 1944 the deepest shaft in the Idria mine was the Jozefor, reported to be 387 meters (1,270 feet) deep; there were 15 levels. Although at that time the output had decreased in quantity and grade, the mine was said to contain larger and richer reserves than any American mine. Production advanced after the latest change of control and in 1951 and 1952 appeared close to the reported annual maximum for all time.³⁰

Another report indicated that the grade of ore produced at the Idria mine averaged 0.808 percent mercury in 1940, fell to 0.587 percent in 1947 and 0.45 percent in 1951. Production was expected to advance to 600 metric tons (17,000 flasks) within 3 or 4 years. addition to the Idria, which supplied most of the production, there are small mines at Sveta Ana, Knapovze, Litija, and Marija Reka, in Slovenia; at Maraska and Cemernca in Bosnia-Herzegovina; at Avala and Donja Tresnjica in Serbia; and at Sutomor in Montenegro.³¹

²⁸ American Metal Market, vol. 59, No. 218, Nov. 13, 1952, p. 5.
²⁹ American Metal Market, vol. 59, No. 231, Dec. 3, 1952, p. 5.
³⁰ Abst. in large part from Eckel, Edwin B., Mercury Industry in Italy; Am. Inst. Min. and Met. Eng., Tech. Pub. 2292, January 1948, 21 pp.; Winslow, Rollin R. (American consul), The Mercury Mine At Idria, Venezia Giulia, Trieste, Italy, Oct. 19, 1932, 11 pp.
³¹ Metal Bulletin (London), No. 3716, Aug. 12, 1952, p. 20.

Mica

By Waldemar F. Dietrich, Robert D. Thomson, and Gertrude E. Tucker³

PRODUCTION of mica in the United States reached a record high in 1952, a 5-percent increase above that in 1951, mainly as a consequence of the Government purchasing program for block, film, and hand-cobbed mica. Sheet-mica output in 1952 was the largest for the industry since 1946. The 1952 tonnage for scrap and flake mica was the largest in the history of the industry. Consumption continued at a high level, despite a 31-percent decrease in mica imports.

TABLE 1.—Salient statistics of the mica industry in the United States, 1943-47 (average) and 1948-52

	1943-47 (average)	1948	1949	1950	1951	1952
Domestic mica sold or used by						
_producers:						
Total sheet mica: 1	1 770 011	070 040	F12 004	E70 010	594,884	697, 989
Pounds	1, 552, 911	270,042	513, 994	578, 818 \$125, 928	\$160,322	\$908, 135
Value	\$1, 512, 572 \$0, 97	\$45, 940 \$0, 17	\$132,097 \$0.26	\$0.22	\$0.27	\$1.30
Average per pound Scrap and flake mica:	ф0. 97	φυ. 11	φυ. 20	φ0. 22	φυ. 21	Ψ1.00
Short tons	48, 465	52, 157	32,856	69, 360	71,871	75, 236
Value	\$955, 284	\$1,091,698	\$795, 782	\$1,742,616	\$1,884,087	\$1,954,286
Average per ton	\$19.71	\$20.93	\$24, 22	\$25.12	\$26. 21	\$25.97
Total sheet, scrap, and flake					1	
mica:	40.041	FO 000	00 110	60.650	70 100	75 505
Short tons	49, 241	52, 292	33,113	69,650 \$1,868,544	72, 168 \$2, 044, 409	75, 585 \$2, 862, 421
Value	\$2,467,856	\$1,137,638	\$927,879	φ1, ουο, υ 11	φ2, 044, 409	φ2, 002, 1 21
Ground mica: Short tons	56, 551	64,642	56,393	72, 250	70,122	74,806
Value	\$2, 276, 911	\$3, 232, 632	\$2,860,956	\$3, 935, 697	\$3,842,628	\$4, 278, 103
Consumption of splittings:	φ2, 2.0, 011	40, 202, 002	42,000,000	10,000,000	10,000,000	1-,,
Pounds	8, 450, 740	7, 917, 365	8, 114, 804	10, 783, 198	13, 379, 295	10, 220, 671
Value	\$4,506,496	\$6,300,581	\$7,096,365	\$8,631,421	\$11,760,617	\$9,729,099
Imports for consumption						
short tons	11, 215	17,896	12,738	2 18, 510	2 18, 917	13,048
Exportsdo	1,066	1,402	1,108	1,547	² 1,894	2,472

¹ Includes small quantities of splittings in certain years.

² Revised figures.

GOVERNMENT PROGRAMS UNDER DEFENSE PRODUCTION ACT OF 1950

In 1950, under provisions of the Defense Production Act, the Defense Minerals Administration was established to encourage the exploration, development, and mining of critical and strategic metals and minerals, including strategic mica. With dissolution of DMA in early 1952, the exploration functions were delegated to Defense Minerals Exploration Administration (DMEA), and the programing,

Statistical assistant.

Chief, Ceramic and Fertilizer Materials Branch.
 Commodity-industry analyst.

MICA 725

development loans, facilities loans, and tax-amortization functions were transferred to Defense Minerals Procurement Administration

(DMPA).

Defense Minerals Exploration Administration.—The encouragement of exploration of unknown or undeveloped sources of strategic or critical metals and minerals through financial assistance, established as a DMA program in 1951, became the function of DMEA. Under the program the Government contributed 90 percent of the approved costs of mica-exploration projects, repayable from the net returns from any mineral produced as a result of the project within 10 years after certification of discovery or development. As of December 31, 1952, 62 projects were in force or executed, with Government participation totaling \$314,903. Of these projects, only six certificates of discovery or development were issued. Information regarding the mica contracts is shown in table 2.

TABLE 2.—DMEA mica contracts in force or terminated, as of December 1952, by States, counties, and mines

State, county, and mine	Applicant	Govern- ment ¹ partici- pation	Disposition
Garata Harry Gratus	Andergen A T	\$4,959	In force.
Georgia: Upson, CarterIdaho: Latah, Muscovite	Anderson, A. T	25, 830	Do.
New Hampshire: Cheshire, Lyman-Fitzgibbon	Alstead Mica Miners, Inc	5, 040	Do.
Grafton, Atwood.	Berry, R. N.	11, 700	Do.
North Carolina:			
Avery:	V C F C D D	6, 210	Do.
Elk	Vance, S. K., and Guy, R. B	3, 060	Terminated.
Cow Camp Powder Hill	Powder Mill Mining Co	2, 808	Do.
Winters Prospect	Burleson, C. C.	2,390	Do.
Buncombe:		2,000	20.
Big Cove	Hipps, W. H	2,610	In force
Swannanoa	Robinson & West	6, 930	Do.
Cleveland:		•	
Cliff Blanton Mica	Boone, R. L	3,600	Terminated.
Bumgardner	Hendricks, F. B	3, 780	Dо.
Carpenter	do	1.440	Do.
Hubert Cook No. 1	do	3, 150	Do.
Hubert Cook No. 2	do	2, 250	Do.
Covington, W. H., Prospect	Covington, W. H	1,341	In force.
Martin, W. W Mead, A. P	Schmitt, Lawrence	3, 240	Terminated.
Mead, A. P	Hendricks, F. B.	2, 160 1, 350	In force.
Mead, Glen	do	1,550	D0.
Gaston: Big Bess	Phillips, F. O	6, 210	Do.
Huskins	Gaston Strategic Minerals Co.,	5, 040	Certified.
	Inc.	•	
Self, E. R	Piedmont Minerals Co., Inc	11, 160	In force.
Haywood:	G Darie	2, 970	Do.
Grassy Knob	Conway, Revis	5, 760	D0.
Little East Fork		9, 180	Do. Do.
Poston Prospect	FOSIOII, E. D. and R. W.	<i>a</i> , 100	ъо.
Jackson:	Dixie Minerals, Inc	4.140	Do.
Shell Ridge	do	3,600	Do.
Macon:		2,000	20.
"A"	Wilson, Fred	3,600	Do.
Baird Cove	Bauer Mining Co	8, 190	Do.
Burke, John	Bauer Mining Co	6, 120	Do.
Cabe No. 1	Cabe, Fred D	4, 397	Certified.
Campbell	Franklin Developers, Inc	3, 240	_ Do.
Chalk Hill	Mica Development Corp	5, 400	Terminated.
Enloe No. 1	Enloe, H. E	1,800	Do.
Garden Branch	do	450	Do.
Iotla-Bowers	Phillips, S. L.	4, 050	In force. Terminated.
Judson		1,575	In force.
Kasson	Angel, Zeb	6, 210 4, 050	Do.
Kelly (Pine Knob)	Toe River Mining Co	4,000	

For footnotes, see end of table.

TABLE 2.—DMEA mica contracts in force or terminated, as of December 1952, by States, counties, and mines—Continued

State, county, and mine	Applicant	Govern- ment ¹ partici- pation	Disposition
North Carolina—Continued Macon—Continued Meadows Miller Penland, L. S Reid. Do Reid-Mary Roper-Ray Talley, Harry Zachery Mitchell: Chalk Mountain Sinkhole Stevenson, Joe Zinniman Watauga, Mica Ridge Wilkes, Robinson, Henry L. and, Buchanan, Herbert. Yancey:	Ward, A. Penland, L. S. Reid & Hooker Keller, C. J. Pitt Mica Corp. Roper, W. H. Enloe, H. E. Zachery, E. H. Ernest Mica Co., Inc. Sinkhole Miners	1, 170 5, 850 2, 372 3, 600 2, 934 2, 435 1, 170 31, 680 3, 420 6, 633	Terminated. In force. Terminated. In force. Terminated. Certified. In force. Terminated. Do. Do. In force. Do. Do. In force. Do. Do. Terminated.
Autrey, Jess W	Grigg & West Co	8, 280 14, 543 8, 685 6, 750 3, 690 2, 880	In force. Certified. In force. Do. Do. Do.
Custer: Dyke No. 22 Glenwood	Collingwood, Lewis W	4, 725 1, 080	Do. Certified.

¹ 90 percent of approved project estimated costs. Total actual expenditures by Government on terminated and certified contracts often were less than obligated funds.
² Classified as a mica-beryl project.

Defense Materials Procurement Administration.—In March 1952 the General Services Administration, under authority from DMPA, announced a long-range purchasing program for domestic mica to stimulate production of this mineral critical for national defense. The program was to continue until June 20, 1955, or until the total domestic block, film, and hand-cobbed mica delivered to and accepted by the Government reached the equivalent of 25,000 short tons of hand-cobbed mica (90 pounds of full-trimmed block or film mica is equivalent to 1 ton of hand-cobbed mica). Depots for the inspection and purchase of hand-cobbed muscovite ruby mica and processed muscovite ruby block and film mica were established at Franklin, N. H.; Spruce Pine, N. C.; and Custer, S. Dak. Purchases began at Custer on July 15, 1952, at Spruce Pine on July 21, and at Franklin on August 20. By December 31, 1952, purchases at these depots totaled \$144,411, \$571,638, and \$47,599, respectively.

DOMESTIC PRODUCTION

Sheet Mica.—Production of crude sheet mica in 1952 increased 17 percent in quantity and 466 percent in value over 1951 (table 3). The 1952 production was the largest for the industry since 1946. Of the 10 States reporting, North Carolina ranked first, with 85 percent of the total domestic output.

TABLE 3.—Mica sold or used by producers in the United States, 1943-47 (average) and 1948-52

			Sheet	mica						
Year	Uncut punch and circle mica		Uncut mica larger than punch and circle		Total sheet mica 1		Scrap ² and flake mica ³		Total	
	Pounds	Value	Pounds	Value	Pounds	Value	Short tons	Value	Short tons	Value
1943–47 (average)	1, 204, 813 216, 794 450, 835 546, 433	\$192, 169 23, 928 72, 576 86, 675	348, 098 53, 248 63, 159 32, 385	\$1, 320, 403 22, 012 59, 521 39, 253	1, 552, 911 270, 042 513, 994 578, 818	\$1, 512, 572 45, 940 132, 097 125, 928	48, 465 52, 157 32, 856 69, 360	\$955, 284 1, 091, 698 795, 782 1, 742, 616	49, 241 52, 292 33, 113 69, 650	\$2, 467, 856 1, 137, 638 927, 879 1, 868, 544
1951: Arizona. Colorado. New Hampshire. North Carolina South Dakota. Undistributed ⁵ .		(4) 84, 056 24, 373	(4) 45, 425 5, 413	(4) 43, 148 8, 745	(4) 464, 949 129, 935	(4) 127, 204 33, 118	1, 763 1, 882 (4) 52, 550 2, 292 13, 384	50, 030 32, 901 (4) 1, 441, 886 42, 714 316, 556	1, 763 1, 882 196 52, 782 2, 292 13, 253	50, 030 32, 901 14, 035 1, 569, 090 42, 714 335, 639
Total	544, 046	108, 429	50, 838	51, 893	594, 884	160, 322	71, 871	1, 884, 087	72, 168	2, 044, 409
1952: Alabama Georgia Idaho New Hampshire North Carolina South Dakota Undistributed ⁶ Total	11, 800 7, 491	2, 463 2, 745 (4) 102, 928 	(4) 1, 210 12, 529 (4) 46, 608 4, 308 8, 034 72, 689	(4) 16, 389 112, 827 (4) 561, 147 32, 034 67, 870	(4) 13, 010 20, 020 (4) 595, 331 4, 308 65, 320	(4) 18, 852 115, 572 (4) 664, 075 32, 034 77, 602	(4) (4) 170 (4) 58, 576 915 15, 575 75, 236	(4) (5, 100 (1) 1, 551, 071 24, 148 373, 967 1, 954, 286	378 (4) 180 187 58, 874 917 15, 049	17, 298 (4) 120, 672 47, 882 2, 215, 146 56, 182 405, 241 2, 862, 421

¹ Includes small quantities of splittings in certain years.
2 Includes the mica, except sheet mica, obtained from pegmatite mining as a sole product or as a byproduct, from the preparation of sheet mica, and from factory waste.
3 Includes finely divided mica recovered from mica and sericite schist, and as a byproduct of feldspar and kaolin beneficiation.
4 Included under "Undistributed" to avoid disclosure of individual company operations.
5 Figures include Arizona (1952), California (1952), Colorado (1952), Connecticut, Georgia (1951), Maine, Pennsylvania, Virginia, and States indicated by footnote 4.

As of December 31, 1952, a total of 55,500 pounds of domestic full-trimmed mica (rifted mica trimmed on all sides, eliminating all cracks, reeves, and crossgrains) was obtained from purchases by the General Services Administration's mica-purchasing depots. Sheet mica usually is sold to industry by domestic producers as rough-trimmed or half-trimmed mica (rifted mica knife-trimmed on two sides). Processing of the hand-cobbed mica and half-trimmed mica purchased at the depots into full-trimmed mica was done under contract by private companies. The full-trimmed mica recovered from hand-cobbed mica was about 5,000 pounds. About 48 percent of the quantity of full-trimmed block and film mica was Good Stained and better quality; 43 percent, Stained; and 9 percent, Heavy Stained.

TABLE 4.—Yield of full-trimmed muscovite mica and byproducts from domestic purchases by GSA, July-December 1952, by quality, grade, and depot, in pounds

			1	Ful	ll-trimm	eđ				Byproduc	ts
Grade and depot	Total			Good Stained		ined	I	Heavy	Other	Punch	Gaman
	10	iai		and better		"B"	s	tained	Other	Punch	Scrap
Spruce Pine, N. C.:											
2 and larger	20	0. 26	149.	41	22.94	11.8	8	16.03			
3	43	7. 91	295.	90	79.36			29, 87			
4	1,56	5.40	958.	61	361.78	131.0	4	113.97			l
5	6,50	0.17	4.045	18	1,556.30	514.4	3	384.26	l		
5½	5.32	6.85	3.180.	51	11.363.93	465.6	0	316.81			
6	22,80	0. 14	13, 840.	95	5, 850. 27	1,859.7	0 1,	, 249. 22			
Total	36, 83	0. 73	22, 470.	56	9, 234. 58	3, 015. 4	3 2,	, 110. 16	196. 26	296.05	43.19
Franklin, N. H.:							- -				
2 and larger	3	6. 72	6	44	9.77	12.3	ıl	8, 20	1		l
3		Ŏ. 1 7						10.36			
4		6.54						21.34			
5		9. 55		40	383.85			57. 32			
5½		7. 39			310.06			35,00			
6	2, 13				880.67			100.92			
Total	4, 28	8. 76	1, 480.	16	1,751.92	823. 5	4	233.14	1,765.01	933. 23	1, 581. 14
Custer, S. Dak.:							1				
2 and larger	12	1.38	24.	88	8	4. 31		12.19			
3		2.05				7. 87	1				
4	1.04					8.88					
5	4,00					9.94	1	591.87			
51/2	2,34				1,48			481. 25			
6	6,56					1.50		420.38			
Total	14, 39	5. 37	2, 712.	00	9,03	3. 56	2,	649. 81		30, 353. 50	50, 905. 88
Grand total	55, 51	4.86	26, 662.	72	23, 85	9. 03	4,	993. 11	1, 961. 27	31, 582. 78	52, 530. 21

A report on United States mica production, consumption, and imports, with general data on foreign mica-producing countries, was published in 1952 by the United States Tariff Commission.⁴ The economics of the mica industry was summarized in two separate publications.⁵ The President's Materials Policy Commission emphasized the strategic significance of mica and stated that, in view of the promising developments for mica substitutes and reconstituted mica,

 ⁴ U. S. Tariff Commission, Unmanufactured Sheet Mica (Blocks, Films, and Splittings): Industrial Materials Series, Rept. M-4, April 1952, 50 pp.
 ⁵ Arundale, J. C., Mica: chap. in Atlas of the World's Resources: The Mineral Resources of the World, by William Van Royen and Oliver Bowles: Prentice-Hall, Inc., New York, vol. II, 1952, pp. 178-181.
 Tyler, P. M., Mica: Encyclopedia of Chemical Technology, vol. 9, 1952, pp. 68-75.

729MICA

it seemed reasonable that a major portion of United States mica supply

will be furnished domestically by 1975.6

The Federal Geological Survey released a report on the pegmatite bodies in the southeastern Piedmont province. Special attention was given to the distribution, geology, and economic possibilities of the pegmatite dikes.7

Investigations of mica-bearing pegmatites in the Amelia district, Virginia, were summarized, and the geology of the district, structural and mineralogical features of the pegmatite dikes, mining, and individual deposits were described.⁸ The pegmatites of the Coshiers and Zirconia districts, North Carolina, were discussed in a report.9

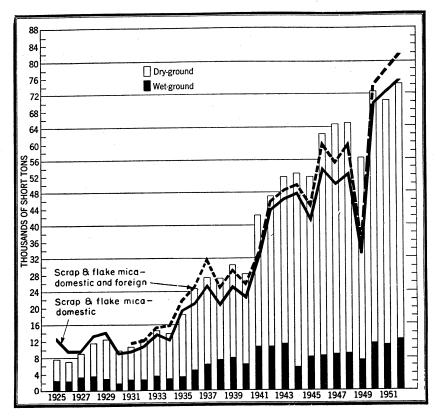


FIGURE 1.—Scrap, flake, and ground mica sold in the United States, 1925-52.

⁶ President's Materials Policy Commission, Special Strategic Materials—Mica; Resources for Freedom; Vol. II, The Outlook for Key Commodities, June 1952, pp. 94-95.

⁷ Jahns, R. H., Griffitts, W. R., and Heinrich, E. W., Mica Deposits of the Southeastern Piedmont. I. General Features: Geol. Survey Prof. Paper 248-A, 1952, 102 pp.

⁸ Lemke, R. W., Jahns, R. H., and Griffitts, W. R., Mica Deposits of the Southeastern Piedmont II. Amelia District: Geol. Survey Prof. Paper 248-B, 1952, 138 pp.

⁹ Olson, J. C., Pegmatites of the Coshiers and Zirconia Districts, N. C.: North Carolina Div. of Mineral Resources, Bull. 64, 1952, 32 pp.

Scrap and Flake Mica.—Sales of domestic scrap and flake mica in 1952 increased 5 percent above 1951 sales (table 5). Scrap is defined as the mica, except sheet mica, obtained from pegmatite mining as a sole product or as a byproduct, from the preparation of sheet mica, and from factory waste. Flake mica, previously called reclaimed, includes finely divided mica recovered from mica and sericite schists and as a byproduct of feldspar and kaolin beneficiation. The 1952 tonnage was the largest in the history of the industry.

Ground Mica.—Sales of ground mica in 1952 were the largest on record (table 6). Dry-ground mica was 84 percent and wet-ground mica 16 percent of the total. Mica for grinding was derived from scrap and flake mica.

TABLE 5.—Scrap and flake mica sold or used by producers in the United States, 1943-47 (average) and 1948-52

Year S	Scr	ap 1	Flake 1	nica ²	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1943-47 (average)	30, 253 (3) 24, 942 58, 250 59, 514 57, 201	\$595, 023 (3) 526, 268 1, 401, 411 1, 475, 059 1, 452, 174	18, 212 (3) 7, 914 11, 110 12, 357 18, 035	\$360, 261 (3) 269, 514 341, 205 409, 028 502, 112	48, 465 52, 157 32, 856 69, 360 71, 871 75, 236	\$955, 284 1, 091, 698 795, 782 1, 742, 616 1, 884, 087 1, 954, 286	

Includes the mica, except sheet mica, obtained from pegmatite mining as a sole product or as a byproduct, from the preparation of sheet mica, and from factory waste.
 Includes finely divided mica recovered from mica and sericite schist and as a byproduct of feldspar and beach heads in the mica and sericite schist and as a byproduct of feldspar and serious mica.

kaolin beneficiation.

³ Figure withheld to avoid disclosure of individual company operations.

TABLE 6.—Ground mica sold by producers in the United States, 1943-47 (average) and 1948-52, by methods of grinding

Year	Dry-g	round	Wet-g	round	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1943–47 (average) 1948. 1949. 1950. 1951. 1962.	48, 121 55, 494 49, 133 61, 139 59, 200 62, 465	\$1,417,749 2,035,618 1,850,400 2,374,089 2,294,620 2,526,407	8, 430 9, 148 7, 260 11, 111 10, 922 12, 341	\$859, 162 1, 197, 014 1, 010, 556 1, 561, 608 1, 548, 008 1, 751, 696	56, 551 64, 642 56, 393 72, 250 70, 122 74, 806	\$2, 276, 911 3, 232, 632 2, 860, 956 3, 935, 697 3, 842, 628 4, 278, 103	

CONSUMPTION

Sheet Mica.—Consumption of sheet mica (block, film, and splittings) in 1952 increased slightly over 1951. Before the third quarter of 1952, accurate statistics on sheet-mica consumption were not available; therefore the Bureau of Mines, in cooperation with the National Production Authority, conducted a quarterly canvass on mica consumption. Data on the consumption of muscovite ruby and nonruby block and film and phlogopite block during the last 6 months of 1952 are given in tables 8, 9, 10, and 11. A total of 26 companies in 11 States reported consumption of muscovite block and film mica during

MICA 731

the 6-month period (table 12). About 45 percent of the consumption was by 5 companies in North Carolina, Pennsylvania, and Virginia.

Consumption of splittings decreased 24 percent in 1952 compared with 1951 (table 13). Consumption of splittings was reported by 16 companies in 9 States, as shown in table 14. Splittings were not purchased by the Government during the year.

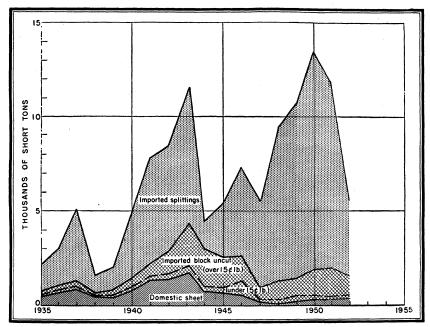


FIGURE 2.—Block mica and splittings imported for consumption in the United States and sales of domestic sheet mica, 1935-52.

TABLE 7.—Production and apparent consumption 1 of sheet mica in the United States, 1941-52, in pounds

Year	Production .	Apparent consumption 2	Year	Production	Apparent consumption 2
1941	2, 666, 453	15, 999, 540	1947	415, 589	11, 216, 257
1942	2, 761, 844	19, 500, 839	1948	270, 042	19, 297, 842
1943	3, 448, 199	25, 604, 974	1949	513, 984	21, 646, 158
1944	1, 523 313	10, 247, 381	1950	578, 884	27, 709, 386
1945	1, 298, 587	12, 127, 690	1951	594, 884	25, 225, 267
1946	1, 078, 867	14, 963, 842	1952	697, 989	12, 478, 048

¹ The sum of domestic sheet-mica production and imports of unmanufactured and manufactured sheet mica minus the exports of sheet mica.

² Revised figures, 1941-51.

TABLE 8.—Fabrication of muscovite ruby and nonruby block and film mica in the United States, July-December 1952, by quality and grade, in pounds

			G	Grade									
Quality	No. 4 and larger	No. 5	No. 5½	No. 6	Other 1	Total							
Block, ruby: Good Stained and better Stained Lower than Stained	7, 988 69, 376 75, 041	9, 030 86, 605 102, 846	7, 744 52, 140 14, 644	39, 291 1, 000, 816 111, 469	146, 866	64, 053 1, 208, 937 450, 866							
Total	152, 405	198, 481	74, 528	1, 151, 576	146, 866	1, 723, 856							
Block, nonruby: Good Stained and better Stained Lower than Stained Total	491 5, 621 19, 538	2, 097 11, 766 14, 943	25 2, 071 1, 055	238 17, 262 6, 130	5, 790	2, 851 36, 720 47, 456							
Total	25, 650	28, 806	3, 151	23, 630	5, 790	87, 027							
Film, ruby: First quality Second quality Other quality	3, 880 13, 795	14, 235 24, 518	11, 234 20, 699	5, 052 14, 009	11, 440	34, 401 73, 021 11, 440							
Total	17, 675	38, 753	31, 933	19, 061	11, 440	118, 862							
Film, nonruby: First quality	307 436	61 264	55 89	50 233	2, 494	473 1, 022 2, 494							
Total	743	325	144	283	2, 494	3, 989							

¹ Figures for block mica include "all smaller than No. 6" grade and "punch" mica.

TABLE 9.—Fabrication of muscovite ruby and nonruby block and film and phlogopite block by end-product use in the United States, July-December 1952, in pounds

		Elec	etronic u	ses		Nonelectronic uses				
			Tubes							
	Capaci-	Radio and TV		Other			Gage glass, compass			
	tors	Receiving	Trans- mitting and radar	tubes (includ- ing sub- minia- tures)	elec- tronic	Magne- tos	cards, and dia- phragms	Other	Total	
Muscovite block ruby and nonruby: Good Stained										
and better Stained Lowerthan	287 1, 169	49, 730 1, 140, 085	475 14, 859	12, 190 6, 704	975 9, 232	200	2, 694 1, 918	553 71, 490	66, 904 1, 245, 657	
Stained	185	122, 963	2, 405	1, 480	4, 063			1 367, 226	498, 322	
Total	1, 641	1, 312, 778	17, 739	20, 374	14, 270	200	4, 612	1 439, 269	1, 810, 883	
Muscovite film, ruby and nonruby: First quality Second quality Other	34, 395 73, 131 13, 820				20 240	140 12		319 660 114	34, 874 74, 043 13, 934	
Total	121, 346				260	152		1,093	122, 851	
Phlogopite block, all grades: Total					220			4, 112	4, 332	

¹ Includes punch mica.

TABLE 10.—Consumption of muscovite block and film in the United States July-December 1952, by end use

Block and film	Quantity (pounds)	Percent of grand total	Percent of quality
Good Stained and better:1			
Electronic: CapacitorsTubes	107, 813 62, 395 1, 235	5.6 3.2 .1	31. 3 35. 5 . 7
Total Nonelectronic	171, 443 4, 378	8. 9 . 2	97. 5 2. 5
Total	175, 821	9.1	100.0
Stained: 2 Electronic: Capacitors Tubes. Other	14, 989 1, 161, 648 9, 232	60.0	1. 2 92. 2 . 7
TotalNonelectronic	1, 185, 869 73, 722	61. 3 3. 8	94. 1 5. 9
Total	1, 259, 591	65. 1	100.0
Lower than Stained: Electronic: Capacitors Tubes Other	185 126, 848 4, 063	(3) 6. 6 . 2	(³) 25. 5 . 8
TotalNonelectronic	131, 096 367, 226	6. 8 19. 0	26. 3 73. 7
Total	498, 322	25, 8	100.0
Grand total	1, 933, 734	100.0	

Includes first- and second-quality film.
 Includes other-quality film.
 Less than 0.1 percent.

TABLE 11.—Cost and value of muscovite ruby and nonruby block and film and phlogopite block receipts, fabrication and deliveries in the United States, July-December 1952

Form	Estimated cost of material received	Market value of material fabricated	Market value of material de- livered without fabrication
Total muscovite block—ruby. Total muscovite block—nonruby. Total muscovite film—ruby. Total phlogopite block.	1 \$2, 807, 257 1 161, 236 834, 590 8, 925 21, 992	2 \$5, 415, 031 2 278, 532 1, 151, 583 15, 307 13, 435	\$141, 638 4, 620 378, 687 3, 615

Includes estimated cost of punch mica received.
 Includes market value for punch mica fabricated.

TABLE 12.—Consumption of muscovite block and film mica in the United States, July-December 1952, by States

State	Number of consumers	Quantity (pounds)
Connecticut, Massachusetts, and Rhode Island Illinois, Indiana, and Ohio New Jersey New York North Carolina, Pennsylvania, and Virginia. Total	5 5 3 8 5	414, 062 36, 755 140, 230 472, 397 870, 290

TABLE 13.—Consumption and stocks of mica splittings in the United States, 1943-47 (average) and 1948-52, by sources

	1943-47	(average)	1	948	19	949	
	Pounds	Value	Pounds	Value	Pounds	Value	
Consumption: Domestic	² 362, 838 7, 622, 325	\$29, 914 ² 190, 687 4, 008, 216 241, 014 ² 36, 665	1 75, 395 237, 350 7, 228, 660 37 6 , 960	1 \$33, 106 150, 487 5, 866, 441 250, 547	81, 001 7, 462, 101 571, 702	\$45, 767 6, 624, 447 426, 151	
Total	8, 450, 740	4, 506, 496	7, 917, 365	6, 300, 581	8, 114, 804	7, 096, 365	
Stocks (Dec. 31): Domestie. Canadian Indian Madagasean Mexican	13, 627 ² 161, 788 4, 373, 992 293, 755 ² 59, 348	6, 202 ² 100, 841 2, 422, 472 198, 911 ² 41, 356	3, 168, 801 402, 217	78, 992 2, 723, 175 283, 170	³ 85, 934 3, 858, 495 413, 434 (³)	³ 34, 141 4, 003, 621 365, 098 (³)	
Total	4, 902, 510	2, 769, 782	3, 718, 315	3, 085, 337	4, 357, 863	4, 402, 860	
	1950 Pounds Value		Pounds	1951 Pounds Value		952 Value	
Consumption: Domestic Canadian Indian Madagascan Mexican	3 200, 728 9, 847, 591 734, 879	³ \$105, 717 8, 032, 918 492, 786 (³)	³ 164, 213 12, 306, 853 908, 229 (³)	3 \$104, 868 10, 995, 620 660, 129 (3)	184, 541 9, 356, 561 679, 569	\$74, 197 9, 091, 784 563, 118	
Total	10, 783, 198	8, 631, 421	13, 379, 295	11, 760, 617	10, 220, 671	9, 729, 099	
Stocks (Dec. 31): Domestic Canadian Indian Madagascan Mexican	3 235, 537 5, 464, 294 450, 581	³ 182, 999 5, 552, 016 432, 872 (³)	{	24, 486 9, 379, 176 497, 658	63, 588 8, 218, 683 512, 158	23, 352 8, 356, 888 460, 015	
Total	6, 150, 412	6, 167, 887	10, 329, 430	9, 901, 320	8, 794, 429	8, 840, 255	

Mexican included with domestic.
 Mexican included with Canadian in 1947.

TABLE 14.—Consumption of mica splittings in the United States, 1952, by States

State	Number of consumers	Quantity (pounds)
Indiana, Michigan, and Wisconsin	4 4 4 4	1, 428, 181 2, 828, 899 3, 848, 155 2, 115, 436
Total	16	10, 220, 671

Built-up Mica.—Built-up mica consists of alternate layers of splittings and an insulating binder. Sales of built-up mica decreased 24 percent in 1952. Various forms of built-up mica were produced, as shown in table 15, and were used for electrical insulation in such equipment as generators, motors, transformers, electric irons, and toasters.

Ground Mica.—Sales of ground mica increased 7 percent above the 1951 total. The most extensive use of ground mica was in the manufacture of roofing materials (table 16). The next important use was

Mexican included with Canadian in 1947.

Mexican included with domestic and Canadian.

as an ingredient in paint. Smaller quantities of ground mica were used for many purposes, including rubber, pipeline enamel, and plastics filler and in well drilling.

TABLE 15.—Built-up mica¹ sold or used in the United States, 1950-52, by kinds of product

	1950		1951		1952		
Product	Pounds Value		Pounds	Value	Pounds	Value	
Molding plateSegment plateHeater plateFlexible (cold)All other (tape, etc.)	2, 114, 502 2, 548, 442 898, 333 711, 412 1, 773, 912	\$3, 860, 049 4, 928, 870 2, 416, 478 1, 914, 911 7, 120, 539	2, 184, 654 2, 778, 482 1, 140, 404 917, 326 2, 439, 289	\$3, 898, 117 5, 488, 492 2, 901, 670 2, 596, 787 11, 457, 814	1, 682, 742 2, 094, 397 511, 120 721, 037 2, 139, 670	\$3, 137, 011 3, 972, 515 1, 419, 575 2, 002, 263 10, 916, 674	
Total	8, 046, 601	20, 240, 847	9, 460, 155	26, 342, 880	7, 148, 966	21, 448, 038	

¹ Consists of a composite of alternate layers of a binder and irregularly arranged and partly overlapped splittings.

TABLE 16.—Ground mica sold by producers in the United States, 1951-52, by use

Use	Short	· · · · · · · · · · · · · · · · · · ·				
	tons	Percent of total	Value	Short tons	Percent of total	Value
Roofing Wallpaper Rubber Paint Plastics Pipeline enamel Welding rods Well drilling Miscellaneous 2	27, 919 865 6, 551 11, 760 1, 186 6, 378 1, 203 (1) 14, 260	40 1 9 17 2 9 2 (1) 20	\$846, 801 121, 065 507, 602 1, 028, 490 138, 778 202, 741 78, 916 (1) 918, 235	30, 922 583 5, 126 16, 566 1, 959 2, 668 1, 749 4, 847 10, 386	41 1 7 222 3 4 2 6 14	\$887, 700 79, 673 457, 194 1, 549, 671 181, 889 85, 537 102, 934 245, 504 688, 001 4, 278, 103

¹ Included with "Miscellaneous" to avoid disclosure of individual company operations.
² Includes mica used for molded electric insulation, house insulation, Christmas-tree snow, manufacture of axle greases and oil, annealing, well drilling (1951 only), and other purposes.

PRICES

Prices offered by fabricators for domestic sheet mica were identical to those in 1951, but subsidized prices paid by the Government at the mica-purchasing depots were about 4 to 6 times the market price (tables 17 and 18).

TABLE 17.—Prices for various grades of clear sheet mica in North Carolina district, December 31, 1952, in dollars per pound ¹

[E&MJ Metal and Mineral Markets]

Grade .	December 1952
Punch. 1½- x 2-inch. 2- x 2-inch. 3- x 3-inch. 3- x 4-inch. 3- x 4-inch. 4- x 6-inch. 4- x 6-inch.	

¹ Stained or electric sheet mica was sold at approximately the same prices as clear sheet.

North Carolina scrap mica was quoted at \$32 to \$35, depending on the quality.

Dry- and wet-ground mica prices are quoted in table 19.

TABLE 18.—Price per pound for full-trimmed and half-trimmed block and film muscovite ruby mica purchased by the Government, 1952, by grade and quality

		Grade	
Quality	No. 3 and	No. 4 and	No. 5½ and
	larger	No. 5	No. 6
Full-trimmed: Good Stained and better Stained Heavy Stained Half-trimmed: Stained Heavy Stained Heavy Stained	\$70.00	\$40.00	\$15.00
	18.00	8.00	5.00
	13.00	6.00	3.00
	12.00	5.00	3.00
	8.00	4.00	2.00

TABLE 19.—Price of dry- and wet-ground mica in the United States, December 1952, in cents per pound 1

[Oil,	Paint	and	Drug	Reporter]
-------	-------	-----	------	-----------

	Price
Dry-ground: Paint, 100-mesh	417
Plastic, 100-mesh Roofing, 20- to 80-mesh	41/8 41/8 35/8
Wet-ground: 2 Biotite	61/2
Extra fine less than earlots 3	534 612
Paint or lacquer, less than carlots 3	7 <u>1/4</u> 8
Rubber less than carlots 3	7 734
Wallpaper, less than carlots 3	7¼ 8
White, extra fine. White, extra fine, less than carlots 3.	7¼ 8

FOREIGN TRADE 10

Imports.—In 1952 imports of mica of all varieties totaled 13,048 short tons, a decline of 31 percent compared to 1951. The biggest factor in the decline was the large decrease in imports of mica splittings.

Data on imports of muscovite block, film, and splittings and phlogopite splittings, compiled by the United States Tariff Commission from official documents of the United States Bureau of Customs by quality and principal source, for 1952, are given in tables 22, 23, and 24. Before 1952 such information was not tabulated.

In 1951 a method for estimating sheet-mica imports was determined from figures compiled by the United States Department of Commerce. Muscovite-block imports were assumed to comprise imports of unmanufactured mica valued above 15 cents per pound,

In bags at works, carlots, unless otherwise noted.
 Freight allowed east of Mississippi River.
 Ex warehouse or freight allowed east of Mississippi River.

¹⁰ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 20.—Mica imported into and exported from the United States, 1948-52
[U. S. Department of Commerce]

			I	mports f	or cons	umption			Ex	ports
Year Uncut sheet and punch			Scrap		Manufactured		Total		All classes	
	Pounds	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1948	2, 466, 546 13, 334, 652	3, 094, 616 13, 855, 063	1, 758 4, 402 15, 885	59, 014 93, 357	9, 747 12, 441 11, 250	\$12, 960, 918 17, 212, 419 20, 506, 774 18, 568, 148 11, 054, 206	12, 738 18, 510 1 18, 917	19, 345, 254 23, 660, 404 1 22, 516, 568	1, 108 1, 547 11, 894	676, 752 859, 796 1,101,917

¹ Revised figure.

TABLE 21.—Mica imported for consumption in the United States, 1948-51 ¹ (totals) and 1952, by kinds and by countries of origin

[U. S. Department of Commerce]

					Unmanı	ıfacture	đ			
	Waste and scrap, valued at not more than 5 cents per pound			Untrimmed phlogopite mics from		Other				
Country	Phlogo	pite	Other		which no rectangular piece exceed- ing 1 by 2 in- ches in size may be cut		Valued not above 15 cents per pound n. e. s.		Valued above 15 cents per pound	
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
1948	4, 834, 354 981, 156 896, 400 494, 740	5, 658 6, 988	2, 534, 919	52.026	129,400	21,755	330, 455 635, 313 429, 269 364, 494	41,384	2,775, 983	\$2, 365, 077 2, 012, 675 3, 031, 477 13,792,865
1952: AngolaArgentinaAustriaBrazil			240, 211	1,321			150, 490 127, 847		1,400	8, 816 935
British East Africa	579,008						74, 250 200 745 2, 271	29 112	1, 625	128, 117 706
IndiaItaly			9, 268, 271 	859					524, 174 1, 000 5, 729 2, 083 3, 087	1, 275, 860 688 10, 882 4, 170
Other Portuguese West Africa			110, 230						13, 477	13, 593
Africa Total		3,831	2, 240, 995 12, 482, 160			20, 187	355, 803	28, 025	2, 007, 538	3, 470, 380

For footnote, see end of table.

TABLE 21.—Mica imported for consumption in the United States, 1948-51 ¹ (totals) and 1952, by kinds and by countries of origin—Continued

	Manufactured—films and splittings								
	Not cu	t or stampe	ed to dimensions						
Country	Not above 12/10,000 inch in thickness		Over 12/10,000 inch in thickness		Cut or stamped to dimensions		Total films and splittings		
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	
1948	16, 148, 048 18, 402, 145 23, 086, 329 19, 665, 057	\$12,231,738 16, 208, 432 18, 387, 967 13, 533, 318	367, 052 447, 884 1, 090, 082 1, 823, 938	\$417, 931 701, 346 1, 505, 827 3, 848, 677	28, 905 18, 722 27, 799 43, 405	\$63, 220 154, 641 363, 097 729, 059	16, 544, 005 18, 868, 751 24, 204, 210 21, 532, 400	\$12,712,889 17, 064, 419 20, 256, 891 18, 111, 054	
1952: Angola Brazil Canada France Germany, West	4, 901 350	350		470 1, 335, 756 400	10	1,050 218	890 10	1,349,251 1,800	
Japan Madagascar Mexico	7, 245, 780 697, 712 5 263	361, 857 5, 451	66	1, 878, 844 1, 824	9, 202 12, 407 7, 534 	87, 315 158, 812	7,600 697,712 23,803	160, 636 361, 857 260, 652	
Union of South Africa United Kingdom Total	32, 286	12, 980 1, 129	35		10, 157 59, 560	264, 479 971, 756	32, 286 10, 492	12, 980	
Country	Manufactured—cut or stamped to di- mensions, shape, or form		Mica pla built-u	ates and up mica	All mica manu- factures of which mica is the com- ponent material of chief value		Ground or pul-		
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	
1948. 1949. 1950. 1951.	162, 540 81, 551 82, 353 106, 176	\$161, 917 102, 083 112, 136 119, 008	3, 053 4, 002 9, 779 25, 840	\$2, 139 11, 989 25, 619 79, 568	25, 698 5, 247 25, 590 55, 566	16, 935 86, 314	1, 978, 960 533, 833 560, 000 779, 910	\$50, 769 16, 993 25, 814 41, 237	
1952: Brazil Canada Denmark France	20, 072 65 36	25, 375 765 128	10,876	72	25, 875	145, 348	477, 300		
Germany, West India Italy Mexico	220 29 887	309 56, 963	7,160 1,838 700 80	12, 211 2, 330 1, 613 1, 680	1,606	2,909			
Mozambique Sweden Switzerland	27	4, 121 274	6, 513	27, 879 149	9, 091	25, 925	2, 198	1,000	
United Kingdom Total	53,612	87, 935	933 28, 174	36, 735 141, 344	314		479, 498	27, 655	

¹ Changes in Minerals Yearbook, 1951, should read as follows: Unmanufactured (other), valued above 15 cents per pound—Canada, 337,272 pounds (\$295,805); waste and scrap (other)—India, 9,625,701 pounds.

minus phlogopite valued above 15 cents per pound, plus the imports from Brazil of manufactured films and splittings, not cut or stamped to dimensions, over 12/10,000 inch thick. Imports from India of manufactured films and splittings over 12/10,000 inch thick were assumed to comprise muscovite-film imports. Muscovite-splittings imports largely consisted of imports from India of manufactured

films and splittings not above 12/10,000 inch thick, and phlogopitesplittings imports were essentially the imports from Madagascar of manufactured films and splittings not above 12/10,000 inch thick. The Tariff and Commerce data are compared, using the above procedure in table 25.

TABLE 22.—Muscovite block and film mica, United States general imports, 1952, by quality and principal sources,1 2 in pounds

Q.,,W		Countries				
Quality	India	Brazil	Other 3	Total		
Block: Good Stained and better Stained Heavy Stained Lower	117, 589 599, 870 37, 933 118, 291	197, 459 1, 389, 055 524, 757 510, 006	37, 189 30, 618 10, 537 37, 304	352, 237 2, 019, 543 573, 227 665, 601		
Total	873, 683	2, 621, 277	115, 648	3, 610, 608		
Film: First quality Second quality Other	101, 363 196, 360 3, 932	330 235	31 119	101, 394 196, 809 4, 167		
Total	301, 655	565	150	302, 370		
Block and film: Good Stained and better 4 Stained 5 Heavy Stained Lower	415, 312 603, 802 37, 933 118, 291	197, 789 1, 389, 290 524, 757 510, 006	37, 339 30, 618 10, 537 37, 304	650, 440 2, 023, 710 573, 227 665, 601		
Total	1, 175, 338	2, 621, 842	115, 798	3, 912, 978		

4 Includes first- and second-quality film.
5 Includes other-quality film.

TABLE 23.—Muscovite splittings, United States general imports, 1952, by form and principal sources,1 in pounds

Compton		Total			
Country	Book	Loose	Loose dusted	10001	
IndiaOther ²	894, 916 5, 691	4, 843, 051 10, 756	1, 021, 234 153	6, 759, 201 16, 600	
Total	900, 607	4, 853, 807	1, 021, 387	6, 775, 801	

¹ Compiled by U. S. Tariff Commission from official documents of U. S. Bureau of Customs.

² Includes imports from Brazil and Mexico.

Compiled by U. S. Tariff Commission from official documents of U. S. Bureau of Customs.
 Does not include imports from Angola, Austria, Port of East Africa, and Northern Rhodesia because detailed breakdowns from these sources are not available. Imports from these sources totaled 48,350 pounds.
 Includes imports from Angola, Argentina, Canada, Colombia, Southern Rhodesia, Tanganyika, and United Kingdom.

TABLE 24.—Phlogopite splittings, United States general imports, 1952, by principal sources 1

Country	Pounds
MadagascarOther 2	677, 688 1, 084
Total	678, 772

¹ Compiled by U. S. Tariff Commission from official documents of U. S. Bureau of Customs. Includes imports from Canada and Mexico.

TABLE 25 .- Mica block, film, and splittings imported into the United States. 1952, by variety and principal sources, in pounds

	U. S. Tariff Commission data	U. S. Department of Commerce data
Muscovite block:		
India	873, 683	524, 174
Brazil Other	2, 621, 277 1 115, 648	2, 432, 275 152, 210
Total	3, 610, 608	² 3, 108, 659
Muscovite film: India	301, 655	⁸ 789, 134
Brazil Other	565 150	
Total	302, 370	789, 134
Museovite splittings:		
IndiaOther	6, 759, 201 8 16, 600	4 7, 245, 780
Total	6, 775, 801	7, 245, 780
Phlogopite splittings:		
Madagascar Other	677, 688 7 1, 084	6 697, 712
Total	678, 772	697, 712

¹ Includes imports from Angola, Argentina, Canada, Colombia, Southern Rhodesia, Tanganyika, and United Kingdom.

Exports.—Total exports of mica and mica products in 1952 increased about 31 percent in quantity above 1951. Canada received about 47 percent of all mica exports; Venezuela, 19 percent; and West Germany and Belgium-Luxembourg, 8 percent each.

³ Includes imports of unmanufactured mica valued above 15 cents per pound, minus phlogopite valued above 15 cents per pound, plus imports from Brazil of manufactured films and splittings, not cut or stamped to dimension, over 12/10,000 inch in thickness.

³ Manufactured films and splittings, not cut or stamped to dimensions, over 12/10,000 inch in thickness,

⁴ Manufactured films and splittings, not cut or stamped to dimensions, not above 12/10,000 inch in thick-

ness, from India.

⁵ Includes imports from Brazil and Mexico.

⁶ Manufactured films and splittings, not cut or stamped to dimensions, not above 12/10,000 inch in thickness, from Madagascar.

7 Includes imports from Canada and Mexico.

741

TABLE 26.—Mica and manufactures of mica exported from the United States, 1948-51 (totals) and 1952, by countries of destination

[U.S. Department of Commerce]

			Manufactured					
Country	Unmanı	Unmanufactured		pulverized	Other			
	Pounds	Value	Pounds	Value	Pounds	Value		
1948	338, 768 113, 776 335, 941 398, 662	\$68, 632 43, 140 98, 614 93, 572	2, 268, 403 1, 922, 179 2, 567, 807 3, 136, 548	\$124, 926 102, 147 158, 947 189, 836	198, 063 180, 157 190, 075 254, 179	\$526, 801 531, 465 602, 235 818, 509		
1952: North America: Barbados	556, 488 60 17, 670	17, 465 144 8, 037	20,000 1,669,290 28,490 86,000	1,080 81,173 2,453 4,803	118, 480 3, 628 9, 942 526	431, 609 9, 320 34, 260 1, 856		
South America: Argentina Brazil Chile Colombia	10, 232 349	1,474 1,305 122	125, 500 57, 000 2, 500	5, 575 2, 289	6, 663 1, 053 4, 642 4, 046	19, 056 3, 480 16, 000 15, 597		
Peru Venezuela Other South America			5, 896 930, 475	478 39, 732	6, 114 2, 195 616	17, 763 7, 076 1, 449		
Europe: Austria Belgium-Luxembourg France	64	170	380, 800 182, 350 407, 550	30, 948 14, 865	1,110 1,087 13,389	10, 472 4, 360 9, 697		
Belgium-Luxembourg France Germany, West Italy Netherlands Switzerland			65,000 11,000 28,000	33, 395 5, 250 990 1, 947	1, 191 567 413	21, 953 1, 725 5, 390		
United Kingdom Other Europe Asia:			14, 800	1,005	62 925	330 2, 262		
India Indonesia Japan			47, 100 2, 600	3, 175 212	173 193 360	1,257 1,012 5,874		
Philippines Other Asia Africa:	80	1,196 178	10,000	656	579 201	1, 821 1, 625		
Angola Belgian Congo Union of South Africa Other Africa			94, 100	278 150 3, 503	784 757 152	3, 018 2, 453 495		
Oceania: AustraliaOther Oceania					437 197	4,855 229		
Total	592, 901	40, 700	4, 172, 951	234, 082	180, 482	636, 294		

TECHNOLOGY

The Bureau of Mines Electrotechnical Laboratory, Norris, Tenn., made further progress in synthetic mica research. The investigations resulted in development of methods for making a machinable micaceramic dielectric by hot pressing, dry pressing, or fusion casting. The dielectric properties of hot-pressed synthetic mica were shown to be comparable to those of the best commercial ceramic dielectrics. An electric resistance melting process for growing synthetic mica crystals from a fluor-phlogopite melt was developed in which the mica batch acted as a container, a seal for fluorine vapor, and an insulator during cooling. The mica crystals were small, but evaluation tests by industry indicated that synthetic mica equaled natural mica in quality for vacuum-tube spacers under ordinary operating conditions and was superior in insulating quality and outgassing characteristics

at higher temperatures. Synthetic mica flakes were reconstituted

to form a sheet of controllable thickness and uniformity. 11

A synthetic fluor-phlogopite mica, in which the hydroxyl ion of normal micas can be replaced completely by fluorine, was synthesized from a melt. Data on the physical, electrical, thermal, and chemical

properties of the mica were published.12

Results of investigations under contract to the Office of Naval Research, Department of the Navy, were released during the year. The first described history of synthetic mica research. synthesis of mica, descriptive mineralogy of mica, properties of synthetic mica, and synthetic mica products were discussed.¹³ The second was an investigation of the growth of cadmium iodide by Horizons, Inc., in an attempt to relate the data to the mechanism of crystallization and growth of synthetic fluorine mica. crystals, in which layers in each component extend the length and breadth of the crystal, were obtained by the Bridgman method.¹⁴ In this method, a crucible containing the melt batch is lowered through a thermal gradient from above to below the melting-point temperature. Crystallization begins at the cooler, lower end of the crucible and proceeds upward through the melt.

The absorption coefficients of several mica compositions were determined to facilitate selection of mica suitable for windows in X-ray tubes and ionization chambers. Muscovite and paragonite micas were found to have the lowest absorption coefficients, while biotite had the highest. 15 Details of the procedure and application of the German and hydride processes of metal-to-ceramic and micato-metal seals for vacuum tubes were given in a report. A book was published on materials technology for electronic tubes, in which the electrical properties of ceramics and mica were discussed in detail.¹⁷

Developments by General Electric Co. and Samica Corp. made it possible to use domestic scrap mica to produce a new micaceous insulating material, known as reconstituted mica. 18 Processes of both companies formed sheets by conventional papermaking techniques, but the methods for preparing the raw mica differed. Mica for General Electric's product, known as Mica Mat, was heated to remove a small percentage of the combined water and then ground under water in a hammer-mill type disintegrator.19 Material for

Inder Water in a nammer-mill type disintegrator. Material for

11 Hatch, R. A. and Comeforo, J. E., Synthetic Fluorine-Mica Research, First Quarterly Progress Rept.,
July 1 to Sept. 30, 1952: Bureau of Mines, Synthetic Minerals Branch, Electrotechnical Laboratory, Norris,
Tenn., 1952, 30 pp.; and Synthetic Fluorine-Mica Research, Second Quarterly Progress Rept., Oct. 1 to
Dec. 31, 1952: 1952, 44 pp. (ms. rept. in files of Bureau of Mines).
Comeforo, J. E., Hatch, R. A., Humphrey, R. A., and Eitel, Wilhelm, Synthetic Mica Investigations.
VI. A Hot-Pressed Machinable Ceramic Dielectric: Bureau of Mines, Synthetic Minerals Branch, Electrotechnical Laboratory, Norris, Tenn., 1952, 27 pp. (ms. rept. in files of Bureau of Mines).
12 Van Valkenburg, Alvin, and Pike, R. G., Synthesis of Mica: Nat. Bureau of Standards, Jour. Research,
vol. 48, No. 5, May 1952, pp. 360-369.
13 Roy, Rustum, Synthetic Mica—Critical Examination of the Literature: Owens-Corning Fiberglass
Corp., Toledo, Ohio (Tech. Rept. to Office of Naval Research), 1952, 72 pp.
14 Horizons, Inc., Growth of Oriented Crystals of Layer Minerals (Mica): Progress Rept. 2, Cleveland,
Ohio (Tech. Rept. to Office of Naval Research), 1952, 13 pp.
15 Deodhar, G. B., and Mande, Chintamani, X-ray Absorption Coefficients of Mica: Jour. Sci. Indian
Research, vol. 11–B, No. 7, 1952, pp. 265-268.
16 Taylor, Stanley, Metals, Ceramics, and Seals Used in Vacuum Tubes: Ohio State Univ. Eng. Exp.
Sta. News, vol. 23, No. 5, 1951, pp. 52-53.
17 Kohl, W. H., Materials Technology for Electronic Tubes: Reinhold Pub. Corp., New York, 1951,
pp. 347-402.
18 Typic, P. M., Reconstituted Mica and Synthetic Mica: Nat. Acad. Sciences Rept. MMAB 31–C,
Aug. 27, 1952, 63 pp. (ms. rept. in files of Bureau of Mines).
19 Kern, E. A., Letteron, H. A., and Staats, P. L., Mica Mat—New Tool for the Electrical Designer:
Gen. Elec. Rev., vol. 55, No. 3, May 1952, pp. 54–57, 60.
Wieseman, R. W., New Flexible Mica Makes Bid as Insulation for Armature Windings: Power, vol. 96,
No. 7, July 1952, pp. 80–

743 MICA

"Samica" sheets was heated to cause partial dehydration of the mica. This hot mica first was immersed in a saturated solution of sodium carbonate or sodium bicarbonate and, after draining, in a strong solution of hydrochloric or sulfuric acid. Only washing and agitation were necessary to produce a pulp material from the chemically treated mica.²⁰ The Mica Mat or Samica sheet as it came from the paper machine was not strong enough for general insulation uses. Therefore, suitable bonding agents and bonding materials, such as cloth or paper, were used to improve the mechanical and electrical properties. General Electric had its own processing facilities for impregnation at Coshocton, Ohio. The thin, coherent sheets had a uniform thickness, more uniform bond content, and greater flexibility and could be machined, punched, molded, or tapped. Samica Corp. planned to begin commercial production of mica paper in early 1953 at its new plant under construction near Rutland, Vt., and proposed to offer unbonded sheets for sale to processors for impregnation.

A third firm, Integrated Mica Corp., split mica in distilled water by means of high-pressure water jets.²¹ The split mica was floated into a water bath and allowed to settle upon a belt feeding into a drier. The material was treated with resins to decrease the porosity and increase the strength. The company, which was in semi-commercial production, produced mica sheets from both mica waste and synthetic mica supplied by the Federal Bureau of Mines. Considerable time was devoted to development of a protective coating technique, and a patent for a mica-splitting machine was issued

in 1952.22

Dow Corning Corp. announced development of a silicone resin for binding mica flake to glass. The resulting mica-glass fabric can be produced as either flexible or rigid sheets or tapes that can be used as slot liners in motors, as ground insulation, and as layer insulation in transformers. A second silicone resin, used as a solution in toluene and xylene, was developed as a suitable bonding resin for mica segments in commutators.23

The Wet Ground Mica Association, Inc., issued pamphlets on the effect of a wet-ground mica extender on the behavior of vinyl primer materials and a compilation of formulas containing mica for latex

paints.24

The International Organization for Standardization, Technical Committee on Mica, convened at Columbia University for the 1952 triennial meeting. Documents on methods for grading processed muscovite mica, classification of processed muscovite ruby mica, and specifications for processed phlogopite mica were discussed. Many revisions were accepted by the delegates from Brazil, France, Germany, India, the United Kingdom, and the United States in an effort to clarify the

1952, 4 pp. Wet Ground Mica Association, Inc., Compilation of Formulations for Latex Paints Containing Mica: Tech. Bull. 12, November 1952, 6 pp.

²⁰ Griffeth, R. L., and Younglove, E. R., Mica Paper Developed for Electrical Insulation: Materials and Methods, vol. 35, No. 6, June 1952, pp. 174, 176, 178, 180, 182, 184.

²¹ Electrical World, vol. 187, No. 26, June 1952, p. 127.

Chemical Week, Three to Make Ready: Vol. 70, No. 25, June 21, 1952, pp. 59-61.

²² Heyman, Moses D., Mica-Splitting Apparatus: U. S. Patent 2,612,889, Oct. 7, 1952.

²³ Materials and Methods, Silicones: Vol. 36, No. 4, October 1952, p. 134.

²⁴ Wet Ground Mica Association, Inc., An Investigation of the Effect of a Platy Mica Extender on the Behavior of Vinyl Primer Materials—part I: Tech. Bull. 10, August 1952, 4 pp.; part II: Tech. Bull. 11, 1952, 4 pp.

terminology. Working groups were set up to examine samples with a view to preparing a set of master standards for block mica and mica

splittings.25

During the year, specifications for classifying natural muscovite mica by visual qualities, and natural block and film mica by electrical testing, were accepted by the American Society for Testing Materials as tentative standards. Also, specifications for mica used in the manufacture of asphalt roofing and a method of test for pasted mica in electrical insulation were accepted by the society.27

An investigation was made to determine whether nonruby mica, as well as ruby mica, should be considered for stockpiling. Results showed that satisfactory capacitors had been made from electrically tested nonruby mica. The data confirmed the fact that nonruby mica tends to be more variable than ruby mica in quality, yield, and performance and showed that technologic factors favor the use of ruby mica when available in plentiful supply at reasonable prices. If the electrical test is used in conjunction with visual qualification, quantities of nonruby that would otherwise be rejected could be selected for stockpiling or industry use. Electrical testing eliminates some human factors of visual inspection, but strong justification must be established to counterbalance cost factors before sizable lots are tested.28

A method was described for making crystal structure models from

transparent, hollow, plastic balls.29

Patents were issued for converting mica into sheets by a conventional papermaking method and into a molded form, 30 for an insulating material comprised of mica flakes and a pine-tar bonding agent, 31 and for a method and apparatus for making high-temperature-resisting bonded-mica products. 82

WORLD REVIEW

The estimated world production of mica in 1952 decreased 4 per-

cent compared to 1951. Table 27 shows data for 1948-52.

Australia.—Production of mica in Australia was insufficient for domestic requirements. About 75 percent of the mica used in Australia was imported, principally from India. To compensate for a decline in production in the Northern Territory, exploration and development of mica at Yinnietharra was encouraged during the Allied Works Council recovered sizable quantities of highquality mica during World War II from Yinnietharra, but most of the mica was small grade.33

²⁸ Standardization, Mica ISO/TC 56: Vol. 23, No. 9, September 1952, p. 292.
26 ASTM, Natural Muscovite Mica Based on Visual Quality: D 351-52T, February 1952. Natural Block Mica and Mica Films Suitable for Use in Fixed Mica-Dielectric Capacitors: D 748-52T, February 1952.
27 ASTM, Asphalt Roofing Surfaced With Powdered Talc or Mica: D 224-52, 1952. Testing Pasted Mica Used in Electrical Insulation: D 352-52, 1952.
28 Tyler, P. M., Usability of Green Mica: Nat. Acad. Sciences Rept. MMAB-21-SC, Sept. 15, 1952, 21 pp. Q-Meter Testing as a Means of Augmenting Supplies of Capacitor Mica: Nat. Acad. Sciences Rept. MMAB-28-62, Sept. 25, 1952, 51 pp.
28 Hatch, R. A., Cometoro, J. E., and Pace, N. A., Transparent, Plastic-Ball, Crystal-Structure Models, Illustrated by Phlogopite Mica: Am. Mineral., vol. 37, 1952, pp. 58-67.
20 Gérand de Senarclens (assigned to Samica Corp.), Method of Treating Mica: U. S. Patent 2,614,055, Oct. 14, 1952.

²⁰ Gerand de Senarciens (assigned to Sainica Corp.), Method of Treating Mac. Corp.), Flexible Mica Compositions: U. S. Patent 2,575,733, Nov. 21, 1951.

²¹ Mansfield, W. R., and Hughes, F. C. (assigned to W. A. Baughton, C. L. Dawes, W. R. Mansfield, F. C. Hughes, and D. M. Hill), Method of and Apparatus for Making High-Temperature-Resisting Bonded-Mica Products: U. S. Patent 2,567,721, Sept. 11, 1951.

²³ Queensland Government Mining Journal, Australian Mica: Vol. 52, No. 596, June 1951, p. 407.

Belgian Congo.—Mica in large sheets is known to occur in pegmatites of the tin district of the eastern part of the Colony.³⁴ In Ruanda-Urundi, scrap mica has been recovered.

TABLE 27.—World production of mica, by countries, 1948-52, in metric tons 2 [Compiled by Helen L. Hunt]

[Complied by Helen :	D. 11uni	l			
Country ¹	1948	1949	1950	1951	1952
North America: Canada (sales)	3,584 27	1,583 (³)	1,760 (³)	2, 250 (³)	903
Sheet Scrap South America:	122 47,316	233 29, 806	262 62, 922	270 65, 200	317 68, 253
Argentina: Sheet 4	300 1,100 2,141 2	300 1,100 1,363 2	300 1,100 1,813 1	300 1,100 1,658 1	300 1,100 (³) 1
Austria	90 23 153 11	253 (³) 331 9	368 (3) 553 14	307 (³) 986 11	(3) (3) 41,000 18
BlockGround	14 50	11 50	165	42 173	} (3)
Ceylon. India (exports): Block. Splittings. Scrap. Korea, Republic of.	7,390	418 9,161 4,164	773 12, 070 3, 736 (³)	(⁵) 1,637 13,939 9,351 (³)	4 1,500 4 5,000 4 8,000 6
Taiwan (Formosa): SheetScrapAfrica:				15 470	1 13
Angola: Sheet Scrap and splittings Eritrea.	10 98 1	12 45 (⁵)	15 154 1	15 121	29 200 (³)
French Morocco: Sheet Scrap Kenya	} 144 (³)	{ 198 4	1 74 6	12 25 1	6 2
Madagascar: Block (phlogopite) Splittings Mozambique, including scrap Northern Rhodesia;	67 440 1	126 833 103 3	57 762 41 2	958 11 6	1,028 1 1 16
Southern Knodesia: Block Scrap South-West Africa, scrap	275 18	87 216	76 331 59	94 254 114	95 664
Tanganyika (exports): Block and sheet Ground Scrap Uganda	67 3 2	60 36 2	50 60 25 (5)	70 (⁵)	108 15 1 (8)
Union of South Africa: Sheet	1 1,361 427	1 1,065 736	14 1,357 738	5 1,774 536	2,663 501
Total (estimate) 1	90,000	70,000	105,000	125,000	120,000

¹ In addition to countries listed, mica is also produced in China, Rumania, and U. S. S. R., but data on production are not available; estimates for these countries by senior author of chapter are included in total.

² This table incorporates a number of revisions of data published in previous mica chapters.

³ Data not available; estimate by senior author of chapter included in total.

⁴ Estimate.

Less than 0.5 ton.

These figures include the following tonnages of damourite produced in South Australia: 1948: 368 tons; 1949: 703 tons; 1950: 707 tons; 1951: 513 tons; 1952: 468 tons.

³⁴ Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 5, November 1952, p. 50.

³⁴²⁰⁷⁰⁻⁻⁵⁵⁻⁻⁻⁻⁴⁸

Brazil.—The majority of the mica mines and prospects in Brazil are scattered through the eastern part of Minas Gerais, where Governador Valadares and Espera Feliz are the principal producing regions. mica belt trends north-northeastward through mountainous terrain for over 600 kilometers. In 1952 it was reported that four mines were opened in Pernambuco and Paraiba and a small quantity of mica was recovered from waste piles of earlier beryl-tantalite mining.35 ployment and revenue from mica mining in the northeastern States were economic benefits to the region during the long drought, which greatly reduced income from agriculture and livestock.

Canada.—Exports of crude mica, block mica, and mica splittings were shipped to the United States and Japan. The United States received 99 percent of the crude, 43 percent of the block, and about 12 percent of the splittings. All of Canada's exports of scrap and ground mica went to the United States.³⁶ Micha Mica Mines, Ltd., was formed to acquire a muscovite mica prospect in Cardiff Township. Haliburton County, eastern Ontario. A high content of mica was indicated by sampling of the principal outcrop on the 4,000-acre

group.37

French Cameroons.—A pegmatite dike containing books of muscovite mica 10 to 15 cm. in diameter was found near the village of Efok.38 Similar undeveloped deposits occur 50 kilometers northwest of Efok

and 40 kilometers southwest of Bafia.

India.—The Indian States of Bihar, Rajasthan, and Madras continued to be the principal mica-producing areas in the world. The most important district was Hazaribagh, Bihar. All mica produced in Rajasthan was shipped to Bihar for processing and export since no dealers' licenses were issued at Rajasthan. The Nellore and Nilgiris districts were the principal mica areas in the State of Madras.

A decline in the demand for Indian mica was discussed by the Mica Advisory Committee in September at Calcutta.39 The committee recognized the fact that the lack of domestic markets resulted in complete dependence on foreign markets and was mainly responsible for the crisis in the mica trade. Because purchases of splittings by India's largest consumer—the United States—declined and since about 75 percent of India's mica production is splittings, many small producers, who had resumed production to satisfy the heavy demand from the United States Government for stockpiling, were forced to close, and the larger producers had to reduce their output. mittee blamed the large-scale export of scrap mica at low prices for a portion of the decreasing market, stating that reconstituted mica made from scrap and development of synthetic mica might eventually destroy the Indian mica industry, which depends on the sales of splittings and scrap to continue profitable operations. According to Rajasthan Industrial and Mining Association, the Government of India must ban the export of scrap mica and develop other markets for the sale of mica, as well as stimulate internal consumption. 40

³⁵ Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 3, March 1952, p. 37.
36 Bureau of Mines, Mineral Trade Notes: Vol. 37, No. 1, July 1953, pp. 50-51.
37 Northern Miner, Micha Mica Formed by U. S. Interests: Vol. 37, No. 48, Feb. 21, 1952, p. 6.
38 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 1, July 1952, p. 39.
39 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 1, January 1953, pp. 34-39.
40 Engineering and Mining Journal, vol. 153, No. 8, August 1952, p. 155. Mining Journal (London), Indian Mica: Vol. 238, No. 6093, May 1952, p. 557; vol. 239, No. 6104, August 1952, p. 174.

MICA 747

Madagascar.—Production of phlogopite totaled 40.5 metric tons of block and 1,028.4 tons of splittings in 1952. Exports of block mica

totaled 73.3 metric tons and exports of splittings 654.7 tons.4

Phlogopite mica was produced principally from southern Madagascar near Isohy southward to Fort-Dauphin. The largest producing mica mine has been the Benato mica mine, 20 miles north of Betroka. The Union de Mica Mine about 62 miles south of Betroka at Ampan-Between 60 and 70 percent drandava produced 240 tons during 1952. of the production is exported to the United States.

Norway.—It was reported in 1952 that research was begun on a method of recovery of mica found in the tailings of the Mofjellet sphalerite mine, operated by Bergverkselskapet Nord-Norge. company estimated that at least 1,000 tons of ground biotite mica could be produced at the Mo-i-Rana flotation plant each year. Some consideration was given to reopening the State-owned Rendalsvik graphite mine if the ground mica could be sold at a favorable price as a byproduct. Almost the entire production of wet-ground, dryground, and "micronized" mica has been exported, principally to the United Kingdom and France. There was no production of sheet mica in Norway in 1952.42

Southern Rhodesia.—About 242,000 pounds of block mica was exported in 1952, with 218,000 pounds shipped to the United Kingdom and the remainder to Tanganyika and the Union of South Africa. The United States received about 184,000 pounds of the scrap-mica

exports and the United Kingdom about 160,000 pounds.43

Tanganyika.—In 1952 the Netherlands firm of Van Eeghen & Maclaine, Ltd., built a mica-sorting plant in Marogoro. The work force totaled about 100. This company was the fourth largest exporter of sheet mica from Tanganyika.44

⁴¹ Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 5, May 1953, p. 39.
⁴² Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 5, May 1953, pp. 39–40.
⁴³ Bureau of Mines, Mineral Trade Notes: Vol. 37, No. 1, July 1953, pp. 51–52.
⁴⁴ American Embassy ,Dar es Salaam, Tanganyika, State Department Dispatch 282, June 16, 1952, 2 pp.

Molybdenum

By Robert W. Geehan 1

OMESTIC production of molybdenum concentrates in 1952 was higher than that of any prior years except 1942 and 1943. Production and shipments of concentrates were 11 and 13 percent more, respectively, in 1952 than in 1951. In spite of the increased production the metal remained in short supply and programs of industry and the Government designed to increase output in future years were initiated. Production of the primary products of molybdenum in 1952 was slightly less than in 1951, but shipments of these materials increased. Industry stocks of both concentrates and products increased and were 36 and 11 percent, respectively, higher at the year end than those available at the end of 1951.

During 1952 molybdenum concentrates were allocated by Defense Materials Procurement Agency, and most of the primary products were under the allocation and end use control orders of National Production Authority. Both concentrates and products were included in the distribution plans that the International Materials Conference submitted to member nations for approval. Allocations of pure molybdenum were discontinued by National Production

Authority in September.

Government Regulations and Programs.—During 1952 the following regulations of the Government were important to producers and consumers of molybdenum-bearing materials:

MO-8-Defense Materials Procurement Agency. Allocations of

molybdenum concentrates.

M-80—National Production Authority. Iron and steel alloying materials and alloy products; allocations, end use, and reporting

procedures.

M-81—National Production Authority. Pure tungsten and pure molybdenum; allocations, end use, and reporting procedures. Amended September 12, 1952, to remove the requirements for allocations.

TABLE 1.—Salient statistics of molybdenum concentrates in the United States, 1943-47 (average) and 1948-52

	Molyt	denum (ontaine	l, thousa	nds of po	unds
_	1943–47 (average)	1948	1949	1950	1951	1952
Production Shipments (Including exports) Exports '1 Imports for consumption Consumption Stocks (industry), Dec. 31 3	35, 283 33, 208 4, 495 826 29, 864 19, 427	26, 706 29, 669 4, 132 25, 156 21, 206	22, 530 23, 280 5, 320 48 19, 960 19, 159	28, 480 44, 544 6, 235 3 26, 029 4, 326	38, 855 37, 955 3, 729 4 33, 691 5, 058	43, 259 42, 717 6, 172 50 32, 715 6, 856

<sup>Includes roasted concentrates.
At mines and at plants making molybdenum products.</sup>

Assistant chief, Ferrous Metals and Alloys Branch.

DOMESTIC PRODUCTION OF ORES AND CONCENTRATES

Domestic production of molybdenum in concentrates during 1952 was more than that of any years except 1942 and 1943. Production of concentrates in 1952 totaled, in thousands of pounds (metal content), 43,259 contrasted to 38,855 in 1951, 40,363 in 1941, 56,942 in 1942, and 61,667 in 1943. During 1952 the greatest production was obtained in the third quarter, when 13,042 thousand pounds was produced; in the following quarter production dropped to 11,065.

The most important molybdenum-bearing mineral is molybdenite (MoS₂), which was the source of virtually all the molybdenum mined in 1952. Wulfenite (PbMoO₄), once mined from several deposits in southwestern United States, has not been reported as produced since 1944. Powellite [Ca(Mo,W)O₄] contributed a relatively small quantity of molybdenum in 1952. Some molybdenum contained in tungsten concentrates is recovered at steel plants; this material is not

included in the statistical tables.

Molybdenite is produced at mines operated chiefly for molybdenum and as a byproduct at mines operated mainly for copper or tungsten. The molybdenite content of raw ore mined at the former ranges from about 0.4 to 1.75 percent; at the latter the range is about 0.01 to 0.09 percent. In both cases a molybdenite concentrate is produced; the molybdenite content of the concentrate shipped ranges from about 54 to 92 percent, while 90 percent is considered a standard grade for price quotations. Output of mines operated solely or almost solely for molybdenum was 23,992 thousand pounds (metal content) in 1952, a 5-percent increase from 1951; byproduct concentrates from copper and tungsten operations totaled 19,267 thousand pounds, an increase of 20 percent.

Molybdenum was produced in six States in 1952. Colorado led, followed in order by Utah, Arizona, New Mexico, California, and Nevada. Shipments of molybdenum concentrates (metal content) comprised 37,427 thousand pounds to domestic consumers and 5,290 thousand pounds for export; total shipments increased 13 percent compared with 1951. Nearly all of the concentrates consumed are shipped to plants in Pennsylvania for conversion to primary products; however, the output of Miami Copper Co. is roasted before shipment.

Actions of the Government designed to stimulate production were important. In July 1952 Climax Molybdenum Co. signed a contract negotiated with Defense Materials Procurement Agency. This agreement provides for an investment of \$9.5 million by the company to provide facilities for producing molybdenum concentrates from submarginal ores. The first output will be purchased by the Government at \$1.24 a pound of contained molybdenum; prices are expected to range from \$1 to \$1.07 after large-scale production is obtained. Climax Molybdenum Co. also has contracts with the Government for production from the standard-grade portion of the ore body.²

An interim revision of the expansion goal for molybdenum ore and concentrates was established at 70,000,000 pounds of domestic production in 1954, measured in terms of molybdenum content.³

Molybdenum Mines.—Ores that contained molybdenum as the chief value were worked by two domestic mines in 1952; their combined

E&MJ Metal and Mineral Markets, vol. 23, No. 28, July 10, 1952, p. 3.
 American Metal Market, vol. 59, No. 222, Nov. 19, 1952, p. 1.

output represented 55 percent of the molybdenum in concentrates produced in 1952. The Climax, Colorado, mine of Climax Molybdenum Co. was the world's leading producer of molybdenite concentrates. This firm was completing a construction and mine development program and began work to provide facilities for production and concentration of submarginal ores.⁴

The Molybdenum Corp. of America produced molybdenite concentrates at the Questa mine, Questa, N. Mex. This mine was opened in 1919 and since 1923 has been a regular producer. A portion of the 1952 output was from tailings produced in prior years; production of

concentrates was 14 percent less than in 1951.

Byproduct Sources.—During 1952 molybdenite concentrates were produced as a byproduct at 6 domestic copper mines and 1 domestic tungsten plant. Output of this group represented 45 percent of the molybdenum contained in concentrates produced in 1952.

molybdenum contained in concentrates produced in 1952.

Bagdad Copper Corp., Bagdad, Ariz., began to recover molybdenite concentrates during 1951 and produced 320,128 pounds of molybdenite

in 1952.

Kennecott Copper Corp. operated molybdenite recovery units at its Chino Mines Division (Hurley, N. Mex.), Nevada Mines Division (McGill, Nev.), and the Utah Copper Division (Arthur and Magna mills, near Salt Lake City, Utah). Production of molybdenite increased 22 percent at Hurley, 2 percent at McGill, and 16 percent at the Arthur-Magna plant. The increased output resulted from treatment of a larger tonnage of copper ore and from improved metallurgical practices in the molybdenum section of the mills.

Miami Copper Co. has been a regular producer of molybdenite concentrates since 1938 as a byproduct of its copper operations at Miami, Ariz. The concentrates are converted to molybdic oxide at

the same location.

The Phelps Dodge Corp. produced 1,116 tons of molybdenite concentrates as a byproduct of milling copper ore at its Morenci, Ariz.,

operations during 1952.

United States Vanadium Corp. recovered molybdenum products as a byproduct of tungsten ores and concentrates at its Pine Creek mill and chemical treatment unit near Bishop, Calif. The plant treats tungsten ores produced at the Pine Creek mine and tungsten ores and concentrates produced by others.

TABLE 2.—Molybdenum in ore and concentrates produced and shipped from mines in the United States, 1943-47 (average) and 1948-52

[Thousands of pounds and dollars]

	1943-47 (average)	1948	1949	1950	1951	1952
Production	35, 283	26, 706	22, 530	28, 480	38, 855	43, 259
	33, 208	29, 669	23, 280	44, 544	37, 955	42, 717
	23, 436	20, 418	19, 332	37, 729	36, 177	40, 845

[▶] Figures for 1943-44 represent shipments from mines, plus concentrates converted to oxide by producer at Miami, Ariz.; those for 1945-52 represent shipments to domestic and foreign customers, plus concentrates converted to oxide at Miami, Ariz., and Langeloth, Pa.

2 Largely estimated by Bureau of Mines.

⁴Mining World, vol. 14, No. 13, December 1952, pp. 34-35.

CONSUMPTION AND USES

Consumption, as measured by shipments to domestic consumers of molybdenum primary products, exceeded that of 1951 by 1 percent. About 90 percent of the molybdenum is used in ferrous alloys, to which it is added as molybdic oxide, calcium molybdate, or ferromolybdenum. A relatively small quantity of molybdenite is used by a few steel companies as an addition in the ladle when both sulfur and molybdenum are required in the product to improve machinability. Molybdenum is also used in the metallic form in the electrical industry, and alone or in nonferrous alloys for certain high-temperature applications; molybdenum disulfide (molybdenite) is used in special lubricants, and various molybdenum compounds are used as fertilizers, in pigments, for ceramics, and as catalysts. The following distribution of molybdenum products by use is indicated in reports of the National Production Authority: Steel 63.7 percent, gray iron and malleable castings 27.8 percent, molybdenum metal 1.9 percent, paint and pigments 1.8 percent, welding electrodes 1.4 percent, catalysts 0.8 percent, lubricants 0.3 percent, all other (includes chemicals and nonferrous alloys) 2.3 percent.

Molybdenum is so widely used in alloy steels that it is difficult to list the types and uses. Modern usage ordinarily calls for remarkably small quantities of this element per ton of steel; an exception is highspeed steel, where 6 percent molybdenum is a common composition. Additions in the range 0.1 to 0.5 percent molybdenum are common in many alloy steels that also contain chromium and nickel. Molybdenum is used in steels to promote uniform hardness and strength, to reduce softening when tempering, to reduce the tendency of certain steels to become brittle after tempering, to increase strength and creep resistance at elevated temperatures, to retard embrittlement in steels subjected to stress at temperatures ranging from 600° to 1,000° F., to aid corrosion resistance, to impart red hardness to high-speed steels, and, along with other alloying elements, for many special applications. In cast irons molybdenum increases the tensile strength, promotes uniform strength in castings with light and heavy sections, improves high-temperature strength, improves resistance to chipping, and improves hardenability of heat-treated castings. In both iron and steel the ability to use a very small quantity of molybdenum to yield the desired effect minimizes the cooling action at the time the alloying element is added to the melt.

TABLE 3.—Production and shipments of molybdenum products ¹ in the United States, 1943-47 (average) and 1948-52, in pounds of contained molybdenum

		Shipments			
Year	Production	To domestic consumers	Exports 2	Total	
1943–47 (average)	29, 333, 500 24, 445, 300 19, 624, 200 25, 347, 800 32, 775, 000 32, 382, 600	26, 672, 300 23, 808, 900 15, 019, 000 32, 735, 700 29, 845, 000 30, 210, 700	1, 757, 000 1, 215, 800 1, 314, 100 1, 955, 100 1, 387, 700 1, 843, 600	28, 429, 300 25, 024, 700 16, 333, 100 34, 690, 800 31, 232, 700 32, 054, 300	

 $^{^{\}rm I}$ Comprises ferromolybdenum, molybdic oxide, and molybdenum salts and metal. $^{\rm 2}$ Reported by producers to the Bureau of Mines.

STOCKS

Industry stocks of both concentrates and products increased during the year; details are listed in table 4.

TABLE 4.—Industry stocks of molybdenum concentrates and products at producers' plants, Dec. 31, 1943-47 (average) and 1948-52, in thousands of pounds of contained molybdenum

Year	Concen- trates ¹	Products 2	Total
1943-47 (average)	19, 427	8, 952	28, 379
	21, 206	7, 547	28, 753
	19, 159	10, 838	29, 997
	4, 326	1, 495	5, 821
	5, 058	3, 037	8, 095
	6, 856	3, 373	10, 229

¹ At mines and at plants making molybdenum products.

PRICES

There was no change in the prices quoted for molybdenum concentrates or primary products during 1952. The published price, f. o. b. mines, of molybdenite in concentrates containing 90 percent MoS₂ was 60 cents a pound (equivalent to \$1 a pound of molybdenum contained). The prices of the principal molybdenum products are based on a pound of contained molybdenum, f. o. b. producer's plant. During 1952 the prices quoted were as follows: Molybdic oxide \$1.14, calcium molybdate \$1.15, ferromolybdenum \$1.32, and molybdenum metal \$3. These prices have remained unchanged since December 1, 1950.

FOREIGN TRADE 5

Imports of molybdenum ores and concentrates into the United States are normally small; 49,600 pounds general import and import for consumption (contained molybdenum) were received in 1952, compared with 8,200 pounds general import and 4,200 pounds import for consumption in 1951. The entire quantity came from Canada.

Exports of molybdenum concentrates and products in 1952 were restricted by export quotas and by allocations from Defense Materials Procurement Agency or National Production Authority, which were required for concentrates and products, respectively, in addition to an export license from the Office of International Trade. However, the level of exports approved was only slightly below that of 1950, and shipments for export were well above those in 1951. Germany, France, United Kingdom, and Canada were the chief foreign markets in 1952.

Exports of ferromolybdenum totaled 1,090,100 pounds, gross weight 6 in 1952 compared with 1,483,800 pounds in 1951. Canada (439,500 pounds), Belgium and Luxemburg (160,000 pounds), Austria (81,200 pounds), Italy (65,600 pounds), and Australia (51,800 pounds)

² Comprises ferromolybdenum, molybdic oxide, and molybdenum salts and metal.

Figures on imports and exports (unless otherwise indicated) compiled by Mae B. Price and Elsie D.
 Page, of the Bureau of Mines, from records of the United States Department of Commerce.
 Ferromolybdenum contains about 60-65 percent molybdenum.

were the most important markets for ferromolybdenum in 1952. Exports in 1952 also included the following molybdenum products:

	Pounds -
Metals and alloys	172, 285
Wire	14, 605
Powder	4, 096
Primary forms, mainly rods, sheets, and tubes	8, 040

Exports of molybdenum ores and concentrates, including roasted concentrates, are listed on table 5. Roasted concentrates are classed as a molybdenum product in statistics of the Bureau of Mines. The following tabulation lists shipments for export reported to the Bureau of Mines from 1950 to 1952; because of the time lag between shipment from mine or plant and an actual export this information is not directly comparable to the data in table 5.

Shipments for export; molybdenum content,			
thousands of pounds:	1950	1951	1952
Concentrates (not roasted)	5, 386	3, 270	5, 290
Roasted concentrates (oxide)	´790	751	1, 173
All other primary products	1, 165	637	671

The International Materials Conference issued press releases outlining plans of distribution for molybdenum concentrates and primary products that had been accepted by the member nations. These plans were based on estimated production and shipments; however, they serve as a means of indicating the approximate level of international trade. Concentrates include raw and roasted molybdenite concentrates; primary products include ferromolybdenum, molybdic acid, and molybdenum salts, including calcium molybdate and molybdic oxide. Quantities listed as concentrate include material for conversion to primary products for export. Table 6 lists the distribution for 1952.

Tariff.—The tariff on molybdenum concentrates and products remained unchanged in 1952. The duty on ore and concentrate was

TABLE 5.—Molybdenum ore and concentrates (including roasted concentrates) exported from the United States, 1950-52, by countries of destination

[U.S. Department of Commerce]

	[0121			•		
	1950 1951			1950 1951 1		
Country	Molyb- denum content (pounds)	Value	Molyb- denum content (pounds)	Value	Molyb- denum content (pounds)	Value
Australia Austria Belgium-Luxembourg Canada Canal Zone Denmark Finland France Germany Italy Japan Mexico Netherlands New Zealand Spain Sweden Switzerland United Kingdom Total	226, 297 465 	\$19, 515 194, 187 458 591, 249 956, 329 38, 638 34, 197 65, 000 211, 195 3, 342, 637 5, 453, 652	9, 996 294, 687 700 2, 957 420, 161 761, 731 135, 712 62, 340 41, 524 241, 349 1, 758, 108 3, 729, 265	\$11, 397 313, 957 712 7, 841 397, 125 786, 750 147, 408 51, 476 50, 000 257, 051 1, 711, 739 3, 735, 456	59, 085 34, 965 23, 154 535, 800 3, 000 4, 400 1, 735, 176 1, 986, 670 192, 994 199, 035 12, 622 10, 080 9, 990 479, 680 2, 476 882, 355 6, 171, 932	\$67, 567 38, 859 27, 971 609, 414 352 3, 900 5, 720 1, 958, 951 2, 121, 494 225, 967 250, 192 13, 082 11, 491 13, 447 546, 475 3, 120 892, 693

35 cents a pound on the metallic molybdenum contained and was 25 cents a pound of molybdenum contained plus 7.5 percent ad valorem on ferromolybdenum, molybdenum metal and powder, calcium molybdate, and other compounds and alloys of molybdenum.

TABLE 6.—Summary of International Materials Conference distribution of molybdenum in 1952

[Metric tons of metal content]

Country	Concen- trates	Primary products ¹	Country	Concen- trates	Primary products 1
Argentina Australia Austria Belgium Brazil Canada Chile Denmark Finland Formosa France Germany India Italy Japan Mexico Netherlands	1, 217. 00 972. 95 78. 50 225. 00	0. 52 85. 00 76. 50 96. 00 20. 20 375. 50 6. 00 10. 00 10. 00 104. 00 104. 00	New Zealand Norway Portugal South Africa Spain Sweden Switzerland Turkey United Kingdom United States Yugoslavia Reserve Total estimated production Total distribution of	468. 00 4. 00 2, 215. 50 16, 121. 60	8.00

¹ Raw material to produce these products is included in the concentrate column.

TECHNOLOGY

Mining.—Molybdenum ores are mined in large, low-grade deposits and in relatively small quantities from small, high-grade ore bodies. In addition, significant quantities of molybdenite concentrate are produced as a byproduct of copper mining. Mining methods range from large-scale open-cut or underground caving to nonsystematic workings following small ore showings. Significant development in 1952 included the following: Climax Molybdenum Co. was completing an extensive development of the Storke level which will permit mining the portion of the ore body between this and the Philipson level, which is 300 feet higher; past production has been from ore above the latter.

Milling and Production of Primary Products.—Molybdenum ores of all types require concentration before a useful product can be made. Flotation is standard practice at both molybdenum mines and mines where molybdenum is produced as a byproduct. Constant research designed to improve recovery and reduce costs is in progress. 1952 recovery at byproduct mines improved. The Kennecott Copper Corp. modified its flow sheets at the Arthur and Magna mills in Utah to provide re-treatment of copper-plant tailings for recovery of molyb-The previous method provided for recovery of molybdenite from a concentrate produced in the copper section of the mills. Construction of the new plant facilities was still in progress at year end, but some of the new units were in use at the Arthur mill during the Flotation cells installed in the new sections are trough-type 62-inch Fagergren machines; each row contains 16 cells. More efficient equipment for recovering molybdenum at the McGill, Nev., mill of Kennecott Copper Corp. resulted in an increase in production of molybdenum. At Climax, Colo., the Climax Molybdenum Co. installed a gyratory crusher, said to be one of the world's largest, for

⁷ Mining World, vol. 14, No. 13, December 1952, pp. 34-35.

primary crushing of ore from the newly developed Storke level.8 crushed ore will be moved by 4,700-foot conveyor system to the present mill, which has been expanded to a capacity of 20,000 tons per day.

Molybdenite concentrates are converted to oxide by roasting; this product is used as a raw material for production of nearly all other primary molybdenum products, and for direct charging to iron and

steel furances.

Metal.—Molybdenum metal is produced by reduction of a purified In recent years there has been a tremendous interest in this metal because of its high melting point and good thermal conductivity. The metal has been produced by hydrogen reduction, followed by sintering of the resulting metal powder for such applications as components of vacuum tubes and X-ray equipment. Because many potential uses of this metal call for large sheets or sections and require the virtual elimination of impurities, such as oxygen, new techniques have been developed for producing large ingots in vacuum furnaces. During 1952 the results of many research projects on production and fabrication were published.

Methods of purifying commercial molybdenum metal by melting in a high vacuum and tests of the resulting metal were described;

the following is quoted from this paper:

The as-cast molybdenum of high purity had considerably greater ductility than did the less pure commercial as-cast metal. Athough transverse-grain specimens of the commercial as-cast molybdenum fractured intergranularly in a brittle manner at room temperature, similar specimens of the high purity molybdenum were ductile under the same test conditions. Therefore, a reduction in the amounts of the impurities at the grain boundaries of cast molybdenum eliminated intergranular brittleness and thereby had a marked influence on the bend ductility of the metal.

Bend tests on longitudinal-grain specimens, in which case the normal stress on the grain boundaries was comparatively low, indicated that the ductility of the individual grains of molybdenum was improved with an increase in purity.

The fact that welding methods require complete shielding from oxygen and that traces of carbon are undesirable was the subject of one paper,10 and a new material for very high temperature brazing of molybdenum was developed.11 Methods of forming molybdenum by slip casting and hot pressing were described.12

Technical information on the thermal conductivity of molybdenum

⁸ Mining Record, vol. 63, No. 47, Nov. 20, 1952, p. 8.

• Rengstorff, G. W. P., and Fischer, R. B., Cast Molybdenum of High Purity: Journ. Metals, vol. 4, No. 2, February 1952, pp. 157-160.

• Boam, Willard M.: Jet Engines Push Welded Molybdenum Study. Iron Age, vol. 170, No. 2, July 10, 1952, pp. 145, 148.

• Materials and Methods, vol. 36, No. 3, September 1952, p. 170.

• Miller, G. L., Iron Age, vol. 169, No. 16, Apr. 17, 1952, pp. 122, 124.

metal was published; 18 the following list of conductivity values is quoted from this publication:

Conductivity values

	Thermal conductivity
Temperature (° F.):	$(B. t. u./hrft.^2-\circ F./ft.)$
1,000	70. 3
1,100	69. 1
1,200	67. 9
1,300	66. 7
1,400	65. 4
1,500	64. 2
1,600	62. 9
1,700	61. 6
1,800	60. 4
1,900	59. 0
2,000	57. 7
2,100	

Alloys.—Research on both ferrous and nonferrous alloys containing molybdenum was conducted in 1952. The phase diagrams at 1,200° C. for iron-cobalt-molybdenum, iron-nickel-molybdenum, and nickel-cobalt-molybdenum were published.¹⁴ The use of boron to improve heavy sections of molybdenum steel, 15 information regarding preparation and some properties of the molybdenum-borides 16 and the effects of tungsten or molybdenum in cobalt-chromium alloys 17 were the subjects of other reports.

WORLD REVIEW

Austria.—A small production of molybdenum is obtained as a byproduct of lead-zinc mining. The Bleiberg-Kreuth mine in Carinthia is the principal producer; others are the Dirstentritt in Tirol and Scheinitzen in Carinthia.18

Canada.—The La Corne mine in Quebec was in production during 1952.

Chile.—Molybdenite is produced as a byproduct of copper mining in Chile; this country is the only large producer in the Western Hemisphere except the United States.

[&]quot;Mikol, Edward P., The Thermal Conductivity of Molybdenum over the Temperature Range, 1,000°-2,100° F.: Eng. Exp. Sta., Coll. of Engineering, Univ. of Alabama, Tech. Rept. 2, May 1952.

"Das, D. K., Rideout, S. P., and Beck, Paul A., Intermediate Phases in the Mo-Fe-Co, Mo-Fe-Ni, and Mo-Ni-Co Ternary Systems: Jour. Metals, vol. 4, No. 10, October 1952, pp. 10-11-1075.

"Bardgett, W. E., English Use Boron in Normalized and Drawn Heavy Sections: Iron Age, vol. 169, No. 2, Jan. 10, 1952, pp. 81-84.

"Steinitz, R., Binder, I., and Moskowitz, David, System Molybdenum-Boron and Some Properties of the Molybdenum-Boroles: Jour. Metals, vol. 4, No. 9, September 1952, pp. 983-987.

"Fletcher, E. E., and Elsea, A. R., Effects of Tungsten or Molybdenum Upon the Alpha-Beta Transformation and Gamma Precipitation in Cobalt-Chromium Alloys: Jour. Metals, vol. 4, No. 5, May 1962, pp. 524-526. 1952, pp. 524-526.

1 Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 5, May 1952, p. 20.

French Cameroons.—Deposits in the Mungo region were de-

scribed. No production was reported during 1952.

Japan.—Molybdenum has been produced from several small mines; during 1952 production was stimulated because of the worldwide shortages of the metal.

Norway.—The Knaben mine near Egersund on the southwestern coast of Norway has been the most important source of molybdenum

production.

Union of Soviet Socialist Republics.—Important quantities of molybdenum are probably produced from the deposit east of Kounrad near Lake Balkhash; however, no reliable information is available regarding the output.

TABLE 7.—World production of molybdenum in ores and concentrates, by countries,1 1943-52, in metric tons 2

[Compiled by Berenice B. Mitchell	[Compiled	bу	Berenice	в.	Mitchell
-----------------------------------	-----------	----	----------	----	----------

Country 1	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952
Australia Austria Canada Chile	15 5 178 680	9 7 509 1,051	(3) 1 228 841	20 184 560	2 1 207 402	(4) 83 532	3 9 558	3 18 28 992	1 19 104 1,725	(8) 5:2 135 1,644
China: Manchuria Other Provinces Finland France	5 516 (4) 108 11	\$ 516 (4) 110	\$ 30 (4) 92	(4) (4) 99	(4) (4) 70	(1)	(4) (4)	(4) (4)	(4)	(4)
Indochina Italy Japan Korea, Republic of	16 6 87 291	(3) (3) 6 189 394	6 108 54	52	18	1 2	11	13	54 (4)	87 (4)
Mexico	1, 138 7 227 85	717 	468 76 29	818 39 10 4	136 32 98 3	79 2	71 2	67	125	122
Sweden	27, 972 (4)	20	13, 972 215	8, 264 72	12, 268	ī	5 10, 219 243	12, 918 174	17, 625 308	(4) (4) 19, 622 (4)
Total (estimate)	31, 400	21, 400	16, 200	10, 800	14,000	13, 600	11, 500	14, 600	20, 500	22, 200

Molybdenum is also produced in North Korea, Rumania, Spain, and U. S. S. R., but production data are not available. Estimates by author of chapter are included in total.
 This table incorporates a number of revisions of data published in previous molybdenum chapters.

^{It is table monitorists to the state of the stat}

¹⁹ Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 1, July 1952, p. 19.

Natural and Manufactured Iron Oxide Pigments

(Mineral-Earth Pigments)

By Robert D. Thomson¹ and Frances P. Uswald²

HE MINERAL pigments discussed in this chapter are divided into two groups—natural mineral iron oxide pigments, commonly known as mineral-earth pigments, and chemically manufactured iron oxide pigments, referred to as pure or synthetic. The principal color classifications of commercial materials are black, brown, red, and yellow, each composed of numerous shades varying in masstone, undertone, and tinting strength. The vicinity of Cartersville, Bartow County, Ga., has been a prominent producer of natural iron oxide pigments, especially ocher. Another important district is in Berks, Lehigh, and Northampton Counties, Pa. Production is recorded also from California, Illinois, New Jersey, New York, Ohio, Vermont, and Virginia. Natural iron oxide pigments are prepared for market by washing, drying, grinding, blending, and calcin-Synthetic iron oxide pigments are produced by the calcination of copperas or the controlled oxidation of precipitated ferrous hydroxide. The principal uses of iron oxide pigments are in paints, wood and paper stains, linoleum, oilcloth, mortar, plaster, rubber, brick, and other pigmentable materials. Synthetic pigments have greater tinting strength and uniformity, but natural pigments are preferred in certain products and continue to be important in the industry.

PRODUCTION

Sales of natural and synthetic iron oxide pigments in 1952 were approximately 2 percent lower in quantity than in 1951 (tables 1 and 2). The trend toward greater use of synthetic pigments continued Synthetic iron oxide pigments made up 45 percent of the total tonnage and 77 percent of the value. The remainder were natural iron oxide pigments.

In 1952 sales of natural and manufactured iron oxide pigments were reported from 11 States, as shown in table 3. Over one-third of the tonnage sold was from six plants in Pennsylvania. Illinois, Ohio.

and Wisconsin, as a group, ranked second.

¹ Commodity-industry analyst. ² Statistical clerk.

TABLE 1.—Natural and manufactured iron oxide pigments sold by processors in the United States, 1943-47 (average) and 1948-52

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	105, 742	\$9, 192, 799	1950	129, 256	\$14, 762, 782
1948	111, 317	10, 957, 422	1951	126, 432	14, 987, 075
1949	1 104, 322	1 10, 573, 338	1952	123, 343	13, 606, 609

¹ Revised figure.

TABLE 2.—Natural and manufactured iron oxide pigments sold by processors in the United States, 1951-52, by kinds

Pigment	19	51	1952		
r igment	Short tons	Value	Short tons	Value	
Mineral blacks Precipitated magnetic blacks Natural brown oxides (metallic browns) Vandyke brown (finished pigment) Pure browns (96 percent or better iron oxides) Natural red oxides Pure red oxides (98 percent or better Fe ₂ O ₃) Venetian reds Pyrite cinder Other red iron oxides Natural yellow oxides (high Fe ₂ O ₃) Pure yellows (85 percent or better Fe ₂ O ₃) Other (100 Fe ₂ O ₃) Other (100 Fe ₂ O ₃) Other (100 Fe ₂ O ₃)	7, 710 150 1, 072 23, 497 21, 560 4, 910 1, 419 17, 096 6, 178	\$342, 013 479, 930 494, 317 29, 102 273, 661 1, 168, 420 5, 248, 167 490, 295 113, 773 2, 230, 449 142, 321 2, 747, 668 105, 628	18, 101 2, 319 7, 335 1, 156 27, 140 21, 841 4, 625 1, 238 12, 255 4, 319 13, 001 2, 573	\$338, 843 545, 258 551, 446 24, 528 299, 256 1, 097, 470 4, 996, 461 454, 370 100, 231 1, 539, 182 116, 638 2, 610, 861 83, 640	
Siennas: Burnt	1, 458	195, 848 234, 867 424, 760 86, 954 178, 902	866 1,014 2,587 661 2,184	149, 915 159, 738 316, 573 75, 625 146, 574	
Total	126, 432	14, 987, 075	123, 343	13, 606, 609	

TABLE 3.—Sales of natural and manufactured iron oxide pigments in the United States, 1952, by States

State	Number of pro- ducers	Quantity (short tons)
Georgia. Pennsylvania. Illinois Ohio.	1 6 7	3, 047 46, 992 41, 918
Wisconsin Maryland New Jersey New York Virginia Other States ¹	} 7	16, 486
Total	25	14, 900

¹ Includes California, North Dakota, and a quantity unspecified by State.

PRICES

According to the Oil, Paint and Drug Reporter, prices were quoted as follows during December 1952 (in cents per pound, bags, works, carlots, unless otherwise noted):

Mineral black, 1.6–6.75
Metallic brown oxide, 3.75
Sap brown, crystals, 12
Sap brown, powdered, 13
Sienna, burnt, 4.25–15.25
Sienna, raw, 4.5–13
Umber, burnt, American, 6
Umber, burnt, Turkey, 6.25
Umber, raw, American, 6.25–6.50
Umber, raw, Turkey, 6.50–6.75
Vandyke brown (bbl.), 11
Metallic red (bbl.), 2.50
Natural red iron oxide, 5.75–9.25
Persian Gulf oxide, 6.75–7.00
Spanish oxide (bbl.), 5.75

Venetian red, 3.50-5.25
Natural yellow iron oxide, 1.41-2.50
Natural yellow iron oxide, French type, 4.50.
Natural yellow iron oxide, Peruvian type, 1.85-2.10
Golden American yellow ocher, 1.25-2.75
Synthetic (pure) black iron oxide, 11.75
Synthetic (pure) brown iron oxide, 12.75-13.00
Synthetic (pure) red iron oxide, 12.25-12.50
Synthetic (pure) yellow iron oxide, 10
Special, high color, red iron oxide, 6

FOREIGN TRADE³

Imports of mineral pigments were quantitatively less for every category in 1952 compared with 1951, with an overall decrease of 37 percent (table 4). Natural iron oxide pigments were imported principally from Spain and the United Kingdom. West Germany supplied 56 percent of the United States imports of synthetic iron oxides and Canada 35 percent. Ocher, crude and washed, was

TABLE 4.—Selected mineral pigments imported for consumption in the United States, 1949-52

[0. S. Department of Commerce]										
	1949		1950		1951		1952			
Pigments	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value		
Iron oxide pigments: Natural	1, 194 767 89 211 1, 758 118 4, 137	120, 281 5, 058 16, 567 47, 730	2, 220 157 474 3, 259 261	6, 759 33, 433 88, 168 18, 562	5, 303 815 779 3, 457 174	37, 494 62, 421 93, 761	3, 317 798 566 1, 603	46, 777 49, 702 44, 435 6, 685		

IU. S. Department of Commercel

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

imported from three foreign countries, of which French Morocco represented about 79 percent of the imports and the Union of South Africa 21 percent. All crude umber imports came from Malta, while washed umber was imported from Malta, Italy, and the United Kingdom, in order of importance. Siennas, crude and washed, were imported principally from the countries that exported washed umbers.

Various deposits of red and yellow others exist in Belgian Congo,

but these have been used only in small quantities by natives.4

The mineral-pigment industry of the Netherlands has recovered remarkably from heavy damage that occurred during World War II and is becoming increasingly important in the country's exports. White and colored pigments are manufactured in 18 plants located mostly in the mining area in the southern section of the country.

Exports, as shown in table 5, declined 17 percent in 1952 and represent the lowest annual exports of mineral pigments since 1943.

TABLE 5.—Mineral-earth pigments exported from the United States, 1949-52,1 by countries

	1	949	. 1	.950	, . 1	951	1	952
Country	Short	Value	Short	Value	Short	Value	Short	Value
ArgentinaAustria	. 9	\$2, 549 9, 354	(²) 41	\$1, 082 10, 274	(²) 6	\$600 1, 548	46	\$20, 250
Belgian Congo Belgium-Luxembourg			6	856	. 9	1, 839	2	460
Belgium-Luxembourg	201	39, 467	85	15, 035	39	9, 859	8	2, 912
Bolivia	21 155	7, 555 43, 575	2 27	900 16, 056	25 93	8, 819 18, 185	1 41	187 11, 786
Brazil Canada Canada	3,076	248, 780	2, 945	274, 311	2, 528	282, 136	2, 545	288, 382
Chile	80	14, 801	2, 540	214, 511	2, 323	8, 322	18	4, 950
China	21	5, 081	13	7, 970				
China Colombia	110	38, 891	114	39, 986	120	46, 179	93	31, 728
Cuba Dominican Republic	298	41, 395	284	54, 724	294	61, 885	297	59, 502
Dominican Republic	19	5, 159	18	4, 566	29	8, 302	33	9, 693
France	24	8, 132	17	8, 646	17	10, 874	9	12, 179 652
Greece	75 35	18, 158 14, 294	14 53	2, 657 13, 955	7 49	2, 279 13, 180	23	5, 877
Guatemala Haiti	42	4, 242	63	6, 133	52	12, 761	45	5, 049
Honduras	44	1, 288	4	1, 468	5	1, 512	00	4, 559
Hong Kong	77	20, 210	5	1, 295	2	702	(2) 31	136
Indonesia	44	10, 314	27	10, 099	11	4,016	``31	9, 284
IndonesiaIsrael and Palestine	4	1,049	3	773	17	4, 783	*	895
Italy	118	33, 614	51	12, 754	37	5, 197	6	14, 942
Japan	1	1,064	18	4, 450	17	4, 186	24	8, 108
Mexico	124	30, 191	85	25, 323	106	48, 629	90	31, 787 5, 292
Netherlands	452	44, 026	227	9,029	341	13, 766	135 10	3, 657
Netherlands Antilles	17 8	5, 097 2, 103	11 61	2, 266 5, 965	21 17	6, 354 3, 456	11	2, 900
Panama Peru	21	4, 827	12	3, 760	29	9, 694	10	2, 954
Philippines	132	23, 169	85	17, 729	93	24, 362	47	10, 321
Portugal	38	9, 118	7	1, 587	2	1, 126	5	1, 356
Sweden	7	2,058	1 5	1, 341	24	5, 276	6	1, 578
Switzerland	34	3, 733	3	801	27	7, 496	14	3, 934
Union of South Africa	121	32, 746	82	20, 776	127	36, 635	87	23, 690
United Kingdom	807	31, 312	· 809	30, 926	275	14, 867	3	720
Uruguay			39	9,066	7	2,078	6	1,602
Venezuela	141	41, 571	257	70, 111	104	29, 785	133 65	33, 842 18, 603
Other countries	90	27, 951	90	25, 020	85	27, 478	00	10,000
Total	6, 443	826, 874	5, 563	711, 690	4, 652	738, 166	3, 870	633, 767

III S Department of Commercel

2 Less than 1 ton.

¹ Minerals Yearbook, 1951—India, 1950, revised to none.

⁴ Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, p. 50. ⁵ Foreign Commerce Weekly, Netherlands Has Important Pigment Industry: Vol. 47, No. 7, May 19, 1952, p. 22.

TECHNOLOGY

Stabilized Pigments, Inc. of Piscataway, N. J., increased its output of pure red iron oxide from 80 to 200 tons per month through the addition of new production facilities and new processing methods. The plant operation is highly efficient in that it is continuous and automatic from the stockpile of raw iron sulfate byproduct to the finished red iron oxide.6

Two pilot plants for wet chemical production of synthetic red, brown, black, and yellow oxides from iron-containing solutions, such as waste pickle liquors, were described in an article.7 Continuous operation in these plants has shown cost and operating advantages over the batch processes. Recently, patents were issued for the production without roasting of powdered iron oxide pigments of controlled hues varying from orange to red,8 for iron oxide pigments in the form of dry powder free from agglomeration,9 and for the manufacture of brown iron oxide. 10

During the year, specifications for Venetian red were adopted by the American Society for Testing Materials as a tentative standard. 11 A method of test for determining the mass color and tinting strength of dry colors was also accepted by the society.¹² All ASTM Specifications, methods of testing, and definitions of terms pertaining to paint, varnish, lacquer, and related products were assembled and published as one volume in 1952.13

⁶ Paint Industry Magazine, vol. 67, No. 2, February 1952, p. 34.
⁷ DeWitt, C. C., Livingood, M. D., and Miller, K. G., Pigment Grade Iron Oxides; Recovery From Iron-Containing Waste Liquors: Ind. Eng. Chem., vol. 44, No. 5, March 1952, pp. 673-678.
⁸ Toxby, Thomas (assigned to C. K. Williams & Co.), Method of Making Iron Oxide Pigment: British Patent 656,265, Aug. 15, 1951.
⁹ Marcot, G. C., Cauwenberg, W. J., and Lamanna, S. A. (assigned to American Cyanamid Co.), Preparation of Iron Oxide Pigment: U. S. Patent 2,558,302, June 26, 1951.
¹⁹ Bennetch, L. M. (assigned to Reichard-Coulston, Inc.), Brown Oxide of Iron: U. S. Patent 2,574,459, Nov. 13, 1951.

Nov. 13, 1951.

11 American Society for Testing Materials, Venetian Red: D767-52T, April 1952.

12 American Society for Testing Materials, Mass Color and Tinting Strength of Color Pigments: D387-

⁵²T, May 1952.

13 American Society for Testing Materials, ASTM Standards on Paint, Varnish, Lacquer and Related

Nickel

By Hubert W. Davis 1

THE SUPPLY of nickel outside the U. S. S. R. was furnished chiefly by Canada, Cuba, and New Caledonia in 1952. The United States and Finland supplied small quantities of nickel sulfate, which is recovered as a byproduct of copper refining; the Union of South Africa contributed a small quantity of nickel in the form of matte, which is produced from the complex ores in the Rustenburg district; and a little nickel was contained in the cobalt ore produced in French Morocco. Total world production outside the U. S. S. R. was about 16,000 short tons greater in 1952 than in 1951. All countries except the United States showed an increase over 1951. Canada produced 86 percent of the total (excluding the U. S. S. R.) in 1952.

Notwithstanding the increase in world production of nickel in 1952, there was a scarcity of this metal, although supplies were adequate for defense needs. Insufficient nickel was available for many civilian uses, and manufacturers were forced to employ substitute materials. Conservation of nickel in the more critical items was achieved by substitution of steels lower in nickel or by steels containing no nickel, depending upon the application and the conditions under which the steels were employed. Substitutions for nickel have involved the use

of boron, manganese, and chromium.

TABLE 1.—Salient statistics for nickel, 1943-47 (average) and 1948-52

	1943–47 (average)	1948	1949	1950	1951	1952
United States: Production: Primary	757 7, 102 2 118, 255 8, 257 4 85, 705 31½-35 123, 711 121, 169 6 160, 000	883 8, 850 105, 650 8, 184 93, 558 33¾-40 131, 740 131, 840 6 165, 000	790 5, 680 95, 711 4, 471 68, 326 40 128, 690 127, 141 161, 000	913 8, 795 96, 640 3, 645 98, 904 40-50½ 123, 659 119, 984 6 159, 000	756 8, 602 101, 620 4, 622 86, 416 50½-56½ 6 137, 903 130, 239 6 175, 000	633 7, 479 117, 713 6, 941 101, 048 561/2 140, 007 142, 022 191, 000

¹ Comprises refined metal, matte, and oxide.

Includes scrap.
 Excludes "Manufactures," weight of which is not recorded.

^{4 1945-47} average.

5 Price quoted to United States buyers by International Nickel Co., Inc., for electrolytic nickel in carlots

6. O. b. Port Colborne, Ontario; price includes duty of 2½ cents a pound, 1943-47, and 1¼ cents, 1948-52.

6 Revised figure.

¹ Commodity-industry analyst.

Throughout the world the search for new deposits of nickel was pressed with unprecedented intensity in 1952. This exploration was being carried on by the established producers as well as by some new to the industry. Expansion of existing production facilities was underway, and facilities were being installed to serve newly developed deposits. As a result of these expansions, it is estimated that equipped mines will have capacity to produce over 200,000 tons of nickel in 1956.

Imports of new nickel into the United States in 1952 were 16 percent greater than in 1951 and the largest since 1944. Canada continued

to be the chief source.

Consumption of nickel in the United States was 17 percent more than in 1951 and the largest since 1944. The steel industry continued to be the chief consumer; 45 percent of all nickel used in 1952 was in stainless and engineering alloy steels. Consumption in stainless steel was 25 percent larger but that for engineering alloy steels only 9 percent greater. More nickel was also utilized in high-temperature and electrical-resistance alloys, nonferrous alloys, anodes, and catalysts, but less was used in cast irons, ceramics, and magnets.

Prices of electrolytic nickel and nickel oxide sinter remained un-

changed throughout 1952.

Copper, nickel, and cobalt mineralization has been noted during recent years in the gabbros at and near granite in the Superior National Forest along the South Kawishiwi River, Lake County, Minn. All the surface rights and all the mineral rights, except 1 parcel of 327 acres, in the Superior National Forest are held by the Government. Inspections and samplings by the Bureau of Mines and the Minnesota Geological Survey in the summer of 1951 indicated that the possibility of developing a large tonnage of low-grade copper-nickel ore was good. In the areas inspected, based on an average of the outcrop samples and samples from a diamond-drill hole 75 feet deep, it was estimated that there is an inferred 28,125,000 tons of ore that will average about 0.52 percent copper, 0.16 percent nickel, and 0.02 percent cobalt, all occurring as sulfides, with small values in gold, silver, and platinum. At least 66 applications for permits to prospect for copper-nickel ore in the Superior National Forest had been received by the Bureau of Land Management by the end of 1952. The International Nickel Co. has entered into arrangements giving it the right to prospect for copper-nickel ores in the area.

A comprehensive report on nickel, prepared for the National Security Resources Board by the Bureau of Mines, with the cooperation

of the Geological Survey, was made available in 1952.2

Allocation of primary nickel (excluding nickel salts) to the Free World countries by the International Materials Conference was continued. The United States was allocated 67.6 percent of the total in 1952.

³ Bureau of Mines, Materials Survey-Nickel: 1952, 284 pp.

NICKEL 765

TABLE 2.—Nickel allocations to the free-world countries by the International Materials Conference in 1952

Country	Metric tons	Country	Metric tons
Argentina. Austriala Austriala Belzium-Luxembourg Belzium-Luxembourg Bolivia Brazil Canada Chile Colombia Colombia Couba Denmark Egypt Finland Formosa France Germany, West	74.8 3.8 65.1 7.0 6,801.8 5,315.4 5.2	Mexico Netherlands New Zealand Norway Pakistan Philippines Portugal Southern Rhodesia Spain Sweden Switzerland Trieste Turkey Union of South Africa United Kingdom United States Urugay	269. 9. 2. 77. 2, 685. 542. 1. 16. 81. 21, 396. 96, 302. 5.
India Ireland Italy Japan	385.1 1.3 1,049.9 1,137.9	Yugoslavia Total	73. 142, 397.

PRODUCTION

Domestic production of nickel (other than from imported matte and oxide) is small and comprises metal recovered from scrap (nickel anodes and nickel-silver and copper-nickel alloys, including Monel metal) and primary nickel recovered in copper refining. There has been no output of nickel from ore or as a byproduct of talc production since 1945.

Substantial quantities of nickel-bearing ferrous scrap are recovered and used chiefly in the production of engineering alloys and stainless steels. No figures are available on the quantity of low-alloy nickelbearing scrap used, but 102,000 short tons of chromium-nickel

stainless steel scrap was consumed in 1952.

A total of 1,266,000 pounds of nickel, in the form of both crude and refined nickel sulfate, was recovered in 1952 as a byproduct of copper refining at Baltimore, Md.; Carteret and Perth Amboy, N. J.; Laurel Hill, N. Y.; and Tacoma, Wash. Shipments were 1,237,000 pounds, the bulk of which was crude nickel sulfate sold to refiners for use as an intermediate in the manufacture of refined nickel salts. Although all the nickel recovered as a byproduct of copper refining is credited to domestic production, some is actually recovered from imported blister copper.

In addition to the nickel recovered as a byproduct of copper refining in 1952, 2,935,000 pounds (nickel content) of refined nickel salts (chiefly sulfate) was produced in the United States from crude

nickel sulfate and from nickel shot and nickel scrap.

The total production of refined nickel salts in the United States was 3,336,000 pounds (nickel content) in 1952; shipments to consumers for electroplating, catalysts, and ceramics totaled 3,263,000 pounds.

TABLE 3.—Nickel produced in the United States, 1943-47 (average) and 1948-52

Year		Primary	Secondary		
	I ear		(short tons) 1	Short tons	Value
1943–47 (average)			² 757 883 790	7, 102 8, 850 5, 680	\$5, 078, 898 6, 966, 720 4, 877, 984
1950 1951 1952			913 756 633	8, 795 8, 602 7, 479	8, 408, 020 8 9, 759, 829 8, 799, 791

¹ Byproduct of copper refining. Value withheld to avoid disclosing individual company operations.
2 Includes some production from ore.
3 Revised figure.

CONSUMPTION AND CONSUMERS' STOCKS

Tables 4, 5, and 6 give data on the consumption of nickel, as determined by a Bureau of Mines survey. The data cover all known consumers of nickel in the form of new metal, oxide, and matte. figures for nickel salts, however, fall short of the total and probably represent only 54 and 49 percent, respectively, of the totals for 1952 and 1951.

Total consumption of nickel in 1952 was 17 percent more than in 1951 and the largest since 1944. Of the 1952 total consumption, about 45 percent was utilized in stainless and engineering alloy steels. Usage of nickel in stainless steel was 25 percent more than in 1951, but that for engineering alloy steels was only 9 percent greater. Substitution of straight chromium stainless steel was made in the architectural, utensil, appliance, and other fields. In engineering allov steels conservation was achieved by substituting steels lower in nickel, by using steels containing no nickel, and by substituting boron, manganese, and chromium. Consumption of nickel in hightemperature and electrical-resistance alloys, nonferrous alloys, anodes. and catalysts was larger by 8, 18, 15, and 5 percent, respectively; but usage for cast irons, ceramics, and magnets declined 2, 21, and 8 percent, respectively.

As a result of restrictions, consumption of nickel by the electroplating industry in 1952 was substantially less than before the Korean The quantity allowed to be used was inadequate to permit coatings thick enough to provide satisfactory performance of plated Efforts were made to substitute other coatings, such as bright electroplated zinc, improved deposition of copper plus chromium, and new tin-nickel alloys, but the results were reported to be not as satisfactory for protection or in appearance as those obtained with nickel plating of conventional thickness.

The quantity of nickel allowed in nickel-silver alloys for civilian flatware and other applications was less than in 1951 but this reduction was more than offset by enlarged demand for cupronickel tubing for defense purposes.

As heretofore, most of the nickel consumed in 1952 was in the form of metal, but the proportion of oxide and oxide sinter was appreciably larger in 1952 than in 1951.

TABLE 4.—Nickel (exclusive of scrap) consumed and in stock in the United States, 1951-52, by forms, in pounds of nickel

	1951			1952			
Form	Consump- tion	Stocks at consumers' plants Dec. 31	In transit to consum- ers' plants Dec. 31	Consump- tion	Stocks at consumers' plants Dec. 31	In transit to consum- ers' plants Dec. 31	
Metal ¹ . Oxide and oxide sinter Matte Salts ³ . Total	135, 919, 818 17, 492, 609 17, 481, 384 1, 938, 621 172, 832, 432	² 8, 184, 924 1, 365, 801 1, 197, 296 ² 668, 531 ² 11, 416, 552	379, 777 1, 083 30, 542 411, 402	149, 831, 963 30, 776, 740 19, 531, 663 1, 955, 436 202, 095, 802	10, 334, 742 3, 613, 557 1, 584, 575 699, 987 16, 232, 861	182, 560 1, 344 919 184, 823	

¹ Includes a relatively small but undetermined quantity of secondary nickel (ingot or shot remelted from scrap nickel and scrap-nickel alloys).

Revised figure.

TABLE 5.—Nickel (exclusive of scrap) consumed in the United States, 1948-52, by forms, in pounds of nickel

Form	1948	1949	1950	1951	1952
Metal. Oxide and oxide sinter Matte Salts 1	130, 911, 216	99, 377, 479	148, 508, 734	135, 919, 818	149, 831, 963
	33, 052, 564	19, 514, 759	28, 840, 556	17, 492, 609	30, 776, 740
	21, 238, 604	15, 654, 621	17, 843, 880	17, 481, 384	19, 531, 663
	1, 914, 134	2, 105, 369	2, 614, 529	1, 938, 621	1, 955, 436
	187, 116, 518	136, 652, 228	197, 807, 699	172, 832, 432	202, 095, 802

¹ Figures for 1948, 1949, 1950, 1951, and 1952 represent 43, 39, 62, 49, and 54 percent, respectively, of total.

TABLE 6.—Nickel (exclusive of scrap) consumed in the United States, 1948-52, by uses, in pounds of nickel

Use	1948	1949	1950	1951	1952
Ferrous: Stainless steels. Other steels. Cast iron Nonferrous ¹ High-temperature and electrical-resistance alloys. Electroplating: Anodes. Solutions ² Catalysts ³	32, 487, 815 43, 564, 600 8, 431, 667 56, 067, 736 12, 336, 123 28, 425, 717 1, 327, 396 1, 190, 851 370, 708	23, 817, 187 26, 948, 418 6, 792, 472 37, 942, 549 8, 107, 918 27, 620, 766 1, 448, 584 994, 206 299, 246	41, 822, 486 35, 554, 167 9, 761, 622 56, 277, 952 11, 407, 174 34, 847, 601 1, 481, 215 2, 015, 234 604, 766	43, 584, 274 32, 850, 461 7, 430, 972 52, 675, 585 14, 815, 616 11, 967, 184 562, 033 2, 768, 905 495, 355	54, 685, 711 35, 956, 787 7, 276, 976 62, 332, 365 16, 040, 189 13, 798, 835 620, 571 2, 920, 062 389, 156
Ceramics 4 Magnets Other	2, 913, 905	2, 680, 882	1, 946, 971 2, 088, 511	1, 291, 856 4, 390, 191	1, 190, 62- 6, 884, 52
Total	187, 116, 518	136, 652, 228	197, 807, 699	172, 832, 432	202, 095, 80

¹ Comprises copper-nickel alloys, nickel-silver, brass, bronze, beryllium alloys, magnesium and aluminum alloys, Monel, Inconel, and malleable nickel.

2 Figures . olutions for 1948, 1949, 1950, 1951, and 1952 represent about 34, 34, 38, 19, and 28 percent, respectively, .' tal.

3 Figures for catalysts for 1948, 1949, and 1950 represent about 37, 42, and 84 percent, respectively, of total.

4 Figures for ceramics for 1948-50 represent about 50 percent of total.

SUBSTITUTES AND ALTERNATES

In view of the urgent need for conservation of nickel, cobalt, tungsten, manganese, and molybdenum because of acute world shortages, a Joint Subcommittee on Utilization was formed by the International

³ Figures for 1951 and 1952 represent 49 and 54 percent, respectively, of total.

Materials Conference to study the possibilities of saving these elements. Concerning nickel, the Subcommittee reported as follows:³

Many opportunities for adding to the availability of nickel for essential purposes by tightening up on scrap salvage and by substitution have been noted by the Sub-Nickel could be saved in relatively large amounts by the increased use of economy steels, such as triple alloy (nickel-chromium-molybdenum), boron-containing steels, or other substitute steels. The greatest proportionate savings could probably be made in case-hardening steels where relatively high nickel content continues to be used in some countries. There are also important opportunities for the down-grading of high nickel alloy compositions, where lower grade non-ferrous alloys and stainless steels may often be substituted. In the case of nickel-containing electrical resistance alloys, down-grading would require technical consideration of the individual cases. In this field, more extended use might also be made of the iron-base, iron-chromium-aluminum alloys, once the technical problems of manufacture and use are fully mastered. Much of the nickel-containing stainless and heat-resisting steel production could similarly be down-graded, even going as far, in many instances, as substitution of nickel-free ferritic for nickelcontaining austenitic steels. Such substitutions, however, would not of course be achieved without some sacrifice of properties. The 70:30 cupro-nickel composition, which is long established as a material for condenser tubes, is giving way in Canada and the United States to a copper alloy with 10 percent nickel and 1 percent iron (except where brazing is employed) and in Europe to aluminum-brass. As should be clear from what was said earlier, nickel may be saved in non-vital uses of both soft and hard magnetic materials. Nickel could also be saved (but to a limited extent) by reducing its employment in aluminum-base piston alloys. The recent development of spheroidal-graphite cast-iron (known in the United States as "ductile iron") foreshadows savings in nickel, since it can often be used alternatively with alloy cast irons and steels.

Finally there are numerous applications of nickel and its alloys where the property requirements, especially corrosion-resistance, concern only the surface of the product. Here, there is room for extension of the use of nickel and nickel alloy-clad products. Specifically, heavy-gauge nickel and stainless clad steel could find wider use in the chemical industry and finer gauges to be used in electronic applications, while nickel-coated steel is being used to replace pure nickel in coinage. In Appendix I of this report, reference is made to the wide applicability of a new type of electroplated finish in which a deposit of a nickel-tin compound is laid down. Composite materials have much to recommend them where metal economy is concerned. The Subcommittee, however, is of the opinion that any proposals for extension of the use in these ways of nickel and the other elements under consideration should be given very careful scrutiny from the point of view of the alloy value, if any, of the material as scrap when its serviceability comes

to an end, before being accepted as economy measures.

Chromium-manganese alloys, some containing no nickel and some with only minor additions of the element, have been introduced as suitable alternates for specific applications previously filled by the 18–8 (18 percent chromium—8 percent nickel) stainless steels. Although these chromium-manganese alloys have been known for many years, it was not until 1951 that processing and fabricating techniques were developed that permit their production in substantial quantities.

A new permanent-magnet alloy—bismanol—was being developed by the Naval Ordnance Research Laboratory.⁴ In the new material, bismuth, manganese, and powdered iron are substituted for nickel

and cobalt.

The application of ceramic coatings to J47 jet engine parts through a method that allows substitution of Type 321 stainless steel containing 8 percent nickel, instead of an alloy with a 76 percent nickel

International Materials Conference, Utilization of Manganese, Nickel, Cobalt, Tungsten, Molybdenum:
 First Report of the Joint Subcommittee, Washington, December 1951, pp. 55-56.
 American Metal Market, Bismuth-Manganese Alloy May Conserve Nickel-Cobalt in Magnets: Vol. 59, No. 164, Aug. 23, 1952, p. 1.

content, was expected to result in substantial saving of nickel by the Solar Aircraft Co.5

The substitution of boron for nickel and chromium has been dis-

cussed.6 According to Wray:

For the majority of applications for the constructional alloy steels, boron can probably replace a sizeable quantity of nickel, chromium, molybdenum and other critical alloys where their presence is necessary only for adequate hardenability.

PRICES

Throughout 1952 the contract price to United States buyers for electrolytic nickel in carlots f. o. b. Port Colborne, Ont., was 56½ cents a pound, including duty of 11/4 cents. For nickel oxide sinter (no duty), the price was 52% cents a pound (nickel content) f. o. b. Copper Cliff, Ont. These prices have been in effect since June 1, 1951. Cuban nickel oxide was priced at 50% cents a pound (nickel content) in bags and 51% cents a pound in cans, f. a. s. Nicaro, Cuba.

FOREIGN TRADE 7

The quantity of new nickel imported into the United States in 1952 was 16 percent more than in 1951 and the fourth highest of record. Imports were comprised chiefly of metal, oxide, and matte. As heretofore, Canada was the chief source of the imports. The roasted and sintered matte was refined to Monel metal and other products at the plant of International Nickel Co., Inc., at Huntington, W. Va.

TABLE 7.—Nickel products imported for consumption in the United States, 1952, by countries, gross weight in pounds 1

	- · · · · · · · · · · · · · · · · · · ·				
Country	Metal 3	Ore and matte	Oxide and oxide sinter	Nickel scrap ²	Nickel residues ³
CanadaCanal Zone	146, 582, 675	28, 835, 464	29, 129, 416	273, 735 983	1, 348, 011
Cuba		24, 229	18, 781, 304		
French Pacific IslandsGermany, West	1, 120	24, 225			
Norway Switzerland	11, 750, 231			220	
United Kingdom	321, 953			818, 517	
Total	158, 655, 979	28, 859, 693	47, 910, 720	1, 093, 455	1, 348, 011

[U. S. Department of Commerce]

The nickel content of refined nickel, oxide, matte, and residues imported into the United States is estimated at 216,440,000 pounds in 1952 compared with 186,231,000 pounds in 1951.

In corresponding table in Minerals Yearbook, 1951, imports of metal from Canada should read 143,266,543 pounds, Norway 9,745,420 pounds, United Kingdom 154,610 pounds and total metal 153,609,114 pounds (revised figures).
 Separation of metal from scrap is on basis of unpublished tabulations.
 Reported to Bureau of Mines by importers.

Steel, vol. 131, No. 11, Sept. 15, 1952, p. 91.

American Metal Market, P. R. Wray Discusses Boron as Substitute for Nickel and Chromium: Vol. 59, No. 88, May 7, 1952, pp. 1, 3.
Cheney, Richard, Boron Saves the Day: Steelways, vol. 8, No. 3, May 1952, pp. 4-7.
Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

Since January 1, 1948, the rate of duty on refined nickel imported into the United States has been 11/4 cents a pound. Nickel ore, oxide,

and matte enter the United States duty free.

Exports of nickel comprise largely products manufactured from imported raw materials. Exports of alloys and scrap, which comprise the bulk of the foreign shipments, were 46 percent more in 1952 than in 1951; those of metal in ingots, bars, sheets, etc., were 5 times greater but those of nickel-chrome electric-resistance wire were 32 percent smaller. Canada (5,673,413 pounds), United Kingdom (5,401,979 pounds), Japan (1,221,750 pounds), and West Germany (918,054 pounds) were the chief foreign markets for nickel, Monel metal, alloys, and scrap in 1952.

TABLE 8.—Nickel products (excluding residues) imported for consumption in the United States, 1950-52, by classes

	[0.5.1	epar ment	n Commerce!				
Class	19	50	19	51	1952		
01055	Pounds	Value	Pounds	Value	Pounds	Value	
Nickel ore and matte Nickel pigs, ingots, shot, cath-	22, 270, 886	\$7, 610, 011	25, 657, 660	\$5, 561, 034	28, 859, 693	\$4, 994, 511	
odes, etc	138, 397, 272 1, 250, 663 32, 612, 122	58, 685, 369 274, 981 10, 477, 405	2 153, 609, 114 1, 581, 742 23, 972, 578	2 81, 521, 060 150, 898 8, 793, 383	158, 655, 979 1, 093, 455 47, 910, 720	89, 212, 383 126, 800 18, 558, 457	
Total		77, 047, 766		2 96, 026, 375		112,892,151	

IU. S. Department of Commercel

TABLE 9.—Nickel products exported from the United States, 1950-52, by classes [U. S. Department of Commerce]

Class	19	950	19	951	1952		
	Pounds	Value	Pounds	Value	Pounds	Value	
Ore, concentrates, and matte	12, 826 5, 675, 191 676, 169 (1) 428, 885 496, 598	\$2, 110 2, 805, 872 413, 541 876, 872 606, 189 236, 193	35, 578 7, 984, 503 386, 310 (1) 393, 599 443, 175	\$2,000 4,783,015 376,946 1,044,485 712,186 185,089	11, 648, 169 1, 966, 621 (1) 267, 473 (2)	\$6, 162, 695 364, 301 503, 110 482, 530 (2)	
Total		4, 940, 777		7, 103, 721		7, 512, 636	

TECHNOLOGY

Bureau of Mines.—The Bureau of Mines did important research on nickel in 1952. It conducted pyrometallurgical tests at Albany, Oreg., on the silicate ore from Riddle, Oreg., to develop a low-cost electrosmelting process to yield ferronickel. Three grades of ferronickel, averaging 10, 25, and 45 percent nickel, were produced from

¹ Separation of metal from scrap is on basis of unpublished tabulations.

Quantity not recorded.
 Beginning Jan. 1, 1952 not separately classified.

NICKEL 771

140 tons of dried ore in 2 lots averaging 1.7 and 1.5 percent nickel. The Albany Station also ran smelting tests on Cle Elum, Wash.,

iron-nickel-chrome ore.

The Ferrous Pyrometallurgy Section (Pittsburgh, Pa.) conducted tests on upgrading iron-nickel alloys to ferronickel by selective oxidation of iron in a basic converter. The raw materials for the converter operations were products of electric-furnace smelting of Riddle (Oreg.) ore at the Albany Station. About 2,000 pounds of alloy product of nonselective reduction, containing 78 percent iron, 9.4 percent nickel, 3.1 percent chromium, 7.9 percent silicon, 1.73 percent carbon, 0.027 percent sulfur, and 0.018 percent phosphorus, and 1,000 pounds of refined ferronickel, containing 66.8 percent iron, 33.6 percent nickel, 0.04 percent chromium, 0.2 percent silicon, 0.03 percent carbon, 0.03 percent sulfur, and 0.04 percent phosphorus, were supplied for the work. The tests demonstrated that a low-grade impure nickel alloy can be upgraded easily to 20 to 25 percent ferronickel, free of silicon, chromium, and carbon, by blowing in a basic converter with virtually no loss of nickel in the oxidation slag. Furthermore, the 25-percent ferronickel may be upgraded further to almost any nickel content by oxidizing enough iron from the molten However, nickel losses in the iron oxide slag become greater as the nickel content of the alloy increases. The nickel loss in the slag was less than 2.5 percent for ferronickel alloys up to about 40 percent The production of alloys with 50 to 75 percent nickel results in high losses of nickel in the slag. However, by the cyclic oxidation operation, developed for the recovery of manganese, high-nickelcontent alloys may be produced without excessive nickel loss.

Several selective reduction tests were made at the Pittsburgh Station on Cuban lateritic ore in the electric-arc furnace as the initial step in separating and recovering nickel and chromium from this type

of raw material.

At the Minneapolis Station, laboratory flotation tests on a sample of copper-nickel-bearing material from Lake County, Minn., upgraded the copper from 1.16 to 19.70 percent and the nickel from 0.28 to 2.27 percent. Although 96 percent of the copper was recovered in the rougher concentrate, only 58 percent of the nickel was concentrated in this product. A microscopic study of a flotation tailing indicated that a finer grind was required for complete liberation of the nickel mineral. On the basis of this study, a series of flotation tests was made in which the grind was varied from minus-100-mesh to minus-325-mesh. However, the results showed that the fineness of the grind had little effect on the nickel recoveries, which averaged 58 percent in the flotation concentrates.

At the Mississippi Valley Experiment Station (Rolla, Mo.), sulfideore concentrates containing nickel, cobalt, copper, lead, and iron from the operations of the National Lead Co. at Fredericktown, Mo., were treated successfully on a laboratory scale to recover more than 90 percent of the nickel, cobalt, and copper. A cobalt-nickel bearing lead-copper matte, produced by the St. Joseph Lead Co. at Herculaneum, Mo., was treated to produce a lead-zinc fume, a copper sulfide concentrate, and a cobalt-nickel-iron product, netting a recovery of over 75 percent of the cobalt and about 90 percent of the nickel

and copper.

Industry.—International Nickel Co. of Canada, Ltd., continued research activity on development of an economic process for recovering nickel and iron ore from nickel-bearing pyrrhotite. The process has been tested by pilot-plant procedures, and the necessary steps were

being taken for designing a first production unit.8

Important progress was made at both Port Colborne, Ont., and Clydach, Wales, leading to improvements in the electrolytic and carbonyl refining processes.9 Treatment of refinery residues by the Orford process at Clydach was replaced by new plant utilizing a more efficient hydrometallurgical refining process developed by the research staff.

At its refinery at Kristiansand, Norway, Falconbridge Nickel Mines. Ltd., changed from a sulfate process to a process involving both sulfates and chlorides. One outgrowth of the new process was a cobaltseparation unit, which was producing refined cobalt in moderate but increasing quantities in the latter half of 1952.

The efficiency of electric smelting and blast-furnace practice in the

smelting of nickel ores has been compared.10

A patent was issued for recovering nickel values from nickeliferous oxide concentrates.11

A process using hydrochloric acid as a leaching agent for oxidized

nickel ores has been described.¹²

A new process for extracting nickel, cobalt, copper, and other important metals from ores by chemical rather than the usual smelting and refining methods has been announced by the Chemical Construction Corp. The process consists of pressure leaching of unroasted sulfide ore concentrates, an almost simultaneous oxidation step, and then direct reduction of nickel, copper, and cobalt as pure metallic Leaching can be done with either ammonia or acid, depending on the ore concentrate being treated. The process will be employed by Sherritt Gordon Mines, Ltd., at its refinery at Fort Saskatchewan, Alberta, which will use ammonia leaching, and by Cobalt-Nickel Reduction Co. at its refinery at Fredericktown, Mo., which will leach with sulfuric acid. The process has been described in some detail in a trade magazine.¹³

A method of recovering nickel, cobalt, and copper from the drosses and residues resulting from the production of Alnico permanent magnets has been described. The cleaned, dried, and crushed waste material is magnetically sorted, then reblended to correct pro-Aluminum is added as a deoxidizer. Silica and sodium silicate are added to produce a marketable slag. The mix is melted. Just before pouring, iron oxide is added to remove excess carbon and

⁸ Thompson, J. F., The International Nickel Co. of Canada, Ltd., Address to Shareholders: Apr. 29,

Thompson, J. F., The International Visital Science of Canada, Ltd., Annual Report: 1952, p. 13.

International Nickel Co. of Canada, Ltd., Annual Report: 1952, p. 13.

Downie, C. C., Practical Notes on Smelting Nickel Ores: Mining Jour. (London), vol. 239, No. 6123, Dec. 26, 1952, pp. 737, 739.

Forward, F. A. (assigned to Sherritt Gordon Mines, Ltd.), Treatment of Nickeliferous Oxide Concentrates for Recovery of Nickel Values Therefrom: U. S. Patent 2,616,781, Nov. 4, 1952.

Pawel, G. W., Acid-Leaching Oxidized Ores Offers New Source of Nickel: Eng. and Min. Jour., vol. 153, No. 10, October 1952, pp. 94-95.

O'Connor, Joe, Chemical Refining of Metals: Chem. Eng., vol. 59, No. 6, June 1952, pp. 164-168, 368, 370. 372-374, 376.

<sup>370, 372-374, 376.

14</sup> Sherman, A. H., and Pesses, Marvin, Alnico Recovery Process Salvages Valuable Nickel, Cobalt: Iron Age, vol. 170, No. 1, July 3, 1952, pp. 115-119.

773NICKEL

Because of the shortage of strategic materials, more attention has been turned toward alloys that could use high-temperature scrap. Haynes Alloy 99 is one development. Approximate composition is 17-19 percent nickel, 11-13 percent cobalt, 20-22 percent chromium, 2-3 percent tungsten, 3-4 percent molybdenum, 0.03-0.08 percent boron, about 1 percent each of silicon and manganese, and the remainder iron. 15 This alloy is looked upon by metallurgists as a modified N-155, which contains 20 percent each of nickel, chromium, and cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.32 percent iron, and 0.3 percent carbon.

A brief account of practical engineering details necessary for operating furnaces for a specific smelting capacity has been published.¹⁶

Researches on nickel matte have been discussed.¹⁷

The caving method of mining is being used on the upper levels at the Creighton mine in the Sudbury district of Ontario for recovering ore that had long been considered too low grade to be mined profitably. However, studies and research, followed by production on a small scale by International Nickel Co. of Canada, Ltd., showed that, by using the induced caving method of mining and concentrating the ore at the mine to reduce transportation costs, recovery of the lowgrade ore was possible. Consequently, when the need arose for quick expansion of underground ore production, planning and development of the large-scale caving project, now producing 10,000 tons daily, was immediately undertaken. This low-cost bulk mining method is an adaptation of a mining technique by which great masses of ore are induced to cave and disintegrate by their own weight. At the Frood section of the Frood-Stobie mine, another low-cost bulk mining technique called the "blasthole" method has now become the principal method of mining. This differs from "induced caving" only insofar as explosives are used to break the ore. These and other methods of mining have been described in much detail.¹⁸

On January 18, 1952, International Nickel announced completion of a 7½-mile pipeline through which the bulk concentrate from 3.650,000 tons of nickel-copper ore will be pumped annually from its newly built Creighton concentrator to its reduction plants at Copper Cliff, Ont. The pipeline reduces the time required to transform nickel ore into refined nickel.

WORLD REVIEW

Table 10 shows world production of nickel by countries, 1943-47 (average) and 1948-52, insofar as statistics are available. Despite the fact that nickel is produced in several countries, one country-Canada—has supplied about 93 percent of the world output outside the U. S. S. R. since 1948.

¹⁴ Steel, vol. 132, No. 1, Jan. 5, 1953, p. 282.
15 Downie, C. C., Engineering Features of a Nickel Smeltery: Mining Jour. (London), vol. 239, No. 6110, Sept. 26, 1952, pp. 342-343.
15 Downie, C. C., Researches on Nickel Matte: Mining Jour. (London), vol. 238, No. 6072, Jan. 4, 1952, pp. 12-13. Researches on Nickel Converter Practice: Mining Jour. (London), vol. 239, No. 6098, July 4, 1952, pp. 13-14.
15 Mutz, H. J., and others, Underground Mining Methods at International Nickel Co.: Mining Eng., vol. 5, No. 1, January 1953, pp. 57-82.

TABLE 10.—World mine production of nickel, by countries, 1943-47 (average) and 1948-52, in metric tons of contained metal 1

Country	1943–47 (average) 1948 1949		1950	1951	1952	
Brazil Canada. Cuba (content of oxide) Finland. French Morocco Germany Greece. Indonesia Italy. Japan New Caledonia (content of ore) Norway.	13 112, 229 6, 253 2, 269 18 190 99 3 720 3 14 797 4, 335 335	119, 512 	7 116, 745	(2) 112, 181	(2) 125, 103 85 	(2) 127, 012 8, 127 405 182
Sweden Union of South Africa U. S. S. R. ³ United States ⁴ Total (estimate)	358 470 16, 512 5 686 145, 000	25, 000 801 150, 000	25, 000 717 146, 000	843 25, 000 828 144, 000	1, 138 25, 000 686 159, 000	1, 310 25, 000 574 173, 000

¹ This table incorporates a number of revisions of data published in previous nickel chapters.
² Data not available; estimate by author of chapter included in total.

3 Estimate.

⁵ Includes some production from ore.

Canada.—Virtually all the Canadian output is derived from coppernickel ores of the Sudbury district, Ontario. Some nickel is also recovered as a byproduct from silver-cobalt ores of Cobalt, Ontario. Two companies—International Nickel Co. of Canada, Ltd., and Falconbridge Nickel Mines, Ltd.—are the principal producers. Nickel production in Canada was 140,007 short tons in 1952, a gain of 2 percent over 1951 and the fourth highest of record. Exports of nickel from Canada were 142,022 short tons in 1952 compared with 130,239 tons in 1951.

Sales of nickel in all forms by the International Nickel Co. of Canada, Ltd., were 249,017,358 pounds in 1952 compared with 243,865,030 pounds in 1951.19

During 1952 expansion of underground mining was pushed rapidly; ore mined was 10,196,068 short tons compared with 7,780,143 tons in 1951 and 5,733,269 tons in 1950. Open-pit ore mined was 3,052,525 tons compared with 4,019,177 tons in 1951 and 4,115,755 tons in 1950. A total of 13,248,593 tons—the highest in any year—was mined in 1952 compared with 11,799,320 tons in 1951 and 9,849,024 tons in According to the company, proved ore reserves at the end of 1952 were 256,356,000 tons containing 7,795,000 tons of nickel-copper compared with 253,705,000 tons containing 7,693,000 tons of nickel-copper at the end of 1951. Underground development in the producing mines advanced 132,435 feet (25 miles) in 1952, bringing the total footage to 1,717,981 or over 325 miles.

International Nickel again expanded its exploration in search for new sources of nickel. The number of feet of exploration drilling in Canada was 499,906 compared with 289,677 in 1951. The program has involved continuous geological work on its known deposits and

Byproduct in electrolytic refining of copper.

¹⁹ International Nickel Co. of Canada, Ltd., Annual Report: 1952, p. 6.

NICKEL 775

geological studies of other parts of the Sudbury Basin, including further exploration in the Crean Hill mine. Important parts of the exploration program were operation of exploration camps in Manitoba and in the Northwest Territories and property examinations and prospecting elsewhere in Canada and in other parts of the world. The cost of the program was \$4,967,450 compared with \$2,593,908 in 1951.

In advancing its program of expansion of underground mining the

company reported as follows: 20

One new shaft was completed at Stobie, two other shaft sinkings at Levack reached their working depths, deepening of a fourth shaft at Garson was continued and shaft stations were excavated in a fifth shaft at Murray, deepened in 1951. Production of ores from the lower-grade portion of the Creighton Mine was further increased in preparing to supply the full capacity of the Creighton Concentrator, which is being increased from 10,000 to 12,000 tons of ore daily. The caving project for the mining of these lower-grade ores completed its first full year of operation and fully demonstrated the economic practicability of the project.

Production of ore and matte by Falconbridge Nickel Mines, Ltd., established new records in 1952, despite the fact that both underground development and plant construction programs were being carried on intensively. Ore treated was 1,129,489 short tons—1,118,854 tons from company mines and 10,635 tons from the East Rim and Milnet mines—in 1952 compared with 1,083,670 tons in 1951. Production of metals in matte was 5 percent greater than in 1951. Ore hoisted at the Falconbridge mine was 888,082 tons in 1952 (930,164 tons in 1951), and output at the McKim mine was 224,774 tons (155,961 tons in 1951).

The following information concerning developments, exploration, expansions, and reserves is given in the 24th Annual Report of Falcon-

bridge Nickel Mines, Ltd., for 1952.

At the Falconbridge mine an exploratory drive west from the No. 1 shaft on the 2,625-foot level was extended 1,214 feet without encountering any ore. The more important ore development work included drives along the main ore zone for lengths of 924 feet on the 2,975 level, 1,845 feet on the 3,325 level, 2,362 feet on the 3,850 level, and 891 feet on the 4,025 level. Average ore conditions were shown by these drives. The shaft begun at the East Falconbridge mine in 1951 was sunk an additional 2,001 feet to a depth of 2,251 feet below the collar, and stations were cut. The 802 drift was extended 1,565 feet to the eastern boundary of the property and disclosed ore of slightly better grade and in substantially greater quantities than had been indicated by previous surface drilling. A crosscut was driven on the 2,800 level near the eastern boundary and used as a station for deep drilling. One hole was completed by the year end which intersected ore of better than average grade at the 3,150 level. An easterly drive on the 650 level of the McKim mine disclosed and opened a new ore shoot of average mine grade. On the 1,175 level drifting was completed to the western boundary and to the present easterly ore limit. A northerly crosscut, 1,139 feet in length, was driven on the 1,350 level to provide diamond drill stations for testing This drilling did not show any depth extension the ore zone at depth.

²⁰ Work cited in footnote 18, pp. 3-4.

of the orebody within the area tested. In May 1952 the shaft at the Hardy mine was completed to its planned depth of 1,427 feet, with all stations cut. A permanent steel headframe was erected and an 8-foot hoist installed. Development was begun on all levels from

the 250 to 1,000.

In the Sudbury district over 50,000 feet of diamond drilling was The drilling program was concentrated in the Fecunis Lake-Strathcona section of the Levack area, with the purpose of outlining ore zones indicated by previous exploration. In addition, further work was done on the low-grade Blezard ore zone and elsewhere in the district. An active exploration program was continued in the concession area in Newfoundland throughout 1952. A number of interesting discoveries were made which will require further work to determine their worth.

The expansion program in the mill was virtually completed in A new rod mill substantially increased the capacity of the crushing and grinding circuits. With installation of larger flotation units and accessory equipment the concentrator is now capable of handling 2,500 to 2,600 tons of mill ore a day. A fourth converter was installed in the smelter and foundations were prepared for a

third blast furnace and settler.

Ore reserves totaled 32,987,000 short tons on December 31, 1952, and comprised 10,091,500 tons of developed ore averaging 1.64 percent nickel and 0.87 percent copper in the Falconbridge and McKim mines and 22,895,500 tons of indicated ore averaging 1.63 percent nickel and 0.95 percent copper in Sudbury district holdings. Indicated ore increased 13,881,500 tons over 1951, resulting from additional ore disclosed by drilling at the Fecunis Lake, East Falconbridge and Strathcona West properties. At Fecunis Lake the large tonnage of high-grade ore is accompanied by a substantial quantity of low

The Defense Materials Procurement Agency completed negotiations with East Rim Nickel Mines, Ltd., for purchasing 65,000 short tons of ore and with Milnet Mines, Ltd., for 4,104,000 tons. Production from these mines, which are in the Sudbury district, was begun in 1952. The ore will be processed by Falconbridge Nickel Mines, Ltd.

A concentrator with a capacity of 300 tons daily was contemplated for the nickel-copper property of Nickel Offsets in the Sudbury

district.21

The status of the construction program of Sherritt Gordon Mines, Ltd., designed to get its Lynn Lake, Manitoba, mines into production by the end of 1953, has been summarized as follows: 22

The power development on the Laurie River was completed in October, 1952,

and since then has been supplying power to Lynn Lake.

The development of the "A" and "EL" mines and the construction of the production plant at Lynn Lake made very good progress and should be completed on schedule during the fourth quarter of this year.

The progress made in the construction of the Lynn Lake railroad reflects great credit upon the contractor and the Canadian National Railways. By year end track had been laid from Sherridon to mile 54.7 on the north bank of the Churchill River and grading was well advanced up to mile 84. In January daily trains

²¹ Northern Miner, vol. 38, No. 15, July 3, 1952, pp. 1, 5. ²² Sherritt Gordon Mines, Ltd., Annual Report: 1952, pp. 2-3.

777 NICKEL

were in operation between Sherridon and a supply depot north of the Churchill, hauling in construction supplies for the balance of the line. By relocating certain sections of the line the engineers have reduced the overall length of the line to 144 miles. There is now little doubt that this railway will be completed to 144 miles. on schedule.

The construction of our chemical metallurgical plant at Fort Saskatchewan, Alberta, made good progress during the latter half of the year. At the end of the year foundation work was ahead of schedule but structural steel work was considerably behind schedule. Fabrication of process equipment appears to be generally satisfactory. In this connection the Steel Division of the Department of Defence Production has given us invaluable assistance in obtaining the special steels required for this equipment.

A program of expansion and improvement in our pilot plant facilities at Ottawa is now nearing completion. A new circuit has been set up duplicating as closely as possible the flow sheet of the Fort Saskatchewan plant.

As reported in the interim progress report dated November 26, 1952, the Company has taken a small participation in Western Nickel Limited, the company formed by Newmont Mining Corporation and Pacific Nickel Mines Limited to take over the latter company's nickel property at Choate, British Columbia.

Two nickel discoveries were reported near Kluane Lake, Yukon Territory, in 1952. The Hudson Bay Mining & Smelting Co., Ltd., and Prospectors Airways Co., Ltd., have staked ground in the area.

According to the Hudson Bay Mining & Smelting Co., Ltd., 23 it has staked and holds under option to purchase the Wellgreen property, which is favorably located close to good highways leading to tidewater. It covers an area roughly 12 miles long and 3 miles wide. comprising 538 mineral claims; it is generally mineralized and in particular contains a nickel-copper deposit with precious metals. during 1952 consisted of building a 10-mile rough road into the property, erecting camp buildings, starting geological mapping, and carrying on limited diamond drilling. What drilling was done was to a shallow depth only and extended about 500 feet along the strike of The outcrop of the lode has been traced up to a mile. The drilling developed 67,000 tons of ore averaging 1.96 percent nickel, 1.33 percent copper, 0.056 percent cobalt, 0.004 ounce of gold, 0.078 ounce of platinum, and 0.053 ounce of palladium.

Prospectors Airways Co., Ltd., was reported 24 to have staked 28

claims in the area.

Cuba.—Rehabilitation of the nickel-producing facilities at Nicaro, Cuba, was completed in 1952. Four of the 12 furnaces were put into operation January 31-60 days ahead of schedule. The last two furnaces were put into operation July 7. The Cuban Nickel Company, a United States Government corporation, owns the plant and townsite; the operation is managed on a fee basis by the Nickel Processing Corp., a private concern.

Production of nickel oxide was 11,604 short tons containing 8,958 tons of nickel in 1952. During the first half of 1952, production of

ore was 298,854 short tons averaging 1.35 percent nickel.

Under an agreement with Defense Materials Procurement Agency, the Bureau of Mines began drilling in the Levisa Bay district on September 15, 1952. By the end of the year, 254 holes had been drilled to explore an area of 700 hectares (1,730 acres) on the Zoilita Denounce-

Hudson Bay Mining & Smelting Co., Ltd., Annual Report: 1952, pp. 1, 8.
 Northern Miner (Toronto), Nickel-Copper Yukon Find Looks Very Impressive: Vol. 38, No. 18, Sec. 1, July 24, 1952, pp. 1, 4.

ment. A preliminary estimate of the ore developed by this drilling was 3,100,000 metric tons of plus-1 percent combined nickel and cobalt.

Law Decree 509 of November 4, 1952, authorized the Ministry of Agriculture to issue a permit to the Cuban Nickel Company to explore for mineral ores in the El Cristal National Park area. A permit

dated November 13, 1952, was issued to the company.

Finland.—Small quantities of nickel are found in the ores of the Outokumpu copper mine and the Nivala nickel-copper mine. Production of ore at the Nivala mine was 76,247 metric tons containing 0.73 percent nickel and 0.44 percent copper in 1952 compared with 15,868 tons containing 0.71 percent nickel, 0.45 percent copper, 6.1 percent sulfur, and 15.3 percent iron in 1951. Production of concentrates was 7,574 tons containing 5.32 percent nickel and 3.44 percent copper in 1952 compared with 1,413 tons containing 5.87 percent nickel, 3.87 percent copper, 0.41 percent cobalt, 24.4 percent sulfur, and 25.3 percent iron in 1951. The quantity of nickel is too small for conversion to primary metal and is used for manufacturing nickel sulfate by Outokumpu Oy. Nickel sulfate production was 281 tons in 1952; all was exported. Also exported in 1952 was 467 tons of low-grade nickel ore from the Nivala mine to West Germany.

New Caledonia.—Production of nickel ore (containing about 25 percent moisture) in New Caledonia was 392,050 metric tons in 1952 compared with 252,335 tons in 1951. The nickel content (dried) of the ore averaged 3.60 and 3.53 percent, respectively, in 1952 and 1951. Exports of ore comprised 97,935 tons (wet) averaging 3.41 percent nickel (dried) to Japan and 11,905 tons averaging 5.6 percent nickel to France in 1952 compared with 7,010 tons averaging 3.9 percent nickel

(all to Japan) in 1951.

Production of nickel matte, fonte, and ferronickel by Société le Nickel was 57 percent more in 1952 than in 1951.

TABLE 11.—Production of nickel matte, fonte, and ferronickel by Société le Nickel in 1951 and 1952, in metric tons

	19	051	1952		
Product	Gross weight	Nickel content	Gross weight	Nickel content	
MatteFonteFerronickel	3, 614 1, 777 1, 856	2, 796 1, 234	4, 054 9, 488 201	3, 132 3, 140 74	
	7, 247	4, 030	13, 743	6, 346	

Norway.—Operating conditions at the refinery of Falconbridge Nickel Mines, Ltd., at Kristiansand, Norway, were complicated by the changeover to the chloride process, which was attended by increased metal losses and corrosion problems.²⁵ Nevertheless, production of refined nickel and copper established new records in 1952. By the end of 1952, the difficulties were being progressively overcome.

Output of nickel was 12,159 metric tons in 1952 compared with 11,080 tons in 1951.

²⁵ Falconbridge Nickel Mines, Ltd., 24th Annual Report: 1952, p. 8.

NICKEL 779

According to Norwegian press reports, quoted by Agefi, two deposits of nickel ore have been discovered in the Province of Nordland in northern Norway.²⁶ One is in the region of Misvaer about 25 miles from Bodö, and the other in the Einan district. Both deposits are situated near the sea.

Union of South Africa.—A small quantity (1,444 short tons in 1952) of nickel in the form of matte is produced annually in the Rustenburg district, Union of South Africa, by Rustenburg Platinum Mines, Ltd.

The matte is exported to England for refining.

United Kingdom.—The operating efficiency of the nickel refinery of Mond Nickel Co. at Clydach, Wales, was greatly improved as a result of major alterations completed in 1952.²⁷ In addition, encouraging results obtained on a pilot plant scale have warranted the installation of a full-scale unit which is expected to effect savings in the cost of producing nickel at this refinery.

Metal Bulletin (London) No. 3718, Aug. 19, 1952, p. 23.
Thompson, J. F., The International Nickel Co. of Canada, Ltd., address to Shareholders: Apr. 29, 1953, pp. 16-17.

Nitrogen Compounds

By E. Robert Ruhlman 1

URING 1952 the nitrogen industry was characterized by shortages of nitrogen materials and continued industry expansions. The Defense Production Administration set a goal of 2.9 million short tons of nitrogen by 1955, an expansion of 1.3 million tons above the 1950 capacity.

All fertilizer nitrogen materials for export required licenses from

the Office of International Trade during 1952.

DOMESTIC PRODUCTION

Synthetic anhydrous ammonia production reached a new high in 1952, 15 percent above the previous record of 1951. Domestic production of ammonium sulfate in 1952 was 5 percent more than in 1951 but less than in 1950. Ammonium sulfate produced in byproduct coking plants was 11 percent below the 1951 figure as a result of a 2-month steel strike in June and July 1952. nitrate production reached another alltime high in 1952, 9 percent above the 1951 figure. As in previous years, synthetic sodium nitrate was produced only by Allied Chemical & Dye Corp., Hopewell, Va., and Mathieson Chemical Corp., Lake Charles, La.

TABLE 1.—Principal nitrogen compounds produced in the United States, 1943-47 (average) and 1948-52, in short tons

Commodity	1943–47 (average)	1948	1949	1950	1951	1952
Ammonia (NH ₄): Synthetic plants: Anhydrous ammonia ¹	695, 129	1, 089, 786	1, 294, 057	1, 565, 569	21,777,074	2, 052, 11 4
Byproduct coking plants (NH ₃ content): Aqua ammonia Ammonium sulfate	28, 817 189, 850	24, 753 207, 671	22, 750 189, 202	23, 387 207, 754	24, 878 224, 566	22, 060 200, 603
Subtotal	218, 667	232, 424	211, 952	231, 141	249, 444	222, 663
Grand total	913, 796	1, 322, 210	1, 506, 009	1, 796, 710	22,026,518	2, 274, 777
Principal ammonium compounds: Ammonium sulfate: Synthetic plants 1 3 Byproduct coking plants.	118, 873 759, 400	264, 476 830, 683	846, 195 756, 807	1, 137, 721 831, 016	² 605, 651 898, 263	770, 610 802, 412
Total	878, 273	1, 095, 159	1, 603, 002	1, 968, 737	21,503,914	1, 573, 022
Ammonium nitrate, basis solution, 100 percent NH ₄ NO ₃ 1	4 744, 418	988, 342	1, 018, 706	1, 213, 911	1, 346, 443	1, 467, 341

¹ Data from Bureau of Census Facts for Industry series.

⁻ Averaged agains.

4 Average of 1945-47 only.

¹ Commodity-industry analyst.

Allied Chemical & Dye Corp., on June 1, 1952, announced establishment of a Nitrogen Division to assume all manufacturing and associated activities previously handled by the nitrogen and organic sections of the Solvay Process Division. Allied Chemical & Dye Corp. announced beginning of construction of a new fertilizer plant at South Point, Ohio, to manufacture a high-analysis complete fertilizer. Other expansion reported by this company included enlargement of research and development facilities at Hopewell, Va., and plans for the construction of a large ammonia and urea plant near La Platte,

The American Cyanamid Co. published a booklet listing its available

products and services.3

W. R. Grace & Co. formed a wholly owned subsidiary—Grace Chemical Co.—to operate an ammonia-urea plant to be constructed near Memphis, Tenn., to supply Naco Fertilizer Co., also a subsidiary of W. R. Grace & Co., with nitrogen requirements for its plants in the Carolinas, Florida, Ohio, and California.4

The new anhydrous ammonia plant of the Hooker Electrochemical Co. at Tacoma, Wash., began to operate in May 1952, using nitrogen obtained from liquefied air and hydrogen from salt brine. It was announced that plans for expansion were under consideration.⁵

The Lion Oil Co. announced plans for constructing a plant at Luling, La., to manufacture anhydrous ammonia and prilled ammonium nitrate. Natural gas will be used as a raw material and fuel.6

The Mathieson Chemical Corp. began to operate the Army's Morgantown Ordnance Works, Morgantown, W. Va., under a 5-year lease for the production of ammonia and methanol. Products will be sold to industry and the Government, and used in Mathieson's own fertilizer plants.7

The Union Oil Co. of California formed a byproduct chemical division and planned construction of an ammonium sulfate plant at

its Wilmington, Calif., refinery.

Other companies which announced expansion programs or construction of new plants included: Ammonium Chemical Corp., Calif.; Gulf Improvement Co., Pascagoula, Miss.; Houston Oxygen Co., Houston, Tex.; Pacific Chemical Co., Pasco, Wash.; Phillips Chemical Co., Pasadena, Tex.; and the Rocky Mountain Chemical Co., Billings, Mont.

^{*}Chemical and Engineering News, vol. 30, No. 21, May 26, 1952, p. 2212; No. 31, June 9, 1952, p. 2371; No. 39, Sept. 29, 1952, p. 4662; No. 42, Oct. 20, 1952, p. 4382.

Chemical Engineering, vol. 59, No. 6, June 1952, p. 112.

Oil, Paint, and Drug Reporter, vol. 161, No. 22, June 2, 1952, p. 5.

*American Cyanamid Co., Products and Services for Industry and Agriculture: 3d ed., 1952, 36 pp. 4.

Chemical and Engineering News, vol. 30, No. 14, Apr. 7, 1952, p. 1355.

Chemical Engineering, vol. 59, No. 6, June 1952, p. 110.

Chemical Engineering, vol. 59, No. 6, June 1952, p. 10.

Oil, Paint and Drug Reporter, vol. 162, No. 15, Oct. 13, 1952, p. 4.

*Chemical Engineering, vol. 59, No. 6, June 1952, p. 252.

Mining and Contracting Review, vol. 54, No. 6, June 24, 1952, p. 15.

Oil, Paint and Drug Reporter, vol. 161, No. 19, May 12, 1952, p. 6.

*Chemical Engineering News, vol. 30, No. 18, May 5, 1952, p. 1832.

Chemical Engineering, vol. 59, No. 6, June 1952, p. 106; No. 8, August 1952, p. 306; No. 9, September 1952, pp. 259-260.

*Chemical Engineering, News, vol. 30, No. 14, Apr. 7, 1952, p. 1398.

Chemical Engineering, vol. 59, No. 3, March 1952, p. 256; No. 5, May 1952, p. 344, Commercial Fertilizer, vol. 84, No. 1, January 1952, p. 27.

*Chemical and Engineering News, vol. 30, No. 14, Apr. 7, 1952, p. 1402,

CONSUMPTION AND USES

The major part of the nitrogen supply continued to be consumed by agriculture, with smaller quantities used by industry. quantity of elemental nitrogen was consumed for industrial purposes. but most nitrogen entered both agriculture and industry in a variety of chemical compounds. Over 1.4 million tons of nitrogen was consumed by agriculture during the fiscal year ended June 30, 1952, a 17-percent increase above the previous fiscal year. The principal chemical nitrogen materials, in order of importance, were (1) ammonium nitrate and ammonium nitrate-limestone mixtures, (2) sodium nitrate, (3) ammonium sulfate, (4) anhydrous and aqua ammonia, (5) calcium nitrate, and (6) calcium cvanamide.

According to the United States Department of Agriculture, consumption of anhydrous ammonia, ammonium nitrate-limestone mixtures, and ammonium nitrate in 1951-52 increased 42, 34, and 25 percent, respectively, whereas consumption of calcium cyanamide

was 34 percent less than in 1950-51.

PRICES

Prices of nitrogen compounds remained under control of the Office of Price Stabilization throughout 1952. Supplementary regulations and amendments were issued during the year. The prices for various nitrogen compounds in effect at the opening, middle, and end of 1952, as quoted in the Oil, Paint and Drug Reporter, are shown in table 2.

TABLE 2.—Prices of major nitrogen compounds in 1952, per short ton 1

Commodity	Jan. 14, 1952	June 30, 1952	Dec. 29, 1952
Chilean nitrate, port, warehouse, bulk	\$53. 50	\$57.00	\$57.00
Sodium nitrate, synthetic, domestic, c. l. works, crude, bulk	47.50	47. 50	47. 50
Ammonium sulfate, coke ovens, bulk	40.00-45.00	40.00-45.00	44.00-49.50
Cyanamide, fertilizer-mixing grade, 20.6% N, granular,			
Niagara Falls, Ont., bagged	65, 45	62, 50	62, 50
Ammonium nitrate, fertilizer grade:			
Canadian, eastern, 33.5% N, c. l., shipping point,			
bags	69.50	2 72, 50	72, 50
Western, domestic, works, bags	64.00	64,00	64,00
Anhydrous ammonia, fertilizer, tanks, works	79. 00-80. 00	79, 00-80, 00	79, 00-82, 00
Ammonium-nitrate-dolomite compound, 20.5% N. Hope-	10.00-00.00	10.00-00.00	10.00-02.00
	51.00	51,00	51,00
well, Va., bags	51,00	31.00	31.00
	1	1	1

Quotations from Oil, Paint and Drug Reporter of the dates listed.
 Effective February 8.

FOREIGN TRADE 9

Total imports of nitrogen compounds were 7 percent more in 1952 As in previous years, imports of natural Chilean nitrate greatly exceeded the imports of any other nitrogenous material. The tonnage of sodium nitrate imported from Chile decreased 8 percent, whereas the average value per ton increased from \$36.65 in 1951 to \$40.91 in 1952.

Chilean potassium-sodium nitrate imports in 1952 were nearly double those of 1951. The average price per ton increased \$5.42

[•] Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines from records of the U. S. Department of Commerce.

Total exports of nitrogen compounds decreased 14 percent in 1952. Ammonium sulfate remained the major export.

TABLE 3.—Major nitrogen compounds imported for consumption into and exported from the United States, 1949-52, in short tons

[U. S. Department of Commerce]

	1949	1950	1951	1952
Towns			-	
Imports: Industrial chemicals:	1	1	1	
		İ	1	
	1		4	
Fertilizer materials:	ł	1	1	
Ammonium nitrate mixtures:				
Containing less than 20 percent nitrogen	2, 290	1,523	361	62
Containing 20 percent or more nitrogen	136, 405	221, 299	342, 757	459, 70
Ammonium phosphates		107, 695	134, 962	133, 31
Ammonium sulfate	105, 498	144, 732	216, 106	238, 06
Calcium cyanamide	115, 885	97, 725	68, 231	96, 19
Calcium nitrate	38 611	44, 331	55, 743	39, 46
Nitrogenous materials, n. s. p. f	4, 829	23, 830		22, 06
Potassium nitrate, crude	1	20	1 3, 367	20, 19
Potassium-sodium nitrate	6,802	20, 409	1 8, 655	16.46
Sodium nitrate	675, 543	618, 018	1 737,324	675, 32
Exports:	010,010	010, 010	101,024	010,02
Industrial chemicals:	ì	1		1
Anhydrous ammonia	3,477	10, 202	5, 907	15, 43
Ammonium nitrate	17, 004	3, 336	5, 049	5, 70
Fertilizer materials:	17,004	0,000	0,049	5, 70
Ammonium nitrate	470 442	04 100	1 055	10.00
	470, 443	94, 169	1,255	18, 95
Allimonium Sunate	000, 733	819, 285		121, 58
Nitrogenous chemical materials, n. e. s		41,363	63, 768	48, 10
Sodium nitrate	3, 714	32,862	43,669	9, 44
	l	İ	1	1.0

¹ Revised figure.

TABLE 4.—Sodium nitrate and potassium-sodium nitrate imported for consumption in the United States, 1948–52, by countries

[U. S. Department of Commerce]

			10.1	o. Departin	ient or v	Commerce.				
1948			1949		1950	1951		1952		
	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value
Sodium ni- trate: Canada Chile- France- Germany- Poland		23, 031, 245	675, 535	26, 005, 637	617, 999	\$1, 137 22, 387, 123 1, 330	¹ 737, 188 33 5 14	27, 015, 854 3, 213 576 968	675, 279	27, 626, 811
Total Potassium- sodium ni- trate, mix- tures: Canada Chile	709, 573	23, 042, 302	6, 802				3	148		27, 630, 949 830, 693
Total			6, 802	310, 343	20, 409	882, 582	1 8, 655	1 389, 897	16, 460	830, 693

<sup>Revised figure
1951: Germany revised to none.</sup>

TECHNOLOGY

The early nitrate industry of the United States, which began about 1800, was described in an article published during 1952. Saltpeter was produced by leaching the potassium nitrate from the dirt floors of caves and percolating the liquor through wood ashes. From 3 to 5 pounds of nitrate of lime was produced from 1 bushel of dirt. 10

Studies were in progress at the University of Wisconsin during 1952 to determine the process by which plants convert free nitrogen to fixed nitrogen compounds. This "fixation" by plants has long been one of the mysteries of agronomy. When the process is known, fertilizers might be produced capable of supplying nitrogen in more favorable forms. 11

The Tennessee Valley Authority, in its fertilizer research, constructed a 525-ton-per-day continuous vacuum crystallizer plant to develop a safer and more economical process for the production of ammonium nitrate. The product from the crystallizers is rounded, minus-16-plus-35-mesh crystals containing not less than 33 percent nitrogen.¹²

The first commercial installation to produce ammonia by partial oxidation of natural gas with oxygen was under construction at Vicksburg, Miss., for the Spencer Chemical Co. It was reported that this new process will reduce the cost of ammonia by about 6 percent.13

A safe one-step method of producing ammonium nitrate was developed by the Commercial Solvents Corp. This process, called the Stengel Process (United States Pat. 2,568,901), combines ammonia and nitric acid at temperatures between 180° and 250° C. Following completion of pilot-plant studies, the company began to construct a commercial plant at Sterlington, La.¹⁴

The demand for urea as a nitrogenous fertilizer continued to increase throughout 1952. Combination of urea and formaldehyde yields nitrogen-bearing products, which apparently have desirable properties of both chemical and natural organic nitrogen fertilizer materials.15

The potential applications of nitric acid for acidulation of phosphate rock was the subject of an article. Four possibilities were listed for greater use of nitric acid in fertilizer technology:

- 1. Production of liquid and solid ammonium nitrate products.
- 2. Production of potassium nitrate. 3. Production of calcium nitrate. 4. Acidulation of phosphate rock.

Each of these was discussed and possible trends in their use in the United States were cited.¹⁶

Nitrogen tetroxide is being considered as rocket fuel. Its high oxygen content makes it desirable for rockets that must carry their own oxygen.17

<sup>Jackson, G. F., Niter Caves: Compressed Air Mag., vol. 57, No. 6, June 1952, pp. 156-160.
Science News Letter, vol. 63, No. 2, Jan. 10, 1953, p. 25.
Seamen, W. C., McCamy, I. W., and Houston, E. C., Production of Ammonium Nitrate by Continuous Vacuum Crystallization: Ind. & Eng. Chem., vol. 44, No. 8, August 1952, pp. 1912-1914.
Chemical and Engineering, News, vol. 30, No. 10, May 5, 1952, p. 1862.
Chemical Engineering, One-Step Ammonium Nitrate: Vol. 59, No. 8, August 1952, p. 215.
Clark, K. G., Urea-Form—New Nitrogen Fertilizer: Crops and Soils, vol. 4, No. 8, June-July 1952, pp. 14-15.</sup>

pp. 14–15.

16 Critteden, E. D., What's Ahead for Nitric Acid: Chem. Eng., vol. 59, No. 6, June 1952, pp. 177–179, 286.

17 Chemical Engineering, vol. 59, No. 4, April 1952, p. 162.

The origin and development of the nitriding process and recent improvements were discussed in an article published in 1952.¹⁸

The advantages of adding nitrogen to certain steel alloys and the

improved properties of the resulting metal were discussed. 19

WORLD REVIEW

According to the annual report of Aikman (London), Ltd., production and consumption of nitrogen increased in 1952-53, compared with 1951-52. As in previous years, Aikman's data show an apparent surplus, which from 1948-49 through 1952-53 totals over 900,000 metric tons of nitrogen for agriculture. Details of world production

and consumption of nitrogen are shown in tables 5 and 6.

Chile.—The production of nitrates totaled 1,438,199 metric tons in 1952, a 22 percent decrease from 1951. Although the demand was high, the industry, largely because of labor difficulties, was not able to supply sufficient nitrates to fill orders. The consumption of nitrates in Chile has been increasing for several years and in 1951-52 totaled 74,809 metric tons. The exports of sodium nitrate and potassium nitrate in 1952 are shown in table 7.

TABLE 5.—World production and consumption of fertilizer nitrogen compounds. fiscal years ended June 30, 1951-53, by principal countries, in metric tons of contained nitrogen

Country		Production	1	Consumption			
Country	1950-51	1951-52 1	1952-53 2	1950-51	1951-52 1	1952-53 2	
Austria Belgium Canada Chile Czechoslovakia	173, 357 149, 208 242, 583 30, 000	94, 750 214, 269 149, 208 234, 660 30, 300	100, 700 215, 000 161, 208 234, 660 30, 300	22, 542 78, 000 32, 659 8, 369 40, 000	25, 000 77, 500 32, 659 9, 000 40, 000	25, 000 78, 000 34, 500 9, 000 40, 000	
Denmark Egypt France Germany	259, 030	27, 900 285, 000	31, 000 305, 600	70, 000 42, 533 262, 100	73, 000 130, 118 280, 000	75, 000 143, 400 315, 000	
Federal RepublicSoviet ZoneGreece	464,677	500, 000 205, 000	520, 000 213, 000	361, 562 184, 000 22, 000	380, 000 191, 000 35, 000	400,000 196,000 40,000	
India Italy Japan	177 301 414 595	37, 998 186, 000 456, 770	71, 120 225, 000 480, 000	46, 650 156, 500 442, 000	62, 998 158, 000 442, 000	108, 120 170, 000 442, 000	
Korea, South Netherlands Norway Peru	160,747	306 226, 500 159, 404 36, 000	1, 122 245, 000 164, 795 36, 000	14, 598 165, 978 30, 699 37, 680	48, 189 160, 000 32, 000 39, 630	80, 010 165, 000 33, 000	
Poland Portugal ³ Spain	65,000 6,600	65, 000 7, 000	65, 000 7, 000	75,000 31,870 56,600	75, 000 33, 000 60, 000	75, 000 34, 000 60, 000	
Sweden	6,112	16, 028 13, 849 278, 900 1, 099, 000	24, 659 14, 320 286, 000 1, 202, 000	67, 999 61, 279 218, 800 1, 166, 000	72, 542 76, 215 175, 000 1, 275, 000	220, 000 1, 379, 000	
World total 4	4, 011, 103	4, 379, 654	4, 705, 864	3, 930, 054	4, 268, 353	4, 639, 255	

¹ Preliminary figures

² Preliminary estimates.

Figures for consumption include overseas territories.

Exclusive of U. S. S. R.; includes quantities for minor producing and consuming countries not listed

¹⁸ Chemical Age (London), The Theory and Practice of Nitriding: Vol. 67, No. 1730, Sept. 6, 1952 pp. 329-331.

19 Metal Progress, How Nitrogen Refines Grain Size: Vol. 61, No. 4, April 1952, p. 105.

France.—Expansion of the nitrogen facilities provided a productive capacity of 375,000 metric tons per year at the close of 1952, compared to 280,000 tons capacity per year, previously.

TABLE 6.—Revised estimates of world production and consumption of nitrogen, in thousands of metric tons ¹

	Estimated	production	Estimated consumption		
Year	For agri- culture	For indus-	In agri- culture	In indus- try	
1948-49 1949-50. 1950-51. 1951-52. 1952-53.	3, 438 3, 891 4, 037 4, 376 4, 747	570 670 770 840 865	3, 181 3, 525 3, 973 4, 179 4, 597	570 670 770 840 865	

¹ Exclusive of U. S. S. R. Source: Aikman (London), Ltd., Amended Annual Report on the Nitrogen Industry.

TABLE 7.—Exports of sodium nitrate and potassium nitrate from Chile in 1952 1

Sodium nitrate		Potassium nitrate	
Country of destination	Metric tons	Country of destination	Metric tons
Argentina Belgium Bolivia Brazil Colombia Costa Rica Cuba Denmark Ecuador Egypt El Salvador France Germany Great Britain Greece Gystemany Gustemala Italy Jamaica Japan Mauritius Mexico Netherlands New Zealand Nicaragua Panama Portugal Spain	23, 500 18, 793 100 34, 319 350 2, 146 15, 240 1, 420 230, 628 3, 211 62, 065 10, 210 16, 968 2, 932 2, 703 10, 951 1, 904 495 10 8, 811 30, 822 77, 839 26, 577 615, 160	Bolivia Brazil Colombia Costa Rica Cuba Ecuador El Salvador Great Britain Guatemala Honduras Mauritius Mexico Netherlands Nicaragua Panama Peru United States Venezuela Total	2 4, 020 65 15, 39 45 24 3, 86 39 1, 000 100 499 11 1, 64 17, 93 38 48, 600
Venezuela Total	1, 271, 965		

¹ Source: Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 5, May 1953, p. 41.

Iceland.—The 18,000-ton-per-year ammonium nitrate fertilizer plant being constructed with Economic Cooperation Administration funds was scheduled for completion in 1953.²⁰

²⁰ Foreign Commerce Weekly, vol. 43, No. 13, June 23, 1952, p. 16.

India.—The fertilizer factory at Sindri, Bihar, India was officially opened in March 1952. Initially built to produce 350,000 metric tons annually of ammonium sulfate, the plant was designed to provide for expansion to double the production of ammonium sulfate and also to produce ammonium nitrate, urea, and other chemicals. Coal, coke, and water are obtained nearby. The plant was designed to utilize gypsum deposits near the Pakistan-India border, but because the supply was not assured, the plant was redesigned to permit utilization of lower grade but more accessible gypsum deposits.²¹

Chemical and Engineering News, vol. 30, No. 11, Mar. 17, 1952, p. 1118.
 Chemical Engineering and Mining Review, vol. 44, No. 11, Aug. 11, 1952, p. 441.
 Pit and Quarry, vol. 44, No. 10, April 1952, p. 73.
 Rock Products, vol. 55, No. 10, October 1952, p. 87.

Perlite

By Oliver'S. North 1 and Annie L. Marks 2

THE OUTPUT in 1952 of 156,000 short tons of expanded perlite was a new record for the industry. Total sales reached 155,000 tons, or approximately 9,250,000 4-cubic-foot bags—an increase of 16 percent from the 1951 total—valued at \$7,998,000.

The rate of the industry's growth gave indications of leveling, particularly in States and areas in which it has been established for some years. New geographic and use markets were being opened, and

selling efforts in existing markets were intensified.

Developments of interest to members of the industry included the growing use of premixed perlite plaster, of perlite in concretes (especially in structural panels), of perlite in oil-well drilling, and of perlite fines as an emergency filtration additive.

DOMESTIC PRODUCTION

Crude Perlite.—Twenty-one firms and individuals in 7 States reported the output of crude perlite in 1952. Of these, 9 produced for sale to expanders only, 8 for use in their own expanding units only, and 4 produced both for their own furnaces and for sale to other expanders.

Of the 165,000 short tons of crude perlite used in the United States in 1952, 73 percent was produced in New Mexico and Nevada and 24 percent in California, Colorado, and Oregon. To avoid disclosing individual company operations, separate State totals are not published. Output of crude perlite in 1948–52 is shown in table 1.

TABLE 1.—Crude and expanded perlite produced and sold or used by producers in the United States, 1948-52

			rude perli	Expanded perlite				
Year	Produced (short	Sold		Used at own plant to make expand- ed material		Produced (short	Sold	
	tons)	Short tons	Value	Short tons	Value	tons)	Short tons	Value
1948 1949 1950 1951 1952	22, 200 71, 500 110, 694 1 154, 174 190, 442	4, 400 27, 300 59, 802 1 110, 119 135, 070	\$29,000 193,000 411,205 1 663,981 873,054	17, 700 43, 800 41, 734 43, 383 29, 775	\$105,000 317,000 237,957 194,118 129,866	21, 200 58, 100 88, 892 134, 479 155, 955	18, 600 52, 200 86, 962 133, 175 154, 563	\$742,000 2,385,000 4,741,383 7,243,298 7,997,731

¹ Revised figure.

¹Commodity-industry analyst.

²Statistical clerk.

789 PERLITE

Expanded Perlite.—Production of expanded perlite in 1952 was reported from 72 plants located in 30 States. Of these plants, 13 were in California, 5 each in Illinois, Ohio, and Texas, and 4 in Pennsyl-Production of this material was reported in 1952 for the first time from Florida, Massachusetts, and Nebraska. Output of expanded perlite in 1951-52 is shown in table 2.

TABLE 2.—Expanded perlite produced and sold by producers in the United States, 1951-52, by States

			1951			1952			
State	Pro-	Sold			Due	Sold			
	duced (short tons)	Short	Value	Average value per ton	Pro- duced (short tons)	Short tons	Value	Average value per ton	
California	25, 850 11, 978 (1) 12, 446 9, 044 32, 640 42, 521	25, 648 11, 967 (1) 12, 389 8, 698 32, 584 41, 889	\$1, 481, 428 692, 073 (1) 757, 060 423, 730 1, 467, 831 2, 421, 176	\$57. 76 57. 83 (1) 61. 11 48. 72 45. 05 57. 80	28, 663 15, 545 9, 975 15, 690 11, 780 38, 488 35, 814	28, 419 14, 562 9, 881 15, 441 11, 691 38, 309 36, 260	\$1, 202, 603 776, 728 667, 561 938, 690 627, 917 1, 714, 067 2, 070, 165	\$42. 33 53. 34 67. 56 60. 79 53. 73 44. 74 57. 09	
Total	134, 479	133, 175	7, 243, 298	54. 39	155, 955	154, 563	7, 997, 731	51.7	

¹ Included under "Other Eastern States."

² Includes Arizona, Arkansas, Colorado, Iowa, Kansas, Louisiana, Minnesota, Missouri, Nebraska (1952 only), Nevada, New Mexico, Oklahoma, Oregon, and Utah.

³ Includes Florida (1952 only), Indiana, Maryland, Massachusetts (1952 only), Michigan, New Jersey, New York, North Carolina, Ohio (1951 only), Tennessee, Virginia, and Wisconsin.

Perlite Mine and Plant Developments.—Dant & Russell, Inc., one of the earliest producers in the perlite industry, leased its mine and plant to Kaiser Gypsum Division of Henry J. Kaiser Co. The facilities are near Maupin, Oreg., 113 miles east of Portland, Oreg.3

The processing plant of Midwest Perlite Products, Inc., West Des Moines, Iowa, began making hardwall and finish-coat plaster aggre-

gates, concrete aggregate, and acoustical plaster.4

An article described the mining methods of F. E. Schundler & Co., at its Taos County, N. Mex., mine, and milling practices at its Antonito, Colo., crushing plant.⁵

According to an item in the press, California Perlite Corp. began construction of a large perlite-crushing plant at Klondike, Calif.6

The perlite-processing facilities of the J. P. Loomis Coal & Supply Co., Akron, Ohio, were reported in the fall of 1952 to have been leased

by Geotic Industries, Inc., Akron, Ohio.

The Perlite Division of Great Lakes Carbon Corp. permanently closed its expanding units at Torrance, Calif., and Linden, N. J., early in 1952. Its furnace unit at Socorro, N. Mex., operated throughout the year.

<sup>Rock Products, Kaiser Acquires Perlite Operation: Vol. 55, No. 6, June 1952, p. 90; Pit and Quarry, Kaiser Gypsum Acquires Dantore Quarry and Plant for Perlite Processing: Vol. 44, No. 12, June 1952, p. 74.
Rock Products, Perlite Aggregate Plant: Vol. 55, No. 6, June 1952, p. 89.
Mining World, New Mexico's No Agua Perlite Processed at Schundler Plant: Vol. 14, No. 1, January 1952, pp. 44-45.
Western Industry, vol. 17, No. 11, November 1952, p. 92.</sup>

The Perlite Manufacturing Co., Carnegie, Pa., was reported to have expanded its plant facilities to meet the heavy demand for its

products in the Pittsburgh area.⁷

A perlite-processing plant was built in the Cincinnati, Ohio, area. The new firm, Indoken Perlite Co., St. Bernard, Ohio, will operate under a franchise agreement with one of the large producers of crude rock.8

The El Paso Perlite Co. was reported to have erected, at Gage, N. Mex., a pilot plant for crushing crude perlite rock from a large

deposit 19 miles northwest of Gage.

CONSUMPTION AND USES

Crude Perlite.—Although small quantities may find other applications, in this chapter consumption statistics refer only to the material from which expanded perlite is made. The consumption of crude perlite in the United States is the sum of the quantity sold by producers and that used by producers at their own expansion units. These figures are shown in table 1.

Expanded Perlite.—The quantity and value of expanded perlite sold or used in 1951 and 1952 are shown in table 2; totals for earlier years appear in table 1. The Bureau of Mines does not make a canvass of consumption, by uses, but it is known that the uses discussed in the following paragraphs constitute the principal com-

mercial applications of this material.

Although probably not so important, percentagewise, as during the past several years, the use of perlite as aggregate in hardwall and fireproofing plasters consumed well over half the total tonnage used. Expanded perlite apparently is finding increasing usage in lightweight concretes, particularly in roof decks and in reinforced structural panels, and an estimated 30 percent of the 1952 output went for this purpose.

A development of interest to the industry is the growing use of premixed perlite-gypsum plaster, which is now being manufactured and sold by at least six large gypsum-producing companies. product is packaged to appeal to those home owners and plasterers

who use relatively small quantities at a time.

Several processors report considerable quantities of expanded perlite going into oil-well muds and concretes, 10 with 1 or 2 firms devoting virtually their entire outputs to this use. Certain grades of perlite are used in the foundry industry, where the material is employed to insulate risers and as an additive to core and facing sands. 11

Other uses include: Loose-fill insulation, filtering medium for water and chemicals, exterior cement stucco work, refractory brick, roofing tile, soil reconditioner, filler in paints and plastics, and numerous special purposes that utilize its light weight, insulating characteristics. inertness, or other physical qualities.

⁷ Pit and Quarry, vol. 44, No. 10, April 1952, p. 107.
8 Pit and Quarry, Indoken Perlite Co. Builds Plant at St. Bernard, Ohio: Vol. 44, No. 11, May 1952, p. 75.
9 Mining Congress Journal, Perlite Operations in New Mexico: Vol. 38, No. 11, November 1952, p. 80;
Pit and Quarry, El Paso Perlite Begins New Operation: Vol. 45, No. 4, Ottober 1952, p. 61.
10 Johnson, S. W., Perlite (Review of 1952): Eng. and Min Jour., vol. 154, No. 2, February 1953, pp.

<sup>108-109, 240.

1</sup> Rock Products, Perlite Meeting: Vol. 55, No. 12, December 1952, p. 128.

791 PERLITE

Disposal of the fine material that is unavoidably produced during furnacing presents a continuing problem to many processors. a work stoppage of several months in the principal diatomaceous earth-producing area in the United States, perlite fines were widely used as a filter additive by the liquor, chemical, and dry-cleaning industries, but when diatomaceous earth became again available, many users returned to that product. Other uses for fines are in trowel and brush finishes, fillers, air-entraining agents, and abrasives.

PRICES

The mill value of crude perlite (crushed and sized) sold by producers averaged \$6.46 per short ton in 1952, while the average book value of crude material processed by the companies by which it was mined was \$4.36 per short ton. Average value for all milled crude perlite sold or used in the United States in 1952 was \$6.08 per short ton.

As reported in the July 1952 issue of the California Division of Mines publication, Mineral Information Service, the cost of crude perlite rock, crushed and graded, delivered in the Los Angeles area, was \$12.80 to \$14.75 per short ton for concrete-aggregate grades and \$11.80 to \$13.75 for plaster-aggregate grades. Napa crude delivered in the San Francisco-Oakland area was quoted at \$10.50 to \$14.00 per

The average value of expanded material in bags at the plant was \$51.74 per short ton in 1952, compared to \$54.39 in 1951. principal declines in value were noted in California and Illinois, while the average value in Texas was several dollars per ton higher than in the previous year. Average values in most of the Eastern States were steady.

TECHNOLOGY

During the year five patents on perlite-processing furnaces were

granted by the United States Patent Office.

The Zoradi patent discussed in considerable detail the technology and science of expanding perlite. It emphasized the importance of removing clay streaks and other impurities, using only perlite analyzing between 3 and 4 percent combined water and grading furnace crude to a screen size of minus 20-, plus 150-mesh to obtain a product weighing 8 to 12 lb. per cu. ft. The Zoradi furnace is a short, horizontal rotary unit (with preheater) into which the particles are fed right angles to the flame.12

A second furnace patented is a circular, horizontally rotating furnace bed comprising a number of expansion chambers or pockets. Flames are projected downward onto the particles, which have been

separated and uniformly spaced by mechanical means.13

A third patent describes a horizontal rotary kiln in which the particles are heated by "off-center" firing, that is, by not subjecting the material to a direct flame.14

¹² Zoradi, E. D. (assigned to Dant & Russell, Inc.), Method and Apparatus for Expanding Perlite: U. S. Patent 2,602,782, July 8, 1952.
¹³ McDonald, G. H., Apparatus for Expanding Perlite: U. S. Patent 2,603,471, July 15, 1952.
¹⁴ Johnson, W. E., et al. (assigned to Great Lakes Carbon Corp.), Method for Expanding Perlitic Minerals: U. S. Patent 2,621,160, Dec. 9, 1952.

Other patents were granted on a vertical stationary furnace, 15 and a horizontal stationary unit in which the expanded material is separated from the gases by a system of baffles and carried out of the kiln by a

conveyor. 16

Three perlite products were patented. A concrete aggregate composed of a mixture of perlite and finely ground diatomaceous earth is claimed to reduce the stratification of aggregate and cement that often occurs in a regular perlite-cement mix, to impart to the concrete a marked higher strength, and to show other desirable character-Another patent covered the composition and method of manufacture of a building material composed of expanded perlite, waterglass (sodium silicate), and calcium borate. The material is said to be suitable for use in building and insulating blocks, boards, roof decking and sheets, and in reinforced structural slabs and panels.18 A third product patent described the manufacture of an insulating pipe-covering material composed of expanded perlite, sodium silicate as a binder, and rock salt as a setting agent. pression molded in the desired size and shape.¹⁹ The mixture is com-

The American Society for Testing Materials released tentative specifications covering the use of several aggregates, including perlite,

in interior plasters.20

A published article described the manufacture and application in roofs and floors of precast perlite-concrete slabs. The slabs are 3 inches thick, weigh only 10 lb. per sq. ft., and are said to combine strength, light weight, and good insulating properties.²¹

The 30-story Alcoa Building, Pittsburgh, Pa., is said to be the lightest structure of its size and type ever built. Contributing to the light weight was the use of reinforced-aluminum facing panels on which a 4-inch-thick backup layer of perlite concrete was sprayed. In addition, the underside of all floor decking was fireproofed with perlite plaster on metal lath.22

Another article described the Alcoa Building and the Equitable Gateway Center Group of office buildings. The exterior wall panels of the Equitable group are factory-assembled units of reinforced stainless steel backed with a 4½-inch thick layer of perlite concrete.23

The press reported the results of fire tests made on perlite structural units and on H-columns protected with perlite-gypsum plaster. Ratings of 2 to 4 hours were assigned to the various units.24

¹⁸ Stecker, G. (assigned to Great Lakes Carbon Corp.), Apparatus for Expanding Minerals: U. S. Patent 2,621,034, Dec. 9, 1952.

19 Slavick, J. V. (partial interest assigned to H. D. White), Apparatus for Heat-Treating Mineral Material: U. S. Patent 2,612,263, Sept. 30, 1952.

19 Bollaert, A. R., et al. (assigned to Great Lakes Carbon Corp.), Lightweight Concrete Mixture: U. S. Patent 2,585,366, Feb. 12, 1952.

10 Bowen, O. G., et al. (secondary interest assigned to Bowen), Building Material and Process of Making Same: U. S. Patent 2,583,292, Jan. 22, 1952.

10 Thomas, H. K., Insulating-Pipe Covering Composition: U. S. Patent 2,600,812, June 17, 1952.

20 American Society for Testing Materials, Tentative Specifications for Inorganic Aggregates for Use in Interior Plastering: Spec. C 35-527, 1952, 3 pp.

21 Concrete, Precast Roof Slabs Using Perlite Aggregate: Vol. 60, No. 1, January 1952, pp. 12-13, 38.

22 Engineering News-Record, Skyscraper Sheathed in Aluminum: Vol. 148, No. 14, Apr. 3, 1952, pp. 67-71.

23 Business Week, Skyscrapers Clad in Metal Coats: No. 1178, Mar. 29, 1952, pp. 72-74, 77.

24 Business Week, Perlite Passes Fiery Tests: No. 1176, Mar. 15, 1952, pp. 104, 106; Rock Products, Perlite Fire Tests: Vol. 55, No. 10, Cotober 1952, p. 83; Engineering News-Record, Lightweight Fireproofing for Steel Framing: Vol. 149, No. 19, No. 6, 1952, pp. 34-36, 39; Pit and Quarry, Laboratory Test Establishes Fire Resistance of Perlite: Vol. 44, No. 12, June 1952, p. 74; Pit and Quarry, Perlite-Covered Columns Pass Fire Test at Chicago: Vol. 45, No. 4, October 1952, p. 160.

Tests made at the Tokyo, Japan, Institute of Technology show that treating powdered perlite in an autoclave produces a sericite-like product that is richer in silica and poorer in alumina than the original raw material.²⁵

The comminution of crude perlite, which is highly abrasive, is said to be accomplished with efficiency in the impact crusher, or hammermill type of attrition crusher. It is claimed that a minimum of fines is produced by impact crushing.²⁶

<sup>Raisaku, K., and Ito, Y., Studies on Hydrothermal Reactions of Silicates, I: Jour. Ceramic Assn. Japan, vol. 60, 1952, pp. 53-56; abs. in Chem. Abs., vol. 46, No. 12, June 25, 1952, col. 5793, item i.
West. W. W., Impact Crushing for Reduction of Hard-Abrasive Ores: Min. Eng., vol. 4, No. 6, June 1952, pp. 563-564.</sup>

Phosphate Rock

By E. Robert Ruhlman 1 and Gertrude E. Tucker 2

THE OUTPUT of marketable phosphate rock set a new record in 1952, with over 12 million long tons produced, according to reports by producers. Mine production of phosphate rock ore was estimated as 32.8 million long tons. Florida, Tennessee, and the Western States all increased marketable production. The quantity

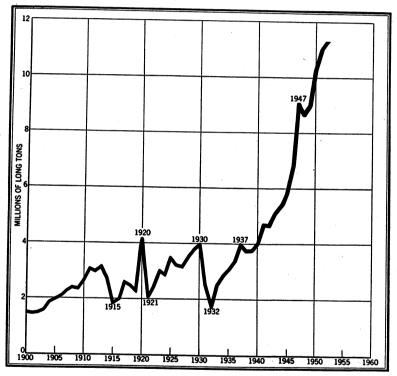


FIGURE 1.—Marketed production of domestic phosphate rock, 1900-52.

sold or used by producers was greater in Florida and Tennessee but less in the Western States in 1952. Stocks in producers' hands at the year end were 30 percent more than at the same time in 1951. The world production of phosphate rock was approximately 25 million metric tons.

¹ Commodity-industry analyst.

² Statistical assistant.

TABLE 1.—Salient statistics of the phosphate-rock industry in the United States, $195\bar{1}-52$

		1951		-	195	2			
	Long	tons	Value at n	nines	Long	tons	Value at r	Value at mines	
	Rock	P ₂ O ₅ content	Total	Aver- age	Rock	P ₂ O ₅ content	Total	Aver- age	
Production 1	10, 775, 032	3, 458, 265	(2)	(2)	12, 031, 213	3, 859, 556	(2)	(2)	
Sold or used by producers: Florida; Land pebble Soft rock Hard rock	8, 329, 033 92, 183 75, 615	18,694		\$5. 91 5. 37 7. 70	75,853	15, 358		5.71	
Total Florida Tennessee Western States: Idaho ³ Montana Wyoming	8, 496, 831 1, 419, 892 695, 026 304, 507 178, 948	184, 790 90, 808	10, 604, 638 1, 750, 974 2, 353, 381	7.73	1, 452, 508 620, 551 332, 299	386, 039 172, 532 95, 793	2, 163, 608 2, 620, 764	7. 49 3. 49 7. 89	
Total Western States	1, 178, 481	332, 657	5, 290, 878	4. 49	1, 090, 525	312, 439	5, 704, 359	5. 23	
Total United States. Imports Exports 6	11, 095, 204 4 93, 417 1, 677, 076	(2)	66, 158, 078 4 51, 437, 936 10, 873, 460	4515.39	11, 324, 158 110, 371 1, 401, 949		68, 120, 918 5 2, 357, 569 8, 878, 393	521.36	
Apparent consumption 7.	4 9, 511, 545	(2)			10, 032, 580	(2)			
Stocks in producers' hands Dec. 31: Florida Tennessee Western States	1, 033, 000 4 631, 000 4 270, 000	4 174, 000	(2)	(2) (2) (2)	1, 422, 000 8 558, 000 535, 000	8 148, 000	(2)	(2) (2) (2)	
Total stocks	4 1, 934, 000	4 587, 000	(2)	(2)	2, 515, 000	760, 000	(2)	(2)	

¹ See table 2 for kind of material produced.

2 Data not available.

DOMESTIC PRODUCTION

Marketable phosphate rock produced in the United States in 1952 reached a record high of over 12 million long tons. In previous years, this output was recorded as mine production, whereas actually it was a composite of salable products from washers and concentrators of Florida hard rock, Florida land pebble, and Tennessee brown rock; drier production of Florida soft rock; and mine production of Western States phosphate rock, plus tonnages of Florida land pebble and Tennessee brown rock ore (matrix) used directly. The actual mine production of phosphate-rock ore (total tons of material mined) in 1952 in the United States was estimated as 32.8 million long tons.

Florida continued to be the area of largest production, followed by Tennessee and the Western States. In addition to company activity, the Tennessee Valley Authority carried on exploration in the phosphate areas of Florida and acquired title to nearly 600 acres of land-pebble Numerous expansion programs were in various stages of

² Data not available.
3 Includes a small quantity from Utah.
4 Revised figure.
5 Market value (price) at port of shipment and time of exportation to the United States.
6 As reported to the Bureau of Mines by domestic producers.
7 Quantity sold or used by producers plus imports minus exports.
8 Includes a small quantity of washer-grade ore (matrix).

³ Federal Register, Executive Order 10278: Vol. 16, No. 156, Aug. 11, 1951, p. 7917.

TABLE 2.—Phosphate rock produced in the United States, 1943-47 (average), and 1948-52, by States, in long tons

Year	Florida 1	Tennessee 2	Western States ³	United States
1943-47 (average)	4, 447, 473	1, 469, 718	532,716	6, 449, 907
	7, 184, 297	1, 499, 547	704,316	9, 388, 160
	6, 695, 407	1, 403, 469	778,598	8, 877, 474
	8, 597, 227	1, 472, 017	1,044,915	11, 114, 159
	8, 211, 820	1, 424, 516	1,138,696	10, 775, 032
	9, 205, 138	1, 444, 737	1,381,338	12, 031, 213

¹ Salable products from washers and concentrators of land pebble and hard rock, plus a small tonnage of land pebble ore (matrix) used directly and drier production of soft rock (collodial clay).

2 Salable products from washers and concentrators of brown rock, brown-rock ore (matrix) used directly, blue rock in 1945-46, and a small quantity of apatite from Virginia in 1943-47.

3 Mine production of ore (rock).

completion at the close of 1952.4 In addition to increasing the production of phosphate rock, elemental phosphorus, and phosphate chemicals, more emphasis was placed on the recovery of byproducts, such as alumina, fluorine, vanadium, and uranium.

CONSUMPTION AND USES

The apparent consumption of phosphate rock increased 5 percent in 1952 compared to 1951. Data on phosphate rock sold or used by producers are shown in tables 4 through 9. Production, shipments, and stocks of superphosphates are shown in table 10.

TABLE 3.—Apparent consumption 1 of phosphate rock in the United States, 1943-47 (average), and 1948-52, in long tons

Year	Long tons	Year	Long tons
1943–47 (average)	5, 796, 322	1950	8, 580, 925
1948	7, 700, 081	1951	² 9, 511, 545
1949	7, 735, 005	1952	10, 032, 580

¹ Quantity sold or used by producers plus imports minus exports.
² Revised figure.

TABLE 4.—Phosphate rock sold or used by producers in the United States, 1943-47 (average), and 1948-52

Year Long tons		Value at	t mines	77		Value at mines	
T ear	Long tons	Total	Average	Year	Long tons	Total	Average
1943–47 (average) 1948 1949	6, 439, 468 8, 668, 769 8, 986, 933	\$28, 290, 437 50, 501, 598 51, 415, 027	\$4.39 5.83 5.72	1950 1951 1952	10, 253, 552 11, 095, 204 11, 324, 158	\$59, 027, 848 66, 158, 078 68, 120, 918	\$5. 76 5. 96 6. 02

⁴ Chemical and Engineering News, vol. 30, No. 39, Sept. 29, 1952, p. 4009; No. 43, Oct. 20, 1952, p. 4467. Chemical Engineering, vol. 59, No. 6, June 1952, p. 285; No. 8, August 1952, pp. 235 and 306; No. 10, October 1952, pp. 362–365.
Mining Engineering, vol. 4, No. 4, April 1952, p. 354.
Mining World, vol. 14, No. 2, February 1952, p. 82; No. 9, August 1952, pp. 92–93; No. 10, September 1952, p. 107

Mining worid, vol. 14, No. 2, February 1502, p. 02, 100. 1, 10

TABLE 5.—Florida phosphate rock sold or used by producers, 1943–47 (average) and 1948–52, by kinds

		Hard rock			Soft rock 1	
Year	T	Value a	t mines	T 4	Value a	t mines
	Long tons	Total	Average	Long tons	Total	Average
1943-47 (average)	48, 198 23, 804	\$429, 342 368, 586 173, 211 538, 601 582, 247 625, 175	\$7. 15 7. 65 7. 28 7. 55 7. 70 7. 71	77, 732 69, 335 77, 088 81, 542 92, 183 75, 853	\$304, 345 293, 927 344, 787 408, 595 495, 243 433, 203	\$3. 92 4. 24 4. 47 5. 01 5. 37 5. 71
		Land pebble			Total	
Year	+	Value a	t mines	T	Value a	t mines
	Long tons	Total	Average	Long tons	Total	Average
1943–47 (average)	4, 475, 613 6, 421, 725 6, 715, 097 7, 933, 009 8, 329, 033 8, 624, 186	\$18, 438, 378 37, 070, 381 37, 339, 985 44, 430, 646 49, 185, 072 50, 483, 421	\$4. 12 5. 77 5. 56 5. 60 5. 91 5. 85	4, 613, 411 6, 539, 258 6, 815, 989 8, 085, 870 8, 496, 831 8, 781, 125	\$19, 172, 065 37, 732, 894 37, 857, 983 45, 377, 842 50, 262, 562 51, 541, 799	\$4. 16 5. 77 5. 55 5. 61 5. 92 5. 87

¹ Includes material from waste-pond operations.

TABLE 6.—Tennessee phosphate rock 1 sold or used by producers, 1943-47 (average) and 1948-52

	T	Value a	t mines	W	T	Value at	mines
Year	Long tons	Total	Average	Year	Long tons	Total	Average
1943–47 (average)	1, 340, 537 1, 307, 507 1, 344, 470	\$6, 530, 772 8, 231, 251 9, 067, 589	\$4. 87 6. 30 6. 74	1950 1951 1952	1, 384, 473 1, 419, 892 1, 452, 508	\$10, 028, 404 10, 604, 638 10, 874, 760	\$7. 24 7. 47 7. 49

¹ Includes small quantity of Tennessee blue rock in 1943-47 and Virginia apatite in 1943-47 and 1949.

TABLE 7.—Western States phosphate rock sold or used by producers, 1943-47 (average), and 1948-52

		Idaho 1		Montana			
Year	Value at mines				Value at mines		
	Long tons Total A		Average	Long tons	Total	Average	
1943-47 (average)	300, 505 434, 375 471, 305 573, 044 695, 026 620, 551	\$1, 540, 529 2, 122, 089 1, 915, 125 2, 125, 065 1, 750, 974 2, 163, 608	\$5. 13 4. 89 4. 06 3. 71 2. 52 3. 49	174, 646 248, 683 355, 169 210, 165 304, 507 332, 299	\$988, 974 1, 720, 254 2, 574, 330 1, 496, 537 2, 353, 381 2, 620, 764	\$5.66 6.92 7.25 7.12 7.73 7.89	

For footnotes, see end of table.

TABLE 7.—Western States phosphate rock sold or used by producers, 1943-47 (average), and 1948-52—Continued

	-	Wyoming		Total		
Year	Long tons Value at mines		T 1	Value at mines		
	Total	Average	Long tons	Total	Average	
1943–47 (average) ²	10, 369 138, 946 (1) (1) 178, 948 137, 675	\$58, 097 695, 110 (1) 1, 186, 523 919, 987	\$5. 60 5. 00 (1) (1) 6. 63 6. 68	485, 520 822, 004 826, 474 783, 209 1, 178, 481 1, 090, 525	\$2, 587, 600 4, 537, 453 4, 489, 455 3, 621, 602 5, 290, 878 5, 704, 359	\$5, 33 5, 52 5, 43 4, 62 4, 49 5, 23

 $^{^{\}rm I}$ Idaho includes Utah in 1946–48. 1950-52, and Wyoming in 1949–50. $^{\rm 2}$ Includes Wyoming data for 1947 only.

TABLE 8.—Phosphate rock sold or used by producers in the United States, 1951-52, by grades and States

Grades—B. P. L. ¹ content	Florida		Tennessee		Western States		Total United States	
(percent)	Long tons	Per- cent of total	Long tons	Per- cent of total	Long tons	Per- cent of total	Long tons	Per- cent of total
1951								
Below 60 60 to 66 80 basis, 66 minimum 70 minimum 72 minimum 75 basis, 74 minimum 77 basis, 76 minimum 70 basis, 76 minimum 71 basis, 7		9 9 15 42 22 100	2 832, 750 2 291, 094 193, 468 101, 605 975 1, 419, 892	2 59 2 20 14 7 (3)	516, 209 69, 263 235, 981 258, 100 98, 928 	44 6 20 22 8 100	21, 576, 142 2 360, 357 1, 188, 610 1, 123, 336 1, 396, 395 3, 617, 600 1, 832, 764 11, 095, 204	2 14 2 3 11 10 13 33 16 100
Below 60	189, 761 336 685, 928 928, 174 1, 521, 811 4, 157, 456 1, 297, 659 8, 781, 125	(3) 8 11 17 47 15 100	1, 058, 848 228, 150 83, 283 81, 640 587 	73 16 6 5 (3)	450, 738 77, 917 191, 525 370, 345		1, 699, 347 306, 403 960, 736 1, 380, 159 1, 521, 811 4, 158, 043 1, 297, 659	15 3 9 12 13 37 11

 $^{^1}$ Bone phosphate of lime, Ca₃(PO₄)₂. 2 Revised figure. 3 Less than 0.5 percent.

TABLE 9.—Phosphate rock sold or used by producers in the United States, 1951-52, by uses and States

	Florid	a	Tennessee		Western States		Total United States	
Uses	Long tons	Percent of total	Long tons	Percent of total	Long tons	Per- cent of total	Long tons	Percent of total
1951						-		
Domestic: Superphosphates. Phosphates, phosphoric acid, phosphorus, ferrophosphorus. Direct application to soil. Fertilizer filler. Stock and poultry feed. Undistributed 2. Exports 3. Total	710, 710 392 120, 493	65 9 8 (¹) 1 	322, 607 867, 165 210, 780 16, 454 1, 663 1, 223	23 61 15 1 (1) (1) (1) 100	294, 510 564, 235 72, 394 	25 48 6 	6, 110, 513 2, 170, 814 993, 884 16, 846 122, 156 3, 915 1, 677, 076 11, 095, 204	20 9 (¹) 1 (¹) 15
Domestic: Superphosphates. Phosphates, phosphoric acid, phosphorus, ferrophosphorus Direct application to soil Fertilizer filler. Stock and poultry feed. Undistributed 2. Exports 3.	866, 329 363 157, 286 341 1, 182, 757	68 7 10 (1) 2 (1) 13 100	249, 902 925, 941 237, 786 15, 374 21, 680 1, 825 1, 452, 508	17 64 16 1 2 (¹)	291, 097 478, 138 101, 878 220 219, 192 1, 090, 525	27 44 9 (¹) 20 100	6, 494, 921 2, 024, 206 1, 205, 993 15, 737 179, 186 2, 166 1, 401, 949 11, 324, 158	18 111 (1) 2 (1) 12 100

¹ Less than 0.5 percent.

phosphate rock, refractories, and other uses.

3 As reported to the Bureau of Mines by domestic producers.

TABLE 10.—Production, shipments, and stocks of superphosphates, 1943-47 (average) and 1948-52, in short tons

[Bureau of the Census]

	1943–47 (average)	1948	1949	1950	1951	1952
Ordinary superphosphates: 1 Production Shipments Stocks in manufacturers'	7, 499, 881	9, 319, 697	9, 075, 903	9, 296, 051	2 9, 493, 472	9, 805, 555
	4, 278, 736	4, 789, 668	4, 845, 175	5, 065, 101	2 4, 910, 273	4, 860, 254
	779, 155	1, 216, 788	1, 139, 372	2 1, 056, 234	2 1, 090, 830	1, 276, 267
hands Dec. 31	306, 434	468, 711	548, 504	686, 855	716, 488	862, 345
	300, 723	443, 951	496, 975	718, 925	696, 274	833, 583
	45, 494	70, 681	104, 310	55, 252	66, 356	87, 110

^{1 18} percent available phosphoric acid.

PRICES

Price quotations for Florida land pebble and Tennessee brown-rock phosphate remained unchanged during 1952. The price quotations of the Oil, Paint and Drug Reporter of January 7 and December 29, 1952, are given in table 11. Prices for Western States phosphate rock are not quoted in the trade journals. Price quotations of elemental phosphorus and some phosphate compounds are published in the Oil, Paint and Drug Reporter.

² Includes phosphate rock used in pig-iron blast furnaces, parting compounds, research, defluorinated

Revised figure.
45 percent available phosphoric acid.

TABLE 11.—Prices per long ton of Florida and Tennessee unground, washed, and dried phosphate rock, in bulk, f. o. b. cars at mine, in 1952, by grades

1:01	D-1-4-1	T .	-
JOH,	Paint and	Drug	Reporter

Grades (percent) ¹	Florida la	and pebble	Tennessee brown rock		
Grades (percent)	Jan. 7, 1952	Dec. 29, 1952	Jan. 7, 1952	Dec. 29, 1952	
70/68 B. P. L. 72/70 B. P. L.	\$4.35-4.40	\$4.35-4.40			
75/74 B. P. L	6,00	5.00 6.00 7.00			
27-26 P ₂ O ₅			\$6.45 7.21	\$6. 45 7. 21	

¹ B. P. L. signifies bone phosphate of lime, Ca₃(PO₄)₂.

FOREIGN TRADE 6

Data on imports and exports of phosphate rock and phosphatic materials are given in tables 12 through 15.

Sales or shipments of phosphate rock for export, as reported by domestic producers to the Bureau of Mines, are given in the section on Consumption and Uses.

Imports.—Crude phosphate rock imported into the United States increased 18 percent in 1952 compared to 1951, with over 86 percent coming from the Netherland Antilles (Curaçao). Imports of superphosphates were 215 percent of the 1951 figure, coming predominantly from Canada, with lesser quantities from The Netherlands and the United Kingdom. Fertilizer-grade ammonium phosphate imports in 1952 were less than in 1951, with 99 percent originating in Canada. Other phosphatic fertilizer materials imported came from several European and South American countries and Egypt. The imports from Canada were largely fertilizers processed from United States phosphate rock.

TABLE 12.—Phosphate rock and phosphatic fertilizers imported for consumption in the United States, 1951-52

U. S. Department of Commerce

Fertilizer	19)51	1952		
F et bilizer	Long tons	Value	Long tons	Value	
Phosphates, crude, not elsewhere specified	193, 417	1 \$1, 437, 936	110, 371	\$2, 357, 569	
Superphosphates (acid phosphate): Normal (standard), not over 25 percent P ₂ O ₅ content Concentrated (treble), over 25 percent P ₂ O ₅ content. Ammoniated	2, 455 160	73, 535 10, 739	5, 826 2, 387 12	187, 684 150, 351 445	
Total superphosphates. Ammonium phosphates, used as fertilizer. Bone dust, or animal carbon and bone ash, fit only for	2, 615 120, 502	84, 274 8, 450, 659	8, 225 119, 032	338, 480 8, 722, 516	
fertilizer Guano Slag, basic, ground or unground	43, 455 137 96	2, 654, 660 10, 568 2, 757	42, 127 58	2, 673, 007 5, 641	
Precipitated bone, fertilizer-grade	1 13, 197	1 1, 159, 667	21,096	1, 787, 881	

¹ Revised figure.

[•] Figures on imports and exports (unless otherwise indicated) compiled by Mae B. Price and Elsie D. Page of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 13.—Phosphate rock exported from the United States, 1951-52, by grades and countries of destination

[U. S. Department of Commerce]

	19	51	1952		
Grade and country	Long tons	Value	Long tons	Value	
Florida:					
High-grade hard rock:			984	614 000	
Brazil Canada	0 407	enn 240	529	\$14,000	
	2, 467	\$29, 340	529	7, 46	
MexicoSurinam	26	585	4	10	
Suridan	1, 498	14, 231	*	100	
Sweden Taiwan (Formosa)		87, 644	11, 745	108, 630	
I aiwan (Formosa)	10, 005	87,044	11, 740	105, 050	
Total high-grade hard rock	13, 996	131, 800	13, 262	130, 204	
Land pebble:					
Argentina	4, 428	42,066			
Belgium-Luxembourg	33, 665	290, 693	21,780	184, 40	
Brazil	20, 862	189, 955	7,038	74, 06	
Canada	174, 377	1, 271, 593	173, 778	1, 576, 820	
Colombia	1, 213	17, 294	500	7, 520	
Costa Rica	178	2,400	000	1,02	
Cuba	18, 347	143, 203	16, 562	112, 12	
El Salvador	400	5, 700	1,200	6, 15	
Germany	34, 081	276, 881	1 152, 956	1 1, 174, 07	
Guatemala	100	1. 425	102,000	-, -, -, -,	
Italy	75, 914	704, 381	84, 904	819. 01	
Japan	2 640, 224	2 4, 575, 544	433, 747	3, 029, 647	
Liberia	3	165		-,,	
Mexico	9,022	54, 847	35, 401	229, 179	
Netherlands	179,010	1, 567, 211	42, 294	340, 828	
Philippines	45	580			
Sweden	47, 774	433, 455	49,041	465, 726	
Switzerland	4,937	41, 470			
Taiwan (Formosa)	29, 489	258, 321	41, 769	365, 286	
Thailand			89	1, 20	
Union of South Africa	10, 106	96,005	8,306	78, 907	
United Kingdom	2 154, 387	* 1, 237, 135	109, 560	887, 94	
Uruguay	3,468	32, 946			
Venezuela	580	18,850	446	9, 78	
Total land pebble	2 1, 442, 610	² 11, 262, 120	1, 179, 371	9, 362, 68	
Other phosphate rock: 3					
Canada	266, 506	3, 293, 108	228, 878	2, 836, 200	
Cuba	50	825	204	3, 68	
El Salvador			1,072	14, 11	
Italy			45	838	
Japan	2,044	26, 572			
Mexico	1,628	20, 432	53	86	
Union of South Africa			6, 399	76, 836	
Total other phosphate rock	270, 228	3, 340, 937	236, 651	2, 932, 53	
Grand total	2 1. 726, 834	214, 734, 857	1, 429, 284	12, 425, 42	

¹ West Germany.
2 Revised figure.

TABLE 14.—"Other phosphate material" exported from the United States, 1948-52
[U. S. Department of Commerce]

Year	Long tons	Value	Year	Long tons	Value
1948 1949 1950	1, 002 3, 225 1, 350	\$188, 163 224, 375 247, 880	1951 1952	2, 316 1, 037	\$372, 685 180, 765

¹ Class includes animal carbon, apatite, basic slag, bone ash dust, bone meal, char dust, defluorinated phosphate rock, duplex basic phosphate, permanente thermosphos (granular), tricalcium phosphate (fused).

¹ Revised figure.

² Includes colloidal matrix; sintered matrix; soft phosphate rock; and Tennessee, Idaho, and Montana rock.

TABLE 15.—Superphosphates (acid phosphates) exported from the United States, 1951-52, by countries of destination

[U. S. Department of Comm	aercel
---------------------------	--------

Country	19)51	1952		
Country	Long tons	Value	Long tons	Value	
Brazil Canada Chile Colombia Costa Rica Dominican Republic Ecuador El Salvador Guatemala Iceland Indochina Italy Korea, Republic of Mexico Peru Philippines Saudi Arabia Taiwan (Formosa) Thailand Venezuela West Indies:	24, 061 169, 185 44 491 2, 157 934 272 1, 630 94 570 984 113 1, 027 30 2, 069	\$760, 754 3, 349, 733 4, 459 17, 605 106, 549 66, 979 10, 996 36, 089 3, 932 43, 065 23, 373	12, 693 168, 240 15 268 809 2, 073 750 89 45 89 32, 712 1, 548 272 125	\$478, 517 3, 827, 072 1, 489 9, 895 46, 800 98, 692 39, 440 3, 155 1, 575 7, 470 998, 944 106, 926 12, 407 9, 693 28, 530 13, 871	
British Cuba Haiti Other countries Total	61, 333 5 123 266, 689	1, 907 1, 187, 253 575 4, 708 5, 847, 638	38, 200 8 28 259, 091	800, 716 817 1, 680 6, 487, 689	

Exports.—Exports of all grades of phosphate rock were 17 percent less in 1952 than in 1951. Taiwan received nearly all the Florida hard-rock exports. Florida land-pebble exports mainly went to Japan (37 percent), Canada (15 percent), Germany (13 percent), and the United Kingdom (9 percent). The exports of phosphate rock from Montana to Canada largely represented material shipped for processing, which was returned to the United States for use. Superphosphate exports from the United States were less in 1952 than in 1951. The major recipients were Canada, Cuba, South Korea, and Brazil.

TECHNOLOGY

Phosphate mining in Florida was described at the United Nations Scientific Conference on the Conservation and Utilization of Resources, as one of the highest mechanized types of mining. The output per man-day varied from 205 to 372 tons of matrix and 1,000 to 2,000 tons of overburden. Another subject discussed at the United Nations Conference was utilization of low-grade ores. It was brought out that much of the progress made towards the solution of this problem was by interchange of technical information.

Open-pit mining of the Simplot Fertilizer Co. on the Fort Hall Indian Reservation was begun in 1946. The main high-grade bed of 32-34 percent P₂O₅, 6 feet thick, is overlain by a 21-foot-thick bed of lower grade phosphate rock, averaging 24 percent P₂O₅, which was

⁷ Barr, J. A., and Ware, T. M., Mechanization of Nonmetallic Mines: Proc. United Nations Sci. Conf. on Conservation and Utilization of Resources, United Nations Dept. of Ec. Affairs, vol. 2, 1951, pp. 128–137. ⁸ Diamond, R. W., Swanson, C. O., and Sutherland, B. P., New Processes for the Utilization of Low-Grade Ores: Proc. United Nations Sci. Conf. on Conservation and Utilization of Resources, United Nations Dept. of Ec. Affairs, vol. 2, 1951, pp. 140–145.

sold for elemental phosphorus manufacture. The four steps in mining the phosphate rock are: Topsoil stripping, waste-shale stripping, furnace-grade rock mining, and acid-grade rock mining. The operations all are mechanized. Tractors, power shovels, and dump trucks are used to strip overburden and mine the phosphate beds.9

In attempting to develop definite requirements for the construction of pipelines to transport solids, the experience at the Noralyn mine in the Florida land-pebble field was discussed. It was found that when the pulp contained more than 10 percent of solids (plus-14-mesh material) additional pumps were required to prevent settling. Varying conditions were tried, and the results were tabulated in the article.10

The Noralyn plant of International Minerals & Chemical Corp. near Bartow, Fla., produced 2 grades of phosphate—75 and 77 percent bone phosphate of lime (B. P. L.). The planned capacity of this plant was 1.5 million tons of pebble phosphate per year. About 12 acres were mined per month—nearly 10 million cubic yards of overburden

and matrix annually.11

A new type of storage system to handle washed phosphate was installed by the American Cynamid Co. at its Brewster, Fla., drying plant. This system, including a rotary stacker conveyor and underground conveyor belts, increased the storage capacity and permitted more precise blending of the various grades of washed phosphate

The development and growth of the phosphorus industry in the United States was described by Aall.¹³ The first elemental phosphorus produced in the United States was at Niagara Falls, N. Y., by the Oldbury Electro-Chemical Co. in 1896. The annual capacity of the domestic industry at the beginning of 1952 was about 317 million pounds. The increased demand for phosphorus is shown in

The expanding elemental phosphorus industry in the Western States helped supply the chemical requirements for phosphorus The largest single use was for production of tetrasodium pyrophosphate used to manufacture washing detergents. large part of the elemental phosphorus produced at Pocatello was used in this compound, commonly referred to as T. S. P. P.14

TABLE 16.—Production of elemental phosphorus in the United States, selected years, 1930-50, in millions of pounds (including TVA) 1

•	Millions		Million of
Year:	of pounds	Year:	of pounds
1930	21	1947	185
1935	43	1948	224
1940	43 97	1949	276
1945	160	1950	307
1946	167		

¹ Source: Aall, C. H., The American Phosphorus Industry: Ind. Eng. Chem., vol. 44, No. 7, July 1952, pp. 1520-1525.

1020-1020. 14 Miller, J. G., Idaho Phosphorus and its Ultimate Usage: Mines Mag., vol. 42, No. 8, August 1952, pp. 25-27, 47.

⁹ Sweetwood, C. W., Western Phosphate Mining: Min. Eng., vol. 4, No. 9, September 1952, pp. 863–865. ¹⁰ Tillotson, I. S., Burt, R. B., and Barr, J. A., Pipeline Transportation of Phosphate: Min. Eng., vol. 4, No. 3, March 1952, pp. 273–282. ¹¹ Avery, W. M., Noralyn Revisited: Pit and Quarry, vol. 45, No. 4, October 1952, pp. 84–88, 95. ¹² Manufacturers Record, New-Type Storage System for Phosphate: Vol. 121, No. 3, March 1952, p. 33. Mining World, New Phosphate Storage Facilities: Vol. 14, No. 4, April 1952, p. 85. ¹³ Aall, C. H., The American Phosphorus Industry: Ind. Eng. Chem., vol. 44, No. 7, July 1952, pp. 1520–1525. ¹⁴ Miller I. G. Idaho Phosphorus and the Ultimate Vol. 14.

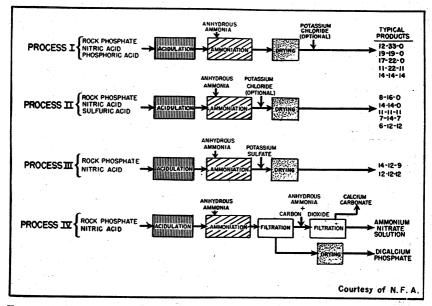


FIGURE 2.—TVA processes for production of fertilizers from rock phosphates, nitric acid and ammonia.

In attempting to develop more rapid methods of curing superphosphates, studies were conducted under varying conditions. It was found that using 40-60 percent sulfuric acid, drying with air, and keeping the temperature below 275° F. yielded the best product.15 Other studies were made on the effect of iron and aluminum on superphosphate. It was found that when the combined content of the oxides (R₂O₃) of these two elements was over 5 percent R₂O₃, the solubility of the phosphorus decreased with age. ¹⁶

The past shortage of sulfur and the possibility of it being in short supply in the future prompted industry to investigate methods of making phosphatic fertilizers that minimize the use of sulfuric acid. Data pertaining to production, handling, and use of elemental phosphorus and phosphoric acid were published to demonstrate the feasibility of utilizing them in the fertilizer industry. Although acidulation of phosphate rock with nitric acid is not a new development, having been used for 20 years or more in Europe, processes using nitric acid received considerable attention from industry and research groups in the United States during 1952. After studying the various European processes, the Tennessee Valley Authority selected four of the most promising for further study and pilot-plant The main steps in these processes are shown in investigation. figure 2. Results of these studies were published by the National Fertilizer Association.18 Two plants using modifications of these

¹⁵ Bridger, G. L., and Kapusta, E. C., Quick Curing of Superphosphate: Ind. Eng. Chem., vol. 44, No. 7, July 1952, pp. 1540-1546.

18 Marshall, H. L., and Hill, W. L., Composition and Properties of Superphosphate: Ind. Eng. Chem., vol. 44, No. 7, July 1952, pp. 1537-1539.

17 Hill, W. L., Elemental Phosphorus and Phosphoric Acid in Fertilizer Industry: Ind. Eng. Chem., vol. 44, No. 7, July 1952, pp. 1526-1532.

18 The National Fertilizer Association, Process Progress; Vol. 1, Nos. 1-11, February-December, 1952.

processes were planned, one at Sheffield, Ala., by Associated Cooperative, Inc., and the other at South Point, Ohio, by Allied Chemical & Dye Corp. Both plants will produce complete high-analysis fertilizers.

Acidulation with a mixture of sulfuric and phosphoric acids also received renewed interest. Discussion of the possibilities of this method under current conditions and the technologic problems in-

volved was published.19

The growing chemical use of phosphorus was pointed out at the symposium on phosphorus chemistry during the national meeting of the American Chemical Society at Buffalo. It was stated that phosphorus compounds may become as important to industry as the silicones. Important uses included the manufacture of agricultural chemicals and the fireproofing of fabrics.20

TVA, which has been building and operating electric furnaces to produce elemental phosphorus, issued a bulletin on the design of elec-

tric furnaces.21

The technologic advances in the phosphate industry were discussed

in a book published during 1952.22

The confusing names of the many phosphorus compounds instigated the American Chemical Society, working in cooperation with the (London) Chemical Society, to propose standard names for the 300 phosphorus compounds.23

The efficiency of protective phosphate coatings on steel and the means of testing this efficiency and their resistance to corrosion were the subjects of a meeting in London, where numerous papers were

presented and discussed.24

The use of phosphate compounds as bonding agents in refractories continued to be investigated. Monoaluminum and monomagnesium phosphate were used and a series of mortars were tested for various properties.25

RESERVES

According to the report of President's Materials Policy Commission, domestic reserves represent a supply for more than 1,300 years at the present rate of consumption. Reserves in deposits minable under present conditions total 2.4 billion tons in Florida, 1.5 billion tons in the Western States, and 0.1 billion ton in Tennessee. Good-grade phosphate rock not minable under present conditions represents a potential reserve of more than 8 billion tons, of which 6.5 billion tons occurs in the Western States.26

1952, pp. 61-63.

McKelvey, V. E., James, E. L., and Waggaman, W. H., Phosphate—A Plentiful Material, in President's Material Policy Commission, Resources for Freedom, vol. 2, The Outlook for Key Commodities: June 1952, pp. 156-157.

Fox, E. J., and Hill, W. L., Superphosphate Acidulation With Mixtures of Sulfuric and Phosphoric Acids: Ind. Eng. Chem., vol. 44, No. 7, July 1952, pp. 1532-1536.
 Chemical and Engineering News, Phosphorus Provides New Family of Compounds for Industry: Vol. 30, No. 14, Apr. 7, 1952, p. 1386.
 Curtis, H. A., The Design of a Phosphate Smelting Electric Furnace: TVA Chem. Eng. Bull. 1, October 1859, 62

[&]quot;Both R. A., The Design of a Phosphate Smetting Electric Furnace: TVA Chem. Eng. Bull. 1, October 1952, 63 pp.
"Waggaman, W. H., Phosphoric Acid, Phosphates and Phosphatic Fertilizers: Reinhold Publishing Co., Am. Chem. Soc. Mono. 34, 1952, 683 pp.
"Patterson, A. M., Words About Words: Chem. Eng. News, vol. 30, No. 22, June 2, 1952, pp. 2336–2337.
Chemical Age (London), The Corrosion of Steel: Vol. 67, No. 1743, Dec. 6, 1952, pp. 765–768.
Exingery, W. D., Fundamental Study of Phosphate Bonding in Refactories: IV, Mortars Bonded With Monoaluminum and Monomagnesium Phosphate: Jour. Am. Ceram. Soc., vol. 35, No. 3, March 1, 1652 pp. 41.62

The important world deposits of phosphate rock including those in the United States, U. S. S. R., North Africa, and certain islands in the Pacific and Indian Oceans were described.²⁷

The phosphate-rock reserves of Wyoming were described, listing the active properties in Lincoln County and the prospects in Fremont, Lincoln, Sublette, and Teton Counties.²⁸

WORLD REVIEW

NORTH AMERICA

Canada.—Large quantities of phosphate rock are imported for the manufacture of phosphatic fertilizers. The Electric Reduction Sales Co., Ltd., is expanding its plant. Two 15,000 kw. furnaces were being constructed and were scheduled for completion in 1953.29

Netherlands Antilles (Curação). 30—Except for short periods, phosphate rock has been produced in Curação continuously since 1875. The present company, the N. V. Mijnbouwmaatschappij Curaçao, of English and Netherland ownership, has been operating since 1913. Before 1945 Europe received the production from Curação for the manufacture of superphosphate. Beginning in 1945 phosphate rock was shipped to the United States for use in cattle feed. In 1952 the The fluorine total production was shipped to the United States. content is less than 0.5 percent compared to 3 to 4 percent for United States phosphate, and the phosphate rock does not require treatment before use.

The phosphate rock is mined by open-pit methods from a hill about 300 feet above sea level and is hand-sorted at the mine. lowered, in balance, to the crushing plant, crushed to minus-21/2-inch, and stored for shipment. Conveyor belts load ships at the rate of 1,000 tons per 8 hours.

SOUTH AMERICA

Brazil.—Apatite continued to be produced by Quimbrasil-Seriana at Jacupiranga, near Sao Paulo. The expansion under way in 1952 was planned to triple the output. Poor transportation was said to be hindering more efficient operations.31

An important phosphate discovery was reported at Olinda, near Recife, Pernambuco.32 The bed is 6 to 9 feet thick and ranges from 20 to 25 percent P₂O₅. Reserves were estimated from 30 to 100 million metric tons. Plans were under way to develop the deposit.

Venezuela.—Discovery of a large phosphate deposit was reported in the State of Falcon.33

Johnson, B. L., Phosphate Rock; chap. in Van Royen, W., and Bowles, O., The Mineral Resources of the World: Prentice-Hall, Inc., 1952, pp. 141-146.
 Osterwald, F. W., and Osterwald, D. B., Wyoming Mineral Resources: Geol. Survey Wyoming, Bull.
 June 1952, pp. 116-122.
 Canadian Chemical Processing, 50 Years of Phosphorus in Canada: Vol. 36, No. 13, December 1952,

No. 11.
 Mining Journal (London), Phosphate Mining in Curação: Vol. 238, No. 6088, Apr. 25, 1952, p. 419.
 Mining World, vol. 14, No. 3, March 1952, p. 73; No. 9, August 1952, p. 76.
 Mining World, vol. 14, No. 9, August 1952, p. 76.
 United States Department of Commerce, Foreign Commerce Weekly: Vol. 46, No. 1, Jan. 7, 1952, p. 17.

TABLE 17.—World production of phosphate rock by countries, 1948-52 in metric tons 2

[Compiled by Helen L. Hunt]

Country 1	1948	1949	1950	1951	1952
North America:					
Canada		18	117	5	
United States	9, 538, 840	9, 019, 957	11, 292, 541	10, 947, 971	12, 224, 314
West Indies:					
Netherlands Antilles	58, 827	92, 784	104, 240	107, 144	106, 902
South America:					
Brazil (apatite)	2, 667	4, 553	13, 850	(3)	(3)
Chile (apatite)	59, 529	49, 311	13, 437	37, 182	(3)
Europe:					
Belgium	68, 938	44, 643	50, 846	129, 065	58, 983
France	84, 580	59, 643	73, 752	110,000	102, 000
Germany, West	473				
Ireland 4 5			29, 000	25,000	(3)
Spain	23, 012	23, 093	24, 080	22, 830	23, 474
Sweden (apatite)	1, 441	1,604	2,044	1,033	(3)
U. S. S. R.4	2, 336, 915	2, 540, 125	2, 540, 125	2, 794, 000	3, 000, 000
Asia:					
British Borneo (guano)	427	508	653	659	707
China 4	20,000	20,000	20,000	20,000	20,000
Christmas Island (Indian Ocean) (ex-					
ports)	108, 311	255, 236	320, 423	338, 693	4 352, 600
India (apatite)	1, 132	588	3, 074	423	(8)
Indonesia 4		5,000	5,000	(3)	(3)
Israel				6 297	17, 200
Japan	3, 590	684	258	143	
Jordan	4 4, 000			7 6, 591	23, 800
Philippines (guano)		10, 998	32, 606	4, 821	4, 231
A frica.				1	
Algeria	670, 591	648, 202	684, 657	776, 575	702, 587
Angola	(3)	(3)	1,033	943	
Egypt	377, 005	350, 480	397, 207	499, 976	522, 214
French Morocco	3, 226, 700	3, 693, 000	3, 872, 241	4, 716, 800	3, 953, 100
French Morocco French West Africa (aluminum phos-		1			
phate)	3, 965	5, 675	11,035	23, 580	43, 150
Madagascar					1,300
Seychelles Islands (exports)	21, 722	14, 171	10,005	4, 547	11, 120
Southern Rhodesia		67	36		
South-West Africa (guano)	1,038	957	581	785	1,675
Tanganyika Territory	313	157	468	345	101
Tunisia	1, 863, 710	1, 441, 918	1, 524, 800	1, 678, 905	2, 264, 641
Uganda			467	2, 242	5, 010
Union of South Africa	39, 656	56, 471	51, 844	81, 840	96, 568
Oceania:					
Angaur Island	76, 713	157, 049	4 119,000	8 144, 843	8 83, 905
Australia	2, 170	11	1,653	8,056	4 4, 000
Makatea Island (French Oceania)	187, 344	265, 082	270, 300	216, 400	229, 723
Nauru Island (exports)	544, 298	802, 070	1,070,358	942, 945	1, 164, 038
Ocean Island (exports)	126, 854	265, 087	251, 218	256, 451	249, 542
Total (estimate)1	19, 500, 000	19, 850, 000	22, 800, 000	24, 000, 000	25, 500, 000

¹ In addition to countries listed, Korea and Poland may produce phosphate rock; but data of output are not available, and no estimates by the author of the chapter have been included in the total.

² This table incorporates a number of revisions of data published in previous Phosphate Rock chapters.

³ Data not available; estimate by author of chapter included in total.

AFRICA

Algeria.—Production of phosphate rock declined almost 10 percent in 1952.

The exports of phosphate rock from Algeria, 1950 to 1952, are shown in table 18.

Egypt.34—Egypt was the fourth largest producer of phosphate rock in Africa in 1952. The important phosphate rock areas are as follows: (1) The Nile Valley, including the deposits at Hamama, Qurn, Sibaiya,

Estimate.
5 Year ended June 30 of year stated.
6 Production began second half of December 1951.
7 All production occurred during last half of the year

²⁴ Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 2. August 1952, pp. 31-34.

and Mahmid; (2) the Libyan Desert, west of the Nile Valley including deposits of the Kharga and Dakhla Oasis; and (3) the Red Sea district, east of the Nile Valley, including Um Huetat, Gasus, Duivi, Hamadot, Asthana deposits, and the undeveloped area near Hamraivein. The Red Sea district was the largest producing area in 1952.

TABLE 18.—Exports of phosphate rock from Algeria, 1950-52, by country of destination, in metric tons ¹

Country	1950	1951	1952	
Belgium-Luxembourg, Netherlands	100, 028	67, 877	39, 225	
Czechoslovakia France	8, 748 146, 801	29, 230 176, 837	14, 400 115, 619	
Germany, West	74, 331 26, 355	166, 801 12, 390	120, 561 11, 900	
I VIAUU	9, 015 9, 275	50,000	1,000 36,250	
Spain	8, 195 28, 035	24, 270 4, 500	38, 435 65, 075	
Yngoslavia	161, 586	118, 985 10, 180	118, 928 14, 800	
French overseas territories Other	11, 220 7, 110	3, 900 15, 928	4, 800 10, 140	
Total	590, 699	680, 898	591, 133	

¹ Source: Algerian customs.

The phosphate-rock producers in Egypt, in order of importance, were as follows: Societa Egiziana per l'Estrazione ed il Commercio dei Fosfati, Egyptian Phosphate Co., Ltd., S. A. Tracades, and the Hamata Mining Co. All of the major mining operations are underground. Reserves in Egypt were estimated to be 10 million metric tons.

About 80 percent of the phosphate rock produced in Egypt was exported. Exports from the port of Kosseir, Egypt, in 1950 and 1951

are shown in table 19. Data for 1952 are not available.

French Morocco.—Production of phosphate rock was 16 percent less in 1952 than in 1951. The hyperphosphate (finely ground phosphate rock) and superphosphate plants were being expanded. Exports of phosphate rock for 1950–52 are shown in table 20.

Tunisia.—The production of phosphate rock in Tunisia increased nearly 35 percent in 1952 compared to 1951. The major portion of the phosphate rock was exported crude, although ordinary superphosphate, concentrated superphosphate, and hyperphosphate were

TABLE 19.—Exports of phosphate rock from the port of Kosseir, Egypt, 1950-51 by country of destination, in metric tons ¹

Country	1950	1951
Belgium-Luxembourg Finland Germany, West	20, 816 10, 480	15, 440 9, 130
Greece. Indis. Italy Japan Netherlands.	30, 237 110, 706 160, 315 9, 702	9, 330 56, 618 157, 101
Sweden Union of South Africa Yugoslavia	5, 500	342 16, 612 10, 003
Total	358, 116	274 , 576

¹ Source: Statistical Department, Egyptian Government.

produced. Phosphate processing plants were being expanded. The exports of phosphate rock from Tunisia from 1950-52 are shown in table 21.

TABLE 20.—Exports of phosphate rock from French Morocco, 1950-52, by country of destination, in metric tons 1

Country	1950	1951	1952
Belgium-Luxembourg Denmark France Germany Italy Netherlands Poland Portugal Spain Sweden Union of South Africa United Kingdom and Ireland Other	572, 800 244, 000 255, 400 378, 800 105, 200 171, 800 288, 900 277, 000	288, 115 273, 123 544, 108 234, 199 540, 424 303, 104 178, 100 168, 095 344, 546 317, 896 295, 348 711, 759 251, 386	201, 901 213, 230 407, 215 2 321, 267 477, 999 313, 386 96, 058 175, 256 437, 881 236, 691 249, 741 561, 844 213, 588

Source: 1950-51, Office Cherifien de Controle et d'Exportation; Bureau of Mines, Mineral Trade Notes:
 Vol. 36, No. 5, May 1953, p. 45.
 West Germany only.

TABLE 21.—Exports of phosphate rock 1 from Tunisia, 1950-52, by country of destination, in metric tons 2

Country	1950	1951 3	1952
Belgium	14, 499		69, 100
Brazil			31, 500
Canada			4,000
Chile			15, 475
Czechoslovakia	24, 570		27, 700
Denmark			7, 440
Finland			59, 295
France	256, 985		344, 173
Germany			133, 225
Greece			63,865
Hungary			
Indochina	6,000		16, 200
Italy	148, 782		408, 747
Japan			10,000
Madagascar			2,000
Netherlands			70, 345 18, 034
New Zealand			18,034
Poland			26, 325
Spain			170, 191
Sweden			7, 890
Switzerland			950
Turkey			15, 558
Union of South Africa			70, 708
United Kingdom and Ireland			593, 347
Uruguay			1,726
Yugoslavia	_ 530		7,750
Other	-		30
Total	980, 017	2, 240, 952	4 2, 175, 574
***************************************			-, =, 0, 0, 2

¹ Includes hyperphosphate.
² Source: Bureau of Mines, Mineral Trade Notes: Vol. 32, No. 4, April 1951, p. 50; vol. 36, No. 2, February 1953, p. 56.
³ Distribution by country not available.
⁴ Corrected total.

Other African Countries. 35—Phosphate deposits in several other African countries received attention in 1952. Deposits of apatite in Ruanda-Urundi, in the Belgian Congo, are believed to be sizable. The Government of Southern Rhodesia granted an option to African Explosives & Chemical Industries, jointly owned by I. C. I. and DeBeers, to develop the Dorowa phosphate deposits in the Sabi Valley, about 50 miles west of Umtali. The phosphate deposit at Torro, in the Mount Elgon area, Uganda, was investigated. New power facilities near Torro were under construction. In the Union of South Africa, the Ministry of Economic affairs submitted plans to Parliament for a Government-sponsored phosphate industry to produce 36,000 tons per year of phosphatic concentrates (33 percent P_2O_5) from deposits in northeastern Transvaal.

ASIA

Israel.36—Exploration continued on the phosphate deposits in the northern Negev area. Operations began in June 1951, and it was planned to increase production as soon as equipment arrived. The phosphate was shipped to Haifa and made into superphosphate for local consumption.

Jordan.³⁷—The only developed phosphate-rock deposit in Jordan is about 15 miles northeast of Amman. Development was begun in 1936, but no production was reported until 1939. The mines are operated by the Transjordan Phosphate Mines, Ltd., with headquarters at Amman. The phosphate rock was shipped to several European countries during 1952 from the port of Beirut.

India.³⁸—Production of apatite continued in 1952. The Govern ment of Madras investigated processes for producing fertilizer phos phate from the phosphatic nodules occurring in the Trichinopoly

Philippines.—The supply of phosphate in the Philippine Islands is limited to scattered bat guano deposits. Descriptions of many deposits and analyses for P₂O₅ content were published.³⁹

OCEANIA

Nauru and Ocean Islands. 40—The British Phosphate Commission, jointly controlled by Great Britain, Australia, and New Zealand has administered the phosphate-rock deposits on Nauru and Ocean Islands since 1920. Before that year the Pacific Island Co. had been

<sup>Wnited States Department of Commerce, Foreign Commerce Weekly: Vol. 47, No. 3, Apr. 21, 1952, p. 18; No. 12, June 23, 1952, p. 18.
Mining Journal (London), vol. 240, No. 6124, Jan. 2, 1953, p. 19.
Mining World, vol. 14, No. 7, June 1952, p. 67.
Chemical Engineering, Israeli Face Chemical Problems: Vol. 60, No. 4, April 1952, p. 222.
United States Department of Commerce, Foreign Commerce Weekly: Vol. 46, No. 8, Feb. 25, 1952, p. 17.
Mining Journal (London), Israel Exploiting Mineral Deposits in the Negev: Vol. 238, No. 6081, Mar. 7, 1952, p. 240</sup>

Mining Journal (London), Israel Exploiting Minicial Deposits in the Vigot. 1952, p. 240.

37 United States Department of Commerce, Foreign Commerce Weekly: Vol. 47, No. 3, Apr. 21, 1952, p. 18.
Engineering and Mining Journal, vol. 153, No. 5, May 1952, p. 170; No. 7, July 1952, p. 164.

38 Chemical Age (London), vol. 67, No. 1738, Nov. 1, 1952, p. 597.

39 Philippines Department of Agriculture and Natural Resources, Guano and Phosphate Deposits in Philippine Caves: Philippines Bureau of Mines Inf. Cir. 11, 1952, 13 pp.

4 Rock Products, Phosphate Resources in the Pacific: Vol. 55, No. 6, July 1952, p. 76.

granted the exclusive mineral rights on Ocean Island by the British Government, and had obtained mineral rights for Nauru Island from Germany. The deposits were extensively mechanized by the Commission, with power shovels used in the open-pits and trains to transport the ore to the processing plant. The ore is washed and dried before going to storage for shipment. At Nauru, the ore is loaded by a belt-conveyor cantilever loader at a rate of 1,500 tons per hour. The Japanese forces occupied both islands during the war but were unable to utilize the deposits because the Commission destroyed the plants upon evacuation. Production in 1952 was greater than pre-World War II output.

Platinum-Group Metals

By James E. Bell 1 and Kathleen M. McBreen 2

IGHLIGHTS of the platinum-group metals in 1952 were large domestic industrial consumption for the third consecutive year and continuation of Government controls on sales of platinum, including the establishment of a ceiling price. Prices remained at high levels throughout the year. Total sales of platinum-group metals to domestic consumers were 2 percent less in 1952 than in the preceding year. Controls of the National Production Authority adopted in April 1951, prohibiting sale or purchase of platinum for unessential uses continued in effect through 1952. A ceiling price of platinum of \$93 per fine troy ounce was established by the Office of Price Stabilization in April 1952. Total imports of platinum-group metals in 1952 were 25 percent below those of the record year of 1951.

TABLE 1.—Salient statistics of platinum-group metals in the United States 1951-52, in troy ounces

	1951	1952		1951	1952
Production:			Stocks in hands of refiners,		
Crude platinum from placers and byproduct			importers, and dealers, Dec. 31:		
platinum-group metals_	1 36, 951	134, 409	Platinum	138, 977	130, 136
parinan group mounts	00, 001	01, 100	Palladium		116, 786
Refinery production: New metal:			Other	36, 815	35, 451
Platinum	36, 007	41,810	Total	313, 891	282, 373
Palladium	6, 520	6,746			
Other	10, 534	3, 919	Imports for consumption:		l
			Unrefined materials	² 63, 611	35,602
Total	53, 061	52, 475	Refined metals	537, 812	417, 216
Secondary metal:			Total	² 601, 423	452, 818
Platinum	22, 470	28, 628			
Palladium	27, 999	25, 540	Exports:		
Other	. 2,889	4, 433	Ore and concentrates Refined metals and al-	732	
Total	53, 358	58, 601	loys, including scrap	60, 848	26, 296
Consumption:		•	Manufactures (except	17, 348	(3)
Platinum	209, 695	228, 698			' '
Palladium	222, 545	204, 578			
Other	30, 295	20, 945			
Total	462, 535	454, 221			

¹ Includes Alaska.

Platinum was refined in the United States in 1952 at a rate 20 percent greater than in 1951, but imports of refined platinum were 24 percent less. Domestic consumption as measured by sales rose 9 percent, and stocks of refiners and dealers declined 6 percent. The chemical industry was the largest user, taking 55 percent of the total sales. Demand for platinum as a catalyst for producing high-octane

Revised figure.
Beginning Jan. 1, 1952, quantity not recorded.

¹ Commodity-industry analyst. Statistical clerk.

gasoline and in the manufacture of fiber glass continued strong. Reflecting the restrictions in effect throughout the year, the jewelry trade, normally the largest outlet, reported less than 1 percent of the total sales. The Government purchased platinum for stockpiling.

Palladium was refined in the United States in 1952 at a rate 7 percent under that of 1951, and imports of refined palladium were down 16 percent. Domestic consumption as measured by sales was 8 percent less, and stocks of refiners and dealers declined 15 percent. The electrical industry continued to provide the largest outlet, taking 54 percent of the total sales. Sales of palladium for jewelry and decorative uses rose moderately.

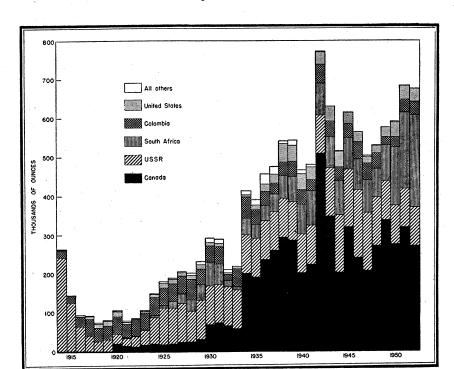


FIGURE 1 — World production of platinum-group metals, 1914-52.

Refining of iridium, osmium, rhodium, and ruthenium in the United States was 36, 23, 58, and 26 percent, respectively, below the 1951 rate. Imports of refined iridium were up 50 percent, but imports of refined osmium, rhodium, and ruthenium were 55, 70, and 57 percent less, respectively. Domestic industrial consumption of the 4 metals together decreased 31 percent, and stocks of refiners and dealers declined 4 percent. The Government purchased iridium for stockpiling.

Expansion of mining and milling facilities at properties of the Rustenburg Platinum Mines, Ltd., in the Transvaal resulted in substantially larger production of platinum-group metals in the Union of South Africa. Figure 1 shows the trends in world production of

platinum-group metals since 1914.

REGULATIONS

Scarcity of platinum for the military program and essential civilian requirements led to continuation of National Production Authority Order M-54 through 1952. Adopted April 1, 1951, this order prohibits the sale or purchase of platinum for investment or for jewelry or decorative uses (finished parts in inventory excepted). An amendment of the order effective August 14, 1952, provides that manufacturers of the prohibited items may receive from refiners for reuse all platinum recovered from their platinum scrap.

With the purpose of prompting disposal of hoarded or investment stocks of platinum, Ceiling Price Regulation 136 was adopted by the Office of Price Stabilization on April 26, 1952. This regulation establishes a ceiling price of platinum at \$93 per fine troy ounce, except that, until July 27, 1952, sellers could ship at prices up to \$105 per ounce to permit liquidation of inventories purchased at prices over

\$93.

The Advisory Committee on Export Policy established export quotas on platinum metal of 2,000 troy ounces per quarter for the first and second quarters of 1952 and 1,250 ounces per quarter for the third and fourth quarters. Additional exports of platinum manufacturers and chemicals were permitted under restrictive quotas.

CRUDE-PLATINUM PRODUCTION

Mine returns and refinery reports indicate a domestic production of 34,400 troy ounces of platinum-group metals in 1952 as against 37,000 ounces in 1951. This production includes crude platinum mined at placer-platinum deposits in the Goodnews Bay district in Southwestern Alaska, byproduct crude platinum recovered from gold placer mining in California, and platinum-group metals contained in small quantities in some gold ores and copper ores and recovered as a byproduct in smelting and refining operations. No production of byproduct crude platinum was reported in Montana or Oregon in 1952.

Purchases.—Buyers in the United States reported the purchase in 1952 of 53,701 ounces of crude platinum from Alaska, California, Colombia, Union of South Africa, Mexico, and British Columbia (Canada). The corresponding quantity in 1951 was 39,426 ounces.

RECOVERY OF REFINED PLATINUM-GROUP METALS

New Metals Recovered.—Reports from refiners indicate recovery in the United States of 52,500 ounces of new platinum-group metals, compared with 53,100 ounces in 1951. Of the total new metals refined in 1952, 82 percent was recovered from crude platinum both domestic and foreign, and 18 percent was recovered as a byproduct of gold ores and copper ores; the equivalent figures for the preceding year were 79 and 21 percent, respectively.

Secondary Metals Recovered.—In the United States 58,600 ounces of platinum-group metals was recovered in 1952 from the refining of

scrap, sweeps, etc., compared with 53,400 ounces in 1951.

Substantial quantities of wornout catalysts, spinnerets, laboratory ware, and other products are returned to refiners for refining or reworking. The refined platinum-group metals recovered from these items (or their equivalent in refined metals) are returned to the con-

sumers. The platinum-group metals so recovered are not considered secondary production or included in the statistics of secondary metals.

TABLE 2.—New platinum-group metals, recovered by refiners in the United States, 1943-47 (average) and 1948-50, and 1951-52 by sources, in troy ounces

	Plati- num	Palla- dium	Iridium	Osmium	Rhodi- um	Ruthe- nium	Total
1943-47 (average)	135, 152 33, 520 42, 228 56, 757	26, 014 4, 408 6, 008 11, 819	4, 015 1, 009 2, 131 2, 351	679 349 980 1, 295	3, 415 156 208 433	1, 813 149 371 474	171, 088 39, 591 51, 926 73, 129
1951							
From domestic— Crude platinum————————————————————————————————————	16, 543 5, 017	101 3, 999	2, 423 10	483	235 125	50 1	19, 835 9, 152
Total From foreign— Crude platinum	21,560	4, 100 2, 420	2, 433 1, 984	483 1, 233	360 2, 519	51 1,471	28, 987 24, 074
Nickel and copper refining Total	36,007	6, 520	4, 417	1,716	2, 879	1, 522	53, 061
1952							
From domestic— Crude platinum Gold and copper refining	18, 809 1, 969	134 4, 196	2, 005 9	559	292 14	51 1	21, 850 6, 189
Total	20, 778	4, 330	2, 014	559	306	52	28, 039
From foreign— Crude platinum Nickel and copper refining	21,032	2, 416	412	320	91	165	24, 436
Total	41, 810	6, 746	2, 426	879	397	217	52, 475

TABLE 3.—Secondary platinum-group metals recovered in the United States, 1943-47 (average) and 1948-52, in troy ounces

	Platinum	Palladium	Iridium	Others	Total
1943-47 (average)	61, 615 58, 527 41, 734 33, 894 22, 470 28, 628	28, 323 28, 418 37, 209 21, 167 27, 999 25, 540	1, 728 2, 214 1, 101 1, 064 1, 014 1, 030	3, 699 4, 742 3, 403 1, 988 1, 875 3, 403	95, 365 93, 901 83, 447 58, 113 53, 358 -58, 601
	l	1	1		ì

CONSUMPTION AND USES

Total sales of platinum-group metals for domestic industrial consumption in 1952 were 454,200 ounces, as against 462,500 ounces in

1951, a decline of 2 percent.

Total sales of platinum to domestic consumers in 1952 were 228,700 ounces, equivalent to 50 percent of total sales of platinum-group metals; the corresponding figures for 1951 were 209,700 ounces and 45 percent. Sales to industry were as follows: Chemical 124,900 ounces (55 percent), electrical 82,500 ounces (36 percent), dental and medical 17,100 ounces (7 percent), and miscellaneous and undistributed 2,600 ounces (1 percent). Demand continued strong for platinum as a catalyst for producing high-octane gasoline from low-grade and natural gasoline and in the manufacture of fiber glass. Because of the ban on the sale of platinum in the manufacture of jewelry, only 1,600 ounces (less than 1 percent) of this metal was sold in 1952 to the jewelry trade, which normally provides the largest market.

Total sales of palladium to domestic consumers in 1952 were 204,600 ounces, equivalent to 45 percent of the total sales of platinum-group metals; corresponding figures for the preceding year were 222,500 ounces and 48 percent. The electrical industry continued to provide the largest outlet, taking 54 percent. Sales for chemical uses declined considerably, and sales for dental and medical showed virtually no change. Sales for jewelry and decorative uses increased moderately.

Sales of iridium, osmium, rhodium, and ruthenium together declined to 20,900 ounces in 1952 from 30,300 ounces in 1951 owing mainly to a large drop in sales for chemical uses. By quantity, sales of each of the 4 metals were as follows: Iridium 4,100 ounces, osmium

1,300, rhodium 9,700, and ruthenium 5,800.

Based on their activity as catalysts, resistance to chemical action, high melting points, and workability, the platinum-group metals have specific and important uses in industry and in the arts and sciences. Platinum and iridium are among the strategic and critical metals being stockpiled. Platinum is the most widely used member of the group, and palladium is next in quantity used; the other four members are used mostly in alloying platinum or palladium. Uses of the platinum-group metals are tabulated on page 801 of the Platinum and Allied

Metals chapter in Minerals Yearbook 1943.

The catalytic uses of the platinum-group metals include the production of nitric and sulfuric acids, hydrogenation and dehydrogenation, the synthesis of hydrocarbons, and hydroxylation. A recent and expanding development is the use of platinum as a catalyst for producing high-octane gasoline from low-grade and natural gasoline. Platinum-gold and platinum-rhodium alloys are widely used in spinnerets for making rayon fiber from viscose. Fiber glass is produced increasingly by forcing molten glass through banks of platinum nozzles, whence it emerges in fine streams that are stretched to filaments of minute diameter. Pure platinum and platinum-iridium alloys are used as insoluble anodes in various electroplating processes; chemical laboratories have long used platinum utensils and equipment.

The platinum-group metals have numerous electrical applications. Palladium is widely used in the contacts of telephone relays. Platinum, pure or hardened with iridium or ruthenium, is employed for contacts in voltage regulators, thermostats, relays, and high-tension magnetos. Spark plugs equipped with platinum-alloy electrodes have long life and resistance to fouling. Platinum and palladium alloys are employed in numerous delicate electrical and laboratory instruments

and in electronics tubes.

Platinum hardened with iridium or ruthenium is widely accepted as the ideal metal in the jewelry and decorative arts, particularly for gem-set jewelry. Palladium alloyed with ruthenium is gaining acceptance for jewelry, particularly in Europe. Both platinum and palladium are beaten into leaf for signs and decorations. Alloys of platinum and palladium are used extensively in dentistry for dentures, pins, and anchorages. Rhodium electroplate provides a surface of high reflectivity for reflectors. Rhodium and osmium are used in many of the high-grade hard alloys for tips of fountain pens and phonograph needles. Platinum and palladium are used in special photographic printing papers. The military importance of platinum lies in its use in spark plugs and in high-duty electrical contacts for magnetos in motorized equipment, in control instruments, and as a catalyst in many chemical production processes.

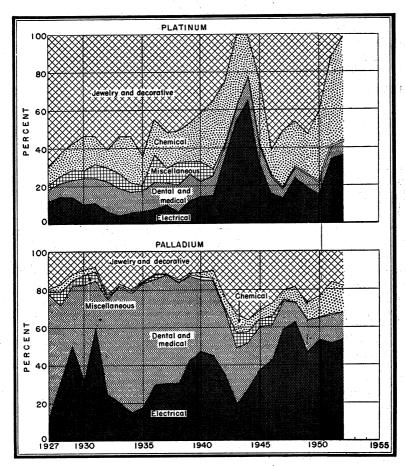


Figure 2.—Sales of platinum and palladium to various consuming industries in the United States, 1927-52, as percent of total.

TABLE 4.—Platinum-group metals sold to consuming industries in the United States in 1951 and 1952, in troy ounces

Industry	Platinum	Palladium	Iridium, osmium, rhodium, and ruthenium	Total
Chemical	97, 813 70, 144 14, 475 24, 759 2, 504 209, 695	38, 527 116, 601 30, 497 35, 500 1, 420	16, 834 3, 340 162 5, 379 4, 580 30, 295	153, 174 190, 085 45, 134 65, 638 8, 504 462, 535
Chemical 1952 Chemical Electrical Dental and medical Jewelry and decorative Miscellaneous and undistributed Total	124, 938 82, 496 17, 080 1, 607 2, 577 228, 698	25, 403 110, 883 30, 473 37, 081 738 204, 578	8, 621 4, 473 228 4, 028 3, 595 20, 945	158, 962 197, 852 47, 781 42, 716 6, 910

STOCKS

Stocks of platinum-group metals in all forms in the hands of refiners, dealers, and importers totaled 282,400 troy ounces on December 31, 1952, compared with 313,900 ounces on December 31, 1951, corresponding to a decrease of 10 percent.

TABLE 5.—Stocks of platinum-group metals held by refiners, importers, and dealers in the United States, December 31, 1948-52, in troy ounces

	Year	Platinum	Palladium	Iridium, osmium, rhodium, and rutheninm	Total
1948		146, 823 138, 049 125, 234 138, 977 130, 136	142, 211 122, 408 107, 854 138, 099 116, 786	34, 540 35, 587 33, 474 36, 815 35, 451	323, 574 296, 044 266, 562 313, 891 282, 373

PRICES

The accepted quoted domestic retail prices of the platinum-group metals remained steady throughout 1952 and were as follows per fine troy ounce: Platinum, \$93; palladium, \$24; iridium, \$185–\$200; osmium, \$200; rhodium, \$125; and ruthenium, \$93. However, substantial sales of platinum were reported to have been made at prices higher than \$93 before adoption of ceiling price regulations on April 26, 1952, and during the "grace" period thereafter extending to July 27, 1952.

Buyers in the United States reported purchases at \$90 to \$109.05 an ounce for domestic and foreign crude platinum in 1952. This price range results chiefly from fluctuation in demand for refined metals and variations in the iridium content of the crude platinum.

FOREIGN TRADE 3

Imports.—Imports of platinum-group metals into the United States in 1952 were 25 percent below the alltime record established in 1951. The principal sources were Canada (226,400 ounces), Colombia (24,500 ounces), Netherlands (80,700 ounces), the United Kingdom (72,800 ounces), and the Union of South Africa (30,200 ounces). Imports of refined metals in 1952 totaled 417,200 troy ounces, compared with 537,800 ounces in 1951; imports of unrefined metals totaled 35,600 ounces, compared with 63,600 ounces. Imports in 1952 of refined platinum, palladium, osmium, rhodium, and ruthenium declined 24, 16, 55, 70, and 57 percent, respectively, below the quantities imported in 1951; imports of iridium were 50 percent greater.

TABLE 6.—Platinum-group metals imported for consumption in the United States, 1943-47 (average) and 1948-52
[U. S. Department of Commerce]

Troy Trov Year Value Year Value ounces ounces \$11, 929, 550 14, 973, 356 11, 855, 150 1943-47 (average) 364, 936 427, 547 1 601, 423 452, 818 \$23, 220, 709 1 36, 307, 916 25, 546, 520 272, 733 218, 284 1951 1952

¹ Revised figure.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 7.—Platinum-group metals (unmanufactured) imported for consumption in the United States, 1951-52, by countries, in troy ounces ¹
[U. S. Department of Commerce]

	Unrefined materials ²				Refined metals						·
Country	Ores and concentrates of platinum metals	Platinum grain and nuggets (including crude, dust, and residues)	Platinum sponge and scrap	Osmiridium	Platinum	Palladium	Iridium	Osmium	Rhodium	Ruthenium	Total
1951				:							
Belgium-LuxembourgCanada	42	³ 111	248		366 111, 200 202	151, 877	1, 801		19, 260		360 3 288, 039 200
China Colombia Denmark	456	23, 465	1, 260 791		202						25, 18 80
Hong Kong			727		252 306						97 2, 83
Italy Japan			33, 086	1	81, 645						114, 73 4, 53
Lebanon Netherlands					301	4, 534 42, 659			138		43, 09 3, 36
Norway Panama		75			1, 650	910	100		200	425	3, 36 90
Switzerland					1, 682	15 767	24 600	700	1, 050	1, 900	1, 70 77, 79
Union of South Africa					57, 185	15, 767 16, 075					16, 07
United Kingdom Other countries		111	53	1, 689	12, 379 290	4, 773 32	619	620	17	234	20, 44 37
Total	498	³ 24, 665	36, 165	2, 283	267, 473	239, 151	3, 144	1, 320	20, 665	6, 059	³ 601, 42

For footnotes see end of table.

TABLE 7.—Platinum-group metals (unmanufactured) imported for consumption in the United States, 1951-52, by countries, in troy ounces 1-Continued

[U. S. Department of Commerce]

		Unrefined	materials ²				Refined	l metals			
Country	Ores and concen- trates of platinum metals	Platinum grain and nuggets (including crude, dust, and residues)	Platinum sponge and scrap	Osmiridium	Platinum	Palladium	Iridium	Osmium	Rhodium	Ruthenium	Total
Canada 1952 Colombia Estricia	41	78 24, 463 1, 303	1, 672 15	41	113, 925	101, 443	3, 700		5, 165	347	226, 412 24, 478
Ethiopia France Italy					1, 273 300		187	25			24, 478 1, 303 1, 635 300
Lebanon Mexico Netherlands	648	593	1, 902		672 200	3, 922 80, 376					3, 922 3, 815 80, 741 3, 939
Norway Panama		835 416			1, 673	925	106		150	250	416
Switzerland Union of South Africa United Kingdom Other countries		68 96	209 306	2, 149 602	2, 368 22, 570 59, 633 49	4, 026 9, 810	275 450	275 294	400 436	500 1, 341	2, 368 30, 195 72, 843 451
Total	689	27, 852	4, 269	2, 792	202, 663	200, 502	4, 718	594	6, 151	2, 588	452, 818

¹ On the basis of detailed information received by the Bureau of Mines from importers, certain items recorded by the U. S. Department of Commerce as "ores and concentrates" and "sponge and scrap" have been reclassified and included with other groups in this table.

² U. S. Department of Commerce categories are in terms of metal content. It is believed, however, that in many instances gross weights are actually reported.

² Revised figure.

TABLE 8.—Platinum-group metals (unmanufactured) imported for consumption in the United States, 1951-52 1

[U. S. Department of Commerce]

		1951	19	952
Material	Troy ounces	Value	Troy ounces	Value
Unrefined materials: 2 Ores and concentrates of platinum metals Platinum grains and nuggets (including crude, dust, and residues) Platinum sponge and scrap Osmiridium	498 3 24, 665 36, 165 2, 283	\$44, 555 3 1, 960, 689 3, 104, 587 192, 101	689 27, 852 4, 269 2, 792	\$106, 813 2, 130, 874 395, 24 231, 85
Total	3 63, 611	³ 5, 301, 932	35, 602	2, 864, 78
Refined metals: Platinum Palladium Iridium Osmlum Rhodium Ruthenium	239, 151 3, 144 1, 320	22, 753, 594 4, 796, 263 532, 892 285, 745 2, 195, 944 441, 546	202, 663 200, 502 4, 718 594 6, 151 2, 588	16, 726, 70 4, 169, 55 782, 03 137, 69 688, 06 177, 67
TotalGrand total	537, 812 3 601, 423	31, 005, 984 3 36, 307, 916	417, 216	22, 681, 73 25, 546, 52

¹ On the basis of detailed information received by the Bureau of Mines from importers, certain items recorded by the U. S. Department of Commerce as "ores and concentrates" and "sponge and scrap" have been reclassified and included with other groups in this table.

² U. S. Department of Commerce categories are in terms of metal content. It is believed, however, that in many instances, gross weights are actually reported.

³ Revised figure.

Exports.—Exports of refined platinum (including scrap) were 8,600 ounces in 1952, and exports of other platinum-group metals (including scrap) were 17,700 ounces. Corresponding figures for 1951 were 8,800 and 52,100 ounces, respectively. Canada was the largest buyer of platinum in 1952, taking 4,000 ounces, and West Germany was second with 1,600 ounces. West Germany was the largest buyer of other platinum-group metals, taking 11,600 ounces.

TABLE 9.—Platinum-group metals exported from the United States, 1943-47 (average) and 1948-52 1

[U.S. Department of Commerce]

- Year		concen- tes			Palladium, rho- dium, iridium, osmiridium, ruthe- nium, and osmium (metals and alloys including scrap)		Platinum-group manufactures, except jewelry	
	Troy ounces	Value	Troy ounces	Value	Troy ounces	Value	Troy ounces	Value
1943-47 (average) 1948 1949 1950 1951	52 5 165 82 732	\$3,068 500 1,985 265 117,500	8, 624 15, 471 18, 150 12, 753 8, 760 8, 599	\$465, 560 1, 198, 994 1, 379, 976 994, 362 834, 985 729, 970	5, 713 20, 994 22, 628 24, 946 52, 088 17, 697	\$334, 599 495, 660 745, 349 802, 970 1, 355, 514 513, 131	4, 618 4, 874 20, 702 12, 640 17, 348 (2)	\$184, 446 219, 405 452, 824 521, 575 932, 085 1, 023, 993

Quantities are gross weight.
 Beginning Jan. 1, 1952, quantity not recorded.

TABLE 10.—Platinum-group metals exported from the United States, 1951-52 by countries ¹

[U. S. Department of Commerce]

	sheets, w	bars, ingots, ire, sponge,	Palladium,	rhodium, smiridium, n, and os-	Platinum-	group man-
Country	cluding so	r forms, in- erap)	mium (m	etal and al- ding scrap)	ufactures, except jew- elry	
	Troy ounces	Value	Troy ounces	Value	Troy ounces	Value
1951						
Argentina		-	623	\$16, 175	6	6777
Austria			2,000	44, 000	V	\$775
Belgium-Luxembourg	16	\$608	1, 504	33, 847		
Brazil	137	14, 703	386	12, 742	394	11. 589
Canada	499	55, 825	498	41, 542	15, 130	841. 856
Chile	13	1, 173		,	160	4, 685
Colombia			95	2, 527	67	3, 594
Cuba	150	13, 055	240	6, 034	47	328
France	4, 529	424, 681	510	39, 300	6	1, 251
Germany	1, 744	160, 384	35, 866	853, 992		
IsraelItaly	(2)	109	740	16, 374	12	1, 198
Mexico	308	1,067 32,650	2, 796	79, 639	1,016	34, 315
Netherlands	515	48, 153	502 50	12, 253	42	3, 265
Peru	4	356	22	6, 150 645	00	
Switzerland	557	56, 145	401	8, 967	26 78	2, 967
United Kingdom	183	17, 019	4, 558	148, 665	10	6, 055 168
Uruguay		2.,010	416	9, 963	14	963
Venezuela	78	7, 479	220	5, 421	115	3, 641
Other countries	26	1, 578	661	17, 278	233	15, 435
Total	8, 760	834, 985	52, 088	1, 355, 514	17, 348	932, 085
1952						
Austria	215	20,000			(3)	
Brazil	186	20, 825	480	13, 620	(3)	5, 519
Canada	3, 958	303, 520	983	52, 942	000000000000000000000000000000000000000	700, 031
Chile Colombia	45 11	5, 128 1, 389	16	390	(3)	2, 442
Cuba	34	1, 389 3, 323	291	6, 913	(3)	14, 569
France	1, 378	120, 595	266 374	6, 783	(%)	3, 395
Germany, West	1, 561	145, 150	11, 578	19, 810 299, 130	(%)	3, 663
Japan	160	14, 880	24	1, 580	(3)	10, 347
Mexico	262	27, 232	667	16, 159	3	400 8, 911
Spain	8	200	311	7, 803	35	48, 683
Switzerland			1, 764	38, 617	(3)	4, 666
United Kingdom	639	57, 741	139	22, 281	(3)	8, 872
Venezuela	46	2, 703	208	5, 543	(3)	7, 592
Other countries	96	7, 284	596	21, 560	(3)	204, 903
Total	8, 599	729, 970	17, 697	513, 131	(3)	1, 023, 993

1 Quantities are gross weight.

Less than 1 troy ounce.
Beginning Jan. 1, 1952, quantity not recorded.

WORLD REVIEW

Canada.—Canada has held its position as the leading producer of platinum-group metals since 1934. Most of the output is obtained as a byproduct of nickel-copper ores mined in the Sudbury district, Ontario; a small quantity of crude platinum is recovered as a byproduct of gold placer mining in British Columbia. According to the Dominion Bureau of Statistics, the total production in Canada in 1952 was 120,300 ounces of platinum and 149,600 ounces of other platinum-group metals compared with 153,500 ounces and 164,900 ounces, respectively, in 1951.

Sales of platinum-group metals by the International Nickel Co. of Canada, Ltd., were 287,000 ounces in 1952 as against 375,000 ounces

in 1951.

The discovery in 1952 and initial favorable exploration of a coppernickel deposit containing significant quantities of platinum-group metals in the Kluane Lake district, Yukon Territory, was reported

by the Hudson Bay Mining & Smelting Co., Ltd.4

Colombia.—The production of platinum-group metals of Colombia results from placer-mining operations in the Choco district, mostly by dredging. The crude platinum product for shipment averages about 85 percent platinum-group metals. Figures for the total output are difficult to obtain. The South American Gold and Platinum Co., which accounts for most of the production, recovered 23,700 ounces of crude platinum in 1952 compared with 20,300 ounces in 1951.

Southern Rhodesia.—The platinum deposits in the Belingwe area on the Great Dyke have been known for many years, and considerable underground development was done in the 1920's. Large reserves of material containing approximately 2.9 dwt. platinumgroup metals per ton over a mining width of about 8 feet have been developed.⁵ The Wedza Syndicate of Bulawayo entered into an agreement with the Government of Southern Rhodesia during 1952 to exploit the platinum deposits in the Belingwe area. Metallurgical tests were made and a plant purchased. Deep diamond drilling will be done in 1953; it is expected that at least 2 holes 3,000 to 4.000 feet deep will be drilled.

TABLE 11.—World production of platinum-group metals, 1943-47 (average) and 1948-52 in troy ounces 1

[Compiled by Pauline Roberts]

Country	1943-47 (average)	1948	1949	1950	1951	1952
Australia:						1111111
Placer platinum	,	1 .		16	8	(2) 3 50
Placer osmiridium	100	92	39	48	34	3 50
Belgian Congo: Palladium from refineries	100	209	106	10		(2)
Canada:		200	100			
Platinum: Placer and from refining-						
nickel-copper matte	4 160, 361	121, 404	153, 784	124, 571	153, 483	120, 300
Other platinum-group metals: From	100,001	121, 101	100,101	121,071	,200, 200	120, 500
refining nickel-copper matte	4 171, 101	148, 343	182, 233	148, 741	164, 905	149,600
Colombia: Placer platinum		40, 047	20, 797	26, 445	3 32,000	3 33, 700
Ethiopia: Placer platinum		210	280	480	200	75
Italy Platinum from refineries	13					
Japan: Platinum from refineries	390	25	106	203	245	(2)
New Guinea			4		5	l `´ 2
New Zealand: Placer platinum	4				8	(2)
Papua: Placer platinum			·	(5)	6 2	5
Sierra Leone: Placer platinum	110	109	38			(2)
Union of South Africa:						1
Platinum-group metals from platinum	h	(00 540	20 450			i
ores	70 100	22, 549	30, 470	144 017	190, 898	232, 521
Concentrates (platinum-group metal	76, 106	10 274	EC 004	144, 217	190,090	202, 021
content) from platinum ores	j	46, 374	56, 904)		
Osmiridium from gold ores	6, 113	5, 520	6,031	6, 449	6, 359	6, 141
U. S. S. R.: Placer platinum and from re-	\	l '	'.	· '	· ·	
fining nickel-copper ores (estimate)	150,000	125,000	100,000	100,000	100,000	100,000
United States: Placer platinum and from	1	,		1		
domestic gold and copper refining	30, 773	19, 253	24,807	37, 855	36, 951	34, 409
	<u> </u>	<u> </u>				
Total (estimate)	650,000	525,000	575,000	600,000	675,000	675,000

 $^{^1}$ This table incorporates a number of revisions of data published in previous platinum tables. 2 Data not available; estimate included in total.

⁴ Includes adjustments in 1945 for metals produced in Canada in 1938-44 but not included in the statistics for those years.

Less than 0.5 ounce.

Year ended June 30 of year stated.

⁴ Hudson Bay Mining & Smelting Co., Ltd., Annual Report to Stockholders, 1952. ⁵ Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 5, May 1953, p. 22.

Union of South Africa.—Platinum-group metals are produced in the Union of South Africa from two sources—as an osmiridium byproduct from gold mining on the Rand and as the principal product of mining operations on the Merensky Reef, a horizon on the ultrabasic Bushveld igneous complex in the Transvaal.

During the past 15 years the osmiridium production on the Rand has averaged around 6,000 ounces annually. The composition of the osmiridium is variable, but the metals contained range within the

limits given below:

Metal:		Range (percent)
Osmium	 	 44, 60-24, 13
Iridium	 	 40, 55-21, 33
Ruthenium	 	 16, 83- 8, 73
Platinum	 	18, 99- 3, 89
Gold	 	14. 94- 0. 05
Rhodium	 	 1. 04- 0. 34

The Merensky Reef has been located in widely separated points in the Brits, Rustenburg, and Potgietersrust districts; and the reserves of platinum ores it contains are believed to be very large. The structure and composition of the Merensky Reef have been described recently by Schmidt. The best grade deposits are in the Rustenburg district where stretches on the reef measuring 5,000 to 18,000 feet along the strike and several hundred feet along the dip assay 0.25 to 0.35 ounce of platinum-group metals per ton over stoping widths of about 30 inches. The ore is treated by a combination of gravity concentration and flotation. By the former, a concentrate of crude metallics averaging about 22 percent platinum-group metals is produced. By the latter, a flotation concentrate is obtained that contains platiniferous sulfides of copper, nickel, and iron and gangue; it is smelted locally to a matte that averages about 43 ounces of platinum-group metal per ton. The gravity concentrate and the matte are shipped to England for recovery of refined platinum-group metals, with copper and nickel as byproducts. The Rustenburg Platinum Mines, Ltd., has absorbed a number of former producers and in 1952 was the only concern engaged in mining on the Merensky Reef. Recent expansion of mining and plant facilities of this company have resulted in a substantially greater production rate. According to the Department of Mines the production of platinum-group metals for the Union rose from 190,900 ounces in 1951 to 232,500 ounces in 1952. The average analyses of 145,400 ounces of platinumgroup metals exported from the Union in 1951 was reported 7 as follows: Platinum 68.89 percent, palladium 23.14, iridium 0.31, osmium and osmiridium 0.11, rhodium 1.79, ruthenium 1.51, and gold 4.25.

Plans of the company for 1953 are reported to include the construction of a refinery to treat a portion of the output of platinum-group metals.

⁶ Schmidt, E. R., The Structure and Composition of the Merensky Reef and Associated Rocks on the Rustenburg Platinum Mine: Tran. Geol. Soc. South Africa, vol. 55, 1953.

⁷ Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 3, September 1952, p. 22.

Potash

By E. Robert Ruhlman and Gertrude E. Tucker 2

INCREASED domestic production and substantial imports of potash set a new record in 1952, with a total supply of over 1.85 million tons of K₂O equivalent available for consumption. At the close of 1952 the 10 producing companies in the United States had a total productive capacity of 1.8 million tons of K₂O equivalent per year.

The United States Department of the Interior, through the Bureau of Land Management, modified the regulations governing the limitation on area held under prospecting permits and leases to permit increased acreage to be held by producing companies.3

TABLE 1.—Salient statistics of the potash industry in the United States, 1943-47 (average) and 1948-52

	1943–47 (average)	1948	1949	1950	1951	1952
Production of potassium salts (mar-			`			
ketable)short tons_	1, 637, 831	2, 138, 493	2,056,609	2, 242, 647	2, 474, 870	2, 866, 462
Approximate equivalent K ₂ O	2,00.,002	2,200,200				_,,
short tons	881, 928	1, 139, 881	1, 118, 395	1, 287, 724	1, 420, 323	1, 665, 113
Sales of potassium salts by producers		, ,				
short tons	1, 633, 681	2, 148, 807	2, 062, 789	2, 221, 920	2, 451, 913	2, 757, 252
Approximate equivalent K ₂ O						
short tons	880, 411	1, 143, 339	1, 120, 653	1, 276, 164	1, 408, 408	1, 598, 354
Value at plant				\$39, 774, 447	\$18.27	\$53, 754, 316 \$19. 50
Average per ton Imports of potash materials	\$18.72	\$16.75	\$17.02	\$17.90	φ10. 21	φ19.00
short tons_	29, 683	52, 890	43, 719	381, 490	574, 361	363, 898
Approximate equivalent K ₂ O	20,000	02,000	10,110	002, 200	0.2,002	
short tons.	11,644	27, 181	19, 216	200, 529	1 313, 617	190, 862
Value	\$2,325,606		\$2,358,557	\$13, 993, 974	\$18, 543, 112	\$13, 102, 739
Exports of potash materials	1 ' '					
short tons	125, 293	128, 068	126, 757	117, 137	1 124, 211	101, 200
Approximate equivalent K ₂ O ²		aa =aa	00 550	05.045	1.00.054	FC 001
short tons	68,043			65,047	1 68, 654	
Value	\$7, 352, 360	\$8, 288, 955	\$7, 110, 835	\$5, 534, 170	1 \$7, 593, 646	φ 4 , 830, 009
Apparent consumption of potassium salts 3short tons	1, 538, 072	2,073,629	1, 979, 751	9 486 973	1 2, 902, 063	3, 019, 950
Approximate equivalent K ₂ O	1,000,012	2,010,020	1,010,101	2, 100, 210	2, 002, 000	3,010,000
short tons	824, 012	1, 100, 787	1,070,311	1, 411, 646	11,653,371	1, 732, 935
DHOLD TOUBLE	1		_,,	, ==,-==	1	l

¹ Revised figure

PRODUCTION AND SALES

The domestic production of marketable potassium salts reached a new high in 1952, a 16-percent increase above the corresponding 1951 figure and more than 126 percent over the production 10 years ago. The sales of domestic marketable salts increased 12 percent in 1952

Estimate by Bureau of Mines.
 Quantity sold by producers, plus imports, minus exports.

¹ Commodity-industry analyst.

² Statistical assistant. 3 Title 43—Public Lands: Interior, sec. 32, 41 Stat., 450; 30 U. S. C. 189; published in 17 F. R. 11761 of December 25, 1952.

from 1951. The total value of domestic potash sales rose 20 percent in 1952 compared to 1951, reflecting an increase of \$1.23 in the average

value per ton.

Production of high-analysis materials (60-62 percent K₂O minimum, including refined KCl and 93-96 percent KCl) continued to increase and was 86 percent of the total potassium salts produced in the United States in 1952. Productions of the lower-grade muriate (48-50 percent K₂O minimum), manure salts, sulfate of potash, and sulfate of potash-magnesia all decreased in 1952. The production of manure salts has decreased from a high of 260,300 tons in 1948 to 8,400 tons in 1952.

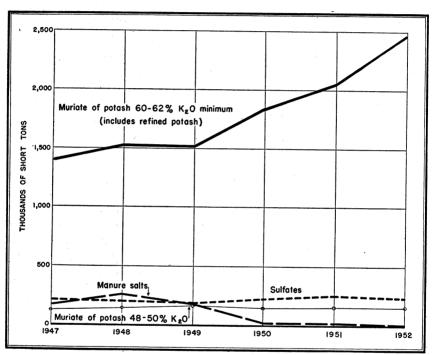


FIGURE 1.—Potassium salts produced in the United States 1947-52, by grades, in short tons.

TABLE 2.—Potassium salts produced in the United States, 1943-47 (average) and 1948-52, by grades, in short tons

Grade	1943–47 (average)	1948	1949	1950	1951	1952
Muriate of potash: 60-62 percent K ₂ O minimum ¹ - 48-50 percent K ₂ O minimum. Manure salts. Sulfate of potash and sulfate of potash-magnesia. Total.	1, 167, 140	1, 523, 937	1, 513, 128	1, 846, 459	2,047,793	2, 468, 436
	115, 748	145, 675	172, 475	151, 547	155,797	150, 959
	2 169, 605	260, 339	177, 315	21, 532	19,775	8, 409
	185, 338	208, 542	193, 691	223, 109	251,505	238, 658
	1, 637, 831	2, 138, 493	2, 056, 609	2, 242, 647	2,474,870	2, 866, 462

Includes refined potash, 1943-52, and some 93-96 percent KCl, 1946-52.
 Includes spillage of some higher grade salts in 1946.

827 POTASH

California, New Mexico, and Utah continued to supply the major portion of the domestic production of potash. New Mexico supplied over 88 percent of the domestic potash marketed in the United States. A fifth major producer began operations in New Mexico late in 1952. The eastern United States (Maryland and Michigan) supplied only a small quantity.

TABLE 3.—Potassium salts produced, sold, and in producers' stocks in the United States, 1943-47 (average) and 1948-52

	Production				Sales				Producers' stocks, Dec. 31	
Year	Oper- ators	Potassium salts (short tons)	Equiva- lent potash (K ₂ O) (short tons)	Oper- ators	Potassium salts (short tons)	Equiva- lent potash (K ₂ O) (short tons)	Value f. o. b. plant	Potassium salts (short tons)	Equivalent potash (K20) (short tons)	
1943–47 (average) 1948	7 7 8 7 9 10	1, 637, 831 2, 138, 493 2, 056, 609 2, 242, 647 2, 474, 870 2, 866, 462	881, 928 1, 139, 881 1, 118, 395 1, 287, 724 1, 420, 323 1, 665, 113	7 7 8 7 9 10	1, 633, 681 2, 148, 807 2, 062, 789 2, 221, 920 2, 451, 913 2, 757, 252	880, 411 1, 143, 339 1, 120, 653 1, 276, 164 1, 408, 408 1, 598, 354	\$30, 575, 234 35, 998, 758 35, 105, 799 39, 774, 447 44, 788, 880 53, 754, 316	61, 298 25, 093 18, 913 39, 640 62, 597 171, 807	26, 139 11, 211 9, 066 20, 620 32, 302 99, 061	

The potash-producing companies in the United States in 1952, by States, were as follows:

California:

The American Potash & Chemical Corp., 3030 W. 6th St., Los Angeles 54, Calif. (plant at Trona, on Searles Lake, Calif.).

A. M. Blumer, 465 California St., San Francisco, Calif. (plant at Davenport, Calif.).

Maryland:

North American Cement Corp., 41 East 42d St., New York 17, N. Y. (plant at Security, Md.). Michigan:

The Dow Chemical Co., Midland, Mich. (brine wells and plant near Midland,

New Mexico (all mines and plants in New Mexico are near Carlsbad):

Duval Sulphur & Potash Co., 17th floor, Mellie Esperson Bldg., Houston 2, Tex.

International Minerals & Chemical Corp., 20 North Wacker Dr., Chicago,

Potash Company of America, Box 31, Carlsbad, N. Mex. The Southwest Potash Corp., Box 472, Carlsbad, N. Mex. United States Potash Co., Inc., 30 Rockefeller Plaza, New York 20, N. Y.

Bonneville, Ltd., 540 West 7th South, Salt Lake City 4, Utah (plant near Wendover, Utah).

The mine production of potassium-bearing salts in the Carlsbad region of New Mexico increased 19 percent (1.2 million tons) over 1951, breaking all previous records for potash production. location of the mines in this area is shown in figure 2.

Since 1931, when mining of potash ores was begun in New Mexico, the grade of the ore has progressively decreased. In 1952, however, an increase was recorded, with the ore averaging 20.94 percent K₂O

compared to 20.40 percent in 1951.

All five producing companies—Duval Sulphur and Potash Co., International Minerals & Chemical Corp., Potash Company of America, Southwest Potash Corp., and United States Potash Co., Inc.,—mined sylvite (potassium chloride), and one—International Minerals & Chemical Corp.—also mined langbeinite (potassium-magnesium sulfate). All five companies processed sylvinite, a mixture of halite and sylvite, to yield 60 percent or higher grade muriate. Potassium sulfate and potassium-magnesium sulfate were produced from langbeinite by the International Minerals & Chemical Corp. in its refinery near Carlsbad.

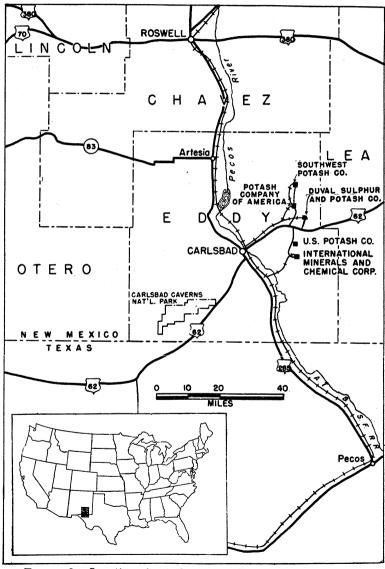


FIGURE 2.—Location of potash mines in Eddy County, N. Mex.

POTASH 829

TABLE 4.—Production and sales of potassium salts in New Mexico, 1943-47 (average) and 1948-52, in short tons

	Crude	Crude salts ¹		Marketable potassium salts						
Year	. Mine production		Production		Sales					
	Gross weight	K ₂ O equivalent	Gross weight	K₂O equivalent	Gross weight	K ₂ O equivalent	Value			
1943–47 (average) _ 1948	4, 019, 571 5, 108, 372 4, 852, 903 5, 802, 004 6, 615, 891 7, 852, 732	845, 772 1, 069, 675 1, 018, 886 1, 198, 021 1, 349, 572 1, 644, 034	1, 389, 900 1, 841, 054 1, 733, 739 1, 904, 565 2, 138, 439 2, 530, 596	738, 306 964, 940 927, 621 1, 086, 996 1, 223, 139 1, 468, 029	1, 387, 017 1, 850, 976 1, 744, 427 1, 878, 094 2, 126, 391 2, 439, 042	737, 478 967, 945 932, 497 1, 072, 772 1, 217, 617 1, 411, 125	\$25, 467, 529 29, 177, 328 27, 950, 111 31, 944, 365 37, 209, 740 46, 385, 452			

¹ Sylvite and langbeinite.

CONSUMPTION AND USES

The apparent consumption of K_2O (producers' sales plus imports minus exports) rose 5 percent in 1952 above the corresponding figure for 1951. The apparent consumption and sales of domestic producers as reported to the Bureau of Mines are shown in figure 3. The sales of domestic potash (K_2O) were 92 percent of apparent consumption compared with 85 percent in 1951 and 90 percent in 1950.

According to the American Potash Institute, March 16, 1953:

The new high record in deliveries of potash in North America reached during 1952 amounted to 3,118,489 tons of salts containing an equivalent of 1,796,258 tons K_2O . This was an increase of 88,733 tons K_2O or 5 percent over 1951. Deliveries by the seven leading domestic producers were the highest ever achieved, 1,584,698 tons K_2O , an increase of 15 percent over last year. This was due to two new producing companies in New Mexico and increase in deliveries by the older companies. Imports were 211,560 tons K_2O , a 35 percent decrease under last year.

Deliveries for agricultural purposes in the continental United States for 1952 were 1,592,620 tons K₂O, an increase of 102,442 tons over 1951. Canada received 69,968 tons K₂O, Cuba 9,408 tons, Puerto Rico 17,068 tons, and Hawaii 16,451

tons. Exports to other countries amounted to 4,302 tons K₂O.

In this country agricultural potash was delivered in 44 States and the District of Columbia. Illinois with over 168,000 tons K_2O was the leading State followed in order by Ohio, Georgia, Indiana, Virginia, Florida and North Carolina, each taking more than 90,000 tons K_2O during the year. Due to shipments across State lines, consumption does not necessarily correspond to deliveries within a State.

Agricultural potash accounted for 95 percent of deliveries. The 60 percent muriate of potash continued to be by far the most popular material, comprising 84 percent of the total K_2O delivered for agricultural purposes. The 50 percent muriate of potash made up 9 percent, sulfate of potash and sulfate of potash magnesia 7 percent, and manure salts less than 0.1 percent of deliveries.

Deliveries for chemical purposes in 1952 were 130,887 tons of muriate of potash containing an equivalent of 82,250 tons K_2O , and 8,280 tons of sulfate of potash containing 4,191 tons K_2O . The total chemical deliveries of 86,441 tons K_2O were 5 percent of all potash deliveries and were 988 tons or 1 percent

less than in 1951.

The deliveries of agricultural and chemical potash in North America from 1942 to 1952 are shown in figure 4, and the deliveries by States in 1952 are given in table 6.

TABLE 5.—Apparent consumption ¹ of potassium salts in the United States, 1943-47 (average) and 1948-52, in short tons

Year	Potassium salts	Approxi- mate equiv- alent K ₂ O	Year	Potassium salts	Approxi- mate equiv- alent K ₂ O
1943–47 (average)	1, 538, 072 2, 073, 629 1, 979, 751	824, 012 1, 100, 787 1, 070, 311	1950	2, 486, 273 2, 902, 063 3, 019, 950	1, 411, 646 1, 653, 371 1, 732, 935

Quantity sold by producers, plus imports, minus exports.
 Revised figures.

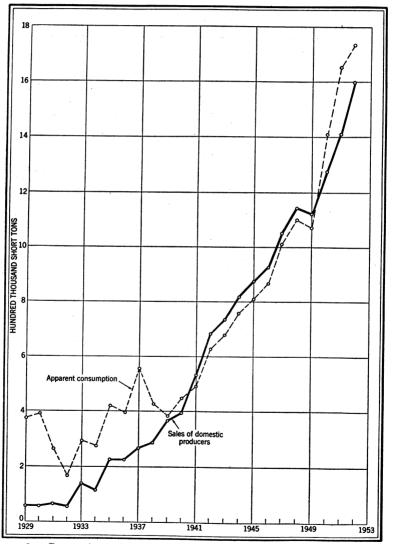


Figure 3.—Comparison of apparent domestic consumption of potash (K_2O) and sales of domestic producers of potash in the United States, 1929-52.

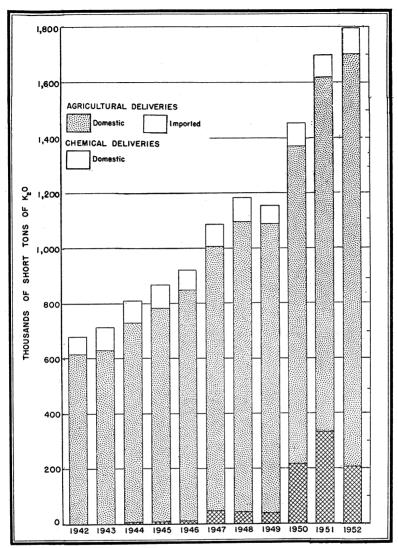


Figure 4.—Potash deliveries by use groups, in North America, 1942–52 (American Potash Institute).

STOCKS

Producers' stocks on hand at the end of 1952 were 174 percent greater than the 1951 figure and the highest ever recorded by the Bureau of Mines. Producers' stocks (K₂O equivalent) on hand at year end since 1926 are presented graphically in figure 5. The data for 1943–47 average and 1948–52 are included in table 3.

TABLE 6.—Deliveries of potash salts in 1952, by States of destination, in short tons of K_2O

[American Potash Institute]

State	Agricul- tural potash	Chemical potash	State	Agricul- tural potash	Chemical potash
Alabama Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Missouri	35, 859 13, 776 888 4, 009 6, 440 91, 577 121, 122 168, 826 105, 802 23, 463 2, 260 28, 824 27, 143 20, 588 77, 544 13, 062 35, 696 27, 764 33, 131		Nebraska Nevada. New Hampshire New Hersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Vermont Virginia Washington West Virginia Washington West Virginia Wisconsin	35, 973 71 31, 041 90, 080 2, 041 155, 622 3, 812 2, 951 32, 531 1, 256 62, 616 62, 616 63, 786 233 475 98, 786 4, 471 885	2, 717 20 1, 498 54, 867 3, 143 280 3, 162 1, 162 3, 201 717 520 5, 400 22

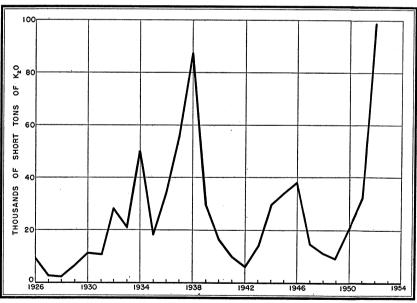


FIGURE 5.—Producers' stocks of potassium salts at end of year, 1926-52, in short tons of equivalent potash (K₂O).

PRICES

Prices for agricultural-grade potash remained under the control of the Office of Price Stabilization throughout 1952. Pursuant to section 16 of General Overriding Regulation 21, the OPS granted separate ceiling prices to each of the major producers at various times during the year. Sales of potash were not always at the ceiling prices, however.

The American Potash & Chemical Corp. issued its price schedule for agricultural-grade Trona potash for the 1952–53 season on May 29, 1952. The price for muriate of potash 60 percent K₂O minimum, f. o. b. Trona, Calif., in bulk, in carlots of not less than 40 tons, was quoted at 50.5 cents per unit K₂O. The OPS granted a new ceiling for Trona muriate of potash, and on July 15 the price of muriate was advanced to 53 cents per unit. The May 29, 1952, price of sulfate of potash, 95–98 percent K₂SO₄, was 86 cents per unit K₂O.

The list prices of both muriate and sulfate were subject to seasonal liscounts. There were additional charges for shipments in bags.

Price schedules for New Mexico potash for agricultural purposes for 1952–53 were issued in May and June 1952 as shown in table 7.

TABLE 7.—Prices of agricultural potash quoted by producers, f. o. b. Carlsbad, N. Mex., for 1952-53 season ¹

				Price	
Salt	Grade	Brand	Producer	Period	Per unit K ₂ O
Do	60 percent K ₂ O minimum, standard. 60 percent K ₂ O minimum do do 60 percent K ₂ O granular 48-52 percent K ₂ O minimum 22 percent K ₂ O minimum 22 percent K ₃ O minimum	High-K	I. M. & C. S. W. P. C. D. S. & P. C.	June 1-Sept. 20 Sept. 20-May 31 June 1-May 31 June 1-Sept. 15 Sept. 15-May 31	\$0.42 .43 .445 .42 .43 .445 .42 .43 .465 .42 .43 .42 .43 .42 .42 .43
Sulfate of potash- magnesia.	48.6 percent K ₂ O mini- mum. Basis 40 percent K ₂ SO ₄ , 18% MgO.	International International Sulpo-mag.	I. M. & C.	June 1-May 31 June 1-May 31	. 745 3 16. 00

¹ Bulk in carlots (minimum 40 tons). Subject to seasonal discounts.

² International Minerals & Chemical Corp. quoted muriate of potash 50-51 percent K₂O, packed in 5-ply plain paper bags, 100 pounds each, at \$25.75 per short ton June 1-May 31.

⁸ Per short ton.

FOREIGN TRADE 4

Imports.—The imports of fertilizer and chemical potash materials decreased sharply in 1952, 37 percent below 1951. The average value per ton of imports of fertilizer-grade potash materials at the port of origin was nearly \$3.50 higher than in 1951. Details of imports from

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

East Germany and West Germany are given separately in 1952. principal supplying countries were West Germany, East Germany, France, Spain, and Chile.

Imports of Fertilizer-grade potash materials constituted 98 percent

of total imports, 1 percent higher than in 1951.

The average K₂O content of potash imports declined 2 percent compared with 1951. Muriate, the principal potash salt imported in 1952, came mainly from East Germany, West Germany, France, and Spain. The imports of potassium sulfate came mainly from West Germany, with smaller quantities from East Germany and France. Chile supplied the United States with nearly 90 percent more potassium sodium nitrate in 1952 than in 1951.

TABLE 8.—Potash materials imported for consumption in the United States, 1951-52

ITT. S.	Department of Commerce	٦.

		1951 1952								
Material	Approximate equivalent as potash	Short tóns	Appr mate e alent pota (K ₂	quiv- as sh	Value	Short	Appr mate e alent pota (K ₂	quiv- t as ish	Value	
	(K ₂ O) (per- cent)		Short tons	Per- cent of total		Lons	Short tons	Per- cent of total		
Used chiefly in fertilizers:		1								
Muriate (chloride) Potassium nitrate, crude. Potassium-sodium ni-	56. 4 40. 0				\$12,696,703 1 145,868	280, 179 20, 199	158, 021 8, 080		\$7, 538, 286 926, 109	
trate mixtures, crude _ Potassium sulfate, crude Other potash fertilizer	14. 0 50. 0		1 1, 212 1 27, 518	0.4 18.8	1 389, 897 1 1, 809, 024	16, 460 40, 262	2, 304 20, 131			
material	6.0									
Total fertilizer		559, 689	1307, 921	98. 2	15, 041, 492	357, 100	188, 536	98.8	10, 788, 622	
Used chiefly in chemical industries:										
Bicarbonate Bitartrate:	46.0	55	2 5	1	13, 585	65	30	1	16, 026	
ArgolsCream of tartarCarbonateCausticChlorate and perchlorate	20. 0 25. 0 61. 0 80. 0 36. 0	2, 226 1, 645	1, 527 177 1, 358 1, 316 133		1, 178, 031 337, 883 294, 187 355, 214 96, 532	3, 393 424 171 74 741	679 106 104 59 267		754, 429 189, 640 26, 150 32, 333 245, 650	
Chromate and dichromate Cyanide Ferricyanide Ferrocyanide	40. 0 70. 0 42. 0 44. 0	271 9	24 655 114 4	1.8	793, 995 245, 768 4, 192	909 178 8	(2) 636 75 3	1.2	234 735, 390 129, 883 6, 874	
Nitrate Permanganate Rochelle salts All other	46. 0 29. 0 22. 0 50. 0	117 62 582	54 18 291		15, 460 18, 396 136, 566	519 136 2 177	239 39 (2) 89		59, 190 56, 819 813 60, 686	
Total chemical		14, 672	5, 696	1.8	3, 501, 620	6, 798	2, 326	1. 2	2, 314. 117	
Grand total		574, 361	¹ 313, 617	100.0	18, 543, 112	363, 898	190, 862	100. 0	13, 102, 739	

¹ Revised figure.
2 Less than 1 ton.

TABLE 9.—Potash materials imported for consumption in the United States, 1951-52, by countries, in short tons

 $[Figures \ in \ parentheses \ in \ column \ headings \ indicate, in \ percent, approximate \ equivalent \ as \ potash \ (K_2O)]$ [U. S. Department of Commerce]

	Bitart	rate			rate			epi	trate	crude		T	otal
Country	B Argols or wine lees	G Oream of tartar	9 Carbonate	© Caustic (hydroxide)	G Chlorate and perchlorate	S Cyanide	S Muriate (chloride)	Botassium nitrate, crude	Potassium sodium nitrate mixtures, crude	g Potassium sulfate, cr	All other 1	Short tons	Value
1951													
AlgeriaBelgium-Luxem-	2,000											2,000	\$290, 315
bourg Canada Chile				298 	5	1	11, 957 144	5 3,306	3 2 652	1,600	50 1	13, 906 158 12, 305	536, 253 10, 292 597, 677
China Czechoslovakia Ecuador	347		(8)	1				(³)			124	(³) 125	100, 976
Ecuador France French Morocco_	970 223	 55	495	252	2 8	16	340 54, 309			2,898	170	59, 193 223	13, 905 2, 124, 040 40, 790
Germany Hong Kong			1,605 1	657		625		56		² 48,597	477	372, 409 1	10, 420, 207 287
Germany Hong Kong Italy Japan Netherlands Norway	1,720	317	125	220		6					24 6 136	2,067 6 481	420, 913 2, 433 165, 570
Norway Peru	5									1,940	(3)	(3) 5	995 1,350
Poland-Danzig Portugal Spain	1,845	2 305								1,940		11, 755 1, 847 94, 878	303, 003 320, 654 2, 645, 664
Sweden Switzerland	525			217	336						99 16	316 352 525	106, 851 88, 429 67, 229
Tunisia United Kingdom_		28				287	1, 102				52	1,469	285, 216
Total 1952	7, 635	707	2, 226	1, 645	369	935	492, 632	2 3,367	2 8,655	255,035	1, 155	574, 361	18, 543, 112
Algeria	1, 983				ļ							1, 983	432, 981
Belgium-Luxem- bourg Brazil	17					18	1, 991				165	2, 174 17	188, 178 3, 939
Canada Chile	112	l			39 39	68		11, 354	16, 460		(³)	27, 965 68	3, 226 1, 307, 295 47, 350
Czechoslovakia France French Morocco.	708 387		6			13				3, 702	68	70, 728 387	2, 569, 594 76, 517
Germany: East West			164			561	90, 999 80, 491	3, 580		5, 817 30, 743	55 507	96, 871 116, 046	2, 459, 871 4, 010, 498
Hong Kong India			i								(3)	(3)	559 42
Italy Japan Netherlands		225				51		5, 265			25 200	298 25 5, 477	139, 939 9, 706 393, 127
Portugal Spain	165	166		74	16		40, 490				28	40,656	37, 307 983, 694
Sweden Switzerland United Kingdom		1 3			683						37	693 217	39, 046 236, 255 163, 615
Total	3, 393	424	171	74	741	909	280, 179	20, 199	16, 460	40, 262	1,086	363, 898	13, 102, 739

 $^{^1}$ Approximate equivalent as potash (K2O)—1951: 42 percent; 1952: 40 percent. 3 Revised figure. 3 Less than 1 ton.

Exports.—Exports of potash materials were 19 percent less than in 1951, the smallest since 1942, reflecting decreases in both Fertilizer and Chemical grades. More than 97 percent of the exports were to countries in the Western Hemisphere. Canada, Cuba, Brazil, and Mexico were the major recipients of the potash exports.

TABLE 10.—Potash materials exported from the United States, 1943-47 (average) and 1948-52

	Fer	tilizer	Che	emical	т	otal
Year	Short tons	Value	Short tons	Value	Short tons	Value
1943-47 (average)	105, 209 104, 176 111, 156 107, 972 109, 139 94, 678	\$3, 106, 093 3, 498, 240 3, 818, 006 3, 813, 000 4, 023, 434 3, 320, 689	20, 084 23, 892 15, 601 9, 165 1 15, 072 6, 522	\$4, 246, 267 4, 790, 715 3, 292, 829 1, 721, 176 1 3, 570, 212 1, 515, 970	125, 293 128, 068 126, 757 117, 137 1 124, 211 101, 200	\$7, 352, 360 8, 288, 955 7, 110, 835 5, 534, 176 17, 593, 646 4, 836, 659

IU. S. Department of Commercel

TECHNOLOGY

Exploration for extensions of present ore bodies and discovery of new mines in the United States continued throughout the year. In addition to the 5 producers in New Mexico, 3 other companies— American Potash & Chemical Corp., Freeport Sulphur Co., and the Farmers Union Service Corp.—conducted exploration in the Carlsbad potash area. It was reported that Freeport Subhur Co. and the Farmers Union Service Corp outlined sizable ore bodies.⁵

Shaft sinking by freezing, which was first used in Belgium in 1885-87. was employed in the Carlsbad area by the Potash Company of America, after two attempts to grout the water-bearing horizon The ground surrounding the planned 15-foot-diameter shaft was frozen through a series of 28 holes. Each of the holes was cased with 6-inch tubing, and then 2-inch tubing was inserted to within 18 inches of the bottom of the hole to permit free circulation of the brine. Approximately 2½ months was required to freeze a shell of ground around the shaft site to a depth of 350 feet. By continuous pumping of the water from within the frozen cylindrical shell, no ground disturbance was noted. Following the freezing, sinking of the shaft proceeded with little trouble.6

Increased mine production in the Carlsbad area resulted from the introduction of new and improved equipment, including continuous mining machines, belt conveyors, and diesel-powered trucks, better power-distribution facilities, and improved methods of crushing, loading, and hoisting.7

¹ Revised figure.

^{*}Ware, T. M., Potash and Phosphate: Min. Cong. Jour., vol. 39, No. 2, February 1953, pp. 62-65. Huttl, J. B., More Potash from Carlsbad: Eng. and Min. Jour., vol. 153, No. 7, July 1952, pp. 98-100.
Latz, J. E., Freezing Method Solves Problem in Carlsbad, N. Mex., Shaft: Min. Eng., vol. 4, No. 10, October 1952, pp. 942-947.
Chafetz, A. B., More Power for Potash Mines Through Better Distribution: Eng. and Min. Jour., vol. 153, No. 12, December 1952, pp. 92-96.
Gardner, H. L., 810-ft. Belt Conveyor in Potash Plant: Western Ind., vol. 17, No. 8, August 1952, pp. 131 132

Refinery expansion and improvement continued during the year. Expansion by International Minerals & Chemical Corp. included facilities for the production of magnesium oxide and hydrochloric acid. This corporation announced development of a new dry beneficiation process (the Baron-Lawver process) and began to construct a pilot plant. This process, if commercially feasible, will reduce substantially the volume of process water required.

Concentration of the Dead Sea brines by solar evaporation received considerable attention before the present methods were developed.8

TABLE 11.—Potash materials exported from the United States, 1951-52, by countries of destinations

		Fert	ilizer			Chen	nical	1952 Short Value				
Country	1	1951	1	1952		1951	1	1952				
	Short	Value	Short tons	Value	Short tons	Value	Short	Value				
Argentina Australia Austria: Belgium-Luxembourg Brazil Canada Chile Columbia Costa Rica Cuba Dominican Republic: Ecuador El Salvador France Germany Greece. Guatemala Honduras Hong Kong India Italy Japan Leeward Islands Mexico Netherlands New Zealand Norway Pakistan Peru	16, 707 75, 997 111 545 9, 678 581 50 235 	\$865, 867 2, 539, 273 6, 920 23, 448 333, 937 21, 650 2, 950 11, 522 494 	3,396 75,384 50 11,232 675 100	\$196, 707 2, 587, 597 1, 410 311 343, 809 27, 424 3, 641 3, 627	683 77 4 380 2, 655 3, 671 355 29 269 269 33 327 288 5 5 116 115 5 267 464 11, 052 61 117 117 117 61 61 61 61 61 61	\$274, 285 23, 006 1, 223, 006 1, 23, 006 1, 23, 006 100, 352 9, 238 79, 895 1, 216 9, 709 10, 445 136, 800 25, 685 28, 991 4, 144 1, 211 81, 571 85, 278 7, 498 298, 584 17, 845 21, 660 5, 148 24, 747 24, 153	67 884 2,910 100 218 28 292 4 15 19 161	7, 080 14, 616 221, 696 459, 857 21, 398 58, 946 7, 791 84, 779 1, 041 4, 485 6, 696 64, 795 111, 228				
Philippines Philippines Portugal Sweden Switzerland	766 165	32, 437 7, 484		36, 219	2 208 30 1, 485	2 57, 729 6, 544 65, 922	85 33 (3) 12	32, 260 13, 512 1, 510 3, 618				
Turkey Union of South Africa United Kingdom Uruguay Venezuela Yugoslavia		26, 575 37, 799		15, 546	113 231 297 512 548 200 127	28, 663 45, 423 91, 679 187, 811 115, 798 62, 879 24, 026	36 121 36 20 118 (3)	3, 618 11, 427 37, 658 28, 489 4, 938 36, 164 176				
Other countries Total	59 109, 139	3, 790 4, 023, 434	94, 678	6, 891 3, 320, 689	381 2 15, 072	137, 649 2 3, 570, 212	6, 522	1, 515, 970				

¹ West Germany.

² Revised figure.
3 Less than 1 ton.

⁸ Bloch, M. R., Use of Solar Energy in Evaporation of Dead Sea Brine: Proc. United Nations Sci. Conf., on the Conservation and Utilization of Resources, United Nations Department of Economic Affairs, 1951, pp. 261–264.

The rate of evaporation is the most important factor in the operation and is influenced by color of the evaporating pans and of the brine. Large quantities of sodium chloride must be returned to the Dead Sea because of low demand.

In discussing mechanization of nonmetallic mines, the Alsace potash mines of France were described in detail.9 Changes brought about by mechanization included improved safety, more efficient use of power and labor, more complete ore recovery, and mining of lower grade materials.

RESERVES

Estimates of world reserves of highly soluble potassium minerals have ranged from 16 billion to 55 billion tons of \hat{K}_2O . Only a small percentage of this total occurs in the United States. Although the world reserves are adequate for a long period, the developed deposits are located in only a few countries, notably East Germany, West Germany, Russia, France, Spain, Israel, Jordan, and the United States. Large deposits in Canada and England have not been sufficiently explored to estimate their extent. Table 12 shows the range of estimated reserves in the major deposits of the world. 10

The Proceedings of the United Nation Scientific Conference on the Conservation and Utilization of Resources, held at Lake Success, N. Y., included a number of papers on sources of inorganic fertilizer materials in the world. The data concerning potash in the papers by J. LeCornec and K. D. Jacob included brief geological descriptions and reserve estimates of all the major world deposits. The other papers presented problems of distribution and the most effective methods for utilizing potash and other fertilizer materials.

The leucite deposits in Sweetwater County, Wyo., containing some 197 million tons of potash (K₂O), were described, ¹² and the location, a brief geological description, and the estimated reserves of 17 properties were given.

Blum-Picard, L., The Mechanization of Nonmetallic Mines: Proc. United Nations Sci. Conf. on the Conservation and Utilization of Resources, United Nations Department of Economic Affairs, 1951, pp.

<sup>119-124.

10</sup> Jones, C. L., and Waggaman, W. H., Potash—1,000 Years Supply: Chap. in President's Materials Policy Commission, Resources for Freedom, vol. 2, The Outlook for Key Commodities, June 1952,

rials Policy Commission, Resources for Freedom, vol. 2, The Outlook for Key Commodities, June 1952, pp. 157-158.

Johnson, B. L., Potash: Chap. in Van Royen, W. and Bowles, O., The Mineral Resources of the World, Prentice-Hall, Inc., 1952, pp. 147-152.

"United Nations Conference on the Conservation and Utilization of Resources, Inorganic Fertilizers in Conservation: Proc., United Nations Department of Economic Affairs, New York, vol. 2, 1951, pp. 269-300. Chapters as follows:

LeCornec, J., Estimate of World Supplies of the Principal Plant Nutrients by Cost Range: Pp. 270-274. Jacob, K. D., World Resources of Principal Inorganic Plant Nutrients: Pp. 274-278.

Nordengren, Sven, Resources of Minerals Containing Phosphorus and Potassium in Sweden and Their Utilization in the Fertilizer Industry: Pp. 278-281.

Curtis, H. A., The Economics of World Supply of Fertilizer Materials and Their Use: Pp. 281-285. Grimmett, R. E. R., and Elliott, I. L., The Economics of World Availability and Use of Fertilizer Materials: Pp. 288-291.

Diaz-Vial, Carlos, Economics of World Availability and Use of Fertilizer Materials: Pp. 291-294.

10 Osterwald, F. W., and Osterwald, D. B., Wyoming Mineral Resources: Geol. Survey Wyoming, Bull. 45, 1952, pp. 124-127.

839 POTASH

TABLE 12.—Estimates of world potash resources 1

[Millions of short tons of K2O]

Country	Tonnage	Country	Tonnage
West Germany	2-20, 000 1, 200-1, 400 300-400 270-500 700-18, 400	East Germany United States Total	14, 000 ±250 16, 722-54, 950

¹ SOURCE: President's Materials Policy Commission: Resources for Freedom, vol. 2—The Outlook for Key Commodities, June 1952, p. 158.

WORLD REVIEW

Available statistics of potash output in the various producing countries, as well as estimated world production totals, are shown in table 13.

Australia.—The plant of the State Alunite Works of Western Australia at Lake Campion was closed. Alunite continued to be

produced in New South Wales.

Canada.¹³—To encourage exploration and development of potash, the prospecting regulations of Saskatchewan were revised, allowing three ways to obtain crown land: "Withdrawal" or "preprospecting."

"exploration permit," and "lease."

Under the withdrawal or preprospecting method, a company can conduct preliminary investigations for a period of 6 months, on up to 100,000 acres, at a rental of 1½ cents per acre. Although no specific expenditure requirements are stated, "substantial expenditures" must be made on "wildcat" drilling.

The exploration permit, valid for a maximum of 3 years on areas up to 100,000 acres, at an annual rental of 5 cents per acre, requires a minimum of \$220,000 to be spent on exploration and development

within the 3-year period.

Leases, issued when a company desires to start producing potash,

are valid for 21 years on areas from 640 to 10,000 acres.

The withdrawal regulations allow companies to cooperate in prospecting for potash and oil, sharing the costs of the drilling operations.

The consumption of potash in Canada has been about 100,000 tons The development of a potash industry in Canada would

result in independence from foreign markets.

Western Potash Corp., Ltd., continued its exploration program in the Unity-Vera district of Saskatchewan throughout 1952, and a number of holes were drilled during the year which intersected potash beds ranging from 5½ to 17½ feet thick and assaying 19 to 38 percent Additional drilling was planned to ascertain the most favorable Western Potash Corp. has contracted with Forsberg & area to lease.

¹³ Canadian Chemical Processing, Potash in Saskatchewan: Vol. 36, No. 11, October 1952, p. 22.
Canadian Mining Journal: vol. 73, No. 1, January 1952, pp. 89-90; No. 7, July 1952, p. 96; No. 9, September 1952, p. 112; No. 12, December 1952, pp. 80, 82.
Chemical Age, Potash Search in Canada: Vol. 66, No. 1720, June 28, 1952, p. 978.
Chemical Week, vol. 71, No. 24, Dec. 13, 1952, p. 60.
Commercial Fertilizer, vol. 84, No. 1, January 1962, p. 28.
Foreign Commerce Weekly, Potash Discovered in Canada: Vol. 47, No. 11, June 16, 1952, p. 15.
Mining World, vol. 14, No. 2, February 1952, pp. 56, 58.
Northern Miner, vol. 37, No. 47, Feb. 14, 1952, p. 16; No. 48, Feb. 21, 1952, p. 6; vol. 38, No. 22, Aug. 21, 1952, p. 27, No. 28, Oct. 2, 1952, p. 19.
Precambrian, vol. 25, No. 11, November 1952, p. 45.
Rock Products, vol. 55, No. 10, October 1952, p. 160.

TABLE 13.—World production of potassium salts and equivalent K2O, by countries, 1947-52, in metric tons 2 [Compiled by Helen L. Hunt]

	194	7	194	8	194	19	195	60	195	1	195	2
Country 1	Potassium salts	Equiva- lent K ₂ O	Potassium salts	Equiva- lent K ₂ O	Potassium salts	Equiva- lent K ₂ O	Potassium salts	Equiva- lent K ₂ O	Potassium salts	Equiva- lent K ₂ O	Potassium salts	Equiva- lent K ₂ O
North America: United StatesSouth America: ChileEurope:	1, 728, 882 3, 259	934, 282 900	1, 939, 998 6, 655	1, 034, 077 1, 913	1, 865, 715 5, 020	1, 014, 586 1, 422	2, 034, 485 (³)	1, 168, 197 1, 442	2, 245, 153 (³)	1, 288, 489 (³)	2, 600, 397 (³)	1, 510, 557
France (Alsace) Germany:	4, 168, 725	632, 844	4, 470, 260	683, 585	5, 285, 649	798, 510	5, 562, 000	1, 017, 800	5, 518, 800	987, 600	4 6, 200, 000	1,054,000
West Germany East Germany Spain Asia:	3, 455, 586 (3) 917, 865	342, 409 4 720, 000 195, 892	5, 276, 348 (3) 992, 743	538, 507 4 823, 000 151, 185	7, 290, 000 (3) 918, 156	748,800 (3) 151,542	8, 927, 219 (³) 1, 013, 333	1,094,286 (3) 161,619	10, 847, 520 (³) 1, 058, 884	1, 323, 913 (3) 172, 870	12, 585, 300 (3) 1, 052, 016	1, 553, 700 (³) 172, 644
India Israel and Jordan ⁵	4, 211 123, 163	2, 032 60, 830	3, 020 6 9, 724	2, 540 6 5, 834	6, 456	3, 048	5, 589	2, 743	6, 486	3, 251	(3)	(3)
Japan Africa: Eritrea Australia:	2, 259	135	1, 984 115	(3)	3, 544 420	213 203	3, 396 555	203 264	3, 897	(3)	2, 614	157
New South Wales Western Australia	406 34, 882	30 572	712 39, 759	53 652	436 32, 782	33 1, 471	406 919	30 84	456	34	4 425	4 30
Total (estimate)		3, 000, 000		3, 500, 000		3, 900, 000		4, 500, 000		4, 900, 000		5, 500, 000

¹ In addition to countries listed, China, Ethiopia, Italy, Korea, and U. S. S. R. are reported to produce potash salts, but statistics of production are not available; estimates by senior author of chapter included in total.

² This table incorporates a number of revisions of data published in previous potassium salts chapters.

³ Data not available; estimate by author of the chapter included in total.

<sup>Bate not available, estimate by author of the diagret indicates it.
Estimate.
Year ended June 30 of year stated; 1947-48 is for Palestine. Extracted from waters of Dead Sea.
Production ceased April 1948, when work was discontinued owing to destruction of the Palestine Potash, Ltd., large plant during hostilities of 1948.</sup>

Co., Ltd., of Winnipeg, to sink a 7- by 12-foot shaft to a depth of 3,500 feet about 9 miles northwest of Unity, near the discovery site. At the end of 1952 the concrete shaft collar had been poured. struction of a quarter-mile spur from the Canadian National Railway was underway to supplement the recently completed road. Living quarters and mine buildings were under construction. It was announced that the corporation plans to dissolve the sylvinite underground and pump the solution to the surface for recovery of potassium chloride by evaporation and recrystallization in a refinery capable of treating 1.000 tons of ore per day.

A second company, Liberal Petroleums, Ltd., held prospecting permits covering 100,000 acres in the Palo district 45 miles southwest

of Unity.

The Potash Company of America, one of the major United States producers, actively participated in the search for Canadian potash. PCA was granted preprospecting permits on 175,000 acres of land southeast of Saskatoon in June 1952 and conducted exploratory drilling throughout the remainder of the year.

Chile.—The Chilean nitrate industry had numerous labor strikes

throughout the year, resulting in a 40-percent increase in wages.

These interruptions decreased production substantially.

France.—The Mines Dómaniales de Potasse d'Alsace shut down its Amélie mines for a short period during 1952 to install new mining equipment obtained from the United States. Production is expected

to increase substantially from this increased mechanization.

Exports of potash materials from France decreased 16 percent in 1951 as compared with 1950 (table 14). The data for 1952 are not yet available. European countries continued to be the major recipients, taking 65 percent of the exports in 1951 and 69 percent in 1950. The Western Hemisphere received about 14 percent of France's potash exports, the United States taking about half.

TABLE 14.—Potash materials exported from France 1950-51, by countries, in short tons

Country	1950	1951	Country	1950	1951
Europe: Austria. Belgium-Luxembourg. Denmark Finland Italy Netherlands. Norway Sweden Switzerland. United Kingdom Yugoslavia Asia: Ceylon. China India and Burma. Japan Philipplnes.	57, 172 1, 838 29, 218 245, 054 9, 744 48, 698 30, 215 205, 250 	19, 146 105, 887 28, 629 9, 796 36, 999 195, 696 113, 387 21, 676 31, 055 173, 357 7, 248 21, 158 8, 413 7, 250 50, 007 3, 178	Oceania: Australia and New Zealand Africa: Algeria South America: Argentina Brazil Colombia North America: Canada Cuba United States Other countries Total		20, 865 25, 334 989 19, 122 11, 822 21, 910 6, 232 74, 436 69, 124 982, 713

East Germany.—The 5-year plan 14 inaugurated in 1951 called for an increase in production from 1.5 million tons K₂O per year to 1.68 million tons by 1955.

With nearly two-thirds of Germany's prewar potash industry, East Germany is striving to build up world markets for its increased

production.

The port of Wismar on the Baltic Sea was enlarged to permit handling of larger vessels. This port has become the main transshipment port for potash materials, especially to the Far East. West Germany (Federal Republic of Germany).—The major pro-

ducing companies in West Germany (Salzdetfurth, Wintershall, Burbach, and Kalichemie) continued to increase potash production by modernizing the active mines and rehabilitating many of the abandoned mines.

Reconstruction of the Königshall and Hindenburg shafts, which were flooded in 1939, was completed by the Burbach Co. This company conducted experiments with flotation methods for processing the potash ores, but no results were announced.

The Hildesia and Glückauf shafts are resuming production.

West German potash consumption was increasing slowly, and German producers depended mainly on exports to consume the

largest share of the expanded production.

Exports of potash materials from West Germany, by countries of setination from 1950-52. are shown in table 15. Total exports in destination from 1950-52, are shown in table 15. 1952, the highest since before World War II, were 44 percent above those of 1951. Europe received 76 percent of the potash exported from West Germany in 1952 compared to 40 percent in 1951 and 35 percent in 1950. The quantity exported to the United States was 58 percent less in 1952 than in 1951 and was less than 10 percent of the total exports from West Germany in 1952.

Israel.—A new corporation, The Dead Sea Works, Ltd., purchased the British-owned potash works at the southern end of the Dead Sea. The voting stock in the new corporation was owned 51 percent by the Israel Government, 16 percent by Palestine Potash, Ltd., and the remainder by the public. 15 The road from the plant to Beersheba was completed during 1952, and it was planned to begin operations

during 1953.

Japan.—The production of alunite continued during 1952 but the bulk of Japan's requirements were met by imports from the major

European producers.

Jordan.—The Government of Jordan in December 1952 revoked the concession under which Palestine Potash, Ltd., recovered minerals of the Dead Sea. This concession had been in force for 23 years. Future recovery operations are expected to be conducted by a new joint government and private corporation.

¹⁴ Fertilizer and Feeding Stuffs Journal, East German Potash: Vol. 38, No. 23, November 12, 1952, pp. 749, 751.
 Mining World, Israel: Vol. 14, No. 10, September 1952, p. 76.
 Chemical Age, Palestine Potash Pact: Vol. 66, No. 1719, June 21, 1952, p. 945.

TABLE 15.—Potash materials exported from West Germany 1950-52, by countries, in short tons ¹

Country	1950	1951	1952
South America: Brazil		12, 196	1, 929
North America: Canada	6, 393	7, 220	6, 425 11, 657
Puerto RicoUnited States	84, 088	204, 934	85, 224
Europe: AustriaBelgium-Luxembourg	8,958	19, 260	11, 910 145, 505
Denmark	1, 246 7, 738	57, 022 13, 240	150, 733
Greece Irish Free State	1,334 10,003	19, 395 14, 904	11, 947 8, 406
Italy Netherlands	311	7, 253 1, 819	211, 586 2, 204
Portugal Sweden. Switzerland	278 7, 170	3, 685	11, 791 18, 221
United Kingdom Oceania: Australia and New Zealand	106, 000	114, 091	126, 588 5, 387
Asia: Cevlon Cevlon	2, 812	4, 795	831
FormosaIndia		19, 324 5, 998	68
Inda- Indonesia Japan	4, 641 140, 007	1, 651 94, 392	54, 758
Korea	2, 615 165	1, 213	7, 167 3, 585
Africa: Union of South Africa and Northern and Southern	2, 055	13, 150	11, 279
Other countries	19, 055	18, 724	27, 27
Total	404, 890	634, 266	915, 09

¹ SOURCE: Germany (Federal Republic) Statistisches Bundesamt. 1950 and 1951 includes chloride and sulfate only. 1952 includes crude salts, chloride, sulfate, magnesium sulfate, and beet ash.

Spain ¹⁶.—Mechanization of the mines of Potasas Espanoles, S. A., was scheduled to be completed in 1953. This operation was made possible by a \$1.5 million Export-Import Bank loan in 1951.

Fodina, S. A., was formed by Instituto Nacional de Industria (INI) to exploit the potash deposits in Catalunya and planned initial pro-

duction by 1955.

Results of the exploration done by Empresa Nacional "Adaro" de Investigaciones Minerales (INI subsidiary) had not yet been published. This company drilled deposits of potassium salts discovered by the Spanish Geological Institute in the Province of Navarro. Tentative plans called for sinking two shafts for further exploration of these deposits, which contain 16 to 18 percent K₂O. Production was obtained from deposits containing 13 to 14 percent K₂O material.

Exports of potash materials from Spain were 31 percent higher in 1951 than in 1950 (table 16). Data for 1952 are not yet available

¹⁶ Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 2, August 1952, pp. 34-36; vol. 35, No. 3, September 1952, pp. 49-50.

Countries of Europe received 50 percent of the exports in 1951 as compared to 72 percent in 1950. The United States received the largest tonnage—about one-third of the total exports from Spain in 1951.

TABLE 16.—Potash materials exported from Spain 1 1949-51, in short tons

Country	1949	1950	1951
North America: United States	73, 360 2, 381 18, 421 15, 653 11, 356	32, 419 48, 715 5, 500 5, 907 11, 473 8, 859	88, 075 48, 064 5, 368 13, 209 4, 189 13, 297
Sweden	57, 783 43, 069 39, 793 2, 422	4, 409 63, 262 20, 139 5, 573	39, 222 43, 216 5, 192
Total	264, 238	206, 256	270, 811

¹ SOURCE: 1949-50—Estadistica del Commercio Exterior de Espana. 1951 Preliminary Spanish Tariff figures. Includes sulfate and chloride and other potash compounds used as fertilizers.

Pumice and Pumicite

By Henry P. Chandler 1 and Annie L. Marks 2

EFORE 1944 the principal use for pumice and pumicite (volcanic ash) in the United States was for abrasives, with smaller quantities employed in concrete aggregate, acoustic plaster, and a number of miscellaneous uses; the total production for 1944 was 88,757 short tons. By 1951 these uses had risen to 749,942 short tons, concrete aggregates taking 96 percent of that year's output. The output of pumice and pumicite, however, declined during 1952.

DOMESTIC PRODUCTION

Pumice and pumicite were mined in 14 States during 1952; 57 operating units reported to the Bureau of Mines. From a record output of 749,942 short tons in 1951, production declined over 20 percent in 1952 to 597,044 short tons, and its value decreased 18 percent to \$2,266,981.

New Mexico was the largest pumice-producing State in 1952, with 7 firms reporting, followed in order by California with 23, Idaho with 4, and Colorado with 2. No commercial output was reported east

of Kansas, and Alaska reported no production that year.

Pumice and pumicite usually are mined by opencut methods, although in some instances systems of adits and drifts are used.

CONSUMPTION AND USES

Pumice and pumicite are light in weight-1 cubic yard in pebble form weighing between 825 and 900 pounds—as compared with ordinary sand and gravel, which range from 2,600 to 3,000 pounds per cubic yard. The dead air cells in pumice give it excellent insulating properties against heat and sound, and its composition makes it virtually fireproof.

A reduction of 166,271 short tons in the use of pumice and pumicite as a concrete aggregate and admixture from the preceding year accounted for the overall decline in use during 1952, as the other uses for

pumice showed slight increases.

Concrete aggregates and admixtures consumed 93 percent of the 1952 production; abrasive uses, 4 percent; and acoustic plaster and

other uses, 3 percent.

Pumice was used in concrete largely near its areas of production, as usually it cannot compete with other lightweight aggregate materials in the field of construction when freight charges to distant points are added to the original price. On the eastern seaboard, imported

¹ Commodity-industry analyst. ² Statistical clerk.

pumice has found a market in competition with other lightweight

aggregates at several points.

Besides its use as an abrasive and for acoustic plaster, minor uses of pumice included insecticides, insulation, brick manufacturing, filtration, surfacing and ice control of roads, absorbents, and as a soil conditioner.

A firm in Maryland started the production of concrete block, using pumice aggregate imported from Greece. Three companies on the eastern seaboard now produce concrete block with pumice from the same source.³

TABLE 1.—Pumice and pumicite sold or used by producers in the United States, 1943-47 (average) and 1948-52

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	21 8, 671	\$1, 194, 855	1950	719, 356	\$2,661,052
1948 ¹	607, 746	2, 501, 906		749, 942	2,752,907
1949	716, 742	2, 369, 082		597, 044	2,266,981

¹ Includes Alaska.

TABLE 2.—Pumice and pumicite sold or used by producers in the United States, 1950-52, by States

State	19	50	19	51	19	1952	
State	Short tons	Value	Short tons	Value	Short tons	Value	
California Idaho New Mexico Oregon Utah Washington Wyoming Other States ²	157, 497 93, 990 351, 642 79, 653 8, 719 11, 013 1, 460 15, 382	\$970, 826 121; 044 1, 109, 883 320, 530 10, 891 22, 672 6, 353 98, 853	264, 411 83, 528 245, 564 47, 026 9, 422 5, 105 1, 867 93, 019	\$1, 228, 569 133, 192 884, 311 137, 136 11, 478 10, 832 9, 141 338, 248	129, 780 88, 085 217, 482 59, 578 (1) 3, 604 2, 851 95, 664	\$793, 716 141, 253 755, 139 201, 809 (¹) 8, 089 10, 918 356, 057	
Total	719, 356	2, 661, 052	749, 942	2, 752, 907	597, 044	2, 266, 981	

¹ Included with "Other States" to avoid disclosure of individual company operations. ² Includes State indicated by footnote 1 and, Alaska (1951), Arizona (1951–52), Colorado, Kansas, Montana (1950–51), Nebraska, Nevada, Oklahoma, and Texas.

TABLE 3.—Pumice and pumicite sold or used by producers in the United States, 1950-52, by uses

Use	19	50	1951			1952		
Use	Short tons	Value	Short tons	Value	Short tons	Value		
Abrasive: Cleansing and scouring compounds and hand soaps Other abrasive uses Acoustic plaster Concrete admixture and concrete aggregate Other uses	15, 362 12, 214 6, 662 672, 125 12, 993	\$198, 053 410, 243 151, 766 1, 750, 269 150, 721	8, 205 4, 485 3, 761 720, 170 13, 321	\$124, 314 318, 013 112, 518 1, 988, 204 209, 858	17, 308 5, 121 3, 934 553, 899 16, 782	\$177, 609 248, 977 100, 097 1, 525, 331 214, 967		
Total	719, 356	2,661,052	749, 942	2, 752, 907	597, 044	2, 266, 981		

¹ Insecticide, insulation, brick manufacture, filtration, solvents, roads (surfacing and ice control), absorbents, soil conditioner, and miscellaneous uses.

Pit and Quarry, Pumice Block: Vol. 55, No. 9, September 1952, p. 154.

STOCKS

As production of sales of pumice and pumicite are usually in balance, stocks of material on hand are relatively constant and small and are not covered by the Bureau of Mines canvass.

PRICES

As reported in the Oil, Paint and Drug Reporter, the quotations on domestic and imported pumice remained at nearly the same levels as the previous year and were as follows: Domestic, common, ground, coarse to fine, in bags, ton lots, 3% to 4½ cents a pound; smaller lots, 3% to 4½ cents a pound. Italian, silk-screen, coarse, bags, ton lots, 6½ cents a pound; fine, bags, ton lots, 4 cents a pound; sun-dried, coarse, bags, ton lots, 2½ to 4 cents a pound; fine, bags, ton lots, 2½ to 4 cents a pound; fine, bags, ton lots, 2½ to 4 cents a pound higher. The E&MJ Metal and Mineral Markets quoted per pound, f. o. b., New York or Chicago, in barrels, powdered, 3 to 5 cents; lump, 6 to 8 cents.

The value of pumice and pumicite at the mine in 1952 for the 57 producers reporting to the Bureau of Mines is shown in table 4.

TABLE 4.—Crude and prepared pumice and pumicite sold or used by producers in the United States in 1952

	Short tons	Value	Average value
CrudePrepared	230, 977 366, 067	\$508, 285 1, 758, 696	\$2. 20 4. 80
Total	597, 044	2, 266, 981	3.80

Average domestic values per ton at the mine for the preceding 3 years were: 1951, \$3.67; 1950, \$3.70; 1949, \$3.31.

FOREIGN TRADE 4

During 1952 the importations of crude or unmanufactured pumice into the United States totaled 21,986 short tons valued at \$135,305, or \$6.15 a ton. Imports of wholly or partly manufactured pumice totaled 478 short tons valued at \$9,792, or \$20.49 a ton. Also other types of pumice not otherwise specified, valued at \$6,301, were imported. The duty on imported pumice was: Unmanufactured, valued at \$15 or less a short ton, \$1 a ton; valued at over \$15 a short ton, % cent a pound; manufactured pumice, % cent a pound.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

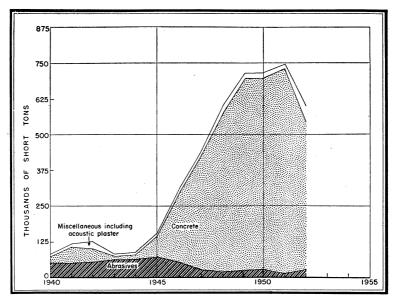


FIGURE 1.—Pumice and pumicite sold or used, by specified uses, 1937-52.

TABLE 5.—Pumice and pumicite imported for consumption in the United States in 1952

[U. S. Department of Commerce]

Country	Ç	Crude or uni		Whaller as south			
	Valued at \$		Valued at to		Wholly or partly manufactured		
	Short tons	Value	Short tons	Value	Short tons	Value	
ItalyGreece	6, 926 14, 370	\$63,719 57,927	690	\$13,659	478	\$9,792	
Total	21, 296	121, 646	690	13, 659	478	9, 792	

TABLE 6.—Pumice and pumicite imported for consumption in the United States, 3 1950–52

[U. S. Department of Commerce]

	19	50	19	51	1952	
	Short tons	Value	Short tons	Value	Short tons	Value
Crude or unmanufactured	19, 268 982	\$125, 726 18, 356 953	15, 752 750	\$182, 737 18, 041 2, 591	21, 986 478	\$135, 305 9, 792 6, 301

TECHNOLOGY

Description of certain pumice deposits in Oregon, with discussion of the economic factors relating to the profitable utilization of pumice, especially its use as a lightweight aggregate, appeared in a recent survey.⁵

Alaskan pumice deposits were the subject of an article in a trade

publication.6

WORLD REVIEW

Next to the United States, Italy is the largest producer of pumice and pumicite, the deposits on the island of Lipari being the most important. In Greece, pumice from the deposits on the island of Santorini in the Aegean Sea found a market both in Europe and the United States.

TABLE 7.—World production of pumice, by countries 1, 1948-52, in metric tons [Compiled by Helen L. Hunt]

Country 1	1948	1949	1950	1951	1952
Egypt. France Greece 3 Italy New Zealand Spain United States (sold or used by producers)	800 17, 070 37, 000 31, 501 6, 973 212 551, 335	450 15, 038 47, 000 76, 877 13, 335 984 650, 214	380 17, 578 53, 000 103, 597 9, 872 21, 000 652, 585	2 400 2 18,000 65,000 123,884 8,915 2 1,000 680,332	400 2 18,000 30,965 2 125,000 9,766 2 1,000 541,626
Total (estimate)	695, 000	850,000	890,000	940,000	780,000

¹ Pumice is also produced in Argentina, Canada, Germany, Japan, U. S. S. R., and a few other countries, but data on production are not available; estimates by author of chapter included in total.

² Estimate.

² These figures include the following tonnages of Santorini earth: 1948: 30,000 tons; 1949: 35,000 tons; 1950: 38,000 tons; 1951: 45,000 tons; 1952: 18,528 tons.

News Letter, Raw Materials Survey, Inc., Pumice Deposits of Klamath Indian Reservation, Klamath County, Oreg.: Geol. Survey Circ. 128, issue 1, ser. 52, Mar. 10, 1952, p. 3.
 Rock Products, Alaskan Pumice Deposits: Vol. 55, No. 6, June 1952, p. 89.

Radio-Grade Quartz

By Waldemar F. Dietrich 1 and Gertrude E. Tucker 2

THIS CHAPTER is confined to radio-grade or piezoelectric quartz crystal, which became an important strategic material during World War II when quartz-crystal oscillators were adopted by the United States Army Signal Corps for frequency control in mobile communication units. Other uses for quartz crystal, usually less exacting, are for optical applications (for example, prisms, wedges, and lenses), gems, and fusing stock.

The consumption of radio-grade quartz crystal and the number of piezoelectric units produced reached post-World War II peaks in 1952 owing to expanded military requirements of frequency control

equipment.

Brazil continued to supply about 97 percent of the optical- and radio-grade quartz crystal used in the United States. Domestic production was negligible.

CONSUMPTION AND USES

During 1952 the number of piezoelectric units produced per pound of radio-grade quartz increased progressively from 9.6 in the first quarter to 13.7 in the fourth quarter. The yearly average for 1952 of 12.3 units per pound was an increase over 1951, but the figure was considerably below the peak of 20.3 units per pound recovered in 1949. New types of units and the higher precision required by new specifications and the continued trend toward the use of small crystals in the range of 50 to 200 grams decreased the potential maximum number of units obtainable per pound of crystal.

Radio-grade quartz-crystal cutters and producers of quartz piezoelectric units were distributed in 20 States and the Territory of Hawaii, as shown in table 1. Over one-third of the radio-grade quartz consumption and production of piezoelectric units in the United States was in Pennsylvania, although the largest number of individual companies was in California. Most of the 42 consumers were also producers of finished piezoelectric units, and some of them supplied blanks to those among the 51 piezoelectric unit producers

that do not cut crystals.

PRICES

Radio-grade quartz crystals continued to be priced in accordance with weight, percent usability, type and distribution of flaws, and whether faced or unfaced. The Brazilian Government maintained a schedule of prices, known as a "Tabela", for various weight groups and quality classes as a basis for minimum declared values of export

Chief, Ceramic and Fertilizer Materials Branch.
 Statistical assistant.

TABLE 1.—Consumption of radio-grade quartz and production of piezoelectric units in the United States in 1952, by States

		on of radio- quartz	Production of piezo- electric units ¹	
State	Number of consumers	Number of pounds consumed	Number of producers	Number of units produced
California Connecticut and Massachusetts Florida and Georgia Illinois, Iowa, and Kansas Maryland and New Jersey Missouri, Nebraska, and Oklahoma New York North Carolina Pennsylvania Texas Other States 3	3 6 5 1 3 1 5	34, 500 8, 900 16, 500 172, 400 48, 000 (2) 18, 300 1, 100 178, 000 4 24, 700	9 3 3 9 5 3 4 1 6 3 5	567, 800 79, 900 302, 200 1, 800, 700 452, 300 297, 200 210, 800 3, 700 2, 274, 400 4, 600 187, 900
Total	42	502, 500	51	6, 181, 500

TABLE 2.—Minimum allowable declared value of quartz-crystal exports from Brazil in 1952 1

[Dollars per pound] 2

Weight group (grams)	Quality class ²			
	1	2	3	
200 or less	4. 50 7. 50 10. 00 15. 00 20. 50 24. 75 28. 75 32. 50	2. 50 3. 75 5. 00 6. 25 7. 50 8. 75 10. 00 11. 25	1. 25 1. 25 1. 88 2. 50 3. 12 3. 75 4. 38 5. 00 5. 62	

shipments (table 2). In 1952 the declared values at Rio de Janeiro, Brazil, of the exports to the United States, were about the same as the Tabela prices. Resale prices in the United States were negotiated between buyer and importer.

FOREIGN TRADE

Statistics on imports of quartz crystal for previous years combined radio-, optical- and fusing-grade quartz and small quantities of ornamental quartz. Industry advices and interpolation from Brazilian export statistics were used to prepare the estimates of imports of radio- and optical-grade quartz crystal (1940-52) given in table 3. The differences between the total imports of uncut quartz crystal

Includes oscillators, resonators, and other piezoelectric units.
 Included under "Other States" to avoid revealing individual company figure.
 Includes Hawaii, Louisiana, Ohio, Virginia, and a small quantity unspecified by State.
 Includes consumption of radio-grade quartz in Nebraska to avoid revealing individual company figure.
 No consumption of quartz was recorded for Missouri and Oklahoma.

¹ Established by the National Department of Mineral Resources of the Brazilian Ministry of Agriculture.
2 1 cruziero per kilogram—\$0.025 per pound (approx.)
3 The first 2 classes cover first-quality crystals exceeding 200 grams in weight; crystals in class 1 have over 60 percent usability; and crystals in class 2 have 30 to 60 percent usability. Class 3 includes crystals up to 200 grams in weight with over 60 percent usability; and crystals weighing over 200 grams with a minimum of 30 percent usability.

and the estimated imports of radio- and optical-grade quartz crystal represent the estimated quantities and values of fusing-grade quartz imported from Brazil. Imports of uncut quartz crystal for orna-

mental purposes were believed to be negligible.

In 1952 imports totaling 31,400 pounds of radio- and optical-grade quartz crystal were reported from France, Japan, and Madagascar, and a total of 300 pounds was imported from West Germany and The imports from France probably originated in Madagascar. and those from Japan probably were surplus stocks from various All imports of fusing-grade and the balance of imports of radio- and optical-grade quartz crystal came from Brazil.

Exports of raw quartz crystal in 1952 were valued at \$18,466.

TABLE 3.-Imports of uncut quartz crystal, estimated imports of radio- and optical-grade quartz crystal, consumption of radio-grade quartz, and production of piezoelectric units in the United States, 1940-52

		rts of uncut crystal ¹		l imports of r rade quartz o		Con- sumption	Piezoelectric units 4	
Year	Pounds	Value	Pounds	Value	Value per pound	of radio- grade quartz ³ (pounds)	Produc- tion (number)	Number per pound
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1949 1950 1951 1952	126, 521 2, 237, 608 2, 612, 106 3, 356, 000 2, 300, 506 1, 329, 798 370, 556 473, 788 1, 238, 820 319, 631 310, 251 6 1, 287, 398 1, 576, 791	\$264, 436 3, 830, 344 8, 987, 108 11, 409, 803 11, 178, 643 6, 190, 621 2, 376, 598 1, 815, 468 4, 209, 531 1, 462, 018 791, 412 6 2, 090, 061 2, 885, 437	(\$) 1, 674, 900 2, 431, 400 3, 356, 000 1, 329, 800 216, 400 306, 800 1, 224, 900 306, 800 241, 200 843, 200 1, 049, 300	(5) \$3,779,700 8,969,000 11,409,800 11,115,000 6,190,600 2,328,800 1,782,000 4,205,500 1,400,200 2,045,600 2,045,600 2,881,600	(5) \$2. 26 3. 69 3. 40 5. 25 4. 66 10. 76 6. 73 3. 43 4. 76 3. 26 2. 43 2. 75	31, 000 59, 000 682, 000 1, 588, 000 1, 858, 000 172, 400 68, 100 61, 600 46, 200 114, 300 282, 300 502, 500	(\$) (\$) 6, 888, 000 22, 575, 000 18, 918, 000 1, 744, 100 1, 225, 400 937, 100 3, 290, 000 6, 181, 500	(5) 10. 1 14. 2 16. 1 18. 2 10. 1 15. 5 19. 9 20. 3 14. 1 11. 7 12. 3

¹ From U. S. Department of Commerce: Includes radio-, optical-, ornamental- and fusing-grade quartz crystal.

² Estimated from industry advices and Brazilian Government statistics.

³ 1940-44, War Production Board.

⁴ 1942-44, War Production Board.

⁵ Data not available.

⁶ Revised figure.

TECHNOLOGY

Considerable progress was made in the hydrothermal synthesis of quartz crystals, principally through research and pilot-plant studies sponsored by the United States Army Signal Corps. The Brush Development Co., Cleveland, Ohio,³ and the Bell Telephone Laboratories, Inc., Murray Hill, N. J., operated pilot plants that produced substantial quantities of synthetic quartz crystals. Various other Signal Corps cooperators, including the Edward Washken Laboratories, University of Minnesota, Antioch College, Pennsylvania State College, Washington University, and Harvard University contributed to various aspects of the fundamental science of crystal growth and

³ Hale, Danforth R., The Properties of Synthetic Quartz Crystals and Their Growing Technique: Brush Strokes, The Brush Development Co., Cleveland, Ohio, December 1952, pp. 1-6.
⁴ Unpublished papers presented at the Sixth Annual Frequency Control Review of Technical Progress, Asbury Park, N. J., May 6-8, 1952.

the properties of synthetic quartz crystals. Research in the same field was conducted in England.5

The conditions necessary for the growth of α -quartz in alkali halide solutions using fused quartz as a source material and α -quartz as

seed were described by Corwin and Swinnerton.6

Studies of the inversion-temperature range of natural and synthetic quartz indicated that variations in the range were due to the presence of impurities in solid solution. The inversion temperature is a criterion of the temperature of formation of quartz in similar chemical environments, and there may be a relationship between the inversion temperature and geologic occurrence. The darkening observed in natural and synthetic crystals on exposure to X-rays is also attributed to impurities.8

The status of synthetic-quartz-crystal developments at the end of 1952 indicated that quartz-crystal synthesis may compete commercially with natural crystal in terms of finished oscillator units. thetic crystals have a higher usability factor than natural crystals, and the uniformity of size and shape favors efficient factory produc-

tion of piezoelectric units.

Recent studies indicate that it may be possible to develop commercial processes that will operate at temperatures and pressures for which standard high-pressure steam-pipe fittings are suitable. Most prior research was done in the range of 500 to 1,000 atmospheres pressure and at temperatures up to about 850° F., conditions that require autoclaves of heavy construction and special alloys.

The quartz-crystal deposits of western Arkansas were described

by Engel, based on field work in 1942-43.

Brown, C. S., Kell, R. C., Thomas, L. A., Wooster, Nora, and Wooster, W. A., The Growth and Properties of Large Crystals of Synthetic Quartz: Mineral. Mag., vol. 29 (217), June 1952, pp. 858-874.
 Corwin, James F., and Swinnerton, A. C., Growth of Quartz in Alkali Halide Solutions: Jour. Am. Chem. Soc., vol. 73, No. 8, 1951, pp. 3598-3601.
 Keith, M. L., and Tuttle, O. F., Significance of Variation in the High-Low Inversion of Quartz: Am. Jour. Sci., Bowen vol., Pt. 1, 1952, pp. 203-252.
 Brown, C. S., and Thomas, L. A., Response of Synthetic Quartz to X-Ray Irradiation: Nature, vol. 169 (4288), 1952, pp. 35-36.
 Engel, A. E. J., Quartz-Crystal Deposits of Western Arkansas: Geol. Survey Bull. 973-E, 1952, pp. 173-260.

Salt

By Joseph C. Arundale and Flora B. Mentch 2

EARLY 20 million short tons of salt was produced in the United States in 1952, only slightly less than the record output in 1951. Large-scale production of brine in Alabama was begun to supply a new chlorine and caustic soda plant. Several new technologic developments were announced.

TABLE 1.—Salient statistics of the salt industry in the United States, 1 1943-47 (average) and 1948-52

	·					
	1943-47 (average)	1948	1949	1950	1951	1952
Sold or used by producers: Dry salt: Evaporated (manufactured) short tons	3, 303, 165	3, 207, 403	3, 284, 361	3, 329, 288	3, 654, 808	3, 641, 885
Rock saltdo	3, 475, 895					
Totaldo Value Average per ton			\$45, 956, 223	\$51, 795, 728	8, 317, 002 \$58, 425, 022 \$7. 02	\$59, 757, 322
In brine: Short tons Value Total salt:	8, 723, 238 \$6, 984, 253		8, 843, 513 \$7, 670, 015	9, 373, 254 \$8, 115, 615	11, 890, 129 \$11, 309, 978	11, 335, 798 \$11, 252, 767
Short tonsValue 2Imports for consumption:	15, 502, 298 \$45, 252, 772	16, 403, 293 \$54, 331, 782	15, 572, 215 \$53, 626, 238	16, 629, 809 \$59, 911, 343	20, 207, 131 \$69, 735, 000	19, 545, 214 \$71, 010, 089
Short tonsValue	3, 505 \$34, 164					7, 056 \$53, 059
Exports: Short tons Value Apparent consumption: 3	208, 581 \$2, 025, 743					
short tons	15, 297, 222	16, 021, 313	15, 218, 748	16 , 447, 3 01	19, 772, 346	19, 202, 299

¹ Includes Hawaii (1952) and Puerto Rico.

2 Quantity sold or used by producers, plus imports, minus exports.

DOMESTIC PRODUCTION

Production of salt in the United States in 1952 declined slightly from the record high in the previous year; this decrease consisted largely of a drop of a little more than half a million tons in the production of salt in brine and reflected the decreasing production of In January 1952 the Defense Production Administration announced an annual domestic production of 3,430,000 short tons of chlorine as a goal to be reached by 1955, an increase of about 1,230,000 tons over capacity in 1950.

Values are f. o. b. mine or refinery and do not include cost of cooperage or containers.

¹ Assistant chief, Construction and Chemical Materials Branch.
² Statistical assistant.

Michigan continued to lead the country in salt production, with New York and Ohio, respectively, in second and third place; Texas was a close fourth, followed by Louisiana. Output in most major producing States except Texas decreased slightly; in that State it increased nearly a quarter million tons. Production of all types of salt, except vacuum pan, figured in the national decrease.

The first large-scale production of salt in Alabama began in 1952, when Mathieson Chemical Corp. completed construction of a chlorine and caustic soda plant for its subsidiary, the Mathieson Alabama Chemical Corp., which will utilize brine from wells near McIntosh about 43 miles north of Mobile. Operation of these newly constructed

facilities commenced in August of 1952.

Salt has been produced in California, in the San Francisco Bay area, for nearly 100 years. Here, the Leslie Salt Co. operates the largest and most highly mechanized solar evaporation salt works in the world; it was described in some detail in an article.3

TABLE 2.—Salt sold or used by producers in the United States, 1950-52, by States

		1950			1951		1952		
State	Quant	ity		Quant	ity		Quant	ity	
State	Short tons	Percent of total	Value	Short tons	Per- cent of total	Value	Short tons	Per- cent of total	Value
California Kansas Louislana Michigan New York Ohlo Puerto Rico Texas Utah West Virginia Other States 2	868, 496 846, 374 2, 278, 811 4, 446, 667 2, 806, 927 2, 515, 205 13, 545 1, 852, 138 116, 694 367, 942 517, 010	5 14 27 17 15 (1) 11 1 2	6, 902, 502 18, 178, 765 14, 405, 362 5, 491, 553 137, 225 2, 846, 789	900, 917 2, 737, 149 5, 137, 639 3, 518, 715 3, 112, 472 10, 566 2, 401, 063 131, 444	5 14 25 17 15 (¹) 12 1	7, 662, 179 21, 221, 330 16, 552, 890 5, 848, 478 119, 338	911, 744 2, 553, 448 4, 778, 347 3, 417, 443 2, 827, 456 12, 656 2, 640, 209 136, 125 392, 519	5 13 24 17 14 (1) 14 1	7, 807, 693 21, 446, 382 16, 746, 462 5, 991, 626 122, 158
Total	16, 629, 809	100	59, 911, 343	20, 207, 131	100	69, 735, 000	19, 545, 214	100	71, 010, 089

TABLE 3.—Salt sold or used by producers in the United States, 1951-52, by method of recovery

mounds of 1000,473				
Method of recovery	1951		1952	
	Short tons	Value	Short tons	Value
Evaporated: Bulk: Open pans or grainers. Vacuum pans. Solar	450, 835 1, 912, 223 1, 007, 489 284, 261 4, 591, 597 70, 597 11, 890, 129 20, 207, 131	\$7, 860, 364 19, 287, 970 3, 750, 780 3, 936, 356 22, 801, 609 787, 943 11, 309, 978 69, 735, 000	441, 534 1, 946, 911 974, 985 278, 455 4, 499, 709 67, 822 11, 335, 798	\$8, 303, 464 26, 099, 173 3, 370, 097 3, 862, 723 23, 285, 272 836, 593 11, 252, 767 71, 010, 089

¹ Includes production in Hawaii (1952) and Puerto Rico.

Less than 0.5 percent.
 Includes Alabama (1952), Hawaii (1952), Nevada, New Mexico, Oklahoma, and Virginia.

Schrier, Elliot, Passing the Salt: Chem. Eng., vol. 59, No. 10, October 1952, pp. 139-141.

TABLE 4.—Evaporated salt sold or used by producers in the United States, 1950-52, by States

State	19	50	19	51	1952	
State	Short tons	Value	Value Short tons Value		Short tons	Value
Kansas Louisiana Michigan New York Ohio Puerto Rico Texas Other States 2	344, 751 115, 308 868, 349 487, 245 472, 966 13, 545 (1) 1, 027, 124	\$4, 066, 310 1, 119, 300 10, 736, 781 6, 375, 966 4, 274, 738 137, 225 (1) 5, 649, 977	360, 785 119, 368 818, 845 502, 216 479, 246 10, 566 87, 644 1, 276, 138	\$4, 659, 036 1, 170, 304 11, 081, 126 6, 419, 061 3, 908, 141 119, 338 1, 137, 376 6, 341, 088	358, 887 111, 713 847, 873 508, 317 461, 289 12, 676 97, 663 1, 243, 467	\$4, 775, 741 1, 134, 991 11, 260, 605 6, 674, 698 4, 189, 833 122, 158 1, 259, 164 6, 218, 217
Total	3, 329, 288	32, 360, 297	3, 654, 808	34, 835, 470	3, 641, 885	35, 635, 457

TABLE 5.—Rock salt sold by producers in the United States, 1943-47 (average) and 1948-52

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	3, 475, 895 3, 846, 846 3, 441, 341	\$13, 133, 603 16, 970, 742 16, 232, 479	1950	3, 927, 267 4, 662, 194 4, 567, 531	\$19, 435, 431 23, 589, 552 24, 121, 865

TABLE 6.—Pressed-salt blocks sold by original producers of the salt in the United States, 1943-47 (average) and 1948-52

Year	From evaporated salt		From r	ock salt	Total	
i ear	Short tons	Value	Short tons	Value	Short tons	Value
1943–47 (average)	268, 925 274, 511 268, 838 265, 835 284, 261 278, 455	\$2, 705, 364 2, 933, 694 3, 270, 664 3, 465, 935 3, 936, 356 3, 862, 723	83, 602 48, 830 62, 749 63, 081 70, 597 67, 822	\$741, 801 459, 986 602, 855 704, 600 787, 943 836, 593	352, 527 323, 341 331, 587 328, 916 354, 858 346, 277	\$3, 447, 165 3, 393, 680 3, 873, 519 4, 170, 535 4, 724, 299 4, 699, 316

CONSUMPTION AND USES

The first use of salt is lost in antiquity. Since the human body has a relatively constant requirement for salt, obviously it was first employed as a food and, since earliest times, as a food seasoning and preservative. Few, if any, mineral commodities have had such a long and varied history or have greater importance to mankind, and probably no other mineral material has such an imposing number of uses. It literally has thousands of direct and indirect applications in a wide variety of products and services.

Included with "Other States" to avoid disclosure of individual company operations.
 Includes California, Hawaii (1952), Nevada, New Mexico, Oklahoma, Texas (1950), Utah, and West Virginia.

In the United States about 70 percent of the salt output is consumed as a raw material in the manufacture of other chemicals. The largest single use is in the manufacture of soda ash, which, in turn, has a multitude of applications. Other important uses of salt by the chemical industry are in the manufacture of caustic soda, sodium metal, chlorine, bleaches, chlorates, hydrochloric acid, and other chlorine and sodium compounds. To a lesser extent it is employed in manufacturing soap, dyes, textiles, and leather. In the food industry salt is indispensable in meat packing, fish curing, dairy products, refrigeration, and livestock feeds. It is used for ice and dust control on roads, in water purification, in heat-treating metals, and in smelting and refining metals. It is of interest that "table salt," the first use that comes to mind when salt is mentioned, is responsible for less than 3 percent of consumption in the United States.

TABLE 7.—Salt sold or used by producers in the United States, 1951-52, by classes and use, in thousands of short tons

		19	51	-		19	52	
Use	Evaporated	Rock	Brine	Total	Evapo- rated	Rock	Brine	Tota.
Chlorine, bleaches, chlorates, etc Soda ash Dyes and organic chemicals. Soap (precipitant). Other chemicals. Textile processing. Hides and leather. Meat packing. Fish curing. Butter, cheese, and other dairy products Canning and preserving. Other food processing. Refrigeration. Livestock, agriculture, and general farm use 4. Highways, railroads and other dust and ice control Table and other household use. Water treatment. Metallurgy. Undistributed 5.	295 36 336	917 77 10 728 103 1399 395 14 6 6 29 10 134 321 766 104 315 81 513	3, 277 8, 303 (3) (3) (3) (4) (5) (7) (7) (8) (9)	4,709 18,303 129 13,835 3 124 3 232 747 46 69 202 231 3 192 1,05 (785 600 3 610 117 1,159	527 (1) 43 30 118 23 38 88 344 20 66 152 244 76 777 17 468 282 282 35	907 (2) 67 11 603 104 140 420 11 6 6 60 14 143 305 800 78 338 71 489	3, 817 7, 195	5, 251 127, 195 110 41 3 721 3 127 3 228 764 31 72 212 258 3 219 1, 082 106 1, 145
Total	3, 655	4, 662	11,890	20, 207	3, 642	4, 567	11, 336	19, 545

¹ Data for evaporated salt included with "Undistributed" to avoid disclosure of individual company operations.

² Data for rock salt included with "Undistributed" to avoid disclosure of individual company operations.
³ Data for salt in brine included with "Undistributed" to avoid disclosure of individual company operations.

⁴ Livestock salt is about 90 percent of the total.
⁶ Comprises miscellaneous uses and uses for which data may not be shown separately (see footnotes 1, 2, and 3); also includes some exports and consumption in 'rerritories and possession

TABLE 8.—Distribution (shipments) of evaporated and rock salt in the United States, 1951-52, by States of destination, in short tons

Destination	19	51	198	52
Destination	Evaporated	Rock	Evaporated	Rock
Alabama	16, 898	97, 996	16, 782	92, 770
Arizona	17, 846	3, 295	17, 100	6, 91
Arkansas	12, 327	74, 742	11, 880	52, 590
California	456, 083	88, 525	472, 253	64, 556
Colorado	47, 173	69, 085	48, 642	51, 889
Connecticut	14, 159	20, 836	13, 407	26, 218
Delaware District of Columbia	4,605	7, 739	4, 632	6, 26
Florida	5, 696	2, 139	5, 479	2, 65
Coordo	10, 341	35, 667	11, 252	37, 546
Georgia Idaho	23,095	48, 708	24, 102	52, 512
Illinois	18, 923	1, 315	21, 259	2, 034
Indiana	234, 814 113, 024	312, 540 84, 245	231, 910 114, 792	292, 447
Iowa	115, 298	96, 609	119, 310	80, 279
Kansas	56, 200	193, 122	56, 875	104, 324
Kentucky	31, 660	116, 450	31, 363	208, 034 104, 528
Louisiana	19, 288	130, 756	19, 020	130, 320
Maine	10, 044	72, 639	13, 989	85, 721
Maryland	41, 440	81, 871	42, 287	76, 087
Massachusetts	51, 914	94, 147	51, 801	111, 774
Michigan	123, 886	227, 740	126, 421	201, 969
Minnesota	118, 898	73, 117	119, 072	81, 540
Mississippi	9, 265	24, 954	9, 414	27, 462
Missouri	78, 831	71, 168	76, 134	76, 381
Montana	21, 779	1,024	24, 914	2, 041
Nebraska	65, 446	64, 119	65, 828	66, 315
Nevada	4,807	141, 780	6, 666	113, 736
New Hampshire	5, 344	70, 191	4, 691	86, 727
New Jersey	117, 470	150, 451	109, 072	143, 625
New Mexico New York	12, 979	30, 561	11, 944	38, 244
North Carolina	213, 213 47, 646	708, 011	196, 908	762, 237
North Dakota	11, 230	78, 621	55, 465	88, 708
Ohio	211, 230	4, 688 320, 925	11, 471	4, 366
Oklahoma	33, 347	20, 972	200, 682 32, 209	282, 421
Oregon	98, 844	470	142, 140	24, 370 288
Pennsylvania	139, 422	142, 037	137, 456	133, 414
Rhode Island	8, 360	12, 322	9, 625	12, 205
South Carolina	12, 249	19, 730	13, 807	22, 676
South Dakota	22, 744	15, 210	23, 988	16, 707
rennessee	33, 363	72, 596	36, 562	69, 895
Pexas	93, 296	241, 252	91, 824	238, 039
Utah	28, 244	2, 630	27, 812	
Vermont	5, 926	27, 644	6, 198	32, 228
Virginia	58, 766	107, 744	68, 212	82, 237
Washington	250, 943	1,040	241, 311	2,093
West Virginia	160, 815	115, 158	158, 804	105, 542
Wisconsin	136, 709	55, 169	144, 581	56, 170
Vyoming	11, 128	2, 880	11, 592	3, 198
	217, 939	225, 564	148, 947	203, 239
Total	3, 654, 808	4, 662, 194	3, 641, 885	4, 567, 531

¹ Includes shipments to Territories and possessions of the United States, exports, and some shipments to unspecified destinations.

PRICES

According to Oil, Paint and Drug Reporter, prices of salt at the beginning of 1952 were as follows: Rock salt, paper bags, carlots, works, 94 cents per 100 pounds; less than carlots, \$1.15 per 100 pounds; table salt, vacuum, common fine, bags, works, carlots, \$1.09 per 100 pounds; less than carlots, \$1.20 per 100 pounds. These prices decreased in April and for the remainder of the year were quoted as follows: Rock salt, paper bags, carlots, works, 63 cents per 100 pounds; less than carlots, \$1.09 per 100 pounds; table salt, vacuum, common fine, bags, works, carlots, 77 cents per 100 pounds; less than carlots, \$1.12½ per 100 pounds.

FOREIGN TRADE 4

Imports of salt constitute only a small fraction of United States requirements. In 1952, as in the past, the bulk of imports originated

in Canada and the West Indies.

There was a substantial decrease in exports of salt from the United States in 1952, principally because of reduction in shipments to Japan. Japan was seeking and finding sources of salt in other countries to meet its growing demand.

TABLE 9.—Salt imported for consumption in the United States, 1951-52, by countries

[U. S. Department of Commerce]

	19	51	1952		
Country	Short tons	Value	Short tons	Value	
Bahamas	18 4, 311	\$630 46, 096	3, 640 2, 466 85	\$19, 265 29, 045 840	
Jamaica	(1)	105	859 6 (1)	3, 835 59 15	
Total	4, 329	46, 831	7, 056	53, 059	

¹ Less than 1 ton.

TABLE 10.—Salt imported for consumption in the United States, 1948-52, by classes

[U.S. Department of Commerce]

	In bags, sac	eks, barrels.	100	Bulk				
Year	or other pa tial	ckages (du-	Dut	iable	Free (used in curing fish)			
1 · · · · · · · · · · · · · · · · · · ·	Short tons	Value	Short tons	Value	Short tons	Value		
1948 1949	1, 591 2, 851	\$20, 971 40, 308	3, 262 3, 458 4, 474	\$17, 033 20, 297 15, 252	768	\$2,744		
1950 1951 1952	3, 395 2, 991 2, 488	43, 567 37, 245 29, 538	1, 338 4, 568	9, 586 23, 521				

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 11.—Salt exported from the United States, 1951-52, by countries

[U.S. Department of Commerce]

Gt	19	951	. 19	952
Country	Short tons	Value	Short tons	Value
North America:				
Bermuda	8	\$746	19	\$1,544
Canada	197, 784	1, 541, 973	208, 668	1, 840, 879
Central America:		' '	,	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Canal Zone	894	38, 282	781	30, 439
Costa Rica	153	4,749	195	4, 438
Guatemala	207	6, 539	1,774	40, 334
Honduras	304	12,093	439	12, 451
Nicaragua	348	9, 327	343	9, 192
Panama	3,073	100, 875	167	4, 733
Mexico	6, 867	159, 436	6,067	173,001
British:				
Jamaica	5	. 160	9	944
Other British	6	623	2	344 834
Cuba	9, 899	203, 844	8, 764	213, 752
Dominican Republic	154	12, 558	175	14, 367
Haiti	12	862	15	1, 319
Netherlands Antilles	318	18, 963	400	23, 511
Other North America	219	12, 290	115	3, 329
South America:		, 200	-10	0,020
Argentina	11	1,824	2	385
Brazil	3	1, 181		
Ecuador	110	3, 483	10	1, 239
Uruguay	(1)	138	(1) (1)	414
Venezuela	2	1, 322	(1)	320
Other South America	11	2, 029	23	2, 245
Europe:				
France United Kingdom	1	688		
Other Europe	(1)	427	3	
Asia:	12	2,040	ð	1, 404
Japan	205, 291	1, 237, 711	82, 108	522, 865
Korea	10, 008	34, 028	35, 683	476, 447
Philippines	2, 858	65, 404	3, 872	51. 476
Saudi Arabia	79	4, 614	144	9, 020
Other Asia	20	3, 793	25	2,074
Africa:		,		_, _,
Belgian Congo	(1)	138		
Liberia	24	1, 598	1	133
Other Africa	16	1,030	20	2, 151
Oceania:		2 21.		
French Pacific Islands	194	7, 360	113	4,750
New Zealand Western Pacific Islands	223	9, 776	11	360
western Pacine Islands			23	8, 613
Total	439, 114	2 501 004	240 077	9 450 000
1 Uval	409, 114	3, 501, 904	349, 971	3, 458, 363

¹ Less than 1 ton.

TABLE 12.—Salt shipped to noncontiguous Territories of the United States, 1950-52

[U. S. Department of Commerce]

Territory	1950		19	51	1952	
Territory	Short tons	Value	Short tons	Value	Short tons	Value
American Samoa	1 103 9,822 39	\$127 5, 740 640, 277 3, 766	3 147 7, 108 40	\$120 9, 001 458, 207 4, 177	7 92 8,378 69	\$1, 822 6, 678 555, 474 6, 645
Total	9, 965	649, 910	7, 298	471, 505	8, 546	560, 619

861 SALT

TECHNOLOGY

It was reported that small-package salt-refining plants designed and built by Manistee Iron Works Co., Manistee, Mich., were installed

in Brazil and Venezuela early in 1952.5

The new units feature a diesel-powered recompression and vaporphase heat recovery, a single-effect evaporator that operates at atmospheric pressure, and a stack-type drier that eliminates the need for the usual cooling equipment. Although the units installed in South America were designed to operate at a capacity of 24 tons of refined salt a day, it is said that similar plants can be built that will permit economical operation at a capacity as low as 10 tons of refined salt daily.

In an article that describes a new salt-refining process developed by the International Salt Co., Inc., several disadvantages of present refining methods, such as high costs for steam, scaling of tubular heating surfaces, and production-control problems, were reported overcome by design innovations in the new process. Flowsheets

and a step-by-step description of the process are included.6

A patent assigned to the Morton Salt Co. describes a method of utilizing vapor recompression and integrating the vacuum-pan and grainer-pan processes of refining salt to achieve savings in steam costs.7

A method of producing noncaking sea salt which retains most of the trace elements present in sea water was the subject of a patent

assigned to the Dow Chemical Co.8

Shell Oil Co. was said to have obtained virtually 100-percent core recovery in diamond-drilling salt beds in Oklahoma. This performance was obtained by using a saturated salt solution in the drilling mud, rotating the rotary table at slow speeds, and holding weight on the bit at a minimum. Approximately 100 pounds of salt was added per barrel of mud to obtain a saturated solution. pounds of starch per barrel and 10 pounds of salt-water clay were added to achieve proper mud properties. The advantages of this combination of drilling techniques are: Improved geologic evaluations of salt section and elimination of hole enlargement by preventing the solvent action normally caused by fresh-water mud in salt bearing formations.9

⁸ Chemical Engineering, A Radical Tack in Salt Making: Vol. 59, No. 1, January 1952, pp. 230, 232, 234.

⁶ Richards, R. B., New Salt Process Omits Usual Problems: Chem. Eng., vol. 59, No. 3, March 1952, pp. 140, 141, 143.

⁷ Farnsworth, William H. (assigned to Morton Salt Co.), Brine Evaporation System: U. S. Patent 2,588,099, Mar. 4, 1952.

⁸ Evans, C. W. (assigned to Dow Chemical Co.), Noncaking Sea Salt and Method of Producing the Same: U. S. Patent 2,606,839, Aug. 12, 1952.

⁸ Kornfeld, Joseph A., 100-Percent Recoveries in Diamond-Coring Salt: Oil and Gas Jour., vol. 50, No. 43, Mar. 3, 1962, pp. 81, 82.

Preliminary research was reported underway at the University of California Medical Center on fluorine-containing salt as an alternative to fluorination of water for preventing dental caries. The researcher stated that one advantage would be in giving the individual a free choice in the use of fluorine. A second advantage involves small groups who drink excessive quantities of water, such as persons afflicted with certain diseases and individuals who work in hot, dry environments, such as steel mills and other factories. Fluorinated salt also could be made available to rural populations that do not have access to community water supplies.

RESERVES

Over 200 salt domes are known to be present in the Gulf Coast area; a map was published showing their location. The known domes were listed, and in many instances the depth to the cap and depth to the salt was recorded.¹¹

A "photogeologic" procedure used in prospecting for salt domes in

the Gulf Coastal Plain was described. 12

As revealed in aerial photographs, the pattern formed by surface faults or fracture lines is said to bear a definite relationship to deep-seated salt domes. Disturbance centers that may be underlain at depth with salt domes are said to exhibit surface expressions that show as sharply curving concentric lines and prominent transverse lines, usually radiating from some marginal point rather than from the center of the structure.

WORLD REVIEW

Angola.—Official authorization was requested to install a salt

refinery at Lobito.13

Canary Islands.—Salt is produced in the Canary Islands by the firm of Rocar, S. L., Diego des Ordas 5, Las Palmas. Production is almost entirely from the island of Lanzarote, and annual output is about 60,000 metric tons.¹⁴

Science News Letter, Fluoridated Salt Next: Vol. 61, No. 17, Apr. 26, 1952, p. 261.
 Oil and Gas Journal, Where Are Those Gulf Coast Salt Domes?: Vol. 51, No. 14, Aug. 11, 1952, pp. 130, 33. 134.

<sup>13, 134.

12</sup> Desjardins, Louis, Aerial Photos of Multiple Surface Faults May Locate Deep-Seated Salt Domes:
Oil and Gas Jour., vol. 51, No. 13, Aug. 4, 1952, pp. 82-84.

13 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 2, August 1952, p. 38.

14 Bureau of Mines, Mineral Trade Notes: Vol. 37, No. 1, July 1953, p. 59.

TABLE 13.—World production of salt, 1948–52, by countries, in metric tons ² [Compiled by Helen L. Hunt]

Country 1	1948	1949	1950	1951	1952
North America:					
Canada	668, 284	681, 278 8, 200	779, 132	874, 120	882, 874
Costa Rica	6, 500	8, 200	8,400	5, 455 12, 061	2, 268 11, 974
Guatemala	11, 474 1, 089	11, 962 11, 503	8, 400 11, 502 4, 397	4, 650	1 4 200
Honduras Mexico	³ 156, 685	(4)	(4)	(1)	l (*)
Nicaragua Panama	3 156, 685 3 9, 475 3, 374	⁽⁴⁾ 3 10, 230	(4) 11, 172	12, 289	i 313.031
Panama	3, 374	3,408	5,000 3 16,000	7, 480 3 27, 200	³ 11, 500 ³ 18, 000
Salvador United States:	21, 213	³ 16, 000	. 10,000	• 21, 200	0 10,000
Rock salt	3, 489, 782	3, 124, 637	3, 562, 738	4, 229, 449	4, 143, 573
Rock salt Other salt	3, 489, 782 11, 390, 957	3, 124, 637 11, 002, 165	3, 562, 738 11, 523, 492	14, 102, 056	13, 587, 454
West Indies:				•	
British:	63 000	60 060	60 960	51,800	81, 300
Bahamas Turks and Caicos Islands	63, 000 38, 610 55, 339	60, 960 61, 765 59, 874	60, 960 60, 960 59, 266	01,000	
Cuba	55, 339	59, 874	59, 266	8 63, 500	³ 56, 250
Dominican Republic:	1		ľ	0.050	0.000
Rock salt Other salt	2, 365 13, 079	2,412	2, 304 13, 740	2, 270 8, 092	2,603
Utner sait	3 8, 000	8, 140 3 8, 000	(4)	(4)	2, 603 16, 746 30, 400
HaitiNetherlands Antilles	482	370	3,000	(4)	(4)
South America:					
Brazil	781, 333	805, 632	794, 181	1, 244, 444	(4)
Chile:	47, 164	35, 079	46, 709	48, 927	(4)
Rock saltOther salt	30,800	4, 450	942	348	(4)
Colombia		1			ł
Rock saltOther salt Ecuador	99, 705 24, 647 25, 110	102, 160 23, 932 16, 833	106, 918 35, 045	110, 085 28, 066	167, 628 38, 201
Other salt	24, 647	23, 932	35, 045 34, 902	28, 066 32, 756	36, 800
Perm	63, 049	1 55, 968	66, 501	68, 494	79, 613
PeruVenezuela	35, 533	71, 926	56, 439	68, 494 38, 920	116, 050
Europe:		•	1		
Austria:	1 750	719	1, 085	692	1, 144
Rock saltOther salt	1, 752 278, 492	304, 792	327, 426	362, 294	334, 076
Bulgaria	\$ 120,000	(4)	(4)	(4)	(4)
France:					
Rock salt and salt from springs	2, 489, 036	1, 772, 067	2, 059, 123	2, 327, 581	} (*)
Other salt	446, 539 2, 035, 694	742, 721 1, 800, 000	604, 550 2, 470, 000	2, 757, 785	2, 576, 004
Germany, West	52, 208	86, 776	102, 329	343, 900 2, 757, 785 82, 434	87, 525
Italy:				1	F40 F00
Rock salt and brine salt Other salt	727, 083 464, 456	804, 435 576, 535	746, 153 651, 935	746, 321 965, 652	749, 526 649, 457
3/0140	1,869	1,807	1.827	3, 841	1, 523
Netherlands Poland	250, 417 725, 774	331,000	412, 570 3 1, 000, 000	481, 125	414,000
Poland	725, 774	836, 253	3 1,000,000	(4)	(4)
Portugal:	49	41	42	39	45
Rock saltOther salt 5	10,660	16, 903	30, 765	29, 374	22, 953
Spain:	-			l -	
Rock salt	292, 881 696, 600 112, 218	288, 896	308, 228	367, 809	375, 257
Other salt	696,600	546, 886 3 100, 000	901, 575 94, 000	893, 297 114, 000	665, 001 (4)
Switzerland United Kingdom:	112,218	100,000	94,000	114,000	(-)
Great Britain:	1				
	41,000	41,658	41,658	54, 867	} (4)
Other salt	3, 794, 000	3, 741, 000	4, 223, 814	4, 654, 525 13, 251 95, 646	10, 808
Northern Ireland	13,000 102,300	13,000 \$ 108,900	13, 000 131, 000	05 646	148, 378
Asia:	1	100,000	101,000	00,010	
1 Adon	275, 408 45, 564	308, 302	259, 972	309, 186	292, 355
	45, 564	31, 692 28, 780	21, 457 66, 093	64, 285	(4)
Burma Ceylon China ³ Cyprus India:	78,300	28,780	2 000 000	64, 285 36, 990 3, 000, 000 11, 198	49, 215 3, 500, 000
Cunna	2, 480, 000	2,000,000	3, 000, 000 4, 133	11, 198	5, 500, 000
India:			ł		
Rock salt	4, 123	4, 229	5, 130	5, 519	2, 868, 472
Other salt	2, 296, 759	2, 017, 831	2, 609, 029	2,889,377	
Indochina.	64,000	113,600	75,722	480 500	8 144, 000 323, 000
Indonesia	360,000	2, 017, 831 113, 600 320, 000 3 100, 000	5, 130 2, 609, 029 75, 722 375, 000 3 100, 000	5, 519 2, 889, 377 93, 908 480, 592 76, 252	323, 000 3 200, 000
Tran	(4) 14,000	1 8,989	11.801	10,000	l (4)
Israel	8, 200	6,500	8,000	9, 850	12, 534
Rock salt Other salt Indochina Indonesia Iran Iraq Israel Japan Jordan	339, 668	395, 676	418, 144	430, 405 2, 712	12, 534 433, 200 7, 377
Jordan	(4)	(4)	(4)	2,712	1,377

See footnotes at end of table.

TABLE 13.—World production of salt, 1948-52, by countries, in metric tons 2— Continued

[Compiled by Helen L. Hunt]

Country 1	1948	1949	1950	1951	1952
Asia—Continued					
	89, 979	188, 812	³ 175, 000	84, 556	909 00#
Korea, Republic of	69, 919		6, 500	7,000	203, 865
Lebanon 3Pakistan: Rock salt 6	5,000	2,500			(4) (4)
Pakistan: Rock sait	213, 162	175, 098	147, 059	140, 297	
Philippines, Republic of the	(4)	52, 276	56, 283	52, 280	16, 770
Portuguese India	\$ 10,719	18, 132	17, 608	31, 577	21, 380
Syria Taiwan (Formosa)	20, 321	21, 619	12,000	7, 000	³ 23, 000
Taiwan (Formosa)	365, 803	253, 948	175, 063	274, 766	311, 711
Thailand (Siam) 3	200,000	150, 000	200,000	250, 000	250,000
Turkey:					
Rock salt	28, 187	17, 920	20, 330	21, 584	34,000
Other salt	238, 755	298, 425	284, 912	249, 970	302,000
Africa:		i			
Algeria Anglo-Egyptian Sudan	73,038	101, 676	75, 656	97, 281	82, 343
Anglo-Egyptian Sudan	36, 238	43, 029	40, 754	46, 215	53, 311
Angola	53, 423	41, 286	40, 473	49, 228	57, 510
Belgian Congo	3 1,000	813	550	583	600
Canary Islands	13, 209	5, 283	6,072	15, 729	(4)
Cape Verde Islands	13, 632	19, 301	19, 769	24, 106	18,090
Egypt	126, 438	349, 878	539, 016	687, 038	498, 393
Eritrea	60, 963	85, 760	53, 922	³ 60, 000	(4)
Ethiopia: Rock salt 3	10,000	10,000	10,000	10,000	10,000
French Equatorial Africa 3	10,000	1,800	3,600	3, 900	4, 300
French Morocco:		1,000	3,000	3, 500	4, 000
Rock salt	10, 772	h .			
		34, 100	60,000	45, 971	40,000
Other salt	24, 287				
French Somaliland	60, 000	60,000	80,000	55, 200	64, 400
French West Africa 3 Italian Somaliland 3	50,000	50,000	66,000	66,000	(4)
Italian Somaliland 4	(4)	3,000	1,500	2,000	5,000
Kenya	16, 813	18, 820	18, 722	19,084	17,019
Libya:					
Cyrenaica	140	3 500		³ 2, 500	
Tripolitania	6,000	³ 6, 000	9,000	12,000	12,000
Mauritius		5, 200	2,606	3, 400	(4) (4)
Mozambique	10, 100	11,004	9, 942	3 8, 700	(4)
South-West Africa:	1	1			
Rock salt	4, 436	2, 468	3, 915	4,706	6, 887
Other salt	10, 414	13, 730	12, 903	39, 880	33, 258
Spanish Morocco 3	254	254	254	254	(4)
Tanganyika	11, 581	14, 970	12, 473	15, 858	`19, 255
Tunisia	105, 244	98, 085	98, 771	146, 507	93, 500
Uganda	7, 011	7, 400	7, 413	7, 869	4, 108
Union of South Africa	3 172, 000	7 162, 936	106, 396	149, 795	140, 574
Australia	264, 173	3 248, 932	269, 253	3 304, 815	3 228, 611
	201, 110	210, 002	200, 200	502,010	220, 011
Total (estimate) 1	44,000,000	43, 000, 000	48, 000, 000	54, 000, 000	54, 000, 000
TOM (COMMON)	**,000,000	10,000,000	20,000,000	02,000,000	J=, 000, 000

¹ In addition to the countries listed, salt is produced in Afghanistan, Albania, Argentina, Bolivia, Czechoslovakia, Gold Coast, Hungary, Leeward Islands, Madagascar, Nigerla, Rumania, and U. S. S. R., but figures of production are not available. Russian production is known to exceed 5,000,000 metric tons annually. Estimates by author of chapter included in total.

² This table incorporates a number of revisions of data published in previous Salt chapters.

³ Estimates

Year ended Mar. 31 of year following that stated.
 Year ended June 30 of year stated.

Dominican Republic.—Additional funds were provided during the year for purchasing modern equipment in the mechanization of the salt and gypsum operations taken over by the Government Agricultural and Industrial Credit Bank in 1950. The rock-salt deposits are about 25 miles west of the port of Barahona and lie in a range of hills about 7 miles long. The engineer in charge reportedly has estimated that 250 million metric tons of salt are readily accessible in the area. A new wharf was completed at the port of Barahona. According to the engineer in charge, production will be at the annual rate of 1 million metric tons of rock salt when all installations are completed. The salt, as mined, is said to be very pure and suitable

⁴ Data not available; estimate by author of chapter included in total.

865 SALT

for export after crushing. It is reported that a market for Dominican rock salt has been found in Japan.15

By the end of the year, most of the construction work and the installation of machinery were completed but not yet in operation,

pending completion of a power plant.16

India.—According to a news item appearing in the Delhi Hindustan Standard, August 10, 1952, West Bengal Government invited French experts to join in establishing a salt plant at Contai in the Midnapur It was reported that the plant would cover 8,900 acres near the seacoast and would have a target production of about 200,000 tons of salt annually.17

Kuwait.—It was reported that the first unit of a 28-million-dollar salt-water distillation plant began operation in Kuwait on the Persian Gulf. This first unit is said to be producing a million gallons of water daily. Eventually it will distill over 5 million gallons daily.¹⁸

Mexico.—Compania Internacional de Industria Salinera, S. A., was organized in 1952 for the announced purpose of harvesting sea salt in the lagoon area east of the port of Salina Cruz. The company hoped to go into production in 1953 with an initial annual output of The new company was organized in April 1952 300,000 metric tons. and obtained an area of about 8,000 hectares along the coast. lease covers all of the Laguna Tileme, as well as an area of dry land at the western end of the lagoon. Salt will be loaded at the port of Salina Cruz, where the company has leased a warehouse. was said to be purchasing a conveyor with a daily capacity of 10,000 The harvesting season begins in October and continues until the following May, when the rainy season starts. The company did not have any firm contracts for the sale of the salt but expected to sell in foreign markets. It was stated that annual output could be increased to about 2 million tons.19

Netherlands.—The Royal Dutch Petroleum Co. and the Standard Oil Co. of the United States have discovered a rock-salt deposit near the town of Winschoten in the Province of Groningen. The find is considered of economic importance because of the relatively shallow

depth—about 350 meters.20

Philippine Republic.—On October 30, 1952, it was announced in the press that the President of the Republic had approved a proposal made by the Philippine Salt Development Syndicate for large-scale production of salt with Japanese financial and technical assistance. Japanese assistance was given with the understanding that no Philippine export restrictions be placed on salt.21

Spain.—Almost every Province in Spain produces rock salt, sea salt, or both; there are about 165 marine-salt works and 130 rock-salt mines, but only about a fifth of the latter are operating. The largest output of rock salt is in the Province of Santander. The Province of Cadiz has the largest number of sea-salt works—49 plants—whereas Alicante, with only 6 plants, has the largest output of sea salt.

¹⁸ Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 6, June 1952, pp. 48-50.
19 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 1, January 1953, pp. 40-41.
17 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, p. 42.
18 Chemical Engineering News, vol. 31, No. 19, May 11, 1953, p. 2001.
19 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 3, March 1953, pp. 42-44.
20 Mining World, vol. 14, No. 9, August 1952, p. 73.
21 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 6, December 1952, p. 35.

salt production in Spain is about one-fourth rock salt and three-fourths marine salt. A statistical survey of the salt industry in Spain, with a history of some of the operations, was published.²²
Sweden.—The Swedish Geological Survey Office announced plans

for further drilling in the area near Trelleborg, where several years ago salt brine was found during drilling for oil.23

Taiwan (Formosa).—A report entitled "Survey of Taiwan Salt Production and Distribution," prepared by the Mutual Security Agency Mission and dated January 18, 1952, reviewed the salt industry of Taiwan in some detail. The Taiwan Salt Works was the sole producer. This organization is a part of the National Resources Commission, Ministry of Economic Affairs. Its functions include production, storage, selling, and general administration of the salt industry. The Taiwan Salt Administration, Ministry of Finance, supervises transportation and tax collection. The Taiwan Food Bureau, Taiwan Provincial Government, allocates and distributes the salt. The Central Trust of China handles exportation of the salt.24

Tunisia.—In October 1952 it was announced that the Tunisia Internal Monopoly, established in 1884, had been abolished and henceforth the sale of Tunisian salt would be unrestricted. Imported salt.

however, is subject to a 60-percent custom duty.²⁵

Turkey.—Some rock salt was produced in Turkey, but most of the salt output is from sea water. This solar salt was recovered at Camalti near Izmir. A law of February 15, 1952, which became effective 3 months later, provided that private enterprise might open new facilities for salt production or take over production facilities that are relinquished by the monopolies, on condition that the salt produced be exported. The domestic use or sale of such salt was not permitted. The new law modified the power of the monopolies to set salt export prices by restricting it to that salt sold abroad by the monopolies. This meant that a private producer might sell for export at his own price.26

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 3, March 1952, pp. 40–48.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 6, December 1952, p. 35.
Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 6, June 1952, pp. 51–57.
Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 2, February 1983, p. 58.
Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 1, January 1953, pp. 41–42.</sup>

Sand and Gravel

By L. M. Otis 1 and Nan C. Jensen 2

N ALLTIME high was established in 1952 for sand and gravel production in the United States. Each year since 1949 has seen an increase in the total from the previous year. The value of the 1952 production also set a new high record.

In individual categories, increases and decreases showed a mixed trend compared with 1951. Exceptions were a consistent increase in sand and gravel used for paving and a substantial decrease in most

industrial uses for sand.

Although a 3-percent increase was reported in the use of commercial sand for building purposes, Government-and-contractor operations, as distinguished from commercial production, showed a decline for building use.

The output of all sand in 1952 was 36 percent and that of all gravel 64 percent of the combined domestic production of these commodities

compared with 37 and 63 percent, respectively, in 1951.

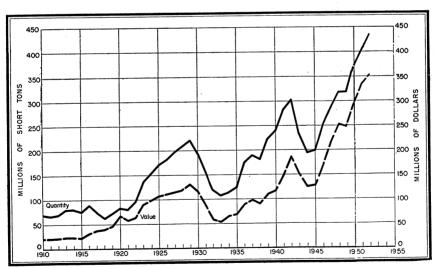


FIGURE 1.—Production of sand and gravel in the United States, 1910-52.

1 Commodity specialist.
2 Statistical assistant.

Statistical assistant.
Production by, or solely for, States, counties, municipalities, or the Federal Government.

TABLE 1.—Sand and gravel sold or used by producers in the United States,¹
1951-52, by class of operations and uses

		1951		7	1952		of cl	cent lange l—
	Chort	Value		Chout	Value)		Av-
	Short	Total	Av- erage	Short tons	Total	Av- erage	Ton- nage	erage value
COMMERCIAL OPERATIONS								
Sand: Glass Molding Building Paving Grinding and polishing ² Fire or furnace Engine Filter Railroad ballast ³ Other ⁴	5, 515, 588 9, 107, 003 71, 503, 981 40, 789, 625 1, 476, 912 471, 540 2, 208, 903 202, 739 1, 087, 682 2, 793, 226	16, 823, 440 62, 168, 319 34, 531, 591 3, 111, 649 791, 682 2, 339, 753 484, 724 604, 841 3, 102, 669	\$2. 61 1. 85 . 87 . 85 2. 11 1. 68 1. 06 2. 39 . 56 1. 11	1, 229, 794 413, 789 1, 900, 621 288, 207 828, 750 4, 037, 053		\$2. 66 1. 97 . 86 . 84 2. 37 1. 98 1. 02 2. 10 . 49 1. 01	-9 +3 +7 -17 -12 -14 +42 -24 +45	-1 -1 +12 +18 -4 -12 -12 -9
Total commercial sand	135, 157, 186	138, 371, 007	1.02	139, 506, 090	141, 341, 830	1.01	+3	1
Gravel: Building Paving Railroad ballast 6 Other 6	62, 550, 990 72, 335, 348 11, 362, 531 4, 413, 449	65, 944, 983 7, 032, 599	1. 05 . 91 . 62 . 72	64, 263, 744 81, 652, 021 10, 669, 141 5, 637, 498	68, 212, 707 74, 166, 945 6, 487, 822 4, 930, 002	1.06 .91 .61 .87	+3 +13 -6 +28	+1 -2 +21
Total commercial gravel	150, 662, 318	141, 806, 348	. 94	162, 222, 404	153, 797, 476	. 95	+8	+1
Total commercial sand and gravel	285, 819, 504	280, 177, 355	. 98	301, 728, 494	295, 139, 306	. 98	+6	
GOVERNMENT-AND-CONTRAC- TOR OPERATIONS ⁷								
Sand: Building Paving	8 1, 869, 483 8 12, 563, 827	8 2, 001, 392 8 4, 775, 708	⁸ 1. 07	1, 183, 968 15, 402, 448	1, 140, 413 6, 229, 943	. 96 . 40	-37 +23	-10 +5
Total Government- and-contractor sand	⁸ 14, 433, 310	8 6, 777, 100	8.47	16, 586, 416	7, 370, 356	. 44	+15	6
Gravel: Building Paving	7, 664, 694 8 92, 716, 945	6, 905, 832 8 39, 854, 062	. 90 . 43	3, 561, 751 113, 634, 572	2, 857, 283 48, 017, 270	.80 .42	-54 +23	-11 -2
Total Government- and-contractor gravel	⁸ 100,381, 639	8 46, 759, 894	. 47	117, 196, 323	50, 874, 553	. 43	+17	-9
Total Government- and-contractor sand and gravel	⁸ 114,814, 949	⁸ 53, 536, 994	8 . 47	133, 782, 739	58, 244, 909	. 44	+17	-6
ALL OPERATIONS					-			
SandGravel	8 149,590, 496 8 251,043, 957	⁸ 145,148, 107 ⁸ 188,566, 242	. 97 . 75	156, 092, 506 279, 418, 727	148, 712, 186 204, 672, 029	. 95 . 73	+4 +11	$-2 \\ -3$
Grand total	8 400,634, 453	8 333,714, 349	. 83	435, 511, 233	353, 384, 215	.81	+9	

8 Revised figure.

¹ Includes Alaska, Hawaii, and Puerto Rico.
2 Includes blast sand as follows—1951: 549,955 tons valued at \$1,875,775: 1952: 557,305 tons, \$2,016,747.
3 Includes ballast sand produced by railroads for their own use as follows—1951: 140,111 tons valued at \$17,745; 1952: 204,358 tons, \$41,848.
4 Includes some sand used by railroads for fills and similar purposes as follows—1951: 263,997 tons valued at \$78,686: 1952: 208,591 tons, \$64,199.
5 Includes ballast gravel produced by railroads for their own use as follows—1951: 4,100,872 tons valued at \$1,709,860; 1952: 4,867,003 tons, \$2,214,808.
6 Includes some gravel used by railroads for fills and similar purposes as follows—1951: 904,402 tons valued at \$244,119; 1952: 1,623,165 tons, \$794,405.
7 Approximate figures for States, counties, municipalities, and other Government agencies directly or under lease.
8 Revised figure.

DOMESTIC PRODUCTION

Production of sand and gravel reached an alltime high in 1952 for the third successive year. The output of 435,511,200 tons valued at \$353,384,200 was 9 percent higher in quantity and 6 percent in value than in 1951. This condition reflects the sustained activity in highway and building construction.

California was the leading producer in 1952, followed by Michigan, Wisconsin, Ohio, New York, Minnesota, Illinois, and Texas, in the order named. These 8 States, each producing over 18 million tons,

supplied 47 percent of total production.

Tables 3 and 4 show details of production by States and uses in 1952.

TABLE 2.—Sand and gravel sold or used by producers in the United States, 1 1943-47 (average) and 1948-52

	Sa	nd	Gravel (i railroad	ncluding ballast)	Total		
Year	Quantity	Value	Quantity	Value	Quantity	Value	
	(thousand	(thousand	(thousand	(thousand	(thousand	(thousand	
	short tons	dollars)	short tons)	dollars)	short tons)	dollars)	
1943–47 (average)	85, 583	68, 060	147, 649	90, 949	233, 232	159, 009	
	118, 661	107, 915	200, 605	144, 583	319, 266	252, 498	
	117, 036	105, 489	202, 068	142, 954	319, 104	248, 443	
	138, 900	126, 311	231, 555	168, 729	370, 455	295, 040	
	2 149, 590	2 145, 148	251, 044	2 188, 566	2400, 634	2333, 714	
	156, 092	148, 712	279, 419	204, 672	435, 511	353, 384	

Includes Alaska, Hawaii, and Puerto Rico.
 Revised figure.

TABLE 3.—Sand and gravel sold or used by producers in the United States in 1952, by States

State	Short tons	Value	State	Short tons	Value
Alabama Alaska Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska	10, 781, 926 1, 824, 330 5, 011, 1995 53, 051, 260 8, 461, 039 2, 581, 247 515, 399 4, 154, 613 2, 133, 972 1, 1069 3, 925, 863 19, 584, 308 11, 546, 014 10, 796, 979 8, 380, 065 3, 334, 261 6, 005, 110 7, 078, 078 6, 956, 640 7, 645, 728 29, 193, 763 19, 825, 157 2, 296, 577 2, 296, 577 6, 790, 427 6, 790, 427 6, 796, 955	\$2, 955, 630 \$, 650, 582 1, 635, 903 4, 977, 213 43, 633, 125 6, 268, 367 1, 933, 214 3, 348, 077 2, 029, 367 936 2, 745, 201 19, 214, 195 9, 279, 908 6, 032, 888 5, 023, 593 2, 656, 053 6, 736, 524 2, 187, 531 8, 136, 697 6, 128, 744 22, 400, 879 6, 808, 763 1, 833, 306 6, 122, 195 3, 579, 982 3, 874, 106	Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Carolina South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Washington West Virginia Wyoming Total	7, 060, 074 496, 921 20, 270, 088 8, 724, 748 6, 557, 069 20, 751, 493 3, 769, 663 12, 219, 486 122, 730 589, 451 1, 048, 099 5, 846, 140 5, 173, 401 18, 661, 403 3, 260, 044 1, 264, 490 7, 136, 112 13, 322, 279 4, 120, 152 24, 895, 947	\$2, 380, 419 1, 001, 591 9, 473, 428 499, 582 18, 227, 623 5, 665, 169 1, 841, 216 23, 069, 458 2, 911, 845 8, 556, 218 19, 920, 003 164, 164, 164 557, 396 892, 312 2, 478, 314 5, 303, 321 17, 275, 255 2, 350, 412 749, 335 5, 556, 953 9, 422, 117 7, 275, 370 16, 938, 228 1, 738, 548

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1952, by States, uses, and class of operations

[Commercial unless otherwise indicated]

				Sa	nd			
						Buile	ling	
State	G	lass	Mo	olding	Com	mercial		nent-and- actor
	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value
AlabamaAlaska			46, 160	\$89, 389	781, 899 156, 749	\$605, 387 428, 231	738	\$500 (1)
Arizona					305, 259	339, 960	5, 690	1,837
Arkansas California Colorado	(1)	(1)	(1) 61, 209	(1)	669, 973	383, 742		1,00
California	315, 614	\$1, 226, 622	61, 209	208, 140	12, 195, 416	10, 443, 281	235, 601	89, 910
Connectiont			-		669, 489	635, 019		
Connecticut Delaware	1	1			7 741	592, 248 7, 741		
Florida Georgia Hawaii			600	2, 400	739, 958 7, 741 1, 955, 051	1, 556, 331		
Georgia	(1)	(1)	(1)	2, 400 (1)	994, 498	717, 529		
Hawaii			.					
Idaho Illinois Indiana Iowa	1 007 684	2 428 204	1 266 694	2, 912, 595	278, 904 4, 389, 300	342, 545 3, 261, 431	8, 616	1, 369
Indiana	1,001,004	2, 120, 301	480, 378	663, 568	1, 531, 819	1, 148, 778		
Iowa			(1)	(1)	1, 562, 413	1, 274, 391		
Kansas Kentucky Louisiana			. (1)	(1)	2, 839, 273	1, 996, 781	6, 465	442
Kentucky			(1)	(1)	825, 110	756, 761	15,000	15,000
Louisiana Maina			(1)	(1)	1, 095, 670 37, 632	908, 984 17, 872		
Maine Maryland Massachusetts	(1)	(1)			1 542 470	1,714,224	(1)	(1)
Massachusetts		(1)	(1)	(1)	1, 542, 470 1, 798, 278	1, 334, 299	66, 281	159, 867
Michigan] (1)	(1) (1)	1, 932, 845	1,877,446	3, 297, 285	2, 575, 620	l	
Minnesota	(1)	(1)	(1)	(1)	1, 938, 027	1, 469, 960	595	255
Mississippi Missouri	447, 309	979, 438			378, 034	258, 837		
Montana	447, 309	979, 438	68, 950	134, 784	2, 019, 525 130, 828	1, 430, 015 203, 316		6, 939
Nebraska		1, 300	10, 796	11, 485	763 404	575 479	4, 534 892	331
Nevada		1, 300 (¹)	72, 444	156, 958	117, 205 96, 241 1, 663, 132	227, 797 81, 837 1, 431, 268 155, 744	1, 366	4,005
New Hampshire				l	96, 241	81, 837		
New Jersey New Mexico	426, 498	774, 026	1, 463, 832	3, 491, 675	1, 663, 132	1, 431, 268		
New Mexico New York			271 002	1 054 750	152, 347 5, 599, 746	155, 744	750	1, 929
North Carolina			371,063	1,054,758	580, 500	5, 165, 548 364, 253	59, 582 17, 325	10, 772 8, 662
North Dakota	l				145, 048	146, 971	94	57
Ohio Oklahoma	(1)	(1)	744, 356	2, 094, 427	4, 376, 602	4, 364, 410	7, 372	4, 270
Oklahoma	210, 568	478, 239	(i)	(1)	1, 180, 446	910, 522		
Oregon Pennsylvania	(1)	(1)	(1) 362, 294	(1) 862, 247	812, 719	816, 817	46, 498	72, 638
Puerto Rico	14, 573	36, 433	302, 294	862, 247	4, 270, 064	5,021,197	3, 186	3, 444
Rhode Island	11,010	00, 100	(1)	(1)	151 741	120 002	0, 100	3, 444
South Carolina					151, 741 858, 066	120, 002 736, 450		
South Dakota					315, 915	265, 679	140, 150	50, 147
Tennessee	(1) (1)	(1) (1)	256, 722	725, 584	1,083,696	1, 296, 831		
Texas Utah	()	(+)	4, 736	7,724	3, 784, 154	2, 911, 363	714	1,665
Vermont	1		340	340	360, 568 36, 884	267, 026 28, 707		
Virginia Washington West Virginia	(1)	(1) (1)	17, 649	13, 241	1, 171, 018	948, 620	45, 299	15, 210
Washington	(1)	(1)	(1) (1)	(1)	1, 252, 613	999, 003	212, 350	188, 500
West Virginia	1,060,369	3, 102, 404	1 (2)	(1)	418, 239	620, 943		
W ISCOUSIU	I		(1)	(1)	2, 276, 143 53, 416	1,759,848 50,946	78, 518	48, 409
Wyoming Undistributed 1	1 653 805	4, 891, 405	992, 109	1, 945, 672	53, 416	50, 946		
ongishinged	1, 000, 000	1,091,400	992, 109	1, 945, 672			226, 352	454, 255
Total	5, 227, 927	13, 918, 171	8, 253, 167	16, 252, 433	73, 660, 508	63, 670, 537	1, 183, 968	1, 140, 413

¹ Figures that may not be shown separately are combined as "Undistributed."

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1952, by States, uses, and class of operations—Continued

			S	and—Cont	inued			
		Pav	ing		Grindi	ng and		
State	Comn	nercial	Governm		polis	ng and hing 2	Fire or furnace	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama	493, 734	\$329, 380	207, 425 (1)	\$52,576				
Alaska Arizona	242, 088	225, 414	10, 503	(¹) 5, 189				
Arkansas	324, 229	242, 736 4, 389, 199	144, 855	106,080				
California	5, 269, 028	4, 389, 199	2, 040, 822 256, 234	1, 093, 561 202, 755	121,070	\$372,611		
Colorado Connecticut	(1) 459, 752	330, 762	250, 234 152 471	18, 400				
Delaware	(1)	(1)	152, 471 80, 000	30,000				
Florida	885, 121	542, 339	13, 000	2, 500	11, 957	28, 509		
Georgia	449, 712	278, 130	57	128	94, 010	195, 242		
HawaiiIdaho	8, 400	5, 500	119, 644	64, 548				
Illinois	2, 312, 853	1,741,341	28, 690	27, 221	130, 745	474, 452		\$122,604
Indiana	2,040,634	1, 494, 408	16,679	8, 367			(1)	(1)
IowaKansas	812, 692 1 453 941	605, 829 980, 352	346, 021 500, 643	19, 534 133, 213	(1)	(1)		
Kentucky	418, 341	358, 792 750, 881	7, 140 134, 482	6, 885				
Louisiana	648, 452	750, 881	134, 482	53, 800	(1)	(1)		
Maine	812, 092 1, 453, 941 418, 341 648, 452 20, 811 1, 472, 749 1, 000, 309	22, 176 1, 775, 368	(1)	(1)				
Massachusetts	1, 000, 309	690, 038	170, 630	205, 239				
Michigan	3, 410, 541	2, 659, 318	170, 630 525, 768	112, 436	156, 913	67, 563		
Minnesota	691, 850	459, 416	309, 387	112, 436 44, 951 93, 280				
Mississippi Missouri	86, 286 738, 461	45, 035 568, 170	135, 850 57, 750	48, 150	206, 118	448, 265		[<u>-</u>
Montana	59, 793	61, 618	157, 708	46, 020	140	275		
Nebraska	647, 758	465, 131						
Nevada	190 051	72, 616	23, 210 410, 804	16, 816 95, 171				
New Hampshire New Jersey	136, 651 1, 401, 746	1,096,088	502	47	81,803	286, 229	24, 164	42,081
New Mexico	9675	10, 508	1,823	3,700	653	716		
New York	4, 912, 807 1, 134, 150	10, 508 4, 212, 718 627, 269	193, 053	56,608	(1)	(1)		
North Carolina North Dakota	1, 134, 150 44, 675	41, 419	3, 726, 582 41, 118	1, 039, 065	(-)	(-)		
Ohio	3, 035, 297	2, 732, 436	30,646	14, 368 24, 951 63, 253	(1) (1)	(1)	66, 702	187, 979
Oklahoma	551,072	1 454, 250	332, 946	63, 253	(1)	(1)		
Oregon Pennsylvania	305, 062 2, 038, 867	322, 969 2, 741, 982	25, 066	33, 834	(1)	(1)	82, 976	241, 664
Puerto Rico	4,000,007	-, /11, 002	68, 756	56, 266				
Rhode Island	102, 346	81, 817	48, 801	19.865				
South Carolina	45, 413 177, 795	12, 945	22, 919 182, 747	7, 908 128, 258	(1)	(1)		
South Dakota Tennessee	518, 290	151, 328 545, 925	534, 427	336, 079	(1)	(1)	(1)	(1)
Texas	2,060,517	2, 062, 507	29, 148	9,457	60,712	297, 824		
Utah		(1)	42,000	20,500 50,000	(1) 35, 681	(i) 13, 202		
Vermont Virginia	54, 000 915, 573	41, 675 462, 639	100,000 29,716	26, 040	(1)	(1)	(1)	(1)
Washington	508, 626	350, 071	2, 106, 808	988, 537	(1)	(1)		
West Virginia Wisconsin	780, 314	882, 584		l	13, 331	54,718	60, 201	87,670
Wisconsin	756, 671	558, 186	1,723,080 20,640	741, 045 18, 910	(1)	(1)	7, 350	52,000
Wyoming Undistributed 1	363, 206	263, 319	291, 897	104, 432	316, 661	680, 482	137, 238	85, 910
	43, 666, 274	36, 746, 584	15, 402, 448	6, 229, 943	1, 229, 794	2, 920, 088	413, 789	819, 908

¹ Figures that may not be shown separately are combined as "Undistributed." 1 Includes 557,305 tons of blast sand valued at \$2,016,747.

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1952, by States, uses, and class of operations—Continued

	,							
				Sand-0	Continue	d		
State	Er	ıgine	F	ilter	Railros	d ballast	3 Ot	her 4
	~ .			1		T		T
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
AlabamaAlaska	(1)	(1) \$1,650			(1)	(1)	14, 971	\$43, 038
Arizona	(1)	(1)					(í) (1)	
Arkansas	71, 392	(1)	10.077	-	(1) 1, 440	(1) \$792	(1)	(1)
Colorado	25, 187	77, 280 29, 323	18, 277	\$53, 762	1,440	\$792	104, 148	105, 469
Connecticut			5, 760	4, 536	. (-)	(1)	14, 232 12, 741	8, 961 5, 097
Delaware	(1)	(1)				-		0,001
FloridaGeorgia	3, 498 29, 018	2,302	(1)	(1)	35, 127	19, 875	(1)	(1)
Hawaii	29,018	13, 202	(1)	(1)	31,061	18, 637	209, 843	238, 709
Idano	4, 780	3, 610			11, 760	5, 880	16, 485	10 880
Illinois	112, 421	109, 359	9,058	30, 288	63, 363	5, 880 46, 730	376, 865	10, 880 870, 313
Indiana Iowa	113, 421 30, 117	80,794	(1)		(1)	(1)	24, 257	16,827
Kansas	94, 175	38, 622 69, 348	34, 719	(1) 81, 764	19, 743 238, 655	9,582	28, 752	32, 583
Kentucky	95, 632	83, 131	01, 110	01, 104	14,600	10, 013	328, 682	118, 874
Louisiana	6, 217	2, 965			(1)	(1)	(1)	(1)
Maine Maryland	(1)	(1)						
Massachusetts	(1)	(1)	40, 554	14, 290			07.026	17 200
Michigan	63, 622	45,664	(1)	(1)	(1)	(1)	27, 036 905, 282	17, 300 451, 713
Minnesota	32, 710	30,892	(1)	(1)	35, 694	9,857	33, 196	15, 175
Mississippi Missouri	4, 528 17, 463	2,617	1 070					
Montana	17,403	12,019	1,878	2, 200	(1)	(1)	(1) 25, 883	(1)
Nebraska	101, 716	55, 954	(1)	(1)	(1)	(1)	12, 649	5, 431 2, 488
Nevada							(1)	(1)
New Hampshire New Jersey	(1) 23, 726	(1)	(1)	(1)				
New Mexico	25, 120	16, 382	45, 629	140, 143			290, 597	258, 325
New York	(1)	(1)	44, 190	37, 522	(1)	(1)	127, 693	85, 145
North Carolina	22, 113	(1) 22, 113	(1)	(1)	(1)	(1)	(1)	(1)
North Dakota Ohio			-==-==-				1,678	452
Oklahoma	63, 900 (1)	110, 593 (1)	17, 382	33, 089	(1)	(1)	107, 603 58, 993	139, 301
Oregon	(1)	(6)		(-)	(1)	(1)	24, 545	62, 577 9, 319
Pennsylvania	226, 500	450, 112	10,076	49,876			214, 488	435, 330
Puerto Rico Rhode Island								
South Carolina	(1)	(1)	(1)	(1)			(1)	
South Dakota		(-)		(9)	(1)	(1)	(1)	(1)
Tennessee	(1) 47, 780	(1)	(1) (1)	(1) (1)			(1)	(1)
PexasUtah	47, 780	30, 113	(1)	(1)	12, 816	8, 578	148, 030	63, 142
Vermont	(1) 3, 124	(1) 2, 774			54	60	(1)	(1)
Virginia	(1)	(1)					78, 513	69, 654
Washington	13, 679	4,825					40, 325	32, 372
West Virginia	198, 637	334, 349			25		(1)	(1)
Wisconsin	(1)	(1)			(1)	(1)	376, 617	157, 830
Undistributed 1	494, 440	309, 032	60, 684	159, 031	364, 437	204, 178	432, 938	807, 610
						-01,110	102, 000	001,010
Total	1, 900, 621	1, 939, 025	288, 207	606, 501	828, 750	404, 669		

¹ Figures that may not be shown separately are combined as "Undistributed."

3 Includes 204,358 tons of ballast sand valued at \$41,848, produced by railroads for their own use.

4 Includes 208,591 tons of sand valued at \$64,199, used by railroads for fills and similar purposes.

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1952, by States, uses, and class of operations—Continued

				Gra	avel				
		Build	ling			Pa	ving		
State	Comn	nercial		nent-and- ractor	Comr	nercial	Government-and- contractor		
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
AlabamaAlaska	963, 315 139, 372	\$897, 406 309, 552	(1) 620	\$270 (1)		\$699, 548	81, 597	\$13, 749	
A rizona	503 801	624 199	5 704	1,907	(1) 305, 866	(1) 276, 893	(1) 382, 549	(1) 102, 776	
Arkansas California	89, 977	101, 071			843, 329	883, 173	2, 421, 995	2, 601, 181	
California	13, 994, 664	13, 379, 052	328, 234	96, 266 145, 200	8, 601, 253	8, 463, 624	2, 421, 995 8, 989, 207	3, 133, 384	
Colorado Connecticut	670, 948 514, 388	736, 987 523, 628	260, 150	145, 200	573, 725	486, 178 412, 976	5, 849, 327 114, 230	3, 803, 458 37, 430	
Delaware	3.410	7,672	l		195, 202	195, 486	114, 200	37, 430	
Florida	1. 121. 819	1, 505, 692			(1)	(1)			
Georgia Hawaii	59, 880	101, 190			(1)	(1)	33, 792	45, 938	
Idaho	480, 494	528, 184	47 419	24, 059	378 240	253, 160	1,012 2,407,625	808 1, 463, 744	
Illinois	4, 799, 964	3, 947, 694	47, 419 10, 730	1, 533	3, 292, 323	2, 366, 448	444 000	955 419	
Indiana	1 1 007 059	1, 572, 947	l				387, 089 4, 628, 993 1, 074, 982 645, 246	176, 313 888, 729 214, 722	
Iowa Kansas	908, 622	1, 341, 116			2, 168, 638	1, 363, 509	4, 628, 993	888, 729	
Kentucky	387, 406	181, 742 468, 432 1, 935, 253	7, 830	580	404 614	320 760	645 246	230, 494	
Louisiana	1, 650, 518	1, 935, 253	.,,,,,,		2, 218, 145	2, 973, 140	82, 539	21, 730	
Maine Maryland Massachusetts	1, 687, 053 908, 622 222, 306 387, 406 1, 650, 518 100, 267 1, 405, 260	60, 912	(1)	(1)	4, 061, 966 2, 168, 638 1, 572, 132 404, 614 2, 218, 145 380, 903 1, 962, 358 1, 389, 437 8, 997, 827 2, 303, 145	335, 211	(1)	(1)	
Maccachusette	1, 405, 260	1, 913, 499 1, 934, 031	92, 765	162, 567	1,962,358	2, 576, 924 925, 236	504, 267 1, 002, 505	59, 280 370, 430	
Michigan	1 3 731 975	3, 623, 918	142, 913	10, 227	8, 997, 827	7, 340, 453	5, 337, 959	2, 489, 995	
Minnesota	1, 199, 600	1, 705, 354	293	314	1 4,000, 110	1,001,010	12,073,426	1,096,834	
Minnesota Mississippi Missouri	563, 649	576, 413			659, 354	538, 465	314, 863	257, 445	
Montana	849, 089 160, 047	820, 054 201, 121	3, 441	8, 603	1, 080, 210 919, 795	819, 938 642, 056	1,037,376 4,727,105	656, 417 2, 089, 400	
Nebraska	854, 715	605 227		7	2, 480, 365	1 915 100	K42 252	330,030	
Nevada	119 910	224, 684 148, 326 1, 094, 787 164, 683	41	12	(1)	(1) 177, 052 687, 233 41, 334 3, 053, 246	1, 503, 490	831, 302 413, 519 3, 851 91, 511	
New Hampshire New Jersey	90, 832 847, 674 144, 592	148, 326			305, 991	177, 052	2, 142, 420	413, 519	
New Mexico	144 592	164 683			671, 271 39, 930 3, 438, 375 2, 621, 160	41 334	34, 038 104 506	91 511	
New Mexico New York	3, 180, 138	i a. 804. UOU	54, 711	4, 178	3, 438, 375	3, 053, 246	1, 824, 923	492, 090	
North Carolina	(1)	731, 199			2, 621, 160	2, 970, 319	456, 117	443, 684	
North Dakota Ohio	630, 238 3, 482, 590	731, 199 3, 692, 985	187	112	385, 162 5, 795, 446	199,701	4, 649, 146 361, 889	361, 812 218, 398	
Oklahoma	(1)	(1)			(1)	(1)	1, 083, 158	639, 494	
Oregon	1, 423, 256	1, 399, 656	44, 078	65, 975	2, 408, 286	2, 426, 553	6, 778, 712	3, 183, 141	
Pennsylvania	3, 907, 124	4, 862, 059		l	2, 296, 344	3, 078, 654	413, 278	66, 767	
Puerto Rico Rhode Island	(1)	(1)	805	926	145, 301	179, 118	35, 410 68, 172	67, 097 43, 663	
South Carolina	(1)	77						52, 901 864, 064 124, 991 655, 260	
South Dakota	(1)	(1)	78, 265	4, 801 44, 890	1, 678, 657	928, 403	3, 150, 560	864, 064	
Tennessee	888, 233 4, 003, 297	1, 106, 351	78, 265 91, 798 28, 742	44, 890 6, 280	731,056	675, 275	712, 863	124, 991	
TexasUtah	499, 140	4, 856, 851 375, 097	69, 147	43, 414	403 867	270 874	1 504 401	1, 158, 577	
Vermont	26 662	40, 955			1, 678, 657 731, 056 4, 110, 766 403, 867 125, 395 1, 432, 245	928, 403 675, 275 4, 961, 223 270, 874 141, 739	3, 150, 560 712, 863 2, 604, 485 1, 504, 401 878, 293 1, 867, 836 3, 298, 878	428, 557	
Virginia	1, 292, 339	1, 922, 983			1, 432, 245	T, 000, 101	1, 867, 836	266, 648	
Virginia Washington West Virginia Wisconsin	1, 907, 556 441, 292	1, 482, 233 585, 536	808, 958	741, 933	2, 040, 157 763, 979	1, 522, 469 989, 261	5, 298, 878	2, 402, 352 128, 215	
Wisconsin	1, 992, 987	1, 695, 615	412, 300	432, 933	5, 017, 094	3, 485, 166	185, 104 10, 431, 278	6, 440, 852	
WyomingUndistributed 1	74,644	76, 721	23	15	522, 398	394, 962	1, 540, 297	1. 134, 296	
Undistributed 1	249, 681	285, 657	1, 072, 588	1, 060, 281	622, 458		14, 833, 539	7, 163, 624	
Total	64, 263, 744	68, 212, 707	3, 561, 751	2, 857, 283	81, 652, 021	74, 166, 945	113,634,572	48, 017, 270 ⁻	

¹ Figures that may not be shown separately are combined as "Undistributed."

TABLE 4.—Sand and gravel sold or used by producers in the United States in 1952, by States, uses, and class of operations—Continued

	(Gravel—C	ontinued			Sand an	d gravel		
State	Railroad	ballast ⁵	Oth	er ⁶	Total co	mmercial	Total Government- and-contractor		
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
Alabama	(¹) 153, 139	(1)	74, 668	\$77, 493	3, 432, 175 768, 794	\$2, 888, 535	290, 380	\$67,098	
AlaskaArizona	153, 139	\$76, 569	(1)	(1)	768, 794	1,550,781	10, 013, 132	7, 099, 801	
Arizona	1.443	1, 443 195, 129 121, 851	48, 260 57, 298	29, 285 60, 104	1, 419, 884	1, 524, 194	404, 446	111, 709	
Arkansas California	245, 549	195, 129	57, 298	60, 104	2, 444, 245 41, 457, 396 2, 095, 328 2, 314, 546	2, 269, 958 39, 220, 004	2, 566, 850 11, 593, 864 6, 365, 711 266, 701	2, 707, 26 4, 413, 12 4, 151, 413 55, 830	
California	181, 257	(1)	522, 628 (1)	378, 321 (1)	2 005 220	2 116 054	6 265 711	4, 410, 12	
Colorado Connecticut	(1) 5, 344	2, 137	10,000	6,000	2, 030, 346	2, 116, 954 1, 877, 384	266 701	55 83	
Delaware	5, 544	2, 101	10,000	0,000	435, 399	352, 484	80,000	30, 00	
					4, 141, 613	3, 845, 577	13,000	2, 50	
Georgia			37, 126	35, 910	2, 100, 178	1, 983, 429	13, 000 33, 792	45, 93	
Florida							1,069 2,583,304 483,750	93	
Idaho	52, 549	6, 587	110, 947 197, 999	35, 135	1, 342, 559	1, 191, 481 18, 930, 023	2, 583, 304	1, 553, 72	
Illinois	916, 141	514, 509 527, 348	197, 999	103, 955	19, 100, 558 11, 142, 246	18, 930, 023	483, 750	284, 17	
		021,030	74, 747	62, 934	11, 142, 246	9, 095, 228	403.76X	184, 68	
Iowa	151, 826	84, 780	13,027	59, 346	5, 821, 965 6, 797, 975	5, 124, 635	4, 975, 014 1, 582, 090	908, 26	
Iowa Kansas Kentucky	63 343, 906	19	9,810	15, 111	2, 659, 045	4, 675, 216 2, 403, 094	675, 216	348, 37 252, 95	
Kentucky	343, 900	241, 503 30, 368	9, 810 83, 604 (1)	79, 643 (1)	5 799 009	6 660 004	217 021	75 52	
Louisiana	55, 780 115, 014	64, 541	12, 207	4,028	5, 788, 098 666, 834	504 740	6 411 244	1 682 79	
Manuland	110,014	01,011	(1)	(1)	6, 452, 373	8 077 417	217, 021 6, 411, 244 504, 267	75, 53 1, 682, 79 59, 28	
Louisiana Maine Maryland Massachusetts	7, 411	549	129, 253	74,712	6, 313, 547	6, 660, 994 504, 740 8, 077, 417 5, 230, 641	1 1 332 181	898, 10	
		409 833	63, 131	36, 221	23, 187, 123	119, 788, 221	6, 006, 640	2, 612, 65	
Minesota	922, 732	387, 122 60, 118 115, 161	270 987	62, 382	7. 441. 456	I 5 GGG AND	12, 383, 701	1, 142, 35	
Mississippi	152, 533 175, 257	60, 118	1, 480 (1)	1,096 (1)	1,845,864	1, 482, 581 5, 417, 628 1, 428, 970 3, 542, 839	450, 713	350, 72	
Missouri	175, 257	115, 161	(1)	(1)	5, 695, 296 1, 873, 167 4, 892, 286	5, 417, 628	1,095,126	704, 56 2, 150, 96 331, 26	
Montana	374, 214	256, 381	202, 467	58,772	1,873,167	1,428,970	4, 892, 788	2, 150, 96	
Nepraska	. 0	21	(1)	(1)	4, 892, 286	3, 542, 839	1, 095, 126 4, 892, 788 544, 254 1, 528, 107	331, 20	
Nevada New Hampshire	2,565	281	719	359	570, 104	1, 528, 284 492, 901	2, 553, 224	852, 13 508, 69	
New Hampsnire	(1) 18,000	(1) 24,000	3, 497 66, 842	1, 295 127, 293	647, 008 7, 024, 914	9, 469, 530	35, 160	3, 89	
New Jersey New Mexico	42, 645	29,000	00, 042	121, 293	389 842	402, 449	107 070	97 14	
New York	(1)	29, 464 (¹)	361, 647	211, 363	389, 842 18, 137, 789 4, 524, 724	17, 723, 975	2, 132, 269 4, 200, 024 4, 690, 545 399, 907	563, 64 1, 491, 41 376, 34	
New York North Carolina North Dakota	(1)	(1)	(1)	(1)	4, 524, 724	17, 723, 975 4, 173, 758	4, 200, 024	1, 491, 41	
North Dakota	467, 316	263, 769	192, 407	81, 296	1,866,524	1, 464, 867	4, 690, 545	376, 34	
Ohio	710, 247	537, 491	1,644,002	2,214,738	20, 351, 586	22, 821, 839	399, 907	247,61	
Oklahoma			(1)	(1) 52, 482	2, 353, 559 5, 325, 132	2, 209, 098	1,416,104	702, 74	
OregonPennsylvania Puerto Rico Rhode Island	220, 243	162, 565 45, 245	106, 759	52, 482	5, 325, 132	5, 200, 630	6, 894, 354	3, 355, 58	
Pennsylvania	67, 627	45, 245	64, 511	107, 612	14, 282, 828	19, 853, 236	413, 278	66, 76 127, 73 63, 52	
Puerto Rico					14, 573 472, 478 939, 388	36, 433 493, 868 831, 503	108, 157 116, 973 108, 711	63 59	
South Carolina					030 388	831 503	108 711	60, 80	
South Dakota	76, 995	39,099	1 941	920	2, 294, 418	1, 431, 044	3, 551, 722	1, 047, 27	
Tonnoccoo	1 (1)	(1)	1, 941 7, 250 63, 508	5, 438	3, 834, 313	4, 797, 361	1, 339, 088	505, 96	
'I'AYGQ	II.aan hall	957, 903	63, 508	5, 438 77, 701 27, 158	15, 998, 314	116, 602, 593	2, 663, 089	672, 66	
Utah	172,703	66, 291	53, 359	27, 158	1 644 496	1 197 021	1. 615. 548	1, 222, 49	
Utah Vermont	4, 100	1,882			286, 197 5, 193, 261 6, 895, 285	271, 278 5, 249, 055 5, 100, 795	978, 293	1, 222, 49 478, 55	
Virginia Washington	(1)	(1)			5, 193, 261	5, 249, 055	1, 942, 851 6, 426, 994	307, 89 4, 321, 32	
Washington	366, 283	216, 247	752, 348	423, 592	6, 895, 285	5, 100, 795	6, 426, 994	4, 321, 32	
West Virginia Wisconsin	(1)	(1)			1 3. 935, 001	1 1.141.100	185, 104	128, 21	
Wisconsin	990, 919	375, 774	194, 457	56,658	12, 250, 771	9, 274, 989	12, 645, 176	7, 663, 23 1, 153, 22	
Wyoming Undistributed 1	201, 768	52, 937 618, 905	2,000 202,612	1,300 360,349	866, 039	585, 327	1, 560, 960		
Undistributed	729, 479	018, 908	202, 012	000, 549					
Total	10,669,141	6,487,822	5,637,498	4,930,002	301,728,494	295,139,306	133,782,739	58, 244, 90	

Government-and-Contractor Production.—Figure 2 and tables 5 and 6 indicate the volume and the relative importance of Government-and-contractor production. Such noncommercial operations comprised 31 percent of total output in 1952 compared with 29 percent in 1951, and 30 percent in 1950. The value of this output was 16 percent of total value of all production, the same percentage as in 1951.

¹ Figures that may not be shown separately are combined as "Undistributed."

Includes 4,867,003 tons of ballast gravel valued at \$2,214,808, produced by railroads for their own use.

Includes 1,623,165 tons of gravel valued at \$794,405, used by railroads for fills and similar purposes.

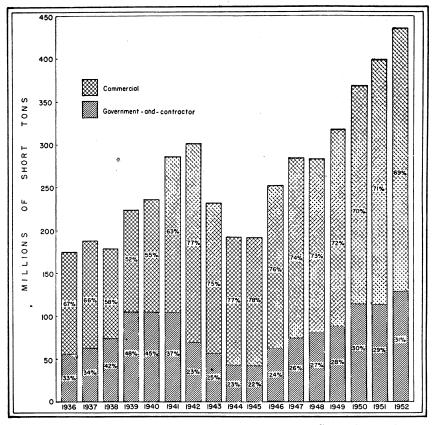


FIGURE 2.—Sand and gravel sold or used in the United States by producers, 1936-52.

TABLE 5.—Sand and gravel sold or used by Government-and-contractor producers in the United States, 1943-47 (average) and 1948-52, by uses

		Sa	Sand			Gr	Total Govern- ment-and-con-			
	Buil	ding	Pav	ing	Buil	ding	Pav	ing	tractor s gra	and and vel
Year	Quanti- ty (thou- sand short tons)	Value (thou- sand dollars)	Quanti- ty (thou- sand short tons)	Value (thou- sand dollars)	Quanti- ty (thou- sand short tons)	Value (thou- sand dollars)	Quanti- ty (thou- sand short tons)	Value (thou- sand dollars)	Quanti- ty (thou- sand short tons)	Value (thou- sand dollars)
1943-47 (aver- age) 1948 1949 1950 1951	1, 501 1, 529 1, 604 2, 759 21, 869 1, 184	738 811 959 1,675 22,001 1,140	5, 121 7, 336 7, 424 11, 159 2 12, 564 15, 402	1, 928 3, 452 2, 820 4, 286 2 4, 776 6, 230	2,775 5,487 3,133 5,216 7,665 3,562	1, 722 3, 405 2, 235 4, 510 6, 906 2, 858	47, 056 71, 411 75, 738 93, 765 2 92, 717 113, 635	19, 104 33, 510 31, 093 43, 245 2 39, 854 48, 017	56, 453 85, 763 87, 899 112, 899 2 114, 815 133, 783	23, 492 41, 178 37, 107 53, 716 2 53, 537 58, 245

¹ Includes Alaska, Hawaii, and Puerto Rico.
² Revised figure.

States reported 52 percent of the total Government-and-contractor output in 1952, counties 29 percent, Federal agencies 18 percent, and municipalities 1. In 1952 contractors furnished 65 percent of the Government-and-contractor tonnage, and construction and maintenance crews 35 percent.

TABLE 6.—Sand and gravel sold or used by Government-and-contractor producers in the United States, 1943-47 (average) and 1948-52, by type of producer

	1943-47(average)	19	18	19	49
Type of producer	Thou- sand short tons	Aver- age value per ton	Thou- sand short tons	Average value per ton	Thou- sand short tons	Aver- age value per ton
Construction and maintenance crewsContractors	31, 773 24, 680	\$0.32 .54	42, 531 43, 232	\$0.34 .62	43, 586 44, 313	\$0.31 .53
Total	56, 453	. 42	85, 763	. 48	87, 899	. 42
States. Counties. Municipalities Federal agencies.	24, 125 21, 003 1, 309 10, 016	.44 .30 .38 .62	45, 166 32, 260 1, 881 6, 456	.55 .32 .41 .83	44, 354 33, 822 2, 131 7, 592	.44 .31 .40 .82
Total	56, 453	.42	85, 763	.48	87, 899	.42
,	19	***	195			
	18	טט	190	1	19	52
Type of producer	Thou- sand short tons	Average value per ton	Thou- sand short tons	Aver- age value per ton	Thou- sand short tons	Aver- age value per ton
Type of producer Construction and maintenance crews	Thou- sand short	Aver- age value	Thou- sand short	Aver- age value	Thou- sand short	Aver- age value
Construction and maintenance crews.	Thou-sand short tons 48,742 64,157	Average value per ton \$0.33	Thou-sand short tons	Average value per ton	Thou- sand short tons	Average value per ton
Construction and maintenance crews	Thou-sand short tons 48,742 64,157	Average value per ton \$0.33	Thou-sand short tons 2 41, 637 2 73, 178	Average value per ton	Thou-sand short tons	Average value per ton

¹ Includes Alaska, Hawaii, and Puerto Rico. ² Revised figure.

Degree of Preparation.—Almost three-quarters of the sand and gravel sold or used in the United States in 1952 was washed, screened or otherwise prepared. About one-quarter was a bank-run product used chiefly as a base for secondary roads. Of the quantity so used, 83 percent was supplied by Government-and-contractor sources. Table 7 shows the relationship between prepared and unprepared production for 1951-52.

Size of Plants.—The average annual plant output of commercial operating units (except railroads) in 1952 dropped to 118,000 short tons compared with 120,000 in 1951. Compared with 1951, the number of small to medium-size plants increased consistently; there was also a substantial increase in the number of plants

producing 600,000 to 800,000 tons each a year. The number of plants with an annual output exceeding 1 million tons was the same as in 1951. It appears, therefore, that an increase in the number of relatively large producing units was confined to the 600,000- to 800,000-ton groups.

TABLE 7.—Sand and gravel sold or used by producers in the United States, 1 1951-52, by class of operation and degree of preparation

		1951			1952	
	Quant	ity	Average	Quant	Average	
·	Short tons	Percent	value per ton	Short tons	Percent	value per ton
Commercial operations: Prepared Unprepared Total	255, 411, 451 30, 408, 053 285, 819, 504	89 11 100	\$1.03 .53	272, 225, 449 29, 503, 045 301, 728, 494	90 10 100	\$1. 03 . 53 . 98
Government-and-contractor oper- ations: Prepared	2 45, 487, 462 2 69, 327, 487	² 40 ² 60	. 80 2 . 25	47, 158, 666 86, 624, 073	35 65	. 84
Total	2 114, 814, 949	100	2.47	133, 782, 739	100	. 44
Grand total	2 400, 634, 453		. 83	435, 511, 233		. 81

¹ Includes Alaska, Hawaii, and Puerto Rico.

TABLE 8,—Comparison of number and production of commercial sand and gravel plants in the United States, 1951-52, by size group 1

		1	951		1952				
	Pla	nts 3	Produ	ction	Pla	nts 2	Production		
Size group, in short tons	Num- ber	Per- cent of total	Thou- sand short tons	Per- cent of total	Num- ber	Per- cent of total	Thou- sand short tons	Per- cent of total	
Less than 25,000	759 381 435 394 146 81 49 30 17 10 5 4 27	32. 5 16. 3 18. 6 16. 8 6. 2 3. 5 2. 1 1. 3 . 7 . 4 . 2 . 2 1. 2	7, 604 13, 734 31, 006 56, 318 35, 538 27, 694 21, 528 16, 423 11, 016 7, 374 4, 291 3, 836 43, 953	2. 7 4. 9 11. 1 20. 1 12. 7 9. 9 7. 7 5. 8 3. 9 2. 6 1. 5 1. 4 15. 7	824 429 438 405 179 82 40 29 24 17 5 2	32. 9 17. 1 17. 5 16. 2 7. 1 3. 3 1. 6 1. 2 1. 0 . 7 . 2 . 1	8, 356 15, 644 31, 188 56, 760 43, 562 27, 652 17, 799 15, 594 15, 668 12, 652 4, 233 1, 921 43, 688	2.8 5.3 10.6 19.3 14.8 9.4 6.0 5.3 5.3 4.3 1.4 .7	
Total	2, 338	100.0	280, 315	100.0	2, 501	100.0	294, 721	100.0	

¹ Excludes operations by or for States, counties, municipalities, and Federal Government agencies as follows—1951: 750 operations with an output of 115,801,000 tons of sand and gravel; 1952: 806 operations, 134,788,739 tons. Excludes operations by or for railroads as follows—1951: 131 operations with an output of 5,504,000 tons of sand and gravel; 1952: 176 operations, 7,007,033 tons. Includes Alaska.

2 Includes a few companies operating more than 1 plant but not submitting separate returns for individual plant but not submitting separate returns for indivi

plants.

² Revised figure.

Methods of Transportation.—There was a continuation of the trend begun in 1946 toward greater use of trucks in the domestic transportation of sand and gravel and a decrease in the use of rail transportation. Details of the tonnage and percentage carried by various methods during 1950-52 are shown in table 9.

TABLE 9.—Sand and gravel sold or used in the United States, 1950-52, by method of transportation

	1950 1951				1952		
•	Thousand	Percent	Thousand	Percent	Thousand	Percent	
	short tons	of total	short tons	of total	short tons	of total	
Commercial: Truck Rail Waterway Unspecified	150, 892	41	166, 992	41	187, 267	43	
	72, 489	20	80, 062	20	83, 381	19	
	22, 618	6	23, 617	6	25, 891	6	
	11, 557	3	15, 148	4	5, 189	1	
Total commercialGovernment-and-contractor: Truck 3	257, 556	70	285, 819	71	301, 728	69	
	112, 899	30	8 114, 815	29	133, 783	31	
Grand total	370, 455	100	³ 400, 634	100	435, 511	100	

¹Includes Alaska, Hawaii, and Puerto Rico.

² Entire output of Government-and-contractor operations assumed to be moved by truck.

³ Revised figure.

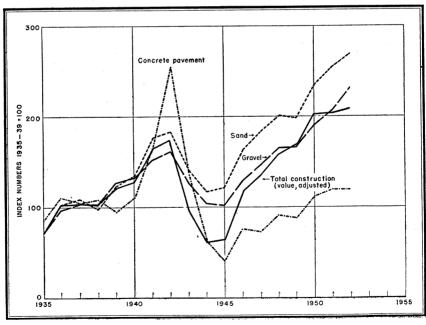


FIGURE 3.—Quantity of sand and gravel produced compared with total construction, value (adjusted to 1947-49 prices), and concrete pavements (contract awards, square yards) in the United States, 1935-52. Data on construction from Statistical Abstracts of the United States and on pavements from Survey of Current Business.

CONSUMPTION

Sand and Gravel for Construction.—The demand for sand and gravel by the construction industry in 1952, as indicated by shipments from commercial plants, continued the upward trend that has characterized recent years. Compared with 1951, the output of building sand increased 3 percent; paving sand, 7 percent; building gravel, 3 percent; These increases reflect sustained acand paving gravel, 13 percent. tivity in the construction field.

Industrial Sands.—Consumption of sand for industrial uses declined moderately compared with 1951. Use of molding sand decreased 9 percent; glass sand, 5 percent; grinding and polishing sand, 17 percent; fire and furnace sand, 12 percent; and engine sand, 14 percent.

sand sales, however, increased 42 percent.

Employment and Productivity.—The number of men employed in the commercial sand and gravel industry in the United States during 1952 was about 28,000, compared with 27,000 in 1951. The average number of days worked dropped from 241 to 239. The average number of hours per man per day (8.7) was the same in 1952 as in 1951, but the output per man per shift increased from 43.9 to 45.7 short tons. The highest production per man per shift was in New York, followed, in order, by Michigan-Wisconsin, California-Nevada, and the North Dakota-South Dakota-Minnesota areas. Table 10 presents a breakdown of employment and production in the commercial sand and gravel industry, by regions.

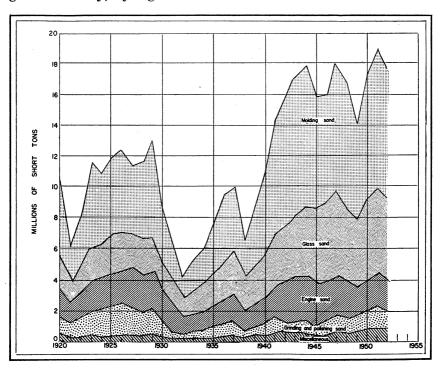


FIGURE 4.—Production of industrial sands in the United States 1920-52.

TABLE 10.—Employment in the commercial sand and gravel industry and average output per man in the United States, 1943-47 (average) and 1948-52, by regions ¹

			Employm	\mathbf{ent}		Production	(short	tons)	
			Time e	mploye	ed		Average		Per- cent of
	Aver- age num-			Ma	an-hours	Commer- cial	per man		com- mer- cial
	ber of men	age num- ber of days	Total man shifts	Aver- age man per day	Total	sand and gravel	Per shift	Per hour	indus- try repre- sented
1943–47 (average)	18, 851 21, 895 22, 964 24, 276	236 246 232 238	4, 456, 625 5, 389, 167 5, 336, 711 5, 771, 740	8. 8 8. 6 8. 7 8. 7	39, 349, 910 46, 103, 345 46, 286, 039 50, 250, 732	142, 916, 391 200, 706, 763 199, 655, 709 236, 420, 288	32. 1 37. 2 37. 4 41. 0	3.6 4.4 4.3 4.7	80. 8 86. 0 86. 4 91. 8
Maine, N. H., Vt., R. I., Mass., and Conn. N. Y Pa., N. J., and Del. W. Va., Va., and Md. S. C., Ga., Ala., Fla., and Miss. N. C., Ky., and Tenn.	839 1, 173 2, 511 1, 623	222 238 267 264	186, 173 279, 668 670, 201 428, 898	8. 7 8. 4 8. 7 8. 9	1, 611, 343 2, 347, 443 5, 824, 485 3, 800, 624	9, 126, 864 15, 512, 790 21, 729, 144 11, 634, 653	49. 0 55. 5 32. 4 27. 1	5. 7 6. 6 3. 7 3. 1	94. 7 80. 3 97. 8 73. 5
Ohio Ill. and Ind Mich. and Wis	684	277 262 263 255 250 213 163 217	296, 171 269, 545 581, 552 491, 316 549, 788 481, 550 145, 116 148, 619 295, 139	9.1 9.5 9.1 8.7 8.5 8.9 9.2 9.5	2, 705, 217 2, 552, 450 5, 296, 383 4, 285, 695 4, 649, 775 4, 274, 990 1, 329, 020 1, 410, 108	11, 246, 126 9, 538, 040 20, 029, 109 18, 069, 315 28, 846, 950 29, 522, 258 7, 760, 005 7, 762, 284 12, 541, 559	38. 0 35. 4 34. 4 36. 8 52. 5 61. 3 53. 5 52. 2 42. 5	4. 2 3. 7 3. 8 4. 2 6. 9 5. 8 5. 5	99. 2 97. 7 86. 4 94. 7 95. 1 91. 6 75. 3 80. 7
N. Dak., S. Pak., and Mill. Nebr. and Iowa. Kans., Mo., and Okla. Wyo., Colo., N. Mex., Utah, and Ariz. Calif. and Nev. Mont., Wash., Oreg., and	1, 275 583 2, 801	231 200 249	116, 635 697, 787	8.3 8.3 8.3	2, 463, 123 966, 856 5, 819, 250	4, 940, 508 38, 012, 759	42. 4 54. 5	5. 1 5. 1 6. 5	87. 3 88. 7 99. 0
IdahoTotal	1, 290	190	245, 449 5, 883, 607	8.3	2, 031, 167	12,063,618	49.1	5. 9	82.6
1952	24, 375	241	5, 885, 007	8.7	51, 367, 929	258, 335, 982	45. 9	5.0	90. 4
Maine, N. H., Vt., R. I., Mass., and Conn. N. Y. Pa., N. J., and Del. W. Va., Va., and Md. S. C., Ga., Ala., Fla., and Miss. N. C., Ky., and Tenn.	957 1, 229 2, 491 1, 574	214 226 260 269	204, 831 277, 241 647, 499 423, 251	8. 7 8. 4 8. 6 8. 9	1, 774, 548 2, 318, 015 5, 563, 218 3, 774, 758	9, 983, 365 16, 703, 526 21, 140, 635 13, 556, 695	48. 7 60. 2 32. 6 32. 0	5.6 7.2 3.8 3.6	93. 3 92. 1 97. 2 87. 0
Ohio Ill. and Ind Mich. and Wis	1, 917 2, 190 2, 646	264 251 264 240 250 212 174 217 240	306, 624 289, 430 613, 288 460, 219 547, 243 561, 872 171, 192 187, 047 329, 326	8. 9 9. 3 9. 1 8. 6 8. 4 9. 0 9. 2 9. 6 8. 7	2, 739, 062 2, 689, 182 5, 571, 623 3, 972, 552 4, 620, 973 5, 065, 519 1, 574, 322 1, 794, 610 2, 859, 281	12, 058, 060 10, 858, 391 22, 206, 319 19, 414, 708 28, 352, 292 32, 403, 272 9, 536, 018 10, 019, 944 14, 359, 030	39. 3 37. 5 36. 2 42. 2 51. 8 57. 7 55. 7 53. 6 43. 6	4. 4 4. 0 4. 0 4. 9 6. 1 6. 4 6. 1 5. 6 5. 0	96. 8 98. 6 91. 6 95. 4 93. 7 91. 4 82. 2 93. 5 96. 7
Nebr. and Iowa. Kans., Mo., and Okla. Wyo., Colo., N. Mex., Utah, and Ariz. Calif. and Nev. Mont., Wash., Oreg., and	640 2,840	209 251	133, 757 712, 490	8. 4 8. 3	1, 116, 901 5, 935, 574	5, 880, 755 40, 955, 781	44. 0 57. 5	5. 3 6. 9	91. 7 97. 4
Idaho	1,349 58	201 131	271, 539 7, 572	8. 1 8. 4	2, 212, 373 63, 316	12, 695, 494 382, 446	46. 8 50. 5	5. 7 6. 0	82. 2 49. 7
Total	25, 755	239	6, 144, 421	8.7	53, 645, 827	280, 506, 731	45. 7	5. 2	93.0

¹ Excludes plants operated by or directly for States, counties, municipalities, and Federal Government agencies.

STOCKS

Stocks of sand and gravel are relatively small and virtually constant from year to year. For this reason, the terms "production" and "sales" are employed interchangeably in this chapter.

PRICES

The average per ton value of sand used for molding, grinding, polishing, furnaces, and as a constituent of glass increased; however, all other sand categories, including the large tonnage used for building and paving, declined in average value, resulting in an overall average decrease of 2 percent in value for all sand. The average value of all gravel production declined 3 percent. The percent change in value for each class of sand and gravel is shown in table 1.

FOREIGN TRADE 4

Imports of gravel and sand of all categories declined in 1952 as compared with 1951, the total decline in tonnage being 14 percent. gium supplied all the 1952 glass sand imports. Sand "not specifically provided for (n. s. p. f.)" in the import classification came principally from Canada, which was also the source of all imported gravel in 1952. Table 11 shows domestic sand and gravel imports for 1943-52, as reported by the United States Department of Commerce.

TABLE 11 .- Sand and gravel imported for consumption in the United States. 1943-52, by classes

Year		Sa	nd		C w		m	4-1
	Glass sand		Other sand 2		Gravel		Total	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1943 1944 1945 1946 1947 1947 1948 1949 1950 1951	(3) 15	\$363 181 148 9, 102 12, 532 24, 134 20, 152 25, 481 4 91, 424 4 23, 998	296, 262 209, 255 200, 280 262, 484 297, 481 336, 898 287, 452 290, 025 319, 584 300, 182	\$206, 145 129, 632 126, 102 194, 820 283, 884 302, 117 277, 564 266, 065 317, 205 344, 674	86, 924 67, 929 80, 861 83, 860 177, 244 89, 174 135, 227 146, 079 149, 766 104, 332	\$63, 381 31, 208 43, 976 25, 847 100, 665 30, 411 19, 194 29, 011 31, 189 13, 771	383, 204 277, 199 281, 141 351, 350 482, 529 442, 986 434, 170 445, 295 475, 610 408, 530	\$269, 889 161, 021 170, 226 229, 769 397, 081 356, 662 316, 910 320, 557 439, 818 382, 443

IU. S. Department of Commercel

TECHNOLOGY

Research.—The National Sand and Gravel Association conducts research in cooperation with the Engineering Department of the University of Maryland at College Park, Md. An important problem now in progress is research on the effect in concrete of undesirable materials in sand and gravel. A serious problem, particularly in some western sands and gravels used as concrete aggregate, is the presence of hydrous or glassy silicates that react harmfully with soluble alkalies in the cement.

Classification reads: "Sand containing 95 percent or more silica and not more than 0.6 percent oxide of iron and suitable for manufacture of glass."
 Classification reads: 1943-47: "Sand, n. s. p. f."; 1948-52: "Sand, n. s. p. f., crude or manufactured."

Less than 1 ton.
 Less than 1 ton.
 Includes 5 53 short tons valued at \$80,847 in 1951; and 11 short tons valued at \$18,603 in 1952 imported from West Germany, consisting of synthetically prepared silica and not actually a glass sand.

⁴ Figures on imports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

Beneficiation.—Froth flotation is attaining increasing importance in glass-sand preparation. Sand is a low-priced product that will not bear heavy transportation expense. To avoid haulage of high-quality glass sands from distant sources, abundant nearby deposits of beach and river sands may, at times, be treated by froth-flotation processes to produce suitable glass sands. In some instances, by-product feldspar, and other minerals may be recoverable. European progress in beneficiating glass sands by flotation has been described in some detail. Russian investigators are reported to have made marked progress in this field.⁵

At one sand plant in California where flotation is used, the material is first passed through an attrition machine equipped with rubber-covered paddle arms. The purpose is to scour and scrub the individual grains to make them more amenable to froth-flotation treatment. The beach sands treated consist of about 50 percent quartz and the remainder chiefly high-alumina minerals. A small percentage of "heavies" consists of ilmenite, garnet, monazite, and zircon. The flotation process separates a purified quartz and a high-alumina mineral concentrate for use in the ceramic industry.

A type of equipment new to the sand and gravel industry has been installed by a New Jersey company to recover sand in minus-100-and minus-200-mesh ranges. The machine, known as the Dorr Clone, operates on the centrifugal principle. The pulp is pumped tangentially into a cone-shaped unit, and the resulting centrifugal force causes the heavier particles to move to the periphery. They gradually work downward and are discharged at the bottom. The lighter materials move upward and are discharged at the top of the unit. The water content of the underflow can be controlled. This equipment has been used successfully in the Florida phosphate fields, and it may find wider use in sand and gravel plants.

At one sand and gravel deposit in Arizona, many plus-5-inch diameter cobbles occur, and their separation by means of an ordinary grizzly resulted in much lost time in removing boulders that blinded the openings. This difficulty was overcome by using a 25- by 18-foot platform railroad-rail grizzly. As soon as a truckload of gravel is dumped upon it, hydraulic hoists raise one side of the grizzly until it tilts to a 55° slope, at which point the undesired oversize cobbles roll off to a waste hopper, while the undersize product drops through to the primary crusher.⁸

Portable Plants.—Portable plants have been common in the sand and gravel industry for many years, and during that time they have experienced revolutionary changes in consonance with the trends in progress of the industry as a whole. Single units have grown into sectionalized plants, each unit of which is a portable rubber-mounted machine. The units may consist of shovels, compressors, screens, washers, scrubbers, and crushers. Their size is limited by permissible

¹ Pearson, B. M., European Developments in Use and Processing of Glass Sands: Rock Products, vol. 55, No. 9, September 1952, pp. 81–87, 112.

⁶ Lephart, Walter B., Flotation Process Applied to Silica: Rock Products, vol. 55, No. 2, February 1952,

pp. 100-103.

Rock Products, Meeting Fine-Sand Specifications: Vol. 55, No. 12, December 1952, pp. 116-117, 124-126.

Utley, Harry F., Hydraulic-Powered Tilting Grizzly Speeds Boulder Rejects at Hopper: Pit and Quarry, vol. 45, No. 5, November 1952, p. 120.

highway and bridge loads. Portable plants are employed at times as supplementary units of permanent plants.9

A portable plant may be used also for preliminary preparation at the pit, with subsequent processing at the fixed plant. For instance, a portable plant is used at one North Carolina plant simply to scalp out excessive fines, which are returned to the worked-out pit. similar two-stage operation is in use at a South Carolina plant.¹⁰

Under-Water Operations.—An ocean-floor deposit of sand and gravel in a small cove several miles south of the Golden Gate on the California coast provides satisfactory commercial products. A dragline excavator has been established on the shore with a slackline anchored across the cove. The processing plant classifies the product into 1 grade of sand and 3 grades of gravel. This unique operation has recently been described.11

Lake-bottom areas suitable for sand and gravel dredging in navigable water are difficult to find in fogs and periods of low visibility. One company operating on Lake Erie has marked its dredging areas with anchored buoys carrying radar reflectors which can be detected with the dredging vessel's radar equipment.¹²

Prospecting.—A special type of rotary drill using an 8-inch casing and capable of drilling to a depth of 1,500 feet is useful for sand and gravel prospecting. The casing is divided into 5-foot sections, with heavy thread connections. The lower section, which is replaceable, is provided with a sawtooth cutting edge. The bailer consists of a 9-foot length of 6-inch pipe having a flap valve at the lower end. cutter edge is kept 2 to 5 feet ahead of the bailer. Frequent raising and dropping of the bailer tend to create a suction that draws the sand and gravel into it. Pieces of gravel almost as large as the bailer may be included. A 70-foot hole can be sunk in 3½ to 4 hours. Texas company sinks prospect holes with this equipment on a 210-foot grid and plots on a map the depths of top soil, good gravel, fair gravel, sand, low grade gravel, and very low grade gravel. Areas for portable plant operation are thus delineated.¹³

Reclamation of Worked-Out Areas.—The leveling of dumps and filling of worked-out sand and gravel pits are important conservation activities in many localities. Attractive landscapes, including tillable or pasture land, may replace worked-out areas. At one sand and gravel operation in Michigan the topsoil is first stripped and stored, and the lower overburden is piled elsewhere. The worked-out areas are later filled in, using earth-moving equipment and the topsoil redeposited on the surface.14

Lenhart, Walter B., Portable Plant's Role in Aggregate Production: Rock Products, vol. 55, No. 1, January 1952, pp. 161-163, 199-200.
 Lenhart, Walter B., Portable Plant in Pit to Remove Fines: Rock Products, vol. 55, No. 6, June 1952, pp. 104-106.
 Two-Stage Sand and Gravel Plant: Rock Products, vol. 55, No. 9, September 1952, pp. 54-66, 108.
 Pit and Quarry, California Open-Pit Operation Takes to the Water: Vol. 45, No. 3, September 1952, pp. 106-108.

pp. 106-108.

12 Pit and Quarry, Erie Sand and Gravel Co. Vessel Uses Radar to Find Dredging Areas: Vol. 44, No. 10,

April 1952, p. 82.

18 Lenhart, Walter B., Prospecting for Sand and Gravel: Rock Products, vol. 55, No. 8, August 1952, p. 174. 14 Pit and Quarry, Michigan Sand and Gravel Producer Reclaims "Lost" Land From Pits: Vol. 45, No. 2, August 1952, pp. 117-118, 120.

History.—An illustrated description of the evolution in equipment and methods used in excavating and preparing sand and gravel has recently appeared. The historical record which pertains primarily to developments in the British industry begins with the use of gravel on roads about 1737. Primitive hand methods were used in early days for stripping, excavating and even for dredging river gravels, but these were gradually replaced by mechanical means, the details of which are discussed. The history of production methods and equipment extends to 1930.

¹⁸ Webb, D. A., Early Methods of Sand and Gravel Production: Cement, Lime and Gravel (London), vol. 27, No. 5, November 1952, pp. 204-219.

Secondary Metals—Nonferrous

By Archie J. McDermid 12

OST NONFERROUS METALS, both primary and secondary, as well as scrap, were in restricted supply early in 1952. Demand for some metals slackened during the year, and their supply-demand relationships improved; as regards lead and zinc, increased supplies of primary metal and scrap by midyear caused declines of several cents a pound in the prices of both. The scarcity that began in 1950 and continued in 1951 had been relieved to some extent, in respect to aluminum and magnesium, by increased primary supply and, in respect to lead and zinc, by lower demand as well as increased total supply. Supplies of refined copper were inadequate throughout 1952, but demand for copper-alloy scrap for use in brassingot manufacture slackened slightly after the first quarter. In 1952 recoveries of all nonferrous secondary metals declined slightly except for aluminum, which increased slightly over 1951. Government control of metals, including ceiling price restrictions, continued in effect throughout 1952.

Consumption of primary aluminum and magnesium and of refined copper and nickel rose in 1952, but consumption of copper, magnesium, and nickel scrap dropped; that of aluminum scrap increased 5 percent compared with a 10-percent increase in use of primary aluminum. Consumption of refined lead and slab zinc decreased 3 and 9 percent, respectively, and use of lead and zinc scrap 10 and 12 percent.

The reasons for the reduced consumption of scrap compared with that of refined metal would be difficult to determine from available information. Output, consumption, and stocks of primary metal are precisely reported and published, providing a sound basis for determining the metal available, but there is no adequate record of the generation of scrap. Receipt and use of purchased scrap were restricted in 1952 by Government control regulations, but plants were allowed to use their home-generated scrap; moreover, nothing in the regulations prevented a generator of scrap from expanding his use of home scrap to include material that he might ordinarily sell to a dealer or smelter, or from installing and beginning to use scrap-melting equipment. The Government required consumers of scrap and the larger dealers in copper and lead scrap to file monthly reports, which provided a check on their operations, but there was no continuing

¹ Commodity-industry analyst.

² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page of the Bureau of Mines from records of the U. S. Department of Commerce.

record of the stocks and transactions of generators or the smaller scrap-metal dealers. It was therefore difficult to determine whether purchased scrap was scarce (1) because it was not being generated in adequate volume, (2) because it was being accumulated by generators or others, or (3) because it was consumed as home scrap.

TABLE 1.—Salient statistics of nonferrous secondary metals recovered from scrap processed in continental United States, 1951-52

	From new scrap		From (old scrap	Total		
Metal	Short tons	Value	Short tons	Value	Short tons	Value	
1951					-		
Aluminum Antimony Copper Lead Magnesium Nickel Tin Zine Total 1952	4, 007 474, 158 76, 452 5, 366 3, 788 11, 476 246, 203	\$78, 759, 798 3, 539, 784 229, 492, 472 26, 452, 392 2, 629, 340 4, 297, 865 29, 449, 252 89, 617, 892 464, 238, 795	76, 591 19, 936 458, 124 441, 658 6, 160 4, 814 22, 958 68, 174	\$27, 925, 079 17, 611, 462 221, 732, 016 152, 813, 668 3, 018, 400 5, 461, 964 58, 913, 901 24, 815, 336 512, 291, 826	292, 608 23, 943 932, 282 518, 110 11, 526 8, 602 34, 434 314, 377	\$106, 684, 877 21, 151, 246 451, 224, 488 179, 266, 060 5, 647, 740 9, 759, 829 88, 363, 153 114, 433, 228	
Aluminum. Antimony. Copper Lead Magnesium Nickel. Tin Zine. Total.	3, 471 488, 562 59, 463 4, 240 3, 220 9, 328 235, 758	85, 698, 989 3, 055, 868 236, 464, 008 19, 147, 686 2, 077, 600 3, 788, 652 22, 469, 286 78, 271, 656	71, 264 19, 618 414, 635 411, 831 7, 237 4, 259 22, 933 74, 665	26, 182, 394 17, 271, 688 200, 683, 340 132, 609, 582 3, 546, 130 5, 011, 139 55, 241, 010 24, 788, 780	304, 522 23, 089 903, 197 471, 294 11, 477 7, 479 32, 261 310, 423	111, 881, 383 20, 327, 556 437, 147, 348 151, 756, 668 5, 623, 730 8, 799, 791 77, 710, 296 103, 060, 436	

TABLE 2.—Secondary metals recovered as unalloyed metal, in alloys, and in chemical compounds in the United States, 1943-47 (average) and 1948-52, in short tons

Metal	1943–47 (average)	1948	1949	1950	1951	1952
Aluminum Antimony Copper Lead Magnesium Nickel Tin Zine	312, 181	286, 777	180, 762	243, 666	292, 608	304, 522
	18, 123	21, 592	18, 061	21, 862	23, 943	23, 089
	961, 758	972, 788	713, 143	977, 239	932, 282	903, 197
	388, 261	500, 071	412, 183	482, 275	518, 110	471, 294
	9, 891	7, 553	5, 962	9, 476	11, 526	11, 477
	7, 102	8, 850	5, 680	8, 795	8, 602	7, 479
	32, 653	30, 124	24, 901	35, 481	34, 434	32, 261
	337, 175	324, 639	237, 813	326, 030	314, 377	310, 423

Consumption of scrap of the four principal metals decreased for several months preceding termination of the steel strike early in July and increased thereafter to about the level of activity of the first half of the year. Total consumers' stocks of aluminum and copper scrap were higher at the end of 1952 than at the beginning, indicating that supply had become more abundant in relation to demand. Total stocks of zinc scrap in the hands of consumers also rose, and those of lead scrap remained about the same as at the end of 1951; both materials were in plentiful supply in the later months of the year.

SCOPE OF REPORT

Table 3 classifies the plants canvassed in nonferrous secondary metal surveys by type of operation and kind of material consumed. Plants have been recorded in over one column if they used scrap items of more than one base; some smelters are listed as lead smelters, aluminum smelters, and copper smelters because they consumed lead-, aluminum-, and copper-base scrap. In the same way, some foundries have been counted as both aluminum and brass foundries. lation of plants in some categories is subject to limitations. large number of foundries and the small size of many of them make it impossible to obtain reports from all units. Also, a few large corporations operating two or more plants prefer to file consolidated reports, in which the number and location of plants are not given. As a rule, response by the larger plants is excellent, so that coverage of quantities of metals consumed is better than coverage according to the number of plants.

The reports from industry, on which data in this chapter are based, are received monthly from smelters, brass and aluminum rolling mills, wire mills, primary producers, and some foundries and manufacturers. All brass foundries, some manufacturers, and a number of the smaller aluminum foundries were canvassed on an annual basis.

TABLE 3.—Number and classification of plants in the United States consuming nonferrous scrap metals, refined copper, and copper-alloy ingots in 1952

	Type of materials used							
Kind of plant	Aluminum	Copper	Lead and tin	Zinc	All non- ferrous types			
Primary plants. Secondary smelters Distillers	1 66 8 165	² 12 4 116	6 269	149 5 24				
Chemical plants Brass mills Wire mills	23	54 61 6 15		28				
Foundries and miscellaneous manufacturers	7 1, 040	8 1, 784	30	9 71	10 1,000			

¹ Includes 15 aluminum-reduction plants and 51 rolling mills and extrusion plants having melting facili-

8 Brass foundries.

Detailed information on primary metals may be found in the chapters devoted to those metals.

Definitions of terms used in this chapter follow:

Secondary metals are metals or alloys recovered from scrap and sidues. The term "secondary" applies only to the source of the metal and has no relation to the type of product recovered as to quality, degree of purity, or physical characteristics.

Includes 15 aluminum-reduction plants and 51 rolling mills and extrusion plants having melting facilities, which consumed aluminum scrap or ingot.
 Primary refineries that consumed copper-base scrap.
 Includes 159 aluminum-alloy ingot makers and 6 military aluminum smelters.
 Includes 79 secondary copper smelters and 37 smelters using copper scrap in other than copper alloys.
 Includes 15 secondary plants and 9 primary producers that used scrap in addition to ore. Includes producers of zinc dust and redistilled slab.
 Refers to companies operating wire mills. Some companies operate over 1 plant.
 Includes foundries using either aluminum scrap or ingot.
 Brass foundries.

Includes galvanizers, die casters, and zinc rolling mills.
 Iron foundries, steel plants, and miscellaneous manufacturers. Any or all types of nonferrous scrap were used by these consumers as well as by the aluminum and brass foundries.

Scrap metals are divided into three main categories—old scrap, new

scrap, and home scrap.

Old scrap consists of metal articles that have been discarded because of wear, damage, or obsolescence, usually after serving a useful purpose. Typical examples of old scrap are discarded trolley wire, battery plates, railroad-car boxes, fire-cartridge cases, automobile crankcases, used pipe, plumbing fixtures from building demolition, lithographers' plates, and obsolete military equipment (frequently unused).

New scrap consists of process or plant scrap generated in the manufacture of articles from primary or refined metal and consumed at a plant of different location from the plant of generation. New scrap also includes defective finished or semifinished articles returned

by purchasers to be reworked.

Home scrap or runaround scrap is process scrap consumed in the plant where generated. In this chapter consumption of new and old scrap only is tabulated, no record being kept, in nonferrous metal canvasses, of home scrap. Scrap generated in a machine shop and consumed in a foundry at the same plant location is considered home scrap, and its consumption is not tabulated. Consumption of scrap is always measured at the point where it loses its identity as scrap and becomes secondary metal.

Toll scrap is scrap treated for a toll or conversion charge and is reported by the plant at which the scrap is consumed, not by the

plant owning the material.

Borings and turnings and other items of process scrap, when consumed outside the plant where generated, are new scrap, whether clean, rusty, or oily and whether generated recently or long before reclamation. Residues are new scrap if generated in processing scrap or refined metal. For example, flue dust from smelting brass scrap is new scrap. Zinc-chemical residues resulting from the consumption of zinc dust in the manufacture of sodium hydrosulfite are also new On the other hand, residues generated in processing ore or concentrates are not scrap but "primary residue." Old mine tailings are primary residue because generated in processing ore. Aircraft plants melt zinc-die alloys and antimonial lead to make dies and remelt the dies to make new ones whenever necessary. material may be remelted several times during a year. In such cases the dies are not considered to be scrap. If, however, they are sold to a smelter for redistillation or remelting, they are considered to be old scrap.

Purchased scrap is a term used in nonferrous-scrap-metal questionnaires to cover all scrap that should be reported. It includes new scrap, old scrap, and toll scrap, all of which have passed through commercial transactions. It also includes scrap generated at one plant and transferred to another plant of the same company for processing, which usually involves transportation charges. The term also includes scrap reclaimed in shippard repair work and from line operations at railroad foundries, although no definite financial transac-

tion may have resulted.

The recovery tables that appear near the beginning of each of the sections on metals in this chapter are double. The figures on the left side represent the recoverable metal in the scrap processed. They are obtained by multiplying the reported gross weights of scrap con-

sumed during the year by percentage recovery factors to obtain the metallic recovery (weight after melting loss), then multiplying the metallic recovery by composition percentages of the products to obtain the quantities of aluminum, copper, lead, zinc, etc., recoverable. The recoverable zinc from zinc die-cast scrap is part of the zinc from zinc-base scrap, as shown in the zinc-recovery table in the Secondary Zinc section of this chapter, the recoverable copper is credited to zinc-base scrap in the copper-recovery table and the recoverable aluminum to the zinc-base scrap in the aluminum-recovery table.

Tonnages of metal recovered are listed in the right side of the recovery table, by products, as the companies report them to the Bureau The totals so derived for each side of the table do not agree because the actual weight of metal produced from melting or otherwise consuming scrap is seldom precisely the same as the calculated recoverable weight. As presented in the tables, however, the items have been adjusted to give the exact balance theoretically The word "recovery" may therefore be applied to both expected.

sides of the table.

SECONDARY ALUMINUM

Recovery of secondary aluminum from purchased and toll-treated scrap consumed in 1952 totaled 305,000 short tons, with a calculated value of \$111,881,000. This represented an increase of about 4 percent compared with 293,000 tons recovered in 1951. Values were computed on the basis of the average price received by primary producers for virgin pig aluminum. The average price of primary pig increased from 18.23 cents per pound in 1951 to 18.37 cents in 1952. Aluminum recovered from secondary sources in 1952 was the largest quantity since 1947, when 345,000 tons was reclaimed.

TABLE 4.—Aluminum recovered from scrap processed in the United States, 1951-52, in short tons

Recoverable aluminum-alloy processed	content o	f scrap	Aluminum recovered 1 from	n scrap pro	cessed
Kind of scrap	1951	1952	Form of recovery 1951		1952
New scrap: Aluminum-base ² Copper-base. Zinc-base Magnesium-base Total. Old scrap: Aluminum-base ³ Copper-base. Zinc-base Magnesium-base Total Grand total.	215, 753 84 122 58 216, 017 75, 942 129 238 282 76, 591 292, 608	232, 833 191 88 146 233, 258 70, 301 123 318 522 71, 264	As metal	5, 341 283, 938 385 1, 204 346 1, 394 292, 608	4, 897 294, 582 387 898 465 3, 293 304, 522

¹ In accordance with common usage, the term "aluminum" covers aluminum alloys, and the figures include all constituents of the alloys recovered from aluminum-base scrap.

² Recoverable aluminum content of new aluminum-base scrap was 201,563 tons in 1951 and 216,314 tons

Recoverable aluminum content of old aluminum-base scrap was 70,713 tons in 1951 and 65,139 tons in 1952.

Production of secondary aluminum-base ingot by nonintegrated secondary smelters as reported to the Bureau of Mines totaled 233,000 tons in 1952, a 16-percent increase compared with 1951. of the deoxidizing grades of ingot increased approximately 3,000 tons. or to 43,000, despite a slowdown during midyear, resulting from a labor strike in the steel mills. The three largest outputs of alloy ingot were 62,000 tons of AXS 679 and variations, 37,000 of No. 319 and variations, and 21,000 of No. 12 and variations—a total of 120,000 tons or 51 percent of the total aluminum-base ingot produced by independent secondary smelters in 1952.

TABLE 5.—Production of secondary aluminum and aluminum-alloy products in the United States, 1950-52, gross weight in short tons

		198		
Product	1950	January- July	August- Decem- ber	1952
Secondary aluminum ingot: 2 Silicon (Cu, max. 1 percent). Silicon (Cu, 1 to 2.5 percent). Other copper (Si max. 2.5 percent) alloys. Copper-silicon (each over 2.5 percent) alloys. Aluminum-magnesium and aluminum-zinc alloys. Pure aluminum (98.5 percent). Aluminum-silicon (Cu max. 0.6 percent) alloys. Aluminum-silicon (Cu, 0.6 to 2 percent) alloys. No. 12 alloy and variations. Aluminum-copper (Si max. 1.5 percent) alloys. No. 319 alloy and variations. AXS 679 alloy and variations. Aluminum-silicon-copper-nickel alloys. Deoxidizing and other dissipative uses. Aluminum-base hardeners. Aluminum-magnesium alloys. Miscellaneous.	5, 395 36, 043 90, 639 4, 907 2, 105 	9, 263 7, 433 24, 708 3, 399	2, 916 5, 048 3, 028 6, 534 3 2, 225 13, 838 13, 226 3, 062 15, 801 2, 253 331 1, 342	4, 893
Total	179, 247	131, 184	70, 485	233, 020
Secondary aluminum recovered by various producers 5	64, 667 35	77,	377	73, 392
Aluminum powder ⁶ Aluminum-alloy castings Aluminum in chemicals	11, 439 331	15,	394 394	7, 811 3, 293

Classification of ingot for reporting to the Bureau of Mines was changed Aug. 1, 1951.
 Gross weight, including copper, silicon, and other alloying elements at independent secondary smelters; total secondary aluminum and aluminum-alloy ingot contained 5,339 tons of primary aluminum in 1950, 12,353 tons in 1951, and 20,509 tons in 1952.
 Of the total, 1,810 tons was produced in 1950,1,438 tons was produced in 1951 and 1,031 tons in 1952 at Naval Air Stations and United States Air Force Bases.
 Negative production indicates consumption of this material at smelters greater than production.
 Secondary aluminum recovered by primary producers and independent fabricators.
 Does not include production measured as ingot for graining, powder, atomizing, or chemical purposes.

During 1946 and 1947 obsolete and wrecked aircraft-scrap consumption exceeded that of any other type of aluminum-base scrap and reached a peak (149,000 tons) in 1947. Since then consumption of old aluminum scrap, including aircraft scrap, has trended downward, totaling 89,000 tons in 1951 and 82,000 in 1952. Since 1949 the consumption of new scrap has increased rapidly owing to increased consumption of primary aluminum. Apparent consumption of primary aluminum increased from 636,000 tons in 1949 to 1,073,000 tons in The total quantity of purchased aluminum-base scrap consumed during 1952 was 348,000 short tons compared with 332,000 tons in 1951 and 199,000 in 1949. Consumption of new scrap increased 22,200 tons and that of old scrap decreased 6,800 tons compared with 1951. Alloy sheet consumed in 1952 increased 2,900 tons, borings and turnings 16,700 tons, and 2S and 3S sheet and utensils 1,500 tons. Total aircraft scrap consumed in 1952 was 12,000 tons, representing a decrease of 2,600 tons compared with 1951, and was the smallest quantity used since 1949. Nonintegrated secondary smelters consumed 73 percent of the total purchased aluminum-base scrap used in 1952; primary producers and fabricators 23 percent and foundries, chemical producers, and others the remaining 4 percent.

TABLE 6.—Stocks and consumption of new and old aluminum scrap in the United States in 1952, gross weight in short tons

	Stocks,		C	onsumptio	n	Stocks.	
Class of consumer and type of scrap	begin- ning of year	Receipts	New scrap	Old scrap	Total	end of year	
Secondary smelters: 1 2S and 3S sheet and utensils Castings and forgings Alloy sheet Borings and turnings Grindings and sawings Dross and skimmings Foll and wire Aircraft Pistons Irony aluminum Miscellaneous	1, 563 410 1, 035 1, 024 91 1, 195 303 567 77 260 1, 047	24, 212 27, 519 59, 692 68, 262 1, 205 30, 799 4, 355 12, 113 3, 379 10, 315 18, 029	15, 860 5, 491 48, 531 66, 351 915 30, 227 343	8, 730 21, 365 9, 889 	24, 590 26, 856 58, 420 66, 351 915 30, 227 4, 276 12, 006 3, 291 9, 879 18, 272	1, 185 1, 073 2, 307 2, 935 381 1, 767 382 674 165 696 804	
Total	7, 572	259, 880	177, 543	77, 540	255, 083	12, 369	
Primary producers and fabricators: 2S and 3S sheet and utensils Castings and forgings Alloy sheet Borings and turnings Dross and skimmings Foll and wire Aircraft Miscellaneous	576 16 1, 244 370 30 32 143 327	14, 259 618 39, 129 13, 277 89 953 69 11, 221	14, 324 388 38, 251 12, 815 84 378	57 166 307 	14, 381 554 38, 558 12, 815 84 793 115 10, 639	454 80 1, 815 832 35 192 97 909	
Total	2, 738	79, 615	75, 560	2, 379	77, 939	4, 414	
Foundries and miscellaneous manufacturers: 28 and 38 sheet and utensils Castings and forgings Alloy sheet Borings and turnings Dross and skimmings Foll and wire Aircraft Pistons Miscellaneous	1, 430 243 9 9 167	909 3, 396 1, 318 3, 719 4, 660 2 - 170 21 91 453	733 1, 770 1, 249 3, 420 4, 875 35	219 1, 621 117 	952 3, 391 1, 366 3, 420 4, 875 70 29 89 516	108 128 13 354 1,215 3 1 11 104	
Total	2, 248	14, 397	12, 385	2, 323	14, 708	1, 937	
Grand total: 2S and 3S sheet and utensils Castings and forgings Alloy sheet Borings and turnings Grindings and sawings Dross and skimmings Foil and wire Aircraft Pistons Irony aluminum Miscellaneous	2, 290 549 2, 340 1, 449 91 2, 655 578 719 86 260 1, 541	39, 380 31, 533 100, 139 85, 258 1, 205 35, 548 5, 138 12, 203 3, 470 10, 315 29, 703	30, 917 7, 649 88, 031 82, 586 915 35, 186 756	9, 006 23, 152 10, 313 	39, 923 30, 801 98, 344 82, 586 915 35, 186 5, 139 12, 150 3, 380 9, 879 29, 427	1, 747 1, 281 4, 135 4, 121 381 3, 017 577 772 176 696 1, 817	
Total	12, 558	353, 892	265, 488	82, 242	347, 730	18, 720	

 ¹ Excludes secondary smelters owned by primary aluminum companies.
 3 Negative figure indicates shipments greater than receipts.

Stocks of secondary aluminum-base ingot held by independent secondary smelters at the end of 1952 totaled 11,100 short tons, an increase of 7,200 tons compared with December 31, 1951. Stocks of purchased aluminum-base scrap held by all consumers, including smelters, primary producers, fabricators, and others with melting facilities, increased 6,100 tons and represented about 15 days' supply. These stock increases were accumulated during a slowdown period caused by the steel strike in midyear. Shipments of the deoxidizing grades of ingot, for example, during July were 900 tons; the monthly

average during 1952 was 3,300 tons.

Aluminum-scrap and secondary-aluminum-ingot prices were controlled throughout 1952 by Office of Price Stabilization Ceiling Price Regulation 54. Revision 1 to this regulation, effective January 16, raised the ceilings on selected types of scrap and secondary ingot and directed that ceiling prices for aircraft scrap and irony aluminum should be established on a delivered basis. To offset freight-rate increases on secondary ingot, Amendment 1 to Ceiling Price Regulation 54, Revision 1, effective December 3, 1952, was necessary. It revised ceiling prices from a delivered to a shipping-point basis. An allowance was made for transportation charges above 75 cents per 100 pounds. The average monthly price of secondary aluminum ingot (No. 12 alloy at New York, as quoted by the American Metal Market) was 19.50 cents a pound in all months of 1952 except July, when it was 18.81 cents, and August, when it was 19.40 cents. The average for the year was 19.43 cents.

Aluminum-base scrap was imported from 17 countries in 1952 and totaled 7,000 short tons valued at \$2,592,000. The average value was 18.52 cents per pound. Canada supplied 3,800 tons, West Germany, 800 tons, The Netherlands, 690 tons, Japan, 565 tons, and the remaining 1,100 tons came from 13 other countries. Exports of aluminum-base scrap totaled 1,000 tons, having a total value of \$164,000. The average value was 7.98 cents per pound. Exports consisted almost

entirely of drosses, skimmings and other low grades of scrap.

SECONDARY ANTIMONY

Recovery of secondary antimony in 1952 totaled 23,000 short tons valued at \$20,328,000, a decrease of 4 percent in quantity and value from the 24,000 tons valued at \$21,151,000 reclaimed in 1951. The values are computed at 44.02 cents per pound in 1952 and 44.17 cents in 1951, the average New York selling price in each year.

Secondary copper and lead smelters recovered 85 percent of the total (20,000 tons), manufacturers 8 percent (1,773 tons), and primary lead smelters, 7 percent (1,615 tons). Antimony recovered in antimonial lead declined 8 percent but increased 6 percent in other lead-base

alloys and 12 percent in tin-base alloys.

Consumption of battery-lead plate scrap fell 8 percent below 1951 or to 383,000 tons but yielded 55 percent of all antimony reclaimed. Antimony recovered from tin scrap came chiefly from tin babbitt scrap; that recovered from lead scrap (23,000 tons) was reclaimed chiefly from old battery plates and in smaller quantities from other scrap, including type metals, common babbitt, dross, etc.

Recoverable antimony content	of scrap p	rocessed	Antimony recovered from scrap processed				
Kind of scrap	1951	1952	Form of recovery	1951	1952		
New scrap: Lead-base Tin-base	4,006	3, 471	In antimonial lead In other lead alloys In tin-base alloys	16, 747 7, 033 163	15, 46 2 7, 445 182		
Total	4,007	3, 471	Grand total	23, 943	23, 089		
Old scrap: Lead-base Tin-base	19, 768 168	19, 451 167					
Total	19, 936	19, 618					

23,089

23,943

TABLE 7.—Antimony recovered from scrap processed in the United States, 1951-52, in short tons

All secondary antimony in 1952 was recovered from lead- and tin-base scrap in, so far as can be determined, lead- and tin-base alloy products. All metallic antimony and antimony oxide produced came The Secondary Metals Recovery Section of the Bureau from ore. of Mines, at the College Park, Md., field station carries on experiments for recovering nonferrous metals from scrap and has initiated a project in which selective oxidation is used. Since lead alloys form relatively simple, low-melting systems, they have been selected as the first to be investigated in this project. This work may develop a method of recovering secondary metallic antimony or antimony oxide.

The recoverable antimony content of the lead and tin scrap used in 1952 was 23,000 tons. The lead and tin products in which antimony was used required 29,000 tons of this metal, of which 6,000 tons was primary metal. Most antimony so used could be recovered sooner or later, but none of the 8,000 tons used in nonmetal products was salvageable, all being used destructively in such products as fireworks or in such products as flameproofed textiles from which it could not be separated, reclaimed by remelting as in lead and tin scrap, or recovered by any other method yet developed.

National Production Authority Order M-39, controlling use and distribution of antimony, was revoked on May 15 because industry appeared to be able to meet all necessary requirements. Mandatory

reporting on stocks, consumption, etc., was continued.

Data on consumption of scrap from which antimony was recovered may be found in the tables on consumption of lead- and tin-base scrap in the sections of this chapter devoted to those metals. Products in which antimony was recovered are included in the lead- and tinproducts table of this chapter under the heading Secondary Lead.

SECONDARY COPPER AND BRASS

The recovery of secondary copper from all classes of nonferrous scrap totaled 903,000 short tons valued at \$437,147,000 in 1952, a 3-percent decrease in quantity and value from the 932,000 tons valued at \$451,224,000 recovered in 1951. These values are computed at 24.2 cents per pound, the average weighted price for all grades of refined copper sold by producers in both years.

TABLE 8.—Copper recovered from scrap processed in the United States, 1951-52, in short tons

Recoverable copper content of	scrap proc	essed	Copper recovered from se	erap proces	sed
Kind of scrap	1951	1952	Form of recovery	1951	1952
New scrap: Copper-base Aluminum-base Nickel-base Lead-base Zino-base Total Old scrap: Copper-base Aluminum-base Nickel-base Lead-base Tin-base Zino-base Tin-base Tin-base Tin-base Tin-base Total Grand total	9, 595 331	477, 853 10, 442 261 6 488, 562 411, 296 2, 553 657 31 97 1 414, 635	As unalloyed copper: At primary plants	135, 023 51, 439 186, 462 702, 416 3, 066 17, 230 22, 905 745, 820 932, 282	122, 377 51, 522 173, 90 686, 385 2, 299 24, 600 15, 388 729, 293

The reduction in secondary copper output was caused to a large extent by factors other than lack of demand; the market was good throughout the year, although better for some secondary copper producers than others. The existence of ceiling prices on domestic copper and scrap, controlled with the higher prices in the world market in the first half of 1952, held back supplies of scrap from the domestic market as they had in 1951. The price of foreign copper sold in the United States advanced sharply after May 1952 when the Government authorized importers to pay higher prices for foreign copper and to pass on to consumers 80 percent of the increased costs. The hope that domestic prices would advance to the levels of foreign copper sold in the United States restricted the flow of scrap and its consumption after this advance. The scarcity of scrap was reflected in consumption data. Use of refined copper increased 63,000 tons (4 percent) in 1952, whereas consumption of copper scrap decreased 33,000 tons or 2 percent. Stocks of copper-base scrap held by all consumers were substantially greater at the end of 1952 (107,000 tons) than at the beginning (66,000 tons). Scrap stocks held by smelters at the end of June exceeded scrap consumption for the current month for the first time since September 1950. Prices paid for unalloyed scrap by primary producers and for brass-mill scrap by brass mills remained at ceilings throughout the year, but prices paid by ingotmakers for alloy scrap declined slightly in the latter half of the year. Many consumers probably were accumulating scrap in 1952, allowable but limited in the regulations, in the hope of higher prices later for either the scrap or their products. It is also probable that foundries and brass mills used home scrap that, in previous years, would have been sold to smelters or began to operate equipment to remove metallics from scrap that otherwise would have been sold without treatment.

The accumulation of scrap due to restricted consumption and flow was not entirely evident in recorded data but apparently existed to some extent in the stocks of generators, of scrap speculators, and of dealers whose small size excused them from reporting. These stocks were subject to inspection but were not regularly reported.

TABLE 9.—Copper recovered as refined copper, in alloys and in other forms, from copper-base scrap processed in the United States, 1951-52, in short

	From ne	ew scrap	From old scrap		Total	
	1951	1952	1951	1952	1951	1952
By secondary copper smelters	77, 844 86, 345 275, 002 23, 878 1, 157	53, 871 87, 715 316, 037 18, 305 1, 925	247, 172 57, 491 39, 848 99, 331 10, 605	229, 876 41, 547 48, 570 85, 827 5, 482	325, 016 143, 836 314, 850 123, 209 11, 762	283, 747 129, 262 364, 607 104, 132 7, 407
Total	464, 226	477, 853	454, 447	411, 302	918, 673	889, 155

Secondary copper is recovered in refined form by refining unalloyed scrap and by separation and refining from alloyed scrap. recovered in brass and bronze or other alloys from copper, brass, and other alloyed scrap by remelting without separation. Copper recovered by refining from or remelting new copper and brass scrap increased about 3 percent owing to increased operations at brass mills, the only group among the plants using copper-base scrap to recover more secondary copper in 1952 than in 1951. Recovery of copper from new aluminum scrap was about 1,000 tons higher in 1952 than in the previous year. Copper recovered from both old and new scrap by secondary copper smelters declined 13 percent or to 284,000 tons in 1952 and that by primary copper producers 10 percent or to 129,000 However, the primary producer's output of refined copper in the final quarter of 1952 increased to 38,000 tons, higher than in any other quarter of the year or in any quarter of 1951, except the second when it was 46,000 tons. Recovery by the brass mills rose 16 percent or to 365,000 tons. The data in table 9 will not agree with those in the footnotes in table 11 of this report because the former are obtained by applying recovery factors to quantities of scrap consumed, whereas the latter represent production as reported on the questionnaires.

Copper-base-scrap consumption in 1952 decreased in proportion to the decline in secondary output and totaled 1,289,000 tons compared with 1,322,000 in 1951. Secondary smelters used 458,000 tons of scrap (10,000 more than the brass mills) in 1951 and 400,000 (116,000 less than the brass mills) in 1952. The brass mills' use of cartridge cases, unalloyed scrap and yellow brass increased 53, 27, and 12 percent, respectively, whereas the secondary smelters consumed 18 percent less yellow brass scrap and 10 percent less unalloyed scrap in 1952 than in 1951, and their use of cartridge cases in both years was Primary producers raised their consumption of new scrap from 128,000 tons in 1951 to 138,000 in 1952, but their total scrap consumption declined 9 percent or to 220,000 tons. Consumption of copper-base scrap by the foundries decreased 12 percent or to 143,000 tons in 1952, and their reported use of brass ingot declined 17 percent

or to 269,000 tons.

TABLE 10.—Stocks and consumption of new and old copper scrap in the United States in 1952, gross weight in short tons

No. 2 wire, mixed heavy, and light. 2, 407 62, 242 2, 424 57, 563 60, 017 4, 22 6, 22 6, 24 6, 25 6, 20 7, 63 6, 20 7, 63 6, 20 7, 63 6, 20 7, 63 7, 63 6, 20 7, 63 7,							
Secondary smelters: No. 1 wire and heavy					Consumpt	tion	Stocks,
No. 1 wire and heavy, and light. 2, 007	Class of consumer and type of scrap	ning of	Receipts	New		Total	end of
Bronze	No. 1 wire and heavy No. 2 wire, mixed heavy, and light Composition or red brass Railroad-or boyes	2, 007 2, 305	62, 242 94, 396 360 70, 520	2, 424 37, 636 2 11, 490	52, 864 302 56, 171 1, 834	60, 017 90, 500 304 67, 661 1, 838	2, 072 4, 232 6, 201 125 6, 240 235
Primary producers: No. 1 wire and heavy. 1,018 29,186 24,320 4,904 29,224 98 No. 2 wire, mixed heavy, and light. 6,380 31,405 11,232 20,816 32,039 5,74 20,24	Bronze	985 484 113 207	35, 025 2, 966 2, 792 735	2, 348 2, 395 18	29, 950 2, 641 281 733	32, 907 2, 989 2, 676 751	4, 283 3, 103 461 229 191 7, 280
No. 1 wire and heavy, and light 1,018 29,186 24,320 4,904 29,224 98 No. 2 wire, mixed heavy, and light 6,380 31,405 11,223 20,816 32,039 5,74	Total	18, 682	416, 409	89, 686	310, 753	400, 439	34, 652
No. 1 wire and heavy, and light 1, 185 50, 292 43, 737 5, 360 49, 097 2, 38	No. 1 wire and heavy No. 2 wire, mixed heavy, and light.	6,380	29, 186 47, 439 31, 405 126, 036	24, 320 37, 354 11, 223 65, 279	9, 486 20, 816	46, 840	980 2, 039 5, 746 23, 116
No. 1 wire and heavy	Total	18, 270	234, 066	138, 176	82, 279	220, 455	31, 881
Foundries, chemical plants, and other manufacturers: No. 1 wire and heavy	No. 1 wire and heavy No. 2 wire, mixed heavy, and light. Yellow brass Cartridge cases Bronze Nickel silver	3, 816 138 885 384	358, 196 52, 055 2, 589 8, 141 13, 838	350, 272 2, 492 8, 225 13, 621	5, 490 45 54, 602	37, 061 350, 317 54, 602 2, 492 8, 225 13, 637	2, 380 504 16, 210 1, 269 235 801 585 82
Manufacturers:	Total	15, 407	523, 470	451, 298	65, 513	516, 811	22, 066
Grand total: No. 1 wire and heavy 5,075 133,310 75,081 55,488 130,569 7,816 150,658 74,897 78,789 153,686 8,632 74,897 78,789 153,686 7,816	manufacturers: No. 1 wire and heavy No. 2 wire, mixed heavy, and light. Composition or red brass. Railroad-car boxes. Yellow brass Cartridge cases Auto radiators (unsweated) Bronze. Nickel silver Low brass.	1, 612 2, 758 2, 840 1, 974 6 1, 857 12 243 422	10, 013 27, 016 68, 329 14, 065 227 700 10, 608 81 2, 487 749	3, 548 8, 926 	6, 220 17, 068 65, 690 9, 643 236 670 10, 117 14 2, 322 372	25, 994 65, 690 14, 190 236 670 10, 686 74 2, 499 870	2, 384 1, 857 3, 780 5, 479 1, 849 36 1, 779 19 231 301 391
No. 1 wire and heavy	Total	13, 606	156, 099	1 24, 586	1 127, 013	1 151, 599	18, 106
Total 65, 965 1 330 044 1 703 746 1 585 558 11 990 904 106 705	No. 1 wire and heavy, No. 2 wire, mixed heavy, and light Composition or red brass. Railroad-ear boxes. Yellow brass. Cartridge cases Auto radiators (unsweated) Bronze. Nickel silver Low brass. Aluminum bronze Low-grade scrap and residues 2	5, 660 5, 063 2, 909 13, 686 3, 946 1, 411 2, 980 1, 381 740 696 22, 418	121, 412 68, 689 442, 781 54, 234 55, 009 48, 222 11, 188 19, 117	46, 562 2 366, 309 4 6, 018 8, 633 16, 193	65, 992 65, 859 56, 672 52, 101 40, 067 2, 655 2, 619	153, 686 116, 494 65, 994 432, 168 56, 676 52, 101 46, 085 11, 288 18, 812 3, 001 202, 430	7, 816 8, 632 9, 981 5, 604 24, 299 1, 504 4, 319 5, 117 1, 281 1, 045 36, 533
100, 705	Total	65, 965	1, 330, 044	1 703, 746	1 585, 558	1 1, 289, 304	106, 705

¹ Of the totals shown, chemical plants reported the following: Unalloyed copper scrap, 1,026 tons of new and 5,519 tons of old; copper-base alloy scrap 976 tons of new and 920 tons of old.
² Includes refinery brass.

When railroad-car journal bearings become worn out from use they are sent to foundries to be reworked. These bearings consist of a bronze back (composition 75 percent copper, 5 percent tin, 17.5 percent lead, and 2.5 percent zinc) in the form of a half cylinder, the bearing surface of which is lined with babbitt (composition 85 to 88 percent lead, 8 to 10 percent antimony, and 3 to 5 percent tin). Some worn bearings can be repaired by sweating off the babbitt and relining, but many are so cracked or damaged that remelting of the entire part is necessary. The sweating is done in a sweating furnace in which the babbitt drains off as melted, or in a bath of molten babbitt from which the brass backs are removed after the babbitt has melted off. Some plants remelt all the backs after the babbitt has been removed, and some sort out the sound backs for relining. Most scrapped bear-

TABLE 11.—Analysis and production of secondary copper and copper-alloy products in the United States, 1951-52

Item produced from scrap	Aj	pproxi	nate ar	nalysis	(perce	nt)	Gross we duced (sh	ight pro- ort tons)
<u>*</u>	Cu	Sn	Pb	Zn	Ni	Al	1951	1952
Unalloyed copper products: Refined copper, electrolytic grade (99.9 Cu + Ag) Refined copper (under 99.9 Cu + Ag) Copper sheet, rod, tubing, etc Copper powder Copper castings	99						143, 520 12, 012 23, 576 3, 680 3, 674	128, 260 14, 503 23, 522 3, 851 3, 768
Total			<u></u>	<u></u>			186, 462	173, 904
Brass and bronze ingots: Tin bronze Leaded-tin bronze Leaded red brass. Leaded semired brass High-leaded-tin bronze Do. Do. Leaded yellow brass Manganese bronze Aluminum bronze Nickel silver Do. Low brass Silicon bronze Conductor bronze Hardeners and special alloys. Total ¹-	88 85 81 80 84 75 66 62 89 58 65 80 92 94	10 6 5 3 10 6 5 1 	1.5 5 7 10 8 20 3 17 3 2	2 4.5 5 9 		5 10	23, 534 25, 901 123, 544 67, 457 29, 061 14, 367 9, 816 25, 330 19, 835 5, 996 3, 470 1, 761 3, 392 814 11, 476	23, 894 23, 023 106, 760 52, 268 20, 941 13, 500 8, 599 23, 596 20, 440 5, 629 2, 955 2, 201 4, 212 669 11, 160
Brass-mill billets made by ingot makersBrass and bronze sheet, rod, tubing, etc.²Brass and bronze castings ²							5, 786 424, 077 137, 895 1, 171 22, 905	7, 702 491, 590 119, 112 926 15, 388

¹ Gross weight of brass and bronze ingot. Includes 285,480 tons of copper, 10,202 tons of tim, 12,159 tons of lead, 38,655 tons of zinc, 675 tons of nickel, 121 tons of aluminum, and 18,562 tons of other alloying ingredients in 1951; and 228,988 tons of copper, 8,633 tons of tim, 9,854 tons of lead, 31,186 tons of zinc, 405 tons of nickel, 96 tons of aluminum, and 40,685 tons of other alloying ingredients in 1952.

3 Gross weight of secondary brass and bronze in commercial shapes. Includes 298,014 tons of copper, 415 tons of tim, 5,660 tons of lead, 118,203 tons of zinc, 2,340 tons of nickel, and 45 tons of aluminum in 1951; and 350,700 tons of copper, 268 tons of tin, 5,680 tons of lead, 133,650 tons of zinc, 1,180 tons of nickel, and 112 tons of aluminum in 1952.

3 Gross weight of secondary metal in brass and bronze castings. Includes 108,617 tons of copper, 5,525 tons of tin, 15,146 tons of lead, 8,545 tons of zinc, 15 tons of nickel, and 47 tons of aluminum in 1951; and 92,696 tons of copper, 5,212 tons of tin, 14,595 tons of lead, 6,484 tons of zinc, 58 tons of nickel, and 67 tons of aluminum in 1952.

ings are remade into new car journals. All of the antimony in the bearing metal cannot be removed by sweating because some of it diffuses into the brass. Antimony content up to 1 percent is allowable in the brass used for the backs of the bearings but is an impurity in most copper alloys. The new bearing surfaces are given a thin coating of tin. Babbitt is then poured on to a depth of 1/2 inch, then machined to ¼ inch. The chief cause of failure of the bearing is separation of the babbitt from the brass.

TABLE 12.—Consumption of copper and brass materials, in the United States. 1951-52, by principal consuming groups, in short tons

Item consumed	Primary produ c ers	Brass mills	Wire mills	Foundries and mis- cellaneous ¹	Secondary smelters
1951					
Copper-base scrap Primary material	241, 514 21, 206, 988	448, 501		160, 660	458, 306
Refined copper 3 Brass ingot		650, 967 7, 815	710, 199 842	38, 732 355, 020	13,744
Slab zinc Miscellaneous		129, 798 559		4 309	20, 744
- 1952					
Copper-base scrap Primary material	220, 455 21, 177, 696	516, 811		143, 158	400, 439
Refined copper 3 Brass ingot Slab zine		675, 073 12, 546 155, 608	739, 487 262	38, 535 292, 817	22, 918
Miscellaneous		887		408	18, 408

1 Excludes chemical plants.

² Recoverable copper content; gross weight not available.

Consumption of brass ingot reported by foundries was 18 percent less in 1952 than in 1951 and totaled 269,000 short tons compared with 326,000. In addition to the 269,000 tons reported by the foundries, 16,000 tons was consumed by brass and wire mills, so that the total reported consumption in 1952 was 285,000 tons. Exports totaled 2,400 tons. Data on imports of brass ingot are not readily Brass ingotmakers shipped 308,000 tons of brass ingot available. in 1952 and 370,000 tons in 1951. On the assumption that shipments equal domestic consumption plus exports, this consumption survey achieved 93 percent coverage in 1952 compared with 91 percent in Although 3,000 plants were canvassed in 1952, only 1,447 The other plants, many of whose names were obwere tabulated. tained from industrial directories and other sources, were found not to belong in Bureau of Mines classifications; these consumed

none or negligible quantities of metal in 1952 or failed to report.

In table 13 the ingot consumption has been classified under 9 general types and by States, combined in 9 groups, according to Minerals Yearbook practice. As in 1951, the geographic division containing Ohio and Illinois consumed more than any other group (120,000 tons) and Ohio more than any other State (49,000 tons).

³ Detailed information on consumption of refined copper will be found in the Copper chapter of this volume.
4 Revised figure.

TABLE 13.—Foundry consumption of brass ingot, in the United States in 1952, by geographic division and States, in short tons

	Dy Sco	Brapin	, 411151	on and		,				
Geographic division and State	Tin bronze	Leaded tin bronze	Leaded red brass	High leaded tin bronze	Leaded yellow brass	Man- ga- nese bronze	Hard- eners	Nickel silver	Low brass	Total
New England: Connecticut Maine Massachusetts New Hampshire Rhode Island and	377 27 919 10	2, 746 16 2, 557 33	4, 224 215 4, 860 722	397 99 273	1,810 3 389 598	232 290 872 121	8 45 50	45 149 23	390 15 124 53	10, 229 710 10, 193 1, 560
Vermont	65	352	1, 174	64	29	2	- 8		44	1,738
Total	1,398	5, 704	11, 195	833	2,829	1, 517	111	217	626	24, 430
Middle Atlantic: New Jersey New York Pennsylvania	1, 826 3, 295 2, 705	768 2, 923 3, 198	5, 048 12, 330 17, 131	817 1, 037 2, 717	436 1, 705 1, 205	794 2, 732 6, 186	31 246 1, 152	11 253 662	126 632 1,547	9, 857 25, 153 36, 503
Total	7, 826	6, 889	34, 509	4, 571	3, 346	9,712	1, 429	926	2,305	71, 513
East North Central: Illinois Indiana Michigan Ohio Wisconsin	1, 924 268 459 2, 876 1, 365	3, 056 364 3, 871 6, 600 1, 225	19, 018 7, 971 11, 080 28, 536 5, 136	1, 395 821 719 7, 799 2, 242	275 106 770 652 1, 970	953 169 1, 641 1, 078 498	54 205 58 243 14	349 16 14 768 961	1,339 59 172 499 187	28, 363 9, 979 18, 784 49, 051 13, 598
Total	6, 892	15, 116	71, 741	12, 976	3, 773	4, 339	574	2, 108	2, 256	119, 775
West North Central: Iowa Kansas Minnesota Missouri	19 23 414 219	50 68 658 402	2,068 105 1,690 2,035	91 687 258	28 121 24 838	83 4 82 101	8 46	20	$1 \\ 10 \\ 320$	2, 360 322 3, 573 4, 221
Nebraska and South Dakota	66	12	395	14		31				518
Total	741	1, 190	6, 293	1,050	1,011	301	54	. 22	332	10, 994
South Atlantic: Delaware Florida Georgia	29 6 4	12	371 53 125	35 13	28	23 61			3 150 3	501 283 510
Maryland and Dis- trict of Columbia	39	244	532	103		67	8	96	66	1, 155
North and South Carolina Virginia West Virginia	641	64 284 130	40 111 2,871	230 31	128 99 328	96 12	1 12 		8	235 1, 473 3, 383
Total	722	1, 107	4, 103	413	588	260	21	96	230	7, 540
East South Central: Alabama Kentucky Mississippi	61 1 3	1, 430 40	3, 889 393 9	167 100 4	620 4, 293	533	5 22	1	185 4	6, 891 4, 858 16 1, 741
Tennessee	48	259	595	650	92	90	3			13, 506
Total	113	1,729	4,886	921	5,005	632	30	1	189	15, 500
West South Central: Arkansas and Lou- isiana Oklahoma Texas	19* 363 109	23 510 290	93 97 1,652	7 82 46	1 8	21 15 268	<u>1</u>	3	2 10 82	165 1,079 2, 464
Total	491	823	1,842	135	9	304	7	3	94	3, 708
Mountain: Colorado and New Mexico	119	128	144	9	2	12	1		17	432
Idaho, Montana, and Utah	3	9	5				4			21
Total	122	137	149	9	2	12	5		17	453
Pacific: California Oregon Washington	952 1 17	687 102 68	11, 539 36 148	840 17 13	1, 365	509 11 135	21 10	29	230	16, 172 167 393
Total	970	857	11,723	870	1, 365	655	31	29	232	16, 732
Grand total	19, 275	33, 552	146, 441	21, 778	17, 928	17, 732	2, 262	3, 402	6, 281	268, 65 1

The division using the next largest total (72,000 tons) was the Middle Atlantic, in which the New York metropolitan area lies. These two regions together consumed 71 percent of the total quantity used by foundries. Of the 320,000 tons of copper-alloy ingot produced in 1952, about 55 percent was made in the Chicago metropolitan area, 20 percent in the New York City area, and 5 percent in Ohio. Consumption of composition ingot—the largest item—amounted to 146,000 tons (55 percent of the total).

In table 14 the consumption of the different types of ingot is compared, in percent, for the 5 years in which the survey has been conducted.

Dealers' buying prices for No. 1 composition scrap remained at the ceiling price (18.25 cents) through the first 4 months of the year, then declined gradually to 17.75 cents, which was the average of prices quoted at the end of the year. The price of No. 1 Heavy copper scrap was 19.00 cents—the ceiling price—throughout 1952. Prices for copper-alloy ingot were at ceilings from March 3, 1952, when they were established, for the remainder of the year.

TABLE 14.—Foundry consumption of brass ingot in the United States, percent by type of ingot, 1948-52

Type of ingot	Tin bronze	Leaded tin bronze	Leaded red brass	High- leaded tin bronze	Leaded yellow brass	Man- ganese bronze	Hard- eners	Nickel silver	Low brass	Total tons con- sumed
1948	5. 7 5. 6 4. 4 6. 1 7. 2	17. 4 15. 2 15. 0 15. 8 12. 5	54.8 57.9 61.8 54.2 54.5	7.5 6.1 4.6 7.5 8.1	6.3 7.2 6.9 7.5 6.7	4. 2 4. 3 3. 7 4. 9 6. 6	1.1 1.0 1.3 1.2	1.1 .7 .6 .6	1.9 2.0 1.7 2.2 2.3	225, 298 162, 188 273, 433 325, 786 268, 651

[Percent of total]

TABLE 15.—Brass and copper scrap imported into and exported from the United States, 1943-47 (average) and 1948-52, in short tons

	1943–47 (average)	1948	1949	1950	1951	1952
Imports for consumption: Brass scrap. Scrap copper. Exports: Brass scrap. Scrap copper.	31, 891	59, 984	23, 486	37, 537	6, 523	10, 321
	2, 478	9, 334	6, 765	34, 242	6, 792	5, 125
	961	6, 584	13, 963	9, 054	4, 857	1 6, 261
	422	2, 266	8, 284	9, 445	7, 701	8, 941

¹ Copper-base alloy scrap, including nickel silver; not strictly comparable with earlier years.

SECONDARY LEAD

The quantity of secondary lead recovered in 1952 dropped 9 percent to 471,000 short tons valued at \$151,757,000 compared with 518,000 tons valued at \$179,266,000 in 1951. Value of lead recovered has been computed for both years on the basis of the yearly average weighted prices of all grades of refined lead sold by producers or 16.1 cents a pound in 1952 and 17.3 cents in 1951. The quantity of lead recovered was greater than domestic mine production for the seventh consecutive year.

TABLE 16.—Lead recovered from scrap processed in the United States, 1951-52, in short tons

Recoverable lead content of	scrap pro	cessed	Lead recovered from sc	rap process	ed.
Kind of scrap	1951	1952	Form of recovery	1951	1952
New scrap: Lead-base Copper-base	68, 064 8, 388	51, 380 8, 083	As metal: At primary plants At other plants	3, 893 165, 023	3, 070 137, 032
Total	76, 452	59, 463	Total	168, 916	140, 102
Old scrap: Battery lead platesAll other lead-baseCopper-baseTin-base	282, 630 135, 109 23, 897 22	254, 827 130, 302 26, 679 23	In antimonial lead ¹ In other lead alloys In copper-base alloys In tin-base alloys	229, 963 95, 516 23, 044 671	222, 951 93, 048 14, 479 714
Total	441,658	411,831	Total	349, 194	331,192
Grand total	518, 110	471, 294	Grand total	518, 110	471, 294

¹ Includes 34,303 tons of lead recovered in antimonial lead from secondary sources at primary plants in 1951 and 35,145 tons in 1952.

Shipments (the same as production for all practical purposes) of secondary lead as metal fell from 172,000 tons in 1951 to 143,000 tons in 1952—a decrease of 17 percent. Secondary lead recovered in antimonial lead decreased only 3 percent to 223,000 tons but dropped 17 percent in lead-base babbitt, 5 percent in type metals, and 51 percent in miscellaneous alloys. Lead recovered in solder increased 13 percent to total 39,000 tons. The decrease in total output of the

TABLE 17.—Shipments ¹ of secondary lead, tin, and lead- and tin-alloy products in the United States in 1952, gross weight in short tons

	Gross		Secondary n	netal content	1
Product	weight of products 2	Lead	Tin	Antimony	Copper
Refined pig lead	113, 216 28, 509 1, 502	113, 216 26, 445 441			
Total	143, 227	140, 102			
Refined pig tinRemelt tinTin foil	. 3,039 354 12		3, 039 161 7		
Total	3, 405		3, 207		
Lead and tin alloys: Antimonial lead. Common babbitt. Genuine babbitt. Other tin babbitts. Solder. Type metals. Miscellaneous lead-tin alloys.	251, 488 29, 502 1, 529 1, 663 72, 492 40, 049 1, 929	222, 951 21, 504 166 548 38, 889 31, 725 649	256 1,834 479 406 8,255 1,722 48	15, 462 2, 984 88 94 576 3, 820 55	18 40 34 31 6 8
Total	398, 652	316, 432	13,000	23, 079	134
Composition foil Tin content of chemical products	509 382	281	56 382	10	

¹ Most of the figures herein represent shipments rather than production of the items involved. However, it has been necessary to record actual production figures in some instances where the information is procured from reports on that basis.

2 Difference between gross weight of products and secondary metal content represents added primary

metals or impurity content.

industry amounted to 15 percent. No scrap lead was reported used in chemicals in 1952, whereas 151,000 tons of refined lead was consumed in tetraethyl lead and miscellaneous chemicals. Secondary smelters consumed 103,000 tons of primary metals (1 percent under the 1951 total) with scrap metal and secondary ingot, of which 83,000 tons was soft lead, 6,000 tons antimonial lead, 9,000 tons primary and detinners' brand tin, 4,000 tons antimony in metal and in ore, and 1,000 tons miscellaneous metals such as arsenic and bismuth.

The data for gross weights of products in the first column of table 17 include, in addition to secondary metal and impurity content, primary metal added as an alloying ingredient by secondary smelters. The secondary metal content of production by primary producers is included in the totals, but the primary metal content of output by primary producers is not. If the items for secondary lead in lead and tin products in the right side of table 16 are added and those for secondary lead content of shipments of secondary products are added separately, the two totals will be the same within a few hundred tons.

Primary lead refiners process scrap and recover some secondary metal in conjunction with their primary operations. In 1952 they reclaimed 38,000 tons of secondary lead or 8 percent of the total production. Of this quantity 3,000 tons was refined soft lead and 35,000 tons antimonial lead. Secondary antimony recovered in anti-

monial lead by these plants was 2,000 tons.

All consumers, including primary refiners, secondary smelters, foundries, and other manufacturers, used 609,000 tons of lead-base scrap and residues—10 percent under the quantity consumed in 1951. Slight gains were reported in use of hard lead scrap and solder scrap, but consumption of soft lead decreased 12 percent, battery-lead plates 8 percent, common babbitt 11 percent, type metals 7 percent, and the drosses 21 percent. Peak operations occurred in October (about 60,000 tons of scrap was treated), and the lowest monthly consumption of the year was recorded in December (40,000 tons). Of the 593,000 tons of lead-base scrap consumed by smelters in 1952, 383,000 was battery-lead plates; of the 16,000 tons consumed by foundries and manufacturers 13,000 tons was mixed common babbitt. The next largest item used by the smelters was drosses (78,000 tons) and the next, soft lead (52,000 tons). Virtually no process scrap is generated in using lead except drosses, which were 13 percent of the total lead-base scrap used in 1952.

The supply of lead was still short in the early months of 1952, but due to greatly increased imports became so plentiful as to cause the National Production Authority to revoke all controls (except mandatory reporting) on lead on May 15. As a result of the excess supplies, the selling price of lead declined from the 19-cent ceiling that prevailed through April 29 to 13.50 cents a pound on October 22; thereafter it rose to 14.50 cents on November 12 but dropped again to 14.00 cents on November 24 and rose to 14.75 on December 30. Scrap and secondary prices fluctuated with the change in primary prices; the year's average New York price for heavy scrap lead was 13.12 cents per pound. The quoted battery-plate smelting charge ranged from \$40 to \$50 in January, increased to \$60-\$70 in May, dropped to \$40 in August, was \$55 to \$60 in October, and fell again to \$40 at the end

of the year.

TABLE 18.—Stocks and consumption of new and old lead scrap in the United States in 1952, gross weight in short tons

	Stocks,		C	onsumptio	n	Stocks,
Class of consumer and type of scrap	begin- ning of year	Receipts	New scrap	Old scrap	Total	end of year
Smelters and refiners: Soft lead Hard lead Cable lead Battery-lead plates Mixed common babbitt Solder and tinny lead Type metals Dross and residues	604 494 1, 256 24, 808	17, 235 18, 418 382, 423 7, 859 13, 252	78, 439	7,837 13,359	52, 014 17, 060 18, 152 383, 198 7, 837 13, 359 22, 744 78, 439	5, 981 2, 899 583 20, 682 626 387 796 22, 310
Total	54, 762	592, 305	78, 439	514, 364	592, 803	54, 264
Foundries and other manufacturers: Soft lead	1,319 348 5 82	974 471 239 80 12,303 1,737 56 72	378 1,078	59	1, 045 537 241 82 12, 678 1, 509 59 58	944 576 2 96
Total	2,048	15, 932	1, 555	14, 654	16, 209	1,771
Grand total: Soft lead	2,801 344 21,459 1,923 842 1,261	55, 867 17, 706 18, 657 382, 503 20, 162 14, 989 22, 340 76, 013		22,803	53, 059 17, 597 18, 393 383, 280 20, 515 14, 868 22, 803 78, 497	6, 098 2, 910 608 20, 682 1, 570 963 798 22, 406
Total	56, 810	608, 237	79, 994	529, 018	609, 012	56, 035

Percentage and remelt metals reshipped within the secondary lead industry in 1952 totaled 35,000 tons. Shipments consisted of 5,000 tons of solder, 3,000 tons of lead-base babbitt, 11,000 tons of remelt and secondary refined soft lead, 2,000 tons of type metals, 1,000 tons of cable lead, 13,000 tons of antimonial lead, and small quantities of tin-base babbitt, remelt tin, and pewter. In addition, smelters shipped 440,000 tons of these metals to consumers in 1952.

General imports of lead scrap totaled 12,000 tons (lead content) in

1952 compared with 9,000 tons in 1951.

SECONDARY MAGNESIUM

Secondary magnesium recovered from purchased scrap, including scrap treated on toll, in 1952, totaled 11,480 short tons valued at \$5,624,000 compared with 11,530 tons valued at \$5,648,000 in 1951. Values have been calculated at 24.5 cents a pound, the price for primary magnesium ingot (98.5 percent), f. o. b. Freeport, Tex., during the 2 years. Production of primary magnesium in 1952 was 106,000 tons and consumption 44,000 tons.

The figures for magnesium recovered from aluminum scrap show large increases for both 1951 and 1952 because Bureau of Mines magnesium percentages of several types of aluminum scrap were revised upward to allow for increased quantities of magnesium used

in aluminum alloys during those years.

TABLE 19.—Magnesium recovered from scrap processed in the United States, 1951-52, in short tons

Recoverable magnesium-al scrap processed			Magnesium recovered ¹ from scrap processed					
Kind of scrap	1951	1952	Form of recovery	1951	1952			
New scrap: Magnesium-baseAluminum-base	3, 727 1, 639	2, 529 1, 711	Magnesium-alloy ingot ² (gross weight) Magnesium-alloy castings (gross	5, 662	6, 41			
Total	5, 366	4, 240	Weight)	1,675 25 3,393	71			
Old scrap: Magnesium-base Aluminum-base	5, 366 794	6, 519 718	In zinc and other alloys. Chemical and other dissipative uses. Cathodic protection.	55 101 615	3, 02 4 1 1, 27			
Total	6, 160	7, 237	Grand total	11, 526	11, 47			

¹ Includes alloying elements.

Magnesium-base scrap consumed in 1952 decreased 4 percent from the 10,390 tons used in 1951, whereas use of primary magnesium increased 23 percent. Consumption of new scrap decreased 31 percent from 1951 consumption, and use of old scrap increased 15 percent. The large percentage of decrease in new scrap may be explained by the increased use of the primary metal by small concerns in producing structural products. Some companies were not well equipped to process the scrap generated in their plants, and only the scrap that could be kept clean and dry to be shipped out was salvaged. Borings and turnings, which offer the greatest fire hazard in handling magnesium scrap, were, to a large extent, lost in the smaller plants, which destroyed them as they were generated.

As with aluminum scrap, it is impossible to determine the composition of magnesium scrap from the color. If the scrap is all of the same composition, a lot can be accurately sampled, but mixed scrap has to be melted before it can be sampled satisfactorily. It is therefore often more convenient to use primary magnesium or magnesium alloy than scrap.

TABLE 20.—Stocks and consumption of new and old magnesium scrap in the United States in 1952, gross weight in short tons

Scrap item	Stocks,		C	Stocks,		
	beginning of year	Receipts	New scrap	Old scrap	Total	end of year
Cast scrap Solid wrought scrap. Borings, grindings, drosses, etc	1, 581 109 139	7, 014 1, 277 1, 330	373 1, 231 1, 315	7, 086	7, 459 1, 231 1, 315	1, 136 155 154
Total	1,829	9, 621	2, 919	7, 086	1 10, 005	1, 445

¹ Includes 805 tons consumed in making magnesium castings, 2 tons in wrought products, 563 tons in aluminum alloys, 45 tons in other alloys, 7,089 tons in magnesium-alloy ingot, 1,464 tons in cathodic protection and 37 tons in dissipative uses.

² Figures include secondary magnesium incorporated in primary magnesium ingot.

Although primary magnesium was sold at a definite ceiling price of 24.5 cents throughout 1951 and 1952, magnesium scrap ceiling prices, which were controlled only by the General Price Regulation, Economic Stabilization Agency Order 2, varied according to the prices received by sellers in the base period. The price of remelt magnesium ingot was quoted at 31.5 cents a pound throughout 1952.

SECONDARY NICKEL

The recovery of secondary nickel from nonferrous scrap totaled 7,500 short tons valued at \$8,800,000 in 1952, a decrease of 13 percent in quantity below the 8,600 tons valued at \$9,760,000 recovered in 1951. The total value was calculated at 58.83 cents a pound in 1952 and 56.73 cents in 1951, the average spot-delivery prices of Grade F nickel ingots and shot in 10,000 pound lots at New York. Secondary nickel recovered in copper-base alloys in 1952 rose 6 percent to 2,700 tons and in chemical compounds 17 percent to 1,100 tons but declined 47 percent to 1,100 tons in iron and steel. Nickel recovery in nickel-and aluminum-base alloys was about 1,000 tons each in both 1951 and 1952.

TABLE 21.—Nickel recovered from scrap processed in the United States, 1951-52, in short tons

Recoverable nickel content of	scrap pr		Nickel recovered from sc	rap proces	
Kind of scrap	1951	1952	Form of recovery	1951	1952
New scrap: Nickel-base Copper-base Aluminum-base	1,143 1,875 770	941 1, 458 821	As metal In nickel-base alloys In copper-base alloys In aluminum-base alloys In lead-base alloys	684 1, 096 2, 554 1, 125	274 1, 06 2, 70 1, 14 24
Total	3, 788	3, 220	In cast iron and steel ¹ In chemical compounds	2, 149 968	1, 130 1, 135
Old scrap: Nickel-base	3,896 563 353 2	3, 604 362 291 2	Grand total	8, 602	7, 479
Total	4,814	4, 259		-	
Grand total	8,602	7, 479		1	

¹ Includes only nonferrous nickel scrap added to cast iron and steel.

As was the case with most nonferrous metals, the availability of primary nickel in 1952 was greater than of nickel scrap; consumption of the latter, excluding nickel silver, increased 3 percent or to 7,400 tons, whereas consumption of primary nickel increased 17 percent or to 101,000 tons. The scrap consumed in 1952 was of lower average grade than that used in 1951, and the recovery of metal was lower. Consumption of nickel silver, a copper-base item, is customarily tabulated in both the copper-scrap and the nickel-scrap tables. Its composition varies, being from one-half to two-thirds copper and about one-fifth nickel, with tin, lead, and zinc, one or all, constituting the remainder. Consumption of nickel-silver scrap decreased 24 percent, or to 11,300 tons, in 1952. About three-quarters of the total consumed was used by brass mills in both years. The largest item of nickel-

base scrap was nickel residues, including black nickel oxide from wornout storage batteries and spent-nickel catalyst. Treatment of this category more than doubled in 1952. Use of monel scrap, the next largest nickel-base scrap item, declined to 2,600 tons in 1952 from 3,200 tons in 1951.

TABLE 22.—Stocks and consumption of new and old nickel scrap in the United States in 1952, gross weight in short tons

begin- ning of year	Receipts	New	014		Stocks, end of
		scrap	New Old scrap		year
36 183 484 16 37	540 1, 916 2, 966 85 226	27 555 348 56	491 1, 228 2, 641 25 243	518 1,783 2,989 81 243	58 316 461 20 20
756	5, 733	986	4, 628	5, 614	875
109 395 897 93 277	569 861 8, 222 302 3, 079	322 102 8, 285 14 209	259 688 14 309 2,834	581 790 8, 299 323 3, 043	97 466 820 72 313
	13,033		4, 104	15,050	1,700
145 578 1,381 109 314	1, 109 2, 777 11, 188 387 3, 305	349 657 8, 633 70 209	750 1, 916 2, 655 334 3, 077	1, 099 2, 573 11, 288 404 3, 286	155 782 1, 281 92 333
	109 395 897 93 277 1,771	484 2, 966 16 37 226 756 5, 733 109 569 395 861 897 8, 222 93 302 277 3, 079 1, 771 13, 033 145 1, 109 578 1, 1381 11, 188 109 387 314 3, 305	484 2,966 348 16 85 56 37 226 56 756 5,733 986 109 569 322 395 861 102 897 8,222 8,285 93 302 14 277 3,079 209 1,771 13,033 8,932 145 1,109 349 578 2,777 657 1,381 11,188 8,633 109 387 70 314 3,305 209	484 2,966 348 2,641 16 85 56 243 756 5,733 986 4,628 109 569 322 259 395 861 102 688 897 8,222 8,285 14 93 302 14 309 277 3,079 209 2,834 1,771 13,033 8,932 4,104 145 1,109 349 750 578 2,777 657 1,916 1,381 11,188 8,633 2,655 109 387 70 334 314 3,305 209 3,077	484 2,966 348 2,641 2,989 16 85 56 25 243 243 756 5,733 986 4,628 5,614 109 569 322 259 581 395 861 102 688 790 897 8,222 8,285 14 8,299 93 302 14 309 334 3,043 1,771 13,033 8,932 4,104 13,036 145 1,109 349 750 1,099 578 2,777 657 1,916 2,573 1,381 11,188 8,633 2,655 11,288 109 387 70 334 404 314 3,305 209 3,077 3,286

¹ Copper-base scrap, and so tabulated except in this table.

The price of primary nickel remained the same throughout the year, as did dealers' buying prices at New York for scrap-nickel clippings (36 cents) and monel clippings (20 cents).

Imports of nickel scrap in 1950, 1951, and 1952 were 600 tons, 800, and 500, respectively. Exports in 1952 totaled 5,800 tons compared with 4,000 in 1951 and 2,800 tons in 1950.

SECONDARY TIN

Recovery of secondary tin in 1952 totaled 32,000 tons valued at \$77,710,000, a 6-percent decrease in quantity from the 34,000 tons valued at \$88,363,000 reclaimed in 1951. Values are computed at 120.44 cents per pound for 1952 and 128.31 cents for 1951, the average New York selling price for Straits tin in each year.

Less tin was recovered in 1952, both as metal and in alloys, as shown on the right side of table 23. Detinners' recovery, as metal, dropped 14 percent, and recovery in chemical compounds dropped 30 percent. Secondary lead and tin smelters' recovery of tin, as metal, increased 11 percent; in solder, in tin babbitt, and in lead-base alloys the increases amounted to 48, 30, and 3 percent, respectively. Tin reclaimed in brass and bronze, however, decreased about 22 percent and totaled

16,000 tons. Of this quantity, secondary copper smelters recovered about 64 percent and brass foundries the remainder, except for a few hundred tons credited to brass mills. All tin recovered as metal came from tin plate or unalloyed tin scrap. All tin reclaimed from alloy scrap was recovered in alloys without separation from the other metals in the scrap.

TABLE 23.—Tin recovered from scrap processed in the United States, 1951-52, in short tons

Recoverable tin content of s	crap proce	ssed	Tin recovered from scrap processed				
Kind of scrap	Kind of scrap 1951 1952 Form of recovery		1951	1952			
New scrap: Tin plate Tin-base Lead-base	3, 826 1, 505 2, 682	3, 117 1, 447 2, 435	As metal: At detinning plants At other plants	3, 529 166	3, 022 185		
Copper-base	2, 082 3, 463	2, 455	Total	3, 695	3, 207		
Total	11, 476	9, 328	In solder In tin babbitt	5, 591 681	8, 255 885		
Old scrap:			In chemical compounds	542	382		
Tin cans Tin-base Lead-base	166 3, 128 6, 985	185 3,855 6,822	In lead-base alloys	3, 790 20, 135	3, 916 15, 616		
Copper-base	12,679	12,071	Total	30, 739	29, 054		
Total	22, 958	22, 933	Grand total	34, 434	32, 261		
Grand total	34, 434	32, 261					

Secondary smelters consumed 7,000 tons of tin-base scrap and residues compared with 6,000 tons in 1951. Greater use was made of block-tin pipe, scruff and dross, and high-tin babbitt, but considerably less tin residues were treated. This increased consumption of tin scrap was reflected in increased recovery from 4,600 tons in 1951 to 5,300 in 1952, as indicated in table 23.

Data in the left side of table 23 indicate that tin recovery from old scrap was virtually the same in 1952 as in 1951 but that recovery from new scrap declined 2,000 tons to 9,000. The decline resulted chiefly from reduced reclamation of tin from tin-plate scrap and from new copper-base scrap. Virtually all the copper-base scrap was used in making copper-base alloys. However, a small quantity of unalloyed copper scrap was reported used in making babbitt. Table 22, in the Lead section of this chapter, indicates small quantities of secondary copper content in shipments of babbitt and other lead and tin alloys, in most of which it is considered an impurity. The tin contained in the copper-base scrap consumed was chiefly that in the scrap used by smelters and foundries. Tin is absent from most kinds of brass-mill scrap.

The average New York monthly price of scrap-tin pipe was slightly over \$1.01 per pound. The low point of the year was January's average (94.77 cents), with February, March, and April holding the highest average (\$1.05). Two price reductions dropped the average to \$1 in June, where it remained for the rest of the year—about 20

cents under Straits tin quotations.

TABLE 24.—Stocks and consumption of new and old tin scrap in the United States in 1952, gross weight in short tons

	Stocks,			Consump	tion	Stocks,
Class of consumer and type of scrap	begin- ning of year	Receipts	New scrap			end of year
Smelters and refiners: Block-tin plpe, scrap, and foil Tin scruff and dross. No. 1 pewter. High-tin babbitt. Residues.	203 776 14 221 285	1, 476 1, 866 111 2, 438 404	2, 224	1, 632 103 2, 337	1, 632 2, 224 103 2, 337 230	47 418 22 322 459
Total	1, 499	6, 295	2, 454	4,072	6, 526	1, 268
Foundries and other manufacturers: Block-tin pipe, scrap, and foil————————————————————————————————————		39 97 2	6 4	32 76	38 80	1 17 2
Total		138	10	108	118	20
Grand total: Block-tin pipe, scrap, and foil Tin scruff and dross. No. 1 pewter High-tin babbitt. Residues Total	14	1, 515 1, 866 111 2, 535 406 6, 433	2, 224 230 2, 464	1, 664 103 2, 413 	1, 670 2, 224 103 2, 417 230 6, 644	48 418 22 339 461 1, 288

TABLE 25.—Tin recovered from scrap processed at detinning plants in the United States, 1951-52

	1951	1952
Scrap treated:		
Clean tin-plate clippingslong tons_Old tin-coated containersdo	481, 443 22, 131	439, 321 25, 890
Totaldo	503, 574	465, 211
Tin recovered: From new tin-plate clippingsshort tons_ From old tin-coated containersdo	3, 826 166	3, 117 185
Totaldo	3, 992	3, 302
Form of recovery: As metaldo In compoundsdo	3, 529 463	2, 952 350
Totaldo	1 3, 992	1 3, 302
Weight of tin compounds produceddodoAverage quantity of tin recovered per long ton of clean tin-plate scrap usedpoundsAverage quantity of tin recovered per long ton of old tin-coated containers used	958 15, 89	719 14. 19
Average delivered cost of clean tin-plate scrappoinds Average delivered cost of old tin-coated containersdo	14. 98 \$41. 28 \$32. 45	14, 31 \$36, 50 \$33, 33

 $^{^1}$ Recovery from tin-plate clippings and old containers only. In addition, detinners recovered 102 tons of tin as metal and in compounds from tin-base scrap and residues in 1952, and 79 tons from these sources in 1951.

Secondary tin recovered by detinning plants, as metal and in chemical compounds, decreased 16 percent in 1952. The total tin recovered was 3,000 short tons in 1952 compared with 4,000 in 1951. Tin-plate clippings and old cans were the source of 3,302 tons in 1952, of which 2,952 was reclaimed as metal and 350 tons in the form of tin compounds. During 1951 the usage of such material

provided 4,000 tons comprising 3,500 tons of metal and 500 in compounds. The treatment of other tin-bearing materials accounts for the remaining production of 102 tons in 1952 and 79 in 1951.

The industry reported treating 439,000 long tons of tin-plate clippings in 1952—9 percent less than the 481,000 tons processed in 1951, the peak year. The average cost of such clippings delivered at plants decreased from \$41.28 a long ton in 1951 to \$36.50 in 1952. The average quoted composite price of No. 1 Heavy-Melting steel scrap was \$41.79 a long ton in 1952 compared with the record-high of \$43.15 in 1951. Ceiling prices for steel scrap were in effect throughout 1952. Steel scrap is one of the products of the detinning industry, being sold to open-hearth mills. Old cans processed increased 17 percent to 26,000 long tons in 1952 compared with 22,000 tons in 1951; this was a small figure, however, compared with the record use of 176,000 tons in 1943. Tin recovered from tin-plate clippings in 1952 was 3,100 tons, 19 percent less than 1951, while that from old cans, 200 tons (mostly in the form of pig tin), increased 11 percent.

The average quantity of tin recovered per long ton of tin-plate scrap treated was 14.19 pounds in 1952 compared with 15.89 pounds in 1951. The lower recovery continued to reflect the treatment of larger proportion of electrolytic tin plate carrying a much thinner coating of tin than the hot-dipped product. The average quantity of tin recovered per long ton of old tin cans decreased slightly from 14.98 pounds in 1951 to 14.31 pounds in 1952.

Imports of tin-plate scrap were 43,000 long tons in 1952 against 52,000 in 1951 (if detinned, this material would yield about 300 tons of tin). In 1952 exports of tin-plate scrap were 3,600 long tons (810 in 1951), the highest since 1939. Mexico was the destination of most of the tin-plate scrap exported in 1952.

Exports of tin-base scrap totaled 7,000 short tons in 1952 compared with 6,000 tons in 1951 and consisted chiefly of drosses and residues.

TABLE 26.—Tin-plate scrap imported into the United States, by countries, 1951-52, in long tons

Country	1951	1952
Australia. Canada Cuba. French Morocco. New Zealand. Sweden. Union of South Africa. All others.	11, 169 23, 364 2, 039 2, 716 2, 028 2, 323 6, 187 1, 745	7, 817 25, 505 1, 337 1, 953 384
Total	51, 571	42, 659

[U. S. Department of Commerce]

SECONDARY ZINC

Secondary zinc recovered in 1952 from purchased scrap and residues totaled 310,000 short tons, with a value of \$103,060,000, representing a decrease in quantity of 1 percent from the 314,000 tons valued at \$114,433,000 recovered in 1951. The values have been calculated at the average weighted price for all grades of refined zinc sold by producers—16.6 cents a pound in 1952 and 18.2 cents in 1951.

Zinc recovered from copper-base scrap during 1952 increased 6 percent to 176,000 tons, following increases of 58 and 5 percent, respectively, in 1950 and 1951, owing to increased use of process scrap by brass mills. The latter recovered 77 percent of the total zinc recovered from copper-base scrap in 1952. Copper-base scrap used by brass mills averaged 27 percent zinc in 1952 compared with 10 percent by smelters and 5 percent by foundries. Recovery of zinc from zinc-base scrap declined 10 percent to 133,000 tons, chiefly on account of reduced receipts and consumption of dross. The decline in dross, in turn, was due to a 6-percent drop in the quantity of slab zinc used in the galvanizing process in which dross is generated. The quantity of zinc recoverable from copper-base scrap, as shown in table 27, is comparable to that shown as recovered in brass and bronze, because most copper-base scrap is used in making copper-base products. The same is true of secondary zinc from zinc scrap and in zinc products.

TABLE 27.—Zinc recovered from scrap processed in the United States, 1951-52, in short tons

Recoverable zinc content of	scrap proc	essed	Zinc recovered ¹ from scrap processed				
Kind of scrap	1951	1952	Form of recovery	1951	1952		
New scrap: Zinc-base Copper-base Aluminum-base Magnesium-base Total	127, 901 117, 532 770 246, 203	108, 273 126, 625 820 40 235, 758	As metal: By distillation: Slab zine Zinc dust By remelting	48, 067 29, 002 8, 044 85, 113	54, 560 22, 292 6, 275 83, 127		
Old scrap: Zinc-base Copper-base Aluminum-base Magnesium-base Total	20, 018 47, 871 285 	24, 997 49, 312 226 130 74, 665	In zinc-base alloys In brass and bronze In aluminum-base alloys In magnesium-base alloys In chemical products: Zinc oxide (lead-free)	9, 840 177, 565 1, 099 	9, 875 184, 935 1, 120 161 8, 914		
Grand total	314, 377	310, 423	Zinc sulfate Zinc chloride Lithopone Miscellaneous	4, 933 13, 121 12, 013 982	3, 871 10, 794 6, 922 704		
·			TotalGrand total	229, 264 314, 377	227, 296 310, 423		

¹ Zinc content.

TABLE 28.—Production of secondary zinc and zinc-alloy products in the United States, 1943-47 (average) and 1948-52, gross weight in short tons

Products	1943–47 (average)	1948	1949	1950	1951	1952
Redistilled slab zine	50, 110	62, 320	55, 041	66, 970	48, 657	55, 111
	24, 865	29, 932	21, 243	27, 507	29, 754	25, 113
	7, 778	7, 796	6, 045	7, 243	4, 454	3, 197
	5, 510	10, 543	8, 266	12, 647	5, 596	7, 098
	2, 477	3, 377	3, 873	5, 233	4, 919	3, 400
	707	580	406	354	198	203
	2, 154	2, 778	2, 775	3, 589	3, 474	2, 948
	42, 154	48, 995	37, 424	43, 693	40, 760	31, 205

¹ Contains small tonnages of bars, anodes, etc.

The gross weight of slab zinc produced increased 13 percent in 1952 or to 55,000 tons, but output of all other secondary zinc products declined. Output of zinc dust from scrap, after rising for 3 years, decreased 23 percent in 1952. Secondary zinc in chemical products was also 23 percent lower.

TABLE 29.—Stocks and consumption of new and old zinc scrap in the United States in 1952, gross weight in short tons

	Stocks.		C	onsumptio	n	Stocks.
Class of consumer and type of scrap	beginning of year	Receipts	New scrap	Old scrap	Total	end of year
Smelters and distillers: Clippings Sheet and strip Engravers' plates Skimmings and ashes Sal skimmings Die-cast skimmings	172 229 187 3, 483 714 906	1, 937 3, 531 1, 201 38, 028 1, 522 6, 503	6,511	3, 414 1, 263	1,965 3,414 1,263 37,856 1,759 6,511	144 346 125 3,655 477 898
Dross Die castings	3, 893 1, 713 109 1, 051 924	53, 732 25, 807 883 6, 720 10, 838	52, 785 7, 401 9, 953	24, 873 773	52, 785 24, 873 773 7, 401 9, 953	4,840 2,647 219 370 1,809
Total	13, 381	150, 702	118, 230	30, 323	148, 553	15, 530
Chemical plants, foundries, and other manufacturers: Clippings	13 6 328 1, 238 28 561 1, 564 3, 813 247 242 193 3, 811 1, 952 906 3, 893	4, 159 126 127 11, 233 21, 396 1, 590 44 2, 514 6, 780 48, 061 6, 096 3, 657 1, 420 49, 261 22, 918 6, 533 53, 732	9, 571 18, 634 1, 376 2, 815 7, 468 43, 959 6, 060 47, 427 20, 393 6, 511 52, 785	571 3, 538 1, 472	4, 095 124 209 9, 571 18, 634 1, 582 32 2, 815 7, 468 44, 530 6, 060 3, 538 1, 472 47, 427 20, 393 47, 427 20, 393 6, 511 52, 785	139 15 16 1,990 4,000 36 12 260 876 7,344
Die castings Rod and die scrap Flue dust Chemical residues	109 1,612	27, 397 927 9, 234 17, 618	1,376 10,216 17,421	25, 079 805	26, 455 805 10, 216 17, 421	2, 683 231 630 2, 685
Total	17, 194	198, 763	162, 189	30, 894	193, 083	22,874

Consumption of zinc scrap by smelters and distillers, which use chiefly dross and solid scrap, declined 5 percent or to 149,000 tons, whereas consumption by chemical plants and other manufacturers, which used chiefly residues, dropped 30 percent or to 45,000 tons. Total stocks of zinc scrap held by both groups increased during 1952. Of the 193,000 tons of zinc scrap treated, 84 percent was new scrap and 16 percent old scrap. In 1951 the breakdown was 89 percent new scrap and 11 percent old. The only important exception to the decline in the treatment of zinc scrap in 1952 was die castings, consumption of which increased 7,000 tons.

In time of peace, galvanizing is the chief use of zinc and generates over half of the scrap and residues arising as the result of the consump-

tion of zinc. In 1952, 378,000 tons of slab zinc was used in galvanizing, resulting in the formation of 117,000 tons of dross, dry skimmings, and Of these, dross was the most important as a source sal skimmings.

of salvaged zinc.

According to Rutherford, galvanizers' dross is a mixture of compounds of iron and zinc and entrained zinc that generated in England, containing about 96 percent zinc, one-third being unalloyed. From a survey conducted in the United States by the Bureau of Mines, the weighted average zinc content of dross generated in 1 month in 1952 was 93 percent. The remainder is chiefly iron with smaller percentages of other metals, such as aluminum and lead. Dross gathers on the bottom of the kettle and is periodically removed with a perforated scoop suspended from a crane. A dross pump and separator have been invented for this purpose and are in use to some extent in Europe, but in 1952 there were as yet no installations in the United States. Dross is commonly redistilled at secondary smelters to make zinc dust or slab zinc. About 90 percent of the zinc is recovered. A zinc-dross sample at a domestic plant, containing 5 percent iron, 1 percent aluminum, and 1 percent lead, yielded a residue containing 2 percent zinc, 63 percent iron, 15 percent aluminum, and 20 percent lead.

Dry skimmings form as a crust of zinc oxide on the exposed surface of molten zinc. The skimmings generated in galvanizing are about three-quarters zinc; the remainder is oxygen, iron, and other impuri-Rutherford 4 gives the metallic zinc content as about 75 percent and the total zinc as about 85 percent for skimmings in England. According to the Bureau of Mines survey previously mentioned, the total zinc content averaged 77 percent in the United States, with a range between 40 and 95. Many galvanizers tumble the skimmings, screen out the coarse metallics, and return them to the galvanizing kettle. The oxide content of these metallics can be reduced by melting and reskimming before returning them to the galvanizing Partial immersion of a cylinder set vertically in a corner of the kettle, in which the skimmings can be deposited and rabbled to release the entrained zinc, has been recommended.⁵ The oxidized portion of the skimmings may be dissolved in muriatic acid to make zinc chloride at chemical plants or mixed with coke and concentrates for distillation at primary zinc plants. Much of the metallic zinc consists of such fine particles that it will dissolve readily in the acid. Some smelters roast zinc skimmings to oxidize the metallics and drive off the chlorine, which is often present from admixture of sal skimmings. The product is a zinc oxide pure enough for use by lithopone or zinc chloride manufacturers or at primary zinc plants.

In most hot-dip galvanizing operations a flux cover, usually zinc ammonium chloride or sal ammoniac, is used to cause the molten zinc to adhere to the steel. According to Daniels, a strip of clean, mild steel, if dipped into molten zinc, will not be coated, since there

Rutherford, N. B., Experiments on Zinc Recovery from Residues: Sheet Metal Industries (London) vol. 30, No. 310, February 1953, pp. 119-134.
 Work cited in footnote 3.
 Fagg, D. N., and Rutherford, N. B., Zinc Economy Trials in Hot-Dip Galvanizing: Sheet Metal Industries (London), vol. 29, No. 308, December 1952, pp. 1117-1125.
 Daniels, Edward J., Some Reactions Occurring in "Hot-Dipping" Processes: Jour. Inst. Metals (London), vol. 49, No. 2, 1932, pp. 169-182.

is enough oxide on the steel surface to prevent wetting by the zinc; but if a zinc ammonium chloride flux is used, the steel will be wetted and a coating produced. The work must be removed from the bath at a place where there is no flux cover; otherwise, the flux will corrode the zinc coating. The cover may be raked back before the work is removed, or the surface of the bath may be partitioned so that the work may enter through the part covered with flux and emerge in

the uncovered part.

A dark froth forms on the surface of the zinc when these fluxes are used, which is primarily a complex basic zinc oxide. The residue skimmed off when the flux is saturated is known as sal skimmings, the approximate composition of which is: Total zinc 50 percent, metallic zinc 5 percent, chlorine 25 percent, and moisture 3 percent, the remainder being oxygen and small quantities of iron, lead, cadmium, etc. Because of their frothy nature, the hot sal skimmings do not retain as much metallic zinc as the dry skimmings. Sal skimmings tend to oxidize and absorb moisture. This combination sometimes liberates hydrogen, which may ignite spontaneously. These skimmings, which solidify on cooling, may be shipped in drums, such as old carbide cans, or they may be broken with an air hammer and shipped in gondolas. Most sal skimmings made are consumed by chemical plants in manufacturing zinc chloride. In the process most of the metallic zinc is removed by crushing and screening. The zinc chloride is water soluble, but the basic zinc oxide and the remaining metallic zinc are not, necessitating use of muriatic acid as a solvent. A minor quantity of sal skimmings is roasted to drive off the chlorine and convert part of the zinc to zinc oxide, but this involves a loss because the chlorine is volatilized as zinc chloride.

Sal skimmings are customarily sold on a gross-weight basis, dry skimmings on the basis of zinc content. The steady demand for sal skimmings by manufacturers of zinc chloride kept the price at about \$35 a ton, f. o. b. consumers' plants, during 1952. The price of dry skimmings, being based on zinc content and the price of zinc, varied considerably. The price f. o. b. consumers' plants at the end of 1952

was 3½ cents per pound of contained zinc.

The graph in figure 1 indicates that the ratio between consumption of galvanizers' dross and consumption of slab zinc in galvanizing has been decreasing. According to a survey conducted by the Bureau of Mines in 1952, it appears that nearly all of the residue generated is consumed and that little is discarded. This indicates that the quantity of residue generated, per ton of slab zinc consumed in galvanizing, is declining. It is known that continuous galvanizing, in which a smaller proportion of residue is generated than in regular hot dip, is increasing. Also it is probably true that the efficiency of galvanizing in general has been increasing. In 1952 about 17 percent of all galvanizing was continuous, meaning that in which a temperature-controlled reducing atmosphere is used. In this type of galvanizing the molten zinc is exposed to the atmosphere in only a small area where the galvanized product emerges. Usually no zinc ammonium chloride or sal ammoniac flux is used, but brightener containing aluminum is added to the bath, resulting in formation of zincaluminum skimmings containing about 87 percent zinc and 2 percent

Galvanizers' dross is also generated but in much less

quantity than in ordinary hot-dip galvanizing.

In electrolytic galvanizing no flux is used and no skimmings or dross generated, but this type of galvanizing accounted for less than 5 percent of the total in 1952.

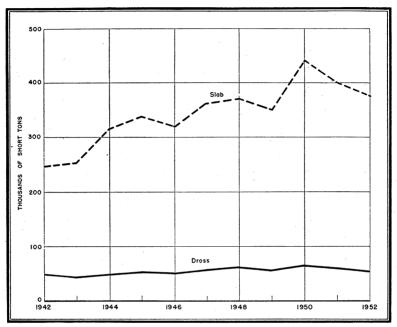


Figure 1.—Consumption of slab zinc in galvanizing and of galvanizers' dross, 1942-52.

United States imports of old zinc scrap totaled 470 short tons in 1952 compared with 146 tons in 1951. Imported drosses and residues totaled 3,022 tons in 1952 compared with 6,457 tons in 1951. Exports of zinc scrap were 972 tons (zinc content) in 1952 and 4,613 tons (zinc content) in 1951.

Slag—Iron Blast-Furnace

By Oliver S. North 1

DUE principally to a disruption of several weeks in the source of supply, the total tonnage processed in 1952 by the blast-furnace slag industry was lower than in 1951, the record year, but higher than in any other previous year. The major tonnage drop was in the output of screened air-cooled slag, while unscreened air-cooled slag showed the largest percentage decline, and expanded slag was produced in slightly lesser quantity. The only type of processed slag produced in greater quantity in 1952 than in 1951 was granulated, which increased 11 percent.

Among major uses, only air-cooled screened used in the manufacture of mineral wool, granulated used for road fill, and granulated used for agricultural purposes were consumed in greater quantities in 1952 than in 1951; most others were a few percentage points lower than in

the preceding year.

Except for 2 or 3 materials, average values of the products of the

industry were a few cents per ton higher than in 1951.

Inasmuch as processed-slag stocks are relatively small and constant from year to year, production virtually equals sales, and therefore those terms are used interchangeably in this chapter.

TABLE 1.—Iron blast-furnace slag processed in the United States, 1943-47 (average) and 1948-52, by types

[National Slag Association]

			oled			Gran	ulated	E	Expanded		
	Screened			Ur	Unscreened					Valt	1e
Year	Value		Value Value		ue	Short		Short			
	Short tons			Total	Average per ton	tons	Value ¹	tons	Total	Aver- age per ton	
1943-47 (av.) 1948 1949 1950 1951	17, 769, 330 20, 047, 844	19, 254, 900 21, 090, 445 24, 444, 231 29, 531, 983	1. 09 1. 19 1. 22 1. 27	604, 100	372, 727 639, 499 969, 975	.61 .51 .64	984, 903 1, 517, 500 1, 885, 428 2, 168, 365 2, 249, 281 2, 507, 604	416, 632 647, 665 888, 644	1, 353, 200 1, 199, 026 1, 704, 388 2, 068, 492	\$826, 127 2, 550, 400 2, 698, 908 3, 749, 463 4, 917, 091 4, 581, 107	1.88 2.25

¹ Excludes value of slag used for hydraulic cement manufacture.

¹ Commodity-industry analyst.

DOMESTIC PRODUCTION

The output of slag from iron blast furnaces in 1952 amounted to 34,753,697 short tons compared with 38,977,191 tons reported for the

preceding year.

The quantity of slag processed in the United States in 1952 for commercial use, according to reports of processors to the National Slag Association, was 26,899,376 short tons valued at \$33,874,209. These totals were 8 and 7 percent, respectively, below the preceding year's figures of 29,327,434 short tons valued at \$36,307,693. The output in 1952 came from 42 companies operating 67 plants for processing air-cooled slag and from 18 plants producing expanded slag. Fourteen companies reported production of granulated slag.

During 1952, iron blast-furnace slag was processed in the following States: Alabama, California, Colorado, Illinois, Indiana, Kentucky, Maryland, Michigan, Minnesota, New York, Ohio, Pennsylvania, Tennessee, Texas, and West Virginia. The majority of the plants

are east of the Mississippi River.

As in 1951 and other recent years, output in Ohio was greater than in any other State, although in 1952 the slag industry in Ohio produced only 22 percent of the national total compared to 28 percent in 1951. Despite the general decline, nearly a half million more tons was processed in Pennsylvania in 1952 than in 1951, and that State took over second ranking from Alabama. These three States supplied 62 percent of the total tonnage reported for 1952.

TABLE 2.—Iron blast-furnace slag processed in the United States, 1951–52. by States

[National Slag Association]

	Scre	ened air-co	oled	All types			
	Quant	ity		Quant			
·	Short tons	Percent of total	Value	Short tons	Percent of total	Value	
1951 Alabama Ohio Pennsylvania Other States ¹	5, 157, 552 5, 675, 671 4, 130, 577 8, 312, 892	22 24 18 36	\$5, 352, 752 8, 025, 708 6, 119, 694 10, 033, 829	6, 156, 745 8, 078, 142 5, 071, 810 10, 020, 737	21 28 17 34	\$6, 791, 654 9, 781, 764 7, 332, 495 12, 401, 780	
Total	23, 276, 692	100	29, 531, 983	29, 327, 434	100	36, 307, 693	
1952 Alabama Ohio Pennsylvania Other States ¹	4, 375, 814 5, 037, 045 3, 786, 269 7, 857, 718	21 24 18 37	4, 911, 511 7, 155, 350 5, 677, 735 9, 757, 296	5, 314, 333 5, 985, 416 5, 510, 624 10, 089, 003	20 22 20 38	6, 248, 691 8, 643, 132 7, 002, 658 11, 979, 728	

¹ California, Colorado, Illinois, Indiana, Kentucky, Maryland, Michigan, Minnesota, New York, Tennessee, Texas, and West Virginia.

27, 501, 892

26, 899, 376

33, 874, 209

100

21, 056, 846

PREPARATION

Blast-furnace slag is processed for the market in three ways:

1. By allowing molten slag to flow into pits adjacent to the furnace or by transporting it to a slag bank or modified pit and permitting it to cool and solidify under atmospheric conditions. This air-cooled slag is then processed in the same manner as are other mineral aggregates. Most of this type is crushed and screened to meet particle size specifications, although a small percentage is crushed and used without screening. About four-fifths of all processed slag sold is the air-cooled screened type.

2. By suddenly chilling the molten slag by immersing it in water.

A granular, glass product is formed.

3. By expanding or "foaming" the slag. This is accomplished by applying a limited quantity of water to the molten slag. The quantity of water used is less than that required for granulation; consequently, a relatively dry, cellular lump product is formed.

TRANSPORTATION

As in past years, virtually the entire tonnage of processed slag in 1952 was moved by rail and truck, with waterway transportation again accounting for but 2 percent of the total. The quantity shipped by each method of transportation and the tonnage used locally by the producers are shown in table 3.

TABLE 3.—Shipments of iron blast-furnace slag in the United States, 1951-52, by method of transportation

[National	Slag	Association]
-----------	------	--------------

	195	51	1952		
Method of transportation	Short tons	Percent of total	Short tons	Percent of total	
Rail Truck Waterway	12, 752, 189 15, 706, 078 469, 840	44 54 2	11, 839, 427 14, 023, 030 494, 440	45 53 2	
Total shipments	28, 928, 107 399, 327	100	26, 356, 897 542, 479	100	
Total processed	29, 327, 434		26, 899, 376		

¹ This tonnage is used by the processor locally in making such products as concrete block, asphaltic concrete, etc.

CONSUMPTION AND USES

Screened air-cooled slag, the major type processed by the industry, constituted 78 percent of the total output of processed slag in 1952. The remaining 22 percent was divided among the other types as follows: Unscreened air-cooled, 5 percent; granulated, 10 percent; and expanded, 7 percent.

Screened Air-Cooled Slag.—Consumption of screened air-cooled slag was over 2 million tons lower than in the record year (1951) but was higher than in any other previous year. The 21,056,846 short tons of screened air-cooled slag represented a slightly lower percentage of the total slag processed than in former years. The use of screened air-cooled slag as aggregate in portland-cement concrete construction, bituminous construction, and highway and airport construction other than portland-cement and bituminous, and as railroad ballast consumed 19,002,814 short tons, or 90 percent of the total tonnage of screened air-cooled slag. Other important uses for the material were in the manufacture of concrete block, mineral wool, and builtup roofing and roofing granules. Contrary to the general decline, utilization of screened air-cooled slag as a raw material for the manufacture of mineral wool increased 20 percent from the previous year.

Unscreened Air-Cooled Slag.—In 1952 the quantity of unscreened air-cooled slag processed totaled 1,364,463 short tons valued at \$749,375—decreases of 21 and 23 percent, respectively, from the 1951 record totals. About 40 percent of this material was used as

aggregate in highway and airport construction.

TABLE 4.—Air-cooled iron blast-furnace slag sold or used by processors in the United States, 1951-52, by uses

[National Slag Association]								
TT	Scree	ened	Unscreened					
Use	Short tons	Value	Short tons	Value				
1951								
Aggregate in: Portland-cement concrete construction Bituminous construction (all types)	2, 367, 983 5, 973, 795	\$3, 145, 684 8, 321, 401						
Highway and airport construction ¹	8, 033, 436 746, 462	10, 707, 112 937, 495	877, 725	\$566, 498				
Railroad ballast	4, 700, 845 467, 714	4, 399, 072 619, 573 793, 828	228, 224 108	108				
Sewage trickling filter medium Agricultural slag, liming	41,075	72, 789 25, 067						
Other uses	495, 926	509, 962	626, 912	322, 675				
Total	23, 276, 692	29, 531, 983	1, 732, 969	969, 975				
Aggregate in:								
Portland-cement concrete construction	2, 192, 409 5, 010, 360	2, 983, 031 7, 114, 062						
Highway and airport construction ¹ Manufacture of concrete block	7, 456, 701 743, 876	10, 233, 228 989, 577	528, 713	340, 296				
Railroad ballast	4, 343, 344 560, 819	4, 248, 970 753, 272	236, 519	82, 782				
Mineral wool. Roofing (cover material and granules) Sewage trickling filter medium	328, 059	646, 492 81, 557						
Agricultural slag, liming Other uses	13, 572 359, 538	19, 757 431, 946	599, 231					
Total	21, 056, 846	27, 501, 892	1, 364, 463	749, 375				

Granulated Slag.—The consumption of granulated slag in 1952 amounted to 2,507,604 short tons—an increase of 11 percent compared to the 1951 figure. Of this tonnage, 48 percent found appli-

1 Other than in portland-cement concrete and bituminous construction.

cation as road-fill material, 43 percent was utilized as a raw material in the manufacture of hydraulic cement, and 4 percent was used as aggregate in concrete blocks. Granulated slag used for agricultural and liming purposes increased 51 percent from 1951 and represented

3 percent of the total output of granulated slag.

Expanded Slag Aggregate.—Consumption of expanded slag in 1952 was 1,970,463 short tons valued at \$4,581,107—totals 5 and 7 percent lower, respectively, than for expanded slag in 1951. The bulk of this output was used in concrete-block manufacture, and a small percentage found use as aggregate in lightweight concrete.

TABLE 5.—Granulated and expanded iron blast-furnace slag sold or used by processors in the United States, 1951-52, by uses

TT	Gran	nulated	Expanded		
Use	Short tons	Value	Short tons	Value	
Road fill, etc	765, 362 47, 786 1, 193, 585 166, 454 76, 094	\$577, 467 61, 690 (1) 210, 665	2, 015, 530 46, 667 6, 295	\$4, 776, 353 122, 588 18, 150	
Total	2, 249, 281	² 888, 644	2, 068, 492	4, 917, 091	
Road fill, etc Agricultural slag, liming	1, 198, 137 72, 245 1, 077, 103 90, 619	764, 851 96, 564 (1) 140, 420	1, 904, 519 63, 498 2, 446	4, 409, 944 166, 638 4, 525	
Total	2, 507, 604	2 1, 041, 835	1, 970, 463	4, 581, 107	

PRICES

Average values per ton for the various types of processed slag in 1952 are shown in table 6. Values for screened air-cooled slag ranged from 98 cents per short ton for railroad ballast to \$1.97 for slag used in the roofing industry; most averages were a few cents higher than in 1951, although the average value for material used as sewage trickling filter medium declined from \$1.77 to \$1.69. Unscreened air-cooledslag values ranged from 35 cents for railroad ballast to 64 cents for aggregates used in highway and airport construction. Among the use classifications of granulated slag, the value of road fill declined 11 cents from 1951, while concrete-block aggregate increased 28 cents and agricultural slag was up 5 cents per ton. The values of expanded slag showed little change in either of its principal use classifications.

Data not available.
 Excludes value of slag úsed for hydraulic cement manufacture.

TABLE 6.—Average value per short ton of iron blast-furnace slag sold or used by processors in the United States in 1952, by uses

[National Slag Association]

TTo.	Air-c	cooled	G	73
Use	Screened Unscreened		Granulated	Expanded
Aggregate in: Portland-cement concrete construction Bituminous construction (all types) Highway and airport construction 2	\$1.36 1.42 1.37	#0.64		1 \$2. 6
Manufacture of concrete block Railroad ballast Mineral wool	1.33 .98 1.34	\$0.64	\$1. 55	2.3
Roofing (cover material and granules) Agricultural slag, liming	1. 97 1. 69			
Road fill, etc	1.46	. 54	1.34 .64 .58	1.8

IRON RECOVERY

The recovery of iron by slag processors during 1952 amounted to 351,774 short tons—a decrease of 5 percent compared to the preceding year's figure. Iron is recovered from slag either by magnetic methods or by hand picking; and the material is returned to the furnaces, where it becomes a useful contribution to the iron and steel industry.

EMPLOYMENT

An average of 1,975 plant and yard personnel per active day worked 4,957,740 man-hours in producing processed slag during 1952. This compares with 5,369,000 man-hours and an average per active day of 2,100 plant and yard employees in 1951.

TECHNOLOGY

A method for manufacturing a corrosion-resistant cement lining was patented. The lining is composed of a mixture of specified percentages of finely ground, granulated, blast-furnace slag, portland cement, sand, and gypsum. The resultant lining is stated to have high strength, good machinability, low solubility in acid waters, and low shrinkage. The coefficient of expansion of the cement lining is claimed to be the same as that of steel, so that when it is used with steel pipe, tanks, containers, etc., it will not fracture or crumble under high-temperature operating conditions.²

A newly issued patent describes the use of blast-furnace slag as a raw material in the manufacture of cement. Dried, pulverized blastfurnace slag is blown into the flame of the rotary kiln. The raw mixture contains calcium oxide in excess to compensate for the slag. The pulverized slag may be incorporated with the fuel, or it may be blown in through a separate feed pipe.3

Lightweight concrete.
 Other than in portland-cement and bituminous construction.

² Peckman, A. L. (assigned to United States Steel Co.), Cement Lining for Metal Pipe: U. S. Patent 2,597,370, May 20, 1952.

³ Mooser, H. W., Process for the Utilization of Blast Furnace Slag in Rotary Cement Furnaces: U. S. Patent 2,600,515, June 17, 1952.

A new apparatus designed for the production of expanded slag was patented. Molten slag is subjected to strong jets of water, which force the cooling, cellular product against a target plate. The slag cake formed on the target breaks loose from time to time and later

is crushed to produce lightweight aggregate.4

A British patent covered the use of an electric current to promote the setting of a mortar consisting mainly of powdered blast-furnace slag and cement. Iron or brass wires embedded in the material act as cathodes and may be left permanently in the product. Graphite or magnetite anodes are maintained, preferably in running water, outside the mortar, and a direct current is established. The process may be carried out either before or after setting actually starts.5

An agricultural college studied the value of blast-furnace slag as a soil additive for growing various crops. Using limestone and granulated and air-cooled blast-furnace slags, comparative studies were made of the yields of alfalfa, mixed hay, and corn, as influenced by fineness, rate of application, and soil reaction changes. It was concluded that granulated-slag screenings were significantly better than the air-cooled slag or limestone screenings. Air-cooled slag and dolomitic limestone were reported to be equally effective in increasing

crop yields when they were of equal fineness.6

Underwriters' Laboratories, Inc., made a series of fire tests of expanded-slag block walls. Objectives of the investigation were to determine (1) the effect of variations in the unit weight of the expanded slag aggregates, (2) the relationship of equivalent thickness (that is, the average thickness of the solid material in the block) in the design of blocks, and (3) the effect of filling the core spaces with expanded slag aggregate. Fire ratings of 2, 3, and 4 hours were Several interesting conclusions and observations are given in the report.7 These tests were described in detail in a magazine

According to an item in a British publication, the North of Scotland Hydro-Electric Board plans to use ground blast-furnace slag in constructing the Chuanie and Loyne Dams of the Glen Moriston hydroelectric project in Invernessshire. The Trief process of grinding the slag on the site will be used. The slag will be used in partial replacement of cement. Similar mixtures used in construction of dams in France are said to have shown cost economies, generation of less heat during setting than ordinary concrete, and better resistance to acid water than pure portland-cement concrete.9

Wheeler, D. G. (assigned to Celotex Corp.), Apparatus for Expanding Slag: U. S. Patent 2,605,501,

Wheeler, D. G. (assigned to Celotex Corp.), Apparatus for Expanding Siag: U. S. Patent 2,000,001, Aug. 5, 1952.
 Société anonyme des fondiéres laminoirs et ateliers de biache Saint-Vaast, Blast-Furnace Slag Cement: British Patent 672,137, May 14, 1952. (Abs. in Chem. Abs., vol. 46, No. 19, Oct. 10, 1952, col. 9279, item d).
 Volk, G. W., Harding, R. B., and Evans, C. E., A Comparison of Blast Furnace Slag and Limestone as a Soil Amendment: Ohio Agric. Exp. Sta., Research Bull. 708, November 1952, 19 pp.
 Underwriters' Laboratories, Inc., Report on 8-in. Bearing Walls of Concrete Masonry Units (Blocks) Made With Expanded Slag Aggregates: Retardant Rept. 3460-1-2-3, July 1, 1952, 37 pp; Underwriters' Laboratories, Inc., Revision of Standard on Concrete Masonry Units: Bull. on Subject 618, June 12, 1953, 2nn

 ² pp.
 S Concrete, Fire Tests on Expanded Slag Block Walls: Vol. 60, No. 11, November 1952, pp. 3-7.
 Engineering (London), Blast-Furnace Slag as Material for Dams: Vol. 173, No. 4503, May 16, 1952, p. 635.

A Federal agency published a report showing results of shrinkage tests of concrete masonry units made with different types of aggregates and cured under varying conditions.¹⁰ Aggregates included expanded slag. Conclusions drawn from the results of the investigation indicated that expanded slag, when cured in a like manner, shows approximately the same shrinkage as several of the other lightweight aggre-

gates tested.

The United States Department of Agriculture measured quantitatively, by chemical analysis, the occurrence of trace elements in a large number of different types of slags. The results of this investigation have recently been published. It is believed that the presence of trace elements in a soil amendment may be responsible for greater crop yields than could be expected from the liming action alone. The trace elements include manganese, boron, copper, cobalt, lead, molybdenum, and zinc.¹¹

¹⁹ Housing and Home Finance Agency, Relation of Shrinkage to Moisture Content in Concrete Masonry Units: Div. of Housing Research, Paper 25, March 1953, 28 pp.
11 Chichilo, P. P., and Whittaker, C. W., Trace Elements in Agricultural Slags: Agronomy Jour., vol. 45, No. 1, January 1953, pp. 1-5.

Slate

By Oliver Bowles¹ and Nan C. Jensen²

ALES of slate during 1952 declined greatly compared with 1951. The industry evidently is facing increasing difficulty in meeting competition from substitute products. For virtually every use to which slate is applied some other product may be used. Slate producers endeavor to maintain their competitive position by emphasizing the durability, architectural adaptability, and other favorable qualities of their products, and it is evident that continued activity in this and other movements designed to maintain or increase sales is becoming imperative.

Sales of roofing slate dropped 29 percent in quantity and 30 percent in value in 1952 compared with 1951. The average value per square declined from \$21.24 to \$21.06. Declines of 25 to 30 percent were

registered in all the principal roofing-slate areas.

Sales by the mill-stock branch of the industry declined 14 percent in quantity and 4 percent in value. Among the principal uses the largest decline was in sales of blackboards and bulletin boards—19 percent in quantity and 17 percent in value. A notable exception to the otherwise general downward trend was the gain of 9 percent in quantity and 7 percent in value of structural and sanitary slate. Sales of electrical slate declined 4 percent in quantity but gained 11 percent in value. The largest declines were in the minor applications. For the first time in the history of the industry, school-slate manufacture was in so few hands that the figures could not be shown separately and were combined with those for blackboards and bulletin boards. Sales of flagstones and related products changed slightly.

Slate granules and flour are included in this chapter, although they have little relation to the dimension-slate industry. A small proportion of these products is made from waste that accumulates at roofing and mill-stock quarries; however, by far the largest part is obtained from deposits that are classed lithologically as slate but consist of rock unsuitable for either roofing or mill stock. Granules are used chiefly for surfacing prepared roofing and slate flour as a filler in

paint, linoleum, roofing mastic, and other products.

Sales of granules and flour declined 8 percent in quantity and 6 percent in value in 1952 compared with 1951. The average value per ton was 24 cents higher. Figures for all types of granules, including slate, are given in a table in the chapter on Stone of this volume.

¹ Commodity specialist. ² Statistical assistant.

TABLE 1.—Salient statistics of the slate industry in the United States, 1951-52

		1951		1952					
Domestic production (sales by producers)	Quantity			Qua	Quantity		Percent of change in—		
	Unit of measure- ment	Approxi- mate equiva- lent short tons	Value	Unit of measure- ment	Approximate equivalent short tons	Value	Quan- tity (unit as re- ported)	Value	
Roofing slate	Squares 205, 120	77, 500	\$4, 357, 412	Squares 145, 640	54, 050	\$3, 067, 513	-29	-30	
Mill stock: Electrical slate Structural and sanitary	Sq. ft. 326, 090	2, 350	470, 179	Sq. ft. 311, 710	2, 250	519, 619	-4	+11	
slate Grave vaults and covers_ Blackboards and bulle-	1, 250, 810 12, 880	9, 910 110		1, 360, 880 8, 960	11, 220 80	896, 093 7, 103	+9 -30	+7 -33	
tin boards Billiard-table tops School slates	1, 133, 770 207, 490 2 237, 500	1,560			1 2, 270 900 (1)	1 553, 509 73, 571 (1)	-19 -42	-17 -44	
Total mill stock Flagstones, etc.3	3, 168, 540 12, 183, 280			2, 725, 660 12,274,890	16, 720 75, 480		-14 +1	-4 -4	
Total slate as dimension stoneGranules and flour		171, 150 4 648, 210	8, 007, 710 46, 526, 617		146, 250 593, 390		-15 -8	-18 -6	
Grand total		4 819, 360	414,534,327		739, 640	12, 706, 651	-10	-13	

A small quantity of school slates included with blackboards and bulletin boards.
 Square feet approximate. Number of pieces: 395,000.
 Includes slate used for walkways, stepping stones, and miscellaneous uses.

4 Revised figure.

SALES

Dimension Slate.—Dimension slate includes products cut to specified sizes and shapes contrasted with crushed or pulverized products, such as granules and flour. Table 2 shows sales of dimension slate for the latest 5-year period.

Roofing slate is used chiefly in residential building; but, as indicated in figure 1, it has failed even to approach the new dwelling-unit trend

TABLE 2.—Dimension slate sold by producers in the United States, 1943-47 (average) and 1948-52

	Roofing		Mill stock		Other 1		Total		
Year	Squares	Approximate equivalent short tons	Value	Approxi- mate short tons	Value	Approxi- mate short tons	Value	Approximate short tons	Value
1943–47 (average) 1948 1949 1950 1951 1952	120, 798 218, 650 181, 490 197, 570 205, 120 145, 640	45, 390 82, 090 68, 260 74, 060 77, 500 54, 050	\$1, 539, 552 4, 566, 056 3, 759, 564 4, 098, 842 4, 357, 412 3, 067, 513	13, 122 11, 950 12, 730 15, 140 16, 890 16, 720	\$974, 764 1, 600, 019 1, 727, 649 2, 130, 430 2, 127, 387 2, 049, 895	24, 024 46, 490 51, 000 79, 440 76, 760 75, 480	\$312, 858 700, 477 912, 503 1, 342, 053 1, 522, 911 1, 469, 396	82, 536 140, 530 131, 990 168, 640 171, 150 146, 250	\$2, 827, 174 6, 866, 552 6, 399, 716 7, 571, 325 8, 007, 710 6, 586, 804

¹ Includes flagstones, walkways, stepping stones, and miscellaneous slate.

SLATE 925

since 1944. This may be due in part to the preponderance of types of roof construction for which slate is not adapted. Another reason for the lag in roofing-slate sales is the current tendency toward using flat roofs coated with asphalt and gravel or similar materials on schoolhouses and other public buildings that formerly used slate. The keen competition with other roofing materials, such as tile and asbestos-cement shingles, is another depressing factor.

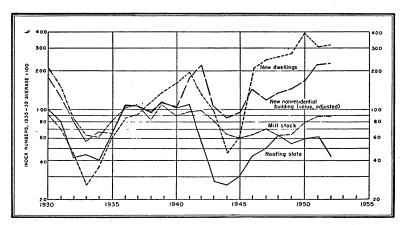


Figure 1.—Sales of roofing slate and mill stock compared with number of new dwelling units and value of new nonresidential construction, 1930-52. Data on number of new dwelling units in nonfarm areas from U. S. Department of Labor; on value of nonresidential construction activity (adjusted to 1939 prices) from U. S. Department of Commerce, Survey of Current Business.

Mill-stock slate is used for blackboards in schools and for steps, baseboard, wainscoting, and similar units in office buildings and other nonresidential structures. Accordingly, sales of mill stock should, in general, follow the trend of nonresidential construction. Figure 1 shows that slate of mill-stock grades followed this trend some years ago, notably from 1930 to 1939. Since 1944, however, nonresidential construction has made phenomenal gains and in 1952 surpassed all previous records. During this period mill-stock sales have made only small gains.

To increase and maintain slate sales is a major problem facing the slate industry. One method proposed is to discover means of reducing the cost of production (and selling prices) because thereby slate could compete more favorably with substitute materials and thereby promote a healthier state in the industry. The problem of improved equipment and technique is a prolific field for research. Methods of making roofing slates are virtually the same today as 150 years ago. The technique of mill-stock manufacture has made greater progress, but further advances are possible.

The high cost that, it is believed, is an important factor in limiting sales of slate, is due in part to the excessive waste that accompanies slate quarrying and manufacture. The wire saw has reduced quarry waste substantially in Pennsylvania, but this equipment has not been accepted in other slate regions. The development of wider uses for waste slate is another promising approach to the waste problem.

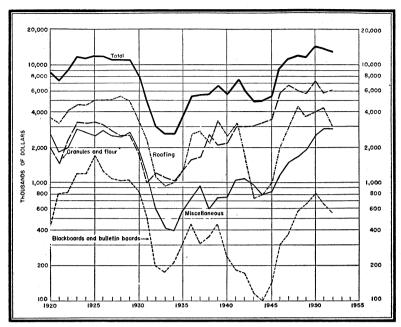


FIGURE 2.—Value of slate sold in the United States, 1920-52, by principal uses.

Figure 2 presents in graphic form the value of slate sold from 1920 to 1952, by principal uses. The two peaks shown on the chart—1925 and 1950—represent periods of high activity in the building industries. The trough of 1932 to 1934 reflects the nationwide depression, and the trough of 1943 to 1945 the depressing effect of World War II on slate production.

Granules and Flour.—Sales of granules declined 10 percent in quantity and 7 percent in value in 1952. The average value per ton increased from \$11.54 to \$11.93. Sales of slate flour dropped 4 percent in quantity and 3 percent in value. The average sales price per ton in 1952 was \$5.16, 6 cents higher than in 1951. Granules and flour were produced in Arkansas, California, Georgia, New York, Pennsylvania, and Vermont. Granules, but no flour, were sold in Maryland and Virginia. Sales of these products for the latest 5-year period are shown in table 3.

TABLE 3.—Crushed slate (granules and flour) sold by producers in the United States, 1943-47 (average) and 1948-52

-	Gra	nules	Flo	our	Total	
Year ,	Short tons	Value	Short tons	Value	Short tons	Value
1943-47 (average)	416, 728 499, 440 463, 290 595, 200 1 500, 320 451, 870	\$3, 894, 094 5, 306, 568 5, 136, 992 6, 747, 325 1 5, 771, 971 5, 390, 202	127, 610 159, 430 144, 980 166, 530 1 147, 890 141, 520	\$491, 333 707, 809 627, 568 728, 831 1 754, 646 729, 645	544, 338 658, 870 608, 270 761, 730 1 648, 210 593, 390	\$4, 385, 427 6, 014, 377 5, 764, 560 7, 476, 156 1 6, 526, 617 6, 119, 847

¹ Revised figure.

SLATE 927

REVIEW BY STATES AND DISTRICTS

As shown in table 1, the total domestic production of slate declined 10 percent in quantity in 1952 compared with 1951. Seventy operators reported production during the year, a decline of 7. Table 4 shows sales in 1952, by States and uses.

TABLE 4.—Slate sold by producers in the United States, 1943-47 (average) and 1948-52, by States and uses

	1		ofing Mill s		stock	Other uses	Total
	Opera- tors	Squares (100 square feet)	Value	Square feet	Value	(value)1	value
1943–47 (average)	55 83 80 94 77	120, 798 218, 650 181, 490 197, 570 205, 120	\$1, 539, 552 4, 566, 056 3, 759, 564 4, 098, 842 4, 357, 412	2, 342, 806 2, 541, 250 2, 741, 040 3, 180, 600 3, 168, 540	\$974, 764 1, 600, 019 1, 727, 649 2, 130, 43 0 2, 127, 387	\$4, 698, 285 6, 714, 854 6, 677, 063 8, 818, 209 2 8, 049, 528	\$7, 212, 601 12, 880, 929 12, 164, 276 15, 047, 481 2 14, 534, 327
1952 ArkansasCaliforniaGeorgiaMaryland	1 2 1					(3) (3) (3) (3)	(3) (3) (3) (3)
New York Pennsylvania Vermont and Maine Virginia Undistributed	20 18 22 5	93, 200 35, 190 16, 650	21, 456 1, 866, 479 742, 482 437, 096	2, 078, 020 647, 640	1, 227, 471 822, 424	1, 789, 409 1, 393, 698 2, 886, 799 (3) 1, 519, 337	1, 810, 865 4, 487, 648 4, 451, 705 (3) 1, 956, 433
Total	70	145, 640	3, 067, 513	2, 725, 660	2, 049, 895	7, 589, 243	12, 706, 651

¹ Flagging and similar products, granules, and flour.

Maine.—The Maine quarries specialize in electrical slate. They are situated near Monson, Piscataquis County. In 1952, as in recent years, only one company was active.

New York.—There were 20 operators in New York in 1952, 1 more than in 1951, but total sales of slate products were 9 percent less in value than in 1951. The principal products were flagging, granules, and flour. As indicated in table 4, roofing-slate manufacture is of

minor importance.

Pennsylvania.—All types of slate products are made in the "soft-vein" belt of Lehigh and Northampton Counties, the most productive slate area in the United States. Roofing-slate manufacture is an important branch of the industry, but large quantities of blackboards, structural slate (such as steps and baseboards), and all other mill-stock products are also made. Slate produced in York County in the Peach Bottom district on the Maryland-Pennsylvania border may not be shown separately and therefore is included with Northampton County in table 5, wherein detailed figures for Pennsylvania are given.

The Pennsylvania slate industry suffered a serious decline in 1952, as the total value of slate products sold decreased 21 percent compared with 1951. The trend in 1952 was the reverse of that in 1951, when the gain over the preceding year was 3 percent. All products shared the recession except structural and sanitary slate, sales of which made small gains in both quantity and value. The reversal in trend was most pronounced in electrical slate, which experienced substantial

Revised figure.
 Included with "Undistributed" to avoid disclosure of individual company operations.

TABLE 5.—Slate sold by producers in Pennsylvania in 1952, by counties and uses

		Roo	fing slate	е				Mi	ll stoc	k .			
County	Op- era- tors	Square (100	e Value		Electrical				Structural and sanitary			Vaults and covers	
		square feet)			Squa		Value	Squar feet	e v	lue	Square	Value	
Lehigh Northampton and York ¹ _	2 16	2, 87 90, 33			2,6	30 \$	3, 518	3 1, 022, 3	90 \$589	, 845	}-3-890	\$7,028	
Total: 1952 1951	18 25	93, 20 134, 18			2, 63 13, 83		3, 518 16, 167			, 845 , 119	8, 890 12, 570		
•			Mi	ill st	ock—	Cont	inue	1					
County		Blackboards and bulletin boards			Billiard-table tops			School slates			Other uses (value)	Total value	
		quare feet	Value		uare eet	Va	lue	Square feet	Valu	- '	, Y, -	,	
Lehigh Northampton and York 1		76, 580 16, 280	\$81, 840 471, 669	}121	1, 250	\$73,	571	{ (2)	(2)		\$13, 102 380, 596	\$188, 683 4, 298, 965	
Total: 1952 1951		22, 860 33, 770	553, 509 667, 011		1, 250 7, 490	73, 131,	571 081	(2) 237, 500	(2) \$11, 94			4, 487, 648 5, 688, 870	

York County produced granules and flour only; included with Northampton County to avoid disclosure of individual company operations.
 A small quantity of school slates included with blackboards and bulletin boards.

gains in 1951 but suffered remarkable losses in 1952. The percentage changes in the various items in 1952 compared with 1951 were as follows: Roofing slate, decline of 31 percent in quantity and 30 percent in value; electrical slate, decline of 81 percent in quantity and 78 percent in value; structural and sanitary slate, increase of 4 percent in quantity and 2 percent in value; blackboards and bulletin boards, decline of 19 percent in quantity and 17 percent in value; billiardtable tops, decline of 42 percent in quantity and 44 percent in value; and vaults and covers, decline of 29 percent in quantity and 32 percent in value. School slates, as indicated previously, were produced by so few operators that the figures cannot be shown separately. Other slate products declined 12 percent in value. The number of operators decreased by seven.

Vermont.—Maine has been included with Vermont in table 4 to avoid revealing the production of the single company operating. The slate industry of these areas maintained a higher level of activity than prevailed in any other major slate-producing center. The total value of sales dropped only 3 percent below 1951 and was only 1 percent below the total of Pennsylvania. Roofing-slate production declined 25 percent in quantity and 27 percent in value, but mill-stock sales increased 12 percent in quantity and 16 percent in value. The sale of other products, mainly granules and flour, increased 1 percent.

Virginia.—Roofing slate is the principal product of the Virginia quarries. The rock is not adapted for mill-stock manufacture. Roofing-slate sales declined 30 percent in quantity and 31 percent

SLATE 929

in value. Granules for surfacing prepared roofing are made in substantial quantities, but the figures are concealed to avoid revealing

the output of individual companies.

Other Districts.—Granules and flour are produced in Montgomery County, Ark., not far from Glenwood, which is just over the county line in Pike County. They are also produced in El Dorado County, Calif., and near Fairmount, Bartow County, Ga. Granules, but no flour, were produced near Whiteford, Harford County, Md. Flagging was produced in El Dorado County, Calif.

PRICES

The average value of roofing slate, f. o. b. quarry or mill, as reported to the Bureau of Mines, declined 18 cents per square to \$21.06 in 1952. In Pennsylvania it was \$20.03 per square, in New York \$35.76, in Vermont and Maine \$21.10, and in Virginia \$26.25. The most noteworthy change was in New York, where the average price dropped

\$7.75 a square.

The average value of mill stock was 75 cents per square foot, 8 cents higher than in 1951. Electrical slate increased 23 cents (to \$1.67) per square foot; structural and sanitary slate declined 1 cent (to \$0.66); blackboards and bulletin boards increased 1 cent (to \$0.60); vaults and covers declined 4 cents (to \$0.79); and billiard-table tops declined 2 cents (to \$0.61). The average value per ton of granules increased 39 cents (to \$11.93), while slate flour increased 6 cents (to \$5.16).

Price History.—The trend in yearly average selling price of roofing slate and mill stock compared with wholesale prices of all building materials over a 23-year period is indicated in figure 3. Since 1933 mill-stock prices have paralleled closely the trend of wholesale prices. Roofing-slate prices, however, remained consistently below building-material prices in general from 1933 to 1946 and again from 1950 to

1952.

TABLE 6.—Slate imported for consumption in the United States, 1948-52, by countries

Country	1948	1949	1950	1951	1952
AustraliaBrazil				\$70	\$1, 201
Canada	\$1,078 66	\$1, 125 9	\$123	10, 257	4, 117
Germany, West	11, 584 89	17, 589 51	66, 548 288	8, 241 187, 702 295	26, 623 121, 366 98 219
Norway Portugal Spain	10 317 424	1, 549	967 27, 320	45, 561	79, 743 846
Spain- Switzerland	31 53	406 24	328 2, 172	64 12	63 1, 993
Total	13, 652	20, 753	97, 747	252, 202	236, 269

[U. S. Department of Commerce]

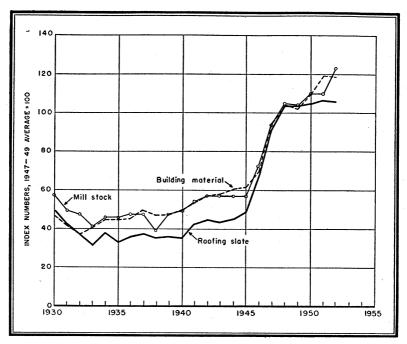


FIGURE 3.—Average selling price of slate compared with wholesale prices of building materials in general, 1930-52. Wholesale prices from U. S. Department of Labor.

FOREIGN TRADE³

Imports.—The value of slate imported for consumption in 1952 was 6 percent lower than in 1951. Italy and Portugal are the chief foreign sources, but imports from West Germany increased greatly in 1952. There were no imports of roofing slate. As in 1951, most of the imports consisted of both framed and unframed school slates from Italy and Portugal. In view of the current decline in school-slate manufacture in the United States, as indicated elsewhere in

TABLE 7.—Slate exported from the United States, 1943-47 (average) and 1948-52, by uses ¹

Use	1943–47 (average)	1948	1949	1950	1951	1952
Roofing School slates 2 Electrical Black boards. Billiard tables Structural (including floors and walkways). Slate granules and flour. Total	\$6, 619 19, 967 3, 603 25, 788 83, 167 } 280, 658	\$4, 476 25, 846 4, 245 65, 314 58, 692 428, 755	\$9, 503 16, 601 10, 151 65, 052 79, 687 414, 029	\$19, 824 8, 138 14, 635 107, 466 47, 000 417, 148 614, 211	\$4, 138 3, 891 13, 819 51, 056 88, 669 \$ 294, 007	\$15, 110 2, 355 10, 041 62, 992 85, 657 201, 748 377, 903

¹ Figures collected by the Bureau of Mines from shippers of products named.

zioribea ngare.

Includes slate used for pencils and educational toys.
 Revised figure.

² Figures on imports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

SLATE 931

this chapter, it would appear that imported school slates are being

substituted widely for those of domestic origin.

Exports.—Table 7 gives the value of exports of slate products for the latest 5-year period, as reported by shippers to the Bureau of Mines. The downward trend reported in 1951 continued in 1952 with a further drop of 17 percent. Exports in 1952 were the lowest since 1944.

TECHNOLOGY

The National Slate Association, 255 West 23d Street, New York, N. Y., has issued a third edition of its comprehensive bulletin, Slate Roofs. The report includes descriptions of domestic slates and fur-

nishes instructions for placing slate on roofs.

Many slate quarries in the Pennsylvania region have been abandoned through the years, usually because they have been sunk to such great depths that they have become dangerous or uneconomic. According to press reports, options have been acquired by Esso Standard Oil Co. on 11 of these quarries to be used for oil storage. As the stored oil will float on water, the oil level may be controlled by pumping water in or out from the bottom of the quarry. This is the first tangible use that has been proposed for abandoned pits.

Tests by the Bureau of Mines in 1952 indicated that Buckingham County, Va., slate is a satisfactory raw material, together with lime, for making mineral wool. The samples made compared favorably with commercial wools in color, fiber size, and shot content. These results suggest that the manufacture of mineral wool might prove to

be a profitable means of utilizing waste slate.

Sodium and Sodium Compounds

By Joseph C. Arundale 2 and Flora B. Mentch 3

ODIUM compounds have been known and used since ancient times. They are the foundation of the great modern alkali industry. Production of both soda ash and salt cake decreased during the year, but output of sodium metal continued to increase.

DOMESTIC PRODUCTION

Both sodium carbonate (soda ash) and sodium sulfate (salt cake) are recovered as naturally occurring minerals and also are manufactured. Many saline deposits and playas in the West contain sodium carbonate. In 1952 natural soda ash was recovered from the brine of Searles and Owens Lakes in California and from a bedded deposit in Wyoming.

Although production of soda ash, both manufactured and natural, was substantially lower than in the previous year, the production

trend was up at the end of the year.

TABLE 1.—Manufactured sodium carbonate produced 1 and natural sodium carbonates sold or used by producers in the United States, 1943-47 (average) and 1948-52

Year	Manufactured soda ash (ammonia- soda process) ²	Natural sodium carbonates ³		
	Short tons	Short tons	Value	
1943-47 (average)	4, 425, 983 4, 575, 452 3, 916, 016 3, 991, 199 5, 093, 927 4, 442, 450	210, 708 4 288, 769 4 200, 496 351, 075 350, 688 323, 479	\$3, 547, 342 4 6, 623, 280 4 4, 163, 714 7, 543, 769 8, 368, 037 7, 828, 033	

¹ U. S. Bureau of the Census.

4 Exclusive of Wyoming.

Production of natural soda ash was reported by the following producers in California: American Potash & Chemical Corp., 3030 West Sixth St., Los Angeles 54, Calif., plant at Trona on Searles Lake; Columbia-Southern Chemical Corp., a subsidiary of Pittsburgh Plate Glass Co., Bartlett, Calif.; Natural Soda Products Co., 405 Montgomery St., San Francisco 4, Calif., plant at Keeler (discontinued operations in June 1952); and West End Chemical Co., 608

3 Statistical assistant.

² Total wet and dry (98-100 percent Na₂CO₃). Includes quantities consumed in the manufacture of finished light and finished dense soda ash, caustic soda as well as quantities consumed in the manufacture of refined sodium bicarbonate.

Soda ash and trona (sesquicarbonate).

Salt (sodium chloride) is discussed in a separate chapter.
 Assistant chief, Construction and Chemical Materials Branch.

Latham Square Bldg., Oakland 12, Calif., plant at Westend on Searles

Lake.

In Wyoming natural sodium carbonate is produced at Westvaco near Green River by Intermountain Chemical Corp., which is owned by Food Machinery & Chemical Corp. and National Distillers Products Corp. This operation was described in some detail in an article

published during the year.4

The deposits in this area were discovered in 1938 in an exploratory well being drilled for oil or gas. A bed of trona (hydrous sodium carbonate) 10 to 20 feet thick was encountered at a depth of approximately 1,500 feet. On the basis of test holes drilled to the formation, an estimated 250 million tons of trona reserves has been reported, which would yield about 170 million tons of soda ash. In 1947 a 12-foot circular shaft was sunk to the ore body and a pilot plant built to treat the material extracted in developing the mine. From that time until the present this plant has turned out a marketable product. In 1951 expansion of this facility was begun, and National Production Authority issued a certificate of necessity allowing accelerated amortization of the facilities. The designed capacity of the surface plant is reported to be 300,000 tons of refined soda ash per year. A second shaft 14 feet in diameter has been sunk, and the new facilities were expected to be completed early in 1953.

In 1952 the following firms and individuals reported production of natural sodium sulfate: American Potash & Chemical Corp., 3030 West Sixth St., Los Angeles 54, Calif., plant at Trona, Calif.; Ozark-Mahoning Co., Box 449, Tulsa, Okla., plant at Monahans, Tex.; Wm. E. Pratt, Box 738, Casper, Wyo.; and Iowa Soda Products Co., Box

476, Council Bluffs, Iowa, plant at Rawlins, Wyo.

TABLE 2.—Sodium sulfate produced and sold or used, by producers in the United States, 1943-47 (average) and 1948-52

	Produ	netion (manufacti natural), short t	Sold or used by pro- ducers (natural only)		
Year	Salt cake (crude)	Glauber's salt (100 percent Na ₂ SO ₄ .10H ₂ O)	Anhydrous refined (100 percent Na ₂ SO ₄)	Short tons 2	Value
1943–47 (average) 1948. 1949. 1950. 1951.	578, 893 668, 246 537, 843 561, 395 707, 398 662, 373	202, 697 184, 744 156, 634 185, 626 219, 942 177, 929	99, 097 169, 018 136, 276 184, 254 233, 666 202, 813	192, 763 265, 862 186, 223 186, 537 (³) 236, 825	\$1, 936, 239 4, 248, 613 2, 733, 853 2, 199, 336 (3) 3, 217, 000

¹ U. S. Bureau of the Census.

Sodium sulfate is recovered both from natural deposits and chemical reactions. It is obtained as a byproduct in the Mannheim process, in which salt and sulfuric acid are used to make hydrochloric acid and salt cake; and in rayon manufacture, wherein a little more than 1 pound of sodium sulfate is produced per pound of rayon spun (not all of this is recovered). In addition to these, some sodium sulfate

Includes Glauber's salt converted to 100-percent Na₂SO₄ basis.

Figures withheld to avoid disclosure of individual company operations.

⁴ Romano, C. A., Trona in Southwestern Wyoming: Mines Mag., vol. 42, No. 3, March 1952, pp. 69-70.

is recovered in the manufacture of phenol and lithium, boron, and chromium compounds.

The condition of the sodium sulfate industry has changed several times during recent years, and in 1952 the outlook again was changing.5

Several changes in the supply situation are likely. Any future easing of demand for hydrochloric acid probably will reduce production by the Mannheim process more than by other processes. Increasing recovery of sodium sulfate from rayon spinning baths may

balance this possible decrease in Mannheim cake.

According to the Bureau of the Census, United States Department of Commerce, production of sodium metal in the United States in 1952 totaled 123,187 short tons compared with 118,904 short tons in 1951. The following firms reported production: Ethyl Corp. with plants in Baton Rouge, La., and Houston, Tex., the latter completed during 1952; E. I. du Pont de Nemours & Co., Inc., plant at Niagara Falls, N. Y.; and National Distillers Chemical Corp., plant at Ashtabula, Ohio. National Distillers reportedly canceled plans for expanding its Ashtabula plant because of market uncertainties.6

CONSUMPTION AND USES

Soda ash is one of the basic industrial chemicals and the most important product of the alkali industry. It enters directly into the production of glass, soap, detergents, cleaners, water softening, petroleum refining, aluminum production, textiles, pulp and paper, iron and steel, sodium nitrate, caustic soda, and various other products and services.

Estimated consumption of soda ash was down in 1952 in nearly all the major categories of use.⁷ The exception was nonferrous metallurgy, where new aluminum-refining capacity was reflected in the estimate.

TABLE 3.—Estimated consumption of sodium carbonate in the United States, 1943-47 (average) and 1948-52, by industries, in thousands of short tons

[0	Chemical I	Engineering	:]			
Industry	1943-47 (average)	1948	1949	1950	1951	1952
Glass Caustic and bicarbonate Nonferrous metals Pulp and paper Soap Cleansers ¹ Water softeners Textiles Exports Petroleum refining Other chemicals Miscellaneous	190 143 110 99 67 (2)	1, 370 1, 137 210 230 130 135 110 69 207 24 1, 030 220	1, 190 875 210 200 125 130 110 55 76 24 950 175	1, 225 700 245 200 105 110 100 65 50 24 1, 050	1, 640 994 333 320 120 142 105 56 152 29 1, 253 296	1, 610 701 363 305 110 135 95 37 75 31 1, 18
Total	4, 621	4,872	4, 120	4, 025	5, 440	4, 740

Includes modified sodas.
 Exports included with "Miscellaneous," 1944-47 (average) of exports (81) and of miscellaneous (255).

Chemical Week, Plus for Salt Cake: Vol. 69, No. 17, Oct. 27, 1951, pp. 39-40.
 Chemical Week, Sodium to Diversify: Vol. 70, No. 14, Apr. 5, 1952, pp. 55-56.
 Chemical Engineering, vol. 60, No. 3, March 1953, p. 193.

Decline in consumption of soda ash in manufacture of caustic is attributed to the increase in availability of byproduct caustic from the production of electrolytic chlorine. The decline in the use of soda ash in soap is expected to be partially compensated by increased use in phosphates for detergents. Upward trends are expected for glass, aluminum, paper, and phosphates. Downward trends are

expected for caustic and soap.8

One important use for soda ash is in water softening. The lime-soda method is an effective procedure for water conditioning. Hydrated lime rids the water of most of its carbonate and bicarbonate hardness. Soda ash eliminates most of the noncarbonate hardness from water. This type of hardness comes from the compounds of calcium and magnesium other than the carbonates. In most waters these are sulfates and chlorides predominately. Soda ash reacts with these soluble noncarbonates to precipitate calcium as carbonate and, precipitate with the aid of lime, magnesium as hydride. This method of conditioning water was described in an article.

About three-fourths of the salt cake consumed goes into the production of kraft pulp. Glass and synthetic detergents take the next greatest tonnages. The remainder is used in making sodium alum, sodium silicate, in ceramics, mineral stock feeds, pharmaceuticals,

and other applications.

Although the kraft-pulp industry has expanded greatly, increase in the use of salt cake has not been proportionate. The United States Pulp Producers Association estimates that 194 pounds of salt cake are needed to produce 1 ton of kraft as compared with 241 pounds 5 years ago. Improved pulp washing, use of electronic precipitators, improved evaporators to concentrate the pulping liquor largely are responsible for this reduced requirement. The development of the neutral sulfite pulping bath also held down the requirement for salt cake. In this process soda ash is dissolved and sulfur dioxide blown into it. A new pulping procedure for hard woods may reverse the trend of decreasing use of sulfate. In detergents, demand for solid synthetics has gone up, with a consequent increase in demand for sulfate. In the production of alkyl sulfates, for example, manufacturers were using more salt cake.

The outlook for sodium metal was reviewed.¹¹ E. I. du Pont de Nemours Co., Inc., was increasing capacity for production of tetraethyllead (TEL) and thereby creating new demand for sodium. Ethyl and Du Pont reportedly disposed of most of their sodium for TEL manufacture; National Distillers sold much of its output for other than TEL purposes. One of the principal uses was reduction of glycerides to lauryl or other fatty alcohols. These were converted to alkyl sulfates, which are the main ingredients of certain detergents. The question of how competition from other detergents, such as petroleum-based alkyl aryl sulfonates, will affect the demand for alkyl sulfates, was said to be responsible in part for National Distillers decision not to expand at Ashtabula. Another factor that affected

Chemical Engineering, Soda Ash Is and Will Be Ample: vol. 60, No. 3, March 1953, p. 193.
 Brindisi, Paul, Water-Softening Methods 2: Lime Soda: Power, vol. 96, No. 1, January 1952, pp. 80-81, 216, 218, 220.
 Chemical Week, Now—Hardwood Pulp: vol. 69, No. 17, Oct. 27, 1951, pp. 31, 33.
 Chemical Week, Sodium To Diversify: vol. 70, No. 14, Apr. 5, 1962, pp. 55-56.

the demand for sodium was the process competition between sodium reduction and high pressure hydrogenation in making glycerides. Still another factor was the role of aromatics in increasing the octane rating of motor fuels.

Other products requiring sodium in their manufacture include sodium peroxide, sodium cyanide, sodium hydride, organic interme-

diates, and pharmaceuticals.

PRICES

According to Oil, Paint and Drug Reporter, the price of soda ash was quoted at \$1.60 per 100 pounds of dense ash, 58 percent, paperbags, carlots, works; \$1.30 per 100 pounds, bulk, same basis; light ash, 58 percent, same basis, was quoted at \$1.50 and \$1.20 per 100 pounds, respectively. Salt cake, bulk, works, 100 percent Na₂SO₄ basis, was quoted at \$17 per ton. Glauber's salt, anhydrous, crystalline, bags, carlots, works, freight allowed, was quoted at \$45 per ton. These prices prevailed throughout the year.

According to E&MJ Metal and Mineral Markets, the price of sodium per pound, carlots, in drums, was 16½ cents; less than carlots,

17 cents. These prices prevailed throughout the year.

FOREIGN TRADE 12

The bulk of the sodium sulfate imported into the United States came from Canada, Belgium, and Germany. Imports of sodium carbonate came largely from France and Germany.

TABLE 4.—Sodium sulfate imported for consumption in the United States 1943-47 (average) and 1948-52

Year	Crude (s	alt cake)		Crystallized (Glauber's salt)		drous	Total	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1943–47 (average)	31, 198 29, 612 21, 090 61, 612 77, 559 50, 822	\$431, 786 468, 561 294, 367 737, 118 940, 202 803, 054	18	\$352 1,152	245 5, 565 3, 904 5, 105	\$95 4, 953 107, 330 101, 139 141, 254	31, 217 29, 612 21, 388 67, 177 81, 463 55, 927	\$432, 233 468, 561 300, 472 844, 448 1, 041, 341 944, 308

¹² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 5 .- Sodium carbonate and sodium sulfate exported from the United States, 1943-47 (average) and 1948-52

[U. 8	. De	partment o	f (Commerce]
-------	------	------------	-----	-----------

	Sodium	carbonate	Sodium sulfate		
Year	Short tons	Value	Short tons	Value	
1943-47 (average)	95, 352 207, 090 75, 585 63, 497 155, 146 105, 933	\$3, 782, 511 9, 654, 178 2, 817, 635 2, 173, 428 6, 903, 150 4, 031, 110	(1) (1) 14, 440 16, 834 25, 634 27, 909	(1) (1) \$500, 000 422, 263 797, 360 781, 582	

¹ Not separately classified prior to 1949.

TECHNOLOGY

As a result of efforts to utilize power from nuclear reactors, interest in liquid-metal coolants has spurred the study of sodium for this Some of this research was discussed in articles published during the year. 13 Sodium is an excellent coolant and has acceptable Sodium's high specific heat makes it econuclear characteristics. nomical to pump, and more heat is removed by sodium per pound pumped than by any other liquid metal except lithium.

National Distillers Chemical Corp. has released the fourth in a series of technical bulletins on sodium dispersions, summarizing the preparation properties and uses of this form of metallic sodium. The bulletin presents technical data on the formulation of sodium dispersions in various mediums. Sodium content, stability, fluidity, and other properties of these dispersions are reviewed.14

Solvay Sales Division, Allied Chemical & Dye Corp., issued a new edition of its technical bulletin on soda ash. The bulletin includes data on properties, uses, handling, and storage.15

RESERVES

A report was published on the results of an investigation conducted by the Bureau of Mines on the sodium sulfate deposits in Divide, Williams, Mountrail, Ward, and Ransey Counties, N. Dak., and in Sheridan County, Mont. Of the 14 deposits included in the investigation, 12 are in North Dakota and 2 in Montana. Some of these deposits had been sampled by the Federal Emergency Relief Administration, the University of North Dakota, and the North Dakota Geological Survey. Seven deposits sampled by the Bureau of Mines were found to contain a permanent bed of Glauber's salt.

 ¹³ Koenig, R. F. and Vandenberg, S. R., Liquid Sodium—a Noncorrosive Coolant: Metal Progress, vol. 61, No. 3, March 1952, pp. 71-75.
 Evans, George E., Wanted: Better Materials for Nuclear Reactors: Iron Age, vol. 169, No. 11, Mar. 13, 1952, pp. 93-97.
 ¹⁴ National Distillers Chemical Corp., Sodium Dispersions: Tech. Bull. 104, Ashtabula, Ohio, 4 pp. ¹⁸ Solvay Sales Division, Allied Chemical & Dye Corp., Soda Ash, Technical and Engineering Bull, No. 5, New York, 64 pp. ¹⁹

The seven deposits are estimated to contain a total of 19,140,000 short tons of impure Glauber's salt or approximately 11,707,000 short tons of pure Glauber's salt in the permanent beds alone. This, with the tonnage developed by the FERA, gives a total of 23,849,000 short tons of Glauber's salt or 10,507,000 short tons of anhydrous sodium sulfate in the permanent beds of all deposits.

An additional reserve of 2,450,500 short tons of Glauber's salt in intermittent crystals, 421,000 short tons in the brines, and 3,718,600 tons in other material also was developed by the Bureau of Mines. Analyses, areas, and tonnages for the bedded material in the indi-

vidual lakes were given in the report.¹⁶

WORLD REVIEW

As many countries strive for self-sufficiency in basic chemical materials, new sodium compound plants are being built. Widespread occurrences of salt, the raw material for the manufactured product, facilitate the development of such industry in many countries.

Colombia.—Completion of the soda ash plant of Planta de Soda de Betania was announced. This plant was designed to produce 100 The product will go largely into glass, tons of soda ash daily. caustic, and bicarbonate, and will save the country several million dollars annually in foreign exchange. 17

India.—At Didwana about 40 miles northwest of Sambhar is situated the only source of mirabilite (sodium sulfate) in India. This lake is an oval depression about 4 miles long and 1½ miles wide. It is estimated that the total crystallizing area of the lake is about 2½ million square feet.

The crystallizing period begins immediately after the monsoon, and the sulfate may be obtained best during the winter months. crust (crude sulfate) is broken and stored near the banks of the pans. Several pans are worked simultaneously, and the output is transported in bullock carts to the railway station about 1½ miles away. A plant at Bhagat-ki-kothi, Jodhpur, converts a portion of the sodium sulfate to the sulfite which is used largely in the leathertanning industry. Most of the remainder of the sulfite is used in paper manufacture and chemical industries.¹⁸

It is reported that deposits of soda have been found in Uttar, It was believed that the brines would yield substantial quantities of soda ash, sodium bicarbonate, sodium sulfate, and other salts.19

Binyon, E. O., North Dakota Sodium Sulfate Deposits: Bureau of Mines Rept. of Investigations 4880, 1952, 41 pp.
 Bureau of Mines, Mineral Trade Notes: vol. 35, No. 1, July 1952, p. 43
 Information abstracted from reports by A. V. Corry, American Embassy attaché, New Delhi, India.
 U. S. Department of Commerce, Foreign Commerce Weekly: vol. 46, No. 10, Mar. 10, 1952, p. 23.

Canada.—The sodium sulfate deposits of Saskatchewan were described.²⁰ Over 200 alkali deposits and lakes in that Province are reported to contain a reserve of over 60 million tons of anhydrous sodium sulfate. The deposits occur in undrained basins, where evaporation has concentrated the alkali salt. In some deposits the salt is present as a strong brine and in others as a brine overlying permanent beds of solid crystal.

²⁰ Williams, A. J., Saskatchewan's Industrial Minerals; Min. Eng., vol. 4, No. 4, April 1952, p. 398.

By Oliver Bowles¹ and Nan C. Jensen²

OMBINED sales of dimension and crushed stone in 1952 set a new alltime high record of 300,687,670 short tons valued at \$465,377,549. These sales were 5 percent higher in quantity and 7 percent higher in value than in 1951. Sales of dimension stone gained 2 percent in quantity but declined 5 percent in value. Sales of crushed and broken stone gained 5 percent in quantity and 8 percent in Furnace-flux and refractory stone production value over 1951.

declined, but the other major uses increased.

The tables in this chapter give the quantities of stone sold or used by producers and the value f. o. b. quarries or mills. Stone quarried and also used by producers is considered sold and is therefore included with sales in the statistics. Stone made into abrasives, such as grindstones, and stone used in making cement and lime are, however, not included herein. They are reported in terms of finished products in the Abrasive Materials, Lime, and Cement chapters. Dimension stone and crushed stone are considered separately, except in introductory tables 1 to 4 (which show total sales of stone by kinds, uses, and States) and in tables of imports and exports.

TABLE 1.—Stone sold or used by producers in the United States. 1943-47. (average) and 1948-52, by kinds

Year	Gre	nite	Basalt an rocks (tr		Ма	rble	Lime	estone
•	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1943–47 (average)	13, 685, 880 16, 944, 050 22, 553, 180 2 20,297, 365	38, 807, 266 42, 566, 336 52, 220, 660 2 50, 285, 648	15, 871, 046 20, 654, 580 21, 386, 260 22, 894, 830 29, 404, 512 29, 674, 760	29, 916, 965 30, 486, 257 34, 372, 735 42, 914, 706	276, 000 239, 440 267, 220 256, 339	10, 421, 254 12, 292, 822 10, 932, 234 10, 641, 219	166, 742, 390	287, 675, 332

Year	Sand	stone	Other	stone 3	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1943–47 (average)	5, 856, 966 7, 289, 950 6, 954, 660 9, 100, 890 8, 792, 232 8, 649, 584	\$11, 752, 464 18, 048, 947 19, 906, 326 23, 787, 019 24, 979, 317 25, 004, 372	13, 408, 740 16, 886, 590 14, 755, 900 16, 378, 020 21, 320, 568 22, 580, 981	\$9, 669, 578 16, 339, 123 13, 676, 892 16, 513, 622 20, 332, 981 21, 794, 443	173, 347, 038 225, 535, 390 224, 026, 570 252, 113, 050 2 285, 550, 831 300, 687, 670	\$212, 590, 812 328, 984, 571 341, 441, 645 390, 582, 097 2 436,829, 203 465, 377, 549	

¹ Includes Alaska, Hawaii, and Puerto Rico.

Revised figure.

³ Includes mica schist, conglomerate, argillite, various light-color volcanic rocks, serpentine not used as marble, soapstone sold as dimension stone, etc.

¹ Commodity specialist.

² Statistical assistant.

TABLE 2.—Stone sold or used by producers in the United States, 1951-52, by uses

	19	51	1952		
Use	Quantity	Value	Quantity	Value	
Dimension stone: Building stone: Rough construction Cut stone, slabs, and mill blocks 2 cubic feet. Approximate equivalent in short tons. Rubble cubic feet. Approximate equivalent in short tons. Monumental stone cubic feet. Approximate equivalent in short tons. Paving blocks number. Approximate equivalent in short tons. Curbing cubic feet. Approximate equivalent in short tons. Flagging cubic feet. Approximate equivalent in short tons. Total dimension stone (quantities approximate, in short tons). Crushed and broken stone: Riprap short tons. Crushed stone do Furnace flux (limestone) do Refractory stone 4 do Agriculture (limestone) do Cher uses do Grand total (quantities approximate, in short tons).	252, 991 2, 851, 687 234, 753 430, 550 3, 270 1, 006, 140 82, 481 51, 335 1, 861, 689 6, 989, 284 4190, 134, 640 39, 929, 927 2, 365, 804 19, 400, 610 24, 868, 847	976, 518 60, 169, 852 8, 437, 614 *3236, 755, 481 45, 622, 125 7, 810, 013 31, 051, 933 46, 982, 185	2, 256 1, 052, 899 86, 179 720, 871 57, 946 1, 896, 330 8, 778, 585, 633 34, 908, 815 1, 990, 786, 21, 152, 208 24, 412, 313 298, 791, 340	2, 576, 216 1, 108, 170	

TABLE 3.—Stone sold or used by noncommercial producers in the United States,1 1951-52, by uses

[Included in total production]

	19	51	1952		
Use	Short tons	Value	Short tons	Value	
Building stone Rubble Riprap Crushed stone Agricultural (limestone) Other uses	9, 866 63, 227 2, 508, 343 18, 770, 495 484, 312 4, 480, 789 26, 317, 032	\$73, 315 80, 060 2, 297, 375 21, 627, 615 739, 123 5, 167, 482 29, 984, 970	15, 866 70, 784 2, 101, 316 17, 670, 570 468, 660 2, 421, 708 22, 748, 904	\$30, 088 162, 617 2, 510, 061 22, 529, 104 660, 718 2, 469, 633 28, 362, 221	

¹ Includes Alaska and Puerto Rico.

¹ Includes Alaska, Hawaii, and Puerto Rico.
2 To avoid disclosure of individual outputs, dimension stone for refractory use is included with building stone. Sawed building stone includes: 1951—539,940 cubic feet (39,167 tons) of stone for refractory use valued at \$1,304,561; 1952—437,935 cubic feet (31,760 tons), \$1,103,642.
2 Revised figure.
4 Ganister (sandstone), mica schist, soapstone, and dolomite.

TABLE 4.—Stone sold or used by producers in the United States, 1951-52, by States

GL-L-	19	951	19	52
State	Short tons	Value	Short tons	Value
Alabama	2, 818, 421	\$7, 254, 671	3, 052, 150	\$7, 948, 410
Arizona	308, 881	353, 872	235, 020	355, 70
Arkansas	2, 535, 746	3, 216, 426	1 2, 967, 479	1 3, 346, 20
California	12, 537, 344	14, 714, 524	14, 374, 930	17, 697, 08
Colorado	1, 470, 123	2, 334, 376	1, 708, 872	2, 566, 40
Connecticut	2, 278, 466	3, 360, 378	2, 837, 045	4, 101, 06
Delaware	99, 201	245, 002	94, 911	251, 75
Florida	8, 032, 966 2 5, 234, 131	9, 419, 682	7, 836, 634	9, 577, 54
Georgia Idaho	1, 457, 182	2 14, 813, 413 1, 811, 422	7, 141, 923	18, 114, 60
Ilinois	19, 298, 968	23, 474, 516	1 1, 630, 034 22, 334, 887	1 2, 441, 23 28, 326, 06
Indiana	1 8, 641, 670	1 23, 729, 433	9, 126, 837	21, 965, 45
lowa	9, 261, 317	12, 170, 082	9, 899, 404	13, 036, 72
Kansas	7, 191, 483	9, 058, 512	8, 830, 871	12, 051, 74
Kentucky	7, 048, 771	8, 609, 609	1 8, 817, 859	1 10, 816, 70
Louisiana			(3)	(3)
Maine	644, 594	2, 582, 541	1 316, 874	(3) 1 1, 795, 76
Maryland	3, 181, 434	5, 983, 380	1 3, 391, 679	¹ 6, 330, 44
Massachusetts	1 3, 225, 839	1 9, 172, 425	1 3, 355, 819	1 9, 331, 87
Michigan	20, 851, 733	17, 514, 720	17, 973, 685	15, 770, 81
Minnesota	11, 906, 407	1 5, 613, 157	1 2, 394, 178	1 5, 498, 17
Mississippi	171, 131 11, 294, 227	168, 933	90,000	103, 50
Montana	871, 508	15, 255, 427 986, 327	15, 106, 544 1 690, 081	20, 676, 95
Nebraska	942, 967	1, 437, 899	1, 245, 106	1 792, 89 1, 946, 44
Nevada	834, 807	959, 815	830, 712	1, 158, 60
New Hampshire	1 62, 355	1 349, 606	69, 850	546, 17
New Jersey	6, 457, 248	10, 987, 705	6, 102, 324	12, 307, 48
New Mexico	1, 022, 901	592, 179	1 317, 894	1 191, 64
New York	15, 559, 372	24, 326, 118	16, 234, 549	25, 244, 24
North Carolina	1 8, 612, 967	1 13, 292, 690	1 9, 647, 513	1 14, 694, 69
North Dakota	281, 219	213, 061	67, 064	4, 96
Ohio	1 25, 190, 277	1 36, 436, 081	1 24, 693, 189	1 36, 197, 48
Oklahoma Oregon	6, 966, 676 8, 721, 799	6, 917, 548 10, 831, 483	1 9, 636, 475	1 8, 974, 33
Pennsylvania	1 27, 399, 564	1 46, 668, 590	6, 250, 849 1 25, 609, 812	8, 893, 36
Rhode Island	239, 248	651, 931	168, 993	¹ 44, 676, 45 654, 78
South Carolina	1 2, 828, 868	1 3, 690, 114	1 2, 914, 839	1 3, 881, 17
South Dakota	1, 263, 322	4, 660, 074	1, 671, 187	4, 806, 88
Cennessee	1 8, 838, 796	14, 765, 988	10, 377, 320	17, 652, 76
Texas	17, 351, 069	17,626,122	7, 604, 468	8, 664, 63
Jtah	1, 226, 710	1, 291, 118	í 852, 351	11, 123, 10
/ermont	450, 980	7, 253, 824	404, 391	6, 016, 53
/irginia	9, 277, 252	16, 621, 116	9, 670, 961	16, 969, 95
Washington	5, 029, 735	5, 664, 433	4, 523, 234	5, 491, 52
West Virginia	1 5, 754, 378	1 8, 472, 639	4, 869, 442	¹ 6, 8 2 6, 11
Wisconsin	7, 609, 323 1, 645, 475	14,671,858	8, 578, 882	16, 754, 67
Wyoming Jndistributed	226, 648	1, 857, 267 1, 842, 438	1, 466, 567 989, 683	1, 688, 89 2, 799, 98
Total	² 284, 155, 499	2 433, 924, 525	299, 005, 371	461, 064, 04
Alaska, Hawaii, Puerto Rico	1, 395, 332	2, 904, 678	1, 682, 299	4, 313, 50
Grand total	² 285, 550, 831	² 436, 829, 203	300, 687, 670	465, 377, 54

¹ To avoid disclosing confidential information certain State totals are incomplete, the portion not included being combined with "Undistributed." The class of stone omitted from such State totals is noted in the State tables in the Statistical Summary chapter of this volume.

Revised figure.
Included with "Undistributed."

DIMENSION STONE

The term "dimension stone," as used in this chapter, is applied to faced blocks of natural stone, employed principally as building stone or for making memorials. Crushed and broken stone, on the other hand, consists primarily of irregular fragments sized chiefly by mechanical screening; it is used chiefly as concrete aggregate, railroad ballast, furnace flux, and agricultural limestone.

Dimension-stone producers may be divided into three main groups on the basis of method of operation. The first group quarries stone STONE 943

and sells it as rough blocks or slabs; the second quarries stone and also manufactures it into finished products; and the third buys sawed slabs or rough blocks of stone and manufactures them into finished products. The Bureau of Mines statistical canvass covers the first and second groups but not the third. Bureau of Mines statistics are compiled from reports of quantities and values of original sales and include some material sold as rough blocks and some sold as finished products.

Total sales of dimension stone (including slate) in 1952 were almost identical in quantity with sales in 1951, but the value of sales declined 7 percent. Although these overall figures include slate, detailed statistics of that branch of the industry appear in the Slate

chapter.

TABLE 5.—Dimension stone sold or used by producers in the United States,¹ 1951-52, by kinds and uses

		1952			
Kind and use	1951	Amount	Percent of change from 1951		
Granite: Building stone: Rough construction	\$500, 133 \$6, 74 825, 882	66, 250 \$573, 743 \$8, 66 737, 569, 581 \$4, 669, 886 \$6, 33 102, 629 \$284, 013 2, 508, 994 \$14, 458, 426 \$5, 76 682, 587 \$37, 742 974, 565 \$2, 373, 604	-11 +15 +28 -11 -8 +3 +9 -3 -4 -1 +3 +59 -27 +3 -12		
Total: Quantityapproximate short tons_ Value	531, 857	518, 838	-2		
	\$23, 222, 207	\$22, 397, 414	-4		
Basalt and related rocks (traprock): Building stone: Rough construction	32, 746	33, 766	+3		
	\$114, 225	\$106, 912	-6		
	\$3, 49	\$3.17	-9		
	205	24, 230	+11,720		
	\$100	\$31, 250	+31,150		
Quantity short tons	32, 951	57, 996	+76		
Value short cons	\$114, 325	\$138, 162	+21		
Marble: Building stone (cut stone, slabs, and mill blocks)cubic feet. Value	783, 861	763, 770	-3		
	\$6, 659, 913	\$6, 620, 584	-1		
	\$8, 50	\$8. 67	+2		
	242, 553	284, 695	+17		
	\$2, 244, 771	\$2, 658, 634	+18		
	\$9, 25	\$9. 34	+1		
Total: Quantityapproximate short tons Value	87, 191	89, 051	+2		
	\$8, 904, 684	\$9, 279, 218	+4		

See footnotes at end of table.

TABLE 5.—Dimension stone sold or used by producers in the United States,¹ 1951-52, by kinds and uses—Continued

		1952			
Kind and use	1951	Amount	Percent of change from 1951		
Limestone:					
Building stone: Rough construction	101, 244 \$375, 826 \$3.71 8, 096, 710 \$17, 630, 077 \$2.18 94, 628 \$194, 640 175, 527 \$126, 580	138, 396 \$400, 304 \$2, 89 7, 098, 075 \$14, 284, 500 \$2, 01 111, 092 \$256, 526 145, 418 \$119, 719	+37 +77 -22 -12 -19 -88 +17 +32 -17		
Total: Quantityapproximate short tons Value	806, 842 \$18, 327, 123	786, 757 \$15, 061, 049	-2 -18		
Sandstone: Building stone: Rough construction	31, 181 \$157, 977 \$5.07 2, 811, 207 \$6, 071, 863 \$2, 16 11, 921 \$48, 478 61, 751 \$161, 946 441, 756 \$806, 662	43, 234 \$265, 437 \$6, 14 2, 789, 566 \$6, 026, 975 \$2, 16 57, 122 \$192, 487 78, 334 \$202, 612 483, 080 \$891, 969	+37 +68 +21 -1 -1 +376 +297 +227 +21 +41		
Total: Quantityapproximate short tons Value	291, 253 \$7, 246, 916	352, 230 \$7, 579, 480	+21 +4		
Miscellaneous stone: 3 Building stone	683, 694 \$2, 255, 306 \$3, 30 52, 194 \$56, 005 23, 260 \$43, 286	698, 767 \$2, 406, 519 \$3, 44 24, 969 \$62, 440 92, 373 \$96, 482	+297 +123		
Total: Quantityapproximate short tons Value	111, 595 \$2, 354, 597	91, 458 \$2, 565, 441	-18 +9		
Total dimension stone, excluding slate: Quantityapproximate short tons Valueapproximate short tons Slate as dimension stone 3approximate short tons Value	1, 861, 689 \$60, 169, 852 171, 150 \$8, 007, 710	1, 896, 330 \$57, 020, 764 146, 250 \$6, 586, 804	+: -! -1! -1!		
Total dimension stone, including slate: Quantityapproximate short tons Value	2, 032, 839 \$68, 177, 562	2, 042, 580 \$63, 607, 568			

BUILDING STONE

The largest use of dimension stone is for building purposes. Sales of building stone in 1952 declined 4 percent in quantity and 9 percent in value compared with 1951. The principal declines were in sales of in the principal declines were in sales of in the sales of limestone and granite. Table 6 gives the quantity and value of the major types of building stone sold or used in 1952.

Includes Puerto Rico.
 Includes soapstone, mica schist, volcanic rocks, argillite, and other varieties that cannot be classified in the principal groups.
 Details of production, by uses, are given in the Slate chapter of this volume.

945 STONE

TABLE 6.—Building stone sold or used by producers in the United States 1 in 1952, by kinds

			Rough					
Kind			Const	ruction	Architectural			
			Cubic feet	Value	Cubic feet	Value		
GraniteBasaltMarble			797, 571 401, 452	\$573, 743 106, 912	172, 350 280, 117	\$420, 365 786, 158		
LimestoneSandstone Miscellaneous	1, 681, 909 546, 929	400, 304 265, 437	2, 738, 382 1, 024, 825	2, 974, 848 1, 574, 133				
Total			3, 427, 861	1, 346, 396	4, 215, 674	5, 755, 504		
		Fini	shed		_	_		
Kind	Sa	wed	С	ut	Total			
	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value		
Granite 2Basalt	362, 161	\$1,798,564	203, 050	\$2, 450, 957	1, 535, 132 401, 452	\$5, 243, 629 106, 912		
Marble	155, 670 3, 187, 145 1, 665, 541 \$ 698, 767	1, 126, 682 5, 194, 295 3, 760, 780 3 2, 406, 519	327, 983 1, 172, 548 99, 200	4, 707, 744 6, 115, 357 692, 062	763, 770 8, 779, 984 3, 336, 495 698, 767	6, 620, 584 14, 684, 804 6, 292, 412 2, 406, 519		
Total	3 6, 069, 284	3 14, 286, 840	1, 802, 781	13, 966, 120	15, 515, 600	35, 354, 860		

¹ Includes Puerto Rico.

GRANITE

Sales of granite as dimension stone in 1952 declined 2 percent in quantity and 4 percent in value compared with 1951. All items declined, except rubble and curbing. Unit values dropped for all items, except The average value dressed monumental and rough construction stone. of granite sold in 1952 was \$43.17 a short ton, 49 cents lower than in 1951.

The decorative and building stones of Minnesota, comprising chiefly the granites of St. Cloud and the Minnesota River Valley and the dolomitic limestones of Mankato, Kasota, and Winona, have been

Tables 8 and 9 show sales of monumental granite in the Barre district, Vermont, exclusive of small quantities sold for construction or as crushed stone. The large decline in 1952 was due to a strike which affected the territory for about 5 months.

Sawed stone corresponds to dressed stone for construction work (walls, foundations, bridges) and cut stone to architectural stone for high-class buildings.
 Rough and cut miscellaneous stone included with sawed stone.

² Schwartz, G. M., and Thiel, G. A., Dimension Stone in Minnesota: Min. Eng., vol. 4, No. 1, January 1952, pp. 77-80,

TABLE 7.—Granite (dimension stone) sold or used by producers in the United States in 1952, by States and uses

					Bui	ilding					Monum	nental		Paving	blocks	Cu	rbing	r	'otal
			Ro	ugh		Dr	essed	Ru	bble	Ro	ugh	Dr	essed						
State	Active plants	l	ruction	Archit	ectural	Carbin		CIL4		GN-		G-N-		Num- ber	Value	Cubic	Value	Short tons (ap-	Value
		Short tons	Value	Cubic feet	Value	Cubic feet	Value	Short tons	Value	Cubic feet	Value	Cubic feet	Value					proxi- mate)	
California	12	30	\$60	5, 979	\$25, 410	4, 690	\$84,650	4, 507 536	\$9, 297 2, 300	23, 676 515	\$93, 712 1, 545	11, 590	\$161,065					8, 304 579	\$374, 194 3, 845
Connecticut Georgia Maine	6 16	2, 133 2, 623	l		(1) 149, 432	11, 460 (1) 76, 455	36, 626 (1) 749, 627	1,348	13, 928 112, 440	10, 563 666, 329	83, 415 1, 527, 521	(1)	(1) 1, 327, 501 114, 370	(1) (1)	(1) (1)	(1) (1) 30, 225	(1) (1) \$80, 761	5, 714 139, 358 20, 328	178, 562 3, 357, 150
Maryland Massachusetts Minnesota	6	15, 288 7, 740	166, 350 97, 418	5, 902 37, 868	6, 590 145, 759	(1)	(1)	27, 530 1, 226	87, 575 8, 085	(1)	(1)	(1)	(1)	(1)	(1)	20, 732 (1)	13, 800 (¹)	45,002 95,745	274, 315 3, 846, 617
Missouri	1 1					36, 878		107		(1)	70, 105	8, 243						15, 572 4, 193 (1)	139, 065 (1)
New Hampshire New York North Carolina	3 8	850 (1) 4, 150	(1)	19, 334	36, 800 (1)	(1) 16, 867 (1)	79,000 (1)	3, 250 (1)	9,000 (1)	35, 329	(1) 158, 143		(1)	(1)	(1)	(1) 600 (1)	(1) 1, 200 (1)	24, 190	1, 317, 249
Oklahoma Pennsylvania Rhode Island	572	29, 811 (1)	192, 528 (1)	(1)	(1)	5,000	29, 805	4, 372	13, 322	6, 972 (1) (1)	22, 702 (1) (1)	51, 660 19, 449	487, 871 243, 148					4, 837 36, 237	510, 573 478, 803 (1)
South Carolina South Dakota Texas	10 2			(1)	(1)	(1) (1)	(1)			76, 604	277, 967	(1)	2, 056, 313 (1)					(1)	2, 4 68, 058
Vermont	3 4 8			24 8, 368	54 37, 656			166		1, 389 20, 332	62, 301	85, 560	1, 364, 329			1, 976		9, 426	1, 464, 286
Undistributed	131	3, 625					2,810,825		26, 961		1, 114, 448	43, 955	643, 343	682, 587	\$37, 742				
Average unit value Short tons (approxi-			\$8.66		\$2.44		\$7. 52		\$2.77		\$3. 59		\$11.56		\$0.06		\$2.44		22, 397, 414 \$43. 17
mate)		(2)		14, 247		46, 695				149, 888		56, 402		2, 256		80,471			-

 $^{^{\}rm 1}$ Included with "Undistributed" to avoid disclosure of individual company operations. $^{\rm 2}$ 797,571 cubic feet (approximate).

TABLE 8.—Monumental granite sold by quarrymen in the Barre district, Vermont, 1943–47 (average) and 1948–52

Year	Cubic feet	Value	Year	Cubic feet	Value
1943–47 (average)	801, 892	\$2, 825, 313	1950	917, 310	\$3, 868, 351
1948	1, 039, 580	3, 952, 622	1951	853, 963	4, 100, 912
1949	890, 080	3, 528, 756	1952	599, 544	3, 010, 130

TABLE 9.—Estimated output of monumental granite in the Barre district, Vermont, 1950-52

[Barre Granite Association, Inc.]

	1950	1951	1952
Total quarry output, rough stock	917, 685 183, 537 734, 148 489, 432 244, 716 1, 748 \$13, 90 248	863, 265 172, 653 690, 612 460, 408 230, 204 1, 748 \$15.00	462, 280 92, 457 369, 823 246, 549 123, 274 1, 748 \$15. 38
Total pay roll for year. Estimated overhead Estimated value of light stock Estimated value of dark stock Estimated polishing cost Estimated sawing cost Total yalue of granite.	\$6, 025, 706 3, 012, 853 2, 938, 460 1, 590, 654 1, 846, 840 1, 445, 354	\$6, 502, 560 3, 251, 280 2, 859, 765 1, 495, 326 1, 737, 220 1, 359, 642	\$4, 166, 805 2, 083, 403 1, 525, 535 801, 289 930, 344 728, 096

BASALT AND RELATED ROCKS (TRAPROCK)

Basalt and related dark igneous rocks are used in relatively small quantities as building stone. Sales of rough construction stone were slightly higher than in 1951, while rubble sales made a remarkable gain. Total sales of basalt increased 76 percent, but the value per ton declined 31 percent. Basalt and related rocks, such as syenites and diorites, are used to some extent for memorials but are classed in the trade as "black granite," and are therefore included with the figures for monumental granite.

TABLE 10.—Basalt and related rocks (traprock) (dimension stone) sold or used by producers in the United States in 1952, by States and uses

-								
			Buildir	Total				
State	Active plants	Rough construction		Ru	bble	a		
	panto	Short tons	Value	Short tons	Value	Short tons	Value	
California. Connecticut. Idaho. Oregon. Ponnsylvania. Undistributed. Total	1 1 1 2 1	(1) 3, 604 (1) 30, 162 2 33, 766	(1) \$16, 610 (1) 90, 302 106, 912	1, 900 490 21, 840 24, 230	\$9, 500 350 21, 400 31, 250	1, 900 (1) 490 25, 444 (1) 30, 162 57, 996	\$9, 500 (1) 350 38, 010 (1) 90, 302	
Average unit value			\$3.17		\$1.29		\$2.38	

¹ Included with "Undistributed" to avoid disclosure of individual company operations.

2 401,452 cubic feet (approximate).

MARBLE

Total sales of marble increased slightly both in quantity and value over 1951. Building-marble sales declined, while monumental marble sales increased—the reverse of the situation in 1951. Unit value increased 2 percent. Tables 11 and 12 give sales data on marble, by uses and States.

TABLE 11.—Marble (dimension stone) sold by producers in the United States, 1951-52, by uses

**************************************	19	951	1952		
Use	Cubic feet	Value	Cubic feet	Value	
Building stone: Rough;					
Exterior Interior	10, 030 274, 352	\$40, 900 1, 002, 678	25, 562 254, 555	\$111, 969 674, 189	
Exterior	115, 154 384, 325	1, 071, 897 4, 544, 438	161, 123 322, 530	1, 580, 782 4, 253, 644	
Total exterior	125, 184 658, 677	1, 112, 797 5, 547, 116	186, 685 577, 085	1, 692, 751 4, 927, 833	
Total building stone	783, 861	6, 659, 913	763, 770	6, 620, 584	
Monumental stone: RoughFinished	} 242, 553	2, 244, 771	284, 695	2, 658, 634	
Total monumental stone	242, 553	2, 244, 771	284, 695	2, 658, 634	
Total building and monumental Approximate short tons	1, 026, 414 87, 191	8, 904, 684	1, 048, 465 89, 051	9, 279, 218	

TABLE 12.—Marble (dimension stone) sold by producers in the United States in 1952, by States and uses

•		Ви	ıilding	Mon	ımental			
State	Active					Qua	ntity	
	plants	Cubic feet	Value*	Cubic feet	Value	Cubic feet	Short tons (approxi- mate)	Value
Alabama Arkansas Colorado Georgia Maryland Minnesota Missouri North Carolina Tennessee Vermont. Undistributed	2 1 1 1 1 1 2 1 6 5	(1) 3, 140 3, 151 57, 862 (1) 6, 021 (1) 470, 196 (1) 223, 400	(1) \$14, 038 9, 453 811, 366 (1) 29, 000 (1) 3, 659, 210 (1) 2, 097, 517	2, 658 (1)	(1) \$350 1, 534, 613 	(1) 3, 190 3, 151 211, 211 (1) 6, 021 (1) 505, 173 (1) 319, 719	(1) 271 268 17, 953 (1) 443 (1) (1) 42, 940 (1) 27, 176	(1) \$14, 388 9, 453 2, 345, 979 (1) 29, 000 (1) (1) 3, 870, 006 (1) (1) 3, 010, 392
Total	21	763, 770 64, 851	6, 620, 584 \$8. 67	284, 695 24, 200	2, 658, 634 \$9. 34	1, 048, 465	89, 051	9, 279, 218 2 \$8. 85

 $^{^{\}rm I}$ Included with "Undistributed" to avoid disclosure of individual company operations. $^{\rm J}$ Average value per cubic foot.

TABLE 13.—Limestone (dimension stone) sold or used by producers in the United States in 1952, by States and uses

					Buil	ding							
			R	lough		Finished	(cut and	Rul	hblo	Flag	ging	T	otal
State	Active plants			Construction Architectu		saw	red)	Kui	oble				
		Short tons	Value	Cubic feet	Value	Cubic feet	Value	Short tons	Value	Cubic feet	Value	Short tons (approxi- mate)	Value
Alabama	1			(1)	(1)	(1)	(1)	(1)	(1)			(1)	(1)
Arkansas California Colorado	1 3 1	(1)	\$1, 110 (¹)			(1)	(1)	(1) 217	(1) \$868			3, 377 217	\$1, 110 53, 998 868
Connecticut Florida	$\frac{1}{2}$	183 84	739 368	5, 345	\$4, 366			24	32	193	\$200	183 510	73 4, 96
Georgia Illinois Indiana	1 7 16	(1)	(1) (1) (1)	2, 220, 698	2, 417, 319	3, 397, 036	(1) \$8, 238, 750	(1) 719 (1)	(1) 3, 812 (1)	6, 659 (1)	4, 656 (1)	(1) 1, 865 451, 445	(1) 18, 960 10, 745, 400
lowa. Kansas Kentucky	3 15 1	(1) 2, 518 1, 000	5, 492 3, 000	(1)	(i)	2, 650 274, 854	8, 000 706, 238	(1)	(1) (1)	3, 000 4, 374	2, 000 1, 996	7, 432 50, 913 1, 000	32, 88 825, 66 3, 00
Maryland Michigan Minnesota	1 5 5	2, 414	17, 248	58, 437	91,000	(1) 151, 853	(1) 568, 150	(1) 5, 576	(1) 22, 204	(1) (1) 16, 250	(1) (1) 11, 500	5, 322 23, 699	(1) 45, 92 692, 85
Missouri New York Ohio	12 2 3	38, 314 (1) 12, 251	158, 785 (1) 26, 545					3, 239 (1) 4, 306	16, 589 (1) 9, 831	20, 435 (1)	18, 285 (¹)	43, 290 5, 369 16, 557	193, 65 6, 74 36, 37
Oklahoma Pennsylvania Puerto Rico	2 4 4	(1) 46, 219 8, 876	126, 650 12, 275					(1) 4, 808	(1) 9, 591	(1)	(1)	(1) 46, 366 13, 684	(1) 127, 03 21, 86
Pennessee	2 7 1	526 (1)	526 (1)	(1)	(1)	127, 910	454, 869	2, 700 (1)	5, 400 (¹)			3, 226 45, 051	5, 92 606, 09
Wisconsin Undistributed	19	2, 180 23, 720	9, 685 37, 881	100, 155 353, 747	199, 093 263, 070	256, 928 148, 462	672, 784 660, 861	13, 995 75, 508	39, 747 148, 452	71, 664 22, 843	65, 447 15, 635	50, 474 16, 666	(1) 986, 75 650, 21
TotalAverage unit value	119	138, 396	400, 304 \$2. 89	2, 738, 382	2, 974, 848 \$1. 09	4, 359, 693	11, 309, 652 \$2, 59	111, 092	256, 526 \$2. 31	145, 418	119, 719 \$0, 82	786, 757	15, 061, 04 \$19, 1
Short tons (approximate)	;	(2)		202, 237		323, 185				11, 847			

¹ Included with "Undistributed" to avoid disclosure of individual company operations, ² 1,681,909 cubic feet (approximate).

LIMESTONE

The principal use of limestone in blocks or slabs is for building purposes, such as interiors and exteriors of public buildings and commercial structures. Sales of dimension limestone declined 2 percent in quantity and 18 percent in value in 1952 compared with 1951. Rubble and rough construction stone were the only classes to show gains in 1952. Sales of cut stone decreased 15 percent.

The Bedford-Bloomington area, Indiana, continued to produce most of the dimension limestone in the United States. The total output of the region in 1952 was 79 percent of the national total of cut stone, slabs, and mill blocks in quantity and 75 percent in value. Tables 14 to 16 show production in the Bedford-Bloomington, Ind., and Carthage, Mo., areas over a series of years.

TABLE 14.—Limestone sold by producers in the Indiana collic limestone district, 1943-47 (average) and 1948-52, by classes

		• , *		Constr	uction			
Year		Rough	block	Sawed a finis		Cu	ıt	
	,	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	
1943–47 (average) 1948 1949 1950 1951 1952		1, 119, 240 2, 328, 180 1, 896, 780 2, 192, 140 2, 517, 714 2, 220, 698	\$659, 757 1, 914, 559 1, 742, 517 2, 309, 303 2, 591, 339 2, 417, 319	764, 618 1, 974, 730 2, 215, 940 3, 213, 160 3, 159, 924 2, 736, 654	\$754, 205 2, 312, 829 2, 805, 866 4, 669, 493 4, 990, 385 4, 322, 803	302, 232 682, 480 803, 140 1, 191, 200 976, 600 660, 382	\$923, 903 3, 205, 984 3, 377, 699 5, 682, 062 5, 901, 568 3, 915, 947	
Year	Constr	ruction—Con Total	tinued	Other	r uses	Total		
I cai	Cubic feet	Short tons (approxi- mate)	Value	Short tons	Value	Short tons (approxi- mate)	Value	
1943-47 (average) 1948	2, 186, 090 4, 985, 390 4, 915, 860 6, 596, 500 6, 654, 238 5, 617, 734	158, 504 361, 440 356, 400 478, 250 482, 432 407, 286	\$2, 337, 865 7, 433, 372 7, 926, 082 12, 660, 858 13, 483, 292 10, 656, 069	71, 992 165, 400 48, 320 276, 620 156, 084 176, 688	\$114, 154 328, 656 149, 753 441, 797 281, 102 327, 255	230, 496 526, 840 404, 720 754, 870 638, 516 583, 974	\$2, 452, 019 7, 762, 028 8, 075, 838 13, 102, 658 13, 764, 394 10, 983, 324	

TABLE 15.—Purchased Indiana limestone sold by mills in the Indiana colitic limestone district, 1943-47 (average) and 1948-52, by classes

Year	Sawed a finis	nd semi- shed	С	ut	Total		
	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	
1943–47 (average)	36, 866 357, 080 117, 270 141, 510 127, 159 156, 935	\$35, 038 491, 898 166, 809 198, 859 179, 946 229, 940	464, 074 845, 850 1, 016, 050 921, 900 742, 745 661, 844	\$1, 438, 801 3, 558, 754 5, 365, 837 4, 674, 820 4, 579, 979 3, 687, 401	500, 940 1, 202, 930 1, 133, 320 1, 063, 410 869, 904 818, 779	\$1, 473, 839 4, 050, 652 5, 532, 646 4, 873, 649 4, 759, 925 3, 917, 341	

STONE 951

TABLE 16.—Limestone and marble sold by producers in the Carthage district, Jasper County, Mo., 1943-47 (average) and 1948-52, by classes

		Dime	nsion sto	ne (roug	h and dr	essed)					
	Building		Monumental			Total		Othe	r uses	Total	
Year	Cubic feet	Value	Cubic feet	Value	Cubic feet	Short tons (ap- proxi- mate)	Value	Short tons	Value	Short tons (ap- proxi- mate)	Value
1 9 4 3 – 4 7 (average) 1948 – ———————————————————————————————————	32, 754 64, 510 84, 810 75, 630 135, 715 107, 430	934, 036 805, 532	5, 380	\$44, 627 29, 636 26, 772 17, 185 12, 509 17, 681	69, 890 89, 340	5, 940 7, 590 6, 640	960, 808 822, 717 884, 773	261, 404 230, 540 238, 250 252, 960 257, 609 226, 274	420, 833 467, 926	259, 600 269, 302	

SANDSTONE

Sales of sandstone in 1952 increased 21 percent in quantity and 5 percent in value over 1951. The average unit value declined 14 percent. Gains were reported for every use except dressed and sawed building stone. Rubble sales were nearly five times as great as in 1951.

Ohio continued to produce the largest quantity, contributing 43 percent of the total. Other States, in order of production, were Pennsylvania, Tennessee, Arkansas, California, Colorado, and New York.

Sales of bluestone in 1943-52 are indicated in table 18. Bluestone is a type of sandstone that splits easily into thin, uniform slabs. It is well adapted for flagging but is also used for building stone and curbing.

TABLE 17.—Sandstone (dimension stone) sold or used by producers in the United States in 1952, by States and uses

						Build	ing					Cur	bing	Flag	ging	T	otal
		Rougl	1 con-	Rough	ı archi-		Dress	sed		Rubb	le					Short	. ,
State	Active plants	struc			ural	Sav	ved	C	ut	Short		Cubic feet	Value	Cubic feet	Value	tons (ap- proxi-	Value
		Short tons	Value	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	tons	Value					mate)	
labama	1			3, 500	\$5,500					100	\$500			2,500	\$3,000	568 388	\$9,
rizona	1 3	(1)	(1)	(1)	(1)					(1)	(1)			5,000	4,000	28, 271	4, 115.
alifornia	4	2,062	\$16,350			231	\$576			18,030	93, 884					20, 110	110,
olorado	5 1	305	3,967	138, 178	143, 637	25, 641	60,000			2,407	11,791			45,001	31,556	17,000 2,000	190 60
ansas	î									150	188					150	
entucky [assachusetts	2	(1)	(1)	(1) (1)	(1) (1)			(1)	(1)					1,446	1,800	(1) (1)	(1) (1)
(ichigan	i	116	312							670	3, 350			1, 525	1,464	908	5
lissourievada	1 2	(1)	(1)	13, 167	21,350	6,410	12 500							6,410	12, 500	(1) 2,027	(¹) 46
ew Jersey	ĩ			8,688	8,340						 					695	8
ew Mexico ew York (bluestone)	1 9	195	1,600	13, 769	22, 051	410 15, 904	960 104, 722	6,600	\$90,081	(1)	(1) 80	(1)	(1)	1,667 137,095	2,730 196,467	175 15,448	3 423
hio	9			199, 374	377, 702	1,616,945	3, 582, 022	47, 971	406, 347			74,542	\$199, 594	131, 107	287, 567	150,071	4,853
klahoma	18	(1) 37, 744	(1) 232, 281	(1)	(1) (1)					(1)	(1)	(1)	(1)	89, 867	156, 915	950 50, 130	10 411
nnessee	8			479, 089	663, 748					(¹) 5, 853	11,706	(1)		45, 475	171, 230	46,769	846
rginia	2 1			7, 359	11,480					2,700	18, 900			4,487 11,250	4,600 18,000	924 3,600	16 36
ashington	3			62, 207	203, 469			8, 147	73, 420					250	140	5,648	277
isconsinndistributed	5	250 2, 562	255 $10,672$	99, 494	(1) 116, 856			(1) 36, 482	(i) 122, 214	27, 199	52,088	3,792	3,018			2,729 3,669	62 87
Total	83	43, 234	265 427	1 024 825	1, 574, 133	1 665 541	3, 760, 780	99, 200	692,062	57 199	192, 487	78, 334	202, 612	483 080	891, 969	352, 230	7, 579
erage unit value					\$1.54		\$2. 26		\$6.98		\$3.37		\$2.59		\$1.85		\$2
nort tons (approximate).		(3)		79, 122		121, 123		7,607				5, 708		38, 314			

¹ Included with "Undistributed" to avoid disclosure of individual company operations.

² Includes 135,377 cubic feet of bluestone (approximately 11,439 tons) valued at \$160,931 sold for rough building and flagging.

³ 546,929 cubic feet (approximate).

TABLE 18.—Bluestone (dimension stone) sold or used in the United States, 1943-47 (average) and 1948-52 1

Year	Cubic feet	Value	Year	Cubic feet	Value
1943–47 (average)	182, 746	\$178, 185	1950	390, 460	\$604, 137
	325, 940	462, 716	1951	253, 935	464, 200
	395, 500	533, 727	1952	318, 198	583, 970

¹ New York and Pennsylvania were the only producing States.

MISCELLANEOUS STONE

Types of stone other than those included in the major groups discussed are covered in table 19. The principal types in this classification are mica schist, argillite, light-color volcanic rocks (such as rhyolite), soapstone, and greenstone. The total quantity sold declined 18 percent in quantity but increased 9 percent in value compared with 1951.

TABLE 19.—Miscellaneous varieties of stone (dimension stone) sold or used by producers in the United States in 1952, by States and uses

			Buildi	ng			•		
State	Active plants	Roug dres		Rul	ble	Flag	ging	Total	
		Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Arkansas California Colorado Georgia Maryland New Mexico Nhew York Ohio Pennsylvania Puerto Rico Virginia Washington Wisconsin Undistributed	1 7 1 2 6 1 2 1 7 1 4 1 1	4,067 480 11,002 (1) (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (2) (3) (4) (1) (1) (1) (1) (1) (1) (1) (1	\$36, 872 2, 400 72, 843 (1) 154, 830 (1) (1) 456 (1) 2, 138, 506	(1) 8, 309 1, 200 (1) 75 	\$7, 465 480 (1) 240 	(1) (1) (1) 3, 515 1, 257	\$11,000 (1) (1) 27,284 29,300 28,898	(1) 13, 016 1, 200 (1) 12, 155 75 (1) (1) 36, 591 13, 806 (1) 190 (1) 14, 425	(1) \$55, 33 (1) 85, 16 (24 (1) (1) 182, 11 27, 61 (1) 45 (1) 2, 214, 04
Total Average unit value	35	² 58, 704	2, 406, 519 \$40. 99	24, 969	62, 440 \$2. 50	* 7, 785	96, 482 \$12. 39	91, 458	2, 565, 44 \$28. (

Included with "Undistributed" to avoid disclosure of individual company operations.
 Approximately 698,767 cubic feet.
 Approximately 92,373 cubic feet.

CONSUMPTION AND USES

Figure 1 presents a 37-year history of the sales of dimension stone, kinds. This figure illustrates strikingly how wars and depressions

adversely influence the sales of dimension stone.

Figure 2 traces, for a 38-year period, the history of building-stone sales as a whole and of the chief variety, limestone, in their relation to nonresidential building, the class of construction using stone most extensively. During recent years building stone sales have not paced construction. This may be due partly to extensive building construction of types that normally use stone sparingly, and partly to the wider use of alternate materials, such as aluminum, stainless steel, glass block, and ceramic products.

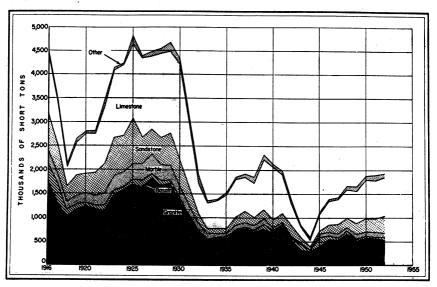


FIGURE 1.—Sales of dimension stone in the United States, by kinds, 1916-52.

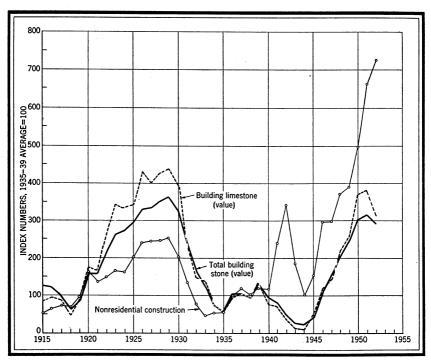


FIGURE 2.—Sales of all building stone and building limestone compared with nonresidential construction (public and private), 1915-52. Data on non-residential-building construction from Survey of Current Business, U. S. Department of Commerce.

955 STONE

TECHNOLOGY

Although the destructive activities of termites on woodwork are widely known, stonework is generally regarded as immune from the attack of insects. However, it is recorded that the mason bee is causing considerable damage to sandstone churches in England by boring into the stone to depths of 3 or 4 inches. The necessity for

extensive restoration has resulted.4

Oolitic limestone on the island of Portland, England, was first worked in 1619. The durability and strength of the better grades are due to intergrowth of the grains. Waste-rock overburden ranges from 20 to 44 feet. Quarry methods are governed by the joints or natural partings, which form a more or less rectangular grid. Some of the joints are open, forming "gullies" that may be 12 inches to as much as 6 feet wide. Blocks of stone are broken loose by wedging in the joints. Further subdivision is accomplished by cutting V-shape pits 4 to 6 inches deep and driving wedges in them. for the use of steel wedges, the process is almost as primitive as that used by the Egyptians in fashioning stone for the pyramids. description of quarry methods has recently been published.5

The stonecutter's and stonemason's art with respect to Portland stone is described in some detail in a second article. 6 Stone fabrication, unlike quarrying, has attained a high level of mechanical efficiency. Diamond saws and carborundum wheels have greatly increased speed in cutting blocks of stone to conform to detailed

specifications.

A new substitute for natural stone is a concrete block with a facing consisting of a glazed tilelike material, either white or colored, which

is made as an integral part of the block.7

The quarrying and milling of building stone have made remarkable progress in France since World War II. Hand methods of quarrying have been replaced by machines, such as circular saws and chain saws equipped with tungsten carbide-tipped teeth. The improved equipment is said to have increased quarry output sevenfold. wire saw used in one quarry consists of an endless cable on which tungsten carbide teeth are attached at intervals. Similar saws are used for block subdivision, and mill output is increased greatly by making 2, 4, or 6 cuts simultaneously. Costs have been reduced so greatly that stone can compete favorably with other building materials in large housing projects.8

The Siskol electric cutter is said to give effective service in underground workings from which building stone is produced in France. The machine is mounted on a vertical column fixed firmly between floor and roof. The percussion cutting head is swung to and fro across the face, cutting in an arc. At the end of each foot of advance, a longer cutting rod is inserted. The machine makes a cut 3½ inches

wide at a rate of about 40 square feet an hour in limestone.9

Stone Trades Journal (London), Mason Bee Attacking Churches: Vol. 71, No. 7, September 1952, p. 87.
 Hounsell, B., Portland and Its Stone: Mine and Quarry Eng. (London), vol. 18, No. 4, April 1952, pp.

Hounsell, B., Portland and its Stone: Mine and Quarry Eng. (London), vol. 18, No. 5, 107-114.
 Hounsell, B., The Fabrication of Portland Stone: Mine and Quarry Eng. (London), vol. 18, No. 5, May 1952, pp. 143-147.
 Pit and Quarry, Stone-Faced Blocks: Vol. 45, No. 2, August 1952, p. 168.
 Marini, A., and Demarre, G., Modernization of Methods Used for Quarrying and Dressing Building Stones: Quarry Managers' Jour. (London), vol. 35, No. 6, December 1951, pp. 327-335; No. 7, January 1952, pp. 381-387;
 Stone Trades Journal (London), vol. 71, No. 1, January 1952, pp. 8-9; No. 2, February 1952, pp. 14-16;
 No. 3, March 1952, pp. 23-26.
 Stone Trades Journal London), Efficient Stone Cutting Lowers Cost: Vol. 72, No. 1, January 1953, np. 6-7.

pp. 6-7.

WORLD REVIEW

From a review of British technical journals pertaining to the stone industries, it appears that, both in Great Britain and continental Europe, remarkable progress is being made in developing new stone sawing and cutting devices that are greatly reducing the cost of quarrying and fabrication. In consequence, stone is being used more widely in housing projects and other low-cost types of construction.

The Italian marble industry has not yet recovered from the depressed conditions of the World War II period, although the trend is upward. About half of the output of marble and other dimension stone is used within the country, and the remainder is exported. The domestic demand is being sustained at a moderate level by a Government-supported home-building program. Export trade has been hampered by limited demand in continental Europe and by import restrictions imposed by some foreign countries, for instance, Pakistan

and India have prohibited stone imports. 10

"Wonderstone" has been worked in a small way for centuries in the Union of South Africa. It is so named because of its remarkable adaptability to a great variety of uses. It is a fine-grained, bluishgray rock, which approaches pyrophyllite in chemical composition. It is well adapted for carving and is highly resistant to weathering and abrasion. Because of its chemical resistance, it is used for laboratory tabletops and sinks in the same way that soapstone is employed. Production has been small for many years but recently has attained much greater importance. Production in 1950 was only 199 short tons; in 1951 it was 343 tons; and, during the first quarter of 1952, it reached 1,423 tons. Some is shipped to the United States.¹¹

Rich deposits of alabaster are said to occur in central Anatolia, Turkey. A license has been granted by the Turkish Government to permit export to Germany. Production of 1,720 metric tons of alabaster was reported in South Korea in 1952. No output was recorded

for 1951.12

CRUSHED AND BROKEN STONE

An alltime record production of nearly 300 million tons of crushed and broken stone, in addition to that used for making cement and lime, was reported for 1952. This output represents an increase of 5 percent in quantity and 8 percent in value over 1951. The average sales price per ton increased 4 cents to \$1.37. Most of the major uses declined slightly to moderately, but these losses were more than compensated by the 10-percent increase in the largest item, concrete and road metal.

Table 20 shows the quantity and value of sales, by uses, during 1951 and 1952. Detailed data on asphaltic stone and slate granules and flour are given in the Asphalt and Slate chapters of this volume.

Tables 21 and 22 show the tonnage and value of stone used for concrete and road metal and for railroad ballast for a series of years and by States for 1952.

<sup>Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 1, January 1952, p. 31.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, p. 48.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, p. 27.</sup>

TABLE 20.—Crushed and broken stone sold or used by producers in the United States, 1951-52, by principal uses

		1951			1952	
Use		Valu	ıe	Chart tage	Valu	ıe
. · ·	Short tons	Total	Average	Short tons	Total	Average
Concrete and road metal	² 168, 766, 088	2\$216, 418, 613	\$1.28	186, 205, 565	\$245, 567, 866	\$1.3
Railroad ballast			.95	21, 383, 068	20, 019, 095	
Metallurgical	39, 929, 957	45, 622, 125	1.14	34, 908, 815	41, 119, 351	1.1
Alkali works	7, 708, 686	7, 207, 496	. 93	6, 557, 940	6, 448, 388	.9
Riprap	6, 989, 284	8, 437, 614	1. 21	8, 778, 585	11, 156, 047	1. 2
Agricultural	19, 400, 610	31, 051, 933	1.60	20, 683, 548	33, 803, 245	1. 6
Refractory (ganister, mica		1, 1				
schist, dolomite, soapstone)	2, 365, 804		3.30	1, 950, 786	7, 262, 048	
Asphalt filler	1,047,223	3, 159, 714	3.02	1,002,849	2, 934, 211	
Calcium carbide works	888, 628	903, 816	1.02	722, 729	762, 257	
Sugar factories	563, 064		2.43		1, 404, 391	2.
Glass factories	793, 896				1, 933, 165	2. 3
Paper mills	445, 861					2.2
Other uses	13, 421, 489	31, 491, 633	2.35	14, 881, 830	35, 125, 952	2.3
Total	2 283, 689, 142	2 376, 659, 351	1.33	298, 791, 340	408, 356, 785	1. 3
Portland and natural cement						
and cement rock 3	64, 284, 000			64, 305, 000		
Lime 5	16, 511, 000	(4)		16, 146, 000	(4)	
Grand total	² 364, 484, 000	(4)		379, 242, 000	(4)	
Asphaltic stone	1, 378, 434	4, 159, 259	3, 02	1, 570, 698	4, 687, 512	2. 9
Slate granules and flour	² 648, 210			593, 390		10.
	,	1 1				

TABLE 21.—Crushed stone for concrete and road metal and railroad ballast sold or used by producers in the United States, 1943-47 (average) and 1948-52

Year	Concrete an	d road metal	Railroad	l ballast	Total		
2000	Short tons	Value	Short tons	Value	Short tons	Value	
1943–47 (average)	81, 750, 510 121, 542, 170 124, 367, 210 147, 107, 670 2168, 766, 088 186, 205, 565	\$87, 719, 312 149, 879, 694 158, 357, 911 192, 293, 884 2216, 418, 613 245, 567, 866	18, 008, 888 18, 180, 990 17, 054, 180 18, 614, 040 21, 368, 552 21, 383, 068	\$13, 098, 218 16, 315, 834 15, 376, 880 17, 519, 533 20, 336, 868 20, 019, 095	99, 759, 398 139, 723, 160 141, 421, 390 165, 721, 710 2190, 134, 640 207, 588, 633	\$100, 817, 530 166, 195, 528 173, 734, 791 209, 813, 417 236, 755, 481 265, 586, 961	

¹ Includes Alaska, Hawaii, and Puerto Rico.
² Revised figure.

Includes Alaska, Hawaii, and Puerto Rico.
 Revised figure.
 Value reported as cement in chapter on Cement.
 No value available for stone used in manufacture of cement and lime.
 Value reported as lime in chapter on Lime.

TABLE 22.—Crushed stone for concrete and road metal and railroad ballast sold or used by producers in the United States in 1952, by States

State	Concrete an	d road metal	Railroa	d ballast	То	tal
State	Short tons	Value	Short tons	Value	Short tons	Value
Alabama	531, 508	\$1,302,532			531, 508	\$1, 302, 532
Arizona	209, 870	316, 423			209, 870	316, 423
Arkansas	1 100, 787	1 145, 787	(2)	(2)	1 100, 787	1 145, 787
California	18,734,220	1 9, 240, 865	526, 654	\$404,843	1 9, 260, 874	1 9, 645, 708
Colorado	1 134, 796	i 404, 968			1 134, 796	1 404, 968
Connecticut	2, 495, 680	3, 270, 346	187, 163	205, 877	2, 682, 843	3, 476, 223
Delaware	84, 911	229, 259		l	84,911	229, 259
Florida	6, 092, 378	7, 178, 484	34, 864	39, 475	6, 127, 242	7, 217, 959
Georgia	5, 772, 657	9, 122, 951	394, 013	470, 850	6, 166, 670	9, 593, 801
Idaho	718, 062	958, 373	487, 982	410, 513	1, 206, 044	1, 368, 886
Illinois	15, 702, 331	18, 929, 697	1, 172, 642	1, 214, 646	16, 874, 973	20, 144, 343
Indiana	5, 682, 691	6, 910, 201	483, 047	571, 383	6, 165, 738	7, 481, 584
Iowa	7, 919, 998	9, 882, 960	3, 500	5, 250	7, 923, 498	9, 888, 210
Kansas	6, 044, 265	8, 085, 491	1 189, 268	1 270, 141	1 6, 233, 533	1 8, 355, 632
Kentucky	7, 131, 284	8, 911, 758	535, 346	465, 526	7, 666, 630	9, 377, 284
Maine	1 288, 202	1 637, 703			1 288, 202	1 637, 703
Maryland Massachusetts	1 2, 326, 765	1 3, 483, 129	1 21,778	1 31, 142	3, 122, 531	4, 852, 953
Massachusetts	2, 809, 773	4, 183, 733	180, 380	188, 687	2, 990, 153	4, 372, 420
Michigan	3, 261, 767	3, 506, 656	169, 929	209, 512	3, 431, 696	3, 716, 168
Minnesota	1 1, 257, 360	1 1, 614, 311	502, 610	557, 413	1 1, 759, 970	1 2, 171, 724
Missouri	9, 043, 489	11, 707, 473	1, 469, 262	448, 838	10, 512, 751	12, 156, 311
Montana	9,472	11, 437	466, 750	496, 257	476, 222	507, 694
Nebraska	438, 969	695, 559			438, 969	695, 559
Nevada	1 18, 813	1 19, 390	(2)	(2)	1 18, 813	1 19, 390
New Hampshire New Jersey	63, 253	132, 698			63, 253	132, 698
New Mexico	5, 377, 917	10, 013, 093	246, 600	459, 230	5, 624, 517	10, 472, 323
Now Vork	156, 007 1 11, 504, 819	88, 794	220, 485	163, 608	376, 492	252, 402
New York North Carolina	9, 422, 720	1 17, 912, 104 12, 861, 606	1 1, 025, 970	1 1, 221, 318	1 12, 530, 789	1 19, 133, 422
Ohio	1 10, 981, 421	1 12, 946, 509	1 10, 365	1 11, 401	1 9, 433, 085	1 12, 873, 007
Oklahoma	6, 055, 114	6, 203, 843	1,660,624 1 2,799,247	1, 823, 223	1 12, 642, 045	1 14, 769, 732
Oregon	1 5, 552, 840	1 8, 084, 027	1 237, 926	1 1, 284, 277 1 245, 318	1 8, 854, 361	1 7, 488, 120
Pennsylvania	12, 261, 332	17, 660, 729	993, 301	1, 500, 238	1 5, 790, 766 13, 254, 633	1 8, 329, 345
Rhode Island	128, 490	268, 720	220, 001	1,000,200	128, 490	19, 160, 967 268, 720
South Carolina	2, 191, 104	3, 120, 645	400, 219	485, 754	2, 591, 323	3, 606, 399
South Dakota	1, 349, 768	1, 908, 652	1 6, 500	1 10,000	1 1, 356, 268	1 1, 918, 652
Tennessee	8, 432, 737	10, 288, 311	554, 488	525, 500	8, 987, 225	10, 813, 811
Texas	8, 432, 737 3, 947, 117	4, 578, 739	1 953, 194	1 855, 855	1 4, 900, 311	1 5, 434, 594
Utah	1 12, 500	1 12, 500	(2)	(2)	1 12, 500	1 12, 500
Vermont	1 98, 643	1 135, 451	(2)	(2)	1 98, 643	1 135, 451
Virginia	1 6, 067, 157	1 8, 560, 924	1 867, 588	1 1, 002, 433	1 6, 934, 745	1 9, 563, 357
Washington	3, 527, 163	3, 638, 379	509, 006	518, 385	4, 036, 169	4, 156, 764
West Virginia	1 1, 027, 709	1 1, 655, 694	509, 276	517, 482	1 1, 536, 985	1 2, 173, 176
Wisconsin	1 5, 852, 655	1 6, 421, 761	212, 991	262, 402	1 6, 065, 646	1 6, 684, 163
Wyoming	¹ 10, 551	1 10, 388	1 634, 259	¹ 608, 570	1 644, 810	1 618, 958
Wyoming Undistributed	3, 840, 409	4, 192, 146	2, 708, 968	2, 524, 110	5, 775, 389	5, 377, 574
Total	184, 671, 474	241, 445, 199	21, 376, 195	20, 009, 457	206, 047, 669	261, 454, 656
Alaska) ' '.	, ,	, ,	-,,,	, ,	,, 000
Hawaii	1,534,091	4, 122, 667	6, 873	9, 638	1, 540, 964	4, 132, 305
Puerto Rico) ' '		-, 0	2, 300	2, 520, 501	1, 102, 000
Grand total	186, 205, 565	245, 567, 866	21, 383, 068	20, 019, 095	207, 588, 633	265, 586, 961

 $^{^1\,\}mathrm{To}$ avoid disclosing confidential information, total is somewhat incomplete, the portion not included being combined as "Undistributed." 2 Included with "Undistributed."

COMMERCIAL AND NONCOMMERCIAL OPERATIONS

Commercial production includes stone that is sold primarily in the open market. Noncommercial operations represent tonnages reported by States, counties, municipalities, and other Government agencies as being produced by themselves or by contractors for their own consumption. Table 23 shows the production of crushed stone for concrete and road metal during recent years by both types of operations. Noncommercial output during 1952 declined 6 percent from the 1951 level, whereas commercial production was 12 percent higher. Nine percent of the total output in 1952 was noncommercial, and 91 percent commercial, the same proportions as the 1943–47 average.

STONE 959

TABLE 23.—Crushed stone for concrete and road metal sold or used by commercial and noncommercial operators in the United States, 1943-47 (average) and 1948-52

[Figures for "noncommercial operations" represent tonnages reported by States, counties, municipalities, and other Government agencies, produced either by themselves or by contractors expressly for their consumption, often with publicly owned equipment; they do not include purchases from commercial producers. Figures for "commercial operations" represent tonnages reported by all other producers.]

	Con	nmercial	operation	s .	None	ommerci	al operation	ons	Total		
Year	Short tons	Aver- age value per ton	Percent of change in quan- tity from preced- ing year	Per- cent of total quan- tity	Short tons	Average value per ton	Percent of change in quan- tity from preced- ing year	Per- cent of total quan- tity	Short tons	Percent of change in quan- tity from preced- ing year	
1943-47 (average) 1948 1949 1950 1951 1952	74, 025, 580 108, 029, 360 111, 094, 390 130, 977, 250 2149, 995, 593 168, 534, 995	1. 23 1. 27 1. 32 1. 30	$^{+3}_{+18}$ $^{+15}$	89	7, 724, 930 13, 512, 810 13, 272, 820 16, 130, 420 18, 770, 495 17, 670, 570	1. 25 1. 27 1. 20 1. 15	$^{+14}_{-2}$ $^{+22}$	11 11 11	81, 750, 510 121, 542, 170 124, 367, 210 147, 107, 670 2168, 766, 088 186, 205, 565	+14 +2 +18 +15	

¹ Includes Alaska, Hawaii, and Puerto Rico.

GRANULES

The output of granules for roofing purposes has been canvassed since 1942. Table 24 shows total production and value during recent years. Separate figures for slate granules are given in the chapter of this volume on Slate.

TABLE 24.—Roofing granules ¹ sold or used in the United States, 1943-47 (average) and 1948-52, by kinds

	Na	tural	Artificia	lly colored	В	rick	То	tal
Year	Short value		Short tons			Value	Short tons	Value
1943-47 (average) 1948 1949 1950 1951	376, 580 448, 150 352, 846 489, 794 2 422, 973 368, 454	\$2, 933, 159 3, 828, 307 3, 088, 402 4, 312, 531 2 3, 714, 634 3, 350, 290	764, 208 1, 002, 430 977, 934 1, 294, 275 31,184,544 31,250,741	\$11, 336, 487 16, 563, 351 16, 489, 253 22, 276, 565 3 20,809,752 3 22,772,567	57, 186 35, 110 23, 425 13, 660 (3) (3)	\$906, 979 586, 173 400, 919 263, 752	1, 197, 974 1, 485, 690 1, 354, 205 1, 797, 729 2 1, 607, 517 1, 619, 195	\$15, 176, 625 20, 977, 831 19, 978, 574 26, 852, 848 2 24, 524, 386 26, 122, 857

Manufactured from stone, slate, slag, and brick.
 Revised figure.

SIZE OF PLANTS

The number of active crushed-stone plants in the United States increased 5 percent in 1952 compared with 1951, and average annual plant production advanced 2 percent to about 171,000 tons. Plants producing less than 25,000 tons a year numbered 422 but supplied only 1½ percent of the total output. On the other hand, the 45 plants that produced over 900,000 tons each contributed 27 percent of the total. Table 25 shows the size pattern of stone-industry units during 1951 and 1952.

² Revised figure.

³ A small quantity of brick included with artificially colored granules.

TABLE 25.—Number and production of commercial crushed-stone 1 plants in the United States in 1951-52, by size of output

		19	51		1952					
Size of output	Num- ber of plants	Total pro- duction of plants (short tons)	Per- cent of total		Num- ber of plants	Total pro- duction of plants (short tons)	Per- cent of total	Cumula- tive total (short tons)		
Less than 1,000 tons	48 368 224 182 125 243 128 73 44 19 14 2 14 8 43	18, 249 4, 204, 412 8, 098, 050 11, 115, 485 10, 722, 285 34, 302, 878 31, 112, 125 25, 388, 587 19, 632, 484 10, 311, 284 2 10, 686, 843 7, 009, 068 75, 622, 832	2 2.72	18, 249 4, 222, 661 12, 320, 711 23, 436, 196 34, 158, 481 68, 461, 359 99, 573, 510 124, 962, 097 144, 594, 581 154, 905, 864 163, 957, 312 2174, 644, 155 2181, 653, 223 257, 276, 055	39 383 227 183 133 280 130 75 47 32 19 16 8	18, 220 4, 091, 743 8, 209, 243 11, 294, 205 11, 382, 893 38, 978, 620 31, 708, 725 26, 141, 876 20, 955, 656 11, 386, 000 11, 983, 764 11, 944, 498 6, 738, 334 75, 166, 312	0. 01 1. 48 2. 98 4. 09 4. 13 14. 12 11. 49 9. 47 7. 59 6. 29 4. 34 4. 33 2. 44 27. 24	18, 220 4, 109, 963 12, 319, 206 23, 613, 411 34, 996, 304 73, 974, 924 105, 683, 649 131, 825, 525 152, 781, 181 170, 147, 181 182, 130, 945 194, 075, 443 200, 813, 777 275, 980, 089		
Total	² 1, 533	² 257, 276, 055	100.00	² 257, 276, 055	1, 617	275, 980, 089	100.00	275, 980, 089		

¹ Exclusive of marble, which is primarily a dimension-stone industry. Includes Hawaii and Puerto Rico ² Revised figure.

METHODS OF, TRANSPORTATION

The only significant change in transportation methods used by the crushed-stone industries in 1952 was a slight increase in truck haulage of stone from commercial operations and a decline in transportation by rail. Waterways provide relatively minor but locally important transportation facilities.

TABLE 26.—Crushed stone sold or used in the United States 1 in 1952, by methods of transportation

Mathed of temperatories	Commercial of	perations	Commercial and non- commercial 2 operations		
Method of transportation	Short tons	Percent of total	Short tons	Percent of total	
Truck. Rail. Waterway. Unspecified.	140, 079, 971 89, 079, 668 25, 476, 939 21, 492, 508	51 32 9 8	162, 742, 225 89, 079, 668 25, 476, 939 21, 492, 508	54 30 9 7	
Total	276, 129, 086	100	298, 791, 340	100	

GRANITE

Sales of crushed and broken granite increased 10 percent in quantity and 11 percent in value in 1952 compared with 1951. Railroad ballast, riprap, and uses designated as "other" declined, but these losses were more than compensated by a large gain in sales for concrete and road metal. The average unit price advanced 1 cent per ton. North Carolina was the largest producer, followed by Georgia, South Carolina, Virginia, and California, in that order.

¹ Includes Alaska, Hawaii, and Puerto Rico.
² Entire output of noncommercial operations assumed to be moved by truck.

TABLE 27.—Granite (crushed and broken stone) sold or used by producers in the United States in 1952, by States and uses

	Riprap		Crushed stone				Other uses 1		Total	
State	Short tons	Value	Concrete and road metal		Railroad ballast		Short tons	Value	Short tons	Value
			Short tons	Value	Short tons	Value				
California Colorado Connecticut	105, 028 (2) (2)	\$73, 626 (2) (2)	(²) 661	(2) \$2,381	(2)	(2)	453, 185	\$319,090	1, 895, 562 (2) (2)	\$1,605,562 (2) (2)
Delaware	35, 383	53, 403	84, 911 5, 231, 685 23, 400	229, 259 8, 285, 436 22, 500	365, 313	\$442, 150	10,000 114,520	22, 500 99, 150	94, 911 5, 746, 901 23, 400	251, 759 8, 880, 139 22, 500
Maine	(²) 14, 400	(2) 50, 400	50, 700 541, 083	(2) 109, 860 959, 172			1, 115	2,001 57,873	6, 444 65, 100 555, 820	11, 647 160, 260 1, 017, 045
Minnesota	(2) 7,425 3,862	(²) 10, 131	114, 560 2, 500	151, 178 2, 000	500, 610	553, 913	(2)	(2)	815, 676 7, 425 6, 362	747, 285 10, 131 7, 793
New Hampshire New Jersey	2,500	5, 793 1, 750	1, 542 178, 972	2, 373 268, 458	280	420	180	126	4, 222 179, 252	4, 249 268, 878
North Carolina	67,064 500	(2) 4, 968 500	6, 035, 726	8, 459, 142	(2)	(2)	(2)	(2)	6, 213, 434 67, 064 500	8, 949, 769 4, 968 500
Oregon Pennsylvania Puerto Rico			73, 143 100, 487 24, 500	73, 143 137, 289 24, 500			(2) 3, 051	(2) 1, 526	(2) 103, 538 24, 500	(2) 138, 818 24, 500
Rhode Island	⁽²⁾ 2,000	(2) 3, 500	2,024,669 10,000	2, 882, 741 12, 000	400, 219	485, 754	221, 396	(2) 84, 689	60, 956 2, 648, 284 10, 000	121, 369 3, 456, 684 12, 000
TexasVermontVrginia	(2) 45, 413	(2) 95, 744	1, 519, 185	(2) 2, 345, 393	277, 672	337. 817	63,064	63, 939	(2) (2) 1, 905, 334	(2) (2) 2, 842, 898
Washington Wisconsin Wyoming	79. 454	87, 883	178, 750	(2) 151, 250	634, 259	608, 570	43, 917	(2) 32, 881	77, 489 178, 750 757, 630	186, 467 151, 250 729, 334
Undistributed	268, 852	406, 659 794, 357	1, 378, 266 17, 574, 740	1, 359, 566 25, 477, 641	150, 292 2, 328, 645	2, 605, 209	309, 574	521, 984	321, 451	30, 082, 966
Average unit value	031,881	\$1. 26	17, 074, 740	\$1.45	2, 328, 045	2, 605, 209 \$1. 12	1, 234, 739	1, 205, 759 \$0. 98	21, 770, 005	\$1.38

¹ Includes stone used for fill material, poultry grit, road base, stone sand, and unspecified uses.
² Included with "Undistributed" to avoid disclosure of individual company operations.

BASALT AND RELATED ROCKS (TRAPROCK)

Commercial traprock normally includes basalt, gabbro, diorite, and other dark, igneous rocks. It is widely used for concrete aggregate, road metal, and railroad ballast, and to a lesser extent for riprap and such "other uses" as fill material, roofing granules, etc. Sales of crushed and broken traprock in 1952 were 1 percent greater in quantity and 8 percent higher in value than in 1951. Sales of material assigned to "other uses" increased greatly, while railroad ballast and riprap declined slightly in quantity but increased in value. Sales of crushed traprock for concrete aggregate and highway construction were approximately the same in quantity as in 1951 but increased 6 percent in value. The average value of traprock increased 10 cents per ton over 1951. New Jersey and Oregon were the chief producers, and Washington was next in order.

TABLE 28.—Basalt and related rocks (traprock) (crushed and broken stone) sold or used by producers in the United States in 1952, by States and uses

	Riprap		Crushed stone				Other uses 1		Total	
State	Short tons	Value	Concrete and road metal		Railroad ballast					
	Short tons		Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alaska			(2)	(2)					(2)	(2)
Arizona Oalifornia Connecticut Hawaii	- 241, 178 - 23, 631	\$445,854 29,537 3,764	4,050 1,737,983 2,495,348 591,402	\$9,000 2,040,338 3,269,351 1,407,518	3, 345 187, 163 275	\$4,420 205,877 393	12, 430		4,050 1,994,936 2,706,142	(2) \$9,00 2,515,47 3,504,76
Idaho Maine	42,000	45,000	545, 563 168, 649	797, 973			434, 000	1,090,000	595, 646 1, 021, 563 168, 649	1, 411, 6
Massachusetts	23, 075	(2) 18, 093	1, 963, 546 28, 362	2, 786, 016 21, 009	(²) 180, 380	(2) 188, 687	896	2,688	776, 936 2, 167, 897 28, 362	1, 411, 6 1, 932, 9 369, 2 1, 343, 3 2, 995, 4 21, 0
Minnesota	5, 789	15, 372 880	(2)'	(2)	85, 771	150, 359	15, 253	4, 749	(2) 106, 813 3, 523	(2) 170, 4
North Carolina			5, 171, 206 2, 018, 445 112, 697	9, 682, 868 3, 315, 647 145, 684	246, 320 107, 502	458, 810 175, 711	75	187	5, 608, 982 2, 125, 947	10, 488, 5 3, 491, 3 145, 6
Oregon Pennsylvania Puerto Rico Rhode Island	61, 611 (2)	73, 834 (²)	4, 858, 234 1, 371, 728	7, 114, 010 2, 199, 303 (2)	178, 975 604, 634 (²)	170, 747 940, 548 (²)	12, 859 (²)	16, 916 (²)	112, 697 5, 111, 679 2, 042, 283 (2)	145, 6 7, 375, 5 3, 690, 1 (2)
Pexas Virginia Weghington			(2)	(2)	(2)	(2)			(2)	(2)
Washington Wisconsin Judistributed	155 619	172, 077 1, 304 6, 325	697, 164 2, 990, 618 41, 617 1, 011, 275	1, 105, 059 2, 933, 351 77, 824 2, 102, 401	509, 006 17, 354 213, 575	518, 385 31, 237 346, 433	87, 781 (2) 154, 694	24, 285 (2) 1, 257, 074	697, 164 3, 743, 023 (2) 600, 472	1, 105, 0 3, 648, 0 (2) 1, 928, 9
Total verage unit value	756, 589	1, 158, 701 \$1. 53	25, 807, 887	39, 376, 558 \$1. 53	2, 334, 300	3, 191, 607 \$1. 37	717, 988	2, 420, 759 \$3. 37	29, 616, 764	46, 147, 6 \$1.

¹ Includes stone sold for fill material, roofing granules, and unspecified uses.
² Included with "Undistributed," to avoid disclosure of individual company operations.

MARBLE

Large quantities of waste material, consisting either of defective blocks or cuttings and spalls from marble-dressing operations, accumulate at marble quarries and mills. Some of this material is marketed as a byproduct. It is sold for a variety of uses, as indicated in a footnote to table 29. The average value varies from State to State, because in some States a large proportion of the material is marketed for the higher priced products, such as terrazzo or marble flour, whereas in others much of it is sold for concrete aggregate or other relatively low priced uses. Waste marble has virtually the same composition as limestone and is substituted for it in many applications. On this account, some of the waste marble is reported to the Bureau of Mines as limestone.

TABLE 29.—Marble (crushed and broken stone) sold by producers in the United States in 1952, by States ¹

State	Active plants	Short tons	Value	State	Active plants	. Short tons	Value
Alabama Arkansas California Maryland Missouri New Jersey New York North Carolina Tennessee	2 1 1 1 1 1 1 1 1 1 3	50 7, 168 (2) 6, 210 4, 400 13, 182 (2) 15, 381	(2) \$200 137, 664 (2) 38, 000 114, 400 148, 486 (2) 115, 424	Texas	1 1 1 1 5 2 21	16, 500 (2) 4, 000 (2) 2, 584 79, 522 148, 997	\$350, 000 (2) 3, 000 (2) 36, 948 665, 013 1, 609, 135 \$10, 80

¹ Includes stone used for agriculture, asphalt filler, cast stone, composition flooring, crushed stone, magnesia, mineral food, plaster, poultry grit, roofing, stucco, terrazzo, tile, whiting (excluding marble whiting made by companies that purchase their marble), and unspecified uses.

² Included with "Undistributed" to avoid disclosure of individual company operations.

LIMESTONE

Limestone is widely distributed in the United States. were reported to the Bureau of Mines from 45 States and 2 Territories. Limestone has the greatest variety of uses of any rock quarried. Because of its availability and its many applications in industry, it is used more extensively than any other type of stone. In 1952 limestone (excluding that used in making cement and lime) constituted 72 percent of the total crushed and broken stone produced in the United Total sales were 6 percent higher than in 1951. limestone for railroad ballast, furnace flux, and miscellaneous uses declined, while gains were reported for agricultural limestone, riprap, and stone used as concrete aggregate and road metal. unit value increased 4 cents a ton to \$1.36.

Details by States and uses are shown in table 30, and the quantities and values of limestone applied to miscellaneous uses are indicated in table 31.

A recent statistical survey, illustrated with charts, shows trends in the use of agricultural liming materials in the United States and by groups of States from 1929 to 1951.¹³

Increasing interest in agricultural limestone problems is indicated by the establishment, in 1952, of the National Agricultural Limestone It was formed by merging two earlier organizations—the

¹³ Boynton, Robert S., Survey of Liming Materials Use: Rock Products, vol. 55, No. 10, October 1952, pp. 90-92.

TABLE 30.—Limestone (crushed and broken stone) sold or used by producers in the United States in 1952, by States and uses

						Crushed	stone							
						Orusneu				•			_	
State	Rip	rap	Fluxin	g stone		and road	Railroa	d ballast	Agric	ulture .	Miscel	laneous	То	tal
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
AlabamaArizona		\$49, 194	24, 007	\$2, 330, 467 32, 095	531, 508 134, 131	\$1, 302, 532 190, 761			244, 716	\$286, 358	755	\$2, 082, 736 3, 191	2, 936, 029 158, 893	\$6, 051, 287 226, 047
Arkansas	(1)	140, 774 (¹)	446, 236 53, 066 428, 903	414, 999 151, 673 829, 585	100, 787 588, 496 85, 713	145, 787 800, 443 245, 695	5, 141	\$7,917	77, 567 (1)	136, 039 (¹)	12, 905 980, 783 64, 606	71, 750 3, 017, 103 136, 758	778, 269 1, 627, 992 579, 222	909, 349 3, 979, 205 1, 212, 038
Connecticut Florida Georgia	(1)	(1)	(1)	(1) 657	332 6, 092, 378 526, 221	995 7, 178, 484 833, 835	34, 864 28, 700	39, 475 28, 700	64, 146 333, 053 324, 294	245, 772 968, 067 568, 023	1, 375, 829	1, 386, 549	124, 464 7, 836, 124 1, 218, 515	415, 432 9, 572, 575 3, 498, 420
Hawaii Idaho Illinois	324, 124	413, 333	(1) 862, 992	(1) 1, 193, 933	52, 500 15, 702, 331 5, 682, 691	63, 000 18, 929, 697	1, 172, 642	1, 214, 646 571, 383	3, 258, 578	4, 208, 143	105, 240 (1) 1, 011, 819	121, 368 (1) 2, 338, 772	105, 240 (1) 22, 332, 486	121, 368 (1) 28, 298, 524
IndianaIowa	126, 363 935, 853	318, 788 178, 941 1, 174, 461		48, 572 27, 711	7, 919, 368 5, 681, 267	6, 910, 201 9, 881, 910 7, 719, 886	483, 047 3, 500 40, 268	5, 250 46, 641	3, 258, 578 2, 118, 185 1, 760, 676 770, 314	2, 737, 675 2, 496, 307 1, 160, 917	145, 829 62, 695 72, 446	573, 435 412, 670 277, 307	8, 673, 392 9, 891, 342 7, 500, 148	11, 160, 054 13, 002, 789 10, 379, 212
KentuckyLouisiana Maine	(1)	(1)			7, 105, 639	8, 873, 290	535, 346	465, 526	925, 516	1, 119, 886	(1)	(1) (1) (1)	8, 791, 214 (1) (1)	10, 775, 239 (1) (1)
Maryland	22, 070 (1) 55, 889	38,600 (1) 89,134	(1) 10, 082, 920	(1) 7, 614, 149	2, 276, 065 9, 144 3, 193, 750	3, 373, 269 15, 545 3, 433, 266	21, 778 	31, 142 209, 512	57, 903 116, 334 722, 028	217, 429 411, 151 921, 084	114, 357 74, 316 3, 674, 922	806, 630 556, 317 3, 379, 230	2, 492, 173 220, 357 17, 899, 438	4, 467, 070 1, 024, 725 15, 646, 375
Minnesota Mississippi	119, 051 1, 389, 432	117, 592 1, 784, 957	1, 500 27, 563	2, 625 45, 009	1, 142, 800 8, 170, 115	1, 463, 133 11, 284, 023	2,000 17,472	3, 500 20, 260	243, 988 90, 000 2, 496, 778	364, 821 103, 500 3, 940, 266	28, 769 565, 055	114, 447	1, 538, 108 90, 000 12, 666, 415	2, 066, 118 103, 500 18, 684, 058
Montana Nebraska Nevada	14, 515 239, 982	8, 960 354, 789	(1)	(1)	6, 972 437, 525 18, 813	9, 437 692, 671 19, 390	119	270	107, 633	245, 841	(1) 458, 522 (1)	650, 259	152, 511 1, 243, 662	252, 828 1, 943, 560
New Jersey New Mexico New York		269, 470	6, 450	14, 620 176, 415	27, 739 2, 293 9, 486, 374	61, 767 1, 625 14, 596, 457	918, 468	1, 045, 607	119, 908 478, 240	403, 542 1, 536, 506	154, 898 2, 588, 347	947, 407 3, 115, 537	308, 995 2, 293 13, 779, 980	1, 427, 336 1, 625 20, 739, 992
North Carolina Ohio Oklahoma	196, 067	230, 799	7, 357, 966	7, 852, 092	2, 634, 704 10, 981, 421 5, 580, 353	3, 560, 904 12, 946, 509 5, 976, 378	10, 365 1, 660, 624	11, 401 1, 823, 223	9, 213 2, 369, 871 168, 405	11, 604 3, 870, 535 208, 574	1, 822, 203 227, 231	3, 510, 959 349, 273	2, 654, 282 24, 388, 152 6, 355, 780	3, 583, 909 30, 234, 117 6, 940, 219
Oregon Pennsylvania Puerto Rico	187, 627	321. 885		14, 186, 713	9, 404, 087 596, 866	13, 168, 072 1, 647, 265	(1) (1) 197, 183 4, 328	274, 913 6, 059	1, 065, 358	2, 733, 395	1, 462, 423 4, 636	3, 225, 681 6, 586	21, 020, 600 605, 830	(1) 33, 910, 659 1, 659, 910
Rhode Island South Carolina South Dakota					165, 975	237, 605		10,000	(1) 100, 120	(1) 186, 590	8, 200		266, 095	(1) 424, 195 546, 206

For footnote, see end of table.

TABLE 30.—Limestone (crushed and broken stone) sold or used by producers in the United States in 1952, by States and uses—Continued

						Crushed	stone			.:				
State	Rip	orap	Fluxin	g stone		and road	Railroae	d ballast	Agric	ulture	Miscel	laneous	То	tal
	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value
Tennessee	305, 008 115, 802 (1) (1) 67, 743 (1) 120, 823 (1) 102, 334	\$355, 354 143, 583 (1) 126, 896 (1) 175, 669 (1) 128, 809	103, 434 307, 281 504, 543 (1) 301, 030 (1) 2, 968, 872 105, 357 (1) 606, 153	\$133, 316 325, 297 595, 205 (1) 441, 501 (1) 3, 683, 777 108, 258 (1) 910, 682	8, 414, 456 3, 480, 954 (1) 98, 643 3, 765, 784 (1) 1, 027, 709 5, 583, 803 (1) 306, 983	\$10, 263, 890 4, 109, 776 (1) 135, 451 4, 957, 557 (1) 1, 655, 694 6, 156, 323 (1) 220, 833	554, 488 953, 194 (1) 589, 916 	\$525, 500 855, 855 (1) 664, 616 517, 482 231, 165 (1) 779, 781	532, 251 89, 226 (1) 925, 392 78, 000 62, 345 1, 292, 211 149, 959	\$729, 036 71, 963 (1) 1, 552, 349 325, 051 122, 026 1, 901, 400 680, 113	341, 086 351, 816 78, 515 106, 344 1, 152, 855 107, 323 205, 645 85, 680 (1) 1, 575, 933	\$783, 206 521, 479 323, 649 771, 653 2, 453, 234 345, 384 640, 280 179, 941 (1) 4, 156, 143	10, 250, 723 5, 298, 273 712, 325 334, 883 6, 802, 720 197, 900 4, 773, 847 7, 383, 511 588, 606 1, 509, 550	\$12, 790, 302 6, 027, 953 970, 162 1, 335, 521 10, 196, 163 704, 817 6, 619, 259 8, 752, 756 871, 309 2, 336, 992
TotalA verage unit value	4, 872, 450	6, 424, 388 \$1. 32	34, 908, 815	41, 119, 351 \$1. 18	127, 379, 148	163, 580, 762 \$1. 28	8, 827, 561	9, 389, 824 \$1. 06	21, 152, 208	34, 463, 963 \$1. 63	19, 328, 515	38, 884, 877 \$2. 01	216, 468, 697	293, 863, 165 \$1. 36

¹ Included with "Undistributed" to avoid disclosures of individual company operations.

TABLE 31.-Limestone (crushed and broken stone) sold or used by producers in the United States 1 for miscellaneous uses, 1951-52

	19	51	19	52
Use	Short tons	Value	Short tons	Value
Alkali works	7, 708, 686	\$7, 207, 496	6, 557, 940	\$6, 448, 388
Calcium carbide worksCoal-mine dusting		903, 816 1, 523, 306	722, 729 421, 847	762, 257 1, 685, 124
Filler (not whiting substitute): AsphaltFertilizer	1, 047, 223 630, 016	3, 159, 714 1, 198, 395	1, 002, 849 599, 856	2, 934, 211 1, 165, 437
OtherFilter beds	345, 963	1, 344, 858 306, 169	350, 359 89, 025	1, 312, 562 145, 492
Class factories	793, 896	1, 906, 751 962, 244	814, 302 1, 697, 657	1, 933, 165 2, 157, 633
Limestone whiting ²	710, 348 363, 883	6, 702, 207 725, 791	762, 354 433, 041	7, 164, 895 859, 151
Mineral food Mineral (rock) wool	546, 074 39, 412	3, 006, 227 52, 675	549, 329 10, 811	2, 963, 72 14, 119
Paper mills Poultry grit	98, 625	943, 300 523, 896	359, 904 78, 866	820, 769 603, 509
Refractory (dolomite)	1, 484, 602	1, 519, 831 1, 309, 597 800, 266	707, 741 1, 370, 970 121, 192	1, 047, 662 1, 244, 975 1, 085, 853
Stucco, terrazzo, and artificial stone Sugar factories	563, 064	1, 369, 475 2, 201, 926	541, 419 995, 452	1, 404, 391 1, 562, 97
Use unspecified.	806, 509	1, 034, 891	1, 140, 872	1, 568, 586
Total	20, 438, 880	38, 702, 831	19, 328, 515	38, 884, 877

¹ Includes Hawaii and Puerto Rico.

a Includes stone for refractory magnesia.
 4 Includes stone for acid neutralization, athletic-field marking, carbon dioxide, chemicals (unspecified), concrete blocks and pipes, dyes, fill material, light bulbs, motion-picture snow, oil-well drilling, patching plaster, rayons, roofing granules, spalls, and water treatment.

Agricultural Limestone Institute and the National Agricultural Limestone Association.14

Dolomite (calcium-magnesium carbonate) has a variety of uses, some of which differ from those for high-calcium limestone. Deadburned dolomite is used as a refractory lining for metallurgical furnaces. Statistical data on this product (which is closely allied to lime) are given in the Lime chapter of this volume. Raw dolomite is also used as a refractory, particularly for patching furnace floors.

Sales of dolomite and its calcined products are listed by some consuming industries in table 32.

TABLE 32.—Dolomite and dolomitic lime sold or used by producers in the United States for specified purposes, 1951-52

	19	51	1952		
	Short tons	Value	Short tons	Value	
Dolomite for— Basic magnesium carbonate ¹ Refractory uses Dolomitte lime for— Refractory (dead-burned dolomite) Paper mills	363, 883 1, 112, 186 1, 966, 460 46, 000	\$725, 791 1, 519, 831 26, 375, 313 584, 000	433, 041 707, 741 1, 928, 025 40, 000	\$859, 151 1, 047, 662 26, 098, 455 488, 000	
Total (calculated as raw stone)2	5, 501, 000		5, 077, 000		

¹ Includes Hawaii and Fuerto Rice.

² Includes stone for filler for calcimine, caulking compounds, ceramics, chewing gum, explosives, floor coverings, foundry compounds, glue, grease, insecticides, leather goods, paint, paper, phonograph records, picture-frame moldings, plastics, pottery, putty, roofing, rubber, toothpaste, wire coating, and unspecified uses. Excludes limestone whiting made by companies from purchased stone.

Includes dolomite for refractory magnesia.
 ton of dolomitic lime is equivalent to 2 tons of raw stone.

¹⁴ Trauffer, Walter E., First Annual Meeting of N. A. L. I. Draws Attendance of 500: Pit and Quarry, vol. 44, No. 8, February 1952, pp. 78-85.

Table 33 shows the tonnages and values of fluxing stone sold for use

in various metallurgical operations.

The statistics of limestone used in making lime and cement are given in separate chapters of the Minerals Yearbook, and therefore are not covered in the foregoing tables on limestone in this chapter. However, as a commodity review of limestone would be incomplete without inclusion of the large tonnage of limestone consumed by these industries, table 34 has been added to show the total tonnage consumed for all purposes.

TABLE 33.—Sales of fluxing limestone, 1943-47 (average) and 1948-52, by uses

Vaan	Blast furnaces			hearth nts		her lters ¹		metal- ical ²	Total		
rear	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1948 1949 1950 1951	23, 239, 006 26, 339, 790 23, 768, 970 28, 397, 710 32, 007, 284 28, 158, 299	24, 721, 052 24, 127, 897 29, 222, 700 35, 941, 217	7, 873, 410 5, 922, 020 6, 936, 900 6, 784, 102	8, 695, 137 6, 929, 134 7, 948, 041 8, 279, 021	503, 490 728, 960 457, 630 842, 877	609, 354 835, 962 587, 643 992, 651	185, 250 332, 370 177, 580 295, 694	224, 465 374, 649 174, 004 409, 236	34, 901, 940 30, 752, 320 35, 969, 820 39, 929, 957	\$24,238,371 34, 250, 008 32, 267, 642 37, 932, 388 45, 622, 125 41, 119, 351	

¹ Includes flux for copper, gold, lead, zinc, and unspecified smelters.
2 Includes flux for foundries and for cupola and electric furnaces.

TABLE 34.—Limestone sold or used for all purposes in the United States, 1950-52, in short tons

Use	1950	1951	1952
Limestone (as given in this report) (approximate) Portland and natural cement and cement rock 2 Lime 3	180, 919, 000 59, 361, 000 14, 980, 000	205, 480, 000 64, 284, 000 16, 511, 000	217, 255, 000 64, 305, 000 16, 146, 000
Total	255, 260, 000	286, 275, 000	297, 706, 000

SANDSTONE

Sales of crushed and broken sandstone declined 2 percent in both quantity and value from the 1951 level. The average value per ton increased 1 cent to \$2.10. There were declines in all categories except railroad ballast and riprap. Pennsylvania and California were the chief producers.

MISCELLANEOUS STONE

Crushed and broken stone, other than the five principal varieties already discussed, includes light-color volcanic rocks, schists, boulders from riverbeds, serpentine, chats, and flint. Sales of these varieties of stone increased 6 percent in quantity and 7 percent in value compared with 1951. The average value per ton increased 1 cent to 86 California was the largest producer in 1952, followed by Oklahoma, Missouri, and Arkansas, in that order.

Includes Hawaii and Puerto Rico.
 Reported in terms of cement in Cement chapter of this volume.
 Reported in terms of lime in Lime chapter of this volume.

TABLE 35.—Sandstone (crushed and broken stone) sold or used by producers in the United States in 1952, by States and uses

	Refracto	ry stone	Din			Crushe	d stone		Other	11000 I	То	4o1
State	(gani		Rip	rap	Concrete and	l road metal	Railroad	l ballast	Other	uses ·	10	cai
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
AlabamaArizona	40, 495	\$360, 406			800	\$3, 240					40, 495 800	\$360, 4 3, 2
California Colorado	3, 601 (2)	43, 212 (²)	(2) (2)	(2) (2)	748, 000 48, 422	777, 837 156, 892	(2)	(2)	(2)	(2)	1, 008, 974 845, 292	1, 179, 3 774, 0
Idaho Illinois		8, 576			88, 449	65, 000	487, 982	\$410, 513			576, 431 536	475, 8,
Kansas Kentucky			800	\$1,080	140, 073 25, 645	254, 836 38, 468	149, 000	223, 500	5, 223	\$6, 267	295, 096 25, 645	485, 38,
Maine Michigan			1, 900	3, 800	114, 553 9, 950	264, 497					116, 453 9, 950	268, 11,
Minnesota Missouri			680 100	1, 082 132							680	1,
Montana				(2)	94, 866	22, 399	380, 860 220, 485	345, 628	(2)	(2)	424, 395 315, 351	361, 186.
New York			(2)	(2)	(2) 2, 500	(2) 6,000					49, 185 2, 500	69,
Ohio	81, 705	892, 143	(2) 400	(²) 400	2,000				(2)	(2)	138, 409 400	1, 073,
Oklahoma Pennsylvania South Dakota Fexas	676, 885	3, 195, 579 (2)	922 (2)	460 461 (2)	790, 276 637, 310 250, 330	1, 397, 825 1, 091, 246 297, 000	191, 484 (²)	284, 777 (²)	2, 394 (²) 628, 307	2, 394 (²) 354, 591	1, 661, 961 922, 904 878, 637	4, 881, 1, 492, 651,
Utah Virginia	11,778 (2)	43, 373 (2)			12, 500 (2)	12, 500 (2)	(2)	(2)	(2)	(2)	24, 278 160, 126	55, 388,
Vashington Vest Virginia Visconsin	(2) (2)	(2) (2)	360 125	3, 650 250	(2) 48, 485	(2) 36, 364			(2)	(2)	360 95, 595 697, 823	3, 206, 4, 436,
Wyoming Undistributed	410, 693	1, 573, 285	4, 978 1, 262, 443	3, 981 1, 347, 241	129, 495	216, 945	18, 281	25, 658	573, 283	3, 476, 756	4, 978	3,
Total	1, 225, 693	6, 116, 574 \$4, 99	1, 272, 708	1, 362, 077 \$1. 07	3, 141, 654	4, 652, 549 \$1, 48	1, 448, 092	1, 453, 684 \$1.00	1, 209, 207	3, 840, 008 \$3. 18	8, 297, 354	17, 424, \$2

¹ Includes sandstone for fill material, filter stone, road base, roofing granules, spalls, stone sand, and unspecified uses.
² Included with "Undistributed" to avoid disclosure of individual company operations.

TABLE 36.—Miscellaneous varieties of stone (crushed and broken stone) sold or used by producers in the United States in 1952, by States and uses

				505				•		
				Crushe	d stone					
State	Rip	orap	Concrete an	d road metal	Railroad	l ballast	Other	uses 1	To	tal
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alaska Arizona			(2) 70, 889	(2) \$113, 422					(2) 70, 889	(2) \$113, 422
Arkansas California Colorado	(2) 459, 148	(2) \$646, 607	5, 659, 741	5, 622, 247	(2) 429, 997	(2) \$298, 248	(2) 1, 244, 705	(2) \$1, 108, 910	2, 160, 507 7, 793, 591	2, 306, 137 7, 676, 012
Georgia Hawaii Idaho			14, 751 5, 108 8, 150	3, 680 12, 258 9, 900					14, 751 5, 108 8, 150	3, 680 12, 258 9, 900
lowa Kansas ⁸ Maine	(2)	(2)	630 222, 925 5, 000	1, 050 110, 769 4, 000					630	1, 050 360, 992
Maryland Massachusetts Michigan	313 20, 000	313 25, 000	296, 000	423, 000					313 316,000	4, 000 313 448, 000
Missouri 3 Nebraska			29, 705 873, 374 1, 444	40, 881 423, 450 2, 888	1, 451, 790	,			29, 705 2, 372, 812 1, 444	40, 881 889, 254 2, 888
Nevada New Hampshire New Mexico		(2)	(2) 61, 711 58, 848	(2) 130, 325 64, 770			(2) (2)	(2) (2)	(2) 61, 711 (2) (2)	130, 328 (2) (2)
New York North Carolina Dhio	3, 317	2, 211	637, 093 (2)	(2) 689, 876 (2)	(2)	(2)	(2)		(2) 640, 410 (2)	(2) 692, 083 (2)
Oklahoma 3 Oregon Pennsylvania	59, 054	64, 040	474, 761 621, 463 594, 754	227, 465 896, 874 758, 240	2, 799, 247 58, 951	1, 284, 277 74, 571	42.138	10, 237 97, 812	3, 274, 008 781, 606 612, 106	1, 511, 745 1, 045, 725 856, 055
Puerto Rico Rhode IslandSouth Carolina			31, 500	73, 500 (2) 299					31, 500 (2) 460	73, 500 (2)
South Dakota Fennessee Fexas			350, 000 8, 281 (2)	300, 000 12, 421	(2)			30 568, 467	350, 004 8, 281	300, 030 12, 421
UtahVirginia	115,748	97, 073	85, 024	(2) 152, 915					1, 265, 484 115, 748 85, 024	739, 676 97, 073 152, 91
Washington Wisconsin Wyoming	29, 894 (2) 104, 802	35, 504 (2) 73, 878	465, 700 (2) 10, 551	582, 363 (2) 10, 388					495, 594 106, 389 115, 353	617, 86 77, 48 84, 26
Undistributed		471, 898 1, 416, 524 \$1, 14		1,813,375 12,480,356 \$1,01	1, 704, 485 6, 444, 470	1, 293, 097 3, 378, 771 \$0, 52	2, 497, 960	130, 669 1, 953, 351 \$0. 78	782, 381	968, 762 19, 229, 002 \$0, 86

Includes stone used for agriculture, fill material, refractory, road base, roofing granules, spalls, and unspecified uses.
 Included with "Undistributed" to avoid disclosure of individual company operations.
 Chats; figures collected by Amarillo, Tex., office of the Bureau of Mines. Also includes small quantity of stone.

STONE 971

CONSUMPTION AND USES

As crushed stone is used principally as an aggregate in concrete, its sales tend to parallel cement shipments. This relationship is indicated in figure 3. The consumption of both crushed stone and cement is governed to a marked degree by the volume of new construction. As indicated in the figure, sales of both these commodities have increased more rapidly than new construction during 1951 and 1952. The area of concrete pavements has made substantial gains since 1945, but its advances have not kept pace with those of crushed stone.

As indicated in figure 4, sales of both fluxing limestone and refractory stone declined in consonance with the moderate recession in

metallurgical activity.

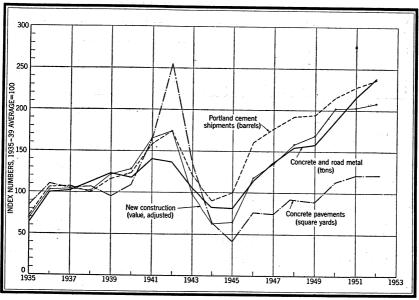


FIGURE 3.—Crushed-stone aggregates (concrete and road metal) sold or used in the United States compared with shipments of portland cement, total new construction (value), and concrete pavements (contract awards, square yards), 1935–52. Data on construction and concrete pavements from Survey of Current Business, U. S. Department of Commerce. Construction value adjusted to 1947–49 prices.

TECHNOLOGY

A comprehensive series of articles on the theory and practice of rock crushing, begun in June 1950 and suspended with publication of part VII in June 1951, was resumed in July 1952 and continued throughout the year. The recent articles relate to the action, capacity, reduction ratio, power requirements, and other features of crusher rolls and hammer mills. They discuss the performance of crushing units, and the principles underlying the proper selection of equipment for efficient practice.¹⁵

Is McGrew, Brownell, Crushing Practice and Theory; pt. VIII, Crushing Rolls and Their Uses: Rock Products, vol. 55, No. 7, July 1952, pp. 65-68, 102; pt. IX, Special Types of Roll Crushers: No. 8, August 1952, pp. 164-165, 168, 168; pt. X, Characteristics and Performance of Hammer Mills: No. 9, September 1952, pp. 67-69; pt. XI, Crusher Product Curves and Tables: No. 10, October 1952, pp. 107-109, 186; pt. XII, Selecting the Primary Crusher: No. 11, November 1952, pp. 79-81; pt. XIII, Selection of Quarry Equipment for Efficient Crushing Practice: No. 12, December 1952, pp. 91-93.

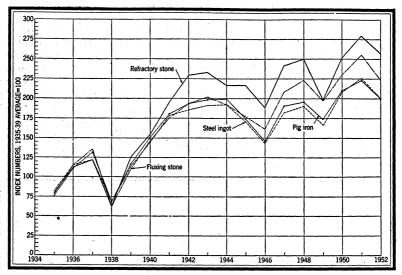


FIGURE 4.—Sales (tons) of fluxing stone and refractory stone (including that used in making dead-burned dolomite) compared with production of steel ingot and pig iron, 1935-52. Statistics of steel-ingot production compiled by American Iron and Steel Institute.

Methods have been worked out for calculating the power requirement for crushing rock to specified sizes. The power needed for grinding can also be determined mathematically, but both power requirements and costs vary with grinding processes. For instance, dry grinding requires one-third more power than wet grinding, but the metal wear per ton of finished product in dry grinding is only one-fifth of that which results when the wet process is used. 16

Methods of determining the shapes of aggregate particles, and the effect on concrete of flaky, elongated, and angular particles have been described.17

The seismograph is now finding wider use. With introduction to the quarry industry about 1945 of the split-second delay detonation, now known as millisecond timing, many new problems arose in blasting efficiency, and it is claimed that the seismograph is a useful tool in working out the details of these problems.¹⁸

Substitution of rotary for churn drills in sinking blastholes up to 7% inches in diameter is now finding favor. Drilling speeds up to 50 feet per hour in ordinary limestone and 30 to 35 feet per hour in hard, cherty limestone have been attained. The bits are operated dry; the cuttings are blown out with compressed air forced through the drill stem at a velocity of 3,000 feet per minute. Drilling rates are three or more times as fast as those attained with churn drills, and costs compare favorably with those involved in churn-drill operation. Rotary drills are not, at this stage, adapted to all kinds of rock.¹⁹

¹⁶ Bond, Fred C., Crushing and Grinding Calculations: Pit and Quarry, vol. 45, No. 5, November 1952, pp. 118-119, 124.

17 Mercer, L. Boyd, Aggregate Particle Determination: Pit and Quarry, vol. 44, No. 11, June 1952, pp.

¹⁸ Jenkins, Jules E., Economic Contributions of the Seismograph to the Quarry Industry: Rock Products, vol. 55, No. 1, January 1952, pp. 148-151, 182.

Mining World, Rotary Blast-Hole Drilling Now Feasible in Igneous Rock: Vol. 14, No. 10, September 1952, pp. 42-43.

973 STONE

A notable example of a modern trend in quarrying is discontinuance of an overhead cableway serving a deep quarry and establishment of primary crushing and storage at the quarry floor. Belt conveyors elevate the crusher product to a sizing plant at the surface. Such a transformation has recently been accomplished at a large granite quarry near Columbia, S. Č.²⁰

A modern plant design for quarrying and sizing quartzite aggregate

recently has been described.21

A portable crushing, screening, and washing plant capable of producing 200 tons per hour has been designed and built in accordance with specifications of the Corps of Engineers. A demonstration run was conducted at Minneapolis, Minn., in 1952. Most of the units were mounted on pneumatic tires for quick relocation. It was claimed that the entire plant could be dismantled and loaded on 11 flatcars in about 5 hours.²²

The economy in time and cost of using diesel-electric locomotives instead of steam-powered locomotives in mines and quarries has been

described.23

Since 1944 the Federal Bureau of Mines has been conducting experimental work at the Government-operated oil-shale mine at Rifle, Colo., to develop low-cost underground mining methods. Recently compiled cost data for 1950 show that, on the basis of a daily output of 19,700 tons, the direct cost of mining, conveying, and crushing was 29 cents a ton. The total cost to surge pile was 42.6 cents per ton, which included management, depreciation, taxes, and insurance, but did not include depletion, interest on investment, profit, or expenditures for offsite facilities. A detailed discussion of methods and equipment has been published.24

The finer agricultural limestone is ground the more rapidly it becomes available for soil neutralization or for supplying calcium and magnesium as plant food. However, it is claimed by some authorities that a minus-100-mesh material may not give best results, that a slower delivery from larger particles will preserve a certain degree of acidity in the soil which is essential to assimilation by the plant of phosphorus, iron, and manganese, which are insoluble in alkaline salts. Accordingly, a 10-mesh mill-run limestone is recommended. The entire question of "agstone" specifications is worthy of careful

study.25

Limestone fines recovered by wet processes are generally regarded as undesirable for agricultural use because of the difficult drying prob-At one plant in Missouri, limestone tailings from a lead-zinc ore-treating mill are conveyed to a disposal area by pipeline. the material is allowed to drain and air-dry before loading by clamshell into gondola cars. This method of recovering agricultural limestone is regarded as satisfactory.26

²⁰ Avery, William M., Weston and Brooker Expands: Pit and Quarry, vol. 44, No. 12, June 1952, pp. 96-108.

Rock Products, Producing Aggregates for Atomic Energy Construction Project: Vol. 55, No. 7, July

¹¹ Rock Products, Producing Aggregates for Atomic Energy Construction Project: Vol. 55, No. 7, July 1952, pp. 74-75.

²² Connolly, J. M., Big Portable Rock-Crushing Plant Produces Over 200 Tons per Hour: Eng. News Record, vol. 149, No. 13, Nov. 6, 1952, pp. 136-140.

²³ Jacobs, G. W., Diesel-Electric Locomotives for Quarry Operations: Rock Products, vol. 55, No. 9, September 1952, pp. 92-94.

²⁴ Lenhart, Walter B., Low-Cost Underground Mining Methods Developed for Blasting and Handling Large Tonnages: Rock Products, vol. 55, No. 3, March 1952, pp. 80-87, 107.

²⁵ Nordberg, Bror, What Is Best Fineness for Agricultural Limestone?: Rock Products, vol. 55, No. 4, April 1952, pp. 180-120, 125.

²⁶ Lenhart, Walter B., Producing Agstone by Wet Processes: Rock Products, vol. 55, No. 6, June 1952, pp. 98-100, 156-157.

The principles underlying successful froth flotation as a means of removing impurities from mineral products have been covered in two recent articles.27

The depth, burden, spacing, and diameter of quarry blastholes, and the size of the explosive charge to be used have been described in detail. Formulas have been worked out to determine their interrelationship from the standpoint of low cost and effective blasting.²⁸

A timing device for millisecond-delay blasting has been described

in detail, with many illustrations, by its inventor.29

One blasting authority claims that, contrary to early practice, the lateral spacing of blastholes should be greater than the burden (distance from the face). A modern drilling pattern for 6-inch holes is 17 to 20 feet burden and 20 to 23 feet spacing. This pattern is especially desirable when short-interval delay firing is followed. The latter method has decided advantages, but if the delay interval is too long the danger of missed and cutoff holes is increased. Devices for promoting greater accuracy in the delay interval are being sought. It is important that the drill-hole pattern, and the size and nature of the charge be adjusted to give adequate fragmentation.30

An innovation in Great Britain, of considerable interest to crushedstone producers, is replacement of standard well drills by machines that use articulated steel rods equipped with 1%-inch drill bits. recorded that in one quarry in Scotland a hole 86 feet deep was drilled with this equipment in less than 3½ hours. Such blastholes, when spaced more closely than those made with churn drills, gave excellent fragmentation. Better fragmentation, less "scatter," and reduced vibration resulted when millisecond-delay-action detonators were

 11

WORLD REVIEW

The stone quarries of Great Britain have been operating almost at capacity. Labor shortage has been acute at times because the quarry industries have to compete with other trades where work is less The shortage has been offset to some extent by a rapid

development of mechanization.

Extensive building activity, involving wide use of stone products, has been noted in Stockholm, Sweden; Milan, Italy; and in Germany. The disposal of rubble resulting from bombing in Germany created so difficult a problem at some cities that facilities were created for converting the rubble into aggregate to be used in rebuilding. city of Frankfurt am Main has established an elaborate crushing and screening plant for such a purpose.32

Large deposits of dolomite have been discovered in Jamaica as a result of recent surveys. A Canadian refractory company is planning development work.³³ A subsidiary of a British refractory company

[&]quot;Gisler, H. J., Factors Affecting Flotation, part I: Pit and Quarry, vol. 44, No. 9, March 1952, pp. 121–125, 131; part II, No. 10, April 1952, pp. 109–112.

**2 Westwater, R., The Blasting of Stone in Quarries: Quarry Managers' Jour. (London), vol. 36, No. 6, December 1952, pp. 346–359.

**Walker, F. J., The Millisecond-Delay Timer: Quarry Managers' Jour. (London), vol. 35, No. 7, January 1952, pp. 373–380.

**O Whitney, F. R., The Modern Trend in Quarry Blasting: Quarry Managers' Jour. (London), vol. 35, No. 7, January 1952, pp. 393–401.

**Stone Trades Journal (London), Problems of Stone Trade Outlined in H. M. Inspector's Report: Vol. 71, No. 7, July 1952, pp. 65–68.

**Anderegg, F. O., Developments in Rock Products and Concrete Industries in Europe: Rock Products, vol. 55, No. 5, May 1952, pp. 70–72.

**Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, p. 29.

STONE 975

has been organized to manufacture dolomite refractories at Dundas, Ontario, Canada. A proposed \$2 million plant may be in operation in 1954.³⁴

The growing need for cement in India has led to a survey for available limestone suitable for cement manufacture. Limestones of satisfactory quality do not appear to be abundant, hence beneficiation processes, such as froth flotation, may become necessary.

FOREIGN TRADE 85

Importations of stone into the United States in 1952 declined 3 percent in value compared with 1951. Increases were recorded for marble slabs and tile, dressed granite, and whiting, but imports of most of the other types declined.

A new export classification appeared in 1952, namely "crushed, ground, or broken" stone. Inclusion of this classification with the items formerly reported brings total export value of stone in 1952 to a figure approaching \$3,400,000.

TABLE 37.—Stone and whiting imported for consumption in the United States, 1951-52, by classes

FTT	Q	Department of Commercel	

	19	951	198	52
Class	Quantity	Value	Quantity	Value
Marble, breccia, and onyx: Sawed or dressed, over 2 inches thickcubic feet In blocks, rough, etc	1, 960 175, 106 647, 780	\$13, 729 805, 453 436, 702 419, 844	1, 330 157, 873 673, 890	\$7, 041 827, 903 472, 290 553, 311
Total		1, 675, 728		1, 860, 545
Granite: Dressed	1 33, 630 85, 665 1 439	1 237, 093 306, 861 1 4, 184	40, 424 44, 562 611	387, 176 156, 139 13, 991
Total Short tons. Travertine stone cubic feet.	275, 778 63, 466	1 548, 138 786, 523 106, 110	184, 467 40, 921	557, 306 627, 616 134, 190
Stone (other): Dressed Rough (monumental or building stone) _cubic feet. Rough (other)	4, 385 67, 273 16, 517	293, 262 22, 942 193, 969 158, 020 2, 263	3, 284 66, 191 13, 607	74, 537 7, 261 197, 734 137, 675 9, 982
Total		670, 456		427, 189
Whiting: Chalk or whiting, precipitated short tons. Whiting, dry, ground, or bolted do Whiting, ground in oil (putty) do Total	1, 029 9, 407 3	48, 708 121, 512 587 170, 807	1, 374 12, 286 24	58, 762 182, 860 6, 591 248, 213
Grand total		1 3, 957, 762		3, 855, 059

Revised figure.

Rock Products, Canadian Dolomite Plant: Vol. 56, No. 1, January 1953, p. 180.
 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 38.—Stone exported from the United States, 1948-52

[U. S. Department of Commerce]

A. H. Lende	Marble a	nd other		Crushed, ground or broken						
Year	building a mental		St	one	Lin	nestone	manufac- tures of stone			
	Cubic feet	Value	Short tons	Value	Short tons	Value	(value)			
1948 1949 1950 1951 1951	345, 697 211, 334 142, 955 230, 239 277, 551	\$584,050 523,171 378,645 585,499 648,833	(1) (1) (1) (1) (1) 126, 123	(1) (1) (1) (1) \$1,631,358	(1) (1) (1) (1) 803,029	(1) (1) (1) (1) \$789, 733	\$430, 862 436, 705 338, 207 271, 461 314, 502			

¹ Not separately classified before January 1, 1952.

Strontium

By Joseph C. Arundale 1 and Flora B. Mentch 2

PRODUCTION of strontium minerals in the United States for several years has been sporadic and small. However, the United States is the world's largest producer of strontium compounds; but the raw material, largely in the form of celestite, is imported from United Kingdom and Mexico.

DOMESTIC PRODUCTION

Domestic occurrences of strontium minerals are known in California, Washington, Texas, Arizona, Arkansas, Tennessee, Ohio. Michigan, and other States. Small tonnages have been produced from these deposits, but recent production has been confined to California and Washington, largely for local use. Considerable crude ore has been mined in the past from several deposits, principally in Texas, for use as an oil-well drilling mud admixture, but when the royalty on the use of barite for this purpose ceased upon expiration of the patent, this practice was largely discontinued. During World War II some of the Texas celestite was concentrated for chemical use. However, when high-grade foreign celestite was again available, consumers reverted to imported supplies. Virtually all United States requirements for strontium minerals now are supplied from foreign sources.

CONSUMPTION AND USES

The bulk of the strontium minerals consumed is converted to various strontium compounds. These compounds are made by E. I. du Pont de Nemours & Co., Wilmington, Del.; Foote Mineral Co., Philadelphia, Pa.; and Barium Products, Ltd., Modesto, Calif. Small quantities of strontium hydride are made by Metal Hydrides, Inc., Beverly, Mass.

A very small quantity of strontium metal was produced by King Laboratories, Inc., Syracuse, N. Y., and by Cooper Metallurgical

Associates, Cleveland, Ohio.

Strontium compounds impart a characteristic brilliant red to a flame and this property is utilized in several pyrotechnical applications. Tracer bullets fired from machine-guns contain a charge of strontium nitrate and peroxide, which is ignited by the propellant and burns brightly during flight. The flame permits the gunner to judge the accuracy of his aim. Marine distress-signal equipment consists of a pistol and red parachute flares or rockets. Similar red flares may be dropped from aircraft. The military also uses various types of red flares for tactical signaling. The familiar red color of some fireworks and pyrotechnical exhibitions is produced by strontium

2 Statistical assistant.

¹ Assistant chief, Construction and Chemical Materials Branch.

Railroads for many years have used red flares and fusees compounds. as emergency signals. Many State laws require that trucks carry similar fusees to warn of danger when for any reason they must stop on a highway.

These compounds also are used in ceramics, medicine, and other minor applications. Strontium metal and some of its alloys are used principally as "getters" for extracting the last traces of gases from

electronic tubes.

PRICES

According to Oil, Paint and Drug Reporter, the price of strontium sulfate (celestite), air floated, 90-percent grade, 325-mesh, bags, works, was quoted at \$56.70-\$66.15 per short ton. Strontium carbonate, 92-percent grade, drums, early in 1952 was quoted at 20½-24½ cents per pound, increased to 25-30 cents in June, and dropped to 23 cents per pound in September. Strontium chloride, technical, barrels, in January was quoted at 22-24 cents per pound and by the end of the year at 24-26 cents per pound. nitrate, barrels, carlots, works, was 10½ cents per pound at the beginning of the year and 10½-11 cents per pound at the end of the year.

FOREIGN: TRADE 3

For several years imports of strontium minerals have come largely from United Kingdom and Mexico. A large tonnage was received as a result of a preclusive buying agreement with Spain. However, the last of these shipments was made in 1949.

TECHNOLOGY

A patent was issued on the use of strontium chromate as a corrosion inhibitor in refrigeration systems that utilize an aqueous ammonia solution as the refrigerant.4

TABLE 1.—Strontium minerals 1 imported for consumption in the United States, 1950-52, by countries, in short tons

Commitmen	1950		19	51	1952		
Country	Short tons	Value	Short tons	Value	Short tons	Value	
Canada Mexico United Kingdom Total	1, 975 6, 655 8, 630	\$23, 910 118, 303 142, 213	38 2, 034 11, 972 14, 044	\$382 23, 730 280, 392 304, 504	59 1, 297 8, 161 9, 517	\$607 16, 870 168, 849 186, 326	

[U. S. Department of Commerce]

One firm offered pilot-plant quantities of strontium hydrate. was said that a variety of strontium greases with useful properties could be produced with strontium hydrate and various soaps.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

⁴ Widell, Nils Erik (assigned to Aktiebolaget Elektrolux, Stockholm, Sweden), Corrosion Inhibitor in Absorption Refrigeration System: U. S. Patent 2,580,984, Jan. 1, 1952.

¹ Strontianite or mineral strontium carbonate and celestite or mineral strontium sulfate.

STRONTIUM 979

properties were listed as: Resistance to change in consistency while being heated and cooled in service, resistance to water and the leaching action of hydrocarbons, protective action against moisture or saltspray corrosion, resistance to oxidation or breakdown upon exposure to elevated temperatures, and stability of structure when subjected to mechanical working.

Strontium napthenate and a number of other soaps of this type are useful stabilizers for many vinyl plastics. Coal tar, resin, and long-chain aliphatic acids can be reacted with strontium hydrate to form such stabilizers. The strontium hydrate may also find use in

the refining of special carbohydratelike materials.5

Several investigators have reported favorable response of plants to the application of strontium. In a study reported in 1952 a strontium chloride spray was applied to peach trees that exhibited chlorosis. The results indicate that such a spray has value. Studies have indicated that strontium takes the place of calcium when insufficient quantities of the latter element are present. However, the failure of calcium in both the spray and soil to correct chlorosis raised the question in the researchers' minds as to whether strontium in lime or gypsum applied to the soil accounts in part for the response

of plants.6

Cement chemists have been interested in the possibility of producing compounds of strontium and silicon analogous to the calcium silicates, which are the main compounds in portland cement. Such compounds might be expected to yield valuable information on the general theory of cementing action. Tristrontium silicate reportedly was prepared by heating strontium carbonate and finely ground quartz at 1,500° C. in a platinum boat. The combination was accelerated by a steam atmosphere. After about 10 hours of heating time the preparation appeared to be homogeneous. Attempts were then made to obtain good crystals of the compounds. Mixtures of tristrontium silicate powder, strontium chloride, and strontium carbonate were heated and cooled slowly. Tristrontium silicate crystals and distrontium silicate needles were formed. These were separated after the mass had been gently broken up in alcohol. The experiments showed that strontium compounds lacked the property of hardening under water, but the possibility remains that hardening may take place in sulfate solutions.7

Scarcity of lead in time of emergency and the move to eliminate lead as a health hazard has focused the attention of many researchers on the development of low-lead and leadless ceramic glazes. A strontia glaze in which lithia replaced part of the alkali content produced a satisfactory leadless glaze and was used in several plants during the latter years of World War II when the use of lead was restricted. Since the war these leadless glazes, although not entirely abandoned, have been used by plants only for specific purposes. Leadless glazes have three advantages: (1) They do not flow like lead glazes and therefore produce cleaner cut lines for sharp underglaze decorations; (2) they are satisfactory in certain open-fire conditions where lead glazes

Chemical Engineering, vol. 59, No. 3, March 1952, pp. 198, 200.
 Wolf, Benjamin, and Cesare, S. J., Response of Field-Grown Peaches to Strontium Sprays: Science, vol. 115, No. 2996, May 30, 1952, pp. 606-607.
 Nurse, R. W., Tristrontium Silicate—A New Compound: Jour. Appl. Chem., vol. 2, pt. 5, May 1952,

scum; and (3) those high in strontia produce desirable effects on certain colors. Their main disadvantage is inability to flow, resulting in the need for more careful application. During the year one laboratory conducted research on the replacement of strontia for lead in cone 06 lead glaze. The results of this research showed that strontia can be used as a lead replacement in this glaze. It will produce a more viscous glaze but will have a beneficial effect on certain ceramic colors. The effect of strontia on a series of standard glaze stains was summarized by Marquis.⁸

Installation of a new device for automatically controlling the uniformity of the rubber coating on cord or fabric used in making tires, V-belts, and other products was announced. An electronic control system utilizes beta rays from a small capsule of strontium 90, an atomic byproduct. The electronic control system automatically adjusts the machinery that applies the rubber coating. The manufacturing firm stated that the system can be adapted to metal coating

and metal rolling operations.

WORLD REVIEW

Although United Kingdom and Mexico in the order named are the world's principal producers of strontium minerals, production has also been reported in recent years from Tunisia (strontianite and celestite), Pakistan (celestite), Italy (strontianite and celestite), Germany, and Canada.

⁸ Marquis, John, Recent Glaze and Color Developments: Am. Ceram. Soc. Bull., May 1952, pp. 161–164.
9 Steel, vol. 131, No. 6, Aug. 11, 1952, p. 87.

Sulfur and Pyrites

By G. W. Josephson 1 and Flora B. Mentch 2

URING 1952 the sulfur industry emerged from the stringent supply situation that had developed in 1950. Production of sulfur by the Frasch process increased slightly, and progress was made in the direction of developing additional Frasch mines. The prospective development of major Frasch sulfur production in Mexico was particularly noteworthy.

TABLE 1.—Salient statistics of the sulfur industry in the United States, 1943-47 (average) and 1948-52, in long tons

<u></u>	1943–47 (average)	1948	1949	1950	1951	1952
Native sulfur:						
Production (from Frasch mines)	3, 562, 198 3, 910, 888		4, 745, 014 4, 870, 723	5, 192, 184 5, 636, 959	5, 278, 249 5, 095, 347	5, 293, 145 5, 061, 722
Imports Exports:	3, 354	38	32	25	1 2, 376	4, 863
Crude	943, 580			1, 440, 996		1, 304, 154
TreatedApparent consumption	35, 564 2, 935, 098	32, 630	30, 135	37, 526	24, 044	34, 213
Producers' stocks at end of year			3, 409, 704 3, 099, 305	4, 158, 462 2, 654, 530		3, 728, 218
Pyrites:	0, 011, 020	0, 220, 014	0, 000, 000	2, 004, 000	2,001,402	3, 068, 855
Production	813, 507	928, 531	888, 388	931, 163	1, 017, 769	994, 342
Imports	186, 605	107, 411	120, 937	208, 766	221, 487	296, 047
Recovery as byproduct:		· ·		,		
Production of byproduct sulfuric acid						l
(basis, 100 percent) at Cu, Zn, and						
Pb plants	739, 089	572, 719	511, 854	661, 529	736, 672	774, 177
Production of recovered elemental						
sulfur (basis 100 percent S)	25, 560	44, 369	56, 781	142, 475	184, 013	251, 198
Other byproduct sulfur compounds	10 550	05 500	07 007	44 000		
(basis, 100 percent S)	19, 572	25, 792	37, 935	41, 963	59, 613	66, 512

¹ Revised figure.

Output from byproduct-sulfur projects, principally involving the purification of natural and refinery gas, continued to increase. Although these projects were relatively small in size, they were numerous and promised to contribute hundreds of thousands of tons annually in

Demand for sulfur both in the United States and the world at large did not come up to expectations, and therefore production and demand were reasonably balanced. Consequently, the first steps in the relaxation of governmental controls over this commodity were taken before the end of the year.

DOMESTIC PRODUCTION **NATIVE SULFUR**

The development of new sulfur-production capacity was assisted by the Government through the Defense Minerals Exploration Administration, the Defense Materials Procurement Agency, the Petroleum Administration for Defense, the National Production Authority, the Defense Production Administration, and other agencies. On January 10, 1952, the Defense Production Administration announced

¹ Chief, Construction and Chemical Materials Branch. ² Statistical assistant.

that the expansion goal for sulfur in all forms was 8,400,000 long tons by 1955. At the end of the year, this goal was being reconsidered with a view to downward revision. Exploration programs were supported by the Defense Minerals Exploration Administration through loans covering 50 percent of the cost. The accelerated tax amortization provided by the defense legislation encouraged numerous sulfur-expansion projects, and funds for development loans were available.

Native sulfur production reached a new record in 1952, when output exceeded that of the previous year by less than 0.5 percent. As shown in the accompanying tables, virtually all of the United States production of native sulfur is by the Frasch process, by which sulfur is melted underground with hot water and pumped from wells. A very small tonnage is produced by other methods from surface or shallow deposits.

TABLE 2.—Production of sulfur and sulfur-containing raw materials by producers in the United States, 1951-52, in long tons

	19	51	1952	
	Gross weight	Sulfur con- tent	Gross weight	Sulfur content
Native sulfur or sulfur ore: From Frasch-process mines From other mines	5, 278, 249 3, 945	5, 278, 249 1, 365	5, 293, 145 8, 536	5, 293, 145 2, 197
Total native sulfur	5, 282, 194	5, 279, 614	5, 301, 681	5, 295, 342
Recovered elemental sulfur: Brimstone	182, 495 4, 614	181, 935 2, 078	250, 428 3, 859	249, 388 1, 810
Total recovered elemental sulfur	187, 109	184, 013	254, 287	251, 198
Pyrites (including coal brasses)	1, 017, 769	432, 819	994, 342	418, 100
Cu, Zn, and Pb plantsOther byproduct sulfur compounds 1	736, 672 70, 257	240, 800 59, 613	774, 177 77, 307	253, 000 66, 512
Total equivalent sulfur		6, 196, 859		6, 284, 152

 $^{^1}$ Hydrogen sulfide and liquid sulfur dioxide. In addition, a quantity of acid sludge is converted to $\rm H_2SO_4$ but is excluded from the above figures.

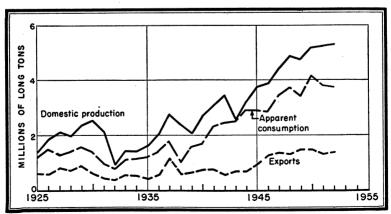


FIGURE 1.—Domestic production, apparent consumption, and exports of native sulfur, 1925-52, in long tons.

TABLE 3.—Sulfur produced and shipped from Frasch mines in the United States. 1943-47 (average) and 1948-52

	Pro	duced (long t	Shipped		
Year	Texas	Louisiana	Total	Long tons	Approxi- mate value
1943–47 (average)	2, 799, 457 3, 867, 545 3, 610, 829 3, 949, 164 3, 966, 956 3, 784, 595	762, 741 1, 001, 665 1, 134, 185 1, 243, 020 1, 311, 293 1, 508, 550	3, 562, 198 4, 869, 210 4, 745, 014 5, 192, 184 5, 278, 249 5, 293, 145	3, 852, 507 4, 978, 912 4, 789, 311 5, 504, 714 4, 988, 101 5, 141, 392	\$63, 240, 000 89, 600, 000 86, 200, 000 104, 000, 000 107, 300, 000 110, 925, 000

Of the total output of native sulfur, about 71 percent was produced in Texas and 29 percent in Louisiana and small tonnages in California, Wyoming, Nevada, and Utah.

The rate of output was high between April and August (a peak of 477,939 long tons was reached in the month of July) but was lower

in the last quarter.

Texas Gulf Sulphur Co. produced sulfur in Texas from the Boling dome, Wharton County, and Moss Bluff dome, Liberty County; and in May the company began mining at the Spindletop dome. Equipment for the expansion of production capacity was being installed at Moss Bluff.

The principal mines of Freeport Sulphur Co. were the Grande Ecaille in Plaquemines Parish, La., and Hoskins Mound, Brazoria County, Tex. In November production was begun by the company at the Bay Ste. Elaine dome in Louisiana. Output from this mine was expected to be relatively small, but it attracted a great deal of interest because of the unique equipment that was designed and installed for its operation. The installation is outlined in the Technology section of this chapter. Freeport Sulphur Co. also was proceeding with the development of the Garden Island Bay dome 3 and Chacahoula dome in Louisiana and Nash dome in Texas.

The mines of the Jefferson Lake Sulphur Co. were at Starks dome, Calcasieu Parish, La.; at Clemens dome, Brazoria County, Tex.; and at Long Point dome, Fort Bend County, Tex. The company explored the Black Bayou dome, Cameron Parish, La. Three of the 12 test wells drilled showed sulfur, but in quantities insufficient to justify an attempt to develop the property commercially. Exploration was

discontinued.4

Duval Sulphur & Potash Co. produced sulfur at Orchard dome,

Fort Bend County, Tex.

The sulfur shortage engendered unusual interest in the surface or shallow deposits of elemental sulfur, which cannot be mined by the Frasch process. New mining and processing facilities were installed at several localities. The Wyoming Gulf Sulphur Corp. operated a plant at Cody, Wyo., for a short period.5

The Continental Sulphur & Phosphate Corp. exploration program in the Sunlight Valley area, Park County, Wyo., resulted in a certified

³ Chemical and Engineering News, Construction Continues Apace on New Sulfur Plant: Vol. 30, No. 43,

Oct. 27, 1952, pp. 4486-4487.

⁴ Jefferson Lake Sulphur Co., New Orleans, Report for the Nine Months Ended Sept. 30, 1952, 3 pp.

⁵ Quinn, James E., and Frye, G. C., Wyoming-Gulf Sulphur Corp.: Pit and Quarry, vol. 45, No. 4, October 1952, pp. 91–95.
Mining World, Nation's Newest Sulphur Producer: Vol. 14, No. 6, May 1952, pp. 18–20.

TABLE 4.—Sulfur ore (10-70 percent S) produced and shipped for agricultural use in the United States, 1943-47 (average) and 1948-52, in long tons ¹

Y	Produce	Shi	pped
Year	(long ton	Long tons	Value
1943-47 (average)	3, 5 1, 8 5, 6 3, 3 3, 9 8, 5	1,700 8 5,392 7 3,247 5 3,945	\$41, 598 30, 220 101, 991 60, 115 75, 609 91, 310

¹ California, Colorado (1948-49 only), Nevada, Texas (1948 only), Utah (1952 only), and Wyoming (except 1948).

discovery of sulfur under its contract with the Defense Minerals Exploration Administration.

Western Sulphur Industries and its predecessor companies constructed a sulfur-beneficiating plant at Sulphurdale, Utah. It operated the plant for a period in 1952.

The Black Rock Desert Mineral Co. was reported to be producing agricultural sulfur at Sulphur, Nev., about 60 miles west of

Winnemucca.

The Inyo Soil Sulphur Co. produced sulfur at the Crater mine in Inyo County, Calif.

The Fraction No. 1 mine in Inyo County, Calif., was leased by Mrs. G. L. Ott, owner, to the Rimas Mining Corp., and some sulfur was

Anaconda Copper Mining Co., which acquired the Leviathan mine, Alpine County, Calif., in October 1951, did not produce any sulfur from it during 1952 but prepared the property for production. Sulfur ore from this property was to be used at the new copper operation of the company at Yerington, Nev.

Development of the Canary Hill mine at Chalk Mountain, Lake

County, was undertaken by the Chemi-Cal Sales Corp.⁶

Usually the non-Frasch sulfur operations serve the soil sulfur market, but in 1952 several of them attempted to compete in other markets as well. A combination of operational difficulties, price problems, and declining demand frustrated these efforts in most instances.

RECOVERED ELEMENTAL SULFUR

In addition to the sulfur produced in the United States at Frasch mines, primary elemental sulfur also has been produced for many years from a variety of coal and petroleum gases; but the quantity was small until recently. The need for removal of sulfur from industrial gases to improve their utility as fuel or to reduce air pollution encouraged this type of sulfur production, but the greatest impetus was given by the shortage. Many companies, particularly those in the petroleum industry that consume sulfur, saw an opportunity to improve their individual supply positions by installing equipment to recover sulfur from their waste gases. As a result, a large number (about 40) of such projects were initiated. In 1952 this expansion program resulted in a 35-percent increase in recovered-sulfur output.

 ⁶ Mineral Information Service, California Department of Natural Resources, Division of Mines, New Sulfur-Mining Operation in Lake County: Vol. 5, No. 4, Apr. 1, 1952, p. 4.
 7 Chemical Engineering, Sulphur From H₂S: Vol. 59, No. 10, October 1952, pp. 210-213.

PYRITES

As pyrites is the traditional alternate for Frasch sulfur, this material naturally got much attention during the shortage. Two factors, however, discouraged large-scale expansion of pyrites production in the United States. First, the price structure of the sulfur industry would not permit profitable production and use of pyrites at most locations; and second, announcement of a number of new Frasch-sulfur developments further discouraged the industry, which is well aware of the competitive advantages of Frasch sulfur.

Expansion of pyrite utilization, therefore, did not develop on a large scale. Domestic production in 1952 actually was lower than in 1951. A large fraction of the total was captive tonnage. Producers reported that in 1952 they consumed 778,370 long tons of pyrites and

sold 195,654 long tons.

In the eastern part of the United States, a number of major pyrite mines were in operation in 1952. The Tennessee Copper Co. was the largest producer, with mines at Copperhill, Polk County, Tenn. This company consumed its entire output. The General Chemical Division of Allied Chemical & Dye Corp. produced a substantial tonnage of pyrites at the Gossan mine in Virginia and used it in making sulfuric acid at its plant in Pulaski. In Lebanon County, Pa., the Bethlehem Cornwall Corp. recovered pyrites at its concentrating plant. In New York, the St. Joseph Lead Co. produced pyrites from the Balmat mine in St. Lawrence County.

New pyrite-processing facilities were put into operation in New England. The Vermont Copper Co. concentrated pyrites from the Elizabeth mine in Orange County, Vt., for sale to the Brown Paper Co. of Berlin, N. H. The Brown Co. had installed a Fluosolids pyrite-

TABLE 5.—Pyrites (ores and concentrates) produced in the United States, 1943–47 (average) and 1948–52

	Quai	Quantity			Qua		
Year	Gross weight (long tons)	Sulfur content (percent)	Value	Year	Gross weight (long tons)	Sulfur content (percent)	Value
1943–47 (average) 1948 1949	813, 507 928, 531 888, 388	41. 7 41. 8 42. 6	\$3, 088, 000 3, 950, 000 3, 904, 000	1950 1951 1952	931, 163 1, 017, 769 994, 342	42. 2 42. 5 42. 1	\$4, 059, 000 4, 656, 000 4, 947, 000

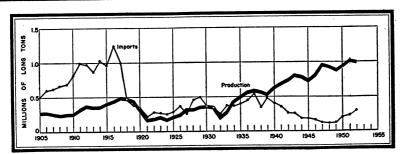


FIGURE 2.—Domestic production and imports of pyrites, 1905-52. 342070—55—63

burning unit in its papermill in Berlin to permit the use of pyrites as a sulfur raw material. In 1952, 17,892 long tons of pyrites was sold by the Vermont Copper Co.

Allied Chemical & Dye Corp. acquired the Katahdin pyrrhotite

deposit in Maine.8

Although large quantities of pyrites are available from midwestern coal mines, little is recovered. The only tonnage reported in 1952 was from the Talleydale mine, Snow Hill Coal Corp., Vigo County, Ind.

In the West a substantial tonnage of pyrites was produced by the Mountain Copper Co., Ltd., at the Hornet mine in Shasta County, Calif. In Colorado the Rico Argentine Mining Co. recovered pyrites from the Mountain Springs mine in Dolores County near Rico and Climax Molybdenum Co. from its operations in Lake County. Byproduct pyrites was recovered by the Anaconda Copper Mining Co. at its copper-plant operations in Deer Lodge County, Mont.

In 1952 Tennessee was the largest producing State, followed by

California, Virginia, and Montana, in that order.

BYPRODUCT SULFURIC ACID

As large volumes of sulfur-bearing gases are evolved at metal sulfide smelters, creating an air-pollution problem in the vicinity, many smelters have installed equipment advantageous to recover sulfur in the form of acid for sale in the available markets. It has not been possible to develop fully the acid-production potential of all smelters because markets capable of consuming the product have not been within economic shipping distance. The output of acid by smelters during the last 5 years is shown in table 6. Demand for smelter acid was high in 1952; consequently, output was 5 percent greater than in 1951.

During 1952 smelter-acid expansion programs were being conducted by American Smelting & Refining Co., American Zinc, Lead & Smelting Co., Sullivan Mining Co., and Eagle Picher Co. These expansions, when completed, would add about 170,000 tons of equivalent sulfur to the total capacity.

TABLE 6.—Byproduct sulfuric acid ¹ (basis, 100 percent) produced at copper, zinc, and lead plants in the United States, 1943-47 (average) and 1948-52, in short tons

	1943-47 (average)	1948	1949	1950	1951	1952
Copper plants 2 Zine plants	209, 961 617, 819	111, 967 529, 478	96, 344 476, 932	131, 342 609, 571	189, 125 635, 948	202, 364 664, 714
Total	827, 780	641, 445	573, 276	740, 913	825, 073	867, 078

Includes acid from foreign materials.

² Includes acid produced at a lead smelter. Excludes acid made from pyrites concentrates in Montana and Tennessee.

S Chemical and Engineering News, vol. 30, No. 14, Apr. 7, 1952, p. 1396.
 Chemical and Engineering News, Coal Can Be Utilized as Source of Sulfur: Vol. 30, No. 24, June 16, 1952, p. 2510.

OTHER BYPRODUCT SULFUR COMPOUNDS

In addition to the sulfur recovered from industrial gases in the form of elemental sulfur, a relatively small quantity was also recovered in the form of sulfur dioxide and hydrogen sulfide. The output of this material is shown in table 1.

CONSUMPTION AND USES

The demand for sulfur, which had been most insistent in 1951, tapered off in 1952, and a more normal atmosphere prevailed in the industry. Consumption, partly because of Government control measures and partly because of modification in the industrial requirements, was approximately the same in 1952 as in 1951. Owing to the complexity of the consumption pattern and difficulties of collecting accurate information, the availability of sulfur-consumption statistics varies greatly from year to year. Available statistics compiled by the National Production Authority and Chemical Engineering magazine for recent years are presented in this chapter. As over three-fourths of the sulfur consumed in the United States is used in making sulfuric acid, the output of that commodity, as reported by the Bureau of the Census is shown in table 9.

TABLE 7.—Apparent consumption of native sulfur in the United States, 1943-47 (average) and 1948-52, in long tons

	1943–47 (average)	1948	1949	1950	1951	1952
Apparent sales to consumers 1Imports	3, 910, 888 3, 354	5, 015, 230 38	4, 870, 723 32	5, 636, 959 25	5, 095, 347 2 2, 376	5, 061, 722 4, 863
Total	3, 914, 242	5, 015, 268	4, 870, 755	5, 636, 984	25, 097, 723	5, 066, 585
Exports: CrudeRefined	943, 580 35, 564	1, 262, 913 32, 630	1, 430, 916 30, 135	1, 440, 996 37, 526	1, 287, 773 24, 044	1, 304, 154 34, 213
Total	979, 144	1, 295, 543	1, 461, 051	1, 478, 522	1, 311, 817	1, 338, 367
Apparent consumption	2, 935, 098	3, 719, 725	3, 409, 704	4, 158, 462	23, 785, 906	3, 728, 218

¹ Production adjusted for net change in stocks during the year.

² Revised figure.

TABLE 8.—Apparent consumption of sulfur in all forms in the United States, 1943-47 (average) and 1948-52, in long tons ¹

	1943-47 (average)	1948	1949	1950	1951	1952
Native sulfurRecovered sulfur shipments	2, 935, 100	3, 719, 700	3, 409, 700	4, 158, 500	3, 785, 900	3, 728, 200
	20, 100	54, 300	42, 300	78, 600	193, 800	224, 500
Pyrites: Domestic productionImports	339, 100	388, 400	378, 500	392, 800	432, 800	418, 100
	89, 600	51, 600	58, 000	100, 200	106, 300	142, 000
Total pyrites	428, 700	440, 000	436, 500	493, 000	539, 100	560, 100
Smelter acid productionOther production ²	248, 000	187, 000	167, 000	216, 000	240, 800	253, 000
	19, 580	25, 800	37, 900	42, 000	59, 600	66, 500
Total	3, 651, 500	4, 426, 800	4, 093, 400	² 4, 988, 100	4, 819, 200	4, 832, 300

Orude sulfur or sulfur content. 2 1948-49, hydrogen sulfide; 1950-52, hydrogen sulfide and liquid sulfur dioxide. In addition, a quantity of acid sludge is converted to HiSO4 but is excluded from the above figures.

TABLE 9.—Production of new sulfuric acid (100 percent H₂SO₄), by geographical divisions and States, 1948-52, in short tons

[U. S. Department of Commerce]

Division and State	1948	1949	1950	1951	1952
New England 1Middle Atlantic:	188, 243	158, 675	201, 281	210, 324	172, 157
Pennsylvania New York and New Jersey	735, 467 1, 311, 898	619, 923 1, 136, 654	772, 103 1, 357, 087	808, 334 1, 348, 451	747, 226 1, 343, 165
Total Middle Atlantic	2, 047, 365	1, 756, 577	2, 129, 190	2, 156, 785	2, 090, 391
North Central: Illinois. Indiana Michigan Ohio. Other ³	429, 025 (2) 665, 478 555, 344	868, 235 415, 766 (2) 617, 673 618, 032	993, 759 464, 680 (2) 672, 190 741, 998	1, 073, 223 464, 896 (2) 654, 321 798, 472	1, 059, 602 433, 150 196, 120 624, 184 522, 963
Total North Central	2, 614, 443	2, 519, 706	2, 872, 627	2, 990, 912	2, 836, 019
South: Alabama. Florida. Georgia. North Carolina. South Carolina. Virginia. Kentucky and Tennessee Texas. Delaware and Maryland. Louisiana. Other 4.	370, 078 218, 463 155, 159 212, 704 540, 502 774, 042 613, 447 (2) (2)	309, 385 459, 369 232, 005 163, 446 204, 203 486, 720 795, 728 880, 330 (2) (2) 2, 050, 983	290, 494 526, 273 223, 949 159, 466 188, 993 560, 644 853, 475 972, 260 1, 354, 643 (2) 980, 179	298, 404 535, 719 247, 307 160, 087 206, 779 549, 918 835, 310 947, 916 1, 340, 009 435, 335 489, 988	290, 139 740, 199 239, 833 159, 469 197, 323 550, 742 841, 555 1, 086, 957 1, 221, 445 505, 768 459, 972
Total South	5, 150, 667	5, 582, 169	6, 110, 376	6, 046, 772	6, 293, 402
West 5	736, 217	709, 849	829, 317	984, 075	951, 928
Total United States	10, 736, 935	10, 726, 976	12, 142, 791	12, 388, 868	12, 343, 897

TABLE 10.—Sulfur consumed in nonacid uses in the United States, 1950-51, in thousands of long tons

[U. S. Department of Commerce, National Production Authority]

Use	1950	1951	Use	1950	1951
Carbon disulfide Pulp and paper Crude ground Other chemicals	191 402 291 95	216 387 270 94	Miscellaneous	1,042	1,030

TABLE 11.—Estimates of principal nonacid uses of sulfur in the United States, 1951-52, in thousands of long tons

[Chemical Engineering]

Use	1951 (revised)	1952 (prelim- inary)	Use	1951 (revised)	1952 (prelim- inary)
Wood pulp Carbon bisulfide Other chemicals, dyes Insecticides, fungicides	391 214 100 135	380 200 90 105	RubberOther	75 137 1,052	75 130 980

¹ Includes data for plants in Connecticut, Maine, Massachusetts, and Rhode Island.
² Included with "Other."
³ Includes data for plants in Iowa (1949-52 only), Kansas (1950-52 only), Michigan, (except 1952), Missouri, and Wisconsin.

⁴ Includes data for plants in Arkansas, Delaware (1948–49 only), Louisiana (1949–50 only), Maryland (1948–49 only), Mississippi, Oklahoma, and West Virginia.

⁵ Includes data for plants in Arizona, California, Colorado, Montana, Utah, Washington, and Wyoming.

As the accompanying tables show, the pattern of consumption did not change greatly for most applications during the past year. Somewhat greater emphasis on consumption in fertilizer was noted. At the same time, there was a noteworthy move toward actual commercial production of superphosphates by methods that would substitute nitrogen compounds for sulfuric acid. Proponents of these nitrogenous phosphates claimed that they could be produced at costs that would make them competitive with the usual types of superphosphates and that handling problems had been reasonably well solved. The industry did not expect these processes to reduce the market for sulfur in fertilizer production in the near future, but the development is important because fertilizer is the largest single sulfur market.

The market for sulfur continued to grow in 1952, as a number of new acid-producing facilities and other sulfur-consuming units were being

built.

The competitive position of the various sulfur raw materials for the manufacture of sulfuric acid received a great deal of attention in 1952. and some data were published.¹⁰

TABLE 12.—Sulfuric acid ¹ (basic, 100 percent) consumed in the United States. 1950-51, by industries, in thousands of short tons

			<u> </u>					
Industry	1950	1951	Industry	1950	1951			
Fertilizers: Superphosphate Ammonium sulfate Chemicals Petroleum and its products Pigments (Pb, Zn, and Ti) Iron and steel Other metallurgical	3, 790 1, 510 2, 072 1, 679 1, 325 1, 026 211	2,507	Rayon and cellulose film	669 201 195 37 1,284 13,999	685 218 201 31 1,495 14,632			

[U. S. Department of Commerce, National Production Authority]

TABLE 13.—Estimates of United States use of sulfuric acid ¹ (basis, 100 percent), 1951–52, in thousands of short tons

[One mean angineering]									
Industry	1951 (revised)	1952 (prelim- inary)	Industry	1951 (revised)	1952 (prelim- inary)				
Fertilizers: Superphosphate	3, 900 1, 500 3, 800 1, 550 1, 250 710	4, 150 1, 450 3, 680 1, 550 1, 250 700	Iron and steel	1,080 200 110 40 380 14,520	960 200 110 30 370 14,450				

 $^{^{\}rm I}$ Recycled acid, including reused, concentrated, fortified, and reconstituted acid is estimated at about 2,130,000 short tons in each of 1951 and 1952.

Includes virgin, fortified, and spent acid. Fortified and spent acids totaled 2,006,000 short tons in 1950 and 2,433,000 tons in 1951.

¹⁰ Chemical Week, What Price Sulfuric?: Vol. 71, No. 10, Sept. 6, 1952, pp. 42, 44-47; Jones, William P., Economic Aspects of Sulphuric Acid Manufacture: Min. Eng., vol. 4, No. 10, October 1952, pp. 957-960.

During the early part of 1952 sulfur consumption was limited by the provisions of National Production Authority Order M-69. January 1, 1952, consumers were restricted to the use of 90 percent of their use during the calendar year 1950. Inventory was limited to 25 days supply. 11

On February 28, 1952, the order was amended to require filing of

certain reports by suppliers and consumers.12

The inventory restriction was relaxed on August 19, 1952, to permit

a consumer to hold a 60-day supply.¹³

Actual consumption fell below the authorized use during the first 8 months of 1952; consequently, the limitations on use and inventory

under Order M-69 were removed on November 5, 1952.14

Sulfuric acid was placed under NPA Order M-94 on January 1, 1952, to insure fulfillment of defense needs and provide for distribution among civilian users as equitably as possible.¹⁵ The supply situation eased by the middle of the year, and on August 18, 1952, the order was revoked.

STOCKS

As table 1 shows, producers' stocks of Frasch sulfur increased less than 1 percent (231,423 long tons) in 1952. On December 31 producers held 2,830,014 long tons at the mines and 238,841 tons elsewhere. This industry stock constituted a 7-month supply at the 1952 In view of past industry practice, this was considered to be lower than desirable, and further rebuilding of inventories was anticipated.

There also was a moderate increase in stocks of recovered sulfur in 1952. At the end of January—the first month for which these statistics were collected—the industry held 79,565 long tons of re-

covered sulfur and at the end of the year 94,662. No statistics on pyrites stocks are available.

PRICES

In 1952 domestic sulfur prices were under the control of the Office of Price Stabilization. Frasch-sulfur prices were frozen at those These ranged from \$21 to \$24 f. o. b. mines of the 1950 base period. for domestic consumption and from about \$25 to \$27 at the port for export. Prices of recovered sulfur and native sulfur produced by non-Frasch methods were either controlled at the 1950 base level or, in the case of most of the new producers, established at local levels that made them competitive with Frasch sulfur when transportation factors were taken into consideration. Prices of elemental sulfur in the international market were reported to have ranged in some instances between \$100 and \$200 a ton, but the trend was sharply down by the end of the year.

NPA, Sulfur: Order M-69, as amended Dec. 29, 1951 (effective Jan. 1, 1952), 2 pp.
 NPA, Sulfur: Order M-69, as amended Feb. 28, 1952, 2 pp.
 NPA, Sulfur: Order M-69, as amended Aug. 19, 1952, 2 pp.
 NPA, Sulfur: Order M-69, revocation, Nov. 5, 1952, 1 p.
 NPA, Sulfur: Order M-94, Dec. 29, 1951 (effective Jan. 1, 1952), 2 pp.

Numerous requests for price relief were submitted to the Office of Price Stabilization, particularly by new producers. On July 1, 1952, OPS issued Supplementary Regulation 3 of Ceiling Price Regulation 61. This permitted ceiling prices for non-Frasch native sulfur to be established at the average total cost plus a reasonable profit margin for sales in the export market only.

Prices of pyrites vary greatly from place to place, principally because of the importance of the transportation factor in the delivered cost. Trade journals quoted only nominal prices in 1952. For example, E&MJ Metal and Mineral Markets quoted domestic and Canadian pyrites per long ton at \$9 to \$11 f. o. b. point of shipment.

Canadian pyrites per long ton at \$9 to \$11 f. o. b. point of shipment.

The f. o. b. mine valuations attributed to output by domestic producers ranged from \$2.75 to \$7.84 a long ton. The average value of all domestic output was \$4.98, and the average value of the tonnage sold was \$6.21.

There was a strong upward pressure on pyrites prices during the year; this is reflected by the fact that the average value of imports increased from \$2.06 in 1951 to \$2.98 in 1952.

FOREIGN TRADE 16

Foreign demand for United States Frasch sulfur apparently tapered off somewhat in 1952. Exports remained under Government control throughout the year and the sulfur committee of the International Materials Conference periodically reviewed the status of supply and demand. Exports from the United States were maintained at a level

slightly higher than in the previous year.

The high prices that prevailed in the international sulfur market stimulated development of production capacity in a number of foreign countries, and much of this tonnage entered international trade. However, considerable time is required for constructing new facilities, and consequently the quantities involved in 1952 were relatively small. A discouraging factor for this type of project was the softening of sulfur prices during the latter part of the year, when it became apparent that demands in most foreign countries were being reasonably well satisfied from the available sources.

The primary effort made during the year by both the Government agencies and producers was to supply sulfur-consuming countries throughout the world more or less in proportion to historical requirements and also to provide adequately for the requirements of the

industries contributing most directly to defense.

The shortage and defense considerations set in motion some developments that may have considerable effect on the pattern of foreign trade in future years. For example, a number of countries are emphasizing the use of a greater proportion of domestic raw materials such as gypsum, pyrites, and spent oxides. The development of elemental sulfur production in Mexico and possibly other countries also may broaden the base of world sulfur supply considerably.

Whereas the United States imported only a negligible quantity of elemental sulfur, it consumed a large tonnage of pyrites obtained from Canada. Sulfur prices were too low to justify major conversion

¹⁶ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

by consumers from elemental sulfur to pyrites raw material. However, some conversions were feasible economically. Imports of pyrites from eastern Canadian sources into the United States increased by about one-third in 1952.

Exports of pyrites are not separately classified in the foreign trade statistics of the U. S. Department of Commerce.

TABLE 14.—Sulfur imported into and exported from the United States, 1948-52

[U. S. Department of Commerce]

	I	mports for	consumption	on .	Exports					
Year	o	re	In any form, n. e. s.		Cr	ude	Crushed, ground, refined, sublimed, and flowers			
	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value		
1948	1 1, 875 4, 829	\$89 1 94, 496 98, 581	38 27 25 1 501 34	\$13, 299 5, 768 6, 172 1 63, 131 7, 545	1, 262, 913 1, 430, 916 1, 440, 996 1, 287, 773 1, 304, 154	\$26, 779, 444 30, 489, 876 30, 950, 531 31, 760, 539 33, 515, 359	32, 630 30, 135 37, 526 24, 044 34, 213	\$1, 774, 358 1, 682, 965 2, 249, 311 1, 947, 860 2, 451, 132		

¹ Revised figure.

TABLE 15.—Sulfur exported from the United States, 1951-52, by countries of destination

[U. S. Department of Commerce]

		Cr	ude		Crushed, ground, refined, sublimed, and flowers					
Country	1	951	1	952	19	51	1952			
	Long tons	Value	Long tons	Value	Pounds	Value	Pounds	Value		
North America:					-					
Canada	334, 146	\$7,891,831		\$9, 261, 956	7, 853, 485	\$308, 270	7, 440, 553	\$274, 183		
Central America	139				640, 908	28, 881	921, 059	40, 949		
Mexico West Indies	957				10, 665, 295	355, 794		219, 312		
west maies	25, 900	646, 939	34, 128	882, 276	408, 454	17, 964	340, 704	12, 952		
Total North Amer-										
ica	361, 142	8, 568, 767	404, 320	10 144 232	19, 568, 142	710 000	17, 106, 181	547, 396		
					10,000,112	110, 505	17, 100, 101	041, 550		
South America:					1					
Argentina	4, 800			64, 613		32, 961		39, 111		
Brazil Colombia	40, 879					215, 813		349, 114		
Ecuador	557 72	16, 153			340, 477	17, 687		14, 138		
Peru.	9	2, 772 640		2, 780		484		3, 058		
Uruguay	1, 200					31, 732		141, 467		
Venezuela	27	1, 031	5, 700			10, 278	73, 600 279, 895	2, 164		
Other South America.	139	3, 850	72			6, 503		16, 529 1, 288		
							10, 400	1, 200		
Total South Amer-					1					
ica	47, 683	1, 231, 672	56, 561	1, 548, 716	7, 224, 766	315, 458	13, 700, 634	566, 869		
Europe:										
Austria	13, 900	361, 800	14, 900	398, 766						
Belgium-Luxem-	13, 500	301, 300	14, 900	398, 100						
bourg	54, 300	1, 371, 880	39, 700	1, 039, 268	460, 344	13, 952	959, 492	04 710		
France	73, 555	1. 914. 185	52, 095	1, 362, 123	100, 044	10, 902	909, 492	24, 513		
Germany	21, 538	1, 914, 185 555, 438	24, 000	633 550	55 000	11, 735	37, 530	7, 578		
Greece					14, 178, 914	382, 538	19, 615, 584	495, 778		
Greece Ireland					263, 200	10, 058	447, 613	17, 361		
Netherlands	975	24, 605	450	11, 408	491, 492			16, 946		

TABLE 15.—Sulfur exported from the United States, 1951-52, by countries of destination—Continued

[U. S. Department of Commerce]

		Crt	ıde		Crushed, ground, refined, sublimed, and flowers				
Country	19	951	19	952	19	51	1952		
,	Long tons	Value	Long tons	Value	Pounds	Value	Pounds	Value	
Europe—Continued									
Norway					67, 440	\$6,607	87, 483 5, 000	\$2, 564 780	
Portugal		74, 490			12,600 37,500	2, 959 8, 300	24, 350	5, 164	
SwedenSwitzerland	19, 300	496, 005	19 000	\$492, 375	371, 360	31, 144	612, 514	29, 418	
Turkey				l	548, 344	13, 063	012,011		
United Kingdom	424, 007	10, 332, 658	377, 884	9, 570, 107	88, 250	6,955			
Yugoslavia				l	2, 204, 000			156, 999	
Other Europe	4,000	100,000			14, 500	3, 337	32, 400	6, 650	
Total Europe	614, 619	15, 236, 654	528, 029	13, 507, 597	18, 792, 944	559, 658	28, 884, 998	763, 751	
Asia:									
Ceylon					8, 700	652	29, 190	2, 455	
Hong Kong					1,500	135			
India	33, 357		52, 069	1, 379, 703	3, 885, 464	164, 668	6, 946, 082	227, 632	
Indonesia	7,920	193, 084	7, 534				2, 737, 602 3, 121, 185	94, 561 78, 464	
Israel Lebanon			3, 100 40			21,011	436, 920	9,800	
Pakistan	423	11, 688					215, 480	7, 322	
Philippines				11,110	132, 320	6, 050	133, 724	7, 270	
Svria	l	<u></u>			349, 797	7,643	645, 961	15, 753	
Other Asia	2, 664	109, 289	2, 259	64, 887	26, 720	4, 399	124, 220	7, 132	
Total Asia	48, 435	1, 289, 720	65, 499	1, 734, 655	6, 422, 921	245, 322	14, 390, 364	450, 389	
Africa:									
Allgeria	11, 275	290, 695	6, 430	163 001					
Belgian Congo	11, 270	200,000	0, 100				221, 660	7, 756	
British East Africa	100	2, 765	190	5, 380			87, 948	3, 040	
Egypt	3, 225	87, 285	2, 091	69, 265	835, 846	21,078	1, 588, 416	39, 590	
French Morocco	3, 125	93, 750	2,870	73,405					
Mozambique Tunisia	99 2,000		149 5,000	4, 148 130, 000					
Union of South Af-	2,000	50, 550	3,000	130,000					
rica	58, 600	1, 433, 050	65, 200	1, 732, 830	652, 080	71, 068	380, 166	53, 303	
Total Africa	78, 424	1, 960, 645	81, 930	2, 178, 029	1, 487, 926	92, 146	2, 278, 190	103, 689	
Oceania:									
Australia	70, 735	1, 791, 391	98, 665	2, 594, 592	75, 400	7, 512	113, 440		
New Zealand	66, 735			1, 807, 538	285, 678		163, 235	6, 888	
Total Oceania	137, 470	3, 473, 081	167, 815	4, 402, 130	361, 078	24, 367	276, 675	19, 038	
Grand total	1, 287, 773	31, 760, 539	1, 304, 154	33, 515, 359	53, 857, 777	1, 947, 860	76, 637, 042	2, 451, 132	

TABLE 16.—Pyrites, containing more than 25 percent sulfur, imported for consumption in the United States, 1948-52, by countries

[U. S. Department of Commerce]

	1948		1949		1950		1951		1952	
Country	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value
Australia	75, 248	\$169, 551	107, 951	\$215, 290	22 208, 725 19	411,823	221, 487	\$457, 365	295, 820	\$865, 547
PortugalSpain	32, 163	89, 994	12, 986	36, 331					227	16, 267
Total	107, 411	259, 545	120, 937	251, 621	208, 766	412, 122	221, 487	457, 365	296, 047	881, 814

TABLE 17.—Pyrites, containing more than 25 percent sulfur, imported for consumption in the United States, 1948-52, by customs districts, in long tons

IU.	S. :	Department	of	Commercel	
-----	------	------------	----	-----------	--

Customs district	1948	1949	1950	1951	1952
Buffalo	66, 385	106, 862	208, 569 36	221, 391	295, 626
Connecticut	37		5	46	
New YorkPhiladelphia	40, 989	14, 075	41		227
Rochester St. Lawrence St. Lawr			115	50	194
Total	107, 411	120, 937	208, 766	221, 487	296, 04

TECHNOLOGY

One of the most interesting projects from the technologic standpoint in 1952 was the Freeport Sulphur Co. installation at Bay Ste. Elaine dome in Louisiana. This deposit, which is about 160 miles southwest of New Orleans, is covered by salt marsh and water. The nearest source of fresh water is about 35 miles away. Standard Frasch mining practice requires the use of fresh water. The deposit is relatively small and so isolated that it can be reached for commercial operation

only by boat.

To solve the many problems involved, the company designed a mining plant capable of using sea water. The water is heated by direct contact with flue and combustion gases to eliminate oxygen, followed by final heating with steam in tubular heat exchangers. The heat exchangers are constructed of corrosion-resistant alloys and the steel-surface pipelines are protected by cement lining. Chemical treatment of the sea water can also be used. This plant was mounted on a barge 40 feet wide, 200 feet long, and 12 feet deep. The barge was towed to the mine site and partly sunk in place so that the elevation of the deck is about 6½ feet above the mean water level.

The plant was designed for production from 6 wells simultaneously;

annual capacity was rated at 100,000 long tons of sulfur.

As construction of storage facilities at the site was impractical, provision was made for the transportation of sulfur as produced in two 1,000-ton insulated tank barges to the storage area of the company

at Port Sulphur, 75 miles away.17

Until recently, sulfuric acid was the only economic outlet from sulfur compounds derived from the smelter gases at Copper Cliff, Ontario. Experimental production of liquid sulfur dioxide from dilute smelter gases several years ago had shown that the costs of production are too high to compete with elemental sulfur from other sources. However, when a new flash-roasting process was developed, which produced a gas containing 75 percent or more sulfur dioxide, the concentration costs of this gas were so much lower that competitive production appeared to be feasible. A plant was built by Canadian

¹⁷ Price, K. T., Freeport Mines Sulphur by Boat: Eng. and Min. Jour., vol. 153, No. 12, December 1952, pp. 98-102; Bartlett, Z. W., Lee, C. O., and Feierabend, R. H., Development and Operation of Sulphur Deposits in the Louisiana Marshes: Min. Eng., vol. 4, No. 8, August 1952, pp. 775-783.

Industries, Ltd., at this site for the production of 90,000 tons of liquid sulfur dioxide a year. Smelter gas is dried with sulfuric acid, compressed, and cooled. In cooling, sulfur dioxide condenses as a liquid. The remaining gas is compressed further and passed through an oil separator and a second liquefier. The unliquefied portion of the sulfur dioxide, after the second step, is fed to the acid plant for conversion to sulfuric acid. Economic success of the project is said to depend upon close integration of the process with the acid plant. Liquid sulfur dioxide from this new unit is to be used almost entirely by sulfite pulp mills in Ontario and Quebec. The utility of liquid sulfur dioxide in pulp production was demonstrated on a trial basis in 1947 by the Abitibi Power & Paper Co. at Fort William, Ontario. The liquid sulfur dioxide is shipped from the plant to the sulfite mills in a fleet of 55-ton tank cars. 18

Increasing quantities of sulfur are being moved from the mine in molten condition relatively long distances. The transportation practice of the new mines of the Freeport Sulphur Co. at Garden Island Bay and Bay Ste. Elaine domes are good examples. This technique is also being utilized for shipping sulfur to consuming plants in a few

instances.19

The fluosolids calcining process is finding wider use in the sulfur industry.²⁰ In burning pyrites the process can produce a gas containing 12 to 15 percent sulfur dioxide.

RESERVES

A fundamental question in the industry is the magnitude of reserves of native sulfur that can be mined by the Frasch process. An important factor in this regard is the exploration being carried on in the Tehauntepec Peninsula of Mexico. Companies interested in commercial development of these deposits announced plans for the construction of facilities that may produce well over 500,000 tons a year. This would indicate the existence of reserves totaling many million tons. Definite information on the magnitude of these reserves has not been made available, but it is evident that Mexico may add materially to the known commercial reserves of Frasch sulfur in the near future.

After reviewing the sulfur situation, the President's Materials Policy Commission published estimates of reserves and concluded that Frasch reserves probably are not large enough to supply the growing requirements for many years and by 1975 other sulfur minerals would become increasingly important sources of supply.

Information on reserves of sulfides in Australia and Bolivia is con-

tained in the World Review section of this chapter.

WORLD REVIEW

Australia.—In 1952 Australia was making an effort to convert its sulfur-consuming industry from imported elemental sulfur to the use

54.

¹⁸ Allgood, R. W., Sulphuric Acid and Liquid Sulphur Dioxide Manufactured from Smelter Gases at Copper Cliff, Ontario: Canadian Min. and Met. Bull., vol. 45, No. 479, March 1952, pp. 153-155.

19 Chemical Engineering, Recovered Sulphur Shipped Molten From Extraction Unit: Vol. 59, No. 10, October 1952, pp. 246.

20 Copeland, G. G., New FluoSolids Experience: Min. Cong. Jour., vol. 38, No. 3, March 1952, pp. 42-44,

of domestic supplies of pyrites and other sulfides. Numerous instances of projects that were contributing to this program appeared

in the trade press.21

In the latter part of the year, however, the easing of the sulfur supply situation raised fundamental questions concerning the economic problems involved in continuation of the conversion program. many instances the acid manufacturer using Australian pyrites would be at a cost disadvantage to the acid producer using imported sulfur. A tariff board was investigating the problem and the industry anticipated that governmental decisions concerning the degree of protection to be given the consumer of domestic pyrites would soon be forthcoming.22

The Australian Government issued a comprehensive bulletin on sulfur resources.²³ This publication mentions that the largest deposits of sulfide minerals are found at Mount Isa and Mount Morgan, in Queensland, Broken Hill and Captain's Flat in New South Wales, Mount Lyell and Read-Rosebery in Tasmania, Nairne in South Australia, and Norseman in Western Australia. Reserves in the

deposits are estimated as follows:

-	Tons
Pyrite and pyrrhotite bodies Pyrite concentrates from mixed sulfide bodies Zinc concentrates	4, 213, 000
Lead concentrates	2, 052, 000
Total	10, 420, 000

Of this total, about 14,932,000 tons is considered to be available for This is considered sufficient to supply Australian needs making acid. for about 33 years.

Bolivia.—Bolivia continued to produce a small quantity of sulfur. No major construction program was announced, but it was reported that the Bolivian Government signed a contract for developing Bolivian sulfur deposits. Reserves in the Department of Potosi in southwestern Bolivia were estimated at about 5,000,000 tons assaying more than 60 percent sulfur. However, the altitude (5,970 meters), the extreme cold, and winds made mining very difficult. The sulfur is carried from the mines by llamas to a camp at an elevation of 5,000 meters, where a small beneficiation plant is operated.24

Canada.—As Canada is a large consumer of sulfur and has substantial reserves of sulfur-bearing materials capable of being developed commercially, the sulfur shortage stimulated a great deal of activity in that country. The commercial developments included a variety Canadian Industries, Ltd., began producing liquid of operations. sulfuric acid at Copper Cliff, Ontario, from smelter gases of the Inter-

²¹ Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, pp. 36-42; Chemical Engineering and Mining Review, New Sulphuric Acid Plant at Port Adelaide, South Australia: Vol. 44, No. 11, Aug. 11, 1952, pp. 417-418; Mining Journal (London), The Australian Sulphur Industry: Vol. 238, No. 6083, Mar. 21, 1952, p. 291; Mining World, vol. 14, No. 9, August 1952, p. 67; Mining World, vol. 14, No. 11, October 1952, p. 62.

22 Fertiliser and Feeding Stuffs Journal, Australia's Sulphur Policy: Vol. 39, No. 1, Jan. 7, 1953, pp. 25-26; Industrial and Mining Standard (Melbourne), vol. 107, No. 2725, Aug. 31, 1952, p. 3.

23 Nye, P. B., and Mead, G. F., Australian Resources of Sulphur-Bearing Minerals: Bureau of Mineral Resources, Geology, and Geophysics, Bull. 5, 1952, 76 pp.

24 Engineering and Mining Journal, vol. 153, No. 11, November 1952, p. 138; Mining World, vol. 14, No. 12, November 1952, p. 59.

national Nickel Co. Capacity of this facility is 45,000 tons of sulfur

equivalent per year.25

At the Jumping Pound, Alberta, natural-gas field, the Shell Oil Co. began production of elemental sulfur. The facility has a capacity of 10,000 tons of elemental sulfur per year recovered from processing of sour natural gas. Natural gas at this location contains about 3½ per-

cent hydrogen sulfide by volume.26

On a site near the Turner Valley, Alberta, plant of the Royalite Oil Co., Ltd., this firm constructed an elemental sulfur refinery having a daily capacity of 30 long tons. Turner Valley gas contains about 2 percent hydrogen sulfide. Sulfur from these sources is to be marketed principally in the pulp and paper industry of the Pacific coast area and possibly in other markets as far away as the north central United States.27

Large reserves of sour gas estimated to contain about 8 percent hydrogen sulfide are reported to have been established in the Pincher

Creek gas field of Alberta.

No commercial deposits of native sulfur that can be mined by the Frasch method have been reported in Canada; however, sulfur showings have been noted. In 1952 Sunbeam Sulphur, Ltd., a subsidiary of Dominion Tar & Chemical Co., Ltd., was drilling two wells near wells in which sulfur had previously been noted. the Chisholm area on the Peace River Railroad about 100 miles north In one well, the sulfur was found at a depth of 3,040 feet and in the other about 10 miles away it showed up at 3,500 feet.

Noranda Mines, Ltd., continued to make progress toward commercial development of a process wherein elemental sulfur will be recovered in the burning of pyrites under controlled conditions. It was reported that an agreement had been contracted between this company and North American Cyanamid, Ltd., for the construction

of a \$4,000,000 plant.28

A comprehensive survey of the sulfur situation in Canada was

published.29

Chile.—World shortages of sulfur usually stimulate production

from the relatively high cost native sulfur operations in Chile.

After World War II the Chilean sulfur industry declined, but the sulfur shortage transformed its outlook. Prices soared, and production facilities were rehabilitated and expanded. Chilean sulfur deposits, which extend from the northern tip of the country to the Province of Atacama, a distance of about 600 miles, have been estimated by a sulfur producers' association to contain as much as 400 million metric tons of ore. Other estimates of small areas have indicated tonnages over 20 million tons. Although this estimate may

pp. 54, 56, 57; Mining Journal (London), Canada's First Sulphur From Petroleum Plant: Vol. 239, No. 6103, Aug. 8, 1952, p. 150; The Precambrian, Sulphur Production to Start With New \$50,000 Plant at Jumping Pound, Alta.: Vol. 25,

Allgood, R. W., Sulphuric Acid and Liquid Sulphur Dioxide Manufactured from Smelter Gases at Copper Cliff, Ontario: Canadian Min. and Met. Bull., vol. 45, No. 479, March 1952, pp. 153-155.
 Canadian Chemical Processing, Liquid Sulphur Dioxide for Sulphite Mills: Vol. 36, No. 3, March 1952,

The Precambrian, Shiphur Production to Start with New \$50,000 r halt at duliping Found, Alta., vol. 29, No. 2, February 1952, p. 24.

27 Canadian Chemical Processing, New Sulphur Recovery Plant: Vol. 36, No. 3, March 1952, pp. 59-60; McGuffin, G. A., Sulphur Recovery from Turner Valley Gas: Canadian Min. and Met. Bull., vol. 45, No. 479, March 1952, pp. 156-159.

28 Canadian Mining Journal, vol. 73, No. 12, December 1952, p. 114.

29 Janes, T. H., Sulphur and Pyrites in Canada: Department of Mines and Technical Surveys, Ottawa,

not be fully verified by exploration evidence, the sulfur reserves of

Chile in any case apparently are large.

Much of the mining was done by open pits, but shallow underground mining is practiced also. Most of the caliche (sulfur ore) is hand drilled and blasted. The ore is shoveled into wheelbarrows or hide baskets. Narrow-gage cars are used to transport the sulfur out In some instances, the ore is broken into pieces about of the mine. 8 inches in size and hand-picked. Weather and the physical difficulties of working at very high altitude are adverse factors. The workers are generally paid on a piecework or contract basis. Animals, aerial tramways, trucks, and rail cars are used to convey the mined sulfur to the refineries. Refining is commonly done at a nearby settlement or at some convenient location near the volcano from which the sulfur is obtained. The product normally assays about 95 percent sulfur but some sublimed sulfur of very high purity is also produced.

A detailed description of the practices and current status of the

Chilean industry was published in 1952.30

Ecuador.—The Tixan sulfur mine in Ecuador is one of the most favorably located in South America as the deposit is at a relatively low elevation—about 8,500 feet—and transportation is easily avail-In 1952 the Ecuadoran Mining Co., a subsidiary of Chemical Plants Corp., operated this mine under a contract with the Ecuadoran Minister of Social Welfare. Output in 1952 exceeded 2,000 tons. Other sulfur deposits in Ecuador also attracted attention. sions have been granted to develop sulfur in the Galapagos Islands. Reports were also current of the granting of concessions to develop sulfur deposits at Otavalo. Although there was considerable activity and interest in sulfur in Ecuador, the only company actively in production was the Ecuadoran Mining Corp. 31

Iraq.—Interest in a concession to extract sulfur from waste gases produced in the Iraqi oil fields was reported in 1952. Both American and British companies were investigating the prospects of commercial

production.32

Italy.—Production of elemental sulfur in Italy continued to increase in 1952; however, in the latter part of the year the shortage had eased so much that marketing of the exportable surplus became exceedingly difficult at prevailing prices. The Italian industry is conscious of the need for developing cheaper production methods that would make the product more nearly competitive with Frasch sulfur, and substantial Government funds were made available for improvement in production facilities and for exploration of deposits. A number of ways of improving practices, including the adoption of more modern underground mining methods and beneficiation through froth flotation, were in progress, but no major advances can be reported for 1952.33

Japan.—Production of sulfur in Japan in 1952 increased about 25 percent over the previous year. Sulfur is mined in Japan by numerous companies, the largest of which is the Matsuo Mining Co., Ltd., which accounts for about 30 percent of the output.

<sup>Rudolph, William E., Sulphur in Chile: Geog. Rev., October 1952, pp. 562-590.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 6, December 1952, pp. 36-37.
Minling Engineering, vol. 4, No. 9, September 1952, p. 847.
Chemical Age, Race for Sulphur Rights: Vol. 66, No. 1716, May 31, 1952, p. 847.
Minling World, vol. 14, No. 7, June 1952, p. 58.</sup>

rank is the Hokkaido Sulphur Co., Ltd., which supplies approxi-

mately 20 percent.

Most of the sulfur-mining companies are relatively small and many of them are in part supported with loans or investments by consuming companies. Sulfur price controls were lifted in 1951 and consequently the export prices thereafter reflected world demand. Prices ranging from about \$105 to \$148 per long ton were reported,

and occasionally rumors of even higher figures were heard.³⁴

Mexico.—Mexico was a center of world interest in 1952 owing to the growing possibility that it will become the first producer of Frasch sulfur outside of the United States. Domes in Mexico have been explored over a period of years, and finally arrangements for their development were crystallizing. As construction of Fraschmining facilities requires investment of considerable capital and these deposits have locations disadvantages, financing the development work presented a problem. To assist expansion of low-cost sulfurproduction capacity, the Export-Import Bank agreed to participate in financing two projects.

In 1951 the Mexican Gulf Sulphur Co. was the first company to obtain a loan from the Export-Import Bank for construction of a plant at the San Cristobal dome. Construction of the facility was begun by an American construction company. This dome was expected to be in production in the latter part of 1953. Its capacity

was estimated between 150,000 and 200,000 long tons a year.

Pan American Sulphur Co. was the second firm to initiate a construction program. A \$3,664,000 loan was obtained from the Export-Import Bank for constructing a plant at the Jaltipan dome. company had explored the deposit extensively and expected to be able to produce from 350,000 to 500,000 long tons of sulfur annually. Construction of this facility was scheduled to begin in 1953 and to be completed in the latter part of 1954.

In addition to these actual development projects, further exploration activities were being pressed as rapidly as possible by a number of organizations. For example, the Texas Gulf Sulphur Co. conducted a major exploration program, but the company did not announce any

discoveries.

Surface sulfur deposits also were being investigated during the year. It was reported that a concession was awarded on a volcanic sulfur deposit on the Island of Socorro off the northwest coast of Mexico. Reserves were estimated at 800,000 tons.³⁵

Efforts were being made to develop surface sulfur production south

of San Felipe on the Gulf of California.36

It was reported that the Huaxcama mines of Negociacion Minera de Azufre, S. A., were producing about 50 metric tons of elemental sulfur per day in the latter part of 1951 and in 1952 output was being increased.37

During 1952 actual production of native sulfur in Mexico was small as shown in table 18. However, a larger quantity—approxi-

Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 5, November 1952, pp. 39-41.
 Mining World, vol. 14, No. 12, November 1952, p. 73.
 Pit and Quarry, vol. 45, No. 5, November 1952, p. 81.
 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 1, July 1952, pp. 43-45.

mately 37,000 metric tons—was produced by Petroleos Mexicanos

from a gas-cleaning plant at the Poza Rica oil fields.38

Norway.—At Skorovas, in northern Norway, a new pyrite mine was started in 1952. Capacity of this mine is about 150,000 tons per year. The deposit is estimated to contain 7,500,000 tons. Heavymedium concentration is used, and much of the product contains 1.5 percent copper.39

Peru.—A number of organizations investigated Peruvian sulfur For example, an American firm sent a technologist deposits in 1952. to study its holdings in the Sechura Desert in northern Peru. Actual production in 1952 was twice as high as in 1951 but, as shown in table

18, the total tonnage was still relatively insignificant.40

TABLE 18.—World production of native sulfur, by countries, 1 1948-52, in long tons 2 (Committed by Holon I Huntl

Country 1	1948	1949	1950	1951	1952
North America:		(a)	. (0)	11 077	11 704
Mexico	2,100	(3)	(3)	11,375	11,784
United States	4,869,210	4, 745, 014	5, 192, 184	5, 278, 249	5, 293, 145
South America:			- 000	F 700	40.000
Argentina	8,388	10,048	7,622	7,560	4 8, 000
Bolivia (exports)	2,685	4,398	4,307	9,100	5, 497
Chile	13,124	7, 599	22,065	29, 672	4 36, 000
Colombia	592	793	1,461	2, 479	2, 974
Ecuador	43	16	27	0.071	2, 353
Peru	971	248	98	2, 251	5,066
Europe:			- 000	- 400	410.00
France (content of ore)	6,648	5, 201	5,629	5, 460	4 12,000
Italy (crude) 5	170, 904	198, 274	209, 767	197, 382	232, 700
Spain	2,500	5,000	6,800	6,700	4, 800
Asia:	I.		00.040	100 004	170 01
Japan	40,120	61,414	90,940	139, 364	173, 61
Taiwan (Formosa)	1,578	362	2,657	2,732	5, 00
Turkey (refined)	2, 556	3,046	5, 911	7, 275	7, 94
Total (estimate)	5, 300, 000	5, 200, 000	5, 700, 000	5, 800, 000	6,000,00

¹ Native sulfur believed to be also produced in China (continental) and U. S. S. R., but complete data are not available; estimates by senior author of chapter included in total.

2 This table incorporates a number of revisions of data published in previous sulfur chapters.

3 Data not available; estimate by authors of chapter included in total.

The Tutupaca mines near Tacna were purchased by a Canadian-American group and British investors made an advance to Cia. Azufrera Peruana in southern Peru, against a 10,000 ton delivery.41

Philippine Islands.—Efforts to develop fertilizer production capacity in the Philippines at the Maria Cristina project of the National Power Corp. in Mindanao led to exploration of local sulfur resources. In 1951 an engineer of the Federal Bureau of Mines studied the potential resources in the Philippines for the Economic Cooperation Ad-He found that one fumerole deposit of crude sulfur ministration. might be a commercial source but that the most promising sources of sulfur were pyrites deposits. Pyrites may be obtained as a by-

[•] In addition the following tonnages of ground sulfur rock (30 percent S) were produced and used as an insecticide: 1948, 15,176 tons; 1949, 19,213 tons; 1950, 15,778 tons; 1951, 22,120 tons, 1952, 21,482 tons.

³⁸ Chemical Age (London), Sulphur from Mexico: Vol. 67, No. 1736, Oct. 18, 1952, p. 546.
39 Chemical Age (London), vol. 67, No. 1743, Dec. 6, 1952, p. 777.
40 Foreign Commerce Weekly, U. S. Company Investigates Sulfur Holdings in Peru: Vol. 47, No. 7, May 19, 1952, p. 19.
 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 1, July 1952, pp. 43-45.

TABLE 19.—World production of pyrites (including cupreous pyrites), by countries,1 1948-52, in metric tons 2 [Compiled by Helen L. Hunt]

. Country ¹	19-	48	194	19	198	50	198	51	198	52
Country 1	Gross weight	Sulfur content	Gross weight	Sulfur content	Gross weight	Sulfur	Gross weight	Sulfur content	Gross weight	Sulfur
North America: Canada United States South America: Brazil	166, 985 943, 434 3, 600	79, 039 394, 583 3 1, 500	227, 227 905, 746 (4)	106, 667 385, 518 (4)	283, 597 946, 108 (4)	136, 519 399, 092 (4)	403, 648 1, 034, 104 (4)	195, 373 439, 766 (4)	503, 784 1, 010, 301 (4)	239, 189 424, 850 (4)
Austria. Czechoslovakia. Finland. France. Germany, West. Greece. Italy. Norway. Poland. Portugal. Rumania. Spain. Sweden. United Kingdom. Yugoslavia.	7, 871 3, 195 177, 512 181, 683 383, 100 16, 236 836, 245 735, 021 58, 100 561, 136 (1), 463, 912 392, 033 10, 800 300, 006	2, 942 3 1, 200 79, 170 82, 238 153, 245 37, 800 381, 579 314, 940 252, 500 252, 500 (2702, 700 181, 987 34, 300 3 135, 900	11, 624 (4) 180, 040 205, 393 431, 963 15, 785 864, 185 744, 762 81, 000 622, 925 25, 000 1, 559, 044 424, 007 17, 191 244, 775	4,064 (4) 80,409 85,270 173,582 37,600 393,723 317,23 317,23 36,000 280,300 2748,300 205,085 36,900 3110,800	12, 489 (1) 162, 050 247, 642 525, 196 87, 678 900, 912 748, 793 (4) 613, 522 (9) 1, 653, 699 406, 809 117, 167	3, 133 (7), 107 108, 962 191, 525 3 42, 000 3 414, 420 317, 866 (4) 276, 085 (4) 2794, 000 202, 301 3 5, 400 3 53, 400	9, 756 (4) 232, 546 280, 600 533; 180 180, 120 898, 186 696, 217 (4) 729, 611 (2) 004, 126 406, 934 13, 501 153, 779	2, 645 (98, 557 3 124, 000 194, 598 3 88, 200 404, 100 313, 300 (4) 328, 325 (4) 3 962, 000 202, 397 3 5, 400 3 69, 600	8,034 (4),249,813 294,000 525,252 201,238 1,141,454 714,000 (4),758,927 (4) 2,140,680 3 360,000 (4) 188,129	2, 297 (4) 111, 400 130, 000 190, 800 190, 806 1513, 600 109, 876 (4) 341, 517 (4) 31, 027, 000 173, 000 (4) 84, 866
Asia: China Cyprus Japan. Taiwan (Formosa)	42, 907 589, 772 1, 138, 782	19, 300 283, 091 489, 676	(4) 942, 808 1, 542, 360	(4) 452, 548 663, 200	(4) 829, 889 1, 928, 750	(4) 398, 347 786, 930	(4) 959, 838 2, 250, 784 6, 728	(4) 460, 722 904, 815 2, 153	(4) 1, 072, 968 2, 628, 357 33, 232	(4) 515, 026 1, 053, 971 10, 634
Africa: Algeria French Morocco Southern Rhodesia	35, 900 70 13, 224	14, 468 34 3 5, 500 1, 297	32, 705 202 16, 968 2, 925	13, 150 95 6, 787 1, 400	25, 075 1, 473 13, 810 1, 150	10, 532 692 5, 524 3 500	31, 450 1, 949 28, 269	13, 838 877 12, 156	25, 175 2, 025 19, 053	11, 077 871 8, 198
TunisiaUnion of South Africa	35, 992 90, 848	15, 456 42, 230	35, 527 87, 923	15, 274 41, 021	36, 026 113, 973	15, 623 53, 887	33, 378 153, 818	14, 474 72, 589	34, 327 201, 973	14, 782 95, 070
Total (estimate)	9, 900, 000	4, 000, 000	11, 100, 000	4, 600, 000	11, 800, 000	5, 000, 000	13, 200, 000	5, 500, 000	14, 200, 000	6, 000, 000

¹ In addition to countries listed, East Germany, Kenya, Korea, and U. S. S. R., produce or have produced pyrites, but production data are not available; estimates by senior author of chapter included in total.

² This table incorporates a number of revisions of data published in previous pyrite chapters.

3 Estimate.
4 Data not available; estimate by authors of chapter included in total.

product of metal-mining operations. Ample reserves appear to be available for a 10-year period and probably for a longer period.

In 1952 it was reported that a contract was signed by the National Power Corp. and the Camiguin Mining Co. whereby the latter firm would supply 10,000 metric tons of sulfur over a 4-year period beginning in March 1953.42

Sweden.—Elemental sulfur production capacity in Sweden was being expanded in 1952. Output, which totaled about 14,000 long tons in 1950, was reported to have increased to about 28,000 tons by The sulfur was produced by the Swedish Shale Oil Co.43

United Kingdom.—A number of firms interested in maintaining adequate supplies of sulfur established an organization called the Sulphur Exploration Syndicate. This organization carried on surveys in various areas.44

An important aspect of the British sulfur program was installation of additional capacity to produce sulfuric acid from anhydrite. At Whitehaven, Cumberland, England, a new plant to produce sulfuric acid and cement was being constructed. The anhydrite was to be obtained from two thick seams under the St. Bees Headland adjacent to the site. Exploration has revealed enough anhydrite for 50 years' requirements.45

Venezuela.—The Venezuelan Sulphur Corp. was exploring its deposit near El Pilar, known as the Costa More 1-4 concessions. samples are said to have indicated a high sulfur content and the company expressed an intention to construct a refinery at Carupano. Estado Sucre. 46

⁴² Mining World, vol. 14, No. 11, October 1952, p. 61.
43 Mining World, vol. 14, No. 8, July 1952, p. 64.
44 Chemical Engineering and Mining Review, Sulphur News: Vol. 44, No. 6, Mar. 10, 1952, p. 239.
45 Mining World, New Sulphuric Acid Plant for English Chemical Firm: Vol. 14, No. 8, July 1952, p. 62.
46 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, p. 46.

Talc, Pyrophyllite, and Ground Soapstone

By Donald R. Irving 1 and Frances P. Uswald 2

ECREASES from the record highs of 1951 in the combined mine production of talc, pyrophyllite, and ground soapstone and the quantity of these commodities sold by producers were recorded in 1952. The combined value of talc, pyrophyllite, and ground soapstone sold by producers increased slightly to a new high. Imports were about the same in quantity and somewhat higher in value; exports were about the same in quantity but lower in value.

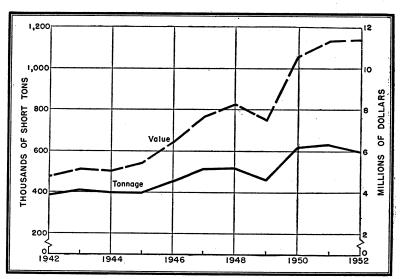


FIGURE 1.—Sales of domestic talc, pyrophyllite, and ground soapstone, 1942-52.

GOVERNMENT PROGRAM UNDER THE DEFENSE PRODUCTION ACT OF 1950

The Defense Minerals Exploration Administration executed a contract on October 24, 1951, with the Hitchcock Corp., Murphy, N. C., to explore for block steatite talc on the property of the Nancy Jordan and Carolina mines, Cherokee County, N. C. (Docket 1198, Contract IDM-E194). The contract was for an expenditure not to exceed \$32,519, with the Government's share 90 percent of the total, or a maximum of \$29,267. The contract remained in force on December 31, 1952.

Statistical clerk.

¹ Commodity-industry analyst.

TABLE 1.—Salient statistics of talc, pyrophyllite, and ground soapstone in the United States, 1951-52

	19	51	1952		
	Short tons	Value	Short tons	Value	
Mined	640, 456	(1)	600, 908	(1)	
Sold by producers: Crude to consumers ²	20, 166 1, 097 614, 805	\$211, 241 375, 141 10, 736, 448	19, 029 976 573, 142	\$203, 895 309, 271 10, 834, 151	
Total sales	636, 068	11, 322, 830	593, 147	11, 347, 317	
Imports for consumption: Crude and unground Cut and sawed Ground, washed, or pulverized	109 127 20, 404	20, 326 42, 033 631, 707	284 64 19, 954	57, 991 18, 900 649, 955	
Total imports	20, 640	694, 066	20, 302	726, 846	
Exports: Tale, steatite, soapstone, and pyrophyllite, crude and ground 5 Powder-talcum (in packages), face, and compact Total exports	23, 009 (¹)	6 705, 806 1, 463, 010 2, 168, 816	23, 223	757, 516 1, 244, 801 2, 002, 317	

TABLE 2.—Talc, pyrophyllite,¹ and ground soapstone sold by producers in the United States, 1943-47 (average) and 1948-52, by classes

		Crude 2		Sawed and manufactured			
Year		Value at shi	pping point	a)	Value at shipping point		
	Short tons	Total	Average	Short tons	Total	Average	
1943-47 (average):	11, 383 15, 936 15, 731 18, 805 20, 166 19, 029	\$86, 152 138, 956 170, 414 186, 120 211, 241 203, 895	\$7. 57 8. 72 10. 83 9. 90 10. 48 10. 71	1,023 920 636 805 1,097 976	\$238, 192 227, 963 253, 704 312, 776 375, 141 309, 271	\$232. 84 247. 79 398. 91 388. 54 341. 97 316. 88	
	Ground 2			Total			
Year		Value at shi	pping point	G1	Value at shipping point		
	Short tons	Total	Average	Short tons	Total	Average	
1943–47 (average)	501, 890 3 445, 529 3 601, 140 3 614, 805	\$5, 610, 443 7, 898, 444 3 7, 099, 360 3 10, 121, 847 3 10, 736, 448 3 10, 834, 151	\$13. 22 15. 75 3 15. 93 3 16. 84 3 17. 46 3 18. 90	436, 655 518, 746 461, 896 620, 750 636, 068 593, 147	\$5, 934, 787 8, 265, 363 7, 523, 478 10, 620, 743 11, 322, 830 11, 347, 317	\$13. 59 15. 93 16. 29 17. 11 17. 80 19. 13	

Figure not available.
 Revised figures owing to changes in classification.
 Includes some crushed material.
 Exclusive of "Manufactures, n. s. p. f. (not specifically provided for), except toilet preparations," as follows: 1951: \$2,178; 1952: \$1,922. Quantities not available.
 Includes "Manufactures, n. e. s."
 Revised figure.

Includes pinite 1944, 1947, and 1948.
 Revised figures owing to changes in classification.
 Includes some crushed material.

DOMESTIC PRODUCTION

Mine production of tale, pyrophyllite, and ground soapstone decreased 6 percent in quantity in 1952 from the record high production of 1951, according to reports by producers (table 1). The quantity of these commodities sold by producers decreased 7 percent

but increased slightly in value to a new high (table 2).

Most of the talc, pyrophyllite, and soapstone is ground by the producers before it enters the trade, although some consumers buy crude material and grind it to the desired specifications in their own mills. Some producers sell crude material to grinders. The figures in table 2 have been revised to show the proportion of material that enters the trade in crude and ground form rather than the proportion of each grade sold by the primary producers, as was done in previous years.

Pyrophyllite production and sales in 1952 were 5 percent greater in quantity than in 1951, a record high, but the value was 5 percent less

(table 3).

As in 1951, New York, California, and North Carolina ranked first, second, and third, respectively, in production and sales of talc, pyrophyllite, and ground soapstone in 1952. Pyrophyllite was reported from North Carolina, the major producing State, and California (table 4). North Carolina was the only State reporting an

TABLE 3.—Pyrophyllite ¹ produced and sold by producers in the United States, 1943-47 (average), and 1948-52

				S	sales		
Year	Produc- tion (short	Crude		Ground		Total	
. · ·	tons)	Short tons	Value	Short tons	Value	Short tons	Value
1943–47 (average) 1948 1949 1950 1951	83,076 107,885 90,920 116,800 120,031 125,496	6, 850 5, 175 5, 927 5, 690 4, 446 4, 720	\$47, 488 25, 766 31, 489 30, 016 23, 741 29, 922	74, 404 102, 152 82, 934 112, 119 114, 398 119, 767	\$725, 332 1, 313, 266 1, 070, 838 1, 504, 141 1, 664, 058 1, 569, 471	81, 254 107, 327 88, 861 117, 809 118, 844 124, 487	\$772, 820 1, 339, 032 1, 102, 327 1, 534, 157 1, 687, 799 1, 599, 393

¹ Exclusive of pinite.

TABLE 4.—Talc, pyrophyllite, and ground soapstone sold by producers in the United States, 1950-52, by State of origin

State	19	50	. 19	51	1952		
State	Short tons	Value	Short tons	Value	Short tons	Value	
California. Georgia. Maryland and Virginia. Nevada. New York. North Carolina. Texas. Vermont. Other States 2.	109, 747 70, 749 41, 206 8, 581 163, 974 116, 895 (1) 72, 135 37, 463	\$2,069,211 774,148 355,075 170,736 4,039,973 1,855,163 (1) 906,396 450,041	126, 784 77, 895 45, 399 6, 919 152, 652 113, 950 (1) 78, 694 33, 775	\$2, 269, 771 \$23, 133 431, 579 152, 878 4, 170, 987 1, 982, 927 (1) 998, 792 492, 763	120, 574 56, 491 37, 755 (1) 149, 837 115, 481 17, 800 71, 027 24, 182	\$2, 868, 255 653, 144 356, 274 (1) 4, 069, 771 1, 771, 518 216, 569 926, 646 485, 140	
Total	620, 750	10, 620, 743	636, 068	11, 322, 830	593, 147	11, 347, 317	

¹ Included with "Other States." Includes Montana, Washington, and States indicated by footnote 1.

increase in production of talc, pyrophyllite, and ground soapstone in 1952.

CONSUMPTION AND USES

Sales to 6 industries—ceramics, paint, insecticides, rubber, roofing, and paper—consumed 84 percent of the domestic production of talc, pyrophyllite, and ground soapstone in 1952, according to reports from producers, and ranked in the same order as in 1951 (table 5).

TABLE 5.—Talc, pyrophyllite, and ground soapstone sold by producers in the United States, 1950-52, by uses ¹

	19	50	19	51	1952		
Use	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total	
Ceramics	148, 500 145, 000 77, 000 75, 900 55, 400	24 23 12 12 9	170, 521 122, 557 90, 418 70, 970 64, 768	27 19 14 11	143, 161 125, 126 87, 361 64, 476 49, 561	24 21 15 11 8	
Paper Toilet preparations Foundry facings Crayons Other uses 3	29, 600 11, 700 7, 800 600 48, 000	5 2 1 (2) 8	27, 974 7, 946 7, 986 738 56, 675	(2) 9	26, 327 8, 811 7, 279 703 67, 924	(2)	
Unclassified	620, 750	100	15, 515 636, 068	100	12, 418 593, 147	100	

PRICES

Table 6 shows the prices of ground talc and pyrophyllite at the beginning of 1951 and 1952 and at the end of the latter year, as quoted by the Oil, Paint and Drug Reporter.

TABLE 6.—Prices quoted on talc and pyrophyllite, carlots, 1951-52, per short ton [Oil, Paint and Drug Reporter]

Mineral and grade	Jan. 8, 1951	Jan. 7, 1952	Dec. 29, 1952
GROUND TALC (BAGGED)			
Domestic, f. o. b., works:			
Ordinary: California. Vermont.	\$25.00-\$35.00 14.00	\$25.00-\$35.00 14.00	\$25.00-\$35.00 14.00
Fibrous (New York): Off color	24.00	25. 00- 30. 00	25.00- 30.00
98.5-99.5 percent	(1)	(1) 27.00 (1) 15.25-35.00	(1) 27, 00 36, 00 15, 25–35, 00
PYROPHYLLITE			
Standard, bulk, mines: 2 200-mesh	9, 50	13. 50 16. 75 11. 00	11.00

Partly estimated (1950-51).
 Less than 0.5 percent.
 Refractory, textile, asphalt filler, plaster, and miscellaneous other uses.

<sup>Not quoted.
In paper bags, \$3 to \$3.50 per ton extra.</sup>

The trend in the average value per ton of domestic talc, pyrophyllite, and soapstone sold by producers continued upward, as shown in table 2.

FOREIGN TRADE 3

Imports.—A 2-percent decrease in quantity and a 5-percent increase in value were reported in 1952 from 1951 for the total of unmanufactured talc, steatite or soapstone, and French chalk imported for consumption in the United States. Imports of manufactures (not specifically provided for except toilet preparations) declined 12 percent. Detailed data on imports are given in table 7.

Exports.—Crude and ground talc, steatite, soapstone, and pyrophyllite exports showed a slight increase in quantity and decreased 5 percent in value in 1952 from 1951. Exports of manufactures increased 150 percent in quantity and 135 percent in value during the same period. The value of exports of "powders—talcum (in packages), face and compact" was \$218,000 less than in 1951.

TABLE 7.—Talc, steatite or soapstone, and French chalk imported for consumption in the United States, by classes in 1948-50, and by classes and countries in 1951-52

[U. S. Department of Commerce]

Country	Crude and unground		power pulve cept	Ground, washed, powdered, or pulverized ex- cept toilet preparations		Cut and sawed		unman- ctured	Manu- factures n. s. p. f., except toilet	
	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value	rations (value)	
1948 1949 1950	85 47 177	\$4,835 4,981 10,052	18, 194 18, 648 23, 054	\$484, 857 537, 061 637, 262	98 121 156	\$29, 133 35, 072 44, 364	18, 377 18, 816 23, 387	\$518, 825 577, 114 691, 678	\$14,772 9,012 7,574	
1951 Canada China Egypt France			3, 484 (¹) 55 1, 855	43, 402 241 3, 600 35, 645	1 12	628 7, 888	3, 485 (1) 55 1, 867	44, 030 241 3, 600 43, 533	99 2,045	
Germany Hong Kong India Italy Japan Norway	75 34	10, 834 9, 492	(1) 832 14, 178	26 28, 938 519, 855	98 3 13	28, 469 1, 476 3, 572	(1) 907 14, 310 3 13	26 39, 772 557, 816 1, 476 3, 572	5 18	
United Kingdom Total	109	20, 326	20, 404	631, 707	127	42,033	20, 640	694, 066	2, 178	
1952 Canada China	20	^ 275	3, 204	44, 673	15	1, 564	3, 239	46, 512	71 509	
Germany, West India	113	14, 908	1, 566 546	38, 979 31, 967	12	3, 201	1, 578 659	42, 180	804	
Italy Japan Netherlands	151	42,808	14,638	534, 336	9 16	4, 220 6, 451	14, 798 16	581, 364 6, 451	198 24	
Norway Peru Switzerland United Kingdom					12	3, 464	12	3, 464	3 256 54	
Total	284	57, 991	19, 954	649, 955	64	18, 900	20, 302	726, 846	1, 922	

¹ Less than 1 ton.

³ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 8.—Talc, pyrophyllite, and talcum powders exported from the United States, 1948-52

	Talc, stea	Powders-			
Year	Crude an	d ground	Manufactu	talcum (in packages), face and	
	Short tons	Value	Short tons	Value	(value)
1948	16, 327 15, 840 20, 593 22, 903 22, 958	\$432, 176 439, 686 560, 752 645, 217 615, 160	(1) 1 51 106 265	(1) \$455 25, 492 2 60, 589 142, 356	\$2, 228, 956 1, 636, 505 1, 233, 609 1, 463, 010 1, 244, 801

¹ Not separately classified before January 1949.

TECHNOLOGY

The development of cordierite bodies using talc and clay was dis-The history of the use of talc in porcelain body formulas was reported.⁵ The use of talc in paint, storage battery cases, highfrequency electronic insulators, and other ceramic bodies was described in several articles.⁶ A study was made of the hydrothermal synthesis of talc and serpentine from mixtures of MgO and SiO₂ heated with water in an autoclave. The properties of Indian talcs were determined and used as a basis of classification.8 tion of low-grade pyrophyllite by elutriation to remove quartz, pyrite, and gypsum was described. The washed product contained 87.8 percent pyrophyllite, 7.2 percent diaspore, 2.1 percent halloysite, and 1.1 percent gypsum.9

WORLD REVIEW

The production of talc, pyrophyllite, and soapstone, 1948-52, by countries, is shown in table 9. The world production decreased 11 percent in 1952 from the record high of 1951. Countries from which substantially lower production was reported, in addition to the United States, were Japan, France, and Austria.

Austria.—Talc exports for 1951-52, by country of destination, are given in table 10. Imports were 50 metric tons valued at 117,000

² Revised figure.

Gaskins, W. W., How to Develop Cordierite in a Gas Heater's Backwall Radiant: Ceram. Ind., vol. 58, No. 3, March 1952, p. 85.
 Hughan, R. R., Cordierite Saggers of Increased Durability from Australian Talc and Clays: Australian Jour. Appl. Scl., vol. 3, No. 2, June 1952, pp. 173-192.
 Gaskins, W. W., Historical Background Development on Use of Talc in Ceramic Bodies: Am. Ceram. Soc. Bull., vol. 31, No. 10, October 1952, pp. 392-395.
 Lamar, R. S., California Talc in Paint Industry: California Jour. Mines and Geol., vol. 48, No. 3, July 1952, pp. 189-199.
 Haskell, D., Mineral Needs and Problems of Lead-Acid Storage Battery Industry in California: Californi: Jour. Mines and Geol., vol. 48, No. 1, January 1952, pp. 9-28.
 Roy, S. B., and Varshney, Y. P., Use of Talc in Ceramic Industry: Statesman (Calcutta), Glass and Ceramic Survey, Jan. 7, 1952, p. 4.
 Alderman, A. R., Mount Fitton (South Australia) Talc as a Possible Source of Forsterite Refractories Univ. Adelaide, Sir Douglas Mawson Anniversary Volume, 1952, 6 pp.
 Klyoura, Raisaku, Ito, Yoshitaka, and Masumizo, Masauki, Hydrothermal Reaction of Silicate II, Hydrothermal Synthesis of Talc and Serpentine: Jour. Ceram. Assoc. Japan, vol. 60, No. 673, 1952, pp. 264-266; Ceram. Abs., January 1953, p. 17.
 Ram, Atma, Banerjee, J. C., Roy, S. B., and Varshney, Y. P., Studies on Indian Talcs: I, General, Chemical, and Mineralogical Characteristics: Proc. Indian Sci. Cong., 39th Cong., pt. 3, 1952, p. 126.
 Bishop, G. J., III, Pyrophyllite in Refractory Enamels: Am. Ceram. Soc. Bull., vol. 31, No. 12, Dec. 15, 1952, pp. 493-496.

schillings. from Switzerland.10 (Rate of exchange: 1951-52, inclusive,

21 to 26 schillings equaled \$US1.)

Australia.—The talc deposits of South Australia were reported to contain ample reserves to supply Australian requirements for many years and to warrant development of an export trade in the higher grades of talc.11

Canada.—According to the official preliminary estimates, Canada produced 12,639 short tons of talc (value \$C150,695) and 13,409 tons of soapstone (value \$C146,821) in 1952, compared with final revised 1951 figures of 13,698 tons of talc (value \$C160,540) and 11,148 tons of soapstone (value \$C123,084). Imports of talc and soapstone in 1952 were given as 8,749 tons (value \$C276,496) and exports of talc 3,435 tons (value \$C44,925). In 1951, the value of the Canadian dollar ranged from \$US0.95 to \$US0.98; in 1952, the value ranged from \$US0.99 to \$US1.04.

TABLE 9.—World production of talc, pyrophyllite, and soapstone, by countries,1 1948-52, in metric tons ²

[Compiled by Helen L. Hunt]

Country 1	1948	1949	1950	1951	1952
North America:					
Canada (shipments)	26, 109	24, 423	29, 578	22, 540	23, 504
United States	3 479, 484	416, 709	559, 440	581, 009	545, 132
South America:	1,0,101	110, 100	000, 110	001,000	010, 102
Argentina 4	(3)	(5)	(5)	15,000	16,000
Brazil	`9, 881	ìź, 782	ìź, 632	11, 304	
BrazilChile	270	110	142	25	(5) (5)
Uruguav	2, 984	660	681	959	679
Europe:	-,	000	001		1
Austria	47, 510	56,050	58, 681	72,784	50, 822
Finland	237	(5)	4,000		70,000
France	91, 520	100, 055	95, 500	120,000	95, 400
Germany, West	28, 214	30, 968	13, 314	19, 500	10,653
Greece	1,800	1,700	2, 500	2,623	1, 200
Italy	70, 430	61, 462	67, 616	75, 827	80, 336
Norway	57, 226	53, 993	64, 099	60,000	4 60, 000
Portugal	21	3	2	1	(5)
Spain 6	29, 984	38, 208	25, 131	36,034	(5) 27, 859
Sweden	11,703	11, 293	13, 843	13, 332	(5)
United Kingdom	4,000	2,616	1,727	2,540	(5) (5)
Asia:	-	·			1
Afghanistan		100	75	840	800
India	. 18, 386	21, 535	25,894	32, 314	(5)
Japan Korea, Republic of	243, 737	262, 433	283, 566	400, 626	318, 386
Korea, Republic of	72	2, 773	(5)	3, 208	3, 964
Taiwan (Formosa)		76	700	2, 057	1,093
Africa:					
Egypt	5, 521	5, 573	3, 731	3, 754	4, 903
Kenya	322	590	334	337	235
Union of South Africa	4,897	5, 386	3, 978	5, 663	8,674
Australia	6, 199	8, 717	9,851	13, 359	7,772
Total (estimate) 1	1, 300, 000	1, 300, 000	1, 425, 000	1,650,000	1, 475, 000

¹ In addition to countries listed, tale or pyrophyllite is reported in China, Rumania, and U. S. S. R., but data on production are not available; estimates have been included in total.

² This table incorporates a number of revisions of data published in previous tale chapters.

5 Data not available; estimate by senior author of chapter included in total.

³ Includes some pinite.

Includes steatite as follows: 1948: 18,627; 1949: 20,880; 1950: 13,702; 1951: 22,628; 1952: 18,412.

¹⁰ Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 5, May 1952, p. 46; vol. 37, No. 4, October 1953,

p. 71.

11 Chemical Engineering and Mining Review, vol. 44, No. 11, Aug. 11, 1952, p. 425.

12 Canada, Department of Trade and Commerce, Dominion Bureau of Statistics, Preliminary Rept. on Mineral Production—1952: Prep. in Min., Met., and Chem. Sec., Industry and Merchandising Div., Dominion Bureau of Statistics, Ottawa, Canada, pp. 6-7.

TABLE 10.—Talc exports from Austria, by countries of destination, 1951-52, in metric tons

	19	051	19 # 19	1952		
Country of destination	Metric tons	Value,¹ 1,000 schil- lings	Metric tons	Value, ¹ 1,000 schil- lings		
Argentina Belgium-Luxembourg Czechoslovakia Denmark France Germany: East West Great Britain Hungary Italy Netherlands Poland Sweden Switzerland Trieste Yugoslavia	92 901 3,618 15,642 403 3,668 21 1,449 6,916 15 1,756	37 335 44 317 2, 458 7, 134 109 2, 595 4 548 4, 046 11 712	661 25 668 1,536 12,192 527 3,095 48 1,994 8,812 	232 11 314 1, 355 6, 234 177 2, 416 20 4, 400 577 11 177		
Total	35, 546	18, 506	30, 932	16, 80		

¹ Rate of exchange: 1951-52, incl., 21 to 26 schillings equaled \$US1. Source: Statistik des Aussenhandel Osterreichs, 1952, Vienna.

TABLE 11.—Consumption of ground tale and soapstone in Canada, 1948-50, by use and by Province in short tons

	1948	1949	1950
USE			a ==0a
Roofing	7, 696	8, 595	9, 739
Points	6,041	5, 378	9,023
Insecticides and miscellaneous chemicals	2, 461	4,674	6,006
Rubber	3, 125	3,002	3, 290
Pulp and paper	3, 722	3,827	1,634
Toilet and medicinal preparations.	1,242	864	861
Clay products	1, 127	882	716
Textiles.	¹ 150	484	571
Floatrical apparatus	658	815	475
Soaps and cleaning preparations	310	215	159
Iron foundries	¹ 106	110	110
Coal tar distillation			98
Tanneries	1 50	50	50
Polishes	14		25
Prepared foundry facings	70	846	21
Linoleum	6	5	
Adhesives	4		
Autronyos			
Total	26, 782	29, 747	32,778
PROVINCE			
Ontario	15, 911	18, 511	19, 562
Quebec	8, 334	8, 433	8,735
Manitoba	1,493	1,729	3, 184
British Columbia	487	416	622
New Brunswick.	292	381	421
Nova Scotia	56	⁵ 151	127
Alberta	96	66	103
Saskatchewan	113	60	24
Total	26, 782	29, 747	32, 778

¹ Partly estimated.2 Includes Newfoundland.

The Canadian tale and soapstone industry in 1951 was described as follows: 13

Talc and soapstone shipped by producers in 1951 amounted to 24,846 tons valued at \$283,624, compared with 32,604 tons worth \$364,995 in 1950. Most of the production in Ontario was high grade milled talc. The output from Quebec included crayons, blocks, and ground soapstone. Operations in British Columbia were for experimental test purposes.

were for experimental test purposes.

The industry employed 50 persons to whom \$109,522 were paid in salaries and wages. Fuel cost \$5,945 and 1,267,218 k.w.h. of electricity were purchased for

\$19,529.

Imported tale and soapstone amounted to 9,283 tons valued at \$306,277. During 1951 there were 3,743 tons of tale valued at \$48,857 exported from Canada. Tale and pyrophyllite occurrences in British Columbia were described. 14

France.—Open-pit mining methods at Luzenac talc mines were described, and analyses of the product were given. 15

Netherlands.—Imports of talc and soapstone, 1951-52 including

ground, by country of origin, are given in table 12.16

Republic of Korea.—According to a despatch from the American Embassy in Pusan, tale exports from Korea in 1952 totaled 7,965 metric tons, valued at \$US246,192. Exports to Japan were 6,330 metric tons, valued at \$US183,320.

TABLE 12.—Imports of talc and soapstone into the Netherlands, 1951-52, by country of origin, in metric tons

	19	951	1952		
Country of origin	Metric tons	Value, 1,000 guilders ¹	Metric tons	Value, 1,000 guilders ¹	
Austria Egypt France Germany, West	1, 414 200 1, 479	135 71 291	1, 985 1, 106	231 227	
India Italy Norway Others	144 399 141 7, 985	14 77 32 768 4	130 412 5, 706 396	30 87 605 32	
Total	11,768	1,392	9, 735	1, 212	

¹ 1 guilder equals about \$US0.263.

¹⁸ Canada, Department of Trade and Commerce, Dominion Bureau of Statistics, The Tale and Soapstone Industry, 1951: Industry and Merchandising Div., Min., Met., and Chem. Sec., Ottawa, Canada, 1952, Exp.

⁵ pp.
14 Cummings, J. M., and McCammon, J. W., Clay and Shale Deposits of British Columbia: British Columbia Dept. Mines, Bull. 30, 1952, 64 pp.
15 Vie, Georges, Mining of Tale at Mines of Luzenac: Echo des mines et de la metallurgie, No. 3443, April 1952, pp. 257-259.
16 Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 5, May 1953, p. 54.

Tin

By Abbott Renick 1 and John B. Umhau 2

THE TIN INDUSTRY in 1952 was characterized by resumption of private importation of tin, termination of the Reconstruction Finance Corporation's tin-purchase program, stable tin prices, resumption of purchases of tin for the National Strategic Stockpile, and nationalization of the three principal tin-mining companies in

Bolivia.

Effective August 1, 1952, an amendment to National Production Authority Order M-8 permitted resumption of private importation of tin; and when this prohibition against free trading was removed the RFC price became, in effect, the ceiling price. For the remainder of the year, spot grade A tin sold at \$1.215, or slightly below. The Preparedness Subcommittee of the Senate Armed Services Committee released a supplemental report on tin which criticized tin producers and claimed that, by following the policy it recommended on price, the United States would save at least one-half billion dollars.

In Bolivia, a decree signed on October 31, 1952, nationalized operations of the three principal tin-mining companies. The properties were placed under control of the Corporacion Minera Boliviana, the Government mining corporation created by decree shortly before

nationalization.

In January 1952, the Reconstruction Finance Corporation entered into a purchase agreement with the United Kingdom for the supply of 20,000 long tons of tin, delivery to be completed by the end of the year. In mid-March the RFC consummated a 3-year contract with Indonesia providing for the supply of 18,000 tons a year, at a price of \$1.18 per pound at ports of shipments for the first 2 years of the contract, although the price for the third year was left open to negotiation. A week later the Belgian Congo contracted to supply 7,000 tons over a 2-year period (1952–53), with an option to supply 75 percent of any increased production up to a further 2,000 tons. Approximately 2,000 tons of the quantity delivered was to be in the form of concentrates. The price was \$1.2075 a pound of tin delivered at American ports. In January 1952, the United States price was raised from \$1.03 to \$1.215 and remained virtually unchanged for the next 12 months.

The Preparedness Investigating Subcommittee of the Committee on Armed Services, United States Senate, conducted a comprehensive investigation on tin, culminating in a report issued March 5, 1951; on July 17, 1952, the committee issued a supplemental report, the second on this subject.³ The first report recommended that tin

¹ Commodity-industry analyst.
² Statistical assistant.

^{*} Statistical assistant.

** Preparedness Subcommittee of the Committee on Armed Services, U. S. Senate, Investigation of the Preparedness Program, 6th Rept., Tin: 82d Cong., 1st sess., 1951, p. 48, and U. S. Senate, Supplemental Report on Tin: 82 Cong., 2d sess., 1952, 12 pp.

TIN 1013

purchasing be centralized in a single Government department and that stockpiling be suspended until prices decreased to a reasonable The committee concluded that, in case of war, sufficient tin stocks were on hand to satisfy United States requirements if stringent control and conservation measures were put into effect. The recommendations of the supplemental report on tin were:

1. That our responsible officials initiate a study to determine the best allocation of recently acquired tin supplies among our various defense and industrial

needs, with particular consideration to be given to our tin stockpile.

2. That officials engaged in procuring raw materials abroad study the history of the tin negotiations carefully as a guide to the conduct of negotiations for

other materials.

3. That in all future contracts the most-favored-nation clause be eliminated.

The Bolivian mining industry's traditional problems were overshadowed in 1952 by the revolutionary ascent to power of the National Revolutionary Movement (MNR party) and the new Government's subsequent nationalization of the bulk of the mining industry. The properties of the three largest mining groups—Patiño, Hochschild, and Aramayo—were expropriated by a Supreme Decree of October 31. The operation of these properties, which normally provide approximately 70 percent of Bolivian tin production, was charged to the Corporacion Minera de Bolivia (CMB), a state entity established for this purpose just before nationalization. Presaging the October 31 expropriation was a Government decree of June 2, which nationalized all mineral exports by making the Banco Minero de Bolivia the sole purchaser of production.

World mine production of tin totaled 173,000 long tons in 1952 the highest since 1941—but was only 3,000 tons (2 percent) greater than in 1951. Had it not been for a 4,000-ton increase in Indonesia the only major producer to show an increase—there would have been a small world decline. In Malaya, production remained virtually unchanged from 1951. World smelter production totaled 171,000 long tons, a 1-percent increase over the 1951 output of 169,000 long tons. During the 3 years 1950-52, world mine production exceeded world consumption by about 46,000 long tons.

Consumption of tin in 1952 in the United States, under Government control, decreased 17 percent from 1951; consumption of primary tin decreased 20 percent and of secondary 11 percent. smelter output, all from the Government-owned smelter at Texas City, decreased 9,000 long tons (28 percent) from 1951 owing to a shortage of tin concentrates and complete suspension of operations resulting from a 76-day labor strike. Secondary tin production was 6 percent less than in 1951.

Metal imports increased 185 percent and represented 75 percent of the total tin imported. Receipts of concentrates, in terms of metal, decreased 11 percent from 1951. The decrease was due chiefly to decreased receipts from Indonesia. Imports of tin in concentrates from Bolivia decreased 3 percent. In 1952, imports of tin in concentrates and tin metal into the United States were augmented by 7,600 long tons (gross weight—chief value, tin) of tin alloys, mainly from the Netherlands in the form of a 94-percent tin alloy. material was not under formal quantitative allocation control.

The total stocks of tin in the United States and in transit as of December 31, 1952, were 62,000 long tons, exclusive of the National Strategic Stockpile. As a reserve for civilian deficiency, the RFC on December 31, 1951, held 13,000 long tons of pig tin. On December 31, 1952, tin concentrate and other tin-bearing materials held by the RFC contained an estimated total tin content of 25,000 long tons. As of December 31, tin stocks held by industry were 24,000 long tons.

During 1952 domestic tin prices were virtually stable. The RFC maintained the selling price at \$1.03 a pound from August 1, 1951, to January 21, 1952. As a consequence of the United Kingdom tin-purchase agreement, announced on January 18, 1952, the price was increased to \$1.215 on January 22, at which the RFC price for resale was maintained until the end of the year. The annual average for 1952 was \$1.2044 per pound.

There was no formal meeting of the International Tin Study Group

in 1952.

Major progress was made during the year in the accumulation of

tin for the National Strategic Stockpile.

The Defense Minerals Exploration Administration, acting under authority of the Defense Production Act of 1950, as amended, provided exploration assistance amounting to 90 percent of costs to approved tin-exploration projects. The following applicants were awarded contracts with DMEA from the beginning of the program to the end of 1952:

*		Value			
State or Territory contractor	Project location	Total	Government participation		
Alaska: Zenda Gold Mining Co United States Tin Corp Purkeypile, I. W. South Dakota: Keenan Properties	Seward Peninsuladododo	\$120, 000. 00 226, 000. 00 18, 000. 00 48, 931. 00	\$108, 000. 00 203, 400. 00 16, 200. 00 44, 037. 90		

TABLE 1.—Salient statistics of tin in the United States, 1943-47 (average) and 1948-52

	1943-47 (average)	1948	1949	1950	1951	1952
Production— From domestic mines 1long tons. From domestic smelters 2do. From secondary sourcesdo. Consumption: Primary	2. 5 33, 930 29, 160 54, 969 29, 616 14, 842 31, 673 959 64. 00 55. 60 57. 70 106, 600	4.7 36,703 26,900 59,863 30,925 49,196 37,492 91 103.00 94.00 99.25	68. 4 35, 834 22, 230 47, 163 25, 243 60, 224 38, 311 154 103. 00 77. 50 99. 316 161, 800	94. 1 33, 118 31, 680 71, 191 33, 273 82, 838 25, 960 799 163. 50 74. 125 95. 557 3 169, 600	88. 0 31, 852 30, 745 56, 884 31, 285 28, 255 29, 621 1, 513 184. 00 103. 00 128. 31 3 169, 900	98. 7 22, 805 28, 800 45, 323 27, 950 80, 543 26, 491 380 121. 50 103. 00 120. 44 173, 200

¹ Includes Alaska

Including tin content of ores used direct to make alloys.
 Revised figure.

TIN 1015

GOVERNMENT CONTROLS

The supply of tin reached virtual balance with defense and essential civilian demand in 1952. Curbs on the use of tin were relaxed progressively by National Production Authority, by amendments to control orders. The overall use quota of 90 percent of base period

consumption, however, was retained throughout 1952.

NPA Order M-8 was amended April 9 to require more precise certification concerning the permitted uses of pig tin, mainly applying to smaller users that had been disregarding the limitation restricting their quarterly use to 90 percent of the base period. Effective July 21. limited use of tin was authorized for costume jewelry and other uses that had been banned, and 40 percent solder was permitted without certification. Effective August 1, private firms could resume importing tin from suppliers of their own choosing. Domestic use remained under control, but consumers could receive allocations for 3-month periods, rather than month-by-month as before. The RFC, sole importer into the United States from March 12, 1951, continued to buy foreign tin under existing contracts and to make tin available to industry in accordance with NPA allocation. On August 25, the Defense Production Administration moved tin from List I (materials in short supply) to List II (materials in approximate balance). Beginning September 23, the use of body solder in the production of automobiles and trucks was permitted. Announcement was made December 30 of an amendment to M-8 removing allocation controls over pig tin, effective January 1, 1953.

NPA Order M-24, controlling the use of tinplate and terneplate, was amended March 4 to establish and permit utilization of three new classifications of irregular or offgrade tinplate and terneplate that had been accumulating in the hands of distributors and mills. These were unmended menders, unassorted temper tinplate, and other coated secondaries. On August 12, restrictions on the use of tin-mill accumulation of secondaries were removed, and coating weight of terneplate for roofing purposes was liberalized. On September 12, restrictions on the end use of terneplate were removed, although its status as a controlled material was continued to permit wider use to counteract a sluggish movement of existing stocks. The requirement that secondary tin only was to be used to make terne metal was continued,

however.

NPA Order M-25 restricted the uses of cans and set down specifications for can materials according to products packed. Effective January 1, 1952, can users were allowed to adjust their bases for the first three quarters of 1952 without applying to NPA. This gave packers an opportunity to spread production equally over all quarters of the year. On January 22, M-25 was completely revised to supersede previous issues and amendments. The revised order increased the quantity of cans used for some packs and permitted increased weight of tin coatings in packing some items.

An amendment to M-25, March 13, redefined tinplate and permitted canners and packers to use any quantity of secondary tin mill plate without having material charged against their quotas. On May 14, retroactive to April 1, increased use of cans was allowed by packers whose needs had increased, to take advantage of surplus allotments

of packers who had not used permitted quotas. On June 30, to cushion the impact of the steel strike, direction 4 to M-25 required can manufacturers to schedule operations to give preference to orders for cans for packing perishable food products. This was revoked effective October 14. On October 2, freer use of tinplate was permitted, and all restrictions on terneplate were removed in the manufacture of cans. On August 15, M-25 was amended to remove restrictions on secondaries of tinplate in can production.

Amendment 1, Controlled Materials Plan Regulation I, December 24, 1952, removed from the controlled-material category mill accumulation plate, unassorted temper tinplate, unmended menders, wastewaste, and other coated secondaries as defined in NPA Order M-24. Under CMP, allotments of tinplate and terneplate were made to can

manufacturers for the production of cans.

Effective August 21, the Office of Price Stabilization, by amendment 13 to Ceiling Price Regulation 31, made it clear that tin was no longer excluded from the list. Being covered by a Government purchase

program, tin had been excepted from the regulation.

On February 14, 1952, NPA Order M-98 was issued to assure an adequate supply of shredded used cans to copper producers who precipitate copper from water containing copper sulfate in or about copper mines. Used-can collectors in certain California and Arizona counties had to dispose of their cans to shredding plants in those counties or to copper producers engaged in precipitating copper. Shredding-plant operators had to deliver their products only to copper producers engaged in precipitating copper.

DOMESTIC PRODUCTION

MINE OUTPUT

Domestic mine production of tin was again insignificant in terms of United States demand. Only 100 long tons of tin was produced in 1952 compared with 90 in 1951. As usual, Alaska was the principal producer. Mining in Alaska in 1952 was confined mainly to placer deposits of the Northern Tin Co., Inc., on Buck Creek and lode mining by the United States Tin Corp. at Lost River on Seward Peninsula. The Climax Molybdenum Corp., Climax, Colo., and the Foote Mineral Co., Kings Mountain, N. C., recovered very small quantities of tin as a byproduct of mining for molybdenum and spodumene, respectively.

The production of lode tin by the United States Tin Corp., in 1952 was the first from this source in Alaska since 1905. It was made possible by Government financial assistance through a Defense Minerals Procurement Agency purchase "floor-price" type of contract; the authorized advance amounted to \$1,301,000⁴ as of August 31, 1952. The quantities involved under the contract were 800 short tons of tin and 450 short tons of tungsten concentrates. The effective date of the contract was March 23, 1951, and the approximate term

of the contract was 4% years.

In 1952 the Defense Minerals Exploration Administration executed a tin-exploration contract for a total estimated expenditure of \$18,000

⁴ Committee on Interior and Insular Affairs, U. S. Senate, Defense Minerals Policy: 82d Cong., 2d sess., hearings on Dec. 12, 1951, at Butte, Mont., pp. 222-223.

with I. W. and S. E. Purkeypile, Fort Gibbon Mining District, Alaska; Government participation amounted to \$16,200. The contract was completed without the discovery of tin reserves of commercial or long-range interest. The exploration contracts of 1951 included one with the Zenda Gold Mining Co. in Alaska (Government participation \$54,000, total contract \$60,000) and one with the Keenan Properties in South Dakota (Government participation \$90,000, total contract \$100,000).

At the end of 1952 amended contracts with the Keenan Properties reduced the total thereof to \$48,931, of which Government participation was \$44,037.90; and with the Zenda Gold Mining Co. increased the amount to \$120,000, of which Government participation was \$108,000. There was negotiated also in 1952 a DMEA contract with the United States Tin Corp. for exploration to a total of \$226,000

(Government participation \$203,000).

TABLE 2.—Mine production of tin (content) in the United States, 1943-47 (average) and 1948-52, by States, in long tons

	41	South	G-11-	Other	Total			
Year	Alaska	Dakota	Colorado	States	Long tons	Value		
1943–47 (average)	2 4. 7	(1) (2)	(1)	1.0	2. 5 4. 7	\$3, 040 10, 380		
1949	51. 6 79. 5 68. 6 81. 9		16. 8 14. 6 18. 8 12. 5	.6 4.3	68. 4 94. 1 88. 0 98. 7	152, 210 201, 446 252, 920 266, 280		

1 Included in total.

SMELTER OUTPUT

Domestic tin-smelter production was 22,800 long tons in 1952 compared with 31,900 tons in 1951. In 1952 all of the production came from the Government-owned Longhorn smelter at Texas City, as no privately owned smelter was in operation in the United States. The output of the smelter was the smallest since 1943 due to a shortage of concentrates in the first part of the year and virtual stoppage of all production during June, July, and August by a strike (which began on June 3 and was settled with workers returning to their jobs on August 19). A large influx of concentrates in the latter half contributed to a very high production rate, and in November output reached 4,000 long tons of 3-Star metal, the highest recorded by the plant for any month.

In addition to Longhorn tin, the smelter produced 252 long tons gross weight of Copan alloy (213 tons, tin content) in 1952, against 700 tons (592 tons tin content) in 1951. According to the RFC, during the 6 months ended December 31, 1952, production at the smelter aggregated 13,640 long tons of tin (13,590 of 3-Star and 50 of Copan) at a cost of \$37 million.

The Longhorn smelter received 51,500 long tons of concentrates, containing 24,800 tons of tin, in 1952 compared with 57,700 tons,

containing 28,600 tons of tin, in 1951.

A very small quantity from South Dakota is included with Alaska.

TABLE 3.—Production of Longhorn tin at the Texas City smelter, by months, 1943-47 (average) and 1948-52, in long tons

Month	1943–47 (average)	1948	1949	1950	1951	1952
January February March April May June July August September October November December	2, 943 2, 911 2, 814 2, 756 2, 780 2, 801 2, 744 2, 544 2, 706 2, 890 2, 876 2, 974	3, 172 2, 800 2, 602 2, 906 3, 310 3, 651 3, 509 2, 859 2, 300 2, 907	3, 257 3, 254 3, 104 2, 851 3, 007 3, 006 2, 910 3, 005 2, 910 2, 964 2, 994	2, 627 2, 362 2, 729 2, 484 2, 852 2, 204 2, 256 2, 396 2, 805 3, 209 3, 207	3, 211 3, 096 3, 123 3, 058 3, 059 2, 655 2, 406 2, 505 2, 155 2, 055 1, 806	1,802 1,800 1,800 1,800 1,800 2,450 3,364 4,020
Total	33, 739	36, 678	2, 791 36, 053	3,005	30, 934	3, 706 22, 592

Bolivia continued to be the main source of supply, but in 1952 receipts from that source were the smallest since the smelter began operating in 1942. Bolivia supplied only 140 tons of tin in concentrates in the first half and 11,200 tons in the latter half of 1952. Procurement of concentrates from Thailand was increased in 1952 to the highest rate ever reached, and contracts involving 4,800 tons of contained tin were negotiated. Receipts from Portugal, a minor supplier, were the largest ever recorded from that source. Table 4 shows a breakdown of receipts by countries and grades of concentrate in 1951 and 1952.

TABLE 4.—Tin concentrates received at Longhorn smelter, 1951-521

		19	51	•	1952				
Countries	Concen- trates	Content		Percent	Concen-	Content		Percent	
	received (long tons)	Long tons	Percent tin	of tin content of receipts	trates received (long tons)	Long tons	Percent tin	of tin content of receipts	
Bolivia Indonesia Thailand Belgian Congo Miscellaneous	36, 234 15, 025 4, 169 1, 733 516	12, 995 10, 956 3, 091 1, 294 270	35. 87 72. 92 74. 14 74. 67 52. 33	45. 43 38. 30 10. 81 4. 52 . 94	32, 756 9, 644 5, 014 1, 763 2, 312	11, 332 7, 034 3, 701 1, 293 1, 487	34. 60 72. 94 73. 81 73. 34 64. 32	45. 61 28. 31 14. 90 5. 20 5. 98	
Total	57, 677	28, 606	49. 60	100.00	51, 489	24, 847	48. 26	100.00	

¹ Source: Reconstruction Finance Corporation.

New agreements made by RFC with Indonesia and the African Metals Corp. (Belgian Congo), effective March 1, 1952, assured delivery of tin in concentrates for 2 years or until March 1, 1954. Yearly deliveries from these 2 sources were expected to aggregate 10,000 tons of tin content (8,000 Indonesia and 2,000 Belgian Congo). Contracts with these suppliers, which expired December 31, 1951, provided for yearly deliveries at the rate of 9,000 and 1,500 tons of tin content, respectively. During 1952 RFC procured approximately 21,000 long tons of tin in concentrates from Bolivia through short-term purchases, as negotiations for a long-term contract were unsuccessful. In the first half of 1952 spot purchase contracts were made for

TIN 1019

an estimated 15,000 long tons of tin contained in concentrates accumulated in Peruvian and Chilean ports. By June 30, 11,816 long tons of concentrates had been delivered. On September 29, 6,000 to 7,000 long tons of tin in concentrates was contracted for in the same manner.

In 1952 the smelter treated 45,365 tons of concentrates, comprising 28,912 tons of Bolivian, with an average grade of 35.24 percent, and

16,453 tons of alluvial, with an average grade of 72.87 percent.

RFC assets of property, plant, and equipment under the tin program, excluding inventories of refined tin, tin ore, byproducts, and operating and other supplies, were valued at \$12,708,023, less accrued depreciation of \$4,024,780, or \$8,683,243 as of June 30, 1952. The payroll at the smelter normally numbers about 900. As of June 30, 1952, this was reduced to 279 as a result of the strike, but at the end of 1952 there were 851 employees.

Since its inception the Texas City smelter has been operated by the Tin Processing Corp. (a Delaware corporation and a subsidiary of N. V. Billiton Maatschappij) as an independent contractor under an operating agreement with RFC. In conjunction with this arrangement, RFC purchases all concentrates, pays all operating costs, and sells the resulting tin. The contract with the firm was extended to

June 30, 1953.

SECONDARY TIN

Recovery of secondary tin decreased 6 percent in quantity and 12 percent in value in 1952 compared with 1951. Most of the tin recovered was contained in copper-, tin-, and lead-base alloys and chemical compounds. Only 10 percent of the total was recovered in the form of metallic tin, and most of this was accomplished by the detinning

plants.

In 1952 about 70 percent less tin in tin- and lead-base scrap went into brass and bronze than in 1951, whereas the tin composition of lead- and tin-alloy products (mainly solder) increased 30 percent. The recoverable tin content of copper-base scrap decreased 1,600 long tons, while tin recovered from scrap processed in brass and bronze decreased 4,000 long tons. The total tonnage of recoverable tin from white metal scrap processed declined only 230 long tons, but tin in old tin-base scrap increased 650 long tons. The tin recovered from scrap processed in all categories of white metal increased 2,700 long tons, of which nearly 90 percent was in solder.

TABLE 5.—Secondary tin recovered in the United States, 1943-47 (average) and 1948-52, in long tons

	Tin reco	vered at de plants	etinning	Tin recovered from all sources				
Year		In chem-		As metal	In alloys and	Total		
As met	As metai	icals	Total	As metal	chem- icals	Long tons	Value	
1943-47 (average)	3, 120 2, 930 2, 850 3, 300 3, 150 2, 640	320 340 410 575 415 310	3, 440 3, 270 3, 260 3, 875 3, 565 2, 950	3, 460 3, 100 3, 170 3, 615 3, 300 2, 860	25, 700 23, 800 19, 060 28, 065 27, 445 25, 940	29, 160 26, 900 22, 230 31, 680 30, 745 28, 800	\$37, 363, 504 59, 796, 140 49, 461, 354 67, 809, 158 88, 363, 153 77, 710, 297	

Detinning plants treated 439,000 long tons of tin-plate clippings in 1952—9 percent less than the 481,000 tons processed in 1951, the peak year. In addition, old cans processed increased 17 percent to 25,900 long tons in 1952, compared with 22,000 tons in 1951; this was a small figure, however, compared with the record use of 176,000 tons in 1943. In total, from new and old material this industry recovered 3,000 long tons of tin. Tin recovered from tin-plate clippings in 1952 was 2,800 tons, 19 percent less than 1951, while that from old cans—200 tons (mostly in the form of pig tin)—increased 11 percent. For additional data concerning the secondary tin industry, see the Secondary Metals, Nonferrous, chapter of this volume.

CONSUMPTION BY USES

Total domestic consumption of tin was 17 percent less in 1952 than in 1951. The use of primary tin decreased 20 percent and of secondary 11 percent. The tin content of manufactured products was 73,000 long tons in 1952 (45,000 tons of primary and 28,000 of secondary) compared with 88,000 tons in 1951 (57,000 of primary and 31,000 of secondary). The tinplate and terneplate industry decreased its use of tin 11 percent, while the total quantity used by all other industries

decreased 20 percent.

Five items-tinplate and terneplate, solder, bronze and brass, babbitt, and tinning-accounted for most of the tin consumed in 1952 and 1951. Tinplate and terneplate, the largest consumers of primary tin, took 60 and 54 percent, respectively, of the totals for 1952 and 1951. A prolonged steel strike interrupted operations of most of the tinplate mills in June and July 1952; thereafter their average monthly usage increased, and during the last 5 months of 1952 it was 17 percent above the average monthly rate for all of 1951. Tonnagewise the use of primary tin for solder decreased more than any other item. Solder required 5,400 tons less primary tin than in 1951, mainly because of substitution of 2,700 tons of tin in imported tin-base alloys and because of the larger tonnage of secondary tin used. Solder was the only item in this group to report increased usage of Primary tin for babbitt declined 525 tons, secondary tin in 1952. mainly through substitution of 360 tons of tin in imported alloys. Tinning declined 14 percent. In respect to total tin used, bronze maintained its position as the second largest consumer, but its total use decreased 3,390 tons (primary 1,226 and secondary 2,164). This does not include 1,970 tons of tin in imported tin-base alloys used for making bronze and brass in 1952.

About 58 percent of the tin used to make tinplate in 1952 was for hot-dipped plate and 42 percent for electrolytic. Hot-dipped tinplate production, however, represented only 33 percent and electrolytic 67 percent of the total output in 1952. Electrolytic tinplate requires considerably less tin per unit of product than hot dipped. Production of tinplate by electrolytic lines was 4 percent below the high record established in 1951. Hot-dipped tinplate production declined 16 percent and was the smallest tonnage recorded since 1932. Terneplate production required 24 percent less tin in 1952 than in 1951. Short-terne output increased 8 percent, whereas long-terne output decreased

24 percent.

Net industrial receipts of tin in 1952 were 79,110 long tons (3 percent less than in 1951), of which 62 percent was primary pig tin. Receipts of primary tin were virtually unchanged; however, other materials decreased 7 percent. (Receipts of 5,460 tons of tin in 1952 in imported tin-base alloys are not included in these figures.) "Straits" resumed its long-time position as the principal brand of tin and constituted nearly one-half of the primary receipts of 1952, against one-fourth in 1951. The principal brand acquired in 1951 was Longhorn, produced by the Government-owned tin smelter at Texas City, Tex., but in 1952 Longhorn ranked second and supplied industry with only 30 percent of its needs. Other brands received in 1952 included Netherlands 9 percent, English 7 percent, Belgian 3 percent, and miscellaneous the remaining 4 percent.

TABLE 6.—Consumption of primary and secondary tin in the United States, 1943-47 (average) and 1948-52, in long tons

	1943-47 (a verage)	1948	1949	1950	1951	1952
Stocks on hand Jan. 11	31, 773	25, 743	27, 070	24, 621	31, 856	20, 764
Net receipts during year: Primary Secondary Terne Scrap	53, 404	62, 119	47, 782	79, 992	48, 298	48, 657
	2, 939	3, 004	2, 606	3, 371	3, 273	2, 338
	280	681	470	997	594	622
	27, 988	29, 840	22, 193	30, 839	28, 974	27, 493
Total receipts	84, 611	95, 644	73, 051	115, 199	81, 139	79, 110
Available	116, 384	121, 387	100, 121	139, 820	112, 995	99, 874
Stocks on hand Dec. 31 1	28, 152	27, 070	24, 621	31, 856	20, 764	22, 826
Total processed during yearIntercompany transactions in scrap	88, 232	94, 317	75, 500	107, 964	92, 231	77, 048
	2, 676	2, 535	2, 167	2, 168	2, 726	2, 397
Total consumed in manufacturing Plant losses	85, 556	91, 782	73, 333	105, 796	89, 505	74, 651
	971	994	927	1, 332	1, 336	1, 378
Tin content of manufactured products	84, 585	90, 788	72, 406	104, 464	88, 169	73, 273
PrimarySecondary	54, 969	59, 863	47, 163	71, 191	56, 884	45, 323
	29, 616	30, 925	25, 243	33, 273	31, 285	27, 950

Stocks shown exclude tin in transit or in other warehouses on Jan. 1, as follows: 1947, 1,000 tons; 1948, 940 tons; 1949, 328 tons; 1950, 61 tons; 1951, 1,355 tons; 1952, 971 tons; and 1953, 525 tons.

TABLE 7.—Consumer receipts of primary tin, by brands, 1939-52, in long tons

	Banka	Chinese	English	Katanga	Longhorn	Straits	Others	Total
1939	3, 540 6, 333 5, 238 2, 899 4, 524 6, 717 857 588 2, 856 2, 888 3, 491	3, 407 3, 154 4, 594 1, 428 1, 700 1, 730 2, 303 1, 000 636 962 3, 310	8, 347 3, 034 3, 783 177 189 53 (2) (2) (2) (2) (2)	1, 902 530 6, 589 3, 334 14, 983 13, 182 6, 935 677 2, 884 7, 752 8, 435	1 1, 238 12, 600 25, 540 39, 575 48, 745 37, 657 24, 664 13, 369	48, 677 82, 980 88, 213 21, 105 5, 951 7, 560 4, 157 1, 244 11, 144 20, 492 14, 874	4, 859 2,094 5, 864 2, 945 601 541 836 4, 349 4, 705 5, 361 4, 303	70, 732 98, 125 114, 281 33, 126 40, 548 55, 323 54, 663 56, 603 59, 882 62, 119 47, 782
1950 1951 1952	1, 273 6, 159 4, 208	1, 500 352 (²)	5, 172 1, 406 3, 279	5, 661 4, 602 1, 573	4, 912 20, 263 14, 694	54, 350 12, 163 23, 010	7, 124 3, 353 1, 893	79, 992 48, 298 48, 657

First shipments made in June 1942.
 Included in others not separately reported.

TABLE 8.—Consumption of tin in the United States, 1950-52, by finished products, in long tons of contained tin

		1950		1951			1952 1		
Product	Pri- mary	Second- ary	Total	Pri- mary	Second- ary	Total	Pri- mary	Second- ary	Total
Tinplate Terneplate Solder. Babbitt. Bronze and brass Collapsible tubes and foil Tinning. Pipe and tubing. Type metal. Bar tin. Miscellaneous alloys. White metal. Chemicals (other than oxide) Tin oxide Miscellaneous	2,797 383 184 1,194 1,543 693	603 9, 117 2, 908 16, 416 228 179 57 1, 796 240 164 524 847	35, 380 952 27, 460 6, 409 20, 594 1, 666 2, 976 440 1, 980 1, 434 1,707 1, 217 1, 716 533	30, 522 84 13, 066 2, 493 4, 838 832 2, 431 133 120 875 844 134 { 95 279 138	683 6, 744 3, 360 16, 934 208 277 94 1, 694 183 146 707 119 82	30, 522 767 19, 810 5, 853 21, 772 1, 040 2, 708 227 1, 814 929 41, 027 280 802 398 220	227, 316 85 7, 678 1, 968 3, 612 2, 095 139 86 642 485 81 }	3 495 7,545 2,277 14,770 104 221 18 1,567 36 244 39 596	2 27, 316 3 582 15, 222 4, 24! 18, 385 700 2, 316 1, 655 678 4 722 120 1, 010
Total	71, 191	33, 273	104, 464	56, 884	31, 285	88, 169	45, 323	27, 950	73, 27

Excludes 5,180 long tons of tin contained in imported tin-base alloys—of which 2,700 tons was used for solder, 1,970 tons for bronze and brass, 360 tons for babbitt, and 150 tons for other products.
 Includes small tonnage of secondary pig tin and tin acquired in chemicals.
 Includes small tonnage of imported tinbase alloy.
 Includes 592 tons of tin in Copan produced in 1951, and 213 in 1952.

TABLE 9.—Tin content of tinplate and terneplate produced in the United States, 1943-47 (average) and 1948-52

	Total tinplate (all forms)			Tinplate (hot dipped)			Tinplate (electrolytic)			Tinplate waste- waste, strips, cobbles, etc.		
Year	Gross weight (short tons)	Tin content (long tons)	Pounds of tin per short ton of plate	Gross weight (short tons)	Tin content (long tons)	Pounds of tin per short ton of plate	Gross weight (short tons)	Tin content (long tons)	Pounds of tin per short ton of plate	Gross weight (short tons)	Tin content (long tons)	Pounds of tin per short ton of plate
1949 1950 1951	3, 914, 323 3, 863, 801 4, 767, 274	31, 503 29, 617 35, 380 30, 522	18.0 17.2 16.6 14.9	1, 752, 416 1, 848, 373 1, 648, 001 1, 845, 009 1, 557, 006 1, 308, 173	22, 028 19, 613 21, 875 17, 789	26. 7 26. 7 26. 6 25. 6	889, 876 1, 918, 708 2, 030, 567 2, 693, 777 2, 832, 044 2, 712, 657	8, 518 8, 814 12, 110 11, 595	9. 9 9. 7 10. 1 9. 2	86, 607 147, 242 185, 233 228, 488 202, 381 228, 563	957 1, 190 1, 395 1, 138	13. 7 12. 6
	Total	ternepl	ate	Short ternes			Lon	g terne	s		rnepla te-wa	
1943–47 (average) 1948	324, 088 239, 641 274, 963	672 626 952 2 767	4. 5 4. 6 5. 9 7. 8 6. 3 5. 8	181 141	388 177 188	4.8 4.9	137, 045 150, 143 209, 223 216, 069	272 435 753 555	4.0 4.4 6.5 8.1 5.8 4.7	5, 902 7, 816	12 14 11 11	5. 3 4. 6 4. 0 5. 1 5. 1 5. 5

Includes small tonnage of secondary pig tin and tin acquired in chemicals.
 Total includes 84 long tons of pig tin.
 Total includes 85 long tons of pig tin.

STOCKS

Consumers' stocks (including pig tin in transit in the United States) increased 16 percent in 1952; however, except for 1951, stocks of virgin pig tin at consumers' plants at the end of 1952 were the lowest since 1936

RFC reported tin stocks available for industry requirements as 7,000 long tons at the beginning of the year and 14,600 tons at the end of 1952. Stocks of concentrates contained an estimated total of 11,878 tons of tin at the beginning of the year and 25,209 tons of tin

at the end of the year.

The National Strategic Stockpile objective for tin was not completed. Nevertheless, inventories had reached a level according to the Munitions Board that could meet the needs of war without serious danger to national security; consequently, tin was listed in the category of materials, the acquisition of which was no longer of the highest urgency.⁵

General Services Administration made a special inspection in cooperation with the Tin Research Institute of all tin in the stockpile for evidence of tin disease which may attack the high-purity grades

under certain climatic conditions.6

TABLE 10.—Stocks of virgin pig tin in the United States, Dec. 31, 1948-52, in long tons ¹

	1948	1949	1950	1951	1952
At consumers' plants	14, 349	13, 771	20, 576	10, 043	11, 819
	328	61	1, 355	971	525
	100	292	384	82	531
Total consumers' stocksAfloat to United States (estimated)	14, 777	14, 124	22, 315	11, 096	12, 875
	25	8, 500	3, 500	895	5, 300
Total stocks 1	14, 802	22, 624	25, 815	11, 991	18, 175

¹ Excludes Government purchases delivered for stockpiling or at Texas City smelter. Also excludes tin in process and secondary pig tin.

PRICES

Tin prices were much steadier in 1952 than in other recent years The average price of Straits tin for prompt delivery in New York in 1952 was \$1.2044 or 6 percent below that in 1951, which had been the highest annual price on record. On January 22, 1952, RFC announced that, effective that day, its selling price for tin metal was \$1.215, at which level the RFC price for resale remained for the rest of 1952. This was the first upturn in price since August 1, 1951. The new price was a result of the United States-United Kingdom mutual assistance agreement under which the United States became obligated to buy 20,000 long tons of Straits tin or its equivalent at \$1.18 f. o. b. port of shipment. This ended the lengthy price controversy between the main producing countries and the United States and set the pattern for the long-term contracts between Belgian Congo and Indonesia producers for large supplies of tin. The RFC price averaged \$1.205

Munitions Board, Stockpile Report to the Congress, Covering the Period From July 1 (to Dec. 31, 1952; Feb. 15, 1963, p. 3.
 Work cited in footnote 5, p. 15.

The RFC was the sole importer of tin from March 12, 1951, until resumption of private importing for resale was permitted on August 1, 1952, when the outside market reopened. The outside market for prompt tin was nominal until August 11, and the price quoted first was \$1.21 a pound. The 5-month average from August through December was \$1.21305. The monthly average price on the open market ranged from \$1.21152 in August to \$1.21472 in December The lowest price for the year on the outside market was \$1.2075 on October 15. RFC monthly sales contracts with industry averaged less than half the tonnage of tin in the last 5 months compared with the first 7 months of 1952.

Effective September 12, 1952, the Office of Price Stabilization established a ceiling price on tin of \$1.215 a pound f. o. b. New York.

TABLE 11.—Monthly prices of Straits tin for prompt delivery in New York, 1951-52, in cents per pound 1

e de la company		1951		1952						
Month				RFC			Open market			Aver-
	High	Low	Average	High	Low	Average	High	Low	Average	RFC
January February March April May June July August September October November December	2 184. 00 183. 00 3 181. 75 150. 50 142. 00 136. 00 103. 00 103. 00 103. 00 103. 00 103. 00	142.00 139.00 106.00 106.00 103.00 103.00 103.00	171. 716 182. 681 145. 464 145. 827 139. 955 118. 048 106. 000 103. 000 103. 000 103. 000 103. 000 103. 000	121. 50 121. 50	103.00 121.50 121.50 121.50 121.50 121.50 121.50 121.50 121.50 121.50 121.50 121.50 121.50	109. 73 121. 50 121. 50	121. 375 121. 500 121. 375 121. 500	120. 750 121. 250 120. 750 121. 125 121. 375	4 121, 15 121, 38 121, 23 121, 27 121, 47	109. 7 121. 5 121. 5 121. 5 121. 5 121. 5 121. 1 121. 3 121. 2 121. 2
Total	184. 00	103.00	128. 308	121. 50	103.00	120. 52	121. 500	120. 750	121. 31	120. 4

On the London market the average price for standard tin was £964.5 a long ton in 1952 compared with £1,079.6 in 1951. monthly average price fluctuated from the high of £984.2 in February to the low of £948 in August. In 1952 London prices opened at £927.5, having advanced £22.5 over the New Year holidays. By January 25, the market had risen to £1,005, the top for the year, precipitated by the United States-United Kingdom agreement. A decline began in February and brought the quotation to £955 on Some recovery followed, which took the price to £977 on With restoration, on August 1, to private firms in the United States of freedom to import tin, marked easiness occurred on the market, as private interests in the United States showed no immediate desire to enter the market as buyers. Continental operators unloaded some of their tin commitments to the detriment of prices. An increase in tin stocks developed in the United Kingdom. Consequently, after the August bank holiday the market receded, and

Compiled from quotations published in the American Metal Market.
 Highest price recorded in regular market was \$1.84 on Jan. 25, 1951, with a reaction to \$1.83 at close of market on that day.
 RFC became sole procurer of tin in the United States Mar. 12, 1951.
 Outside market reopened Aug. 1, 1952, although a prompt price was not quoted until Aug. 11, 1952.
 Open-market prices since August 1952.

्रिक्ट होते असे अस्ति को

the price declined to £912 on August 7, the lowest of the year. was appreciable recovery, which carried the price to £989 on October 10, when the uncertainties created by the Bolivian situation (where nationalization of the tin-mining industry was imminent) occasioned doubts regarding future supplies from that source. The market weakened again and later steadied, with lack of interest and very little activity on the London Metal Exchange as the year closed. The price quoted on December 31, 1952, was £946.

The Singapore market was governed largely by the New York quotations, allowing for the prevailing rate of exchange and transportation charges. The monthly average price for Straits ex-works was £944.9 for 1952 against £1,040.3 in 1951. The monthly average in 1952 was highest in February and lowest in December. The lowest price for the year, however, was £889 on January 2, and the highest for the year was £989.3 on February 5.

englita. La est ja nation propintario de la completa del completa de la completa de la completa del completa de la completa del la completa della del la completa del la completa del la completa del la completa del la co

Tin has been one of the principal imports of the United States and ranked eighth in value among all commodities in 1952. The relative position of tin in value, among minerals imported (net imports) in 1952, was exceeded only by gold. The value of tin imports in 1952 was the highest ever recorded. Imports of metallic tin and of 94percent tin alloy, including concentrates, and exports of tinplate were the main items in the foreign trade of the United States in tin in 1952. Of less importance was the foreign trade in tinplate and terneplate scrap, miscellaneous tin manufactures, and compounds. Tin contained in the babbitt, solder, type metal, and bronze imported and exported is accounted for in the Lead and Copper chapters of this volume.

On a tonnage and value basis, pig-tin imports resumed the dominant position in the foreign trade of the United States in tin in 1952. Tin imports in 1952 increased 185 percent, with resumption of shipments from Malaya—the principal source in 1952, which furnished 57 percent of the total. Other important sources of metal imported in 1952 include Netherlands (21 percent), United Kingdom (11 percent), Belgium-Belgian Congo (10 percent) and other (1 percent). Receipts were at their lowest rate in the first quarter and at their highest in the second. Under the United States-United Kingdom mutual assistance agreement of January 1952, the United States acquired 20,000 long tons of tin, most of which was Grade A quality, at \$1.18 per pound f. o. b. foreign port of delivery. Receipts of concentrates in terms of metal were 11 percent less than in 1951, principally due to a 37-percent decrease in imports from Indonesia. Bolivia, the main source of tin concentrate (accounting for 48 percent of the total), furnished 12,600 tons in 1952, or 3 percent less than in 1951. Imports of concentrate and metal augmented by 7,600 long tons (gross weight—chief value, tin) of alloys were brought into the United States in 1952, mainly from Netherlands in the form of 94-percent tin alloy. Exports of metallic tin in 1952 were 380 long tons, with

⁷ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

Canada as the principal destination. Tin exports were under export-

license control.

The major tin-export item of the United States, as usual, was Gains were made in the export markets of Europe and Asia. but deliveries from the United States decreased to Latin America. Australia-New Zealand, and Africa. Tonnagewise shipments to Turkey showed the largest increase and those to the Union of South Africa the largest decrease. Exports of hot-dipped timplate totaled 248,500 long tons valued at \$57,469,000 in 1952, an 8-percent decrease in quantity and 10-percent drop in value compared with 270,300 tons valued at \$54,009,200 in 1951. The principal countries of destination were Netherlands, Australia-New Zealand, Argentina, Brazil, Italy, and Union of South Africa. Exports of electrolytic tinplate were 210,000 long tons (209,800 in 1951) or virtually unchanged in weight, but the value in 1952 was \$44,081,200 or 4 percent less than in 1951 (\$45,781,200). This material was shipped to 62 countries in 1952: the leading destinations were Brazil, Australia-New Zealand, Netherlands, Union of South Africa, and Cuba. Most of the short ternes exported went to Canada in 1952. In 1952 the Bureau of the Census removed exports of long ternes from the terneplate commodity These figures, which are not separately available, are now included in the item "steel sheets, black ungalvanized" in the Iron and Steel chapter of this volume.

According to the American Iron and Steel Institute, producers in 1952 shipped for export 534,200 short tons (581,700 in 1951) of tinplate, of which 298,700 tons was hot dipped (346,200 in 1951) and

235.500 tons was electrolytic in both 1951 and 1952.

Tariff.—Tin, both in the form of metal and ore, is admitted free of duty by the Tariff Act of 1930, paragraph 1785, but with the proviso that, if the mines of the United States are producing 1,500 tons annually, a tariff of 4 cents a pound on ore and 6 cents a pound on metal shall be imposed and notice given by proclamation of the President.

TABLE 12.—Foreign trade of the United States in tin concentrates and tin, 1948–52

[U. S. Department of Commerce] Exports Imports Ingots, pigs, bars, etc. Bars, blocks, pigs, grain or granu-lated Concentrates (tin content) Year Domestic Foreign Long Long Long Long Value Value Value Value tons tons tons tons \$163, 428 176, 795 594, 587 762, 662 580, 855 49, 196 \$103, 322, 952 60, 224 133, 707, 223 82, 838 152, 952, 294 28, 255 174, 556, 994 \$27,699 145,370 37, 492 38, 311 25, 960 29, 621 \$72, 170, 372 78, 175, 836 47, 163, 305 1 82, 462, 215 1948. 78 76 78 990, 000 3, 978, 852 1950 1,249 1951 26, 491 65, 286, 937 80, 543 215, 669, 646 209, 539 1952

¹ Revised figure.

TABLE 13.—Tin concentrates (tin content) imported for consumption in the United States, 1951-52, by countries

[U. S. Department of Commerce]

	19	51	1952		
Country	Long tons	Value	Long tons	Value	
Belgian CongoBolivia	1, 585 1 13, 085 2	\$4, 613, 270 1 35, 402, 610 2, 496	1, 192 12, 639	\$3, 157, 360 30, 779, 772	
Brazil	<u>-</u>	5, 307 16, 794	8	16, 685	
Egypt	11 14 11,684 106 19 3,114	22, 988 33, 136, 082 270, 597 37, 815 8, 954, 256	7, 321 154 808 4, 327	105, 000 18, 593, 128 197, 482 2, 028, 192 10, 409, 318	
Total	1 29, 621	1 82, 462, 215	26, 491	65, 286, 93	

¹ Revised figure.

TABLE 14.—Tin1 imported for consumption in the United States, 1951-52 by countries

[U. S. Department of Commerce]

	19	51	1952		
Country	Long tons	Value	Long tons	Value	
Australia Belgian Congo Belgium-Luxembourg Bolivia China Germany Malaya Mexico Netherlands Portugal Syria Thailand United Kingdom	915 25,501 20 55 49 6,986 (4) 212,837	\$2, 625, 763 2 16, 374, 487 55, 391 150, 564 197, 863 21, 610, 927 449 2 27, 665, 390 185, 178 2 5, 691, 032	30 1, 275 7, 029 105 105 45, 992 16, 861 151 15 15 8, 930	\$79, 164 3, 449, 279 19, 007, 989 268, 470 3 418, 461 123, 313, 016 44, 817, 748 381, 276 39, 984 23, 894, 272	
Total	2 28, 255	2 74, 556, 994	80, 543	215, 669, 640	

Bars, blocks, pigs, grain, or granulated.
 Revised figure.
 West Germany.
 Less than 1 ton.

TABLE 15.—Foreign trade of the United States in tinplate, taggers tin, and terneplate in various forms, 1948-52, in long tons

[U. S. Department of Commerce]

Year	Tinplate tin, and t	e, taggers erneplate	Tinplate circles, strips, cobbles,	Waste- waste tinplate	Terneplate clippings and scrap	Tinplate scrap		
	Imports	Exports	etc. (exports)	(exports)	(exports)	Imports	Exports	
1948	184 12, 218 3, 829 398 2, 277	548, 021 498, 371 442, 851 498, 808 1 534, 964	3, 247 3, 018 6, 981 12, 995 9, 945	28, 121 41, 865 54, 622 55, 955 (²)	278 227 144 144	41, 084 41, 028 42, 394 51, 571 42, 659	562 810 3, 570	

Due to changes in classifications, data not strictly comparable to earlier years.
 Beginning Jan. 1, 1952 not separately classified; included with "tinplate."

TABLE 16.—Tinplate and terneplate exported from the United States, 1951-52, by principal countries of destination

[U. S. Department of Commerce]

Destination -	1	951	19	052
Descination	Long tons	Value	Long tons	Value
Algeria	87	\$19, 394	906	\$000 or
Argentina	47, 764	13, 053, 455	37, 592	\$200, 055
Australia	59, 043	12, 938, 808	50, 429	8, 452, 766 11, 090, 387
Austria	1, 102	295, 902	1,377	293, 269
Belgium-Luxembourg	16, 021	3, 480, 383	14, 724	3, 125, 324
Brazil	66, 166	15, 632, 756	52,742	11, 766, 673
British East Africa	931	201, 111	1, 822	363, 940
Canada	7, 493	1, 218, 577	2, 194	341, 229
Chila	1,578	403, 294	1. 424	330, 267
Colombia	4, 901	1, 458, 016	8, 463	1, 816, 647
Colombia Cuba	19,624	4, 429, 628	19, 750	4, 428, 33
Denmark Egypt	14, 980	3, 132, 776	14, 416	3, 061, 510
Egypt	2, 219	440, 518	3, 213	698, 522
riniand.	1,035	221, 514	2, 194	458, 394
French Morocco	9, 131	2, 041, 115	8,724	1, 915, 033
Greece	3,442	678, 216	8, 906	1, 751, 633
Hong Kong India	17	3, 253	1,097	177, 442
india	11, 937	2 2, 486, 319	19.805	3, 972, 249
IndonesiaIran	3, 683	888, 879	4, 543	1, 069, 897
Iran	116	19,874	2,504	469, 505
Ireland Israel	2,441	676, 443	1,893	433, 227
Israel	2, 128	461, 323	2,618	596, 140
Italy		4, 780, 455	25, 882	6, 131, 282
Japan	1, 446	370, 195	4,033	595, 574
Lebanon	334	57, 090	2,719	527, 234
Madagascar			1,322	310, 046
Malaya Mexico	5, 417	1, 159, 224	4, 596	852, 934
Netherlands	20, 248	4, 176, 599	16,001	3, 306, 793
New Zealand	47, 276	10, 501, 692	57, 710	12, 807, 471
Norway	3.586	763, 438	5, 363	1, 114, 477
Pakistan	13, 256	2, 694, 729	14, 109	2, 965, 558
Peru	2, 007	442, 621	5, 246	1, 064, 332
Philippines	3, 688	826, 528	4, 797	1, 079, 450
Portugal	9, 963	2, 129, 018	12, 164	2, 402, 471
Portugal Spain	12, 715	3, 119, 373	14, 519	3, 309, 027
Sweden	278	58, 803	6, 449	1, 610, 195
Switzerland	15, 472	3, 238, 861	18, 242	3, 847, 785
Taiwan	7, 364	1, 627, 389	10, 423	2, 376, 026
Thailand	1, 987 734	467, 979	2, 513	556, 037
Tilrkev	3, 505	152, 410	3,772	721, 053
Union of South Africa.	37, 826	637, 425 8, 064, 919	15, 432	3, 180, 938
Urligitav	5, 714	1, 390, 567	23, 119	5, 029, 598
Venezuela	3, 720	946, 270	10, 364	2, 386, 950
¥11g0\$19 719	2, 192	452, 982	3, 734	855, 899
Other countries	5, 268	1, 267, 546	2, 846 8, 273	630, 607 1, 851, 647
Total	498, 808	2 113, 507, 667	534, 964	116, 325, 825

Due to changes in classification 1952 data not strictly comparable to earlier years.
 Revised figure.

TABLE 17.—Foreign trade of the United States in miscellaneous tin, tin manufactures, and tin compounds, 1948-52

	. Department	

2 (1)		Miscellaneous tin and manufactures								
1	Imports						0 10 - 1 0 - 20 - 1	era lobe		
Year	Tinfoil, tin powder, flitters, metallics, tin and tinplate manufac-	scrap res	kimmings, sidues, and s, n s. p f.	Tin cans, finished and other tin-bearing material except			Imports (pounds)	Exports (pounds)		
in was i	tures, n. s. p. f. (value)	Pounds	Value	Long	Value	tinplate scrap (value)	re dis 1848 : Linear	. od 15 radio radio		
1948	\$119, 287 189, 564 215, 484 365, 741 447, 925	1, 679, 331 1, 163, 875 6, 293, 459 2, 566, 000 18, 791, 939	\$659, 450 424, 908 2, 146, 340 1, 897, 991 17, 660, 525	36, 450 31, 087 28, 946 33, 171 41, 624	\$11, 208, 859 10, 263, 790 10, 448, 917 14, 048, 409 16, 842, 755	\$1, 684, 402 2, 245, 217 869, 404 2, 403, 354 2, 086, 612	10. 917 980 75, 825 102, 212 1, 358	(1) 41,004 122,716 136,179 73,131		

1 Not separately classified.

Due to changes in classification data not strictly comparable to earlier years.

TECHNOLOGY

The fundamental properties of solder alloys and methods of applying them efficiently at modern production speeds were discussed. The practical considerations involved in the development of good soldering techniques are described in this paper. Attention is given to selection of the correct solder composition for a specific application and to a discussion of the heating methods available. Surface preparation, design and assembly, and special techniques for hard-to-solder metals are also considered.

An article discusses packages where aluminum alone is used and others in which the aluminum is combined with paper, wax, plastics, or fiber materials. It reports that aluminum can replace timplate in containers by using aluminum-foil packages for applications where tin cans have been or are being used.

Investigations in the preparation of gray tin were recently reported: 10

It is well known that most commercial forms of tin can be transformed to the gray (alpha) allotropic modification in an ordinary refrigerator by contact with particles of previously prepared gray tin. The difficulty, of course, is to get some gray tin to start with, and we know of many laboratories both in Britain and abroad in which attempts to make gray tin have been unsuccessful. We have worked on various aspects of gray tin from time to time, and, although we are not ready to give a connected account of this work, we wish to record a few of our observations in the hope that they may be helpful to other investigators.

The principle on which we make gray tin is to deform pure tin (99.99 percent) by cold work and allow it to recrystallize at a temperature below the alpha \rightleftharpoons beta transformation temperature (13.2° C.). The recrystallization temperature of tin is so low that deformation at room temperature is the equivalent to hot work. Tin may be conveniently cold worked by compression while surrounded by solid carbon dioxide. We generally compress under a pressure of 4 tons a cylinder 0.25 inch in diameter and 0.25 inch high. We then place the cold-worked tin in

MacIntosh, Robert M., Technical Aspects of Soldering Practices: Welding Jour., vol. 31, No. 10, Octo-

ber 1952, pp. 881-897.

Birdsall, G. W., How Aluminum Can Replace Tinplate in Containers: Modern Metals, vol. 8, No. 1, February 1952, pp. 47-51.

Bedges, E. S. and Higgs, J. Y., Preparation of Gray Tin: Nature (London), vol. 169, No. 4302, Apr. 12, 1952, pp. 621-622.

a glass tube and store it in solid carbon dioxide. It is almost completely transformed into gray tin powder within twelve to twenty-four hours, the rate of transformation increasing with the purity of the tin.

"Tinplate: Easier Inventory Control," was the title of an article describing a new annealing line at United States Steel Corp.'s Gary sheet and tin mill, replacing traditional batch annealing of tinplate under covers, coil by coil. Advantage of the straight-ahead method is "universal temper." Sheets of tinplate annealed by this method are suitable for most types of cans, therefore smaller inventories are necessary. Annual capacity of the line is 136,000 net tons of sheets, ranging from 0.0075 to 0.015 inch in thickness in widths 36 inches and less. Eleven separate processes are performed at stages along the line as 3,000-foot sheets pass through at a speed of about 1,000 feet a minute."

The Tin Research Institute, Inc., with headquarters at Greenford, Middlesex, England, maintains an office at 492 West 6th Avenue, Columbus, Ohio, and offers free service for technical inquiries and general information on tin. In its annual report for 1952 it is stated that the various groups of tin producers who provide the funds have unanimously agreed to increase their contributions by 50 percent to strengthen the institute's staff and especially to increase its free technical services to industry in the chief tin-consuming countries of the world. The report also mentions a number of applications of tin that originated from research at the institute. Decorative tin-nickel electroplate has had difficulties during its first 2 years, but a suitable filtering medium has now been found. Tin-zinc electroplate, a corrosion-resistant coating, has found many further uses in the radio, motorcar, and aircraft industries. Work is going forward on improved aluminum-tin bearing alloys; their extra hardness as compared with tin-base babbitt alloys will, it is expected, enable these alloys to recapture for tin some of the market now held by copper-lead and other high-duty bearings.

The Tin Research Institute, Inc., maintains a technical library on tin and has a number of publications available for free distribution. Those made available in 1952 included: Tin and Its Uses, Nos. 26 and 27; The Corrosion of Tin and Tin Alloys; A Survey of the Chemistry and Applications of Organotin Compounds; Tin-Zinc Alloy Plating; Tin-Nickel Alloy Plating; and Report on the Work of the Tin Re-

search Institute, 1952.

United States patents issued during 1952 relative to tin include the following:

Muskat, I. E., and Taylor, R. H., Method of Recovering Tin in the Form of Tin Sulfide From a Low-Grade Ore: United States Patent 2,585,161, Feb. 12, 1952. Wells, D. F., Thompson, R. B., and Roberts, E. J., Process for the Volatization of Tin Values of Tin Ores: United States Patent 2,600,351, June 10, 1952.

The recent application of conventional concentrating tables for removing sulfides from tin-wolfram concentrates in Portugal was the subject of a paper.¹²

The effect of tin in steel was discussed in an article.¹³

pp. 136-139.

 ¹¹ Iron Age, Tinplate: Easier Inventory Control: Vol. 169, No. 3, Jan. 17, 1952, p. 51.
 ¹² Allan, J. C., Table Flotation for the Removal of Sulfides From Tin-Wolfram Concentrates in Portugal: Inst. Min. and Met., No. 553, December 1952, pp. 81–90.
 ¹³ Gertsman, S. L., and Tardif, H. P., Tin and Copper in Steel: Iron Age, vol. 169, No. 7, Feb. 14, 1952,

1031 TIN

The effects of increasing amounts of tin on surface cracking were tested at two different temperatures, 1,825° F. and 2,300° F. At 1,825° F. very faint traces of surface cracking were observed, even in the heats containing the least amounts of tin. Between 0.28 and 0.54 percent tin, the steel became brittle and the samples broke in two.

A description of an unusual tin-bronze casting was recently published.14 The metal was composition ingot analyzing 90 percent

copper, 8 percent tin, and 2 percent lead.

The electrometallurgy of tin and its alloys was described in a recently published article, under the following topics: Technology of tin and tin-alloy plating, electrodeposition of tin, tin refining by electrolysis, electrolytic detinning, electro tinplate, and electrodeposition of tin allovs.15

A technical paper on trends in the use of tin in the container industry

was presented; among other things it stated: 16

There are many facts to suggest that the long-term trend toward lower tin coatings on the materials used by the container industry is far from finished and there appear to be no technical indications to the contrary. The rate at which this occurs and the extent to which it is carried will depend on a number of considerations, many of which are outside the scope of this paper. Nevertheless, in view of the nature and large number of potential developments it appears reasonable to expect that the day is not far off when the average tin coating weight for tin mill products will be nearer to one-third than the current one-half of the prewar average.

An article on a new use for tin in plastics discussed organotin compounds among other things. It stated: 17

We have entered a new chemical age in which plastics will play a more and more important part. This being so, it is particularly gratifying to find that one of the oldest metals known to mankind—tin—is already being used as a component in

these modern synthetic materials.

It may well be thought that tin metal as we know it is incompatible with plastics. That is where chemical research comes in, for tin can be transformed by a series of chemical processes into organotin compounds, some of which are compatible with plastics. These organotin compounds are generally white powders or color-less liquids which dissolve in, or mix well with, many organic materials. Their tin content may vary over a wide range, but those useful at present contain be-

tween 25 and 50 percent of tin.

Organotin compounds are the best stabilizers known. They are not used universally, because for some applications of polyvinyl chlorides other stabilizers are good enough; but when a crystal clear product is required no other stabilizer can compete with them. This is not only because when mixed in the plastic the tin compounds are completely colorless and transparent, or because of the greater efficacy of organotin compounds in preventing discoloration. Among other advantages of tin compounds assure fastness to light, whereas the effect of continued exposure to light on plastics stabilized by other materials is often to produce a milky appearance.

According to the Continental Can Co., New York City: 18

The beer cans we make today with lighter tinplate are actually superior in quality to the cans of 10 years ago. In 1942 1 ounce of tin could coat enough steel to make 21 beer cans; however, in 1952 1 ounce of tin will coat enough steel to make 125 beer cans.

¹⁴ Roast, Harold J., An Unusual Tin-Bronze Casting: Metal Prog., vol. 61, No. 3, March 1952, p. 76.

¹⁵ Hedges, E. S., and Cuthbertson, J. W., Electrometallurgy of Tin and Its Alloys: Chem. and Ind., No. 52, Dec. 27, 1952, pp. 1250-1254.

¹⁶ Hartwell, R. R., Trends in the Use of Tin in the Container Industry: ASTM Tech. Paper T-223, Tin Symposium, New York, N. Y., June 23, 1952.

¹⁷ Hedges, E. S., A New Use for Tin in Plastics: Tin, October 1952, p. 9.

¹⁸ Daily Metal Reporter, vol. 52, No. 123, June 25, 1952, p. 6.

From the viewpoint of industrial progress, there were significant developments in many of the end products requiring tin. A new and important use for an established material was the use of tin bronzes for condenser tubes to replace cupronickel. One such application was the use of 10-percent tin bronze for condenser tubes to replace the 70–30 cupronickel commonly used for this purpose. 19

A paper describing the results of tests on the preparation of tin-

plate for painting was published.20

The general conclusions are that, when pretreatment is needed:

1. Degreasing in trichlorethylene vapor may not remove all contaminants from old tinplate and may therefore not be adequate to secure good paint adhesion.

2. A hot-water rinse after vapor degreasing is beneficial, possibly by removing

metallic soaps that are not dissolved by trichlorethylene.

3. Cathodic treatment in sodium-carbonate solution is a very effective cleaning method that enables good paint adhesion to be secured without affecting the appearance of the metal.

4. Swabbing with a mixture of 5 parts hydrochloric acid to 95 parts of methylated spirit until the whole surface is darkened and etched is a good means of prepara-

tion when etching of the surface is permissible.

5. Immersion in hot alkaline chromate solution is a possible means of cleaning without changing appearance, but the time of immersion should not generally exceed 10 seconds.

WORLD REVIEW

14 EL

The internation to sales WORLD MINE PRODUCTION - 3 -

World mine production of tin, exclusive of U. S. S. R., increased 2 percent in 1952. Of the total output, Asia supplied 65 percent, South America 19 percent, Africa 14 percent, and other sources 2 percent. Most of the increase was provided by Indonesia. Output in 1952 was 3,000 long tons greater than in 1951. Production in 1952 was 6 percent above the 1925-29 average, 1 percent above the 1935-39 average, and about 71 percent of the 1941 peak.

WORLD SMELTER PRODUCTION

Smelter production of tin in the world, exclusive of U.S.S.R., was virtually unchanged in 1952 compared with 1951. The Malayan tinsmelting plants at Penang and Singapore produced 5 percent less but supplied 37 percent of the total and were (as in 1951) the world's most important sources of pig tin. Next in rank were the United Kingdom, Netherlands, United States, and Belgium. Smelters in these 5 countries supplied 90 percent of the world's tin in 1952. As a consequence of United States resumption of purchases of tin, largely from Malaya, about 61 percent of the world smelter output in 1952 was for the United States (in 1951, 36 percent).

Neckervis, Robert J., Tin and Its Alloys: Ind. Eng. Chem., vol. 44, No. 10, October 1952, pp. 2360-2364.
 Britton, S. C., The Preparation of Tinplate for Painting: Sheet Metal Ind. (London), vol. 29, No. 302, June 1952, pp. 545-548, 558.

1033

TABLE 18.—World mine production of tin (content of ore), by countries 1943-47 (average) and 1948-52, in long tons $^{\rm 1}$

[Compiled by Berenice B. Mitchell and Lee S. Petersen]

Philadelphia and the second se						
Country	1943–47 (average)	1948	1949	1950	1951 .	1952
North America: Canada Mexico United States	333 270 3	309 182 5	276 358 68	356 440 94	155 366 88	95 373 99
Total North America	606	496	702	890	609	567
South America: Argentina. Bolivia (exports). Brazil Peru *	830 38, 481 198 52	273 37, 336 570 64	268 34, 115 325 51	267 31, 213 180 38	33, 132 197 86	² 239 31, 959 ² 180 31
Total South America	39, 561	38, 243	34, 759	31,698	33, 657	32, 409
Europe: France Germany, East ³ Italy Portugal ⁴ Spain United Kingdom ⁵	316 78 705 601	76 706 261	73 120 785 666	117 120 690 2 575	2 170 298 902 2 716	2 354 420 1, 028 589
Total Europe 6	2,811	2, 324	1, 217 2, 861	2 1, 230 2, 732	3,296	3, 345
Africa: Belgian Congo ' French Cameroon French Morocco French West Africa Mozambique Nigeria Northern Rhodesia Southern Rhodesia Southewest Africa Swaziland Tanganyika (exports) Uganda (exports) Union of South Africa	16, 069 147 7 1 4 11, 207 7 130 156 60 127 230 500	13, 539 102 	13,760 73 26 1 8,824 7 70 120 32 109 128 471	13, 464 67 51 1 8, 258 4 65 100 37 97 192 643	13,669 72 13 65 8 8,529 2 40 76 32 67 118 746	13, 798 86 14 110 3 8, 318 11 30 86 47 82 935
Total Africa	28, 645	23, 859	23, 621	22, 979	23, 437	23, 556
Asia: Burma	827 4, 100 210 9, 605 340 14, 784 2, 674	1, 147 6, 300 30 30, 562 118 44, 815 4, 240	1, 781 4, 300 40 28, 965 190 54, 910 7, 815	1, 520 7, 500 62 32, 102 326 57, 537 10, 364	1, 624 7, 500 92 30, 986 426 57, 167 9, 502	1, 103 8, 600 156 35, 003 639 56, 838 9, 473
Total Asia	32, 540	87, 212	98,001	109, 411	107, 297	111,812
Australia	2, 412	1,885	1,882	1,855	1, 577	1, 556
Total (estimate)	106, 600	154,000	161,800	169, 600	169, 900	173, 200

¹ The table incorporates a number of revisions of data published in previous tin chapters.
2 Estimated by authors of the chapter and in a few instances from the Statistical Bulletin of the International Tin Study Group, The Hague.
3 Minor constituent of other base-metal ores.
4 Excluding mixed concentrates.
5 Intake by smelters.
6 Excluding production of U. S. S. R.
7 Including Ruanda-Urundi.

TABLE 19.—World smelter production of tin, by countries, 1943-47 (average) and 1948-52, in long tons ¹

[Compiled by Berenice B. Mitchell and Lee S. Petersen]

Country	1943-47 (average,	1948	1949	1950	1951	1952
North America:						
Canada		308	276	356	155	98
Mexico		181	358	290	366	144
United States	_ 33, 930	36, 703	35, 834	33, 118	31,852	22, 805
Total North America	34, 517	37, 192	36, 468	33, 764	32, 373	23, 044
South America:	F04	0.54	201	0.00		
Argentina	- 591	254	235	253	206	² 300
Bolivia (exports)		105	405	392	39	200
Brazil		185	157	118	133	2 240
Peru 3	- 52	64	51	38	86	31
Total South America	- 823	608	848	801	464	771
Europe:						
Belgium Germany, West 2	2, 693	10, 469	8, 996 120	9, 512 375	8, 360 4 900	10, 585 4 1, 020
Italy	42		120	010	- 200	- 1,020
Netherlands	1, 985	16,402	19, 247	21,027	20, 977	27, 913
Portugal		282	218	209	313	2 300
Spain	778	483	803	1.597	766	687
Spain United Kingdom 5	28, 983	31,002	28, 384	28, 750	26, 053	29, 521
Total Europe	35, 363	58, 638	57, 768	61, 470	57, 369	70, 026
Africa:						
Belgian Congo	7, 220	3,875	3, 246	3, 238	3, 011	2, 765
Southern Rhodesia	1 7 117	127	75	80	63	37
Union of South Africa	901	554	595	718	829	960
Total Africa	. 8, 238	4, 556	3, 916	4,036	3, 903	3, 762
Asia:						
China 3	3,900	5, 900	4,000	7,000	7,000	8,000
Indochina	1119	32	3,000	1,000	1,000	0,000
Indonesia	4.410	136	126			
Japan		53	290	389	574	637
Malaya		49, 707	62, 737	68, 747	65, 914	62, 829
Thailand	1,614			2		
Total Asia	27, 653	55, 828	67, 156	76, 138	73, 488	71, 466
Australia	2, 392	1,885	1, 955	2, 013	1,459	1,700
Total (estimate)	109,000	158, 700	168, 100	178, 200	169, 100	170,800

¹ This table incorporates a number of revisions of data published in previous tin chapters.

² Estimated by authors of the chapter and in a few instances from Statistical Bulletin of the International Fig. Study, Group, The Hogus.

Tin Study Group, The Hague.

3 Tin content of dross.

⁵ Beginning January 1948, includes production from imported scrap and residues refined on toll.

WORLD CONSUMPTION

World consumption of tin in 1952 totaled 127,500 long tons—a 7-percent decrease compared with 1951. Table 20 gives the reported real consumption of tin for the United States, United Kingdom, Netherlands, Canada, Japan, and Belgium-Luxembourg. In 1952 these countries represented 67 percent of total world consumption. Figures for other countries are apparent consumption, arrived at on the basis of production of metal within the country concerned plus imports of metal and minus exports of metal and with known changes in stocks also being taken into account. The sharp increase in con-

⁴ Unofficial reports state production of 316 long tons in East Germany in 1951 and approximately 700 long tons in 1952.

sumption in the Netherlands in 1952 was mainly due to the use of tin in the manufacture of highgrade tin alloys for export. Figures for U. S. S. R. are omitted from the totals.

TABLE 20.—World consumption of primary tin, by countries, 1943-47 (average) and 1948-52, in long tons ¹

Country	1943–47 (average)	1948	1949	1950	1951	1952
ArgentinaAustralia and New Zealand	871	1,912	865	1,250	1,250	1,200
Australia and New Zealand	2,569	2,579	2,504	2,552	2,910	2,966
Belgium and Luxembourg	773	1,707	986	1,363	1,770	1,224
Brazil	716	1,469	1,104	1,670	1,500	1,500
Canada		4,046	4,317	4,526	4,731	4, 191
Czechoslovakia		1,100	1,200	1,300	1,500 650	1,800
Denmark		488 438	226 407	600 418	385	720 240
Finland	170	7,900	7,200	7,400	7,500	7,300
France			2,300	5,900	7,300	7,200
Germany		1,450 4,839	5,539	4,718	3,800	2,379
India		1,500	2,500	3,000	3,600	2,700
Italy Japan		1,700	1,800	2,700	3,500	3,600
Netherlands		3,331	3,277	3,029	2,400	8,700
Poland		2,117	2,000	2,000	2,100	1,920
Spain		224	813	933	1,000	840
Sweden		1,250	1,000	1,000	1,000	1,020
Switzerland		700	700	750	800	840
Turkey	1	713	567	550	600	540
United Kingdom		25, 241	20,823	23,254	23,892	22,554
United States	54, 969	59,863	47, 163	71, 191	56, 884	45, 323
Others		6, 433	7, 209	7,896	8,078	8,743
World total	106,000	131,000	114,500	148,000	137,000	127,500

¹ Statistical Bulletin of the International Tin Study Group July, 1953.

REVIEW BY COUNTRIES

Australia.—Production of tin in concentrates in Australia totaled about 1,600 long tons, virtually unchanged from 1951. Domestic smelter production amounted to 1,700 tons, a 17-percent increase. In Queensland, the Tableland Tin Dredging N. L. dredge was being moved from the old site at Return Creek to the new leases on Smith's Creek, 9 miles away. It was expected that work would be resumed about July 1953, and the capacity of the dredge was to be increased. The estimated cost of the move was approximately £A.300,000. Total weight of the plant was 2,000 tons. The life of the new area was estimated at 12½ years, and the expected annual rate of output was 800 tons of tin concentrate.²¹

Belgian Congo.—The Belgian Congo production of tin in concentrates was 13,800 long tons compared with 13,700 in 1951. Tin contained in exports of concentrates totaled 10,900 long tons, of which United States received 2,000 and Belgium 8,900. Exports of metal from Belgian Congo were 2,800 long tons, of which United States received 1,400, Belgium 1,100, and the Union of South Africa 300. Stocks of tin metal increased from 40 tons at the beginning of 1952 to 150 at the end. Stocks of tin in concentrates decreased from 1,000 tons at the beginning of 1952 to 500 at the end.

On March 25, 1952, the Association of Belgian Congo Tin Producers concluded an agreement with the RFC for delivery of a minimum of

²¹ Mining Journal (London), vol. 239, No. 6121, Dec. 12, 1952, p. 671.

7,000 and a maximum of 9,000 tons of tin a year. The price was \$1.2075 a pound delivered at American ports, which was equal to \$1.18 f. o. b. in Singapore. Delivery was to be made partly in the form of tin concentrates. The contract, valid for 2 years, provide that if the United States concluded a tin contract elsewhere at a higher price, Belgian Congo's price would be adjusted accordingly.

The Annual General Meeting of the Compagnie Géologique et Minière des Ingenieurs et Industriels Belges (Géomines) was held in Brussels on December 9, 1952. The following is an excerpt from the

directors' report, which covers the year to June 30, 1952:22

In the period under review, cassiterite production was 3,576 tons, of which 532 tons were obtained from hard rock deposits. For the corresponding period last

year production was 3,820 tons.

The new hard rock section is being steadily opened up and important preparatory work is being carried out. So far the natural geological features of the section have facilitated mining operations. The crushing and treatment plants continue to work steadily to improve techniques and to reduce working costs, and

both are making satisfactory progress.

Any further big increase in output must await the completion of the new turbines of the central power station due in 1956 and when in full operation the enterprise should yield an output of between 7,000 and 8,000 tons of cassiterite yearly, as compared with the 4,200 tons expected in the current working year.

The tin content of the altered pegmatites is about one kilo of cassiterite per ton while that of the hard rock is between 2 and 2½ kilos. Treatment of the hard rock will, however, cost more, the estimate being 10 to 15 percent higher.

The Symetain Co. (Société Congolaise) worked tin deposits in the Maniema district, the most western part of Kivu Province, which lies astride the Lulalaka (Congo) River. Symetain has become the main producer of tin in the Belgian Congo; the company produced 5,100 metric tons of cassiterite in 1952 (5,100 tons in 1951), from which 3,900 tons (3,800 tons in 1951) of tin was extracted. The following tabulation presents data for the Symetain operations 1950-52:23

TABLE 21.—Production of tin concentrates by Symetain in Belgian Congo, 1950-52

	Ground excavated	Grade of ground	Tin con-	Tin content	Labor	force
Year	(thousand cubic meters)	(kilograms per cubic meter)	produced (metric tons)	(metric tons)	Europeans	Natives
1950 1951	3, 922 4, 568 4, 500	1. 15 1. 10 1. 10	4, 521 5, 109 5, 000	3,410 3,849 3,750	157 150 170	10, 800 10, 600 10, 400

¹ Estimated.

Bolivia.—In 1952 Bolivia was the third largest tin producer in the Production of tin contained in concentrates was estimated at 35,500 long tons.24

Exports of tin in concentrates totaled 32,000 long tons, a 4-percent decrease from the previous year, due largely to cessation, after nationalization, of the private companies' practice of shipping all concentrates, even those unsold, to Chilean ports. Exports of tin metal were about 200 long tons. Of the total exports of 31,800 tons,

Mining Journal (London), vol. 239, No. 6122, Dec. 19, 1952, pp. 712, 715.
 International Tin Study Group, Notes on Tin: No. 26, February 1953.
 United States Embassy, La Paz, Bolivia, State Department Despatch 68, Oct. 3, 1952, 6 pp.

TIN 1037

the Patiño group exported 14,100 tons or 44 percent; the Hochschild group exported 6,000 tons or 19 percent; and the Aramayo group 2,600 tons or 8 percent. These three large mining groups thus exported 71 percent of the total. Medium-size mining companies exported 20 percent and the Banco Minero 9 percent. The largest single producer continued to be the Catavi Mines, the principal property of Patiño Mines & Enterprises, Inc., from which 9,500 tons was

exported, or 30 percent of the total for Bolivia.

Early in April 1952 police and some civilians revolted; the revolution ended with the advent of a new government in Bolivia. On April 19, the Central Organization of Bolivia Workers (Central Obrera Boliviana), headed by the Minister of Mines and of Labor, was established to unify the workers "in a fight for nationalization of mines and railroads and agrarian reform." By a decree of May 14, a commission was created "to study the basis and conditions for the nationalization through expropriation of the mines controlled by or belonging to the enterprises forming the Patiño, Aramayo, and Hochschild Groups;" this commission was to submit its report to the Government within a maximum of 120 days.

By decree of June 2 the Bolivian State assumed the monopoly for exportation of all minerals, the mining companies to be paid for their products in Bolivian currency at world market prices converted at

a rate of exchange arbitrarily fixed by the Government.

By a decree of October 2, 1952, an autonomous entity was created under the name of Corporacion Minera de Bolivia, which thereafter operated the nationalized tin properties. On October 9 the commission appointed to examine the question of nationalization filed its report with the Government, leading to the Government Executive Decree of October 31, 1952, which nationalized the "major producers" of tin, namely, Patiño Mines & Enterprises, Inc., Compagnie Aramayo de Mines en Bolivie, and Maurico Hochschild, S. A. M. I.

In view of the numerous inquiries that the United States Department of State received from the press concerning the purchase of Bolivian tin concentrates, the following release (No. 928), was issued

on December 19, 1952:

First, the United States has made several spot purchases of Bolivian tin concentrates since the MNR regime assumed control of the Bolivian Government in April 1952. The last purchase, made in September 1952, from the Banco Minero, an agency of the Bolivian Government, covered all Bolivian production through September 1952, which had not already been contracted for sale. Delivery of ores in South American ports under this arrangement was not completed until the end of November.

Second, since September 1952, the Bolivian Government has not offered for

spot sale to the United States any tin concentrates whatever.

Third, the United States has informed the Bolivian Government on several occasions that the RFC is prepared to consider offers from Bolivia to sell tin concentrates on substantially the same basis as in the earlier purchase agreements.

At no time has the United States refused to buy Bolivian tin.

Fourth, recently the Bolivian Ambassador to the United States informed the department that the Bolivian Government wished to conclude a 1-year contract for the sale of Bolivian tin concentrates. The interested agencies of the United States Government are currently considering the feasibility of such an arrangement.

At the end of the year, a long-term contract was still to be negotiated.

Receipts of Bolivian ore at the Texas City smelter during the calendar year 1952 were:

TABLE 22.—Receipts of Bolivian ore (concentrate) at the Texas City (Tex.) smelter in 1952

			Concentrates	I		
Grade	Grade	Long tons	Tin content		Percent of tin content of receipts	
		Long tons	Long tons	Percent		
High Medium Low		7, 427 7, 146 18, 183	4, 425 3, 174 3, 733	59. 58 44. 42 20. 53	39. 05 28. 01 32. 94	
Total_		32,756	11,332	34. 60	100.00	

Canada.—Production of tin in concentrates during 1952 totaled 95 long tons, a 39-percent decrease from 1951. Imports of tin metal were about 4,000 tons. A memoir of the Canadian Department of Mines and Technical Surveys 25 reported:

No economic deposits of tin have been found in Canada so far. Since 1941 a small output of tin (totaling 3,340 long tons) has been recovered as a by-product in the treatment of the lead-silver-zinc ores of the Sullivan Mine of the Consolidated Mining and Smelting Co. at Kimberley, British Columbia:

The consumption by use in long tons has been as follows:

TABLE 23.—Consumption of tin in Canada, by uses, 1946-51, in long tons

Year	Tinplate and tin- ning	Solder	Babbitt	Brass and bronze	Foil and collapsi- ble tubes	Other	Total
1946.	2, 070	910	307	332	59	29	3,707
1947.	2, 096	941	211	274	53	45	13,628
1948.	2, 181	1,241	220	281	45	78	4,046
1949.	2, 823	966	247	195	31	56	4,318
1950.	2, 440	1,427	317	159	41	142	4,526
1951.	2, 678	1,203	421	310	32	87	4,731

¹ As published.

Production of tinplate in Canada increased; Canada is now the third largest producer in the world. Two electrolytic tinplate plants were installed in Canada during 1948 and 1949. In 1951, 47 percent of the tinplate produced was electrolytic.

France.—The tin mines at Nosay, Abbaretz, Department of Loire-Inferiure (about 25 miles north of Nantes), have been in operation since the beginning of 1952, and the tin output increased 100 percent compared with that in 1951. The mines are being operated by the Société Nantaise des Minerais de l'Ouest, with American and foreign equipment, etc., estimated to 'cost between \$325,000 and \$350,000, plus £75,000 and 40 million Belgian francs.

The French Union (France, Algeria, and Morocco) produced 1,000 long tons of concentrates equivalent to 700 tons of metal.

²⁵ McClelland, W. R., Tin in Canada; Occurrences and Uses: Canadian Dept. Mines and Tech. Surveys, Mem. Ser. 125, 1952, p. 1.

TIN 1039

Indonesia.—In 1952, Indonesia was the second largest tin producer in the world. Production of tin in concentrates totaled 35,000 long tons, a 13-percent increase from 1951. The Indonesian output of tin represented 20 percent of the world mine production. Tin production in Indonesia is confined to the islands of Banka, Billiton, and Singkep, which in 1952 supplied 63, 30, and 7 percent, respectively. According to a recent article, 26 the Billiton Co. reported as follows:

Of importance for the financial results for the Indonesian tin properties was the abolition as from February 4, 1952, of the former foreign exchange certificate system, which was one of differing exchange rates. The roepiah was devalued to one-third of its previous value. Unfortunately the value of the roepiah as fixed under the new exchange rate is still out of balance with its buying power. Imports are subject to differential import duties: there are five categories of imports—the first is free of duty, the second is subject to 33½ percent, the third to 100 percent, the fourth to 200 percent, while for the fifth group no foreign exchange is allotted.

A tin-purchase agreement between the United States and Indonesia was signed in Washington, March 18, 1952. The agreement provided for the sale of 18,000 to 20,000 long tons of tin to the United States, at a price of \$1.18 per pound at ports of shipments (equal to \$1.21½ delivered New York) for the first 2 years; that for the third year was to be left for future determination. The agreement provided for the tin to be supplied partly as concentrate and partly as metal smelted in Arnhem, Netherlands.

Malaya Federation.—The tin mining industry in Malaya maintained a remarkable record of production during 1952, despite the difficulties that beset the industry. Mine production of tin in ore was 56,800 long tons in 1952, compared with 57,200 in 1951, with 84,100 in the peak year 1940, and with an annual average of 55,300 per year during the prewar period, 1935–39. At the end of 1952, 80 dredges were in operation compared with 83 at the beginning of the year, whereas the corresponding figures for gravel pumping were 550 and 580, respectively. Whereas the total dredge output showed some decline, the production from gravel pump mines increased appreciably; this probably was due to the reduced price of tin in 1952 compared with 1951, resulting in the necessity for gravel pump operators to concentrate on higher grade material. Table 24 presents the tin production (long tons) and the number of tin mines operating in Malaya, 1952:

TABLE 24.—Production of tin, by method and number of tin mines in Malaya in 1952

Method	Number of tin mines operating	Concentr	ates (long as)	Percent of total tin
	(end of period)	Gross weight	Tin content	production
Dredging	80 552 13 5 10 46	39, 447 28, 783 2, 138 957 3, 061 1, 397	29, 585 21, 587 1, 604 718 2, 296 1, 048	52 38 3 1 4
Total	706	75, 783	56, 838	100

²⁶ Metal Bulletin (London), No. 3805, June 30, 1953, p. 11.

The principal sources of pig tin in the world in 1952 were the large smelting plants of the Eastern Smelting Co., Ltd., Penang, and Straits Trading Co., Ltd., Singapore. These plants decreased their output 5 percent and supplied 37 percent of the world smelter production in 1952. Concentrates treated were derived mostly from Malaya, with smaller tonnages from Thailand, Burma, Indonesia, and French Indo-The tin content of concentrates available from Malaya was 56,800 long tons compared with 57,200 tons in 1951. Imports originating elsewhere contained 7,900 tons of tin against 7,700 in 1951. The exports of tin metal totaled 64,100 long tons, of which the United States received 19,400. Stocks of tin metal decreased from 2,900 long tons at the beginning of 1952 to 1,500 at the end, while stocks of tin in concentrates increased from 4,500 at the beginning to 5,200 at the end.

On November 10, 1952, the report of the United States Tin Mission to Malaya 1951,27 was released by the Department of State, the Department of the Interior, the Defense Materials Procurement Agency, and the Reconstruction Finance Corp.

The conclusions of the report were published in the Tin chapter.

Bureau of Mines Minerals Yearbook, 1951.

The 700 tin-mining concerns in Malaya are owned predominantly by the British and Chinese. In 1952, 46,400 long tons of tin was produced by European mines and 29,300 tons by Chinese mines. The tin-mining industry employed 44,700 workers at the end of 1952, including 21,100 employed by European-owned mines and 23,600 by Chinese-owned mines. The Federation Government collected about \$70,000,000 from the export duty on tin in 1952 at rates that have prevailed for many years.²⁸ The nominal capital of tin companies incorporated in the United Kingdom and registered in Singapore and Malaya at the beginning of 1950 was: 29

Malaya Singapore £10, 833, 530

Table 25 presents exports of tin metal from Singapore and Malaya in 1952:

TABLE 25.—Exports of tin metal from Singapore and Malaya, 1952, in long tons 1

Country	Long tons	Country	Long tons
Canada.	1, 530	United Kingdom	16, 298
United States	19, 381	Yugoslavia	228
		Other Europe	131
Argentina		· .	
Brazil		Hong Kong	
Chile		India	2, 015
Other South America	25	Japan	1, 731 202
Dolaissa	275	Syria Pakistan	198
Belgium Denmark		Turkey	267
France		Other Asia	340
Germany		0 0000	
Greece		Egypt	209
Italy	3, 993	Union of South Africa	409
Netherlands		Other Africa	153
Poland	850	4 4 75	10
Rumania	200	Australia New Zealand	10 18
Spain	140 150	New Zealand	100
SwedenSwitzerland	486	Total	64, 119

¹ Bureau of Mines, Mineral Trade Notes: Vol. 36, No. 3, March 1953.

<sup>Bureau of Mines, Mineral Trade Notes: Special Suppl. 39 (to vol. 35, No. 3), September 1952, p. 26.
Mining Journal (London), Ann. review No., May 1953, p. 151.
International Tin Study Group, Notes on Tin: No. 24, December 1952, p. 396.</sup>

1041 TIN

Nigeria.—The Colony and Protectorate of Nigeria, including the Cameroons under British trusteeship, is the largest British possession in west Africa. The tin deposits are situated chiefly in the Northern Provinces-Plateau, Kabba, Niger, and Benue. Deposits currently worked are alluvial or eluvial and are mined by placer methods. Lode deposits are known to occur. Production of tin in concentrate in Nigeria totaled 8,318 long tons in 1952, a 2-percent decrease from Most of the world supply of columbium (niobium) is recovered from the large tin deposit of the plateau though considerable quantities are also obtained from the Kano and Bauchi Provinces.

South-West Africa.—The 1952 annual report of Ventures, Ltd.,

contained the following statement:

The Uis mine, in the Brandberg area of South-West Africa, has a pilot plant operating on it at present and a mill with a daily capacity of 1,000 tons under construction. The ore is in the form of cassiterite distributed through pegmatites that appear to be very extensive and to have an unusual uniformity in tin content. Ore reserves, from geological mapping and bulk sampling, appear to run into several million tons with a grade that is reported to yield 5 to 6 pounds of tin

Thailand.—Thailand in 1952 ranked as the fifth largest tin-producing country; production of tin in concentrates totaled 9.500 long tons. virtually unchanged from 1951. The tin deposits are situated in two regions—in the Northwest, in a narrow band along the Burmese frontier, where mining is relatively recent, and in the South, where the more important productive areas are situated.

The Thailand Under Secretary of the Ministry of Industry announced 30 at the beginning of 1952 that in the future aliens would be granted no mining concessions north of Chumporn, a province some 200 miles south of Bangkok. Further restrictions on aliens were imposed by a new law requiring many businesses to employ 50

percent Thai personnel and 100 percent Thai accountants.

On September 16, 1952, the foreign exchange surrender requirements on tin exports were reduced from 40 to 20 percent. inet announced that in the future concessions for exploiting natural resources would be limited to Thai nationals. Exceptions would be made in instances where Thai nationals could not finance or operate concessions.31

In 1952, tin-ore exports had an approximate value of \$25 million and composed roughly 8 percent of Thailand's total exports. Government revenue from tin mining royalties in 1952 were estimated at 50 million baht.³² There is no export duty on tin concentrate.³³

In 1948–52, as shown in table 26, a large share of Thailand's exports of tin in concentrates went to the United States.

* Work cited in footnote 31, p. 5.

Foreign Commerce Weekly, vol. 46, No. 11, Mar. 17, 1952, p. 17.
 U. S. Department of State, Semiannual Report: State Dept. Despatch, Bangkok, Thailand, No. 854, Apr. 30, 1953, pp. 12.
 Nominal 1952 exchange rate, b18.75=\$1.00.

TABLE 26.—Exports of tin in concentrates from Thailand, 1948-52, in long tons

Destination	1948	1949	1950	1951	1952
United States	3, 911 1, 740	4, 671 3, 312	2, 908 8, 040 7	2, 727 6, 003 79	4, 677 4, 560 504
Total	5, 651	7, 983	10, 955	8,809	9, 741

United Kingdom.—Mine production in the United Kingdom (Cornwall and Devon) totaled about 1,000 long tons in 1952 compared with about 1,200 in 1951. United Kingdom smelter production of tin was the second largest in the world in 1952. Output increased 13 percent compared with 1951. Year-end stocks of tin in concentrates were 2,400 tons (1,900 at the beginning of the year) and of metal 4,200 tons (8,000 at the beginning). Total stocks, including tin metal and concentrates afloat and visible consumer stocks, were reported to be 7,000 tons at the end of 1952—a 47-percent decrease from 13,100 tons at the beginning of the year. Total virgin tin consumed totaled 22,600 tons, a 6-percent decrease from 1951.

During 1952 both the South Crofty, Ltd., and Geevor Tin Mines, Ltd., had successful years. Although the New Consols mine continued to work throughout most of the year, the directors decided to abandon operations late in the autumn, and the pumps were withdrawn from the lower levels after development results were disappointing. Mineral Recovery, Ltd., was producing tin at the Kieve mill. Another small producer of tin was the Malayan Tin Syndicate,

which is working old dumps at Carnkie near Redruth.34

On January 18, 1952, the Governments of the United States and the United Kingdom concluded an agreement on steel, aluminum, and tin. Under that agreement, the United Kingdom provided for the supply of 20,000 long tons of tin during 1952 in roughly equal installments at \$1.18 per pound for tin of Straits quality or equivalent, f. o. b. Penang, Singapore, London, or Liverpool (at the option of the United Kingdom). By August 1, 1952, the United Kingdom Government had virtually completed the purchase of tin for delivery to the United States pursuant to section C, paragraph 1, of the agreement, dated January 18, 1952.³⁵

Mining Journal (London), Ann. review No., May 1953, p. 171.
 Department of State, Press Release 605, July 31, 1952.

Titanium

By Alfred F. Tumin 1 and Frank J. Cservenyak 2

OVERNMENT programs established in 1952 called for expansion of titanium dioxide pigment and titanium-metal production facilities. Titanium-metal production in 1952 doubled the 1951 output; however, the production of titanium pigments decreased slightly from 1951.

Rutile, required mainly for welding-rod coatings, was in short supply during the first part of 1952. The removal of price controls on rutile resulted in record imports from Australia adequate to meet record

requirements and to double year-end inventories.

An appreciable quantity of titanium slag imported from Canada in 1952 compensated for lower ilmenite imports from India. Domestic

production and shipments of ilmenite changed slightly.

The Bureau of Mines published reports covering investigations on the production and properties of titanium metal and utilization of brookite and titaniferous iron ores. Extensive research on utilization of titanium metal also was reported by other Government agencies and by industry.

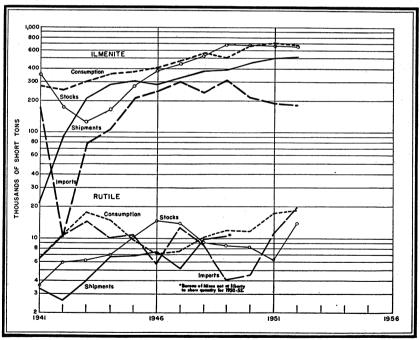


FIGURE 1—Domestic shipments, imports, consumption, and stocks of ilmenite and rutile, 1941-52.

Commodity-industry analyst.
 Chief, Light Metals Branch.

DOMESTIC PRODUCTION

Concentrates.—Output of ilmenite in 1952 decreased 7,200 short tons from the record established in 1951. On the other hand, mine shipments increased 11,700 tons over 1951 and established a new

record for the sixth successive year.

Lower production was reported by the American Cyanamid Co., Piney River, Va.; E. I. du Pont de Nemours & Co., Starke, Fla.; National Lead Co., Tahawus, N. Y.; Rutile Mining Co. of Florida, Jacksonville, Fla.; and the Yadkin Mica & Ilmenite Co., which ceased operations at Findley, N. C., in October 1952. The Florida Ore Processing Co., Melbourne, Fla., tripled its 1951 production, and Baumhoff-Marshall, Inc., doubled its 1951 recovery of ilmenite from monazite operations at Boise, Idaho. Production of Baumhoff-Marshall, Inc., included output of the Idaho-Canadian Dredging Co. and Warren Dredging Corp. Ilmenite statistics in 1952 include a mixed product containing ilmenite, rutile, and leucoxene. Of the total ilmenite production, New York continued to supply over half and Florida about one-third; the remainder came from North Carolina, Virginia, and Idaho. A small quantity of low-grade ilmenite produced in California for nontitanium use is not included in the production and shipments of titanium concentrates.

Factors that contributed to the new peak in ilmenite shipments in 1952 were larger shipments from the National Lead Co., Tahawus, N. Y., and the Yadkin Mica & Ilmenite Co., Finley, N. C. The latter company in 1952 shipped all of its production and material in stock. Shipments by other ilmenite producers were about the same as production, except for Baumhoff-Marshall, Inc., which reported no ilmenite shipments in 1952. Shipments of ilmenite ranged from 45

to 66 percent TiO₂.

Rutile production in the United States in 1952 decreased slightly from 1951 output. Rutile was produced in 1952 by the Rutile Mining Co. of Florida, Jacksonville, Fla., and the Florida Ore Processing Co., Melbourne, Fla. Domestic production of rutile is not published as it would disclose operations of the major producer. Shipments of rutile ranged from 93 to 97 percent TiO₂.

Under the Defense Production Act of 1950, the Defense Minerals Exploration Administration issued Order 1 on March 7, 1952, placing rutile and brookite in the classification of strategic and critical minerals and set forth provisions whereby the Government would contribute up to 75 percent of the total exploration cost of these minerals.

Titanium Pigments.—Production and shipments of titanium pigments in 1952 decreased 4 and 11 percent, respectively, from 1951, as production dropped to the 1950 level, and shipments fell to near the 1948 figure. Titanium pigments were produced by the American Cyanamid Co., Calco Chemical Division, Bound Brook, N. J.; Chemical & Pigment Co. Division of the Glidden Co., Baltimore, Md.; E. I. du Pont de Nemours & Co., Wilmington, Del.; and the National Lead Co., New York, N. Y. Statistics in this industry are supplied in confidence and consequently are not given here. The percentage distribution of titanium-pigment shipments, by consuming industries, is shown in table 3.

TABLE 1.—Production and mine shipments of titanium concentrates from domestic ores in the United States, 1943-47 (average) and 1948-52, in short tons

		Iln	nenite			Ru	itile	
Year	Produc-		Shipmen	ts	Produc-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Shipments	3.
	tion (gross weight)	Gross weight	TiO ₂ content	Value	tion (gross weight)	Gross weight	TiO ₂ content	Value
1943-47 (average)	281, 931 383, 745 402, 334 1 468, 320 1 535, 835 1 528, 588	283, 959 381, 508 389, 234 1 452, 370 1 510, 840 1 522, 515	130, 436 177, 447 186, 535 1 230, 826 1 261, 982 1 265, 596	\$5, 675, 565 5, 793, 973 6, 212, 348 1 5, 606, 584 1 7, 689, 272 1 8, 022, 752	6, 821 7, 380 111, 988 (2) (2) (2) (2)	6, 044 9, 907 110, 559 (2) (2) (2)	5, 645 9, 226 1 9, 414 (2) (2) (2)	\$819, 890 647, 334 1489, 798 (2) (2)

¹ Includes a mixed product containing altered ilmenite; leucoxene, and rutile.
² Bureau of Mines not at liberty to publish.

Defense Production Administration announced on April 3, 1952, an expansion goal for titanium dioxide pigments calling for an annual production capacity of 370,000 short tons by January 1, 1954—an expansion of 88,000 tons over the capacity of January 1, 1951. Taxamortization certificates approved as of February 20, 1953, provided for 69,000 tons of the expanded capacity. The remaining 19,000 tons was open for issuance of certificates of necessity.

Metal.—Commercial titanium-sponge production in 1952 totaled 1,075 short tons, approximately double the 1951 output, coming from plants operated by E. I. du Pont de Nemours & Co., at Newport, Del.; Titanium Metals Corp. of America, Henderson, Nev.; Crane Co., Chicago, Ill.; and the Bureau of Mines during research operations

at its Boulder City, Nev., pilot plant.

The Defense Production Authority, in November 1952, set its goal for production of commercial titanium sponge at 22,000 short tons per year by the end of 1955. The Titanium Metals Corp. of America signed a letter of intent in August 1951 for construction and operation of a plant at Henderson, Nev., to produce 3,600 tons of titanium per year for 5 years. An advance of \$15,000,000 was made to Titanium Metals Corp. of America by the Government to carry on this work. One year later (July 28, 1952), the Defense Materials Procurement Agency contracted with E. I. du Pont de Nemours & Co., Wilmington, Del., for additional production of 13,500 short tons of titanium sponge during the next 5 years. The Government will advance the company \$14,700,000 to increase the capacity of its Newport, Del., plant to 10 tons per day. The agreement with Du Pont is similar to one the Government made with Titanium Metals Corp. of America in August 1951, whereby the loan, plus interest of 4 percent a year on the unpaid balance, is repayable either in dollars or in titanium metal.

The revolving-fund purchase and resale program, established by General Services Administration in August 1951 to maintain capacity operation of sponge-manufacturing facilities during the period of development of military applications, continued throughout 1952 to

assure an increased supply of titanium and the utilization of such supply in the manner most advantageous to national defense. The revolving fund contained \$5,000,000 for the purchase and resale of not more than 1 million pounds of titanium sponge at not over \$5 per pound. following specifications were set up for purchase of titanium sponge under this program: Titanium, 99.3 percent minimum; iron, 0.25 percent maximum; nitrogen, 0.03 percent maximum; magnesium, 0.10 percent maximum; chlorine, 0.15 percent maximum; and Vickers hardness No. 250 (Brinell hardness No. 225) maximum. The first contract to sell titanium sponge to the Government under this program was negotiated in 1951 between E. I. du Pont de Nemours & Co., Wilmington, Del., and GSA with the expiration date being March 15, 1952; however, this contract was extended to December 31, 1952, at the company's request, and in the latter part of 1952 negotiations were made to continue this program, with revised specifications, until December 1953. E. I. du Pont de Nemours & Co. sold to the Government, as of December 31, 1952, 303 short tons of titanium sponge. Five tons of metal, that was placed in the revolving-fund stockpile October 21, 1951, was resold to Rem-Cru Titanium, Inc., Midland, Pa., in September 1952, and was reported satisfactory for production of milled products. As of October 15, 1952, 280 short tons of titanium sponge sold by Du Pont contained the following average quality, based on analysis by the manufacturer and confirmed by the Bureau of Mines for GSA; in percent: Titanium, 99.64; iron, 0.16; nitrogen, 0.025; magnesium, 0.04; chlorine, 0.11; and Brinell hardness No. 172. The revolving-fund stockpile is intended as a temporary reserve of titanium sponge available for resale and is in no way connected with the National Stockpile. Negotiations were under way at the end of 1952 between Defense Materials Procurement Agency and Titanium Metals Corp. of America for inclusion of that company under a similar purchase and resale contract

High-purity titanium (99.9 percent Ti) was produced, by thermal decomposition of volatile titanium iodides, by the Foote Mineral Co., Philadelphia, Pa., throughout 1952 and by the New Jersey Zinc Co., Palmerton, Pa., in the first quarter of 1952. Titanium alloyed and unalloyed mill products were manufactured by the Titanium Metals Corp. of America, New York, N. Y.; Rem-Cru Titanium, Inc., Midland, Pa.; Mallory-Sharon Titanium Corp., Niles, Ohio; and Republic Steel Corp., Cleveland, Ohio. Titanium tubing was supplied by the Superior Tube Co., Norristown, Pa., and the Trent Tube Co., East Troy, Wis., in unalloyed grades.

Titanium Powder.—Metal Hydrides, Inc., Beverly, Mass., produced 201,000 pounds of titanium powder (96 to 98 percent Ti) in 1952, by reducing titanium oxide with calcium hydride, an increase of 57,000 pounds over 1951 output. Titanium metal produced in the form of powder can be compressed into suitable forms and sintered either in vacuum or in a nonoxidizing atmosphere, into solid blocks or finished products at as low a temperature as 1,000° C.

Inventory controls that called for a practicable minimum working inventory were placed on titanium products, such as sponge, semifabricated shapes, sheets, tubes, extrusions, titanium-bearing alloys and titanium-base alloy scrap as of October 22, 1951, under NPA Regulation 1, as amended, and remained in effect throughout 1952. TITANIUM 1047

New titanium organizations were formed in 1952. The Titanium Co. of America, East Chicago, Ind., chartered in Delaware, was organized by the Christiansen Corp., Chicago, Ill., to manufacture wrought products from titanium. The Glidden Co., Cleveland, Ohio, and Bohn Aluminum & Brass Corp., Detroit, Mich., combined their research facilities to develop methods for producing pure titanium and titanium alloys. It was also reported that research studies will be conducted in Glidden's laboratory at Baltimore, Md., and in Bohn's laboratory at Detroit, Mich. The Kennecott Copper Corp. constructed a 200-pound pilot plant at the Battelle Memorial Institute, Columbus, Ohio, in 1952 to develop and evaluate several methods of producing titanium metal. Kennecott Copper Corp. also announced that a new Research and Development Department for Chase Brass & Copper Co. was established at Waterbury, Conn., to conduct research on the production, treatment, and uses of copper and titanium alloys, and other metals.

Welding-Rod Coatings.—Production of titanium-coated welding rods was 266,400 short tons in 1952, a decrease of 7 percent under the 287,100 short tons in 1951; 188,000 short tons was coated in 1950 and 154,000 in 1949. Record production of 481,000 tons was reported in 1943. Of the 1952 tonnage, 48 percent was coated with natural rutile, 18 percent with manufactured titanium dioxide, 17 percent with a mixture of rutile and manufactured titanium dioxide, and 17

percent with ilmenite.

CONSUMPTION AND USES

Ilmenite consumption in 1952 decreased 30,500 short tons (21,500 tons titanium dioxide) from 1951. Ilmenite consumption was lower in the titanium-pigment industry; however, this decrease was offset by using 24,200 short tons of titanium slag containing 16,800 tons of titanium dioxide. Titanium slag imported from Canada in 1952 was consumed for the first time in appreciable quantities for titanium pigments, welding-rod coatings, and chlorinating experiments. Titanium slag is discussed further under World Review. Rutile consumption totaled 18,300 short tons in 1952—an increase of 1,100 tons over 1951—and established a new record. The previous record set in 1943 totaled 17,600 tons. The increase in rutile consumption was caused by expansion of the titanium-metal industry.

An analysis of titanium aircraft-engine parts as compared to alloy steels showed the following weight savings, per part: Propeller shaft, 21 pounds; crankshaft front, center, and rear, 18, 24, and 13 pounds, respectively; articulated and master rods, 1 and 7 pounds; rocker arm, 0.4 pound; turbine support, 1 pound; and compressor-rotor disk, stator blade, and rotor blade, 11, 0.02, and 0.04 pound, respectively. Other comparisons between these metals were described also.³

³ Hanink, H. H., Titanium Aircraft Engine Parts, an Analysis: Iron Age, vol. 1, No. 20, May 15, 1952, pp. 121-125.

TABLE 2.—Consumption of ilmenite and rutile in the United States, 1943-49 total, and 1950-52, by products, in short tons

	Пme	enite	Ru	tile
Product	Gross weight	Estimated TiO ₂ content	Gross weight	Estimated TiO ₂ content
1943 1944 1945 1946 1947 1947 1948	381, 178 404, 283	142, 868 175, 475 187, 580 202, 663 250, 859 300, 408 268, 000	17, 634 14, 813 9, 791 7, 134 7, 692 10, 230 111, 888	16, 451 13, 837 9, 144 6, 670 7, 083 9, 488
Pigments (manufactured titanium dioxide) 12	210 7, 666	347, 747 106 3, 803	(3) 9, 218 1, 454 195 854	(2) 8, 516 1, 366 185 802
Total	679, 244	351,675	11,721	10, 869
Pigments (manufactured titanium dioxide) 12	258 10,024	367, 937 130 4, 962	(3) 11, 708 2, 939 265	(³) 10, 834 2, 752 248
Miscellaneous	13	8	4 2, 315	4 2, 184
Total	713, 363	373, 037	17, 227	16, 018
1952 8				
Pigments (manufactured titanium dioxide) 12. Welding-rod coatings 2. Alloys and carbide. Ceramics. Miscellaneous.	719 11, 293	345, 368 416 5, 763 3	(3) 11, 418 2, 997 281 4 3, 621	(3) 10, 798 2, 858 265 4 3, 432
Total	682, 850	351, 553	18, 317	17, 353

Includes a mixed product containing altered ilmenite, leucoxene, and rutile used to make pigments

4 Includes metal and fiberglass

Commercially pure and alloy-grade titanium metal was reported used as a substitute for aluminum alloy and stainless steel in aircraft engine nacelles in 1952. According to aircraft manufacturers, the weight reduction by using titanium in aircraft structural parts, such as fuselage webs, channels, frames, and angles where operating temperatures do not exceed 800° F., would increase the operating range of an airplane by 150 miles. Additional reduction of 300 pounds in the weight of an airplane can be obtained, according to the manufacturers, by replacing 88 percent of the skin of the engine nacelles with titanium sheet.⁴ The United States Air Force announced that

June 19, 1952, p. 7.
Eshman, A. N., Titanium Sheet Metal Parts Successfully Made: Iron Age, vol. 170, No. 3, July 17, 1952, pp. 132–135.

and metal.

2 "Pigments" includes all manufactured titanium dioxide, consumption of which in welding-rod coatings was 1,439 tons in 1950, 1,770 tons in 1951, and 2,209 tons in 1952.

3 Included with "Miscellaneous," to avoid disclosure of individual company operations.

A total of 24,236 short tons (16,746 tons TiO₂) of titanium slag was consumed in 1952 for titanium pigments, welding-rod coatings, and experimental purposes.

⁴ Light Metals Bulletin, vol. 14, No. 24, Dec. 4, 1952, p. 17.
Engineering and Mining Journal, Metal and Mineral Markets, Titanium in Planes; Vol. 23, No. 25,

530 pounds of sheet titanium instead of sheet steel was to be used in the production of certain airframe parts for the B-36 bomber.⁵

Evaluation service tests were performed by the Bureau of Ships, USN, on use of titanium in wet exhaust mufflers for submarine diesel engines; meter disks for oil, gasoline, and salt-water meters; condenser and heat-exchanger tubes with high water velocities; seats for saltwater valves; and blades for steam turbines. water valves; and blades for steam turbines. The exhaust muffler, tested 900 hours under normal wet operation and 100 hours under thermal shock operation, showed no perceptible damage; meter disks were found superior to all other materials including aluminum; condenser and heat-exchanger tubes tested over a year were found in perfect condition; the titanium seats for the salt-water globe valve tested for 18 months were found in perfect condition. Some difficulty was encountered in cold-peening the tenons onto the shrouds when using titanium blading for steam turbines installed in a low-pressure, lowtemperature (400° F.) 300-kw. turbogenerator, owing to cracking of the tenons; however, this was overcome by peening at temperatures between 600° to 900° F. Applications of titanium in an 8-foot section of submarine snorkel tubing, submarine superstruction and fairwater construction, aircraft landing gear components and propeller blades, armor plate, and a 30-gallon ships-service hot-water tank were also under investigation during 1952.6

TABLE 3.—Distribution of titanium-pigment shipments, by industries, 1938-47 (average) and 1948-52, in percent of total

Industry	1938–47 (average)	1948	1949	1950	1951	1952
Distribution by gross weight:						
Paints, varnishes, and lacquers	78.4	76.4	74.5	74.5	73. 3	70.9
Paper	6.6	5.4	6.6	6. 2	5.9	7.0
Floor coverings (linoleum and felt base)	2.8	4.5	4.6	4.2	4.4	5.0
Rubber	2.1	2.5	3.1	3.0	2. 5	2.8
Coated fabrics and textiles (oilcloth, shade cloth,]
artificial leather, etc.)	2.4	2.1	1.6	1.5	1.5	2.1
Printing ink	1.0	.9	.9	.9	1.3	1.0
Other	6.7	8.2	8.7	9.7	11.1	11.2
Total	100.0	100.0	100.0	100.0	100.0	100.0
Distribution by titanium dioxide content:						
Paints, varnishes, and lacquers	70.2	69.9	67. 5	66.9	64. 9	62. 9
Paper	9.5	7.4	9.6	9.1	8.9	10. 4
Floor coverings (linoleum and felt base)	3.9	5. 9	5.8	5. 2	5. 7	5. 6
Rubber	2.7	3. 2	3.9	3.9	3. 4	3.6
Coated fabrics and textiles (oilcloth, shade cloth,						
artificial leather, etc.)	3.1	2.7	2.1	2.0	2.1	2. 9
Printing ink	1.6	1.4	1.4	1.4	1.8	1.6
Other	9.0	9. 5	9.7	11. 5	13. 2	13.0
Total	100.0	100.0	100.0	100.0	100.0	100.0

<sup>Iron Age, Airborne Titanium: vol. 176, No. 14, Oct. 9, 1952, p. 215.
Michalos, Lt. G. P., USNR, Titanium—The New Metal: Bureau of Ships Jour., vol. 1, No. 5, September 1952, pp. 7-14.
Beardman, E. L., Navy Has Large Titanium Program: Jour. Metals, vol. 5, No. 2, February 1953, pp.</sup>

138-139.

The Army Ordnance Corps, USA, authorized production of 81 mm. mortar-base plates from titanium in 1952. The lightness of titanium as compared to steel allowed the mortar-base plate to be redesigned to a 1-piece welded construction, weighing only 24 instead of 48 pounds, and releasing 1 man for other duties. Other items from titanium, such as armor plate for tanks and vehicles, flash suppressors. structural components such as outriggers, and helical springs, were under test.7

At the National Metal Exposition in October 1952, at Philadelphia, Pa., a titanium ingot weighing 4,000 pounds and a continuous sheet of titanium coil, 0.015 inch thick, 460 feet long, and worth \$12,000, were displayed for the first time. A model of the J-47 Air Force engine highlighted the uses of titanium in blades, casings, compressor wheels, and other components. Titanium was displayed also in the following forms: 0.38 caliber paratrooper's pistol, filters, cutting tools, valves, and other machine parts. An organic bonding agent ideal for low-heat bonding of titanium was revealed, and parts drawn from

commercially pure titanium were demonstrated. Staurolite (2FeO.5Al₂O₃.4SiO₂.H₂O), previously wasted, was recovered in 1952 from ilmenite operations in Florida by using inducedroll magnetic separators. This mineral, containing approximately 50 percent Al₂O₃, was reported as a source of aluminum and iron in making cement. Staurolite production schedules called for 25,000 tons per year; however, plant capacity in 1952 was reported at about

35,000 tons per year.8

Tanarc produced from titanium slag was manufactured in 1952 by the Foote Mineral Co., Philadelphia, Pa., and consumed in the welding-electrode industry as a partial substitute for rutile. which contains about 70 percent TiO₂, was not used as a complete substitute for natural rutile but was mixed with rutile to yield a product containing approximately 25 percent Tanarc. Additional research by the electrode manufacturers may increase the proportion of Tanarc up to 50 percent in the mixture. Production of Tanarc, considered still in the development stage, was estimated at 500 tons in 1952.

Titanium dioxide rectifiers, consisting of a layer of semiconducting titanium dioxide, a sheet of titanium metal, and a counterelectrode of some other conducting material, were described in an article released by the National Bureau of Standards. The rectifiers were reported to withstand reverse voltages of 20 volts per plate and

operate satisfactorily at elevated temperatures.9

Studies on the use of titanium pigments, anatase and rutile, for exterior house paints showed that after exposure for 5 years rutilepigment paint protected the surface and was in good condition for repainting, whereas the anatase paint had completely chalked away and offered no protection to the surface. Repeat tests on the same

⁷ Mesick, Col. B. S., Titanium Evaluated for Ordnance: Jour. Metals, vol. 5, No. 2, February 1953,

Pp. 136-137.

Engineering and Mining Journal, Induced-Roll Magnetic Separators Now Recovering Staurolite Formerly Wasted: vol. 153, No. 12, December 1952, pp. 108-109.

Breckenridge, R. G., and Hosler, W. R., Research Paper 2344: Nat. Bureau of Standards, Jour. Research, vol. 49, No. 2, August 1952, pp. 65-72.

paints but with short exposures showed clean, white, mildew-free panels for anatase paints and dirty mildewed surfaces for the rutile Other comparisons between these two pigments were discussed. 10 An informal summary on the development, production, properties, and uses of titanium pigments was also published.11

STOCKS

Year-end stocks of ilmenite decreased slightly in 1952 and were equivalent (TiO2 content basis) to 11½ months' requirements at the rate of consumption in 1952. The pigment producers reported lower ending inventories in 1952; however, this was offset by an increase in stocks of titanium slag. Stocks of titanium slag increased from 3,000 short tons at the end of 1951 to 17,000 in 1952. Rutile stocks in 1952 more than doubled 1951 ending inventories and would sustain industry (TiO2 content basis) at the 1952 rate of use for 9 Even though rutile consumption in 1952 established a new peak, supply was greater than demand owing to record imports from Australia, the sole supplier of rutile to the United States in 1952.

The National Production Authority announced inventory controls on rutile January 28, 1952, in NPA Regulation 1, as amended: however, rutile was removed from the inventory control list September 9, 1952, in NPA Regulation 1, as amended.

TABLE 4.—Stocks of titanium concentrates in the United States at end of year 1951-52, in short tons

		198	51 1		1952 2				
~. ·	Ilmenite		Ilmenite Rutile		Ilmenite		Rutile		
Stocks	Gross weight	Esti- mated TiO ₂ content	Gross weight	Esti- mated TiO ₂ content	Gross weight	Esti- mated TiO ₂ content	Gross weight	Esti- mated TiO ₂ content	
Mine Distributors ³ Consumers	57, 139 692 619, 714	26, 925 415 307, 211	55 539 5,801	51 511 5, 491	63, 212 958 610, 499	30, 621 574 307, 993	306 5, 353 8, 156	285 5, 113 7, 765	
Total stocks	677, 545	334, 551	6, 395	6, 053	674, 669	339, 188	13, 815	13, 163	

3 Includes ilmenite and rutile content of mixed zirconium-titanium concentrates.

PRICES

Ore.—Quotations in E&MJ Metal and Mineral Markets for 1952, per gross ton for ilmenite containing 56 to 59 percent TiO₂, f. o. b. Atlantic seaboard, were \$16-\$18 at the beginning of 1952 and increased to \$16-\$20 in March and to \$18-\$20 in April, at which level the price of ilmenite remained for the rest of the year. All quotations were nominal.

Revised figures reflecting inventory corrections reported by industry.
 Consumers stocks of titanium slag imported from Canada totaled 17,000 short tons containing 12,000 tons of estimated TiOs.

Paint, Oil and Chemical Review, Francis G. Smith Tells N. Y. Production Men About Titanium:
 vol. 115, No. 6, Mar. 13, 1952, p. 61.
 II. E. I. du Pont de Némours & Co., Wilmington, Del., Titanium—The Common Rarity: February 1952.

Nominal quotations for rutile guaranteed minimum 94 percent concentrates were 5½ to 6½ cents per pound at the beginning of the year and decreased on January 3, 1952, to 3½ to 4½ cents per pound and then increased during the year as follows: 4 to 5 cents at the end of January; 5 to 7 cents in March; 6 to 8 cents in April; 7 to 8 cents in September; and 7 to 8½ cents a pound in November 1952, where they

remained for the rest of 1952.

Amendment 13 to General Overriding Regulation 13, issued January 18, 1952, by the Office of Price Stabilization, Economic Stabilization Agency, exempted from price control all sales of imported and domestic rutile ores and concentrates and the allied services of mining and processing such materials. Rutile, under coverage of General Ceiling Price Regulation, January 27, 1951, was removed from price control to permit domestic consumers and dealers to compete with other countries in obtaining this material and to allow domestic producers to continue production by meeting higher operating costs.

to continue production by meeting higher operating costs.

Tanarc, containing 70 percent TiO₂, was quoted by the Foote Mineral Co., Philadelphia, Pa., in 1952, at \$130 per ton, after process-

ing, grinding, etc., in carlots, f. o. b. Exton, Pa.

Ferrotitanium.—Price quotations on all grades of ferrotitanium remained the same in 1952 as that quoted in the latter part of 1951. Steel Magazine quoted ferrotitanium in 1952 as follows:

Ferrotitanium, low-carbon:	
(Ti, 20-25 percent: Al, 3.5 percent maximum; Si, 4 percent maxi-	
mum; C, 0.10 percent maximum). Contract, ton lots 2" x D.	
per pound of contained Ti	\$1.50
Less-than-ton lots per pound	
(Ti, 38-43 percent, Al, 8 percent maximum, Si, 4 percent maxi-	
mum: C, 0.10 percent maximum). Ton lots per pound	1. 35
Less-than-ton lots per pound	

The above prices are f. o. b. Niagara Falls, N. Y., freight allowed to St. Louis, spot add 5 cents.

Ferrotitanium, high-carbon:
(Ti, 15-18 percent; C, 6-8 percent) contract per net ton, f. o. b.
Niagara Falls, N. Y., freight allowed to destination east of
Mississippi River and north of Baltimore and St. Louis______ \$177
Ferrotitanium, medium-carbon

(Ti, 17-21 percent; C, 2-4.5 percent) contract per ton, f. o. b. Niagara Falls, N. Y., freight not exceeding St. Louis rate allowed

Metal.—The price of titanium-sponge metal in 1952 remained the same as in 1951 at \$7.50 per pound in quantities of less than 100 pounds and \$5 per pound in quantities of 100 pounds or more, all prices f. o. b. shipping point. Titanium-metal prices, commercially pure and alloy grades, as quoted in Steel Magazine and by the Titanium Metals Corp. of America, New York, N. Y., also remained the same during 1952; base prices per pound in lots of 10,000 pounds and over in commercially pure and alloy grades, f. o. b. mill were as follows; Hot- and cold-rolled sheets, \$15, Brackenridge, Pa.; hot-rolled sheared mill plate, \$12, Brackenridge; cold-rolled strip, \$15, West Leechburg, Pa.; rolled or cold-drawn round bar in small diameters and round wire, \$10, Dunkirk, N. Y.; forgings (rounds, disks, and round-cornered squares and rectangles), \$6, Watervliet, N. Y., hot-rolled bars (rounds, flats, and squares), \$6, Watervliet. Extremely pure titanium made by the iodide process was quoted by the Foote Mineral Co.,

TITANIUM 1053

Philadelphia, Pa., at \$95 per pound in lots of 100 pounds and up, in lots less than 100 pounds, \$125 per pound, f. o. b. Exton, Pa., with a minimum order of \$10. This metal was available as crystalline bars approximately ½ inch in diameter by 19 inches in maximum length.

Powder.—Titanium powder (97 percent Ti) was quoted by Metal Hydrides, Inc., Beverly, Mass., in 1952, at \$9 a pound in single pound quantities and \$7.95 a pound in 5,000 pound quantities, f. o. b. Beverly, Mass.

Manufactured Titanium Dioxide.—Manufactured titanium dioxide (anatase), ceramic, chalk-resistant, and regular grade in bags, carlots, delivered, were all quoted throughout 1952 at 21–21½ cents per pound. Rutile, nonchalking, was quoted at 23–23½ cents during 1952.

FOREIGN TRADE 12

Imports.—Increased imports from Canada counterbalanced lower ilmenite imports from India. Titanium slag accounted for 99 percent of the titanium concentrates imported from Canada in 1952. Rutile imported from Australia in 1952 increased 74 percent over 1951 and established a new record over that previously set in 1943. Rutile imports were slightly higher in 1952 than domestic rutile consumption. Shortage of rutile at the end of 1951 caused United States buyers to contract in advance to meet military requirements in 1952.

Imports of titanium potassium oxalate and compounds and mixtures containing titanium including titanium pigments totaled 72,500 pounds in 1952 coming from Austria (400), Canada (1,300), France (4,400), Italy (62,300), and the United Kingdom (4,100). This material was valued at \$17,900. Ferrotitanium valued at \$116,700 was imported from France (28,300 pounds) and the United Kingdom (195,700 pounds). Value of titanium metal imported from Canada (500 pounds) and France (44 pounds) totaled \$2.500 in 1952.

(500 pounds) and France (44 pounds) totaled \$2,500 in 1952.

Exports.—Shipments of titanium dioxide and pigments in 1952 declined 9 percent under the record established in 1951. was the major recipient of titanium pigments from the United States in 1952 receiving 21,300 short tons, a decrease of 4,700 tons from that shipped in 1951. Other countries receiving 500 tons or more were as follows: Belgium and Luxembourg, 1,300; Brazil, 1,800; Cuba, 980; France, 1,100; Italy, 800; Japan, 800; Mexico, 2,000; Netherlands, 1,100; and Union of South Africa, 1,100. The remaining 3,400 tons were distributed among 45 other countries. Exports of titanium concentrates increased slightly in 1952 over 1951, as 867 and 3 short tons were shipped to Canada and Hong Kong, China, respectively. Two new export classifications; namely, titanium metals and alloys in crude form and scrap and titanium metal in primary form, were initiated by the Department of Commerce in 1952 owing to the increased production of titanium metal. Metals and alloys in crude form and scrap were shipped in 1952, in pounds, to Canada, 1,520,000; France, 1,400; Italy, 2,200; and the United Kingdom, 1,300, whereas recipients of titanium metal in primary forms were, in pounds, Belgium and Luxembourg, 4,500; Canada, 2,100; and the United Kingdom, 300. Exports of titanium ferroalloys in 1952 about doubled

¹² Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines,, from records of the U. S. Department of Commerce.

1951 shipments as exports to Canada totaled 290 short tons, an increase of 126 tons over 1951. The remaining quantity of 70,300 pounds was shipped to Chile, 7,000; France, 14,600; Italy, 25,200; the United Kingdom, 22,500; and Western Germany, 1,000.

TABLE 5.—Titanium concentrates 1 imported for consumption in the United States, 1943-47 (average) and 1948-52, by countries, in short tons

[U. S. Department of Commerce]

Country of origin	1943-47 (average)	1948	1949	1950	1951	1952
ILMENITE						
Australia	776	(2)		112	100	
Brazil Canada	3, 205 22, 675	8, 708 4, 519	540	1,357	³ 3, 776	4 38, 451
CeylonEgypt	930		721			
FranceIndia	146, 369	184, 309	289, 739	1 187, 834	185, 145	145, 562
Malaya	12, 200	3, 335	33,155	27, 155	56	
Norway	12, 200	41, 248	33, 100	21, 100		
Total as reportedAustralia: In "zirconium ore" \$_	186, 155 1, 999	242, 119	324, 157	216, 459	189,078	184, 013
Grand totalValue of "as reported"	188, 154 \$1, 084, 933	242, 119 \$1, 758, 848	324, 157 \$2, 479, 071	216, 459 \$1, 198, 545	189,078 \$1,323,438	184, 013 \$2, 478, 077
RUTILE						
Australia Brazil	3, 921 1, 371	8, 771	3,085	3, 427	11,023	19, 394
French Cameroon	220					
IndiaNorway	213	(2)				
Total as reported	5, 725	8, 771	3,085	3, 427	11,023	19, 394
Australia: In "zirconium ore" In "ilmenite"	3, 955 1, 012		1,096	1,133	210	156
Grand totalValue of "as reported"	10, 692 \$375, 336	8, 771 \$588, 713	\$ 4, 181 \$179, 746	\$ 4,560 \$149,733	\$ 11, 233 \$491, 383	19, 550 \$1, 728, 803

¹ Classified as "ore" by the U. S. Department of Commerce.

2 Less than 1 ton.

8 Revised figures.

TABLE 6.—Exports of titanium products from the United States, 1943-47 (average) and 1948-52, by classes

[U.S. Department of Commerce]

Year	Ore and concentrates				Primary forms, n. e. c.		Ferroalloys		Dioxide and pig- ments	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1943-47 (average) 1948 1949 1950 1951	825 1, 454 1, 505 600 646 870	\$134, 259 187, 225 143, 412 57, 753 63, 050 110, 737	(¹) (¹) (¹) (¹) (¹) 762	(1) (1) (1) (1) (1) (1) \$31, 134	(1) (1) (1) (1) (1) (1) (3)	(1) (1) (1) (1) (1) \$38, 979	671 480 179 171 175 325	\$102, 349 82, 874 40, 918 42, 741 107, 718 88, 664	26, 824 29, 621 32, 660 39, 242	\$2, 854, 779 7, 126, 956 8, 140, 991 8, 799, 758 13, 274, 143 10, 691, 698

¹ Before Jan. 1, 1952, not separately classified.

Less than 1 ton.
 Includes titanium slag.
 Chiefly all titanium slag averaging about 70 percent TiO₂.
 Ilmenite content of zirconium ore as reported to the Bureau of Mines by importers.
 Rutile content of zirconium ore as reported to the Bureau of Mines by importers.
 Rutile content of ilmenite as reported to the Bureau of Mines by importers.

TITANIUM 1055

TECHNOLOGY

Investigations on a vacuum-distillation process for removing magnesium and magnesium chloride from titanium sponge produced by modifications of the Kroll process were conducted on a pilot-plant scale by the Bureau of Mines laboratory at Boulder City, Nev., with results far superior to those achieved by the method of grinding and leaching. In the purification method, magnesium metal and chloride were volatilized away from titanium in a vacuum at about 930° C., leaving the titanium virtually magnesium-free in sponge-metal form. A description of the pilot-plant equipment, techniques of operation, method of sponge recovery, operation data, and power and labor requirements are discussed in a Bureau of Mines report. 13

Pilot-plant investigations on 105 production runs in which titanium metal was made in 200-pound batches were made by the Bureau of Mines at Boulder City, Nev. Techniques developed in these studies brought about a decrease in the moisture absorbed by the magnesium chloride in the reaction mass, lowered iron contaminations, eliminated the labor- and time-consuming job of cleaning the vessel after each reduction, and lowered the temperature during reduction from 850° to 750° C. to give better and more consistent results. The equipment and techniques used in preparing raw material, the reduction process, removal of the mass from the reaction vessel and data on man-hour

requirements were published in a Bureau of Mines report.¹⁴

Mineral-dressing investigations on titanium ore samples from the Christy deposit in the Magnet Cove area, Hot Spring County, Ark., conducted by the Bureau of Mines laboratory at Rolla, Mo., produced flotation concentrates containing 91 to over 92 percent titanium diox-Two samples of the titanium-bearing ore averaging about 6.0 percent titanium dioxide yielded a 60.6-percent recovery at a grade of 92.8 percent titanium dioxide and a 55.2-percent recovery at a grade

of 91.2 percent titanium dioxide.15

Studies were made by the Bureau of Mines laboratory at College Park, Md., on the recovery of titania, iron, and byproducts from titaniferous iron ore from deposits at Tahawus, N. Y., and Woonsocket, R. I. Ore from Tahawus, N. Y., was roasted with coke and soda ash, wetground, and magnetically separated to produce powered iron and slag. Titania and byproducts were recovered from the slag by acid decom-Combined data from tests indicated that 85 to 90 percent of the titania content of the ore is recoverable and about 90 percent of the iron can be recovered as a metallic-iron powder.

With certain modifications, the process used fon the Tahawus magnetite was reported applicable to a titaniferous iron ore from Iron

Mine Hill near Woonsocket, R. I.¹⁶

Development of a method for treating titaniferous magnetite ore from the Iron Mountain, Wyo., deposit to recover vanadium, iron, and titanium as high-grade, salable products was reported by the

 ^{**}Cook, M. A., and Wartman, F. S., Removal of Magnesium and Magnesium Chloride From Titanium Sponge by Vacuum Distillation: Bureau of Mines Rept. of Investigations 4837, 1952, pp. 1-17.
 **Fuller, H. C., Baker, D. H., Jr., and Wartman, F. S., Recent Practice at the Bureau of Mines Boulder City, Nev., Titanium Plant: Bureau of Mines Rept. of Investigations 487, 1952, pp. 1-20.
 **Fine, M. M., and Frommer, D. W., Minera-Dressing Investigation of Titanium Ore From the Christy Property, Hot Spring County, Ark.: Bureau of Mines Rept. of Investigations 4851, 1952, pp. 1-7.
 **MacMillian, R. T., Heindl, R. A., and Conley, J. E., Soda-Sinter Process for Treating Low-Grade Titaniferous Ores: Bureau of Mines Rept. of Investigations 4912, 1952, pp. 1-15.

Bureau of Mines laboratory at Salt Lake City, Utah. A mixture of sodium carbonate and titaniferous ore was roasted and then leached The leach residue smelted in an arc furnace to obtain vanadium. returned an iron product assaying less than 0.1 percent vanadium and titanium. Titanium was recovered in a soda slag, assaying 60 percent titanium dioxide and 2 percent iron, which was upgraded to 75 to 80 percent titanium dioxide by leaching with dilute sulfuric acid.17

Studies were made in 1952 at the Bureau of Mines laboratory, College Park, Md., on corrosion rates for titanium-, zirconium-, and chromium-nickel (20-29)-type stainless steel in mineral acids and metal chlorides. Titanium was fully resistant to corrosion in concentrations of nitric acid and in an atmosphere of water-saturated chlorine and solutions of alkali and alkaline earth chlorides; satisfactorily resistant to all concentrations of phosphoric acid only at lower temperatures; and highly resistant to attack by hypochlorite solutions. Heavy-metal chloride solutions, such as ferric, cupric, mercuric, etc., had a negligible effect on titanium.18 Electrode potential measurements and corrosion data showed that titanium was passive in hydrochloric acid solutions in the presence of air or copper ion. 19

Investigations on the machining of titanium were conducted by a number of companies in 1952. It was reported that machining of titanium compared with mild steel involved less plastic deformation and less friction between chip and tool, allowed better chip formation, had lower power consumption, and yielded a better finish.20 Four new machining and grinding processes were evaluated by the National Research Council. Electrolytic, electroarcing, electrosparking, and ultrasonic processes showed promise for such applications as carbidetool grinding, titanium jet-engine disk machining, and rifling gun barrels.21

Research data and practices of machining titanium covering tool design, speeds, feeds, coolants, single-point turning, drilling, tapping, reaming, planning, shaping, milling, broaching, sawing, grinding, and tensile testing, were published in 1952.22

Brochures published by the titanium industry in 1952 discussed various characteristics of titanium and titanium alloys, such as chemical composition, physical and mechanical properties, chemical and corrosion properties, testing procedures, fabrication and process

I' Back, A. E., Chindgren, C. J., and Peterson, R. G., Treatment of Titaniferous Magnetite Ore From Iron Mountain, Wyo.: Bureau of Mines Rept. of Investigations 4902, 1952, pp. 1-15.

I' Golden, L. B., Lane, I. R., Jr., and Acherman, W. L., Corrosion Resistance of Titanium, Zirconium, and Stainless Steel: Ind. Eng. Chem., vol. 44, August 1952, pp. 1930-1939.

I' Schlain, D., and Smatko, J. S., Passivity of Titanium in Hydrochloric Acid Solutions: Jour. Electrochem. Soc., vol. 99, No. 10, October 1952, pp. 417-422.

Merchant, M. E., Fundamental Factors in Machining Titanium: Modern Metals, vol. 9, No. 3, April 1953, pp. 60-62.

Elwers, G., New Machining Techniques Evaluated: Iron Age, vol. 169, No. 12, Mar. 20, 1952, pp. 103-105.

<sup>103-105.

&</sup>lt;sup>2</sup> Rem-Cru Titanium, Inc., Midland, Pa., The Machining of Titanium: Rem-Cru Titanium Review,

²² Rem-Cru Titanium, Inc., Midland, Pa., The Machining of Titanium: Rem-Cru Titanium Review, vol. 1, No. 1, June 1952, pp. 1-8.
Tarsov, L. P., Grinding Recommendations for Titanium: Tech. Bull. 524, October 1952, pp. 1-24, Norton Co., Worcester, Mass.
Goldbey, D. C., and Hazelton, W. S., How to Machine Titanium: Iron Age, vol. 169, No. 16, Apr. 17, 1952, pp. 107-110.
Eshman, A. N., Titanium Sheet-Metal Parts Successfully Made: Iron Age, vol. 170, No. 3, July 17, 1952, pp. 132-135.

TITANIUM 1057

practices, and price, size, and weight information on titanium products.²³

Research to determine certain aspects on the behavior of a commercially available Ti-Fe-Cr alloy exhibited a martensitic transformation on cooling and two nucleation and growth reactions on isothermal holding below the single-phase beta temperature range. The reactions were followed by metallagraphic, X-ray diffraction,

and microhardness analyses.24

Commercially pure titanium metal was found suitable for deep drawing at room temperatures. Experiments with tools of conventional design produced initial reduction at room temperature up to 40 to 45 percent from blank to cup diameter, followed by redraws with further reduction of 15 to 25 percent. Chemical surface treatments and high-pressure lubricants were proved helpful for preventing severe score marks and scratches. Titanium drawing required greater pressure than mild steel. To reduce work hardening and restore enough ductility for subsequent forming it was necessary to anneal titanium at about 1,325° F., after each drawing, for periods of time varying from 2 minutes for 0.010-inch material to 7 minutes for 0.078-inch material. Titanium deep-drawn parts successfully produced with carbide tooling were run at one-half to two-thirds the usual speed for mild steel.²⁵

Helical springs formed from commercially rolled or drawn titanium exhibited low fatigue life as the result of surface oxidation produced in manufacturing. Research investigations indicated that coatings of titanium silicide offered protection up to 2,000° F.; such coated products may show satisfactory performance upon exposure to hot gases. Anodic coatings produced on titanium by chemical or electrochemical methods proved to be effective in reducing wear and galling. Research published by industry in 1952 revealed that no known method of direct plating nickel or chromium was devised in 1952, however, methods were developed whereby titanium was copper-plated and

joined to other metals by soldering.26

Welding studies in helium atmosphere were reported for three grades of titanium. Commercially pure grades of titanium retained considerable measure of the strength and ductility of the parent metal. The ductility of the medium-strength alloys was affected adversely by carbon content, but low-carbon, oxygen-nitrogen alloys compared favorably with the pure grades. High-strength alloys showed low ductility after welding and were not recommended for welded fabrication.²⁷

Mallory-Sharon Titanium Corp., Niles, Ohio, Titanium: 1952, pp. 1-8.
Rem-Cru Titanium, Inc., Midland, Pa., Rem-Cru Titanium and Titanium Alloys: July 1952, pp. 1-24.
Republic Steel Corp., Alloy Steel Div., Massillon, Ohio, Republic Titanium and Titanium Alloys: 1852, pp. 1-26.

Republic Steel Corp., Alloy Steel Div., Massilion, Onio, Republic Thanium and Thanium Alloys. 1952, pp. 1-30.

Titanium Metals Corp. of America, 60 E. 42d St., New York 17, N. Y., Handbook on Titanium Metal: 6th ed., October 15, 1952, pp. 1-109.

A Phillips, C. W., and Frey, D. N., Isothermal Transformation Characteristics of an Iron-Chromium Alloy of Titanium: Jour. Metals, vol. 4, No. 4, April 1952, pp. 381-385.

Guilkisen, W. J., Ploneering the Deep Drawing of Titanium: Worcester Pressed Steel Co. Circ., sumary of a paper presented Oct. 8, 1952, at the Titanium Symposium, Watertown Arsenal, Watertown, Mass

Mass.

Masick, Col. B. S., Titanium Evaluated for Ordnance: Jour. Metals, vol. 5, No. 2, February 1953, pp. 136-137.

Rosenberg, A. J., and Hutchinson, E. F., How to Weld Titanium: Am. Mach., vol. 96, No. 11, May 26, 1952, pp. 93-96.

A low-temperature brazing flux was developed in 1952 for use in joining both metals and nonmetallic materials with active metals such as titanium. Tensile strength of 45,000 to 50,000 p. s. i. was obtained

with butt joints in commercially pure titanium.28

An arc-casting process was reported to produce titanium rods ranging from ½ to ½ inch in diameter by 4 to 7 inches long without any indication of shrinkage or blowholes. Contamination was minimized by casting into molds of high-thermal conductivity, and the rapidity of cooling of the melt did not give the reactive metal an opportunity to pick up impurities from the mold.²⁹

Investigations on refractories for titanium casting indicated that shell-molded mixtures of stabilized zirconia and fused zirconia containing 4 percent resin, used without mold washes, were the most promising mold materials. The best mold wash for silica molds appeared to be a colloidal graphite dispersion. Good surface and soundness of cast titanium containing only small quantities of surface

contamination were obtained.30

Two grades of titanium carbide containing various quantities of graphitic carbon were produced by the pressure-sintering method. Physical properties of these binder-free and very dense titanium carbide specimens were determined and found to compare favorably with those of certain cemented titanium carbide grades. The hot strength of titanium carbide bodies appeared to be unaffected by the amount or type of binder material employed.31

WORLD REVIEW

World production of ilmenite in 1952 was estimated at the same level as the 1951 output, whereas rutile production continued to

increase and established a new record.

The United States, the world's largest producer of ilmenite, supplied over half of the ilmenite concentrates in 1952. Australia remained the leader in the production of rutile. Increased output of titanium slag reported from Canada was included under ilmenite concentrates for 1951 and 1952.

Available data on world production of ilmenite and rutile, with

revised figures, are shown in table 7.

Africa.—Prospected deposits of massive ilmenite and titaniferous magnetite on the west coast of Africa near the cities Grafton and Hastings, Sierra Leone, showed that much of the ore was coarsely crystalline and granular and that the ilmenite and magnetite existed as separate crystalline identities, which could be parted magnetically to yield ilmenite containing at least 48 percent TiO2 and magnetite low in titanium. Alluvial concentrations of ilmenite in the beach sands between Tokeh and York in the Whale River estuary also contained material reported to be satisfactory for the manufacture of titanium pigment.³² The Titanium Corp. of South Africa, Ltd.,

Materials and Methods, Low-Temperature Brazing Flux for Titanium: vol. 35, No. 4, April 1952, p. 162.
 Kuhn, W. E., Titanium and Zirconium Castings Now Practicable: Mat. and Meth., vol. 36, No. 6, December 1952, pp. 94-95.
 Kura, J. G., Titanium Casting Research Tests Shell-Molded Refractories: Iron Age, vol. 170, No. 18, Oct. 30, 1952, pp. 88-92.
 Glaser, F. W., and Ivanick, W., Sintered Titanium Carbide: Jour. Metals, vol. 4, No. 4, April 1952, pp. 387-390.
 Mining Journal (London), Sierra Leone: vol. 239, No. 6105, Aug. 22, 1952, p. 197.

Umgababa, Natal, estimated capacity of its proposed ilmenite plant at 60,000 to 100,000 tons of ilmenite per year. Production of zircon, rutile, and monazite from this operation was anticipated to be 10, 5, and 0.5 percent, respectively, of the ilmenite production. company was considering a plan to erect a pilot plant to produce titanium pigments. South Africa's pigment requirements are about 3,000 tons a year.33

Deposits of ilmenite were found near Port Edward, Natal, about 125 miles south of Durban. Samples analysed at the University of Natal indicated that the ores contained a high percentage of titanium.

Pure rutile was reported to be found in veins and in the alluvials in the region southwest of Lake Albert and in Central Katānga.³⁴
Australia.—Proved reserves in high-grade mineral deposits from

North Stradbroke Island to Lennox Head totaled 2,500,000 long tons of heavy minerals containing 754,000 long tons of rutile, and larger quantities were reported to exist in lower-grade deposits.

The Australian production of rutile in 1952 was estimated at 40,000 tons, and exceeded the total of other producing countries. Rutile was produced from the east coast beach sand deposits in the form of a concentrate containing more than 96 percent rutile.

TABLE 7.—World production of titanium concentrates (ilmenite and rutile), by countries, 1948-52, in metric tons 1

[Com	piled by Lee	S. Petersen]			
Country	1948	1949	1950	1951	1952
Ilmenite:					
Australia 2	11,756	9,884	12, 417	12,091	(3) (3)
BrazilCanada	47,900 4,029	650 490	5 3, 177	§ 19, 235	⁶ 38, 276
Egypt		635	260	317	(3)
India.	233, 098	313, 126	216,076	223,092	(3)
Malaya	12, 909	20,034	25, 315	4 44, 191	4 22, 046
Norway	90,017	99,013	105, 150	105, 150	118, 270
Portugal		919 8,338	66 540	169 2,500	75 4, 622
Senegal Spain		376	637	437	1,110
United States	348, 126	364, 989	424, 851	486, 099	479, 524
Total ilmenite	713, 500	818, 500	788, 500	893, 300	6 893, 000
Rutile:					
Australia 7	15, 348	13,958	17, 985	35, 534	38,752
Brazil			(8)		(8) 294
French Cameroon	576	403	25	106	294
French Equatorial AfricaIndia	129		(8)	(8)	(3)
Norway		16	(8) (8)	(8) (8) (9)	43
Senegal				(8)	(8) (9)
United States	6, 695	10,875	(9)	(*)	(*)
Total rutile	22,700	25,300	25, 300	42,000	6 47, 000

This table incorporates a number of revisions of data published in previous titanium chapters.
 Estimated ilmenite content of all ilmenite-bearing concentrates.
 Data not available; estimate by author of chapter included in total.

Exports.
5 Includes titanium slag containing approximately 70 percent TiO₂. See Canada under World Review.

Estimate.

Estimated rutile content of all rutile-bearing concentrates.

Figure withheld to avoid disclosure of U. S. production by difference. See footnote 9.

Figure withheld in order to avoid disclosure of individual company operation.

³³ Bureau of Mines, Mineral Trade Notes: vol. 34, No. 3, March 1952, p. 24.
34 Bureau of Mines, Mineral Trade Notes: vol. 35, No. 5, November 1952, p. 46.

Australian rutile production for 1934-51 totaled 143,000 tons plus 9 tons produced in 1906. No rutile production was reported from 1906 to 1934. Of the total production from 1934 to 1951, 95 percent (135,495 tons) was exported in all types of products. The export of clean separated concentrates was subject to license and control by the Department of Trade and Customs (Proclamation 611 of 1944): exports were readily permitted provided they did not contain more than 0.5 percent monazite. Export of unseparated sands was prohibited, except small quantities for experimental purposes.

TABLE 8.—Exports of rutile concentrates from Australia, 1946-52, long tons 1

Country	1946	1947	1948	1949	1950	1951	1952
Belgium France Germany	171	85 100	111 50	155 368 337	839 611 1,020	(2) (3)	(2) (2)
Italy Netherlands Poland		60 90	199 18	572 336 200	740 539	(2) (2) (3)	(2) (2) (2)
Sweden United Kingdom United States Other 3	60 787 3, 765 73	539 1, 954 5, 798 255	1, 289 3, 710 7, 863 30	477 6, 713 2, 214 252	1,825 5,882 3,246 606	(2) 9, 938 9, 864 15, 238	(2) 7, 128 13, 499 6
$egin{array}{ccccc} ext{Total} & & & & & & & & & & & & & & & & & & &$	4,856 (⁵)	8, 881 (⁵)	13, 270 (⁵)	11, 624 (⁵)	15, 308 (⁵)	4 35, 040 853, 140	4 27, 103 1, 094, 542

Includes data for 9 months in 1952.

1 Data not available, estimate included in total.
2 Inda not available, estimate included in total.
3 Individual country breakdowns were not available in 1951 and 1952; includes rutile exports to all countries except the United States and United Kingdom, which are given separately.
4 Estimate.

Data not available.

Ilmenite production from 1933 to 1950 totaled 85000 long tons. Ilmenite, which was separated as a reject at the rate of 12,000 tons per annum from rutile operations on the east coast, has for the most part been unsalable because the concentrate contains a small percentage of chromite (up to 7 percent Cr₂O₃), which makes it unsuitable for manufacture of titanium pigments. Ilmenite from Western Australia contains less than 0.1 percent chromium and will probably prove suitable for pigments. Reserves of 500,000 tons of ilmenite, low in chromium are known to exist on the south and southwest coasts of Western Australia and considerable tonnages of ilmenite, low enough in chromium may be separated from the eastern coast deposits. The Australian Titan Products Pty., Ltd., a subsidiary of British Titan Products Co., Ltd., at Burnie, Tasmania, imported in 1950, 3,800 tons of ilmenite from India and produced more than 1,700 tons of titanium pigment. There were no imports of ilmenite into Australia before 1948; imports totaled 1,500 and 2,300 tons in 1948 and 1949, respectively.

Companies in Australia engaged in commercial mining of rutile and zircon as of May 1, 1951, are listed as follows, with deposit location. and heavy mineral monthly production capacity in long tons enclosed in parentheses: Mineral Deposits Syndicate at Southport, Queensland (Broadbeach-Burleigh and the Spit, Southport—1,500); Zircon Rutile, Ltd., at Byron Bay, New South Wales (Seven Mile Beach and Tallow Beach, south of Byron Bay—1,400); Cudgen R. Z., at Cudgen Headland, New South Wales (Cudgen Headland, beach and foredune—

1061 TITANIUM

1,000); Titanium Alloy Manufacturing Div., National Lead Co., at Cudgen Beach, New South Wales (Cudgen Beach and adjacent area-900); Associated Minerals Pty., Ltd., at Southport, Queensland (Southport-Broadbeach—750); Titanium and Zirconium Industries Pty., Ltd., at Dunwich township, North Stradbroke Island, Queensland (North Stradbroke Island, 2 miles south of Point Lookout—720); Rutile Sands Pty. at Currumbin, Queensland (Tugun Beach and Palm Beach-650); Tweed Rutile Syndicate at Cudgen Beach, New South Wales (adjacent to Cudgen Beach—500); Metal Recoveries Pty., Ltd., at Crabbe's Creek and Mooball Siding, New South Wales (Beach and adjacent area, Cudgera to New Brighton-375); and the National Minerals, Ltd., with the tabling plant at Swansea, New South Wales, and the separation plant at Wickham, Newcastle (Catherine Hill Bay Beach, 3 miles south of Swansea—250). Mining was carried on by conventional methods, such as stripping the overburden with power scoops or bulldozers and either hand or power loading into motor trucks. One company reported that raw sand including overburden was fed by dredging to Humphrey spirals. Some high-grade deposits were loaded directly from the beach. Treatment of heavy minerals varied slightly with each operation; however, in general, the minerals were separated on Wilfley or curvilinear tables, dewatered, dried in a rotary drier, followed by low-intensity magnetic separation of ilmenite, and electrostatic separation of rutile and zircon, and the products were then cleaned by high-intensity electromagnetic separators. The rutile and zircon products marketed by the Australian producers ranged from 94 to 99 percent TiO2 and 94 to 99 percent ZrO2, respectively.35

Properties of the Tweed Rutile Syndicate were obtained by the New South Wales Rutile Mining Co., Ltd., in 1952. It was estimated that the company's leases will cover 15 to 20 years of mining. The New South Wales Rutile Mining Co., Ltd., at Cudgen, New South Wales, reported that it is the world's biggest producer of rutile sand. Daily production is estimated at 100 tons of rutile, 100 tons of zircon, and

50 tons of ilmenite.36

Trem. Watson Metallurgists, of Lane Cove, New South Wales, reported opening a new mine and separation plant in the southern part of the State. Annual output will be an estimated 4,000 tons of rutile, 2,600 tons of zircon, and 750 tons of ilmenite. The treatment plant was to be located at Wollongong, New South Wales. Zircon Rutile, Ltd., erected a small plant in 1952 for the manufacture of chemicals from its products, and a new concentrator was installed and another improved to permit up to 50-percent increase in treatment of heavy sands. 38 Extensions to the Titanium and Zirconium Industries Pty., Ltd., pilot plant at Stradbroke Island, New South Wales, were completed in 1952. This expansion was intended to double production capacity of rutile and zircon; however, severe drought conditions in 1952 prevented higher outputs.39

³⁵ Gardnes, O. E., Titanium (Rutile and Ilmenite): Min. Resources of Australia, Summary Rept. 2, July 1951, pp. 1-35.
Quarterly Review, The Australian Mineral Industry: vol. 5, Nos. 1 and 2, 1952.
36 Engineering and Mining Journal, vol. 153, No. 10, October 1952.
37 Metal Bulletin (London), No. 3707, July 8, 1952, p. 23.
38 Mining World, vol. 14, No. 3, Mar. 1952, p. 73.
38 Metal Bulletin (London), No. 3705, July 1, 1962, p. 26.

Canada.—The Quebec Iron & Titanium Corp., subsidiary of the Kennecott Copper Corp. and the New Jersey Zinc Co., completed construction of the last of the five electric furnaces used in the production of titanium slag at the Sorel, Quebec, treatment plant. Titanium-slag production and data on other operations are shown in long tons as follows:

	195 1	195 2
Ore mined and crushed	339, 224	237, 249
Ore treated	44 200	93, 005
Iron and steel produced	12, 877	28, 948
Titanium slag produced	17 250	37, 626
Titanium slag shipped	7, 179	34, 739

The quantity of ore mined and crushed in 1952 decreased about 30 percent from 1951, owing to a strike at the treatment plant at Sorel, which lasted 2 of the 8 months of the mining season. All titanium-slag shipments went to the United States and were chiefly consumed in the titanium-pigment industry. Titanium slag shipped to pigment producers in 1951 was in trial lots so that processing characteristics could be studied; however, orders from customers were received in 1952.40

Preliminary statistics for 1952 published by the Dominion Bureau of Statistics, Department of Trade and Commerce, stated that output of ilmenite concentrates in Canada was 47 long tons valued at \$C456 in 1952, compared with 1,519 tons valued at \$C69,790 in 1951.

The ilmenite-hematite ore in the Allard Lake region is dense black, mostly coarse-grained, and made up of thick tabular crystals. The typical high-grade ore contains about 75 percent ilmenite and 20 percent hematite. An analysis of this ore showed the following percentage: TiO₂, 34.8; Fe, 38.8; S, 0.36; P₂O₅, 0.004; Cu, 0.037; V, 0.22; Mn, 0.08; Ni, 0.03; and Co, 0.014. Although all deposits are of the same origin, they may be divided into three broad groups on the basis of shape and attitude. These include flat-lying, tabular bodies of large areal extent (Lac Tio deposit and satellites), steeply dipping dikelike bodies (Puyjalon deposit), and lenticular masses very irregular in shape (Mills deposit). Estimates of grade and tonnage in the Lac Tio ore body in 1952 placed the ore reserves above 112,000,000 tons of ilmenite, averaging 32 percent TiO₂ and 36 percent Fe. Vertical drill holes in a 100-foot grid in the cliff ore body (Lac Tio satellite) showed 12,000,000 tons of proved ore. The Puyjalon deposit contains a dikelike deposit of ilmenite 2 miles southeast of Lac Tio near the shore of Puyjalon Lake. Ilmenite has been traced for a length of 2,400 feet and in width from 20 to 250 feet. Ilmenite occurs in the Mills deposit, 8 miles southwest of Lac Tio, as a series of 4 massive lenses of irregular shape, which extend 3,000 feet.41

Titaniferous magnetite deposits found near the Bay of Seven Islands, 320 miles east of Quebec City, are reported to contain over a half million tons of ore assaying 50 percent iron and over 13 percent titanium.⁴²

The Titanium Development Corp. estimated a total of 2,859,000 tons of titanium ore, averaging 30.84 percent TiO₂, on its property at

⁴⁰ Kennecott Copper Corp. Annual Report to Stockholders, 1952: Pp. 17-18.
⁴¹ Hammond, P., Allard Lake Ilmenite Deposits: Econ. Geol., vol. 47, No. 5, September 1952, pp. 634-649.
⁴² Mining Magazine (London), Ungava Peninsula: vol. 87, No. 2, August 1952, pp. 82-83.

1063 TITANIUM

Ivry, some 60 miles north of Montreal. Readings taken every 100 feet over a distance of 5.8 miles, and a diamond-drilling program covering a total of 4,029 feet indicated that the ore extended to a

depth of 300 feet.43

The Terrebonne Titanium Co., Montreal, Quebec, reported that test samples taken at depths of 250 and 450 feet at its titanium-iron ore deposits 55 miles from Montreal contained an average of 17.1 percent TiO2 and 22.4 percent iron. Plans by this company in 1952 called for building a \$3,000,000 concentrating plant at Ste. Marguerite

de Terrebonne, Quebec. 44

Ceylon.—The Ceylon Ministry of Industries called for new bids to establish the proposed ilmenite plant at Palmodai in the Trincomalee district, Ceylon, which is estimated to cost over 7 million rupees (\$1,470,000). Previous bids called for in September 1951 received no satisfactory response. The plant is expected to treat between 100,000 and 120,000 long tons of raw material per year from which 65,000 to 75,000 tons of ilmenite and about 4,000 tons of rutile could be

obtained.45

Egypt.—The Anglo-Egyptian Mining Co., 5 Cherif Pasha St., Alexandria, Egypt, owner of the Rosetta mine, Borallus mine, and the Damietta mine, reported that the Rosetta mine produced 1,900 metric tons of crude black sand in 1951. The sand consists largely of ilmenite, magnetite, and zirconium, with smaller quantities of garnet, greensand, and monazite. Ore reserves were estimated at 15,000,000 long tons at the Rosetta mine. The separation plant at Alexandria has a monthly productive capacity of 600 tons of ilmenite, 180 tons of magnetite and 100 tons of zirconium. Ilmenite production in Egypt from 1932 to 1951 consecutively totaled 5,300 long tons.47

Germany.—Titangesellschaft m. b. H., of Leverkusen, Germany, owned jointly by Titan Co. a/s, National Lead subsidiary, and I. G. Farbenindustrie, which was formed in 1927 and constructed a plant in 1928, was bought outright in July 1952 by the National Lead Co., New York, N. Y. The German firm makes titanium dioxide pigments in a plant claimed to be the largest of its type in Europe. Ilmenite for the plant, which is expected to have an output of pigment to supply all the requirements of Western Europe, will come from

National Lead's property in Norway.46

India.—The Travancore Titanium Products, Ltd., at Trivandrum, Travancore-Cochin State, India, began to produce titanium pigments January 25, 1952; however, owing to the high cost of production and shortage of sulfur and sulfuric acid, the plant ceased production October 10, 1952. The plant, with an annual production capacity of 1,800 long tons of titanium pigments, employed between 300 and 400 persons. The Indian Titan Products Co., Ltd., a subsidiary of the British Titan Products Co., Ltd., United Kingdom, was named as the managing agent for the company. The latter company provided

⁴³ Paint, Oil and Chemical Review, Rich Titanium Deposit Located Near Montreal: Vol. 115, No. 13, June 19, 1952, p. 52.
44 Metal Bulletin (London), Another Canadian Deposit: No. 3674, No. 19, Mar. 11, 1952, p. 19.
45 Mining Journal (London), Ceylon Plans Ilmenite Reduction Plant: vol. 238, No. 6086, Apr. 11, 1952,

p. 364. 46 Chemical and Engineering News, National Lead Buys German Pigment Firm: vol. 30, No. 28, July 14,

^{1952,} p. 2895.
47 Bureau of Mines, Mineral Trade Notes: vol. 35, No. 2, August 1952, pp. 22-23.
48 Bureau of Mines Mineral Trade Notes: vol. 35, No. 5, November 1952, pp. 22-23.

technical assistance through its Indian subsidiary. The Travancore-Cochin State Government, which holds 51 percent of the capital of the company, about 4 million rupees (\$840,000), considered reviving the plant in December 1952 with a loan from the Industrial Finance Corp. It was reported that the Indian Government agreed to supply

technical advice to the company.49

Heavy mineral deposits in Travancore, South India, beach sands occur north from Quilon and at Manavalukurichi 100 miles to the south toward Cape Comorin, with smaller deposits between these localities and 3 miles east of Cape Comorin. The deposits at Manavalukurichi were not worked in 1951, and production was confined to north Quilon. The black sands at Quilon occur down to 10 feet below low tide and were worked to a total depth of 20 feet in places but averaged about 9 feet. Reserves were estimated at 11,000,000 long tons in this deposit, which ranges along the coast from the river bar at Quilon north for 14 miles. The average width is about 250 yards, but dunes rise to about 20 feet above sea level. The Manavalukurichi deposit extends over a length of 5 miles with the dunes rising to over 30 feet. This deposit is somewhat smaller than the Quilon deposit.

Mining leases are issued by the Travancore Government. Government regulations do not permit the deposits in this area to be worked within 150 feet of the sea to the west or 150 feet of the canal to the east, because of the possibility of erosion. The mining width along the spit is restricted to an average of less than 150 yards. Excavation is not permitted within 150 feet of holy places. Excavation is entirely manual. Sands are loaded directly into boats (10 to 12 tons capacity), which transport 400 to 1,000 tons daily during the working (dry) season to the following treatment plants located along the canal: F. X. Pereira & Sons, Travancore, Ltd., Quilon, Travancore; Hopkin & Williams, Ltd., Chavara, Travancore; Travancore Minerals Concerns, Chavara, Travancore; and the Associated Minerals Co., Ltd., Quilon, Travancore. The total production capacity of these 4 plants was estimated in 1951 at 450,000 tons of ilmenite annually. 50

Japan.—The Ishihara Chemical Co. of Tokyo and Osaka, Japan, negotiated with the Glidden Co., Cleveland, Ohio, in 1952, for technical cooperation for the manufacture of titanium pigment and titanium metal. Plans were under way by the Japanese firm to build a titanium plant at Yokkaichi and to develop ilmenite mines in Su-

matra.51

Over 20 Japanese manufacturing firms were engaged in the titanium metal industry in 1952. Information on the 6 most prominent com-

panies as reported, is briefed as follows:

Osaka Titanium Co. (formerly Osaka Special Iron Works).—A subsidy of \(\frac{\

<sup>Chemical Age (London), Titanium Plant to Reopen: vol. 67, No. 1745, Dec. 20, 1952, p. 850.
Economic Notes and Statistics, Austrajan Mineral Industry: vol. 3, No. 4, 1951, p. 100.
Metal Bulletin (London), Japanese Developments: No. 3715, Aug. 8, 1952, p. 27.</sup>

financed by the Development Bank. The Japanese firm stated its interest in 1952 in negotiating a long-term contract under which it would sell a total of 100 tons of titanium sponge to companies in the United States at \$4.80 a pound.

Japan Electrometallurgy Co.—This firm began manufacturing titanium in 1950. A 7½-ton-a-month titanium-sponge pilot plant with Government subsidies, \(\frac{\fin}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frace\f{\frac{\fir\firec{\frac{\fire}\firk}}}{\fin}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}{\frac{\firint{\frac{\frac{\frac{\frac{\frac{\fir}}}}}{\frac{\frac{\fir}{\firac{\frac{\fir}{\firighta}}}}}{\frac{\frac{\frac{\frac{\fir}}{\frac{\frac{\fir}}}}{\firand{\frac{\frac{\frac{\frac{\frac{\

(\$25,000) in 1952, was under construction in 1952.

Sumitomo Metal Co.—This firm manufactured 20-kilogram (45pound) titanium ingots in 1952 from titanium sponge produced by the Osaka Titanium Co.

Kobe Steel Co.—One-ton titanium ingots were reported to be produced by this company from titanium sponge obtained from Osaka

Titanium Co.

Mitsui Metal Mining Co.—A pilot plant to manufacture 1 ton of titanium metal a month was being constructed by this firm in 1952.

Sakai Chemical Industry.—With the assistance of experts from the Osaka University, this firm was engaged in research work in 1952 to improve the chloric method in titanium production, with emphasis on continuous and efficient reclamation of magnesium and chlorine and dispensing with argon.52

Malaya.—No production figures are kept on ilmenite, but exports declined from 42,700 long tons in 1951 to 22,500 tons in 1952.53

TABLE 9.—Exports of ilmenite from Malaya in 1952

Destination	Long tons	Value f. o. b. \$M 1
France United Kingdom Germany Czechoslovakia Japan Belgium	7, 210 5, 194 3, 995 3, 000 2, 800 299	158, 465 114, 268 87, 890 66, 000 61, 600 6, 153
Total	22, 498	494, 376

^{1 \$}M1 equals \$US0.33.

United Kingdom.—Ilmenite imports into the United Kingdom totaled 91,900 long tons in 1952, as compared to 69,700 tons in 1951.54

Sangyo Keizal, Overseas Edition, Titanium Manufacturing Firms Want Capital and Tieups to Keep Operating: vol. 2, No. 5, Mar. 1, 1953.
 Bureau of Mines, Mineral Trade Notes: vol. 36, No. 4 ,April 1953, p. 22.
 Metal Age, No. 14, February 1953, p. 18.

Tungsten

By Robert W. Geehan 1

OMESTIC production of tungsten concentrates was equivalent to 84 percent of consumption in 1952. This contrasts with 52 percent in 1951 and with an average of 50 percent for 1940-51. General imports increased from 7,533,000 pounds, metal content, in 1951 to 16,985,000 pounds in 1952. The increased availability from domestic and foreign sources led to a relaxation of Government regulations regarding the use of tungsten. The quoted price for domestic concentrates remained at \$65 per short ton unit but foreign prices declined to \$50.2

TABLE 1.—Salient statistics of tungsten concentrates in the United States, 1 1943-47 (average) and 1948-52, in pounds of contained tungsten

			Imports	Consump- tion	Industry stocks at end of year				
Year	Production	Shipments from mines	for con- sumption		Producers	Consumers and dealers	Total		
1943-47 (average) 1948 1949 1950 1951 1952	6, 864, 757 4, 033, 389 2, 896, 084 3, 965, 040 5, 913, 750 7, 233, 199	6, 861, 711 3, 838, 287 2, 631, 506 4, 587, 687 5, 972, 551 7, 243, 589	11, 100, 520 7, 548, 101 6, 274, 102 16, 147, 313 6, 376, 513 17, 405, 869	13, 378, 800 8, 853, 000 4, 958, 000 6, 597, 000 11, 410, 000 8, 634, 000	421, 089 563, 418 827, 045 216, 468 234, 282 208, 300	2, 958, 348 5, 284, 901 4, 229, 444 5, 121, 206 4, 037, 502 2, 816, 405	3, 379, 437 5, 848, 319 5, 056, 489 5, 337, 674 4, 271, 784 3, 024, 705		

¹ Includes Alaska.

DOMESTIC PRODUCTION

Domestic production of tungsten concentrates in 1952 was greater than in any year since 1944. California was again the leading tungsten-producing State, followed by Nevada and North Carolina. The Pine Creek mine of United States Vanadium Co. retained first

place among United States tungsten producers.

Production in 1952 was obtained from many widely scattered operations in 11 States and Alaska, but 4 States—California, Nevada, North Carolina, and Colorado—supplied 94 percent of the total; and 8 operators—Bradley Mining Co., Climax Molybdenum Co., Getchell Mine, Inc., Nevada-Massachusetts Co., Nevada Scheelite, Surcease Mining Co., Tungsten Mining Corp., and United States Vanadium Co.—produced 84 percent of the United States total. However, 1952 was marked by a very large increase in the number of mines producing tungsten ores, by a considerable increase in the quantity of tungsten produced by small mines, and by an increase in the number of mines producing material for shipment to custom mills.

Assistant chief, Ferrous Metals and Alloys Branch.
 A short-ton unit equals 20 pounds of tungsten trioxide (WO₂) and contains 15.862 pounds of tungsten (W).
 A short ton of 60-percent WO₂ contains 951.72 pounds of tungsten.

Most tungsten ore mined and milled in the United States contains 0.3 to 2.5 percent WO₃ and is beneficiated to a concentrate containing 60 percent or more WO₃. Ores containing scheelite (calcium tungstate) were important sources of tungsten in California and Nevada; ores containing hübnerite (manganese tungstate), wolframite (ironmanganese tungstate), and ferberite (iron tungstate) were important sources in Colorado, Idaho, and North Carolina.

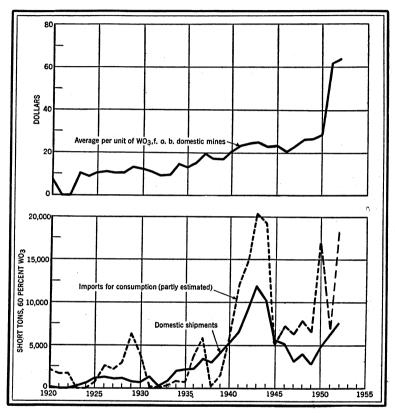


FIGURE 1.—Domestic shipments, imports, and average price of tungsten ores and concentrates, 1920-52.

Most of the large producers expanded their mills and mine plants, and conducted extensive development during 1952; brief descriptions follow:

Bradley Mining Co.—Ima mine, Lemhi County, Idaho.—Two Defense Minerals Exploration Administration contracts were negotiated and work was in progress. Production of ore increased from 41,000 to 46,000 tons. Production of tungsten concentrates increased 33 percent. The Yellow Pine mine, Valley County, was shut down in June.³

⁸ Mining World, vol. 14, No. 2, February 1952, pp. 34-37.

TABLE 2.—Tungsten concentrates produced and shipped in the United States, 1951-52, by States ¹

·	-	Prod	luced		Shipped from mines				
	1	951	1	952	1	951	1952		
State	Short tons (60 percent WO ₃ basis)	Units	Short tons (60 percent WO ₃ basis)	Units	Short tons (60 percent WO ₃ basis)	Units	Short tons (60 percent WO ₃ basis)	Units	
Alaska Arizona California Colorado Idaho, Montana Nevada New Mexico North Carolina Oregon South Dakota Utah	1 15 2, 495 326 401 1, 922 1, 035 1	60 919 149, 694 19, 565 24, 044 115, 307 62, 078 43 21 1, 094	8 77 2, 790 682 352 2, 431 (2) 1, 248 (3) 5 (2) 3 4	451 4, 628 167, 411 40, 908 21, 144 145, 882 1 74, 904 274 6 163 236	10 11 3,007 336 377 1 1,482 	606 655 180, 402 20, 188 22, 636 44 88, 916 62, 463 43 570	8 71 2, 980 625 333 	451 4, 266 178, 775 37, 521 19, 986 75, 226 266 163 236	
Total	6, 214	372, 825	7, 600	456, 008	6, 275	376, 532	7, 611	456, 66	

¹ Production is credited to the State where ore was mined. Shipments are credited to the State where final concentrates were produced.

2 Less than 1 ton.

TABLE 3.—Tungsten concentrates shipped from mines in the United States,¹
1943-47 (average) and 1948-52

	Quai	ntity	Reported value f. o. b. mines 2			
Year	Short tons (60 percent WO ₃ basis)	Tungsten content (pounds)	Total	Average per unit of WO ₃	Average per pound of tungsten	
1943-47 (average)	7, 210 4, 033 2, 765 4, 820 6, 275 7, 611	6, 861, 711 3, 838, 287 2, 631, 506 4, 587, 687 5, 972, 551 7, 243, 589	\$10, 141, 357 6, 355, 386 4, 377, 066 8, 170, 924 22, 976, 028 28, 970, 264	\$23. 44 26. 27 26. 38 28. 25 61. 02 63. 44	\$1. 48 1. 66 1. 66 1. 78 3. 85 4. 00	

Includes Alaska

Climax Molybdenum Co.—Climax mine, Lake County, Colo.—Molybdenum ore treated for recovery of tungsten increased from 2,910,000 to 3,809,000 tons. Production of tungsten concentrates was double that of 1951.

Getchell Mine, Inc.—Getchell mine, Humboldt County, Nev.—During 1952 the mill treated 131,000 tons of ore. Concentrates recovered from ore mined by Getchell increased 12 percent. The mill also treated custom ore.

Nevada-Massachusetts Co.—Mill City group, Pershing County, Nev.—The Stank, Humboldt, and Sutton No. 2 underground mines were operated steadily throughout the year. The Humboldt was at a depth of 1,850 feet, the Stank at 1,300 feet, and the Sutton No. 2 at 800 feet. Several open-pit mines also were productive. Changes

² Values apply to finished concentrates and in some cases are f. o. b. custom mills.

TABLE 4.—Tungsten ore and concentrates shipped from mines in the United States, by States, 1943-47 (average) and 1948-52, shipments for maximum year, and total shipments, 1900-52, in short tons of 60 percent WO₃ ¹

		imum ments	Shipments by years							Total shipments, 1900-52		
State	Year	Quan- tity	1943- 47 (aver- age)	1948	1949	1950	1951	Quan-	Percent of total	Quan- tity	Per- cent o total	
Alaska Arizona California Colorado Connecticut Idaho Missouri Montana Nevada New Mexico North Carolina Oregon South Dakota Texas Utah Washington Total	1916 1936 1943 1917 1916 1943 1940 1946 1942 1915 1952 1952 1917 1946 1917 1938	47 489 3, 871 2, 707 3 4, 648 13, 052 45 1, 254 4 270 1 33 303	12 44 1, 926 238 2, 297 (2) 23 2, 410 2 241 2 (2) 13 2 7, 210	23 1, 767 208 86 4 28 949 965	(2) 952 222 66 2 9 740 770 3	13 1 2, 025 196 222 (2) 1, 123 1, 240 	10 11 3,007 336 377 1 1,482 1,041 1 (2) 9 6,275	8 71 2, 980 625 333 	0. 11 .93 .39. 15 8. 21 4. 38 30. 60 16. 48 .05 (e)	208 3, 996 45, 416 26, 213 11. 16, 292 37 546 42, 377 103 6, 473 8 1, 296 1 242 1, 339	0. 14 2. 76 31. 42 18. 13 .01 11. 27 .02 .38 29. 31 .07 4. 48 .01 .90 (e) .17 .93	

¹ Shipments are credited to the State where final concentrates were produced.

Less than 1 ton.
Less than 0.01 percent.

in the milling-plant flowsheet to increase capacity and improve recovery were completed in 1952. During the year 147,000 tons of ore was mined and treated.

Nevada Scheelite Division of Kennametal, Inc.—Nevada Scheelite mine, Mineral County, Nev.—The tonnage of ore mined increased from 15,000 to 27,000, and concentrates produced increased 89 percent. The mill also treated custom ore.

Surcease Mining Co.—Atolia mine, San Bernardino County, Calif.—

During 1952, 165 tons of tungsten concentrates was recovered.

Tungsten Mining Corp.—Hamme mine, Vance County, N. C.—This firm deepened the Central shaft to 944 feet and the Sneed shaft to 885 feet and completed enlargement of the milling plant to a capacity of 600 tons per day. Production of ore increased from 104,000 tons to 134,000.

United States Vanadium Co.—Pine Creek mine, Inyo County, Calif.—The mill and digestion plant were damaged by a snowslide during March 1952; but rehabilitation was completed in a short time, and there was no great loss of production. Over 2,000 feet of drifts was driven in 1952; the long raise, designed to connect the upper workings with the main haulage level, was advanced 388 feet in 1952 and scheduled for completion in 1953. This firm was the leading producer of tungsten ores and concentrates, and its Pine Creek mill treated more custom ore than any other plant.

The largest shipments to custom mills were from the Black Rock mine, Inyo County, Calif., and the Riley mine, Humboldt County, Nev. Activities in 1952 at the Black Rock mine of Black Rock Mining Corp. included production of 24,000 tons of ore, construction

of a 250-ton mill, and an exploration program. The United States Vanadium Co. Riley mine was operated by a contractor; ore was

shipped to the Getchell mill.

The Black Rock Mining Corp. also operated the Lincoln mine in Lincoln County, Nev.; during 1952 a 750-ton mill was constructed, several thousand tons of tailings from prior operations was treated, and the mine was in production. Boulder Tungsten Mines, Inc.. Boulder County, Colo., remodeled the Marion mill and treated custom ore in addition to that produced by the company.4 Consolidated Tungsten Mine Division of Kennametal, Inc., Tulare County, Calif.. produced 6,200 tons of ore at the Harrel Hill mine; but the operation

was terminated, and no production was scheduled for 1953.

Chauncy Florey purchased the Silver Dyke deposit, Mineral County. Nev., from Nevada Tungsten Co. The Gabbs Exploration Co., Nye County, Nev., was active in 1952. The Garnet Dike mine, Fresno County, Calif., mined and treated tungsten ore. Lindsay Mining Co. operated the Gunmetal mine, Mineral County, Nev.; during 1952, 17,000 tons of ore was mined, 21,000 tons was milled, including custom ore treated for others, and an exploration program was conducted. Mineral Materials Co. produced tungsten ore at its Star Bright mine The Strawberry mine, Madera in San Bernardino County, Calif. County, Calif., was active.

Vanadium Corporation of America produced tungsten ore in Boulder County, Colo.; this firm also treated custom ore, produced by over 50 individual shippers, at the Wolf Tongue mill. The Wolfram Co. mined 18,000 tons of tungsten ore at the Star-Nightingale mine,

Pershing County, Nev.

The Domestic Tungsten Program of General Services Administration and Defense Materials Procurement Agency is quoted below.:

SECTION 1. Basis and purpose. This regulation interprets and implements the authority of the Administrator of General Services to purchase tungsten concentrates of domestic origin for the fiscal years 1951-1956 as authorized by the Defense Production Administration on March 30, 1951, and outlines the attendant responsibilities and functions of the Administrator of General Services in purchasing such tungsten concentrates for Government use and resale, pursuant to delegation of authority from the Defense Materials Procurement Administrator, dated Sep-tember 14, 1951. In accordance with the Program set forth herein, the Administrator will buy domestically produced tungsten concentrates, at a base price of \$63 per short ton unit of contained tungsten trioxide (WO₃), less penalties.

SEC. 2. Definitions. As used in this regulation:
(a) "Administrator" means the Administrator of General Services. (b) "Program" means the program as set forth in this regulation.

(c) "Milling point" means plant where ores are processed into specification

grade tungsten concentrates.

(d) "Tungsten concentrates" means tungsten concentrates produced in the United States, its Territories and possessions from ores mined in the United States, its Territories and possessions.

(e) "Short ton unit" means one percent of 2,000 pounds avoirdupois dry weight.
(f) "Ferberite" means concentrates containing tungsten primarily as FeWO₄

with not more than 20 percent of the tungsten as MnWO4.

(g) "Hübnerite" means concentrates containing tungsten primarily as MnWO4 with not more than 20 percent of the tungsten as FeWO₄.

(h) "Wolframite" means concentrates containing tungsten as both FeWO4 and MnWO₄ in any proportions from 80 percent FeWO₄ and 20 percent MnWO₄ to 20 percent FeWO₄ and 80 percent MnWO₄.

(i) "Scheelite" means concentrates containing, in nature, tungsten as CaWO4.

⁴ Engineering and Mining Journal, vol. 153, No. 5, May 1952, p. 140.

(j) "Synthetic Scheelite" means chemically precipitated scheelite produced from any natural type of ore, and shall be chemically precipitated scheelite pro-

duced from any original type of ore, further processed so that not over ten percent of any lot shall pass a 35-mesh Tyler Standard Screen.

SEC. 3. Participation in the Program. (a) Any person may participate in the Program by notice given to the nearest General Services Administration regional office, in the form of a letter, postcard or telegram postmarked or dated by the telegraph office not later than June 30, 1953. Such notice shall state that the writer desires to participate in the Program and will either prospect for or produce tungsten, but the giving of such notice will not permit the participant to deliver material in any form other than that of concentrates meeting minimum specifica-Such notification must be signed and a return address given. Any person participating in the Program will promptly be sent a certificate authorizing him to deliver concentrates meeting minimum specifications f. o. b. carriers conveyance, milling point. Miners holding certificates but who do not operate concentrating facilities may participate in this Program, to the extent of the ore produced by

them, as follows:
(1) By selling such ore to operators of concentrating plants, in which event the resulting concentrates meeting specifications may be sold by such operators to the Administrator under this Program; or

(2) By having such ore treated on a toll basis and selling the resulting concen-

trates meeting specifications to the Administrator under this Program.

(b) Any operator of a concentrating plant by agreeing to participate in this Program also agrees to purchase or process suitable tungsten contained ores offered to him by independent miners to the limit of the capacity of his plant in excess of that required for his own production and on fair and equitable terms and conditions (including prices). Each operator of a concentrating plant participating in this Program shall promptly establish a schedule setting forth his terms and conditions (including prices) for the purchase and processing of crude tungsten ores. Each such operator shall promptly submit a copy of such schedule to the Administrator, and shall also submit promptly any changes made in such schedule there-

Sec. 4. Deliveries. Tungsten concentrates purchased under the Program are to be delivered f. o. b. carriers conveyance any milling point designated by the Administrator. Delivery of less than one short ton of concentrates will not be accepted. Each delivery will be analyzed by the Government after beneficiation at the milling point, and payment will be made in accordance with such analysis. Deliveries not conforming to minimum specifications will be rejected and any

expenses in connection therewith will be borne by the seller.

SEC. 5. Duration of the Program. The Program shall terminate and be of no further force or effect when 3,000,000 short ton units of tungsten have been delivered to and accepted by the Government under this Program, or on July 1, 1956, whichever occurs first.

Sec. 6. Specifications and penalties. (a) The specifications for tungsten concentrates and penalties applicable to deliveries of such concentrates appear below: (1) Percentage of tungsten trioxide (WO3) required with respect to each of the following:

	Ferberite	Hübnerite	Wolframite	Scheelite and/or synthetic scheelite
Standard	Percent	Percent	Percent	Percent
	60	60	65	60
	55	55	60	55

(2) Maximum percentage allowances of the following elements without penalty:

	Ferberite	Hübnerite	Wolframite	Scheelite and/or synthetic scheelite
Tin (Sn) max Copper (Cu) max Arsenie (As) max Antimony (Sb) max Bismuth (Bi) max Molybdenum (Mo) max Phosphorus (P) max Sulphur (S) max Manganese (Mn) max Lead (Pb) max Zine (Zn) max	1.00 .50 .07 .50 1.00 .20	Percent 0. 25 . 10 . 10 . 10 . 1. 00 . 50 . 50 . 50 (1) . 10	Percent 1.50 .05 .25 .10 1.00 .05 .50 (1) .20 .10	Percent 0. 10 0. 05 10 10 25 2. 75 0. 05 1. 00 1. 00 1. 00

1 Not specified.

(b) The minimum base price shall be subject to the following adjustments:
(1) For each short ton unit of delivered tungsten trioxide (WO₃) the sum of yearty cents (80.20) shall be deducted from the base price for each one percent of

twenty cents (\$0.20) shall be deducted from the base price for each one percent of tungsten trioxide (WO₃) below the standard requirements set forth in paragraph (a) of this section. No tungsten concentrates not meeting the minimum requirements set forth in said paragraph (a) of this section will be accepted.

(2) For each short ton unit of delivered tungsten trioxide (WO₃) a deduction of

(2) For each short ton unit of delivered tungsten trioxide (WO₃) a deduction of twenty-five cents (\$0.25) shall be made for each of the following increments in excess of the maximum allowances (paragraph (a) of this section), as to each of the following elements:

	cent	Percent
Copper (Cu) Phosphorus (P) Arsenic (As) Bismuth (Bi) Molybdenum (Mo)	.01 Antimony (St10 Manganese (M50 Lead (Pb)	In)

Dated: July 28, 1952.

JESS LARSON, Administrator.

[F. R. Doc. 52-8475; Filed, July 31, 1952; 8:56 a. m.](Published in the Federal Register, August 1, 1952, 17 F. R. 7051)

CONSUMPTION AND USES

Consumption of concentrates (60 percent WO₃ basis) was 9,072 short tons in 1952, compared with 11,989 short tons in 1951. The distribution of the tungsten concentrates used in 1952 is listed in table 5.

The use of Class A, high-speed steel, which contains a maximum of 6.75 percent tungsten, was encouraged by the high price of tungsten concentrates, by restrictions of the Government on the quantity of Class B high-speed steel (22 percent W maximum) manufactured, and by technologic improvements at the plants of producers and consumers. The increase in use of Class A steel led to the use of less tungsten in steel during 1952. The following tabulation indicates the relationship between the shipments of Class A steel ⁵ and the use of tungsten by the steel industry.

From statistics of the American Iron and Steel Institute.

Year:	Percent of total high-speed steel shipments represented by Class A	Percent of total consumption of tungsten concentrates used by manufacturers of steel and ferrotungsten	
1948	47	64	
1949	40	63	
1950	53	45	
1951	80	$\bar{30}$	
1952	87	24	

TABLE 5.—Distribution of tungsten concentrates consumed

	Net tons (60 percent WO ₃)	Percent of total
Manufacturers of steel ingots and ferrotungsten Manufacturers of hydrogen-reduced metal powder	$\begin{array}{c} 2,207 \\ 13,827 \end{array}$	24 42
Manufacturers of carbon reduced metal powder, tungsten chemicals, and consumption of firms producing several products	1 3, 038	34

¹ Includes the entire consumption of firms that use tungsten concentrates primarily for the purpose listed, except the quantities used to produce ferrotungsten.

Manufacturers of hydrogen-reduced metal powder were the chief consumers of wolframite-hübnerite type concentrates. High-grade scheelite and synthetic scheelite type concentrates were used for direct charging to steel, and by manufacturers of all groups of tungsten products; however, the specifications for the various uses were not Manufacturers of metal powder specified material low in molybdenum content; freedom from elements such as copper and phosphorus was important to manufacturers of steel.

Consumption of tungsten concentrates reported to the Bureau of Mines was confined to 2 general areas: 30 percent was used in Ohio, Illinois, and Michigan and 70 percent in New York, Pennsylvania,

and New Jersey.

The following actions regarding allocations and prices were of interest to consumers during 1952:

National Production Authority—

March 4. Order M-81, Section 7, paragraph d. Provided for sale of laboratory chemicals.

September 4. Order M-20, Section 5. Provided for allocation of high allow scrap, defined as scrap containing less than 50 percent iron. September 12. Order M-81, amended. Terminated allocations of pure

tungsten.

December 10. Order M-80, Schedule 3, revoked. Terminated allocations of ferrotungsten. Office of Price Stabilization-

September 29. CPR-71, Supplementary Regulation 1. Permitted adjust-

ments in ceiling prices of tungsten carbide.

International Materials Conference—

December 31. Terminated international distribution plans for tungsten concentrates and primary products.

STOCKS

Industry stocks dropped for the second consecutive year and at the end of 1952 were less than any year since 1944.

PRICES

The quoted prices for domestic tungsten concentrates of known good analysis were at the ceiling price of \$65 per short-ton unit, f. o. b. mine, during all of 1952. However, there was a steady decline in foreign prices during the year. E&MJ Metal and Mineral Markets quotations of London prices, shillings per long-ton unit, were as follows: January 1–10, 520–525; January 10–April 10, 485; April 10–June 12, 480; June 12–26, 465; June 26–July 10, 445; July 10–October 23, 425; October 23–November 27, 410; November 27–December 31, 410–400. These quotations are equivalent to a range of \$65.50 to \$50 per short-ton unit.

During the period when foreign prices plus freight and the duty of \$7.93 per unit were higher than the \$65 domestic ceiling price, foreign tungsten concentrates were purchased by the Government, and the quantities needed by domestic firms were sold at the ceiling price.

As reported to the Bureau of Mines, the average price for domestic

concentrates shipped was \$63.44 per short-ton unit in 1952.

[FOREIGN TRADE]

Domestic production is inadequate for requirements, and the United States imports both tungsten concentrates and products, chiefly the former. Imports during 1952 more than doubled those of 1951. Korea was the greatest single source in 1952; Bolivia, Portugal, and Spain were in the group contributing over 2 million pounds each

(tungsten content).

Table 8 lists general imports and imports for consumption of concentrates for 1951 and 1952. General imports represent ores and concentrates received in the United States, irrespective of final disposition. Imports for consumption cover ores and concentrates on which duty has been paid and which have thereby entered the domestic commerce of the United States and concentrates that enter duty-free for the United States Government. This classification includes concentrates that are withdrawn from bonded warehouses; actual physical imports of such concentrates may have been included under "general imports" in prior years.

In 1952 there were reexports of 3 tons of concentrates and exports of 11 tons, compared with 16 tons and none in 1951. One ton was

received for smelting, refining, and reexport during 1952.

Imports (for consumption) of ferrotungsten were as follows for 1952:

Source:	Gross weight, pounds	Tungsten content, pounds
Japan	277, 214	211, 468
Korea		140, 564
Portugal	121, 253	87, 934
Sweden	43 , 5 93	33, 812
Taiwan (Formosa)	6, 537	4, 917

⁶ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 6 .- Tungsten ores and concentrates imported into the United States, 1951-52, by countries

[U. S. Department of Commerce]

	General i	mports 1	Import	s for consum	ption 3
Country	Gross weight (pounds)	weight content		Tungsten content (pounds)	Value
Argentina Australia Belgian Congo Bolivia Brazil British East Africa Burma Chile China Japan Korea Mexico New Zealand Peru Portugal Spain Thailand Union of South Africa	1, 688, 160 188, 448 2, 354, 595 1, 882, 617 35, 663 488, 950 113, 380 1, 721, 923 520, 663 2, 548 788, 725 2, 424, 060 1, 004, 690 1, 427, 230	884, 295 105, 047 948, 169 2 1, 070, 213 19, 096 248, 533 33, 522 65, 108 904, 810 231, 897 1, 313 431, 198 1, 279, 872 536, 117 772, 470	507, 086 1, 563, 897 1, 563, 897 1, 575, 382 2 1, 471, 555 1, 079, 661 35, 663 576, 921 982 35, 967 283, 467 1, 323, 974 345, 943 634, 537 1, 897, 109 877, 813 1, 367, 873 1, 1, 670	295, 423 846, 631 30, 746 692, 588 618, 899 19, 096 289, 296 155, 692 705, 131 152, 017 345, 894 997, 570 468, 653 739, 519	\$598, 538 2, 443, 617 772, 462 3 2, 182, 465 1, 156, 380 275, 255 2, 151 43, 435 295, 512 2, 450, 549 526, 148 3, 552, 367 1, 948, 732 1, 360, 567 1, 948, 732
Total	3 14, 701, 662	³ 7, 532, 865	⁸ 12, 058, 830	6, 376, 513	3 17, 603, 956
Argentina	277, 075 1, 762, 874 66, 146 6, 325, 189 1, 829, 137 22, 198 16, 845 1, 968, 741 2, 958, 442 84, 084 10, 362 310, 216 258 7, 723, 668 3, 011, 723 19, 918 399, 827 4, 792, 206 3, 886, 920 2, 239, 164 22, 400	141, 640 823, 884 37, 330 2, 867, 947 1, 045, 722 12, 098 8, 685 911, 148 642, 655 42, 318 4, 766 159, 249 133 3, 723, 474 408, 447 11, 230 216, 391 2, 590, 840 2, 044, 510 1, 220, 544	277, 075 1, 942, 816 66; 146 6, 515, 656 2, 495, 864 22, 198 706 579, 646 2, 638,001 84, 084 10, 362 290, 631 9, 381 8, 098, 841 3, 220, 543 19, 918 703, 679 4, 842, 011 3, 944, 991 2, 120, 964	141, 640 905, 429 37, 330 2, 940, 4182 12, 098 305, 168 631, 380 42, 318 4, 766 151, 121 685, 826 11, 230 378, 052 2, 674, 062 2, 074, 384 1, 158, 183	509, 197 3, 336, 327 127, 402 10, 599, 924 4, 453, 472 38, 483 350, 341 2, 304, 397 169, 992 13, 726 468, 230 10, 813 14, 036, 199 1, 660, 574 38, 211 77, 373 7, 950, 761 7, 207, 272 22, 999, 734
Total	37, 727, 393	16, 984, 892	37, 883, 513	17, 405, 869	57, 046, 781

¹ Comprises ores and concentrates received in the United States; part went into consumption during year

and remainder entered bonded warehouses.

2 Comprises ores and concentrates withdrawn from bonded warehouses during year and receipts during year for consumption.

3 Revised figure.

Exports of ferrotungsten (gross weight) included 288,401 pounds to Canada and 6,615 pounds to Italy; reexports (gross weight) comprised 33,195 pounds to Canada, 15,047 pounds to United Kingdom, 4,592 pounds to Austria, and 44,333 pounds to Italy.

Imports (for consumption) of tungsten metal were 147 pounds from Germany, 1,787 pounds from Japan, and 330 pounds from Netherlands. Exports of tungsten-metal powder totaled 53,416 pounds; countries receiving over 100 pounds included Australia (891), Canada (51,462),

India (158), and Italy (720).

Additional tungsten-bearing items imported for consumption during 1952 comprised tungsten carbide (137 pounds content), tungstic acid (5,382 pounds content), ferrochromium tungsten (64 pounds content), and tungsten nickel (134 pounds content); additional exported items comprised metals, alloys, and scrap (70,053 pounds gross) and primary

forms not elsewhere classified (36,391 pounds gross).

The International Materials Conference recommendations regarding distribution of tungsten concentrates during 1952 were accepted by member governments and serve as a guide to indicate important importing areas. The four distribution plans announced during the year have been combined in table 7. The quantities listed for France, Germany, Japan, Sweden, the United Kingdom, and the United States include material for conversion to primary products for reexport.

The International Materials Conference distribution plans were

discontinued at the end of 1952.

TABLE 7.—Summary of International Materials Conference distribution plans for tungsten concentrates, 1952

Country	Metric tons, tung- sten content of concen- trates	Country	Metric tons, tung- sten content of concen- trates
Australia Austria Belgium Canada France Germany Italy Japan Netherlands	78 31 17 194 1,540 1,789 158 434 38	Spain Sweden Switzerland United Kingdom United States Other Total production estimate	75 756 30 3, 800 8, 865 41 17, 846

In May the United Kingdom formed British Tungsten, Ltd., to act as agent of the Government for the import and distribution of tungsten ores. This formalized the joint action of three firms—Derby & Co., Ltd., Metal Traders, Ltd., and H. A. Watson, Ltd.—which previously acted jointly as the Government's agents.

TECHNOLOGY

During 1952 the following technological developments were significant:

Mining.—The price of \$63 per short-ton unit provided by the domestic tungsten program of the Government encouraged production of material previously considered too low grade to work; several firms mined ores containing about 0.3 percent WO₃. In general, less selective mining methods were used than when ores containing 0.6 to 0.75 percent WO₃ were mined, and there was a considerable increase in the tonnage produced by open-cut mining. There was also a trend toward greater production of shipping ore from deposits not equipped with milling plants. The exploration loans available under the DMEA program were widely applied for by individuals and firms wanting to explore tungsten deposits; table 7 lists the DMEA contracts negotiated for this purpose in 1952.

⁷ Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 1, January 1952, p. 22, vol. 34, No. 4, April 1952, p. 26, vol. 35, No. 2, August 1952, p. 24; vol. 35, No. 5, November 1952, p. 24.

Getchell Mine, Inc., installed slusher equipment for loading skips from a nearly horizontal underground bin and utilized similar equipment for loading dump trucks; in both instances, chute gates were eliminated and bin construction simplified.

United States Vanadium Co. continued to develop large blocks of ore for production by long-hole blasting. During 1952 this firm substituted percussion drilling for diamond drilling at many of the

long-hole stopes.

TABLE 8.—Defense Mineral Exploration Administration contracts executed in 1952 for exploration of tungsten deposits

State or Territory	County	Firm	Total cost	Govern- ment partici- pation
Alaska	2d Judicial	Nikas Mining Co. Northfield Mines, Inc. Sweeney Tungsten Co. Hidden Hills Co. Tungsten Prospecting Assoc T. A. Hazelton A. W. Brown G. Coughlin and E. Henderson G. Jump S. Larson and R. Plummer J. McBroom and L. R. Allen J. M. Smith and C. R. Rugg Vasco Tungsten Corp A. Robitsch and Wm. Brewster Chief Joseph Mines, Inc Mullen Mines Co. Bradley Mining Co. J. Etherton and W. Schmittroth McRae Tungsten Corp American Alloy Metals, Inc Minerican Alloy Metals, Inc Miners Engineering Co. Western Mines Co. Standard Ore & Alloy Co. I. Sykes. Baltimore Camass Mines, Inc Graham Development Corp.	29, 800 6, 700 5, 960 10, 500 4, 800 12, 600 12, 600 12, 600 17, 500 9, 650 7, 440 12, 400 112, 000 24, 000 112, 600 21, 600 21, 600 20, 280 10, 660 20, 280	\$30, 750 44, 400 33, 540 22, 350 12, 600 5, 025 4, 470 7, 875 3, 600 14, 175 18, 730 13, 125 7, 237 5, 580 9, 300 44, 350 50, 185 90, 960 16, 200 7, 560 7, 950 15, 210
New Mexico Utah	Santa Fe Millard	Mt. Wheeler Mines, Inc	75, 476 77, 520 26, 700	56, 607 58, 140 20, 025
Total			984, 740	738, 554

The results of sampling by the Bureau of Mines at the Combination mine, Granite County, Mont., were described. The work, which was conducted in 1947 and 1948, comprised 10,732 linear feet of trenches, 16 diamond-drill holes, and 236 channel samples. One hundred and fifty-eight drill hole samples were analyzed.

Milling.—1952 was marked by construction of several new mills

and by modification and expansion at several others.

Nevada-Massachusetts Co. modified the flowsheet at the Tungsten, Nev., mill. The design calls for a greater percentage of the concentrates to be produced at the gravity section and a corresponding decrease in the quantity recovered by the flotation units.

The sampling unit at the Getchell mill, Red House, Nev., was improved to provide for automatic sampling of custom ores. Ore from outside sources is sent to a separate primary crusher. An

⁸ Volin, M. E., Roby, R. N., and Cole, J. W., Investigation of the Combination Silver-Tungsten Mine, Granite County, Mont.: Bureau of Mines Rept. of Investigations 4914, 1952, 26 pp.

infrared lamp unit to aid the drying of concentrates at this mill was described. Lamps are also used to dry concentrates produced by Tungsten Mining Co. at Henderson, N. C., without using auxiliary heating pans. The capacity of the Henderson unit was increased to 600 tons per day during 1952.

Tests of concentration methods for scheelite ores were reported.10 A limited procedure was used, designed to answer specific questions regarding six ores from California and Nevada. The methods of treatment included flotation, gravity concentration, and magnetic

separation.

The flowsheet at the Yellow Pine antimony unit, Stibnite, Idaho, was described; tungsten concentrates were produced as a byproduct by flotation followed by tabling. Production of tungsten from a placer also is included in the article. Material mined by power shovel and trucked to a central plant was sized by a grizzly and trommel. The minus-4-inch, plus-%-inch ore was hand sorted under ultra-violet light; minus-%-inch ore was treated in jigs and tables and cleaned by a magnetic separator.¹¹
Three former gold mills near Virginia City, Nev., were converted

to enable treatment of tungsten ores.12

Tungsten Carbide.—A program for salvaging scrap tungsten carbide at a plant in England was described; 13 broken and worn tungsten carbide was used on small tools; at wear points of fixtures, dies, and gages; on scriber tips; and, after being pulverized, as a component of grinding and lapping compounds. In the United States the tendency is to salvage tungsten carbide by converting it to synthetic scheelite or by charging it to steel furnaces along with scrap tool steel.

Technical information on the binding agent in sintered tungsten

carbide was published.14 The authors discuss the conflicting literature and provide a bibliography regarding the structure of this

material.

Tests indicate a structure of isolated carbide grains in a matrix of binder metal, rather than a continuous skeleton of tungsten carbide. Conclusions are quoted below.

1—Densification of cemented tungsten carbide-cobalt alloys takes place by a rearrangement of the carbide particles, which achieve a denser packing under the influence of the surface tension forces of the binder. The disappearance of small grains and the growth of large grains of tungsten carbide also contribute to densification.

2—The resulting structure is one of carbide particles embedded in a cobalt-rich matrix. A continuous tungsten carbide skeleton is not formed during the sintering

treatment.

3-This structure accounts for some of the characteristic properties of the cemented compacts. Their high strength and lack of ductility can be attributed to the mechanical restraint exerted by the carbide particles upon the thin films of the binder, the yield strength of which is correspondingly raised, and to the complex state of stress resulting from the presence of residual stresses of thermal origin.

⁹ Engineering and Mining Journal, vol. 152, No. 11, November 1952, p. 116.

¹⁰ Engel, A. L., Treatment Tests of Scheelite Ores and Tailings: Bureau of Mines Rept. of Investigations

4867, 1952, 11 pp.

¹¹ Huttl, J. B., Yellow Pine is Expanding Its Output of Strategic Metals: Eng. and Min. Jour., vol. 153,

No. 5, May 1952, pp. 72-77.

¹² Mining Record, vol. 63, No. 33, Aug. 14, 1952, p. 3.

¹³ Halliday, W. M., Iron Age, vol. 169, No. 10, Mar. 6, 1952, pp. 208-210.

¹⁴ Gurland, J., and Norton, J. T., Role of the Binder Phase in Cemented Tungsten Carbide-Cobalt

Alloys: Jour. Metals, vol. 4, No. 10, October 1952, pp. 1051-1056.

TUNGSTEN 1079

4—The following are the essential characteristics required of an effective binder for cemented tungsten carbide compacts: it must supply a liquid phase at relatively low temperatures; tungsten carbide must be soluble in the binder; and the liquid binder must wet the solid carbide particles.

The phases and equilibria in the tungsten-cobalt-carbon system were studied.15

The use of tungsten carbide-tipped hammers at pulverizing mills resulted in a substantial increase in the tonnage treated before the hammers were replaced. The efficiency was also increased because the overall length of the tipped hammers remained more constant after long use than steel hammers. 16

Tool Steel.—The production of exceptionally large bars of tool steel without carbide concentrations in the center was described. 17

WORLD REVIEW

Argentina.—The Argentine Trade Promotion Institute was authorized to conclude an agreement regarding the sale of tungsten ores and concentrates exported, with Minerales y Metales, S. R. L. agreement covers the sale for export of all exportable surplus of tungsten concentrates produced by Sominar, Sociedad Minera Argentena S. A. (an affiliate of Minerales y Metales) and any other quantity that the Trade Promotion Institute makes available for export. This agreement was expected to expedite the \$5,000,000 Export-Import Bank loan to Sominar for expansion of tungsten and sulfur production.18 The Arrequintin mine was reported to be an active producer. 19

Australia.—King Island Scheelite, Ltd., mined 174,000 tons of ore and produced 1,000 tons of tungsten concentrates during the year ending October 31, 1952; in addition, 210,000 tons of overburden was The deposit being worked is on King Island in Bass Strait between the Victorian mainland and Tasmania. The Frogmore mine

in New South Wales was in operation.²⁰

Bolivia.—Early in 1952 production of tungsten in Bolivia was stimulated by long-term contracts, Export-Import Bank loans, and a schedule of exchange deliveries more favorable than the restrictive provisions in effect from August 1950 to July 1951. However, in October of 1952 the mines of Patino Mines and Enterprises Consolidated, Inc., Mauricio Hochschild (SAMI), and Cia Aramayo de Mines in Bolivia were nationalized. This effectively halted the plant expansion planned by Bolivian Tin & Tungsten, a Patino subsidiary, at the Kami and Araca mines under terms of a \$1,000,000 loan negotiated in December 1951; Hochschild's expansion at the Bolsa Negra mine, using a \$1,000,000 loan negotiated in November 1951; and Aramayo's development at Pacuni, for which a \$580,000 loan was granted The nationalization did not include tungsten in January 1952. deposits of other firms and did not affect the long-term contract between the Mining Bank and the United States Government, providing for the delivery of 3,000 to 5,000 tons of tungsten concentrates

¹⁸ Rautala, P., and Norton, J. T., Tungsten-Cobalt-Carbon System: Jour. Metals, vol. 4, No. 10, October 1952, pp. 1045-1050.

18 Fawcett, W. E., Carbide-Tipped Hammers Cut Pulverizing Costs: Iron Age, vol. 170, No. 22, Nov. 27, 1952, pp. 114-116.

17 Hughes, David P., Bigger Tool-Steel Bars: Steel, vol. 4, No. 10, Nov. 3, 1952, pp. 96-97.

18 Boletin Oficial, Argentina, Decree 5,200, Mar. 14, 1952: Mar. 24, 1952.

19 Mining World, vol. 14, No. 13, December 1952, p. 63.

29 Mining World, vol. 14, No. 6, May 1952, p. 65.

TABLE 9.—World production of tungsten ores, by countries, 1948-52, in metric tons ¹ of concentrates containing 60 percent WO₃,

[Compiled by Pauline Roberts and Berenice B. Mitchell]

Country	1948	1949	1950	1951	1952 .
N			900		
North America: Canada	791	191	215	15	923
Mexico	133	65	67	325	443
United States (shipments)	3,659	2,508	4,373	5, 693	6,905
	4, 583	2,764	4, 655	6,033	8, 271
Total North America	1,000	2,101	1,000		0, 211
South America: Argentina	33	2 30	2 20	100	600
Bolivia (exports)	2,485	2, 543	2,461	2,718	3,707
Brazil (exports)	1.144	575	759	1,422	² 1, 800
Peru	353	455	516	655	630
Total South America	4, 015	2 3, 600	2 3, 760	4, 895	² 6, 700
Europe:					
Finland	4	49	20	8	47
France	567	792	442	765	2 1, 000
Italy	4	3	2	6	4 000
Portugal	2,944	2,700	2, 500 850	4,680	4, 900
Spain	876	888 468	362	2, 553 2 450	2, 400 2 380
Sweden	317 5,000	6,000	7,500	7, 500	(3)
U. S. S. R. ²	3,000	81	7,500	61	55
United Kingdom					
Total Europe (estimate)	9,800	11,000	11,800	16,000	4 8, 800
Asia:	1 004	740	930	1,647	1,260
Burma	1,824	2 9, 000	2 12, 000	2 15, 800	2 20, 000
China	12, 200	2 9,000	2 12,000	210, 300	104
Hong Kong			2	15	, 101
India Japan	9	20	$6\overline{4}$	86	239
TZ	1				
Korea, Republic of	1.245	1,448	2,000	1, 269	3,500
North Korea	1,000	1,000	21,000	2 1, 200	2 1, 200
North Korea Malaya, Federation of	87	69	27	54	· 79
Thailand 2	. 800	1, 100	1,200	1,350	1,600
Total Asia (estimate)	17, 200	13, 400	17,000	21, 400	28,000
Africa:					
Algeria		276	164	17 330	75 2 500
Belgian Congo	. 236	276	104	330	200
Egypt	15		7	38	1
French Morocco	4	5	5	23	2
Nigeria.	80	26	64	231	42
Southern Rhodesia		6	4	33	iii
South-West Africa Tanganyika (exports)	1 1	42	15	15	1
Uganda (exports)	115	180	218	167	10
Union of South Africa	151	416	96	188	26
Total Africa	616	951	573	1,049	² 1,60
Oceania:					
Australia	1, 234	1,371	1, 235	1,892	2 2,00
New Zealand	28	28	24	35	2 3
Total Oceania	1, 262	1,399	1, 259	1, 927	2 2, 03
Grand total (estimate)	37, 500	33, 100	39,000	51,300	4 55, 40
Grand total (opinion)	1,	1			<u> </u>

This table incorporates a number of revisions of data published in previous tungsten chapters.
 Estimate.
 Data not available: No estimate included in totals.
 Excluding U. S. S. R.

over a 5-year period. Exports of tungsten in 1951, by individual

firms and groups, were published.21

Canada.—The Emerald mine near Salmo, British Columbia, was a major producer of tungsten during 1952. The Canadian Government operated the mine during World War II; after the wartime demand for tungsten declined, the deposit was sold to Canadian Exploration, Ltd., a wholly owned subsidiary of Placer Development, Ltd. Shortly after the outbreak of hostilities in Korea the Government repurchased the mine and negotiated an agreement with the company for its operation. Canadian Exploration, Ltd., developed ore outside the Government-owned area and expanded the mill from the 250-ton plant needed to treat ore for the Government to a 700-ton daily capacity; in October 1952 the Canadian Government announced resale of the mine to Canadian Exploration, Ltd.²²

The Red Rose and Rocher De Boule mines in British Columbia, operated by Western Tungsten Copper Mines, Ltd., were reported to have produced 168 tons of tungsten concentrates during the first 8 months of 1952. The mill has a daily capacity of 150 tons of ore per day; an expansion program was under consideration. Production was sold to a London firm under a 2-year contract at the prevailing market quotation, subject to a minimum of \$45 and a maximum of

\$110 a unit.23

Finland.—During 1952, 41 metric tons of tungsten concentrates, containing 69.2 percent WO₃, was produced as a byproduct at the

Ylojarvi copper mine.

Korea.—Korea was the greatest single source of United States imports of tungsten concentrates during 1952. In March the Department of the Army announced that the Republic of Korea was supplying the United States with its output of tungsten,24 and it was reported that a battalion of United States infantrymen was deployed in the area to defend the mine from guerilla troops.²⁵ In December a contract was negotiated between the Republic of Korea and the Utah Construction Co. of San Francisco. The agreement is a management contract that calls for rehabilitation and improvement at the Governmentowned Sangdong and Dalsung mines, a training program for a Korean staff, and plans for construction of a tungsten refinery.²⁶

Mexico.—A 50-ton tungsten mill was operated near Leon, Guana-juato, by Cia Bisentungsteno S. A.²⁷ A list of tungsten producers and

exporters was published.28

Peru.—The Pasto Bueno mine in the Department of Ancash was being developed during 1952; an Export-Import Bank loan of \$650,000, approved in July 1951, provided part of the funds used for mine and mill equipment, a power plant, and construction of an 80-kilometer road.

Portugal.—Portugal is the largest producer of tungsten concentrates in Europe. The Panasqueira, Ribeira, and Borralha mines

²¹ Bureau of Mines, Mineral Trade Notes: Vol. 34, No. 5, May 1952, pp. 25-27.
22 Mining Record, vol. 63, No. 9, Feb. 28, 1952, p. 6. American Metal Market, vol. 59, No. 76, April 19, 1952, p. 11; vol. 59, No. 177, Sept. 12, 1952, p. 1.
23 Northern Miner, vol. 38, No. 40, Dec. 25, 1952, p. 3. American Metal Market, vol. 59, No. 192, Oct. 3, 1952, p. 4. Metal Bulletin (London), No. 3752, Dec. 16, 1952, p. 23.
24 Mining Record, vol. 63, No. 10, Mar. 6, 1952, p. 1.
25 Engineering and Mining Journal, vol. 153, No. 12, November 1952, p. 128.
26 Mining Record, vol. 63, No. 51, Dec. 18, 1952, p. 3. American Metal Market, vol. 59, No. 240, Dec. 16, 1952, p. 1.

^{1952,} p. 1. ²⁷ Mining World, vol. 14, No. 4, April 1952, p. 60. ²⁸ Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 1, July 1952, p. 23.

have been the source of much of the production. During 1952 Beralt Tin & Wolfram, Ltd., concluded 2 contracts with the United States Government; 1 calls for 1,000 short tons of tungsten concentrates within 2 years and another for 2,500 long tons over a 5-year period.29 This firm owns tin and tungsten properties at Panasqueira. In October 1952, the United States canceled a contract with the Atlantica Co. that had called for a minimum of 2,970 and a maximum of 4,290 short tons of concentrates, because the firm sought to deliver material purchased on the open market rather than that produced by the mines specified in the agreement. 30 Minas de Borralha, a French-owned company, was reported to have produced ferrotungsten by an electrometallurgical process in addition to exporting substantial quantities of tungsten concentrate.31

Southern Rhodesia.—The tungsten deposits of Southern Rhodesia were described in considerable detail. Wolframite is said to occur in quartz veins associated with much tourmaline and in greisenized aplite veins and dikes, associated with chlorite, muscovite, tourmaline, fluorspar, topaz, and sulfides. The four main types of scheelite ore occurrence are in quartz veins, schist lodes, skarn lodes (tactite).

and veins in basalt.32

Spain.—Tungsten concentrates were produced in the Provinces of La Coruna, Salamanca, Orense, Pontevedra, Badajoz, and Leon. At the beginning of 1952, 223 mines were operating; 158 of these were brought into production in 1951. Most of these mines were small operations worked almost entirely by hand labor. An exception was Compania Minera Montanas del Sur; this firm negotiated a \$230,000 Export-Import Bank loan for mining machinery and equipment.33

Union of South Africa.—The O'okiep Copper Co., Ltd., signed a contract with the United States Government covering the sale of all its production of tungsten concentrates. The company expects to spend \$500,000 to provide mining and milling equipment; the mill

will have a capacity of 200 tons per day.34

Yugoslavia.—A tungsten deposit near Neresnica in eastern Serbia produced tungsten concentrates; the separation plant and some mine equipment were procured with the aid of a loan from the Export-Import Bank. Plans for production of ferrotungsten at Sibenik were reported.35

<sup>Mining World, vol. 14, No. 12, November 1952, p. 64.
American Metal Market, vol. 59, No. 211, Oct. 31, 1952, p. 1, 7.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, p. 22.
Southern Rhodesia Geological Survey, Tungsten: Mineral Resources Ser. 5, May 1952, p. 9.
Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 4, October 1952, pp. 22-23.
Mining World, vol. 14, No. 12, November 1952, p. 59.
American Metal Market, vol. 59, No. 137, July 17, 1952, p. 1.</sup>

Uranium, Radium, and Thorium

By H. D. Keiser 1

NPRECEDENTED expansion of the Nation's atomic energy program, foreshadowed in 1951, became a reality in 1952. Besides authorization of funds to support the expansion, implementation of the increased scale of operations, involving adequate supplies of raw materials, seemed assured. Program goals were defined more clearly than before. Marked progress was made on such objectives as the development of more effective nuclear weapons and the application of atomic power for industrial purposes. In short, the tenth anniversary of the first chain reaction—produced on December 2, 1942, at Chicago—saw the United States proceeding in a substantial manner toward security and new economic horizons.

Funds at a new high level were appropriated to the Atomic Energy Commission in 1952 under the major expansion of facilities for the production of fissionable materials and weapons. During the fiscal year 1952 the AEC received three appropriations totaling \$1,605,897,750; the initial appropriation for fiscal year 1953 amounted to \$1,137,727,500; and on July 15, 1952, a supplemental appropriation of \$2,986,894,000 was authorized—the largest ever made for the atomic energy program. Capital investment of the United States in atomic energy will be about \$7,500,000,000 when the construction involved

under the appropriations is completed.

Production of atomic weapons continued at the rate authorized by the President for the calendar year 1952. Two series of weapons tests were held—one during April, May, and June at the Nevada proving ground near Las Vegas and the other during November at Eniwetok Atoll in the Pacific. In October the Army demonstrated a 280-mm.

cannon for which an atomic projectile had been developed.

Under the expansion program supported by the supplementary appropriation of July 15, 1952, a major new facility—a gaseous diffusion plant to cost about \$1,200,000,000—was planned for erection along the Scioto River, in Pike County, Ohio, about 22 miles north of Portsmouth. Additional plant capacity was scheduled at the several gaseous diffusion and plutonium plants.

The materials-testing reactor constructed at the National Reactor Testing Station in Idaho went into operation in 1952. One prototype reactor for submarine propulsion was substantially completed, and work was begun on the reactor to power the submarine U. S. S.

¹ Commodity-industry analyst.

Nautilus. Construction of a second reactor-powered submarine, the

U. S. S. Sea Wolf, was authorized.

The impending industrial application of atomic energy was the subject of much discussion in 1952. The first four industrial groups to survey the technical and economic problems of power-reactor development released some information relating to their studies. Approval was granted a fifth group to make a similar survey.

Production of fissionable uranium-235 and plutonium in 1952 was reported by the AEC to have continued as scheduled. Foreign production and procurement programs, according to the AEC, progressed at a satisfactory rate, and plans for expansion and development of new sources were underway. Domestic uranium production continued to

increase.

MINE AND MILL PRODUCTION

Production and processing of uranium ores continued on an accelerated basis in 1952, with an expansion in all phases of exploration, development, metallurgy, and research involved under the AEC raw materials program.2 Two new and important sources of uranium were brought into production in 1952—the gold ores of South Africa (see Union of South Africa, this chapter) and the phosphate rock of Florida. At the close of the year the first processing plants treating the gold ores and phosphate rock had reached scheduled performance.3

Domestic uranium-mining activity in 1952 was centered on the Colorado Plateau as in 1951. Significant discoveries in Arizona and New Mexico in 1952 indicated further expansion southward and westward of the area of known uranium mineralization. More than 200 mines, ranging from small 1-man operations to mines employing 100 men or more, were active on the plateau in 1952, and over 5,000 persons were engaged in exploration, drilling, mining, milling, construction, and trucking.⁵ Discoveries of new ore bodies on the plateau in 1952 were mostly within or adjacent to known uranium districts— Uravan, Colo.; Moab, Green River, San Rafael Swell, and Henry Mountains, Utah; Lukachukai Mountains, Ariz.; and Shiprock, Importance of the Grants area in New Mexico, where a large deposit of uranium ore in Todilto limestone had previously been found, was enhanced by the discovery in 1952 of good-size deposits in sandstone near Laguna, southeast of Grants.7 Airborne and ground exploration in 1952 disclosed several new deposits east and west of the original Craven Canyon discovery in South Dakota.8 Northwest of Edgemont, S. Dak., in the Powder River Basin of Wyoming, the Geological Survey found a number of small, high-grade deposits.9 Except for the deposit near Marysvale, Utah, a steady producer of

² Atomic Energy Commission, Twelfth Semiannual Report: July 1952, p. 2.
3 Atomic Energy Commission, Thirteenth Semiannual Report (Assuring Public Safety in Continental Weapons Tests): January 1953, p. 5.
4 Waylett, William J., Uranium: Mining World, vol. 15, No. 5, Apr. 15, 1953, pp. 78-79.
5 Meyers, Burt, Uranium: Eng. and Min. Jour., vol. 154, No. 2, February 1953, pp. 90-91.
6 Towle, Charles C., and Rapaport, Irving, Uranium Deposits of the Grants District, New Mexico: Min. Eng., vol. 4, No. 11, November 1952, pp. 1037-1040.
7 Rapaport, Irving, Interim Report on the Ore Deposits of the Grants District, New Mexico: Atomic Energy Commission Rept. RMO-1031, November 1952, 19 pp.
8 Baker, K. E., Smith, L. E., and Rapaport, I., Carnotite Deposits Near Edgemont, S. Dak.: Atomic Energy Commission Rept. RMO-881, February 1952, 13 pp.
Page, L. R., and Redden, J. A., The Carnotite Prospects of the Craven Canyon Area, Fall River County, S. Dak; Geol. Survey Circ. 175, 1952, 18 pp.
9 Love, J. D., Preliminary Report on Uranium Deposits in the Pumpkin Buttes Area, Powder River Basin, Wyo.: Geol. Survey Circ. 176, 1952, 37 pp.

good ore, efforts in 1952 to develop significant tonnages in vein-type deposits were disappointing. 10 Probably the most significant discovery of 1952 was made on the Steen property, in San Juan County, Utah, about 39 miles southeast of Moab, where a massive ore body of better-than-average grade for the Colorado Plateau was opened up in the Chinle formation. Geologic guides to ore on the Colorado Plateau were discussed in publications issued by the AEC and the Geological

Survey.11

Exploration drilling for uraniferous ores by the AEC, Geological Survey, and Bureau of Mines totaled more than 1,100,000 feet in 1952 as compared with 765,000 feet in 1951. Additional drilling by private interests was estimated at 725,000 feet. Most of the drilling was done on the Colorado Plateau, with minor footages in the Colorado Front Range, the Black Hills region and certain uranium-bearing lignite areas of South Dakota, isolated areas in Wyoming, and in an investigation of the continuity of thickness and grade of the Chattanooga shale in Tennessee begun near the close of the year by the Bureau of Mines.¹² Drilling and mining techniques employed on the Colorado Plateau were described in several articles published in the technical press during 1952.13

Intensive exploration programs were conducted in 1952 by private Anaconda Copper Mining Co. was active in the Grants, N. Mex., area and the nearby Laguna Indian Reservation; the Homestake Mining Co. in the South Dakota Black Hills and adjacent area in Wyoming; and the Kerr-McGee Oil Industries, Inc., in the Lukachukai Mountains of northern Arizona. United States Vanadium Co., Vanadium Corp. of America, and Climax Uranium Co., producers of substantial quantities of uranium ore on the Colorado Plateau, carried

forward their respective exploration programs.

Airborne exploration by the AEC and Geological Survey was increased in 1952 and totaled 625 hours of flying in the Black Hills area of South Dakota, in the Big Horn and Powder River Basins of Wyoming, and on the Colorado Plateau. Considerable airborne exploration was also conducted by private interests, including Anaconda Copper Mining Co., Homestake Mining Co., Kerr-McGee Oil Industries, Inc., and Hunt Oil Co.¹⁴ Application of radioactivity methods of prospecting for uranium expanded in 1952; several thousand portable radiation detectors, mostly the well-known Geiger counters, were said to have been in use. Gamma-ray logging of exploratory boreholes, largely by Government agencies, was estimated to have totaled about 1,000,000 feet for the year.15

¹⁰ Gillingham, T. E., Uranium Program Continues to Expand: Min. Cong. Jour., vol. 39, No. 2, February 1953, pp. 82-84, 89.

11 Reinhardt, Elmer V., Practical Guides to Uranium Ores on the Colorado Plateau: Atomic Energy Commission Rept. RMO-1027, Sept. 30, 1952, 13 pp.

Weir, Doris Blackman, Geologic Guides to Prospecting for Carnotite Deposits on the Colorado Plateau: Geol. Survey Bull. 988-B, 1952, pp. 15-27.

12 Works cited in footnote 3, pp. 9-10, and footnote 4.

13 Burwell, Blair, New Developments in Uranium Mining: Min. Cong. Jour., vol. 38, No. 10, October 1952, p. 113.

¹⁸ Burwell, Blair, New Developments in Grandin Maning. Maning. Maning. 1952, p. 113.
Kellogg, John P., Exploration Drilling Techniques on the Colorado Plateau: Atomic Energy Commission Rept. RME-2, Nov. 12, 1952, 25 pp.
Knoerr, Alvin W., How to Make Uranium Mining Pay More: Eng. and Min. Jour., vol. 153, No. 1,
January 1952, pp. 72-81.
Mining Congress Journal, New Mining Technique for Uranium: Vol. 38, No. 12, December 1952, p. 92.
Sullivan, R. G., New Developments in Exploratory Drilling for Uranium Ore: Min. Cong. Jour., vol. 38.
No. 6, June 1952, pp. 42-44, 84.

14 Works cited in footnote 3, p. 9, and footnote 4.

15 Joesting, H. R., Geophysics: Min. Eng., vol. 5, No. 2, February 1953, pp. 151-155.

Additional assistance in various forms was afforded the domestic uranium industry by Government agencies in 1952. The AEC paid \$902,551 during the year to uranium miners as a bonus for initial production of uranium. Uranium contracts for exploration project assistance executed by Defense Minerals Exploration Administration in 1952 totaled \$613,969.54 in contract value, with \$552,572.59, or 90 percent thereof, representing Government participation. A total of \$4,119,284.16 was certified for accelerated amortization by the Defense Production Administration in 1952 in connection with the mining of uranium ore and the expansion of uranium ore-processing facilities. The Bureau of Public Roads in 1952 completed 160 miles of access roads serving uranium mines and was engaged in constructing 543 additional miles of such roads. The exploration contracts executed by DMEA and the certificates of necessity certified by DPA through December 31, 1952, are listed in tables 1 and 2, respectively.

TABLE 1.—Defense Minerals Exploration Administration contracts involving uranium, by States, through Dec. 31, 1952

Name of contractor	County	Date of contract	Govern- ment par- ticipation
COLORADO			-
Anaconda Lead & Silver Co	Larimer Mesa Jefferson Gilpin do	May 21, 1952 Oct. 9, 1951	\$9,000.00 21,600.00 46,772.10 56,475.00 72,000.00 22,500.00 19,570.00
MONTANA			-
David Nieminen, et al. Elkhorn Mining Co. Do. D. A. McNabb.	Jeffersondododododo	Apr. 17, 1952 Aug. 16, 1951 Aug. 22, 1951 Jan. 16, 1952	13, 599. 00 23, 125. 50 11, 520. 00 20, 616. 30
NEVADA		,	
Nevada Uranium Co	Pershing	Dec. 18, 1952	8, 230. 50
NEW MEXICO		-	
Black Hawk Consolidated Mines Co	Grant	Apr. 11, 1952	18, 000. 00
UTAH			
Boomerang Mining Co Bullion Monarch Mining Co Canary Mining Co Abe Day J. Walter Duncan, Jr Ellihill Mining Co Excalibur Uranium Corp Glenn Mining Co. R. A. Glenny, et al. Moreno-Cripple Creek Corp Plateau Mining Co. Salina Mining & Smelting Co. J. R. Simplot Sunnyside Uranium Co White Canyon Mining Co.	Piute Daggett San Juan	June 23, 1952 Dec. 5, 1951 Mar. 17, 1952 Mar. 4, 1952 Sept. 4, 1952 Jan. 24, 1952 Oct. 15, 1952 Aug. 19, 1952 Oct. 29, 1952 Oct. 23, 1951	21, 705, 84 24, 957, 00 24, 052, 50 9, 810, 00 38, 871, 00 53, 363, 70 29, 139, 30 22, 050, 00 17, 049, 00 15, 255, 45 64, 340, 48 39, 114, 00 47, 138, 40
Total			786, 260.

TABLE 2.—Certificates of necessity, involving uranium, certified by Defense Production Administration for assistance through tax amortization, by States. through Dec. 31, 1952

Company	Type of project	Date certified	Percentage of depre- ciable assets certified	Amount allowed for accelerated amortization
COLORADO				
Climax Uranium Co	Ore-processing facilities Mine buildings and equip-	Apr. 16, 1951 May 1, 1951	90 90	\$817, 374, 74 156, 329, 12
Do	ment. Ore-processing facilities	Nov. 7, 1952	80	226, 602. 34
Do	Mine buildings and equipment. Ore-processing facilities	Nov. 26, 1952	80	17, 698. 50
Anaconda Copper Mining Co.	Ore-processing facilities	Jan. 8, 1952	90	3, 197, 610.00
UTAH				
Vitro Chemical Co	do	June 5, 1952	80	677, 373. 32
Total				5,092,988.02

The capacity of several of the 8 uranium ore-processing plants operating in 1952 was increased during the year, and plans were announced for the early construction of 3 new plants. Largest of the mill-expansion programs was that at the Uravan, Colo., plant of U. S. Vanadium Corp., where a new process was placed in operation and capacity of the plant doubled. 16 Vanadium Corp. of America completed a major expansion of its facilities at Durango, Colo.; Climax Uranium Co. increased substantially the capacity of its Grand Junction, Colo., plant; and Vitro Chemical Co. more than doubled the capacity of its Salt Lake City, Utah, plant. In January 1952 the AEC announced that the Anaconda Copper Mining Co. would build an ore-processing plant near Grants, N. Mex., that was scheduled to be placed in operation about September 1953. Toward the close of 1952 announcement was made that Kerr-McGee Oil Industries, Inc., would build and operate an ore-processing plant at Shiprock, N. Mex., and that a similar plant would be erected and operated at Hite, Utah, by Vanadium Corp. of America.

The first production of byproduct uranium from phosphoric acid was begun in September 1952 at the Joliet, Ill., plant of Blockson Chemical Co. Additional plants for similar recovery of uranium were under construction near Mulberry, Fla., by International Minerals & Chemical Corp., and Virginia-Carolina Chemical Corp., and at

Texas City, Tex., by Texas City Chemicals, Inc. 17
The Bureau of Mines continued in 1952 the survey of domestic thorium resources, on behalf of the AEC, which involved evaluation of the monazite content of (1) placer deposits in Idaho, Montana, Wyoming, North Carolina, and South Carolina and (2) beach deposits found along the East Coast from North Carolina to Georgia. Geological Survey collaborated with the Bureau of Mines in examining

¹⁶ Mining Engineering, U. S. Vanadium's Uravan, Colo., Mill Doubles Output: Vol. 4, No. 11, November 1952, pp. 1025–1026.

17 Work cited in footnote 3, p. 5.

several southeastern placer deposits. Detailed descriptions of the evaluation methods and analytical procedure employed by the Bureau were published.18

REFINER AND REACTOR PRODUCTION

Uranium.—Output of fissionable uranium-235 in 1952 was reported to have continued as scheduled. On July 15, 1952, the President signed an act appropriating funds for expanding the atomic energy To achieve the increased production goal for uranium-235 under the expanded program, additional plant capacity was scheduled at the Oak Ridge, Tenn., gaseous diffusion plant and at the gaseous diffusion plant under construction near Paducah, Ky., and a major new facility, also a gaseous diffusion plant to cost about \$1,200,000,000, was planned for erection along the Scioto River, in Pike County, Ohio, about 22 miles north of Portsmouth.19

Plutonium.—Production of plutonium was reported to have continued as scheduled in 1952. Following presidential approval in July of the supplementary appropriation for the expansion of atomic energy capacity, work was begun at Hanford, Wash., on construction of additional reactors to increase the production of plutonium, and the number of such reactors planned for the Savannah River plant, under construction in Aiken and Barnwell Counties, S. C., was increased for the same purpose.²⁰ Reclamation of uranium, depleted partly in U-235 content, was indicated to be an important factor in the pro-

duction of plutonium.21

Isotopes.—The AEC made 9,102 shipments of radioisotopes in 1952, an increase of 16 percent compared with the 7,825 shipments in 1951 (see table 3). From August 2, 1946, to December 31, 1952, over 32,000 shipments of radioisotopes and over 2,000 shipments of concentrated stable isotopes had been made. An additional 1,600 shipments of radioisotopes were made in the same period to 33 foreign countries.²² The single largest selling isotope was iodine-131, with a total of over 12,000 shipments by the close of 1952, followed by phosphorus-32, with about 9,000 shipments. In tems of radioactivity shipped, cobalt-60 led the field, with about 2,200 curies (a curie is a quantity of radioactive material that disintegrates at the rate of 37 billion atoms per second); iodine-131 followed, with about 1,200 Radioactive polonium-210 was initially produced for distribution by the AEC in 1952. The isotope, produced in a reactor by neutron bombardment of bismuth, was of higher purity than polonium derived from the radioactive decay of radium and was made in two forms: As a neutron source it was mixed with beryllium and enclosed in a cylinder of nickel and as an alpha source was plated on a strip of platinum.23

¹⁸ Kline, Mitchell H., Evaluation of Monazite Placer Deposits: Atomic Energy Commission Rept. RMO-908, April 1952, 16 pp.

Kronstadt, R., and Eberle, Allan R., Analytical Procedure for the Determination of Thorium: Atomic Energy Commission Rept. RMO-338, January 1952, 9 pp.

19 Works cited in footnote 2, p. 6, and footnote 3, pp. 11-12.

Atomic Energy Commission, AEC Announces New Gaseous Diffusion Plant To Be Located in Pike County, Ohio: Press release, Aug. 12, 1952, 4 pp.

20 Works cited in footnote 2, p. 6, and footnote 3, p. 11.

21 Flagg, John F., and Zebroski, Edwin L., Atomic Pile Chemistry: Sci. Am., vol. 187, No. 1, pp. 62-67.

22 Work cited in footnote 3, p. 38.

23 Atomic Energy Commission, Reactor-Produced Polonium Now Available for Purchase: Press release, Aug. 1, 1952, 2 pp.

Aug. 1, 1952, 2 pp.

TABLE 3.—Radioisotopes shipped by the U. S. Atomic Energy Commission, by kinds, 1946-52, in number of shipments

Radioisotope	1946 ¹	1947	1948	1949	1950	1951	1952	Total
Iodine-131 Phosphorus-32 Carbon-14 Sodium-24 Sulfur-35 Gold-198 and gold-199 Cobalt-60 Potassium-42 Calcium-45 Iron-55 and iron-59 Strontium-89 and strontium-90 Other Total	68	495	978	1, 537	2, 353	3, 183	3,867	12, 481
	48	537	901	1, 420	1, 736	2, 112	2,101	8, 855
	47	108	1124	192	259	342	431	1, 503
	1	80	1119	229	286	176	363	1, 254
	12	39	41	108	125	168	163	656
	17	522	29	36	164	268	431	997
	4	32	30	64	137	190	147	604
	6	31	24	75	123	132	107	498
	5	42	33	68	89	111	104	452
	5	41	33	54	68	67	149	417
	3	9	18	19	46	62	94	251
	30	186	314	568	848	1, 014	1,145	4, 105

¹ Shipped by Manhattan District, Corps of Engineers, U. S. Army Service Forces.

Radium.—Domestic production of radium was relatively small in 1952 and obtained largely from the retreatment of consumers' wastes. Radium and its derivatives were produced by the Canadian Radium & Uranium Corp., New York, N. Y. Radium-bearing residues, produced in the United States in processing ore from the Belgian Congo for the recovery of uranium, were reported to have been exported to Belgium for extraction of the radium at the Oolen refinery of the

Société Générale Métallurgique de Hoboken.²⁴

Thorium.—A moderate increase was indicated in the domestic production of thorium compounds (chiefly nitrate and oxide) in 1952; principal producers were Lindsay Chemical Co., West Chicago, Ill.; Maywood Chemical Works, Maywood, N. J.; and Rare Earths, Inc., Paterson, N. J. Commercial production of thorium metal in the United States was relatively small; principal producers were Westinghouse Electric Corp. (Lamp Division), Bloomfield, N. J., and Metal Hydrides, Inc., Beverly, Mass. Thorium production statistics are not available under the regulations of the Atomic Energy Act of 1946. Equipment capable of producing a pound of thorium metal a day by fused-salt electrolysis was reported to be in operation.²⁵

CONSUMPTION AND USES

Weapons.—Production of atomic weapons continued at the rate authorized by the President for 1952, with research directed toward improvement of current weapon models and development of new models to meet the requirements of the Armed Forces. In October the Army demonstrated publicly at the Aberdeen Proving Ground, Maryland, its 280-mm. cannon, for which an atomic projectile was developed jointly by the Army and the AEC. Two separate series of tests were held in 1952 in connection with the weapons development program—one during April, May, and June at the Nevada proving ground near Las Vegas and the other during November at Eniwetok Atoll in the Pacific. Federal and State civil-defense officials and representatives of the press, radio, newsreel, and television services ob-

Nucleonics, World Progress in Atomic Energy—Belgium: Vol. 10, No. 12, December 1952, pp. 9-11.

Note: Sibert, Merle E., and Steinberg, Morris A., Investigations for the Production of Thorium Metal by Fused-Salt Electrolysis: Horizons, Inc., Tech. Progress Rept., Cleveland, Ohio, July 31, 1952, 55 pp.

served one of the detonations in April from a point within the bounds of the proving ground. In the course of the Nevada tests the Armed Services familiarized troops with the effects of atomic explosions and

conducted simulated combat maneuvers.²⁶

Before the November tests the AEC announced that the Department of Defense and the Commission would conduct tests at Eniwetok in the autumn months looking toward the development of atomic weapons, and that the tests would be conducted under full security provisions of the Atomic Energy Act.²⁷ On November 16 the AEČ announced that, in furtherance of the President's announcement of January 31, 1950, the test program included experiments contributing to thermonuclear research and that scientific executives for the tests had expressed satisfaction with the results.28

Industrial Power.—No impending industrial development probably ever received more consideration in the technical and public press and on the part of various organized bodies than that accorded in 1952 to the industrial application of atomic energy. Only selected references to the voluminous literature on the subject that appeared during the year can be cited here.29 30 Estimates as to when commercial application of atomic energy would be made ranged generally from 5 to 10

years or more.31

Works cited in footnote 2, p. 13, and in footnote 3, pp. 15-16.
Atomic Energy Commission, AEC and DOD Announce Tests To Be Held at Eniwetok: Press release,

** Works cited in footnote 2, p. 13, and in footnote 3, pp. 15-16.

** Atomic Energy Commission, AEC and DOD Announce Tests To Be Held at Eniwetok: Press release, Sept. 9, 1952, 1 p.

** Atomic Energy Commission, Announcement by the Chairman, United States Atomic Energy Commission: Press release, Nov. 16, 1952, 1 p.

** Boskey, Bennett, The Atomic Energy Act and the Power Question: Nucleonics, vol. 10, No. 10, October 1952, pp. 10-13.

Cisler, Walker L., Electric Power Systems and Nuclear Power (Private Industry and Atomic Power: A Symposium): Bull. Atomic Scientists, vol. 8, No. 8, November 1952, pp. 279-282.

Evans, George E., Wanted: Better Materials for Nuclear Reactors: Iron Age, vol. 169, No. 11, Mar. 13, 1952, pp. 33-97.

Glasstone, Samuel, and Edlund, Milton C., The Elements of Nuclear Reactor Theory: D. Van Nostrand Co., New York, N. Y., 1952, 416 pp.

Hafstad, Lawrence R., Atomic Energy—When? Where? How Much: Chem. and Eng. News, vol. 30, No. 37, Sept. 15, 1952, pp. 3808-3815; Industry and Future Problems in Atomic Energy: Address before 57th annual Congress of American Industry, New York, N. Y., Dec. 5, 1952; The Future Reactor Program: Nucleonics, vol. 10, No. 3, March 1952, p. 17.

Isard, Walter, and Whitney, Vincent, Atomic Power: An Economic and Social Analysis: Blakiston Co., New York, N. Y., 1952, 235 pp.

Isbin, H. S., Nuclear Reactor Catalog: Nucleonics, vol. 10, No. 3, March 1952, pp. 10-16.

Koshuba, W. J., and Calkins, V. P., Engineering Principles and Metal Requirements for Atomic Power Plants: Metal Progress, vol. 62, No. 1, July 1952, pp. 97-114.

Pitzer, Kenneth S., Power Progress Too Slow (Private Industry and Atomic Power: A Symposium): Bull. Atomic Scientists, vol. 8, No. 8, November 1952, pp. 27-288.

Putzell, Edwin J., Jr., The Prospects for Industry (Private Industry and Atomic Power: A Symposium): Bull. Atomic Scientists, vol. 8, No. 8, November 1952, pp. 257-288.

Putzell, Edwin J., Jr., The Prospects for Industry (Private Industry and Atomic Power: A Symposium): Bull. Atomic S

Weinberg, Alvin M., Wanted: Smaller and More Reactors: Nucleonics, vol. 10, No. 11, November 1902, pp. 31-32.

Zinn, W. H., Basic Problems in Central-Station Nuclear Power: Nucleonics, vol. 10, No. 9, September 1952, pp. 8-14.

Zuckert, Eugene M., Policy Problems in the Development of Civilian Nuclear Power (Private Industry and Atomic Power: A Symposium): Bull. Atomic Scientists, vol. 8, No. 8, November 1952, pp. 277-279.

Nucleonics, AEC May Build Dual-Purpose Central-Station Nuclear Power Plant in Nevada: Vol. 10, No. 9, September 1952, pp. 66.

Atomic Energy Industrial and Legal Problems: University of Michigan Press, Ann Arbor, Mich., 1952,

Nucleonics, Progress Report on Industrial Power: Vol. 10, No. 12, December 1952, pp. 40-41. Scientific American, The Breeder Reactor: Vol. 187, No. 6, December 1952, pp. 58-60.

3 Joint Committee on Atomic Energy, Atomic Power and Private Enterprise: 82d Cong., 2d sess., December 1952, pp. 415 Pp. 40-415 Pp

** Joint Committee on Admin Energy, Atomic 1978, Atomic 1

centive contractual arrangements made with industry, the commercial production of electric power from atomic reactors may be no more than 4 or 5 years away."

Dr. Arthur Compton, chancellor, Washington University, St. Louis, Mo., said on Dec. 2, 1952, at the Chicago University conference, commemorating the tenth anniversary of the operation of the first nuclear pile, held at the University of Chicago, Chicago, Ill.: "* * I would be surprised if we do not have some actual commercial applications of atomic power within 10 years. Those will be in the more expensive power areas. In large scale production of power, on an economic basis, my guess would be closer to 50 years."

The reports on dual-purpose reactors submitted to the AEC by the first four industrial teams 32 to survey reactor technology were said by the AEC in 1952 to indicate that large reactors might be built in a few years that could furnish economic power to the systems of the utilities in the groups if weapon-grade plutonium were produced and bought by AEC at Hanford costs.³³ Although the reports remained classified through 1952, the four groups released some declassified information relative to their views, which follows, in part:34

Monsanto Chemical-Union Electric Group.—This group is not yet ready to invest its money in the building of a power reactor. It has proposed that the AEC build a pilot plant for preliminary experimental work. In addition, it prefers delaying building a reactor until a satisfactory solution is found to the legal problems of private ownership of nuclear power and limitations on private

Detroit Edison-Dow Chemical Group.—This group has made the very important statement that it does not feel that a definite price must be established in advance for the sale of byproduct plutonium, although it does not overlook the need to sell plutonium. * * * The objective of this group is the development of a fast breeder reactor * * * A principal objective of the group has been the selection of an approach consistent with the long-range requirements but capable of early development. * * * They believe that the best approach is early construction of a full-size unit.

Commonwealth Edison-Public Service Group.—This group feels that a largescale project would be necessary to average down costs to achieve economic justification. Because utilities do not have venture capital, these companies feel that the Government should pay for the reactor part of the nuclear power plant and the companies should pay for the conventional power facilities outside

of the reactor.

Bechtel Corp.-Pacific Gas & Electric Group.-This group has only stated that it is interested in breeder-type reactors.

In April 1952 the AEC announced that the Detroit Edison-Dow Chemical group, the first to report on the technology survey, would undertake an additional year of research and development.³⁵ Subsequently the AEC agreements with the other three groups were also extended. The AEC announced in September that it had approved a year's survey of reactor technology by a fifth group, comprising the Pioneer Service & Engineering Co. of Chicago and the Foster Wheeler Corp. of New York, 36 and in October that it had approved the association of the 11 following utility and industrial concerns with the Detroit Edison-Dow Chemical group: Cincinnati Gas & Electric Co., Cleveland Electric Illuminating Co., Consolidated Edison Co. of New York, Consumers Power Co., General Public Utilities Corp., New England Electric System, Philadelphia Electric Co., Public Service Electric & Gas Co. of New Jersey, Toledo Edison Co., Vitro Corp. of America, and Wisconsin Electric Power Co.³⁷

During September, October, and November 1952 the Joint Committee on Atomic Energy, in a survey of atomic power developments, held 36 discussions with 82 individuals representing 36 private organi-

³² Monsanto Chemical Co. and Union Electric Co., both of St. Louis; Detroit Edison Co., of Detroit, and Dow Chemical Co., of Midland, Mich.; Commonwealth Edison Co. and Public Service Co. of Northern Illinois, both of Chicago; and Bechtel Corp. and Pacific Gas & Electric Co., both of San Francisco.

Illinois, both of Chicago; and Bechtel Corp. and Pacine Cas & Electric Co., both of San Francisco.

38 Work cited in footnote 3, p. 23.

48 Nucleonics, Progress Report on Industrial Nuclear Power: Vol. 10, No. 12, December 1952, pp. 40–41.

53 Atomic Energy Commission, AEC Accepts Dow-Detroit Edison Proposal for Continuation of Nuclear Power Production Study: Press release, Apr. 22, 1952, 2 pp.

54 Atomic Energy Commission, AEC Accepts Pioneer Service—Foster Wheeler Proposal to Conduct Nuclear Power Production Study: Press release, Sept. 14, 1952, 2 pp.

55 Atomic Energy Commission, 11 Companies to Join Dow-Detroit Edison for Joint Studies of Nuclear Power: Press release, Oct. 18, 1952, 3 pp.

zations and the Federal Government.38 The survey was predicated on the assumption that (1) atomic power is technically feasible but of unknown economic interest, (2) it is important to explore fully the desirability of utilizing atomic energy for generation of electricity in the foreseeable future, and (3) the present rate of progress in this field suggests that some undetermined factors in the existing policy, managerial, legal, economic, and defense situation tend to prevent aggressive development. A record of the discussions, with many related data on the subject of atomic power, was assembled in a

report by the Joint Committee.39

The National Security Resources Board recommended that the President direct the Atomic Energy Commission in consultation with the United States Department of the Interior and the Federal Power Commission, as well as other interested agencies, to draft for submission to the Congress an amendment to the Atomic Energy Act specifying the conditions-including patent rights, availability of fissionable materials, and allocation of costs between industrial power and weapons—under which private interests could operate commercially to benefit from their atomic power research, development, and production.40

The AEC announced on May 1, 1952, establishment of an Office of Industrial Development at its Washington, D. C., headquarters. The purpose of the new office was to aid in administering the industrial participation program, and to expand the areas in which all types of industry might find an interest in the national atomic energy program.41

The materials-testing reactor, constructed at the Commission's reactor-testing station near Arco, Idaho, became "critical" on March 31, 1952, was brought up to full power in May, and was put into service in August by the operating contractor. Effects of intense radiation on materials considered for use in structures, heat-transfer systems, and shields of new reactors will be studied with the materials-testing reactor, which contains more than 100 ports for the insertion of specimens to be exposed to neutron bombardment. Although the reactor operates primarily on thermal, or slow, neutrons, it can also subject specimens to neutrons with intermediate and fast energies.42

Criticality was reached on April 15, 1952, by the homogeneous reactor constructed at the Oak Ridge National Laboratory. The reactor was operated at low power in experiments to determine nuclear characteristics. Inasmuch as it is the first circulating fuel reactor, these data were considered especially important.⁴³ The first non-AEC reactor, known as the Raleigh research reactor, was under

Atomic Power at Length: Vol. 11, No. 1, January 1953, p. 74.
Bulletin of the Atomic Scientists, Atomic Power and Private Enterprise—a Summary of the Joint Committee Report: Vol. 9, No. 4, May 1953, pp. 135-140, 144.
Atomic Energy Newsletter, vol. 8, No. 11, Jan. 13, 1953, p. 2.
Work cited in footnote 30.
National Security Resources Board, The Objectives of United States Materials Resources Policy and Suggested Initial Steps in Their Accomplishment, A Report by the Chairman of the National Security Resources Board Based on the Report of the President's Materials Policy Commission and Federal Agency Comments Thereon: Dec. 10, 1952, 101 pp.
Atomic Energy Commission, AEC Establishes Office of Industrial Development Headed by Dr. William Lee Davidson: Press release, May 1, 1952, 2 pp.

² pp. Works cited in footnote 2, p. 14, and footnote 3, p. 20. Works cited in footnote 2, p. 17, and footnote 3, p. 20.

construction during 1952 by Consolidated Universities of North Carolina on the campus of North Carolina State College at Raleigh. Of the homogeneous type and generally similar to the water-boiler reactor at the Los Alamos Scientific Laboratory, the reactor will have

a maximum capacity of 10 kilowatts.44

Construction of the land-based prototype of the submarine thermal reactor and power plant (see Uranium, Radium and Thorium chapter Minerals Yearbooks 1950 and 1951) was substantially completed in 1952 at the reactor testing station, Arco, Idaho. Work was also begun on the second submarine thermal reactor power plant destined for installation in the U. S. S. Nautilus. 45 Fabrication of the landbased prototype of the submarine intermediate reactor and its power plant, through the Knolls Atomic Power Laboratory at Schenectady, N. Y., began in 1952. Construction at West Milton, N. Y., 18 miles north of Schenectady, of the portion of the submarine hull in which the prototype nuclear power plant will be assembled and of the 225-foot-diameter spherical steel building to house the hull and reactor complex was well advanced at the close of the year.46 In July 1952 the Department of the Navy announced that construction of a second nuclear submarine, the U. S. S. Sea Wolf, to be powered by the second model of the intermediate reactor, had been authorized.

Construction, at the reactor testing station in Idaho, of facilities related to eventual development of nuclear propulsion for aircraft was announced by the AEC in July 1952. Design and development of an aircraft propulsion reactor were in progress at Lockland, Ohio. 47 The Corps of Engineers, United States Army, was reported to be interested in possible military applications of nuclear power, particularly at overseas bases in the event of war and at permanent installations, such as those in the Arctic and other difficultly accessible

regions.48

The third session of the Oak Ridge School of Reactor Technology opened in September 1952 with a record enrollment of 80 students. Thirty-one were student employees of Oak Ridge National Laboratory recruited from universities in the United States. The remaining 49 were on loan from industrial organizations and various Government

Isotopes.—Over 1,100 institutions in the United States had been authorized to receive AEC-produced radioisotopes by the end of 1952, and over 300 institutions had been approved to receive concentrated stable isotopes. Industrial firms led the list of users, followed in order by medical institutions and physicians, colleges and universities, Federal and State laboratories, and private research laboratories. 50 The demand for isotopes has risen at a steady rate

⁴⁴ Work cited in footnote 2, p. 15. 45 Work cited in footnote 2, p. 21. Wallin, Homer N., and Derleux, James C., America's New Dreadful Weapon: Collier's, Dec. 20, 1952,

Wallin, Homer A., and 2 3322.

Pp. 13-16.

Work cited in footnote 3, p. 22.

Life, Biggest Sphere for Atomic Sub Engine: Vol. 33, No. 24, Dec. 15, 1952, pp. 113-114.

Atomic Energy Commission, AEC Announces Aircraft Propulsion Project for Reactor Testing Station: Press release, July 29, 1952, 1 p.

Nucleonics, Army May Build Nuclear Power Plant: Vol. 10, No. 12, December 1952, p. 82.

Nucleonics, Students at ORSORT Session Represent 16 Companies: Vol. 10, No. 11, November 1952,

Work cited in footnote 3, p. 38.
 Aebersold, Paul C., Radioisotopes—Production, Distribution, and Utilization; Chap. in Atomic Energy Industrial and Legal Problems: University of Michigan Press, Ann Arbor, Mich., 1952, pp. 17-55.

each year (see table 3). No indication of leveling off is apparent in year-to-year figures on shipments which in 1952 were about 25 percent of shipments in the entire 6½ years of the program. Reactor-produced polonium-210, distributed by the AEC in 1952 for the first time, was not available in sufficient quantity to be used in luminous phosphors, static elimination devices, and other industrial purposes.⁵¹

The radioisotope, often referred to as the greatest new investigative tool since the microscope, seemed well on its way in 1952 to becoming as widely used.⁵² Although more extensively employed in research than in applied fields, the use of radioisotopes in industry was shown to be expanding markedly, both as radiation sources and as tracers. 53 54 In a review of their use in mineral-dressing research, radioisotopes were shown to have a wide range of application.⁵⁵ velopment of a radioisotope battery with possibilities as a compact power source for industrial battery trucks, jet planes, and other

applications was announced.56

Radium.—The quantity of radium sold for medical use in 1952 about equaled that sold in 1951; but the quantity under lease for such use increased substantially, principally in connection with the demand for multicurie lots for teletherapy. A moderate increase was reported in the quantity of radium under lease for radiographic use. Sales of radium salts in significant quantities were made in 1952 in the form of light sources, luminous compounds, static-elimination equipment, and Indications were that the use of radium salts in the radiation sources. clock and watch industry and the aircraft-instrument industry would decrease and that luminous markers for military applications would be made with radioactive isotopes rather than with radium. application of static-elimination equipment was suggested in industrial grinding operations to avoid the use of additives and in the processing of metal powders that involves sieving, passage down a chute, or pneumatic carriage through ducts.⁵⁷ Demand for radium-bearing slimes, produced in the processing of uranium ores and used in oil-well casing as a marking compound, was steady in 1952 and totaled about 5,000 pounds. Practical applications of radiography in industry were reviewed in detail.⁵⁸

Work cited in footnote 23, p. 1.
 Aebersold, Paul C., Address before the American Management Association: Cleveland, Ohio, Dec. 4, 55 O'Keefe, Philip, Where Radioisotopes Are Finding Industrial Use: Materials & Methods, vol. 36, No.

^{3,} September 1952, pp. 87-89.

Technical Information Service, U. S. Atomic Energy Commission, Radiolsotope Applications of Industrial Significance: Rept. TID-5078, Office of Tech. Services, U. S. Dept. of Commerce, Wash., D. C.,

April 1952, 89 pp.

Mining World (London), Use of Radioactive Isotopes in Industry: Vol. 238, No. 6090, May 9, 1952, pp.

Annual Conference on Use of Radioisotopes in Industry: Ames, Iowa, April 30, 1952.

**Clauser, H. R., Practical Radiography for Industry: Reinhold Publishing Corp., New York, N. Y.,

^{**}Clauser, H. R., Fractical Realinguaph, of Medical Research: Atomic Energy Research Establishment, Harwell, England, Rept. 912, 1952, 30 pp.

**Carr, John S., Radioactive Isotopes in Mineral-Dressing Research: Atomic Energy Research Establishment, Harwell, England, Rept. 912, 1952, 30 pp.
Gaudin, A. M., and Chang, C. S., Adsorption on Quartz, From an Aqueous Solution, of Barium and Laurate Ions: Min. Eng., vol. 4, No. 2, February 1952, pp. 193–201.

**E&MJ Metal & Mineral Markets, vol. 23, No. 38, Sept. 18, 1952, p. 7.

**Graves, J. D., Metals in Radioactive Static Eliminators: Met. Prog., vol. 62, No. 5, November 1952, pp. 94–96.

pp. 94-96.

Nork cited in footnote 54.

TABLE 4.—Consumption of uranium and thorium compounds for nonenergy purposes in the United States, 1948-52, in pounds of contained U_3O_8 and ThO_2

[U. S. Atomic Energy Commission]

Industry	1948	1949	1950	1951	1952
URANIUM (U308 EQUIVALENT)					
Chemical (including catalytic)	1,993 385 225	2, 426 270	2, 835 938	2,016 875	3,048 1,627
PhotographicElectrical	200 200	103	33	88	226
Total U ₃ O ₈	2,803	2,799	3,806	2,979	4, 901
THORIUM (ThO2 EQUIVALENT)					
Gas-mantle manufacture Refractories and polishing compounds. Chemical and medical. Electrical.	36, 697 1, 634 1, 767 427	44, 621 1, 847 596 237	48, 471 1, 889 2, 097 314	31, 132 3, 382 6, 246 1, 457	25, 427 1, 157 11, 064 277
Total ThO2	40,525	47,301	52,771	42, 217	37, 92

Thorium.—Domestic consumption of thorium compounds for nonenergy purposes decreased 10 percent in 1952 compared with consumption in 1951. As indicated in table 4, consumption for chemical and medical purposes was the only category of utilization that increased in 1952, an increase that was more than offset by decreased consumption in the manufacture of gas mantles, refractories and polishing compounds, and electrical equipment. A relatively small quantity of thorium metal, in the form of powder and sheet, was consumed in 1952 in the manufacture of electronic tubes, starter sheet for sun lamps, and alloys with other metals. Canada was reported to be producing uranium-233 in small quantities and operating a plant for separating it from irradiated thorium.59

PRICES

Uranium Ore.—Prices paid by the AEC in 1952 for uranium were the same as in 1951 (see Uranium, Radium and Thorium chapter. Minerals Yearbook, 1951). Three new ore-buying stations were established by the AEC in 1952, and plans for another were announced. The new station at Shiprock, N. Mex., which began receiving ores on January 7, 1952, was established primarily to purchase uranium-vanadium ores mined in the Lukachukai area of the Navajo Indian Reservation in northeastern Arizona. 60 In June the new station, situated 8 miles west of Grants, N. Mex., began buying ore mined in that general area.⁶¹ A market for the uranium ores mined in the Black Hills area of South Dakota and adjacent areas in Wyoming was provided by the new station established at Edgemont, S. Dak., which began accepting ore on December 1, 1952.62 Plans for the

Nucleonics, vol. 10, No. 10, October 1952, p. 83.
Nucleonics, vol. 10, No. 10, October 1952, p. 83.
Atomic Energy Commission, AEC Announces Opening of Ore-Buying Station at Shiprock, N. Mex.: Press release, Grand Junction, Colo., Jan. 17, 1952, 1 p.
Work cited in footnote 2, p. 3.
Engineering and Mining Journal, vol. 153, No. 8, August 1952, p. 139.
Work cited in footnote 3, p. 6.
Atomic Energy Commission, Atomic Energy Commission Opening Uranium-Ore-Buying Station at Edgemont, S. Dak.: Press release, Grand Junction, Colo., Nov. 30, 1952, 1 p.
Work cited in footnote 3, p. 6.

construction early in 1953 of a new station near Green River, Utah, to stimulate production of uranium ore in southeastern Utah, were

announced by the AEC toward the close of 1952.63

Uranium.—Small quantities of high-purity uranium metal were available throughout 1952 to AEC licensees at about \$50 a pound. The metal, in the form of pencil-size rods about 4 inches long, was produced by Mallinckrodt Chemical Co., St. Louis, Mo., and distributed to all the major chemical companies, from which the metal was available to the licensees in its original rod form, as rolled sheets. or as foil.

Radium.—Radium was quoted throughout 1952 at \$20 to \$25 per milligram of radium content, depending on quantity; one source, however, offered radium element throughout the year at \$16 to \$21.50

per milligram, depending on quantity.

Isotopes.—Isotopes were available in 1952 through the Isotopes Division of the AEC in a slightly wider range than in 1951, with prices mostly unchanged.64 In August 1952 the AEC announced the availability of polonium-210 and polonium-beryllium neutron sources for physical and biological research. Through its facilities at the Oak Ridge National Laboratory, the AEC offered in 1952 to industry and other interested groups a routine service of neutron activation analysis. Depending on the type of sample to be irradiated and the element for which analysis was made, the service cost about \$20 to \$70.65 Beginning July 1, 1952, the AEC adopted a charge of 20 percent of production costs for radioisotopes to be used in the study, diagnosis, or treatment of cancer. In the first half of 1952 the AEC continued its earlier policy of making radioisotopes available for cancer studies and treatment free of charge for production costs.66

Thorium.—Thorium metal, in the form of powder, unsintered bars, sintered bars, sheet—0.005 inch and over, and sheet—0.002 to 0.0049 inch, was quoted in 1952 by one producer, f. o. b. producer's plant, in lots of less than 200 grams per item, at 45, 50, 65, 75, and 85 cents per gram, respectively; and, in lots of 200 grams or more per item, at 35.

40, 50, 60, and 70 cents per gram, respectively.

Average prices in 1952 for thorium nitrate and oxide were reported by a large producer, in 100-pound lots, f. o. b. producer's plant, as follows: Thorium nitrate, mantle grade—domestic price \$2,20, export \$3.35 per pound; thorium oxide, 97 percent ThO2—domestic price \$5.25 per pound; thorium oxide, photographic-lens grade, 99 percent ThO₂—domestic price \$7.63 per pound.

FOREIGN TRADE 67

Foreign uranium production and procurement programs, the AEC reported, progressed at a satisfactory rate in 1952, and plans for expansion and the development of new sources were underway. 68 The

[&]amp; Engineering and Mining Journal, vol. 153, No. 10, October 1952, p. 153.

Work cited in footnote 3, p. 6.

Atomic Energy Commission (Isotopes Division, Oak Ridge, Tenn.), Isotopes: Catalog and Price List 4,

March 1951, 75 pp.

6 Work cited in footnote 3, pp. 38-39,

6 Atomic Energy Commission, AEC Will Charge 20 Percent of Production Cost for Radioisotopes Used in Cancer Studies: Press release, June 4, 1952, 3 pp.

Work cited in Contrate 2 pp. 32-32

Work cited in footnote 2, pp. 32-33.

§ Figures on imports and exports (unless otherwise indicated) compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

§ Work cited in footnote 3, p. 5.

major part of the foreign uranium received during the year came from Belgian Congo and Canada. Exports of radioisotopes by the AEC in the year ended November 30, 1952, totaled 422 shipments distributed among 24 different countries. Principal recipients, in order of decreasing number of shipments, were Japan, Canada, Brazil, and Cuba. 69 Data are not disclosed on imports and exports of uranium and thorium ores, concentrates, metal, alloys, and compounds.

The Atomic Energy Control Board of Canada reported nearly 1,000 shipments of over 70 different isotopes in the year ended March 31, 1952, including shipments to the United States, Great Britain, and various countries in western Europe and South America. Demand for cobalt isotopes was said to exceed facilities to produce them.⁷⁰

The Atomic Energy Research Establishment, Harwell, England, shipped 3,053 consignments of radioactive isotopes, all by air transport, to 37 countries in the year ended June 30, 1952. The quantity was sufficient to cause British Overseas Airways Corp. to convert a fleet of Argonaut planes for wing-tip carrying, thus reducing transportation costs by more than 50 percent as the use of heavy lead containers was thereby avoided.71

As indicated in table 5, imports of radium salts and of radioactive substitutes increased markedly in 1952. A major part of the radium salts came from Belgium and consisted primarily of a multicurie source for use in teletherapy and supplies to augment stocks held in the United States. The increased imports of radioactive substitutes resulted largely from the receipt of several large sources of radioactive cobalt and iridium from Canada for use in radiography and teletherapy. Exports of radium by the United States in 1952 totaled 1,143 milligrams, valued at \$25,368; Canada, Italy, and Brazil, in that order, were the principal recipients.

TABLE 5.—Radium salts imported for consumption in the United States, 1948-52 [U.S. Department of Commerce]

Year								
		Va	Radioactive substitutes					
	Milligrams	Total	Average per gram	(value)				
1948	77, 018 98, 032 80, 969 89, 805 173, 711	\$1, 385, 337 1, 719, 656 1, 235, 511 1, 225, 564 2, 873, 688	\$17, 900 17, 500 15, 300 13, 600 16, 500	\$6, 273 370 6, 106 5, 399 85, 849				

WORLD REVIEW

During 1952 the Disarmament Commission of the United Nations made little progress toward agreement between the free and the Cominform world on disarmament.⁷² On January 11, the Sixth

of Work cited in footnote 3, p. 147.

Atomic Energy Commission, Eleventh Semiannual Report (Some Applications of Atomic Energy in Plant Science): January 1952, p. 151.

Atomic Energy Control Board of Canada, Sixth Annual Report, 1951-52: Ottawa, Canada, 1952, 11 pp. 1 Atomics (London), vol. 3, No. 11, November 1952, pp. 273-274.

Atomic Scientists News, vol. 2, No. 2, November 1952, p. 111.

1 Cohen, Benjamin V., Whither Disarmament?: Department of State Bull., vol. 28, No. 710, Feb. 2, 1953, pp. 172-176.

General Assembly of UN adopted the resolution presented by the First Committee on December 19, 1951, directing the Disarmament Commission to prepare proposals on the general subject of disarmament (see Uranium, Radium and Thorium chapter, Minerals Year-The Commission convened at UN headquarters in New York on March 14, 1952, and on that date the United States presented a proposed plan of work, suggesting the five following major subjects for consideration: 73

1. A verified census of all troops and arms, including atomic

weapons.

2. Limitation of armaments, and elimination of atomic weapons

and all instruments adaptable to mass destruction.

3. Negotiation of agreements on troops and arms permitted each state.

4. Enforcements and safeguards. 5. Procedure and timing of program.

Discussion of the work plan and of various proposals brought before the Commission prevailed throughout 1952. Shortly after the close of the year the United States joined with other states in cosponsoring a resolution continuing the Commission and requesting it to report to the General Assembly and to the Security Council no later than

September 1, 1953.74

The military committee of the 14-nation North Atlantic Treaty Organization announced in December 1952 that an agreement had been reached on the use of atomic weapons in a revised strategic plan for the defense of Europe. Explanation was made that some of Europe's military leaders, feeling that financial resources would not permit NATO to meet its target of 98 divisions by the end of 1954, were looking toward atomic weapons as a means of reducing the

demands for armed manpower.75

As a result of recommendations by delegates from the United States, United Kingdom, and Canada to the Fifth International Declassification Conference, held in Washington, D. C., during the fall of 1951, the AEC in April 1952 authorized declassification of additional data on the nuclear properties of uranium useful in the understanding of low-power nuclear reactors for atomic research. The information declassified included values for the fast fission constants for natural uranium and the resonance-absorption integral for natural uranium and its oxides, as well as the numerical values of the thermal neutron fission and capture cross sections for plutonium. Disclosed also was the fact that 3 neutrons are released per plutonium fission, as compared with 21/2 neutrons released by uranium-235 under similar conditions. In addition, the thermal neutron absorption cross section of xenon-135 was declassified. During the latter half of 1952 the AEC declassified all information on the "isotron" method of isotope separation and much of the technical information relating to the electromagnetic method of separation. The isotron method was

⁷³ Department of State Bulletin, Summary of Proposals Made to the Disarmament Commission: Vol.

<sup>Pepartment of State Bulletin, Summary of Proposals Made to the Disarmament Commission: Vol. 27, No. 696, Oct. 27, 1952, p. 648.
Gross, Ernest A., Disarmament as One of the Vital Conditions of Peace: Department of State Bull., vol. 28, No. 718, Mar. 30, 1953, pp. 476-479.
Washington (D. C.), Post No. 27,938, Dec. 12, 1952, p. 1.
Atomic Energy Commission, United States, United Kingdom and Canada, Release Additional Information Concerning Research Reactors.
Press release, Apr. 7, 1952, 2 pp.
Work cited in footnote 2, p. 48.</sup>

not developed to the stage where it could be used to produce significant quantities of fissionable materials. The electromagnetic method was used during the war to produce uranium-235 but is now used to pro-

duce stable isotopes for research.⁷⁷

A catalog of nuclear reactors published in 1952 indicated that over 20 reactors were in operation throughout the world, with 10 additional reactors in advanced stages of design or construction. At least 12 reactors were in operation in the United States, 4 in England, 2 in Canada, 1 in France, and 1 in Norway; a plutonium plant was said to be in operation in Russia.⁷⁸

NORTH AND SOUTH AMERICA

Brazil.—A program of countrywide prospecting for uranium and thorium was begun in Brazil in 1952. Scintillometer aerial surveys were employed, and interesting deposits of uranium- and thoriumbearing minerals were found in the States of Minas Gerais and Espirito Santo.

Canada.—Design and construction of the new C\$30,000,000 heavywater reactor, Canada's third, continued at Chalk River, Ontario, in Completion of the reactor, known as NRU, was scheduled for 1954 or 1955.80 On December 12, 1952, the nuclear reactor at Chalk River, known as NRX, ruptured, and leakage of dangerously radioactive water necessitated evacuation of all workers at the laboratories The accident was attributed to corrosion of the aluminum tubes that carry cooling water to the uranium rods. A shutdown of

the reactor for several months was anticipated.81

Establishment of a new Crown company, Atomic Energy of Canada, Ltd., was announced on February 13, 1952, to take over operation on April 1, 1952, of the Chalk River atomic energy project operated formerly by the National Research Council of Canada. The action was based on an expected increase in operations at Chalk River when reactor NRU is completed and on promising prospects for the early industrial application of atomic energy. So Duly 25, 1952, announcement was made that radioisotopes produced at Chalk River, marketed formerly by the Crown company Eldorado Mining & Refining, Ltd., would be marketed, beginning August 1, 1952, by Atomic Energy of Canada, Ltd.83

Additional incentive to the search for radioactive ores in Canada was provided on May 6, 1952, when the Canadian Government extended from March 31, 1960, to March 31, 1962, the guarantee period for the purchase of uranium in ores and concentrates at a

minimum price.84

In 1952 the mine of Eldorado Mining & Refining, Ltd., at Port Radium on the east shore of Great Bear Lake, in the Northwest

⁷⁷ Work cited in footnote 3, p. 47.
78 Isbin, H. S., Nuclear Reactor Catalog: Nucleonics, vol. 10, No. 3, March 1952, pp. 10-16.
79 Nucleonics, World Progress in Atomic Energy—Brazil: Vol. 10, No. 12, December 1952, pp. 31-33.
Mining Journal (London), vol. 238, No. 6089, May 2, 1952, p. 446.
80 Nucleonics, World Progress in Atomic Energy—Canada: Vol. 10, No. 12, December 1952, pp. 26-28.
81 Chemistry and Industry (London), No. 6, Feb. 7, 1953, p. 122.
82 Office of the Prime Minister, Ottawa, Canada, Press Release: Feb. 13, 1952, 3 pp.
83 Office of the Prime Minister, Ottawa, Canada, Press Release: Feb. 13, 1952, 3 pp.
84 Department of Defense Production, Ottawa, Canada, Press Release: July 25, 1952, 2 pp.
85 Department of Defense Production, Ottawa, Canada, Press Release: July 25, 1952, 2 pp.
Northern Miner, vol. 38, No. 19, July 31, 1952, p. 6 (806).
84 Northern Miner, vol. 38, No. 7, May 8, 1952, p. 16 (508).

Territories, was again the source of virtually all the uranium ore produced in Canada. The crushing plant and mill at the property, destroyed by fire on November 9, 1951, were rebuilt and placed in operation in May 1952. A new leaching plant was completed and began treating mill tailings the same month. Although ore-treatment facilities were not available for almost 5 months in 1952, total uranium output was only slightly less than that in 1951 owing to the additional production made possible in 1952 by the new leaching plant. Development footage and exploratory diamond drilling totaled 8,186 and 49,759 feet, respectively, compared with 13,101 and 54,715 feet Estimates made at the close of 1952 indicated that ore reserves were being maintained.85

At Hottah Lake, about 60 miles south of Great Bear Lake, Indore Gold Mines, Ltd., continued in 1952 underground exploration of its Pitch 8 group of claims and erected a 20-ton mill on the property. Toward the close of the year the company reported that production had begun and that mill capacity would be increased to 50 tons a day. Indore was said to be the first privately owned uranium company in Canada to reach the production stage since the end of World War

II. 86 87

The most active uranium area in Canada in 1952 was the Goldfields (Beaverlodge) region, immediately north of Lake Athabaska, in northwest Saskatchewan, where several of the larger companies were completing initial exploration and development in preparation for ore-production operations early in 1953.88 Eldorado Mining & Refining, Ltd., the principal company operating in the area, carried out an extensive program in 1952 that included preparation of stopes on the second, third, and fifth levels in the west ore body of the Ace mine and 4,924 feet of lateral development on the third, fourth, and fifth levels, which resulted in addition of a substantial quantity of new ore to the reserves of the property. The 5-compartment production shaft of the Fay zone was extended from a depth of 72 feet to the eighth level, at a depth of 1,079 feet. Driving of a haulageway on the sixth level of the Ace mine to connect with the production shaft was virtually completed as the year closed. A total of 490 feet of drifting was accomplished in the Fay and Ura zones after completion of 711 feet of crosscut from the second level of the production shaft. concentrator, with an initial capacity of 500 tons a day but designed for expansion to 2,000 tons, was scheduled to be ready for production by April 15, 1953, and for the acceptance of custom ores. 89

Private companies engaged in underground development during 1952 in the Goldfields (Beaverlodge) region included Nesbitt LaBine Uranium Mines, Ltd., which completed a three-compartment shaft on the Eagle Ace group of claims adjoining the Eldorado property on the north; Rix Athabaska Uranium Mines, Ltd., which started a three-compartment shaft in the second half of 1952 on the DD-L concession; Pitch-Ore Uranium Mines, Ltd., with an adit on claims south of the west end of the Eldorado property; Beaver Lodge

⁸⁵ Eldorado Mining & Refining, Ltd., Annual Report for the Year Ended Dec. 31, 1952: 12 pp.
86 Lang, A. H., Uranium in Canada 1952: Canadian Min. and Met. Bull., vol. 46, No. 493, May 1953, pp. 309-314.
87 Mining World, vol. 14, No. 13, December 1952, p. 72.
88 Work cited in footnote 86.
89 Work cited in footnote 85.

Uranium, Ltd., with an adit on claims in the Beaverlodge area; and National Explorations, Ltd., with an inclined shaft on the Pal group of claims in the Beaverlodge area. Companies engaged in surface exploration included Leadridge Mining Co., subsidiary of St. Joseph Lead Co.; Mining Corp. of Canada, Ltd.; Baska Uranium Mines, Ltd.; Goldfields Uranium Mines, Ltd.; Beta Gamma Mines, Ltd.; Dee Explorations, Ltd.; and Charlebois Lake Uranium Mines, Ltd. Gunnar Gold Mines, Ltd., discovered a substantial low-grade uranium

deposit as the year closed.90

Much less activity prevailed in Ontario in 1952 in the search for uranium than in the last few years. An interesting discovery was made in November on the Manitou Islands in Lake Nipissing, near North Bay. Inspiration Mining & Development, Ltd., was said to have acquired an interest in the area. 91 An airborne scintillometer survey was made in 1952 of 575 square miles in the Sudbury district.92 Uranium activity in British Columbia in 1952 was centered in the North Thompson region, principally at the property of Rexspar Uranium & Metals Mining Co., Ltd., about 70 miles north of Kamloops, where drilling and bulk sampling were in progress with the view of establishing a fluorite-uranium-rare earths operation.93

Successful methods used in searching for uranium deposits in Canada were described. 4 The original pitchblende in the Goldfields area was said to have been deposited apparently at relatively high temperatures and therefore is not restricted to a relatively shallow vertical range.95 A summary of information on Canadian deposits of uranium and thorium was published that discussed the types and distribution of the deposits, age and origin of mineralization, the

various areas, and individual properties.96

Chile.—The finding of uranium minerals in Chile during 1952 led to a further search for radioactive deposits in many Chilean mining districts.97 The presence of possible deposits of uranium in the provinces of Atacama and Coquimbo was announced.98

EUROPE

The European Council for Nuclear Research was founded at Geneva in February 1952 by representatives of Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland, and Yugoslavia. The Council decided upon three building projects namely, a central laboratory for nuclear research, a 30-Bev cosmotron, and a 600-Mev synchrocyclotron.99 At a conference held at Amsterdam on October 6, the Council selected Geneva as the site for the

de Wet, J. P., Mineral Development in Saskatchewan in 1952: Canadian Min. Jour., vol. 74, No. 2,
 February 1953, pp. 83-88.
 Work cited in footmote 86.
 Browning, J. C., Ontario Annual Review—1952: Canadian Min. Jour., vol. 74, No. 2, February 1953,

Browning, J. C., Ontario Annual Review—1952; Canadian Min. 3041., vol. 12, pp. 94-100.

92 Mining Engineering, vol. 5, No. 2, February 1953, p. 152.

92 Work cited in footnote 86.

Northern Miner, vol. 38, No. 14, June 26, 1952, pp. 17-18.

94 Lang, A. H., Uranium Ore Bodies—How Can More Be Found in Canada?: Canadian Min. Jour., vol. 73, No. 6, June 1952, pp. 57-65.

98 Robinson, S. C., The Occurrence of Uranium in the Lake Athabaska Region: Canadian Min. and Met. Bull., vol. 45, No. 480, April 1952, pp. 204-207.

96 Lang, A. H., Canadian Deposits of Uranium and Thorium (Interim Account): Canada Geol. Survey, Econ. Geol. Series 16, Ottawa, Canada, 1952, 173 pp.

97 Engineering and Mining Journal, vol. 153, No. 2, February 1952, p. 190.

98 Mining World, vol. 14, No. 4, April 1952, p. 59.

99 Nucleonics, World Progress in Atomic Energy—Europe: Vol. 10, No. 12, December 1952, pp. 8-9.

nuclear research laboratory. Two factors favoring selection of the Swiss site, rather than those in France, Denmark, and the Netherlands. were the country's neutrality in the event of war and the availability

of a large quantity of electric energy.1

France.—The second French nuclear reactor began operation at Saclay in early November 1952.2 Known as P-2, the Saclay pile is a 1,500-kw. heavy-water reactor that will be capable of producing 300 to 400 grams of plutonium per year when placed in full operation. Plutonium production will, however, be secondary to isotope production and research. The cooling system of the new reactor is unique, in that nitrogen gas compressed to 10 times atmospheric pressure is used as the cooling medium. More power is said to be produced per ton of uranium with the new coolant than is possible with the other types in use.3

La Crouzille, in Haut Vienne, was the principal center of uraniummining operations in France in 1952; production was expected to

begin in 1953 at Grury, in Saône et Loire.4

Germany, West.—Uranium deposits in abandoned silver-nickel mines at Wittichen, near Freiburg, were considered by the Geological Institute of Baden to be worth mining. The ores were said to contain over 0.1 percent uranium, with the grade improving with depth.5 Deposits of uranium were reported to have been found near Weissenstadt, and in the fluorspar mines at Woelsendorf and Nabburg.6

Italy.—An occurrence of uranium was reported to have been discovered at Savona Sair, near Genoa.⁷

Norway.—In the latter part of 1952 the 300-kw., heavy-water reactor at Kieller began operating day and night to provide isotopes

for medical and industrial use, principally cobalt-60.8

Sweden.—A shale deposit containing small lumps of hydrocarbon known as kolm was mined and milled in 1952 at Kvarntorp in connection with the earlier development of a process for recovering uranium from shale. Uranium content of the shale itself was about 200 grams per metric ton whereas the kolm contained up to 3,000 grams per ton. Separation of the kolm from the shale was accomplished by sink-andfloat methods at a local concentration plant.9

The richest uranium deposit discovered in Sweden was reported to have been found at Skovde, near Billingen, in the form of a huge

seam of kolm-bearing shale.¹⁰

Sweden's first reactor, a 100-kw. unit, was under construction at Stockholm in 1952 and expected to be operating in 1953. The reactor will be employed principally for research and the production of isotopes.11

Switzerland.—Swiss official sources indicated in 1952 that the country had developed plans for the construction of a heavy-water

research reactor.12

Atomic Energy Newsletter, vol. 8, No. 5, Oct. 21, 1952. p. 1.
Chemistry and Industry (London), No. 43, Oct. 25, 1952. p. 1061.
Bulletin of the Atomic Scientists, vol. 8, No. 9, December 1952, p. 311.
Nucleonics, World Progress in Atomic Energy—France: Vol. 10, No. 12, December 1952, pp. 12-13.
Mining Journal (London), vol. 238, No. 6095, June 13, 1952, p. 618.
Engineering and Mining Journal, vol. 153, No. 8, August 1952 p. 164.
Mining World, vol. 14, No. 12, November 1952, p. 16.
Mining World, vol. 14, No. 2897, May 30, 1952, p. 19.
Nucleonics, vol. 10, No. 11, November 1952, pp. 111-112.
Nucleonics, vol. 10, No. 11, November 1952, pp. 111-112.
Nucleonics, vol. 10, No. 17, June 1952, pp. 111-112.
Mining World, vol. 14, No. 7, June 1952, p. 60.
Mining World, vol. 14, No. 7, June 1952, p. 60.
Mining Journal (London), vol. 238, No. 6075, Jan. 25, 1952, p. 94.
Nucleonics, World Progress in Atomic Energy—Switzerland: Vol. 10, No. 12, December 1952, p. 8.

U. S. S. R.—Uranium deposits in the Erzgebirge near Aue, Saxony, East Germany, were believed to have been exhausted in 1952, and recently discovered deposits in Thuringia were reported to be the new source of uranium for the Soviet Union.13 Wismuth A. G., the Soviet monopoly that controls all uranium production in East Germany, transferred its headquarters to Saalfeld, Thuringia.14 Four uranium mines near the towns of Buchovo, Kremikovzi, and Seslavkzi, in Bulgaria, were said to have been operated in 1952. Low-grade ore was sent to a processing plant at Buchovo and, after cleaning and sorting, was then shipped with the high-grade ore to the Soviet Union. 15 Resources of uranium ore near Gheorgheni, Transylvania, Rumania, were reported. Operations at the Joachimsthal uranium mines, in western Czechoslovakia,17 and at various uranium mines in East Germany 18 were described by refugees. The mineral wealth of the Soviet Union, as known or inferred, was said to approximate that of the United States. 19 Uranium resources, both satellite and domestic, of the Soviet up to 1950 were reviewed as follows: 20

The uranium resources presently known for the Soviet sphere are far inferior to those available in Africa and North America. They are confined to the bismuthuranium-cobalt-nickel ores of Eastern Germany, lean, complex, but seemingly extensive; the pitchblende deposit of Joachimsthal in Czechoslovakia, now heavily depleted; a copper-uranium-mica deposit in Bulgaria; and, domestically, low-grade but possibly extensive uranium-vanadium deposits in Central Asia and very small but good betafite deposits from Lake Baikal and other regions northeast to the Aldan Shield. While the German deposits appear to be the dominant producers today, the possibilities of the Central Asiatic and, especially, the Eastern Siberian ones cannot be dismissed. Authentic data on Soviet or satellite

metric tons of U₂O₈ in 1945 to possibly 150 tons by 1950.

* * * Satellite Uranium Resources.—The ores of the Soviet Zone of Germany, primarily from Schmiedeberg, Silesia, require elaborate processing to separate 96.5 percent gangue and 3.5 percent of concentrate, which contains, in turn, 6.9 percent bismuth, 2.0 percent uranium oxide, 0.95 percent cobalt, and 0.35 percent nickel.²¹ The output of this concentrate has varied greatly over the past 35 years. During the first World War, it reached a peak of some 400–450 metric tons annually, then dropped to 127 tons in 1922, and to only 4.1–7.7 tons between 1923 and 1929, inclusive.²² Thereafter, production fluctuated widely: 114.6 tons in 1930, 66.6 tons in 1931, 109.5 tons in 1932—and 4.1 tons in 1935. German peaced for highest tons well as Wei a well as Nei a well needs for bismuth and cobalt, as well as Nazi experimentation with atomic energy, led to a new upswing between 1939 and 1943, during which years an average of 340 tons of concentrate from 9,770 tons of ore, annually, was mined.²³ Data on U₃O₈ recovery from the concentrate are available only for 1939 to 1943, inclusive. During these years, production averaged 6.99 tons of uranium oxide, with a maximum of 9.50 tons in 1942. Press reports indicate considerable increases in activity in this area since the war.

The Joachimsthal pitchblende deposit in Czechoslovakia has long been a producer of uranium ore. Between 1922 and 1937, its output averaged 19.6 metric tons of U_3O_8 , or 2.5 to 3 times as much pitchblende. Maximum production, in

¹³ Mining World, vol. 14, No. 13, December 1952, p. 62.

14 Mining World, vol. 14, No. 4, April 1952, p. 59.

15 Work cited in footnote 13.

16 Mining World, vol. 14, No. 6, May 1952, p. 61.

17 Mining World, Russian Uranium Mine Secrets Revealed Recently by Escaped Slave Laborers: Vol. 14, No. 11, October 1952, p. 31.

18 Engineering and Mining Journal, Soviet Uranium Mining: Forced Labor, "Five Cigarettes and a Glass of Beer Free": Vol. 153, No. 6, June 1952, p. 123.

19 Shimkin, Demitri B., Minerals—a Key to Soviet Power: Harvard University Press, Cambridge, Mass., 1953, 452 pp.

20 Work cited in footnote 19, pp. 147–150.

21 Bureau of Mines, Mineral Trade Notes: Vol. 21, No. 2, Aug. 20, 1945, p. 12.

22 Meisner, M., Weltmontstatistik [World Mining Statistics]: Vol. 2, 1920–1930, F. Enke, Stuttgart, 1932 p. 298; vol. 4, 1927–37, F. Enke, Stuttgart, 1939, p. 307.

1936, totaled 32 tons of U₃O₈; minimum, 10 tons, in 1922-23.24 Between 1939 and 1944, despite significant German efforts to maximize production, output fell, totaling only 110 tons of pitchblende with an aggregate content of some 35 tons of U_3O_8 for the six years. 25 26 It appears most likely that this deposit has been

largely exhausted.

The Bulgarian uranium deposit, at Bukhovo, 25 km northeast of Sofia, has been described * * *.27 It is associated with a granitic intrusion into Pre-Cambrian or Palezoic formations; copper-uranium-mica minerals are concentrated in the contact zone. In 1943, reserves were stated to comprise 25,000 metric tons (of ore?) with an average of 2 percent uranium.²⁸ It is not known whether this reasonably promising deposit has been mined to date.

Domestic Uranium Resources.—In 1949, I summarized the available information on uranium deposits within the Soviet Union.²⁹ As mentioned in this report, a lithe Turkestan (Central Asiatio) deposits been urane-vanedium cree of unknown.

all the Turkestan (Ĉentral Asiatic) deposits bear urano-vanadium ores of unknown all the Turkestan (Central Asiatic) deposits bear urano-vanadium ores of unknown primary origin. Hydraulic deposition and association with oil-bearing Paleocene formations are, however, common features.³⁰ The average tenors of the ores found are low, 1.5 percent U₂O₈ at Tyuya Muyun; 0.12–0.2 percent at Taboshar and Maili-su, although secondarily enriched lenses may bear up to 50 percent U₂O₈. Thus far, only two of the deposits reported have definite commercial significance—the old mine at Tyuya Muyun, which produced 534 metric tons of hand-sorted ore in 1925–26, and Uigarsai. A later report,³¹ indicates that, in the large Bala Sauskandyk (Kara-Tau) vanadium deposit ***, the primary economic mineral is roscoelite, or vanadium mica. The percentage of uranium-vanadium ore in the deposit therefore appears to be very low, robbing it of much significance as a source of radioactive minerals.

The Eastern Siberian type of deposit, developed in the contact zone between Pre-Cambrian biotite gneisses and granitic pegmatites and characterized by betafite (calcium-uranium-niobium-tantalum) ores in association with phlogopite mica, and best typified at Slyudyanka, at the southern tip of Lake Baikal, has important potentialities. Nevertheless, no deposit of this type and of appreciable

size is yet known.

United Kingdom.—Britain's first atomic bomb was exploded on Oct. 3, 1952, in the Monte Bello Islands, 50 miles off the northwest coast of Australia.32 Construction of a lower power breeder-reactor, to be called ZEPHYR and to use fast or intermediate neutrons, was begun early in the summer of 1952 at Harwell, England. Design and feasibility studies also proceeded at Harwell on (1) a slow-neutron, enriched-uranium reactor, designed as a prototype power unit for special applications, such as ship propulsion; and (2) a slow-neutron, natural-uranium reactor, designed to develop power for electricity.³³ The British Information Service announced that an experimental unit of an atomic power station would soon be built.34

In the course of a survey of uraniferous deposits in Cornwall,35 some ore was shipped from the Wheal Edward mine, in the St. Just area,36 and a small diamond-drilling program undertaken at the South Terras

mine, near St. Austell.37

^{**} Work cited in footnote 22, vol. 2, p. 309; vol. 4, p. 313.

** Bureau of Mines, Mineral Trade Notes: Vol. 24, No. 1, January 1947, pp. 32-35.

** Matthews, Allan F., Uranium and Thorium, Minerals Yearbook, 1946, p. 1228.

** Work cited in footnote 22, vol. 4, p. 319.

** Work cited in footnote 26, p. 1228.

** Shimkin, D. B., Uranium Deposits in the U. S. S. R.: Science, vol. 109, Jan. 21, 1949, pp. 58-60.

** Popov, V. I., [On the Discovery of Analogues of Carnotite Sandstones in Northern Fergana]: Soviets-kaya Geologiya (Soviet Geology), No. 4/5, 1939b, pp. 32-39.

** Istender, V. V., Chemical and Electrochemical Methods in Nonferrous Metallurgy: Zhurnal Prikladnoi Kimiyi (Journal of Applied Chemistry), Izd. Akademiyi Nauk, Moscow, vol. 19, 1946, pp. 231-242.

** Bulletin of the Atomic Scientists, vol. 8, No. 8, November 1952, p. 292.

** Nucleonics, World Progress in Atomic Energy—Great Britain: Vol. 10, No. 12, December 1952, pp. 16-17.

** Bulletin of the Atomic Scientists, vol. 8, No. 9, December 1952, p. 312.

** Stein, Paul, A Survey of Uraniferous Deposits in Cornwall: Min. Jour. (London), vol. 238, No. 6078, Feb. 22, 1952, pp. 196-198.

** Stein, Paul, Mining Uranium at Wheal Edward, Cornwall: Min. Jour. (London), vol. 239, No. 6111, Oct. 3, 1952, p. 371.

** Chemistry and Industry (London), Uranium in Cornwall: No. 49, Dec. 6, 1952, p. 1204.

AFRICA

Belgian Congo.—The Shinkolobwe mine, of Union Miniére du Haut Katanga, continued in 1952 to be the principal source of uranium for the free world.38 A review of economic conditions in the Belgian Congo indicated that any early reduction was improbable in the rate at which the colony's mineral resources were being exploited.39

Madagascar.—A uranium deposit was discovered near Antsirabe, about 100 miles south of Tananarive, and a milling plant erected for the production of concentrates from ore to be mined from the deposit.⁴⁰ Extensive prospecting of the island for uranium, under a 5-year plan,

was indicated.41

Morocco.—The uranium content of Moroccan phosphates and the possibility of commercial extraction of the uranium were investigated A series of measurements of the intensity of the beta and gamma radiation over the phosphate basins of Morocco showed that a strong radioactivity, owing to uranium, was associated with the phosphate deposits. The intensity of the radiation was directly related to the age of the phosphate layer. 43 Chemical and fluorimetric analyses of samples of North African phosphates from Tunisia to Morocco revealed an average uranium content (as the element) of

20 to 30 grams a ton, with extremes of 10 and 50 grams a ton.44

Nigeria.—Discovery was announced in 1952 of a pyrochlore-bearing granite of potential economic interest in the Kaffo Valley of northern Nigeria that covers an area of 195 acres and contains 0.012 percent U₂O₈ and 0.26 percent (Nb, Ta)₂O₅, on the basis of chemical assays of numerous samples taken from outcrops and from the bedrock in sampling pits. The deposit, estimated to average 707,500 tons per foot of depth, was discovered by members of the Geological Survey of Great Britain with the cooperation of the Nigerian Geological Survey. Sinking of 6 prospect shafts to a depth of 150 feet was recommended. 45 The mineralogy and petrology of the granite were described in a separate report.46

Northern Rhodesia.—Small tonnages of uranium-bearing ore were reported to have been found in the south end of the Mindola section of the Nkana copper mine, operated by the Rhokana Corp., Ltd. Exploration was undertaken to delimit the uranium-bearing ore. 47

Sierra Leone.—A British expedition left Freetown on January 1, 1952, to explore Sierra Leone and Gold Coast for radioactive deposits.

Carborne radiometric equipment was to be used.⁴⁸

Southern Rhodesia.—A low-grade radioactive granite, containing thorite and uranium, was discovered near Beitbridge, 49 and a tantalum

³⁸ Waylett, William J., Uranium: Mining World, vol. 15, No. 5, Apr. 15, 1953, p. 79.
39 Business Week, Atomic Age Closes in on the Jungle: No. 1171, Feb. 9, 1952, pp. 145, 146, 148.
40 Mining World, vol. 14, No. 5, Apr. 15, 1952, p. 92.
41 Nucleonics, World Progress in Atomic Energy—France: Vol. 10, No. 12, Dec. 1952, p. 13.
42 Engineering and Mining Journal, vol. 153, No. 3, March 1952, p. 124.
43 Lenoble, Andre, Salvan, Henri, and Ziegler, Valery, [Discovery of Uranium in the Phosphate Deposits of Moroccol: Compt. rend., vol. 234, No. 9, Feb. 25, 1952, pp. 976-977.
44 Guntz, Antoine A., [On the Presence of Uranium in North African Phosphates]: Compt. rend., vol. 234, No. 8, Feb. 18, 1952, pp. 868-870.
45 Mackay, R. A., and Beer, K. E. (with contributions by Rockingham, J. E.), The Albite-Riebeckite-Granites of Nigeria: Great Britain Geol. Survey, Atomic Energy Div., Rept. GSM/AED. 95, 1952, 25 pp.
46 Beer, K. E., The Petrography of Some of the Riebeckite-Granites of Nigeria: Great Britain Geol. Survey, Atomic Energy Div., Rept. GSM/AED. 116, 1952, 38 pp.
47 Rhokana Corp., Ltd., Annual Report for Year Ended June 30, 1952: P. 6.
48 Rhodesian Mining Review, vol. 17, No. 18, Dec. 1952, p. 11.
48 Chemical Age (London), vol. 46, No. 1695, Jan. 5, 1952, p. 25.
49 Mining Journal (London), vol. 238, No. 6096, June 20, 1952, p. 648.

oxide-columbite deposit, containing uranium and thorium, was reported to have been found in the Enterprise district, about 10 miles

from Salisbury.⁵⁰

Union of South Africa.—Recovery of uranium as a byproduct in the treatment of the gold ores mined on the Witwatersrand began on October 8, 1952, when the plant erected for that purpose at Krugersdorp, 20 miles west of Johannesburg, by West Rand Consolidated Mines, Ltd., was placed in operation. The event marked the successful application of the results of metallurgical research that

began in 1947.

By the close of 1952, 14 additional gold mining companies-7 operating on the Witwatersrand in the Transvaal and 7 in the Orange Free State goldfield—had been authorized and were planning to produce uranium. Four of the 14 companies expected to begin production of uranium in 1953. The companies involved, in addition to West Rand Consolidated Mines, Ltd., were: In the Transvaal—Blyvooruitzicht Gold Mining Co., Ltd.; Daggafontein Mines, Ltd.; Luipaardsvlei Estate & Gold Mining Co., Ltd.; Randfontein Estates Gold Mining Co., Ltd; Stilfontein Gold Mining Co., Ltd; Vogelstruisbult Gold Mining Areas, Ltd.; and Western Reefs Exploration & Development Co., Ltd.; and in Orange Free State—Free State Geduld Mines, Ltd.; Harmony Gold Mining Co., Ltd.; President Brand Gold Mining Co., Ltd.; President Steyn Gold Mining Co., Ltd.; Virginia O. F. S. Gold Mining Co., Ltd.; Western Holdings, Ltd.; and Welkom Gold Mining Co., Ltd. Other gold-mining companies operating in the two areas were expected to apply for authorizations to produce uranium.⁵²

The uranium will be recovered principally from slime produced currently at gold-ore milling plants; at a few properties, however, feed to the uranium-recovery plant will be supplemented by accumulated slime tailing produced in past years.⁵³ In accord with a three-nation agreement announced in December 1950, the uranium produced by the South African gold-mining companies will be sold to the United States

and the United Kingdom.⁵⁴

ASIA AND AUSTRALIA

Australia.—Establishment of an Australian Atomic Energy Commission was announced in 1952, to control all the Commonwealth's activities in connection with uranium and atomic energy. Scope of the Commission's interest will include the surveying and prospecting for uranium deposits, mining and refining of uranium ores, and scientific research directed toward the development of atomic energy for defense and industrial purposes.⁵⁵

The tempo of exploration and exploitation of Australia's uranium resources increased substantially in 1952. Consummation of an

Mining Journal (London), vol. 239, No. 6120, Dec. 5, 1952, p. 636.
 Mining World, South Africa's First Uranium: Vol. 14, No. 13, Dec. 1952, pp. 36-47.
 Mining Survey (Transvaal Chamber of Mines), Uranium in South Africa: Vol. 4, No. 3, March 1953,

³² pp.
Engineering and Mining Journal, Uranium Soars to Prominence in South Africa's Gold Fields: Vol. 154,

Solution of the Atomic Energy Commission, Vol. 134, No. 5, May 1953, pp. 72-76.

Mining Journal (London), vol. 239, No. 6122, Dec. 19, 1952, p. 701.

Atomic Energy Commission, Tenth Semiannual Report (Major Activities in the Atomic Energy Programs): July 1951, p. 8.

Metal Bulletin (London), No. 3752, Dec. 16, 1952, p. 23.

agreement was reported in July whereby uranium from the Radium Hill davidite deposit, in the northeastern part of South Australia, would be sold to the Combined Development Agency, an organization through which the United States and the United Kingdom cooperate in the procurement of uranium.⁵⁶ A similar agreement applying to the Rum Jungle uranium-copper deposit, in Northern Territory about 40 miles south of Darwin, was imminent as the year closed.

Extensive improvements were either in progress or planned in 1952 that indicated early exploitation of the Radium Hill deposit on a substantial scale. Such improvements included, at Radium Hill, the sinking of a 12- by 16-foot shaft, with steel sets, to a depth of 700 feet 57 and installation of a heavy-medium separation unit; 58 erection of an extraction plant and refinery at Port Pirie, on Spencer Gulf, South Australia; and construction of a new rail line to link Radium Hill with Port Pirie.⁵⁹

Rapid development of the Rum Jungle deposit, reported to be the most promising uranium area in Australia,60 was undertaken in 1952 by Zinc Corporation, Ltd., in accordance with an agreement between the corporation and the Commonwealth Government. In declaring the Rum Jungle field a prohibited area, the provisions of the Defense Act were invoked for the first time by the Australian Government to protect a uranium deposit.61 A preliminary account of the geology and type of mineralization in the Rum Jungle area was published. 62

Evidence accumulated in 1952 that a 200-mile uraniferous belt, of outstanding importance, had been discovered between Darwin and Katherine, in Northern Territory. Over 50 occurrences were reported, and ground parties were verifying radioactive anomalies indicated by preliminary aerial surveys. The Finniss River and Edith River areas were said to be particularly promising. 63 Another significant uranium discovery was reported at Crockers Wells, about 40 miles northwest of Radium Hill, South Australia, as the result of a radiometric aerial survey covering an area of 2,000 square miles.⁶⁴ Other discoveries were reported to have been made at Nichol's Know, an old coppermining area in South Australia, and at the Wilgi Mia ocher caves, in the Wold Range, Western Australia.65

An aerial radiometric survey was reported to have indicated the occurrence of uranium in southwestern Tasmania, south of Queenstown. Extensive geological prospecting was underway in the area on the part of Mount Lyell Mining & Railway Co., Ltd.66

<sup>Mining World, Australia, Britain and U. S. Agree on Uranium: Vol. 14, No. 8, July 1952, p. 61.
Chemical Engineering and Mining Review, vol. 44, No. 12, Sept. 10, 1952, p. 488.
Chemical Engineering and Mining Review, Radium Hill to Become Major Uranium Producer: Vol. 44, No. 7, April 10, 1952, pp. 249-253.
Mining Journal (London), vol. 238, No. 6090, May 9, 1952, p. 471.
Mining World, vol. 14, No. 12, November 1952, p. 60.
Chemical Engineering and Mining Review, vol. 44, No. 6, March 10, 1952, p. 235.
Engineering and Mining Journal, vol. 153, No. 4, April 1952, p. 155.
Mining World, vol. 14, No. 13, December 1952, p. 19.
Sullivan, C. J., and Matheson, R. S., Uranium-Copper Deposits, Rum Jungle, Australia: Econ. Geol., vol. 47, No. 7, November 1952, pp. 751-758.
Chemical Engineering and Mining Review, vol. 44, No. 12, Sept. 10, 1952, p. 488.
Engineering and Mining Journal, vol. 153, No. 11, November 1952, p. 176; vol. 153, No. 12, December 1952, p. 176.</sup>

Engineering and Mining Journal, vol. 153, No. 12, December 1952, p. 176.

64 Engineering and Mining Journal, vol. 5, No. 2, February 1953, p. 154.

65 Engineering and Mining Journal, vol. 153, No. 11, November 1952, p. 170.

Mining World and Engineering Record, vol. 163, No. 4256, Oct. 25, 1952.

65 Mining World, New Mills and World-Wide Ore Discoveries Insure Uranium Adequacy for Hydrogen

Bomb: Vol. 14, No. 12, November 1952, p. 43.

Ceylon.—Experiments carried out in 1952 at the pilot plant established by the Government of Ceylon at Katukurunda for the extraction of thorium from deposits of monazite sand were reported to have been The sand was said to contain also a small quantity of promising. uranium.

India.—A low-grade radioactive mineral belt was reported in 1952 to have been discovered by a private company near Bhema, district of Manbhum, State of Bihar. 68 The Indian Atomic Energy Commission investigated small deposits of uranium and thorium ores that had

been found in the State of Madras.⁶⁹

The plant constructed at Alwaye, State of Travancore, for processing monazite sands was opened by the Prime Minister of India on December 24, 1952. Trial runs were to be conducted the next two months by the operating company, Indian Rare Earths, Ltd., for the extraction of the thoria and rare-earth minerals contained in the Proposed construction of a second plant was announced, to process uranium-bearing ores and the thorium-bearing residues from the Alwaye plant of Indian Rare Earths, Ltd. Société des Chimiques des Terres Rares, of Paris, according to reports, was to be associated with an Indian company in the operation of the second plant.71

⁸⁷ Mining Journal (London), vol. 239, No. 6101, July 25, 1952, p. 92.
88 Mining World, vol. 14, No. 1, January 1952, p. 61.
89 Work cited in footnote 67, p. 92.
70 Chemical Age (London), vol. 67, No. 1745, Dec. 20, 1952, p. 850.
71 Bulletin of the Atomic Scientists, vol. 8, No. 9, December 1952, p. 311.
Atomic Energy Newsletter, vol. 8, No. 10, Dec. 30, 1952, p. 4.

Vanadium

By Hubert W. Davis 1

OR MANY years vanadium production in the United States resulted in byproduct uranium. However, since entry of the Atomic Energy Commission into the carnotite region of the Colorado Plateau for the purpose of obtaining uranium, by far the greater part of the vanadium production in the United States became a byproduct or coproduct of uranium.

Vanadium, although a strategic metal, is the least critical of all the alloying elements used for steel manufacture. Vanadium supply from production in the United States plus imports from Peru at present exceeds industry requirements, permitting accumulation of

the present surplus in the National Stockpile.

The center of vanadium-ore mining in the United States continued to be the Colorado Plateau, which comprises chiefly southwestern Colorado and southeastern Utah but extends into Arizona and New Mexico. Some vanadium is recovered as a byproduct of phosphate rock mined in Idaho. Vanadium is also recovered as a byproduct of chrome ore at Glens Falls, N. Y., and of petroleum residues at Wood-Ridge, N. J.

Imports of vanadium concentrates in 1952 were 6 percent more than in 1951, but receipts of ferrovanadium were 83 percent less. Exports of ferrovanadium in 1952 were 140 percent more than in

1951.

The quotations on vanadium ore and ferrovanadium were un-

changed throughout 1952.

For security reasons, publication of figures on production and consumption of vanadium ore in the United States has been suspended since 1947 at the request of the Atomic Energy Commission.

TABLE 1.—Vanadium in ores and concentrates produced in the United States, 1938-47 1

Year	Pounds	Year	Pounds
1938	1, 613, 155 1, 984, 068 2, 162, 916 2, 513, 051 4, 439, 130	1943. 1944. 1945. 1946.	5, 586, 492 3, 527, 054 2, 963, 913 1, 272, 148 2, 117, 962

 $^{^{1}}$ Data for 1940–47 are receipts at mills and Government purchasing depots.

USES

About 90 percent of the vanadium used is consumed as ferrovanadium in the manufacture of tool steels, engineering steels, high-strength structural steels, nonaging rimming steels, and special wear-resistant cast irons. Ferrovanadium is used in welding-electrode coatings and as a deoxidizer, and some metal is utilized in magnets.

¹ Commodity-industry analyst.

Some vanadium oxide is also used in the production of tool steel. The largest uses of vanadium oxide and ammonium metavanadate are as catalysts, in glass and ceramic glazes, for driers in paints and inks, and for laboratory research. The use of metallic vanadium alone at present is limited largely to alloying with gold in dental alloys, copper and bronzes (such as for aircraft propeller bushings), and with aluminum for airframe construction.²

Vanadium is mainly used in steel for its grain-refining and alloying effects. In high-speed steels the vanadium content ranges from approximately 0.50 to 2.50 percent, although still higher percentages are sometimes used. Alloy tool steels, other than high-speed steels, contain 0.20 to 1.00 percent vanadium. The quantity of vanadium added to engineering steels is usually 0.10 to 0.25 percent. Most steels containing over 0.50 percent vanadium are for special purposes. Vanadium can be successfully used alone in an alloy of carbon steel; but in a wide variety of engineering and structural steels it is more usually employed in combination with chromium, nickel, manganese, boron, and tungsten. A high-temperature steel, which contains neither cobalt nor columbium but, instead, employs titanium and small, controlled quantities of vanadium, has been developed. In additions from 0.10 to 0.15 percent, vanadium increases the strength of cast iron from 10 to 25 percent, and it adds a considerable degree of toughness.

PRICES

Since March 8, 1951, vanadium ore has been quoted at 31 cents a pound of contained V_2O_5 . This quotation, however, disregards penalties based on grade of the ore or the presence of objectionable impurities—matters important to the refiners, inasmuch as impurities vitally affect recovery. Throughout 1952 vanadium pentoxide (technical grade) was quoted at \$1.28 to \$1.33 a pound of V_2O_5 and ferrovanadium at \$3 to \$3.20 a pound of contained vanadium (depending upon the grade of the alloy).

FOREIGN TRADE

Imports of vanadium concentrates (all from Peru) in 1952 exceeded those of 1951 by 6 percent. Flue dust containing 939 pounds of vanadium was received from Venezuela in 1952 (none in 1951). Imports of ferrovanadium were 21,396 pounds (gross weight) valued at \$22,132 in 1952 compared with 123,050 pounds valued at \$100,261 in 1951. The 1952 imports comprised 17,920 pounds from United Kingdom and 3,476 pounds from Sweden. Vanadium ore and concentrates enter the United States free of duty; however, the rate of duty on ferrovanadium is 12½ percent ad valorem and on vanadic oxide, anhydride, salts, and compounds and mixtures of vanadium, 40 percent ad valorem.

Iron Age, Vanadium: Vol. 170, No. 14, Oct. 9, 1952, p. 285.
 Steel Horizons, New Metals for the Atomic Age: Vol. 15, No. 1, 1953, pp. 4-5.
 Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

TABLE 2.—Vanadium ore or concentrates and vanadium-bearing flue dust imported for consumption in the United States, 1943-52

	Vanadiu	ım ore or con	centrates	Vanadi	um-bearing fl	ue dust
Year	Pot	ınds		Po		
	Gross weight	Vanadium content	Value	Gross weight	Vanadium content	Value
1943 1944 1945 1946 1947	8, 776, 328 2, 784, 349	2, 052, 620 1, 284, 603 1, 550, 479 791, 057 983, 869 1, 051, 675	\$1, 080, 150 633, 719 725, 362 390, 077 448, 076 534, 374	748, 749 191, 901 133, 795 97, 750 143, 124	64, 393 40, 171 26, 293 20, 931 71, 819	\$53, 55 28, 05 19, 37 13, 48 15, 48
949	2, 028, 980 5, 110, 403 3, 893, 900 4, 338, 660	551, 337 1, 457, 010 982, 878 1, 043, 797	272, 124 708, 806 526, 941 599, 203	9, 575	804	2, 47

Exports of vanadium ore and concentrates totaled 120,367 pounds (contained vanadium) valued at \$280,216 in 1952 compared with 2,817 pounds valued at \$6,581 in 1951. The 1952 exports comprised 4,032 pounds to Canada, 69,295 pounds to France, 27,776 pounds to Italy, and 19,264 pounds to West Germany. Exports of ferrovanadium totaled 293,162 pounds (gross weight) valued at \$529,360 in 1952 compared with 122,344 pounds valued at \$190,346 in 1951. The 1952 exports comprised 20,756 pounds to Austria, 162,564 pounds to Canada, 22,046 pounds to Brazil, 12,540 pounds to Belgium-Luxembourg, 66,056 pounds to Italy, 3,200 pounds to Taiwan, and 6,000 pounds to Yugoslavia. Exports of vanadium metal, alloys, and scrap were 103,036 pounds valued at \$12,862 in 1952 compared with 1,712 pounds valued at \$6,481 in 1951. The 1952 exports comprised 100 pounds to Canada, 9,771 pounds to Sweden, and 93,165 pounds to West Germany.

TECHNOLOGY

A combination of the beneficiating, smelting, and roast-leach processes described ⁵ may make it economically feasible to recover vanadium, as well as phosphorus, from a vast tonnage of western phosphate rock.

A method developed in the laboratory for successfully treating titaniferous magnetite ore from the deposit at Iron Mountain, Wyo., has been described.⁶ The ore is roasted with 15 percent sodium carbonate to convert the vanadium to a water soluble form and fix the soda for the subsequent electric-smelting step. Approximately 90 percent of the vanadium is recoverable in a product assaying 80 percent V_2O_5 .

A process developed in the laboratory and expanded to semi-pilotplant scale for recovering titania, iron, and vanadium from two types

⁵ Banning, L. H., and Rasmussen, R. T. C., Processes for Recovering Vanadium from Western Phosphates: Bureau of Mines Rept. of Investigations 4822, 1951, 44 pp.
⁶ Back, A. E., and others, Treatment of Titaniferous Magnetite Ore from Iron Mountain, Wyo.: Bureau of Mines Rept. of Investigations 4902, 1952, 15 pp.

of titaniferous iron ores has been described by MacMillan and others.7 Magnetite from the MacIntvre mine at Tahawus, N. Y., was successfully treated as follows:

(1) The ore was roasted at 1.050° to 1.080° C, with carbon and soda ash. thereby reducing the iron to metal sponge and retaining the titania in the slag. thereby reducing the iron to metal sponge and retaining the titania in the slag. (2) The metallic iron was separated, after wet grinding, by magnetic or gravity means. (3) The slag fraction was air-roasted at 850° C. and leached with NaOH to recover Na₃VO₄. (4) The leached solids received a dilute-H₂SO₄ leach to remove interfering impurities, chiefly Na₂O and SiO₂. (5) Titania was dissolved from the leached solids of step (4) by a H₂SO₄-bake followed by a water leach. (6) Titania was precipitated by seeding and boiling the resulting solution. The spent liquor was used for the dilute-H₂SO₄ leach in step (4).

The recovery of vanadium from titaniferous magnetite has also been described by Cole and Breitenstein,8 who state that "the recovery of over 80 percent of the vanadium values in titaniferous magnetite from the MacIntyre development at Tahawus, N. Y., was accomplished by an oxidizing roast with Na₂CO₃-NaCl addition."

In conjunction with the expansion program at the Uravan, Colo... mill of United States Vanadium Corp., a new process for treating high-lime ores is reported to be the most efficient for uranium-vanadium carnotite ores of the Plateau. According to this article:

High-lime ores are reasonably plentiful in the region, but have never been mined because of economic factors. U.S. Vanadium believes the new process and installations will open new vistas, and many of the difficulties attached to using high-lime ores will be overcome. The probability is that the process will bring increased mining activity in the area. It involves a roasting, leaching, and precipitation cycle. After chemical reagents, such as salt, are added, the feed ore is fed into roasters several stories high. The ore is then leached, with the uranium and vanadium dissolved by alkaline solutions. Each mineral is then precipitated by further processing procedures. For some ores, roasting may not be required.

A method for the recovery of vanadium from chromate liquors has been described.¹⁰ Recovery of a large part of the vanadium is in a form that contains about 85 percent pentoxide.

WORLD REVIEW

World production of vanadium ores is limited almost entirely to four countries—Northern Rhodesia, Peru, South-West Africa, and the United States. From 1943 through 1947 output from these sources ranged from 1,400 to 4,400 metric tons, with the United States the leading producer.

Vanadium has also been recovered commercially from phosphate rock, iron ore, chrome ore, magnetite beach sands, caustic soda solution employed in the Bayer process of refining bauxite, naphtha soot collected from the smokestacks of ships and industrial plants, and vanadiferous ashes derived from asphaltites.

Because complete information on the quantity of vanadium recovered as byproducts of iron ore and other raw materials is lacking, it is not possible to determine world production of vanadium from all

MacMillan, R. T., and others, Soda Sinter Process for Treating Low-G de Titaniferous Ores: Bureau of Mines Rept. of Investigations 4912, 1952, 62 pp.

Cole, S. S., and Breitenstein, J. S., Recovery of Vanadium from Titaniferous Magnetite: Jour. Metals, vol. 3, No. 12, December 1951, pp. 1133–1137.

Mining Engineering, U. S. Vanadium's Uravan, Colo., Mill Doubles Output: Vol. 4, No. 11, November 1952, pp. 1057, 2002

^{1952,} pp. 1025-1026.

19 Perrin, T. S., and others, Vanadium Recovery from Chromate Liquors: Ind. Eng. Chem., vol. 44, No. 2, February 1952, pp. 401-404.

Consequently, table 3 reflects only the production of vanadium in ores and concentrates for the countries listed, plus the quantity recovered in the United States as a byproduct of phosphate rock.

TABLE 3.—World production of vanadium in ores and concentrates, 1943-52, in metric tons

[Compiled by Berenice B. Mitchell]

Country	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952
ArgentinaNorthern Rhodesia	426 847 577 2, 534 4, 384	254 514 385 1,600 2,757	3 219 688 420 1,344 2,674	6 68 322 430 577	7 56 435 282 961 1,741	(1) 173 511 187 (3) (5)	(1) 153 456 163 (3) (5)	(1) 436 295 (3) (5)	(1) 87 449 529 (3) (5)	(1) 43 450 624 (3) (5)

1 Figure not available.

Argentina.—Vanadium occurs in small deposits widely scattered in the Provinces of Córdoba and San Luis. A small quantity of ore is mined for the production of 3 to 7 metric tons of vanadium pentoxide

annually.

Northern Rhodesia.—The Rhodesia Broken Hill Development Co... Ltd., continued to be the only producer of vanadium in Northern Rhodesia. Output of vanadium oxide was 83 long tons averaging 91.09 percent V_2O_5 in 1952 compared with 167 tons averaging 91.32 percent V₂O₅ in 1951. Feed to the vanadium leach plant in 1952 was derived from various sources and totaled 4,502 short tons averaging 3.07 percent V₂O₅. Recovery of vanadium was 60.9 percent. According to the company:

Full-scale production of vanadium continued until April, when the plant was shut down on completion of the current contract. Experimental leaches were conducted later in the year on flotation concentrates from mixed fines tailings, and a small additional production was declared.

Peru.—The famous Mina Ragra mine of the Vanadium Corp. of America in the Andes near Ricran, Department of Junin, has been an important source of vanadium since 1907, when production was begun. Output in Peru was 804 metric tons of V_2O_5 in 1952 compared with

801 tons of V_2O_5 in 1951.

South-West Africa.—The Abenab West lead-vanadium mine of the South West Africa Co., Ltd., was the only producer of vanadium in South-West Africa in 1952. According to the company, the demand for vanadium was maintained, and it was making every effort to increase its output of concentrates for the production of fused vana-Output of concentrates (recoverable V₂O₅) was 1,228 short tons in 1952. Exports of concentrates (recoverable V₂O₅) were 2,387 short tons in 1952, of which 1,776 tons went to Belgium, 314 tons to Holland, 195 tons to United Kingdom, and 102 tons to Germany.

Includes vanadium recovered as a byproduct of phosphate-rock mining.
 United States figures for 1948-52 withheld at request of Atomic Energy Commission.
 Total represents data only for countries shown in table and excludes vanadium in ores produced in French Morocco, Spain, and U. S. S. R., for which figures are not available; the total also excludes quantities of vanadium recovered as byproducts from other ores and raw materials.
 Bureau of Mines not at liberty to publish figure.

Vermiculite

By Henry P. Chandler 1 and Nan C. Jensen 2

URING the past 30 years vermiculite has been developed from a mineralogical curiosity to an annual commercial volume exceeding 200,000 tons. The growth in public consciousness of the advantages of both temperature and sound insulation and of light construction have popularized its use.

DOMESTIC PRODUCTION

Almost the same tonnage of vermiculite was produced in the United States in each of the past 3 years (1950–52), and the value of the screened and cleaned material at the mine also was little changed.

screened and cleaned material at the mine also was little changed. The production is largely concentrated in Montana and South Carolina. Smaller quantities were produced in North Carolina and Wyoming. The Zonolite Co., 135 South La Salle Street, Chicago, Ill., operated mines at Libby, Mont., and Travelers Rest, S. C. American Vermiculite Co. produced at Spruce Pine, N. C., and Woodruff, S. C., the Variegated Vermiculite Mines at Green Mountain, N. C., and the Mikolite Corp. at Encampment, Wyo.

Currently vermiculite is produced in the United States from open pits, although formerly some was obtained by underground mining. The crude material is mined with power shovels, and selective mining is often necessary. After being concentrated, the vermiculite is dried in rotary kilns, care being taken to avoid temperatures high enough to disturb the combined moisture content. Final screening to commercial sizes follows. The mineral usually is shipped to exfoliating plants in box cars.

TABLE 1.—Screened and cleaned vermiculite sold or used by producers in the United States, 1943-47 (average) and 1948-52

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	76, 669	\$773, 592	1950	208, 096	\$2, 122, 427
1948	138, 635	1, 387, 233	1951	209, 008	2, 093, 953
1949	168, 819	1, 686, 419	1952	208, 906	2, 081, 993

CONSUMPTION AND USES

In its unexfoliated state vermiculite has few uses; its principal applications are in the expanded form. Exfoliation usually takes place at temperatures between 1,600° and 2,000° F. The charge is subjected to heat for a few seconds and then cooled rapidly. No canvass of exfoliated-vermiculite production is conducted by the Bureau of Mines; however, assuming a 5-percent tonnage loss in processing, it is estimated that about 200,000 tons of exfoliated ver-

¹ Commodity-industry analyst.

² Statistical assistant.

miculite was produced in 1952. Value estimates have ranged up to \$80 per ton f. o. b. plant, but it is considered probable that the national average is somewhat below this figure. Total product value therefore may be as much as \$15,000,000 for this commodity. There are about 50 exfoliating plants in the United States, in 31 States and

the District of Columbia.

Its low bulk density, comparatively high refractoriness, low thermal conductivity, and chemical inertness, make vermiculite satisfactory for many types of thermal and acoustic insulation. No official statistics on the use patterns of vermiculite are available. In exfoliated form its principal uses are as a loose fill in buildings, as an aggregate in lightweight concrete, for plaster and insulating concrete, in molded articles, for refractory insulation, and as a soil conditioner. Unexfoliated vermiculite is reported to have only a very few minor uses, such as filler in fire-resistant wallboard and in muds for oil-well drilling.

PRICES

In 1952 prices of screened, dried, and sized vermiculite f. o. b. mine, Montana, were reported by E&MJ Metal and Mineral Markets from \$12 to \$14 a short ton: South African crude, \$30-\$32 c. i. f. Atlantic ports.

FOREIGN TRADE

Nearly all of the imports of crude vermiculite came from deposits in the Union of South Africa, particularly from the Palabora District, Transvaal, and were used by exfoliating plants on the eastern seaboard of the United States. Recent exportations from South Africa to the United States were reported as follows, f. o. b. port of shipment, to which is appended their value in United States currency: 3

	Short tons		Value	Per ton
1950 1951 1952	9, 920	S. A. £91,483 S. A. £50,780 S. A. £40,387	142, 000	\$15. 50 14. 31 14. 14

TECHNOLOGY

A semilightweight vermiculite-sand concrete has been developed The mix recommended consists of 1 part by volume for use in floors. of cement, 3 parts of vermiculite, and 2 parts of sand. floor covering on top of the concrete was recommended.4

Product applications and specifications for vermiculite concrete were discussed at a meeting of the Vermiculite Institute, and the institute's new set of specifications, developed over a test period of 5

years, was issued.5

A vermiculite information service center has been established to supply information relating to its use.⁶

Richmonds South African All Mining Yearbook (Johannesburg), 1953, p. 517.
 Rock Products, Vermiculite-Sand Concrete: Vol. 55, No. 1, January 1952, p. 215.
 Rock Products, Product Applications and Specifications for Vermiculite Concrete: Vol. 55, No. 6, June 1952, pp. 142-144.
 Rock Products, Vermiculite Research: Vol. 55, No. 12, December 1952, p. 77.

The use of vermiculite for insulation in the transportation of hot steel ingots.7 and for furnace insulations has been described in trade iournals.8

Recovery of vermiculite from low-grade ores now considered to be waste material was the objective of a program inaugurated at one of the large mines. Low-grade ore in this instance is defined as material containing 35 percent or less vermiculite.9

The production and use of vermiculite throughout the World were discussed in a publication by the Colonial Surveys Office, London. Current methods of mining and ore dressing and the exfoliation processes at the various vermiculite plants were described in detail, and the occurrences of vermiculite in foreign countries were described. 16

Next to the United States, the Union of South Africa is the world's largest producer of vermiculite. From a small beginning in 1938 its production reached 36,213 metric tons in 1952. Of this quantity 30,395 short tons, valued at S.A. £ 170,845 (\$15.73 a ton) was exported.11 Reserves in the Palabora area of the Transvaal are estimated at over 5 million tons.

Large deposits of vermiculite are known in the State of Minas Gerais in Brazil; some have been worked. In the U.S.S.R. vermiculite deposits are being operated near Lake Buldym in the southern Large reserves are said to be available. 12

WORLD REVIEW

TABLE 2.—World production of vermiculite, by countries, 1948-52, in metric tons [Compiled by Helen L. Hunt]

Country 1	1948	1949	1950	1951	1952
Australia Egypt	153	165	122	56 637	63
India		5	53 4	236 3	(2) (2)
Union of South Africa. United States (sold or used by producers)	16 12, 527 125, 767	962 21, 196 153, 149	711 42, 423 188, 781	502 24, 507 189, 608	36, 213 189, 515
Total	138, 463	175, 477	232, 094	215, 549	³ 226, 000

¹ In addition to countries listed, vermiculite is produced in Brazil and U. S. S. R., but data are not available, and no estimates are included in the total.

² Data not available; estimate by author of chapter included in total.

³ Estimate.

Refractories Journal, Insulating a White-Hot Cargo: No. 4, (28th year), April 1952, p. 183.
 South African Mining and Engineering Journal, Vermiculite-MixInsulations: Vol. 63, No. 3092, Part 1,

^{*}South African Mining and Engineering Journal, Vermiculite-Mixinsulations: Vol. 66, No. 3092, Part 1, May 17, 1952, p. 441.

May 17, 1952, p. 441.

Mining and Industrial News, Zonolite Company Starts a New Program: Vol. 20, No. 4, April 1952, p. 7.

To Varley, E. R., Vermiculite: Mineral Resources Division, Colonial Geol. Surveys, London, Her Majesty's Stationery Office, 1952, 70 pp.

Department of Mines, Union of South Africa, Quarterly Information Circular: October-December 1950, 202

^{1952,} p. 63. ¹¹ Varley, E. R., Vermiculite: London, Her Majesty's Stationery Office, 1952, pp. 54–57.

By O. M. Bishop 1 and Esther B. Miller 2

N JANUARY 1952 zinc was widely believed to be in such short supply that the President, on January 30, following the recommendation of the Office of Defense Mobilization, ordered the release of up to 15,000 tons of slab zinc between that date and June 30 for allocation to consumers, such zinc to be smelted from stockpileowned concentrates. Shortly thereafter it became apparent that supplies were ample, as imports were entering the United States in record volume and consumption had declined. Demand was further reduced by the steel strike in June and July; between June 2 and October 27 zinc prices declined 7 cents, or 36 percent, causing curtailments and shutdowns at many marginal mines. The supply of zinc, including newly mined, secondary recovered in all forms, and imports, totaled 1,470,000 tons, whereas the total zinc consumed as slab, ore. and secondary metal plus exports was about 1,275,000 tons.

In 1952 domestic zinc smelters produced 960,000 short tons of slab zinc, 3 percent more than in 1951 and a quantity second only to the record 991,000 tons produced in 1943. Of the 1952 output 60 percent was from domestic ores, 34 percent from foreign ores, and 6 percent from scrap. Domestic mine production was at the annual rate of 721,000 tons in the first 6 months, declined to an annual rate of 610,000 tons in the latter half of the year, and totaled 666,000 tons, a decrease of 2 percent from the 681,000 tons of 1951. decline in the second half of the year was brought about by shutdowns of certain marginal mines in Arizona, California, Idaho, Illinois, Nevada, New Mexico, and Utah and by strikes in New York, Illinois, Montana, with 82,000 tons, led all the States in mine and Utah. production of zinc, being followed, in order, by Idaho, New Jersey, Oklahoma, Colorado, New Mexico, Arizona, and Tennessee. ports of zinc in ores and concentrates and imports of slab zinc were 449,000 and 115,000 tons, respectively, as compared with 303,000 and 88,000 tons in 1951. Consumption of slab zinc was 967,000 tons in 1950 and 934,000 tons in 1951 and declined to 853,000 tons in 1952. Stocks at primary and secondary smelters increased from 22,000 tons during the year to 85,000 tons. Stocks of zinc in transit to or at consumers' plants increased from 65,000 tons at the beginning of the year to 101,000 tons at the end.

Prime Western zinc was quoted at 19.5 cents per pound, East St. Louis, until June 2, when it dropped to 17.5 cents. Subsequent declines brought the price to 12.5 cents per pound on October 27 at which level it remained for the rest of the year. The average price

received by producers in 1952 was 16.6 cents.

¹ Commodity-industry analyst.
² Statistical assistant.

The five-volume report of the President's Materials Policy Commission was released in 1952. The report, which was widely quoted and discussed, estimates the probable supply and demand of many necessary materials through 1975. Allowing for technologic advances and a free market economy "on the basis of peace and prosperity in the constant shadow of war" the report concludes that by 1975 annual zinc requirements of the United States in all forms would be 1,600,000 tons, which would be met by domestic mine production of 700,000 tons, secondary production of 100,000 tons, and imports of 800,000 tons.

TABLE 1.—Salient statistics of the zinc industry in the United States, 1943-47 (average) and 1948-52

	1943-47 (aver- age)	1948	1949	1950	1951	1952
Production of primary slab zinc: By sources:		÷ .				
From domestic oresshort tons_ From foreign oresdo	521, 010 300, 376				621, 826 259, 807	
Totaldo	821, 386	787, 764	814, 782	843, 467	881, 633	904, 479
Electrolytic percent of total Distilled do Production of redistilled secondary slab	36 64				38 62	39 6
zincshort tons Stocks on hand at primary smelters	50, 110	62, 320	55, 041	66, 970	48, 657	55, 11
Dec. 31short tons_ Price: Prime Western at St. Louis:	179, 814	19, 179	90, 710	7,948	1 21, 343	81,34
Average for periodcents per pound	8,80	13. 58	12, 15	13.88	17.99	16.2
Highest quotationdo	10.50					
Lowest quotationdo	8, 25					
Yearly average at Londondo Mine production of recoverable zinc: 2	6.95	• 14.38				
short tons Tri-State district (Joplin)	657, 927	629, 9.7	593, 203	623, 375	681, 189	666, 00
nercent of total	24	14				
Western States do Other do Warld smelter production of zinc	47 29	58 28		59 28	58 29	5 2
short tons_	1, 710, 000	11,881,000	¹ 2, 010, 000	12, 170, 000	12, 312, 000	2, 424, 00

¹ Revised figure.

GOVERNMENT REGULATIONS

Effective January 1, 1952, the National Production Authority amended zinc Order M-9 to reduce allowable receipts in any calendar month without allocation authorization from 20 to 10 short tons. The order was amended further on March 7, 1952, to change certain definitions and to consolidate in one order all definitions and sections formerly contained in NPA Orders M-15 and M-37, which were revoked simultaneously with the amendment. As amended, M-9 maintained slab zinc under allocation, limited the civilian uses of slab zinc, and prohibited undue accumulations of both slab zinc and zinc scrap. It also regulated all commerce in zinc scrap and provided that producers, importers, consumers, and dealers of slab zinc in quantities exceeding a stated quantity must file reports.

On May 15, 1952, Order M-9 was further amended by removal of provisions respecting allocation, delivery, and use of slab zinc and of restrictions on toll agreements and production of zinc dust. Six weeks later, on June 27, 1952, Order M-9 was revoked, but reporting

remained on a mandatory basis.

² Includes Alaska.

zinc 1119

On July 3 the Office of International Trade announced that quota restrictions on the quantity of slab zinc that might be exported had been removed, although export licenses continued to be required for exports to all countries but Canada.

GOVERNMENT PROGRAMS UNDER DEFENSE PRODUCTION ACT OF 1950

In 1950, under provisions of the Defense Production Act, the Defense Minerals Administration was established to stimulate production of critical minerals and metals needed for national defense. DMA was later succeeded, with respect to its exploration activities, by the Defense Minerals Exploration Administration and, with respect to procurement, by the Defense Materials Procurement Agency.

DEFENSE MINERALS EXPLORATION ADMINISTRATION

The objective of the Defense Minerals Exploration Administration is to encourage and increase the production of strategic and critical metals, including lead and zinc, through loans to explore possible domestic sources. The Government financed up to 50 percent of the total cost of approved exploration projects for lead and zinc. As of December 31, 1952, 151 minerals exploration projects involving lead and zinc were in force or executed. Government participation in these contracts amounted to \$5,595,473, or about one-half the total value of the contracts. The value of DMEA participation in contracts involving lead and zinc occurring together or separately constituted about 46 percent of the total Government participation in exploration projects for all commodities. Table 2 lists all exploration contracts involving lead and zinc that were in force or executed as of December 31, 1952.

TABLE 2.—Defense Minerals Exploration Administration contracts involving lead and zinc, by States, through Dec. 31, 1952

Name of contractor	County	Govern- ment par- ticipation	
ARIZONA Arizona Metals Co	Yavapai Pinal Santa Cruz Cochise Mohave	17, 000 31, 963 10, 000	
Briggs, Harry E. Fitzgerald, R. E. Foreman, L. D. Glidden Co.	IIIy0	8, 650 10, 310 6, 120 147, 150	
COLORADO Bachelor Development Co Cadwell Mining Co Callahan Zinc-Lead Co Do Defender Mining Co East Ridge Co Erickson & Baer Kolego, Henry E Lead Carbonate Mines, Inc Leadville Lead Corp Lupton Mining Co., Inc Do	Lake. Gunnisondo Custer. San Miguel Dolores. San Juando do Park. Clear Greek.	15, 305 2, 399 30, 090 1, 600 7, 300 17, 500 50, 400 33, 180	

TABLE 2.—Defense Minerals Exploration Administration contracts involving lead and zinc, by States, through Dec. 31, 1952—Continued

Name of contractor	County	Govern ment pa ticipation
Moenke W F	Summit	
Moenke, W. F Montana Mining & Development Co Moreno Cripple Creek Corp	Clear Creek	\$1, 7, 38,
Moreno Cripple Creek Corp	San Juan	7,
Outlet Mining Co	Shoshone	58,
Outlet Mining Co Shelby Johnson Mines, Inc	Park	5, 4, 10,
Silver Bay Mines, Inc Silver Bell Mines Co	San Juan	10.
Silver Bell Mines Co	San Miguel	10, 39, 12, 37, 17, 56, 19,
Smith, John A Freasure Mountain Gold Mining Co	Clear Creek.	12,
Inited Mining & Lossing Corn	San Juan	37,
United Mining & Leasing CorpUnited States Metals Corp	Gilpin San Juan	17,
Do	do	56,
Do Utze_Lode Co	Chaffee	19,
Do	do	10,
ЮАНО		
Bleazard, J. W. & G. S. Suchman, Louis, Breckson, J. S., Norden, J. A. Suckskin Mines Inc. Sunker Chance Mining Co.	Custer	4,
Buckskin Mines Inc.	do	29,
Sunker Chance Mining Co	Shoshone	29, 6, 6, 76, 2 15, 8
nampion wine	Custer	10,
		144
inderlin, Elmer	Custer	4,
ay Mines Inc. Inderlin, Elmer unnell & Majer Mining Co. arner, Wyle M. (Hoodoo mines) eller, L. S ighland Surprise Consolidated Mining Co. ope Silver-Lead Mines, Inc. ypotheek Mining & Milling Co. labo Mining Co.	Bonner	26, 6
faller, wylle M. (Hoodoo mines)	Custer	7,0
ighland Surprise Consolidated Minima Co	Valley	
one Silver-Lead Mines Inc	Shoshone	100, (
vpotheek Mining & Milling Co	BonnerShoshone	18,0
laho Mining Coabob Silver Lead Co	do	100, (18, (35, 2 61, 8 71, 7 47, 8
abob Silver Lead Co	do	71 5
aymaster, Inchode Island Mining Co	Blaine	47
hode Island Mining Co	Shoshone	îi. 9
dney Mining Co gnal Mining Co iver Star Queens Mines, Inc	do	+00, 1
Type Stor Ougons Mines The	do	10 8
noose Mining Co	Blaine	68, 4
outh Mountain Mining Co	Owyhee	67, 5
pokane Idaho Mining Co	Shoshone	24, 4
noose Mining Co	Blaine	14 1
unset Minerals, Inc	Shoshone	45, 5
mset Minerals, Inc. inited Minerals Reserve Corp. Thitedelf Mining & Development Co.	Blaine	10, 6 68, 4 67, 5 24, 4 94, 2 14, 1 45, 5 52, 6
Inteden Mining & Development Co	Bonner	81, 9
ILLINOIS zark Mahoning Co	Hardin	24, 3
IOWA		
Iiller, J. E. & Lula M	Dubuque	14, 8
MISSOURI		
merican Zinc, Lead & Smelting Co	Franklin	32, 5
ootman & Boswell Mining Co	Lawrence	4, 9
ale Mining Coational Lead Co	Newton	32, 5 4, 9 3, 8 274, 0
ational Lead Coeugnet, Amedee A	Madison St. Francois	274, 0
Do	do	2, 1 1, 8
Doelton Mining Co	Jasper	7, 0
MONTANA		
mbassador Mines Corp	Sanders	11, 5
ennett Mining Co arlson, Albert F astle Lead & Zinc Co	Cascade	50, 0
stle Lead & Zinc Co	Meagher	12, 4
mmonwealth Lead Mining Co	Madison	49, 9 25, 2
ommonwealth Lead Mining Co ance, Albert & Jewell	Broadwater	25, 2 8, 9
khorn Consolidated, Inc	Jefferson	12. 9
nton Mines Inc	Missoula	12, 9 26, 2
ulcahy, Wmttsburgh Silver Mining Co	Jefferson	2, 5 5, 5 6, 2
bl, Edmund E	Mineral	5, 5
omerio, Alberta	Broadwater Jefferson	6, 2
ark, Lewis B	Cascade	
ark, Lewis B est Montana Exploration & Development Co	Granite	20, U
egener, Roberta	Beaverhead.	42, 9 8 7
hite Pine Lead Co	Jefferson	14. 3
Vegener, Roberta	Beaverhead	25, 42, 8, 14,

TABLE 2.—Defense Minerals Exploration Administration contracts involving lead and zinc, by States, through Dec. 31, 1952—Continued

		Govern-
Name of contractor	County	ment par- ticipation
NEVADA		-
Bristol Silver Mines Co	Lincoln	\$90, 81
Ely Valley Mines Inc. Grand Deposit Mining Co. Hamilton Consolidated Mines	White Pine	43, 10 13, 20 13, 37 10, 11 54, 23
Hamilton Consolidated Mines	do	13, 37
Keever, Frank B. Raymond Combined Mines Co.	Lander	10, 11
Snyder, George W	Lincoln Lander	54, 23 13, 89
Snyder, George W	Elko	26, 75
Walker Corp	White Pine	66, 15
NEW MEXICO		
Clark & Mathis	Santa Fe	12, 36 6, 32
Mathis, R. W. & Lettie Mae	Grant.	14, 20
Byrne, Verne Clark & Mathis. Mathis, R. W. & Lettie Mae Peru Mining Co United States Smelting, Refining & Mining Co	do	112, 50 290, 92
OKLAHOMA		290, 92
American Zinc, Lead & Smelting Co	Marmore	70.00
SOUTH DAKOTA	Muray	78, 000
Belle Eldridge Gold Mines, Inc	Lawrence	5, 800
TEXAS	,	•
Carr Mining Co	Presidio	5, 198
UTAH		
American Fork Consolidated Mines Chief Consolidated Mining Co	Utah Juah	8, 019
Combined Metals Reduction Co.	Tooele	111.000
Do	Salt Lake	27, 550
Duke Page Auto Co East Utah Mining Co	Juab Wasatch	8, 019 231, 710 111, 000 27, 550 8, 853 54, 581
Ellihill Mining Co	Wayne	17, 14
Ellihill Mining Co Harrington Mines Co Kentucky-Utah Mines Co	Beaver Washington	02, 020
Lakeside Monarch Mining Co	Tooele	5, 000
Naildriver Mining Co	Wasatch	42,06
New Quincy Mining Co	Summitdo	117, 197
Park Utah Consolidated Mines Co	do	89, 994
Do Privateer Mining Co	Utah	21,000 4,031
Privateer Mining Co	Summit	160, 76
United Mining & Development Co. Inc	Tooele Salt Lake	17, 500 5, 000 42, 06; 117, 19; 11, 92; 89, 99; 21, 000 4, 03; 160, 76; 8, 27; 308, 678
WASHINGTON	2020	000,010
American Zinc, Lead & Smelting Co	Pend Oreille	60.000
Do	do	60, 000 58, 250 25, 124
Black Warrior Mining Co	ChelanSkagit	25, 124
Farmer Mines Enterprises	Stevens	21, 375 5, 000
Goldfield Consolidated Mines Co Jim Creek Mines, Inc	Pend Oreille	11, 528
Mines Management, Inc.	Stevens	11, 528 23, 750 29, 575
Do	do	12,000 3,780 18,642
Nasbury, Theodore Pacific North West Mining Co	do	3,780 18,642
Pioneer Mining Co	Ferry	11, 826 22, 000
Spokane Mining Syndicate	Ferry	22,000
WISCONSIN	-	
Calumet & Hecla, Inc	LafayetteIowa	155, 215 14, 577
D. H. & S. Mining Co Dodgeville Mining Co	do	
Do	do	5, 000
Do	do	3, 750
Do	do	3,750
Eagle-Picher Co	Grant	3,000 95.615
Mayer & Thiede Mining Co	Lafayette	5,000
Do. Eagle-Picher Co. Mayer & Thiede Mining Co. Scallion, E. P. Vinegar Hill Zinc Co.	Grant Lafayette	3,750
Do	do	5, 000 5, 000 4, 020 3, 750 3, 750 95, 615 5, 000 3, 750 34, 220 7, 820
Total		5, 595, 473

TABLE 3.—Contracts for expansion and maintenance of supply of zinc and lead under the Defense Production Act, as amended, as of Dec. 31, 1952

	Quantities involved in short tons						
Type of contract, name of contractor, and location of project	Total	Contingent purchase commit- ment	Effective date of contract	Date production begins	Approximate term of contract	Commitment purchase price (per pound)	
American Smelting & Refining Co., Van Stone mine, Stevens County, Wash. (floor price).	Zine, 18,436	18, 436	Mar. 5, 1952	Oct, 1953	3½ years	\$0,155.	
American Zinc, Lead & Smelting Co., Quick Seven mine, Jasper County,	Zinc, 11,000	11,000	Dec. 29, 1951	Dec, 1952	3 years	\$0.170.2	
Mo. (floor price). American Zinc Co. of Tennessee, North Friends Station, Jefferson Coun-	Zine, 11,600	7, 200	Nov. 5, 1951	Nov, 1952	do	\$0. 175.2	
ty, Tenn. (floor price). Appalachian Mining & Smelting Co., Bumpass Cove, Embreeville,	Zine, 10,000	10,000	May 8, 1951	Nov, 1952	2½ years	\$0.175.	
Tenn. (floor price). Vernon C. Davis, Kickapoo & Thompson mineral leases, Iowa County, Wis. (floor price).	Zine, 3,000	3,000	Apr. 2, 1952	Apr, 1953	3 years	\$0.155.	
Wis. (aloo price). Gibbonsville Mining & Exploration Co., Opal & Geraldine claims, Kellogg, Idaho (floor price).	Zinc, 790 Lead, 2,460	790	June 12, 1952	Oct, 1952	2 years	\$0.155.	
MacArthur Mining Co., MacArthur mine, Baxter Springs, Cherokee County, Kans. (floor price).	Zine, 2500	2, 460 1, 500	Dec. 4, 1951	Oct, 1952 do May -, 1952	do	\$0.150. \$0.175.	
Oddiny, Kais, (noor price). Mid-Continent Mining Corp., Alice mine, West Plains, Mo. (floor price). Vinegar Hill Zinc Co., Mulcahy property, Lafayette County, Wisc. (floor price).	Zinc, 7,400 Zinc, 5,000	7, 400 5, 000	July 16, 1952 June 30, 1951	Apr, 1953 June -, 1952	2½ years 3 years	\$0.160. \$0.175.	
W. M. & W. Mining Co., Inc., Brewster land mine, Ottowa County, Okla. (subsidy).	Zine, 5,750	None	June 27, 1952	Feb. 1, 1952	23 months	None.3	
Compania, Minera de Huehuetenango, Guatemala, Central America (purchase).	Lead, 26,250	26, 250	Feb. 5, 1952	Early 1954	7½ years	Market between \$0.17342 and	
National Zinc Co., Inc., American company with concentrating to be done in Mexico and smelting in the United States (floor price).	Zinc, 20,000	20,000	Oct. 17, 1951	Oct, 1952	5 years	\$0.20342.3 \$0.165.	
Volcan Mines., Peru, Trelio, Peru—foreign company, but smelting to be done in United States (purchase).	Zinc, 54,000	13, 680	Sept. 24, 1951	Jan, 1953	5½ years	\$0.175.	

Loans (Certified by Defense Materials Procurement Agency under section 302, Defense Production Act):

Firm and location	Type of assistance	Commodity	Date approved	Proposed annual increase, in short tons	Loan aumor-
Gibbonsville Mining & Exploration Co., Kellogg, Idaho Homestead Mining Co., Platteville, Wis Mifflin Mining Co., Mifflin, Wis New Diggings Mining Co., Platteville, Wis	RFC-DMPA RFC-DMPA RFC-DPA RFC-DMPA	Zinc. Lead. Zinc. Lead. Zinc. Lead. Lead. Lead. Zinc. do	August 1951 April 1952 June 1952 January 1952 July 1951 August 1952 June 1952 May 1952 June 1952	5,000 3,800 5,200 530 1,600 4,080 1,080 2,400 3,100 700 6,500	\$400,000 120,000 77,000 \$240,000 80,000 54,000 \$144,000 85,000 337,500

Floor price, subsidy, or purchase contracts, as noted.
 Includes escalator clause.
 Provides for subsidy.
 Export-Import Bank of Washington.

TABLE 4.—Certificates of necessity certified by Defense Materials Procurement Agency for assistance through tax amortization, by States through Dec. 31, 1952

Company	Type of project	Commodity	Proposed expansion (tons/year)	Date certified	Amount of depreciable assets (thousands of dollars)	Amount allowed for accelerated amortization
CALIFORNIA						
American Smelting & Refining Co., Selby		Zinc Lead	10,000	May 1951 June 1951	\$2, 254 110	\$1,352 66
COLORADO			İ			
Telluride Mines, Inc., Telluride	Mill	ZincLead	1, 200 1, 800	September 1951	245	147
New Jersey Zine Co., Gilman	Mine and mill	Zinc Lead	6,600 1,340	}January 1952	50	30
Colorado Standard Lead-Zinc Mines, Lake City	1	Zinc Lead	388 2, 500	}do	161	97
New Jersey Zinc Co., Canon City	Mine	do	100 250	July 1951 October 1951 August 1951	100 34 84	60 20 50
IDAHO	Smerter	Lead		August 1951	84	50
Bunker Hill & Sullivan Mining Co., Kellogg	Smelter and refinery	do		December 1951	1, 376	826
American Smelting & Refining Co., Wallace			0 100	{do May 1952	372 83	223 50
ILLINOIS						
American Zinc Co. of Illinois, Monsanto	do	. do	1	December 1951 September 1951	834 114	500 68
Do	Fume collection	do	30	February 1952	200	100
KANSAS Eagle-Picher Co., Galena	Zinc oxide plant	do		June 1951	289	173
MISSOURI						
St. Joseph Lead Co., Indian Creek.		Zinc Lead	2,800 17,500	}August 1951	4, 964	2, 978
St. Joseph Lead Co., Hayden Creek		do	11,500	June 1951	785	471
St. Joseph Lead Co., Herculaneum	Smelter	Zinc Lead		}do	1,808	1,085
MONTANA						
Anaconda Copper Co., Butte	do	Zinc	14, 400	December 1951	1, 645	987
NEBRASKA	do			T1 1071		
American Smelting & Refining Co., Omaha	do	Lead	325	July 1951 August 1951	105 52	63 31

_	_
	_
	೨
õ	ř

NEW JERSEY	ì	· .		. 1	1	
New Jersey Zinc Co., Ogdensburg American Smelting & Refining Co., Newark	MillAlloy mfr	Zincdo	20,000	September 1951	3, 015 1, 736	1,809 1,042
St. Joseph Lead Co., Balmat Belmont Smelting & Refining Co., Kings County	Mine and millAlloy mfr	do Lead	13, 000	June 1951 December 1951	833 450	500 225
OKLAHOMA						
Blackwell Zinc Co., Blackwell	Sintering plant	Zinc		September 1951	3, 304	1, 982
PENNSYLVANIA						
New Jersey Zinc Co., Palmerton	Smelter and refinery Fume collection			}February 1952	868 350	521 210
New Jersey Zinc Co., Friedensville New Castle Chemical Co., New Castle	Mine and mill Dust collection, etc	Zinc	39,000	January 1952 February 1951	8, 678 91	5, 207 46
TENNESSEE						
United States Steel Co., Jefferson City	Mine and mill Mine Mill	do	8, 000 3, 600 5, 000	June 1951 do November 1951	863 299 395	518 179 237
TEXAS						
American Smelting & Refining Co., Corpus Christi	RefinerySmelter	do		do	67 775	40 465
American Smelting & Refining Co., Amarillo American Smelting & Refining Co., Corpus Christi	Dross treatment	do	24,000	do	75 7, 015	45 4, 209
American Zinc Co. of Illinois, Dumas	Dust collection	Zinc Lead	200 190	}do	407	244
VIRGINIA						
New Jersey Zinc Co., Austinville	Mill	ZincLead	3, 200 400	September 1951	1, 103	662
New Jersey Zinc Co., Ivanhoe	do	Zinc Lead	12,000	}do	1, 143	686
WASHINGTON		(, , , ,	1		
American Smelting & Refining Co., Van Stone	do	ZineLead	7,800 750	December 1951	1,598 113	959 57
WISCONSIN		(2000	1		120	
Vinegar Hill Zine Co., Shullsburg	Mine	{Zinc Lead	3, 100 300	September 1951	196	118
Total		Zinc Lead	182, 383 40, 980		49, 039	29, 338
	l	1	1	1	1	1

DEFENSE MATERIALS PROCUREMENT AGENCY

The Defense Materials Procurement Agency is one of the agencies created under authority of the Defense Production Act of 1950 to increase and maintain supplies of critical materials. The Defense Materials Procurement Agency is responsible for making purchase contracts (including subsidies and floor prices to high cost producers) and granting priority ratings for production machinery and equipment and for recommending production-expansion and operating loans and certificates of necessity for accelerated tax amortization. The expansion program is not confined to domestic producers; a number of foreign contracts to bring in additional supplies of lead and zinc have been negotiated. The Defense Materials Procurement Agency also has the authority to certify access-roads projects for mines producing strategic and critical metals and minerals. Funds are appropriated by the Congress as a part of the Bureau of Public Roads appropriations. Tables 3, 4, and 5 show Defense Materials Procurement Agency projects as of August 31, 1952.

TABLE 5.—Roads certified for construction by the Mining Requirements Division,
Defense Materials Procurement Agency, up to Sept. 1, 1952

Mine or mining company	Location	Length of road (miles)	Cost	Type of ore
Cashier Crescent mine Crested Butte Mining & Mill- ing Co.	Montezuma, Colo Crested Butte, Colo	3 4	\$2,400 38,000	Lead-copper. Zinc.
Lupton Mining Co Moreno Cripple Creek Corp Nabob Development Co Nevada Monarch Mining Co Ross Basin Mining Co Sun Valley Lead-Silver Mines, Inc.	Clear Creek County, Colo Silverton, Colo Clear Creek County, Colo Lincoln County, Nev San Juan County, Colo Blaine County, Idaho	. 12 2. 2 2. 3 5 . 4	1, 950 8, 900 5, 500 22, 000 4, 000 66, 000	
Van Stone mine Venture Leasing Co Zero Tunnel (Smith)	Northport, Wash Silverton, Colo Clear Creek County, Colo	8.12 1.9 1	68, 135 8, 000 1, 330	Do. Lead-zinc-copper. Zinc.

DOMESTIC PRODUCTION

Statistics on zinc production are compiled both on a mine and on a smelter basis. The mine-output data, based upon the zinc content of ores and concentrates produced (adjusted to account for average smelting losses), form an accurate measure of domestic zinc output from year to year. Smelter production of slab zinc from domestic ores represents a more accurate figure of zinc metal recovery but differs from the mine recovery figure because of a timelag between mine or mill shipments and smelter production and because considerable zinc concentrate is not smelted but rather is utilized directly in making zinc pigments and chemicals. The two production figures will check within the limits of statistical error when the basic differences in the two quantities are considered.

MINE PRODUCTION

Zinc mining in the United States is largely concentrated in six areas—the Tri-State area of southeastern Kansas, southwestern Missouri, and northeastern Oklahoma; Tennessee-Virginia; Sussex County, N. J.; St. Lawrence County, N. Y.; northern Illinois and Wisconsin; and the Western States (principally Montana, Idaho,

Colorado, New Mexico, Arizona, Utah, Washington, Nevada, and California, in descending order of production in 1952).

Mine production of recoverable zinc (including that recovered as zinc pigments and salts directly from ore) decreased from 681,000 tons in 1951 to 666,000 in 1952, a decline of 2 percent. The decrease in output was the direct result of curtailments and shutdowns resulting from a succession of price declines between June 2 and October 27. Had the production rate of the first 6 months been maintained, the year's production would have been 720,000 tons.

The combined Western States supplied 58 percent of the total output, the States east of the Mississippi River 28 percent, and the West Central States (Arkansas, Kansas, Missouri, and Oklahoma) 14

percent, or the same percentage distribution as in 1951.

TABLE 6.—Mine production of recoverable zinc in the United States, 1943-47 (average) and 1948-52, by States, in short tons

State	1943-47 (aver- age)	1948	1949	1950	1951	1952
Western States and Alaska: Alaska Arizona California Colorado Idaho Montana Newada New Mexico Oregon South Dakota	37, 458 6, 505 38, 943 83, 224 30, 717 19, 084 46, 151	54, 478 5, 325 45, 164 86, 267 59, 095 20, 288 41, 502	2 70, 658 7, 209 47, 703 76, 555 54, 195 20, 443 29, 346 6	60, 480 7, 551 45, 776 87, 890 67, 678 21, 606 29, 263 21	52, 999 9, 602 55, 714 78, 121 85, 551 17, 443 45, 419	47, 143 9, 419 53, 203 74, 317 82, 185 15, 357 50, 975
TexasUtahWashington	38, 297 12, 186	41, 490 12, 638	40, 670 10, 740	31, 678 14, 807	34, 317 18, 189	32, 947 20, 102
Total	312, 607	366, 298	357, 527	366, 756	397, 383	385, 652
West Central States: Arkansas Kansas Missouri Oklahoma	25, 704 79, 090	31 35, 577 6, 463 43, 821	1 29, 433 5, 911 44, 033	8 27, 176 8, 189 46, 739	50 28, 904 11, 476 53, 450	26 25, 482 13, 986 54, 916
Total	156, 546	85, 892	79, 378	82, 112	93, 880	94, 410
States east of the Mississippi River: Illinois	79, 174 34, 630 34, 449	12, 980 639 76, 332 34, 566 29, 524 15, 882 7, 864	18, 157 935 50, 984 37, 973 29, 788 13, 166 5, 295	26, 982 731 55, 029 38, 321 35, 326 12, 396 5, 722	21, 776 3, 457 62, 917 40, 051 38, 639 7, 332 15, 754	18, 816 3, 280 59, 190 32, 636 38, 020 13, 409 20, 588
Total	188,774	177, 787	156, 298	174, 507	189, 926	185, 939
Grand total	657, 927	629, 977	593, 203	623, 375	681, 189	666, 001

TABLE 7.—Mine production of recoverable zinc in the United States, 1951-52, by months, in short tons

Month	1951	1952	Month	1951	1952
January February March April May June July	60, 086 54, 512 60, 795 56, 277 59, 114 56, 872 53, 469	59, 377 59, 145 60, 972 61, 354 62, 751 57, 079 50, 535	August September October November December Total	54, 545 50, 382 60, 613 57, 483 57, 041 681, 189	49, 209 49, 291 54, 243 49, 782 52, 263 686, 001

¹ Includes Alaska.

Montana was again the leading zinc-producing State, although output of the mines declined 4 percent to 82,000 tons. Of this quantity, about 95 percent was produced by the Anaconda Copper Mining Co. from mines in the Summit Valley (Butte) district and from the East Helena lead smelter slags. The remainder was largely from the Jack Waite and Mike Horse properties of the American Smelting & Refining Co. The Mike Horse mine, which has been a substantial producer of lead and zinc for many years was closed in December because of low metal prices and the substantial exhaustion of ore reserves.

Idaho was second among the States in mine production of recoverable zinc, with an output of 74,000 short tons. Ninety-five percent of the production was from the Coeur d'Alene region, Shoshone County. Eight properties, in the region, all producing over 2,500 tons of recoverable zinc, furnished 77 percent of the total. In the order of output they were Star, Bunker Hill, Page, Morning, Sidney (Sidney Mining Co.), Frisco Group (Federal Mining and Smelting Co.), Tamarack (Day Mines, Inc.), and Bunker Hill slag dump.

Colorado zinc output declined 5 percent to 53,000 tons but was still larger than in any of the years from 1918 through 1950. Mines in Eagle County produced 49 percent of the total, San Miguel County 18 percent, Lake County 16 percent, and 13 other counties 17 percent.

New Mexico was sixth among the States as zinc output increased 12 percent above that of 1951 to 51,000 tons. Ninety-five percent of the zinc was produced by the Ground Hog, Bayard, Oswaldo, Kearny, Hanover, and Pewabic mines in the Central district of Grant County. Depressed metal prices resulted in the closing of the Oswaldo (October 4), the Hanover (October 11), and the Pewabic (December 23). The Kearny production was curtailed somewhat in the latter half of the year.

Zinc output in Arizona declined 11 percent below the 1951 production to 47,000 tons, owing to the closing of the San Xavier zinc-lead-silver mine in August, the suspension in August of mining zinc-copper ores at the Magma mine, and a substantial decrease in the output of

the United Verde mine.

Utah produced 33,000 tons of zinc in 1952, a 4-percent decrease from 1951 and 14 percent less than the 1942–51 average. The United States and Lark property in the West Mountain (Bingham) district remained by far the largest producer. Other large producers were the New Park, Park Utah Consolidated, Chief Consolidated, Butterfield group, Ophir, and West Calumet mines. Labor strikes at the Chief Consolidated and Park Utah Consolidated mines and closing of the Silver King Coalition mine explained the lessened production.

Zinc production in Washington of 20,000 short tons was an alltime record—11 percent above 1951, the previous record year. The major mines were the Pend Oreille, Grandview, Deep Creek, Holden, and

Van Stone.

Zinc output from Nevada decreased 12 percent from the 1951 level to 15,000 tons. Chief producing mines were the Pioche group of the Combined Metals Reduction Co. and the Ely Valley mine of Ely Valley Mines, Inc. The Ely Valley mine was closed because of low prices in August 1952.

California output of zinc dropped 2 percent during 1952 to 9,000 tons. Almost the entire production came from the Darwin group, Inyo County; the Afterthought mine, Shasta County; and the Penn

mine, Calaveras County. The Afterthought mine of the Coronado Copper & Zinc Co. was closed in August 1952 owing to ore depletion.

The West Central States, comprising Arkansas, Kansas, Missouri, and Oklahoma, increased output of recoverable zinc slightly to 94,000 tons despite closing of 107 mines and 5 mills of the Tri-State district in the second half of the year. Of the total output, 91,000 tons was from the Tri-State district, which has produced approximately 11,000,000 tons of recoverable zinc since 1872 and has been the leading zinc-mining district every year but 1950 since about 1885. 10 leading zinc producers in the district in 1952, in order of output, were: The Eagle-Picher Co. (Oklahoma, Kansas); American Zinc, Lead & Smelting Co. (Oklahoma, Missouri); St. Louis Smelting & Refining Division of National Lead Co. (Kansas); Buffalo Mining Co. (Oklahoma); Potter-Sims Mines, Inc. (Missouri); Dale Mining Co. (Missouri); Federal Mining & Smelting Co. (Oklahoma, Missouri); Bilharz Mining Co. (Kansas); Helen H. Mining Co. (Oklahoma,

Kansas); and the Sooner Milling Co., Inc. (Oklahoma).

Zinc output from mines in States east of the Mississippi River decreased 2 percent from that of 1951 to 186,000 short tons. Zinc mine output in New York declined almost a fifth because of a labor strike between July 1 and September 14 at the Balmat and Edwards mines. Strikes also closed several zinc-producing mines in the southern Illinois and western Kentucky zinc-fluorspar area during part of June and July. Increased production in northern Illinois and Wisconsin resulted from relatively continuous operations at most established mines and the opening of the Hancock, Mulcahy, Birkett, and Andrews mines. Mine output in Virginia was normal or about twice the 1951 production as the Austinville mine in Wythe County operated 12 months, compared to 6 months in 1951. The principal zinc-producing companies in this group of States were the New Jersey Zinc Co. (Franklin and Sterling Hill mines in New Jersey and Austinville mine in Virginia); St. Joseph Lead Co. (Balmat and Edwards mines in New York); the American Zinc Co. of Tennessee (Athletic, Grasselli, Jarnagin, Mascot No. 2, and North Friends Station mines in Tennessee); United States Steel Corp., Tennessee Coal & Iron Division (Davis-Bible group mines in Tennessee); Tennessee Copper Co. (in Tennessee); the Vinegar Hill Zinc Co., Tri-State Zinc, Inc., Calumet & Hecla, Inc., and Eagle-Picher Co. (in northern Illinois and Wisconsin); and the Alcoa Mining Co., Minerva Oil Co., and Ozark-Mahoning Co. (in southern Illinois and western Kentucky).

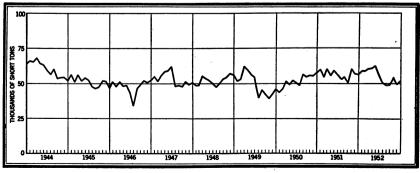


Figure 1.—Mine production of recoverable zinc in the United States, 1944-52 by months, in short tons.

TABLE 8.—Twenty-five leading zinc-producing mines in the United States in 1952, in order of output

Rank	Mine	District	State	Operator	Type of ore
1 2 3 4 5 6 6 7 8 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	Butte Hill mines. Franklin and Sterling Hill. Eagle Group. Balmat. United States and Lark. Ground Hog. Star. Austinville. Rialto Group. Mascot No. 2. Bayard Group. Iron King. Bunker Hill and Sullivan. Ploche. Davis-Bible Group. Page. Oswaldo. Calumet. Resurrection Group. Pend Oreille. Edwards. Bautsch. Grandview. Morning. Treasury Tunnel.	Summit Valley (Butte) New Jersey Red Cliff. St. Lawrence County. West Mountain (Bingham) Central. Hunter. Austinville. Tri-State. Eastern Tennessee. Central. Big Bug. Yreka. Ploche. Eastern Tennessee. Yreka. Central. Wisconsin. California (Leadville) Metaline. St. Lawrence County Northern Illinois. Metaline. Hunter. Upper San Miguel.	Montana New Jersey Colorado New York Utah New Mexico Idaho Virginia Oklahoma Tennessee New Mexico Arizona Idaho Nevada Tennessee Idaho Nevada Tennessee Idaho New Mexico Wisconsin Colorado Washington New York Illinois Washington Idaho Colorado Udaho Colorado	American Smelting & Refining Co	Zinc-lead. Do. Do. Zinc-lead. Do. Zinc-lead. Do. Zinc-lead. Do. Zinc-lead. Zinc-lead. Zinc-lead. Zinc-lead. Zinc-lead.

The 25 leading zinc-producing mines in the United States in 1952, listed in table 8, yielded 60 percent of the total domestic zinc output; the 3 leading mines 23 percent; and the 6 leading mines 32 percent.

Detailed information on the production of zinc mines in the United States by districts, counties, and States may be found in volume III of the Minerals Yearbook for 1952.

TABLE 9.—Mine production of recoverable zinc in the United States, 1943-47 (average) and 1948-52, by districts that produced 1,000 tons or more during any year 1948-52, in short tons

	<u> </u>		· ·	1			
District	State	1943-47 (aver- age)	1948	1949	1950	1951	1952
Tri-State (Joplin region)	Kansas, southwestern Missouri, Oklahoma	155, 687	84, 839	78, 628	80, 558	91, 553	90, 512
Summit Valley (Butte)	Montana	14, 387	52, 625	47, 982	63, 511	80, 500	75, 968
Coeur d'Alene	Idaho	77, 914	83, 801 76, 332	74, 370	86, 103	80, 500 74, 989	70, 316
New Jersey		79, 174	76, 332	50, 984	55,029	62, 917	59, 190
Central Eastern Tennessee 1	New Mexico Tennessee	40, 708 34, 449	35, 140 29, 524	26, 376 29, 788	26, 897 35, 326	41, 884 38, 639	48, 043
Upper Mississippi Valley	Northern Illinois, Iowa, Wisconsin.	17, 504	14, 061	17, 846	26, 793	31, 403	38, 020 34, 716
St. Lawrence County	New York	34, 630	34, 566	37, 973	38, 321	40, 051	32, 636
Red Cliff	Colorado		16, 355	17, 450	19,956	29, 200	26,000
West Mountain (Bingham) Austinville	Utah Virginia	17, 053 17, 018	22, 077	22, 311	16, 120	18, 286	20, 395
Pioche	Nevada		15, 882 18, 612	13, 166 18, 651	112, 396 19, 655	1 7, 332 14, 350	13, 409
Rig Rug	Arizona		5, 832	8, 798	10, 416	9, 688	12, 493 10, 862
Upper San Miguel	Colorado	1,506	3, 486	6,004	8, 881	9, 228	9, 811
California (Leadville)	do		5, 726	6, 455	7, 392	8, 144	8, 487
Kentucky-Southern Illinois	Kentucky, Southern Illinois.	5, 409	7, 422	6, 541	6, 642	9, 584	7, 968
Park City region Coso		9,662	10, 320 4, 497	8, 359 4, 062	7, 425 5, 237	10, 209	7,746
Warren (Bisbee)			27, 669	35, 393	20, 707	4, 720 4, 511	5, 479 4, 791
Verde (Jerome)	do		459	4, 350	7, 800	10, 155	4, 360
Cochise Pioneer (Superior)	do	1,473	2,875	1,760	1,025	3, 243	4, 266
Pioneer (Superior)	do	2,044			2, 595	6, 240	4, 175
Harshaw	do	2, 050 253	2, 875 2, 321	2, 947	4, 193	4,076	3, 924
Eureka (Bagdad) Pima (Sierritas, Papago, Twin Buttes).		3,786	5, 758	2, 304 7, 177	1, 478 5, 802	2, 504 5, 414	3, 520 3, 472
Old Hat (Oracle)	do	3, 477	3,796	5, 195	4,603	3, 583	3, 368
Tinuc	Utan	3, 277	3,680	6,082	5, 985	3, 410	2, 951
Smelter (Lewis and Clark County).	Montana	,	3, 417	1, 463	2, 358	2, 428	2,807
Pioneer (Rico)	ColoradoIdaho	3, 799 3, 298	3, 180	1,354	1, 365	2, 527	2, 734
Magdalena	New Mexico	4, 259	1, 545 4, 856	1, 635 2, 263	1, 236 1, 677	1,860 2,276	2, 142 2, 122
Yellow Pine (Goodsprings)	Nevada	621	434	447	643	1, 332	1, 464
Aravalpa	Arizona	169	1,098	783	921	1, 404	1, 315
Flint Creek	Montana	59	24	8	120	392	1,084
Heddleston Patagonia (Duquesne)	Arizona	1, 472 1, 004	1, 437 350	2, 026 555	892 368	1, 395	1,066
Creede	Colorado	1,004	88	671	873	601 892	1,049 1,024
Animas	do	949	748	1,029	961	1, 183	986
Sneffels	do	* 415	815	1,053	810	1,094	931
Rush Valley and Smelter (Tooele County).	Utah	6, 966	3, 552	2, 188	1, 219	1, 608	916
Tomichi	Colorado	666	1, 983	1, 456	963	1,011	874
Campo Seco Ophir	California Utah	1, 699 308		363	326	884	829
Pinos Altos.	New Mexico	456	786 1,056	1,004 243	374 144	341 213	670 110
Ten Mile	Colorado	2, 335	10, 338	9,716	2, 925	16	110
Chelan Lake	Washington	1,631	3, 289	2,724	2, 430	1, 879	(6)
Cow Creek	California	36	(6)	(6)	(6)	(6)	(6)
Metaline 5	Washington	8, 752	5, 985	6, 496	11, 032	12, 753	(6)
Northport Smelter (Cascade County)	Montana	1,668	3, 271	1, 412	1,304	3, 496	(6)
billetter (Cascade County)	тионтана			1, 278			
				<u>.</u>			

Includes very small quantity produced elsewhere in State.
 No production in Iowa since 1917.
 1942-46 average.
 Includes Peshastin Creek and Wenatchee River districts.
 This district is not listed in order of 1952 output.
 Quantity withheld to avoid disclosure of individual company operations.

SMELTER PRODUCTION

During 1952, 18 primary zinc-reduction plants were operating; 9 operated with horizontal retorts exclusively, 4 with vertical retorts exclusively (1 wholly electrothermic and 1 partly so), and 5 with

electrolytic methods.

Horizontal-Retort Plants.—The total number of retorts reported at active horizontal-retort primary plants in 1952 was 55,800, a 2-percent increase from the 54,600 retorts reported in 1951. Of the total retorts reported, 51,800 (93 percent) were in use at the close of 1952, compared with 52,500 (96 percent) in use at the end of 1951. reports disclosed that 96 additional retorts were under construction.

Vertical-Retort Plants.—Four vertical-retort, continuous-distilling plants operated during 1952. Three of these used the New Jersey Zinc Co. fuel-fired vertical retorts, and the fourth is an electrothermal vertical retort plant developed by the St. Joseph Lead Co. The New Jersey Zinc Co. operated an electric furnace on an experimental basis between July 1951 and through much of 1952 and began constructing additional units in late 1952. The total number of vertical retorts of all types increased from 89 as of the end of 1951 to 91 at the close of 1952. Of these 80 were in operation on December 31, 1952.

Electrolytic Plants.—Five electrolytic zinc-reduction plants with a total of 3,370 electrolytic cells were operated in 1952, the same as in 1951. Of this cell capacity, 3,340 were in use at the end of 1952, the same as at the end of 1951. One hundred fifty six new electrolytic

cells were under construction at the end of 1952.

Smelting Capacity.—Irrespective of additions or subtractions of smelter recovery units, statistics on domestic smelting capacity vary from year to year, owing to changes in metallurgical practices at the various plants. According to reports to the Bureau of Mines, the active zinc-reduction plants in the United States as of the end of 1952 had a stated annual capacity of 1,112,000 tons of slab zinc under normal operating conditions. This figure, which compares with 1,083,000 tons reported capacity at the end of 1951, indicated the 1952 smelter output was 86 percent of capacity, or the same as in Horizontal and vertical retort plants operated at 84 percent of the 680,000 tons reported capacity (86 percent of a 651,000-ton capacity in 1951), electrolytic plants at 94 percent of a 375,000-ton reported capacity (90 percent of 375,000-ton capacity in 1951), and secondary smelters at 64 percent of 57,000-ton reported capacity (57 percent of 56,700-ton capacity in 1951).

Waelz Kilns.—The following companies operated Waelz kilns in

1952:

Arkansas: Fort Smith-The Residue Co.

Illinois:

Danville—The Hegeler Zinc Co. Fairmont City—American Zinc Co. of Illinois

La Salle—Matthiessen & Hegeler Zinc Co. Kansas: Cherryvale—National Zinc Co., Inc.

Oklahoma: Henryetta—Eagle-Picher Co.

Pennsylvania:

Donora—American Steel & Wire Division, United States Steel Corp.

Palmerton—New Jersey Zinc Co.

Slag-Fuming Plants.—The following companies operated slag-fuming plants in 1952 to produce impure zinc oxide, which was further treated to recover the zinc as slab zinc:

Idaho: Kellogg-Bunker Hill & Sullivan Mining & Concentrating Co.

Montana: East Helena—Anaconda Copper Mining Co. Texas: El Paso—American Smelting & Refining Co. Utah: Tooele—International Smelting & Refining Co.

During 1952 these 4 plants treated 626,200 tons of hot and cold slag, which yielded 104,200 tons of oxide fume containing 73,300 tons of recoverable zinc. Corresponding figures for 1951 were 606,100, 108,100, and 74,700 tons, respectively. New slag-fuming facilities were under construction at the Herculaneum, Mo., smelter of St. Joseph Lead Co. and at the Selby, Calif. smelter of the American Smelting & Refining Co.

Active Zinc-Reduction Plants.—During 1952 the New Jersey Zinc Co. continued constructing additional Sterling-process furnaces for electrothermic reduction of zinc ores at its Palmerton, Pa., plant. The initial furnace installation, which has capacity for 35 tons of zinc per day, was operated experimentally throughout most of the year.

As a result of electric power shortages in the Pacific Northwest, the Sullivan Mining Co., owned jointly by Hecla Mining Co. and Bunker Hill & Sullivan Mining & Concentrating Co., curtailed production of its electrolytic zinc plant near Kellogg by about 20 percent in late September. Continued drought brought further curtailment by the Defense Electric Power Administration on November 17, and production was reduced to 3,500 tons monthly, or about 70 percent of capacity, for the remainder of the year.

The only other interruption to production was that occasioned by the steel strike, which shut down operations at the Donora, Pa., smelter of the American Steel & Wire Division of the United States Steel

Corp. from June 2 to July 25, 1952.

A list of zinc-reduction plants operating in the United States in 1952 follows:

Primary Zinc Distillers

Horizontal-retort plants

Arkansas: Fort Smith—Athletic Mining & Smelting Co.

Fairmont City—American Zinc Co. of Illinois La Salle-Matthiessen & Hegeler Zinc Co.

Oklahoma:

Bartlesville-National Zinc Co., Inc.

Blackwell-Blackwell Zinc Co. Henryetta—Eagle-Picher Co.

Pennsylvania: Donora—American Steel & Wire Div. of United States Steel Corp. Texas:

Amarillo-American Smelting & Refining Co. Dumas—American Zinc Co. of Illinois

Vertical-retort plants

Illinois: Depue—The New Jersey Zinc Co. Pennsylvania:

Josephtown—St. Joseph Lead Co. Palmerton—The New Jersey Zinc Co. of Pennsylvania West Virginia: Meadowbrook-Matthiessen & Hegeler Zinc Co.

Electrolytic plants

Idaho: Kellogg—Sullivan Mining Co.

Illinois: Monsanto—American Zinc Co. of Illinois

Montana:

Anaconda—Anaconda Copper Mining Co. Great Falls—Anaconda Copper Mining Co.

Texas: Corpus Christi-American Smelting & Refining Co.

Secondary Zinc Distillers

Alabama: Fairfield—W. J. Bullock, Inc.

California:

Los Angeles—American Smelting & Refining Co., Federated Metals Division Torrance—Pacific Smelting Co. Illinois:

Beckemeyer—American Smelting & Refining Co., Federated Metals Division Hillsboro—American Zinc, Lead & Smelting Co. Sandoval—Sandoval Zinc Co.

New Jersey: Trenton-American Smelting & Refining Co., Federated Metals Division

New York: Tottenville—Nassau Smelting & Refining Co. Oklahoma: Sand Springs—American Smelting & Refining Co., Federated Metals

Pennsylvania:

Bristol—Superior Zinc Corp. Philadelphia—General Smelting Co.

West Virginia: Wheeling-Wheeling Steel Corp.

SLAB ZINC

The output of primary slab zinc in 1952 was 904,000 tons, or 3 percent greater than 1951 production and the second greatest output on record. Slab zinc from domestic ores declined 7 percent compared with the 1951 output, but that from foreign ores increased 26 percent.

Production of redistilled slab zinc increased 13 percent but remained well below the record output of 67,000 tons in 1950. Of the 55,000 tons of redistilled secondary slab zinc produced in 1952, 19,000 tons (34 percent) was produced at primary smelters and 36,000 tons (66

percent) at secondary plants.

In addition to primary distilled and redistilled secondary zinc, 3,197 tons of remelted secondary slab zinc was recovered by remelting purchased scrap (4,454 tons in 1951). Zinc rolling mills and other large consumers of slab zinc recovered large quantities of slab zinc from scrap generated in their own plants, but metal so recovered is not measured statistically.

In addition to redistilled and remelted unalloyed secondary zinc. large quantities of secondary zinc are recovered each year in the form of alloys (brass, zinc-base die-cast alloy), zinc dust, zinc pigments, and zinc salts. More information on secondary zinc is given in the

Secondary Metals-Nonferrous chapter of this volume.

Of the 1952 output of primary zinc, 61 percent was distilled and

39 percent produced electrolytically.

Production of Special High Grade, Regular High Grade, and Prime Western increased 5, 4, and 6 percent, respectively, in 1952, but output of Intermediate and Brass Special declined 14 and 19 percent, respectively. Selected grade showed a negligible percentage increase. Of the total 1952 output (comparable 1951 figures in parentheses) 42 (41) percent was Prime Western, 31 (30) percent Special High Grade, 19 (19) percent Regular High Grade, 5 (7) percent Brass Special, 2 (2) percent Intermediate, and 1 (1) percent Selected.

TABLE 10.—Primary and redistilled secondary slab zinc produced in the United States, 1943-47 (average) and 1948-52, in short tons

		Primary		Total (ex-	
Year	From domestic ores	From foreign ores	Total	Redistilled secondary	cludes zinc recovered by remelt- ing)
1943–47 (average)	521, 010 537, 966 591, 454 588, 291 621, 826 575, 828	1 300, 376 249, 798 223, 328 255, 176 259, 807 1 328, 651	821, 386 787, 764 814, 782 843, 467 881, 633 904, 479	50, 110 62, 320 55, 041 66, 970 48, 657 55, 111	871, 496 850, 084 869, 823 910, 437 930, 290 959, 590

¹ Includes a small tonnage of foreign slab zinc further refined into high-grade metal in the United States

TABLE 11.—Distilled and electrolytic zinc, primary and secondary, produced in the United States, 1943-47 (average) and 1948-52, in short tons

CLASSIFIED ACCORDING TO METHOD OF REDUCTION

	Electro- lytic pri- mary		Redistilled	- 1	
Year		Distilled	At primary smelters	At second- ary smelt- ers	Total
1943-47 (average)	298, 806 312, 477 326, 152 342, 085 336, 087 351, 106	522, 580 475, 287 488, 630 501, 382 545, 546 553, 373	22, 153 28, 070 22, 782 28, 411 16, 251 18, 861	27, 957 34, 250 32, 259 38, 559 32, 406 36, 250	871 496 850, 084 869, 823 910, 437 930, 290 959, 590

CLASSIFIED ACCORDING TO GRADE

	Grade A		Creade D	Grades C and D		C1-7	
Year	Special High Grade (99.99% Zn)	Regular High Grade (Ordinary)	Grade B (Interme- diate)	Brass Special	Selected	Grade E (Prime Western)	Total
1943–47 (average) 1948 1949 1950 1951 1952 1952	248, 016 248, 346 230, 576 271, 678 281, 571 295, 801	223, 554 196, 482 206, 651 192, 075 175, 499 182, 125	47, 368 38, 892 21, 513 21, 571 20, 734 17, 903	69, 723 45, 946 56, 388 46, 730 60, 511 48, 817	17, 750 4, 723 2, 565 4, 021 13, 494 13, 608	265, 085 315, 695 352, 130 374, 362 378, 481 401, 336	871, 496 850, 084 869, 823 910, 437 930, 290 959, 590

¹ For total production of secondary zinc see chapter on Secondary Metals—Nonferrous.

TABLE 12.—Primary slab zinc produced in the United States, by States where smelted, 1948-47 (average) and 1948-52, in short tons

37	Arkan-				Oblo	Pennsyl-	Texasand		'otal
Year	Sas	Idaho	Illinois	Montana	Okla- homa	vania	West Virginia	Short tons	Value
1943–47 (average) 1948 1949 1950 1951 1952	26, 465 15, 586 17, 116 20, 688 21, 776 21, 644	37, 487 42, 064 41, 854 53, 922 54, 468 54, 340	143, 828 93, 229 86, 823 108, 301 108, 544 115, 331	205, 068 207, 717 216, 578 216, 104 208, 482 214, 980	103, 609 137, 844 157, 650 145, 117 161, 247 161, 242	199, 483 171, 276 156, 920 162, 539 189, 177 193, 811	105, 446 120, 048 137, 841 136, 796 137, 939 143, 131	821, 386 787, 764 814, 782 843, 467 881, 633 904, 479	\$148, 925, 111 209, 860, 330 202, 391, 849 240, 050, 708 321, 619, 718 300, 829, 715

¹ Includes Missouri, 1943-44 and 1947-52.

In 1952 Montana was again the largest producer of primary slab zinc, and Pennsylvania and Oklahoma were, respectively, second and third. All slab zinc produced in Montana and Idaho was produced electrolytically, that produced in Illinois and Texas was in part produced electrolytically and in part by distillation, but all of that produced in the other States was wholly by distillation.

BYPRODUCT SULFURIC ACID

Sulfuric acid is made from sulfur dioxide gases produced in roasting zinc-blende (sphalerite) concentrate at all zinc smelters where there is enough demand for sulfuric acid to warrant the plant investment and operation. At several such plants large quantities of elemental sulfur are also burned to increase acid-making capacity. The production of sulfuric acid at such plants from 1948 through 1952 is shown in table 13.

TABLE 13.—Sulfuric acid (basis, 100 percent) made at zinc-blende roasting plants in the United States, 1948-52

		om zinc ide ¹		m native fur	Total ¹			
Year						Value ³		
	Short tons	ons Value ² Short tons	Value ²	Short tons	Total	Average per ton		
1948	529, 478 476, 932 609, 571 635, 948 664, 714	\$7, 478, 271 7, 276, 481 8, 829, 236 10, 218, 400 11, 031, 494	233, 099 130, 592 243, 743 261, 106 224, 671	\$3, 292, 261 1, 992, 423 3, 530, 464 4, 195, 451 3, 728, 613	762, 577 607, 524 853, 314 897, 054 889, 385	\$10, 770, 532 9, 268, 904 12, 359, 700 14, 413, 851 14, 760, 107	\$10. 97 11. 85 11. 25 12. 48 12. 89	

¹ Includes acid from foreign blende.

² At average of sales of 60° B, acid.

ZINC DUST

Production of zinc dust in 1952 was 25,100 tons, or 21 percent less than in 1951. The zinc dust reported here is restricted to commercial grades that comply with close specifications as to percentage of unoxidized metal, evenness of grading, and fineness of particles and hence does not include zinc powder and blue powder. The zinc content of the dust produced in 1952 ranged from 94.95 to 99.73 percent and averaged 97.45 percent. Shipments of zinc dust totaled 24,198 tons, of which 588 tons was for foreign consignees. Producers' stocks of zinc dust almost doubled, going from 737 tons at the beginning of the year to 1,432 tons at the end of 1952.

The average price of zinc dust shipped to domestic consumers in 1952 was 19.48 cents a pound, compared with 21.2 cents in 1951. The raw materials used to manufacture zinc dust are reviewed in the Secondary Metals—Nonferrous chapter of this volume. Most of the production is from zinc scrap (principally galvanizers' dross), but some is recovered from zinc ore, slab zinc, and as a byproduct of zinc refining.

ZINC PIGMENTS AND SALTS

The principal zinc pigments are zinc oxide and lithopone and the principal salts the chloride and sulfate. These products are manufactured from various zinc-bearing materials, including ore, metal, scrap,

and residues. In 1952 the production of lead and zinc pigments and zinc salts continued to decline, and the shipments of these products decreased from the 1951 level by the following percentages—zinc oxide, 4 percent; lithopone, 40 percent; zinc chloride, 14 percent; and zinc sulfate, 17 percent. Details of the production of zinc pigments and salts are given in the Lead and Zinc Pigments and Zinc Salts chapter of this volume.

CONSUMPTION AND USES

According to reports from approximately 750 plants, 853,000 tons of slab zinc was put into process in 1952, or 9 percent less than in 1951. The decrease was attributed to the steel strike (June 2 to July 25), which curtailed supplies of steel necessary to manufacture steel products for galvanizing and other products that use zinc die castings. Receipts of slab zinc at consumers' plants were 895,000 tons.

Galvanizing was again the largest field of zinc use, consuming 44 percent of the total in 1952. The quantity so consumed was approximately 6 percent less than in 1951, the declines being largely in job galvanizing items. The manufacture of zinc-base alloys (largely die castings) used 237,000 tons of slab zinc or 20 percent less than the previous year, owing principally to a 19-percent reduction in automobile production in 1952. Consumption of slab zinc for the manufacture of brass products increased to 156,000 tons or 9 percent above the 1951 rate as greater supplies of copper were available for brassmaking. The low level of slab-zinc consumption relative to the total zinc used in brass products is explained by the fact that 185,000 tons of secondary zinc largely recovered from copper-base scrap is recovered in brass and bronze ingot at secondary smelters.

The quantity of slab zinc consumed for rolled-zinc products in 1952 was 20 percent less than in 1951. In addition to slab zinc, the rolling mills remelt and reroll the metallic scrap produced from their fabricating operations. The scrap so treated totaled 11,100 tons compared with 11,600 tons in 1951. Purchased zinc scrap in the form of zinc clippings, old zinc scrap, and engravers' plates, totaling 3,200 tons, was also melted and rolled in 1952 (3,800 tons in 1951). Production of rolled zinc from both slab zinc and purchased scrap was 53,500 tons, a decrease of 19 percent from the 1951 total. Inventories of rolled zinc were 2,000 tons at the end of 1952, or the same as at the end of 1951. In addition to shipments of 43,000 tons of rolled zinc in 1952, the rolling mills processed 21,800 tons of rolled zinc in manufacturing 11,200 tons of semifabricated and finished products.

TABLE 14.—Zinc dust 1 produced in the United States, 1943-47 (average) and 1948-52

	·	Val	ue			Value		
Year	Short tons	Total	Average per pound	1950		Total	Average per pound	
1943–47 (average) 1948 1949	27, 511 32, 217 22, 776	\$5, 906, 472 10, 051, 704 6, 195, 072	\$0. 107 . 156 . 136	1951	28, 922 31, 695 25, 113	\$9, 602, 104 13, 438, 680 9, 794, 070	\$0. 166 . 212 . 195	

¹ All produced by distillation.

TABLE 15.—Consumption of slab zinc in the United States, 1943-47 (average) and 1948-52, by industries, in short tons $^{\rm 1}$

						
Industry and product	1943-47 (average)	1948	1949	1950	1951	1952
Galvanizing: 2 Sheet and strip Wire and wire rope Tubes and pipe Fittings Other	44, 244 60, 871 11, 947 89, 238	120, 360 49, 906 81, 874 14, 037 104, 792	146, 923 39, 231 78, 030 11, 487 75, 209	188, 406 47, 317 91, 877 15, 948 98, 138	144, 329 51, 792 79, 221 21, 186 103, 751	145, 875 48, 645 82, 043 10, 366 90, 759
Total galvanizing	317, 492	370, 969	350, 880	441,686	400, 279	377, 688
Brass products: Sheet, strip, and plate Rod and wire Tube Castings and billets Copper-base ingots Other copper-base products	159, 415 58, 569 21, 670 10, 885 11, 826 2, 001	51, 813 32, 076 15, 890 4, 228 3, 546 1, 587	43, 157 23, 651 12, 816 2, 620 2, 701 589	68, 737 43, 413 17, 385 4, 170 4, 081 1, 587	67, 815 46, 056 15, 927 7, 098 5, 743 653	71, 706 49, 831 17, 057 7, 262 8, 223 1, 529
Total brass products	264, 366	109, 140	85, 534	139, 373	143, 292	155, 608
Zinc-base alloy: Die castings Alloy dies and rod Slush and sand castings	134, 946 8, 343 383	230, 995 3, 171 462	199, 665 2, 024 492	285, 022 2, 929 1, 576	282, 812 11, 135 2, 487	225, 877 9, 235 1, 577
Total zinc-base alloy Rolled zinc Zinc oxide	77, 144	234, 628 76, 672 15, 657	202, 181 55, 200 10, 292	289, 527 68, 444 18, 187	296, 434 64, 085 18, 223	236, 689 51, 318 17, 205
Other uses: Wet batteries Desilverizing lead Light-metal alloys Other 3	2, 158 1, 148	1, 368 2, 654 1, 125 5, 522	1, 359 2, 448 1, 060 2, 887	1, 527 2, 947 1, 356 4, 087	1, 749 2, 186 3, 132 4, 591	1, 396 2, 370 3, 266 7, 243
Total other uses	8, 918	10, 669	7,754	9, 917	11,658	14, 275
Total consumption 4		817, 735	711, 841	967, 134	933, 971	852, 783

1 Excludes some small consumers.

Includes zinc used in electrogalyanizing and electroplating, but excludes sherardizing.
 Includes zinc used in making zinc dust, bronze powder, alloys, chemicals, castings, and miscellaneous

uses not elsewhere mentioned.

4 Includes 3,141 tons of remelt zinc in 1948, 2,394 tons in 1949, 3,035 tons in 1950, 4,505 tons in 1951, and 4,144 tons in 1952.

TABLE 16.—Rolled zinc produced and quantity available for consumption in the United States, 1951-52

		1951	-		1952				
•		Value			Valt	lue			
	Short tons	Total	Average per pound	Short tons	Total	Average per pound			
Production: Sheet zinc not over 0.1 inch thick Boiler plate and sheets over 0.1 inch thick Strip and ribbon zinc ' Foil, rod, and wire Total rolled zinc. Imports Exports A vailable for consumption. Value of slab zinc (all grades). Value added by rolling	17, 535 2, 211 44, 713 1, 629 66, 088 149 4, 868 60, 774	\$10, 536, 341 1, 112, 648 21, 057, 114 1, 014, 227 33, 720, 330 2 84, 044 3, 126, 189	\$0.300 .252 .236 .311 .255 .282 .321 .182 .073	11, 906 1, 387 38, 750 1, 441 53, 484 47 3, 031 50, 688	\$7, 210, 737 705, 111 16, 728, 827 905, 477 25, 550, 152 23, 557 1, 935, 410	\$0.303 .254 .216 .314 .239 .251 .319 .166 .073			

1 Figures represent net production. In addition 11,627 tons of strip and ribbon zinc in 1951 and 11,107 tons in 1952 were rerolled from scrap originating in fabricating plants operated in connection with zinc rolling mills.

2 Revised figure.

TABLE 17.—Consumption of slab zinc in the United States in 1952, by grade and industry, in short tons

Industry	Special High Grade	Regular High Grade	Inter- mediate	Brass Special	Selected	Prime Western	Remelt	Total
Galvanizers	13, 179 37, 523 234, 806 5, 522 4, 516	22,877 82,706 787 23,402	10, 503 1, 976 83 6, 479	11, 067 11, 348 51 13, 462 8, 118 838	976 1, 324 30 325	316, 527 20, 213 390 2, 128 9, 087 6, 293	2, 559 518 542 525	377, 688 155, 608 236, 689 51, 318 17, 205 14, 275
Total	295, 546	131, 258	19,658	44, 884	2, 655	354, 638	4, 144	852, 783

Table 17 shows the six commercial grades of refined slab zinc and purchased remelt zinc consumed by the various industries in 1952. Of the 853,000 tons of domestic and foreign zinc consumed, 42 percent was Prime Western, 35 percent Special High Grade, 15 percent Regular High Grade, and 5 percent Brass Special compared with 41, 38, 14, and 4 percent, respectively, in 1951. All grades were used for galvanizing, Prime Western being used principally in the hot-dip process and the higher grades being used chiefly in electrogalvanizing. Rigid specifications in brass manufacture dictate the use of higher grade metal, 77 percent of the total used in 1952 being Special High Grade and Regular High Grade.

CONSUMPTION OF SLAB ZINC BY GEOGRAPHIC AREAS 3

Data on slab-zinc consumption, broken down by States and groups of States, have been available since 1940 and have been an annual feature of the Minerals Yearbook since 1948. During the 13 years, 1940-52, substantial shifts in the geography of consumption and the use pattern are observable as industry moved to a war-production base in 1940-41, reconverted to peacetime consumption in 1945-46, and again prepared for emergencies in 1950-52. The distribution of slab-zinc consumption by geographic divisions and States, both total

and by major use categories, is shown in tables 18-23. Consumption of Slab Zinc for All Uses.—From 1940-52 Illinois ranked first among the 42 zinc-consuming States and the District of Columbia, with an annual average of 140,000 tons. In 1945-51 Ohio was in second place but achieved first place in 1952. sylvania has held either second or third place since 1940, and Connecticut, the second largest consuming State during World War II owing to the large consumption of zinc in the brass plants of the State, has been in fourth place since 1945. Between 1945 and 1952 Indiana was the fifth largest consumer, and Michigan or New York held either sixth or seventh place, but in 1952 Michigan attained fifth place. greatest concentration of slab-zinc consumption by geographic divisions is in the region comprising Illinois, Indiana, Michigan, Ohio, and Wisconsin. This area, which has consistently ranked first since considerably before 1940, uses nearly half of the total slab zinc consumed in the United States. The region of least consumption is the Mountain States, including Arizona, Colorado, Idaho, Nevada, New Mexico, and Utah, which consumed about 0.3 percent of the total.

³ This section is based partly on a detailed study by Ransome, Alfred L., Consumption of Slab Zinc in the United States by Industries, Grades, and Geographic Divisions, 1940–45: Bureau of Mines Inf. Circ. 7450, 1948, 30 pp.

TABLE 18.—Consumption of slab zinc in the United States, 1945-49 (average) and 1950-52, by geographic divisions and States $^{\rm 1}$

	1945 (aver	-49	195	60	198	51	198	52
Geographic division and State	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short	Rank
I. New England: Connecticut	66, 912 10, 964 253 50 209	4 15 29 34 31	70, 115 9, 507 97 (2) (2)	4 16 31 36 28	69, 926 9, 745 95 (2)	4 15 35 37 28	65, 350 9, 872 (2) (2) (2) (2)	4 15 35 39 28
Total	78, 388	3	80, 014	3	80, 348	3	75, 984	3
II, Middle Atlantic: New Jersey New York Pennsylvania	20, 178 44, 310 119, 568	12 6 3	23, 231 55, 070 139, 400	12 7 3	21, 517 57, 809 137, 056	12 6 3	22, 975 52, 738 126, 083	12 7 3
Total	184, 056	2	217, 701	2	216, 382	2	201, 796	2
III. South Atlantic: Delaware. District of Columbia. Florida. Georgia. Maryland. North Carolina. South Carolina Virginia. West Virginia.	51 45 2, 196 23, 130 47 388 23, 780	33 36 19 10 35 27 9	(2) 2, 164 36, 649 (2) 207 29, 736	34 21 10 32 30 11	(2) (2) (2) 1, 689 28, 878 273 25, 616	31 36 33 23 9 	(2) (2) (2) 1, 479 29, 077 (2) (2) 373 23, 655	32 37 33 24 9 38 36 31
Total	49, 637	4	68,825	4	57, 032	4	55, 350	4
IV. East North Central: Illinois. Indiana. Michigan. Ohio. Wisconsin. Total.	144, 710 61, 708 41, 166 126, 970 14, 346 388, 900	1 5 7 2 14 1	183, 957 67, 449 57, 017 152, 008 13, 752 474, 183	1 5 6 2 14	167, 937 58, 191 55, 864 158, 685 13, 951 454, 628	1 5 7 2 14 1	142, 516 53, 444 53, 491 143, 350 12, 057 404, 858	2 6 5 1 14 14
V. East South Central: Alabama. Kentucky. Tennessee. Total.	20, 660 8, 027 1, 208 29, 895	11 16 23 5	37, 061 (2) (2) (2) 48, 808	9 15 23 5	25, 502 (2) (2) (2) 35, 206	11 16 25 6	23, 241 (2) (2) (2) 32, 600	11 16 25 6
VI. West North Central:	6, 617 81 3, 225 16, 100 1, 347 27, 370	17 32 18 13 22 6	4,680 (2) 4,250 16,500 (2) 27,122	17 33 18 13 22 7	4, 480 (2) 3, 798 19, 472 (2) 29, 517	18 30 19 13 24 7	4, 632 (2) (2) 14, 734 (2) 24, 208	18 30 19 13 23 7
VII. West South Central: Arkansas Louisiana Oklahoma Texas Total	216 822 1, 951 2, 989	30 25 20 8	722 1, 261 3, 289 5, 272	26 24 19	(2) (2) (2) 4, 959 7, 885	39 27 22 17	(2) (2) 1, 921 5, 230 8, 075	41 26 22 17 8
VIII. Mountain: Arizona. Colorado	4 1, 548 257	38 21 28	2, 474 (²)	20 27	(2) (2) (2)	34 21 29	(2) (2) (2) (2) (2)	34 20 29 42
Utah Total	38 1,847	37 9	$\frac{(2)}{3,160}$	35	$\frac{(2)}{3,038}$	$\frac{38}{9}$	$\frac{(2)}{2,880}$	40 9
IX, Pacific California Oregon Washington	25, 745 397 1, 047	8 26 24	37, 525 244 1, 245	8 29 25	41, 898 1, 051 2, 481	8 26 20	39, 955 767 2, 166	8 27 21
TotalGrand total 1	$\frac{27,189}{790,271}$	7	39, 014 964, 099	6	45, 430 929, 466	5	42, 888 848, 639	5

 $^{^1}$ Excludes remelt zinc and some small consumers of slab zinc. 2 Nominal quantity consumed included with subtotal for division, as less than 3 companies reported.

TABLE 19.—Consumption of slab zinc for galvanizing in the United States, 1945-49 (average) and 1950-52, by States 1

1	Geo-	1945–49 (average)		1950) -	1951	l	1952	
State	graphic division	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short tons	Rank
Alabama. California. Colorado. Colorado. Connecticut. Florida. Georgia. Illinois. Indiana. Iowa. Kentucky. Louisiana Masine. Maryland Massachusetts. Michigan Minnesota. Missouri. Nebraska Nissouri. Nebraska New Hampshire. New Jersey. New York. Ohio. Oklahoma. Oregon. Pemnsylvania. Rhode Island. South Carolina. Tennessee. Texas. Utah. Virginia. West Virginia. Wisconsin.	VXIII III IVV VIII III VVIII II	20, 492 14, 231 1, 499 3, 145 2, 190 41, 217 25, 915 8, 008 215 251 21, 273 3, 726 3, 726 3, 726 3, 224 3, 960 237 23 5, 669 40, 103 8	7 8 8 200 16 32 18 3 3 4 4 30 9 9 8 25 6 6 10 14 11 12 12 29 33 32 11 12 12 12 12 13 22 15 16 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	36, 520 21, 208 (2) 3, 003 55, 276 35, 375 36, 136 5, 460 4, 446 4, 250 4, 087 (2) 	4 8 8 199 177	24, 827 23, 756 (2) 46, 510 31, 570 29, 446, 510 31, 570 29, 486 5, 530 6, 481 (2) 6, 720 (2) 5, 519 6, 619 79, 149 (2) 238 73, 559 (2) (2) (2) (2) (3) (4) (4) (2) (2) (2) (3) (4) (4) (4) (4) (5) (6) (7) (7) (8) (9) (9) (9) (10) (10) (10) (10) (10) (10) (10) (10	6. 8 8 199 177 288 222 33 4 4 277 99 24 431 15 133 112 216 100 229 25 25 23 15 7 18	22, 495 22, 516 (2) 2, 936 (2) 46, 633 30, 865 7, 852 (2) 28, 656 4, 923 (3) 2, 939 3, 598 (2) 77, 967 (2) 238 65, 747 (2) 736 4, 413	8 8 7 7 199 177 222 3 3 4 4 288 9 9 233 311 5 5 6 6 1 1 1 1 1 2 1 1 6 6 1 5 6 6 2 2 2 4 1 4 4 6 6 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1
Total 1		345, 475		⁸ 439, 368		³ 397, 790		³ 375, 129	

¹ Excludes remelt zinc. Includes zinc used in electrogalvanizing and electroplating, but excludes sherardizing.
2 Quantity withheld to avoid disclosure of individual company operations.
3 Includes States not individually shown (footnote reference 2).

Consumption of Slab Zinc for Galvanizing.—The iron and steel industry is the largest consumer of slab zinc, using it to galvanize or rustproof steel sheets, wire, tube, pipe, cable, chain, bolts, railway-signal equipment, building and poleline hardware, and a multitude of other items. The principal iron- and steel-producing States are thus also the principal consumers of zinc for galvanizing. From 1940 to 1943 Pennsylvania ranked first among the 34 States that consumed zinc for this purpose. In 1944 Ohio displaced Pennsylvania and has retained first place through 1952. Ohio, Pennsylvania, Illinois, and Indiana used 62 percent of the average annual domestic consumption of slab zinc for galvanizing from 1940 to 1945. In 1946 total zinc used for galvanizing in these States rose to 65 percent, but this declined to 63 percent in 1947 and 1948, 61 percent in 1949, 59 percent in 1950, 58 percent in 1951, and 59 percent in 1952.

Consumption of Slab Zinc for Brass Products.—Slab zinc consumed in brass products during 1952 increased 9 percent to 155,100 tons, a quantity only slightly higher than the 1946-52 annual average of 127,200 tons and only about half of the average annual of 294,800 tons The concenof zinc used for brass making in the war years 1940-45. tration of brass-making facilities in the Connecticut Valley has placed Connecticut first among the States consuming slab zinc for that use,

a position held for many years before the compilation of detailed statistics and one that it has continued to hold by a large margin from 1940 through 1952. Owing to changing use patterns and the construction of new plant facilities, there have been some changes in the rank of other leading States. In 1940-47 Michigan was in second place and Illinois ranked third. Beginning in 1948 and continuing through 1952 Illinois ranked second and Michigan was in third place. New York, which held third place from 1940 to 1942, dropped to seventh place in 1943, sixth place in 1944, 1945, and 1947, fifth place in 1950-51, and in all other years has been fourth. Other leading States are Ohio, Wisconsin, Pennsylvania, and Indiana.

TABLE 20.—Consumption of slab zinc for brass products in the United States. 1945-49 (average) and 1950-52, by States 1

State	Geo- graphic	1945- (avera		1950	0	195	1	195	2
Diate	division	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short	Rank
Alabama California Colorado Connecticut Delaware District of Columbia Florida	III	139 947 44 57,827	14 12 16 1 1 15 30	488 1,311 (2) 59,837	13 11 14 1	(2) 1, 927 (2) 60, 055 (2) (2)	12 11 17 1 15 18	(2) 3, 509 (2) 56, 704 (2) (2)	12 11 15 1 14 22
Georgia	III IV IV VI	16, 554 3, 148 2	24 2 10 29	(2) 15, 978 3, 183	21 2 9	(2) 16, 460 4, 232 (2)	26 2 9 28	(2) 19, 173 7, 232	25 2 7
Kansas Kentucky Maine Maryland Massachusetts Michigan	пі	38 19 3 1,799 3,392 14,597	19 20 27 11 9	(2) (2) 513 2, 785 15, 084	19 24 12 10 3	(2) (2) (2) (2) (2) 2, 973 14, 649	23 16 29 13 10	(2) (2) (2) (2) (2) 3,724 17,869	18 16 30 13 10 3
Minnesota Missouri Nebraska.	VI	177 3	13 28	(2)	15	43	19	(²) 80	27 19
New Hampshire New Jersey New York Ohio Oregon Pennsylvania Rhode Island South Carolina	I II IV IX II II	17 6, 514 10, 819 10, 638 6 6, 556	21 8 4 5 25 7 23 26	(2) 4,077 9,627 11,016 (2) 7,155 (2)	22 8 5 4 18 7 23	(2) 5, 666 9, 390 10, 831 (2) 6, 483 (2)	21 8 5 4 25 7 24	(2) 6, 721 11, 100 10, 339 (2) (2) (2)	24 8 4 5 23 6 29
Tennessee Texas Utah Virginia Washington West Virginia Wisconsin	V VIII VIII IX III IV	15 1 39 43	22 31 18 17	(2) (2) 8 	17 25 20 6	(2) (2) (2) (2) (2) (2) (2) 7, 461	20 22 30 27 14 6	(2) (2) (2) (2) (2) (2) (2) 6, 519	28 20 31 26 21 17 9
Total 1		142, 422		³ 138, 739		³ 142, 360		⁸ 155, 090	

1 Excludes remelt zinc.

Quantity withheld to avoid disclosure of individual company operations.
 Includes States not individually shown (footnote reference 2).

Consumption of Slab Zinc for Zinc-Base Alloys.—The automobile industry is the largest user of zinc-base alloys, principally for die-cast parts and assemblies, such as fuel pumps, carburetors, radiator grilles, windshield-wiper motors, and much of the interior and exterior hardware. Thus the region embracing Ohio, Michigan, and Wisconsin, in which the automobile and automobile accessory industries are centered, is the area of greatest slab-zinc consumption for zincbase alloys. In 1952 this region consumed approximately 70 percent of the slab zinc entering zinc-base alloys.

TABLE 21.—Consumption of slab zinc for zinc-base alloys in the United States, 1945-49 (average) and 1950-52, by States ¹

	1			1		T T				
State	Geo- graphic	1945– (a vera		198	50	1951	L .	1955	1952	
State	division	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short tons	Rank	
Alabama California Colorado Connecticut Florida Illinois Indiana Kansas Kentucky Maine Maryland Massachusetts Michigan Missouri New Jersey New York North Carolina Ohio Oklahoma Oregon Pennsylvania Texas Virginia	VI H HI VII VII VII VII H	10, 154 4, 490 47, 723 12, 855 29 58 10 22, 716 11, 702 6, 756 23, 169 35, 766 13	8 	(2) 14, 717 5, 535 75, 739 16, 677 (2) 37, 302 11, 944 12, 694 33, 356 52, 051 25, 660 (2) (2)	12 7 	15, 693 (2) 5, 044 	16 16 10 18 14 15 17 4 7 9 3 2 12 5 13 18	13, 411 (2) 4, 400 48, 944 8, 840 (2) (2) 30, 197 10, 478 9, 622 29, 990 (2) 54, 623 (2) 20, 838 (3) (2)	16 16 10 2 9 144 15 5 12 17 7 8 4 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Washington Wisconsin	IX IV	2, 759	17 11	(2)	11	3, 335	11	(2)	11	
Total 1		198, 779		³ 289, 511		⁸ 295, 421		³ 236, 147		

¹ Excludes remelt zinc

3 Includes States not individually shown (footnote reference 2).

Consumption of Slab Zinc for Rolled Zinc.—Slab zinc consumed for rolled zinc continued in essentially the same geographic pattern from 1940 through 1952, but the quantity fluctuated widely, ranging from 49,000 tons in 1943 to 98,000 tons in 1945. During the war years 1940–45 the average annual consumption of slab zinc in this use was 70,000 tons; in the postwar years 1946–52 the average was 68,000 tons; and in 1952 it was 51,000 tons. Illinois and Indiana ranked first and second, respectively, except in 1951 and 1952, when Pennsylvania took second place and Indiana dropped to third place.

TABLE 22.—Consumption of slab zinc for rolled zinc in the United States, 1945-49 (average) and 1950-52, by States

State	Geo-	1945–49 (average)		1950		1951	l	1952	
biate	graphic division	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short tons	Rank
Connecticut Illinois. Indiana Iowa Massachusetts New York Pennsylvania West Virginia Total	III III III IV IV	1, 236 37, 698 18, 858 6, 519 1, 666 4, 299 6, 629 1, 662 78, 507	8 1 2 4 7 5 3 6	(1) 35, 134 (1) (1) (1) (1) (1) (1) (1) (1)	6 1 2 5 7 4 3 8	(1) 31, 471 (1) (1) (1) (1) (1) (1) (1)	6 1 3 5 7 4 2 8	(1) 25, 353 (1) (1) (1) (1) (1) (1) (1)	7 1 3 5 6 4 2 8

¹ Quantity Withheld to avoid disclosure of individual company operations.

² Quantities withheld to avoid disclosure of individual company operations.
3 Includes States not individually shown (footnote reference 2).

Consumption of Slab Zinc for Zinc Oxide.—Because only a small number of companies consume slab zinc in the manufacture of zinc oxide and because individual company figures by State may not be disclosed, slab zinc so used is included with the section on consumption of slab zinc for other uses.

Consumption of Slab Zinc for Other Uses.—The distribution, by States, of the quantity of slab zinc consumed for such purposes as slush castings, wet batteries, desilverizing lead, light-metal alloys (other than zinc-base alloys), zinc dust, chemicals, bronze powder, and zinc oxide is shown in table 23. The change in the total of such uses is largely due to the inclusion of zinc oxide with this group.

TABLE 23.—Consumption of slab zinc for other uses in the United States, 1945-49 (average) and 1950-52, by States 1

QL-1-	Geo-	1945— (avera		1950)	1951	1	1952	2
State	graphic division	Short tons	Rank	Short tons	Rank	Short tons	Rank	Short tons	Rank
Alabama. Arizona. Arkansas. California. Colorade. Comecticut. Idabo. Illinois. Indiana. Iowa.	V VIII VIII IX VIII VIIII IV IV VI	30 4 412 6 213 257 71 147 8	16 24 5 23 10 8 14 11 22	289 (3) (3) (3) (3) (3) (3)	10 9 4 12 14 15	(3) (3) (5) 522 (3) (3) (8) 276 (3) (3)	27 17 26 5 	(3) (3) (5) (3) (3) (3) (2,413 (3) (3)	25 16 26 7 29 15 10 2 14 8
Kansas Kentucky Louisiana	vi vi vi	15 1	19 <u>26</u>	(3)	16 	(3)	21 25	(3)	27 30
Maine	I III IV VI VI VIII VIII	21 128 1 260	17 12 27 7	11 (³) 412	17 13 	(3) 9 401 (3) 455	20 23 11 28 7	(3) (3) (3) (3) (578 (3) (3)	20 18 13 28 6 31
Nebraska Nevada New Hampshire New Jersey New York Ohio Oklahoma	VIII II II IV VII IX	1, 106 10 1, 838 400 463	21 2 6 4	1, 914 516 312	2 5 8	1,884 (3) 384 (3)	2 4 12 22	1, 278 (3) 421 (3) (3)	3 5 11 24 21
Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wissonsin	VIII VIII VIII VIII IIX III IIV	3, 054 246 12 4 45 81 19	1 9 20 25 15 13 18	2,809 (3) (3) (3) (3) (3) (3) (3)	1 7 18 19 11 	3, 240 (3) (3) (3) (3) (3) (3) (3) (3)	1 10 19 24 18 8 15	20, 770 (3) (3) (3) (3) (3) (3) (3)	1 9 19 22 17 12
Total 1		8,852		4 9, 850		4 11, 587		4 30, 955	

¹ Excludes remelt zinc.

STOCKS

National Stockpile.—On February 15, 1953, the Munitions Board made its semiannual Stockpile Report to the Congress. The report noted that stocks of zinc and of 37 other materials in the stockpile of critical and strategic materials had reached 60 percent or more of the total objective in 1952 and that, although further acquisitions would be made, under new and existing contracts such acquisitions would

² Includes slab zinc used for zinc oxide.
3 Quantity withheld to avoid disclosure of individual company operations.
4 Includes States not individually shown (footnote reference 3).

1145ZINC

be at a reduced rate to minimize the effect when purchasing for the

stockpile ceases.

Producers' Stocks.—Inventories of slab zinc at producers' plants at the end of 1952 totaled 85,000 tons, or almost 300 percent more than at the end of 1951. During the war years, 1940-45, the average yearend stocks on December 31 were 132,000 tons, whereas comparable stocks for the postwar years, 1946–52, averaged 68,000 tons. From 1940 to 1952 such year-end stocks varied from 9,000 tons in 1950 to 256,000 tons in 1945 and averaged 98,000 tons.

TABLE 24.—Stocks of zinc at zinc-reduction plants in the United States at end of year, 1948-52, in short tons

	1948	1949	1950	1951	1952
At primary reduction plantsAt secondary distilling plants	19, 179 1, 669	90, 710 3, 511	7, 948 936	1 21, 343 637	81, 344 3, 677
Total	20, 848	94, 221	8, 884	1 21, 980	85, 021

¹ Revised figure.

Consumers' Stocks.—On December 31, 1952, consumers' stocks of slab zinc were 92,000 tons, an increase of 83 percent from the begin-This stock together with 8,000 tons of slab zinc in ning of the year. transit to consumers' plants was approximately equal to 6 weeks' consumption at the average rate established in 1952.

TABLE 25.—Consumers' stocks of slab zinc at plants at the beginning and end of 1952, by industries, in short tons

Date	Galva- nizers	Brass mills ¹	Die casters 2	Zinc- rolling mills	Oxide plants	Others	Total
Dec. 31, 1951	³ 20, 551	⁸ 14, 859	³ 10, 181	3, 538	320	⁸ 1, 135	^{3 4} 50, 584
Dec. 31, 1952	46, 308	18, 482	20, 566	4, 838	353	1, 855	⁴ 92, 402

PRICES

The price of Prime Western grade slab zinc was at the ceiling price of 19.5 cents per pound at East St. Louis from the beginning of the year to June 2, 1952, when increased supplies from domestic and foreign sources combined with lessened demand, resulting from the steel strike, forced price reductions in all grades. Prime Western grade was reduced to 17.5 cents per pound. Subsequent price drops to 16 cents on June 5, 15 cents on June 18, and 13.5 cents on August 6, stimulated the market somewhat, and the price rose to 13.75 cents on August 11, 14 cents on August 12, and 14.5 cents on September 12. On September 18 there was a decline to 14 cents and on September 22 to 13.5 cents. The price ranged between 13.5 cents and 12.5 cents a pound until October 27. On that date the market price at East St. Louis was established at 12.5 cents where it remained to the end of the year.

¹ Includes brass mills, brass ingot makers, and brass foundries.
2 Includes producers of zinc-base die castings, zinc-alloy dies, and zinc-alloy rods.
3 Revised figure.

⁴ Stocks on Dec. 31, 1951 and 1952, exclude 479 tons (revised figure) and 508 tons, respectively, of remelt spelter.

TABLE 26.—Price of zinc concentrates and zinc. 1948-52

	1948	1949	1950	1951	1952
Joplin 60-percent zinc concentrates: Price per short ton	86. 37 13. 58 14. 21 14. 38 112 113 106 108	72. 28 12. 15 12. 86 14. 41 101 96 93 108	87. 39 13. 88 14. 60 14. 89 115 83 103 104	120.00 17.99 18.75 21.46 148 109 117 139	116. 10 16. 21 17. 03 18. 71 134 103 117 131
Nonferrous metals 3All commodities 3	106 104	99 99	104 103	124 115	124 112

¹ Metal Statistics, 1953

TABLE 27.—Average monthly quoted prices of 60-percent zinc concentrates at Joplin, and of common zinc (prompt delivery or spot) St. Louis and London 1951-52 ¹

		1951		1952			
Month	60-percent zinc con- centrates		inc (cents ound)	60-percent zinc con- centrates	Metallic zinc (cents per pound)		
	in the Jop- lin region (dollars per ton)	St. Louis	London 2	in the Jop- lin region (dollars per ton)	St. Louis	London 2	
January Pebruary March April May June July August September October November December	115. 00 115. 00 115. 00 115. 00 115. 00 115. 00 115. 00 115. 00 115. 00 134. 23 135. 00	17. 50 17. 50 17. 50 17. 50 17. 50 17. 50 17. 50 17. 50 17. 50 19. 42 19. 50	18. 88 18. 88 20. 00 20. 00 20. 00 22. 18 23. 74 23. 74 23. 74 23. 75 23. 71	135. 00 135. 00 135. 00 135. 00 135. 00 109. 20 100. 00 95. 96 94. 42 91. 07 84. 00	19. 50 19. 50 19. 50 19. 50 19. 50 15. 74 15. 00 14. 07 14. 00 13. 25 12. 50	23. 75 23. 75 23. 75 22. 78 22. 78 17. 45 16. 25 15. 40 15. 38 14. 78 13. 75	
Average for year	\$ 120.00	17. 99	23. 71	116. 10	16. 21	13. 75	

¹ Joplin: Metal Statistics, 1953, p. 607. St. Louis: Metal Statistics, 1953, p. 601. London: E&MJ Metal

Represents average price realized on total shipments for year.

The Office of Price Stabilization ceiling price of 19.5 cents for Prime Western grade remained in effect throughout the year. prices were established for zinc on January 26, 1951, at the highest price (for each seller) at which sales were made between December 19, 1950, and January 25, 1951; and thus a number of ceiling prices were The bulk of Prime Western sales were at 17.5 cents, howin effect. ever, and that amount was the commonly quoted ceiling price at East St. Louis until October 2, 1951, when the Office of Price Stabilization authorized an increase of 2 cents a pound, which brought the East St. Louis ceiling price to 19.5 cents for Prime Western grade, with other grades selling at ceilings somewhat higher.

² E&MJ Metal and Mineral Markets English quotations converted into American money on basis of average rates of exchange recorded by Federal Reserve Board.

Based upon price indexes of U. S. Department of Labor.

and Mineral Markets.

² Conversion of English quotations into American money based on average rates of exchange recorded by Federal Reserve Board.

ZINC 1147

Trading in zinc futures on the New York Commodity Exchange, which was suspended July 27, 1951, was resumed on June 23, 1952; and similar trading on the London Metal Exchange was scheduled

for resumption on January 3, 1953.

The official London price was £190 per long ton (23.75 cents per pound) until May 22 when the British Ministry of Materials set the price at £166 (20.73 cents). Subsequent declines in June, August, September, and October brought the price to £110 (13.75 cents) on October 29, where it remained for the rest of the year. Conversions of English quotations to United States currency are based on Federal Reserve Board rates of exchange and ranged from \$2.78 to \$2.80 7/8 per pound sterling. Prices at Antwerp and other European markets fluctuated from a high of about 30 cents in the first quarter of 1952 to as little as 9½ cents a pound in the fourth quarter.

TABLE 28.—Average price received by producers of zinc, 1948-52, by grades, in cents per pound

Grade	1948	1949	1950	1951	1952
Grade A: Special High Grade Regular High Grade Grade B: Intermediate Grades C and D: Brass Special Selected Grade E: Prime Western All grades Prime Western; spot quotation at St. Louis 1	13. 72	12. 76	14. 30	18. 79	17. 04
	13. 40	12. 29	14. 16	18. 48	16. 42
	13. 49	12. 94	14. 69	18. 57	17. 76
	13. 33	12. 75	14. 47	18. 20	17. 07
	13. 05	12. 87	17. 37	18. 00	16. 73
	12. 93	12. 18	14. 11	17. 92	16. 33
	13. 32	12. 42	14. 23	18. 24	16. 63
	13. 58	12. 15	13. 88	17. 99	16. 21

¹ Metal Statistics, 1953, p. 601.

FOREIGN TRADE 4

Imports.—Total imports (general imports) of zinc in ores and concentrates in 1952 increased 48 percent above the 1951 figure to 448,700 tons, a quantity second only to the 539,000 tons imported in 1943. Of the total, 45 percent came from Mexico, 33 percent from Canada, and 10 percent from Peru. The remaining 12 percent was chiefly from Spain, Bolivia, Guatemala, Union of South Africa, Yugoslavia, and Australia.

Total imports of slab zinc increased 31 percent above the 1951 level in 1952. Of the 115,200 tons imported, Canada supplied 61 percent, Mexico 16 percent, West Germany 6 percent, Belgium-Luxembourg 6 percent, and Italy 4 percent. Of the remaining 7 percent the principal supplying countries were the Netherlands,

Yugoslavia, Peru, and Japan.

Exports.—Exports of zinc in zinc ore and concentrates and as metal in pig, slab, sheet, scrap, and dust totaled 66,300 tons valued at \$28,651,315 in 1952 compared with 51,500 tons and \$22,018,441 in 1951. In addition to the items listed in tables 31 and 32, considerable zinc is exported each year in brass, pigments, chemicals, and as coatings on galvanized steel. Export data on zinc pigments and chemicals are given in the Lead and Zinc Pigments and Zinc Salts chapter of this volume.

⁴ Figures on imports and exports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.

The 57,700 tons of slab zinc exported in 1952 was an increase of 58 percent above the 1951 total of 36,500 tons. The United Kingdom, France, Brazil, and India were the chief importers, receiving 70, 12, 7, and 4 percent, respectively, of the total. Table 32 contains details of zinc slab and sheets exported.

TABLE 29.—Zinc imported into the United States, in ores, blocks, pigs, or slabs, by countries, 1950-52, in short tons 1

[U. S. Department of Commerce]

Country	1950	1951	1952
Ores (zinc content):	·		
Argentina	. 8	5, 546	603
Australia	2, 366	2, 825	2, 398
Bolivia	3, 810	7,849	14, 418
Canada	77, 525	2 96, 568	148, 970
Chile	40	1,088	33
Guatemala	473	6, 539	9, 989
Japan			1, 389
Mexico	155, 283	² 143, 769	199, 745
Peru	16, 946	29, 136	44, 401
Philippines	42	86	1,664
Spain	17, 738	4, 392	16, 647
Union of South Africa	3, 794	2,655	4, 917
Yugoslavia		2 1, 756	2, 512
Other countries	548	666	1, 013
Total ores	278, 573	² 302, 875	448, 699
Blocks, pigs, or slabs:			
Belgium-Luxembourg	3, 617	612	6, 854
Canada	108, 937	2 85, 066	69, 772
French Morocco		440	
Germany	1,637		3 7, 068
Italy	2,679		4,063
Japan			222
Mexico	26, 293	760	18, 686
Netherlands	2,005	254	3, 976
Norway	7, 939	882	110
Peru	1, 205		1,600
Poland-Danzig	358		
United Kingdom	555		
Yugoslavia	485		2, 788
Other countries	264	29	12
Total blocks, pigs, or slabs	155, 974	² 88, 043	115, 151

¹ Data include zinc imported for immediate consumption plus material entering country under bond.

Revised figure.
West Germany.

TABLE 30.—Zinc imported for consumption in the United States, 1948-52, by classes 1

[U.S. Department of Commerce]

Year	Ores (zinc content)		Blocks, pigs, slabs		Sheets		Old, dross, and skimmings ²		Zinc dust		Total
	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value	value ⁸
1948 1949 1950 1951 1952	109, 535 237, 564 4 197,995	24, 313, 625	125, 564 155, 332 4 88,043	38, 759, 435 4 31,109,279	32 211 149	92, 862 4 84,044	3,732 2,862 6,603	688, 176 284, 030	17 472 154	4,397 80,564 74,362	

¹ Excludes imports for manufacture in bond and export, which are classified as "imports for consumption" by the U. S. Department of Commerce.

² Includes dross and skimmings as follows: 1948—8,637 tons, \$873,099; 1949—2,668 tons, \$335,283; 1950—1,229 tons, \$186,748; 1951—6,457 \(^4\) tons, \$242,998; 1952—3,022 tons, \$390,245.

³ In addition, manufactures of zinc were imported as follows: 1948—\$16,056; 1949—\$2,583; 1950—\$142,369; 1951—\$51,700; 1952—\$11,719.

⁴ Revised figure.

TABLE 31.—Zinc ore and manufactures of zinc exported from the United States, 1948-52

[U. S. Department of Commerce]

Year	Zinc ore, con- centrates, and dross (zinc content)		centrates, and dross (zine Slabs, pigs, or blocks		Sheets, plates, strips, or other forms, n. e. s.		Zinc scrap (zinc content)		Zinc dust	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1948 1949 1950 1951 1952 ³	3, 547 2 2, 925 2 1, 140 2 3, 090 2 3, 370	\$422, 314 ² 477,718 ² 264,907 ² 792,800 ² 899,162	65, 537 58, 709 12, 917 36, 510 57, 714	\$15, 852, 819 18, 699, 597 3, 967, 055 15, 592, 994 24, 508, 568	7, 344 7, 456 4, 810 6, 579 4, 231	\$3, 290, 410 3, 496, 169 2, 322, 150 4, 360, 689 2, 960, 769	4,613	(1) \$224, 291 674, 235 871, 302 282, 816	891 690 506 723 (4)	\$299, 494 261, 484 186, 557 400, 656 (4)

1 Not separately classified before Jan. 1, 1949; formerly included with "Other forms, n. e. s."
2 Effective Jan. 1, 1949 "dross" included with "scrap."
3 Effective Jan. 1, 1952 zinc and zinc alloy semifabricated forms, n. e. c., totaling \$191,746, were exported.
4 Effective Jan. 1, 1952 "dust" included with "scrap."

TABLE 32.—Slab and sheet zinc exported from the United States, by destinations, 1949-52, in short tons

[U. S. Department of Commerce]

Destination	SI	abs, pigs	, and blo	eks	Sheet	Sheets, plates, strips, or other forms, n. e. s.			
	1949	1950	1951	1952	1949	1950	1951	1952	
Country:									
Argentina				661			100	305	
Austria	1,172		466	986	9				
Belgium-Luxembourg	1,081	67	1		. 19	21	3	(1)	
Brazil	2, 286	830	3,967	4,089	85	74	310	621	
Canada	10	24	1,702	171	2,958	2,778	2,668	1,686	
Chile	425	190	466	365	90	18	70	66	
Colombia	40	3		1	214	322	369	147	
Cuba	116	274	199	33	71	131	176	73	
Denmark	2,794	641	80						
Egypt				385					
France	4,840		933	6,689	(1)	(1)	367		
Germany	4, 293		215	2 607	49		26	2 21	
India Indonesia		4,588	4,728	2,036	1,685	417	807	304	
Indonesia	2				50	9	9	2	
Israel	19	105 224	3	60	54	70	97	55	
Italy	319	374							
Japan Malaya		3/4	816				45	3	
Mexico	131	349	211	351	375				
Netherlands	4.028	349	211	351	776	575	859	532	
Pakistan	4,020		220	111	230	1	1 1		
Philippines	3	4	220	3	58	3	10	3	
Switzerland	1,432	112	823	498	63	54	140	43	
Union of South Africa	1,452	112	823	498	99	11	20	23	
United Kingdom	22, 811	4.941	20, 024	40, 423	76 40	37 98	69 25	45	
Yugoslavia	22, 611	3, 341	1, 244	40, 423	40	(¹)	25	41	
Other countries	299	191	407	245	455	191	408	261	
o mor oduminossississississississississississississi		101		240	400	191	408	201	
Total	58, 709	12,917	36, 510	57, 714	7, 456	4, 810	6, 579	4, 231	
Continent:								===	
North America	267	652	2, 117	250	3, 858	2 544	0.707	0.001	
South America.	2,760	1,026	4, 440	558 5, 189	3, 858 505	3, 544	3, 765	2, 361	
Europe	42 004	6,035	23, 789	49, 270	8 517	481 8 158	1, 098 8 489	1, 236	
Asia	12,884	5, 204	5, 814	2,309	\$ 2, 463	³ 587		152 432	
Africa	12,007	0,204	5,014	388	104	40	³ 1, 147		
Oceania.			345	900	104	40	70 10	45 5	
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			O-EU		9		10	Б	

Less than 1 ton.
 West Germany.
 Revised figure.

Tariff.—The import duties established June 6, 1951, as a result of the Torquay Agreement provided for a reduction in the duty on ores and concentrates from 0.75 to 0.6 cent a pound of content, and on slab zinc and zinc dust from 0.875 to 0.7 cent a pound. The Torquay Agreements also provided a reduction in the tariff on zinc chloride and zinc sulfate from 0.75 cent a pound to 0.65 and 0.3 cent a pound, respectively. Otherwise tariff rates remained at the levels established January 1, 1948, by the Geneva Agreement, with zinc sheets at 1 cent a pound, plated or coated zinc sheets at 1.125 cents a pound, The duty on zinc oxide and leaded zinc scrap zinc 0.75 cent a pound. oxide containing not more than 25 percent lead was 0.6 cent a pound in dry powdered form and 1 cent a pound when ground in or mixed with oil or water. Lithopone carried a tariff rate of 0.875 cent a pound. As of October 2, 1950 the duty on zinc scrap was suspended until June 30, 1951 by Congressional action. Subsequently the suspension of duty on zinc scrap was continued until June 30, 1953.

The duties on slab zinc and zinc ores were suspended by an act of Congress (H. R. 5448) until March 23, 1953, or the end of the emergency, whichever should come first, but with the proviso that should the average price of zinc for any calendar month during the period of suspension fall below 18 cents a pound the President should be so advised by the Tariff Commission and not later than 20 days thereafter should order reimposition of the rates of June 6, 1951. On July 3, 1953, the Tariff Commission so notified the President and on July

23 duties on zinc were reimposed.

TECHNOLOGY

The following recently published Bureau of Mines Reports of Investigations relate to the exploration and beneficiation of zinc ores in whole or in part:

4907—Lead-Zinc Deposits of Southwestern St. Lawrence County, N. Y., by G. L. Neumann, 1952, 25 pp.
4908—Beneficiation of Sherman (Idaho) Pyromorphite Lead Ore by P. H. Floyd, W. A. Stickney, and R. R. Wells, 1952, 14 pp.
4909—Guymard Lead-Zinc Deposit, Orange County, N. Y., by G. L. Neu-

mann, 1952, 10 pp.

4911—Diamond Drilling for Zinc Ore at Andover-Sulphur Hill Iron Mines, Sussex County, N. J., by G. L. Neuman, 1952, 13 pp. 4927—Concentration Tests on Various Base-Metal Ores, by A. L. Engel.

1952, 14 pp.

Recently issued Bureau of Mines Information Circulars that concern zinc are:

7627—Control of Metallurgical and Mineral Dusts and Fumes in Los Angeles County, Calif., by G. L. Allen, F. H. Viets, and L. C. McCabe, 1952,

7649—Filling with Unclassified Tailing in Modified Cut-and-Fill Stopes, Dayrock Mine, Wallace, Idaho, by P. H. Toepfer, 1952, 14 pp.

Federal Geological Survey publications, published recently, and relating to zinc, in whole or in part are:

Circular 168—Geochemical Studies in the Coeur d'Alene Mining District,

Idaho, by V. C. Kennedy, 1952, 15 pp.

Bulletin 978-D—Zinc-Lead Deposit at Shawangunk Mine, Sullivan County,
N. Y., by P. K. Sims and P. E. Hots, 1952, pp. 101-121.

Bulletin 978-E—The Wallapai Mining District, Cerbat Mountains, Mohave
County, Ariz., by M. G. Dings, 1952, pp. 123-163.

ZINC 1151°

Noteworthy zinc reduction processes described in 1952 include two articles 5 on the Sterling process of electric furnace smelting of zinc ores. During 1952, the Cerro de Pasco Corp. undertook plans to build Sterling-type smelting furnaces at Oroya, Peru. The first 35-tonper-day unit is expected to come into production in late 1953. tional Sterling furnaces were under construction at Palmerton, Pa.

The caustic electrolytic-zinc process, which has been under development for several years by the Bureau of Mines and others was described in a paper presented before Montreal meeting of the Electrochemical Society in 1952. Zinc is extracted from oxidized ores with NaOR solution, and the zincate electrolyte purified with zinc powder and lime, before precipitation by electrolysis. The process appears to have merit for treating certain secondary materials and may be utilized in the reduction of roasted zinc sulfides as well as the naturally oxidized ores.

The suspension roasting process of the Consolidated Mining & Smelting Co. of Canada, Ltd., was the subject of a recent article. The method is used in treating zinc concentrates and also can be used successfully without using extraneous fuel to roast other mineral sulfides, such as lead concentrates, copper concentrates, copper mattes and antimony sulfides.

The fluosolids process as developed for pyrometallurgical applications involving the roasting, calcination, or heat treatment of ores is

described in a recent article.

The fluosolids roasting process may be described as a radically new metallurgical process by which the reactions between gases and solids can be more readily accomplished at elevated temperatures and at accelerated rates not possible before. The process is finding applications in many fields. A typical operation is the roasting of sulfide zinc ores or concentrates to produce strong SO2 gas and, at the same time, a calcine containing less than 1 percent sulfide sulfur and less than 2 percent total sulfur. The technique requires that the solids. to be reacted, be fluidized or partly suspended by an upward-moving gas stream. When so fluidized they are in a state of violent agitation gas stream. and are evenly distributed throughout the fluid bed. Fluidized solids in this state obey many of the laws of hydraulics and are efficient heat-transfer systems. Close regulation of feed-gas rate and temperature is possible.

A recent paper 9 describes the process for deleading zinc concentrate at the Parral and Santa Barbara, Mexico, mills of the American

Smelting & Refining Co.

A development that may in the future change the method of separating many minerals is under investigation by the Atomic Energy Commission.¹⁰ It has been proposed that minerals be separated from one another on the basis of radioactivity induced in them by neutron bombardment. After the mineral has become artificially

⁵ Handwerk, E. C., Mahler, G. T., and Fetterolf, L. C., The Sterling Process: Jour. Metals, vol. 4, No. 6, June 1952, pp. 581–586.
Engineering and Mining Journal, Sterling Furnace Smelts Zinc With Electric Arc, vol. 153, No. 7, July

Engineering and Mining Journal, Sterling Furnace Smeits Zinc With Electric Arc, vol. 105, No. 1, July 1952, pp. 76-78.

Baroch, Charles T., Hilliard, R. V., and Lang, R. S., The Caustic Electrolytic Zinc Process, Jour. Electrochem. Soc., vol. 100, No. 4, April 1953, pp. 165-172.

McBean, K. D., The Cominco Suspension Roasting Process: Min. Cong. Jour., vol. 38, No. 6, June 1952, pp. 36-39, 84.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland, G. G., New Fluo-Solids Experience: Min. Cong. Jour., March 1952, pp. 42-44, 54.

Copeland,

radioactive beta and gamma radiations are given off at rates that The initial level of activity of this vary for different minerals. induced radiation is also different for different minerals. Application of this phenomenon in separating such minerals as sphalerite from pyrite, apatite and calcite, galena from limestone, and franklinite and

zincite from calcite is possible.

During 1951 and early 1952, when zinc was expensive and difficult to obtain, there was additional incentive to collect metal-bearing fumes and dusts, recover metal from solution and reduce losses wherever possible. Principles of dust collectors and their application to mining and metallurgical industries was the subject of a recent article 11 presented before the American Institute of Mining and Metallurgical Engineers. The importance of such equipment in reducing air pollution and recovering a valuable dust was reported in an article 12 on recovery of zinc dust in pipe-galvanizing operations at the Etna, Pa., plant of Spang-Chalfant Division of National Supply Co., where \$6,000 was reported saved each month of the first 6 months of 1951. The new dust-recovery equipment was amortized in less A Bureau of Mines publication 13 also bears upon this than a year. same subject.

Ion-exchange techniques of recovering metals from dilute solutions are finding more extensive use as better ion exchange mediums are developed. A classification of the most important commercially available ion exchangers, their use and limitations, and flowsheets of various ion exchange processes were the basis of an article,14 which includes an excellent bibliography. An example of zinc recovery in effect in 1952 includes recovery of zinc from a viscose-rayon plant The waste solution contains approximately 300 parts per million of zinc sulfate in an acid solution. The zinc is recovered from the sulfonated resin cationic exchanger as a solution containing 6 to 8 percent zinc sulfate. Equipment for laboratory test and development work utilizing ion-exchange techniques was described in

a manual 15 published by the Permutit Co.

During 1952 interest in cathodic protection with zinc anodes was stimulated by the study prepared for the American Zinc Institute by Ebasco Services, Inc., November 1951. The study describes various applications with special emphasis on the protection of underground Underground corrosion of steel pipe has been estimated to cost \$600 million annually in the United States. Such corrosion, which is largely an electrolytic phenomenon resulting from local differences in electrical potential on the surface of the pipe, can be greatly reduced by cathodic protection techniques.

Hard, zinc-rich coatings applied like paint is are used extensively by Fruehauf Trailer Co. and others to protect steel parts from corrosion. The new protective coating, developed when cadmium was in short supply, is more expensive than paint but less costly than cadmium. It gives good coverage and may be applied by brush, spray, or dip. Government restriction on both end uses and quantity

¹¹ Kane, J. M., and Walpole, R. H., Principles of Present-Day Dust Collectors and Their Application to Mining and Metallurgical Industries: Am. Inst. Min. and Met. Eng. Tech. Pub. 3427B, Feb. 20, 1952; also Min. Eng., vol. 5, No. 1, January 1953, pp. 85–88.

12 Steel, Zinc Dust Recovery: Vol. 130, No. 20, May 19, 1952, pp. 93–94.

13 Allen, G. L., Viets, F. H., and McCabe, L. C., Control of Metallurgical and Mineral Dusts and Fumes in Los Angeles County, Calif.: Bureau of Mines Inf. Circ. 7627, 1952, 79 pp.

14 Mindler, A. B., and Paulson, C. F., Ion Exchange Finds Wider Use in Concentration and Recovery of Metals From Dilute Solutions; Jour. Metals, vol. 5, No. 8, August 1953, pp. 980–985.

15 Permutit Co., Manual for Laboratory Use of Ion Exchangers: 1952.

16 Iron Age, Zinc Protects Trailers Parts From Corrosion: Vol. 169, No. 22, May 29, 1952, pp. 82–83.

of nickel for electrodepositing protective and decorative coatings in 1952 led to a search for alternate coatings. Although it is generally accepted that no completely satisfactory alternate has been developed, a bright zinc-copper alloy plating process, which produces a coating containing 75 to 90 percent zinc, is being marketed by several suppliers and has been rather well accepted by the plating industry. vantages and limitations of these white brass plated coatings are discussed in a recent article.¹⁷ An alkaline battery, using silver and zinc as the electrochemical couple, has been placed on the market. The new battery using the André-Yardney silver-zinc system is up to 5 times smaller and up to 6 times lighter than other conventional storage batteries of the same ampere-hour capacity. It is said to be

TABLE 33.—World mine production of zinc (content of ore),1 by countries,2 1948-52 in metric tons 3

[Compiled by Pauline Roberts]

Country 2	1948	1949	1950	1951	1952
North America:					
Canada	251, 682	261, 506	284, 153	309, 450	332, 731
Guatemala	(4)	(4) [']	332	6,500	8, 200
Mexico	179,029	178, 402	223, 530	180,064	227, 375
Mexico	571, 503	538, 142	565, 513	617, 961	604, 180
South America:					
Argentina	12, 189	10, 921	12,699	15, 475	15, 396
Bolivia (exports)	21, 124	17,629	19, 570	30, 535	33, 581
Peru	59, 533	72, 037	87, 879	101, 300	122, 174
Firema.	1		· ·	-	
Austria	3, 154	2,694	2,970	3, 355	4, 986
Finland 6	2,500	2,500	2, 100	3,000	7,000
France		10, 907	12, 419	13, 283	14,600
Germany, West		57, 816	70, 153	75, 294	80,680
Greece	1,400	1,695	3, 184	8, 435	7, 300
Italy	73, 292	74, 562	87, 026	100, 733	113, 023
Norway		6,603	5, 702	5, 468	5,600
Poland 7		85, 300	86, 200	86, 200	95, 300
Spain 6		50,000	64,000	74,000	83,000
Sweden	35, 485	35, 158	37, 121	38,000	47, 162
TT C C D 67		110,000	128,700	148,000	186,000
United Kingdom	110,000	220,000	36	194	(4)
Yugoslavia	38, 789	44,017	38, 092	39, 420	`47,789
A sto.	,	11,011	00,002		
Burma	ł				1, 200
India •		300	300	1,100	2,000
Tonon	33, 132	44, 268	52,032	64, 416	86, 448
Japan Korea, Republic of	221	50	(4)	(4)	500
Philippines	. 221	00	50	150	1,600
Thailand (Siam)	5	70	270	520	500
Turkey 6	2,400	200	60	500	1, 200
	2, 100	200	•		-,
Africa: Algeria	6, 391	6, 863	7, 177	9, 466	11, 446
Algeria	0,001	0,000	,,	350	40
Angola.	46, 584	55, 420	74, 805	88, 704	98, 946
Belgian Congo	40,004	44	621	518	377
French Equatorial Africa	1 671	2,847	11, 412	19, 455	28, 352
French Morocco		72	11, 412	10, 100	51
Nigeria	22, 526	23, 217	23, 080	22, 953	23, 257
Northern Rhodesia 7		12,700	11, 300	14,800	15, 600
South-West Africa		3, 337	2,932	3, 548	3, 540
Tunisia	2, 382	104 010	205, 632	197, 843	199, 538
Australia	193, 526	184, 919	200,032	131,043	100,000
Total (estimate)	1,858,000	1,899,000	2, 128, 000	2, 290, 000	2, 522, 000

¹ Data derived in part from the Yearbook of the American Bureau of Metal Statistics, the United Nations Statistical Yearbook, and the Statistical Summary of the Mineral Industry (Colonial Geological Surveys, London).

² In addition to countries listed, Bulgaria, Czechoslovakia, East Germany, North Korea, and Rumania also produce zinc, but production data are not available; estimates by senior author of chapter included in

This table incorporates a number of revisions of data published in previous zinc chapters.
 Data not available; estimate by senior author of chapter included in total.

A Recoverable. Estimate.

⁷ Smelter production.

¹⁷ Saltonstall, R. B., A Critical Look at White Brass Plated Coatings: Mat. and Meth., vol. 37, No. February 1953, p. 97.

particularly adapted to applications where size and weight are important factors.

Several geologic papers were published in the technical journals among which were:

Claveau, Jacques, and others, The Lead and Zinc Deposits of the Bou Beker-Touissit Area, Eastern French Morocco: Econ. Geol., vol. 47, No. 5,

Beker-Touisit Area, Eastern French Morocco: Econ. Geol., vol. 41, No. 5, August 1952, pp. 481–493.

Huff, Lyman C., Abnormal Copper, Lead and Zinc Content of Soil Near Metalliferous Veins: Econ. Geol., vol. 47, No. 5, August 1952, pp. 517–542.

Oesterling, W. A., Geologic and Economic Significance of the Hutson Zinc Mine, Salem, Ky.: Econ. Geol., vol. 47, No. 3, May 1952, pp. 316–338.

Triplett, W. H., Geology of the Silver-Lead-Zinc Deposits of the Avalos-Providencia District of Mexico: Min., Eng., vol. 4, No. 6, June 1952, pp. 582–503.

pp. 583-593.

Creasey, S. C., Geology of the Iron King Mine, Yavapai County, Ariz., Econ. Geol., vol. 47, No. 1, January-February 1952, pp. 24-55.

Powers, Harold, Scharon, LeRoy, and Tolman, Carl, Geophysical Case History, Fredericktown Lead District, Mo., Min., Eng., vol. 5, No. 3, March 1953, pp. 317-320.

WORLD REVIEW

World mine production of zinc rose 10 percent in 1952 to an alltime World production tables 33 and 34 show that, although the United States in 1952 mined approximately a fourth of the world's zinc and smelted more than a third of its slab zinc, other countries in every continent mined and smelted important quantities of zinc.

TABLE 34.—World smelter production of zinc, by countries, 1948-52, in metric tons 2 3

[Comp	oiled by Pau	line Roberts	l		
Country	1948	1949	1950	1951	1952
North America:					
Canada	178, 329	186, 920	185, 398	198, 290	201, 711
Mexico	48, 323	53, 496	53, 492	58, 750	53, 787
United States	714, 644	739, 154	765, 176	799, 800	820, 525
South America:	,	100,202	100, 210	,	020,020
Argentina	1,602	2,651	4 7, 530	4 8, 600	4 8, 600
Peru	1, 464	1, 261	1, 262	870	5, 216
Europe:	-,	-,	-, -0-	0,0	, 0,210
Belgium 5	153, 928	176, 565	177, 326	200,886	186, 799
France	53, 875	58, 916	71, 531	74, 557	80, 064
Germany, West	6 41, 352	86, 916	122, 796	140, 640	147, 216
Italy	26, 397	26, 602	38, 119	47, 227	54, 829
Netherlands	13, 588	15, 614	19, 752	22, 605	25, 905
Norway	42,000	41,090	43, 173	40, 825	38, 385
Poland	87, 089	85, 300	86, 200	86, 200	95, 300
Rumania	(7)	(7)	3,000	(7)	(7)
Spain	21. 203	ìý, 551	21, 264	21, 345	21, 358
U. S. S. R.4	110,000	110,000	128, 700	148,000	186, 000
United Kingdom	73, 138	65, 124	71, 418	70, 851	69, 839
i ugosiavia	7, 167	9, 903	12, 315	13, 223	14, 463
Asia:	.,	-,	,	,	,
China 4	330	180	180	180	180
Japan	21, 200	32, 232	49,008	56, 340	70, 032
Africa: Northern Rhodesia	22, 526	23, 217	23, 080	22, 953	23, 257
Australia	82, 617	82, 255	84, 995	78, 246	88, 841
Total (estimate)	1, 706, 000	1, 823, 000	1, 969, 000	2,097,000	2, 199, 000

¹ In addition to countries listed, East Germany and Czechoslovakia produce zinc, but production data are not available; estimates by senior author of chapter included in total.

² Data derived in part from the Yearbook of the American Bureau of Metal Statistics, the United Nations Monthly Bulletin and the Statistical Yearbook, and the Statistical Summary of the Minerals Industry (Colonial Geological Surveys, London).

³ This table incorporates a number of revisions of data published in previous zinc chapters.

⁴ Potimital

⁴ Estimate.

⁵ Includes production from reclaimed scrap. American and British zones only.

⁷ Data not available; estimate by senior author of chapter included in total.

ZINC 1155

NORTH AMERICA

Canada.—Mine output of zinc in Canada increased almost 8 percent above the 1951 level despite power shortages in British Columbia and a decline of 2.53 to 2.81 cents (Canadian) in the 1952 average quoted price per pound of various grades of zinc. As in other years, Consolidated Mining & Smelting Co., operating mines and a zinc smelter in British Columbia, was the largest producer, with an output of 161,400 short tons of zinc sold in refined or unrefined products. The tonnage of ore from the company Sullivan mine was 2,700,000 tons, as against 2,530,000 tons in 1951. During the year stripping operations were undertaken to expose approximately 2,000,000 tons of open-pit ore, which will be mined and hauled to a transfer raise that connects the bottom of the pit to the 3,900-foot level of the mine. The ore will be hauled on the 3,900-foot level to the broken ore storage, which supplies the crusher on the 3.800-foot level. Other company operations included the Bluebell lead-zinc mine on Kootenay Lake near Kaslo, British Columbia, where production was begun in April and had by the year end totaled 136,000 tons of crude ore; and the Tulsequah zinc-copper-lead mines in northern British Columbia, which were opened in 1951 and in 1952 produced 96,000 tons of ore. An expansion program at Tulsequah to bring the concentrator to 500-tons-perday capacity was nearly completed in 1952. The annual company report states that the large zinc-lead property at Pine Point, Northwest Territory, continued to be explored with encouraging results. During 1952 about 41,000 feet of drilling further outlined large tonnages of ore, and a suitable area for shaft sinking was located and the shaft collar, head frame, power and change houses were completed. During the year the 66-ton-per-day-extension to the electrolytic zinc plant at Trail, British Columbia, was largely completed. The Britannia Mining & Smelting Co., Ltd., operated its Britannia mine in British Columbia throughout 1952 producing 860,000 tons of ore, of which 830,000 tons was concentrated to yield 25,600 tons of zinc concentrate and 23,200 tons of copper concentrate, which were shipped to the United States for reduction.

Quebec was the second most important zinc-producing Province, yielding 95,700 tons of recoverable zinc. In October 1952, Barvue Mines, Ltd., began producing zinc from its newly built 4,000-ton-per-day plant in Barraute Township. A recent article ¹⁸ described the development, mining, and metallurgy of the property. It was stated that the ore body, which extends from near surface to 700 feet in depth, contains 18,000,000 tons of ore averaging 3.3 percent zinc and 1.2 ounces of silver. The overburden that overlies the ore body was stripped hydraulically. Open-pit mining is planned to a depth of about 300 feet, after which an underground method using slope conveyor belts will probably be used. The zinc concentrate was in part shipped to the Arvida, Quebec, plant of the Aluminum Co. of Canada, where the sulfide sulfur content is reduced to about 0.3 percent in a "fluosolids reactor" before being shipped to the United States

The Quemont Mining Corp., Ltd., property milled 775,000 tons of ore to produce 32,000 tons of zinc concentrate and 51,000 tons of copper concentrate. The zinc concentrate was shipped to the United States, and the copper concentrate was smelted at Noranda. Total

¹⁸ Mining World, Barvue Mines, Ltd.: Vol. 15, No. 3, March 1953, pp. 40-45.

recoverable metals from the concentrates were 16,500 tons of zinc, 9,400 tons of copper, 96,900 ounces of gold, and 416,000 ounces of silver.

The Normetal Mining Corp., Ltd., milled 360,500 tons of ore averaging 7.49 percent zinc, 2.02 percent copper, 0.25 ounce of gold, and 2.3 ounces of silver to recover 43,000 tons of zinc concentrate and 30,000 tons of copper concentrate together containing 21,800 tons of zinc, 6,300 tons of copper, 4,100 ounces of gold, and 412,000 ounces of silver.

Still another Quebec producer, the Waite Amulet Mines, Ltd., produced 414,000 tons of ore from its mines, milling 418,000 tons to recover 16,000 tons of zinc, 14,500 tons of copper, 11,900 ounces of gold, and 283,000 ounces of silver, as well as pyrite concentrate.

The Hudson Bay Mining & Smelting Co., Ltd., at Flin-Flon, Manitoba, near the Saskatchewan border, continued to mine ore from both Saskatchewan and Manitoba to supply its Flin-Flon mill and zinc smelter. During the year 1,560,000 tons of ore was mined, of which 1,528,000 tons, containing 4.9 percent zinc and 2.51 percent copper, and appreciable gold and silver values, was milled, to yield approximately 60,000 tons of recoverable zinc. Actual slab-zinc production by the company electrolytic zinc plant was 61,783 tons in 1952. Ore reserves of properties owned or controlled by the Hudson Bay Mining & Smelting Co., Ltd., in the Flin-Flon area as of the end of 1952 approximated 17,100,000 tons, which contain 3.2 percent copper, 4 percent zinc, 0.075 ounce of gold, and 1.06 ounces of silver.

The Anacon Lead Mines, New Brunswick, milled 226,000 tons of ore in 1952 (219,000 tons in 1951) to recover 8,500 tons of zinc (6,100 in 1951) and 4,100 tons of lead (2,200 in 1951). Increased output was due to better recoveries and a substantial increase in the grade of ore treated. Ore reserves at the end of the year amounted to 1,050,000 tons compared with 1,100,000 tons at the end of 1951.

In 1952 a large zinc-lead-silver-copper ore body ¹⁹ was discovered a few miles south of Bathhurst by a prospecting syndicate, which has been incorporated as the Brunswick Mining & Smelting Co. The ore body had been outlined in part by diamond drilling and as of January 1953 was said to indicate 28,800 tons of ore per vertical foot with values of about 5.2 percent zinc, 1.61 percent lead, and 1.98 ounces of silver per ton. In addition to zinc, lead, and silver, quantities of copper, tin, and pyrite have been noted that may be of commercial importance. The economic aspects of the property are considered excellent because of nearby rail- and ocean-transportation, an ore body adapted to open-pit mining, and the financial strength of many of the claim holders, which include the Leadridge Mining Co. (St. Joseph Lead subsidiary), Timmons Corp., M. J. O'Brien, Ltd., Noranda Mines, New Jersey Zinc Explorations, Ltd., Frobisher, Ltd. (Ventures Exploration subsidiary), Anacon Lead Mines, and numerous others.

Greenland.—The lead-zinc deposits at Blyklippen, Mesters Vig, eastern Greenland, which were explored by adits in 1950 and 1951, were under active development in 1952 to determine if the extent and grade of ore would justify production. During the summer of 1952 a complete year-round camp and landing strip were built, and a new

¹⁰ Engineering and Mining Journal, Huge New Brunswick Metal Find Sets off Exploration Boom: Vol. 154, No. 5, May 1953, pp. 101, 102, 104, 202, 206, 208.

ZINC 1157

adit was begun 325 feet below the level of the earlier exploration adit. Exploration continued throughout the 1952-53 winter. Development, has not proved the extent of the ore in the lower adit, but that in the upper level indicated an ore shoot 900 feet long by 30 feet wide with about 22 percent combined lead and zinc. Although the mine is only 7 miles from docking facilities, these are situated on a fjord, which is

normally ice-free only 4 or 5 weeks a year.

Mexico.—American Smelting & Refining Co. completed construction of a slag-fuming plant at Chihuahua, Mexico, July 1952, and the plant was in operation the last 2 months of the year. Located near the lead smelter it will recover about 23,000 tons of zinc as fume from lead slags that contain about 10 percent zinc. The company operated its retort zinc smelter at Rosita, Coahuila, throughout the year at near capacity. Operating mines in Mexico, owned or leased by the A. S. & R. Co. and producing zinc ores, included the Charcas unit, San Luis Potosi; the Parral, Santa Barbara, Santa Eulalia, Montezuma Lead and Plomosas units, Chihuahua; Taxco unit, Guerrero; and the Aurora-Xichu unit in Guanajuato.

Another important producer of zinc ore in Mexico was the American Metal Co., Ltd., which produced zinc concentrates at the Avalos unit (Cia. Minera de Penóles, S. A.) in Zacatecas; the Calabaza unit, Jalisco; and the Topia unit in Durango. During 1952 the American Metal Co. installed a Waelz kiln to effect a metallurgical concentration of zinc oxide ores at its Monterrey, Nuevo Léon, lead refinery.

The Esmeralda mine near Parral, Chihuahua, was operated throughout the year by Minas de Iquala, S. A., a subsidiary of the Eagle-Picher Co. The mine stoping cycle included the use of a drilling jumbo and power slusher. Such mechanization has increased ore-broken-per-man shift in the stopes to 24.6 tons. Further details of mining and the 1,000-ton-per-day lead-zinc flotation mill were published in a two part article ²⁰ in Mining World.

SOUTH AMERICA

Bolivia.—The Bolivian revolution in April 1952 resulted in the formation of the Corporacion Minera de Bolivia to manage the 24 producing mines that were nationalized. Mine-production data are lacking, but, since no zinc reduction facilities exist in Bolivia and all production must be exported, exports are a measure of output. The zinc content of zinc concentrate exported increased 10 percent over

that of 1951 to 33,600 metric tons.

Peru.—Mine production of zinc in Peru increased 21 percent in 1952 to 122,200 metric tons and smelter production rose from 900 to 5,200 metric tons. Exploration by the Cerro de Pasco Corp. and the American Smelting & Refining Co. continued on a large scale, and Mauricio Hochschild, Consolidated Guayana Mines, Ltd. (Ventures, Ltd. subsidiary), Peruvian Oil & Minerals, Ltd. (Kennecott Copper Corp. subsidiary), and La India (Nicaraguan subsidiary of Noranda Mines, Ltd.) were investigating mineral properties. Consolidated Guayana had the Santander zinc-lead property under option and was planning a mine, 500-ton concentrator, and hydroelectric plant. The Chavin or Santa Beatriz mine in which Guayana had an interest was being developed, and the company was seeking a

^{**}Burns, R. L., Jumbos in Shrinkage Stopes Pay Off at the Esmeralda: Mining World, vol. 15, No. 9, August 1953, pp. 44-48; Minas de Iqualas 1,000-ton-per-day Mill at Parral Treats Esmeralda Lead-Zinc Ore: Min. World, vol. 15, No. 10, September 1953, pp. 52-55.

United States Government purchase contract for zinc and lead over a 3-vear period. The Volcan Mines Co. completed its 350-ton per day concentrator in Ticlio. The mill can treat ore from either the Volcan lead-zinc-copper mine or the Carahuacra zinc-lead mine.

The Atacocha lead-zinc mines, which are served by 2 mills totaling 450 metric tons of daily crude-ore capacity, formed the basis of an article 21 published by the Denver Equipment Co. The article described the ore body and the mills, giving grade or ore, mill recovery,

and details of the mill operation.

In 1952 the New Jersey Zinc Co. licensed the Sterling smelting process to the Cerro de Pasco Corp. for use in Peru. The process is an electrothermic method of smelting zinc ores, which has attracted attention due to indicated economies in capital and operating costs. The first unit of the new electrothermic zinc plant in Peru was expected to come into production about September 1953, and full production of 200 tons a day is expected by late 1957.

EUROPE

Belgium and France.—In 1952 the Belgian and French works of the Mines et Fonderies de Zinc de la Vielle-Montagne produced 126,000 metric tons of slab zinc, 32,800 metric tons of rolled zinc, and 11,600 tons of zinc oxide. The zinc ore for this operation was chiefly from Union Miniére du Haut-Katanga, Africa.

Germany, West.—A decline in domestic requirements and a 7 percent increase in mine production of zinc to 80,700 metric tons permitted somewhat larger exports of zinc in 1952. Zinc and lead ores were produced at Rammelsburg and Bad Grund in the Harz Mountains and in the Rhineland as well as Southern Germany near

Heidelberg.

Italy.—The new electrolytic zinc plant of Soc. Anon. Piombo e Zinco at Nossa in the Italian Alps, with a capacity of 15,000 tons of metal per year was almost completed in 1952. This plant with the 7,000-ton Monteponi, 25,000-ton Crotone, and 18,000-ton Porto Marghera electrolytic plants and the 12,000-ton Vado Ligure retort plant totaled 77,000 tons of capacity. Sardinia was Italy's main source of zinc ore, supplying about 80 percent of requirements. Upper Friuli, near Tarvisio in northeast Italy, the Bergamo (Nossa) region, Upper Adige, and the Cadore region supplied the balance of zinc ore requirements. Concentration of lead-zinc ores by heavymedium methods was widely employed both in Sardinia and mainland mines. The Pertusola Co. has been successfully beneficiating calamine by flotation at its two ore-dressing plants in Sardinia since 1951.

United Kingdom.—During 1952 stocks of slab and ingot zinc held by the British Government and consumers increased 126,000 long tons to 166,000 and similarly held stocks of concentrates increased by 20,000 to 58,000 long tons of zinc content. The increase in stocks resulted from the import of 229,000 long tons of ingots, blocks, and slabs and some 194,000 long tons of zinc in ore and concentrate form. Part of the increase in stocks was due to much lower zinc consumption in 1952. Total consumption of zinc in 1952 was 256,000 long tons compared with 284,000 in 1951 and 330,000 in 1950. The greatly

²¹ Ore, Narcisco Tasaico (superintendent, Atacocha mines), Deco Trefoil, vol. 16, No. 2, March-April 1952, pp. 7-14.

ZINC 1159

improved supply situation led to the announcement that free trading in zinc on the London Metal Exchange would be resumed January 2, 1953, and that excess government-held stocks would be sold in an orderly fashion.

As in other recent years domestic zinc production in the United Kingdom has been small. Smelter production was 69,000 long tons.

approximately the volume smelted in 1950 and 1951.

Yugoslavia.—A slightly greater tonnage of lead-zinc ores and somewhat richer ores resulted in a 21-percent increase in mine production in 1952. Most of the crude ore came from the Trepca mines and was milled and smelted at Svecan. The only other important lead-zinc mine was the Mezica mine. The Yugoslav Government reported the discovery of lead-zinc ores in the Kossovo-Metochia area near the Albanian border. Mining of the deposit is planned to begin in 1954.

A new electrolytic zinc plant of 12,000 tons annual capacity was being constructed at Sobac, Serbia. The plant also will produce 22,000 tons of sulfuric acid and 40 tons of cadmium annually. Other Yugoslav-zinc-reduction facilities were limited to 16,000 metric tons of retort capacity.

AUSTRALIA

Both mine and smelter production of zinc in Australia increased slightly above the 1951 level, but full capacity was not achieved because of continuing shortage of labor and equipment and the Australian requirement that Australian needs be supplied at a special "home-consumption price," which was in some instances below the cost of production. Mine output in 1952 was 200,000 metric tons, or about 8 percent of the world total. Producing States were New

South Wales, Queensland, and Tasmania.

In New South Wales the New Broken Hill Consolidated, Ltd., mined 240,000 long tons of ore in 1952 compared with 212,000 tons in 1951. In September the company began to use its new haulage shaft and newly erected No. 1 mill section. Monthly capacity was 30,000 tons, but output was about 21,000 tons. Other Broken Hill producers (North Broken Hill, Ltd., Broken Hill South, Ltd., and the Zinc Corp., Ltd.) mined a combined tonnage of about 90,000 tons of crude ore per month. Additional locomotives obtained by the South Australian Railways during 1952 made it possible to ship current production of zinc and lead concentrates and part of the accumulated 70,000 tons of zinc concentrate from Broken Hill.

The Lake George Mines, Ltd., Captain's Flat, New South Wales, concentrated about 550 long tons of ore per day and had from the beginning of operations through the end of June 1952 milled 2,000,000 tons of ore to recover 319,000 tons of zinc concentrate, 219,000 tons of lead concentrate, 30,000 tons of copper concentrate, 275,000 tons of pyrite concentrate, and 1,800 tons of gold concentrate. The mine ²² was reported to be thoroughly mechanized, with the ore, which is mined in rill stopes, being moved by gravity or power scraper to

grizzly-covered ore passes.

At Risdon, Tasmania, the Electrolytic Zinc Co., Ltd., produced 89,000 metric tons of slab zinc from Broken Hill concentrates and those produced at its own Read-Rosebery and Hercules mines on the

²² Hungerford, T. A. G., Mining Operations at Lake George Mines, New South Wales: Min. Jour. (London), vol. 240, No. 6128, Jan. 30, 1953, pp. 128-129.

west coast of Tasmania. The capacity of the west coast concentrator was increased to 250,000 tons of ore per year during the year, and work went forward on the construction of a plant to recover zinc from leach-plant residues, as well as to increase sulfuric acid capacity and to build a new ammonium sulfate fertilizer plant at the Risdon smelter.

At Mount Isa, Queensland, Mount Isa Mines, Ltd., operated its No. 2 ore shaft and the new crushing plant for the lead-zinc concentrator with production at a normal rate. The company was considering installing a slag-fuming plant to extract zinc from more than 1,000,000 tons of accumulated lead slags, which contain approxi-

mately 14 percent zinc.

AFRICA

Africa produced 7 percent, or 182,000 metric tons, of the world zinc mine output in 1952, the production being chiefly from the Belgian Congo (99,000 tons), French Morocco (28,000 tons), Northern Rhodesia (23,000 tons), South-West Africa (16,000 tons), and Algeria

(11,000 tons)

Belgian Congo.—The Union Minière du Haut Katanga Kipushi concentrator milling a uniquely rich copper-zinc ore with a recoverable zinc content of about 17 percent produced 188,000 tons of zinc concentrate (172,000 tons in 1951) containing 97,910 metric tons of zinc. The ore is from the Prince Leopold mine. The company reported reserves of such ore contain 1.8 million tons of zinc. In addition, the company had 400,000 to 600,000 tons of zinc in copper slags, which analyzed about 20 percent zinc. Construction of an electrolytic zinc plant with annual capacity of 36,000 tons at Kolwezi is expected to be completed by mid-1953.

French Morocco.—In 1952, 51,400 metric tons of zinc concentrate containing 28,300 metric tons of zinc was produced. Corresponding figures in 1951 were 36,600 and 19,400 tons. The Zellidja mine was the principal producer of zinc, with an output of 44,000 tons of concentrate from its Bou Beker deposits. The lead-zinc deposits of the

Bou Beker Touissit area were described in August 1952.23

Northern Rhodesia.—Rhodesian Broken Hill, Ltd., the only producer of zinc and lead in Northern Rhodesia, increased output in 1952 to 23,300 metric tons of zinc and 12,800 metric tons of lead. The company completed enlargement of the electrolytic zinc plant in 1952, and the rate of production in 1953 is expected to be about 26,500 metric tons of zinc. A concession covering 9,000 square miles in the Broken Hill area was granted to Minerals Research of Africa, a subsidiary of the Rio Tinto Co., Ltd. The company will prospect for lead, copper, and zinc. The 1952 annual report of the Rhodesia Broken Hill Development Co., Ltd., gave an excellent summation of production, development, labor employed, and related material. The successful metallurgical processes on the complex lead-zinc-vanadium and copper ores were treated in a recent article.²⁴

²² Claneau, Jacques, Paulhac, Jean, and Pellerin, Jean, The Lead and Zinc Deposits of the Bou Beker Touissit Area, Eastern French Morocco: Econ. Geol., vol. 47, No. 5, August 1952, pp. 481-493. ²⁴ Talbot, H. L., and Chapman, F. H., How Northern Rhodesia Meets Rising Base Metal Demands: Eng, and Min. Jour., August 1953, pp. 82-87.

ZINC 1161

South-West Africa.—The Tsumeb mine, the only important producer of zinc in the territory at present, produces lead, copper, and zinc concentrates for export. During 1952, zinc concentrates produced contained approximately 15,600 metric tons of zinc. A mechanical loading plant was in process of erection at Walvis Bay and should be operating in early 1953; it will facilitate quicker loading of all concentrates. Diamond drilling between the 2,390 and 2,650 horizons was successful, and 2 holes indicate mineralization to the 3,120–3,370 horizons. The new De Wet shaft sinking, which was to a depth of 2,390 feet in November 1951, reached 3,113 feet at the end of 1952. Sinking will be continued to 4,150 feet. The Tsumeb 25 operatio was described in the May and June 1952 issues of the Mining World.

Nigeria.—The American Smelting & Refining Co. terminated its lease and profit-sharing agreement with the Mines Development Syndicate, Ltd., in late 1952 after 30 months of geologic exploration, trenching, and diamond drilling. The agreement covered a 400-square-mile area in southeastern Nigeria near Abokaliki. Indicated reserves were not as large as had been anticipated, and the water supply presented a serious problem. Mines Development Syndicate is expected to continue with the development.

to continue with the development.

ASIA

Burma.—Burma Mines, Ltd., operator of the Bawdwin silver-lead-zinc mine in the Shan States of northern Burma, continued to rehabilitate and work the mine. The concentrator, idle since 1940, was put into service in mid-July to treat stocked ore. During the last half of the year about 10,000 tons of ore was mined, which assayed about 13.5 ounces of silver, 15.3 percent lead, and 12 percent zinc. About 2,200 tons of zinc concentrate was produced.

India.—The Zawar lead-zinc mine in Udaipur, which produces about 175 tons of ore daily, was mechanized and a flotation mill to produce lead and zinc concentrates was erected. A total of 3,300 metric tons of zinc concentrate containing 2,000 metric tons of zinc

was exported to Rotterdam.

Japan.—Mine output of zinc increased by approximately 35 percent over that of 1951 to 86,500 metric tons. Smelter production of slab zinc was 70,000 tons, of which 70 percent was produced by electrolysis and 30 percent by distillation. The Kamioka Mining & Smelting Co. in Fukuko Prefecture, Kyushu Island, completed a slag-fuming plant at its Miike zinc smelter in 1952. The plant treats 3,000 tons of slag monthly to recover 350 tons of zinc and 28 tons of lead. The Toho Aen Co. was erecting a plant to treat slags at its Annaka zinc smelter in Gumma Prefecture on Honshu Island. In 1952 the plant will treat 1,000 tons of slag per month to recover 180 tons of zinc.

²⁸ Metz, John, and Ong, J. N., The Tsumeb Story, Min. World, vol. 14, No. 6, May 1952, pp. 21–26 and 74; also vol. 14, No. 7, June 1952, pp. 34–39.

Zirconium and Hafnium

By Robert F. Griffith 1

ZIRCONIUM

'IRCONIUM is a comparatively new metal, which promises greatly expanded usefulness. Interest in zirconium metal increased in 1952 as industry became more aware of its unusual combination of properties. Because it has good structural properties and excellent corrosion resistance, and because it readily allows the passage of slow neutrons (low thermal neutron absorption cross section), zirconium is used as a material of construction for nuclearreactor plants. One of the significant developments in 1952 was the execution of a contract by the Atomic Energy Commission with Carborundum Metals Co., Akron, N. Y., for the production of 150,000 pounds of zirconium sponge annually for 5 years at less than \$15 a pound. As an alloy constituent, zirconium imparts highly desirable properties to steel, magnesium, and other metals. The production of corrosion-resistant zirconium alloys received considerable attention in 1952.

Although over 80 percent of the United States zircon supply is used in refractories, ceramics, and foundry applications, the most spectacular use of zircon (the principal source mineral of zirconium) during the past 2 years has been in the production of metallic zirconium. Zircon reserves are large, and mine-production capacity in the United States is more than ample to satisfy demands. The supply of zirconium metal, however, is limited by existing processing capacities and resultant high price of the metal.

Government controls on quantities of zirconium used in steel production were relaxed on August 27, 1952, by an amendment to National Production Authority Order M-80.

As a result of hafnium-free zirconium produced at the Electrodevelopment Laboratory of the Bureau of Mines, Albany, Oreg., larger quantities of hafnium were available for research. Additional information on hafnium has been confined to the concluding section of the chapter.

DOMESTIC PRODUCTION

Mine Production.—Domestic production of zircon decreased 5 percent in 1952 compared with the record high production in 1951. This slight decrease reflected market conditions rather than production capacity. Three operating companies in Florida marketed zircon in 1952: Rutile Mining Co. of Florida, South Jacksonville; Humphreys Gold Corp., Starke (operating for E. I. duPont de Nemours & Co.

¹ Commodity-industry analyst.

on a contract basis); and Florida Ore Processing Co., Melbourne.

Quantitative data are not available for publication.

Zircon produced as a result of monazite-dredging operations in Idaho was not marketed because of unfavorable freight rates and market conditions.

Refinery Production.—The principal producers of materials con-

taining zirconium are listed below:

Producer and plant location:

F. W. Berk & Co., Woodbridge, N. J.——Ceramic Color & Mfg. Co., New Brighton,

Corhart Refractories Co., Louisville, Ky_-De Rewal International Rare Metals Co., Philadelphia 5, Pa.

Electro Metallurgical Co., Division of Union Carbide & Carbon Corp., New York 17, N. Y. (plants at Niagara Falls, N. Y., Sheffield, Ala., and Alloy, W. Va.)

Foote Mineral Co., Philadelphia 44, Pa... Zirconium metal, compounds, re-

The Massillon Refractories Co., Massillon,

Metal Hydrides, Inc., Beverly, Mass....

Metal & Thermit Corp., New York 17, Norton Co., Worcester, Mass_____

Orefraction, Inc., Pittsburgh 8, Pa----

Rohm & Hass Co., Philadelphia 5, Pa____

Stauffer Chemical Co., New York 17, N. Y. Zirconium tetrachloride. Titanium Alloy Manufacturing Division (TAM) of National Lead Co., Niagara Falls, N. Y.

Vitro Manufacturing Co., Pittsburgh 4, Pa.

Westinghouse Electric Corp., Pittsburgh,

Bureau of Mines, Albany, Oreg.

Zirconium compounds. Oxide and silicate.

Refractories.

zirconium oxide Low-hafnium and metal powder; zirconium compounds.

Zirconium alloys.

fractories, porcelain enamels, and ground zircon.

Zircon crucibles, brick, and special shapes.

Zirconium-metal powder, zirco-nium hydride, and various alloys.

Zirconium compounds for ceramics, refractories, etc.

Fused stabilized zirconia fractories.

Granular and milled zirconium silicate.

Zirconium sulfate solution (tanning agent).

Zirconium metal sponge, quets, ingots and shapes; alloys; compounds; ground zircon; and stabilized zirconia refractories.

Pottery, enamels, and porcelains.

Do.

Zirconium metal.

The Carborundum Metals Co., Inc., a subsidiary of the Carborundum Co., Niagara Falls, N. Y., began constructing a plant at Akron, N. Y., to produce zirconium and hafnium metals for the Atomic Energy Commission. The Rust Process Design Co., Pittsburgh, Pa., designed the plant, which will cost an estimated \$2.5 million and will produce 150,000 pounds of sponge metal annually. Production was scheduled to begin in July 1953. Zircon sands from Florida will be treated in an electric furnace to make carbide. This phase of the process will be handled by Carborundum Co. in existing The zirconium carbide will be processed to zirconium chloride; the chloride will be purified, then reduced to metal. process is a modification of the Kroll process developed at the Bureau

of Mines station at Albany, Oreg. The Titanium Alloy Manufacturing Division of National Lead Co. produced Kroll process zirconium

metal for general industrial use.

The Bureau of Mines station, Albany, Oreg., was the principal producer of zirconium metal in 1952; over 200,000 pounds of clean zirconium sponge was produced. A plant fire on October 22, 1952, which began in a dust collector on a sand-blasting machine, caused considerable damage and curtailed production to some extent.

CONSUMPTION AND USES

Consumption of zircon in the United States in 1952 is estimated to have been about 40,000 tons. The largest use was in the manufacture of refractories, followed in order by foundry facings, foundry sand, and blasting grain; porcelains; miscellaneous compounds; metal and

alloys; pottery; and glass.

Zircon is used commercially with and without processing; for foundry and some ceramic applications it is only sized and possibly ground. Zircon refractories are desirable because of their resistance to abrasion, low thermal expansion, and resistance to certain molten metals, acidic chemicals, slags, and glasses. Conversion of zirconia (ZrO₂) from the monoclinic to the cubic form has produced a superrefractory with excellent resistance to thermal shock.2 Among zirconium chemicals, the sulfate is probably the largest tonnage item. Used in tanning white leather, white zirconium oxide is precipitated in the leather fibers. Zirconyl acetate and ammonium zirconyl carbonate are used to render textiles water repellant. carbonate is used in salves and ointments and as an antiperspirant. A new-type electric light has, as its light source, a film of molten zirconium metal at the end of a small tube packed with zirconium This molten film radiates relatively little heat, yet the lamp has over 10 times the brightness of ordinary tungsten lamps.³

The current largest use of metallic zirconium is as a material of construction for nuclear-reactor plants. The low absorption cross section of zirconium, which allows the passage of slow neutrons, thus conserving them for their primary function of maintaining a chain reaction, is exceeded among the metals only by beryllium, bismuth, The structural performance and other desirable and magnesium. properties of these metals are inferior to zirconium. High-purity zirconium, "zirmet," is used in power, transmitting, and long life receiving tubes.⁵ Other uses for ductile metallic zirconium are based

for the most part on its excellent corrosion resistance.

Use of zirconium in ferrous and nonferrous alloys is increasing. Zirconium can be substituted for manganese in steel. Additions of zirconium to sand-cast magnesium-thorium alloys have a beneficial effect on strength at elevated temperatures.⁷

² Metal Progress, vol. 62, No. 6, December 1952, p. 68.

³ American Metal Market, vol. 59, No. 70, Apr. 10, 1952.

⁴ Iron Age, vol. 170, No. 14, Oct. 9, 1952, pp. 281-287.

Evans, George E., Wanted: Better Materials for Nuclear Reactors: Iron Age, vol. 169, No. 11, Mar. 13, 1952, pp. 33-97.

⁵ Foote Prints, Foote Mineral Co., vol. 24, No. 2, 1952, pp. 27-30.

⁶ Metal Progress (abs.), Zr and Ti Substitutions for Manganese in Steel: Vol. 61, No. 2, February 1952, pp. 163-164.

pp. 162-164.
⁷ Leontis, T. E., Effect of Zirconium on Magnesium-Thorium and Magnesium-Thorium-Cerium Alloys: Trans. Am. Inst. Min. and Met. Eng., Jour. Metals, vol. 4, No. 6, June 1952, pp. 633-642.

STOCKS

Industry stocks of zircon concentrates (plus 65 percent ZrO_2) were about 9,000 tons at the close of 1952, down about 1,500 tons from 1951 year-end stocks. Approximately 25 percent of annual consumption was available from stocks. This apparent shortage caused little concern because ample supplies of zircon continued to be readily available. Stocks of other zirconium minerals were insignificant.

Zircon is acquired for the National Stockpile only through transfer of Government-owned stocks. Stockpile quantitative data are not

available for publication.

PRICES

E&MJ Metal and Mineral Markets quoted zircon concentrates (65 percent ZrO₂), c. i. f. Atlantic ports, at \$47-\$50 per long ton in January 1952; \$42-\$45, April 10; and \$42-\$43, September 18. These prices were largely nominal, and individual transactions and contracts

were negotiated.

Zirconium-metal powder was quoted January through November at \$7-\$8 per pound, depending on quantity; and December 11, \$7 per pound, no reference to quantity. Ductile zirconium metal made by the iodide-reduction process and fabricated forms from that stock produced by Foote Mineral Co. were quoted as follows: Zirconium crystal bar, \$70 per pound for 100 pounds and up, \$90 per pound for quantities less than 100 pounds; zirconium wire (annealed), 0.070to 0.003-inch diameter, \$327 to \$793 per kilogram; zirconium swaged rod (unannealed), \%- to \%4-inch diameter, \\$200 to \\$210 per kilogram; and zirconium sheet, 0.015- to 0.002-inch thick, \$289 to \$450 per kilogram. Prices for ductile zirconium produced by the Titanium Alloy Manufacturing Division, National Lead Co., and forms fabricated from that stock remained unchanged in 1952. Prices quoted were as follows: Zirconium-metal sponge and briquets, \$10 per pound; hotrolled plate and bars, base price, \$27 per pound; hot-rolled strip, base price, \$28 per pound; cold-rolled strip, base price, \$35 per pound; cold-drawn wire, 0.060- to 0.375-inch diameter, \$42.50 to \$32.50 per pound, 0.015- to 0.030-inch diameter, \$0.08 and \$0.15 per foot, respectively. Zirconium tetrachloride was quoted at \$0.34 per pound, f. o. b. Niagara Falls, N. Y., in lots of 1 ton to a carload.

Zirconium alloys, contract price, were quoted by Electro Metallurgical Co., Division of Union Carbide & Carbon Co. f. o. b. railroad freight cars at destination as follows: Zirconium-ferrosilicon, 12–15 percent Zr, \$0.08 to \$0.1075, 35–40 percent Zr, \$0.2025 to \$0.2525, depending on quantity and size; zirconium briquets (11 percent Zr, 38 percent Si), \$0.075 to \$0.10 per pound, depending on quantity; and nickel-zirconium (40–50 percent Ni, 25–30 percent Zr) \$1.25 to

\$1.35 per pound, depending on quantity.

The Oil, Paint and Drug Reporter quoted zirconium compounds, per pound, in large lots, f. o. b. New York, as follows: Acetate, January \$0.265, June \$0.23; carbonate, \$0.305; hydride, January \$12, June \$7.50 to \$10, December \$7.25 to \$11.50; nitrate, \$4.50 to \$7; and oxide, \$1.50.

In addition to the principal producers of zirconium products, other buyers of zircon concentrates include: Berkshire Chemicals, Inc., New York 7, N. Y.; International Titanium Corp., New York 17, N. Y.; Metallurg, Inc., New York, 17, N. Y.; Pacific Graphite Co., Inc., 40th and Linden, Oakland, Calif.; and Frank Samuel & Co., Inc., Philadelphia 7. Pa.

FOREIGN TRADE

Australia continued to be the principal source of zirconium ore imported for consumption in the United States during 1952. A small quantity, less than 10 percent of the total, came from Brazil. Imports from Australia have been in the form of clean zircon concentrates containing 66 percent ZrO2 and in mixed zircon-rutile concentrates containing 65 percent zircon, or 43 percent ZrO2. Since 1949 the trend has been toward separating the heavy minerals before shipment. In 1952, 80 percent of the zircon imported from Australia was in the form of clean zircon concentrates. Twenty-seven pounds of special quality zirconium metal, valued at \$500, was imported from the United Kingdom and France.

Exports of zircon concentrates in 1952, principally to Canada, totaled 584 short tons valued at \$42,221; 20 tons were exported to Mexico and 1 ton to France. Exports of zirconium metal, alloys, and primary forms totaled 51,151 pounds, valued at \$42,677. Canada was the major recipient. Zirconium powder, metal, alloys, and primary forms were retained on the positive list of products requiring export licenses to foreign destinations (except Canada).

TABLE 1.—Zirconium ore (concentrates) imported for consumption in the United States, 1948-52, by countries, in short tons

Year	Australia ²	Brazil	Canada	India	Total	
					Short tons	Value
1948	14, 320 18, 839 15, 988 25, 208 21, 935	3, 553 1, 994 697 2, 084 1, 972	141	279	18, 154 20, 833 16, 826 27, 292 23, 907	\$571, 161 636, 529 431, 107 664, 428 630, 559

[U. S. Department of Commerce]

¹ Concentrates from Australia are zircon or mixed zircon-rutile-ilmenite, and those from Brazil are badde-

1 Concentrates from Australia are zircon or mixed zircon-rutile-limenite, and those from Brazil are badde-leyte or zircon. All other imports are zircon.

2 Imports of zircon, rutile, and ilmenite from Australia until early 1948 were largely in the form of mixed concentrates. These mixed concentrates are classified by the U. S. Department of Commerce arbitrarily as "zirconium ore," "rutile," or "ilmenite." Total zircon content of the zirconium ore (as shown in this table) and of the rutile and ilmenite concentrates (see Titanium chapter) are estimated as follows: 1948 13,873 tons; 1949, 14,623 tons; 1950, 15,098 tons; 1951, 24,577 tons; and 1952, 21,500 tons.

Producers of zirconium products in foreign countries include Dominion Magnesium, Ltd., Toronto, Canada; Murex Co., Rainham, Essex, England; Blackwell's Metallurgical Works, Ltd., and Imperial Chamical Industries Ltd. In the Industries Ltd. Chemical Industries, Ltd., Liverpool, England; and Goodlass Wall & Lead Industries, Ltd., Newcastle-upon-Tyne, England. Australia is the principal source of zircon for the English companies.

TECHNOLOGY

The specific gravity of zircon (4.7) enables it to be concentrated with other heavy minerals by gravity methods. Clean zircon is produced from heavy-mineral concentrates by a combination of drying, screening, electrostatic, and electro-magnetic processes. contrast to ilmenite, rutile, garnet, and many other heavy minerals, is nonconductive and can be separated, with monazite, by electrostatic methods. Monazite, which is slightly magnetic, can be separated from zircon by electromagnets. To obtain clean zircon, the zircon-rich tailings from the electrostatic-electromagnetic processes are again subjected to gravity concentration (spirals or tables) to eliminate light, nonconductive minerals, such as quartz and feldspar. The enriched product is then usually dried at 1,200° F. to remove organic stainings and treated in high tension separators and induced roll magnetic separators to remove residual conductive and magnetic A 99-percent zircon product is usually obtained by these methods.

Anhydrous zirconium tetrachloride, the starting material in the magnesium-reduction (Kroll) process for production of ductile zirconium, is now produced by direct chlorination of a zirconium oxide-carbon mixture. The zirconium oxide used in this process is obtained from crude ZrCl4, which has been processed to remove the hafnium. Crude ZrCl₄ is prepared by smelting zircon sand with an excess of carbon, followed by chlorination of the resultant zirconium

Zirconium metal is also produced by reduction of ZrCl₄ by sodium (Hunter process), by reduction of ZrO₂ by metallic calcium (developed by the Westinghouse Corp.), and by the iodide process (Van-Arkel-de Boer, used by the Foote Mineral Co.).9

High-temperature experiments with zirconium and zirconium compounds conducted by the Bureau of Mines were described, 10 and a report on the mechanical properties of zirconium was published by Sylvania Electric Products, Inc., Atomic Energy Div., December 9, 1952.

Zirconium alloy investigations received considerable attention in 1952.11 A patent was issued for a pyrophoric alloy of lead and zirconium, which alloy when subjected to a sudden heavy impact is pulverized and set afire. Applications in ammunition as a tracer, as a means for igniting an incendiary mixture, and as an aid to spotting bullet impacts are reported. 12

⁸ Stephens, W. W., and Gilbert, H. L., Chlorination of Zirconium Oxide: Trans. Am. Inst. Min. and Met. Eng., Jour. Metals, vol. 4, No. 7, July 1952, pp. 733-737.

9 Merriman, A. D., The Metallurgy of Zirconium, Its Extraction, Fabrication, and Properties: Metal Treatment and Drop Forging (London), vol. 19, No. 33, pp. 365-371; No. 84, pp. 413-417.

10 Kroll, W. J., Carmody, W. R., and Schlechten, A. W., High-Temperature Experiments with Zirconium and Zirconium Compounds: Bureau of Mines Rept. of Investigations 4915, 1952, 31 pp.

11 Hayes, E. T., Carpenter, R. L., Cavett, A. D., Kato, H., O'Brien, W. L., and Paasche, D. G., Bureau of Mines Zirconium Alloy Investigation: WADC-TR-52-236 (available from Document Service Center, Knott Bldg., Dayton, Ohio), November 1952, 32 pp.

Frost, P. D., Zirconium-Cerium Master Alloys for Magnesium: Battelle Memorial Inst., Columbus, Ohio (Contract NOa(s) 51-001-c), July 1952, 2 pp.

Schwope, A. D., and Chubb, W., Small Additions Raise Strength of Zirconium at Elevated Temperatures: Jour. Metals, vol. 4, No. 11, November 1952, pp. 1138-1140.

Ayres, Charles F., Zirconium: Light Metal Age, vol. 10, Nos. 9, 10, October 1952, pp. 10-20.

12 Alexander, Peter P. (assigned to Metal Hydrides, Inc.), Zirconium-Lead Alloy: U. S. Patent 2,611,316, Sept. 23, 1952.

Sept. 23, 1952.

Increased interest in zirconium metal, alloys, and compounds resulted in the description of several zirconium analytical methods.¹³

RESERVES

Zircon is unique among rare-metal minerals in that deposits from which zircon can be extracted economically are plentiful. is classed as a rare metal not because of its relative scarcity in the earth's crust (0.02 to 0.03 percent), but because of the difficulty in extracting the metal from its ores. Zirconium is the ninth most common metal in the earth's crust and thus more abundant than copper, lead, zinc, nickel, and some other familiar metals. A fortunate aspect of zircon is that its specific gravity and resistance to abrasion enable it to be concentrated in placer deposits from which it may be extracted cheaply.

Known placer deposits in Florida, California, Idaho, and Oregon are estimated to contain 15 million tons of zircon. These reserves could be increased substantially if the demand for zircon warranted

intensive, exploratory campaigns.

Zircon reserves in other parts of the world are known to be extensive. Quantitative data, however, are lacking. In Australia, a 75-mile stretch of beach between Stradbroke Island, Queensland, to Lennox Head, New South Wales, is reported to contain 1 million tons of zircon in high-grade deposits containing more than 300 pounds of heavy minerals per ton.14 Extremely large reserves of lower-grade material are known to exist.

Reserves of baddeleyite (ZrO₂), in Brazil are estimated to be on the order of 2 million tons. Large deposits of zircon are also known in the States of Baia, Espírito Santo, and Rio de Janeiro. Deposits have been found in British, Dutch, and French Guiana and other countries of South America but have not been developed.

Large deposits of zircon are known to occur in India, at the mouth of the Nile River in Egypt, and in beach sands in French West Africa.

WORLD REVIEW

Australia.—Plans to exploit large, low-grade (2-3 percent heavy minerals) sand deposits at Stradbroke Island, Queensland, by dredging were initiated by the Zinc Corp., 95 Collins St., Melbourne. The deposits are estimated to contain 10 to 15 pounds each of zircon and rutile per ton of sand.

Belgian Congo.—An abundance of zircon has been found in certain alluvials of the following rivers: Yebu, Aruwimi, Ituri, Lowa, Ulindi, Zalya, Luizi, Kalasangashi, Musele, Mayama, and the Lulua.

deposits have not been exploited.16

¹³ Horton, A. D., Spectrophotometric Determination of Zirconium: Oak Ridge National Laboratory (AECD-3482; CF-52-12-62), declassified Dec. 22, 1952, 16 pp.
Oesper, Ralph E., Dunleavy, Raymond A., and Klingenberg, Joseph J., Rapid Method for Determination of Small Amounts of Zirconium: Anal. Chem., vol. 24, No. 9, September 1952, pp. 1492-1494.
Dhar, S. K., and Das Gupta, A. K., Colormetric and Volumetric Estimation of Zirconium: Jour. Sci. Ind. Research (India) Bii, November 1952, pp. 500-501.
Determination of Selected Metals: Chem. Age, vol. 66, No. 1714, May 17, 1952, p. 750.

14 Gardner, D. E., Mineral Sources of Australia, Summary Rept. No. 1, Zirconium: Commonwealth of Australia, Bureau of Mineral Resources, Geology, and Geophysics, rev. July 1951.

15 Mining Journal (London), vol. 239, No. 6118, Nov. 21, 1952, p. 569.

16 Murdoch, Thomas G., The Undeveloped Mineral Resources of the Belgian Congo: Am. Consulate Elisabethville, Belgian Congo, State Dept. Dispatch 22, Feb. 12, 1952, 12 pp.

Brazil.—Baddeleyite (ZrO₂) occurs in the Pocos de Caldas district, a mountainous plateau of acidic, igneous rocks at about 3,600 feet elevation. The principal deposits are in an elliptical area about 20 by 15 miles in the States of São Paulo and Minas Gerais approximately 130 miles north of the city of São Paulo. About 3,000 tons are exported annually to the United States, England, Norway, and Germany. About 200 tons are consumed annually in São Paulo, Brazil, by the refractory and ceramic industry.

Egypt.—About 1,200 tons of zircon concentrates (64 percent ZrO₂) are produced annually from large black sand deposits at the mouth of

the Nile River.

French West Africa.—Zircon is produced as a coproduct with ilmen-

ite from beach deposits of Senegal and Casamance.

United Kingdom.—An estimated 10,000 tons of zircon was consumed by the refractory industry in England in 1952. Murex, Ltd., Rainham, England, installed facilities to produce zirconium sheet up to 22 inches wide by 5 feet long for use in the chemical industry. A plant for the production of zirconium compounds for use in the ceramic and refractory industries was completed at Newcastle-upon-Tyne by Goodlass Wall & Lead Industries, Ltd. 18

HAFNIUM

Hafnium, a metallic element discovered in 1923, was little more than a laboratory curiosity until 1951. The metallurgical development of processes to produce hafnium-free zirconium metal has resulted in the availability of larger quantities of hafnium for experimental

nurnoses.

Source.—Hafnium and zirconium have many similar properties and occur together in ore minerals. Known Zr-Hf minerals geneally contain much more zirconium than hafnium. Recent studies of zircon from many parts of the world indicate that zircon usually contains 1–1.5 percent hafnium. Altered zircon (for example, the mineral cyrtolite) may contain as much as 17 percent hafnium. There are no known commercial deposits of altered zircon minerals; however, unaltered zircon reserves represent a substantial potential source of hafnium. The hafnium content of the crust of the earth has been estimated to be greater than mercury, columbium, tantalum, or silver. Many high-hafnium minerals exhibit marked radioactivity; the relationship, however, between uranium-thorium and hafnium is not clearly understood.

Properties.—The specific gravity of hafnium (13.3) and atomic weight (178.6) are approximately twice those of zirconium. Hafnium resembles zirconium closely but has a higher melting point (3,590° F.), less ductility, higher electron emission, and a very strong tendency to absorb slow neutrons. This latter property makes hafnium an objectionable impurity in zirconium metal used in nuclear-reactor plant design. The probability that a hafnium nucleus will capture a thermal neutron

is approximately 550 times over that of a zirconium nucleus.

Pure hafnium, produced under controlled conditions, is a bright, ductile metal. Although somewhat more difficult to work than duc-

Metal Industry, Rare-Metal Fabrication: Vol. 80, No. 4, Jan. 25, 1952, p. 66.
 Metal Bulletin (London), No. 3703, June 24, 1952, p. 24.

tile zirconium because of its greater tendency to absorb gases, hafnium can be bent, deep-drawn, formed, and cold-worked to a maximum reduction of 30 percent between anneals. It can be hammered cold, drawn into wire, and rolled into sheet. Hafnium has excellent resistance to oxidation in still air and has corrosion resistance to certain

acids and bases comparable to zirconium.

Production.—Several tons of hafnium metal containing less than 2 percent zirconium have been produced by the Bureau of Mines at Albany, Oreg. De Rewal International Rare Metals Co., Philadelphia, Pa., is a pioneer in the production of hafnium metal and compounds. Fairmount Chemical Co., Newark, N. J., reportedly produces hafnium oxide; Metal Hydrides, Inc., Beverly, Mass., has experimented with a hafnium-nickel alloy; Zirconium Co., Flemington, N. J., produces hafnium oxychloride; F. W. Berk & Co., Woodridge, N. J., produces the oxide; and Foote Mineral Co., Philadelphia, Pa., produces iodide crystal bar hafnium from hafnium sponge pro-

duced by the Bureau of Mines, Albany, Oreg.

Uses.—Most of the hafnium produced to date has been consigned to the Atomic Energy Commission; specific applications have not been revealed. The small quantities of metal and compounds available for experimental industrial applications have been used in chemical and physical research to determine their properties. The oxide and carbide of hafnium are among the most refractory compounds, with melting points of 2,664° and 3,787° C., respectively. Hafnium boride is an extremely hard material. The oxide and salts of hafnium exhibit catalytic properties similar to their zirconium homologues. The high melting point of hafnium and its high degree of electron emission suggest uses in radio tubes, incandescent lamps, and rectifiers and cathodes for X-ray tubes. The high thermal neutron absorption cross-section suggests use for shielding against radioactivity. As a metal for jewelry, hafnium is heavy, probably as tarnish resisting as gold, and can be formed and polished beautifully.

Prices.—In 1952, De Rewal International Rare Metals Co. quoted hafnium metal (99.5 percent Hf) and hafnium oxide (99 percent HfO₂) at \$22 per gram (100-gram lots). This company announced plans to expand production with expectations of offering hafnium metal

at \$150 per pound.

Technology.—Hafnium can be separated from zirconium by fractional crystallization, fractional precipitation, by the use of ion exchange resins, or by liquid-liquid separation. In the processing of zirconium, commercial zirconium tetrachloride containing hafnium is processed to effect the hafnium separation. Details of this process are not available for publication. The resultant hafnium hydroxide is calcined to hafnium oxide, which is then processed in the same manner as zirconium oxide, with only slight operational changes, to produce hafnium sponge metal. Ductile hafnium metal produced from hafnium sponge by the iodide process (Foote Mineral Co.) contains less than 1 percent zirconium. The high reactivity and sensitivity of hafnium (and zirconium) to the effects of oxygen, nitrogen, and other contaminating elements poses special problems in the production of usefully ductile metal.

Hafnium analyses are usually performed by making a chemical separation and extracting hafnium and zirconium in the form of com-

bined oxide. The oxide is weighed and the percentage determined. The ratio of hafnium to zirconium plus hafnium is determined by X-ray spectroscopy. Results are usually reported in terms of this ratio because, regardless of the purity of the ore sample or the purity of the chloride, oxide, or metal, from that ore, the ratio of hafnium to hafnium plus zirconium is numerically the same. If desired, however, the hafnium content of the original sample can be calculated.

Outlook.—The availability of enough hafnium metal and compounds for industrial purposes may depend upon expanded production of hafnium-free zirconium. If hafnium is not an objectionable impurity in zirconium used for nonreactor applications or unless a strong demand develops for hafnium and its compounds, the large-scale separation of the two metals probably will be undertaken only if a low-cost process is developed.

SELECTED BIBLIOGRAPHY

Von Heresy, G. The Discovery and Properties of Hafnium. Chem. Revs.,

vol. 2, No. 1, April 1925. EE, IVAN O. The Mineralogy of Hafnium. Chem. Revs., vol. 5, No. 1, Feb-LEE, IVAN O.

ruary 1928.

Tyler, Paul M. Hafnium. Bureau of Mines Inf. Circ. 6457, 1931, 11 pp.

Kroll, W. J. Production and Uses of Rare Metals. Min. and Met., vol. 27,

No. 473, May 1946, p. 262.

Boote Mineral Co. Phila. Pa.. Foote Prints, vol.

Hafnium. Foote Mineral Co., Phila., Pa., Foote Prints, vol. MARTIN, D. R. 21, No. 1, 1949, p. 8.

21, No. 1, 1949, p. 8.

Duwez, P. The Allotropic Transformation of Hafnium. Jour. Appl. Phys., vol. 22, No. 9, September 1951, p. 1174.

Litton, Felix B. Preparation and Some Properties of Hafnium Metal. Jour. Electrochem. Soc., vol. 98, No. 12, December 1951, pp. 488-494.

Adenstadt, H. K. Physical, Thermal, and Electrical Properties of Hafnium and High Purity Zirconium. Paper presented at midwinter meeting of Am. Soc. Metals, Pittsburgh, Jan. 31-Feb. 1, 1952.

Everhatt, John L. Hafnium Metal—Its Properties and Future. Materials and Methods, vol. 36, No. 5, November 1952, pp. 1195-1197.

Minor Metals

By E. J. Carlson, H. D. Keiser, and J. D. Sargent 2

CESIUM AND RUBIDIUM 3

ESIUM and rubidium are two soft, silvery-white, alkali metals that are usually associated in nature. They tarnish rapidly and, if placed in dry oxygen at room temperature, will ignite spontaneously. The metals are stored in a vacuum or kept immersed in an inert liquid. Pollucite, a cesium-aluminum silicate containing about 34 percent Cs₂O, is the principal ore mineral of cesium and often contains from a fraction to 1.5 percent Rb₂O. Commercial quantities of pollucite have been found in the pegmatites of Maine, South Dakota, Sweden, and South-West Africa. Lepidolite, a lithium mica containing 1 to 3 percent Rb₂O and smaller amounts of Cs₂O, is the richest source mineral of rubidium. Over 80 percent of the lepidolite consumed domestically in 1952 was imported from the pegmatite mines of South-West Africa. Other sources of lepidolite were South Dakota, Colorado, California, and Norway.

Domestic Production.—Small quantities of cesium and rubidium metals and compounds were produced in 1952 by Fairmount Chemical Co., Newark, N. J.; DeRewal International Rare Metals Co., Philadelphia, Pa.; Maywood Chemical Works, Maywood, N. J.; and A. D. Mackay, Inc., New York, N. Y. Harshaw Chemical Co., Cleveland, Ohio, and Foote Mineral Co., Philadelphia, Pa., produced some

compounds of cesium and rubidium.

Uses.—Cesium was used in scintillator counters and various optical and detecting devices, such as the sniperscope. This military instrument is used to detect enemy objects in the dark and is similar to radar in operation. Other uses for cesium were as the active agent in the emission of electrons in photoelectric cells; in vapor lamps for infrared signaling by the military; and in cesium-vapor rectifiers. The National Bureau of Standards explored the value of cesium as a microwave frequency standard in electronics and spectroscopy. work resulted in the making of an atomic clock, based upon the frequency of the vibrations of cesium atoms. This clock, which never needs winding, would show an error of not greater than 1 second in 300 years.4

¹ Commodity-indu try analyst.
2 Unless otherwise noted, figures on imports compiled by Mae B. Price and Elsie D. Page, of the Bureau of Mines, from records of the U. S. Department of Commerce.
3 Prepared by E. J. Carlson.
4 Lyons, Harold, Spectral Lines as Frequency Standards: Nat. Bur. of Standards Rept. 1948, Aug. 8, 1952,

Rubidium was generally used in 1952 for the same applications as cesium and often in combination with that metal; its principal use was in the manufacture of vacuum tubes and photoelectric cells. Rubidium compounds have been used in medicine for treating goiter and syphilis, and rubidium-mercury amalgams have been used as catalytic agents in the hydrogenation of certain compounds.

Prices.—Cesium metal, C. P. and double-distilled, in sealed-glass tubes, was quoted at \$4 per gram; cesium chloride and cesium bromide, 5-gram lots, \$2 per gram; and cesium sulfate, 5-gram lots, \$3.50 per gram. Pollucite ore, chiefly foreign, was sold at \$400-\$500 per ton,

depending on Cs₂O content.

Rubidium metal, C. P. and double-distilled, in sealed-glass tubes, was quoted at \$4.50 per gram; rubidium chloride, 5-gram lots, \$3.50 per gram; and rubidium iodide, 5-gram lots, \$3 per gram.

GALLIUM 5

Gallium at normal room temperatures is a solid, gray metal, but at 86° F. the metal becomes liquid and changes to a silver color. The element remains in a liquid state up to 3,601° F., its boiling point, and thus has one of the longest liquid phases among elements or compounds. Like water, it expands upon solidification and therefore must be stored in flexible containers. Gallium is extremely corrosive in its attack on other metals, particularly at elevated temperatures. The element is widely distributed in the crust of the earth, but no minerals are known to contain gallium as a major constituent. Germanite, a complex copper-zinc-germanium-arsenic sulfide, normally contains 0.1 to 0.8 percent gallium. Some zinc, tin, and aluminum ores contain 0.002 to 0.05 percent gallium.

Domestic Production.—Gallium is produced in the United States from zinc flue dusts, electrolytic-zinc-plant residues, and circulating liquors of the Bayer aluminum process. The normal domestic production of the metal is a few hundred pounds annually, a quantity adequate to satisfy demand. No output, however, was reported for 1952, inasmuch as 1951 end stocks were adequate to supply market needs. The potential production, if new uses for gallium were developed, might be measured in tons. In past years gallium has been produced by the Aluminum Ore Co., East St. Louis, Ill.; the Anaconda Copper Mining Co., Great Falls, Mont.; and the Eagle-Picher Co., Joplin, Mo.

Uses.—Gallium has promise as a heat-transfer liquid owing to its unique properties. A research study was made by the Battelle Memorial Institute to determine the effect of alloying on the melting point of gallium and to study the corrosion resistance of possible container materials. Sn-Zn and Pb-Sn were found to be suitable diluents. Zinc and tin were found to form a ternary eutectic with gallium, located at 82 percent Ga—12 percent Sn—6 percent Zn, melting at 17° C. It was found that As, Ca, Ce, Mg, Sb, Si, and Ti do not lower the melting point of gallium. The only metals found capable of containing gallium at elevated temperatures were tungsten and tantalum.

Prepared by E. J. Carlson.
 Evans, R. M., and Jaffee, R. I., Low-Melting Gallium Alloys: Jour. Metals, February 1952, pp. 154-158.

Small quantities of gallium were used in direct-reading fused-quartz thermometers, in dental alloys, in selenium rectifiers, and as optical mirror backings. Radioactive gallium has been used in diagnosing and treating bone cancer. A minor application of the metal was as a liquid seal on the inlet system of mass spectrometers, for analyzing hydrocarbons with high boiling points.

Prices.—Gallium metal, 99.9 percent pure, was quoted in 1952 at \$4.50 per gram in lots less than 100 grams; \$3.50, 100 to 999 grams:

and \$3, 1,000 to 2,499 grams.

GERMANIUM 7

Both production and consumption of germanium increased markedly in 1952. Toward the close of the year another producer with an annual capacity of 5,000 pounds entered the industry. Manufacture of germanium semiconductor devices expanded substantially, and a number of new products with such devices as components appeared on the market.

Much discussion prevailed during 1952 relative to the transistor, particularly the junction transistor—the most recent type of germanium semiconductor device which seemed destined to revolutionize That the junction transistor, however, had not as yet electronics. been perfected and would not completely supersede the point-contact transistor was recognized.8 The point-contact transistor still retained the advantages of producing current gain directly, operating at higher frequencies, and being less difficult and cheaper to manufacture than the junction transistor.

Refined germanium metal of extremely high purity was made with scientific precision in 1952. Impurities in the metal were measured in parts per trillion rather than in parts per million. Necessity for such exactitude was indicated by the statement that 1 part of antimony per 100 million parts of germanium doubled the conductivity of

the metal.9

The prediction was made that a new industry will grow from germanium which will rival the chemical industry in size. 10

comprehensive reviews of germanium were published. 11 12-16

Domestic Production.—Germanium production in the United States in 1952 was almost two and a half times as much as in 1951. The major part of the output was derived from zinc concentrate produced in the tri-State district of Kansas, Missouri, and Oklahoma. The Eagle-Picher Co. was again, by a wide margin, the principal producer. Significant quantities were also recovered in 1952 by the American Steel & Wire Co., Donora, Pa.; American Zinc Co. of Illinois, Fair-

⁷ Prepared by H. D. Keiser and J. D. Sargent.
8 Sparks, Morgan, The Junction Transistor: Sci. Am., vol. 187, No. 1, July 1952, pp. 29-32.
9 Rugare, Anthony S., The Metal Germanium and Its Use in the Electronics Industry: Metal Progress, August 1952, vol. 62, No. 2, pp. 97-103.
10 Electronics, Germanium—Threat or Promise to the Electronics Industry: Vol. 25, No. 2, February 1859, pp. 18 20

^{1952,} pp. 18, 20.

Works cited in footnotes 8, 9, and 10.
O'Connor, Joseph A., Germanium's Electronic Upsurge: Chem. Eng., vol. 59, No. 4, April 1952, pp.

¹² O'Connor, Joseph A., Germanium's Electronic Upsurge: Unem. Eng., vol. 59, No. 4, April 1952, pp. 158-160, 290.

13 Thompson, A. P., and Musgrave, J. R., Germanium, Produced as a Byproduct, Has Become of Primary Importance: Jour. Metals, vol. 4, No. 11, November 1952, pp. 1132-1137.

14 Canadian Metals, Germanium, the Unknown Element: Vol. 15, No. 12, November 1952, p. 28.

15 Engineering and Mining Journal, Germanium Promises an Early Revolution in Electronics: Vol. 153, No. 2, February 1952, pp. 154, 156, 159.

16 Iron Age, Germanium: Vol. 170, No. 14, Oct. 9, 1952, p. 289.

mont City, Ill.; and Saratoga Laboratories, Saratoga Springs, N. Y. The new germanium-recovery unit at the Fairmont City, Ill., plant of American Zinc Co. of Illinois, with a designed annual capacity of 5,000 pounds of germanium dioxide, was placed in operation on December 18.

A tax-amortization application filed by the Eagle-Picher Co. in 1951 was approved in May 1952, in connection with the company's contemplated enlargement of germanium research and production facilities at Joplin, Mo. Construction during 1953 of a new plant at Miami, Okla., for production of germanium was announced by the

Eagle-Picher Co.

Consumption and Uses.—Apparent consumption of germanium and its compounds in 1952 more than doubled that in 1951. Germanium dioxide continued to be the major form shipped by producers, and smaller quantities of germanium metal and germanium tetrachloride were required by industry. Manufacturers of semiconductor devices consumed virtually all the germanium shipped, converting it to extremely high purity metal for use in the production of diodes, transistors, and rectifiers. Over 10,000,000 diodes were produced in 1952

compared with about 6,000,000 in 1951.

Although many manufacturers of electronic equipment were using germanium diodes and transistors in their products, only a few such firms were making those component semiconductor devices. diodes were produced by the Hughes Aircraft Co., Culver City, Calif.; Kemtron Electron Products, Inc., Salem, Mass.; Philco Corp., Philadelphia, Pa.; Radio Receptor Co., New York, N. Y.; and Sylvania Electric Products, Inc., Woburn, Mass. Transistors were produced by Federated Semi-Conductor Co., New York, N. Y., and Raytheon Manufacturing Co., Newton, Mass. Both diodes and transistors were produced by Hytron Radio Electronics Co., Danvers, Mass.; General Electric Co., Syracuse, N. Y.; National Union Radio Corp., Hatboro, Pa.; Radio Corp. of America, Harrison, N. J.; Transistor Products, Inc., Boston, Mass.; and Western Electric Co., Allentown, Pa.17

In 1952 the Bell System began using transistors instead of vacuum tubes in its long-distance dialing facilities at Englewood, N. J., enabling telephone subscribers in that locality to reach about 11,000,-000 telephones in a dozen areas, from coast to coast, without the assistance of an operator.¹⁸ Construction of a pilot plant by Western Electric Co. in the near future to produce about 240,000 transistors a

year for long-distance dial-telephone networks was reported.¹⁹

Some magnesium germanate was utilized as a phosphor in fluorescent lamps.20 Other applications of germanium that appeared promising were in the infrared spectroscope and other infrared optical instruments, inasmuch as germanium is transparent to infrared radiation; in the production of germanium glass, which has a high index of refraction; and for various photoelectric and thermoelectric purposes.21

Stocks.—Stocks of germanium held by producers at the close of 1952 were about four times as large as those held at the close of 1951.

¹⁷ Electronics Production Resources Agency, Department of Defense.
18 American Telephone & Telegraph Co., New York, N. Y.: Annual Rept. for 1952, p. 9. Journal of Metals, vol. 4, No. 12, December 1952, p. 1261.
19 American Metal Market, Germanium, the Strange Metal: Vol. 59, No. 93, May 14, 1952, p. 2.
20 Work cited in footnote 13.
21 Work cited in footnote 16.

Prices.—Prices quoted for germanium in 1952 reflected an unstabilized market, particularly in the first half of the year. E&MJ Metal and Mineral Markets quoted germanium metal at \$180 per pound from the beginning of the year until September 11; beginning September 11 and until October 2 the quotation was published as nominal; on October 2 the quotation advanced to \$340 per pound and continued at that level for the remainder of the year. On October 9 E&MJ Metal and Mineral Markets began quoting germanium dioxide, publishing a quotation of \$142 per pound, which continued unchanged up to the close of the year.

The American Metal Market quoted germanium metal, 99.9 percent, at \$180 per pound from the beginning of the year through May 14; no quotation was published over the period of May 15-19. On May 20 germanium metal, 99.9 percent, was quoted at \$340 per pound and dioxide, high purity, at \$140 per pound. These quotations continued until October 2, when germanium metal, 99.9 percent, was quoted nominally at \$350 per pound, with the quotation for dioxide, high purity, continuing at \$140 per pound. For the remainder of the year

the quotations were unchanged.

Foreign Trade.—In 1952 a total of 203 pounds of germanium dioxide, valued at \$48,475, was imported from West Germany. United Kingdom, and Belgium.²² Data on exports of germanium

were not available.

Technology.—Inasmuch as the demand for germanium appeared destined to increase materially over the next few years, the Bureau of Mines search for new sources of germanium was intensified in 1952. Germanium was found in zinc sulfide concentrates other than those produced in the tri-State district (Kansas, Missouri, and Oklahoma) and in certain final and intermediate products of processing at various coal- and coke-burning, chemical, and electrolytic plants. byproducts, although not high in germanium content, appeared to be the most promising source for quantity production of the metal.

The Bureau of Mines, in cooperation with the Signal Corps, United States Army, initiated a research and development program to study coal and major coal-consuming plants to determine the germanium content of various products at all stages of coal-burning operations. Improvement and standardization of analytical methods for germanium were included in the program. No quick, simple test for ger-

manium had been found by the close of 1952.

Others engaged in extensive research on the germanium content of coal included the Federal Geological Survey, West Virginia Geological Survey, Pennsylvania State College, Illinois Geological Survey, Pennsylvania Coal & Coke Corp., and Eagle-Picher Co.

The Federal Geological Survey, in a comprehensive, long-range study of the minor elements in coal ash, found that concentrations appear to be limited in vertical as well as lateral extent of coal beds. During 1952, according to Taisia Stadnichenko of that agency, the Survey sampled and studied coal beds in Colorado, Indiana, Kentucky, Montana, New Mexico, Utah, and Wyoming. Pennsylvania State College investigated the germanium content of the Pennsylvania anthracite fields. A letter from C. C. Wright, of the college faculty,

²² U.S. Tariff Commission.

states that the bottom part of the Ross bed was found to be especially

promising.

Investigations of germanium in coal indicated that, in some instances, the value of the germanium content exceeded the selling price of the coal. The germanium content of British, German, and Russian coals, as recorded in the literature of the last 20 years, was reviewed.23

In the course of a Bureau of Mines metallurgical investigation of zinc concentrate produced in the tri-State district of Kansas, Missouri, and Oklahoma, over 90 percent of the germanium in the concentrate was removed by utilizing inert atmospheres, reducing atmospheres, or partial vacuum and temperatures ranging from 900° to 1,050° C.24

World Review.—Union Minière du Haut Katanga, in the Belgian Congo, and Tsumeb Corp., Ltd., in South-West Africa, appeared to be the most promising foreign potential producers of germanium. Flue dusts at the former's Lubumbashi smelter were said to contain economically attractive percentages of germanium. The germanium potential of Tsumeb Corp. was indicated in the following excerpt from a letter to the Bureau of Mines from H. DeWitt Smith, managing director:

During 1952 Tsumeb Corporation made sales of approximately 15 tons of germanium ore, of approximately 4 to 5 percent germanium content, to France and Western Germany. This represented the balance of approximately 30 tons of this type of ore which had been mined by former German owners at Tsumeb many years ago.

Tsumeb Corporation is carrying out intensive research on germanium recovery at its own research laboratory at Tsumeb, South-West Africa, through the Battelle Memorial Institute, the American Cyanamid Company at Stamford, and through the Newmont research laboratory which is in the process of being set up at Grass Valley, California.

On an ore production of 600,000 tons per annum at Tsumeb, which rate we expect to achieve before the end of 1954, we anticipate a germanium content of approximately 0.0175 percent, equivalent to 220,000 pounds of germanium. In our normal selective flotation operations at Tsumeb we would expect to produce 150,000 tons of copper-lead concentrates carrying 0.04 percent germanium, equivalent to 120,000 pounds of germanium. During the calendar year 1952, our production of copper-lead concentrates amounted to approximately 115,000 tons, of which half was sent to El Paso [Texas] and the balance to Hoboken [Belgium] for smelting.

The European firm S. A. de la Vieille Montagne began recovering germanium in 1952.25

INDIUM 26

Indium is the softest metal stable in air; it is readily scratched with This silver-white metal is highly plastic and deforms under compression almost indefinitely. Indium does not workharden and actually softens during rolling because the recrystallization point is below room temperature. The metal and most of its alloys resist alkali corrosion and will adhere to smooth surfaces, including No minerals rich in indium have been found. blendes and complex ores of lead-tin-antimony sulfides have been found to contain up to 1 percent of the metal.

* Prepared by E. J. Carlson.

McCabe, Louis C., Atmospheric Pollution: Ind. Eng. Chem., vol. 44, No. 3, March 1952, pp. 113A,

¹¹⁴A, 116A.

*** Kenworthy, H., and Absalom, J. S., Separation of Lead, Cadmium, and Germanium Sulfides from Zinc Sulfide Concentrates: Bureau of Mines Rept. of Investigations 4876, 1952, 7 pp.

*** American Metal Market, vol. 60, No. 89, May 1, 1953, p. 1.

Domestic Production.—Commercial production of indium is obtained by treating residues, dusts, and dross accumulated in refining zinc and lead ores. Domestic output of indium in 1952 decreased about 25 percent compared to 1951, and producers' year-end stocks were reduced over 50 percent. Principal producers of indium were the Anaconda Copper Mining Co., Great Falls, Mont.; Cerro de Pasco Copper Corp., Brooklyn, N. Y.; Belmont Smelting & Refining Co., Brooklyn, N. Y.; and American Smelting & Refining Co., Denver,

Colo., and Perth Amboy, N. J.

Uses.—The principal uses for indium in 1952 were, as in prior years, as a diffused plating for engine bearings; as a constituent in solders and brazing alloys; as plating for jewelry and other metals used for decorative purposes; and as a bond to join glass to glass or glass to metal. New uses suggested for the metal were: As a lubricant with graphite in internal-combustion engines, dies and molds, metal-disk clutches, and brakes; as an additive to the bath for chrome plating, to reduce brittleness of the plated chrome; and, with germanium, in the electronics industry for making junction-type transistors to replace vacuum tubes.

Prices.—Quotations on indium metal, electrolytic grade, 99.9 percent, have remained constant from 1946 through 1952 at \$2.25 per

World Review.—Consolidated Mining & Smelting Co. of Canada, Ltd., revealed in 1952 that it had developed a new process for making pure indium metal and could go into production at the rate of 35 tons a year.27

RARE-EARTH MINERALS AND METALS 28

Recent discoveries of monazite and bastnaesite deposits in the United States indicate that the Nation may soon become independent of foreign sources for rare-earth metals, which are highly important in connection with defense. Monazite, a rare-earth phosphate containing thorium, was produced in 1952 from beach sands in Florida and placer alluvium in Idaho. Bureau of Mines investigations, partly on a cooperative basis with the Federal Geological Survey, indicated minable deposits of monazite sands in North Carolina, South Carolina, Georgia, and Florida. Other Bureau investigations proved the existence of rich monazite alluvials in Idaho, Montana, and Wyoming. The Bureau, in cooperation with the Atomic Energy Commission, continued field investigations of potentially important monazite deposits in the Southeastern States, Western States, and Alaska. Dredge and plant sampling, with related ore-dressing studies, at Bureau stations developed techniques and equipment that helped producers to increase monazite recoveries considerably.

In the late summer of 1952 several lode deposits of monazite were discovered in Lemhi County, Idaho, on the western slope of the Continental Divide. The veinlike ore bodies have a banded appearance and consist mainly of calcite in some deposits and quartz in others. The monazite appears to be disseminated in the light-color gangue materials, although some irregular lenses in the ore bodies contain 10

 ²⁷ Chemical Week, vol. 71, No. 20, Nov. 15, 1952, p. 52.
 ²⁸ Prepared by E. J. Carlson.

to 50 percent monazite. Ilmenite and magnetite are sometimes prominent accessory minerals, and small quantities of radioactive opaque minerals are noticeable. A systematic evaluation of these deposits could not be completed by the Bureau of Mines in 1952 because of

heavy and early snows in the high, mountainous area.

Domestic Production.—Monazite production statistics are classified because the mineral contains thorium and comes under the regulations of the Atomic Energy Act of 1946. A small increase in production compared with that in 1951 was noted in 1952. The principal producers were Baumhoff-Marshall, Inc., Warren Dredging Corp., and Idaho-Canadian Dredging Co., all of Boise, Idaho. Another substantial producer was the Humphreys Gold Corp., Jacksonville, Fla. Bastnaesite concentrates were produced by the Molybdenum Corp. of America at its property in San Bernardino County, Calif.

The principal processors of monazite ores were Lindsay Chemical

Co., West Chicago, Ill.; Rare Earths, Inc., Paterson, N. J.; and Maywood Chemical Works, Maywood, N. J. Bastnaesite concentrates were processed by the Lindsay Chemical Co.

The following firms produced misch metal and ferrocerium: Cerium Metals Corp., New York, N. Y.; New Process Metals Corp., Newark, N. J.; General Cerium Corp., Edgewater, N. J.; American Light Alloys, Little Falls, N. J.; Matchless Metals Co., Flushing, N. Y.; and Ameri-

can Metallurgical Products Co., Pittsburgh, Pa.

Uses.—Rare-earth oxides and fluorides are superior to any known salts of other metals for use in carbon arc electrode cores to produce high luminosity. Misch metal, the mixture of all the rare-earth elements in metallic form, has been alloyed with aluminum, copper, magnesium, nickel, and zinc. The resulting alloys, with improved properties, are important in the construction of aircraft, jet engines, and gas turbines. Small quantities of misch metal added to iron and steel melts act as scavengers to remove many undesirable impurities, while larger quantities of misch metal will make cast iron malleable and stainless steel formable. The uses of rare-earth metals as alloying materials can be expected to expand greatly as research is continued by both Government agencies and private industry.

An important use in 1952 for the rare earths was in making ferrocerium for lighter flints, tracer bullets, and luminescent shells. The rare earths were also used in the manufacture of special glass for packaging food to prevent photochemical reactions that result in food deterioration, in waterproofing and mildewproofing, weighting and dyeing of fabrics, and compounding of printers inks and fabrics. Small quantities of rare earths were used as a scavenger in the production of explosives, as a constituent in the fabrication of high-temperature crucibles, and as an ingredient in the production of aerial photographic lenses, radio condensers, beauty preparations, and

medicines.

Prices.—Monazite was quoted from March 27, 1952, through December 18, 1952, in the E&MJ Metal and Mineral Markets as follows: Total rare-earth oxides plus thoria, f. o. b. domestic mill, 16½ cents per pound, 55 percent; 18% cents per pound, 64 percent; and 19 cents per pound, 65 percent. No prices were quoted for bastnaesite ores or concentrates, as the single producer made individual contracts with buyers.

Misch metal and ferrocerium were quoted at \$4.50 and \$8, respec-High-purity cerium metal was offered at \$18 per pound. Rare-earth chlorides were priced at 45 cents-50 cents per pound.

World Review.—India and Brazil, the principal producers of monazite sands during the last 40 years, maintained restrictions on the export of monazite in 1952, and no domestic processors reported any imports from those countries or from other foreign sources. Indian Rare Earths, Ltd., began processing monazite sands the latter part of 1952 at its plant at Alwaye, Travancore, India. The plant has a reported capacity of 1,500 tons a year and will produce both thorium and rare-earth materials.29

No data were available in 1952 relative to monazite production in Malaya, or where such production, which amounted in past years to several hundred tons annually, was marketed. In Ceylon, a pilot plant produced a few tons of monazite from beach sands, and that Government appeared interested in having either United States or other foreign organizations exploit both monazite and ilmenite

deposits in Ceylon.

A lode deposit of monazite was reported to have been found in the van Rhynsdorp district of Cape Province, Union of South Africa. Anglo American Corp. of South Africa, Ltd., was said to have been given the right to mine and concentrate the ore. The major part of the estimated 8,000 tons of concentrate, containing 55 percent rareearth oxides, was to be sold to the United States. 80 An interesting lode deposit of monazite was found in volcanic rocks at Sukulu, Uganda, Africa.³¹ Beach sands on the east coast of Madagascar, from Manakara north to Vatomandry, were estimated to contain 2 percent monazite.³² The Geographic and Geological Institute announced the occurrence of monazite sands in the Paraiba Valley and at Itapecerica, Sao Paulo, Brazil, with monazite from the latter deposit having a high thoria content.33 In Argentina, monazite was reported to have been discovered in the sands of the Riccito Stream, in San Luis Province.³⁴

SELENIUM AND TELLURIUM 35

Selenium was in short supply throughout 1952 and the subject of much study by industry, various Government agencies, including the National Production Authority, Munitions Board, Defense Materials Procurement Agency, and the Bureau of Mines, and others.³⁶ pansion goal aimed at a total United States supply of 1,100,000 pounds of selenium in 1955—about 225,000 pounds above the total available supply in 1952—was announced by the Defense Production Administration.³⁷ Supplies of tellurium were more than ample in 1952 to satisfy all requirements for the metal.

²⁹ Atomic Energy Newsletter, vol. 8, No. 10, Dec. 30, 1952, p. 4.
30 Bureau of Mines, Mineral Trade Notes: Vol. 35, No. 3, September 1952, p. 48.
31 Mining Journal (London), vol. 238, No. 6090, May 9, 1952, p. 472.
32 Work cited in footnote 30.
33 Mining Journal (London), vol. 238, No. 6089, May 2, 1952, p. 446.
34 Mining World, vol. 14, No. 9, August 1952, p. 78.
35 Prepared by H. D. Keiser and J. D. Sargent.
36 Tyler, Paul M., Selenium: Rept. MMAB-15-M, Minerals and Metals Advisory Board, Nat. Research Council, April 15, 1952, 62 pp.
1700 Age, Selenium: Vol. 170, No. 14, Oct. 9, 1952, pp. 283-284.
37 Defense Production Administration: Press release, Oct. 22, 1952, 1 p.
Wall Street Journal, DPA Sets Selenium Expansion Goal of 1.1 Million Pounds by '55: Vol. 140, No. 97, Oct. 23, 1952 p. 3.

Oct. 23, 1952 p. 3.

Domestic Production.—Producers of primary selenium and tellurium in 1952 were the American Smelting & Refining Co., Baltimore, Md.; United States Metals Refining Co., Carteret, N. J.; International Smelting & Refining Co., Perth Amboy, N. J.; Kennecott Copper Corp. Garfield, Utah; and United States Smelting Refining & Mining Co. (tellurium only), East Chicago, Ind. The new selenium-recovery plant at the Garfield (Utah) refinery of the Kennecott Copper Corp. was placed in operation during October 1952.

Production of primary selenium and tellurium in 1952 totaled 687,384 and 189,076 pounds, respectively, compared with 494,912 and 187,148 pounds in 1951—an increase of 39 percent in selenium output and of 1 percent in tellurium output. The increased selenium production in 1952 was principally attributable to the treatment of anode slimes accumulated by one producer during 1950 and 1951.

A total of 66,781 pounds of secondary selenium was recovered in 1952 from scrap of rectifier manufacturers and spent catalysts by American Smelting & Refining Co.; United States Metals Refining Co.; Kawecki Chemical Co., Boyertown, Pa.; and Vickers Electric Division, Vickers, Inc., St. Louis, Mo.; the above figure is based on

data collected by the National Production Authority.

Consumption and Uses.—Apparent domestic consumption ³⁸ of elemental selenium and tellurium in 1952 was 802,033 and 94,615 pounds, respectively, representing an increase of 1 percent for selenium and a decrease of 14 percent for tellurium compared with apparent domestic consumption of the 2 metals in 1951. The increased apparent consumption of selenium in 1952 reflected principally the substantial increase in production which more than offset a marked de-

cline in imports.

Selenium was allocated to consumers beginning with February 1952, when Order M-91, issued by the National Production Authority in December 1951, became effective as to allocations. For the 11 months February to December 1952, inclusive, the total quantity of selenium allocated each month ranged from 71 to 100 percent of that requested by consumers. The total quantity allocated in the 11 months represented 85 percent of that requested. Of the total quantity allocated, about 36 percent went to manufacturers of rectifiers; 34 percent to the chemical, pigment, and rubber industries; 14 percent to the glass-container industry; 9 percent to the steel industry; and 7 percent to miscellaneous manufacturers, including those making glass products other than containers.

The principal uses of selenium in 1952 were (1) in the manufacture of dry-plate rectifiers, employed in electronic equipment, including television and radio sets, to convert alternating current to direct current, and to perform the same function as power tubes; (2) in the production of special grades of stainless steel to improve machinability and in the casting of stainless steel to provide gas control and thereby assure soundness of castings; (3) as a decolorizer in the glass industry; and (4) for diversified chemical purposes, including its use (a) in the production of pigments and enamels, (b) as a vulcanizing agent and an

³⁸ Primary producers' domestic shipments plus imports less producers' imports and imports under toll arrangements.

accelerator in the production of rubber, and (c) as a catalyst in the

synthesis of organic chemical and drug products.

Tellurium was used principally (1) in the manufacture of alloys, such as tellurium lead, tellurium copper, and various tellurium bronzes and (2) in the rubber industry as a secondary vulcanizing agent. Minor uses were as an additive and core wash to induce chill in the manufacture of iron castings and as a coloring agent in the production of art glass and ceramics.

Stocks.—Although stocks of elemental selenium held by primary producers at the close of 1952 were 44 percent greater than at the close of 1951, they were nevertheless at a low level and represented less than a 2-month supply on the basis of apparent consumption in 1952. end stocks of tellurium, on the contrary, were at a new high level and

about equal to a 2-year supply.

Prices.—Selenium, 99.5 percent pure, black powdered, was quoted throughout 1952 by E. & M.J. Metal and Mineral Markets at \$3 to \$3.50 a pound, a price level that prevailed throughout 1951. Tellurium was quoted at \$1.75 a pound, continuing in 1952 for another year the

quotation of the preceding 13 years.

Prices of both selenium and tellurium in 1952 accorded with the provisions of the general ceiling price regulation issued by the Office of Price Stabilization on January 26, 1951, which established selling prices for each individual seller at the highest level his selling prices

reached between December 19, 1950, and January 25, 1951.

Generally prevailing prices for the various grades of selenium and selenium compounds in 1952 were, a pound, as follows: High-purity grade selenium, 99.99 percent or more pure, \$6; DDQ (double distilled in quartz) grade, 99.95 percent or more but less than 99.99 percent pure, \$5.50; commercial grade, 99.5 percent or more but less than 99.95 percent pure, \$3.50; ferroselenium, \$4; and selenium dioxide, 71 percent selenium content, \$4.25.

High-purity and DDQ grades of selenium were used in manufacturing rectifiers; the commercial grade in the chemical, glass, pigment, and rubber industries; selenium dioxide as a catalyst in the preparation of chemicals and drugs; and ferroselenium in the steel industry.

Foreign Trade.—Imports of selenium in metal and salts in 1952 totaled 123,135 pounds, valued at \$564,326, a decrease of 50 percent in quantity and 45 percent in value compared with 1951. Canada was the source of 111,255 pounds, or 90 percent of 1952 imports, valued at Sweden furnished 8,194 pounds valued at \$85,006 and Japan 2,532 pounds valued at \$29,318. Most of the remainder was received from West Germany and Belgium-Luxembourg. No imports of tellurium were reported in 1952. Data on exports of selenium and tellurium are not available.

Technology.—Improvements in the metallurgical treatment of anode slimes developed in 1952 by primary producers, to be placed in operation in 1953, were expected to increase the recovery of selenium by over 25 percent. The Bureau of Mines continued investigations in 1952 looking toward increased supplies of selenium through improved metallurgy and the discovery of new sources of raw materials; the vanadiferous shales of Idaho and Wyoming appeared to be poten-

tially important as a future source.

A titanium dioxide rectifier, as a substitute for the selenium rectifier, was reported under development by the National Bureau of Standards. A cost favorably comparable with that for the selenium rectifier and satisfactory operation at temperatures as high as 300° F. were claimed for the titanium dioxide rectifier.³⁹ Research investigations were conducted on the electrical properties of semi-conducting selenium.⁴⁰ Further economies were suggested in the use of selenium by the glass-container industry.⁴¹ A process for the preparation of selenium dioxide without the formation of selenic acid was patented.⁴²

World Review.—Production of selenium in Canada decreased 31 percent in 1952, principally as a result of an 18-week strike at the Montreal East, Quebec, refinery of Canadian Copper Refiners, Ltd. Total selenium output in 1952 was 265,600 pounds, valued at C\$841,100, compared with 382,603 pounds, valued at C\$1,239,633, in 1951. Tellurium production increased from 8,913 pounds, valued at C\$16,400, in 1951 to 13,700 pounds, valued at C\$30,200, in 1952.

Canadian Copper Refiners, Ltd., accounted for about 60 percent of the Canadian production of selenium in 1952 compared with about 75 percent in 1951; the output was recovered in electrolytic refining of blister copper produced from the copper-gold ores of Noranda Mines, Ltd., Noranda, Quebec, and from the copper-zinc ores of Hudson Bay Mining & Smelting Co., Ltd., Flin Flon, Manitoba. About 40 percent of the total selenium output was recovered at the Copper Cliff, Ontario, refinery of the International Nickel Co. of Canada, Ltd., from the Sudbury copper-nickel ores. Selenium and its compounds were also produced by the International Nickel Co. of Canada, Ltd., at its Clydach refinery, near Swansea, Wales, United Kingdom.

Boliden Gruv AB, operating various mining properties in the Skelleftea region and a smelter and electrolytic refinery at Skellefthavn, was

the sole producer of selenium in Sweden in 1952.

Production of selenium in Japan in 1952 was estimated at 49,800 pounds compared with 44,000 pounds in 1951. Six copper refineries and two sulfuric acid plants contributed the 1952 selenium output.

In West Germany production of selenium in the first half of 1952 totaled 5,483 pounds compared with an output of 18,503 pounds for the 12 months of 1951.

Metallurgie de Hoboken was the only producer of selenium in Belgium in 1952.

^{**} Science News Letter, vol. 62, No. 17, Oct. 25, 1952, p. 261.

** Henkels, H. W., Research Investigations on the Electrical Properties of Semiconducting Selenium: Moore School Electrical Eng., Univ. of Pennsylvania, Philadelphia, Pa., Quarterly Prog. Rept. 5, Dec. 15, 1951-Mar. 15, 1952, Mar. 31, 1952, 14 pp.; Henkels, H. W., and Roberts, F. R., Quarterly Prog. Rept. 6, Mar. 15, 1952-June 14, 1952, June 30, 1952, 26 pp.

** Manring, W. H., Are You Saving Enough Selenium: Ceram. Ind., vol. 59, No. 6, December 1952, pp.

<sup>84-85.

12</sup> Roseman, R., Neptune, R. W., and Allan, B. W. (assigned to Glidden Co.), Process for Preparing Selenium Dioxide: U. S. Patent 2,616,791, Nov. 4, 1952.

13 Dominion Bureau of Statistics, Ottawa, Canada, Press Release: Jan. 2, 1953, 4 pp.

TABLE 1.—Salient statistics of elemental selenium and tellurium in the United States, 1940-52, in pounds 1

		Selenium					Tellurium	
Year	Production 2	Primary pro- ducers' domestic ship- ments	Primary pro- ducers' stocks at end of year	Imp	orts 3	Production 4	Primary pro- ducers' domestic ship- ments	Primary pro- ducers' stocks at end of year
1940	502, 396 643, 660 525, 331 486, 815 298, 233 511, 612 557, 402	330, 207 661, 171 442, 482 613, 434 394, 818 554, 944 492, 716 527, 137 398, 456 715, 185 547, 582 690, 978	178, 873 105, 026 174, 803 225, 828 379, 137 324, 967 232, 615 259, 532 231, 294 265, 837 106, 458 85, 123 122, 550	134, 429 197, 873 83, 666 81, 720 97, 800 216, 793 475, 881 529, 175 267, 118 172, 636 363, 597 246, 662 \$ 123, 135	\$198, 163 288, 161 127, 004 142, 032 170, 582 395, 934 806, 205 893, 175 489, 762 318, 046 768, 544 1, 018, 263 564, 326	85, 622 224, 639 224, 973 54, 288 61, 869 33, 462 11, 600 60, 486 56, 915 120, 725 107, 364 187, 148 189, 076	88, 996 237, 729 123, 076 48, 662 29, 657 29, 079 48, 538 68, 260 74, 698 68, 415 129, 877 110, 162 94, 615	33, 419 29, 33; 134, 542 140, 944 172, 868 176, 984 142, 057 132, 616 114, 415 166, 599 134, 402 147, 271 181, 096

Primary selenium and selenium content of compounds, as reported by primary producers.

Includes selenium dioxide and salts.

Primary tellurium and tellurium content of compounds, as reported by primary producers.

Includes DDQ-grade selenium from Canada under toll arrangement.

THALLIUM 44

Thallium, a soft bluish-white metal resembling lead, has never been found in free or uncombined state. It has been detected in numerous types of rocks and ores; however, the quantity present is usually so small that direct extraction is economically impracticable. Four minerals—crookesite, hutchinsonite, urbanite, and lorandite—contain 16 to 60 percent of thallium, but these minerals are so rare that they cannot be considered a commercial source of the metal. Thallium is produced at present as a byproduct of treatment of cadmium-rich flue dusts and residues obtained from the smelting of zinc-lead ores.

Domestic Production.—Consumer demands for thallium and thallium sulfate totaled a few thousand pounds in 1952. The Globe cadmium refinery of the American Smelting & Refining Co., at Denver, Colo., was again the sole producer of the metal.

Uses.—In past years thallium sulfate was used extensively to exterminate rodents, insects, and other pests. The sale of thallium compounds to the public is now generally forbidden because of their extreme toxicity to man and animals; no effective antidote exists.

One of the principal uses of thallium in 1952 was in connection with the ability of thallium bromoiodide crystals to transmit infrared radiation of very long wave length. Such crystals find important applications in military equipment designed for detection and signaling, where visible radiation must be absent. Thallium oxysulfide is more sensitive than selenium to light of long wave length and low

⁴⁴ Prepared by E. J. Carlson.

intensity and finds application in photoelectric cells. Mercury, with 8.5 percent thallium, becomes an amalgam with a much lower freezing point than mercury alone, permitting temperature measurements with glass-type thermometers in the range of plus 20° to minus 60° C. Other uses of thallium were in high-density liquids, special glasses, corrosion-resistant and fusible lead alloys, mold- and insect-proofing, and (in minor quantities) in selenium rectifiers, scintillating counters, and activated phosphors for cathode-ray tubes.

Prices.—Thallium metal and thallium sulfate were quoted in 1952

at \$12.50 and \$10.50 per pound, respectively.

Minor Nonmetals

By Joseph C. Arundale 1 and Oliver S. North 2

GREENSAND

TOTAL of 4,381 short tons of greensand was produced in the United States in 1952 by the following firms: The Permutit Co., 330 West 42d St., New York, N. Y.; Zeolite Chemical Co., Medford, N. J.; and Inversand Co., 226 Atlantic Ave., Clayton, N. J. All production was from open-pit operations in Burlington and Gloucester Counties, N. J. The bulk of the product was sold for water softening and purification.

The price of refined greensand, f. o. b. shipping point, ranged from

about \$60 to about \$128 per short ton.

D211

รที่บัส จะนี้เรื่องโรยกรัฐ คร

The University of Massachusetts studied the New Jersey greensands to determine their genesis. The study indicated that these greensands were derived from the illitic clays in the area.3

TABLE 1.—Greensand marl sold or used by producers in the United States, 1943-47 (average) and 1948-52

Year	Short tons	Value	Year	Short tons	Value
1943–47 (average)	6, 685	\$472, 715	1950	3, 935	\$304, 321
1948	7, 269	392, 959		5, 067	263, 944
1949	6, 128	276, 564		4, 600	177, 847

Assistant chief, Construction and Chemical Materials Branch.
 Commodity-industry analyst.
 Light, Mitchell A., Evidence of Anthigenic and Detrital Glauconite: Science, vol. 115, No. 2977, Jan. 18, 1952, pp. 73-75.

MEERSCHAUM

No production of meerschaum (sepiolite) was reported in the United States during 1952. The few known domestic deposits have vielded only small tonnages. The world's principal source is Turkey, where this material has been mined since antiquity. The use of meerschaum is confined largely to smokers' articles, such as pipes and cigarholders.

TABLE 2.—Meerschaum imported for consumption in the United States, 1948-52 1

	1 * *				
Year	Pounds	Value	Year	Pounds	Value
1948 1949 1950	3, 000 5, 844 9, 621	\$10, 070 13, 897 18, 549	1951 1952	11, 289 10, 479	\$13, 384 12, 344

IU. S. Department of Commercel

MINERAL WOOL

According to the Bureau of the Census, the total value of mineral wool produced from rock, slag, and glass and shipped from plants in the United States in 1952 was \$138,305,000, compared to \$134,128,000 in 1951 and \$115,664,000 in 1950. Use statistics are not available for 1952, but detailed data for 1947 were published on page 1362 of Minerals Yearbook 1948. The Bureau of the Census 1947 report on mineral wool gave the following percentages for broad classifications of its use: Structural insulation, 56; equipment insulation, 23; industrial insulation, 17; and unspecified, 4. The Industrial Mineral Wool Institute was reported to have issued a series of pamphlets on the various uses of mineral wool.4

The average number of persons employed in the mineral-wool industry in 1951 was 10,374 compared with 9,244 in 1950. Of the

number reported in 1951, 8,583 were production workers.

Exports of mineral-wool products from the United States during 1952 were valued at \$1,723,000 compared to \$1,511,000 in 1951 and \$1,132,000 in 1950.

Articles in trade magazines discussed the utilization of mineral wool and mineral-wool products for insulation purposes in petroleum refineries 5 and in steam power plants.6

A report summarized the properties and value of various lightweight materials, including mineral wool, in the fireproofing of structuralsteel members.7

A trade journal described the method of producing mineral-wool insulating materials at a British plant.8

¹ 1948–49: all from Turkey; 1950: Italy: 20 pounds, \$120; Turkey: 9,601 pounds, \$18,429; 1951: all from Turkey; 1952: Austria: 18 pounds, \$40; Turkey: 10,461 pounds, \$12,304.

⁴ Rock Products, Mineral Wool: Vol. 55, No. 10, October 1952, p. 99.
⁵ Petroleum Engineer, Insulating Cement Versatile Heat Saver: Vol. 24, No. 4, April 1952, pp. C75-76, C78; Self-Retaining Mineral Wool Boards: Vol. 24, No. 11, October 1952, pp. C35-36. Swenson, S. W., Insulation Methods for Air-Lift TCC Unit: Petrol. Eng., vol. 24, No. 4, April 1952, pp. C22, C24, C26.

Bonner, M. K., Expansion Joint Insulating Technique: Petrol. Eng., vol. 24, No. 1, January 1952, p. C41.
⁶ Davis, R. L., Spaced Duct Insulation: Ind. and Power, vol. 62, No. 5, May 1952, pp. 92-94.
⁷ Engineering News-Record, Lightweight Fireproofing for Steel Framing: Vol. 149, No. 19, Nov. 6, 1952, pp. 34-36.

b Mass Production (London), Producing Mineral-Wool Insulating Material: Vol. 27, No. 12, December

Methods of using mineral-wool materials for low-temperature insulating purposes have been described and diagramed.9

An article in a trade magazine described methods of applying

mineral-wool insulation to pipes. 10

The use of blanket-type mineral-wool insulation was reported to solve such troublesome problems as the insulation of asphalt piping

heated by spirally wrapped steam tracers. 11

Patents relating to mineral wool issued during the year covered the use of polyhydric alcohol esters of tall oil to replace part of the dryingoil binder in the manufacture of mineral-wool batts 12 and the addition of small quantities of slag-wool pellets to fiber-glass fibers in the manufacture of thermal insulating mats.13

WOLLASTONITE

Research and market development have added wollastonite to the lengthening list of mineral raw materials with important industrial applications. In 1952 the Cabot Carbon Co., 77 Franklin St., Boston, Mass., began construction of a plant near Willsboro, N. Y., for producing wollastonite on a commercial scale. This deposit had been mined on a small scale by Willsboro Mining Co. It was reported that diamond drilling had proved the ore body to an average depth of 200 feet over an outcrop of about 2,000 feet. It will be mined by openpit methods. The basic steps in the pilot-plant operation are preliminary crushing in jaw crushers and rolls, magnetic separation, air tabling, and fine grinding in conical and tube mills. mill under construction by the company will employ a variation of this basic flowsheet. Capacity of the plant will be about 180 tons a The firm anticipates that the products day of the bagged product. will be used in the manufacture of ceramic insulators, tile and glazes, paint, paper coating, and various fillers.14

A new firm, Colorado Development Co., 406 Kress Bldg., Long Beach 12, Calif., reported a small tonnage of wollastonite produced during development of a deposit near Midland, Riverside County,

Calif.

⁹ Swain, P., Save Cold-Job \$\$\$ With Versatile Mineral Wool: Power, vol. 96, No. 1, January 1952, pp.

<sup>16-79.
10</sup> Lewis, H. E., and Young, C. E., Application Methods for Mineral-Wool Pipe Insulation: Heat., Pip., and Air Cond., vol. 24, No. 7, July 1952, pp. 106-108.
11 Petroleum Processing, Insulating Traced Asphalt Piping: Vol. 7, No. 4, April 1952, pp. 521-522.
12 Simmers, C. D. (assigned to Johns-Manville Corp.), Liquid Binder: U. S. Patent 2,584,300, Feb. 5, 1952.
13 Baxter, M. (assigned to James D. Akins), Heat-Insulating Material: U. S. Patent 2,588,102, May 27, 1059

Hall, A. L., Ladoo, R. B., Secord, R. N., Stokes, C. A., Wollastonite—A New Venture in Nonmetallic Minerals: Pres. at ann. meeting, American Institute of Mining and Metallurgical Engineers, New York, Feb. 21, 1952.

Index

By Mabel E. Winslow

Abrasives, aluminous, imports	Aluminovanadium, producer410
artificial, annual review	Aluminum, as copper substitute, in electrical
imports113	industry126
production, relation to ingot-steel produc-	as tin substitute, in packaging 1029
tion 111	electrodeposition28
foreign trade	industry 126 as tin substitute, in packaging 1026 electrodeposition 22 electrolytic reduction 133
metallic, production111	Inreign trade 115, 125, 129, 150, 151
chinmente 99 l	impact extrusion
value99, 111	in chemicals, production 890
stocks112	prices 115, 127
natural, annual review	primary, consumption
foreign trade 99	manufacturers' inventories
sales 99, 100	production 115, 116, 117, 138
production48	value
value48	stocks 5, 12
sales, value99	producers
shipments value	production8
shipments, value 4 Abrasive industries, annual review 99	production
salient statistics 99	secondary, consumption121, 122
salient statistics 99 AEC. See Atomic Energy Commission.	production115, 117, 120, 890
Africa, ilmenite, review	recovery 886, 889, 890
Cas also Algeria: Angola: Rolgian Congo:	value 000, 000
See also Algeria; Angola; Belgian Congo; Canary Islands; Egypt; French	sources12
Cameroons; French Equatorial Africa;	stocks127
French Guinea; French Morocco;	shipments, value
French Guinea; French Morocco; French West Africa; Gold Coast;	soldering, developments
French West Africa, Gold Coast,	technology 133
Kenya; Liberia; Madagascar; Mozam-	11Ses 123
bique; Nigeria; North Africa; Por-	world review 13
tuguese West Africa; Rhodesia, North-	wrought, distribution 124
ern; Rhodesia, Southern; Sierra	Aluminum alloys, new, tests
Leone; South-West Africa; Sudan;	Aluminum-alloy castings, production 890 Aluminum chloride, production 199
Tanganyika; Tunisia; Uganda; Union	Aluminum chloride, production 199
of South Africa.	shinmonte 19
Agate, production432	Aluminum coating, for steel, development 130
Aggregates, crushed-stone, sales, compared with portland-cement shipments 971	Aluminum compounds, foreign trade 194, 195
with portland-cement shipments 971 sintered production from clay	Aluminum foil additional uses
sintered, production, from clay 309 Air Force, "heavy-press program," for alumi-	Aluminum industry, annual review 11
All Police, lically-press program, 110 195	Avnangian 11
num industry 118, 135	expansion under Defense Production Act 11:
Air furnaces, ferrous scrap, consumption 561, 570	expansion 11: under Defense Production Act 11: "heavy press program." initiation by Air
Air furnaces, ferrous scrap, consumption 561, 570	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570	expansion. 11. under Defense Production Act. 11! "heavy press program," initiation by Air Force. 34, 118, 13. labor troubles. 11!
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 Alabama, iron blast-furnace slag, production 916 iron ore, data 505, 506, 506, 506, 507, 509, 510, 511, 513, 517, 518, 519	expansion
Air furnaces, ferrous scrap, consumption	expansion 11
Air furnaces, ferrous scrap, consumption	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron ore, data 505, 506, 510, 511, 513, 517, 518, 519 minerals, production 55 value 55 value 52, 54, 55 salt. data 855, 858	expansion 11 11 11 11 11 11 11
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron ore, data 505, 506, 510, 511, 513, 517, 518, 519 minerals, production 55 value 55 value 52, 54, 55 salt. data 855, 858	expansion 11
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, piron ore, data 505, 509, 510, 511, 513, 517, 518, 519 minerals, production 55 value 52, 54, 55 salt, data 855, 858 Alabaster, deposits 956	expansion 11
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, piron ore, data 505, 509, 510, 511, 513, 517, 518, 519 minerals, production 55 value 52, 54, 55 salt, data 855, 858 Alabaster, deposits 956	expansion 11
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, piron ore, data 505, 509, 510, 511, 513, 517, 518, 519 minerals, production 55 value 52, 54, 55 salt, data 855, 858 Alabaster, deposits 956	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, piron ore, data 505, 509, 510, 511, 513, 517, 518, 519 minerals, production 55 value 52, 54, 55 salt, data 855, 858 Alabaster, deposits 956	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, piron ore, data 505, 509, 510, 511, 513, 517, 518, 519 minerals, production 55 value 52, 54, 55 salt, data 855, 858 Alabaster, deposits 956	expansion 11
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron ore, data 505, 506, 507, 509, 510, 511, 513, 517, 518, 519 minerals, production 55 value 55, 24, 55 salt, data 855, 858 Alabaster, deposits 956 Alaska, aluminum-reduction plant, proposed 118 chromite deposit, development, Government assistance 281, 283 gold, data 430, 455, 456, 458, 459, 460, 461, 462 mercury, data 788, 796	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 Alabama, iron blast-furnace slag, production 505, 506, 100 production 507, 509, 510, 511, 513, 517, 518, 519 prinerals, production 55 value 52, 54, 55 salt, data 855, 858 Alabaster, deposits 855, 858 Alabaster, deposits 956 Alaska, aluminum-reduction plant, proposed 118 chromite deposit, development, Government assistance 281, 283 gold, data 456, 458, 459, 460, 461, 462 mercury, data 708, 709 minerals, production 83	expansion 11
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 Alabama, iron blast-furnace slag, production 916 iron ore, data 505, 506, 507, 509, 510, 511, 513, 517, 518, 519 minerals, production 52, 54, 55 value 52, 54, 55 salt, data 855, 858 Alabaster, deposits 956 Alaska, aluminum-reduction plant, proposed 118 chromite deposit, development, Government assistance 281, 283 gold, data 450, 455, 459, 460, 461, 462, mercury, data 708, 709 minerals, production 83 value 54, 83	expansion 11
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, pinerals, production 505, 506, 510, 511, 513, 517, 518, 519 pinerals, production 52, 54, 55 salt, data 855, 858 Alabaster, deposits 855 Alaska, aluminum-reduction plant, proposed 188 chromite deposit, development, Government assistance 281, 283 gold, data 450, 458, 459, 460, 461, 462 mercury, data 708, 709 minerals, production 83 value 54, 83 pumice deposits, description 349	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, 507, 509, 510, 511, 513, 517, 518, 519 minerals, production 52, 54, 55 salt, data 855, 858 Alabaster, deposits 956 Alaska, aluminum-reduction plant, proposed 118 chromite deposit, development, Govern ment assistance 281, 283 gold, data 450, 456, 459, 460, 461, 462 mercury, data 788, 709 minerals, production 83 value 54, 83 pumice deposits, description 849 tin deposits 1016	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, pinerals, production 505, 506, 510, 511, 513, 517, 518, 519 pinerals, production 52, 54, 55 salt, data 855, 858 Alabaster, deposits 956 Alaska, aluminum-reduction plant, proposed 188 chromite deposit, development, Government assistance 281, 283 gold, data 450, 458, 459, 460, 461, 462 mercury, data 708, 709 minerals, production 83 value 54, 83 pumice deposits, description 849 tin deposits 1016 Algeris iron ore data 521, 523, 530	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 Alabama, iron blast-furnace slag, production 505, 506, minerals, production 555 value 527, 509, 510, 511, 513, 517, 518, 519 minerals, production 55 salt, data 855, 858 Alabaster, deposits 858 Alabaster, deposits 956 Alaska, aluminum-reduction plant, proposed 118 chromite deposit, development, Government assistance 281, 283 gold, data 450, 455, mercury, data 450, 455, 459, 460, 461, 462 mercury, data 708, 709 minerals, production 83 value 54, 83 pumice deposits, description 849 tin deposits 1016 Algeria, iron ore, data 521, 523, 530 kieselephr, data 397, 398	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 555, 506, 506, pincerals, production 555, 506, 506, 501, 511, 513, 517, 518, 519 minerals, production 552, 54, 55 salt, data 855, 858 Alabaster, deposits 956 Alaska, aluminum-reduction plant, proposed 118 chromite deposit, development, Govern ment assistance 281, 283 gold, data 430, 455, mercury, data 708, 709 minerals, production 548, 359 minerals, production 548, 359 pumice deposits, description 849 tin deposits 1016 Algeria, iron ore, data 521, 523, 530 kieselguhr, data 397, 398 physphate rock, review 897, 308	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 Alabama, iron blast-furnace slag, production 505, 506, minerals, production 505, 509, 510, 511, 513, 517, 518, 519 minerals, production 52, 54, 55 salt, data 855, 858 Alabaster, deposits 855, 858 Alabaster, deposits, development, Government assistance 281, 283 gold, data 450, 455, 459, 460, 461, 462 mercury, data 708, 709 minerals, production 83 value 54, 83 pumice deposits, description 849 tin deposits 1016 Algeria, iron ore, data 521, 523, 530 kieseiguhr, data 397, 388 phosphate rock, review 807, 808 Alloys, using high-temperature scrap, de-	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 Alabama, iron blast-furnace slag, production 505, 506, minerals, production 505, 509, 510, 511, 513, 517, 518, 519 minerals, production 52, 54, 55 salt, data 855, 858 Alabaster, deposits 855, 858 Alabaster, deposits, development, Government assistance 281, 283 gold, data 450, 455, 459, 460, 461, 462 mercury, data 708, 709 minerals, production 83 value 54, 83 pumice deposits, description 849 tin deposits 1016 Algeria, iron ore, data 521, 523, 530 kieseiguhr, data 397, 388 phosphate rock, review 807, 808 Alloys, using high-temperature scrap, de-	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, pincerals, production 525, 506, pincerals, production 525, 45, 55 value 52, 54, 55 salt, data 855, 858 Alabaster, deposits 956 Alaska, aluminum-reduction plant, proposed 118 chromite deposit, development, Government assistance 281, 283 gold, data 450, 458, 459, 460, 461, 462 mercury, data 708, 709 minerals, production 83 value 54, 83 pumice deposits, description 849 tin deposits 1016 Algeria, iron ore, data 521, 523, 530 kieselguhr, data 397, 398 phosphate rock, review 807, 808 Alloys, using high-temperature scrap, development 773 Alloy steel. production 534, 541, 542	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, pig iron, consumption 505, 506, pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 555 pig iron, consumption 554, 555 pig iron, consumption 554 pig	expansion 11
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 555, 506, 506, 507, 509, 510, 511, 513, 517, 518, 519 minerals, production 55, 54, 55 value 55, 54, 55 salt, data 855, 858 Alabaster, deposits 956 Alaska, alumínum-reduction plant, proposed 118 chromite deposit, development, Government assistance 281, 283 gold, data 450, 455, 459, 460, 461, 462 mercury, data 708, 709 minerals, production 83 value 54, 83 pumice deposits, description 143 pumice deposits, description 949 tin deposits 1016 Algeria, iron ore, data 521, 523, 530 kieselguhr, data 397, 398 phosphate rock, review 897, 398 Alloys, using high-temperature scrap, development 773 Alloy steel, production 534, 541, 542 Aloxite, imports 113 Alsifer, producer 410	expansion
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, pig iron, consumption 505, 506, pig iron, consumption 555 pig iron, consumption 556, 506, 506, 506, 506, 506 pig iron, consumption 556, 506, 506, 506, 506, 506, 506 pig iron, consumption 556, 506, 506, 506, 506, 506, 506, 506,	expansion 11
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, 506, 506, 506, 506, 506, 506,	expansion. under Defense Production Act. 11: "heavy press program," initiation by Air Force. 34, 118, 13. labor troubles. 11: salient statistics. 11: Aluminum ingot, prices. 127, 128, 12: secondary, price control. 89 production. 89 production. 89 production. 89 Aluminum-magnesium alloy, in contact with mercury, cracking. 71: Aluminum ores, conversion to metal, techniques. 13: direct reduction. 13: Aluminum oxide, production. 99, 110, 11: stocks. 11: value. 99, 11 Aluminum plating, processes developed. 89 Aluminum producers, new 11: Aluminum producers, new 12: shipments. 12: Aluminum refining, men employed, earnings. 14: hours of labor. 15: Aluminum salts, production. 19: shipments. 19 Aluminum scrap, consumption. 890, 89 foreign trade. 89 prices. 89
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 505, 506, 506, 506, 506, 506, 506, 506,	expansion. under Defense Production Act. 11: "heavy press program," initiation by Air Proce. 34, 118, 13. labor troubles. 11: salient statistics. 11: salient statistics. 127, 128, 12: secondary, price control. 89 production. 89 production. 89 Aluminum-magnesium alloy, in contact with mercury, cracking. 71: Aluminum ores, conversion to metal, techniques. 13: direct reduction. 13: Aluminum oxide, production. 99, 110, 11: stocks. 11: value. 99, 110, 11: stocks. 11: value. 99, 110, 11: Aluminum poducters, new 11: Aluminum producters, new 11: Aluminum products, new 12: shipments. 12: Aluminum salts, production. 19 shipments. 19 Aluminum salts, production. 19 shipments. 19 Aluminum sarap, consumption. 890, 89 foreign trade. 89 prices. 89
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 Alabama, iron blast-furnace slag, production 916 iron ore, data 505, 506, minerals, production 55, 54, 55 value 52, 54, 55 salt, data 855, 858 Alabaster, deposits 956 Alaska, aluminum-reduction plant, proposed 118 chromite deposit, development, Govern ment assistance 281, 283 gold, data 456, 458, 459, 460, 461, 462 mercury, data 788, 709 minerals, production 83 yulue 54, 83 pumice deposits, description 83 pumice deposits, description 849 tin deposits 1016 Algeria, iron ore, data 521, 523, 530 kieselgulm, data 397, 398 phosphate rock, review 807, 808 Alloys, using high-temperature scrap, development 773 Alloy steel, production 534, 541, 542 Aloxite, imports 113 Alsifer, producer 410 Alstimin, foreign trade 413 Alumina abrasives, natural, annual review 105 Alumina plant, Bureau of Mines, modifica-	expansion under Defense Production Act 11: "heavy press program," initiation by Air Force 34, 118, 13. labor troubles 11: salient statistics 11: Aluminum ingot, prices 127, 123, 122 secondary, price control 89 production 89 production 89 production 89 stocks 88. Aluminum-magnesium alloy, in contact with mercury, cracking 71: Aluminum ores, conversion to metal, techniques 13: direct reduction 13: Aluminum oxide, production 99, 110, 11 stocks 11: value 99, 11: Aluminum plating, processes developed 13: Aluminum producers, new 11: Aluminum producers, new 12: shipments 12: Aluminum products, new 12: shipments 12: Aluminum refining, men employed, earnings 14: Aluminum salts, production 19: shipments 19: Aluminum serap, consumption 890, 89 foreign trade 890, 89 prices 19:
Air furnaces, ferrous scrap, consumption 561, 570 pig iron, consumption 561, 570 pig iron, consumption 561, 570 Alabama, iron blast-furnace slag, production 916 iron ore, data 507, 509, 510, 511, 513, 517, 518, 519 minerals, production 52, 54, 55 value 52, 54, 55 salt, data 885, 858 Alabaster, deposits 956 Alaska, aluminum-reduction plant, proposed 118 chromite deposit, development, Govern ment assistance 281, 283 gold, data 450, 455, 450, 460, 461, 462, mercury, data 708, 709 minerals, production 83 value 54, 83 pumice deposits, description 83 value 54, 83 pumice deposits, description 849 tin deposits 1016 Algeria, iron ore, data 521, 523, 530 kieselguhr, data 397, 398 Alloys, using high-temperature scrap, development 773 Alloy steel, production 534, 541, 542 Aloxite, imports 113 Alsifer, producer 410 Alsimin, foreign trade 194, 195	expansion. under Defense Production Act. 11: "heavy press program," initiation by Air Force. 34, 118, 13. labor troubles. 11: salient statistics. 11: salient statistics. 127, 128, 12: secondary, price control. 89 production. 89 stocks. 89 Aluminum-magnesium alloy, in contact with mercury, cracking. 71 Aluminum ores, conversion to metal, techniques. 13: direct reduction. 13: Aluminum oxide, production. 99, 110, 11: stocks. 11: yalue. 99, 11: Aluminum plating, processes developed. 13: Aluminum producers, new 11: Aluminum producers, new 12: shipments. 12: Aluminum refining, men employed, earnings 1 hours of labor. 19: Aluminum salts, production 19: shipments. 12: Aluminum salts, production 19: shipments. 19: Aluminum salts, production 19: shipments. 19: Aluminum salts, production 19: shipments. 19: Aluminum salts, production 19: shipments. 19: Aluminum salts, production 19: shipments. 19: Aluminum salts, production 19: shipments. 19: Aluminum salts, production 19: shipments. 19: Aluminum seare, consumption 19: shipments. 19: Aluminum seare, consumption 19: spirees. 19: Sources. 88: Sources. 88:

Page

	Page	P	age
Aluminum sulfate, production	192	Arkansas, barite, data	178
shipments	192	columbium, deposits	330
Alundum, imports	122 113	minerals, production	50
Alundum, importsAmblygonite, deposits	654	value 52, 54 slate, data	L, 50
prices	653	Armorphy, for building construction	929
prices	780		
Ammonium bromide, sales	230	consumption 160,	16
value Ammonium compounds, consumption	230	foreign trade160, 162,	163
foreign trade	782 783	price160,	162
Allillonium metavanadate, producer	410	production 160, 161, world 85,	16
Ammonium molybdate, producer	410	sales	160
Ammonium nitrate, prices	782	snipments	161
production Ammonium sulfate, prices	780	value	161
production	782	1 Stocks 160	162
Amphibole, production	780 167	technology	164
Anatase, prices	1053		161
Anatase pigments, durability study	1050	Arsenic industry, white, annual review	$\frac{164}{160}$
Andulusite, uses	586		1 00
Angola, copper, data 377,37 diamonds, data		Aspestos, blue, production 175	176
salt, data ea	2 864	eonsumption 166.	168
Anhydrite, imports Anthophyllite, deposit	491	Criishing-grinding unit regults	168
Anthophyllite, deposit	167	foreign trade 166, 170, prices 166, production 48, 85, 166,	$\frac{25}{171}$
A III III ACHE, Droonerion	49	prices166.	168
value	49	production 48, 85, 166,	168
Antimony, consumption 140 15	1 152		48
demand	140		166
foreign trade 150, 151, 15 Government regulations	5, 156		$\frac{166}{171}$
Government regulations	150	l USES	168
NPA order, revocation prices 149, 150, 15	893	world review	173
primary, new supply	1,154	Aspestos noats, uses	172
primary, new supply	2 150	Asbestos industry, annual review 1 DMEA exploration assistance 167, 1	166
		new developments	172 171
producers	151	sament statistics	166
producers 149, 150, 15 secondary, recovery 149, 151, 153, 886, 89	1,159	Aspestos products, exports	171
Source149, 151, 153, 886, 89	2, 893	shipments, value	4
value88	893 6 892		181
Stocks14	9. 154	volcanic, uses	181 345
tariff	153	volcanic, uses. Asia. See Burma; Ceylon; Cyprus; Dead Sea; Eniwetok Atoll; Guam; Hawaii,	940
technology uses	157	Eniwetok Atoll; Guam; Hawaii,	
world review	153	India; Indonesia; Iraq; Israel; Japan;	
world review	5 156	Jordan; Korea, South; Kuwait; Ma-	
production	152	Republic of: Taiwan: Theiland: Tur-	/
production Antimony concentrate, production value	17,85	key; Union of Soviet Socialist Repub-	. `
Antimony industry, annual review	47	Eniwetok Atoll; Guam; Hawaii; India; Indonesia; Iraq; Israel; Japan; Jordan; Korea, South; Kuwait; Ma- aya; Midway; Pakistan; Philippines, Republic of; Taiwan; Thailand; Tur- key; Union of Soviet Socialist Repub- lics; Wake.	
DMEA exhibitation assistance 140	149	Asphant, production	49
salient statisticsAntimony ore, production4	149	value Atomic data, declassification, recommenda-	4 9
Antimony ore, production	17, 85	tions of International Declassification	١.
value	47		98
sales	5,807	Atomic energy, chain reaction, first 10	83
A Diffe. Drodifers	797 405	industrial applications, prospective 1084, 10	
	405	research	
	700	Atomic Energy Act, suggested amendment,	91
Argentina, beryl, data209, 212	2,213	permitting private use of atomic re-	
tungsten data	, 614	search10	92
Argentina, peryi, data 209, 212 lead, data 611, 612 tungsten, data 1075, 1079, avandium, data 1075, 1079, avandium, data 834 Arizona, agate, production barite data	1113	Atomic Energy Commission, Colorado Pla-	
Argols, foreign trade 834	. 835	teau, carnotite region, as source of uranium 1109, 11	10
Arizona, agate, production	432	contract, zirconium sponge, production 11	62
barite, data. chrysocolla, production value. chrysotile, producers.	1/8	funds, appropriations 10: neutron-activation analysis 10:	
value	434 434	neutron-activation analysis10	
chrysotile, producers	167	Office of Industrial Development,	00
production	166	establishment 10 purchases, hafnium 11	
		raw materials program	
nuorspar, data 419, 420, 421	,425	uranium-ore deposits, airborne exploration 10	85
production 500 500 500	1119	exploration drilling 100	85
minerals, production	55	A COLLIC CHERRY DEORESHILL EXPRISION 109	33
value52.5	4, 55	Atomic projectiles, for cannon, demonstration 108	٥, 20
topper lime, opencut, improved equipment. Housepar, data. 419, 420, 421 lead, DMEA contracts. 592, 593, 595 minerals, production 592, 593, 595 value. 52, 5 silver, data. 442, 450, 454, 456, 458, 459, 460 turnuoise, production	, 462	Atomic weapons, NATO agreement 100	QQ
turquoise, productionvalue	T00	production 1083 108	89
	433		
zinc, DMEA contracts	1084 1119	United Nations disarmament proposals 108, 100 Auger drills, use, for blastholes 2) 7
production1127	1128	Auger drins, use, for biastholes	41 38
production 1127, Army Ordnance Corps, jewel-bearings plant,	. 1	alunite data	40
Turtle Mountain Indian Reservation	585	asbestos, blue, data 173,17 atomic energy program 110	76
titanium mortar-base plates, substitution for steel	1050	atomic energy program110)6
	TOOD	barite, data18	35

value 181 States producing 20 Barium chemicals industry, annual review 177 stocks 5, 203, 20 salient statistics 177 supply 20 Barium chloride, foreign trade 183 uses 20 prices 182 world review 21 production 181 Beryllium, annual review 20 sales 181 technology 21 Barium hydroxide, foreign trade 183 Beryllium concentrate, production 24	Lago		5"
clay, data. 968, 369, 370, 377, 373, 383 copper, data. 468, 472, 474 (246) collection of the collectio	Australia, bauxite, data	Basalt, crushed, sales 962, 9)63
gem stones, data	clay, data313	value962, 9)6:
cold, review 050, 511, 161, 161, 161, 161, 161, 161, 161	copper, data 368, 369, 370, 377, 378, 379	States producing 962 0	JOE JOE
index data	gem stones, data488, 459	dimension sales 943 947 9	154
mies, data. 741, 744, 745 pig iron, data. 1043, 1053, 1054, 1058 ruttle, review 1043, 1053, 1054, 1058 silver, data. 484, 8473, 474 steel, data. 551, 552 sulfur, review 959, 965 tale, data. 1057, 1022, 1033, 1034, 1035 tungsten, data. 1077, 1023, 1034, 1036 tungsten, data. 1077, 1023, 1034, 1036 tungsten, data. 10	lead review 606 611 612 615	value 943. 9)47
pig fron, data	mica, data 741, 744, 745	States producing 9	947
solures. 408, 478, 478, 478, 478, 478, 478, 478, 47	pig iron, data546, 551	uses9	
Silver, data	rutile, review 1043, 1053, 1054, 1059		
sulfur, review 998, 995 tale, data. 1027, 1028, 1033, 1000 tantalum, data. 1027, 1028, 1033, 303, 418 tungsten, data. 1027, 1028, 1033, 303, 418 tungsten, data. 1027, 1028, 1033, 303, 418 zircon, deposits. 1168, 1168 zircondum ore, data. 1076, 1076, 1076, 1076 austral, aluminum, review. 1181, 1130 bauxite, data. 1168, 1168 data, data. 1168, 1168 undirum, data. 1033, 1030 bauxite, data. 1188, 1199 iron ore, data. 1188, 1199	sources1168	Value9	
sulfur, review 998, 995 tale, data. 1027, 1028, 1033, 1000 tantalum, data. 1027, 1028, 1033, 303, 418 tungsten, data. 1027, 1028, 1033, 303, 418 tungsten, data. 1027, 1028, 1033, 303, 418 zircon, deposits. 1168, 1168 zircondum ore, data. 1076, 1076, 1076, 1076 austral, aluminum, review. 1181, 1130 bauxite, data. 1168, 1168 data, data. 1168, 1168 undirum, data. 1033, 1030 bauxite, data. 1188, 1199 iron ore, data. 1188, 1199	Silver, data 408, 475, 474	Rettories manufacture manganese ore con-	.10
tale, data. 107, 1072, 1033, 393, 344 tin, data. 1077, 1078, 1035 tungsten, data. 1075, 1076, 1077, 1035 zinc, review. 1148, 1133, 1104, 1136 zinc, review. 1148, 1133, 1104, 1136 zinc, milden, data. 1075, 1076, 1077, 1035 zinc, review. 1148, 1133, 1104, 1136 zirconium ore, data. 1106, 1108 Australian Atomic Energy C ommission, 1106 Austria, aluminum, review. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 hauxite, data. 138, 139 heproduction. 47, 85, 187, 188, 194, 19 roduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139, 1146, 1148 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139, 1146, 1148 hauxite, data. 138, 139 heproduction. 148, 1139, 1149 hauxite, data. 138, 139 heproduction. 148, 1139, 1149 hauxite, data. 138, 139 heproduction. 148, 1139, 1149 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139, 1149 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 147, 158 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139, 1149 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 138, 139 heproduction. 148, 1139 hauxite, data. 147, 148, 149 hauxite, data. 147, 148, 149 hauxite, data. 1	sulfur ravious 003 005	sumption 6	196
tanidalum, data. 1027, 1028, 1037, 1038, 1034, 1035 tungsten, data. 1075, 1076	tole data 1000	Battle Act. administration	ę
Australan Atomic Energy Commission, functions 1106	tantalum, data335, 339, 341	Register consumption 188 1	90
Australan Atomic Energy Commission, functions 1106	tin, data	deposits, domestic, studies1	.98
2rrconi, deposits 1166, 1168 106, 1168 106, 1168 Australan Atomic Energy Commission, 47, 85, 187, 188, 189, 180 100, 180, 180, 180, 180, 180, 180, 180,	tungsten, data1075, 1076, 1079, 1080	foreign trade187, 188, 194, 1	98
Australian Atomic Energy Commission, 1006 Austria, aluminum, review 118, 139 bauxite, data 183, 139 bauxite, data	zinc, review	prices	01
Australian Atomic Energy Commission, 1006 Austria, aluminum, review 118, 139 bauxite, data 183, 139 bauxite, data	zirconium oro dete	production 47.85 187.188.189.1	98
Austria, aluminum, review 13, 109 both of data 23, 330 magnesium compounds, review 675, magnesium compounds, review 675, talc, review 1008, 1009, 1010 B B B B B B B B B B B B B	Australian Atomic Energy Commission	value 47.1	89
Austria, aluminum, review 18, 13, 139 bauxite, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 18, 199 iron ore, data 199	functions	world187, 188, 1	198
bauxite, data. 184, 195 iron ore, data. 252, 381 magnesium compounds, review 525, 267, 268, 681 molybdenum, data. 775, 775, 787, 876, 787 talic, review. 1008, 1009, 1016 B B B B B B B B B B B B B	Austria, aluminum, review	sales, GSA1	
B B B B B B B B B B	hauvite data 198 199	States producing 1	
B B B B B B B B B B	iron ore, data523, 530	stocks 5, 192, 1	.9.
B B B B B B B B B B	magnesium compounds, review 670, 670, 671	supply 1	
Baddeleytte, reserves. 1168, 1169 Ball clay, consumption. 295, 297, 300, 301 orders trade. 295, 301 orders trade.	752 756 757	11202	
Baddeleytte, reserves. 1168, 1169 Ball clay, consumption. 295, 297, 300, 301 orders trade. 295, 301 orders trade.	talc review 1008, 1009, 1010		
Baddeleyite, reserves	var.0, 1012011	Bauxite industry, annual review1	
Baddeleyite, reserves. 1168, 1168 1168		salient statistics 1	
Badlelayte, reserves. 1168, 1169 Ball clay, consumption. 295, 297, 300, 301 foreign trade. 295, 301 sales. 295, 297, 300, 301 value. 295, 301 sales. 295, 297, 300, 301 sales. 295, 297, 300, 301 sales. 297 Ball mills, high-speed, installation. 297 Ball mills, high-speed, installation. 285 297 297 Ball mills, high-speed, installation. 285 297 297 Ball mills, high-speed, installation. 285 297 297 Ball mills, high-speed, installation. 285 297 297 Ball mills, high-speed, installation. 285 297 297 297 298 297 2	В	Bauxite mines, shipments	8
Badlelayte, reserves. 1168, 1169 Ball clay, consumption. 295, 297, 300, 301 foreign trade. 295, 301 sales. 295, 297, 300, 301 value. 295, 301 sales. 295, 297, 300, 301 sales. 295, 297, 300, 301 sales. 297 Ball mills, high-speed, installation. 297 Ball mills, high-speed, installation. 285 297 297 Ball mills, high-speed, installation. 285 297 297 Ball mills, high-speed, installation. 285 297 297 Ball mills, high-speed, installation. 285 297 297 Ball mills, high-speed, installation. 285 297 297 297 298 297 2		Belgian Congo, parite, data	.O.
Sales 295, 297, 300, 301 value 285, 301 Sales 295, 297, 300, 301 states producting 300 uses 297 Ball mills, high-speed, installation 225 Barte, crude, production 48, 55 value 48, 55 Sales 177, 178 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity	Raddelavite reserves 1168 1169	columbite data 329, 334, 336, 3	339
Sales 295, 297, 300, 301 value 285, 301 Sales 295, 297, 300, 301 states producting 300 uses 297 Ball mills, high-speed, installation 225 Barte, crude, production 48, 55 value 48, 55 Sales 177, 178 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity	Ball clay, consumption 295, 297, 300, 301	columbium-tantalum, data 334, 335, 336, 339, 3	340
Sales 295, 297, 300, 301 value 285, 301 Sales 295, 297, 300, 301 states producting 300 uses 297 Ball mills, high-speed, installation 225 Barte, crude, production 48, 55 value 48, 55 Sales 177, 178 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity 179 DMPA certificates of necessity	foreign trade 295, 301	copper, review 377, 378, 3	379
States production	prices301	corundum, data 105, 1	.06
States production	sales295, 297, 300, 301	diamonds, data	36
Second color Seco	Value 295, 301		
The composition of the composi	States producing	gynsum data 493.4	194
The composition of the composi	Ball mills, high-speed, installation 25	mica, data 741, 7	4
The composition of the composi	Barite, crude, production 48,85	tantalite, data	38
The composition of the composi	value48	tin, review 1025, 1027, 1033, 1034, 10)3
ground, sales	sales177, 178	RFC purchase contract 1012, 10)18
ground, sales	DMPA certificates of necessity 178	uranium ore, data	.U6
value 177, 188 imports 177, 182 prices 181 primary, consumption 177, 179 production 177, 178 Sales, value 177, 178 States producing 178 technology 184 uses 177, 179 world review 185 Barite industry, annual review 177 Barite ore, treatment, investigations 184 Barium carbonate, foreign trade 183 prices 203, 20 production 181 sales 204, 20 production 181 sales 182 production 181 sales 177 Barium chemicals industry, annual review	ground seles 177 178 180	zircon denosits	68
Belt conveyors, for mainline haulage under- primary, consumption 177, 178 primary, consumption 177, 178 production 177, 185 Sales, value 177, 178 States producing 178 technology 184 uses 177, 179 world review 185 Barite industry, annual review 177 Barite ore, treatment, investigations 184 Barium carbonate, foreign trade 183 prices 203, 20 production 181 sales 177, 179 walue 295, 297, 303, 304, 30 sales 295,	value 177, 178	Belgium, selenium, data 1182.11	8
Belt conveyors, for mainline haulage under- primary, consumption 177, 178 primary, consumption 177, 178 production 177, 185 Sales, value 177, 178 States producing 178 technology 184 uses 177, 179 world review 185 Barite industry, annual review 177 Barite ore, treatment, investigations 184 Barium carbonate, foreign trade 183 prices 203, 20 production 181 sales 177, 179 walue 295, 297, 303, 304, 30 sales 295,	imports177, 182	zinc, data	. 58
primary, consumption	prices 181	Belt conveyors, for mainline haulage under-	
Sales States Production 178	primary, consumption177, 179	ground	40
States producing	production177, 185	foreign trade	งบะ งก!
value 295, 30	States producing 178		
value 295, 30	technology 184	sales 295, 297, 303, 304, 3	30
State Stat	uses177, 179	value295, 3	308
salient statistics. 177 Barite ore, treatment, investigations 184 Barium acetate, use as electrolyte. 184 Barium carbonate, foreign trade. 183 prices. 182 production. 181 sales. 181 Barium chemicals, prices. 182 production. 181 sales. 187 Barium chemicals, prices. 182 production. 181 sales. 177 sales. 178 value. 181 value. 181 Barium chemicals industry, annual review. 177 salient statistics. 203, 204, 21 salient statistics. 203 salient statistics. 203, 204, 21 salient statistics. 203, 204, 21 salient statistics. 30, 204, 21 salient statistics. 30, 204, 21 salient statistics. 30, 204, 21 salient statistics. 30, 204, 21 salient statistics. 30, 204, 21	world review 185	States producing 3	
Barite ore, treatment, investigations 184 Barium acetate, use as electrolyte 184 Producers 204, 204 205 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 21 Production 22 Production 23 Sales 24 Production 24 Production 25 Production 26 Production 26 Production 26 Production 27 Production 27 Production 28 Production 28 Production 29 Production 21 Production 21 Production 21 Production 22 Production 23 Production 24 Production 25 Production 26 Production 27 Production 28 Production 29 Production 29 Production 20 Production 21 Production 21 Production 22 Production 25 Production 26 Production 27 Production 27 Production 28 Production 29 Production 29 Production 29 Production 20 Produ	Barite industry, annual review 177	Beryl, consumption 203, 2	2U(2O(
Barium acetate, use as electrolyte.	Salient Statistics 177	prices 203 2	m.
Production	Rarium acatata use as electrolyte 184	producers 204, 2	20
Production		production, world2	213
Production	prices 182	purchases, for National Stockpile 2	Ю;
Barium chemicals, prices 182 production 181 sales 177, 181 value 203, 204, 204, 204, 204, 204, 204, 204, 204	production 181	recovery	61 L
sales 177, 181 value 20 value 181 value 20 Barium chemicals industry, annual review 181 states producting 20 Barium chemicals industry, annual review 177 stocks 5, 203, 20 salient statistics 183 uses 20 prices 183 uses 20 production 181 Beryllium, annual review 21 sales 181 Beryllium concentrate, production 4 sales 181 Beryllium concentrate, production 4 Barium metal, production 179 Beryllium-copper, plant for making 20 Barium oxide, prices 183 Beryllium ore, analyses 23 Beryllium products, manufacturers 20 sales 181 Beryllium products, manufacturers 20 sales 181 Beryllium products, manufacturers 21 production 181 Beryllium products, manufacturers 20 sales 181 Beryllium products, manufacturers <t< td=""><td></td><td>reserves 211, 2</td><td>M;</td></t<>		reserves 211, 2	M;
sales 177, 181 value 20 value 181 value 20 Barium chemicals industry, annual review 181 states producting 20 Barium chemicals industry, annual review 177 stocks 5, 203, 20 salient statistics 183 uses 20 prices 183 uses 20 production 181 Beryllium, annual review 21 sales 181 Beryllium concentrate, production 4 sales 181 Beryllium concentrate, production 4 Barium metal, production 179 Beryllium-copper, plant for making 20 Barium oxide, prices 183 Beryllium ore, analyses 23 Beryllium products, manufacturers 20 sales 181 Beryllium products, manufacturers 20 sales 181 Beryllium products, manufacturers 21 production 181 Beryllium products, manufacturers 20 sales 181 Beryllium products, manufacturers <t< td=""><td></td><td>shipments 203, 204, 2</td><td>21:</td></t<>		shipments 203, 204, 2	21:
value 181 States producing 20 Barium chemicals industry, annual review 177 stocks 5, 203, 20 salient statistics 177 supply 20 Barium chloride, foreign trade 183 uses 20 prices 181 beryllium, annual review 21 Barium hydroxide, foreign trade 183 beryllium concentrate, production 4 Barium metal, production 181 seles 181 Barium nitrate, foreign trade 183 substitutes 20 Barium oxide, prices 183 substitutes 20 Barium oxide, prices 183 Beryllium ore, analyses 21 Beryllium ore, analyses 21 Beryllium products, manufacturers 20 sales 181 Beryllium products, manufacturers 20 sales 181 Beryllium products, manufacturers 21 Berium sulfate, production 181 Beryllium products, manufacturers 20 sales 181 Beryllium products, manufacturers 20 <t< td=""><td>sales 177, 181</td><td>value</td><td>204</td></t<>	sales 177, 181	value	204
Barium chemicals industry, annual review 177 salient statistics 177 supply 183 183 prices 182 production 181 sales 1	value 181	States producing 2	204
Barium chloride, foreign trade	Barium chemicals industry, annual review 177	stocks	207
World review	salient statistics 177	supply 2	
Beryllium, annual review 20		uses 2	
sales 181 technology 24 Barium hydroxide, foreign trade 183 beryllium concentrate, production 4 production 181 value 4 sales 181 Beryllium-copper, plant for making 20 Barium metal, production 179 producers 20 Barium oxide, prices 182 Beryllium ore, analyses 21 production 181 Beryllium products, manufacturers 20 sales 181 Beryllium products, manufacturers 20 Barium sulfate, production 181 Besser converters, ferrous scrap, consumption 560, 561, 562, 566, 56 Barium sulfate, production 181 production 560, 561, 562, 566, 56	prices102		
Barium hydroxide, foreign trade. 183 production. 24 value. 25 value. 26 value. 26 value. 27 value. 28 value. 29 value. 29 value. 29 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 20 value. 21 value. 22 value. 23 value. 24 value. 26 value. 26 value. 27 value. 28 value. 28 value. 29 value. 29 value. 20 value. 2	eoloe 1XI	technology	
Production 181 Sales 181 Beryllium-copper, plant for making 20 20 20 20 20 20 20 2	Barium hydroxide, foreign trade 183	Beryllium concentrate, production	4
Barium metal, production 179 producers 20	production 181	value	4
Barium metal, production 179 producers 20	sales		
Barum Oxide, prices 162 Beryllium products, manufacturers 20 Sales 181 Beryllium products, manufacturers 20 Sales 181 Bessemer converters, ferrous scrap, consump 181 tion 560, 561, 562, 566, 56 562, 566, 563 562, 563, 563 561, 562, 566, 563 562, 564, 565 564, 565 564, 565 564, 565 564, 565 564, 565 564, 565 564, 565 564, 565 566, 565 564, 565 564, 565 564, 565 564, 565 564, 565 565 564, 565 564, 565 564, 565 564, 565 564, 565 565 564, 565 564	Barium metal, production 179		
Description	Barium nitrate, foreign trade	Rerullium ore analyses 9	
Sales 181 Bessemer converters, ferrous scrap, consumption Barium sulfate, production 181 tion 560, 561, 562, 566, 56 seles 181 pion consumption 560, 561, 562, 566, 56	production 181	Bervilium products, manufacturers	žÕ!
Barium sulfate, production 181 tion 560, 561, 562, 566, 56	sales 181	Bessemer converters, ferrous scrap, consump-	
soles 181 Dig iron, consumption 560, 561, 562, 566, 56	Barium sulfate, production 181	l tion 560, 561, 562, 566, 5	6
Barytes, prices	ealee IXI	pig iron, consumption 560, 561, 562, 566, 5	56
paroque jeweny, popularity 450 steet nigots and castings, production 554, 54	Barytes, prices 181	steel, production540, 5)4 .
	paroque lewerry, popularity 450	l aveet mgave our cosmiss, bronnenou 994, a	

Page	Page
Bismanol, development 768	Dec -21 - 1 1
use, as permanent magnet 217	Brazii, aluminum, review 138, 139 apatite, data 801, 802, 806, 807
Bismuth, annual review 215	baddeleyite, reserves 1168, 1169
consumption 215 216	beryl, data 209, 213
liquid, corrosion of graphite 218	chromite, data 292
National Stockpile, objective, attainment 216	garnet, abrasive, data 104
producers215	l gem stones data 420 420 440
production	iron ore, data 521, 522, 523, 530
world219	magnesite, data675, 679, 681
technology 217	manganese ore, data701, 702
uses215, 216	iron ore, data 521, 522, 523, 530 magnesite, data 675, 679, 681 manganese ore, data 701, 702 mica, data 737, 738, 740, 741, 745, 746
world review 218	monazite sand, exports, restriction
Bismuth alloys, liquid, effects on high-chro-	steel, review559
mium steel 217	thorium, prospecting 1099
Bismuth metal, foreign trade 215, 217	uranium, prospecting1099
prices 216	vermiculite, deposits 1116
stocks 215, 216	Breccia, foreign trade 975
supply 215 Bitumens, native, production 49	Brick, building, National Bureau of Standards
value value 49	tests
	Brimstone, recovery 982
value 49	British Guiana, bauxite, review 198, 199
Blanc fixe, foreign trade 183	columbium, data 334, 336, 339
Drices	manganese ore, data 701
Blast furnaces, expenditures, for new equip-	Bromine, annual review 229
ment15	consumption 230
ferrous scrap, consumption 561, 571	foreign trade 231 handling, precautions 231
manufacturers' inventories	
men employed, earnings 11	
nours of labor 11	producers
number	value48
pig iron, consumption 561	l recovery from brine
Blast-furnace slag. See Slag, iron blast-fur-	sales 229, 230
nace.	value230
Blastholes, rotary drills, use 972	technology 231
Block-caving methods, improvements 40	
Bluestone, dimension, sales 953	Bromine compounds, foreign trade 231
value	sales
Bolivia, columbium, data 334, 336, 339, 340 lead, data 606, 611, 614 mercury, data 715, 716, 719 sulfur, data 996, 1000	value230
read, data	uses
gulfur dota	Bronze, foreign trade 372
sulfur, data 996, 1000 tin, review 1018, 1027, 1033, 1034, 1036	Bronze ingots, analysis
tin-mining companies nationalization 1010, 1034, 1036	OPS price controls 365
tin-mining companies, nationalization 1012, 1013 tungsten, review 1075, 1079, 1080	production 897
Zine data 1147 1149 1159 1157	Brookite, DMEA exploration assistance 1044
zinc, data	utilization, Bureau of Mines investigations 1043
Borax, prices 223	Brucite, producers 673
88.168 990	production
Boric acid, foreign trade 224	ods, improvement 955
prices	sales 941 943 944 945 954
Sales	sales 941, 943, 944, 945, 954 value 941, 943, 944, 945
Borides, high-temperature techniques 227	DIIIIIII
Boron, annual review	operations, sales
CONSUMPTION 991 999	value868, 875
foreign trade 220, 223, 224 in waste water, upper limit 222	sales 868, 873, 875
in waste water, upper limit 222	value 868, 873, 875
substitution for nickel 769	value 868, 873, 875 Building sand, Government-and-contractor
technology 224	operations, sales
World review	value 868, 875
world review 228 Boron carbide, use, as abrasive 112	Sales 868, 870, 875
Boron carbide, use, as abrasive 112 Boron compounds, sales 220	value 888, 875 sales 868, 870, 875 value 868, 870, 875 Bureau of Mines, alumina plant, modifica-
value 220	bureau of Milles, alumina plant, modifica-
salient statistics 220	tions 197
boron minerals, producers 220 221	beryl, reserves, increase 211 chromium metal, high-purity, production 291
production 48	exploration drilling, uranium-ore deposits 1085
value48	investigations, aluminum ores, direct reduc-
sales	tion28, 133
value	barite ore, treatment 184
salient statistics 220	borides, preparation 227
Boron nitride, uses 227	brookite, utilization 1043
Boron steels, advances 34	brookite, utilization 1043 chrome ores, low-grade domestic 415
advantages 225	cobalt323
applications 225	diamond bits, setting, by crystal planes 38
Brass, foreign trade 372	germanium, as byproduct of coal plants 1176
OPS price controls 365, 366	germanium content, zinc concentrate 1177
Brass ingots, analysis 897	ground subsidence 44
consumption 898 foundry 899, 900	iron ore, titaniferous 1043, 1055
production 899, 900	lithium minerals, extraction from pegma-
production 897 Brass materials, consumption 898	tites654 magnesium-lithium-aluminum alloys667
Brass products, slab zinc for, consumption 1141,	magnesium-lithium-aluminum alloys 667 manganese, recovery, from low-grade de-
1142	posits 700
Brass scrap, foreign trade 900	from open-hearth slags 699, 700
prices 894	mica, synthetic
uses 899	monazite

Page	Page
Bureau of Mines, investigations, nickel 770	California, agate, production 432
removal of cadmium sulfides from zinc sul-	aluminum-foil plant, expansion 119
fide concentrates 239 rocks, physicial characteristics 44	antigorite, shipment 167
rock bursts 44	boron, review 220
rock bursts 44 selenium 1182	californite, production 434
silicomanganese, production 414,700 slate 931	chromite data 201. 202
sodium sulfate reserves	diatomite, data 395, 397 gold, data 442, 449, 450, 453, 455, 456, 458, 459, 460, 462
steels, stainless, corrosion rates 1056	gold, data_ 442, 449, 450, 453, 455, 456, 458, 459, 460, 462
steel industry 549 sulfur deposits, Philippines 1000	gypsite, production 485
thallium, white arsenic as source 164	iodine, production496
thorium resources 1087	iodine, production 496 jade, production 434 lead DMEA contracts 1119
titanium 1043, 1055 zine content, galvanizers' dross 912	DMPA certificate of necessity 1124
zinc content, galvanizers' dross 912 zirconium 1167	l production 592,593,595,596
oil-shale mine, mining methods, study 973	magnesium compounds, producers 707 708 709
phlogopite mica, synthesis	minerals production 57
Bureau of Ships, evaluation service tests, ti-	value 52, 54, 57
tanium 1049 Bureau of Stantards, National, building brick,	potash, producers 827 pyrites, producer 986
tests 311	salt. data855, 858
investigations, graphite crucibles 477, 480	slate, data 929 soda ash, producers 932
tests, electronic use of cesium 1172 titanium dioxide rectifiers 1050, 1183	
Burma, zinc, data1153, 1161	tourmaline production 434
Burrstones, imports	wollastonite, producer 1188 zinc, DMEA contracts 1119
	DMD A cortificate of necessity 1124
C	production 1127, 1128
Cadmium, as byproduct of zinc 241	production 1127, 1128 Californite, production 434 value 434 value 112 128
consumption 234, 336	t i Canada aluminum industry, review 118, 138, 140
foreign trade 234, 238, 239	1 antimony data 100.107.109
National Stockpile, purchases 23- NPA conservation order 23-	asbestos, review 166, 168, 169, 170, 171, 173
prices 234, 238	aspestos mine, block-caving methods
primary, producers 234, 235, 24	otomic operary program review 1099
shipments 23	a stollic energy program, feview 182, 185
value 23	beryl, data 213
production, world 24 reserves 24	calcium chloride, producer 245
secondary, producers	
recovery 23 shipments, European Recovery Program 23	chromite, data292, 293
stocks234, 23	7 columbium-tantalum data 335, 339
technology 23	copper, review368, 369, 370, 378, 379, 381
uses 236, 24 world review 24	Copper, review 308, 309, 301, 376, 378, 361, 362, 379, 361 feldspar, data 399, 404, 407 fluorspar, review 426, 428, 429 fluorspar, review 426, 428, 429 day complete 466, 467, 470, 471, 474 gold mills, pebble grinding 268 gypsum, review 491, 494, 495 day complete 1063, 1054, 1059, 1062 day complete 1063, 1064, 1059, 1062 day complete 1063, 1064, 1059, 1062 day complete 1063, 1064, 1059, 1062 day complete 1063, 1064, 1059, 1062 day complete 1063, 1064, 1059, 1062 day complete 1063, 1064, 1059, 1062 day complete 1063, 1064, 105
Cadmium compounds, production	gem stones, data438, 440
Cadmium industry, annual review 23 salient statistics 23	gold, review 400, 407, 470, 471, 474
salient statistics 23 Cadmium oxide, production 23	gypsum, review
Cadmium sulfide, production 23	ilmenite, review 1053, 1054, 1059, 1062
removal from zinc sulfide concentrates, investigation 23	indium metal production 1178
Calcium, annual review 24	2 iron ore review 503, 520, 521, 522, 523, 526, 528
crystalline, metallic, shipment, ICC regula-	kyanite, data
tions	4 lithium, data657
Calcium carbonate, flash drying, before calcin-	magnasium raviaw 667, 668
ing 64 Calcium chloride, consumption 24	
prices 24	3 molybdenum, data
producers, list 24 sales 24	2 nickel, review 763, 765, 769, 773, 774
value 24	
shipments24	2 pig iron, review 546, 551
technology	
for curing concrete 24	4 Quebec-Labrador, iron ore, review 503, 529
for treating roads 24 Calcium-magnesium chloride, producers, list 24	5 Selenium, data
production 4	8 soapstone, review 1007, 1009, 1010, 1011
value 4	8 sodium sulfate, deposits 939
sales 24 value 24	2 steel, review
Calcium metal, imports 243, 24	4 talc, review 1006, 1007, 1009, 1010
prices24 production24	3 tin, review 1028, 1034, 1034, 1035, 1038 2 titanium slag, review 1043, 1047, 1062
method 24	tungsten, review 1075, 1076, 1080, 1081
uses	zinc, review 1147, 1148, 1149, 1151, 1153, 1154, 1155 zinc sulfide concentrates, processing, with
Calcium molybdate, price 75 producer 41	0 Fluosolids reactor 30
Calcium-silicon, imports	zirconium concentrates, exports
342070—55——76	

Page	Page
Canada Atomic Energy Control Board, iso-	Chromite, consumption 281, 283, 284
topes, shipments 1097	Chromite, consumption 281, 283, 284 DMEA exploration assistance, loan applica-
Canal Zone, minerals, production 84 value 84	1 110015 283
Canary Islands, salt, data 862	foreign trade 281, 288, 290 prices 287, 288
Canton stone, crushed, production 84	producers 282
Value84	producers 282 production 47, 85, 281, 282, 292
Carbolon, imports 113 Carbon dioxide, natural, production 49	Value47
value 49	world 281, 292 salient statistics 281
Carborundum, imports	1 SHIPHERES 981 989 983
Carnotite, as source of uranium 1109	value 282 specifications for National Stockpile pur-
Carnotite ores, treatment, to recover uranium and vanadium 31	specifications for National Stockpile pur-
Celestite, imports 977, 978	chase
prices978	Unromite-magnesia refractories, reports 676
Cement, blast-furnace, use 920	Chromium, annual review281
foreign trade 8, 247, 273, 274, 275, 276 hydraulic foreign trade 273, 274, 275, 276	technology 291
hydraulic, foreign trade 273, 274, 275, 276 manufacturers' inventories 7	world review 292 Chromium briquets, producer 410
Thrippe 040	Chromium-cobalt-tungsten, foreign trade 413
production 48, 85, 246, 247, 272, 279 value 48	Chromium-manganese alloys, as alternates for
value	nickel 768 Chromium metal, ceiling prices, increase 281
shipments 246, 247, 273	foreign trade 413
value	high-purity, production 291
natural, production 247, 272, 273 shipments 273	
production, world 247 279	Chromium ores, tariff 288 Chromium-silicon, foreign trade 413
production, world 247, 279 steam tempering 277	Chromium-silicon, foreign trade 413 Chromium-tungsten, foreign trade 413
Stocks5	I CHEVSOCOUR, DESCRIPTION 494
See also Portland cement. Cement industry, annual review 246	Value 434
cement industry, annual review 246 salient statistics 247	producers domestic
_technology276	producers, domestic166 removal of iron, research171
Cement kilns, rotary, studies 278	spinning grades, NPA control 172
Cement mills, days operated 96 expenditures, for new equipment 15	Clays, blue, foreign trade 295, 301 consumption 295, 296, 297
expenditures, for new equipment 15 men employed 96	consumption 295, 296, 297
Cement-mill workers, earnings 11	foreign trade 8 miscellaneous, consumption 295, 297, 307, 309
hours of labor 11	sales 295, 297, 307, 308
injuries, number 95, 96 rate 95, 96	value
rate95, 96 Cement quarries, days operated96	States producing 309
men employed 96	uses
Cement-quarry workers, injuries, number 96	production48
rate	value 48
development	sales
nickel-magnesia, as coating for jet planes.	uses296, 297
discussion 678 production 32	world review
raw materials 32 i	Clay industry, annual review 295
Ceramic industry, research, importance 311	national income originated 2 salient statistics 295
Cerium metal, price 1180	Clay mining, improvements 313 Clay products, heavy, demand 210
Cerium oxide, use, as polisher 112 Cesium, Bureau of Standards tests, electronic	Clay products, heavy, demand 210
uses 1172	shipments 310 Clay refractories, shipments, value 4
characteristics1172	
producers 1172	Cobait, anothert, by IMC
production1172 uses1172	
Cesium metal, prices 1173	consumption 315, 319, 320 extraction from ores, by chemical methods 324
Ceylon, gem stones, data 438, 440	foreign trade 320 321 322
ilmenite, data 1054, 1063 monazite, data 1180	NSRB report 315
thorium, extraction from monazite sand 1180	production 47, 85 refinery 318
Chain reaction, atomic energy, first 1083	refinery318 value47
Chasers, sales, value 103 Chile, copper, review 343, 364, 368, 370, 378, 379, 385	world
iron ore data 590 591 592 520 l	research 323
manganese ore. data 697 608 701 709 l	technology 323 uses 320
mercury, review 710 790 l	world review 395
molybdenite, data	Cobalt alloys, development 324 foreign trade 321, 322
DOTASSIUM SAITS, GATA 835 837 840 841 1	foreign trade 321, 322
Sulfur, review 997, 1000 China clay, foreign trade 295, 299	Cobait metal, foreign trade 321, 322
Jhina clay, foreign trade295, 299	prices315, 320 production315
nrices ooo l	Cobalt-molybdenum, producer 410
sales 295, 297, 298 Chrome carbide, properties 291 Chrome-manganese alloy, use, as substitute for nickel-bearing stainless steel 291	Cobalt ore, producers
Chrome-manganese alloy, use, as substitute	production
for nickel-bearing stainless steel 291	shipments316
in ome ore, consumption 2811	Cobalt oxide, foreign trade 321, 322
GSA purchase program 283 low-grade domestic, research 415	prices315, 320 production315
retractory, storage 291	tariff 323
uses 283, 284, 285, 286	Cobalt products, production 318
Chrome silicide, producer 410	shipments318

Page	Page
Cobalt refiners, list 319 Cobalt scrap, consumption 315	Copper, imports
Cobalt scrap, consumption 315 Colombia, chrysotile deposit, development 176	tute
emeralds, data440	tute 126 prices 343, 344, 363, 364 effect of DMPA loans 345
gold, data466, 471, 474 platinum-group metals, data818, 819, 822, 823	London 366
silver, data 468, 469, 472, 474	ODM
soda ash, data	price controls, OPS 343, 345, 363, 366
Colorado, Bureau of Mines oil-shale mine, mining methods, study	primary, manufacturers' inventories production 47,8
carnotite ores, treatment, to recover uranium	increase, Government stimulation 344, 376
and vanadium	mine 343, 346, 350, 351, 352, 353, 378
gyratory crusher, installation 24	refinery 343, 346, 350, 357, 358
lead, DMEA contracts 1119	world 377, 378 refinery 343, 346, 350, 357, 358 smelter 344, 346, 347, 350, 356, 357, 37
DMPA certificates of necessity 1124	value357 world346, 347, 379
production593, 595, 596 minerals, production58	l value 47
value 52, 54, 58 onyx, production 434 value 434	refined, consumption 344, 360, 361 production subsidies, DMPA 350, 365 purchases, DMPA 347
value 434	production subsidies, DMPA350, 365 purchases, DMPA347
pyrites, producer 986	GSA
tin, recovery, as byproduct of molybdenum ore	recovery, by acid-leaching process 30 secondary, products, analysis 897
ore 1016 turquoise, production 433 uranium, DMEA exploration assistance 1086	secondary, products, analysis 897
uranium, DMEA exploration assistance 1086	production 897 production, reduction, causes 846, 358, 359 recovery 346, 358, 359 360, 886, 893, 894, 895
DPA certificates of necessity 1087	recovery 346, 358, 359, 360, 886, 893, 894, 895
DMPA certificates of necessity 1124	l value 886.893.894
zinc, DMEA contracts 1119 DMPA certificates of necessity 1124 production 1127, 1128 Colorado Plateau, uranium-ore deposits 1124 Colorado Plateau, uranium-ore deposits 1127, 1128	shipments, value
Colorado Fratesia, dramam-ore deposits 1034 Columbite, foreign trade 333, 334, 336	
production 329	tariff, suspension 9, 367 technology 377
shipments 329 States producing 329	technology 372 world review 377
Columbite concentrates, production 340	world review 377 Copper alloys, secondary, products, analysis 897
WUILU 041	
Columbite-tantalite, foreign trade 333 tariff 337	Copper concentrates, oxygen flash smelting 375 Copper contracts, DPA 347, 348 Copper districts, production 382 Copper industry, annual review 343
Columbite-tantalite producers, foreign, list 337	Copper districts, production 352
Columbium, annual review 329 importance, to defense program 329	Copper industry, annual review 343 salient statistics 346
National Stockpile purchases 332	strikes 346
prices 332	Copper materials, consumption 898
producers 330 source 329	Copper mills, improvements 26, 374 injuries, number 94
stocks332	rate 94
substitute 338 technology 337	men employed 94 working days 94
uses	Copper mines, belt conveyor 43
world review 339	blasthole drilling methods 373
Columbium concentrates, DMPA purchase program 329	leading, list
shipments	men employed
value 330 Columbium metal, prices 333	mining methods, reports 373 Copper miners, earnings 11
Columbium minerals, consumption 331	hours of labor 11
Columbium-tantalum concentrates, produc-	hours of labor. 11 injuries, number 88, 89
tion47, 85 value47	rate
Columbium-tantalum minerals, beneficiation. 337	man-hours worked 88, 89
Columbium-tantalum ore, reserves	Copper-nickel ore, flotation tests 771
Concentrates, agglomeration	Copper ore, beneficiation 374 concentration 355
drying, by infrared lamps 26 Concrete, crushed stone for, sales 957, 958, 959	production 352, 353, 356 recoverable copper content 352, 353, 355, 356
value 957, 958, 959	recoverable copper content 352, 353, 355, 356 sales 355
value957, 958, 959 sales, compared with portland-cement ship-	value355
ments 971 Concrete products, manufacturers' inventories 7	shipments
price index	Copper refining, chemical methods
shipments, value 4	men employed, earnings 11 hours of labor 11
Connecticut, minerals, production 59 value 52 54 59	Copper scrap, consumption 895, 896
value 52, 54, 59 Construction, nonresidential, compared with	foreign trade 900
sales of building stone 954 Controlled Materials Plan, amendment, tin	prices894, 900 price control894
products	recovery of copper from 895
iron535	recovery of zinc from 910 stocks 894, 896
steel 535 Copper, addition, to ductile iron 376	uses 896, 899
anocation, NPA	Copper sulfate, foreign trade
east in forms, production 358	production
crushing, rod mills, use 25 electrolytic, prices 128, 129	stocks 359
electrolytic, prices 128, 129 foreign trade 343, 344, 346, 366, 367, 368, 369, 370	uses
geochemical prospecting 372 hydrometallurgy 374	Copper tailings, concentration
	1000 to table copper contents

rage	rage
Copper tailings, sales 355	Defense Production Administration, certifi-
value	cates of necessity, tax amortization, uranium 1087
shipments 356 Cordierite bodies, using tale and clay, study 1008	uranium 1087 dissolution 724
Corundum imports 115	expansion goals, barite 177
prices 105 production 25	selenium 1180 titanium dioxide pigments 1043, 1045
sources 105	titanium sponge 1045
synthetic, sales 436	functions 17
synthetic, sales 436 Cornwall stone, imports 404	production goals, nitrogen 782
Crocus, use, as polisher 112 Crucible furnaces, ferrous scrap, consump	salt 854 programs, Government, zinc industry 1119
tion 561, 571	purchases, copper347, 348
tion	purchases, copper 347, 348 survey, lithium, demands 650 Delaware, minerals, production 59
Cryonte, demand450	Delaware, minerals, production 59
imports 430 natural, source 431	value52, 54, 59 Denmark, manganese ore, data703
NPA regulations 431	
recovery, from aluminum reduction 431	imports. 436, 437, 438 industrial, demand 436 imports. 107, 108, 109, 113 value. 108, 109 production 106, 107
Synthetic, price	imports 107 108 100 113
production 428, 430	value 108, 109
Crystalon, imports 113	production 106, 107
Cubs, iron ore, data 521, 523, 528, 530	Saies
nickel review 763, 765, 769, 777	value
Cupola furnaces, ferrous scrap, consumption. 560,	production 85, 439
561, 562, 567, 569	sales, value 435
561, 562, 567, 569 pig iron, consumption 560, 561, 562, 567, 569 Curação. See Netherlands Antilles.	Diamond bits, setting, by crystal planes 38 Diamond critl, use, for sampling mineral de-
Cyanamide, prices 782	posits 38
Cyclone classifier, uses 26	posits. 38 Diamond dust, exports. 114 Diamond grinding wheels, foreign trade. 114 Diatomaceous earth, production. 395
Cyprus, copper, data	Diamond grinding wheels, foreign trade 114
	Diatomaceous earth, production 395
그 그 하게 되는 일이 되는 사람들이 함께 되어 되었다.	Diatomite, annual review 395
$[\cdot,\cdot]$	consumption 396
Dead Sea brines, solar evaporation	Value 395 Diatomite, annual review 395 consumption 396 prices 396 production 85, 395, 398 value 395 receptors 397
Dead Sea brines, solar evaporation	value 395
exploration assistance, antimony 149, 150	reserves 397 States producing 395 uses 395, 396, 397
asbestos	States producing 395
brookite1044 chromite283	world review 397
cobalt 315	Diborane, preparation 227
lead 1119	Dilithium-sodium phosphate, recovery, in-
manganese ore 687	crease 651 Diesel power, increased use 43
mercury 707 mica mines 725	DMEA. See Defense Minerals Exploration
rutile 1044	Administration.
steatite1003	DMPA. See Defense Materials Procurement
sulfur 982 tin projects 1014, 1016	Agency. Dolomite, dead-burned, foreign trade
tungsten1076, 1077	sales635, 670, 671 price670
uranium 1086	price670
zine 1119 functions 19, 591, 724, 1119	value 670, 671 deposits, discovery 974
Defense Minerals Procurement Agency, ac-	sales 967
cess roads, certification 1126	value 967
allocation, molybdenum concentrates 748	selective calcination 648
certificates of necessity, barite 178 lead 1124	uses 967 Dominican Republic, bauxite, data 199
lead 1124 zinc 1124	ferrous scrap, export, prohibition
contract negotiations, titanium sponge, pro-	gypsum, data
duction 1046	
	salt, review
development loans, Alaska chromite deposit 283 lead 1123, 1124	salt, review 860, 863, 864 DPA. See Defense Production Administra-
lead 1123, 1124 manganese 700	salt, review 860, 863, 864 DPA. See Defense Production Administration. Drills, airleg-mounted, tests 41
lead 1123, 1124 manganese 700 mica mines 726	salt, review
lead 1123, 1124 manganese 700 mica mines 726 Montana chrome mine 282	salt, review
lead	salt, review
lead	salt, review
lead	salt, review
lead 1123, 1124 manganese 700 mica mines 726 Montana chrome mine 282 synthetic cryolite producer 430 zinc 1123, 1124 functions 17, 591, 794, 725, 1126 production subsidies, copper 245, 350, 365 purchases, columbium concentrates 329	salt, review
lead	salt, review
lead	salt, review
lead	salt, review
lead	salt, review 860, 863, 864 DPA. See Defense Production Administration 41 Drills, airleg-mounted, tests 41 See also Auger drills; Diamond drills; Percussion drills; Rotary drills. 41 Drill bits, life, increased 41 Drill carriages, track-mounted, use 39 Drilling equipment, improved, introduction 41 Drills, mobile, tests 41 Dross, galvanizers', composition 912 consumption 913, 914 skimmings, sale basis 912 zinc content, Bureau of Mines investigation 912
lead	salt, review
lead	salt, review 860, 863, 864 DPA. See Defense Production Administration. 41 Drills, airleg-mounted, tests 41 See also Auger drills; Diamond drills; Percussion drills; Rotary drills. 41 Drill bits, life, increased 41 Drill carriages, track-mounted, use 39 Drilling equipment, improved, introduction 41 Drill unit, mobile, tests 41 Dross, galvanizers', composition 913, 914 skimmings, sale basis 912 zinc content, Bureau of Mines investigation 912 Dumortierite, use 586
lead	salt, review 860, 863, 864 DPA. See Defense Production Administration. 41 Drills, airleg-mounted, tests 41 See also Auger drills; Diamond drills; Percussion drills; Rotary drills. 41 Drill bits, life, increased 41 Drill carriages, track-mounted, use 39 Drilling equipment, improved, introduction 41 Drill unit, mobile, tests 41 Dross, galvanizers', composition 913, 914 skimmings, sale basis 912 zinc content, Bureau of Mines investigation 912 Dumortierite, use 586
lead	salt, review 860, 863, 864 DPA. See Defense Production Administration. 41 Drills, airleg-mounted, tests 42 See also Auger drills; Diamond drills; Percussion drills; Rotary drills. 41 Drill bits, life, increased 41 Drill carriages, track-mounted, use 39 Drilling equipment, improved, introduction 41 Dross, galvanizers', composition 912 consumption 913, 914 skimmings, sale basis 912 zinc content, Bureau of Mines investigation 912 Dumortierite, use 586 Dutch State Mines cyclone, use as classifier 25

Economic Cooperation Administration, funds,	Ferroalloys, shipments40)9
Finland, construction of fertilizer	value 4, 40 States producing 40	าย าร
Finland, Construction of lettilizer	substitutes 41	16
Ecuador, sulfur, data 992, 998	technology 41	
Egypt, ilmenite, data	uses41 Ferroalloys industry, annual review40	
phosphate rock review 807, 808	Ferroaluminum-silicon, foreign trade 41	l3
zircon concentrates, production 1169	Ferroporon, producers41	10
Electrolon, imports 113	production 409, 41 uses 41	LU I 5
Enectrostatic separation, development 20	Ferrocarbontitanium, producers 41	
synthetic, production 434	Ferroceriiiiii. ioreigii irade 41	
Emery, consumption99, 106	price118 Ferrochrome-silicon, low-carbon, use in steel-	SU
1mports 48 105 106	making	
value 48, 99, 105	producers 41	
sales 99, 106	production 40 increase 41	
Electrostatic separation, development 20	shipments 40	99
value	value 40	
Eniwetok Atoll, atomic weapons, tests1083,	Ferrochromium, ceiling prices, increase 28 foreign trade 288, 289, 412, 413, 41	
1089, 1090 Epsom salt, prices 674	prices 41	12
producers 673, 674 Ethylene bromide, as aid to plant growth 232 Ethylene bromide, as along 230	producers 41	
Ethylene bromide, as aid to plant growth 232	production 40 shipments 40	
Ethylene dibromide, sales 230 value 230	value40	
The Assertion Policisms Donmarks	11Ses 41	
Finland; France; Germany, East;	Ferrochromium-tungsten, foreign trade 41	
Germany, West; Greece; Hungary;	Ferrocolumbium, prices 333, 41 producer 41	Ю
Portugal; Spain; Sweden; Switzerland;	production 330, 40)9
Finland; France; Germany, East; Germany, West; Greece; Hungary; Iceland; Italy; Netherlands; Norway; Portugal; Spain; Sweden; Switzerland; Turkey; Union of Soviet Socialist Republics; United Kingdom; Yugo-	11Ses 41	LO
Republics; United Kingdom; Yugo- slavia.	Ferromanganese, consumption 687, 691, 69 foreign trade 412, 413, 414, 687, 694, 69)7
European Coal and Steel Community, objec-		
tives 555	producers 410, 69 production 408, 409, 687, 693, 69 manganese ore consumed 68)3 \
production, ferroalloys 556 pig iron 556	manganese ore consumed 69)5
steel castings 500	shipments 409,68 value 40 specifications, recommended change 40)5
	value 40)9 \
Steel ingots European Council for Nuclear Research, founding 1101	specifications, recommended change 41	14
members 1101	Ferromolybdenum, exports 75	52
European Recovery Program, cadmium,	foreign trade 412, 413, 41 prices 412, 75	14
shipments 238	prices 414, 70	
Evolen imports 113	producers 41	ίο
Export Control Act, administration 9	producers 41	10)9
Export Control Act, administration 9 Export Import Bank credits establishment 21	producers 41 production 40 shipments 40	10)9)9
Export Control Act, administration 9	producers 41 production 40 shipments 40 value 40	10 09 09
Export Control Act, administration 9 Export Import Bank credits establishment 21	producers.	10 09 09 15
Exolon, imports	producers.	10 09 09 15
Exolon, imports	producers	10 09 09 09 15
Exolon, imports	producers.	10 09 09 15 70 14 12
Exolon, imports	producers	10 09 09 09 15 70 14 12 10
Exolon, imports	producers.	100 100 100 100 100 100 100
Exolon, imports	Producers	10 09 09 09 15 70 14 12 10 10 10
Exolon, imports	Producers.	10 09 09 09 15 70 14 12 10 10 10 10 10 10
Exolon, imports	Producers.	10 09 09 09 15 70 14 12 10 10 10 10 10 10 10 10 10 10 10 10 10
Exolon, imports	Producers	10 09 09 09 15 70 14 12 10 10 10 10 10 11 11 11 11 11 11 11 11
Exolon, imports	Producers.	10000000000000000000000000000000000000
Exolon, imports	Producers.	100 09 09 09 09 15 14 12 10 10 10 10 10 10 10 10 10 10 10 10 10
Exolon, imports	Producers.	100 09 09 09 15 70 14 12 10 10 10 10 10 10 10 10 10 10 10 10 10
Exolon, imports 113 Export Control Act, administration 9 Export-Import Bank, credits, establishment 21 Export license, nitrogen fertilizer materials 780 F Feldspar, analyses, relation to uses 406 as vitrifying agent, in whiteware bodies 400, 401 imports 399, 403 price 399, 403 production 48, 85, 399, 400 value 389, 400 value 399, 400, 407 value 399, 400 uses 401 ground, consumption 402 ground, consumption 402 prices 399, 400, 401 sales 399, 400 uses 399, 400 uses 399, 400 uses 399, 400 uses 399, 400 uses 399, 400 uses 399, 400 uses 399, 400 uses 399, 400 uses 399, 400 sales 399, 400 sales 399, 400 sales 399, 400 shipments 403 uses 402	Producers	100 100 100 100 100 100 100 100 100 100
Exolon, imports	Producers.	10 09 09 09 15 70 14 12 10 10 09 09 09 13 10
Exolon, imports	Production	10099999999999999999999999999999999999
Exolon, imports	Producers.	10099999999999999999999999999999999999
Exolon, imports	Producers	10099999999999999999999999999999999999
Exolon, imports	Producers	10099999999999999999999999999999999999
Exolon, imports	Producers	10099999999999999999999999999999999999
Exolon, imports	Producers.	10099999999999999999999999999999999999
Exolon, imports	Producers.	10099999999999999999999999999999999999
Exolon, imports 113 Export Control Act, administration 9 Export Control Act, administration 9 Export Control Act, administration 9 Export Import Bank, credits, establishment 21 Export license, nitrogen fertilizer materials 780 F Feldspar, analyses, relation to uses 406 as vitrifying agent, in whiteware bodies 400, 401 imports 399, 401 price 399, 403 production 48, 85, 399, 400 value 399, 400, 407 value 399, 400, 407 value 399, 400 uses 401 ground, consumption 402 prices 399, 400, 401, 402 prices 399, 400, 401, 402 prices 399, 400, 401, 402 prices 399, 400, 401, 402 value 399, 400 sales 403 uses 403 production, from granites and pegmatites, study 405 world 406 technology 405 world eview 406 Feldspar grinders, list 402 Feldspar grinders, list 402 Feldspar grinders, list 402 Feldspar industry, annual review 399 salient statistics 399 Ferrites, advantages 33 derivation 33 uses in electronic equipment 333	Production	10099999999999999999999999999999999999
Exolon, imports. 113 Export Control Act, administration 9 Export Control Act, administration 9 Export Control Act, administration 9 Export Limport Bank, credits, establishment 21 Export license, nitrogen fertilizer materials 780 F Feldspar, analyses, relation to uses 406 as vitrifying agent, in whiteware bodies 400, 401 imports 399, 401 imports 399, 401 price 399, 403 production 48, 85, 399, 400 value 48, 85, 399, 400 value 399, 400, 407 value 399, 400, 407 value 399, 401 ground, consumption 401 ground, consumption 399, 401 sales 399, 400, 401, 402 prices 399, 400, 401, 402 prices 399, 400 sales 399, 400, 401, 402 prices 399, 401 shipments 403 uses 402 producers 399 production, from granites and pegmatites, study 405 world 406 technology 406 technology 406 Feldspar grinders, list 402 Feldspar grinders, list 402 Feldspar grinders, list 402 Feldspar grinders, list 406 Feldspar grinders, list 406 Feldspar grindustry, annual review 399 salient statistics 399 Ferreley, advantages 339 Gerivation 33 use, in electronic equipment 33 Expressibles 402 Ferreley & 642 Ferreley & 644 Ferreley & 644 Ferreley & 645 Ferreley & 640 Ferreley & 64	Production	10099999999999999999999999999999999999
Exolon, imports	Production	10099999999999999999999999999999999999
Exolon, imports	Production	10099999999999999999999999999999999999
Exolon, imports	Producers.	10099999999999999999999999999999999999
Exolon, imports	Producers.	10099999999999999999999999999999999999

Page	Page	
Ferrotungsten, shipments 409	French Cameroons, mica, data 74	
value 409	molybdenum, deposits 757	
uses	French chalk, foreign trade 1007 French Equatorial Africa, diamonds, data 438,	
414, 1109, 1110, 1111	French Equatorial Africa, diamonds, data 438, 439, 440	
manufacture 416	manganese ore, data	
prices 412, 1109, 1110	French Guinea, aluminum, review 149	
producers410	I French Morocco barite data 195 100	
production 409	beryl, data 209, 213, 214	
shipments 409 value 409	cobalt, data 325, 32	
value	325, 32 fluorspar, data	
Fertilizers, phosphatic, foreign trade 800	phosphate rock review 907, 098, 702, 703	
minimizing use of sulfuric acid804		
production, TVA processes 804	French West Africa, bauxite, data 198, 199	
Fertilizer materials, foreign trade 783	i iron ore, data 590	
Fiberfrax, production 32	zircon, production 1160	
riter sand, sales 868, 872	f uner's earth, consumption 295, 297, 305, 306, 307	
value	foreign trade295, 306 prices306	
Finland, arsenic concentrates, production 164	production 306	
cobalt, data 325, 327 nickel, review 765, 774, 778 tungsten, data 1075, 1080, 1081	Value	
tungsten, data 1075 1080 1081	value	
Fire clay, consumption 295, 297, 302		
foreign trade 295, 303	States producing 306	
Drices 303	1 11SPS 907 905	
sales	Furnaces, electric, ferrous scrap, consumption. 560,	
value295, 302	561 562 567 569	
States producing 303	steel ingots and castings, production 534 steel production 540, 541	
USes 297	open hearth, ferrous scrap, consumption 560,	
Fire sand, sales 868, 871	561 569 565 566	
Value 868, 871	l Dig iron, consumption 560 561 569 565 566	
Flagstones, sales 924 value 924	Furnace sand, sales	
Flint, imports 113	value 868, 871	
Florida, ilmenite ores, electrostatic separation 26 minerals, production 59	9	
value 52 54 59	Gallium, characteristics 1173	
phosphate fields, pipeline transportation 44	producers 1179	
phosphate mining, description 809	production 1173	
phosphate rock, sales 795, 797, 798, 799	Uses 1173	
value	Galvanizing slah zine for consumption	
Electrical machines lorge introduction of	Garnet, abrasive, consumption 99 104	
Flotation machines, large, introduction, at	Garnet, abrasive, consumption 99, 104	
Flotation machines, large, introduction, at copper mills 26	1173 Gallium metal, prices 1173 Gallvanizing, slab zinc for, consumption 1141 Garnet, abrasive, consumption 99, 104 imports 113 price 104	
Flotation machines, large, introduction, at copper mills 26 Fluorides, use, for treating water supplies 428	producers 104	
Flotation machines, large, introduction, at copper mills 26 Fluorides, use, for treating water supplies 428 Fluorine compounds, manufacture 428	producers 104	
Flotation machines, large, introduction, at copper mills 26 Fluorides, use, for treating water supplies 428 Fluorine compounds, manufacture 428 Fluorspar, consumption 418, 423, 424 in manufacture of open-hearth steel	104 104 104 104 105 104 105 104 105	
Flotation machines, large, introduction, at copper mills	104 104	
Flotation machines, large, introduction, at copper mills	104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 99 104 gem, production 49 104 105	
Flotation machines, large, introduction, at copper mills 26	104 107 108 109	
Flotation machines, large, introduction, at copper mills	104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 99, 104 gem, production 434 value 434 value 434 Gem stones, consumption 435 Gem stones, consumption 435 Compared to the consumption	
Flotation machines, large, introduction, at copper mills	104 producers 104 production 48,104,105 value 48,104,105 value 99,104 sales 99,104 yalue 99,104 gem, production 434 value 434 value 434 value 436 value 437 value 437 value 438 value 438 value 439 value	
Flotation machines, large, introduction, at copper mills 26	104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 99, 104 gem, production 434 434 value 434 value 434 value 435 foreign trade 8, 436, 437, 438 production 48, 436, 437, 438 production 48, 436 437, 438 production 48, 436, 437, 438 production 48, 436, 437, 438 production 48, 436, 437, 438 production 48, 436, 437, 438 production 48, 436, 437, 438 production 48, 436, 437, 438 production 48, 436, 437, 438 production 48, 436, 437, 438 production 48, 436, 437, 438 436, 437, 438 production 48, 436, 437, 438 prod	
Flotation machines, large, introduction, at copper mills	104	
Flotation machines, large, introduction, at copper mills	104 producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 99, 104 gem, production 434 value 434 Gem stones, consumption 435 foreign trade 8, 436, 437, 438 production 48, 432 value 48 sales 435 for gem collections 435 for ge	
Flotation machines, large, introduction, at copper mills	104 producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 sales 99, 104 gem, production 434 value 434 Gem stones, consumption 435 foreign trade 8, 436, 437, 438 production 48, 432 value 48, 438 sales 435 for gem collections 435 synthetic, production 435 synthetic, production 435 synthetic, production 436	
Flotation machines, large, introduction, at copper mills	104 producers 104 production 48, 104, 105 value 48 sales 99, 104 yalue 434 yalue 434 yalue 434 yalue 434 yalue 435 yalue 436 yalue 437 yalue 438 yalue 438 yalue 48, 432 yalue 48, 432 yalue 48, 432 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 48 yalue 49	
Flotation machines, large, introduction, at copper mills 26	104 producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 99, 104 yalue 434 yalue 434 yalue 434 yalue 435 foreign trade 8, 436, 437, 438 production 48, 432 yalue 48 sales 435 for gem collections 435 synthetic, production 434 production 435 yalue 436 yalue 437 yalue 438 yalue 438 yalue 439 yalue 439 yalue 439 yalue 430	
Flotation machines, large, introduction, at copper mills 26	104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 99, 104 yalue 43 43 43 43 45 45 45 45	
Flotation machines, large, introduction, at copper mills 26	104 producers 104 production 48, 104, 105 value 48 104, 105 value 48 104, 105 value 48 104, 105 value 99, 104 gem, production 434 value 434 value 434 value 436 value 436 value 48, 436, 437, 438 production 48, 432 value 48 val	
Flotation machines, large, introduction, at copper mills	104 producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 gem, production 434 434 436 437, 438 production 435 foreign trade 8, 436, 437, 438 production 48, 432 value 48 sales 435 for gem collections 435 for gem collections 435 synthetic, production 434 production 434 production 436 production 437 production 438 production 439 production 430 production 431 production 432 general Services 436 dem-stone industry, annual review 439 Gem-stone industry, annual review 432 General Services 436 demistance 432 General Services 436 demistance 432 General Services 436 demistance 432 General Services 436 demistance 432 General Services 436 demistance 432 demestance 433 demestance 434 demestance 434 demestance 434 demestance 435 demestanc	
Flotation machines, large, introduction, at copper mills 26	104 producers 104 producers 104 production 48, 104, 105 value 48, 104, 105 value 99, 104 value 99, 104 gem, production 434 value 434 Gem stones, consumption 435 foreign trade 8, 436, 437, 438 production 48, 432 value 48 value 49 value	
Flotation machines, large, introduction, at copper mills 26	104 producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 99, 104 yalue 348 value 438 yalue 438 yalue 438 yalue 438 yalue 439 yalue 48, 430, 437, 438 yroduction 48, 432 value 48, 432 value 48 yalue Flotation machines, large, introduction, at copper mills	104 producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 gem, production 434 435 436, 437, 438 production 435 foreign trade 8, 436, 437, 438 production 48, 432 value 48 sales 435 for gem collections 435 for gem collections 435 synthetic, production 434 production methods 437 production methods 437 production methods 438 ses 436 world review 439 dem-stone industry, annual review 439 dem-stone industry, annual review 430
Flotation machines, large, introduction, at copper mills 26	Producers 104	
Flotation machines, large, introduction, at copper mills	104 producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 99, 104 yalue 434 value 434 value 435 value 435 value 435 value 435 value 436 value 437 value 48, 432 value 48, 432 value 48, 432 value 48 value 49 valu	
Flotation machines, large, introduction, at copper mills 26	Producers 104	
Flotation machines, large, introduction, at copper mills 26	Producers 104	
Flotation machines, large, introduction, at copper mills 26	Producers 104	
Flotation machines, large, introduction, at copper mills 26	Producers 104	
Flotation machines, large, introduction, at copper mills	104 producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 99, 104 yalue 434 435	
Flotation machines, large, introduction, at copper mills	producers 104 production 48, 104, 105 value 48 sales 99, 104 yalue 48 sales 99, 104 yalue 48 sales 99, 104 yalue 48 sales 45 yalue 48 sales 45 yalue 48 yalue	
Flotation machines, large, introduction, at copper mills	producers 104	
Flotation machines, large, introduction, at copper mills	producers	
Flotation machines, large, introduction, at copper mills	producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 43 43 430, 105 value 43 430, 104 430	
Flotation machines, large, introduction, at copper mills	producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 43 43 430, 105 value 43 430, 104 430	
Flotation machines, large, introduction, at copper mills	producers 104	
Flotation machines, large, introduction, at copper mills	producers 104	
Flotation machines, large, introduction, at copper mills	producers 104 producers 104 production 48, 104, 105 value 48 sales 99, 104 value 43 43 430, 105 value 43 430, 104 430	

Domo		
Page	Pa	_
Germanium, as product of coal plants, inves-	Grainals, producer 4	11
tigations 1176 consumption 1174, 1175	Granite, crushed, sales 960, 9)6
in zinc concentrate, presence 1174, 1175	value960, 9 States producing9	10
prices1176	uses960, 9	16 36
producers1174	dimension, foreign trade	77
production 1174	dimension, foreign trade 940, 943, 945, 946, 9	15
stocks	value	140
technology 1176	States producing 9	140
uses1175	sales	4(
world review 1177	value9	4(
Germanium dioxide, imports 1176	Granite plants, dimension, number 9	4(
Germanium metal, refined, manufacture 1174	Granite quarries, days operated	90
Germanium transistors, possibilities 1174	men employed	96
producers 1175 uses 36, 1175	Grante-quarry workers, injuries, number 96,	97
Germany, East, potassium salts, data 839, 840, 842	Graphite, artificial, foreign trade 480, 4	9
rubble, resulting from bombing, disposal 974		18
West, aluminum, review 138 142	natural consumption 478 4	70
West, aluminum, review 138, 142 bauxite, data 198, 199	natural, consumption 478, 4 foreign trade 478, 479, 480, 4	21
peryl, data 214	production 48, 85, 4	78
cadmium, data241	value	48
feldspar, production, increase 406	world 477, 4	82
ferrous scrap, review 577, 580	sales4	78
fluorspar, data426, 429	shipments4	78
germanium dioxide, data 1176	States producing 4	77
ilmenite, data 1063	uses4	79
koppite, data339 lead, review606, 608, 611, 612, 616		82
potassium salts, review 835, 837, 840, 842, 843	prices 4'	78
selenium, data	shipments, value4 technology4	80 80
uranium deposits1102	Graphite crucibles, tests 477, 48	
zinc, data 1147, 1148, 1149, 1153, 1154, 1158		77
zinc pigments, review 633	salient statistics 4'	78
Gilsonite, production 49	Gravel, beneficiation 88	
value49	consumption 8	
Glass sand, foreign trade 881	foreign trade 88	
preparation, froth flotation 882	Government-and-contractor operations,	
production 879	, sales	77
sales	preparation, degree 876, 87 prices 868, 876, 877, 88 production 48, 867, 869, 877, 878, 88	77
value868, 870	prices 868, 876, 877, 88	31
Glauber's salt, foreign trade 936	production 48, 867, 869, 877, 878, 88	30
prices 936 production 923	underwater operations 88	Öű
production 923 reserves 937, 938		48
Gold, consumption 443, 462, 463	prospecting, equipment 88	50 70
foreign trade 443, 465, 466, 467, 469	sales 867, 868, 869, 874, 875, 876, 877, 870, 871, 872, 873, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 876, 877, 872, 873, 874, 875, 875, 875, 875, 875, 875, 875, 875	10 71
premium prices446	States producing 869, 87	70
price443, 444, 465	stocks88	
production 47, 85, 463, 470	technology88	
mill 459 mine 442, 443, 447, 448, 450, 453, 457, 458	transportation, method	
mine 442, 443, 447, 448, 450, 453, 457, 458	treatment, in railroad grizzly 88	32
mmt	uses	76
placer460, 461	western, silicates, harmful reaction in cement. 88	
refinery 462	Gravel industry, annual review 86	
value 47 world 442, 443, 470, 471	history 88	
stocks 443, 464	Gravel pits, reclamation 88	
supplies, increase, by relaxation of Inter-	Gravel plants, employment 879, 88 number 87	
national Monetary Fund policy 446	number 87 portable, advantages 88	
uses462	Gravel-plant workers, number 879, 88	
world review 470	productivity 879, 88	ŝŏ
Gold Coast, aluminum, review	time worked	30
Gold Coast, aluminum, review 143 bauxite, data 198, 200	Greece, bauxite, data	90
diamonds, industrial, production 107 manganese ore, foreign trade 697, 702	emery, data 10)6
manganese ore, foreign trade 697, 702	magnesium compounds, review 675, 679, 682, 68	
Gold districts, leading, production 449, 450	Greenland, cryolite, production 43	
Gold industry, annual review	lead, deposit 61	
salient statistics 443 Gold mills, pebble grinding 25	zinc, data	
Fold mines leading list 451 l	Greensand, prices 118 producers 118	
Gold mining, restriction, by WPA limitation	production 48, 118	
order445		18 18
damage cuits	uses	-
Gold ore, production 443, 455	Greensand marl, sales 118	26
Gold placers, days operated	value 118	ã
Gold ore, production	Grinding nebbles, consumption 00 10	14
told-placer miners, injuries, number	Grinding pebbles, consumption 99, 10 production 4 value 4	ıē
rate	value4	ıĕ
rate 88, 90 man-days worked 88, 89 man-hours worked 88, 90 Gold-silver mines, days operated 88, 89	sales	14
Ald silver mines deve energeted 90 00	value	١4
man amployed 00 00 1	Grinding sand, production 87	/9
men employed	sales	1
rate 00 00 l	value868, 87	1
man-days worked 88, 80	Grindstones, foreign trade 113, 11	4
man-hours worked 88 90	production 4	8
rate 88, 90 man-days worked 88, 89 man-hours worked 88, 89 Told-silver ore, production 443, 455 Tovernment controls, mineral industries 1	production 4 value 48, 99, 10	3
Povernment controls, mineral industries 1	sales99, 10	3
-		

Page	Page
Gross Almerode clay, foreign trade 295, 301	Idaho, University of, investigations, sawdust-
Ground subsidence, problems 44	diatomate-clay, as aggregate 397
Grouting, use, in shaft sinking 39	Yellow Pine antimony mine, closing 151
GSA. See General Services Administration.	zinc, DMEA contracts
Guam, stone, production84	production 1127, 1128
value 84	Idocrase, production 434 value 434
Guatemala, lead, data 606, 611, 612, 613	Illinois, basic magnesium carbonate, producer 673
Gypsite, production 485 Gypsum, calcined, production 483, 484, 486	fluorspar, review 419, 420, 421, 424, 425
value 483	fluorspar, review 419, 420, 421, 424, 425 lead, DMEA contract 1120
crude, imports 483, 491	production592, 593, 596, 598
prices 490	production 592, 593, 596, 598 minerals, production 61
prices	value 52, 54, 61
value48	sand, ground, production 101
stocks490	sandstone, ground, production 101 zinc, DMEA contract 1120
supply 483	zinc, DMÉA contract 1120 DMPA certificates of necessity 1124
	production 1127, 1129
manufacture of ammonium sulfate 492 price index 12	Ilmenite, consumption 1043, 1047, 1048
production world 494	foreign trade 1043, 1054
technology 492	prices 1051
world review 495	producers
Gypsum board, manufacture	production 47, 85, 1043, 1044, 1045, 1059
sales489, 490	value
value 489, 490	shipments 1043, 1044, 1045
Gypsum-calcining plants, number 483, 487 Gypsum deposits, study 493	stocks1043, 1051
Gypsum industry, annual review 483	world review 1058
salient statistics	Ilmenite ores, electric smelting 30
Gypsum plants, men employed, earnings 11	electrostatic separation 26
hours of labor 11	IMC. See International Materials Conference.
Gypsum products, consumption 486, 489	India, aluminum, review 138, 144
foreign trade 483, 491 manufacturers' inventories 7	antimony, data 157 apatite, data 807, 810
sales 483, 488, 489, 490	bauxite, data
value 483, 487, 489, 490	hervl data 209 213 214
ahinmonta rolno 4	columbium-tantalum, data 334, 335, 339, 340
uses 483, 486, 487, 489	corundum, data105, 106
(Ivpsum retarder, use in portland cement 492	ferrous scrap, data 577, 578, 581 fertilizers, data 785, 786, 787
Gypsum tile, sales	gypsum, data 494, 495
water-repellent, manufacture 492	manufacture of ammonium sulfate 492
Gypsum wallboard, water-repellent, manu-	iron ore, data 523, 528, 531
facture 492	limestones, search 975 manganese ore, data 697, 698, 702, 703
	manganese ore, data 097, 098, 702, 708
H H	mercury, review 720 mica, review 737, 738, 740, 741, 745, 746
Hamium, AEC purchases 1170	monazite sand, exports, restriction 1180
analyses 1170	radioactive minerals, deposits
annual review 1169 future availability 1171	1 salt, data 805, 805
production 1170	silver, data473, 475 sodium sulfate, deposit938
properties1169	l stool review 552 554
properties 1169 separation from zirconium 1170	titanium, review 1054, 1059, 1063
source 1169	zinc, data
uses	Indiana, limestone, dimension, sales 950
Hafnium metal, price 1170 Hafnium oxide, price 1170	value 950 minerals, production 62
Hamium oxide, price	value52, 54, 62
Hawaii, minerals, production 83	Indium, characteristics 1177
valueo	production1178
	uses1178
Value. Hematite, production	Indium alloys, perfection 36 Indium metal, price 1178
Hoisting, hydraulic, tests 44	Indium metal, price 1178 Indonesia, bauxite, data 198, 200
Hones, imports	formus seran data 581
Honduras, silver, data	1 tin raviow 102/1033 1034 1039
Hungary, aluminum, review 138, 144	RFC purchase contract 1012, 1018
bauxite, data 198, 200 bentonite, data 313	Infrared lamps, use, for drying concentrates 26
bentonite, data	Industrial Development, Office of, AEC,
1	establishment 1092 International Declassification Conference,
Iceland, fertilizer plant, construction, with	recommendations, on atomic data 1098
ECA funds	International Materials Conference allot-
columbium, deposits 330	ments, cobalt31
John Stranger	
lead, DMEA contracts	minerals 764 76
DMPA certificates of necessity 1124	nickel
DMPA certificates of necessity 1124	nickel
DMPA certificates of necessity 1124	distribution, molybdenum concentrates 753, 75-
DMPA certificates of necessity 1124 production 592, 593, 594, 596 mercury, data 707, 708, 710	report, saving nicket
DMPA certificates of necessity 1124 production 592, 593, 594, 596 mercury, data 707, 708, 710 minerals, production 60 value 52, 54, 60 monazite deposits, dredge mining 39	sulfur committee, foreign trade, study 99 International, Monetary Fund, relaxation of
DMPA certificates of necessity. 1124 production. 592, 593, 594, 596 mercury, data. 707, 708, 710 minerals, production. 52, 54, 60 value. 52, 54, 60 monazite deposits, dredge mining. 39 National Reactor Testing Station, materials-	report, saving nicket
DMPA certificates of necessity. 1124 production. 592, 593, 594, 596 mercury, data. 707, 708, 710 minerals, production. 60 value. 52, 54, 60 monazite deposits, dredge mining. 39 National Reactor Testing Station, materials- testing reactor, operation. 1083, 1092, 1093	report, saving ficket. 70 sulfur committee, foreign trade, study 99. International, Monetary Fund, relaxation of sale policy. 440. International Trade, Office of, administration
DMPA certificates of necessity. 1124 production. 592, 593, 594, 596 mercury, data. 707, 708, 710 minerals, production. 52, 54, 60 value. 52, 54, 60 monazite deposits, dredge mining. 39 National Reactor Testing Station, materials-	report, saving nicket

Page	Page
Interstate Commerce Commission, regula-	Iron ore, States producing 505, 506,
tions, shipments, crystalline metallic	Iron ore, States producing
calcium 243 Iodine, annual review 496	stocks 5, 518
Iodine, annual review 496	technology 524
atomic weight, change 499	titaniferous, as source of metals 1111
consumption 496 crude, foreign trade 497	titaniferous, as source of metals 1111 Bureau of Mines investigations 1043, 1055
crude, foreign trade 497	transportation
producers496	uses516
stocks497	world review 526
technology 497	world trade 523
uses 496, 498	Iron-ore industry, annual review
world review 499	salient statistics 503
Iowa, lead, DMEA contract 1120	Iron-ore mines, days operated 88, 89, 527
minerals, production 62	list 514
value 59 54 69	men employed 10 88 89 526 527
value 52, 54, 62 zinc, DMEA contract 1120	list 514 men employed 10, 88, 89, 526, 527 earnings 11 Iron-ore miners, injuries, number 88, 89
Iran sulfur data	Tron-ore miners injuries number 88 80
Iraq, sulfur, data 998 Iridium, foreign trade 818, 819, 821, 822	rate
production refinery	man-days worked 88, 89
production, refinery 813, 815	man-hours worked 11, 88, 89
secondary, recovery 815 stocks 818	output per man-hour
	Iron oxides, red, prices 760
Iron, distribution, Controlled Materials Plan 535	sales 759
price index 12 recovery, from blast-furnace slag 920	sales 759 use, as polisher 112
recovery, from blast-furnace slag 920	Iron oxide pigments, annual review
tariff, adjustment for Venezuela 9	Iron oxide pigments, annual review
technology 549 See also Pig iron.	foreign trade 760, 761 manufactured, sales 758, 759
Tron bloot frame and impres	manufactured, sales
Iron blast furnaces, improvements 549	natural, preparation for market 758
number 538	sales
pig-iron snipments	prices
Iron blast-furnace slag, consumption 917, 918, 919	States producing 758, 759
employees	technology 762
employees 920 man-hours worked 920	uses 758
preparation917	uses 758 Iron plants, days operated 527
prices	men employed
processing 915, 916	output per man-hour 527
value	Iron products, foreign trade 547
production916	Iron scrap, annual review 558
recovery of iron 920	consumption 559, 561, 562, 563, 564, 565, 566, 567,
shipments	568, 569, 570, 571, 572
States producing 916	in steel furnaces 542
etooks 015	I foreign trade 559 577 578
technology 920 uses 915, 917, 918, 919 as construction material 921	Government controls. 574 home, consumption. 559, 561, 562, 563, 564, 565, 561, 562, 563, 564, 565, 561, 562, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 563, 564, 565, 564, 564
uses 915 917 918 919	home, consumption 559, 561, 562, 563, 564, 565,
as construction material 921	566, 567, 568, 569, 570, 571, 572, 573
as soil additive 921, 922	stocks559, 575
in cement 920	NPA allocation program 558
Iron concentrates, foreign trade 8	NPA allocation program 558 preparation, improvement 579
production 509, 527	prices
Iron Curtain countries, uranium, resources 1103	price controls 576
Iron foundries, expenditures, for new equip-	purchased, consumption 559,
ment15	560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570,
ment15 manufacturers' inventories7	571, 572, 573.
men employed, earnings 11	salient statistics
	States consuming 563,
hours of labor	564, 566, 567, 568, 569, 570, 571, 572, 573
Tron industry annual regions 599	stocks559, 573
Iron industry, annual review 533 national income originated 2	world review 580
	Iron sinter, consumption 517
	in iron furnaces 539
salient statistics 534	in steel furnaces 542
work stoppage, effects	nucleation 502
Iron-mining districts, production 508	production509, 517 Isotopes, distribution1093
Iron-nickel alloys, upgrading to ferronickel 771	prices 1098
Iron ore, beneficiated, shipments	prices 1096
beneficiation, developments 25	\$hipments
consumption504, 516, 517	manganese ore, data 703
in pig-iron production	
in steel furnaces 542	phosphate rock, data 807, 810
direct-shipping, production 509	potassium salts, data 839, 840, 842
foreign trade	Italy, aluminum, review 138, 145
manganiferous, consumption, in iron fur-	bauxite, data 198, 201
	boric acid, production 228
in pig-iron production 537	feldspar, deposits 406
foreign, consumption 604	magnesium, data 667, 668 magnesium compounds, data 675, 679, 683
foreign, consumption	magnesium compounds, data 675, 679, 683
value	marble industry, depression 956 mercury, data 715, 716, 719, 721
new supply foreign courage 502	mercury, data
nring End E10	i sulfur data 998, 1000
nrice controls lifting	uranium, deposit
priod continue, intended and the top top	1 #100 data 1147 1149 1140 1153 1154 1159
production 47, 50, 503, 504, 500, 500,	ziic, data 1147, 1146, 1146, 1166, 1164, 1166
	Zinc, uava
507, 510, 511, 514, 527, 528	
prices	J
open pit	J
open pit507 underground507	J Tade production 434
open pit 507 underground 507 world 528	J Tade production 434
open pit. 507 underground 507 world 528 reserves 525	Jade, production
open pit 507 underground 507 world 528	Jade, production

Page	I 44	P	age'
Japan, aluminum, review	Lead, antimonial, production	152, 600	
bauxite, data 201 copper, review 368, 369, 370, 378, 379, 389	DMEA exploration assistance		1119
formus soron, data 508, 369, 370, 378, 379, 389	DMPA dertificates of necessity		1124
ferrous scrap, data 577, 578, 581 iodine industry, review 499, 500, 501, 502	DMPA development loans foreign trade590, 592, 605,	- 1123, 606, 607	1124
iron ore, data 522, 528, 531	metallurgy, advances	000, 001	609
magnesium, data 668	metallurgy, advances NPA regulations, revocation	591, 619	, 902
molybdenum, data	ore dressing, reports		610
potassium saits, data 835, 837, 840, 841, 842, 843 selenium, data	prices 128, 592,	604, 605	618
steel, review	primary, consumption manufacturers' inventories	602	, 603
sulfur, data	production	A	7 85
titanium, review 1064 zine, data 1148, 1149, 1153, 1154, 1161	primary, mine 590, 592, 593,	596, 598	611
zinc, data	world		611
Jewel bearings, consumption 582, 583, 584	refinery	592, 599	
foreign trade 585 production 582	smelter		599
raw materials	worldvalue	592	, 612 47
shipments 582, 583, 584	red, consumption.		627
sources582	foreign trade	631	, 632
stocks 582	lead content		626
technology 585 Jewel-bearings industry, annual review 582	prices		630
salient statistics	production 619, 620,	699 699	622
Jewel-bearings plant, Army Ordnance Corps.	value per ton	022, 023	619
Turtle Mountain Indian Reservation,	refining, men employed, earnings		11
N. Dak 585	hours of labor		11
Jewelry, gems, use 435 Jordan, phosphate rock, data 807, 810 potassium salts, data 839, 840, 842	secondary, consumption		592
notassium salts, data 839 840 842	prices	000 000	902
povadoram sarro, cara	recovery 590, 592, 601, 8	580, 900 886	900
K	shipments	901	903
with the second of the second	sources		901
Kansas, lead, production 592, 593, 594, 596	uses		902
minerals, production 62	stocks	_ 5,603	
value 52, 54, 62 zinc, DMPA certificate of necessity 1124	supply expansion and maintenance contracts		$\frac{590}{1112}$
production 1127 1129	tariff	9	
Kaolin, consumption 298, 300 foreign trade 295, 299	technology		609
foreign trade 295, 299	uses	602	
prices 299	white, consumption		626
sales	foreign tradelead content	031,	626
value	prices		630
uses	production		622
Keene's cement, imports 491	shipments 619, 6	320, 622.	, 627
Kentamium, uses	value per ton		619
sion119	world review Lead-alloy products, secondary, shipment	le .	610 901
fluorspar, review419, 420, 421, 424, 425	Lead arsenate, foreign trade	631.	
minerals, production 63	Lead districts, leading, list Lead glazes, strontia glaze as substitute	′	596
value 52, 54, 63	Lead glazes, strontia glaze as substitute	· ·	979
Paducah, gaseous diffusion plant, additional capacity 1088	Lead industry, annual review		590 591
zinc, production 1127, 1129	Government regulations	· , ·	591
Kenya, anthophyllite, deposit 176	salient statistics		592
Kernite, sales 220	Lead mines, leading, list		597
Kieselguhr, production 395	men employed		10
value	earnings hours of labor		11 11
Korea, South, bismuth, data218, 219	Lead ore-dressing plants, injuries, number	r	94
talc, data 1009, 1011	rate		94
tungsten, data	men employed		94
Kuwait, salt, data865	working days Lead pigments, consumers		94 620
Kyanite, annual review 586	consumption		626
consumption 587 foreign trade 588	consumption foreign trade	519, 631,	632
prices 588	lead content		626
producers586	manufacture, raw materials, consumption	on (625,
production 48, 586	prices	618,	626
value 48 purchases, National Stockpile 587	production	19. 621.	622
reserves 589	value		619
stocks	shipments 619, 6	20, 621,	622
technology	decrease		010
uses 586, 587	uses world review		$\begin{array}{c} 626 \\ 633 \end{array}$
world review	zine content		626
	Lead-pigments industry, annual review		618
L	salient statistics		619
Lake Erie docks, iron ore, stocks 518	Lead refineries, list		600
Lake Superior district, iron ore, analyses 513	Lead scrap, consumption	902	903 903
beneficiation, developments 25	imports prices		903
prices 518, 519	receipts		903
production511, 512	receiptsrecoverable antimony content		893
Land pebble, prices 799, 800	stocks		903
sales 795, 797	uses		903

rage	_ 	-
Lead smelters, list 599 Lead sulfate, basic, consumption 627		357 357
		655
prices	Lithium compounds, consumption	351
men employed	foreign trade	654 353
Lead-zinc miners, injuries, number 88, 89	requirements, grease industry, PAD sur-	
rate 88, 89 man-days worked 88, 89	vev652,6	653
man-hours worked 88, 89 Lepidolite, as source of rubidium 1172		650 650
prices 653	651 (
Production 657 658 659	Lithium greases, electron-microscope tests	ენე
Liberia, iron ore, data 521, 528, 531	Lithium metal, prices	653 651
Lignite, production49		654
value 49 Lime, agricultural, sales 635, 638, 643	foreign trade	354
building, sales 635, 636, 638		653 651
captive tonnage 637 chemical, uses 635, 636, 638	producers(production(48
consumption 639	value	48
consumption 639 dolomitic, sales 967		654 354
uses 967 foreign trade 8, 635, 646, 647, 648 hydrated, foreign trade 647 sales 635, 637, 638, 639, 640, 641, 642, 641, 642, 1n roadwork, use 649 membraturers' inventories 649		654
hydrated foreign trade 647	11Ses	652
sales 635, 637,		350
638, 639, 640, 641, 642		350 351
manufacturers' inventories 7	Lithopone, consumption	629
open-market, consumption643, 644	foreign trade183, 631, 6	332
production636	prices182, operation	აას 623
salient statistics 635 prices 635, 646	sales 177, 1	180
production48	value177, 1	180
value48	shipments180, 619, 620, 621, 623, 624, 621, 623, 624, 623, 624, 623, 624, 624, 624, 624, 624, 624, 624, 624	325
raw materials, purification 649 refractory, uses 635, 636	value per ton	319
sales 635	zinc content	326
value 635		42 178
shipments, value 4 States producing 637, 639, 640, 643, 644	minerals, production	63
technology 648	value 52, 54,	63
technology 648 uses 635, 639, 640, 641, 642	sulfur, producers	983 983
Lime burning, improved technology 648		900 994
7		
Lime industry, annual review	LP-gases, production	49
Lime industry, annual review	LP-gases, productionvalue	
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635	LP-gases, productionvalue	49
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638	LP-gases, productionvalue	49 49
Lime industry, annual review 635 salient statistics 635 salient statistics 639 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men emploved 96	LP-gases, production value M Medagasear harvl data 213.5	49 49
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97	LP-gases, production value M Medagasear harvl data 213.5	49 49
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97	LP-gases, production value M Medagasear harvl data 213.5	49 49
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973	LP-gases, production value M Medagasear harvl data 213.5	49 49
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 vealuge 49	LP-gases, production value M Madagascar, beryl, data 213, 2 garnet, abrasive, data gem stones, data graphite, production 477, mica, data 737, 738, 740, 745, uranium denosit	49 49 214 104 482 747
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 49 crushed, sales 964, 965, 967, 968	LP-gases, production value M Madagascar, beryl, data 213, 2 garnet, abrasive, data gem stones, data graphite, production 477, mica, data 737, 738, 740, 745, uranium denosit	49 49 214 104 482 747
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 94, 965, 967, 968 value 96, 967 96, 97 965, 967	Madagascar, beryl, data 213, garnet, abrasive, data graphite, production 477, mica, data 737, 738, 740, 745, turanium deposit 10 mg, aloud 10 mg, caustic-calcined, imports 673, 683, 684, 684, 684, 684, 684, 684, 684, 684	49 49 214 104 140 482 747 105 676
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 bituminous, production 49 value 49 value 965, 967 uses 964, 965, 967, 968 value 965, 967 uses 964, 965, 967, 968	Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 737, 738, 740, 745, uranium deposit 737, 738, 740, 745, sales 670, price 670,	49 49 214 104 482 747 105 676 674 671 670
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 jotuminous, production 49 value 49 crushed, sales 964, 965, 967, 968 value 965, 967 uses 964, 965, 967, 968 dimension, destruction by mason bee 955 Portland details 955	Madagascar, beryl, data 213, garnet, abrasive, data graphite, production 477, mica, data 737, 738, 740, 745, uranium deposit 11 Magnesia, calcined, imports 673, sales 670, price 791, and 1791, a	49 49 214 104 440 482 747 674 674 671
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 49 value 49 value 965, 967 uses 964, 965, 967, 968 dimension, destruction by mason bee 955 Portland, details 955 sales 944, 949, 950, 954	Madagascar, beryl, data	49 49 214 104 482 747 105 674 671 671 673
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 964, 965, 967, 968 value 965, 967, 968 dimension, destruction by mason bee 955 Portland, details 984, 949, 950 Sales 944, 949, 950 value 944, 949, 950	Madagascar, beryl, data	49 49 214 104 482 747 105 674 671 673 674 677
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 Limestone, agricultural, improvement 97 situminous, production 49 value 964, 965, 967, 968 value 965, 967 uses 964, 965, 967, 968 dimension, destruction by mason bee 955 Portland, details 944, 949, 950, 954 value 944, 949, 950 value 944, 949, 950 value 944, 949, 950 value 944, 949, 950 value<	Madagascar, beryl, data	49 49 214 104 140 674 671 671 677 677 677
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 49 crushed, sales 964, 965, 967, 968 value 965, 967 uses 964, 965, 967, 968 dimension, destruction by mason bee 955 Portland, details 949, 950, 954 value 944, 949, 950 States producing 949 uses 950 fluxing, sales 968	Madagascar, beryl, data	49 49 214 104 482 747 674 674 674 677 677 677 677
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 limestone, agricultural, improvement 973 bituminous, production 49 value 965, 967 uses 964, 965, 967, 968 value 965, 967 uses 964, 965, 967, 968 dimension, destruction by mason bee 955 Portland, details 955 sales 944, 949, 950 States producing 968 litusing, sales 968 compared with production of steel	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 477, mica, data 1737, 738, 740, 745, uranium deposit 173, sales 670, price 170, pri	49 49 214 104 482 747 674 674 674 677 677 677 677
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 965, 967, 968 value 965, 967, 968 value 965, 967, 968 dimension, destruction by mason bee 95 Portland, details 95 Sales 944, 949, 950, 954 value 944, 949, 950 States producing 949 uses 956 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968	Madagascar, beryl, data	49 49 214 104 482 747 105 674 671 672 671 672 672
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 964, 965, 967, 968 value 964, 965, 967, 968 dimension, destruction by mason bee 955 sales 944, 949, 950, 954 value 944, 949, 950 States producing 949 uses 955 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 uses 968	M Madagascar, beryl, data 213, garnet, abrasive, data gen stones, data graphite, production 737, 738, 740, 745, uranium deposit 737, 738, 740, 745, uranium deposit 670, price 741, price 751, price	49 49 214 104 482 747 105 674 671 672 672 672 672
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 crushed, sales 964, 965, 967, 968 value 949 crushed, sales 964, 965, 967, 968 value 949, 950, 967, 968 dimension, destruction by mason bee 955 Portland, details 944, 949, 950, 954 value 944, 949, 950, 954 fluxing, sales 944, 944, 949, 950 States producing 949 uses 950 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 uses 988 sales 940	M Madagascar, beryl, data 213, garnet, abrasive, data gen stones, data graphite, production 737, 738, 740, 745, uranium deposit 737, 738, 740, 745, uranium deposit 670, price 741, price 751, price	49 49 214 104 482 747 105 674 671 672 672 672 672
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 965, 967, 968 value 965, 967, 968 value 965, 967, 968 dimension, destruction by mason bee 95 Portland, details 95 Sales 944, 949, 950, 954 value 944, 949, 950 States producing 949 uses 95 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 sales 940 value 968 sales 968 sales 968 sales 968	Madagascar, beryl, data	49 49 214 104 482 747 105 674 671 671 672 672 672 672 672 674
Lime industry, annual review	M Madagascar, beryl, data	49 49 49 214 104 482 747 105 674 671 671 672 672 672 672 674 675
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 965, 967, 968 value 965, 967, 968 value 965, 967, 968 dimension, destruction by mason bee 955 Portland, details 955 sales 944, 949, 950, 954 value 944, 949, 950 States producing 944, 949, 950 fluxing, sales 956 fluxing, sales 956 fluxing, sales 968 uses 968 sales 968 uses 968	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 477, mica, data 737, 738, 740, 745, uranium deposit 673, sales 670, price 773, recovery, from sea water, details 7670, price 773, recovery, from sea water, details 774, price 775, pr	49 49 49 214 104 482 747 676 671 676 671 677 671 672 672 673 674 675 674 675 674 675 674
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 964, 965, 967, 968 value 964, 965, 967, 968 value 965, 967 uses 964, 965, 967, 968 dimension, destruction by mason bee 955 sales 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 uses 950 fluxing, sales 950 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 uses 968 sales 940 value 940 Limestone quarries, days operated 96 men employed 96 Limestone-quarry workers, injuries, number 95, 96 rate 95, 96	M Madagascar, beryl, data garnet, abrasive, data gem stones, data graphite, production will make a sem stones, data graphite, production 737, 738, 740, 745, uranium deposit 737, 738, 740, 745, uranium deposit 737, 738, 740, 745, sales 670, price 740, price 750, p	49 49 49 214 104 482 747 105 674 671 671 672 672 672 672 674 675
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 crushed, sales 964, 965, 967, 968 value 49 crushed, sales 964, 965, 967, 968 value 995, 967 vises 964, 965, 967, 968 dimension, destruction by mason bee 955 Portland, details 955 sales 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950 States producing 949 uses 950 fluxing, sales 955 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 uses 968 sales 940 value 968 uses 968 sales 940 value 960 Limestone quarries, days operated 96 men employed 96 Limestone-quarry workers, injuries, number 95, 96 rate 955, 96	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 477, mica, data 737, 738, 740, 745, uranium deposit 57, 738, 740, 745, uranium deposit 673, sales 670, price 670, price 770, pr	49 49 49 214 1440 482 747 105 674 671 670 671 672 672 672 672 672 672 672 672 672 673 674 676 670 670 671
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 crushed, sales 964, 965, 967, 968 value 49 crushed, sales 964, 965, 967, 968 value 995, 967 vises 964, 965, 967, 968 dimension, destruction by mason bee 955 Portland, details 955 sales 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950 States producing 949 uses 950 fluxing, sales 955 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 uses 968 sales 940 value 968 uses 968 sales 940 value 960 Limestone quarries, days operated 96 men employed 96 Limestone-quarry workers, injuries, number 95, 96 rate 955, 96	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 737, 738, 740, 745, uranium deposit. 1 Magnesia, calcined, imports caustic-calcined, producers 670, price value 670, price 700, price 670, price 670, price 670, price 670, price 700	49 49 49 214 104 482 747 105 674 671 671 672 672 672 672 672 674 676 670 670 670 670 670 670 670 670 670
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 Limestone, agricultural, improvement 97, 36 bituminous, production 49 crushed, sales 964, 965, 967, 968 value 965, 967 uses 964, 965, 967, 968 dimension, destruction by mason bee 955 sales 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 uses 950 fluxing, sales 950 fluxing, sales 968 sales 940 value 968 uses 968 sales 940 value 940 Limestone quarries, days operated 96 men employed 96 Limestone-quarry workers, injuries, number 95, 96 rate 95, 96 Lionite, imports 113 Litharge, consumption 627 foreign trade 631, 632	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 477, mica, data 737, 738, 740, 745, uranium deposit 573, varanium deposit 673, sales 670, price 774, price 775, pric	49 49 49 214 104 104 140 148 105 167 167 167 167 167 167 167 167 167 167
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 964, 965, 967, 968 value 964, 965, 967, 968 value 964, 965, 967, 968 dimension, destruction by mason bee 955 sales 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 uses 950 fluxing, sales 950 fluxing, sales 950 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 uses 968 sales 940 Limestone-quarries, days operated 96 men employed 96 Limestone-quarry workers, injuries, number 95, 96 rate 95, 96 Lionite, imports 113 Litharge, consumption 627 foreign trade 631, 632 lead content 626	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 737, 738, 740, 745, uranium deposit 737, 738, 740, 745, uranium deposit 670, price 741, garnet 741, garne	49 49 49 214 104 140 482 747 671 671 671 671 672 672 672 673 674 676 674 674 674 674 674 674 674 674
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 964, 965, 967, 968 value 964, 965, 967, 968 value 964, 965, 967, 968 dimension, destruction by mason bee 955 sales 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 uses 950 fluxing, sales 950 fluxing, sales 950 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 uses 968 sales 940 Limestone-quarries, days operated 96 men employed 96 Limestone-quarry workers, injuries, number 95, 96 rate 95, 96 Lionite, imports 113 Litharge, consumption 627 foreign trade 631, 632 lead content 626	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 737, 738, 740, 745, uranium deposit. 1 Magnesia, calcined, imports 673, sales 670, price 701, price 702, price 703, recovery, from sea water, details 707, recovery, from sea water, details 707, sales 670, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, sales 707, price 707, specified, consumption 707, specified, consumption 707, sales 707, sales 707, sales 707, sales 707, specified, consumption 707, sales 707, sa	49 49 214 104 104 105 674 671 671 671 672 672 672 672 674 676 674 674 674 674 674 674 674 674
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 964, 965, 967, 968 value 964, 965, 967, 968 dimension, destruction by mason bee 955 sales 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 sales 968 compared with production of steel ingot and pig iron 972 value 968 sales 968 sales 968 sales 968 compared with production of steel ingot and pig iron 972 value 968 uses 968 sales 968 sales 968 sales 968 Limestone-quarries, days operated 96 men employed 96 Limestone-quarry workers, injuries, number 95, 96 Lionite, imports 113 Litharge, consumption 627 foreign trade 631, 632 lead content 622 shipments 619, 620, 622, 623, 623	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 737, 738, 740, 745, uranium deposit. 1 Magnesia, calcined, imports 673, sales 670, price 701, price 702, price 703, recovery, from sea water, details 707, recovery, from sea water, details 707, sales 670, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, price 707, sales 707, price 707, specified, consumption 707, specified, consumption 707, sales 707, sales 707, sales 707, sales 707, specified, consumption 707, sales 707, sa	49 49 49 214 104 440 474 671 671 671 671 671 672 674 674 674 674 674 674 674 674 675 674 674 674 674 675 674 674 674 674 674 674 674 674 674 674
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 949 crushed, sales 964, 965, 967, 968 value 965, 967 uses 964, 965, 967, 968 dimension, destruction by mason bee 955 sales 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 945, 967 injuring, sales 950 fluxing, sales 950 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 sales 940 value 968 Lumestone quarries, days operated 96 men employed 96 Limestone-quarry workers, injuries, number 95, 96 rate 95, 96 Lionite, imports 113 Litharge, consumption 627 foreign trade 631, 632 lead content 626 prices 630 production 5622, 623, 628 value per ton 619	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 477, mica, data 1737, 738, 740, 745, uranium deposit 173, sales 670, price 770, pri	49 49 49 214 104 440 674 674 677 677 677 677 677 677 677 677
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 964, 965, 967, 968 value 964, 965, 967, 968 value 964, 965, 967, 968 dimension, destruction by mason bee 955 sales 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 Limestone quarries, days operated 968 men employed 96 Limestone-quarry workers, injuries, number 95, 96 rate 95, 96 Lionite, imports 113 Litharge, consumption 627 foreign trade 631, 632 lead content 628 prices 630 production 622 shipments 619, 620, 622, 623, 628 value per ton 619 Lithium, annual review 650 demands, DPA survey 650	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 477, mica, data 1737, 738, 740, 745, uranium deposit 173, sales 670, price 770, pri	49 49 49 214 104 440 674 674 677 677 677 677 677 677 677 677
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 964, 965, 967, 968 value 964, 965, 967, 968 dimension, destruction by mason bee 965, 967 uses 964, 965, 967, 968 dimension, destruction by mason bee 965, 967 sales 944, 949, 950, 954 value 944, 949, 950 States producing 945 uses 950 fluxing, sales 950 fluxing, sales 968 compared with production of steel ingot and pig iron 972 value 968 sales 968 sales 968 sales 968 compared with production of steel ingot and pig iron 972 value 968 uses 968 sales 968 climestone quarry workers, injuries, number 95, 96 Limestone quarry workers, injuries, number 95, 96 Limestone-quarry workers, injuries, number 95, 96 Linestone-quarry workers, injuries, number 95, 96 liconite, imports 113 Litharge, consumption 627 foreign trade 631, 632 lead content 632 production 622 shipments 619, 620, 622, 623, 628 value per ton 620 Lithium, annual review 650 demands, DPA survey 650	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 737, 738, 740, 745, uranium deposit. 1 Magnesia, calcined, imports 673, sales 670, price 7910 673, recovery, from sea water, details refractory, sales 670, price 7910 673, recovery, from sea water, details refractory, sales 670, price 7910 670, price 7910 670, price 7910 670, price 7910 670, price 7910 670, price 7910 670, price 7910 670, price 7910 670, price 7910 670, price 7910 670, price 7910 670, specified, consumption 7910 6	49 49 49 214 104 140 482 747 105 671 671 671 671 672 672 672 672 672 674 676 670 671 672 674 677 677 677 677 677 677 677 677 677
Lime industry, annual review 635 salient statistics 635 Lime plants, distribution 639 number 635 size 638 Lime quarries, days operated 96 men employed 96 Lime-quarry workers, injuries, number 96, 97 rate 96, 97 Limestone, agricultural, improvement 973 bituminous, production 49 value 964, 965, 967, 968 value 964, 965, 967, 968 value 964, 965, 967, 968 dimension, destruction by mason bee 955 sales 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 value 944, 949, 950, 954 Limestone quarries, days operated 968 men employed 96 Limestone-quarry workers, injuries, number 95, 96 rate 95, 96 Lionite, imports 113 Litharge, consumption 627 foreign trade 631, 632 lead content 628 prices 630 production 622 shipments 619, 620, 622, 623, 628 value per ton 619 Lithium, annual review 650 demands, DPA survey 650	M Madagascar, beryl, data 213, garnet, abrasive, data gem stones, data graphite, production 477, mica, data 1737, 738, 740, 745, uranium deposit 173, sales 670, price 770, pri	49 49 49 49 49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40

rage	Page
Magnesium chloride, imports	Manganese ore, imports
prices 673 producers 673, 674	metallurgical, shipments687, 688, 690 prices690
Magnesium compounds, foreign trade 675, 676	producers 690
producers 673 production 48	production 47, 85, 705
value	mine686, 687
technology 676	world
world review 678 Magnesium-compounds industry, annual re-	purchases, GSA 68' 68', 687, 688, 690 States producing 689, 690
view	States producing 686, 687, 688, 690
salient statistics	stocks
Magnesium fabrication, improvements 660, 666	stocks
Magnesium hydroxide, prices	value 4 shipments 688
Magnesium ingot, price905	Manganiferous residuum, production 47
Magnesium-lithium-aluminum alloys, research 667	value
Magnesium metal, foreign trade660, 665, 666 primary, consumption660, 662, 663	Manure salts, prices 83 production 826
prices	Marble, crushed, sales 964
producers661	value
production660, 661, 662, 663, 667 stocks664	States producing 964 uses 964
11909 669	uses
production, world 660, 667	sales 943, 948, 954
secondary, recovery660, 661, 662 technology666	value 943, 948 States producing 948
use, in aircraft fittings 667	sales
in marine equipment	value 940 Marble quarries, days operated 96
world review 667 Magnesium-metal industry, annual review 660	Marble quarries, days operated 96 men employed 96
salient statistics660	men employed 96 Marble-quarry workers, injuries, number 96, 97
Magnesium oxide, producers 673	rate 96. 97
Magnesium plants, Government-owned, reac- tivated, production662	Marcasites, imports 437 Marl, calcareous, production 48
Magnesium salts, imports 676	value 48
Magnesium scrap, consumption 664, 904	greensand, sales 1186
prices 905 price control 905	value 1186
recovery660, 661, 662, 904	Maryland, minerals, production 64 value 52, 54, 64
receipts904	potash producer 827
stocks 664, 904 uses 904	slate, data 929
Magnesium sulfates, imports	Mason bee, limestone destruction by 955 Masonry cement, production 247, 272, 273
Magnesium-zirconium casting alloys, develop-	shipments
ment 666	Massachusetts, minerals, production 65
Magnetite, production 506, 508, 510 Magnetite ore, titaniferous, as source of vana-	value52, 54, 65 University of, study, New Jersey greensand_ 1186
dium 1111, 1112	Meerschaum, imports 1187
recovery of vanadium, iron, and titanium 1055 Maine, minerals, production 64	value 1187
value 52, 54, 64	Uses
pyrrhotite, producer 986	Mercury, consumption
rose quartz, production 434 slate, data 927	National Stockpile, purchases 705, 713
Malava, bauxite, data 198 201	
columbium, data 334, 336, 339, 340	producers, number 707 production 47, 85, 705, 706, 707, 708, 719
ilmenite, data	production 47, 85, 705, 706, 707, 708, 719
tin, review 1025, 1027, 1028, 1032, 1033, 1034, 1039	value 47 world 719
Manganese, electrolytic, producer 693	purity 719
recovery, from low-grade deposits 28, 700 from open-hearth slags 699, 700	States producing 707, 708, 709
technology 699	stocks
world review 701	technology717
Manganese alloys, prices 697 Manganese boride, producer 410	uses
Manganese briquets, producer 410	world review 719 Mercury-arc rectifiers, history 717
production409	Mercury electrodes, study 718
shipments 409 value 409	Mercury furnace, new ventilating equipment. 717
Manganese-chrome alloy, development 701	Mercury industry, annual review
Manganese industry, annual review 686	salient statistics
DMPA assistance 700 effect of steel strike	Mercury lamps, reports 718
salient statistics 687	Metals, extraction from ores, by chemical
Manganese metal, consumption 691, 692	methods 772
producer410, 693	minor annual review 1179
Manganese ore, battery, producers	nonferrous, expenditures, for new equip-
consumption	ment
in batteries696	price index 12 secondary, expenditures, for new equip-
in manufacture of ferromanganese 695 in manufacture of manganiferous pig iron 696	secondary, expenditures, for new equip-
in steel furnaces 542	ment
DMEA exploration assistance 687	primary, supplies 885
ferruginous, foreign, consumption 696	production 45, 47, 55, 85
shipments 688, 689, 690 States producing 689	fluctuations 1 45 46 47 52 54 55

Page	Page
Metals, rare-earth, review 1178	Mica flake, binding to glass, by silicone resin 743
recovery, from drosses resulting from pro-	Mica industry, annual review 724
duction of permanent magnets 772 from ores as powders 27	salient statistics
from ores as powders 27 secondary, definition 887	Mica mines, DMEA exploration assistance 725
nonferrous annual review 885	DMPA development assistance 796
consumption, reduction 885, 886	Mica splittings, consumption 724, 730, 734
Supplies 880	Mica splittings, consumption 724, 730, 734 imports 731, 738, 739, 740 stocks 734
sources, by States	Michigan, copper mill, ball mill, installation. 25
injury experience 86	copper mine, belt conveyor 43
injury experience	iron ore, reserves
injury experience 91. 92	iron ore, reserves 525 review 505, 506, 507, 509, 510, 511, 513, 517, 518, 519
Metallurgy, extractive, developments	magnesium compounds, producers 673
technology, annual review24 Metal mines, dividends13, 14	minerals, production 65 value 52, 54, 65 potash producer 827
income 13, 14	notash producer 827
injuries, number 87, 88	salt, data855, 858
	salt, data855, 858 Midway, stone, crushed, production84
men employed 10,87,88 miscellaneous, days operated 88,89	value 84 Millisecond delays, use, in blasting stope
miscellaneous, days operated 88, 89	Millisecond delays, use, in biasting stope
men employed 88, 90 national income originated 2	rounds 42 Millstones, imports 113
rock bolts, use	production 48
taxes13, 14	value 48, 99, 103
time worked 87, 88	sales 99, 103 Mine drainage, by deep-well pumping 43
Metal miners, miscellaneous, injuries, number 88, 90	Minerals production value
rate	rare-earth, review 1178
man-days worked 88, 89	Mineral blacks, prices 760
Metal ore-dressing-plant workers, miscella-	Sales 759
neous, injuries, number 94	Mineral deposits, sampling, with diamond firill 38
rate 94	drill 38 Mineral dressing, improvements 24
Metal products, production, fluctuations 1	Mineral-earth pigments, annual review
Methyl bromide, use, as fumigant 232	foreign trade 760, 761
Mexico, antimony, data 156, 157, 159	prices
arsenic, white, data	sales 759 Mineral fuels, production 49
fluorspar, data 426, 429, 430	value45, 46, 49
iron ore, data 521, 522, 528, 531	Mineral industries, employment, decrease 10
lead, review 606, 611, 612, 613 mercury, review 715, 716, 719, 721	expenditures, for new plant and equipment. 14, 15
mercury, review 715, 716, 719, 721	Government controls1
salt, data 860, 863, 865 silver, data 468, 470, 472, 475 strontium minerals, data 978, 980 sulfur, review 991, 992, 999, 1000	inventories 6,7 national income originated 1,2
strontium minerals, data 978, 980	Mineral manufactures, shipments, value4
sulfur, review 991, 992, 999, 1000	Mineral products, primary, stocks
	Mineral wool, manufacturers' inventories 7
zinc, review 1147, 1148, 1149, 1153, 1154, 1157 Mica, absorption coefficients	patents1188 production, value1187
block fabrication 732	shipments, value
block, fabrication 732 foreign trade 731, 740	1 11909 1187, 1188
nringe /3h	Mineral-wool industry, employees, number 1187
built-up, sales 734, 735 film, fabrication 732	Mineral-wool products, exports
foreign trade 738, 739, 740	Mining research increase 43
flake, prices724	Mining technology, annual review
flake, prices 724 sales 724, 727, 729, 730	
value724, 727, 730	gyratory crusher, installation 24
foreign trade	gyratory crusher, installation 24 iron ore, data 505, 506, 507, 509, 510, 511, 512, 513, 517, 518, 519
prices 736	**************************************
prices	minerals production 66
value 724, 730	value 32, 34, 00
muscovite ruby, prices	Mirabilite, deposit 938 Misch metal, composition 1179
world 745	price 1180
reconstituted, use, in insulation 742	Mississippi, minerals, production 66
	value 52, 54, 66
prices	Missouri, lead, DMEA contracts
	DMPA certificates of necessity 1124
coles 724, 727, 729, 730	production 592, 593, 594, 596 limestone, dimension, sales 551
value 724, 727, 730 sheet, consumption 730, 731	7701110 301
sheet, consumption	marble, dimension, sales 951
	value951
prices	minerals production 07
sales	value 52, 54, 67 zine, DMEA contracts 1120
value48, 724, 727	I IMPA cortificates of necessity 1124
shipments, value 4	production 1127, 1129
value 48, 724, 724 shipments, value et s. 743 splitting, with water jets 743 strategic importance, President's Materials Policy Commission 7741	1 15-1 diam and made ation 279
Policy Commission	soles 868, 870
synthesis, research 31, 741 technology 744	value 868, 870 Molybdenite, production 749
technology 741	Molybdenite, production 750 Molybdenite concentrates, sources 750
world review 744	trans promine comountained pour constitution

Page	Pag
Molybdenum, annual review	Mutual Defense Assistance Control Act. ad-
NPA regulations 416,748	ministration
production47,85	Mutual Security Administration, functions 2
value 47	
world	NI .
pure, allocation, discontinuance, by NPA 748	North Control North Control of the C
States producing 749	National Production Authority, allocations,
stocks5	copper34
technology 754	ferrous scrap 55
thermal conductivity 755, 756	molybdenum, pure, discontinuance 74
uses 751	selenium118
world review 756	conservation orders, cadmium 23
Molybdenum concentrates, consumption 748, 751	controls, alterations, tin cans 101
distribution, IMC 753, 754	asbestos17
DMPA allocation 748	ferrous scrap57
DMPA purchases 749	rutile
foreign trade 748, 752, 753	functions 2
prices 752	regulations, amendments, zinc
production 748, 749, 750, 757	cryolite43
salient statistics 748	iron industry53
shipments 748, 750, 751	molybdenum416, 74
stock748, 750	platinum-group metals 81
tariff	relaxation, terneplate101
Molybdenum metal, price	tin101
production, methods 755	tin imports1019
Molybdenum mines, domestic, location 749	tinplate101
Molybdenum ore, beneficiation 754	zirconium1169
foreign trade 752, 753	revocation, antimony 150, 893
mining methods	ferrotungsten416
production749, 750	lead 591, 619, 905
Molybdenum oxides, producers 410	zinc619
Molybdenum products, foreign trade752, 753	steel industry
production 751	sulfur 990 sulfuric acid 990
shipments 751	sulfuric acid990
stocks	I Un cans, spredded 1016
tariff 753	tungsten concentrates 1073
Molybdenum silicide, producer 410	tungsten concentrates 1075 National Security Resources Board, reports,
Molybdenum sulfide, producer 410	Codait31
Molybdic oxide, price 750	1 Hickei
Monazite, deposits	suggested amendment to Atomic Energy
prices1179	Act, permitting private use of atomic
producers 1179	research 1092
production1179	NATO. See North Atlantic Treaty Organi-
Monazite content, placer deposits	zation.
Monazite deposits, dredge mining	Natural gas, production 49
Monazite ores, processors 1179	value 49
Monazite sand, as source of thorium 1087, 1108	Natural-gas liquids, production 49
Monoaluminum phosphate, as mortar, inves-	value 49
tigation 677	Natural gasoline, production 49
Monomagnesium phosphate, as mortar, inves-	Value 49
tigation 677	Nauru Island, phosphate rock, data 807, 810
Montana, chromite mine, reactivation, with DMPA funds 282	Nautilus, U. S. S., reactor power, tests 1083, 1093
DMPA funds 282 copper, Greater Butte Project 344	Nebraska, lead, DMPA certificate of necessity 1124
copper mill, rod mills, use 25	minerals, production68
copper mine, block-caving methods 40	value 52, 54, 68
fluorspar, review 419, 421, 425	zinc, DMPA certificate of necessity 1124
lead, production 593, 595, 596	Nepheline syenite, deposits 404
DMEA contracts	foreign trade 405
manganese ore, producers	prices405
minerals, production 67	uses404
value	Netherlands, magnesium compounds, review. 675,
phosphate rock, sales 795, 797	683, 684
pyrites, producer 986	red lead, data 634 salt, data 863, 865
silver, data 442, 450, 454, 456, 458, 459, 460, 462	sait, data
sodium sulfate, reserves 937	talc, review1011
uranium, DMEA exploration assistance 1086	Netherlands Antilles, phosphate rock, data 806,
zinc, DMEA contracts	Nontrol and a stimution and busin A TOO and a stimution and business of the state o
DMPA certificate of necessity 1124	Neutron-activation analysis, AEC service 1096
production 1127, 1128	Nevada, barite, data178
Mortar compositions, investigations 677	copper mill, rod mills, use25
Moss agate, production 433 Mozambique, beryl, data 209, 213, 214	jade, black, production 434 Las Vegas, atomic weapons, tests 1083, 1089, 1099
Mozambique, beryl, data 209, 213, 214	Las Vegas, atomic weapons, tests
lepidolite, data659	1089, 1090
MSA. See Mutual Security Administration.	lead, DMER contracts 1121
Mud, circulating, use in drilling 38	production 592, 593, 596, 598
Mullite, source 586	Los Alamos, water-boiler reactor 1093
synthetic, consumption 587	magnesium compounds, producers 673
technology 588	mercury, review 707, 708, 710
Mullite minerals, foreign trade588	minerals, production 68
Uses586	value
Mullite refractories, uses 587	opal, production 433
Muscovite mica, foreign trade	value 433 sulfur, agricultural, producer 984
value 733	turquoise, production, value
Muscovite ruby mica, consumption	uranium, DMEA exploration assistance 1086
cost733	zinc, DMEA contracts
fabrication 732	production 1127 1128

New Caledonia, chromite, data 292, 293	Nigeria, columbite, data 329, 333, 334, 336, 340, 342
gypsum, data 494, 495	tantalite data
gypsum, data	tin, data1033, 1041
nickel, review 763, 774, 778	superium denosit
New England, beryl, reserves, increase 211	zinc, data 1153, 1161 Niobium. See Columbium.
New Hampshire, minerals, production 69	Niobium. See Columbium.
value 52, 54, 68	Nitrates, foreign trade 783
Now Jorgan groupend University of Massa-	prices782
New Jersey, greensand, University of Massa- chusetts study 1186 magnesium compounds, producers 673	Nîtrate industry, technology 784
chuseus study	Nitrate industry, technology 784 Nitric acid, potentialities, in fertilizer tech-
magnesium compounds, producers 673	mology 21 704
minerals, production 69	nology31,784
value 52, 54, 69 zinc, DMPA certificates of necessity 1125 production 1127, 1129	Nitrogen, consumption 782
zinc, DMPA certificates of necessity 1125	world 786
production1127,1129	objective, DPA 780 production, world 780
New Mexico, agate, production 433	production, world 786
fluorspar, data 419, 420, 421, 425	uses 782
Grants, uranium-ore-receiving station 1095	Nitrogen compounds, annual review 780
lead, DMEA contracts1121	consumption
production 593, 596	foreign trade 782, 783
production	prices782
minerals, production	producers 781
value 52, 54, 70	production 780, 785
potasn, review	
potasn mine, beit conveyor	world 785
continuous coal mining 40	technology783
shaft sinking, through quicksand	world review 785
Shiprock, uranium-ore-receiving station 1095	Nitrogen materials, fertilizer, export license 780
turquoise mine433	Nitrogen tetroxide, possibilities, as rocket fuel. 784
turquoise mine433 uranium, DMEA exploration assistance 1086	Nonmetals, minor, review 1186
DPA certificate of necessity 1087	Nonmetals, minor, review 1186 production 45, 48, 55, 85
uranium-ore deposits	value 1, 45, 46, 48, 52, 54, 55
zine, DMEA contracts 1121	value 1, 45, 46, 48, 52, 54, 55 sources, by States 50
production 1197 1198	Nonmetal industries, employment 86, 90, 91
production 1127,1128 New York, chrysotile, deposit 167	injury experience 86, 91
Fiberfrax, production 32	Nonmetal mines, dividends 13
	income 13
garnet, gem, production 434	income 13 men employed 10, 90
value434	earnings 11
iron ore, data505,	earnings
506, 507, 509, 510, 511, 512, 513, 517, 518, 519	hours of labor11
lead, DMPA certificate of necessity 1125	national income originated2
production 592, 593, 596	taxes 13
minerals, production 71	time worked91
value 52, 54, 71	Nonmetal miners, injuries, number 91
pyrites, producer 985	rate91
slate, data 927	North Africa, lead, review 606, 615
	North America, See Canada; Dominican
wollastonite, production 1188 zinc, DMPA certificate of necessity 1125	North America. See Canada; Dominican Republic; Greenland; Guatemala;
production 1127,1129	Honduras; Jamaica; Mexico; Nether-
New Zealand, manganese ore, data 698, 702, 703	lands Antilles; Nicaragua; Puerto
New Zealand, manganese ore, data 090, 102, 103	lands Antilles; Nicaragua; Puerto Rico; United States; Virgin Islands.
Nicaragua, gold, data	North Atlantia Treaty Organization atomia
Nickel, alternates	North Atlantic Treaty Organization, atomic weapons, agreement 1098
annual review 763	
consumption 763, 764, 766, 767	North Carolina, anthophyllite, deposit 167
foreign trade 763, 764, 769, 770 IMC allocation 764, 765	columbite, production 329
IMC allocation 764, 765	minerals, production71
NSRB report 764	value
prices 763, 764, 769	Raleigh circulating-fuel reactor, construc-
primary, price906	tion1092
production 763, 765, 766, 774 production, world 85, 774	
	tin, recovery, as byproduct of spodumene 1016
production, world 85.774	
production, world 85,774 recovery from pyrrhotite 772	North Dakota, minerals, production 72
recovery from pyrrhotite 772	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production. 72 value. 52, 54, 72 sodium sulfate, reserves. 937 Turtle Mountain Indian Reservation, Army 07 ordnance Corps jewel-bearings plant. Norway, aluminum, review. 138, 146 beryl, data. 213, 214 cobalt, data. 328 columbium, data. 322 iron ore, data. 521, 522, 528, 531 magnesium, data. 667, 668 mica, data. 745, 747 molybdenum, data. 765, 769, 774, 778
recovery from pyrrhotite	North Dakota, minerals, production. 72 value. 52, 54, 72 sodium sulfate, reserves. 937 Turtle Mountain Indian Reservation, Army 07 ordnance Corps jewel-bearings plant. Norway, aluminum, review. 138, 146 beryl, data. 213, 214 cobalt, data. 328 columbium, data. 322 iron ore, data. 521, 522, 528, 531 magnesium, data. 667, 668 mica, data. 745, 747 molybdenum, data. 765, 769, 774, 778
recovery from pyrrhotite	North Dakota, minerals, production. 72 value. 52, 54, 72 sodium sulfate, reserves. 937 Turtle Mountain Indian Reservation, Army 07 ordnance Corps jewel-bearings plant. Norway, aluminum, review. 138, 146 beryl, data. 213, 214 cobalt, data. 328 columbium, data. 322 iron ore, data. 521, 522, 528, 531 magnesium, data. 667, 668 mica, data. 745, 747 molybdenum, data. 765, 769, 774, 778
recovery from pyrrhotite	North Dakota, minerals, production.
recovery from pyrrhotite	North Dakota, minerals, production. 72 value
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production.
recovery from pyrrhotite	North Dakota, minerals, production.
recovery from pyrrhotite	North Dakota, minerals, production.
recovery from pyrrhotite	North Dakota, minerals, production.
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production
recovery from pyrrhotite	North Dakota, minerals, production

Page	Page
ODM. See Defense Mobilization, Office of 1117	Perlite, annual review 788
Ohio, coal mines, pipeline transportation 44	crude, comminution 793
grindstones, production 103	consumption 788, 790
iron blast-furniace slag, production	prices 791 producers, number 788
value52, 54, 72	producers, number
Pike County, gaseous diffusion plant 1083, 1088	value 48, 49
refractory magnesia, producer	sales 788
sandstone, data 951, 952 Oilstones, imports 113	value 788
Olistones, imports	expanded consumption 700
production 103 Oklahoma, lead, DMEA contract 1121	prices 789, 791
production 593, 594, 596	producers, number 789 production 788, 789
minerals, production	sales 788, 789
value 52 54 73	value 788, 789
salt beds, diamond drilling 861	uses 790
zinc, DMEA contract	impact crushing, results 25
DMPA certificate of necessity 1125	technology 791
production 1127, 1129 Olivine, producers 672	Perlite aggregates, in plasters, specifications. 792 Perlite-concrete slabs, uses
production 48	Perlite-diatomite, as concrete aggregate
value 48	Perlite-diatomite, as concrete aggregate, advantages 397
use672	Perlite furnaces, patents
Onyx, foreign trade 975	Perlite mines, developments 789
production 434	Perlite plants, developments 789
value	Perlite products, patents 792
Open-hearth furnaces, steel, production 540	hismith data 915 919 910
steel ingots and castings, production 531	Peru, barite, data 185, 186 bismuth, data 215, 218, 219 copper, review 368, 369, 370, 378, 379, 392
Open-pit mining, equipment, improvement 39	Figure 1 to 1 to 1 to 1 to 1 to 1 to 1 to 1 t
OPS. See Price Stabilization, Office of.	l lead, data
Orange mineral, prices 630	mercury, review, 719, 722 sulfur, data, 992, 1000
shipments 622, 623 Ore, brown, production 506, 508, 510	Sullur, data 992, 1000
stocks	tungsten, data 1075, 1080, 1081 vanadium concentrates, data 1109, 1110, 1113
Ore-dressing plants, employment 92, 93	zinc. review 1147, 1148, 1153, 1154, 1157
injury experience 93	Petalite, data658, 659
Oregon, agate, production 432	Petroleum, crude, production 49
chromite, data 281, 282 mercury, review 707, 708, 711	value 49
minerals production 73	Petroleum Administration for Defense, grease
value 53 54 73	industry, lithium requirements 652, 653 Petroleum industry, storage problems, under-
pumice deposits, description 849 Osmiridium, foreign trade 819, 821, 822 Osmium, foreign trade 813, 818, 819, 821, 822 production, refinery 813, 818, 819, 821, 822	ground
Osmiridium, foreign trade 819, 821, 822	Philippines, Republic of, antimony, deposit. 158
Osmium, foreign trade	chromite, data 288, 290, 292, 293
stocks 818	gold, data
Oxides, brown, prices	manganese ore, data
sales	salt, data860, 864, 865
rare-earth, uses 1179	silver, data 468, 473, 475
	sulfur, data
P	deposits, ECA study1000
Pakistan, chromite, data	Phlogopite mica, foreign trade 738, 740 synthesis 31
Paley Commission. See President's Materials	Synthesis 31 Phoric acid, recovery of byproduct uranium 1087
Policy Commission.	Phosphate ores, dry-concentration process 26
Palladium, production, refinery 812, 813, 815	Phosphate rock, as source of vanadium 1111
sales813, 817	brown, prices799, 800
secondary, recovery 815 stocks 812, 813, 818	consumption 795, 796
Paving gravel, Government-and-contractor	foreign trade
operations sales 868 875	production 48, 85, 794, 795, 807
value	value 48
sales	world 807
Paving sand, Government-and-contractor	reserves, President's Materials Policy Com-
operations, sales	mission, report
value	value
sales	stocks795
value	technology 802
Pearls, imports 437	transportation, by pipeline803
Peat, production 49 value 49	world review 806
Pegmatites, mica-bearing, studies 729	Phosphate-rock industry, annual review 794, 795
Pennsylvania, anthracite, production	Salient statistics 795
value 49	Phosphorus, chemical uses 805 elemental, production 803
graphite mine and mill, rehabilitation 477	Pig iron, consumption 543, 544, 559, 561, 562, 563,
iron blast-furnace slag, production	564, 565, 566, 567, 568, 569, 570, 571, 572
lead, DMPA certificate of necessity	effect of steel strike 558
magnesium compounds, producers 674	in steel furnaces 542
minerals, production 74	foreign trade 534, 546
value 53, 54, 74 pyrites, producer 985 slate, review 927, 928, 931 zinc, DMPA certificates of necessity 1125	manganiferous, consumption of manganese ore 696
slate, review	ore696 prices545
zinc, DMPA certificates of necessity 1125	production 85, 533, 534, 535, 537, 539, 551, 560
Percussion drills, use, in long blastholes 42	compared with sales of fluxing stone 972
Periclase, imports 675	raw materials used 537, 539

Page	Pomo
Pig iron, salient statistics559	
shipments 4 534 536 53	value48
silvery, producers 418 production 409	840
stocks	825, 827, 829 value 825, 827, 829
See also Iron	stocks827, 831, 832
Pig tin, foreign trade 1025, 1026 stocks 1025	technology 836
FIRE DRIVE INTRODUCTION in motel mines 49	
Pipeline transportation, of solids, use	Powellite, as source of molyhdenum 740
Platinum, consumption 812, 815	
foreign trade 812, 819, 821, 822	mica, strategic importance
crude, production 812, 814 foreign trade 812, 819, 821, 822 production, refinery 812, 814 purchases, National Stockpile 813, 816	sulfur 995
sales 817	Priceite, deposit 228 Price Stabilization, Office of, functions 19
secondary, recovery 215	l price controls aluminum 107
stocks 812, 818 Platinum-group metals, annual review 812	aluminum ingot, secondary 892
consumption 812 815 817	aluminum scrap 892 brass 365, 366
consumption 812, 815, 817 foreign frade 812, 818, 819, 821, 822	bronze ingots 365
NPA regulations 814 production 812, 813, 823	conner 343 345 363 366
WOIIG 85 813 823	copper scrap 894 ferrous scrap 576
renned, recovery 812, 814, 815	magnesium905
salient statistics 812 secondary, recovery 814	magnesium scrap 905
uses815, 817	revocation, iron ore 518 mercury 714
world review goo	seienium 1182
Plutonium, production 1084, 1088 Polishing sand, production 879	steel scrap 909 sulfur 990, 991
Sales 969 971	tellurium 1182
value 868, 871 Pollucite, as ore of cesium 1172	tin1016
Pollucite ore, prices	tungsten concentrates 1073 zinc 1146
Pollucite ore, prices 1173 Portland cement, consumption 246, 247, 248, 266, 267	Prospecting, aerial, salt862
gypsum retarder, separate grinding 492	uranium 1085
price 246, 272 production 246,	geochemical, copper 372 Puddling furnaces, ferrous scrap, consumption 571
247, 248, 249, 251, 253, 258, 260, 261, 262, 263, 264	Puerto Rico, bentonite, investigations
raw materials used 258, 259 shipments 246, 247, 248, 249, 251, 253, 266, 267, 269, 971	minerals, production 84
value	value84 portland cement, stocks868
value	Pulpstones, exports114
transportation 249, 252, 268, 271, 272	production 48
Portland-cement clinker burning effect of	value 48 sales 99, 103
phosphorus pentoxide 277 production 253, 256, 258	value99 103
stocks 253, 256, 258	Pumice, annual review 845
stocks 256, 258 Portland-eement industry, crusher employ-	foreign trade 847, 848
ees	prices847
fuels consumed 259, 260	production 48, 55, 845 value 48
mill employees 262, 264 operation, percent of capacity 246, 254, 255, 265, 265, 265, 265, 265, 265, 265	world 940
operation, percent of capacity 246, 254, 255	sales846, 847, 848, 849
output per man 261, 262, 263 power consumed 261 quarry employees 262, 265	value846, 847 States producing846
quarry employees 262, 265	USes845, 848
FORGALIG-Cement plants, number 955	world review 849
Portugal, arsenic, white, review 163, 164, 165 columbium-tantalum, data 334, 335, 336, 340, 342 tungstan review 102, 425, 336, 340, 342	Pumice deposits, description 849 Pumicite, annual review 845
tangsten, review 10/4, 10/5, 1080, 1081	consumption 845
Portuguese West Africa, diamonds, data 440	foreign trade 949
Potash, deliveries 831 dry-concentration process, introduction 26	prices
muriate, prices	value48
production 896 l	sales
sales 830 sulfate, prices 833	States producing 846 uses 845, 848
production 826	Puzzolan cement, production 247, 272, 273
Potash industry, annual review 825	snipments 273
Salient statistics 825	Pyrites, cupreous, production, world
Potash-magnesia, sulfate, prices 833 production 826	prices
rotash mines, beit conveyor 43	producers985
exploration, for new ore bodies	production
Potash producers, list 827 Potash refineries expansion 827	world
Potash refineries, expansion 837 Potash resources, world 839	Pyrites cinder, imports
Potassium bromate, use, in bread232	Pyrites industry, annual rtview 981, 985
Potassium bromide, price 231	Pyrophyllite, beneficiation 1008 foreign trade 1004, 1008
Sales 230	prices 1006
value 230 Potassium salts, consumption 825, 829, 830	production 49.85
foreign trade 825, 833, 834, 835, 836, 837	mine
prices825, 833	world
34207077	

Page	rage
Pyrophyllite, review 1003	Rhodesia, Southern, amblygonite, data 657, 658
sales	asbestos, review 166, 169, 170, 173, 175
value1004, 1005	beryl, data209, 213, 214
salient statistics 1004	chromite, review 290, 292, 293 chrysotile, review 166, 169, 170, 173, 175
States producing 1005	chrysotile, review 166, 169, 170, 173, 175
world review 1008	columbium-tantalum, data 335, 336, 341, 342
Pyrrhotite, producer986	lithium minerals, review 657
	magnesium compounds, review 679, 685
Q	mica, data737, 745, 747 petalite, data658
	platinum-group metals, data 823
Quarries, dividends	radioactive materials, deposits 1105
income13	tungsten, data1080, 1082
taxes13	Phode Island minerals production 74
Quarry industries, employment	Tolio 53 54 74
injury experience 86	value 53, 54, 74 Rhodium, foreign trade 813, 818, 819, 821, 822 Production, refinery 813, 818, 819, 821, 822
goigmograph use 972	production, refinery813,815
Quarrying, national income originated 2	stocks 818
Quarrying firms, number 2, 3	Road metal, crushed stone for, sales 957, 958, 959 value 957, 958, 959
Quartz, as source of gem stones 432	value 957, 958, 959
consumption 99, 101	sales, compared with portland-cement ship-
inversion-temperature range, study 853	ments 971
prices 101 production 48	Rochelle salts, foreign trade 834
	Rock, blue, sales 797
value 48 sales 99, 100, 101	hard sales 795.797
uses100	physical characteristics, research 44
welve 99 101	soft, sales
Quartz crystal, piezoelectric, annual review 850	Rock bolts, use, in metal mines
units produced 850, 851	Rock bursts, problems 44
radio-grade, annual review850	roof bolts as protection 42
consumption 800, 851	Rock crushing, theory and practice, study 971
imports851	Rock-crystal quartz, production 434
prices 850, 851	Rock salt, prices 858 sales 854, 855, 856
producers852	sales854, 855, 856
tachnology 852	Rod mills, replacement of crushers 24
synthetic, developments 31, 853 Quicklime, sales 635, 637, 638, 640, 641	
Quicklime, sales	Roman cement, imports 274 Roofing granules, sales 959
Quartzite, foreign trade	velue 950
Qucksand, shaft sinking through	Roofing slate prices 929.930
	sales 923, 924, 925, 927, 928 value 923, 924, 926, 927, 928
R	value 923, 924, 926, 927, 928
N	Rotary drills, replacement of churn drills 41
	orna in airrhim m'hla ath alan 070
Dediciontones distribution 1993	use, in sinking blastholes 972
Radioisotopes, distribution 1093	Rottenstone foreign trade 100, 113
prices 1996	Rottenstone, foreign trade100, 113 sales100
prices 1996 shipments 1088, 1089	Rottenstone, foreign trade
prices	Rottenstone, foreign trade
prices 1996	Rottenstone, foreign trade
prices	Rottenstone, foreign trade
1966 1986 1986 1881 1889 1889 1888 1889 1888 1889 1888 1889 1888 1889 1888 1889 1888 1889 1889 1889 1889 1889 1889 1889 1889 1889 1888 1889	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
1966 1986 1986 1881 1889 1889 1889 1889 1884	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
Prices 1996	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
Prices 1996	Rottenstone, foreign trade
Prices 1996 1981 1981 1982 1982 1982 1984 1984 1985	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
prices 1996 shipments 1088, 1089 uses 1094 Radiotelephones, in opencut mines, use 43 Radium, annual review 1083 prices 1096 producers 1089 production 1089 sales 1094 Radium salts, imports 1097 Railroad ballast, crushed stone for, sales 957, 958 value 957, 958 gravel, sales 868, 874 value 868, 874 value 868, 874 value 868, 874 sand, sales 868, 874 value 868, 872 production 1099 Ractor, circulating-fuel, construction 1092 homogeneous, criticality 1092 nuclear, catalog 1099 sodium metal, use 737 water-boiler, homogeneous 1093 Reactor Dewer, submarines, tests 1083, 1093 Reactor Technology, Oak Ridge School, third session 1093 Reactor Technology, Oak Ridge School, third session 1093 Reactor Technology, Oak Ridge School, third session 1093 Reconstruction Finance Corporation, purchase contracts, tin 1012, 1013 termination 1012, 1023	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
prices 1996 shipments 1088, 1089 uses 1094 Radiotelephones, in opencut mines, use 1994 Radium, annual review 1083 prices 1096 producers 1089 production 1089 sales 1094 Radium salts, imports 1094 Radium salts, imports 957, 958 yalue 957, 958 gravel, sales 868, 874 value 868, 874 value 868, 874 value 868, 872 Value 868, 872 Rare earths, uses 1179 Reactor, circulating-fuel, construction 1092 nuclear, catalog 1099 sodium metal, use 737 water-boiler, homogeneous 1093 Reactor Testing Station, National, tests 1092, 1093 Reactor Testing Station, National, tests 1092, 1093 Reconstruction Finance Corporation, purchase contracts, tin 1012, 1018 termination 1012, 1023 stockpile, tin materials 1104 Refractories, production 312 shipments 312 RFC. See Reconstruction Finance Corpora- tion 1084 Refinance Corporation 312 shipments 312 RFC. See Reconstruction Finance Corpora-	Rottenstone, foreign trade
prices 1996 shipments 1088, 1089 uses 1094 Radiotelephones, in opencut mines, use 43 Radium, annual review 1083 prices 1096 producers 1089 production 1089 sales 1094 Radium salts, imports 1094 Radium salts, imports 957, 958 gravel, sales 868, 874 value 868, 874 value 868, 874 value 868, 874 value 868, 872 Rare earths, uses 1179 Reactor, circulating-fuel, construction 1092 homogeneous, criticality 1092 nuclear, catalog 1099 sodium metal, use 737 water-boiler, homogeneous 1093 Reactor Dever, submarines, tests 1083, 1093 Reactor Testing Station, National, tests 1083, 1093 Reactor Testing Station, National, tests 1083, 1093 Reconstruction Finance Corporation, purchase contracts, tin 1012, 1018 stockpile, tin materials 1014 Refractories, production 312 shipments 1025 Rhodesia, Northern, cobalt, data 325, 327 Rhodesia, Northern, cobalt, data 325, 327	Rottenstone, foreign trade
prices 1996 shipments 1088, 1089 uses 1094 Radiotelephones, in opencut mines, use 1994 Radiotelephones, in opencut mines, use 1994 Radiom annual review 1083 prices 1096 producers 1089 production 1089 sales 1094 Radium salts, imports 1097 Railroad ballast, crushed stone for, sales 957, 958 value 957, 958 gravel, sales 868, 874 value 868, 874 value 868, 874 value 868, 872 Rare earths, uses 1179 Reactor, circulating-fuel, construction 1992 nuclear, catalog 1099 sodium metal, use 737 water-boller, homogeneous 1093 Reactor Dower, submarines, tests 1083, 1093 Reactor Testing Station, National, tests 1083, 1093 Reactor Technology, Oak Ridge School, third Reconstruction Finance Corporation, 1092 stockpile, tin materials 1012, 1013 stockpile, tin materials 1012, 1013 stockpile, tin materials 1014 Refractories, production 312 shipments 1101 Refractories, production 512 Ref C See Reconstruction Finance Corporation, 1004 Refractories, production 312 shipments 312 RFC # See Reconstruction Finance Corporation. Hodesia, Northern, cobalt, data 325, 327 columbite deposit 368 369 373 379 389	Rottenstone, foreign trade
prices 1996 shipments 1088, 1089 uses 1094 Radiotelephones, in opencut mines, use 1994 Radiotelephones, in opencut mines, use 1994 Radium, annual review 1083 prices 1096 producers 1096 producers 1099 production 1089 production 1089 production 1089 sales 1094 Radium salts, imports 1097 Railroad ballast, crushed stone for, sales 957, 958 gravel, sales 868, 874 value 868, 874 value 868, 874 value 868, 874 value 868, 874 sand, sales 868, 872 value 957, 988 value 957, 98	Rottenstone, foreign trade
Prices	Rottenstone, foreign trade
prices 1996 shipments 1088, 1089 uses 1094 Radiotelephones, in opencut mines, use 1994 Radiomannual review 1083 prices 1096 producers 1098 production 1089 sales 1094 Radium salts, imports 1094 Radium salts, imports 957, 958 value 957, 958 value 957, 958 gravel, sales 868, 874 value 868, 872 value 868, 872 value 868, 872 roller 1094 Raector, circulating-fuel, construction 1092 homogeneous, criticality 1092 homogeneous, criticality 1092 nuclear, catalog 1099 sodium metal, use 737 water-boiler, homogeneous 1093 Reactor Dever, submarines, tests 1083, 1093 Reactor Testing Station, National, tests 1083, 1093 Reactor Technology, Oak Ridge School, third session 1093 Reconstruction Finance Corporation, purchase contracts, tin 1012, 1013 stockpile, tin materials 1014 Refractories, production 312 shipments 120 Rhodesia, Northern, cobalt, data 325, 327 columbite deposit 342 copper, review 368, 369, 378, 379, 389 lead, data 611, 612, 615 manganese ore, data 702, 703 uranjum ore discovery 1105	Rottenstone, foreign trade
prices 1996 shipments 1088, 1089 uses 1094 Radiotelephones, in opencut mines, use 1994 Radiotelephones, in opencut mines, use 1994 Radium, annual review 1083 prices 1096 producers 1096 producers 1099 production 1089 production 1089 production 1089 sales 1094 Radium salts, imports 1097 Railroad ballast, crushed stone for, sales 957, 958 gravel, sales 868, 874 value 868, 874 value 868, 874 value 868, 874 value 868, 874 sand, sales 868, 872 value 957, 988 value 957, 98	Rottenstone, foreign trade

Page	Lago
Salt, production48, 85, 854, 863	Scrap, ferrous, Government controls
goal, DPA 854	home, consumption
value 48	stocks559, 574
world 863 refining, new processes 861	nickel-bearing recovery 765
shipments 858	nickel-bearing, recovery 765 NPA allocation program 558
States producing 855	propagation improvement
technology 861	prices559, 576
uses856, 857	price controls
world review 862 Salt beds, diamond drilling, recovery 861	564 565 566 567 568 569 570, 571, 572, 573
Salt blocks, sales	stocks 559, 575
Salt cake, foreign trade 936	stocks 559, 571
prices 936	States consuming
production933	564, 566, 567, 568, 569, 570, 571, 572, 573
sources 932	stocks559, 573 world review580
Salt domes, domestic 862	Scrap metals, categories
Salt industry, annual review 854 salient statistics 854	forrous annual review 558
Sands, abrasive, sales 103	nonferrous, annual review 885
value 103	Scythestones, production
as source of feldspar and silica, studies 406	Secondary metals, definition 887
beneficiation 882	nonferrous, annual review 886 consumption, reduction 885, 886
consumption 879	plants, number887
foreign trade 881 Government-and-contractor operations,	salient statistics 886
sales 868, 875, 876, 877	Seismograph, use, in quarry industries 972
value 868, 875, 876, 877	Selenium, Bureau of Mines investigations 1182
ground, consumption 99, 10, 102	DPA expansion goal 1180
price102	elemental, consumption1181
production 49	imports 1182, 1184 production 1181, 1184
value 49 sales 99, 101, 102	salient statistics
uses	shipments 1184
value99, 101, 102	stocks 1182, 1184
preparation, degree 876, 877	NPA allocation 1181
prices	prices 1185
production 48, 867, 869, 877, 878, 879, 880	price control 1185 primary, producers 1186
underwater operations 883 value 48	production1181
prospecting, equipment 883	secondary producers 1181
sales 868, 869, 870, 874, 875, 876, 877, 878	recovery 1181
value 867, 868, 869, 870, 874, 875	shortage1100
States producing 869, 870	technology 118 uses 1181, 118:
stocks 880	world review 1183
technology 881 transportation, method 878	Selenium dioxide price 1182
uses876	use 1182
western, silicates, harmful reaction in	Selenium rectifier, titanium dioxide rectifier
cement881	as substitute, development 1185
Sand industry, annual review 867	Senate Armed Services Committee, report, on tin1013
history 884 Sand pits, reclamation 883 Sand plants, employment 879,880	on tin
Sand plasts, reclamation 879, 880	coarse ores
number 877	Sepiolite, uses 118
portable, advantages 882	Serpentine, consumption, in refractories 673
Sand-plant workers, number 879, 880	
productivity879, 880	Shafts, sinking, grouting, use 34 through quicksand 33
time worked879, 880	Shaft-mucking machines, improvement 30
Sandstone, bituminous, production 49 value 49	Shale, sales 308
crushed, sales960, 968, 969	Shale, sales
value 968, 969	usesou
States producing 969	Sharpening stones, production103
uses969	Sienna, foreign trade 760, 76.
dimension, sales 944, 951, 952, 954	prices
value952 States producing952	Sierra Leone, radioactive deposits, explora-
ground, consumption 99, 101, 102	tion110
price102	Silica, amorphous, sales 10
production 49	Silica abrasives, natural, annual review 10
value49	Silica-stone products, annual review 100
sales99, 101, 102	Silicate abrasive, natural, production 10
value99, 101, 102	Silicomanganese, consumption 691, 692, 69
sales940	prices41
value940	producer 41
Sandstone quarries, days operated 96	production 40
men employed 96	from rhodonite 70
Sandstone-quarry workers, injuries, number 96,98	shipments 40
rate96, 98	value 40 source 40
Sassolite, deposits 228	uses 40
Scrap, consumption, reduction 885, 886	Silicon alloys, consumption 41
ferrous, annual review 558 consumption 559, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572	Silicon briquets, producer 41
569 562 564 565 566 567 569 560 570 671 579	Silicon carbide imports
effect of steel strike	production 99, 110, 11
effect of steel strike558 foreign trade599, 577, 578	stocks11

Page	land the second	Pag
Silicon carbide, value	Soda ash, consumption	93
use, as deoxidizer	manufactured, sales	93
Silicon metal, consumption 411	natural, producers	93
producers 410	sources	93
Silver, consumption 443, 462, 463 foreign trade 443, 465, 466, 468, 469	prices	93
ioreign trade 443, 465, 466, 468, 469	uses	93
price443, 444, 465 production47, 85, 463, 470	Sodium, prices	93
production 47, 80, 403, 470	review	93
mill 460 mine 442, 443, 447, 448, 450, 454, 457, 458	Sodium aluminate, production	19
mint 447	shipments	19
refinery 462	Sodium bromide, price	23 23
value 47	salesvalue	23
world 442, 443, 470, 472	Sodium carbonate, consumption	93
stocks	exports	93
uses462	natural, sales	933
world review470	value	933
world review 470 Silver districts, leading, production 449, 450	valueproduction	49
Silver industry, annual review 442	value	49
salient statistics 443 Silver mines, leading, list 451	sources	93
Silver mines, leading, list	uses	934
See also Gold-silver mines.	Sodium compounds, review	932
Silver ore, production 443, 455	world review	938
Siminal, producer 410 Sintering machine, alteration from downdraft	Soulum dispersions, reports	937
Sintering machine, alteration from downdraft	Sodium metal, producers	934
to updraft	production	934
Slag, iron blast-furnace, as construction ma-	use, in nuclear reactors	737
terial, use 921	Sodium molybdate, producerSodium sulfate, anhydrous, production	410
consumption 917, 918, 919	Sodium sulfate, anhydrous, production	933
employees 920 man-hours worked 920	foreign trade 936 manufactured, sales	, 937
man-hours worked 920	manufactured, sales	933
prices 919, 920	value	933
processing 915, 916	natural, producers	933
value	production value	49
recovery of iron 920	sales	933
shipments 920	volvo	933
recovery of iron 920 shipments 917 States producing 916	value reserves, Bureau of Mines study	937
	sources 932	
technology	Sodium tetraborate, anhydrous, sales	220
technology 920 uses 915, 917, 918, 919 as soil additive 921, 922	South America, salt plants, equipment.	861
as soil additive 921, 922	See also Argentina; Bolivia, Brazil; Chile;	001
in cement. 920 Slag-lime cement, production 247, 273	Colombia; Ecuador; Peru; Surinam;	
Slag-lime cement, production 247, 273	Venezuela.	
shipments 273 Slate, Bureau of Mines investigations 931	South Carolina, minerals, production	75
Slate, Bureau of Mines investigations 931	value 53 K	
dimension, sales 923, 924, 925, 944	South Dakota, beryllium, reserves	211
VAIDE 094 095 042		1095
foreign trade	gold, data 442, 450, 453, 455, 458, 459, 460, lead, DMEA contract	449,
min stock, prices 929, 930	450, 453, 455, 458, 459, 460,	, 462
925, 924, 925, 927, 928		1121
prices 929	minerals, production	75
prices 929 production 49	value53, 5 uranium-ore deposits	4,75
value	gine DME A centre of	1084
sales923, 924, 925, 927	zinc, DMEA contract South-west Africa, beryl, data209, 213,	914
value924, 926, 927	cadmium, production	241
States producing 927	columbium-tantalum, data 341,	
technology 931	copper. data 378	302
technology 931 Slate blackboards, sales 924, 928	germanium, review	1177
value 924, 926, 928 Slate bulletin boards, sales 924, 926, 928 value 924, 926, 928 Slate flour, sales 923, 924, 926 value 923, 924, 926 value 923, 924, 926	copper, data 378, germanium, review 611, 612,	615
State builetin boards, sales924, 928	lithium minerals, production	659
Value 924, 926, 928	tin, data1033, 1	1041
Diate nour, sales 923, 924, 926	vanadium, data	1113
Value 924, 926	zinc, data1153, 1	1161
value 924, 926 Slate granules, sales 923, 924, 926 value 924, 926	11,012 1	, 146
value 924, 926	aspestos, production	, 170
Slate industry, annual regions	beryl, deposit	214
salient statistics 923	nuorspar, data	430
uses 923 Slate industry, annual review 923 salient statistics 924 Slate quarries, days operated 96	fluorspar, data	722
men employed og	potassium saits, review 835, 839, 840,	843
men employed 96 Slate-quarry workers, injuries, number 96, 97	salt, data 863, tungsten, data 1075, 1076, 1080, 1	605
rate96 97	Spiegeleisen, consumption 687, 691	000
rate		
value308 i	foreign trade 687, 694, prices 411, 412,	607
uses297. 308	producers	410
uses	production 409.687.	
production 49, 85, 1003 mine 1003, 1004, 1005, 1009 value 49 world 1009	shipments 409, 687,	
mine 1003, 1004, 1005, 1009	value	409
value	uses	409
world1009	Spinel, synthetic, sales	436
review		450 25
sales 1003, 1004, 1005, 1006	Spiral classifiers, use	
value1004, 1005	Spodumene, deposits	654
salient statistics 1004	importance, as source of lithium	657
value 1004, 1005 salient statistics 1004 States producing 1005	Spodumene concentrates, production	651
world review 1008	Spodumene ore, lime sintering	31

Page	Pag	ge
Star-rose quartz, production 434	Stockpile, National Strategic, purchases,	
Stassfurtite, deposits 228	mercury	/13
Stauroute, recovery, from ilmenite opera-	platinum8	318
tions 1050		285
Steatite, DMEA exploration assistance 1003		332
foreign trade 1004, 1007, 1008 Steel, analysis, spectrochemical excitation	tin 1014, 10	
	zinc11	
composite, finished, price 128, 535, 545	surplus, vanadium 11 Stone, broken. See Stone, crushed.	.UE
consuming industries 534	crushed, annual review 940, 9	156
distribution. Controlled Materials Plan 535	exports9	76
high-chromium, resistance to attack by	miscellaneous, sales968, 9	17€
high-chromium, resistance to attack by bismuth alloys 217 open-hearth, production, fluorspar consumed 424	value 968, 9)7Č
open-hearth, production, fluorspar con-	States producing 9	70
sumed 424	uses9	70
price index 12	uses 940, 941, 942, 956, 957, 9)58
production 560	value 940, 941, 942, 957, 9)5č
shipments, value 4)58
stainless, corrosion rates, Bureau of Mines		71
investigations 1056	uses941,9	57
technology 549 Steel castings, production, world 534, 550, 552	world review 940, 9 dimension, annual review 940, 9	774
Steel castings, production, world 534, 550, 552	dimension, annual review	42
Steel employees, earnings 535	miscellaneous, sales 944, 9	100
hours worked	value944, 9 sales940, 941, 942, 944, 9	01
number 535 Steel foundries, expenditures, for new equip-	value940, 941, 942, 944, 9	PO!
ment15	technology9	155
ment 15 manufacturers' inventories 7	11998 041 0	43
men employed, earnings 11	uses 941, 9 foreign trade 8, 975, 9	76
hours of labor 11	production	49
number 10		49
Steel furnaces, improvements549	States producing 9	42
raw materials, consumption 542	States producing 9 Stone industries, crushed, transportation 9	60
Steel industry, annual review 533 Bureau of Mines projects 549	dimension, world review 9 national income originated. 550ne plants, crushed, number 959, 9 Stone quarries, employment 94, 95, injury experience 94, 95, working days. 95	56
Bureau of Mines projects	national income originated	2
employment535	Stone plants, crushed, number 959, 9	60
national income originated 2	Stone quarries, employment 94, 95,	96
NPA regulations 535	injury experience 94, 95,	90
salient statistics 53 work stoppage, effects 533	working days	90
Work stoppage, effects 533	Stoneware clay, consumption 295, 297, 3 sales 295, 297, 3	02
Steel ingots, capacity 533, 534, 540 production 85, 533, 534, 540, 541, 551 compared with sales of fluxing stone 972	sales295, 297, 3	02
compared with sales of fluxing stone 072		297
relation to artificial abrasives production. 111		42
world	Strontia glaze, substitute for lead	79
Steel'mills, expenditures, for new equipment 15		78
manufacturers' inventories 7		77
Steel products, foreign trade 547	Strontium carbonate, prices 9	78
shipments 534 Steel scrap, annual review 558		78
Steel scrap, annual review	Strontium chromate, use, as corrosion in-	
consumption559,	hibitor, patent 9	78
561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571,		77
572, 573.	uses9	77
in steel furnaces 542		79
foreign trade 559, 577, 578 Government controls 574	Strontium nydrate, uses	78
home consumption 574	production 9)77)77
home, consumption 559, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570,		78
571, 572, 573.	consumption 9	77
stocks559, 575	denosits	77
NPA allocation program 558		78
preparation, improvement 579	production 9	77
prices559, 576	technology9	78
prices 559, 576 price controls 576, 909		77
purchased, consumption 559, 560, 561, 562, 563, 564, 565, 566, 567, 568,	Strontium naphthenate, uses 9	79
560, 561, 562, 563, 564, 565, 566, 567, 568,	Strontium 90, use, for controlling uniformity of	
569, 570, 571, 572, 573.		80
stocks559, 575	Strontium nitrate, prices 9	78
salient statistics	Submarines, reactor power, tests 1083, 10	93
States consuming 563, 564, 566, 567, 568, 569, 570, 571, 572, 573	Sudan, manganese ore, data	04
stocks559, 573, 575	Sulfide-ore concentrates, metal content, re-	
world review580	covery 7	71
Steel strike, effects 558	Sulfur, byproduct, elemental, recovery 981, 982, 9 prices 9 recovery 981, 9	85
on demand for zinc 1117	prices9	90
on manganese industry 686	recovery 981. 9	182
on national income2	stocks9	УYU
Steelworks, men employed, earnings 11	consumption, nonacid uses 9	988
hours of labor 11	demand 9	81
number10 Stockpile, National Strategic, bismuth, ob-	DMEA exploration assistance 9	83
Stockpile, National Strategic, bismuth, ob-	extraction. Frasch process	40
iective, attainment	foreign trade 9	91
deliveries20	prices 9	90
purchases, beryl 203	sulpments	983
cadmium234 columbium332	foreign trade 001 000 001 0	Š
columbium	notive consumption 001 000 0	92
kyanite 587	Striptings Str	97
kyanite587 manganese ore687	การเกิดเการ 0	187
шинданого ото 001	P	~

Page	Page
Sulfur, native, production, Frasch process_ 981, 982,	Tantalite concentrates, production 340
983	world 341
sales 981, 987 NPA regulations 990	shipments
price controls 990, 991	Tantalum, annual review 329
production49, 85, 100	importance, to defense program 329
value 49	National Stockpile purchases 332
world 1000	prices 332
President's Materials Policy Commission	producers 330 source 329
report	stocks332
stocks981, 990	substitute338
technology994	uses331
uses, nonacid 988 world review 995	world review 339
world review 995 Sulfur committee, IMC, foreign trade, study 991	Tantalum compounds, prices 333 Tantalum concentrates, DMPA purchase pro-
Sulfur deposit, underwater, operation 994	gram 329
Sulfur dioxide, production, costs, reduction 994	gram 329 Tantalum metal, prices 333
Sulfur industry, annual review 981	Tantalum minerals, consumption
fluosolids calcining process, use 995 salient statistics 981	Tariffs, antimony 153 chromium ores 288
salient statistics 981 Sulfur ore, agricultural, production 984	nobalt ovida 200
shipments 984	columbite-tantalite337
Sulfur paste, recovery 982	copper, suspension
Sulfurie acid, byproduct, production 987	iron
recovery 981, 982, 986 zinc-blende roasting plants 1136	lead 9, 608 mercury 715
consumption 989	molybdenum concentrates 753
expansion programs	molybdenum products
in phosphatic fertilizers, minimizing use 804	review9
new, production 988 States producing 988	$egin{array}{cccccccccccccccccccccccccccccccccccc$
States producing 988 NPA order 900	zine1150 Technology, metallurgical, annual review 24
uses 989	Tellurium, elemental, consumption
Superphosphates, curing, speeding 804	production 1181, 1184 salient statistics 1184
foreign trade802	salient statistics 1184
production 799 with nitric acid 31	shipments1184 stocks1184
sales 799	prices 1189
shipments	price control 1199
stocks799	primary, producers
Surinam, bauxite, review 198, 202	production 1181
beryl pegmatites, exploration 214	stocks 1182 supplies 1180
Sweden, aluminum, review 138, 147 ferrous scrap, data 578, 581	11898 1189
iron ore, data	Tennessee, copper mill, rod mill, use 25
salt, data	minerals, production76
selenium, data	value 53, 54, 76 Oak Ridge, gaseous diffusion plant, addi-
sulfur, data	tional capacity 1088
Switzerland, aluminum, review 138, 147	homogeneous reactor, criticality 1092
atomic energy program 1102	School of Reactor Technology, third ses-
Federal Court, decision, on private gold	sion1093 phosphate rock, brown, sales_ 795, 796, 797, 798, 799
minting 446 magnesium, data 667, 668	value 795, 797
magnesium, data 667, 608	pyrites, producer 985
	zinc, DMPA certificates of necessity
T	production 1127, 1129 zinc mine, quarry practices 40
in the second of the second	zinc mine, quarry practices. 40 Tennessee Valley Authority, processes, for producing fertilizers. 804
Taconite, beneficiation, investigations 524 deposits, exploitation, progress 29	producing fertilizers 804
deposits, exploitation, progress 29 Taggers tin, foreign trade 1027	Terneplate, foreign trade 1027, 1028
Tailings, sand from, use in filling stopes 43	NPA controls, relaxation 1015 tin content 1022
Taiwan, aluminum, review	tin content
salt, data864, 866	barite, data 178
Talc, foreign trade 1004, 1007 ground, prices 1006	lead, DMEA contract
hydrothermal synthesis, study 1008	DMPA certificate of necessity 1125
production, mine 49, 85, 1003, 1004, 1005, 1009	magnesium compounds, producer
value 49	value
world	sulfur, producers 983
review1003 sales1003, 1004, 1006	production 983
value1004	tin smelter, Longhorn, assets 1019
salient statistics 1004	concentrates received 1018 production 1018
States producing 1005	topaz, production 433
technology 1008	value 433
world review 1008 Talcum powder, exports 1008	zine, DMEA contract
Talcum powder, exports	DMPA certificates of necessity 1125 Textile industry, aluminum, use 126
welding rods	Thailand, tin, review 1027, 1033, 1034, 1041
Tanganyika, copper, data	Thallium, characteristics 1184
diamonds, data 439, 440	demand 1184
lead, data 611, 615	producer1184
mica, data	uses 1184 white arsenic as source 164

Page		Page
hallium bromoiodide crystals, transmission	Tin scrap, stocks	908
Of Infrared rediction 1184	uses Tin-solder alloys, properties and uses	907
nallium compounds, sale, forbidden	Tin-solder alloys, properties and uses	1029
hallium metal, price1185	Thamum, annual leview	1045
namum sunate, price 110c	casting, refractories, investigations	1058
Uses1184 Thorium, annual review1083	evaluation service tests, Bureau of Ships	1049
'horium, annual review 1083 resources, Bureau of Mines investigations 1087	holical apprings fatigua lite	1057
	joining with other materials, brazing flux	1000
Geological Survey investigations. 1087 Phorium compounds, consumption. 1099		
prices1096	producers, new	1047
producers1089	technology	35
production 1089		1057
uses1095		1058
Thorium-magnesium alloys, improvement	I mit i simonoft ongine porte maight com-	
horium metals, prices 1090	pared to steel	3, 1050
in, aluminum as substitute 1029 consumption 1020, 1021, 1025	Titanium alloys, behavior, research	1057
effect on steel 1030	foreign trade	1000
effect on steel 1030 electrometallurgy, report 103	Titanium-aluminum, producer	410 1058
1013. 1014	I Thanum carpide, production	1043
gray, preparation 102: imports, NPA controls, relaxation 101:	105	3. 1054
National Stockpile, purchases 1014, 102		
NPA controls, relaxation 101,	producers47, 85, 1043, 1044	4, 1045
NPA controls, relaxation 101, prices 1014, 1023, 102	value	47
price controls 101	shipments	4, 1045
primary, consumers' receipts 102 consumption 1013, 1014, 103	stocks 104	9, 1091
consumption 1013, 1014, 103	Titanium dioxide, foreign trade 105	1053
WOIIQ 103	manufactured, prices	1000
world 1013 1014 1032 103	ities, expansion, Government pro-	
world 103 production, mine 1014, 1017, 103 world 1031, 1014, 1017, 103 smelter 1014, 1017, 101 world 1013, 1032, 103	gram104	3, 1045
world 1013, 1032, 103	1 Titanium dioxide rectifiers, advantages	1050
production 41, o	as substitute for selentum rectiners, develop-	1183
value4 purchases, RFC, termination1012, 102	ment	1057
Secondary consumption 1014 109	1 foreign trade	3. 1054
recovery 886 906 907 908 1013 1014 101	9 production 1043, 104	5, 1046
value 886, 90	6 facilities, expansion, Government pro-	
value 886, 90 shipments 90 stocks 1014, 102 stockpiled, examination, by Tin Research	ment	3, 1045 1055
stocks 1014, 102	methods	2000
Institute102	Titanium mortar-base plates, substitution for	1050
tariff 102		
technology102	o I maison	
uses102	U mil	,
in containers 103 in plastics 103	nigments	020
in plastics 103 world review 103	* 1	1051
Tin-alloy products, secondary, shipments 90	foreign trade1 foreign trade105	3, 1054 1044
Tin bronze, use, to replace cupronickel 103		3 1044
Tin-bronze casting, description 103	1 production 620, 101	4. 1049
Tincal, deposits 22		1049
Tin cans, NPA controls, alterations 101 shredded, supply, NPA order 101		1053
shredded, supply, NPA order 101 Tin compounds, foreign trade 102		. 100
Tin concentrates, foreign trade 1026, 102	7 producer	. 1046
Tin industry, annual review 101	2 Titanium products, inventory controls	. 1046
salient statistics 101	Titanium rods, arc-casting process	_ 1058
Tin manufactures, foreign trade 102 Tin materials, RFC stockpile 101	9 Titanium slag, imports	53, 1062
Tin mines list	Fig. Titanium sponge, DMPA contract negotia-	-
Tin oxides, use, as polisher 11	tions	_ 1040
Tin patents, list 103	DPA expansion goal GSA purchase program	104
Tinplate, annealing, report	Wroll process removal of magnesium	105
Controlled Materials Plan, amendment 10	nrices	_ 105
foreign trade 1026, 1027, 103	producers	_ 104
NPA controls, relaxation 10 preparation for painting 10		_ 104
tin content100		
Tinplate clippings, prices		43
	9 use	_ 58
processing	9 Tourmaline production	_ 43
Tin producers, Senate Armed Services Com-	Troprock crushed sales	962, 96
mittee report 10	[2] value	902. 90
Tin projects, DMEA exploration assistance 101	4, States producing	_ 90 082 08
Tip Research Institute, activities 10	20 dimension sales 943.	947. 95
Tin Research Institute, activities 10 inspection, stockpiled tin 10	23 value 940,	943, 9 4
Tin scrap, consumption 907, 9	ne States producing	_ 94
foreign trade559, 5	78 USPS	- 94 - 94
prices 9	J7 Sales	
processing, at detinning plants 9		
	08 Traprock quarries, days operated	. 9
recoverable antimony content 8	on 1 mon ombiolog	•

Page	Pag
Traprock-quarry workers, injuries, number 96, 9	Union of Soviet Socialist Republics, bauxite,
rate	data198, 20 molybdenum, deposit75
1 ripon, consumption 99, 100	vermiculite, deposits 75
Toreign trade100 113	United Kingdom, aluminum review 120 14
prices 100 producers, list 100	
production 49	
Value40	isotopes, shipments 109
sales 99, 100 uses 100	beryl allows production 185, 18
value 99, 100 Tri-State district, zinc, production 1127, 1129	21 22 23 24 24 25 25 25 25 25 25
Tri-State district, zinc, production 1127, 1129 Tube-mill liners, consumption 99, 104	columbium-tantalum, data334, 34
production 48	
Value	methods, improvement 95
sales 99, 104	methods, improvement 957, 578, 583 ilmenite, data 1053, 1064 limestone, Portland, details 959 magnesium data 959
Tungsten, annual review 1066	limestone Portland details 1053, 1060
value 99, 104 Tungsten, annual review 1066 DMEA exploration assistance 1076, 1077 technology 1076, 1077	magnesium, data667, 669
1076	mercury, review 715, 716, 72:
world review 1079 Tungsten carbide, technology 1078	1053, 1064 1053, 1064 1054, 1065 1065, 1066 1065, 1065 1065, 1065 1065, 1065
use, as abrasive 112 Tungsten concentrates, consumption 1066, 1072, 1073 foreign trade	strontium minerals, data 978, 980
foreign trade 1066, 1072, 1075	sulfur, data993, 1002
foreign trade	tin, review 1025, 1027, 1032, 1033, 1034, 1035, 1044 RFC purchase contract 1012
milling methods 1077	
NPA regulations 1073 price 1067, 1068, 1074	zirconium, data 1148, 1149, 1103, 1104, 1106 United Nations, disarmament proposals,
producers 1068, 1069 production 47, 85, 1066, 1068	United States, foreign trade
	investments, in foreign mineral industries 16
47	mica, production
shipments 1066, 1067, 1068, 1069	minerals, production, value1
States producing	mineral industries, dividends 13, 14
uses	income 13, 14 national income originated 1, 2
	review
price 1076	taxes13, 14 nonmetals, production, value1
production1080	i carius, review o
world 1080 shipments 1069	
stocks	U. S. Tariff Commission report, mica indus-
Timesten program DMDA	try 728
GSA 1070 Tunisia, fluorspar, data 426, 429, 430 phosphate rock, review 807, 808, 809 self data	Uranium, annual review 1083 byproduct, phosphoric acid 1087
phosphate rock, review 807, 808, 809	vanadium production 1009 1112
salt, data864, 866 Turkey, alabaster, deposits956	DMEA exploration assistance 1006
boron minerals, data	DPA certificates of necessity, tax amor- tization 1087
boron minerals, data 228 chromite, review 281, 288, 290, 292, 293	ioreign trade
emery, data 106	recovery, from carnotite ores 31
Sait, data	Uranium compounds, consumption 1095 uses 1095
Turquoise, production 433 TVA. See Tennessee Valley Authority.	Uranium metal, prices1096
TVA. See Tennessee Valley Authority.	producer 1096
U	deposits, exploration drilling 1005
Uganda, cobalt, data 328	prices, AEO 1095
	production, accelerated 1084 receiving stations 1095
Ulexite, deposits	Uranium ore-processing plants, capacity,
Sales750	Uranium-235, fissionable, production 1084, 1088 Uranium-vanadium carnotite ores, treatment. 1112
Underground mining methods, improvement. 40 Union of South Africa, antimony, review 156, 158, 159	Urea, demand, as nitrogenous fertilizer 784
	Utah, copper mills, flotation machines, large, introduction. 26
beryl, data	10110011100111001111001111001111001111001111
corundum, data 290, 292, 293	fluorspar, data
corundum, data 29, 29, 295 corundum, data 105, 106 gold, review 444, 470, 472, 475, 476 iron ore, data 521, 528, 532	halloysite mine, methods 299
iron ore, data521, 528, 532	
manganese ore date	506 507 500 510 511 510 510 510 510
monazite, deposit 1180 nickel, data 763, 765, 774, 779	production 500 500 504 506
nickel. data 763, 765, 774, 779 platinum-group metals, review 813,	minerals, production 78
platificam-group metals, review 813,	varue 53, 54, 78
tungsten, data	Value
	potash producer 827 silver, data 442, 450, 454, 455, 456, 458, 459, 460, 462 sulfur, producer 964
wonderstone, deposits 956	silver, data 442, 450, 454, 455, 456, 458, 459, 460, 462 sulfur, producer 984
Union of Soviet Socialist Republics, aluminum.	uranium, DMEA exploration assistance 1086
otomic on an an an an an an an an an an an an an	DPA certificate of necessity 1087
atomic energy program 1103	uranium-ore deposits1084, 1085

Page :	Page
Utah, variscite, production 434	Washington, magnesium compounds, produc-
zine, DMEA contracts	ers674
production 1127, 1128	minerals, production80
pro-adotton	701-10 53 54 SO
	pulpstones, production 103
V	l ging: INME'A contracts 1121
77	DMPA certificate of necessity 1125 production 1127, 1128
Vanadium, as byproduct of uranium 1109	production1127, 1128
National Stockpile, accumulation 1109	zinc mine, belt conveyor43
phosphate rock as source 1111 production 1109, 1113	Welding rods, titanium-coated, production 1047
production1109, 1113	Western States, phosphate rock, sales 795.
world1113	797, 798, 799
recovery, from carnotite ores	value795, 797, 798 West Virginia, grindstones, production103
sources 1112	West Virginia, grindstones, production 103
technology1111	minerals, production 81
titaniferous magnetite ore as source 1111, 1112	minerals, production
uses1109	refractory magnesia, producer 674
world review.	
Vanadium concentrates, foreign trade 1110, 1111	whictsones, imports production 103 Whiting, foreign trade 975 Wisconsin, lead, DMEA contracts 1121
imports1109	Whiting, foreign trade 975
Vanadium ore, foreign trade	Wisconsin, lead, DMEA contracts 1121
prices1109, 1110	DMPA certificate of necessity 1125 production 592, 593, 596, 598 minerals, production 83
Vanadium pentoxide, prices 1110 Vandyke brown, foreign trade 760	production592, 593, 596, 598
Vandyke brown, foreign trade 760	minerals, production 81
prices760	1 Value 55, 54, 51
Sales 759 Vapor deposition, revival 36	zinc, DMEA contracts 1121 DMPA certificate of necessity 1121
Vapor deposition, revival 36	DMPA certificate of necessity 1125
Variscite, production 434	production 1127, 1127 zinc mine, hydraulic hoisting 188
Venetian red, prices 760	zinc mine, hydraulic hoisting 44
specifications, adoption762	
sales 759	Wollastonite, mining and preparation methods. 1188
Venezuela, bauxite, data	producers 1188
diamonds, data	production49
iron, duties, adjustment 9	value49
iron ore, data 503, 528, 532 phosphate rock, data 801, 802, 806	1188
phosphate rock, data	Wonderstone, deposits 956 WPA. See War Production Administration.
sulfur, data. 992, 1002 Vermiculite, annual review 1114 consumption 1114, 1116	WPA. See War Production Administration.
verificulte, afficial review	Wulfenite, as source of molybdenum 749
orfolioted many	Wyoming, bentonite deposit, development 305
exfoliated, uses 1114, 1115 value 1115	jade mining, decline 434
foreign trade	jade mining, decline 434 Laramie, alumina plant, modifications 197
prices1115	
producers 1114	value 53, 54, 82
production49, 85, 1114	moss agate, production 433 phosphate rock, sales 795, 798 sodium carbonate, natural, producers 933
value49	phosphate rock, sales
world	sodium carbonate, natural, producers 933
sales	sulfur, producers 983
States producing 1114	sulfur, producers 983 uranium-ore deposits 1084
Vermiculite-sand concrete, development and	
uses1115	Y
Vermont, chrysotile, production 166, 167	Yugoslavia, aluminum, review 138, 148 antimony, data 156, 158, 158 asbestos, data 173, 176 bauxite, data 198, 202 bismuth, data 218, 219 chromite, data 290, 292, 293 lead, data 606, 611, 612, 611 magnesium compounds, data 679, 688 manganese ore, data 702, 704 mercury, review 715, 716, 719, 722 tungsten, data 1082
granite, monumental, production 947	Yugoslavia, aluminum, review
sales 945, 947	antimony, data 156, 158, 158
value 947	aspestos, data
minerals, production 79	bauxite, data198, 202
value53, 54, 79	DISMUTH, 0318
minerals, production 79 value 53, 54, 79 pyrites, producer 986	chromite, data290, 292, 293
slate, data 927, 928	1680, 0818
Virginia, apatite, sales 797	magnesium compounds, data
kvanite, deposits 589	manganese ore, data
	mercury, review 110, 110, 110, 110, 120
production 592, 593, 598	tungsten, data1082 zinc, data1147, 1148, 1149, 1153, 1154, 1159
production	ziiio, uasa 1121, 1120, 1125, 1105, 1102, 1103
value 53, 54, 79	_
pyrites, producer985	Z
slate, data	Zinc, common, prices1146
spodumene ore, lime sintering	consumption 1117, 1137
zinc, DMPA certificates of necessity 1125 production 1127, 1129 Virgin Islands, stone, crushed, production 84	demand, effect of steel strike 1117
production 1127, 1129	DME A exploration assistance 1119
Virgin Islands, stone, crushed, production 84	DMP A certificates of necessity 1124
value	DMPA certificates of necessity
Vitriol, blue, foreign trade	foreign trade 1117, 1147, 1148, 1149
	geology, reports
W	National Stockpile, status 1144
	NPA regulations, amendments 1113
Waelz zinc kilns, operators	
Wake, stone, crushed, production 84	revocation
value84	price controls
War Production Board, limitation order, gold	primary, distillers, list
mining445	manufacturers' inventories 7
damage suits 445	mine States producing 1126, 1127
Washington, aluminum-ingot casting facilities,	production, distilled 1134, 1130
modernization 119	electrolytic1135
modernization 119 aluminum welding pipe mill, installation 119	electrolytic1135 mine 1117, 1118, 1126, 1127, 1129, 1131, 1153
gypsum plant 485	world 1103
lead, DMEA contracts	smelter 1117, 1154 world 115
DMPA certificate of necessity1125	world1154
production 592, 593, 595, 596	stocks 1118, 1145

, P	age		Pa	ge
Zinc, production 4		Zinc oxide leaded, consumption		628
value	47	lead content	- 1	626
molled preduction	1152 1138	production 65 shipments 619, 620, 623, 62 value per ton 619	23.4	624
rolled, production	1143	Value per top	34,	528 210
secondary, distillers, list	1134	zinc content	- 7	626
production	910	prices	-	630
recovery 000, 909,	910	production 62 shipments 619, 620, 621, 623, 62	23. 6	624
value886,		shipments 619, 620, 621, 623, 62	4, (52 8
uses	911	value per ton	•	619
1197 1120 1120 1140 1141 1140 1149 1	1111	zinc contentZinc pigments, consumers		626
export restrictions, removal	1110	consumption		620 628
foreign trade 1117, 1147, 1148, 1	1149	foreign trade 619, 631, 63	12 6	323
ODM allocation	117	foreign trade 619, 631, 63 lead content 619, 631, 63	~6	326
prices 1117, 1145, 1146, 1	147	manufacture, raw materials, consumption_62	25, (626
primary, production 1118, 1134, 1	135	prices 61	8,€	330
secondary, redistined, production 1118.1	135	production		319
stocks 1137, 1138, 1		value 619, 621, 62	2 6	319 304
stocks	5	decrease		$\frac{324}{518}$
supply1	117	uses		328
apparent shortage 1	117	world review	e	333
expansion and maintenance contracts 1	122	zinc content		326
tariff 9, 1 technology 1	150	Zinc-pigments industry, annual review		318
world review	154	salient staistics Zinc salts, consumption		319 328
Zinc-alloy products, secondary, production	910	foreign trade 631, 63		
Zinc anodes, for cathodic protection, study 1	152	prices	2, U	30
Zinc arsenate, foreign trade 631,	632	shipments62	3, 6	24
Zinc-base alloys, slab zinc for, consumption 11	142,	decrease	6	318
7.	143	uses		28
Zinc-blende roasting plants, sulfuric acid as byproduct 1	100	world review		33
Zinc chloride, foreign trade 631,	136	Zinc-salts industry, annual review Zinc slag-fuming plants, list		18 33
prices	630	Zinc sulfate, consumption		329
	623	foreign trade 63	16	32
shipments 623,	625	prices		30
	626	production	6	23
Zinc coatings, to protect steel from corrosion 1	152	shipments 623 62	5, 6	30
Zinc concentrate, germanium content 1	177	zinc content	. 6	26
prices1	146	prices	1,6	32 30
Zinc districts, leading, list 1	131	Zinc sulfide concentrates, processing, with	U	ου
Zinc dust, prices 1	136	FluoSolids reactor		30
production 1136, 1		Zircon, consumption	11	
	136	concentration	11	67
	136 136	producers	11	
	117	production, mine	11	
	118	reservesZircon concentrates, prices	11	
	118	stocks	11	
Zinc mines, belt conveyor	43	Zirconium, annual review	11	
hydraulic hoisting, tests	44	Bureau of Mines tests, high-temperature	11	67
leading, list1	130	desirable qualifies	110	
men employed quarry methods, use	10	ductile, production, by Kroll process	11	
See also Lead-zinc mines.	40	hafnium-free, production, Bureau of Mines- in magnesium casting alloys, advantages	11	
Zinz ore-"ressing-plant workers, injuries, number	94	NPA order, relaxation	u	35 62
rate	94	refined, producers, list	110	
	133	technology	11	
Zinc refining, men employed, earnings	11	uses1162.	110	64
hours of labor	11	world review	110	
	136	Zirconium alloys, investigations	110	
consumption	nii l	prices	110	
foreign trade	914		110	
receipts			116	
stocks	911	Zirconium-ferrosilicon, producer		10
Zinc smelters, number 1	$\frac{132}{132}$	production		09
		uses		16
Zinc ore, foreign trade 1148, 1	150		116	
States producing 1117 1126 1127 1	131		116	
reports 1 States producing 1117, 1126, 1127, 1 treatment 1	151		116	
Zinc oxide, consumption	628		116	36
foreign trade	632	Zirconium sponge, production, AEC contract_	116	32