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Over the past two decades, a more detailed understanding of TeV-scale cosmic rays has emerged which

appears to deviate from the isotropic, single power law description of the cosmic ray flux. This may be the

result of the distribution of sources within the Galaxy, changes in source spectra, effects from the propagation

of cosmic rays from their sources to Earth, or a combination of the three. Supernova remnants are thought

to be the most likely source of Galactic cosmic rays, providing a natural power law source spectrum with

sufficient power to generate the observed cosmic ray energy density. Yet, recent results from balloon-borne

experiments hint at a possible change in the spectral index between 20 − 50 TeV. These direct detection

apparatuses provide the most precise measurements of the cosmic ray flux up to ∼ 30 TeV, beyond which

they are limited by the combined effects of their physical dimensions, runtime durations, and a rapidly

decreasing flux. Above ∼ 100 TeV, the spectrum has been measured by ground based air shower arrays,

with typical systematic uncertainties of order 10%. Despite having the combined measurements from various

experimental techniques, their different energy scales and systematics imply that identifying finer structure

between 10− 100 TeV requires a single experimental method to span the entire range. Furthermore, as the

nearest potential source is hundreds of parsecs away and the Larmor radius of TeV scale charged cosmic

rays in the Galaxy is of order 10−3 parsecs, the previously observed anisotropy in arrival directions of cosmic

rays is unexpected. In order to attain the statistical power necessary to observe TeV cosmic ray anisotropy

at the 10−3 level and below, the long data taking periods required are only attainable by air shower arrays.

This thesis presents a measurement of the cosmic ray energy spectrum and the energy dependence of the

anisotropy on small scales O(10◦) using data from the High Altitude Water Cherenkov (HAWC) Observatory,

an air-shower array located near Puebla, Mexico that is sensitive to gamma rays and cosmic rays at TeV

energies. The analyses in this work comprise data taking periods of order 1 yr containing ∼ 1010 events.

An analysis of the cosmic ray Moon shadow is first presented as a verification of the angular resolution

and energy scale of the detector. Next, a measurement of the all-particle cosmic ray energy spectrum from

10− 500 TeV is shown, with an indication of structure deviating from a single power law. The final results

presented in this work show an improved spectral measurement of a particular region of cosmic ray excess

at the 10−4 level, previously observed both in HAWC and in other experiments.
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Chapter 1

Cosmic Rays and Extensive Air Showers

In this thesis I present several cosmic ray analyses using data from the High Altitude Water Cherenkov

Observatory (HAWC). These include measurements of the all-particle cosmic ray energy spectrum, the

energy dependence of the cosmic ray Moon shadow, and continued work on the cosmic ray anisotropy with

improved energy estimation. The main motivation for these studies is related to understanding the sources

and propagation of TeV-scale cosmic rays, the details of which will be further elaborated in the present

chapter. Following this is a description of the HAWC detector in Chapter 2, and the event reconstruction

techniques in Chapters 3 and 4.

The analysis is divided into two main parts: first an initial verification of the energy scale with the

cosmic ray Moon shadow, then measurements of the cosmic ray energy spectrum and the energy dependence

of the cosmic ray anisotropy. The map making techniques used for the Moon shadow and anisotropy are first

presented in Chapter 5, followed by the experimental results of the Moon shadow’s evolution with energy

in Chapter 6. Next is a description of the statistical method used for the “unfolding” of the all-particle

spectrum in Chapter 7, with experimental results in Chapter 8. Finally, Chapter 9 presents results of the

energy dependence of the cosmic ray anisotropy. The current chapter provides brief historical background

regarding cosmic ray science, and concludes with an overview of the current status of TeV-scale observations

relevant to this thesis.
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1.1 Historical Background

The study of charged particles of cosmic origin has its roots on the ground at the turn of the 20th

century. With the discovery of radioactivity, it was observed that the electroscopes designed to measure

ionizing radiation were discharging in the absence of known sources. At first, this was thought to be due

to natural radiation in the environment, primarily gamma rays which were known to be produced by radon

present in the air. However, in the year 1912 the Austrian scientist Victor Hess made seven hot air balloon

flights [2] that demonstrated the source of the ionizing radiation was not of terrestrial origin, hence the term

cosmic rays. Hess made measurements with electroscopes at altitudes surpassing 5 km, observing that the

rate of ionization discharges increased with increasing altitude (figure 1.1).

Subsequent flights by Kolhörster [3] to higher altitudes confirmed this, but eventually unmanned balloon

observations up to 16 km demonstrated a drop in the ionization rate, leading Robert Millikan and others

to conclude that the radiation being measured was in fact secondary, being produced by primary radiation

higher in the atmosphere. With the advent of the Geiger-Müller tube in 1928, the nature of these secondary

ionizing corpuscles could be examined using the coincidence detector technique, revealing energies in excess

of 109 eV [4].

It was also realized that the secondary radiation consisted of charged particles, as they were deflected

in magnetic fields. Indeed, using similar coincident techniques, Blackett and Occhialini [5] developed a

self-triggering mechanism to take photographs of particle deflections due to an applied magnetic field in

cloud chambers (figure 1.2). This supported observations by Anderson [6] and experimentally confirmed the

electron/positron theory of Dirac. The same method was used in the discovery of the muon in 1936 [7]. For

their contributions in discovering cosmic radiation and the positron, respectively, Hess and Anderson shared

the Nobel prize in 1936.

Rossi, followed by Pierre Auger and his colleagues, began separating coincidence detectors over increas-

ingly larger areas [8], and measured the physical extent to which these particles are correlated. They

discovered extensive air showers implying primary particle energies of at least 1015 eV [9]. Around the same

time, balloon-borne nuclear emulsions were deployed higher into the atmosphere to measure the primary

particles directly. It was discovered that the primary spectrum is composed mostly of protons [10], ∼ 10%

helium nuclei and a remaining 1% contribution from heavier nuclei [11].

Through their pioneering work, these experiments laid the foundations for the methods still used today

to study primaries with energies from ∼ 109 eV extending up to 1020 eV. Yet despite subsequent decades

of further research, the precise origin of these particles remains a mystery. Understanding the mechanisms

that accelerate particles to the highest observed energies and the environments they encounter traveling to

Earth remain the most fundamental questions in cosmic ray physics a century later.
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Figure 1.1: Measurements of the ionization rate with altitude from Hess [2] in 1912 and Kolhörster [3] from

1913–1914. The rise in rate with increasing altitude is attributed to the cosmic origin of the penetrating

radiation.

Figure 1.2: Photograph from Blackett and Occhialini’s triggered cloud chamber device [5], showing creation

of electron-positron pairs deflecting in opposite directions. Two particle counters were placed such that their

simultaneous discharge initiated the taking of the photograph. The chamber was placed in a water cooled

solenoid with a field strength of 0.3 T.
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1.2 Extensive Air Showers

Primary cosmic ray particles with energies & 100 GeV incident at the top of the Earth’s atmosphere

produce extensive air showers, characterized by a laterally extended but thin disk of secondary particles

(see figure 1.3). The nature of the primary particle determines the evolution of the shower with regard to

the particle content and subsequently the shape and energy distribution as the shower develops through

the atmosphere. This section introduces extensive air showers by first discussing purely electromagnetic

cascades, and then addresses the more complicated processes involved in hadronic initiated particle showers.

θ

θ

c

~5-10 ns

Shower Axis

Incident Primary

Particle

Detector Level

Particle Disk

Figure 1.3: Diagram of an extensive air shower particle front. The particle disk moves forward at nearly

the speed of light, and has a characteristic width and curvature. The shower axis direction is defined by

the zenith angle θ, which projected onto the ground determines the core location, represented by the thin

four-pointed star. Near the core the shower front is compact, smearing and thinning out laterally. Air shower

reconstruction is done using the relative timing and integrated signals of detector elements on the ground.

The five-pointed star represents the first interaction point of the primary particle.
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1.2.1 Electromagnetic Cascades

Primary gamma rays generate cascades containing mostly electromagnetic particles, namely photons

and electrons (γ, e±). The most relevant processes for these particles are e±-pair production by γs and

bremsstrahlung by the charged e± in the vicinity of atmospheric nuclei, as illustrated in figure 1.4. In

addition to pair production and bremsstrahlung, many other particle interactions can contribute to shower

development, yet the simple Heitler model [12] illustrates the general features of electromagnetic cascades.

By considering identical shower particles, the Heitler model assumes the generation of new secondaries occurs

at fixed intervals defined by the interaction length, λ. The particle content is doubled after each λ, with the

energy from the parent particles being distributed equally to the created particle pair. Given an incident

primary with energy E0, after n radiation lengths, the number of particles is given by N = 2n, each with

energy E = E0/2
n. The shower continues to grow until particle energies reach a critical energy, Ec, which

is a quantity dependent on the medium. At this point, energy is lost equally to both bremsstrahlung and

through ionization. For electrons in air, Ec ≈ 84 MeV. At this point the shower has reached its maximum,

given by λ log2E0/Ec interaction lengths, and the number of particles is Nmax = E0/Ec. This simple model

describes shower development only up to shower maximum, yet it qualitatively relates the primary’s initial

energy to the number of shower particles at a given stage of development.

e+             e-

γ-ray

γ γe+       e-D
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Figure 1.4: Diagram of a purely electromagnetic shower. The number of secondary particles increases

exponentially as the shower develops deeper into the atmosphere. The primary gamma ray is represented by a

straight ray to differentiate it from the secondary photons generated by bremsstrahlung. Each stage indicated

by the horizontal lines represents an interaction length, λ, where the number of particles increases by a factor

of two. This occurs by pair production (γ → e+ + e−) and bremsstrahlung radiation (e±+A→ e±+γ+A).

Eventually, the energy of the particles drops below a critical energy and the shower ceases to grow. This is

the point of shower maximum.
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The theory of the lateral spread of the electromagnetic particles was developed by Greisen [13] and

Katamata & Nishimura [14]. At each interaction point, pair production and bremsstrahlung processes emit

particles that are not aligned precisely along the primary’s direction, and further Coulomb scattering of the

e± results in a lateral smearing of the particle front. The approximation for the density of electrons at a

distance r from the shower axis is given by the NKG function:

ρe(r) =
Ne

2π R2
m

C(s)

(
r

Rm

)s−2 (
1 +

r

Rm

)s−9/2

. (1.1)

Here, Ne is the total number of electrons in the shower, and C(s) = 0.366 s2 (2.07− s)1.25 is a normalizing

expression such that
∞∫
0

2πrρ(r)dr = Ne. The parameter s is referred to as the age, which defines development

relative to the shower maximum. By definition, showers are initiated at s = 0, reach maximum at s = 1, and

diminish to O(1) particle at s = 2. The Molière length (Rm) incorporates the effect of Coulomb scattering.

At sea level Rm ' 79 m and at the altitude of HAWC Rm ' 120 m. The radial form of the NKG function

means that electromagnetic cascades are densely collimated, with particle density decreasing rapidly with

increasing lateral distance from the shower axis.

1.2.2 Hadronic Cascades

Primaries of hadronic origin induce showers that develop in a manner qualitatively similar to electro-

magnetic cascades, but due to the nuclear interactions involved, they exhibit some important differences. As

depicted in figure 1.5, hadronic showers develop from an indicent cosmic ray colliding with a nucleus A in

the atmosphere, and are composed of an electromagnetic component (γ, e±), as well as hadronic constituents

such as charged and neutral pions (π±, π0). The charged pions interact with atmospheric nuclei, inducing

additional meson production, until decaying to muons via

π+ → µ+ + νµ

π− → µ− + ν̄µ .

To a much lesser extent (branching ratio 0.000123) the pions decay to e± and electron neutrinos. There

are approximately twice as many charged pions as neutral pions which decay almost immediately to two

photons, π0 → 2γ. These generate electromangetic sub-showers as described previously. Both the hadronic

and electromagnetic sub-cascades continue to develop until the particles reach respective energy thresholds,

after which particle production stops. Despite the presence of nucleons and mesons, their total number in

the shower is significantly smaller than for µ±, e± and γ.



7

p

e+  e-

μ-       νμ
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π-          π+
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Figure 1.5: Diagram of a shower initiated by a proton, i.e. a hadronic shower. Charged pions (π±) generated

through nuclear interactions can carry energy laterally outward, resulting in decays to penetrating muons

far from the central shower core. An electromagnetic component primarily arises from neutral pion decay

(π0 → 2γ) and accounts for about 90% of the particle content of the shower.

Due to uncertainty in the atmospheric depth of the first interaction, as well as the inherent fluctuations

during hadronic cascade development, the total numbers of these particles can vary significantly. Yet, the

identity of the primary and its energy can still be estimated by measuring the respective muon and electron

component populations. For example, Matthews [15] approaches hadronic shower development in a manner

similar to Heitler, which leads to an estimate for Nµ provided the superposition approximation for heavier

primary nuclei holds. This states that the shower from a primary nuclei of mass number A and energy E0

develops as would A proton showers of energy E0/A. The muon number from heavier nuclei is related to

that for protons via

NA
µ = A1−βNµ

p ,

where β = 0.85. While this approximates the muon content, the electromagnetic component is complicated

by the fact that heavier showers are more likely to interact higher in the atmosphere. Thus, electron and

photon numbers on the ground will be smaller than that for proton initiated showers.

The capability to definitively identify muons in data to measure Ne/Nµ was not possible for this analysis.

But considering that a decreased electron number is equivalent to observing a more developed shower of the
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same energy, comparing measured s and energy values can be used to discriminate heavier nuclei from the

dominant proton and helium components of the cosmic ray spectrum. This composition measurement will

be the subject of a future analysis.

1.2.3 Air Shower Detection

Air shower particles propagate through the atmosphere at nearly the speed of light, forming a nearly

spherically curved wavefront that is roughly symmetric with respect to the primary particle’s direction vector

(figure 1.3). As will be discussed in chapter 3, the differences in arrival times of the particles and the density

of deposited energy in a detector are used to determine the shower axis and the energy-rich shower core.

Provided an estimated core location, the lateral distribution of secondaries and their energy content provide

a means to estimate the total energy of the primary. The energy estimation method used in this work is

presented in chapter 4.
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Figure 1.6: The all-particle cosmic ray differential energy spectrum as measured by a variety of experiments

[16]. The flux follows a nearly constant power law with index γ = 2.7 with breaks at the knee and ankle,

around 3 × 1015 eV and 4 × 1018 eV, respectively. At the lowest energies, below ∼ 1010 eV, solar activity

influences the spectrum. Up to O(100 TeV), direct measurements are provided by balloon-borne and satellite

experiments (represented here by LEAP and Proton). Ground based detectors operate from TeV scales to

the highest energies.
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1.3 Energy Spectrum & Composition

The primary cosmic ray spectrum spans a remarkable range covering over ten decades in energy and

thirty decades in flux [17, 18]. The spectrum is typically expressed in terms of flux, F, defined by the

number of particles of energy E arriving per unit area, solid angle, time and energy:

F(E) =
dN(E)

dAdΩ dt dE
. (1.2)

The observed cosmic ray flux is well described by a nearly single inverse power law of index γ ≈ 2.7, with

two breaks at ∼ 3 × 1015 eV and ∼ 4 × 1018 eV. These are referred to as the knee and ankle, respectively.

The structure of the observed all-particle energy flux is shown in figure 1.6. The non-thermal nature of the

spectrum, including the breaks, carries information regarding the dynamics of the environments in which

cosmic rays are accelerated and those that they traverse.

Since charged particles are deflected in magnetic fields, there is an immediate implication concerning

cosmic ray sources beyond 1015 eV, or PeV energies. For a charged particle with charge Z and energy E

traversing space in the presence of a magnetic field with strength B, the Larmor radius rg in pc is given by

rg = 1.1× 10−3 pc

(
E

TeV

)
1

|Z|

(
B

µG

)−1

(1.3)

= 1.1× 10−3 pc

(
R

TV

)(
B

µG

)−1

,

where R = E/Z is the rigitidy measured in volts and represents a charged particle’s resistance to the influence

of magnetic fields. Within the inner Milky Way disk (∼ 300 pc thick), the Galaxy has an ordered magnetic

field of ∼ 1µG along with a turbulent component of similar strength. Particles at PeV energies near the knee

have a Larmor radius of rg(E = PeV) ' 0.3 pc, and thus are effectively confined to randomized, diffusive

motion within the galaxy. At higher energies, rg(E = 103 PeV) ' 300 pc, these particles can begin to escape

the galaxy, which indicates a transition of sources from Galactic to extragalactic origin.

Of course, rg is also inversely proportional to the particle charge so features in the spectrum should vary

for different elements. For the knee, this suggests that Galactic cosmic rays are expected to become heavier

(higher Z) in this energy region. Figure 1.7 shows direct flux measurements for proton up to iron nuclei that

appear to maintain nearly constant proportions just prior to the knee. At the lowest energies, however, there

appear to be shifts in the locations of the solar bumps. In fact, the spectra would indeed exhibit constant

ratios as a function of rigidity, which suggests that cosmic ray sources are effectively composition blind. This

is called the universality of acceleration spectra.

Yet recent results from the PAMELA [20] satellite experiment demonstrate a decrease in the proton to

helium flux ratio up to TV rigidities or ∼ TeV energies (figure 1.8). Similarly, the CREAM balloon-borne

detector [21, 22, 23] reports further hardening of the helium energy spectrum, surpassing the proton flux at
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Figure 1.7: The differential energy spectra for various species as a function of kinetic energy [19]. Each

species is scaled by an indicated factor for clarity. The data are primarily from direct detection experiments,

providing precision measurements up to TeV energies, where detector exposure rapidly diminishes.
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Figure 1.8: The proton to helium flux ratio up to 1 TV with data taken from PAMELA [20]. The gray

shaded band represents the systematic uncertainty, while the curves denote various model fits.

approximately 10 TeV (see figure 1.9). The flattening of the helium flux relative to protons also has been

reported by the ATIC experiment [24]. This type of structure could be an indication of different source

populations [25], or a nearby source that is proton rich up to TeV energies [26]. It has also been suggested

that the spectral hardening could be attributed to anomalous diffusion [27].

Probing the cosmic ray spectrum via direct detection becomes a challenge in the 10–100 TeV range and

beyond due to limited detector exposures fueled by a rapidly diminishing flux. Ground-based air shower

arrays are not as limited by their collection area but are not as sensitive to the identity of the primary

particle. Yet, as demonstrated by the recent measurements of the proton and helium spectrum by ARGO-

YBJ [28, 29] and composition studies by GRAPES-III [30], ground arrays carry significant potential for

extending measurements past the TeV scale. Results from CREAM and ARGO-YBJ are shown in figure 1.9

for comparison.
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Figure 1.9: Proton and helium flux data from CREAM direct measurements [23], and the combined H+He

spectrum from the ARGO-YBJ air shower array [29]. The red band around the ARGO data represents the

systematic error. There is an indication of the helium spectrum hardening, or becoming less steep with

energy, surpassing the proton flux around 10 TeV.
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1.4 Production

It is generally believed that supernova remnants (SRNs) are responsible for the acceleration of cosmic

rays at least to 1014 eV and possibly up to about 1018 eV [31]. Supernova explosions provide a mechanism

for particle acceleration that naturally produces power law spectra. As the shock front encounters the

surrounding environment, particle energies are boosted by repeatedly crossing the front. This process was

initially proposed by Fermi [32] in the context of charged particle interactions with turbulent interstellar

magnetic clouds, as shown in figure 1.10. In this scenario (adapted from [33]), relativistic particles (E0 ' p0c)

scatter off of many clouds, accelerating with each interaction in a manner proportional to its energy. In the

reference frame of a cloud moving with speed βcl = vcl/c, the energy of the particle is transformed to

E′ = γcl(E0 + βclp0) .

Assuming the particle interacts in an elastic manner, its velocity is reversed in the cloud frame, i.e. a simple

reflection. Transforming back, the particle’s new energy is

E1 = γcl(E
′ + βclp

′) = E0γ
2
cl(1 + βcl)

2 ,

representing a relative gain in energy ∆E/E0 given by

∆E

E0
=
E1 − E0

E0
= γ2

cl(1 + βcl)
2 − 1 = ξ . (1.4)

After n interactions with similar clouds, the particle energy is En = E0(1 + ξ)n. Thus the number of

interactions to reach an energy En is

n =
log (En/E0)

log (1 + ξ)
. (1.5)

If the particle has a probability pesc of escaping the cloud environment, then the probability of remaining

after n interactions is (1 − pesc)n. For an ensemble of particles, the number that survive exceeding En is

given by

N(≥ En) ∝
∞∑
n

(1− pesc)
n

= (1− pesc)
n
∞∑
m=0

(1− pesc)
m

=
(1− pesc)

n

pesc
. (1.6)

Using the expression for n in equation 1.5 and the energy gain in equation 1.4 leads to an integral power law

spectrum:

N(≥ En) ∝
(
En
E0

)−α
, (1.7)

where α ' pesc/ξ is the power law index. Since ξ ∝ β2
cl, this process is referred to as second-order Fermi

acceleration.

This magnetic mirror scenario has some strong underlying assumptions. For example, the cloud’s motion

is assumed not to be influenced by the interaction, i.e. a pure particle reflection. In addition, the velocities
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Figure 1.10: Diagrams of Fermi acceleration. The left panel depicts the magnetic cloud scenario, or 2nd

order Fermi acceleration. The right panel shows shockfront acceleration.

of the cloud and particle are parallel (and anti-parallel), as other configurations influence the value of ξ. Yet,

even with this simple argument, Fermi illustrated an acceleration process that manifests a natural power

law.

In supernovae, magnetic inhomogeneties on both sides of the shock front conceptually take the place of

the magnetic clouds, so the particle similarly gains energy upon each crossing of the shock boundary. The

power law index, however, is related to the dynamics of the interstellar environment, specifically the Mach

number of the shock and the adiabatic index of the interstellar gas. Nevertheless, particle acceleration at

shock boundaries results in power law energy spectra with α ∼ 1. Since equation 1.7 represents the integral

spectrum, taking the derivative with respect to En reveals a differential spectrum with index γ = α+ 1 ∼ 2,

harder but qualitatively near the observed cosmic ray index of 2.7.

While unequivocal evidence for this scenario is needed, the rate of supernova explosions and the power

released is sufficient to fuel the Galactic cosmic ray flux density. Integrating the observed spectrum in figure

1.6, the local cosmic ray energy density is ρE ∼ 1 eV cm−3. Following the arguments of Stanev [33], we

assume this is a constant throughout the galactic disc of thickness 300 pc and radius 15 kpc. We also suppose

that particle diffusion leads to cosmic ray residence times tGD ∼ 107 yrs, so we can estimate the total power

required to accelerate these particles via

LCR =
VGDρE
τGD

' 3× 1040ergs/s , (1.8)

where the volume of the galactic disk VGD = π 300 pc (kpc)2 ∼ 1067 cm3. The observed rate of supernovae

is approximately 3 per century. Assuming progenitor stars of mass 10 M� expanding at 5 × 108 cm/s, the

resulting luminosity is 3 × 1042 ergs/s. Thus, an acceleration process with an efficiency of merely 1% is

sufficient to supply the cosmic ray energy density in a power law spectrum.
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In both acceleration scenarios above, many particle interactions are required to reach the observed en-

ergies. Furthermore, the fact that we observe them means they attain energies such that escape from

acceleration environments is possible. At this point, the particles no longer accelerate, and have reached the

maximal attainable energy, which by rearranging equation 1.3 and scaling by the speed of the front, βs, is

Emax [eV] = 1018 βs Z

(
d

kpc

) (
B

µG

)
. (1.9)

In this context, d is the size of the accelerator; thus as soon as a particle’s energy results in rg & d, the

particle is able to escape. This geometric condition is known as the Hillas criterion [34], and is useful in

searching for potential acceleration sites at all cosmic ray energy scales, as depicted in figure 1.11.

Figure 1.11: Hillas diagram indicating astrophysical objects capable of accelerating cosmic rays. The location

of the LHC is included for reference. The energies attainable for each source depends on its dimensions and

the strength of its magnetic field. Used with permission from J. Aguilar.
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1.5 Propagation

Upon being ejected from their sources, charged particles are subject to a number of other processes in

interstellar space. The propagation of cosmic rays within the Galaxy is depicted in figure 1.12 and it is

governed by the diffusion-loss equation [35]:

∂Ni
∂t

= D∇2Ni +
∂

∂E
[b(E)Ni] + Qi −

Ni
τi

+
∑
j<i

Pji
τj

Nj (1.10)

which is composed of terms accounting for various sources of gains and losses to the number density Ni of

species i. Here, Q represents the cosmic ray production rate by sources, D is the diffusion coefficient, b(E)

parameterizes the rate of energy loss, Ni/τi describes the rate of escape from the Galaxy with lifetime τi,

and the last term incorporates nuclear spallation to other species j with probability Pji. Thus equation

1.10 represents the time evolution of the integral spectrum of species i. Taking the approach of the previous

section, some simple assumptions are made to extract general behavior.

As a basic approximation, we ignore the diffusion, spallation and energy loss terms. Furthermore we

assume that the observed flux is at equilibrium, i.e. independent of time. This leaves us with the following

for a single species:
∂N(E)

∂t
= − 1

τesc
N(E) +Q(E) = 0 (1.11)

where we have emphasized the energy dependence and that τ is the escape time scale. Rearranging, we see

that N(E) = τescQ(E), i.e. cosmic ray production and loss rates are equal. Since we observe N(E) ∼ E−2.7

and from the previous section for supernovae Q(E) ∼ E−2, we can conclude that the escape time is energy

dependent: τesc(E) ∼ E−0.7.

As a simple numerical estimate of τesc, we return to equation 1.10 considering only the diffusion term.

If we assume that the Galactic magnetic field is responsible for the diffusive process, then the mean free

path length between interactions λ is of the same order as the gyroradius, rg. For general three-dimensional

diffusion, the r.m.s. distance of a particle from its source after time τ is

〈
r2
〉
' 2D τ . (1.12)

And for relativistic charged particles in a magnetic field, the theory of Bohm gives the diffusion coefficient

D =
1

3
c rg . (1.13)
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If we consider a PeV proton in the Galactic disk of thickness zGD = 300 pc and equate
〈
r2
〉
→ z2

GD, then

the escape time can be estimated:

τesc =
z2

GD

2D
=

3

2

z2
GD

c rg
(1.14)

=
3

2

(300pc)2

(0.307 pc/yr) (0.3 pc)

' 106 yr .

Of course, an immediate consequence of these assumptions is that τesc ∼ E−1, not quite the fractional index

as found above. Yet, we do gain some insight into the form of τesc as this energy dependence originates from

the gyroradius, rg. This really implies τesc ∝ (E/|Z|)−δ ∼ R−δ, where R = E / |Z| is the particle rigidity.

While not surprising, this does indicate that the difference in δ due to the simple approximation must be

composition dependent. It also means that escape times increase with increasing Z (or equivalently mass),

so one expects the contribution of the heavier elements to the all-particle flux to increase with energy.

The real story is complicated by nuclear fragmentation during propagation. Spallation increases particle

diffusion and alters species abundances via interactions with the insterstellar gas. By choosing a nuclide

with an appropriate half-life, it is possible to investigate the origin of this δ discrepancy.

The canonical example is the isotope beryllium-10. Its nuclear interactions (MeV–GeV) are well under-

stood, but the abundance of 10Be is rare in ordinary matter, and nearly all 10Be cosmic rays are formed

by the fragmentation of heavier nuclei inelastically interacting with the interstellar medium. It has a ra-

dioactive half-life of t1/2 = 1.39× 106 yr, so the relative absence of 10Be in the cosmic ray spectrum at GeV

energies would indicate propagation lifetimes much larger than t1/2. Indeed, there is an observed reduction

of ∼ 0.2 − 0.4 in 10Be abundance to what is expected [36], meaning that τ ′esc = 5 τesc ∼ 107 yr (hence the

value of tGD in equation 1.8). If we just assume that δ absorbs all differences between the magnetic and

spallative diffusion, then we simply solve for τesc and τ
′

esc at the same rigidity to get:

τesc ∝ R−1

τ
′

esc ∝ R−δ

τ
′δ
esc

τesc
=

(5 τesc)
δ

τesc
= 1 .

Solving with τesc = t1/2 ∼ 106 yr, we obtain δ ∼ 0.9, which is nearer to 0.7, but again, we have assumed that

the difference in magnetic and spallative diffusion constants is negligible. Actual measurements estimate

the total diffusion constant to obtain more accurate estimates of δ. For example, the TRACER detector

[37] recently measured the boron to carbon ratio, obtaining δ = 0.53 ± 0.06 up to about TeV per nucleon

energies. While these are very specific examples, it is clear that by the time cosmic rays reach Earth, their

original source spectra are influenced by both magnetic diffusion and spallation processes.
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Figure 1.12: Diagram of a simplified galaxy, with radius r, disk height d, and halo height H. In the

various approximations above, cosmic rays diffuse around the Galactic disk, interacting with the Milky

Way’s magnetic field and the interstellar medium. Particles can escape the disk if their escape times are

long enough. Used with permission from J. Aguilar.
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1.6 Anisotropy

The prior discussion assumed that the Galaxy is filled with randomly distributed sources in a leaky

Galaxy, producing a steady, isotropic particle stream. And since the Larmor radius of Galactic TeV cosmic

rays is about five times the size of the Solar System (∼ 0.001 pc), orders of magnitude below the distance to

the nearest SNRs, O(100pc), and dimensions of the Galaxy, such particles retain no memory of their origin

upon arrival at Earth. But of course, any interpretation of measured arrival distribution, energy spectra and

escape times must include the Earth’s placement within the Galaxy and relation to possible sources that

are both spatially and temporally discrete. For example, the value of τesc measured at Earth is in fact an

average, for particles that originated nearer the disk edge can escape faster than those that are born towards

the denser Galactic center, where there is more diffusive action and also more sources. At most a weak

dipole should be present [38, 39], aligned with the source-dense Galactic center.

The study of the cosmic ray anisotropy is a powerful probe of acceleration sites and propagation, and

is complementary to spectral and composition studies. Indeed, over the last decade many experiments

have confirmed the observation of TeV anisotropy around the 10−4 − 10−3 level in relative intensity. In

the northern hemisphere, these include measurements from Tibet-ASγ [40], Milagro [41], ARGO-YBJ [42]

and a recent measururement by the HAWC Observatory [1]. In the southern hemisphere, IceCube [43] and

IceTop [44] report qualitatively similar results. These experiments are ground based detectors, which is no

coincidence, as large instrumented areas operating for long data taking periods are needed to reach per mille

sensitivity at TeV–PeV energies.

The observed anisotropy has features on two angular scales: a large-scale dipole with sub-components

from a few higher multipoles, and a small-scale structure with several excesses and deficits of about 10◦ −

20◦. Several measurements reported by IceCube and IceTop are presented in figure 1.13, showing energy

dependence of the large-scale anisotropy. The noticeable flip in phase of the dipole structure could be the

result of a change in the local source distribution, including sources being subject to internal energy cutoffs.

The small-scale anisotropy measured with HAWC at 2 TeV is shown in figure 1.14. Several areas of excess

are clearly visible in the map. The most significant excess is Region A, near right ascension α = 59.2◦ and

declination δ = −7.2◦. Region A’s evolution with energy is shown in figure 1.15, where it appears to steepen

to ∼ 14 TeV before dropping. These fluctuations on top of the dipole anisotropy could be the result of

young, nearby sources [39], an indication of non-diffusive propagation in the turbulent interstellar magnetic

field [45, 46], or potentially heliospheric effects that could explain the spectral hardening [47]. Thus it is

important to study the small-scale structure as a function of energy.
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Figure 1.13: The large-scale structure measured with relative intensity as observed with IceCube [48] at 24

TeV and 580 TeV median energy, and IceTop [44] at 2 PeV. The phase of the dipole structure clearly flips

with increasing energy. The relative intensity is scaled by the value 10−3 for each map as indicated by the

label.
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Figure 1.14: Significance map of small-scale anisotropy at a median energy of 2 TeV measured with HAWC

[1] Three regions of excess are labelled, with Region A having the largest significance.

The presence of this anisotropy clearly implies that cosmic ray production and propagation are not

fully understood. As we shall see, the energy response of the full HAWC Observatory to hadronic air

showers allows for an improved measurement of the small-scale anisotropy’s energy dependence, as well as

a detailed measurement of the all-particle cosmic ray spectrum above 10 TeV. This is due in part to the

large field of view and long observation times required, the comparable extent of multi-TeV showers and

the containment area of HAWC, as well as the array’s proximity to shower maximum at these energies,

where shower fluctuations are at a minimum. This places the HAWC Observatory in a unique position to

bridge cosmic ray measurements between direct detection apparatuses and larger PeV-scale air shower array

experiments.
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Figure 1.15: Relative intensity as a function of energy for Region A [1]. Uncertainties in both the energy

and relative intensity represent the 68% central containment region.



24

Chapter 2

The HAWC Detector

The HAWC Observatory is an air shower array located at 4100 m a.s.l. on the slopes of Volcán Sierra

Negra in the state of Puebla, México. The detector comprises a large 22,000 m2 array of 300 close-packed

water Cherenkov detectors (WCDs), of which 294 have been instrumented. HAWC is designed to detect air

showers from primary gamma rays in the 100 GeV to 100 TeV energy range, but its altitude and physical

dimensions permit measurements of primary hadronic cosmic rays up to multi-PeV energies. A photograph

of the observatory during the final construction phase is shown in figure 2.1. The white building in the

center of the array is the Counting House, home to the data acquisition system, online computing farm, and

laser calibration system. Buried coaxial cables run from here to each tank, providing high voltage to and

receiving signals from the WCDs. The large white rectangle at the top right of the image is the HAWC

Utility Building (HUB), which houses the water filtration facility.

Figure 2.1: Photograph of the HAWC Observatory as viewed on the 19th of August, 2014 from the neigh-

boring peak, Sierra Negra. This was taken during the final stages of construction; as one can see the last row

of tanks is outlined on the bottom left corner of the image. Used with permission from Jordan Goodman.



25

2.1 Water Cherenkov Detectors (WCDs)

The Cherenkov detector unit in HAWC is a large, 5 meter tall, 7.3 meter wide water tank. Each WCD

consists of a cylindrical corrugated steel wall protecting an inner light-tight plastic liner, or bladder (figure

2.3), which holds ∼188,000 liters of purified water. This corresponds to a water height of 4.5 m, which

was chosen such that 100 MeV photons centrally entering the tank produce Cherenkov light that uniformly

illuminates the tank bottom. On top sits a protective canvas dome supported by a steel frame to prevent

rain or snow accumulation. The modular design and choice of materials meant that each tank could be

assembled and instrumented one at a time. This allowed the experiment to operate in data-taking mode

and commissioning of the detector elements to occur during the various phases of construction. As shown

in the left panel of figure 2.2, the 300 WCDs form an array covering an area of 22,000 m2, while the total

instrumented area amounts to 12,500 m2.

The secondary air shower particles primarily consist of γ and e±, and some highly energetic muons. When

these particles pass through the water in the tank, the Cherenkov light emitted propagates and scatters in

the water, and reflects diffusively off of the liner walls. This continues until the light is either absorbed in

the water or the liner plastic, or lands on one of the four photomultiplier tubes (PMTs) mounted on the

bottom of the tank. The secondary γ do not emit Cherenkov radiation themselves, however, upon entering

the tank, produce e± pairs which do. A schematic diagram of a single WCD is shown in the right panel of

figure 2.2.

2.2 Cherenkov Radiation

Cherenkov radiation is light produced when a relativistic charged particle travels through a refractive

material at a speed faster than the speed of light in that medium. For a generic material with an index of

refraction n, the speed of light in that material is given by cn = c/n where c is the speed of light in vacuo.

Hence, Cherenkov radiation is emitted if the particle’s velocity v > c/n. This radiation is the result of the

medium’s response to the charged particle, and can be conceptually likened to macro-scale phenomena

such as shock-waves. As a simple example, a duck swimming faster than water waves can travel produces a

cone-like wavefront in still water.

The geometric representation of this process is depicted in figure 2.4. Because the particle moves su-

perluminally through the medium, the constructive interference of the electromagnetic radiation creates a

conical wave behind the particle. The coherent wavefront propagates with speed cn at a fixed angle cos θ = 1
n

with respect to the velocity vector of the particle. For a relativistic charged particle (β = v/c ∼ 1) passing

through water (n ∼ 1.33), the Cherenkov light cone propagates at an angle of θ ∼ 41.2◦.
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Figure 2.2: The left panel shows the layout of the entire HAWC detector. Each WCD is indicated by a large

circle encompassing the smaller, darker circles which identify the PMT locations. The right panel depicts

the representation of a single WCD including the steel tank, the protective roof, and the four PMTs. The

penetrating dark blue line represents a high-energy secondary air shower particle, which emits Cherenkov

radiation indicated by the cyan rays inside the WCD volume.

Figure 2.3: A HAWC bladder being inflated for testing. The exterior of the bladder is white, while the

interior face is black and absorptive. Used with permission from Jordan Goodman.
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Figure 2.4: Huygens’ wavefront construction illustrating Cherenkov radiation. The light travels with speed

cn = c
n at an angle θ from the particle velocity vector, which traverses the medium at a speed v > cn. The

radiation forms a coherent wavefront in the shape of a cone with apex at the particle location.
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Figure 2.5: Left: diagram of the inner workings of a PMT. An incident photon releases an electron from

the photocathode, which induces a cascade in the dynode chain. Used with permission from Joshua Wood.

Right: a Hamamatsu R5912 8” photomultiplier tube used in HAWC.

Since high energy cosmic rays generate cascades of relativistic secondary particles such as e± and π±,

detectors can be built with appropriate dimensions and materials optimized to measure the Cherenkov light

produced as the cascade particles pass through the detector. The detector elements deployed in HAWC

operate under these principles.

2.3 Photomultiplier Tubes (PMTs)

Photomultiplier tubes are highly sensitive photon counting devices, capable of detecting single photons.

The four upward-facing PMTs used in HAWC WCDs are anchored to the liner floor, ensuring their surveyed

locations are known precisely, which is of prime importance for air-shower event reconstruction. Three 8”

Hamamatsu R5912 PMTs passed on from the Milagro experiment are arranged in an equilateral triangle,

each spaced 1.8 m from a central 10” high quantum efficiency Hamamatsu R7081-02 PMT. The right panel

of figure 2.5 shows a photograph of an 8” HAWC PMT, and the left panel shows a schematic diagram of the

inner workings of a general PMT.

When a Cherenkov photon is incident upon the PMT cathode surface, an electron can be ejected via the

photoelectric effect with probability represented by the quantum efficiency (QE). The QE is dependent on

the wavelength of the impinging photon and the location on the surface of the PMT cathode, and it typically

includes the probability for the ejected electron to land on the first dynode. The manufacturer-quoted peak

QE for the R5912 PMT is ∼ 25%, and ∼ 40% for the R7081-02 PMT. Upon leaving the cathode surface,

the electron accelerates onto the first dynode where it ejects more electrons. These in turn get accelerated

by subsequent dynodes, all of which are held at increasing high voltage to amplify the developing electron
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cascade at each step. The electrons finally are collected on the anode where the resulting signal is output

for measurement. The ratio of the mean integrated output from a single incident photon to the fundamental

electron charge defines the PMT gain. This value depends on the number of dynodes and the total voltage

at which the PMT is operated. The PMTs in each WCD are gain matched to ensure uniform response in

the data acquisition electronics.

2.4 Data Acquisition System

HAWC employs two data acquisition (DAQ) systems [49]: a main DAQ which records individual air

shower events, and a scaler system which records single PMT rates. The scaler DAQ is intended for moni-

toring transient gamma ray phenomena such as GRBs and flaring AGNs, as well as fluctuations in the cosmic

ray rate from Solar activity. This analysis uses events reconstructed through the main DAQ.

The PMT signals are transferred via RG59 coaxial cables to a central counting house, where they are

amplified, shaped, and discriminated on custom front-end boards (FEBs) using two voltage thresholds: one

at 20 mV and the other at 50 mV. The time stamps when signals cross these thresholds are recorded by

CAEN VX1190A time-to-digital converters (TDCs) with a precision of 100 ps. The resulting time-over-

threshold (ToT) is proportional to the logarithm of the pulse’s total charge and is further detailed in section

3.1. The TDCs then send the data to a computer farm for further processing. A simple multiplicity trigger

condition is enforced to identify candidate air shower events, ensuring that a minimum of Nthresh PMTs

record signals within a defined time window. The value used in this analysis is Nthresh > 28 within 150 ns.

2.5 Calibration System

Accurate reconstruction of air-shower events requires that the measured PMT signals also must be mea-

sured accurately. Though the PMTs were relatively calibrated prior to deployment, other effects can influence

measured signals. For example, the water quality within WCDs influences the attenuation and scattering

length of emitted Cherenkov light, changing the number of photons incident on PMT cathodes. Similarly,

the cable length from the PMTs to the FEBs affects the signal propagation and can smear out PMT pulses.

A dedicated calibration system is installed at the HAWC site, performing an in situ measurement of PMT

signals provided by a known input light source, effectively taking these potential issues into account.

A laser held in the counting house sends pulses of light that travel through optical fibers to each WCD

tank. A set of neutral density filters establishes the light intensity, covering six orders of magnitude in

dynamic range. Entering through the top, the light is scattered with an optical diffuser, which illuminates

the surfaces of all four PMTs. Since the amount of light entering the tank is well known, the measured PMT

signal times and charges are calibrated. The signals registered during calibration are flagged in the DAQ so
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as to not include pulses from the laser light into the air shower data taking chain. The light source is itself

monitored closely by a set of photodiodes installed both before and after the filter.

2.6 Science Goals

As a detector capable of observing TeV scale gamma rays and cosmic rays, the HAWC Observatory

operates within the scope of multimessenger astrophysics. Hence the science program of HAWC is diverse

and falls into four main, yet interconnected categories: Galactic, extragalactic, cosmic ray, and beyond

standard model physics.

The Galactic science program involves understanding Galactic TeV gamma ray sources, such as supernova

remnants (SNRs) and extended objects like the Fermi Bubbles [50]. Characterizing the shape of these sources’

gamma ray energy spectra provides clues regarding whether source environments are dominated by leptonic

processes or hadronic particle interactions. For point sources, it is expected that gamma rays produced

by electrons undergoing synchrotron self-Compton emission should have an energy spectrum that cuts off

earlier than if produced by a purely hadronic mechanism. For extended emission, cosmic rays interacting

with interstellar gas produce pions that further decay into high energy gamma rays. The measurement of

the diffuse flux can thus aid in the search for regions of cosmic ray sources within the Galaxy.

HAWC can also probe sources outside our Galaxy, where the most violent environments in the universe

reside. Due to its wide field of view and nearly constant duty cycle, HAWC can search for transient phe-

nomena such as gamma-ray bursts (GRBs) and flaring sources such as active galactic nuclei (AGNs). These

observations are part of a real-time alert system involving instruments that operate at other wavelengths

from radio up to TeV gamma rays. In turn, HAWC can be alerted to flaring sources by other observatories,

providing complementary observations at the highest energies, where for example space-based detectors can

not measure due to limiting detector acceptances. Also within this context is the study of the extragalactic

environment between us and sources. Specifically, the extragalactic background light (EBL) and the inter-

galactic magnetic field (IGMF) influence gamma rays on their path to Earth [51, 52]. By observing gamma

ray spectra from blazars (AGNs with their jets pointing in our direction), these background fields can be

probed to further understand the universe’s cosmological history.

So far, the discussion has focused on the observation of gamma rays to probe high energy environments,

yet HAWC has a healthy TeV-scale cosmic ray science program as well. As will be discussed in this thesis,

HAWC can measure the all-particle cosmic ray energy spectrum, whose shape is important for understanding

the nature of nearby sources as well as the environment in which cosmic rays propagate. Another measure-

ment which takes advantage of HAWC’s wide field of view and continuous operation is the observation of

the cosmic ray anisotropy to the 10−3 level, which provides an additional lens with which to probe our local

cosmic ray environment.
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Finally, HAWC contributes to new physics topics by putting limits on exotic phenomena. This includes

constraining Lorentz invariance violation with transient sources, and searching for signals from dark matter

and massive relic particles like SUSY Q-Balls and primordial black holes [53]. These special searches are

implemented within the normal observational capacity of the other science topics.

2.7 The HAWC Collaboration

The HAWC Collaboration consists of more than 100 scientists from institutions in Costa Rica, Germany,

Mexico, Poland, and the United States. It formed in 2007 as a joint project originally between Mexico and

the US to build upon the success of the Milagro experiment [54]. Milagro was a first-generation, wide field

of view gamma ray experiment located at 2,630 m a.s.l. in the Jemez Mountains near Los Alamos, NM.

With seven years of operation, Milagro pioneered the water Cherenkov technique for TeV-scale observations,

leading to the first unbiased deep survey of the gamma ray sky [55], identification of new gamma ray sources

[56], and discovery of the small-scale cosmic ray anisotropy [56].

The HAWC Observatory’s design improves upon Milagro by moving to higher altitude, increasing the

detector area five-fold, and isolating detector elements. This has significant impact on the sensitivity to

gamma rays between 100 GeV–100 TeV, and extends cosmic ray observation capabilities up to the cosmic

ray knee. Construction began with a prototype, VAMOS, starting in June 2010. The VAMOS array operated

from June 2011–May 2012, and served as a test for various operations necessary to build the full HAWC

array, such as detector construction, water delivery to the site, and electronics testing. The first elements of

the main array were installed mid-2012, and HAWC was built in stages of 30, 111, 250, and finally 300 tanks.

The inauguration of the full detector took place in March of 2015. Development of the site and detector

deployment are shown in figure 2.6.
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Figure 2.6: The HAWC site in various stages of construction. The top panel shows the initial 7-tank test

array, VAMOS, followed by the leveling of the site in preparation for the main HAWC array. The 30-tank

array was in operation by August of 2012, and 111 WCDs were completed by mid-2013. The final panel

shows the completed HAWC detector at the end of 2014. The large peak in the background is Pico de

Orizaba.
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Chapter 3

Reconstruction of Air Showers with HAWC

The generalized data object of the HAWC detector is an air shower event, which consists of a variety

of measurable and observable quantities. The simplest observable is the number of PMTs that record a

signal within a predefined time window, Nhit. If a minimum number of PMTs in the array do not have a

signal, the threshold multiplicity condition is not met, and the potential air shower event is rejected. For

the analyses in this thesis, the most important quantities are composite, requiring sophisticated algorithms

using the information from the collected charge and relative timing of PMT signals. These include an event’s

directionality, core location, and the estimated energy of the primary particle. The energy reconstruction is

discussed in chapter 4. This chapter begins by describing the fundamental event reconstruction in HAWC, the

simulation used to verify the reconstruction procedures, and finally the data reduction required to conduct

the analyses in this thesis.
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3.1 PMT Hits

A PMT “hit” is the basic component required for air shower reconstruction. It is defined by the position,

time, and integrated signal or charge from light detected by a single PMT. Typical PMT signals from

Cherenkov light are characterized by a steep rise followed by a relatively long tail. In HAWC, entire analog

voltage waveforms are not recorded but are instead digitized to time stamps by the FEBs, providing a

continuous data stream of leading and trailing edges.

Voltage

ToT

t0 t1

time

low threshold

high threshold

low ToT

Figure 3.1: Diagram of a two-edge hit. The PMT analog signal is represented by the black curve. Only the

lower voltage threshold is crossed, resulting in the digital low ToT edges shown below.

Each edge corresponds to the time the PMT signal crosses one of two thresholds: a low threshold of 20

mV and a high threshold corresponding to 50 mV. A signal which only exceeds the low threshold produces a

2-edge hit, since it also crosses as the signal decays, while 4-edge hits comes from larger signals that pass both

signal thresholds. The time difference between the respective thresholds crossings is referred to as the time-

over-threshold (ToT), hence there is a low ToT and a high ToT. The calibration system described in section

2.5 uses the laser light source to define the conversion factor between the ToT and the integrated signal,

ensuring that PMT charges in air shower events are measured accurately. Figures 3.1 and 3.2 illustrate this

digitization scheme for producing ToT hits. Occasional “bad” hits are recorded due to combinations of very

small pulses or prompt afterpulsing in PMTs. These result in very long 2-edge and 6-edge hits (figure 3.3),

respectively; however, the hit finding algorithm is programmed to identify and remove these undesireable

hits from the data stream.
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Figure 3.2: Diagram of a four-edge hit. The PMT analog signal is represented by the black curve. Both the

low and high voltage thresholds are crossed, and the pulse gives a four edge digital ToT signal.
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Figure 3.3: Diagram of a six-edge hit. Two crossings of the higher threshold occurred. This type of hit is

flagged by the edge-finding software and removed from the data stream.
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The recorded ToT hits are sorted into an ordered time series, and the collection of hits within a predefined

time window defines a candidate event. But due to various sources of noise such as PMT dark noise and

small fragments of distant showers, random hits enter the data stream, so a minimum hit threshold condition

is implemented to identify reconstructable showers. During the data taking period for this analysis, the

requirement Nhit ≥ 28 within a time window of 150 ns defines an air shower event. The resulting trigger

rate is ∼ 25 kHz.
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3.2 Air Shower Reconstruction

3.2.1 Core Location

As discussed in section 1.2, extensive air showers propagate along the axis defined by the incident primary

particle. The shower front is densest along this axis, and its projection onto the ground is called the core.

In an air shower detector such as HAWC, the core is the location of maximal energy desposition. Figure

3.4 shows the charge distribution measured in HAWC for an example air shower event. Farther from the

core, the shower front becomes less populated and wider in time. For the electromagnetic component of the

shower, the expected particle density a certain lateral distance from the core is well approximated by the

NKG function of equation 1.1. This is an estimate to the electromagnetic particle density in the shower

front; however, HAWC WCDs measure the energy density, so a more appropriate function is NKG×1/r.
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Figure 3.4: Example event from data showing charge distribution on the array. The SFCF core fit indicated

by the red star is within the region of greatest energy density deposition, and is located at XSFCF = (9.6 m,

268.8 m).

Due to performance limitations, we instead implement a simplification that includes a Gaussian compo-

nent, which we call the super-fast core fitter (SFCF). The SFCF takes the following form:

S(A,x,xi) = A ·

(
1

2πσ2
e
−|xi−x|2

2σ2 +
N

(0.5 + |xi−x|
Rm

)3

)
, (3.1)
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where A is the amplitude, x is the core location, xi is the location of a PMT signal measurement, Rm is

the Molière radius of the atmosphere (124.2 m at HAWC altitude), σ is the width of the Gaussian, and N

is the normalization of the NKG tail. The values of σ and N are fixed to 10 m and 5 × 10−5, respectively.

The SFCF form is shown in figure 3.5 along with comparisons to the NKG-type functions, as well as a pure

Gaussian function. Like the NKG, the SFCF function has radial symmetry, and despite including a less

cuspy Gaussian component near the core, it still incorporates an extended exponential decay characteristic

of the NKG tail.

Figure 3.5: Comparison of several radial distribution functions. The rapidly rising NKG-type functions near

r = 0 prove difficult to fit without having to iterate extensively as compared to the SFCF, which has a less

cuspy-like form closer to the core location. The Gaussian function, while well-behaved near the core, falls

off too fast to describe air-shower tails.

In order to estimate the core location with a general lateral function Q(xi), we maximize the quantity

X =

NPMT∑
i=1

(Zi −Q(xi))
2

Q(xi) + σ2
i

, (3.2)

where the index i runs over all operational PMTs, NPMT, each with charge measurement Zi and estimated

uncertainty in the charge measurement, σi, which is derived from the calibration. Photomultiplier tubes

measure charge in number of PEs so the expected signal measurement, Q(xi), has Poissonian uncertainties,

i.e.
√
Q(xi). The denominator accounts for these two uncertainties with their quadrature sum. Maximization

of equation 3.2 can not be solved analytically for either the SFCF or NKG functions, so we use the Levenberg-

Marquardt [57] iterative procedure.
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Regardless of the form of a shower profile function, fitting the shower core is CPU-intensive because all

core-to-PMT distances (including operational PMTs that do not record a signal) must be evaluated at each

iteration of the fit. For the full HAWC array, this amounts to ∼ 103 PMT-core calculations for each core

position hypothesis. Fits to the the SFCF function converge faster than for the NKG because it is simpler

and its derivatives can be computed analytically. It also ameliorates excessive iterations due to the NKG

function’s rapidly increasing amplitude near r = 0, as well as expensive calls to fitting the exponential terms

involving the age parameter, s.

3.2.2 Shower Age

Despite preferring the SFCF for the core fitting procedure, the age parameter s must still be estimated

using the NKG hypothesis. However, the SFCF estimate fixes the core location and thus sets the PMT-core

lateral distances. Furthermore, fitting the NKG age exponentials is mitigated by considering the logarithm

of equation 1.1 scaled by 1/r:

log (ρ(r)/r) = logA+ s ·
[
log

r

Rm
+ log

(
1 +

r

Rm

)]
− 3 · log

r

Rm
− 4.5 · log

(
1 +

r

Rm

)
, (3.3)

where r is the distance from the fit shower core, and the amplitude A absorbs various constants and expo-

nential factors. For each event, the best fits to the amplitude A and age s are found by minimizing the χ2

of equation 3.3.

3.2.3 Arrival Direction

To reconstruct the shower’s arrival direction, the timing differences amongst the hit PMTs are used. As a

first approximation, the front of shower particles can be represented by a plane traveling at the speed of light

with some nominal thickness of ∼5 ns. This is true near the shower axis, where the particles have maintained

the primary’s directionality, but particles farther from the core have undergone multiple scatterings causing

the particle disk to widen. Thus the shower front is curved, and fitting it to a plane must take into account

the time delays for hits in the shower tail. This is illustrated in figure 3.6 using the same example event

from figure 3.4. The typical curvature correction is of order 0.15 ns per meter from the shower core. A

further complication comes from the fact that PMT hits with larger numbers of PEs are detected earlier

than smaller hits. This sampling effect means that on average, detected hits from the shower tail will be

further delayed by a few ns. Hence an additional sampling time correction is performed based on a PMT’s

measured signal.
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Accounting for these timing effects, the corrected PMT hit times effectively project the shower front onto

a planar front. A χ2-minimization fit to an arrival plane is performed, weighting each PMT by its measured

charge. The resulting θ, φ define the estimated local direction vector of the primary particle.
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Figure 3.6: Timing distributions for the example event from figure 3.4. Left panel: arrival times on array,

relative to the first recorded hit. The shower front comes from the upper right, moving across the detector

towards the lower left. The SFCF fit core location is indicated by the red star. Right panel: time delays from

planar front as a function of distance from the reconstructed core. The shower curvature with increasing

lateral distance is evident. The reconstructed zenith and azimuthal angles are θ = 4.0◦ and φ = 46.7◦,

respectively.

3.2.4 Iterative Core and Angle Fits

In practice, the core and angle fitting routines are performed iteratively, as an accurate core location

is essential to making the curvature corrections to the planar front, and only in the shower plane is the

particle distribution radially symmetric. The iterative core-angle fitting procedure starts with simple center

center-of-mass core (XCOM) estimate, with lateral distances calculated in the plane of the detector, i.e.

XCOM =
1

Q

Nhit∑
i=0

qi xi ,

where xi, qi respectively are the positions and charges of each of the Nhit PMTs in the event, and Q =
Nhit∑
i=0

qi

is the shower’s total measured charge. This serves as a seed to a first fit with the SFCF function, again done

in the detector plane. Then an initial angle fit is performed with this SFCF estimate and accounting for the
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curvature correction. In an attempt to remove influence from very early or late hit times, a selection of hits

within ±50 ns of the resulting fit plane is made which gets passed to another fit with the SFCF. In this final

core fit, the PMT-to-core distances are calculated more appropriately in the shower plane. Using the same

hit selection and the last SFCF core result, the angle fit is done once more, including the curvature correction

factors. Resulting lateral distributions of charge in the shower plane are shown for two reconstructed events

in figure 3.7. The likely gamma shower (left panel), characterized by mostly electromagnetic secondaries, is

much smoother than the hadronic shower on the right.
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Figure 3.7: Lateral distribution of charge for a likely gamma ray event (left) and a cosmic ray event (right).

Note the smoother nature of the gamma ray, as its development is primarily electromagnetic in nature. The

SFCF fit used to find the core is represented by the purple curve, while the NKG function used to estimate

the age is shown by the red curve.
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3.3 HAWC Simulation

The core and angle fits provide the fundamental components to conduct TeV-scale cosmic ray analysis

with HAWC. Building upon these quantities we can develop more sophisticated variables that relate to

other aspects of the primary particle, such as energy estimators and particle discriminators, for example. Of

course, these provide event-by-event estimates, but the detector resolution to these quantities or any biases

in the reconstruction process can only be assessed by looking at a large collection of events that are well

understood. Thus we characterize the response of HAWC via Monte Carlo (MC) simulation. This is divided

into to independent components: the simulation of shower development, and the simulation of the detector

to those showers.

3.3.1 Extensive Air Showers

For a primary particle incident on the Earth’s atmosphere, the resulting air shower is simulated using the

CORSIKA [58] package (v740), a standard toolkit in the cosmic ray community. CORSIKA tracks shower

development using models based on the most up-to-date particle physics data from accelerator experiments.

The implementation defining the standard simulation for this study was set up with FLUKA [59, 60] and

QGSJET-II-03 [61] as the low- and high-energy particle physics interaction models, respectively. Smaller

simulation sets were generated for hadronic interaction systematic studies using the EPOS [62] and SIBYLL

[63] high energy models. The resulting systematic effects from these models on the spectral analysis are

discussed in chapter 8.

Primaries of the eight species measured by the CREAM flights [21, 23] (H, 4He, 12C, 16O, 20Ne, 24Mg,

28Si, 56Fe) were generated on an E−2 differential energy spectrum in energy ranges dependent on the primary.

The lower limit was chosen to include showers that do not trigger the detector due to insufficient secondaries

reaching ground level. The respective limits along with the total number of simulated showers are shown in

the first data column of table 3.1. The simulated zenith angle range was 0◦ − 70◦, azimuthally symmetric,

and weighted to a sin θ cos θ arrival distribution.
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Nshowers Emin Emax

[GeV] [GeV]

H 105 5.0 2× 103

He 105 10.0 2× 103

C 5× 104 50.0 2× 103

O 5× 104 50.0 2× 103

Ne 5× 104 100.0 2× 103

Mg 5× 104 100.0 2× 103

Si 5× 104 100.0 2× 103

Fe 5× 104 200.0 2× 103

Table 3.1: Shower numbers and energy limits in CORSIKA simulation. The spectrum for all primaries is a

power law with index γ = −2.

3.3.2 HAWC Events

Simulated HAWC events are created by subjecting the CORSIKA showers to the entire data analysis

chain. Monte Carlo events thus have identical reconstructed data objects as real events. In this thesis,

reconstructed variables from simulation are labeled either with “MC” or “true” subscripts, unless the risk

of confusion is absent. The secondary charged particles interacting with the HAWC detector were simulated

with the GEANT4 [64] package. A detailed model of the WCDs is used, including particle interactions,

Cherenkov photon propagation and tracking, PMT response, and full electronics simulation. Effects from

sources of noise and signal smearing are simulated as well, and treated as sources of systematic uncertainty

from the nominal simulation. The CORSIKA showers are distributed over a 1 km radius circular area centered

on the HAWC array to sample shower tails that can trigger the detector. Dedicated HAWC software was

used to reconstruct simulated events using the same reconstruction algorithms applied to data.
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3.3.3 Composition

The cosmic ray composition assumptions play an important role in understanding the detector response

from simulation. Individual primaries were weighted by a double power law spectrum,

dN

dE
(E) ∝

A · (E/E0)γ1 E < Ebr

A · (Ebr/E0)γ2−γ1 · (E/E0)γ2 E ≥ Ebr,

(3.4)

where A is the normalization at E0 with spectral index γ1, and a second index γ2 starting at energy Ebr.

For all species’ fits, E0 = 100 GeV. The nominal composition used in simulation (referred to as the CREAM

model) is the best fit of equation 3.4 to direct measurement data provided by AMS [65, 66], CREAM [21, 23],

and PAMELA [20]. Due to the dominance of the lighter elements (H, 4He) in the all-particle flux, the higher

mass elements’ (Z > 2) fluxes were varied together. The direct measurement data with corresponding fits

are shown in figure 3.8. The abundances of the lighter elements were allowed to vary independently. The fit

parameters with associated errors are provided in table 3.2. During the analysis, different mass compositions

were used by varying the nominal composition by the estimated errors of the best fit parameters, and

reweighting the simulated showers accordingly. The Hörandel [67] (also referred to as Polygonato), H4a [68],

and Gaisser-Stanev-Tilav (GST4-gen) models also were implemented to further estimate the sensitivity of

the results to the composition assumption.
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Figure 3.8: Fits to direct detection data from AMS [65, 66], CREAM [21, 23], and PAMELA [20] experiments.

The flux is scaled to show the break energies, and includes the region bounded by the fit uncertainties. The

fit parameters are presented in table 3.2, and define the nominal cosmic ray composition model used in this

study.
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A Ebr γ1 γ2

[GeV s sr m2]−1 [GeV]

H 4.48± 0.04× 10−2 440.6+87.8
−62.7 −2.81± 0.01 −2.66± 0.01

He 3.31± 0.02× 10−2 854.8+125.7
−105.5 −2.73± 0.01 −2.54± 0.01

C 6.96± 0.18× 10−6 2882+904.4
−481.9 −2.76± 0.03 −2.55± 0.04

O 5.00± 0.09× 10−6 3843+1206
−643 −2.76± 0.03 −2.55± 0.04

Ne 6.31± 0.35× 10−7 4803+1507
−803 −2.76± 0.03 −2.55± 0.04

Mg 5.70± 0.26× 10−7 5764+1809
−964 −2.76± 0.03 −2.55± 0.04

Si 5.70± 0.13× 10−7 6725+2110
−1124 −2.76± 0.03 −2.55± 0.04

Fe 2.00± 0.04× 10−7 13450+4220
−2249 −2.76± 0.03 −2.55± 0.04

Table 3.2: Fit results to equation 3.4 defining the standard cosmic ray composition model for this work.

Parameters were obtained as best fits to CREAM, AMS, and PAMELA data. Uncertainties in the fits are

included in estimating the systematic uncertainties in flux measurements due to composition assumptions.
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3.4 Event Selection

The MC data set passes through all the same reconstruction steps as data events. Thus, we can charac-

terize the quality of HAWC events and perform data reduction in a manner that balances detector response

resolution and event rate. The simplest reconstruction condition is requiring that the core and angle fits

succeed. Without an angle estimate, no directional information is available for the event, and a reconstructed

core location is required to estimate the primary energy. These fits are accompanied by estimated fit uncer-

tainties, but a simple method to identify higher quality fits is to set a level of minimum information content,

i.e. the number of hit PMTs.

Apart from the trigger condition, an additional Nhit cut requiring ≥ 6% operational PMTs hit in an event

is made, which, in accordance with previous cosmic ray analyses [1] sets an initial mean angular resolution

of a few degrees. The bare core resolution is on par with the array dimensions, but this is due primarily

to the multitude of events landing just off of the array, effectively hiding the true core region. Instead of

increasing the multiplicity condition, we can simply demand that a core location have at least some nearby

hits, which is of course not required to obtain a general core fit. This is summarized by the Nr40 variable,

which measures the total number of hits within a 40 m radius of the reconstructed core. A set of example

events showing the implementation of this cut is shown in figure 3.9. Implementing the cut Nr40 ≥ 40

improves the median angular resolution to ∼ 0.5◦ and the core resolution to ∼ 10 m, a drastic improvement

and paramount to energy resolution. The core and angular resolutions upon successively applying these cuts

on simulation are shown in figure 3.10, and the reconstructed core distribution is shown in figure 3.11.

Figure 3.9: Example of the Nr40 selection cut with two events. The 40 m circle is centered on the fit core

location, outlining the set of highlighted PMTs. Here, the cut value is Nr40 ≥ 40, so the event on the left

clearly passes this selection criterion, while the one on the right (Nr40 = 35) is not accepted.
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Figure 3.10: Core (upper) and angular (lower) resolutions as functions of Monte Carlo energy for the basic

analysis cuts. The median values with 68 % containment are displayed. All events with θMC ≤ 60◦ were

included, and cuts of Nhit ≥ 75 and Nr40 ≥ 40 were used. Each cut includes the previous as indicated by

the + sign. Note the initial drop for lower energies with just the multiplicity cut, while at higher energies

resolutions remain higher. This is due to large showers triggering the array but lacking suffient sampling for

accurate reconstruction. The Nr40 cut provides a simple geometric condition to drastically improve core and

angular resolutions. The angular resolution is slightly less dependent on these cuts with increasing energy

simply because the shower front is nearly planar. The core position, however, strongly depends on sampling

nearby.
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Figure 3.11: Reconstructed (top) and true (bottom) core distributions after applying analysis cuts for all

simulated cosmic ray showers. The black outline indicates the edges of the array. By design the Nr40 cut

selects reconstructed cores within ∼15 m of the array, and the deviation from the true core location follows

the core resolution from figure 3.10.
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Of course, the number of showers passing the selection cuts depends on their energy. We quantify the

efficiency to primary cosmic rays with the effective area, Aeff(E). This quantity is estimated via simulation,

and is paramount to making spectral measurements, since the flux is inversely proportional to the effective

detection area (equation 1.2). Showers are simulated landing over an area Athrow = π 106 m2 about the

detector, so we relate the number of events selected (Nsel) and the total number simulated (Nsim) to the

effective area via

Aeff(E) = Athrow
Nsel(E)

Nsim(E)
. (3.5)

The impact of the cuts discussed above on the effective area is shown in figure 3.12. We see that for E &30

TeV, Aeff approaches the detector area, AHAWC, indicating that the cuts will select all showers of these

energies that land on or very near to the array.
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Figure 3.12: The effective area of HAWC to cosmic rays as a function of energy for the basic selection

criteria. In addition to the listed cuts, particles within 60◦ of zenith were included. Including all cuts the

Aeff assumes a value ∼50% larger than the instrumented detector area (AHAWC = 22, 000 m2) for energies

above ∼30 TeV. This is expected as the Nr40 cut does not perfectly contain cosmic ray showers to the array,

allowing reconstructed cores to land within approximately 15 m of the edges.
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Chapter 4

Energy Estimation

This study concerns estimating primary energies from hadronic primaries, which produce showers subject

to significant fluctuations during development. Yet the number, type, and lateral distribution of secondary

shower particles is intimately related to the primary’s atomic mass and energy. Unfortunately, the nature of

the WCDs in HAWC does not permit the absolute identification of individual secondary particles. However,

since the PMTs detect Cherenkov light from them, each PMT’s signal amplitude and distance from the

measured core location provide information towards estimating primary particle energies. Of course, as

illustrated with the Heitler and NKG approximations, any shower model is subject to assumptions and

inherent uncertainties. With this in mind, we describe here a likelihood energy estimator based on simulation

that uses the lateral distribution of measured PMT signals as a function of the primary energy. We begin

by introducing the methods to build and evaluate the estimator. This includes the simulation for modeling

shower development, the form of the model itself, and the maximum likelihood methods used to provide the

energy estimate. At the end of this chapter, we summarize the performance of the technique in preparation

for use with HAWC data.
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4.1 Probability Tables

Recalling from section 1.2, extensive air showers are subject to fluctuations during development. While

clearly influencing the particle content and distribution at observation level, we can encapsulate this in-

formation in the form of a multivariate probability function. Since different species’ shower development

varies for a given energy, we consider a single primary particle type. Here we use proton-initiated air shower

simulation to build a four-dimensional probability table with bins in zenith angle (θ), primary energy (E),

PMT distance from the core (R), and measured PMT signal (Q).

For a simulated proton shower generated with E and θ that triggers the HAWC detector, each PMT

contributes a value of 1 to a respective Q,R, θ,E bin in the unnormalized table. This includes PMTs that

do not register a hit, as the absence of a signal also provides shower information. The PMT-to-core distance

is measured in the shower plane and is called the lateral distance. Since θ, φ define an arrival plane, and

thus a normal vector n = (sin θ cosφ, sin θ sinφ, cos θ), the lateral distance is found via a projection from the

detector onto the shower plane:

R = ||xd − (xd · n)n|| , (4.1)

where xd = xPMT − xcore is the PMT-to-core vector in the detector plane. Exhausting the simulated data

set, the table then is normalized along the Q-axis defining the probability density function f(Q,R | θ,E),

with the normalization condition
∑
q
f(q,R | θ,E) ∆q = 1 ∀ R, θ,E and q ∈ Q. Hence, f(q, r | θ,E) gives the

probability that a primary proton with energy E and zenith angle θ has a PMT register a charge q at a

distance r from the shower core. The final form the proton energy table takes is as follows:

• Three zenith bins

θ0 : 0.957 ≤ cos θ ≤ 1

θ1 : 0.817 ≤ cos θ < 0.957

θ2 : 0.5 ≤ cos θ < 0.817

• Forty-four energy bins from 70 GeV – 1.4 PeV with bin width 0.1 in logE

• Seventy bins in lateral distance from 0 – 350 m in bins of width 5 m

• Forty bins in charge from 1 – 106 photoelectrons (PE) in steps of 0.15 in logQ

The zenith and energy bin widths were defined so as to divide up the simulation into equal statistics bins.

The spacing between WCD centers is ∼10 m, so the lateral distance bin widths were assigned half this value.

Finally the charge bin spacing was chosen to be of the same order as the estimated PMT charge resolution

(∼ 30%). A similar gamma table was created, with the change to forty bins in energy up to 500 TeV spaced

0.1 in logE as above.



53

4.1.1 Simulation

The simulated set used to build the tables was generated with identical settings as the nominal simulation,

save for the primary spectrum which follows dN(E)/dE = AE−1. Being harder than the nominal E−2

spectrum, this allowed enhanced sampling at the highest energies, ensuring the table was thoroughly filled.

Indeed, this spectrum is flat in logE (figure 4.1), so an equal number of proton showers were generated for

each energy bin. This also can be seen by changing variables in the differential spectrum equation:

dN(E)

dE
=
dN(E)

d logE

d logE

dE

=
dN(E)

d logE

1

E ln 10
.

Rearranging, we see that the energy terms cancel out:

dN(E)

d logE
=
dN(E)

dE
E ln 10

= A ln 10 ,

i.e. a constant value per unit logE. The angular distribution was thrown on a cosine distribution, and the

bin edges were chosen so as to equalize the statistics as well. A total of 5× 106 proton showers from 5 GeV

to 2 PeV were generated in this set to populate the table.
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Figure 4.1: Energy distribution from simulation used to build the proton probability table. There are nearly

equal numbers of events in each bin from using an E−1 differential spectrum and binning in logE.
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4.1.2 Table Smoothing

Numerical variations in the tables arise from the statistical nature of producing the simulation as well as

from averaging over table bins for normalization. Adjusting the bin sizes merely exacerbates these inherent

binning artifacts. Thus the tables are smoothed with a multi-dimensional spline function to ensure that

bin-to-bin fluctuations from simulation do not influence the energy estimation. By spline smoothing we also

preserve gradient information along several axes that is not available to us for lack of an explicit analytic

expression for f. This is paramount to retaining smoothness that has been distorted by the process of

discretization. We employ the spline fitting package Photospline [69], which has demonstrated its versatility

in smoothing binned probability tables with even higher dimensionality.

The Photospline package uses basis-splines (B-splines) to interpolate between data points from a multi-

dimensional surface defined on a grid. A B-spline is a smooth function of order n, where the form of the

function approaches a Gaussian as n increases. The progression of the first three basis functions is shown

in figure 4.2. In this work, the 3rd order B-spline was implemented, per the recommendation of [69] for

both efficiency of the fitting procedure and accuracy of the results. The spline routine solves the best fit to

weighted data using a linear combination of B-splines defined on a grid of predefined knots, or control points.

Figure 4.2: First three basis functions (normalized) used in splines [69]. As n increases in value, the shape

of the order-n B-spline approaches a Gaussian. The energy tables were fit using the order-3 B-spline.
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The weights applied for the smoothing procedure are the inverse square Monte Carlo uncertainties; hence,

filled bins with large uncertainties are assigned small weights and vice versa. Empty bins are assigned zero

weight so as not to influence the fit. The fit is performed in the logarithm of the likelihood, as logf appears

less peaked than f, which also ensures gentle transitions amongst neighboring bins in all dimensions. Overall,

it is simply much easier to constrain the fit in logf. The entire four-dimensional table is not subjected to a

single spline fit. Instead, each zenith sub-table is fit independently, making a set of three three-dimensional

fits. Figure 4.3 shows two θ,E,R bin-level comparisons of the normalized table before and after spline

smoothing, followed by figure 4.4 which depicts a two-dimensional R,Q section at 100 TeV.
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Figure 4.3: Examples of smoothed 1D sections of the MC proton table. The figure on the left corresponds

to the θ bin nearest zenith at 71 TeV and 12.5 m (bin centers). The right panel is from the middle zenith

bin at 560 TeV and 52.5 m. These slices were taken from the full 3D fit, not fit individually.
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Figure 4.4: Comparison of normalized MC table (left) to spline fit (right) for the energy bin corresponding

to 100 TeV. The fractional difference (fMC − fspline)/fMC is shown below, and does not exceed more than

10% percent where the MC table is well populated. Note that the spline fit fills in regions with little or

no MC simulation. In this particular section, neighboring energy bins that are more populated contribute

to smoothing these sparse regions. Large charges are most probable very near the core, and become less

probable with increasing distance. Conversely, there is a greater probability for a small charge to be farther

from the core in this energy bin.
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4.2 Maximum Likelihood Estimation

To use the probability tables for energy estimation, we employ the method of maximum likelihood. Con-

sider a sample of n observations {xi|i ∈ [1, n]} drawn from a probability density function f(x|ω), where

the set of parameters ω ∈ Ω fully describes the function defined on x ∈ X. For independent and identi-

cally distributed xi, the joint density function for observing the sample is simply the product of f for all

observations:

f(x1, x2, ..., xn|ω) = f(x1|ω)× f(x2|ω)× ...× f(xn|ω) =

n∏
i=1

f(xi|ω) . (4.2)

Here the xi are considered random variables distributed by the form of the parent distribution f(x|ω).

We can reverse this perspective and consider the observations to be held while the parameters ω are

allowed to vary. Thus the xi become fixed parameters and the ω are variables, forming the likelihood

function L:

L(ω;x1, x2, ..., xn) =

n∏
i=1

f(xi|ω) . (4.3)

We see that for a given set of xi and ω, the values of L(ω;x1, x2, ..., xn) and f(x1, x2, ..., xn|ω) are the same;

however, L is now viewed as a means to identify the ω that best describe the xi. This is accomplished by

finding the value of ωmle which maximizes L, such that Lmax = L(ωmle), and is defined as the maximum

likelihood estimate of ω:

ωmle ⊆ arg max
ωmle

L(ω;x1, x2, ..., xn) . (4.4)

If L (and thus f) is analytic and differentiable, then ωmle is found by

∂L

∂ω

∣∣∣
ωmle

= 0 . (4.5)

In practice, the joint likelihood is a rather small numerical value, so it is more convenient to evaluate logL:

logL(ω;x1, x2, ..., xn) =

n∑
i=1

log f(xi|ω) ,

and equation 4.5 still holds:
∂ logL

∂ω

∣∣∣
ωmle

= 0 . (4.6)

The uncertainty on ωmle is estimated by identifying the values of ω where logLmax decreases by −0.5.

For a discretized function such as the probability table used in this study, one simply samples the function

for each ω under consideration, identifying ωmle as that which gives the largest likelihood value. Here, the

fixed observations xi are the PMT hit information (qi, ri) and the reconstructed zenith angle θ. In the

context of energy estimation in HAWC, the energy is the only parameter for which we search a maximum

likelihood estimate, and we make the notational change f(xi|ω)→ f(qi, ri, θ|E). In principle, we can allow
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Figure 4.5: Illustration of grid search methods over a general state space spanned by X. Top: Simple grid

search evaluating L for all allowable states. Bottom: Sparse grid search with stride s = 1. Here, X3 was

identified as having the Lmax, and subsequently the s = 1 neighbors are evaluated.

the core location and zenith angle to vary as well; however, in practice the re-evaluation of the ∼ 1200

PMT-core distances in the shower plane becomes a limitation to runtime efficiency.

Since the likelihood function considered here is not analytic, searching the space for Lmax must be per-

formed in an efficient manner. The next two sections present two main classes of maximum likelihood finding

methods, the grid search and Markov chain Monte Carlo (MCMC), as well as several of their implementations

made available for HAWC energy reconstruction.

4.2.1 Grid Searches

The simple grid search method is the most elementary maximum likelihood finder implemented. For each

element in a set of predefined locations in state space, a likelihood value is calculated. Once all bins have

been reviewed, the bin corresponding to the maximal likelihood value is identified and chosen as the best

estimate. The top panel of figure 4.5 depicts a simple grid search through a general state space ω ∈ Ω.

The sparse grid search method introduces a stride, s, to the simple grid search. Instead of checking

each bin, every other s-bin’s likelihood is evaluated. Once the maximal value and its corresponding bin are

identified for this subset, the neighboring s bins are checked as well. This method is illustrated in the bottom

panel of figure 4.5. Using this method requires the assumption that the likelihood space is unimodal and

strongly peaked. This means that there are no multiple peak structures and the uncertainty in the likelihood

estimate is less than the bin width. This is shown to be the case using the energy estimation table f, as

demonstrated in the two example simple grid searches in figure 4.10. Since a sparse grid search with stride
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?

Figure 4.6: Depiction of a random walk on a curved space.

s = 1 halves the number of required evaluations, it is the default maximum likelihood energy estimation

method used in the reconstruction production.

4.2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) describes a class of stochastic methods to sample probability

distributions in a manner satisfying the Markov property, in which sequences exhibit serial dependence.

Using MCMC can be an invaluable tool when sampling complicated probability spaces, such as multimodal,

highly anisotropic, or non-analytic posterior distributions. In this section, I first present a simple real-world

analogy for how MCMC sampling works. In the following subsections, specific MCMC implementations of

increasing complexity are discussed, with each method building on concepts from the previous one.

4.2.2.1 MCMC Example

Consider a sidewalk that takes the shape of an inverted normal distribution (figure 4.6), and a walker

who is about to embark on a journey on this very sidewalk. So long as the sidewalk is not too steep, i.e.

the walker can stay upright, he or she can stumble forward and backward on the path in single steps. If the

walker were to begin up at the top, then because of gravity, it would seem easier or more favorable to take

a step farther down into this well than to climb out of it. Eventually, the walker would end up at the lowest

point. If many attempts are made to climb out in either direction, the walker may become fatigued, coming

to a final resting position at the bottom of this strange route.

Here, the distribution π(x|D) that is sampled takes the form of the sidewalk, where x denotes the position

and D all parameters that describe the shape of the path. Hence, we can later make the association π →L.

There is a second distribution, the stepping function η(x|x + δx), that denotes the probability to go to

position x+ δx, given that the algorithm is currently at position x. In this simple example, there is an equal

chance of choosing the direction of the step, either forward or backward, so η(x|x ± δx) = 0.5. Generally
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η can take the form of any distribution, however, η typically is chosen to be symmetric with respect to

time, i.e. η(x|x + δx) = η(x + δx|x). This is a desirable characteristic of stepping functions so as to avoid

introducing bias when sampling functions.

Yet despite this symmetry, actually making the step is in fact a weighted decision, as the shape of the

path influences whether the proposed step is made. It is also clear that each step in time t is only influenced

by the previous step t− 1, since nothing about the location of step t− 2 is carried forward. Thus, the only

information that is necessary to take another step comes from the current location. The dependence on

only the previous step is a property of Markov Chains, and the stochastic nature of the sampling step is

known as Monte Carlo sampling, hence the combination MCMC. Eventually, after making many steps using

a symmetric η, sampling approaches the region of maximal probability so MCMC can be used as a maximum

likelihood finding method. When considering probability distributions, the well from the prior example is

simply inverted and now the larger probabilities dictate the more probable stepping directions.

4.2.2.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm [70, 71] is one of the most commonly used MCMC methods.

It relies on a simple accept-reject evaluation by comparing a random variate to the ratio of the probabilities

at the current and proposed step locations. If the ratio is greater than the randomly generated value, then

the step is taken, otherwise, a new sampling location is tested. The proposal probability is given by

p(Xt → Y ) = min
(

1,
π(Y |ω)

π(Xt, ω)

η(Y |Xt)

η(Xt|Y )

)
(4.7)

where Xt is the location in state space at time step t, Y is the proposal location, π(Xt|ω) is the probability

function evaluated at Xt with parameters ω, and p(Xt|Y ) is the transition probability function to step from

Xt → Y . The proposed step to Y is accepted if r < p(Xt → Y ) for random variate r ∈ R ∼ [0, 1], and is

otherwise rejected. Thus,

Xt+1 =

Y if p(Xt|Y ) > r

Xt otherwise.

(4.8)

Since r is a random variate, this condition exhibits the random sampling nature of MCMC. If p = 1, then

clearly the step is favored and it is always taken. However, if p < 1, then the step is permitted only in a

random manner, dependent on the outcome of generating r. An simple illustration of the MH step is shown

in figure 4.7.

Choosing a step-symmetric η, we see that p is dependent only on the shape of the distribution π. A

typical symmetric stepping function is the normal distribution, i.e.

Y ← Xt + Z ,



61

where Z ∼ Nm(0,Σ) and m is the dimensionality of the space. Since drawing the same random variate Z

from position Y to Xt has the same probability, η(Y |Xt) = η(Xt|Y ). Yet, one must define a value for each

σ ∈ Σ, as the manner in which π is sampled is dictated by the form of η, and will determine the direction

and distance to step from the current location in state space, Xt.

X
t-1

X
t

q

Figure 4.7: Metropolis-Hastings MCMC on Gaussian PDF. The proposed step to Y is made from the current

position Xt. The previous location, Xt−1 does not participate in or influence the current step proposal. Since

π(Y ) > π(Xt), this step will be accepted.

4.2.2.3 Affine Invariant Samplers

So far the nature of the probability space defined by π has not been addressed. Indeed, a general

probability surface may be harshly peaked or consist of multiple high probability regions. This becomes

a major challenge certainly for the grid search methods, and even for the MH algorithm, as peaks can

escape sampling via a poor choice of step size. A simple example is a tight two-dimensional Gaussian

distribution, where σy << σx. Further generalizing to an m-dimensional Gaussian with various σi, the

enhanced complexity exacerbates the difficulty in choosing appropriate step sizes and perhaps even step

functions for each dimension. To this end, we describe two MCMC methods from [72, 73] which sample the

state space in a manner insensitive to π’s structure relative to x, i.e. affine invariant sampling.

Both methods involve ensemble sampling, where k walkers evaluate π at their respective locations in

state space, and each relies upon a proposal function taking the following form:

η(z) ∝


1√
z

if z ∈
[

1
a , a
]

0 otherwise,

(4.9)

where the parameter a > 1 is a scaling factor that can be adjusted for performance. Over the range [1/a, a],

the proposal function can be shown to be step symmetric, η(1/z) = zη(z), so again p is independent of η.

Furthermore, the nature of the sampling range rescales the proposal step size in a manner that effectively
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flattens the probability function, making it affine invariant. Additionally, sampling a random variate from

equation 4.9 is simple:

z =
a

1 + a

(
−1 + 2u+ au2

)
(4.10)

where u ∈ R ∼ [0, 1] is a uniform variate. Upon inspection, η(z) does not enclose the dimensionality m of

the space X. Instead of generating m random variates from η for each walker, the ensemble methods use

the locations of other walkers to make a step. Clearly, in order to explore the full dimensionality of the state

space, k > m.

The simplest affine invariant ensemble method is the stretch move. For a set of k walkers, their locations

at time t are denoted by Xt
i , i ∈ k. To generate a proposal step for walker j, first a walker from the set

[k] = {i ∈ k : i 6= j} is chosen at random. Then the unit vector defined by Xi −Xj determines the direction

along which the step will occur, with magnitude given by z. This is then repeated for each walker, thus,

Yj ← Xj + z(Xi −Xj) ∀j , (4.11)

and are accepted/rejected according to equation 4.8. Figure 4.8 illustrates the stretch move.

The second ensemble method incorporates a subset s ∈ S ⊂ k and j /∈ S of walkers for each step. The

mean of the Xi for i ∈ S is used to define the direction vector with respect to the walkers in S:

W =
∑
i∈S

zi(Xi − X̄S) (4.12)

Yj ← Xj +W ∀j ,

where X̄S = 1
|S|
∑
i∈S

Xi and the zi are random variates drawn from equation 4.10. The case where |S|= 1 is

equivalent to the stretch move above. Figure 4.9 illustrates the ensemble walk move.

The major advantage of using ensemble MCMC methods is the ability to sample more space by simply

employing multiple walkers, and by permitting the walkers to share state space information (via equations

4.11 and 4.12). They effectively provide random nudges from each other in search of the most probable

regions of π. Indeed, the walkers gradually approach one another with each iteration, while occasionally

sampling π at other random locations. Finally, the complexity of π is scaled away by the affine invariant

step function, flattening the state space while preserving both the Markov property and the Monte Carlo

sampling. Of course, these methods are well suited for high dimensional problems in which grid or MH

samplers are efficiency limited. For energy estimation in HAWC, the grid searches are sufficient, but in

future studies, MCMC may be used as an all-purpose angle, core, energy fitting routine.
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X
i

Figure 4.8: The affine invariant stretch move involving an ensemble of walkers. Each walker is denoted by

a circle, while the proposal location Y for walker Xj is denoted by a star. This MCMC stepper, like the

Metropolis-Hastings sampler, is independent of walkers’s histories. However, each step proposal is drawn

from the vector connecting the chosen walker Xj and another walker Xi chosen at random. Note the

emphasized dependence of Y on Xi.

XS

Figure 4.9: Affine invariant walk move involving an ensemble of walkers. Instead of randomly choosing

another walker, this sampler proposes a step for walker Xj based on the mean X̄S from a subset of walkers’

current locations, denoted by the red circles. The direction of the walk proposal is chosen based on random

multiples of the vectors connecting the red dots to X̄S .



64

4.3 Performance

We quantify the performance of the likelihood energy estimator via three values: the mean likelihood

uncertainty, and the overall estimation bias and energy resolution. The first quantity is based on the shape of

the likelihood function for individual events, representing the inherent resolution of the likelihood estimation

table. In principle, it can be improved by evaluating a more finely binned table. The remaining two are

evaluated using a simulated data set, and quantify the overall effects on the estimator due to modeled shower

development and the reconstruction procedure. Thus, these two values can be improved only up to the limits

of shower fluctuations and the core and angular resolutions from data selection cuts.

4.3.1 Event-by-Event Uncertainty

On an event-by-event basis, the likelihood values for the energy bins are calculated, and the energy E∗

corresponding to Lmax is assigned as the best energy estimate, Ereco = E∗. Figure 4.10 shows examples of

likelihood evaluations for two shower events. As mentioned at the beginning of section 4.2, the uncertainty

σ∗ on Ereco is estimated by measuring the width of the log-likelihood function where it has dropped by 0.5.

For the events in the figure 4.10, the single peak centered on the Lmax is sharp enough such that σ∗ is less

than half of an energy bin width. This is true for the vast majority (99.99%) of events passing the basic

multiplicity and core resolution analysis cuts defined in section 3.4. Since σ∗ < 0.05 in logE, the sparse grid

search with stride s = 1 is sufficient to identify the maximum likelihood along the energy axis, and reduces

the number of required table evaluations by nearly one-half.
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Figure 4.10: Example table evaluation for two events. The curve represents a spline fit to the table evaluation

points, used to estimate σ∗ shown by the black horizontal line. The likelihood function is clearly peaked less

than a bin width, permitting the use of the sparse grid search method.
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4.3.2 Bias and Resolution

Using air shower simulation, we define the energy bias and resolution from the mean and width of the

difference distribution between the logarithms of the reconstructed and true energy values. Figure 4.11 below

shows an example of the bias distribution in a single Etrue bin, where

bias = logEreco − logEtrue . (4.13)

Simple manipulation of the values converts the width into the more familiar fractional or percent resolution,

σ% = 10σlogE−1. In addition to the mean (bias or offset) and width (resolution), we also identify the integral

of the distribution as the efficiency ε(E) of that true energy bin. This is the fraction of simulated events

that are reconstructed and pass quality cuts, and will be used when measuring energy spectra.

Figure 4.11: Diagram with definitions for the energy estimation bias and resolution. The MC data points

come from proton showers in the θ0 bin centered at Etrue = 6.3 TeV. A Gaussian fit is shown by the black

curve, with the resulting mean and width (red lines). These values are used as the quoted energy bias and

resolution, respectively. The distribution has been normalized to the total number of events thrown in this

energy bin, so the integral gives the reconstruction efficiency ε(E) of this bin.

Since only proton simulation went into building the probability table, a first test of the bias and resolution

was done using solely proton showers. As shown in the left panel of figure 4.12, the resulting energy bias

for the first zenith bin is strongly dependent on the event quality. Specifically, the most dramatic drop in

bias comes from improving the core resolution via the Nr40 selection cut. This is expected as the table is
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built and evaluated using lateral distances from the core location. Including all basic event selection criteria,

the bias approaches 0 as expected for estimating proton energies with proton probability tables. A closer

look at the proton bias in figure 4.13 reveals a drop to about a bin width, 0.1 in logE, for energies above

3 TeV. This represents an energy reconstruction threshold below which events that just trigger the detector

are promoted upwards in Ereco. The bias is necessarily negative, as showers that fluctuate downward are

less likely to pass selection criteria.

The same behavior is observed considering all simulated species (right panel of figure 4.12), though the

bias is slightly lower as Ereco tends to overestimate the energies of heavier species. This makes sense as the

superposition principle from section 1.2 dictates that the muon content scales as A0.15Np
µ for species of mass

number A. Near the core, there is a higher density of charged particles than for a primary proton of similar

energy, so the energy estimate using a proton hypothesis will be overestimated.

The width of the bias distribution gives the energy resolution, shown in the right panel of figure 4.13.

For both proton and all-particle data sets, the bump around 8 TeV is caused by the detector response

approaching full efficiency. Below this energy there are fewer and fewer showers passing the selection cuts,

so the offset distribution is thin but sparsely populated. This will be explored more when constructing the

effective area necessary for spectral unfolding in chapter 8.

Finally, the all-particle biases and resolutions for events falling into the three zenith bins are shown in

figure 4.14, where the basic selection criteria are applied. The first two θ bins are very similar in both

quantities, with a slight shift in the resolution peak to 10 TeV for θ1. This is much more pronounced for θ2,

including an elevated bias at all energies. The main culprit is precisely why the lower zenith bins exhibit

a peak just prior to 10 TeV: the detector efficiency is rather low for the highest zenith angles, climbing

until leveling out above 100 TeV. Showers must traverse increasing amounts of atomspheric overburden with

larger zenith angles, so the energy threshold rapidly shifts to higher energies. The reduced performance is

also exacerbated by the large bin size of θ2, which covers 35◦ ≤ θ ≤ 60◦, and thus there is a significantly

wider energy distribution of showers falling into this bin.
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Figure 4.12: Energy bias for proton only (left) and all-particle (using CREAM spectrum, right) energy

estimation in the first zenith bin, θ0. Each figure shows the reduction of bias with improved event selection.

The proton only sample exhibits less bias, which is expected since the energy tables are built from proton

simulation. The vertical uncertainties are the energy resolution, σlogE , shown in figure 4.13
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Figure 4.13: The left panel shows the energy bias after event selection for both the all-particle and proton

simulations for θ0. These are also shown by the red curves in figure 4.12. The right panel shows the respective

energy resolution, σlogE , for each.
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Figure 4.14: The all-particle energy bias (left) and resolution (right) after event selection for the three zenith

bins defining the energy tables. The peaks in both plots occur at the same energy for each respective θ bin,

and are characteristic of the rise and stabilization of the detector efficiency with respect to energy.
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Chapter 5

Sky Maps

The following and final analysis chapters rely on the power of visualizing and quantifying cosmic ray

arrival information from the visible sky. Presented here is a review of the methodology used for generating

event sky maps. The essentials necessary for this thesis are summarized here, with references to in-depth

descriptions and derivations where appropriate.
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5.1 Binning the Overhead Sky

As described in chapters 3 and 4, reconstructed cosmic ray air shower events possess a local arrival

direction defined by the pair (φ, θ). Including the Greenwich Mean Sidereal Time (GMST) of an event,

we can assign an arrival direction relative to the fixed stars, using the equatorial coordinate system. The

quantities defining this system are the right ascension (α) and the declination (δ), as shown in figure 5.1.

Using the HEALPix [74] spherical pixelation scheme, the α and δ are binned as equal-area pixels, providing

a method to project the numbers of observed events onto the visible celestial sky, i.e. the data map.

In a HEALPix map, the unit sphere is divided into twelve equal-area tessellations, each divided into an

Nside×Nside grid, giving a total of 12N2
side pixels. For the maps in this thesis, Nside was chosen to be 512 so

each pixel occupies an angular size of 0.11 sr. As will be shown, upon normalizing the observed data map to

the expected background map, we can make further inferences regarding the underlying cosmic ray arrival

distributions.

Figure 5.1: Diagram of the equatorial coordinate system. The defining quantities are the spherical coordi-

nates in the fixed-sky system, represented by right ascension and declination. Equatorial coordinates are

aligned with Earth’s rotational axis, with the Equator serving as the origin for declination. Thus, the north-

ern and southern poles are where δ = 90◦ and δ = −90◦, respectively. The right ascension increases opposite

the rotation of the Earth, and its origin is defined as the vernal equinox, where the Sun crosses the celestial

equator. Source: MEMIM Encyclopedia.
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5.2 Background Estimation: Direct Integration

In order to identify fluctuations in the nearly isotropic flux of cosmic rays, the data map must be compared

to what is expected for a given location in the sky, or a reference map. The HAWC detector’s large ∼2 sr

coverage of the sky, the variation of data taking conditions, and the observed [75] per-mille level of anisotropy

prohibits an exhaustive modeling of the expected background based on simulation. A standard solution to

construct a reference map is to estimate it using the data itself. In this study, we accomplish this by the

method of Direct Integration (DI) [75].

The DI reference map 〈N(α, δ)〉 is computed by the convolution of the local event arrival distribution,

E∆t(h, δ), with the all-sky event rate R∆t(t), recorded in a predefined integration duration ∆t. Thus, 〈N〉

will serve to estimate the background and is calculated via

〈N(α, δ)〉 =
∑
∆t

2π∑
t=0

R∆t(t)E∆t(h, δ) , (5.1)

where the hour angle h, and the Greenwich Mean Sidereal Time t, are related to the right ascension by

h = t− α. Figure 5.2 shows an example of the DI method for background estimation and signal extraction.

Direct integration effectively averages the number of events within the ∆t × 15◦hr−1 right ascension

range, so the reference and data maps are sensitive to structures smaller than this angular scale. Integration

durations of two hours and four hours are used in this analysis, corresponding to 30◦ and 60◦, respectively.

Lastly, since the data are used to generate the reference map, the inherent arrival distribution and any

variations in data taking are present in both maps, and thus normalize when the two are compared in search

of signals.

5.3 Region of Interest Masking

The presence of strong, localized signals (strengths> 1% of the background) can influence the DI reference

level. This can be mitigated by excluding the offending region of interest (ROI) during DI, which introduces a

correction into calculation of 5.1. Details of the correction factor necessary to account for masked ROI pixels

are presented in section 4.5.3 of [77]. Without ROI masking, a signal’s observed significance is reduced

and an artificial fluctuation will surround it. The extent of this effect on observing the Moon shadow is

demonstrated in the next chapter.

5.4 Map Smoothing

To enhance the small signals expected on maps (which are typically more finely pixelated than the angular

resolution of HAWC) the data and reference maps are smoothed. In this thesis, a simple ‘top-hat’ smoothing
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Figure 5.2: Direct integration illustration from [76]. The panels from top to bottom are: the all-sky event

rate R∆t(t) as a function of sidereal time using ∆t = 2 hr integration period; the normalized local arrival

distribution ε∆t(h, δ); the estimated background B = 〈N〉; the raw data map S; the signal map S −B.
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is applied, wherein the value of pixel i represents the sum of the surrounding pixels within a radius r. Ideally,

the smoothing radius is of the same scale as the feature of interest, which correlates the binned event counts

in a manner preserving that feature’s characteristic angular extent while amplifying its signal. For example,

as will be seen with the Moon shadow, a smoothing radius of 1◦ is sufficient to boost the observed significance

5-fold.

5.5 Relative Intensity and Significance

Armed with data and reference maps, the strength of underlying signals is measured using the rela-

tive intensity. This is an unbiased method of measuring the amplitude of deviations from the estimated

expectation. The differential relative intensity δIi of a pixel i at (α, δ) is given by

δI(α, δ)i =
∆Ni
〈N〉i

=
N(α, δ)i − 〈N(α, δ)〉i

〈N(α, δ)〉i
, (5.2)

where 〈N〉i is the estimated background counts and Ni the observed counts in bin i with right ascencion

and declination αi, δi, respectively.

The significance of the observed relative intensity is calculated by the method of Li & Ma [78]. In the

field of gamma ray astronomy, it is a commonly used likelihood test-statistic in the limit of a large number

of background events harboring a small number of signal events. For each pixel in the sky map, the Li &

Ma significance value, SLi-Ma, is given by

SLi-Ma =

√
2Non ln

(
1 + αLi-Ma

αLi-Ma

Non

Non +Noff

)
+ 2Noff ln

(
(1 + αLi-Ma)Noff

αLi-Ma

)
. (5.3)

The Non, Noff values refer to the event counts both “on” and “off” the source of interest, which here are

related to the observed counts and estimated background counts as follows:

Non = N(α, δ)

Noff = 〈N(α, δ)〉/αLi-Ma .

The factor αLi-Ma represents the relative exposure, an overexposure correction required to account for the

fact that the local arrival distribution used for the reference map incorporates counts over the integration

period, ∆t. For a pixel area with ∆Ω and declination extent ∆θ,

αLi-Ma =
∆Ω

∆θ ∆t 15◦ hr−1 cos δ
.

Hence, the estimated Noff background counts come from the relative exposure averaged reference map.

Provided a large data set and an absence of signals, SLi-Ma should follow a normal distribution, while regions

on a map with significances > 5σ consitute discovery of a signal.
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Chapter 6

Cosmic Ray Moon Shadow

The Moon blocks the nearly isotropic flux of cosmic rays on their path to Earth, as conceptually illustrated

in figure 6.1. If cosmic rays propagated unperturbed, we would expect no events arriving from the location

of the Moon, i.e. a perfect Moon shadow 0.52◦ in diameter. Of course, this also assumes that our ability

to reconstruct cosmic ray arrival directions is perfect. In reality, the angular resolution of HAWC above 1

TeV is approximately 0.5◦, and we should expect the shadow to be smeared similarly. And because of their

charge, cosmic rays interact with the Earth’s magnetic field which bends their trajectories. The deflection

is dependent on both the particle charge and energy, so this has the further effect of shifting the observed

Moon shadow in relation to the Moon’s true position. However, since we have accurate representations of

the Earth’s magnetic field where it becomes most relevant to TeV-scale cosmic rays, we can use the evolution

of the observed cosmic ray Moon shadow as an independent test of the detector’s angular resolution and

energy response.

In this chapter, we present the tools and methods used in measuring the energy dependence of the cosmic

ray Moon shadow. We first discuss the simulation developed to model particle propagation between the

Earth and Moon, including the effect of the Earth’s magnetic field, to estimate the shadow’s behavior. Next

we present results from observing the Moon shadow with 1 year of HAWC data, detailing its measured

dependence on energy based on the likelihood energy estimator.
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Figure 6.1: An illustration of the Moon blocking cosmic rays forming an apparent shadow. Note that the

depiction is not to scale, as the Moon is ∼ 60R⊕ from the Earth. Source: HAWC Science website hosted by

WIPAC [79].



76

6.1 Geomagnetic Field

The magnetic field of the Earth is a complex and dynamic structure, yet there are several approaches to

estimate its strength. As a first approximation, the Earth’s magnetic field resembles a dipole tilted (figure

6.2) from the Earth’s rotational axis by ∼ 11.5◦. Analytically, the dipole field takes the following form:

Br =
−2B0

R3
cos θ Bθ =

−B0

R3
sin θ ,

where θ is the angle from the north magnetic pole, and R is the distance from the Earth’s center in units of

Earth radii, R⊕. In the pure dipole form, only the radial (Br) and azimuthal (Bθ) components are needed

to characterize the field, with Bφ = 0. The field strength, |B|, near the surface ranges from about 30 µT

near the equator to twice that at the poles, following the relation |B|= B0

R3

√
1 + cos2 θ.

Figure 6.2: Isoclinic diagrams of the geomagnetic field using the dipole (left) and the IGRF2015 (right)

models. Each red path represents a curve of constant magnetic field strength. The deviation of the IGRF

from the dipole approximation’s symmetry is clear. Figures generated using [80].

A widely accepted model which incorporates the time-dependent asymmetries of the geomagnetic field is

the International Geomagnetic Reference Field (IGRF) [81]. It is put forth by the International Association

of Geomagnetism and Aeronomy (IAGA) and consists of a set of coefficients updated every 5 years, defining
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an epoch. Using observations from satellite borne and ground based sensors, the IGRF coefficients are best

fit values to data using a spherical harmonic model of a scalar potential. The set of coefficients for each

epoch is defined by “IGRF” and the year. For this study the specification implemented is IGRF2015. An

isoclinic (equal magnetic field contours) diagram of the IGRF is shown in figure 6.2, where the deviation

from the symmetric dipole approximation is clearly visible.

The analytic model is expressed as a potential V (r, θ, φ), represented by a series expansion of order k = 13

taking the form:

V (r, θ, φ) = R⊕

k∑
n=1

(R⊕
r

)n+1 n∑
m=0

(gmn cosmφ+ hmn sinmφ)Pmn (cos θ) , (6.1)

where R⊕ = 6371.2 km is the mean Earth radius, (r, θ, φ) is a point in geocentric coordinates, gmn , h
m
n are

gaussian coefficients defined by the epoch, and Pmn (θ) are Schmidt quasi-normalized associated Legendre

functions of degree n, order m. The geocentric coordinates are defined via θ = 90◦− latitude, φ = longitude.

The magnetic field is the negative gradient of this potential, B = −∇V , which in local tangential coordinates

is

Br = −∂V
∂r

=

k∑
n=1

(R⊕
r

)n+2

(n+ 1)

n∑
m=0

(gmn cosmφ+ hmn sinmφ)Pmn (θ) (6.2)

Bθ = −1

r

∂V

∂θ
= −

k∑
n=1

(R⊕
r

)n+2 n∑
m=0

(gmn cosmφ+ hmn sinmφ)
∂Pmn (θ)

∂θ

Bφ = − 1

r sin θ

∂V

∂θ
= −

k∑
n=1

(R⊕
r

)n+2 n∑
m=0

(−gmn sinmφ+ hmn cosmφ)Pmn (θ) .

According to the IAGA [82], this model is valid up to ∼ 7 R⊕, beyond which heavily time-dependent solar

effects become important for the field’s form. However, at this distance the field strength is reduced to a

few nT, where the Larmor radius of 1 TeV protons is ∼ 20 AU. Even closer to the Earth’s surface where the

field is of order 50 µT, that radius is 10 R⊕. Therefore the field structure beyond the model’s limitations

has a negligible influence on the trajectories of TeV particles.

It should also be noted that the dipole and IGRF2015 models are approximations to the internal field

of the Earth, which is generated by the planet’s core. This component represents ∼ 95% of the total field,

with the remaining 5% coming from external effects due to solar activity. The semi-empirical Tsyganenko

model [83] accounts for this component beyond ∼ 10 R⊕. However, since its strength is comparable to or

below the IGRF, its effect on >TeV particle trajectories has been shown to be negligible [84], so it was not

included for this study.
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6.2 GPU Simulation

The principal motivation for running cosmic ray propagation simulation on graphics processing units

(GPUs) is run time. Indeed, when simulating charged particles traversing electromagnetic fields, the num-

ber of particles simulated and the necessary integration duration contribute to the simulation time. The

number of simulation steps per particle (integration duration) depends on the required spatial and temporal

resolution. For example, if the electromagnetic field is rather weak, perhaps inducing angular deflections

∆θ << 1◦, then the number of integration steps will be significantly smaller to probe similar spatial scales

than a field that is 10 times as strong. For reference, the typical number of propagation steps in simulating a

TeV proton traversing the Earth-Moon system is of order 103. While this may not appear to be a significant

number for a typical processor, we also must consider the calculation complexity for each step, such as the

evaluation of the magnetic field model.

One major advantage of moving such a simulation to the GPU is the fact that this is an “embarrassingly”

parallel problem. Since each particle is simulated independently from the others, the processing units that

carry out the calculation never communicate. They do not share any information regarding their propagation

steps. Hence, there are no bottlenecks related to data transfer as might occur in large matrix inversions or

simulations of coupled systems.

6.2.1 Graphics Processing Units

Graphics processing units are specialized compute devices intended for rapid manipulation of vectorized

data generally used for image display. The term general purpose GPU (GPGPU) refers to the utilization

of such devices for other applications such as scientific computation. The internal structure of GPUs is

optimized for tasks requiring high levels of parallelization, such as image manipulation. Typical devices are

organized in physical sections that are further divided into blocks of memory and processing units. The

language to describe device architecture is dependent on the specific manufacturer; however, most of the

terminology is comparable. Though the simulation runs on the UW-Madison cluster which employs GPUs

from several vendors, I will use the terminology of the CUDA API [85] for consistency and because of access

to exemplary visual aids.

Figure 6.3 shows the architecture of a typical NVIDIA GPU card. Any information defined by the user

is done so on the CPU and must be passed to the GPU through one of three types of memory spaces. Any

constants needed by the simulation are passed and held in the “Constant Memory” space, while all other

input to and output from the GPU is transferred through “Global Memory”. The “Texture Memory” space

is optimized for graphical video processing, so for the purposes of cosmic ray simulation it is not utilized.
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Figure 6.3: NVIDIA GPU architecture per the CUDA API.

The actual computation occurs further withinin the GPU grid, where compute “blocks” are home to a

collection of compute “threads”. For example, the NVIDIA GTX 980 card, as found on the UW cluster, has

2048 blocks with 1024 threads per block, permitting nearly 221 ≈ 106 simultaneous calculations. Strictly

speaking, the total parallelization is not as simple as the product of block and threads. Each block runs

groups of 16 threads up to the same point in the simulation. Then another group of 16 threads executes

catching up to the same point. Since the blocks are independent, the maximum number of threads running

strictly in parallel is 16× 2048 = 32768.

In the case that the threads run into different evaluations of conditional statements, then the threads

serialize into groups having the same conditional value. For other applications where threads share data,

the local and shared memory spaces provide the means to do so. In the propagation simulation here, no

information is shared among the threads. The few required conditional statements do not influence the

particle propagation functions, as they merely test whether the particles are to continue propagating or stop

completely. Those that stop do not influence the simulation performance, as they have no more steps to

continue.
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6.2.2 Available Resources

The UW-Madison cluster is home to 345 graphics cards. Most units are NVIDIA models with 248 GTX

980s, 32 GTX 690s (each containing two GPUs), and one GTX 1080. The cluster also includes 32 AMD

Radeon 7970 GPUs. The CUDA [85] proprietary software is meant for NVIDIA GPUs and does not operate

on other vendor products. However, we used the open source OpenCL [86] GPGPU framework combined

with the host wrapper PyOpenCL [87] API because it is hardware independent. This ensures the code runs

regardless of GPU manufacturer and also makes it easier to distribute to others for verification or even for

development with similar simulation tasks. One other advantage of the OpenCL-PyOpenCL tag team is

the ability to request the calculations be performed on either the host CPU or the GPU, permitting an

assessment of performance gain from parallelization.

6.2.3 Magnetic Field Model

The IAGA’s implementation of the IGRF2015 model is written in GNU FORTRAN, but the only vendor-

independent API available for use on the GPU is OpenCL C [86]. Hence, the algorithm was translated, and

is the default magnetic field model used here. In implementing the IGRF2015 for the GPU, we see another

advantage of utilizing the GPU for charge particle progagation purposes. A single IGRF2015 calculation

involves two nested loops of k = 13 iterations for three magnetic field components, amounting to 3k(k +

1)/2 = 273 evaluations per propagation step. Thus, as the magnetic field model increases in complexity, a

serialized computation increases linearly in runtime. The task effectively is rid of this burden by the factor

of parallelization.

6.2.4 Particle Propagation

The particle equations of motion for charged particle propagation in an electromagentic field take the

form

dp

dt
= Zγ

(
E + v ×B

)
(6.3)

dx

dt
= v .

Here, Z denotes the particle charge, v the velocity vector, γ = 1√
1−v2/c2

the relativistic boost factor,

and B the geomagnetic field vector. For TeV particles we can consider propagation in the ultrarelativistic

limit, where any energy losses during propagation or energy gains from the interplanetary electric field are

negligible, and we can set E = ~0.
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The following numerical integration methods were considered for the simulation: Euler, Runge-Kutta 4

(RK-4), and Boris with fixed and adaptive time steps. The Euler method is the simplest, requiring a single

step. Furthermore, it is an explicit method, i.e. no equations must be solved numerically. However, the

global error in position and velocity is proportional to the square of the time step size, O(δt2), which for

long integration periods can induce significant trajectory deviations. The global error for the RK-4 method

is O(δt5), but requires four evaluations of the acceleration function, thus presenting a potential bottleneck to

the simulation time if the function itself is complicated as with the 273 evaluations of the IGRF2015 model.

Furthermore, it is a non-symplectic integrator, meaning that energy is not necessarily a conserved quantity.

Finally, the Boris [88] method is symplectic, explicit, and requires a single evaluation of the acceleration

function. Thus, regardless of step size, the particle gyroradius and momentum are perfectly conserved [89].

In addition, its relative simplicity allows for implementation with a fixed or adaptive time step. For this

study, the adaptive Boris method was used.

The adaptive time step for charged particle propagation is defined by

δt =
2γM

|Z||B(x)|
tan

1

2
θmin , (6.4)

where M,Z, γ are the particle mass, charge and Lorentz factor, respectively, B(x) is the magnetic field vector

at position x, and θmin is the user defined minimum allowed rotation angle. The value used in GPUSim is

θmin = 10−3 rad ≈ 0.05◦. Thus, the integrator adapts the time step based on the value of the gyroradius

(function of γ,B(x)) evaluated at the current position. To move the particle location, a δt is evaluated per

equation 6.4, the velocity vector v is rotated by angle θmin about the axis collinear with B, and finally the

particle’s location is updated to x← x + v δt.

For studying the Moon shadow, particles are initialized at the geographic location of HAWC and prop-

agated outward to the Moon’s orbital radius. This of course necessitates simulating particles of opposite

charges, since their velocities are reversed from observations. For the IGRF model requirements, particles

were assigned dates between January and February of 2015, for times when the Moon was transiting above

the local horizon. Particles were assigned isotropic local direction vectors with zenith angles up to 60◦,

and energies were sampled from an E−1 spectrum. Each integration step is determined via equation 6.4,

and a particle continues to propagate if its geocentric position is less than the Earth-Moon distance and its

propagation is directed radially outward from the Earth. This last condition assures that the simulation

does not waste time with particles below the geomagnetic cutoff which will never escape. Once reaching

the Moon’s orbit, intersection of the Moon disc is determined, upon which the final trajectory information

is read out from the GPU and saved to disk on the CPU. A screen shot of iron nuclei after propagating to

three Earth radii is shown in figure 6.4. The visualization tool is not used when generating the simulation

set, being for instructional purposes only.
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Figure 6.4: Visualization of 104 iron nuclei after propagating from the HAWC location outward. The blue

sphere represents the Earth, the axes identify geocentric coordinates, and the individual colors indicate

the particle energy, where red is the lowest and violet the highest. The longer black vector indicates the

normal direction at the HAWC location, from which particles are propagated outward. The lower energy

particles experience significant deflection towards the East, translating to an expected negative deflection

in right ascension. The simulated energy range of particles is from 500 GeV – 10 TeV to show pronounced

deviations. The Moon, being 60 R⊕ away, is not shown.
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Figure 6.5: GPU mean runtimes in hours for the various simulated species. The increase in both mean value

and width is due to particles of increasing Z at similar sub-TeV energies reaching the maximum allowable

iterations.

6.2.5 Performance

Each GPU can calculate ∼ 106 trajectories nearly parallel within several minutes. Harnessing the en-

tirety of the UW-Madison cluster allows the simulation of O(109) particles on the order of ∼hr time scales.

Specifically, the simulation production takes ∼ 5− 6 hrs to complete, amounting to a speedup factor of ×90

if 1000 CPU nodes were to generate similar statistics in a serialized manner. Figure 6.5 shows the GPU

runtimes for the various species simulated. The times are the mean values with standard deviations for

generating one hundred simulation files start to finish, each with 107 particles for every species. The overall

mean run time is ∼ 2.5 hrs, with higher simulation times for species with greater charges.

6.2.6 Simulation Analysis

HAWC is most sensitive to TeV cosmic rays, and we expect the Moon shadow position to deviate

commensurate with this energy range. We quantify the total angular deflection ∆θ of a particle intersecting

the Moon disc by the deviation from its initial direction vector, resulting in apparent right ascension and

declination offsets from the true Moon position:

∆θ2 = (α− αMoon)
2

+ (δ − δMoon)
2

(6.5)

= ∆α2 + ∆δ2 .

The simulated energy dependence of ∆θ is shown in figure 6.6. The total deflection angle distributions for the

various species are parallel comparing the logarithm of both the angle and energy, indeed sharing a common
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slope which can be summarized by the relation ∆θ ∝ Z/E. Thus, the total angular deviation is inversely

proportional to rigidity. For a particle of charge Z, the proportionality coefficient is found to satisfy

∆θ = (1.59◦ ± 0.01◦)
Z

E[TeV]
, (6.6)

consistent with previous studies [77, 90].
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Figure 6.6: Simulated total angular deflection of charged particles intersecting the Moon disc as a function

of energy. The slopes of the distributions are equal; thus the deflections are rigidity dependent and follow

the form of equation 6.6. The fit for protons with Z = 1 is shown via the black line.

Because the Earth’s magnetic field lines are nearly aligned in the north-south direction, the angular

deflection is primarily along the right ascension direction, i.e. ∆α ≈ −∆θ = −1.59◦Z/E[TeV]. While subtle,

we expect a slight energy-dependent shift in declination as well. This is due to the tilt of the Earth’s rotational

axis with respect to the magnetic field polar orientation, which results in a discrepancy between trajectory

deviations while traversing the magnetic field when the Moon is rising versus setting. This asymmetric

integrated sampling of the geomagnetic field manifests as a similar inverse rigidity relation, and is depicted

in figure 6.7, where the right panel highlights this effect via the mean of ∆δ. The finite asymptotic width of

the distribution at higher energies is precisely the angular diameter of the Moon disc, 2rMoon = 0.52◦. A fit
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to the mean value gives the deflection coefficient via the relation

∆δ = (0.15◦ ± 0.01◦)
Z

E[TeV]
. (6.7)

It is clear from the similar scale of the ∆δ coefficient to rMoon that the more robust means to constrain

the energy scale from Moon shadow measurements is via ∆α. The right ascension offset simply has more

leverage with which to sample energy dependent deviations. Yet any declination shift below ∼ 1 TeV does

provide additional, orthogonal rigidity information, and it is assessed in the data analysis.

Of course, these analytic forms describe the behavior for individual species reaching the top of the

atmosphere. For the full Moon shadow, the convolution of both composition assumption and detector

response for each species produces a mean rigidity scale, which we interpret as Z̄/E. Taking into account

the nominal composition model from section 3.3.3 as well as simulated efficiencies to the various species, the

expected mean charge from simulation is Z̄ = 1.23± 0.02.
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Figure 6.7: Energy dependent declination deflection due to rising-setting asymmetry for protons. The subtle

asymmetry is visible when extracting the mean of ∆δ as shown in the right panel. The inverse energy relation

fit to the mean gives the relation of equation 6.7, and is shown here by the black curve.
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6.3 Data

6.3.1 Event Selection

The HAWC detector in its full configuration of 290 WCDs was in stable data taking mode for the runs

selected for this analysis, which span 397 days from 16 April, 2015 to 18 June, 2016. The total up-time

efficiency was ∼ 92% and the mean trigger rate was ∼ 25 kHz. For the background estimation used in

making maps, a direct integration period of ∆t = 2 hrs was used, so only runs where the detector was stable

for times greater than 2 hrs were included. Detector stability was assessed via a χ2-difference test of the

local azimuth and zenith angle distributions as described in [77]. An example of stability for a single day of

data taking is shown in figure 6.8.
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Figure 6.8: χ2-difference test for zenith (top) and azimuth (bottom) distributions in ∼ 2 minute time bins

for a single day from the data set. Each point represents the reduced χ2 difference between the respective

angular distribution at the current time on the abscissa to the value of the first time bin in the day.

In accordance with other cosmic ray analyses [1], selected events passed a multiplicity threshold of ∼ 6%

of the detector. For the nominal detector configuration during this period, the resulting mean multiplicity

cut was Nhit ≥ 75. The Nr40 ≥ 40 selection cut from section 3.4 was used to ensure the integrated core fit

resolution is below 10 m for energies above 10 TeV. Finally, we consider showers with θ ≤ 45◦ to reduce the

influence of increasingly poor energy resolution and bias from sampling the energy table’s highest zenith bin

θ2 over its entire zenith range of 35◦ − 60◦. A total of 4.16 × 1010 events passed the selection cuts, with
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1.23× 108 events falling within 5◦ of the Moon’s position. The mean energy for the entire data set and for

events near the Moon is 4.3 TeV.

6.3.2 Energy Binning

Eleven analysis bins were defined using the likelihood energy estimation variable, Ereco, with steps of size

0.2 in logEreco from 1–160 TeV. We further account for the arrival direction’s effect on the estimated energy

by sampling from the table represented in figure 6.9, from which an estimate of the true mean energy and

resolution was determined for each analysis bin. The estimated true energies are illustrated in figure 6.10

and the values are presented in table 6.1. The normalized counts distribution with respect to the analysis

bins is shown in figure 6.11. This includes a comparison of the entire data set to only events falling within

5◦ from the true Moon position.

Figure 6.9: Median energy (from simulation) as a function of the reconstructed energy Ereco and the cosine

of the local zenith angle θ. The mean energy for each analysis bin is determined by sampling this table with

the (Ereco, θ) distributions observed from within 5◦ of the true Moon location. Three large blocks are also

visible in the table, indicating the zenith ranges θi of the energy estimation tables.
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Analysis Bin logEreco/TeV Ē [TeV] σ+
E σ−E

0 0.0− 0.2 0.793 0.827 0.272

1 0.2− 0.4 1.29 1.33 0.48

2 0.4− 0.6 2.24 2.21 0.85

3 0.6− 0.8 3.94 3.61 1.50

4 0.8− 1.0 6.73 5.63 2.57

5 1.0− 1.2 10.1 8.3 4.2

6 1.2− 1.4 17.9 11.9 6.7

7 1.4− 1.6 28.9 16.4 10.1

8 1.6− 1.8 47.4 22.5 14.8

9 1.8− 2.0 74.9 29.6 20.2

10 2.0− 2.2 133.8 44.9 32.5

Table 6.1: Estimated mean energies for the analysis bins defined by Ereco. The bounds indicated by σ±E

represent the 68% central containment region and are quoted in the same units as E.
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Figure 6.10: Mean energies of analysis bins defined in table 6.1.
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Figure 6.11: Normalized counts distribution as a function of energy for all events in the data set and for

events observed within 5◦ from the Moon’s true position.

6.3.3 Moon Maps

An event map was made for each analysis bin, and both relative intensity and significance maps were

generated. Unsmoothed example maps centered on the true Moon position are presented in figure 6.12,

revealing the presence of the cosmic ray Moon shadow. The same maps after applying 1◦ top-hat smoothing

are shown in figure 6.13. The figure shows the general smoothing out of pixel-to-pixel fluctuations as well as

a dramatic increase in signal strength as a result. It is also clear that the cosmic ray Moon shadow is offset

by ∼ 0.5◦ from the true Moon position, with primary deflection in right ascension. There is also a noticeable

offset in declination of about 0.2◦ as well. We present the energy dependence of the Moon shadow after first

considering several methods to analyze the maps.
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Figure 6.12: Moon shadow maps in relative intensity and significance for bin 4, with a mean energy of 6.7

TeV. The axes indicate the angular distance in α and δ from the true Moon position, i.e. Moon-centered

maps. There is a slight offset in right ascension by about ∆α ≈ 0.5◦. If the sample were purely protons,

the expected deflection angle would be ∼ 0.24◦. This discrepancy indicates the presence of other charged

particles in this bin. These maps did not include smoothing; yet, the Moon’s presense is clear, as its peak

deficit in relative intensity is −113×10−3 with a significance of −6.8σ, passing the threshold for a significant

observation in this energy bin.
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Figure 6.13: Moon shadow maps from figure 6.12 smoothed by 1◦. The effect of correlating neighboring bins

via smoothing is a reduction of the magnitude of the relative intensity, as here it is −45.7 × 10−3, but an

increase in signal strength, here to −34.5σ. Upward fluctuations on either side of the shadow are present in

both maps, which will be addressed via ROI-masking.

6.3.3.1 Fits to the Moon Shadow

As can be seen from the previous figures, the Moon shadow forms a strongly peaked disc and appears to

be nearly symmetric. However, as discussed in previous work [77] the shadow’s morphology can be affected

by the chemical composition, potentially producing asymmetries like that of bin 3 in figure 6.14, which has

been smoothed by 1◦ to enhance the structure. We thus fit the unsmoothed relative intensity maps to a two-

dimensional Gaussian function to quantify the evolution of the Moon shadow with energy. The generalized

Gaussian takes the form

N(N,A, δ, α, σδ, σα, θ) = N +A exp
[
−a (δ − δc)2 − 2b (δ − δc) (α− αc)− c (α− αc)2

]
, (6.8)

where N is an overall offset, A is the amplitude, the pair (δc, αc) are the centroid positions in declination

and right ascension, respectively, and the coefficients a, b, c are defined by the widths σδ,α and the tilt angle

θ from the right ascension axis via

a =
cos2 θ

2σ2
α

+
sin2 θ

2σ2
δ

, b =
sin2 θ

4

(
− 1

σ2
α

+
1

σ2
δ

)
, c =

sin2 θ

2σ2
α

+
cos2 θ

2σ2
δ

.

Thus the centroids give an indication of the rigidity scale of the analysis bin, permitting an estimate of the

mean chemical composition of the data set. The widths in δ and α provide further information regarding the

point-spread function or the angular resolution with respect to energy, and strong asymmetries can result

from composition as well. The resulting best fit values of equation 6.8 to the unsmoothed maps are shown
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in figure 6.15. Using the deflection in right ascension, we see that the mean estimated charge of the data set

is 1.25± 0.06, meaning it lies between proton and helium, and consistent with the simulated Z̄ from section

6.2.6.

Figure 6.14: Moon shadow relative intensity map from bin 1 (Ē = 1.3 TeV) smoothed by 1◦. The tail

towards the upper right of the figure is potentially caused by the presence of heavier elements, which are

deflected more strongly than the dominant proton and helium components. To account for this structure,

we fit the unsmoothed maps by the generalized two-dimensional Gaussian of equation 6.8.
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Figure 6.15: Best fit values of equation 6.8 to unsmoothed relative intensity Moon shadow maps for all

analysis bins. Top left: centroid offset in right ascension, with Monte Carlo expectations for pure proton and

pure helium hypotheses. The fit to the data values results in an estimated mean charge of Z̄ = 1.25± 0.06.

Top right: centroid offset in declination. The fit to the data gives an estimated mean charge value of

Z̄ = 0.97± 0.22. Bottom left: Gaussian widths in δ and α. Bottom right: major axis tilt angle θ.
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6.3.3.2 Region of Interest Masking

The effect of masking the Moon from the background estimation as a region of interest was investigated

to illustrate its effect on the strength of observed signals. The influence of the Moon shadow as a sink is most

prominently seen in figure 6.13. The Moon’s presence is so strong that the estimated background changes,

causing an over-compensation of relative intensity in neighboring declination pixels, potentially manifesting

spurious significant regions. We ameliorate this effect by masking out pixels around the Moon’s observed

position in the background estimation step.

The resulting fits to the unsmoothed maps are used to define a mask region for each analysis bin. The

maps are then regenerated using a masking circle centered on δc, αc with radius 3σα+δ, where the mean

Gaussian width σα+δ is calculated via the respective uncertainties eα,δ from the fitting procedure:

σα+δ =

(
σα
eα

+
σδ
eδ

)
·
(

1

eα
+

1

eδ

)−1

. (6.9)

We thus ensure that each bin’s ROI-mask is appropriately centered on its unmasked Moon shadow, and

accounts for a region thrice its angular dimensions. Figure 6.17 demonstrates the effect of the ROI-masking

procedure, where the fluctuations are absent. Fits to equation 6.8 are performed again using the ROI-masked

maps, which are subsequently used for the analysis. The resulting fit values are displayed in figure 6.16 and

are consistent with the non-ROI masked map fits, including the mean rigidity scale of the data sample.

In addition to removing artificially adjusted background about the source region, masking a strong signal

results in a slight boost to its significance. More correctly, the ROI-mask does not boost the signal, but

rather not implementing the mask reduces the signal strength, appropriating a portion to the surrounding

pixels. The effect on the peak relative intensity and significance for the analysis bins is presented in figure

6.18. While the peak relative intensity values are not affected by more than a few percent, the underlying

significance of the signal is brought out by the use of ROI-masking, and in bins with the greatest statistical

power, several units of significance are gained.
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Figure 6.16: Best fit values of equation 6.8 to unsmoothed relative intensity maps that have been masked.

Top left: centroid offset in right ascension, again with Monte Carlo expectations for pure proton and pure

helium hypotheses. The fit to the data values results in an estimated mean charge of Z̄ = 1.26 ± 0.06,

consistent with the previous fit. Top right: centroid offset in declination. The fit to the data gives an

estimated mean charge value of Z̄ = 1.00 ± 0.20. Bottom left: Gaussian widths in δ and α. Bottom right:

major axis tilt angle θ.
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Figure 6.17: Smoothed Moon shadow maps in relative intensity for bin 6 (Ē = 17.9 TeV) without (left) and

with (right) region of interest masking. The disappearance of the upward fluctuating bands on either side

of the shadow indicates the ROI-mask reduces the strong effect of the Moon’s presence on the background

estimation. The ROI used was a top-hat mask three times the angular size of the Moon shadow, as determined

via the Gaussian fit in the next section.
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Figure 6.18: Peak relative intensity and significance values with and without ROI-masking for Moon maps

smoothed by 1◦. The analysis bins are used on the abscissa for clarity of the figure. Thus we see that

while the relative intensity magnitude does not change more than a few percent with ROI-masking, a gain

of several signifiance units is observed in bins with the largest statistics.

6.3.3.3 Deficit Statistics

The measured width of the Moon shadow serves as an experimental verification of the angular resolution of

HAWC. We treat the Moon as a point-like cosmic ray sink that blocks a number of events commensurate with

its angular extent, rMoon = 0.26◦. We then compare the expected number of blocked events as approximated

via the Gaussian fit of the shadow to the observed deficit as calculated from the data map itself. In the

equations that follow, x represents a right ascension declination pair, (α, δ).

The expected number of events blocked by the Moon, Nblocked, is calculated from the estimated back-

ground map:

Nblocked =
∑
i

〈N〉i
πr2

Moon

Apixel ·
∑
i

i
, {i : |xi − xtrue

Moon|< rMoon} , (6.10)

where the summations cover the i pixels within the Moon’s true radius and the area per pixel is given by

Apixel =
4π

4Nside2
.
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The expected deficit, Nexp, at a radius r from the Moon’s true position is determined from the fraction of

blocked events from the Gaussian shadow observed:

Nexp(r) = −Nblocked ·
[
1− exp

(
− r2

2σ2
α+δ

)]
. (6.11)

The observed deficit, Nobs, is defined as the difference between the data counts Ni and the estimated

background counts 〈N〉i within a specified radius r of the observed Moon centroid, xobs
Moon. Hence,

Nobs(r) =
∑
i

(Ni − 〈N〉i) , {i : |xi − xobs
Moon|< r} . (6.12)

Equation 6.12 represents an integral deficit and should converge to the total number of expected blocked

events from the Moon for large radii, i.e.

Nobs(r)→ Nexp(r) = Nblocked for r >> rMoon .

In practice, however, the small angle approximation permitting the use of the Gaussian assumption becomes

less viable with increasing r from the source, even just a few degrees from the Moon shadow centroid. Thus,

a more appropriate measure is the differential deficit, whereby data counts are integrated in rings centered

on the signal, and we normalize this by the background in those rings. For a region contained by two circles

a, b where ra < rb, we define the expected and observed differential fractional deficit as follows:

δNexp(r) =
∆Nexp(r)

∆Nblocked
=
Nexp(rb)−Nexp(ra)

N i∈b
blocked −N

i∈a
blocked

(6.13)

δNobs(r) =
∆Nobs(r)

∆Nblocked
=
Nobs(rb)−Nobs(ra)

N i∈b
blocked −N

i∈a
blocked

, (6.14)

where now the indices i are changed to cover pixels within the ring, i.e.

{i} → {i : ra < |xi − xobs,true
Moon |< rb} .

Examples comparing the expected Gaussian to the observed deficit for both integral and differential cal-

culations are shown in figure 6.19. The resulting reduced χ2 values comparing the expected and observed

differential excesses for all analysis bins are presented in table 6.2. Finally, the σα+δ are compared to the

angular resolution as calculated via simulation (shown in figure 6.20, first presented in section 3.4 in figure

3.10). The observed consistency between the two implies that the absolute pointing accuracy of the detector

behaves as expected from simulation with respect to energy.
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Figure 6.19: Example of expected and observed integral (left) and differential (right) deficits for bin 4, using

the unsmoothed Moon shadow map as in figure 6.12 over a range of 10◦ from the Moon centroid. Beyond

a few degrees, the observed integral deficit can fluctuate about the Gaussian expectation, so a more robust

measure is the differential fractional deficit.

Analysis Bin σα+δ [deg] χ2/dof

0 0.94± 0.23 34.42/48

1 0.81± 0.08 148.99/48

2 0.64± 0.04 171.07/48

3 0.57± 0.03 52.94/48

4 0.52± 0.03 94.61/48

5 0.46± 0.03 93.98/48

6 0.52± 0.04 49.25/48

7 0.47± 0.05 22.99/48

8 0.48± 0.06 42.62/48

9 0.36± 0.07 54.96/48

10 0.54± 0.10 24.10/48

Table 6.2: Mean angular width σα+δ from centroid fits to ROI-masked maps for each analysis bin, with

reduced χ2 values comparing the observed and expected differential fractional deficits. As shown in figure

6.19, a total of 48 radial bins were used to evaluate δNexp,obs(r) over the range 0◦ < r < 10◦.
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Figure 6.20: Comparison of the measured Gaussian widths σα+δ of the Moon shadow from equation 6.9

(red) to the expected mean ± standard deviation (blue) and median ± 34% (black) angular resolution from

simulation. The vertical bars on the Moon data points are the uncertainties on σα+δ from the fit.
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Chapter 7

Iterative Unfolding

7.1 Inverse Problems

The general class of inverse methods is amongst the physicist’s toolbox as a powerful means to connect

an experiment’s observable variables with true physical quantities. Typically a matrix can be built to

encompass the effects of the measurement process on a simulated ‘true’ distribution and the manifestation

of said distribution as an experimenter’s desired observable. With this response matrix, a distribution of the

observable in an experiment can be unfolded, providing an estimate of the true parent distribution.

A variety of unfolding methods exist, each with its respective strengths and weaknesses. For example, the

simplest method is the matrix inversion unfolding, which for a well populated, highly linear response matrix

can be both efficient and precise. However, even with relatively small off-diagonal elements, this method

is unfavorable, as the matrix may be singular or may introduce wildly fluctuating results due to limited

statistics. There exist methods to quell such issues, though these require the tuning of various parameters

which typically have no physical connection to the experiment at hand.

Here we discuss D’Agostini’s unfolding technique presented in [91], a manifestly inferential method,

and its relation to the cosmic-ray energy reconstruction for the HAWC experiment. Starting from Bayes’

theorem, an iterative unfolding procedure is developed, which then can be implemented without too much

difficulty for the typical experimenter.
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7.2 D’Agostini Unfolding

7.2.1 Method

As discussed in the introduction, the conceptually simplest way to connect true (causes, Cµ) and observ-

able (effects, Ej) variables is via a matrix, R, and its inverse M1:

n(E) = Rφ(C) ,

φ(C) = M n(E) .
(7.1)

Due to the aforementioned potential difficulties in matrix inversion, we can take into consideration Bayes’

theorem,

P (Cµ|Ej) =
P (Ej |Cµ)P (Cµ)

nC∑
ν
P (Ej |Cν)P (Cν)

,
(7.2)

where nC is the number of possible causes. Equation 7.2 dictates that having observed the effect Ej , the

probability that its origin is due to the cause Cµ is proportional to product of the probability of the cause and

the probability of the cause to produce that effect. Hence, the elements P (Ei|Cµ) represent the probability

that a given Cµ results in the effect Ei, and is the response matrix generated via MC simulation. Continuing

with P (Cµ|Ej), we can then connect the measured observed effects to their causes via:

φ(Cµ) =

nE∑
i

P (Cµ|Ei)n(Ei) . (7.3)

Stepping back to equation 7.2 for a moment, one identifies P (Cµ) as the prior cause distribution, repre-

senting our current knowledge of the causes. The prior is a normalized distribution such that
nC∑
µ
P (Cµ) = 1.

This normalization requirement is not imposed on the response matrix efficiency εµ: 0 ≤ εµ =
nE∑
j

P (Ej |Cµ) ≤

1, i.e., a cause does not need to produce any effect. Taking this (in)-efficiency into account, we rewrite 7.3

as

φ(Cµ) =
1

εµ

nE∑
i

P (Cµ|Ei)n(Ei) . (7.4)

Identifying here the explicit form of M , the full matrix (Bayesian) inversion equation is then

φ(Cµ) =

nE∑
j

Mµjn(Ej) , (7.5)

1 Except for C and E, all variables and subscripts related to causes are Greek letters, while Latin letters are used for effects.
The only superscript is the iteration number, i.



103

where

Mµj =
P (Ei|Cµ)P (Cµ)[

nE∑
k

P (Ek|Cµ)

] [
nC∑
ν
P (Ei|Cν)P (Cν)

] . (7.6)

The response matrix P (Ei|Cµ) is generated via simulation, and the n(Ei) provided through measurement,

apparently bestowing the freedom to choose the form of P (Cµ). Again, P (Cµ) represents the total of our

prior knowledge of the parent distribution. Typically an experimenter refrains from introducing bias in the

prior. The energy ranges of interest in HAWC span several decades, so the appropriate choice is the Jeffreys

Prior [92]:

PJeffrey(Cµ) =
1

log (Cmax/Cmin)Cµ
,

keeping in mind that this prior dictates that all cause bins are of equal probability, not that all parent

distributions are of equal probability.

We now possess all the necessary machinery to perform an unfolding. Having started with the unbiased

Jeffreys Prior, the unfolded result is a best estimate of the true distribution. There is nothing stopping us

from using this result as the best knowledge estimate of P (Cµ) in equation 7.6 for a subsequent unfolding. We

can take this any number of steps further, making the process an iterative unfolding. Thus, after calculating

φ(Cµ) via equation 7.5, we recalculate Mµj per equation 7.6, returning again to equation 7.5 for an updated

φ′(Cµ). Since P (Cµ) =
φµ∑
ν
φν

=
φµ

Ntrue
, where Ntrue is the estimated true number of cause events, we can make

the change P (Cµ)→ φµ in equation 7.6. Adding the iteration superscript and shortening the notation1, this

equates to

Mµj =
Pµj φ

i
µ

εµ
∑
ρ
Pρj φiρ

φi+1
µ =

∑
j

Mµj nj .

The unfolding proceeds until a desired stopping criterion is satisfied, say by comparing subsequent iterations

with a χ2. The algorithm below outlines the basics to the iterative unfolding scheme:
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Algorithm 1 Unfolding Algorithm

φ0 ← Prior

testStatistic← Pass

while ( testStatistic = Pass ) do

M ←M(P (E|C), φi)

φi+1 ←M × n

testStatistic← TS(φi, φi+1)

end while

7.2.2 Unfolding Uncertainties

To begin the excursion into the calculation of uncertainties, we first shorten the notation:

P (Ei|Cµ) = Pµi φ(Cµ) = φµ n(Ej) = nj .

As outlined in [91] (section 4), the covariance matrix V = V (φ, φ′) from statistical contributions has

two components: V Data from the counted measured effects distribution, and V MC due to the limited Monte

Carlo statistics in Pµj . This can be seen from considering the uncertainties from nj and Mµj in equation 7.5.

Since φ = M × n = M(P (E|C))× n, we can identify respectively the aforementioned error contributions as

V Total = V Data + V MC

=
∂φ

∂n
cov(n, n′)

∂φ′

∂n

+
∂φ

∂P
cov(P, P ′)

∂φ′

∂P
.

7.2.2.1 V Data

D'Agostini argues that since the data sample nj is a realization of a multinomial distribution, then

V Data = M cov(n, n′)M (7.7)

where the cov(n, n′) is the covariance matrix of the measurements with respect to the estimated true number

of events
∑
µ
φµ = Ntrue:

cov(nk, nj) =

nj
(

1− nj
Ntrue

)
if k = j

− njnk
Ntrue

if k 6= j

. (7.8)

However, Adye ([93] section 5) demonstrates that this error estimation is only valid for the first iteration,

as subsequent φi are not independent of nj . Indeed, we should re-write equation 7.7 appropriately as

V Data =
∂φi+1

∂n
cov(n, n′)

∂φi+1′

∂n
, (7.9)
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with
∂φi+1

µ

∂nj
= Mµj +

φi+1
µ

φiµ

∂φiµ
∂nj

−
∑
σ,k

εσ
nk
φiσ

MµkMσk
∂φiσ
∂nj

,

where again the superscripts i and i+ 1 refer to the iteration number. The full derivation of ∂φi+1

∂n is found

in section B.2. Furthermore, as measuring the cosmic ray spectrum involves counting statistics, it is safe to

use the Poisson form of cov(n, n′):

cov(nk, nj) = nk δkj . (7.10)

7.2.2.2 V MC

The contribution from V MC is outlined in [91] and fully derived in section B.3. If one simply implements

the equation verbatim into code, the expected time for calculating all elements ∼ (number of bins)7. Thus,

here we present the form of V MC, while in section B.3 we show the explicit expansion and further contraction

of indices towards a more reasonable, practical calculation.

D’Agostini identifies V MC via ∂
∂M giving

V MC = n cov(M,M ′)n′. (7.11)

Further expansion reveals

cov(Mµk, Mλj) =
∑

{σr},{σs}

∂Mµk

∂Pσr

∂Mλj

∂Pσs
cov(Pσr, Pσs) , (7.12)

∂Mµk

∂Pσj
= Mµk

[δµσ δjk
Pσj

− δµσ
εσ
− δjkMσk εσ

Pσk

]
, (7.13)

cov(Pσr, Pσs) =


1
ñσ
Pσr(1− Pσr) if r = s

− 1
ñσ
PσrPσs if r 6= s .

(7.14)

In the final expression, ñµ represents the number of MC events which fell into the true cause bin µ. As

each event in the simulation is weighted by a factor w, we identify ñ with the effective number of events

ñµ =
(
∑
j
wµj)

2∑
j
w2
µj

for all j events in bin µ.

Once again, Adye [94] shows this is a first order estimate, only valid for the first iteration. Re-writing

7.11 with ∂
∂P ,

V MC =
∂φi+1

∂P
cov(P, P ′)

∂φi+1′

∂P
, (7.15)
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we identify ∂φi+1

∂P as

∂φi+1
µ

∂Pλk
=
δλµ
εµ

(
nk φ

i
µ

fk
− φi+1

µ

)
− nk φ

i
λ

fk
Mµk

+
φi+1
µ

φiµ

∂φiµ
∂Pλk

−
∑
ρ,j

nj
ερ
φiρ

MρjMµj

∂φiρ
∂Pλk

,

whose derivation is presented in section B.3 below. Of course, D’Agostini’s form of cov(P, P ′) remains

valid for use with the new construction of the partials. One may also use a Poisson covariance if justified

appropriately:

cov(Pρr, Pλs) = σρrσλsδρλδrs, (7.16)

with σρr being the error estimates on Pρr estimated when filling P with Monte Carlo simulation.

7.2.2.3 Updated Unfolding Algorithm

The afore-outlined unfolding algorithm must be modified to include the propagation of systematic un-

certainties. At each iteration we have φi+1, so both ∂φi+1

∂n and ∂φi+1

∂P can be calculated. The results are

propagated and saved until the full covariance matrix is required for uncertainty estimates on the final φ.

Algorithm 2 Unfolding Algorithm - Including Errors

φ0 ← Prior

testStatistic← Pass

while ( testStatistic = Pass ) do

M ←M(P (E|C), φi)

φi+1 ←M × n
∂φi+1

∂n ← eq. B.4

∂φi+1

∂P ← eq. B.5

testStatistic← TS(φi, φi+1)

end while

V Total ← V Data(∂φ
i+1

∂n ) + V MC(∂φ
i+1

∂P )

σ2
φ ≈ diag(V Total)
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7.3 Regularization

After each iteration, the resulting posterior distribution, P (Cµ), is our new best guess of the (normalized)

parent distribution. Using this best estimate as the prior for the next iteration, one can induce large

fluctuations in neighboring Cµ bins. It is here the equivalence of matrix inversion techniques and iterative

unfolding is seen. After many iterations, wild fluctuations can appear, indicating the granularity in the MC

derived Pµj . Furthermore, in using the posterior as the subsequent prior, one is “telling” the unfolding that

physical distributions of that nature are allowable priors. Instead, as pointed out in [91] (section 6.3), for an

experimenter interested in a particular model’s parameters, fitting all but the last posterior is equivalent to

performing a maximum likelihood fit to the data.

As physics measurements are expected to be smooth (a safe assumption for the cosmic-ray energy spec-

trum for example), one can regularize the φiµ. In principle one can choose any smoothing function. For the

cosmic ray energy spectrum, φiµ can be simply fit to a power law, using the fitted function as the input prior

for the next iteration. While this could be seen as a loss of information, it is important to remember that

this method is based on Bayes’ theorem, so any improved prior distribution will enhance our estimation

method, along with the prior expectation that our physics is smooth.

The other possibility is to avoid regularization altogether, and instead ensure that Pµj is smooth enough.

The granularity of the cause and effect bins will dictate the degree of smoothness required to ensure non-

fluctuating φi solutions. The more widely used techniques for smoothing Pµj include kernel density estimation

and penalized spline fitting routines.
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Chapter 8

The All-Particle Cosmic-Ray Spectrum

The result of measuring the differential all-particle energy spectrum at TeV energies is presented in this

chapter. First we introduce the details of the chosen data set, the event selection criteria, and building

the detector response function. Next we show the process of unfolding the all-particle spectrum using the

iterative method from chapter 7, and discuss sources of systematic uncertainties. These results then are

compared to other experimental measurements spanning the TeV−PeV energy scale.
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8.1 Data Set and Event Selection

The HAWC detector in its full configuration of 290 WCDs was in stable data taking mode during the runs

selected for this analysis, amounting to a total of 234 days from 8 June, 2016 to 17 February, 2017. The total

up-time efficiency was ∼ 92% and the mean trigger rate was ∼ 25 kHz. Only runs with angular reconstruction

stability with durations greater than 2 hrs (as described in section 6.3.1) were chosen. Furthermore, only

runs where the number of active PMTs was above 1100 were considered (figure 8.1), as the HAWC detector

simulation employed 1083 PMTs. This amounts to no more than a 2% difference in the effective area

estimation and only in the case that the discrepancy in detector configuration is along the perimeter of the

array.
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Figure 8.1: Detector configuration stability as a function of time and corresponding run number. Only runs

where the number of active PMTs was greater than 1100 were selected, as the nominal detector configuration

in simulation used 1083. This corresponded to the last run (5481) when PMT calibration curves were

generated prior to the selected data set.

In accordance with previous cosmic ray analyses [1], selected events passed a multiplicity threshold of

∼ 6% of the detector. For the nominal detector configuration during this period, the resulting multiplicity

cut was Nhit ≥ 75. The Nr40 ≥ 40 selection cut from section 3.4 was used to ensure the integrated core fit

resolution is below 10 m for energies above 10 TeV. Increasingly harsh Nr40 cuts were also applied to test
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the robustness of the cut, with values between 40–100 in steps of 10. The estimator developed in chapter

4 defined the reconstructed energy variable, and we used the fast grid search method for the maximum

likelihood finding algorithm. Finally, we only consider the first zenith bin θ0 where shower development is

least sensitive to fluctuations due to the smaller atmospheric overburden, which gives the θ0 bin the best

energy resolution above 10 TeV (figure 4.14). The CREAM model described in section 3.3.1 defined the

nominal composition used to build the detector response function. Thus, the following defines the event

selection criteria: core and angle fit success, Nhit ≥ 75, θ ∈ θ0 and Nr40 ≥ 40. Table 8.1 compares the

passing rates from applying these cuts to events in simulation and data.

Prior to constructing the detector response function, the distributions of reconstructed variables involved

in the event selection are reviewed to ensure that the applied cuts are geometrical in nature and do not

introduce bias in an energy dependent manner. As can be seen from the normalized distributions shown in

figures 8.2 – 8.4, neither the Monte Carlo nor the data sets exhibit unexpected structure with respect to the

variables of interest, and agree to within the Monte Carlo statistical uncertainties. We can also consider the

reconstructed energy distribution itself, which is the quantity to be unfolded; however, we do not necessarily

expect that the Monte Carlo and data should match to within at least the different composition models.

The systematics from the composition assumptions are discussed in section 8.4.4.

To get a sense of the scale involved with these events compared to HAWC, figure 8.5 presents three

sample air shower events from the data set. Each is a typical event from its respective reconstructed energy

decade, showing increasing multiplicity and saturation of the detector up to PeV energies. For the lowest

energy event, the largest signals defining the core region just span the 40 m containment area, and most of

the PMTs within have measured signal. Approximately a third of the array’s PMTs do not contain hits.

The Ereco = 100 TeV event spans the entire detector, and the core region extends beyond the 40 m area.

For this event, we also see the clumpy depositions indicative of subshowers and energy being transversely

propagated away from the core during shower development.

Finally, the most energetic shower completely saturates the detector with large charge deposition across

the entire array. Indeed most of the hits are above 100 PEs. Close inspection of the core region reveals PMTs

without signal. This is the result of hits which are beyond the calibrated range of the PMT (q > qmax),

and are “dropped” from the reconstruction algorithms, save for the energy calculation. This is taken into

account by the knowledge that there was a hit of at least qmax, so the energy estimation table contributes

the sum beyond this value to the likelihood calculation, i.e.
∑

qi>qmax

f(qi, ri, θ|E). Despite being used in the

energy estimation, these dropped hits are lost to the determination of Nr40. Thus, this selection criterion

can influence the efficiency for the highest energy events. We find that the energy above which this effect

appears in reconstructed data is 600 TeV.
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Cut Passing Percentage Data Event Rate

Simulation Data [kHz]

No cut (trigger threshold) 100 % 100 % 24.7

Core & angle fit success 99 % 96 % 23.6

Nhit ≥ 75 31 % 23 % 5.7

θ ∈ θ0 8 % 6 % 1.5

Nr40 ≥ 40 2 % 2 % 0.43

Table 8.1: Passing percentages for successive application of event quality cuts in simulation and data,

including the observed event rate in data. The percentages represent the fraction of events that passed the

previous cut, with the set of triggered events being the reference selection.

Figure 8.2: Data to Monte Carlo comparisons of reconstructed multiplicity distributions Nhit/NPMTs and

Nr40, having applied the full event quality cuts as listed in table 8.1.
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Figure 8.3: Data to Monte Carlo comparisons of reconstructed core position distributions, having applied

the full event quality cuts as listed in table 8.1.

Figure 8.4: Data to Monte Carlo comparisons of reconstructed direction distributions θ, φ, having applied

the full event quality cuts as listed in table 8.1.
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Figure 8.5: Sample air shower event charge distributions from the data sample. The reconstructed energy

of the events increases going down the page from top to bottom with Ereco values of 10 TeV, 100 TeV, and

1 PeV, where the uncertainty on each is 0.1 in logEreco. The core location is indicated by the red star, and

the 40 meter circle shows the region used for Nr40.
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8.2 Detector Response

In order to implement the unfolding method of chapter 7, a detector response function must be con-

structed. This function represents the total knowledge of the detector relating the reconstructed variable to

the true quantity of interest. For these spectral measurements, this object is a matrix built from simulation

which connects the probabilities of reconstructed energies to the true energies. Indeed, it encapsulates both

the efficiency to reconstruct a shower of energy E, and migration to a reconstructed energy Ereco, with

probability given by P (Ereco|E). Hence, in accordance with the terminology of the previous chapter, we

make the assignment of the causes as C → E and the effects as E → Ereco.

Since the detector response function is built from a finite amount of simulation, it is subject to statistical

fluctuations. The efficiency ε(E) is smoothed using a spline function so that these fluctuations do not manifest

as spurious features in the unfolded spectrum. Figure 8.6 shows the simulated efficiency compared to the

resulting fit which is used in the unfolding procedure. The detector efficiency grows rapidly up to 10 TeV,

then continues to rise by ∼ 10%, reaching a maximum efficiency of about 1.45 × 10−2 above 40 TeV. This

value corresponds to an effective area of ∼ 45, 000 m2, a little over twice the detector area (Adet = 22, 000

m2). This is expected for the most lenient Nr40 cut, as showers beyond 40 m from the array edges are being

reconstructed closer to the array, boosting Aeff. This can be compared to the effective area first shown in

figure 3.12, where a larger zenith angle range resulted in an Aeff closer to Adet. However, this is due to the

decreased efficiencies for events with greater zenith angles, which reduces the mean Aeff.

The response matrix P (Ereco|E) provided the event selection cuts from table 8.1 is shown in figure 8.7.

Above 10 TeV, its structure is increasingly linear with true energy, with migration limited to a couple of

bins from the diagonal above 200 TeV. Of course, this is simply a two-dimensional representation of the

energy bias and resolution from θ0 in figure 4.14. However, in the response matrix, the normalization

within each E bin equals the total efficiency as first suggested in figure 4.11:
∑
Ereco

P (Ereco|E) = ε(E). This

efficiency is in fact a composition-weighted average of the individual species’ efficiencies considered to build

the response matrix. Figure 8.8 shows the efficiencies for proton, helium, and iron which upon convolution

with the CREAM fits from section 3.3.1 provide the all-particle efficiency. Indeed, it is necessary to assume

a composition model in order to build the response matrix for the all-particle spectral measurement. The

effects from other models are taken into account as systematic uncertainties, presented in section 8.4.4.
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Figure 8.6: Fit to the simulated all-particle efficiency as a function of energy. Within the Monte Carlo

(MC) statistical uncertainties, the simulated efficiency is flat above 30 TeV. The fit efficiency is the result

of fitting an ensemble of splines to the Monte Carlo points, where for each fit, the “MC” values were varied

according to their respective uncertainties. The uncertainties on the final fit efficiency curve represent the

68% containment about the median.

Figure 8.7: The all-particle response matrix, subject to the event quality cuts. The structure is increasingly

linear and bin-to-bin migrations decrease with increasing energy, equivalent to improvement in the energy

bias and resolution.
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Figure 8.8: Comparison of the proton, helium, and iron efficiencies to the all-particle efficiency. Below

∼ 10 TeV, the all-particle efficiency lies between proton and helium, as they are the two most dominant

components in this energy range and due to showers from heavier elements not reaching detector level. Above

10 TeV, the influence of the heavier components becomes apparent, as the all-particle efficiency is just below

that of both proton and helium, yet above iron. The curves for the other species considered lie between

helium and iron, and were omitted for clarity.

There is a tendency to under-reconstruct energies between 10 − 100 TeV, as evidenced by the presence

of more off-diagonal elements below rather than above the diagonal in figure 8.7. There are two potential

contributions to this asymmetry: shower cores landing off of the array and the presence of heavier elements.

This is found to be primarily the effect of showers with core locations that are reconstructed less well, from

cores truly off of the array being reconstructed closer to the edges. This is shown in the response matrices

of figure 8.9, where simulated showers with cores landing truly on and off of the array are selected. Since

the energy tables are built from proton simulation, the energies of heavier elements are expected to be on

average underestimated, as seen in figure 8.10. Yet, comparing the two sets of response matrices, improving

the reconstructed core location is expected to have a greater impact on the linearity of the energy estimation

than a composition cut.
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Figure 8.9: Response matrices for all species where the simulated core lands on (left) and off (right) of the

array. For cores landing on the array, the energy estimation is symmetric above 5 TeV. The origin of the

under-reconstructed energies appears to be from cores landing truly off of the array. The solid diagonal line

provides a guide for the eye for 1:1 correspondence.

Figure 8.10: Response matrices for light and heavy species with standard event selection criteria. There is

a marked turn down from the diagonal below 100 TeV, as reconstructed energies from heavier elements are

more frequently underestimated.



118

8.3 Unfolding

The measured reconstructed energy distribution for the data set given the selection cuts is shown in

figure 8.11, and the values are presented in table A.1. The unfolding procedure takes this distribution, and

accounts for energy migration and efficiencies providing a distribution of expected counts binned in the true

energy, N(E). Of course, cosmic ray fluxes are measured as differential energy spectra. Recalling equation

1.2, we see that to convert the counts distribution to a flux, it is necessary to divide the unfolded N(E) by

the differential quantity dAdΩ dt dE, where the differentials d→ ∆ for finite binning, i.e.

dAdΩ dt dE → Aeff ∆Ω ∆t∆E .

Here the ∆t term is the total observational period in seconds. The spanned opening angle of the observation

is given by the solid angle ∆Ω = 2π(cos θmin−cos θmax). The width of each energy bin gives ∆E. Finally, the

effective area Aeff is summarized by the efficiency ε(E) scaled by the area Athrown over which the simulated

showers are distributed about the detector, and the inclusion of a geometric term as follows:

Aeff(E) = Athrown
cos θmax + cos θmin

2
ε(E) . (8.1)

Since θmin = 0 and θmax = 16.8◦, the geometric term has a small effect on Aeff. The unfolding method,

however, already takes ε(E) into account as per equation 7.4, so only the geometric factor of equation 8.1 is

required.

The unfolded differential spectrum given the reconstructed energy distribution of figure 8.11 is shown in

figure 8.12, and the values are presented in table A.2. The unfolding converged in four iterations, where a

Kolmogorov-Smirnov (KS) test [95, 96] defined the convergence criterion. If the KS test statistic comparing

the unfolded distributions between iterations i and i + 1 results in a p-value less than 0.001, the unfolding

is said to have converged. For this unfolded energy spectrum, the Jeffreys prior was chosen as the starting

distribution, and regularization via a spline fit was applied during the unfolding procedure. Other priors of

power-law form were tested with negligible effect on the final spectrum. A starting prior such as a broken

power law can induce structure for the first iteration; however, the spline regularization typically smooths

this structure with subsequent iterations. Furthermore, we do not start with an a priori assumption that

the spectrum has a break, so we always unfold starting with a Jeffreys prior. These conditions are used for

all unfoldings unless otherwise stated.

At first glance, the unfolded spectrum appears to follow a power law across the depicted energy range.

Indeed, it seems rather featureless over the flux versus energy scales provided. However, if we scale the flux

by the energy raised to the power 2.6, as in figure 8.13, a slight bend in the spectrum is seen. Since the

exponential scaling coefficient is 2.6, the rise of the flux below about 40 TeV implies that the spectrum is
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harder than E−2.6, while above 50 TeV there it appears slightly softer. This apparent bend in the spectrum

will be discussed in section 8.5.2.

Figure 8.11: Observed distribution of Ereco for the data set using Nr40 ≥ 40. The distribution is a convolution

of the detector efficiency and the cosmic ray spectrum. The peak is located at Ereco = 2 TeV, followed by a

steep fall to the highest energies. There is also an apparent change in slope at Ereco = 20 TeV.
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Figure 8.12: Unfolded differential flux of the counts distribution from 8.11 using the detector response

function shown in figures 8.6 and 8.7. The spectrum seems to follow a power law form over the given energy

range. Only the spectrum up to 500 TeV is shown, as will be addressed in section 8.4.3. The shaded region

represents the uncertainty from the Monte Carlo, discussed in section 8.4.2.

Figure 8.13: Energy scaled differential flux from figure 8.12. A turnover in the spectrum is visible in the 50

TeV range. Only the spectrum up to 500 TeV is shown, as will be addressed in section 8.4.3. The shaded

region represents the uncertainty from the Monte Carlo, discussed in section 8.4.2.
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8.4 Systematic Uncertainties

A thorough study of the possible systematic effects has been performed for this analysis. The main

sources of systematic uncertainty considered in this work are the following:

(i) Effects due to the uncertainty in PMT performance properties. This includes the PMT charge resolu-

tion, Qres, and the quantum efficiency, QE.

(ii) Effects due to the reliability of the event selection criterion Nr40.

(iii) Effects from simulating the detector response, specifically the uncertainty due to the limited Monte

Carlo statistics used to build the P (Ereco|E).

(iv) Effects related to the assumed composition model used to build the response function.

(v) Effects from the hadronic interaction engines used in the air shower simulations.

Table 8.2 summarizes the various contributions to the overall systematic error in three energy bins. With the

exception of the effects from the CREAM model fit uncertainties, each systematic was determined by gen-

erating a Monte Carlo data set, building a response function from that set, and unfolding the reconstructed

data. The resulting fluxes are then compared to the nominal response for that systematic, providing an

estimate of the systematic uncertainty via the fractional difference

σsys = −F −Fnominal

Fnominal
. (8.2)

This ensures that the systematic quoted is in fact a systematic uncertainty on the data themselves. The

minus sign is necessary to account for the fact that the data themselves are fixed. If, for example, we were

to compare the reconstructed energy distributions from the various Monte Carlo data sets and unfold them

with the nominal model for that systematic, the minus sign would be absent. In this case, the shifts in the

unfolded fluxes follow the shifts from their respective Monte Carlo Ereco distributions. For keeping the data

fixed and varying the response functions, the resulting fluxes move in the opposite direction. For the figures

in this section, ratios of unfolded fluxes are shown which include statistical uncertainties, though due to the

large data sample they are smaller than the marker size.
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10 TeV 100 TeV 1 PeV

PMT QE ±6% ±8% ±9%

PMT Qres −3% −5% −10%

Simulation ±8% ±8% ±8%

Composition Model −16/+5% −4/+3% ±3%

Hadronic Int. Model +5% +10% −4/+2%

Total −20/+12% −14/+15% −20/+13%

Table 8.2: Summary of various systematic uncertainties at three energies.
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8.4.1 PMT Charge Resolution and Quantum Efficiency

Systematic uncertainties due to the understanding of PMT response arise from two contributions. First

is the instrinsic PMT quantum efficiency (QE), which quantifies the conversion of an incident photon to a PE

and subsequent collection of that PE in the PMT dynode chain. Typical values of QE range between 20–30%,

yet determining the absolute QE is not possible with the calibration system itself, as it requires establishing

the efficiency of the calibration system’s integrated optical path to the PMTs more precisely than is known.

Futhermore, the calibration system’s laser emits green light and QE estimation must be extrapolated for

application to blue Cherenkov light. The absolute efficiency instead is established by identifying vertical

muons passing through WCDs via the PMT signal times. The simulated response to vertical muons is then

scaled to match the data. Nevertheless, we conservatively vary the QE in simulation by 10%. The resulting

uncertainty in the unfolded flux grows from about 6% to 10 % with increasing energy, as shown in figure

8.14. This is expected as an increase in light collection also increases the detection efficiency for showers of

a given energy, and vice versa.
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Figure 8.14: Fractional differences of unfolded fluxes from the nominal PMT QE value varied by 10%. The

effect of varying the QE slowly changes with energy, as a linear increase or decrease in the PMT efficiency

translates directly to a similar change in the detector efficiency or Aeff.
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PMT charge measurements can also vary for a fixed illumination on the photocathode. We summarize

this by the charge resolution, Qres, estimated to be between 10− 25% from the calibration system. This is

evaluated by smearing the measured charges in simulated air showers by 10% and 25% both in charge and in

the logarithm of the charge. Despite the wide range of charge resolutions, we find that the resulting unfolded

spectrum varies by 5%, except at the highest energy where it reaches 9%. The fractional differences between

the smearing functions and the nominal 10% in the logarithm of the charge are shown in figure 8.15. Based

on this comparison, the nominal simulation gives a conservative upper limit on the flux.
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Figure 8.15: Ratios of unfolded fluxes to the nominal 10% logQ smearing using various charge smearing

functions. At the lowest energies, the variation between the smearings is similar because these showers are

dominated by O(1 PE) hits, as shown in figure 8.5. For such low PE values, smearing by Q or logQ is

similar. However, with increasing charge values, the logarithmic scaling skews smearing towards increased

charge relative to the linear scaling.
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8.4.2 Detector Simulation

As discussed in section 4.3, the energy resolution above 10 TeV given the base event selection criteria

is estimated at ∼ 25%. It is not considered to be a source of systematic uncertainty, as it is built into the

response matrix for the unfolding procedure. However, the limited Monte Carlo statistics used in determining

P (Ereco|E) were taken into account as a source of uncertainty. This is defined as V MC from section 7.2.2.2

and we use the multinomial expression of equation 7.15. We include this as a pseudo-systematic because it

does not arise from the data themselves; however, it is also clear that an increase in Monte Carlo statistics

reduces the effect of V MC. Furthermore, the value itself depends on the selection cuts, as increasingly harsh

criteria reduce the size of the Monte Carlo sample for building P (Ereco|C). The estimated Monte Carlo

uncertainties for the basic event selection including several Nr40 cuts are shown in figure 8.16. As will be

shown in section 8.5.2, we include the Monte Carlo systematic (in addition to the statistical uncertainty

from the data) when fitting the unfolded spectrum to power law forms.
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Figure 8.16: Estimated fractional uncertainties from the Monte Carlo data sample for the various Nr40 cuts.

For increasing cut severity, the number of Monte Carlo events used to build the response function drops, so

the uncertainty rises. Since the value is calculated via equation 7.15, it is a symmetric uncertainty applied

to the unfolded flux.
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8.4.3 Nr40 Selection Criterion

As previously mentioned, the Nr40 criterion was varied widely to test the robustness of the cut and the

stability of the unfolded spectrum. The tested values were from 40–100 in steps of 10, and the ratios of the

unfolded fluxes to the baseline cut are shown in figure 8.17. For reference, Nr40 = 100 corresponds to about

half of the PMTs within a 40 m radius from the core, as this containment area holds approximately 240

PMTs. With a cut this strong nearly all cores are expected to be reconstructed on the array. This is shown

in figure 8.18 where the increased linearity in energy response for Nr40 ≥ 100 is clear. Of course, the harsher

cuts reduce the total number of events and thus the efficiency of the detector which from figure 8.19 appears

to scale linearly with cut severity.

The saturation of PMTs above their calibrated charge thresholds results in hits being omitted in the

calculation of Nr40. As events with the highest energies tend to saturate the detector, this begins to affect

the detector efficiency above 600 TeV. This can be seen as a rapid drop in the fractional difference relative

to the Nr40 ≥ 40 spectrum in figure 8.17, as well as the drop in efficiency at high energies for high cut

thresholds in figure 8.19. The Monte Carlo simulation takes this hit loss into account as seen at the highest

energies in figure 8.19, yet, including its effect in the effective area to the precision necessary for spectral

measurements is difficult, as the curvature of this drop is abrupt.

Hence, we only consider energies up to 500 TeV, where the effect of this hit dropping remains negligible.

For the purposes of this study, we do not consider the variations from the Nr40 cut as a systematic uncertainty

on the reported spectrum. Instead, we use the cuts to demonstrate that the unfolded spectra are stable to

within 10% up to 500 TeV, and the resulting fits are consistent to within Monte Carlo uncertainties, as will

be discussed in section 8.5.2. For this reason, we use Nr40 ≥ 40 for the definitive selection criterion, as its

Monte Carlo uncertainties are the least (10% from figure 8.16) among the Nr40 cuts. Finally, it is clear

that with an improved consideration of these hits both in the reconstructed data and the Monte Carlo, the

HAWC Observatory has the capability to investigate the knee region.
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Figure 8.17: Variation of the unfolded energy spectrum from increasingly harsh Nr40 cuts. Only values in

steps of 20 are shown here for ease of viewing, and Nr40 ≥ 40 defines the nominal cut value.

Figure 8.18: The response matrix for Nr40 ≥ 100 selection. The improved energy response can be compared

to figure 8.9 for the selection of true cores landing on the array.
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Figure 8.19: Efficiency curves for several Nr40 cuts. With increasingly harsh cuts, the efficiency scales from

loss of events. There is also a drop in efficiency above 600 TeV for the harshest cut as a result of PMT

saturation leading to hit loss.
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8.4.4 Composition Model

We considered two contributions to the uncertainties from the assumed composition models. The first

arises from the fit uncertainties to equation 3.4 in defining the nominal CREAM model. We quantified this by

varying the fit parameters to within their estimated uncertainties, obtaining the model’s contribution to the

uncertainty in the unfolded flux. The distribution of reconstructed energies was weighted for each variation of

the elemental spectra, which was then unfolded. The resulting median and 68% containment region defines

the resulting flux uncertainty. This amounted to less than 3% uncertainty for all energies, shown as the

blue band in figure 8.20. We also considered three other widely used models: H4a [68], Polygonato [67],

and the Gaisser-Stanev-Tilav model (GST4-gen) [97]. The H3a model also presented in [68] was considered;

however, the unfolded spectrum was within < 1% of the unfolded spectrum using the H4a model, so we

simply quote the H4a result. The compostion models are shown together for comparison in figure 8.21. In

all, the systematic uncertainty due to the assumed composition is ∼ 6% between 10 − 100 TeV, increasing

to ±12% above 100 TeV, where the uncertainty in direct detection measurements is maximal.

Figure 8.20 also shows the ratios of the unfolded fluxes using all compositions relative to the baseline

CREAM model. We take the full range spanned by the models in each energy band (including the CREAM

uncertainty band) as a conservative estimate of the systematic uncertainty, as we have assumed no preference

for any one model. Above 100 TeV, the unfolded spectra agree to within 5%, the same order as simply varying

the CREAM fit parameters. The greatest deviation from the nominal model comes from H4a, providing an

uncertainty of 15% at 10 TeV. This is due to the significantly larger contribution of heavy elements (>He) to

the model as compared to the other three as shown in figure 8.21. This has the effect of reducing the effective

area since Aeff is an abundance-weighted average for all species. The greater presence of heavier elements also

induces increased energy migration such that reconstructed events at lower energies are promoted towards

higher energies in the unfolded flux.

Figure 8.22 shows the elemental abundances relative to the all-particle spectrum for each model. In-

deed, it is the fractional abundances that are most relevant for constructing the response function, as∑
Ereco

P (Ereco|E) = ε(E) so the overall flux normalization for each is not important. Yet from figure 8.20 we

see that the CREAM, Polygonato, and GST4-gen models are relatively insensitive to variations in the proton

to helium ratio, particularly since there is a wide range in their crossing point between models. This suggests

that the detector’s response to proton and helium is similar enough to probe their combined spectrum.
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Figure 8.20: Ratios of unfolded fluxes using various compositions to the nominal CREAM model. The

blue band indicates the 68% containment range of unfolded fluxes having varied the CREAM model by its

estimated uncertainties from table 3.2.
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Figure 8.21: Scaled fluxes of the four composition models considered. Clockwise from upper left: CREAM,

Polygonato [67], H4a [68], GST4-gen [97]. The black curves in each panel represent each model’s all-particle

flux.
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Figure 8.22: Fractional abundances of the species in the various composition models. Clockwise from upper

left: CREAM, Polygonato [67], H4a [68], GST4-gen [97].
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8.4.5 Hadronic Interaction Model

We also considered the systematic uncertainty from different hadronic interaction models by comparing

the nominal simulation using QGSJet-II-03 [61] to the EPOS [62] and SIBYLL [63] high energy models.

Each model consists of fits and extrapolations to nucleon cross section data from accelerators. The results

of comparing the unfolded spectra are shown in figure 8.23. The EPOS model agrees to within 2% of the

nominal simulation, while the SIBYLL model is systematically higher for all energies. Studies from groups

such as the GRAPES-3 air shower experiment [30] found that for a fixed composition assumption, the choice

of hadronic interaction model influenced the relative abundance of the species arriving at ground level. They

found this was primarily due to model differences in determining the point of the first interaction. As the

simulated data sets for these models was smaller than the nominal set, a more thorough analysis of the origin

of these discrepancies was not possible. Still, we include this as a source of systematic uncertainty using the

observed ranges of unfolded spectra.
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Figure 8.23: Ratios of unfolded fluxes using two hadronic interaction models to the nominal QGSJETII-3

model.
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8.5 Discussion

8.5.1 Regularization

The effect of regularization was investigated to ensure that it did not introduce bias in the shape of

unfolded spectra. We compared unfoldings with power law regularization, spline smoothing, and no reg-

ularization. Figure 8.24 shows the results of three such unfoldings using the same data set and response

function. The regularized spectra converged in three iterations, while the unsmoothed unfolding required

five. We find that the spectra are spread by no more than 5%, except at the highest energies, where the

width of the energy resolution is of the order of the response matrix bin width, i.e. less than 0.1 in logE.

We also see that the form across all energies of the unfolded spectrum is unaffected.

Figure 8.24: The effect of regularization on the unfolded all-particle spectrum. Systematic uncertainties are

not shown to highlight only the unfolded data. Regularization was found to not influence the result to within

several percent.

If the convergence criterion were to be made extremely harsh, for example requiring the KS statistic

to be < 10−10, we would see no change in the regularized spectra. However, the un-regularized unfolding

attempts to fit precisely to the detector response matrix, which is a discrete function, resulting in sharp

peaks. In principle the matrix could be binned more finely. However, separating the Monte Carlo statistics

into smaller bins could potentially mask trends in the efficiency curve when smoothing, as well as increase the

uncertainty from Monte Carlo statistics for each bin. If instead of being represented by a matrix the response

were a smooth, continuous function, this oscillation effect would be absent. Though the three methods agree
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to within a few percent, we chose the spline smoothing as a compromise between the potentially shape

enforcing power law regularization and the completely unregularized unfolding. The spline function ensures

that neighboring points are smoothly connected, so underlying features should manifest in the unfolded

spectrum.
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8.5.2 Fit to Power-Law Type Functions

The scaled differential flux for all Nr40 selection cuts reveals a feature which is not well described by a

single power law within statistical uncertainties. This structure is shown in figure 8.25 including statistical

and Monte Carlo uncertainties. The feature at ∼ 40 TeV implies a change in the spectrum, so it was fit to

a broken power law of the form of equation 3.4 in addition to a single power law. For the Nr40 ≥ 40 set,

the difference in goodness of fit is ∆χ2 = 29.2, which for a difference in degrees of freedom between the two

models (∆dof = 2), results in a p-value of 4.6× 10−7. Thus the broken power law is the favored model, and

the fit suggests a change in spectral index of about −0.2 at a break energy of Ebr = 45.7 TeV. We performed

the fits for the seven cut values of Nr40, which are presented in table 8.3.

Since the Nr40 variable’s main effect is to pull reconstructed cores, and by extension true cores, onto the

array, the increasing of the cut severity should improve constraints on the spectral shape. If, for example, the

under-estimated energies from poor core fits induced a feature in the spectrum, then Ebr should shift with

different cuts. Yet, the fit values from table 8.3 do not deviate more than a few percent, demonstrating that

the detector response linearity for even the Nr40 ≥ 40 cut is sufficient to unfold the spectrum. Figure 8.7

also suggests this, as the contributions from mis-reconstructed cores are an order of magnitude lower than

the peak along the diagonal. Indeed, the normalizations and spectral indices for all selection criteria agree

to within 3%, and the location of Ebr is spread by no more than 15%. This range, log 45.7− log 40.9 = 0.05,

is of the order of the binning, ∆ logE = 0.1, so the fit Ebr are within the resolution of the energy spacing.

Of course, the estimated uncertainties on the normalization increase with the Nr40 cut, which simply reflects

the fact that the Monte Carlo sample filling the response function is reduced for each cut. Hence, we report

the unfolded spectrum using the Nr40 ≥ 40 data set.

The efficiencies for all values of Nr40 are still rising just prior to the break range, as previously shown

in figure 8.19. This potentially makes constraining the spectral shape dependent on precisely where the

efficiency reaches its plateau value. And since the efficiencies scale nearly linearly with the cut severity, there

is little differentiation manifested in the unfolded spectra. Since the efficiencies themselves exhibit curvature

in this region, one might expect a similar bending of the unfolded spectrum if the response was not modelled

sufficiently well. In this analysis, there is no indication of curvature below Ebr in the unfolded spectrum.

Furthermore, by simply forcing the efficiency to be flat between 10 TeV ≤ Ereco ≤ 30 TeV, the unfolded

flux would maintain the spectral change observed in the measured Ereco distribution from figure 8.11. As

a final check, we also simulated single power law spectra to determine whether a spectral break is induced

by application of the detector response function, or is retained if a broken power law is injected instead.

Figure 8.26 shows two such Ereco distributions from simulated spectra compared to data. The single power

law with γ = −2.7 does not induce a break in the reconstructed energy distribution; however, the broken
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power law with parameters similar to the fit values from data exhibits structure akin to that of the observed

distribution.

Figure 8.25: Fits to the unfolded flux with Nr40 ≥ 40 using single and broken power law forms. The

uncertainties on the data are from the Monte Carlo data set. The broken power law is favored, as ∆χ2 = 29.2,

giving a p-value of 4.6× 10−7.
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Nr40 Cut A[10 TeV] ×10−7 γ1 γ2 EB [TeV]

[GeV s m2 sr]−1

40 6.46± 0.77 −2.49 −2.71 45.7

50 6.37± 1.14 −2.49 −2.69 42.3

60 6.43± 1.06 −2.51 −2.67 41.2

70 6.38± 1.29 −2.51 −2.66 40.9

80 6.36± 1.79 −2.51 −2.67 41.0

90 6.38± 2.29 −2.50 −2.68 41.1

100 6.34± 2.71 −2.49 −2.70 41.7

Table 8.3: Results to fitting unfolded spectra to a broken power law of form given in equation 3.4. Fits were

performed considering only the statistical uncertainties in the flux measurements. The fit uncertainties for

both spectral indices were all found to be ±0.01, and ±0.1 TeV for the break energies.
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Figure 8.26: Simulated Ereco distributions (normalized) from injected power law spectra compared to data.

The single power law with an index of γ = −2.7 does not induce any break-like structure in the reconstructed

distribution. The broken power law with γ1 = −2.5, γ2 = −2.7, and Ebr = 40 TeV does maintain a break in

Ereco, similar to that of the observed data distribution. Only the statistical uncertainties are shown for ease

of viewing.
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8.5.3 Comparison to Other Experiments

A comparison of the unfolded all-particle spectrum to other experimental results is shown in figure 8.27.

Including an exhaustive list of other measurements makes comparison on a single frame difficult, so a selection

from the most recent results (< 20 yrs) is presented here. Above 100 TeV, there remains agreement with

the final ATIC [24] data point though it has statistical uncertainty greater than the HAWC systematics.

The HAWC measurement is systematically higher than measurements from other ground based experiments

such as GRAPES-3 [30] and the Tibet-III [98] arrays, but consistent within the systematic uncertainties.

Indeed, these discrepancies can be understood as arising from differences in the experiments’ energy scale

calibrations. For example, a 10% systematic shift in energy results in a more dramatic ∼ 30% shift in

the energy scaled flux. The ARGO-YBJ spectrum [99] is also lower and appears harder with an index of

−2.62± 0.03 until ∼ 700 TeV where it softens, so the energy scaling effect does not address this discrepancy

in spectral shape. For comparison, the spectral index as measured by Tibet-III between 150–1000 TeV is

−2.68 ± 0.02, where the uncertainties quoted are statistical and whose value is consistent with those of γ2

presented in table 8.3.

We see that in the 10 TeV range, the HAWC spectrum is consistent with the ATIC all-particle mea-

surement [24], including its rise to 30 TeV. The slightly steeper spectrum below 50 TeV is also mirrored,

though not as strongly, in the GST4-gen model, which also depicts a downturn in the 50–60 TeV region. The

ARGO-YBJ light-component (proton and helium) measurement [28] does not indicate a spectral hardening

at these energies, having a constant slope of −2.61 ± 0.04 from 5–280 TeV. There is evidence reported by

CREAM [23] of a hardening of the helium spectrum between 10–30 TeV (shown in figure 1.9), with both

proton and helium subsequently becoming softer, though CREAM only reports a single power law index

for each species: −2.66 ± 0.02 and −2.58 ± 0.02, respectively. For the nominal composition model used in

this work, the broken power law fits from table 3.2 do indicate spectral hardening; however, these fits were

merely used to extrapolate composition data into the > 10 TeV regime. The ATIC combined proton and

helium measurement also shows evidence of a spectral hardening, though it peaks near 12 TeV [24]. Figure

8.28 shows a closer view of this region, comparing the ATIC, CREAM, and HAWC spectra. The stronger

energy scaling (E2.75) of the ordinate reveals consistent spectral forms, with a potential kink between 20–40

TeV for ATIC and a clear break at 30 TeV for CREAM. Since the light component comprises ∼ 90% of the

all-particle flux, these direct detection experiments suggest that proton and helium are responsible for the

structure observed in the HAWC measurement.

The HAWC all-particle cosmic ray spectrum exhibits agreement within estimated systematic uncertainties

with various experiments from 10–500 TeV. The measurement demonstrates that HAWC can extend the

reach of ground-based air-shower arrays into the energy range covered by direct detection experiments.



141

Furthermore, it is with a single experimental technique that the HAWC spectrum bridges these regions.

It is also evident that HAWC has the potential to extend the spectrum up to PeV energies to probe the

knee. However, as the current event quality selection limits the range to around 500 TeV, an improved

understanding of the detector response to the highest energy events is needed.
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Figure 8.27: Comparison of the measured all-particle spectrum from HAWC to other experiments. The

energy flux is scaled by E2.6 for ease of viewing over the energy range spanned by all measurements. The

HAWC spectrum corresponding to the Nr40 ≥ 40 cut has been used. Direct detection measurements are

from ATIC [24] and CREAM [23]. Air shower array data are from ARGO-YBJ [99, 28], GRAPES-3 [30],

IceTop [100], and Tibet [98]. The two composition models are Polygonato [67], and GST4-gen [97].
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Figure 8.28: Comparison of the HAWC spectrum to the all-particle measurement by ATIC [24] and the light

component (proton and helium) by CREAM [23]. The energy flux is scaled by E2.75 for ease of viewing, and

the dashed line is the broken power law fit to highlight the location of Ebr.



144

Chapter 9

Cosmic Ray Anisotropy

The sky maps presented in this chapter probe the energy dependence of a previously observed [1, 41, 42]

localized excess of cosmic rays, which we refer to as Region A. We again employ the energy estimation

method used for the Moon shadow and cosmic ray energy spectrum, permitting an improved measurement

of the evolution of Region A with energy. Using an extended data set from that used in the Moon shadow

analysis, we first demonstrate an updated view of the anisotropy across the full field of view. Next we show

a spectral measurement of Region A relative to the all-particle spectrum across the sky.
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9.1 Data

9.1.1 Event Selection

The runs selected for this analysis spanned 622 days from 16 April, 2015 to 17 February, 2017, ensuring

that the full 290 WCD detector configuration was in stable data taking mode. The total up-time efficiency

during this period was ∼ 92% and the mean trigger rate was ∼ 25 kHz. For the background estimation

used in making maps, direct integration with periods of 4 and 24 hrs were used. The event sample for the

4 hr integrated maps comprises 6.9× 1010 events with a total live time of 546 days. The 24 hr maps had a

reduced coverage of 200 days, and a total of 2.4× 1010 events.

The same multiplicity criteria from the Moon shadow analysis were used, namely Nhit ≥ 75 and Nr40 ≥

40. We also included showers with θ ≤ 60◦ giving a resulting passing rate of ∼ 2%. Increasing the zenith

range was important to extend observations beyond Region A, whose lower edge around δ = −20◦ lies within

a few degrees of the θ ≤ 45◦ cut used for the Moon shadow.

As cosmic rays are more abundant than diffuse γ rays by a factor of ∼ 104, no gamma/hadron selection

cuts were used. As a result, the strongest γ ray source visible to HAWC, the Crab Nebula SNR (α =

83.5◦, δ = 22◦), is visible in several maps as an extended disc the same dimensions as the smoothing radius,

though due to its distance being greater than the applied smoothing radius, it does not influence the spectral

measurement of Region A.

9.1.2 Energy Binning

The same Ereco analysis bins from the Moon shadow analysis were used for studying the cosmic ray

anisotropy. Again, each bin was of size 0.2 in logEreco from 1–160 TeV. The estimated mean energy of each

bin was determined by sampling the same table shown in figure 6.9, and the values corresponding to the

10◦ area centered about Region A are shown in figure 9.1 and table 9.1. The all-sky maps presented here

correspond to the same reconstructed analysis bins, which for specific locations on the sky have different

local zenith distributions. Thus, there is a slight shift in energy of a few TeV with increasing distance in

declination, shown in figure 9.2. This is attributed to an increasing energy threshold with increasing zenith

angle, as cosmic ray primaries and their showers must pass through greater atmospheric overburden. For a

specific declination such as that for Region A, we estimate the mean energy for each analysis bin, yet when

viewing the all-sky maps, one must keep this declination-dependent energy shift in mind.
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Figure 9.1: Mean energies of analysis bins defined in table 9.1. The bounds on Ereco are simply the bin

width definitions, while the uncertainties of the ordinate represent the 68% containment region.

Analysis Bin logEreco/TeV Ē [TeV] σ+
E σ−E

0 0.0− 0.2 0.741 0.711 0.286

1 0.2− 0.4 1.21 1.68 0.51

2 0.4− 0.6 2.08 2.91 0.84

3 0.6− 0.8 3.71 4.75 1.44

4 0.8− 1.0 6.32 6.55 2.42

5 1.0− 1.2 10.3 8.42 3.7

6 1.2− 1.4 16.4 10.1 5.5

7 1.4− 1.6 26.3 13.4 7.8

8 1.6− 1.8 43.4 17.8 11.2

9 1.8− 2.0 70.1 23.7 15.6

10 2.0− 2.2 125.5 33.5 24.0

Table 9.1: Estimated true mean energies for the analysis bins defined by Ereco. The bounds indicated by σ±E

represent the 68% central containment region and are quoted in the same units as E.
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Figure 9.2: Median energy (from simulation) as a function of declination. Farthest away from HAWC

(δ = 20◦), the median shifts by about a few TeV. The band indicates the 68% central containment region.
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9.2 All-Sky Maps

9.2.1 Significance Threshold

The significances shown in the maps are considered pre-trial, as they have been calculated without

considering the “look elsewhere” effect. To correctly account for this, a large ensemble of isotropic sky

maps with the same exposure as the data would need to be constructed. However, this is computationally

prohibitive given the high pre-trial significances observed. Instead we make a conservative correction by

estimating that the number of independent pixels in the sky map is of order Npix. The true factor is in

fact much smaller because the act of smoothing reduces the number of truly independent pixels by about a

factor of the smoothing area. Furthermore, since other experiments including HAWC already have observed

Region A this is not a blind search of the data. This correction factor sets a pre-trial significance of 7.12σ

as the value necessary to reach a detection threshold of 5σ post-trail significance. Yet despite the large

trials factor, Region A maintains a strong post-trials significance value of ∼ 21σ in both the 4 hr and 24 hr

bin-combined maps.

9.2.2 All Sky Anisotropy

An event map was made for each energy bin, from which both relative intensity and significance maps

were generated. A value of Nside = 256 was used, giving each pixel an angular size of 0.13◦, and amounting

to a total pixel count in the field of view of Npix = 639692. Unlike the Moon shadow which behaves as a

point sink of cosmic rays, the unsmoothed sky maps do not reveal the large regions of cosmic ray anisotropy.

Since the scale of these underlying structures is of the order > 10◦, maps were smoothed by this amount.

The smoothed all-sky maps combining all energy bins using 24 hr integration are shown in figure 9.3.

The most prominent feature in both maps is the localized excess centered around α = 60◦, δ = −10◦,

which in accordance with figure 1.14 from [1], we call Region A. There is also the significant presence of a

large scale feature, the dipole anisotropy, which is most prominently seen as the large area of deficit near

the center of the maps. Its relative intensity is of order 10−3, similar to that of Region A. The manner in

which to account for the presence of this large scale anisotropy is to fit the monopole, dipole, quadrupole,

and octopole components, and subtract them to obtain a residual relative intensity map. The result from

removing the large-scale structure from the combined analysis bins is shown in figure 9.4, where during the

map generation, a region of interest mask of 20◦ radius centered on Region A was used. We see that the

overall effect on Region A is a reduction in relative intensity and significance, yet it remains above the 7.12σ

threshold.
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Masking Region A and removing the large-scale components is the appropriate manner to extract the

small-scale structure within which Region A resides. Unfortunately, the four lowest energy bins (741 GeV–

3.7 TeV) had limited ranges in declination caused by a zenith angle threshold of lower energy events. This

resulted in poorly fit multipole harmonics, so the large scale structure subtraction was not feasable. Instead,

we used a 4 hr integration time, which effectively removes features of angular size > 60◦. The ∼ 10◦ scale of

Region A prevented the use of the ROI mask, as it grossly exaggerated the estimated significance because

the mask itself (40◦ diameter circle) was of similar order to the integration duration (4hr× 15◦hr−1 = 60◦).

Yet, from the analysis of the Moon shadow we know that the action of not masking places a lower bound

on the strength of Region A. Furthermore, using this shorter integration duration permitted the use of more

than twice the number of events, as runs with > 4 hr stability could be included. The all-sky maps using 4

hr integration and 10◦ smoothing are presented in figure 9.5. Comparison to the 24 hr multipole subtracted

maps demonstrates that, indeed, the small-scale structure remains in the 4 hr integrated maps.
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Figure 9.3: All-sky relative intensity (top) and pre-trial significance (bottom) maps for all analysis bins

combined. Twenty-four hour integration was used for the reference map estimation, and 10◦ smoothing was

subsequently applied. The strongest excess visible is Region A, which is also the most significant.
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Figure 9.4: All-sky relative intensity (top) and pre-trial significance (bottom) for all analysis bins after using

an ROI mask of 20◦ centered on Region A, and removal of the first four multipole components of the large

scale structure. There is a reduction in the relative intensity and significance of Region A, yet it maintains

its morphology, and the large scale effects are no longer present.
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Figure 9.5: All-sky relative intensity (top) and pre-trial significance (bottom) for all analysis bins using 4

hr integration and 10◦ smoothing. The small-scale structure is qualitatively similar to that for the 24 hr

maps with ROI masking and multipole subtraction (figure 9.4). Region A itself becomes slightly elongated

in declination in the 4 hr map, yet retains its width in right ascension. We also see the presence of deficits

on either side of Region A, a result of its inclusion during the background estimation, as ROI masking was

not possible.
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9.3 Energy Spectrum of Region A

Previous work using the 111 WCD HAWC configuration [1] indicated that the spectrum of Region A

is harder than the all-sky spectrum. This was first suggested by the Milagro Observatory [41], as well as

subsequent observations by ARGO-YBJ [42]. These studies also indicate a potential cutoff of the spectrum

around 10 TeV; however, the statistics at the highest estimated energies are insufficient to definitively

establish the presence of such a feature.

A detailed unfolding of the energy spectrum of Region A is complicated by the need to precisely sim-

ulate the detector response over the long observation periods required for significant measurements of the

anisotropy. However, the nature of the reference estimation technique and the calculation of the relative

intensity inherently normalize these effects. Thus we use the relative intensity as a function of energy as a

robust measure of the spectrum of Region A.

Using the map of combined analysis bins as shown in figure 9.6, we chose the point of maximal significance

within 10◦ of the previously reported center of Region A to evaluate the spectrum. This corresponds to the

point (α = 62.2◦, δ = −3.3◦). For reference, the previous maximally significant location of Region A is

(α = 59.2◦, δ = −7.2◦). The lowest energy bin (741.1 GeV) was omitted from the analysis due to its low

event count (< 15% of the next analysis bin) and because its lower declination range was within the 10◦

smoothing radius from Region A’s lowest edge. We also combined the last four energy bins into a single

map, as beyond 26.3 TeV Region A was found to be not significant.

The measured relative intensity at the maximally significant point is shown in figure 9.7. The spectrum

from HAWC-111 is shown for comparison, where the improved energy resolution is evident. Despite similar

statistics (8.6×1010 events), the previous measurement did not utilize a core constraining selection criterion,

and implemented an energy estimator based on the event multiplicity. This resulted in overlap across multiple

energy bins and larger uncertainties in the relative intensity at the highest energies. The likelihood energy

estimator bins events in a manner more closely related to the cosmic ray spectrum, constraining the shape

both in energy and relative intensity. Indeed, the spectrum from this analysis is less steep considering the

highest point from the previous measurement, yet the two are consistent both in shape and normalization.

We fit the relative intensity spectrum using a function of the form a + b × logE, where the slope b is

defined as the spectral shape parameter. The best fit value of b to the spectrum in figure 9.7 was found to be

(2.3±0.5)×10−4 with a reduced χ2 of 4.88/5. The fit was also performed for the remaining pixels in the maps

to obtain the distribution of slopes across the sky shown in figure 9.8. The distribution of b is approximately

Gaussian, with a fit mean of −0.05×10−4 and a width of 0.74×10−4. From this we estimate the significance

of the slope of Region A as 3.3σ from the all-sky mean. We also fit the spectrum with b = 0, effectively

a constant normalization condition, resulting in a reduced χ2 of 27.42/6. The difference ∆χ2 = 22.54 for
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∆dof = 1 degree of freedom, gives a p-value of 2.06× 10−6, further supporting the interpretation of a harder

spectrum.

While the hardness measured here is not as significant compared to all-sky spectra as reported in [1]

(5.2σ), the reduced uncertainties in the relative intensity do represent a stronger constraint on its shape.

Indeed, there is an indication in figure 9.7 that there may indeed be a cutoff around 10 TeV; however, a

larger data sample is required to futher explore this energy regime. The maps showing the evolution of

Region A with energy are presented in figure 9.9.

Figure 9.6: The relative intensity (left) and significance (right) of Region A for all analysis bins. The peak

significance is 21σ and is located at (α = 62.2◦, δ = −3.3◦), which we use for measuring the energy spectrum.

For reference, the center of Region A from [1] is (α = 59.2◦, δ = −7.2◦). Visible in the upper left corner of

the significance figure is part of a circle centered on the Crab Nebula.
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Figure 9.7: Spectrum of Region A in relative intensity as a function of energy. The previous measurement

reported in [1] is shown in blue for comparison.

Figure 9.8: Distribution of slopes, b, from fitting a + b logE to points in the maps. Pixels within 20◦ of

Regions A, B, and C, as well as the Crab Nebula were not included. The green curve represents the Gaussian

fit to the distribution, which is used to estimate the significance of the value of b from Region A.
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Figure 9.9: Evolution of Region A with energy. The relative intensity (left column) and significance (right

column) for the analysis bins in which Region A contained significant pixels. The figures continue for

increasing energy over the next two pages.
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Chapter 10

Conclusions

A likelihood based energy estimation technique has been developed, allowing for improved energy recon-

struction for cosmic ray studies with HAWC. It has been used in the context of three analyses: evolution

of the cosmic ray Moon shadow with energy, the all-particle cosmic ray energy spectrum, and the energy

dependence of the most significant excess of the cosmic ray anisotropy.

The cosmic ray Moon shadow was observed in ten bins in reconstructed energy, allowing for a detailed

analysis of its deviation in right ascension, including an observed offset in declination. The centroid of

the shadow shifted in accordance with charged particle propagation through the Earth’s magnetic field, as

determined via a novel GPU simulation.

The utility of the GPU simulation extends beyond the study of the Moon shadow. In fact, it is currently

being adapted to investigate the much weaker cosmic ray Sun shadow, which is complicated by the addition

of the Solar magnetic field. This field is less well-measured than the Earth’s, so using the GPU simulation will

allow the testing of model uncertainties and their effect on the expected Solar shadow. The GPU toolkit can

also be used in the context of testing models of cosmic ray propagation within the Galaxy and investigating

mechanisms potentially giving rise to the observed anisotropy.

With an understanding of the energy scale based on the Moon shadow observations, the all-particle

cosmic ray energy spectrum was measured between 10–500 TeV. There is an indication of a change in the

spectral index around 40 TeV, which is consistent with the evidence of spectral hardening of the helium

spectrum, and subsequent softening of both protons and helium which has been observed by the CREAM

and ATIC direct detection experiments. HAWC is also capable of investigating the PeV scale in order to

probe the spectrum of the knee region; however, an improved core quality criterion is required to reach these

energies. With the currently planned and funded HAWC outrigger extension, the simple Nr40 criterion may

well become obsolete, as the larger coverage will permit enhanced event selection.

Finally, we studied the energy dependence of the cosmic ray anisotropy, specifically, the spectrum of the

differential relative intensity of Region A. We find that the spectrum of Region A is consistent with being

harder than the isotropic cosmic ray background, in agreement with previous observations. We also see
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evidence of a cutoff around 10 TeV, and due to the improved energy estimation, a stronger limit on the

shape of this feature should be accessible to HAWC in the near future.
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[87] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih, PyCUDA and PyOpenCL:
A Scripting-Based Approach to GPU Run-Time Code Generation, Parallel Computing 38(3), 157
(2012).

[88] J. P. Boris, Relativistic Plasma Simulation - Optimization of a Hybrid Code, Proceedings of the Fourth
Conference on Numerical Simulations of Plasmas (Naval Research Laboratory, Washington, D.C.), p.
3, (1970).

[89] H. Qin et al., Why is Boris algorithm so good?, Physics of Plasmas 20(8), 084503 (2013).

[90] A. Abeysekara et al. (HAWC Collaboration), The Sensitivity of HAWC to Steady and Transient
Sources of Gamma Rays: Contributions to ICRC 2013, In Proceedings of the 33rd ICRC, Rio de
Janeiro, Brazil, July 2013.

[91] G. D’Agostini, A Multidimensional Unfolding Method Based on Bayes’ Theorem, Nuclear Instruments
and Methods in Physics Research A 362(2–3), 487 (1995).

[92] H. Jeffreys, An Invariant Form for the Prior Probability in Estimation Problems, In Proc. of the Royal
Society of London Series A, Mathematical and Physical Sciences 186, 453, London, England (1946).

[93] T. Adye, Unfolding Algorithms and Tests using RooUnfold, In Proceedings of the PHYSTAT 2011
Workshop, pages 313–318, CERN, Geneva, Switzerland (2011).

[94] T. Adye, Corrected Error Calculation for Iterative Bayesian Unfolding (2011).

[95] A. N. Kolmogorov, Sulla Determinazione Empirica di una Legge di Distribuzione, Giornale dell‘Istituto
Italiano degli Attuari 4, 83–91 (1933).

[96] N. Smirnov, Table for Estimating the Goodness of Fit of Empirical Distributions, Annals of Mathe-
matical Statistics 19(2), 279 (1948).

[97] T. K. Gaisser, T. Stanev, and S. Tilav, Cosmic Ray Energy Spectrum from Measurements of Air
Showers, Frontiers of Physics 8(6), 748 (2013).

[98] M. Amenomori et al. (Tibet ASγ Collaboration), The Energy Spectrum of All-Particle Cosmic Rays
Around the Knee Region Observed with the Tibet-III Air-Shower Array, Advances in Space Research
42(3), 467 (2008).

[99] G. Di Sciasco for the ARGO-YBJ Collaboration, Measurement of the Cosmic Ray Energy Spectrum
with ARGO-YBJ, In Proceedings, Vulcano Workshop 2014: Frontier Objects in Astrophysics and
Particle Physics: Vulcano, Italy, May 18-24 (2014).

[100] M. G. Aartsen et al. (IceCube Collaboration), Measurement of the Cosmic Ray Energy Spectrum with
IceTop-73, Physical Review D 88(4), 042004 (2013).

http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1063/1.4818428
http://arxiv.org/abs/1310.0071
http://arxiv.org/abs/1310.0071
http://dx.doi.org/10.1016/0168-9002(95)00274-X
http://arxiv.org/abs/1105.1160
http://hepunx.rl.ac.uk/~adye/software/unfold/bayes_errors.pdf
http://dx.doi.org/10.1214/aoms/1177730256
http://dx.doi.org/10.1007/s11467-013-0319-7
http://dx.doi.org/10.1007/s11467-013-0319-7
http://dx.doi.org/10.1016/j.asr.2007.04.080
http://dx.doi.org/10.1016/j.asr.2007.04.080
http://arxiv.org/abs/1408.6739
http://arxiv.org/abs/1408.6739
http://dx.doi.org/10.1103/PhysRevD.88.042004
http://dx.doi.org/10.1103/PhysRevD.88.042004


167

APPENDIX
All-Particle Spectrum Data

A.1 Reconstructed Energy Distribution

logEreco/GeV Number of Events
2.7 – 2.8 6.42× 103

2.8 – 2.9 4.82× 105

2.9 – 3.0 1.95× 107

3.0 – 3.1 2.56× 108

3.1 – 3.2 9.28× 108

3.2 – 3.3 1.36× 109

3.3 – 3.4 1.32× 109

3.4 – 3.5 1.07× 109

3.5 – 3.6 8.29× 108

3.6 – 3.7 6.51× 108

3.7 – 3.8 5.11× 108

3.8 – 3.9 3.95× 108

3.9 – 4.0 3.00× 108

4.0 – 4.1 2.25× 108

4.1 – 4.2 1.65× 108

4.2 – 4.3 1.18× 108

4.3 – 4.4 8.22× 107

4.4 – 4.5 5.66× 107

4.5 – 4.6 3.87× 107

4.6 – 4.7 2.64× 107

4.7 – 4.8 1.82× 107

4.8 – 4.9 1.26× 107

4.9 – 5.0 8.63× 106

5.0 – 5.1 5.97× 106

5.1 – 5.2 4.14× 106

5.2 – 5.3 2.88× 106

5.3 – 5.4 2.00× 106

5.4 – 5.5 1.38× 106

5.5 – 5.6 9.51× 105

5.6 – 5.7 6.52× 105

5.7 – 5.8 4.44× 105

5.8 – 5.9 3.01× 105

5.9 – 6.0 2.07× 105

6.0 – 6.1 1.35× 105

Table A.1: The number of events in each reconstructed energy bin. This is the effects distribution or n(E)

from chapter 7.
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A.2 All-Particle Cosmic-Ray Differential Flux

logE/GeV Nevents Unfolded dN
dE dΩ dt dA± stat ± sysMC+ sys − sys [GeV s m2 sr]−1

4.0 – 4.1 2.86× 1010 (8.6056± 0.0003± 1.2795 + 0.7913− 1.6446)× 10−7

4.1 – 4.2 2.00× 1010 (4.7968± 0.0002± 0.5901 + 0.4288− 0.8530)× 10−7

4.2 – 4.3 1.42× 1010 (2.6922± 0.0001± 0.2323 + 0.2360− 0.4467)× 10−7

4.3 – 4.4 1.00× 1010 (1.5163± 0.0001± 0.1189 + 0.1315− 0.2356)× 10−7

4.4 – 4.5 7.08× 109 (8.4947± 0.0007± 0.7137 + 0.7352− 1.2419)× 10−8

4.5 – 4.6 5.02× 109 (4.7823± 0.0005± 0.3896 + 0.4171− 0.6614)× 10−8

4.6 – 4.7 3.54× 109 (2.6761± 0.0003± 0.2536 + 0.2377− 0.3522)× 10−8

4.7 – 4.8 2.47× 109 (1.4823± 0.0002± 0.1305 + 0.1357− 0.1869)× 10−8

4.8 – 4.9 1.71× 109 (8.1839± 0.0015± 0.8041 + 0.7830− 0.9947)× 10−9

4.9 – 5.0 1.18× 109 (4.4769± 0.0010± 0.4488 + 0.4547− 0.5281)× 10−9

5.0 – 5.1 8.03× 108 (2.4193± 0.0007± 0.2504 + 0.2655− 0.2787)× 10−9

5.1 – 5.2 5.34× 108 (1.2781± 0.0004± 0.1349 + 0.1544− 0.1447)× 10−9

5.2 – 5.3 3.56× 108 (6.7636± 0.0027± 0.6441 + 0.9164− 0.7576)× 10−10

5.3 – 5.4 2.37× 108 (3.5835± 0.0017± 0.3331 + 0.5544− 0.3995)× 10−10

5.4 – 5.5 1.59× 108 (1.9107± 0.0011± 0.1644 + 0.3430− 0.2134)× 10−10

5.5 – 5.6 1.09× 108 (1.0346± 0.0007± 0.0892 + 0.2184− 0.1166)× 10−10

5.6 – 5.7 7.25× 107 (5.4882± 0.0047± 0.4659 + 1.3920− 0.6286)× 10−11

5.7 – 5.8 4.87× 107 (2.9284± 0.0030± 0.2402 + 0.9642− 0.3441)× 10−11

Table A.2: Values of the all-particle cosmic-ray energy spectrum from 10–500 TeV including uncertainties.

The second column is the number of events unfolded, or the distribution φ(C) from chapter 7. The label

“stat” represents the statistical uncertainties, “sysMC” is for the uncertainties from the Monte Carlo, and

“sys” represents the remaining sources of systematic uncertainty.
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APPENDIX
Derivation of Unfolding Uncertainties

B.1 Expansion of Components of V

Recalling the unfolding formulae from before,

φi+1
µ =

∑
k

Mµk nk Mµj =
Pµj φ

i
µ

εµ fj
,

where the efficiency, ε, and normalization, f , of M are

εµ =
∑
j

Pµj fj =
∑
µ

Pµj φ
i
µ.

Of note is the presence of φi, ie, the unfolded cause distribution from the previous iteration, or the prior in

the case i = 0.

We will be taking derivatives of these objects with respect to nk and Pλk, to wit,

∂Pµj
∂nk

= 0
∂εµ
∂nk

= 0
∂fj
∂nk

=
∑
µ

Pµj
∂φiµ
∂nk

(B.1)

∂Pµj
∂Pλk

= δµλδjk
∂εµ
∂Pλk

= δλµ
∂fj
∂Pλk

= δjkφ
i
λ +

∑
µ

Pµj
∂φiµ
∂Pλk

. (B.2)

The explicit forms of
∂φiµ
∂nk

and
∂φiµ
∂Pλk

will be shown below, but only for i = 0 do

∂φiµ
∂nk

= 0 ,
∂φiµ
∂Pλk

= 0, (B.3)

as no unfolding has been performed. This will clearly not be the case for subsequent iterations when φi

becomes dependent on nk and Pλk.
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B.2 Expansion of V Data

Making the appropriate substitutions, the index representation of eq. 7.9 is

V (φi+1
µ , φi+1

ν )Data =
∑
jk

∂φi+1
µ

∂nj
cov(nj , nk)

∂φi+1
ν

∂nk
,

with

∂φi+1
µ

∂nj
=

∂

∂nj

∑
k

Mµknk

=
∑
k

(Mµk
∂nk
∂nj

+ nk
∂Mµk

∂nj
)

=
∑
k

(Mµkδjk + nk
∂Mµk

∂nj
)

= Mµj +
∑
k

nk
∂Mµk

∂nj︸ ︷︷ ︸
∂Mµk

∂nj
=

∂

∂nj

Pµkφ
i
µ

εµfk

=
Pµk
εµfk︸ ︷︷ ︸
Mµk

φiµ

∂φiµ
∂nj

−
Pµkφ

i
µ

εµfk︸ ︷︷ ︸
Mµk

1

fk

∑
σ

Pσk
∂φiσ
∂nj

=
Mµk

φiµ

∂φiµ
∂nj

−Mµk

∑
σ

εσ
Pσk
εσfk︸ ︷︷ ︸
Mσk
φiσ

∂φiσ
∂nj

=
Mµk

φiµ

∂φiµ
∂nj

−
∑
σ

εσ
φiρ
MµkMσk

∂φiσ
∂nj

∂φi+1
µ

∂nj
= Mµj +

1

φiµ

∂φiµ
∂nj

∑
k

Mµknk︸ ︷︷ ︸
φi+1
µ

−
∑
σ,k

εσ
nk
φiρ
MµkMσk

∂φiσ
∂nj

∂φi+1
µ

∂nj
= Mµj +

φi+1
µ

φiµ

∂φiµ
∂nj

−
∑
σ,k

εσ
nk
φiσ
MµkMσk

∂φiσ
∂nj

. (B.4)

Recalling eq. B.3,
∂φ0

µ

∂nj
= 0 for the first iteration, eliminating the last two terms of eq. B.4 and recovering

∂φ1
µ

∂nj
= Mµj as per [91]. In practice, one need only calculate

∂φi+1
µ

∂nj
for each iteration, saving the result until

the full calculation of V Data is required.
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B.3 Expansion of V MC

Similar to V (φi+1
µ , φi+1

ν )Data, we identify the contributions to V from the Monte Carlo:

V (φi+1
µ , φi+1

ν )MC =
∑
λj

∑
ρk

∂φi+1
µ

∂Pλj
cov(Pλj , Pρk)

∂φi+1
ν

∂Pρk
.

Proceeding forward,

∂φi+1
µ

∂Pλk
=

∂

∂Pλk

∑
j

Mµjnj =
∑
j

nj
∂Mµj

∂Pλk︸ ︷︷ ︸
∂Mµj

∂Pλk
=

∂

∂Pλk

Pµjφ
i
µ

εµfj

=
φiµ
εµfj

∂Pµj
∂Pλk

+
Pµj
εµfj︸ ︷︷ ︸
Mµj

φiµ

∂φiµ
∂Pλk

− 1

εµfj

Pµjφ
i
µ

εµfj︸ ︷︷ ︸
Mµj

(
fj

∂εµ
∂Pλk

+ εµ
∂fj
∂Pλk

)

=
φiµ
εµfj

δλµδjk +
Mµj

φiµ

∂φiµ
∂Pλk

− 1

εµfj
Mµj

(
fjδλµ + εµδjkφ

i
λ + εµ

∑
ρ

Pρj
∂φiρ
∂Pλk

)
=

φiµ
εµfj

δλµδjk +
Mµj

φiµ

∂φiµ
∂Pλk

− Mµj

εµ
δλµ −

Mµjφ
i
λ

fj
δjk −

∑
ρ

ερMµj
Pρj
ερfj︸︷︷︸
Mρj

φiρ

∂φiρ
∂Pλk

=
φiµ
εµfj

δλµδjk +
Mµj

φiµ

∂φiµ
∂Pλk

− Mµj

εµ
δλµ −

Mµjφ
i
λ

fj
δjk −

∑
ρ

MρjMµj
ερ
φiρ

∂φiρ
∂Pλk

,

and going back to
∂φi+1

µ

∂Pλk
to include the sum over j,

∂φi+1
µ

∂Pλk
=

∑
j

nj

[ φiµ
εµfj

δλµδjk +
Mµj

φiµ

∂φiµ
∂Pλk

− Mµj

εµ
δλµ −

Mµjφ
i
λ

fj
δjk −

∑
ρ

MρjMµj
ερ
φiρ

∂φiρ
∂Pλk

]
=
nkφ

i
µ

εµfk
δλµ +

1

φiµ

∂φiµ
∂Pλk

∑
j

Mµjnj︸ ︷︷ ︸
φi+1
µ

−δλµ
εµ

∑
j

Mµjnj︸ ︷︷ ︸
φi+1
µ

−nkMµkφ
i
λ

fk

−
∑
j

∑
ρ

nj
ερ
φiρ
MρjMµj

∂φiρ
∂Pλk

,
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with final form

∂φi+1
µ

∂Pλk
=
δλµ
εµ

(nkφiµ
fk
− φi+1

µ

)
− nkφ

i
λ

fk
Mµk

+
φi+1
µ

φiµ

∂φiµ
∂Pλk

−
∑
ρ,j

nj
ερ
φiρ
MρjMµj

∂φiρ
∂Pλk

.

(B.5)

Again for the first iteration
∂φ0

µ

∂Pλk
= 0, eliminating the last two terms of eq. B.5, and recovering

D’Agostini’s version. Again, upon implementation one need only calculate
∂φi+1

µ

∂Pλk
at each iteration, sav-

ing it until V MC is needed for error estimation.
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