Nature. Vol. X, No. 243 June 25, 1874

London: Macmillan Journals, June 25, 1874
https://digital.library.wisc.edu/1711.dl/LBXITYVRTMAPI83

Based on date of publication, this material is presumed to be in the public domain.

For information on re-use, see:
http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

TIIURSDAY, JUNE 25, 1874

THE NEW FMISIC.II. LABORATORI OF THE UWMIERSITY OF CAMBRIDGE

Othe 16 th inst., at a congregation held in the Senate House, Cambridge, the Cavendish Laboratory was formally presented to the University by the Chancellor. The genius for research possessed by Prof. Clerk Maxwell and the fact that it is open to all students of the University of Cambridge for researches will, if we mistake not, make this before long a building very noteworthy in English science. We thereforc put before our readers, as prominently as we can, a description of it.
The Cavendish Laboratory has been erected cutirely at the expense of his Grace William Cavendish, Duke of Devonshire, K.G., Chancellor of the University, who has also signified his intention of supplying it with the apparatus necessary for a complete physical laboratory. The building consists principally of three floors, of which the accompanying figures show the plan on a scale of 32 ft . to the inch : Fig. I representing the ground-floor, and Figs. 2 and 3 the first and second floors respectively. The west front consists entirely of Ancaster stone ; with the exception of the lecture-room and the staircase, which will presently be described, the only ornate portion of the building is the great gateway, X Fig. I, situated near the south erd of this front. The doors, which are very massive, are beautifully carved in oak, and bear, in old English letters, the inscription " Miagna opera Domini exquisita in omnes voluntates ejus," which is the Vulgate version of Psalm cxi. 2. Over the gateway are the arms of the Duke of Devonshire on the left, and the University arms on the right, the motto of the Cavendish family, "Cavendo tutus,' occupying the centre; and the whole is surmounted with a beautifully carved statue of the Duke in his robes as Chancellor of the University, and bearing in his hand the Cavendish laboratory. The lower portion of the building on the right of the entrance is occupied by the resident attendant. The external walls are 2 ft . thick, the foundation being at a depth of 15 ft . below the surface : with the exception of the west front, the tower, and the portion occupied by the lecture-room, they are built of brick, with Ancaster stone dressings. The tower (marked A in the plans), which is about 17 ft . by $14 \mathrm{ft}$.6 in . internal measurement, and 59 ft . in height, contains a very handsome stone staircase with carved oak balustrades.
In describing the internal arrangements seriatim, we shall commence with the room at the east end of the ground-floor marked 13 in Fig. I. This room is set apart for magnetic and other observations requiring great steadiness. At a is a brick pier about 18 in. high, with a stone top about 4 ft . square. This pier is quite distinct from the tiled pavement of the room, the brickwork being commenced at a depth of about 18 in . below the pavement, and this resting on a foundation of concrete about 18 in. thick. On this pedestal is placed the great electro-dynamometcr of the British Λ ssociation, the two large coils of which are cach about half a metre in diameter, and each contains 225 turns of No. 20 copper wirc. The diameter of each circle of wire has been accurately measured, as has also the distance betweeen the two
bobbins, which is about equal to the radius of either. Tl
resistance of each coil has also been determined, an thus all the clectrical constants of this instrumed, an ar known with great accuracy. It is by comparison wit these coils that the electrical constarts of all the othe
clectro-magnctic apparaus in electro-magnetic apparatus in the laboratory will b
determined. For example, the magnitude and each circle of wire in callh coil being known, the cosefficien of induction of the first coil on the sccond can be at onc found. Suppose, then, we wish to find the coefficient o induction of a third circuit upon a fourth whose resistanc is known. Let the same primary current be sent througl the first and third circuits, and let resistances be introduced in the second or fourth until the currents in the two latter are equal. Then the electromotive forces in the second and fourth circuits are proportional to the whole resistance in the circuits, and thus the coefficient of induction of the two pairs of circuits are compared.
At l and c are stone slabs each 4 ft . square, supported on foundations similar to those last described. On the slab at b is placed a unifilar magnetometer of the pattern adopted at Kew. In the upper part of the north wall of this room is a small window for the purpose of determining the direction of the meridian by astronomical observations. This direction being once determined, vertical mirrors will be placed opposite each other on the walls, each mirror being supported by three screws and accurately adjusted by means of nuts so as to serve the purpose of collimation marks. Three mirrors will be placed respectively on the north, east, and south walls of the room, but the fourth mirror will be fixed on the west wall of the room marked F in Fig. I, in such a position as to be visible through the doorways from the mirror on the north wall of room B . The room marked C in Fig. I is called the clock room. In it is a stone pier, d, on foundations separate from the rest of the building and intended to carry the principal clock. This clock will be in electric communication with the other clocks in the building, and will from time to time be compared with the clock at the Astronomical Observatory. In this room is also erected a massive stone frame, c, intended to carry an experimental pendulum. This, like the clock pedestal, is erccted on a foundation similar to that which supports the electro-dynamometer.
Each of the rooms B and C is about 30 ft . by 20 ft . The windows in all the rooms throughout the building have wooden shutters fitted to them, by which they can be completely darkened. On the inside of each window is a large stone shelf, and on the outside a similar shelf in the same plane with it, so that an instrument may be erected with some of its feet inside and some outside the window, a small channel being left between the two to allow the escape of rainwater. The room marked E in Fir. i hiss two larize windows on the north side, and will be used exclusively for
b balances. The hest b.illuce at present in the laboratory was constructed by (outling:, and when londed with a kilogramme in each p.an will turn to the weight of a milligramme. This behnce while capable of cursing a very considerable weisht, is sufficiently delicate for mont physical purposes.
The room marked F in Fig. I is called the heat room; in it will be conducted evperiments in calo-
rimetry, and the like. This room at present contains an apparatus devised ly I'rof. Clerk Maxwell for determining the viscosity of air.* This is done by causing three glass plates to vibrate between four parallel fixed plates in an air-tight receiver, by means of the torsion of a steel wire. A mirror being connected with the plates, the amplitude of vibration is determined by viewing through a telescope the imare of a fixed graduated scale formed by the mirror. The room G on the ground-floor is used for unpacking apparatus, \&c., which is brought dircctly into this room from the strect. The apparatus is then raised to the floor above by means of a lift at k. H Fig. I is used for a workshop; it is furnished with a carpenter's bench and tools, two vices, \&c. A 5 -inch selfacting screw-cutting lathe will shortly be added, and

Fri. 1.-Grumblyor.
thus the means will be provided for adjusting and repairing on the prenies most of the apparatus required in physical restarll. The room K is called the battery romm ; it is stuatal imnacdiately under the lecture-room, into which wites will be caricid from the battery thene:h small hathes in the tloor. The buttery which will le emplosed i. Sir William Thomson's tray battery, in which the sinc plates will be supported on porcelain cubes of 1 inch chere The intomal wistance

 up into the lerture mem independently of the How, and
carries the lecture table. The floor of the lecture-room is supported on two brick piers, which are built about an inch away from this wall. On the stone pavement of the ground-floor a long line will be carefully measured, and with this the other measures of length used in the laboratory will from time to time be compared. $\Lambda \mathrm{t} f$ is an old stone gateway of the sixteenth century, which formerly scrved as the entrance to the Science Schools.

Passing now to the east end of the first floor we find ourselves in the general laboratory (L Fig. 2). This room is 60 ft . long and 30 ft . wide, and is designed to contain twelve large tables, though there are but ten in it at present. Each of the tables in this, as in all the rooms on the first and second floors, is supported independently of the floor on beams resting on brackets fixed in the walls of the

rooms below, holes being left in the floor and blocks placed upon the beams so as to be flush with the flooring; it is on these blocks that the legs of the table rest. A standpipe, conviyint gas, passes up through the centre of each lable, and curtici connections for four liunsen or other burners, but can be removed at pleasure. A closet, provided with a good draught into the chimney, will be crected at the c.st end of this laboratory, in which any experiment producing objectionable fumes, $\mathbb{E c}$., can be conducted. This laboratory is intended for the general U:C of student:. Each room, with one or two exceptions, is provided with an open hearth fer a basket fire and a ventilator leadins into the chimney near the ceiling. Water is also l.ide on to all the rooms, which are likewise furnished with leaden sinks; and a plentiful supply of indiaubber tubing lined with canvas will be always on
hand in case of fire. The room marked M in Fig. 2 is the Professor's private room. It communicates with the general laboratory by two hatches, which can be opened or closed at pleasure. In the south-west corner of this room is placed Sir William Thomson's quadrant electrometer, made by White of classow. N Fig. 2 is called the apparatus-room. This room will be furnished with glass cases and cabinets, in which will be kept the apparatus which is not in immediate use, and amongst others several classical instruments belonging to the British Association, as for example the original standard unit of clectrical resistance and the governor, coil, \&c., used in determining this unit. The room O Fig. 2 is called the "preparationroom ;" it communicates through a hatch with the lectureroom P. It is intended that the preliminary arrangements

necessary for making experiments during the lectures should be carried out in this room. The lecture-room P is about 38 ft . by 35 ft . and 28 ft . high, and will afford accommodation for about 180 students. The lecture table, which extends throughout the width of the room, is of oak, and is supported on the top of an 8 -inch wall as previously described. The seats for the class rise at an angle of about 30°, and there are threc doors to provide sufficient means of egress for the audience. The room is panclled to a height of about 9 ft ., above which the walls are brick relieved by handsome pillars, which spring from triple conical brackets, and support the ceiling. The room is lighted by threc windows at a height of about 17 ft . from the floor, and one window below. Each window is furnished with wooden shutters, which fold together, thus
completcly darkening the room. The shutters of the threc upper windows are opened and closed together by means of endless screws attached to a horizontal shaft which runs under each. The cciling of the room consists of wooden pancls, those near the walls being perforated and forming the bottoms of two horizontal shafts, which lead into a chimncy, thus providing an efficient means of ventilation. Three of the panels over the lecture table, as well as the styles between them, can be removed. Aloove these are two strong tie-beams of the roof, from which Foucault's pendulum or other heavy bodies may be suspended over the lecture table. The panels and styles adjoining the north wall of the lecture-room can also be removed to allow of diagrams being suspended against the wall. On the other three sides of the room the ceiling does not abut directly upon the wall but is coved in the form of a quadrant of a circle, giving the room a very beautiful appearance. This lecture-room is in every respect a model room of its lind. All the rooms on the ground-floor and first floor, with the exception of the lecture-room, are about 15 ft . in height.
On the third floor the room Q Fig. 3 is intended for expcriments on acoustics. The room R will be employcd for making drawings and calculations; S will be devoted h to researches on radiant heat; and T and U are for optical h experiments. V is the electrical room. The air in this room will be kept dry by Mr. Latimer Clark's contrivance, which . consists of a heated copper roller over which an endless band ${ }^{\text {th }}$ of flannel passes. The roller is heated by gas-lights within it, and, bcing kept in constant rotation, every part of the flannel becomes heated in turn by passing over it. The vapour which rises from the heated flannel is carried ofi by the current of air which supplies the burners inside the roller, and escapes by the flue. The flanncl when thus dricd and cooled passes into the open air of the room, where it again absorbs moisture from the air, which thus becomes dried, so that the electrical instruments in the room are preserved in a highly insulating condition. From this room a small doorway enters the lecture-room at a height of about 17 ft . from the floor of the latter. An insulated wire connected with the prime conductor of the electric machine will pass through this doorway and thus supply electricity on the lecture table when the air in the lecturc-room is too damp to allow of the satisfactory working of the machine. W is a small dark room for photographic and cther similar purposes. A small window for a heliostat is placed in the west wall of the clectical room, opposite the door, from which a beam of light may be sent along the whole length of the building so as to ullow of diffraction and other experiments, with rays of lyht 120 ft . in length. All the rooms are heated ly hot-w.iter pipes connected with a boiler in the basoment. Near the cast end of the building copper pipes ate emploged an cach floor for the sake of the magnets in room 1 .
A lofty flight of stops in the tower leads trom the second floor into the roof alowe the lecture-rom, and a tow mon. steps lead into the highest room in the bublim:, which occupics the upper fortion of the town, its bwi loins: more than 50 th. al we the ground. In this then will \because placed a lun-n: water pump, the water fom which will thus have a vatical fall of considemats mone th.in wirt This pump will br uscil to exhaust a latec aconer, tiom. which pipes will communicate with the different rooms.
so that if it be desired to exhaust the air from any vessel it will only be necessary to connect it with one of these pipes and tu'n on" "t'mitum. If a more perfect vacuum be desired than can be obtained by this means, the vessel may be sulsequently exhausted by the Sprengel or other air-pump. Λ metal tube filled with mercury, with glass gauges on every floor for observing the height of the mercury within, will extend throughout the whole height of the tower and will serve as a manometer. The lower end of the tube will pass through the wall and terminate in F Fig. I. On the top of the tower will be fixed a wooten mast carrying a pointed metal rod, for the purpose of collecting atmospheric electricity. The rod will communicate with the interior of the laboratory by an insulated wire.
The floors of the building are liberally supplied with hatches about Sin . square, and in most cases those in the first floor are placed vertically under those in the second floor, so that wires may be suspended through the whole height of the building.

The laboratory was designed by Mr. W M. Fawcett, M.A., of Jesus Coliege, and the way in which he has turned to account the space available for his purpose, as well as the simple beauty of his designs have been the subjects of great admiration. Loveday of Kibworth was the contractor.
After the congregation on the 16 th the Duke of Devonshire, Sir Bartle Frere, Sir Garnet Wolseley, Prof. Stoletow of Moscow, Prof. Balfour Stewart, Prof. Roscoe, and other distinguished visitors inspected the laboratory and expressed great satisfaction with the building and the arrangements.
Amongst the apparatus at present in the laboratory besides the electro-dynamometer of the British Association, may be mentioned the original B.A. units of resistance, together with the rotatory coil, speed governor, and bridge used in their construction; Sir William Thomson's quadrant electrometer, resistance coils up to 100,000 ohms (a megohm as well as some coils of very small resistance are expected shortly), three mirror galvanometers of different constructions, a 3 ft . 6 in . glass plate electric machine, and a 30 in . ebonite electric machine, Holtz's electric machine, and a hydraulic press, of a peculiar construction, made by Ladd and Co.

THE "CHALLA:VGER" IN THE SOUTH 1TL.A.VTK

AT the lant mectin!s of the lioyal Society a letter from l'rof. W') ville Thomson on board H. Ah.s. Challings, to Admiral Richards, was reml, which contained results of such high import.nnce to bindogical science that were it the only result of the copedition fingland might have b, en proud th have had a hand in it. It is mon interesting tow as caryin: on the stony of the daily life on beard ship which har been thuched an"uly l'off Whomsen

 at ninetern promiperl tation , euitably distibuted ancr

^fter leaving the (ape, scveral dredgings were taken a little to the southward, at depths from ion to 150 fathoms. Animal life was very abundant ; and the result was remarkable in this resplect, that the general character of the fauna was very similar to that of the North Atlantic, many of the species even being identical with those on the coasts of Creat lititain and Norway.

Marion Island was visited for a few hours, and a considerable collection of plants, including nine flowering species, was made by Mr. Moseley. Λ shallow-water dredging near Marion Island gave a large number ot species, again representing many of the northern types, but with a mixture of southern forms, such as many of the characteristic southern Bryozoa and the curious genus Serolis among Crustaceans. Off Prince Edward's Island the dredge brought up many large and striking specimens of one or two species of Alcyonarian zoophytes, allied to Mopsea and Isis.
The trawl was put down in 1,375 fathoms on Dec. 29, and in 1,600 fathoms on the soth, between Prince Edward's Island and the Crozets. The number of species taken in these two hauls was very large, and many of them belonged to especially interesting genera, while many were new to science. There occurred, with others, the wellknown genera Euplectella, Hyalonema, Umbellularia, Flabellum, two entirely new genera of stalked Crinoids belonging to the Apiocrinidæ, Pourtalesia, several Spatangoids new to science, allied to the extinct genus Ancurchytes, Salemiu, several remarkable Crustaceans, and a few fish.

The Challenger reached Kerguelen Island on Jan. 7, and remained there until Feb. I. During that time Dr. von Willemoes-Suihm was chiefly occupied in working out the land-fauna, Mr. Moseley collected the plants, Mr. Buchanan made observations on the geology of those parts of the island which were visited, and Mr. Murray and Prof. Thomson carried on the shallow-water dredging in the steam-pinnace. Many observations were made, and large collections were stored.
Two days before the expedition left Kerguelen Island they trawled off the entrance of Christmas harbour, and the trawl-net came up on one occasion nearly filled with large cup-sponges belonging to the genus Rossillu of Carter, and probably the species dredsed by Sir James Clark Ross near the ice-barrier, Rosssilla antartica.
The Chullinger reached Corinthian Bay in Yong Island on the evening of the oth. and all arrangements had been made for examining it, as far as possible, on the following day: but a sudden change of weather obliged Capt. Nires to put to sea. Fortunately Mr. Moseley and Mr. Buchanan accompanied Capt. Nares on shore for an hour ortwo on the evening of their arrival, and took the opportunity of collceting the plants and minerals within their reach.
The most southerly station was made on Fib. it, lat.
 a depth of 1,$0 ; 5$ fuchums a considerable number of animals, including Spunges, Acyonarians, Echinids, Bryoona, and cruntacia, all much of the usual deep-sea ch.uracter, although some of the species had not been previously observed.

Irof. Thomsun gives a list of the various classes 0
animals fiom Sponses to Teleostei, that were met with in nine sucicssiul dredgings, it depths beyond 1,000 fathoms, between the Cape and Australia. Many of them, Prof. Thomson states, are new to science, and some are of freat interest from their relation to groups supposed to be extinct. This is particularly the case with the Echinodermata, which are here, as in the deep water in the north, a very prominent sroup.
During the present cruise special attention has been paid to the nature of the bottom, and to any facts which might throw light upon the source of its materials. This department has been chiefly in the hands of Mr. Murray ; and lruf. Thomson gives the following extracts from; Mr. Murray's notes:-
" In the soundings about the Angulhas bank, in ioo to 150 fathoms, the bottom was of a greenish colour, and contained many crystalline particles (some dark-coloured and some clear) of Foraminifera, species of ()rbulinur, Ghescrina, and Pulizulina; a pretty species of Cosscrina, Plamontulima, Miliolina, Bulimisu, and Aumimalimar. There were very few Diatoms.
"In the deep soundings and dredgings before reaching the Crozets, in 1,900, 1.570 , and 1.375 fathoms, the bottom was composed entirely of Orbulina, Globigerina, and Pulcinulina, the same species which we get on the surface, but all of a white colour and dead. Of Foraminifera, which we have not got on the surface, I noticed one Rotalia and one Polystomillar, both dead. Some Coccoliths and Rhabdoliths were also found in the samples from these soundin's. On the whole, these bottoms were, I think, the purest carbonate of lime we have ever obtained. When the soundings were placed in a bottle, and shaken up with water, the whole looked like a quantity of sago. The Pulizinulina were smaller than in the dredgings in the Atlantic. We had no soundings between the Crozets
and Kerguelen.
"The specimens of the bottom about Kerguelen were all from depths from 120 to 20 fathoms, and consisted usually of dark mud, with an offensive sulphurous smell. Those obtained farthest from land were made up almost entirely of matted sponge-spicules. In these soundings one species of Rotalina and one other Foraminifera oc-
curred.
"At 150 fathoms, between Kerguelen and Heard Island, the bottom was composed of basaltic pebbles. The bottom at Heard Island was much the same as at Kerguelen. The sample obtained from a depth of 1,260 fathoms, south of Heard Island, was quite different from anything we had previously obtained. It was one mass of Diatoms, oi many species, and mixed with these a few small Globigerinæ and Radiolarians, and a very few crystalline par-
ticles.
"The soundings and dredging; while we were amon:; the ice in $1,675,1,800,1,300$, and 1.975 , gave another totally distinct deposit of yellowish clay, with pebbles and small stones, and a considerable admixture of Diatoms, Radiolarians, and Globigerinae. The clay and pebbles were evidently a sediment from the melting icebergs, and the Diatoms, Radiolarians, and Forminifera were fom the surface-waters.
"The bottom, from 1,950 fathoms, on our way to ^ustralia from the Antarctic, was again exactly similar to that obtained in the 1,260 fathoms sounding south of

Heard Island. The bottom at 1, sex, fathoms, a little farther to the north (hat. $50^{\prime \prime} 1^{\prime}$ S., long. $123^{\circ} 4^{\prime}$ ' S.), was agann pure 'Globigerina-ooze,' composed of (1)-lumlinu. (illdiscrina, and $l^{\prime \prime} u$ limulince.
"The bottom at 2,15 () fathoms (lat. $47^{\prime} 25^{\prime} \mathrm{S}$, long. $130^{\circ} 32^{\prime}$ I..) was similar to the last, with a reddish tinge, and that at 2,600 fathoms (lat. $42^{\prime \prime} 42 \mathrm{~S}$., long. 134 Io' E.) was reddish clay, the same which we got at like depths in the Atlantic, and contained manganese nodules and much decomposed Foraminifera."
Mr. Murray, Prof. Thomson goes on to say, "has been induced by the observations which have been made in the Atlantic, to combine the use of the towing-net at various depths from the surface to 150 fathoms, with the examination of the samples from the soundings. And this double work has led him to a conclusion (in which I am now forced entirely to concur, although it is certainly contrary to my former opinion) that the bulk of the material of the bottom in deep water is in all cases derived from the surface.
"Mr. Murray has demonstrated the presence of Globigerinex, Pulvinulinæ, and Uirbulinæ throughout all the upper layers of the sea over the whole of the area where the bottom consists of 'Globigerina-ooze' or of the red clay produced by the decomposition of the shells of Foraminifera; and thcir appearance when living on the surface is so totally different from that of the shells at the bottom, that it is impossible to doubt that the latter, even although they frequently contain organic matter, are all dead. I mean this to refer only to the genera mentioned above, which particularly form the ooze. Many other Foraminifera undoubtedly live in comparatively small numbers, along with animals of higher groups, on the bottom."
It is very curious to note that in the extreme south the conditions were so severe as greatly to interfere with all work. "We had," Prof. Thomson says, "no arransement for heating the work-roums, and at a temperature which averaged for some days $25^{\circ} \mathrm{F}$ the instruments became so cold that it was unpleasant to handle them, and the vapour of the breath condensed and froze at once upon glass and brass work. Dredging at the consiücrable depths which we found near the Aistarctic circle became a severe and somewhat critical operation, the gear beirs stiffened and otherwise affected by the cold, and we could not repeat it often.
"The evening of Feb. 23 was remarkably fine and calm, and it was arranged to dredse on the following. noorning. The weather changed somewhat during the night, arat ine wind rose. Captain \therefore ares was, however, most andious t. carry out our object, and the dredge was put ucr at ; .an. We wore surrounded by iecbergs, the wind continucil to risc, and a thick stiow-storm cance on from the swuth-c.ast. After a time of some anxiety the dredse was ant in ati right; but, to our sreat disappointment, it was chipty probably the drift , ,l the ship and the motion had proveratid its reaching the buttom. In the meantime the wind hat risen to a whole salc. force $=10$ in the syu.lls, the thermonater foll to 2151 .. the snow drove in at de blandin:s cloud of expuisite tar-like crostal. Which burnt the skin as if they had leen red hot, and we were ben sony to be able to retire trom the drodsing-bulpe.
daily by Mr. Buchanan ; and during the trip Mr. Buchanan his determined th: :mount of carbonic acid in 25 different samples is from the surface, 7 from the bottom, and 2 from intermediate depths. The smallest amount of carbonic acill was found in surface-water on Jan. 27, ne.rr kerguclen; it anounted to 00373 sramme per litre. The largest amount, ooos29 gramme per litre, was found in bottom-water on Fel. I4, when close to the Antarctic ice. About the same latitude the amount of carbonic acid in surfice-water rose to the unusual amount of 0.0656 gramme per litec; in all other latitude; it ranged between $0.0+4$ and $0.05+$ gramme per litre. From the greater number of these samples the oxygen and nitrogen were extracted, and sealed up in tubes.
"While we were among the ice all possible observations were made on the structure and composition of icebergs. We only regretted gruatly that we had no opportunity of watching their birth, or of observing the continuous ice-barrier from which most of them have the appearance of having been detached. The bers- and floeice was examined with the microscope, and found to contain the usual Diatoms. Carcful drawings of the different forms of icebergs, of the positions which they assume in melting, and of their intimate structure, were made by Mr. Wild, and instantaneous photographs of several were taken from the ship.
"I need only furiher add that, so far as I am able to judge, the expedition is fulfilling the object for which it was sent out. The naval and the civilian staff seem actuated by onc wish to do the utmost in their power, and certainly a large amount of matcrial is being accumulated.
"The expericnces of the last three months have, of course, becn somewhat trying to those of us who were not accustomed to a sea-life ; but the health of the whole party has been excellent. There has been so much to do that there has been little time for weariness; and the arrangements continue to work in a pleasant and satisfactory way."

COLONALA (iEMLOGICAL SURIEIS

I.- Canada

> Report "f Cicolusicial Surice of Canadu for 1872-73.

RΛ THIER less than thirty years ago the Canadian Lec islature passcd a vote for the institution of a Geological Survcy of the province, with the object of ascertainin;; definitely the mineral resources of the country. In pursuance of this decision, the Governor-Gencral, after some inquiry about a propety yualified individual to take charge of the Survey, finally appointed Mr. W F. logan, who, loorn in (amalli, had made his name known in IEngland by some carcful sumeys of the South Welsh Coalficld, and by mininal memations on the orisin of coal. For thirty lom? !atrs of unremitting labour, wh obstaclen of wery hind, blyy ital, pecmiary political, the brawe and sat:a ions diccion : suck to his pust. Nany a time with a la, i, hat ure imp.utio w for praction resuls in the
 and bent on popplanity by whenchment of the budget, the chancen of the Canadian Suncy secmed desperate. Diut
the pilot who guided its destinics showed himself as shrewd a judge of men, and as able to win them over, as he was a skilful pioneer in geology. And the result is that he has made the Canadian Geological Survey one of the first in the worc., excellent in its cyuipment, considering the slender means placed at his disposal, and altorether admirable for the vast amount of solid work which it has accomplished-work which has not merely been of service to (anala, but has acquired a world-wide interest. In doing this he has made his own name a houschold word among geologists of every country. Canada may well be proud of her Sir William Logan.

About four years ago, having toiled so long and hard, he felt compelled to relinquish his post and seek the rest which his old age so nceded and deserved. He was succeeded by Mr. Alfred R. Selwyn, who had been trained in the early days of the Geological Survey under Sir Henry De la Beche, had done much excellent and difficult geological work in Wales, and had thereafter held for a number of years the post of Director of the Geological Survey of Victoria. The Victorian authorities in 1869 suppressed their survey. When Mr. Selwyn lost that appointment, he was induced to accept the guidance of the establishment in Canada. There could hardly have been found a fitter successor to Sir William Logan. Long experience in all the details of geological surveying, both in civilised and in still unexplored regions, must have made it an easy matter for Mr. Selwyn to adapt himself to Canadian modes of exploration. He was renowned in his old Welsh days for his prowess as a mountaineer, and to judge from the present report the advance of years has not perceptibly impaired his bodily activity and powers. of cndurance. During the comparatively brief season when geological reconnaissances are possible in British North America he is found at one time away in the far cast of the dominion inspecting mines in Nora Scotia, at another time with his colleagues and Indians laboriously toiling through river, lake, and portage, in the still only partially explored regions towards Fort Garry, or camping out for many weeks on the shores of Lake Superior. During 1872 the operations of the Canadian Survey under his charge extended across the whole breadth of North America at its broadest part, that is from the Queen Charlotte Islands to the headlands of Nova Scotia-a distance, in a straight line, of considerably more than 3,000 miles.

The success of sucia a service as that of the Canadian Geological Survey must depend, however, in large part on the calibre of the men who act under the director. And Mr. Sclwyn is fortunate in his staff, which is nearly the same as that under Sir William Logan. Of his explorers in the fich Mr. R. Bell and Mr. James Richardson huw done much of that sound work on which the reputation of the Canadian Survey rests. To Mr. Billings, who determincs his fossils, and to Dr. Dawson, who, though not att.ached to the Survey, generously lends his assistance in the palcontelogical department, the Survey is likewise largely indebted. . Is an analyst of minerals and ores and an able writer on chemical soloy Sir Wiliam Logan h.ud a twwer of strength in Dr. Sterry Hunt, who has lately accepted an appointment in the United States. Dr. Hunt's succosor, Dr. Harrington, carries with him into his new duties the grood wishes of all geologists who take
interest in the pursuit of mineralogry and petrography and in the perplexing problems of metamorphism. One of the oldest and best of Sir Willi.,m's staff, Mr. Murray, has now an independent sphere of work in Newfoundland. He has issued a number of reports, to which and to his other services we shall return on a future occasion. Geological field-work in Canada differs very markedly from field-work in most other countries. Niost of the districts over which the Survey is now extending are in great measure, or wholly, unexplored, some of them, indeed, having never been visited by a white man before the al!venturous geologist attacked their rocks with his hammer. There being no roads, and the country thickly timbered, the rivers form the natural routes for exploration. Each member of the staff receives in the early summer his instructions as to the area to be surveyed during the five or six months at most when surveying is possible. Providing himself with birch-bark canoes, two or more white men as zoldarcurs, and a variable band of Indians as guides and portage carriers, likewise with provisions for the entire party for the whole season during which the tour is to last, he starts on his voyage of discovery. Of course in such regions he has either no map at all or some mere rough sketch, so that he needs to construct the topography as well as the geology of his charts. Ascending the river which has been chosen, the party halts each night at some favourable creek and sleeps under cloaks or skins upon the shore. Sir William Logan used to sleep in a sack on the beach of Lake Superior, with his head stuck out of the mouth of it, and after tuckisg himself in would sometimes need to creep out again to knock off the edge of some protuberant rock, and thus literally to smooth his bed with his hammer. Expertness as a shot forms a valuable qualification in one of these explorers, and enables himself and his comrades now and then to enjoy the luxury of fresh meat. Great trouble often arises with the Indian attendants. Sometimes they cannot be had at all, and when obtained are apt to depart at a moment's notice, leaving the white men to manage their journey as they best can.
The Report of the Canadian Survey for 1872-73 bears the stamp of the same thorough unostentatious work which has characterised the whole of the long series of Reports from 1843 downwards. In such a yearly summary of progress we cannot expect the completeness of a finished memoir. The observers merely chronicle what they have seen in the tracts visited by them. But on this account therr Reports are probably all the surer an index to their powers of rapid observation and of grasping main features of geological structure. In this aspect Mr. Richardson's Report, On the coalfields of Vancouver and Queen Charlotte Islands, deserves high commendation. By the time he could get himself transported across the continent to San Francisco, and thence by steancr to the part of Vancouver Island where his explorations were to be made, it was the beginning of July, and the heavy rains began before the end of September. In spite of wind and wet, however, he stuck to his work, and after storing away his boat, tent, and camp-equipage for next year's service, set out once more on his long journey, and reached Montreal in the middle of December. 1)uring these few and interrupted months he added considerably to what was previously known regarding the secondary
coalfields of that part of America, made a number of careful measurements of the thicknesses of the strata, and brought home many fossils, both plant and animal, new to
sciec. science.
He found that the coal-bearing rocks lic upon a vast depth of older crystalline masses among which he detected fossiliferous limestoncs. This metamorphosed series he estimates at somewhere about $17,000 \mathrm{ft}$. in thickness. When the fossils were submitted to Mr. Billings, that absle palaontolosist found them too obscurely preserved to warrant a definite opinion as to their age. From his reference of some of the corals to such genera as Z apphTontis, and theoccurrence of Productus, syivififu; and Fincstclla, the rocks would at least secm to be certainly Upper Palaozoic, though he does not go further than to suggest that they may be "either Permian or Carbonifcrous, more probably the latter." On this great metamorphic group the coal-bearing rocks rest unconformably. To these rocks Mr. Richardson assigns a thickness of $5,000 \mathrm{ft}$. They consist of various shales, sandstones, shell-bearing limestones, and conglomerates with intercalated seams of coal, very much resembling apparently some parts of our Carboniferous sections in Britain. Their geological position appears to be about the parallel of our Cretaceous and perhaps the upper part of our Jurassic series. Among the plants Dr. Dawson finds some forms of cypress and yew, cycads and ferns, with species of oak, birch, and poplar, and remarks that these fossils furnish additional evidence of a fact already noticed, "that in the Cretaceous period the generic typis of American treas were as well marked as at preserit." Among the shells, Mr. Billings finds 16 spacies of Ammonites, 2 of Belemnites, a Nautilus, + Gasteropods, and 9 genera of Lamellibranchs, the gencral facies of the whole being decidedly Cretaceous and Upper Jurassic. He admits the view of the States geologists to be substantially correct, that the coal of Vancouver Island belongs to one of the Cretacous groups which is developed in northern California and Oregon. At the same time the fossil evidence suggests that while the Vancouver beds may be Upper Cretaceous, those of the Queen Charlotte Islands are parily Lower Cretaceous and partly L-pper Jurassic. From the fact that the fossils in the Cretaccous formations on the west side of the Rocky Mountains are specifically different foom those on the east side, Mr. Billings suggests the former existence of a land-barrier down the American continent on which the abundant Cretaceous flora flourished.
The routc followed by Mr. Bell, of which an account is given in this Report (") the country between Lake Superior ard Lake Winnipeg), presented comparatively little of general interest, though it save seope for the same methodical and careful work for which his previous reports are distinguished. One fact deserves notice among his remarks, namely, that he his contirmed his previous observations of a great confurmalie serics of metamorphosed Huronian rocks resting upon the L.t:rentian gneis. Mr. Sclurn sussests thit the contman. ability may be only loc.a and deceptive This is certainly a matter deserving attentive examination. Mr. Mownat contributes a well-written Report on the combtry between Lakes Temiscamals: .nd . Ibbitible, where he was buy: tracing the selations of some of the metmorphie rocks there to those on Lakis Huron and supetior. Mr.
nor's Report deals with a more civilised part of the country, which had alccady, to some extent, been examined by the Survey. He is cvidently an accession of great strength to the staff.
While explorations were in progress on the shores of the Pacific among the Vancouver coalfields, other members of the Survey were busy on the Atlantic borders among the coalfields of New Brunswick and Nova Scotia. Prof. Bailey and Mr. Matthews have written a valuable account of the New Brunswick region, which it is to be hoped will be extended and published with sections and fuller details. Sevcral other Reports are included in the volume, having more of a practical than a scientific interest. In fine, the Geological Survey of Canada may be congratulated upon the cvidences of continucd activity which this volume furnishes. The form of such Annual Reports necessarily precludes a systematic treatment of the subject, and makes it somewhat difficult for readers unfamiliar with the localities to grasp the main features of geological importance amid the manifold local details. It is earnestly to be wished, therefore, that before many years pass away another general volume may be issued like that which Sir William Logan published eleven years ago.

Arch. Geikie

> (To be continued.)

OUR BOOK SHELF

Field Ornithology'. By Dr. Elliot Coues. (Naturalists' Agency, Salem.)
OUR ornithological readers are all familiar with Dr. Coues' excellent "Key to North Amcrican Birds," which we noticed on its appearance. In that work it was intended that instruction in the best means of collecting and preserving birds should have been incorporated, which was prevented by the unexpected dimensions which the volume assumed. The same author now gives us these important instructions in a separate small manual, with which he combines a check list of the species described in the "Kcy," arranged in accordance with his own views, as a supplement to the larger work. The subjects treated of will be found of great service to all collectors, especiaily to those, both amateur and professional, who are commencing to attempt the accumulation and the preservation of bird-skins. The hints on the selection of a gun, shot, \&c., will be of cepecial service to all sportsmen of small game, whilst the carefully-written account of the best way in which the skinring of birds, both large and small, should be undertiken, will well repay the perusal, even of the experienced. The various less well-known means of preserving specimens, as in spirit, and by means of carbolic acid, which latter is not inaptly termed by the author " mummification," are described in detail. (If the carbolic-acid method it is remarked: "1 mention the process chicfly to condemn it as an atrocious one; I amnot imagine what circumt.meces would recommend it, while only an extreme emergency could justify it. It is further objectionable lecause it appars to kend a dingy hue to., some plumanes, and to dull most of them perciptits," Notwithstanding these dis, drantages theie is one point which recommends this process, it lecin: that the henies of the bideds presered les it ane in a condtion guite fit for the disuct tion of the museless mad other orpans, alter they lave been sorked for wher tane. Nothing is mote dititicall then for the students of memal stmeture to get most of the bedies of which they depondently tearal so many skins ; and they moturally lowh with delight at .mes me:hod which gives liem a chanice of obtaining the speces they desire. The check li,t will lee found of much use to those
who collect the birds of North Muicrica. It is printed on one side of the page only, and separate copies are to be printed, which can be cut up for cabinet purposes. lor those who are commencing ornithology practically we know no book which will prove so serviceable as Dr. Coues' little work.

LETTERS TO THE EIDITOR

[The Eiditor does not hold himself responsille for ofinions cxpressed by his correstomidents. No notice is taken of anonymous cimmunnications.]

Proposed Issue of Daily Weather Charts of Europe and the North Atlantic

I have the honour to inform you that Capt. Hoffmeyer, Director of the Royal Meteorological Institute of Copenhagen, has sent me a circular announcing his intention to publish daily charts of the weather for the district from $60^{\prime \prime} \mathrm{E}$. to $60^{\circ} \mathrm{W}$. long. and from 30° to $75^{\circ} \mathrm{N}$. lat. The charts for the three monthsDec. 1873 - Fel. I 874 --will be published as an experiment.

The cost will be four francs per month, exclusive of postal charges.

Capt. Hoffmeyer states that he can only deal with central offices, and has requested me to undertake these islands as regards the distribution of the clarts. I have therefore to announce that I have been instructed by the committee to subscribe for twentyfive copies of these charts, and I shall be happy to supply copies for the three months to any gentleman, at the cost of irs. to cover carriage from Copenhagen, and postage from London to his address.

Robert H. Scott, Direclor
Meteorological Office, June 22

The Degeneracy of Man

Dr. Oscar Peschel, in his recently published "Volkerkunde" (p. 137), calls attention to a remark by the late Dr. von Martius, of much interest to anthropoiogists. It is well known that this distinguished naturalist avowed in the strongest terms his belief that the savage tribes o! Brazil were the fallen descendants of more cultured nations. In $1 S_{3} 3$ he said :-" Every day I spent among the Indians of Brazil increased my conviction that they had once been in quite another state, but that in the lapse of dark ages there had broken in upon them manifold catastrophes, which had brought them down to their actual condition, that of a peculiar decline and degeneration. The Americans are not a wild race, they are a race rum wili and degraded." To students of civilisation (myself for example) Dr. Martius' views have been most embarrassing. It was not strange that the theory of savages being the degraded offspring of primeval civilised men should have been advocated by Archbishep Whately, who did not even take the truble to examine his own evidence. Nor is it surprising that the bishop of 1:ly, in the "Speaker's Commentary," should still appeal to Whately as an unrefuted authority, for one hardly expects an orthodox commentator to test the arguments on his own side. But the case with Dr. Martius was yuite different. Here was an cminent ethnolozist, intimately acquainted with savase thought and life, dociaring that it seemed to him not to indicate natural wildness, but to :how traes of decay from an ancient higher culture. What made the matter more puzaling, "as that Dr. Marius, in his rescanches, had come upun tacis which he a innowledged to be evidence of progress tahus place from sarage toward civilie el instictions. Thas, amons the forest tribes of Brail he found the rudesi form of the " villis'e community." with its tribe-land common to all, but the huts and patches of tilled ground treated as acquired private property, not in iccit of individuals, hut of families It was manifert that thece tibes were pasing through stages of that suy develpment of the law of real property which is so clearly shown in the histury of European law. This is a strong argument in fiswur of the development-theory of civilisation, but how could an cthnolusit who understood the foree of such arguments, remain an upholicer of the degeneration-theory?
1)r. P'eschel considers that he did not so remain, but had changed his opinion when, nearly thirty yeurs later, he wrote as
follow, as to the titios of the vat region of the Amazoms, "There are as yet an grounds for comsidering that the present barbaric condtion in these districts is ccoondary, that any other higher social condition had ever here preceded it, that this swarming-ground of ephemeral unsuhstantial hordes had ever been the theatre of a cultured nation." * It is to be noticell, how ever, that this passage does not seem necessarily to involve a recantation by Dr. Niartius of his former opinion. He leaves it quite open that the tribes of the Amaions, though they did not degenerate in this region from civilised ancestors, might have done so chewhere, and then migrated as savages into the forest regions where as savages they remain. The context may on the whole favour this view of his meaning. Now this matter quite deserves further looking into. It would be well worth while if Dr. Peschel, from personal or publi,hed sources available to him, would settle once for all the question whether the great Bavarian ethnologist continued through life the degenerationist that we in England suppose him to have been. Some twenty years ago, Dr. Prichard ("Natural IIstory of Man," IS43. p. 497), citing Martius as to this very matter of the supposed fall of the South American tribes from an original higher state, remarked that "had he taken a more extensive survey of the nations of the whole continent, his opinion might have been somewhat modified." As Dr. Martius did take the more extensive survey thus recommended, it would be particularly curious to ascertain whether it did have the effect thus foretold on his mind.

Edward B. Tylor

Flight of Birds

Allow me to return thanks to such of your correspondents as have been kind enough to notice the query (vol. viii. p. 86) on this subject which I made through your columns.
As the matter seems to have excited some little interest perhaps you will permit me to state in what respect the solutions proposed appear satisfactory.

That an "upward start" of wind of sufficient velocity would support a bird of given weight and surface of resistance is no doubt the case. As in still air a bird, by holding its wings in a plane slightly inclined to the horizontal, will glide with a velocity which ultimately becomes uniform, in a straight line obliquely downwards, so the same bird in the same position, but in a current slanting upwards in a like direction and with a like velocity, must remain at rest. Nevertheless there are difficulties in the way of thus explaining the phenomenon.
(I) It supposes the existence of air-currents of greater rapidity and at a greater angle of elevation than are likely often to be met with. Taking the number of square feet in the whole resisting surface of the bird to be equal to the number of pounds in its weight, then a vertical current of 15 miles per hour would be required to support a bird with its tail and wings fully unfurled but motionless, and a current of 30 miles per hour would be required if the current ascended at an angle of 30° with the horizon. Now wind directed upwards by encountering the side of a mountain is not likely to be inclined at a greater angle than this, which is the average slope of a very steep mountain side, and moreover the phenomenon of hovering without wing motion may be observed where such rapid currents have no existence.
(2) The phenomenon is sometimes observed where it is almost impossible to suppose the existence of any upward air-currents whatever. The first time it attracted my attention was in the neighbourhood of London, towards Finchley Common, where it will, I think: be admitted that there is nothing in the natural configuration of the ground to determine an upward current of sufficient velocity to produce the required effect. The wind at the time was certainly not boisterous, but as the bird was at a considerable elevation there is still room to imagine that the upper currents in which it was situated might be different from those below. I was informed at the time that the lird in this case was a kite ; this may have been an error, as I understand that I should now rarely seen near London. However this may be I should gladly hear from such of your correspondents as have the opportunity of watching the motions of the kite as to whether
the position of motionless hovering, which I believe this bird centinually assumes, can be explained always by the existence of upward currents. I do not of course deny but what birds, while hovering, avail themselves of upward currents where they can. If the position is the result of considerable though imperceppible

[^0]mucular action they womb maturally sich to ceomomine theit strength as far as pussilide hy availing themselves of whatever uport they could get from upward wind currents.
As your correspondent, J. Herschel, implies, it is difficult to dissociate the hovering and the soaring of birds. That lifrels soar, that is, that they continue suspended in the air for long periods of time together, in rapid motion, with no further appa. rent movement of the winss than is necessary to guile then, and this under circumstances whete it is obviously impersible for them to avail themselves of upward air slants, cannot be denied. this in the cas made the vya, to the Cape must have olserved the sea with wing power; but, beinculty and with the expenditure of much becomes a most inexpls once fairly launched in the air, its flight during a steady wind, it soars fornomenon. In the open ocean, rate of six or eight knots an luw without apparent difficulty, and with no further wing motion than seems necessary to guide it, now skimming the water in the wake of the ship, now sweeping round to the side or in frout, rising and falling ly what has been well describer as an aphrent act of volition, and with no perceptible loss of velocity Now I think it must be admitted that the motionless hovering and the soaring of 1inds are phenomena closely allied to each other, that no explanation of the one is satisfactory which does not explain the other also, and that, as the theory of upward slants cannot possibly explain the soaring of birds, it cannot be accepted as a satisfactory explanation of their hovering.
Besides the "upward air slant" theory, a correspondent of "ne of your contemporaries refers me to the Duke of Argyll's "Reign of Law" under the supposition that the matter is fully explained in the third chapter of that work. I only refer to this to point out the curious example it furnishes of fallacious reasoning. The author obviously thinks that, ly a proper arrangement of its wings and tail and the position of its body, a bird can without muscular exertion remain suspended in a horizontal aircurrent, procided the lattor l_{i} of sufficicnt a'llocity (see p. 1 70). This of course requires no refutation; lut the whole of the chapter in which it occurs may be read with interest as illustrating the curious mistakes a clever and carnest amateur will fall into in writing on even the most elcmentary scientific subjects in which he has had no exact training.
F. Guthrie

Graaff Reinet Colicge, Cape Colony

An Optical Delusion

The following is an optical delusion which is none the less interesting for being very easily explained.

Let a person standing before a looking-glass look attentively at the reflection of the pupil of one of his eyes, and then at that of the other-let him look at different parts of the eye, and from one eye to the other, first at one and then at the o.hicr. Knowing that in thus changing the direction of lis gaze his eyes must move about in their sockets he will expect to see that they do so in the glass. As a fact ther will appiar porfictly sti\%.

If he looks at the eycs of another person trying the experiment, the peculiar fixedness of his own will be still more striking, when he looks at them arain.

I will not spoil the riddle by giving the answer at the end.

> J. II.

Longevity of the Carp

('an any of your readers give any well-acerinined fronf of the length of life a'tained liy the carp? When residing as a wouth at St. Germain, I was told ly an aged Legitimist that his i.ather had watched the same carp throughout the whole of his life, and the son asserted that he had known the identical fih for cwenty and thirty years after his lather's death, thus siving to them an ase of from sixty to seventy yeat: That rematholle statement is more than sublamia' edi hy Lady Clementina Davic: whin, in "Recollections of sociely" (p. fo), allution the lonsciaty of the carp in the moat of the (hitheall de St Cicmane one be:t ing

 to an almor inctedile low, we attribute to the ex at ments?
Croydon, Surncy, June i:

LE GENTIL'S OBSERVATION OF THE TRANSIT OF VENUS

$\mathrm{A}^{\mathrm{s}}$$S$ all the world is now thinking of the transit of Venus, an episode of old time in connection therewith should be very interesting.
In a series of articles by M. W. de Fonvielle in $L a$ Nature, from which the accompanying illustration is taken, some interesting facts are given concerning Le Gentil's observations of the transit of Venus in the open sea about the middle of last century. These we reproduce here with some supplementary information from Le Gentil's own interesting work referred to below. His voyages extended altogether from 1760 to 177 I . They consequently commenced before the transit of 176 I , and were continued after that of 1769.

The expeditions of Le Gentil, the account of which, published by the royal press, fills two magnificent volumes,
have left an ineffaceable mark upon the history of astronomy. His work is a proof that a man of energy and perseverance who sets himself to the solution of a great and beautiful problem can find, in spite of all obstacles; the means of immortalising himself. Posterity certainly owes some indemnification to the indefatigable astronomer, since his determination to solve scientific questions was undoubtedly prejudicial to his interests, and even to his love-affairs.

A pupil of De l'Isle, Le Gentil was intended for the church by his family, whose home was at Coutances, where he was born Sept. 12, 1725; but his attachment to M/le. Potier, belonging to one of the richest families of Cotentin, made him give up all idea of so very celestial a profession. A happy marriage, contracted in 1771, after eleven years of absence, enabled him to triumph over his enemies, who had taken advantage of his being far away to fill up his place in the Academy of Science, and against his

Transit of Venus observed on the open sea by Le Gentil in 176 r .
relations, who had attempted to take possession of his property; he had to go to law to make them give up what they had taken. His death, which had been announced so ofien, was very nearly becoming a reality, for he was seized by a dangerous malady, which would have carried him off but for the affectionate care of his wife.

The Duc de la Vrillière, Minister of State, entrusted with the distribution of lettres de cachet, was then Director of the Academy. Le Gentil, having received from his bureau the orders of the King, embarked in 1760 for the Isle of France, on board the Berrycr, a vessel of the Indian Company, which carried fifty guns, and sailed in company of the Comited' -Irtois of sixty-four. On July to he arrived at the Isle of France. Le Gentil resolved to proceed t) Rodrigue, where he did not know that Canon Pingre, who had left l'aris after him, had arrived, to execute a mission which he had received from the Academy. The two istronomers would have unexpectedly met on that island, then almost a desert, if Le Gentil had not
found at the Isle of France the $S_{y} l / p h i x i c$, a frigate sent to the help of P'ondicherry, Le Gentil's orisinal destination. IIc, full of ardour, did not hesitate to embark on board of this vessel. But the winds were adverse to the expedition, and the Sylphide wandered from March 25, 1761, to May 24, the sport of calms and of the irregular winds of the north-cast monsoon. On May 24, when off the coast of Malabar, Le Gentil learned that Pondicherry had been taken by the English. It was then necessary to return to the Isle of France, where the Sylphide arrived only on June 23 , after having touched at Point de Galle on May 30.

It was between these two stations that Le Gentil obscrved the transit of Venus, of which the following is his description, stripped of all extraneous details :-
"To observe the entry of Venus I employed an excellent objective of 15 ft . (French) focus, fixed to a tube composed of four pine planks which I had made sufficiently solid without being too heavy. To work it I got a
small mast with a halliard fitted on the port quarter deck．I saw that it was uscless to attempt to notice the first moment of the cutry of Yenus，for I did not wint to fatigue myself and run the risk of not being able to oh－ serve the total immersion．Indeed，I had sufficient trouble to fix the sun，on account of the movement of the ship．
＂When Venus had half entered，or nearly so，on the disk of the sun，which 1 recosnised by my reflecting quadrant． 1 attached myself，so to operk，to the telescope of 15 ft to try to catch the moment of total entry．As my watch was none of the best，and as I could not take the height of the sun precisely at the moment when \backslash enus appeared to me to be totally immersed，it occurred to me to make use of the sand－glass，by means of which the way of the vessel was measured，and 1 had by my side a man well up to turning the glass at the instant in such a way that it was impossible to have an error of more than a quarter of a second each time．
＂The weather having become overcast，and the rain having shown itself，I did not think it would be possible to notice the exit of Cenus．Consequently I did not cause the mast to be changed，as I ought to have done， for we had tacked since hallf－past ir．
＂At 2 oclock it cleared a little，and shortly after the weather cleared so that I could see Venus very distinctly with my green objective，and without the help of any other coloured glass，and I was not incommoded．I saw， from this observation，that it was not impossible for a per－ son used to the movement of a vessel，and accustomed to the use of large instruments，to observe，especially when the sea is calm，the immersions of the satellites of Jupiter with a telescope of 12 or 15 ff ．，which would have a large field，and to determine the time of those immersions in the above manner；for I believe myself safe in asserting that I did not make from them from 15 to 20 seconds in time of error on an immersion of the first satellite of Jupiter．＂
The observations made under these extraordinary cir－ cumstances，give for the total immersion of Venus，Sh． 27 mm .561 s s．；the commencement of the exit，2h． 22 m ． 535 s ．； the total exit， 2 h .38 m ． 52 I s ．，which gives for the duration， 6h．1om． $55 \frac{3}{3} \mathrm{~s}$ ．，and for the time taken by the diameter to cross the limb of the sun， 15 m .59 s ．As M．de Seligny had observed at the Isle of France the exit of Venus，Le Gentil formed，for the meridian of his observation， $88^{\circ} 20^{\prime} 15^{\prime \prime}$ The log－book gave $37^{\circ} 14^{\prime \prime} 0^{\prime \prime}$
As there was to be another transit of Venus on June 3， 1769 ，Le Gentil resolved to spend eight years in the southern hemisphere in wait for it．He had the devotion to carry this resolution into effect，spending his time in making a series of curious and interesting observations in the Mascarene Islands，Madagascar，Marianne Islands， the Philippines，and the coasts of India．He had fixed on Manilla as his place of observation，and reached it about August 1866，but he was ordered to return to Pondicherry．By what must seem a cruel fatality，this patient devotee of science，when the day of the Transit arrived，found his view of the sun completely shut out by clouds during the whole phenomenon，although for many days previous the sky had been cloudless．On the other hand，two friends whom he had left at Manilla were fortu－ nate cnough to witness the transit without obstruction． Le Gentil died on（）ctober 22， 1792 ．

ON THE TEMPORARI 1 AIIING OF SOMI： LEALES UHEN ENYOSEI TO THE SL I

 $\mathrm{F}^{\text {OR some time past } I \text { have taken much interest in this }}$ subject，since it at first secened to indicate thatchlorophyll in living plants could be decomposed by lieht in the same manner as when disuolved out frous by light in the same manner as when dissolved out from them lyy
alcohol or other solvents． the fact which I hodvents．It also seemed to agree with the fact which I had established by comparative yuamtit．．－
tive analysis，that leaves grown much exposted tive analysis，that leaves grown much exposed to）the suin contain a relatively less amount of chlorophyll than those somewhat more shaded，in some cases cicen only onc－
third tha quantity．My attention was first call third tiez quantity．My attention was first called to a
diurnal chanse in the colour of a kind of moss commonly grown in hothouses，by Mr．Ewins，of the Sheffield Botanical（irrdens，and subsequently to a similar change in a tropical species of muilen－hair fern，by Ir．Branson of Baslow．In both case；the colour of the fronds，after the darkness of night，wat deep green，but after exposure to the bright sun of day it was a far paler and whiter green， which was arain restored by the subsequent absence of light．I was particularly anxious to ascertain whether thi； change was due to a diminution in the amount of chloro－ phyll，but was unable to detect any well－marked difference by careful comparative quantitative analyses．I therefore cance to the conclusion that，at all events in the case of the moss，the change in colour was due to some sort of mechanical alteration in the structure of the fronds，but did not examine the question more fully．The true ex－ planation appears to be that adopted by Prillieux，who describes his obscrvations in Comptes Relldus，t．Ixxviii． p．506．According to him and to the previous experiments of Famintzin and Borodin，exposure to bright light causes both granular and amorphous chlorophyli to collect to－ gether at the sides of the cells，instead of being more evenly distributed．The result of this is that a much larger relative proportion of white light is reflected，and the leaves or fronds appear of a paler and whiter green． These conclusions are thus iu pertect agreement with my own quantitative analyses，and we may，I think，look upon this combined evidence of two independent methods as furnishing a satisfactory explanation of the greater part，if not of the whole，of the temporary change in colour．

H．C．Sorby

THE COMET

AFTER a very unusual amount of difficulty in the determination of the orbit I have succeeded in de－ ducing a set of parabolic elements which appear to possess considerable precision．They are as follows ：－ Perihelion passage，July， $88_{3} \sigma_{5}$ Greenwich M．T．
Longitude of lerihelion ．．． $271 \quad 351 \%$ ，Mean equinox
 L＂s．I＇crihelion distance … $\quad 9.8298719$

Motion direct．
Our last ，bjervation，a very good one，gives this position：－ Junc 22．at 10＇h． 4 m ． 215 ．M1．T．at Twickenham．

$$
\begin{aligned}
& \text { R.4. ... 7h. } 21 \mathrm{~m} .58 .05 \mathrm{~s} \text {. } \\
& \text { D. } \ldots+68^{\circ} 9+5
\end{aligned}
$$

which compared with the above orbit parallax and aber－ ration allowed for）shows，oniy the following insigrifitiont differences－in R．A．－$z^{\prime \prime}$ ；in $\mathrm{D}+\mathrm{I}^{\prime \prime}$
This close agrecment with parabolic motion is not favourable to identity of the comet with that of $173 / 7$ not withstanding similarity of elements，but we must tovk to observers in the southern hemisphere to enable us to decide this point．The comet may certainly be there odscrved till October or November in the Antarctic cir－ cumpolar heavens．
The subjoined ephemeris will sulfice to indicate the course of the comet，while it continues visible in our
latitudes：－

Junc こう	R．1．	\．1＇．I）	1心：	Jいいい い い1 いか：
	l． 11			
	$\because 2 \rightarrow$ i	\therefore i	O．S10	
$こ ゙$	7 ion	2j 11	いつい）	－，
Jul ${ }^{1}$	$7 \mathrm{i} \cdot 7$	$\therefore 13$	いここ1	\because
J11） 1	$\because \quad i^{\prime \prime}$	ご10	いい，；	i
3	7 ill	20 il	いい‥	！${ }^{\prime}$
5	711 i	$\therefore \therefore 1$	いこう，	－
，	7 i ：	（ ${ }^{\prime \prime}$	い景号	いい
＇1	$7+4 i$	is pi	\cdots いい	7.
11	7 71\％	i $i \cdots$	いう：	1
$1 . j$	740	－$\sim^{(1)}$	（1），い	11
15	Tit）	fi ii	（いうい	17

1 have assumed the intensity of light on June $1, j=1$.
The orbit of the comet makes a very close approach to that of the phanet Venus. My last elements indicate for least distance of orbits ooll.
For calculation of places alter July 15 the following expressions for the comet's heliocentric co-ordinates referred to the equator, will be useful, in conjunction with , , Y Z, of the Nautical $1 /$ minnack.

$$
\begin{align*}
& x=r 19^{\prime} 77+9 \cdot \sin \left(v+2 \sigma^{\prime} 8^{\prime} \cdot 5\right) \\
& y=r\left(y^{\circ} 9^{8} 6(5) \sin \left(z+276^{\prime \prime} 17^{\prime \prime}\right)\right. \\
& z=r\left[9^{\circ} 92+08\right] \sin \left(z^{\prime}+170^{\prime} 54^{\prime} 5\right)
\end{align*}
$$

Mr. Bishop's Observatory, Twickenham, June 23
The following aciditional information is taken from a letter by Mr. Hind in yesterday's Times:-
"The comet will be nearest to the earth on the night of July 22 , its distance being then less than 0.3 .
"Last night at in.30, the moon being yet above the horizon, the comet appeared to be in the least degree fainter than the star Upsilon, Ursic Majoris, which Argelander estimates rather higher than the fourth magnitude. In the strongly illuminated sky of these midsummer nights it was very sensibly brighter than the neighbouring stars 42 and +3 Camelopardi. By measures of the nucleus taken with the filar-micrometer, it appeared to be rather more than 4,000 miles in diameter, and the tail, assuming it to be projected from the nucleus in the line of the radius-vector, would be $4,0=0,000$ miles in length.
" During the first fortnight in July the comet will undoubtedly be a pretty conspicuous object in the constellation Lynx, where there are few bright stars.
"At the end of September its brightness, by theory, should be the same as on the night of discovery (April 17), and it will then be well observed in the southern hemisphere, in the neighbourhood of the star Alpha Chamæleontis."

Mr. Hind, in a letter with which he has favoured me, lays great stress upon the star-like appearance of the nucleus of the comet now visible, as seen in a telecope; and M. Rayet has already, in a communication to the Paris Academy, shown that its spectrum is continuous, that of the coma giving the three ordinary cometary bands. On Monday evening last the comet was bright enough, in spite of the moonlight, to enable me to observe this continuous spectrum with my 61 inch Cooke and a pocket spectroscope. It struck me that the spectrum was short, i.c. that it was deficient in blue rays; and as one saw in the telescope a fan-like structure above the nucleus (as seen in an inverting telescope), so also in the spectroscope, the continuous spectrum sparkled as if many short bright lines or bands were superposed upon it. I shall be glad to learn that other observers with more powerful instruments have had their attention directed to these two points.
J. Norman Lockyer

NOTES

Ox the 3rd inst the corner stune of the Amcrican Muscum of Natural History in New York was laid liy the Pecilent of the United States. The ground ledonging to the Museam measures about cightecn actes, and the builting when completed according to plan will be laper than the bititish Nuecum. The
 the masses; and secunilly, and pecially, we rentrall punille

 The other collections at fesent in the tempnary slusemun are valucd nt $250,0 \times$ deds. \quad a rate and newly complete :evies of

American birids, and many fine bieds of l'analise and phensante, now in the collection furmely berming to $\mathrm{M} \%$, 1). (S. Elliott, will be added. The Trustces have purchased the collection of Prince Maximilian, of Neuwied, on the Khine, and a large number of specimens belonging to the late Eidward Verreaux, of Paris. Larte domations of shells, corale, and minerals, have been reccived, $a \sim$ alsio a collection of $20,(x) 0$ insects. The collections will be bought and cared for ly moncys contributed by the Trustees individually and the pulbic, lut the building now in progress will lie erected at the expense of the city, which has already appropriated 500,000 dols. for this purpose.
Prof. Joseph IIenry of the Smithsonian Institution gave an address on the alneve occasion, in which he proke as follows on the necessity of cndowing scicutific rescarch :-" The develop. ment of the institution woull not be conupleted were it furnished with all the appliances I have mentioned. There is another duty which this city owes to itself and to the civilisation of the world. I allude to an endowment for the support of a college of discoverers and a number of men capable not only of ex. pounding established and known truths, but of interrogating mature and discovering new facts, new phenomena, and new principles. The blindness of the public to the value of the abstract sciences and the matter of endowments of colleges for their support is remarkable. It is not everyone, however well educated he may be, that is capable of becoming a first-class scientist. Like poets, discoverers are born, not made, and when one of this class has been found he should be cherished, liberally provided with the means of subsistence, fully supplied with all the implements of information, and his life sonsecrated to the high and holy office of penetrating the myster:es of nature. What has been achieved in the knowledge of the forces in operation in nature, and the uses to which it is applied in controlling and directing these forces to useful purposes, constitutes the highest claim to the glory of our race.'
The Duke of Devonshire, spaaking at the banquet at Trinity College, Cambridge, on the 17 th inst., sa:d it had fallen to his lot during the last three or four years, while acting on a Royal Commission for inquiring into Scientific Education and the Advancement of Science, to become acquainted with the development and extension of scientific teaching in the several Universities of the kingdom, and of learning the views of those best qualified to express an opinion as to the requirements remaining to be supplied. The result of the inquiry had been satisfactory, inasmuch as it showed that a great deal had been done in the direction indicated, and that University authorities had manifested a strong desire that the Universities should be provided with all appliances recessary not enly for centres of scientific education, but as centres also of general intellectaal activity and of original research. This latter point was strongly insisted on in the evidence before the commissioners, and reccived their concurrence. A University which recognised the advancement and catcnsion of knowledse as one of the main purposes of its existence was surely to be regarded 25 of a higher and nobler type than one which was satisfied with the position of a mere educational body. There was nothing antagonistic in these two chiceti: on the contrary, great advantage might be derived from their combination.

Tire Fimperior of Austria lias ieen pleased to confer upan Mr. Rolert II. Sowt. F.R.S., the Director of the Meteorological (1ficu, the ()war of the Iron Crown, Third Chass.

1 k. Ton' 1 , physicim to the Shah of Persia, has beed elected a conterundins member of the 1 rench Academy in the secti n of Mcedicine ..nd Surgery; and MI. studer of Berne in that of (icolugy. The linter is a veteran of $i 9$ years.
Tine organiation of the French National Observatory will
vely noon be complete, Ies. Mimdis says. The French Government have voted 30,000 francs to the meteorological department, and M. Le Verricr is about to resume the work of international meteorology, with the fixed intention of abandoning local meteorolagy to the departmental obscrvatory of Mont-Souris. M. Le Verrier is at present in this country, having come over to get his Cambridge degree conferred. He is to visit Newcastle, to inspect Mr. Newall's large telescope, and Edinburgh and Glasgow in connection with meteorology. The printing has been begin of a very large catalogue of stars observed at the Paris Observatory. MM. Fizeau and Cornu are measuring anew the speed of light under conditions which encourage us to look for a definite result.

There will be ample opportunities for practical work in Natural Science during the long vacation (July and Augu;t) at Cambridge. The laboratories of Experimental Physics, of Chemistry and Physiology, will be open, and the professors, or the demonstrators, or both, will be in attendance to give assistance to students. Prof. Newton has given notice of a practical class for Comparative Anatomy; and Prof. Humphry has given notics of a practical class for Human Anatomy (more particularly Osteology), and also for IIistology,
Tile Rev. S. J. Perry, the head of the expedition sent out by the Admiralty to observe the transit of Venus, together with Lieut. Coke, R.N., Paymaster Brown, R.N., and the Rev. W. Sidgreaves, were among the passengers by the steamer IVind $l_{s, o}$. Castle, which left Dartmouth on Tuesday for the Cape of Good Hope.
The concorsaziont of the Society of Arts held in the South Kensington Museum last Friday was a great success. It is said there were about 3.500 guests present.

At the annual meeting of the Palestine Exploration Fund, Lieut. Conder, R.E. (officer in charge of the survey of Palestine), described the work of the expedition. Before leaving Palestine he bad completed half the map, and it was expected that within four years, instead of eight, the whole of Palestine would have been surveyed. There were now 300 square miles added to the map, being five times the result at first expected to be accomplished.

The discovery of a new planet by Mr. Perrotin, of Toulouse, is announced.

At the half-yearly meeting of the Highland and Agricultural Society of Scotland, a long discussion took place in reference to the filling up of the vacancy in the chemical department, as also on the proposal for granting bursaries with a view to the encouragement of agricultural education throughout the country. It was ultimately agreed to remit the matter back to the directors, with instructions to inquire as to the amount of funds that could be placed at their disposal for the educational and chemical departments. Λ motion for memorialising Guvernment on the propriety of establishing agriculture as a branch of the system of physical science taught under the superintendence of the Department of Science and Art, and proposing that the Society offer a premium for the best text-book for such a course, was adopted.

In reliance on the receipt of further subscriptions to prosecute the Sub-Wealden Exploration, it has been decided to continue the boring to a farther depth cf 200 ft . The hon. secretary has
(c) offered to become personally responsible to the liamond Rock

Biv: Boring Company for the cost of the extra 200 ft . IIis offer has
(ieer been accepted, and he has been requested to issuc another appeal for subscriptions. In doing so he urges upon "all who like to reconsidered genero::s, enlightened, wise, and good, to vie with
each other in contributing to complete this the first boring for
scientific purposes in Fangland."
AT the Amiversary Meeting of the Royal Cecsiaphical Society on Monday it was stated that there had been an increase of 342 new membering and 9 honorary corresponiing members; the Society now numbers 2,900 Ficllows. In accordance with the announcement already made, the Founder's (iold Medal was presented to I)r. Georg Schweinfurth, in whose absence it was received for him by the German Ambassador Count Miunster ; and the Victoria (or Patron's) riold Medal, which had been awarded to Col. P. Egerton Warburton, for his journey across the previously unknown part of Western Australia, was received by his nephew, Mr. Bateman. Mr. Fruncis Galton, F.R.S., then introduced the successful competitors for the annual geographical medals. A gold meilal for physical geography was awarded to Louis Weston (City of London School), and a bronze medal for the same subject to Francis Charles Montague (University Colle;e School). For political geography, a gold medal was gained by W. II. Tur:on (Clifton College, Bristol), and a bronze medal by Lionel Jacob (City of London School). The president, Sir Bartle Frere, then delivercd his address on the progress of geography, and announced as his successor in the presidential char, Major-Gen. Sir Henry C. Rawlinson, K.C.B. Nedals were also given to Chum ih and Susi, two of Livingstone's black servants, who brought his MSS. to England. The Rev. HI. Waller stated they were of invaluable aid to Mr. T Livingstone in editing the MSis., both from their accurate knowledge of the country and their intelligent comprehension of the maps. At the anniversary dinner in the evening, among those who were present and who spake were M. Leverrier and Chief-Justice Daley, President of the American Geographical Society.
Tire fourth part of Tryon's "American Marine Conchology " has made its appearance, with eight coloured pla-es, and embracing the family of the Chitmidic, of which six species are indicated, the orders Opisthumamikiata and Itiontudi, the commencement of the class . Aciphall, begimning with the Pluludili: The work was commenced carly in 1873 , and if it be confined to the five or six parts originally proposed, will soon be brought to a completion.

At the annual distribution of the prizes in connection with the Newcastle College of Physical Science, on the 17 hh inst, the address of the Dean was, on the whole, very hopeful. The number of students has not greatly increased, but the quality of the work done has advancei considerably. We regret to see that the evening classes have not been so great a succesi as was hoped; but we hope the professors will not be cavily induced to discontinue them, but will take every means to let their advantages be known to the young men of the district. 1)uring the fant year the facilities of the collecse for imparting knowledge has been very much increasel. The haboratory has been extended; a large and valuable collection of minerals has been achicit to Ir. Page's museum ; and sevcral expensive instruments have also been aided to Mr. Herschel's collection. It is hanal that very soon a Chair of biol gy will be extablathed in the 1 aiversity. Arrangements have been made by which the risuree of B. Sc. will be conferred on any deserving stulent by the 1 wi:
versity of versity of I urham; and we are shat to see that the repluiremenfor this degree have heen made very censiamable. Arange ments have also been made by which the collere will be fuly prescinted in the simate of Durham.
 close of the University leiturs 11 ambridge evemion scheme) Lat Λ_{p} ril. The excursion, which had hecol matic from time.. time with Mr. Sollas, B.A., male the stment, wishful $: 1$ kecp them up; hence the formation of a club whith nambur , ilnent
ninety members. The proccedings are reported in the local papers, and julging from the programme sent us the club means to go in for hard and carnest, and we hope fruitful, field-work.

If gives us much pleasure to see from a recent number of the Inunstalle lioremgh Gactle that that paper devotes a fair amount of space to science, under the title of "Our Science Column." The number before us, June 17, contains a goud popular article on the value of scientific knowledge, some meteorological data, and an original communication on the botany of Dunstable, bcing the continuation of a list of plants of the district, with their common and scientific names. We hope the editor will continue his science column, and make it a means of enlightening his readers, and that the number of provincial papers which have a "Science Column" may go on rapidly increasing.

Tine Gardinios' Chromick learns that a committee has been formed, and funds are being collected, for the much needed restoration of Selborne Church as a memorial to Gilbert White. It is also proposed to crect a Cross to his memory on the "Plestor." It is hoped that a sufficient sum will be raised, beyond what will be required for these objects, to found an exhibition to one of the colleges at Oxford, with which he was connected, to be called the "Gilbert White" Exhibition. It is calculated that at least 5,000 . will be required. The committee includes the names of the Right Hon. Lord Selborne, the President and Fellows of Magdalen College, Oxon; Prof. Bell, F.R.S., \&c. ; the Rev. F. Parsons, Vicar of Selborne, and others.

At a special meeting of the Anthropological Institute, to be held at Bethnal Green Museum, on July I, Col. Lane Fox will give an Address on the principles of classification in his anthropological collection.

Dr. Le. has added another volume to his large work on the Unionidx, illustrated by twenty-two lithographic plates.
A prolosal has been made in the Ambrican Chemist that a centenary meeting should be held on August a to commemorate the discovery of oxygen by Priestley on August 1, 1774. The Amorican Yournal of Science and Arts points out that this would afford an uplortunity to discuss interesting chemical topics and to review the frogres made during the century.

ON. Wulnesday the 1 th the President of the Ceological Society held an inaugural reception of the Fellows in their new apartments at Burlington IIouse, to which many ladies were also invited. Although the meeting-room has been in use or a fee weeks, and the removal of the library from Somerset House has been completed, the removal of the museum has but just commenced, and as the collections are so extensive it will occupy many wechs.

Tue Statistical Sucicty will hold its Fortieth Anniversary Mecting on Tuc lay, June $3^{\prime \prime}$, at 3.30 1...1.
Arkoger las been set onf foot to provide bridlington Quay with a marine aduarium. It is estimated the work will cost about $=$, ovol., tward; which several gentlemen in the locality have promised to subscrilue. The affair will probably take the shape of a limited liability company.

The: additions to the Zoulngical Society's (iardeny during the last week include two Huanacus (Lama huamaci) and a batago-

 Nonth Atueria, presentel by Mr. I' Taylor ; a Bonned Monkey

(O, IFERINNC METE(1) () OGY

TIII: Sul-committee for Maritime Metcorology appointed by the Permanent Committee of the Vienna Congress have determined to hold a private conference on the sulject in London, to commence on Λ ug. 3I. The mectings will be held, by permission of the meteorological committec, at the Meteorological Office, 116 , Victuria Street, I ondon, S.W. The invitations are to he issucd this week, and the following is the Programme of Questions to be discussect. I may say that I have already received replics to the circular respecting the Brussels Conference from all the countries to which it was addressed.

Robert II. Scott, Secretary to the Sub.Committee

A general wish has of late been expressed that the mea. sures for the prosecution of Maritime Meteorology proposed at the International Conference at Brussels in 1853 should be reconsiclered, now that the experience of more than twenty years of the operation of these measures has enabled meteorologists to form opinions as to their utility.
At the Meteorological Conference at Leipsig in 1872, and again at the International Congress at Vienna in 1873, preliminary discussions took place on the subject of the more successful prosecution of Ocean Meteorology. Certain resolutions were adopted at Leipsig and confirmed at Vienna, and accordingly it seems proper to embody them in the present programme. They run as follows :-
" I . Thorough uniformity in methods and instruments should be aimed at in the same measure as for observations on shore. This will be most satisfactorily obtained by the chiefs of the central institutes-the establishment of which in all countries in which they do not already exist, and in which the maritime interests demand them, must be declared as absolutely necessaryentering into relations with each other and agreeing on the sepa. rate details, the construction of the instruments, the hours of observation, the journal, \&ic.
" 2 . Unity of measures and scales is desirable, and to this end the introduction of millimetres for the barometer and the centigrade scale for the thermometer should be aimed at. While, however, the comparison of standard instruments of the individual central stations must be insisted on, the uniformity of scales is at present only declared as desirable.
" 3. The Committee would urge the importance of the co-operation of the navies, inasmuch as by their assistance, and by the opportunities afforded thereby of completeness in certain observations, the determination of factors and constants is rendered possible, which can be used with advantage for the reduction of certain results derived from the general system of observations.
"4. With reference to the utilisation of the results, the Committee would urge similarly the importance of uniformity in the methods employed. In close relation therewith was the carrying out of the division of labour of the central stations of the individual states. This principle must be recognised as of the greatest importance for the further development of Marine Meteorology. The repetition of work over definite regions, with reference to the area to be investigated, must be declared as indefensible in the interests of this development."
It was further resolved-" That the convening of a Maritime Meteorological Conference is desirable."
While accepting the above resolutions as a general expression of the principles which should form the basis of an agreement as to future operations in the field of Ocean Meteorology, the SubCommittee to whin the negotiations preparatory to the assembling of a (onfeicuce have been entrusted, consider that it is advisable to cuter more minutely into the details, and have accordingly asrecil on the following series of questions:-

In the casce of a nation which sent any representative to the Brusel, Conterence in 1553, a circular should be addressed to the chict of the Olfice for Maritime Meteorology, if such exist, or to the chief of the metcorological organisation of the country, requerting him to tute :-

1. To what crent the resolutions adopted at Brussels have tecil carricd out in this country?
2. What have been the grounds for departure from them, if such departure has taken place?
and to send his reply to the Sectetary to the Sub-Committee, Mr. Kuhitl 11. Scott, 116, Victoria Street, London, S.W.,

[^1]> 完
before lune a ney, in order to allow ample time to draw up a report on the replics for comsideration at the (onference.
It seems adisabie that, as above stated, the action taken at Vienna should be carefully reonsilered under several heads which will now be recapitulated.
I. Obarewioms-In respect of this subject it will be most convenient to take the " Dhatract 1 .ng" of the lirusels $($ miference, and to dicus- the sereral suljects of observation therein in the onder of sequence of the columus.
Cols. 1 and 6. Date ant pusition of the ubserations.- 1 it your opinion that a tre h column should be added, headed "Coune and 1)istance hy the Ing in cievy Watch of four hours "?
$\because \quad 7$ and s Currents.
Magnctic variation.-Is it desiralle to give an additional column for the "Direction of Ship's IL ad"?
" 10 and in. Wind, dinection and frice.-Is it possible to employ an anemometer at sea so as to give trustworthy lesults? Can the use of the Deaufort scale be made universal?
, 12 and 13 . barometer.--To what degree of minuteness is it nccessary to observe this instrument?
, If anlı 5
., 16.
" 17.
" IS.
" 19.
$\begin{array}{ll}, \\ " & 20 . \\ 2 & 2 .\end{array}$
", 2I. Temperature of sea surface.
," $22 . \quad$ Specific gravity of sea surface.
" 22.
Temperature at depths.- Is it desirable to retain these two last columns, or can the observations when taken be inserted in the column for "Remalks"?

mity ins patterns of instruments should be here a reasonable possibility of introducing the metric them? Is here a reasonable possibility of introducing the metric and centigrade systems for general use at sea?
III. Instructions.-Is it possible to devise a general form of instructions to ensure uniformity in regard of methods of ebservation and registration?
IV. Observers. - What control should be exercised over the observers as to their instruments and registers? Is it desirable that all instruments employed should be the property of the central establishment, and lent to the observers?
V. Co.operation of the Royal Naz'y.-To what extent can ships of war assist in forwarding the ends of meteorological
inguiry?
VI. Discussion. - Can general sugsestions be thrown out as to the most profitable mode of discussion of the observations?
VII. Subjects of Inquiry. -To what extent can a division of labour as regards subjects of inquiry be carried out in a spirit of fairness to the collecting and discussing establishments respsc-
tively?
VIII. Sailing Dirctions.-In how far are purely practical in. restigations, such as the preparation of sailing dircctions, admis-
sible for a scientific institution? sible for a scientific institution?
Any gentleman into whose hands this programme may come, and who is himself not likely to attend the Conference, is requested to forward any remarks he may wish to make on any of the subjects mentioned hercin to Mr. Scott, at the above address,
before July $\mathbf{I}, 1874$.

SCIENTIFIC SER/ALS
The Fournal of lhe Chimical Sucity for May contains the following papers communicated to the Society:-On the action of
bromine on alizarin, by W. II. Perkin. Alizarin heated in a
sealed tube with a solution of bromine in carhon disulphide
fieds monobromalizarin, (yields monobromalizarin, (${ }_{1} H_{7} \mathrm{H}_{1}()_{4}$. This latter substance $\mathrm{C}_{1} \mathrm{II}, \mathrm{Br}(\mathrm{C}$ with acetic anhyilride gives diace:obromalizarin, $\mathrm{C}_{14} \mathrm{II}_{5} \operatorname{Br}\left(\mathrm{C}_{2} \mathrm{IL}_{3}()_{2} \mathrm{O}_{\mathrm{p}}\right.$, and with nitric acid a mixture of phthalic and oxalic acids, while free hromine is given off. Specimens of colton prints showing the differ nice in the shade of colour produced by alizarin and bromalizarin when used as dyeing materials accompany the paper. Nute on the action of trichloracetyl chloride upon urea, ly Raphacl Meldola and Donato Tommasi. The authors have obtained trichloracetyl urea $C^{\circ}\left(\begin{array}{l}\left.\mathrm{NHI}_{\substack{ \\\mathrm{NII} \\ 2}} \mathrm{Cl}_{3} \mathrm{O}\right)\end{array}\right.$
-Researches on the action of the copperzinc couple on organic borlies. Part V. On the bromides of the olefines; and Part VI. (n ethyl bromide, by Dr. J. II. Gladstone and A . Tribe. The couple acts upon dry ethylene bromide, pruducing ethylene by double decomposition ; in presence of alcohol the decomposition is cxplosive. The action of the couple is the same either in presence of alcohol or water, and the fact that thesc substances facilitate the action is explained by the authors by the solvent action of these liquids on the film of zinc bromide formed on the surface of the couple. Propylene and amylene bromides are decomposed in a similar manner, yielding the corresponding olefines. With regard to the action of the couple on ethyl bromide the authors are of opinion that ethylo. bromide of zinc $\left.\frac{\mathrm{C}_{2} \mathrm{I}_{5}}{\mathrm{I}_{5}}\right\}$ heating produces zinc ethyl and zinc bromide or two semi-molecules of ethyl may decompose with the formation of ethane and ethylene. In presence of water or alcohol ethane is always produced according to the reactions:-
-The agclomeration of finely-divided metals by hydrogen, by Alfred Tribe. Copper, palladium, and platinum in a finelydivided state agglomerate when hydrogenised. Dy way of hypothesis the author suggests that the minute particles of the metals are surrounded by layers of liquid hydrogen which coalesce. The last paper is by Andrew Fuller Hargreaves On the spontaneous combustibility of charcoal. The maximum amount of oxygen is absorbed from the atmosphere within three days after carbonisation, so that from that time charcoal may be used for gunpowder without danger, but up to that period spontaneous combustion is liable to occur. About three-fourths of the journal
is devoted to foreimn is devoted to foreign abstracts.

Transactuons of the . Nhenchastir Geolosical Sectity, vol. xiii. Part IV.-The papers in this part are the following :-On coalcutting machinery, by Mr. W II. J. Traice; Additional notes on the millstore grit of the parish of Halifax, by Mr. James Spencer : On Permian an l Trias, by Mr. E. W Binney, F.R.S., ; On Pleistoccne mammalia found near Castleton, Derbyshire, by Mr. J. Plant, F.G.S.
Preciedins of the Golo asts Association, vol. iii. No. 5.Besides an account of some of the excursions made by the Association during IS73 the number contains the following papers, abstracts of which have been given in our reports of the Society's proceedings :-On some fossils from the Margate chalk, by J. W. Wetherell, with illustrations; On the valley of the Vézere, P'risyord, its limestunce, caves, and Irehistoric remains, ly Prof. T. Rupert Jones, F.K.S.; On ammonite zones in the Isle of Thanet, by F . A. Bedwell. The last-mentioned occ: pics a large part of the number, and is illustrated.
 Institute for Thinal papers in the liulletin of this very efticient Institute for 1572 are a communication from Mr. $\therefore . A$. Nelso: On the Mcteorolosy of Mount Warhington, the main purpoe e which is to show the advantages for metconohsical purpers mountain-stations offer over those less celcrated: and a "Catalague of the Mammals of Florida, with mies on their
 for 157.3 contains more papets of sientific interes than that of the pevious year.-- The first paper is a short ome, hy D Ir. II S l'aclath, (on the glacial phenemema of north-c.ne, Dinctica com. pared with there of l:urope.--There is a short hut interesting statement by Mr. J. H. Dmeiton of the ewults of his olserva tions on worms of the genus . Idis.-Mr. S. M. Allen contributes a paper 'In ancient and modern theories of light, heat, and colour--Mr. H. Herrich contibutes a l'artial (atalogue, of cond-
siderable length, of the birds of Grand Menan, N. B.-Mr. F. W Putnam has a paper on the various forms of cutting instruments made of stonc. -" Notes on the bird-fauna of the Salt Lake Valley and the aljaceut portions of the Wahsatch Mountains," is the tide of a long paper ly Mr. R. Ridgway, who also contributes a paper on the birds of Colorado, and, along with Mr. S. F. Buird, one on some new forms of American birds. -There are also interesting accounts of the numerous and profitatle excursions made during the summer months by the Institute.-There is a very minute account of the celebration of the 25 th amiversary of the Institnte on March 5, iS73. Many well-known scientific men were present, and among others I'rof. O. C. Marsh, who paid the high compliment to the Institute that through its influence the botany and zoology of lissex county were better understood than those of any other county in the Undted States. It was at the hands of the Essex Institute, he said, that he himself acquired his taste for scientific investiga. tion.

Porsondorly's Annalin dor Physik und Chemic, No. 3, 1874. -This number commences with a translation of Dr. 1)raper's recent paper on photography of the diffraction spectrum (which has already appeared in our columns). -The conductivity of flame for galvanic currents is known to be greatly exalted by presence of metallic vapours, and M. Herwig was led to inquire whether a gaseous layer, entirely formed of such vapours, would not show good conductivity even at low temperatures. IHe experimented with mercury, dense vapours of which can be had several hundred degrees under white heat. The vapour conductivity he finds to resemble that of the voltaic are, rather than that of a simple metallic conductor. There is a peculiar transi-tion-resistance, which is great in comparison with the hindrances which the current finds within the vapour-layer itself; so that the total resistance is in great measure independent of the extent of the vapour-layer. The transition-resistance is less with increased electromotive force of battery or strength of current Further, the vaporisation in the positive mercury surface was increased by the current ; another point of analogy to the volaic arc (in which, if the electrodes be mercury and patinum, the mercury is vaporised only when it forms the positive pole); and, using a platinum point and a mercury surface, the resist ance of the vapour (like that of the arc) was greater when the mercury surface was positive.-M. Friedrich Miuiler concludes his investigation on galvanic polarisation and the distribution of the current in electrolytes. He states that, with copper plates in dilute sulphuric acid, and also in a solution of sulphate of copper mixed with sulphuric acid, the polarisation follows a simple law : it is a linear increasing function of the density of current. Another observation of the author is that cupric oxide is reduced to copper by galvanic hydroren (confirming previous ob, ervations that galvanic hydregen is considerably more active than ordinary hydrogen). - The galvanic conductivity of suiphuric acid and muriatic acil, and its dependence on temperature, is the subject of a commuaication from M. (irotrian. - In pursuing his researches on the $\mathrm{c} . \mathrm{m}$, re, ibility of elsstic fluids M . Regnault did not expriment whith pessure; lower than one atmos! here. The difficulty of the ingu,ry has perhaps deterred physicis!s since. We here find it uulertaken, however, by M. Silje-tröm, who contributes a paper on the subject ; in the first part here given the details of alpmatus are fully describec, atiol the numerical results of some sixteen series of experiments tabulated. -M. Schreider communicate; a ninth paper on new salts of sulphur, and M. Kesiler deicribes "the simple euthyoptic spec-troscope."-Amons mater from other journals we note a valaable paper by M. Eoltzmann, ()n experimental determination of the dielectricity constamts of insulators.

Istromomishi Vidiurthen, No. $\mathbf{1 , 9 0 5}$.-This number contains a large number of obsensathon of postion, taken at lecipuis, of some of the minor plancts (whet II. (lempel), (omet ill.
 the me:an planes of sivty-nine wiriable st is for the jear 159 ;
 comet, taken dunge May last. An averomomical prize is oftered by the Acoulemy at (openhatere for resouch on the data of the ancients compinad hetwerin the time of lotemy and the eipherenth contury The liscorety of a new phanet in nomunced from Toulowe ly M. I'chulin, May w, w M.M. K.A. wh.
 eroms of levels due to the change of ducction of altaction acused hy the phermblal hieure of the carth and other local
causes, and I'rof. Spercer gives the results of his sun-spot and protuberance observations for $\Lambda_{\text {pil }}$ and May last.
 Cultur, 1872 73.--1 r. Gititzer here furnishes a number of social statistics regarding lireslau gathered from the census made in December of that year. From a compaison with Berlin, the 1opulation of which $(825,389$) wasthen nearly four times that of Breslau, it appears that lireslau is less crowded; there being in it a dwelling house to every 389 of the inhabitants, wherens in Berlin the proportion is 1 to every 56.0 . ()n the whole it appears that, notwithstanding the better proportion of dwellings in Breslau, the health of the two cities is nearly alike, Breshu having count rbalancing disadvantages in bad buildings, sites, drinking and underground water, and soil.-M. Limpricht con. tribute; a report on the watershed between Weide and Bartsche, with a list of the plants found in that region.
liol. der ki.k. zool. lot. Giscllschaft in II Zïn, 23ter Band, 1873. -This volume, of more than 600 closely-printed pages, is chiefly occupied by papers on entomology and botany. Among the most important are :-Insecta. - Contributions to the Orthoptera of the Tyrol : Krauss; Diptera collected in Galicia; Hymeno. ptera: Kriechbaumer; Microlepidoptera of Leghorn, by J. Mann; Contributions to the nocturnal Lepidoptera of North America, by l'rof. Zeller (second part) with figures: more than a hundred new species are described; Contributions to the Phryganidx, ly Dr. Hagen of Cambridge, U.S.; Hungarian Diptera: Kowarz; Eight new German species of Diptera: Beling; New butterflies from Asia Minor; On certain species of Tipula and its allied genera: Beling.-Crustacea.-On Lepidurus lublockii and the Phyllopoda. - Tertchrata.-A graphic account of the breeding and habits of the Pelican on the Danube. Beside P. onocrotalus and P. crispus, P. minor was also found. On Comiphorus buicalensis, a fish allied to the genus Cottus, with two figures: Dybowski.-Mollusca.-Contributions to the genas Acolidia and its allies, by Dr. Bergh of Copenhagen.-Botany. Contributions to the flora of Lower Austria, by Von Reuss, jun.; Lichens of the Tyrol, by F. Arnold ; Fauna of the Brdygebirg in Bohemia ; Fungi of south east Hungary, by Prof. Harslinsky; The flora of the state districts in the south-east of Lower Austria: Woloszczak ; Contributions to the flora of Lower Austria, by Hackel. The volume contains a photographic portrait of the late Secretary of the Society, Ritter von Frauenfeld, wilh his latest contributions to Entomology ar.d a biographical notice, by Von Wattenwyl.

Ricale Istituto Lomlardo. Rendiconti: t. vii., Fasc. i.eii.These parts contain the following fapers:-Prof. Serpieri communicates his obscrvations of the metior shower of August 10, 1873, made at Urbino.--Observations concerning the constitutions and combinations of bodies, a paper on molecular physics, by Ir. Guido (irassi. - On a fact of impertance in silkworm culture, by Prof. G. Balsamo Crivelli.-Prof. Cesare Lombroso tabulates the height and weight, cranial messurements and capacities, facial angle, d゙c., of S_{32} Italian prisoners, dividing them into homicides, thieves, highwaymen, incendiaries, tricksters, deserters, \mathbb{N}. . These prisoners were Sicilisn, Sardinian, Calabrian, Neapolitan, Yiedmontese, Genoese, and Lombardian. The results are discussed in great detail.-Prof. Antonio liucellati contributes a paper on political economy, entitled " (in the theory of capital."

SOCIETIES AND ACADEMES Lowion

Royal Society June in.-Spectroscopic Notes.-On the Evidence of Vaintion in Molecular Stracture, by I. N. Lockyer, FR.S.
I. IN an accompranyin's note I have shown that when different degrees of disuciating power are employed the spectral effects are ditferent.
\therefore In the prectat note I purpose to give a preliminary account of :once rexarches which have led me to the conclusion that, sarting with a mass of el mental matter, such mass of matter is continually brohen up as the temperature (including in this term the action of clectaicity) is raised.
\therefore The eviluace upon which I rely is urnished by the spec troscope in the resion of the visiole spectrum.
4. 'To hegin by" the extreme cases, all solids give us continnons specira; all vapuars produced by high tension spark give us line spectra.
5. Now the continuous spectrum may he, and as a matter of fact is, observed in the ciase of chemical compounds, whereas all compounds known as such are resolvad by the high tension opark into their constituent elements. We have a right, therefore, to assume that an element in the solid state is a more complex mass than the element in a state of vapour, as its spectrum is the same as that of a mass which is known to be more comples.
6. The spectroscope supplies us with intermediate stages between these extremes.
(a) The spectra vary as we pass from the induced current with jar, to the spark without the jar, to the voltaic arc, or to the highest temperature produced by combustion. The change is always in the same direction ; and here again the spectrum we obtain from elements in a state of vapour, a spectrum characterised by spaces and bands, is similar to that we obtain from vapours of which the compound nature is unquestioned.
(β) At high temperatures the vapours of some elements (which give us neither line nor channelled-space spectra at those temperatures, although we undoubtedly get line spectra when electricity is employed, as stated in No. 4), give us a continuous spectrum at the more refrangible end, the less refrangible end being unaffected.
(2) At ordinary temperatures, in some cases, as in selenium, the more refrangible end is absorbed; in others the continuous spectrum in the blue is accompanied by a continuous spectrum in the red. Un the application of heat the spectrum in the red disappears, that in the blue remains; and further, as Faraday has shown in his researches on gold-leaf, the masses which absorb in the blue may be isolated from those which absorb in the red. It is well known that many substances know'n to be compounds in solutions, give us absorption in the blue or blue and red, and also that the addition of a substance known to be compound (such as water) to substances known to be compound which absorb the blue, superadds an absorption in the red.
7. In those cases which do not conform to what has been stated the limited range of the visible spectrum must be borne in mind. Thus I have little doubt that the simple gases at the crdinary conditions of temperature and pressure have an absorption in the ultra-violet ; that highly compound vapours are often colourless because their absorption is beyond the red, with or without an absorption in the ultra-violet. Glass is a good case in point ; others will certainly suggest themselves as opposed to the opacity of the metals.
8. If we assume in accordance with what has been stated that the various spectra to which I have referred are really due to different molecular aggregations, we shall have the following series, going from the more simple to the more complex.
First stage of
First stage of com-
plexity of mole-
cule.
Second stage

Lire spectrum.

Channelled-space spectrum. Continuous absorption at the blue end, not reaching to the less refrangible end. (This absorption may break up into channelled spaces.)
Continuous absorption at the red end, not reaching to the more refrangible end. (This absorption may break up into channelled spaces.) Unique continuous absorption.

Fifth stage

9. I shall content myself in the present note by giving one or two instances of the passage of spectra from one stage to another, beginning at the fifth stage.

From 5 to 4

1. The absorption of the vapours of K in the red-hot tube, described in another note, is at first continuous. As the action of the heat is continued, this continuous spectrum breaks in the middle, one part of it retreats to the blue, the other to the red.

From 4 to 3

I. Faraday's researches on gold leaf best illustrate this, but I hold that my explanation of them by masses of two degrees of complexity only, is sufficient without his conclusion ("Rcsearches in Chemistry," $p .417$), that they exist "of inter-
mediate sizes or proportions."

From 3 to 2,

1. Sulphur vapour first gives a continuous spectrum, at the blue end, on heating this breaks up into a chauncllecespace spectrume
2. The new spectra of K and Na (more particularly referred to 2. The new spectra of K and Na (more particularly referred to
the following note) make their appearance after the continuous in the following note) make their a ppeara
aboorption in the blue, and red vanishes.

From 2 to 1

I. In many metalloids the spectra without the jar are channelled; un throwing the jar mon the circuit the line prectrum is produced, while the cooler cxicrior vapour gives a channelled absorption spectrum.
2. The new spectra of K and Na change into the linespectrum (with thick lines which thin subsequently) as the heat
is continued.

Spectrosco pic Notes. - ()n the Molecular Structure of Vapours in conncction with their lensities, by J. N. Lockyer, F.R.S.
I. I have recently at'empted to bing the spectroscope to bear upon the question whether vapours of elements below the highest temperatures ase truly hen ciscrous, and whether the vapours of different chemical elements at any one temperature arc all in the same molecular crindition. In the present note I beg to lay before the Royal Scciety the preliminary results of my re-
searches.
2. We start with the following facts:-
I. All elements driven into vapour by the induced current give line-spectra.
IJ. Most elements driven into vapour by the voltaic arc give us the same.
III. Many metalloids when greatly heated, some at ordinary temperat ures, give us channelled space-spectra.
IV. Elements in the solid state give us continuous spectra.
3. If we grant that these spectra represent to us the vibrations of different molecular a§gregations, and this question is discussed in another the previous (note) spectroscopic observations should give us facts of some importance to the inquiry.
4. To take the lowest ground. If, in the absence of all knowledge on the subject, it could be shown that all vapours at all stages of temperature had spectra absolutely similar in character, then it would be more likely that all vapours were truly homogent ous and similar among themselves as regards molecular condition than if the spectra varied in character, not only from element to element, but from one temperature to arother in the vapour of the same element.
5. At the temperature of the sun's reversing layer the spectra of all the elements linown to exist in that layer are apparently similar in character, that is they are all line spectra; hence it is most probable that the vapours there are truly homogeneous and that they all exist in the same molecular condition, than if the spectium were a mixed one.
6. The fact that the order of vapour densities in the sun's atmosphere which we can in a measure determine by spectroscopic observations cices not agree with the order of the modern atomic weights of the elements, but more closely agrees with the older atomic weights, led me to take up the present research. Thus I may mention that my early observations of the welling up of Mg vapour all round the sun aboce the 1 Ta z'afour, have lately been frequently substantiated by the Italian observers. So that it is beyond all question, I think, that at the sun the vapour density of Mg is less than that of Na .
7. The vapour densities of the following elements lave been experimentally determined:-

II	1	S	$32\left(\right.$ at $\left.1,000^{\circ}\right)$
K	39	I	127
As	150	IIg	100
Br	80	N	14
Cd	56	1	16
Cl	35.5	1	62

S. To pursue this inquiry the following arrangements have been adopted :-

The first experiments were made last llecember upon $Z=n$ in a glass tube closed at cach cnd with glass plates; and I have to express my obligations to Ir. Kussell for allowing them to le conducted in his labonatory, and for much assistance and counsed concerning them.

A stream of dry II was allowed to pass. The tule was heated in a ILofmann's gas fumace, picces of the metal lo be studied having previcusly leon introduced. It "as found that the glass tule melied ; it was thoucfore replaced by an iron onic. The inconvenience of this, $j^{\prime \prime 1}$, lowever, owing to the neconity for introducing the nectal into the and of the lat tulie when the
 heat obtanable from the gas fumbice, soon obliged ne tor flace both tube and furnace ly , thes, which have now been in use for many weeks, and which still continue to worh mest satisfac-
torily.

The iron tube is 4 ft ．in length，and is provided with a central enlargement，suggested to me by Mr．Dewar，form－ ing a T－piece by the screwing in of a side tuble，the end of which is left projecting from the door in the roof of the furnace．C＇apss are screwed on at each end of the main tube ；these caps are cloned by a glass plate at one end，and have each a small side tube for the purpose of passing hydroeen or other gases through the hot tube．The furnace is supplied with coke or charcoal，an electric lamp connected with thirty Grove＇s cells is placed at one end of the tube and a onc－prism spectroscope at the other．The temperatures reached by this furnace may be conveniently divided into four stages ：－

I．When the continuous spectrum of the tube extends to the sodium line D ，this line not being visible．

II．When the continuous spectrum extends a little beyond D， this line being visible as a bright line．

III．When the spectrum extends into the green，D being very bright．

IV．When the spectrum extends beyond the green and D be－ comes invisible as a line，and the sides of the furnace are at a red heat．

I may add（I）that I have only within the last few days been able to employ the third and fourth stages of heat，as the furnace was previously without a chimney，and the necessary draught could not be obtained；and（2）that I was informed a little time ago by Prof．Roscoe that with a white－hot tube he had observed new spectra in the case of Na and K ．These spectra which I now constantly see，when these temperatures are reached，I shall call the＂new spectra．＂

9．The results of the experiments，so far as the visible spec－ trum is concerned，between the stages indicated，may be state， as follows：－
$\stackrel{\mathrm{H}}{\mathrm{N}}$ No absorption．
K I have observed either separately or together．
（a）The line absorption line near D ．
（ β ）Continuous absorption throughout the whole spectrum．
(γ) Continuous absorption in red and blue at the same time，the light being transmitted in the centre of the spectrum（as by gold－leaf）．
（ δ ）Continuous absorption clinging on one side or other of the line．（This phenomenon which， so far as I know，is quite new，will be described in another note．）
（ ϵ ）The new spectrum．
Na I have observed either separately or together
（a）D absorbed．
（ β ）Continuous absorption throughout the whole spectrum．
（ γ ）Continuous absorption clinging on one side or the other of D ．
（ δ ）The new spectrum．
Zn Continuous absorption in the blue．（An unknown line sometimes appears in the green，but certainly no line of \bar{Z} ．）
Cd Continuous almoption in the blue．
Sb New spectrum with channelled spaces and absorption in the blue．
P The same．（This，however，in consequence of the extreme delicacy of the spectrum refuires confirma－ tion．）
S Channellel－space spectrum（previou－ly observect by Salet）．
As I＇rolable channelled－space spectrum．（Observations to be reparal．）
Bi Noaluerption．
］Channelled sfoctrom in the green and intense lomk of beneral abioption in the violet，where at the ordinary temperature the vapur tran－mit，light．
Ig Noalsurption．
10．Thee e evoles may be tabulated as folinus：

	1．d．	Monlern at．1！日！ 	
II	1	1	
i	i＇	i＇	
A	1．1）	7	
C．1	56	11.	（ whtintum，alsurpli－m int the lilue．
I	$1: 7$	127	1 of ． 1 norption in violat

Hg	100	200	No alsorption．
N	14	14	
（）	16	16	Not olserved．
${ }^{1}$	62	31	（ $\mathrm{hannelled-space} \mathrm{spectrum} \mathrm{probable}$.
Na	（？）	23	line alsorprtion．
／n	（！）	65	r continuous alsorption in the violet．
Sb	（？）	122	Channelled－space spectrum and absorp． in the blue．
S	i2	32	Chamelled－space spectrum．
li	（？）	208	No alsorption．

1I．It will be seen from the foregoing statement that if similar spectra he taken as indicating similar molecular con．
ditions，then the vapours，the densitics of which ditions，then the vapours，the densities of which have been determined，have not been in the same molecular condition among themselves．Thus the vapours of K, S ，and Cd at the fourth stage of heat gave us line，channelled space，and con－ tinuous absorption in the blue，respectively．This is also evidence that each vapour is non－homogeneous for a considerable interval of time，the interval being increased as the temperature is re． duced．

On the allecred Expansion in Volume of various substances in passing by Refrigeration from the state of Liquid Fusion to that of Solidification，by Robert Mallet，F．R．S．

Since the time of Reaumur it has been stated with very various degrees of cvidence，that certain metals expand in volume at or near their points of consolidation from fusion．Bismath，cast－ iron，antimo v ，silver，copper，and gold are amongst the num－ ber，an ${ }^{r} \omega$ these have recently been added certain iron－furmace sln：．．．Considerable physical interest attaches to this subject from the analogy of the alleged facts to the well－known one that water expands between $30^{\circ} \mathrm{F}$ ．and 32° ，at which it becomes ice； and a more extended interest has been given to it quite recently by Messrs．Nasmyth and Carpenter having made the supposed facts，more especially those relative to cast－iron and to slags，the foundation of their peculiar theory of lunar volcanic action as developed in their work＂The Mfoon as a Planet，as a World， and a Satellite＂（4to，London，I 874 ）．There is considerable ground for believing that bismuth does expand in volume at or near consolidation ；but with respect to all the other substances supposed to do likewise，it is the object of this paper to show that the evidence is insufficient，and that with respect to cast－ iron and to the bassic silicates constituting iron slags，the alle－ gation of their expansion in volume，and therefore their greater density when molten than when solid，is wholly erro－ neous．The determination of the specific gravity in the liquid state of a borly having so high a fusing temperature as cast－iron is attended with many difficulties．By an indirect method，how－ ever，and operating upon a sufficiently large scale，the author has been enabled to make the determination with considerable accuracy．A conical vessel of wrought iron of about 2 ft in depth and $I ; 5 \mathrm{ft}$ ．diameter of base，and with an open neck of 6 in．in diameter，being formed，was weighed accurately empty， and also when filled with water level to the brim ；the weight ot its contents in water，reduced to the specific gravity of disuiled water at $60^{\circ} \mathrm{F}$ ，was thus obtained．The vessel，being dried，was now filled to the brim with molten grey cast－iron，additions of molten metal being made to maintain the vessel full untilit had attained its maximum temperature（yellow heat in daylight）and maximum capacity．The vessel and its contents of cast－iron when cold were weighed again，and thus the weight of the cast－ iron obtained．The capacity of the vessel when at a max－ imum was calculated by applying to its dimensions at 60° the coctlicient of linew dilatation，as given by Laplace and others，to its range of inercascal temperature；and the weight of distilled water held ly the vessel thus expended was calculated from the weight of its contents when the vessel and water were at $60^{\circ} \mathrm{F}$ ． after applate some small corrections．

We have now the elements necessary for determining the specilic ：1tavity of the cast－iron which filled the vessel when in the molten statc，having the absolute weights of equal volumes of distilled wale at ew and of molten iron．The mean specific ：raity of the car－iron which filled the vessel was then deter－ mined be the $u-u .11$ methois．The final result is that，whereas the specifie ：shatity of the cint iron when cold was $7 \cdot 170$ it was omly $w \cdot 50$ when in the molten condition；cas：－iron，therefore，is losidense in the multen than in the solid state．Nor does it ＂y．and in colume it the instant of comollidation，as was conclu－ －vely prosed liy another experiment．Two similar ro－inch sphericial shell，,$i \operatorname{in}$ ．in thickness，were heated to nearly the s．lume high temper．uture in an oven，one being pernitted to 00
empty as a measure of any permanent dilatation which both might sustain by mere heating and coolingr again, a fact well known to oceur. The other shell, when at a bright red heat, was filled with molten cast-iron and permitted to cool, its dimensions being taken ly accurate instruments at intervals of thirty minutes, until it haid returned to the temperature of the atmosphere (53 F.), when, after applying various corrections, rendered necessary by the somewhat complicated conditions of a spherical mass of cast-iron losing heat from its exterior, it was found that the dimensions of the shell whose interior surface was in perfect contact with that of the solid ball which filled it were, within the limit of experimental curor, those of the empty shell when that also was cold $\left(53^{\circ} \mathrm{F}\right.$.) , the proof being conclusive that no expansion in volume of the contents of the shell had taken place, which was further corroborated by the fact that the central portion was found much less dense than the exterior, whereas if the cast-iron expanded in consolidating the central portions must be more dense than the exterior.

It is a fact, notwithstanding what precedes and well known to iron-founders, that certain pieces of cold cast-iron do float on molten cast-iron of the same quality, though they cannot do so through their buoyancy, as various sorts of cast-iron vary in specific gravity at $60^{\circ} \mathrm{F}$., from nearly 7.700 down to $6 \cdot 300$, and vary also in dilatability ; that thus some cast-irons may float or sink in molten cast-iron of different qualities from themselves through buoyancy or negative buoyancy alone; but where the cold cast-iron floats upon molten cast-iron of less specific gravity than itself, the author shows that some other force, the nature of which yet remains to be investigated, kecps it floating; this the author has provisionally called the repellent force, and has shown that its amount is, cirteris paributs, dependent upon the relation that subsists between the volume and "effective" surface of the floating piece. By "effective" surface is meant all such part of the immersed solid as is in a horizontal plane, or can be reduced to one. The repellent force has also relations to the difference in temperature between the solid and the molten metal on which it floats.
The author then extends his experiments to lead, a metal known to contract greatly in solidifying, and with respect to which there is no suggestion that it expands at the moment of consolidation. He finds that pieces of lead having a specific gravity of II 36 I and being at $70^{\circ} \mathrm{F}$. float or sink upon molten lead of the same quality, whose calculated specific gravity was in o 07 , according to the relation that subsisted between the volume and the "effective" surface of the solid piece, thin pieces with large surface always floating, and vice versa. An explanation is offered of the true cause of the ascending and descending currents observed in very large "ladles" of liquid cast-iron, as stated by Messrs. Nasmyth and Carpenter. The facts are shown to be in accordance with those above mentioned, and when rightly interpreted to be at variance with the views of these authors.
Lastly, the author proceeds to examine the statements made by those authors, as to the floating of lumps of solidified ironfurnace slag upon the same when in a molten state; he examines the conditions of the alleged facts, and refers to his own experiments upon the total contraction of such slags, made at Barrow Ironworks, and a full account of which he has given in his paper On the true nature and origin of volcanic heat and energy, printed in Phil. Trans. 1873, as conclusively proving that such slags are not denser in the molten than in the solid state, and that the floating referred to is due to other causes. The author returns thanks to several persons for facilities liberally afforded him in making these experiments.

Chemical Society, June i8.-Prof. Frankland, F.R.S., vice-president, in the chair. -The following papers were read :On the action of chlorine, bromine, dc., on isodinaptnyl, by W. Smith.-Ir. Armstrong then read four communicalions from the laboratory of the London Institution, No. XIII. On coal-tar cresol and some derivatives of paracresol, by II. E. Armstrong, and C. L. Ficld; No. XIV. On the action of the chlorides of the acids of the sulphurscries on organic compounds, by H. E. Armstrong and W. II. Jike; No. XV. On chloro, bromo, and iodo-nitrophenolparasulphonic acids, by II. E. Aecomptrong and F. I. Jrown ; and No. XVI. Note on the decomposition of dichloronitrophenol ly heat, by II. I.. Arm. strong and $\mathrm{F}, \mathrm{l})$. Brown.- The sixth paper was ly Mr. F.
Neison, On the Neison, On the proclucts of the decomposition of castor oil, No. III. On decomposition by excess of alkaline hydrate, 11 Which he has succeeded in elucidating the conflicting statements If different chemists on this subject. - On hydrogen persulphicle,
by Dr. W. Ramsay.-Suberone, by I)r. C. Schorlemmer and
Mr. R. S. Dale. - On the action of nitrosyl chimiter Mr. R. S. Dale.-On the action of nitrosyl chloricle on organic bodies. Part I.-()n phenol, by Dr. W Λ. 'Tilden, -An apparatus for determining the moisture and carbonic in the presence of chlorine and Λ method for determining ozone tution of urea, by Dr. D. 'Tommasi-On the restitutionstiburnt steel, by Mr. S. L. Davies. -On the action of earth on organic nitrogen, by Mr . l.. C. Stanford.-Aniline and its
homologues in coal-tar oils, by Mr. W homologues in coal-tar oils, by Mr. W. Smith.
Zoological Society, June 16.-Dr. A. Giinther, vicepresident, in the chair. $-\Lambda$ n extract was read from a letter received from Dr. A. B. Meyer, concerning two birds (Rectes bennctti and Camfiphag'a "urulenta) lately described in the Society's Proceedings by Mr. Sclater.-A letter was read from Mr. William Summerhayes, relating to certain species of Curassows found in Venezuela. - Dr. J. Muric read a paper on the nature of the sacs vomited by the Hornbills, which he stated, in confirmation of Prof. Flower's account of these objects, to consist of the epithelial lining of the stomach. -Mr. W. Saville Kent, F.L.S., communicated a second paper upon the gigantic cephalopods recently encountered off Newfoundland. From further information received, Mr. Saville Kent apprehended that St. St. John's Museum to the genus Ommatostrephes, thus avoiding the institution of a new genus for their reception, as proposed in his former paper. -Mr. A. I. Garrod read a paper on the "showing off" of the Australian Bustard (Eupodotis australis) and pointed out the peculiar structures by which this "showing off" was accomplished.-A communication was read from Dr. F. Stolicza, containing a description of the Oiris foliz of Blyth, of which he had lately obtained specimens in Yarkand.-Mr. R. B. Sharpe read a paper on a new genus and species of Passerine birds from the West Indies, which he proposed to name Phwnicoman's iora.-A communication was read from the Rev. O. P. Cambridge, containing descriptions of some new species of Spiders of the genus Erifone from Norih America.-Dr. Guinther read a paper describing some new species of reptiles from the Camaroon Mountains, West Λ frica. Amongst these were two new species of Chameleon, and a new snake of the family of Lycodontidx, proposed to be called Botholycus ator. One of these Chameleons was referred to a new subgenus (R hampholeon), being remarkable for its abbreviated tail and the development of a denticle at the inner base of each claw.-Mr. Sclater read a paper containing a clescription of three new species of the genus Sy'nallaxis from M. Jelski's collections in Central Peru, which he proposed to call S. Pudilumain, S. graminicola, and S. airgata.-Messrs. H. P. Elackmore and E. R. Alston communicated a joint paper on the :Arvicolide which have hitherto been found in a fossil state. - Prof. Newton read an account of a living Dodo shipped for England in the year 1628, extracted from letters in the possession of Dr. J. IS. Wilmot, of Tunbridge Wells.-Mr. J. E. IIarting read a paper on the common Lapwing of Chili, which he prorosed to separate from Vancllus cayanensius, under the name l^{-}vcciuintali:.-. 1 second paper read by Mr. Harting contained an account of the eggs of some new or little-known Limicolæ. - A communication was read from Mr. R. Swinhoe containing an account of a new Cervine form discovered in the mountains near Ningpo, China,
 michiants.-Dr. J. Murie read a paper on the structure of the skeleton of Fresilupus iarius, based on a specimen in the Muscum of Cambridge.

Meteorological Society, June r7.—Dr. K. J. Mamn, p.csident, in the chair. - On the connection between colliery capic.
 and W (ialloway, Inspector of Mines. The paper is in continuation of those by the same authors read befure the kwal Society in 1872, and before the Meteorological Sucicty in $15 .$. which contained the results for the four precedins: yc:u. 'II number of fatal explosions which occurred during the wiur w. 70, causing the los of ioj lives. Three of thene hillal cith, 1 them more than ten men, being the same as the :wuthe mumbin of serious explosions for the last twenty years. Flac numbler , non-fatal explosions was $: 2.4$. 1 comparison of llir date en . Ill recorded explosions with the curves of the haromeior . mol ther-

 great heat of the weather, while 25 ger cent. ate ted attibluted
by the authors to metcor logical arencics．These propotions are nearly the same as those which have come out from the dis－ cussions of similar facts for previous years．The paper next deals with an oljection which has been raised to the rea，oning in its prolecessors，wi／，that it is not fair to take the meteoro－ logical reconls for stonyhurst as a lest of the atmospherical bhemomena in a coalfich situated at some distance from the poservatory．The authors show，by taking an instance of a baro－ metrical depression，whose centre passed over Stonyhurst，and which was accompaniel by an explosion in South Wales，that such in ubjection as that cited could never have originated with anyone accustomed to deal with daily weather chats．The next question discussed was the alleged greater prevalence of explosions with cert uin winds；and it was shown by the moit reliable data for our climate that the ordinary changes of presiure and temperature in the windrose were hardly sufficient to account for the explosions which are found to accompany the sutderi changes of weather．The paper proceeds with a discussion of a diagram exhibiting the continuous curve of barometrical pressure from Glasgow Observatory for the last nine month；of 1873，and a curve showing the prevalence of fire－damp in the mines of the West of Scotland district fur the period．These latter returns have been furnished by Mr．Galloway from the entries in the books ordered to be kept at each mine by the Coal Mine Regu－ lation Act，1872．The books of thirty－five mines about Glasgow have been used for the comparison．The two curves show a very remarkable accordance in their course，though that of fire－damp exhibits some striking irregularities，owing probably to the iact of the men having been slow to learn the new duties reguired of them by the Act．It may be expected that these irregalarities will disappear in future years．The result places it beyond the possibility of a doubt that the escape of fire－damp is related rainly tio the conditions of atmospherical pressure，and that a careful watch over tho brometer is，above all，necessary in each colliery，though one such record would suffice for several adjacent mines．The paper gives some instances of ex－ plosions which might all have been prevented by proper ventilation and by the use of safety－lamps，and states how pressing the need is that safety－lamps only should be uied in all places where fire－damp may accumulate，whenever the atmosphere is in a disturbed condition，as shown by the record of the birometer and thermometer．The authors conclude by stating their coaviction that it is not too much to ask those charged with the responsibility of the safety of miners＇lives to learn the first principles of the laws of diffusion and intermixture of gases，and to familiarise thenselves with the use of the barometer and thermometer，so as to know when it behoves them to take estra precautions in the management of their mines． －Solar radiation， $18{ }^{5}$ ，74，by Rev．F．W．Stow．－The diurnal inequalities of the burouecer and thermometer，as illustrated by the synchronous olsiervations made during May 1872 at the sumenit and base of Moant Washington，New IIampshire，at the respective heishts of $2,615 \mathrm{ft}$ ．and $6,233 \mathrm{ft}$ ．above the sea－level， by W IV Kimicll．The hourly mean differences of pres． sure and tenperatur：at these stations and at Purtland，Maine， the neares U．is．station to Mount Washington，are discassed and their mont prosoble coeficients are determined，also the tincs at which the maxima and minima ocene－－（）n the diurnal vari．tion of the barometer at $\mathrm{Zi}-\mathrm{K}$－－Wei，an 1 mean atmospheric presiure ani temperature at Shanghai，by Rev．A．M．Colombel． －－Weather report for 1 S． 3 ，at Woosung，China，by C．D． braysher．－Niote；resardm：＇a remakable hanstorm at Pieter－ maritabur＇，Natal，on April 17，1574，by Rer．J．l．La Touche．

Royal Actronomical Society，June 12．－Mrof．Adams， perilent，in the chair．If．er by Mi．Stome，the（iovermment astronomer at the dape of（ionl Hope，was real．describing his \because orrations of the celipse of 1 prila mate near klipfontein， in south Africi，of whith an account has been given in Nivith（wor x．1．5\％）．Mr．Bidder derribed a micro． meta which he hat combitel for mearuring the position of very faint tats．Githe of the wire，which c in be rondecel dimmer or hightar at the disection of the obe． sover，alle purelal into the fied of view by means of rellect－

will thins lee only about 36 millimetres in diameter．The trial photographis are so sharp that they hope to be able to make use of a magnifying power of 250 in measuring the photographs for the purposes of reduction．－The I＇resident announced to the Society that a petition was about to be presented to the Dean of Westminster，praying him to admit of the erection of some memorial to Jeremiah IIorrox in West minster Abbey．－It was announced that the next meeting of the Society would be held in their new room in Burlington IIouse．

Paris

Academy of Sciences，Junc 15．－M．Bertrand in the chair．－The following papers were read ：－Solar theories；reply to some recent criticisms，by M．Faye．The author meets ob． jections raised by MM．Ledieu，Duponchel，and P．Secchi，in lormer numbers of the Comptes licndus．－On the heat evolved by chemical reactions in the different states of bodies，by M．Ber－ thelut．The author considered the heat developed in the gaseous， liquid，and solid states．－（）bservations on the communication relating to Phylloxera made by M．Lichtenstein during the seance of June 8．－A note by M．Blanchard，in which the author highly eulogises the experiments of Lichtenstein．－Researches on the electrolysis of the alkaline carbonates and bicarbonates，by MM． P A．Favre and F．Roche．This is a thermo－chemical research undertaken with a view of throwing light on the constitution of the se bodies．－On the phenomena of static induction produced by means of Rhumkorff＇s coil ；a note by M．E．Bichat．The author finds that static electricity，as from the Holtz ma－ chine，when passed through the secondary wire gives rise in the primary wire to the development of a current possessing all the properties of the voltaic current，and like this current appear－ ing to have only one direction．－MI．J．M．Gizugain presented a note on magnetisin．－－－On some properties of the systems of curves （ $\mu=\mathrm{I}, \nu=\mathrm{I}$ ），by M．Fouret．－Generalisation of a theorem communicated at the sécnce of June I，by M．H．Darrande．－ On oxyfluoboric acid，by M．A．Basaron．This acid is stated to be produced when boric fluoride is passed into water，and the as signed formula is $\mathrm{BO}_{2} \mathrm{H}, 3 \mathrm{HF}$ ．The present research tends to prove that no such body exists，the composition formerly deter－ mined by analysis being a result of chance．－On the absorption of ammonia from the air by vegetables，by M．T．Schlosing． The author has been growing two tobacco plants uader precisely the same conditions，except that one plant was freely supplied with ammonia，while the other was exciudel from this gas． Analyses prove that the plant supplied with ammonia is much richer in nitro jene ous compounds than the other．－Research on the oxygen dissolved in the water of artesian wells，by M．A． Gerardin．The author conciudes that oxygen is never found in subterranean waters if these are kept out of contact with the air． －On a case of lead－poisoning，by MIM．G．Bergeron，and L．I＇Hote．－On creatine，by M．R．Engel．The author has studied the reactions of this substance．－Anesthesia by intra－ venous injection of chloral after the method of Prof．Ore；re－ moval of a cancer from the rectum，by MM．Deneffe and Van Wetter．－On the geology of the regions comprised between Tangiers，El－Araich et Meknès（Morocco），by MI．Bleicher． The author has recognised the following formations－recent， terliary，cretace us，and jurassic．－Oa the cha racter of the littoral zone in the English Channel，the ocean，and the Mediterranean， by M．P．Fischer．

CONTENTS

Pagr
The Nien Pusilial Liboratiorv of the C＇inersiti of Camaridge

 ト．R．心．
our Bouk Shelf
l．arterstotur Eistre：－
Proposed lwiti if N．aly Weather Charts of Europe and the North Allantic．－K．M．Siorr，F．K．S．
The Degeneracy of Man－EL．li．Tylon，F．R．S．
Fh：of of lirs，－Prof．F（ictakie
SII＇ptical loclusia：
I．
 （ $1,1: 1 \cdot=1$
 $\therefore \mathrm{S}$ ：liy ll．Sokliv，F．R．S．

[^0]: "Martius, " Beitriise zur Ethnographic Amerikas," vol. i. p. 375. The other passages here referred to will be foumd in the same volume, pp. $5,8 \mathrm{j}$.

[^1]: $$
 1
 $$

