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abstract

Microorganisms are important players in the ongoing biogeochemical cycling of the envi-
ronment. While studies of microbial genomes have begun to increase our understanding of
these nutrient transformations, much remains to be learned about how the microbial popu-
lations performing these functions are changing through time in response to evolutionary
forces. In the three studies presented in this thesis, I used single-cell amplified genomes
(SAGs) and metagenome-assembled genomes (MAGs) as references to recruit reads from
time series metagenomes taken from two freshwater lakes. This allowed me to track the
diversity and abundance of ’sequence-discrete’ populations of microbes across the whole
genome through three or more years.

In the first study, I observed how each of a phylogenetically diverse group of populations
was changing in Trout Bog, a dystrophic lake. I observed a genome-wide sweep in the a
population of Chlorobium over the course of the time series. I also found evidence that
some of the other populations I tracked had experienced gene-specific sweeps prior to the
start of the time series. This suggests that co-occurring populations may be controlled by
different evolutionary forces.

In the second chapter, I studied populations of two very common and abundant fresh-
water taxa. I saw that these two taxa contained populations with very different structures.
These structural differences may be explained by a recent diversification among the popu-
lations represented in one group. The abundance patterns of this same group suggest that
there is still significant niche overlap between these populations.

In the final chapter, I investigated how the patterns of gene abundance and diversity
underlie the whole population’s abundance and diversity. I observed that all of the six
Polynucleobacter populations recovered were fairly persistent through time, though one
was considerably more abundant. None of the six populations recovered were dominated
by a single strain though there is a trend between abundance and SNV homogeneity.
Additionally, I characterized the core and accessory genome based using metagenomics
through time and differences in evolutionary signatures between these genes. This work
provides a framework for breaking down across the levels of biological organization.
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1.1 Abstract

Multiple models describe the formation and evolution of distinct microbial phylogenetic

groups. These evolutionary models make different predictions regarding how adaptive

alleles spread through populations and how genetic diversity is maintained. Processes

predicted by competing evolutionary models, for example, genome-wide selective sweeps

vs gene-specific sweeps, could be captured in natural populations using time-series metage-

nomics if the approach were applied over a sufficiently long time frame. Direct observations

of either process would help resolve how distinct microbial groups evolve. Here, from a

9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-

nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30

bacterial populations. SNP analyses revealed substantial genetic heterogeneity within

these populations, although the degree of heterogeneity varied by >1000-fold among

populations. SNP allele frequencies also changed dramatically over time within some

populations. Interestingly, nearly all SNP variants were slowly purged over several years

from one population of green sulfur bacteria, while at the same time multiple genes either

swept through or were lost from this population. These patterns were consistent with a

genome-wide selective sweep in progress, a process predicted by the ‘ecotype model’ of

speciation but not previously observed in nature. In contrast, other populations contained

large, SNP-free genomic regions that appear to have swept independently through the pop-

ulations prior to the study without purging diversity elsewhere in the genome. Evidence

for both genome-wide and gene-specific sweeps suggests that different models of bacterial

speciation may apply to different populations coexisting in the same environment.

1.2 Introduction

Microbial communities are composed of genetically and ecologically distinct groups. Mul-

tiple evolutionary models have been proposed to explain the formation of distinct groups,
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and these models often assume a different balance between the forces of recombination

and selection. The ‘ecotype model’ is perhaps the most prominent, and it assumes recombi-

nation within ecologically coherent populations is low enough that if a population member

gains an advantageous trait, then that member will likely take over the population before

the trait can spread to other members via recombination (Cohan, 2001; Cohan and Perry,

2007). As a result, genetic heterogeneity is purged from the population, that is, the pop-

ulation experiences a genome-wide selective sweep. In this model, distinct phylogenetic

groups form after ecologically divergent populations undergo a series of genome-wide

sweeps (Cohan, 2001; Cohan and Perry, 2007). Support for the ecotype model, however, is

largely based on theoretical simulations (Cohan, 1994; Majewski and Cohan, 1999), and thus

far genome-wide sweeps have not been observed in natural populations (Cordero and Polz,

2014; Shapiro and Polz, 2014b). In fact, recent comparative genomic analyses support an al-

ternate model where recombination rates are high, and advantageous genes are exchanged

among population members without initiating genome-wide sweeps (Whitaker et al., 2005;

Fraser et al., 2007; Cadillo-Quiroz et al., 2012; Shapiro et al., 2012). Direct, time-resolved

observations of either genes or genomes sweeping through natural populations would

help to determine which mechanisms drive diversification in microbial assemblages.

Genetic diversification can be observed directly by sequencing bacterial populations at

various time points throughout their evolutionary history (Barrick et al., 2009; Maharjan

et al., 2012; Herron and Doebeli, 2013). In long-term evolutionary studies of Escherichia

coli cultures, for example, DNA sequencing has revealed numerous single-nucleotide

polymorphisms (SNPs) appearing spontaneously and, in some cases, becoming fixed, over

thousands of generations (Barrick and Lenski, 2009; Barrick et al., 2009; Lee et al., 2012).

Exploring genetic changes within natural populations is the next step in understanding

how bacteria evolve and diverge into distinct groups. Investigating natural communities

will, for example, provide a more complete picture of how genome composition is impacted

by natural processes, such as horizontal gene transfer, the direct uptake of free DNA and
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interactions with viruses—processes that are not typically addressed in laboratory-based

studies (Barrick et al., 2009; Maharjan et al., 2012; Herron and Doebeli, 2013). This approach

will also expand our view to include new microbial groups whose rates of growth, mutation

and recombination may differ substantially from isolates grown in the laboratory.

Time-series metagenomics has the potential to identify genetically and ecologically

distinct groups within natural microbial communities and reveal the mechanisms leading

to their diversification. For example, de novo assembly of metagenomic data can generate

reference genomes of uncultivated microbes (Tyson et al., 2004; Iverson et al., 2012; Wrighton

et al., 2012; Albertsen et al., 2013; Sharon et al., 2013), while recruitment of metagenomic

reads to reference genomes can reveal genetic heterogeneity within discrete populations

(Konstantinidis and DeLong, 2008; Caro-Quintero and Konstantinidis, 2012). Metagenomics

can also provide insights into the evolutionary processes within natural communities by

uncovering evidence for genome recombination among microbes and providing direct

measurements of nucleotide substitution rates (Tyson et al., 2004; Allen et al., 2007; Simmons

et al., 2008; Denef and Banfield, 2012). Repeated metagenomic sampling of an environment,

if applied over a sufficiently long time frame, could also capture other evolutionary patterns

such as genome-wide selective sweeps, a process that has not been directly observed in

natural populations to date (Cordero and Polz, 2014; Shapiro and Polz, 2014b).

Here we use metagenomics to explore the genome dynamics and diversification pro-

cesses of freshwater bacterial groups over a 9-year period. As part of this study, we perform

shotgun sequencing of a freshwater lake microbial community sampled at 63 time points

from 2005 to 2013 and reconstruct 30 genomes from a variety of bacterial groups. To better

understand the ecological and evolutionary processes at work within natural communities,

we analyze these genomes, and the populations they represent, for changes in gene content

and SNP-level heterogeneity over the 9-year period.
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1.3 Materials and Methods

DNA sampling and sequencing

Trout Bog Lake is located in Wisconsin, USA and surrounded by boreal forests and a

sphagnum mat that supply large amounts of terrestrially derived organic matter to the

lake. Surface area is ~11000m2, a maximum depth of 9m and a mean pH of 5.1. Depth

integrated water samples were collected from the hypolimnion layer at 63 different time

points during ice-free periods from 2005 to 2013 and from the epilimnion layer at 45 time

points from 2007 to 2009 (Supplementary Table A.2S4) and filtered on 0.2 micrometer

pore-size polyethersulfone Supor filters (Pall Corp., Port Washington, NY, USA) prior to

storage at 80°C. DNA was later purified from these filters using the FastDNA Kit (MP

Biomedicals, Burlingame, CA, USA).

DNA sequencing was performed at the Department of Energy Joint Genome Insti-

tute (Walnut Creek, CA, USA). Four libraries (two from each layer of water column)

were amplified following the standard Illumina TruSeq (Illumina, San Diego, CA, USA)

protocol and sequenced on the Illumina GA IIx platform (Illumina), while all other li-

braries remained unamplified and were sequenced on the HiSeq 2500 platform (Illu-

mina). Paired-end sequences of 2 150bp were generated for all libraries. Libraries

from samples collected between 2007 and 2009 were generated simultaneously in a 96-

well plate, and samples from different years were pooled together for sequencing. Sam-

ples collected in 2005, 2012 and 2013 were also processed simultaneously in a 96-well

plate prior to pooling and sequencing. Sequence reads were merged with the FLASH

v1.0.3 (Magoc and Salzberg, 2011) with a mismatch value of 6 0.25 and a minimum of

10 overlapping bases from paired sequences, resulting in merged read lengths of 150–

290bp. Metagenomic sequence reads are publicly available on the JGI Genome Portal

(http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism= TroutBog-

metagenomicdata).
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Merged reads from all samples collected between 2007 and 2009 were pooled by layer

into two combined assemblies using SOAPdenovo (Luo et al., 2012) with k-mer sizes of

107, 111, 115, 119, 123 and 127 (Supplementary Table A.2S5). Contigs from SOAPdenovo

assemblies were combined into a final assembly using Minimus (Sommer et al., 2007).

Samples from 2005, 2012 and 2013 were sequenced at a later date so that changes in SNP

allele frequencies and patterns of gene gain/loss could be followed over a longer time

period (see below), and these sequences were not included in the combined assembly.

Binning metagenomic contigs into genomes

Contigs > 2.5kbp were organized into genomes based on tetranucleotide sequence composi-

tion and overall contig coverage patterns using the binning tool MetaBat (Kang et al., 2015).

Coverage levels at 45 time points collected between 2007 and 2009 were determined from

metagenomic reads mapping with > 95% sequence identity using the Burrows–Wheeler

aligner (BWA)-backtrack alignment algorithm with n=0.05 (Li and Durbin, 2009). To mini-

mize the chance of incorrectly binning contigs from different organisms, MetaBat was run

with ‘very specific’ settings. Genome bins with > 10-fold coverage in > 3 years of the time-

series study were then manually curated to ensure all contigs shared similar abundance

patterns (Supplementary Figure A.1S2). Contig coverage levels in curated genome bins

had an average correlation coefficient of 0.995, with the median bin coverage.

Gene prediction and annotation

Gene prediction and annotation for metagenomic reconstructions was performed using the

DOE Joint Genome Institute’s Integrated Microbial Genome database tool (Markowitz et al.,

2012). Genome completeness was estimated using the two methods published previously

based on the fraction of broadly shared genes recovered in each genome (Rinke et al., 2013;

Parks et al., 2015) Supplementary Table A.2S6. Accession numbers for publically available

genomes deposited in IMG are listed in Supplementary Table A.2S7.
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Phylogenetic analysis and average sequence identities

Genomes were classified based on the taxonomic assignments from a subset of 37 conserved

marker genes, mostly ribosomal proteins, extracted from the reconstructed genomes using

PhyloSift (Darling et al., 2014). Marker genes with cumulative probability masses <0.80

were removed. Genomes were assigned to the finest taxonomic scale for which all marker

genes agreed, ranging the phylum level for some genomes down to genus level for others.

TM7-1225 was initially only classified to the domain Bacteria using this approach, but the

population was assigned to the TM7 phylum through phylogenetic analysis of marker

genes from previously published TM7 genomes. Marker genes in other TM7 genomes

were identified and concatenated using Phylosift, and a maximum likelihood tree was

generated using RAxML with the Dayhoff substitution model Supplementary Figure A.1S6

(Stamatakis, 2014). Bootstraps were generated with 100 replicates using RAxML’s rapid

bootstrap function.

Identifying sequence-discrete populations

Metagenomic reads were mapped to the reconstructed genomes using BBmap (https://

sourceforge.net/projects/bbmap/), with minimum alignment identity cutoff of 0.60. BBmap

was selected for this particular mapping step owing to ease in mapping with low-percent

identity reads. The genome location and percentage of identity for each mapped read was

extracted from the alignments, and the fraction of reads mapping with 60–100% nucleotide

identity to each genome was determined for all time points. A large drop in coverage

around 95% identity was observed for all genomes (Figure 1.1). This coverage discontinuity

was used to identify the boundary of ‘sequence-discrete’ populations, although the vast

majority of reads mapping with high identity (>95%) actually mapped with 99% identity.
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Figure 1.1: ‘Sequence-discrete’ populations revealed by metagenomic read mapping. (a) An example
recruitment plot of 50000 shotgun reads mapping across the Chlorobium-111 genome at various nucleotide
identity levels. Each dot represents a read. (b) Summary of reads mapping at each percentage of
nucleotide identity level for all genomes. Each line represents a different genome. A distinct lack of
coverage around 95% identity was observed in all genomes. The y axis (percentage of mapped reads) of
panel (b) was truncated at 30% to illustrate this coverage discontinuity.

SNP identification and analysis

SNPs were discovered by first mapping reads with 95% nucleotide sequence identity from

each time point to the reference genomes using BWA. The vast majority of recruited reads

actually mapped with 99% identity. As many individual time points lacked sufficient

coverage for confident SNP discovery, we combined the alignments from samples collected

in the same year to ensure at least 10-fold coverage per time period. Each of these yearly

time periods were treated as a sample, and variant positions were identified using the

multi-sample genotype likelihood model implemented in the GATK UnifiedGenotyper tool

v.2.7-2 (McKenna et al., 2010; DePristo et al., 2011). The tool was run in ‘DISCOVERY’ mode,

which did not require known variants as input, and ploidy was set to 1. To ensure only

high-confidence SNPs were examined, an initial filter was applied to remove SNP loci with

multiple alternate alleles, low quality scores (Q<30, 99.9%) or low genotype quality in one
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or more samples (Q<30, 99.9%) (Supplementary Table A.2S8). We then removed a small

fraction of outlier SNPs with unusually high or low coverage, that is, >1.5 interquartile

ranges below the first quartile or above the third quartile. These SNPs do not necessarily

represent all single-nucleotide variation in the populations because the references genomes

were not complete. Some rare SNPs might also be overlooked despite high sequencing

coverage.

The reconstructed genomes were temporal composites assembled from reads collected

from 2007 to 2009, and ultimately only a single allele at each SNP locus was selected by the

assembly algorithm, thus referring to the assembled allele as the ‘reference’ was somewhat

arbitrary. For consistency, the ‘reference’ allele was chosen to be the majority allele observed

at the final time period. This choice simplified figure construction and had no impact

on patterns of gain and loss of diversity. Allele frequencies were calculated based on the

number of reads observed with the reference or alternate allele.

Gene gain and loss over time

To identify genes whose relative abundance in the population changed significantly over

the course of this study, we compared gene coverage between the first and last year with

$$10-fold coverage using the Metastats software (Paulson et al., 2011). Coverage was

determined as the number of metagenomic reads mapping with 95% sequence identity to

each gene at each time point. Gene coverage was normalized by gene length, and spurious

short gene annotations (<450bp) were excluded from the analysis. Gene frequency was

estimated as the coverage of each gene divided by the median coverage of all other genes in

the genome. A frequency of 1 implies each cell in the population encoded one copy of the

gene. Genes were considered to be gained or lost from a population if the gene frequency

changed by a magnitude of >0.4 copies per cell with a false discovery rate of 6 0.01 using

the Metastats test.
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Identifying putative sites of historical gene-specific sweeps

Potential sites of gene-specific sweeps were identified as regions with unusually low num-

bers of SNPs relative to the rest of the genome. The probability that region of any size

would contain no SNPs was modeled as a Poisson distribution that assumed SNPs were

distributed uniformly and occurred with an average rate equal to the total number of SNPs

divided by genome size. The chance of finding a SNP-free region of any size in a genome

was then determined as the Poisson probability multiplied by the genome size minus the

region size. In a 1-Mbp genome, for example, the Poisson probability of a 1-Kbp region

lacking SNPs would be multiplied by 999000, that is, the number of unique 1-Kbp regions

found in a 1-Mbp genome. Genome regions with anomalously low numbers of SNPs were

identified, with a significance cutoff of P<0.0001.

1.4 Results and Discussion

Genome assembly from metagenomic data

Bacterial genomes were reconstructed from a combined assembly of metagenomic se-

quences collected at several time points. Contigs generated from this combined assembly

were organized into genome bins based on tetranucleotide sequence composition and

differences in contig coverage levels throughout the time series. The unique temporal

abundance pattern of each genome bin (Supplementary Figure A.1S1), and the tight syn-

chronization of contig coverage within bins (Supplementary Figure A.1S2), allowed us to

confidently distinguish closely related genomes based on coverage differences (Albertsen

et al., 2013; Sharon et al., 2013). We then focused our analyses on 30 reconstructed genomes

that had 10-fold sequence coverage in at least three different years from 2005 to 2013

(Table 1.1). These genomes belonged to 13 classes distributed among 6 phyla; some could

only be classified to the phylum level while others were classified to the genus level based
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Genome
name Environment Genome size

(bp) Contigs Genes Genome comp.
(a/b)

Actinobacterium-149 Epilimnion 764,032 95 917 64/74
Nitrosomonadales-439 Epilimnion 996,711 125 1094 67/69
Polynucleobacter-567 Epilimnion 1,660,228 93 1777 72/62
Rickettsia-755 Epilimnion 1,013,290 136 1149 98/100
Betaproteobacteria-788 Epilimnion 990,006 133 1125 57/52
Methylophilaceae-913 Epilimnion 942,700 85 1111 76/99
Opitutae-1301 Epilimnion 2,036,179 101 1943 95/100
Opitutae-1800 Epilimnion 2,186,907 124 1,998 90/100
Actinobacterium-2057 Epilimnion 971,617 97 1063 74/58
Chlorobium-111 Hypolimnion 2,314,202 74 2319 92/100
Polynucleobacter-238 Hypolimnion 1,314,366 121 1475 66/52
Holophagales-254 Hypolimnion 2,981,798 188 2862 80/56
Desulfocapsa-433 Hypolimnion 3,073,408 152 2864 77/66
Methylotenera-545 Hypolimnion 1,431,993 51 1439 90/82
Actinobacterium-680 Hypolimnion 1,257,796 81 1353 73/60
Polynucleobacter-941 Hypolimnion 1,496,525 68 1581 57/54
TM7-1225 Hypolimnion 915,278 14 993 63/90
Methylobacter-1380 Hypolimnion 2,299,825 136 2072 68/59
Methylotenera-1381 Hypolimnion 1,077,715 49 1131 50/46
Sulfurimonas-1998 Hypolimnion 2,301,184 60 2383 98/100
Methylobacter-2062 Hypolimnion 3,124,798 188 2919 94/89
Bacteroidales-2086 Hypolimnion 3,680,027 151 2965 72/59
Actinobacterium-2152 Hypolimnion 845,311 113 980 61/64
Opitutae-2519 Hypolimnion 1,808,963 100 1654 72/88
Methylophilaceae-2902 Hypolimnion 1,002,927 75 1180 62/65
Desulfobulbus-2922 Hypolimnion 3,798,404 58 3387 93/92
Actinobacterium-3180 Hypolimnion 1,149,636 85 1251 67/54
Gallionella-3415 Hypolimnion 2,657,023 54 2637 97/95
Chlorobium-3520 Hypolimnion 2,156,671 83 2242 89/100
Acidomicrobium-3765 Hypolimnion 1,315,659 42 1392 76/94

Table 1.1: Genomes reconstructed from metagenomic-combined assembly

Genome completeness estimated using the approaches of Parks et al. (2015) (a) and Rinke
et al. (2013) (b)

on availability of related reference genomes (Supplementary Figure A.1S3). Estimates of

genome completeness ranged from ~50 to 100% (Table 1.1).
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Genetic heterogeneity in natural populations

The recovered genomes were assembled from sequences collected at several time points

and do not reflect the exact genetic make up of any single cell, as is the case with all

metagenomic constructs (Tyson et al., 2004; Simmons et al., 2008; Denef and Banfield,

2012). Instead, they are composites that represent populations of cells with high sequence

similarity. These populations were visualized by recruiting metagenomic reads at var-

ious sequence identity levels to each composite reference genome (Konstantinidis and

DeLong, 2008; Caro-Quintero and Konstantinidis, 2012). In every case, metagenomic re-

cruitment revealed ‘sequence-discrete’ populations whose reads typically mapped with >

99% nucleotide identity to reference genomes and closely related populations whose reads

mapped with <90% identity (Figure 1.1). A large drop in coverage around 95% sequence

identity was observed in all genomes (Figure 1.1b). This is a common feature in metage-

nomic recruitment plots, and it marks the boundary between these operationally defined

sequence-discrete populations and other closely related sympatric populations (Tyson

et al., 2004; Konstantinidis and DeLong, 2008; Caro-Quintero et al., 2011; Oh et al., 2011;

Caro-Quintero and Konstantinidis, 2012). The terms ‘population’ and ‘sequence-discrete

population’ are used interchangeably for the remainder of this manuscript.

Sequence-discrete populations are not clonal but instead are composed of highly similar,

co-occurring genotypes that contain some degree of genetic diversity (Caro-Quintero et al.,

2011; Caro-Quintero and Konstantinidis, 2012). Previous studies suggest that levels of

intra-population diversity are lower than those among strains of the same named species

(Konstantinidis and Tiedje, 2005; Konstantinidis and DeLong, 2008; Caro-Quintero et al.,

2011; Caro-Quintero and Konstantinidis, 2012). This implies members of sequence-discrete

populations may have highly similar, if not identical, ecological roles (Caro-Quintero and

Konstantinidis, 2012), although the ecological coherence of these populations has not been

demonstrated.

We examined intra-population diversity by identifying SNPs within sequence-discrete
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populations (Tyson et al., 2004; Hunt et al., 2008). By recruiting highly similar reads from

all time points, the vast majority of which mapped with 99% nucleotide identity, we found

numerous SNPs in each population, ranging from 8501 SNPs in Holophagales-254 to only 3

SNPs in TM7-1225 (Table 1.2). Most populations had >1800 SNPs per Mbp, but four popula-

tions had <50 SNPs per Mbp, including the nearly clonal TM7-1225 population. Although

abundant populations had higher coverage levels and thus more power to detect rare SNPs,

coverage depths alone could not account for the large differences in SNP counts among

populations—up to three orders of magnitude in some cases (Figure 1.2; Supplementary

Table A.2S1). For example, Methylotenera-1381 had eightfold more SNPs per Mbp than its

close relative Methylotenera-545 even though Methylotenera-545 had higher metagenomic

coverage. This suggests that intra-population diversity levels varied dramatically between

phylogenetic groups, including closely related populations belonging to the same genus

(Supplementary Figure A.2S3).

Large differences in diversity among populations could result from a number of pro-

cesses. For example, populations with fewer SNPs might have immigrated to the lake

more recently and had less time to diversify (that is, founder effect) or may have lower

mutation/substitution rates or could have more recently experienced a purge of diversity

than populations with higher SNP counts. Indeed, the extraordinarily low number of

SNPs in TM7-1225 suggests that this population is either quite new to the ecosystem or it

experienced a periodic selective event that essentially produced a clonal population shortly

before the start of this study (Table 1.2).

Most SNPs within the sequence-discrete populations did not result in amino-acid sub-

stitutions (Table 1.2). Instead, SNPs were typically silent or located in intergenic regions.

Nonsense mutations generating premature stop codons were found in several popula-

tions, indicating some genotypes within these populations encoded nonfunctional genes,

although these mutations typically accounted for <0.1% of SNPs (Table 1.2). The small

proportion of nonsynonymous SNPs might indicate that purifying selection was driving
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Genome
name Total SNPs SNPs / Mbp Syn SNPs

(a)
Miss
(b)

Non
(c)

Inter
(d)

Actinobacterium-149 3514 4599 2914 460 3 136
Nitrosomonadales-439 1772 1753 1378 275 3 91
Polynucleobacter-567 4571 2753 3627 710 3 231
Rickettsia-755 45 44 18 11 2 14
Betaproteobacteria-788 6244 6188 5039 851 3 231
Methylophilaceae-913 3003 3186 2223 656 1 123
Opitutae-1301 6437 3161 5257 893 4 283
Opitutae-1800 3839 1743 2924 663 1 223
Actinobacterium-2057 2238 2182 1659 377 0 84
Chlorobium-111 3111 1344 1498 1127 22 464
Polynucleobacter-238 6451 4908 3418 738 1 2291
Holophagales-254 8501 2851 5605 2004 10 881
Desulfocapsa-433 4995 1625 3187 1037 1 770
Methylotenera-545 279 195 132 120 1 26
Actinobacterium-680 297 236 189 47 1 60
Polynucleobacter-941 4269 2853 2971 971 4 323
TM7-1225 3 3 0 1 0 2
Methylobacter-1380 1381 600 951 197 1 232
Methylotenera-1381 1779 1651 1153 434 2 190
Sulfurimonas-1998 279 121 154 95 1 29
Methylobacter-2062 6660 2131 3908 1515 14 1223
Bacteroidales-2086 4256 1157 2389 1231 12 623
Actinobacterium-2152 4209 4979 3400 597 3 209
Opitutae-2519 8036 4442 6254 1246 4 531
Methylophilaceae-2902 2943 2934 2115 712 2 113
Desulfobulbus-2922 145 38 43 70 3 29
Actinobacterium-3180 2111 1836 1551 318 2 240
Gallionella-3415 69 26 35 23 0 11
Chlorobium-3520 4146 1922 2317 1180 11 637
Acidomicrobium-3765 2126 1616 1505 477 0 143

Table 1.2: Summary of single-nucleotide polymorphisms (SNPs)

Synonymous SNPs (a), Nonsynonymous SNPs Missense (b), Nonsynonymous SNPs Non-
sense (c), Intergenic (d)
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Figure 1.2: Differences in SNP-level heterogeneity among coexisting populations. The number of SNPs
found in each sequence-discrete population, normalized to genome size (SNPs per Mbp), varied by three
orders of magnitude among populations with similar coverage levels. Although the power to identify
low-frequency SNPs increases with greater genome coverage, populations with many SNPs were not
necessarily sequenced deeper than those with few SNPs. Two pairs of closely related populations are
highlighted to illustrate this point.

mutation accumulation in most populations we surveyed (Simmons et al., 2008). The

preponderance of synonymous mutations also suggests that most genetic variation within

these sequence-discrete populations might be neutral, thus allowing many highly similar

genotypes to coexist without outcompeting each other.

Purges of diversity in natural populations

Next we asked whether the degree of genetic heterogeneity within each population, as

revealed by the proportions of SNP variants in the metagenomic reads, changed over the

9-year study period. SNP allele frequencies varied over time in all populations, although

the fraction of total SNPs dominated by a single allele remained relatively low in most years
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(for example, Actinobacterium-2152, Figures 1.3a and c; Supplementary Figure A.1S4). This

suggests that the overall level of genetic heterogeneity in most populations did not change

dramatically. However, in a few populations SNP allele frequencies did shift considerably

and many SNP loci were dominated by a single allele (Figures 1.3b and d; Supplementary

Figure A.1S4), indicating large changes in the relative abundance of different genotypes

within these sequence-discrete populations. For example, Bacteroidales-2086 was com-

posed of many genotypes with comparable abundances in 2007, 2008 and 2012—based on

the more even distribution of SNP allele frequencies in these years—whereas large shifts

in allele frequencies throughout the genome suggests that one genotype, or perhaps a few,

dominated the population in 2005, 2009 and 2013 (Figures 1.3b and d). Diversity levels also

shifted substantially from year to year within Methylobacter-1380, Methylotenera-1381 and

Sulfurimonas-1998 (Supplementary Figure A.1S4).

The most dramatic change in allele frequencies was observed in the Chlorobium-111

population, which initially displayed a high degree of SNP-level heterogeneity, but slowly

lost most of this diversity over the course of the study. That is, the frequency of alternate

alleles in the population was close to zero at nearly all SNP sites by 2013 (Figure 1.4a;

Supplementary Figure A.1S4). These SNP sites were not localized to specific genomic

regions (Supplementary Figure A.1S5). This pattern did not result from differences in cov-

erage (Supplementary Figure A.1S1) or differences in library creation and sequencing steps

(see Methods and Materials section). Nor was it the result of inter-population dynamics

where a different sequence-discrete population displaced the Chlorobium-111 population;

this process would appear as a drop in coverage in Chlorobium-111, not a change in SNP

allele frequencies. The simultaneous trend towards fixation at nearly all SNP sites, which

were spread throughout the genome, indicates a steady and substantial loss of genetic

heterogeneity within the population.

In addition to SNP dynamics, our time series also revealed patterns of gene gain and

loss within the Chlorobium-111 population. The relative abundance of eight genes slowly
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Figure 1.3: Temporal dynamics of SNP allele frequencies within different populations. (a, b) Two
examples of populations with different SNP dynamics. SNPs are arrayed along the y axis, with each row
representing one SNP locus. SNP color indicates allele frequency, that is, the percentage of metagenomic
reads supporting the reference allele during each time period. SNPs dominated by a single allele appear
either as red (few reads matching reference base) or blue (most reads matching reference base). SNPs
are arranged in ascending order along the y axis based on allele frequency in 2005. (c, d) Fraction of
SNPs dominated by single allele (> 95% frequency) in each year. Broad patterns of allele frequencies
were determined by combining sequence data for each year.
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Figure 1.4: Temporal trends in SNP allele frequencies and gene content in a natural Chlorobium
population. (a) SNPs are arrayed along the y axis, with each row representing one SNP locus. SNP
color indicates allele frequency, that is, the percentage of metagenomic reads supporting the reference
allele during each year. (b) Relative abundance of genes gained or lost from Chlorobium-111. A gene
frequency of 1 equates to single copy per cell. Gene annotations and locus IDs are listed in Supplementary
Table A.2S2. Broad patterns of allele frequencies and gene abundances were determined by combining
sequence data for each year.

increased until they were encoded by nearly every cell in the population (Figure 1.4b;

Supplementary Table A.2S2). Two of the genes were adjacent while the others were scat-

tered throughout the genome. These dynamics, when viewed alongside the simultaneous

genome-wide purge of SNPs, suggests that these genes were acquired horizontally in one

genotype at some point prior to this study and increased in abundance as the genotype

(or its descendant lineage) took over the population. Simultaneously, three genes slowly

decreased until <10% of cells in the Chlorobium-111 population encoded them in 2013,

indicating that the newly dominant lineage lacked these genes (Figure 1.4b).

The dramatic loss of SNP-level heterogeneity and the patterns of gene gain and loss in

the Chlorobium-111 population were consistent with a genome-wide selective sweep in

progress, a process predicted by the ecotype model for bacterial diversification (Cohan,
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2001; Cohan and Perry, 2007). In this model, genetic diversity accumulates within eco-

logically coherent populations and is periodically lost when one member of a population

outcompetes all others after gaining an advantageous trait through mutation or horizontal

gene transfer (Cohan and Perry, 2007). I n such an event, diversity would be purged at

all loci in the population as the less fit members of the population were replaced. If this

process were captured in a metagenomic time-series study, then we would expect nearly

all SNPs in the population to trend toward fixation, while at the same time some genes

would sweep through or be swept from the population—the same patterns we observed

in Chlorobium-111 (Figure 1.4). In this scenario, we would also expect the vast majority

of SNP variants to be neutral, at least with regards to the selective pressure driving the

sweep, and their dynamics would merely trace the process of selection based on their

genomic linkage to some advantageous trait in the winning lineage. That is, the SNPs in

Chlorobium-111 did not arise de novo during this study, and it is not clear which alleles, if

any, were specifically selected based on a fitness advantage they provided; most SNPs were

simply ‘genomic hitchhikers’. Similarly, it is not clear if the genes we observed sweeping

through the population provided an advantage, or if they, much like the neutral SNPs,

merely traced the putative sweep based on their linkage to other unidentified alleles that

improved fitness. It was not obvious from functional annotations, when available, how

the gain or loss of these genes might have provided an advantage (Supplementary Table

A.2S2).

The predicted result of genome-wide sweeps and the ecotype model is the formation

of sequence clusters that represent ecologically distinct groups (Cohan and Perry, 2007).

The existence of such sequence clusters in other systems has been taken as evidence for

the ecotype model, but to our knowledge this study provides the first direct observations

of a natural population appearing to undergo a genome-wide sweep (Cordero and Polz,

2014; Shapiro and Polz, 2014b). Of course, Chlorobium-111 was not completely clonal by

2013, indicating that the sweep was not yet complete or the population was experiencing a
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‘soft sweep’ where selection favored a few genotypes from a large and diverse population.

In this scenario, the persistent genotypes would have acquired an advantageous allele

independently or via intra-population recombination prior to selection (Messer and Petrov,

2013). Thus a selective sweep would not purge sequence differences among genotypes

encoding the advantageous allele. As the time between trait acquisition and selection

increases, periodic selection is more likely to produce some form of soft sweep in natural

populations rather than a theoretical ‘hard sweep’ (Messer and Petrov, 2013). In addition,

even though populations were sequenced deeply over 9 years, it is possible that diversity

could be maintained below detection limits and reappear on longer time scales. Although

acknowledging this caveat, we believe the patterns observed in Chlorobium-111 and the

discovery of four populations with <50 SNPs per Mbp, including the nearly clonal TM7-

1225 population (Table 1.2), suggest tshat genome-wide sweeps are occurring in natural

populations.

Based on the observed patterns, the Chlorobium-111 population appears to follow a

different model of bacterial diversification than some other microbes. For example, through

comparative genomic analysis of closely related Vibrio cyclitrophicus isolates, Shapiro et al.

(2012) found that divergence between ecologically distinct groups was likely driven by

gene-specific sweeps followed by preferential recombination within micro-niche-adapted

populations and not by genome-wide sweeps. High recombination rates also appear

to prevent periodic selection and to preserve genome-wide diversity in populations of

Sulfolobus islandicus and Synechococcus dwelling in hot springs (Whitaker et al., 2005;

Cadillo-Quiroz et al., 2012; Rosen et al., 2015). Conversely, although we could not measure

recombination with only a single reconstructed genome representing each population, it

appears that intra-population recombination rates were too low to prevent a massive and

long-term purge of diversity within Chlorobium-111.
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Preservation of intra-population diversity

Models invoking either genome-wide or gene-specific sweeps are not mutually exclusive

(Doolittle, 2012), and it is possible both mechanisms shape the genetic diversity of microbial

populations. For example, genome-wide sweeps may occur in groups with lower recom-

bination rates, whereas gene-specific sweeps occur in other groups with inherently high

recombination rates, for example, Helicobacter pylori (Falush et al., 2001) and presumably

V. cyclitrophicus, S. islandicus and Synechcococcus (Whitaker et al., 2005; Shapiro et al.,

2012; Rosen et al., 2015). Twenty-nine out of the 30 populations analyzed did not undergo

genome-wide sweeps during the course of our study, suggesting either that periodic selec-

tion events are rare and that these populations did not experience strong selective pressures

during the course of our study or that other mechanisms preserved diversity within these

populations.

To determine whether recombination preserved diversity in some of the populations,

we next searched for genes sweeping through populations, as was seen in Chlorobium-111,

but without a corresponding genome-wide purge of SNPs. However, we did not find clear

evidence of gene-specific sweeps in any of the populations during the course of this study.

Gene-specific sweeps could have been missed if the genes were not part of the assembled

genomes, but we might have expected to capture a gene sweep in at least 1 of the other

29 populations if such sweeps were common. Gene-specific sweeps could also have been

missed if the sweeping genes only differed by a few nucleotides from homologs already

found in the populations. In fact, there were examples in some populations where a few

adjacent SNPs trended toward fixation while genome-wide diversity was maintained, a

pattern not only consistent with a gene variant sweeping independently through a popula-

tion but also consistent with a shift in the relative abundance of different genotypes—the

latter process occurred in all populations (Supplementary Figure A.1S4). If populations did

not experience gene-specific sweeps during the course of the study, then perhaps diversity

was preserved through other mechanisms such as ‘kill the winner’ interactions where
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viruses suppress rapidly growing genotypes within a population (Thingstad, 1998, 2000;

Rodriguez-Brito et al., 2010). Interestingly, such top–down pressures were not sufficient to

prevent the steady and massive loss of diversity that occurred within the Chlorobium-111

population over several years.

Although gene-specific sweeps were not directly observed during the course of the time

series, SNP recruitment patterns indicate that large genome regions may have swept inde-

pendently through some populations prior to the study period. For example, Polynucleobacter-

238 had 6451 SNPs located throughout the genome except for in a statistically anomalous

21kbp region that lacked SNPs entirely (P<0.0001; Supplementary Figure A.1S5; Supple-

mentary Table A.2S3). Large SNP-free regions of 41kbp, 9–25kbp, 22–23kbp, 11kbp and

12kbp were also found in Methylobacter-2062, Holophagales-254, Opitutae-1800, Opitutae-

1301 and Methylophilaceae-913, respectively (P<0.0001; Supplementary Table A.2S3). If

a genome region swept independently through a population, then this region would ap-

pear as an island of localized homogeneity within a heterogeneous genomic background

(Guttman and Dykhuizen, 1994) —the same pattern observed in these six populations.

Large, SNP-free regions could also arise according to the ‘adapt globally, act locally’

model where a generally advantageous allele is shared between closely related ecotypes

and triggers independent genome-wide sweeps in each (Majewski and Cohan, 1999). The

six sequence-discrete populations were each clearly composed of many different genotypes

based on the large range of SNP allele frequencies observed during the same time period—

SNP allele frequencies would be similar at all loci if each population was composed of only

two genotypes. Thus, for the ‘adapt globally, act locally’ model to apply, each sequence-

discrete population would have to be composed of several coexisting ecotypes with inter-

ecotype recombination rates sufficient for the allele to spread among all ecotypes but with

intra-ecotype recombination rates too low to prevent genome-wide sweeps. Definitively

distinguishing between this model and a single recombining population that experienced

a gene-specific sweep may not be possible with our data, although the latter would seem
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to be the more parsimonious explanation.

Gene annotations provide little insight into why the particular regions might have

swept independently (Supplementary Table A.2S3), but the presence of these large SNP-

free regions indicates that diversity within some populations may be maintained through

frequent recombination. In addition, the evidence for gene-specific sweeps suggests that

some populations in the lake might evolve following the model proposed for V. cyclitroph-

icus and S. islandicus where recombination rates are high, genes sweep independently and

sequence divergence results from barriers to recombination between microniche-adapted

populations (Whitaker et al., 2005; Fraser et al., 2009; Cadillo-Quiroz et al., 2012; Shapiro

et al., 2012). Thus it appears that different evolutionary models might apply to different

populations coexisting in the same environment.

Sequence-discrete populations and theoretical ecotypes

According to the ‘stable model’, an ecotype is a population of closely related genotypes

whose members are ecologically similar and can coexist until one member/lineage gains a

selective advantage and takes over the population by outcompeting all others (Cohan, 2001;

Cohan and Perry, 2007). The model also assumes that periodic selection in one ecotype is

independent from selection in other closely related, co-occurring ecotypes (Cohan, 2001;

Cohan and Perry, 2007). However, the existence of these theoretically defined ecotypes

has not been clearly demonstrated previously. The term ‘ecotype’ has been applied to

various microbial groups, for example, clades of Prochlorococcus adapted to different light,

temperature and mixing regimes (Moore and Chisholm, 1999; Rocap et al., 2003; Johnson,

2006; Malmstrom et al., 2010), but here and elsewhere the term follows the broader historical

designation for subgroups within a species adapted to different environments and does

not necessarily fit the more formal definition predicted by the ecotype evolutionary model

and its variations (Turesson, 1922; Clausen et al., 1940; Coleman and Chisholm, 2007).

The sequence-discrete populations in this study, which were defined based on patterns
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in metagenomic read recruitment, appear to match the description of theoretical ecotypes

in some ways. For example, populations were composed of many closely related genotypes

that were able to coexist at similar abundance levels for years. In some populations, a single

genotype (or lineage of genotypes) was able to displace the other population members,

implying that they all shared the same ecological niche (Figures 1.3b and 1.44, Supple-

mentary Figure A.1S4). Furthermore, timing and magnitude of diversity purges differed

between sympatric populations (that is, Chlorobium-111 vs Chlorobium-3520), suggesting

that closely related sequence-discrete populations could undergo sweeps independently

(Supplementary Figure A.1S4). The Chlorobium populations were separated in sequence

space by the coverage discontinuity around 95% nucleotide sequence identity—for exam-

ple, metagenomic reads mapping with > 99% sequence identity to Chlorobium-111 also

mapped with ~70–90% similarity to Chlorobium-3520, and vice versa—indicating that

these populations could not be more similar and still remain sequence discrete (Figure

1.1). Thus closely related populations on either side of the coverage discontinuity appear

to be ecologically distinct and behave in some ways similar to the theoretically predicted

ecotypes.

If sequence-discrete populations behave similar to ecotypes in general, then coverage

discontinuities in metagenomic read recruitment could be used to define ecotype bound-

aries. Ecotypes are expected to form distinct sequence clusters at the furthest tips of

phylogenetic trees constructed from marker genes (Cohan, 2001; Cohan and Perry, 2007),

but it remains unclear what level of sequence similarity, if any, demarcates an ecotype. In

fact, any cutoff is likely to vary depending on the marker gene or the phylogenetic group

in question, whereas the boundaries of sequence-discrete populations are determined

empirically through read recruitment. For reference, the common marker genes recA

and rpoB (Eisen, 1995; Dahllof et al., 2000; Walsh, 2004) both displayed 97% amino-acid

sequence identity between the sympatric Chlorobium populations, while the other 1594

shared genes had an average amino-acid identity of 84%. Additional evidence of ecological
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coherence within sequence-discrete populations will clarify the connections between these

operationally defined populations and theoretical ecotypes.

1.5 Conclusions

In this study, we examined ecological and evolutionary patterns within natural bacterial

communities through direct, time-resolved observations. From a metagenomic time-series

study, we identified tractable populations that were genetically and ecologically distinct.

We also observed substantial genetic heterogeneity within these populations, although

the degree of heterogeneity varied by orders of magnitude between closely related, co-

occurring populations. The purge of genetic heterogeneity from one of these populations,

identified by changes in SNP allele frequencies, suggests that natural populations can

experience genome-wide sweeps, a process not previously observed in situ (Cordero and

Polz, 2014; Shapiro and Polz, 2014b). In other populations, evidence of historical gene-

specific sweeps was uncovered, indicating that diversity within co-occurring populations

may be controlled by different mechanisms and explained by different evolutionary models

(Whitaker et al., 2005; Fraser et al., 2009; Cadillo-Quiroz et al., 2012; Shapiro et al., 2012).

These observations raise a variety of questions, such as: Are certain mechanisms of

speciation (for example, genome-wide vs gene-specific sweeps) more common in certain

environments or microbial groups? Do multiple mechanisms act on the same groups?

How long does it take for genes or genomes to sweep through populations? At what

rates do natural populations accumulate mutations? How does dispersal of highly similar

genotypes impact population boundaries? We believe metagenomic time-series studies

of different microbial groups inhabiting different environments will help answer these

questions.
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2.1 Abstract

To understand the forces driving differentiation and diversification in wild bacterial popu-

lations, we must be able to delineate and track ecologically relevant units through space

and time. Mapping metagenomic sequences to reference genomes derived from the same

environment can reveal genetic heterogeneity within populations, and in some cases, be

used to identify boundaries between genetically similar, but ecologically distinct, popula-

tions. Here we examine population-level heterogeneity within abundant and ubiquitous

freshwater bacterial groups such as the acI Actinobacteria and LD12 Alphaproteobacteria

(the freshwater sister clade to the marine SAR11) using 33 single-cell genomes and a 5-year

metagenomic time series. The single-cell genomes grouped into 15 monophyletic clusters

(termed “tribes”) that share at least 97.9% 16S rRNA identity. Distinct populations were

identified within most tribes based on the patterns of metagenomic read recruitments

to single-cell genomes representing these tribes. Genetically distinct populations within

tribes of the acI Actinobacterial lineage living in the same lake had different seasonal abun-

dance patterns, suggesting these populations were also ecologically distinct. In contrast,

sympatric LD12 populations were less genetically differentiated. This suggests that within

one lake, some freshwater lineages harbor genetically discrete (but still closely related) and

ecologically distinct populations, while other lineages are composed of less differentiated

populations with overlapping niches. Our results point at an interplay of evolutionary and

ecological forces acting on these communities that can be observed in real time.

2.2 Introduction

Bacteria represent a significant biomass component in almost all ecosystems and drive

most biogeochemical cycles on Earth. Yet, we know little about the population structure of

bacteria in natural ecosystems and have yet to find and define the boundaries for ecological

populations. Cohesive temporal dynamics and associations inferred from distribution
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patterns have been documented for many habitats and these observations are consistent

with the notion of such populations as locally coexisting members of a species (Shapiro

and Polz, 2014b). The most compelling cases are from collections of closely related isolates

(Shapiro and Polz, 2014b; Hanage et al., 2005; Luo et al., 2011), but cultured species represent

only a very small portion of the bacteria populating the Earth (Hug et al., 2016; Amann et al.,

1995; Kaeberlein, 2002), and thus we still know little about the most abundant lineages.

Therefore, it is critical to study microorganisms in their natural environments (Little et al.,

2008), in order to test if and how their population-level heterogeneity differs from the

established models based on isolates. The advent of culture-independent approaches,

such as single-cell genomics and metagenomics, provides an opportunity for gaining

new insights about genome-level diversity at the population level for organisms that are

currently difficult or impossible to culture.

The delineation of ecologically differentiated lineages within complex microbial com-

munities remains controversial because direct evidence for such differentiation is usually

sparse (Hunt et al., 2008). Additionally, the appropriate level of phylogenetic resolution

defining ecologically equivalent groups has not yet been established and likely varies across

different groups (Fuhrman et al., 2015). Past explorations for defining such groups have

used genome-wide average nucleotide identity (gANI) across shared regions of isolate

genome sequences (Konstantinidis and Tiedje, 2005; Varghese et al., 2015). These studies

have found that gANI greater than 94–96% unites past classical species definitions and

separates known sequenced strains into consistent and distinct groups. Genetically dis-

tinct populations have been identified in microbial communities using metagenomics by

mapping reads against reference genomes and noting a coverage gap at 90–95% identity

(Kashtan et al., 2014; Konstantinidis and DeLong, 2008; Bendall et al., 2016; Oh et al., 2011;

Caro-Quintero and Konstantinidis, 2012). Reads mapping with identities above the cover-

age discontinuity have been defined as originating from a “sequence-discrete population”

(SDP) of genetically nearly identical cells that are distinct from other cells whose sequences
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map with identities below the coverage discontinuity (Bendall et al., 2016). For the re-

mainder of the manuscript, we will use the terms “population” and “sequence-discrete

population” interchangeably.

We used a combination of time series metagenomics and single-cell genomics to define

genetic diversification within ubiquitous and abundant freshwater lineages such as acI

and tribe LD12. The term “tribe” was previously coined to delineate these groups using

16S rRNA gene sequences, where tribes are defined by monophyly and >97.9% within-

clade 16S rRNA gene sequence identity (Newton et al., 2007, 2011). Freshwater microbial

ecology researchers generally discuss and track these tribes as coherent units that are

ecologically distinct from one another. A primary motivation for the present study was the

challenge of moving beyond 16S rRNA sequence identity to delineate ecologically relevant

taxonomic units given observed patterns of population-level heterogeneity, using shared

genomic content. This study includes 33 single amplified genomes (SAGs) representing 15

phylogenetically coherent groups (i.e., freshwater “tribes”).

The SAGs in this study originated from four lakes geographically isolated from one

another and represent a rich source of reference genomes that can be used to recruit

metagenomic reads in order to study population-level heterogeneity and dynamics through

time in naturally assembled communities. Two of the lineages featured in the present study

are the abundant and ubiquitous freshwater Actinobacteria acI and Alphaproteobactera

alfV containing the freshwater SAR11 sister clade, tribe LD12. Members of these lineages

are intriguing in their own right, as they represent groups of free-living ultramicrobacteria

that dominate many freshwater ecosystems (Ghai et al., 2014; Glockner et al., 2000; Heinrich

et al., 2013; Rösel et al., 2012; Salcher et al., 2010, 2011; Warnecke et al., 2005; Zwart et al.,

2002). They differ markedly with respect to within-lineage diversity: LD12 is the sole

tribe defined within the freshwater alfV lineage, while the acI lineage is comprised of 13

tribes (Newton et al., 2011). The acI and alfV are not easy to cultivate in monocultures

(Kang et al., 2017) (though see ref. Henson et al. (2018b), published after this work but
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prior to this thesis as Henson et al. (2018a)) and share a large number of genomic and

cellular traits. First, both lineages have genomes with GC content values lower than 40%

and estimated sizes of about 1.5Mb or less (Kang et al., 2017; Garcia et al., 2013; Ghylin et al.,

2014; Zaremba-Niedzwiedzka et al., 2013; Eiler et al., 2016). These genome characteristics

are all the more striking since most cultivated species in the Alphaproteobacteria and

Actinobacteria have GC-rich genomes up to 10Mb in size. Second, both lineages have

evolved by massive gene loss (Zaremba-Niedzwiedzka et al., 2013). Third, the fraction

of gained genes is only about 10% of the lost genes. Fourth, both groups of bacteria have

small cell volumes (Heinrich et al., 2013; Salcher et al., 2011). However, acI and alfV seem

to employ different substrate niche specialization. While acI is thought to primarily use

polyamines, oligopeptides, and carbohydrates, alfV specializes in carboxylic acids and

lipids (Ghylin et al., 2014; Eiler et al., 2016; Salcher et al., 2013).

By combining genome information from 21 previously published (Ghylin et al., 2014;

Zaremba-Niedzwiedzka et al., 2013) and 12 new SAGs from different freshwater lineages

and an extensive 5-year time series of lake metagenomes (94 samples), we investigated the

population-level heterogeneity of such ubiquitous freshwater bacteria for the first time.

Our results confirm the existence of coherent sequence-discrete populations within these

ubiquitous freshwater bacterial groups in natural communities and we could trace the

abundance and gANI of these populations over monthly to seasonal time scales. Our

work demonstrates the power of combining time series metagenomics and single-cell

genomics for studying bacterial diversification and for describing ecologically meaningful

population-level heterogeneity within communities inhabiting natural ecosystems.
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2.3 Results

The SAG collection represents multiple clades within cosmopolitan

freshwater lineages

We analyzed 33 SAGs from four different freshwater lakes. Twenty-one of these SAGs were

previously analyzed for their genomic features and phylogenetic relationships (Garcia et al.,

2013; Ghylin et al., 2014; Zaremba-Niedzwiedzka et al., 2013; Eiler et al., 2016). The 33 SAGs

had total assembly sizes between 0.33 and 2.42Mbp and were organized into 8–103 contigs

with GC contents between 29.1 and 51.7% (Table 2.3). Estimated genome completeness,

calculated using two different methods, ranged between 30 and 99%. Throughout the

paper, we will use mostly the shorter name version to facilitate reading, for example, M14

in place of AAA027-M14.
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Genome

name

Genome OID

in IMG/MER

Phylum/

Class

Abbr.

Tribe

NCBI

Taxon

ID

Lake

Abbr.

Collection

date

(M/D/Y)

Assembly

size (Mb)

Est.

Comp.

(dark

matter)

(%)

Est.

Genome

Comp.

(checkm)

(%)

Number

of

contigs

GC

content

(%)

Citation

AAA278-O22 2236661007 Actino acI-A1 932044 Da 09/18/09 1.14 96.72 74.4 43 47.6 Ghylin et al. (2014)

AAA027-M14 2236661003 Actino acI-A1 932041 Me 12/5/09 0.82 31.18 43.1 22 47.3 Ghylin et al. (2014)

IMCC25003 2602042019 Actino acI-A1 So 13-Jun 1.35 NA NA 1 49.1 Kang et al. (2017)

IMCC26103 2602042020 Actino acI-A4 So 14-Apr 1.46 NA NA 1 47.0 Kang et al. (2017)

AAA028-I14 2619618809 Actino acI-A6 938457 Me 12/5/09 0.78 35.97 39.66 54 45.2 This paper

AAA044-N04 2236661005 Actino acI-A7 932043 Da 04/28/09 1.29 80.74 79.59 23 45.6 Ghylin et al. (2014)

AAA041-L13 2519899769 Actino acI-A7 932042 Da 04/28/09 1.38 63.95 74.14 103 44.2 This paper

AAA024-D14 2264265190 Actino acI-A7 932039 Sp 05/28/09 0.78 72.74 48.4 82 45.4 Ghylin et al. (2014)

AAA023-J06 2236661001 Actino acI-A7 932038 Sp 05/28/09 0.70 37.57 34.48 98 45.1 Ghylin et al. (2014)

IMCC19121 2602042021 Actino acI-A7 So 11-Oct 1.51 NA NA 1 45.5 Kang et al. (2017)

AB141-P03 2236876028 Actino acI-B1 1053690 St 05/25/10 0.66 43.96 45.98 66 40.8 Ghylin et al. (2014)

AAA278-I18 2236661006 Actino acI-B1 938557 Da 09/18/09 0.94 73.54 63.73 54 41.4 Ghylin et al. (2014)

AAA028-A23 2236661004 Actino acI-B1 932036 Me 12/5/09 0.83 89.53 57.56 64 41.5 Ghylin et al. (2014)

AAA027-L06 2505679121 Actino acI-B1 913338 Me 12/5/09 1.16 100.00 76.59 75 41.7 Garcia et al. (2013)

AAA027-J17 2236661002 Actino acI-B1 932040 Me 12/5/09 0.97 87.93 65.26 81 42.1 Ghylin et al. (2014)

AAA023-D18 2236661009 Actino acI-B1 932037 Sp 05/28/09 0.75 64.75 44.22 67 39.6 Ghylin et al. (2014)

AAA044-D11 2619618811 Actino acI-B4 938518 Da 04/28/09 1.15 92.73 66.18 30 44.2 This paper

AAA027-D23 2524023172 Actino acSTL-A1 938429 Me 12/5/09 0.94 44.76 44.01 18 48 This paper

AAA028-N15 2619618810 Actino acTH1-A1 938467 Me 12/5/09 0.83 42.37 45.98 19 38 This paper

AAA027-G08 2619618806 Bacter bacI-A1 938698 Me 12/5/09 1.32 63.95 59.36 36 35.5 This paper

AAA027-K21 2619618803 Beta betIII-A1 938785 Me 12/5/09 1.38 67.95 42.1 21 51.5 This paper

AAA027-N21 2619618807 Bacter Flavo-A2 938709 Me 12/5/09 2.21 100 92.44 36 33.1 This paper

AAA487-M09 2236347068 Alpha LD12 938672 Da 09/18/09 0.63 60.75 53.15 97 29.1 Zaremba-Niedzwiedzka et al. (2013)

AAA280-P20 2236876029 Alpha LD12 938665 Da 09/18/09 0.72 82.33 65.06 65 29.6 Zaremba-Niedzwiedzka et al. (2013)
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Genome OID

in IMG/MER
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NCBI
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ID
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Citation

AAA280-B11 2236876032 Alpha LD12 938663 Da 09/18/09 0.67 44.76 51.24 47 29.8 Zaremba-Niedzwiedzka et al. (2013)

AAA028-D10 2236347069 Alpha LD12 938641 Me 12/5/09 0.93 75.14 81.64 57 29.6 Zaremba-Niedzwiedzka et al. (2013)

AAA028-C07 2236661008 Alpha LD12 938639 Me 12/5/09 0.85 75.94 74.12 32 29.5 Zaremba-Niedzwiedzka et al. (2013)

AAA027-L15 2236876031 Alpha LD12 938633 Me 12/5/09 0.72 53.56 68.68 56 29.4 Zaremba-Niedzwiedzka et al. (2013)

AAA027-J10 2236876030 Alpha LD12 938631 Me 12/5/09 0.79 68.75 69.56 82 29.8 Zaremba-Niedzwiedzka et al. (2013)

AAA027-C06 2264265094 Alpha LD12 938624 Me 12/5/09 0.78 83.13 82.29 90 29.6 Zaremba-Niedzwiedzka et al. (2013)

AAA024-N17 2236876027 Alpha LD12 938623 Sp 05/28/09 0.33 19.18 30.19 45 30.1 Zaremba-Niedzwiedzka et al. (2013)

AAA023-L09 2236661000 Alpha LD12 938615 Sp 05/28/09 0.77 58.35 68.1 76 29.4 Zaremba-Niedzwiedzka et al. (2013)

AAA028-K02 2619618804 Beta LD28 938797 Me 12/5/09 0.56 31.18 34.48 8 37.5 This paper

AAA027-I06 2619618802 Beta Lhab-A1 938781 Me 12/5/09 1.52 50.36 39.38 79 50.9 This paper

AAA027-I19 2619618805 Verruco
Opiput-

aceae
939126 Me 12/5/09 2.42 55.96 54.58 63 51.7 This paper

AAA027-C02 2619618801 Beta PnecC 938772 Me 12/5/09 1.27 58.35 61.93 49 43.7 This paper

Metadata for the 33 SAGs and genomes from ref. Kang et al. (2017) The Genome OID is the object identifier for the genome record in the Joint Genome Institute’s IMG/MER

Database. Estimated genome completeness was calculated using CheckM as described in the main text and (Parks et al., 2015). NA not applicable. Phylum/Class Abbrevations - Actino

: Actinobacteria, Bacter : Bacteroidetes, Beta : Betaproteobacteria, Alpha : Alphaproteobacteria, Verruco : Verrucomicrobia. Lake Abbrevations - Da : Damariscotta, Me : Mendota, So :

Soyang, Sp : Sparkling, St : Stechlin.
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The 33 SAGs in the study represent 15 different previously defined freshwater “tribes”

(that are each monophyletic and defined by >97.9% within-clade 16S rRNA gene sequence

identity, measured across the nearly full-length 16S rRNA gene) (Newton et al., 2007, 2011).

Ten tribes are represented by only one SAG each, while four tribes (LD12, acI-A1, acI-A7,

and acI-B1) have more than one SAG representative in our data set. In addition to their

classification based on 16S rRNA genes, the nine SAGs that were the only representatives of

their lineage were classified using protein coding marker genes and PhyloSift (Darling et al.,

2014) (Table A.4S1). To illustrate phylogenetic and taxonomic placement of the LD12 and

acI SAGs, we used the PhyloPhlAn pipeline (Segata et al., 2013) to generate a multi-gene tree

(Fig. 2.1a, b). The tree topology was consistent with previous phylogentic reconstructions

for LD12 (Zaremba-Niedzwiedzka et al., 2013) and acI (Newton et al., 2007; Ghylin et al.,

2014). The tree supported the 16S rRNA gene-based tribe designations but did not reveal

a clear biogeographic pattern, in agreement with previous analyses, i.e., members of the

same tribes were found in different lakes (Zaremba-Niedzwiedzka et al., 2013). However,

our SAG collection was not designed to explore biogeography and much deeper sampling

of each population would be needed to address this question rigorously.

Genome-wide nucleotide identity is consistent with phylogeny

Although multi-locus phylogenies supported the 16S rRNA gene-based phylogeny, we

wondered whether gANI could similarly be used to demarcate one tribe from another. To

this end, we determined the pairwise gANI for genomes in the set of four tribes that each

contained more than one SAG representative. This general approach has been proposed as

a way to compare genome pairs using a single metric that robustly reflects phylogenetic

and taxonomic groupings obtained using other polyphasic methods (Konstantinidis and

Tiedje, 2005; Varghese et al., 2015). We asked whether all genome pairs from the same tribe

shared a consistent minimum gANI. Most SAGs shared gANI of at least 78% and alignment

fractions greater than 40% with other members of the same tribe (Fig. 2.1c and Table A.4S2).
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Figure 2.1: Phylogenetic and sequence identity relationships between SAGs. a Phylogenetic tree of acI
SAGs based on conserved single copy genes selected by PhyloPhlAn. Amino acid sequences from 400
genes were aligned. The tree topology is consistent with 16S rRNA gene-based phylogenies (Ghylin et al.,
2014). SAGs L06 and A23 are part of the same sequence-discrete population (SDP) as defined in the
text and further based on data shown in Fig. 2. b Phylogenetic tree of LD12 SAGs based on conserved
single copy genes selected by PhyloPhlAn, representing 400 genes. The tree topology was consistent with
prior work that provided evidence for finer-scale groups within the LD12 tribe (Zaremba-Niedzwiedzka
et al., 2013). c Genome-wide nucleotide identity (gANI) vs. 16S rRNA gene identity for pairs of SAGs.
Alignment fractions for homologous genomic regions and 16S rRNA genes are given in Table A.4S2.
Shapes indicate the lake the tribe is from, if same, otherwise different lake is indicated. Colors indicate
the tribe a pair is from, if same, otherwise different tribe is indicated. The arrow denotes the L06–A23
pair.
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Most pairs from the same tribe that were also recovered from the same lake shared at least

84% gANI, but some pairs were much more similar (gANI above 95%). gANIs between

pairs belonging to different tribes but still within the same lineage were markedly lower

and typically below 74% (e.g., acI-A1 vs. acI-B1) (Fig. 2.1c and Table A.4S2).

Although gANI is a useful univariate metric for comparing genome pairs, it masks the

differences in sequence similarity of individual genes or genome regions that arise due

to varying rates of divergence across loci. This variation can be visualized by plotting the

frequency distribution of nucleotide identities calculated using a sliding window across

the genome (Konstantinidis and Tiedje, 2005). We asked whether different homologous

genomic regions from two SAGs would have markedly different nucleotide identities even if

they were from the same tribe. We used the most complete SAGs from the acI-B1 and LD12

tribes as reference genomes and calculated nucleotide identity using a sliding window

with other SAGs from the same respective tribe and visualized the results as a frequency

distribution (Fig. 2.2 and Fig. A.3S1). The acI-B1 SAGs featuring the highest gANI (L06 and

A23) were both from Lake Mendota and shared nucleotide identity consistently greater

than 95% with a peak at 99–100%, suggesting they belong to the same SDP. The acI-B1

SAG P03 recovered from a lake in Germany had a frequency distribution with a peak more

near 97% and a distinctly different shape. Other acI-B1 SAGs shared genomic regions

with primarily 80–85% nucleotide identity. This was even true for J17, which was also

collected from Lake Mendota and shared an average gANI of 79% with L06/A23 (Table

A.4S2), suggesting that cells belonging to the same tribe (acI-B1) and living in the same

environment can have substantial genetic differences. The LD12 SAGs, which all belonged

to the same tribe, also displayed three distinct patterns, with one peak near 85%, several

near 91%, and two near 97%. Lake origin did not appear to explain these differences. That

is, some LD12 cells from Lake Mendota were more similar to LD12 cells from Sparkling

Lake than to other LD12 cells from Lake Mendota.
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Figure 2.2: Nucleotide identity density plots for SAG vs. SAG genome-wide comparison using a sliding
window. Results are shown for two reference SAGs representing the most complete genomes from the
most thoroughly sampled tribes. All SAG pairs were from the same tribe. Nucleotide identity was
calculated with blastn using 301bp fragments that overlapped by 150bp. a acI-B1 SAGs and other
selected acI SAGs vs. L06. Note that the purple line (D18) is hidden underneath the orange (I18)
and red (J17) lines. b Selected LD12 SAGs vs. C06. Note the dark blue line (L09) is hidden under
the light green (N17) line. Group designations match those shown in Fig. 1b, as proposed previously
(Zaremba-Niedzwiedzka et al., 2013). An expanded multi-panel version of the same data is shown in Fig.
A.3S1, for clarity.
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Diversity of wild populations inferred using SAGs

The variety of patterns observed in Fig. 2 indicated substantial within-tribe variability even

among cells recovered from the same lake. This made us wonder if tribes were composed

of genetically and ecologically distinct populations coexisting in the same environment.

SAGs can serve as relevant reference points to study the diversity of abundant populations

sampled using shotgun metagenomics by recruiting metagenomic reads and examining

the extent of nucleotide identity for each aligned read (Stepanauskas, 2012). The results can

also be used to identify sequence-discrete populations whose boundaries are revealed by

recruitment patterns and specifically the dramatic drop in coverage observed around 95%

sequence identity (Konstantinidis and DeLong, 2008; Bendall et al., 2016; Caro-Quintero and

Konstantinidis, 2012). We asked whether such SDPs could be identified using metagenomic

reads from Lake Mendota, WI, USA, by mapping them to the 33 SAGs, 19 of which were

collected from this lake.

Each of the SAGs was first used to recruit reads from a single metagenomic data set

collected from Lake Mendota on 29 April 2009 (Fig. A.3S2). This time point was chosen

because it was the sample collected closest to the date on which the single cells were

collected (12 May 2009). Frequency distribution plots of the same data (Fig. 2.3 and Fig.

A.3S3) revealed patterns that were similar to those obtained with SAG pairs (Fig. 2.2). The

five acI-SAGs from Lake Mendota (J17, L06, A23, M14, and I14) recruited more reads than

the acI-SAGs from other lakes, with many reads recruiting at nucleotide identity greater

than 97.5% (Fig. 2.3). All of the acI-SAGs also recruited many reads at 60–90% identity

(Fig. 2.3), creating the characteristic bimodal distribution observed in previous work

Caro-Quintero and Konstantinidis (2012). Based on these results, we hereafter consider

reads sharing >97.5% nucleotide identity as coming from the same, operationally defined

population (i.e., SDP) as the reference SAG. Thus, the acI lineage in Lake Mendota on

29 April 2009 was composed of multiple SDPs. Interestingly, the acI-B1 tribe in Lake

Mendota, a subset of the acI lineage, appeared to be composed of at least two coexisting
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and genetically distinct populations, one represented by SAG J17 and the other by SAGs

A23 and L06, consistent with the pairwise gANI observed using only the SAGs (Fig. 2.2).

To determine if we recovered representative SAGs from all acI populations in Lake

Mendota, we next performed recruitments competitively, allowing each read to only map

to the SAG with the greatest percent identity (Fig. A.3S4). Since the patterns in Fig. 2.3

were generated by non-competitive recruiting, some reads mapping with 100% identity to

one SAG might for example also have mapped with 60–90% identity to SAGs from different

SDPs. Under competitive recruiting conditions, the resulting frequency distributions

changed and the fraction of reads recruiting with 60–90% identity to each acI SAG dropped

dramatically (Fig. A.3S4). However, a secondary peak around 80% identity still remained

in most cases, and it is possible these reads originated from cells belonging to other acI

populations lacking a representative SAG.

LD12 SAGs collected from Lake Mendota (C06, J10, L15, C07, and D10) also had a

distinctive peak of recruited reads at >97.5% sequence identity (Fig. 2.3), although the

overall shape of the recruitment patterns differed dramatically from those of the acI lineage.

For example, LD12 SAGs had a secondary recruitment peak at ~92% identity, whereas the

acI SAGs had secondary peaks at ~75% with non-competitive recruiting (Fig. A.3S4). This

suggests the SDPs within the LD12 tribe were more similar genetically than populations

comprising the acI-B1 tribe. In fact, the populations were sufficiently similar that the

hallmark coverage discontinuity below 97% similarity was not particularly pronounced

(Fig. 2.3). Under competitive recruiting conditions, the LD12 recruitment distribution

plots had remarkably different shapes (Fig. A.3S4B, D), as compared to the uncompetitive

recruiting conditions (Fig. 2.3), and each SAG had only a single peak at >97.5% identity.

This suggests the majority of LD12 cells in Lake Mendota belong to SDPs represented by

the SAGs in our collection.

All but one (I06) of the other freshwater SAGs in this study that were collected from Lake

Mendota generated the distinctive read recruitment frequency peak above 97.5% identity
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Figure 2.3: Mapping metagenomic reads from Lake Mendota to SAGs and four genomes from Lake
Soyang. (Kang et al., 2017). The x-axis represents nucleotide identity of the recruited reads. The
metagenome sample was collected from Lake Mendota on 29 April 2009. Reads were only counted if they
aligned over a minimum of 200bp. Recruitments were not competitive, meaning that each read could
recruit to multiple SAGs. Analogous competitive recruitments that required each read to recruit to only
one SAG are presented in Fig. A.3S4. The non-competitive recruitment showed the close relationship
of the LD12 populations that is not visible in the competitive recruitment. An expanded multi-panel
version of the same data is presented in Fig. A.3S3 for clarity. Each panel represents a different subset
of the SAGs: a acI from Mendota, b acI not from Mendota, c LD12 from Mendota (group members
demarcated in legend), d LD12 not from Mendota (group members demarcated in legend), e other
freshwater groups from Mendota, f genomes from Lake Soyang, Korea. Regarding the other freshwater
groups from Mendota, since each of these SAGs represent just one tribe, it is not appropriate to infer
any general conclusions for these populations or tribes, but we present them here to show the intriguing
diversity of recruitment patterns. We finally underscore the need to more deeply sample individual
population members using SAGs, to better capture and describe the range of variation in population
heterogeneity.
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(Fig. 2.3) that was observed for acI (Fig. 2.3). A negligible number of reads recruited to

the SAGs collected from other lakes under the competitive recruiting conditions (data not

shown).

Four complete acI genomes recovered from Lake Soyang in Korea were recently pub-

lished, and we included these in our recruitment analysis (Fig. 2.3). Three of the SAGs

exhibited recruitment frequency distributions analogous to those obtained using acI SAGs

from Sparkling Lake and Damariscotta Lake (Fig. 2.3), with very few reads mapping above

90% ANI. The distribution from one SAG (IMCC19121) was remarkably similar to that

obtained from SAG N04, which was recovered from Damariscotta Lake in Maine. Both

IMCC19121 and N04 are members of the acI-A7 tribe and share 89.8% ANI with each other.

Are sequence-discrete populations within a tribe ecologically discrete

too?

Results from a single metagenome sample suggested that individual tribes were composed

of multiple genetically distinct populations that could be delineated and tracked using

metagenomic read recruitment. Next, we hypothesized that these populations might also

be ecologically distinct and fill different realized niches. If so, we might expect these

populations to display different temporal abundance patterns. We followed changes in

population abundance through time by recruiting reads from a 5-year metagenomic time

series applying a nucleotide identity cutoff of 97.5%, using only those SAGs derived from

Lake Mendota. SAGs from the LD12 tribe recruited more reads than all of the acI SAGs

summed together, on almost all sample dates (Fig. A.4S5).

Using the relative number of reads recruited as a proxy for abundance, we found the

J17 population, which belonged to the acI-B1 tribe, to be the most abundant acI population

in almost every sample (Figs. 2.4a and 2.5a). The abundance of the J17 population was

poorly correlated over time with the other acI-B1 population represented by L06 (maximum

Spearman rank correlation=0.256), indicating each population had a different temporal
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Figure 2.4: Sequence-discrete population abundance in Lake Mendota over time, as measured by the
relative number of reads recruited to each SAG using blastn. All SAGs and samples are from Lake
Mendota. Timepoints are pooled by month. Filtering criteria: 97.5% ANI and 200bp alignment length.
Recruitment was done using the most strict definition of competitive described in the methods, meaning
any read that matched equally well to more than one SAG was not counted at all. Colors for each
SAG are the same as in Figs. 2 and 3. Relative abundance was calculated by normalizing the number
of basepairs that recruited to each SAG by dividing by the genome size and the pooled metagenome
size. The normalized number was then multiplied by the average pooled metagenome size. a Relative
abundance for each acI-B1 SAG. b Relative abundance for each LD12 SAG. Membership in the groups
defined in Fig. 1b and by ref. (Zaremba-Niedzwiedzka et al., 2013) are denoted in the legend

abundance pattern.

In contrast to the acI-B1 tribe, the populations comprising the LD12 tribe had highly

similar abundance patterns (Fig. 2.4b and Fig. A.4S6). The abundances of J10, L15, and

C06 populations were strongly correlated (Spearman rank correlation=0.996–0.999) (Fig.

A.3S8 and Table A.4S5) and tended to peak both in Spring and Fall (Fig. A.3S6). The

D10 population was the most abundant in the data set but its abundance was not as

strongly correlated to the other LD12 populations (Spearman rank correlation=0.705–0.725)

(Fig. A.3S8 and Table A.4S5). The C07 population was the least abundant but was also
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Figure 2.5: Abundance and ANI for SAGs through timeseries. a Metagenomic read recruitment using
the SAGs from Lake Mendota. SAGs are in rows with bubbles representing all metagenomes from a
particular month recruited against SAG. Filtering criteria: 97.5% ANI and 200bp alignment length. Color
scale indicates the ANI of the recruited metagenome reads. Bubble size represents the average coverage
per base in the reference SAG divided by the size of the metagenome, multiplied by the average size
of all metagenomes (1.34 Gigabases). Gray bubbles indicate that fewer than 200 reads recruited to
the SAG in that month. Note that the resulting values do not represent a true measure of absolute
abundance, but allow for quantitative comparison of month-to-month variation in population-level
abundance. Recruitments were performed competitively, meaning that each read was counted for only
one SAG, unless the read hit two SAGs equally well in which case it was counted for both SAGs. b
Variation in ANI for each SAG, across all 30 metagenomes from throughout the five years. Variation
was not calculated for a SAG unless at least 10 months recruited more than 200 hits each. The data
underlying these plots can be found in Table A.4S6
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correlated to both the J10-L15-C06 populations and the D10 population (Spearman rank

correlation=0.850–0.873).

Does the genetic diversity of populations change over time?

We also examined the extent to which within-population diversity varied through time by

quantifying changes in population-wide ANI, i.e., the average identity of all reads mapping

with at least 97.5% identity (Fig. 2.5b). For this purpose, we only recruited reads to SAGs

recovered from Lake Mendota. More abundant populations (such as LD12 and acI-B1

J17) generally had lower population-wide ANI variance through time compared to some

less abundant populations (such as acSTL-A1-D23 and acI-A6-I14). For example, the SAG

bacI-A1 G08 population had relatively high population-wide ANI in June 2009, around the

time when the sample was collected for SAG library collection, but had markedly lower

ANI on all other dates. One interesting exception to this observation was a significantly

lower ANI for the relatively abundant acI-B1 L06–A23 population in 2012, as compared to

2007–2011 (Mann–Whitney U-test; p=1.4e-06).

2.4 Discussion

Comparative genomics can reveal the diversity and structure of bacterial populations. This

approach is particularly powerful when applied using single cells recovered from environ-

mental samples (SAGs) and shotgun metagenomes from the same or similar ecosystems.

Here we used a combination of 33 SAGs and 94 metagenomes collected over 5 years to ask

the following questions: (1) How well do individual SAGs represent the population-level

diversity found in natural communities? (2) Do common freshwater bacterial groups have

similar patterns of population-level diversity? and (3) How stable is population abundance

and diversity through time? We used the answers to these questions to gain insight into

the population-level diversity and ecology of the cosmopolitan and abundant freshwater
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bacteria, alfV-LD12 (Alphaproteobacteria) and acI (Actinobacteria).

Sequence-discrete populations could be delineated in the Lake Mendota metagenome

using our 33 SAGs as references, as has previously been demonstrated in other lakes

using genomes assembled from metagenomes (Bendall et al., 2016; Caro-Quintero and

Konstantinidis, 2012). We interpret the occurrence of these populations in the context of

previously defined phylogenetically coherent and ostensibly ecologically distinct “tribes”

composed of cells with >97.9% 16S rRNA identity (Newton et al., 2011). We conclude that

the freshwater tribes can contain multiple sequence-discrete populations. The converse

is, of course, not true: sequence-discrete populations can never represent multiple tribes

because tribes are by definition more distantly related to one another than genomes sharing

a minimum of 97.5% gANI.

Pairwise gANI analysis of SAGs and metagenomic read recruitment indicated that cells

belonging to the same tribe but inhabiting different lakes were usually genetically distinct.

For example, SAGs collected from other lakes generally recruited very few reads from Lake

Mendota at ANI >97.5% while many recruited a substantial number of reads in the 89–92%

range (Fig. 2.3). However, there were two prominent exceptions: LD12 N17 and L09, both

of which are from Sparkling Lake. N17 and L09 share 97% gANI with Mendota SAG

D10, which is substantially higher than the average (88%) and median (90%) within-tribe

gANI (Table A.4S2). These SAGs also recruited roughly the same number of reads with

>97.5% identity as did the LD12 SAGs from Lake Mendota, though around 17% (L09) and

23% (N17) of the base pairs in the genomes did not recruit any reads. This implies that

some gene content was present in the Sparkling Lake populations but missing in Lake

Mendota. However, 10% of the base pairs in the D10 genome also did not recruit any

reads, even though it was from Lake Mendota. We examined the phylogenetic distribution

of low-coverage contigs and did not discern any evidence of contamination. This rare

genome content could represent flexible or low frequency genes in the population, or

contamination in the SAG preparation (Blainey, 2013). However, it could also represent
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systematic coverage bias, a phenomenon that we are not able to rule out with the data at

hand.

In Lake Mendota, acI cells are organized into genetically discrete populations, but the

forces creating this organization remain unknown. The consistent lack of coverage around

90–97% identity in recruitment plots indicates Lake Mendota lacks acI genotypes sharing

this degree of sequence similarity with our SAGs, or at least that these putative genotypes

were consistently at much lower abundances than their close relatives over the 5 years

surveyed. The P03 SAG from Stechlin Lake shares gANI of 96% with acI-B1 SAGs from

Mendota, indicating that genotypes within this locally excluded sequence space do exist,

at least as long as they are from different environments. We infer the persistence of the

coverage discontinuity between populations to be less a factor of dispersal limitation and

more likely the result of competitive exclusion and barriers to recombination within Men-

dota populations. Additional SAG and metagenomic studies are necessary to determine if

similar coverage discontinuities are observed in other phylogenetic groups and in different

environments. However, we do note that others have observed similar population-level

diversity in other lakes (Bendall et al., 2016; Caro-Quintero and Konstantinidis, 2012) and

marine ecosystems (Konstantinidis and DeLong, 2008).

We know that both acI tribes and LD12 vary in abundance over seasonal and annual

time scales, based on previous work using 16S rRNA gene sequencing, quantitative PCR,

and FISH (Heinrich et al., 2013; Salcher et al., 2011; Allgaier and Grossart, 2006; Eiler et al.,

2012). Here we used our SAGs to track such populations at monthly intervals over 5 years

(Fig. 2.4 and Fig. A.3S5). The results confirmed prior work that showed acI tribes and

LD12 are among the most abundant non-cyanobacterial groups in Lake Mendota (Newton

et al., 2011), but also revealed dynamics at unprecedentedly high phylogenetic resolution.

Based on our extensive comparison of how SAGs recruited relative to one another, we

are confident that our metagenomic recruitment filters allowed us to delineate discrete

populations that would not be possible to resolve using more traditional and widely used



48

methods (e.g., 16S rRNA gene sequencing or FISH). However, we do note that our acI SAG

collection to date does not seem to fully capture the full diversity of acI populations in the

lake, as evidenced by the residual peak of reads matching our SAGs at ~70–80% ANI, even

under competitive recruiting conditions. For example, we roughly estimate that our acI

SAGs captured only 12% of the resident acI metagenome on 29 April 2009, as compared

to 50% of the LD12 metagenome (Table A.4S3). Thus, we cannot completely rule out the

possibility that we missed strong correlations among other acI populations that we could

not detect.

However, the most striking finding of our study was that metagenomic recruitments to

LD12 SAGs yielded dramatically different patterns compared to the acI lineage. We discov-

ered that LD12 populations were not as strongly genetically separated as acI populations;

pairwise gANIs between SAGs were higher and recruitment plots showed secondary peaks

between 90 and 95% identity (Fig. 2.3), the same range where coverage of acI SAGs was

at a minimum (Fig. 2.3). Under a competitive recruitment analysis, wherein each read is

counted only once and attributed to the best match SAG, the secondary peaks disappear

(Fig. A.3S4), indicating the LD12 SAGs represent highly similar, but still genetically dis-

crete, populations. Temporal abundance patterns of these LD12 populations were strongly

correlated over 5 years, whereas acI populations showed much lower correlation within

tribes (Fig. A.3S8). This suggests that the acI-B1 populations are ecologically distinct (i.e.,

occupying temporally discrete niches) while LD12 populations are less differentiated with

respect to niche dimensions, leading to co-occurrence and synchronization of temporal

abundance patterns. LD12 is a particularly fascinating group because it is also a subclade of

the broader SAR11 clade, with hypothesized ancient transition from marine to freshwater

(Logares et al., 2010) followed by specialization through gene flux and mutation, with

comparatively low recombination rates (Zaremba-Niedzwiedzka et al., 2013). Over time,

low recombination rates and relatively low selection levels should lead to large genetic

divergence among coexisting populations. Thus, we propose that LD12 populations are
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simply at earlier stages of differentiation as compared to acI populations, although we

cannot exclude that something fundamental about their lifestyle is “holding” the popula-

tions together genetically and ecologically. This is particularly interesting in light of recent

reports of unusually high recombination rates in LD12 (Zaremba-Niedzwiedzka et al.,

2013), pointing to the need to further investigate contrasting population structures and

what these structures mean for the ecophysiology of the organisms. We do note that it is

also possible that the highly correlated LD12 populations are each occupying unidentified

distinct niches that are unrelated to the temporal correlation, allowing these slightly ge-

netically differentiated populations to co-occur while being ecologically distinct. In any

case, the lack of coherence among acI-B1 populations challenges our concept of tribes as

ecologically coherent units and suggests that freshwater microbial ecologists re-examine

conventions for tracking these units through space and time. Taken together, these obser-

vations suggest fundamental differences in evolutionary history and/or lifestyles among

these abundant and ubiquitous freshwater bacteria.

The metagenomic recruitments allowed us to also examine the extent to which diver-

sity varied within and among populations as well as how diversity changed over time.

We calculated the population-wide ANI for reads that recruited only above 97.5% and

found the resulting value was remarkably stable through time for most of the abundant

populations (Fig. 2.5b). This was particularly true for the LD12 populations. However, one

striking contrast was the acI-B1 population represented by L06/A23, which had consistent

population-wide ANI of 99.3% during 2008–2011, but 99.0% during 2012 (Mann–Whitney

U-test p=1.4e06). Similar shifts were observed previously in sequence-discrete populations

inhabiting Trout Bog Lake, indicating this could be a common phenomenon among fresh-

water clades (Bendall et al., 2016). Unlike the genome-wide selective sweep observed in

one Chlorobium population from Trout Bog Lake, the distribution of single nucleotide

polymorphisms within the L06/A23 population before and after 2012 exhibited no clear

pattern of gene- or genome-wide sweep (data not shown). That is, it seems that the increase
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in population-wide gANI resulted in a change in the relative abundance of individual

genotypes, rather than a single new genotype overtaking the population. It is difficult or

impossible to separate genotypes within sequence-discrete populations using short-read

shotgun sequencing, so further work using long-read technologies will be needed to link

SNPs in populations to individual genomes. This kind of approach will likely be required

to tease apart the paths leading to diversification within and among populations.

2.5 Methods

Single amplified genomes (SAGs)

Water samples (1ml) were collected from the upper 0.5–1m of each of four lakes (Men-

dota, Sparkling, Damariscotta, and Stechlin) and cryopreserved, as previously described

(Garcia et al., 2013; Martinez-Garcia et al., 2012). These lakes were originally selected

because they represent different freshwater trophic status (eutrophic, oligotrophic, mesoeu-

trophic, and oligotrophic, respectively) and geographic regions (Wisconsin and Maine,

USA, and Germany). Bacterial SAGs were generated by fluorescence-activated cell sorting

(FACS) and multiple displacement amplification (MDA), and identified by PCR-sequencing

of their 16S rRNA genes at the Bigelow Laboratory Single Cell Genomics Center (SCGC;

http://scgc.bigelow.org). Thirty-two SAGs from lakes Mendota, Sparkling, and Damariscotta

were selected for sequencing based on the previously sequenced 16S rRNA gene as well as

the kinetics of the MDA reactions (Martinez-Garcia et al., 2012). The one SAG from Lake

Stechlin was selected from a separate library because its 16S rRNA gene was 100% identical

to an acI-B1 SAG previously analyzed (AAA027-L06) (Garcia et al., 2013). In the present

study, we analyze 21 previously published and 12 new SAGs. All 33 SAGs were analyzed

(Table 2.3) after genome sequencing, assembly, contamination removal, and annotation

as previously described (Ghylin et al., 2014). Estimation of completeness was done using

CheckM (Parks et al., 2015) and the gene markers from a recent study examining a large



51

collection of draft environmental genomes (Rinke et al., 2013).

Tree construction, average amino acid and average nucleotide identity

(AAI, ANI)

A phylogenomic analysis was conducted using PhyloPhlAn (Segata et al., 2013). ANI was

calculated by using the method described in ref. Konstantinidis and Tiedje (2005) with

fragment size of 1000, minimum alignment length of 700bp, percent identity of 70, and e

value of 0.001. AAI was calculated by averaging the identity of the reciprocal best hits from

the BLASTP searches of the predicted proteins for each pair of genomes. 16S rRNA gene

similarity for each pair was calculated using the overlapping region in an alignment created

using a multiple alignment (default options) in Geneious Version R6 (Kearse et al., 2012).

Additional classifications were carried out using PhyloSift version 1.0.1, which examines

37 conserved single copy marker genes and places them into a phylogenetic reference tree

(Darling et al., 2014).

SAG-to-SAG recruitments

SAG pairs from the same tribe were used to examine the frequency distribution of nucleotide

identities across homologous regions of the two genomes. In order to create a sliding

window for comparison, the contigs of all SAGs were shredded into 301bp fragments with

150bp overlap. Two SAGs were selected as reference genomes: L06 as the most complete

from the tribe acI-B1 and C06 as the most complete LD12. The contigs of each of the

two selected SAGs were used as a reference for recruiting from the shredded SAGs using

Blast 2.2.28 (Camacho et al., 2009). Ribosomal RNAs were masked from the SAGs prior to

performing blast.
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Five-year time series metagenome data: sampling, sequencing, and

recruitments

Samples were collected from Lake Mendota over the course of 5 years, as previously de-

scribed (Kara et al., 2013; Shade et al., 2007). Lake Mendota, Madison, Wisconsin, (N 43°06,

W 89°24) is one of the most well-studied lakes in the world, and is a long-term ecologi-

cal research site affiliated with the Center for Limnology at the University of Wisconsin

Madison (Carpenter et al., 2006). It is dimictic and eutrophic with an average depth of

12.8m, maximum depth of 25.3m, and total surface area of 3938ha. Depth-integrated water

samples were collected from 0 to 12m of the epilimnion (upper mixed layer) at 94 differ-

ent time points during ice-free periods from summer 2008 to summer 2012, and filtered

onto 0.2micrometer pore-size polyethersulfone filters (Supor, Pall) prior to storage at 80°C.

DNA was later purified from these filters using the FastDNA kit (MP Biomedicals). DNA

sequencing was performed at the Department of Energy Joint Genome Institute using stan-

dard protocols (Walnut Creek, CA, USA). DNA from the 94 samples was used to generate

libraries that were sequenced on the Illumina HiSeq 2000 platform. Paired-end sequences

of 2150bp were generated for all libraries. Adapter sequences, low-quality reads (i.e., 80% of

bases had quality scores <20), and reads dominated by short repeats of 3bp were removed.

The remaining high-quality reads were merged with the fast length adjustment of short

reads (Magoc and Salzberg, 2011) with a mismatch value of 0.25 and a minimum of 10

overlapping bases from paired sequences, resulting in merged read lengths of 150–290bp

(Table A.4S4). Metagenomes were pooled by month to reduce the time series data to 30

observations and increase coverage. Original records can be found as a group in JGI’s

Genome Portal: http://genome.jgi.doe.gov/Mendota_metaG.

All contigs from each of the 33 SAGs were used as a reference to recruit reads from

the Mendota metagenomes using blastn. Metagenome reads that recruited to the SAGs

were filtered and only alignments 200bp or longer were considered. An additional filter

requiring an alignment percent identity of at least 97.5% was applied when analyzing
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the metagenome time series. Ribosomal RNAs were masked from the SAGs prior to

performing the recruitments. Relative abundance was calculated by normalizing the

number of basepairs that recruited to each SAG by the genome and pooled metagenome

size and multiplying all by the average pooled metagenome size. When appropriate to

the research question, recruitment was conducted “competitively,” meaning that if a read

recruited to more than one SAG it was only counted for the best hit SAG. In this case,

if a read recruited equally well to both SAGs, it was counted for both. In some cases,

we applied an even stricter definition of “competitive” and did not count any read that

recruited equally well to more than one SAG. For Fig. 2.3, recruitment was conducted

“non-competitively,” meaning that reads could be counted for multiple SAGs as long as

the hits met the filtering criteria. We note that this a commonly used approach developed

by other researchers (Konstantinidis and Tiedje, 2005; Konstantinidis and DeLong, 2008).

The figure and table legends contain the information necessary to discern which kind of

recruitment criteria were applied for that specific analysis.

Statistics, visualization, and reproducible methods

Data sets were analyzed and results were visualized using custom scripts written in

R (R Core Team, 2014) and python. Pipeline and scripts for analysis can be found at

https://github.com/McMahonLab/blast2ani.
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3.1 Abstract

While we can identify and track genetically discrete populations through time, we know

little about how genes within these populations change in response to fluctuating conditions

in natural ecosystems. To understand how the diversity and frequency of genes within a

population changes through time, we recovered metagenome-assembled genomes (MAGs)

from 6 distinct Polynucleobacter populations and used them as references for a 45-sample

metagenomic time series spanning 3 years in a bog lake. This allowed us to track the

diversity and abundance of individual sequence-discrete populations and the frequency

of genes within the population. At the population level, we found that while all of the

Polynucleobacter populations were detected in each year sampled, one population was

considerably more abundant throughout the time series. We also found that none of the

populations were dominated by a single or small number of strains through time, based on

the fraction of single nucleotide variants (SNVs) dominated by a single allele, termed SNV

homogeneity. Based on gene frequency, we characterized the core and accessory genes

for each of the populations and investigated the relationship between SNV density and

gene frequency. By tracking 6 Polynucleobacter populations over 3 years and 45 time points,

we found that one population was consistently dominant, each population consistently

contained many strains, high frequency genes had higher SNV density, and most of the

genes had a low percentage of non-synonymous SNVs.

3.2 Introduction

Microbial species concepts are actively debated, but some definitions have successfully

explained observed data. As part of understanding what makes up a single species, micro-

biologists have been exploring the pan-genome of different taxa for over a decade (Tettelin

et al., 2005). However, only recently have researchers started to incorporate metagenomic

information into their understanding of the ‘metapangenome’ by characterizing genes that
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are core and accessory to a taxon (Delmont and Eren, 2018). To improve our understanding

of the pan-genome of individual, genetically separate populations, we extended the ‘meta-

pangenome’ using time series analysis. We used shotgun metagenomics to determine the

core and accessory genes of discrete populations and to track the abundance and diversity

of bacterial populations from a freshwater lake through a three-year, 45-sample time series.

In this work we operationally define populations as the genetically separate or “sequence-

discrete” populations previously observed (Konstantinidis and DeLong, 2008; Caro-Quintero

et al., 2011; Caro-Quintero and Konstantinidis, 2012). Therefore, we will use “population”

and “sequence-discrete population” interchangeably. These populations can be observed

in metagenomic samples by mapping reads to reference genomes. They are differentiated

from the next most closely related population by a coverage discontinuity, where read

coverage drops between populations due to a lack of individuals with intermediate geno-

types. This discontinuity is generally found at approximately 95% nucleotide identity. Our

past work has used this population definition to look at how the genome-wide diversity of

freshwater microbial populations changes through time (Bendall et al., 2016). We also used

this definition to examine the different population structures and dynamics of two highly

abundant, cosmopolitan groups of freshwater bacteria, LD12 and acI (Garcia et al., 2018). In

both of these previous works, we focused primarily on population abundance and diversity

metrics. In this work, we begin by studying the genome-wide abundance and diversity

within sequence-discrete populations. We then zoom in further to examine the variation

in gene frequency and characterize the core and accessory genes within Polynucleobacter

populations.

We chose to focus on Polynucleobacter because members of this genus have a cosmopoli-

tan distribution (Zwart et al., 2002; Wu and Hahn, 2006a; Newton et al., 2011) and are often

the most abundant freshwater “lineage” found in dystrophic lakes, including in our study

system, Trout Bog Lake (Linz et al., 2017). Polynucleobacter asymbioticus is the most well

studied free-living species from this genus. From a comparative genomics analysis, Polynu-
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cleobacter asymbioticus has a streamlined genome and is thought to have a passive lifestyle

(Hahn et al., 2012), high rates of within-population recombination, and large functional

diversity which can be shared between members of the Polynucleobacter genus by horizontal

gene transfer (HGT) of genomic islands (Hoetzinger and Hahn, 2017; Hoetzinger et al.,

2017). Polynucleobacter populations seem to be strongly influenced by the phytoplankton

community as has been seen in Lake Mondsee (Austria) and in Trout Bog Lake (Wisconsin,

U.S.A.) (Wu and Hahn, 2006b; Paver et al., 2015).

For this study, we identified and tracked six Polynucleobacter populations though a

45-sample, three-year time series (2007-2009) in Trout Bog Lake (Wisconsin, U.S.A.), a

dystrophic, bog lake in northern Wisconsin. First, we used genome-wide average nucleotide

identity (gANI) to find a high matching set (HMS) of metagenome-assembled genomes

(MAGs), which all belong to the same population. Next, we used the representative set

of genes from each HMS to perform a phylogenomic analysis of these populations and

place them in the context of each other and other known Polynucleobacter. Additionally, we

clustered genes from all six HMSs to find the Polynucleobacter single copy conserved genes

(Pnec-SCCGs) shared between them. Four closely related single-cell amplified genomes

(SAGs) from Trout Bog which belonged to the same population as one HMS allowed us

to interrogate the gene recovery between these different methods. In order to track the

changes in single nucleotide variant (SNV) frequency through time, we determined the

fraction of SNVs dominated by a single allele (SNV homogeneity) and tracked this for each

of the 6 populations through the time series. Finally, we characterized the frequencies for

all the genes in each population and determined the relationship between SNV density

and gene frequency.
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3.3 Materials and Methods

Sample Collection, Extraction, and Sequencing

Trout Bog is a dystrophic lake located in Wisconsin, USA. It is surrounded by boreal forests

and a Sphagnum mat which leaches terrestrially-derived organic matter into the lake. The

surface area of Trout Bog is ~11000m2, a maximum depth of 9m and a mean pH of 5.1. As

described in Bendall et al. (2016), samples were collected from a 1 meter, depth integrated

portion of the hypolimnion layer at 45 different time points during ice-free periods from

2006 to 2008. Samples were filtered on 0.2 micrometers pore-size polyethersulfone Supor

filters (Pall Corp., Port Washington, NY, USA) and subsequently stored at 80°C. DNA was

later purified from these filters using the FastDNA Kit (MP Biomedicals, Burlingame, CA,

USA). DNA sequencing was performed at the Department of Energy Joint Genome Institute

(Walnut Creek, CA, USA) as described in Bendall et al. (2016).

Assembly

For assembly of each sample, reads were filtered using the default settings of BBtools

trimming to a minimum quality of Q17 (Bushnell, 2018). Then BFC was used for error

correction, trimming reads containing singleton k-mers, using k-mer size 21 and expected

genome size 10 gigabases (Li, 2015). Finally, the reads from each sample were assembled

separately using the assembly only option of metaSPAdes v.3.10.1 and the following k-mer

sizes: 21,33,55,77,99,127 (Nurk et al., 2017). The resulting assembly statistics (JGI library

ID, collection date, IMG genome ID, number of contigs, size, N50, L50, GC content) can be

found in Table 3.1.

Library ID Date
IMG Genome

ID

of

contigs
size (bp) N50 L50

GC

content

IHXI 2007-05-28 3300021113 28546 17931747 3860 770 0.458
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IHWF 2007-06-07 3300020684 73048 49921885 10174 904 0.474

IHUS 2007-06-13 3300020680 64194 41364591 9747 766 0.454

IHWI 2007-06-27 3300020730 201551 130505942 28234 766 0.471

IHWN 2007-07-02 3300020706 133328 85831074 18008 758 0.478

IHWG 2007-07-12 3300020702 126318 79125120 18743 713 0.472

IHWH 2007-07-25 3300020735 236622 158939914 30109 842 0.467

IHUZ 2007-07-31 3300020726 186317 126876739 24227 870 0.474

IHSA 2007-08-09 3300020699 119892 76017719 17662 733 0.473

IHWA 2007-08-20 3300020713 155074 96472500 23815 695 0.479

IHWY 2007-08-27 3300020690 97669 59027541 15728 661 0.490

IHWB 2007-09-10 3300020692 101120 61011128 14993 668 0.480

IHWU 2007-09-17 3300020700 127984 75507841 20559 622 0.484

IHXG 2007-10-01 3300020693 100570 66856621 18639 722 0.491

IHXO 2007-10-16 3300020703 134746 76999047 22932 581 0.459

IHXN 2007-11-05 3300020708 148865 85622164 27442 610 0.489

IHXW 2007-11-14 3300020682 62510 49769621 4722 1327 0.451

IHPY 2008-05-22 3300020697 99484 83406058 10917 1244 0.458

IHSB 2008-05-29 3300020687 73059 61544036 7956 1216 0.448

IHWS 2008-06-13 3300020679 43795 31359678 5090 926 0.447

IHWX 2008-07-01 3300020709 128561 99511045 14692 1015 0.462

IHWW 2008-07-08 3300020683 65294 50543708 7094 1129 0.459

IHXP 2008-07-15 3300020734 209672 153665877 30731 870 0.461

IHXT 2008-07-22 3300020721 162805 118711634 21994 866 0.460

IHXH 2008-07-29 3300020711 137030 93131989 18097 866 0.442

IHXA 2008-08-05 3300020707 126191 87797378 19314 781 0.455

IHXF 2008-08-12 3300020688 80409 57125852 12219 842 0.448
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IHXU 2008-08-19 3300020691 87054 63037302 12235 885 0.448

IHXS 2008-08-25 3300020698 114615 76825112 12767 846 0.445

IHXX 2008-09-09 3300020701 117002 84540196 16382 883 0.454

IHPO 2008-09-20 3300021116 55282 33786504 7431 669 0.439

IHWP 2008-10-04 3300020724 184296 123385235 32506 732 0.457

IHPN 2008-10-23 3300020722 174776 113763045 34649 710 0.478

IHWT 2009-05-29 3300020727 174471 129099922 28106 906 0.444

IHTZ 2009-06-03 3300021135 263988 192126459 26872 986 0.472

IHXY 2009-06-15 3300020717 152419 111462832 17558 1052 0.484

IHUN 2009-06-23 3300020723 159179 135276742 17633 1258 0.485

IHUO 2009-06-29 3300020704 114345 94544317 13565 1139 0.490

IHUP 2009-07-07 3300020729 185169 137756086 29063 925 0.481

IHUA 2009-07-13 3300020720 166764 118262174 18603 939 0.497

IHUB 2009-07-21 3300020681 65254 49622392 6172 1190 0.500

IHUC 2009-07-27 3300020715 143314 107414156 19341 939 0.491

IHUH 2009-08-03 3300020712 142247 95972496 18765 855 0.488

IHUI 2009-08-11 3300020685 76220 49153280 13427 680 0.474

IHUF 2009-08-18 3300020719 177480 113005853 25132 745 0.482

Table 3.1: Assembly Statistics for Each Metagenomic Timepoint

Sequenced

Read Preprocessing, Mapping, and Binning

Prior to mapping, reads were merged using the bbmerge tool from BBtools using default

settings with the addition of the qtrim2 option (Bushnell, 2018). Next, reads were trimmed

to Q17 using the default settings of bbqc (Bushnell, 2018). Reads from all samples in the

time series were mapped to each assembly for binning with differential coverage using
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bbmap from BBtools with a minimum identity threshold of 0.95. Bins were recovered from

each individual sample assembly using the default settings of Metabat (Kang et al., 2015).

Filtering, Classifying, and Dereplicating Medium-High Quality Bins

Bin quality was assessed using CheckM v. 1.0.11, default settings with lineage specific

option (Parks et al., 2015). Only bins with greater than 50% completeness and less than

10 percent redundancy/contamination, were analyzed further (Supplementary Tables

A.1, A.2). These thresholds are consistent with Genomic Standards Consortium’s (GSC)

Minimum Information about a Metagenome-Assembled Genome (MIMAG) standards for

‘medium quality’ genomes (Bowers et al., 2017). Assembly statistics (HMS, number of

contigs, size, GC content, N50, L50) for these genomes can be found in Supplementary

Table A.1.

The medium quality MAGs were classified using a custom classification method.

Open reading frames and annotations were predicted using IMG’s annotation pipeline

(Huntemann et al., 2015). For classification, the annotated genes were subset to only those

which had RPSBLAST hits to phylogenetically conserved COGs (COG0016, COG0049,

COG0051, COG0052, COG0072, COG0080, COG0081, COG0087, COG0088, COG0090,

COG0091, COG0092, COG0093 , COG0094, COG0096, COG0097, COG0098, COG0099,

COG0100, COG0102, COG0103, COG0164, COG0181, COG0184, COG0185, COG0186,

COG0197, COG0198, COG0200, COG0244, COG0255, COG0532, COG3590) (Camacho et al.,

2009; Darling et al., 2014; Galperin et al., 2015) . In order for a MAG to be classified at each

taxonomic rank three criteria had to be met for the phylogenetically conserved genes listed

above: at least 3 of the genes were required to have the same classification at that rank, at

least 70% of the genes were required to have the same classification at that rank, and the

genes were required to have an amino acid identity match to the IMG database greater

than the threshold for that taxonomic rank (Kingdom:.20, Phylum:.45, Class:.49, Order:.53,

Family:.61, Genus:.70, Species:.90, Taxon_name:.97). The taxonomic rank thresholds were
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chosen based on the analysis AAI thresholds determined in Luo et al. (2014)(Supplementary

Table A.3).

MAGs were identified as belonging to the Polynucleobacter genus if they were classified

or belonged to the same High Matching Set (HMS) as MAGs classified as Polynucleobacter.

There were six Polynucleobacter HMSs which contained 76 medium to high quality MAGs

(Supplementary Tables A.1, A.2, A.3). To find which Polynucleobacter genomes were part

of the same (HMS), genome-wide average nucleotide identity(gANI) and alignment frac-

tion(AF) was calculated between every pair of genomes which were classified to the same

phylum (Varghese et al., 2015). MAGs were considered to belong to the same HMS if they

had an AF greater than 0.50 and an gANI of greater than 95% (Tables 3.2, A.1).

A representative gene for each cluster was chosen in order to ‘deduplicate’ the genes in

an HMS prior to the abundance, gene frequency, and SNV analyses. Prior to clustering,

genes and contigs which could not be confidently assigned to a particular HMS were

removed using a Blast analysis (Camacho et al., 2009). These included any gene which

had greater than 95% nucleotide identity over a region that was similar to the length of

a metagenomic read, 150 basepair. To find the representative gene set, the nucleotide

sequences for all genes predicted in an HMS were compared against each other using

Blast 2.2.31+ (Camacho et al., 2009). Results with query coverage greater than 70% with

identity greater than 95% were then clustered based on their normalized bit score using

MCL v.14-137 (van Dongen, 2000; Enright et al., 2002) with an inflation score of 1.1.

Representative genes were chosen from the ‘best’ MAG (most complete with least redun-

dancy) which contained a gene represented in the cluster (Table 3.2).

Phylogenetic tree construction

Reference genomes were chosen from IMG because they were classified as belonging to the

genus Polynucleobacter or were isolated from freshwater and members of the Burkholderiales

order (Huntemann et al., 2015). Only one reference genome was chosen for each genus
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HMS
#
of
Bins

Total
Genes
in HMS

RepGenes
in HMS

Average
Relative
Abundance

Average Depth
of Coverage

HMS10 1 1514 1030 0.447 5.064
HMS18 4 5850 1507 0.669 7.601
HMS19 34 61820 2248 5.707 65.227
HMS23 16 30741 2068 1.546 17.716
HMS28 13 32427 2871 0.611 6.932
HMS3 8 13539 2130 0.453 5.459

Table 3.2: HMS stats

outside Polynucleobacter. A multilocus alignment was constructed by concatenating the

alignments of a set of 31 phylogenetically conserved genes. These genes were the same

COGs used for the classification step above. These genes were found in references and

MAGs by identifying the corresponding COGs which matched those gene annotations

(Galperin et al., 2015). Each COG set was then aligned using the default settings of MAFFT

v7.407 (Katoh et al., 2002; Katoh and Standley, 2013). COGs were concatenated using

catfasta2phyml and then trimmed using the automated settings of TrimAI on the CIPRES

Science Gateway V. 3.3 (Nylander, 2018; Capella-Gutiérrez et al., 2009; Miller et al., 2010).

The final phylogenetic tree (Figure 3.3) was also made using RAxML on CIPRES (Stamatakis,

2014; Miller et al., 2010). The phylogenetic tree was visualized, edited for readability, and

rooted on midpoint using iTOL (Letunic and Bork, 2016).

Clustering Homologous Genes among and within HMSs

In order to find the shared, orthologous genes between all six HMSs, Blastp (Blast 2.2.31+)

was run on all the pairwise combinations of amino acid sequences for all HMSs (Camacho

et al., 2009). The blast results were then filtered, keeping on those with > 70% query

coverage and > 60% identity, and clustered using MCL v.14-137 by their normalized bit

score, with an inflation value of 1.1 (van Dongen, 2000; Enright et al., 2002). A custom

script was used to find clusters with a single gene from each of the six HMSs. These genes
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are termed the Polynucleobacter Single Copy Core Genes (Pnec-SCCGs).

To compare homologous genes for HMS19 and the SAGs from Trout Bog belonging

to the same sequence-discrete population, clustering was repeated using the amino acid

sequences with thresholds of > 70% query coverage and > 90% amino acid identity.

Calculating Coverage, Abundance, and Gene Frequency

We calculated coverage (reads) per gene in each bin from the same mapping described in

mapping section above. Coverage for each gene in each sample was calculated by taking

the average coverage calculated by bedtools for each basepair (Quinlan and Hall, 2010).

The coverage values for each gene were then normalized by the number of reads per million

reads in each metagenome to estimate abundance (Reads per Million, RPM) of each gene.

As a proxy for the abundance of each population, we calculated the average abundance of

all the representative genes in an HMS. To find within sequence-discrete population gene

frequency, we normalized each gene abundance value by the average gene abundance for

that HMS in that sample. Thus, these values can be interpreted as relatively the portion of

cells in the population which had that gene in their genome.

Calling SNVs in HMSs Representative Genes

Due to its lower sensitivity to minimum coverage, VarScan was chosen for calling single

nucleotide variants (SNVs) in the reads mapped to the genomes (Zojer et al., 2017; Koboldt

et al., 2012). First samtools was run to generate a mpileup file (Li et al., 2009a; Li, 2011).

VarScan was run for each timepoint and assembly with the default settings. SNVs were

then parsed into their respective MAGs. Outlier SNVs were removed if their average

summed coverage across all samples was more than 3 standard deviations away from the

average. Additionally, SNVs were only considered if they had a coverage value > 8 and a

p-value < 0.05 in at least 2 of the 45 timepoints. The resulting number of SNVs for each

HMS can be found in Table 3.4.
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Similar to Bendall et al. (2016), using custom scripts we calculated the fraction of SNVs

dominated by a single allele, here called SNV homogeneity, for each timepoint. For this

analysis we considered SNVs to be dominated by a single allele if they were > 90% one

variant. SNV homogeneity was only calculated for samples where the average coverage for

the HMS was > 10.

Figure Construction and Computational Analysis

Unless otherwise stated all analysis was done using a combination of custom bash, python,

R scripts (RStudio Team, 2016; R Core Team, 2018; Python Core Team, 2018; Free Software

Foundation, 2018). Figures were all constructed using R and Rstudio (RStudio Team, 2016;

R Core Team, 2018). The following libraries and modules were used for python analysis:

pandas, ipython, glob, argparse, numpy, Bio.

The following libraries were used for R analysis and figure creation: ggplot2, dplyr, tidyr,

reshape2, cowplot, RColorBrewer, forcats, magrittr, moments, segmented, grid, UpSetR,

plotly, heatmaply, dendextend.

3.4 Results

Overview of MAGs and their High Matching Sets (HMSs)

In order to track population abundance and gene dynamics for members of the Polynucle-

obacter genus through our Trout Bog time-series, we assembled and binned 6 high matching

sets (HMSs) containing 76 medium to high quality MAGs (Supplementary Tables A.1, A.2).

These HMSs are distinct from one another and would be defined as different species using <

95% nucleotide identity across their shared genomic content as a cutoff (Konstantinidis and

Tiedje, 2005; Kim et al., 2014; Varghese et al., 2015). The number of MAGs in an HMS ranged

from 1 - 34 and more abundant HMSs tended to have more MAGs. The MAGs ranged from

1.18 - 2.57 MB in size and had from 73 to 312 contigs with estimated completeness of 55.6%
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Figure 3.1: HMS statistics. Top: the number of MAGs which clustered into that HMS based on gANI/AF
similarity. Middle: the number of non-redundant genes for that HMS after clustering the homologous
genes and choosing a representative. Bottom: the average abundance of each HMS (average coverage
of genes in HMS normalized by the number of reads in each metagenome).

- 98.8% and redundancy of 0% - 7.77%, as calculated by checkM (Parks et al., 2015). The

genes from MAGs in the same HMS were then clustered to find the non-redundant set of

representative genes (Figure 3.1). The pairwise genome-wide average nucleotide identities

(gANI) between the HMSs ranged from 74.87 - 78.57 with alignment fractions (AF) ranging

from 0.31 - 0.70 3.4.

Of the recovered Polynucleobacter, HMS19 was the most abundant throughout the

metagenomic time series (Figure 3.2). HMS23 had relatively lower abundance in most of

2007 and 2009. It then bloomed to a much higher abundance in 2008, perhaps starting in
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GENOME1 GENOME2 ANI(1->2) ANI(2->1) AF(1->2) AF(2->1)
HMS10 HMS19 76.92 76.95 0.72 0.31
HMS18 HMS10 76.05 75.99 0.33 0.53
HMS18 HMS19 75.74 75.80 0.71 0.49
HMS18 HMS23 75.47 75.45 0.71 0.52
HMS18 HMS28 75.10 75.10 0.70 0.37
HMS18 HMS3 74.90 74.87 0.69 0.50
HMS23 HMS10 78.57 78.53 0.35 0.76
HMS23 HMS19 77.49 77.50 0.73 0.69
HMS23 HMS28 76.62 76.61 0.65 0.47
HMS23 HMS3 76.38 76.37 0.65 0.64
HMS28 HMS10 76.29 76.27 0.21 0.63
HMS28 HMS19 77.21 77.20 0.47 0.63
HMS28 HMS3 76.76 76.74 0.50 0.70
HMS3 HMS10 75.79 75.76 0.29 0.64

Table 3.3: Genome-wide average nucleotide identity (gANI/ANI) and alignment fraction (AF) between
all HMSs

November 2007, which made it the second most abundant HMS over the whole time series.

This corresponded with a higher average abundance for all the recovered Polynucleobacter

HMSs in 2008. HMS18, HMS28, HMS3, and HMS10 were generally much less abundant

than HMS19 over the whole time series. HMS3 became somewhat more abundant in 2009,

making it the second most abundant HMS from that year.

A phylogenetic tree was constructed to understand how these HMSs were related to

each other and the known diversity of Polynucleobacter (Figure 3.3). The most abundant

HMS, HMS19, grouped very closely with 4 single-cell amplified genomes (SAGs) which

were also collected from Trout Bog hypolimnion and two MAGs from mixed cultures

(Garcia et al., 2018). One of the mixed culture MAGS was from the epilimnion of Trout Bog

and the other was from the similarly dystrophic Lake Grosse Fuchskuhle (Brandenburg,

Germany). The 4 SAGs collected from Trout Bog’s hypolimnion each had an average

nucleotide identity of ~98% with an alignment fraction (AF) of > 0.79 to HMS19 (Varghese

et al., 2015). The most deeply branching HMS was HMS18, which also grouped with two

mixed culture MAGs from Trout Bog, with the closest one having 97.8 gANI (0.82 AF) to
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Figure 3.2: HMS Abundance Through Time. Abundance of each HMS in Trout Bog throughout the
metagenomic time series. Area colored indicates the abundance for that HMS. Abundance was calculated
by normalizing the average coverage values across all genes in the HMS by the number of reads in each
metagenome.

HMS18. HMS28 grouped most closely with Polynucleobacter sphagniphilus MWH-Weng1-1

which was also isolated from another similar lake (Hahn et al., 2017). HMS28 would not be

considered part of the same species by most definitions since its gANI is only 76.9 (0.50 AF)

to MWH-Weng1-1. HMS3 grouped most closely with a SAG also taken from Trout Bog (99%

gANI, 0.86 AF). It also grouped with a isolate genome which was recently characterized as a

new species of PnecC, Polynucleobacter meluiroseus AP-Melu-1000-B4, though it shared only

76 gANI (0.67 AF) (Pitt et al., 2018). HMS10 grouped most closely with Polynucleobacter

campilacus MWH-Feld-100(78 gANI, 0.71 AF to HMS10), and basal to the clade which

contained most of the necessarius and asymbioticus genomes. HMS23 would be considered

part of the Polynucleobacter necessarius asymbioticus species under many definitions since it

had ~97 gANI(~0.86 AF) to both QLW-P1DATA-2 and MWH-Tro-8-2-5GR (Hoetzinger and
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Figure 3.3: Phylogenetic tree of Polynucleobacter HMSs. Tree was constructed using the concatenated
alignment of 31 amino acid sequences (mostly ribosomal proteins). Midpoint rooted tree showing the six
Polynucleobacter HMSs in the context of known Polynucleobacter reference genomes and other genomes
from the Burkholderiales order. HMSs are colored in orange.

Hahn, 2017; Hoetzinger et al., 2017).

By clustering the genes predicted for each HMS together, we found many homologous

genes shared among the six Polynucleobacter HMSs (Figure 3.4). Between 66.5 - 90.1% genes

found in each HMS had a homolog in at least one other HMS. There were 526 gene clusters
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found in every HMS. Of those, 427 were single copy in each HMS and were subsequently

termed the Polynucleobacter Single Copy Core Genes (Pnec-SCCGs). The number of shared

gene clusters may be underestimated due to incompleteness in the MAGs comprising the

HMSs. Each HMS also had unique genes recovered only in that HMS. HMS28 had the

largest number of genes recovered and also had the most unique genes. However, the

number unique genes for each HMS did not always reflect the total number of genes, as

HMS3 had slightly more singletons than HMS19. It is possible that some genes identified

as unique are in fact shared among the HMSs due to incomplete genome reconstruction,

however the unrecovered regions of the genome may also harbor other unique genes.

Gene Content Differences between SAGs and HMS19 Representative

Genes

The SAGs which are in the same sequence-discrete population as HMS19 provide an

opportunity to learn more about the limitations and strengths of SAGs and MAGs. The

relationships between SAGs and MAGs have been investigated in several lineages of bacteria

in the Baltic Sea (Alneberg et al., 2018)., however with our dataset we can use the time

series aspect to investigate if the genes missing in the MAGs have lower gene frequencies.

After clustering the HMS19 and SAG genes together based on homology, 83.1% of the gene

clusters identified had a gene representative from HMS19 (Supplementary Figures A.1 and

A.3). The SAG genes missing from HMS19 had significantly lower coverage than those

which were found in the MAG (Figure 3.5). SAGs MCM14TBH076, MCM14TBH017, and

MCM14TBH079 had large differences (p < 0.001 for all) in the average coverages of the

genes with homologs in HMS19 vs those without. SAG MCM14TBH064 had the smallest

but still significant difference in average coverages between the two groups of genes (p =

0.008). There were three genes found in SAGs MCM14TBH076 and MCM14TBH017 which

had much higher coverage than the rest, greater than 350 reads. These genes were all found

to be transposases, which may account for their high coverage.
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Figure 3.4: Grouped Histogram of Homologous Genes Between HMSs. Homologous genes were clustered
by their normalized bit scores resulting from a pairwise comparison of all amino acid sequences with
blastp(Camacho et al., 2009). Only homologous genes with query coverage >70 and amino acid identity
>60 were clustered. The set size histogram on the bottom left shows the number of genes in each HMS.
The upper histogram shows the number of genes in the group highlighted by the black dots on the x
axis. Groups are ordered by their size and only the largest 40 groups are shown.
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Figure 3.5: Average Coverages for Genes in HMS19 and SAGs. Violin plots (i.e. distributions) of average
metagenomic read coverage for the genes in each SAG across the time series, split into the genes which
were assembled in HMS19 and those which were not. Two transposases with very high coverage (>350
reads) were removed from MCM14TBH076 and 1 was removed from MCM14TBH017. Y-axis labels are
displayed on the right of each plot.

Population Diversity Analysis

To understand how these changes in abundance may affect the diversity within each

population we identified the single nucleotide variants (SNVs) in the reads mapped to each

reference HMS. Low frequency SNVs are less likely to be detected by our method because

we only included SNVs with an abundance higher than 8 in at least 2 time points. As

such, we likely detect rarer SNVs only in the most abundant population, HMS19. HMS18

and HMS19 had an order of magnitude more SNVs detected than the other four HMSs
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hms Total SNVs Synonymous Nonsynonymous Percent Synonymous
HMS10 2696 2099 597 77.9
HMS18 23392 19733 3659 84.4
HMS19 37508 30535 6973 81.4
HMS23 6362 5304 1058 83.4
HMS28 4060 3087 973 76.0
HMS3 6769 5132 1637 75.8

Table 3.4: SNV counts for each HMS

(Table 3.4, Figure 3.6). The number of SNVs detected in HMS18, which had relatively low

abundance, suggests that HMS18 may truly have a higher SNV density than the other

low abundance populations. The percentage of synonymous SNVs, those which don’t

result in an amino acid change, in each population was relatively consistent, ranging from

75.8 - 84.4% (Table 3.4). While all of the HMSs SNVs were mostly heterogenous, i.e. not

dominated by a single allele, HMS19 had the most homogeneous SNVs (Figures 3.7 and

A.2). HMS19 had a single timepoint with 26.8% SNV homogeneity and an average of 9.80%

SNV homogeneity across all timepoints.

The abundance of HMS19 had a significant linear relationship with homogeneity (R2 =

0.437, p < 0.001) (Figure 3.8). While not a clonal sweep since the values always remain

below 30%, this indicated that a subset of strains are blooming when there is a rise in

abundance.

Gene Frequency Analysis

For each HMS we performed a gene frequency analysis to characterize the core and flexible

genome. We investigated the relationship between gene frequencies for the whole HMS

to the genes we had determined to be Pnec-SCCGs for each sample and found that the

SCCG average frequency followed the average gene frequency closely though the timeseries

(Supplementary Figures A.4, A.5, A.6, A.7, A.8, A.9). Based on this relationship, we used

the 95% confidence interval (CI) of the Pnec-SCCG average frequency to determine gene
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Figure 3.6: HMS SNV statistics. Top: the number of SNVs in the representative genes for each HMS.
Bottom: the number of SNVs per basepair for each HMS. Y-axis labels are displayed on the right of
each plot.

frequency groups (Figure 3.9 and Supplementary Figures A.10, A.11, A.12, A.13, A.14). We

considered genes within this interval to be ‘high’ frequency since their frequency suggests

they are typically present in every cell in the sequence-discrete population. Genes with

average frequencies above the 95% CI were labeled as ‘multicopy’ since their gene frequency

suggests that they may be present in more than one copy in each cell. Similarly, genes

with below the 95% CI were labeled as ‘low’ frequency genes. We expected that it may

be difficult to recover the low frequency genes from the low coverage genomes. While

our frequency groups label ‘low’ frequency genes for each HMS, only the average gene

frequency histograms for HMS19 and HMS23 have a secondary peak in the low frequency

range (Figure 3.9 and Supplementary Figures A.10, A.11, A.12, 3.9, A.13, A.14).

To verify these genes frequency groups, we clustered the genes based on their gene

frequencies throughout the time series (Figure 3.10 and Supplementary Figures A.10, A.11,
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Figure 3.7: HMS SNV Homogeneity. Distributions of each HMS’s SNV homogeneity across all samples.
A SNV is considered homogeneous when it is >90% one variant. SNV homogeneity is defined as the
percentage of homogeneous SNVs in an HMS. Homogeneity was not calculated for samples where average
gene coverage for the HMS was below 10.

A.12, A.13, A.14). The genes in each HMS did typically group with other genes from

their same frequency group, especially in the more abundant populations (HMS19 and

HMS23). When clustering was done on each sample based on its gene frequency pattern,

typically samples in the same year grouped together and 2007 and 2008 grouped together.

These groups differ from the abundance patterns for all Polynucleobacter HMSs, where all

populations were more abundant in 2008 and less abundant in 2007 and 2009.

Relationship between Gene Frequency and Selection Signatures (SNV Density and

Non-Synonymous Percentage)

We hypothesized that there might be a relationship between gene frequency and selection

which might be observed by differing the SNV density. We examined the relationship be-
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Figure 3.8: Abundance verses SNV Homogeneity. Each point represents the abundance and SNV
homogeneity for HMS19 at a single time point. A SNV is considered homogeneous when it is >90% one
variant. SNV homogeneity is defined as the percentage of homogeneous SNVs in an HMS. Grey shading
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Figure 3.9: HMS19 Average Gene Frequency Histogram. Average gene frequency for each gene in
HMS19. PnecSCCGs are in blue. Black lines represent the 95% confidence interval for the Pnec_SCCGs
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Figure 3.10: Gene Frequencies for HMS19 Through Time. Color of each square for the sample dates
represents the gene frequency for that sample. Dendrograms were constructed by clustering Euclidean
distance between genes and sample patterns. Freq_group column shows the frequency group determined
by average coverage through the time series, dark green for multicopy, blue for high, and light green
for low frequency. Pnec-SCCGs are denoted in red in the PnecSCCG column. Click here for interactive
version of the plot.

tween the SNV density and the gene frequency for the more abundant populations (HMS19

and HMS23). We choose these two populations since their higher abundance makes SNV

and low frequency gene detection more sensitive. In both, we found a significant nonlinear

relationship with a quadratic term, where the ‘high’ frequency genes have higher SNV

densities than the ‘low’ or ‘multicopy’ genes. The relationship was much stronger for

HMS19 (R2 = 0.357, p < 0.001) than for HMS23 (R2 = 0.00893, p < 0.001) (Figures 3.11 and

3.12).

We also hypothesized that high frequency genes would be under greater purifying/neg-

ative selection. We found that most genes in HMS19 had a percentage of non-synonymous

SNVs, which suggests purifying selection (Figure 3.13). There was a slight linear trend

indicating that low frequency genes had a slightly higher chance of being under directional

selection.

http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS19.html
http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS19.html
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Figure 3.11: HMS19 SNVs per bp V Gene Frequency. There is a nonlinear relationship with a significant
quadratic term between SNVs per basepair and average gene frequency, fit line shown in blue (R2 =
0.357, p < 0.001). SNVs per basepair is low for genes with both high and low gene frequency. The blue
line shows the linear relationship and the grey shaded area indicates the 95% confidence interval of the
model

3.5 Discussion

From environmental samples, we can identify sequence-discrete populations where many

cells share high identity due to their shared ancestry (Konstantinidis and DeLong, 2008;

Caro-Quintero et al., 2011; Caro-Quintero and Konstantinidis, 2012; Bendall et al., 2016).

Using metagenomics, we build upon the idea of the ‘pangenome’, which represents the

full set of genes, both core and accessory, for a taxon, and extend it to examining the gene

relationships within these populations (Delmont and Eren, 2018). In metagenomic analysis,

individual assemblies and binning are often done on more than one metagenome. Then

the resulting genome bins which are considered the ‘same’, usually based on sharing >95%

gANI, are de-replicated and one genome is chosen to represent the population (Olm et al.,
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Figure 3.12: HMS23 SNVs per bp V Gene Frequency. There is a nonlinear relationship with a slight but
significant quadratic term between SNVs per basepair and average gene frequency, fit line shown in blue
(R2 = 0.00893, p < 0.001). The number of SNVs per basepair is low for genes with both high and low
gene frequency. The blue line shows the nonlinear relationship and the grey shaded area indicates the
95% confidence interval of the model.

2017; Sieber et al., 2018). To maximize our detection of accessory, or flexible, genes for

a given population, we grouped high matching sets (HMSs) of metagenome-assembled

genomes (MAGs) and unified their genes into a representative gene set. We included

genes from all medium to high quality MAGs in an HMS and clustered all the genes into

a non-redundant representative set of genes for each HMS. It is unsurprising that the

number of MAGs recovered for each HMS is related to average abundance across the time

series since more abundant populations will have a greater depth of coverage and are

more likely to assemble (Figure 3.1). Once unified, we found a similar number of genes

among most of the HMSs despite the greater numbers of MAGs recovered from the more

abundant populations. However, the two HMSs with the smallest number of representative

genes (HMS10, HMS18) had less than 5 MAGs representing them and are less complete
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Figure 3.13: HMS19 Non-synonymous SNV fraction V Gene Frequency. There is a slight but significant
linear relationship between the fraction of non-synonymous to and average gene frequency within HMS19
(R2 = 0.0500, p < 0.001).

representations of their respective populations. With the exception of HMS10 and HMS18,

the other HMSs recovered had a similar number of genes to known Polynucleobacter isolate

genomes (Hoetzinger et al., 2017).

Polynucleobacter is one of the most studied freshwater microbes due to considerable

genomic analysis of isolates from central Europe by Hahn and colleagues (Hahn, 2003;

Wu and Hahn, 2006a,b; Jezberová et al., 2010; Hoetzinger and Hahn, 2017; Hoetzinger

et al., 2017). Based on 16S rRNA gene analysis, we know that at least some species of

Polynucleobacter are cosmopolitan (Zwart et al., 2002; Newton et al., 2011) and that Polynu-

cleobacter are among the most highly abundant and persistent populations in bogs (Linz

et al., 2017). With our time series we can track changes in the abundance and diversity of

each population and observe the genomic changes of many community members. The

observed Polynucleobacter populations seem to be relatively persistent members of the
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community as each population is usually detected at some level throughout our metage-

nomic time-series (Figure 3.2), consistent with the findings of Linz et al. (2017). However,

there was differential abundance between the populations, with HMS19 being the most

abundant throughout the time series and had an average depth of coverage of ~65 across

the 45 timepoints (Figure 3.2). The patterns of abundance through time have similar trends

overall yet different magnitudes (Figure 3.2). This is curious due to the genetic separation

(Table 3.4) of each of these populations. It may suggest that the overlapping dimensions of

their niches are the limiting factors in their growth, but their non-overlapping niche space

maintains the multiple populations. Interestingly, all of the populations are relatively more

abundant in 2008 than in 2007 and 2009. The increase in abundance for all HMSs indicates

an environmental or community shift which favored all the recovered Polynucleobacter

populations in 2008.

The group of coexisting HMSs in this study are distributed across the known Polynucle-

obacter species included in our phylogenetic analysis (Figure 3.3). HMS19 groups closely

with 4 SAGs, also collected from the hypolimnion of Trout Bog, which would be considered

part of the same HMS if they were MAGs and would be considered part of the same species

base on gANI(Konstantinidis and Tiedje, 2005; Kim et al., 2014; Varghese et al., 2015). Since

this population is the most abundant of the ones recovered in this study, it is unsurprising

that many of the SAGs sequenced from the same environment come from this group. After

clustering the genes from these SAGs with those from HMS19, we found that only 17.2% of

the total gene clusters were found in the SAGs but not in HMS19 (Figure A.1 and Supple-

mentary Figure A.3). This suggests that the HMS19 is a better representative of the genes

in this population than the SAGs but is still missing some gene content. Genes which were

assembled in the SAGs but missing in the HMS may be caused by a variety of circumstances.

We found that these missing genes had lower average coverage than the genes in the HMS19

(Figure 3.5). There were three genes with much higher average coverage (> 300) which

were not assembled in the MAG (not shown in Figure 3.5). These genes are annotated as
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transposases, which are mobile genetic elements and often distributed through a wide

range of Polynucleobacter genomes which may account for their higher coverage. We would

not expect these genes in MAGs since their mobility and presence in multipule populations

would make their abundance patterns difficult to bin.

We also looked into if there was a threshold for a single sample which allowed the

genes in HMS19 which were lower coverage to assemble but found no such threshold (data

not shown). Other possible explanations, not interrogated here and which require further

study, are that these genes missing from HMS19 could have higher strain heterogeneity or

different tetranucleotide frequency due to relatively recent horizontal gene transfer into

the population. Alternatively, these genes could also be explained by contamination, a

common problem for SAGs (Alneberg et al., 2018).

In previous work, we saw that sequence-discrete populations had changes in their

SNV frequencies through time. Unlike the co-existing Chlorobium population reported

in Bendall et al. (2016), the Polynucleobacter populations in this study all had relatively

low homogeneity (< .20) throughout the time-series (Figure 3.7). High SNV homogeneity

values indicates that due to selection or genetic drift one or several strains dominated

the population. When we broke down these values across time, the HMSs had different

trends across years (Figure A.2). HMS19 has variable SNV homogeneity across time with

a period of surprisingly low values in the latter half of 2007 indicating a possible rise in

the strain diversity during that time. However, the homogeneity of HMS19 rose again in

2008 and remained highly variable. To further study the effect of abundance on SNV, we

plotted the abundance of each HMS against SNV homogeneity across time (Figure 3.8).

Interestingly the most abundant population, HMS19 has a significant linear relationship

with SNV heterogeneity (R2 = 0.437, p < 0.001). This seems unlikely to be a clonal expansion

of a single strain since the heterogeneity value is still relatively low but does suggest that

perhaps a few strains within the population bloom together. Future work should be done

to compare the homogeneity of populations from the Polynucleobacter genus to other genera
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in Trout Bog to see if this is a common trend among freshwater bacterial populations or

corresponds to some aspect of their lifestyle. This would require repeating these analyses

using many more MAGs and SAGs and initial comparisons to the other MAGs in Bendall

et al. (2016) suggests that the low levels of SNV homogeneity in these Polynucleobacter

populations are rather typical.

To identify the ‘metapangenome’ for each Polynucleobacter population, we first looked

at the distribution of gene frequencies within each population. For all HMSs, we saw

relatively normal gene frequency distribution with a peak at around 1 indicating those

genes were present approximately once in every cell (Figure 3.9 and Supplementary Figures

A.10, A.11, A.12, A.13, A.14). For the more abundant populations (HMS19 and HMS23) we

also saw a secondary peak below 1 of lower frequency genes. The lack of this secondary

peak in low abundance populations is likely due to limited recovery of these genes and

limited detection in the metagenomic reads. We noted that the Pnec-SCCGs also had a

relatively normal distribution with peak around 1 but no secondary peak and their average

frequency followed the average gene frequency for the whole population throughout the

time series (Supplementary Figures A.4, A.5, A.6, A.7, A.8, A.9). Based on this relationship,

we defined frequency groups (‘low’, ‘high’, and ‘multicopy’) using the 95% confidence

interval of the Pnec-SCCG frequencies. To verify that these gene frequency groups based on

average gene frequency, held true throughout the time series, we clustered the genes based

on their frequencies through time. For most and especially the more abundant populations,

genes from the gene frequency groups clustered together (Figure 3.10 and Supplementary

Figures A.10, A.11, A.12, A.13, A.14). Unexpectedly, the clustering of metagenomic samples

based on their gene frequency distribution within each population showed that 2007 and

2008 typically grouped together and separately from 2009. This result is surprising given

the difference in abundance observed in all populations in 2008 and indicates that the

2009 drop in abundance impacted the gene frequency relationships within the population.

Taken together, the categorization based on gene frequency and clustering can be used to
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group the metapangenome for a population into the core (multicopy, high) and accessory

(low) for populations with sufficient coverage. This method provides a foundation for

future functional analysis and can be applied to other populations in the time series as

well.

As shown in a model proposed in Cordero and Polz (2014), we expected that these

different gene frequencies may have different ecological interactions and thus evolutionary

consequences. To probe these differences, we looked at the relationships between gene

frequency and SNV density for HMS19 and HMS23. For HMS19 we found that the gene

frequency had a nonlinear trend with a significant quadratic term where the density of

SNVs tended to be higher for genes with frequencies around 1 (Figure 3.11). HMS23

showed a similar but less extreme pattern. One possibility is that the lower density of SNVs

for the low frequency genes is due to difficulty detecting rare SNVs in low frequency genes.

However, the lower density of SNVs for the multicopy gene group is rather surprising. We

expected that multicopy genes might be in the process of gene duplication and thus have

higher levels of SNVs as they diverge. However, it is also possible that these genes are in

multicopy for increased gene expression and lower SNV density may instead indicate that

these genes are under very strong purifying selection. We also found that most of genes in

HMS19 had low non-synonymous percentages, indicating purifying selection (Figure 3.13).

The low frequency genes were slightly more likely to be under directional selection. Perhaps

this subset of genes is truly ‘flexible’ for the population, not under negative-frequency

dependent selection, and thus new mutations are less likely to be deleterious.

3.6 Conclusions

The populations of Polynucleobacter tracked in this work are all relatively persistent though

one population, HMS19, is much more abundant than the others. The genes which did not

assemble in HMS19 but were recovered in the SAGs are mostly explained by lower coverage.
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All of the Polynucleobacter populations have relatively low strain homogeneity, due to either

a large number of co-existing strains or high levels of recombination within the population.

However, the relationship observed between abundance and SNV homogeneity in the most

abundant population may be due to a bloom of a subset of strains. Average gene frequency

over time allows for identification of frequency groups (low, high, and multicopy) which

are mostly maintained through the time series. The single copy core genes shared between

all the populations generally follow a normal distribution among the high frequency gene

group. Genes with high frequency have a higher SNV density than the low and multicopy

genes. Most genes in the population seem to be under purifying selection, although low

frequency genes have a slightly higher chance of being under directional selection.
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4 conclusions and future directions

4.1 Conclusions

The work in this thesis begins the process of tracking the population dynamics of freshwater

microbes through the lens of genomics. Using a metagenomic timeseries, we looked for

changes in diversity through time in a number of different common freshwater microbes.

Those timeseries in conjunction with metagenome-assembled genomes (MAGs) revealed

a genome-wide sweep occurring in a natural population and showed evidence of a prior

gene sweeps in other populations. Observing both types of sweeps suggests that these

different populations are controlled by different evolutionary forces.

We also observed that at least one common freshwater population, LD12 shows an un-

usual population structure using single-cell amplified genomes (SAGs) as references. The

two populations which where identified had a less stark coverage discontinuity separating

them and had highly correlated relative abundance patterns through the timeseries. It

seems like these two populations may be in the early stages of differentiation from one

another. We also found that the populations of acI seem to have different seasonal abun-

dance patterns and are likely ecologically distinct. While both acI and LD12 are common,

abundant, and streamlined bacteria, they seem to have different underlying population

structure and differentiation.

In our final chapter, we looked deeply at six different populations from the same genus.

We found that one of the six was by far the most abundant through out the time series.

All the populations investigated had somewhat low SNV homogeneity values through

the time series. However the abundance of the dominant population had a significant

linear relationship with SNV homogeneity, which suggests a subset of the strains within

the population are responsible for a given increase in abundance. By comparing MAGs

and SAGs from the same population, we found that genes from the population that are

missing from MAGs are often lower coverage, rarer genes. Finally, we characterized the
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core and accessory genome of the populations and found that high frequency genes had

higher SNV density than low frequency or multicopy genes.

Overall this work provides a beginning and framework for looking at population dy-

namics using metagenomic timeseries.

4.2 Future Directions

Although enough time always remains elusive, I have a number of ideas about how I

would follow up on the work presented in this thesis. To follow up on the results from

chapter one, I would design qPCR primers for two genes or sets of genes: one which had no

change in abundance through time and one which rose in abundance with as the ‘winning’

strain swept. This would allow us to easily quantify the portion of the Chlorobium-111

population which remains the the ‘winning’ strain from the sweep through the rest of the

time series and in current samples. There likely remains some level of diversity below our

detection limit, and in fact, in 2012 we did see a slight increase in diversity from the level

in 2009. Since Chlorobium has been successfully cultured in other labs, we could isolate and

cultivate Chlorobium-111 allowing us to perform biochemical tests on the resulting strain. If

the resulting strain could be genetically manipulated, we could recapitulate some of the

lost mutations and compare how these strains compete in the lab. With an isolated set of

Chlorobium strains, we could isolate phage and begin to understand how viral predation

impacts this homogenous population.

In chapter two, the LD12 populations tracked in this chapter showed different popu-

lation structures than the other populations tracked. This may be indicative of the early

stages of differentiation between the populations. LD12 is already an unusual taxonomic

group as there are no closely related populations of freshwater bacteria at roughly the

family level Newton et al. (2011). This is unusual and might be due to LD12’s transition

into freshwater causing it to loose access to the wide accessory gene pool shared by its
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marine sister clade SAR11 (Eiler et al., 2016). To investigate this further a biogeograph-

ical study across a salt water gradient may be needed. When LD12 was isolated, it was

shown that some strains of LD12 could grow in brackish water (Henson et al., 2018a,b).

Since LD12 has been isolated since the publication of this chapter, we could also use these

techniques to isolate the populations found in this study. This would allow us to perform

more comparative genomics analysis on their genomes, compete populations against one

another, and perform biochemical tests which may help elucidate the differences between

these two diverging groups.

In chapter three, we investigated the changes in Polynucleobacter populations recovered

from Trout Bog. To follow up, I would do an analysis of the environmental and phytoplank-

ton community and how that might affect the Polynucleobacter populations. I would also

follow up by further investigating the differences between the HMS19 genes and the genes

found in the 4 most closely related SAGs. So far, it has been rare for us to find more than one

SAG which belongs to the same sequence discrete population. These new Polynucleobacter

SAGs provide an example of many from the same population. Others have compared SAGs

and MAGs from the same environments (Alneberg et al., 2018). However we have the

added advantage of being able to compare across the metagenomic time series.

While I did find that coverage explains much of why the SAG genes are missing from the

MAG, I would further investigate why the SAG genes with higher coverage didn’t assemble.

There are several factors I think might yet be possible, higher strain heterogeneity in

those genes/regions, different tetranucleotide frequencies (TNF) due to recent horizontal

gene transfer, or contamination. I would continue my analysis of this by calculating the

nucleotide identities for reads mapped to this set of genes and test if they are lower than

the rest of the genes from the HMS, as I did with coverage in chapter 3. In parallel, I could

compare TNF between the genes which did assemble in the MAGS and those which only

assembled in the SAGs. Contamination is a bit more difficult. A phylogenetic analysis can

be done for each gene to find its taxonomy but it is likely that many of these genes are
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unique and not have a related best hit. While some leniency in the level of classification can

be helpful, it is not always possible to be confident in labeling these genes as contamination.

Another project building upon this work would be an in-depth analysis of the functional

predictions of the gene frequency groups characterized in this study for each of the Polynu-

cleobacter populations. From that analysis we might begin to understand the metabolic

functions or ecological interactions which allow these groups to coexist. The analysis set

forth in chapter three, could also be applied to within other genera or taxonomic groups of

microbes from the two lakes studied in this thesis. Using the framework provided in this

study, we can begin to characterize the metapangenome for a range of phylogenetically

diverse populations.

Our understanding of all the bacterial populations studied in this thesis could benefit

from recent computational advances in deconvolution of strains in metagenomes Quince

et al. (2017). The prediction of strains within each of the sequence-discrete populations and

tracking of the genotypes which make up the population may provide additional insight

into the intra-population dynamics. The four SAGs and the HMS from the most abundant

Polynucleobacter population reported in chapter three provides a good opportunity for

validation of the genetic linkages predicted by strain deconvolution.
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Bin Name HMS # of contigs Size (bp) GC content N50 L50

3300020680.bin.4 HMS19 189 1609823 0.466 48 11043

3300020681.bin.5 HMS19 243 1370058 0.465 67 6106

3300020682.bin.6 HMS19 169 1475039 0.467 43 11251

3300020684.bin.8 HMS19 218 1598049 0.466 57 9381

3300020687.bin.3 HMS19 210 1627550 0.465 52 9149

3300020688.bin.7 HMS19 217 1636841 0.465 53 9451

3300020690.bin.3 HMS19 162 1815124 0.465 35 15852

3300020691.bin.11 HMS19 200 1682871 0.465 40 11885

3300020692.bin.4 HMS19 134 1866841 0.464 31 19768

3300020697.bin.9 HMS19 167 1583648 0.466 33 14059

3300020699.bin.11 HMS19 158 1823723 0.465 34 16171

3300020700.bin.2 HMS19 134 1837328 0.465 28 19170

3300020701.bin.14 HMS19 214 1684618 0.465 51 10554

3300020703.bin.10 HMS19 123 1879086 0.465 26 22815

3300020704.bin.14 HMS19 255 1498954 0.464 71 6686

3300020706.bin.5 HMS19 227 1435263 0.466 64 7091

3300020707.bin.9 HMS19 208 1732714 0.465 50 11304

3300020708.bin.4 HMS19 141 1857435 0.464 31 20957

3300020709.bin.11 HMS19 178 1638127 0.464 38 12943

3300020711.bin.15 HMS19 160 1470393 0.468 41 12599

3300020713.bin.8 HMS19 208 1706462 0.465 51 10513

3300020715.bin.12 HMS19 278 1539919 0.464 80 6462

3300020721.bin.8 HMS19 155 1646454 0.466 30 14876

3300020722.bin.7 HMS19 197 1610479 0.466 47 10616

3300020723.bin.27 HMS19 256 1457840 0.464 66 6441
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Bin Name HMS # of contigs Size (bp) GC content N50 L50

3300020724.bin.5 HMS19 204 1643626 0.465 47 10211

3300020726.bin.21 HMS19 188 1927319 0.464 46 13214

3300020729.bin.21 HMS19 253 1183692 0.463 84 4920

3300020730.bin.6 HMS19 239 1370761 0.466 68 6446

3300020734.bin.1 HMS19 131 1743177 0.466 30 19116

3300020735.bin.10 HMS19 226 1820378 0.463 57 10933

3300021113.bin.5 HMS19 145 1892224 0.464 33 17715

3300021116.bin.1 HMS19 146 1706037 0.465 32 17556

3300020679.bin.4 HMS23 73 1786518 0.457 11 45452

3300020682.bin.3 HMS23 110 1725738 0.457 14 26529

3300020683.bin.2 HMS23 108 1732723 0.457 16 30877

3300020687.bin.5 HMS23 119 1818311 0.456 11 43955

3300020688.bin.11 HMS23 113 1756877 0.456 12 33749

3300020691.bin.5 HMS23 101 1788213 0.457 10 45070

3300020697.bin.12 HMS23 87 1748815 0.458 10 39925

3300020698.bin.6 HMS23 119 1714411 0.457 16 26128

3300020701.bin.11 HMS23 96 1852899 0.455 9 68057

3300020707.bin.6 HMS23 107 1851432 0.457 10 39574

3300020709.bin.10 HMS23 99 1895790 0.453 12 44067

3300020721.bin.2 HMS23 104 1784579 0.456 11 32619

3300020722.bin.6 HMS23 104 1885812 0.455 10 52264

3300020724.bin.7 HMS23 104 1915987 0.454 11 52458

3300020734.bin.20 HMS23 77 1693699 0.457 9 52135

3300021116.bin.5 HMS23 84 1865246 0.457 14 44093

3300020682.bin.1 HMS18 196 1285252 0.47 51 7578
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Bin Name HMS # of contigs Size (bp) GC content N50 L50

3300020683.bin.6 HMS18 200 1310003 0.471 53 7305

3300020698.bin.10 HMS18 191 1296402 0.472 50 8518

3300020711.bin.5 HMS18 178 1301155 0.47 44 9267

3300020683.bin.10 HMS28 125 2300397 0.444 22 31216

3300020687.bin.9 HMS28 271 2288631 0.442 57 11557

3300020691.bin.10 HMS28 245 2232834 0.442 49 12495

3300020697.bin.11 HMS28 166 2570966 0.442 20 28686

3300020698.bin.11 HMS28 85 2409168 0.443 14 63413

3300020701.bin.4 HMS28 210 2424786 0.443 36 19558

3300020707.bin.4 HMS28 312 2117314 0.441 80 7833

3300020709.bin.12 HMS28 198 2342758 0.443 33 18908

3300020711.bin.13 HMS28 273 2334059 0.442 64 10929

3300020721.bin.13 HMS28 139 2393274 0.443 16 36589

3300020722.bin.5 HMS28 273 2292746 0.441 64 10468

3300020724.bin.8 HMS28 258 2371896 0.443 53 12838

3300020734.bin.14 HMS28 74 2476275 0.441 6 102299

3300020707.bin.3 HMS10 280 1304046 0.451 89 4918

Table A.1: Medium quality MAG assembly stats

Bin Name HMS CheckM Taxon
Completeness

(checkM)

Redundancy

(checkM)

3300020704.bin.21 HMS3 o__Burkholderiales 71.52 2.44

3300020715.bin.9 HMS3 o__Burkholderiales 56.72 0.72

3300020717.bin.5 HMS3 o__Burkholderiales 71.05 0.96

3300020719.bin.2 HMS3 o__Burkholderiales 89.01 0.23
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Bin Name HMS CheckM Taxon
Completeness

(checkM)

Redundancy

(checkM)

3300020720.bin.1 HMS3 o__Burkholderiales 85.59 0.55

3300020723.bin.5 HMS3 o__Burkholderiales 75.59 2.06

3300020734.bin.15 HMS3 o__Burkholderiales 67.5 1.98

3300021135.bin.8 HMS3 o__Burkholderiales 93.21 1.03

3300020679.bin.1 HMS19 o__Burkholderiales 84.51 0.55

3300020680.bin.4 HMS19 o__Burkholderiales 82.87 0.29

3300020681.bin.5 HMS19 o__Burkholderiales 60.52 1.4

3300020682.bin.6 HMS19 k__Bacteria 71.9 0.86

3300020684.bin.8 HMS19 o__Burkholderiales 79.47 0.7

3300020687.bin.3 HMS19 k__Bacteria 75.86 1.72

3300020688.bin.7 HMS19 o__Burkholderiales 78.1 1.92

3300020690.bin.3 HMS19 o__Burkholderiales 88.12 1.03

3300020691.bin.11 HMS19 o__Burkholderiales 82.6 1.21

3300020692.bin.4 HMS19 o__Burkholderiales 91.85 1.5

3300020697.bin.9 HMS19 k__Bacteria 70.69 0

3300020699.bin.11 HMS19 o__Burkholderiales 90.51 0.96

3300020700.bin.2 HMS19 o__Burkholderiales 89.43 0.4

3300020701.bin.14 HMS19 o__Burkholderiales 84.73 0.45

3300020703.bin.10 HMS19 o__Burkholderiales 89.7 0.78

3300020704.bin.14 HMS19 k__Bacteria 68.28 1.72

3300020706.bin.5 HMS19 k__Bacteria 65.52 0

3300020707.bin.9 HMS19 k__Bacteria 77.59 0

3300020708.bin.4 HMS19 o__Burkholderiales 90.58 0.98

3300020709.bin.11 HMS19 o__Burkholderiales 78.03 1.85
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Bin Name HMS CheckM Taxon
Completeness

(checkM)

Redundancy

(checkM)

3300020711.bin.15 HMS19 k__Bacteria 77.07 2.59

3300020713.bin.8 HMS19 o__Burkholderiales 83.56 0.73

3300020715.bin.12 HMS19 o__Burkholderiales 71.16 3.11

3300020721.bin.8 HMS19 o__Burkholderiales 82.03 1.58

3300020722.bin.7 HMS19 o__Burkholderiales 82.75 2.3

3300020723.bin.27 HMS19 o__Burkholderiales 71.83 2.54

3300020724.bin.5 HMS19 k__Bacteria 78.62 3.45

3300020726.bin.21 HMS19 o__Burkholderiales 90.65 1.48

3300020729.bin.21 HMS19 o__Burkholderiales 55.64 1.15

3300020730.bin.6 HMS19 o__Burkholderiales 67.43 0.75

3300020734.bin.1 HMS19 k__Bacteria 82.76 1.72

3300020735.bin.10 HMS19 o__Burkholderiales 87.29 0.97

3300021113.bin.5 HMS19 o__Burkholderiales 91.02 1.13

3300021116.bin.1 HMS19 k__Bacteria 75.34 2.59

3300020679.bin.4 HMS23 o__Burkholderiales 92.86 1.65

3300020682.bin.3 HMS23 o__Burkholderiales 92.39 0.39

3300020683.bin.2 HMS23 o__Burkholderiales 91.43 0.75

3300020687.bin.5 HMS23 o__Burkholderiales 91.05 1.79

3300020688.bin.11 HMS23 o__Burkholderiales 88.17 1.64

3300020691.bin.5 HMS23 k__Bacteria 74.14 2.59

3300020697.bin.12 HMS23 o__Burkholderiales 87.52 2.43

3300020698.bin.6 HMS23 o__Burkholderiales 90.87 1.04

3300020701.bin.11 HMS23 o__Burkholderiales 90.52 1.4

3300020707.bin.6 HMS23 o__Burkholderiales 93.86 1.06
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Bin Name HMS CheckM Taxon
Completeness

(checkM)

Redundancy

(checkM)

3300020709.bin.10 HMS23 o__Burkholderiales 92.15 1.92

3300020721.bin.2 HMS23 o__Burkholderiales 88.8 2.21

3300020722.bin.6 HMS23 o__Burkholderiales 93 1.91

3300020724.bin.7 HMS23 o__Burkholderiales 95.66 2.93

3300020734.bin.20 HMS23 o__Burkholderiales 88.85 0

3300021116.bin.5 HMS23 o__Burkholderiales 96.69 2.08

3300020682.bin.1 HMS18 o__Burkholderiales 76.25 5.36

3300020683.bin.6 HMS18 o__Burkholderiales 78.13 3.55

3300020698.bin.10 HMS18 o__Burkholderiales 80.74 7.77

3300020711.bin.5 HMS18 o__Burkholderiales 78.53 3.7

3300020683.bin.10 HMS28 o__Burkholderiales 93.41 1.68

3300020687.bin.9 HMS28 o__Burkholderiales 89.54 2.92

3300020691.bin.10 HMS28 o__Burkholderiales 89.85 2.7

3300020697.bin.11 HMS28 o__Burkholderiales 93.78 5.69

3300020698.bin.11 HMS28 o__Burkholderiales 94.82 1.23

3300020701.bin.4 HMS28 o__Burkholderiales 91.56 6.12

3300020707.bin.4 HMS28 o__Burkholderiales 80.52 2.58

3300020709.bin.12 HMS28 o__Burkholderiales 90.39 3.13

3300020711.bin.13 HMS28 o__Burkholderiales 87.75 1.81

3300020721.bin.13 HMS28 o__Burkholderiales 96.78 3.52

3300020722.bin.5 HMS28 o__Burkholderiales 89.55 2.54

3300020724.bin.8 HMS28 o__Burkholderiales 89.02 3.84

3300020734.bin.14 HMS28 o__Burkholderiales 98.81 3.38

3300020707.bin.3 HMS10 o__Burkholderiales 62.55 5.88
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Bin Name HMS CheckM Taxon
Completeness

(checkM)

Redundancy

(checkM)

Table A.2: Medium quality MAG completeness stats
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Figure A.1: Grouped Histogram of Genes Shared Between HMS19 and Pnec SAGs. Genes were clustered
by using blastp (Camacho et al., 2009) on all pairwise comparisons of the amino acid sequences for each
predicted gene then the results were clustered with MCL (van Dongen, 2000; Enright et al., 2002). The
set size histogram on the bottom left shows the number of genes in each genome. The upper histogram
shows the number of genes in the group highlighted by the black dots on the x axis. Groups are ordered
by the number of genomes in the group.
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Figure A.2: HMS SNV Homogeneity Through Time. For each HMS the SNV homogeneity across the
samples. SNV homogeneity is the percentage of SNVs which are > 90% one variant. Homogeneity was
not calculated for samples where average gene coverage for the HMS was below 10.
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Figure A.3: Presence/Absence Map of Genes Shared Between HMS19 and Pnec SAGs. Genes were
clustered by using blastp (Camacho et al., 2009) on all pairwise comparisons of the amino acid sequences
for each predicted gene then the results were clustered with MCL (van Dongen, 2000; Enright et al.,
2002). Each column represents a gene cluster which is colored blue if present or red if absent in the
genome for that row. The clusters are ordered by HMS19 to highlight the group of genes found in the
SAGs but not in HMS19.
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Figure A.4: HMS3 Gene Frequency Histogram By Sample



104

2009−07−21 2009−07−27 2009−08−03 2009−08−11 2009−08−18

2009−06−15 2009−06−23 2009−06−29 2009−07−07 2009−07−13

2008−09−20 2008−10−04 2008−10−23 2009−05−29 2009−06−03

2008−08−05 2008−08−12 2008−08−19 2008−08−25 2008−09−09

2008−07−01 2008−07−08 2008−07−15 2008−07−22 2008−07−29

2007−11−05 2007−11−14 2008−05−22 2008−05−29 2008−06−13

2007−08−27 2007−09−10 2007−09−17 2007−10−01 2007−10−16

2007−07−12 2007−07−25 2007−07−31 2007−08−09 2007−08−20

2007−05−28 2007−06−07 2007−06−13 2007−06−27 2007−07−02

0.0 2.5 5.0 7.5 0 2 4 6 0 2 4 6 0 2 4 6 8 0 1 2 3 4

0 2 4 6 0 2 4 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 0 2 4 6

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 2.5 5.0 7.5 10.0 0 1 2 3 4 5

0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 0 1 2 0 1 2 3 4 5

0 1 2 3 0 1 2 3 4 0 2 4 0 1 2 3 4 0 1 2 3

0 1 2 3 4 0 1 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 3

0

30

60

90

0

25

50

75

100

0

20

40

60

80

0

50

100

150

0

50

100

150

0
50

100
150
200

0

20

40

60

80

0

30

60

90

120

0
20
40
60
80

0

25

50

75

0
25
50
75

100

0
25
50
75

100
125

0

50

100

150

0
50

100
150
200

0
50

100
150
200

0

50

100

0

50

100

150

0

100

200

300

0
25
50
75

100

0
20
40
60
80

0

25

50

75

100

0
50

100
150
200

0
50

100
150
200
250

0
50

100
150
200

0
50

100
150
200

0

25

50

75

0
50

100
150
200

0
25
50
75

100

0
20
40
60
80

0

20

40

60

0

50

100

150

0

50

100

150

0

50

100

150

0
50

100
150
200

0

30

60

90

120

0

50

100

150

0

20

40

60

0

30

60

90

0

25

50

75

0
25
50
75

100

0
50

100
150
200

0
50

100
150
200

0

50

100

0

50

100

150

0

100

200

300

400

Gene Frequency

co
un

t

HMS10

Figure A.5: HMS10 Gene Frequency Histogram By Sample
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Figure A.6: HMS18 Gene Frequency Histogram By Sample
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Figure A.7: HMS19 Gene Frequency Histogram By Sample
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Figure A.8: HMS23 Gene Frequency Histogram By Sample
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Figure A.9: HMS28 Gene Frequency Histogram By Sample
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Figure A.10: HMS3 Average Gene Frequency Histogram. Average gene frequency for each gene in
HMS3. PnecSCCGs are in blue. Black horizontal lines represent the 95% confidence interval for the
Pnec_SCCGs.
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Figure A.11: HMS10 Average Gene Frequency Histogram. Average gene frequency for each gene in
HMS10. PnecSCCGs are in blue. Black horizontal lines represent the 95% confidence interval for the
Pnec_SCCGs.
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Figure A.12: HMS18 Average Gene Frequency Histogram. Average gene frequency for each gene in
HMS18. PnecSCCGs are in blue. Black horizontal lines represent the 95% confidence interval for the
Pnec_SCCGs.
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Figure A.13: HMS23 Average Gene Frequency Histogram. Average gene frequency for each gene in
HMS23. PnecSCCGs are in blue. Black horizontal lines represent the 95% confidence interval for the
Pnec_SCCGs.
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Figure A.14: HMS28 Average Gene Frequency Histogram. Average gene frequency for each gene in
HMS28. PnecSCCGs are in blue. Black horizontal lines represent the 95% confidence interval for the
Pnec_SCCGs.
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Figure A.15: Gene Frequencies for HMS3 Through Time. Color of each square for the sample dates
represents the gene frequency for that sample. Dendrograms were constructed by clustering Euclidean
distance between genes and sample patterns. Freq_group column shows the frequency group determined
by average coverage through the time series, dark green for multipcopy, blue for high, and light green
for low frequency. Pnec-SCCGs are denoted in red in the PnecSCCG column. Click here for interactive
version of the plot.

Figure A.16: Gene Frequencies for HMS10 Through Time. Color of each square for the sample dates
represents the gene frequency for that sample. Dendrograms were constructed by clustering Euclidean
distance between genes and sample patterns. Freq_group column shows the frequency group determined
by average coverage through the time series, dark green for multipcopy, blue for high, and light green
for low frequency. Pnec-SCCGs are denoted in red in the PnecSCCG column. Click here for interactive
version of the plot. Heatmap color scale set to max of 5. Above 5 gene frequencies are red.

http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS3.html
http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS3.html
http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS10.html
http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS10.html
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Figure A.17: Gene Frequencies for HMS18 Through Time. Color of each square for the sample dates
represents the gene frequency for that sample. Dendrograms were constructed by clustering Euclidean
distance between genes and sample patterns. Freq_group column shows the frequency group determined
by average coverage through the time series, dark green for multipcopy, blue for high, and light green
for low frequency. Pnec-SCCGs are denoted in red in the PnecSCCG column. Click here for interactive
version of the plot.

Figure A.18: Gene Frequencies for HMS23 Through Time. Color of each square for the sample dates
represents the gene frequency for that sample. Dendrograms were constructed by clustering Euclidean
distance between genes and sample patterns. Freq_group column shows the frequency group determined
by average coverage through the time series, dark green for multipcopy, blue for high, and light green
for low frequency. Pnec-SCCGs are denoted in red in the PnecSCCG column. Click here for interactive
version of the plot.

http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS18.html
http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS18.html
http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS23.html
http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS23.html
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Figure A.19: Gene Frequencies for HMS28 Through Time. Color of each square for the sample dates
represents the gene frequency for that sample. Dendrograms were constructed by clustering Euclidean
distance between genes and sample patterns. Freq_group column shows the frequency group determined
by average coverage through the time series, dark green for multipcopy, blue for high, and light green
for low frequency. Pnec-SCCGs are denoted in red in the PnecSCCG column. Click here for interactive
version of the plot. Heatmap color scale set to max of 5. Above 5 gene frequencies are red.

http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS28.html
http://sarahlrstevens.info/extras/thesis-ch4-heatmaply-plot-HMS28.html
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Bin Name Classification

3300020704.bin.21 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;

3300020715.bin.9 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020717.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020719.bin.2 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020720.bin.1 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020723.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020734.bin.15 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300021135.bin.8 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020679.bin.1 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020680.bin.4 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020681.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;

3300020682.bin.6 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020684.bin.8 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020687.bin.3 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020688.bin.7 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020690.bin.3 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020691.bin.11 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020692.bin.4 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;
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Bin Name Classification

3300020697.bin.9 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020699.bin.11 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020700.bin.2 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020701.bin.14 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020703.bin.10 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020704.bin.14 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020706.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020707.bin.9 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020708.bin.4 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020709.bin.11 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020711.bin.15 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020713.bin.8 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020715.bin.12 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020721.bin.8 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020722.bin.7 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020723.bin.27 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020724.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020726.bin.21 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;
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Bin Name Classification

3300020729.bin.21 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020730.bin.6 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020734.bin.1 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020735.bin.10 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300021113.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300021116.bin.1 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020679.bin.4 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020682.bin.3 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020683.bin.2 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020687.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020688.bin.11 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020691.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020697.bin.12 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020698.bin.6 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020701.bin.11 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020707.bin.6 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020709.bin.10 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020721.bin.2 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;
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Bin Name Classification

3300020722.bin.6 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020724.bin.7 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020734.bin.20 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300021116.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020682.bin.1 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020683.bin.6 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020698.bin.10 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020711.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020683.bin.10 Bacteria;Proteobacteria;Betaproteobacteria;unclassified Betaproteobacteria;

3300020687.bin.9 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;

3300020691.bin.10 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;

3300020697.bin.11 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020698.bin.11 Bacteria;Proteobacteria;Betaproteobacteria;

3300020701.bin.4 Bacteria;Proteobacteria;Betaproteobacteria;

3300020707.bin.4 Bacteria;Proteobacteria;Betaproteobacteria;

3300020709.bin.12 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

3300020711.bin.13 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;

3300020721.bin.13 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;
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Bin Name Classification

3300020722.bin.5 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;

3300020724.bin.8 Bacteria;Proteobacteria;Betaproteobacteria;unclassified Betaproteobacteria;

3300020734.bin.14 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;

3300020707.bin.3 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Burkholderiaceae;Polynucleobacter;

Table A.3: Medium Quality MAG classifications.
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B.1 Abstract

In this paper, we describe why and how to build a local community of practice in scientific

programming for life scientists that use computers and programming in their research. A

community of practice is a small group of scientists that meet regularly to help each other

and promote good practices in scientific programming. While most life scientists are well-

trained in the laboratory to conduct experiments, good practices with (big) datasets and

their analysis are often missing. We propose a model on how to build such a community

of practice at a local academic institution, present two real-life examples and introduce

challenges and implemented solutions. We believe that the current data deluge that life

scientists face can benefit from the implementation of these small communities. Good

practices spread among experimental scientists will foster open, transparent and sound

scientific results beneficial to society.

B.2 Introduction

Life Sciences is becoming a data-driven field

In the last ten years, since the advent of the first next-generation sequencing (NGS) technolo-

gies, DNA and RNA sequencing costs have plunged to levels that make genome sequencing

an affordable reality for every life scientist (Hayden, 2014; Hiraoka et al., 2016). Yet the

vast majority of wet lab biologists need tailor-made, practical training to learn scientific

programming and data analysis (Batut et al., 2018; Watson-Haigh et al., 2013; Friesner

et al., 2017; Welch et al., 2014; Corpas et al., 2015; Schneider et al., 2012). Current efforts in

bioinformatics and data science training for life scientists have been initiated worldwide to

cope with these training demands (Morgan et al., 2017; Wilson, 2016; Pawlik et al., 2017;

Corpas et al., 2015; Schneider et al., 2012).
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Good practices in scientific programming are needed to increase

research reproducibility

Modern biology is facing reproducibility issues (Baker, 2016). While evidence suggests

this might not be as bad as it sounds (Fanelli, 2018), there is clearly a need for increased

reproducibility. For instance, out of 400 algorithms presented at two conferences, only

6% had published their corresponding code (Hutson, 2018). Thus, most research code

remains a “black box” (Morin et al., 2012) although programming is a central tool in

research(Hettrick et al., 2014). Use of laboratory notebooks is widely taught in biology

but not emphasized for coding. Both code documentation and better practices in data

management are needed so anyone can redo or understand the analyses later on. Part

of the solution lies in dedicated training to researchers to promote good programming

practices (Wilson et al., 2017). One of the recent relevant initiatives is the FAIR (Findable,

Accessible, Interoperable and Reusable) principles initiative which provides guidelines

to boost reproducibility and reuse of datasets (Wilkinson et al., 2016). Therefore, the

long term goal of any programming scientist should be to steward good practices in

code-intensive research by promoting open science, reproducible research and sustainable

software development.

Part of the solution: building a local community of practice

Training workshops in scientific programming are often offered as one-time courses but

researchers would benefit from a more permanent support. Fueled by Etienne Wenger’s

idea that learning is usually a social activity (Wenger, 1998; Lave and Wenger, 1991),

we propose to build a local community of practice in scientific programming for life

scientists. This community fulfills the three requirements of Wenger’s definition: it has

a specific domain i.e. bioinformatics and data science, its members engage in common

activities e.g. training events, and they are practitioners i.e. researchers currently engaged
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in research that involves scientific programming. Community building and organization is

a field in itself that has been considerably reviewed (Webber, 2018; Brown, 2007; Wenger,

2011; Budd et al., 2015; Li et al., 2009b; Wenger et al., 2002). Requirements include a few

motivated leaders and a safe environment where participants can experiment with their

new knowledge (Webber, 2018). As stated by Wenger and Snyder (Wenger and Snyder,

2000), communities of practice “help to solve problems quickly”, “transfer best practices”

and “develop professional skills”. While short-term immediate issues (“help me now to

debug my code”) can be solved, the community also has the capacity to steward solutions

for long-term data-related problems (“how do I comply with the FAIR guidelines?”) and

can therefore help to solve reproducibility issues. Communities of practice can also foster

the adoption of good practices (Bauer et al., 2015a) since by co-working with their peers,

scientists are probably more likely to compare their methods and embrace best practices.

This paper will explicitly describe why and how to build a local community of practice in

scientific programming. We propose a model of how to build such a community that we

exemplify in two case studies. Finally, we discuss the challenges and possible solutions

that we encountered when building these communities. Overall, we believe that building

these local communities of practice in scientific programming will support and speed-up

scientific research, spread good practices and, ultimately, help to tackle the data deluge in

the life sciences.

B.3 Why do we need to build up local community of

practice in scientific programming?

Isolation

Wet lab biologists are increasingly being asked by their supervisors to analyze a set of pre-

existing data in labs where their peers have little to no coding experience. Without access
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to experienced bioinformaticians, they can lead to a sentiment of isolation deleterious to

their work.

Self-learning and adoption of bad practices

In such a scenario, most researchers tend to invent their own solution sometimes re-

inventing the wheel. While wasting time, it also leads to the adoption of bad practices (lack

of version control) and irreproducible results. While some compiled easy-to-use software

such as samtools (Li et al., 2009b) can help to get started, typically researchers need to

build their own collection of tools and scripts. For instance, version control is essential: we

believe that using git1 and github2 for instance should be considered a mandatory, good

practice just like accurate pipetting in the molecular lab.

Apprehension

Researchers may also fear the breadth of knowledge they need before achieving anything

which may lead to impostor syndrome: the researcher feels like he will be exposed as

a fraud and someone more competent will unveil his lack of knowledge of coding and

bioinformatics. This also inhibits continued learning since the researcher is then afraid to

ask for help.

The issue of how to get started

Learning to code in a research team is akin to an apprenticeship. The ‘apprentice’ will

benefit from the experience and knowledge of more experienced team members. For

instance, a researcher working on RNA-Seq for several years will be able to demonstrate

the use of basic QC tools, short-read aligners, differential gene expression calls, etc. Yet,

many research teams do not have an experienced bioinformatician on staff. Even in the
1https://git-scm.com/
2https://github.com/

https://git-scm.com/
https://github.com/
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Figure B.1: Different learning stages in scientific programming. This figure displays the different stages
of learning encountered by experimental biologists.

best case where an expert bioinformatician is available, it may be problematic for beginners

to get all their knowledge in one field from one person. Instead, we propose that building

a community to spread good practices and help to connect novices and experts. Ideally, a

novice should make progress toward increased skill levels, as illustrated in Fig~B.1 (Dreyfus

and Dreyfus, 1980).

B.4 How do we build local communities in scientific

programming? A model inspired by experience

Here, we propose a three-stage working model (Fig. B.2) to create a local community

of practice in scientific programming composed of life scientists at any given institution

without any prior community structure.

In stage 1, we form the “primer” of a local community of practice by first running

basic programming workshops organized by local community leads (“champions”) and
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Figure B.2: A three-step model to build a local community of practice in scientific programming for
life scientists. (A) First, a few scientists acting as community leads set up one or more Carpentries
workshops to impart basic programming and data science skills to wet lab life scientists. After completion
of the workshop, the novices will often face programming issues that need to be solved frequently.
Furthermore, they need to continue to learn new programming skills. Therefore, a local study group such
as a Mozilla Study Group can be formed by community leads (“champions”) and “advanced beginners”
to foster a regular meeting place for solving programming issues together and discovering new tools. (B)
By attending a regularly scheduled study group, advanced beginners start to work together and make
progress. Together with additional guidance and ad hoc assistance by community leads, some advanced
beginners become “competent practitioners”. (C) Finally, as some “competent practitioners” attend the
Carpentries’ instructor training sessions, new community leads (“champions”) are trained. In addition,
the local study group keeps attracting new beginners. Study group sessions together with optional
Carpentries events help to educate community members and help them to become “advanced beginners”
and “competent practitioners”. As “competent practitioners” become community “champions”, this
closes the loop and help the local community of practice become fully mature with all categories of
learners present.
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then coupling them to formation of a study group. Champions do not necessarily have

to be experts themselves. In our experience, Carpentries workshops work well since they

provide training aimed at researchers and possess a long history of teaching programming

to scientists (Wilson et al., 2017; Wilson, 2016). These programming workshops serve as

a starting point for both learning and gathering researchers together in one room where

people are actively paired and invited to learn about each other. Often beginners and

bioinformaticians who might have never met despite working at the same institution will

connect and engage afterwards.

When absolute beginners join these workshops, they become “advanced beginners” once

they gain some programming notions. During their daily work, “advanced beginners” of-

ten lack the support needed to face programming issues that they may encounter frequently.

Community “champions” and “advanced beginners” can “seed” a local community of

practice (Fig~B.2) which meet regularly to continue practicing the skills they learned at

these programming workshops. Therefore, a local co-working group that follow a well

documented handbook such as that of the Mozilla Study Group3 should be set-up with a

regular meeting schedule. Other forms of co-working groups can be used but we believe

that Mozilla Study Groups offer the best existing model.

In stage 2, the study group becomes a regular practice for advanced beginners where

they progressively become competent practitioners (Fig~B.2). This study group also wel-

comes new novice members as they join the research institution or as they hear about the

existence of the group. The community leads will provide guidance, specific lessons, and

assistance during hands-on practicals which will nurture the community and raise the

community global scientific programming level. Again, leading sessions is not restricted to

champions and any motivated individual can lead. Also, champions do not necessarily have

to be experts themselves but can instead invite experts and facilitate discussions. At the
3http://mozillascience.github.io/studyGroupHandbook/

http://mozillascience.github.io/studyGroupHandbook/
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end of this stage, most advanced beginners will likely have become competent practitioners.

In stage 3, a subset of the competent practitioners from the local community will be-

come community leads (“champions”, Fig~B.2) by increasing their teaching and facilitating

skills and recognizing the skill level of their audience (Fig~B.1). These competencies can

be attained by becoming a Carpentries instructor which requires attending an instructor

training event: these sessions can be organized by initial community champions since

they usually have both the network and know-how to set-up these specific workshops.

Once again, it is not mandatory to rely on the Carpentries Foundation organization as

long as competent practitioners get a deeper knowledge of teaching techniques where they

improve their own skills. However, we now have a good perspective on the long-term

experience and success of the Carpentries Foundation with over 500 workshops organized

and 16,000 attendees present (Wilson, 2016; Pawlik et al., 2017).

B.5 Case studies

The Amsterdam Science Park example

In October 2016, Mateusz Kuzak, Carlos Martinez and Marc Galland organized a two-day

Software Carpentry workshop in Amsterdam to teach basic programming skills (Shell,

version control and Python) to a group of 26 wet lab biologists. This started a dialog

about the skills life scientists need in their daily work. After a few months, a subset of the

workshop attendees made progress but most of them did not continue to program either

because (i) they did not need it at the time, (ii) they felt isolated and could not get support

from their peers or (iii) they did not make time for practice alongside regular lab work. Thus,

a regular meetup group was needed so that researchers with different programming levels
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could help and support each other. Hence, in March 2017, we started up the Amsterdam

Science Park Study Group following the Mozilla Study Group guidelines. We quickly

decided to stick to the guidelines suggested by the Mozilla Science Lab4. Originally, we

started with one scientist from the University of Amsterdam (Marc Galland) and two

engineers in software engineering (Mateusz Kuzak and Carlos Martinez). But after five

months, we decided to gather more scientists to build up a community with expertise in R

and Python programming as well as from different scientific fields (genomics, statistics,

ecology). Most study group members came from two different institutes which helped

the group to be more multidisciplinary. At the same time, a proper website5 was set-up to

streamline communication and advertise events.

The University of Wisconsin-Madison example

At the University of Wisconsin-Madison, Sarah Stevens started a community of prac-

tice in the fall of 2014 centered around Computational Biology, Ecology and Evolution

(“ComBEE”). It was started as a place to help other graduate students to learn scientific

coding, such as Python and discuss scientific issues in computational biology, such as

metagenomics. The main ComBEE group meets once a month to discuss computational

biology in ecology and evolution. Under the ComBEE umbrella, there are also two spin-off

study groups, which alternate each week so that attendees can focus on their favorite

programming language. Later in ComBEE’s development, Sarah transitioned to being a

part of the Mozilla Study Group community, taking advantage of the existing resources to,

for instance, build their web page6.

Early in the development of ComBEE, the facilitating of the language-specific study groups

was delegated on a semester by semester basis: this helped to keep more members in-

volved in the growth and maturation of the local community. One of the early members
4https://mozillascience.github.io/study-group-orientation/
5https://scienceparkstudygroup.github.io/studyGroup/
6https://combee-uw-madison.github.io

https://mozillascience.github.io/study-group-orientation/
https://scienceparkstudygroup.github.io/studyGroup/
https://combee-uw-madison.github.io
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of ComBEE was a life sciences graduate student who had recently attended a Software

Carpentry Workshop and had no other experience doing bioinformatics. He wanted to

continue his development and was working on a very computationally intensive project.

He has since run the Python Study Group for several semesters and is now an exceedingly

competent computational biologist. He continued to contribute back to the group through

the end of his PhD, lending his expertise and experience to the latest study group discus-

sions. The ComBEE study group is now more than three years old and acts as a stable

resource center for new graduate students and employees.

B.6 Room for improvement: challenges and solutions

learned from experience

Below we describe essential components of a successful community of practice based on

both literature (Webber, 2018; Brown, 2007; Wenger, 2011; Budd et al., 2015) and experience.

Gather a core group of motivated individuals

One of the first tasks for setting up a community of practice is to gather a team of motivated

individuals that will act as leaders of the community (Brown, 2007; Webber, 2018). To

recruit these leaders, one can:

• Rely on existing communities e.g. "R lunch group" since these informal groups are

often lead by motivated individuals.

• Recruit scientists that share similar values such as:

– Advocating Open Science

– Having a collaborative attitude

– Show tolerance towards cultural and scientific differences
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– Being supportive of beginners and lifelong learners in general

• Search within institutions with a reasonably big size e.g. Universities.

Keeping participants coming and engaging into the community

For someone who is part of the “core team” of a study group, the challenge is to attract

experts or new members and ensure that they regularly participate in activities (lessons,

co-working sessions, organizational meetings) (Brown, 2007; Webber, 2018; Budd et al.,

2015). Among possible incentives to keep new members and leaders engaging, we suggest

to tell them that they can:

• Reach out to a wider audience by participating to lessons, workshops, etc.

• Improve their teaching skills and eventually become a Carpentries instructor

• Solve basic issues for several beginners simultaneously through workshops

• Lead the community for a semester and thereby develop their leadership

• Tailor topics to their interests

• Increase their group management, communication and networking capacities

How to deal with the ever-ongoing turnover at academic institutions

The constant turnover of students and temporary staff remains a continual challenge.

Keeping the local community ongoing requires a critical mass both for the core team and

for the audience. Yet, the high turnover of students and staff also has its positive sides: a

dynamic environment brings in new people eager to learn and with relevant knowledge

to share in the group. We recommend using the turnover of people to your advantage by

making an effort to recruit both new members and champions. Some practical solutions

include:
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• Advertising the community through its leaders: people bring people through word

to mouth

• Invite permanent staff to sustain the community development

• Use the turnover to your advantage: quickly invite newcomers to join the community

Dealing with the impostor syndrome

Creating a safe learning environment is one of the requirement for a thriving community

of practice (Webber, 2018). To encourage beginners and newcomers to participate and feel

welcome, we recommend to:

• Enforce a Code of Conduct following an existing example7 to set-up expectations and

promote a welcoming atmosphere

• Promote all questions and forbid surprise reactions to very basic questions ("What is

the Shell?", "Oh you don’t know?")

• Ban in-depth technical discussions that alienate novices

Community leadership and institutional support

An effort should be made to assign clear and specific roles to administration members of

the local community based on their expertise and interest. Another challenge is to secure

funding and people support from the local institution (Brown, 2007; Webber, 2018). To do

so, we advise to:

• Delegate as much as possible to promote leadership: appoint someone to lead the

community for a semester for instance

• Get support from the local institution as soon as possible in terms of money, time

and/or staff
7https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html

https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html
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Community composition

Another important aspect to consider is the composition of the community. We have

identified the following types of community members as common components of the

community:

• Absolute and advanced beginners: these are people with the most basic level of

knowledge. For them, the motivation to be part of a community is obvious: they want

to learn programming and often need rapid assistance to complete their research.

• Competent practitioners: these are people who already competent in a particular

bioinformatics/data science domain. For them, contributing to the community is

a good way to reinforce their set of talents. Often, competent practitioners make

excellent teachers, as they are able to easily relate to the beginner state of mind. In

turn, this increases their learning and teaching skills.

• Experts: these are people with the highest experience level on a particular skill.

Experts usually reinforce their knowledge by ‘going back to basics’: it is useful for

them to understand what are the usual gotchas for novices. Building a local community

of practice provides experts with an opportunity to help novices in a more structural

way instead of helping each one individually.

Practical considerations

In our experience, we have found the following practical tips to be useful:

• Gather a critical mass of at least 10 recurrent community members that regularly

attend meetings and community sessions

• Send meeting notifications in advance and frequently enough: schedule the meetings

well-in-advance and keep a consistent day, time and place to help people remember

them.
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• Have weekly or fortnightly meetings so that it is a compromise between researchers’

schedules and community development.

• Organize meetings in a relatively quiet environment with a good Internet connection.

Places such as a campus café outside of busy hours or a small conference room can

be good places to start and help to keep an informal and welcoming atmosphere,

B.7 Conclusions

We hope that our model and the lessons learned from our experience described in this

paper will save time and effort for future community leads when they start their own local

community of practice in scientific programming. Building such a community is far from

trivial and we, as scientists, are perhaps not the most proficient on community building

and organization (Webber, 2018; Brown, 2007; Wenger, 2011; Li et al., 2009b; Wenger et al.,

2002). Since “progress will not happen by itself” (Wilson et al., 2017), a community of

practice in scientific programming will bring many benefits to its members and to their

institution: it fosters the development of new skills for its members, breaks down “mental

borders” between departments, networks domain experts at a local site and helps to retain

knowledge that would otherwise be lost with the departure of temporary staff and students.

The convergence of the “big data” avalanche in biology and new FAIR requirements for

data management (Wilkinson et al., 2016) makes it more and more important for wet lab

researchers to conduct good scientific programming, efficient data analysis, and proper

research data management. Eventually, these local communities of practice in scientific

programming should speed up code-intensive analyses, promote open science, research

reproducibility and spread good practices at a given institution.



137

B.8 Acknowledgments

We are thankful to the Carpentries Foundation for assistance in workshop organization. We

kindly acknowledge the Mozilla Foundation for assistance in starting and maintaining the

Amsterdam Science Park and the Computational Biology, Ecology, & Evolution (ComBEE)

Study Groups. The local community of the Amsterdam Science Park Study Group not

in the author list is fully acknowledged and consist of Dr Emiel van Loon (UvA-IBED),

Pietro Marchesi (UvA-SILS), Joeri Jongbloets (UvA-SILS), Dr Like Fokkens (UvA-SILS),

Zsofia Koma (UvA-IBED) and Dr Susanne Wilkens (UvA-IBED). We are grateful to Dr

Anita Schürch (UMC Utrecht) for training researchers through several Software and Data

Carpentry workshops. We would also like to thank the members and leaders of the

Computational Biology, Ecology and Evolution (ComBEE) Study Group and the Carpentry

community at the University of Wisconsin-Madison.



138

references

Albertsen, Mads, Philip Hugenholtz, Adam Skarshewski, Kåre L Nielsen, Gene W Tyson,

and Per H Nielsen. 2013. Genome sequences of rare, uncultured bacteria obtained by

differential coverage binning of multiple metagenomes. Nature Biotechnology 31(6):533–538.

Allen, E. E., G. W. Tyson, R. J. Whitaker, J. C. Detter, P. M. Richardson, and J. F. Banfield.

2007. Genome dynamics in a natural archaeal population. Proceedings of the National

Academy of Sciences 104(6):1883–1888.

Allgaier, M., and H.-P. Grossart. 2006. Diversity and Seasonal Dynamics of Actinobac-

teria Populations in Four Lakes in Northeastern Germany. Applied and Environmental

Microbiology 72(5):3489–3497.

Alneberg, Johannes, Christofer M G Karlsson, Anna-Maria Divne, Claudia Bergin, Felix

Homa, Markus V Lindh, Luisa W Hugerth, Thijs J G Ettema, Stefan Bertilsson, Anders F

Andersson, and Jarone Pinhassi. 2018. Genomes from uncultivated prokaryotes: a com-

parison of metagenome-assembled and single-amplified genomes. Microbiome 6(1):173.

Amann, RI, W Ludwig, and KH Schleifer. 1995. Phylogenetic identification and in situ

detection of individual microbial cells without cultivation. Microbiol Rev 59:143–69.

Baker, Monya. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533(7604):452–4.

Barrick, J. E., and R. E. Lenski. 2009. Genome-wide Mutational Diversity in an Evolving

Population of Escherichia coli. Cold Spring Harbor Symposia on Quantitative Biology 74(0):

119–129.

Barrick, Jeffrey E., Dong Su Yu, Sung Ho Yoon, Haeyoung Jeong, Tae Kwang Oh, Do-

minique Schneider, Richard E. Lenski, and Jihyun F. Kim. 2009. Genome evolution and

adaptation in a long-term experiment with Escherichia coli. Nature 461(7268):1243–1247.



139

Batut, Bérénice, Saskia Hiltemann, Andrea Bagnacani, Dannon Baker, Vivek Bhardwaj,

Clemens Blank, Anthony Bretaudeau, Loraine Guéguen, Martin Čech, John Chilton, Dave
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