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Abstract 

In this study, pre-K students were given opportunities to describe their thinking using 
manipulatives, their own photographs, and other content-related photographs while working to 
answer assessment questions in the areas of Quantifying, Understanding Spatial Relationships, 
and Understanding Shapes.  Results with manipulatives-only were compared to results with 
photography.  The theoretical framework stemmed from Activity Theory and components of the 
theory of Realistic Mathematics Education (RME).  Ideas from each theory were combined to 
form a hybrid framework which placed RME at the center of the Activity Theory framework.  
Key findings from the study show that more students were better able to describe their thinking 
when referring to photographs than when referring to manipulatives.  The mathematical skill 
with the greatest average number of improved responses with the use of photography was 
Quantifying, where students were able to give more detailed, more mathematically relevant, and 
more accurate responses when speaking from photographs as compared to manipulatives.  The 
photography situation with the greatest average number of improved responses was when 
students were speaking from photographs that were shown to them but that they did not take 
themselves.  For Understanding Spatial Relationships problems and Understanding Shapes 
problems, students were able to describe more spatial and shape attributes with the use of 
photography than with the use of manipulatives.  Further, students showed fewer distractions 
with the use of photography in the Understanding Spatial Relationships tasks, and were able to 
recall more real-world shapes with the use of photography in the Understanding Shapes tasks. 
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Chapter 1 
Introduction 

 
Photography and elementary mathematics are not necessarily entities that are commonly 

placed together in terms of classroom practice, educational research, or student assessment; 

however, I believe that the intersection of these fields holds great potential in terms of 

elementary mathematics teaching, learning, and communicating.  Today more than ever, cameras 

are ubiquitous in that they are found on nearly every cell phone and tablet.  These devices are not 

just understood and utilized by adults; Children are mastering the photo technologies available 

on cell phones and tablets at younger and younger ages.  While photographs have had a home in 

the elementary classroom for many years in terms of the posters that cover walls and the colorful 

pictures that fill textbooks (especially science and literacy texts), I believe photographs and 

cameras are tools that are currently underutilized in the elementary classroom, especially in 

terms of students’ abilities to make connections within and communicate about their 

mathematical understanding. 

One enduring issue in mathematics education is that students have a difficult time making 

connections among mathematical facts, procedures, and concepts, while teachers have a difficult 

time encouraging and supporting classroom discussions that facilitate such mathematical 

understanding.  Research suggests that even when students in the United States are presented 

with problems that have the potential to support this type of mathematical understanding, they 

are lacking in their ability to make mathematical connections, especially when compared to other 

countries who outperformed the U.S. on the Trends on International Mathematics and Science 

Study (TIMSS) mathematics assessments (Hiebert et al., 2003).  Hiebert et al. found the 

following: 
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In Australia and the United States, 8 percent and less than 1 percent, respectively, of 

making connections problems were solved by making connections.  These percentages 

were smaller than in the other countries, which ranged on average from 37 to 52 percent. 

(p. 103) 

Another enduring issue in mathematics education is that a focus on early childhood 

mathematics standards has created an increase in mathematics assessments at the early childhood 

level (Brown, 2007).  These assessments are moving away from more traditional early childhood 

assessment practices such as observation toward practices such as problem solving or clinical 

interviews (Ginsburg & Seo, 1999).  When young children come to both formal and informal 

assessment situations, there are a variety of problems that can arise, making it unclear from the 

assessments what mathematical knowledge the students actually possess (Wager, Graue, & 

Harrigan, 2015). 

In my experience working with students in a whole-group instructional setting, as well as 

doing individual clinical interviews with young children, I have noticed four situations that occur 

when students are asked to solve math problems or perform mathematics assessment tasks, as 

illustrated in Table 1. 

 

Table 1: Possible Mathematics Performance Result Situations 

 Student is proficient in the 
concept or skill 

Student is not proficient in 
the concept or skill 

Student action or response 
shows the student as 
proficient 

-Shows Proficient 
-Is Proficient 
(SPIP) 

-Shows Proficient 
-Is Not-proficient 
(SPNP) 

Student action or response 
shows the student as not 
proficient 

-Shows Not-proficient 
-Is Proficient 
(SNIP) 

-Shows Not-Proficient 
-Is Not-Proficient 
(SNIN) 
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Situations where students show they are proficient and they actually are proficient 

(SPIP), or where they show that they are not proficient and they actually are not proficient 

(SNIN) are less problematic than the other two situations because the results of the assessments 

are more accurately reflective of students’ proficiency levels.  In situations where students show 

they are proficient but they actually are not proficient (SPNP), I am assuming the problems lie 

more with the design of the assessment questions or tasks than anything else.  For example, if a 

student is presented with a square and a cube, and is asked to point to the cube, there is a chance 

s/he could get the answer correct simply by guessing.  While this situation is problematic, the 

situation that has the greatest potential to be helped by the use of photography is the SNIP 

situation, where students show that they are not proficient but actually are proficient (or at least 

more knowledgeable than the results reflect).  This study sought to discover the affordances of 

photography specifically in these SNIP situations by examining student responses and 

demonstrated understanding of mathematics tasks and assessment questions both with and 

without the use of photography. 

One central purpose of this study was to explore the potential affordances offered by the 

use of photography as a means for teachers to support a classroom of young children in making 

connections among mathematical facts, procedures, and concepts as they work through math 

problems and explain their thinking and processes when engaged in mathematical tasks.  Another 

central purpose of this study was to explore the affordances offered by the use of photography in 

the individual assessment of the mathematical skills of young children.  If photographs (either 

photographs that students take during mathematical tasks or photographs that are given to 
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students in order to represent mathematical concepts) can serve as tools to help students better 

communicate their mathematical understanding surrounding a given assessment task or problem, 

then it is imperative that cameras and photographs are brought into the elementary mathematics 

classroom in order to offer a solution to the problem of students not being able to show what they 

truly know.  Often in education, solutions either do not exist, or when they do, are not feasible 

for financial or practical reasons.  Fortunately, bringing cameras and photographs into the 

elementary mathematics classroom can be done quickly, at a minimal cost, and at a minimal 

disruption to current classroom lessons and assessments. 

In this study, pre-K students were given opportunities to describe their thinking using 

manipulatives, their own photographs, and other content-related photographs while working to 

answer assessment questions in the mathematical content areas of Quantifying, Understanding 

Spatial Relationships, and Understanding Shapes.  These descriptions were used to compare how 

students communicated their mathematical understanding and ideas when they were speaking 

from photographs to when they were speaking from manipulatives.  The idea of speaking ‘from 

photographs’ or ‘from manipulatives’ is similar to the idea of someone speaking ‘from their 

notes’ during a speech, or ‘from a PowerPoint’ during a presentation.  The intention was not to 

examine what happened during the processes of using manipulatives or taking photographs, but 

instead to look at how students communicated their mathematical understanding when using 

photographs or manipulatives as platforms for such communication. 

Research Questions 

As stated earlier, teachers often have a difficult time encouraging and supporting 

classroom discussions where students are able to communicate what they know about 
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mathematical tasks and the connections among mathematical concepts.  Further, the growing 

reliance on clinical interviews to assess young children can be problematic, as this form of 

assessment also may not reveal what children truly understand.  The need to address these 

concerns led me to the following research questions: 

• What are the affordances offered by the use of photography with young children to make 

connections and explain their thinking when engaged in mathematical tasks? 

o Which mathematical content strand in this study offers the greatest affordances? 

o Which photography situation in this study offers the greatest affordances? 

• What are the affordances offered by the use of photography in the individual assessment 

of the mathematical skills of young children? 

Rational for Theoretical Framework 

For this study, the theoretical framework stemmed from Activity Theory and components 

of the theory of Realistic Mathematics Education (RME).  I incorporated ideas from each theory 

to form a hybrid framework which best represented the research goals and tasks in this study.  

This hybrid framework placed the RME framework at the center of the Activity Theory 

framework, and provided a model that was more complete than either of the first two 

frameworks on their own in relation to this study. 
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Chapter 2 
Literature 

 
In the first portion of this literature review, I discuss photography and the importance of 

sideways thinking in mathematics.  This section includes research about general advantages of 

using photography with children, research advantages of using photography with children, and 

information about Photo Elicitation Interviews.  In the second portion of this literature review, I 

discuss photography and the importance of abstracting and selecting in elementary mathematics.  

This section includes research about open-ended problem photographs, interactive problem 

photographs, and information about the Language Experience Approach.  The next portion of 

this literature review includes research about photography and a new vision of realism for 

elementary mathematics.  This section includes research about realistic visualizations, 

informational pictures, and concrete manipulatives.  In the final portion of this literature review, 

I discuss the theoretical framework for the study.  This section includes research about Activity 

Theory and the Theory of Realistic Mathematics Education, and then situates the study within a 

hybrid of the two theories. 

Photography and the Importance of Sideways Thinking in Elementary Mathematics 

Research in photography emphasizes the importance of the photographer being able to 

create some sort of order from the chaos that exists in the world (Rossbach, 2011).  Expanding 

on this are the ideas of seeing and learning to see before a photograph is taken.  The skills of 

seeing and learning to see in photography are collectively referred to as visualization, which in 

this context means the formation of a mental image (Sadler, 1993).  People can often conceive of 

a picture before they take it, especially when the subject matter is concrete; however, working 

with more abstract subject matter, or subject matter with which the photographer is less familiar 
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or comfortable, involves a willingness to try new approaches and techniques.  In photography, 

finding new ways to see both concrete and abstract subject matter has been defined as thinking 

sideways (Patterson, 2004). 

According to Patterson (2004), thinking sideways helps photographers not only to break 

away from their typical subject, styles, and settings, but also to see subject matter they may have 

overlooked or not observed carefully.  It is a mindset that involves piecing a variety of images 

together in order to gain a more complete perspective.  For example, imagine a photographer 

taking photographs of an accident scene.  A photographer who is not thinking sideways might 

take a series of photos which show the entire scene from one vantage point, or take all of the 

photos at the same time of day/night.  In contrast, a photographer who is thinking sideways 

might walk around the accident scene to photograph it from many angles, or take photographs at 

different times of the day/night.  Even if there is not a definite plan or final concept in mind 

while shooting the individual pictures, piecing these pictures together in the end would give a 

more complete perspective than a series of photos of the accident scene shot from the same place 

or time. 

The next sections will describe how many of the advantages of sideways thinking in 

photography can be applied to elementary mathematics teaching and learning.  These sections 

will also show how using photography with children helps them to become sideways thinkers as 

they put the pieces of mathematical facts, procedures, and concepts together to help provide a 

more complete perspective.  This more complete perspective is beneficial not only for their own 

learning of mathematics, but also for teachers and/or researchers who are attempting to gain 

information about children’s mathematical understanding.   
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General Advantages of Using Photography with Children 

According to Northcote (2011), one of the greatest advantages of handing over cameras 

to young children is that it can increase their level of ownership and interest in the process of 

learning about mathematics.  These processes also promote collaborative learning, questions, and 

discussion among children about mathematics concepts, which in turn helps to increase 

participation in classroom activities and ensure that children are valued as active contributors to 

the classroom learning environment.  In this way, children become “young ethnographers” who 

use cameras to record, share and extend their learning experiences (Richards, 2009).   

A specific technique used to help develop mathematical problem-solving skills as well as 

encourage discussion among children about math problems as they work through them is called 

Thinking Aloud Pair Problem Solving (TAPPS) (Whimbey, 1984).  This method involves 

students working in pairs, or a teacher working one on one with a student.  One student works 

through the problem, and the other student or teacher does not participate in the problem-solving, 

but instead works to get the problem-solver to verbalize all of her/his thoughts and processes 

used in the problem-solving process.  This method demands that the problem-solver justify all 

steps taken when working through the problem, including steps which may have led to a dead 

end or an incorrect conclusion.  Beyond success being measured simply by obtaining a correct 

answer, a critical part of success involves the explaining of the logic of any step taken in solving 

the problem (Pestel, 1993). 

TAPPS is mentioned here to stress that while students do have an easier time explaining 

their understanding with this process than without it, the process of explaining the steps taken to 

solve math problems remains difficult for children, especially when the topic or task is 
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unfamiliar to them (Carpenter & Lehrer, 1999).  According to Carpenter and Lehrer, “By 

struggling to articulate their ideas, especially with means like Mathematical symbols or models, 

students develop the ability to reflect on and articulate their thinking” (p. 23).  Furthermore, 

difficulties in articulation can also exist if the models or tangible items they are using do not 

have meaning to them (Manches & O’Malley, 2012). 

Student-produced photographs have the potential to serve as the tangible items needed to 

help in this process of explaining, as the familiarity of digital cameras and the photographs that 

children take with digital cameras can help to make mathematics more accessible and 

meaningful to young children (Northcote, 2011).  Focusing lessons and activities around 

photographs taken by children provide them with a familiar context in which to situate their 

mathematics learning and understanding (Campbell & Scotellaro, 2009). 

Another advantage of using photography with children involves the reduction of the 

cognitive load.  The cognitive load theory is based on the idea that people have a limited amount 

of cognitive resources (Vredeveldt, Hitch, & Baddeley, 2011).  Because photographs afford 

children the opportunity to work with familiar objects and situations, the cognitive load 

sometimes associated with children interpreting unfamiliar content can be reduced.  This in turn, 

allows the mathematics to become the focus of lessons, and reduces the amount of time needed 

for children to get accustomed to unfamiliar items (Northcote, 2011). 

Research Advantages of Using Photography with Children 

In addition to having many advantages for children, photography is regarded as having 

many advantages for researchers who work with children.  Cook and Hess (2007) describe the 

following key advantages of using photography with children when conducting research.  First, 



10 
 
taking photographs is quick, easy, something children are likely to enjoy, and something that is 

likely to engage and maintain their interest.  Second, many children view taking pictures as 

easier and more fun than writing.  Third, modern cameras produce acceptable results without 

children (or researchers) needing to be experts.  Fourth, giving children cameras increases the 

children’s power because they can make a choice and pick out things that are of importance to 

them.  Fifth, once photographs have been taken, they can act as tangible representations of 

children’s interests thereby enabling researchers to return to a topic at a future date for further 

discussion with the children using the photographs as a starting/reference point.  Photographs 

provide an opportunity to have group discussions around a visual prompt which makes it easier 

than trying to talk about something in the abstract.  When a child takes a photograph, the 

stimulus for discussion starts from their interest (MacDonald, 2012). 

Photography also allows children to create and express meaning in ways that are useful to 

researchers. According to Einarsdottir (2005), “The interviews in which the children discussed 

and explained the pictures were of vital importance.  There, the children’s reality came into view 

as they explained things concerning the pictures that were not evident without their elucidations” 

(p. 538).  Additionally, Fasoli (2003) highlighted the importance of how using a camera allows 

children to create meaning in a language other than written or verbal.  When researchers are 

attempting to gain meaning from students using only verbal or written language, they may be 

missing critical components.  In this way, allowing children to take and use photographs is a type 

of sideways thinking that ultimately will provide a more complete and meaningful perspective. 

While teachers and researchers may embrace the benefits of photography in teaching and 

research with children, some show misgivings regarding children’s competence with the 
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technology involved in photography.  Contrary to these concerns, research demonstrates that 

even very young children tend to come to school already having had experience using digital 

cameras (Byrnes & Wasik, 2009).  Often, elementary students require little to no instruction as to 

how the digital cameras they are given for research purposes operate, even when they are given a 

different brand or model than the ones they have experience using.  It is important to 

acknowledge the technical prowess of young children, because recognizing the strengths and 

capabilities of children is a step forward in addressing the potential power imbalances when 

conducting research with children (MacDonald, 2012). 

By giving children opportunities to demonstrate their knowledge and experiences in 

different forms, researchers and teachers are offered insights into children’s understandings 

about mathematics that are personalized and meaningful, and constructed within contexts that are 

familiar to the child.  By gaining these insights, researchers are better equipped to find ways to 

help children build connections between the mathematics they encounter in school, at home, and 

in the community (MacDonald, 2012).  These connections are essential in terms of helping 

teachers to identify students’ mathematical strengths, and also helping students to gain meaning 

from mathematics in multiple contexts (Wager, 2012).  Perhaps Cook and Hess (2007) 

summarize the ideas in this section best when they state, “It needs to be recognized that 

photographs are not an absolute representation of a given state, but a tool to help understandings 

develop” (p. 43). 

Photo Elicitation Interviews 

Photo elicitation has been used as a visual participatory research method since the 1950s, 

and continues to be used as a visual method in contemporary research (Prosser & Burke, 2008).  
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In the Photo Elicitation Interview (PEI), photographs are used as stimulus for further discussion.  

There are a variety of approaches to doing PEIs.  Researchers must decide who will take the 

photographs.  Some researchers choose to take the photographs, develop, organize, and present 

them to the interviewee.  Others ask their interview participants to take their own photos, which 

will then be used later as interview stimuli.  This second approach is sometimes called a photo-

elicitation auto-driven interview (Clark-IbaNez, 2004). 

There are many benefits to using the PEI, but it is first helpful to understand the meaning 

of photographs in this methodology.  Harper (2002) presented the approach’s three main uses of 

photographs.  First, photographs can be used as visual inventories of objects, people, and 

artifacts (i.e., photos of someone’s favorite vacation spots).  Second, photographs can be used to 

depict events that are a part of a collective which together form the framework of a narrative 

(i.e., photos of every city someone has ever lived in).  Third, photographs can be used to define 

intimate dimensions of the social (i.e., photos that show someone’s connection to society, 

culture, or history). 

Research stresses that in terms of PEIs, there need not be anything inherently interesting 

about the photographs themselves; instead, the photographs act as a medium of communication 

between the researcher and the participant (Clark-IbaNez, 2004).  Further, the photographs need 

not represent empirical truths or reality.  In this sense, photographs used in the PEI have a dual 

purpose.  Researchers can use photographs as a tool to expand on questions, while participants 

can use photographs to provide a unique way to communicate dimensions of their lives. 

When adapted for the purpose of interviewing children, the PEI becomes an ideal 

methodology to engage young people.  Photos can improve the interview experience with 
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children by providing them with a clear, tangible prompt, and empowering them as the experts.  

According to Clark-IbaNez (2004), “The most common experience conducting PEIs was that 

photographs spurred meaning that otherwise might have remained dormant” (p. 1513). 

Interviews with children often include their families and sometimes even their neighbors 

and friends.  The groups-setting serves several important functions (Schwartz, 1989).  First, it 

shows that the children’s photographs are capable of generating multiple meanings in the 

viewing process.  Next, photographs can trigger discussions and reveal contrasts and tensions 

among the viewers.  Finally, photographs can generate data that illuminate a subject invisible to 

the researcher but apparent to the interviewee. 

The ideas raised in this section support the use of photography in elementary 

mathematics in several ways.  When children take pictures, they take greater ownership of their 

learning.  The process of taking photographs helps to engage students in mathematics, and the 

process of discussing the photographs helps to create meaning for students.  It is important for 

children to be able to articulate their thinking in mathematics, and student-created photographs 

are tools that can help students with this articulation.  Furthermore, many of the advantages of 

photography between a researcher and child also exist in the math classroom, especially in terms 

of students creating meaning from their photographs, and using their photographs to express that 

meaning to others.  Photographs help students to make connections between mathematics 

concepts, but also to make connections between math in different contexts and environments.  

Finally, in terms of sideways thinking, an added benefit in photography is that it can be practiced 

at any time – not just when making photographs (Patterson, 2004).  Similarly, in mathematics, 
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many of the skills mentioned above can be used and practiced at any time – not just when 

children are in their math classrooms. 

Photography and the Importance of Abstracting and Selecting in Elementary Mathematics 

Research in photography emphasizes the importance of the photographer being able to 

abstract and select (Patterson, 2004).  In photography, abstracting, or separating the parts from 

the whole, is recognizing both the basic form of something and the elements that make up that 

form.  It is an important skill in making good photographs, because it helps photographers to 

recognize the visual elements that are common to all subject matter.  Once photographers have 

abstracted the visual elements most essential to a person, place, or thing, they have to select.  

Selecting is choosing those parts of the subject matter that will best express the character of the 

person, place, or thing.  Abstracting and selecting are important skills in photography, because 

they help the photographer to be able to say more by showing less (Douglis, 2011). 

Photography is very much a matter of identifying the basic elements and knowing how to 

put them together in various expressive combinations (Patterson, 2004).  Abstraction is a 

fundamental process of mathematics as well (Ferrari, 2003).  With regard to abstraction, Ferrari 

states, “Mathematical practice requires one to develop the ability to focus on what is important, 

without completely getting away from the contexts” (p. 1227).  For example, imagine that 

students are asked to solve the following problem: 

“There are 13 girls and 11 boys in Miss Ibarra’s class.  Miss Ibarra wants to take her class 

on a trip, and she will use a van company for transportation.  Each van has a company 

driver, and then room for 10 more people.  How many vans should Miss Ibarra order?  

Explain your reasoning.” 
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In this case, abstracting (according to the ideas in photography) would be recognizing the basic 

elements of the stated problem, while selecting (according to the ideas in photography) would be 

recognizing which of those elements are needed to solve it.  One element identified through 

abstraction might be the fact that there were 13 girls and 11 boys in the class; however, it would 

be in the selection process when students would realize that gender was not relevant to the 

problem.  While students could ignore this part of the context, they would still need to pay 

attention to other parts of the context, such as the fact that one cannot order parts of a van. 

Similar to sideways thinking, abstracting is something that can be practiced at any time – 

not just when making photographs, or not just when children are in their math classrooms.  

However, whereas thinking sideways involves chance and encourages completely new ways of 

looking at things, abstracting brings an order and a structure to seeing.  Abstracting and selecting 

help to make clear expression possible (Patterson, 2004), and photography is a tool that can help 

develop these processes in elementary classrooms, especially when it is used with certain 

problem types such as open-ended and interactive problems. 

Open-Ended Problem Photographs 

According to Wu (1994), “Open-ended problems have become a popular tool in 

Mathematics education in recent years” (p. 115).  Open-ended problems, compared to closed 

problems, present students with varied approaches or multiple solutions to a problem (Bragg & 

Nicol, 2011).  Research suggests that using open-ended problems in the classroom is an effective 

teaching strategy for establishing, consolidating, extending, reinforcing and reflecting on 

mathematical concepts (Busatto, 2004).  Through open-ended problems, students are presented 
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with opportunities to explore varied strategic approaches and encouraged to think flexibly about 

mathematics. 

While the process of developing open-ended problem photos can be challenging, it can 

ultimately enhance one’s ability to connect with mathematics and to see math differently.  Bragg 

and Nicol (2011) suggest that one method of building students’ and teachers’ awareness of the 

beauty and complexity of the mathematics around them is through activities that incorporate 

photography with open-ended problem posing, thereby creating an open-ended problem picture.  

An open-ended problem picture is a photograph of an object, scene or activity that is 

accompanied by one or more open-ended mathematical word problems based on the context of 

the photo.  Educators and students can collect their own photographic images and design open-

ended problems based on these images. 

This can be done by starting with a problem, or starting with a photograph (Bragg & 

Nicol, 2011).  By starting with a problem, the problem-poser begins by considering a math 

concept and then creates open-ended questions with an image in mind.  The problem-poser then 

searches for photos that capture ideas or concepts that correspond to the questions.  Problem-

posers may find that there are many possible photos that would make sense to use for a certain 

question.  Through this approach, the mathematics is at the forefront and drives the abstraction of 

the mathematical concepts and the selection of the image.  Alternatively, the photos may be 

staged to fit the requirements of the open-ended problem.  The inspired use of resources in the 

home environment can assist in the development of a series of questions that could stimulate 

students’ interests thereby increasing motivation (Ainley, 2004). 
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A second approach to designing open-ended problem pictures is starting with a photo.  

This approach first involves the exploration of one’s environment with a camera in hand.  

Immersion in the environment heightens the problem-poser’s awareness of the potential for 

mathematics in everyday images (Bragg & Nicol, 2011).  Research involving open-ended 

problem pictures is important because the success of creating and using open-ended problem 

pictures depends on students’ abstracting of the mathematical concepts, as well as the selection 

of the content of the photographs. 

Interactive Problem Photographs 

When considering photographs used in math problems, an important distinction exists 

between an interactive problem photograph and an illustrative problem photograph.  A problem 

is considered interactive if the accompanying photograph is essential to complete the problem, 

and is considered illustrative if the accompanying photograph is a visual enhancement or 

motivational device but unnecessary for solving the task (Bragg & Nicol, 2011).  For example, 

students need to use the photo to respond to the question, “Describe the shapes in this 

playground photo.”  If the question was posed as “Describe the shapes you might find on a 

playground” instead, the photograph would act as a catalyst for the problem and be considered 

illustrative rather than interactive.  Therefore, while adopting illustrative questions may have 

educational merit, the central stimulus of the photo lacks function and purpose.  The opportunity 

for building connections with the surrounding environment may be lost due to the insignificance 

of the photo in the problem solving process (Ainley, 2004). 

An exciting aspect of students developing open-ended problem photos is their awareness 

of the mathematics in the ‘real-world,’ and their proactive approach to creating meaningful 



18 
 
mathematics tasks (Bragg & Nicol, 2011).  However, there is evidence that suggests that some 

children who successfully perform mathematical problems in the ‘real-world’ are unable to solve 

word problems in a classroom context (Nunes, Schliemann, & Carrere, 1993).  As Ainley (2004) 

suggested, “Interest opens the individual to new experience and brings them in direct contact 

with knowledge and experience that goes beyond their current level of achievement.  In 

achievement settings positive activating emotions serve the function of maintaining connection 

with learning activities” (p. 7). 

In order to bridge interests, classroom mathematics, and real-world mathematics, research 

emphasizes the importance of asking students to explain their responses at the end of each open-

ended problem photo (Bragg & Nicol, 2011).  This puts less importance on the correct answer, 

and more importance on the processes involved in solving the problem.  Bragg and Nicol give 

the following warning: 

It is important to avoid the misconception that any response to an open-ended problem is 

acceptable.  Requesting that students explain or illustrate their responses will provide the 

necessary evidence to determine the complexity of their cognitive processing of the 

problem. (p. 8) 

The (Mathematical) Language Experience Approach 

Because the research described up to this point has emphasized the importance of 

photographs serving as tangible prompts to encourage more meaningful discussion, it is 

interesting to consider other academic areas where this type of system has been used, and the 

affordances it has allowed.  The Language Experience Approach (LEA) draws upon the 

important link between experience and education; it extends the practice of scribing a child’s 
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discussion to using the child’s narrative as the text for reading instruction (Wurr, 2002).  Using 

these stories, a teacher can engage the child in discussion about important text features as well as 

invite the child to reread and possibly revise the stories (Marinak, Strickland, & Keat, 2010).  

LEA supports children’s concept development and vocabulary growth while offering many 

opportunities for meaningful reading and writing.  Important conversations with teachers and 

child-produced photographs can extend children’s knowledge of the world around them while 

building a sense of classroom community (Marinak et al., 2010). 

While the Language Experience Approach provides advantages for all children, it is 

especially useful as a method with dual language learners.  When dual language learners 

described their photographs, teachers saw the power of those photographs to strengthen each 

child’s voice (Keat, Strickland, & Marinak, 2009).  According to Keat et al.: 

If voice is the capacity to convey a message from one person’s mind to another’s, then 

the child-taken photographs provided the dual language learners with microphones that 

enhanced their ability to have their messages understood.  Teachers heard the children’s 

diverse voices in many ways. (p. 35) 

Another example of the advantages with dual language learners is provided by Marinak et al. 

(2010) as they describe a familiar scene that takes place in diverse classrooms: 

The teacher is working hard to bring a child who is a dual language learner into the class 

conversation.  She attempts to engage the child, and the child responds with a smile and 

silence.  The teacher’s intent to care for and nurture the whole child is there, but 

something is in the way.  Often the assumption is that the child’s limited language skills 
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are getting in the way of the teacher connecting with that child.  However, is that the only 

obstacle? (p. 36) 

Marinak et al. (2010) explored this question, and concluded that while spending one-on-one time 

with children is always important, it was photo-narrations and LEA processes that helped 

teachers connect with dual language learners.  The aforementioned studies are particularly 

significant in that they provide practiced-based evidence of how photographs elicited more 

meaningful information from students than questioning, writing, or interviewing alone. 

Photography and a New Vision of Realism for Elementary Mathematics 

Patterson (2004) discusses the capacity of photography to render detail with a precision 

no other visual medium can match.  When people examine photographs, they see many things 

that their eyes normally miss.  In this way, a photograph becomes an aid to visual discovery.  

The faithfulness to detail and the objectivity of the camera counteract normal human subjectivity 

and force people to look at physical objects more carefully.  This characteristic of photography 

demonstrates photography’s intrinsic connection with realism (Benovsky, 2012). 

The notion of ‘real-life’ mathematics is a recurring theme in the literature surrounding 

elementary mathematics, as well as the literature surrounding the use of photography in 

education (Bragg, Pullen, & Skinner, 2010; Sparrow, 2008).  Research describes how creating 

opportunities that are real and relevant to the students provide possibilities to generate authentic 

engagement in mathematics (Bragg et al., 2010; Van den Heuvel-Panhuizen, 2000).  

Furthermore, in addition to the mathematical tasks being meaningful, “The tools teachers provide 

to support problem solving should be meaningful and, where possible, link to the representations 

students use in non-school settings and how those representations are used” (Wager, 2012). 
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Many mathematics educators support the view that we should make mathematics real for 

students and this is reflected in national and local curriculum documents (Sparrow, 2008).  As 

Gerofsky (1996) noted, some mathematics educators have taken this challenge to mean creating 

higher quality and more varied word problems, the view being that making the connections to 

real-life situations is undertaken through students engaging in word problems.  A logical 

conclusion might be that the more realistic or true-to-life mathematical visualizations, pictures, 

and manipulatives are, the better they will serve the students, teachers, or researchers who view 

or use them.  Research however, disputes this conclusion in several areas.  The following section 

examines three different forms of mathematical representations and highlights different 

affordances and challenges of using realistic representations. 

Realistic Visualizations 

Elementary school math textbooks and secondary school math textbooks have some key 

differences in terms of the purpose of the visual representations they contain.  Most elementary 

school textbooks include representational pictures such as photographs or line drawings that 

illustrate the overall theme of the text and situate learning (Schroeder et al., 2011).  Their major 

function is not to communicate information, but to keep students interested and to assist their 

comprehension (Carney & Levin, 2002).  In secondary education, in contrast, the major function 

of instructional pictures is to convey additional information not provided by the text.  The 

pictures can be realistic or exhibit various degrees of abstraction (i.e., photographs, tables, 

graphical representations).  The interpretation of logical pictures – highly schematized pictures 

that do not look like the things they represent but are to be interpreted in some conceptual or 

logical way – is a case in point (Schroeder et al.).  Similar to complex realistic pictures, logical 
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pictures require high cognitive demands of learners.  Students are required to actively invest the 

mental effort needed to process the picture (Scheiter, Gerjets, Huk, Imhof, & Kammerer, 2009). 

Scheiter et al. (2009) have summarized the different arguments that have been brought 

forward for why one or the other type of representational format may be better suited to support 

knowledge acquisition.  Proponents of realistic visualizations have argued that learning will be 

more complete as the number of cues in a learning situation increases.  On the other hand, 

opponents of realistic visualizations have suggested that learning will be hindered by realistic 

visualizations because of the high demands with regard to visual attention.  Excessively realistic 

cues may be distracting or possibly even evoke responses in opposition to the desired learning. 

Informational Pictures 

Picture books are one way that young students gain exposure to mathematical concepts 

and ideas.  Harland (1990) noted that children’s literature has the potential to motivate children 

to ask questions, investigate problem situations, and communicate their thinking and 

understanding (as cited in Elia, Van den Heuvel-Panhuizen, & Georgiou, 2010, p. 127).  

Furthermore, Griffiths and Clyne (1991) noted that picture books may help children develop 

positive attitudes towards mathematics (as cited in Elia, Van den Heuvel-Panhuizen, & 

Georgiou, 2010, p. 127). 

Elia, Gagatsis, and Demetriou (2007) proposed a categorization of pictures based on their 

function in the context of arithmetic problem-solving, including a decorative, a representational, 

an organizational, and an informational function.  Decorative pictures do not provide any form of 

problem-relevant information.  Representational pictures illustrate a part or the entire content of 

the problem, but are not necessary for the understanding or the solution of the problem.  
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Organizational pictures provide directions for the organization of the problem’s information, or 

drawn or written work that support the solution.  Similar to the representational pictures, they are 

not essential for the solution of the problem.  Informational pictures provide information that is 

essential for the solution of the problem, because the content of the problem is based on the 

picture. 

Seemingly contrary to the findings of Bragg and Nicol (2011) that were discussed earlier, 

which claimed that interactive problem photos afforded the opportunity for building connections 

with the surrounding environment when the photo is significant in the problem solving process, 

Elia et al. (2007) found the informational pictures had a detrimental effect in solving arithmetic 

problems.  This was attributed to the switching between information in the two different sources 

(text and picture) and the combination of these streams of information, which entail additional 

increase in the cognitive load of the task (Berends & Van Lieshout, 2009).  A difference to keep 

in mind however is that Bragg and Nicol are referring to photographs only, while Elia et al. are 

considering other forms of visual representations when they refer to pictures, such as drawings 

and illustrations.  Also, Bragg and Nicol focused primarily on pre-service teachers in their 

research, while Elia et al. focused primarily on kindergarten students. 

In general, when illustrations and photographs are considered together, the story-related 

and mathematics-related components with a representational function elicited mathematical 

thinking to a greater extent than those with an informational function (Elia et al., 2010).  

Whereas the components with a representational function are an alternative ‘description’ that is 

additional to the text, in the case of the components with an informational function, the 

mathematical information can be obtained only from the picture as the content of the text is not 
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sufficiently informative.  This suggests that combining text and pictures of a similar content has 

a greater power to mathematically engage children than combining text and pictures of different 

content. 

It is interesting to note that even the pictures whose mathematical components have a 

representational function but are not congruent with the mathematical content of the text may 

have the potential to yield stimulating cognitive activity to children, especially to those children 

who understand the relation between the picture and the text.  Research has demonstrated that a 

picture of this kind elicited meaningful mathematical thinking to children, as it motivated them 

to compare the mathematical content of the text (Elia et al., 2010). 

Concrete Manipulatives 

The idea that concrete materials benefit children’s learning has a long history in 

developmental psychology and education (McNeil & Uttal, 2009).  McNeil and Uttal state, “Too 

often, however, educators and researchers may use these historical roots to give concrete 

materials a blanket endorsement.  Educators seem to assume that children are making conceptual 

progress as long as they are busy working with concrete materials” (p. 137).  However, just as 

adults’ thinking cannot be labeled as inherently abstract, children’s thinking cannot be labeled as 

inherently concrete.  Also, it cannot be assumed that students will automatically construct 

abstract knowledge from interactions with concrete materials. 

Sarama and Clements (2009) suggest that what matters is not whether a learning material 

is concrete or abstract but whether and how students gain insight into the meaning or purpose of 

what they are learning.  They posit that there are two different types of concrete knowledge.  

Students with sensory-concrete knowledge need sensory material to make sense of a concept or 
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procedure.  Integrated-concrete knowledge is knowledge that is connected in special ways.  What 

ultimately make mathematical ideas integrated-concrete are not their physical characteristics but 

how connected to other ideas and situations they are.  Furthermore, good manipulatives are those 

that aid students in building, strengthening, and connecting various representations of 

mathematical ideas (Uttal, O’Doherty, Newland, Hand, & DeLoache, 2009). 

Sarama and Clements (2009) suggest, “An overarching but underemphasized reason for 

the positive effects of computer manipulatives in various studies is that they provide unique 

affordances for the development of integrated-concrete knowledge” (p. 147).  These affordances 

include bringing mathematical ideas and processes to conscious awareness, encouraging and 

facilitating complete, precise explanations, and supporting mental actions on objects (Sarama & 

Clements, 2009).  Other researchers have looked at the affordances of virtual manipulatives as 

well.  For example, Triona and Klahr (2003) examined how virtual manipulatives could provide 

educational benefits to children without the physical interaction of virtual manipulatives, and 

found improvements in learning when graphical representations are linked with symbolic 

representations.  Further, Manches and O’Malley (2012) suggest, “Virtual representations may 

offer pedagogical advantages such as flexibility and control over interaction as well as more 

pragmatic benefits such as costs and the ability to share resources” (p. 417).  While these 

affordances are situated in research involving virtual manipulatives, a purpose of this study is to 

examine whether similar affordances can be found through the use of photography in elementary 

mathematics. 

An essential problem for mathematics instruction is to help children to understand, and to 

manipulate, symbolic representations.  Manipulating concrete objects is certainly important, 
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particularly in the early stages of learning, but children must be able to connect concrete and 

more symbolic representations.  The concept of dual representation can shed light on this 

fundamental problem (Uttal et al., 2009).  The central tenet of this concept is that all symbolic 

objects have a dual nature; they are simultaneously objects in their own right and representations 

of something else.  To use a symbolic object effectively, one must focus more on what the 

symbol is intended to represent and less on its physical properties.  In terms of the student-

generated photograph, the photo itself is an object, but it is also a representation of a 

mathematical concept or problem component. 

Sarama and Clements’ (2009) research with computer-based manipulatives also 

highlights the need to think carefully about the design and use of concrete manipulatives.  They 

note that computer-based manipulatives may make generalization and transfer easier than 

concrete manipulatives do.  Using computer-based manipulatives reduces the demands of dual 

representation, enabling children to focus less on the on-screen objects themselves and more on 

the connections between the manipulatives and mathematical representations. 

Other studies also provide evidence that concrete manipulatives may be distracting for 

students, although they differ in their reasoning about why this was the case.  Kaminski, 

Sloutsky, and Heckler (2009) suggest that realistic concrete materials convey superficial 

information that interferes with learning.  For example, a child counting apples may be distracted 

by the shape or color of the apples and, as a result, may be less likely to focus on how many 

apples are present.  In this case, the attributes of the apple (shape or color) are irrelevant and they 

distract learners from the information that educators intend to share (number).  In other words, 

the distracting or misaligned object features themselves hinder learning.  Sarama and Clements 
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(2009) reinforce this idea by pointing out that physical manipulatives, in particular, can be 

distracting because they often have properties that are irrelevant to the target concept. 

Uttal et al. (2009) suggest that realistic concrete materials hinder learning because 

children must deal with the demands of dual representation.  According to this view, realistic 

concrete materials hinder learning because they have features that draw children’s attention to 

the objects themselves rather than to the abstract concepts they represent.  In dual representation, 

the individual features of the concrete objects hinder learning only to the extent that they pull 

attention toward the objects. 

Martin (2009) provides an entirely different framework for understanding why realistic 

concrete materials may hinder learning.  According to Martin, Physically Distributed Learning 

(PDL) is the coevolution of children’s actions and ideas over time.  In order for PDL to occur, 

learners need to interact with the environment in ways that allow them to construct stable, 

generalizable concepts for themselves.  The problem of realistic concrete materials is that they 

may sometimes do too much of the work for learners.  What this research suggests is that 

whether a manipulative is concrete or abstract, if a given set of materials provides children with a 

correct interpretation from the start, children may not engage in the active process of adapting to 

and reinterpreting the environment, and learning will be shallow.  Photography has the potential 

to avoid this problem since it involves the photographer learning to think sideways, as well as 

abstracting and selecting subject matter from the environment.  In other words, a photograph 

itself cannot provide a child with a correct interpretation; only the child can provide that 

interpretation. 
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Theoretical Framework 

This portion of the literature review discusses the theoretical framework for the study.  It 

includes research about Activity Theory and the Theory of Realistic Mathematics Education, and 

then situates the study within a hybrid of the two theories. 

Activity Theory 

 Vygotsky’s view of human learning challenged traditional views of mathematics as 

value-free, objective, and divorced from everyday personal concerns (Crawford, 1996).  

According to Vygotsky, the development of mathematical knowledge had a socio-cultural 

component in that it was mediated by the use of cultural tools, such as mathematical symbols, 

and also by interpersonal relations (Cobb, Zhao, & Visnovska, 2008).  In mathematics education, 

this social view of the construction of mathematical knowledge means that learning mathematics 

is seen as a process of enculturation in which classroom interaction is a central element (Sfard, 

Nesher, Streefland, Cobb, & Mason, 1998).  In this theory, learners are seen as active 

constructors of knowledge (Van den Heuvel-Panhuizen & Van den Boogaard, 2008).  This 

“activity” of constructing knowledge serves as the foundation to Engestrӧm’s Activity Theory 

(Engestrӧm, 1999). 

There are three generations of Engestrӧm’s Activity Theory (Yamagata-Lynch, 2010).  In 

the first generation of this theory, subjects (individuals) use mediational means (tools) to produce 

objects (outcomes).  In the case of this study, the subjects would be the students in the study, the 

mediational mean could be the digital camera if the produced object was the digital photographs, 

or the mediational mean could be the photographs themselves if the produced object was the 

mathematical outcome, which ideally consists of increased understanding and increased 



29 
 
communication about mathematical understanding.  In this model, the focus is more on the 

individual components rather than the relationships between and among the components. 

 In the second generation of this theory, the focus shifts from the individual components 

to the relationships between and among the components.  The original Vygotskian triangle 

consisting of subjects, mediational means, and objects is now considered an activity system that 

is influenced by and interacts with elements such as the community, rules, and the division of 

labor (Engestrӧm, 1999).  In the case of this study, the community could consist of the 

environment in school, in the home, or in the community.  The rules therefore, both photographic 

and mathematical in nature, would depend on which community is being considered, as would 

the division of labor, which determines the extent to which learning is passive or active.  While 

this generation seems more complete than the first, it seems incomplete in that it does not 

simultaneously take into account multiple environments. 

 It is the third generation of Engestrӧm’s Activity Theory that seems to best account for 

these multiple environments.  In this generation, the activity systems, or systems involving each 

environment and the norms and division of labor from those environments, work together to 

form a network (Yamagata-Lynch, 2010).  This generation seems to best represent the 

components of this study because it simultaneously considers the activity systems of multiple 

environments in the network.  This is important when looking at a tool that a child can use to get 

a desired outcome, especially when the child has the ability to use the tool in multiple 

environments, each having a unique set of rules and norms.  It is also important to consider how 

these systems interact.  For example, a student who has access to a cell phone camera at home 
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will have a different experience and outcome using digital photography in the classroom than a 

student who does not have such access at home. 

 Figure 1 highlights how Activity Theory fits with the components of this study.  The 

students use the digital camera to produce digital photographs, which are then used to 

communicate mathematical understanding.  The rules of these activities are somewhat dependent 

on the environment in which they take place (school for the case of this study).  There are also 

rules surrounding mathematics and photography that are in effect in any environment.  An 

example of a photographic rule is that students will not be able to produce a clear image if they 

hold the camera too close or too far from the object that they are photographing.  An example of 

a mathematical rule is that while a ball may have some properties of a circle, it is actually a 

sphere.  Further, in each environment, there is a different division of labor that students must 

negotiate.  Pre-K school assessments depend on the interaction, and especially the 

communication, between teachers and students.  As teachers work to get information from 

students, and as students work to give information to teachers, there is specific work that each 

must do, and this study examines how the student photographs can help students with that work. 
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Figure 1: Activity Theory Framework (adapted from Engestrӧm, 1999) 
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Theory of Realistic Mathematics Education 

 Realistic Mathematics Education (RME) is a teaching and learning theory in mathematics 

education developed by Freudenthal and his colleagues at the former IOWO, the oldest 

predecessor of the Freudenthal Institute (Van den Heuvel-Panhuizen, 2000).  RME is similar to 

Activity Theory in that it views mathematics as a human activity, but it also views mathematics 

as something that must be connected to reality (Cobb et al., 2008).  Reality in this case refers not 

just to the connection with the real-world, but also refers to problem situations which are real in 

the student’s mind.  Activity Theory, especially as described in the third generation, does serve 

as a strong model for this study; however, it seems to be missing this explicit component 

regarding the importance of mathematics being connected to reality.  RME perceives 

mathematics as an integral part of the human experience.  Furthermore, it sees children as active 

participants in the learning process, assigns great importance to giving children the opportunity 

to share and discuss ideas for solutions, and attaches high value to providing meaningful contexts 

from which context-based mathematical knowledge can emerge that serves as a basis for 

reaching more general and formal levels of understanding (Van den Heuvel-Panhuizen & Van 

den Boogaard, 2008).  A central goal for this study was that the process of students taking 

photographs and then using those photographs to explain their understanding would provide this 

more meaningful context for them to share and discuss their ideas, as well as make the problem 

situations more real in the students’ minds. 

 Cobb et al. (2008) describe two types of mathematization central to RME:  horizontal and 

vertical.  In horizontal mathematization, the students come up with mathematical tools which can 

help to organize and solve a problem located in a real-life situation.  On the other hand, vertical 
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mathematization is the process of reorganization within the mathematical system itself.  In RME 

tasks, the starting point of an instructional sequence should be experientially real to students, and 

their engagement in the math activity should be personally meaningful in some way.  For the 

designer, the immediate goal is that students’ interpretations and solutions should lead to the 

development of informal ways of speaking, symbolizing, and reasoning across a range of 

instructional activities.  This is the essence of horizontal mathematization (Cobb et al., 2008).  

Thompson (1992) reinforces the significance of this process by stating the importance of 

students becoming engaged in thinking about the ways that math relates to their real-world 

experiences.  Further, it is important that this type of reflection occur both in and out of school 

contexts.  Figure 2 shows the RME framework (adapted from Lange, 1996). 

 

Figure 2: RME Framework (adapted from Lange, 1996) 
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Activity Theory and RME Hybrid 

Ball (1993) articulated a central issue with which mathematics educators continue to 

struggle when she asked: 

How do I [as a Mathematics teacher] create experiences for my students that connect with 

what they now know and care about but that also transcend the present?  How do I value 

their interests and also connect them to ideas and traditions growing out of centuries of 

Mathematical exploration and invention? (p. 375) 

I believe it is a hybrid model of the third generation of Engestrӧm’s Activity Theory, combined 

with the aforementioned components of Realistic Mathematics Education that can best address 

this issue.  The Activity Theory RME hybrid model places the RME framework at the center of 

the Activity Theory framework, as seen in Figure 3.  For this study, the hybrid model is more 

complete than either of the first two frameworks on their own in that it:  1) considers the network 

of activity systems within the school, home, and community along with the corresponding rules 

and division of labor, and 2) outlines the process of how students use digital cameras to produce 

digital photographs, which in turn helps students to communicate their understanding.  This is 

done through a repeating pattern of vertical mathematization (the reorganization of ideas within 

mathematics), leading to abstraction (both photographic and mathematic), leading to horizontal 

mathematization (the reorganization of ideas within the real world), leading to different 

representations and understandings of the real world (the real world including the mental, the 

personal, and the physical). 
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Figure 3: Hybrid Activity Theory/RME Framework 
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Notice that in this hybrid model, the more outward and visible activity of students taking 

photographs, and then using those photographs to communicate their understanding is occurring 

simultaneously with the cycle described in the RME framework.  The goal of this entire process 

is to give students a tool (their photographs) to help them better articulate their thinking.  Further, 

this hybrid model suggests that the advantages of student photography can extend beyond just 

the articulation phase.  Moving on from how students articulate their thinking, they can now 

choose additional items to photograph, and make decisions (based on mental math constructs as 

well as the physical environment) about how to photograph those items.  This process and these 

images lead to further mathematization as the students reflect on their images in relation to the 

tasks and questions presented to them.  And this reflection in turn leads to the abstraction and 

formalization of mathematical ideas, and ultimately to further mathematization as students again 

articulate their ideas and understanding.  The immediate goal of this study was to examine how 

student photography for pre-K students could help them better communicate their mathematical 

understanding; however, the implications for instruction could reach far beyond mathematics as 

well as pre-K this when this hybrid model is considered. 
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Chapter 3 
Methods 

 
Participants and Location 

 The pre-K students who were asked to participate in this study attended the Growing 

Flowers Learning Center, and the Sun Shines Learning Center, both located in towns that are 

close to one another in the same Midwestern state.  These sites were identified by consulting 

with a pool of early childhood teachers and other professionals who were in a professional 

development graduate course through a local Midwestern university.  Pre-K teachers were 

identified who a) were not teaching for schools that were part of the major metropolitan public 

school district in the area, and b) had wrap-around care, which means the students attend an 

academic portion of pre-K during the morning, and then childcare wraps around through the 

afternoon.  Wrap-around care was important for this study because it ensured that students were 

able to participate in this study during the afternoon daycare or non-academic portions of their 

mornings rather than the academic portions of their day.  The students who participated in this 

study did so by their own choosing, and had the formal consent of a parent or guardian. 

The Growing Flowers Learning Center is a state licensed group childcare center.  They 

provide full-time care for children aged six weeks through pre-K (age 4-5).  The Sun Shines 

Learning Center is affiliated with a branch of the YMCA.  They provide pre-K and kindergarten 

programs for four- and five-year-olds.  Both sites focus on a child-centered, play-based 

curriculum for pre-K, and have teaching staff who are certified teachers.  The Growing Flowers 

Learning Center and the Sun Shines Learning Center classrooms that I worked with had 

approximate enrollments of 15 and 25 pre-K students respectively, and most of those students 

attended the learning centers throughout the summer.  The exact number of participants for the 
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study was 24 (8 students from the Growing Flowers Learning Center, and 16 students from the 

Sun Shines Learning Center).  Due to the nature of the research tasks in this study, all 

participants who wished to participate and who gained consent were able to participate this 

study, with the exception of one student who ended participation in the summer program early. 

Task Selection 

 Tasks for this project were based upon the pre-K mathematics objectives stated in the 

Teaching Strategies GOLD Objectives for Development & Learning program (Heroman, Burts, 

Berke & Bickart, 2010).  Although this curriculum was not used at the research cites, it was 

chosen because it is used in the major metropolitan public school district in the area.  Research in 

choosing and refining tasks for this project stemmed from two key areas - the cognitive demands 

of mathematical tasks and the Cognitively Guided Instruction problem types (Carpenter, 

Fennema, Franke, Levi, & Empson, 1999).  According to Smith, Stein, Arbaugh, Brown, & 

Mossgrove (2004), all tasks are not created equal.  Different tasks require different levels and 

kinds of thinking from students.  Low-level tasks often require students to perform a memorized 

procedure in a routine manner with little cognitive engagement.  For example, imagine that 

students are asked to count out loud verbally to ten.  This process demands little engagement 

with concepts and does not stimulate students to make purposeful connections to meaning or 

relevant mathematical ideas (Clements, 2001).  In contrast, imagine that students are asked to 

describe a group of ten items (some red and some blue).  Even though the mathematical content 

is similar in both examples (both fall under the objective of using number concepts and 

operations), they require different types of thinking from students. 



39 
 

A task like that in the second example meets the requirements of what Stein, Smith, 

Henningsen, & Silver (2009) refer to as a high-level task.  High-level tasks focus on students’ 

reasoning and explanations about their cognitive processes, and require considerable cognitive 

effort by students.  They demand engagement with concepts and stimulate students to make 

purposeful connections to meaning or relevant mathematical ideas (Smith et al., 2004).  This is in 

contrast to low-level tasks, which focus more on the answer than the students’ cognitive 

processes involved, and require little cognitive effort by students (Stein et al., 2009). 

Research about Cognitively Guided Instruction (Carpenter et al., 1999), specifically the 

problem types that are most challenging for students, was also considered.  A goal of Cognitively 

Guided Instruction (CGI) is that young children become independent problem solvers who are 

able to approach and solve word problems using their own methods, and not those told to them 

by a teacher. 

According to Carpenter et al. (1999), a number of factors influence what makes some 

problems more challenging for students than others.  First, a problem that can be acted out is 

easier for a child to solve than one that cannot be acted out.  Second, when the quantities given in 

a problem refer to a complete physical set of physical objects or amounts, the problem can be 

modeled directly.  When a word problem can be directly modeled, that is, represented in some 

concrete way on fingers, with tally marks, drawings, or by manipulating counters, the problem is 

easier.  Next, when first learning to solve word problems, young children approach them in the 

order in which they hear them.  They do not begin at the end of the problem and work backward.  

Finally, because young children solve problems in the order that they hear them, problems that 
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are worded in such a way so that the unknown quantity is located at the end are easier to solve.  

Problems with the missing quantity in the middle or at the beginning are more difficult. 

Because the literature on CGI stresses the usefulness of students being able to work with 

physical manipulatives as they work through and model problems, the tasks that were selected 

for this project are those that can be modeled, solved, and/or explained with physical 

manipulatives.  Since the literature on using photography with children suggests that 

photography might be useful to produce a manipulative (the photograph) which could serve to 

help students think through various problems, it was imperative to have tasks enacted with the 

physical manipulatives as well as with the student photographs and given photographs in order to 

see both the general affordances of using photographs as well as the specific affordances of using 

certain types of photographs in different ways. 

Carpenter and Lehrer (1999) identify two main types of reflection discussed in 

mathematics education research:  reflection by students about what they are doing and why, and 

reflection about tasks and their solutions after the tasks have been completed.  Students are more 

likely to be reflective while solving problems if they know they will be asked to explain how 

they solved the problem.  Reflection can also be encouraged by the type of questions posed to 

students while they are solving problems.  In this sense, Herbel-Eisenmann and Breyfogle (2005) 

distinguish between funneling and focusing questions.  Funneling occurs when questions lead 

students to a desired end.  Here, more of the cognitive work is done by the teacher than the 

student.  Focusing on the other hand, occurs when questions lead students to explain what they 

are thinking in a clear and articulate fashion.  Here, more of the cognitive work is done by the 

student than the teacher.  Questions like “What are you doing?  Why are you doing that? and 
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How will that help you solve the problem?” encourage reflection.  Being asked such questions on 

a regular basis helps students internalize them, so that they will ask themselves the same 

questions as they think about a given task (Carpenter & Lehrer, 1999). 

The ability to communicate or articulate one’s ideas is an important goal of education, 

and it also is a benchmark of understanding (Carpenter & Lehrer, 1999).  Articulation involves 

the communication of one’s knowledge, either verbally, in writing, or through some other means 

like pictures, diagrams, or models.  In order to articulate our ideas, we must reflect on them in 

order to identify and describe critical elements (Carpenter & Lehrer, 1999).  Furthermore, when 

dialogue becomes the central medium of teaching and learning, students can become active 

rather than passive participants in their education (Means & Knapp, 1991). 

Consent 

 Three types of consent were needed for this study, in addition to the UW IRB approval.  

First, the directors of the Growing Flowers Learning Center and the Sun Shines Learning Center 

each gave consent by signing the Site Director Consent Form (see Appendix A).  Second, 

consent was needed from parents and/or guardians of the students, as well as from the students 

themselves.  Parents and/or guardians, and students, gave consent by signing the Parent/Guardian 

Consent Form (parents/guardians) and the Student Assent Form (students).  Both of these forms 

are on the same document (see Appendix B).  These forms were either given out to students to 

take home to their parents/guardians, or were given directly to the parents/guardians by the pre-K 

teachers at the Growing Flowers Learning Center and the Sun Shines Learning Center.  Students 

or parents/guardians brought the signed forms back to the teachers, who then gave them to me.  

A second round of forms were given to those students (or their parents/guardians) who did not 
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return their initial forms, but after that, it was assumed that those who did not return the forms 

did not wish to participate in this study. 

Data Collection 

The data for this study was collected during the summer of 2014.  As stated in a previous 

section, the N for this study was 24.  Students were at these sites Mondays-Fridays, with the 

mornings dedicated to their pre-K academics, and wrap-around daycare programs provided in the 

afternoons.  All data was collected either during the afternoon daycare portions of the day, or 

during the non-academic portions of the morning (i.e., snack time).  Before students took any 

photographs, they were read an IRB approved script of instructions (see Appendix C). 

Students took their photos on a secure iPad, and used the free version of the drawing app 

You Doodle to mark their photos as they spoke about them.  If multiple useable photos for a task 

were taken, students were allowed to choose the one that they wanted to save.  There were two 

copies of each photo saved:  1) the original photo before the students spoke about them, and 2) 

the final photo after the students spoke about them.  These final photos had their drawing marks 

saved to them, if indeed any drawing marks were made; otherwise, the final photos look identical 

to the original photos.  The entire interaction with each student was audio recorded, and the 

student photographs were securely stored. 

Each student interviewed went through tasks for the following two objectives from the 

GOLD curriculum:  Uses number concepts and operations, and explores and describes spatial 

relationships and shapes.  These objectives and specific skills within these objectives were 

selected because they rely more heavily on students’ explanations and descriptions of ideas 

rather than just showing that they can do something or not (for example, can the student verbally 
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count to 10).  If a student had wished to stop at any point before we got through all of the 

tasks/questions, we would have stopped for that day, and they would have had the opportunity to 

resume on a different day.  This was not necessary however, and all students were able to 

complete their tasks in a single session. 

Table 2 below shows all of the objectives and skills for pre-K mathematics in the GOLD 

curriculum, and the shaded portions are those that were selected for this study. 
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Table 2: Objectives and Skills for Pre-K Mathematics in the Teaching Strategies GOLD 
Objectives for Development & Learning Program 
 
Objective:  Uses number concepts and operations 
Skill:  Counts  Verbally counts to 20; counts 

10-20 objects accurately; 
knows the last number states 
how many in all; tells what 
number (1-10) comes next in 
order by counting 

Skill:  Quantifies Recognizes and names the 
number of items in a small set 
(up to five) instantly; 
combines and separates up to 
five objects and describes the 
parts 

Makes sets of 6-10 objects 
and then describes the parts; 
identifies which part has 
more, less, or the same 
(equal); counts all or counts 
on to find out how many 

Skill:  Connects numerals 
with their quantities 

Identifies numerals to 5 by 
name and connects each to 
counted objects 

Identifies numerals to 10 by 
name and connects each to 
counted objects 

Objective:  Explores and describes spatial relationships and shapes 
Skill:  Understands spatial 
relationships 

 Uses and responds 
appropriately to positional 
words indicating location, 
direction, and distance 

Skill:  Understands shapes  Describes basic two- and 
three-dimensional shapes by 
using own words; recognizes 
basic shapes when they are 
presented in a new orientation 

Objective:  Compares and measures 
Skill:  Compares and 
measures 

Compares and orders a small 
set of objects as appropriate 
according to size, length, 
weight, area, or volume; 
knows usual sequence of 
basic daily events and a few 
ordinal numbers 

Uses multiples of the same 
unit to measure; uses 
numbers to compare; knows 
the purpose of standard 
measuring tools 

Objective:  Demonstrates knowledge of patterns 
Skill:  Demonstrates 
knowledge of patterns 

Copies simple repeating 
patterns 

Extends and creates simple 
repeating patterns 
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 For each of the three skills selected for this study, there were three different sets of 

questions presented to students.  The Manipulatives & Their Photo questions first sought to 

determine how students respond when using only manipulatives (M), and then sought to 

determine how students respond when using a photo they took of those manipulatives (MP).  The 

Their Photo Only (P) questions sought to determine how students respond when using a photo 

they took of manipulatives without first responding using the manipulatives.  The Given Photo 

(G) questions sought to determine how students respond when using a content-related photo that 

was presented to them, but that they did not take themselves.  If students were assigned to the 

Manipulatives & Their Photo (MP) questions for the first set of questions within each skill, then 

they were assigned to the Their Photo Only (P) questions for the second set of questions within 

each skill, and vice versa.  Therefore, for each skill, 12 students were assigned to the 

Manipulatives & Their Photo (MP) questions, and a different set of 12 students were assigned to 

the Their Photo Only (P) questions.  All students were asked the Given Photo (G) questions for 

both sets of questions within each skill. 

For each skill, there were minimal changes between the two question sets.  In the 

Quantifying tasks, one question set involved two different numbers of checkers, while the other 

question set involved an equal number of checkers (see Appendix D1 for this interview 

protocol).  In the Understanding Spatial Relationships tasks, the position of the materials varied 

for each set, but the same materials were still used (see Appendix D2 for this interview protocol).  

In the Understanding Shapes tasks, the actual shapes used varied for each set, but were still kept 

to basic 2-dimensional and 3-dimensional shapes with different attributes such as size and color 

(see Appendix D3 for this interview protocol).  The goal was to make sure the content addressed 
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the appropriate skill while changing it slightly so that each student could do both question sets 

for each skill. 

 The Given Photo (G) portions of each task varied among the three skills.  In the 

Quantifying tasks, the given photos were generally similar to the task and used all of the same 

materials, but positioned the checkers in a way that might promote interesting noticings and 

comments.  In the Understanding Spatial Relationships tasks, the given photos were nearly 

identical to the task and used all of the same materials.  In the Understanding Shapes tasks, the 

given photos related to the shapes used in the task, but were of actual objects.  The goal was to 

be able to compare what happened when students were speaking from photos that were not their 

own when those photos were 1) similar to but not exactly like their photos and prior situations 

with manipulatives, 2) exactly like their photos and prior situations with manipulatives, and 3) 

completely different from their photos and prior situations with manipulatives.  Figure 4 below 

shows the Given photographs for each math content area:  Quantifying, Understanding Spatial 

Relationships, and Understanding Shapes. 
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Figure 4: Given Photographs for Each Math Content Area 

 



48 
 
Data Analysis 

To begin the data analysis process for this study, the audio recordings were transcribed, 

and an open coding system was used first to identify general categories of student responses for 

each content area, and then to code the responses.  Open coding was selected so that categories 

and subcategories of events, actions, and interactions could be placed into categories and 

subcategories depending on what the data showed, and not what categories were predicted ahead 

of time (Corbin & Strauss, 1990).  Research has shown that a key advantage of the open coding 

process is that the concepts emerge from the raw data and can later be grouped into conceptual 

categories (Khandkar, 1998).  The goal was to build a descriptive, multi-dimensional preliminary 

framework for later comparison of the photography situations to the manipulative-only 

situations. Furthermore, I didn’t want to set up codes ahead of time based on what I might have 

expected, since there would likely be categories of results that I could not predict ahead of time. 

My first research question asked what the affordances are of using photography with 

young children to make connections and explain their thinking when engaged in mathematical 

tasks.  To address this question, as well as to provide a more quantitative comparison between 

the content areas and photography situations, I structured my data analysis as follows:  1) For 

each content area, I recorded results from the Manipulative-only situation (M), and then 

compared the results from the photography situations to this baseline.  I noted when the results 

improved as compared to the Manipulative-only situation, and 2) These results could then be 

used to compare students’ performances across all three content areas, as well as to compare the 

performances across the photography situations. 

My second research question asked what affordances are offered by the use of 

photography in the individual assessment of the mathematical skills of young children.  To 
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address this question, I used the previously recorded data and looked at the implications for each 

individual student as compared to the group of students as a whole.  Putting these pieces together 

helped to form a layered narrative for individual students which had implications about the 

affordances of photography for these tasks.  Examining the results as a whole and individually 

was critical as the affordances often differed greatly moving from the group data to the 

individual data. 

 The choices about data analysis were also made in order to get an understanding of how 

the components of the Activity Theory RME hybrid framework work together to ensure that the 

division of labor was weighted towards the students being active in the learning process and the 

creation of mathematical knowledge, instead of being passive recipients.  The open coding of the 

transcribed data allowed for the examination of the students’ thinking in terms of vertical 

mathematization (the reorganization of ideas within mathematics), abstraction (both 

photographic and mathematic), horizontal mathematization (the reorganization of ideas within 

the real world), and different representations and understandings of the real world (the real world 

including the mental, the personal, and the physical).  Next, I will describe the specific data 

analysis process for each of the math content areas in this study. 

First, for the Quantifying tasks, students were asked the open-ended question of “What 

can you tell me about these groups of checkers?” after they sorted the checkers by color (black 

and red).  Student responses fell into the following 3 categories:  1) They didn’t respond without 

a more specific prompt, 2) They did respond, but their responses were not mathematical in 

content (i.e., they focused on the colors of the checkers but not the amounts), and 3) Their 

responses were mathematical in content (i.e., they focused on the amounts of the checkers).  
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When looking at the results, I distinguished responses that had room for improvement (numbers 

1 and 2 above) from responses that did not have room for improvement (number 3 above).  I did 

this in order to keep the focus on SNIP situations (situations where students show they are less 

proficient than they actually are), and to see how photography improved results in these cases. 

For the Quantifying tasks, students were also asked the closed question of “Are there 

more black checkers or red checkers?” after they sorted checkers by color.  Student responses 

fell into the following 3 categories:  1)They didn’t answer the question, or answered it 

incorrectly, 2)They answered the question correctly, but had no explanation or a non-

mathematical explanation as to how they knew (i.e., there are more black checkers because black 

is my favorite color), and 3)They answered the question correctly, and had a mathematical 

explanation as to how they know (i.e., I counted both groups of checkers, and there were 4 

checkers in each group, so that’s the same amount).  When looking at the results, I again 

distinguished responses that had room for improvement (numbers 1 and 2 above) from responses 

that did not have room for improvement (number 3 above). 

Second, for the Understanding Spatial Relationships tasks, students had opportunities to 

speak about manipulatives that were set up in a very specific way.  These items included a clear 

plastic container, a green marble, a pink eraser, a yellow checker, and a blue checker.  Students 

were asked to describe what they saw, and the results were recorded as follows.  First, the 

number of spatial words was recorded.  These included terms such as next to, inside of, farther, 

closer, by, in between, under, over, and any other spatial word or variation of these words.  

Second, the number of total words was recorded.  These included the spatial words, but also 

other non-spatial words such as the color of the objects, the name of the objects, or other 
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attributes of the objects (i.e., the soft eraser).   Next, the number of spatial words was divided by 

the number of total words to get a spatial word ratio.  The idea of this is that the higher the ratio, 

the better the result in that students were more focused on spatial relationships vs. other non-

spatial attributes.  Finally, the number of distractions was recorded.  These included drawing 

distractions that came about from students using the drawing app on their iPads (for example, if 

they started drawing happy faces instead of focusing on the math task at hand), and non-drawing 

distractions that came about from students answering a question like “Where is the green 

marble?” with a response of “It’s right there!” or pointing at the marble. 

For the Understanding Spatial Relationships tasks, there was no distinction made between 

the responses that did or did not have room for improvement, because there was always a chance 

for students to say more spatial words and more total words.  The exceptions to this were the 

spatial word ratios (a ratio of 1 was as high as it could be) and the number of distractions (there 

couldn’t be fewer than 0 distractions). 

Third, for the Understanding Shapes Tasks, students had opportunities to speak about 6 

different shape manipulatives (a large red rectangle, a large red circle, a small yellow square, a 

large yellow square, a small blue cube, and a small blue triangle).  Students were asked to 

describe what they saw, and were also asked to name items that were similar to the shapes they 

were exploring, and the results were recorded as follows.  First, the number of shape words was 

recorded.  These included terms such as the names of the shapes, the number of sides or corners, 

the straightness or roundness of the sides, the idea of a shape being “flat” or 2D, or “puffy” or 

3D, and any other shape word or variation of these concepts.  Second, the number of total words 

was recorded.  These included the shape words, but also other non-shape words such as the color 
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of the objects, the size of the objects, or other attributes of the objects (i.e., the smooth square).   

Next, the number of shape words was divided by the number of total words to get a shape word 

ratio.  The idea of this is that the higher the ratio, the better the result in that students were more 

focused on shape understanding vs. other non-shape attributes.  Finally, the number of real-world 

shapes that students were able to name was recorded.  These included items that were visible to 

students in the immediate surrounding (i.e., that box looks like a rectangle), and items that were 

not visible to students in the immediate surrounding (i.e., there are triangles in a book I have at 

home). 

For the Understanding Shapes tasks, there was no distinction made between the responses 

that did or did not have room for improvement, because there was always a chance for students 

to say more shape words, more total words, and name more real-world shapes.  The exception to 

this was the shape word ratios (a ratio of 1 was as high as it could be). 

Limitations 

 There were three primary limitations of this research study.  First, the relatively small N 

of 24 limits the generalizability of the results. Next, as this study was only conducted in two 

environments, it was a limitation that other environments and corresponding norms were not 

examined.  Finally, no educational or other background information was known about the 

research participants, including the math levels of the students or any mathematical strengths.  

While this information did not necessarily affect the processes of the research tasks, it might 

have been interesting to know how the results were correlated with such information, as well as 

how teachers might have felt about the results. 
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Chapter 4 
Results 

 
There are three key findings in this study that support the use of photography with 

students during mathematical tasks.  First, for the Quantifying tasks, when there was room for 

improvement in students’ responses, 80% of the students were able to give more detailed and 

more mathematically relevant responses with the use of photography as compared to the use of 

manipulatives alone, and 64% of the students were able to give more accurate responses with the 

use of photography.  Second, for the Understanding Spatial Relationships tasks, 63% and 83% of 

the students in this study were able to describe more spatial attributes and more total attributes, 

respectively, with the use of photography as compared to the use of manipulatives alone, and 

38% of the students showed a decrease in the number of distractions they had with the use of 

photography.  Third, for the Understanding Shapes tasks, 38% and 42% of the students in this 

study were able to describe more shape attributes and more total attributes, respectively, with 

the use of photography as compared to the use of manipulatives alone, and 54% of the students 

showed an increase in the number of real-world shapes they were able to recall with the use of 

photography. 

For this section, the results for each of the three mathematical content areas will first be 

presented individually.  Next, the content results will be summarized in order to highlight data 

that would be useful for considering the affordances of photography in a whole-group setting.  

This includes an examination of the differences among the three mathematical content areas, as 

well as the differences among the photography situations.  Finally, the content results will be 

used to highlight data that would be useful for considering the affordances of photography for 
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individual student assessments and learning.  This includes an examination of how the layers of 

results for these tasks come together to form a photography narrative for individual students. 

Quantifying 

For these tasks, students had the opportunity to speak from manipulatives (checkers) 

when asked the open-ended question “What can you tell me about these groups of checkers?” 

after they sorted them by color (black and red).  These results (M) were compared to the results 

when students spoke from 1) their own photo of the sorted checkers after they spoke from the 

manipulatives (MP), 2) their photo of the sorted checkers without first speaking from the 

manipulatives (P), and 3) given photos of groups of black and red checkers (G).  Out of 24 initial 

responses to this open-ended question, 15 responses had room for improvement, meaning 

students either gave no response without a prompt, or they gave a response but the response was 

not mathematical in content (for example, if they said things like black is their favorite color, or 

that the position of the checkers looked like a flower, or even that they liked to play checkers at 

their friend’s house).  Of these 15 students, 12 showed an improved response in at least one of 

the photography situations (with 6 students showing an improvement in two photography 

situations, and 2 students showing an improvement in all three photography situations). 

Students also had the opportunity to speak from manipulatives (checkers) when asked the 

closed question “Are there more black checkers or red checkers?” after they sorted checkers by 

color (black and red).  These results (M) were compared to the results when students spoke from 

1) their own photo of the sorted checkers after they spoke from the manipulatives (MP), 2) their 

photo of the sorted checkers without first speaking from the manipulatives (P), and 3) given 

photos of groups of black and red checkers (G).  Out of 24 initial responses, 14 responses had 
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room for improvement, meaning students either got the answer wrong, or they got it right but 

were not able to explain in any meaningful mathematical sense how they knew.  Of these 14 

students, 9 showed an improved response in at least one of the photography situations (with 7 

students showing an improvement in two photography situations, and 1 student showing an 

improvement in all three photography situations). 

There are several other interesting results that come from the Quantifying data.  First, of 

the 29 possible times there could have been improvements in each of the photography situations 

when compared to the Manipulative-only (M) situation, the Given Photo (G) situation showed 

the greatest number of improved responses with 19 (next was the Their Photo Only (P) situation 

with 16, and last was the Manipulatives & Their Photo (MP) situation with 5).  Next, there were 

more improvements in photography situations for the open-ended questions than for the closed 

questions (improvements were shown 49% of the time vs. 43% of the time respectively).  

Finally, there were 6 students who went from a level 1 response with manipulatives (no response 

or an incorrect response, and no explanation or a mathematically irrelevant explanation) to a 

level 3 response with photography (a correct response accompanied by a mathematically relevant 

explanation).  Full results for Quantifying can be seen in Appendix E1. 

Understanding Spatial Relationships 

For these tasks, students had opportunities to speak from manipulatives that were set up 

in a very specific way (a clear plastic container, a green marble, a pink eraser, a yellow checker, 

and a blue checker).  Students were asked to describe what they saw when looking at these items, 

and these results (M) were compared to the results when students spoke from 1) their own photo 

of the items after they spoke from the manipulatives (MP), 2) their photo of the items without 
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first speaking from the manipulatives (P), and 3) given photos of the items (G).  First, for the 

number of spatial words, 15 of the 24 students showed an increased number of spatial words in at 

least one of the photography situations (with 4 students showing an improvement in two 

photography situations, and 7 students showing an improvement in all three photography 

situations).  Second, for the number of total words, 20 of the 24 students showed an increased 

number of total words in at least one of the photography situations (with 6 students showing an 

improvement in two photography situations, and 6 students showing an improvement in all three 

photography situations).  Next, for the spatial word ratios, 15 of the 24 students showed an 

improved spatial ratio in at least one of the photography situations (with 6 students showing an 

improvement in two photography situations, and 4 students showing an improvement in all three 

photography situations).  Finally, for the number of total distractions, 9 of the 24 students 

showed a decreased number of total distractions in at least one of the photography situations 

(with 5 students showing an improvement in two photography situations, and 2 students showing 

an improvement in all three photography situations). 

There are several other interesting results that come from the Understanding Spatial 

Relationships data.  First, 6 students showed improvements for all four categories (spatial words, 

total words, spatial word ratios, and distractions) when using photography.  Next, there were 33 

improvements for spatial words, 38 improvements for total words, 29 improvements for spatial 

word ratios, and 18 improvements for distractions.  Finally, when a student had an increase in the 

number of spatial words or total words with a photography situation (which happened 71 times 

in total), the number of words with photography was at least double what it was with 
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manipulatives alone in 29 of those instances.  Full results for Understanding Spatial 

Relationships can be seen in Appendix E2. 

Understanding Shapes 

For these tasks, students had opportunities to speak about 6 different shape manipulatives 

(a large red rectangle, a large red circle, a small yellow square, a large yellow square, a small 

blue cube, and a small blue triangle).  Students were asked to describe the shapes while using the 

manipulatives, and then these results (M) were compared to the results when students spoke from 

1) their own photo of the shapes after they spoke from the manipulatives (MP), and 2) their 

photo of the shapes without first speaking from the manipulatives (P).  Students were also asked 

to name real-world items that were similar to the shapes they were exploring.  First, for the 

number of shape words, 9 of the 24 students showed an increased number of shape words in at 

least one of the photography situations (with 2 students showing an improvement in both 

photography situations).  Second, for the number of total words, 10 of the 24 students showed an 

increased number of total words in one of the photography situations.  Next, for the shape word 

ratios, 14 of the 24 students showed an improved shape ratio in at least one of the photography 

situations (with 9 students showing an improvement in both photography situations, and 4 

students showing an improvement in all three photography situations).  Finally, for the number 

of real-world shapes students were able to name, 13 of the 24 students showed an increased 

number of named shapes in at least one of the photography situations (with 7 students showing 

an improvement in both photography situations). 

There are several other interesting results that come from the Understanding Shapes data.  

First, 2 students showed improvements for all four categories (shape words, total words, shape 
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word ratios, and real-world shapes) when using photography.  Next, there were 11 improvements 

for shape words, 10 improvements for total words, 23 improvements for shape word ratios, and 

20 improvements for real-word shapes.  Finally, when a student had an increase in shape words 

or total words (which happened 21 times in total), the number of words with photography was at 

least double what it was with manipulatives alone in 7 of those instances.  Full results for 

Understanding Shapes can be seen in Appendix E3. 

Results Among the Various Mathematical Skills and Photo Situations 

 The results in the previous sections are important as they highlight what is significant 

within the various mathematical skills and photo situations.  However, when discussing the 

results from this study, it is also important to consider the following:  1) What do the results 

signify among the various mathematical skills and photo situations?  2) What do the results mean 

in terms of individual students? 

 First, consider these results among the various mathematical skills and photo situations.  

Table 3 indicates how many times improved responses were seen for each photo situation and 

skill when compared to the Manipulative-only situation (M).  For example, for the Quantifying 

tasks, there were 29 possible times in this study when the students’ responses could have 

improved in the Manipulatives & Their Photo (MP) situation when compared to the 

Manipulative-only (M) situation.  The results show that the responses improved in 5 of those 

cases; therefore, the improvement ratio in this case is 0.17.  The rest of the results can be seen in 

the table below, in addition to the averages for each skill set type and each photography situation 

type. 
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Table 3: Results Among the Various Mathematical Skills and Photo Situations 

 MP P G Average 
Quantifying 
 

5/29 = 0.17 16/29 = 0.55 19/29 = 0.66 0.46 

Understanding 
Spatial 
Relationships 

41/96 = 0.43 35/96 = 0.36 42/96 = 0.44 0.41 

Understanding 
Shapes 

29/96 = 0.30 35/96 = 0.36 N/A 0.33 

Average 0.30 0.42 0.55  
 

 In this study, the mathematical skill with the greatest average number of improved 

responses with the use of photography was Quantifying.  Across all of the photography situations 

for Quantifying, improvements were shown 46% of the time as compared to the Manipulative-

only situations.  The skill of Understanding Spatial Relationships had the next highest average 

number of improved responses with the use of photography (improvements were shown 41% of 

the time as compared to the Manipulative-only situations).  And even the skill of Understanding 

Shapes, which showed the smallest average number of improved responses with the use of 

photography, still showed improvements 33% of the time as compared to the Manipulative-only 

situations. 

The photography situation with the greatest average number of improved responses was 

when students were speaking from photographs that were shown to them but that they did not 

take themselves (G).  Across all of the mathematical content areas for these given photos (G), 

improvements were shown 55% of the time as compared to the Manipulative-only (M) 

situations.  The photography situation when students were speaking from photographs that they 

took without speaking from the manipulatives first (P) had the next highest average number of 

improved responses (improvements were shown 42% of the time as compared to the 
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Manipulative-only situations).  And even the photography situation when students were speaking 

from photographs that they took after speaking from the manipulatives first (MP), which showed 

the smallest number of improved responses, still showed improvements 30% of the time as 

compared to the Manipulative-only (M) situations. 

Individual Student Results 

Table 4 shows the results for each individual student.  For example, Student 1 had 2 

chances to show improved responses for the Quantifying problems in the situation where s/he 

spoke from her/his photo after s/he spoke from the manipulatives (MP).  Out of these 2 chances, 

s/he showed an improved response 1 of those times, thus the 1/2 in that cell.  Cells that show 

improvements exactly half of the time are shaded in light grey.  Cells that show improvements 

greater than half of the time are shaded in dark grey.  And cells that show improvements less 

than half of the time are left unshaded. 

  



61 
 
Table 4: Individual Student Results 

Student 1 MP P G 
Quantifying 1/2 1/2 2/2 
Spatial 1/4 4/4 4/4 
Shapes 1/4 1/4 N/A 

 
Student 2 MP P G 
Quantifying 0/1 0/1 1/1 
Spatial 1/4 2/4 1/4 
Shapes 1/4 1/4 N/A 

 
Student 3 MP P G 
Quantifying 0/1 1/1 1/1 
Spatial 3/4 3/4 0/4 
Shapes 1/4 1/4 N/A 

 
Student 4 MP P G 
Quantifying N/A N/A N/A 
Spatial 1/4 1/4 1/4 
Shapes 1/4 2/4 N/A 

 
Student 5 MP P G 
Quantifying 0/1 0/1 0/1 
Spatial 3/4 2/4 2/4 
Shapes 1/4 1/4 N/A 

 
Student 6 MP P G 
Quantifying 0/2 0/2 2/2 
Spatial 3/4 0/4 2/4 
Shapes 2/4 0/4 N/A 

 
Student 7 MP P G 
Quantifying 1/2 1/2 1/2 
Spatial 2/4 0/4 0/4 
Shapes 2/4 3/4 N/A 

 
Student 8 MP P G 
Quantifying 0/2 1/2 1/2 
Spatial 2/4 3/4 3/4 
Shapes 1/4 1/4 N/A 
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Student 9 MP P G 
Quantifying 0/1 0/1 0/1 
Spatial 1/4 0/4 2/4 
Shapes 2/4 1/4 N/A 

 
Student 10 MP P G 
Quantifying 0/1 1/1 1/1 
Spatial 1/4 0/4 1/4 
Shapes 1/4 2/4 N/A 

 
Student 11 MP P G 
Quantifying 0/2 2/2 2/2 
Spatial 3/4 3/4 3/4 
Shapes 2/4 0/4 N/A 

 
Student 12 MP P G 
Quantifying 0/1 0/1 0/1 
Spatial 1/4 0/4 1/4 
Shapes 0/4 0/4 N/A 

 
Student 13 MP P G 
Quantifying 1/2 1/2 0/2 
Spatial 1/4 3/4 4/4 
Shapes 0/4 0/4 N/A 

 
Student 14 MP P G 
Quantifying 0/2 1/2 1/2 
Spatial 1/4 1/4 1/4 
Shapes 0/4 1/4 N/A 

 
Student 15 MP P G 
Quantifying 2/2 2/2 2/2 
Spatial 0/4 0/4 0/4 
Shapes 1/4 2/4 N/A 

 
Student 16 MP P G 
Quantifying 0/2 1/2 0/2 
Spatial 4/4 3/4 4/4 
Shapes 1/4 1/4 N/A 

 
Student 17 MP P G 
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Quantifying 0/1 1/1 1/1 
Spatial 2/4 2/4 4/4 
Shapes 3/4 1/4 N/A 

 
Student 18 MP P G 
Quantifying 0/1 0/1 1/1 
Spatial 0/4 1/4 2/4 
Shapes 2/4 2/4 N/A 

 
Student 19 MP P G 
Quantifying 0/2 2/2 2/2 
Spatial 1/4 1/4 0/4 
Shapes 2/4 1/4 N/A 

 
Student 20 MP P G 
Quantifying N/A N/A N/A 
Spatial 1/4 1/4 1/4 
Shapes 0/4 2/4 N/A 

 
Student 21 MP P G 
Quantifying 0/1 1/1 1/1 
Spatial 1/4 0/4 0/4 
Shapes 2/4 4/4 N/A 

 
Student 22 MP P G 
Quantifying N/A N/A N/A 
Spatial 3/4 2/4 3/4 
Shapes 2/4 4/4 N/A 

 
Student 23 MP P G 
Quantifying N/A N/A N/A 
Spatial 3/4 1/4 1/4 
Shapes 1/4 1/4 N/A 

 
Student 24 MP P G 
Quantifying N/A N/A N/A 
Spatial 2/4 2/4 2/4 
Shapes 0/4 3/4 N/A 
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 In this study, there are several students who stand out as having benefitted the most from 

the use of photography.  Looking at the various photography situations, students 7 and 22 

showed improvements at least half of the time for all of the MP situations, where they spoke 

from their photograph of the manipulatives after first speaking from the manipulatives.  Students 

22 and 24 showed improvements at least half of the time for all of the P situations, where they 

spoke from their photograph of the manipulatives without first speaking from the manipulatives.  

And students 1, 6, 8, 11, 17, 18, 22, and 24 showed improvements at least half of the time for all 

of the G situations, where they spoke from a photograph that was given to them but that they did 

not take themselves. 

 Looking at the various math content skills in this study, students 1, 7, and 15 showed 

improvements at least half of the time for all of the Quantifying tasks.  Students 5, 8, 11, 16, 17, 

22, and 24 showed improvements at least half of the time for all of the Understanding Spatial 

Relationships tasks.  And students 7, 18, 21, and 22 showed improvements at least half of the 

time for all of the Understanding Shapes tasks. 

 Looking at this data combined, we see that there are certain students who showed 

improvements at least half of the time in more than 1 content area and/or more than 1 

photography situation.  For example, student 7 showed improvements at least half of the time for 

both Quantifying tasks as well as Understanding Shapes tasks.  Student 7 also showed 

improvements at least half of the time when s/he spoke from her/his own photo of the 

manipulatives after s/he first spoke from the manipulatives (MP).  Student 24 showed 

improvements at least half of the time when sh/e spoke from her/his own photo of the 

manipulatives without first speaking from the manipulatives (P), and also when s/he spoke from 
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photos that were given but that s/he did not take (G).  In addition, student 24 showed 

improvements at least half of the time for the Understanding Spatial Relationships tasks. 

Student 22 (let’s call him Jabrel), had results that were even more significant.  He appears 

in 5 of the 6 categories above, which is the highest of any student in this study.  In the 

Quantifying tasks, Jabrel was able to discuss the groups of checkers he sorted by counting the 

checkers in each group, and coming to the correct conclusion that there were more black 

checkers.  Because with the manipulatives only, he was able to give a mathematical response to 

the open-ended question without needing a prompt, and was also able to answer the closed 

question correctly, there was not room for improvement in the Quantifying tasks for him with the 

use of photography. 

 In the Understanding Spatial Relationships tasks, Jabrel showed improved responses at 

least half of the time for spatial words, spatial word ratios, and distractions (the only category not 

showing improved responses more than half of the time was total words).  First, he used more 

spatial words in every photography situation than he gave in the manipulative-only situation.  

Next, he had an improved spatial word ratio in every photography situation except for the G 

situation (where he was speaking from a photo that was given to him but that he did not take 

himself).  Finally, he had fewer distractions in every photography situation except for the P 

situation (where he was speaking from a photo that he took of the manipulatives without 

speaking from the manipulatives first). 

 In the Understanding Shapes tasks, Jabrel showed improved responses at least half of the 

time for shape words, total words, shape word ratio, and real-world shapes (therefore, in every 

category that was looked at for these tasks).  First, he used more shape words and total words in 
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the P situation (where he was speaking from a photo that he took of the manipulatives without 

speaking from the manipulatives first) than he used in the manipulative-only situation. Next, he 

had an improved shape word ratio in both photography situations.  Finally, he was able to use 

more real-world shape examples in both photography situations.  A student like Jabrel makes it 

clear how the use of photography can help us understand young children’s thinking, especially in 

SNIP cases like this where students are not showing all that they know or can do when relying 

only on questioning and/or concrete manipulatives. 
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Chapter 5 
Discussion 

 
In this section, I will first discuss how the general results of this study are situated within 

several key ideas in the literature surrounding the use of photography with children, including 

ideas from my theoretical framework.  Then, I will use these key ideas to help to answer my 

initial research questions: 

• What are the affordances offered by the use of photography with young children to make 

connections and explain their thinking when engaged in mathematical tasks? 

o Which mathematical content strand in this study offers the greatest affordances? 

o Which photography situation in this study offers the greatest affordances? 

• What are the affordances offered by the use of photography in the individual assessment 

of the mathematical skills of young children? 

How the Results are Situated within the Literature 

With this study, I sought to discover the affordances of photography specifically in SNIP 

situations, where students show that they are not proficient but actually are proficient (or at least 

more knowledgeable than the results reflect).  I did this by examining student responses and 

demonstrated understanding of mathematics tasks and assessment questions both with and 

without the use of photography.  Since students in this study were photographing concrete 

manipulatives only, they generally did not have to visualize or form a mental image before 

taking their photos (Sadler, 1993).  The design of this study was purposeful in not allowing 

students to have much creativity in their photographs, not because this kind of visualization 

could not be helpful to students, but because a main purpose of this study was to look at the 

affordances of using photographs as platforms for mathematical communication as compared to 
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using concrete manipulatives for such communication.  One might wonder why there would be 

any difference at all when students use a set of concrete manipulatives compared to when they 

use a photo of those exact same manipulatives to describe their thinking.  However, the results 

show that using photography (both student-generated and teacher-generated) with children in this 

manner gives students the opportunity to communicate a more complete perspective and 

understanding of the mathematics in which they were engaged, and the literature surrounding the 

use of photography with children supports these findings as well.  In photography, this idea is 

known as sideways thinking (Patterson, 2004). 

There are two general advantages of using photography with children that are important 

to revisit with respect to the results of this study.  First, the process of explaining mathematical 

thinking and reasoning remains difficult for children in group learning situations and individual 

assessment situations (Carpenter & Lehrer, 1999).  This can be especially true when the models 

or manipulatives that children are working with do not have meaning to them (Manches & 

O’Malley, 2012).  Therefore, a photograph is a way to give those models or manipulatives 

meaning they would not otherwise have for children (Northcote, 2011).  This helps to explain 

why there were improved results in this study when students used their photographs of 

manipulatives as compared to when they used only the manipulatives to describe their thinking. 

Second, using photographs may help students to reduce their cognitive load, thus 

allowing the mathematics to be the focus more than other non-mathematical attributes.  The 

cognitive load theory is based on the idea that people have a limited amount of cognitive 

resources (Vredeveldt et al., 2011).  Once an image is captured, certain potentially distracting 

features of the manipulatives are negated (for example, they cannot be picked up and 
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repositioned).  While I am not making an argument here for or against the value of physically 

manipulating objects in order to increase or solidify mathematical understanding, I am saying 

that in terms of communicating mathematical understanding, there are potentially distracting 

features of physical manipulatives that can get in the way.  This helps to explain why there were 

improved results when students spoke from photographs of manipulatives as compared to when 

they spoke from the manipulatives only.  It also helps to explain why there were greater 

improvements when students spoke from the given photographs as compared to the photographs 

that they took, since the given photographs contained a minimal amount of distracting 

information that may have been left in student photographs (for example, there were not the 

superfluous materials in the frame that sometimes were captured in student photos). 

There are also two research advantages of using photography with children that are 

important to revisit with respect to the results of this study.  First, the students in this study 

generally seemed to enjoy this process (as evidenced by several students asking to do more 

problems and stay longer after they had completed their tasks-something I have not heard often 

when doing more traditional mathematics assessments with children).  Further, all of the students 

in this study were able to successfully use the technology.  This was true of students who said 

they used iPads in their classrooms or at home on a regular basis, as well as for students who said 

that they had never used an iPad before, or had little experience taking digital photographs. This 

is important because it shows that bringing in this type of technology does not necessarily create 

a power imbalance even when an imbalance exists in terms of prior experience with or current 

access to such technologies, since the students are able to master the technologies so quickly and 

easily (MacDonald, 2012). 
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Second, unlike manipulatives, these photographs could be used at a later date as a starting 

point for further discussion either in a group learning setting, or in an individual assessment 

situation (Cook & Hess, 2007).  These photographs could also be useful when having discussions 

with parents about students’ mathematical understandings and progress, as it would provide 

something beyond what is verbal or written, and serve as a platform for the students’ voices in 

such discussions. 

It is also important to consider the function of the photographs used with children to 

examine why photography worked in this study to help students communicate their mathematical 

understanding.  Traditionally, photographs used with elementary students are used not to 

communicate information, but to keep students engaged (Carney & Levin, 2002).  Elementary 

curricular materials tend to be full of bright, colorful, and fun photographs that serve more to 

maintain students’ interest than to convey important information.  In contrast, photographs used 

with secondary students tend to convey additional information, thus requiring extra mental effort 

to process the photographs (Scheiter et al., 2009). 

In these terms, the photographs in this study provided the best of both worlds in that they 

simultaneously were able to engage students and convey information.  While the photographs 

were not inherently interesting or engaging in themselves, this was never the point.  For the 

student-created photographs, the engagement piece came because they were the ones who 

created the photographs.  And for the student-created photographs as well as the teacher-created 

photographs, the mathematical content was there, but it was not in a form that overloaded them 

with extra information.  In fact, the photographs helped to remove some of the extra stimuli, thus 

leaving them with a greater focus on the mathematical content.  By doing the opposite of what 
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photographs normally do in an elementary environment, we see a new way that photographs can 

be used with young children. 

The theoretical framework for this study is represented by a hybrid model of the third 

generation of Engestrӧm’s Activity Theory, combined with components of the Realistic 

Mathematics Education (RME) framework.  This Activity Theory RME hybrid model places the 

RME framework at the center of the Activity Theory framework.  It is important to understand 

that together, the group of tasks involved in this study make up only a small part of this model; 

however, the model as a whole needs to be considered in order to see the full value and purpose 

of this study. 

The overarching process in this model in relation to this study is that the subjects (the 

students) use a mediational tool/artifact (the photographic device which in this case was an iPad) 

to produce an object (the digital photograph) which produces an outcome (the communication of 

mathematical understanding).  This is what was seen in the general results of this study.  

However, this process is part of a cycle that would not end here if students were able to continue 

to use photography in their mathematics learning. 

To look at this more closely, let’s take an example of a given Quantifying photograph 

where there were in fact more black checkers than red checkers (6 black checkers and 5 red 

checkers), but since the black checkers were clumped together and the red checkers were spread 

out over a larger space, students sometimes incorrectly concluded that there were more red 

checkers, which is a classic Piaget finding (Baroody & Wilkins, 1999).  Students were able to 

use this photograph to communicate their understanding and reasoning about the situation, often 

citing the fact that the red checkers took up more space as their reason as to how they knew there 
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were more red checkers.  What would come next, according to this hybrid model, is that students 

would enter into a repeating cycle of vertical mathematization (the reorganization of ideas within 

mathematics) and horizontal mathematization (the reorganization of ideas within the real world) 

as they worked towards a different representation and understanding of the mathematics involved 

in real-world situations. 

Students with the idea that the amount of space the checkers take up can have something 

to do with the amount or quantity of checkers are not entirely incorrect.  Given that the checkers 

are the same size, more of them do take up more actual space.  However, spreading a given 

amount of checkers out over a larger space does not mean that the amount of checkers increases 

or changes in any way.  This is a mathematical idea which would need to be reorganized.  In 

order for this to happen, students need opportunities to reflect on this concept using real-word 

situations.  For example, if a child had 5 books to place onto a bookshelf at home, hopefully s/he 

would understand that whether s/he spread them out on the shelf, or placed them right next to 

each other, the amount of books would not change.  The only way to get more books is to add 

more books (spreading them out does not increase the number of books, having larger books 

does not increase the number of books, etc.).  Taking various photographs of the books on the 

bookshelf and then speaking from those photographs could help this child reflect on these ideas, 

and then better articulate the related mathematical concepts.  Further, providing this child 

photographs of books in various arrangements could also help in terms of reflection and 

articulation.  This cycle would repeat as more and more real-world examples are found, and as 

the child has opportunities to use photography to help communicate her/his understanding about 

the mathematics involved in these real-word situations. 
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Recall also that this hybrid model considers the network of activity systems within the 

school, home, and community along with the corresponding rules and division of labor.  For 

example, in the community, a student might notice this mathematical phenomenon with groups 

of children in a park; however, there may be certain photography norms about whether it’s ok to 

take photographs of those children without the consent of their parents and/or guardians.  Every 

situation has a setting with specific “rules” or norms that affect what can be done with 

photography, just as there are certain mathematical “rules” or norms that exist for each situation.  

Further, for each situation, individuals have different roles which bring with them different 

amounts of power and influence.  For this Activity Theory/RME hybrid model, photography 

isn’t just a way to record the activity, it is the activity central to the reflection and articulation of 

mathematical ideas for young children. 

How the Results are Situated within the Research Questions 

My first research question was “What are the affordances offered by the use of 

photography with young children to make connections and explain their thinking when engaged 

in mathematical tasks?”  In addition to the general affordances aforementioned earlier in this 

discussion, what the results of this study offer to anyone who works with these students in a 

group-setting, especially in a mathematical teaching and learning context, is a guide as to what 

content areas might be most affected in a positive way by the use of photography, as well as 

what types of photography situations might best be used for students to communicate their 

mathematical understanding.  For example, a teacher of this particular group of students would 

know by these results that in a class or whole-group setting, showing photographs to students in 

Quantifying tasks could give the greatest improvements in responses as compared to using 
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manipulatives alone.  And just as the results are important to inform a teacher when it might 

make the most sense to use photography, the results are also important to inform a teacher when, 

for a certain group of students, it might make the most sense to have students use and speak from 

manipulatives instead of photographs.  For example, when students spoke from their photographs 

after they spoke from the manipulatives in the Quantifying tasks, they only showed improved 

responses 17% of the time as compared to using manipulatives alone.  This suggests to a teacher 

that for Quantifying tasks in a class or whole-group setting for this group of students, there 

perhaps is not as much to be gained from having students take photographs and speak from those 

photographs after they use and speak from the manipulatives. 

My second research question was “What are the affordances offered by the use of 

photography in the individual assessment of the mathematical skills of young children?”  In 

addition to the general affordances aforementioned earlier in this discussion, what the results of 

this study offer to anyone who works with these students individually, especially in a 

mathematical assessment context, is a guide as to what content areas might be most affected in a 

positive way by the use of photography, as well as what types of photography situations might 

best be used for students to communicate their mathematical understanding.  Students 5, 6, 15, 

16, and 21 all showed clear improvements (improved half of the time or more) across one of the 

math content areas or across one of the photography situations.  Students 1, 8, 11, 17, and 18 all 

showed clear improvements (improved half of the time or more) across one of the math content 

areas and across one of the photography situations.  Student 7 only had two areas (out of eight) 

where improvements were not seen more than half of the time, and student 24 only had one area 

(out of five) where improvements were not seen more than half of the time.  And recall that 
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student 22 (Jabrel) made improvements at least half of the time in every single content area and 

photography situation where it was possible to make improvements.  Finally, it is important to 

note that even though certain students are not highlighted in this section, every single student in 

this study exhibited improved responses in at least two areas through the use of photography. 

When thinking about the different mathematical content strands and the different 

photography situations in this study, it is important to go beyond what the results were and 

consider why the results came out as they did.  Recall that Table 3 showed the results among the 

various mathematical skills and photo situations. 

 

Table 3: Results Among the Various Mathematical Skills and Photo Situations 

 MP P G Average 
Quantifying 
 

5/29 = 0.17 16/29 = 0.55 19/29 = 0.66 0.46 

Understanding 
Spatial 
Relationships 

41/96 = 0.43 35/96 = 0.36 42/96 = 0.44 0.41 

Understanding 
Shapes 

29/96 = 0.30 35/96 = 0.36 N/A 0.33 

Average 0.30 0.42 0.55  
 

From column to column, row to row, or cell to cell, what accounts for the variations in 

these results?  Let’s start by looking at the MP situation for Quantifying.  This situation showed 

the smallest amount of improvement from when students spoke from the manipulatives-only (M) 

to when they spoke from their photos of the manipulatives after they spoke from the 

manipulatives first (MP).  In the Quantifying strand, students had to physically handle the 

manipulatives (i.e., the checkers) in order to sort them by color.  In doing this, the manipulatives 

were serving as useful tools in relation to the task (for example, several students counted as they 
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were laying the checkers down into their respective color groups).  When they were asked to 

describe the groups of checkers, these students tended to focus more on the amounts or quantities 

of the checkers over other non-mathematical attributes, such as color or position.  When the 

photographic element was introduced, there was therefore less work for it to do.  Students’ 

photographs still did, however, contribute to the improvement we see in this cell (both by giving 

meaning to the manipulatives and by reducing the cognitive load), just not as much as they 

perhaps could have if so much of the work had not already been done by the manipulatives. 

 In the examples below in Figure 5, the student on the left counted as she sorted the 

checkers by color.  With just the manipulatives, she was able to state that there were more black 

checkers than red checkers because “this is 5 and this is 6” (she said this as she pointed to the red 

line and the black line respectively).  The student on the right also counted as he sorted the 

checkers by color.  He first yelled out “Oh!  It’s the same amount…4!”  And then he counted 

“1,2,3,4,5…1,2,3,4.”  When I asked him “Are there more black checkers or red checkers?” he 

replied “both.”  When he spoke from his photograph of the manipulatives, he again counted and 

marked his photo as he did so.  When asked if there were more black or red checkers, he replied 

“both…same amount…same amount.”  These examples highlight how once the manipulatives 

have helped the students show what they know, there is not as much work left for the photos to 

do. 
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Figure 5: Examples of Counting While Grouping Checkers 

  

 

 If this explanation is sound, then we would expect to see a reverse pattern when 

manipulatives were not serving as useful tools in relation to the task.  Consider the MP situation 

for Understanding Spatial Relationships.  In this strand, students did not handle the 

manipulatives at all, as the items were already set up and students were asked to simply describe 

what they saw.  In this case, the manipulatives did virtually no work, and therefore it was the 

student photographs that came in to help students better show what they know.  The photographs 

did this both by giving meaning to the manipulatives, and because students were able to mark 

them.  This ability to mark the photographs helped students to keep track of what they had 

described and what still needed to be described, which led them to say more in general and also 

to say more spatial words specifically. 

 In the example below in Figure 6, the student first had described the set-up with 

manipulatives only (the left photo shows what this set-up looked like).  Here she used the spatial 

term “inside” to describe 2 items only.  She stated that the eraser was “inside of the container,” 

and that the marble was “inside of the container”, and no other spatial terms were used.  When 

she spoke from her photo of the manipulatives however (the right photo shows her photo) and 
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marked the photo as she spoke, she added 2 additional location words.  First, she added that the 

yellow checker was “next to the container.”  Second, she added that the marble was “under the 

eraser.”  This was an especially interesting addition because it showed her ability to give more 

than one spatial attribute to a single item (i.e., the marble was both inside of the container, and it 

was under the eraser). 

 

Figure 6: Example of Marking While Describing Items 

 

 So indeed, we did see a reverse pattern when manipulatives were not serving as useful 

tools in relation to the task.  For the Quantifying tasks, when students physically handled the 

manipulatives, the improvement in the photo situation (MP) to the manipulatives-only situation 

(M) was 0.17, while in the Understanding Spatial Relationships tasks, the improvement was 

0.43.  For the Understanding Shapes tasks, students could touch and pick up the shape 

manipulatives if they wanted to, but this wasn’t required.  So in this case, we might expect 

results that are in-between those from the other strands, and that is indeed what we saw (a 0.30 

improvement).  Further, for the Understanding Shapes tasks, students marking their photographs 
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helped them to focus on shape attributes (for example, several students counted the sides as they 

traced the shapes on their photos, but they did not do this with the manipulatives). 

 In the examples below, the student on the right did not count or mention the number of 

sides of the shapes with manipulatives-only.  When he spoke from his photo of these shape 

manipulatives however, he counted the sides as he traced them.  He was able to state that “the 

triangle has 1,2,3” sides, and that “the square has 1,2,3,4” sides.  He did trace the circle too, but 

seemed to get stuck on what to say after he traced it.  He paused for a moment, moving his finger 

around and around inside of the circle, but never did comment on any of its attributes.  The 

student on the left also did not count or mention the number of sides of the shapes with 

manipulatives-only.  When he spoke from his photo of these shape manipulatives, he also traced 

the shapes.  However, instead of counting the sides as the student on the right had done, he 

instead made “woosh” type sounds that corresponded with each side.  For the triangle, he made 3 

“woosh” sounds as he traced, for the square he made 4 sounds, and for the circle he made 1 

sound.  These are interesting examples because they demonstrate students being able to show 

more of what they know using their photographs as compared to using the manipulatives alone.  

While the manipulatives could have been traced in a manner similar to how their photographs 

were traced, the drawing app is what ultimately provided this opportunity. 

 

 

 

 

 



80 
 
Figure 7: Examples of Marking While Describing Shapes 

 

 

 Let’s move now from looking down the MP column to looking across from the MP cells 

to the P cells.  For the Quantifying tasks, there was an increase from 0.17 improvement in the 

MP situation to 0.55 improvement in the P situation.  In the MP situation, recall that much of the 

work had been done by the manipulatives, so when students spoke from their photographs after 

speaking first from the manipulatives, there wasn’t as much work left to do.  However, in the P 

situation, when students spoke from their photographs without speaking first from the 

manipulatives first, that work had been done but the ideas from it had not yet been expressed.  

What we are seeing in that first value (0.17) are the advantages offered by the fact that the 

photographs were meaningful to the students because they took them, and that the cognitive load 

was reduced in that the checkers could no longer be picked up and manipulated.  We are still 

seeing these things in the second value (0.55), but in addition we are seeing the advantages of 

being able to use the manipulatives meaningfully in the task. 

 For the Understanding Spatial Relationships tasks, there was a decrease from 0.43 

improvement in the MP situation to 0.36 improvement in the P situation.  In the MP situation, 
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recall that virtually none of the work had been done by the manipulatives, so when students 

spoke from their photographs after speaking first from the manipulatives, there was a lot of work 

left to do.  I had expected these values to be similar, since in both cases, the student photographs 

offered meaning, and in both cases, drawing helped students to track what they were saying.  

Also, in both cases, the cognitive load was not reduced, since students never handled 

manipulatives in the first place.  A possible reason as to why the MP value is higher than the P 

value is that in the MP situation, students had an opportunity to reflect on how the items were 

positioned in 3 dimensions before describing the items in 2 dimensions.  In the P situation, 

students did not have the opportunity to do this.  This issue came up in the Understanding Shapes 

tasks as well, but only for the cube since all other shapes were 2 dimensional. 

For the Understanding Shapes tasks, there was an increase from 0.30 improvement in the 

MP situation to 0.36 improvement in the P situation.  Recall that in the MP situation, little work 

had been done by the manipulatives (especially if students didn’t pick up the shapes), so when 

students spoke from their photographs after speaking first from the manipulatives, there was a lot 

of work left to do.  What we are seeing in that first value (0.30) are the advantages offered by the 

fact that the photographs were meaningful to the students because they took them, the cognitive 

load was reduced in that the shapes could no longer be picked up and manipulated, and the 

marking of the photos helped students to name shape attributes.  We are still seeing these things 

in the second value (0.36), but in addition we are seeing the slight advantage of being able to use 

the manipulatives meaningfully in the task. 

 Another important difference between the mathematical content strands was the content 

of the given photographs (see Figure 4).  For the Quantifying tasks, the given photographs were 
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similar in content (i.e., still the same number of black and red checkers present in each), but 

different in that they were arranged in a meaningful way (one set showed the smaller set of 

checkers spread out over a larger area, and the other set showed a similar amount of checkers 

arranged in a square and in a line).  For the Understanding Spatial Reasoning tasks, the given 

photographs were exactly the same as the original set-ups.  And in the Understanding Shapes 

tasks, the given photographs were completely different from the original shape manipulatives 

(they still focused on real-life shapes, but were photographs of ice cubes and a bicycle).  For 

Quantifying tasks, when the given photographs were set up in a meaningful way, we saw the 

greatest improvement as compared to the manipulatives-only situation (0.66). 

 In the examples below in Figure 8, there is something gained through the given photos 

that did not come through in the student photos or the manipulatives.  In the example on the left, 

the student knew that there were “equal” amounts of black and red checkers because “they’re 

both 4!”  When she was given the chance to mark the photo and asked how she knew, she drew 

lines connecting each black checker to a red checker.  Although she didn’t use words to explain 

what she was doing, this marked photograph serves as a record of her understanding of this idea 

what when the amounts of black and red checkers are equal, for every checker of one color there 

must be a checker of the other color.  In the example on the right, the student incorrectly said that 

there were more red checkers because “they’re separated.”  In this case, the given photograph 

served to bring out a misunderstanding about quantity that the student held. 
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Figure 8:  Examples of Quantifying Given Photos 

 

 

For Understanding Spatial Relationships tasks, I had expected the G value to be similar to 

the P value because for both of these situations, students were not able to reflect on first on the 3 

dimensional representation; however, it was instead similar to the MP value.  A possible reason 

for this is that in the given photographs, all of the items were clearly visible and there was no 

distracting information in the photographs.  In other words, student photographs in this case may 

have actually added to the cognitive load more than reduced it, in that 1) students now had to 

describe 3-dimensional objects from a 2-dimensional representation, 2) at times some of those 

items were no longer clearly visible in the photo, and 3) at times there was potentially distracting 

information in the photo. 

 In the examples below in Figure 9, the photographs were taken by the same student.  In 

the photo on the left, you cannot clearly see every item, while in the photo on the right, you can 

clearly see each item.  When speaking from the photo on the left, this student only improved in 1 

of 4 possible areas when compared to speaking from manipulatives-only; however, when 

speaking from the photo on the right, this student improved in 3 of 4 possible areas. 
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Figure 9: Examples of Understanding Spatial Relationships Student Photos 

 

 

In summary, in SNIP situations, there is a gap between what students know and what 

students show that they know.  There are many factors that can help fill this gap-photography 

being one of them, and how much photography is able to help do this seems to be dependent 

somewhat on what the other factors (such as manipulatives) are able to offer students.  When 

manipulatives do a significant portion of the work, there is little left for student photographs to 

do; however, when manipulatives do little of the work, this is where student photographs can 

best help to fill in this gap.  Also important is whether photographs reduce the cognitive load, or 

increase it.  There are situations where photographs may help to reduce the cognitive load in that 

the manipulatives can no longer be picked up or cause distractions.  There are other situations 

however, when student photographs may actually increase the cognitive load (such as when a 

photo cuts out important information).  Finally, for this study, the drawing app served as an 

additional tool that allowed students to keep track of their thinking and better communicate their 

understanding. 
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Chapter 6 
Conclusion 

 
While this study is situated primarily in the areas of photography and mathematics 

education, it also draws from educational psychology, international education, and educational 

departments other than mathematics such as literacy education.  It is important to note that while 

some of the research discussed relates specifically to using photography with children and using 

photography in mathematics education, other areas were included to illustrate the potential 

affordances of combining elementary mathematics education and photography.  For example, 

research on the Language Experience Approach suggests that similarly positive results may be 

found when using the same methods and principles in mathematics education instead of literacy 

education. 

The most significant professional influence for this study came from examining the visual 

participatory research method know as photo elicitation.  Photo elicitation has been used since 

the 1950s, and continues to be used as a visual method in contemporary research (Prosser & 

Burke, 2008).  Recall that in the Photo Elicitation Interview (PEI), photographs are used as 

platforms for discussion.  When PEIs are used with children, it increases the amount of 

engagement young people have in the tasks they are asked to perform.  Photos can provide 

children with clear and meaningful entry points into discussions, which empowers them as the 

experts.  According to Clark-IbaNez (2004), “The most common experience conducting PEIs 

was that photographs spurred meaning that otherwise might have remained dormant” (p. 1513). 

The most significant personal influence for this study came through my love of 

photography, not just as an art, but as a way to communicate (not that those are or could ever be 

entirely separate entities).  In my daily life, I consistently choose photographs to communicate 
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ideas to others, and I prefer to speak from photographs instead of speaking from text.  With 

photographs as a platform for communication, I tend to feel like there is less risk involved.  

Photographs tend to put the focus on the ideas I am trying to convey, and take the focus away 

from myself as a speaker.  Therefore, with photographs, I end up saying more, and saying it 

more clearly, than I do without photographs.  Also, when I come across a word I don’t know, I 

will do a google image search instead of a definition search.  Looking at the array of visual 

results seems to give me a quicker understanding of the meaning of the word than I would get 

with a written definition alone, and the definitions obtained in this manner tend to stay with me 

longer than would written definitions. 

The ideas raised in this study support the use of photography in elementary mathematics 

in several ways.  When children take pictures, they take greater ownership of their learning.  The 

process of taking photographs helps to engage students in mathematics, and the process of 

discussing the photographs helps to create meaning for students.  It is important for children to 

be able to articulate their thinking in mathematics, and student-created photographs are tools that 

can help students with this articulation.  It is my hope that future research in this area can 

examine the advantages of using photography in mathematics education specifically with ELL 

students, and/or other students who traditionally underperform on mathematics assessments, or 

who may not have a strong voice in their mathematics classrooms. 

Furthermore, many of the advantages of photography between a researcher and a child 

also exist in the math classroom, especially in terms of students creating meaning from their 

photographs, and using their photographs to express that meaning to others.  Photographs help 

students to make connections between mathematics concepts, but also to make connections 
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between math in different contexts and environments.  Finally, in terms of sideways thinking, an 

added benefit in photography is that it can be practiced at any time – not just when making 

photographs (Patterson, 2004).  Similarly, in mathematics, many of the skills involved in this 

study can be used and practiced at any time – not just when children are in their math 

classrooms. 

Monk (2012) shares a famous quote from Sigmund Freud’s 1923 book The Ego and the 

Id, “Thinking in pictures stands nearer to unconscious processes than does thinking in words, and 

is unquestionably older than the latter both ontogenetically and phylogenetically” (p. 42).  In 

other words, there is something innate about the relationship between thinking visually and 

understanding.  Monk also shares related ideas from philosopher Ludwig Wittgenstein.  It was 

fundamental to Wittgenstein’s philosophy that understanding relies on seeing connections 

between what can and cannot be put into words, since not everything that can be conceived of 

can be put into words.  According to Monk, “For philosopher Ludwig Wittgenstein, to think, to 

understand, was foremost to picture” (p. 43). 
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Appendices 

Appendix A: Site Director Consent Form as Submitted to and Approved by the IRB 

UNIVERSITY OF WISCONSIN-MADISON 

Site Director Consent Form 

 

I, _______________________________________, give my permission for Kelly Harrigan to

 (please print name) 

conduct research for the project described below in the Parent/Guardian consent form at 

________________________________________ (name of center).  I am the site director, and 

have authorization to give such consent. 

 

 

_________________________________________   ____________________ 

 (signature)        (date) 
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Appendix B: Parent/Guardian Consent Form/Student Assent Form as Submitted to and Approved 

by the IRB 

UNIVERSITY OF WISCONSIN-MADISON 

Letter Detailing Research Study 

 

Title of the Study: Photography and Elementary Mathematics 

Principal Investigator: Anita Wager (phone: 608-263-5142) (email: awager@wisc.edu) 

Student Researcher: Kelly Harrigan (phone: 608-263-5141) (email: kharrigan@wisc.edu) 

 

DESCRIPTION OF THE RESEARCH 

Your daughter/son is invited to participate in a research study about photography and elementary 

mathematics.  S/he has been asked to participate because s/he attends 

________________________________________ (name of center).  The purpose of the research 

is to examine the benefits of having children take photographs, view photographs, and use 

photographs to elicit questions and discussions as they work through Mathematics tasks. 

 

Audio tapes will be made of your daughter’s/son’s participation.  Only members of the study 

team will hear the audio recordings.  They will be transcribed by the student researcher, and at 

no time will the children be identified. The audio tapes themselves will not be used in any papers 

or presentations; however, quotes from the audio tapes may be used. The photographs that your 

child takes may be used in future presentations or papers; however, there will be NO 

PHOTOGRAPHS OF YOUR CHILD. 
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WHAT WILL YOUR CHILD’S PARTICIPATION INVOLVE? 

Participants in this research will be asked to do several mathematics tasks using the following set 

of procedures.  First, they will be asked to complete some tasks using just physical 

manipulatives. Second, they will be asked to complete some tasks first with manipulatives, and 

then by taking pictures of the manipulatives or objects in the room and using those photographs 

to answer questions and describe their thinking.  Third, they will be asked to answer some 

questions based only on their photographs of manipulatives or objects, and not on the actual 

manipulatives. 

 

Participants will take photos of items or places at the research site that they feel represent various 

stages of the math problems they are working through. This might include things like math 

manipulatives, nearby desks, furniture, or objects in the surrounding area, windows as they look 

for examples of area, floor tile patterns as they look for examples of symmetry, etc. They will not 

be taking photographs of individuals who do not have consent to participate in this study. 

 

ARE THERE ANY RISKS TO PARTICIPANTS? 

There is the potential risk of breach of confidentiality.  To mitigate this risk, all data will be 

stored on a password protected laptop and on secure servers. The laptop will be stored in locked 

facilities when not in use. The identities of all participants will be protected through the use of 

pseudonyms for individuals and sites.  After students are given pseudonyms, any identifying or 

sensitive information will be deleted. 

 



99 
 
All research artifacts will be available only to the research team and will be securely stored as 

per standard social science procedures. 

 

ARE THERE ANY BENEFITS TO PARTICIPANTS? 

Although there are no direct benefits, possible benefits of participation include increased 

understanding of the mathematics involved in the tasks, as well as increased confidence in math. 

 

HOW WILL PARTICIPANT CONFIDENTIALITY BE PROTECTED? 

While there will probably be publications as a result of this study, children’s names will not be 

used.  Only group characteristics will be published.  I would like to be able to quote participants 

directly without using names.  If you agree to allow us to quote your child in publications, please 

initial the statement at the bottom of this form. 

 

WHOM SHOULD I CONTACT IF I HAVE QUESTIONS? 

You may ask any questions about the research at any time.  If you have questions about the 

research you should contact the Principal Investigator Anita Wager at (608) 263-5142.  You may 

also call the student researcher, Kelly Harrigan at (608) 263-5141.  If you are not satisfied with 

the response of the research team, have more questions, or want to talk with someone about your 

rights, you should contact the Education Research and Social & Behavioral Science IRB Office 

at 608-263-2320.  Participation in this study is completely voluntary. If participants begin 

participation and change their mind they may end participation at any time without penalty. 
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UNIVERSITY OF WISCONSIN-MADISON 

Parent/Guardian Consent Form 

 

Your signature on this consent form indicates that you have read the attached letter detailing this 

research study.  It also indicates that you had an opportunity to ask any questions about your 

child’s participation in this research, and that you voluntarily give consent for your daughter/son 

to participate.  You will receive a copy of this form for your records. 

 

 

________________________________________ 

Name of Participant (please print) 

 

________________________________________  _______________ 

Parent/Guardian Signature  Date 

UNIVERSITY OF WISCONSIN-MADISON 

 

 

Initial to give your permission for your child to be quoted directly in publications without using 

her/his name. 
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Student Assent Form 

 

Your signature on this assent form indicates that you have discussed the attached letter detailing 

this research study with a parent or guardian.  It also indicates that you had an opportunity to ask 

any questions about your participation in this research, and that you voluntarily consent to 

participate.  You will receive a copy of this form for your records. 

 

 

________________________________________ 

Name of Participant (please print) 

 

 

________________________________________  _______________ 

Participant Signature  Date 

 

 

 

Initial to give your permission for you to be quoted directly in 

publications without using your name. 
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Appendix C: Script/Supplemental Information Page as Submitted to and Approved by the IRB 
 
Script 

This information will be told to students before their work on the math tasks begins, and before 

they take any photos: 

 

Hello___, 

I want to tell you that you will be taking photos of items or places here at -

________________________________________ (name of center) that you feel represent 

various stages of the math problems you will be working through. This might include things like 

math manipulatives, nearby desks, furniture, or objects in the surrounding area, windows as you 

look for examples of area, floor tile patterns as you look for examples of symmetry, etc.  You 

will not be taking photographs of individuals who do not have consent to participate in this 

study. 

 

To clarify this important point, I want to let you know that the photos you take should NOT 

include people.  This includes other students who attend or are visiting your building, and it also 

includes adults who work at or are visiting your building.  You should NOT take a picture of 

yourself either, even if your face is not visible in the photo.  Now, someone might say it’s ok for 

you to take a picture of them, but you still should NOT do this. 

 

Do you have any questions about this?  Do you understand these instructions? 
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Supplemental Information 

If there is inadvertent capture of another child in a photograph, that photograph will be deleted 

immediately upon discovery from both the camera card memory as well as the computer 

memory.  These deleted files will not be recoverable. 
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Appendix D1: Interview Protocol for Quantifying 

Skill Manipulatives & 
Photo 

Their Photo Other Photo Manipulatives & 
Photo 

Their Photo Other Photo 

Quantify 
Recognizes 
and names the 
number of 
items in a 
small set (up 
to five) 
instantly; 
combines and 
separates up 
to five objects 
and describes 
the parts; 
makes sets of 
6-10 objects 
and then 
describes the 
parts; 
identifies 
which part 
has more, 
less, or the 
same (equal); 
counts all or 
counts on to 
find out how 
many 

Do:  Place 5 red 
and 6 black 
checkers on the 
table in a mixed 
pile. 
 
Say:  Can you 
separate these 
checkers into 
groups by color, 
keeping the 
checkers flat on 
the table? 
 
Say:  Now, can 
you tell me 
about these 
groups of 
checkers that 
you made?  You 
can use your 
finger to point as 
you tell me 
about them if 
want to. 
 
(If these things 
don’t come up, 
ask) “Are there 
more red 
checkers or 
black checkers 
on the table?”  
“How do you 
know?” 
 
Say:  Now, can 
you take a 
picture of your 
groups of 
checkers?  (The 
student can take 
several pictures 
until s/he has 
one that s/he is 
happy with). 

Do:  Place 
5 red and 6 
black 
checkers on 
the table in 
a mixed 
pile. 
 
Say:  Can 
you 
separate 
these 
checkers 
into groups 
by color, 
keeping the 
checkers 
flat on the 
table? 
 
Say:  Now, 
can you 
take a 
picture of 
your groups 
of 
checkers?  
(The 
student can 
take several 
pictures 
until s/he 
has one that 
s/he is 
happy 
with). 
 
Do:  Clear 
the 
checkers 
from the 
table. 
 
Say:  Now, 
let’s take a 

Do:  On the 
iPad, show 
the photo of 
the 5 red 
checkers 
spread far 
apart and 
the 6 black 
checkers 
squished 
close 
together. 
 
Say:  Now, 
let’s take a 
look at this 
picture! 
 
Say:  Can 
you tell me 
about these 
two groups 
of 
checkers?  
You can 
use your 
finger to 
touch the 
iPad and 
point as you 
talk if you 
want to. 
 
(If these 
things don’t 
come up, 
ask) “Are 
there more 
red 
checkers or 
black 
checkers 
(on the 
table)?”  
“How do 
you know?” 

Do:  Place 4 red 
and 4 black 
checkers on the 
table in a mixed 
pile. 
 
Say:  Can you 
separate these 
checkers into 
groups by color, 
keeping the 
checkers flat on 
the table? 
 
Say:  Now, can 
you tell me 
about these 
groups of 
checkers that 
you made?  You 
can use your 
finger to point as 
you tell me 
about them if 
you want to. 
 
(If these things 
don’t come up, 
ask) “Are there 
more red 
checkers or 
black checkers 
on the table?”  
“How do you 
know?” 
 
Say:  Now, can 
you take a 
picture of your 
groups of 
checkers?  (The 
student can take 
several pictures 
until s/he has 
one that s/he is 
happy with). 

Do:  Place 4 
red and 4 
black 
checkers on 
the table in 
a mixed 
pile. 
 
Say:  Can 
you 
separate 
these 
checkers 
into groups 
by color, 
keeping the 
checkers 
flat on the 
table? 
 
Say:  Now, 
can you 
take a 
picture of 
your groups 
of 
checkers?  
(The 
student can 
take several 
pictures 
until s/he 
has one that 
s/he is 
happy 
with). 
 
Do:  Clear 
the 
checkers 
from the 
table. 
 
Say:  Now, 
let’s take a 

Do:  On the 
iPad, show 
the photo of 
the 4 red 
checkers in 
the shape of 
a square 
and the 4 
black 
checkers in 
the shape of 
a line. 
 
Say:  Now, 
let’s take a 
look at this 
picture! 
 
Say:  Can 
you tell me 
about these 
two groups 
of 
checkers?  
You can 
use your 
finger to 
touch the 
iPad and 
point as you 
talk if you 
want to. 
 
(If these 
things don’t 
come up, 
ask) “Are 
there more 
red 
checkers or 
black 
checkers 
(on the 
table)?”  
“How do 
you know?” 
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Do:  Clear the 
checkers from 
the table. 
 
Say:  Now, let’s 
take a look at 
your picture! 
 
Say:  Can you 
tell me about 
these groups of 
checkers?  You 
can use your 
finger to touch 
the iPad and 
point as you talk 
if you would 
like. 
 
(If these things 
don’t come up, 
ask) “Are there 
more red 
checkers or 
black checkers 
(on the table)?”  
“How do you 
know?” 

look at your 
picture! 
 
Say:  Can 
you tell me 
about these 
two groups 
of 
checkers?  
You can 
use your 
finger to 
touch the 
iPad and 
point as you 
talk if you 
want to. 
 
(If these 
things don’t 
come up, 
ask) “Are 
there more 
red 
checkers or 
black 
checkers 
(on the 
table)?”  
“How do 
you know?” 

 
Do:  Clear the 
checkers from 
the table. 
 
Say:  Now, let’s 
take a look at 
your picture! 
 
Say:  Can you 
tell me about 
these groups of 
checkers?  You 
can use your 
finger to touch 
the iPad and 
point as you talk 
if you would 
like. 
 
(If these things 
don’t come up, 
ask) “Are there 
more red 
checkers or 
black checkers 
(on the table)?”  
“How do you 
know?” 

look at your 
picture! 
 
Say:  Can 
you tell me 
about these 
two groups 
of 
checkers?  
You can 
use your 
finger to 
touch the 
iPad and 
point as you 
talk if you 
want to. 
 
(If these 
things don’t 
come up, 
ask) “Are 
there more 
red 
checkers or 
black 
checkers 
(on the 
table)?”  
“How do 
you know?” 
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Appendix D2: Interview Protocol for Understanding Spatial Relationships 

Skill Manipulatives 
& Photo 

Their Photo Other Photo Manipulatives 
& Photo 

Their Photo Other Photo 

Understands 
Spatial 
Relationships 
Uses and 
responds 
appropriately to 
positional 
words 
indicating 
location, 
direction, and 
distance 

Do:  Set up the 
following:  1)a 
container with 
a marble inside 
of it, 2)the 
container is 
sitting on top 
of an eraser, 
3)a yellow 
checker is 
close to the 
container (1 
inch or so), 4)a 
blue checker is 
on the opposite 
side of the 
container from 
the yellow 
checker and 
farther from 
the container 
(8 inches or 
so). 
 
Say:  Can you 
tell me what 
you see on the 
table, and 
where 
everything is?  
You can use 
your finger to 
point as you 
tell me about 
them if you 
would like. 
 
(If these things 
don’t come up, 
ask) “Where is 
the green 
marble?”  
“Where is the 
pink eraser?”  
“Which 
checker is 
farther the 
container?”  
“Where is the 

Do:  Set up 
the 
following:  
1)a 
container 
with a 
marble 
inside of it, 
2)the 
container is 
sitting on 
top of an 
eraser, 3)a 
yellow 
checker is 
close to the 
container (1 
inch or so), 
4)a blue 
checker is 
on the 
opposite 
side of the 
container 
from the 
yellow 
checker and 
farther from 
the 
container (8 
inches or 
so). 
 
Say:  Now, 
can you take 
a picture of 
what you 
see on the 
table?  (The 
student can 
take several 
pictures 
until s/he 
has one that 
s/he is 
happy with). 
 
Do:  Clear 
the items 

Do:  On the 
iPad, show 
the photo of 
the 
following:  
1)a 
container 
with a 
marble 
inside of it, 
2)the 
container is 
sitting on 
top of an 
eraser, 3)a 
yellow 
checker is 
close to the 
container (1 
inch or so), 
4)a blue 
checker is 
on the 
opposite 
side of the 
container 
from the 
yellow 
checker and 
farther from 
the container 
(8 inches or 
so). 
 
Say:  Now, 
let’s take a 
look at this 
picture! 
 
Say:  Can 
you tell me 
what you see 
(on the 
table), and 
where 
everything 
is?  You can 
use your 
finger to 

Do:  Set up the 
following:  1)a 
container with 
a marble 
inside of it, 
2)the eraser is 
inside of the 
container too 
with one side 
of it on top of 
the marble, 
3)a yellow 
checker is 
close to the 
container (1 
inch or so), 
4)a blue 
checker is on 
the same side 
of the 
container from 
the yellow 
checker and 
farther from 
the container 
(4 inches or 
so). 
 
Say:  Can you 
tell me what 
you see on the 
table, and 
where 
everything is?  
You can use 
your finger to 
point as you 
tell me about 
them if you 
would like. 
 
(If these things 
don’t come 
up, ask) 
“Where is the 
green 
marble?”  
“Where is the 
pink eraser?”  

Do:  Set up 
the 
following:  
1)a 
container 
with a 
marble 
inside of it, 
2)the eraser 
is inside of 
the 
container 
too with one 
side of it on 
top of the 
marble, 3)a 
yellow 
checker is 
close to the 
container (1 
inch or so), 
4)a blue 
checker is 
on the same 
side of the 
container 
from the 
yellow 
checker and 
farther from 
the 
container (4 
inches or 
so). 
 
Say:  Now, 
can you take 
a picture of 
what you 
see on the 
table?  (The 
student can 
take several 
pictures 
until s/he 
has one that 
s/he is 
happy with). 
 

2bZ 
Do:  On the 
iPad, show 
the photo of 
the 
following:  
1)a 
container 
with a 
marble 
inside of it, 
2)the eraser 
is inside of 
the 
container 
too with one 
side of it on 
top of the 
marble, 3)a 
yellow 
checker is 
close to the 
container (1 
inch or so), 
4)a blue 
checker is 
on the same 
side of the 
container 
from the 
yellow 
checker and 
farther from 
the 
container (4 
inches or 
so). 
 
Say:  Now, 
let’s take a 
look at this 
picture! 
 
Say:  Can 
you tell me 
what you 
see (on the 
table), and 
where 
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yellow 
checker?” 
 
Say:  Now, can 
you take a 
picture of what 
you see on the 
table?  (The 
student can 
take several 
pictures until 
s/he has one 
that s/he is 
happy with). 
 
Do:  Clear the 
items from the 
table. 
 
Say:  Now, 
let’s take a 
look at your 
picture! 
 
Say:  Can you 
tell me what 
you see (on the 
table), and 
where 
everything is?  
You can use 
your finger to 
touch the iPad 
and point as 
you talk if you 
would like. 
 
(If these things 
don’t come up, 
ask) “Where is 
the green 
marble?”  
“Where is the 
pink eraser?”  
“Which 
checker is 
farther the 
container?”  
“Where is the 
yellow 
checker?” 

from the 
table. 
 
Say:  Now, 
let’s take a 
look at your 
picture! 
 
Say:  Can 
you tell me 
what you 
see (on the 
table), and 
where 
everything 
is?  You can 
use your 
finger to 
touch the 
iPad and 
point as you 
talk if you 
would like. 
 
(If these 
things don’t 
come up, 
ask) “Where 
is the green 
marble?”  
“Where is 
the pink 
eraser?”  
“Which 
checker is 
farther the 
container?”  
“Where is 
the yellow 
checker?” 

touch the 
iPad and 
point as you 
talk if you 
would like. 
 
(If these 
things don’t 
come up, 
ask) “Where 
is the green 
marble?”  
“Where is 
the pink 
eraser?”  
“Which 
checker is 
farther the 
container?”  
“Where is 
the yellow 
checker?” 

“Which 
checker is 
farther the 
container?”  
“Where is the 
yellow 
checker?” 
 
Say:  Now, 
can you take a 
picture of 
what you see 
on the table?  
(The student 
can take 
several 
pictures until 
s/he has one 
that s/he is 
happy with). 
 
Do:  Clear the 
items from the 
table. 
 
Say:  Now, 
let’s take a 
look at your 
picture! 
 
Say:  Can you 
tell me what 
you see (on 
the table), and 
where 
everything is?  
You can use 
your finger to 
touch the iPad 
and point as 
you talk if you 
would like. 
 
(If these things 
don’t come 
up, ask) 
“Where is the 
green 
marble?”  
“Where is the 
pink eraser?”  
“Which 
checker is 

Do:  Clear 
the items 
from the 
table. 
 
Say:  Now, 
let’s take a 
look at your 
picture! 
 
Say:  Can 
you tell me 
what you 
see (on the 
table), and 
where 
everything 
is?  You can 
use your 
finger to 
touch the 
iPad and 
point as you 
talk if you 
would like. 
 
(If these 
things don’t 
come up, 
ask) “Where 
is the green 
marble?”  
“Where is 
the pink 
eraser?”  
“Which 
checker is 
farther the 
container?”  
“Where is 
the yellow 
checker?” 

everything 
is?  You can 
use your 
finger to 
touch the 
iPad and 
point as you 
talk if you 
would like. 
 
(If these 
things don’t 
come up, 
ask) “Where 
is the green 
marble?”  
“Where is 
the pink 
eraser?”  
“Which 
checker is 
farther the 
container?”  
“Where is 
the yellow 
checker?” 
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farther the 
container?”  
“Where is the 
yellow 
checker?” 
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Appendix D3: Interview Protocol for Understanding Shapes 

Skill Manipulatives 
& Photo 

Their Photo Other Photo Manipulatives 
& Photo 

Their Photo Other Photo 

Understands 
Shapes 
Describes 
basic two- and 
three-
dimensional 
shapes by 
using own 
words; 
recognizes 
basic shapes 
when they are 
presented in a 
new 
orientation 

Do:  Place a 
larger yellow 
square, a larger 
red circle, and 
a smaller blue 
triangle out on 
the table. 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
square)?  You 
can use your 
finger to point 
as you tell me 
about it if you 
would like. 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
circle)?  You 
can use your 
finger to point 
as you tell me 
about it if you 
would like. 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
triangle)?  You 
can use your 
finger to point 
as you tell me 
about it if you 
would like. 
 
Say:  Do you 
ever see any of 
these shapes in 
real life?  Tell 
me about that! 
 
Say:  Now, can 
you take a 

Do:  Place a 
larger 
yellow 
square, a 
larger red 
circle, and a 
smaller blue 
triangle out 
on the table. 
 
Say:  Now, 
can you take 
a picture of 
these 
shapes? 
 
Do:  Clear 
the items 
from the 
table. 
 
Say:  Now, 
let’s take a 
look at your 
picture! 
 
Say:  Can 
you tell me 
about this 
shape (point 
to the 
square)?  
You can use 
your finger 
to touch the 
iPad and 
point as you 
talk if you 
would like. 
 
Say:  Can 
you tell me 
about this 
shape (point 
to the 
circle)?  
You can use 
your finger 
to touch the 

Do:  On the 
iPad, show 
the photo of 
the bicycle. 
 
Say:  Now, 
let’s take a 
look at this 
picture! 
 
Can you tell 
me about 
the shapes 
you see in 
this picture? 
 

Do:  Place a 
larger red 
rectangle, a 
smaller yellow 
square, and a 
smaller blue 
cube out on the 
table. 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
rectangle)?  
You can use 
your finger to 
point as you 
tell me about it 
if you would 
like. 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
square)?  You 
can use your 
finger to point 
as you tell me 
about it if you 
would like. 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
cube)?  You 
can use your 
finger to point 
as you tell me 
about it if you 
would like. 
 
Say:  Do you 
ever see any of 
these shapes in 
real life?  Tell 
me about that! 
 

Do:  Place a 
larger red 
rectangle, a 
smaller 
yellow 
square, and 
a smaller 
blue cube 
out on the 
table. 
 
Say:  Now, 
can you take 
a picture of 
these 
shapes? 
 
Do:  Clear 
the items 
from the 
table. 
 
Say:  Now, 
let’s take a 
look at your 
picture! 
 
Say:  Can 
you tell me 
about this 
shape (point 
to the 
rectangle)?  
You can use 
your finger 
to touch the 
iPad and 
point as you 
talk if you 
would like. 
 
Say:  Can 
you tell me 
about this 
shape (point 
to the 
square)?  
You can use 
your finger 

Do:  On the 
iPad, show 
the photo of 
the ice 
cubes. 
 
Say:  Now, 
let’s take a 
look at this 
picture! 
 
Can you tell 
me about 
the shapes 
you see in 
this picture? 
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picture of these 
shapes?  (The 
student can 
take several 
pictures until 
s/he has one 
that s/he is 
happy with). 
 
Do:  Clear the 
items from the 
table. 
 
Say:  Now, 
let’s take a 
look at your 
picture! 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
square)?  You 
can use your 
finger to touch 
the iPad and 
point as you 
talk if you 
would like. 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
circle)?  You 
can use your 
finger to touch 
the iPad and 
point as you 
talk if you 
would like. 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
triangle)?  You 
can use your 
finger to touch 
the iPad and 
point as you 
talk if you 
would like. 

iPad and 
point as you 
talk if you 
would like. 
 
Say:  Can 
you tell me 
about this 
shape (point 
to the 
triangle)?  
You can use 
your finger 
to touch the 
iPad and 
point as you 
talk if you 
would like. 
 
Say:  Do 
you ever see 
any of these 
shapes in 
real life?  
Tell me 
about that! 

Say:  Now, can 
you take a 
picture of these 
shapes?  (The 
student can 
take several 
pictures until 
s/he has one 
that s/he is 
happy with). 
 
Do:  Clear the 
items from the 
table. 
 
Say:  Now, 
let’s take a 
look at your 
picture! 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
rectangle)?  
You can use 
your finger to 
touch the iPad 
and point as 
you talk if you 
would like. 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
square)?  You 
can use your 
finger to touch 
the iPad and 
point as you 
talk if you 
would like. 
 
Say:  Can you 
tell me about 
this shape 
(point to the 
cube)?  You 
can use your 
finger to touch 
the iPad and 
point as you 

to touch the 
iPad and 
point as you 
talk if you 
would like. 
 
Say:  Can 
you tell me 
about this 
shape (point 
to the 
cube)?  You 
can use your 
finger to 
touch the 
iPad and 
point as you 
talk if you 
would like. 
 
Say:  Do 
you ever see 
any of these 
shapes in 
real life?  
Tell me 
about that! 
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Say:  Do you 
ever see any of 
these shapes in 
real life?  Tell 
me about that! 

talk if you 
would like. 
 
Say:  Do you 
ever see any of 
these shapes in 
real life?  Tell 
me about that! 
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Appendix E1: Results for Quantifying 
 
 Open-Ended Question Response Closed-Ended Question Response 
 M MP P G M MP P G 
1 1 2 1 3 1 1 3 2 
2 2 2 2 3 3 3 1 2 
3 2 2 3 3 3 2 3 3 
4 3 2 2 3 3 3 3 2 
5 3 3 2 2 2 2 1 1 
6 2 2 2 3 1 1 1 2 
7 1 3 2 3 1 1 1 1 
8 2 2 2 2 1 1 2 3 
9 3 2 2 2 2 1 1 1 
10 3 2 1 3 1 1 2 3 
11 2 2 3 3 2 2 3 3 
12 2 2 2 2 3 3 3 2 
13 1 2 2 1 2 2 1 1 
14 2 2 2 2 2 2 3 3 
15 1 2 3 3 2 3 3 3 
16 2 2 3 2 2 2 1 2 
17 2 2 3 3 3 3 3 3 
18 2 2 2 3 3 3 3 3 
19 1 1 3 2 2 2 3 3 
20 3 3 2 3 3 3 3 3 
21 3 3 3 3 2 2 3 3 
22 3 2 2 2 3 3 3 2 
23 3 2 3 2 3 3 3 2 
24 3 3 2 3 3 3 3 3 
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Appendix E2: Results for Understanding Spatial Relationships 
 
 Spatial Words Total Words Spatial Word Ratio Distractions 
 M MP P G M MP P G M MP P G M MP P G 
1 2 1 4 4 6 1 11 10 .3 1 .4 .4 3 4 1 2.5 
2 2 0 4 1 2 3 8 4 1 0 .5 .3 1 6 2 2 
3 2 3 8 3 5 6 15 8 .4 .5 .5 .4 0 0 0 .5 
4 3 3 3 3 11 12 7 8 .3 .3 .4 .4 0 0 0 1 
5 3 5 4 4 6 9 8 10 .5 .6 .5 .4 0 0 0 0 
6 2 3 2 3 2 6 2 3 1 .5 1 1 1 0 2 6 
7 0 1 0 0 4 2 1 0 0 .5 0 N/A 3 3 3 4.5 
8 2 3 3 4 4 4 4 8 .5 .8 .8 .5 2 2 0 .5 
9 4 4 0 5 7 8 4 10 .6 .5 0 .5 0 1 6 2.5 
10 1 1 0 1 5 1 4 6 .2 1 0 .2 1 5 4 5 
11 2 3 5 3 2 11 12 8 1 .3 .4 .4 2 0 0 .5 
12 6 3 5 4 11 3 11 7 .5 1 .5 .6 0 0 0 .5 
13 1 0 3 3 3 1 4 7 .3 0 .8 .4 1 0 1 0 
14 3 3 3 3 3 5 4 4 1 .6 .8 .8 1 1 2 1 
15 5 4 3 4 12 12 9 10 .4 .3 .3 .4 0 0 0 0 
16 0 3 3 2 4 5 4 5 0 .6 .8 .4 4 1 1 2.5 
17 0 1 1 4 7 3 6 8 0 .3 .2 .5 3 3 5 1 
18 5 3 4 4 10 8 9 11 .5 .4 .4 .4 1 2 0 0 
19 3 3 3 3 7 5 8 5 .4 .6 .4 .4 0 0 0 .5 
20 4 3 3 4 5 10 11 10 .8 .3 .3 .4 0 0 0 0 
21 5 3 2 4 9 3 6 7 .6 1 .3 .6 0 1 0 0 
22 2 3 4 3 8 5 8 12 .3 .6 .5 .3 1 0 3 0 
23 2 4 2 2 10 12 6 7 .2 .3 .3 .3 1 2 3 1.5 
24 3 4 4 4 6 9 10 8 .5 .4 .4 .5 0 0 0 0 
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Appendix E3: Results for Understanding Shapes 
 
 Shape Words Total Words Shape Word Ratio Real-World Shapes 
 M MP P M MP P M MP P M MP P 
1 6 2 3 8 2 3 .8 1 1 4 1 2 
2 3 3 3 5 3 3 .6 1 1 2 0 1 
3 5 4 0 5 4 6 1 1 0 0 1 0 
4 4 1 3 7 2 4 .6 .5 .8 0 11 2 
5 6 3 2 9 4 5 .7 .8 .4 0 0 1 
6 3 5 3 3 5 3 1 1 1 0 0 0 
7 0 1 3 1 1 3 0 1 1 2 1 0 
8 5 1 3 8 4 5 .6 .3 .6 0 2 1 
9 5 3 0 7 3 3 .7 1 0 0 1 1 
10 4 3 3 6 3 3 .7 1 1 0 0 1 
11 5 6 3 5 6 4 1 1 .8 2 0 0 
12 9 4 4 9 4 4 1 1 1 0 0 0 
13 3 1 2 3 1 2 1 1 1 0 0 0 
14 5 1 4 7 4 7 .7 .3 .6 0 0 2 
15 5 4 6 5 4 6 1 1 1 0 1 0 
16 5 5 3 6 5 3 .8 1 1 0 0 0 
17 3 6 3 6 9 3 .5 .7 1 0 0 0 
18 6 6 4 11 9 7 .5 .7 .6 0 1 4 
19 4 2 4 7 3 7 .6 .7 .6 0 1 2 
20 7 4 8 8 6 12 .9 .7 .7 0 0 0 
21 4 6 10 10 9 11 .4 .7 .9 2 1 3 
22 1 1 5 4 1 6 .3 1 .8 0 1 1 
23 7 4 4 7 4 4 1 1 1 0 3 1 
24 2 1 4 4 4 6 .5 .3 .7 2 0 1 

 


