
Topics on the Design and Analysis of Computer

Experiments

By

Youngdeok Hwang

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Statistics)

at the

University of Wisconsin–Madison

2012

Date of final oral examination: 07/26/2012

The dissertation is approved by the following members of the final

oral exam committee:

Peter Z. G. Qian, Associate Professor, Statistics

Kam-Wah Tsui, Professor, Statistics

Jun Zhu, Professor, Statistics

Bret Hanlon, Assistant Professor, Statistics

Qing Liu, Assistant Professor, Marketing

i

Topics on the Design and Analysis of Computer Experiments

Youngdeok Hwang

Under the supervision of Professor Peter Z. G. Qian

At the University of Wisconsin–Madison

Abstract

This dissertation addresses several issues on the design and analysis of computer

experiments. First, we propose a new type of design, called a sliced orthogonal array

based Latin hypercube design, intended for running multiple computer experiments.

The proposed designs achieve both one- and two-dimensional stratification while each

slice possesses univariate uniformity. Sampling properties of the proposed designs are

derived. Second, we develop two procedures for randomizing a new class of nested

space-filling designs. Third, we propose a statistical approach to building an accurate

metamodel by exploiting the quality of high-accuracy simulation data and the abun-

dance of low-accuracy simulation data of a mechanical dynamics system. It makes

use of Gaussian processes and natural cubic splines. The effectiveness of the proposed

methodology is illustrated with an example for studying the dynamics of a slider-crank

system.

ii

To My Family

iii

Acknowledgments

I would like to acknowledge the suggestions, friendship, advice and support of

numerous people who helped me during my time as a graduate student in the Depart-

ment of Statistics at University of Wisconsin–Madison.

First, I would like to thank my advisor, Peter Zhiguang Qian, for his patient

involvement and invaluable advice in this work. Peter has given me the opportunities

to present my work to other researchers and helped me to grow as an independent

researcher in statistics. He has guided me in a better direction not only on the research

front but also on the life.

I am also thankful to Dr. Kam-Wah Tsui, Dr. Rick Nordheim, Dr. Jun Zhu,

Dr. Bret Hanlon and Dr. Qing Liu for serving on my committee and for their com-

ments and suggestions. I would like to acknowledge Dr. Bret Hanlon for sharing his

experience as a junior researcher and an uncle. I also appreciate Dr. Douglas Bates

for helping me find a job.

My thanks also go to my fellow graduate students in the department. In partic-

ular, Sangbum Choi, my two-year neighbor, helped me a lot, especially in the early

years in Madison. I would also like to thank my fellow students Jee Young Moon, Lisa

Chung, Kevin Eng, Andrew Thurman, Sokol Vako and Taeri Uhm. I also thank my

research group members, Ben Haaland, Jun Li, Xu Xu, Qiong Zhang, Jiajie Chen and

Yan Chen.

My family have been my biggest and strongest supporters in the past five years.

iv

My parents have been great role models for me as good father and mother, good

husband and wife, good son and daughter, good brother and sister, good citizens and

good people. My brother and his family also deserve a huge acknowledgment. Finally,

but most importantly, I thank my wife, Jiae, who was very tolerant and supportive

until I arrived here.

This dissertation is dedicated to my family.

v

Contents

Abstract . i

1 Introduction 1

2 Designs for Multiple Computer Experiments 4

2.1 Motivation . 4

2.2 Construction . 7

2.3 Sampling Properties . 16

2.4 Numerical Illustration . 24

2.5 Discussion . 27

3 Asymmetric Nested Lattice Samples 39

3.1 Motivation . 39

3.2 Definitions and Notation . 42

3.3 Randomization . 43

3.4 Discussion . 57

4 Statistical Emulation of Multi-fidelity Simulations of Mechanical Dy-

namics Systems 59

4.1 Motivation . 59

vi

4.2 Basics of multi-fidelity simulations for mechanical dynamics systems . . 61

4.2.1 A high-accuracy computer experiment for the slider-crank system 63

4.2.2 A low-accuracy computer experiment for the slider-crank system 64

4.3 Design of experiments . 65

4.4 Modeling . 68

4.5 Estimation, prediction and ANOVA decomposition 70

4.6 Case study . 72

4.7 Conclusions . 77

A Proofs 80

A.1 Proof of Proposition 2.2 . 80

A.2 Proof of Proposition 2.3 . 81

A.3 Proof of Theorem 2.1 . 81

A.4 Proof of Proposition 2.4 . 83

A.5 Proof of Proposition 3.1 . 85

Bibliography 87

1

Chapter 1

Introduction

Over the last few decades, computer experiments have emerged as a critical tool in

science and engineering. This dissertation addresses the issues related to the design

and analysis of computer experiments. A computer experiment is a computational

simulation for a physical process using a complex mathematical model (Fang et al.,

2005; Santner et al., 2003). A computer experiment can be treated as a function

producing an output y for a given set of inputs x, i.e., y = f(x) with a function

relating x to y. The defining characteristic of a computer experiment, in contrast

to the traditional physical experiment, is that the experiment yields a deterministic

answer for a given set of input conditions (Santner et al., 2003); a computer experiment

produces identical output when the experiment is run twice with the same inputs.

If the computer model can be evaluated with little computational cost, it is

straightforward to use it for studying the physical process of interest. However, it is

usually not possible to use large number of simulation runs, because the computer ex-

periments are often computationally expensive. Accordingly, one problem is choosing

a good set of design points at which to run the experiments. Chapters 2 and 3 relate

2

to the design problems. The other problem is analyzing the obtained data. Chapter

4 relates to building a statistical emulator for a computer experiment.

In Chapter 2, we propose an approach for constructing a new type of design,

called a sliced orthogonal array based Latin hypercube design, intended for running

multiple computer experiments. This approach exploits a slicing structure of orthog-

onal arrays with strength two and makes use of sliced random permutations. Such a

design achieves one- and two-dimensional uniformity and can be divided into smaller

Latin hypercube designs with one-dimensional uniformity. Sampling properties of the

proposed designs are derived. Examples are given for illustrating the construction

method and corroborating the derived theoretical results.

In Chapter 3, we propose two elaborate randomization methods to shuffle the

levels of an asymmetric nested orthogonal array to produce a pair of asymmetric

nested lattice samples. The constructed designs have a desirable nested structure,

possess attractive space-filling properties and allow different axes to be divided at

different scales of fineness. For multi-fidelity computer experiments, sequential eval-

uations, multi-step functional fitting and linking parameters, the asymmetric feature

is appealing for situations where some factors are believed to be more important or

deserve more attention than the other factors. The proposed designs are also useful

for problems in these applications where different factors, by nature, require dividing

their axes at different levels of fineness.

In Chapter 4, we propose a statistical approach to building an accurate meta-

model of multibody dynamics simulations. Such a simulation is often available in

a time-consuming but accurate version and an expeditious but approximate version

for studying the same dynamics system. Our approach exploits the quality of high-

3

accuracy simulation data and the abundance of low-accuracy simulation data by using

Gaussian processes and natural cubic splines. The corresponding experimental design

issue is also discussed. The effectiveness of the proposed methodology is illustrated

with an example for studying the dynamics of a slider-crank system.

4

Chapter 2

Designs for Multiple Computer

Experiments

2.1 Motivation

Multiple computer experiments, based on the same or similar mathematics, are

becoming popular for studying the same complex system (Williams et al., 2009; Storlie

and Reich, 2011). Throughout, we do not consider multi-fidelity computer experiments

like three finite element analysis codes with different mesh sizes.

Qian (2012) proposed sliced Latin hypercube designs for running multiple com-

puter experiments. A sliced Latin hypercube design is a special Latin hypercube

design (McKay et al., 1979) that can be partitioned into smaller Latin hypercube

designs associated with different computer experiments. Figure 2.1 presents a sliced

Latin hypercube design of 16 runs that is divided into four smaller Latin hypercube

designs of four runs, denoted by #, △, C and �, respectively. In this figure, the

whole design achieves maximum uniformity in any one dimension with respect to the

5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

Fig. 2.1.— A sliced Latin hypercube design of 16 runs that is divided into four small

Latin hypercube designs of four runs, denoted by #,△,C,�, respectively, where the

whole design achieves one-dimensional stratification with respect to the 16 equally

spaced intervals of (0, 1] and each slice achieves one-dimensional stratification with

respect to the four equally spaced intervals of (0, 1].

16 equally spaced intervals of (0, 1] and each slice achieves maximum uniformity in

any one dimension with respect to the four equally spaced intervals of (0, 1]. Since

the whole design has 16 points while each slice has only four points, one may won-

der the possibility of making the former achieve uniformity beyond one-dimensional

stratification. Inspired by this curiosity, we propose a new type of design, called a

sliced orthogonal array based Latin hypercube design, to achieve better stratification

than a sliced Latin hypercube design. The proposed designs, referred to as sliced U

designs hereinafter, achieves both one- and two-dimensional stratification while each

6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

Fig. 2.2.— A sliced U design of 16 runs that is divided into four small Latin hypercube

designs of four runs, denoted by #,△,C,�, respectively, where the whole design

achieves one-dimensional stratification with respect to the 16 equally spaced intervals

of (0, 1] and two-dimensional stratification with respect to the 4 × 4 grids, and each

slice achieves one-dimensional stratification with respect to the four equally spaced

intervals of (0, 1].

slice possesses univariate uniformity. Although the proposed designs have better uni-

formity than sliced Latin hypercube designs, the latter are more flexible in run size

and have no restriction on the number of factors. Figure 2.2 depicts a sliced U design,

where the whole design achieves one-dimensional uniformity with respect to the 16

equally spaced intervals of (0, 1] and two-dimensional uniformity with respect to the

4×4 grids, and each slice achieves one-dimensional uniformity with respect to the four

equally spaced intervals of (0, 1]. The underlying idea of constructing a sliced U design

7

is to elaborately divide an orthogonal array of strength two into smaller orthogonal

arrays with strength one and then randomize them using sliced permutations to form

Latin hypercubes after some level-mapping. Note that Tang (1993) proposed orthogo-

nal arrays based Latin hypercubes that have better stratification than ordinary Latin

hypercube designs constructed in McKay et al. (1979). The designs constructed by

Tang (1993) are referred to as ordinary U designs hereinafter. Related work in this

direction includes Owen (1992b) and Patterson (1954). With respect to the existing

work, the main contribution of our work is to construct new orthogonal array-based

Latin hypercube designs with an appealing slicing structure and derive their sampling

properties.

The remainder of the chapter is organized as follows. Section 2.2 presents the

proposed construction method. Section 2.3 derives sampling properties of the con-

structed design. Section 2.4 gives examples to corroborate the derived theoretical

results. We provide some discussion in Section 2.5.

2.2 Construction

This section describes the proposed construction method for sliced U designs

in detail. Here are some definitions and notation. A uniform permutation on a set

of p integers means randomly taking a permutation on the set, with all p! possible

permutations equally probable. Let ⌈·⌉ denote the ceiling function. For an integer p,

define

Zp = {1, . . . , p}. (2.1)

An orthogonal array (OA) of n rows, q columns, s levels and strength t, denoted by

OA(n, sq, t), is an n × q matrix with entries from 1, . . . , s such that, for every n × t

8

submatrix, all st level combinations occurs equally often (Hedayat et al., 1999).

Let A = (aik) be an OA(n2, s
q+1, 2) with n2 = s2λ and n1 = sλ. Let A(i, :) and

A(:, k) denote the ith row and kth column of A, respectively. The key idea here is

to elaborately divide A into s smaller orthogonal arrays of n1 runs with strength one

and then randomize them using sliced permutations to form Latin hypercubes after

some level-mapping. Divide Zn2
into n1 disjoint blocks of s elements given by

gn2
(u, v) =

{
z ∈ Zn2

:

⌈
z

n1

⌉
= u,

⌈
z − n1(u− 1)

s

⌉
= v

}
, for u = 1, . . . , s, v = 1, . . . , λ.

(2.2)

In the construction of a sliced U design, these blocks are critical for simultaneously

achieving uniformity in each slice and the whole design. For n2 = 18, n1 = 6, s = 3

and λ = 2, the six disjoint blocks of Zn2
in (2.2) are g18(1, 1) = {1, 2, 3}, g18(1, 2) =

{4, 5, 6}, g18(2, 1) = {7, 8, 9}, g18(2, 2) = {10, 11, 12}, g18(3, 1) = {13, 14, 15} and

g18(3, 2) = {16, 17, 18}.

Randomize the columns of A and then randomize the symbols in each column by

a uniform permutation on Zs, with the permutations carried out independently from

one column to another. We now present a useful lemma from Chapter 1 of Hedayat

et al. (1999).

Lemma 2.1. For an OA(n2, s
q+1, t) with n2 = s2λ and n1 = sλ, collecting the n1 runs

that has the same symbol in one column and deleting the column yields an OA(n1, s
q, t−

1).

This lemma is well known in design of experiments and has been used in the construc-

tion of various designs before. See, for example, Lin (1993), Xu (2005), Xu and Wu

(2005) and He and Qian (2011).

9

Here we choose the (q + 1)th column of A as the slicing column, although any

other column can be used as well. Guided by Lemma 2.1, divide A into s slices of

n1 runs, A1, . . . ,As. For m = 1, . . . , s, obtain Am = (am,ik) by collecting the rows

of A with entries in the slicing column being m and deleting the slicing column, and

randomly shuffle the rows of Am. Let B1, . . . ,Bs be s n1 × q empty matrices, and

let B and C be two n2 × q empty matrices. For k = 1, . . . , q, the proposed method

proceeds in two steps:

Step 1: For m = 1, . . . , s, replace the λ entries of Am(:, k) with am,ik = u with

a uniform permutation on Zλ to obtain Bm(:, k), for u = 1, . . . , s, with the s

permutations carried out independently from one to another. Obtain column k

of B = (bik) by combining B1(:, k), . . . ,Bs(:, k).

Step 2: For u = 1, . . . , s, v = 1, . . . , λ, obtain column k of C by replacing the s

entries of C(:, k) satisfying aik = u and bik = v with a uniform permutation on

gn2
(u, v) in (2.2). These n1 = sλ permutations on the n1 gn2

blocks are carried

out independently from one to another.

Using C = (cik), generate an n2 × q design D = (dik) through

dik = (cik − uik) /n2, for i = 1, . . . , n2, k = 1, . . . , q, (2.3)

where the uik are U [0, 1) random variables, dik is the level of factor k on the ith run,

and the uik and the cik are mutually independent. For m = 1, . . . , s, let Cm = (cm,ik)

be the submatrix of C corresponding to Am, and let Dm = (dm,ik) be the submatrix

of D corresponding to Cm.

Proposition 2.1 presents the space-filling properties of D and D1 . . . ,Ds.

10

Proposition 2.1. Consider D with slices D1, . . . ,Ds obtained above. We have that

(i) the design D achieves two-dimensional stratification with respect to the s×s grids

when projected onto any two factors and achieves one-dimensional stratification

with respect to the n2 equally spaced interval of (0, 1] when projected onto each

factor;

(ii) each Dm achieves one-dimensional stratification with respect to the n1 equally

spaced interval of (0, 1] when projected onto each factor.

Compared with the sliced U design in Proposition 2.1, a sliced Latin hypercube

design (Qian, 2012) of the same size can only achieve one-dimensional stratification

for the whole design. In Section 2.1, this difference was illustrated by a vis-à-vis

comparison of a sliced U design and a sliced Latin hypercube design of 16 runs in

Figures 2.1 and 2.2, respectively. The sliced U design in Figure 2.2 is generated from

an OA(16, 44, 2) by using the above construction method.

The method in Tang (1993) divides Zn2
associated with an OA(n2, s

q, 2) into s

groups hn2
(1), . . . ,hn2

(s) given by

hn2
(u) = {z ∈ Zn2

: ⌈z/n1⌉ = u, } for u = 1, . . . , s, (2.4)

and replaces the u’s in each column with a uniform permutation of the n1 numbers of

hn2
(u). For A with index λ = 1 in the construction above, C in (2.3) is reduced to an

ordinary U design in Tang (1993) as Step 1 becomes superfluous and the double-layer

blocks gn2
in (2.2) reduce to hn2

in (2.4). The step to divide A into A1, . . . ,As using

Lemma 2.1 is still critical for achieving the uniformity in each slice. If an ordinary

U design of n2 runs is randomly divided into s slices of n1 runs, these slices are not

11

guaranteed to achieve attractive uniformity. This point will be made more clear in

Proposition 2.4 in Section 2.2.

Example 2.1. Let A be an OA(18, 34, 2) in part (a) of Table 2.1 with n2 = 18,

n1 = 6, s = 3, q = 3 and λ = 2. Permute the columns of A and randomize the

three symbols, 1, 2, 3, in each column with a uniform permutation on Z3, giving the

array in part (b) of the table. For m = 1, 2, 3, obtain a matrix Am by collecting

the rows of A with entries in column 4 being m and then deleting column 4, and

randomly shuffle the rows in each Am. Part (c) of Table 2.1 present A1, A2 and

A3 divided by the dashed lines. For n2 = 18 and n1 = 6, the six disjoint blocks

of Z18 in (2.2) are g18(1, 1) = {1, 2, 3}, g18(1, 2) = {4, 5, 6}, g18(2, 1) = {7, 8, 9},

g18(2, 2) = {10, 11, 12}, g18(3, 1) = {13, 14, 15} and g18(3, 2) = {16, 17, 18}. Below is

the step-to-step randomization of column 1 of A.

Step 1: Obtain B1(:, 1) by replacing the two 1’s in A1(:, 1) with 2, 1, respectively.

Replace the two 2’s in A1(:, 1) with 2, 1, respectively, and replace the two 3’s

in A1(:, 1) with 1, 2, respectively. In B2(:, 1), replace the two 1’s in A2(:, 1)

with 1, 2, respectively, replace the two 2’s in A2(:, 1) with 1, 2, respectively, and

replace the two 3’s in A2(:, 1) with 2, 1, respectively. In B3(:, 1), replace the two

1’s in A3(:, 1) with 1, 2, respectively, replace the two 2’s in A3(:, 1) with 2, 1,

respectively, and replace the two 3’s in A3(:, 1) with 2, 1, respectively.

Step 2: Obtain C(:, 1) by combining A(:, 1) and B(:, 1). Since the entries 5, 7 and

15 in A(:, 1) and B(:, 1) have ai1 = 1 and bi1 = 1, the entries 5, 7 and 15 of

C(:, 1) are taken to be 3, 2, 1, a uniform permutation of g18(1, 1). Because the

entries 1, 8 and 16 in A(:, 1) and B(:, 1) have ai1 = 1 and bi1 = 2, the entries 1,

12

8 and 16 of C(:, 1) are taken to be 6, 5, 4, a uniform permutation of g18(1, 2).

Because the entries 6, 10 and 18 in A(:, 1) and B(:, 1) have ai1 = 2 and bi1 = 1,

the entries 6, 10 and 18 of C(:, 1) are taken to be 8, 7, 9, a uniform permutation

of g18(2, 1). Because the entries 4, 11 and 13 in A(:, 1) and B(:, 1) have ai1 = 2

and bi1 = 2, the entries 4, 11 and 13 of C(:, 1) are taken to be 12, 10, 11, a

uniform permutation of g18(2, 2). Because the entries 2, 12 and 17 in A(:, 1)

and B(:, 1) have ai1 = 3 and bi1 = 1, the entries 2, 12 and 17 of C(:, 1) are

taken to be 15, 13, 14, a uniform permutation of g18(3, 1). Because the entries

3, 7 and 14 in A(:, 1) and B(:, 1) have ai1 = 3 and bi1 = 2, the entries 3, 7 and

14 of C(:, 1) are taken to be 18, 17, 16, a uniform permutation of g18(3, 2).

Part (e) of Table 2.1 presents the matrix C with three slices C1,C2 and C3 divided

by the dashed lines. Figure 2.3 presents the bivariate projections of D of 18 runs

generated from C. The whole design of D achieves one-dimensional stratification with

respect to the 18 equally spaced intervals of (0, 1] and two-dimensional stratification

with respect to the 3 × 3 grids displayed in dashed lines. In any one-dimensional

projection of D, each of the 18 equally spaced intervals of (0, 1] contains exactly one

point. In any two-dimensional projections of D, each of the nine reference squares of

(0, 1]2 contains exactly two points. The design D is divided into three Latin hypercube

designs of six runs (#,△,C), each having exactly one point in each of the six equally

spaced intervals of (0, 1].

Example 2.2. Let A be an OA(32, 44, 2) in part (a) of Table 2.2 with n2 = 32,

n1 = 8, s = 4, q = 3 and λ = 2. Permute the columns of A and randomize the

four symbols, 1, 2, 3, 4, in each column with a uniform permutation on Z4, giving the

13

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x1 x2 x3 x1 x2 x3

3 2 2 2 3 2 2 1 1 1 1 2 1 2 6 (2) 1 (1) 6 (2)

3 2 1 1 3 3 3 1 3 3 3 1 1 2 15 (5) 13 (5) 16 (6)

3 1 1 2 1 2 3 1 3 2 2 2 1 2 18 (6) 8 (3) 11 (4)

3 3 2 3 2 1 2 1 2 2 3 2 2 1 12 (4) 17 (6) 2 (1)

3 1 3 3 1 1 1 1 1 2 3 1 2 1 3 (1) 12 (4) 14 (5)

3 3 3 1 2 2 3 1 2 1 2 1 2 1 8 (3) 5 (2) 9 (3)

2 3 1 3 2 1 3 2 1 2 2 1 2 2 2 (1) 11 (4) 12 (4)

2 3 3 2 2 2 1 2 1 3 3 2 1 2 5 (2) 14 (5) 17 (6)

2 2 3 3 3 1 1 2 3 1 1 2 2 2 17 (6) 4 (2) 4 (2)

2 1 1 1 1 3 3 2 2 2 1 1 1 1 7 (3) 7 (3) 1 (1)

2 2 2 1 3 3 2 2 2 1 3 2 1 1 10 (4) 3 (1) 15 (5)

2 1 2 2 1 2 2 2 3 3 2 1 2 1 13 (5) 16 (6) 8 (3)

1 1 3 1 1 3 1 3 2 3 2 2 2 2 11 (4) 18 (6) 10 (4)

1 1 2 3 1 1 2 3 3 2 1 2 2 1 16 (6) 10 (4) 3 (1)

1 3 2 1 2 3 2 3 1 3 1 1 1 2 1 (1) 15 (5) 5 (2)

1 2 3 2 3 2 1 3 1 1 2 2 2 1 4 (2) 6 (2) 7 (3)

1 3 1 2 2 2 3 3 3 1 3 1 1 2 14 (5) 2 (1) 18 (6)

1 2 1 3 3 1 3 3 2 2 3 1 1 1 9 (3) 9 (3) 13 (5)

(a) (b) (c) (d) (e)

Table 2.1: (a) An OA(18, 34, 2) denoted by A, (b) A after column and symbol permu-

tations, (c) divide A into submatrices A1, A2 and A3 (indicated by the dashed lines)

according to different symbols in column 4 of A and deleting column 4 and randomly

shuffle the rows in each slice, (d) B with submatrices B1,B2 and B3 obtained in Step

1 of the construction, (e) C = (cik) obtained in Step 2 of the construction, where

each slice is a Latin hypercube of six runs taking values in Z6 after every entry cik is

collapsed according to level-mapping ⌈cik/3⌉

array in part (b) of the table. For m = 1, 2, 3, 4, obtain Am by collecting the rows

of A with entries in column 4 being m and then deleting column 4, and randomly

shuffle the rows in Am. Part (c) of Table 2.2 present A1, A2, A3 and A4 divided

by the dashed lines. For n2 = 32 and n1 = 8, the eight disjoint blocks of Z32 in

(2.2) are g32(1, 1) = {1, 2, 3, 4}, g32(1, 2) = {5, 6, 7, 8}, g32(2, 1) = {9, 10, 11, 12},

14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

Fig. 2.3.— Bivariate projections of a sliced U design D with slices D1, D2 and D3 in

Example 2.1. Each of the 3×3 squares in the dashed lines has exactly two points, and

each of the 18 equally spaced intervals of (0, 1] contains exactly one point. The array

D is divided into three Latin hypercube designs of six runs (#,△,C), each containing

exactly one point in each of the six equally spaced intervals of (0, 1].

g32(2, 2) = {13, 14, 15, 16}, g32(3, 1) = {17, 18, 19, 20}, g32(3, 2) = {21, 22, 23, 24},

g32(4, 1) = {25, 26, 27, 28} and g32(4, 2) = {29, 30, 31, 32}. Below is the step-to-step

randomization of column 1 of A.

Step 1: Obtain B1(:, 1) by replacing the two 1’s in A1(:, 1) with 1, 2, respectively.

Replace the two 2’s in A1(:, 1) with 1, 2, respectively, replace the two 3’s in

A1(:, 1) with 1, 2, respectively, and replace the two 4’s in A1(:, 1) with 1, 2,

respectively. In B2(:, 1), replace the two 1’s in A2(:, 1) with 1, 2, respectively,

replace the two 2’s in A2(:, 1) with 1, 2, respectively, replace the two 3’s in

15

A2(:, 1) with 2, 1, respectively, and replace the two 4’s in A2(:, 1) with 1, 2,

respectively. In B3(:, 1), replace the two 1’s in A3(:, 1) with 2, 1, respectively,

replace the two 2’s in A3(:, 1) with 1, 2, respectively, replace the two 3’s in

A3(:, 1) with 2, 1, respectively, and replace the two 4’s in A3(:, 1) with 1, 2,

respectively. In B4(:, 1), replace the two 1’s in A4(:, 1) with 1, 2, respectively,

replace the two 2’s in A4(:, 1) with 2, 1, respectively, replace the two 3’s in

A4(:, 1) with 2, 1, respectively, and replace the two 4’s in A4(:, 1) with 2, 1,

respectively.

Step 2: Obtain C(:, 1) by combining A(:, 1) and B(:, 1). Since the entries 1, 11,

21 and 29 in A(:, 1) and B(:, 1) have ai1 = 1 and bi1 = 1, the entries 1, 11, 21

and 29 of C(:, 1) are taken to be 1, 2, 4, 3, a uniform permutation of g32(1, 1).

Because the entries 5, 16, 20 and 32 in A(:, 1) and B(:, 1) have ai1 = 1 and

bi1 = 2, the entries 5, 16, 20 and 32 of C(:, 1) are taken to be 7, 6, 8, 5, a

uniform permutation of g32(1, 2). Because the entries 3, 9, 23 and 30 in A(:, 1)

and B(:, 1) have ai1 = 2 and bi1 = 1, the entries 3, 9, 23 and 30 of C(:, 1)

are chosen to be 12, 11, 10, 9, a uniform permutation of g32(2, 1). Because the

entries 4, 15, 24 and 26 in A(:, 1) and B(:, 1) have ai1 = 2 and bi1 = 2, the

entries 4, 15, 24 and 26 of C(:, 1) are taken to be 13, 14, 16, 15, a uniform

permutation of g32(2, 2). Because the entries 2, 14, 22 and 31 in A(:, 1) and

B(:, 1) have ai1 = 3 and bi1 = 1, the entries 2, 14, 22 and 31 of C(:, 1) are taken

to be 18, 19, 17, 20, a uniform permutation of g32(3, 1). Because the entries 8,

13, 19 and 28 in A(:, 1) and B(:, 1) have ai1 = 3 and bi1 = 2, the entries 8,

13, 19 and 28 of C(:, 1) are taken to be 21, 22, 24, 23, a uniform permutation

16

of g32(3, 2). Because the entries 6, 10, 17 and 27 in A(:, 1) and B(:, 1) have

ai1 = 4 and bi1 = 1, the entries 6, 10, 17 and 27 of C(:, 1) are taken to be 25,

27, 26, 28, a uniform permutation of g32(4, 1). Because the entries 7, 12, 18

and 25 in A(:, 1) and B(:, 1) have ai1 = 4 and bi1 = 2, the entries 7, 12, 18 and

25 of C(:, 1) are taken to be 29, 32, 31, 30, a uniform permutation of g32(4, 2).

Part (e) of Table 2.2 presents the matrix C with four slices C1,C2,C3 and C4 divided

by the dashed lines. Figure 2.4 presents the bivariate projections of D of 32 runs

generated from C. The whole design of D achieves one-dimensional stratification with

respect to the 32 equally spaced intervals of (0, 1] and two-dimensional stratification

with respect to the 4 × 4 grids displayed in dashed lines. In any one-dimensional

projection of D, each of the 32 equally spaced intervals of (0, 1] contains exactly one

point. In any two-dimensional projections of D, each of the 16 reference squares of

(0, 1]2 contains exactly two points. The design D is divided into four Latin hypercube

designs of eight runs (#,△,C,�), each having exactly one point in each of the eight

equally spaced intervals of (0, 1].

2.3 Sampling Properties

In this section, we derive sampling properties of sliced U designs. Let F denote

the uniform measure on the unit hypercube (0, 1]q. Let f : (0, 1]q → R be a measurable

function with
∫
f(x)2dF < ∞. Express dF as

∏q
k=1 dFk, where Fk is the uniform

measure of the kth dimension. The continuous ANOVA decomposition (Owen, 1994;

Loh, 1996) of f is

f =
∑

u∈Q

fu, (2.5)

17

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

Fig. 2.4.— Bivariate projections of a sliced U design D with slices D1, D2, D3 and D4

in Example 2.2. Each of the 4× 4 squares in the dashed lines has exactly two points,

and each of the 32 equally spaced intervals of (0, 1] contains exactly one point. The

array D is divided into four Latin hypercube designs of eight runs (#,△,C,�), each

containing exactly one point in each of the eight equally spaced intervals of (0, 1].

where Q represents the set of all axes of (0, 1]q. For any u ∈ Q, fu can be defined via

∫ (
f(x)−

∑

v⊂u

fv(x)

)
dFQ/u, (2.6)

where dFQ/u =
∏

k/∈u dFk. For the empty set ∅, f∅ denotes the grand mean µ =
∫
fdF .

The variance of f , denoted by σ2 =
∫
(f − µ)2dF , can be decomposed as

σ2 =
∑

|u|>0

f 2
udF. (2.7)

Lemma 2.2. Consider C of n2 runs from (2.3) based on an OA(n2, s
q+1, 2) with slices

C1, . . . ,Cs of n1 runs each, with n1 = sλ and n2 = sn1. Then (i) the columns of C

18

and Cm, m = 1, . . . , s, are exchangeable; (ii) for m = 1, . . . , s, the rows of Cm are

exchangeable.

Proof. Part (i) follows immediately by the column permutation of A prior to the

construction method in Section 2.2. Part (ii) follows by the row permutation of each

slice of A in the construction method.

Proposition 2.2. For m = 1, . . . , s, let cm,ik denote the (i, k)th entry of Cm in Lemma

2.2. Then for k = 1, . . . , q,

(i) the probability mass function for cm,ik, i = 1, . . . , n1, is

P (cm,ik = x) = n2
−1, x ∈ Zn2

. (2.8)

(ii) the joint probability mass function for cm,ik and cm,jk, i 6= j, is

P (cm,ik = x, cm,jk = y) =

{
[n2(n2 − s)]−1 ⌈x/s⌉ 6= ⌈y/s⌉, x, y ∈ Zn2

0 otherwise.
(2.9)

(iii) the joint probability mass function for cm1,ik and cm2,jk, m1 6= m2, is

P (cm1,ik = x, cm2,jk = y) =





n−2
2 ⌈x/s⌉ 6= ⌈y/s⌉, x, y ∈ Zn2

[n2(n2 − n1)]
−1 ⌈x/s⌉ = ⌈y/s⌉, x 6= y, x, y ∈ Zn2

0 otherwise.
(2.10)

Following He and Qian (2011), express the (i, k)th entry cik of C in Proposition

2.2 as

cik = n1αik − sβik + γik, (2.11)

where αik, βik, and γik are uniform random variables on Zs, Zλ and Zs, respectively.

Similarly, express the (i, k)th entry cm,ik of Cm in Proposition 2.2 as

cm,ik = n1αm,ik − sβm,ik + γm,ik. (2.12)

19

The components in this expression correspond to the steps of the construction method

in Section 2.2, with αik associated with the symbol permutation on Zs, βik the permu-

tation on Zλ in Step 1 and γik the permutation on Zs in Step 2. Expressions of (2.11)

and (2.12) will be used in Proposition 2.3. For row i in Cm, let τ
kl
m,i be the number of

rows j in Cm satisfying αm,ik = αm,jk and αm,il = αm,jl. Let

τm = n−1
1 [q(q − 1)]−1

n1∑

i=1

∑

k 6=l

τklm,i (2.13)

denote the average of τklm,i values over all row and column pairs in Cm. Averaging the

τm values over all s slices of C gives

τ = s−1
s∑

m=1

τm. (2.14)

Table 2.3 presents a grouping scheme originally introduced in He and Qian (2011) for

nested U designs. A pair of nested U design constructed in He and Qian (2011) are

two space-filling designs that the larger design contains a small space-filling design as

a subset. The construction method for nested U designs is also motivated by Lemma

2.1, but works in a different fashion and for a different purpose by collecting the runs of

an orthogonal array with strength two with the same symbol in one chosen column to

form a small orthogonal array and then simultaneously randomizing the nested small

array and the remaining runs of the large array. Table 2.3 was derived for grouping

the entries in two rows and two columns of a pair of nested U designs. Though the

probability mass functions of a sliced U design and a nested U design are different,

these groups are still useful here as they are characteristics of the underlying OA.

Remark 2.1. With the same underlying OA, each slice of a sliced U design has the

same distribution as the small design of a pair of nested U designs constructed in He

20

and Qian (2011). In terms of the joint distribution of the whole design, a sliced U

design and a nested U design are different. A nested U design does not have a slicing

structure.

Proposition 2.3. For m = 1, . . . , s, cm,ik denotes the (i, k)th entry of Cm in Lemma

2.2. Let P (cm,ik, cm,il, cm,jk, cm,jl) denote the joint probability mass function for (cm,ik, cm,il,

cm,jk, cm,jl). For C with slices C1, . . . ,Cs in Lemma 2.2, we have that

(i) for rows i, j in Cm, m = 1, . . . , s,

P (cm,ik, cm,il, cm,jk, cm,jl) =





τ
λ2s6(sλ−1)(λ−1)2

(xi1, xi2, yj1, yj2) ∈ H4.
λ−1−τ

λ3s6(sλ−1)(λ−1)(s−1)
(xi1, xi2, yj1, yj2) ∈ H7.

sλ−2λ+1+τ
λ4s6(sλ−1)(s−1)2

(xi1, xi2, yj1, yj2) ∈ H8.

0 otherwise.
(2.15)

(ii) for row i in Cm1
and row j in Cm2

, m1 6= m2,

P (cm1,ik, cm1,il, cm2,jk, cm2,jl) =





λ−1−τ
λ5s5(s−1)3

(xi1, xi2, yj1, yj2) ∈ H2.
λ−1−τ

λ5s6(s−1)2
(xi1, xi2, yj1, yj2) ∈ H3.

λ−1−τ
λ5s7(s−1)

(xi1, xi2, yj1, yj2) ∈ H4.
λs−2λ+1+τ
λ5s6(s−1)3

(xi1, xi2, yj1, yj2) ∈ H6.
λs−2λ+1+τ
λ5s7(s−1)2

(xi1, xi2, yj1, yj2) ∈ H7.
λs2−3λs+3λ−1−τ

λ5s7(s−1)3
(xi1, xi2, yj1, yj2) ∈ H8.

0 otherwise.
(2.16)

Consider s similar computer experiments f1, . . . , fs having inputs x = (x1, . . . , xq)

with the uniform distribution on (0, 1]q. For m = 1, . . . , s, let

µm =

∫
fm(x)dF. (2.17)

Define

µ = s−1

s∑

m=1

µm. (2.18)

21

Let D be a sliced U design of n2 runs from (2.3) having s slices D1, . . . ,Ds of n1 runs.

For m = 1, . . . , s, an estimator of µm in (2.17) using Dm is

µ̂m = n1
−1

n1∑

i=1

fm (xm,i) , (2.19)

where xm,i denotes the ith run of Dm. Then µ in (2.18) is estimated by

µ̂ = s−1

s∑

i=1

µ̂m, (2.20)

which uses n2 runs of D. For u ∈ Q and r = 1, . . . , q, as in Owen (1994) and He and

Qian (2011), let wm,ij(u) = {k ∈ u|cm,ik = cm,jk}. Define

Mm(u, r) =

n1∑

i=1

n1∑

j=1

1|wm,ij(u)|=r, for m = 1, . . . , s. (2.21)

Similarly, define wm1,m2,ij(u) = {k ∈ u|cm1,ik = cm2,jk} and

Mm1,m2
(u, r) =

n1∑

i=1

n1∑

j=1

1|wm1,m2,ij
(u)|=r, for m1, m2 = 1, . . . , s, m1 6= m2. (2.22)

For m = 1, . . . , s, replacing f with fm in (2.5) gives

fm(x) =
∑

u∈Q

fm,u(x). (2.23)

Theorem 2.1 gives some variance formulas for sliced U designs.

Theorem 2.1. Suppose that E ([fm(x)]
2), for m = 1, . . . , s, and E[fm1

(x)fm2
(x)], for

m1, m2 = 1, . . . , s, are well defined and finite. Let τ be as defined in (2.14). Suppose

that, for m = 1, . . . , s, fm is a continuous function on (0, 1]q. Then for µ̂m in (2.19)

22

and µ̂ in (2.20) under sliced U designs, as s → ∞ with λ fixed,

(i) var (µ̂m) =
∑

|u|≥2

Mm(u, |u|)n
−2
1 var[fm,u (x)] + o(n−1

1);

(ii) var (µ̂)

= (1 + τ)n−1
2 s−1

∑

|u|=2

(
s∑

m=1

var[fm,u(x)]− (s− 1)−1
∑

m1 6=m2

cov[fm1,u(x), fm2,u(x)]

)

+
∑

|u|>2

n−2
2

(
s∑

m=1

Mm(u, |u|)var[fm,u(x)] +
∑

m1 6=m2

Mm1,m2
(u, |u|)cov[fm1,u(x), fm2,u(x)]

)

+ o(n−1
2).

Theorem 2.1 (i) implies that the slices of a sliced U design achieve variance reduction

similar to those of a sliced Latin hypercube design. If m1 6= m2, cov[fm1,u(x)fm2,u(x)]

are positive (e.g., fm1
= fm2

), Theorem 2.1 (ii) implies that a sliced U design as a whole

achieves a similar degree of variance reduction to an ordinary U design constructed in

Tang (1993). As Owen (1994), define

M(u, r) =

n2∑

i=1

n2∑

j=1

1|wij(u)|=r,

similar to (2.21), where wij(u) is defined in (A.5).

Remark 2.2. When f = f1 = · · · = fs, cov[fm1,u(x), fm2,u(x)] in (A.6) reduces to

var[fu(x)] and Theorem 2.1 (ii) hence reduces to

∑

|u|≥3

M(u, |u|)n−2
2 var[fu(x)] + o(n−1

2),

which achieves a similar degree of variance reduction to an ordinary U design con-

structed in Tang (1993).

23

For fm,u and fm1,u, fm2,u with u ∈ Q in (2.23), define

Vu = s−1
∑s

m=1 var[fm,u(x)],

Cu = [s(s− 1)]−1
∑

m1 6=m2
cov[fm1,u(x), fm2,u(x)].

(2.24)

We now compare Theorem 2.1 with four other methods to generate D1, . . . ,Ds of n1

runs each.

Proposition 2.4. Let D denote the union of a sequence of designs D1, . . . ,Ds of n1

runs each. As in Proposition 2.1, here n2 = sn1. For m = 1, . . . , s, consider µ̂m in

(2.19) using Dm and µ̂ in (2.20) using D. Then we have the following result:

(i) IID: If D1, . . . ,Ds are s IID samples of n1 runs, we have that

var(µ̂m) =
∑

|u|>0 n
−1
1 var[fm,u(x)],

var(µ̂) =
∑

|u|>0 n
−1
2 Vu.

(ii) LHD: If D1, . . . ,Ds are s independent Latin hypercube designs of n1 runs (McKay

et al., 1979), we have that

var(µ̂m) =
∑

|u|>1 n
−1
1 var[fm,u(x)] + o(n−1

1),

var(µ̂) =
∑

|u|>1 n
−1
2 Vu + o(n−1

2).

(iii) SLHD: If D1, . . . ,Ds are a sliced Latin hypercube design with s slices of n1 runs

(Qian, 2012), we have that

var(µ̂m) =
∑

|u|>1 n
−1
1 var[fm,u(x)] + o(n−1

1),

var(µ̂) =
∑

|u|>1 n
−1
2 Vu + o(n−1

2).

(iv) OU: If D1, . . . ,Ds are s slices of n1 runs obtained by randomly dividing an or-

dinary U design D based on an OA(n2, s
q, 2), we have that

var (µ̂m) =
∑

|u|>0 n
−1
1 var[fm,u(x)] + o(n−1

1),

var (µ̂) =
∑

|u|=1,2 n
−1
2 (Vu − Cu) +

∑
|u|>2 n

−1
2 Vu + o(n−1

2).

24

A comparison of Theorem 2.1 (i) and Proposition 2.4 (iii) implies that each slice of a

sliced U design achieves similar variance reduction as a sliced Latin hypercube design

of the same size. Proposition 2.4 (iv) implies that if an ordinary U design is randomly

divided into s slices of n1 runs, the slices do not achieve the variance reduction as

those of a sliced U design in Theorem 2.1 (i).

2.4 Numerical Illustration

This section presents numerical examples to corroborate Theorem 2.1 and Propo-

sition 2.4 in Section 2.3. Take s functions f1, . . . , fs to act as s similar computer models

having inputs x with the uniform distribution on [0, 1)q. The goal here is to estimate

(1) the expected output µm of fm by using a design Dm of n1 runs for m = 1, . . . , s and

(2) the overall mean µ = s−1
∑s

m=1 µm by combining D1, . . . ,Ds. As in Proposition

2.1, here n2 = sn1. We compare four different methods described in Proposition 2.4

to generate D1, . . . ,Ds with those taken from a sliced U design.

1. IID: Generate s IID samples of n1 runs.

2. ILHD: Independently generate s ordinary Latin hypercube designs of n1 runs.

3. SLHD: Generate a sliced Latin hypercube design with s slices of n1 runs.

4. OU: Randomly partition an ordinary U design of n2 runs based on an OA(n2, s
q, 2)

into s slices of n1 runs.

5. SU: Generate a sliced U design with s slices of n1 runs based on an OA(n2, s
q+1, 2).

Example 2.3. Let f1 = f2 = f3 = f4 be the borehole function (Morris et al., 1993)

25

given by

2πx3(x4 − x6)

log(x2/x1)
[
1 + 2 x7x3

log(x2/x1)x2

1
x8

+ x3

x5

] . (2.25)

By using data from a Latin hypercube design with 106 runs, µ1 is found to be 77.668.

A sliced U design with four slices, each being a Latin hypercube design with 16 runs,

is constructed by using the OA(64, 49, 2) presented in Table 2.4. For each method, we

compute µ̂m for m = 1, 2, 3, 4 in (2.19) and µ̂ in (2.20) 1000 times. Table 2.5 presents

the sample means, sample standard deviations and root mean squared errors (RMSEs)

over the 1000 replicates for the five methods. The SU method not only performs equally

as well as the SLHD and ILHD for each µ̂m, but also performs equally as well as the

OU method for µ̂.

Example 2.4. Use f1 in (2.25). Consider its three variants

f2 =
2πx3(x4 − x6)

log(x2/x1)
[
1 + 1.95 x7x3

log(x2/x1)x2

1
x8

+ x3

x5

] ,

f3 =
2πx3(x4 − x6)

log(x2/x1)
[
1 + 2.05 x7x3

log(x2/x1)x2

1
x8

+ x3

x5

] ,

f4 =
2.05πx3(x4 − x6)

log(x2/x1)
[
1 + 2.15 x7x3

log(x2/x1)x2

1
x8

+ x3

x5

] .

By using a Latin hypercube design with 106 runs, µ1, µ2, µ3 and µ4 defined in (2.17)

are found to be 77.668, 79.654, 75.761 and 74.076, respectively. Here, µ in (2.18) is

76.7901. A sliced U design with four slices, each being a Latin hypercube design with

16 runs, is constructed by using the OA(64, 49, 2) in Table 2.4. For each method, we

compute µ̂m in (2.19) for m = 1, 2, 3, 4 and µ̂ in (2.20) 1000 times. Table 2.6 presents

the sample means, sample standard deviations and RMSEs over the 1000 replicates

26

for the five methods. The SU method not only performs equally as well as the SLHD

and ILHD for each µ̂m, but also performs equally as well as the OU method for µ̂.

Example 2.5. Consider the following test function from Cox et al. (2001)

f1 =
x1

2

[√
1 + (x2 + x2

3)
x4

x2
1

− 1

]
+ x1 + 3x4.

Define its two variants

f2 =
x1

2.1

[√
0.9 + (x2 + x2

3)
0.9x4

x2
1

− 1.01

]
+ x1 + 3x4,

f3 =
x1

1.9

[√
1 + (x2 + x2

3)
0.9x4

x2
1

− 1.1

]
+ x1 + 3x4.

By using a Latin hypercube design with 106 runs, µ1, µ2 and µ3 defined in (2.17) are

found to be 2.160, 2.140 and 2.152, respectively. Here, µ in (2.18) is found to be

2.151. A sliced U design with three slices, each being a Latin hypercube design with

12 runs, is constructed by using the OA(36, 35, 2) in Table 2.7. For each method, we

compute µ̂m for m = 1, 2, 3 in (2.19) and µ̂ in (2.20) 1000 times. Table 2.8 presents

the sample means, sample standard deviations and RMSEs over the 1000 replicates

for the five methods. The SU method not only performs equally as well as the SLHD

and ILHD for each µ̂m, but also performs equally as well as the OU method for µ̂.

Example 2.6. Let f1 be the following test function from Deb et al. (2005)

10 cos(πx1/2) cos(πx2/2) cos(πx3/2)[1 + (x4 − 0.5)2].

Consider its two variants

f2 = 10 cos(πx1/2) cos(πx2/1.9) cos(πx3/1.95)[1 + (x4 − 0.51)2],

f3 = 10 cos(πx1/2.1) cos(πx2/2.1) cos(πx3/2.01)[1 + (x4 − 0.45)2].

27

By using a Latin hypercube design with 106 runs, µ1, µ2 and µ3 defined in (2.19) are

found to be 2.798, 2.577 and 2.963, respectively. Here, µ in (2.18) is found to be

2.779. A sliced U design with three slices, each being a Latin hypercube design with

27 runs, is constructed by using an OA(81, 35, 2) in Table 2.9. For each method, we

compute µ̂m for m = 1, 2, 3 in (2.19) and µ̂ in (2.20) 1000 times. Table 2.10 presents

the sample means, sample standard deviations and RMSEs over the 1000 replicates

for the five methods. The SU method not only performs equally as well as the SLHD

and ILHD for each µ̂m, but also performs equally as well as the OU method for µ̂.

Example 2.7. Consider f1, f2, f3 and f4 used in Example 2.4. A sliced U design with

four slices, each being a Latin hypercube design with 16 runs, is constructed by using

an OA(64, 49, 2) in Table 2.4. We estimate µ1 by µ̂m in (2.19) and µ̂ in (2.20). For

each method, we compute µ̂m for m = 1, 2, 3, 4 and µ̂ 1000 times. Table 2.11 presents

the sample means, sample standard deviations and RMSEs over the 1000 replicates

for the five methods. The SU method not only performs equally as well as the SLHD

and ILHD for each µ̂m, but also performs equally as well as the OU method for µ̂.

2.5 Discussion

Running multiple computer experiments is a growing trend in practice. To

respond to this emerging need, we have introduced a new type of design, called a

sliced U design, by randomizing orthogonal arrays with sliced permutations. Such a

design has a desirable sliced structure and achieves better uniformity than a sliced

Latin hypercube design constructed in Qian (2012). MATLAB and R programs for

constructing the proposed designs are available from the authors. Sampling properties

28

of these designs are derived for the purpose of estimating the expected outputs of

multiple computer experiments. Compared with our proposed designs, sliced space-

filling designs (Qian and Wu, 2009) and Sudoku-based space-filling designs (Xu et al.,

2011) are constructed by using algebraic methods and their sampling properties are

difficult to derive.

It is possible to improve the stratification of the sliced U design in Proposition 2.1

by using an OA with strength three or higher. Let A be an OA(n3, s
q+2, t) with t ≥ 3.

The key is to use Lemma 2.1 in Section 2.2 to divide A into s slices, A1, . . . ,As,

each becoming an OA(n2, s
q+1, t − 1). For l = 1, . . . , s, further divide Al into s

smaller slices, Al1, . . . ,Als, each becoming an OA(n1, s
q, t − 2). For l = 1, . . . , s and

m = 1, . . . , s, randomize Alm to obtain a matrix Clm. For l = 1, . . . , s, obtain a larger

design Cl by combining Cl1, . . . ,Cls row by row. Finally, combining C1, . . . ,Cs row

by row gives a design C. Each Clm is randomized by using sliced permutations more

sophisticated than those in (2.2) for C to achieve t-dimensional stratification, each Cl

to achieve (t−1)-dimensional stratification and each Clm to achieve (t−2)-dimensional

stratification.

If A is an OA with strength three, this method constructs a sliced U design C

of n3 runs that can be divided into C1, . . . ,Cs of n2 runs each with two-dimensional

stratification, and each Cl can be further divided into Cl1, . . . ,Cls of n1 runs each

with one-dimensional stratification. Here, n1 = sλ, n2 = sn1 and n3 = sn2. For

illustration, let A be an OA(27, 34, 3) from part (a) of Table 2.12. For l = 1, 2, 3,

collecting the rows of A with entries in column 4 being l and deleting column 4 yields

Al, which is an OA(9, 33, 2). Each Al can be further divided into three slices Alm,

m = 1, 2, 3, by collecting the rows of Al with entries in column 3 being m and deleting

29

column 3. Each Alm is an OA(3, 32, 1). The arrays A11, . . . ,A33 are randomized to

give C11, . . . ,C33, respectively. The larger designs C1,C2 and C3 correspond to A1,

A2 and A3, respectively, and take the union of C1,C2 and C3 to form C. Each Clm is

randomized such that (i) C becomes an OA(27, 32, 2) taking values in Z3 after every

element a is collapsed by level mapping ⌈a/9⌉ and is a Latin hypercube taking values

in Z27, (ii) each Cl becomes an OA(9, 32, 2) taking values in Z3 after every element a

is collapsed by level mapping ⌈a/9⌉ and becomes a Latin hypercube taking values in

Z9 after every element a is collapsed by level mapping ⌈a/3⌉, (iii) each Clm becomes a

Latin hypercube taking values in Z3 after every element a is collapsed by level mapping

⌈a/9⌉. Specifically, divide Z27 into three blocks:

h1 = {1, . . . , 9}, h2 = {10, . . . , 18}, h3 = {19, . . . , 27}.

For l = 1, 2, 3, divide hl to three smaller blocks of three consecutive integers:

hlm =

{
z ∈ hl :

⌈
z − 9(l − 1)

3

⌉
= m

}
, for m = 1, 2, 3. (2.26)

The three symbols, 1, 2, 3, in the first two columns of A are randomized to obtain Cl

and Clm, for l = 1, 2, 3 and m = 1, 2, 3, such that exactly one element of hlm appears

in each Cl and exactly one element of hl appears in each Clm. For example, since

the entries 1, 6 and 8 contain symbol 1 in column 1 of A1 in part (a) in Table 2.12,

these entries in column 1 of C1 are taken to be 3, 5 and 8, from h11, h12 and h13,

respectively. Since the entries 3, 5 and 7 have symbol 2 in column 1 ofA1, these entries

in column 1 of C1 are taken to be 18, 14 and 11, from h23, h22 and h21, respectively.

Since the entries 2, 4 and 9 have symbol 3 in column 1 of A1, these entries in column

1 of C1 are taken to be 19, 27 and 24, from h31, h33 and h32, respectively. Randomize

the entries of A2 and A3 similarly to obtain C2 and C3, respectively.

30

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2
Fig. 2.5.— Bivariate projection of C1 of nine runs and C11 of three runs from Table

2.12, where C1 can be divided into three slices (#,△,C), each being a Latin hypercube

design of three runs.

Another way to generate sliced designs with better stratification is to exploit

some slicing structure in the infinite (t, s) sequence in a prime power base (Niederreiter,

1992; Owen, 1995).

Sliced U designs with (nearly) orthogonal columns or with optimality according

to the maximin distance criterion can be constructed by extending the methods in Ye

(1998), Steinberg and Lin (2006), Bingham et al. (2009), Lin et al. (2009) and Lin

et al. (2010) or the method in Morris and Mitchell (1995).

31

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x1 x2 x3 x1 x2 x3

3 3 1 4 1 2 2 1 1 2 2 1 1 1 1 (1) 10 (3) 9 (3)

1 4 1 2 2 3 1 1 3 4 3 1 2 2 18 (5) 31 (8) 23 (6)

2 2 1 1 3 4 3 1 2 3 1 1 2 1 12 (3) 22 (6) 2 (1)

4 1 1 3 4 1 4 1 2 3 3 2 1 1 13 (4) 20 (5) 17 (5)

4 3 1 4 1 2 4 1 1 2 4 2 2 2 7 (2) 14 (4) 29 (8)

2 4 1 2 2 3 3 1 4 1 4 1 2 1 25 (7) 6 (2) 25 (7)

1 2 1 1 3 4 1 1 4 1 2 2 1 2 29 (8) 4 (1) 14 (4)

3 1 1 3 4 1 2 1 3 4 1 2 1 2 21 (6) 25 (7) 8 (2)

2 3 2 3 1 1 3 2 2 4 4 1 1 1 11 (3) 27 (7) 28 (7)

4 4 2 1 2 4 4 2 4 2 1 1 2 1 27 (7) 16 (4) 3 (1)

3 2 2 2 3 3 2 2 1 1 1 1 1 2 2 (1) 2 (1) 7 (2)

1 1 2 4 4 2 1 2 4 2 3 2 1 1 32 (8) 11 (3) 19 (5)

1 3 2 3 1 1 1 2 3 3 2 2 2 1 22 (6) 24 (6) 12 (3)

3 4 2 1 2 4 2 2 3 3 4 1 1 2 19 (5) 17 (5) 32 (8)

4 2 2 2 3 3 4 2 2 4 2 2 2 2 14 (4) 30 (8) 13 (4)

2 1 2 4 4 2 3 2 1 1 3 2 2 2 6 (2) 8 (2) 24 (6)

3 3 3 1 1 4 2 3 4 3 4 1 1 2 26 (7) 19 (5) 30 (8)

1 4 3 3 2 1 1 3 4 3 2 2 2 2 31 (8) 23 (6) 15 (4)

2 2 3 4 3 2 3 3 3 2 3 2 1 1 24 (6) 12 (3) 20 (5)

4 1 3 2 4 3 4 3 1 4 2 2 2 1 8 (2) 32 (8) 10 (3)

4 3 3 1 1 4 4 3 1 4 4 1 1 1 4 (1) 26 (7) 27 (7)

2 4 3 3 2 1 3 3 3 2 1 1 2 2 17 (5) 13 (4) 6 (2)

1 2 3 4 3 2 1 3 2 1 3 1 1 2 10 (3) 3 (1) 21 (6)

3 1 3 2 4 3 2 3 2 1 1 2 2 1 16 (4) 5 (2) 1 (1)

2 3 4 2 1 3 3 4 4 4 3 2 1 1 30 (8) 28 (7) 18 (5)

4 4 4 4 2 2 4 4 2 2 2 2 2 2 15 (4) 15 (4) 16 (4)

3 2 4 3 3 1 2 4 4 4 1 1 2 2 28 (7) 29 (8) 5 (2)

1 1 4 1 4 4 1 4 3 1 2 2 1 1 23 (6) 1 (1) 11 (3)

1 3 4 2 1 3 1 4 1 3 1 1 2 1 3 (1) 21 (6) 4 (1)

3 4 4 4 2 2 2 4 2 2 4 1 1 1 9 (3) 9 (3) 26 (7)

4 2 4 3 3 1 4 4 3 1 4 1 2 2 20 (5) 7 (2) 31 (8)

2 1 4 1 4 4 3 4 1 3 3 2 1 2 5 (2) 18 (5) 22 (6)

(a) (b) (c) (d) (e)

Table 2.2: (a) An OA(32, 44, 2) denoted by A, (b) A after column and symbol permu-

tations, (c) divide A into submatrices A1, A2, A3 and A4 (indicated by the dashed

lines) according to different symbols in column 4 of A and deleting column 4 and

randomly shuffle the rows in each slice, (d) B with submatrices B1,B2,B3 and B4

obtained in Step 1 of the construction, (e) C = (cik) obtained in Step 2, where each

slice is a Latin hypercube of eight runs taking values in Z8 after every element cik is

collapsed by level mapping ⌈cik/4⌉

32

Group Definition Size

H1

αik = αjk, αil = αjl, βik = βjk, γik = γjk,
λ2s4(2λs− 1)or αik = αjk, αil = αjl, βil = βjl, γik = γjk

H2 αik = αjk, αil = αjl, βik = βjk, βil = βjl, γik 6= γjk, γil 6= γjl λ2s4(s− 1)2

H3

αik = αjk, αil = αjl, βik = βjk, βil 6= βjl, γik 6= γjk,
2λ2s5(λ− 1)(s− 1)or αik = αjk, αil = αjl, βik 6= βjk, βil = βjl, γil 6= γjl

H4 αik = αjk, αil = αjl, βik 6= βjk, βjl 6= βjl λ2s6(λ− 1)2

H5

αik = αjk, αil 6= αjl, βik = βjk, γik = γjk
2λ3s5(s− 1)or αik 6= αjk, αil = αjl, βil = βjl, γil = γjl

H6

αik = αjk, αil 6= αjl, βik = βjk, γik 6= γjk,
2λ3s5(s− 1)2or αik 6= αjk, αil = αjl, βil = βjl, γil 6= γjl

H7

αik = αjk, αil 6= αjl, βik 6= βjk,
2λ3s6(λ− 1)(s− 1)or αik 6= αjk, αil = αjl, βil 6= βjl

H8 αik 6= αjk, αil 6= αjl λ4s6(s− 1)2

Table 2.3: A scheme for grouping the entries in rows i, j and columns k, l of C of

Lemma 2.2

33

Run# x1 x2 x3 x4 x5 x6 x7 x8 x9 Run# x1 x2 x3 x4 x5 x6 x7 x8 x9

1 1 1 1 1 1 1 1 1 1 33 1 1 3 2 3 4 1 4 1

2 2 4 2 3 1 3 1 2 3 34 2 4 4 4 3 2 1 3 3

3 3 2 3 4 1 4 1 3 4 35 3 2 1 3 3 1 1 2 4

4 4 3 4 2 1 2 1 4 2 36 4 3 2 1 3 3 1 1 2

5 1 2 4 2 3 1 3 1 2 37 1 2 2 1 1 4 3 4 2

6 2 3 3 4 3 3 3 2 4 38 2 3 1 3 1 2 3 3 4

7 3 1 2 3 3 4 3 3 3 39 3 1 4 4 1 1 3 2 3

8 4 4 1 1 3 2 3 4 1 40 4 4 3 2 1 3 3 1 1

9 1 3 2 3 4 1 4 1 3 41 1 3 4 4 2 4 4 4 3

10 2 2 1 1 4 3 4 2 1 42 2 2 3 2 2 2 4 3 1

11 3 4 4 2 4 4 4 3 2 43 3 4 2 1 2 1 4 2 2

12 4 1 3 4 4 2 4 4 4 44 4 1 1 3 2 3 4 1 4

13 1 4 3 4 2 1 2 1 4 45 1 4 1 3 4 4 2 4 4

14 2 1 4 2 2 3 2 2 2 46 2 1 2 1 4 2 2 3 2

15 3 3 1 1 2 4 2 3 1 47 3 3 3 2 4 1 2 2 1

16 4 2 2 3 2 2 2 4 3 48 4 2 4 4 4 3 2 1 3

17 1 1 2 4 2 3 1 3 1 49 1 1 4 3 4 2 1 2 1

18 2 4 1 2 2 1 1 4 3 50 2 4 3 1 4 4 1 1 3

19 3 2 4 1 2 2 1 1 4 51 3 2 2 2 4 3 1 4 4

20 4 3 3 3 2 4 1 2 2 52 4 3 1 4 4 1 1 3 2

21 1 2 3 3 4 3 3 3 2 53 1 2 1 4 2 2 3 2 2

22 2 3 4 1 4 1 3 4 4 54 2 3 2 2 2 4 3 1 4

23 3 1 1 2 4 2 3 1 3 55 3 1 3 1 2 3 3 4 3

24 4 4 2 4 4 4 3 2 1 56 4 4 4 3 2 1 3 3 1

25 1 3 1 2 3 3 4 3 3 57 1 3 3 1 1 2 4 2 3

26 2 2 2 4 3 1 4 4 1 58 2 2 4 3 1 4 4 1 1

27 3 4 3 3 3 2 4 1 2 59 3 4 1 4 1 3 4 4 2

28 4 1 4 1 3 4 4 2 4 60 4 1 2 2 1 1 4 3 4

29 1 4 4 1 1 3 2 3 4 61 1 4 2 2 3 2 2 2 4

30 2 1 3 3 1 1 2 4 2 62 2 1 1 4 3 4 2 1 2

31 3 3 2 4 1 2 2 1 1 63 3 3 4 3 3 3 2 4 1

32 4 2 1 2 1 4 2 2 3 64 4 2 3 1 3 1 2 3 3

Table 2.4: An OA(64, 49, 2) used in Examples 2.3, 2.4 and 2.7

34

IID ILHD SLHD OU SU

mean 77.3183 77.6343 77.6849 78.2753 77.5661

µ̂1 sd 11.0415 2.4340 2.3614 9.5809 2.1384

RMSE 11.0412 2.4329 2.3604 9.5959 2.1393

mean 78.1968 77.6487 77.5819 77.8818 77.5854

µ̂2 sd 11.1352 2.5183 2.5017 10.1782 2.1752

RMSE 11.1442 2.5172 2.5008 10.1763 2.1745

mean 77.7801 77.5067 77.5961 77.2549 77.7175

µ̂3 sd 11.5782 2.4218 2.3523 9.7066 2.2150

RMSE 11.5732 2.4247 2.3517 9.7098 2.2150

mean 77.1138 77.6890 77.7036 77.2161 77.7197

µ̂4 sd 11.2919 2.4095 2.4028 9.8984 2.1064

RMSE 11.3004 2.4083 2.4017 9.9043 2.1057

mean 77.6022 77.6197 77.6416 77.6570 77.6472

µ̂ sd 5.5519 1.2483 1.1689 0.4450 0.4363

RMSE 5.5493 1.2481 1.1683 0.4448 0.4361

Table 2.5: Comparison of the sample mean, standard deviation and RMSE of µ̂1, µ̂2,

µ̂3, µ̂4 and µ̂ for Example 2.3 over the 1000 replicates for the five methods

IID ILHD SLHD OU SU

mean 77.7755 77.8042 77.6023 77.2948 77.6866

µ̂1 sd 11.5664 2.4418 2.4889 9.8889 2.1662

RMSE 11.5621 2.4496 2.4876 9.8885 2.1671

mean 80.2150 79.7500 79.4484 80.3261 79.6262

µ̂2 sd 12.1499 2.5507 2.5266 10.1182 2.2350

RMSE 12.1605 2.5552 2.5287 10.1407 2.2344

mean 75.5693 75.7247 75.7287 75.7332 75.7105

µ̂3 sd 11.1668 2.3312 2.3675 9.4562 2.0813

RMSE 11.1634 2.3309 2.3671 9.4517 2.0817

mean 74.5181 74.1663 74.0348 73.8067 74.0370

µ̂4 sd 10.3866 2.3689 2.3191 9.0644 2.0508

RMSE 10.3913 2.3698 2.3182 9.0636 2.0500

mean 77.0195 76.8613 76.7036 76.7902 76.7650

µ̂ sd 5.8785 1.2139 1.1744 0.4501 0.4542

RMSE 5.6483 1.2173 1.1366 0.4634 0.4576

Table 2.6: Comparison of the sample mean, standard deviation and RMSE of µ̂1, µ̂2,

µ̂3, µ̂4 and µ̂ for Example 2.4 over the 1000 replicates for the five methods

35

Run# x1 x2 x3 x4 x5 Run# x1 x2 x3 x4 x5

1 1 1 1 1 1 19 1 2 1 3 3

2 2 2 2 2 2 20 2 3 2 1 1

3 3 3 3 3 3 21 3 1 3 2 2

4 1 1 1 1 2 22 1 2 2 3 3

5 2 2 2 2 3 23 2 3 3 1 1

6 3 3 3 3 1 24 3 1 1 2 2

7 1 1 2 3 1 25 1 3 2 1 2

8 2 2 3 1 2 26 2 1 3 2 3

9 3 3 1 2 3 27 3 2 1 3 1

10 1 1 3 2 1 28 1 3 2 2 2

11 2 2 1 3 2 29 2 1 3 3 3

12 3 3 2 1 3 30 3 2 1 1 1

13 1 2 3 1 3 31 1 3 3 3 2

14 2 3 1 2 1 32 2 1 1 1 3

15 3 1 2 3 2 33 3 2 2 2 1

16 1 2 3 2 1 34 1 3 1 2 3

17 2 3 1 3 2 35 2 1 2 3 1

18 3 1 2 1 3 36 3 2 3 1 2

Table 2.7: An OA(36, 35, 2) used in Example 2.5

IID ILHD SLHD OU SU

Mean 2.1280 2.1417 2.1595 2.1373 2.1398

µ̂1 sd 0.2797 0.0250 0.0265 0.2314 0.0249

RMSE 0.2799 0.0250 0.0328 0.2313 0.0249

Mean 2.1511 2.1615 2.1614 2.1605 2.1597

µ̂2 sd 0.2801 0.0244 0.0266 0.2360 0.0246

RMSE 0.2801 0.0244 0.0266 0.2359 0.0246

Mean 2.1482 2.1509 2.1600 2.1548 2.1517

µ̂3 sd 0.2795 0.0264 0.0258 0.2292 0.0248

RMSE 0.2794 0.0264 0.0270 0.2291 0.0248

Mean 2.1424 2.1513 2.1603 2.1509 2.1509

µ̂ sd 0.1614 0.0145 0.0076 0.0059 0.0056

RMSE 0.1616 0.0145 0.0122 0.0059 0.0056

Table 2.8: Comparison of the sample mean, standard deviation and RMSE of µ̂1, µ̂2,

µ̂3 and µ̂ for Example 2.5 over the 1000 replicates for the five methods

36

Run# x1 x2 x3 x4 x5 Run# x1 x2 x3 x4 x5 Run# x1 x2 x3 x4 x5

1 1 1 1 1 1 28 3 1 2 1 2 55 2 1 3 1 3

2 2 1 2 1 1 29 1 1 3 1 2 56 3 1 1 1 3

3 3 1 3 1 1 30 2 1 1 1 2 57 1 1 2 1 3

4 1 2 1 1 1 31 3 2 2 1 2 58 2 2 3 1 3

5 2 2 2 1 1 32 1 2 3 1 2 59 3 2 1 1 3

6 3 2 3 1 1 33 2 2 1 1 2 60 1 2 2 1 3

7 1 3 1 1 1 34 3 3 2 1 2 61 2 3 3 1 3

8 2 3 2 1 1 35 1 3 3 1 2 62 3 3 1 1 3

9 3 3 3 1 1 36 2 3 1 1 2 63 1 3 2 1 3

10 2 2 1 2 1 37 1 2 2 2 2 64 3 2 3 2 3

11 3 2 2 2 1 38 2 2 3 2 2 65 1 2 1 2 3

12 1 2 3 2 1 39 3 2 1 2 2 66 2 2 2 2 3

13 2 3 1 2 1 40 1 3 2 2 2 67 3 3 3 2 3

14 3 3 2 2 1 41 2 3 3 2 2 68 1 3 1 2 3

15 1 3 3 2 1 42 3 3 1 2 2 69 2 3 2 2 3

16 2 1 1 2 1 43 1 1 2 2 2 70 3 1 3 2 3

17 3 1 2 2 1 44 2 1 3 2 2 71 1 1 1 2 3

18 1 1 3 2 1 45 3 1 1 2 2 72 2 1 2 2 3

19 3 3 1 3 1 46 2 3 2 3 2 73 1 3 3 3 3

20 1 3 2 3 1 47 3 3 3 3 2 74 2 3 1 3 3

21 2 3 3 3 1 48 1 3 1 3 2 75 3 3 2 3 3

22 3 1 1 3 1 49 2 1 2 3 2 76 1 1 3 3 3

23 1 1 2 3 1 50 3 1 3 3 2 77 2 1 1 3 3

24 2 1 3 3 1 51 1 1 1 3 2 78 3 1 2 3 3

25 3 2 1 3 1 52 2 2 2 3 2 79 1 2 3 3 3

26 1 2 2 3 1 53 3 2 3 3 2 80 2 2 1 3 3

27 2 2 3 3 1 54 1 2 1 3 2 81 3 2 2 3 3

Table 2.9: An OA(81, 35, 2) used in Example 2.6

37

IID ILHD SLHD OU SU

Mean 2.7978 2.7928 2.7852 2.8110 2.7961

µ̂1 sd 0.4986 0.2207 0.2321 0.4195 0.1315

RMSE 0.4983 0.2206 0.2323 0.4195 0.1314

Mean 2.5925 2.5909 2.5698 2.5739 2.5770

µ̂2 sd 0.5019 0.2536 0.2433 0.4116 0.1430

RMSE 0.5019 0.2539 0.2432 0.4114 0.1429

Mean 3.1020 3.0867 3.0855 3.0650 3.0924

µ̂3 sd 0.5113 0.2138 0.2168 0.4062 0.1211

RMSE 0.5113 0.2137 0.2167 0.4066 0.1212

Mean 2.8307 2.8235 2.8135 2.8166 2.8166

µ̂ sd 0.2991 0.1328 0.1290 0.0696 0.0682

RMSE 0.2991 0.1328 0.1291 0.0696 0.0682

Table 2.10: Comparison of the sample mean, standard deviation and RMSE of µ̂1, µ̂2,

µ̂3 and µ̂ for Example 2.6 over the 1000 replicates for the five methods

IID ILHD SLHD OU SU

mean 77.9512 77.5718 77.7187 78.0804 77.6642

µ̂1 sd 11.5664 2.4042 2.4918 9.8875 2.2157

RMSE 11.5642 2.4047 2.4912 9.8914 2.2146

mean 80.1844 79.7101 79.5270 79.7121 79.5363

µ̂2 sd 11.7042 2.6151 2.5953 10.3270 2.1932

RMSE 11.9707 3.3309 3.2046 10.5268 2.8950

mean 75.9044 75.7767 75.7749 75.5833 75.8992

µ̂3 sd 10.6753 2.3695 2.3252 9.3122 2.0923

RMSE 10.8210 3.0547 3.0216 9.5465 2.7637

mean 74.1342 74.1875 74.0992 73.7175 73.9621

µ̂4 sd 10.7020 2.3368 2.3467 9.6971 2.0506

RMSE 11.2566 4.1685 4.2474 10.4560 4.2106

mean 77.0435 76.8115 76.7800 76.7733 76.7654

µ̂ sd 5.5872 1.2288 1.1727 0.4264 0.4576

RMSE 5.6187 1.4946 1.4678 0.9868 1.0077

Table 2.11: Comparison of the sample mean, standard deviation and RMSE of µ̂1, µ̂2,

µ̂3, µ̂4 and µ̂ for Example 2.7 over the 1000 replicates for the five methods

38

x1 x2 x3 x4 x1 x2 x1 x2

1 1 1 1 3 4 1 2

3 2 1 1 19 12 7 4

2 3 1 1 18 25 6 9

3 3 2 1 27 19 9 7

2 1 2 1 14 1 5 1

1 2 2 1 5 18 2 6

2 2 3 1 11 13 4 5

1 3 3 1 8 22 3 8

3 1 3 1 24 8 8 3

2 2 3 2 15 10 5 4

1 3 3 2 6 23 2 8

3 1 3 2 25 9 9 3

1 1 1 2 2 5 1 2

3 2 1 2 22 16 8 6

2 3 1 2 12 27 4 9

3 3 2 2 20 20 7 7

2 1 2 2 17 2 6 1

1 2 2 2 9 15 3 5

3 3 2 3 23 21 8 7

2 1 2 3 10 3 4 1

1 2 2 3 4 17 2 6

2 2 3 3 16 11 6 4

1 3 3 3 1 24 1 8

3 1 3 3 21 6 7 2

1 1 1 3 7 7 3 3

3 2 1 3 26 14 9 5

2 3 1 3 13 26 5 9

(a) (b) (c)

Table 2.12: (a) An OA(27, 34, 3) denoted by A, which is divided into A1, A2 and

A3 and is further divided into A11, . . . ,A33, (b) a sliced U design C with three slices

C1,C2 and C3 of nine runs (divided by the dashed lines), each of which becomes an

OA(9, 33, 2) associated with Z3 after every element a is collapsed by level-mapping

⌈a/9⌉, (c) each of C1,C2 and C3 is a Latin hypercube of nine runs taking values in

Z9 after every element a is collapsed according to level-mapping ⌈a/3⌉

39

Chapter 3

Asymmetric Nested Lattice Samples

3.1 Motivation

Space-filling designs are widely used in computer experiments (Sacks et al.,

1989a,b; Currin et al., 1991; Morris et al., 1993; Santner et al., 2003; Fang et al., 2005),

numerical integration and other fields. Throughout, a design being space-filling means

that when projected onto low dimensions, it achieves attractive uniformity. Popular

classes of space-filling designs include ordinary Latin hypercube designs (McKay et al.,

1979), orthogonal Latin hypercube designs (Ye, 1998; Steinberg and Lin, 2006; Bing-

ham et al., 2009; Lin et al., 2009), orthogonal array-based sampling designs (Patterson,

1954; Tang, 1993) and nets (Niederreiter, 1992; Owen, 1995), among others.

Recent years have witnessed a surge of interest in using nested space-filling de-

signs for a wide range of applications, including multi-fidelity computer experiments

(Kennedy and O’Hagan, 2000; Qian et al., 2006; Qian, 2009), sequential evaluations

(Wang, 2003; Tong, 2006; Sallaberry et al., 2008; Qian, 2009), multi-step functional fit-

ting (Floater and Iske, 1996; Fasshauer, 2007) and linking parameters (Husslage et al.,

40

2003, 2005). Nested space-filling designs are two space-filling designs with the smaller

design nested within the large design. Qian et al. (2009) use algebraic projections in

Galois fields to construct several classes of nested space-filling designs. Another pop-

ular class is nested Latin hypercube designs (Husslage et al., 2005; Sallaberry et al.,

2008; Qian, 2009) in which both the small design and the large design achieve uni-

formity in one-dimensional projections. By randomizing symmetric nested orthogonal

arrays, Qian and Ai (2010) introduced symmetric nested lattice samples (SNLS’s) to

achieve better stratification than nested Latin hypercube designs. A pair of SNLS’s

associated with a symmetric nested orthogonal array of strength t has a desirable

nested structure and achieve uniformity in t and lower dimensions. Due to the use of

symmetric nested orthogonal arrays, a major limitation of SNLS’s is that all axes are

divided at the same scale of fineness.

To overcome this drawback, Qian et al. (2011) proposed approaches for con-

structing asymmetric nested orthogonal arrays, by using a level-collapsing approach

and a replacement approach. We propose a new class of space-filling designs called

asymmetric nested lattice samples (ANLS’s), by randomizing asymmetric nested or-

thogonal arrays. Such designs can divide different axes at different scales of fineness.

In the applications mentioned above, this flexibility is useful for situations where some

factors are believed to be more important or deserve more attention than the other

factors. For example, in running multi-fidelity computer models for designing a heat

transfer device, the temperature of the heat source and the thermal conductivity of

the solid material can have more significant effects on the heat transfer rate than the

others and thus deserve more attention. In modeling the thermal dynamics of an

information technology system, rack temperature rise and rack power can be of par-

41

ticular interest, given their significant effects on the energy efficiency of the system.

In such situations, the asymmetric nature of ANLS’s enables dividing the axes of the

more important factors at finer scales. ANLS’s are also useful for situations where

different factors, by nature, require dividing their axes at different levels of finesse.

For example, in prosthesis design, femoral head coverage in a low-accuracy computer

code may be limited to take values from eight equally spaced intervals on some range

while a high-accuracy computer code, due to more complicated mathematical struc-

ture, may be limited to take values from four equally spaced intervals on the same

range. It is worth mentioning that space-filling designs with different numbers of levels

for different columns were also considered in Tang (1993) and Owen (1994). The main

contribution here is to randomize asymmetric nested orthogonal arrays to produce

ANLS’s with a desirable property.

The difference between ANLS’s and SNLS’s are two-fold. 1. Analogous to the

well-known difference between ordinary orthogonal arrays with fixed levels (Rao, 1947;

Bose and Bush, 1952; Rao, 1952) and ordinary orthogonal arrays with mixed levels

(Wu, 1989; Wang and Wu, 1991; Hedayat et al., 1992; Wang, 1996), asymmetric nested

orthogonal arrays used in ANLS’s are constructed very differently from symmetric

nested orthogonal arrays used in SNLS’s. 2. The first randomization procedure for

ANLS’s in Section 3.3 comes from an entirely different angle from the randomization

procedure for SNLS’s in Qian and Ai (2010). The second randomization procedure in

Section 3.3 uses nested permutations with different parameters to shuffle the levels

of an asymmetric nested orthogonal array, whereas nested permutations with the

same parameters are employed to randomize a symmetric nested orthogonal array

in producing a pair of SNLS’s.

42

The remainder of the chapter will unfold as follows. A formal definition of

asymmetric nested orthogonal array is presented in Section 3.2. The two procedures

for randomizing an asymmetric nested orthogonal arrays to generate a pair of ANLS’s

are presented in Section 3.3. We provide some discussion in Section 3.4.

3.2 Definitions and Notation

This section gives some useful definitions and notation. A symmetric orthogonal

array (OA) of size n, m constraints, s levels and strength two, denoted by OA(n, sm, 2),

is an n×mmatrix with entries from a set of s levels such that for every n×2 submatrix,

all s2 level combinations occurs equally often (Hedayat et al., 1999, referred to as HSS

hereinafter). Throughout, we consider OA’s of strength two and drop the strength

parameter in OA(n, sm, 2). Mukerjee et al. (2008) introduced the concept of nested

orthogonal arrays (NOA’s), which is related to that of incomplete orthogonal arrays

Hedayat et al. (1992). An NOA OA((n1, n2), (s
d
1, s

d
2)) is an OA(n1, s

d
1) containing an

OA(n2, s
d
2) as a subarray, where n1 > n2 and s1 > s2. Several construction methods

for symmetric NOA’s were developed in Qian and Ai (2010). It is also possible to

generate such arrays from ordered orthogonal arrays (Schürer and Schmid, 2010). For

illustration, Table 3.1 presents an OA((16, 4), (43, 23)).

We now give a formal definition of asymmetric NOA’s. Recall that an asym-

metric orthogonal array OA(n, sd11 · · · sdvv) of size n and strength two with d =
∑v

i=1 di

is an n × d matrix where the first d1 columns take values from a set of s1 levels, the

next d2 columns take values from a set of s2 levels and so on such that for every

n × 2 submatrix, all possible level combinations occur equally often. For n2 < n1

and si2 ≤ si1, i = 1, . . . , v, suppose that A is an OA(n1, s
d1
11 · · · s

dv
v1) containing a

43




0101 001122223333

0011 232301230123

0110 233223013210




Table 3.1: An OA((16, 4), (43, 23)) (in transpose), where the first four rows form an

OA(4, 23)

submatrix, B, that forms an OA(n2, s
d1
12 · · · s

dv
v2). Then A, or more precisely B ⊂ A,

is called an asymmetric NOA, denoted by OA((n1, n2), (s
d1
11 · · · s

dv
v1, s

d1
12 · · · s

dv
v2)), where

s11, . . . , sv1 are distinct but some of s12, . . . , sv2 could be identical. For v = 1, an

OA((n1, n2), (s
d1
11 · · · s

dv
v1, s

d1
12 · · · s

dv
v2)) reduces to an OA((n1, n2), (s

d
11, s

d
12)), which is a

symmetric NOA.

3.3 Randomization

In this section, we present two methods for randomizing an asymmetric NOA

to produce a pair of ANLS’s. It needs to be stressed here that these randomization

procedures work for arbitrary asymmetric NOA’s, not limited to those constructed in

Qian et al. (2011). Here are additional definitions and notation. A uniform permuta-

tion on a set of p integers is a permutation on the set, with all p! possible permutations

being equally probable. For a ∈ R, ⌈a⌉ denotes the smallest integer no less than a.

For an integer n, let Zn denote the set {1, . . . , n}.

We first explain why in producing a pair of ANLS’s, an asymmetric NOA should

be randomized in a more elaborate manner than simply using uniform permuta-

tions. Hereinafter, let V ⊂ W denote an OA((n1, n2), (s
d1
11 · · · s

dv
v1, s

d1
12 · · · s

dv
v2)) with

44

d =
∑v

k=1 dk. Let ak denote the number of levels of column k of W and let bk denote

that of V. For k = 1, . . . , d, relabel the levels of column k of W, originally expressed

as arbitrary symbols, so that the ak levels become 1, . . . , ak, with the bk levels of col-

umn k of V being 1, . . . , bk. It is important to note that if the ak levels of column k

of W are randomized with a uniform permutation on Zak , after the randomization W

achieves uniformity in two dimensions, but its subset of points corresponding to V is

not guaranteed to achieve attractive stratification.

The first randomization procedure is motivated by Lemma 3.1.

Lemma 3.1. Let A be an OA(n, ad11 · · · advv) of strength two with d =
∑v

k=1 dk.

(a) Suppose that for k = 1, . . . , d, bk divides ak. Obtain a new array A1 by, for k =

1, . . . , d, collapsing the ak symbols in column k of A into bk new symbols, with each

new symbol corresponding to ak/bk old symbols. Then A1 is an OA(n, bd11 · · · bdvv)

of strength two.

(b) For k = 1, . . . , d, permute the levels of column k of A to obtain a new array A2.

Then A2 is an OA(n, ad11 · · ·advv) of strength two.

Lemma 3.1 (a) can be verified based on the definition of an asymmetric orthog-

onal array given in Section 3.2. Lemma 3.1 (b) is a well-known result on orthogonal

arrays; see, for example, Chapter 1 of HSS.

For k = 1, . . . , d, divide Zak into bk blocks, ck1, . . . , ckbk , each having qk = ak/bk

entries, where

ckl = {z ∈ Zak : ⌈z/qk⌉ = l}, for l = 1, . . . , bk. (3.1)

45

The key here is to divide the ak levels of column k of V into these bk blocks and

randomize them in a block-by-block fashion. For k = 1, . . . , d, the procedure is divided

into two cases: Case I with qk > n2/bk and Case II with qk ≤ n2/bk.

For Case I, we have:

Step 1: Randomly assign ck1, . . . , ckbk to form bk new groups gk1, . . . , gkbk .

Step 2: For m = 1, . . . , bk, replace all n2/bk m’s in column k of V with n2/bk

randomly selected entries from gkm.

Step 3: For m = 1, . . . , bk, randomly replace all (n1/ak − n2/bk) m’s in column k of

W\V by the qk−n2/bk entries of gkm not selected in Step 2 and (n1/ak−qk)/qk

copies of gkm.

Step 4: Randomly divide the ak − bk symbols that appear in column k of W but

not in column k of V into bk sets, hk1, . . . ,hkbk , each having (ak− bk)/bk entries.

For m = 1, . . . , bk, replace the entries in column k of W corresponding to each

symbol in hkm with a uniform permutation on n1/(akqk) copies of gkm.

For Case II, we have:

Step 1: Randomly assign ck1, . . . , ckbk to form bk new groups gk1, . . . , gkbk .

Step 2: For m = 1, . . . , bk, replace all n2/bk m’s in column k of V with a uniform

permutation on n2/(bkqk) copies of gkm.

Step 3: For m = 1, . . . , bk, randomly replace all (n1/ak − n2/bk) m’s in column k of

W\V by (n1/ak − n2/bk)/qk copies of gkm.

46

Step 4: Randomly divide the ak − bk symbols that appear in column k of W but

not in column k of V into bk sets, hk1, . . . ,hkbk , each having (ak− bk)/bk entries.

For m = 1, . . . , bk, replace the entries in column k of W corresponding to each

symbol in hkm with a uniform permutation on n1/(akqk) copies of gkm.

Let V∗ ⊂ W∗ denote the pair of nested arrays after the foregoing algorithm.

Though the algorithm looks somewhat abstract, the basic ideas behind the steps

are clear: Step 1 randomizes the bk groups of the levels of column k of W; Step 2

randomizes the symbols in column k of V; Step 3 randomizes the symbols in column

k of W\V that also appear in column k of V; and Step 4 randomizes the symbols in

column k of W\V that do not appear in column k of V.

Using V∗ ⊂ W∗, obtain an n1 × d array D1 through

xik = a−1
k [w∗

ik − uik], i = 1, . . . , n1, k = 1, . . . , d, (3.2)

where w∗
ik is the (i, k) th entry of W∗, xik is the (i, k)th entry of D1, the uik are the

independent U [0, 1) random variables, and the w∗
ik and the uik are mutually indepen-

dent. Let D2 be the subset of points in D1 corresponding to V∗. Proposition 3.1

summarizes the space-filling properties of D2 ⊂ D1.

Proposition 3.1. Consider D2 ⊂ D1 constructed above. Then we have that

(a) the array D1 achieves two-dimensional stratification on the bk1 × bk2 grids when

projected onto factors k1 and k2, and achieves one-dimensional stratification with

respect to the ak equally spaced intervals on (0, 1] when projected onto factor k;

(b) the array D2 achieves two-dimensional stratification on the bk1 × bk2 grids when

projected onto two factors k1 and k2, and achieves one-dimensional stratification

47

with respect to the bk equally spaced intervals on (0, 1] when projected onto factor

k.




1122 111111222222333333334444444455555555666666667777777788888888

1212 345678345678123456781234567812345678123456781234567812345678

1221 341234432143341234124321432112341234214321433412341243214321




Table 3.2: An OA((64, 4), (8241, 23)) (in transpose) for Example 3.1, where a1 =

8, a2 = 8, a3 = 4 and b1 = 2, b2 = 2, b3 = 2




8632 855776124143134214231423321475866857658776854321314275866758

2815 255261176172364674534738838445375164382563731718728226468451

3214 312442243114312431132342243124421332421431134124311324422331




Table 3.3: The array (in transpose) obtained by randomizing the NOA in Table 3.2

for Example 3.1 using the first procedure

Example 3.1. Let V ⊂ W be the OA((64, 4), (8241, 23)) given in Table 3.2. Using the

foregoing procedure to randomize V ⊂ W produces a pair of nested arrays V∗ ⊂ W∗

given in Table 3.3. The step-to-step randomization of column 1 is described in detail.

Since q1 = 4 is greater than n2/b1 = 4/2 = 2, Case I applies.

Step 1: Assign c11 = (1, 2, 3, 4) and c11 = (5, 6, 7, 8) to obtain g11 = (5, 6, 7, 8) and

g12 = (1, 2, 3, 4).

Step 2: The two 1’s in column 1 of V are replaced with 8 and 6, respectively,

randomly taken from g11, and the two 2’s in the column are replaced with 3 and

2, respectively, randomly taken from g12.

48

Step 3: Since the two 1’s of V are replaced with 8 and 6 from g11, the remaining six

1’s are replaced with 8, 5, 5, 7, 7, 6, respectively, which form a permutation of 5,

7 and g11. The six 2’s in the column are replaced by 1, 2, 4, 1, 4, 3, respectively,

which form a permutation on 1, 4 and g12.

Step 4: Six symbols, 3, 4, 5, 6, 7, 8, in column 1 of V\W do not appear in column

1 of V. These symbols are randomized in this step. Divide them into two sets,

h11 = (5, 6, 8) and h12 = (3, 4, 7). The entries in column 1 of V\W correspond-

ing to the symbols in h11 are replaced with a uniform permutation on two copies

of g11. Specifically, the eight 5’s in the column are replaced with 7, 5, 8, 6, 6, 8, 5, 7,

respectively, the eight 6’s in the column are replaced with 6, 5, 8, 7, 7, 6, 8, 5, re-

spectively, and the eight 8’s in the column are replaced with 7, 5, 8, 6, 6, 7, 5, 8,

respectively. The entries in the column corresponding to the symbols in h12

are replaced with a uniform permutation on two copies of g12. Specifically, the

eight 3’s are replaced with 1, 3, 4, 2, 1, 4, 2, 3, respectively, the eight 4’s are re-

placed with 1, 4, 2, 3, 3, 2, 1, 4, respectively, and the eight 7’s are replaced with

4, 3, 2, 1, 3, 1, 4, 2, respectively.

Figures 3.1 and 3.2 depict the bivariate projections of D2 ⊂ D1 from Proposition 3.1

associated with V∗ ⊂ W∗. In Figure 3.1, D1 achieves two-dimensional stratification

on the 2 × 2 grids for any two factors, columns 1 and 2 of the design achieve one-

dimensional stratification with respect to the eight equally spaced intervals on (0, 1]

and column 3 of the design achieves one-dimensional stratification with respect to

the four equally spaced intervals on (0, 1]. In Figure 3.2, D2 achieves two-dimensional

stratification on the 2×2 grids and each column of the design achieves one-dimensional

49

stratification with respect to the two equally spaced intervals on (0, 1].

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

Fig. 3.1.— Bivariate projections of D1 in Example 3.1.

Example 3.2. Let l(x) and h(x) denote a low-accuracy computer experiment and a

high-accuracy computer experiment, respectively. Assume l(x) =
∑3

i=1 e
xi+x1 [ci +xi −

ln(
∑3

j=1 e
xj)] with c1 = −5.914, c2 = −24.721 and c3 = −14.986 (Jin et al., 2001).

Assume h(x) =
∑3

i=1 e
xi+x1 [di + xi − ln(

∑3
j=1 e

xj)] with d1 = −8, d2 = −26 and




1 1 1 1 4 4 4 4 2 2 2 2 3 3 3 3

1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3

1 4 2 3 4 1 3 2 2 3 1 4 3 2 4 1




Table 3.4: An OA(16, 43) (in transpose) with b1 = 4, b2 = 4, b3 = 4 embedded in an

OA(256, 16281) with a1 = 16, a2 = 16, a3 = 8 for Example 3.2

50

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

Fig. 3.2.— Bivariate projections of D2 in Example 3.1.




16 15 14 13 11 12 10 9 1 4 3 2 6 7 8 5

9 3 6 15 12 1 7 14 11 4 5 16 10 2 8 13

4 6 8 1 6 3 2 8 7 1 3 5 2 7 5 4




Table 3.5: The array V∗ (in transpose) in Example 3.2

51

d3 = −16. For l and h, assume the distribution of x is the uniform measure on (0, 1]3.

By using a very large Latin hypercube design, µl = E[l(x)] and µh = E[h(x)] are found

to be -145.85 and -159.38, respectively.

Let V ⊂ W be the OA((256, 16), (16281, 43)) generated by collapsing the third

column of an OA((256, 16), (163, 43)), obtained by using the subfield method (Qian

and Ai, 2010), into eight levels. Table 3.4 presents V. Table 3.5 presents V∗ obtained

by applying the foregoing randomization procedure to V. The randomization of column

1 is described below. Since q1 = 4 equals n2/b1 = 16/4 = 4, Case II applies.

Step 1: Assign c11, c12, c13 and c14 to obtain g11 = (13, 14, 15, 16), g12 = (1, 2, 3, 4),

g13 = (5, 6, 7, 8) and g14 = (1, 2, 3, 4).

Step 2: The 1’s, 2’s, 3’s and 4’s in column 1 of V are randomized in this step. The

four 1’s in column 1 of V are replaced with 16, 15, 14, 13, respectively, which

form a permutation on g11, the four 2’s in the column are replaced with 1, 4, 3, 2,

respectively, which form a permutation on g12, the four 3’s in the column are

replaced with 6, 7, 8, 5, respectively, which form a permutation on g13, and the

four 4’s are replaced with 11, 12, 10, 9, respectively, which form a permutation on

g14.

Step 3: Since the four 1’s are replaced with g11 in Step 2, the remaining 12 1’s

are replaced with a uniform permutation on three copies of g11. Similarly, the

remaining 12 2’s are replaced with a uniform permutation on three copies of g12,

the remaining 12 3’s are replaced with a uniform permutation on three copies of

g13, and the remaining 12 4’s are replaced with a uniform permutation on three

copies of g14.

52

Step 4: Note that 12 symbols, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, in column 1 of

V\W do not appear in column 1 of V. These symbols are randomized in

this step. Divide them into four sets, h11 = (9, 15, 16), h12 = (7, 10, 12),

h13 = (8, 11, 13) and h14 = (5, 6, 14). The entries in column 1 of V\W cor-

responding to the symbols in h11 are replaced with a uniform permutation on

four copies of g11, those corresponding to the symbols in h12 are replaced with a

uniform permutation on four copies of g12, those corresponding to the symbols

in h13 are replaced with a uniform permutation on four copies of g13 and those

corresponding to the symbols in h14 are replaced with a uniform permutation on

four copies of g14.

Figure 3.3 and 3.4 present the bivariate projections of D2 ⊂ D1 from Propo-

sition 3.1 associated with V∗ ⊂ W∗. In Figure 3.3, D1 achieves two-dimensional

stratification on the 4 × 4 grids for any two factors, columns 1 and 2 of the design

achieve one-dimensional stratification with respect to the sixteen equally spaced lev-

els on [0, 1) and column 3 of the design achieves one-dimensional stratification with

the respect to the eight evenly spaced intervals on [0, 1). In Figure 3.3, D2 achieves

two-dimensional stratification on the 4× 4 grids for any two factors and each column

achieves one-dimensional stratification with respect to the four equally spaced intervals

on [0, 1).

We compare the ANLS method with three other methods of the same run sizes.

(i) IID: take D1 and D2 to be two IID samples; (ii) LHD: take D1 and D2 to be

two ordinary Latin hypercube designs (McKay et al., 1979); and (iii) NLHD: take

D2 ⊂ D1 to be a pair of nested Latin hypercube designs (Qian, 2009). Each method

53

is replicated 200 times to compute µ̂h = 16−1
∑16

i=1 h(xi) and µ̂l = 256−1
∑256

i=1 l(xi),

where x1, . . . ,x256 are the runs of D1 with the first 16 runs corresponding to D2.

Table 3.6 presents the sample means, sample standard deviations and RMSE’s of µ̂l

and µ̂h over the 200 replicates for the four methods. This table indicates that the ANLS

method performs the best in terms of the RMSE. Compared with the LHD and NLHD

methods, the ANLS method achieves some 40 % reduction in the RMSE for both l and

h. The LHD and NLHD methods give very similar RMSEs, empirically validating a

theoretical result derived in (Qian, 2009).

IID LHD NLHD ANLS

Mean -146.0189 -145.9049 -145.8745 -145.8531

l Sd 3.4160 0.4847 0.4767 0.2823

RMSE 3.4016 0.4862 0.4745 0.2825

Mean -158.8190 -159.5671 -159.4366 -159.3980

h Sd 14.3294 2.4234 2.4254 1.4119

RMSE 14.2663 2.4179 2.4240 1.4071

Table 3.6: Comparison of the sample means, sample standard deviations and RMSEs

of µ̂l and µ̂h over the 200 replicates computed by four different methods for Example 3.2

We now turn to the second randomization procedure. Recall that for an integer

m ≥ 1, Zm denotes the set {1, . . . , m}. Let a > b ≥ 1 be two integers where b divides

a. Define c = a/b. Following (Qian, 2009), a nested permutation πa,b
np = πnp =

(πnp(1), . . . , πnp(a)) is generated as follows.

Step 1: Draw a uniform permutation λ = (λ(1), . . . , λ(b)) on Zb.

Step 2: For i = 1, . . . , b, draw πnp(i) from the discrete uniform distribution with

support {(λ(i)− 1)c+ 1, · · · , λ(i)c}.

54

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

Fig. 3.3.— Bivariate projections of D1 in Example 3.2.

Step 3: Obtain (πnp(b+1), . . . , πnp(a)) as a uniform permutation on the intersection

of Za and the set theoretic complement of {πnp(1), . . . , πnp(b)}.

The term “nested permutation” suggests that, concerning the first b elements of a

πa,b
np , (⌈πnp(1)/c⌉, . . . , ⌈πnp(b)/c⌉) constitute a permutation on Zb. Such a permutation

is essentially Owen’s randomization method for nets (Owen, 1995).

For k = 1, . . . , d, this procedure uses a nested permutation πak ,bk
np to permute

the ak levels of column k of W such that, after the randomization, one and only

one of the bk levels of column k of V falls within each of the bk blocks defined by

1, . . . , qk; qk + 1, . . . , 2qk; . . . ; (bk − 1)qk + 1, . . . , bkqk, where qk = ak/bk. Precisely, a

pair of ANLS’s based on V ⊂ W is generated as follows. Obtain an n1 × d array D1

55

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x3

Fig. 3.4.— Bivariate projections of D2 in Example 3.2.

through

xik = a−1
k [ηk(wik)− uik], i = 1, . . . , n1, k = 1, . . . , d, (3.3)

where wik is the (i, k)th entry of W, xik is the (i, k)th entry of D1, ηk is a nested

permutation πak ,bk
np , the ηk are obtained independently, the uik are independent U [0, 1)

random variables, and the ηk and the uik are mutually independent. In Qian and

Ai (2010), a symmetric NOA is randomized by nested permutations πnp with the

same values of a and b, whereas in (3.3) the columns of the asymmetric NOA are

randomized by nested permutations with different parameters. This difference is due to

the asymmetric nature of V ⊂ W. Let D2 be the subset of points in D1 corresponding

to V. Then D2 ⊂ D1 provide a pair of ANLS’s with attractive stratification in which

56

different axes can be divided at different levels of fineness. We make this precise in

Proposition 3.2.

Proposition 3.2. Consider D2 ⊂ D1 constructed above. Then we have that

(a) the array D1 achieves stratification on the ak1 × ak2 grids when projected onto

factors k1, k2;

(b) the array D2 achieves stratification on the bk1 × bk2 grids when projected onto

factors k1, k2.

Proof. First, observe that the number of occurrence of each level combination of factors

k1, k2 in W equals the number of points of D1 located in each reference square on the

corresponding ak1×ak2 grids. Second, because W is an orthogonal array with strength

two, all level combinations in any two columns appear equally often. Combining these

two facts together establishes part (a). Similarly, part (b) follows by noting that V is

an orthogonal array with strength two and the points in D2 correspond to V.




0011 000000111111222222223333333344444444555555556666666677777777

0101 234567234567012345670123456701234567012345670123456701234567

0110 230123321032230123013210321001230123103210322301230132103210




Table 3.7: An OA((64, 4), (8241, 23)) (in transpose) in Example 3.3, where the first

four rows form an OA(4, 23)

57

Example 3.3. Let V ⊂ W be the OA((64, 4), (8241, 23)) from Table 3.7. Relabel the

levels 0, 1, 2, . . . , 7 of W as 1, 2, 3, . . . , 8, respectively, where the levels of V become 1

and 2. A pair of ANLS’s, D2 ⊂ D1, is generated in (3.3) by using two independent

nested permutation π8,2
np to randomize the levels of the first two columns of W and

a nested permutation π4,2
np to randomize the levels of the third column of W. In the

bivariate projections of D1, the points are evenly distributed on the 8× 8 grids in the

dimensions of factors 1 and 2, on the 8× 4 grids in those of factors 1 and 3, and on

the 8 × 4 grids in those of factors 2 and 3. In the bivariate projections of D2, the

points are evenly scattered on the 2× 2 grids in any two dimensions.

The two randomization procedures naturally complement each other. The first

one is more sophisticated and can provide ANLS’s with better variance reduction

properties, whereas the second one is much easier to implement. Analogous to middle-

point Latin hypercube designs (Morris and Mitchell, 1995; Ye, 1998; Steinberg and Lin,

2006; Bingham et al., 2009; Lin et al., 2009) and middle-point randomized orthogonal

arrays (Owen, 1992a), middle-point ANLS’s can be constructed by replacing uik in

(3.2) and (3.3) with 1/2.

3.4 Discussion

We have constructed a new class of space-filling designs, called asymmetric

nested lattice samples. Such designs are generated by randomizing asymmetric nested

orthogonal arrays with two sophisticated procedures. In addition to the applications

described in Section 3.1, the constructed designs are useful for calibration and val-

idation of computer models (Reese et al., 2004; Higdon et al., 2008) and sequential

integration in stochastic optimization like the Monte Carlo EM algorithm.

58

We now remark on directions for future work. First, because the proposed ran-

domization methods in Section 3.3 accommodate the asymmetric NOA’s with strength

two, their corresponding asymmetric nested lattice samples are guaranteed to achieve

uniformity in two dimensions only. To obtain asymmetric nested lattice samples with

better space-filling properties, one can develop methods to randomize asymmetric

NOA’s with strength three or higher. Second, one may be interested in constructing

optimal asymmetric nested lattice samples guided by either the minimax or maximin

distance criterion (Johnson et al., 1990; Tang, 1994; Leary et al., 2003). This exten-

sion poses significant challenges because of the four-fold requirements of optimality,

nesting, low-dimensional stratification and asymmetry.

59

Chapter 4

Statistical Emulation of Multi-fidelity

Simulations of Mechanical Dynamics

Systems

4.1 Motivation

Over the last two decades, multibody dynamics has emerged as a critical tool

in various engineering fields such as automotive and aeronautics. The interest of

this work is to understand the system-level behavior of a complex multibody model.

Consider, for example, a crawler model in Fig. 4.1, which is a subcomponent of a low-

mobility hydraulic mining excavator. Extreme operating conditions can cause high

mechanical stresses on crawler tracks, especially in the case of hydraulic excavators of

1,000 tons and higher. Long haulage distances, frequent place changes, and 90% ma-

chine availabilities are standard requirements in the industry. The ability to replace

costly hardware prototypes in the early design phase with simulations can provide

tremendous productivity gains and quality improvement. However, it is computation-

60

Fig. 4.1.— A track model consisting of more than 550 contacts between model com-

ponents.

ally impossible to use a design process that requires a large number of simulation runs

to choose a winning design and then to pass it through a rigorous validation process

spanning a range of operating regimes. For example, a simulation run for modeling the

subsystem dynamic behavior over 10 seconds of the crawler model in Fig. 4.1 requires

12 hours of CPU time.

To cut down computational cost, a large mechanical dynamics code is often run

at two levels of accuracy, thus resulting in an accurate but time-consuming version

and a less accurate but faster version. For example, the two computer experiments in

Section 4.6 for studying the motion of the same slider-crank system differ in terms of

computational methods and cost. In general, metamodels built with a reduced num-

ber of runs are less accurate than those with a larger number of runs. If sophisticated,

computationally expensive runs are replaced with approximate ones, more data can

be available. However, a metamodel built solely on approximate runs may produce

inaccurate results. An effective strategy is to run a large number of approximate sim-

ulation runs and a smaller number of detailed simulation runs and then combine the

two sets of results to build an accurate metamodel or emulator. This strategy has been

61

developed in Kennedy and O’Hagan (2000), Huang and Allen (2005) and Qian et al.

(2006), among others, for integrating multi-fidelity computer experiments with scalar

responses. As an extension of these methods, here we develop a statistical approach to

modeling time-evolution, functional data from two computer experiments with differ-

ent accuracy for studying the same mechanical dynamics system. The corresponding

experimental design issue is also addressed.

The remainder of the chapter is organized as follows. Section 4.2 introduces

some basics of multi-fidelity simulations of mechanical dynamics systems. Section 4.3

presents an efficient experimental design strategy for running such simulations. The

issue on modeling data from such simulations is discussed in Section 4.4. Section 4.5

considers estimation and prediction of the proposed model. The proposed method-

ology is illustrated with an example for studying a slider-crank dynamics system in

Section 4.6. Section 4.7 concludes the chapter with some discussion.

4.2 Basics of multi-fidelity simulations for mechanical dynam-

ics systems

This section gives a brief description of multi-fidelity simulations of mechanical

dynamics systems. Consider a mechanical dynamics system for which the state of

the system at the position level is represented by a vector of generalized coordinates

given by q = [q1, . . . , qn]
T. The velocity of the system is described by the vector of

generalized velocities q̇ = [q̇1, . . . , q̇n]
T.

In the system, joints connecting bodies restrict their relative motion and im-

pose constraints on the generalized coordinates. Kinematic constraint equations are

62

formulated as algebraic expressions involving generalized coordinates given by

Φ(q, t) =
[
Φ1(q, t) . . . Φm(q, t)

]T
= 0 (4.1)

where m is the total number of constraint equations to be satisfied by the generalized

coordinates. Assume the m constraint equations are independent and the constraints

are holonomic.

The state of the mechanical system changes in time under the effect of applied

forces. Its time evolution is governed by the following Lagrange multiplier form of the

constrained equations of motion:

M(q)q̈+ ΦT
q
(q)λ = Q (q̇,q, t) . (4.2)

Here, M(q) ∈ Rp×p is the generalized mass, and Q (q̇,q, t) ∈ Rp is the action force

acting on the generalized coordinates q ∈ Rp, which differs from the reaction ΦT
q
(q)λ

(Haug, 1989; Shabana, 2005), and for the reaction force ΦT
q
(q)λ, λ ∈ Rm is the

Lagrange multiplier associated with the kinematic constraint equations.

Equations (4.1) and (4.2) form a set of Index 3 Differential-Algebraic Equations

(DAEs) (Brenan et al., 1989), which are not ordinary differential equations (Petzold,

1982). In general, obtaining a numerical solution of a DAE is substantially more

difficult and more prone to intense numerical computation than solving an ordinary

differential equation (ODE). For a detailed description of numerical integration meth-

ods on DAEs of mltibody dynamics, the reader is referred to Brenan et al. (1989),

Ascher and Petzold (1998), Hairer and Wanner (1991), Potra (1993), Lubich et al.

(1995) and Eich-Sollner and Fuhrer (1998).

Throughout, we will use a two-dimensional slider-crank system given in Fig. 4.2

to illustrate the proposed methodology. For this system, it suffices to use a set of three

63

y

x

y1’
x1’

m1g

L1

θ1

θ2

L2

y2’

x2’m2g

c

k
O

Fig. 4.2.— A Slider-crank system.

generalized coordinates ri = [xi, yi]
′ and θi to uniquely position and orient each body i

in space. Using the notation in Fig. 4.2, (4.1) implies that the generalized coordinates

r1, θ1, r2, θ2 must satisfy a set of kinematic constraint equations given by

Φ(r1, θ1, r2, θ2) =




x1 − L1 cos θ1
y1 − L1 sin θ1

x2 − (2L1 cos θ1 + L2 cos θ2)

y2 − (2L1 sin θ1 + L2 sin θ2)

y2 + L2 sin θ2



= 0. (4.3)

Then the equations of motion for the slider-crank system can be computed from (4.2).

4.2.1 A high-accuracy computer experiment for the slider-crank system

Since DAEs are differential equations defined on sub-manifolds of Rn, they can

be reduced to an ODE problem with a smaller number of independent generalized

coordinates. The number of independent generalized coordinates equals the number

of degrees of freedom associated with the multibody system of interest. For example,

the slider-crank system in Fig. 4.2 has one degree of freedom, and a good choice of

independent generalized coordinate is θ1. The equation of motion in θ1 has a highly

nonlinear form given by

θ̈1 = −
θ̇21k1 + k2

k3
, (4.4)

64

where Si = sin θi, Ci = cos θi, f = k (2L1C1 + 2L2C2 − 2L2) + c
(
−2L1θ̇1S1 − 2L2θ̇2S2

)
,

and ki is a function of Li, Ci and mi. Since L1 sin θ1 + L2 sin θ2 = 0, there is a func-

tional relationship between θ1 and θ2 and (4.4) is a nonlinear second-order ODE in θ1.

After reducing this equation to a set of first-order ODEs, a fourth-order Runge-Kutta

method (Hairer and Wanner, 1991), implemented in MATLAB (MATLAB, 2010), can

be used to accurately compute the time evolution of the slider-crank system. The high-

accuracy numerical solution is consistent in that it satisfies the equation of motion and

all the kinematic constraint equations at the position, velocity, and acceleration levels.

4.2.2 A low-accuracy computer experiment for the slider-crank system

The high accuracy solution in Section 4.2.1 requires long simulation times com-

pared with a direct method that only considers the equations of motion along with the

position kinematic constraint equations (Orlandea et al., 1977). The simplified method

can be implemented in the commercial simulation package MSC.ADAMS (MSCsoft-

ware, 2005) using implicit integration formulas to compute the time evolution of the

multibody system. The involved integration formula for generating the low-accuracy

solution is a variant of the Hilber-Hughes-Taylor (HHT) method (Hilber et al., 1977).

Using MSC.ADAMS can lead to significantly shorter simulation times at the price

of a somewhat less accurate solution. Most of the differences in the solution for the

velocities and accelerations of the bodies is a consequence of the lack of enforcement of

the kinematic constraint equations at the velocity and acceleration levels. Specifically,

the low-accuracy method uses the following integration formulas

qn+1 = qn + hq̇n +
h2

2
[(1− 2β)an + 2βan+1] ,

q̇n+1 = q̇n + h [(1− γ) an + γan+1]

(4.5)

65

to model the solution from tn to tn+1 by a step size of h. As discussed in Hughes

(1987), for second order convergence and A-stability, the HHT method requires that

the parameters associated with the method be defined as γ = 1−2α
2

and β = (1−α)2

4

for an arbitrary α ∈
[
−1

3
, 0
]
. The parameter α controls the amount of numerical

damping associated with the method, ranging from maximum damping for α = −1
3

to no damping α = 0 (trapezoidal formula). From (4.5), the discretization nonlinear

system to be solved at each time point is obtained based on an equation of motion

and an position kinematic constraint equation given by

M(qn+1)an+1 + (1 + α)(ΦT
q
λ−Q)n+1 − α(ΦT

q
λ−Q)n = 0,

Φ(qn+1, tn+1) = 0.
(4.6)

This set of nonlinear equations is solved at each time step tn+1 for the unknowns

an+1 and λn+1. Given an+1, the integration formulas in (4.5) are used to compute the

generalized positions and velocities qn+1 and q̇n+1. More details on the HHT method

can be found in Cardona and Geradin (1989) and Negrut et al. (2007) applied to the

context of multibody dynamics analysis.

4.3 Design of experiments

This section discusses the issue of how to efficiently take observations from a pair

of high-accuracy computer experiment (HE) and low-accuracy computer experiment

(LE) for the same mechanical dynamics system. An attractive solution to this problem

is to run the HE and LE with a pair of nested space-filling designs that are two space-

filling designs with one nested within the other. Such designs can be generated by

exploiting nesting in orthogonal arrays. Recall that an orthogonal array OA(n, sd, 2)

with s levels, strength 2 is an n × d matrix with entries from {1, . . . , s} such that,

66

in every n × 2 submatrix, all s2 possible combinations occur equally often (Hedayat

et al., 1999). A nested orthogonal array is a special orthogonal array that contains a

subarray that becomes a smaller orthogonal array after some suitable level-collapsing.

Such arrays can be constructed by using algebraic methods developed in Qian et al.

(2009). A pair of nested space-filling designs D2 ⊂ D1 has three desirable properties:

Economy: The number of points in D2, n2, is smaller than the number of points in

D1, n1.

Nesting: The design D2 is nested within D1, i.e., D2 ⊂ D1.

Space-Filling: Both D1 and D2 achieve uniformity in low dimensions.

These properties make a pair of nested space-filling design D2 ⊂ D1 appealing for

conducting the HE and LE. First, the property of economy indicates that more runs

are available for D1 than D2; more LE runs are available as the LE is less expensive.

Second, the nesting property ensures that the LE result is always available at every

point of D2. This part of data can be used for modeling and calibrating the differences

between the two sources. Third, the space-filling property of D1 and D2 ensures a

uniform exploration of the design space for the HE and LE. For illustration, Table

4.1 presents an OA(64, 86, 2) with eight levels in which the first 16 runs form an

OA(16, 46, 2) after the eight levels are collapsed into four levels as follows: (1, 2) → 1,

(3, 4) → 2, (5, 6) → 3, (7, 8) → 4. In addition to nested designs constructed in Qian

et al. (2009) based on projections in Galois fields, other families of nested space-filling

designs include nested Latin hypercube designs (Qian, 2009) and nested lattice samples

(Qian and Ai, 2010).

67

Run # x1 x2 x3 x4 x5 x6

1 1 1 1 1 1 1

2 3 1 3 5 8 6

3 5 1 5 8 7 3

4 7 1 7 4 2 8

5 1 3 3 3 3 3

6 3 3 1 7 6 8

7 5 3 7 6 5 1

8 7 3 5 2 4 6

9 1 5 5 5 5 5

10 3 5 7 1 4 2

11 5 5 1 4 3 7

12 7 5 3 8 6 4

13 1 7 7 7 7 7

14 3 7 5 3 2 4

15 5 7 3 2 1 5

16 7 7 1 6 8 2

17 8 1 8 7 4 5

18 6 1 6 3 5 2

19 4 1 4 2 6 7

20 2 1 2 6 3 4

21 8 3 6 5 2 7

22 6 3 8 1 7 4

23 4 3 2 4 8 5

24 2 3 4 8 1 2

25 8 5 4 3 8 1

26 6 5 2 7 1 6

27 4 5 8 6 2 3

28 2 5 6 2 7 8

29 8 7 2 1 6 3

30 6 7 4 5 3 8

31 4 7 6 8 4 1

32 2 7 8 4 5 6

Run # x1 x2 x3 x4 x5 x6

33 1 8 8 8 8 8

34 3 8 6 4 1 3

35 5 8 4 1 2 6

36 7 8 2 5 7 1

37 8 8 1 2 5 4

38 6 8 3 6 4 7

39 4 8 5 7 3 2

40 2 8 7 3 6 5

41 1 6 6 6 6 6

42 3 6 8 2 3 1

43 5 6 2 3 4 8

44 7 6 4 7 5 3

45 8 6 3 4 7 2

46 6 6 1 8 2 5

47 4 6 7 5 1 4

48 2 6 5 1 8 7

49 1 4 4 4 4 4

50 3 4 2 8 5 7

51 5 4 8 5 6 2

52 7 4 6 1 3 5

53 8 4 5 6 1 8

54 6 4 7 2 8 3

55 4 4 1 3 7 6

56 2 4 3 7 2 1

57 1 2 2 2 2 2

58 3 2 4 6 7 5

59 5 2 6 7 8 4

60 7 2 8 3 1 7

61 8 2 7 8 3 6

62 6 2 5 4 6 1

63 4 2 3 1 5 8

64 2 2 1 5 4 3

Table 4.1: An OA(64, 86, 2) of eight levels 1, . . . , 8, where the subarray consisting of

the first sixteen runs becomes an OA(16, 46, 2) after the eight levels are collapsed into

four levels as follows: (1, 2) → 1, (3, 4) → 2, (5, 6) → 3, (7, 8) → 4.

68

4.4 Modeling

Integration of data from a pair of HE and LE for the same mechanical dynamics

system is not a straightforward task because the two sets of results are based on

different computational methods and have different levels of accuracy. Suppose the

HE and LE are conducted by using a pair of nested space-filling designs D2 ⊂ D1, with

n2 and n1 runs, respectively. Assume D2 consists of the first n2 runs of D1. Denote

by xi the ith run of D1. Suppose the HE and LE are measured at u time points for

any chosen input value. The HE output for the ith run of D2 is yi = (yi1, . . . , yiu),

and the LE output of the ith run of D1 is zi = (zi1, . . . , ziu). The subscripts in these

two vectors correspond to the u time points used for measuring the evolution of the

system.

Since the HE is more accurate than the LE, the objective here is to create

a metamodel to produce predictions close to the HE results. To achieve this goal,

we propose an approach for building a metamodel by exploiting the accuracy of the

HE data and the abundance of the LE data. It uses Gaussian process (GP) models

(Santner et al., 2003), and functional data analysis techniques to accommodate the fact

that multi-fidelity dynamics computer experiments produce time-evolution, functional

responses. The proposed approach is an extension of the methods in Kennedy and

O’Hagan (2000) and Qian et al. (2006) for emulating multi-fidelity computer codes

with scalar responses. The basic idea of our approach is simple: first creating a

metamodel using the LE data and then refining the model by incorporating more

accurate HE data. Specifically, it consists of three steps. In Step 1, based on the

nested relationship D2 ⊂ D1, obtain the discrepancy between the HE and LE results

69

for the ith run of D2 as

δi = yi − zi, (4.7)

which has u entries δi1, . . . , δiu, with δit corresponding to time point t. In Step 2, for

i = 1, . . . , n1, express the vector zi over a spline basis hj as

zi =

q∑

j=1

cijhj. (4.8)

Since yi and zi are smooth functions of time, we choose h1, . . . ,hq to be natural

cubic spline basis functions (Ramsay and Silverman, 2005). Note that hj has u com-

ponents since zi is measured at u different time points. The degree of freedom and

the location of internal knots for hj can be determined by using various techniques

like leave-one-out cross-validation. For i = 1, . . . , n2, express δi as

δi =

q∑

j=1

dijhj , (4.9)

where dij is the spline coefficient for the basis hj. In Step 3, for i = 1, . . . , n1 and

j = 1, . . . , q, model the spline coefficient cij in (4.8) as

cij = f(xi)ηj + ǫj , (4.10)

where ǫj(·) is a realization of a stationary Gaussian process with zero mean and co-

variance

cov {ǫj(xi), ǫj(xi′)} = σ2
j1Rj1(xi,xi′), (4.11)

for i 6= i′, and f is a pre-specified 1×p regressor and ηj = (η1j , . . . , ηpj)
T is a vector of

unknown regression parameters. For i = 1, . . . , n2 and j = 1, . . . , q, model the spline

coefficient dij in (4.9) as

dij = f(xi)βj + ξj, (4.12)

70

where ξj(·) is a realization of a stationary Gaussian process with zero mean and co-

variance

cov {ξj(xi), ξj(xi′)} = σ2
j2Rj2(xi,xi′), (4.13)

and βj = (β1j , . . . , βpj)
T is a vector of unknown regression parameters. In (4.11) and

(4.13), the correlation function Rjk (k = 1, 2) determines the correlation of the GP at

any two input values. A popular choice for Rjk is the Gaussian correlation function:

Rjk(xi,xi′) = exp

(
−

d∑

m=1

θjkm|xim − xi′m|
2

)
. (4.14)

The value of the function in (4.14) is determined by a weighted distance between two

input values xi and xi′, and the vector of correlation parameters θkm = (θkm1, . . . , θkmd)
T

controls the smoothness of the underlying process. The Gaussian process associated

with this correlation function is infinitely differentiable in the mean square sense (Sant-

ner et al., 2003), which is a reasonable assumption for many practical applications.

4.5 Estimation, prediction and ANOVA decomposition

Parameters in the GP models in (4.10) and (4.12) to be estimated are ηj,βj , σ
2
jk

and θjk, j = 1, . . . , q and k = 1, 2. These parameters can be estimated by using the

maximum likelihood method (Santner et al., 2003). For j = 1, . . . , q, collect the spline

coefficients c1j , . . . , cn1j in (4.8) into a vector cj . Given θj1, the maximum likelihood

estimators (MLEs) for ηj and σ2
j1 are

η̂j = (FT
1R

−1
j1 F1)

−1FT
1R

−1
j1 cj ,

σ̂2
j1 =

(cj − F1η̂j)
TR−1

j1 (cj − F1η̂j)

n
, for j = 1, . . . , q,

71

whereRj1 is the n1×n1 correlation matrix with entries Rj1(xi,xi′), i, i
′ = 1, . . . , n1, de-

fined in (4.14). Here, F1 is an n1×p regressor matrix, given as
[
fT(x1), . . . , f

T(xn1
)
]T
,

related to f defined in (4.10). The MLE θ̂j1 for θj1 can be obtained by solving an

optimization problem:

θ̂j1 = argmin
θ

(
n ln σ̂2

j1 + ln |Rj1|
)
.

The MLE β̂j of βj and the MLE σ̂2
j2 of σ

2
j2 in (4.12) can be computed similarly. Then

at any untried point x0, c0j in (4.10) can be predicted by using the empirical best

linear unbiased predictor (EBLUP):

ĉ0j = f0η̂j + r̂Tj1R̂
−1
j1 (cj − F1η̂j), for j = 1, . . . , q,

where r̂j1 = [R̂j1(x0,x1), . . . , R̂j1(x0,xn1
)]T, f0 = f(x0), and both r̂j1 and R̂j1 are

functions of σ̂2
jk and θ̂jk. Similarly, at any untried point x0, d0j can be predicted by

d̂0j = f0β̂j + r̂Tj2R̂
−1
j2 (dj − F2β̂j), for j = 1, . . . , q,

where dj = (d1j, . . . , dn2j) and F2 =
[
fT(x1), . . . , f

T(xn2
)
]T
. Now, at any input value

x0, the HE response z0 and the discrepancy δ0 can be, respectively, predicted by

ẑ0 =
∑q

j=1 ĉ0jhj,

δ̂0 =
∑q

j=1 d̂0jhj,
(4.15)

from which the final predictor of the HE response is ŷ0 = ẑ0+ δ̂0. Here, ŷ0 is a vector

with entries ŷ01, . . . , ŷ0u and ŷ0t corresponds to time point t. It needs to be stressed

here that ẑ0 does not predict the HE accurately since it is based solely on the LE data.

In contrast, ŷ0 integrates the data from the two sources and incorporates elaborate

adjustment between the LE and HE to produce predictions closer to the HE.

72

Once the metamodel in (4.15) is fitted, the functional ANOVA decomposition

technique can be used to visualize the effects of different factors on the response. This

technique was originally proposed for Gaussian process models (Santner et al., 2003)

with scalar responses. Extending it to the present situation with functional responses

is straightforward. Here, the components of such a decomposition will be functions

of both time t and the factors. For t = 1, . . . , u, the basic idea of this technique

is to express ŷ0t as the sum of the grand mean, the functional main effect for each

factor, functional two-factor interaction effects and higher-order terms. For easier

presentation, assume the factors x1, . . . , xd are scaled to (0, 1]d. Then for t = 1, . . . , u,

the decomposition of ŷ0t is done as follows. The grand mean over the experimental

space is

µ0,t =

∫
ŷ0t

d∏

m=1

dxm.

For v = 1, . . . , d, the functional main effect of xj is

µv,t(xv) =

∫
ŷ0t

d∏

m6=v

dxm − µ0,t. (4.16)

For v, w = 1, . . . , d, v 6= w, the functional interaction effect of xv and xw is

µvw,t(xv, xw) =

∫
ŷ0t

d∏

m6=v,w

dxm − µv,t(xj)− µw,t(xk)− µ0,t. (4.17)

Higher-order terms can be defined similarly.

4.6 Case study

In this section the proposed methodology is illustrated with an example for

studying the time-evolution of the slider-crank system in Fig. 4.2. The HE is based on a

fourth-order Runge-Kutta integration method, implemented in MATLAB (MATLAB,

73

2010). Each HE run takes approximately 260 seconds to simulate the two-second

evolution of the system. The dynamics of the slider-crank system is determined by a

set of ODEs in (4.4). The LE is implemented in ADAMS (MSCsoftware, 2005) using

an HHT integration method (Hilber et al., 1977) described in Section 4.2.2. Each LE

run requires 0.4 seconds to complete the evolution over a period of two seconds of the

system.

This system has six factors: mass of crank (x1), half length of crank (x2), mass

of the connecting rod (x3), half length of the connecting (x4), the spring stiffness

coefficient (x5) and the damping coefficient (x6). From a mechanical engineering point

of view, these factors determine the set of conditions for the underlying ODE problem

of the system. By using the algebraic method in Qian et al. (2009), a pair of nested

space-filling designs D2 ⊂ D1 of 16 and 64 runs, respectively, is generated for the HE

and LE. The design D1 is based on the OA(64, 86, 2) given in Table 4.1, and D2 is

associated with the first 16 runs of this orthogonal array, which form an OA(16, 46, 2)

after the eight levels are collapsed into four levels as follows: (1, 2) → 1, (3, 4) → 2,

(5, 6) → 3, (7, 8) → 4. Figs. 4.3 and 4.4 present the bivariate projections of D2 and

D1, where the two designs achieve maximum stratification on 4 × 4 and 8 × 8 grids,

respectively. Since both the HE and LE are available for every run in D2, this part

of data make it easier to model the discrepancy between the two sources. Table 4.2

presents the six factors of the slider-crank system. The design points are first generated

on the unit hypercube (0, 1]6, as given in Table 4.2, and then scaled back according

to the original ranges of the inputs. For each input value, the LE or HE produces

the evolution of the system every 0.02 seconds within a two-second period. Therefore,

both yi and zi are 101 dimensional vectors. The profiles of the time evolution of the

74

system for the 16 HE runs are displayed in Fig. 4.5.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x3

Fig. 4.3.— Some bivariate projections of D2 of 16 runs for the HE of the slider-crank

system, where the points achieve maximum stratification on 4× 4 grids.

By using cross-validation, nine equally spaced internal knots located at every

1/10 length of the time interval are chosen for the spline basis functions hj in (4.8)

and (4.9). Because yi and zi are smooth functions of time, the degrees of freedom of

hj are fixed at three in each interval, and thus the number of the basis functions is 11.

The metamodel in (4.15) is fitted to the data of this example by following the three

steps described in Section 4.4, where f in (4.12) is chosen to be a constant.

To validate the fitted metamodel, test data are generated by using a Latin hy-

percube design (McKay et al., 1979) with 512 runs. The accuracy of the model is

75

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x3

Fig. 4.4.— Some bivariate projections of D1 of 64 runs for the LE of the slider-crank

system, where the points achieve maximum stratification on 8× 8 grids.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

140

Time (sec)

Fig. 4.5.— The time evolution of the slider-crank system modeled by the HE in Section

4.2.1 under 16 different design configurations. Each curve corresponds to one design

point.

assessed by the root mean square error (RMSE) on the testing set:

√√√√ 1

512

512∑

i=1

‖y0
i − ŷ0

i ‖
2
, (4.18)

76

where ‖·‖ denotes Euclidean distance, and y0
i and ŷ0

i denote the true and fitted HE

values of the ith run of the testing data. The RMSE of the proposed method is 7.44,

which suggests decent fit in reference to the magnitude of the HE values in Fig. 4.5.

In comparison, the RMSE of the metamodel in (4.8), built solely on the LE runs from

ADAMS, is 20.14, which is much larger. These results indicate that the proposed

method works well for this example.

2 2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2 2 2

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20

Input Value

E
st

im
at

ed
 M

ai
n

E
ffe

ct

1 13 3

4 4

5 5

6 6

Fig. 4.6.— Functional main effects plots for six variables of the slider-crank system,

where the displayed value for each factor is averaged over the two-second time interval.

Fig. 4.6 depicts the functional main effects of the six factors, computed by using

the ANOVA decomposition technique described in Section 4.5, where the average of

each mean effect function over the two-second time interval is displayed. This plot

indicates that the main effect of x2 is the most significant. This suggests that x2, half

length of crank, is most critical for determining the initial condition of the underlying

ODE of the system of interest. Fig. 4.7 plots the change of the main effects of x2

77

0

0.5

1

0

1

2

−40

−20

0

20

40

InputsTime

M
a
in

E
ff
ec

t

0

0.5

1

0

1

2

−40

−20

0

20

40

InputsTime

M
a
in

E
ff
ec

t

Fig. 4.7.— (Left) the main effect plot of x2 of the fitted meta-model for the slider-crank

system; (right) the main effect plot of x4 of the fitted meta-model for the slider-crank

system.

and x4 over the time evolution, where the main effect of x2 changes abruptly at the

beginning of the evolution and then stabilizes.

4.7 Conclusions

Complex multibody codes are typically time-consuming to run. This adversely

impacts the potential of virtual prototyping in engineering design. To mitigate this

difficulty, a popular strategy in engineering is to replace computer-intensive compo-

nents of the original model with simplified, less expensive representations. We have

proposed a statistical approach for integrating computer experiments with different

levels of accuracies for studying the same dynamic system. The effectiveness of the

proposed method has been successfully illustrated with a multi-body dynamics system.

A pair of nested space-filling designs is attractive for running two variable-fidelity

computer experiments for the same dynamics system. The nested relationship between

the designs allows for directly obtaining the discrepancy between the two sources, and

their space-filling properties guarantee that the design points are evenly spread in the

78

design space.

The proposed approach applies generally to variable-fidelity simulations of com-

plex systems. The method is also useful for situations where field data and simulation

results for the same dynamics system are available for producing a time-dependent

bias function to correct the simulation results. Technical effort will be focused in the

future on further developing this method in model calibration, global optimization,

and model reduction studies associated with simulations of dynamics systems. The

method can be extended to deal with more complicated complex systems such as those

with qualitative and quantitative factors (Qian et al., 2008; Han et al., 2009b), with

both tuning and calibration parameters (Han et al., 2009a), or with branching and

nested factors (Hung et al., 2009).

79

Run # x1 x2 x3 x4 x5 x6 Run # x1 x2 x3 x4 x5 x6

1 0.039 0.023 0.023 0.102 0.102 0.039 33 0.102 0.961 0.961 0.961 0.930 0.961

2 0.320 0.039 0.258 0.523 0.773 0.930 34 0.289 0.883 0.664 0.461 0.164 0.008

3 0.508 0.055 0.539 0.977 0.383 0.867 35 0.570 0.977 0.430 0.070 0.539 0.211

4 0.773 0.117 0.820 0.398 0.633 0.242 36 0.805 0.945 0.148 0.586 0.320 0.789

5 0.117 0.273 0.320 0.258 0.336 0.367 37 0.914 0.992 0.039 0.195 0.820 0.602

6 0.336 0.367 0.008 0.773 0.617 0.664 38 0.711 0.898 0.336 0.742 0.055 0.492

7 0.617 0.305 0.852 0.664 0.133 0.539 39 0.477 0.914 0.570 0.758 0.727 0.305

8 0.836 0.352 0.523 0.180 0.977 0.414 40 0.164 0.930 0.773 0.367 0.477 0.680

9 0.008 0.602 0.602 0.570 0.508 0.586 41 0.086 0.633 0.695 0.711 0.664 0.648

10 0.273 0.523 0.836 0.117 0.273 0.445 42 0.367 0.695 0.945 0.133 0.445 0.336

11 0.539 0.555 0.070 0.477 0.945 0.289 43 0.586 0.648 0.164 0.305 0.852 0.383

12 0.867 0.586 0.367 0.945 0.148 0.742 44 0.789 0.742 0.492 0.836 0.070 0.523

13 0.023 0.820 0.758 0.867 0.758 0.773 45 0.898 0.680 0.305 0.445 0.555 0.805

14 0.258 0.867 0.586 0.289 0.039 0.180 46 0.664 0.711 0.055 0.914 0.289 0.227

15 0.555 0.773 0.352 0.211 0.648 0.117 47 0.414 0.727 0.867 0.602 0.914 0.086

16 0.758 0.789 0.102 0.695 0.414 0.945 48 0.242 0.664 0.617 0.039 0.242 0.914

17 0.883 0.008 0.977 0.820 0.180 0.398 49 0.070 0.383 0.383 0.492 0.461 0.477

18 0.633 0.070 0.711 0.273 0.961 0.570 50 0.352 0.445 0.227 0.930 0.711 0.555

19 0.461 0.102 0.461 0.227 0.352 0.711 51 0.523 0.414 0.914 0.508 0.117 0.633

20 0.195 0.086 0.242 0.648 0.586 0.352 52 0.820 0.398 0.648 0.023 0.836 0.273

21 0.977 0.336 0.742 0.555 0.492 0.148 53 0.945 0.477 0.555 0.727 0.258 0.023

22 0.727 0.320 0.883 0.008 0.695 0.852 54 0.695 0.430 0.805 0.148 0.602 0.898

23 0.430 0.258 0.211 0.383 0.023 0.992 55 0.398 0.492 0.117 0.336 0.195 0.758

24 0.180 0.289 0.477 0.992 0.805 0.102 56 0.148 0.461 0.289 0.852 0.898 0.195

25 0.961 0.570 0.414 0.352 0.680 0.977 57 0.055 0.164 0.195 0.164 0.227 0.133

26 0.648 0.508 0.133 0.789 0.398 0.055 58 0.305 0.211 0.398 0.680 0.883 0.820

27 0.445 0.617 0.992 0.633 0.867 0.164 59 0.602 0.148 0.680 0.805 0.367 0.883

28 0.133 0.539 0.633 0.242 0.086 0.836 60 0.852 0.227 0.898 0.320 0.523 0.070

29 0.930 0.805 0.180 0.055 0.992 0.695 61 0.992 0.242 0.789 0.898 0.008 0.320

30 0.680 0.836 0.445 0.539 0.211 0.258 62 0.742 0.180 0.508 0.430 0.789 0.727

31 0.383 0.758 0.727 0.883 0.570 0.461 63 0.492 0.133 0.273 0.086 0.430 0.508

32 0.211 0.852 0.930 0.414 0.305 0.617 64 0.227 0.195 0.086 0.617 0.742 0.430

Table 4.2: A pair of nested space-filling designs D2 ⊂ D1 for the HE and LE used for studying a slider-crank system

with six factors. The design D1 is an OA-based Latin hypercube design with 64 runs based on the OA(64, 86, 2) from

Table 4.1, where D2 is based on the first 16 runs the orthogonal array, which form an OA(16, 46, 2) after the eight levels

are collapsed into four levels as follows: (1, 2) → 1, (3, 4) → 2, (5, 6) → 3, (7, 8) → 4.

80

Appendix A

Proofs

A.1 Proof of Proposition 2.2

Proof. Assume x, y ∈ Zn2
. To show (i), by Lemma 2.2 and the symmetry ofC1, . . . ,Cs,

P (cm,ik = x) is the same for all x and hence equals n−1
2 . To show (ii), note that for

any x 6= y ∈ Zn2
,

P (cm,ik = x, cm,jk = y) = P (cm,jk = y|cm,ik = x)P (cm,ik = x),

where P (cm,ik = x) = n−1
2 from (i) and P (cm,jk = y|cm,ik = x) is (n2 − s)−1, because

if cm,ik = x, the remaining s − 1 elements of the same gn2
of (2.2) cannot be in Cm.

To show (iii), divide all x, y ∈ Zn2
into three groups:

g1 = {(x, y)|⌈x/s⌉ 6= ⌈y/s⌉}, g2 = {(x, y)|⌈x/s⌉ = ⌈y/s⌉, x 6= y}, g3 = {(x, y)|x = y}.

These groups have n2(n2−s), n2(s−1) and n2 pairs, respectively. Thus, P [(cm1,ik, cm2,jk) ∈

g1] = (n1 − 1)n−1
1 , P [(cm1,ik, cm2,jk) ∈ g2] = n−1

1 and P [(cm1,ik, cm2,jk) ∈ g3] = 0. The

result now follows by the symmetry of g1, g2 and g3.

81

A.2 Proof of Proposition 2.3

Proof. Part (i) is from Remark 2.1 and Proposition 5 of He and Qian (2011). To show

(ii), let P [(i, j) ∈ Hh] denote the probability that the rows (i, j) are in Hh in Table

2.3, for h = 1, . . . , 8. Now use Lemma 2.2 to derive P [(i, j) ∈ Hh], for h = 2, . . . , 8.

Note that
P [(i, j) ∈ H2] = λ−1−τ

λ3s(s−1)

P [(i, j) ∈ H3] = 2(λ−1)(λ−1−τ)
λ3s(s−1)

P [(i, j) ∈ H4] = (λ−1)2(λ−1−τ)
λ3s(s−1)

P [(i, j) ∈ H6] = 2(λs−2λ+1+τ)
λ2s(s−1)

P [(i, j) ∈ H7] = 2(λ−1)(λs−2λ+1+τ)
λ2s(s−1)

P [(i, j) ∈ H8] = λs2−3λs+3λ−1−τ
λs(s−1)

.

(A.1)

Then the result in (ii) follows by the symmetry of each of H2, . . . , H8 and column 3 of

Table 2.3.

A.3 Proof of Theorem 2.1

Proof. Result (i) is from Remark 2.1 and Theorem 1 of He and Qian (2011). We now

show (ii) by using tools developed in Owen (1994) and He and Qian (2011) coupled

with the sliced structure of a sliced U design. For i = 1, . . . , n2, let ρ(i) indicate which

function is evaluated by the ith run xi of D. Observe that

var(µ̂) = E


n−2

2

∑

|u|>0

∑

|v|>0

n2∑

i=1

n2∑

j=1

fρ(i),u(xi)fρ(j),v(xj)




= n−2
2

∑

|u|>0

n2∑

i=1

n2∑

j=1

E
[
fρ(i),u(xi)fρ(j),u(xj)

]
. (A.2)

82

For |u| = 1,

n−2
2

∑

|u|=1

n2∑

i=1

n2∑

j=1

E
[
fρ(i),u(xi)fρ(j),u(xj)

]

= n−2
2 n1

s∑

m=1

var[fm,u(x)]− n−2
2 n1(n1 − 1)(n1 − 1)−1

(
s∑

m=1

var[fm,u(x)] + o(s)

)

+ n−1
2 (n2 − n1)o(n

−1
2)

= o(n−1
2). (A.3)

For |u| = 2,

n−2
2

n2∑

i=1

n2∑

j=1

E
[
fρ(i),u(xi)fρ(j),u(xj)

]

= n−2
2

s∑

m=1

n1var[fm,u(x)] + n−2
2

s∑

m=1

n1(n1 − 1)
(
τn−1

1 var[fm,u(x)] + o(n−1
1)
)

− n−2
2

∑

m1 6=m2

n2
1[(1 + τ)n−1

2 cov[fm1,u(x), fm2,u(x)] + o(n−1
2)]

= (1 + τ)n−1
2 s−1

(
s∑

m=1

var[fm,u(x)]

)
− (s− 1)−1

∑

m1 6=m2

cov[fm1,u(x), fm2,u(x)]

+ o(n−1
2). (A.4)

For |u| > 2, let

w = wij(u) = {k ∈ u|αik = αjk} (A.5)

and consider three different cases for (i, j).

Case I: i = j, then ρ(i) = ρ(j) and hence E
[
fρ(i),u(xi)fρ(j),u(xj)

]
= var[fρ(i),u(x)],

Case II: i 6= j and ρ(i) = ρ(j), we have

E
[
fρ(i),u(xi)fρ(j),u(xj)

]
= (s− 1)−(|u|−|w|)(−1)|u|−|w|var[fρ(i),u(x)] + o(s−(|u|−|w|)),

83

Case III: ρ(i) 6= ρ(j), we have

E
[
fρ(i),u(xi)fρ(j),u(xj)

]
= (s−1)−(|u|−|w|)(−1)|u|−|w|cov[fρ(i),u(x), fρ(j),u(x)]+o(s−(|u|−|w|)).

Combining these three cases yields

n−2
2

∑

|u|>2

n2∑

i=1

n2∑

j=1

E
[
fρ(i),u(xi)fρ(j),u(xj)

]

=
∑

|u|>2




s∑

m=1

|u|∑

r=0

n−2
2 Mm(u, r)(s− 1)−(|u|−r)(−1)|u|−rvar[fm,u(x)]

+
∑

m1 6=m2

|u|∑

r=0

n−2
2 Mm1,m2

(u, r)(s− 1)−(|u|−r)(−1)|u|−rcov[fm1,u(x), fm2,u(x)]


 + o(n−1

2)

=
∑

|u|>2

(
s∑

m=1

n−2
2 Mm(u, |u|)var[fm,u(x)]

+
∑

m1 6=m2

n−2
2 Mm1,m2

(u, |u|)cov[fm1,u(x), fm2,u(x)]

)
+ o(n−1

2). (A.6)

Plugging (A.3), (A.4) and (A.6) into (A.2) gives (ii).

A.4 Proof of Proposition 2.4

Proof. Only (iv) needs a proof. Let D denote an ordinary U design based on an

OA(n2, s
q+1, 2). For an arbitrary element m of Zs, randomly divide D into s slices of

n1 runs each, and let Dm be the mth slice. For µ̂m in (2.19) based on Dm,

var(µ̂m) = n−2
1

∑

|u|>0

n1∑

i=1

n1∑

j=1

E [fm,u(xi)fm,u(xj)] . (A.7)

For |u| = 1, consider two different cases for (i, j). For i = j, E [fm,u(xi)fm,u(xj)] =

var[fm,u(x)], and for i 6= j, by the continuity of fm, E [fm,u(xi)fm,u(xj)] = −n−1
2 var[fm,u(x)]+

o(n−1
2). Combining these two cases yields

n−2
1

∑

|u|=1

n1∑

i=1

n1∑

j=1

E [fm,u(xi)fm,u(xj)] =
∑

|u|=1

n−1
1 var[fm,u(x)] + o(n−1

1). (A.8)

84

For |u| = 2, observe that for two different runs xi = (xi1, . . . , xiq) and xj = (xj1, . . . , xjq)

of Dm, the joint probability density function of (xik, xil) and (xjk, xjl) is





0 (xik, xil, xjk, xjl) ∈ H1, H5,

λ−1
n2−1

/
(

λs−1
n2

)2
(xik, xil, xjk, xjl) ∈ H2, H3, H4,

λs−λ
n2−1

/
[
λs(s−1)(λs−1)

n2

2

]
(xik, xil, xjk, xjl) ∈ H6, H7,

n2−2λs+λ
n2−1

/
[
λs(s−1)

n2

]2
(xik, xil, xjk, xjl) ∈ H8,

(A.9)

where H1, . . . , H8 are defined in Table 2.3. Now consider two different cases for (i, j).

First, for i = j, E [fm,u(xi)fm,u(xj)] = var[fm,u(x)]. Second, for i 6= j and Hh, h =

1, . . . , 8, in Table 2.3, let
∫
Hh

denote integration over the region defined by (2.11) for

(xik, xil, xjk, xjl) associated with all i, j in Hh. By (A.9) and the continuity of fm,

E [fm,u(xi)fm,u(xj)] = [−1 + o(1)]

∫

H1,H5

+ [−1/λ + o(1)]

∫

H2,H3,H4

+ [o(1)]

∫

H6,H7

= −n−1
2 var[fm,u(x)] + o(n−1

2).

Combining these two cases of (i, j) yields

n−2
1

∑

|u|=2

n1∑

i=1

n1∑

j=1

E [fm,u(xi)fm,u(xj)] =
∑

|u|=2

n−1
1 var[fm,u(x)] + o(n−1

1). (A.10)

For |u| > 2, consider two different cases of (i, j). First, for i = j, E [fm,u(xi)fm,u(xj)] =

var[fm,u(x)]. Second, for i 6= j,

E [fm,u(xi)fm,u(xj)] = (s− 1)−(|u|−|w|)(−1)|u|−|w|var[fm,u(x)] + o(s−(|u|−|w|)).

Now, for r = 0, . . . , q, let ξr denote the number of runs in Dm satisfying |w|, defined in

(A.5), equals r. As Dm is obtained by randomly dividing D, ξr is a random variable.

Define er = E(ξr). For |u| > 2, combining two cases, with i = j and i 6= j, respectively,

85

yields

n−2
1

∑

|u|>2

n1∑

i=1

n1∑

j=1

E [fm,u(xi)fm,u(xj))

= n−1
1

∑

|u|>2


var[fm,u(x)] +

|u|∑

r=0

[
ers

−(|u|−r)(−1)|u|−rvar[fm,u(x)] + o(s−(|u|−r))
]

 .

Next, we calculate

ers
−(|u|−r)(−1)|u|−rvar[fm,u(x)] + o(s−(|u|−r)) (A.11)

for different cases of r and |u|. Note that er = n−1
2 s−1[M(u, r) − n2] for r = |u| and

er = n−1
2 s−1M(u, r) for r < |u|. For r = |u|, er ≤ (λ− 1)/s, and hence (A.11) is o(1).

For r = |u| − 1, er ≤ (λ− 1)/s because |u| > 2 and r ≥ 2, and hence (A.11) is o(n−1
1).

For r = |u|−2, er ≤ (λs−1)/s because |u| > 2 and r ≥ 1, and hence (A.11) is o(n−1
1).

For r < |u| − 2, er ≤ (n2 − 1)/s, and hence (A.11) is o(n−1
1). Combining these four

cases of r and |u| gives

n−2
1

∑

|u|>2

n1∑

i=1

n1∑

j=1

E [fm,u(xi)fm,u(xj)] =
∑

|u|>2

n−1
1 var[fm,u(x)] + o(n−1

1). (A.12)

Plugging (A.8), (A.10) and (A.12) into (A.7) gives the result in (i). Part (ii) can be

shown by using a similar argument.

A.5 Proof of Proposition 3.1

Proof. To show (a), note that w∗
ik denotes the (i, k) th entry of W∗. Observe that

the level mapping ρ : w∗
ik → ⌈w∗

ik/qk⌉ collapses the ak levels, 1, . . . , ak, of column k

of W∗ into bk levels, 1, . . . , bk, for k = 1, . . . , d. In this mapping, each new symbol

86

corresponds to qk = ak/bk old symbols. Thus, by Lemma 3.1 (a), W∗ becomes an

OA(n1, b
d1
1 · · · bdvv) of strength two after level-collapsing according to ρ. Notice that in

some steps of the foregoing algorithm, the symbols in each column ofW∗ are permuted.

By Lemma 3.1 (b), such permutations does not alter this orthogonal array structure

of W∗. Now, when projected onto factors k1 and k2, two-dimensional uniformity of D1

on the corresponding bk1 × bk2 grids follows by noting the connection between D1 and

W∗ in (3.2). When projected onto factor k, stratification of D1 with respect to the

ak equally spaced intervals on (0, 1] follows by noting that the steps in the foregoing

algorithm are designed in such a way that the symbols of each block in (3.1) appears

equally often in column k of W∗, for k = 1, . . . , d.

To show (b), let v∗ik denote the (i, k) entry of V∗. Because of the link between V∗

andV, V∗ becomes an OA(n2, b
d1
1 · · · bdvv) after mapping v∗ik to ⌈v

∗
ik/qk⌉. By Lemma 3.1

(b), this underlying orthogonal array structure of V∗ stays intact after randomly per-

muting the symbols in each column of V∗ in Steps 1 and 2 of the foregoing algorithm.

The result in (b) now follows by noting the connection between D2 andV∗ in (3.2).

87

Bibliography

Ascher, U. M. and Petzold, L. R. (1998), Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations, Philadelphia, PA: SIAM.

Bingham, D., Sitter, R. R., and Tang, B. (2009), “Orthogonal and Nearly Orthogonal

Designs for Computer Experiments,” Biometrika, 96, 51–65.

Bose, R. C. and Bush, K. A. (1952), “Orthogonal Arrays of Strength Two and Three,”

The Annals of Mathematical Statistics, 23, 508–524.

Brenan, K. E., Campbell, S. L., and Petzold, L. R. (1989), Numerical Solution

of Initial-value Problems in Differential-Algebraic Equations, New York: North-

Holland.

Cardona, A. and Geradin, M. (1989), “Time Integration of the Equation of Motion in

Mechanical Analysis,” Computer and Structures, 33, 801–820.

Cox, D. D., Park, J. S., and Singer, C. E. (2001), “A Statistical Method for Tuning a

Computer Code to a Data Base,” Computational Statistics and Data Analysis, 37,

77 – 92.

Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991), “Bayesian Prediction of

88

Deterministic Functions, With Applications to the Design and Analysis of Computer

Experiments,” Journal of the American Statistical Association, 86, 953–963.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005), “Scalable Test Problems

for Evolutionary Multiobjective Optimization,” in Evolutionary Multiobjective Op-

timization, eds. Jain, L., Wu, X., Abraham, A., Jain, L., and Goldberg, R., Berlin

Heidelberg: Springer, Advanced Information and Knowledge Processing, pp. 105–

145.

Eich-Sollner, E. and Fuhrer, C. (1998), Numerical Methods in Multibody Dynamics,

Stuttgart: Teubner-Verlag.

Fang, K.-T., Li, R., and Sudjianto, A. (2005), Design and Modeling for Computer

Experiments, New York: Chapman & Hall/CRC.

Fasshauer, G. E. (2007), Meshfree Approximation Methods With MATLAB, Hacken-

sack: World Scientific Publishing.

Floater, M. S. and Iske, A. (1996), “Multistep Scattered Data Interpolation Using

Compactly Supported Radial Basis Functions,” Journal of Computational and Ap-

plied Mathematics, 73, 65–78.

Hairer, E. and Wanner, G. (1991), Solving Ordinary Differential Equations, vol. II of

Computational Mathematics, Berlin: Springer-Verlag.

Han, G., Santner, T. J., Notz, W. I., and Bartel, D. L. (2009a), “Prediction for Com-

puter Experiments Having Quantitative and Qualitative Input Variables,” Techno-

metrics, 51, 278–288.

89

Han, G., Santner, T. J., and Rawlinson, J. J. (2009b), “Simultaneous Determination

of Tuning and Calibration Parameters for Computer Experiments,” Technometrics,

51, 464–474.

Haug, E. J. (1989), Computer-Aided Kinematics and Dynamics of Mechanical Systems

Volume-I, New Jersey: Prentice-Hall.

He, X. and Qian, P. Z. G. (2011), “Nested Orthogonal Array Based Latin Hypercube

Designs,” Biometrika, 98, 721–731.

Hedayat, A. S., Pu, K., and Stufken, J. (1992), “On the Construction of Asymmetrical

Orthogonal Arrays,” The Annals of Statistics, 20, 2142–2152.

Hedayat, A. S., Sloane, N. J. A., and Stufken, J. (1999), Orthogonal Arrays: Theory

and Applications, New York: Springer.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008), “Computer Model

Calibration Using High-Dimensional Output,” Journal of the American Statistical

Association, 103, 570–583.

Hilber, H. M., Hughes, T. J. R., and Taylor, R. L. (1977), “Improved Numerical

Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake

Engineering & Structural Dynamics, 5, 283–292.

Huang, D. and Allen, T. T. (2005), “Design and Analysis of Variable Fidelity Exper-

imentation Applied to Engine Valve Heat Treatment Process Design,” Journal of

the Royal Statistical Society. Series C (Applied Statistics), 54, 443–463.

90

Hughes, T. J. R. (1987), Finite Element Method - Linear Static and Dynamic Finite

Element Analysis, Englewood Cliffs, New Jersey: Prentice-Hall.

Hung, Y., Joseph, V. R., and Melkote, S. N. (2009), “Design and Analysis of Computer

Experiments With Branching and Nested Factors,” Technometrics, 51, 354–365.

Husslage, B., Dam, E. V., Hertog, D. D., Stehouwer, P., and Stinstra, E. (2003),

“Collaborative Metamodeling: Coordinating Simulation-Based Product Design,”

Concurrent Engineering, 11, 267–278.

Husslage, B. G. M., Dam, E. R. V., and Hertog, D. D. (2005), “Nested Maximin

Latin Hypercube Designs in Two Dimensions,” CentER Discussion Paper 2005-79.

Tilburg University, Tilburg, The Netherlands.

Jin, R., Chen, W., and Simpson, T. (2001), “Comparative Studies of Metamodeling

Techniques under Multiple Modeling Criteria,” Journal of Structural and Multidis-

ciplinary Optimization, 23, 1–13.

Johnson, M. E., Moore, L. M., and Ylvisaker, D. (1990), “Minimax and Maximin

Distance Designs,” Journal of Statistical Planning and Inference, 26, 131–148.

Kennedy, M. and O’Hagan, A. (2000), “Predicting the Output from a Complex Com-

puter Code When Fast Approximations are Available,” Biometrika, 87, 1–13.

Leary, S., Bhaskar, A., and Keane, A. (2003), “Optimal Orthogonal Array-Based Latin

Hypercubes,” Journal of Applied Statistics, 30, 585–598.

Lin, C. D., Bingham, D., Sitter, R. R., and Tang, B. (2010), “A New and Flexi-

91

ble Method for Constructing Designs for Computer Experiments,” The Annals of

Statistics, 38, 1460–1477.

Lin, C. D., Mukerjee, R., and Tang, B. (2009), “Construction of Orthogonal and

Nearly Orthogonal Latin Hypercubes,” Biometrika, 96, 243–247.

Lin, D. K. J. (1993), “A New Class of Supersaturated Design,” Technometrics, 35,

28–31.

Loh, W.-L. (1996), “On Latin Hypercube Sampling,” The Annals of Statistics, 24,

2058–2080.

Lubich, C., Nowak, U., Pohle, U., and Engstler, C. (1995), “MEXX - Numerical Soft-

ware for the Integration of Constrained Mechanical Multibody Systems,” Mechanics

of Structures and Machines, 23, 473–495.

MATLAB (2010), Version 7.10.0 (R2010a), Massachusetts: The MathWorks Inc.

McKay, M., Conover, W., and Beckman, R. J. (1979), “A Comparison of Three Meth-

ods for Selecting Values of Input Variables in the Analysis of Output from a Com-

puter Code,” Technometrics, 21, 239–245.

Morris, M. D. and Mitchell, T. J. (1995), “Exploratory Designs for Computational

Experiments,” Journal of Statistical Planning and Inference, 43, 381–402.

Morris, M. D., Mitchell, T. J., and Ylvisaker, D. (1993), “Bayesian Design and Analysis

of Computer Experiments: Use of Derivatives in Surface Prediction,” Technomet-

rics, 35, 243–255.

92

MSCsoftware (2005), “ADAMS User Manual,” Available at

http://www.mscsoftware.com.

Mukerjee, R., Qian, P. Z. G., and Wu, C. F. J. (2008), “On the Existence of Nested

Orthogonal Arrays,” Discrete Mathematics, 308, 4635–4642.

Negrut, D., Rampalli, R., Ottarsson, G., and Sajdak, A. (2007), “On an Implemen-

tation of the Hilber-Hughes-Taylor Method in the Context of Index 3 Differential

Algebraic Equations of Multibody Dynamics,” Journal of Computational and Non-

linear Dynamics, 2, 73–85.

Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo Methods,

Philadelphia: Society for Industrial Mathematics.

Orlandea, N., Chace, M. A., and Calahan, D. A. (1977), “A Sparsity-Oriented Ap-

proach to the Dynamic Analysis and Design of Mechanical Systems – Part I and

Part II,” Transactions of the ASME Journal of Engineering for Industry.

Owen, A. B. (1992a), “A Central Limit Theorem for Latin Hypercube Sampling,”

Journal of the Royal Statistical Society. Series B (Methodological), 54, 541–551.

— (1992b), “Orthogonal Arrays for Computer Experiments, Integration and Visual-

ization,” Statistica Sinica, 2, 439–452.

— (1994), “Lattice Sampling Revisited: Monte Carlo Variance of Means over Ran-

domized Orthogonal Arrays,” The Annals of Statistics, 22, 930–945.

— (1995), “Randomly Permuted (t,m, s)-nets and (t, s)-sequences,” Monte Carlo and

93

Quasi-Monte Carlo Methods in Scientific Computing, Lecture Notes in Statistics,

106, 299–317.

Patterson, H. D. (1954), “The Errors of Lattice Sampling,” Journal of the Royal

Statistical Society. Series B (Methodological), 16, 140–149.

Petzold, L. R. (1982), “Differential algebraic equations are not ODE’s,” SIAM J.

Numer. Anal., 3, 367–384.

Potra, F. A. (1993), “Implementation of linear multistep methods for solving con-

strained equations of motion,” SIAM Journal on Numerical Analysis, 30, 474–489.

Qian, P. Z. G. (2009), “Nested Latin Hypercube Designs,” Biometrika, 96, 957–970.

— (2012), “Sliced Latin Hypercube Designs,” Journal of the American Statistical

Association, 107, 393–399.

Qian, P. Z. G., Ai, M., Hwang, Y., and Su, H. (2011), “Asymmetric Nested Lattice

Samples,” Technical Report.

Qian, P. Z. G. and Ai, M. Y. (2010), “Nested Lattice Sampling: A New Sampling

Scheme Derived by Randomizing Nested Orthogonal Arrays,” Journal of the Amer-

ican Statistical Association, 105, 1147–1155.

Qian, P. Z. G., Ai, M. Y., and Wu, C. F. J. (2009), “Construction of Nested Space-

Filling Designs,” The Annals of Statistics, 37, 3616–3643.

Qian, P. Z. G. and Wu, C. F. J. (2009), “Sliced Space-filling Designs,” Biometrika,

96, 945–956.

94

Qian, P. Z. G., Wu, H., and Wu, C. F. J. (2008), “Gaussian Process Models for

Computer Experiments with Qualitative and Quantitative Factors,” Technometrics,

50, 383–396.

Qian, Z., Seepersad, C. C., Roshan, V. R., Allen, J. K., and Wu, C. F. J. (2006),

“Building Surrogate Models Based on Detailed and Approximate Simulations,”

ASME Transactions, Journal of Mechanical Design, 128, 668–677.

Ramsay, J. and Silverman, B. W. (2005), Functional Data Analysis, New York, NY:

Springer.

Rao, C. R. (1947), “Factorial Experiments Derivable from Combinatorial Arrange-

ments of Arrays,” Supplement to the Journal of the Royal Statistical Society, 9,

128–139.

— (1952), “Orthogonal Arrays of Index Unity,” The Annals of Mathematical Statistics,

23, 426–434.

Reese, C. S., Wilson, A. G., Hamada, M., Martz, H. F., and Ryan, K. J. (2004),

“Integrated Analysis of Computer and Physical Experiments,” Technometrics, 46,

153–164.

Sacks, J., Schiller, S. B., and Welch, W. J. (1989a), “Designs for Computer Experi-

ments,” Technometrics, 31, pp. 41–47.

Sacks, J., Welch, W., Mitchell, T. J., and Wynn, H. P. (1989b), “Design and Analysis

of Computer Experiments,” Statistical Science, 4, 409–423.

95

Sallaberry, C. J., Helton, J. C., and Hora, S. C. (2008), “Extension of Latin Hypercube

Samples With Correlated Variables,” Reliability Engineering and System Safety, 93,

1047–1059.

Santner, T. J., Williams, B. J., and Notz, W. (2003), The Design and Analysis of

Computer Experiments, New York: Springer, 1st ed.

Schürer, R. and Schmid, W. C. (2010), “MinT–Architecture and Applications of the

(t,m, s)-net and OOA Database,” Mathematics and Computers in Simulation, 80,

1124–1132.

Shabana, A. A. (2005), Dynamics of Multibody Systems, New York: Cambridge Uni-

versity Press.

Steinberg, D. M. and Lin, D. K. J. (2006), “A Construction Method for Orthogonal

Latin Hypercube Designs,” Biometrika, 93, 279–288.

Storlie, C. and Reich, B. (2011), “Calibration and Prediction Using Multiple Computer

Models,” Presenation, The 2011 INFORMS Annual Conference, Charlotte, NC.

Tang, B. (1993), “Orthogonal Array-Based Latin Hypercubes,” Journal of the Amer-

ican Statistical Assocation, 88, 1392–1397.

— (1994), “A Theorem for Selecting OA-based Latin Hypercubes Using a Distance

Criterion,” Communications in Statistics–Theory and Methods, 23, 2047–2058.

Tong, C. (2006), “Refinement Strategies for Stratified Sampling Methods,” Reliability

Engineering and System Safety, 91, 1257–1265.

96

Wang, G. G. (2003), “Adaptive Response Surface Method Using Inherited Latin Hy-

percube Design Points,” Journal of Mechanical Design, 125, 210–220.

Wang, J. C. (1996), “Mixed Difference Matrices and the Construction of Orthogonal

Arrays,” Statistics and Probability Letters, 28, 121–126.

Wang, J. C. andWu, C. F. J. (1991), “An Approach to the Construction of Asymmetric

Orthogonal Arrays,” Journal of the American Statistical Association, 86, 450–456.

Williams, B., Morris, M., and Santner, T. (2009), “Using Multiple Computer Mod-

els/Multiple Data Sources Simultaneously to Infer Calibration Parameters,” Prese-

nation, The 2009 INFORMS Annual Conference, San Diego, CA.

Wu, C. F. J. (1989), “Construction of 2m4n Designs via a Grouping Scheme,” The

Annals of Statistics, 1880–1885.

Xu, H. (2005), “Some Nonregular Designs from the Nordstrom-Robinson Code and

Their Statistical Properties,” Biometrika, 92, 385–397.

Xu, H. and Wu, C. F. J. (2005), “Construction of Optimal Multi-level Supersaturated

Designs,” The Annals of Statistics, 33, 2811–2836.

Xu, X., Haaland, B., and Qian, P. Z. G. (2011), “Sudoku-based Space-filling Designs,”

Biometrika, 98, 711–720.

Ye, K. Q. (1998), “Orthogonal Column Latin Hypercubes and Their Application in

Computer Experiments,” Journal of the American Statistical Association, 93, 1430–

1439.

