TOPICS ON THE DESIGN AND ANALYSIS OF COMPUTER

EXPERIMENTS

By

YOUNGDEOK HwANG

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DocTOR OF PHILOSOPHY

(STATISTICS)

AT THE
UNIVERSITY OF WISCONSIN—MADISON

2012

DATE OF FINAL ORAL EXAMINATION: 07/26/2012

THE DISSERTATION IS APPROVED BY THE FOLLOWING MEMBERS OF THE FINAL
ORAL EXAM COMMITTEE:

PETER Z. G. QIAN, ASSOCIATE PROFESSOR, STATISTICS
KAaM-WAH Tsul, PROFESSOR, STATISTICS

JUN ZHU, PROFESSOR, STATISTICS

BRET HANLON, ASSISTANT PROFESSOR, STATISTICS
QING Liu, ASSISTANT PROFESSOR, MARKETING

Topics on the Design and Analysis of Computer Experiments

Youngdeok Hwang

Under the supervision of Professor Peter Z. G. Qian

At the University of Wisconsin—-Madison

Abstract

This dissertation addresses several issues on the design and analysis of computer
experiments. First, we propose a new type of design, called a sliced orthogonal array
based Latin hypercube design, intended for running multiple computer experiments.
The proposed designs achieve both one- and two-dimensional stratification while each
slice possesses univariate uniformity. Sampling properties of the proposed designs are
derived. Second, we develop two procedures for randomizing a new class of nested
space-filling designs. Third, we propose a statistical approach to building an accurate
metamodel by exploiting the quality of high-accuracy simulation data and the abun-
dance of low-accuracy simulation data of a mechanical dynamics system. It makes
use of Gaussian processes and natural cubic splines. The effectiveness of the proposed
methodology is illustrated with an example for studying the dynamics of a slider-crank

system.

To My Famaly

il

il

Acknowledgments

I would like to acknowledge the suggestions, friendship, advice and support of
numerous people who helped me during my time as a graduate student in the Depart-
ment of Statistics at University of Wisconsin-Madison.

First, I would like to thank my advisor, Peter Zhiguang Qian, for his patient
involvement and invaluable advice in this work. Peter has given me the opportunities
to present my work to other researchers and helped me to grow as an independent
researcher in statistics. He has guided me in a better direction not only on the research
front but also on the life.

I am also thankful to Dr. Kam-Wah Tsui, Dr. Rick Nordheim, Dr. Jun Zhu,
Dr. Bret Hanlon and Dr. Qing Liu for serving on my committee and for their com-
ments and suggestions. I would like to acknowledge Dr. Bret Hanlon for sharing his
experience as a junior researcher and an uncle. I also appreciate Dr. Douglas Bates
for helping me find a job.

My thanks also go to my fellow graduate students in the department. In partic-
ular, Sangbum Choi, my two-year neighbor, helped me a lot, especially in the early
years in Madison. I would also like to thank my fellow students Jee Young Moon, Lisa
Chung, Kevin Eng, Andrew Thurman, Sokol Vako and Taeri Uhm. I also thank my
research group members, Ben Haaland, Jun Li, Xu Xu, Qiong Zhang, Jiajie Chen and
Yan Chen.

My family have been my biggest and strongest supporters in the past five years.

iv
My parents have been great role models for me as good father and mother, good
husband and wife, good son and daughter, good brother and sister, good citizens and
good people. My brother and his family also deserve a huge acknowledgment. Finally,
but most importantly, I thank my wife, Jiae, who was very tolerant and supportive
until I arrived here.

This dissertation is dedicated to my family.

Contents
Abstract i
1 Introduction 1
2 Designs for Multiple Computer Experiments 4
2.1 Motivation 4
2.2 Construction, 7
2.3 Sampling Properties 16
2.4 Numerical Illustration 24
2.5 DIScussiono 27
3 Asymmetric Nested Lattice Samples 39
3.1 Motivation L 39
3.2 Definitions and Notation 42
3.3 Randomization 43
3.4 Discussiono 57

4 Statistical Emulation of Multi-fidelity Simulations of Mechanical Dy-
namics Systems 59

4.1 Motivation 59

vi
4.2 Basics of multi-fidelity simulations for mechanical dynamics systems . . 61
4.2.1 A high-accuracy computer experiment for the slider-crank system 63

4.2.2 A low-accuracy computer experiment for the slider-crank system 64

4.3 Design of experiments L 65
4.4 Modeling 68
4.5 Estimation, prediction and ANOVA decomposition 70
4.6 Casestudy 72
4.7 Conclusions 7
A Proofs 80
A.1 Proof of Proposition 2.2 oo 80
A.2 Proof of Proposition 2.3 L 81
A.3 Proof of Theorem 2.1 81
A4 Proof of Proposition 2.4 Lo 83
A.5 Proof of Proposition 3.1 85

Bibliography 87

Chapter 1

Introduction

Over the last few decades, computer experiments have emerged as a critical tool in
science and engineering. This dissertation addresses the issues related to the design
and analysis of computer experiments. A computer experiment is a computational
simulation for a physical process using a complex mathematical model (Fang et al.,
2005; Santner et al., 2003). A computer experiment can be treated as a function
producing an output y for a given set of inputs z, i.e., y = f(x) with a function
relating to y. The defining characteristic of a computer experiment, in contrast
to the traditional physical experiment, is that the experiment yields a deterministic
answer for a given set of input conditions (Santner et al., 2003); a computer experiment
produces identical output when the experiment is run twice with the same inputs.

If the computer model can be evaluated with little computational cost, it is
straightforward to use it for studying the physical process of interest. However, it is
usually not possible to use large number of simulation runs, because the computer ex-
periments are often computationally expensive. Accordingly, one problem is choosing

a good set of design points at which to run the experiments. Chapters 2 and 3 relate

to the design problems. The other problem is analyzing the obtained data. Chapter
4 relates to building a statistical emulator for a computer experiment.

In Chapter 2, we propose an approach for constructing a new type of design,
called a sliced orthogonal array based Latin hypercube design, intended for running
multiple computer experiments. This approach exploits a slicing structure of orthog-
onal arrays with strength two and makes use of sliced random permutations. Such a
design achieves one- and two-dimensional uniformity and can be divided into smaller
Latin hypercube designs with one-dimensional uniformity. Sampling properties of the
proposed designs are derived. Examples are given for illustrating the construction
method and corroborating the derived theoretical results.

In Chapter 3, we propose two elaborate randomization methods to shuffle the
levels of an asymmetric nested orthogonal array to produce a pair of asymmetric
nested lattice samples. The constructed designs have a desirable nested structure,
possess attractive space-filling properties and allow different axes to be divided at
different scales of fineness. For multi-fidelity computer experiments, sequential eval-
uations, multi-step functional fitting and linking parameters, the asymmetric feature
is appealing for situations where some factors are believed to be more important or
deserve more attention than the other factors. The proposed designs are also useful
for problems in these applications where different factors, by nature, require dividing
their axes at different levels of fineness.

In Chapter 4, we propose a statistical approach to building an accurate meta-
model of multibody dynamics simulations. Such a simulation is often available in
a time-consuming but accurate version and an expeditious but approximate version

for studying the same dynamics system. Our approach exploits the quality of high-

accuracy simulation data and the abundance of low-accuracy simulation data by using
Gaussian processes and natural cubic splines. The corresponding experimental design
issue is also discussed. The effectiveness of the proposed methodology is illustrated

with an example for studying the dynamics of a slider-crank system.

Chapter 2

Designs for Multiple Computer

Experiments

2.1 Motivation

Multiple computer experiments, based on the same or similar mathematics, are
becoming popular for studying the same complex system (Williams et al., 2009; Storlie
and Reich, 2011). Throughout, we do not consider multi-fidelity computer experiments
like three finite element analysis codes with different mesh sizes.

Qian (2012) proposed sliced Latin hypercube designs for running multiple com-
puter experiments. A sliced Latin hypercube design is a special Latin hypercube
design (McKay et al., 1979) that can be partitioned into smaller Latin hypercube
designs associated with different computer experiments. Figure 2.1 presents a sliced
Latin hypercube design of 16 runs that is divided into four smaller Latin hypercube
designs of four runs, denoted by O, A, & and [, respectively. In this figure, the

whole design achieves maximum uniformity in any one dimension with respect to the

0.0 0.2 0.4 0.6 0.8 1.0
L L L L L I

=
S
«©
2
©
2
x1
<
3
o
3
=]
2
S
: ‘o
£ FOE S U S
LR
Q ' A o] '
e ‘ ‘ ‘ ‘
' ' O ' '
X2
< [0 H H H Al
34 ‘ ‘ ‘ ‘
- :
(st S N S SO
S : (s
A '
o bt X
77 <
3 3
‘ & o it o =
® : DO : : ¥ ®
S S et P + R SOPN st SO E
e & : 00 : ‘ to B °
A ' ' ' VN ' ' ' ' X3
e RRRRR bl A |
< ‘ ‘ x O |m ‘ ‘ ‘ <
°) ! ! o E
O ' ' ' a
[I T S - d TTATTTTT T CoTTTTy Tt b” N
ST ox A : : | & A °
O O S S Q| | ol °
2 2

T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 08 10 0.0 0.2 0.4 0.6 08 10 00 0.2 04 0.6 0.8 10

Fig. 2.1.— A sliced Latin hypercube design of 16 runs that is divided into four small
Latin hypercube designs of four runs, denoted by O, A, £, [J, respectively, where the
whole design achieves one-dimensional stratification with respect to the 16 equally
spaced intervals of (0,1] and each slice achieves one-dimensional stratification with
respect to the four equally spaced intervals of (0, 1].

16 equally spaced intervals of (0, 1] and each slice achieves maximum uniformity in
any one dimension with respect to the four equally spaced intervals of (0,1]. Since
the whole design has 16 points while each slice has only four points, one may won-
der the possibility of making the former achieve uniformity beyond one-dimensional
stratification. Inspired by this curiosity, we propose a new type of design, called a
sliced orthogonal array based Latin hypercube design, to achieve better stratification

than a sliced Latin hypercube design. The proposed designs, referred to as sliced U

designs hereinafter, achieves both one- and two-dimensional stratification while each

0.0 0.2 0.4 0.6 0.8 1.0
L L L L L I

.
s
«
g
©
s
x1
<
3
o
3
=]
s
1 T e ———
7 BT TA
: : Lo
S
‘ : %
s D | :
B S R B X2
s Loy !
o : :
o i a
© : 4
[O . Qi i1
STTTTTTITTTTTITTTTTUTRT A)¢ A 2
A ' ' ' A
- : o] o .
Sqtol e g
| ~ AR A
I e - I L O A 3
,, X3
' ' \ m \ ' ' \ g |
.k oy N ‘ ‘ 1
AL A
S o , © Bk o 3
4 a :
o fio..i] oSS SR I E S S SN SR b o
s s

T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 08 10 0.0 0.2 0.4 0.6 08 10 00 0.2 04 0.6 0.8 10

Fig. 2.2.— A sliced U design of 16 runs that is divided into four small Latin hypercube
designs of four runs, denoted by O, A, %, [, respectively, where the whole design
achieves one-dimensional stratification with respect to the 16 equally spaced intervals
of (0,1] and two-dimensional stratification with respect to the 4 x 4 grids, and each
slice achieves one-dimensional stratification with respect to the four equally spaced
intervals of (0, 1].

slice possesses univariate uniformity. Although the proposed designs have better uni-
formity than sliced Latin hypercube designs, the latter are more flexible in run size
and have no restriction on the number of factors. Figure 2.2 depicts a sliced U design,
where the whole design achieves one-dimensional uniformity with respect to the 16
equally spaced intervals of (0,1] and two-dimensional uniformity with respect to the

4 x 4 grids, and each slice achieves one-dimensional uniformity with respect to the four

equally spaced intervals of (0, 1]. The underlying idea of constructing a sliced U design

7

is to elaborately divide an orthogonal array of strength two into smaller orthogonal
arrays with strength one and then randomize them using sliced permutations to form
Latin hypercubes after some level-mapping. Note that Tang (1993) proposed orthogo-
nal arrays based Latin hypercubes that have better stratification than ordinary Latin
hypercube designs constructed in McKay et al. (1979). The designs constructed by
Tang (1993) are referred to as ordinary U designs hereinafter. Related work in this
direction includes Owen (1992b) and Patterson (1954). With respect to the existing
work, the main contribution of our work is to construct new orthogonal array-based
Latin hypercube designs with an appealing slicing structure and derive their sampling
properties.

The remainder of the chapter is organized as follows. Section 2.2 presents the
proposed construction method. Section 2.3 derives sampling properties of the con-
structed design. Section 2.4 gives examples to corroborate the derived theoretical

results. We provide some discussion in Section 2.5.

2.2 Construction

This section describes the proposed construction method for sliced U designs
in detail. Here are some definitions and notation. A uniform permutation on a set
of p integers means randomly taking a permutation on the set, with all p! possible
permutations equally probable. Let [-] denote the ceiling function. For an integer p,

define
Z,={1,....p}. (2.1)
An orthogonal array (OA) of n rows, ¢ columns, s levels and strength ¢, denoted by

OA(n,s9,t), is an n X ¢ matrix with entries from 1,...,s such that, for every n x ¢

submatrix, all s* level combinations occurs equally often (Hedayat et al., 1999).

Let A = (a;z) be an OA(ng, s 2) with ny = s?X and ny = sA. Let A(s,:) and
A(:, k) denote the ith row and kth column of A, respectively. The key idea here is
to elaborately divide A into s smaller orthogonal arrays of n; runs with strength one
and then randomize them using sliced permutations to form Latin hypercubes after

some level-mapping. Divide Z,, into ny disjoint blocks of s elements given by

gn, (u,v) = {z € Zn, : [nil-‘ = u, [%(U_l)—‘ :'U}, foru=1,...,s,v=1,..., A\

(2.2)

In the construction of a sliced U design, these blocks are critical for simultaneously

achieving uniformity in each slice and the whole design. For ny = 18, n; =6, s = 3

and A = 2, the six disjoint blocks of Z,, in (2.2) are gi5(1,1) = {1,2,3}, gi15(1,2) =

{4,5,6}, g15(2,1) = {7,8,9}, g15(2,2) = {10,11,12}, g15(3,1) = {13,14,15} and
g1s(3,2) = {16,17,18}.

Randomize the columns of A and then randomize the symbols in each column by

a uniform permutation on Z, with the permutations carried out independently from

one column to another. We now present a useful lemma from Chapter 1 of Hedayat

et al. (1999).

Lemma 2.1. For an OA(ny, s77,t) with ny = s*X and ny = s\, collecting the ny runs

that has the same symbol in one column and deleting the column yields an OA(ny, s?,t—
1).

This lemma is well known in design of experiments and has been used in the construc-
tion of various designs before. See, for example, Lin (1993), Xu (2005), Xu and Wu

(2005) and He and Qian (2011).

9

Here we choose the (¢ + 1)th column of A as the slicing column, although any
other column can be used as well. Guided by Lemma 2.1, divide A into s slices of
ny runs, Ay, ..., A;. Form = 1,... s, obtain A,, = (amax) by collecting the rows
of A with entries in the slicing column being m and deleting the slicing column, and
randomly shuffle the rows of A,,. Let By,..., B, be s ny X ¢ empty matrices, and
let B and C be two ny X ¢ empty matrices. For £ = 1,...,q, the proposed method

proceeds in two steps:

Step 1: For m = 1,...,s, replace the \ entries of A,,(:,k) with a,,;x = u with
a uniform permutation on Z, to obtain B,,(:, k), for u = 1,...,s, with the s
permutations carried out independently from one to another. Obtain column &

of B = (b;) by combining By (:, k), ..., Bs(:, k).

Step 2: Foru =1,...,s, v = 1,..., A, obtain column &k of C by replacing the s
entries of C(:, k) satisfying a;; = u and by, = v with a uniform permutation on
g, (u,v) in (2.2). These n; = s\ permutations on the n; g,, blocks are carried

out independently from one to another.

Using C = (¢), generate an ny X ¢ design D = (d;;) through

dik:(cik_uik)/n27 fOI' izla"'an% kzla"'aQa (23)

where the u;, are U0, 1) random variables, d;; is the level of factor k on the ith run,
and the u;;, and the ¢;; are mutually independent. For m =1,... s, let C,, = (cim.ix)
be the submatrix of C corresponding to A,,, and let D,, = (d,,) be the submatrix
of D corresponding to C,,.

Proposition 2.1 presents the space-filling properties of D and D, ..., Dq.

10

Proposition 2.1. Consider D with slices Dy, ..., Dy obtained above. We have that

(i) the design D achieves two-dimensional stratification with respect to the s X s grids
when projected onto any two factors and achieves one-dimensional stratification
with respect to the nay equally spaced interval of (0,1] when projected onto each

factor;

(i1) each D,, achieves one-dimensional stratification with respect to the ny equally

spaced interval of (0,1] when projected onto each factor.

Compared with the sliced U design in Proposition 2.1, a sliced Latin hypercube
design (Qian, 2012) of the same size can only achieve one-dimensional stratification
for the whole design. In Section 2.1, this difference was illustrated by a wvis-a-vis
comparison of a sliced U design and a sliced Latin hypercube design of 16 runs in
Figures 2.1 and 2.2, respectively. The sliced U design in Figure 2.2 is generated from
an OA(16,4%,2) by using the above construction method.

The method in Tang (1993) divides Z,, associated with an OA(ns, s?,2) into s

groups h,,,(1),...,h,,(s) given by
h,(u)={z€Z,,:[z/n] =u,}foru=1,...,s, (2.4)

and replaces the u’s in each column with a uniform permutation of the n; numbers of
h,,,(u). For A with index A = 1 in the construction above, C in (2.3) is reduced to an
ordinary U design in Tang (1993) as Step 1 becomes superfluous and the double-layer
blocks g,, in (2.2) reduce to h,, in (2.4). The step to divide A into Ay, ..., A, using
Lemma 2.1 is still critical for achieving the uniformity in each slice. If an ordinary

U design of ny runs is randomly divided into s slices of n; runs, these slices are not

11

guaranteed to achieve attractive uniformity. This point will be made more clear in

Proposition 2.4 in Section 2.2.

Example 2.1. Let A be an OA(18,3%,2) in part (a) of Table 2.1 with ny = 18,
ng =6, s=3q=3 and A\ = 2. Permute the columns of A and randomize the
three symbols, 1,2,3, in each column with a uniform permutation on Zs, giving the
array in part (b) of the table. For m = 1,2,3, obtain a matriz A,, by collecting
the rows of A with entries in column 4 being m and then deleting column 4, and
randomly shuffle the rows in each A,,. Part (c¢) of Table 2.1 present Ay, Ay and
A3 divided by the dashed lines. For no = 18 and ny = 6, the siz disjoint blocks
of Z1g in (2.2) are g13(1,1) = {1,2,3}, gs(1,2) = {4,5,6}, gis(2,1) = {7,8,9},
g18(2,2) = {10,11,12}, g15(3,1) = {13,14,15} and g15(3,2) = {16,17,18}. Below is

the step-to-step randomization of column 1 of A.

Step 1: Obtain B1(:,1) by replacing the two 1’s in Ai(:,1) with 2, 1, respectively.
Replace the two 2’s in Aq(:,1) with 2, 1, respectively, and replace the two 3’s
in Aq1(:,1) with 1, 2, respectively. In Bs(:,1), replace the two 1’s in Ay(:, 1)
with 1, 2, respectively, replace the two 2°s in As(:, 1) with 1, 2, respectively, and
replace the two 3’s in As(:, 1) with 2, 1, respectively. In Bs(:, 1), replace the two
I’s in As(:,1) with 1, 2, respectively, replace the two 2’°s in As(:,1) with 2, 1,

respectively, and replace the two 3’s in As(:, 1) with 2, 1, respectively.

Step 2: Obtain C(:,1) by combining A(:,1) and B(:,1). Since the entries 5, 7 and
15 in A(:,1) and B(:,1) have a;; = 1 and by = 1, the entries 5, 7 and 15 of
C(:,1) are taken to be 3, 2, 1, a uniform permutation of g15(1,1). Because the

entries 1, 8 and 16 in A(:,1) and B(:, 1) have a;; = 1 and b;; = 2, the entries 1,

12

8 and 16 of C(:,1) are taken to be 6, 5, 4, a uniform permutation of g1s(1,2).
Because the entries 6, 10 and 18 in A(:,1) and B(:, 1) have a;; = 2 and b;; = 1,
the entries 6, 10 and 18 of C(:,1) are taken to be 8, 7, 9, a uniform permutation
of g18(2,1). Because the entries 4, 11 and 13 in A(:,1) and B(:,1) have a;; = 2
and b;; = 2, the entries 4, 11 and 13 of C(:,1) are taken to be 12, 10, 11, a
uniform permutation of gi1s(2,2). Because the entries 2, 12 and 17 in A(:,1)
and B(:,1) have a;; = 3 and by; = 1, the entries 2, 12 and 17 of C(:,1) are
taken to be 15, 13, 14, a uniform permutation of g1s(3,1). Because the entries
3, 7 and 14 in A(:,1) and B(:,1) have a;; = 3 and by = 2, the entries 3, 7 and

14 of C(:,1) are taken to be 18, 17, 16, a uniform permutation of g15(3,2).

Part (e) of Table 2.1 presents the matriz C with three slices Cy,Cy and Cs divided
by the dashed lines. Figure 2.3 presents the bivariate projections of D of 18 runs
generated from C. The whole design of D achieves one-dimensional stratification with
respect to the 18 equally spaced intervals of (0,1] and two-dimensional stratification
with respect to the 3 x 3 grids displayed in dashed lines. In any one-dimensional
projection of D, each of the 18 equally spaced intervals of (0,1] contains exactly one
point. In any two-dimensional projections of D, each of the nine reference squares of
(0,1]? contains exactly two points. The design D is divided into three Latin hypercube
designs of siz runs (O, A, %), each having exactly one point in each of the siz equally

spaced intervals of (0, 1].

Example 2.2. Let A be an OA(32,4%,2) in part (a) of Table 2.2 with ny = 32,
n =8, s=4,q=3 and A\ = 2. Permute the columns of A and randomize the

four symbols, 1,2,3,4, in each column with a uniform permutation on Z4, giving the

T1 T2 T3 T4 T1 Tg T3 T4 1 Tp T3 T1 T2 T3 T T2 T3
3222 32 21 111 2 1 2 6 (2 1(1) 612
2 1 1 3331 333 11 2 15 (5) 13 (5) 16 (6)
31 1 2 1231 322 212 18 (6) 8 (3) 11 (4)
3323 2121 223 221 12 (4) 17 (6) 2 (1)
3133 11 1,1 1 23 1 21 3 (1) 12 (4) 14 (5)
3 3 3 1 2 2 31 21 2 1 21 8(3) 5(2 93
2 3 13 2132 1272 1722 T2 1@ 124
2 332 22 1,2 1 33 21 2 5(2) 14 (5) 17 (6)
2 233 3112 311 2 2 2 17 (6) 4 (2) 4 (2
2 1 1 1 1332 221 11 1 7(3) 73 1)
2 2 2 1 3322 213 211 10 (4) 3 (1) 15 (5)
2 1 2 2 1 22,2 3 3 2 1 21 13 (5) 16 (6) 8 (3)
113 1 137173 2732 2272 TiI@ 186 104
112 3 1123 3 21 2 2 1 16 (6) 10 (4) 3 (1)
1 3 21 2 3 2,3 1 3 1 11 2 1 (1) 15((5) 5 (2)
1232 32 1,3 112 221 412) 62 703
1312 2233 313 11 2 14 (5) 2 (1) 18 (6)
1213 3133 223 111 9 (3) 9(3) 13 (5
(a) (b) () (d) (e)

Table 2.1: (a) An OA(18,3* 2) denoted by A, (b) A after column and symbol permu-
tations, (c) divide A into submatrices Ay, Ay and A3 (indicated by the dashed lines)
according to different symbols in column 4 of A and deleting column 4 and randomly
shuffle the rows in each slice, (d) B with submatrices By, B and B3 obtained in Step
1 of the construction, (e) C = (¢;) obtained in Step 2 of the construction, where
each slice is a Latin hypercube of six runs taking values in Zg after every entry c; is

collapsed according to level-mapping [c;/3]

array in part (b) of the table. For m = 1,2,3,4, obtain A, by collecting the rows
of A with entries in column 4 being m and then deleting column 4, and randomly
shuffle the rows in A,,. Part (c) of Table 2.2 present Ay, As, A3 and Ay divided

by the dashed lines. For ny = 32 and ny = 8, the eight disjoint blocks of Zso in

(22) are g32(1’1) = {1’273’4}7 g32(172) = {5,6,7,8}, g32(2,1) = {9a10a11a12};

14

0.0 0.2 0.4 0.6 0.8 1.0
L L L L L I

=
S
«©
2
©
2
x1
<
3
o
3
=]
2
s
B v 1 S
: Al :
2 a0
° " [e] " "
(R S - T S
© A ' i
e ‘ : K
' ' 0 d
: : : : X2
< | v ° A '
4. ‘ ‘
‘L,,,gyr,,q: ,,,,,,,,,,,,,,,,
g ix ' A
' ' b4
o Jio . P S
,,, o
¥ o i r m ° b
a 0 ‘ a
o | 00 ‘ ©
s a oo ' a s
') o4 ' ' O o4
,,,,,,,,,,,,,,,,,,,,,, U B SRS S S
= ‘ : al | : o ! ‘ °
: Cm 0 :] :
‘ N ‘ R ‘ oA X3
34 ‘ q e ‘ ‘ ‘ 3
AR 2 N PP S S S
N . o . . .o N
EE HE LA : , = 8
5 : : o
| T A /AN R (S T 17 AN =
2 2

T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 08 10 0.0 0.2 0.4 0.6 08 10 00 0.2 04 0.6 0.8 10

Fig. 2.3.— Bivariate projections of a sliced U design D with slices Dy, Dy and D3 in
Example 2.1. Each of the 3 x 3 squares in the dashed lines has exactly two points, and
each of the 18 equally spaced intervals of (0, 1] contains exactly one point. The array
D is divided into three Latin hypercube designs of six runs (O, A, £x), each containing

exactly one point in each of the six equally spaced intervals of (0, 1].

£(2,2) = {13,14,15,16}, g2(3,1) = {17,18,19,20}, g(3,2) = {21,22,23,24},
g32(4,1) = {25,26,27,28} and g32(4,2) = {29,30,31,32}. Below is the step-to-step

randomization of column 1 of A.

Step 1: Obtain By (:,1) by replacing the two 1’s in Aq(:, 1) with 1, 2, respectively.
Replace the two 2’s in A4(:,1) with 1, 2, respectively, replace the two 3’s in
Ai(:,1) with 1, 2, respectively, and replace the two 4’s in Aq(:,1) with 1, 2,
respectively. In Ba(:, 1), replace the two 1’s in Ay(:, 1) with 1, 2, respectively,

replace the two 2’s in As(:,1) with 1, 2, respectively, replace the two 3’s in

15
As(:, 1) with 2, 1, respectively, and replace the two 4’s in As(:,1) with 1, 2,
respectively. In Bs(:, 1), replace the two 1’s in As(:, 1) with 2, 1, respectively,
replace the two 2°s in As(:, 1) with 1, 2, respectively, replace the two 3’s in
A;(:, 1) with 2, 1, respectively, and replace the two 4’s in As(:,1) with 1, 2,
respectively. In By(:, 1), replace the two 1’s in A4(:, 1) with 1, 2, respectively,
replace the two 2°s in A4(:, 1) with 2, 1, respectively, replace the two 3’s in
Ay, 1) with 2, 1, respectively, and replace the two 4’s in Ay(:,1) with 2, 1,

respectively.

Step 2: Obtain C(:,1) by combining A(:,1) and B(:,1). Since the entries 1, 11,
21 and 29 in A(:,1) and B(:,1) have a;; = 1 and by = 1, the entries 1, 11, 21
and 29 of C(:,1) are taken to be 1, 2, 4, 3, a uniform permutation of gs2(1,1).
Because the entries 5, 16, 20 and 32 in A(:,1) and B(:,1) have a;; = 1 and
by = 2, the entries 5, 16, 20 and 32 of C(:,1) are taken to be 7, 6, 8, 5, a
uniform permutation of g32(1,2). Because the entries 3, 9, 23 and 30 in A(:, 1)
and B(:,1) have ajy = 2 and by = 1, the entries 3, 9, 23 and 30 of C(:, 1)
are chosen to be 12, 11, 10, 9, a uniform permutation of g32(2,1). Because the
entries 4, 15, 24 and 26 in A(:,1) and B(:,1) have a3 = 2 and by = 2, the
entries 4, 15, 24 and 26 of C(:,1) are taken to be 13, 14, 16, 15, a uniform
permutation of g32(2,2). Because the entries 2, 14, 22 and 31 in A(:,1) and
B(:,1) have a;; = 3 and b;; = 1, the entries 2, 14, 22 and 31 of C(:,1) are taken
to be 18, 19, 17, 20, a uniform permutation of g32(3,1). Because the entries 8,
13, 19 and 28 in A(:,1) and B(:,1) have ay = 3 and b;; = 2, the entries 8,

13, 19 and 28 of C(:,1) are taken to be 21, 22, 24, 23, a uniform permutation

16

of 832(3,2). Because the entries 6, 10, 17 and 27 in A(:,1) and B(:,1) have
a;; = 4 and by = 1, the entries 6, 10, 17 and 27 of C(:,1) are taken to be 25,
27, 26, 28, a uniform permutation of g32(4,1). Because the entries 7, 12, 18
and 25 in A(:,1) and B(:, 1) have ay =4 and b;; = 2, the entries 7, 12, 18 and

25 of C(:,1) are taken to be 29, 32, 31, 30, a uniform permutation of gs2(4,2).

Part (e) of Table 2.2 presents the matriz C with four slices Cy, Cq, C3 and C,4 divided
by the dashed lines. Figure 2.4 presents the bivariate projections of D of 32 runs
generated from C. The whole design of D achieves one-dimensional stratification with
respect to the 32 equally spaced intervals of (0,1] and two-dimensional stratification
with respect to the 4 x 4 grids displayed in dashed lines. In any one-dimensional
projection of D, each of the 32 equally spaced intervals of (0,1] contains exactly one
point. In any two-dimensional projections of D, each of the 16 reference squares of
(0,1)% contains exactly two points. The design D is divided into four Latin hypercube
designs of eight runs (O, A, %,), each having exactly one point in each of the eight

equally spaced intervals of (0, 1].

2.3 Sampling Properties

In this section, we derive sampling properties of sliced U designs. Let F' denote
the uniform measure on the unit hypercube (0, 1]9. Let f : (0,1]? — R be a measurable
function with [f(x)?dF < oo. Express dF as [[i_, dF}, where F}, is the uniform
measure of the kth dimension. The continuous ANOVA decomposition (Owen, 1994;
Loh, 1996) of f is

F=>"fu (2.5)

ueQ

17

0.0 0.2 0.4 0.6 0.8 1.0
L L L L L I

x1

1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8

0.0

1.0

x3

0.0 0.2 0.4 0.6 0.8
0.0 0.2 0.4 0.6 0.8 1.0

T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 08 10 0.0 0.2 0.4 0.6 08 10 00 0.2 04 0.6 0.8 10

Fig. 2.4.— Bivariate projections of a sliced U design D with slices Dy, Dy, D3 and D4
in Example 2.2. Each of the 4 x 4 squares in the dashed lines has exactly two points,
and each of the 32 equally spaced intervals of (0, 1] contains exactly one point. The
array D is divided into four Latin hypercube designs of eight runs (O, A, %,), each

containing exactly one point in each of the eight equally spaced intervals of (0, 1].

where Q represents the set of all axes of (0, 1]9. For any u € Q, f,, can be defined via

/ (f(X) - Z fv(x)> dFQ/ua (26>

vCu

where dFg/, = Hkéu dF}. For the empty set 0, fy denotes the grand mean p = [fdF.

The variance of f, denoted by 0® = [(f — u)?dF, can be decomposed as

o> =" fldF. (2.7)

|u|>0

Lemma 2.2. Consider C of ny runs from (2.8) based on an OA(ny, s9,2) with slices

Cy,...,Cs of ny Tuns each, with ny = s\ and ny = sny. Then (i) the columns of C

18
and C,,, m = 1,...,s, are exchangeable; (ii) for m = 1,... s, the rows of C,, are

exchangeable.

Proof. Part (i) follows immediately by the column permutation of A prior to the
construction method in Section 2.2. Part (ii) follows by the row permutation of each

slice of A in the construction method. O

Proposition 2.2. Form =1,...,s, let ¢, i denote the (i, k)th entry of C,, in Lemma

2.2. Then fork=1,...,q,
(1) the probability mass function for ¢y, i =1,...,n1, is
P(Cm,ik = ZL‘) = ng_l, T &€ an- (28)

(1) the joint probability mass function for ¢y, and ¢y jk, © # j, is

P(Cm,ik — I, Cm gk = y) _ { [nQ(nQO_ S)]_ Li}{jlwi!y/ﬂ’ T,y € Zn2 (2.9>

(111) the joint probability mass function for cp, ik and Cpy ji, M1 # Mo, is

ny [x/s] # [y/s], x,y € Zn,
P(Cony ik = T, Cm gk = Y) = 4 [n2(ne —m)]™ [x/s] = [y/s], x #y, ©,y € Zy,
0 otherwise.
(2.10)

Following He and Qian (2011), express the (7, k)th entry ¢y of C in Proposition

2.2 as
Cik =Mk — SPik + Viks (2.11)
where i, Bik, and 7, are uniform random variables on Z,, Z and Z,, respectively.

Similarly, express the (¢, k)th entry ¢, ;x of C,, in Proposition 2.2 as

Cmjik = M1 ik — SPm,ik + Ym,ik- (2.12)

19

The components in this expression correspond to the steps of the construction method
in Section 2.2, with a4 associated with the symbol permutation on Z,, §;; the permu-
tation on Z) in Step 1 and 7, the permutation on Z; in Step 2. Expressions of (2.11)
and (2.12) will be used in Proposition 2.3. For row i in C,, let 7, be the number of
rows j in G, satisfying au, it = aum ji and oy, i = Q1. Let

ni

Tm =11 lglg =D D Y (2.13)

i=1 k#l

denote the average of Tﬁi values over all row and column pairs in C,,. Averaging the

Tm values over all s slices of C gives

T=s5" Z Ton.- (2.14)
m=1

Table 2.3 presents a grouping scheme originally introduced in He and Qian (2011) for
nested U designs. A pair of nested U design constructed in He and Qian (2011) are
two space-filling designs that the larger design contains a small space-filling design as
a subset. The construction method for nested U designs is also motivated by Lemma
2.1, but works in a different fashion and for a different purpose by collecting the runs of
an orthogonal array with strength two with the same symbol in one chosen column to
form a small orthogonal array and then simultaneously randomizing the nested small
array and the remaining runs of the large array. Table 2.3 was derived for grouping
the entries in two rows and two columns of a pair of nested U designs. Though the
probability mass functions of a sliced U design and a nested U design are different,

these groups are still useful here as they are characteristics of the underlying OA.

Remark 2.1. With the same underlying OA, each slice of a sliced U design has the

same distribution as the small design of a pair of nested U designs constructed in He

20

and Qian (2011). In terms of the joint distribution of the whole design, a sliced U
design and a nested U design are different. A nested U design does not have a slicing

structure.

Proposition 2.3. Form =1,...,s, ¢y denotes the (i, k)th entry of C,, in Lemma
2.2. Let P(Cm ik, Cm,ils Cm,jk, Cm,j1) denote the joint probability mass function for (Cpm.ik, Cm.i,

Cm,jks Cmojt)- For C with slices Cy, ..., Cy in Lemma 2.2, we have that

(i) for rowsi,j in Cp, m=1,...,s,

m (w1, Tiz, Yj1, Yj2) € Ha.

—1-7
p _) B o-D =D (w31, Ti2, Yj1, Yj2) € Hy.
(Cm,ika Cm,ily Cm,jk, Cm,jl) - SA—2A+14T H
NS0 (A1) (=177 (w31, iz, Y1, Yj2) € Hs.
0 otherwise.

(2.15)

(i1) for row i in C,,, and row j in C,,,, mi # ma,

()\5’\55_(7%;71)3 (w31, Ti2, Yj1, Yj2) € Hy.
)\5’\56_(7%;71)2 (w31, iz, Yj1,Y52) € Hs.
% (i1, Tiz, Y1, Yj2) € Hy.
P(Cmy ik Cmits Cmayjks Cmagjl) = /\)195—562(/\%_114;; (w41, Ti2, Yj1, Yj2) € Hg.
W\%ﬁg (@i1, T2, Yj1, ¥j2) € Hr.
2_ — | —
% (w31, iz, Yj1,Yj2) € Hs.
L 0 otherwise.
(2.16)
Consider s similar computer experiments fi, ..., fs having inputs x = (x1,...,z,)
with the uniform distribution on (0, 1]9. For m =1,...,s, let

Define

p=s" Z L. (2.18)
m=1

21

Let D be a sliced U design of ny runs from (2.3) having s slices Dy, ..., D; of ny runs.

Form =1,...,s, an estimator of y,, in (2.17) using D,, is
ni
/lm = nl_l Z fm (Xm,i))
i=1

where x,,,; denotes the ith run of D,,. Then p in (2.18) is estimated by

S
A~ -1 ~
po= 5" fim,

=1

(2.19)

(2.20)

which uses ny runs of D. For u € Q and r =1,...,¢q, as in Owen (1994) and He and

Qian (2011), let wp,;;(u) = {k € u|cpm it = Cm jx}. Define

ny ni

M, (u,r) = Z Z Ly iy (w)=r, fOrm =1,... s.

i=1 j=1
Similarly, define wy,, m,.ij(u) = {k € u|cm,,ik = Cmsy ji} and

ni ni

Moy my (u, 1) = g g Ly, g iy (w)|=rs fOT My, ma =1,...,8, my # my.

i=1 j=1

For m =1,...,s, replacing f with f,, in (2.5) gives

Fn(3) =Y fnau(%):

ueQ

Theorem 2.1 gives some variance formulas for sliced U designs.

(2.21)

(2.22)

(2.23)

Theorem 2.1. Suppose that E ([f(x)]?), form =1,...,s, and E[fm,(X) fm,(X)], for

my,me = 1,...,s, are well defined and finite. Let T be as defined in (2.14). Suppose

that, for m =1,...,s, fm s a continuous function on (0,1]7. Then for fi,, in (2.19)

22

and fi in (2.20) under sliced U designs, as s — oo with \ fized,

(i) var (fom) = D Min(u, Jul)ny >var| . ()] + o(ny);

|u|>2

(i) var (4)

=(1+71)ny's™! Z <Z var|fr . (x)] — (s = 1)7* Z cov[fmhu(x),fmw(x)]>

|u|=2 mi#msa
+2m <ZM Julpvarl ()] + D Moy |u|>cov[fm1,u<x>,fm,u(x)])
|u|>2 mi1#£msa
+o(ny).

Theorem 2.1 (i) implies that the slices of a sliced U design achieve variance reduction
similar to those of a sliced Latin hypercube design. If my # ma, cov|fm, u(X) frngu(X)]
are positive (e.g., f,, = fm,), Theorem 2.1 (ii) implies that a sliced U design as a whole
achieves a similar degree of variance reduction to an ordinary U design constructed in
Tang (1993). As Owen (1994), define

ne N9

=D lwswi-
i=1 j=1

similar to (2.21), where w;;(u) is defined in (A.5).

Remark 2.2. When f = f1 = -+ = fs, coV|fm,u(X), frmou(X)] in (A.6) reduces to
var[f,(x)] and Theorem 2.1 (ii) hence reduces to

> M(u, ful)ng var[fu(x)] + o(ny "),

|u|>3
which achieves a similar degree of variance reduction to an ordinary U design con-

structed in Tang (1993).

23

For fo. and fi, us frmew With w € Q in (2.23), define

T var fmu (X)),

=[s(s—1)] ! D my s COV [frmy (%), frng,u(X)]- (2.24)

Vi
Cy
We now compare Theorem 2.1 with four other methods to generate Dy, ..., Dy of n;

runs each.

Proposition 2.4. Let D denote the union of a sequence of designs Dy, ..., Dy of nq
runs each. As in Proposition 2.1, here ng = sny. Form = 1,...,s, consider fi,, in

(2.19) using Dy, and fi in (2.20) using D. Then we have the following result:

(i) 1ID: If Dy, ...,Dg are s 1ID samples of ny runs, we have that

V&I‘(ﬂm) = Z|u\>0nflvar[fm,u(x>]a
var(i)) = Yumona Vi

(i) LHD: If Dy, ..., Dy are s independent Latin hypercube designs of ny runs (McKay

et al., 1979), we have that

var(fy,) = Z|u\>1 ny Var[fm w(x)] + o(ny)’
var(ji) D=1 > Vuto(ng').

(i4i) SLHD: If Dy, ..., Dy are a sliced Latin hypercube design with s slices of ny runs

(Qian, 2012), we have that

Var(:&m) = Z|u\>1 nflvar[fmu(X] ()’
var(f) = Z|u\>1”2 Vi +o(ny).

(iv) OU: If Dy, ...,Dg are s slices of nq runs obtained by randomly dividing an or-

dinary U design D based on an OA(ng,s?,2), we have that

var (fim) = 32, m0 11 Var] frmu (X)) +o(ny"),
var (f1) = 3 c10m2 (Vi = Cu) + 305015 Vi + o(ny).

24

A comparison of Theorem 2.1 (i) and Proposition 2.4 (iii) implies that each slice of a
sliced U design achieves similar variance reduction as a sliced Latin hypercube design
of the same size. Proposition 2.4 (iv) implies that if an ordinary U design is randomly
divided into s slices of n; runs, the slices do not achieve the variance reduction as

those of a sliced U design in Theorem 2.1 (i).

2.4 Numerical Illustration

This section presents numerical examples to corroborate Theorem 2.1 and Propo-
sition 2.4 in Section 2.3. Take s functions f1, ..., fs to act as s similar computer models
having inputs x with the uniform distribution on [0, 1)?. The goal here is to estimate
(1) the expected output g, of f,, by using a design D,, of ny runs form =1,... s and
(2) the overall mean u = s~ '>° | pu,, by combining Dy, ...,Ds. As in Proposition
2.1, here ny = sny;. We compare four different methods described in Proposition 2.4

to generate Dy, ..., D, with those taken from a sliced U design.
1. IID: Generate s I[ID samples of n; runs.
2. ILHD: Independently generate s ordinary Latin hypercube designs of n; runs.
3. SLHD: Generate a sliced Latin hypercube design with s slices of n; runs.

4. OU: Randomly partition an ordinary U design of ny runs based on an OA(ng, s7, 2)

into s slices of n; runs.
5. SU: Generate a sliced U design with s slices of n runs based on an OA(ny, s, 2).

Example 2.3. Let fi = fo = f3 = f4 be the borehole function (Morris et al., 1993)

25

gien by
2rxg(xy — x6)

log(xy/x1) [1 42213 4 ﬁ] .

log(z2/x1)xis x5

(2.25)

By using data from a Latin hypercube design with 10° runs, p, is found to be 77.668.
A sliced U design with four slices, each being a Latin hypercube design with 16 runs,
is constructed by using the OA(64,4°,2) presented in Table 2.4. For each method, we
compute i, form =1,2,3,4in (2.19) and {1 in (2.20) 1000 times. Table 2.5 presents
the sample means, sample standard deviations and root mean squared errors (RMSEs)
over the 1000 replicates for the five methods. The SU method not only performs equally
as well as the SLHD and ILHD for each fi,, but also performs equally as well as the

OU method for [i.

Example 2.4. Use f; in (2.25). Consider its three variants

2rxs(xy — xg)

f2 = r 1

10g(x2/x1) 1+ 1'9510g(m2x/7;13)a:%m8 + %g
271'33'3(33'4 - .%'6)

fs = - =

lOg(l'g/ZL‘l) L+ 2’O5log(z§/7;vf)z§zg + i_:;
2.05mx3(xy —)

£y = : =

lOg(l'Q/ZL‘l) 1+ 215m + z_g

By using a Latin hypercube design with 10 runs, p1, po, ps and py defined in (2.17)
are found to be 77.668, 79.654, 75.761 and 74.076, respectively. Here, u in (2.18) is
76.7901. A sliced U design with four slices, each being a Latin hypercube design with
16 runs, is constructed by using the OA(64,4° 2) in Table 2.4. For each method, we
compute iy, in (2.19) form =1,2,3,4 and 1 in (2.20) 1000 times. Table 2.6 presents

the sample means, sample standard deviations and RMSFEs over the 1000 replicates

26

for the five methods. The SU method not only performs equally as well as the SLHD

and ILHD for each [i,,, but also performs equally as well as the OU method for ji.

Example 2.5. Consider the following test function from Cox et al. (2001)

A xXr
ho= g i@ -] v
1
Define its two variants
z [0.9z
fo = i \/0.9+(x2+xg) x24_1.01 + 1 + 34,
. 1
x| 0.9z
fs = 1_; \/1+(x2+x§) x24—1.1 + 21 + 3x4.
. L 1

By using a Latin hypercube design with 10° runs, py, po and ps defined in (2.17) are
found to be 2.160, 2.140 and 2.152, respectively. Here, p in (2.18) is found to be
2.151. A sliced U design with three slices, each being a Latin hypercube design with
12 runs, is constructed by using the OA(36,3°,2) in Table 2.7. For each method, we
compute fi,, form = 1,23 in (2.19) and v in (2.20) 1000 times. Table 2.8 presents
the sample means, sample standard deviations and RMSEs over the 1000 replicates
for the five methods. The SU method not only performs equally as well as the SLHD

and ILHD for each fi,,, but also performs equally as well as the OU method for ji.

Example 2.6. Let f; be the following test function from Deb et al. (2005)
10 cos(may /2) cos(mry/2) cos(mas/2)[1 + (24 — 0.5)7].
Consider its two variants

f2 = 10 cos(mx1/2) cos(mx/1.9) cos(mas/1.95)[1 + (x4 — 0.51)?],

f3 = 10 cos(mx1/2.1) cos(mwy/2.1) cos(mas/2.01)[1 + (24 — 0.45)7].

27

By using a Latin hypercube design with 10° runs, p, po and ps defined in (2.19) are
found to be 2.798, 2.577 and 2.963, respectively. Here, p in (2.18) is found to be
2.779. A sliced U design with three slices, each being a Latin hypercube design with
27 runs, is constructed by using an OA(81,3%,2) in Table 2.9. For each method, we
compute fi, form=1,2,3in (2.19) and ji in (2.20) 1000 times. Table 2.10 presents
the sample means, sample standard deviations and RMSFEs over the 1000 replicates
for the five methods. The SU method not only performs equally as well as the SLHD

and ILHD for each f[i,,, but also performs equally as well as the OU method for ji.

Example 2.7. Consider fi, fa, f3 and fy used in Example 2.4. A sliced U design with
four slices, each being a Latin hypercube design with 16 runs, is constructed by using
an OA(64,4°,2) in Table 2.4. We estimate py by fi, in (2.19) and fi in (2.20). For
each method, we compute fi,, form =1,2,3,4 and ji 1000 times. Table 2.11 presents
the sample means, sample standard deviations and RMSEs over the 1000 replicates
for the five methods. The SU method not only performs equally as well as the SLHD

and ILHD for each f[i,,, but also performs equally as well as the OU method for fi.

2.5 Discussion

Running multiple computer experiments is a growing trend in practice. To
respond to this emerging need, we have introduced a new type of design, called a
sliced U design, by randomizing orthogonal arrays with sliced permutations. Such a
design has a desirable sliced structure and achieves better uniformity than a sliced
Latin hypercube design constructed in Qian (2012). MATLAB and R programs for

constructing the proposed designs are available from the authors. Sampling properties

28

of these designs are derived for the purpose of estimating the expected outputs of
multiple computer experiments. Compared with our proposed designs, sliced space-
filling designs (Qian and Wu, 2009) and Sudoku-based space-filling designs (Xu et al.,
2011) are constructed by using algebraic methods and their sampling properties are
difficult to derive.

It is possible to improve the stratification of the sliced U design in Proposition 2.1
by using an OA with strength three or higher. Let A be an OA(ng, s972,t) with ¢ > 3.
The key is to use Lemma 2.1 in Section 2.2 to divide A into s slices, Ay, ..., Ay,
each becoming an OA(ny,s?™', ¢t —1). For [= 1,...,s, further divide A; into s
smaller slices, Ay, ..., A, each becoming an OA(ny,s?, ¢t —2). For [=1,...,s and
m=1,...,s, randomize Ay, to obtain a matrix C;,,. For [=1,...,s, obtain a larger
design C; by combining Cyy, ..., Ci;; row by row. Finally, combining Cq, ..., C, row
by row gives a design C. Each C,, is randomized by using sliced permutations more
sophisticated than those in (2.2) for C to achieve t-dimensional stratification, each C;
to achieve (t—1)-dimensional stratification and each Cy,, to achieve (¢ —2)-dimensional
stratification.

If A is an OA with strength three, this method constructs a sliced U design C
of ng runs that can be divided into Cq, ..., C, of ny runs each with two-dimensional
stratification, and each C; can be further divided into Cjq,...,Cj, of n; runs each
with one-dimensional stratification. Here, n;y = s\, ny = sn; and n3 = sny. For
illustration, let A be an OA(27,3% 3) from part (a) of Table 2.12. For [= 1,2, 3,
collecting the rows of A with entries in column 4 being [and deleting column 4 yields
A, which is an OA(9,3%,2). Each A; can be further divided into three slices Ay,

m = 1,2, 3, by collecting the rows of A; with entries in column 3 being m and deleting

29

column 3. Each Ay, is an OA(3,3%,1). The arrays Ayy,..., A3z are randomized to
give Cyy, ..., Css, respectively. The larger designs C;, Cy and C3 correspond to Aj,
A, and Aj, respectively, and take the union of C;, Cy and Cj3 to form C. Each Cy,, is
randomized such that (i) C becomes an OA(27,32,2) taking values in Z3 after every
element a is collapsed by level mapping [a/9] and is a Latin hypercube taking values
in Zo7, (ii) each C; becomes an OA(9, 32, 2) taking values in Z3 after every element a
is collapsed by level mapping [a/9] and becomes a Latin hypercube taking values in
Zg after every element a is collapsed by level mapping [a/3], (iii) each Cy,, becomes a
Latin hypercube taking values in Z3 after every element a is collapsed by level mapping

[a/9]. Specifically, divide Zs; into three blocks:
hy = {1,...,9}, hy = {10,...,18}, hy = {19,...,27}.

For | = 1,2, 3, divide h; to three smaller blocks of three consecutive integers:
-9l -1
h;, = {ZGhl : [%-‘ :m}, form=1,2,3. (2.26)

The three symbols, 1,2, 3, in the first two columns of A are randomized to obtain C;
and Cy,,, for [=1,2,3 and m = 1,2, 3, such that exactly one element of h;,, appears
in each C; and exactly one element of h; appears in each C,;,,. For example, since
the entries 1, 6 and 8 contain symbol 1 in column 1 of A; in part (a) in Table 2.12,
these entries in column 1 of C; are taken to be 3, 5 and &8, from hy;, hiy and hys,
respectively. Since the entries 3, 5 and 7 have symbol 2 in column 1 of A, these entries
in column 1 of C; are taken to be 18, 14 and 11, from hsys, hyy and hyy, respectively.
Since the entries 2, 4 and 9 have symbol 3 in column 1 of Ay, these entries in column
1 of C; are taken to be 19, 27 and 24, from hs, hzs and hs,, respectively. Randomize

the entries of Ay and Aj similarly to obtain C, and Cg, respectively.

30

o oo C oo _._.

— ' ' ' ' — ' ' ' '

| | Q | | | Q |

® |, | | | © |, | | |

[ml 1 ' o ' ' ' '

A I A A

o |TTATT : : © | : : :

o | ' ' ' S ' ' '

~ 1 1 1 1 ~ 1 1 1 1

X ' ' ' ' X ' ' ' '

< ! E b | < | | o |

o 1 1 1 ' o ' ' ' '

| | | x| | | | |

N 1 1 1 1 N] 1 1 1

o | ' 1 ' o ' ' ' 1

| O | | | | O | | |

= S | = U e |
o o

I I I I I I I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

x1 x1

Fig. 2.5.— Bivariate projection of C; of nine runs and Cy; of three runs from Table
2.12, where C; can be divided into three slices (O, A, £x), each being a Latin hypercube
design of three runs.

Another way to generate sliced designs with better stratification is to exploit
some slicing structure in the infinite (¢, s) sequence in a prime power base (Niederreiter,
1992; Owen, 1995).

Sliced U designs with (nearly) orthogonal columns or with optimality according
to the maximin distance criterion can be constructed by extending the methods in Ye
(1998), Steinberg and Lin (2006), Bingham et al. (2009), Lin et al. (2009) and Lin

et al. (2010) or the method in Morris and Mitchell (1995).

31

Zs3

X2

' ' '
on o s R o e N s R s e e o eon N e N Eon s e e e ek o R N T e e e Tk e T

MO~ 10 0O~ AN NI Mmoo OO MmM N O Ao NN~ M~ 00 ©

M e e O O e [e e S e [S S S S e S S I S S N e e S

oMM NI~ fFfoloom~oaNaAamFlomw o o~ © A !l A H O — N
fa\ — AN o\ — = M = N IM —~H N~ N o [— N MmN

P [[[

N 0 © 1O FHF AN —H D~ b=~ <f —H M © 10 0 AN 1O © M 0 P~ < H AN |- < 00—+ © M N 1O

S T S S S e S S S S S D S S S S T S S e e S S S e e e S e
O 4 AN O < © F 0 I © AN —~ FHFbh~- O W IO M AN © MM 001 O — = O b~ oo
A AN N —

— M AN AN — — AN — M _121321 | N (@]

N N~ o~~~ o~ |~ o~~~ o~~~ |~ o~~~ o~~~ |~ o~~~ o~~~ —~

0 M < NN~ 00 © MM~~~ 00 O F AN M~ O N - 10 M <H 0 FH DO MmN

Ty I3 T

T1 X9 XT3 X4 T1 9 T3 T

Ty T3 T4

X

I I I

— 00O AN MM~ o H AN O O OO O O MmN MmOo O

— AN AN =™ N AN~ N » N — = = '™ NN N

el B B - B - R R IR - S - B B B R I o B B R N N I a2 I
I I I

—S AN A AN A A N A AN~ AN AN AN AN AN NN AN AN A
I I I

— = = AN~ AN A AN AN NN A A AN AN A A AN

23134421n41132423n42324131n32121443
I I I

AN fFf OO AN A A FTANA A NN 0NN AN A AN DN A
I I I

— M AN A FF O N A TN A FFNO A A O AN AN M~ AN M

N = = = = = = = A A AN AN AN MMM MmN MmN

||||||||||||||||| s Bl Bt

AN = N FF N A AN FANAN A A NN N AN F N AN FAN A AN N
I I I

AN F A AN F A=A O N AN F A ANNN A NN NN~ N AN~ A
I I I

— AN F A AN F AN F A AN A AN AN~ AN A

< AN N F AN~ N N ANFNO AN AN FTANAAN FTANA NN AN DA

— o= = = = = A AN AN AN AN AN NN MmN

N F AN~ N F A~ N FT AN FTANAA NDIFTAN AN FANA—~ O FAN—~ N AN A

N = AN < F AN~ N AT A AN FAN N NN AN NFO AN AN

Table 2.2: (a) An OA(32,4% 2) denoted by A, (b) A after column and symbol permu-

tations, (c) divide A into submatrices A, Ay, A3 and A, (indicated by the dashed
lines) according to different symbols in column 4 of A and deleting column 4 and

randomly shuffle the rows in each slice, (d) B with submatrices By, B, Bs and By

(cix) obtained in Step 2, where each

obtained in Step 1 of the construction, (e) C

slice is a Latin hypercube of eight runs taking values in Zg after every element c;; is

collapsed by level mapping [c;,/4]

32

Group Definition Size

Qi = g, O = g, Bie = Bk, Yik = Vjks

A2st(20s — 1
Or Qi = Qj, Oy = Qj, B = 5jla%k = Yjk 5 (5)

H, il = Uk, O = ajz,ﬁik: = 5jk,5il = 5;%%%; # Yiks Vil # Vi /\254(5 - 1)2

Qi = Qjk, O = A, Bie = Bk, B 7 Bit, Yik 7 Vik
or Qg = Qjg, Oy = Oéjl,ﬁz‘k; 7& ﬁjk, B = 5;‘17%1 7é Vil

H,y Qi = i, Qi = g, Bk 7 Bk, Bt 7 Bii NsO(N—1)?

O, = Ok, O # Qi Bix = 5jk,%‘k = Vik

H, 2X355%(s — 1
> or o, # O, Oy = B = 5;‘1,%‘1 = Vi 5 (S)
= Qi = Qjk, O F 1, Bike = Bk, Yik 7 Viks 2N (s — 1)?
6 or oy, # O, Oy = B = 5;‘1,%‘1 # Vil
e = g, Qi # Qi Bik # @'k,
H 2X3s5(\ — 1 —1
! Or Qi # ik, it = i, Ba 7 Bji s)(s)
Hy Qi 7 Qjg, Qg 7 QU Msb(s —1)?

Table 2.3: A scheme for grouping the entries in rows ¢, j and columns k,[of C of

Lemma 2.2

33

Run# x1 29 x3 x4 5 Tg 7 T§ Tg

Run# x1 x9 x3 x4 5 Tg 7 T3 Tg

4
3

1
1

11 3 2 3 4
2 4 4 4 3 2

33
34

35

3 1
1
1

2 4 2 31

2
3
4

1 3 3 1
1 3 3
1

3 2

4
2
2

3 2 3 41 4 3
1 2 4
1

4 3 4 2

1 2

1
1 4 3 4 2

4 3 2
1

36
37
38
39
40

2 2

1 3

2 4 2 3
2 3 3 4 3 3 3 2 4

1

1 3 1 2 3 3 4
1

2 3

6
7

1 4 4 1 3 2 3
4 4 3 2 1 3 3 1

3

1 2 3 3 4 3 3 3

4

3
4

1

1 3 4 4 2 4 4 4 3

1 3 2 3 4 1

1

1 3 2 3 41 4 1 3 41

9
10

11

1

1 4 2 2

2 2 3 2 2 2 4 3

42

1 4 3 4 2 1

1

2
3 4 4 2 4 4 4 3 2

4 1 3 4 4 2 4 4 4

3 4 2 1 2
4 1 3 2 3 4 1 4

43

1

44
45

12
13
14
15
16
17
18
19
20
21

1 41 3 4 4 2 4 4

2 1 2

1 2 1 4
21 4 2 2 3 2 2 2

1 4 3 4 2

1 4 2 2 3 2

46

2 21
4 2 4 4 4 3 2 1 3

3 3 3 2 41
1

47

1

2 4 2 3

1
4 2 2 3 2 2 2 4 3

48

1
3

1 4 3 4 2 1 2

49

1 2 4 2 3 1 3 1

4
3 2 4

1

2 4 3 1 4 4 11
3 2 2 2 4 3 1 4 4

20
o1

4
1

1

2 2
1
4 3 3 3 2 4 1 2 2

1

4

2 21

4 3 1 4 4 1 1 3 2
1 2 1 4 2 2 3 2 2

52

93
o4
95
o6

2 3 3 4 3 3 3 2

1

2 3 2 2 2 4 3 1 4

1 4 1 3 4 4

2 4 2 3 1 3

2 3 4

22
23
24
25
26

1 2 3 3 4 3
4 4 4 3 2

3 1 3

1

1
4 4 2 4 4 4 3 2

3

1

1 3 3
1 2 4 2 3

1

2 3 3 4 3 3

o7 1 3 3 1
o8 2 2 4 3
99

60
61

1
2 2 2 4 3

3

1

1

1 4 4

1 4 4 1

341 4 1 3 4 4 2
2 2

4

2

34 3 3 3 2 41

4

27
28
29
30
31

1 1 4 3 4

1

1 3 4 4 2 4

1 4

1 4 2 2 3 2 2 2 4

11 3 2 3 4

1 4 4

2

2

2 4 2 62 11 4 3 4 2 1
3 3 4 3 3 3 2 41
4 2 3

1
1 2 2

1

1 3 3

63
64

1

1

3 3 2 4

4

1 2 3 3

3

1

1 4 2 2 3

1 2

2

32

Table 2.4: An OA(64,4°2) used in Examples 2.3, 2.4 and 2.7

11D ILHD SLHD ou SU

mean 77.3183 77.6343 77.6849 782753 77.5661

fp sd 11.0415 2.4340 2.3614 9.5809 2.1384
RMSE 11.0412 24329 2.3604 9.5959 2.1393
mean 78.1968 77.6487 7T7.5819 77.8818 77.5854
flo sd 11.1352 2.5183 2.5017 10.1782 2.1752
RMSE 11.1442 2.5172 2.5008 10.1763 2.1745
mean 77.7801 77.5067 77.5961 77.2549 T7.7175
fts sd 11.5782 2.4218 2.3523 9.7066 2.2150
RMSE 11.5732 24247 23517 9.7098 2.2150
mean 77.1138 77.6890 77.7036 77.2161 77.7197
fty sd 11.2919 2.4095 2.4028 9.8984 2.1064
RMSE 11.3004 2.4083 2.4017 9.9043 2.1057
mean 77.6022 77.6197 77.6416 7T7.6570 77.6472

i sd 5.5519 1.2483 1.1689 0.4450 0.4363
RMSE 55493 1.2481 1.1683 0.4448 0.4361

34

Table 2.5: Comparison of the sample mean, standard deviation and RMSE of [, jis,

13, fry and i for Example 2.3 over the 1000 replicates for the five methods

11D ILHD SLHD ou SU

mean 77.7755 77.8042 77.6023 77.2948 T7.6866

ftn sd 11.5664 2.4418 2.4889 9.8889 2.1662
RMSE 11.5621 24496 2.4876 9.8885 2.1671
mean 80.2150 79.7500 79.4484 80.3261 79.6262

flo sd 12.1499 2.5507 2.5266 10.1182 2.2350
RMSE 12.1605 2.5552 2.5287 10.1407 2.2344
mean 75.5693 75.7247 75.7287 75.7332 75.7105

fts sd 11.1668 2.3312 2.3675 9.4562 2.0813
RMSE 11.1634 2.3309 2.3671 9.4517 2.0817
mean 74.5181 74.1663 74.0348 73.8067 74.0370
fty sd 10.3866 2.3689 2.3191 9.0644 2.0508
RMSE 10.3913 2.3698 23182 9.0636 2.0500
mean 77.0195 76.8613 76.7036 76.7902 76.7650

i sd 5.8785 1.2139 1.1744 0.4501 0.4542
RMSE 56483 1.2173 1.1366 0.4634 0.4576

Table 2.6: Comparison of the sample mean, standard deviation and RMSE of i1, fis,

13, fry and i for Example 2.4 over the 1000 replicates for the five methods

Run# x1 x9 x3 x4 x5

Run# x1 z9 x3 x4 x5

1 1 1 1 1 1 19 1 21 3 3

2 2 2 2 2 2 20 2 3 2 11

3 3 3 3 3 3 21 31 3 2 2

4 1 1 1 1 2 22 1 2 2 3 3

5 2 2 2 2 3 23 2 3 3 1 1

6 3 3 3 3 1 24 31 1 2 2

7 1 1 2 3 1 25 1 3 2 1 2

8 2 2 3 1 2 26 21 3 2 3

9 3 3 1 2 3 27 3 2 1 3 1

10 1 1 3 2 1 28 1 3 2 2 2

11 2 21 3 2 29 21 3 3 3

12 3 3 2 1 3 30 3 2 1 1 1

13 1 2 3 1 3 31 1 3 3 3 2

14 2 3 1 2 1 32 21 1 1 3

15 3 1 2 3 2 33 3 2 2 21

16 1 2 3 2 1 34 1 31 2 3

17 2 3 1 3 2 35 21 2 3 1

18 31 2 1 3 36 3 2 3 1 2

Table 2.7: An OA(36,3°,2) used in Example 2.5

1ID ILHD SLHD Oou SU
Mean 2.1280 2.1417 2.1595 2.1373 2.1398
jp sd 0.2797 0.0250 0.0265 0.2314 0.0249
RMSE 0.2799 0.0250 0.0328 0.2313 0.0249
Mean 2.1511 2.1615 2.1614 2.1605 2.1597
flo sd 0.2801 0.0244 0.0266 0.2360 0.0246
RMSE 0.2801 0.0244 0.0266 0.2359 0.0246
Mean 2.1482 2.1509 2.1600 2.1548% 2.1517
jtz sd 0.2795 0.0264 0.0258 0.2292 0.0248
RMSE 0.2794 0.0264 0.0270 0.2291 0.0248
Mean 2.1424 2.1513 2.1603 2.1509 2.1509
i sd 0.1614 0.0145 0.0076 0.0059 0.0056
RMSE 0.1616 0.0145 0.0122 0.0059 0.0056

35

Table 2.8: Comparison of the sample mean, standard deviation and RMSE of fiy, jis,

i13 and [for Example 2.5 over the 1000 replicates for the five methods

36

Run# x1 x9 o3 x4 x5 Run# x1 29 23 14 x5

Run# x1 x9 x3 x4 x5

21 3 1 3

28 31 2 1 2 Hh)
29 11 3 1 2 26
30 57
31 o8
29
60

1 1 1 1
1

1
2

1 2 1

11 2 1 3
2 2 3 1 3
32 1 1 3

21 1 1 2
3 2 2 1 2

31 3 1 1
1 21 11
2 2 2 11
3 2 3 1 1
1 3 1 11
2 3 2 11
3 3 3 1 1
2 21 2 1
3 2 2 2 1
1 2 3 21
2 31 2 1
3 3 2 2 1
1 3 3 2 1
2 1 1 2 1
31 2 2 1
11 3 21
3 3 1 3 1
1 3 2 3 1
2 3 3 3 1
31 1 3 1
11 2 3 1
21 3 3 1
3 2 1 3 1
1 2 2 3 1
2 2 3 3 1

1 2 3 1 2
2 211 2
3 3 2 1 2

32

1 2 2 1 3
2 3 3 1 3
33 1 1 3

33
34

35

61

62

1 3 3 1 2
2 3 1 1 2

1 3 2 1 3
3 2 3 2 3

63

36
37
38
39
40

64
65

1 2 2 2 2
2 2 3 2 2
3 2 1 2 2

10
11
12
13

1 2 1 2 3
2 2 2 2 3
3 3 3 2 3

66

67
68

1 3 2 2 2
2 3 3 2 2
3 3 1 2 2

1 3 1 2 3
2 3 2 2 3
31 3 2 3

41

14
15
16

69

42

70

11 2 2 2
21 3 2 2
31 1 2 2
2 3 2 3 2
3 3 3 3 2

43

1 1 1 2 3
21 2 2 3

71

44
45

17
18
19
20
21

72

1 3 3 3 3
2 3 1 3 3
3 3 2 3 3

73

46

74
75

47

1 3 1 3 2
2 1 2 3 2
31 3 3 2

48

11 3 3 3
211 3 3
31 2 3 3

49 76

22

7
78

90
o1

23
24
25

1 1 1 3 2
2 2 2 3 2
3 2 3 3 2

1 2 3 3 3
2 21 3 3
3 2 2 3 3

79

52

80
81

93

o4

26
27

1 2 1 3 2

Table 2.9: An OA(81,3°,2) used in Example 2.6

IID ILHD SLHD ou SU

Mean 2.7978 2.7928 27852 2.8110 2.7961
i sd 0.4986 0.2207 0.2321 0.4195 0.1315
RMSE 0.4983 0.2206 0.2323 0.4195 0.1314
Mean 2.5925 2.5909 2.5698 2.5739 2.5770
flo sd 0.5019 0.2536 0.2433 0.4116 0.1430
RMSE 0.5019 0.2539 0.2432 0.4114 0.1429
Mean 3.1020 3.0867 3.0855 3.0650 3.0924
jts sd 0.5113 0.2138 0.2168 0.4062 0.1211
RMSE 0.5113 0.2137 0.2167 0.4066 0.1212
Mean 2.8307 2.8235 28135 2.8166 2.8166

i osd 0.2991 0.1328 0.1290 0.0696 0.0682
RMSE 0.2991 0.1328 0.1291 0.0696 0.0682

37

Table 2.10: Comparison of the sample mean, standard deviation and RMSE of fi1, fis,

i13 and [for Example 2.6 over the 1000 replicates for the five methods

I1D ILHD SLHD ou SU

mean 77.9512 77.5718 T77.7187 78.0804 77.6642

i sd 11.5664 2.4042 2.4918 9.8875 2.2157
RMSE 11.5642 2.4047 2.4912 9.8914 2.2146
mean 80.1844 79.7101 79.5270 79.7121 79.5363
fto sd 11.7042 2.6151 2.5953 10.3270 2.1932
RMSE 11.9707 3.3309 3.2046 10.5268 2.8950
mean 75.9044 75.7767 75.7749 75.5833 75.8992
jt3 sd 10.6753 2.3695 2.3252 9.3122 2.0923
RMSE 10.8210 3.0547 3.0216 9.5465 2.7637
mean 74.1342 74.1875 74.0992 73.7175 73.9621
iy sd 10.7020 2.3368 2.3467 9.6971 2.0506
RMSE 11.2566 4.1685 4.2474 10.4560 4.2106
mean 77.0435 76.8115 76.7800 76.7733 76.7654

i osd 5.5872 1.2288 1.1727 0.4264 0.4576
RMSE 5.6187 1.4946 1.4678 0.9868 1.0077

Table 2.11: Comparison of the sample mean, standard deviation and RMSE of fi1, jis,

13, fry and i for Example 2.7 over the 1000 replicates for the five methods

38

T Ty T3 T4 1 To T1 To
1 1 1 1 3 4 1 2
3 2 1 1 19 12 7 4
2 3 1 1 18 25 6 9

3 3 2 1 27 19 9 7
2 1 2 1 14 1 5 1
1 2 2 1 5 18 2 6

2 2 3 1 11 13 4 5
1 3 3 1 8 22 3 8
31 3 1 24 8 8 3

"2 2 3 2 1510 5 4
1 3 3 2 6 23 2 8
31 3 2 25 9 9 3

11 12 2 5 1 2
3 2 1 2 22 16 8 6
2 3 1 2 12 27 4 9

3 3 2 2 20 20 77
2 1 2 2 17 2 6 1
1 2 2 2 9 15 3 5

'3 3 2 3 2321 8 T
2 1 2 3 10 3 4 1
1 2 2 3 4 17 2 6

2 2 3 3 16 11 6 4
1 3 3 3 1 24 1 8
31 3 3 21 6 7 2

1 1 1 3 77 3 3
3 2 1 3 26 14 9 5
2 3 1 3 13 26 5 9

(a) (b) (c)

Table 2.12: (a) An OA(27,3% 3) denoted by A, which is divided into A;, Ay and
Aj; and is further divided into Ayy, ..., Ass, (b) asliced U design C with three slices
Cy, C; and Cj of nine runs (divided by the dashed lines), each of which becomes an
OA(9,33,2) associated with Zs after every element a is collapsed by level-mapping
[a/9], (c) each of Cy,Cy and Cj is a Latin hypercube of nine runs taking values in

Zg after every element a is collapsed according to level-mapping [a/3]

39

Chapter 3

Asymmetric Nested Lattice Samples

3.1 Motivation

Space-filling designs are widely used in computer experiments (Sacks et al.,
1989a,b; Currin et al., 1991; Morris et al., 1993; Santner et al., 2003; Fang et al., 2005),
numerical integration and other fields. Throughout, a design being space-filling means
that when projected onto low dimensions, it achieves attractive uniformity. Popular
classes of space-filling designs include ordinary Latin hypercube designs (McKay et al.,
1979), orthogonal Latin hypercube designs (Ye, 1998; Steinberg and Lin, 2006; Bing-
ham et al., 2009; Lin et al., 2009), orthogonal array-based sampling designs (Patterson,
1954; Tang, 1993) and nets (Niederreiter, 1992; Owen, 1995), among others.

Recent years have witnessed a surge of interest in using nested space-filling de-
signs for a wide range of applications, including multi-fidelity computer experiments
(Kennedy and O’Hagan, 2000; Qian et al., 2006; Qian, 2009), sequential evaluations
(Wang, 2003; Tong, 2006; Sallaberry et al., 2008; Qian, 2009), multi-step functional fit-

ting (Floater and Iske, 1996; Fasshauer, 2007) and linking parameters (Husslage et al.,

40

2003, 2005). Nested space-filling designs are two space-filling designs with the smaller
design nested within the large design. Qian et al. (2009) use algebraic projections in
Galois fields to construct several classes of nested space-filling designs. Another pop-
ular class is nested Latin hypercube designs (Husslage et al., 2005; Sallaberry et al.,
2008; Qian, 2009) in which both the small design and the large design achieve uni-
formity in one-dimensional projections. By randomizing symmetric nested orthogonal
arrays, Qian and Ai (2010) introduced symmetric nested lattice samples (SNLS’s) to
achieve better stratification than nested Latin hypercube designs. A pair of SNLS’s
associated with a symmetric nested orthogonal array of strength ¢ has a desirable
nested structure and achieve uniformity in ¢ and lower dimensions. Due to the use of
symmetric nested orthogonal arrays, a major limitation of SNLS’s is that all axes are
divided at the same scale of fineness.

To overcome this drawback, Qian et al. (2011) proposed approaches for con-
structing asymmetric nested orthogonal arrays, by using a level-collapsing approach
and a replacement approach. We propose a new class of space-filling designs called
asymmetric nested lattice samples (ANLS’s), by randomizing asymmetric nested or-
thogonal arrays. Such designs can divide different axes at different scales of fineness.
In the applications mentioned above, this flexibility is useful for situations where some
factors are believed to be more important or deserve more attention than the other
factors. For example, in running multi-fidelity computer models for designing a heat
transfer device, the temperature of the heat source and the thermal conductivity of
the solid material can have more significant effects on the heat transfer rate than the
others and thus deserve more attention. In modeling the thermal dynamics of an

information technology system, rack temperature rise and rack power can be of par-

41

ticular interest, given their significant effects on the energy efficiency of the system.
In such situations, the asymmetric nature of ANLS’s enables dividing the axes of the
more important factors at finer scales. ANLS’s are also useful for situations where
different factors, by nature, require dividing their axes at different levels of finesse.
For example, in prosthesis design, femoral head coverage in a low-accuracy computer
code may be limited to take values from eight equally spaced intervals on some range
while a high-accuracy computer code, due to more complicated mathematical struc-
ture, may be limited to take values from four equally spaced intervals on the same
range. It is worth mentioning that space-filling designs with different numbers of levels
for different columns were also considered in Tang (1993) and Owen (1994). The main
contribution here is to randomize asymmetric nested orthogonal arrays to produce
ANLS’s with a desirable property.

The difference between ANLS’s and SNLS’s are two-fold. 1. Analogous to the
well-known difference between ordinary orthogonal arrays with fixed levels (Rao, 1947;
Bose and Bush, 1952; Rao, 1952) and ordinary orthogonal arrays with mixed levels
(Wu, 1989; Wang and Wu, 1991; Hedayat et al., 1992; Wang, 1996), asymmetric nested
orthogonal arrays used in ANLS’s are constructed very differently from symmetric
nested orthogonal arrays used in SNLS’s. 2. The first randomization procedure for
ANLS’s in Section 3.3 comes from an entirely different angle from the randomization
procedure for SNLS’s in Qian and Ai (2010). The second randomization procedure in
Section 3.3 uses nested permutations with different parameters to shuffle the levels
of an asymmetric nested orthogonal array, whereas nested permutations with the
same parameters are employed to randomize a symmetric nested orthogonal array

in producing a pair of SNLS’s.

42

The remainder of the chapter will unfold as follows. A formal definition of
asymmetric nested orthogonal array is presented in Section 3.2. The two procedures
for randomizing an asymmetric nested orthogonal arrays to generate a pair of ANLS’s

are presented in Section 3.3. We provide some discussion in Section 3.4.

3.2 Definitions and Notation

This section gives some useful definitions and notation. A symmetric orthogonal
array (OA) of size n, m constraints, s levels and strength two, denoted by O A(n, s™, 2),
is an n X m matrix with entries from a set of s levels such that for every n x 2 submatrix,
all s? level combinations occurs equally often (Hedayat et al., 1999, referred to as HSS
hereinafter). Throughout, we consider OA’s of strength two and drop the strength
parameter in OA(n,s™,2). Mukerjee et al. (2008) introduced the concept of nested
orthogonal arrays (NOA’s), which is related to that of incomplete orthogonal arrays
Hedayat et al. (1992). An NOA OA((ny,ns), (s¢,54)) is an OA(ny, s{) containing an
OA(ng, sg) as a subarray, where n; > no and s; > sy. Several construction methods
for symmetric NOA’s were developed in Qian and Ai (2010). It is also possible to
generate such arrays from ordered orthogonal arrays (Schiirer and Schmid, 2010). For
illustration, Table 3.1 presents an OA((16,4), (43, 23)).

We now give a formal definition of asymmetric NOA’s. Recall that an asym-
metric orthogonal array OA(n, s - - - s%) of size n and strength two with d = >%_, d;
is an n x d matrix where the first d; columns take values from a set of s; levels, the
next ds columns take values from a set of sy levels and so on such that for every
n X 2 submatrix, all possible level combinations occur equally often. For ny < n,

and sj < 81, @ = 1,...,v, suppose that A is an OA(ny,s% ---s™) containing a

43

0101 001122223333

0011 232301230123

0110 233223013210

Table 3.1: An OA((16,4), (43,23)) (in transpose), where the first four rows form an
OA(4,2?)

submatrix, B, that forms an OA(ngy,s%---s%). Then A, or more precisely B C A,

is called an asymmetric NOA, denoted by OA((ny,ng), (s3---s%, 5% ... s%)), where
S11,...,8y1 are distinct but some of sqo,..., S, could be identical. For v = 1, an

OA((ny,ng), (s -+ s 5% ... s%)) reduces to an OA((ny,ns), (s4,5%)), which is a

symmetric NOA.

3.3 Randomization

In this section, we present two methods for randomizing an asymmetric NOA
to produce a pair of ANLS’s. It needs to be stressed here that these randomization
procedures work for arbitrary asymmetric NOA’s, not limited to those constructed in
Qian et al. (2011). Here are additional definitions and notation. A uniform permuta-
tion on a set of p integers is a permutation on the set, with all p! possible permutations
being equally probable. For a € R, [a] denotes the smallest integer no less than a.
For an integer n, let Z,, denote the set {1,...,n}.

We first explain why in producing a pair of ANLS’s, an asymmetric NOA should
be randomized in a more elaborate manner than simply using uniform permuta-

tions. Hereinafter, let V. C W denote an OA((ny,ng), (3 ---s% 59 ... s%)) with

44

d=>",_,dy. Let a; denote the number of levels of column &k of W and let by, denote
that of V. For kK =1,...,d, relabel the levels of column k of W, originally expressed
as arbitrary symbols, so that the a; levels become 1, ..., ag, with the b, levels of col-
umn k of V being 1,...,b,. It is important to note that if the a; levels of column &
of W are randomized with a uniform permutation on Z,, , after the randomization W
achieves uniformity in two dimensions, but its subset of points corresponding to V is
not guaranteed to achieve attractive stratification.

The first randomization procedure is motivated by Lemma 3.1.

Lemma 3.1. Let A be an OA(n,af" ---a) of strength two with d =", _, dy.

(2

(a) Suppose that for k =1,...,d, by divides ay. Obtain a new array Ay by, for k =
1,...,d, collapsing the a; symbols in column k of A into by new symbols, with each
new symbol corresponding to ay /by old symbols. Then Ay is an OA(n, b - - b®)

of strength two.

(b) Fork=1,...,d, permute the levels of column k of A to obtain a new array A,.

Then Ay is an OA(n,af" - --a®) of strength two.

(2

Lemma 3.1 (a) can be verified based on the definition of an asymmetric orthog-
onal array given in Section 3.2. Lemma 3.1 (b) is a well-known result on orthogonal
arrays; see, for example, Chapter 1 of HSS.

For k =1,...,d, divide Z,, into by blocks, ck1, ..., Ck,, each having g, = ax /by

entries, where

cu = {z€Z, :[z/q]| =1}, forl=1,... b (3.1)

45
The key here is to divide the a; levels of column k of V into these by blocks and
randomize them in a block-by-block fashion. For k = 1,...,d, the procedure is divided
into two cases: Case I with g > ny /b, and Case II with g, < na/bg.

For Case I, we have:
Step 1: Randomly assign ¢, ..., Ckp, to form by new groups g1, .. ., Skb, -

Step 2: For m = 1,...,bg, replace all ny/by m’s in column k of V with ny/by

randomly selected entries from gg,,.

Step 3: For m = 1,..., b, randomly replace all (n;/ar — ng/bx) m’s in column k of
WA\V by the g —nsy /by, entries of gy, not selected in Step 2 and (ny/ar — qx)/qr

copies of Zpum.

Step 4: Randomly divide the a; — by symbols that appear in column k£ of W but
not in column k of V into by, sets, hyy, ..., hy, , each having (ay — by) /by entries.
For m = 1,..., b, replace the entries in column k of W corresponding to each

symbol in hy,, with a uniform permutation on n;/(axqx) copies of ggp.
For Case II, we have:
Step 1: Randomly assign ¢, ..., Ck, to form by new groups g1, - . ., Skb, -

Step 2: For m = 1,..., by, replace all ny/by m’s in column k of V with a uniform

permutation on ny/(brgr) copies of .

Step 3: For m =1, ..., b, randomly replace all (n;/a; — ns/bx) m’s in column k of

WAV by (ny/ax —n2/bx)/qx copies of G-

46

Step 4: Randomly divide the a; — by symbols that appear in column k of W but
not in column £ of V into by, sets, hy, ..., hy, , each having (ay — by) /by entries.
For m = 1,..., by, replace the entries in column k£ of W corresponding to each

symbol in hy,, with a uniform permutation on n;/(axqy) copies of gy.

Let V* C W™ denote the pair of nested arrays after the foregoing algorithm.
Though the algorithm looks somewhat abstract, the basic ideas behind the steps
are clear: Step 1 randomizes the by groups of the levels of column k& of W; Step 2
randomizes the symbols in column k of V; Step 3 randomizes the symbols in column
k of W\V that also appear in column k of V; and Step 4 randomizes the symbols in
column k& of W\V that do not appear in column & of V.

Using V* C W*, obtain an ny X d array Dy through
T = a; wh, —ugl, i=1,...,n, k=1,....d, (3.2)

where w} is the (i, k) th entry of W*, x; is the (¢, k)th entry of Dy, the uy, are the
independent U[0, 1) random variables, and the w}, and the u; are mutually indepen-
dent. Let D5 be the subset of points in D; corresponding to V*. Proposition 3.1

summarizes the space-filling properties of Dy C D;.
Proposition 3.1. Consider Dy C Dy constructed above. Then we have that

(a) the array Dy achieves two-dimensional stratification on the by, X by, grids when
projected onto factors kv and ko, and achieves one-dimensional stratification with

respect to the ay, equally spaced intervals on (0, 1] when projected onto factor k;

(b) the array Dy achieves two-dimensional stratification on the by, X by, grids when

projected onto two factors ki and ko, and achieves one-dimensional stratification

47

with respect to the by, equally spaced intervals on (0, 1] when projected onto factor

k.

1122 11111122222233333333444444445555555566666666777 7777788888888
1212 345678345678123456781234567812345678123456781234567812345678
1221 341234432143341234124321432112341234214321433412341243214321

Table 3.2: An OA((64,4), (8%4!,2%)) (in transpose) for Example 3.1, where a; =
8,0,2 :8,0,3 =4 and bl :2,b2 :2,b3 =2

8632 855776124143134214231423321475866857658776854321314275866758
2815 255261176172364674534738838445375164382563731718728226468451
3214 312442243114312431132342243124421332421431134124311324422331

Table 3.3: The array (in transpose) obtained by randomizing the NOA in Table 3.2

for Example 3.1 using the first procedure

Example 3.1. Let V.C W be the OA((64,4), (8241, 23)) given in Table 3.2. Using the
foregoing procedure to randomize V.C W produces a pair of nested arrays V¥ C W*
gwen in Table 3.3. The step-to-step randomization of column 1 is described in detail.

Since 1 = 4 is greater than ny/by = 4/2 = 2, Case I applies.

Step 1: Assign cq3 = (1,2,3,4) and ¢11 = (5,6,7,8) to obtain g1 = (5,6,7,8) and

g12 — (1, 2,3,4)

Step 2: The two 1’s in column 1 of V are replaced with 8 and 6, respectively,
randomly taken from gi1, and the two 2’s in the column are replaced with 3 and

2, respectively, randomly taken from gs.

48

Step 3: Since the two 1’s of V are replaced with 8§ and 6 from g1, the remaining siz
1’s are replaced with 8,5,5,7,7,6, respectively, which form a permutation of 5,
7 and g11. The siz 2’s in the column are replaced by 1,2,4,1,4,3, respectively,

which form a permutation on 1, 4 and g13.

Step 4: Sixz symbols, 3,4,5,6,7,8, in column 1 of V\W do not appear in column
1 of V. These symbols are randomized in this step. Divide them into two sets,
hy; = (5,6,8) and hyy = (3,4,7). The entries in column 1 of VAW correspond-
ing to the symbols in hyy are replaced with a uniform permutation on two copies
of g11. Specifically, the eight 5’s in the column are replaced with 7,5,8,6,6,8,5,7,
respectively, the eight 6’s in the column are replaced with 6,5,8,7,7,6,8,5, re-
spectively, and the eight 8’s in the column are replaced with 7,5,8,6,6,7,5,8,
respectively. The entries in the column corresponding to the symbols in hyy
are replaced with a uniform permutation on two copies of g12. Specifically, the
eight 3’s are replaced with 1,3,4,2,1,4,2,3, respectively, the eight 4’s are re-
placed with 1,4,2,3,3,2,1,4, respectively, and the eight 7’s are replaced with

4,3,2,1,3,1,4,2, respectively.

Figures 3.1 and 3.2 depict the bivariate projections of Dy C Dy from Proposition 5.1
associated with V¥ C W*. In Figure 3.1, Dy achieves two-dimensional stratification
on the 2 x 2 grids for any two factors, columns 1 and 2 of the design achieve one-
dimensional stratification with respect to the eight equally spaced intervals on (0,1]
and column 3 of the design achieves one-dimensional stratification with respect to
the four equally spaced intervals on (0,1]. In Figure 3.2, Dy achieves two-dimensional

stratification on the 2x2 grids and each column of the design achieves one-dimensional

49

stratification with respect to the two equally spaced intervals on (0, 1].

0.0 0.2 0.4 0.6 0.8 1.0
L L L L L I

°
3
@
S
@
3
<
S
o
S
2
3
s
= - B
@
S
@ . e a . H
S . I '
Pt TN j X2

< i, L « o
S : '
o -
S '

¢
B e P
S
L e] °
S fr-e-en = [e =
@ ' N @
o : : : - o

' "w '
' o |

© el . ' ' . ' o
S . Bk ' .« . b
< | Ce ° ' ' . N c <
S . [S N . ' . ' S
~ o
S 1 S
|38 R DU L AP () R U IR T 2
S S

T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 00 0.2 0.4 0.6 0.8 1.0

Fig. 3.1.— Bivariate projections of D; in Example 3.1.

Example 3.2. Let [(x) and h(x) denote a low-accuracy computer experiment and a
high-accuracy computer experiment, respectively. Assume [(x) = Z?Zl erit e+ —
ln(Z?zl e®i)] with ¢; = —5.914, ¢ = —24.721 and c¢3 = —14.986 (Jin et al., 2001).

Assume h(x) = S0 "t [d; + z; — ln(Z?:1 e*)] with dy = —8, dy = —26 and

7

1 1 1 1 4 4 4 4 2 2 2 2 3 3 3 3
1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3
1 4 2 3 4 1 3 2 2 3 1 4 3 2 1

Table 3.4: An OA(16,4%) (in transpose) with by = 4,b, = 4,b3 = 4 embedded in an
OA(256,16%8') with a; = 16,a, = 16, a3 = 8 for Example 3.2

0.8

0.2 0.4 0.6

1.0 00

0.8

0.4 0.6

0.0 0.2

1.0

0.6 0.8

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
L L L L L I

x1

x2

,, X3 °
Fig. 3.2.— Bivariate projections of Dy in Example 3.1.
16 15 14 13 11 12 10 9 1 4 3 2 6 7 8

9
4

3 6 156 12
6 8 1 6

5

1 7 14 11 4 5 16 10 2 8 13

3 2 8

71 3 5

Table 3.5: The array V* (in transpose) in Example 3.2

2. 75

4

50

51

ds = —16. Forl and h, assume the distribution of x is the uniform measure on (0, 1]3.
By using a very large Latin hypercube design, y, = E[l(x)] and p, = E[h(x)] are found
to be -145.85 and -159.38, respectively.

Let V.C W be the OA((256,16), (16281,43)) generated by collapsing the third
column of an OA((256,16), (163,4%)), obtained by using the subfield method (Qian
and Ai, 2010), into eight levels. Table 3.4 presents V. Table 3.5 presents V* obtained
by applying the foregoing randomization procedure to V. The randomization of column

1 is described below. Since q; = 4 equals ny/by = 16/4 = 4, Case I applies.

Step 1: Assign C11,C12,C13 and Ci4 to obtain g11 — (13, 14, 15, 16), g12 — (1, 2, 3, 4),

g13 = (5767 77 8) and 814 = (1’ 2’3’4>

Step 2: The 1’s, 2’s, 3’s and 4’s in column 1 of V are randomized in this step. The
four 1’s in column 1 of V are replaced with 16,15,14,13, respectively, which
form a permutation on g1y, the four 2’s in the column are replaced with 1,4, 3,2,
respectively, which form a permutation on g2, the four 3’s in the column are
replaced with 6,7,8,5, respectively, which form a permutation on g3, and the

four 4’s are replaced with 11,12, 10,9, respectively, which form a permutation on

g14.-

Step 3: Since the four 1’s are replaced with g1, in Step 2, the remaining 12 1’s
are replaced with a uniform permutation on three copies of g11. Similarly, the
remaining 12 2’s are replaced with a uniform permutation on three copies of g2,
the remaining 12 3’s are replaced with a uniform permutation on three copies of
g13, and the remaining 12 4’s are replaced with a uniform permutation on three

copies of g14.

52

Step 4: Note that 12 symbols, 5,6,7,8,9,10,11,12,13,14,15,16, in column 1 of
VAW do not appear in column 1 of V. These symbols are randomized in
this step. Divide them into four sets, h;y = (9,15,16), hyy = (7,10,12),

hi3 = (8,11,13) and hyy = (5,6,14). The entries in column 1 of V\W cor-
responding to the symbols in hyy are replaced with a uniform permutation on
four copies of g1, those corresponding to the symbols in hyy are replaced with a
uniform permutation on four copies of g2, those corresponding to the symbols

in hys are replaced with a uniform permutation on four copies of g13 and those

corresponding to the symbols in hyy are replaced with a uniform permutation on

four copies of g14.

Figure 3.3 and 3.4 present the bivariate projections of Dy C Dy from Propo-
sition 3.1 associated with V* C W*. In Figure 3.3, D achieves two-dimensional
stratification on the 4 x 4 grids for any two factors, columns 1 and 2 of the design
achieve one-dimensional stratification with respect to the sixteen equally spaced lev-
els on [0,1) and column 3 of the design achieves one-dimensional stratification with
the respect to the eight evenly spaced intervals on [0,1). In Figure 3.3, Do achieves
two-dimensional stratification on the 4 x 4 grids for any two factors and each column
achieves one-dimensional stratification with respect to the four equally spaced intervals
on [0,1).

We compare the ANLS method with three other methods of the same run sizes.
(i) 1ID: take Dy and Dy to be two IID samples; (i) LHD: take Dy and Dy to be
two ordinary Latin hypercube designs (McKay et al., 1979); and (iii) NLHD: take

D, C Dy to be a pair of nested Latin hypercube designs (Qian, 2009). Each method

93

is replicated 200 times to compute fi, = 1673210, h(x;) and fiy = 2567 32220 1(x;),
where X1, ...,Xos6 are the runs of Dy with the first 16 runs corresponding to Ds.
Table 3.6 presents the sample means, sample standard deviations and RMSE’s of i
and iy, over the 200 replicates for the four methods. This table indicates that the ANLS
method performs the best in terms of the RMSE. Compared with the LHD and NLHD
methods, the ANLS method achieves some 40 % reduction in the RMSE for both [and
h. The LHD and NLHD methods give very similar RMSEs, empirically validating a

theoretical result derived in (Qian, 2009).

I1D LHD NLHD ANLS
Mean -146.0189 -145.9049 -145.8745 -145.8531
l Sd 3.4160 0.4847 0.4767 0.2823

RMSE 3.4016 0.4862 0.4745 0.2825
Mean -158.8190 -159.5671 -159.4366 -159.3980

h Sd 14.3294 2.4234 2.4254 1.4119
RMSE 14.2663 2.4179 2.4240 1.4071

Table 3.6: Comparison of the sample means, sample standard deviations and RMSEs
of fi; and jij, over the 200 replicates computed by four different methods for Example 3.2

We now turn to the second randomization procedure. Recall that for an integer
m > 1, Z,, denotes the set {1,...,m}. Let a > b > 1 be two integers where b divides
a. Define ¢ = a/b. Following (Qian, 2009), a nested permutation mw(’ = 7y, =

(mop(1), ..., mnp(a)) is generated as follows.
Step 1: Draw a uniform permutation A = (A(1),..., (b)) on Z,.

Step 2: For i = 1,...,b, draw m,,(¢) from the discrete uniform distribution with

support {(A(i) — 1)e+ 1, -+, A(i)c}.

54

08
1

0.6
1

x1

04

10 00

08

06

04

10 0.0

T
0.8 1.0

0.6
T
0.6

x3

04
04

02
0.2

0.0
T
0.0

Fig. 3.3.— Bivariate projections of D; in Example 3.2.

Step 3: Obtain (m,,(b+1),...,mp(a)) as a uniform permutation on the intersection

of Z, and the set theoretic complement of {m,,(1), ..., (D)}

The term “nested permutation” suggests that, concerning the first b elements of a

w8 ([map(1)/c], ..., [map(b)/c]) constitute a permutation on Z,. Such a permutation
is essentially Owen’s randomization method for nets (Owen, 1995).

For k = 1,...,d, this procedure uses a nested permutation 71'?1’5””@ to permute
the a; levels of column k£ of W such that, after the randomization, one and only
one of the by levels of column k£ of V falls within each of the b, blocks defined by
Liooosqrsqe + 1,00, 2qk; -5 (e — Dage + 1, ..., brqr, where g = ay/bx. Precisely, a

pair of ANLS’s based on V C W is generated as follows. Obtain an n; x d array D,

0.0 0.2 0.4 0.6 0.8 1.0
L L L L L I

55

) x1

I LRt St SR S X2

© i S A i G X3 ©

0‘0 0‘2 0‘4 0‘6 0‘8 1‘0 0‘0 0‘2 0‘4 0‘6 0‘8 1‘0 D‘D 0‘2 0‘4 0‘5 0‘5 1‘0
Fig. 3.4.— Bivariate projections of Dy in Example 3.2.
through
-1 .
Tip = ay, [Mp(wi) —), i=1,...,n1, k=1,...,d, (3.3)

where wy, is the (i, k)th entry of W, xy is the (7, k)th entry of Dy, m, is a nested
permutation 71'?1’5””@, the n,, are obtained independently, the wu;; are independent U[0, 1)
random variables, and the 7, and the w;; are mutually independent. In Qian and
Ai (2010), a symmetric NOA is randomized by nested permutations 7r,, with the
same values of a and b, whereas in (3.3) the columns of the asymmetric NOA are
randomized by nested permutations with different parameters. This difference is due to
the asymmetric nature of V.C W. Let D be the subset of points in D; corresponding

to V. Then D, C D; provide a pair of ANLS’s with attractive stratification in which

56

different axes can be divided at different levels of fineness. We make this precise in

Proposition 3.2.
Proposition 3.2. Consider Dy C Dy constructed above. Then we have that

(a) the array Dy achieves stratification on the ay, X ay, grids when projected onto

factors ki, ks;

(b) the array Do achieves stratification on the by, X by, grids when projected onto

factors ky, ko.

Proof. First, observe that the number of occurrence of each level combination of factors
k1, ke in W equals the number of points of D; located in each reference square on the
corresponding ay, X ag, grids. Second, because W is an orthogonal array with strength
two, all level combinations in any two columns appear equally often. Combining these
two facts together establishes part (a). Similarly, part (b) follows by noting that V is

an orthogonal array with strength two and the points in Dy correspond to V. O

0011 00000011111122222222333333334444444455555555666666667 7777777

0101 234567234567012345670123456701234567012345670123456701234567

0110 230123321032230123013210321001230123103210322301230132103210

Table 3.7: An OA((64,4), (8%4',2%)) (in transpose) in Example 3.3, where the first

four rows form an OA(4, 23)

o7

Example 3.3. Let V.C W be the OA((64,4), (8241,23%)) from Table 3.7. Relabel the
levels 0,1,2,...,7 of W as 1,2,3,...,8, respectively, where the levels of V become 1
and 2. A pair of ANLS’s, Dy C Dy, is generated in (3.3) by using two independent
nested permutation 71'?;13 to randomize the levels of the first two columns of W and
a nested permutation wﬁ’pz to randomize the levels of the third column of W. In the
bivariate projections of D1, the points are evenly distributed on the 8 X 8 grids in the
dimensions of factors 1 and 2, on the 8 x 4 grids in those of factors 1 and 3, and on
the 8 x 4 grids in those of factors 2 and 3. In the bivariate projections of Do, the

points are evenly scattered on the 2 X 2 grids in any two dimensions.

The two randomization procedures naturally complement each other. The first
one is more sophisticated and can provide ANLS’s with better variance reduction
properties, whereas the second one is much easier to implement. Analogous to middle-
point Latin hypercube designs (Morris and Mitchell, 1995; Ye, 1998; Steinberg and Lin,
2006; Bingham et al., 2009; Lin et al., 2009) and middle-point randomized orthogonal
arrays (Owen, 1992a), middle-point ANLS’s can be constructed by replacing wu;, in

(3.2) and (3.3) with 1/2.

3.4 Discussion

We have constructed a new class of space-filling designs, called asymmetric
nested lattice samples. Such designs are generated by randomizing asymmetric nested
orthogonal arrays with two sophisticated procedures. In addition to the applications
described in Section 3.1, the constructed designs are useful for calibration and val-
idation of computer models (Reese et al., 2004; Higdon et al., 2008) and sequential

integration in stochastic optimization like the Monte Carlo EM algorithm.

o8

We now remark on directions for future work. First, because the proposed ran-
domization methods in Section 3.3 accommodate the asymmetric NOA’s with strength
two, their corresponding asymmetric nested lattice samples are guaranteed to achieve
uniformity in two dimensions only. To obtain asymmetric nested lattice samples with
better space-filling properties, one can develop methods to randomize asymmetric
NOA’s with strength three or higher. Second, one may be interested in constructing
optimal asymmetric nested lattice samples guided by either the minimax or maximin
distance criterion (Johnson et al., 1990; Tang, 1994; Leary et al., 2003). This exten-
sion poses significant challenges because of the four-fold requirements of optimality,

nesting, low-dimensional stratification and asymmetry.

99

Chapter 4

Statistical Emulation of Multi-fidelity
Simulations of Mechanical Dynamics

Systems

4.1 Motivation

Over the last two decades, multibody dynamics has emerged as a critical tool
in various engineering fields such as automotive and aeronautics. The interest of
this work is to understand the system-level behavior of a complex multibody model.
Consider, for example, a crawler model in Fig. 4.1, which is a subcomponent of a low-
mobility hydraulic mining excavator. Extreme operating conditions can cause high
mechanical stresses on crawler tracks, especially in the case of hydraulic excavators of
1,000 tons and higher. Long haulage distances, frequent place changes, and 90% ma-
chine availabilities are standard requirements in the industry. The ability to replace
costly hardware prototypes in the early design phase with simulations can provide

tremendous productivity gains and quality improvement. However, it is computation-

60

Fig. 4.1.— A track model consisting of more than 550 contacts between model com-
ponents.

ally impossible to use a design process that requires a large number of simulation runs
to choose a winning design and then to pass it through a rigorous validation process
spanning a range of operating regimes. For example, a simulation run for modeling the
subsystem dynamic behavior over 10 seconds of the crawler model in Fig. 4.1 requires
12 hours of CPU time.

To cut down computational cost, a large mechanical dynamics code is often run
at two levels of accuracy, thus resulting in an accurate but time-consuming version
and a less accurate but faster version. For example, the two computer experiments in
Section 4.6 for studying the motion of the same slider-crank system differ in terms of
computational methods and cost. In general, metamodels built with a reduced num-
ber of runs are less accurate than those with a larger number of runs. If sophisticated,
computationally expensive runs are replaced with approximate ones, more data can
be available. However, a metamodel built solely on approximate runs may produce
inaccurate results. An effective strategy is to run a large number of approximate sim-
ulation runs and a smaller number of detailed simulation runs and then combine the

two sets of results to build an accurate metamodel or emulator. This strategy has been

61

developed in Kennedy and O’Hagan (2000), Huang and Allen (2005) and Qian et al.
(2006), among others, for integrating multi-fidelity computer experiments with scalar
responses. As an extension of these methods, here we develop a statistical approach to
modeling time-evolution, functional data from two computer experiments with differ-
ent accuracy for studying the same mechanical dynamics system. The corresponding
experimental design issue is also addressed.

The remainder of the chapter is organized as follows. Section 4.2 introduces
some basics of multi-fidelity simulations of mechanical dynamics systems. Section 4.3
presents an efficient experimental design strategy for running such simulations. The
issue on modeling data from such simulations is discussed in Section 4.4. Section 4.5
considers estimation and prediction of the proposed model. The proposed method-
ology is illustrated with an example for studying a slider-crank dynamics system in

Section 4.6. Section 4.7 concludes the chapter with some discussion.

4.2 Basics of multi-fidelity simulations for mechanical dynam-
ics systems

This section gives a brief description of multi-fidelity simulations of mechanical
dynamics systems. Consider a mechanical dynamics system for which the state of
the system at the position level is represented by a vector of generalized coordinates
given by q = [¢1,- . -, qn]T. The velocity of the system is described by the vector of
generalized velocities q = [q1, ..., ¢n]"

In the system, joints connecting bodies restrict their relative motion and im-

pose constraints on the generalized coordinates. Kinematic constraint equations are

62

formulated as algebraic expressions involving generalized coordinates given by

®(q,t) = [Dy(q,t) ... Bp(qt)] =0 (4.1)

where m is the total number of constraint equations to be satisfied by the generalized
coordinates. Assume the m constraint equations are independent and the constraints
are holonomic.

The state of the mechanical system changes in time under the effect of applied
forces. Its time evolution is governed by the following Lagrange multiplier form of the

constrained equations of motion:

M(q)d + 4 (@A = Q (4, q,t). (4.2)

Here, M(q) € RP*P is the generalized mass, and Q (q,q,t) € R? is the action force
acting on the generalized coordinates q € RP, which differs from the reaction @g(q))\
(Haug, 1989; Shabana, 2005), and for the reaction force @g(q)/\, A € R™ is the
Lagrange multiplier associated with the kinematic constraint equations.

Equations (4.1) and (4.2) form a set of Index 3 Differential-Algebraic Equations
(DAEs) (Brenan et al., 1989), which are not ordinary differential equations (Petzold,
1982). In general, obtaining a numerical solution of a DAE is substantially more
difficult and more prone to intense numerical computation than solving an ordinary
differential equation (ODE). For a detailed description of numerical integration meth-
ods on DAEs of mltibody dynamics, the reader is referred to Brenan et al. (1989),
Ascher and Petzold (1998), Hairer and Wanner (1991), Potra (1993), Lubich et al.
(1995) and Eich-Sollner and Fuhrer (1998).

Throughout, we will use a two-dimensional slider-crank system given in Fig. 4.2

to illustrate the proposed methodology. For this system, it suffices to use a set of three

63

Fig. 4.2.— A Slider-crank system.

generalized coordinates r; = [z;,;]" and 6; to uniquely position and orient each body i
in space. Using the notation in Fig. 4.2, (4.1) implies that the generalized coordinates

ri, 01,15, 05 must satisfy a set of kinematic constraint equations given by

x1 — Ly cos 6,

y1 — Ly sin 64

O (rq,01,12,05) = | 29— (2Lycosby + Lycosby) | = 0. (4.3)

Yo — (2L1 sin 0y + Lo sin 6y)
Yo + Lo sin Oy

Then the equations of motion for the slider-crank system can be computed from (4.2).

4.2.1 A high-accuracy computer experiment for the slider-crank system

Since DAEs are differential equations defined on sub-manifolds of R", they can
be reduced to an ODE problem with a smaller number of independent generalized
coordinates. The number of independent generalized coordinates equals the number
of degrees of freedom associated with the multibody system of interest. For example,
the slider-crank system in Fig. 4.2 has one degree of freedom, and a good choice of
independent generalized coordinate is #;. The equation of motion in #; has a highly

nonlinear form given by
02k + ks

é p—
1 s

(4.4)

64

where S; = sin 6;, C; = cosy, f =k (2L,C1 + 2LsCy — 2Lo) + ¢ <—2L19151 - 2L29252>,
and k; is a function of L;, C; and m;. Since L;sinf#; + Losinfy, = 0, there is a func-
tional relationship between ¢, and 0, and (4.4) is a nonlinear second-order ODE in 6.
After reducing this equation to a set of first-order ODEs, a fourth-order Runge-Kutta
method (Hairer and Wanner, 1991), implemented in MATLAB (MATLAB, 2010), can
be used to accurately compute the time evolution of the slider-crank system. The high-
accuracy numerical solution is consistent in that it satisfies the equation of motion and

all the kinematic constraint equations at the position, velocity, and acceleration levels.

4.2.2 A low-accuracy computer experiment for the slider-crank system

The high accuracy solution in Section 4.2.1 requires long simulation times com-
pared with a direct method that only considers the equations of motion along with the
position kinematic constraint equations (Orlandea et al., 1977). The simplified method
can be implemented in the commercial simulation package MSC.ADAMS (MSCsoft-
ware, 2005) using implicit integration formulas to compute the time evolution of the
multibody system. The involved integration formula for generating the low-accuracy
solution is a variant of the Hilber-Hughes-Taylor (HHT) method (Hilber et al., 1977).
Using MSC.ADAMS can lead to significantly shorter simulation times at the price
of a somewhat less accurate solution. Most of the differences in the solution for the
velocities and accelerations of the bodies is a consequence of the lack of enforcement of
the kinematic constraint equations at the velocity and acceleration levels. Specifically,

the low-accuracy method uses the following integration formulas

dn+1 = Qn + hCIn + %2 [(1 - 25) a, + 2ﬁan+1])
(4.5)

Ant1 = Qu+h[(1—7)a, +ya,1]

65

to model the solution from ¢, to t,,; by a step size of h. As discussed in Hughes
(1987), for second order convergence and A-stability, the HHT method requires that
the parameters associated with the method be defined as v = =2% and = %

2

for an arbitrary a € [—%, 0]. The parameter « controls the amount of numerical

Wl

damping associated with the method, ranging from maximum damping for a = —
to no damping o = 0 (trapezoidal formula). From (4.5), the discretization nonlinear
system to be solved at each time point is obtained based on an equation of motion

and an position kinematic constraint equation given by

M(qn-l-l)an-i-l + (1 + O‘)(@g)‘ - Q)n—i—l - O‘(CI)E/\ - Q)n = 0, (4 6)
0. '

D(dpt1:tnt) =
This set of nonlinear equations is solved at each time step t¢,,; for the unknowns
a,1 and \,1. Given a, 1, the integration formulas in (4.5) are used to compute the
generalized positions and velocities q,,11 and q,+1. More details on the HHT method
can be found in Cardona and Geradin (1989) and Negrut et al. (2007) applied to the

context of multibody dynamics analysis.

4.3 Design of experiments

This section discusses the issue of how to efficiently take observations from a pair
of high-accuracy computer experiment (HE) and low-accuracy computer experiment
(LE) for the same mechanical dynamics system. An attractive solution to this problem
is to run the HE and LE with a pair of nested space-filling designs that are two space-
filling designs with one nested within the other. Such designs can be generated by
exploiting nesting in orthogonal arrays. Recall that an orthogonal array OA(n, s?,2)

with s levels, strength 2 is an n x d matrix with entries from {1,..., s} such that,

66

in every n x 2 submatrix, all s* possible combinations occur equally often (Hedayat
et al., 1999). A nested orthogonal array is a special orthogonal array that contains a
subarray that becomes a smaller orthogonal array after some suitable level-collapsing.
Such arrays can be constructed by using algebraic methods developed in Qian et al.

(2009). A pair of nested space-filling designs Dy C D; has three desirable properties:

Economy: The number of points in Dy, ns, is smaller than the number of points in

Dl, mny.
Nesting: The design D, is nested within Dy, i.e., Dy C D;.
Space-Filling: Both D; and D, achieve uniformity in low dimensions.

These properties make a pair of nested space-filling design Dy C D, appealing for
conducting the HE and LE. First, the property of economy indicates that more runs
are available for D; than D,; more LE runs are available as the LE is less expensive.
Second, the nesting property ensures that the LE result is always available at every
point of Dy. This part of data can be used for modeling and calibrating the differences
between the two sources. Third, the space-filling property of D; and Dy ensures a
uniform exploration of the design space for the HE and LE. For illustration, Table
4.1 presents an OA(64,8°% 2) with eight levels in which the first 16 runs form an
OA(16,45,2) after the eight levels are collapsed into four levels as follows: (1, 2) — 1,
(3,4) — 2, (5,6) — 3, (7, 8) — 4. In addition to nested designs constructed in Qian
et al. (2009) based on projections in Galois fields, other families of nested space-filling
designs include nested Latin hypercube designs (Qian, 2009) and nested lattice samples

(Qian and Ai, 2010).

67

T3 T4 Ty T

X2

Run # =

T3 Ty Ty T

X2

Run #

33
34
35
36

37
38
39
40

41

42

10
11
12
13

43

44
45

46

14
15
16

47

48

49

20
ol

18
19
20
21

o2

23
o4
95
o6
57
o8
29
60

22

23

24
25

26

27
28
29
30
31

61

62

63

64

32

., 8, where the subarray consisting of

Table 4.1: An OA(64,8% 2) of eight levels 1, ..

the first sixteen runs becomes an O A(16, 45, 2) after the eight levels are collapsed into

four levels as follows: (1,2) — 1, (3,4) — 2, (5,6) — 3, (7, 8) — 4.

68

4.4 Modeling

Integration of data from a pair of HE and LE for the same mechanical dynamics
system is not a straightforward task because the two sets of results are based on
different computational methods and have different levels of accuracy. Suppose the
HE and LE are conducted by using a pair of nested space-filling designs Dy C D, with
no and ny runs, respectively. Assume Dy consists of the first ny runs of D;. Denote
by x; the 7th run of D;. Suppose the HE and LE are measured at u time points for
any chosen input value. The HE output for the ith run of Dy is y; = (Yi1, - - -, Yiu),
and the LE output of the ith run of Dy is z; = (2i1,. .., 2i). The subscripts in these
two vectors correspond to the u time points used for measuring the evolution of the
system.

Since the HE is more accurate than the LE, the objective here is to create
a metamodel to produce predictions close to the HE results. To achieve this goal,
we propose an approach for building a metamodel by exploiting the accuracy of the
HE data and the abundance of the LE data. It uses Gaussian process (GP) models
(Santner et al., 2003), and functional data analysis techniques to accommodate the fact
that multi-fidelity dynamics computer experiments produce time-evolution, functional
responses. The proposed approach is an extension of the methods in Kennedy and
O’Hagan (2000) and Qian et al. (2006) for emulating multi-fidelity computer codes
with scalar responses. The basic idea of our approach is simple: first creating a
metamodel using the LE data and then refining the model by incorporating more
accurate HE data. Specifically, it consists of three steps. In Step 1, based on the

nested relationship Dy C Dy, obtain the discrepancy between the HE and LE results

69

for the ith run of D, as

0i =Yy — 2 (4.7)
which has wu entries d;1, ..., 0;,, with d;; corresponding to time point ¢. In Step 2, for
t=1,...,n1, express the vector z; over a spline basis h; as

q
z; = Cijhj- (48)
j=1
Since y; and z; are smooth functions of time, we choose hy, ..., h, to be natural

cubic spline basis functions (Ramsay and Silverman, 2005). Note that h; has u com-
ponents since z; is measured at u different time points. The degree of freedom and

the location of internal knots for h; can be determined by using various techniques

like leave-one-out cross-validation. For ¢ = 1,..., no, express 9; as
q
8 = Y dih;, (4.9)
j=1

where d;; is the spline coefficient for the basis h;. In Step 3, for ¢ = 1,...,n; and

j=1,...,¢, model the spline coefficient ¢;; in (4.8) as
Cij = f(XZ)’I’]j + €5, (410)

where €;(-) is a realization of a stationary Gaussian process with zero mean and co-

variance

cov {Gj (Xi), Ej(Xi/)} = szlel(Xia XZ'/), (411)
for i # i, and f is a pre-specified 1 x p regressor and n; = (11, .. ., ;)T is a vector of
unknown regression parameters. For ¢ = 1,... ,ny and j = 1,..., ¢, model the spline

coefficient d;; in (4.9) as

dij = £(x:)B; + &, (4.12)

70

where ;(-) is a realization of a stationary Gaussian process with zero mean and co-

variance

cov{&;(x:), (%)} = 0Rja(x, %), (4.13)

and B3; = (Buj,....Bp;)" is a vector of unknown regression parameters. In (4.11) and
(4.13), the correlation function R, (k = 1,2) determines the correlation of the GP at

any two input values. A popular choice for Rj; is the Gaussian correlation function:

d
Rk (i, Xi1) = exp (— Z O | Tim — xi/m|2>) (4.14)
m=1

The value of the function in (4.14) is determined by a weighted distance between two
input values x; and x;/, and the vector of correlation parameters @, = (Qxmi, - - - 5 Oema) ™
controls the smoothness of the underlying process. The Gaussian process associated
with this correlation function is infinitely differentiable in the mean square sense (Sant-

ner et al., 2003), which is a reasonable assumption for many practical applications.

4.5 Estimation, prediction and ANOVA decomposition

Parameters in the GP models in (4.10) and (4.12) to be estimated are n;, 3;, 0%

and 0, 7 =1,...,q and k = 1,2. These parameters can be estimated by using the
maximum likelihood method (Santner et al., 2003). For j = 1,..., ¢, collect the spline
coeflicients ¢y;, ..., ¢y, in (4.8) into a vector ¢;. Given 8;1, the mazimum likelihood

estimators (MLEs) for n; and o3, are

'ﬁj = (F}“RﬁlFl)ilF?Rﬁlcja
~9 (Cj - Flﬁj)TR}f(Cj - Flﬁj)

o = ,forg=1,...,q,
gt n J q

71

where R;; is the ny xn; correlation matrix with entries Rj(x;,xy), 4,7 = 1,...,nq, de-
fined in (4.14). Here, F; is an ny X p regressor matrix, given as [fT(Xl), . fT(an)}T,

related to f defined in (4.10). The MLE /0\]-1 for 6, can be obtained by solving an

optimization problem:

~

3, = sngmps (1175 + R).

The MLE Bj of B; and the MLE 6%, of 07, in (4.12) can be computed similarly. Then
at any untried point Xo, cp; in (4.10) can be predicted by using the empirical best

linear unbiased predictor (EBLUP):

co; =fom; +TH R (¢; —Fimy), for j=1,... ¢,

~

where Tj; = [ﬁjl(xo,xl), ooy Rj1(x0,%n,)]T, fo = f£(x¢), and both T;; and f{jl are

functions of 8]2-k and 5jk. Similarly, at any untried point xg, do; can be predicted by
doj = foB3; +T,R) (d; — Fof3;), for j=1,... ¢,

where d; = (dyj, ..., dn,;) and Fy = [fT(xl), . .,fT(xm)}T. Now, at any input value

Xo, the HE response z, and the discrepancy d, can be, respectively, predicted by

Zy = Zj:1COJhJ>
— q
6o = i, dojhy,

(4.15)
from which the final predictor of the HE response is yg = zg + 30. Here, y, is a vector
with entries o1, ..., Yo, and ¥o; corresponds to time point ¢. It needs to be stressed
here that zy does not predict the HE accurately since it is based solely on the LE data.

In contrast, yo integrates the data from the two sources and incorporates elaborate

adjustment between the LE and HE to produce predictions closer to the HE.

72

Once the metamodel in (4.15) is fitted, the functional ANOVA decomposition
technique can be used to visualize the effects of different factors on the response. This
technique was originally proposed for Gaussian process models (Santner et al., 2003)
with scalar responses. Extending it to the present situation with functional responses
is straightforward. Here, the components of such a decomposition will be functions
of both time ¢ and the factors. For ¢ = 1,...,u, the basic idea of this technique
is to express ¥o; as the sum of the grand mean, the functional main effect for each
factor, functional two-factor interaction effects and higher-order terms. For easier
presentation, assume the factors 1, ..., z4 are scaled to (0,1]%. Then fort =1,...,u,

the decomposition of 7o is done as follows. The grand mean over the experimental

space is
d
Mot = /%t H dxp,.
m=1
For v =1,...,d, the functional main effect of x; is
d
Mv,t(xv) = /ﬁ/y\Ot H dx, — Ho,t- (4.16)
m#v
For v,w =1,...,d,v # w, the functional interaction effect of x, and z,, is
d
Mvw,t(fﬁy, xw) = //y\Ot H dxm - ,U’U,t(xj) - ,U’w,t(xk) — Mo,t- (417)

m#v,w

Higher-order terms can be defined similarly.

4.6 Case study

In this section the proposed methodology is illustrated with an example for
studying the time-evolution of the slider-crank system in Fig. 4.2. The HE is based on a

fourth-order Runge-Kutta integration method, implemented in MATLAB (MATLAB,

73

2010). Each HE run takes approximately 260 seconds to simulate the two-second
evolution of the system. The dynamics of the slider-crank system is determined by a
set of ODEs in (4.4). The LE is implemented in ADAMS (MSCsoftware, 2005) using
an HHT integration method (Hilber et al., 1977) described in Section 4.2.2. Each LE
run requires 0.4 seconds to complete the evolution over a period of two seconds of the
system.

This system has six factors: mass of crank (x7), half length of crank (x3), mass
of the connecting rod (z3), half length of the connecting (z4), the spring stiffness
coefficient (x5) and the damping coefficient (z4). From a mechanical engineering point
of view, these factors determine the set of conditions for the underlying ODE problem
of the system. By using the algebraic method in Qian et al. (2009), a pair of nested
space-filling designs Dy C D; of 16 and 64 runs, respectively, is generated for the HE
and LE. The design D, is based on the OA(64,85 2) given in Table 4.1, and D, is
associated with the first 16 runs of this orthogonal array, which form an OA(16,4°,2)
after the eight levels are collapsed into four levels as follows: (1, 2) — 1, (3, 4) — 2,
(5,6) — 3, (7, 8) — 4. Figs. 4.3 and 4.4 present the bivariate projections of Dy and
D1, where the two designs achieve maximum stratification on 4 x 4 and 8 x 8 grids,
respectively. Since both the HE and LE are available for every run in D,, this part
of data make it easier to model the discrepancy between the two sources. Table 4.2
presents the six factors of the slider-crank system. The design points are first generated
on the unit hypercube (0,1]% as given in Table 4.2, and then scaled back according
to the original ranges of the inputs. For each input value, the LE or HE produces
the evolution of the system every 0.02 seconds within a two-second period. Therefore,

both y; and z; are 101 dimensional vectors. The profiles of the time evolution of the

system for the 16 HE runs are displayed in Fig. 4.5.

0.8 1.0 0.0 02 04 06 08 1.0

0.4 0.6
1

0.8 1.0 0.0 0.2

0.4 0.6

1

0.0 0.2

00 02 04 06 08 1.0
! ! 1 1 ! !

1

1

1

Z1

1

1

1

1

Z2

74

1

1

x3

0.0 02 04 06 08 1.0

00 02 04 06 08 1.0 00 02 04 06 0.8 1.0 0.0 0.2 04 0.6 08 1.0

Fig. 4.3.— Some bivariate projections of Dy of 16 runs for the HE of the slider-crank

system, where the points achieve maximum stratification on 4 x 4 grids.

By using cross-validation, nine equally spaced internal knots located at every

1/10 length of the time interval are chosen for the spline basis functions h; in (4.8)

and (4.9). Because y; and z; are smooth functions of time, the degrees of freedom of

h; are fixed at three in each interval, and thus the number of the basis functions is 11.

The metamodel in (4.15) is fitted to the data of this example by following the three

steps described in Section 4.4, where f in (4.12) is chosen to be a constant.

To validate the fitted metamodel, test data are generated by using a Latin hy-

percube design (McKay et al., 1979) with 512 runs. The accuracy of the model is

0.0 02 0
|

4 0.6 0.
I

8 1.0
!

1

L

T

06 08 1.0 0.0 0.2 04 06 08 1.0 0.0 02 04 06 0.8 1.0

T3

0.0 0.2 0.4

00 02 04 06 08 1.0 00 02 04 06 0.8 1.0 0.0 02 04 0.6 0.8 1.0

0.0 0.2 04 0.6 0.8 1.0

75

Fig. 4.4.— Some bivariate projections of D; of 64 runs for the LE of the slider-crank

system, where the points achieve maximum stratification on 8 x 8 grids.

140

120

100

80

60

40

20

0

0

0.2

0.4

0.6 0.8 1 12 1.4 1.6
Time (sec)

18

Fig. 4.5.— The time evolution of the slider-crank system modeled by the HE in Section

4.2.1 under 16 different design configurations. Each curve corresponds to one design

point.

assessed by the root mean square error (RMSE) on the testing set:

1 512
~0112
5@2”3’?—}’%)
=1

(4.18)

76

where ||-|| denotes Euclidean distance, and y? and y¥ denote the true and fitted HE
values of the ith run of the testing data. The RMSE of the proposed method is 7.44,
which suggests decent fit in reference to the magnitude of the HE values in Fig. 4.5.
In comparison, the RMSE of the metamodel in (4.8), built solely on the LE runs from
ADAMS, is 20.14, which is much larger. These results indicate that the proposed

method works well for this example.

8 B /2/2_2
2
— O | /2/2
g 7 |44
i 4\4\4\4 /2
% a ~4
$o 2t SERETEE 3-3/543-@5_5-&-;-3-;_
é /2 a 4\4\4‘4-4-4
S O /2
g oT A2
2
/
/2
8 7
P2
010 012 014 016 018 110
Input Value

Fig. 4.6.— Functional main effects plots for six variables of the slider-crank system,

where the displayed value for each factor is averaged over the two-second time interval.

Fig. 4.6 depicts the functional main effects of the six factors, computed by using
the ANOVA decomposition technique described in Section 4.5, where the average of
each mean effect function over the two-second time interval is displayed. This plot
indicates that the main effect of x5 is the most significant. This suggests that zo, half
length of crank, is most critical for determining the initial condition of the underlying

ODE of the system of interest. Fig. 4.7 plots the change of the main effects of xo

7

Main Effect
Main Effect

0.5

0.5
Time 0o Inputs Time 00 Inputs

Fig. 4.7.— (Left) the main effect plot of x5 of the fitted meta-model for the slider-crank
system; (right) the main effect plot of z4 of the fitted meta-model for the slider-crank

system.
and x4 over the time evolution, where the main effect of x5 changes abruptly at the

beginning of the evolution and then stabilizes.

4.7 Conclusions

Complex multibody codes are typically time-consuming to run. This adversely
impacts the potential of virtual prototyping in engineering design. To mitigate this
difficulty, a popular strategy in engineering is to replace computer-intensive compo-
nents of the original model with simplified, less expensive representations. We have
proposed a statistical approach for integrating computer experiments with different
levels of accuracies for studying the same dynamic system. The effectiveness of the
proposed method has been successfully illustrated with a multi-body dynamics system.

A pair of nested space-filling designs is attractive for running two variable-fidelity
computer experiments for the same dynamics system. The nested relationship between
the designs allows for directly obtaining the discrepancy between the two sources, and

their space-filling properties guarantee that the design points are evenly spread in the

78

design space.

The proposed approach applies generally to variable-fidelity simulations of com-
plex systems. The method is also useful for situations where field data and simulation
results for the same dynamics system are available for producing a time-dependent
bias function to correct the simulation results. Technical effort will be focused in the
future on further developing this method in model calibration, global optimization,
and model reduction studies associated with simulations of dynamics systems. The
method can be extended to deal with more complicated complex systems such as those
with qualitative and quantitative factors (Qian et al., 2008; Han et al., 2009b), with
both tuning and calibration parameters (Han et al., 2009a), or with branching and

nested factors (Hung et al., 2009).

Run # T T2 T3 T4 Ts5 Tg Run # T T2 T3 T4 Ts5 g

1 0.039 0.023 0.023 0.102 0.102 0.039 33 0.102 0.961 0.961 0.961 0.930 0.961
2 0.320 0.039 0.258 0.523 0.773 0.930 34 0.289 0.883 0.664 0.461 0.164 0.008
3 0.508 0.055 0.539 0.977 0.383 0.867 35 0.570 0.977 0.430 0.070 0.539 0.211
4 0.773 0.117 0.820 0.398 0.633 0.242 36 0.805 0.945 0.148 0.586 0.320 0.789
5 0.117 0.273 0.320 0.258 0.336 0.367 37 0.914 0.992 0.039 0.195 0.820 0.602
6 0.336 0.367 0.008 0.773 0.617 0.664 38 0.711 0.898 0.336 0.742 0.055 0.492
7 0.617 0.305 0.852 0.664 0.133 0.539 39 0.477 0914 0.570 0.758 0.727 0.305
8 0.836 0.352 0.523 0.180 0.977 0.414 40 0.164 0.930 0.773 0.367 0.477 0.680
9 0.008 0.602 0.602 0.570 0.508 0.586 41 0.086 0.633 0.695 0.711 0.664 0.648
10 0.273 0.523 0.836 0.117 0.273 0.445 42 0.367 0.695 0.945 0.133 0.445 0.336
11 0.539 0.555 0.070 0.477 0.945 0.289 43 0.586 0.648 0.164 0.305 0.852 0.383
12 0.867 0.586 0.367 0.945 0.148 0.742 44 0.789 0.742 0.492 0.836 0.070 0.523

—_
w
o
o
[\V)
w
o
0
Do
o
o
N
(SN
oo
o
Qo
=)
J
o
N
ot
o
o
N
-3
w

45 0.898 0.680 0.305 0.445 0.555 0.805

14 0.258 0.867 0.586 0.289 0.039 0.180 46 0.664 0.711 0.055 0.914 0.289 0.227
15 0.555 0.773 0.352 0.211 0.648 0.117 47 0.414 0.727 0.867 0.602 0.914 0.086
16 0.758 0.789 0.102 0.695 0.414 0.945 48 0.242 0.664 0.617 0.039 0.242 0.914
7717 77770.8837770.008 0,977 0.820 0.180 0.398 49 0.070 0.383 0.383 0.492 0.461 0.477
18 0.633 0.070 0.711 0.273 0.961 0.570 50 0.352 0.445 0.227 0.930 0.711 0.555
19 0.461 0.102 0.461 0.227 0.352 0.711 51 0.523 0.414 0.914 0.508 0.117 0.633
20 0.195 0.086 0.242 0.648 0.586 0.352 52 0.820 0.398 0.648 0.023 0.836 0.273
21 0.977 0.336 0.742 0.555 0.492 0.148 53 0.945 0.477 0.555 0.727 0.258 0.023
22 0.727 0.320 0.883 0.008 0.695 0.852 54 0.695 0.430 0.805 0.148 0.602 0.898
23 0.430 0.258 0.211 0.383 0.023 0.992 55 0.398 0.492 0.117 0.336 0.195 0.758
24 0.180 0.289 0.477 0.992 0.805 0.102 56 0.148 0.461 0.289 0.852 0.898 0.195
25 0.961 0.570 0.414 0.352 0.680 0.977 57 0.055 0.164 0.195 0.164 0.227 0.133
26 0.648 0.508 0.133 0.789 0.398 0.055 58 0.305 0.211 0.398 0.680 0.883 0.820
27 0.445 0.617 0.992 0.633 0.867 0.164 59 0.602 0.148 0.680 0.805 0.367 0.883
28 0.133 0.539 0.633 0.242 0.086 0.836 60 0.852 0.227 0.898 0.320 0.523 0.070
29 0.930 0.805 0.180 0.055 0.992 0.695 61 0.992 0.242 0.789 0.898 0.008 0.320
30 0.680 0.836 0.445 0.539 0.211 0.258 62 0.742 0.180 0.508 0.430 0.789 0.727
31 0.383 0.758 0.727 0.883 0.570 0.461 63 0.492 0.133 0.273 0.086 0.430 0.508
32 0.211 0.852 0.930 0.414 0.305 0.617 64 0.227 0.195 0.086 0.617 0.742 0.430

Table 4.2: A pair of nested space-filling designs Dy C D; for the HE and LE used for studying a slider-crank system
with six factors. The design D; is an OA-based Latin hypercube design with 64 runs based on the OA(64,85 2) from
Table 4.1, where D, is based on the first 16 runs the orthogonal array, which form an O A(16,4°,2) after the eight levels
are collapsed into four levels as follows: (1, 2) — 1, (3,4) — 2, (5,6) — 3, (7, 8) — 4.

6.

80

Appendix A

Proofs

A.1 Proof of Proposition 2.2

Proof. Assume z,y € Z,,. Toshow (i), by Lemma 2.2 and the symmetry of Cy, ..., Cj,

P(cpmx =) is the same for all 2 and hence equals n;'. To show (ii), note that for

any © #y € Zp,,
P(cm,ik = 2, cmjk = Y) = Plcmjk = Ylem,ix =) Pcm i =),

where P(cp i = x) = ny' from (i) and P(cp ik = ylcma = x) is (ny — s)71, because
if ¢4 = @, the remaining s — 1 elements of the same g, of (2.2) cannot be in C,,.

To show (iii), divide all z,y € Z,, into three groups:

g =1{(@yYllz/s] # [y/s1}, g2 = {(z,Y)l[z/s] = [y/s], z # y}, 93 = {(z,y)|lz = y}.

These groups have ny(ne—s), no(s—1) and ny pairs, respectively. Thus, P[(Cm, ik, Cma.jk) €
gl] = (nl - 1)”1_1’ P[(le,ikacm2,jk) < 92] = nl_l and P[(le,ikacm2,jk) < 93] = 0. The

result now follows by the symmetry of g;, g2 and gs. O

81
A.2 Proof of Proposition 2.3
Proof. Part (i) is from Remark 2.1 and Proposition 5 of He and Qian (2011). To show

(i), let P[(i,5) € Hy] denote the probability that the rows (i,7) are in Hy, in Table

2.3, for h = 1,...,8. Now use Lemma 2.2 to derive P[(i,j) € Hy], for h =2,... 8.

Note that
Pl(i,j) € Hy] = 335
P(i,j) € Hy) = 2010
Pl(ij) € H] = SoERLn "
Pl(i,j) € Hy] = 22400 |
PILJ) € Hi) = 2t
Pi.j) € Hy| = M=Detinior

Then the result in (ii) follows by the symmetry of each of Ho, ..., Hs and column 3 of

Table 2.3. 0

A.3 Proof of Theorem 2.1

Proof. Result (i) is from Remark 2.1 and Theorem 1 of He and Qian (2011). We now
show (ii) by using tools developed in Owen (1994) and He and Qian (2011) coupled
with the sliced structure of a sliced U design. Fori = 1,...,ny, let p(7) indicate which
function is evaluated by the ith run x; of D. Observe that

ny na

var(ji) = E n2_2 Z Z Z Z Jotiyu(Xi) fo(i)0(X5)

|u|>0 |v|>0 =1 j=1

n2 n2

=ny” Z ZZE [fp(i)M(Xi)fp(j),U(Xj)} . (A.2)

lu|>0 i=1 j=1

82

For |u| =1,

n2 n2

5% Y DD B [fowa(xi) fotgyu(x))]

lu|=1 i=1 j=1
=nym Z var|fon.u(x)] — ny*ni(ng — 1)(ng — 1)~ (Z var(fon.(x)] + o(s))

+ny ' (ny — ny)o(ny ')

— o(n;"). (A-3)
For |u| = 2,
ny > nZi 2 E [foti)u(xi) foi)u(%;)]
- Z vt fo ()] 4 157 Z (s — 1) (0 e f ()] + o(nr)

=y Y (L4 T)ny oV fony w(X); frnau ()] + 0(ng)]

mi1#£me

(1+7 n2 <Z var| fo, o (x) — (s — 1)_1 Z COV[fml,u(X)a Jimau(X)]

mi#£me

+o(ny). (A.4)

For |u| > 2, let

w = w;j(u) = {k € uloup = i} (A.5)
and consider three different cases for (i, 7).
Case I: i = j, then p(i) = p(j) and hence E | fo).u(X:) foi)u(%5)] = var[foa..(x)],

Case II: i # j and p(i) = p(j), we have

E [fpou(xi) fo)(x7)] = (s = 1) 7D (1) var [£ 4 (30)] + o(s~ (7D,

83

Case I1I: p(i) # p(j), we have
E [fp(i),u(xi)fp(j),u(xj)] = (8_1)7(‘U|7‘w|)(_1>|u‘7|w‘cov[fp(i),u(x)afp(j),u(X>]+O(Si(|u‘i|w‘)>'

Combining these three cases yields

n2 n2

ZZZE Fou (i) foti).u(35)]

lu|>2 i=1 j=1

s |yl

= [DD na? Mo (ur)(s — 1)~ (1) M £, (%)

\u|>2 m=1 r=0

|ul

+)Y e Moy () (s = 1) P (=) eov | g (%), s u(3)] |+ 0(ny ")

mi#meo 7=0

¥ (z 1 Mo, v (56

|u|>2

+) nzszl,mQ(u,\U\)COV[fml,u(X),fmg,u(X)]> +o(ny"). (A.6)
miF£ma

Plugging (A.3), (A.4) and (A.6) into (A.2) gives (ii). O

A.4 Proof of Proposition 2.4

Proof. Only (iv) needs a proof. Let D denote an ordinary U design based on an
OA(ng, s771 2). For an arbitrary element m of Z,, randomly divide D into s slices of

ny runs each, and let D,, be the mth slice. For /i, in (2.19) based on D,,,,

niy ni

var Mm = Z ZZE fmu X fmu(X])] (A7)

|u|>0 =1 j=1

For |u| = 1, consider two different cases for (i,7). For i = j, E[fu(Xi) fnu(X;)] =

var|fm . (x)], and for i # j, by the continuity of f,,,, E'[fru(Xi) frnu(X;)] = —ny var| fo, . (%)]+

o(ny'). Combining these two cases yields

nip ni

023N ST E i) fa ()] = 30 n e[f(x)] +o(niY). (AB)

lu|=1 =1 j=1 lul=1

84
For |u| = 2, observe that for two different runs x; = (21, ..., z;) and x; = (21, ..., Tjq)

of D,,, the joint probability density function of (x;x, ;) and (xji, z;;) is

;

0 (Tik, Tat, Tjw, x51) € Hy, H,
2
ﬁ/ (’\fl—;l> (i Tit, Tjx, Tj1) € Ha, Hy, Hy,
“x g [As(s—D(Xs—1 (A.9)
P [s n)g(D (2, 2, 2w,) € He, Ho,
_ As(s—1
ne- ATt [8(;2)} (ks Tit, Tjk, Tj1) € Hs,
where Hy, ..., Hg are defined in Table 2.3. Now consider two different cases for (i, j).

First, for i = j, E|fmu(X:) frmu(x;)] = var[fm.(x)]. Second, for i # j and Hj, h =
1,...,8, in Table 2.3, let th denote integration over the region defined by (2.11) for

(Tik, i, Tj5, ;1) associated with all ¢, j in Hj,. By (A.9) and the continuity of f,,,,

E [frnn() ()] = [~1+0(1) /H 1A o) /H o) /H)

= —nyvar[fp.(x)] +o(nyt).

Combining these two cases of (i, 7) yields

123 S E a6)] = Y 0 v fruu(0)] +o(ng). (A10)
|lu|=2 i=1 j=1 lu|=2

For |u| > 2, consider two different cases of (7, 7). First, fori = j, E [fin o (Xi) fn.u(X5)] =

var| fu..(x)]. Second, for i # j,

E [final3) (3] = (5 = 17D (D), ()] 4 o~ 441D),

Now, for r =0,...,q, let & denote the number of runs in D,, satisfying |w|, defined in
(A.5), equals r. As D,, is obtained by randomly dividing D, &, is a random variable.

Define e, = E(&,). For |u| > 2, combining two cases, with i = j and i # j, respectively,

85

yields

ny n

n;2 Z ZZE [fm,U(Xi)fm,U(Xj))

lu|>2 i=1 j=1

|ul

= nt Z var| fo..(x)] + Z [eTS*(Iu\fr)(_1)\u|frvar[fm7u(x)] + O(S*(Iu\fr))]

|u|>2 r=0

Next, we calculate
eps” (=T (1) =ryar [£, 0 (%)] + o(s~141=T) (A.11)

for different cases of r and |u|. Note that e, = ny s~ [M(u,r) — ny] for r = |u| and
er =ny s M(u,r) for r < |u|. For r = |u|, e, < (A —1)/s, and hence (A.11) is o(1).
For r = |u| — 1, e, < (A —1)/s because |u| > 2 and r > 2, and hence (A.11) is o(n;).
For r = |u| -2, e, < (As—1)/s because |u| > 2 and 7 > 1, and hence (A.11) is o(n;').
For r < |u| — 2, e, < (ny — 1)/s, and hence (A.11) is o(n;'). Combining these four
cases of r and |u| gives

023 NS B fa) frna)] = Y nyvarl ()] +o(nrY). (A12)
lu[>2 i=1 j=1 |u|>2

Plugging (A.8), (A.10) and (A.12) into (A.7) gives the result in (i). Part (ii) can be

shown by using a similar argument. O

A.5 Proof of Proposition 3.1

Proof. To show (a), note that w}, denotes the (i, k) th entry of W*. Observe that
the level mapping p : w}, — [w}/qx] collapses the ay levels, 1,..., ax, of column k

of W* into by levels, 1,...,b;, for kK = 1,...,d. In this mapping, each new symbol

86

corresponds to gy = ay /by old symbols. Thus, by Lemma 3.1 (a), W* becomes an
OA(ny, b‘fl -+ - b%) of strength two after level-collapsing according to p. Notice that in
some steps of the foregoing algorithm, the symbols in each column of W* are permuted.
By Lemma 3.1 (b), such permutations does not alter this orthogonal array structure
of W*. Now, when projected onto factors k; and ks, two-dimensional uniformity of D,
on the corresponding by, X by, grids follows by noting the connection between D; and
W+ in (3.2). When projected onto factor k, stratification of Dy with respect to the
ar equally spaced intervals on (0, 1] follows by noting that the steps in the foregoing
algorithm are designed in such a way that the symbols of each block in (3.1) appears
equally often in column k£ of W* for k =1,...,d.

To show (b), let v}, denote the (i, k) entry of V*. Because of the link between V*
and V, V* becomes an O A(ng, b - - - b%) after mapping v}, to [v%,/qx]. By Lemma 3.1
(b), this underlying orthogonal array structure of V* stays intact after randomly per-
muting the symbols in each column of V* in Steps 1 and 2 of the foregoing algorithm.

The result in (b) now follows by noting the connection between Dy and V* in (3.2). O

87

Bibliography

Ascher, U. M. and Petzold, L. R. (1998), Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations, Philadelphia, PA: STAM.

Bingham, D., Sitter, R. R., and Tang, B. (2009), “Orthogonal and Nearly Orthogonal

Designs for Computer Experiments,” Biometrika, 96, 51-65.

Bose, R. C. and Bush, K. A. (1952), “Orthogonal Arrays of Strength Two and Three,”

The Annals of Mathematical Statistics, 23, 508-524.

Brenan, K. E., Campbell, S. L., and Petzold, L. R. (1989), Numerical Solution
of Initial-value Problems in Differential-Algebraic Equations, New York: North-

Holland.

Cardona, A. and Geradin, M. (1989), “Time Integration of the Equation of Motion in

Mechanical Analysis,” Computer and Structures, 33, 801-820.

Cox, D. D., Park, J. S., and Singer, C. E. (2001), “A Statistical Method for Tuning a
Computer Code to a Data Base,” Computational Statistics and Data Analysis, 37,

77— 92.

Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991), “Bayesian Prediction of

88

Deterministic Functions, With Applications to the Design and Analysis of Computer

Experiments,” Journal of the American Statistical Association, 86, 953-963.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005), “Scalable Test Problems
for Evolutionary Multiobjective Optimization,” in Evolutionary Multiobjective Op-
timization, eds. Jain, L., Wu, X.; Abraham, A., Jain, L., and Goldberg, R., Berlin
Heidelberg: Springer, Advanced Information and Knowledge Processing, pp. 105—

145.

Eich-Sollner, E. and Fuhrer, C. (1998), Numerical Methods in Multibody Dynamics,

Stuttgart: Teubner-Verlag.

Fang, K.-T., Li, R., and Sudjianto, A. (2005), Design and Modeling for Computer

Ezperiments, New York: Chapman & Hall/CRC.

Fasshauer, G. E. (2007), Meshfree Approzimation Methods With MATLAB, Hacken-

sack: World Scientific Publishing.

Floater, M. S. and Iske, A. (1996), “Multistep Scattered Data Interpolation Using
Compactly Supported Radial Basis Functions,” Journal of Computational and Ap-

plied Mathematics, 73, 65-78.

Hairer, E. and Wanner, G. (1991), Solving Ordinary Differential Equations, vol. 11 of

Computational Mathematics, Berlin: Springer-Verlag.

Han, G., Santner, T. J., Notz, W. 1., and Bartel, D. L. (2009a), “Prediction for Com-
puter Experiments Having Quantitative and Qualitative Input Variables,” Techno-

metrics, b1, 278-288.

89

Han, G., Santner, T. J., and Rawlinson, J. J. (2009b), “Simultaneous Determination
of Tuning and Calibration Parameters for Computer Experiments,” Technometrics,

51, 464-474.

Haug, E. J. (1989), Computer-Aided Kinematics and Dynamics of Mechanical Systems

Volume-1I, New Jersey: Prentice-Hall.

He, X. and Qian, P. Z. G. (2011), “Nested Orthogonal Array Based Latin Hypercube

Designs,” Biometrika, 98, 721-731.

Hedayat, A. S., Pu, K., and Stufken, J. (1992), “On the Construction of Asymmetrical

Orthogonal Arrays,” The Annals of Statistics, 20, 2142-2152.

Hedayat, A. S., Sloane, N. J. A.; and Stufken, J. (1999), Orthogonal Arrays: Theory

and Applications, New York: Springer.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008), “Computer Model
Calibration Using High-Dimensional Output,” Journal of the American Statistical

Association, 103, 570-583.

Hilber, H. M., Hughes, T. J. R., and Taylor, R. L. (1977), “Improved Numerical
Dissipation for Time Integration Algorithms in Structural Dynamics,” Farthquake

Engineering € Structural Dynamics, 5, 283-292.

Huang, D. and Allen, T. T. (2005), “Design and Analysis of Variable Fidelity Exper-
imentation Applied to Engine Valve Heat Treatment Process Design,” Journal of

the Royal Statistical Society. Series C' (Applied Statistics), 54, 443-463.

90

Hughes, T. J. R. (1987), Finite Element Method - Linear Static and Dynamic Finite

Element Analysis, Englewood Cliffs, New Jersey: Prentice-Hall.

Hung, Y., Joseph, V. R., and Melkote, S. N. (2009), “Design and Analysis of Computer

Experiments With Branching and Nested Factors,” Technometrics, 51, 354-365.

Husslage, B., Dam, E. V., Hertog, D. D., Stehouwer, P., and Stinstra, E. (2003),
“Collaborative Metamodeling: Coordinating Simulation-Based Product Design,”

Concurrent Engineering, 11, 267-278.

Husslage, B. G. M., Dam, E. R. V., and Hertog, D. D. (2005), “Nested Maximin
Latin Hypercube Designs in Two Dimensions,” CentER Discussion Paper 2005-79.

Tilburg University, Tilburg, The Netherlands.

Jin, R., Chen, W., and Simpson, T. (2001), “Comparative Studies of Metamodeling
Techniques under Multiple Modeling Criteria,” Journal of Structural and Multidis-

ciplinary Optimization, 23, 1-13.

Johnson, M. E.; Moore, L. M., and Ylvisaker, D. (1990), “Minimax and Maximin

Distance Designs,” Journal of Statistical Planning and Inference, 26, 131-148.

Kennedy, M. and O’Hagan, A. (2000), “Predicting the Output from a Complex Com-

puter Code When Fast Approximations are Available,” Biometrika, 87, 1-13.

Leary, S., Bhaskar, A., and Keane, A. (2003), “Optimal Orthogonal Array-Based Latin

Hypercubes,” Journal of Applied Statistics, 30, 585-598.

Lin, C. D., Bingham, D., Sitter, R. R., and Tang, B. (2010), “A New and Flexi-

91

ble Method for Constructing Designs for Computer Experiments,” The Annals of

Statistics, 38, 1460-1477.

Lin, C. D., Mukerjee, R., and Tang, B. (2009), “Construction of Orthogonal and

Nearly Orthogonal Latin Hypercubes,” Biometrika, 96, 243-247.

Lin, D. K. J. (1993), “A New Class of Supersaturated Design,” Technometrics, 35,

28-31.

Loh, W.-L. (1996), “On Latin Hypercube Sampling,” The Annals of Statistics, 24,

2058-2080.

Lubich, C., Nowak, U., Pohle, U.; and Engstler, C. (1995), “MEXX - Numerical Soft-
ware for the Integration of Constrained Mechanical Multibody Systems,” Mechanics

of Structures and Machines, 23, 473—495.
MATLAB (2010), Version 7.10.0 (R2010a), Massachusetts: The MathWorks Inc.

McKay, M., Conover, W., and Beckman, R. J. (1979), “A Comparison of Three Meth-
ods for Selecting Values of Input Variables in the Analysis of Output from a Com-

puter Code,” Technometrics, 21, 239-245.

Morris, M. D. and Mitchell, T. J. (1995), “Exploratory Designs for Computational

Experiments,” Journal of Statistical Planning and Inference, 43, 381-402.

Morris, M. D., Mitchell, T. J., and Ylvisaker, D. (1993), “Bayesian Design and Analysis

Y

of Computer Experiments: Use of Derivatives in Surface Prediction,” Technomet-

rics, 35, 243-255.

92

MSCsoftware (2005), “ADAMS User Manual,” Available at

http://www.mscsoftware.com.

Mukerjee, R., Qian, P. Z. G., and Wu, C. F. J. (2008), “On the Existence of Nested

Orthogonal Arrays,” Discrete Mathematics, 308, 4635-4642.

Negrut, D., Rampalli, R., Ottarsson, G., and Sajdak, A. (2007), “On an Implemen-
tation of the Hilber-Hughes-Taylor Method in the Context of Index 3 Differential
Algebraic Equations of Multibody Dynamics,” Journal of Computational and Non-

linear Dynamics, 2, 73-85.

Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo Methods,

Philadelphia: Society for Industrial Mathematics.

Orlandea, N., Chace, M. A., and Calahan, D. A. (1977), “A Sparsity-Oriented Ap-
proach to the Dynamic Analysis and Design of Mechanical Systems — Part I and

Part I1,” Transactions of the ASME Journal of Engineering for Industry.

Owen, A. B. (1992a), “A Central Limit Theorem for Latin Hypercube Sampling,”

Journal of the Royal Statistical Society. Series B (Methodological), 54, 541-551.

— (1992b), “Orthogonal Arrays for Computer Experiments, Integration and Visual-

ization,” Statistica Sinica, 2, 439-452.

— (1994), “Lattice Sampling Revisited: Monte Carlo Variance of Means over Ran-

domized Orthogonal Arrays,” The Annals of Statistics, 22, 930-945.

— (1995), “Randomly Permuted (¢, m, s)-nets and (t, s)-sequences,” Monte Carlo and

93

Quasi-Monte Carlo Methods in Scientific Computing, Lecture Notes in Statistics,

106, 299-317.

Patterson, H. D. (1954), “The Errors of Lattice Sampling,” Journal of the Royal

Statistical Society. Series B (Methodological), 16, 140-149.

Petzold, L. R. (1982), “Differential algebraic equations are not ODE’s,” SIAM J.

Numer. Anal., 3, 367-384.

Potra, F. A. (1993), “Implementation of linear multistep methods for solving con-

strained equations of motion,” SIAM Journal on Numerical Analysis, 30, 474-489.
Qian, P. Z. G. (2009), “Nested Latin Hypercube Designs,” Biometrika, 96, 957-970.

— (2012), “Sliced Latin Hypercube Designs,” Journal of the American Statistical

Association, 107, 393-399.

Qian, P. Z. G., Ai, M., Hwang, Y., and Su, H. (2011), “Asymmetric Nested Lattice

Samples,” Technical Report.

Qian, P. Z. G. and Ai, M. Y. (2010), “Nested Lattice Sampling: A New Sampling
Scheme Derived by Randomizing Nested Orthogonal Arrays,” Journal of the Amer-

ican Statistical Association, 105, 1147-1155.

Qian, P. Z. G., Ai, M. Y., and Wu, C. F. J. (2009), “Construction of Nested Space-

Filling Designs,” The Annals of Statistics, 37, 3616-3643.

Qian, P. Z. G. and Wu, C. F. J. (2009), “Sliced Space-filling Designs,” Biometrika,

96, 945-956.

94

Qian, P. Z. G., Wu, H., and Wu, C. F. J. (2008), “Gaussian Process Models for

Computer Experiments with Qualitative and Quantitative Factors,” Technometrics,
50, 383-396.

Qian, Z., Seepersad, C. C.; Roshan, V. R., Allen, J. K., and Wu, C. F. J. (2006),

“Building Surrogate Models Based on Detailed and Approximate Simulations,”

ASME Transactions, Journal of Mechanical Design, 128, 668—677.

Ramsay, J. and Silverman, B. W. (2005), Functional Data Analysis, New York, NY:
Springer.

Rao, C. R. (1947), “Factorial Experiments Derivable from Combinatorial Arrange-
ments of Arrays,” Supplement to the Journal of the Royal Statistical Society, 9,

128-139.

— (1952), “Orthogonal Arrays of Index Unity,” The Annals of Mathematical Statistics,

23, 426-434.

Reese, C. S., Wilson, A. G., Hamada, M., Martz, H. F., and Ryan, K. J. (2004),

“Integrated Analysis of Computer and Physical Experiments,” Technometrics, 46,

153-164.

Sacks, J., Schiller, S. B., and Welch, W. J. (1989a), “Designs for Computer Experi-

ments,” Technometrics, 31, pp. 41-47.

Sacks, J., Welch, W., Mitchell, T. J., and Wynn, H. P. (1989b), “Design and Analysis

of Computer Experiments,” Statistical Science, 4, 409-423.

95

Sallaberry, C. J., Helton, J. C., and Hora, S. C. (2008), “Extension of Latin Hypercube
Samples With Correlated Variables,” Reliability Engineering and System Safety, 93,

1047-1059.

Santner, T. J., Williams, B. J., and Notz, W. (2003), The Design and Analysis of

Computer FExperiments, New York: Springer, 1st ed.

Schiirer, R. and Schmid, W. C. (2010), “MinT—Architecture and Applications of the
(t,m, s)-net and OOA Database,” Mathematics and Computers in Simulation, 80,

1124-1132.

Shabana, A. A. (2005), Dynamics of Multibody Systems, New York: Cambridge Uni-

versity Press.

Steinberg, D. M. and Lin, D. K. J. (2006), “A Construction Method for Orthogonal

Latin Hypercube Designs,” Biometrika, 93, 279-288.

Storlie, C. and Reich, B. (2011), “Calibration and Prediction Using Multiple Computer

Models,” Presenation, The 2011 INFORMS Annual Conference, Charlotte, NC.

Tang, B. (1993), “Orthogonal Array-Based Latin Hypercubes,” Journal of the Amer-

ican Statistical Assocation, 88, 1392—-1397.

— (1994), “A Theorem for Selecting OA-based Latin Hypercubes Using a Distance

Criterion,” Communications in Statistics—Theory and Methods, 23, 2047-2058.

Tong, C. (2006), “Refinement Strategies for Stratified Sampling Methods,” Reliability

Engineering and System Safety, 91, 1257-1265.

96

Wang, G. G. (2003), “Adaptive Response Surface Method Using Inherited Latin Hy-

percube Design Points,” Journal of Mechanical Design, 125, 210-220.

Wang, J. C. (1996), “Mixed Difference Matrices and the Construction of Orthogonal

Arrays,” Statistics and Probability Letters, 28, 121-126.

Wang, J. C. and Wu, C. F. J. (1991), “An Approach to the Construction of Asymmetric

Orthogonal Arrays,” Journal of the American Statistical Association, 86, 450—456.

Williams, B., Morris, M., and Santner, T. (2009), “Using Multiple Computer Mod-
els/Multiple Data Sources Simultaneously to Infer Calibration Parameters,” Prese-

nation, The 2009 INFORMS Annual Conference, San Diego, CA.

Wu, C. F. J. (1989), “Construction of 24" Designs via a Grouping Scheme,” The

Annals of Statistics, 1880—1885.

Xu, H. (2005), “Some Nonregular Designs from the Nordstrom-Robinson Code and

Their Statistical Properties,” Biometrika, 92, 385-397.

Xu, H. and Wu, C. F. J. (2005), “Construction of Optimal Multi-level Supersaturated

Designs,” The Annals of Statistics, 33, 2811-2836.

Xu, X., Haaland, B., and Qian, P. Z. G. (2011), “Sudoku-based Space-filling Designs,”

Biometrika, 98, 711-720.

Ye, K. Q. (1998), “Orthogonal Column Latin Hypercubes and Their Application in
Computer Experiments,” Journal of the American Statistical Association, 93, 1430—

1439.

