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ABSTRACT

This thesis focuses on studying the rank of Selmer groups in quadratic twist families of

elliptic curves over function field. Some of the results are closely related to Poonen-Rains

heuristics that hypothesizes the average of Selmer ranks of elliptic curves in general.

We show in the first part that if the quadratic twist family of a given elliptic curve

over F@ [C] with no F@ (C)-rational p-torsion points has an element whose Neron model has

a multiplication reduction away from ∞, then the average ?-Selmer rank is ? + 1 in large

@-limit for almost all primes ?.

In the second part, we show that in the quadratic twist family of an elliptic curve over

F@ [C] with a single point of order two that does not have a cyclic 4-isogeny defined over its

two-division field, at least half of the quadratic twists have arbitrarily large 2-Selmer rank.
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Chapter 1

Poonen-Rains Heuristic

1.1 Introduction to Galois Cohomology

Let � be a topological group and " a �-module that � continuously acts on. We can

define:

�0(�, ") = "� = {< ∈ " : <f = < for all f ∈ �}

A crossed homomorphism is a continuous homomorphism 5 : � −→ " that satisfies

5 (fg) = 5 (f) + 5 (g)g

for all f, g ∈ �.

We say that a continuous homomorphism 5 : � −→ " is a principal crossed homomor-

phism if there exists some fixed < ∈ " such that

5 (f) = <f − <

for all f ∈ �.

We can define:

�1(�, ") = {crossed homomorphisms}
{principal crossed homomorphisms}

Given such definitions, for any exact sequence of �-modules

0 −→ "1 −→ "2 −→ "3 −→ 0,

it naturally induces a canonical exact sequence of cohomology groups:

0 −→ �0(�, "1) −→ �0(�, "2) −→ �0(�, "3) −→ �1(�, "1) −→ �1(�, "2) −→ �1(�, "3)
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Let � be an elliptic curve defined over a global field :. For the rest of this chapter, we

will fix � = �: = Gal( :̄/:) and " = � ( :̄).

One can show that the isogeny [=] : � ( :̄) −→ � ( :̄) is surjective and this gives arise an

exact sequence:

0 −→ � ( :̄) [=] −→ � ( :̄) −→ � ( :̄) −→ 0

where � ( :̄) [=] is the kernel of [=] : � −→ � .

Now we can take Galois Cohomology which in turn yields the long exact sequence:

0 −→ � (:) [=] −→ � ( ) −→ � ( ) −→ �1(:, � ( :̄) [=]) −→ �1(:, � ( :̄)) −→ �1(:, � ( :̄))

where we follow the convention to denote �= (�: , ") by �= (:, ").

From this long exact sequence in Galois cohomology one can deduce the long exact

sequence:

0 −→ � (:)/=� (:) −→ �1(:, � ( :̄) [=]) −→ �1(:, � ( :̄)) [=] −→ 0

Unfortunately, �1(:, � ( :̄) [=]) does not have to be finite in general. Our goal is to

replace �1(:, � ( :̄) [=]) with a group that we can show is finite and contains the image of

� (:)/=� (:). To this end, we will introduce Selmer groups in the next section.

1.2 Selmer groups

For a place E of :, consider � to be an elliptic curve defined over the local field  E. We

fix an extension of E to :̄ which serves to fix an embedding :̄ ⊂ :̄E and a decomposition

group �E ⊂ � :̄/: .

Since �E acts on � ( :̄E), we have the following exact sequence:

0 −→ � (:E)/=� (:E) −→ �1(�E, � ( :̄E) [=]) −→ �1(�E, � ( :̄E)) [=] −→ 0

If we compare it to the same exact sequence that we get in the previous section, we

can find that the natural inclusions �E ⊂ � :̄/: and � ( :̄) ⊂ � ( :̄E) induces a commutative
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diagram between them:

0 � (:)/=� (:) �1(:, � ( :̄) [=]) �1(:, � ( :̄)) [=] 0

0 � (:E)/=� (:E) �1(:E, � ( :̄E) [=]) �1(:E, � ( :̄E)) [=] 0

One can generalize this to all the places and get the following commutative diagram:

0 � (:)/=� (:) �1(:, � ( :̄) [=]) �1(:, � ( :̄)) [=] 0

0
∏
E∈":

� (:E)/=� (:E)
∏
E∈":

�1(:E, � ( :̄E) [=])
∏
E∈":

�1(:E, � ( :̄E)) [=] 0

Our goal is to compute the image of � (:)/=� (:) in the cohomology group �1(:, � ( :̄) [=]),

or equivalently, to compute the kernel of the map

�1(:, � ( :̄) [=]) −→ �1(:, � ( :̄)) [=] .

This problem amounts to determining whether certain homogeneous spaces possess a

:-rational point which is not an easy question to answer in general. Inspired by this, to

determine each local kernel

ker(�1(:E, � ( :̄E) [=]) −→ �1(:E, � ( :̄E)) [=])

is relatively straightforward to compute as the question is equivalent to whether a curve has

a point over the complete local field :E. There is a systematic way to check this through

a finite amount of computation by Hensel’s lemma. This insight leads us to define Selmer

groups as follows:

Definition 1.1. The n-Selmer group of E/K is the subgroup of �1(:, � ( :̄) [=]) defined by

(4;= (�/:) = {2 ∈ �1(:, � ( :̄) [=]) : ∀E, 2E comes from � (:E)}

= ker(�1(:, � ( :̄) [=]) −→
∏
E

�1(:E, � ( :̄E))).

Similarly we define the Shafarevich-Tate group of �/: to be

X(�/:) = ker(�1(:, � ( :̄)) −→
∏
E

�1(:E, � ( :̄E))).
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Notice here the definition does not depend on our choice of extension of E to :̄ as whether

an element is in such kernel only has to do with whether the associated homogeneous space

possesses :E points. E itself has determined the embedding of : into :E, so Sel= (�/:) and

X(�/:) depend only on � and :.

Remark 1.2. X gives a geometric way to measure the failure of local-global principle. We

can view it as the group of homogeneous spaces for �/: that possess a :E-rational point at

all places E.

Remark 1.3. It is conjectured that X is finite and there is conjectured to be a precise

relationship between the rank of � (:) and the order of X.

One can effectively compute Selmer groups given explicit elliptic curves. In fact we have

the following theorem:

Theorem 1.4. [Sil91, Section VIII, Theorem 4.2] There is an exact sequence

0 −→ � (:)/=� (:) −→ (4;= (�/:) −→X(�/:) [=] −→ 0

and the Selmer group (4;= (�/:) is finite.

This directly shows that � (:)/=� (:) is finite for any integer = which is the weak Mordell-

Weil theorem. We will see in the next section what the distribution of Selmer groups is

expected to be in the family of elliptic curves.

1.3 Poonen-Rains Heuristic

We have defined two maps in section 1.2, which are

U :
∏
E

� (:E)/=� (:E) −→
∏
E

�1(:E, � ( :̄E) [=])

and

V : �1(:, � ( :̄) [=]) −→
∏
E

�1(:E, � ( :̄E) [=]).
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Recall that Selmer group is defined to be Sel= (�) := V−1(im U) ⊂ �1(:, � ( :̄) [=]).

There is a natural way that one can define a map of sets (we choose : = Q in this section

for example):

@E : �1(QE, �) −→ �2(QE,G<) −→ Q/Z.

One can show that @E is a quadratic form such that @E (G + H) − @E (G) − @E (H) is bi-addictive

[JGZ74, page 415-419]. In addition to that, we have @E |,E = 0 where ,E is defined to be the

image of � (QE)/=� (QE) −→ �1(QE, � [=]).

Notice for \ = (\E)E ∈
∏
E

�1(QE, � [=]), we have \E ∈ ,E for all but finitely many places E

and hence @E (\E) = 0. This allows us to generalize the quadratic form to
∏
E

�1(QE, � [=]) −→

Q/Z by defining:

&(\) := ΣE@E (\E).

One can make the following observation in regards to Selmer groups:

Theorem 1.5. [PR12, Theorem 4.14(a)] Each of im U and im V is a maximal isotropic

subgroup of
∏
E

�1(QE, � [=]) with respect to &.

We have V(Sel=�) = (im U) ∩ (im V) and one can also show that in the case where = is

a prime number, V is injective. This implies that when = is a prime which is the case that

we will study throughout this thesis, Sel= (�) is isomorphic to an intersection of maximal

isotropic subgroups of
∏
E

�1(QE, � [=]).

This leads to the heuristic to model Selmer groups by choosing random maximal isotropic

subspaces in an infinite-dimensional quadratic space conversely and intersecting them to

obtain a space whose distribution is the same as Selmer groups. We will not elaborate the

detailed construction here.

The average size of n-Selmer groups has the following conjecture:

Conjecture 1.6. [PR12, Conjecture 1.1] The average size of n-Selmer groups in the family

of elliptic curves ordered by height is given by the sum of the divisors of n.

We will address some special cases that center around this conjecture in the next section.
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1.4 Outline of this thesis

The new work for this thesis begins with a setting similar to the Poonen-Rains heuristic

where we consider the quadratic twist family of a given elliptic curve defined over function

field. We show in Chapter 2 that the large @-limit of Selmer groups in such family agrees

with prior expectation. This is a joint work with Sun Woo Park.

In Chapter 3, we switch gear to show that although this heuristic is expected to hold for

the entire family of elliptic curves, it is not necessarily true unconditionally for all quadratic

twist families. In particular, we prove that for an elliptic curve with certain properties, the

distribution of Selmer rank in its quadratic twist family conform to normal distribution.

This is an evidence that the size of Selmer group for an arbitrary elliptic curve is still quite

random and yet to be universally predicted.
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Chapter 2

The case of large q-limit

2.1 Introduction

Let F@ be a finite field with Char(F@) relatively prime to 2 and 3. Let � = P1/F@ and

 = F@ (�) = F@ (C). Say � : H2 = G3 + �(C)G + �(C) is a non-isotrivial elliptic curve defined

over F@ [C]. Define the canonical (naive) height of the elliptic curve as follows, where �′ is

any elliptic curve isomorphic to � of the form H2 = G3 + � (C)G + � (C).

ℎ(�) := inf� ′�� (max{3 deg�, 2 deg �})

Let � 5 be the quadratic twist of � by square-free polynomial 5 (C) ∈ F@ [C].

� 5 : 5 (C)H2 = G3 + �(C)- + �(C)

Let " (=, @) be the set of square-free polynomials over F@ such that ℎ(� 5 ) ≤ =.

Poonen-Rains heuristic shows that the average ?-Selmer rank of elliptic curves over a

global field : is ?+1(see [PR12].). It is natural to ask whether the same heuristic is reasonable

for the family of quadratic twists of a fixed elliptic curve. We denote by E=,? the average

?-Selmer rank over those in the family of quadratic twists with canonical height at most =,

namely:

E=,? =

∑
5 ∈" (=,@) |Sel?� 5 |
|" (=, @) |

In this paper, we show that under certain assumption on the quadratic twist family of the

fixed elliptic curve � , the average size of p-Selmer groups is ? + 1 in large @ limit. In

particular, we can assume for some large enough @ such that the discriminant Δ� of � splits
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in F@ [C], there exists a quadratic twist �0 of � with minimal height among the quadratic

twist family.

Theorem 2.1. Let � be an elliptic curve defined over  = F@ (�) = F@ (C) such that � has no

F@ (C)-rational p-torsion points, and there exists at least one quadratic twist of � whose Néron

model admits a multiplicative reduction away from ∞. Let �0 be the quadratic twist of �

with minimal height among the family of quadratic twists of �. Then for all primes ? ≥ 15,

and coprime to @ and all local Tamagawa factors of �0, we have the following equation.

lim
=→∞

lim
@→∞
E=,? = lim

=→∞
lim
@→∞

∑
5 ∈" (=,@) |Sel?� 5 |
|" (=, @) | = ? + 1

Remark 2.2. The main theorem shows that for all but finitely many primes ?, the average

?-Selmer rank in the large @-limit over the family of quadratic twists of � is ? + 1.

Remark 2.3. Let 5 ∈ " (=, @) be any square free polynomial of degree = over F@. The

condition that ? ≥ 15 guarantees that � 5 has no F@ (C)-rational ?-torsion points, see Theorem

5.1 of [CP80] for further details. Furthermore, the Galois group Gal( (� 5 [?])/ ) contains

the special linear group SL2(F?), which is stated in [CH05, Theorem 1.1] and Theorem 3.6

of this paper.

Remark 2.4. While writing the paper, we learned the contemporaneous results from Aaron

Landesman on a similar problem. Given a universal family of elliptic curves over F@ [C] with

@ coprime to 6=, the geometric average size of =-Selmer group of the universal family is equal

to sum of divisors of = as @ → ∞. We refer to [Lan21] for more details. The large @-limit

of the probability distribution of =-Selmer groups over the universal family of elliptic curves

can also be found in [FLR20].

In subsequent sections, we will calculate lim=→∞ lim@→∞ E=,:,? as follows. Fix an elliptic

curve � over F@ [C]. Let �3,� be the set of square-free polynomials 5 of degree 3 over F̄@ such

that 5 is coprime to Δ� , the discriminant of � . Chris Hall’s construction of étale F;-lisse

sheaf over �3,� gives the average size of Sel? (� 5 ) for a subfamily of quadratic twists of � . We

then order the family of quadratic twists of � by the canonical height ℎ(� 5 ) which enables

us to calculate the average size of Sel? (� 5 ) in large @-limit.
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2.2 Monodromy Group

In this section, we briefly discuss the main machinery used to prove Theorem 1.1. This

section follows closely to chapter 2 and 3 of [Ell14]. Throughout this paper, we denote by

-F̄@ the base change - ×F@ F̄@ where - is a scheme over F@.

We start with a brief exposition on the moduli space of a family of quadratic twists

of � by polynomials 6 ∈ F@ [C] of degree = such that (6,Δ� ) = 1. A polynomial 6(G) =

00G
= + 01G

=−1 + · · · + 0= of degree = corresponds to a point in the affine space A=+1 with

coordinates (00, 01, 02, . . . , 0=). Note that the square-free polynomials are parameterized

by the set of points on A=+1 where Disc(6) does not vanish, while (6,Δ� ) = 1 amounts to

(00, 01, 02, . . . , 0=) not on the zero locus given by the resultant of 6 and Δ� . Thus those

square free polynomials 6 ∈ F@ [C] with (6,Δ� ) = 1 are parameterized by an open subscheme

of A=+1, denoted by �=. It is reasonable to expect that it suffices to compute the average ?-

Selmer rank on the elliptic curves parameterized by the open subscheme �=. We will explain

in later sections how we can bound the average ?-Selmer rank on those quadratic twists

parametrized by the complement of �=.

Suppose there exists an étale cover - → �= such that the number of F@-points on the

geometric fiber of - at 5 ∈ �= (F@) equals to the size of Sel?� 5 . Then we have the following

equation.

|- (F@) | =
∑

5 ∈�= (F@)
|Sel?� 5 |

On the other hand, the Grothendieck-Lefschetz trace formula gives an explicit equation

of the number of F@-points on -F̄@([Mil13].)

|- (F@) | =
∑
8

(−1)8Tr Frob@ | H8
4́C;2 (-F̄@ ,Q;) |

�= is an open subscheme of A=+1 implies that |�= (F@) | = @=+1 −O(@=). The leading term

of �= (F@) is @=+1. Hence, computing the average size of Sel? in large @-limit amounts to

computing the following equation.
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lim
@→∞

∑
5 ∈�= (F@) |Sel?� 5 |
|�= (F@) |

= lim
@→∞

@−(=+1) |- (F@) |

The Weil bounds imply that the eigenvalues of the Frobenius action Frob@ on H8
4́C;2
(-F̄@ ;Q;)

have absolute value bounded by @=+1−
8
2 . Thus for a fixed =, if @ becomes sufficiently large,

any cohomology term other than H0
4́C;2
(-F̄@ ;Q;) vanishes. Note that H0

4́C;2
(-F̄@ ;Q;) is the Q;

vector space spanned by the irreducible components of -F̄@ . Hence, the following observation

holds.

lim
@→∞

@−(=+1) |- (F@) | = # of geometric irreducible components of - rational over F@ (2.2.1)

Let 5 ∈ �= be a fixed basepoint. we have the following short exact sequence.

1 −→ c1((�=)F̄@ , 5 ) −→ c1(�=, 5 ) −→ Gal(F̄@/F@) −→ 1

For any 5 ∈ �=, the geometric fiber of - at 5 is an F?-vector space - 5 . Observe that

c1(�=, 5 ) acts linearly on - 5 . Hence we can define the monodromy group of the cover

- → �= as the image of c1(�=, 5 ) in GL(- 5 ) and the geometric monodromy group as the

image of c1((�=)F̄@ , 5 ). Denote by Γ the monodromy group, and denote by Γ0 the geometric

monodromy group. This gives us another short exact sequence, where [@] corresponds to

the class in Γ/Γ0 corresponding to the image of the Frobenius Frob@ ∈ Gal(F̄@/F@), and [@]Z

corresponds to a subgroup of Γ/Γ0 generated by [@].

1 −→ Γ0 −→ Γ −→ [@]Z −→ 1

We state and prove the following observations, which gives a geometric interpretation of

equation (2.1).

Lemma 2.5. The geometric irreducible components of - are in bijection with the orbits of

the geometric monodromy group on - 5 .
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Proof. Note that -F̄@ is étale over (�=)F̄@ because - is étale over �=. Hence, c1((�=)F̄@ ) acts

on -F̄@ . The group action preserves each irreducible component of -F̄@ since each component

is étale over (�=)F̄@ , hence preserved by the functoriality of c1. Therefore, under the action

of c1((�=)F̄@ ), each orbit of the geometric monodromy group on - 5 would lie inside one

irreducible component of -F̄@ . On the other hand, c1(-F̄@ ) acts transitively on the geometric

fibers of 5 within an irreducible geometric component, which yields the bijection. �

Lemma 2.6. The action of the Frobenius on the geometric components is given by the action

of [@] on the orbits of Γ0.

This comes directly from the bijection between the geometric irreducible components of -

and the orbits of Γ0. Therefore, in order to compute the number of geometrically irreducible

components of -, it suffices to understand the geometric monodromy group Γ0 and compute

the number of Γ0-orbits on - 5 which are fixed by [@]. Therefore, equation (2.1) can be

rewritten as follows.

lim
@→∞

@−(=+1) |- (F@) | = # of orbits of Γ0 fixed by [@] (2.2.2)

2.3 Construction of Moduli Space

2.3.1 Cohomology Groups of Néron Models

In this subsection, we prove several claims which will help us with constructing the desired

moduli space discussed in remark 2.3.

Let @ be a power of prime @ = @:0 such that @0 is not divisible by 2 and 3. Fix an

algebraic closure F@ → F̄@. Let �/F@ = P1/F@, and let  = F@ (�) = F@ (C) be its function

field. Fix an elliptic curve � over  , and let � 5 be the quadratic twist of the elliptic curve

by 5 ∈ Conf= (F@). Let E → � be the Néron model for the elliptic curve � . For any prime ?

that is invertible in  , the multiplication by ? map on � 5 ( ) extends uniquely to an isogeny

×? : E → E. Define E? to be the kernel of ×?.
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We state a result from [Ces16], which states that the first cohomology group of E? and

Sel? are isomorphic under certain arithmetic conditions. First, we state the following lemma

from [Ces16, Appendix B].

Lemma 2.7. Let ( be a connected Noetherian normal scheme of dimension ≤ 1. Let  ̄

be the function field of (, and for every point B ∈ (, let : (B) be the residue field of B. Let

�→ Spec ̄ and �→ Spec ̄ be abelian varieties, and let A → ( and B → ( be their Néron

models. Suppose q : � → � is a  ̄-isogeny of abelian varieties. Denote by q̃ : A → B the

map induced on Néron models over (. If A has semiabelian reduction at all the nongeneric

B ∈ ( with Char(: (B)) | deg q, then q̃ : A → B is flat.

Proof. See [Ces16, Lemma B.4]. �

In particular, the lemma above shows that the map ×? : E → E is flat if @ is coprime to

?. Using this implication, we can state the following application from [Ces16, Proposition

5.4].

Theorem 2.8. Let q : � → � be a morphism of abelian varieties. Let A and B be their

Néron models. Denote by �[q] the kernel of q : � → �, and denote by A[q] the kernel of

q : A → B. Let Selq� be the q-Selmer group of �. Suppose the morphism q : A → B is

flat. If deg q is coprime to any local Tamagawa factors of � and �, and 2 does not divide

deg q, then the following equation holds inside H1
fppf
( , �[q]).

H1
fppf ((,A[q]) = Selq�

Proof. See [Ces16, Propostion 5.4]. �

More specifically, the theorem above implies that when ? is coprime to 2, @, and the local

Tamagawa factors of � , then there exists an isomorphism between H1
fppf
(�, E?) and Sel?� .

In fact, under certain conditions on � , we can extend the results of Theorem 3.2 to the

family of quadratic twists of � . Let � 5 be the quadratic twist of the elliptic curve by square-

free polynomials 5 ∈ F@ [C]. Denote by E 5 → � the Néron model for the elliptic curve � 5 .

Let E 5 ,? be the kernel of multiplication by ? map over E 5 .
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Corollary 2.9. Let �/ : H2 = G3+�G+� be an elliptic curve, and let Δ� be the discriminant

of �. Suppose that no prime factors c of Δ� satisfy the condition that c2 |� and c3 |�. Let ?

be a prime such that ? is coprime to 2, 3, @0 and all the local Tamagawa factors of �. Then

the following isomorphism holds for any square-free polynomial 5 ∈ F@ [C].

H1
fppf (�, E 5 ,?) = Sel?� 5

Proof. For an explicit calculation of local Tamagawa factors using Tate’s algorithm, see

[Sil91, Chapater 4, Section 9]. Say 5 = (c1 . . . cB)6, where � = {c1 . . . cB} are prime factors

of Δ� and (6,Δ� ) = 1, We first note that the conditions on � imply that the discriminant

of the twist � 5 is equal to 5 6Δ� . Tate’s algorithm shows � 5 has additive reduction on all

primes c dividing 6. Therefore, all local Tamagawa factors arising from such c’s are at most

4.

On the other hand, the additive reductions c8 ∈ � of � will stay as additive reductions

of � 5 , while the multiplicative reductions c 9 ∈ � will all become additive reductions of � 5 .

For all the other primes d |Δ� but not in �, Ed (Δ� ) and Ed (Δ� 5 ) are the same. Therefore,

for any d |Δ� , no matter weather d divides f or not, we will have the local Tamagawa factor

of � 5 at d either equals to the local Tamagawa factor of � or equals to 1,2,3. Then we can

apply theorem 3.2. to � 5 .

�

Remark 2.10. For such an elliptic curve � in the above Corollary, we can actually conclude

that if the Néron model of � itself has no multiplicative reduction away from ∞, there is no

quadratic twists of � whose Néron model admits a multiplicative reduction away from ∞.

This follows exactly from the fact that additive reductions c8 ∈ � of � will stay as additive

reductions of � 5 .

The theorem hence implies that for all but finitely many primes ?, the following isomor-

phism holds.

H1
fppf (�, E 5 ,?) = Sel?� 5
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Since E 5 ,? is a smooth commutative group scheme, we know that H1
fppf
(�, E 5 ,?) is iso-

morphic to H1
4́C
(�, E 5 ,?). (See [PR12, Remark 6.6.3])

We now examine whether there is a way to explicitly compute the size of H1
4́C
(�, E 5 ,?).

Chris Hall gives an explicit computation of the étale cohomology groups of E 5 ,? over �F̄@
under certain conditions on the size of the Galois group Gal( (� [?])/ ).

Definition 2.11. Let �/ be an elliptic curve. The geometric Galois group �? is the

subgroup of the Galois group Gal( (� [?])/ ) whose fixed field is ( (� [?]) ∩ F̄@)/ given

by adjoining a primitive ?th root of unity. We say that � has big monodromy at ? if the

geometric Galois group contains SL2(F?).

In fact, for any prime ? ≥ 5, any twist � 5 has big monodromy at ? if and only if �

has big monodromy at ?. This is because SL2(F?) does not have index 2 subgroups, so

 (� 5 [?]) and : (
√
5 ) are geometrically disjoint extensions of  . We note that � having no

F@ (C)-rational ?-torsion points is sufficient for � having big monodromy at ?.

Theorem 2.12. Let �/F@ be a proper smooth geometrically connected curve, and let  be

its function field. Let �/ be a non-isotrivial elliptic curve. Then there exists a constant

2( ) such that � has big monodromy at ? for any ? ≥ 2( ) and ? coprime to Char( ).

The constant 2( ) is defined as follows.

2( ) := 2 +max{; | ; is prime,
1

12
(; − (6 + 342 + 443)) ≤ genus(�)}

Here, 42 and 43 are constants defined as follows.

42 =


1 if ; ≡ 1 mod 4

−1 otherwise

43 =


1 if ; ≡ 1 mod 3

−1 otherwise

Proof. See [CH05, Theorem 1.1]. �
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In particular, let � = P1 and  be the function field of �. Fix a non-isotrivial elliptic

curve �/ . Let {� 5 } be the family of quadratic twists of � , where 5 is any square-free

polynomial over F@. The theorem above implies that �/ has big monodromy at ? for any

prime ? ≥ 15 and coprime to @. Hence, for any prime ? ≥ 15 and coprime to @, the twist

� 5 / also has big monodromy at ?. Under the aforementioned conditions on ?, we can give

an explicit calculation of the étale cohomology group H1(�F@ , E 5 ,?) for any � 5 .

Lemma 2.13. Let �/F@ be a proper smooth geometrically connected curve, and let  be its

function field. Fix an elliptic curve �/ . Let ? be a prime such that � has big monodromy

at ?. In particular, we further assume that � has no F@ (C)-rational ?-torsion points. Then

for any square-free polynomial 5 over F@, the étale cohomology groups of E 5 ,? over �F̄@ are

F?-vector spaces with the following dimensions.

dimF? (H8
4́C
(�F̄@ , E 5 ,?)) =


deg(" 5 ) + 2 deg(� 5 ) − 4(genus(�) − 1) if 8 = 1

0 otherwise

Here, " 5 and � 5 are the divisors of multiplicative and additive reduction of E 5 ,? → �.

Proof. See [CH05, Lemma 6.2]. �

In particular, if � = P1, then the dimension of H1(�F@ , E 5 ,?) as an F?-vector space is

deg(" 5 ) + 2 deg(� 5 ) + 4 for any twist � 5 .

Remark 2.14. The Weil pairing on � 5 [?] induces a non-degenerate skew-symmetric pairing

on E 5 ,?. Hence the Weil pairing induces a non-degenerate symmetric pairing on H1
4́C
(�F̄@ , E 5 ,?)

as follows.

H1
4́C
(�F̄@ , E 5 ,?) × H1

4́C
(�F̄@ , E 5 ,?) → �2

4́C
(�F̄@ , E 5 ,? ⊗ E 5 ,?)

→ �2
4́C
(�F̄@ , F? (1))

The first map comes from the cup product of cohomology classes and Poincaré duality, while

the second map comes from the induced Weil pairing E 5 ,? × E 5 ,? → F? (1). Note that the
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following isomorphism holds (See [Mil13, Chapter 14]).

�2
4́C
(�F̄@ , F? (1)) � F?

Therefore, the Weil pairing on � 5 [?] induces a non-degenerate symmetric bilinear pairing

of first étale cohomology groups.

H1
4́C
(�F̄@ , E 5 ,?) × H1

4́C
(�F̄@ , E 5 ,?) → F?

Using the above lemma and the Leray spectral sequence, we can derive a relation between

étale cohomology groups of E 5 ,? over � and those over �F̄@ .

Theorem 2.15 (Leray Spectral Sequence). Let q : . → - be a morphism of schemes, and

let F be a sheaf on .4C. Then there exists the following spectral sequence.

�2
A,B = HA

4́C
(-, 'Bq∗F ) ⇒ HA+B

4́C
(., F )

Proof. See [Mil13, Theorem 12.7]. �

Lemma 2.16. Fix an elliptic curve �/ : H2 = G3+�G+� such that no prime factors c of Δ�

satisfy the condition that c2 |� and c3 |�. Suppose ? is a prime satisfying these conditions.

1. ? ≥ 15

2. (?,Char( )) = 1

3. ? does not divide any local Tamagawa factors of �.

Then for any quadratic twist � 5 , the following isomorphism exists.

�1
4́C
(�F̄@ , E 5 ,?)

Gal(F̄@/F@) � Sel?� 5

Proof. Consider the morphism of schemes q : � → Spec(F@). By the Leray spectral sequence,

the following spectral sequence exists.

�2
A,B = HA (F@,HB

4́C
(�F̄@ , E 5 ,?)) ⇒ HA+B

4́C
(�, E 5 ,?)
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By lemma 3.7, the cohomology group HA (F@,HB
4́C
(�F̄@ , E 5 ,?)) is trivial whenever B ≠ 1. Hence,

the entries of the �2 page of the spectral sequence are given as follows.

A 0 HA (F@,H1
4́C
(�F̄@ , E 5 ,?)) 0 · · · 0

...
...

...
...

. . .
...

2 0 H2(F@,H1
4́C
(�F̄@ , E 5 ,?)) 0 · · · 0

1 0 H1(F@,H1
4́C
(�F̄@ , E 5 ,?)) 0 · · · 0

0 0 H0(F@,H1
4́C
(�F̄@ , E 5 ,?)) 0 · · · 0

0 1 2 · · · B

The Leray spectral sequence implies the following isomorphism.

H0(F@,H1
4́C
(�F̄@ , E 5 ,?)) � H1

4́C
(�, E 5 ,?)

Recall the following isomorphism.

H1
4́C
(�, E 5 ,?) � H1

fppf (�, E 5 ,?)

Note that the 0-th cohomology group is precisely the fixed subgroup of H1
4́C
(�F̄@ , E 5 ,?) by

Gal(F̄@/F@).

H1
4́C
(�F̄@ , E 5 ,?)

Gal(F̄@/F@) � H0(F@,H1
4́C
(�F̄@ , E 5 ,?))

Corollary 3.3 implies the following isomorphism holds for all but finitely many ?.

H1
fppf (�, E 5 ,?) � Sel?� 5

Hence, for all but finitely many ?, the following isomorphism holds.

H1
4́C
(�F̄@ , E 5 ,?)

Gal(F̄@/F@) � Sel?� 5

�
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2.3.2 Construction of Étale F?-lisse Sheaf

In this subsection, we follow through Chris Hall’s construction of étale F?-lisse sheaf over

a subset of square-free polynomials 5 of fixed degree over F@. The construction will help us

calculate the average size of Sel? (� 5 ) for a subfamily of quadratic twists of � .

As before, let � = P1 over F@, and let  be the function field of �. Fix a non-isotrivial

elliptic curve �/ : H2 = G3 + �G + � that has no F@ (C)-rational ?-torsion points. We recall

the construction of the space �= over F̄@, as mentioned in section 2.

�= = { 5 ∈ F̄@ [C] | 5 is square-free, deg 5 = =, ( 5 ,Δ� ) = 1}

As constructed in [CH05, Chapter 5.3], consider the étale F?-lisse sheaf g=,?,� → �= whose

geometric fiber over 5 ∈ �= (F@) is H1(Conf=
F̄@
, E 5 ,?). Note that Chris Hall’s construction of

g=,?,� is an F?-analogue of Katz’s construction of étale Q̄?-lisse sheaves using middle convo-

lutions. We refer to [Kat98, Proposition 5.2.1] for a detailed explanation on the construction

of the étale Q̄?-lisse sheaves.

We state the following theorem by Chris Hall, which gives an explicit computation of the

geometric monodromy group of g=,?,� → �=.

Theorem 2.17. Let � be an elliptic curve over  such that there exists at least one quadratic

twist of � whose Néron model admits a multiplicative reduction away from ∞. Let ? be a

prime such that � has big monodromy at ?, i.e. ? ≥ 15. Suppose further that � has

no F@ (C)-rational ?-torsion points. Let $ (H1
4́C
(Conf=

F̄@
, E 5 ,?)) be the orthogonal group of

H1
4́C
(Conf=

F̄@
, E 5 ,?) which preserves the non-degenerate symmetric bilinear pairing `. (See

Remark 3.7 for the construction of `.)

Then the geometric monodromy group of g=,?,� → �= is isomorphic to a subgroup of

the orthogonal group $ (H1
4́C
(Conf=

F̄@
, E 5 ,?)) of index at most 2 and is not isomorphic to

($ (H1
4́C
(Conf=

F̄@
, E 5 ,?)).

Proof. See [CH05, Theorem 5.3]. �
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Note that the commutator subgroup of $ (H1
4́C
(Conf=

F̄@
, E 5 ,?)) is of index 4. Hence, in order

to understand the number of orbits of the desired geometric monodromy group, it suffices to

understand the number of orbits of both $ (H1
4́C
(Conf=

F̄@
, E 5 ,?)) and its commutator subgroup.

We finish this section with the following lemma, which describes the number of the orbits of

the aforementioned two groups.

Lemma 2.18. Let + be an F?-vector space of dimension 3 where char(F?) ≠ 2. Given a

non-degenerate symmetric bilinear pairing ` : + ×+ → F?, let $ (+) be the orthogonal group

of + . Then the number of orbits of $ (+) is ?+1, and the number of orbits of the commutator

subgroup [$ (+), $ (+)] is ? + 1 if 3 ≥ 5.

Proof. We first show that the number of orbits of $ (+) on + is ? + 1 for any 3. It suffices

to show that the orthogonal group acts transitively on the set of nonzero vectors of a given

norm. Suppose E, F ∈ + are two non-zero vectors of the same norm. Then there exists an

isometry q : (?0=(E) → (?0=(F) given by E ↦→ F. By Witt’s Theorem, q extends to an

isometry q̃ : + → + , which proves the claim. Note that the orthogonal group has 1 orbit

on the set of vectors of non-zero norm, and 2 orbits on the set of vectors norm zero. In the

latter case, the two orbits are {0} and the set of non-zero vectors of norm zero.

We now show that the number of orbits of the commutator subgroup [$ (+), $ (+)] on

+ is ? + 1 for 3 ≥ 5. Again, it suffices to show that the commutator subgroup [$ (+), $ (+)]

acts transitively on the set of nonzero vectors of a given norm. Suppose E, F ∈ + are two

non-zero vectors of the same norm. Then by the aforementioned argument, there exists an

isomtery q̃ ∈ $ (+) such that q̃(E) = F. We want to show that there exists k̃, ĩ ∈ $ (+) such

that the following equation holds.

q̃(E) = k̃ĩk̃−1ĩ−1(E)

It suffices to consider the case when `(E, F) = 0. If not, then E = F and we can take q̃ to be

the identity element in $ (+). Suppose E, F are orthogonal. Let {E, F, D1, D2, · · · , D3−2} be

the orthogonal basis of + . Without loss of generality, we can assume that the norms of the

basis vectors are the same.
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Suppose 3 ≥ 5. Let , be the span of {E, D1, D2, D3, F}. Then consider the following

isometries k, i : , → , . Here, the matrices are given with respect to the orthogonal basis

{E, D1, D2, D3, F}.

k =

©«

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

ª®®®®®®®®®®¬
, i =

©«

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

ª®®®®®®®®®®¬
Note that k−1 = k and i−1 = i as isometries over , . The matrix form of kik−1i−1 is given

as follows, which implies that kik−1i−1 maps E to F.

kik−1i−1 =

©«

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

ª®®®®®®®®®®¬
By Witt’s theorem, there exist isometries k̃, ĩ ∈ $ (+) such that k̃ĩk̃−1ĩ−1 maps E to F. A

similar argument as for the case of $ (+) shows that the number of orbits of [$ (+), $ (+)]

on + is ? + 1. �

Using the above lemma, we can calculate the average size of Sel?� 5 for 5 ∈ �= (F@).

Theorem 2.19. Fix a non-isotrivial elliptic curve � : H2 = G3 + �G + � over F@ [C] such

that � has no F@ (C)-rational p-torsion points, and there exists at least one quadratic twist

of � whose Néron model admits a multiplicative reduction away from ∞. Let �0 be the

quadratic twist of � with minimal height among the family of quadratic twists of �. Let =

be an integer such that = ≥ 5. Let ? be a prime such that ? ≥ 15, and coprime to @ and all

local Tamagawa factors of �0. Then the average size of Sel?� 5 for a subfamily of quadratic

twists {� 5 } 5 ∈�= (F@) is ? + 1 when @ →∞, i.e.

lim
@→∞

∑
5 ∈�= (F@) |Sel? (� 5 ) |
|�= (F@) |

= ? + 1



21

Proof. Denote by {� 5 } the family of quadratic twists of � . Then note the �0 must have at

least one place of multiplicative reduction by the proof of Corollary 3.3. Indeed, �0 satisfies

the condition for Corollary 3.3. Note that the quadratic twist families {� 5 } and {(�0)6} are

equal. Hence, we can apply lemma 3.10 to the subfamily of quadratic twists {� 5 } 5 ∈�= (F@).

Since �= is an open subscheme of A=+1, it holds that |�= (F@) | = @=+1 + $= (@). Then the

Grothendieck-Lefschetz trace formula (i.e. Section 2) and lemma 3.10 shows the following

equation.

lim
@→∞

∑
5 ∈�= (F@) |Sel? (� 5 ) |
|�= (F@) |

= lim
@→∞

∑
5 ∈�= (F@) |H1

4́C
(�F̄@ , E 5 ,?)

Gal(F̄@/F@) |
|�= (F@) |

= lim
@→∞

|g=,?,� (F@) |
|�= (F@) |

= lim
@→∞

# of orbits of Γ0 fixed by [@]

We recall that Γ is the image of c1(�=) in $ (H1
4́C
(�F̄@ , E 5 ,?)), and Γ0 is the image of c1((�=)F̄@ )

in $ (H1
4́C
(�F̄@ , E 5 ,?)). The class [@] is the image of the Frobenius Frob@ ∈ Gal(F̄@/F@) in Γ/Γ0.

By theorem 3.11, the geometric monodromy group c1((�=)F̄@ ) is isomorphic to a subgroup

of $ (H1
4́C
(�F̄@ , E 5 ,?)) of index at most 2 and is not ($ (H1

4́C
(�F̄@ , E 5 ,?)). Recall from remark

3.8 that the Weil pairing on � 5 [?] induces a non-degenerate symmetric bilinear pairing `

on H1
4́C
(�F̄@ , E 5 ,?).

H1
4́C
(�F̄@ , E 5 ,?) × H1

4́C
(�F̄@ , E 5 ,?) → F?

Hence, the frobenius map Frob@ preserves the pairing on H1
4́C
(�F̄@ , E 5 ,?). We apply lemma

3.12 by setting + = H1
4́C
(�F̄@ , E 5 ,?) and ` to be the non-degenerate symmetric bilinear pairing

induced from the Weil pairing over � 5 [?].

Note that the elliptic curve � 5 has additive reduction at all primes c dividing 5 . Hence,

lemma 3.7 implies that for = ≥ 5, the dimension of the vector space + is greater than 5.

Hence for = ≥ 5, the orbits of c1((�=)F̄@ ) are the sets of non-zero vectors of a fixed norm

and the set {0}. Therefore, Frob@ preserves the orbits of c1((�=)F̄@ ). Hence, the number of

orbits of c1((�=)F̄@ ) fixed by Frob@ is ? + 1 for all @.
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Hence, we have the following equation, which proves the theorem.

lim
@→∞

∑
5 ∈�= (F@) |Sel? (� 5 ) |
|�= (F@) |

= ? + 1

�

2.4 Main Theorem

In this section, we prove the main theorem by using theorem 2.19. Fix a non-isotrivial

elliptic curve � : H2 = G3+�G+� over F@ [C] such that � has no F@ (C)-rational p-torsion points,

and there exists at least one quadratic twist of � whose Néron model admits a multiplicative

reduction away from ∞. We also assume that char(�@) ≥ 5. Denote by Δ� the discriminant

of the elliptic curve � . We then order the family of quadratic twists {� 5 } with square-free

polynomials 5 over F@ based on the canonical height of � 5 .

The idea of the proof is as follows. Let �0 be the quadratic twist of � with minimal height

among the family of quadratic twists of � . Then by corollary 3.3, the Néron model of �0

admits a multiplicative reduction away from ∞. Note the quadratic twist families {� 5 } and

{(�0) 5 } are the same. Hence, we can reorder the family {� 5 } by {(�0) 5 }. Such reordering

of family of quadratic twists will allow us to ensure that the subfamily of quadratic twists

whose ?-Selmer rank is undetermined does not affect the average size of ?-Selmer group of

{� 5 } as @ →∞.

Remark 2.20. One may ask whether it is possible to compute the average size of ?-Selmer

groups by ordering the family of quadratic twists {� 5 } by the degree of the twisting polynomial

5 . The problem with this approach is that Chris Hall’s construction of étale F?-lisse sheaf

only works for elliptic curves � with at least one multiplicative reduction. Suppose � has

at least one place of multiplicative reduction. Then the quadratic twist family {� 5 } can be

decomposed into the following two disjoint sets.

{� 5 } = {� 5 }{ 5 | ( 5 ,Δ� )=1} t {� 5 }{ 5 | ( 5 ,Δ� )≠1}
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The subfamily {� 5 }{ 5 | ( 5 ,Δ� )=1}, which dominates the family {� 5 } when deg 5 →∞, consists

of quadratic twists of � having at least one place of multiplicative reduction, the subfamily

on which the average ?-Selmer rank is known to be ? + 1.

However, the elliptic curve �′ := �Δ� has no multiplicative reduction. Note that Δ� ′ = Δ7
�
.

Contrary to {� 5 }, the family of quadratic twists of {�′
5
} is given as follows.

{�′5 } = {�
′
5 }{ 5 | ( 5 ,Δ� ′)=( 5 ,Δ� )=1} t {� 5 }{ 5 | ( 5 ,Δ� ′)=( 5 ,Δ� )≠1}

Here, the subfamily {�′
5
}{ 5 | ( 5 ,Δ� )=1}, which dominates the family {�′

5
} when deg 5 → ∞,

consists of quadratic twists of �′ having no multiplicative reductions, the subfamily on which

the average size of ?-Selmer group is unknown.

But notice that {� 5 } and {�′5 } are the same family of quadratic twists. Hence, we cannot

determine the average size of ?-Selmer group by ordering the family of quadratic twists based

on the degree of the twisting polynomials.

Before we present the proof of the main theorem, we state the following definitions and

notations.

Definition 2.21. Denote by � (=) the following scheme defined over F̄@.

� (=) := { 5 ∈ F̄@ [C] | 5 ∈ �3 for 3 ≤ =} =
=⊔
3=1

�3

As mentioned before � (=) is an open subscheme of A=+1. Hence, the following equation

holds

|� (=) (F@) | = @=+1 −O(@=)

Definition 2.22. Denote by g̃(=, ?, �) the sheaf over � (=) obtained by gluing étale F?-lisse

sheaves {g3,?,� → �3} for all 3 ≤ =.

The following theorem states an analogue of Theorem 3.12 for the subfamily of quadratic

twists {� 5 } 5 ∈� (=) (F@) such that � satisfies the aforementioned two conditions.
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Theorem 2.23. Fix a non-isotrivial elliptic curve � : H2 = G3 + �G + � over F@ [C] such

that � has no F@ (C)-rational p-torsion points, and there exists at least one quadratic twist

of � whose Néron model admits a multiplicative reduction away from ∞. Let �0 be the

quadratic twist of � with minimal height among the family of quadratic twists of �. Let =

be an integer such that = ≥ 5. Let ? be a prime such that ? ≥ 15, and coprime to @ and all

local Tamagawa factors of �0. Then the average size of Sel?� 5 for the subfamily of quadratic

twists {� 5 } 5 ∈� (=) (F@) is ? + 1 as @ →∞, i.e.

lim
@→∞

∑
5 ∈� (=) (F@) |Sel? (� 5 ) |
|� (=) (F@) |

= ? + 1

Proof. As stated before, |� (=) (F@) | = @=+1 + $ (@=). As in the proof of theorem 3.13, the

Grothendieck-Lefschetz trace formula and lemma 3.10 shows the following equation, where

Frob@ ∈ Gal(F̄@/F@).

lim
@→∞

∑
5 ∈� (=) (F@) |Sel?� 5 |
|� (=) (F@) |

= lim
@→∞

∑=
3=1

∑
5 ∈�3 (F@) |Sel?� 5 |∑=
3=1 |�3 (F@) |

= lim
@→∞

∑=
3=1

∑
5 ∈�3 (F@) |Sel?� 5 |∑=
3=1 |�3 (F@) |

= lim
@→∞

∑=
3=1

∑
5 ∈�3 (F@) |H1

4́C
(�F̄@ , E 5 ,?)

Gal(F̄@/F@) |∑=
3=1 |�3 (F@) |

= lim
@→∞

∑=
3=1 |g3,?,� (F@) |∑=
3=1 |�3 (F@) |

(
= lim
@→∞

|g̃(=, ?, �) (F@) |
|� (=) (F@) |

)
= lim
@→∞

=∑
3=1

( |g3,?,� (F@) |
|�3 (F@) |

|�3 (F@) |
|� (=) (F@) |

)
By theorem 3.13, the following equation holds.

lim
@→∞

∑
5 ∈� (=) (F@) |Sel?� 5 |
|� (=) (F@) |

= lim
@→∞

=∑
3=1

(
(? + 1)

|�3 (F@) |
|� (=) (F@) |

)
= lim
@→∞
(? + 1)

|�= (F@) |
|� (=) (F@) |

= ? + 1

�
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We now order the family of quadratic twist of elliptic curves based on the canonical height

of the elliptic curve. Recall that the canonical height of the elliptic curve is given as follows,

where �′ : H2 = G3 + � (C)G + � (C) is an elliptic curve isomorphic to � .

ℎ(�) := inf� ′�� (max{3 deg�, 2 deg �})

Remark 2.24. There is a unique equation for � of the form H2 = G3 + �G + � satisfy-

ing that for any prime ? ∈ F@ [C], ?4 |� implies ?6 - �. In such case, ℎ(�) is equal to

max{3 deg �, 2 deg �}.

In particular � has the least height among all quadratic twists if and only if for any

prime ? ∈ F@ [C], ?2 |� implies ?3 - �. Otherwise, there exists a quadratic twist �? : ?H2 =

G3 + �G + � ' H2 = G3 + �

?2
G + �

?3
, which has smaller height than �.

Remark 2.25. In order to apply the construction of the étale F?-lisse sheaf g=,?,� → �= from

[CH05], we need the assumption that the quadratic twist family we start with has members

whose Néron model admits at least one multiplicative reduction away from ∞.

This is essentially necessary because one can find families of quadratic twists of some

given elliptic curves, such that the whole family has no elliptic curve whose Néron model

has multiplicative reductions. For instance, suppose 4 and 27 are invertible over the field

F@. Then there are c1, c2 ∈ F@ [C] such that 4c1C
3 + 27c2(C + 1)2 = 1 with 346(c1) = 1 and

346(c2) = 2. One can readily check that the elliptic curve � : H2 = G3+c1c2C +c1c
2
2 (C +1) has

discriminant Δ� = c2
1c

3
2 (4c1C

3 + 27c2(C + 1)2) = c2
1c

3
2. Therefore, the Néron model of � has

no multiplicative reduction by Tate’s algorithm. This elliptic curve � has the least height in

the quadratic twist family by remark 4.5. So, the whole quadratic twist family has no member

whose Néron model admits multiplicative reductions away from ∞ by remark 3.4.

Now we prove the main theorem.

Proof of Theorem 1.1. Let � : H2 = G3 + �0G + �0 be any non-isotrivial elliptic curve over

F@ [C]. We can always replace � by �0 ∈ {� 5 } that has minimal canonical height among

all quadratic twists. Since we assumed that there exists at least one quadratic twist of �
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whose Néron model admits a multiplicative reduction away from ∞, � admits at least one

multiplicative reduction.

Setup

Choose large enough @ such that the discriminant of �/F@ [C], denoted by Δ� , splits

completely into linear factors as follows.

Δ� = c
A0
0 c

A1
1 · · · c

A<
<

Without loss of generality, assume E has multiplicative reduction at c0. Note we can guaran-

tee that the primes c8’s are all linear. For those large enough @, we will explicitly determine

the collection of all possible quadratic twists of �/F@ [C] whose height is bounded by =.

We order the family of quadratic twists of � by canonical height. For any elliptic curve

�/F@ [C], there exists a unique way to write � as H2 = G3+�G+� such that for any irreducible

polynomial ? ∈ F@ [C], if ?4 |�, then ?6 - �. Then the canonical height of � is given as follows.

ℎ(�) = max{3 deg �, 2 deg �}

In particular, we chose � to have the least height in the family of quadratic twists of �0.

Hence, the coefficients �, � of � satisfy the aforementioned condition.

Any quadratic twist of �/F@ [C] can be uniquely written as � 5 : 5 H2 = G3+�G+� such that

5 ∈ F@ [C] is square-free. Assume 5 = c00c81c82 · · · c8B6 where c8 9 ’s are distinct primes belong

to the set {c1, · · · , c<}, 0 = 0 or 1, and 6 is a square-free polynomial such that (6,Δ� ) = 1

in F̄@ [C]. Denote by � the subset {c81 , c82 , · · · , c8B } of {c1, c2, · · · , c<}.

Fix a positive integer =. We now consider the quadratic twists {� 5 } whose height ℎ(� 5 ) ≤

=.

Case 1

Suppose that 0 = 0, i.e. c0 is not a prime factor of 5 . Remark 4.5 implies that the twist

� 5 is isomorphic to the following elliptic curve, which is a minimal model.

H2 = G3 + ©«
∏
c8 9 ∈�

c2
8 9

ª®¬ 62�G + ©«
∏
c8 9 ∈�

c3
8 9

ª®¬ 63� (*)
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We will use use (∗) to explicitly compute the height of � 5 . We also note that for any

prime ? |6, E? (�) = 0 or E? (�) = 0. Otherwise, 6 is not coprime to Δ� . Therefore, we have

the following equivalent relation.

ℎ(� 5 ) ≤ =⇐⇒ max

deg
©«©«

∏
c8 9 ∈�

c6
8 9

ª®¬ 66�3ª®¬ , deg
©«©«

∏
8 9∈�

c6
8 9

ª®¬ 66�2ª®¬
 ≤ =

We set " := max{3 deg �, 2 deg �} and "� := " + 6 deg
(∏

8 9∈� c8 9

)
= " + 6|� |. Hence the

following equivalent relation holds.

ℎ(� 5 ) ≤ =⇐⇒ deg 6 ≤ = − "�

6

It is crucial to notice that the twist � 5 still has at least one place of multiplicative reduction

at c0, which can be checked using Tate’s algorithm.

Denote by �� the following elliptic curve, which is minimal by remark 4.5.

�� : H2 = G3 + ©«
∏
c8 9 ∈�

c2
8 9

ª®¬ �G + ©«
∏
c8 9 ∈�

c3
8 9

ª®¬ �
Then the following equation holds.∑

5=c81c82 ···c8B6
(6,Δ� )=1
ℎ(� 5 )≤=

|Sel?� 5 | =
∑

6∈�
(
=−"�

6

)
(F@)

|Sel? (��)6 |

=

����g̃ (
= − "�

6
, ?, ��

)
(F@)

����
= (? + 1)

(
@
=−"�

6 +1 +O=,? (@
=−"�

6 )
)

Case 2

Now assume 0 = 1, i.e. 5 = c0c81c82 · · · c8B6 such that (6,Δ� ) = 1 and � = {c81 , c82 , · · · , c8B }

is a subset of {c1, c2, · · · , c<}. Define " and "� analogously to Case 1. Then, by the afor-

mentioned argument in Case 1, we have that � 5 is isomorphic to the following minimal

model.

H2 = G3 + ©«
∏
c8 9 ∈�

c2
8 9

ª®¬ c2
06

2�G + ©«
∏
c8 9 ∈�

c3
8 9

ª®¬ c3
06

3� (*)
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Thus the height of � 5 can be written as follows.

ℎ(� 5 ) ≤ =⇐⇒ deg 6 ≤ = − "� − 6 deg c0

6
=
= − "�

6
− 1

We will use the bound of ℎ(� 5 ) to estimate the summation of the size of the ?-Selmer group

for quadratic twists � 5 by using lemma 3.7. Corollary 3.3 and lemma 3.7 implies that the

maximal size of ?-Selmer group of � 5 is the following.

|Sel?� 5 | ≤ ?2 degΔ� 5 +4 ≤ ?2ℎ(� 5 )+4 = ?2=+4

Therefore, the following equation gives the approximation on the size of the ?-Selmer group

over {� 5 } for the desired collection of 5 .∑
5=c0c81c82 ···c8B6
(6,Δ� )=1
ℎ(� 5 )≤=

|Sel?� 5 | =
∑

6∈�
(
=−"�

6 −1
)
(F@)

Sel? (��)6

=M
(
@
=−"�

6 +O=,? (@
=−"�

6 −1)
)

Here, M is a positive integer such that 1 ≤ M ≤ ?2=+4.

Average Size

Using both aforementioned cases, we can now calculate the average size of ?-Selmer

group as : → ∞. Recall that E=,:,? is the average value of ?-Selmer groups over families of

quadratic twists of canonical height at most =. Then the following equation holds for any

fixed = ≥ 30. Note that we may need to require = ≥ 30 because of the conditions on the
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degree of twisting polynomials from lemma 3.12 and theorem 3.13.

lim
@→∞
E=,? = lim

@→∞

∑
�⊂{c1,··· ,c<} (? + 1)

(
@
=−"�

6 +1 +O=,? (@
=−"�

6 )
)
+M

(
@
=−"�

6 +O=,? (@
=−"�

6 −1)
)

∑
�⊂{c1,··· ,c<} |� (

=−"�

6 ) (F@) | + |� (
=−"�

6 − 1) (F@) |

= lim
@→∞

∑
�⊂{c1,··· ,c<}

(? + 1)
(
@
=−"�

6 +1 +O=,? (@
=−"�

6 )
)
+M

(
@
=−"�

6 +O=,? (@
=−"�

6 −1)
)

|� ( =−"�

6 ) (F@) | + |� (
=−"�

6 − 1) (F@) |

× lim
@→∞

|� ( =−"�

6 ) (F@) | + |� (
=−"�

6 − 1) (F@) |∑
�⊂{c1,··· ,c<} |� (

=−"�

6 ) (F@) | + |� (
=−"�

6 − 1) (F@) |

= lim
@→∞

∑
�⊂{c1,··· ,c<}

(? + 1)
(
@
=−"�

6 +1 +O=,? (@
=−"�

6 )
)
+M

(
@
=−"�

6 +O=,? (@
=−"�

6 −1)
)

@
=−"�

6 +1 +O=,? (@
=−"�

6 ) + @
=−"�

6 +O=,? (@
=−"�

6 −1)

× lim
@→∞

|� ( =−"�

6 ) (F@) | + |� (
=−"�

6 − 1) (F@) |∑
�⊂{c1,··· ,c<} |� (

=−"�

6 ) (F@) | + |� (
=−"�

6 − 1) (F@) |

= lim
@→∞

∑
�⊂{c1,··· ,c<}

(? + 1)
|� ( =−"�

6 ) (F@) | + |� (
=−"�

6 − 1) (F@) |∑
�⊂{c1,··· ,c<} |� (

=−"�

6 ) (F@) | + |� (
=−"�

6 − 1) (F@) |

= (? + 1) lim
@→∞

∑
�⊂{c1,··· ,c<}

|� ( =−"�

6 ) (F@) | + |� (
=−"�

6 − 1) (F@) |∑
�⊂{c1,··· ,c<} |� (

=−"�

6 ) (F@) | + |� (
=−"�

6 − 1) (F@) |

= ? + 1

Therefore, the average size of ?-Selmer groups of family of quadratic twists of any elliptic

curve � over F@ [C] is given by ? + 1:

lim
=→∞

lim
@→∞
E=,? = ? + 1

�
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Chapter 3

The case of 2-Selmer group

3.1 Introduction

In this chapter, we will turn our focus from general p-Selmer group to 2-Selmer group of

elliptic curves defined over function field.

let � be an elliptic curve defined over a function field  and we denote by (4;2(�/ ) its

2-Selmer group. 2-Selmer rank 32(�/ ) is defined as

32(�/ ) := dimF2Sel2(�/ ) − dimF2� ( ) [2]

There has been substantial study on the distribution of 2-Selmer groups in the case of

number field:

Health-Brown proved in 1994 [Bro94] that the 2-Selmer ranks of all the quadratic twists

of the congruent number curve �/Q given by H2 = G3 − G have a nice distribution which is

characterized by explicit constants U1, U2, U3, · · · that sum to 1 such that

lim
-→∞

|{d squarefree |d| < X : 32(�3/Q) = A}|
|{d squarefree |d| < X}| := UA

for every A ∈ Z≥0, where �3 is the quadratic twist of � by 3.

A similar result was proved by Swinnerton-Dyer and Kane for all elliptic curves � over

Q with � (Q) [2] ' Z/2Z × Z/2Z that do not have a cyclic 4-isogeny defined over Q [Kan10],

[SD08]. Another case was shown by Klagsbrun, Mazur, and Rubin for elliptic curves �

defined over a number field  with Gal( (� [2])/ ) ' (3, where 3 is replaced by quadratic

characters of  [KMR11].
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There also have been examples where this type of result do not hold true in the number

field case. Klagsbrun and Oliver proved that when � ( ) [2] ' Z/2Z there does not exist a

distribution function on 2-Selmer ranks for the quadratic twist family of � [KO15].

This chapter shows that the same result extends to the function field case. For the rest

of this chapter, we use  exclusively to denote the function field F@ (C). We state our main

theorem first:

Theorem 3.1. Define � ( , -) := {square free 5 ∈  : deg(f) < X}, Let E be an elliptic

curve defined over  with � ( ) ' Z/2Z that does not have a cyclic isogeny defined over

 (� [2]). Then for any fixed r,

lim inf
-→∞

|{sqaure free 5 ∈ � ( , -): ) (�′
5
/� 5 ) ≥ A |

|� ( , -) | ≥ 1

2

where �′ is the dual elliptic curve of � under 2-isogeny and � 5 (resp. �′
5
) denotes the

quadratic twist of � (resp. �′) by 5 . ) (�′
5
/� 5 ) denotes the ratio of the rank of the Selmer

groups of �′
5
and � 5 .

Let �1 be an elliptic curve defined over  = F@ (C) with a rational point of order 2. Such

a curve can be written in Weierstrass equation of the form H2 = G3 + �G2 + �G, where the

rational two torsion � = � ( ) [2] is generated by % = (0, 0).

Since �1( ) has a single point of order two, there is a 2 -isogeny E1 : �1 −→ �2 between �1

and �2 with kernel � = � ( ) [2], where the dual elliptic curve �2 : H2 = G3−2�G+ (�2−4�)G

can be constructed explicitly. The map of the 2 -isogeny E1 could also be explicitly given by

(G, H) −→ (( G
H
)2, H(�−G

2)
G2
).

We outline the idea for the proof to this theorem. First of all, we would like to show

Theorem 3.2. [Cas65, Theorem 1.1 in number field case] The Tamagawa ratio T(�2/�1)

is given by

T(�2/�1) :=
(2

(1
=

∏
?

1

2
|�1

E2
( ?,Δ2) |
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where (8 denotes the Semler group of �8, the product is taken over all the prime ideals

? ∈  = F@ (C), E2 is the 2 -isogeny �2 −→ �1 whose composition with E1 is the multiplication

by 2 map [2] and Δ8 denotes the kernel of E8.

After proving this, We take advantage of the fact that everything is given explicitly so

we can study the size of �1
E2
( ?,Δ2) and relate that to the size of their Tamagawa numbers.

3.2 Outline of the strategy

The number field version of theorem 3.2 was proven by Cassels, we follow his approach

by reproving the main lemmas used in the number field case and then restore the proof as a

whole. We show that we have the following.

Lemma 3.3.
(2

(1
=

∏
?

(�1?)E1
(,�2?)E2

·
(�2)E2
(�1)E1

where �8 denotes the group of points defined over F@ (C) for �8 and �8? denotes the group

of points defined over the local field  ?, the subindex ()E8 denotes the kernel of these maps

with respect to the isogeny E8 between the 2 elliptic curves.

We show first that the above lemma 2.1 implies theorem 1.2. As E8 are maps of degree 2

and �8 has 2-torsion points, it’s easy to find out that (�8)E8 has size 2 as the explicit 2-torsion

(0, 0) must be over F@ (C). In addition to that, (�1?)E1 also has size 2 for the same reason.

We can compute the size of (,�2?)E2 through an exact sequence

0 −→ �1?/�2? −→ �1(Γ?,Δ2) −→ (,�2?)E2 −→ 0

Therefore, we then have
|(2 |
|(1 |

=
∏
?

2 · |�1?/E2�2? |
|�1(Γ?,Δ2) |

where Γ? stands for the Galois group Gal(((F@ (C)B4?)?/(F@ (C))?).

Here we take advantage of the fact that �1(Γ?,Δ2) ' �1(Γ?,±1) has trivial Galois action.

We know that in this case it is equal to Hom(Γ?,±1) = index 2 subgroup of Γ? ' quadratic

extension / ? ' ( ?)∗/( ∗?)2 where  ? is some local field that resembles F@ ((C)) and it
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has the structure Z ⊕ Z/(@ − 1)Z#? . The notation here is slight ambiguous, ? refers to the

characteristic of the field  = F@ (C) and @ = ?# . This concludes that the size of �1(Γ?,Δ2)

is always 4, thus we have
|(2 |
|(1 |

=
∏
?

1

2
·
|�1? |
|E2(�2?) |

as expected. Because the definition of �1
E2
( ?,Δ2) ⊂ �1( ?,Δ2) is the image of �1( ?)/E2(�2( ?))

under Kummer map.

3.3 The computation of cohomology groups

We need to show that [Cas65, Lemma 7.2 and Lemma 7.3] remain true in our case. Firstly

we need to restore [Cas65, Lemma 6.1]. Here we use the notations Γ = Gal(F@ (C)B4?/F@ (C)),

" = Δ2/F@ (C). Ω ∈ (F@ (C)B4?)∗ = 2nd roots of unity. Notice that since we required @ ≠ 2, so

Ω = +1, "∗ = �><(Δ,Ω) ' Z/2.

The exact statement of the first Lemma in Cassel that we need to prove is the following:

Lemma 3.4. Let Γ be the Galois group of :̄/:, where :̄ is the algebraic closure of the number

field : and let " be a Γ-module of prime order q. Denote by @[,@Y respectively the number

of elements of " and of

"∗ = �><(",Ω)

which are fixed under Γ, where Ω ⊂ :̄∗ is the group of q-th roots of unity and Γ acts on "∗ in

the usual way. Let Π be a finite set of valuations of : which includes all the non-archimedean

ones and denote by �1
Π
(Γ, ") the group of elements of �1(Γ, ") which do not ramify outside

Π. Then

|�1
Π(Γ, ") | = @%+[−Y

where % is the number of ? ∈ Π such that the splitting field Γ? acts trivally on "∗, provided

that the set Π is large enough in the following sense:

(i) Π contains all p such that |@ |? ≠ 1.
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(ii) Let Γ∗ ⊂ Γ be the subgroup which leaves "∗ elementwise fixed and let  be the

corresponding algebraic extension of :. Then every divisor class (ideal class) of  contains

a prime divisor P which is he extension to  of one of the ? ∈ Π.

We can take advantage of that in our specific case things are a lot more computable, and

find the size of |�1
Π
(Γ, ") | directly.

Recall the definition for an element G ∈ �1(Γ, ") to be unramified out of the set Π which

consists of a few primes. We have the exact sequence:

1 −→ �  ̄/ DA −→ �  ̄/ −→ � DA/ −→ 1

locally we have

inf: �1(Gal( ?,DA), ") −→ �1(Gal( ̄?/ ?), ")

Consider �1( , ") −→
∏
?

�1( ?, "), say G ∈ �1( , ") is unramified at ? if

G? ∈ �1
DA ( ?, ") (i.e. im(inf))

In our setting, the two constraints for the choice of Π in Lemma 3.1. become trivially

true for any case because the field  = F@ (C) has class number 1. We choose to keep the

statement there to demonstrate that this is not any less than the original lemma of Cassels

so that the rest of proof would follow the the course.

We choose Π = {? = ( 5 ),∞}, then for all G ∈ �1
Π
(� B4?/ , "), we claim

G?′ (?′ ≠ ?) must be trivial. (3.3.1)

If it were true, notice that G ∈ �1
Π
(Γ, ") corresponds to a quadratic field extension over

F@ (C) (we could do it here because all quadratic extensions are separable). Hence it must be

isomorphic to F@ (
√
6) or F@2 (C). Also notice that since  B4? ∩ ? =  , we have the following

exact sequence:

Gal( B4?? / ?) −→ Gal( B4?/ ) −→ Z/2
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which deduces the equivalence between the choice of elements:

choose G ⇐⇒ choose index 2 subgroup of Gal( B4?? / ?) s.t. every corresponding G?′ is

trivial⇐⇒ choose index 2 subgroup s.t. it acts trivially on all √6 (where ?′ = (6)) and only

potentially acts on
√
5 and F@2

To show (3.1) is true, consider the following

F@ ((C))D=A = lim−−→ finite unr. extensions = F@ ((C)) [`
′ (F̄@)]

by adjoining all roots of unity of order prime to q.

We also have

�1(� B4?/ ,Z/2) −→ �1( B4?? / ?,Z/2)

the unramified (with respect to ?) elements of �1(� B4?/ ,Z/2) correspond to the index

2 subgroups � such that

� −→ � B4?/ −→ Z/2

factors through � 
B4?,DA
? / ? ( B4?,DA? will be denoted by  DA? for simplicity)

Suppose there existed some index 2 subgroup � acts on  
B4?
? that moves

√
5 where

? = ( 5 ) ≠ (6). We know that � 
B4?
? / ? only permutes the F̄@ part of F@ ((C)) [`

′ (F̄@)]. This

would imply that one can find f ∈ �2 (which should be sent to -1) that fixes FB4?@ such that

f |√
5
= −

√
5 , then we would have f | DA? = 83 but f −→ −1 through the composition with

� DA? / ? −→ Z/2. Therefore, in order to be unramified at ? = ( 5 ), G? has to be the index 2

subgroup that fixes
√
5 .

As G? is induced from G ∈ �1(� B4?/ ,Z/2), this deduces that G also has to fix every√
5 but √6. The above argument also shows that such G is allowed to move the F@2 part of

(F@ (C))B4?.

To summarize, this shows

|�1
Π(� B4?/ ,Z/2) | = 4

given our choice of " = {(6),∞}, so Lemma 3.1 holds in our case. (∞ here corresponds to

the local field F@ (( 1C )) which only admits unramified quadratic extension F@2 (( 1C )), so those

4 elements except for the identity all ramify at ∞)
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Here is another lemma in Cassels’s proof that we need to recover for our case:

Lemma 3.5. Under the above settings and conditions, there is a finite set of valuations Π1

of  = F@ (C) such that the obvious maps

�1
Π( B4?/ ,Δ 9 ) −→

∏
?∈Π

�1( B4?? / ?,Δ 9 ) (3.3.2)

are injections for any finite set Π of valuations containing Π1.

Since � ? acts trivially on Δ 9 ' ±1, we have

�1( B4?? / ?,Z/2) ' (F@ (C))∗?/(F@ (C))2?

Then based on the preceding calculation of �1
Π
( B4?? / ?,Z/2), we have that

�1
Π( 

B4?
? / ?,Z/2) '  Π/ 2

Π

where  Π consists of elements of (F@ (C))∗ that are units outside Π, which are basically

characterized by
√
51 · 5: with 58 ∈ Π. But it is a well-known fact that

 Π/ 2
Π −→ ( )∗?/( )2?

is an injection if and only if the set Π is large enough.

3.4 Proof of theorem 3.2

This is a function field version of Cassels’s proof, the original statement was made on the

number field case. As we have discussed, the calculation in our case is simpler because the

kernel of the 2-isogeny has trivial Galois action.

Proof. Let Π be a finite set of valuations on  which contains all the infinite valuations, all

the valuations where either �1 or �2 or the isogenies E1, E2 have a bad reduction, and which

is large enough so that the conclusions of above Lemmas 3.1 and 3.2 hold. Let

� 9 =
∏
?∈Π

�1(� ? ,Δ 9 )
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and let ! 9 be the image of �1
Π
( B4?/ ,Δ 9 ) −→

∏
?∈Π

�1( B4?? / ?,Δ 9 ). Then

! 9 ' �1
Π(� ,Δ 9 )

by Lemma 3.2. Let

# 9 =
∏
?∈Π

"
9
? ⊂ � 9

where "1
? (resp. "2

?) is the image of �2?/E1�1? (resp. �1?/E2�2?) in �1(� ? ,Δ1) (resp.

�1(� ? ,Δ2)). By the definition of the Selmer group, we have

( 9 = ! 9 ∩ # 9

Now recall that the canonical pairing of Δ1, Δ2 with values in ±1 gives rise to a duality

�1(� ? ,Δ1) ⊗ �1(� ? ,Δ2) −→ �2(� ? ,±1) −→ Q/Z (3.4.1)

say

b% ⊗ `? −→ _? (b?, `?) ∈ Q/Z

where the first map is a cup-product and the second is taking the invariant map. Further

_? (b?, `?) = 1(b? ∈ "1
? , `? ∈ "2

?) (3.4.2)

We note that the existence of the duality (4.1) implies that

|�1(� ? ,Δ1) | = |�1(� ? ,Δ2) |

(We’ve actually computed that in our specific case, they are both equal to 4) and so

|�1 | = |�2 |

We now define a duality between �1 and �2 by putting

Λ(b̄, ¯̀) =
∏
?∈Π

_? (b?, `?)
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where

b̄ = {b?}?∈Π ∈ �1, ¯̀ = {`?}?∈Π ∈ �2.

Further we have

Λ(b̄, ¯̀) = 0

for b̄ ∈ #1, ¯̀ ∈ #2 because of (4.2), and also for b̄ ∈ !1, ¯̀ ∈ !2 because then the local

cup-products in (4.1) are the localization of a global cup-product, and the sum of the local

invariants of an element of the global �2(� ,±1) is zero. (class field theory holds for the

entirety of global fields, so the same argument holds for our case) This then implies that

Λ(b̄, ¯̀) = 0

for b̄ ∈ #1 ∩ !1 and ¯̀ ∈ #2 ∪ !2, where #2 ∪ !2 is the subgroup of �2 generated by #2 and

!2, and so

|#1 ∩ !1 | |#2 ∪ !2 | ≤ |�1 | = |�2 |

because Λ is non-degenerate. On the other hand

|#2 ∩ !2 | |#2 ∪ !2 | = |#2 | |!2 |

so by taking the quotient of the above two formulas, we get

|(1 |
|(2 |
≤ |�2 |
|#2 | |!2 |

where we are able to compute the RHS. by definition

|�2 |
|#2 |

=
∏
?∈Π

�1(� ? ,Δ2)
"2
?

where "2
? = im(�1?/E2�2?), and then using the exact sequence

0 −→ �1?/E2�2? −→ �1(� ? ,Δ2) −→ (,�2?)E2 −→ 0

we get that
|�2 |
|#2 |

=
∏
?∈Π
| (,�2?)E2 |
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And |!2 | = |�1
Π
(� ,Δ2) | = 2% by lemma 3.1. All these combined would imply that

|(1 |
|(2 |
≥

∏
?∈Π

2

| (,�1?)E1 |

By switching the index 1 and 2, we also have

|(1 |
|(2 |
≤

∏
?∈Π

2

| (,�2?)E2 |

In our specific case, we could show that | (,�2?)E2 | | (,�1?)12 | = 4 as this is equivalent to

show

|
�1(� ? ,Δ1)
�2?/E1�1?

| |
�1(� ? ,Δ2)
�1?/E1�2?

| = 4

i.e.

|�2?/E1�1? | |�1?/E1�2? | = 4

there are only 4 cases out there which depend on whether elliptic curves �1 (resp. �2)

have 2 or 4  ?-rational 2 torsion points. We can show that in the cases where �1( ?) [2] '

�2( ?) [2] (either Z/2 or Z/2 × Z/2) then |�2?/E1�1? | = |�1?/E1�2? | = 2 while in the cases

�1( ?) [2] ≠ �2( ?) [2] �

3.5 Compute �1
E2
( ?,Δ2)

We have shown so far that under our setting, we have

T(�2/�1) :=
(2

(1
=

∏
?

1

2
|�1

E2
( ?,Δ2) |

To use this formula for explicit computation which we will give in the next section to

prove theorem 1.1, we examine exactly the size of 1
2 |�

1
E2
( ?,Δ2) |. To this end, we need the

following lemma of Klagsbrun:

Lemma 3.6. Suppose � has good reduction at a prime E away from 2 and �/ is a

quadratic extension ramified at E. Then �� ( E) contains no points of order 4. It follows

that �1
5
( E, �� [2]) is the image of �� ( E) [2] under the Kummer map.
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Proof. This directly follows from [Kla17, Lemma 2.6] which is in the number field version. �

Lemma 3.7.

T(�2/�1) :=
(2

(1
=

∏
?

1

2
|�1

E2
( ?,Δ2) | =

∏
?

2? (� 5 )
2? (�′5 )

Proof. First of all, we show that for most ? ∈  , 1
2 |�

1
E2
( ?,Δ2(�′5 )) | =

2? (� 5 )
2? (� ′5 )

, where 2? (�)

is the Tamagawa number at prime ?. This can be checked through direct computation. For

convenience, assume that we are checking this only for the case where (Δ�Δ� ′, 5 ) = 1 and

for ? | 5 .

In this case, we have good reduction at those primes. Subsequently we can apply lemma

5.1. and in particular we have that � 5 ( ?) has no point of order 4.

Notice that 1
2 |�

1
E2
( ?,Δ2(�′5 )) | is equal to the following by definition

�′5 ( ?)/E1(� 5 ( ?)) = �′5 ( ?) [2
∞]/E1(� 5 ( ?) [2∞])

as E1 : � −→ �′ is a 2-isogeny. While the fact that � 5 ( ?) and �′5 ( ?) have no point of

order 4 deduces

�′5 ( ?) [2
∞]/E1(� 5 ( ?) [2∞]) = �′5 ( ?) [2]/E1(� 5 ( ?) [2])

Notice that the quadratic twist � 5 can be explicitly written into the formula H2 = G3 +

� 5 ·G2+� 5 2 ·G = G(G2+� 5 ·G+� 5 2). We have � 5 ( ?) [2] ' Z/2×Z/2 equivalent to the cubic

G(G2 + � 5 · G + � 5 2) has all its root in  ? which happens if and only if (
Δ� 5

?
) = ( �2−4�

?
) = 1.

One can explicitly compute the Tamagawa number 2? (� 5 ) of � 5 and check that for such

curve H2 = G3 + � 5 · G2 + � 5 2 · G, we have (
Δ� 5

?
) = ( �2−4�

?
) = 1 if and only if 2? (� 5 ) = 4.

Therefore, we have

1

2
|�1

E2
( ?,Δ2(�′5 )) | = �

′
5 ( ?)/E1(� 5 ( ?)) = �′5 ( ?) [2]/E1(� 5 ( ?) [2]) =

2? (� 5 )
2? (�′5 )

and this completes the proof �
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3.6 Proof of the main theorem

We recall the notations that will be used in this proof: Elliptic curve � : H2 = G3+�G2+�G

is defined over  = F@ (C) and we have a 2-isogeny E1 : � −→ �′, where �′ : H2 = G3 − 2�G +

(�2 − 4�)G, is the dual of � . The Tamagawa factor is defined as follows:

) (�′/�) :=
(2

(1
=

∏
?∈ 

2? (�′)
2? (�)

where ? are places of  and 2? (�) denotes the Tamagawa number of � at place ?. Explicitly

2? (�) is given by the following ratio |� ( ?) |/|�0( ?) | where  ? denotes the local field of  

at prime ?.

We denote by � 5 a quadratic twist of � with 5 (C) being a square free polynomial that

belongs to  . � 5 has an explicit Weierstrass equation:

5 H2 = G3 + �G2 + �G

Notice 2? (� 5 ) = 1 at all places that � 5 has a good reduction, so we only need to count

those primes ? where ? either divides Δ(� 5 ) or Δ(�′5 ). We can compute explicitly that

Δ(� 5 ) = 16�2(�2 − 4�) · 5 6 and Δ(�′
5
) = 16�(�2 − 4�)2 · 5 6.

We define � ( , -) := {square free 5 ∈  : deg(f) < X} and assume that � has � ( ) '

Z/2Z that does not have a cyclic isogeny defined over  (� [2]).

We show that as 5 varies through all square free polynomials in  , at least half of the

quadratic twists of � have arbitrarily large Tamagawa factor. i.e. for any fixed r, we have

lim inf
-→∞

|{sqaure free 5 ∈ � ( , -): ) (�′
5
/� 5 ) ≥ A |

|� ( , -) | ≥ 1

2

Proof. It suffices to prove the claim for a subset of � ( , -) which consists of all polynomials

5 with ( 5 ,ΔΔ′) = 1. Because for those 5 such that ( 5 ,ΔΔ′) = ?(C) where ?(C) ≠ 1 is some

fixed square free polynomial, it would be equivalent to prove the coprime version of the

statement for alternative elliptic curves �? and �′?.(Notice the real condition that the later

proof relies upon is that Δ�Δ� ′ is a non-square polynomial in K, and this would be preserved

by Δ�?Δ� ′?)
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From this point on, we slightly abuse the notation � ( , -) to refer to the collection of

all square free polynomials 5 ∈  such that ( 5 ,Δ�Δ� ′) = 1. A computation of Tamagawa

factors using Tate’s algorithm shows that for all ? | 5 , we have

�? =


4 if ( �2−4�

?
) = (Δ�

?
) = 1

2 if (Δ�
?
) = −1

There are only finitely many ? that divides Δ�Δ� ′ and each of them is universally bounded

by some fixed constant through the entire quadratic twist family, so we can simplify and

rewrite ) (�′
5
/� 5 ) into:

) (�′5 /� 5 ) =
∏
? | 5

2? (�′5 )
2? (� 5 )

+ O(1)

If we could show that Theorem 5.1 is true for
∏
? | 5

2? (� ′5 )
2? (� 5 ) , then it would also hold for ) (�′

5
/� 5 )

as they only differ by some bounded constant. Define

C ( 5 ) =
∑
? | 5
;>62

2? (�′5 )
2? (� 5 )

=
∑
? | 5

(Δ
?
) − (Δ′

?
)

2

We want to show that C ( 5 ) converges to a normal distribution as the degree of 5 approaches

∞.

Define the set �# = { f | square free polynomials with deg(f) ≤ N} and endow a uniform

discrete probability on it. Define two functions on this probability space as following:

6? ( 5 ) = 1? | 5 · 1( Δ
?
)=1 · 1( Δ′

?
)=−1

ℎ? ( 5 ) = 1? | 5 · 1(Δ
?
) = −1 · 1(Δ

′

?
) = 1

Fix n > 0, for all primes ? with deg(?) ≤ n · #, we have the following estimate:

E# (6? ( 5 )) = P# (? | 5 ) =
1

@? + 1
+ O( 1

@ (1−n)#
)

Recall what we want to study here is the variance of C ( 5 ) :=
∑
?

6? ( 5 ) −
∑
?

ℎ? ( 5 ). Define

� (#) :=
∑
?<n#

6? ( 5 ) and � (#) :=
∑
?<n#

ℎ? ( 5 ). For any 5 whose degree ≤ #, it could have at
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most 1
n
prime factors with degrees ≥ n · #. Thus we have

C ( 5 ) = � (#) − � (#) + On (1)

Now we can define random variables to model the aforementioned 6? ( 5 ) and ℎ? ( 5 ):

-? =


1 with probability 1

@?+1

0 with probability @?

@?+1

if (Δ
?
) = 1 and (Δ′

?
) = −1, and likewise define

.? =


1 with probability 1

@?+1

0 with probability @?

@?+1

if (Δ
?
) = −1 and (Δ′

?
) = 1. Roughly speaking, -? is the probability of ? | 5 without the

constraint that deg(?)≤ #.

We can directly compare %(-? = G,.? = H) to %(-? = G) · %(.? = H). We get that

{-?}? ∪ {.?}? are independent except at -? = 1 and .? = 1. As {-?}? is a sequence of

independent random variables with finite expected values ∼ 1
@%

(here % is the degree of

the polynomial ?) and variance ∼ 1
@%
. Denote

∑
%≤n#

-? by -# , then Lyapunov central limit

theorem deduces that

-# −→ # (1
4
loglogN + O(1), 1

4
loglogN + O(1)) + O(1)

The same argument also applies to .# =
∑
%≤n#

.?.

The reason that we could use -# and .# to model �# and �# is that they would finally

approach the same distribution as # −→ ∞. By method of moments, it suffices to check

that the mixed moments of � (#) and � (#) converge to those of -# and .# . We have by

construction:

E# (�:
#�

:
# ) =

∑
%1···%:≤n#
@1···@:≤n#

P# (?8 | 5 and @ 9 | 5 )

= E(- :#.
:
# ) + O(

(;>6#):+;+1

@ (1−n)#
)
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from which we can compute

E# ((�# −E# (�# )): (�# −E# (�# ));) = E((-# −E# (-# )): (.# −E# (.# ));) + O(
(;>6#):+;+1

@ (1−n)#
)

This shows that the distribution �# −→ -# and �# −→ .# as # approaches ∞.

Hence we can conclude that C# := ;>62((2/(1) = �#−�# eventually converges to a normal

distribution # (O(1), 1
2 loglog#) which implies that P(C ( 5 ) ≥ A) −→ 1

2 as # approaches ∞ for

any fixed constant A as claimed.

�
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