

Township 43 north, ranges 30, 31, and 32 west, specimens 31905-31988. No. 272 Oct 27 1891

Finlay, J. R.

[s.l.]: [s.n.], Oct 27 1891

<https://digital.library.wisc.edu/1711.dl/HC2SPRCFDUU459D>

<http://rightsstatements.org/vocab/InC/1.0/>

For information on re-use see:

<http://digital.library.wisc.edu/1711.dl/Copyright>

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

LAKE SUPERIOR SURVEY

In dist.

LAKE SUPERIOR SURVEY. INSTRUCTIONS.

Topography.—On the left-hand page map as much of the section as has actually been seen, counting each of the spaces between the blue lines as 100 paces, and 20 of these spaces to one mile, or 2,000 paces. The scale is four inches to the mile, and the heavier blue lines, outlining one inch squares, mark forties. Denote streams, lakes, swamps, marshes, etc., by the topographical signs annexed.

The geologist will consult with the compassman, and describe as accurately as possible, the timber traversed. When pine is found, give its proportion; tell whether good or poor, and indicate kind—white, norway, jack. If hemlock is found, note the relative amount. In hard wood districts, designate as good or poor, heavy or light, and indicate predominant kinds, oak, maple, birch, etc. Cedar swamps, spruce swamps, tamarack swamps and meadow swamps will be always discriminated. Outline burnt timber.

Each day, just before leaving camp, the geologist will compare his own and the camp aneroids, and the reading of each, with time, will be recorded. At work the aneroid will be read on gentle slopes at intervals of 200 paces; on steeper slopes at intervals of 100 paces; also at all maxima and minima. When minima are streams the map and notes will indicate this, showing width and character of streams. When a stream has made a cut of importance, aneroid readings will be made where the banks break off and at water level. If instead of an abrupt break, the stream valley has steep slopes, aneroid readings will be made with sufficient frequency to show this character.

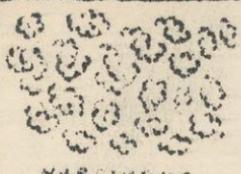
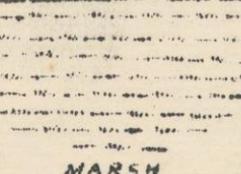
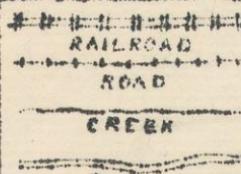
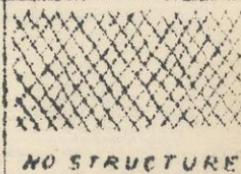
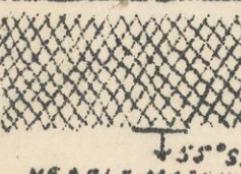
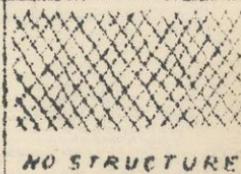
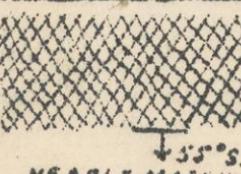
At reading points the compassman will stop, read the dial compass, and remain until the records are complete. The readings will, as fast as made, be placed upon the map at the right-hand side of the line traveled, and in the notes, the numbers being inclosed in parentheses, basing the work upon the bench-mark which served as a starting point. At bench-marks the absolute reading of the aneroid and the altitude as shown by the bench-mark will be recorded to serve as a base for subsequent readings. For instance, aneroid 29.13 inches; altitude on bench-mark, 275 feet. At each subsequent reading, by setting 275 on the altitude circle at 29.13 on the fixed dial, altitudes may be directly recorded. When the next bench-mark is found at two miles distance, the difference between the aneroid reading on the basis of the first bench-mark and the second bench-mark will be recorded. At intervals of a half hour during the day the time will be attached to the aneroid readings. Upon reaching camp, after the day's work, the geologist will record the readings of his own and the camp aneroid, and also the time. Interpolations will then be made, based upon the bench-marks and times (not distances) if the day has been one of no abnormal atmospheric disturbances, or upon both bench-marks and camp aneroid readings if there have been unusual disturbances, and the corrected numbers, less a constant of 4 feet, will be placed upon the face of the map at the left-hand side of the lines of travel, and in the notes without parentheses, but the parentheses numbers will not be erased.

At each aneroid reading the trend of a horizontal contour line will be indicated upon the face of the map, making the length of the line correspond as nearly as may be with the actual distance seen. In passing directly up or down a slope, the contour lines will be at right angles to the direction of travel. In passing up a hill diagonally the contour lines will intersect the lines of travel at various angles, which can be estimated and plotted with sufficient accuracy by an appreciation of the north and south direction.

The course of travel will be always north and south. In starting from a quarter or a sixteenth post, the work will be plotted on the assumption that the true course is followed, but upon reaching the next section line the geologist will remain in the position at which the line is struck by the compassman until the latter finds the adjacent bench-mark. The intervening distance will then be paced by the compassman, and the point of intersection of the section line marked. From this point to the starting-point, a right line will be drawn as the actual course of travel. The positions of the contour lines, aneroid readings, etc., will not be changed.

Geology. — In running the north and south lines, the compassman will, if possible, determine the course by the dial compass. At the time the geologist reads his aneroid, the compassman will determine the magnetic variation, which will be given to the geologist and recorded in the note-book. Each morning the watch of the compassman will be set to apparent time (corrections being made for the equation of time and for longitude), so that he will need to make no correction in reading magnetic variation. On cloudy days, and at times when the sun is too low for the use of the dial compass, the course run will be by needle upon the supposition that the magnetic variations indicated on the township plats are right when corrected by deducting 3° if the variation is east, or by adding the same amount if the variation is west.

Not less than once per week the accuracy of the watch of the geologist in charge of a party (who will give time each morning to the compassmen), will be tested. This may be done, first, by obtaining correct time from a railway station by means of a pacer when sent out for provisions. Such time will be mean, i. e., watch time for the ninetieth meridian. Second, corrected time may be found by blazing out a north and south section line, preferably a range line, for some distance, setting a signal on the line and placing the dial compass duly leveled, in a north and south direction upon a Jacob's-staff just before mid-day, and setting the watch at 12 at the time the line strikes the noon hour. In a watch thus set all corrections are made.








It will be the constant business of the geologist to search for outcrops. All hills within a reasonable distance of the course of travel will be examined. Oftentimes upon the steeper slopes of a hill a rock surface is covered with a coating a few inches thick of moss, leaves or vegetable mold and can be stripped with the pick. Where the exposure is small and there is the least possibility that it may be a large boulder, indicate this fact in the notes and by a query on the map. All ledges off the line of travel of the compassman will be located by the geologist pacing to this line in an east and west direction, his course being determined by compass.

Denote the ledges of rock, when no structure is made out, by cross-hatching, making the cross-hatching cover as nearly as possible the areas occupied by the exposures. If the rock is a massive one, but still more or less plainly bedded, use the same sign with a dip arrow and number attached, showing the direction and amount of the dip. Denote a shaly or other very plainly bedded ledge by right parallel lines, and a ledge having a secondary structure by wavy parallel lines running in the direction of the strike, having strike line and dip arrow with numbers attached. The greatest care must be taken to avoid confusing slaty or schistose structure, with bedding, and in all cases where there is the least doubt about the true bedding direction, indicate it by a query.

To each exposure on the face of the map, attach the number of the specimens representing it. On the right hand page place the notes descriptive of the exposures. Begin in each case with the number of the specimen, placing the number on the left hand side of the red line, after which give in order on the right of the same red line, the position of the ledges as reckoned in paces from the southeast corner of the section, and the dip and strike when observable, for instance, No. 437, 1226, N., 353 W., Strike, N. 47° E., Dip, 68° S. E. Then follow with as full a description of the ledge as possible.

Collect a specimen from every ledge, and if the ledge exposes different kinds of rock, collect a specimen of all varieties. Take care to get fresh material, unless for a special purpose the weathered surface is desired. Where ledges are infrequent the normal size of specimens will be $3 \times 4 \times 1$ inch. In case several specimens of the same ledge are necessary, and when ledges are numerous, specimens $2 \times 2 \frac{1}{2} \times 3 \frac{3}{4}$ inch will be allowed. In all cases collect chips for slicing. No two specimens will be given the same number. In the cases in which several specimens come from the same ledge, the different numbers assigned to them will enable an easy description of their relations. Specimens will be placed at once in paper bags provided, upon which shall be marked in at least two places, with a blue or red pencil, the specimen number.

TOPOGRAPHICAL SIGNS.

<p>PINE OR HEMLOCK HARDWOOD</p>	<p>HARDWOOD</p>	<p>PINE OR HEMLOCK AND HARDWOOD</p>	<p>CEDAR SWAMP</p>
<p>SPRUCE OR TAMARACK SWAMP</p>	<p>MARSH</p>	<p>RAILROAD ROAD CREEK RIVER</p>	<p>NO STRUCTURE</p>
<p>NEARLY MASSIVE</p>	<p>SHALY OR BEDDED</p>	<p>SECONDARY STRUCTURE.</p>	<p>783°</p>
<p>55° S.</p>	<p>3.62° E.</p>	<p>783°</p>	

EQUATION OF TIME FOR 1891.

Day	Min.	Day	Min.	Day	Min.
-----	------	-----	------	-----	------

JUNE.

Add to watch time.

1-6	2	7-11	1	12-16	0
Subtract from watch time.					
17-21	1	22-26	2	27-31	3

JULY.

Subtract from watch time.

1-6	4	7-13	5	14-31	6
-----	---	------	---	-------	---

AUGUST.

Subtract from watch time.

1-7	6	8-13	5	14-18	4
19-23	3	24-26	2	27-29	1
30-31	0				

262

SEPTEMBER.

Add to watch time.

1- 2	0	3- 5	1	6- 8	2
9-11	3	12-14	4	15-17	5
18-19	6	20-22	7	23-25	8
26-28	9	29-30	10		

OCTOBER.

Add to watch time.

1	10	2- 4	11	5- 8	12
9-12	13	13-16	14	17-22	15
23-31	16				

NOVEMBER.

Add to watch time.

1-13	16	14-19	15	20-23	14
24-26	13	27-29	12	30	11

1
Geological and Topographical
Notes

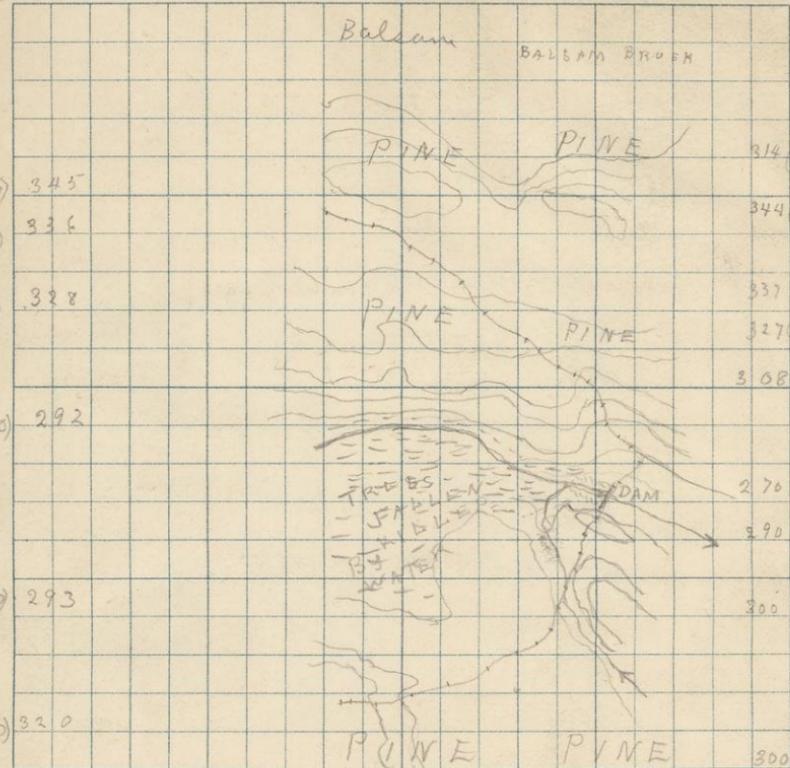
by J. R. Finlay

No. 4.

SPECIMENS: 1905-1929

TOWNS 43-30
43-31
43-32

2 Oct 27th 1891


S. 13

T. K3

R. 30

395

345-

↑
W $\frac{1}{8}$ line

↓
 $\frac{1}{4}$ line

Going S on $\frac{1}{4}$ line Sec 13

3

B. M. 332.7 400 ft = 2.91 m

8.13 A.M.

Balsam

400 (310) Edge of fine Pine grove

540 (340) "

740 (330) Very heavy Pine

1000 (300) 9 A.M. Supply Road. Pine

" 1280 (240) Ford. River. Logging road crosses stream on a dam which is made about 40 paces E of $\frac{1}{4}$ line.

1400 (280) very heavy Pine

1600 (290) " " "

1770 (270) Small stream flowing N. W.

2000 (285) Sec line Heavy Pine.

Going N on $W\frac{1}{8}$ line Sec 13.

100 large Pines

200 Supply road " "

900 Ford River

1000 3.30 P.M.

1390 (380) Supply road Heavy Pine

2000 (375) 4.05. Balsam Brush

B. M. 344.89.

Going S on $\frac{1}{4}$ line Sec 24

5

9.35 A.M.

D. Edge of cedar swamp

120 Edge of Pine

500 (320)

Pine

800 (330)

Pine "

1000 (300) \$0.05 A.M. Edge of Cedar Swamp

1500 (320)

Pine.

2000 (360) B.M. 379.91, 10.40 A.M.

Going N on W $\frac{1}{8}$ line Sec 24

B.M. 320. 14. 1100 = 28. 3

1.20 P.M. Pine, spruce, cedar, balsam

600 (340)

Pine

1000 (350) 1.48 P.M.

1200 (360)

"

1500 (350)

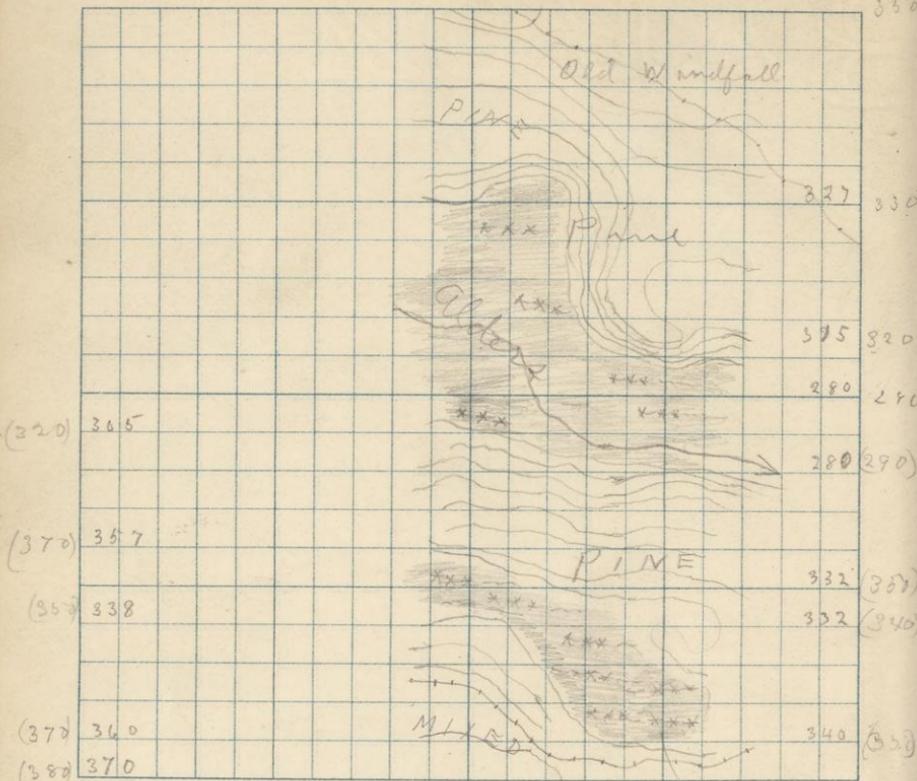
Cedar Swamp

1800 (370)

Pine Ridge

2000 (380) Sec line. Hardwood

2.20 P.M.


6

Oct 28th 1891

S. 14

T. 43

R. 30

↑
E $\frac{1}{8}$ line

Young S on E line Sec 14

7

B. M. 351.35 1000 = 28.1

200 supply road. Pine

500 (330) Pine

1000 (290) Cedar swamp mixed fallen

1800 (350) Hardwood, hemlock, pine,

1950 Supply road Hardwood

2000 (370) Hardwood, hemlock, pine

8. 45 A.M.

- Young N on E & line Sec 14.

0. (380) 8.50 A.M. Hardwood, hemlock, pine

100 (370)

254 Supply road. Heavy Pine.

425 (350) Cedar swamp

600 (370) Pine ridge

900 (320) very Fine Pine

1000 (305) 9.20 A.M. Cedar swamp

1500 (320) Edge of Pine timber,

2000 (385) B. M. 343.28 10. A.M.

8

Oct 27th 1891

S. 23

T. 43

R. 30

390

377

380 348

365

(380)

350 340

343

(380)

372

(340)

(360) 353

340

(340)

360 344

350

(370)

(360) 356

(340) 357

(340) 338

(350) 348

(380) 379

394

PINE

Young S on E line Sec. 23

9

- 0 (380) Hardwood
200 Hemlock, Hardwood Pine
1000 (360) 12.40 P.M. Hemlock and Pine
1700 (350) alders. Small stream
2000 (370) B.M. 344. 92 Cedar swamp
1.04 P.M.

- Young N on E $\frac{1}{2}$ line 11 A.M.

B.M. 393.85 500 = 29. in

Hardwood

- 200 (380) " Supply road
340 (350) Logging Railroad Narrow Gauge
420 (340) Stream flowing E.
500 (340) Logging railroad.
600 (360)
1000 (360) 11.35 A.M.
2000 (390) 12.04 P.M. Hardwood and Pine

10 Oct 28th 1891

S. 15

T. 43

R. 30

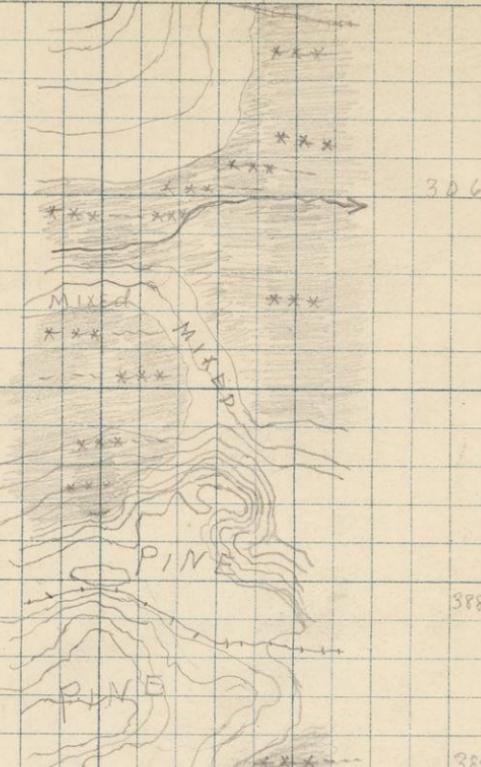
(370) 350

(350) 330

(320) 304

314

330


(390) 377

(400) 388

(390) 378

(430) 420

(420) 410

↑
 $\frac{1}{8}$ line
w $\frac{1}{8}$ line

↓
 $\frac{1}{4}$ line

Going S on $\frac{1}{4}$ line Sec 15 11.15 AM 11

13. M. 315.20 1400 ft = 27.9 in

Cedar swamp

30 Main logging road.

450 Pine grove in swamp

500 Ford river. Here a shallow
swift stream. The boulders along
it are composed mostly of
reddish and bluish limestones,
mottled quartzites and small
fragments of greenstones.

1000 (315) 11.45 Cedar swamp.

1200 (340) Fine Pine grove

1400 (400) Pine

1670 (380) Supply road

2000 (400) 12.15 P.M. Cedar swamp

Going N on W & line Sec 15

200 (430) Hardwood

400 (390) Supply road Pine

600

11

650 (360) Cedar swamp

1000 (340) 2.58 P.M.

11 11

1362 (320) Ford River

1800 (350) Old chopping

2000 (370) B.M. 350, 3.40 P.M. Pine

12

Oct 28th 1891

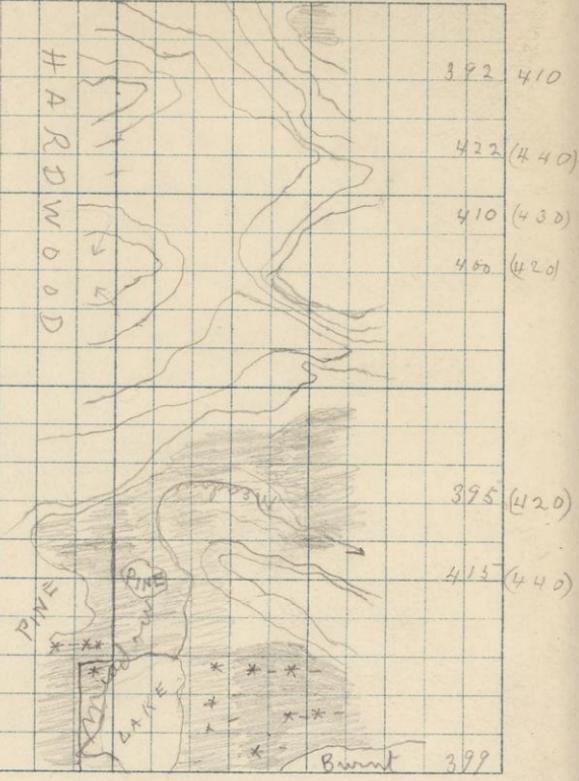
S. 22

T. 43

R. 80

(420) 410

(43) 441


(430) 423

(440) 432

(410) 403-

(400) 395

(393)

↑
W $\frac{1}{8}$ line ↓
L $\frac{1}{4}$ line

Going S on $\frac{1}{4}$ line Sec 22

13

- 200 (410) Hemlock and Hardwood
400 (440) "
570 (430) Large Pines
700 (420) Hardwood
850 (450) Fine Hardwood
1000 (434) 12:40 P.M. Hemlock and Pine
1300 (420) Dry swamp with Pine
1500 (440) Fine Pine Grove.
1700 (426) Tamarack Swamp.
2000 (430) Burnt Pine land 1:10 P.M.
B.M. 399.31

Going N on W $\frac{1}{8}$ line Sec 22

B.M. 393.5 100 = 29 in 1:40 P.M.

- open swamp with lake
700 (400) edge of Pine Timber
1000 (410) 2.05 P.M. Fine Pine
1300 (440) Hardwood
1450 (430) "
1950 (450)
2000 (420) 9:30 P.M. "

14

Oct 29th 1891

S. 14

T. 43

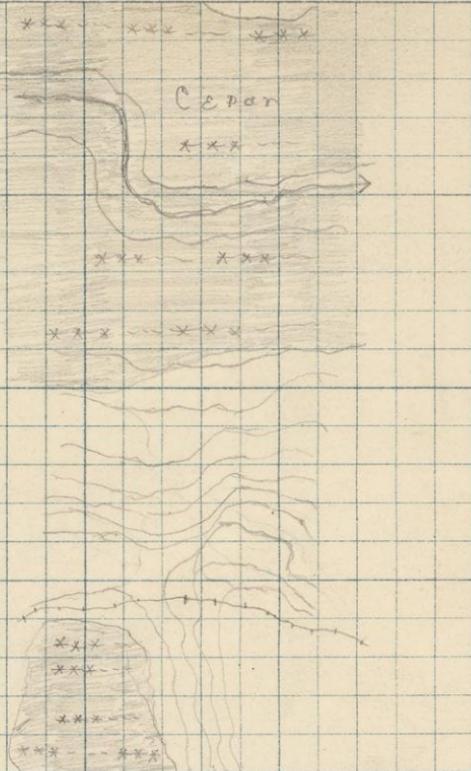
R. 30

(370) 320

(360) 310

(350) 302

370 333


400 365

(420) 390

(410) 380

(410) 382

420 385

↑
E & line

↓
see line

Going Son E line Sec 14 8.11 A.M.

15

B.M. 325.69 12.00 = 27.7 in

115 Main logging road. Cedar swamp
500 (300) Ford river

900 (320) Edge of Pine timber

1000 (330) 8.40 A.M. Old chopping

1420 (390) Hardwood and Pine

1600 (410) Fair Hardwood

1700 Supply road

2000 (420) 9. A.M. Hardwood

- Going Non E & line Sec 14

300 (410) Cedar swamp

440 (410) Supply road

500 (420) Hardwood

750 (400)

1000 (370) 11.25 A.M. Pine

1750 (360) Ford River

1900 (340) Main logging road

2000 (370) 12. M. Cedar swamp

B.M. 320.81.

16 Oct 29th 1891

S. 21

T. 43

R. 30

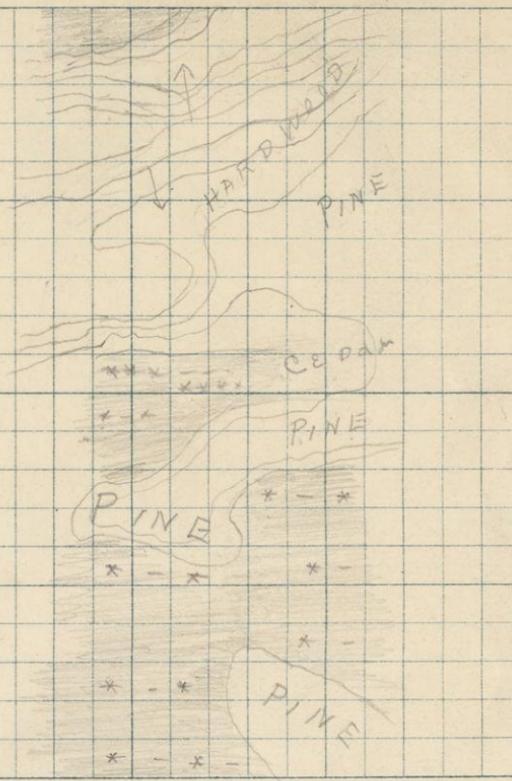
(410) 385

(420) 395

450 480

(430) 412

(420) 415


(420) 327

(420) 388

(400) 393

460

460

↑
E $\frac{1}{8}$ line

↓
See line

Going S on E line Sec 21 17

- 200 (420) Board timber Pine and fine Birch
450 (400) Edge of Pine and Hardwood
700 (400) Heavy Pine.
900 (400) Very fine Cedar
1000 (400) 9.22 A.M. "
1900 (390) Pine thong
2000 (390) 9.40 A.M. " "

Going N on E 8 line Sec 21 9.55 A.M.
B. M. 398.59. 1100 = 27.7 Tum. swamp

- 600 (400) Edge of Pine
1000 (400) Tamarack swamp 10.20 A.M.
1100 (400) Edge of Pine timber
1200 (430) Very heavy Pine
1500 (430)
1600 (450) Heavy Hardwood
1900 (420) Edge of swamp
2000 (410) 10.45 A.M. Cedar swamp

18

Oct 29th 1891

S. 17

T. 43

R. 30

(390)

374

385

(393)

374

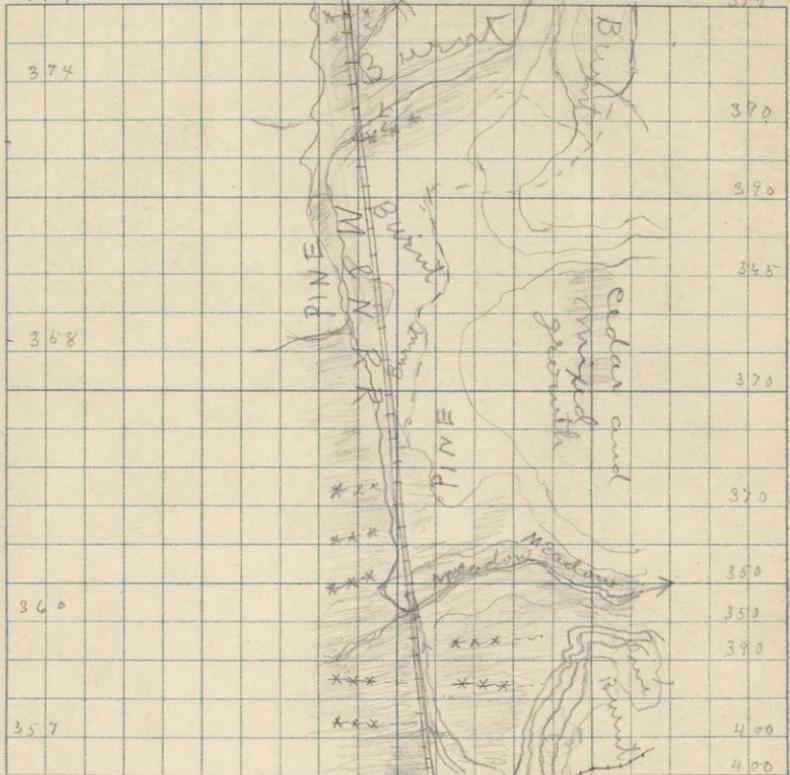
390

(378)

368

370

(370)


360

370

(365)

357

360

W $\frac{1}{4}$ line

1/4 line

Going S on $\frac{1}{4}$ line Sec 17

19

B.M. 395.15. 1.45 P.M. 500 ft. = 28.4

Burnt Timber

300 (390) Hemlock

500 (390) Hemlock, Cedar, and Pine.

700 (365) Cedar swamp

1000 (370) (2.05) Pine, balsam and cedar

1300 (370) cedar and balsam

1500 (360) Sluggish stream and meadow

1600 (350) Edge of Pine timber.

1700 (390) Pine ridge

1900 (400) " Partly burnt

2000 (400) 2.25 P.M. Supply road

- Going N on $\frac{1}{8}$ line

0. (36.5) Cedar swamp

100 (36.5) Dense cedar swamp

Offset 100 paces to railroad track and followed it North.

R.R. runs $N 1^{\circ} 0' W$

440 (370) Sluggish stream flowing S.W. through a meadow.

1140 (370) Pine Burnt.

1440 (380) " "

1640 Small stream flowing S.

1800 (390) Dry cedar swamp

2000 (390) Found $\frac{1}{8}$ stake 120 paces N of track

B.M. 394.04. 4.55 P.M.

20

Oct 29th 1891

S. 20

T. 43

R. 30

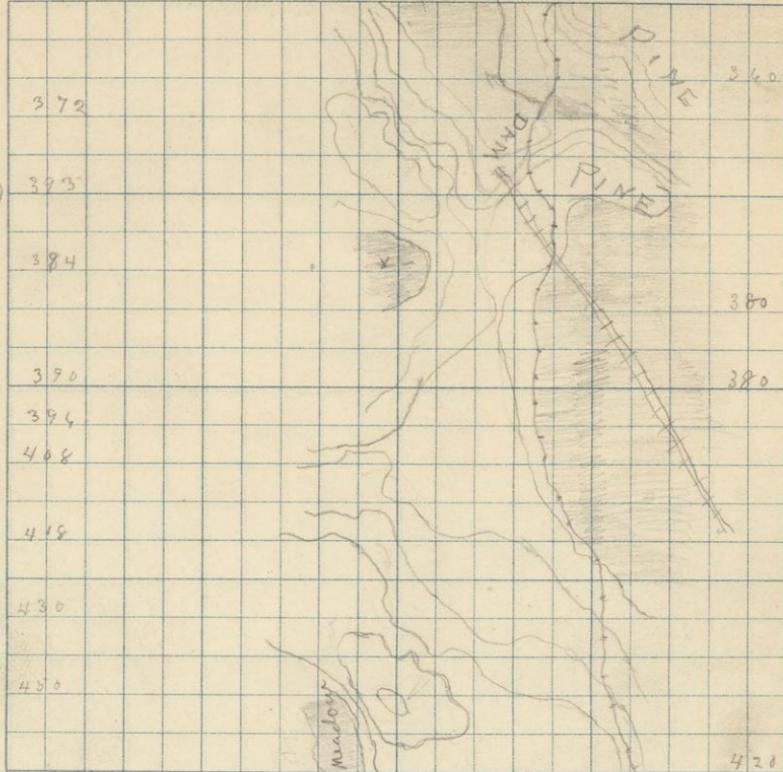
346 357

386 372

(400) 393

(380) 384

(400) 390


(400) 394

(410) 408

(420) 418

(430) 430

(450) 450

↑
W $\frac{1}{8}$ line

↓
 $\frac{1}{4}$ line

Going S on $\frac{1}{4}$ line Sec 20

21

200 (360) Swamp killed by dam

250 Stream flowing W.

300 (offset 107 E) Supply road crosses stream on dam.

800 (380) Railroad, Cedar swamp

1000 (380) 2.50 P.M. " "

2000 (420) 3.10 P.M. Hardwood + Pine
B.M. 420.90.

Going N on W $\frac{1}{8}$ line

B.M. 424.11 400 ft = 28.5 in

3.20 P.M. Hardwood, Hemlock, Pine

200 (400) Hardwood

400 (430) "

600 (420) Hardwood with large Pine.

800 (416) " " "

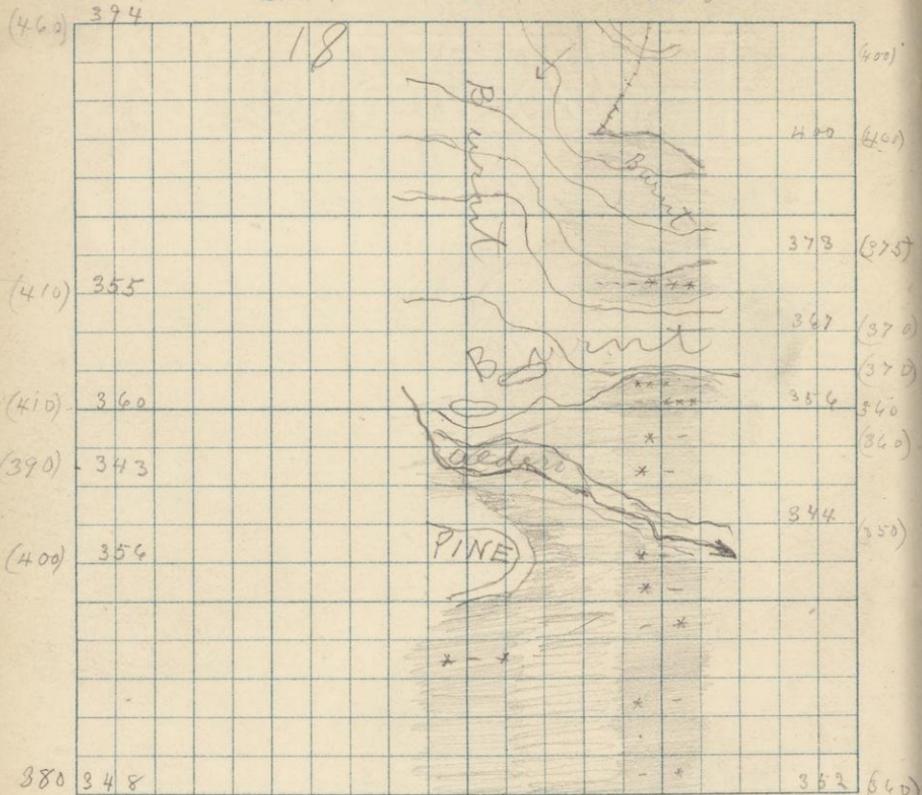
900 (400) Hemlock

1000 (400) 3.45 P.M. Hemlock and cedar with many very fine pines.

1300 (390) Tamarack swamp

1500 (400) Heavy Pine.

1700 (380) " "


2000 (365) Cedar swamp. Sec line.

22 Oct 30th 1891

S. 17

T. 43

R. 30

↑
E $\frac{1}{8}$ line

↓
see line

Going S on E line Sec 18 7.40 A.M. **23**

B.M. 423.05 400 ft = 28.4

Hardwood

300 (400) Hardwood, edge of burnt country.

600 (375) Burnt

800 (370) Old chopping

900 (370) Edge of swamp

1000 (340) 8.20 A.M. Cedar swamp

1100 (340) Tamarack swamp

1330 (350) Sluggish stream flowing E

2000 (340) 8.57 A.M. Tamarack Swamp

- Going N on E & line Sec 18,

600 (400) Scattering Pines

850 (390) Very sluggish stream, alders

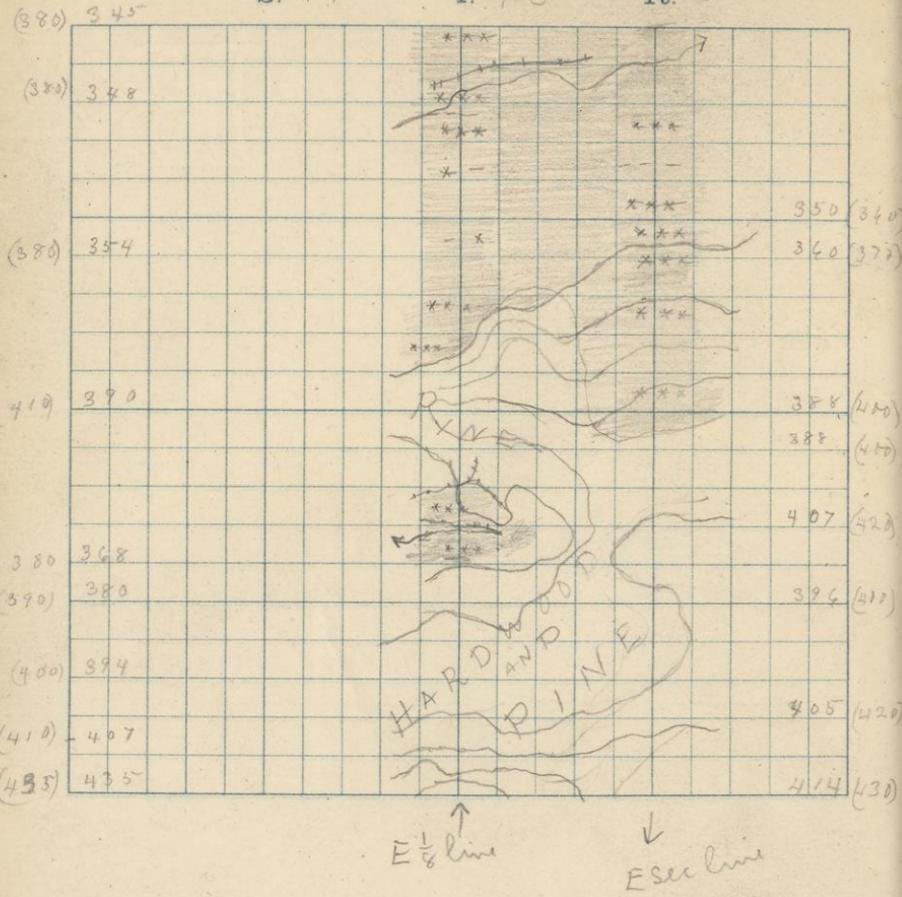
1000 (410) 1.15 P.M. Burnt timber

1300 (410) " "

1400 (410) Burnt cedar swamp,

2000 (460) " Burnt timber

B.M. 393.54 2, P.M.


24

Oct 30th 1891

S. 19

T. 43

R. 30

The contours in the cedar swamp
are not a mistake - they exist.

Going S. on E line Sec 19

25

- 84* small stream flowing E.
500 (360) cedar swamp
600 (370) fine cedar
1000 (400) 9.40 A.M. " "
1100 (400) fine hemlock and pine
1300 (420) " "
1500 (470) heavy pine
1800 (420) old chopping
2000 (430) heavy pine
B.M. 414.94 10.06 A.M.

- Going N on E $\frac{1}{2}$ line Sec 19.

B.M. 435.29 100 ft = 28.7 in.

- 10.45 A.M. Hardwood
300 (400) old chopping
500 (390) hemlock and pine
600 (380) cedar swamp.
676 (390) 11.05 A.M. Small stream flowing W
800 (400) Logging roads. The swamp here is very heavy. Contains many fine pines.
1000 (410) 11.40 A.M. Hardwood and pine.
1200 (380) cedar swamp.
1400 (380) Tamarack "
1700. Cedar
1830 (380) small stream flowing E
2000 (380) dense cedar swamp

26

Oct 31st 1891.

S. 13

T. 43

R. 3 (

(360) 424.20

10

卷之三

Map of forest area with grid lines. Labeled locations include 'Burnt', 'HARDWOOD', 'Larch', and 'PINE'. Numerical values are marked with asterisks (*):

- Top right: 414 (410)
- Top center: 406 (400)
- Top left: 430
- Center: 400 (390)
- Bottom right: 393 (380)
- Bottom left: 444
- Bottom center: 462
- Bottom right: 405
- Bottom right: 380

W $\frac{1}{8}$ line ↑

↓
 $\frac{1}{4}$ line

8
020 908

20091
0913

2182

9-282

11 009
as 93

gas'air/

Going South $\frac{1}{4}$ line Sec 13 9.10 A.M. 27

B.M. 421.10 1800 ft = 30.7 m

Hardwood

300 (410)

Burit.

700 (390) Edge of cedar swamp

850 (380) Spruce swamp

1000 (380) 9.35 A.M. Cedar swamp

2000 (370) 10.18 A.M. Edge of old chopping

- Going N on W $\frac{1}{2}$ line Sec 13.

900 (360) Small pine grove

1000 (340) 1.15 P.M. Bad windfall

1300 (380) Hardwood

2000 (340) Edge of swamp

B.M. 424.20. 2.40 P.M.

221

221 221

28

Oct 31st 1891

S. 24.

T. 43

R. 37

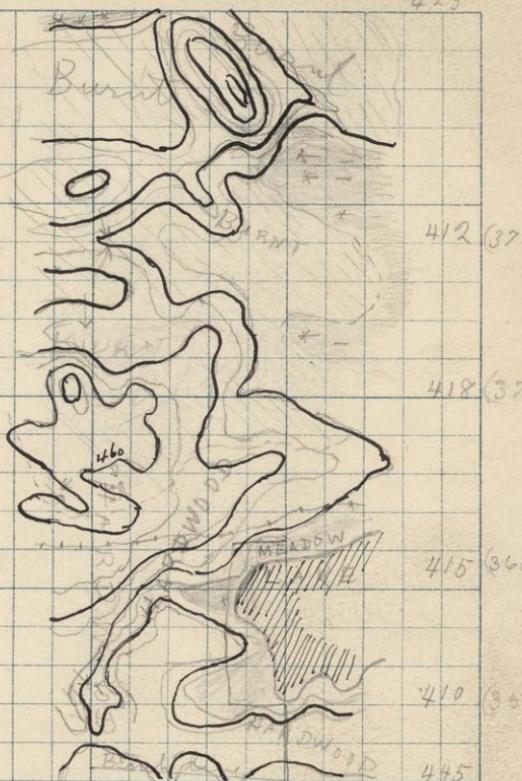
(390) 420

(430) 453

400

(430) 420

(410) 425


440 464

(440) 453

(410) 448

(420) 473

445

↑
W line

↓
E line

Going S on $\frac{1}{4}$ line Sec 24.

29

1000 (370) 10.45 A.M. Timber chopped and burnt
1200 (390) " " " "

1300 Supply road

1440 (360) Lake

1800 (350) End of lake.

2000 (380) 11.25 A.M. Hardwood
B.M. 445.33

Going N on W $\frac{1}{8}$ line Sec 24

B.M. 445.40 300 = 28.4 11.45 A.M.

Bench line is here 28 paces N of the
Section line.

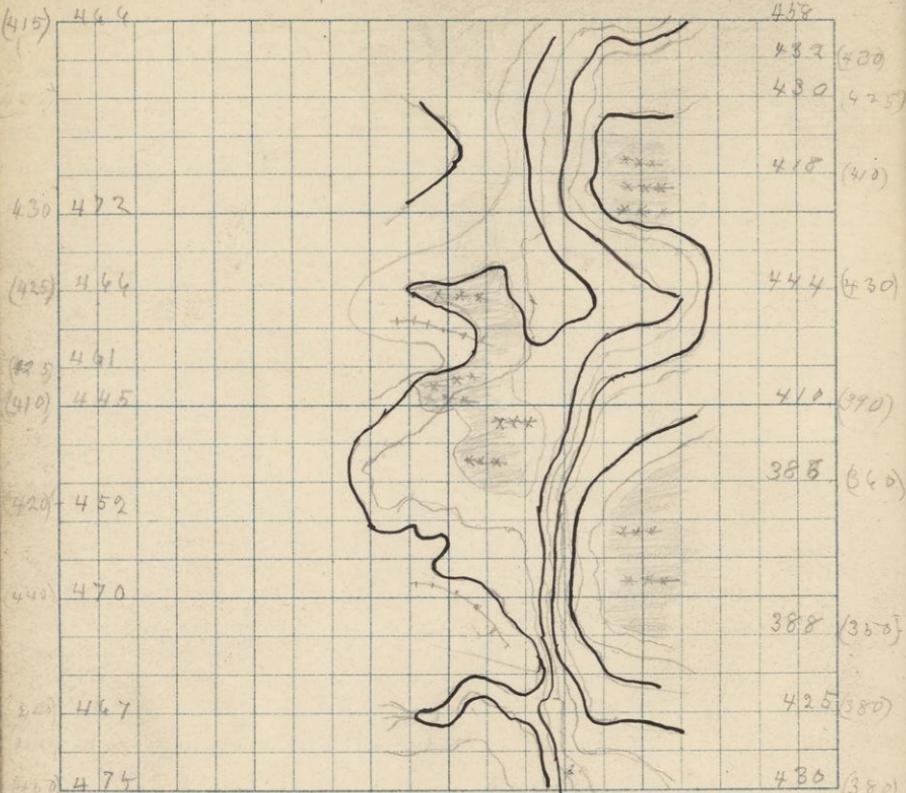
200 (420) Hardwood

610 (440) Supply road "

900 (440) Timber chopped and burnt

1000 (440) 12.25 P.M. " "

2000 (390) Stake 144 paces to the West
either the stake is set wrongly or
the variation is greater than that
given on the map. Run 1000 on
 4° then on 3° then on $2^{\circ} E$ variation.


1.10 P.M.

30 Mon 1st 1891

S. 14

T. 43

R. 31

↑
E $\frac{1}{8}$ line

↓
Sec line

Going S on E line Sec 14 8.05 A.M. 31

B.M. 457.73

600 = 28.6 in.

Hardwood

200 (425)

Heinlock

200 (430)

Hardwood

1000 (390) 8.40 A.M.

1200 (340) Cedar swamp

1800 (380) Hardwood

2000 (380) 9.30 A.M. Hardwood and Hemlock

Going N on E $\frac{1}{2}$ line Sec 14

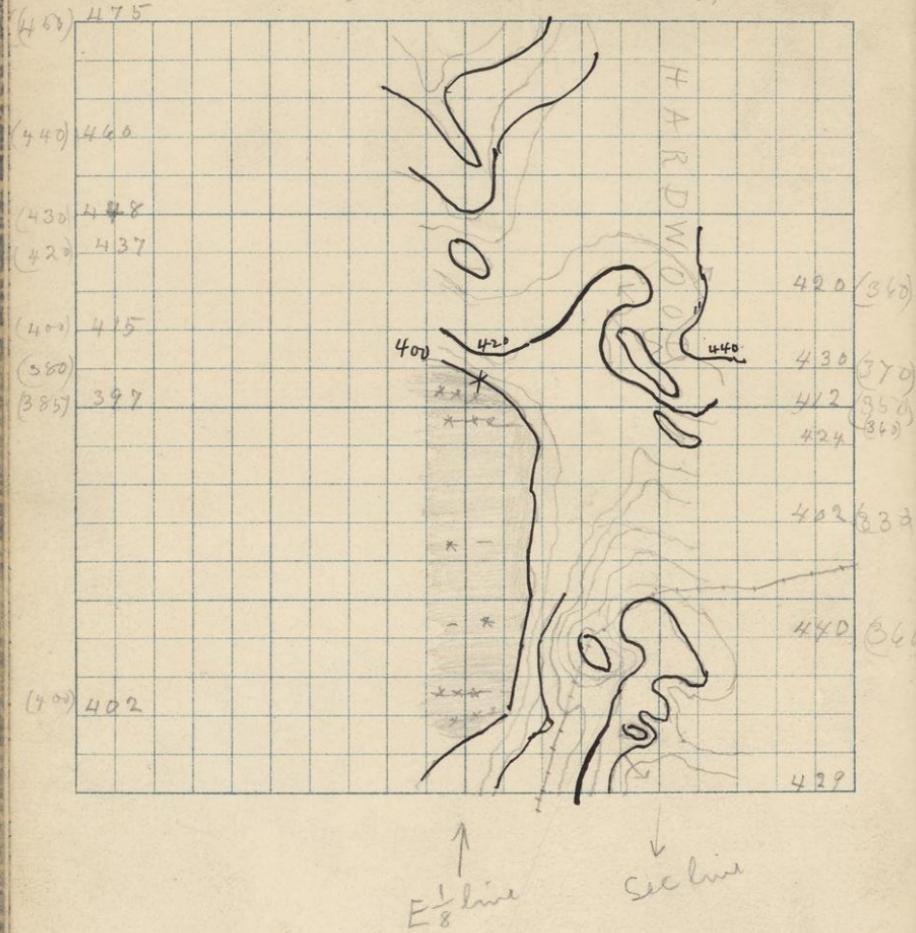
500 (440) Supply road. Hardwood & cedar

1000 (410) 12.57 P.M. Cedar swamp.

1190 (425) Supply road Hardwood

2000 (415) 1:43 P.M.

B.M. 466.41


32

Nov 1st 1891

S. 23

T. 43

R. 31

Going S on E line Sec 23

33

700 (360) Hardwood
1000 (350) 9.53 A.M. " "
1300 (330) "
1400 (340) "
2000 (330) 10.50 A.M. "
B.M. 428.61

Going N on E & line. 11.02 A.M.

B.M. 401.67. 700 = 28.6 m
1000 (385) 11.45 A.M. Cedar swank
1100 (380) Hardwood
2000 (450) Sec line. 12.24 P.M. "

Ran on 6° E variation. And concurrent
50 Paces E of Post.

34

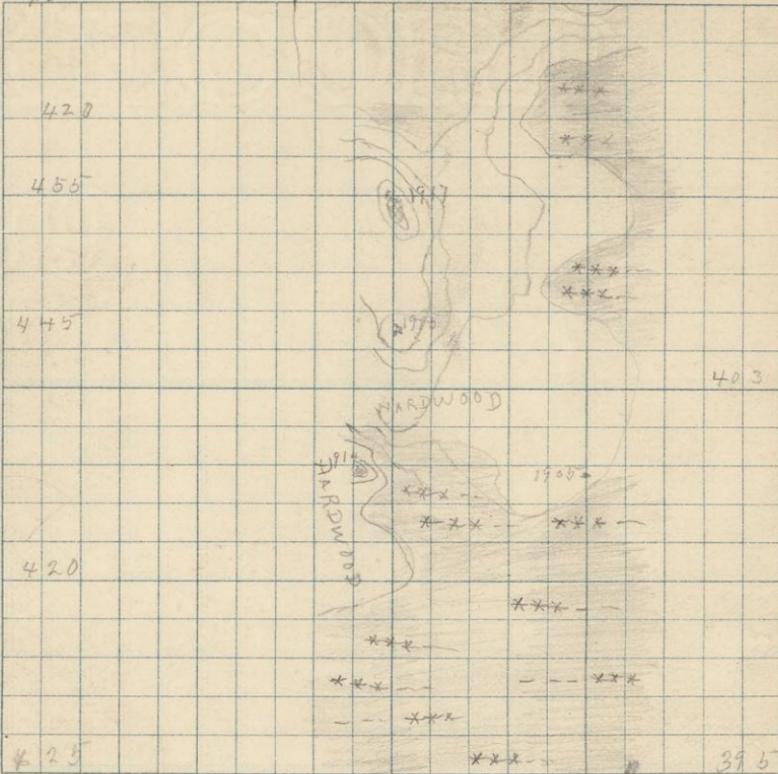
Nov 2nd 1.891

T. 43

R. 3 |

420

420


(480)

450

(470)

445

420

W¹ line ↑

↓ 1966
1/4 *Amid*

51.8

Going S on $\frac{1}{4}$ line Sec 15

35

B. M. 4 34.85 - 100 = 2 9.4 m

9.10 A.M.

Hardwood

600(400)

1000(400) 9.37 A.M.

"

1905

Sec 15 777 N 1000 W of S E cor

Outerop of rather coarse greenstone
Quite massive but seems to have
an incipient cleavage.

2000(380) Sec line Cedar swamp

1906 Sec 15 400 paces w of S E cor,

Sarg. outcrop of greenstone. The
coarseness of the mass varies
considerably. Spec 1906² shows the
finer and coarser varieties. Some
of the rock looks quite granitic
on account of the presence of
a large amount of red felspar.
Going N on N & line

500(400) Hardwood and mixed.

1914 Sec 15, 800 N 1600 W of S. E cor.

Coarse massive diorite.

900(450) Hardwood

1000(450) 3 P.M. Hardwood

1915

Sec 15 N 1160 W 1500

Aphanitic chloritic greenstone
with pyrites

5.

T.

R.

- 12 50 (470) Hardwood, hemlock, cedar,
1916 Sec 15 N 12 50 W 15' 00 from S. E. cor.,
Medium grained chloritic
greenstone.
- 1900 (480) Hardwood
1917 Sec 15 15' 00 N 15' 00 W
Large exposure of greenstone,
Medium grained, probably
diabasic.
- 1900 Beach line Cedar swamp
~~B.~~ Aneroid 450
Came out 200 pace S of stake
H. Cameron, Conwall.

38

Nov 2nd 1891

S. 22

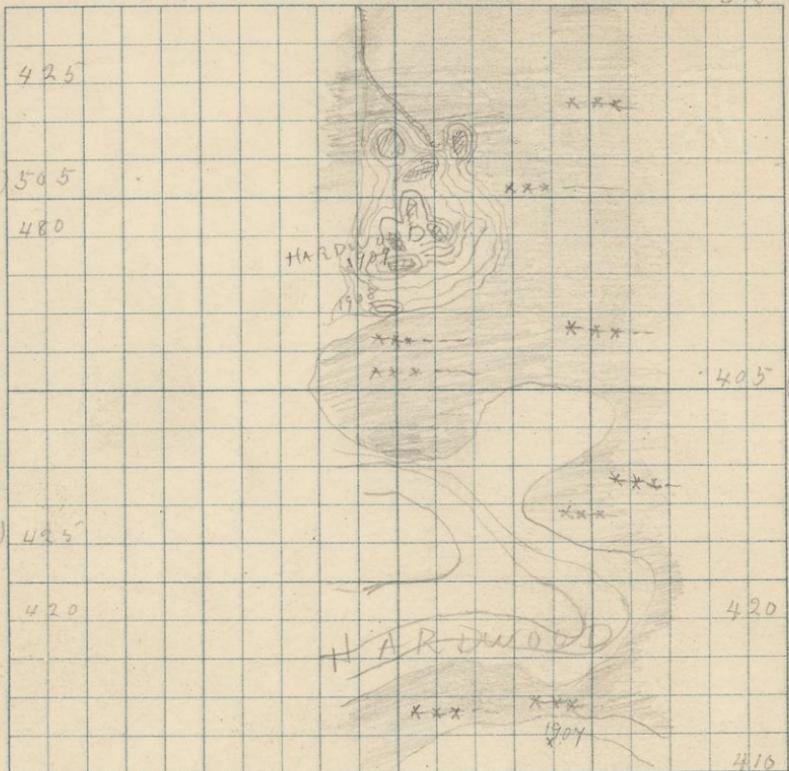
T. 43

R. 31

393

(440) 425

(520) 505


495 480

(430) 495

4

(420) 420

399

See

↑
W $\frac{1}{2}$ line

↓
 $\frac{1}{4}$ line

Going S on $\frac{1}{4}$ line Sec 22 10.50 A.M.

39

1000 (B 80) 11.23 A.M. Edge of swamp

2000 (390) B.M. 410 Hardwood

12.15 P.M.

1907

Sec 22 1100 W 100 N of S.E. cor

Outcrop of massive greenstone
or diorite. Quite coarse grained
and shows no signs of schistosity.

Going N on W $\frac{1}{4}$ line Sec

B.M. 398.52 200 = 29.3 m

800 Edge of cedar swamp
1000 1 P.M. " "

1908

Sec 22 1200 N 1500 W of S.E. cor
Large outcrop of massive
greenstone or diorite

1909

9330 Sec 22 1330 N 1500 W of S.E. cor.
Very large and interesting ex-
posure of greenstone. Some
are coarse grained, dark, containing
numerous iron pyrites and have
the appearance of a hornblende
diorite. Others are lighter colored,
without pyrites, and look like
diorite. Some are dark and
totally aphanitic, probably
hornblende greenstone; others
are aphanitic and light
colored. Some are agglomeratic

5.

T.

R.

(spec. 1809) which give every appearance of a volcanic breccia.

1460 (495)

2000 (440) See line Cedar swamp
2.30 P.M.

42

S. 14

T. 43

R.

↑
Egline

↓ -
See last

B.M. 387.49 200 = 29.12

9.30 A.M. cedar swamp.

312 (400) Mixed growth

1918 Sec 16 14 88 N of S.E. cor.

1919 Sedge of massive greenstone.

1920 Spec (1918).

1921 North of this ledge are numerous test pits extending over 100 paces N.E. These test pits expose a large body of slate apparently somewhat cut by dykes. 1920 shows the slate. Spec 1919 shows eruptive rocks found in the test pits in various stages of alteration and decomposition and metamorphism. These seem to occur in the slates. Some of the dyke rocks are entirely schistose.

Spec 1921 is from a test pit a few steps N of the greenstone ledge. I take it to be from a quartz porphyry dyke rendered very schistose by metamorphic action. I think there are many similar dykes in the neighborhood.

Most likely
last 3 days

5.

T.

R.

1000 (430) 10.56 A.M. Mixed growth,
 1500 (430) Mixed Timber,
 1800 (450) Hardwood
 2000 (420) 11.22 A.M. Cedar swamp
 Going N on E $\frac{1}{8}$ line See 14
 550 (440) Edge of swamp, mixed growth
 1000 (490) 2.40 P.M. Hardwood.
 1700 (440) Hardwood largely birch
 1800 (440) Hardwood

1924 See 14 500 W 1800 N of S.E. Cor
 Extensive outcrop mostly of
 aphanitic greenstones. There is
 some volcanic agglomerate and
 some schistose rock containing
 quartz. Could not determine
 contacts or dip and strike.
 Some of the fine grained greenstone
 has a slaty cleavage

1925 See 14 1900 N 500 W of S.E. Cor.
 More aphanitic greenstone,
 2000 (450) Cedar swamp
 B.M. 384.33 3.40 P.M.
 The ledge mentioned above goes
 to the bench line

5

T.

R.

Going Son $\frac{1}{4}$ line Sec 17 7.47 A.M.
B.M. 423.51 200 = 28.7 47

Hardwood

- 1928 Sec 17 1950 N 1100 W of S.E. cor.
Greenstone schists, volcanic
breccias and aphanitic green-
stones, thoroughly banded.
Strike N 20° W
Dip 80° W.
- 1927 Apparently interbedded with
the above is. a thick bed
of crystalline greenstone.
- 1928 Sec 17 1900 N 1100 W
Greenstone Amygdaloid
- 1929 Sec 17 N 1760 W 1500
Greenstone (diorite)
- 1930 Sec 17 N 1500 W 1000 Great ledge
of aphanitic greenstone.
No banded, schistose or slaty
structure seen.
- 1931 Sec 17 1250 N 1000 W
Medium grained crystalline green-
stone.
- 1000 (330) 8.35 A.M. Mix & D.
- 1932 Sec 17 N 700 W 1000
Fine grained gritty granstone

48

S. 21

T. W3

R. 31

(450) 424

397 (420)

* - * SPRUCE
* - * C

(430) 416

- * * - *

(430) 418

TAMARACK * - *

414 (430)

430 425

MIXED
TAMARACK
CR

422

HARDWOOD

408 (430)

↑ Ⓡ ↓
E 1/8 line 2 8 sec line

Going son E line Sec 21

49

0. (420)

Cedar swamp

1000 (450) 11.50 AM Mixed growth.

2000 (450) 12.04 P.M. "

B.M. 468.53

1950 Incomplete county road
from Sugola to Mansfield

1922 Sec 28 1900 N 300 W

1922A Large ledge of greenstone.
North and west of this
ledge are numerous test pits
in which black graphitic slates,
red slates and red schists.
1922B
1922C
1922D
1922E
1922F
1922G which I believe were originally
dykes of quartz porphyry or
granite. Spec 1922 contains
samples from all the rocks
shown in the test pits.
Numerous boulders of schistose
sericitic or "talcose" granite
can be found almost every
where in this region and
there seems to be every possible
gradation from a coarse grain
to a fine red schist totally
devoid of any crystalline structure
and in fact a true slate.

52.

T.

R.

1. P.M

Going N on E $\frac{1}{8}$ line Sec 21 51

B.M. 422.79 - 500 ft = 25.8 in

1923 Sec 21 400 W Hardwood

1923 Sec 21 400 W 270 N of S E cor

Test pit showing red slate
600 (430) mixed timber

700 (430) Edge of tamarack swamp

1000 (430) 1.30 P.M. " "

1200 (430) Spruce swamp

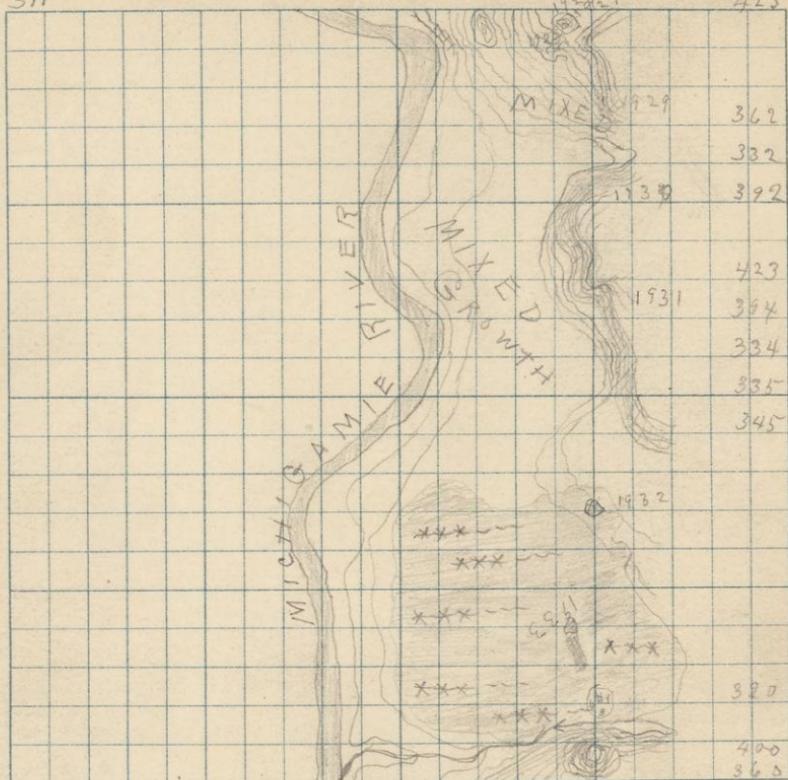
2010 (450) 2.04 P.M. See line " "

52.

T.

R.

54 Nov 4th 1891


311

S. 17

T. 43

R. 31

423

↑
 $W \frac{1}{8}$ line

↓
 $\frac{1}{4}$ line

1933 Sec 17 N 400 W 1051

Coarse grained greenstone

1934 Sec 17 N 50 W 1000

Greenstone some coarse ~~other~~
some fine grained and schistose

Strike N 70° E

Slip 85° S

Strike and slip are very uncertain for the rocks are greatly contorted. Spec shows coarse and fine varieties.

1935 Sec 17 N 40 W 1000

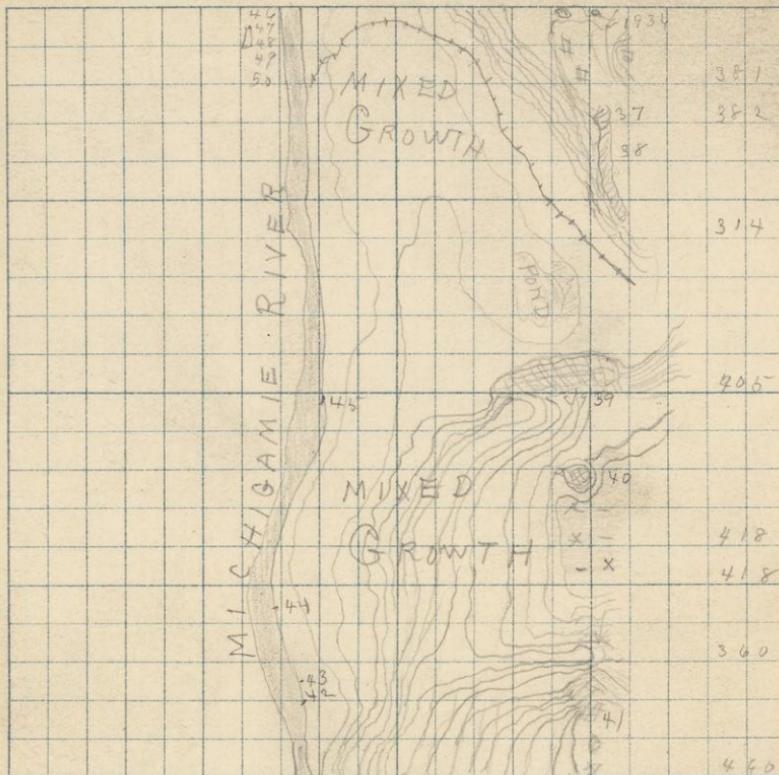
Siliceous pluggy slate. May or may not be in place. In almost immediate contact with the greenstone.

2000(350) Sec line 9.25 A.M. Mixed.

5.

T.

R.



Nov 4th 1891

S. 20

T. 43

R. 81

P
0V
W $\frac{1}{8}$ line↓
1/4 line

Going SW on $\frac{1}{4}$ line Sec 20

59

0. ledge of greenstone

1934 Sec 200 N 1900 W 1000

greenstone

1937 Sec 200 1700 N 1000 W

Strike N 90° E

Slip 90°

Banded greenstones.

1938 Sec 20 N 1630 W 1000

Pseudo-conglomerate. Boulders 2 to 3 feet through, generally rounded sometimes showing a concentric structure. Imbedded in a matrix of darker color. In this matrix are segregated considerable quantities of calcite (see spec.) I have no time to study these very interesting rocks.

For 500 paces along the quarter line of Sec 20 here is one continuous exposure of typical greenstones, including crystalline dioritic rocks, the peculiar pseudo conglomerate, massive aphanitic rocks and finely banded aphanitic greenstones. Here and there the rock may

5.

T.

R.

be seen to be schistose, with a strong slaty cleavage. In most places however the rock has no definite cleavage.

620(300) Mansfield and Sagola road,
Sec 20 1000 N 1000 W

1939

Immense ledge of greenstone. Some of it beautifully banded showing the dip to be nearly vertical. Strike in all directions. Some of these banded greenstones are very gritty. It is possible that they may correspond with what is called monaculite in the Marguette district.

1000(390) 10.30 A.M.

1940 Sec 20 800 N 1000 W

Coarse greenstone

1500(400) Mixed timber,

Sec 20 N 150 W 1000

Large bluff of rather coarse hornblende trap, probably diorite.

2000(440) 11.10 A.M. Hemlock
B.M. 459.77.

52

T.

R.

The coarse dolomite (1941) goes down to the bench line. 63

In the two miles along the quarter lines of 17 and 20 there is practically a continuous outcrop of greenstones. There is an immense variety of them. There are coarse crystalline rocks and fine aphanitic rocks; coarse brecciated conglomerates, volcanic breccias, volcanic tuffs and no doubt dykes in abundance. I have only time to break off a few specimens and hurry on. Many of the rocks are well banded, some schistose, some slaty, some massive. Some apparently very basic, others gritty and probably full of quartz.

5.

T.

R.

Going N on W $\frac{1}{2}$ line Sec 20 65
Greenstone

B. M. 374.94, 700 = 281} ledge

1. 250 paces west to River

Aneroid 290

1942 Sec 20 200 N Bank of River

Schistose rock, may be clastic.

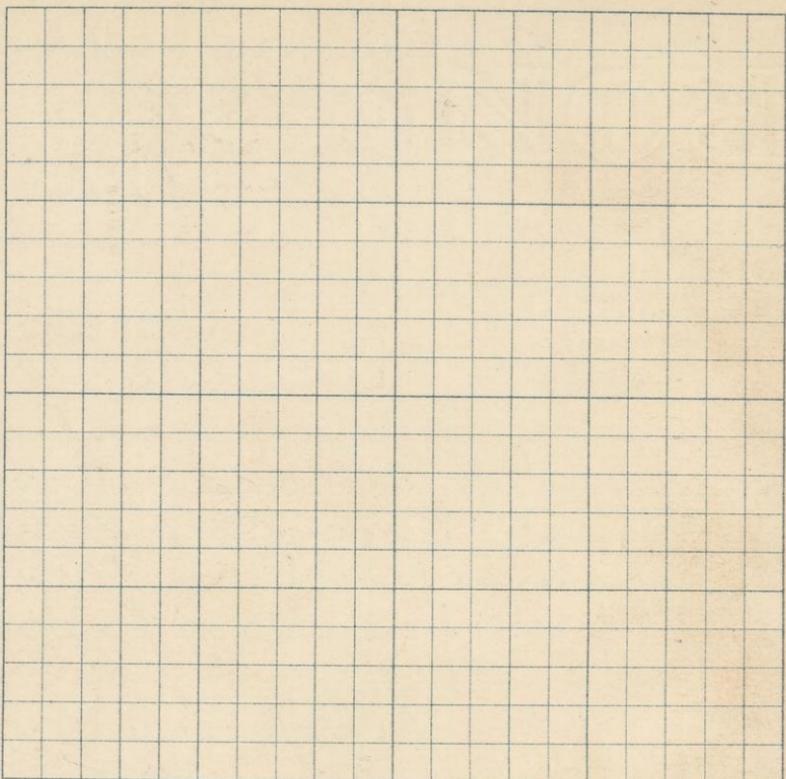
1943 250 paces up river

These rocks I think are undoubtedly black slates of clastic origin. The contact between these slates and the greenstone may be looked for with certainty between the river and the W $\frac{1}{2}$ line of Section 20.

1944 Sec 20 N 450 on bank of River
ledge of what I think is banded
gritty slate.

1945 Sec 20 1000 paces up river

Strike N 10° E


Slip 80° W

Peculiar well banded rock. Don't
know what it is.

S.

T.

R.

The Mansfield Mine, See 20.
N.W. 1/4.

(On both sides of the river valley are ridges of greenstone. The main shaft was sunk in the greenstone which here dips nearly vertical, having a little toward the west. Beneath the greenstone is about 50 ft of red slate (bright red) and then 25-35 ft of high grade red hematite. Black slate forms the foot wall in most places but in some places an unknown amount of a gray "soapstone" intervenes.

There are two grades of ore only one of which has so far been mined. The first grade is 6²/₁₀ to 6⁵/₁₀ metallic iron with .030 to .040 phosphorus. The second grade is about 60% iron and phosphorus above the bessemer limit. The ore lens is 300 ft long at the first level and 600 at the second and an unknown length

52.

T.

B.₁₂

below. The richest ore apparently maintains an almost uniform length of about 300 ft though it widens with depth. The ore body is pitching toward the north. Between the 1st and 2nd levels (68 ft) the orebody gained 40 ft toward the north.

South of the mine along the **69**
river are many outcrops of
clastic rocks, including gray-
wackes, black slates and sericitic
schists. Apparently the succession
of rocks, as given by a considerab
exposure along the river is
1st greenstone, 2nd black
slate 3rd sericitic schist 4th
graywacke (coarse), 5th black slate
and graywackes. The rocks, I should
say, became more and more
silicious the higher you go. The
valley is bounded on each side
by a great mass of greenstone
of almost every variety.

Spec	
1947	Greenstone
48	Rid Slate
49	Soap rock
50	Black slate.

see p. 58. map

70

Nov 7 1898
S. 4448 T. 43 R. 31

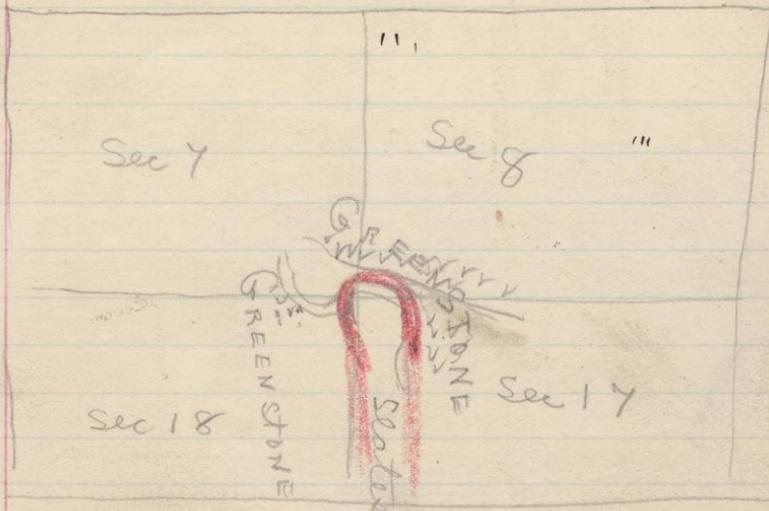
70 Nov 7 1891

S. 44 T. 43 R. 31

$E \frac{1}{8} \text{ line}$

7.45 A.M. Going S on Elbow Sec 18

71


B. M. 310.01 $1000 = 27.7$

1951

Sec 18 2040 N of S. E. cor

Outcrop of black slate on R
bank of Michigamie river.
Strike N. 30° W

dip 90° // // // //

The above is a very rude sketch showing the position of the end of this very remarkable fold. I have followed a continuous outcrop of greenstone all around the northern end of the fold and also for two miles down on each side of the river. Scarcely 50 paces from this

52.

T.

R.

comes on the other side of the river you can see a large outcrop of slate in almost immediate contact with greenstone 73

strike 85° W

dip 90°

A long tongue of slate follows this river down. It is a synclinal fold, so compressed that the dip is constant in every part exposed. At the Mansfield mine a layer of red slate comes in between the greenstone and the black slate. I have found an outcrop of similar red slate on the other side of the river next to the greenstone.

The slate at this point is often full of pyrites.

1952 Sec 18 11 58 N of S. E Cor
Banded greenstone.

1000 (330) 8.45 AM. Hardwood

1953 Sec 18 N 960 W 40

Greenstone.

1954 Sec 17 N 850 W 1960

Greenstone.

1955 Sec 17 N 850 W 1930 Jasper and
lean ore from test pit.

5.

T.

R.

at this point apparently no regular red slate were found, but the reddish, cherty, lean ore material locally called "vein matter" or "capping" which comes in at the ends of the ore lens at the Mansfield mine, is apparently very abundant. The red slate proper is apparently not very constant at this locality; but between the greenstone and the black slate, ^{there generally} is either red slate or jasper or iron ore, or all three. In some places there is what may be a kind of basal conglomerate here. That is to say there is a queer looking material consisting of greenstone mixed with red slate. This occurs in the Mansfield mine and may be seen in several test pits. north of it. In some places this mixed material, or basal conglomerate is about 3 feet thick and the materials composing it are quite fine. At other places it is probably much thicker and the pieces

S.

T.

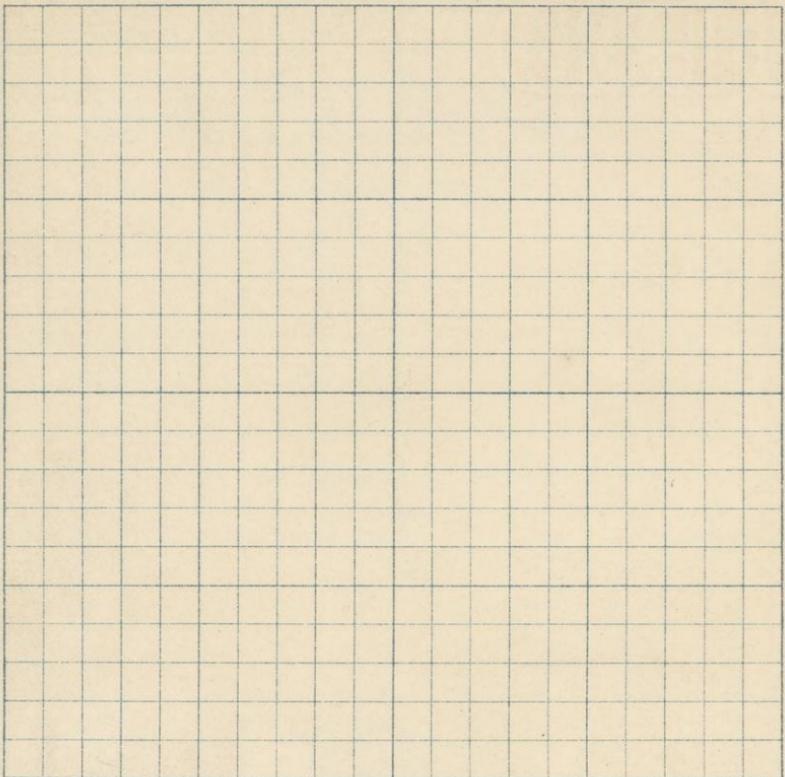
R.

of greenstone larger. In some places there is a reddish green shaly material between the greenstone and the red slate which may be nothing but re-cemented greenstone detritus. 77

1400 (350) Clearing

Just east of this point on the right bank of the river are numerous test pits, showing lead ore and copper. Just on the river itself are outcrops of black banded slate (same as 1951) striking $N 10^\circ W$ (magnetic) and dipping $80^\circ W$

1954 Sec 18 N 35°


Greenstone, gritty

On the eastern exposure of this ledge is a rather remarkable example of the formation of a kind of conglomerate by the brecciation of the rock in folding. In some places the rock presents the appearance of large boulders fitting into each other more or less and separated from each other by thin bands of darker colored material. In other places the rock is completely crushed for

S.

T.

R.

Conglomerate arising from brecciation
in situ.

three or four feet and for the ⁷⁹ space the rock has been entirely altered and recomposed. Some time this recomposed material is full of fragments of the rock which have not been so much affected. In places large aggregations of quartz and calcite are found. In many places this quartz is well banded and makes pretty gray agate.

1957 Sec 18 N 200

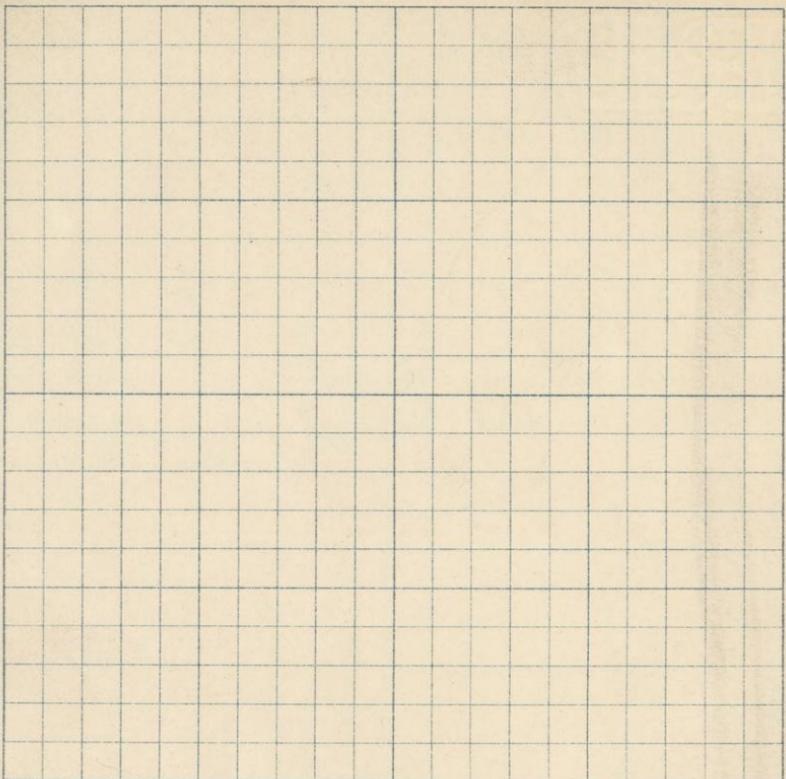
Gritty greenstone.

Going N on E $\frac{1}{2}$ line Sec 18

1964 Sec 18 N 450 W 000

Granstone.

1985 Sec 18 800 N 500 W


Pseudo agglomerate arising from the brecciation of greenstone in situ

This specimen fairly represents the condition of large masses of the rock in this ledge. There is no sign of schistose structure. The rock has simply been broken and recemented. The coarseness of the breccia varies enormous. In some places the rock has

52

T.

R.

the appearance of consisting of large boulders enclosed by thin anastomosing bands. In other places it is almost as fine as sandstone. The specimen (1965) is rather a fine grained one. You can see places here where the brecciation has only commenced.

This can be seen best in banded
greenstone where you can see
the effect of incipient motion
most readily.

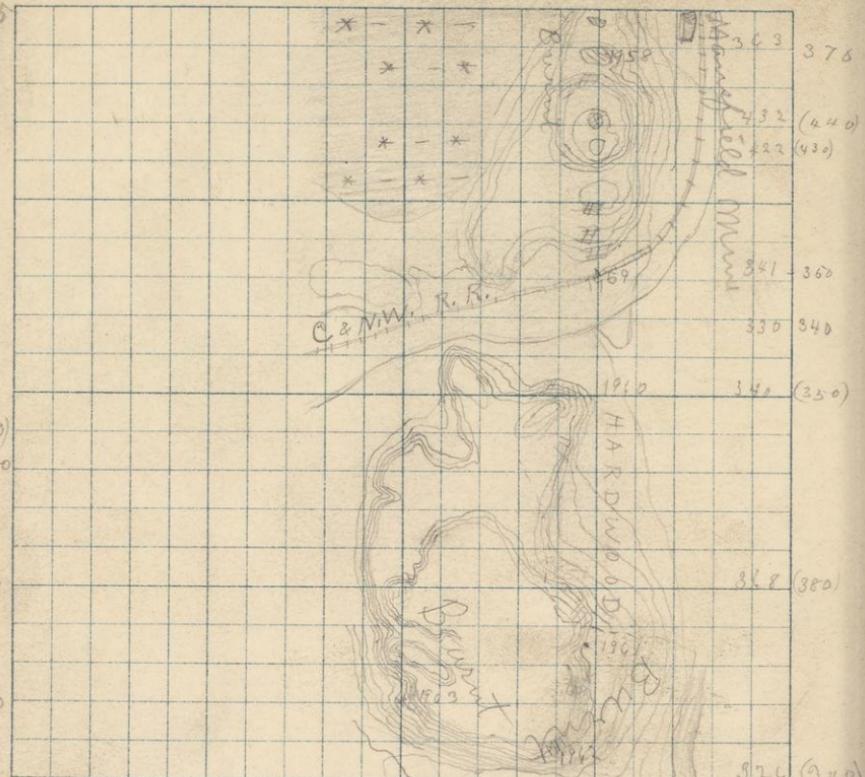
81

1964

Sec 18 2000 N 500 W

Greenstone

B.M. 843. Aneroid 850.


Nov 7th 1891

S. 19

T. 43

R. 31

375

↑ E $\frac{1}{8}$ line ↓ see line

1958 Sec 19 N 900 11. A.M.

Greenstone.

100-400 great ridge of greenstone
500 (400)

680 (350) C. & N.W. R. R.

1959 Sec 19 N 1300

Greenstone in R.R. cut. Partly
brecciated in situ into a
pseudo conglomerate.

This is an exceptionally fine
exposure of this peculiar phen-
omenon.

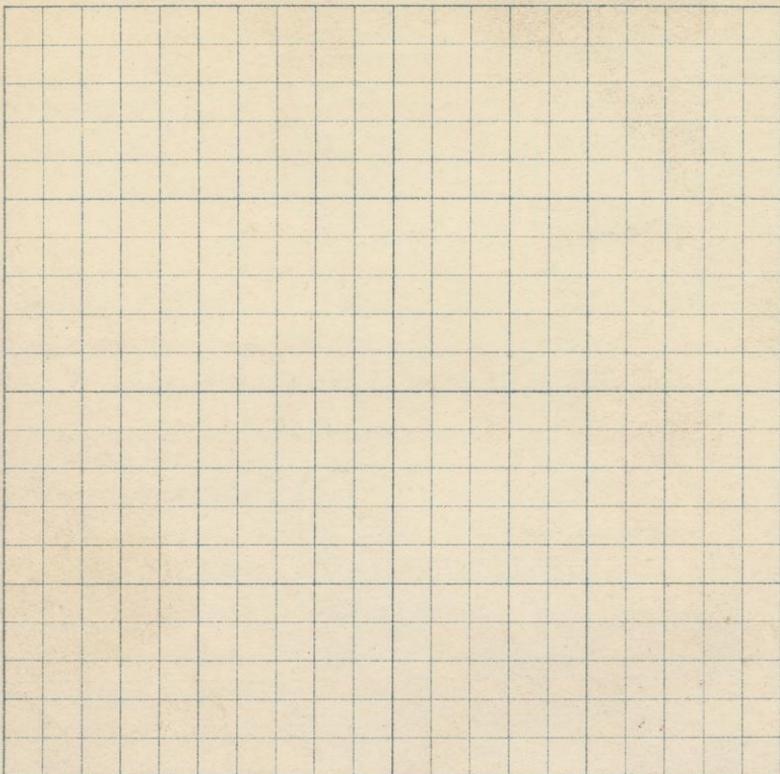
800 Road to Crystal Falls,

1960 Sec 19 N 1000

Greenstone

1000 (350) 11. 40 A.M.

1961 Sec 19 N 350


Greenstone

1962 Sec 19 N 100 W 100

Greenstone. Here the greenstone
ridge on the west side of the
river comes to an abrupt end
in a bold bluff. On the east
side of the river the greenstone
bluffs continue for a mile or more.

2000 (340) Burnt 12. 30 P.M.

B. M. S 26. 69

On the Bench line here the tongue
of slate which runs up the Michigan
River as far as the line of Sec. 8. 19
is not over two hundred paces
wide. The greenstone comes down
within 100 paces of the river on
each side. The slate outcrops are
all right in the river, except

where they have been exposed 85
by test pits. It is probable that
the fold maintains nearly a uniform
width for the two miles. At the very
widest part it is certainly less
than 400 paces and I think that
nowhere is it 300 paces wide. It
is always over 100 paces wide. The
fold is so compressed that the
slop is uniform ($80^{\circ}W$) except at
the extreme northern end. This in-
clination is perfectly constant to
the bottom of the Mansfield
mine which is 300 feet deep.
At that place there is every
indication that the fold continues
down an indefinite distance

- Going N on E $\frac{1}{8}$ line Sec 19

B. M. 33524 0 = 28.8. 1.30 P.M.

Burnt

1963 Dec 19 200 N 500 W.

Greenstone

1963 1100 200 to 900 is one continuous
ledge of greenstone

1000 2.17 P.M.

Burnt.

1100 Road from Mansfield to Crystal Falls
2000 (375)

86

Nov 8th 1891

(350) 391

S. 13

T. 43

R. 33

1350 385

281

(300) 430

(4122) 425

(29) 413

W $\frac{1}{8}$ live

Young Son $\frac{1}{4}$ mile Sec 13 9 A.M. 87
B.M. 386. 09 - 300 ft = 28.4 in

Sec

1967 Sec 13 N 1900 W 1000

Greenstone amygduloid.

1968 Sec 13 N 1800 W 1000

Greenstone

1969 Sec 13 N 1500 W 1000

Greenstone.

1970 Sec 13 N 1370 W 1100

Splendid example of a pseudo agglomerate produced by brecciation. Spec. 1970 shows the phenomenon perfectly. It is a valuable specimen for any B. cabinet, I hope it gets to Madison safely.

1971 Sec 13 N 1200 W 1000

Greenstone.

1000 (380) 9.55 AM, Fair. Swamp

1972 Sec 13 N 1000 W 1000

Greenstone amygduloid with schistosity incipient.

1973 Sec 13 N 700 W 1000

Greenstone.

1974 Sec 13 N 500 W 1000

Greenstone.

S.

T.

R.

1975

Sec 13 N 100 W 1000

89

Greenstone.

1976

Sec 13 W 1000 paces from S.E. cor.

This is an excellent specimen of typical volcanic agglomerate. In this rock the fragments are angular and certainly not the product of brecciation.

2000 (440) Day cloudy. Came out 300 paces west of line. Variations heavy.

- Going N on W 8 line Sec 13 2.30 P.M.

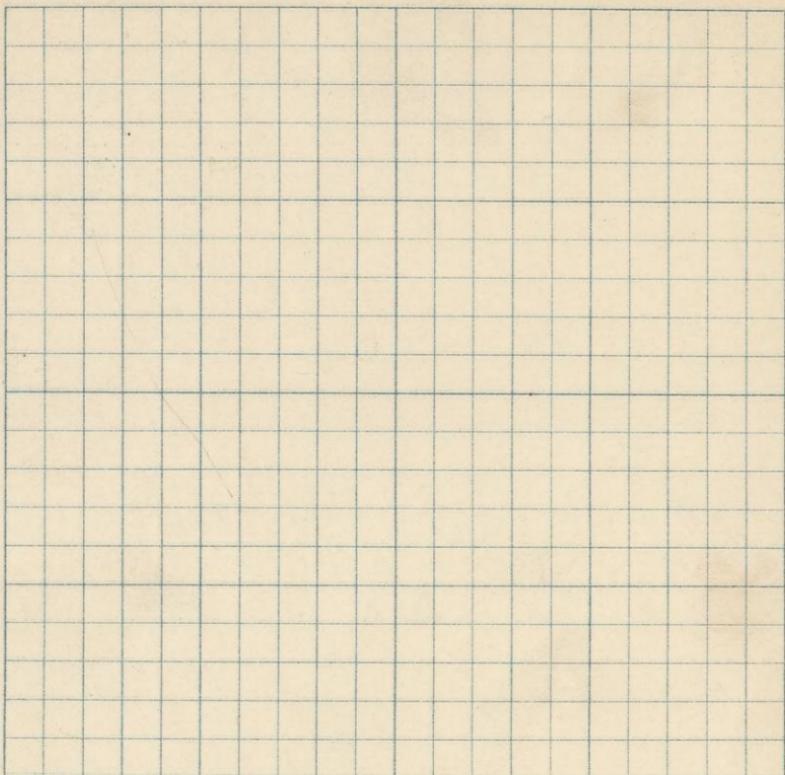
1986

Sec 13 15' 60 W of S.E. cor.

Red banded slate from test pit

1987

Sec 13 14' 40 W of S.E. cor.

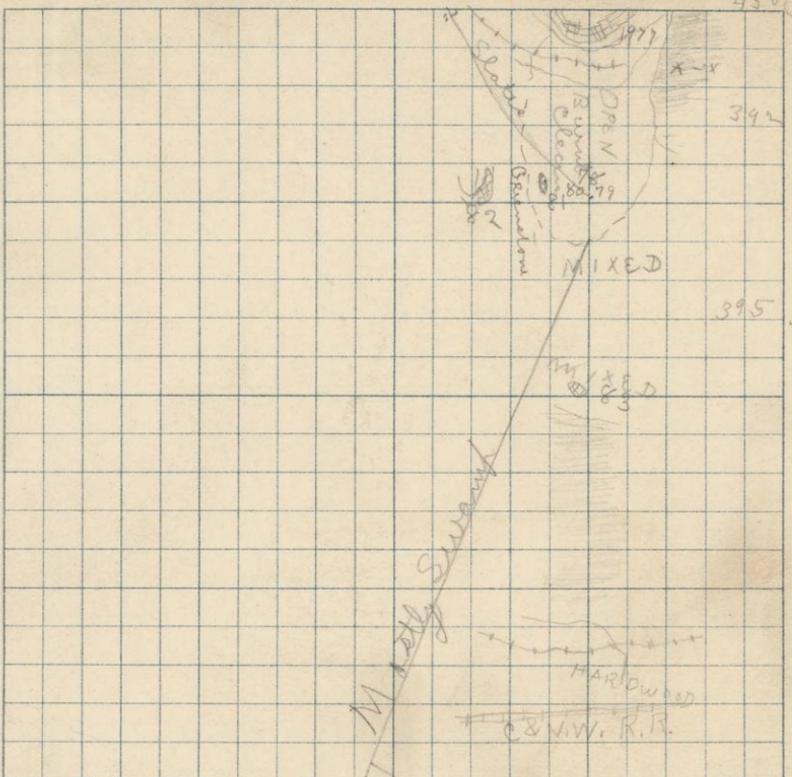

Red banded slate, from test pit

75 paces S.W. to ledge of greenstone

Sec 13 N 95° W 1700 from S.E. cor.

Hollister Mine, Not now running.

Filled with water.


2000 (350) Bench line. B. M. 39191
Struck line 80 paces W of stake
1988. Sec 13 1980 N 1470 W of S.E. cor.
Greenstone.

92

S. 4

T. 43

R. 32

Going S on ~~4~~ line Sec 2 &

93

0. (440) 11. A.M.

Hardwood.

1977

Sec 24 1960 N 1000 W

Excellent specimen of greenstone amygdaloid. There is a large bluff of it here, but I have no time to examine it carefully.

1978

Sec 24 N 15-47 W 1000

Test pit with red slate

1979

Sec 24 N 15-05 W 1000

Test pit with banded black slates.

1880

20 paces west is another test pit out of which has been dug a green soap rock like that in the hanging wall of the Paint River mine.

A little further S. W. is another pit showing abundance of lean ore and hard bright red jasper.

1981

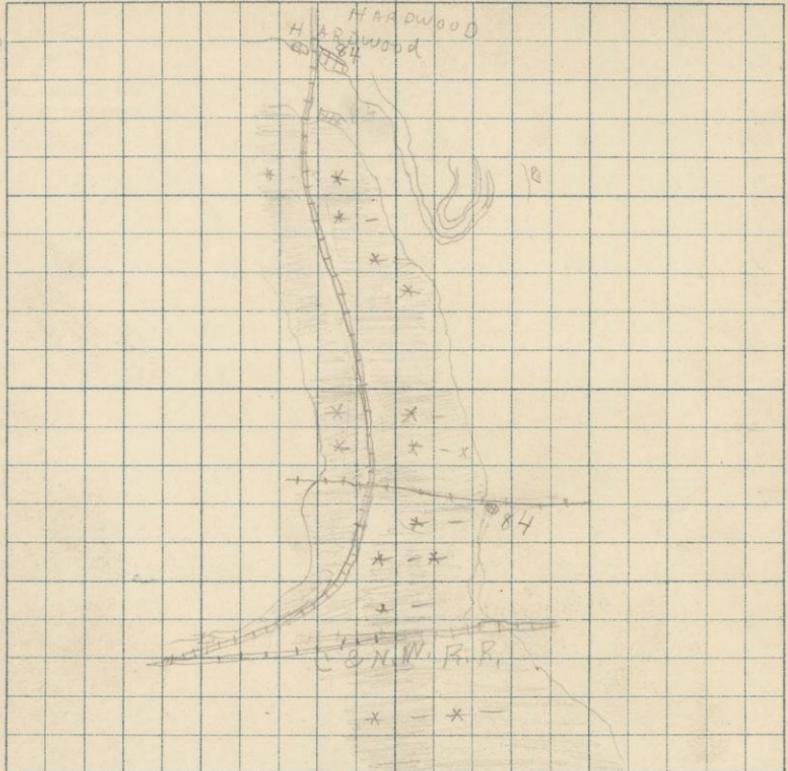
N. W. of this place are a number of test pits all showing lean ore, jasper and red and black slates. 120 W is a ledge of greenstone

1982

Sec 24 N 1500 W 1245.

A perfectly magnificent exposure of volcanic agglomerate. No words can describe it. It consists of immense bombs of amygdaloid

94


Nov 9th 1891 W 1/8 line

S. 24

T. 43

R. 32

380

and aphanitic greenstone mixed with finer scoriaceous material. Spec 1982 shows chips from an amygdaloid bomb, from a fragment of aphanitic greenstone and from the matrix. Not only is this volcanic agglomerate here, but there is a fine exposure a little to the west of pseudo conglomerate

800 (380) The variations here are **95**
very heavy. We don't know where
we are going. The day is cloudy.
1000 (380) 12. 37. mixed growth,

1983 Sec 24 W 1000 N 1000

Greenstone.

2258 Struck Bench line 548
paces E of Stake.

B. M. 378. Aneroid 860. 1.30 P.M.

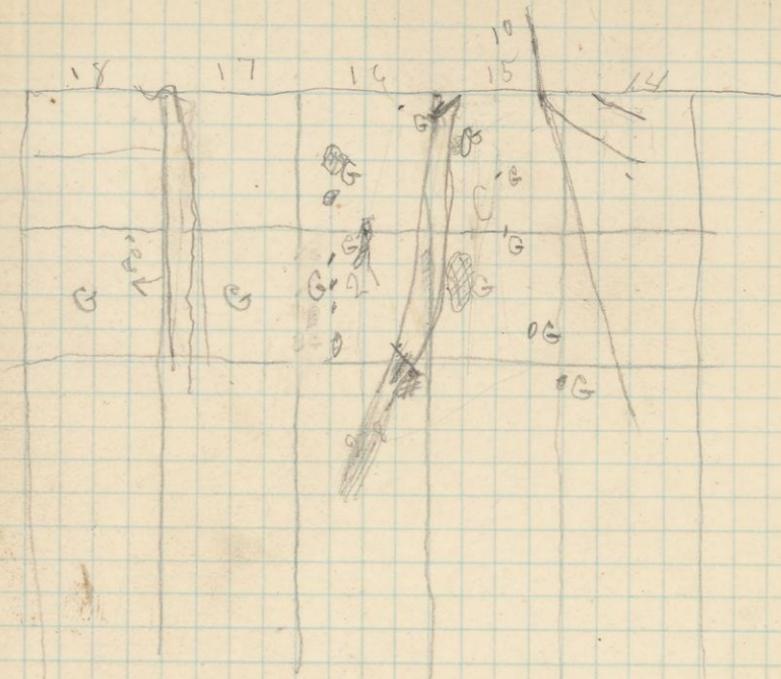
- Going N on W $\frac{1}{2}$ line Sec 24

B. M. 380.74. 400 = 283

1984 Sec 24 N 700 W 1500

Greenstone

1985 Sec 24 N 1923 W 1750

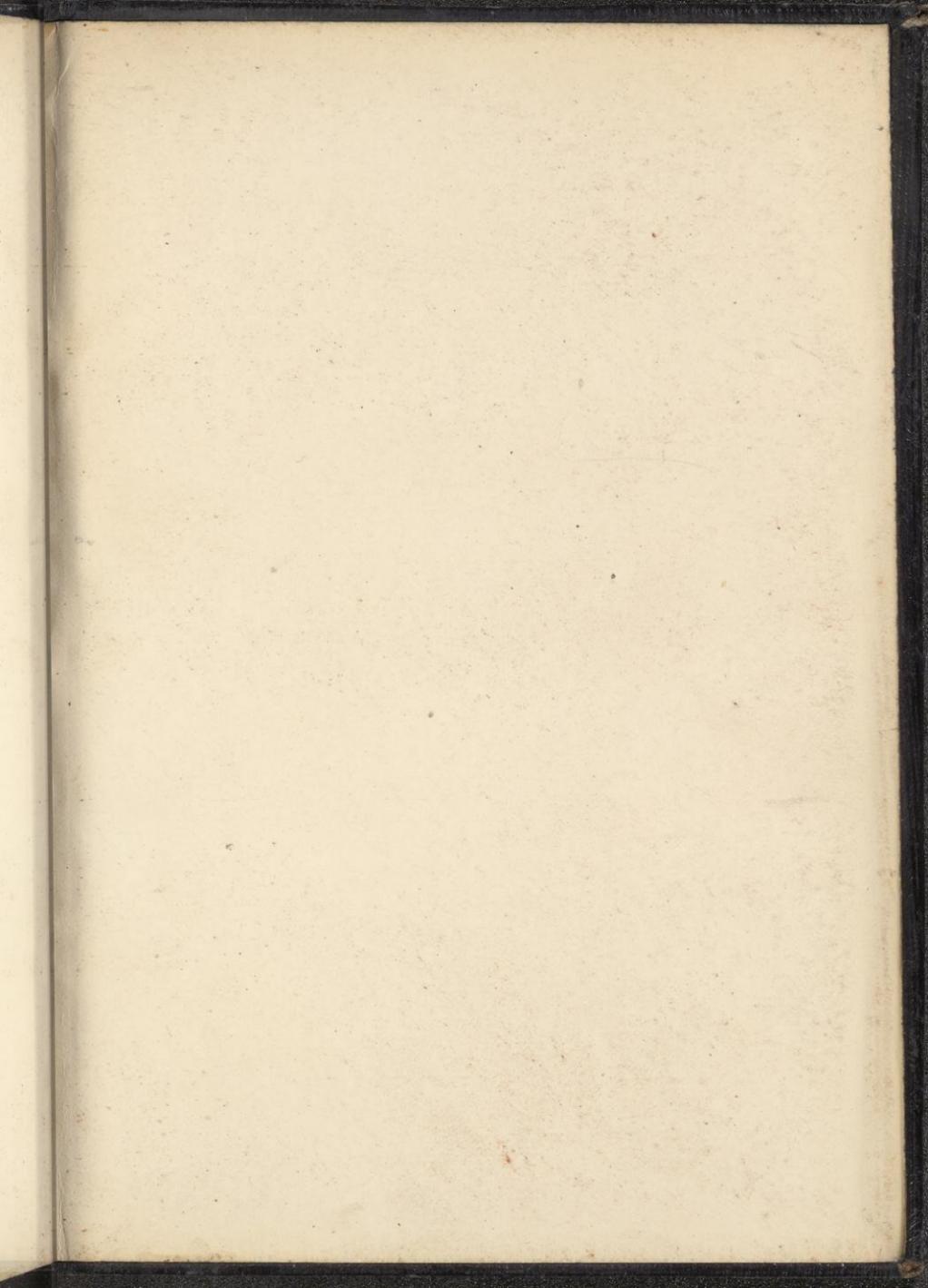

Greenstone in R. R. cut

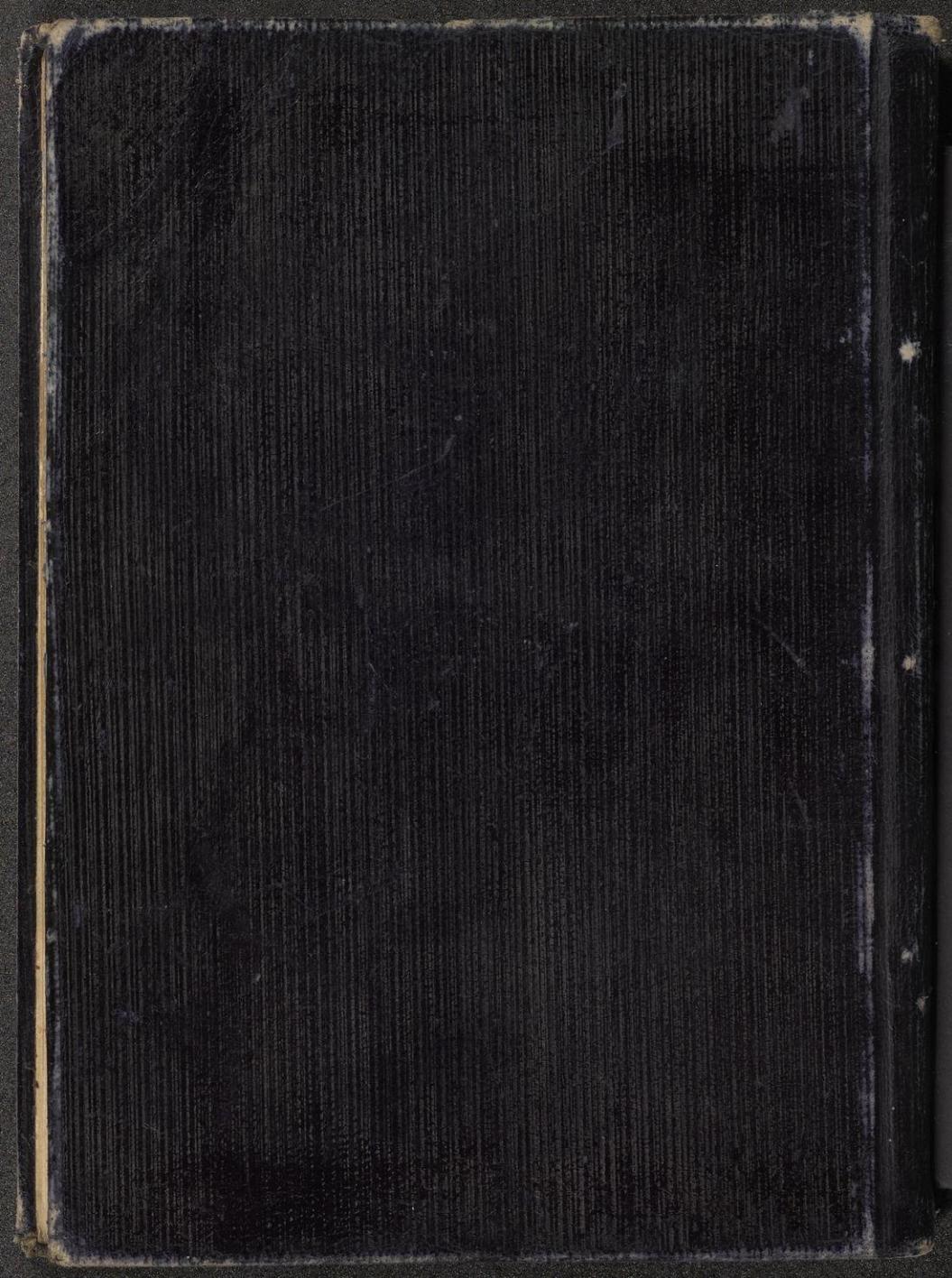
On account of heavy variations
and late hour, offset to R. R. at
462 paces.

Blank Pages

96-111

Skipped


MM


390

480

272

