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ABSTRACT

This dissertation explores integrating available physics knowledge with the Bayesian op-
timization (BO) framework to develop a new set of paradigms that improve performance
and enable functionalities like parallel or high-throughput experimenting. BO is a data-
driven paradigm that uses input/output data to construct a surrogate model of the under-
lying performance function, f, of a black-box system, which it uses to navigate a design
space in search of an optimum. While several other black-box optimization strategies
exist, BO sets itself apart by using a probabilistic surrogate model that estimates predic-
tion uncertainty in addition to performance. This feature allows for the consideration
of informational value when selecting a new sample point, which pushes the algorithm
to explore from several distinct regions of the design space. Consequently, BO is an es-
pecially powerful global optimizer that has been successfully applied to a wide array of
problems including model predictive control, materials design, and process engineering.

While the standard formulation of BO (S-BO) is generally effective and highly gen-
eralizable, it exhibits two major drawbacks: (i) structural knowledge (e.g., physics and
component interconnections) is often available for many systems, and S-BO does not al-
low for the consideration of this information; and (ii) the S-BO algorithm is inherently
sequential (i.e., proposes one experiment at a time), which makes it unable to exploit
high-throughput experiment capabilities. This represents a missed opportunity, as these
resources can significantly enhance algorithm speed and performance. Various works
have proposed modifications to the BO framework to overcome these shortcomings. How-
ever, these solutions can be can be limited by tractability and performance issues.

We address these challenges by developing a new set of paradigms that expand the
capabilities of the BO framework in a computationally efficient and robust manner. Us-
ing these methods we are able to take advantage of low-fidelity approximations (referred
to as reference models) built from simplified representations or empirical correlations to
improve algorithm speed and sampling efficiency. We are also able to efficiently exploit
system connectivity as well as scenarios where the system is a mixture of interconnected
white-box and black-box components. This is achieved by shifting to a composite function
representation of f, whose statistical moments are estimated using an adaptive lineariza-
tion scheme. Finally, we leverage the coarse system trends provided by the reference
model as well as the partially separable structure of different system components, which
we determine by analyzing system connectivity, to develop an innovative pair of parallel
BO methods that allow for system-specific partitioning of the design space.
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Chapter 1

INTRODUCTION

In this chapter, we detail the background, motivation, and objectives of this dissertation.
We introduce the concept of black-box optimization and provide an overview of the var-
ious methods for solving this class of problems, with a focus on Bayesian optimization
(BO). We discuss the features of BO that have made it an especially effective optimiza-
tion paradigm, and explain some of its shortfalls. Recent advances aimed at addressing
these shortfalls are presented and used to establish the existing challenges that our work
seeks to address. Finally, we outline the structure of this dissertation and summarize the

content of its constituent chapters.

1.1 Black-Box Optimization

In this work, we consider general unconstrained optimization problems of the form:

mxinf(x) (1.12)

st.xe X (1.1b)

where f : X — R is a scalar performance function; x is a set of inputs; and X C R% is
the design space (of dimension dy). Problems of this form are prevalent in diverse science
and engineering applications, where a key goal is often to identify the configuration

that maximizes the performance of a system (negative cost) or minimizes operation or



production costs [6]. Various approaches exist for solving (1.1), but by and large the most
commonly used are derivative-based methods; this is largely due to their efficiency as well
as the convergence guarantees they provide [7]. Consequently, significant work has been
done on developing improved gradient-based optimizers, resulting in a rich variety of
methods, including SQP, L-BFGS, and IPOPT [8, 9, 10]. While gradient-based optimizers
have been successfully applied to a wide array of problems in almost every discipline,
obtaining the required derivative information is often not possible in many real-world
applications (e.g., process engineering, synthetic biology, machine learning, etc.). These
applications usually involve systems that exhibit a significant level of complexity that
make it near-impossible to derive closed-form representations that map system inputs
to outputs; in other words, the system is a black-box where f can only be evaluated by
sampling at an x of interest. Estimating the gradients numerically is also usually not
possible as sampling is often expensive and the obtained data can be corrupted by noise.
In these scenarios, solving (1.1) requires the use derivative-free methods, also referred to
as black-box optimization algorithms.

Black-box optimization algorithms can broadly be separated into two categories: di-
rect search and model-based methods [11]. Direct search methods include some of the
earliest and most widely used black-box optimizers such as simplex methods, pattern
searches, and evolutionary algorithms [12, 13, 14]. As their name implies, these algo-
rithms navigate the design space by sampling the system at several points surrounding
the current iterate to orient their search. Once a more favorable point is found, the al-
gorithm moves towards it and then proceeds to search around that point. Direct search
methods are quite flexible and do not require that the performance function be smooth
or even continuous [15]. When compared to gradient-based methods, they are also gen-
erally conceptually simpler and easier to implement [16]. Additionally, these algorithms
easily lend themselves to parallelization as the required function evaluations can be done
independently or various instances of the algorithm can be initialized at separate points

in the design space [17]. However, the sampling requirements can cause these algorithms



to be inefficient, resulting in slow convergence and scalability issues as the number of re-
quired function evaluations can increase significantly with the dimensionality of X. These
methods can also be quite sensitive to the initialization point, and a poor initial guess can
result in the algorithm getting trapped in a local optimum and can also significantly slow
down the algorithm by further increasing the number of required function queries [18].
Model-based black-box optimization algorithms use the input/output data obtained
from sampling the system to build a surrogate model of the performance function that is
used to guide the search for the minimum [11]. A new sample point is selected based on
a predefined criterion (e.g., minimizing the model value or maximizing model accuracy),
and the surrogate model is iteratively refined as new data becomes available, improving
its accuracy. These methods tend to be more complex than direct search, as they require
training the surrogate with the generated data. Additionally, model selection and tuning
are dependent on the specific system being analyzed, often requiring the use of heuristics
or domain knowledge [19]. However, surrogates provide a significantly better under-
standing of global system trends than direct search. As a result, model-based algorithms
are generally able to sample across a wider range of the design space rather than focusing
on a few local regions [20]. Additionally, because the surrogate provides estimates for the
value of f, these methods usually require significantly less function evaluations, making
them more computationally efficient [21]. Furthermore, while model selection and tuning
can be intensive tasks, they provide an opportunity to incorporate available information
on the structure or behavior of the performance function. There exists a diverse selection
of model-based algorithms such as Response Surface Methodology (RSM), radial basis
function (RBF) methods, and kernel machines [22, 23, 24]. In recent years, Bayesian opti-
mization has emerged as arguably the most popular optimization paradigm of this class
due to its efficiency, flexibility, and capability to measure both information (exploration)
and performance (exploitation) value when selecting new sample points via the use of a
probabilistic surrogate model. A detailed description of the BO framework is provided in

Chapter 2.



1.2 Current State of Bayesian Optimization

Bayesian optimization was initially developed and formalized in the 1960s and 7os by
Kushner, Saltenis, and Mockus [25, 26, 27]. However, it was the rise of deep learning in
the last decade that propelled BO to its current status, as it proved to be an especially
effective method for tuning the various hyperparameters of complex machine learning
models [28]. Today, BO solutions exist for tackling complex problems in various fields
such as polymers, reaction engineering, and robotics [29, 30, 31]. Despite the success
that the algorithm has had, there still remain various significant challenges that need to
be addressed such as scalability, multi-objective optimization, constrained optimization,
transfer learning or the incorporation of domain knowledge (e.g., physics), and paral-
lelization [32, 33]. The methods presented in this work focus on addressing the last two

elements.

1.2.1 Existing strategies for incorporating physics knowledge in BO

While the hyperparameter tuning problems that popularized BO are akin to true black-
boxes, substantial domain knowledge is often available when dealing with physical sys-
tems (e.g., simplified physics models, simulations, empirical correlations, etc.). It stands
to reason that the algorithm can benefit from this knowledge, as it can provide insight
on coarse system trends and highlight potentially promising regions of the design space,
thereby reducing the number of samples required to locate a solution. Recent efforts
to exploit this type of system knowledge largely fall into two classes: multi-fidelity BO
(MFBO) and composite function BO.

MFBO initially runs BO on a low-level representation of the system that is cheaper
to sample. After the algorithm identifies the optimal regions of the design space using
this model, a higher fidelity model is used to continue the search within these regions

and further reduce the design space; this process continues until the real system is used



to obtain the final samples [34]. As a result, MFBO can significantly reduce the number
of times that the real system is queried since the search is restricted to a much smaller
space by the time the real system is used. This allows for a better use of the high-
fidelity sample budget as it reduces the probability that the selected points are highly sub-
optimal [35]. However, MFBO paradigms are quite complex as they require generating
and managing multiple surrogate models across the various fidelity levels and integrating
the information they provide. Additionally, determining the right level of fidelity as well
as the point at which to switch to a higher fidelity model often relies on trial-and-error
and expert knowledge [36]. These additional requirements can significantly increase the
computational overhead of the algorithm, thereby reducing the net benefit obtained from
using the low-fidelity models.

Composite function BO is a simple but powerful strategy that exploits system struc-
ture by representing f as a known composition of a vector-valued intermediate func-
tion, y(x) [37]. The intermediate function measures the value of various internal system
components that impact its performance (e.g., production rates, resource consumption,
product purities). The elements of the intermediate function can either be modeled using
closed-form representations (if available) or treated as black-boxes and estimated using
a surrogate model. Additionally, the model of any particular element, y;, can be defined
such that it only depends on a subset of the variables in x or utilizes some other element,
yj, as in input. As a result, composite function BO allows for a high degree of customiza-
tion in the construction of the intermediate function and the corresponding surrogate
models, which can be leveraged to significantly improve the performance of the algo-
rithm and increase its functionality[38]. While composite functions provide an intuitive
and effective manner for representing the system, the implementation of this approach
is not as straightforward. BO measures information value in the form of the prediction
uncertainty of the surrogate model. Because y(x) is not the performance metric being op-
timized, shifting the surrogate modeling focus to y(x) introduces complexities due to the

need to accurately propagate the uncertainty estimates from the intermediate predictions



to f. Existing composite function BO frameworks handle this issue by either numerically
estimating the probability density of f via sampling methods like Monte Carlo or by solv-
ing an auxiliary problem over an augmented space where the range of y is constrained
by set of upper and lower confidence bounds determined by the surrogate model [39, 40].
These approaches suffer from significant scalability issues as the problem size increases,

making them rather computationally inefficient.

1.2.2 Existing strategies for enabling parallelized BO

Standard Bayesian optimization (S-BO) is a sequential algorithm that only proposes one
new sample point at a time. A key strength of this features is that it enables a closed-loop
design strategy, where the selection of the next sample point is fully informed by previ-
ous results [32]. However, such an approach is incompatible with high-throughput exper-
iment (HTE) platforms (e.g., liquid-handling robots, parallel computing) that are capable
of running multiple experiments (querying from the system at several points) in tandem.
As these platforms have increasingly become more widely-available, the need to develop
algorithms capable of designing batches rather than sequences of experiments has moti-
vated the development of parallel BO strategies. Some of the more widely-used methods
that have been devised include batch Bayesian optimization (q-BO), fantasy sampling,
and Thompson sampling [41, 42, 43]. Because parallel BO presents several challenges,
such as maintaining the capability to consider exploration and exploitation, algorithm
efficiency, and potential asynchronicity considerations, the existing paradigms tend to be
rather complex. As a result, they can be difficult to implement and often introduce an
additional layer of hyperparameters that must be tuned[44, 45, 46]. Additionally, many
of these methods are limited in the degree of parallelization that they can achieve, may
lack mechanisms to prevent the suggestion of redundant experiments, and can encounter

scalability issues at high dimensions [47, 48].



1.3 Research Objectives

The overarching theme of this work is the development of a novel set of strategies for
harnessing available structural system knowledge, largely rooted in physics and sparse
system interconnectivity, in a BO setting to improve algorithm performance and enable
compatibility with HTE platforms. Our aim is to address the performance, scalability,
and complexity challenges observed in existing methods while also providing a set of
paradigms that are easy to implement and allow for a high level of user customization.

To accomplish this goal, we seek to achieve the following:

¢ Avoid the challenges associated with working with several models of varying fi-
delity levels by incorporating available system knowledge directly into the BO

framework via a single low-fidelity model.

¢ Harness knowledge of fundamental physical principles (e.g., mass and energy bal-
ances) along with sparse system interconnectivity and available white-box models

to better specify the elements of i in composite function BO and their dependencies.

* Leverage the customization of the intermediates in composite function BO to shift

the surrogate modeling task to a set of less complex and easier-to-learn variables.

* Reduce the computational cost of propagating the uncertainty estimates from y to

f in composite function BO.

¢ Provide the BO algorithm with parallelization capabilities by utilizing the level sets
of the performance function (which can be approximated with a low-fidelity model)
to decompose the design space into a set of unique partitions with no overlap (user-

defined or uniformly spaced) that can be explored individually and in parallel.

¢ Parallelize BO by exploiting the partially separable structure of the system, identi-

fied using system interconnectivity information or an available low-fidelity model



(or both), to split it into a set of modules that are optimized along a subset of the

total inputs separately and in tandem.

¢ Package the developed methods into open-source software tools, ensuring they are

readily usable in a variety of applications.

1.4 Dissertation Outline

This dissertation consists of two parts. Part I is composed of Chapters 2 through 4 which
deal with sequential BO and introduce two paradigms that enable the use of various
forms of available physical knowledge by the algorithm. Part II consists of Chapter 5
and focuses on the use of physics-based information to extend BO to the parallel setting.
Chapter 6 provides a summary of the key findings of this work and suggestions for future
research directions, concluding this dissertation. An outline of each chapter is included
below.

Chapter 2 presents the various elements of Bayesian optimization. We discuss how
Bayes’ Theorem is leveraged to construct a sequential sampling strategy that, when paired
with a goal-oriented decision making mechanism, leads to the BO paradigm. We formally
outline the standard Bayesian optimization (S-BO) framework, and highlight its two core
components: the surrogate model and the acquisition function. Next, an introduction to
Gaussian processes (GP), the most common surrogate model choice in BO, is provided
along with a brief overview on some outstanding research questions in the field of GPs.
This chapter then concludes with a discussion on acquisition functions (AFs), which serve
as the decision-making mechanism of the algorithm, and provides a summary of com-
monly used AFs.

Chapter 3 introduces the Reference-Based BO (Ref-BO) algorithm. Ref-BO incorpo-
rates physics knowledge via a low-fidelity representation of the system (which we refer
to as the reference model) that is directly integrated into the optimization framework,

eliminating the need to manage models of varying fidelity levels. This approach provides



the algorithm with a prior understanding of coarse system trends that enables faster
identification of a solution and results in a more robust performance. We demonstrate
the effectiveness of Ref-BO using a using a case study based on an MPC tuning problem
at a real-life HVAC plant.

Chapter 4 explores the incorporation of physics knowledge based on the connectiv-
ity of system components. This is accomplished by using a composite representation
of the performance function that is optimized using the Bayesian Optimization of Inter-
connected Systems (BOIS) algorithm, which we present in this chapter. This paradigm
facilitates the use of composite functions in a BO setting by employing an adaptive lin-
earization scheme that allows for the derivation of a set of closed-form expressions for the
mean and variance of f. Additionally, this framework allows for better specification of the
surrogate models, which improves their quality and facilitates training. We illustrate the
advantages that BOIS provides over S-BO and existing composite function BO algorithms
via case studies.

Chapter 5 leverages system knowledge to partition the design space and enable the
compatibility of Bayesian optimization with HTE platforms. This is accomplished via the
level-set BO (LS-BO) and variable-partitioning BO (VP-BO) algorithms, which are pre-
sented in this chapter. These algorithms expand the utility of the reference model by
using it generate system-specific partitions that enable a more efficient division of HTE
resources. LS-BO and VP-BO are straightforward to implement, can eliminate the occur-
rence of redundant sampling, and are capable of achieving high degrees of parallelization.
We use a reactor network case study to benchmark the effectiveness of these algorithms
against S-BO as well as other state-of-art parallel BO strategies.

Chapter 6 summarizes the key findings of this dissertation. We conclude with an
outline of potential future directions of research and discusses relevant work that can
be applied to or further motivates the continued development of the BO frameworks we

have presented.
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INCORPORATING PHYSICS KNOWLEDGE
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Chapter 2

BAYESIAN OPTIMIZATION

Portions of this chapter are adapted with permission from Gonzilez and Zavala from a

working paper with a preprint available at https://doi.org/10.48550/arXiv.2311.11254

In this chapter, we present the Bayesian optimization framework. We begin with a discus-
sion of Bayes” Theorem, which is the central idea behind BO, and explain how this concept
is harnessed to develop an optimization strategy. We then provide a detailed overview
of the two key components of the algorithm: (i) the probabilistic surrogate model and
(ii) the acquisition function (AF). Our discussion of the surrogate model will focus on
the Gaussian process (GP), as this is the most commonly used surrogate in BO. Similarly,
while a wide array of AFs can be found in the literature, we will focus on the Probability
of Improvement (PI), Expected Improvement (EI), and Lower Confidence Bound (LCB)
functions, as these are the most common choices. Note that all of the results presented
in this work were obtained using the LCB AF. Despite the fact that the exact implementa-
tion of the algorithm can differ significantly between different BO paradigms, these key
elements are common across all variations of Bayesian optimization. Thus, the introduc-
tion to these concepts provided in this chapter is meant to facilitate the discussion of the

various methods presented in this work.
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2.1 Formulation of Bayesian Optimization

Bayes’” Theorem calculates the conditional probability of an event happening given the
occurrence of a correlated event [49]. Consider an unknown performance function, f :
X — R, that is defined over some design space or domain, X C RY%, Bayes” Theorem can
be leveraged to estimate the value of f at some point of interest, x € X, based on previous
observations, D, as follows:

p(fID) =

p(DIf) - p(f) (2.1)
: .

p(D)
Here, p(f) is referred to as the prior distribution and gives the probability that f(x) takes
on some value f; p(D) serves as a normalization factor that ensures the total probability
sums to 1. The likelihood function, p(D|f), measures the likelihood that the observations
in D would occur if f were the true value of f(x). The posterior, p(f|D), denotes the
updated belief in the function being equal to f at x based on the data in D. Extending the
posterior across all potential outcomes of f(x) allows for the construction of a probability
distribution of function values. This distribution provides an estimate of the most proba-
ble outcome of sampling f at x, while also quantifying the uncertainty of this prediction.
Applying this method throughout the domain of f provides a distribution of function

approximations as shown in Figure 2.1.

l‘f
/
7

- } \

Figure 2.1: Distribution of f (blue line) calculated from 5 data points with the most
likely outcome predicted shown in black and uncertainty estimates represented by the
surrounding grey envelope; samples drawn from the distribution are shown in red.
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A powerful feature of Bayes’ Theorem is that it allows for recursive refinement of
the posterior as more information becomes available. This is done by updating p(f) to
p(f|D) and using this new prior and an updated likelihood function to construct a new
posterior distribution. As a result, the estimates of f can be continuously improved with
additional data. By combining this capability with a decision-making mechanism that
selects a new sampling location based on the current prediction and uncertainty values,
it is possible to iteratively generate a sequence of datapoints that are used to refine the
posterior distribution, which is then used to choose a new sample point. This process is

known as Bayesian optimzation [50, 28].

Acquisition Function (AF)

21 argmin AF(z; k)
x
st. x € X
AF (z; ) = a(E8(z), U (2); k) E(x)
{+1+¢ U (z)
—&f(x)
U ()
xf Df =D u {af, fY)
Data Collection Surrogate Model

Figure 2.2: Workflow of the S-BO framework. Using dataset D!, S-BO builds a surrogate
model that estimates f. The performance and uncertainty estimates calculated by the
model are passed into an acquisition function that is optimized to suggest a new sampling
point x‘*1. The system is sampled at this point and the collected data is appended to the
dataset to retrain the model.

The standard Bayesian optimization algorithm (S-BO) is initialized using a set of in-
put/output observations of size ¢, D' = {xx, fc}, where K = {1,...,£}. The posterior
distribution of f is constructed using a stochastic surrogate model, M, usually a Gaus-
sian process, that is conditioned on the data. The model prediction/performance and
uncertainty estimates (e.g., the mean and variance of the distribution respectively) are

then passed into what is known as an acquisition function (AF), which calculates the util-
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ity of some point of interest based on its performance (exploitation) and informational

value (exploration). AFs can generally be expressed as functions of the form:
AF (x;6) = a(EX(x),U" (x); %) (2.2)

where £(x) and U’(x) are the current performance and uncertainty estimates respec-
tively; x € Ry is a hyperparameter, commonly referred to as the exploration weight, that
determines the importance placed on the model uncertainty. Larger values of x will make
the algorithm more explorative while smaller values result in more exploitative behavior.
Specific examples of a are provided in 2.3. The next sample point, x/*1, is determined by

solving the AF optimization problem:

41 — argmin AF*(x; x) (2.32)

X

X

st. xe X (2.3b)

After, taking a sample at x/*1, the dataset is updated and the model is retrained. This
process is repeated until a satisfactory solution is found or the data collection budget is
exhausted. The pseudocode for S-BO is presented in Algorithm 1 and Figure 2.2 provides

an illustrative summary of this workflow.

Algorithm 1: Standard Bayesian Optimization (S-BO)
Given «, L, and DY;
Train Mf( using initial dataset D’ and obtain AF;
for/=1,2,..,L do
Compute x‘+1 < argmin_ AF*(x; k) s.t. x € X;
Sample system at x‘*! to obtain f‘*1;
Update dataset D1 + Df U {x*1, i1},

Train model using D**! to obtain Mff“l and AF™L,

end
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2.2 The Gaussian Process

The Gaussian Process (GP) is a stochastic regression model that can be thought of as an
extension of the multi-variate normal distribution to the function space [51]. GPs are
non-parametric and are instead fully specified by a pair of mean and covariance (kernel)

functions:

GPf(x) ~ N (my(x), ke(x,x")) (2.4)

Here, the mean function, m f(x), estimates the expected value of f at a point of interest
x. The kernel function, k f(x, x'), determines the similarity between any two points in the
domain of f and provides a measure of how the value of f(x) correlates with the value of
f(x"). There exists a wide variety of kernel functions, and selection is often motivated by
identifying a kernel that exhibits properties (e.g., smoothness, periodicity, continuity, etc.)
that can accurately approximate f. The Matern kernel [52] has emerged as a common
default option due to its ability to model functions of any degree of smoothness (see

Figure 2.3). It is the kernel of choice throughout this work and is defined as:

ke (x,x") = r(v)lzv—l (\/ZT/d (x,x’))vKV (\/ﬂd (x,x’)) (2.5)

where I' is the gamma function and K, is a modified Bessel function. The smoothness

of the function is controlled by v, which is usually set to either 1.5 (function is once-

15

differentiable), 2.5 (function is twice-differentiable) or co (function is infinitely-differentiable);

note that in the latter case, the kernel may be referred to as the radial basis function (RBF)

kernel. The functiond(-,-) = \/ (x —x')T ®=2 (x — x') is a scaled Euclidean distance func-
tion. Here ® € R%*% is a diagonal matrix whose entries are the kernel length scales,
01,...,04,. The length scales are also referred to as the kernel hyperparemeters and deter-
mine the impact of each dimension of x on the model predictions.

In GP regression, a prior distribution of f of the form (2.4) is constructed by setting

ms(x) = 0 and initializing 6 based on domain knowledge or hueristics. Using the obser-



Figure 2.3: Samples drawn from GPs trained on five datapoints using the Matern kernel
at varying smoothness values

vations in D!, the kernel hyperparameters are then updated by solving the log marginal

likelihood problem:

x 1 - 1 14
6* = argmax —Ef,%K(x,C,x;C) S 5 log |K(xx, xic)| — 5 log(27) (2.6)
0

where 6 = [0y, ...,0,,]T. The output data are assumed to follow a joint multivariate normal
distribution of the form f(xx) ~ N (0,K(xi, xx)), where 0 € R’ and K(xi, xx) € R***
is calculated such that Kj; = kf(x;, xj). By conditioning the prior on the observed data,
the posterior distribution, QPfc (which is also Gaussian), at a set of new points X’ can be

determined:

flxk) v K(xi, xx) K(xe, &) (2)

f(X) K(X, xg) K(X,X)

From this result, the posterior mean and covariance can be calculated:

m?(X) = K(X,XK)TK(JC;C,XK)_lf;C (2.8a)

THX) = K(X, &) — K(X, xc) K (xpe, xc) " K(xi, X) (2.8b)

The formulation presented above assumes that the observations in D’ are noise-free

(i.e., the system is perfectly observable). In practice, however, data is often corrupted by
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noise, which can be modeled as f(x) = z(x) + €, where z(x) is the true observation and
€ is a random error. If € follows a normal distribution, A ~ (0,0?), (2.7) can be modified
to account for the noise in the data:

K(xg, xxc) + 021 K(x, X)

~N|o, (2.9)
f(X) K(X, xx) K(X, X)

The calculations of the posterior mean and covariance are then updated as follows:

mfi(X) =K(X, x)" [K(xxc, x) + 021] _1f;c (2.10a)

Z?(X) =K(X, X) —K(X,x¢)" [K(xic, xc) + 021] - K(xi, X) (2.10b)

Due to their non-parametric nature, GPs provide an incredibly flexible framework that
can be used to approximate a wide variety of functions. They also provide a straightfor-
ward and tractable approach to estimating model uncertainty, a feature which is of great
use in the context of BO. Due to the small number of hyperparameters that have to be
tuned compared to larger parametric models like neural networks, GPs are able to obtain
very accurate estimates of the underlying performance function using relatively few dat-
apoints. As a result, Gaussian processes have become the model of choice in applications
involving complex physical systems or rigorous simulations where the amount of data
that can be generated is limited [50].

Despite their utility, GPs have several limitations. For example, the flexibility in mod-
eling is accompanied by the need to ensure that the selected kernel is appropriate, which
often requires domain knowledge or the use of advanced model selection techniques [28].
Additionally, by assuming that f is normally distributed, a GP surrogate also assumes
that f is symmetric. In reality, the range of f can be bounded, especially when dealing
with physical quantities, making this assumption inaccurate. This can be especially prob-
lematic when dealing with points at are at or near the feasibility limit, as it can result in

the GP model making infeasible predictions.

17



In terms of computational efficiency, the calculations required to train and sample
from GPs are rather intensive. The inversion of the K seen in (2.6)(2.8), and (2.10) scales
on the order of O(£3) and has a memory cost of O(¢?) [53]. This effectively limits the
size of datasets that can be used with GP models and can also make repetitive sampling
computationally expensive. GPs are also known to scale poorly at high dimensions of
x due to the increased distance between points sample points, which make it difficult
to determine any meaningful correlations [54]. As a result, most of the applications that
utilize Gaussian process surrogates have generally been limited to 20 or fewer dimensions.

Due to these challenges, GPs remain an active field of research and recent advance-
ments have produced several novel tools aimed at addressing these issues such as sparse
GPs, variational inference, warped GPs, and automatic relevance determination [55, 56,
57, 58]. Many of these methods, however, have their own set of challenges, such as re-
duced approximation accuracy, complex implementation, and limited availability of soft-
ware libraries when compared to the support available for standard GPs. While not the
central focus of this work, potential solutions for addressing some of the limitations of

standard GPs are presented as they become relevant in subsequent chapters.

2.3 Acquisition Functions

Acquisition functions serve as the decision-making mechanism of the BO algorithm. They
determine the value of sampling at a particular point based on the performance (exploita-
tion) and uncertainty (exploration) estimates calculated by the surrogate model (the mean
and variance when using a GP). This consideration of exploration as well as exploitation
is a key feature of BO. It is what allows the AF to direct the collection of samples across
various regions of the design space, making the algorithm more adept at locating the
global solution. As previously mentioned, these two elements are balanced via the explo-
ration weight, x, which determines the emphasis placed on the model uncertainty. Lower

values of « result in repeated exploitation of areas that have already been identified as
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optimal, while larger values drive the algorithm to explore new regions that exhibit high
model uncertainty. Selection of a new sample point is done by optimizing the acquisition
function, as shown in (2.3), with the use of gradient-based methods. Due to their cen-
tral role in establishing the sampling strategy of the algorithm, efforts aimed at adding
functionalities to the BO algorithm or adapting it to a particular application have largely
centered around modifying existing AFs or crafting new ones [59, 60, 61]. Many of these
functions are either derived from or modeled after three foundational acquisition func-
tions: the probability of improvement (PI), the expected improvement (EI), and the lower

confidence bound (LCB) functions.

Probability of improvement

The probability of improvement function was one of the first AFs developed for BO, it
was introduced alongside Algorithm 1 by Harold Kushner [25]. PI simply measures the
probability that sampling from some point x results in an improvement from the current

best observed value, f*. Mathematically, this AF can be expressed as
AFp (%) = =P(f(x) < f*) (2.11)

Recalling that f(x) is distributed according to f(x) ~ N (m?(x), (Uf?(x))z) when a GP

surrogate model is used, the following substitution can be made:

z(x) = T (2.12)

~—

where z(x) ~ N(0,1). Applying this substitution to (2.11), results in:

(2.13)

* m( X
AFL (x;6) = TP (z(x) < jrf())

7} (x)
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Because z a normal random variable, (2.13) can be calculated using the normal cumulative

distribution function, ®, resulting in the following definition for the PI AF:

(2.14)

op(x)

* l
. fr—mi(x) —x
AFpi(x;x) = = ( /
where « is included to promote exploration by essentially increasing the threshold for
what is considered an improvement. This pushes the AF to prioritize points with larger
improvements, even when they have higher uncertainty. Note that the negative sign in
front of the expression is included to ensure consistency as the AF is minimized to select a

new sample point.

=0 (=5 ¢ =10 ¢ =15

LA\

Figure 2.4: Snapshots of the current surrogate model (top) and the PI AF (bottom) at
¢ =0, 5 10, and 15 with x = 0.01. The mean is shown in blue and the uncertainty
estimates are represented by the surrounding light blue envelope; seed points are shown
in white and the optimum of the PI AF is marked by the red star. Note that the algorithm
spends nearly 10 iterations exploring the region near the best seed point

The PI acquisition function is an intuitive method for selecting new sample points: it
assigns more value to points that have a high probability of improving the current result.
When a GP surrogate is used, it is easy to implement and computationally inexpensive.
Additionally, the function is smooth and its analytical gradient can be computed, which

can be leveraged to facilitate the calculation of (2.3). However, this AF also exhibits
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various significant drawbacks that have limited its use. The function can be multi-modal
(see Figure 2.4), and can be quite flat in certain regions of the design space. This makes
the function especially sensitive to the initialization point, and multi-start strategies are
required to ensure that the global solution is found. Numerical instability can become an
issue when the value of ajf(x) << 1, and it might be necessary to add a small constant to
the denominator to ensure that the solver is able to converge.

The inability to consider the magnitude of a potential improvement makes the PI AF
prone to sampling from points with a high probability of a low improvement as opposed
to those with lower probability of a high improvement. This causes the algorithm to heav-
ily over-exploit the area near f* (see Figure 2.4), significantly increasing the probability
that regions where a better solution could potentially exist are left unexplored [62]. While
k is intended to ameliorate this issue, due to the formulation of the AF, it can be difficult
to tune and the function is quite sensitive to the selected value. As a result, it can be quite

easy to make the algorithm overly-exploitative or overly-explorative.

Expected improvement

The expected improvement function was first introduced in [26] as a means for consid-
ering the amount of potential improvement when selecting a new point. The work of
Jones [63] and Schonlau [41] popularized the use of the EI, and it is currently the most
widely studied AF and the one most closely associated with BO. As its name suggests,

the function measures the expectation of improvement where improvement is defined as:

I(x) = min{f(x) — f*,0} (2.15)

The EI AF is then:
AFE (%) = E[I(x)] (2.16)
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When a GP surrogate model is used, f can be expressed in terms of a standard normal
variable, z(x) ~ N (0,1):

f(x) = mfi(x) +0op(x) -z (2.17)

Applying this substitution and using the fact that (2.15) is nonzero only when z <

* il
f U("Zf )(x), (2.16) can be expressed as:
f X
20
AFL (x;%) = [ (i) +0f(x) -z = £)g(2)dz (2.18)
* il
where ¢ is the normal probability density function and zy = %(f)(x) This integral can
f X
be rearranged as follows:
¢ ¢ 0 / 0
AFg(x;x) = (mp(x) = f*) [m ¢(z)dz + of(x) Lm z¢p(z)dz (2.19)

Using the properties of the normal distribution, this can be evaluated as:

* 0 . w0 B
Afg(x;x)=—<f*—mﬁ<x>—x>®<f o K)—afiw(f e )

(2.20)

where, as with the PI AF, « is included to promote exploration by increasing the threshold
for what is considered an improvement. Note that in the limiting case when Ujf(x) — 0
(i.e., at a sampled point), Aff;l(x;ic) — 0 as @ tends to 0 as its argument approaches
—oco and ¢ will similarly approach 0. This is the expected behavior as there is not an
obtainable improvement from re-sampling at an already explored point.

As with the PI AF, the expected improvement is also smooth and has a gradient
that can be determined analytically (when a GP surrogate is used). These are properties
which, again, can be exploited during the optimization of the AF. Unlike the PI, however,
the EI function explicitly rewards sampling at locations where the uncertainty is high.
This results in a significantly more balanced sampling pattern where high uncertainty

regions are more likely to be explored, especially if the potential improvement is high. As
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Figure 2.5: Snapshots of the current surrogate model (top) and the EI AF (bottom) at
¢ =0, 5 10, and 15 with x = 0.01. The mean is shown in blue and the uncertainty
estimates are represented by the surrounding light blue envelope; seed points are shown
in white and the optimum of the EI AF is marked by the red star. Note that range of the
EI function quickly decreases after the two optima have been located, resulting in more
exploratory sampling at later iterations

a result, this function is generally able to outperform the PI AF as shown in Figure 2.5.
Use of the expected improvement is also arguably more intuitive than simply relying on
the probability of improvement. Repeatedly sampling in the same region even if there is
a high chance of improvement can quickly lead to diminishing returns. Moving, instead,
to sample from an area with potentially high reward, even if the risk (uncertainty) is
also high, can result in either a potentially substantial improvement or provide strong
confirmation that the current best observed point is the optimal solution. This is arguably
a better use of the sample budget.

While the EI AF is able to outperform the PI AF, is also shares various structural
features that can result in it encountering similar issues. For example, the function is
also highly multi-modal and can be quite flat along large portions of the design space,
meaning that it is also quite sensitive to the initialization point. Additionally, numerical
stability can again become an issue in the cases where (ij(x) is very small. The EI AF
exhibits a similar sensitivity to the value of x as the PI, meaning that it can likewise be

challenging to tune this parameter. The range of the expected improvement function also
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decreases as the algorithm progresses, albeit at a much faster rate compared to the proba-
bility of improvement AF. This can cause the EI AF to adopt an overly-explorative strategy
as the values of potential improvements drop and the uncertainty starts to become the
primary driver for sample point selection. Figure 2.5 provides a clear illustration of this
issue: the majority of observations away from the global solution are collected after it has
already been identified. This is done despite the fact that, as seen in the panel for ¢/ = 5
of the same figure, there does not appear to be a significant probability that sampling at
these points will result in an improvement from the current f*. However, it can clearly
be observed that the selected points are those where the uncertainty is the highest. In
addition to resulting in a rather inefficient use of samples, this behavior is also counter-
intuitive, as one would expect the bulk of the exploration-oriented sampling to be done

during the initial iterates to build the surrogate model.

Lower confidence bound

The lower confidence bound function was also introduced by Kushner alongside the PI
AF [25]. Unlike the EI and PI functions, the LCB AF deals with the performance and

uncertainty estimates directly and can generally be expressed as:
AF{cp (1) = EX(x) — U (x) (2.21)

In the case where a GP surrogate is used then £/(x) = mﬁ(x) and U'(x) = Ujf(x). This

allows for (2.21) to be reformulated as:

AF{cp(xx) = mff(x) - KO';(X) (2.22)
which is commonly referred to as the GP-LCB [64]. This function can be interpreted to
represent a quantile, specified by «, of the estimated normal distribution of f(x). For ex-
ample, when k = 1.96, the value of AF? 5 (x; k) is value that is estimated to be better than

all but 2.5% of the potential outcomes of f(x), in other words Pr(f(x) < AFicp(x;x =
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1.96)) = 0.025. This allows for the selection of the exploration weight to be significantly
more grounded in theory and statistical principles when compared to the PI and EI func-
tions, which often rely on heuristics or empirical methods for tuning x. Additionally, the
more direct impact of the exploration weight on AF fCB(x; «) facilitates dynamic tuning
where « is adjusted as the optimization routine progresses [64]. This is due to the fact
gradual changes in this parameter will not drastically affect the behavior of the acquisition

function, which is not always the case when adjusting «x in the EI and PI AFs.

=0 (=5 ¢ =10 ¢ =15

AT

Figure 2.6: Snapshots of the current surrogate model (top) and the LCB AF (bottom) at
¢ =0, 5, 10, and 15 with x = 4.5. The mean is shown in blue and the uncertainty estimates
are represented by the surrounding light blue envelope; seed points are shown in white
and the optimum of the LCB AF is marked by the red star. Note that, while the function
is multi-modal, it lacks the flat regions observed in the PI and EI AFs and begins to follow
the trend of mf[(x) toward the final samples

In addition to its straightforward form and intuitive interpretation, the LCB AF offers
various notable advantages over the probability of improvement and expected improve-
ment acquisition functions. While this work focuses on the use of GP models, (2.21) can
easily extend to various different classes of surrogates and make use of different perfor-
mance and uncertainty metrics, whereas closed-form expressions for EI and PI functions
can be difficult to derive for non-GP surrogates. As a result, the function is more flex-
ible and it is easier to modify. Additionally, while the function is also multi-modal, it

lacks the flat regions observed in the EI and PI AFs. In fact, range of the LCB AF does
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not diminish and instead gradually begins to approximate the mean of the generated
surrogate model. This results in the function promoting exploration during the initial
iterations before eventually settling into the region around the located solution as shown
in Figure 2.6. Finally, existing works have established guidelines for setting and adjusting
the value of x that guarantee convergence to a global optimum given enough iterations
when using the lower confidence bound function [64, 65]. While the properties of the EI
AF have also been widely studied, similar theoretical convergence guarantees have not
yet been established [66]. This set of benefits motivated our selection of the LCB function
as the acquisition function of choice for our work. Note that references to the acquisition
function and the use of AF"(x;«) in subsequent chapters refer to the LCB function unless

stated otherwise.

2.4 Summary

In this chapter we provided a tutorial introduction to the Baysian optimization frame-
work. We began by discussing how BO is formulated from Bayes” Theorem through
sequential data-driven updates of a prior distribution and likelihood function. We pro-
vided a detailed overview of Guassian processes, the most commonly used BO surrogate,
and explained how they are constructed from kernel functions and updated using current
data. We highlighted some of the advantages of using GP models, namely their flexibility
and accuracy, and discussed some of their limitations, including scalability, prediction
feasibility, and model tuning. This was followed by the introduction of the acquisition
function. Here, we presented the three major acquisition functions that are generally used
in Bayesian optimization, including their formulation for the GP surrogate, and discussed
their strengths and drawbacks. This chapter introduces the core elements of the work that

is presented in subsequent chapters, facilitating its introduction and discussion.
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Chapter 3

BAYESIAN OPTIMIZATION WITH REFERENCE MODELS

This chapter is adapted with permission from Lu, Gonzédlez, Kumar, and Zavala. Com-

puters and Chemical Engineering 154 (2021): 107491. Copyright 2021 Elsvier.

3.1 Introduction

Model predictive control (MPC) is widely used in industrial systems due to its ability
to handle diverse types of constraints, multivariable models, and operational objectives.
The performance of MPC depends strongly on the controller formulation. Examples of
typical tuning parameters that influence performance include the prediction and control
horizon, weights of individual states or cost objectives, input rate constraints, and con-
straint back-off terms [67, 68]. Complex and non-intuitive dependencies are typically
observed between the tuning parameters of the MPC controller and its closed-loop per-
formance. As such, conducting MPC tuning by trial-and-error or by heuristics might
require a significant number of closed-loop simulations. This poses a problem because a
single closed-loop simulation might require the solution of hundreds to thousands of op-
timization problems. For instance, one is often interested in evaluating the performance
of MPC over an entire year of operation and/or over different operational scenarios.

Self-tuning methods cast the MPC tuning problem as an optimization problem in
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which the tuning parameters are used to maximize the closed-loop performance. How-
ever, in general, neither an explicit model relating the effects of tuning parameters to the
closed-loop performance nor derivative information are available [11]. Thus, derivative-
free methods that treat the optimization problem as a black-box have been utilized to
address the problem [69]. Simple algorithms studied include sampling- or direct search-
based approaches [70]; other algorithms such as genetic algorithms and particle swarm
optimization have also been previously proposed. Well-known issues encountered with
these techniques include slow progress (requiring many simulations) and lack of con-
vergence guarantees. Moreover, these approaches are sensitive to the initial guess. An
excellent review of MPC tuning methods can be found in [71]. Recently, more efficient
derivative-free algorithms have been used for tuning MPC controllers [72].

Bayesian optimization (BO) is a powerful technique for optimizing computationally-
intensive black-box functions [69]. BO has been widely used for hyper-parameter tuning
of deep learning models [73], for design of experiments [74], and for conducting reinforce-
ment learning tasks [75]. BO can also be adapted to accommodate a mixture of continuous
and discrete decision variables [69] and has been shown to be effective at reducing the
number of objective function evaluations [73]. In BO, probabilistic surrogate models (e.g.,
kriging models) are built from the function evaluation data, and these models can ap-
proximate the behavior of the actual objective function [25]. Specifically, the surrogate
model provides information over both the predicted function value (via the posterior
mean) and the associated prediction uncertainty (via the posterior variance). Subsequent
sampling points are selected by satisfying the exploration and exploitation trade-off [76].
Exploration aims to evaluate the objective at points in the decision space with the goal of
improving the accuracy of the surrogate model of the objective, while exploitation aims
to use the surrogate model to identify decisions that minimize (or maximize) the objective
function.

Black-box optimization methods such as BO are built specifically to handle problems

that lack a model. As such, they traditionally do not incorporate any preexisting sys-
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tem information and rely solely on data. However, many systems do have information
available (of different forms) that could potentially be useful for improving the optimiza-
tion process. Recent work has shown that leveraging this prior knowledge can improve
the performance of BO. The most commonly used approach for this integration has been
multi-fidelity BO (MFBO). MFBO explores X using a low-fidelity representation of f(x) to
identify promising regions and then searches through this reduced space using a higher
fidelity model. This process is repeated iteratively, allowing the algorithm to gradually
zero in on an optimal region and reducing the number of experiments that have to be
performed with the real system [77, 78, 79]. The end result is a more efficient use of
the high-fidelity sample budget, as suboptimal points are unlikely to be selected at these
levels. However, the implementation of this paradigm is quite complex, as it requires
integrating the information provided by the surrogate models generated at each fidelity
level. Obtaining the models at the various fidelities and ensuring that they provide the
right balance of information and computational efficiency can also be difficult. Addition-
ally, by restricting the search space, there is a risk that the region containing the global
solution could be missed due to model error.

Reference (prior) models, low-fidelity representations able to capture general system
trends, provide a more straightforward approach for incorporating available informa-
tion. By using this initial approximation, an algorithm can identify potential areas of
interest from the beginning, thereby reducing the number of iterations (and simulations)
required for convergence. Additionally, most systems must obey specified constraints.
Without a system model, it is unrealistic to know if these constraints will be satisfied
prior to evaluating the function. However, a reference model can approximate regions
where constraint violations might occur, keeping the algorithm from needlessly explor-
ing these areas [80, 81, 82]. The use of reference models has been shown to improve the
performance of optimization algorithms in various applications, including process simu-
lation and design [83], oil-field operations [84], petroleum extraction [85], and aerospace

design [86]. Recent studies also indicate that the incorporation of prior knowledge in the
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form of a reference model can enhance the performance of machine learning (neural net)
models. For example, neural nets have been trained to solve partial differential equations
while being provided with prior information from a reference model on the physical
laws that the solutions must obey [87]. Other examples include the design of experiments
where prior expert knowledge is supplied [88], the integration of mechanistic models
with BO-inspired methods for cell engineering [89], and the combination of simplified
physics models with Bayesian analysis to correct systematic bias [go]. Note that, unlike
in MFBO, when a reference model is used, it is not modified after it has been loaded into
the algorithm. Additionally, the algorithm always samples from the real system and does
not use the low-fidelity representation to restrict sampling to any one region of the design
space.

In this chapter, we study the use of reference models in BO for tuning MPC controllers.
Our work is motivated by a real MPC application to central HVAC plants. The operating
cost of HVAC plants is strongly affected by disturbances that cannot be forecasted per-
fectly (demands of electrical power and hot and cold water). Errors in disturbance fore-
casts result in frequent constraint violations of storage levels (overfilling or drying-up)
that ultimately translate into decreased economic performance. Adding back-off terms
to the storage levels has been shown to provide an effective strategy to deal with these
issues [1]. This approach resembles constraint back-off approaches recently explored in
the MPC literature [91]. Unfortunately, tuning these back-off terms requires extensive
simulations; every year-long closed-loop simulation requires solving over 8,700 optimiza-
tion problems and is time-consuming (a single simulation requires 2 hours of wall-clock
time). BO approaches have recently been used for tuning MPC [92, 93, 94] and other
control architectures [95, 96] and for performing goal-oriented learning of dynamical sys-
tems [97, 98]. To fully utilize the prior knowledge (or data) of the system, we propose
incorporating a reference model into the standard BO algorithm, so as to accelerate the
optimization speed and reduce the computational complexity. A unique feature of our

work is the way in which we construct the reference model. Specifically, we build such a
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model by using data collected from low-fidelity, closed-loop MPC simulations (use a for-
mulation with a short prediction horizon). Our results indicate that BO with a reference
model can find optimal back-off terms in 3 iterations with a reference model (20 hours
including the time of training a reference model). For comparison, standard BO requires
14 iterations (28 hours); thus, our approach reduces the search time by 28%.

Our work also seeks to provide insights into why the use of reference models aids the
BO search. We show that, by using a reference model, the BO algorithm goal is shifted
from learning the objective function to learning the residual/error model between the
reference model and the objective function (which is a much easier task). We also show
that the use of a reference model focuses the BO search to small regions of the parameter
space. Our results highlight that there exist multiple ways in which reference models
can be incorporated. Most studies tend to incorporate reference models that arise from
physics; here, we show that any type of approximate model can be used. In our context,
using a low-fidelity MPC formulation provides a highly accurate reference model because
this preserves the overall structure of the objective function (obtained with a high-fidelity
MPC formulation). In other words, our approach can be seen as a coarsening strategy and
this can be broadly applicable to other problem classes (e.g., by coarsening discretization

meshes).

3.2 Bayesian Optimization with Reference Models

Incorporating a reference model to the BO algorithm provides an approach for introduc-
ing preexisting (prior) knowledge about the system into the search process. Specifically,
the use of a reference model allows the algorithm to be initialized with an approximation
of the objective. This has the effect of highlighting promising regions in which the solu-
tion might be located. BO can then focus sampling in these regions from the start and not
spend unnecessary (expensive) simulations building up a surrogate model from scratch.

Additionally, a reference model that is nonconvex can push the algorithm to explore var-
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ious local minima, potentially improving the quality of the solution. The reference model
can be obtained through various means; traditional approaches use physics-based models
or simple empirical correlations. In the context of MPC, we show that one can construct
a high-quality reference model by using a simple coarsening technique that simplifies the
MPC formulation by reducing the prediction horizon. We will see that this provides a
reference model that captures the overall structure of the objective function.

We have selected to incorporate the reference model by having the BO algorithm learn
the model error instead of learning the objective function directly. To this end, (1.1) can

be reformulated as:

min_ g(x)+£() 612

st. xeX (3.1b)

where g(-) is the reference model and ¢(-) = f(-) — g(-) is the residual or error model.
The reference model is deterministic and less expensive to evaluate compared to the
true objective function f(-). During the BO optimization routine, the reference model is
fixed and unaffected by new data collected by the algorithm. The form of the residual
model ¢ is not known (because f is not known), and thus a surrogate needs to be built
from experimental data. Given a set of data D! = {x,ex}, K = {1,...,0}, with e =
{f(xx) — g(xx)}, we construct a GP model for the residual, GP. The prediction of the

residual at a new point x is then a Gaussian distribution with:

mt(x) = K(x, xc) "K(xxc, xx0) exc (3-2a)

of (x) = K(x,x) — K(x, x) 'K (xx, ) " K(xg, %) (3.2b)

Recall that the GP prior is distributed according to N(0,k(x,x"). If we assume that
the reference model matches the objective in unsampled regions, then having an error

model that is drawn from this distribution is significantly more reasonable than using it
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to estimate the objective function.

Because ¢(x) is assumed to be deterministic, it can be said to be drawn from A (g(x),0).

Recall that f(-) = g(+) +¢(+) and thus, for some x, we can estimate the probability density

of f as follows:

g(x) +e(x) ~ N (g(x),0) + N (me(x), (7 (x))?) (3.32)
N (g(x),0) + N (mg (x), (07 ())?) = N(g(x) + m (x), (07 (x))?) (3.3b)
f(x) ~ N (g(x) + m(x), (07 (x))?) (3:30)

Note that the LCB AF presented in equation (2.22) is expressed in terms of the objective
function. Our previous derivations indicate that, when a reference model is used, we

need to modify the acquisition function as:

AFE () = (g(x) +m(x)) — ko (x) (34)

Algorithm 2 summarizes the framework for our proposed method. Overall, this is similar
to the BO framework presented in Algorithm 1 with the following exceptions: every
iteration requires the calculation of three quantities rather than one; the surrogate model
is trained on the residuals rather than the performance function; and the modified AF in

(3.4) is utilized for finding the subsequent sampling point.

Algorithm 2: Reference-Based Bayesian Optimization (Ref-BO)

Given reference model g, x, L, and Df ;
Train GP GP! using D! and obtain AF,;
for/=1,2,..,L do
Compute x/*1 ¢ argmin _AF:(x;x) st. x € X;
Sample system at x*! to obtain f‘*! and residual ¢
Update dataset D1+ DEU {xtF1, e},
Train GP using D!*! to obtain GPL™ and AFLHY;
end

{+1.
’

Remark 1. In general, the computational complexity of Algorithm 2 is less than Al-
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Figure 3.1: Left column: Reference model incorporated into the BO algorithm (top) and
its residual function (+) (bottom); Middle column: Results of Bayesian optimization (top)
with a reference model g(-) and evaluated function values (bottom) over 15 iteration
showing the convergence. Right column: Results of traditional Bayesian optimization
(top) and evaluated function values (bottom) over 15 iterations showing the convergence.
Green dashed line: true objective function; Red line: posterior mean of GP model; Blue
shaded area: posterior variance of GP model.

gorithm 1 for the following reasons. First, for Algorithm 1, S-BO requires quite a few
exploration steps at the beginning to learn the general shape of the black-box function
before it dives into exploiting local regions to find the optimum. In contrast, Algorithm
2, is able to leverage the information contained in g(x) to identify and sample from po-
tentially promising regions from the start, even as it develops the initial Gaussian process
model for the residual during the first few iterations. In this way, the presence of the ref-
erence model reduces the computational time of BO by cutting back the required number
of iterations. Second, the computational complexity for establishing the reference model
is not a bottleneck. If a rough physics model is available, we can directly use it as the ref-
erence model. Otherwise, we can simply perform low-fidelity simulations without much
computational cost to construct a coarse model to serve as g(x). Thus, the additional ef-
fort required to obtain the reference model is not significant enough to negate the benefits
it provides to the BO algorithm. As a result, the total computational time of our method

shall be less than that of the standard BO approach.
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Remark 2. The differences between our developed Algorithm 2 and standard GP-
based BO are the following. The GP model is with respect to the residual function,
€(+), instead of the original function. However, the involved procedures for deriving the
posterior distribution of € follows those of standard GP modeling. Moreover, for our
approach, constructing the AF is not based on the posterior distribution of the GP model
of the error function, e. Instead, it is based on the posterior distribution of the original
function, f, as shown in (3.3). In addition, as the reference model is obtained explicitly
in advance, the evaluations of the acquisition function at x can be easily acquired. Thus,
traditional nonlinear optimization techniques used for solving (2.3) in S-BO, such as L-
BFGS and DIRECT, can be implemented as well for optimizing (3.4).

Figure 3.1 demonstrates the benefits of applying BO with reference models using a

simple example. The objective function and the reference model are given by:

fx) = x® —3x° 4 8x2 (3.52)

g(x) = —4.94x% 4+ 8.90x% + 1.93x — 0.09 (3.5b)

where g(-) was obtained by performing a linear regression using 5 random sample points,
with the lowest order polynomial that yields an acceptable fit. Algorithms 1 and 2 were
then implemented in Python 3.7 using Scikit-learn’s gaussian_process module to con-
struct the surrogate models and the AF was minimized using the L-BFGS-B method; both
algorithms were initialized with the same random seed. Figure 3.1 illustrates that after 5
iterations, Algorithm 2 identifies and converges to the solution. Algorithm 1 approaches
the solution slowly, sampling extensively along the way and taking 11 iterations to con-
verge. Note also that the shape of ¢(-) is much simpler than the shape of the objective
(shown in the green dashed line). As a result, it is easier to learn the residual function
g(-) than the objective function f(-). This implies that Algorithm 2 is able to learn the

residual model using fewer samples than Algorithm 1 requires for learning the objective.
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3.3 Case Study: MPC Tuning for HVAC Plants

Thermal energy storage (TES) for chilled/hot water is used to shift energy loads of an
HVAC plant to off-peak hours in order to reduce electricity costs and to mitigate peak
demands [99]. Energy demands and prices are difficult to forecast and errors often result
in violations of TES capacity limits (overfilling or drying up of water tanks). A strategy
to mitigate these violations consists of using a reserved buffer (by adding a back-off
term to the storage constraints). Typically, these back-off terms are selected by manual
search, which requires repeated simulations of the closed-loop system. This approach
is time-consuming as it involves year-long simulations. In this case study, we leverage
the MPC formulation proposed in [1] and build a BO framework for tuning TES back-
off terms. A reference model is introduced to BO to facilitate the optimization. In the
HVAC plant, a chiller subplant produces chilled water and a heat recovery (HR) chiller
subplant produces both chilled and hot water; a hot water generator produces hot water;
cooling towers are used to decrease the temperature of water purchased from the market;
a dump heat exchanger (dump HX) rejects heat from the hot water; and storage tanks (one
for chilled water and one for hot water) are used as the TES. The MPC controller seeks
to determine hourly operating loads for each unit in such a way that the HVAC plant
satisfies the demands of chilled and hot water from multiple buildings of a university
campus. The objective of the MPC is to minimize the total cost of the utilities (electricity,
water, and natural gas) purchased from the market. Electricity is charged based on time-
varying prices, while water and natural gas usage are charged at constant prices.

The HVAC plant cost includes the following items: (i) electricity required for the
equipment operation and charged based on hourly time-varying prices, 7tf, (ii) water
required to make up for evaporative losses of water in the cooling towers and purchased
at a fixed price 7}’ = $0.009/gal, (iii) natural gas required for the operation of the hot
water generator to satisfy the campus heating load and purchased at a fixed price of 77;*

= $0.018/kWh, and (iv) the peak electrical demand charges for each month charged at a

36



high rate of 7 = $4.5/kW.
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Figure 3.2: Schematic energy flow diagram of central HVAC plant (reproduced with

permission) [1].

Figure 3.2 shows the energy flows between all units of the HVAC plant and interac-

tions with loads and utilities. As illustrated in Figure 3.2, the amounts of electricity, water,

and natural gas consumed by the units depend on their operating loads. The chiller and

HR chiller subplants use af; and &} . kW of electricity for the production of 1 kW of

chilled water, respectively; the hot water generator requires aj_ . kW of electricity and

s . kW of natural gas for the production of 1 kW of hot water; and the cooling towers

require &, kW of electricity and af} utility water for 1 kW of condenser water input. For



the chilled water load of the campus (L{%), chilled water is produced by the chiller (P ),
the HR chiller subplants (P, ), and the discharge from chilled water storage (Pcy,). For
the hot water load of the campus (L/™), hot water is produced by the HR chiller subplant
(zerCPhrC,f), the hot water generator (Pyyg ), and the discharge from the hot water storage
(Pnwt)- The excess hot water (P, ;) in the system is recycled by cooling it and producing
condenser water in the dump HX, and the cooling towers use evaporative cooling to re-
duce the temperature of this condenser water along with the condenser water produced
by the chiller and the HR chiller subplants (total P, condenser water).

In the MPC formulation, the operating loads of all units of the HVAC plant are the
manipulated variables, while the states include the state of charge (SOC) of the chilled
water and hot water storage tanks (TES) and carryover quantities (e.g., peak electrical
demand, unmet or overmet production of chilled /hot water). Multiple time-varying dis-
turbances are present in this system; these include the campus electrical load (L{), chilled
water load (L$), hot water load (L™), and electricity prices (7t¢). The MPC uses forecasts
for these disturbances over a prediction horizon 7 to determine the control action for the
next immediate hour. The horizon is shifted by one hour to update disturbance forecasts
and to obtain the next control action. This procedure is repeated for an entire year to
obtain the closed-loop policy and associated cost. The optimization problem solved at

each time t is:
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h
Qe Prrek + Prwgk — Phxk + Pruwk

+ Sitox — Shaox = Li® ke T (3.6f)
Eixy1=Ejx — Py, j € {cw, hw}, k€ T (3.68)
ulippr = uljy — S;{,’(‘, j€{cw hw}, ke T (3.6h)
olixp1 = oljx — S;?f,’c, m € {un,ov},j € {cw, hw}, ke T (3.61)
Rip1 > 7y (3.6))
Riy1 > Ry (3.6k)
Ejx <Ej < Eix j € {cw hw} ke T (3.61)
P < Py < P;, j € {cs, hrc, hwg, ct, hx,cw, hw}, k € T (3.6m)
;7,1,{ >0, m € {un,ov},j € {cw, hw}, ke T (3.6n)
ulipy >0, j € {cw, hw}, k€ T (3.60)
olix >0, j € {cw, hw}, ke T (3.6p)

Here, the residual demands of electricity, water, and natural gas that need to be pur-
chased from the market are given by the constraints (3.6b)-(3.6¢). Constraints (3.6d)-(3.6f)
are the energy balance equations for the condenser water. The sufficient chilled and hot

water production is maintained by imposing constraints (3.6¢) and (3.6f). For maintaining



feasibility in case of under-production or over-production of chilled water or hot water,
the slack variables S;‘,’j and S;-’,z, j € {cw, hw} are added in the constraints (3.6¢) and (3.6f).
The state variables ul;; and ol;, j € {cw, hw} carry over the under-production or over-
production (slack variables) of chilled and hot water in constraints (3.6h) and (3.61) and
these state variables are penalized in the objective function. The dynamics of the SOC for
chilled and hot water TES are given by constraints (3.6g). Constraint (3.6j) computes the
peak demand over the horizon and constraint (3.6k) carries over the peak demand to the
next time step in the closed-loop.

The actual realizations of the loads (disturbances) might induce constraint violations
when they deviate from the forecasts. To account for such violations, bounds on the
chilled and hot water TES in (3.6]) are modified to include a buffer capacity (the back-
off term), B; € [0,0.5],j € {cw,hw}. In closed-loop formulation, the bounds on E;x for
j € {cw, hw} in constraints (3.6]) are updated as:

If BiE; < Ejp1 < (1—Bj)Ej, set Ej 11 = BjEj, Ejrn = (1— B))E;.

If (1 - Bj)E; < Ejs41 < Ej, set Ejjy1= BiEj, Ejt+1 = Eji11.

If0 < Eji11 < BjEj, set Ejyq = Ejpi1, Ejp1 = (1 - B))E}.

If Ejs11 > Ejset Ejiy1 = Ej, Ejryq = BjEj, Eji1 = Ej, and update oljx 1 = oljxy1 +
(Ejir1— Ej).

If Ejsy1 <0,set Ejpq =0, Ejpq =0, Ejpi1 = (1 Bj)Ej, and update uljjq = uljpig —
Ejti1.

The above updates to the storage bounds ensure that the storage is set to the maximum
or minimum capacity if the storage at t + 1 overflows or dries up when implementing the
MPC action; otherwise, the fractional buffer capacity is implemented. These corrections
result in lost economic performance and inefficient use of storage. We perform closed-
loop MPC simulations for the central HVAC plant with the formulation described above
in order to develop a BO framework for tuning the back-off terms for the chilled water
and hot water TES.

The back-off term B = [Bew, Brw]” is introduced to reserve a fraction of the maximum
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capacity as a buffer to account for the uncertainty associated with the predicted distur-
bances. Appropriate determination of the § values is critical for optimizing the closed-
loop performance. Selecting values that are too large will induce an overly conservative
strategy that prevents the storage tanks from being fully utilized to reduce economic
costs. On the other hand, if the B terms are too small, the number of constraint viola-
tions may increase dramatically as the size of the buffer will not be enough to safeguard
against unforeseen disturbances, leading to an economic penalty. For this study, our tun-
ing objective is the annual closed-loop cost (denoted as f(-)), which is a function of the
back-off terms x = {Bcw, Puw}- Because a closed-form representation of f is not available,
a full year-long closed-loop simulation of the HVAC plant has to be performed to evalu-
ate the value of the objective at any x of interest. Additionally, the back-off terms affect
the closed-loop MPC performance in a non-intuitive way. As a result, finding the optimal

back-off values requires repeatedly simulating the closed-loop system at any selected x.

170 " 139
- N 138
) ’ 137

. L0
é 13.6
> 135
134

[}

35 0.05 133

04 .. 0.05 0.15 0.25 035 0.45 0.05 0.15 0.25 035 045
: 0.4 Bew Bew Bew

Objective Function f(B)

0.45

>
n
=
i
&

=
s

»
>

=
in

I3
in
losed-loop cost (MM USD/yr)
s s
a b

Closed-loop cost (MM USD/yr)
=
=

Closed-loop cost (MM USD/yr)

=
n

3
by

Figure 3.3: Left: 3D surface of annual closed-loop cost over back-off terms; Middle: 2D
contour plot of annual closed-loop cost with the baseline cost (shown by a white marker)
in [1]; Right: Refined view of closed-loop cost where the vertical scale is adjusted. These
plots were obtained by interpolating simulation results under 10 x 10 mesh grids.

The prediction horizon of the MPC is set to 168 hours (1 week) to reflect the weekly
periodicity of loads and electricity prices. The optimization problem solved at each hour
is a linear program with 168,450 variables and 143,750 constraints [1]. The problems were
implemented in Julia 0.6.4 and were solved with Gurobi 8.1 on a computing server with

188 GB RAM, 32-core Intel Xeon 2.30 GHz CPU. On average, each MPC problem requires
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about one second to solve but simulating closed-loop behavior over an entire year requires
about 2 hours of wall-clock time (each year-long simulation requires solving more than
8,700 optimization problems). Given the complexity of the underlying tuning problem, it
is apparent that manual or grid search methods can easily become prohibitively expensive
due to the possibly large number of trials and the resultant enormous time consumed.
Figure 3.3 shows the closed-loop cost at different combinations of back-off values for
a given disturbance realization. To generate this surface, we conducted 100 simulations
(obtained by using a coarse grid discretization with 10 points for each back-off term).
One can see that the surface is non-convex with a couple of local minima (the global
minimum is near Bq = 0.05, B, = 0.15). We used the back-off term values B, =
Brw = 0.1 reported in [1], which were delicately selected based on engineering expertise,
as a baseline. The year-long closed-loop cost for the baseline is 13.44 MM USD (million
USD). Note that the baseline parameters may not be optimal as they were not obtained
via rigorous optimization procedures. From Figure 3.3 we can see that the closed-loop
cost is highly sensitive to the back-off terms; specifically, this can easily reach levels of

more than 17 MM USD. The large costs illustrate that operating HVAC facilities is quite
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Figure 3.4: Sequence of sampling locations in the 2D parameter plane for S-BO (left) and
Ref-BO (right). The white circle marker shows the baseline parameters.

expensive, and thus, cutting down costs is essential.
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Figure 3.5: Closed-loop cost over iterations for S-BO and Ref-BO against the baseline
cost. A microscopic view of the comparisons between costs from these methods is shown
inside the figure.
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Figure 3.6: Closed-loop cost for S-BO and Ref-BO under different initialization points.
Each trial corresponds to one initialization point on a 5 x 5 grid of the 2D parameter
space.

We used Algorithm 2 to determine the optimal back-off terms for the MPC con-
troller. First, we constructed a reference model from reduced-horizon simulations of the
original MPC. Instead of maintaining the prediction horizon at 168 hours, we simulated
the closed-loop MPC with a 24-hour horizon across 21 different combinations of back-off
parameter values. Reducing the horizon in MPC simulation has been shown to signifi-
cantly reduce the computational cost (by more than 50%) without significantly sacrificing
performance. The 21 parameter combinations were determined sequentially using S-BO

initialized at the point B, = Buw = 0.45 and with an emphasis on exploration of the space
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(high value of x). The predictive mean of a GP trained on the 21 data samples from the
coarse simulations was used as the reference model. The resultant reference model can
assist BO by providing prior information on the regions where the optimum may poten-
tially reside. Thus, one can avoid the unnecessary exploration of regions that are far from
the optimum. Algorithm 2 was programmed in Python 3.8.3 using Scikit-learn [100] with
a Matern kernel function (I = 1,v = 5/2,0% = 1le—6) for the GP model and the LCB AF
(x = 0.5). The optimizer selected for finding the minimum of the AF was the bounded
limited-memory BFGS (L-BFGS-B) algorithm from Scipy [101]. Note that the operating
cost is on the scale of 13-17 MM USD, as previously mentioned. In addition, as shown in
Figure 3.3, the cost surface is largely flat over a large region of the parameter space. Thus,
if the cost values are not normalized, the small predictive variance (due to the flatness of
the surface) will become almost negligible compared with the scale of the operation cost.
As a result, the sampling locations selected by BO will not move significantly during the
search. This can significantly impact the performance of both BO methods. Therefore,
prior to performing the GP modeling, the operating cost values are normalized. This can
also help satisfy the zero mean assumption for GP modeling. In addition, to improve the
performance of the surrogate model to the data, we re-trained the GP hyperparameters at
each iteration. The sequence of sampling points selected by Ref-BO is shown in the right
plot of Figure 3.4. For comparison, the left plot of Figure 3.4 illustrates the scatter of sam-
pling locations returned by S-BO. We observe that the distribution of sampling locations
is more dispersed in standard BO in our proposed method. Additionally, the bulk of the
points sampled by Ref-BO are concentrated in the neighborhood of the global minimum.
This observation validates the efficiency of Ref-BO at discovering the global solution.
Figure 3.5 demonstrates the progressive closed-loop operation costs over iterations for
S-BO and Ref-BO. In this figure, the black dashed line represents the baseline cost evalu-
ated at the expert-selected back-off parameters. The red line shows the yearly operation
cost under the full-horizon simulation from using the underlying back-off parameters sug-

gested at each iteration of our BO paradigm. Both methods were initialized at the same
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point, the best performing of the 21 samples used to construct the reference model (as
indicated by the reference model). By using the same initial point for both BO methods,
we can compare their convergence performance on a fair basis. It is clear that Ref-BO
converges after only 3 iterations (despite the slight exploratory behavior between itera-
tions 14-18). In contrast, standard BO requires significantly more exploration and does
not converge until after 14 iterations. In total, our BO framework required about 20
hours of wall-clock time; this time includes the execution of the 21 low-fidelity simula-
tions for establishing the reference model and the 3 high-fidelity closed-loop simulations.
For comparison, standard BO requires more than 28 hours (14 full-scale simulations) of
wall-clock time to finding the solution. Our approach, thus, results in an 8 hour reduc-
tion in computational time (over 28%) when compared to S-BO. As stated in Remark 1,
this is because the additional computational cost of developing the reference model using
the low-fidelity system approximation (i.e., reduced-horizon simulations) is less than the
computational savings that the reference model provides to the algorithm. The cause of
the oscillations observed for both BO methods towards the later iterations in Figure 3.5
is likely the flatness of the cost surface, as observed in Figure 3.3. It is expected that the
posterior mean of the GP model is also flat over a large region (cf. Figures 3.7-3.8). Thus,
the AF value is extremely sensitive to minor perturbations in the posterior variance (e.g.,
due to disturbances) and the starting point of the optimizer when minimizing the AF.
Note that the reason we choose a relatively small x value is that the use of a reference
model can guide the search directly towards the globally optimal region, and, in contrast
to S-BO, exploration of a wide range of the parameter space becomes unnecessary. Be-
sides, as shown in Figure 3.5, the initial point for both BO methods is already close to the
solution. Selection of a small « value, thus, enables a higher preference for the greedy
search for the optimum. For the purpose of comparison, we also select the same « value
for S-BO. The distinct behaviors of these two methods clearly show the advantage of our
method in reducing the required iterations. In practice, for standard BO, there exist some

guidelines for determining the x value. A common heuristic is a dynamic strategy where
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x is initially chosen to be large to encourage exploration and then gradually reduced to a
small value to allow for exploitation [102].

From the microscopic (zoomed in) graph in Figure 3.5, we can see that both BO ap-
proaches yield superior back-off parameters than the baseline value. Specifically, us-
ing the parameters suggested by Ref-BO, (8w = 0.0412, B, = 0.1480), and S-BO,
(Bew = 0.0465, By, = 0.1445), the optimal operation costs are 13.3849 million USD and
13.3897 million USD respectively. Both costs are less than the baseline cost (13.4385 mil-
lion USD), with a margin of 53,600 USD and 44,800 USD in annual savings. The relatively
small improvement in cost is mainly attributed to the flat surface shown in Figure 3.3
and the fact that baseline parameters were carefully chosen by experts [1]. However, this
case study only involves 2 parameters that can be easily tuned using domain insights.
For actual MPC tuning problems, the number of tuning parameters can be so large that
trial-and-error, grid search, and heuristics-guided approaches become computationally
expensive and impractical. In contrast, Ref-BO scales well with the number of parame-
ters. Thus, we anticipate that our approach will outperform traditional methods for MPC
tuning in practice.

Figure 3.6 shows the closed-loop operation cost using the optimal tuning parame-
ters determined by standard BO (blue) and our method (red) at 25 different initialization
points for the optimization algorithm. Each trial corresponds to one initialization point
selected from a 5 x 5 grid of the 2-D parameter space. Ref-BO is clearly able to outper-
form (lower cost) S-BO consistently across different starting locations. Standard BO is
significantly more sensitive to the initial point and can be easily trapped at a local opti-
mum if a bad initial value is chosen. In contrast, our method is robust to the initialization
point, as evidenced by the fact that the optima it locates are essentially on the same level
across all trials. This striking feature comes from the strong guiding effect provided by
the reference model. Even if the initial point is far from the solution, the presence of the
reference model can still force the search to move towards the global optimum. This is

another advantage of our approach over standard BO.

47



The posterior mean heat maps of the GP model in each iteration and the correspond-
ing AF values for S-BO and Ref-BO are shown in Figures 3.7 and 3.8, respectively. The
top two rows of Figure 3.7 show that after 7 iterations the posterior mean surface remains
relatively constant, indicating the convergence of the BO algorithm. The bottom two rows
in Figure 3.7 present the AF at each iteration. Interestingly, after several iterations, the
AF function demonstrates two apparent local minima. Thus, standard BO will likely
converge to a local minimum (instead of global optimum) if the exploration/exploita-
tion tradeoff is not appropriately balanced. The top two rows of Figure 3.8 show that,
when using Ref-BO, the posterior mean stabilizes rapidly within a couple of iterations,
remaining consistent thereafter. The developed AF function also converges quickly and
exhibits only one minima towards the later iterations. Therefore, the presence of a refer-
ence model provides valuable guidance for the algorithm to select subsequent sampling
locations and reduces the likelihood of converging to a local solution. In summary, our
results indicate that incorporating a reference model into the BO framework can result
in significant reductions in computational cost when compared to standard BO. The dis-
covered global optimal tuning parameters can also improve the annual operating cost

beyond the baseline parameters currently employed in the literature.

3.4 Conclusions

We presented a novel BO framework that incorporates a reference model for tuning MPC
controllers. The tuning objective is treated as a black-box function of the controller param-
eters. This work is motivated by the observation that evaluating closed-loop performance
can be computationally expensive and thus manual or grid search approaches are time-
consuming. Moreover, existing knowledge about the underlying process is valuable for
guiding the initial search in BO. To this end, we combine BO with a reference model
(generated using prior knowledge or coarse system identification) to efficiently solve this

complex MPC tuning problem. Specifically, we studied the optimization of the back-
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off terms for the thermal energy storage of an HVAC plant. Our results show that this
reference model-guided BO approach can efficiently discover the global solution in 3 iter-
ations, whereas the standard BO algorithm requires 14 iterations, resulting in a reduction
of 8 wall-clock hours of simulation (more than a 28% reduction in computational time).
These observations clearly demonstrate the necessity and advantage of incorporating a
reference model into the BO framework. Moreover, the proposed BO framework can
easily be extended to the tuning of a large number of MPC parameters without signifi-
cantly increasing the computation complexity, unlike traditional methods which rely on
heuristics, grid search, or trial-and-error. As part of our future work, we are interested
in exploring performance with a larger set of tuning parameters that capture different
types of behavior and different types of functions to accelerate the search. Another im-
portant topic for our future study is to investigate how coarse the reference model can be

to provide sufficient guidance for Ref-BO.
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Chapter 4

BAYESIAN OPTIMIZATION OF INTERCONNECTED SYSTEMS

This chapter is adapted with permission from Gonzélez and Zavala from a working paper

and a preprint that is available at https://doi.org/10.48550/arXiv.2311.11254.

4.1 Introduction

A key element of engineering design is the identification of system configurations that
maximize performance and reduce cost [103]. However, this task can often be challeng-
ing due to incomplete physical knowledge or the high complexity of experiments and
available physical models. As a result, it is necessary to devise efficient optimization
strategies the are capable of mitigating system complexity while also reducing the amount
of model or experimental data required to find a solution. This need has motivated the
development of a class of techiques known as black-box optimization algorithms [11].
These methods forgo the need for a closed-form representation of the system and instead
treat it as a black-box that is sampled to generate input/output data that is then used to
guide the search for a solution. Various strategies have been developed to improve the
quality of the search such as response surface methodology [104], particle swarm opti-
mization [105], and genetic algorithms [106]. In the context of engineering design, where

system queries are often expensive and uncertainty in predicted performance is impor-
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tant, Bayesian optimization (BO) [76] has emerged as one of the most effective black-box
optimization paradigms.

While not a new algorithm, Bayesian optimization has, in recent years, become a
widely-used tool for solving challenging design problems across a wide array of disci-
plines such as materials engineering [88], aerospace engineering [107], control [93], and
synthetic biology [108]. It is a flexible algorithm, capable of accommodating both continu-
ous and discrete design variables [69], handling problem constraints [109], and identifying
failure regions [110]. Arguably its most powerful feature, however, is BO’s methodology
for selecting new sample points. BO uses the collected input/output data to train a prob-
abilistic surrogate model, typically a Gaussian process (GP), that estimates not only the
predicted system performance but also the uncertainty of the predictions. These esti-
mates are passed into an acquisition function (AF), which serves as the decision-making
mechanism of the algorithm, that assigns value to sample points based on both their infor-
mation gain and expected performance. The AF can be tuned to place greater importance
on sampling from regions with high predicted performance (exploitation) or high model
uncertainty (exploration). This consideration of informational value in addition to perfor-
mance enables BO to efficiently sample from several distinct regions of the design space
making it an especially powerful global optimizer [53].

While the black-box assumption makes BO highly generalizable (only an interface for
providing inputs and collecting outputs is needed), there is often some form of struc-
tural system knowledge available (e.g., physics or sparse interconnectivity). For example,
when dealing with a complex physical system (e.g., a chemical process), several compo-
nents might be well-modeled and understood, while others might not. In other words,
the system is actually a composition of various white-box (i.e., an analytical representation
is available) and black-box elements as shown in Figure 4.1. Furthermore, the fundamen-
tal principles governing the behavior of the black-box elements (e.g., conservation laws,
equilibrium, value constraints) are, at least qualitatively, understood. Additionally, sparse

connectivity, which provides information on how different components affect each other,
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is also often known. As a result, the system of interest is usually not truly a black-box
but rather a “grey-box" that is partially observable with a known structure [111]. Pre-
vious work done using several different optimization frameworks has demonstrated that
exploiting this knowledge as opposed to relying on a purely black-box strategy can signif-
icantly improve the optimization routine [112, 113, 114]. Thus, it is reasonable to conclude
that BO can similarly benefit by switching from a black-box to a grey-box representation

of the system.
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Figure 4.1: Grey-box systems often exhibit a known structure where the connectivity
between different elements is understood. Not every component is always a black-box
that requires a surrogate model as a closed-form representation might be available for
various components.

Various methods have been developed that allow for the consideration of grey-box
sytems in BO. Most of these approaches involve the use of a low-fidelity approximation
of the system that is cheaper to evaluate. This simplified representation is fed to the
algorithm, allowing it to learn coarse system trends and to identify potentially promising
regions of the design space from the start. The approximation can be obtained through a
variety of means (e.g., simplified physical models, empirical correlations, or lower-fidelity
simulations) and can either be gradually refined [78, 77, 79] or remain unchanged as the
algorithm progresses [115].

More recently, the work in [37] has led to a push towards developing BO frameworks
that represent a system as a composite function, f(x,y(x)), where x are the system inputs,

f is a known scalar function, and y is an unknown vector-valued function that describes
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the behavior of internal system components. This shifts the modeling task from estimat-
ing the performance function directly to estimating the values of y, which serve as inputs
to f(x,y(x)). This can result in derivative information for f becoming available, allow-
ing for a clearer understanding of the effects of x and y on system performance [116].
Additionally, such a representation allows for explicit consideration of the white-box and
black-box sections of the system, which can enable a reduction in the dimensionality of
the surrogate models and allows for the modeling task to be redistributed to a simpler
set of intermediate functions when f is complex [40]. This approach also readily lends
itself to the inclusion of constraints, as these are often dependent on internal variables
which can be captured by vy [38, 117]. As a result, composite functions allow for a more
complete representation of a system, especially in the context of engineering design. For
example, in chemical process design the cost equations for equipment, material streams,
and utilities are often readily available and it is the parameters these equations rely on
(e.g., flowrates and heat duties) that are unknown. Furthermore, traditional unit oper-
ations (e.g., heat exchangers, distillation columns, compressors) have significantly more
developed and mature modeling libraries available than those that tend to be more niche
(e.g., bioreactors, non-equilibrium separators, solids-handling). It therefore makes sense
to construct a composite function where the outer function, f, measures the price of the
system based on the known cost equations, while its inputs, y, are mass and energy flows
that are estimated via either mechanistic or data-driven models. Constraints can then be
incorporated using values estimated for y to ensure that data-driven models obey fun-
damental physical laws and to enforce more traditional requirements, such as product
specifications, waste generation, utility consumption, and equipment sizing, which are
often important in process design.

While setting up a composite function optimization problem might be intuitive, im-
plementing it in a BO setting is not a trivial task. As previously stated, one of the main
advantages of BO is the inclusion of uncertainty estimates in the surrogate model, which

allows for greater exploration of the design space when compared to a deterministic
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model [112]. However, when using a composite function, the GP models generated are of
ynot f. Given that f is the performance metric that needs to be optimized, it is necessary
propagate the predicted uncertainty from y(x) to f(x,y(x)) (i.e., the density of f or de-
sired summarizing statistics must be determined). A Gaussian density for y(x) is directly
obtained from the GP model. As a result, when f is a linear model, we can make use of
the closure of Gaussian random variables under linear operations to generate the density
of f(x,y(x)) (which is also a Gaussian). When f is nonlinear, however, a closed-form
solution is not readily available, and alternative methods must be used to calculate the
density. This problem has traditionally been solved numerically using sampling meth-
ods like Monte Carlo [37, 118, 39, 38], however, this approach can quickly become very
computationally intensive. An alternative method proposed in [40] avoids the need to
explicitly generate a probability density for f by utilizing an optimism-driven algorithm
that solves an auxiliary problem, which is defined over an augmented space, allowing
for the optimization to be carried out with respect to x and y. The trained GP models
are used to construct a set of lower and upper confidence bound functions that are in-
corporated into the auxiliary problem as constraints. This specifies a range from which
values for y can be selected based on the performance and uncertainty estimates of the
GPs. While allows this approach eliminates the need to explicitly calculate the statistical
moments of f, it also increases the size and complexity of the optimization task. This can
significantly lengthen the computational time required to find a solution, especially when
y is high-dimensional.

The increased functionality of composite functions coupled with the high computa-
tional intensity of exisiting methods motivates the need to develop more efficient paradigms
for composite function BO. To this end, we propose the Bayesian Optimization of Inter-
connected Systems (BOIS) framework, a novel method that facilitates the use of composite
functions via adaptive linearizations of f(x,y(x)) in the neighborhood of a y(x) of interest
(see Figure 4.2) [119]. This allows us to construct local Laplace approximations that can

be used to generate closed-form expressions for the mean and uncertainty of f. In this



chapter we provide a detailed introduction to and analysis of the BOIS framework. Using
a pair of complex case studies, we provide evidence of the performance and efficiency
improvements this algorithm provides over standard BO as well as the composite func-
tion BO paradigms presented in [37] and [40]. Additionally, we introduce functionalities
that allow us to handle feasibility considerations for the intermediate functions. We also
exploit the ability of this algorithm to make use of available white-box models, which
provides a significant degree of flexibility in the selection of the intermediate functions.
This allows us to reduce the number of intermediates that must be modeled and the di-
mensions of the corresponding input spaces of these models. As a result, we are able to
develop black-box models that enable system-wide optimization in a more scalable and

efficient manner than existing methods.

GP Prediction

" ~ 3

AF Calculation po Linearization
2 “
p. Laplace Approx. v
E “ <:D

X

Figure 4.2: Illustrative representation of the adaptive linearization scheme employed by
BOIS. At a point x of interest (red marker), a GP model estimates the value of interme-
diate y. A local Laplace approximation is then constructed by linearizing f around a
neighboring point (green marker). The summarizing statistics are passed into an acquisi-
tion function that determines the value of sampling at the selected point. This process is
repeated until the optimum of the AF is found.
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4.2 Bayesian optimization with composite functions

The use of a composite function objective in a BO setting was introduced in [37]. In this

context, (1.1) is recast as:

min f(x,y(x)) (4.12)

st. xe X (4.1b)

Here, f is now a known composite function with f : X x Y — R, and y : X — R%
is a black-box vector-valued function with range Y C R% that captures the unknown
intermediate elements of the system. Note that y can be set up so that any element, y;,
is only dependent on a subset of the inputs in x, or to have a nested structure where
yi is also a function of another element in v, y;j [38, 40, 61]. This feature makes this
approach especially adept at representing complex network systems where inputs often
enter at different sections (e.g., material and energy inputs) and several of the elements
in y are interdependent (e.g., inter-unit streams, yields, recycle loops). As f is now a
known function, the formulation in (4.1) shifts the modeling task from estimating the
performance function to estimating the intermediate functions. In this work, we model
y(x) by using an independent single-output GP for each of the black-box elements. While
multi-output GP models that can consider the correlation between outputs exist [120,
121], these generally exhibit a higher computational complexity than single-output GPs
and have a greater number of hyperparameters, making them more difficult to train.
Additionally, we can make use of the nested structure of y to capture the correlation
between relevant y;’s indirectly.

The shift from black-box to a known composite function results in a loss of the direct
performance and uncertainty estimates for f that are available in S-BO. Instead, these
must be calculated or somehow inferred from the statistical moments of y calculated by

the GP models. In the case where f is a linear transformation of y of the form f = a’y +b,

56



this can be done by making use of the closure of normal random variables under linear

operations:
mﬁ(x) = aTmﬁ(x) +b (4.2a)
(ij(x) = /aTZ{(x)a (4.2b)
where mﬁ(x) € R% and Zﬁ(x) € R%*% are the mean and variance of y. However, in the

more general case where f is a nonlinear transformation, this property can no longer be
used, and closed-form expressions for mﬁ(x) and (ij(x) are not readily available. Com-
posite function BO paradigms have typically addressed this issue by using some varia-
tion of Monte Carlo sampling that allows for these values to be estimated numerically
[118, 39, 38]. An alternative approach was presented in [40] wherein the GP models of
y(x) are used to construct a set of upper and lower confidence bound functions that en-
able the optimization problem to be cast onto a augmented space, X x Y!, where Y? is

the range of the intermediate functions estimated by the confidence bounds. The specific

details of both of these methods are presented in 4.2.1 and 4.2.2.

4.2.1  Monte Carlo-driven composite function Bayesian optimization

Given the GP models of the intermediate functions, QPﬁ, trained on a dataset Dﬁ =

{xx,yc}, K = {1,..., ¢}, Monte Carlo sampling estimates the mean and variance of the
performance function at some point x of interest by drawing S samples from the distribu-
tion of y generated by G Pﬁ(x). These samples are then passed into f(x,y(x)), generating

a range of outcomes that allow for the numerical estimation of mfi(x) and aff(x):

() = < 3 f e ml(x) + Ag(x)z) (439)

o) = 14| o (Floml() + Af()z) i) (4.3b)
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Here, A;(x) € R%*4 is the Cholesky factor of the GP covariance (Aﬁ(Aﬁ)T = Zﬁ) and
zs € R% is a random vector drawn from A/ (0,1). These estimates are used to construct the
lower confidence bound for composite functions (LCB-CF) AF, AF f cp.cp, as outlined in
Algorithm 3. As in S-BO the AF is then optimized to select a select a new sampling point.
The resulting data is appended to Dﬁ and the GP models are retrained. The framework
for this paradigm (which we refer to as MC-BO) is summarized in Algorithm 4. Note
that it is quite similar to S-BO, with the main differences being the shift to modeling the

intermediate functions and the use of the LCB-CF.

Algorithm 3: Lower Confidence Bound for Composite Functions (LCB-CF)
Given x, GP!, S, and «;
mi(x), % (x) < GPy(x);
Calculate the Cholesky decomposition of Zg(x) to determine the Cholesky factor
Al (x);
fors=1,2,..,5S do
Draw sample z; from A (0,1);
mi (x) < f(x,my(x) + Ay (x)zs);

end
¢

il (x) - YIS mf ()
2
1) = sty T () — ()

return rhf,(x) —K- (Tf(x)

Algorithm 4: Monte Carlo-Driven Composite Function Bayesian Optimization
(MC-BO)
Given «, L, and Dﬁ;
Train G Pﬁ using initial dataset Dﬁ and obtain AF} g cp;
for/=1,2,..,L do
Compute x‘+1 < argmin, AF{ cp.cp(x;%) st x € X;
Sample system at x‘*! to obtain y‘*;
Update dataset D! «— Dy U {x"1,y 1 };
Train GP using Df“ to obtain ng;“ and AF} 5L o
end

While Monte Carlo provides a convenient manner for calculating the density of f, it
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is a computationally intensive method for doing so. Accurately estimating mfi(x) and
(Tfi(x) in regions of the design space with high model uncertainty or where f(x,y(x))
exhibits high sensitivity to variations in y(x) can require a significant number of samples
(on the order of 10° or more). Given that the cost of drawing a sample from a GP scales
as O(S(?), generating the samples necessary in these instances can require a significant
amount of computational time [53]. Additionally, even though f is a known function
and is significantly cheaper to evaluate than the system, at large values of S the cost of

repeatedly calculating the value of f(x,y(x)) can also become nontrivial. This issue is

compounded by the fact that (4.3) must be recalculated at every point of interest.

4.2.2 Optimism-driven composite function BO

Auxiliary Problem

1 argmin f(z,y)
zy ‘ 7 1L 7 7
—flz,ul) = f(z, 1) |—ul(x) =1I(x)
3 s ul(r Y Y Y Y
st by (@) <y <y (@) feasible region feasible region
r€X,y€cRY

FGe,w) € [, 1), f ()] I(2) <y < ul(a)

e
(+1¢ Y
Y

SYSTEM

Data Collection Gaussian Process Model

Figure 4.3: Workfow of the OP-BO algorithm. Mean and uncertainty estimates from 9775
are used to create a confidence interval bounded by lf(x) and uﬁ(x) that constrains the

possible values of y. These are incorporated into an auxiliary problem that is optimized
to select a new sample point x/*!. The resulting data is then appended to the dataset Dﬁ
and the GP models are retrained

As previously stated, when f is formulated as a composite function, its closed-form
representation is known. As a result, its derivatives can be calculated, making it possible
to determine the optimal values of x and y using gradient-based methods [116]. However,

the solution might be infeasible as the proposed values of y might be inconsistent with

the relationships imposed by the intermediate functions. Typically, this issue is handled
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by the use of equality constraints that are designed to ensure feasibility. This requires
that the closed-form representation of y be available, which is not the case in a composite
function BO setting. However, the behavior of the intermediate functions can be estimated
using 9735. The simplest approach for setting up the required constraints would then be
to use the means of the GP models, but this discounts the information provided by the
uncertainty estimates. The optimism-driven composite function BO algorithm (which we
refer to as OP-BO) proposes an alternative approach wherein the values of y are instead
restricted to a confidence interval that is specified by the GP models [40]. This is done via a
set of upper and lower confidence bound functions that are incorporated into the problem

as inequality constraints and are of the form:

l;(x) = max{mﬁ(x) —K- (Tf(x), I} (4-4a)
uﬁ(x) = min{mi(x) +x- Uf(x),ﬁy} (4-4b)
where fy € R% and 1, € R% are the lower and upper feasibility bounds of y respectively;
x determines the size of the confidence interval and thereby sets the emphasis placed
on exploration similar to (2.2). This allows OP-BO to construct and solve an auxiliary

problem of (4.1) of the form:

min f(x,y) (4-53)
s.t. lﬁ(x) -y <0 (4.5b)
y—uy(x) <0 (4-5¢)

xe X, ye R% (4.5d)

This problem is solved at every iteration of the algorithm to determine the next sampling

point x‘+1

, essentially filling the role of the AF in OP-BO. After sampling at this point,
x{+1 11 js appended to the current dataset and the GP models are re-trained allowin
y pp 2]

for lﬁ(x) and uﬁ(x) to be updated. The workflow for the OP-BO algorithm is detailed in
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Algorithm 5 and Figure 4.3 provides an illustrative summary.

Algorithm 5: Optimism-Driven Composite Function Bayesian Optimization (OP-
BO)

Given «x, L, and Dﬁ;

Train G 735 using initial dataset Df and obtain lﬁ and uﬁ ;

for/=1,2,..,L do
Compute x‘*! by solving

min f(x,)

s.t. lf(x) -y <0
y— ui(x) <0
xe X,ye R4

Sample system at x‘*! to obtain y‘*;
r+1 i 041 0411,
Update dataset D, < D, U {xt, Yy
Train GP using D} to obtain GP4™, 101, and u*;
end

Unlike the AFs used in S-BO and MC-BO, (4.5) does not require the estimation of
the probability density of f. Thus, OP-BO does not need to rely on the use of sampling
methods like Monte Carlo. While this approach might seem more efficient, it should
be noted that the dimensions of search space in the auxiliary problem (R% + R%) are
greater than in the original (R%). As a result, problems that have a significant number
of intermediate functions (large value of d;) can lead to scenarios where (4.5) potentially
requires a significant amount of computational time to solve. Thus, there is likely a
point at which the cost of optimizing the lower dimensional AF fCB_CF is lower than the
cost of solving the high-dimensional auxiliary problem. Note that in these scenarios
the computational intensity of both MC-BO and OP-BO would likely be high, further

highlighting the need to develop more efficient paradigms for composite function BO.
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4.3 The BOIS Approach

While MC-BO and OP-BO provide two very distinct methodologies for handling com-
posite functions in a BO setting, both paradigms are motivated by the same fundamental
challenge: the lack of closed-form expressions for mfi(x) and Uf(x). As previously stated,
it is generally not possible to obtain these when f is a nonlinear mapping of y. However,
we can make use of the availability of the derivatives of f and the closure of normal
random variables under linear transformations to formulate a solution that allows us to
overcome this issue.

Consider the case where f is a once-differentiable mapping with respect to y, in this
scenario, it is possible to conduct a linearization of f at the current iterate (as is done
in standard optimization algorithms such as Newton’s method). For the purpose of our

discussion, we choose to represent f as:

flx,y) = g(x) +h(x,y) (4.7)

Using a first-order Taylor series expansion, we linearize f with respect to y around some

reference point yo:

flx,y) = g(x) +h(x,y0) + " (v — vo) (4-8)

where
] = Vyh(x,y0) (4.92)
= Vyf(x,y0) (4.9b)

At some point of interest, x, we can calculate mﬁ(x) and Zﬁ(x) using gPﬁ and define the
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following:

A, = max{0,f, — mg(x)} (4.10a)
Api = min{0, @1, — mﬁ(x)} (4.10b)
9" = mﬁ(x) + Ajo + Ay (4.10¢)
2= Zﬁ(x“l) (4.10d)

where (4.10a) and (4.10b) ensure that 7’ is within any specified feasibility bounds of y.
Note that the rationale behind these two calculations is that if mﬁ < fy or mﬁ > i1y, then it
is reasonable to interpret this as an indication that the true value of y(x) is likely near the
closest bound. If we then select a reference point, §§, in the e-neighborhood of §, where

\y% — yAf | < €, we can approximate f at x as:

flay(x) = g(x) +h(x, ") + ] (y(x) — 70) (4.112)

Note that in this context, ¢ contains only the white-box elements of f that have no depen-
dency on y and, therefore, g(x) is a deterministic variable. Combining this approximation
of the performance function with (4.2), we are now able to derive a set of closed-form

expressions that estimate the mean and uncertainty of f:

ml(x) = J79" + g(x) + h(x, 95) — 1794 (4.12a)

of(x) = (J'E7)" (4.12b)

Using this expression, we are now able to construct the Bayesian Optimization of Inter-
connected Systems (BOIS) paradigm for composite function BO.

Similar to the previously discussed methods, the BOIS framework is initialized by
using a dataset Dﬁ to train a set of GP models of the intermediate functions QP? Given

some point of interest, x, and the corresponding mean and uncertainty estimates for
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y(x), Equations (4.8)-(4.12) are used to construct the lower confidence bound for BOIS
acquisition function (LCB-BOIS, denoted as AF gOIS), and this AF is then optimized to
select a new sampling point, x/*1. After sampling, the obtained datapoint, {x‘*1,y/*1},
is appended to the dataset and the GP models are retrained. A summary of this procedure
is presented in Algorithm 6 and Figure 4.4 provides a visual representation. Note that this

framework is quite similar to MC-BO with the LCB-CF AF being replaced with LCB-BOIS.

Acquisition Function (AF)

' « argmin AF%OIS([L‘; K)
st.xeX
AFL (@ k) = 75 +b— & (JTE*J) * flay) ~N (JTg;f b, JTEZJ)

my(x)

(+1+ ¢ of (x)
y
SYSTEM
2t ¥ = y(at)
Data Collection Gaussian Process Model

Figure 4.4: Workflow of the BOIS algorithm, note that b = g(x) + h(x, 75) — J"95. A set of
GP surrogate models of y is trained using Dg. The mean and variance estimates calculated

by the GPs are passed into AF £ ors which generates a local Laplace approximation for the
density of f. This AF is then optimized to obtain a new sample point, x'*!. The system
is then sampled at this point and the collected data is appended to the dataset and used
to retrain the GP models.

Algorithm 6: Bayesian Optimization of Interconnected Systems (BOIS)

Given «, €, L, and Df;
Train G P§ using initial dataset Dﬁ and obtain AF oy
for?/=1,2,...,L do
Compute x‘*1 < argmin_ AFbos(x;%) s.t. x € X;
Sample system at x‘*! to obtain y‘*1;
Update dataset Dﬁ“ — Dﬁ U {xtL yt
Train GP using D4 to obtain GP,*" and AFpfs;

end

Unlike MC-BO and OP-BO which are agnostic to the nature of the density of f, the

BOIS framework implicitly assumes that f is normally distributed in the neighborhood of



the iterate yAé. In other words, at any x of interest, BOIS passes the mean and uncertainty
estimates calculated by Qpﬁ into (4.11) to construct a local Laplace approximation of the
performance function. As this approximation is then also Gaussian, it is also possible
to obtain expressions for the probabilities and quantiles (to construct different types of
AFs). Because f(x,y(x)) is likely not a normally distributed random variable, the Laplace
approximation will result in a worse fit as the distance between #* and 7§ grows, similar to
how (4.8) becomes less accurate. Thus, it is important to choose a value for € that provides
an accurate estimate of the density of f at #* and to not extrapolate the fit beyond this
point. However, it is important to note that the linearization is updated in an adaptive
manner (by linearizing around the current iterate).

By deriving closed-from approximations for mf((x) and Uf(x), BOIS is able to reduce
the number of function calls to QPi and f significantly when compared to MC-BO. At
a given point x, BOIS only has to sample from the GPs once to obtain the estimates for
7' and £ and the performance function is similarly only evaluated once to calculate
f(x,7o); recall that this is done tens to thousands of times in MC-BO. While BOIS does
have to compute (4.9), this is also only done once per x. Additionally, calculating function
gradients has been shown to have a computational cost similar to that of evaluating the
function itself when methods like automatic differentiation are used [122], [123]. As a
result, the computational cost of calculating AF tors(x) can be significantly lower than
that of calculating AF f cpop(x). If we perform a similar comparison between BOIS and
OP-BO, we observe that, like BOIS, OP-BO only samples from the GP models and evalu-
ates the performance function once when setting up the auxiliary problem. However, the
auxiliary problem is a constrained problem that is optimized over a higher dimensional
space than the LCB-BOIS AF. As a result, OP-BO likely requires more computational time

obtain a new sample point than BOIS, especially when y is high-dimensional.
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4.4 Numerical Experiments

We tested and compared the performances of S-BO, MC-BO, OP-BO and BOIS using
various numerical experiments. Our aim is to demonstrate that BOIS can perform as
well or better than the existing methods while being less computationally intensive than
MC-BO and OP-BO. In this section, we present the results from two case studies. The
first study focuses on the performance of a simulated chemical process, and the second
examines the design of a photobioreactor (b-PBR) in a nutrient recovery process. In
both systems, closed-form models are available for some of the process units, making
them excellent candidates for benchmarking the composite function BO algorithms. A
detailed overview of the systems used in each case study, along with the corresponding
process unit models, can be found in Appendix A.1. Note that MC-BO used S = 100
samples to calculate ﬁifi(x) and (Affi(x), and the value of € in BOIS was set to 7’ x 1073
The data and code needed to reproduce the results can be found at https://github.com
/zavalab/bayesianopt. All algorithms were implemented in Python 3.11 and used the
gaussian_process module from Scikit-learn [100] for GP modeling and minimize from
Scipy [101] to optimize the acquisition functions; the gradient of f in (4.9) was evaluated

using approx_fprime, also from Scipy.

4.4.1 Optimization of a chemical process

Consider the following chemical process: reagents A and B are compressed, heated and
then fed into a reactor where they form product C. The reactor effluent is sent to a
separator, where C is recovered as a liquid. Note that B is essentially non-condensable,
while small amounts of A can be present in the liquid phase. The vapor stream exiting the
separator is largely composed of unreacted reagents. A fraction of this stream is recycled
and fed back to the reactor after being heated and compressed, while the remainder is

purged. The demand for C is capped at a specified value, F, and any excess product
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generated cannot be sold. Our goal is to determine the operating temperatures and
pressures of the reactor and separator as well as the recycle fraction that will minimize

the operating cost of the process, which we define as:

= 2
filx,y(x)) = Z wijokF; + Fs Z wi; + w3 <¢CF%_F> (4.13a)
je{A,B} ie{A,B,C}
5 3
fa(x,y(x)) = Z wy Qp, +we Z Wi (4.13b)
h=1 k=1
fxy(x) = filx, y(x)) + f2(x, y(x)) (4-130)

Here, F; denotes the molar flowrate of A or B into the process; ; is the mol fraction of A,
B, or C in the product stream, which exits the process at rate Fs. The heating and cooling
requirements of the heaters, reactor, and separator are denoted as Qy, and Wy is the power
load of the k™" compressor. The costs of reagents and heat and power utilities are w;, wy,
and w, respectively, while w; refers to the value of species i in the product stream. The
demand cap is enforced via a quadratic penalty term that incurs an additional cost, scaled
by w3, when the process operates at value of Fs that is different than F.

The design space was defined as the box domain X = [673, 250, 288,140, 0.5] x [973, 450,
338,170,0.9] with the optimal solution located at x = (844, 346,288,170,0.9). The perfor-
mance of the algorithms was measured across 25 trials. During each trial, all of the
algorithms ran for 100 iterations and were initialized using the same two points drawn
from a uniform distribution of X. The reactor and separator were treated as black-boxes,
and the compressors and heaters were assumed to be white-box elements. We defined
the intermediate functions as the purge to feed ratio of B, #p, the product to purge ratio
of A, 74, the purge to product ratio of C, #c, and the utility requirements of the reactor
and separator, Qy and Qs respectively. By combining these with the white-box models
for the compressors and heaters, we were able to fully specify the system using only
five intermediates. For comparison, if we had chosen to model the elements in (4.13)

directly, we would have had 8 black-box functions, and we would not have been able to
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use the white-box models for the recycle compressor and heater. Additionally, by nesting
some of the selected functions within each other, we were able to reduce the number of
inputs used by the GP models of most of the intermediates. The specific details on the

construction of the GP models for these can be found in Appendix B.1.1.
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Figure 4.5: Performance comparison of the tested algorithms for the chemical process op-
timization problem based on (a) the best solution at the current iterate, (b) the best solu-
tion located by each algorithm during each trial, and (c) the distribution of the sampling
behavior across the 125 runs for each of the tested methods with the average behavior
shown in color.

The results shown in Figure 4.5 summarize the performance of the tested algorithms
across the 25 runs. We observed that BOIS outperformed the other methods. On average,
it beat out S-BO and MC-BO by 1.2% and 3.3% respectively in terms of solution value.

While OP-BO returned a similarly-valued solution, it required approximately 30 more



iterations to find it. BOIS was also remarkably robust, it consistently arrived at the global
optimum regardless of where it was initialized. Again, OP-BO performed similarly, it
located a solution within 1% of the global optimum at every trial. S-BO and MC-BO
exhibited significantly more variability with S-BO appearing to be especially sensitive to
the initial guess. Note that MC-BO was unable to find the global solution.

The comparatively worse performances of S-BO and MC-BO were likely due to the
fact that, as shown on the right side of Figure 4.5, neither of these algorithms appeared
to converge to a solution within 100 iterations. S-BO, especially, continued to sample
from highly sub-optimal regions late into each trial. This indicates that the algorithm
struggled to learn the flow penalty, and provides a clear demonstration of the advantages
of employing a composite representation of f. The sampling behavior of the composite
BO algorithms was significantly less variable as they were provided with a representation
of the performance function that includes the flow penalty, allowing them to effectively
identify the regions of the design space that minimize its value. S-BO, meanwhile, did
not have access to this information and could only learn it by sampling, which is clearly
an ineffective method.

In the case of MC-BO, we surmise that its behavior was likely the result of the need for
a greater number of samples. We observed that the performance function was sensitive
to changes in the value of the intermediate functions. At a given x with S = 100, different
evaluations of the LCB-MCBO AF could return values that differed by over 10%. This
made the AF optimization step more likely to recommend a sub-optimal sampling point
as it actually calculated a range of utility values rather than a single, replicable value
as is the case in S-BO, OP-BO, and BOIS. While a solution to this problem would be to
increase the value of S, this would also increase the computational cost of the algorithm.
This highlights the advantage of utilizing the more specialized methods employed by OP-
BO and BOIS to obtain a closed-form representation of the acquisition function/auxiliary
problem over the more general Monte Carlo estimation approach.

We used the difference between the total execution time and total system sampling
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Figure 4.6: Computational intensity of the tested algorithms for solving the chemical
process optimization problem measured as the difference between the total execution
time and total system sampling time.

time of each algorithm as a measurement of its computational intensity. This metric is
largely dominated by AF or auxiliary problem optimization step, which is the distin-
guishing feature between MC-BO, OP-BO, and BOIS. From the results shown in Figure
4.6 we can observe that, unsurprisingly, S-BO was the least computationally intensive of
the algorithms tested, clocking in at an average time of 619 seconds. Given that it di-
rectly models the performance function, S-BO only needs to sample from its GP model
to obtain the required mean and uncertainty estimates; this makes the evaluation of its
AF faster. Additionally, due to fact that it contains several white-box elements that need
to be evaluated, calculating f(x,y) does require more computational time than sampling
from ngQ. However, as discussed above, this streamlined approach comes at the cost
of decreased performance. Among the three composite function BO algorithms, BOIS,
with an average time of 1952 seconds, was 41% faster than MC-BO (2758 seconds) and
3.3 times faster than OP-BO (6398 seconds). This result, coupled with the strong perfor-
mance of BOIS, demonstrates that not only is the LCB-BOIS AF able to effectively direct
the search for the optimal solution, but it also requires significantly less computational
resources to optimize. While OP-BO achieved a similar level of performance, its efficiency
was significantly hampered by the need to optimize the auxiliary problem over x and y.
As these are both five dimensional, solving (4.5) involves navigating a ten-dimensional

space, significantly increasing the computational time required to solve this problem com-
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pared to the AF optimization step of any of the other algorithms. MC-BO, while 2.3 times
faster than OP-BO, was ultimately unable to match BOIS in either performance or speed.
In summary, these observations affirm the claim that BOIS is an effective paradigm for
composite function BO as it was clearly able to match or surpass the existing methods in

terms of both performance and computational efficiency.

25000 104
20000 = BOIS
15S5=10
%15000 Bl S=100
10000 103, EEE S=1000
5000
[0}
0 , , , €
0 5000 10000 15000 20000 25000 = )
Mgois c 10
o
a P
©
3
o
©
800 T T s @)
o §=10 OOZO"@% 2 = 10
o 070 oR —
00| ° °=100 %6 0o 0% v g
o e 5=1000 0 o ® =
Q Q
4400 o0 TS S
S o o 9o, o 00 © 10°
° o, 9 p%)o o o ©
200 —2 05 8 00 °
100 200 300 400 500 600 700 800 i
OBoIs 10
b c

Figure 4.7: Parity plots of the estimates of mff(x) (a) and O';(X) (b) for (4.13) and log,,
of the time required to generate the estimates (c) at 500 points in X using BOIS with
€ = x 1073 and MC-BO with samples sizes S = 10, 102, and 10°; the same trained GP
model of y(x) was used by both algorithms.

To confirm that BOIS provides accurate estimates of mean and uncertainty of f, we
compared the values calculated by BOIS for mﬁ(x) and (T}Z(x) with those obtained from
MC-BO. We know that as we increase the number of samples, (4.3) will return values
closer to the true moments of f. Using a trained GP model of y(x), we calculated rhfi(x)
and (Aff(x) at 500 randomly selected points in X using 10, 100, and 1000 samples. If
the values calculated by BOIS in (4.12) are accurate, the difference between these values
and those returned by MC-BO should decrease as S increases. The results presented
on the left side of Figure 4.7 demonstrate that this was precisely the case. While the

estimates for mf@(x) remained fairly constant across the various values of S, the estimates
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for Uj’ﬁ(x) were significantly more dynamic. Remarkably, we observed that BOIS estimated
the uncertainty of f with the same degree of accuracy as MC-BO with 1000 samples.
We also observed that the amount of time required to generate these estimates, shown
on the the right side of Figure 4.7, was two orders of magnitude lower when we used
BOIS than when we used MC-BO with S = 1000. These results demonstrate that the
adaptive linearization scheme employed by BOIS is not only fast but also accurate, further
emphasizing that this method provides BOIS with a significant advantage over algorithms

that rely on sampling-based estimation techniques.

4.4.2 Design of a photobioreactor

Nutrient management is a key challenge facing the agriculture sector as current practices
are unsustainable. Processes that allow for nutrient recycling offer a potential solution to
this issue. One such process involves the production of a cyanobacteria (CB) biofertilizer
from animal waste. At the center of this operation is a bag photobioreactor (b-PBR) in
which CB is grown. Due to the novelty of this application, this unit has not been widely
studied and must be designed experimentally. However, computational methods like BO
can aid in the identification of reactor settings that optimize overall process performance.

In this case study, we considered the deployment of a biofertilizer production facility
coupled with biogas generation using the waste produced at a hypothetical 1000 animal
unit dairy farm. We measured performance using the minimum selling price (MSP)
that the biofertilizer must be sold at to achieve a 15% discounted return on investment
(DRQI) over a 10 year project lifetime. The b-PBRs were modeled as black-boxes while
the remaining units (anaerobic digester, biogas purification and CB harvesting section)
were treated as white-boxes that make use of existing models (see A.1.2). Our goal was to
identify the settings for three key reactor parameters: surface area to volume ratio (m~1),
batch time (days), and CB nutrient density (mass fraction), that minimize the MSP.

We defined the design space as the box domain X = [11.5,22.5,0.013] x [19.2,37.5,0.154].



Note that the MSP function is a highly multi-modal function within this domain and the
global solution is located at [15.4,30,0.056]. Given that the b-PBR is the only black-box in
the system, it did not make sense to include all of the elements of the MSP function (ma-
terial flows and unit sizes) in y(x) as this unnecessarily increases its dimensionality. Thus,
we instead opted to use two intermediate functions that enabled the full specification of
the reactor: the total reactor volume, and the final CB titer (see B.1.2). In addition to
reducing the size of y(x), this selection allowed for the development of a b-PBR surrogate
model that is highly refined in the regions near the optimum. The performance of each
algorithm was measured across 125 trials, each initialized with a different pair of points
selected from a 5 x 5 x 5 grid of the design space. During each trial, all of the algorithms
ran for 50 iterations and used the same set of initialization points.

The performance profiles shown in Figure 4.8 illustrate that BOIS outperformed S-BO
and MC-BO by and average 5.4% and 1.6% respectively. While OP-BO was able to locate
the same optimum as BOIS, we observed that, on average, it took 10 additional iterations
to find this point. BOIS was also the only algorithm that appeared to consistently con-
verge by the end of each trial. While BOIS explored extensively during the first half of
each trial, after approximately 4o iterations it tended to switch to exploiting the region
near the optimum. Meanwhile, S-BO, MC-BO, and OP-BO continued to sample from
sub-optimal regions, even at the end of each trial. From this, we can conclude that BOIS
was able to navigate the design space more efficiently and could differentiate between
optimal and sub-optimal regions more quickly than the other methods. Note that this
increase in speed did not come at the expense of a decreased solution value as BOIS did
not get trapped in a local optimum during any of the trials.

In terms of robustness, we observed that OP-BO and BOIS were able to arrive at
the same solution regardless of where they were initialized. MC-BO exhibited some
sensitivity, with best solution values located in each trial varying between -1.1% to 2.0%
from the average minimum value. As was seen in the previous case study, this stems from

the fact that the value returned by the LCB-CF AF at a given x varies between evaluations.
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This can make if difficult to ascertain the true utility value of sampling at x, increasing
the chance of selecting a sub-optimal sample point. However, it is worth noting that the
variability observed for MC-BO was significantly less than what was observed for S-BO,
which returned values across an almost 10% range (-4.0% to 5.9%) around the average
minimum value. This extreme sensitivity was likely due to the fact that the MSP is a
difficult function to learn as it is highly non-smooth. As a result, S-BO was unable to
construct a good surrogate model of the performance function, causing it to struggle to
navigate the design space. Meanwhile, the composite function BO algorithms were tasked
with learning functions that are comparatively much simpler and were thus better able to
predict the behavior of the performance function. This demonstrates that, in addition to
the structural system knowledge it provides, the ability to to shift the learning task from
a complex function to a set of simpler and easier-to-learn intermediate functions is a key
advantage of using composite function BO over S-BO; this feature is part of the reason

why MC-BO, OP-BO and BOIS all outperformed S-BO.
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Figure 4.9: Computational intensity of the tested algorithms for solving the photobioreac-
tor design problem measured as the difference between the total execution time and total
system sampling time.

Figure 4.9 illustrates the computational time (sampling time not included) required
by the algorithms to complete one trial. With an average time of 66 seconds, S-BO was
the least intensive algorithm, beating out its closest competitor by almost an order of
magnitude. However, its poor performance indicates that, despite being a fast-running

algorithm, it is not the best choice for solving the problem. From among the remaining
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algorithms, BOIS was the fastest method. At 619 seconds, it outpaced OP-BO by 55% and
MC-BO by 104%. Note that in this case study, OP-BO was faster than MC-BO, which is
the opposite of what was observed in 4.4.1. This highlights the fact that the comparative
intensity of these two methods is variable. At low values of d, and d, MC-BO is the more
computationally expensive algorithm. However, as the dimensions of x and y increase, the
time required to solve the auxiliary problem over the larger space increases to the point
that the computational intensity of OP-BO becomes greater. Meanwhile, because BOIS
utilizes a set of closed-form expressions to estimate mfc(x) and (Tf(x), it always requires
fewer operations to evaluate its AF than MC-BO and this AF is always optimized over a
smaller space than the auxiliary problem in OP-BO. As a result, BOIS is able to maintain
a consistent speed advantage over both MC-BO and OP-BO and appears to be a more
scalable method for composite function BO.

Using the same approach as in chemical process optimization study, we estimated
the values mfc(x) and (Tf(x) at 500 randomly selected points using BOIS and MC-BO.
From these estimates, which are shown in Figure 4.10, we can conclude that BOIS was
once again able to generate highly accurate estimates of the statistical moments of the
performance function. These results also proved that the adaptive linearization scheme
is able to accurately estimate the behavior of a complex function like the MSP without
necessarily requiring additional computational time. In fact, the relative differences in the
generation times shown on the right side of Figure 4.10 were fairly similar to what was
observed in the previous case study.

If we specifically look at the spread of the estimates for (Tf(x) calculated by BOIS vs
those calculated by MC-BO when S = 1000, we observe that there appears to be a slight
bias in the direction that the data points deviate from the center line. We believe that
this is likely due to the fact that the intermediate functions are not actually symmetric
as is assumed by the GP models (i.e., CB titer and reactor volume cannot be negative).
This issue becomes especially poignant when mg(x) is near the feasibility bounds of any

one of the intermediate functions, as the distribution of y(x) spans values that are not
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permissible. We attempted to mitigate this problem by clipping the value of mg(x) to the
corresponding upper or lower bound when it was outside of its allowable range as shown
in (4.10). This provides BOIS with a workable solution as it ensures that only feasible
values of §* and 7} are passed into f(x,y). However, because MC-BO samples from the
distribution to select the values of y, it can still select infeasible values. As a result, we
had to clip sampled values of y to fy or 7, when they were outside of their permissible
range. This caused the calculated density of f to not be symmetric and thus different
from the density calculated by BOIS. While this indicates that the Laplace approximation
does not provide an accurate representation of the density of f near the bounds of the
intermediate functions, we should note the the numerical results we presented indicate
that this was not an issue. This demonstrates that, despite assuming an incorrect shape,
BOIS was still able to generate performance and informational value estimates that were

at least consistent with those of the true underlying distribution. Additionally, it should

14

be noted that at points where m,

(x) was not near a boundary, which was the case for the

majority of those selected, the approximation was still remarkably accurate.

4.5 Conclusions and Future Work

We presented the BOIS framework, a method designed to facilitate the use of composite
functions f(x,y(x)) in a BO setting. Composite performance functions offer an intuitive
way for exploiting structural knowledge (in the form of physics or sparse interconnec-
tions) and enable the integration of available white-box models. Additionally, this ap-
proach provides significant flexibility in selecting the black-box elements and setting up
the corresponding surrogate models (i.e., the inputs can be customized). This can enable
a reduction in the dimensionality of y(x) as well as in the inputs of the corresponding GP
models, which improves the scalability of the algorithm. Additionally, we can specifically
opt to consider intermediates of interest in order to develop surrogate models for these

that are highly-refined in regions around any explored optima.
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Figure 4.10: Parity plots of the estimates of mfﬂ(x) (a) and (Tf(x) (b) for the MSP function
and log;, of the time required to generate the estimates (c) at 500 points in X using BOIS
with € = 7 X 103 and MC-BO with samples sizes S = 10, 102, and 103; the same trained
GP model of y(x) was used by both algorithms.

We benchmarked the performance of BOIS against standard Bayesian optimization
and two existing composite function BO algorithms (MC-BO and OP-BO) using two case
studies centered around chemical engineering optimization and design problems. Our
results showed that BOIS significantly outperformed S-BO and was able to match or beat
the performances of MC-BO and OP-BO while being significantly less computationally
intensive. We also demonstrated that the values of the statistical moments of f estimated
by the adaptive linearization scheme we propose are generally very accurate and require
significantly less time to compute compared to Monte Carlo estimates of comparable
accuracy. However, we did observe a reduction in the accuracy of these predictions in re-
gions near the feasibility limits of the intermediate functions. This is due to the symmetry
assumption made by the GPs causing a significant portion of the calculated distribution
of y(x) to span non-permissible values in these regions. It should be noted, though,
that BO is not limited to using GPs to construct the surrogate model; any probabilistic

model can be used. Therefore, we would like to explore the use of alternatives such as
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warped GPs [57], RNNs [124], and reference models [115] as potential solutions to this
issue. Additionally, we are also interested in investigating the performance of BOIS in
high-dimensional systems and in developing alternative types of AFs that can extend the

functionality of the algorithm, such as enabling parallelization.
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Chapter 5

NEW PARADIGMS FOR EXPLOITING PARALLEL EXPERIMENTS
IN BAYESIAN OPTIMIZATION

This chapter is adapted with permission from Gonzélez and Zavala. Computers and Chem-

ical Engineering 170 (2023): 108110. Copyright 2023 Elsvier.

5.1 Introduction

The use of high-throughput experimental (HTE) platforms is accelerating scientific dis-
covery in diverse fields such as catalysis [125], pharmaceuticals [126], synthetic biology
[127], and chemical engineering [128]. Such platforms permit large numbers of experi-
ments to be executed in parallel, sometimes automatically; this enables the exploration of
wider design spaces, reduces time to discovery, and can potentially decrease the use of
resources. However, due to the large number of design variables involved, determining
optimal conditions manually is often infeasible. As a result, HTE platforms rely on the
use of design of experiments (DoE) algorithms, which aim to systematically explore the
design space.

Screening is a simple DoE approach in which experiments are performed at points on
a discretized grid of the design space [129]; this approach is intuitive but does not scale

well with the number of design variables and can ultimately lead to significant waste of
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resources (conduct experiments that do not provide significant information). The central
aim of advanced DoE approaches is to maximize the value provided by each experiment
and ultimately reduce the number of experiments and resources used (e.g., experiment
time). The value of an experiment is usually measured either by information content
(e.g., reduces model uncertainty) or if it results in a desirable outcome (e.g., improves an
economic objective) [104]. A widely used DoE approach that aims to tackle this problem
is response surface methodology or RSM [23]. This approach is generally sample-efficient
(requires few experiments) but uses second-degree polynomial surrogate models that
can fail to accurately capture system trends. In addition, parameters used in the RSM
surrogate model are subject to epistemic uncertainty and this uncertainty is not resolved
via further experiments [62] (i.e., RSM is an open-loop DoE technique).

Another powerful approach for DoE that aims to maximize value of experiments is
Bayesian experimental design [130]. Recently, the machine learning (ML) community has
been using variants of this paradigm to conduct closed-loop experimental design [131].
One of the most effective variations of this paradigm is the Bayesian optimization (BO)
algorithm [132]; BO has been shown to be sample-efficient and scalable (requires minimal
experiments and can explore large design spaces) [73]. BO is widely used in applications
such as experimental design, hyper-parameter tuning, and reinforcement learning. Of
particular interest is the flexibility of the BO paradigm; it is capable of accommodating
both continuous and discrete (e.g., categorical) design variables as well as constraints
(which help encode domain knowledge and restrict the design space) [69]. Additionally,
BO uses probabilistic surrogate models (e.g. Gaussian process models) which greatly
facilitates the quantification of uncertainty and information in different regions of the
design space [28]. This feature is particularly useful in guiding experiments where in-
formation gain can be as important as performance. BO can also be tuned to emphasize
exploration (sampling from regions with high uncertainty) over exploitation (sampling
from regions with high economic performance) [76]. This trade-off is achieved by tun-

ing the so-called acquisition function (AF), which is a composite function that captures
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uncertainty and performance.

A fundamental caveat of BO is that it is inherently a sequential algorithm (samples
a single point in the design space at each iteration), limiting its ability to exploit HTE
platforms. Modifications to the BO algorithm have been proposed in the literature to
overcome these limitations [133, 134, 135]. Relevant variants include Hyperspace par-
titioning [136], batch Bayesian optimization [137], NxXMCMC [42], and AF optimization
over a set of exploratory designs [138]. These parallel BO approaches have been shown
to perform better than sequential BO in terms of search time [139]. However, these ap-
proaches are limited in the degree of parallelization that can be achieved and can lead to
redundant experiments, thus wasting resources and potentially getting trapped in local
solutions.

In this chapter, we present a set of new parallel BO paradigms that exploit the struc-
ture of the system in order to guide the partitioning of the design space (see Figure 5.1).
Our first approach, which we call level-set partitioning, decomposes the design space by
following the level sets of the performance function. Because the performance function
cannot be evaluated (it is unknown), a key feature of this approach is that it leverages a
reference function (which can be a low-fidelity model or a physics model) to approximate
the level sets and guide the partitioning. Our second approach, called variable partitioning,
partitions the design space by exploiting partially separable structures that typically result
when a system is composed of multiple subsystems (e.g., a chemical process is composed
of multiple units). We benchmark the performance of our approaches over sequential BO
and state-of-the-art parallel BO variants from the literature using a reactor system. Our
results show that the proposed approaches can achieve significant reductions in search
time. In addition, we observe improvements in performance values found and in search

robustness (sensitivity to initial guess).
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Figure 5.1: Schematic of proposed BO parallelization paradigms using level set partition-
ing (left) and variable partitioning (right).

5.2 Parallel Bayesian Optimization

The DoE approach most commonly used in HTE platforms is screening. This is a grid-
search method that discretizes the design space X into a set of experiments x; € X, k €
K = {1,..,K} (we denote this set compactly as xx). The performance of the system is
then evaluated (potentially in parallel) at these points to obtain fi and the experiments
that achieve the best performance are selected. This screening approach provides good
exploratory capabilities, but it is not scalable in the sense that the number of trial experi-
ments needed to cover the design space grows exponentially with the number of design
variables, d, and with the width of the space X. Moreover, this approach cannot be guar-
anteed to find an optimal solution. The S-BO framework provides a more sample-efficient
(typically require few experiments to identify optimal performance) and closed-loop alter-
native for DoE, but it is inherently sequential. Several approaches for proposing multiple
experiments per cycle have been developed, each with varying degrees of complexity and

sample efficiency. These parallel BO variants can grouped into four main parallelization
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paradigms: AF optimization over a set of hyperparameters, design space partitioning,
fantasy sampling, and AF optimization over a batch of points. The most used approach is
the NxMCMC method, which falls under the fantasy sampling paradigm, and is used in
popular BO packages such as Spearmint [140]. We now proceed to discuss the specifics

of different existing algorithms that are based on these parallelization paradigms.

5.2.1 Hyperparameter Sampling Algorithm (HP-BO)

The hyperparameter sampling algorithm (which we refer to as HP-BO) identifies a new
batch of experiments xfC“ by optimizing the acquisition function AF fi(x; kx) using K dif-
ferent values of the exploratory hyperparameter xi, k € K. In other words, we obtain the

new experiments by solving:

xit1 < argmin A]—"f@(x; Kk) (5.1a)

st. x e X (5.1b)

for k € K. The hyperparameter values «j, can be selected manually or sampled from a
distribution. In the approach that we consider here, we generate the values by sampling
from an exponential distribution, x ~ £(A), with rate parameter A = 1 as shown in [138].
Once the batch of experiments has been determined, we can evaluate their performance
(in parallel) to obtain fi-"' = f(xi'!) and update the dataset D*! < DU {xfcﬂ, ffc“}.

The updated dataset is then used to train a new GP, 977?“1

, which is used to form a
new acquisition function, AF ffﬂ, and to compute a next batch of experiments x?Q. The
process is repeated over multiple cycles. The pseudocode for implementing HP-BO is
shown in Algorithm 7.

The main advantages of HP-BO are that it is easy to implement, that it is highly paral-

lelizable, and that it allows for the selection of experiments under various exploration and

exploitation settings (eliminating the need for tuning «). The effect of the hyperparame-
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Figure 5.2: HP-BO optimizes the AF for a set of hyperparameters x;, k € K to obtain
experiments xi, k € K that can be evaluated in parallel. Here, we show an example with
K =3.

ter x on the AF is highlighted in Figure 5.2. However, in this approach it is not possible
to prevent the proposal of redundant experiments and, as the algorithm converges, the
suggested experiments can begin to cluster in a region of low uncertainty (this can cause
the algorithm to get trapped at local solutions). The HP-BO algorithm can be easily be
extended to incorporate a reference function g. In this case, the GP learns the residual

instead of the performance function.

Algorithm 7: Hyperparameter Sampling BO (HP-BO)
Given x, K, L, and DY;
Train GP ngﬁ using D’ and obtain .Affi(x; k), k € IC;
for/=1,2,..,L do
for k € K do
Compute experiment x{ " « argmin AF fr(x; kk) s.t. x € X;
Evaluate performance at x; ' to obtain f; ;
end
Update data D! + DU {xf%“, fa };
Train GP using D'+ to obtain ngiH and .A}'fiﬂ(x; k), k € IC;
end

86



5.2.2 HyperSpace Partitioning Algorithm (HS-BO)

The HyperSpace partitioning algorithm (which we refer to as HS-BO) was presented in
[136]. This parallelizes BO by partitioning the design space X into K equally-sized blocks
X € X, k € K. Importantly, this approach does not use a surrogate GP model over
the entire design space. Instead, a separate GP model is constructed at each partition X
and is updated using only information collected within this partition. Specifically, each
partition k € K builds a GP, ngf,k ~N (mfi,k(x), (Uﬁk(x))z), that is used to construct an
acquisition function, AF fc,k(x;K). With this, we can obtain a set of new experiments by

solving the following subproblems:

x "1« argmin A]—'f@/k(x;x) (5.2a)
X

s.t. x € Xi (5.2b)

for k € K. The domain partitions can also be constructed to have a certain degree of
overlap. Specifically, an overlap hyperparameter ¢ € [0,1] is introduced to allow the
partitions to share a fraction of the design space. A value of ¢ = 0 indicates that the
partitions are completely separate, while a value of ¢ = 1 indicates that X; = X for
k € K (the partitions are copies of the full design space); this is shown in Figure 5.3.
The overlap hyperparameter provides a communication window, allowing the GP model
of a given partition to observe system behavior beyond its prescribed partition (share
information with other partitions). This, however, introduces a fundamental trade-off.
From a parallelization perspective it is desirable that ¢ is small, but from a convergence
perspective (e.g., reducing number of iterations) it might be desirable that ¢ is large. A
similar trade-off is observed as one decreases or increases the number of partitions, K. As
such, there is a complex interplay between the hyperparameters K and ¢, and these need
to be tuned. Similar types of trade-offs have been observed in the context of overlapping

decomposition approaches for optimization problems defined over graph domains [141].
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In the implementation reported in [136], the number of partitions is set to K = 2%.

Figure 5.3: HS-BO partitions the domain X into K = 2% subdomains and runs a separate
instance of S-BO within each partition. A hyperparameter ¢ is introduced to define the
degree of overlap in the partitions (the overlapping region aims to share information
across subdomains). When ¢ = 0 there is no overlap between the partitions and when
¢ = 1 we have that all partitions are the entire domain X.

The HS-BO approach, summarized in Algorithm 8, is easy to implement, is scalable
to high-dimensional spaces, and enables the development of GP models for systems that
may exhibit different behaviors at various regions of the design space (compared to using
a single GP model that captures the entire design space). HS-BO also eliminates redun-
dant sampling by forcing the algorithm to sample from distinct regions of the design
space. This results in a more thorough search, which improves the probability that the
global solution will be located. Domain partitioning is, in fact, a paradigm widely used
in global optimization. A limitation of HS-BO is that the partitions are boxes of equal
size (this can limit capturing complex shapes of the performance function); moreover,
one needs to tune K and ¢. In principle, it might be possible to extend this approach to
account for automatic tuning and adaptive partitions, but this would require much more
difficult implementations that carefully trade-off parallelization and convergence (this is
left as a topic of future work). The HS-BO approach can also be easily executed using a

reference model by learning the residual instead of the performance function.
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Algorithm 8: HyperSpace Partitioning (HS-BO)

Givenx, K, L, ¢, and Dt

Partition X into Xy C X, k € K with overlap ¢;

Split initial data into domains Dl ke K;

fork € K do

Train GP ngi/k in X; using Dj and obtain A]:?k;

end

for/=1,2,..,L do
fork € K do

Compute experiment x_ " « argmin, A]:fc/k(x;x) s.t. x € Xi;

Evaluate performance at xi“ to obtain f,f“ ;

Update data Df“ « D{U {xﬁ“, Ifﬂ };

Train GP using D,f“ to obtain QPﬁl and A}"ﬁl;

end
end

5.2.3 NXxMCMC Algorithm (MC-BO)

The NxMCMC (N times Markov Chain Monte Carlo) algorithm is a popular approach
used for proposing multiple experiments [53]. We refer to this approach simply as MC-
BO. Assume that we currently have a set of experimental data D; we use this to generate
the GP QP?, acquisition function AF fc, and to compute the next experiment x,’i“ for
k = 1. Our goal is now to obtain the remaining set of experiments x,f“, k=2,..,K that
we can use to evaluate performance. To do so, we consider a set of fantasy predictions
obtained by generating S samples, ftf(x,f“), s € S, from the GP. Here, the term fantasy
alludes to the fact that the evaluation of performance is based on the GP (and not on the
actual system). The fantasy data has the goal of creating an approximate AF. Specifically,
for each sample s, we generate a dataset D; = {x/';l,ﬁf(xﬁil)}, F ={1,..,k}, and this
is appended to the existing dataset D’ U D;. This data is then used to obtain a GP GP fs

and associated acquisition function AF s The AFs for all samples s € S are collected
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and used to compute the mean AF:

AF ¢ (x;%) Z.A]:fs x;k), x € X. (5-3)

seS

The new experiment is then obtained by solving:

X+ arg}r{nin AF ¢(x;x) (5.4a)

st. xe X (5.4b)

To generate another experiment, we repeat the sampling process (using a new set of S
samples) and create a different mean acquisition function ﬁf, and we minimize this to
obtain xk+1 The sampling process is repeated until we obtain the full batch of new exper-
iments, xf%“. Once we have these, we evaluate the performance function at these points
(in parallel) to obtain the dataset {x/ 1 f[ 11, which we append to the data collection
D*1 « Dfu {x[ 1 f”l} We use this new data to re-train the GP of the performance
function and repeat the process. The framework for the MC-BO algorithm is presented in
Algorithm 9.

The MC-BO algorithm has proven to be an effective parallel extension of the BO al-
gorithm. However, computing the mean AF requires significant computational time (as
the GP model needs to be retrained continuously). This algorithm also has the tendency
to propose experiments that are close in the design space, especially when it begins to
converge. This does not necessarily pose an issue if the algorithm is converging to the
global solution. However, if the solution approached is local, this behavior can limit the

ability of the algorithm to escape this region. The MC-BO approach can be executed using

a reference model by simply learning the residual instead of the performance function.
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Algorithm 9: NxMCMC BO Algorithm (MC-BO)

Givenx, K, S, L, and D!;

Train GP QPfc using initial dataset D! and obtain AF fi,'

for/=1,2,..,L do
Compute x/+1 < argmin .Affi(x;;c) st.xe Xfork=1;
fork=1,..,K—1do
fors € S do

Generate fantasy dataset D = { o fl(x EH)}, F=A{1.,k};

Use dataset D¢ U D; to train GP GP s and obtain AF f,s(x; K);

end
Set AF f(x;%) + & Yoes AF s(x%);
Compute experiment xiﬂ < argmin,, ﬁf(x;x) st.x € X;
end
for k € K do
‘ Evaluate performance at ka to obtain f”l,
end

Update data DL Dl { Kl f”l},

Train GP using D1 to obtain QPEH and A}"fiﬂ ;
end

5.2.4 Batch Bayesian Optimization Algorithm (q-BO)

The g-BO or batch Bayesian optimization algorithm uses a multipoint acquisition func-
tion, AF s(xK; ; ), like the g-LCB presented in [137], to select a batch of g experiments that
can be run in parallel. Unlike most adaptations of BO where the AF is optimized over a
single point, the g-LCB is optimized over a set of g points. By selecting the experiments
in a batch rather than independently, as in HP-BO, or sequentially, as in MC-BO, q-LCB
is able to measure the correlation between the suggested sample locations, allowing it to
more easily avoid the issue of redundant sampling. Given a desired batch size, the value

of a particular set of experiments xx is measured according to:

A]—“ (xc; % Zmax( (xx) —x- |A€ (x,c)zs\) (5.5)
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where mf7 (xx) € R7 and Aé (xx) € R7*1 are the GP mean and Cholesky factor of the GP
covariance (AAT = ¥) at a batch of points xx respectively, z; € RY is a random variable
with z; ~ N(0,1I), and | - | is the absolute value (element-wise) operator. The new batch

is then selected by solving:

Xt arg;min Afg (x1c; %) (5.6a)
K
s.t. xx e X (5.6b)

where, again, the optimization is done over the entire batch of g points in xx. The exper-
iments are then run (in parallel) and the collected performance measurements are used
to update the dataset D*! « D’ U {xfgrl, fcﬂ}. This data is used to retrain the model
which enables the selection of the next batch of experiments. The pseudocode for q-BO
is summarized in Algorithm 1o0.

The g-BO algorithm has proven to be especially popular in the multi-objective opti-
mization setting and is, in principle, not difficult to implement. However, unlike single-
point AFs, multi-point AFs do not have a closed-form representation. As a result, con-
structing and optimizing AF f](x;c ; k) requires the use of numerical methods like Monte
Carlo, as seen in (5.5), making this an intensive process, especially as q increases. Ad-
ditionally, while the use of the Cholesky factor ensures that the algorithm cannot select
redundant experiments, safeguards must be placed when constructing the AF optimiza-
tion problem to ensure that the optimizer cannot select identical points as this will result
in the covariance matrix X (xx) being singular and cause the optimizer to fail. In this
work, that safeguard was implemented as a tolerance value, €, that set the minimum al-
lowable distance between any two points within xx. We should note that while using this
strategy, we observed that g-BO can and does occasionally select points that are within
€ of each other. This can be practically as undesirable as redundant sampling, depend-
ing on the value of €. A reference model can also be easily incorporated into the g-BO

approach by having the algorithm learn the residual instead of the performance function.
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Algorithm 10: Batch Bayesian Optimization Algorithm (q-BO)
Given «, K, S, L, and D*;
Train GP QPfc using initial dataset D! and obtain AF 5;
for/=1,2,..,L do
Compute xfC“ < argmin, A]-"s(xlg;x) st xg € X;
fork € K do
Evaluate performance at x; "' to obtain f; ';
end
Update data D! « DU {xfgrl, ,@1};
Train GP using D‘*! to obtain ngﬁ“ and AF,";
end

5.3 Parallel Bayesian Optimization using Informed Partitioning

We propose new paradigms for parallel BO that conduct informed partitioning of the
design space. Specifically, we propose a domain partitioning approach (analogous to
HS-BO) that conducts partitioning by following the level sets of the performance func-
tion. Because the performance function cannot be easily evaluated, we use a reference
model to guide the partitioning. This approach allows us to leverage expert or physical
knowledge, which might highlight certain regions of the design space that are promis-
ing or non-promising (and with this prioritize). We also propose a variable partitioning
approach that aims to exploit partially separable structures that are commonly found in
complex systems. Specifically, in these systems the performance function is composed of
a collection of functions for different subsystems (but the functions are coupled together
via common variables). The key idea is then to search the design space by following this
separable structure, while sharing information between the coupling variables. We re-
fer to these paradigms as level-set partitioning BO (LS-BO) and variable partitioning BO
(VP-BO).



5.3.1 Level-Set Partitioning Algorithm (LS-BO)

LS-BO uses domain partitions of the design space X that follow the levels sets of the

reference function g. We recall that the a-level set (sublevel) of this scalar function is:
X(a) ={reX|g(x) <a} CX (5:7)
for any « € R. We now note that solving the AF optimization problem:

min A]—"f[(x) (5.8a)

st x € X(a) (5.8b)

would force the BO algorithm to restrict the search over a restricted subdomain X(a).
However, solving this optimization problem can be difficult if ¢ does not have an explicit
algebraic form (e.g., low-fidelity simulator) or has a complex form (e.g., physics model).
To overcome this limitation, we construct a GP model ¢ of ¢ to define the approximate

level set:

X(w) = {x € X[g(x) < a}. (5.9)

We use the previous basic observations to derive our domain partitioning approach; we
construct a set of domain partitions Xk CX kek by following different level-sets of the

function. Specifically, we construct the subdomains:
Xe = {x € X]ax < (%) < ag1}, k€K, (5.10)

We note that the subdomains are upper and lower bounded in order to obtain non-
overlapping partitions. The level set thresholds, «;, are set by discretizing the range of

¢(x). The simplest method for generating the subdomains is to uniformly discretize the
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interval between the extreme lower and upper values of the reference model as follows:

o =01+ (k—1)A, k=2,..,K (5.11)

where A = w

, 01 = mingex §(x), and agy1 = maxyex §(x). In cases where addi-
tional specificity is desired, the partitions can be further adapted by setting the intervals
according to various factors such as a focus on a particular region of the design space, the
desired level of exploration vs exploitation, the level of confidence in the quality of the
reference model, the geometry of ¢(x), and so on. The partitioning approach is illustrated

in Figure 5.4.

Xrrr

g(x)
Figure 5.4: Level set partitioning (LS-BO) uses the a-level sets of the reference g to split
X into subdomains X;, k € K. Depending on the complexity of g, enforcing level set

constraints in the AF optimization problem can be difficult; therefore, the level sets are
approximated using the surrogate model .

As in S-BO, we begin with dataset D!, which we use to build the GP 973? and the
acquisition function AF fﬁ. We then obtain a new set of suggested experiments, xfé“l, by

solving the following collection of optimization problems:

x ! < argmin A]-"fi(x) (5.12a)

st x e X (5.12b)

for k € K. Using the new experiments xf%“ we evaluate system performance f,(é“ (in
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parallel) and we append the collected data to the dataset D*! < D' U {x,@l, f,’éﬂ}. The
new dataset is used to update the GP ngi“ and the acquisition function A]—“J{H. A

summary of this procedure is presented in Algorithm 11.

Algorithm 11: Level-Set Partitioning BO (LS-BO)
Given x, g, L, K and D*;
Build surrogate ¢ of g;
Construct partitions X; C X, k € K using level sets of §;
Train GP QP? with initial dataset D’ and obtain AF fc;
for/=1,2,..,L do
fork € K do
Compute experiment x. ! < argmin,_ A]:f;(x;;c) st x € Xy

Evaluate performance at x. ' to obtain f; ;
end

Update D DLy {x’l%-i-l/ IEC—H};
Retrain GP using D**! to obtain ngﬁl and A F§+1;
end

It is important to highlight that the LS-BO approach that we propose uses a GP model
of the performance function and an AF that are defined over the entire design space
X; this approach thus differs from HS-BO (which uses a different GP and AF in each
partition Xj). Moreover, we note that the partitioning of the space follows the level sets of
the reference function, and this allows us to concentrate experiments over regions that are
most promising. The proposed LS-BO approach can also be implemented in such a way
that the reference function is exploited to learn the residual (as opposed to learning the
performance function). As such, we can leverage the reference function for constructing

the domain partitions and for guiding the search.

5.3.2 Variable Partitioning Algorithm (VP-BO)

Many physical systems are typically composed of individual components that are par-
tially interconnected (e.g., they are modular). For instance, a chemical process includes

units (e.g., reactors and separations) that are interconnected, and the performance of each
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unit contributes to the total system performance. Moreover, the performance of each unit
is typically strongly affected by the unit variables and less affected by variables of other
units. This partially separable structure can be captured as the following optimization

problem:

min Y filxixp) (5.13a)
kek
st. xeX (5.13b)

where f; : X — R is the performance contribution of component k. The entire set of
decision variables is split into K subsets as x = {x1,x2,...., xx}, and we define x_; =
x \ {xr} (entire set of variables that does not include x;). We should note that the variable
partitions should be non-overlapping subsets (i.e., x; N xjx; = {0},i,j € K). Additionally,

we assume that that performance function can be decomposed as f = ) _ f;.
kek
VP-BO follows a Gauss-Seidel paradigm. Assume we have an initial set of data D’ =

{x}, ft} and that we measure fj, ..., fx in each experimental module so that f;- € R**K
rather than IR’ as in the previous algorithms; note that this means that f{ corresponds to
the k' column of f{-. We optimize the individual performance of subcomponent k using
the variables xj, while keeping the rest of the variables x_j constant (to the values of the

previous iteration ¢):

min_ f, c(xx ) (5.14a)

st (xx',) eX (5.14b)

for k € K. Accordingly, we decompose the AF optimization problem into the subprob-
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lems:

x; 1 < argmin A]:ﬁk(xk; x %) (5.15a)

Xk

st (xx',) € X. (5.15b)

for k € K. Here, AF fﬁk is the acquisition function of component k, which is built using
the surrogate G Pfrk of the performance fy. Moreover, x’, is the value of the variables not
in partition k at the current iteration (which are held fixed when optimizing the AF Ek).

We partition the variables by leveraging the reference model g. Specifically, we use
this reference to identify which variables have the most impact on individual components
of the system; this can be done in various ways. The most straightforward method would
be via inspection using a combination of information provided by the reference model
and any available expert knowledge over the importance of the various inputs on the
subsystems. If such information is not available, ¢(x) can instead be analyzed with an
appropriate feature importance technique, such as sparse principal components analysis
(SPCA) [142], automatic relevance determination (ARD) [143], model class reliance (MCR)
[144], etc., to determine the appropriate variable-subsystem pairings. Because the parti-
tions must not overlap, the results of this analysis should be checked for instances where
an input is paired with multiple subsystems. If this occurs, we recommend that the input
in question be paired with the subsystem where it has the highest relative importance.
The pseudocode for implementing VP-BO is shown in Algorithm 12.

One of the advantages of the VP-BO approach is that the AF optimization over each
partition only uses a subset of variables; this can significantly reduce the computational
time of this step. Moreover, this approach is amenable for implementation in a distributed
manner (e.g., each subsystem of the network runs its own separate BO algorithm). The
VP-BO approach (and the LS-BO approach) also takes system-specific behavior into ac-
count when developing partitions (informed by the reference model). As we will show

in the next section, the use of prior knowledge can lead to significant reductions in com-
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putational time and in the number of experiments performed. Moreover, we will see that
such knowledge can help identify solutions and construct surrogate models of higher
quality. VP-BO can also be implemented in such a way that reference model is also used
to guide the construction of the performance function (by learning the residual instead of
the performance function). We also highlight that the VP-BO approach proposed is im-
plemented in a way that each partition has its own GP model and AF. However, it is also
possible to implement this approach by building a central GP and AF that are optimized

in each partition using a different set of variables.

Algorithm 12: Variable Partitioning BO (VP-BO)
Given x, g, K, L, and D¥;
Decompose f(x) into fi(xx, x_x) for k € IC;
Use D! to train GPs QP%{ and obtain “4}-?/(' kel
for/=1,2,..,L do
for k € K do
Compute experiment x; "' < argmin,_ AFG (xxty 1) st (xexty) € X;
Evaluate fi, ..., fk at xi“ to obtain ff'CH k,:];

end
fork € K do

‘ xgj{l < argmin, fé“[:,k];
end

Update D+! < DI U {x,%“, f‘cﬂ};
Retrain GPs using D1 to obtain 977?:“1 and .Afff;l ke K
end

5.4 Numerical Case Studies

We now present numerical results using the different BO strategies discussed; our goal is
to demonstrate that the parallel BO approaches proposed provide significant advantages
over 5-BO and over other state-of-the-art parallel approaches. Our study simulates the
performance of a pair of reactors connected in series; the operating cost of this system

is a complex function of the operating temperatures. The detailed physical model used
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to simulate the performance of the system is discussed in Appendix A.1.3. To guide our
partitioning approaches, we developed a reference model that approximates the physical
model. All data and code needed to reproduce the results can be found at https://gith
ub.com/zavalab/bayesianopt.

The optimization problem that we aim to solve with BO can be written as:

ITflli%z}f(Terz) = fi(T1, T2) + f2(T1, T2) (5-16a)

st. (T, T) eT (5.16b)

Figure 5.5 shows the performance function f(Tj, T;) over the box domain 7 = [303, 423)°.
The performance function is nonconvex and contains three minima, with local solutions
at (T3, T,) = (423,340) and (Ty,T2) = (423,423) and a global solution at (Ty,T;) =
(333,322).
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T T
Figure 5.5: Performance function f of the reactor system (left) and reference model (right).
Note that the reference model captures the overall (coarse) structure of the performance
function but misses some finer details.

The reference model ¢ was derived from a simplified physical model (see the Ap-
pendix). However, this model would be difficult to incorporate directly in the AF formu-
lation for the LS-BO and VP-BO approaches because it involves a complex set of algebraic
equations. As such, we approximated this model using a GP, ¢, and used this as the

reference. Figure 5.6 illustrates that the GP ¢ is virtually indistinguishable from the sim-
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plified physical model g; thus, we can safely use this to guide our search and to guide

our partitioning approaches.
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Figure 5.6: Reference model g (left) and GP approximation ¢ (rTllght) ; note that the GP pro-
vides an accurate representation and can thus be used to guide partitioning approaches.

The HS-BO algorithm was restricted to 22 = 4 partitions when dealing with a 2D
design space. As such, and in order to achieve fair comparisons, we limited the num-
ber of parallel experiments performed by MC-BO, HP-BO, q-BO, and LS-BO to 4. The
VP-BO algorithm was run using 2 partitions (one for each reactor). All algorithms were
implemented in Python 3.7 and the GP modeling was done using the gaussian_process
package in Scikit-learn. Specifically, we used the built-in Matern method as the kernel
function. This selection was motivated by the ability of the Matern kernel to control the
smoothness of the resultant function making it highly flexible and capable of accurately
modeling systems that exhibit significant nonlinearity and non-smoothness. We set the
smoothness parameter v = 2.5, which tends to be the standard choice. At every itera-
tion, the optimal values of the kernel’s hyperparameters, the characteristic length scales /,
were updated using the package’s built-in optimizer that sets / by solving a log-marginal-
likelihood (LML) problem. A more detailed description of the gaussian_process package
can be found in [100]. The optimization of the AF was done in Scipy [101] using an uncon-
strained minimization solver (based on L-BFGS-B) for every BO algorithm except LS-BO.
The introduction of the reference GP model in the constraints of the AF minimization

problem required the selection of a method capable of constrained optimization; for this,
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we selected SLSQP. Except for HS-BO, the exploratory parameter of the acquisition func-
tion was set to the same fixed value (x = 2.6). All algorithms were initialized using the
same starting point, and we conducted 25 trials, each with a different starting point se-
lected from a 5 x 5 grid of 7, in order to evaluate robustness. We also ran instances of
LS-BO and VP-BO with and without using a reference in the AF (for learning the residual
or the performance function). This allowed us to isolate the impacts of the use of the
reference model and ensure that observed performance improvements can be attributed
to the parallel capabilities. For both LS-BO and VP-BO, the reference function was always
used to guide the selection of the partitions.

Figure 5.7 highlights the level sets that we used to partition the design space for the
LS-BO approach. These partitions were generated by first locating the minima (local and
global) of §(x). After determining that there were two, we discretized the range of §(x)
by building a search interval around each of the minima where the lower bound of the
interval was the value of the corresponding minimum. The value of § was then evaluated
at various points on a line connecting the two minima to determine the spacing of the
level sets. This information was used to select the upper bound of these search intervals.
We were also able to use this analysis to gauge the size of both of the partitions and
observed that the search region around the global minima appeared to cover a significant
portion of the design space. As a result, this partition was split along the level set value
that resulted in two roughly equal-sized partitions. The fourth and final partition was
constructed to search the remaining space outside of the three existing partitions. Figure
5.7 also provides an illustrative summary of this workflow. Note that one of the regions
is near the global minimum of f.

Given that the reactors are arranged in series, it is clear that the performance of the
tirst reactor is independent of T,, while the performance of the second reactor will likely
have some dependence on T;. Figure 5.8 demonstrates this partially-separable structure;
note how the first function g; is not affected by T, (vertical lines), while g, does depend on

T;. Using ARD, we confirmed that T;, which had a characteristic length scale of | = 0.145,
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Figure 5.7: Domain partitions for reactor system obtained using reference model ¢ (left);
the line connecting the two minima of the reference model is shown in blue. Values
of ¢ along this line (right) indicate that the level set § = —383 (black line) provides an
acceptable split between the two partitions surrounding the minima, while the level set
(red line) § = —461 allows for the partition surrounding the global minimum (denoted
as (T}, T;)) to be split into two roughly equal-sized partitions. Note that domain Xj;; is
in the region of the global minimum of f.

was a more important input to g than T, (I = 1000), while for g, T> (I = 0.399) was
determined to be more important than T; (I = 0.498). We thus implemented the VP-BO
approach according to the following variable partitions: x; = Ty, x_1 = T, and x; = T3,

X_p = T].
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Figure 5.8: Reference model for the first reactor g; (left) and for the second reactor g
(right). We can see that g; is not affected by T5; the combination of these functions give
rise to the reference function § = g1 + 2.

Figure 5.9 summarizes the average performance (over the 25 runs) of LS-BO and VP-
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BO (using reference models) along with the remaining algorithms. Here, we visualize the
total experiment time (wall-clock time needed to evaluate performance function) against
the best found performance up to the corresponding time. Overall, we observed that
all parallel BO variants performed better than standard BO in terms of both speed and
best performance found. The performances at the local minima for (T3, T>) = (423,340)
and (T1,T,) = (423,423) were approximately -395,000 USD/yr and -387,000 USD/yr
respectively, while the performance of the global minimum at (Ty, T») = (333,322) was
-410,000 USD/yr. On average, the best performance obtained using BO was -394,500
USD/yr, indicating that this approach converges to a local minimum most of the time.
By comparison, all the parallel BO variants found a solution that, on average, was below
-400,000 USD/yr. We should also note that this improvement in performance value also
comes with a significant reduction in the required wall-clock time: BO took over 500
seconds to converge to its final solution whereas all of the parallel BO variants were able
to locate a better solution in approximately 200 seconds.

We note that in this work we used wall-clock time as the comparison metric rather
than number of iterations, which is the metric most commonly used in the BO litera-
ture. We believe that this allows for a more fair comparison between the parallel and
non-parallel versions of the BO algorithm, as every cycle of S-BO and Ref-BO only runs
one experiment, while every cycle of the parallel BO algorithms runs 3-4 experiments in
tandem. As such, the number of iterations that the parallel BO approaches require to
locate a solution can be significantly lower than for the sequential variants (they collect
more data per cycle), but the time per iteration can be significantly higher. The use of wall
clock time helps standardize the benchmarking of sequential vs. parallel approaches. We
recognize, however, that benchmarking algorithms using different metrics can provide
valuable insights.

The magnified profiles of Figure 5.9 provide a better comparison between the paral-
lel BO variants. It is clear that LS-BO and VP-BO are significantly faster than all other
variants. We also observed that LS-BO, VP-BO, HS-BO and g-BO consistently reached the
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global minimum. This illustrates how the redundant sampling seen in MC-BO and HP-
BO can degrade performance. Additionally, while the performances of HS-BO and q-BO
were similar to LS-BO and VP-BO, they required significantly more experiments to reach
this performance level. From these observations we can draw a couple of key conclusions:
(i) the use of a reference model for both generating system-specific partitions and simpli-
tying the learning task delivers significant benefit, and (ii) allowing the algorithm to pool
the data into a single dataset that is used to build a global surrogate model increases the

predictive value of this model, resulting in faster identification of optimal regions.
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Figure 5.9: Total experiment time against value of best solution for tested algorithms.
LS-BO and VP-BO were run using the reference model to partition the domain and guide
the search.

Figure 5.10 presents results similar to Figure 5.9, but we run LS-BO and VP-BO with-
out a reference model. By comparing with the results in Figure 5.9 , we observe that using
the reference model can help with convergence but not always. LS-BO was 24% slower
in terms of the average convergence time, though it maintained its ability to consistently
converge to the global minima. VP-BO, meanwhile, converged on average 40% faster
compared to when the reference model was used; the solution it returned was also un-
changed. These results indicate that g affects LS-BO similarly to S-BO, as outlined in [115].

Namely, that it makes the search more targeted, resulting in more efficient sampling and
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Figure 5.10: Total experiment time against value of best solution for the tested algorithms.
LS-BO and VP-BO were run using the reference model to partition the domain but not to
guide the search.

faster conversion. Meanwhile, with VP-BO, the reference model appeared to encourage
more exploration of the domain, which can prevent the algorithm from converging pre-
maturely and potentially returning a suboptimal solution. We base this claim on the fact
that, when testing VP-BO without a reference, we observed that while it is not especially
sensitive to the initial values of the design variables in a given partition, it is quite sensi-
tive to variable values of other partitions. Overall, however, we observed that both LS-BO
and VP-BO still outperformed the remaining parallel algorithms (without or without a
reference). These results highlight that using the proposed partitioning approaches has a
larger effect on overall convergence. This allows us to confirm that the improvements we
observe when using LS-BO and VP-BO can be attributed to the parallelization schemes.
The results presented in Figure 5.9 indicate that LS-BO and VP-BO were consistently
more robust and sample efficient than the other approaches. The average values seen
in Figures 5.9 and 5.10 provide a measure of robustness: deviations between the final
reported average value and one of the three minima are due to the algorithm converging
to different solutions during the various runs. For example, the final average reported

value for S-BO of 394,500 USD/yr was the result of this algorithm converging to the
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Figure 5.11: Distribution of the performance profiles across the 25 runs for BO (top), LS-
BO (middle), and VP-BO (bottom) with the average algorithm performance is shown in

color.
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Figure 5.12: Experiment locations across the 25 runs for BO (top), LS-BO (middle), and

VP-BO (bottom).
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minima at (Ty, To) = (423,340) 13 out of the 25 runs, (T1, To) = (423,423) for 8 runs, and
to (T1, T») = (333,322) the remaining 4 runs. As a result, the fact that the final reported
average values for LS-BO and VP-BO were near the global minimum indicate that these
algorithms converged to or near the global solution for most if not all runs (they are
robust). The convergence data collected across all runs and shown in Figure 5.11 confirms
this. We can see that, regardless of where LS-BO and VP-BO were initialized, they were
always able to converge to the same region (unlike S-BO). We also see that convergence of
the algorithms was in general fast but, as expected, it was sensitive to the starting point.
The sensitivity to the starting point is further indication of why it is important to have
expert knowledge (e.g., via use of a reference model) when initializing the search.
Because evaluating the performance function tends to be expensive, reducing the
number of experiments (samples) is also essential. Figure 5.12 illustrates how S-BO,
LS-BO, and VP-BO compared in terms of sample efficiency. Standard BO sampled in
a significantly distributed manner with a considerable number of samples drawn from
the boundaries of the domain. For LS-BO, we see that in regions where a solution exists
(e.g., regions II and III in our case study), sampling was heavily concentrated at or near
the solution. In regions where there is not a solution, the sampling was more distributed.
However, the majority of samples tended to cluster around partition boundaries that are
located near a solution. Samples drawn from partition X; appeared to be the most widely
distributed, however, this was not surprising as this partition contains a mostly flat re-
gion. Another noticeable difference when compared to traditional BO was that there
was significantly less sampling at the boundaries of the domain where f has unfavorable
(high) values; only 8 out of 2500 samples were taken at the left and bottom bounds. VP-
BO exhibited the most clustered sampling; in fact, the vast majority of the samples were
drawn from or near the optimal region. Note that, while the majority of samples for X;
(Partition 1) occurred at the top domain boundary, this partition corresponds to reactor
1 which only depends on T; as seen in Figure 5.8. Aside from these samples, there was

a clear lack of sampling happening at the domain boundaries compared to LS-BO and
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traditional BO. This result, coupled with exhibiting the lowest convergence time out of all
of the tested algorithms, confirms our belief that the VP-BO algorithm tends to be more
exploitative. This is likely due to fact that the partitions for this algorithm are optimized
over a lower dimensional space and, for a fixed x_x, VP-BO can find the optimal local
variables x; much faster than the remaining algorithms can find an optimal global vari-
ables x. As a result, without the reference model to indicate the potential existence of
a solution elsewhere, VP-BO seems more susceptible to settle into the first solution that
it finds than algorithms like LS-BO and HS-BO whose partitions force the algorithm to
search more widely.

To estimate the computational cost associated with the different algorithms, we mea-
sured the total wall-clock time (averaged across the 25 runs). The total wall-clock time
includes time for performance evaluation (experiment time) and all time required to con-
duct other computations (e.g., AF optimization, GP training, and reference model evalu-
ation). The results are shown in Figure 5.13. The closer this time is to the experimental
time, the less computationally expensive the algorithm is. For instance, the total wall-
clock time of S-BO was 12% higher than the experiment time. We observed that HS-BO
and VP-BO were the least computationally intensive methods, with the total wall-clock
time being only 14% and 7% higher than the experimental time respectively. We attribute
this to the fact that HS-BO runs separate instances of BO across multiple reduced domains
and, because the boundaries are rectangular, ensuring that the AF optimizer stays inside
of the partition only involves bounding the upper and lower limits of x it is allowed to
search over. VP-BO, on the other hand, only optimizes over a subset of variables and
this greatly reduces the time required for AF optimization. The wall-clock time of HP-BO
was 44% higher than the experiment time, this is because it requires solving multiple AF
optimization problems across the entire design space. LS-BO had a total wall-clock time
that was 46% higher than the experiment time. This is attributed to the more difficult AF
optimization problem that it has to solve (which has constraints defined by a GP model).

The total wall-clock time for g-BO was 64% higher than the experiment time, which we
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attribute to the fact that AF optimization is done over a set of points, increasing the size
of the problem that is solved. Additionally, the calculation involves more complex matrix
operations and requires repetitive sampling. MC-BO was the most computationally in-
tensive algorithm, with a total wall-clock time that was 384% higher than the experiment
time. We attribute this to the repetitive computations in this algorithm, which require

sequential sampling and GP training.
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Figure 5.13: Profiles of wall-clock time against performance. Note that this time is com-
parable to the total experiment time for all algorithms; the only exception is MC-BO,
indicating that the AF optimization step (and not the function evaluation) is the bottle-
neck for this approach.

5.5 Conclusions and Future Work

We have proposed a set of new decomposition paradigms for BO that enable the exploita-
tion of parallel experiments. These approaches decompose the design space by following
the level sets of the performance function and by exploiting the partially separable struc-
ture of the performance function. A key innovation of these approaches is the use of
a reference function to guide the partitions. Using a case study for a reactor system,
we found that the proposed approaches outperformed existing parallel approaches in

terms of time and quality of solution found. When using LS-BO, we observed that build-
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ing partitions that are specialized beyond those that would be generated by the uniform
discretization of the range of ¢(x), like those we used in our case study, can require signif-
icant user input. Moving forward we would like to explore methods for developing more
efficient and automated protocols for generating the partitions. Additionally, we are also
interested in incorporating an element of adaptivity to LS-BO and VP-BO via live modi-
fication/tuning of the partitions as samples from the system are collected. The proposed
parallel paradigms can also open the door to a number of applications and potentially
other decomposition paradigms that we will aim to explore in the future. Specifically, we
are interested in exploring more complex systems that involve higher-dimensional de-
sign spaces and large numbers of parallel experiments. This will allow us to investigate
the asymptotic properties of the proposed approaches. Moreover, we are interested in de-
signing alternative paradigms that selectively exchange information between partitions to
accelerate the search and that use different types of reference models to guide the search.
We are also interested in exploring the application of these approaches to the tuning of

complex controllers.
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Chapter 6

CONCLUSIONS AND FUTURE DIRECTIONS

We now conclude this dissertation by summarizing the key findings/contributions of the
work presented in Chapters 3-5. We also identify how these contributions can be enriched

further with future research.

6.1 Contributions

Incorporating Physics via Reference Models

Chapter 3 presents the reference model, g(x), a low-fidelity representation of the true
system that can be sampled more easily (i.e., it is faster and cheaper to evaluate). The aim
of the reference model is not necessarily to provide a perfect approximation of the sys-
tem, but rather to capture coarse trends and identify generally promising regions. Conse-
quently, g(x) can be constructed from a variety of sources, such as simplified physics, em-
pirical correlations, or low-fidelity simulations. The physics knowledge contained within
the reference model can be directly incorporated into the Bayesian optimization (BO)
framework by embedding g(x) within the acquisition function and shifting the surrogate
modeling task to learning the model residual or error, ¢(x), rather than the underlying
performance function. The algorithm is then initialized with an approximate representa-

tion of the system that highlights potentially promising regions that it can immediately
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begin to explore. This results in better sampling efficacy when compared to standard
Bayesian optimization (S-BO), since fewer iterations are spent searching in highly subop-
timal regions, as demonstrated by the results of our HVAC MPC case study. Additionally,
our findings indicate that use of the reference model reduces sensitivity to the initializa-
tion point, as the algorithm always starts off with the same ground truth of the system.
This results in a more robust performance when compared to S-BO. We also note that
shifting to modeling the residual can also yield benefits, as it can be significantly easier
to build an accurate estimate of ¢(x) than of the performance function. This facilitates
the correction of g(x) and enables the construction of an accurate hybrid system model,

further boosting performance.

Composite Function BO via Adaptive Linearizations

In Chapter 4, we consider the scenario where information is available in the form of sys-
tem connectivity or structure. Shifting to a composite representation of the performance
function, where we instead treat a set of intermediates as black-boxes, offers an intuitive
method for exploiting this type of information. However, propagating the uncertainty es-
timates from the surrogate models of the intermediates to the performance metric is often
an intractable problem. We introduce a new framework, which we refer to as BOIS, that
utilizes an adaptive linearization scheme to overcome this challenge and derive a set of
closed-form expressions for the statistical moments of the performance function. Using a
pair of case studies, we compare the performance of BOIS against S-BO as well as existing
composite function BO paradigms based on sampling (MC-BO) or the use of an auxiliary
problem (OP-BO). Each of the case studies highlights the benefits of using a composite
function representation of the performance function. We can combine knowledge of sys-
tem connectivity and fundamental principles with any available subcomponent white-box
models to more efficiently specify the intermediates and the inputs of their respective sur-
rogate models. Additionally, the intermediates can be selected so that they are easier to

learn than the performance function, thereby facilitating accurate estimation of the system
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behavior. Our results demonstrate that BOIS consistently outperforms S-BO and delivers
equal or better performance than MC-BO and OP-BO, while also being significantly less
computationally intense. Further, we determine that our adaptive linearization scheme
accurately estimates the statistical moments of the performance function in a fraction of
the time it takes Monte Carlo to generate estimates of comparable accuracy. These results
highlight the efficiency of BOIS and suggest that it can facilitate the use of composite
functions in a BO setting. This is a promising outcome, given that composite functions
can provide a solution to the challenge of scaling BO to higher dimensions by distributing

the modeling of the system among the various intermediates.

Informed Partitioning of the Design Space to Enable Parallelization

We present a pair of novel parallelization paradigms, level set BO (LS-BO) and variable
partitioning BO (VP-BO), in Chapter 5. The aim of these methods is to address the issues
observed in existing parallel BO algorithms, namely the limited degree of parallelization
that can be achieved and the occurrence of redundant sampling. This is accomplished
by decomposing the design space into a set of distinct partitions along the level sets of
the performance function or according to the partially separable structure of the system.
However, as the system is often not readily observable, the partitioning is instead guided
by a reference model. This allows for an efficient division of high-throughput experiment
(HTE) resources, as the search can be concentrated around regions where the system is
estimated to perform well. We benchmark the performances of LS-BO and VP-BO against
S-BO and a series of parallel approaches found in the literature using a reactor network
case study. Our findings indicate that the proposed paradigms are able to outperform the
existing algorithms both in terms of speed and the value of the solution. We also observe
that our methods are more robust, consistently converging to the region containing the
global solution regardless of where the algorithm is initialized. These results, coupled
with the relatively low computational intensity we observed, demonstrate that LS-BO

and VP-BO provide a set of efficient and targeted parallel experimentation solutions.
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6.2 Future Research Directions

Establishing Asymptotic Properties for the Reference Model

The performance improvements observed when using a reference model are empirical,
and there is not a clear understanding on how coarse the reference model can be before it
no longer provides useful information. While the results of the case studies indicate that
there appears to be significant leeway, this is likely system-dependent. Establishing a the-
oretical minimum information/accuracy criterion for ensuring that the reference model
is beneficial would provide guidelines for determining under which conditions Ref-BO
remains an effective solution. Solving this problem is obviously complicated by the fact
that, in a realistic setting, determining the accuracy of the reference model is not possible
as the real system model is not available for comparison. However, work by Kandasamy
and colleagues has shown that it is possible to establish conditions under which multi-
fidelity BO that can be proven to perform better than S-BO [145, 146, 147]. These are
largely based on the effective reduction in the search region provided by the low-fidelity
approximations. A similar analysis that determines the degree to which the reference
model narrows down the search space coupled with a regret measure—obtained by de-
termining how a reference model performs given an arbitrary residual-—can be used to

establish the theoretical efficacy of Ref-BO.

Alternative Surrogate Models

While Gaussian Processes (GPs) offer significant flexibility and are very data efficient,
they have limitations in placing bounds on prediction values and can struggle to model
highly non-smooth and discontinuous functions. This can lead to infeasible predictions,
especially when the system operates near a feasibility bound of the modeled quantity
or near a discontinuity, which negatively impact the performance of BO by causing it to
sample from suboptimal regions. Parametric models like neural networks and polyno-

mials or bounded output models like skewed sparse GPs can provide a solution to this
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issue [148, 124, 149, 150]. Additionally, these models scale to higher input dimensions
significantly better than GPs, providing a potential solution for deploying our paradigms

on large-scale applications.

BO in High-dimensional Design Spaces and Integration with Network Modeling Tools
The distribution of the modeling task to various intermediates in composite function BO
offers a solution to the input scaling issues encountered by GPs. As shown in Chapter 4,
the entire set of inputs does not need to be used to model each of the elements in y(x).
By leveraging system connectivity, we can nest the appropriate intermediates within each
other to capture the effects of upstream variables. This allows for the creation of a set of in-
terconnected models, each with a custom set of inputs that is more relevant for predicting
component behavior. Not only does this reduce the number of surrogate inputs, thereby
allowing GPs to continue to be used even at high dimensions, but it also results in more
accurate models. Such an approach is commonly used in modeling network systems (e.g.,
chemical processes), where each intermediate component is often described by its own
model with a unique set of inputs and outputs. While some of the inputs are specified at
the design variable level (e.g., the size of a unit), others depend on the output of another
intermediate (e.g., a feed stream that is the outflow of an upstream unit). BOIS can there-
fore serve as a natural optimization framework for existing network modeling libraries,
facilitating the inclusion of new or difficult-to-model intermediates by treating these as
black-boxes while continuing to utilize readily available component models. Thus, ex-
ploring the integration of BOIS with available modeling tools is a promising and exciting
direction for future research. The results of this work can determine if the distributed
modeling approach presented can be used to overcome the curse of dimensionality ex-

hibited by GPs, while also providing these libraries with a powerful optimization strategy.
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Automated and Dynamic Design Space Partitioning

Currently, the domain partitions used in LS-BO and VP-BO are set manually. While this
provides an additional opportunity to leverage expert knowledge, requiring the user to
specify all of the partitions can be unreasonable, especially for a large number of paral-
lel experiments. As discussed in Chapter 5, uniform partitioning between the maximum
and minimum of the reference model is a potential solution for automating the decom-
position on X in LS-BO. However, this approach does not allow for the concentration of
resources around more promising regions. In the case of VP-BO, even with methods like
ARD, user input is still required to interpret the results of the analysis and determine the
allocation of the variables. Thus, developing a solution that utilizes information such as
the number and location of minima in the reference model or structural relations between
subcomponents and inputs (i.e., downstream inputs will not affect upstream inputs) to
automatically build a set of partitions, while allowing for manual adjustments, can greatly
streamline the implementation of these methods. Additionally, incorporating a dynamic
element, where the partitions are adaptively modified as more information becomes avail-
able, can reduce the number of suboptimal experiments performed by gradually focusing

in on the identified optimal regions.

Merging Developments into a Single Paradigm

The capabilities we have developed are currently distributed among four different algo-
rithms. Combining these into a unified paradigm could unlock capabilities that would
otherwise be unavailable to each individual method, such as the consideration of variable
hierarchies [151], the inclusion of system constraints [152], dynamic adjustments to the
system configuration/structure [153], and the construction of surrogates that are accurate
across a wide range of the design space [154]. The incorporation of a reference model into
either BOIS, LS-BO, or VP-BO can be done rather seamlessly by simply shifting the sur-
rogate modeling task to a residual. Note that in the case of BOIS, the reference model(s)

would have to be of the intermediate(s). However, merging these three paradigms into
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one is not as straightforward. While BOIS and VP-BO make use of the same type of
information, VP-BO optimizes each subcomponent individually, whereas BOIS optimizes
the whole system. LS-BO utilizes the level sets of the system-wide performance func-
tion. However, it could instead consider component performance or even the values of
the intermediate variables themselves (to explore different operating regimes). Thus, fu-
ture research should focus on determining the most advantageous manner for integrating
these three methods, testing the resulting framework across various domains to assess its
effectiveness, and optimizing its performance to ensure it can handle large-scale, complex

systems efficiently.

120



Appendix A

SUPPLEMENTARY INFORMATION

This appendix presents supplementary information from select sections of this disserta-

tion.

A.1 System Models

A.1.1  Reactor-Separator Network Model

The reactor-separator network model considers the generation of product C from two
reagents A and B. As seen in Figure A.1, these reagents are fed into the process where
they are individually compressed and heated. The compressors are modeled with the
IsentropicCompressor module from the BioSTEAM library [155] using the properties
of Ny, Hy, and NH3 for A, B, and C respectively and the IdealAcitivityCoefficients
and IdealFugacityCoefficients methods. The models calculate the temperatures of the

compressor outlet as well as the power load of the unit. The heaters are assumed to
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Figure A.1: Schematic diagram of the reactor-separator network modeled in the first case
study.

operate at constant pressure and we can calculate their duties as:

Q = F(Hout — Hin) (A.1a)
= F(H° + R - ICPH(Toy) — H° — R - ICPH(T})) (A.1b)
— FR (ICPH(Toy) — ICPH(Tin)) (A.10)

where F is the material flowrate through the heater, Ti, and Toy¢ are the temperatures of
the heater inlet and outlet respectively, H° is the standard enthalpy of the streams, and R
is the universal gas constant. The ICPH function measures the effect of temperature on

enthalpy as is defined as:

ICPH(T) = A (T — TO) + % (TZ _ (TO)Z)

2
+ 8 (18— (1) — g (17— (1)) (A.2a)
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where T° is the standard temperature (298 K) and

Ax = Z Xl (A.3a)
ie{A,B,C}
ie{A,BC}

Ay= Y xv (A.30)
i€{A,B,C}

A= ). xi (A.3d)
i€{A,B,C}

Here, x; is the molar fraction of species i in the stream and «;, B;, i, and (; are a set of
molecule-specific coefficients.
The hot streams are fed to a reactor, RX-1, where A and B undergo the following

gas-phase reaction:

SA(g) +3B(g) = C(g) (A42)

The reaction mixture is assumed to be an ideal gas and, at a given temperature and

pressure, the composition of the reactor effluent is calculated from the following;:

[T @)= TI <W>:(1;fx>_1< (A.5)

ic{AB,C} ic{ABC) \ 0 TVE

where y; is the mol fraction of species i in the reactor outlet and v; is its stoichiometric
coefficient; n;y are the moles of i in the feed stream, v =} ; v; and ng = Y, njp; the extent of
the reaction is denoted by ¢; Prx is the pressure of the reactor and P° is standard pressure

(1 bar). The equilibrium constant, K, is calculated as:

Aern
RTrx

logK = — (A.6)

where Ty is the reactor temperature. The change in the Gibbs free energy of the reaction,



AGixn, is a function of temperature and has the form:

T
AGp = AH? RX (AH®, — AGS,) + R (ICPH(Trx) — Trx - ICPS(Trx)) (A7)

xn To

where AGg,,, and AH;,

xXn

are the changes in Gibbs free energy and enthalpy of the reac-
tion measured at standard temperature. Similar to the ICPH function, the ICPS function

measures the change in entropy due to temperature effects and is defined as:

ICPS(T) = Aa (log(T) —log(T°)) + AB (T — T°)
Ay

+ S (1= (1)) =g (T2 = (1) ) (A.8a)

Due to the reaction, the ICPH and ICPS coefficients are now defined as:

Aa= Y v (A.9a)
i€{A,B,C}

AIB: Z 1/1'[31' (Agb)
ic{A,B,C}

Ay= Y v (A.90)
ic{A,B,C}

A=) v (A.9d)
ic{A,B,C}

Because the reaction occurs at constant temperature and pressure, the duty of the reactor,
Qy is calculated as:

Q4 =Tc (AHI?XD +R- ICPH(TRX)) (A.10)

where 7¢ is the generation rate of C in the reactor.

The product stream that exits the reactor is fed to a separator, SEP-1, where it is cooled
to Ts at pressure Ps to allow for the condensation and recovery of C. This unit is mod-
eled with the Flash module from the BioSTEAM library using the same properties and
methods as the compressor models. From this model we obtain the flowrates and compo-

sitions of the resultant product and vapor streams as well as the energy requirements of
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the separator. A fraction, 1 — R, of the vapor stream that exits SEP-1 is purged and leaves
the process. The remainder is re-compressed and heated before being fed back to RX-1.
The performance of the system is expressed as a cost function (negative profit) that
measures the consumption of the reagents along with production rate of C and the corre-
sponding utility requirements of the process at various recycle fractions and reactor and

separator settings; it is formulated as:

=\ 2
filx,y(x)) = Z wjoFj + Fs Z w;P; + w3 <¢CF§:—_F> (A.11a)
je{A,B} ic{A,BC}
5 3
faxy(x)) = Z wy Qn, +we Z Wi (A.11b)
h=1 k=1
f(x,y(x)) = A(x, y(x)) + f2(x,y(x)) (A.110)

where the total cost f(x,y(x)) is distributed among two functions f; and f,. Here, f;
considers the the materials flowing in an out of the system: the first term represents the
costs of A and B with wjp and F; denoting the cost and feed rate of each reagent; the
second term measures the value of the product stream with Fs denoting its flow and ;
and w; representing the fraction of species i present in this stream and its corresponding
unit value. The final term in f; is a quadratic penalty term meant to enforce a demand cap
for the production of C, which is denoted by F. The flow of energy through the system,
and thereby the cost of utilities, is measured by f,. The heating and cooling requirements
of the feed and recycle heaters, RX-1, and SEP-1 are denoted by Q;, and these have a unit
cost of wy,. Similarly, compressor k has a power load of W, and this is supplied at a unit

cost of w,.
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Table A.1: Thermodynamic Constants for
the Reactor-Separator Network Model

Parameter Value Units Notes
R 8.314 J/mol-K Universal gas constant
T° 208 K Standard temperature
pe 1.0 Dbar Standard pressure
AHZ, 39200 J/mol Standard heat of reaction
AGR,, 32900 J/mol Change in free energy of reaction at T°
va -1/2 — Stoichiometric coefficient of A
U -3/2 — Stoichiometric coefficient of B
Ve 1 — Stoichiometric coefficient of C
' 3.280 — « coefficient of A
ap 3.249 — w coefficient of B
L% 5.578 — w coefficient of C
Ba 0593 x 1073 — B coefficient of A
Bs 0422 x 1073 — B coefficient of B
Bc 3.020x 1073 — B coefficient of C
YA 0.000 — 7 coefficient of A
B 0.000 — 7 coefficient of B
Yc 0.000 — v coefficient of C
Ca 0.040 x 10° — { coefficient of A
(B 0.083 x 10° — { coefficient of B
{c —0.186 x 10° — { coefficient of C
Table A.2: Relevant Parameters for

the Reactor-Separator Network Model
Parameter Value Units Notes
Fy 1000 kmol/hr Feed flow of A
Fp 3000 kmol/hr Feed flow of B
F 1900 kmol/hr Target production rate of C
wAQ 6.00 USD/kmol Costof A
wao 140 USD/kmol Costof B
wa 0.00 USD/kmol Value of A in product stream
wg 0.00 USD/kmol Value of B in product stream
we 8.50 USD/kmol Value of C in product stream
wy, 1.92x 1072 USD/M] Cost of heating utility
wy, 5.00 x 1073 USD/MJ Cost of cooling utility
We 142 x 107! USD/kWh  Cost of power utility
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A.1.2 Biofertilizer Production Process Model

The biofertilizer production facility we consider, shown in Figure A.2, considers the recov-
ery of consists of 10.59 tonnes/yr of phosphorus (P) from the 20830 tonnes/yr of manure
generated at a hypothetical 1000 animal unit dairy farm. The manure is intially fed into
an anaerobic digester to generate biogas. The biogas, a mixture largely composed of CHy,
CO;,, and H;S, is sent to a pair of scrubbers that remove the carbon dioxide and hydrogen
sulfide. The resulting product is a high purity methane stream that can either be exported
or burned on-site to generate electricity.

The digested manure (also referred to as digestate) is passed through a solids-liquids
separator (SLS) that removes the suspended solids present in the digestate. The produced
extrudate is then fed to a series of bag photobioreactors (b-PBRs), along with any urea
required to provide additional nitrogen (N), where it is used as a growth medium for
cyanobacteria (CB) cultivation. The CB growth is assumed to be light-limited and is

simulated as described by [5]:

X(t) = Xoexp(—xt) + X (1 — exp(—x«t)) (A.12a)
s

Xg = (A.12b)
ny

K = Yxymy (A.120)

Here X is the CB concentration at any given time, Xj is the initial CB concentration, and
X is the steady-state (f = co) CB concentration; the biomass yield per photon is denoted
by Yx, and m, is the light energy required for cell maintenance; 7 is the photosynthetic
efficiency of the cell (i.e., how much of the energy in each photon is captured and con-
verted into biomass); S and V are the irradiated reactor surface area and total reactor
volume respectively, and I is the incident light intensity at the surface of the reactor.
Once the CB culture is ready to be harvested, it is sent to a flocculation tank where

self-flocculation is induced. The formed flocs are then fed into a lamella clarifier where
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they are allowed to settle out of solution. The CB sludge that forms at the bottom of the

clarifier is collected and passed through a pressure filter that produces a concentrated

cyanobacteria solution. The solution is transferred to a thermal dryer where the moisture

removal process is completed, yielding a dry CB biomass product. The CB-free water that

exits the lamella clarifier and pressure filter is mixed, and a fraction of it is recycled back

to the reactors while the remainder is purged to prevent the buildup of impurities within

the system. Depending on the flowrate of the purge, fresh make-up water may need to

be added to the reactors if the water in the incoming manure is not enough to account for

this loss.
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Figure A.2: Flow diagram of the biofertilizer production process.
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The CB production rate is set based on the phosphorus density of the bacteria cells,
pr (g P/g CB). Given an incoming P flowrate, mp, the CB needed to fully incorporate the
nutrient load is calculated as:

mp

Mcg = — A1
cB = (A.13)

From this, we can determine the amount of urea, m;, required to meet the N demands of

the cells based on a specified nitrogen density, pn (g N/g CB):

my = max {0, XUN (mCBpN — mN)} (A14)

where my is the flowrate of N in the reactor feed and xy;y is the mass fraction of nitrogen
in urea. The amount of fresh makeup water required is also calculated based on the CB
production rate and the final titer of the CB culture:

Mmrw = max {0, mca (% — 1) — (TT’ZRW + mw)} (A.15)

where t;, is the reactor batch time, py is the density of water, mgy is the flowrate of the
recycled water stream, and myy is the flowrate of water supplied to the b-PBRs from the
manure.

The minimum selling price (MSP) of the biofertilizer is determined by calculating the
price, pcp, that it must be sold at to for the process to achieve a specified discounted return
on investment (DROI) target (15% in this study). The DROIl is a profitability measure that
is defined as the discount rate, i, that results in a net present value (NPV) of zero at the

end of a process’ lifetime. We define the NPV as:

T .
NPV =C+ ) P(1+i)7/ (A.16)
j=1

where C is the total capital investment (TCI) of the of the process, P is the annual after-tax

profit (AATP) and T is the process lifetime (in years).
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The TCl is based on the installed costs of the required units and is calculated according
to their size. If sizing and costing correlations are available, these are used to calculate
these values. Otherwise, they can be obtained from price data found in the literature for

similar units using capacity correlations and price indices:

S\ % [ PI
Ck = C <SI£) <PII/(> (A.17)

where ¢, S, and ¢y are cost, size, and scaling factor respectively of the k' unit; ¢} and
S; are the cost and size of a reference unit; PI is the value of the price index for the year
2020 and PIj is the price index for the year in which the quote for the reference unit was

made. We can then define the inside battery limit (ISBL) cost of the process as:

K
Cis = Eck (AIS)
k

which serves as the basis quantity from which the TCI can be calculated:

cos = 0.4cys (A.19a)
ceng = 0.3(crs + cos) (A.19b)
ccon = 0.2(cis + cos) (A.190)
(A.10d)

where cos, cENG, ccon are the outside battery limits (OSBL), engineering, and contingency
costs associated with constructing the process and bringing it online. The total capital

investment required is then:

C = c15 + cos + ceng + ccon (A.20)
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The AATP is the net income generated by the process and is expressed as:
P = (1—r)(pcemcs + pncMmnG + peLw — O —d) +d (A.21)

where mcp, myg, and @ are the production rates of cyanobacteria, methane, and electric-
ity respectively and these are sold at unit price of pcg, png, and pgr. The tax rate levied
on the process revenue is denoted by r (21% in the US); d is annual depreciation of the
purchased capital equipment and is calculated using a straight-line depreciation scheme
assuming a salvage value of 0:

d= %S (A.22)

The total operating cost (TOC) of the process, O, is composed of two parts, fixed operating
costs (FOCs) and variable operating costs (VOCs). FOCs include annual costs that are
not tied to production levels and must be paid in full every year the plant operates.
This includes expenses such as maintenance, operations fees such as licensing costs and
property taxes or leasing costs, overhead costs like insurance, and labor. Maintenance,

operations, and overhead costs are calculated as a fraction of the ISBL:

cpr = 0.05¢yg (A.23a)
cop = 0.025¢yg (A.23b)
coy = 0.05¢;s (A.230)

(A.23d)

and labor costs are calculated as a function of the size of the reaction section, SA (in

acres):

SA
A
CIB =CIB <SA/> (A24)

where ¢} is the labor cost at a reference facility of size SA’

Variable operating costs consists of items like utilities, raw materials, and storage
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and transportation costs that fluctuate with production levels. As we do not consider
distribution costs, and we assume that manure and any make-up water required are
provided free of charge, the VOCs in this study consist of the utility, urea, and bag
replacement costs. The utility requirements are obtained either from correlations or by
scaling reported values for similar units from the literature to the desired size, similar to

(A.24). We include a scale factor on the bag replacement and reactor mixing costs of the

form:
s v
Asy <> =max< 1,3 -2 (A.25)
v (¥)o
where (%)0 is the surface area to volume ratio of the base design. This penalty reflects

the fact that higher < values require more complex geometries which increase the man-
ufacturing costs of the bags and also increase the flow turbulence within the reactors,
resulting in a higher mixing energy requirement. A penalty is also added to the labor
cost:

/\LB(tb) = max {0, O~05(tb0 - tb)} (A26)

where ty is the batch time of the base design and Arp(t,) has units of MMUSD/yr. This
reflects the fact that smaller values of t, increase frequency at which the b-PBRs must be
emptied, cleaned, and refilled and by extension the labor intensity of the process. Finally,
we scale the value of Xg by a factor of 0.32 as the model growth model used likely over-
predicts the true titer that is achievable. This places the value of X within the range of
1-2 g/L for the range of t, we consider, which is the range of titers commonly seen in

practice at commercial CB cultivation facilities.
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Table A.3: General process information|2, 3, 4, 5]

Parameter

PEL
PNG
ow
PBG
PNG

Value
20830
9.64
10.60
18030
2,02 x 1077
255
0.24
0.03
350
154
70

30
0.023
0.05
0.467
596.2
10
0.11
584
1000
1.2
0.72

Units
tonnes/yr
tonnes/yr
tonnes/yr
tonnes/yr
kg/pmol
pmol/kg-s
g/L
pmol/m?-s
m-1
kg/m?
days

gP/ gCB
gN/gCB

years
USD/kW-hr
USD/ 1000 SCF
kg/m3

kg/m3

kg/m3

Notes

Manure feed flowrate

P in SLS extrudate

N in SLS extrudate

Water in SLS extrudate
Biomass yield per photon

CB cell maintenance light needs
Photosynthetic effiiciency of CB
Initial CB concentration

Light intensity

S : V ratio of base design

Areal density of b-PBRs

Batch time of base design

P density of base design

N denisty of CB

Mass fraction of nitrogen in urea
Cost index for 2020

Lifetime of ReNuAl process
Electricity price

Natural gas price

Water density

Biogas density

Natural gas density

Table A.4: Product yield factors

Product Unit Operation
CHy[156] Anaerobic Digester
CO,[156] Anaerobic Digester
HoS[156] Anaerobic Digester
Electricity[157] Electricity Generator
Bedding]158] Solid-Liquid Separator

Lamella Clarifier
Pressure Filter

Primary Dewatering Product[150]
Secondary Dewatering Product([160]

3.09 x 102 kg/kg manure
1.66 x 102 kg/kg manure
1.14 x 10~* kg/kg manure
4.33 kW-hr/kg CH,
0.09 kg/kg manure

Yield

1.60 x 102 kg/L

027kg/L —

Notes
CH, from biogas production

CO; from biogas production

H,$ from biogas production

assumes gas turbine efficiency of 0.3 and CHy energy content of 1000 BTU/scf

P and N are assumed to be uniformly distributed in digestate liquid and solid fractions

Table A.5:

Capital costs of process units

Ttem ¢, Units PI, SizeRatio ¢; Notes
Anaerobic Digester (AD)[161] 937.1 (m;,)*® + 75355 USD 539.1 —  —  myy, denotes unit capacity (tonne/yr)
Solid-Liquid Separator (SLS)[161]  14.911;, + 1786.9log (m;,) — 9506.6 USD 556.7 —  —  m, denotes unit capacity (Ib/hr)
Electricity Generator[161] 0.67capxcis  USD 539.1 —  —  cap denotes cost of AD (USD)
Xcha denotes fraction of biogas produced used for electricity

H3S Scrubber([162] 348 USD 521.9 259 x10' 06 —
CO, Scrubber[163] 131 MMUSD 4442 437x10% 08 -
Photobioreactors[164, 165] 279 USD 5568 1.08x10° 06 cost of structural system, bag costs are included in TOC
Flocculation Tank[159] 0115 MMUSD 3857 1.57x10°3 06 Scaling is in terms of CB mass
Lamella Clarifier[150] 250 MMUSD 5857 157x1073 0.6 Scalingis in terms of CB mass
Pressure Filter[160] 0137 MMUSD 381.8 239x107' 06 —
Dryer[160] 0706 MMUSD 3391 220x10° 06 -

Table A.6: Variable operating costs of process units
Item Operating Cost  Units Utilities Notes
Anaerobic Digester[161] 0.096c4p USD/yr electricity cap denotes cost of AD (USD)
Solid-Liquid Separator[161] ~0.488m;, + 0.1cs;.s USD/yr electricity mj, and cs;s denote capacity and cost of SLS (USD)
H,S Scrubber[162] 66.7 USD/tonne biogas activated carbon gas removal via carbon bed adsorption
CO, Scrubber[163] 40.0 USD/tonne CO, amine solution, steam gas removal via amine scrubbing
Photobioreactors[164] 12100 USD/acre/yr electricity, bags, urea, water —
Flocculation Tank[159] 100 USD/tonne CB electricity source includes cost of chemical flocculant
Lamella Clarifier[159] 0.43 USD/tonne CB electricity -
Pressure Filter[160] 2.06 USD/tonne CB electricity -
Dryer[160] 19.3 USD/tonne water  natural gas basis is in terms of water removed




A.1.3 Reactor Network System Model

Exact Model

The reactor system consists of a pair of CSTRs operating at steady-state and connected
in series. In the first reactor, reactant A is converted into a desired product P, which can
react further to form an undesired product U. An additional reactant D reacts with U
to form A, and is fed to the first reactor to reduce the amount of U formed. In order to
further reduce the amount of U present and increase the value of the product stream, the
outlet of the first reactor is then fed to a second reactor along with an additional reactant
B, which can react with U to form a secondary product E. The reaction mechanism is

complex and given by:

2A+— 1P (A.272)
P<+—2U (A.27b)
U+ B<+—E (A.27¢)
U+D —2A (A.27d)

The rates of each reaction are assumed to be elementary and thus:

r1 = k1C4 — k1,Cp (A.28a)
12 = koCp — ko, C4 (A.28b)
r3 = k3CyCp — k3,Cg (A.28¢)
ry = kyCyCp (A.28d)

where C; is the concentration of species i and k; and k;, are the forward and reverse rate

constants of the j reaction. In our analysis we assumed that k;, = 0.01kj, indicating that
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the forward reaction is favored. The material balances are:

0= F,Ca,, — FoutCa —2(r1 —14)V (A.29a)
0= F,Cp, — FoutCp + (11 —12)V (A.29b)

0 = FuCu,, — FourCu + (2r2 — 13 —14)V (A.29¢)
0 = F;,Cg,, — FoutCp — 13V (A.20d)

0 = F,Ck,, — FoutCg + 13V (A.29e)

0 = F,Cp,, — FoutCp — 14V (A.29f)

where F;,, and F,,; are the volumetric flowrates of the reactor feed and outlet respectively,
C;,, is the concentration of species i in the feed stream, and V is the volume of the CSTR.
The reactions in (A.27) are assumed to be exothermic and a cooling jacket is used to
remove excess heat and control the temperature inside of the reactors. The jacket uses a
fluid entering at a temperature T;. and flowing at a mass flowrate of 7. as the coolant.
The coolant flowrate required to maintain the desired temperature can be determined

from the reactor energy balance:

Hi, = pC,FT;y (A.30a)

Hout = pCpFT (A.30b)

Q= -nrVAH; —nVAH, — r3VAH3 — r,VAH, (A.30c¢)
. Hin - Hout + Q pCPF(Tin - T) + Q

m, = = A. Od

‘ Cpc(Toc - Ti ) Cpc(Toc - Ti ) ( 3 )

where Tj,, is the temperature of the inlet stream, AH; is the heat of reaction for the jth
reaction, and C, is the specific heat capacity of the coolant. Additionally, we assume that
reactions do not change the heat capacity C,;, or density p;, of the reactor inlet. This

allows us to set C, = Cpiny = Cpout, 0 = Pin = Pout, and F = F, = Foyr. The relation



between the rate constants and temperature is described by the Arrhenius equation:

—E
k = ko exp (RTA) (A31)

where k is the pre-exponential factor, E, is the activation energy of the reaction, and R
is the universal gas constant.

The outlet of the second reactor is fed to series of flash separation units to recover the
products from the effluent stream. Product E is recovered in the vapor fraction of the first
vessel as stream 91, and product P is recovered in the liquid fraction of the second vessel
as stream I». The relative volatility of the chemicals is set with respect to the vapor-liquid
equilibrium ratio Kp; compositions and flows for the exiting streams can be determined
from the following vapor-liquid equilibrium calculation:

Zi
f(Kpa; —1)+1
yi = Kpa;x; (A.32b)

X; = (A.32a)

where z;, x;, and y; are the molar fractions of species i in the feed, liquid, and vapor
streams respectively. The relative volatility of each chemical is denoted by «; and f is the
fraction (on a molar basis) of the feed that exits the vessel in the vapor stream. We set
f according to the molar fraction of the recovered product in the feed, f = zg for the
first vessel, and f = 1 — zp for the second vessel. The energy required to vaporize the
desired fraction of the flash’s feed was supplied by a heater that uses steam as the heating
agent. The required flowrate of steam, 75, was determined from the flash vessel energy

balance

Qvap = Z Liyi@ (A33a)
ic{A,P,U,B,E,D}
. Q
st = —— (A.33b)

Lm0
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where L; and Ly,o are the latent molar heat of species i and water, respectively.
The performance of the system is expressed as a cost function (negative profit) that
measures the quality of the product streams along with the corresponding utility require-

ments at various temperatures and is formulated as:

f(Th, T2) = ) Wiy 01 + ) wixph+ Y, wiFCo  (A34a)
ic{A,P,U,BED) ic{A,P,U,B,ED) ic{A,B,D}

fZ(le TZ) = Wc (mc + mé) + Wstm (mstm + m;tm) (A.34b)

f(T1, T2) = fi(Th, T2) + f2(Th, T2) (A.34¢)

where T; and T, are the operating temperatures of the first and second reactor. The molar
fraction of species i in first product stream, vy, is denoted by y;;, and x;; is the molar
fraction of species i in the second product stream I,. The price of species i is represented
by w;, and w. and wsy, are the costs of the cooling and heating utilities respectively. The
cost of the reagents supplied to the network is captured by the final term in (A.34a) where
F; and Cjy are the volumetric flow rate and inlet concentration respectively of species i into

the process.

Reference Model

By substituting the Arrhenius expression (A.31) into the rate expressions (A.28), we can
determine that reaction rates are functions of temperature and concentration; this is a
major source of nonlinearity in the system. We draw inspiration from the use of inferential
sensors that are used in industry to correlate the rates directly to temperature (bypassing
concentrations) in order to develop a reference model. Specifically, in our reference model
we develop a polynomial function that approximates the dependence of the rate on the
temperature. We develop our polynomial model based on the following transformation
of the rate expression:

_ —Ex1l
logr = Tf—knlogc (A.35)
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Figure A.3: Schematic diagram of the serial CSTR reactor system and product recovery
system

where we ignore the reverse reaction due to the comparatively small k, values used. From
the mass balances, we can also determine that the concentration is an implicit function
of the temperature. We choose to capture this relation using higher-order polynomials.
During our analysis, we determined that a third-order polynomial provided satisfactory

performance, resulting in the following approximation for the rate expression:

1 1)\? 1\°

where 6y, 01, 0>, and 03 are the model coefficients. Using (A.36), we can rewrite the

material balances purely as functions of temperature and obtain the following expressions
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for the various species concentrations:

Ca = Ca,, —2(r1(T) —r4(T))
14

Vv
F
Cp =Cp, + (1 (T) —r2(T))

m

F
Cu = Cuy, + (2r2(T) — r3(T) — r4(T))

- <

CB = CBin — 7’3(T)
Cg = CE,-n + 7’3(T)

Cp = Cp,, —r4(T)

T <<

(A.37a)
(A.37b)
(A.37¢)
(A.37d)
(A.37€)

(A.371)

we then substitute these values into a performance function similar to (A.34) to obtain the

reference model for the system g. This reference model can be seen as an approximate

physical model of the real system (captured by the exact model) and is much easier

to evaluate. However, because this model is comprised of a complex set of algebraic

equations, we further approximate the dependence of the performance function on the

temperatures using a GP model.
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Appendix B

SUPPLEMENTARY INFORMATION

This appendix presents supplementary information from select sections of this disserta-

tion.

B.1 Setup of Intermediate Function Gaussian Process Models

B.1.1 Chemical Process Optimization Study

In the composite function BO problem, we treat the reactor and separator as black-boxes.
The behavior of these units is approximated using a set of GP surrogate models, GP?,
that estimate the following intermediate functions, y(x): the duties of RX-1 and SEP-1,
Q4 and Qs respectively, the product to purge ratio of A, the feed to purge ratio of B, and

purge to product ratio of C. We define these last three variables as:

_ Yaks

A= N (B.1a)
m =27 (B.1b)
_ Gebp (B.10)

C p—
YcFs



where Fp is the flowrate of the purge and ¢; is the fraction of species i in this stream.

These intermediates have the following lower and upper feasibility bounds:

[, =[107%,107°%,107%,10°,10 "] (B.2a)

i, = [1,00,00,00, 0] (B.2b)

Because B is essentially non-condensable and only present in trace amounts in the product
stream, 1 — 773 is equal to the conversion of B in the reactor. As a result, the generation

rates of A, B, and C can be calculated from this variable:

f’B = —(1 — UB)FB (B.3a)

Fa= iy (B.3b)
VB

Fc = ~Cig (B.3¢)
VB

Note that the negative sign in (B.3a) is due to the fact that B consumed by the reaction.
Combining these flowrates with 74 and 5¢c we can calculate the flowrates and composi-

tions of the remaining streams. The purge and recycle streams are specified by:

Fo+74
Fp=—"——= B.
GaFp 147 (B.4a)
¢pFp = npFp (B.4b)
lelde
Fp = B.
¢cFp T+7c (B.40)
Fp = ¢aFp+ CpFp + GcFp (B.4d)
FpR
Fr= -2 (B.4e)

1-R
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where Fg is flowrate of the recycle stream; note that the purge and recycle streams have

the same composition. The product stream can similarly be defined:

/2 (FA + f’A)
PaFs = T (B.5a)
pFs =0 (B.5b)
rc
Fc = B.

¢cFs T4 e (B.50)
Fs = ¢aFs + ypFs + cFs (B.5d)

(B.5€)

Combining these expressions with the compressor and heater models (which are assumed
to be white-boxes) and the GP estimates for Q, and Qs, we can calculate all of the values
in (B.1).

Due to the presence of the recycle stream, we initially surmised that #p should be
a function of the five inputs as it is essentially a measure of the extent of the reaction.
However, automatic relevance determination (ARD) [143] showed that Ps does not appear
to have much of an effect on p. This is likely due to fact that T is able to capture most of
the variability from the separation process. As a result, the GP model of 5 takes only Trx,
Prx, R, and Ts as inputs. We then nest 5 within the models of 774 and 7. These measure
the performance of the separator, which is dependent on the composition of the separator
feed in addition to Ts and Ps. As the reactor outlet is the separator feed and is directly
dependent on the value of #g, 74 and 7¢ should exhibit a similar dependence. This allows
us to avoid having to explicitly consider the recycle fraction and reactor temperature and
pressure (all of which affect the reactor outflow), thereby reducing the input dimension
of the GP models for these intermediates from five to three. Using a similar approach,
we determine that the reactor heat duty can effectively be modeled using Trx, Prx, 74
and #p, as the latter two variables are closely correlated to flowrate and composition of

the recycle stream, while the former two establish the equilibrium point of the reactor.
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Similarly the GP model of Qs uses Trx, R, and np along with Ts, and Ps as these inputs
are closely correlated to the flowrate and composition of the separator feed as well as the
simple and latent heat released by condensation of the product stream. Note that this
approach highlights the high degree of customization composite function BO affords in
the selection of GP model inputs. In addition to improving model quality, this can allow
BO to be extended to high-dimensional systems where standard BO runs into scalability
issues as the individual intermediates do not have to be modeled with the full set of

inputs.
B.1.2 Photobioreactor Design Study

Because of the novelty of the presented CB cultivation system, mature models for this
unit operation are not yet available. The remaining systems (AD, biogas purfication, and
CB harvesting) are established technologies and models of these units can be found in the
literature. As a result, we choose to treat these systems as white-boxes and only model

the b-PBR as a black-box. The design variables of interest are the reactor surface area to

volume ratio, %, batch time, ¢}, and the phosphorus cell density of the CB, pp.
The intermediate functions we choose to estimate are the required reactor volume V

and the CB titer at harvest time X; we define their feasibility bounds to be:

I, =[107%,107°] (B.6a)

iy = [10°,10] (B.6b)

Using these variables, we can fully specify the outlet flow and size of the b-PBRs:

SA = @ (B.7a)

|4

\%4
MpBR = PW (tb/365> (B.7¢)
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where mpgg is the mass flow rate out of the reactor. Note that we approximate the density
of the culture as py due to the relatively low concentration of the CB; the division of t;
by 365 is done to convert this qunatity from days to years. The GP models developed for
X and V both take in the full set of inputs (%, ty, and pp). This is due to the fact that these
variables have a significant impact on the througput and size of the reactor. As a result,
this case study demonstrates how composite function BO can be used to select sample
points that can be used to develop a surrogate models for a unit of interest while driving
the system the unit is a part of to an optimal configuration. This essentially allows us
to complete two tasks at once and significantly reduces the probability of sampling at
points in highly sub-optimal areas where the unit would likely never operate. As a result,
the developed model is highly refined in the regions around the located optima and,

therefore, is arguably more useful.
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