
New Paradigms for Bayesian Optimization:
Harnessing Physics & High-Throughput Experiments

by

Leonardo D. González

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Chemical Engineering)

at the

UNIVERSITY OF WISCONSIN-MADISON

2024

Date of final oral examination: 8/13/2024

The dissertation is approved by the following members of the Final Oral Committee:
Victor M. Zavala, Professor, Chemical and Biological Engineering
Reid C. Van Lehn, Associate Professor, Chemistry
Styliani Avraamidou, Assistant Professor, Chemical and Biological Engineering
Lav Thyagarajan, Chief Engineer, Eaton

© Copyright by Leonardo D. González 2024

All Rights Reserved

i

To my mother and brother, thank you for being there every step of this journey.

ii

A C K N O W L E D G M E N T S

After a long and incredible journey, I can finally say that I have finished the 21
st grade.

Pursuing a doctoral degree was not a path I envisioned myself going down up until about
five years ago. However, it has been an incredibly rewarding and fulfilling experience that
I will always remember. That being said, this path was not without its trials, and a major
part of the reason I have gotten to this point is because of the wonderful friends, mentors,
and family who have supported me throughout this journey

Words cannot fully describe the debt of gratitude I have to my dearest mother. Without
her, I would not be here (literally!), and it is largely thanks to her tireless self-sacrifice
and devotion for her children that I was able to have the opportunities that I did. From
her I learned to be strong, disciplined, and unyielding and to value compassion, honesty,
and selflessness, all values that she has always embodied. She has constantly pushed me
to excel, to dream big and never doubted my capacity to succeed, even when I did. It is
not an exaggeration to say that no one has ever believed in me as much as she has. Mom,
thank you for everything; my success is your success and I will forever be grateful.

To my brother, Ramses, thank you for keeping me grounded, reminding me to enjoy
life, and for teaching me to not be afraid of failure. When we were kids, and even now
sometimes, he was the one always trying and pushing me to try new things. His encour-
agement to follow my curiosity and venture into the unknown is a big part of the reason
why I felt I could come down this path in the first place. I am also thankful we got the
opportunity to be able to go through the graduate school journey together. It was blessing
to have someone who could understand my experiences at the same level as him. I also
deeply appreciate the regular phone calls and the game nights; they helped keep me sane
and gave me something to look forward to.

I am grateful for the opportunity I received to attend the Texas Academy of Mathematics
and Science (TAMS), which is where my journey in higher education started. Being a
part of this program gave me the opportunity to learn at a level and pace I had never
experienced before and gave me the confidence to believe I could successfully pursue a
STEM career. It was here that I met the late Dr. John Ed Allen who, in addition to being
one of the best teachers I have had, encouraged me to explore my interest in mathematics.
Additionally, my two years at TAMS allowed me to be a part of a tight-knit community

iii

of peers with whom I was able to share countless experiences. This allowed me to forge
lasting friendships with Ryan Aven and Wyn Bell, who have provided me with endless
encouragement and support no matter the time or distance that separate us.

I am fortunate to have received my undergraduate education at the University of Pennsyl-
vania and Texas A&M University. The academic rigor and reputation of these institutions
equipped me with the know-how to be successful beyond undergrad and provided me
with the employment and graduate school opportunities I received after graduating. My
undergraduate experience would not have been the same without the incredible profes-
sors who instructed me. In particular, I would like to acknowledge Dr. Dennis DeTurck
and Dr. Perla Balbuena, whose mentorship instilled me with the confidence to seek to
solve difficult problems. Dr. Balbuena’s willingness to welcome me into her research lab
provided me with an invaluable experience that I never imagined I would have. This,
along with her repeated assertions that I ought to seriously consider a postgraduate edu-
cation, were highly encouraging and motivated my decision to pursue a graduate degree.

I have deeply cherished my time at UW-Madison. The landscape of Madison is a stark
contrast to the environment I grew up in in Southeast Texas. Perhaps this is a large
part of the reason I have so fully embraced the natural beauty and four seasons I have
experienced here. However, as beautiful as Madison is, it has been my advisor, Dr. Vic-
tor Zavala, who has been truly instrumental in making my graduate school journey the
memorable experience it has been. During my time in his lab, Victor has given me the
opportunity to work on an incredibly wide breadth of projects, which has allowed me
to learn about topics I had never thought about before. This has greatly expanded my
perspective of the world, and I have come to appreciate the “systems viewpoint" he fre-
quently talks about. Through his excellent mentorship, he has helped me develop into
an effective researcher and engineer by fostering my curiosity, critical thinking, and com-
munication skills. I am also thankful for all the professional development opportunities
he gave me, whether it was sending me to several conferences or letting me take two
summers off for an internship. These opportunities provided me with the network and
visibility I needed to forge my path after completing my degree. More than anything,
however, I am grateful for who Victor is as a person and the compassion and respect with
which he treats his students. I never felt that he saw me as just a graduate student, but
rather, that he was genuinely invested in my success for the sake of seeing me succeed.
I appreciate the joy and sincerity with which he celebrates the accomplishments of all of
us; it is this genuineness that has allowed the Zavalab to feel like a second family. Victor,
I will miss you and forever be grateful for having had the opportunity to be a part of your
group.

I would like to extend my gratitude to all the members of the Zavalab, whose friend-
ship and support made me look forward to coming to the office. In particular, I would
like to acknowledge Qiugang Lu and Ranjeet Kumar for their mentorship and guidance
with my first publication. Thank you to my cohort-mates, Amy Qin, Dilara Göreke, Jiaze

iv

Ma, Lisa Je, and Bo-Xun Wang for their support and camaraderie during first semester
classes, prelims, and preparing for my final defense. I will always be grateful for the
guidance given to me by Aurora Mungiá-López as well as our regular conversations. I
appreciate the support Brenda Cansino Loeza and Joe Flory have given me during the
final months of my Ph.D. as I attempted to finalize my work for various projects. I would
also like to express my gratitude towards Philip Tominac, Jordan Jalving, Apoorva Sam-
pat, Yicheng Hu, Sungho Shin, Joshua Pulsipher, Ricky Shao, Alexander Smith, Shengli
Jiang, and Weiqi Zhang for the warmth and openness with which they received me when
I first joined the lab. David Cole, Jaron Thompson, Blake Lopez, Elvis Umaña, Daniel
Laky, Ugochukwu Ikegwu, Yoel Cortés-Peña, and Brandon Flores, I will miss our office
conversations and group outings. It has been a privilege being able to work and learn
alongside you all.

I would like to say thank you the members of my dissertation committee: Dr. Victor
Zavala, Dr. Reid Van Lehn, Dr. Styliani Avraamidou, and Dr. Lav Thyagarajan for giving
of their time and expertise to make this journey possible. I would also like to acknowl-
edge Dr. George Huber and Dr. Ophelia Venturelli for serving on my preliminary exam
and fourth-year progress meeting committees. The feedback and guidance they have all
provided have been an essential part in the development of my research plan. Addition-
ally, they have regularly encouraged me to consider the broader impacts of my work and
to strive to be an effective communicator.

I am deeply grateful for the incredible mentorship I received during my internships at
John Deere and Cargill. Dr. Lav Thyagarajan and Abram Haich gave me the opportunity
to work on the very topic that inspired me to pursue a graduate degree. During my time
at Deere, they devoted themselves to guiding me through the process of developing a
machine learning application for use in an industrial setting. The excitement with which
they received me and the enthusiasm they had for the work we did were an integral part
of the success we achieved that summer. While at Cargill, I was able to work alongside
Dr. Ashwin Chemburkar, who introduced me to the world of custom process models and
gave me the opportunity to experience a whole new side of chemical engineering. His
tireless diligence and support allowed me to thrive, and it is largely thanks to him that I
received the opportunity to return to Cargill. I would also like to acknowledge Dr. Chris
Tyler and Dr. Jesse Pikturna, both of who were always willing to answer any question I
had and provided constant encouragement.

I am extremely fortunate to have an incredible group of friends who helped fill this jour-
ney with wonderful experiences. Thank you to Jacob Tamayo and JC Davila for our
Monday Smash Ultimate nights that allowed us to unwind and stay connected. I will
miss the summer bike rides that I would regularly go on with Atharva Kelkar and Kevin
Sánchez-Rivera; these adventures allowed me to explore a great deal of the city and its
surroundings. I will always cherish the memories of the countless Chili’s and MOOYAH
lunches and dinners with Edgard Lebrón-Rodríguez. The conversation topics during

v

these meals never failed to entertain, and I appreciate Edgard’s understanding and hu-
mor. I am thankful to Lisa Je and her enthusiasm for setting up dog park dates as well
as the affection and care she has shown for my pets. I will always remember the ran-
dom adventures Amy Qin, Dilara Göreke, and I went on together, especially when we
drove to Milwaukee to buy furniture and somehow managed to fit it all in my Corolla.
I would also like to extend my gratitude to Kelly Burton and the GERS community for
being incredibly supportive and providing me with a safe space where I could share my
experiences and listen to those of others.

Finally, I wish to acknowledge my wonderful dogs, Darby and Mona Lisa, who have
been a constant source of joy and comfort during my time here. Their presence has made
the hard days easier and the good days better. I would also like to express my immense
gratitude and love for my incredible partner, Becca; my time here would not have been the
same without her. I greatly appreciate the loving encouragement and infinite patience she
was shown during this journey—I know it’s not been easy! Thank you for always making
me feel appreciated and cared for and for never failing to remind me that I am not alone.

Leonardo D. González
Madison, WI
August 2024

vi

C O N T E N T S

list of figures vii

list of tables viii

abstract ix

1 introduction 1
1.1 Black-Box Optimization . 1

1.2 Current State of Bayesian Optimization . 4

1.2.1 Existing strategies for incorporating physics knowledge in BO . . . 4

1.2.2 Existing strategies for enabling parallelized BO 6

1.3 Research Objectives . 7

1.4 Dissertation Outline . 8

I Incorporating Physics Knowledge 10

2 bayesian optimization 11
2.1 Formulation of Bayesian Optimization . 12

2.2 The Gaussian Process . 15

2.3 Acquisition Functions . 18

2.4 Summary . 26

3 bayesian optimization with reference models 27
3.1 Introduction . 27

3.2 Bayesian Optimization with Reference Models 31

3.3 Case Study: MPC Tuning for HVAC Plants 36

3.4 Conclusions . 48

4 bayesian optimization of interconnected systems 50
4.1 Introduction . 50

4.2 Bayesian optimization with composite functions 56

4.2.1 Monte Carlo-driven composite function Bayesian optimization . . . 57

4.2.2 Optimism-driven composite function BO 59

vii

4.3 The BOIS Approach . 62

4.4 Numerical Experiments . 66

4.4.1 Optimization of a chemical process 66

4.4.2 Design of a photobioreactor . 72

4.5 Conclusions and Future Work . 77

II From Sequences to Batches 80

5 new paradigms for exploiting parallel experiments in bayesian

optimization 81
5.1 Introduction . 81

5.2 Parallel Bayesian Optimization . 84

5.2.1 Hyperparameter Sampling Algorithm (HP-BO) 85

5.2.2 HyperSpace Partitioning Algorithm (HS-BO) 87

5.2.3 N×MCMC Algorithm (MC-BO) . 89

5.2.4 Batch Bayesian Optimization Algorithm (q-BO) 91

5.3 Parallel Bayesian Optimization using Informed Partitioning 93

5.3.1 Level-Set Partitioning Algorithm (LS-BO) 94

5.3.2 Variable Partitioning Algorithm (VP-BO) 96

5.4 Numerical Case Studies . 99

5.5 Conclusions and Future Work . 111

III Final Thoughts 113

6 conclusions and future directions 114
6.1 Contributions . 114

6.2 Future Research Directions . 117

A supplementary information 121
A.1 System Models . 121

A.1.1 Reactor-Separator Network Model . 121

A.1.2 Biofertilizer Production Process Model 127

A.1.3 Reactor Network System Model . 134

B supplementary information 140
B.1 Setup of Intermediate Function Gaussian Process Models 140

B.1.1 Chemical Process Optimization Study 140

B.1.2 Photobioreactor Design Study . 143

bibliography 145

viii

L I S T O F F I G U R E S

2.1 Distribution of f (blue line) calculated from 5 data points with the most likely
outcome predicted shown in black and uncertainty estimates represented by
the surrounding grey envelope; samples drawn from the distribution are shown
in red. 12

2.2 Workflow of the S-BO framework. Using dataset Dℓ, S-BO builds a surrogate
model that estimates f . The performance and uncertainty estimates calculated
by the model are passed into an acquisition function that is optimized to sug-
gest a new sampling point xℓ+1. The system is sampled at this point and the
collected data is appended to the dataset to retrain the model. 13

2.3 Samples drawn from GPs trained on five datapoints using the Mátern kernel
at varying smoothness values . 16

2.4 Snapshots of the current surrogate model (top) and the PI AF (bottom) at ℓ = 0,
5, 10, and 15 with κ = 0.01. The mean is shown in blue and the uncertainty
estimates are represented by the surrounding light blue envelope; seed points
are shown in white and the optimum of the PI AF is marked by the red star.
Note that the algorithm spends nearly 10 iterations exploring the region near
the best seed point . 20

2.5 Snapshots of the current surrogate model (top) and the EI AF (bottom) at ℓ = 0,
5, 10, and 15 with κ = 0.01. The mean is shown in blue and the uncertainty
estimates are represented by the surrounding light blue envelope; seed points
are shown in white and the optimum of the EI AF is marked by the red star.
Note that range of the EI function quickly decreases after the two optima have
been located, resulting in more exploratory sampling at later iterations 23

2.6 Snapshots of the current surrogate model (top) and the LCB AF (bottom) at ℓ =
0, 5, 10, and 15 with κ = 4.5. The mean is shown in blue and the uncertainty
estimates are represented by the surrounding light blue envelope; seed points
are shown in white and the optimum of the LCB AF is marked by the red star.
Note that, while the function is multi-modal, it lacks the flat regions observed
in the PI and EI AFs and begins to follow the trend of mℓ

f (x) toward the final
samples . 25

ix

3.1 Left column: Reference model incorporated into the BO algorithm (top) and
its residual function ε(·) (bottom); Middle column: Results of Bayesian op-
timization (top) with a reference model g(·) and evaluated function values
(bottom) over 15 iteration showing the convergence. Right column: Results of
traditional Bayesian optimization (top) and evaluated function values (bottom)
over 15 iterations showing the convergence. Green dashed line: true objective
function; Red line: posterior mean of GP model; Blue shaded area: posterior
variance of GP model. 34

3.2 Schematic energy flow diagram of central HVAC plant (reproduced with per-
mission) [1]. 37

3.3 Left: 3D surface of annual closed-loop cost over back-off terms; Middle: 2D
contour plot of annual closed-loop cost with the baseline cost (shown by a
white marker) in [1]; Right: Refined view of closed-loop cost where the vertical
scale is adjusted. These plots were obtained by interpolating simulation results
under 10× 10 mesh grids. 41

3.4 Sequence of sampling locations in the 2D parameter plane for S-BO (left) and
Ref-BO (right). The white circle marker shows the baseline parameters. 42

3.5 Closed-loop cost over iterations for S-BO and Ref-BO against the baseline cost.
A microscopic view of the comparisons between costs from these methods is
shown inside the figure. 43

3.6 Closed-loop cost for S-BO and Ref-BO under different initialization points.
Each trial corresponds to one initialization point on a 5 × 5 grid of the 2D
parameter space. 43

3.7 Posterior mean and AF from S-BO for the first 10 iterations. Top two rows:
Posterior mean of GP model in each iteration. Bottom two rows: Acquisition
function in each iteration. 44

3.8 Posterior mean and AF from Ref-BO for the first 10 iterations. Top two rows:
Posterior mean of GP model in each iteration. Bottom two rows: Acquisition
function in each iteration. 44

4.1 Grey-box systems often exhibit a known structure where the connectivity be-
tween different elements is understood. Not every component is always a
black-box that requires a surrogate model as a closed-form representation
might be available for various components. 52

4.2 Illustrative representation of the adaptive linearization scheme employed by
BOIS. At a point x of interest (red marker), a GP model estimates the value of
intermediate y. A local Laplace approximation is then constructed by lineariz-
ing f around a neighboring point (green marker). The summarizing statistics
are passed into an acquisition function that determines the value of sampling
at the selected point. This process is repeated until the optimum of the AF is
found. 55

x

4.3 Workfow of the OP-BO algorithm. Mean and uncertainty estimates from GP ℓ
y

are used to create a confidence interval bounded by lℓy(x) and uℓ
y(x) that con-

strains the possible values of y. These are incorporated into an auxiliary prob-
lem that is optimized to select a new sample point xℓ+1. The resulting data is
then appended to the dataset Dℓ

y and the GP models are retrained 59

4.4 Workflow of the BOIS algorithm, note that b = g(x) + h(x, ŷℓ0)− JT ŷℓ0. A set of
GP surrogate models of y is trained usingDℓ

y. The mean and variance estimates
calculated by the GPs are passed into AF ℓ

BOIS which generates a local Laplace
approximation for the density of f . This AF is then optimized to obtain a new
sample point, xℓ+1. The system is then sampled at this point and the collected
data is appended to the dataset and used to retrain the GP models. 64

4.5 Performance comparison of the tested algorithms for the chemical process op-
timization problem based on (a) the best solution at the current iterate, (b)
the best solution located by each algorithm during each trial, and (c) the dis-
tribution of the sampling behavior across the 125 runs for each of the tested
methods with the average behavior shown in color. 68

4.6 Computational intensity of the tested algorithms for solving the chemical pro-
cess optimization problem measured as the difference between the total exe-
cution time and total system sampling time. 70

4.7 Parity plots of the estimates of mℓ
f (x) (a) and σℓ

f (x) (b) for (4.13) and log10 of
the time required to generate the estimates (c) at 500 points in X using BOIS
with ϵ = ŷ× 10−3 and MC-BO with samples sizes S = 10, 102, and 103; the
same trained GP model of y(x) was used by both algorithms. 71

4.8 Performance comparison of the tested algorithms for the photobioreactor de-
sign problem based on (a) the best solution at the current iterate, (b) the best
solution located by each algorithm during each trial, and (c) the distribution of
the sampling behavior across the 125 runs for each of the tested methods with
the average behavior shown in color. 74

4.9 Computational intensity of the tested algorithms for solving the photobiore-
actor design problem measured as the difference between the total execution
time and total system sampling time. 75

4.10 Parity plots of the estimates of mℓ
f (x) (a) and σℓ

f (x) (b) for the MSP function
and log10 of the time required to generate the estimates (c) at 500 points in X
using BOIS with ϵ = ŷ× 10−3 and MC-BO with samples sizes S = 10, 102, and
103; the same trained GP model of y(x) was used by both algorithms. 78

5.1 Schematic of proposed BO parallelization paradigms using level set partition-
ing (left) and variable partitioning (right). 84

5.2 HP-BO optimizes the AF for a set of hyperparameters κk, k ∈ K to obtain
experiments xk, k ∈ K that can be evaluated in parallel. Here, we show an
example with K = 3. 86

xi

5.3 HS-BO partitions the domain X into K = 2dx subdomains and runs a separate
instance of S-BO within each partition. A hyperparameter ϕ is introduced
to define the degree of overlap in the partitions (the overlapping region aims
to share information across subdomains). When ϕ = 0 there is no overlap
between the partitions and when ϕ = 1 we have that all partitions are the
entire domain X. 88

5.4 Level set partitioning (LS-BO) uses the α-level sets of the reference g to split
X into subdomains X̃k, k ∈ K. Depending on the complexity of g, enforcing
level set constraints in the AF optimization problem can be difficult; therefore,
the level sets are approximated using the surrogate model ĝ. 95

5.5 Performance function f of the reactor system (left) and reference model (right).
Note that the reference model captures the overall (coarse) structure of the
performance function but misses some finer details. 100

5.6 Reference model g (left) and GP approximation ĝ (right); note that the GP
provides an accurate representation and can thus be used to guide partitioning
approaches. 101

5.7 Domain partitions for reactor system obtained using reference model ĝ (left);
the line connecting the two minima of the reference model is shown in blue.
Values of ĝ along this line (right) indicate that the level set ĝ = −383 (black
line) provides an acceptable split between the two partitions surrounding the
minima, while the level set (red line) ĝ = −461 allows for the partition sur-
rounding the global minimum (denoted as (T∗1 , T∗2)) to be split into two roughly
equal-sized partitions. Note that domain XI I I is in the region of the global
minimum of f . 103

5.8 Reference model for the first reactor g1 (left) and for the second reactor g2

(right). We can see that g1 is not affected by T2; the combination of these
functions give rise to the reference function g = g1 + g2. 103

5.9 Total experiment time against value of best solution for tested algorithms. LS-
BO and VP-BO were run using the reference model to partition the domain
and guide the search. 105

5.10 Total experiment time against value of best solution for the tested algorithms.
LS-BO and VP-BO were run using the reference model to partition the domain
but not to guide the search. 106

5.11 Distribution of the performance profiles across the 25 runs for BO (top), LS-
BO (middle), and VP-BO (bottom) with the average algorithm performance is
shown in color. 107

5.12 Experiment locations across the 25 runs for BO (top), LS-BO (middle), and
VP-BO (bottom). 108

5.13 Profiles of wall-clock time against performance. Note that this time is com-
parable to the total experiment time for all algorithms; the only exception is
MC-BO, indicating that the AF optimization step (and not the function evalu-
ation) is the bottleneck for this approach. 111

xii

A.1 Schematic diagram of the reactor-separator network modeled in the first case
study. 122

A.2 Flow diagram of the biofertilizer production process. 128

A.3 Schematic diagram of the serial CSTR reactor system and product recovery
system . 138

xiii

L I S T O F TA B L E S

A.1 Thermodynamic Constants for the Reactor-Separator Network Model 126

A.2 Relevant Parameters for the Reactor-Separator Network Model 126

A.3 General process information[2, 3, 4, 5] . 133

A.4 Product yield factors . 133

A.5 Capital costs of process units . 133

A.6 Variable operating costs of process units . 133

xiv

A B S T R A C T

This dissertation explores integrating available physics knowledge with the Bayesian op-
timization (BO) framework to develop a new set of paradigms that improve performance
and enable functionalities like parallel or high-throughput experimenting. BO is a data-
driven paradigm that uses input/output data to construct a surrogate model of the under-
lying performance function, f , of a black-box system, which it uses to navigate a design
space in search of an optimum. While several other black-box optimization strategies
exist, BO sets itself apart by using a probabilistic surrogate model that estimates predic-
tion uncertainty in addition to performance. This feature allows for the consideration
of informational value when selecting a new sample point, which pushes the algorithm
to explore from several distinct regions of the design space. Consequently, BO is an es-
pecially powerful global optimizer that has been successfully applied to a wide array of
problems including model predictive control, materials design, and process engineering.

While the standard formulation of BO (S-BO) is generally effective and highly gen-
eralizable, it exhibits two major drawbacks: (i) structural knowledge (e.g., physics and
component interconnections) is often available for many systems, and S-BO does not al-
low for the consideration of this information; and (ii) the S-BO algorithm is inherently
sequential (i.e., proposes one experiment at a time), which makes it unable to exploit
high-throughput experiment capabilities. This represents a missed opportunity, as these
resources can significantly enhance algorithm speed and performance. Various works
have proposed modifications to the BO framework to overcome these shortcomings. How-
ever, these solutions can be can be limited by tractability and performance issues.

We address these challenges by developing a new set of paradigms that expand the
capabilities of the BO framework in a computationally efficient and robust manner. Us-
ing these methods we are able to take advantage of low-fidelity approximations (referred
to as reference models) built from simplified representations or empirical correlations to
improve algorithm speed and sampling efficiency. We are also able to efficiently exploit
system connectivity as well as scenarios where the system is a mixture of interconnected
white-box and black-box components. This is achieved by shifting to a composite function
representation of f , whose statistical moments are estimated using an adaptive lineariza-
tion scheme. Finally, we leverage the coarse system trends provided by the reference
model as well as the partially separable structure of different system components, which
we determine by analyzing system connectivity, to develop an innovative pair of parallel
BO methods that allow for system-specific partitioning of the design space.

1

Chapter 1
I N T R O D U C T I O N

In this chapter, we detail the background, motivation, and objectives of this dissertation.

We introduce the concept of black-box optimization and provide an overview of the var-

ious methods for solving this class of problems, with a focus on Bayesian optimization

(BO). We discuss the features of BO that have made it an especially effective optimiza-

tion paradigm, and explain some of its shortfalls. Recent advances aimed at addressing

these shortfalls are presented and used to establish the existing challenges that our work

seeks to address. Finally, we outline the structure of this dissertation and summarize the

content of its constituent chapters.

1.1 Black-Box Optimization

In this work, we consider general unconstrained optimization problems of the form:

min
x

f (x) (1.1a)

s.t. x ∈ X (1.1b)

where f : X → R is a scalar performance function; x is a set of inputs; and X ⊆ Rdx is

the design space (of dimension dx). Problems of this form are prevalent in diverse science

and engineering applications, where a key goal is often to identify the configuration

that maximizes the performance of a system (negative cost) or minimizes operation or

2

production costs [6]. Various approaches exist for solving (1.1), but by and large the most

commonly used are derivative-based methods; this is largely due to their efficiency as well

as the convergence guarantees they provide [7]. Consequently, significant work has been

done on developing improved gradient-based optimizers, resulting in a rich variety of

methods, including SQP, L-BFGS, and IPOPT [8, 9, 10]. While gradient-based optimizers

have been successfully applied to a wide array of problems in almost every discipline,

obtaining the required derivative information is often not possible in many real-world

applications (e.g., process engineering, synthetic biology, machine learning, etc.). These

applications usually involve systems that exhibit a significant level of complexity that

make it near-impossible to derive closed-form representations that map system inputs

to outputs; in other words, the system is a black-box where f can only be evaluated by

sampling at an x of interest. Estimating the gradients numerically is also usually not

possible as sampling is often expensive and the obtained data can be corrupted by noise.

In these scenarios, solving (1.1) requires the use derivative-free methods, also referred to

as black-box optimization algorithms.

Black-box optimization algorithms can broadly be separated into two categories: di-

rect search and model-based methods [11]. Direct search methods include some of the

earliest and most widely used black-box optimizers such as simplex methods, pattern

searches, and evolutionary algorithms [12, 13, 14]. As their name implies, these algo-

rithms navigate the design space by sampling the system at several points surrounding

the current iterate to orient their search. Once a more favorable point is found, the al-

gorithm moves towards it and then proceeds to search around that point. Direct search

methods are quite flexible and do not require that the performance function be smooth

or even continuous [15]. When compared to gradient-based methods, they are also gen-

erally conceptually simpler and easier to implement [16]. Additionally, these algorithms

easily lend themselves to parallelization as the required function evaluations can be done

independently or various instances of the algorithm can be initialized at separate points

in the design space [17]. However, the sampling requirements can cause these algorithms

3

to be inefficient, resulting in slow convergence and scalability issues as the number of re-

quired function evaluations can increase significantly with the dimensionality of X. These

methods can also be quite sensitive to the initialization point, and a poor initial guess can

result in the algorithm getting trapped in a local optimum and can also significantly slow

down the algorithm by further increasing the number of required function queries [18].

Model-based black-box optimization algorithms use the input/output data obtained

from sampling the system to build a surrogate model of the performance function that is

used to guide the search for the minimum [11]. A new sample point is selected based on

a predefined criterion (e.g., minimizing the model value or maximizing model accuracy),

and the surrogate model is iteratively refined as new data becomes available, improving

its accuracy. These methods tend to be more complex than direct search, as they require

training the surrogate with the generated data. Additionally, model selection and tuning

are dependent on the specific system being analyzed, often requiring the use of heuristics

or domain knowledge [19]. However, surrogates provide a significantly better under-

standing of global system trends than direct search. As a result, model-based algorithms

are generally able to sample across a wider range of the design space rather than focusing

on a few local regions [20]. Additionally, because the surrogate provides estimates for the

value of f , these methods usually require significantly less function evaluations, making

them more computationally efficient [21]. Furthermore, while model selection and tuning

can be intensive tasks, they provide an opportunity to incorporate available information

on the structure or behavior of the performance function. There exists a diverse selection

of model-based algorithms such as Response Surface Methodology (RSM), radial basis

function (RBF) methods, and kernel machines [22, 23, 24]. In recent years, Bayesian opti-

mization has emerged as arguably the most popular optimization paradigm of this class

due to its efficiency, flexibility, and capability to measure both information (exploration)

and performance (exploitation) value when selecting new sample points via the use of a

probabilistic surrogate model. A detailed description of the BO framework is provided in

Chapter 2.

4

1.2 Current State of Bayesian Optimization

Bayesian optimization was initially developed and formalized in the 1960s and 70s by

Kushner, Saltenis, and Mockus [25, 26, 27]. However, it was the rise of deep learning in

the last decade that propelled BO to its current status, as it proved to be an especially

effective method for tuning the various hyperparameters of complex machine learning

models [28]. Today, BO solutions exist for tackling complex problems in various fields

such as polymers, reaction engineering, and robotics [29, 30, 31]. Despite the success

that the algorithm has had, there still remain various significant challenges that need to

be addressed such as scalability, multi-objective optimization, constrained optimization,

transfer learning or the incorporation of domain knowledge (e.g., physics), and paral-

lelization [32, 33]. The methods presented in this work focus on addressing the last two

elements.

1.2.1 Existing strategies for incorporating physics knowledge in BO

While the hyperparameter tuning problems that popularized BO are akin to true black-

boxes, substantial domain knowledge is often available when dealing with physical sys-

tems (e.g., simplified physics models, simulations, empirical correlations, etc.). It stands

to reason that the algorithm can benefit from this knowledge, as it can provide insight

on coarse system trends and highlight potentially promising regions of the design space,

thereby reducing the number of samples required to locate a solution. Recent efforts

to exploit this type of system knowledge largely fall into two classes: multi-fidelity BO

(MFBO) and composite function BO.

MFBO initially runs BO on a low-level representation of the system that is cheaper

to sample. After the algorithm identifies the optimal regions of the design space using

this model, a higher fidelity model is used to continue the search within these regions

and further reduce the design space; this process continues until the real system is used

5

to obtain the final samples [34]. As a result, MFBO can significantly reduce the number

of times that the real system is queried since the search is restricted to a much smaller

space by the time the real system is used. This allows for a better use of the high-

fidelity sample budget as it reduces the probability that the selected points are highly sub-

optimal [35]. However, MFBO paradigms are quite complex as they require generating

and managing multiple surrogate models across the various fidelity levels and integrating

the information they provide. Additionally, determining the right level of fidelity as well

as the point at which to switch to a higher fidelity model often relies on trial-and-error

and expert knowledge [36]. These additional requirements can significantly increase the

computational overhead of the algorithm, thereby reducing the net benefit obtained from

using the low-fidelity models.

Composite function BO is a simple but powerful strategy that exploits system struc-

ture by representing f as a known composition of a vector-valued intermediate func-

tion, y(x) [37]. The intermediate function measures the value of various internal system

components that impact its performance (e.g., production rates, resource consumption,

product purities). The elements of the intermediate function can either be modeled using

closed-form representations (if available) or treated as black-boxes and estimated using

a surrogate model. Additionally, the model of any particular element, yi, can be defined

such that it only depends on a subset of the variables in x or utilizes some other element,

yj, as in input. As a result, composite function BO allows for a high degree of customiza-

tion in the construction of the intermediate function and the corresponding surrogate

models, which can be leveraged to significantly improve the performance of the algo-

rithm and increase its functionality[38]. While composite functions provide an intuitive

and effective manner for representing the system, the implementation of this approach

is not as straightforward. BO measures information value in the form of the prediction

uncertainty of the surrogate model. Because y(x) is not the performance metric being op-

timized, shifting the surrogate modeling focus to y(x) introduces complexities due to the

need to accurately propagate the uncertainty estimates from the intermediate predictions

6

to f . Existing composite function BO frameworks handle this issue by either numerically

estimating the probability density of f via sampling methods like Monte Carlo or by solv-

ing an auxiliary problem over an augmented space where the range of y is constrained

by set of upper and lower confidence bounds determined by the surrogate model [39, 40].

These approaches suffer from significant scalability issues as the problem size increases,

making them rather computationally inefficient.

1.2.2 Existing strategies for enabling parallelized BO

Standard Bayesian optimization (S-BO) is a sequential algorithm that only proposes one

new sample point at a time. A key strength of this features is that it enables a closed-loop

design strategy, where the selection of the next sample point is fully informed by previ-

ous results [32]. However, such an approach is incompatible with high-throughput exper-

iment (HTE) platforms (e.g., liquid-handling robots, parallel computing) that are capable

of running multiple experiments (querying from the system at several points) in tandem.

As these platforms have increasingly become more widely-available, the need to develop

algorithms capable of designing batches rather than sequences of experiments has moti-

vated the development of parallel BO strategies. Some of the more widely-used methods

that have been devised include batch Bayesian optimization (q-BO), fantasy sampling,

and Thompson sampling [41, 42, 43]. Because parallel BO presents several challenges,

such as maintaining the capability to consider exploration and exploitation, algorithm

efficiency, and potential asynchronicity considerations, the existing paradigms tend to be

rather complex. As a result, they can be difficult to implement and often introduce an

additional layer of hyperparameters that must be tuned[44, 45, 46]. Additionally, many

of these methods are limited in the degree of parallelization that they can achieve, may

lack mechanisms to prevent the suggestion of redundant experiments, and can encounter

scalability issues at high dimensions [47, 48].

7

1.3 Research Objectives

The overarching theme of this work is the development of a novel set of strategies for

harnessing available structural system knowledge, largely rooted in physics and sparse

system interconnectivity, in a BO setting to improve algorithm performance and enable

compatibility with HTE platforms. Our aim is to address the performance, scalability,

and complexity challenges observed in existing methods while also providing a set of

paradigms that are easy to implement and allow for a high level of user customization.

To accomplish this goal, we seek to achieve the following:

• Avoid the challenges associated with working with several models of varying fi-

delity levels by incorporating available system knowledge directly into the BO

framework via a single low-fidelity model.

• Harness knowledge of fundamental physical principles (e.g., mass and energy bal-

ances) along with sparse system interconnectivity and available white-box models

to better specify the elements of y in composite function BO and their dependencies.

• Leverage the customization of the intermediates in composite function BO to shift

the surrogate modeling task to a set of less complex and easier-to-learn variables.

• Reduce the computational cost of propagating the uncertainty estimates from y to

f in composite function BO.

• Provide the BO algorithm with parallelization capabilities by utilizing the level sets

of the performance function (which can be approximated with a low-fidelity model)

to decompose the design space into a set of unique partitions with no overlap (user-

defined or uniformly spaced) that can be explored individually and in parallel.

• Parallelize BO by exploiting the partially separable structure of the system, identi-

fied using system interconnectivity information or an available low-fidelity model

8

(or both), to split it into a set of modules that are optimized along a subset of the

total inputs separately and in tandem.

• Package the developed methods into open-source software tools, ensuring they are

readily usable in a variety of applications.

1.4 Dissertation Outline

This dissertation consists of two parts. Part I is composed of Chapters 2 through 4 which

deal with sequential BO and introduce two paradigms that enable the use of various

forms of available physical knowledge by the algorithm. Part II consists of Chapter 5

and focuses on the use of physics-based information to extend BO to the parallel setting.

Chapter 6 provides a summary of the key findings of this work and suggestions for future

research directions, concluding this dissertation. An outline of each chapter is included

below.

Chapter 2 presents the various elements of Bayesian optimization. We discuss how

Bayes’ Theorem is leveraged to construct a sequential sampling strategy that, when paired

with a goal-oriented decision making mechanism, leads to the BO paradigm. We formally

outline the standard Bayesian optimization (S-BO) framework, and highlight its two core

components: the surrogate model and the acquisition function. Next, an introduction to

Gaussian processes (GP), the most common surrogate model choice in BO, is provided

along with a brief overview on some outstanding research questions in the field of GPs.

This chapter then concludes with a discussion on acquisition functions (AFs), which serve

as the decision-making mechanism of the algorithm, and provides a summary of com-

monly used AFs.

Chapter 3 introduces the Reference-Based BO (Ref-BO) algorithm. Ref-BO incorpo-

rates physics knowledge via a low-fidelity representation of the system (which we refer

to as the reference model) that is directly integrated into the optimization framework,

eliminating the need to manage models of varying fidelity levels. This approach provides

9

the algorithm with a prior understanding of coarse system trends that enables faster

identification of a solution and results in a more robust performance. We demonstrate

the effectiveness of Ref-BO using a using a case study based on an MPC tuning problem

at a real-life HVAC plant.

Chapter 4 explores the incorporation of physics knowledge based on the connectiv-

ity of system components. This is accomplished by using a composite representation

of the performance function that is optimized using the Bayesian Optimization of Inter-

connected Systems (BOIS) algorithm, which we present in this chapter. This paradigm

facilitates the use of composite functions in a BO setting by employing an adaptive lin-

earization scheme that allows for the derivation of a set of closed-form expressions for the

mean and variance of f . Additionally, this framework allows for better specification of the

surrogate models, which improves their quality and facilitates training. We illustrate the

advantages that BOIS provides over S-BO and existing composite function BO algorithms

via case studies.

Chapter 5 leverages system knowledge to partition the design space and enable the

compatibility of Bayesian optimization with HTE platforms. This is accomplished via the

level-set BO (LS-BO) and variable-partitioning BO (VP-BO) algorithms, which are pre-

sented in this chapter. These algorithms expand the utility of the reference model by

using it generate system-specific partitions that enable a more efficient division of HTE

resources. LS-BO and VP-BO are straightforward to implement, can eliminate the occur-

rence of redundant sampling, and are capable of achieving high degrees of parallelization.

We use a reactor network case study to benchmark the effectiveness of these algorithms

against S-BO as well as other state-of-art parallel BO strategies.

Chapter 6 summarizes the key findings of this dissertation. We conclude with an

outline of potential future directions of research and discusses relevant work that can

be applied to or further motivates the continued development of the BO frameworks we

have presented.

10

Part I

I N C O R P O R AT I N G P H Y S I C S K N O W L E D G E

11

Chapter 2

B AY E S I A N O P T I M I Z AT I O N

Portions of this chapter are adapted with permission from González and Zavala from a

working paper with a preprint available at https://doi.org/10.48550/arXiv.2311.11254

In this chapter, we present the Bayesian optimization framework. We begin with a discus-

sion of Bayes’ Theorem, which is the central idea behind BO, and explain how this concept

is harnessed to develop an optimization strategy. We then provide a detailed overview

of the two key components of the algorithm: (i) the probabilistic surrogate model and

(ii) the acquisition function (AF). Our discussion of the surrogate model will focus on

the Gaussian process (GP), as this is the most commonly used surrogate in BO. Similarly,

while a wide array of AFs can be found in the literature, we will focus on the Probability

of Improvement (PI), Expected Improvement (EI), and Lower Confidence Bound (LCB)

functions, as these are the most common choices. Note that all of the results presented

in this work were obtained using the LCB AF. Despite the fact that the exact implementa-

tion of the algorithm can differ significantly between different BO paradigms, these key

elements are common across all variations of Bayesian optimization. Thus, the introduc-

tion to these concepts provided in this chapter is meant to facilitate the discussion of the

various methods presented in this work.

12

2.1 Formulation of Bayesian Optimization

Bayes’ Theorem calculates the conditional probability of an event happening given the

occurrence of a correlated event [49]. Consider an unknown performance function, f :

X → R, that is defined over some design space or domain, X ⊆ Rdx , Bayes’ Theorem can

be leveraged to estimate the value of f at some point of interest, x ∈ X, based on previous

observations, D, as follows:

p(f̂ |D) = p(D| f̂) · p(f̂)
p(D) (2.1)

Here, p(f̂) is referred to as the prior distribution and gives the probability that f (x) takes

on some value f̂ ; p(D) serves as a normalization factor that ensures the total probability

sums to 1. The likelihood function, p(D| f̂), measures the likelihood that the observations

in D would occur if f̂ were the true value of f (x). The posterior, p(f̂ |D), denotes the

updated belief in the function being equal to f̂ at x based on the data in D. Extending the

posterior across all potential outcomes of f (x) allows for the construction of a probability

distribution of function values. This distribution provides an estimate of the most proba-

ble outcome of sampling f at x, while also quantifying the uncertainty of this prediction.

Applying this method throughout the domain of f provides a distribution of function

approximations as shown in Figure 2.1.

Figure 2.1: Distribution of f (blue line) calculated from 5 data points with the most
likely outcome predicted shown in black and uncertainty estimates represented by the
surrounding grey envelope; samples drawn from the distribution are shown in red.

13

A powerful feature of Bayes’ Theorem is that it allows for recursive refinement of

the posterior as more information becomes available. This is done by updating p(f̂) to

p(f̂ |D) and using this new prior and an updated likelihood function to construct a new

posterior distribution. As a result, the estimates of f can be continuously improved with

additional data. By combining this capability with a decision-making mechanism that

selects a new sampling location based on the current prediction and uncertainty values,

it is possible to iteratively generate a sequence of datapoints that are used to refine the

posterior distribution, which is then used to choose a new sample point. This process is

known as Bayesian optimzation [50, 28].

Figure 2.2: Workflow of the S-BO framework. Using dataset Dℓ, S-BO builds a surrogate
model that estimates f . The performance and uncertainty estimates calculated by the
model are passed into an acquisition function that is optimized to suggest a new sampling
point xℓ+1. The system is sampled at this point and the collected data is appended to the
dataset to retrain the model.

The standard Bayesian optimization algorithm (S-BO) is initialized using a set of in-

put/output observations of size ℓ, Dℓ = {xK, fK}, where K = {1, ..., ℓ}. The posterior

distribution of f is constructed using a stochastic surrogate model, Mℓ
f , usually a Gaus-

sian process, that is conditioned on the data. The model prediction/performance and

uncertainty estimates (e.g., the mean and variance of the distribution respectively) are

then passed into what is known as an acquisition function (AF), which calculates the util-

14

ity of some point of interest based on its performance (exploitation) and informational

value (exploration). AFs can generally be expressed as functions of the form:

AF ℓ(x; κ) = α(E ℓ(x),U ℓ(x); κ) (2.2)

where E ℓ(x) and U ℓ(x) are the current performance and uncertainty estimates respec-

tively; κ ∈ R+ is a hyperparameter, commonly referred to as the exploration weight, that

determines the importance placed on the model uncertainty. Larger values of κ will make

the algorithm more explorative while smaller values result in more exploitative behavior.

Specific examples of α are provided in 2.3. The next sample point, xℓ+1, is determined by

solving the AF optimization problem:

xℓ+1 = argmin
x
AF ℓ(x; κ) (2.3a)

s.t. x ∈ X (2.3b)

After, taking a sample at xℓ+1, the dataset is updated and the model is retrained. This

process is repeated until a satisfactory solution is found or the data collection budget is

exhausted. The pseudocode for S-BO is presented in Algorithm 1 and Figure 2.2 provides

an illustrative summary of this workflow.

Algorithm 1: Standard Bayesian Optimization (S-BO)

Given κ, L, and Dℓ;
Train Mℓ

f using initial dataset Dℓ and obtain AF ℓ;
for ℓ = 1, 2, ..., L do

Compute xℓ+1 ← argminxAF
ℓ(x; κ) s.t. x ∈ X;

Sample system at xℓ+1 to obtain f ℓ+1;
Update dataset Dℓ+1 ← Dℓ ∪

{
xℓ+1, f ℓ+1};

Train model using Dℓ+1 to obtain Mℓ+1
f and AF ℓ+1;

end

15

2.2 The Gaussian Process

The Gaussian Process (GP) is a stochastic regression model that can be thought of as an

extension of the multi-variate normal distribution to the function space [51]. GPs are

non-parametric and are instead fully specified by a pair of mean and covariance (kernel)

functions:

GP f (x) ∼ N (m f (x), k f (x, x′)) (2.4)

Here, the mean function, m f (x), estimates the expected value of f at a point of interest

x. The kernel function, k f (x, x′), determines the similarity between any two points in the

domain of f and provides a measure of how the value of f (x) correlates with the value of

f (x′). There exists a wide variety of kernel functions, and selection is often motivated by

identifying a kernel that exhibits properties (e.g., smoothness, periodicity, continuity, etc.)

that can accurately approximate f . The Mátern kernel [52] has emerged as a common

default option due to its ability to model functions of any degree of smoothness (see

Figure 2.3). It is the kernel of choice throughout this work and is defined as:

k f
(

x, x′
)
=

1
Γ(ν)2ν−1

(√
2νd

(
x, x′

))ν
Kν

(√
2νd

(
x, x′

))
(2.5)

where Γ is the gamma function and Kν is a modified Bessel function. The smoothness

of the function is controlled by ν, which is usually set to either 1.5 (function is once-

differentiable), 2.5 (function is twice-differentiable) or ∞ (function is infinitely-differentiable);

note that in the latter case, the kernel may be referred to as the radial basis function (RBF)

kernel. The function d(·, ·) =
√
(x− x′)T Θ−2 (x− x′) is a scaled Euclidean distance func-

tion. Here Θ ∈ Rdx×dx is a diagonal matrix whose entries are the kernel length scales,

θ1, ..., θdx . The length scales are also referred to as the kernel hyperparemeters and deter-

mine the impact of each dimension of x on the model predictions.

In GP regression, a prior distribution of f of the form (2.4) is constructed by setting

m f (x) = 0 and initializing θ based on domain knowledge or hueristics. Using the obser-

16

Figure 2.3: Samples drawn from GPs trained on five datapoints using the Mátern kernel
at varying smoothness values

vations in Dℓ, the kernel hyperparameters are then updated by solving the log marginal

likelihood problem:

θ∗ = argmax
θ

−1
2

f T
KK(xK, xK)−1 fK −

1
2

log |K(xK, xK)| −
ℓ

2
log(2π) (2.6)

where θ = [θ1, ..., θdx]
T. The output data are assumed to follow a joint multivariate normal

distribution of the form f (xK) ∼ N (0, K(xK, xK)), where 0 ∈ Rℓ and K(xK, xK) ∈ Rℓ×ℓ

is calculated such that Kij = k f (xi, xj). By conditioning the prior on the observed data,

the posterior distribution, GP ℓ
f (which is also Gaussian), at a set of new points X can be

determined:  f (xK)

f (X)

 ∼ N
0,

K(xK, xK) K(xK,X)

K(X , xK) K(X ,X)


 (2.7)

From this result, the posterior mean and covariance can be calculated:

mℓ
f (X) = K(X , xK)TK(xK, xK)−1 fK (2.8a)

Σℓ
f (X) = K(X ,X)−K(X , xK)TK(xK, xK)−1K(xK,X) (2.8b)

The formulation presented above assumes that the observations in Dℓ are noise-free

(i.e., the system is perfectly observable). In practice, however, data is often corrupted by

17

noise, which can be modeled as f (x) = z(x) + ϵ, where z(x) is the true observation and

ϵ is a random error. If ϵ follows a normal distribution, N ∼ (0, σ2
ϵ), (2.7) can be modified

to account for the noise in the data: f (xK)

f (X)

 ∼ N
0,

K(xK, xK) + σ2
ϵ I K(xK,X)

K(X , xK) K(X ,X)


 (2.9)

The calculations of the posterior mean and covariance are then updated as follows:

mℓ
f (X) = K(X , xK)T [K(xK, xK) + σ2

ϵ I
]−1

fK (2.10a)

Σℓ
f (X) = K(X ,X)−K(X , xK)T [K(xK, xK) + σ2

ϵ I
]−1

K(xK,X) (2.10b)

Due to their non-parametric nature, GPs provide an incredibly flexible framework that

can be used to approximate a wide variety of functions. They also provide a straightfor-

ward and tractable approach to estimating model uncertainty, a feature which is of great

use in the context of BO. Due to the small number of hyperparameters that have to be

tuned compared to larger parametric models like neural networks, GPs are able to obtain

very accurate estimates of the underlying performance function using relatively few dat-

apoints. As a result, Gaussian processes have become the model of choice in applications

involving complex physical systems or rigorous simulations where the amount of data

that can be generated is limited [50].

Despite their utility, GPs have several limitations. For example, the flexibility in mod-

eling is accompanied by the need to ensure that the selected kernel is appropriate, which

often requires domain knowledge or the use of advanced model selection techniques [28].

Additionally, by assuming that f is normally distributed, a GP surrogate also assumes

that f is symmetric. In reality, the range of f can be bounded, especially when dealing

with physical quantities, making this assumption inaccurate. This can be especially prob-

lematic when dealing with points at are at or near the feasibility limit, as it can result in

the GP model making infeasible predictions.

18

In terms of computational efficiency, the calculations required to train and sample

from GPs are rather intensive. The inversion of the K seen in (2.6)(2.8), and (2.10) scales

on the order of O(ℓ3) and has a memory cost of O(ℓ2) [53]. This effectively limits the

size of datasets that can be used with GP models and can also make repetitive sampling

computationally expensive. GPs are also known to scale poorly at high dimensions of

x due to the increased distance between points sample points, which make it difficult

to determine any meaningful correlations [54]. As a result, most of the applications that

utilize Gaussian process surrogates have generally been limited to 20 or fewer dimensions.

Due to these challenges, GPs remain an active field of research and recent advance-

ments have produced several novel tools aimed at addressing these issues such as sparse

GPs, variational inference, warped GPs, and automatic relevance determination [55, 56,

57, 58]. Many of these methods, however, have their own set of challenges, such as re-

duced approximation accuracy, complex implementation, and limited availability of soft-

ware libraries when compared to the support available for standard GPs. While not the

central focus of this work, potential solutions for addressing some of the limitations of

standard GPs are presented as they become relevant in subsequent chapters.

2.3 Acquisition Functions

Acquisition functions serve as the decision-making mechanism of the BO algorithm. They

determine the value of sampling at a particular point based on the performance (exploita-

tion) and uncertainty (exploration) estimates calculated by the surrogate model (the mean

and variance when using a GP). This consideration of exploration as well as exploitation

is a key feature of BO. It is what allows the AF to direct the collection of samples across

various regions of the design space, making the algorithm more adept at locating the

global solution. As previously mentioned, these two elements are balanced via the explo-

ration weight, κ, which determines the emphasis placed on the model uncertainty. Lower

values of κ result in repeated exploitation of areas that have already been identified as

19

optimal, while larger values drive the algorithm to explore new regions that exhibit high

model uncertainty. Selection of a new sample point is done by optimizing the acquisition

function, as shown in (2.3), with the use of gradient-based methods. Due to their cen-

tral role in establishing the sampling strategy of the algorithm, efforts aimed at adding

functionalities to the BO algorithm or adapting it to a particular application have largely

centered around modifying existing AFs or crafting new ones [59, 60, 61]. Many of these

functions are either derived from or modeled after three foundational acquisition func-

tions: the probability of improvement (PI), the expected improvement (EI), and the lower

confidence bound (LCB) functions.

Probability of improvement

The probability of improvement function was one of the first AFs developed for BO, it

was introduced alongside Algorithm 1 by Harold Kushner [25]. PI simply measures the

probability that sampling from some point x results in an improvement from the current

best observed value, f ∗. Mathematically, this AF can be expressed as

AF ℓ
PI(x; κ) = −P(f (x) ≤ f ∗) (2.11)

Recalling that f (x) is distributed according to f (x) ∼ N (mℓ
f (x), (σℓ

f (x))2) when a GP

surrogate model is used, the following substitution can be made:

z(x) =
f (x)−mℓ

f (x)

σℓ
f (x)

(2.12)

where z(x) ∼ N (0, 1). Applying this substitution to (2.11), results in:

AF ℓ
PI(x; κ) = −P

(
z(x) ≤

f ∗ −mℓ
f (x)

σℓ
f (x)

)
(2.13)

20

Because z a normal random variable, (2.13) can be calculated using the normal cumulative

distribution function, Φ, resulting in the following definition for the PI AF:

AF ℓ
PI(x; κ) = −Φ

(
f ∗ −mℓ

f (x)− κ

σℓ
f (x)

)
(2.14)

where κ is included to promote exploration by essentially increasing the threshold for

what is considered an improvement. This pushes the AF to prioritize points with larger

improvements, even when they have higher uncertainty. Note that the negative sign in

front of the expression is included to ensure consistency as the AF is minimized to select a

new sample point.

Figure 2.4: Snapshots of the current surrogate model (top) and the PI AF (bottom) at
ℓ = 0, 5, 10, and 15 with κ = 0.01. The mean is shown in blue and the uncertainty
estimates are represented by the surrounding light blue envelope; seed points are shown
in white and the optimum of the PI AF is marked by the red star. Note that the algorithm
spends nearly 10 iterations exploring the region near the best seed point

The PI acquisition function is an intuitive method for selecting new sample points: it

assigns more value to points that have a high probability of improving the current result.

When a GP surrogate is used, it is easy to implement and computationally inexpensive.

Additionally, the function is smooth and its analytical gradient can be computed, which

can be leveraged to facilitate the calculation of (2.3). However, this AF also exhibits

21

various significant drawbacks that have limited its use. The function can be multi-modal

(see Figure 2.4), and can be quite flat in certain regions of the design space. This makes

the function especially sensitive to the initialization point, and multi-start strategies are

required to ensure that the global solution is found. Numerical instability can become an

issue when the value of σℓ
f (x) << 1, and it might be necessary to add a small constant to

the denominator to ensure that the solver is able to converge.

The inability to consider the magnitude of a potential improvement makes the PI AF

prone to sampling from points with a high probability of a low improvement as opposed

to those with lower probability of a high improvement. This causes the algorithm to heav-

ily over-exploit the area near f ∗ (see Figure 2.4), significantly increasing the probability

that regions where a better solution could potentially exist are left unexplored [62]. While

κ is intended to ameliorate this issue, due to the formulation of the AF, it can be difficult

to tune and the function is quite sensitive to the selected value. As a result, it can be quite

easy to make the algorithm overly-exploitative or overly-explorative.

Expected improvement

The expected improvement function was first introduced in [26] as a means for consid-

ering the amount of potential improvement when selecting a new point. The work of

Jones [63] and Schonlau [41] popularized the use of the EI, and it is currently the most

widely studied AF and the one most closely associated with BO. As its name suggests,

the function measures the expectation of improvement where improvement is defined as:

I(x) = min{ f (x)− f ∗, 0} (2.15)

The EI AF is then:

AF ℓ
EI(x; κ) = E[I(x)] (2.16)

22

When a GP surrogate model is used, f can be expressed in terms of a standard normal

variable, z(x) ∼ N (0, 1):

f (x) = mℓ
f (x) + σℓ

f (x) · z (2.17)

Applying this substitution and using the fact that (2.15) is nonzero only when z <
f ∗−mℓ

f (x)

σℓ
f (x)

, (2.16) can be expressed as:

AF ℓ
EI(x; κ) =

∫ z0

−∞
(mℓ

f (x) + σℓ
f (x) · z− f ∗)ϕ(z)dz (2.18)

where ϕ is the normal probability density function and z0 =
f ∗−mℓ

f (x)

σℓ
f (x)

. This integral can

be rearranged as follows:

AF ℓ
EI(x; κ) = (mℓ

f (x)− f ∗)
∫ z0

−∞
ϕ(z)dz + σℓ

f (x)
∫ z0

−∞
zϕ(z)dz (2.19)

Using the properties of the normal distribution, this can be evaluated as:

AF ℓ
EI(x; κ) = −(f ∗ −mℓ

f (x)− κ)Φ

(
f ∗ −mℓ

f (x)− κ

σℓ
f (x)

)
− σℓ

f (x)ϕ

(
f ∗ −mℓ

f (x)− κ

σℓ
f (x)

)
(2.20)

where, as with the PI AF, κ is included to promote exploration by increasing the threshold

for what is considered an improvement. Note that in the limiting case when σℓ
f (x) → 0

(i.e., at a sampled point), AF ℓ
EI(x; κ) → 0 as Φ tends to 0 as its argument approaches

−∞ and ϕ will similarly approach 0. This is the expected behavior as there is not an

obtainable improvement from re-sampling at an already explored point.

As with the PI AF, the expected improvement is also smooth and has a gradient

that can be determined analytically (when a GP surrogate is used). These are properties

which, again, can be exploited during the optimization of the AF. Unlike the PI, however,

the EI function explicitly rewards sampling at locations where the uncertainty is high.

This results in a significantly more balanced sampling pattern where high uncertainty

regions are more likely to be explored, especially if the potential improvement is high. As

23

Figure 2.5: Snapshots of the current surrogate model (top) and the EI AF (bottom) at
ℓ = 0, 5, 10, and 15 with κ = 0.01. The mean is shown in blue and the uncertainty
estimates are represented by the surrounding light blue envelope; seed points are shown
in white and the optimum of the EI AF is marked by the red star. Note that range of the
EI function quickly decreases after the two optima have been located, resulting in more
exploratory sampling at later iterations

a result, this function is generally able to outperform the PI AF as shown in Figure 2.5.

Use of the expected improvement is also arguably more intuitive than simply relying on

the probability of improvement. Repeatedly sampling in the same region even if there is

a high chance of improvement can quickly lead to diminishing returns. Moving, instead,

to sample from an area with potentially high reward, even if the risk (uncertainty) is

also high, can result in either a potentially substantial improvement or provide strong

confirmation that the current best observed point is the optimal solution. This is arguably

a better use of the sample budget.

While the EI AF is able to outperform the PI AF, is also shares various structural

features that can result in it encountering similar issues. For example, the function is

also highly multi-modal and can be quite flat along large portions of the design space,

meaning that it is also quite sensitive to the initialization point. Additionally, numerical

stability can again become an issue in the cases where σℓ
f (x) is very small. The EI AF

exhibits a similar sensitivity to the value of κ as the PI, meaning that it can likewise be

challenging to tune this parameter. The range of the expected improvement function also

24

decreases as the algorithm progresses, albeit at a much faster rate compared to the proba-

bility of improvement AF. This can cause the EI AF to adopt an overly-explorative strategy

as the values of potential improvements drop and the uncertainty starts to become the

primary driver for sample point selection. Figure 2.5 provides a clear illustration of this

issue: the majority of observations away from the global solution are collected after it has

already been identified. This is done despite the fact that, as seen in the panel for ℓ = 5

of the same figure, there does not appear to be a significant probability that sampling at

these points will result in an improvement from the current f ∗. However, it can clearly

be observed that the selected points are those where the uncertainty is the highest. In

addition to resulting in a rather inefficient use of samples, this behavior is also counter-

intuitive, as one would expect the bulk of the exploration-oriented sampling to be done

during the initial iterates to build the surrogate model.

Lower confidence bound

The lower confidence bound function was also introduced by Kushner alongside the PI

AF [25]. Unlike the EI and PI functions, the LCB AF deals with the performance and

uncertainty estimates directly and can generally be expressed as:

AF ℓ
LCB(x; κ) = E ℓ(x)− κU ℓ(x) (2.21)

In the case where a GP surrogate is used then E ℓ(x) = mℓ
f (x) and U ℓ(x) = σℓ

f (x). This

allows for (2.21) to be reformulated as:

AF ℓ
LCB(x; κ) = mℓ

f (x)− κσℓ
f (x) (2.22)

which is commonly referred to as the GP-LCB [64]. This function can be interpreted to

represent a quantile, specified by κ, of the estimated normal distribution of f (x). For ex-

ample, when κ = 1.96, the value of AF ℓ
LCB(x; κ) is value that is estimated to be better than

all but 2.5% of the potential outcomes of f (x), in other words Pr(f (x) < AF ℓ
LCB(x; κ =

25

1.96)) = 0.025. This allows for the selection of the exploration weight to be significantly

more grounded in theory and statistical principles when compared to the PI and EI func-

tions, which often rely on heuristics or empirical methods for tuning κ. Additionally, the

more direct impact of the exploration weight on AF ℓ
LCB(x; κ) facilitates dynamic tuning

where κ is adjusted as the optimization routine progresses [64]. This is due to the fact

gradual changes in this parameter will not drastically affect the behavior of the acquisition

function, which is not always the case when adjusting κ in the EI and PI AFs.

Figure 2.6: Snapshots of the current surrogate model (top) and the LCB AF (bottom) at
ℓ = 0, 5, 10, and 15 with κ = 4.5. The mean is shown in blue and the uncertainty estimates
are represented by the surrounding light blue envelope; seed points are shown in white
and the optimum of the LCB AF is marked by the red star. Note that, while the function
is multi-modal, it lacks the flat regions observed in the PI and EI AFs and begins to follow
the trend of mℓ

f (x) toward the final samples

In addition to its straightforward form and intuitive interpretation, the LCB AF offers

various notable advantages over the probability of improvement and expected improve-

ment acquisition functions. While this work focuses on the use of GP models, (2.21) can

easily extend to various different classes of surrogates and make use of different perfor-

mance and uncertainty metrics, whereas closed-form expressions for EI and PI functions

can be difficult to derive for non-GP surrogates. As a result, the function is more flex-

ible and it is easier to modify. Additionally, while the function is also multi-modal, it

lacks the flat regions observed in the EI and PI AFs. In fact, range of the LCB AF does

26

not diminish and instead gradually begins to approximate the mean of the generated

surrogate model. This results in the function promoting exploration during the initial

iterations before eventually settling into the region around the located solution as shown

in Figure 2.6. Finally, existing works have established guidelines for setting and adjusting

the value of κ that guarantee convergence to a global optimum given enough iterations

when using the lower confidence bound function [64, 65]. While the properties of the EI

AF have also been widely studied, similar theoretical convergence guarantees have not

yet been established [66]. This set of benefits motivated our selection of the LCB function

as the acquisition function of choice for our work. Note that references to the acquisition

function and the use of AF ℓ(x; κ) in subsequent chapters refer to the LCB function unless

stated otherwise.

2.4 Summary

In this chapter we provided a tutorial introduction to the Baysian optimization frame-

work. We began by discussing how BO is formulated from Bayes’ Theorem through

sequential data-driven updates of a prior distribution and likelihood function. We pro-

vided a detailed overview of Guassian processes, the most commonly used BO surrogate,

and explained how they are constructed from kernel functions and updated using current

data. We highlighted some of the advantages of using GP models, namely their flexibility

and accuracy, and discussed some of their limitations, including scalability, prediction

feasibility, and model tuning. This was followed by the introduction of the acquisition

function. Here, we presented the three major acquisition functions that are generally used

in Bayesian optimization, including their formulation for the GP surrogate, and discussed

their strengths and drawbacks. This chapter introduces the core elements of the work that

is presented in subsequent chapters, facilitating its introduction and discussion.

27

Chapter 3

B AY E S I A N O P T I M I Z AT I O N W I T H R E F E R E N C E M O D E L S

This chapter is adapted with permission from Lu, González, Kumar, and Zavala. Com-

puters and Chemical Engineering 154 (2021): 107491. Copyright 2021 Elsvier.

3.1 Introduction

Model predictive control (MPC) is widely used in industrial systems due to its ability

to handle diverse types of constraints, multivariable models, and operational objectives.

The performance of MPC depends strongly on the controller formulation. Examples of

typical tuning parameters that influence performance include the prediction and control

horizon, weights of individual states or cost objectives, input rate constraints, and con-

straint back-off terms [67, 68]. Complex and non-intuitive dependencies are typically

observed between the tuning parameters of the MPC controller and its closed-loop per-

formance. As such, conducting MPC tuning by trial-and-error or by heuristics might

require a significant number of closed-loop simulations. This poses a problem because a

single closed-loop simulation might require the solution of hundreds to thousands of op-

timization problems. For instance, one is often interested in evaluating the performance

of MPC over an entire year of operation and/or over different operational scenarios.

Self-tuning methods cast the MPC tuning problem as an optimization problem in

28

which the tuning parameters are used to maximize the closed-loop performance. How-

ever, in general, neither an explicit model relating the effects of tuning parameters to the

closed-loop performance nor derivative information are available [11]. Thus, derivative-

free methods that treat the optimization problem as a black-box have been utilized to

address the problem [69]. Simple algorithms studied include sampling- or direct search-

based approaches [70]; other algorithms such as genetic algorithms and particle swarm

optimization have also been previously proposed. Well-known issues encountered with

these techniques include slow progress (requiring many simulations) and lack of con-

vergence guarantees. Moreover, these approaches are sensitive to the initial guess. An

excellent review of MPC tuning methods can be found in [71]. Recently, more efficient

derivative-free algorithms have been used for tuning MPC controllers [72].

Bayesian optimization (BO) is a powerful technique for optimizing computationally-

intensive black-box functions [69]. BO has been widely used for hyper-parameter tuning

of deep learning models [73], for design of experiments [74], and for conducting reinforce-

ment learning tasks [75]. BO can also be adapted to accommodate a mixture of continuous

and discrete decision variables [69] and has been shown to be effective at reducing the

number of objective function evaluations [73]. In BO, probabilistic surrogate models (e.g.,

kriging models) are built from the function evaluation data, and these models can ap-

proximate the behavior of the actual objective function [25]. Specifically, the surrogate

model provides information over both the predicted function value (via the posterior

mean) and the associated prediction uncertainty (via the posterior variance). Subsequent

sampling points are selected by satisfying the exploration and exploitation trade-off [76].

Exploration aims to evaluate the objective at points in the decision space with the goal of

improving the accuracy of the surrogate model of the objective, while exploitation aims

to use the surrogate model to identify decisions that minimize (or maximize) the objective

function.

Black-box optimization methods such as BO are built specifically to handle problems

that lack a model. As such, they traditionally do not incorporate any preexisting sys-

29

tem information and rely solely on data. However, many systems do have information

available (of different forms) that could potentially be useful for improving the optimiza-

tion process. Recent work has shown that leveraging this prior knowledge can improve

the performance of BO. The most commonly used approach for this integration has been

multi-fidelity BO (MFBO). MFBO explores X using a low-fidelity representation of f (x) to

identify promising regions and then searches through this reduced space using a higher

fidelity model. This process is repeated iteratively, allowing the algorithm to gradually

zero in on an optimal region and reducing the number of experiments that have to be

performed with the real system [77, 78, 79]. The end result is a more efficient use of

the high-fidelity sample budget, as suboptimal points are unlikely to be selected at these

levels. However, the implementation of this paradigm is quite complex, as it requires

integrating the information provided by the surrogate models generated at each fidelity

level. Obtaining the models at the various fidelities and ensuring that they provide the

right balance of information and computational efficiency can also be difficult. Addition-

ally, by restricting the search space, there is a risk that the region containing the global

solution could be missed due to model error.

Reference (prior) models, low-fidelity representations able to capture general system

trends, provide a more straightforward approach for incorporating available informa-

tion. By using this initial approximation, an algorithm can identify potential areas of

interest from the beginning, thereby reducing the number of iterations (and simulations)

required for convergence. Additionally, most systems must obey specified constraints.

Without a system model, it is unrealistic to know if these constraints will be satisfied

prior to evaluating the function. However, a reference model can approximate regions

where constraint violations might occur, keeping the algorithm from needlessly explor-

ing these areas [80, 81, 82]. The use of reference models has been shown to improve the

performance of optimization algorithms in various applications, including process simu-

lation and design [83], oil-field operations [84], petroleum extraction [85], and aerospace

design [86]. Recent studies also indicate that the incorporation of prior knowledge in the

30

form of a reference model can enhance the performance of machine learning (neural net)

models. For example, neural nets have been trained to solve partial differential equations

while being provided with prior information from a reference model on the physical

laws that the solutions must obey [87]. Other examples include the design of experiments

where prior expert knowledge is supplied [88], the integration of mechanistic models

with BO-inspired methods for cell engineering [89], and the combination of simplified

physics models with Bayesian analysis to correct systematic bias [90]. Note that, unlike

in MFBO, when a reference model is used, it is not modified after it has been loaded into

the algorithm. Additionally, the algorithm always samples from the real system and does

not use the low-fidelity representation to restrict sampling to any one region of the design

space.

In this chapter, we study the use of reference models in BO for tuning MPC controllers.

Our work is motivated by a real MPC application to central HVAC plants. The operating

cost of HVAC plants is strongly affected by disturbances that cannot be forecasted per-

fectly (demands of electrical power and hot and cold water). Errors in disturbance fore-

casts result in frequent constraint violations of storage levels (overfilling or drying-up)

that ultimately translate into decreased economic performance. Adding back-off terms

to the storage levels has been shown to provide an effective strategy to deal with these

issues [1]. This approach resembles constraint back-off approaches recently explored in

the MPC literature [91]. Unfortunately, tuning these back-off terms requires extensive

simulations; every year-long closed-loop simulation requires solving over 8,700 optimiza-

tion problems and is time-consuming (a single simulation requires 2 hours of wall-clock

time). BO approaches have recently been used for tuning MPC [92, 93, 94] and other

control architectures [95, 96] and for performing goal-oriented learning of dynamical sys-

tems [97, 98]. To fully utilize the prior knowledge (or data) of the system, we propose

incorporating a reference model into the standard BO algorithm, so as to accelerate the

optimization speed and reduce the computational complexity. A unique feature of our

work is the way in which we construct the reference model. Specifically, we build such a

31

model by using data collected from low-fidelity, closed-loop MPC simulations (use a for-

mulation with a short prediction horizon). Our results indicate that BO with a reference

model can find optimal back-off terms in 3 iterations with a reference model (20 hours

including the time of training a reference model). For comparison, standard BO requires

14 iterations (28 hours); thus, our approach reduces the search time by 28%.

Our work also seeks to provide insights into why the use of reference models aids the

BO search. We show that, by using a reference model, the BO algorithm goal is shifted

from learning the objective function to learning the residual/error model between the

reference model and the objective function (which is a much easier task). We also show

that the use of a reference model focuses the BO search to small regions of the parameter

space. Our results highlight that there exist multiple ways in which reference models

can be incorporated. Most studies tend to incorporate reference models that arise from

physics; here, we show that any type of approximate model can be used. In our context,

using a low-fidelity MPC formulation provides a highly accurate reference model because

this preserves the overall structure of the objective function (obtained with a high-fidelity

MPC formulation). In other words, our approach can be seen as a coarsening strategy and

this can be broadly applicable to other problem classes (e.g., by coarsening discretization

meshes).

3.2 Bayesian Optimization with Reference Models

Incorporating a reference model to the BO algorithm provides an approach for introduc-

ing preexisting (prior) knowledge about the system into the search process. Specifically,

the use of a reference model allows the algorithm to be initialized with an approximation

of the objective. This has the effect of highlighting promising regions in which the solu-

tion might be located. BO can then focus sampling in these regions from the start and not

spend unnecessary (expensive) simulations building up a surrogate model from scratch.

Additionally, a reference model that is nonconvex can push the algorithm to explore var-

32

ious local minima, potentially improving the quality of the solution. The reference model

can be obtained through various means; traditional approaches use physics-based models

or simple empirical correlations. In the context of MPC, we show that one can construct

a high-quality reference model by using a simple coarsening technique that simplifies the

MPC formulation by reducing the prediction horizon. We will see that this provides a

reference model that captures the overall structure of the objective function.

We have selected to incorporate the reference model by having the BO algorithm learn

the model error instead of learning the objective function directly. To this end, (1.1) can

be reformulated as:

min
x

g(x) + ε(x) (3.1a)

s.t. x ∈ X (3.1b)

where g(·) is the reference model and ε(·) = f (·)− g(·) is the residual or error model.

The reference model is deterministic and less expensive to evaluate compared to the

true objective function f (·). During the BO optimization routine, the reference model is

fixed and unaffected by new data collected by the algorithm. The form of the residual

model ε is not known (because f is not known), and thus a surrogate needs to be built

from experimental data. Given a set of data Dℓ
ε = {xK, εK}, K = {1, ..., ℓ}, with εK =

{ f (xK)− g(xK)}, we construct a GP model for the residual, GP ℓ
ε . The prediction of the

residual at a new point x is then a Gaussian distribution with:

mℓ
ε(x) = K(x, xK)TK(xK, xK)−1εK (3.2a)

σℓ
ε (x) = K(x, x)−K(x, xK)TK(xK, xK)−1K(xK, x) (3.2b)

Recall that the GP prior is distributed according to N (0, kε(x, x′). If we assume that

the reference model matches the objective in unsampled regions, then having an error

model that is drawn from this distribution is significantly more reasonable than using it

33

to estimate the objective function.

Because g(x) is assumed to be deterministic, it can be said to be drawn fromN (g(x), 0).

Recall that f (·) = g(·) + ε(·) and thus, for some x, we can estimate the probability density

of f as follows:

g(x) + ε(x) ∼ N (g(x), 0) +N (mℓ
ε(x), (σℓ

ε (x))2) (3.3a)

N (g(x), 0) +N (mℓ
ε(x), (σℓ

ε (x))2) = N (g(x) + mℓ
ε(x), (σℓ

ε (x))2) (3.3b)

f (x) ∼ N (g(x) + mℓ
ε(x), (σℓ

ε (x))2) (3.3c)

Note that the LCB AF presented in equation (2.22) is expressed in terms of the objective

function. Our previous derivations indicate that, when a reference model is used, we

need to modify the acquisition function as:

AF ℓ
ε(x; κ) = (g(x) + mℓ

ε(x))− κσℓ
ε (x) (3.4)

Algorithm 2 summarizes the framework for our proposed method. Overall, this is similar

to the BO framework presented in Algorithm 1 with the following exceptions: every

iteration requires the calculation of three quantities rather than one; the surrogate model

is trained on the residuals rather than the performance function; and the modified AF in

(3.4) is utilized for finding the subsequent sampling point.

Algorithm 2: Reference-Based Bayesian Optimization (Ref-BO)

Given reference model g, κ, L, and Dℓ
ε ;

Train GP GP ℓ
ε using Dℓ

ε and obtain AF ℓ
ε ;

for ℓ = 1, 2, ..., L do
Compute xℓ+1 ← argminxAF

ℓ
ε(x; κ) s.t. x ∈ X;

Sample system at xℓ+1 to obtain f ℓ+1 and residual εℓ+1;
Update dataset Dℓ+1

ε ← Dℓ
ε ∪
{

xℓ+1, εℓ+1};
Train GP using Dℓ+1

ε to obtain GP ℓ+1
ε and AF ℓ+1

ε ;
end

Remark 1. In general, the computational complexity of Algorithm 2 is less than Al-

34

Figure 3.1: Left column: Reference model incorporated into the BO algorithm (top) and
its residual function ε(·) (bottom); Middle column: Results of Bayesian optimization (top)
with a reference model g(·) and evaluated function values (bottom) over 15 iteration
showing the convergence. Right column: Results of traditional Bayesian optimization
(top) and evaluated function values (bottom) over 15 iterations showing the convergence.
Green dashed line: true objective function; Red line: posterior mean of GP model; Blue
shaded area: posterior variance of GP model.

gorithm 1 for the following reasons. First, for Algorithm 1, S-BO requires quite a few

exploration steps at the beginning to learn the general shape of the black-box function

before it dives into exploiting local regions to find the optimum. In contrast, Algorithm

2, is able to leverage the information contained in g(x) to identify and sample from po-

tentially promising regions from the start, even as it develops the initial Gaussian process

model for the residual during the first few iterations. In this way, the presence of the ref-

erence model reduces the computational time of BO by cutting back the required number

of iterations. Second, the computational complexity for establishing the reference model

is not a bottleneck. If a rough physics model is available, we can directly use it as the ref-

erence model. Otherwise, we can simply perform low-fidelity simulations without much

computational cost to construct a coarse model to serve as g(x). Thus, the additional ef-

fort required to obtain the reference model is not significant enough to negate the benefits

it provides to the BO algorithm. As a result, the total computational time of our method

shall be less than that of the standard BO approach.

35

Remark 2. The differences between our developed Algorithm 2 and standard GP-

based BO are the following. The GP model is with respect to the residual function,

ε(·), instead of the original function. However, the involved procedures for deriving the

posterior distribution of ε follows those of standard GP modeling. Moreover, for our

approach, constructing the AF is not based on the posterior distribution of the GP model

of the error function, ε. Instead, it is based on the posterior distribution of the original

function, f , as shown in (3.3). In addition, as the reference model is obtained explicitly

in advance, the evaluations of the acquisition function at x can be easily acquired. Thus,

traditional nonlinear optimization techniques used for solving (2.3) in S-BO, such as L-

BFGS and DIRECT, can be implemented as well for optimizing (3.4).

Figure 3.1 demonstrates the benefits of applying BO with reference models using a

simple example. The objective function and the reference model are given by:

f (x) = x6 − 3x5 + 8x2 (3.5a)

g(x) = −4.94x3 + 8.90x2 + 1.93x− 0.09 (3.5b)

where g(·) was obtained by performing a linear regression using 5 random sample points,

with the lowest order polynomial that yields an acceptable fit. Algorithms 1 and 2 were

then implemented in Python 3.7 using Scikit-learn’s gaussian_process module to con-

struct the surrogate models and the AF was minimized using the L-BFGS-B method; both

algorithms were initialized with the same random seed. Figure 3.1 illustrates that after 5

iterations, Algorithm 2 identifies and converges to the solution. Algorithm 1 approaches

the solution slowly, sampling extensively along the way and taking 11 iterations to con-

verge. Note also that the shape of ε(·) is much simpler than the shape of the objective

(shown in the green dashed line). As a result, it is easier to learn the residual function

ε(·) than the objective function f (·). This implies that Algorithm 2 is able to learn the

residual model using fewer samples than Algorithm 1 requires for learning the objective.

36

3.3 Case Study: MPC Tuning for HVAC Plants

Thermal energy storage (TES) for chilled/hot water is used to shift energy loads of an

HVAC plant to off-peak hours in order to reduce electricity costs and to mitigate peak

demands [99]. Energy demands and prices are difficult to forecast and errors often result

in violations of TES capacity limits (overfilling or drying up of water tanks). A strategy

to mitigate these violations consists of using a reserved buffer (by adding a back-off

term to the storage constraints). Typically, these back-off terms are selected by manual

search, which requires repeated simulations of the closed-loop system. This approach

is time-consuming as it involves year-long simulations. In this case study, we leverage

the MPC formulation proposed in [1] and build a BO framework for tuning TES back-

off terms. A reference model is introduced to BO to facilitate the optimization. In the

HVAC plant, a chiller subplant produces chilled water and a heat recovery (HR) chiller

subplant produces both chilled and hot water; a hot water generator produces hot water;

cooling towers are used to decrease the temperature of water purchased from the market;

a dump heat exchanger (dump HX) rejects heat from the hot water; and storage tanks (one

for chilled water and one for hot water) are used as the TES. The MPC controller seeks

to determine hourly operating loads for each unit in such a way that the HVAC plant

satisfies the demands of chilled and hot water from multiple buildings of a university

campus. The objective of the MPC is to minimize the total cost of the utilities (electricity,

water, and natural gas) purchased from the market. Electricity is charged based on time-

varying prices, while water and natural gas usage are charged at constant prices.

The HVAC plant cost includes the following items: (i) electricity required for the

equipment operation and charged based on hourly time-varying prices, πe
t , (ii) water

required to make up for evaporative losses of water in the cooling towers and purchased

at a fixed price πw
t = $0.009/gal, (iii) natural gas required for the operation of the hot

water generator to satisfy the campus heating load and purchased at a fixed price of π
ng
t

= $0.018/kWh, and (iv) the peak electrical demand charges for each month charged at a

37

high rate of πD = $4.5/kW.

Electricity

Water

Natural Gas

Condenser
Water

Chiller
Subplant

HR Chiller
Subplant

Hot Water
Generator

Hot Water

Hot
Water

Storage

Chilled
Water

Chilled
Water

Storage

Cooling
Towers

Chilled Water Load

Hot Water Load

Dump HX

Natural Gas Utility

Water Utility

Electric Utility

Campus
Electrical

Load

Figure 3.2: Schematic energy flow diagram of central HVAC plant (reproduced with
permission) [1].

Figure 3.2 shows the energy flows between all units of the HVAC plant and interac-

tions with loads and utilities. As illustrated in Figure 3.2, the amounts of electricity, water,

and natural gas consumed by the units depend on their operating loads. The chiller and

HR chiller subplants use αe
cs and αe

hrc kW of electricity for the production of 1 kW of

chilled water, respectively; the hot water generator requires αe
hwg kW of electricity and

α
ng
hwg kW of natural gas for the production of 1 kW of hot water; and the cooling towers

require αe
ct kW of electricity and αw

ct utility water for 1 kW of condenser water input. For

38

the chilled water load of the campus (Lcw
t), chilled water is produced by the chiller (Pcs,t),

the HR chiller subplants (Phrc,t), and the discharge from chilled water storage (Pcw,t). For

the hot water load of the campus (Lhw
t), hot water is produced by the HR chiller subplant

(αh
hrcPhrc,t), the hot water generator (Phwg,t), and the discharge from the hot water storage

(Phw,t). The excess hot water (Phx,t) in the system is recycled by cooling it and producing

condenser water in the dump HX, and the cooling towers use evaporative cooling to re-

duce the temperature of this condenser water along with the condenser water produced

by the chiller and the HR chiller subplants (total Pct,t condenser water).

In the MPC formulation, the operating loads of all units of the HVAC plant are the

manipulated variables, while the states include the state of charge (SOC) of the chilled

water and hot water storage tanks (TES) and carryover quantities (e.g., peak electrical

demand, unmet or overmet production of chilled/hot water). Multiple time-varying dis-

turbances are present in this system; these include the campus electrical load (Le
t), chilled

water load (Lcw
t), hot water load (Lhw

t), and electricity prices (πe
t). The MPC uses forecasts

for these disturbances over a prediction horizon T to determine the control action for the

next immediate hour. The horizon is shifted by one hour to update disturbance forecasts

and to obtain the next control action. This procedure is repeated for an entire year to

obtain the closed-loop policy and associated cost. The optimization problem solved at

each time t is:

39

min ∑
k∈T

∑
j={e,w,ng}

π̂
j
krj

k +
πD

σt
Rt+1

+ ∑
k∈T

∑
j∈{cw,hw}

ρj(ulj,k + olj,k). (3.6a)

s.t. re
k = ∑

j∈{cs,hrc,hwg,ct}
αe

j Pj,k + L̂e
k, k ∈ T (3.6b)

rj
k = α

j
ij

Pij,k, j ∈ {w, ng}, k ∈ T , iw = ct, ing = hwg (3.6c)

Pct,k = αcond
cs Pcs,k + Phx,k, k ∈ T (3.6d)

Pcs,k + Phrc,k + Pcw,k + Sun
cw,k − Sov

cw,k = L̂cw
k , k ∈ T (3.6e)

αh
hrcPhrc,k + Phwg,k − Phx,k + Phw,k

+ Sun
hw,k − Sov

hw,k = L̂hw
k , k ∈ T (3.6f)

Ej,k+1 = Ej,k − Pj,k, j ∈ {cw, hw}, k ∈ T (3.6g)

ulj,k+1 = ulj,k − Sun
j,k , j ∈ {cw, hw}, k ∈ T (3.6h)

olj,k+1 = olj,k − Sov
j,k, m ∈ {un, ov}, j ∈ {cw, hw}, k ∈ T (3.6i)

Rt+1 ≥ re
k (3.6j)

Rt+1 ≥ Rt (3.6k)

Ej,k ≤ Ej,k ≤ Ej,k, j ∈ {cw, hw}, k ∈ T (3.6l)

Pj ≤ Pj,k ≤ Pj, j ∈ {cs, hrc, hwg, ct, hx, cw, hw}, k ∈ T (3.6m)

Sm
j,k ≥ 0, m ∈ {un, ov}, j ∈ {cw, hw}, k ∈ T (3.6n)

ulj,k ≥ 0, j ∈ {cw, hw}, k ∈ T (3.6o)

olj,k ≥ 0, j ∈ {cw, hw}, k ∈ T (3.6p)

Here, the residual demands of electricity, water, and natural gas that need to be pur-

chased from the market are given by the constraints (3.6b)-(3.6c). Constraints (3.6d)-(3.6f)

are the energy balance equations for the condenser water. The sufficient chilled and hot

water production is maintained by imposing constraints (3.6e) and (3.6f). For maintaining

40

feasibility in case of under-production or over-production of chilled water or hot water,

the slack variables Sun
j,k and Sov

j,k, j ∈ {cw, hw} are added in the constraints (3.6e) and (3.6f).

The state variables ulj,k and olj,k, j ∈ {cw, hw} carry over the under-production or over-

production (slack variables) of chilled and hot water in constraints (3.6h) and (3.6i) and

these state variables are penalized in the objective function. The dynamics of the SOC for

chilled and hot water TES are given by constraints (3.6g). Constraint (3.6j) computes the

peak demand over the horizon and constraint (3.6k) carries over the peak demand to the

next time step in the closed-loop.

The actual realizations of the loads (disturbances) might induce constraint violations

when they deviate from the forecasts. To account for such violations, bounds on the

chilled and hot water TES in (3.6l) are modified to include a buffer capacity (the back-

off term), β j ∈ [0, 0.5], j ∈ {cw, hw}. In closed-loop formulation, the bounds on Ej,k for

j ∈ {cw, hw} in constraints (3.6l) are updated as:

If β jEj ≤ Ej,t+1 ≤ (1− β j)Ej, set Ej,t+1 = β jEj, Ej,t+1 = (1− β j)Ej.

If (1− β j)Ej ≤ Ej,t+1 ≤ Ej, set Ej,t+1 = β jEj, Ej,t+1 = Ej,t+1.

If 0 ≤ Ej,t+1 ≤ β jEj, set Ej,t+1 = Ej,t+1, Ej,t+1 = (1− β j)Ej.

If Ej,t+1 ≥ Ej,set Ej,t+1 = Ej, Ej,t+1 = β jEj, Ej,t+1 = Ej, and update olj,k+1 = olj,k+1 +

(Ej,t+1 − Ej).

If Ej,t+1 ≤ 0, set Ej,t+1 = 0, Ej,t+1 = 0, Ej,t+1 = (1− β j)Ej, and update ulj,k+1 = ulj,k+1 −

Ej,t+1.

The above updates to the storage bounds ensure that the storage is set to the maximum

or minimum capacity if the storage at t + 1 overflows or dries up when implementing the

MPC action; otherwise, the fractional buffer capacity is implemented. These corrections

result in lost economic performance and inefficient use of storage. We perform closed-

loop MPC simulations for the central HVAC plant with the formulation described above

in order to develop a BO framework for tuning the back-off terms for the chilled water

and hot water TES.

The back-off term β = [βcw, βhw]
T is introduced to reserve a fraction of the maximum

41

capacity as a buffer to account for the uncertainty associated with the predicted distur-

bances. Appropriate determination of the β values is critical for optimizing the closed-

loop performance. Selecting values that are too large will induce an overly conservative

strategy that prevents the storage tanks from being fully utilized to reduce economic

costs. On the other hand, if the β terms are too small, the number of constraint viola-

tions may increase dramatically as the size of the buffer will not be enough to safeguard

against unforeseen disturbances, leading to an economic penalty. For this study, our tun-

ing objective is the annual closed-loop cost (denoted as f (·)), which is a function of the

back-off terms x = {βcw, βhw}. Because a closed-form representation of f is not available,

a full year-long closed-loop simulation of the HVAC plant has to be performed to evalu-

ate the value of the objective at any x of interest. Additionally, the back-off terms affect

the closed-loop MPC performance in a non-intuitive way. As a result, finding the optimal

back-off values requires repeatedly simulating the closed-loop system at any selected x.

���� ���� ���� ��	� ��
�
βcw

����

����

����

��	�

��
�

β h
w

�	��

�	��

�
��

�
��

����

����

����

����

�
��

�
��

�
��
��
��
��
��
��
��
���
�
�
��
��
��
��

���� ���� ���� ��	� ��
�
βcw

����

����

����

��	�

��
�
β h

w

�	��

�	�	

�	�

�	��

�	��

�	�

�	��

�	��

�
��

�
��

��
��

��
��

��
��

���
�

�
��

��
��

��
Figure 3.3: Left: 3D surface of annual closed-loop cost over back-off terms; Middle: 2D
contour plot of annual closed-loop cost with the baseline cost (shown by a white marker)
in [1]; Right: Refined view of closed-loop cost where the vertical scale is adjusted. These
plots were obtained by interpolating simulation results under 10× 10 mesh grids.

The prediction horizon of the MPC is set to 168 hours (1 week) to reflect the weekly

periodicity of loads and electricity prices. The optimization problem solved at each hour

is a linear program with 168,450 variables and 143,750 constraints [1]. The problems were

implemented in Julia 0.6.4 and were solved with Gurobi 8.1 on a computing server with

188 GB RAM, 32-core Intel Xeon 2.30 GHz CPU. On average, each MPC problem requires

42

about one second to solve but simulating closed-loop behavior over an entire year requires

about 2 hours of wall-clock time (each year-long simulation requires solving more than

8,700 optimization problems). Given the complexity of the underlying tuning problem, it

is apparent that manual or grid search methods can easily become prohibitively expensive

due to the possibly large number of trials and the resultant enormous time consumed.

Figure 3.3 shows the closed-loop cost at different combinations of back-off values for

a given disturbance realization. To generate this surface, we conducted 100 simulations

(obtained by using a coarse grid discretization with 10 points for each back-off term).

One can see that the surface is non-convex with a couple of local minima (the global

minimum is near βcw = 0.05, βhw = 0.15). We used the back-off term values βcw =

βhw = 0.1 reported in [1], which were delicately selected based on engineering expertise,

as a baseline. The year-long closed-loop cost for the baseline is 13.44 MM USD (million

USD). Note that the baseline parameters may not be optimal as they were not obtained

via rigorous optimization procedures. From Figure 3.3 we can see that the closed-loop

cost is highly sensitive to the back-off terms; specifically, this can easily reach levels of

more than 17 MM USD. The large costs illustrate that operating HVAC facilities is quite

expensive, and thus, cutting down costs is essential.

���� ���� ���� ��	� ��
�
βcw

����

����

����

��	�

��
�

β h
w

�	��

�	�	

�	�

�	��

�	��

�	�

�	��

�	��

�
��

�
��

��
��

��
��

��
��

���
�

�
��

��
��

��

���� ���� ���� ��	� ��
�
βcw

����

����

����

��	�

��
�

β h
w

�	��

�	�	

�	�

�	��

�	��

�	�

�	��

�	��

�
��

�
��

��
��

��
��

��
��

���
�

�
��

��
��

��

Figure 3.4: Sequence of sampling locations in the 2D parameter plane for S-BO (left) and
Ref-BO (right). The white circle marker shows the baseline parameters.

43

0 5 10 15 20 25 30 35

Sample number

13

14

15

16

17

18

C
lo

s
e

d
-l
o

o
p

 C
o

s
t

(M
M

 U
S

D
/y

r) BO

BO with reference model

Baseline cost

10 15 20 25 30 35

Sample number

13.4

13.6

13.8

14

C
o
s
t

Figure 3.5: Closed-loop cost over iterations for S-BO and Ref-BO against the baseline
cost. A microscopic view of the comparisons between costs from these methods is shown
inside the figure.

5 10 15 20 25

Trial ID

13

13.2

13.4

13.6

13.8

14

C
lo

s
e
d
-l
o
o
p
 C

o
s
t
(M

M
 U

S
D

/y
r)

BO

BO with reference model

Figure 3.6: Closed-loop cost for S-BO and Ref-BO under different initialization points.
Each trial corresponds to one initialization point on a 5 × 5 grid of the 2D parameter
space.

We used Algorithm 2 to determine the optimal back-off terms for the MPC con-

troller. First, we constructed a reference model from reduced-horizon simulations of the

original MPC. Instead of maintaining the prediction horizon at 168 hours, we simulated

the closed-loop MPC with a 24-hour horizon across 21 different combinations of back-off

parameter values. Reducing the horizon in MPC simulation has been shown to signifi-

cantly reduce the computational cost (by more than 50%) without significantly sacrificing

performance. The 21 parameter combinations were determined sequentially using S-BO

initialized at the point βcw = βhw = 0.45 and with an emphasis on exploration of the space

44

Figure 3.7: Posterior mean and AF from S-BO for the first 10 iterations. Top two rows:
Posterior mean of GP model in each iteration. Bottom two rows: Acquisition function in
each iteration.

Figure 3.8: Posterior mean and AF from Ref-BO for the first 10 iterations. Top two rows:
Posterior mean of GP model in each iteration. Bottom two rows: Acquisition function in
each iteration.

45

(high value of κ). The predictive mean of a GP trained on the 21 data samples from the

coarse simulations was used as the reference model. The resultant reference model can

assist BO by providing prior information on the regions where the optimum may poten-

tially reside. Thus, one can avoid the unnecessary exploration of regions that are far from

the optimum. Algorithm 2 was programmed in Python 3.8.3 using Scikit-learn [100] with

a Matern kernel function (l = 1, ν = 5/2, σ2 = 1e−6) for the GP model and the LCB AF

(κ = 0.5). The optimizer selected for finding the minimum of the AF was the bounded

limited-memory BFGS (L-BFGS-B) algorithm from Scipy [101]. Note that the operating

cost is on the scale of 13-17 MM USD, as previously mentioned. In addition, as shown in

Figure 3.3, the cost surface is largely flat over a large region of the parameter space. Thus,

if the cost values are not normalized, the small predictive variance (due to the flatness of

the surface) will become almost negligible compared with the scale of the operation cost.

As a result, the sampling locations selected by BO will not move significantly during the

search. This can significantly impact the performance of both BO methods. Therefore,

prior to performing the GP modeling, the operating cost values are normalized. This can

also help satisfy the zero mean assumption for GP modeling. In addition, to improve the

performance of the surrogate model to the data, we re-trained the GP hyperparameters at

each iteration. The sequence of sampling points selected by Ref-BO is shown in the right

plot of Figure 3.4. For comparison, the left plot of Figure 3.4 illustrates the scatter of sam-

pling locations returned by S-BO. We observe that the distribution of sampling locations

is more dispersed in standard BO in our proposed method. Additionally, the bulk of the

points sampled by Ref-BO are concentrated in the neighborhood of the global minimum.

This observation validates the efficiency of Ref-BO at discovering the global solution.

Figure 3.5 demonstrates the progressive closed-loop operation costs over iterations for

S-BO and Ref-BO. In this figure, the black dashed line represents the baseline cost evalu-

ated at the expert-selected back-off parameters. The red line shows the yearly operation

cost under the full-horizon simulation from using the underlying back-off parameters sug-

gested at each iteration of our BO paradigm. Both methods were initialized at the same

46

point, the best performing of the 21 samples used to construct the reference model (as

indicated by the reference model). By using the same initial point for both BO methods,

we can compare their convergence performance on a fair basis. It is clear that Ref-BO

converges after only 3 iterations (despite the slight exploratory behavior between itera-

tions 14-18). In contrast, standard BO requires significantly more exploration and does

not converge until after 14 iterations. In total, our BO framework required about 20

hours of wall-clock time; this time includes the execution of the 21 low-fidelity simula-

tions for establishing the reference model and the 3 high-fidelity closed-loop simulations.

For comparison, standard BO requires more than 28 hours (14 full-scale simulations) of

wall-clock time to finding the solution. Our approach, thus, results in an 8 hour reduc-

tion in computational time (over 28%) when compared to S-BO. As stated in Remark 1,

this is because the additional computational cost of developing the reference model using

the low-fidelity system approximation (i.e., reduced-horizon simulations) is less than the

computational savings that the reference model provides to the algorithm. The cause of

the oscillations observed for both BO methods towards the later iterations in Figure 3.5

is likely the flatness of the cost surface, as observed in Figure 3.3. It is expected that the

posterior mean of the GP model is also flat over a large region (cf. Figures 3.7-3.8). Thus,

the AF value is extremely sensitive to minor perturbations in the posterior variance (e.g.,

due to disturbances) and the starting point of the optimizer when minimizing the AF.

Note that the reason we choose a relatively small κ value is that the use of a reference

model can guide the search directly towards the globally optimal region, and, in contrast

to S-BO, exploration of a wide range of the parameter space becomes unnecessary. Be-

sides, as shown in Figure 3.5, the initial point for both BO methods is already close to the

solution. Selection of a small κ value, thus, enables a higher preference for the greedy

search for the optimum. For the purpose of comparison, we also select the same κ value

for S-BO. The distinct behaviors of these two methods clearly show the advantage of our

method in reducing the required iterations. In practice, for standard BO, there exist some

guidelines for determining the κ value. A common heuristic is a dynamic strategy where

47

κ is initially chosen to be large to encourage exploration and then gradually reduced to a

small value to allow for exploitation [102].

From the microscopic (zoomed in) graph in Figure 3.5, we can see that both BO ap-

proaches yield superior back-off parameters than the baseline value. Specifically, us-

ing the parameters suggested by Ref-BO, (βcw = 0.0412, βhw = 0.1480), and S-BO,

(βcw = 0.0465, βhw = 0.1445), the optimal operation costs are 13.3849 million USD and

13.3897 million USD respectively. Both costs are less than the baseline cost (13.4385 mil-

lion USD), with a margin of 53,600 USD and 44,800 USD in annual savings. The relatively

small improvement in cost is mainly attributed to the flat surface shown in Figure 3.3

and the fact that baseline parameters were carefully chosen by experts [1]. However, this

case study only involves 2 parameters that can be easily tuned using domain insights.

For actual MPC tuning problems, the number of tuning parameters can be so large that

trial-and-error, grid search, and heuristics-guided approaches become computationally

expensive and impractical. In contrast, Ref-BO scales well with the number of parame-

ters. Thus, we anticipate that our approach will outperform traditional methods for MPC

tuning in practice.

Figure 3.6 shows the closed-loop operation cost using the optimal tuning parame-

ters determined by standard BO (blue) and our method (red) at 25 different initialization

points for the optimization algorithm. Each trial corresponds to one initialization point

selected from a 5× 5 grid of the 2-D parameter space. Ref-BO is clearly able to outper-

form (lower cost) S-BO consistently across different starting locations. Standard BO is

significantly more sensitive to the initial point and can be easily trapped at a local opti-

mum if a bad initial value is chosen. In contrast, our method is robust to the initialization

point, as evidenced by the fact that the optima it locates are essentially on the same level

across all trials. This striking feature comes from the strong guiding effect provided by

the reference model. Even if the initial point is far from the solution, the presence of the

reference model can still force the search to move towards the global optimum. This is

another advantage of our approach over standard BO.

48

The posterior mean heat maps of the GP model in each iteration and the correspond-

ing AF values for S-BO and Ref-BO are shown in Figures 3.7 and 3.8, respectively. The

top two rows of Figure 3.7 show that after 7 iterations the posterior mean surface remains

relatively constant, indicating the convergence of the BO algorithm. The bottom two rows

in Figure 3.7 present the AF at each iteration. Interestingly, after several iterations, the

AF function demonstrates two apparent local minima. Thus, standard BO will likely

converge to a local minimum (instead of global optimum) if the exploration/exploita-

tion tradeoff is not appropriately balanced. The top two rows of Figure 3.8 show that,

when using Ref-BO, the posterior mean stabilizes rapidly within a couple of iterations,

remaining consistent thereafter. The developed AF function also converges quickly and

exhibits only one minima towards the later iterations. Therefore, the presence of a refer-

ence model provides valuable guidance for the algorithm to select subsequent sampling

locations and reduces the likelihood of converging to a local solution. In summary, our

results indicate that incorporating a reference model into the BO framework can result

in significant reductions in computational cost when compared to standard BO. The dis-

covered global optimal tuning parameters can also improve the annual operating cost

beyond the baseline parameters currently employed in the literature.

3.4 Conclusions

We presented a novel BO framework that incorporates a reference model for tuning MPC

controllers. The tuning objective is treated as a black-box function of the controller param-

eters. This work is motivated by the observation that evaluating closed-loop performance

can be computationally expensive and thus manual or grid search approaches are time-

consuming. Moreover, existing knowledge about the underlying process is valuable for

guiding the initial search in BO. To this end, we combine BO with a reference model

(generated using prior knowledge or coarse system identification) to efficiently solve this

complex MPC tuning problem. Specifically, we studied the optimization of the back-

49

off terms for the thermal energy storage of an HVAC plant. Our results show that this

reference model-guided BO approach can efficiently discover the global solution in 3 iter-

ations, whereas the standard BO algorithm requires 14 iterations, resulting in a reduction

of 8 wall-clock hours of simulation (more than a 28% reduction in computational time).

These observations clearly demonstrate the necessity and advantage of incorporating a

reference model into the BO framework. Moreover, the proposed BO framework can

easily be extended to the tuning of a large number of MPC parameters without signifi-

cantly increasing the computation complexity, unlike traditional methods which rely on

heuristics, grid search, or trial-and-error. As part of our future work, we are interested

in exploring performance with a larger set of tuning parameters that capture different

types of behavior and different types of functions to accelerate the search. Another im-

portant topic for our future study is to investigate how coarse the reference model can be

to provide sufficient guidance for Ref-BO.

50

Chapter 4

B AY E S I A N O P T I M I Z AT I O N O F I N T E R C O N N E C T E D S Y S T E M S

This chapter is adapted with permission from González and Zavala from a working paper

and a preprint that is available at https://doi.org/10.48550/arXiv.2311.11254.

4.1 Introduction

A key element of engineering design is the identification of system configurations that

maximize performance and reduce cost [103]. However, this task can often be challeng-

ing due to incomplete physical knowledge or the high complexity of experiments and

available physical models. As a result, it is necessary to devise efficient optimization

strategies the are capable of mitigating system complexity while also reducing the amount

of model or experimental data required to find a solution. This need has motivated the

development of a class of techiques known as black-box optimization algorithms [11].

These methods forgo the need for a closed-form representation of the system and instead

treat it as a black-box that is sampled to generate input/output data that is then used to

guide the search for a solution. Various strategies have been developed to improve the

quality of the search such as response surface methodology [104], particle swarm opti-

mization [105], and genetic algorithms [106]. In the context of engineering design, where

system queries are often expensive and uncertainty in predicted performance is impor-

51

tant, Bayesian optimization (BO) [76] has emerged as one of the most effective black-box

optimization paradigms.

While not a new algorithm, Bayesian optimization has, in recent years, become a

widely-used tool for solving challenging design problems across a wide array of disci-

plines such as materials engineering [88], aerospace engineering [107], control [93], and

synthetic biology [108]. It is a flexible algorithm, capable of accommodating both continu-

ous and discrete design variables [69], handling problem constraints [109], and identifying

failure regions [110]. Arguably its most powerful feature, however, is BO’s methodology

for selecting new sample points. BO uses the collected input/output data to train a prob-

abilistic surrogate model, typically a Gaussian process (GP), that estimates not only the

predicted system performance but also the uncertainty of the predictions. These esti-

mates are passed into an acquisition function (AF), which serves as the decision-making

mechanism of the algorithm, that assigns value to sample points based on both their infor-

mation gain and expected performance. The AF can be tuned to place greater importance

on sampling from regions with high predicted performance (exploitation) or high model

uncertainty (exploration). This consideration of informational value in addition to perfor-

mance enables BO to efficiently sample from several distinct regions of the design space

making it an especially powerful global optimizer [53].

While the black-box assumption makes BO highly generalizable (only an interface for

providing inputs and collecting outputs is needed), there is often some form of struc-

tural system knowledge available (e.g., physics or sparse interconnectivity). For example,

when dealing with a complex physical system (e.g., a chemical process), several compo-

nents might be well-modeled and understood, while others might not. In other words,

the system is actually a composition of various white-box (i.e., an analytical representation

is available) and black-box elements as shown in Figure 4.1. Furthermore, the fundamen-

tal principles governing the behavior of the black-box elements (e.g., conservation laws,

equilibrium, value constraints) are, at least qualitatively, understood. Additionally, sparse

connectivity, which provides information on how different components affect each other,

52

is also often known. As a result, the system of interest is usually not truly a black-box

but rather a “grey-box" that is partially observable with a known structure [111]. Pre-

vious work done using several different optimization frameworks has demonstrated that

exploiting this knowledge as opposed to relying on a purely black-box strategy can signif-

icantly improve the optimization routine [112, 113, 114]. Thus, it is reasonable to conclude

that BO can similarly benefit by switching from a black-box to a grey-box representation

of the system.

Figure 4.1: Grey-box systems often exhibit a known structure where the connectivity
between different elements is understood. Not every component is always a black-box
that requires a surrogate model as a closed-form representation might be available for
various components.

Various methods have been developed that allow for the consideration of grey-box

sytems in BO. Most of these approaches involve the use of a low-fidelity approximation

of the system that is cheaper to evaluate. This simplified representation is fed to the

algorithm, allowing it to learn coarse system trends and to identify potentially promising

regions of the design space from the start. The approximation can be obtained through a

variety of means (e.g., simplified physical models, empirical correlations, or lower-fidelity

simulations) and can either be gradually refined [78, 77, 79] or remain unchanged as the

algorithm progresses [115].

More recently, the work in [37] has led to a push towards developing BO frameworks

that represent a system as a composite function, f (x, y(x)), where x are the system inputs,

f is a known scalar function, and y is an unknown vector-valued function that describes

53

the behavior of internal system components. This shifts the modeling task from estimat-

ing the performance function directly to estimating the values of y, which serve as inputs

to f (x, y(x)). This can result in derivative information for f becoming available, allow-

ing for a clearer understanding of the effects of x and y on system performance [116].

Additionally, such a representation allows for explicit consideration of the white-box and

black-box sections of the system, which can enable a reduction in the dimensionality of

the surrogate models and allows for the modeling task to be redistributed to a simpler

set of intermediate functions when f is complex [40]. This approach also readily lends

itself to the inclusion of constraints, as these are often dependent on internal variables

which can be captured by y [38, 117]. As a result, composite functions allow for a more

complete representation of a system, especially in the context of engineering design. For

example, in chemical process design the cost equations for equipment, material streams,

and utilities are often readily available and it is the parameters these equations rely on

(e.g., flowrates and heat duties) that are unknown. Furthermore, traditional unit oper-

ations (e.g., heat exchangers, distillation columns, compressors) have significantly more

developed and mature modeling libraries available than those that tend to be more niche

(e.g., bioreactors, non-equilibrium separators, solids-handling). It therefore makes sense

to construct a composite function where the outer function, f , measures the price of the

system based on the known cost equations, while its inputs, y, are mass and energy flows

that are estimated via either mechanistic or data-driven models. Constraints can then be

incorporated using values estimated for y to ensure that data-driven models obey fun-

damental physical laws and to enforce more traditional requirements, such as product

specifications, waste generation, utility consumption, and equipment sizing, which are

often important in process design.

While setting up a composite function optimization problem might be intuitive, im-

plementing it in a BO setting is not a trivial task. As previously stated, one of the main

advantages of BO is the inclusion of uncertainty estimates in the surrogate model, which

allows for greater exploration of the design space when compared to a deterministic

54

model [112]. However, when using a composite function, the GP models generated are of

y not f . Given that f is the performance metric that needs to be optimized, it is necessary

propagate the predicted uncertainty from y(x) to f (x, y(x)) (i.e., the density of f or de-

sired summarizing statistics must be determined). A Gaussian density for y(x) is directly

obtained from the GP model. As a result, when f is a linear model, we can make use of

the closure of Gaussian random variables under linear operations to generate the density

of f (x, y(x)) (which is also a Gaussian). When f is nonlinear, however, a closed-form

solution is not readily available, and alternative methods must be used to calculate the

density. This problem has traditionally been solved numerically using sampling meth-

ods like Monte Carlo [37, 118, 39, 38], however, this approach can quickly become very

computationally intensive. An alternative method proposed in [40] avoids the need to

explicitly generate a probability density for f by utilizing an optimism-driven algorithm

that solves an auxiliary problem, which is defined over an augmented space, allowing

for the optimization to be carried out with respect to x and y. The trained GP models

are used to construct a set of lower and upper confidence bound functions that are in-

corporated into the auxiliary problem as constraints. This specifies a range from which

values for y can be selected based on the performance and uncertainty estimates of the

GPs. While allows this approach eliminates the need to explicitly calculate the statistical

moments of f , it also increases the size and complexity of the optimization task. This can

significantly lengthen the computational time required to find a solution, especially when

y is high-dimensional.

The increased functionality of composite functions coupled with the high computa-

tional intensity of exisiting methods motivates the need to develop more efficient paradigms

for composite function BO. To this end, we propose the Bayesian Optimization of Inter-

connected Systems (BOIS) framework, a novel method that facilitates the use of composite

functions via adaptive linearizations of f (x, y(x)) in the neighborhood of a y(x) of interest

(see Figure 4.2) [119]. This allows us to construct local Laplace approximations that can

be used to generate closed-form expressions for the mean and uncertainty of f . In this

55

chapter we provide a detailed introduction to and analysis of the BOIS framework. Using

a pair of complex case studies, we provide evidence of the performance and efficiency

improvements this algorithm provides over standard BO as well as the composite func-

tion BO paradigms presented in [37] and [40]. Additionally, we introduce functionalities

that allow us to handle feasibility considerations for the intermediate functions. We also

exploit the ability of this algorithm to make use of available white-box models, which

provides a significant degree of flexibility in the selection of the intermediate functions.

This allows us to reduce the number of intermediates that must be modeled and the di-

mensions of the corresponding input spaces of these models. As a result, we are able to

develop black-box models that enable system-wide optimization in a more scalable and

efficient manner than existing methods.

Figure 4.2: Illustrative representation of the adaptive linearization scheme employed by
BOIS. At a point x of interest (red marker), a GP model estimates the value of interme-
diate y. A local Laplace approximation is then constructed by linearizing f around a
neighboring point (green marker). The summarizing statistics are passed into an acquisi-
tion function that determines the value of sampling at the selected point. This process is
repeated until the optimum of the AF is found.

56

4.2 Bayesian optimization with composite functions

The use of a composite function objective in a BO setting was introduced in [37]. In this

context, (1.1) is recast as:

min
x

f (x, y(x)) (4.1a)

s.t. x ∈ X (4.1b)

Here, f is now a known composite function with f : X × Y → R, and y : X → Rdy

is a black-box vector-valued function with range Y ⊆ Rdy that captures the unknown

intermediate elements of the system. Note that y can be set up so that any element, yi,

is only dependent on a subset of the inputs in x, or to have a nested structure where

yi is also a function of another element in y, yj [38, 40, 61]. This feature makes this

approach especially adept at representing complex network systems where inputs often

enter at different sections (e.g., material and energy inputs) and several of the elements

in y are interdependent (e.g., inter-unit streams, yields, recycle loops). As f is now a

known function, the formulation in (4.1) shifts the modeling task from estimating the

performance function to estimating the intermediate functions. In this work, we model

y(x) by using an independent single-output GP for each of the black-box elements. While

multi-output GP models that can consider the correlation between outputs exist [120,

121], these generally exhibit a higher computational complexity than single-output GPs

and have a greater number of hyperparameters, making them more difficult to train.

Additionally, we can make use of the nested structure of y to capture the correlation

between relevant yi’s indirectly.

The shift from black-box to a known composite function results in a loss of the direct

performance and uncertainty estimates for f that are available in S-BO. Instead, these

must be calculated or somehow inferred from the statistical moments of y calculated by

the GP models. In the case where f is a linear transformation of y of the form f = aTy+ b,

57

this can be done by making use of the closure of normal random variables under linear

operations:

mℓ
f (x) = aTmℓ

y(x) + b (4.2a)

σℓ
f (x) =

√
aTΣℓ

y(x)a (4.2b)

where mℓ
y(x) ∈ Rdy and Σℓ

y(x) ∈ Rdy×dy are the mean and variance of y. However, in the

more general case where f is a nonlinear transformation, this property can no longer be

used, and closed-form expressions for mℓ
f (x) and σℓ

f (x) are not readily available. Com-

posite function BO paradigms have typically addressed this issue by using some varia-

tion of Monte Carlo sampling that allows for these values to be estimated numerically

[118, 39, 38]. An alternative approach was presented in [40] wherein the GP models of

y(x) are used to construct a set of upper and lower confidence bound functions that en-

able the optimization problem to be cast onto a augmented space, X × Ŷℓ, where Ŷℓ is

the range of the intermediate functions estimated by the confidence bounds. The specific

details of both of these methods are presented in 4.2.1 and 4.2.2.

4.2.1 Monte Carlo-driven composite function Bayesian optimization

Given the GP models of the intermediate functions, GP ℓ
y, trained on a dataset Dℓ

y =

{xK, yK}, K = {1, ..., ℓ}, Monte Carlo sampling estimates the mean and variance of the

performance function at some point x of interest by drawing S samples from the distribu-

tion of y generated by GP ℓ
y(x). These samples are then passed into f (x, y(x)), generating

a range of outcomes that allow for the numerical estimation of mℓ
f (x) and σℓ

f (x):

m̂ℓ
f (x) =

1
S

S

∑
s=1

f (x, mℓ
y(x) + Aℓ

y(x)zs) (4.3a)

σ̂ℓ
f (x) =

1
S− 1

√√√√ S

∑
s=1

(
f (x, mℓ

y(x) + Aℓ
y(x)zs)− m̂ℓ

f (x)
)2

(4.3b)

58

Here, Aℓ
y(x) ∈ Rdy×dy is the Cholesky factor of the GP covariance (Aℓ

y(Aℓ
y)

T = Σℓ
y) and

zs ∈ Rdy is a random vector drawn fromN (0, I). These estimates are used to construct the

lower confidence bound for composite functions (LCB-CF) AF, AF ℓ
LCB-CF, as outlined in

Algorithm 3. As in S-BO the AF is then optimized to select a select a new sampling point.

The resulting data is appended to Dℓ
y and the GP models are retrained. The framework

for this paradigm (which we refer to as MC-BO) is summarized in Algorithm 4. Note

that it is quite similar to S-BO, with the main differences being the shift to modeling the

intermediate functions and the use of the LCB-CF.

Algorithm 3: Lower Confidence Bound for Composite Functions (LCB-CF)

Given x, GP ℓ
y, S, and κ;

mℓ
y(x), Σℓ

y(x)← GP ℓ
y(x);

Calculate the Cholesky decomposition of Σℓ
y(x) to determine the Cholesky factor

Aℓ
y(x);

for s = 1, 2, ..., S do
Draw sample zs from N (0, I);
mℓ

f ,s(x)← f (x, mℓ
y(x) + Aℓ

y(x)zs);
end
m̂ℓ

f (x)← 1
S ∑S

s=1 mℓ
f ,s(x);

σ̂ℓ
f (x)← 1

S−1

√
∑S

s=1

(
mℓ

f ,s(x)− m̂ℓ
f (x)

)2
;

return m̂ℓ
f (x)− κ · σ̂ℓ

f (x)

Algorithm 4: Monte Carlo-Driven Composite Function Bayesian Optimization
(MC-BO)

Given κ, L, and Dℓ
y;

Train GP ℓ
y using initial dataset Dℓ

y and obtain AF ℓ
LCB-CF;

for ℓ = 1, 2, ..., L do
Compute xℓ+1 ← argminxAF

ℓ
LCB-CF(x; κ) s.t. x ∈ X;

Sample system at xℓ+1 to obtain yℓ+1;
Update dataset Dℓ+1

y ← Dℓ
y ∪
{

xℓ+1, yℓ+1};
Train GP using Dℓ+1

y to obtain GP ℓ+1
y and AF ℓ+1

LCB-CF;
end

While Monte Carlo provides a convenient manner for calculating the density of f , it

59

is a computationally intensive method for doing so. Accurately estimating mℓ
f (x) and

σℓ
f (x) in regions of the design space with high model uncertainty or where f (x, y(x))

exhibits high sensitivity to variations in y(x) can require a significant number of samples

(on the order of 103 or more). Given that the cost of drawing a sample from a GP scales

as O(Sℓ3), generating the samples necessary in these instances can require a significant

amount of computational time [53]. Additionally, even though f is a known function

and is significantly cheaper to evaluate than the system, at large values of S the cost of

repeatedly calculating the value of f (x, y(x)) can also become nontrivial. This issue is

compounded by the fact that (4.3) must be recalculated at every point of interest.

4.2.2 Optimism-driven composite function BO

Figure 4.3: Workfow of the OP-BO algorithm. Mean and uncertainty estimates from GP ℓ
y

are used to create a confidence interval bounded by lℓy(x) and uℓ
y(x) that constrains the

possible values of y. These are incorporated into an auxiliary problem that is optimized
to select a new sample point xℓ+1. The resulting data is then appended to the dataset Dℓ

y
and the GP models are retrained

As previously stated, when f is formulated as a composite function, its closed-form

representation is known. As a result, its derivatives can be calculated, making it possible

to determine the optimal values of x and y using gradient-based methods [116]. However,

the solution might be infeasible as the proposed values of y might be inconsistent with

the relationships imposed by the intermediate functions. Typically, this issue is handled

60

by the use of equality constraints that are designed to ensure feasibility. This requires

that the closed-form representation of y be available, which is not the case in a composite

function BO setting. However, the behavior of the intermediate functions can be estimated

using GP ℓ
y. The simplest approach for setting up the required constraints would then be

to use the means of the GP models, but this discounts the information provided by the

uncertainty estimates. The optimism-driven composite function BO algorithm (which we

refer to as OP-BO) proposes an alternative approach wherein the values of y are instead

restricted to a confidence interval that is specified by the GP models [40]. This is done via a

set of upper and lower confidence bound functions that are incorporated into the problem

as inequality constraints and are of the form:

lℓy(x) = max{mℓ
y(x)− κ · σℓ

y(x), l̂y} (4.4a)

uℓ
y(x) = min{mℓ

y(x) + κ · σℓ
y(x), ûy} (4.4b)

where l̂y ∈ Rdy and ûy ∈ Rdy are the lower and upper feasibility bounds of y respectively;

κ determines the size of the confidence interval and thereby sets the emphasis placed

on exploration similar to (2.2). This allows OP-BO to construct and solve an auxiliary

problem of (4.1) of the form:

min
x,y

f (x, y) (4.5a)

s.t. lℓy(x)− y ≤ 0 (4.5b)

y− uℓ
y(x) ≤ 0 (4.5c)

x ∈ X, y ∈ Rdy (4.5d)

This problem is solved at every iteration of the algorithm to determine the next sampling

point xℓ+1, essentially filling the role of the AF in OP-BO. After sampling at this point,

{xℓ+1, yℓ+1} is appended to the current dataset and the GP models are re-trained allowing

for lℓy(x) and uℓ
y(x) to be updated. The workflow for the OP-BO algorithm is detailed in

61

Algorithm 5 and Figure 4.3 provides an illustrative summary.

Algorithm 5: Optimism-Driven Composite Function Bayesian Optimization (OP-
BO)

Given κ, L, and Dℓ
y;

Train GP ℓ
y using initial dataset Dℓ

y and obtain lℓy and uℓ
y;

for ℓ = 1, 2, ..., L do
Compute xℓ+1 by solving

min
x,y

f (x, y)

s.t. lℓy(x)− y ≤ 0

y− uℓ
y(x) ≤ 0

x ∈ X, y ∈ Rdy

Sample system at xℓ+1 to obtain yℓ+1;
Update dataset Dℓ+1

y ← Dℓ
y ∪
{

xℓ+1, yℓ+1};
Train GP using Dℓ+1

y to obtain GP ℓ+1
y , lℓ+1

y , and uℓ+1
y ;

end

Unlike the AFs used in S-BO and MC-BO, (4.5) does not require the estimation of

the probability density of f . Thus, OP-BO does not need to rely on the use of sampling

methods like Monte Carlo. While this approach might seem more efficient, it should

be noted that the dimensions of search space in the auxiliary problem (Rdx + Rdy) are

greater than in the original (Rdx). As a result, problems that have a significant number

of intermediate functions (large value of dy) can lead to scenarios where (4.5) potentially

requires a significant amount of computational time to solve. Thus, there is likely a

point at which the cost of optimizing the lower dimensional AF ℓ
LCB-CF is lower than the

cost of solving the high-dimensional auxiliary problem. Note that in these scenarios

the computational intensity of both MC-BO and OP-BO would likely be high, further

highlighting the need to develop more efficient paradigms for composite function BO.

62

4.3 The BOIS Approach

While MC-BO and OP-BO provide two very distinct methodologies for handling com-

posite functions in a BO setting, both paradigms are motivated by the same fundamental

challenge: the lack of closed-form expressions for mℓ
f (x) and σℓ

f (x). As previously stated,

it is generally not possible to obtain these when f is a nonlinear mapping of y. However,

we can make use of the availability of the derivatives of f and the closure of normal

random variables under linear transformations to formulate a solution that allows us to

overcome this issue.

Consider the case where f is a once-differentiable mapping with respect to y, in this

scenario, it is possible to conduct a linearization of f at the current iterate (as is done

in standard optimization algorithms such as Newton’s method). For the purpose of our

discussion, we choose to represent f as:

f (x, y) = g(x) + h(x, y) (4.7)

Using a first-order Taylor series expansion, we linearize f with respect to y around some

reference point y0:

f (x, y) ≈ g(x) + h(x, y0) + JT(y− y0) (4.8)

where

J = ∇yh(x, y0) (4.9a)

= ∇y f (x, y0) (4.9b)

At some point of interest, x, we can calculate mℓ
y(x) and Σℓ

y(x) using GP ℓ
y and define the

63

following:

∆lo = max{0, l̂y −mℓ
y(x)} (4.10a)

∆hi = min{0, ûy −mℓ
y(x)} (4.10b)

ŷℓ = mℓ
y(x) + ∆lo + ∆hi (4.10c)

Σ̂ℓ = Σℓ
y(xℓ+1) (4.10d)

where (4.10a) and (4.10b) ensure that ŷℓ is within any specified feasibility bounds of y.

Note that the rationale behind these two calculations is that if mℓ
y < l̂y or mℓ

y > ûy, then it

is reasonable to interpret this as an indication that the true value of y(x) is likely near the

closest bound. If we then select a reference point, ŷℓ0, in the ϵ-neighborhood of ŷℓ, where

|ŷℓ0 − ŷℓ| ≤ ϵ, we can approximate f at x as:

f (x, y(x)) ≈ g(x) + h(x, ŷ0
ℓ) + JT(y(x)− ŷℓ0) (4.11a)

Note that in this context, g contains only the white-box elements of f that have no depen-

dency on y and, therefore, g(x) is a deterministic variable. Combining this approximation

of the performance function with (4.2), we are now able to derive a set of closed-form

expressions that estimate the mean and uncertainty of f :

mℓ
f (x) = JT ŷℓ + g(x) + h(x, ŷℓ0)− JT ŷℓ0 (4.12a)

σℓ
f (x) =

(
JTΣ̂ℓ J

) 1
2

(4.12b)

Using this expression, we are now able to construct the Bayesian Optimization of Inter-

connected Systems (BOIS) paradigm for composite function BO.

Similar to the previously discussed methods, the BOIS framework is initialized by

using a dataset Dℓ
y to train a set of GP models of the intermediate functions GP ℓ

y. Given

some point of interest, x, and the corresponding mean and uncertainty estimates for

64

y(x), Equations (4.8)-(4.12) are used to construct the lower confidence bound for BOIS

acquisition function (LCB-BOIS, denoted as AF ℓ
BOIS), and this AF is then optimized to

select a new sampling point, xℓ+1. After sampling, the obtained datapoint, {xℓ+1, yℓ+1},

is appended to the dataset and the GP models are retrained. A summary of this procedure

is presented in Algorithm 6 and Figure 4.4 provides a visual representation. Note that this

framework is quite similar to MC-BO with the LCB-CF AF being replaced with LCB-BOIS.

Figure 4.4: Workflow of the BOIS algorithm, note that b = g(x) + h(x, ŷℓ0)− JT ŷℓ0. A set of
GP surrogate models of y is trained using Dℓ

y. The mean and variance estimates calculated
by the GPs are passed into AF ℓ

BOIS which generates a local Laplace approximation for the
density of f . This AF is then optimized to obtain a new sample point, xℓ+1. The system
is then sampled at this point and the collected data is appended to the dataset and used
to retrain the GP models.

Algorithm 6: Bayesian Optimization of Interconnected Systems (BOIS)

Given κ, ϵ, L, and Dℓ
y;

Train GP ℓ
y using initial dataset Dℓ

y and obtain AF ℓ
BOIS;

for ℓ = 1, 2, ..., L do
Compute xℓ+1 ← argminxAF

ℓ
BOIS(x; κ) s.t. x ∈ X;

Sample system at xℓ+1 to obtain yℓ+1;
Update dataset Dℓ+1

y ← Dℓ
y ∪
{

xℓ+1, yℓ+1};
Train GP using Dℓ+1

y to obtain GP ℓ+1
y and AF ℓ+1

BOIS;
end

Unlike MC-BO and OP-BO which are agnostic to the nature of the density of f , the

BOIS framework implicitly assumes that f is normally distributed in the neighborhood of

65

the iterate ŷℓ0. In other words, at any x of interest, BOIS passes the mean and uncertainty

estimates calculated by GP ℓ
y into (4.11) to construct a local Laplace approximation of the

performance function. As this approximation is then also Gaussian, it is also possible

to obtain expressions for the probabilities and quantiles (to construct different types of

AFs). Because f (x, y(x)) is likely not a normally distributed random variable, the Laplace

approximation will result in a worse fit as the distance between ŷℓ and ŷℓ0 grows, similar to

how (4.8) becomes less accurate. Thus, it is important to choose a value for ϵ that provides

an accurate estimate of the density of f at ŷℓ and to not extrapolate the fit beyond this

point. However, it is important to note that the linearization is updated in an adaptive

manner (by linearizing around the current iterate).

By deriving closed-from approximations for mℓ
f (x) and σℓ

f (x), BOIS is able to reduce

the number of function calls to GP ℓ
y and f significantly when compared to MC-BO. At

a given point x, BOIS only has to sample from the GPs once to obtain the estimates for

ŷℓ and Σ̂ℓ and the performance function is similarly only evaluated once to calculate

f (x, ŷ0); recall that this is done tens to thousands of times in MC-BO. While BOIS does

have to compute (4.9), this is also only done once per x. Additionally, calculating function

gradients has been shown to have a computational cost similar to that of evaluating the

function itself when methods like automatic differentiation are used [122], [123]. As a

result, the computational cost of calculating AF ℓ
BOIS(x) can be significantly lower than

that of calculating AF ℓ
LCB-CF(x). If we perform a similar comparison between BOIS and

OP-BO, we observe that, like BOIS, OP-BO only samples from the GP models and evalu-

ates the performance function once when setting up the auxiliary problem. However, the

auxiliary problem is a constrained problem that is optimized over a higher dimensional

space than the LCB-BOIS AF. As a result, OP-BO likely requires more computational time

obtain a new sample point than BOIS, especially when y is high-dimensional.

66

4.4 Numerical Experiments

We tested and compared the performances of S-BO, MC-BO, OP-BO and BOIS using

various numerical experiments. Our aim is to demonstrate that BOIS can perform as

well or better than the existing methods while being less computationally intensive than

MC-BO and OP-BO. In this section, we present the results from two case studies. The

first study focuses on the performance of a simulated chemical process, and the second

examines the design of a photobioreactor (b-PBR) in a nutrient recovery process. In

both systems, closed-form models are available for some of the process units, making

them excellent candidates for benchmarking the composite function BO algorithms. A

detailed overview of the systems used in each case study, along with the corresponding

process unit models, can be found in Appendix A.1. Note that MC-BO used S = 100

samples to calculate m̂ℓ
f (x) and σ̂ℓ

f (x), and the value of ϵ in BOIS was set to ŷℓ × 10−3

The data and code needed to reproduce the results can be found at https://github.com

/zavalab/bayesianopt. All algorithms were implemented in Python 3.11 and used the

gaussian_process module from Scikit-learn [100] for GP modeling and minimize from

Scipy [101] to optimize the acquisition functions; the gradient of f in (4.9) was evaluated

using approx_fprime, also from Scipy.

4.4.1 Optimization of a chemical process

Consider the following chemical process: reagents A and B are compressed, heated and

then fed into a reactor where they form product C. The reactor effluent is sent to a

separator, where C is recovered as a liquid. Note that B is essentially non-condensable,

while small amounts of A can be present in the liquid phase. The vapor stream exiting the

separator is largely composed of unreacted reagents. A fraction of this stream is recycled

and fed back to the reactor after being heated and compressed, while the remainder is

purged. The demand for C is capped at a specified value, F̄, and any excess product

https://github.com/zavalab/bayesianopt
https://github.com/zavalab/bayesianopt

67

generated cannot be sold. Our goal is to determine the operating temperatures and

pressures of the reactor and separator as well as the recycle fraction that will minimize

the operating cost of the process, which we define as:

f1(x, y(x)) = ∑
j∈{A,B}

wj0Fj + FS ∑
i∈{A,B,C}

wiψi + w3

(
ψCFS − F̄

F̄

)2

(4.13a)

f2(x, y(x)) =
5

∑
h=1

whQ̇h,+we

3

∑
k=1

Ẇk (4.13b)

f (x, y(x)) = f1(x, y(x)) + f2(x, y(x)) (4.13c)

Here, Fj denotes the molar flowrate of A or B into the process; ψi is the mol fraction of A,

B, or C in the product stream, which exits the process at rate FS. The heating and cooling

requirements of the heaters, reactor, and separator are denoted as Q̇h, and Ẇk is the power

load of the kth compressor. The costs of reagents and heat and power utilities are wj, wh

and we respectively, while wi refers to the value of species i in the product stream. The

demand cap is enforced via a quadratic penalty term that incurs an additional cost, scaled

by w3, when the process operates at value of FS that is different than F̄.

The design space was defined as the box domain X = [673, 250, 288, 140, 0.5]× [973, 450,

338, 170, 0.9] with the optimal solution located at x = (844, 346, 288, 170, 0.9). The perfor-

mance of the algorithms was measured across 25 trials. During each trial, all of the

algorithms ran for 100 iterations and were initialized using the same two points drawn

from a uniform distribution of X. The reactor and separator were treated as black-boxes,

and the compressors and heaters were assumed to be white-box elements. We defined

the intermediate functions as the purge to feed ratio of B, ηB, the product to purge ratio

of A, ηA, the purge to product ratio of C, ηC, and the utility requirements of the reactor

and separator, Q̇4 and Q̇5 respectively. By combining these with the white-box models

for the compressors and heaters, we were able to fully specify the system using only

five intermediates. For comparison, if we had chosen to model the elements in (4.13)

directly, we would have had 8 black-box functions, and we would not have been able to

68

use the white-box models for the recycle compressor and heater. Additionally, by nesting

some of the selected functions within each other, we were able to reduce the number of

inputs used by the GP models of most of the intermediates. The specific details on the

construction of the GP models for these can be found in Appendix B.1.1.

Figure 4.5: Performance comparison of the tested algorithms for the chemical process op-
timization problem based on (a) the best solution at the current iterate, (b) the best solu-
tion located by each algorithm during each trial, and (c) the distribution of the sampling
behavior across the 125 runs for each of the tested methods with the average behavior
shown in color.

The results shown in Figure 4.5 summarize the performance of the tested algorithms

across the 25 runs. We observed that BOIS outperformed the other methods. On average,

it beat out S-BO and MC-BO by 1.2% and 3.3% respectively in terms of solution value.

While OP-BO returned a similarly-valued solution, it required approximately 30 more

69

iterations to find it. BOIS was also remarkably robust, it consistently arrived at the global

optimum regardless of where it was initialized. Again, OP-BO performed similarly, it

located a solution within 1% of the global optimum at every trial. S-BO and MC-BO

exhibited significantly more variability with S-BO appearing to be especially sensitive to

the initial guess. Note that MC-BO was unable to find the global solution.

The comparatively worse performances of S-BO and MC-BO were likely due to the

fact that, as shown on the right side of Figure 4.5, neither of these algorithms appeared

to converge to a solution within 100 iterations. S-BO, especially, continued to sample

from highly sub-optimal regions late into each trial. This indicates that the algorithm

struggled to learn the flow penalty, and provides a clear demonstration of the advantages

of employing a composite representation of f . The sampling behavior of the composite

BO algorithms was significantly less variable as they were provided with a representation

of the performance function that includes the flow penalty, allowing them to effectively

identify the regions of the design space that minimize its value. S-BO, meanwhile, did

not have access to this information and could only learn it by sampling, which is clearly

an ineffective method.

In the case of MC-BO, we surmise that its behavior was likely the result of the need for

a greater number of samples. We observed that the performance function was sensitive

to changes in the value of the intermediate functions. At a given x with S = 100, different

evaluations of the LCB-MCBO AF could return values that differed by over 10%. This

made the AF optimization step more likely to recommend a sub-optimal sampling point

as it actually calculated a range of utility values rather than a single, replicable value

as is the case in S-BO, OP-BO, and BOIS. While a solution to this problem would be to

increase the value of S, this would also increase the computational cost of the algorithm.

This highlights the advantage of utilizing the more specialized methods employed by OP-

BO and BOIS to obtain a closed-form representation of the acquisition function/auxiliary

problem over the more general Monte Carlo estimation approach.

We used the difference between the total execution time and total system sampling

70

Figure 4.6: Computational intensity of the tested algorithms for solving the chemical
process optimization problem measured as the difference between the total execution
time and total system sampling time.

time of each algorithm as a measurement of its computational intensity. This metric is

largely dominated by AF or auxiliary problem optimization step, which is the distin-

guishing feature between MC-BO, OP-BO, and BOIS. From the results shown in Figure

4.6 we can observe that, unsurprisingly, S-BO was the least computationally intensive of

the algorithms tested, clocking in at an average time of 619 seconds. Given that it di-

rectly models the performance function, S-BO only needs to sample from its GP model

to obtain the required mean and uncertainty estimates; this makes the evaluation of its

AF faster. Additionally, due to fact that it contains several white-box elements that need

to be evaluated, calculating f (x, y) does require more computational time than sampling

from GP ℓ
f . However, as discussed above, this streamlined approach comes at the cost

of decreased performance. Among the three composite function BO algorithms, BOIS,

with an average time of 1952 seconds, was 41% faster than MC-BO (2758 seconds) and

3.3 times faster than OP-BO (6398 seconds). This result, coupled with the strong perfor-

mance of BOIS, demonstrates that not only is the LCB-BOIS AF able to effectively direct

the search for the optimal solution, but it also requires significantly less computational

resources to optimize. While OP-BO achieved a similar level of performance, its efficiency

was significantly hampered by the need to optimize the auxiliary problem over x and y.

As these are both five dimensional, solving (4.5) involves navigating a ten-dimensional

space, significantly increasing the computational time required to solve this problem com-

71

pared to the AF optimization step of any of the other algorithms. MC-BO, while 2.3 times

faster than OP-BO, was ultimately unable to match BOIS in either performance or speed.

In summary, these observations affirm the claim that BOIS is an effective paradigm for

composite function BO as it was clearly able to match or surpass the existing methods in

terms of both performance and computational efficiency.

Figure 4.7: Parity plots of the estimates of mℓ
f (x) (a) and σℓ

f (x) (b) for (4.13) and log10
of the time required to generate the estimates (c) at 500 points in X using BOIS with
ϵ = ŷ× 10−3 and MC-BO with samples sizes S = 10, 102, and 103; the same trained GP
model of y(x) was used by both algorithms.

To confirm that BOIS provides accurate estimates of mean and uncertainty of f , we

compared the values calculated by BOIS for mℓ
f (x) and σℓ

f (x) with those obtained from

MC-BO. We know that as we increase the number of samples, (4.3) will return values

closer to the true moments of f . Using a trained GP model of y(x), we calculated m̂ℓ
f (x)

and σ̂ℓ
f (x) at 500 randomly selected points in X using 10, 100, and 1000 samples. If

the values calculated by BOIS in (4.12) are accurate, the difference between these values

and those returned by MC-BO should decrease as S increases. The results presented

on the left side of Figure 4.7 demonstrate that this was precisely the case. While the

estimates for mℓ
f (x) remained fairly constant across the various values of S, the estimates

72

for σℓ
f (x) were significantly more dynamic. Remarkably, we observed that BOIS estimated

the uncertainty of f with the same degree of accuracy as MC-BO with 1000 samples.

We also observed that the amount of time required to generate these estimates, shown

on the the right side of Figure 4.7, was two orders of magnitude lower when we used

BOIS than when we used MC-BO with S = 1000. These results demonstrate that the

adaptive linearization scheme employed by BOIS is not only fast but also accurate, further

emphasizing that this method provides BOIS with a significant advantage over algorithms

that rely on sampling-based estimation techniques.

4.4.2 Design of a photobioreactor

Nutrient management is a key challenge facing the agriculture sector as current practices

are unsustainable. Processes that allow for nutrient recycling offer a potential solution to

this issue. One such process involves the production of a cyanobacteria (CB) biofertilizer

from animal waste. At the center of this operation is a bag photobioreactor (b-PBR) in

which CB is grown. Due to the novelty of this application, this unit has not been widely

studied and must be designed experimentally. However, computational methods like BO

can aid in the identification of reactor settings that optimize overall process performance.

In this case study, we considered the deployment of a biofertilizer production facility

coupled with biogas generation using the waste produced at a hypothetical 1000 animal

unit dairy farm. We measured performance using the minimum selling price (MSP)

that the biofertilizer must be sold at to achieve a 15% discounted return on investment

(DROI) over a 10 year project lifetime. The b-PBRs were modeled as black-boxes while

the remaining units (anaerobic digester, biogas purification and CB harvesting section)

were treated as white-boxes that make use of existing models (see A.1.2). Our goal was to

identify the settings for three key reactor parameters: surface area to volume ratio (m−1),

batch time (days), and CB nutrient density (mass fraction), that minimize the MSP.

We defined the design space as the box domain X = [11.5, 22.5, 0.013]× [19.2, 37.5, 0.154].

73

Note that the MSP function is a highly multi-modal function within this domain and the

global solution is located at [15.4, 30, 0.056]. Given that the b-PBR is the only black-box in

the system, it did not make sense to include all of the elements of the MSP function (ma-

terial flows and unit sizes) in y(x) as this unnecessarily increases its dimensionality. Thus,

we instead opted to use two intermediate functions that enabled the full specification of

the reactor: the total reactor volume, and the final CB titer (see B.1.2). In addition to

reducing the size of y(x), this selection allowed for the development of a b-PBR surrogate

model that is highly refined in the regions near the optimum. The performance of each

algorithm was measured across 125 trials, each initialized with a different pair of points

selected from a 5× 5× 5 grid of the design space. During each trial, all of the algorithms

ran for 50 iterations and used the same set of initialization points.

The performance profiles shown in Figure 4.8 illustrate that BOIS outperformed S-BO

and MC-BO by and average 5.4% and 1.6% respectively. While OP-BO was able to locate

the same optimum as BOIS, we observed that, on average, it took 10 additional iterations

to find this point. BOIS was also the only algorithm that appeared to consistently con-

verge by the end of each trial. While BOIS explored extensively during the first half of

each trial, after approximately 40 iterations it tended to switch to exploiting the region

near the optimum. Meanwhile, S-BO, MC-BO, and OP-BO continued to sample from

sub-optimal regions, even at the end of each trial. From this, we can conclude that BOIS

was able to navigate the design space more efficiently and could differentiate between

optimal and sub-optimal regions more quickly than the other methods. Note that this

increase in speed did not come at the expense of a decreased solution value as BOIS did

not get trapped in a local optimum during any of the trials.

In terms of robustness, we observed that OP-BO and BOIS were able to arrive at

the same solution regardless of where they were initialized. MC-BO exhibited some

sensitivity, with best solution values located in each trial varying between -1.1% to 2.0%

from the average minimum value. As was seen in the previous case study, this stems from

the fact that the value returned by the LCB-CF AF at a given x varies between evaluations.

74

Figure 4.8: Performance comparison of the tested algorithms for the photobioreactor de-
sign problem based on (a) the best solution at the current iterate, (b) the best solution
located by each algorithm during each trial, and (c) the distribution of the sampling be-
havior across the 125 runs for each of the tested methods with the average behavior shown
in color.

75

This can make if difficult to ascertain the true utility value of sampling at x, increasing

the chance of selecting a sub-optimal sample point. However, it is worth noting that the

variability observed for MC-BO was significantly less than what was observed for S-BO,

which returned values across an almost 10% range (-4.0% to 5.9%) around the average

minimum value. This extreme sensitivity was likely due to the fact that the MSP is a

difficult function to learn as it is highly non-smooth. As a result, S-BO was unable to

construct a good surrogate model of the performance function, causing it to struggle to

navigate the design space. Meanwhile, the composite function BO algorithms were tasked

with learning functions that are comparatively much simpler and were thus better able to

predict the behavior of the performance function. This demonstrates that, in addition to

the structural system knowledge it provides, the ability to to shift the learning task from

a complex function to a set of simpler and easier-to-learn intermediate functions is a key

advantage of using composite function BO over S-BO; this feature is part of the reason

why MC-BO, OP-BO and BOIS all outperformed S-BO.

Figure 4.9: Computational intensity of the tested algorithms for solving the photobioreac-
tor design problem measured as the difference between the total execution time and total
system sampling time.

Figure 4.9 illustrates the computational time (sampling time not included) required

by the algorithms to complete one trial. With an average time of 66 seconds, S-BO was

the least intensive algorithm, beating out its closest competitor by almost an order of

magnitude. However, its poor performance indicates that, despite being a fast-running

algorithm, it is not the best choice for solving the problem. From among the remaining

76

algorithms, BOIS was the fastest method. At 619 seconds, it outpaced OP-BO by 55% and

MC-BO by 104%. Note that in this case study, OP-BO was faster than MC-BO, which is

the opposite of what was observed in 4.4.1. This highlights the fact that the comparative

intensity of these two methods is variable. At low values of dx and dy MC-BO is the more

computationally expensive algorithm. However, as the dimensions of x and y increase, the

time required to solve the auxiliary problem over the larger space increases to the point

that the computational intensity of OP-BO becomes greater. Meanwhile, because BOIS

utilizes a set of closed-form expressions to estimate mℓ
f (x) and σℓ

f (x), it always requires

fewer operations to evaluate its AF than MC-BO and this AF is always optimized over a

smaller space than the auxiliary problem in OP-BO. As a result, BOIS is able to maintain

a consistent speed advantage over both MC-BO and OP-BO and appears to be a more

scalable method for composite function BO.

Using the same approach as in chemical process optimization study, we estimated

the values mℓ
f (x) and σℓ

f (x) at 500 randomly selected points using BOIS and MC-BO.

From these estimates, which are shown in Figure 4.10, we can conclude that BOIS was

once again able to generate highly accurate estimates of the statistical moments of the

performance function. These results also proved that the adaptive linearization scheme

is able to accurately estimate the behavior of a complex function like the MSP without

necessarily requiring additional computational time. In fact, the relative differences in the

generation times shown on the right side of Figure 4.10 were fairly similar to what was

observed in the previous case study.

If we specifically look at the spread of the estimates for σℓ
f (x) calculated by BOIS vs

those calculated by MC-BO when S = 1000, we observe that there appears to be a slight

bias in the direction that the data points deviate from the center line. We believe that

this is likely due to the fact that the intermediate functions are not actually symmetric

as is assumed by the GP models (i.e., CB titer and reactor volume cannot be negative).

This issue becomes especially poignant when mℓ
y(x) is near the feasibility bounds of any

one of the intermediate functions, as the distribution of y(x) spans values that are not

77

permissible. We attempted to mitigate this problem by clipping the value of mℓ
y(x) to the

corresponding upper or lower bound when it was outside of its allowable range as shown

in (4.10). This provides BOIS with a workable solution as it ensures that only feasible

values of ŷℓ and ŷℓ0 are passed into f (x, y). However, because MC-BO samples from the

distribution to select the values of y, it can still select infeasible values. As a result, we

had to clip sampled values of y to l̂y or ûy when they were outside of their permissible

range. This caused the calculated density of f to not be symmetric and thus different

from the density calculated by BOIS. While this indicates that the Laplace approximation

does not provide an accurate representation of the density of f near the bounds of the

intermediate functions, we should note the the numerical results we presented indicate

that this was not an issue. This demonstrates that, despite assuming an incorrect shape,

BOIS was still able to generate performance and informational value estimates that were

at least consistent with those of the true underlying distribution. Additionally, it should

be noted that at points where mℓ
y(x) was not near a boundary, which was the case for the

majority of those selected, the approximation was still remarkably accurate.

4.5 Conclusions and Future Work

We presented the BOIS framework, a method designed to facilitate the use of composite

functions f (x, y(x)) in a BO setting. Composite performance functions offer an intuitive

way for exploiting structural knowledge (in the form of physics or sparse interconnec-

tions) and enable the integration of available white-box models. Additionally, this ap-

proach provides significant flexibility in selecting the black-box elements and setting up

the corresponding surrogate models (i.e., the inputs can be customized). This can enable

a reduction in the dimensionality of y(x) as well as in the inputs of the corresponding GP

models, which improves the scalability of the algorithm. Additionally, we can specifically

opt to consider intermediates of interest in order to develop surrogate models for these

that are highly-refined in regions around any explored optima.

78

Figure 4.10: Parity plots of the estimates of mℓ
f (x) (a) and σℓ

f (x) (b) for the MSP function
and log10 of the time required to generate the estimates (c) at 500 points in X using BOIS
with ϵ = ŷ× 10−3 and MC-BO with samples sizes S = 10, 102, and 103; the same trained
GP model of y(x) was used by both algorithms.

We benchmarked the performance of BOIS against standard Bayesian optimization

and two existing composite function BO algorithms (MC-BO and OP-BO) using two case

studies centered around chemical engineering optimization and design problems. Our

results showed that BOIS significantly outperformed S-BO and was able to match or beat

the performances of MC-BO and OP-BO while being significantly less computationally

intensive. We also demonstrated that the values of the statistical moments of f estimated

by the adaptive linearization scheme we propose are generally very accurate and require

significantly less time to compute compared to Monte Carlo estimates of comparable

accuracy. However, we did observe a reduction in the accuracy of these predictions in re-

gions near the feasibility limits of the intermediate functions. This is due to the symmetry

assumption made by the GPs causing a significant portion of the calculated distribution

of y(x) to span non-permissible values in these regions. It should be noted, though,

that BO is not limited to using GPs to construct the surrogate model; any probabilistic

model can be used. Therefore, we would like to explore the use of alternatives such as

79

warped GPs [57], RNNs [124], and reference models [115] as potential solutions to this

issue. Additionally, we are also interested in investigating the performance of BOIS in

high-dimensional systems and in developing alternative types of AFs that can extend the

functionality of the algorithm, such as enabling parallelization.

80

Part II

F R O M S E Q U E N C E S T O B AT C H E S

81

Chapter 5

N E W PA R A D I G M S F O R E X P L O I T I N G PA R A L L E L E X P E R I M E N T S

I N B AY E S I A N O P T I M I Z AT I O N

This chapter is adapted with permission from González and Zavala. Computers and Chem-

ical Engineering 170 (2023): 108110. Copyright 2023 Elsvier.

5.1 Introduction

The use of high-throughput experimental (HTE) platforms is accelerating scientific dis-

covery in diverse fields such as catalysis [125], pharmaceuticals [126], synthetic biology

[127], and chemical engineering [128]. Such platforms permit large numbers of experi-

ments to be executed in parallel, sometimes automatically; this enables the exploration of

wider design spaces, reduces time to discovery, and can potentially decrease the use of

resources. However, due to the large number of design variables involved, determining

optimal conditions manually is often infeasible. As a result, HTE platforms rely on the

use of design of experiments (DoE) algorithms, which aim to systematically explore the

design space.

Screening is a simple DoE approach in which experiments are performed at points on

a discretized grid of the design space [129]; this approach is intuitive but does not scale

well with the number of design variables and can ultimately lead to significant waste of

82

resources (conduct experiments that do not provide significant information). The central

aim of advanced DoE approaches is to maximize the value provided by each experiment

and ultimately reduce the number of experiments and resources used (e.g., experiment

time). The value of an experiment is usually measured either by information content

(e.g., reduces model uncertainty) or if it results in a desirable outcome (e.g., improves an

economic objective) [104]. A widely used DoE approach that aims to tackle this problem

is response surface methodology or RSM [23]. This approach is generally sample-efficient

(requires few experiments) but uses second-degree polynomial surrogate models that

can fail to accurately capture system trends. In addition, parameters used in the RSM

surrogate model are subject to epistemic uncertainty and this uncertainty is not resolved

via further experiments [62] (i.e., RSM is an open-loop DoE technique).

Another powerful approach for DoE that aims to maximize value of experiments is

Bayesian experimental design [130]. Recently, the machine learning (ML) community has

been using variants of this paradigm to conduct closed-loop experimental design [131].

One of the most effective variations of this paradigm is the Bayesian optimization (BO)

algorithm [132]; BO has been shown to be sample-efficient and scalable (requires minimal

experiments and can explore large design spaces) [73]. BO is widely used in applications

such as experimental design, hyper-parameter tuning, and reinforcement learning. Of

particular interest is the flexibility of the BO paradigm; it is capable of accommodating

both continuous and discrete (e.g., categorical) design variables as well as constraints

(which help encode domain knowledge and restrict the design space) [69]. Additionally,

BO uses probabilistic surrogate models (e.g. Gaussian process models) which greatly

facilitates the quantification of uncertainty and information in different regions of the

design space [28]. This feature is particularly useful in guiding experiments where in-

formation gain can be as important as performance. BO can also be tuned to emphasize

exploration (sampling from regions with high uncertainty) over exploitation (sampling

from regions with high economic performance) [76]. This trade-off is achieved by tun-

ing the so-called acquisition function (AF), which is a composite function that captures

83

uncertainty and performance.

A fundamental caveat of BO is that it is inherently a sequential algorithm (samples

a single point in the design space at each iteration), limiting its ability to exploit HTE

platforms. Modifications to the BO algorithm have been proposed in the literature to

overcome these limitations [133, 134, 135]. Relevant variants include Hyperspace par-

titioning [136], batch Bayesian optimization [137], NxMCMC [42], and AF optimization

over a set of exploratory designs [138]. These parallel BO approaches have been shown

to perform better than sequential BO in terms of search time [139]. However, these ap-

proaches are limited in the degree of parallelization that can be achieved and can lead to

redundant experiments, thus wasting resources and potentially getting trapped in local

solutions.

In this chapter, we present a set of new parallel BO paradigms that exploit the struc-

ture of the system in order to guide the partitioning of the design space (see Figure 5.1).

Our first approach, which we call level-set partitioning, decomposes the design space by

following the level sets of the performance function. Because the performance function

cannot be evaluated (it is unknown), a key feature of this approach is that it leverages a

reference function (which can be a low-fidelity model or a physics model) to approximate

the level sets and guide the partitioning. Our second approach, called variable partitioning,

partitions the design space by exploiting partially separable structures that typically result

when a system is composed of multiple subsystems (e.g., a chemical process is composed

of multiple units). We benchmark the performance of our approaches over sequential BO

and state-of-the-art parallel BO variants from the literature using a reactor system. Our

results show that the proposed approaches can achieve significant reductions in search

time. In addition, we observe improvements in performance values found and in search

robustness (sensitivity to initial guess).

84

Figure 5.1: Schematic of proposed BO parallelization paradigms using level set partition-
ing (left) and variable partitioning (right).

5.2 Parallel Bayesian Optimization

The DoE approach most commonly used in HTE platforms is screening. This is a grid-

search method that discretizes the design space X into a set of experiments xk ∈ X, k ∈

K = {1, ..., K} (we denote this set compactly as xK). The performance of the system is

then evaluated (potentially in parallel) at these points to obtain fK and the experiments

that achieve the best performance are selected. This screening approach provides good

exploratory capabilities, but it is not scalable in the sense that the number of trial experi-

ments needed to cover the design space grows exponentially with the number of design

variables, dx, and with the width of the space X. Moreover, this approach cannot be guar-

anteed to find an optimal solution. The S-BO framework provides a more sample-efficient

(typically require few experiments to identify optimal performance) and closed-loop alter-

native for DoE, but it is inherently sequential. Several approaches for proposing multiple

experiments per cycle have been developed, each with varying degrees of complexity and

sample efficiency. These parallel BO variants can grouped into four main parallelization

85

paradigms: AF optimization over a set of hyperparameters, design space partitioning,

fantasy sampling, and AF optimization over a batch of points. The most used approach is

the NxMCMC method, which falls under the fantasy sampling paradigm, and is used in

popular BO packages such as Spearmint [140]. We now proceed to discuss the specifics

of different existing algorithms that are based on these parallelization paradigms.

5.2.1 Hyperparameter Sampling Algorithm (HP-BO)

The hyperparameter sampling algorithm (which we refer to as HP-BO) identifies a new

batch of experiments xℓ+1
K by optimizing the acquisition function AF ℓ

f (x; κk) using K dif-

ferent values of the exploratory hyperparameter κk, k ∈ K. In other words, we obtain the

new experiments by solving:

xℓ+1
k ← argmin

x
AF ℓ

f (x; κk) (5.1a)

s.t. x ∈ X (5.1b)

for k ∈ K. The hyperparameter values κk, can be selected manually or sampled from a

distribution. In the approach that we consider here, we generate the values by sampling

from an exponential distribution, κ ∼ E(λ), with rate parameter λ = 1 as shown in [138].

Once the batch of experiments has been determined, we can evaluate their performance

(in parallel) to obtain f ℓ+1
K = f (xℓ+1

K) and update the dataset Dℓ+1 ← Dℓ ∪
{

xℓ+1
K , f ℓ+1

K

}
.

The updated dataset is then used to train a new GP, GP ℓ+1
f , which is used to form a

new acquisition function, AF ℓ+1
f , and to compute a next batch of experiments xℓ+2

K . The

process is repeated over multiple cycles. The pseudocode for implementing HP-BO is

shown in Algorithm 7.

The main advantages of HP-BO are that it is easy to implement, that it is highly paral-

lelizable, and that it allows for the selection of experiments under various exploration and

exploitation settings (eliminating the need for tuning κ). The effect of the hyperparame-

86

<latexit sha1_base64="dqw4XLk6LkAP3Z//LzSKG3mnatI=">AAAB9XicbVA9SwNBEJ2LXzF+RS1tFhPB6rhNoTZCwMYygvmA5Ax7m71kyd7esbunhCP/w8ZCEVv/i53/xk1yhSY+GHi8N8PMvCARXBvP+3YKa+sbm1vF7dLO7t7+QfnwqKXjVFHWpLGIVScgmgkuWdNwI1gnUYxEgWDtYHwz89uPTGkey3szSZgfkaHkIafEWOmh2huTJCF9fO25uNovVzzXmwOtEpyTCuRo9MtfvUFM04hJQwXRuou9xPgZUYZTwaalXqpZQuiYDFnXUkkipv1sfvUUnVllgMJY2ZIGzdXfExmJtJ5Ege2MiBnpZW8m/ud1UxNe+RmXSWqYpItFYSqQidEsAjTgilEjJpYQqri9FdERUYQaG1TJhoCXX14lrZqLL1x8V6vUa3kcRTiBUzgHDJdQh1toQBMoKHiGV3hznpwX5935WLQWnHzmGP7A+fwBTxuRBw==</latexit>

1 = 0.1
<latexit sha1_base64="X6HItgj0a2OLuLiBWJKEBV2U950=">AAAB9XicbVA9SwNBEJ2LXzF+RS1tFhPB6ri7Qm2EgI1lBPMByRn2Nptkyd7esrunhCP/w8ZCEVv/i53/xk1yhSY+GHi8N8PMvEhypo3nfTuFtfWNza3idmlnd2//oHx41NRJqghtkIQnqh1hTTkTtGGY4bQtFcVxxGkrGt/M/NYjVZol4t5MJA1jPBRswAg2VnqodsdYStwLrn3Xq/bKFc/15kCrxM9JBXLUe+Wvbj8haUyFIRxr3fE9acIMK8MIp9NSN9VUYjLGQ9qxVOCY6jCbXz1FZ1bpo0GibAmD5urviQzHWk/iyHbG2Iz0sjcT//M6qRlchRkTMjVUkMWiQcqRSdAsAtRnihLDJ5Zgopi9FZERVpgYG1TJhuAvv7xKmoHrX7j+XVCpBXkcRTiBUzgHHy6hBrdQhwYQUPAMr/DmPDkvzrvzsWgtOPnMMfyB8/kDUKaRCA==</latexit>

2 = 1.0
<latexit sha1_base64="mCodgMb+VhJUFhDDYeFSz9luR9A=">AAAB9HicbVA9SwNBEJ2LXzF+RS1tDhPBKtxFUBshYGMZwcRAcoS5zSZZsre37u4FwpHfYWOhiK0/xs5/4ya5QhMfDDzem2FmXig508bzvp3c2vrG5lZ+u7Czu7d/UDw8auo4UYQ2SMxj1QpRU84EbRhmOG1JRTEKOX0MR7cz/3FMlWaxeDATSYMIB4L1GUFjpaDcGaGU2L248b1yt1jyKt4c7irxM1KCDPVu8avTi0kSUWEIR63bvidNkKIyjHA6LXQSTSWSEQ5o21KBEdVBOj966p5Zpef2Y2VLGHeu/p5IMdJ6EoW2M0Iz1MveTPzPayemfx2kTMjEUEEWi/oJd03szhJwe0xRYvjEEiSK2VtdMkSFxNicCjYEf/nlVdKsVvzLin9fLdWqWRx5OIFTOAcfrqAGd1CHBhB4gmd4hTdn7Lw4787HojXnZDPH8AfO5w/jg5DR</latexit>

3 = 10

<latexit sha1_base64="hEtcS6FZatxcVBSZK2FFxULCKm8=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BFtBEMqmB/VY8OKxgv2Adluy6Wwbms0uSVYtS/+HFw+KePW/ePPfmLZ70NYHA4/3ZpiZ58eCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWUKAYNFolItX2qQXAJDcONgHasgIa+gJY/vpn5rQdQmkfy3kxi8EI6lDzgjBor9cpPfdJLuyDEBZmW+8WSW3HnwKuEZKSEMtT7xa/uIGJJCNIwQbXuEDc2XkqV4UzAtNBNNMSUjekQOpZKGoL20vnVU3xmlQEOImVLGjxXf0+kNNR6Evq2M6RmpJe9mfif10lMcO2lXMaJAckWi4JEYBPhWQR4wBUwIyaWUKa4vRWzEVWUGRtUwYZAll9eJc1qhVxWyF21VKtmceTRCTpF54igK1RDt6iOGoghhZ7RK3pzHp0X5935WLTmnGzmGP2B8/kDJyuRlQ==</latexit>

x`+1
1

<latexit sha1_base64="6QFGcpF/JMRENMw9SL0XRGL2ifY=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BFtBEEqSg3osePFYwX5Am5bNdtou3WzC7kYtof/DiwdFvPpfvPlv3LY5aOuDgcd7M8zMC2LOlHacbyu3tr6xuZXfLuzs7u0fFA+PGipKJMU6jXgkWwFRyJnAumaaYyuWSMKAYzMY38z85gNKxSJxrycx+iEZCjZglGgjdctPPa+bdpDzC3da7hVLTsWZw14lbkZKkKHWK351+hFNQhSacqJU23Vi7adEakY5TgudRGFM6JgMsW2oICEqP51fPbXPjNK3B5E0JbQ9V39PpCRUahIGpjMkeqSWvZn4n9dO9ODaT5mIE42CLhYNEm7ryJ5FYPeZRKr5xBBCJTO32nREJKHaBFUwIbjLL6+ShldxLyvunVeqelkceTiBUzgHF66gCrdQgzpQkPAMr/BmPVov1rv1sWjNWdnMMfyB9fkDKLmRlg==</latexit>

x`+1
2

<latexit sha1_base64="WbpBJJfagaYKSUsXZEcNOD52kKk=">AAAB9XicbVBNS8NAEJ34WetX1aOXYCsIQkkqqMeCF48V7Ae0adlsJ+3SzSbsbtQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8w8P+ZMacf5tlZW19Y3NnNb+e2d3b39wsFhQ0WJpFinEY9kyycKORNY10xzbMUSSehzbPqjm6nffECpWCTu9ThGLyQDwQJGiTZSt/TUu+imHeT83J2UeoWiU3ZmsJeJm5EiZKj1Cl+dfkSTEIWmnCjVdp1YeymRmlGOk3wnURgTOiIDbBsqSIjKS2dXT+xTo/TtIJKmhLZn6u+JlIRKjUPfdIZED9WiNxX/89qJDq69lIk40SjofFGQcFtH9jQCu88kUs3HhhAqmbnVpkMiCdUmqLwJwV18eZk0KmX3suzeVYrVShZHDo7hBM7AhSuowi3UoA4UJDzDK7xZj9aL9W59zFtXrGzmCP7A+vwBKkeRlw==</latexit>

x`+1
3

Figure 5.2: HP-BO optimizes the AF for a set of hyperparameters κk, k ∈ K to obtain
experiments xk, k ∈ K that can be evaluated in parallel. Here, we show an example with
K = 3.

ter κ on the AF is highlighted in Figure 5.2. However, in this approach it is not possible

to prevent the proposal of redundant experiments and, as the algorithm converges, the

suggested experiments can begin to cluster in a region of low uncertainty (this can cause

the algorithm to get trapped at local solutions). The HP-BO algorithm can be easily be

extended to incorporate a reference function g. In this case, the GP learns the residual

instead of the performance function.

Algorithm 7: Hyperparameter Sampling BO (HP-BO)

Given κk, K, L, and Dℓ;
Train GP GP ℓ

f using Dℓ and obtain AF ℓ
f (x; κk), k ∈ K;

for ℓ = 1, 2, ..., L do
for k ∈ K do

Compute experiment xℓ+1
k ← argminxAF

ℓ
f (x; κk) s.t. x ∈ X;

Evaluate performance at xℓ+1
k to obtain f ℓ+1

k ;
end

Update data Dℓ+1 ← Dℓ ∪
{

xℓ+1
K , f ℓ+1

K

}
;

Train GP using Dℓ+1 to obtain GP ℓ+1
f and AF ℓ+1

f (x; κk), k ∈ K;
end

87

5.2.2 HyperSpace Partitioning Algorithm (HS-BO)

The HyperSpace partitioning algorithm (which we refer to as HS-BO) was presented in

[136]. This parallelizes BO by partitioning the design space X into K equally-sized blocks

Xk ⊆ X, k ∈ K. Importantly, this approach does not use a surrogate GP model over

the entire design space. Instead, a separate GP model is constructed at each partition Xk

and is updated using only information collected within this partition. Specifically, each

partition k ∈ K builds a GP, GP ℓ
f ,k ∼ N (mℓ

f ,k(x), (σℓ
f ,k(x))2), that is used to construct an

acquisition function, AF ℓ
f ,k(x; κ). With this, we can obtain a set of new experiments by

solving the following subproblems:

xℓ+1
k ← argmin

x
AF ℓ

f ,k(x; κ) (5.2a)

s.t. x ∈ Xk (5.2b)

for k ∈ K. The domain partitions can also be constructed to have a certain degree of

overlap. Specifically, an overlap hyperparameter ϕ ∈ [0, 1] is introduced to allow the

partitions to share a fraction of the design space. A value of ϕ = 0 indicates that the

partitions are completely separate, while a value of ϕ = 1 indicates that Xk = X for

k ∈ K (the partitions are copies of the full design space); this is shown in Figure 5.3.

The overlap hyperparameter provides a communication window, allowing the GP model

of a given partition to observe system behavior beyond its prescribed partition (share

information with other partitions). This, however, introduces a fundamental trade-off.

From a parallelization perspective it is desirable that ϕ is small, but from a convergence

perspective (e.g., reducing number of iterations) it might be desirable that ϕ is large. A

similar trade-off is observed as one decreases or increases the number of partitions, K. As

such, there is a complex interplay between the hyperparameters K and ϕ, and these need

to be tuned. Similar types of trade-offs have been observed in the context of overlapping

decomposition approaches for optimization problems defined over graph domains [141].

88

In the implementation reported in [136], the number of partitions is set to K = 2dx .

Figure 5.3: HS-BO partitions the domain X into K = 2dx subdomains and runs a separate
instance of S-BO within each partition. A hyperparameter ϕ is introduced to define the
degree of overlap in the partitions (the overlapping region aims to share information
across subdomains). When ϕ = 0 there is no overlap between the partitions and when
ϕ = 1 we have that all partitions are the entire domain X.

The HS-BO approach, summarized in Algorithm 8, is easy to implement, is scalable

to high-dimensional spaces, and enables the development of GP models for systems that

may exhibit different behaviors at various regions of the design space (compared to using

a single GP model that captures the entire design space). HS-BO also eliminates redun-

dant sampling by forcing the algorithm to sample from distinct regions of the design

space. This results in a more thorough search, which improves the probability that the

global solution will be located. Domain partitioning is, in fact, a paradigm widely used

in global optimization. A limitation of HS-BO is that the partitions are boxes of equal

size (this can limit capturing complex shapes of the performance function); moreover,

one needs to tune K and ϕ. In principle, it might be possible to extend this approach to

account for automatic tuning and adaptive partitions, but this would require much more

difficult implementations that carefully trade-off parallelization and convergence (this is

left as a topic of future work). The HS-BO approach can also be easily executed using a

reference model by learning the residual instead of the performance function.

89

Algorithm 8: HyperSpace Partitioning (HS-BO)

Given κ, K, L, ϕ, and Dℓ;
Partition X into Xk ⊆ X, k ∈ K with overlap ϕ;
Split initial data into domains Dℓ

k, k ∈ K;
for k ∈ K do

Train GP GP ℓ
f ,k in Xk using Dℓ

k and obtain AF ℓ
f ,k;

end
for ℓ = 1, 2, ..., L do

for k ∈ K do
Compute experiment xℓ+1

k ← argminxAF
ℓ
f ,k(x; κ) s.t. x ∈ Xk;

Evaluate performance at xℓ+1
k to obtain f ℓ+1

k ;

Update data Dℓ+1
k ← Dℓ

k ∪
{

xℓ+1
k , f ℓ+1

k

}
;

Train GP using Dℓ+1
k to obtain GP ℓ+1

f ,k and AF ℓ+1
f ,k ;

end
end

5.2.3 N×MCMC Algorithm (MC-BO)

The N×MCMC (N times Markov Chain Monte Carlo) algorithm is a popular approach

used for proposing multiple experiments [53]. We refer to this approach simply as MC-

BO. Assume that we currently have a set of experimental data Dℓ; we use this to generate

the GP GP ℓ
f , acquisition function AF ℓ

f , and to compute the next experiment xℓ+1
k for

k = 1. Our goal is now to obtain the remaining set of experiments xℓ+1
k , k = 2, ..., K that

we can use to evaluate performance. To do so, we consider a set of fantasy predictions

obtained by generating S samples, f̂ ℓs (xℓ+1
k), s ∈ S , from the GP. Here, the term fantasy

alludes to the fact that the evaluation of performance is based on the GP (and not on the

actual system). The fantasy data has the goal of creating an approximate AF. Specifically,

for each sample s, we generate a dataset D̂s = {xℓ+1
F , f̂ ℓs (xℓ+1

F)}, F = {1, ..., k}, and this

is appended to the existing dataset Dℓ ∪ D̂s. This data is then used to obtain a GP GP f ,s

and associated acquisition function ÂF f ,s. The AFs for all samples s ∈ S are collected

90

and used to compute the mean AF:

AF f (x; κ) =
1
S ∑

s∈S
ÂF f ,s(x; κ), x ∈ X. (5.3)

The new experiment is then obtained by solving:

xℓ+1
k+1 ← argmin

x
AF f (x; κ) (5.4a)

s.t. x ∈ X (5.4b)

To generate another experiment, we repeat the sampling process (using a new set of S

samples) and create a different mean acquisition function AF f , and we minimize this to

obtain xℓ+1
k+2. The sampling process is repeated until we obtain the full batch of new exper-

iments, xℓ+1
K . Once we have these, we evaluate the performance function at these points

(in parallel) to obtain the dataset {xℓ+1
K , f ℓ+1

K }, which we append to the data collection

Dℓ+1 ← Dℓ ∪ {xℓ+1
K , f ℓ+1

K }. We use this new data to re-train the GP of the performance

function and repeat the process. The framework for the MC-BO algorithm is presented in

Algorithm 9.

The MC-BO algorithm has proven to be an effective parallel extension of the BO al-

gorithm. However, computing the mean AF requires significant computational time (as

the GP model needs to be retrained continuously). This algorithm also has the tendency

to propose experiments that are close in the design space, especially when it begins to

converge. This does not necessarily pose an issue if the algorithm is converging to the

global solution. However, if the solution approached is local, this behavior can limit the

ability of the algorithm to escape this region. The MC-BO approach can be executed using

a reference model by simply learning the residual instead of the performance function.

91

Algorithm 9: N×MCMC BO Algorithm (MC-BO)

Given κ, K, S, L, and Dℓ;
Train GP GP ℓ

f using initial dataset Dℓ and obtain AF ℓ
f ;

for ℓ = 1, 2, ..., L do
Compute xℓ+1

k ← argminxAF
ℓ
f (x; κ) s.t. x ∈ X for k = 1;

for k = 1, ..., K− 1 do
for s ∈ S do

Generate fantasy dataset D̂s =
{

xℓ+1
F , f̂ ℓs (xℓ+1

F)
}

, F = {1, ..., k};
Use dataset Dℓ ∪ D̂s to train GP GP f ,s and obtain ÂF f ,s(x; κ);

end
Set AF f (x; κ)← 1

S ∑s∈S ÂF f ,s(x; κ);
Compute experiment xℓ+1

k+1 ← argminxAF f (x; κ) s.t. x ∈ X;
end
for k ∈ K do

Evaluate performance at xℓ+1
k to obtain f ℓ+1

k ;
end

Update data Dℓ+1 ← Dℓ ∪
{

xℓ+1
K , f ℓ+1

K

}
;

Train GP using Dℓ+1 to obtain GP ℓ+1
f and AF ℓ+1

f ;
end

5.2.4 Batch Bayesian Optimization Algorithm (q-BO)

The q-BO or batch Bayesian optimization algorithm uses a multipoint acquisition func-

tion, AF ℓ
q(xK; κ), like the q-LCB presented in [137], to select a batch of q experiments that

can be run in parallel. Unlike most adaptations of BO where the AF is optimized over a

single point, the q-LCB is optimized over a set of q points. By selecting the experiments

in a batch rather than independently, as in HP-BO, or sequentially, as in MC-BO, q-LCB

is able to measure the correlation between the suggested sample locations, allowing it to

more easily avoid the issue of redundant sampling. Given a desired batch size, the value

of a particular set of experiments xK is measured according to:

AF ℓ
q (xK; κ) =

1
S

S

∑
s=1

max
(

mℓ
q (xK)− κ · |Aℓ

q (xK) zs|
)

(5.5)

92

where mℓ
q (xK) ∈ Rq and Aℓ

q (xK) ∈ Rq×q are the GP mean and Cholesky factor of the GP

covariance (AAT = Σ) at a batch of points xK respectively, zs ∈ Rq is a random variable

with zs ∼ N (0, I), and | · | is the absolute value (element-wise) operator. The new batch

is then selected by solving:

xℓ+1
K ← argmin

xK
AF ℓ

q (xK; κ) (5.6a)

s.t. xK ∈ X (5.6b)

where, again, the optimization is done over the entire batch of q points in xK. The exper-

iments are then run (in parallel) and the collected performance measurements are used

to update the dataset Dℓ+1 ← Dℓ ∪ {xℓ+1
K , f ℓ+1

K }. This data is used to retrain the model

which enables the selection of the next batch of experiments. The pseudocode for q-BO

is summarized in Algorithm 10.

The q-BO algorithm has proven to be especially popular in the multi-objective opti-

mization setting and is, in principle, not difficult to implement. However, unlike single-

point AFs, multi-point AFs do not have a closed-form representation. As a result, con-

structing and optimizing AF ℓ
q(xK; κ) requires the use of numerical methods like Monte

Carlo, as seen in (5.5), making this an intensive process, especially as q increases. Ad-

ditionally, while the use of the Cholesky factor ensures that the algorithm cannot select

redundant experiments, safeguards must be placed when constructing the AF optimiza-

tion problem to ensure that the optimizer cannot select identical points as this will result

in the covariance matrix Σ (xK) being singular and cause the optimizer to fail. In this

work, that safeguard was implemented as a tolerance value, ϵ, that set the minimum al-

lowable distance between any two points within xK. We should note that while using this

strategy, we observed that q-BO can and does occasionally select points that are within

ϵ of each other. This can be practically as undesirable as redundant sampling, depend-

ing on the value of ϵ. A reference model can also be easily incorporated into the q-BO

approach by having the algorithm learn the residual instead of the performance function.

93

Algorithm 10: Batch Bayesian Optimization Algorithm (q-BO)

Given κ, K, S, L, and Dℓ;
Train GP GP ℓ

f using initial dataset Dℓ and obtain AF ℓ
q;

for ℓ = 1, 2, ..., L do
Compute xℓ+1

K ← argminxK
AF ℓ

q(xK; κ) s.t. xK ∈ X;
for k ∈ K do

Evaluate performance at xℓ+1
k to obtain f ℓ+1

k ;
end

Update data Dℓ+1 ← Dℓ ∪
{

xℓ+1
K , f ℓ+1

K

}
;

Train GP using Dℓ+1 to obtain GP ℓ+1
f and AF ℓ+1

q ;
end

5.3 Parallel Bayesian Optimization using Informed Partitioning

We propose new paradigms for parallel BO that conduct informed partitioning of the

design space. Specifically, we propose a domain partitioning approach (analogous to

HS-BO) that conducts partitioning by following the level sets of the performance func-

tion. Because the performance function cannot be easily evaluated, we use a reference

model to guide the partitioning. This approach allows us to leverage expert or physical

knowledge, which might highlight certain regions of the design space that are promis-

ing or non-promising (and with this prioritize). We also propose a variable partitioning

approach that aims to exploit partially separable structures that are commonly found in

complex systems. Specifically, in these systems the performance function is composed of

a collection of functions for different subsystems (but the functions are coupled together

via common variables). The key idea is then to search the design space by following this

separable structure, while sharing information between the coupling variables. We re-

fer to these paradigms as level-set partitioning BO (LS-BO) and variable partitioning BO

(VP-BO).

94

5.3.1 Level-Set Partitioning Algorithm (LS-BO)

LS-BO uses domain partitions of the design space X that follow the levels sets of the

reference function g. We recall that the α-level set (sublevel) of this scalar function is:

X̃(α) = {x ∈ X | g(x) ≤ α} ⊆ X (5.7)

for any α ∈ R. We now note that solving the AF optimization problem:

min
x
AF ℓ

f (x) (5.8a)

s.t. x ∈ X̃(α) (5.8b)

would force the BO algorithm to restrict the search over a restricted subdomain X̃(α).

However, solving this optimization problem can be difficult if g does not have an explicit

algebraic form (e.g., low-fidelity simulator) or has a complex form (e.g., physics model).

To overcome this limitation, we construct a GP model ĝ of g to define the approximate

level set:

X̂(α) = {x ∈ X|ĝ(x) ≤ α}. (5.9)

We use the previous basic observations to derive our domain partitioning approach; we

construct a set of domain partitions X̂k ⊆ X, k ∈ K by following different level-sets of the

function. Specifically, we construct the subdomains:

X̂k = {x ∈ X|αk ≤ ĝ(x) ≤ αk+1}, k ∈ K, (5.10)

We note that the subdomains are upper and lower bounded in order to obtain non-

overlapping partitions. The level set thresholds, αk, are set by discretizing the range of

ĝ(x). The simplest method for generating the subdomains is to uniformly discretize the

95

interval between the extreme lower and upper values of the reference model as follows:

αk = α1 + (k− 1)∆, k = 2, ..., K (5.11)

where ∆ = αK+1−α1
K , α1 = minx∈X ĝ(x), and αK+1 = maxx∈X ĝ(x). In cases where addi-

tional specificity is desired, the partitions can be further adapted by setting the intervals

according to various factors such as a focus on a particular region of the design space, the

desired level of exploration vs exploitation, the level of confidence in the quality of the

reference model, the geometry of ĝ(x), and so on. The partitioning approach is illustrated

in Figure 5.4.

Figure 5.4: Level set partitioning (LS-BO) uses the α-level sets of the reference g to split
X into subdomains X̃k, k ∈ K. Depending on the complexity of g, enforcing level set
constraints in the AF optimization problem can be difficult; therefore, the level sets are
approximated using the surrogate model ĝ.

As in S-BO, we begin with dataset Dℓ, which we use to build the GP GP ℓ
f and the

acquisition function AF ℓ
f . We then obtain a new set of suggested experiments, xℓ+1

K , by

solving the following collection of optimization problems:

xℓ+1
k ← argmin

x
AF ℓ

f (x) (5.12a)

s.t. x ∈ X̂k (5.12b)

for k ∈ K. Using the new experiments xℓ+1
K we evaluate system performance f ℓ+1

K (in

96

parallel) and we append the collected data to the dataset Dℓ+1 ← Dℓ ∪ {xℓ+1
K , f ℓ+1

K }. The

new dataset is used to update the GP GP ℓ+1
f and the acquisition function AF ℓ+1

f . A

summary of this procedure is presented in Algorithm 11.

Algorithm 11: Level-Set Partitioning BO (LS-BO)

Given κ, g, L, K and Dℓ;
Build surrogate ĝ of g;
Construct partitions X̂k ⊆ X, k ∈ K using level sets of ĝ;
Train GP GP ℓ

f with initial dataset Dℓ and obtain AF ℓ
f ;

for ℓ = 1, 2, ..., L do
for k ∈ K do

Compute experiment xℓ+1
k ← argminxAF

ℓ
f (x; κ) s.t. x ∈ X̂k;

Evaluate performance at xℓ+1
k to obtain f ℓ+1

k ;
end

Update Dℓ+1 ← Dℓ ∪
{

xℓ+1
K , f ℓ+1

K

}
;

Retrain GP using Dℓ+1 to obtain GP ℓ+1
f and AF ℓ+1

f ;
end

It is important to highlight that the LS-BO approach that we propose uses a GP model

of the performance function and an AF that are defined over the entire design space

X; this approach thus differs from HS-BO (which uses a different GP and AF in each

partition Xk). Moreover, we note that the partitioning of the space follows the level sets of

the reference function, and this allows us to concentrate experiments over regions that are

most promising. The proposed LS-BO approach can also be implemented in such a way

that the reference function is exploited to learn the residual (as opposed to learning the

performance function). As such, we can leverage the reference function for constructing

the domain partitions and for guiding the search.

5.3.2 Variable Partitioning Algorithm (VP-BO)

Many physical systems are typically composed of individual components that are par-

tially interconnected (e.g., they are modular). For instance, a chemical process includes

units (e.g., reactors and separations) that are interconnected, and the performance of each

97

unit contributes to the total system performance. Moreover, the performance of each unit

is typically strongly affected by the unit variables and less affected by variables of other

units. This partially separable structure can be captured as the following optimization

problem:

min
x ∑

k∈K
fk(xk; x−k) (5.13a)

s.t. x ∈ X (5.13b)

where fk : X → R is the performance contribution of component k. The entire set of

decision variables is split into K subsets as x = {x1, x2,, xK}, and we define x−k =

x \ {xk} (entire set of variables that does not include xk). We should note that the variable

partitions should be non-overlapping subsets (i.e., xi ∩ xj ̸=i = {0}, i, j ∈ K). Additionally,

we assume that that performance function can be decomposed as f = ∑
k∈K

fk.

VP-BO follows a Gauss-Seidel paradigm. Assume we have an initial set of data Dℓ =

{xℓK, f ℓK} and that we measure f1, ..., fK in each experimental module so that f ℓK ∈ Rℓ×K

rather than Rℓ as in the previous algorithms; note that this means that f ℓk corresponds to

the kth column of f ℓK. We optimize the individual performance of subcomponent k using

the variables xk, while keeping the rest of the variables x−k constant (to the values of the

previous iteration ℓ):

min
xk

fk(xk; xℓ−k) (5.14a)

s.t. (xk; xℓ−k) ∈ X (5.14b)

for k ∈ K. Accordingly, we decompose the AF optimization problem into the subprob-

98

lems:

xℓ+1
k ← argmin

xk

AF ℓ
fk
(xk; xℓ−k, κ) (5.15a)

s.t. (xk; xℓ−k) ∈ X. (5.15b)

for k ∈ K. Here, AF ℓ
fk

is the acquisition function of component k, which is built using

the surrogate GP ℓ
fk

of the performance fk. Moreover, xℓ−k is the value of the variables not

in partition k at the current iteration (which are held fixed when optimizing the AF ℓ
fk

).

We partition the variables by leveraging the reference model g. Specifically, we use

this reference to identify which variables have the most impact on individual components

of the system; this can be done in various ways. The most straightforward method would

be via inspection using a combination of information provided by the reference model

and any available expert knowledge over the importance of the various inputs on the

subsystems. If such information is not available, g(x) can instead be analyzed with an

appropriate feature importance technique, such as sparse principal components analysis

(SPCA) [142], automatic relevance determination (ARD) [143], model class reliance (MCR)

[144], etc., to determine the appropriate variable-subsystem pairings. Because the parti-

tions must not overlap, the results of this analysis should be checked for instances where

an input is paired with multiple subsystems. If this occurs, we recommend that the input

in question be paired with the subsystem where it has the highest relative importance.

The pseudocode for implementing VP-BO is shown in Algorithm 12.

One of the advantages of the VP-BO approach is that the AF optimization over each

partition only uses a subset of variables; this can significantly reduce the computational

time of this step. Moreover, this approach is amenable for implementation in a distributed

manner (e.g., each subsystem of the network runs its own separate BO algorithm). The

VP-BO approach (and the LS-BO approach) also takes system-specific behavior into ac-

count when developing partitions (informed by the reference model). As we will show

in the next section, the use of prior knowledge can lead to significant reductions in com-

99

putational time and in the number of experiments performed. Moreover, we will see that

such knowledge can help identify solutions and construct surrogate models of higher

quality. VP-BO can also be implemented in such a way that reference model is also used

to guide the construction of the performance function (by learning the residual instead of

the performance function). We also highlight that the VP-BO approach proposed is im-

plemented in a way that each partition has its own GP model and AF. However, it is also

possible to implement this approach by building a central GP and AF that are optimized

in each partition using a different set of variables.

Algorithm 12: Variable Partitioning BO (VP-BO)

Given κ, g, K, L, and Dℓ;
Decompose f (x) into fk(xk, x−k) for k ∈ K;
Use Dℓ to train GPs GP ℓ

fk
and obtain AF ℓ

fk
, k ∈ K;

for ℓ = 1, 2, ..., L do
for k ∈ K do

Compute experiment xℓ+1
k ← argminxk

AF ℓ
fk

(
xk; xℓ−k, κ

)
s.t.

(
xk, xℓ−k

)
∈ X;

Evaluate f1, ..., fK at xℓ+1
k to obtain f ℓ+1

K [k, :];
end
for k ∈ K do

xℓ+1
−k ← argminx−k

f ℓ+1
K [:, k];

end

Update Dℓ+1 ← Dℓ ∪
{

xℓ+1
K , f ℓ+1

K

}
;

Retrain GPs using Dℓ+1 to obtain GP ℓ+1
fk

and AF ℓ+1
fk

k ∈ K
end

5.4 Numerical Case Studies

We now present numerical results using the different BO strategies discussed; our goal is

to demonstrate that the parallel BO approaches proposed provide significant advantages

over S-BO and over other state-of-the-art parallel approaches. Our study simulates the

performance of a pair of reactors connected in series; the operating cost of this system

is a complex function of the operating temperatures. The detailed physical model used

100

to simulate the performance of the system is discussed in Appendix A.1.3. To guide our

partitioning approaches, we developed a reference model that approximates the physical

model. All data and code needed to reproduce the results can be found at https://gith

ub.com/zavalab/bayesianopt.

The optimization problem that we aim to solve with BO can be written as:

min
T1,T2

f (T1, T2) = f1(T1, T2) + f2(T1, T2) (5.16a)

s.t. (T1, T2) ∈ T (5.16b)

Figure 5.5 shows the performance function f (T1, T2) over the box domain T = [303, 423]2.

The performance function is nonconvex and contains three minima, with local solutions

at (T1, T2) = (423, 340) and (T1, T2) = (423, 423) and a global solution at (T1, T2) =

(333, 322).

Figure 5.5: Performance function f of the reactor system (left) and reference model (right).
Note that the reference model captures the overall (coarse) structure of the performance
function but misses some finer details.

The reference model g was derived from a simplified physical model (see the Ap-

pendix). However, this model would be difficult to incorporate directly in the AF formu-

lation for the LS-BO and VP-BO approaches because it involves a complex set of algebraic

equations. As such, we approximated this model using a GP, ĝ, and used this as the

reference. Figure 5.6 illustrates that the GP ĝ is virtually indistinguishable from the sim-

https://github.com/zavalab/bayesianopt
https://github.com/zavalab/bayesianopt

101

plified physical model g; thus, we can safely use this to guide our search and to guide

our partitioning approaches.

Figure 5.6: Reference model g (left) and GP approximation ĝ (right); note that the GP pro-
vides an accurate representation and can thus be used to guide partitioning approaches.

The HS-BO algorithm was restricted to 22 = 4 partitions when dealing with a 2D

design space. As such, and in order to achieve fair comparisons, we limited the num-

ber of parallel experiments performed by MC-BO, HP-BO, q-BO, and LS-BO to 4. The

VP-BO algorithm was run using 2 partitions (one for each reactor). All algorithms were

implemented in Python 3.7 and the GP modeling was done using the gaussian_process

package in Scikit-learn. Specifically, we used the built-in Matern method as the kernel

function. This selection was motivated by the ability of the Mátern kernel to control the

smoothness of the resultant function making it highly flexible and capable of accurately

modeling systems that exhibit significant nonlinearity and non-smoothness. We set the

smoothness parameter ν = 2.5, which tends to be the standard choice. At every itera-

tion, the optimal values of the kernel’s hyperparameters, the characteristic length scales l,

were updated using the package’s built-in optimizer that sets l by solving a log-marginal-

likelihood (LML) problem. A more detailed description of the gaussian_process package

can be found in [100]. The optimization of the AF was done in Scipy [101] using an uncon-

strained minimization solver (based on L-BFGS-B) for every BO algorithm except LS-BO.

The introduction of the reference GP model in the constraints of the AF minimization

problem required the selection of a method capable of constrained optimization; for this,

102

we selected SLSQP. Except for HS-BO, the exploratory parameter of the acquisition func-

tion was set to the same fixed value (κ = 2.6). All algorithms were initialized using the

same starting point, and we conducted 25 trials, each with a different starting point se-

lected from a 5× 5 grid of T , in order to evaluate robustness. We also ran instances of

LS-BO and VP-BO with and without using a reference in the AF (for learning the residual

or the performance function). This allowed us to isolate the impacts of the use of the

reference model and ensure that observed performance improvements can be attributed

to the parallel capabilities. For both LS-BO and VP-BO, the reference function was always

used to guide the selection of the partitions.

Figure 5.7 highlights the level sets that we used to partition the design space for the

LS-BO approach. These partitions were generated by first locating the minima (local and

global) of ĝ(x). After determining that there were two, we discretized the range of ĝ(x)

by building a search interval around each of the minima where the lower bound of the

interval was the value of the corresponding minimum. The value of ĝ was then evaluated

at various points on a line connecting the two minima to determine the spacing of the

level sets. This information was used to select the upper bound of these search intervals.

We were also able to use this analysis to gauge the size of both of the partitions and

observed that the search region around the global minima appeared to cover a significant

portion of the design space. As a result, this partition was split along the level set value

that resulted in two roughly equal-sized partitions. The fourth and final partition was

constructed to search the remaining space outside of the three existing partitions. Figure

5.7 also provides an illustrative summary of this workflow. Note that one of the regions

is near the global minimum of f .

Given that the reactors are arranged in series, it is clear that the performance of the

first reactor is independent of T2, while the performance of the second reactor will likely

have some dependence on T1. Figure 5.8 demonstrates this partially-separable structure;

note how the first function g1 is not affected by T2 (vertical lines), while g2 does depend on

T1. Using ARD, we confirmed that T1, which had a characteristic length scale of l = 0.145,

103

Figure 5.7: Domain partitions for reactor system obtained using reference model ĝ (left);
the line connecting the two minima of the reference model is shown in blue. Values
of ĝ along this line (right) indicate that the level set ĝ = −383 (black line) provides an
acceptable split between the two partitions surrounding the minima, while the level set
(red line) ĝ = −461 allows for the partition surrounding the global minimum (denoted
as (T∗1 , T∗2)) to be split into two roughly equal-sized partitions. Note that domain XI I I is
in the region of the global minimum of f .

was a more important input to g1 than T2 (l = 1000), while for g2, T2 (l = 0.399) was

determined to be more important than T1 (l = 0.498). We thus implemented the VP-BO

approach according to the following variable partitions: x1 = T1, x−1 = T2 and x2 = T2,

x−2 = T1.

Figure 5.8: Reference model for the first reactor g1 (left) and for the second reactor g2
(right). We can see that g1 is not affected by T2; the combination of these functions give
rise to the reference function g = g1 + g2.

Figure 5.9 summarizes the average performance (over the 25 runs) of LS-BO and VP-

104

BO (using reference models) along with the remaining algorithms. Here, we visualize the

total experiment time (wall-clock time needed to evaluate performance function) against

the best found performance up to the corresponding time. Overall, we observed that

all parallel BO variants performed better than standard BO in terms of both speed and

best performance found. The performances at the local minima for (T1, T2) = (423, 340)

and (T1, T2) = (423, 423) were approximately -395,000 USD/yr and -387,000 USD/yr

respectively, while the performance of the global minimum at (T1, T2) = (333, 322) was

-410,000 USD/yr. On average, the best performance obtained using BO was -394,500

USD/yr, indicating that this approach converges to a local minimum most of the time.

By comparison, all the parallel BO variants found a solution that, on average, was below

-400,000 USD/yr. We should also note that this improvement in performance value also

comes with a significant reduction in the required wall-clock time: BO took over 500

seconds to converge to its final solution whereas all of the parallel BO variants were able

to locate a better solution in approximately 200 seconds.

We note that in this work we used wall-clock time as the comparison metric rather

than number of iterations, which is the metric most commonly used in the BO litera-

ture. We believe that this allows for a more fair comparison between the parallel and

non-parallel versions of the BO algorithm, as every cycle of S-BO and Ref-BO only runs

one experiment, while every cycle of the parallel BO algorithms runs 3-4 experiments in

tandem. As such, the number of iterations that the parallel BO approaches require to

locate a solution can be significantly lower than for the sequential variants (they collect

more data per cycle), but the time per iteration can be significantly higher. The use of wall

clock time helps standardize the benchmarking of sequential vs. parallel approaches. We

recognize, however, that benchmarking algorithms using different metrics can provide

valuable insights.

The magnified profiles of Figure 5.9 provide a better comparison between the paral-

lel BO variants. It is clear that LS-BO and VP-BO are significantly faster than all other

variants. We also observed that LS-BO, VP-BO, HS-BO and q-BO consistently reached the

105

global minimum. This illustrates how the redundant sampling seen in MC-BO and HP-

BO can degrade performance. Additionally, while the performances of HS-BO and q-BO

were similar to LS-BO and VP-BO, they required significantly more experiments to reach

this performance level. From these observations we can draw a couple of key conclusions:

(i) the use of a reference model for both generating system-specific partitions and simpli-

fying the learning task delivers significant benefit, and (ii) allowing the algorithm to pool

the data into a single dataset that is used to build a global surrogate model increases the

predictive value of this model, resulting in faster identification of optimal regions.

Figure 5.9: Total experiment time against value of best solution for tested algorithms.
LS-BO and VP-BO were run using the reference model to partition the domain and guide
the search.

Figure 5.10 presents results similar to Figure 5.9, but we run LS-BO and VP-BO with-

out a reference model. By comparing with the results in Figure 5.9 , we observe that using

the reference model can help with convergence but not always. LS-BO was 24% slower

in terms of the average convergence time, though it maintained its ability to consistently

converge to the global minima. VP-BO, meanwhile, converged on average 40% faster

compared to when the reference model was used; the solution it returned was also un-

changed. These results indicate that g affects LS-BO similarly to S-BO, as outlined in [115].

Namely, that it makes the search more targeted, resulting in more efficient sampling and

106

Figure 5.10: Total experiment time against value of best solution for the tested algorithms.
LS-BO and VP-BO were run using the reference model to partition the domain but not to
guide the search.

faster conversion. Meanwhile, with VP-BO, the reference model appeared to encourage

more exploration of the domain, which can prevent the algorithm from converging pre-

maturely and potentially returning a suboptimal solution. We base this claim on the fact

that, when testing VP-BO without a reference, we observed that while it is not especially

sensitive to the initial values of the design variables in a given partition, it is quite sensi-

tive to variable values of other partitions. Overall, however, we observed that both LS-BO

and VP-BO still outperformed the remaining parallel algorithms (without or without a

reference). These results highlight that using the proposed partitioning approaches has a

larger effect on overall convergence. This allows us to confirm that the improvements we

observe when using LS-BO and VP-BO can be attributed to the parallelization schemes.

The results presented in Figure 5.9 indicate that LS-BO and VP-BO were consistently

more robust and sample efficient than the other approaches. The average values seen

in Figures 5.9 and 5.10 provide a measure of robustness: deviations between the final

reported average value and one of the three minima are due to the algorithm converging

to different solutions during the various runs. For example, the final average reported

value for S-BO of 394,500 USD/yr was the result of this algorithm converging to the

107

Figure 5.11: Distribution of the performance profiles across the 25 runs for BO (top), LS-
BO (middle), and VP-BO (bottom) with the average algorithm performance is shown in
color.

108

Figure 5.12: Experiment locations across the 25 runs for BO (top), LS-BO (middle), and
VP-BO (bottom).

109

minima at (T1, T2) = (423, 340) 13 out of the 25 runs, (T1, T2) = (423, 423) for 8 runs, and

to (T1, T2) = (333, 322) the remaining 4 runs. As a result, the fact that the final reported

average values for LS-BO and VP-BO were near the global minimum indicate that these

algorithms converged to or near the global solution for most if not all runs (they are

robust). The convergence data collected across all runs and shown in Figure 5.11 confirms

this. We can see that, regardless of where LS-BO and VP-BO were initialized, they were

always able to converge to the same region (unlike S-BO). We also see that convergence of

the algorithms was in general fast but, as expected, it was sensitive to the starting point.

The sensitivity to the starting point is further indication of why it is important to have

expert knowledge (e.g., via use of a reference model) when initializing the search.

Because evaluating the performance function tends to be expensive, reducing the

number of experiments (samples) is also essential. Figure 5.12 illustrates how S-BO,

LS-BO, and VP-BO compared in terms of sample efficiency. Standard BO sampled in

a significantly distributed manner with a considerable number of samples drawn from

the boundaries of the domain. For LS-BO, we see that in regions where a solution exists

(e.g., regions I I and I I I in our case study), sampling was heavily concentrated at or near

the solution. In regions where there is not a solution, the sampling was more distributed.

However, the majority of samples tended to cluster around partition boundaries that are

located near a solution. Samples drawn from partition XI appeared to be the most widely

distributed, however, this was not surprising as this partition contains a mostly flat re-

gion. Another noticeable difference when compared to traditional BO was that there

was significantly less sampling at the boundaries of the domain where f has unfavorable

(high) values; only 8 out of 2500 samples were taken at the left and bottom bounds. VP-

BO exhibited the most clustered sampling; in fact, the vast majority of the samples were

drawn from or near the optimal region. Note that, while the majority of samples for XI

(Partition 1) occurred at the top domain boundary, this partition corresponds to reactor

1 which only depends on T1 as seen in Figure 5.8. Aside from these samples, there was

a clear lack of sampling happening at the domain boundaries compared to LS-BO and

110

traditional BO. This result, coupled with exhibiting the lowest convergence time out of all

of the tested algorithms, confirms our belief that the VP-BO algorithm tends to be more

exploitative. This is likely due to fact that the partitions for this algorithm are optimized

over a lower dimensional space and, for a fixed x−k, VP-BO can find the optimal local

variables xk much faster than the remaining algorithms can find an optimal global vari-

ables x. As a result, without the reference model to indicate the potential existence of

a solution elsewhere, VP-BO seems more susceptible to settle into the first solution that

it finds than algorithms like LS-BO and HS-BO whose partitions force the algorithm to

search more widely.

To estimate the computational cost associated with the different algorithms, we mea-

sured the total wall-clock time (averaged across the 25 runs). The total wall-clock time

includes time for performance evaluation (experiment time) and all time required to con-

duct other computations (e.g., AF optimization, GP training, and reference model evalu-

ation). The results are shown in Figure 5.13. The closer this time is to the experimental

time, the less computationally expensive the algorithm is. For instance, the total wall-

clock time of S-BO was 12% higher than the experiment time. We observed that HS-BO

and VP-BO were the least computationally intensive methods, with the total wall-clock

time being only 14% and 7% higher than the experimental time respectively. We attribute

this to the fact that HS-BO runs separate instances of BO across multiple reduced domains

and, because the boundaries are rectangular, ensuring that the AF optimizer stays inside

of the partition only involves bounding the upper and lower limits of x it is allowed to

search over. VP-BO, on the other hand, only optimizes over a subset of variables and

this greatly reduces the time required for AF optimization. The wall-clock time of HP-BO

was 44% higher than the experiment time, this is because it requires solving multiple AF

optimization problems across the entire design space. LS-BO had a total wall-clock time

that was 46% higher than the experiment time. This is attributed to the more difficult AF

optimization problem that it has to solve (which has constraints defined by a GP model).

The total wall-clock time for q-BO was 64% higher than the experiment time, which we

111

attribute to the fact that AF optimization is done over a set of points, increasing the size

of the problem that is solved. Additionally, the calculation involves more complex matrix

operations and requires repetitive sampling. MC-BO was the most computationally in-

tensive algorithm, with a total wall-clock time that was 384% higher than the experiment

time. We attribute this to the repetitive computations in this algorithm, which require

sequential sampling and GP training.

Figure 5.13: Profiles of wall-clock time against performance. Note that this time is com-
parable to the total experiment time for all algorithms; the only exception is MC-BO,
indicating that the AF optimization step (and not the function evaluation) is the bottle-
neck for this approach.

5.5 Conclusions and Future Work

We have proposed a set of new decomposition paradigms for BO that enable the exploita-

tion of parallel experiments. These approaches decompose the design space by following

the level sets of the performance function and by exploiting the partially separable struc-

ture of the performance function. A key innovation of these approaches is the use of

a reference function to guide the partitions. Using a case study for a reactor system,

we found that the proposed approaches outperformed existing parallel approaches in

terms of time and quality of solution found. When using LS-BO, we observed that build-

112

ing partitions that are specialized beyond those that would be generated by the uniform

discretization of the range of ĝ(x), like those we used in our case study, can require signif-

icant user input. Moving forward we would like to explore methods for developing more

efficient and automated protocols for generating the partitions. Additionally, we are also

interested in incorporating an element of adaptivity to LS-BO and VP-BO via live modi-

fication/tuning of the partitions as samples from the system are collected. The proposed

parallel paradigms can also open the door to a number of applications and potentially

other decomposition paradigms that we will aim to explore in the future. Specifically, we

are interested in exploring more complex systems that involve higher-dimensional de-

sign spaces and large numbers of parallel experiments. This will allow us to investigate

the asymptotic properties of the proposed approaches. Moreover, we are interested in de-

signing alternative paradigms that selectively exchange information between partitions to

accelerate the search and that use different types of reference models to guide the search.

We are also interested in exploring the application of these approaches to the tuning of

complex controllers.

113

Part III

F I N A L T H O U G H T S

114

Chapter 6

C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

We now conclude this dissertation by summarizing the key findings/contributions of the

work presented in Chapters 3-5. We also identify how these contributions can be enriched

further with future research.

6.1 Contributions

Incorporating Physics via Reference Models

Chapter 3 presents the reference model, g(x), a low-fidelity representation of the true

system that can be sampled more easily (i.e., it is faster and cheaper to evaluate). The aim

of the reference model is not necessarily to provide a perfect approximation of the sys-

tem, but rather to capture coarse trends and identify generally promising regions. Conse-

quently, g(x) can be constructed from a variety of sources, such as simplified physics, em-

pirical correlations, or low-fidelity simulations. The physics knowledge contained within

the reference model can be directly incorporated into the Bayesian optimization (BO)

framework by embedding g(x) within the acquisition function and shifting the surrogate

modeling task to learning the model residual or error, ε(x), rather than the underlying

performance function. The algorithm is then initialized with an approximate representa-

tion of the system that highlights potentially promising regions that it can immediately

115

begin to explore. This results in better sampling efficacy when compared to standard

Bayesian optimization (S-BO), since fewer iterations are spent searching in highly subop-

timal regions, as demonstrated by the results of our HVAC MPC case study. Additionally,

our findings indicate that use of the reference model reduces sensitivity to the initializa-

tion point, as the algorithm always starts off with the same ground truth of the system.

This results in a more robust performance when compared to S-BO. We also note that

shifting to modeling the residual can also yield benefits, as it can be significantly easier

to build an accurate estimate of ε(x) than of the performance function. This facilitates

the correction of g(x) and enables the construction of an accurate hybrid system model,

further boosting performance.

Composite Function BO via Adaptive Linearizations

In Chapter 4, we consider the scenario where information is available in the form of sys-

tem connectivity or structure. Shifting to a composite representation of the performance

function, where we instead treat a set of intermediates as black-boxes, offers an intuitive

method for exploiting this type of information. However, propagating the uncertainty es-

timates from the surrogate models of the intermediates to the performance metric is often

an intractable problem. We introduce a new framework, which we refer to as BOIS, that

utilizes an adaptive linearization scheme to overcome this challenge and derive a set of

closed-form expressions for the statistical moments of the performance function. Using a

pair of case studies, we compare the performance of BOIS against S-BO as well as existing

composite function BO paradigms based on sampling (MC-BO) or the use of an auxiliary

problem (OP-BO). Each of the case studies highlights the benefits of using a composite

function representation of the performance function. We can combine knowledge of sys-

tem connectivity and fundamental principles with any available subcomponent white-box

models to more efficiently specify the intermediates and the inputs of their respective sur-

rogate models. Additionally, the intermediates can be selected so that they are easier to

learn than the performance function, thereby facilitating accurate estimation of the system

116

behavior. Our results demonstrate that BOIS consistently outperforms S-BO and delivers

equal or better performance than MC-BO and OP-BO, while also being significantly less

computationally intense. Further, we determine that our adaptive linearization scheme

accurately estimates the statistical moments of the performance function in a fraction of

the time it takes Monte Carlo to generate estimates of comparable accuracy. These results

highlight the efficiency of BOIS and suggest that it can facilitate the use of composite

functions in a BO setting. This is a promising outcome, given that composite functions

can provide a solution to the challenge of scaling BO to higher dimensions by distributing

the modeling of the system among the various intermediates.

Informed Partitioning of the Design Space to Enable Parallelization

We present a pair of novel parallelization paradigms, level set BO (LS-BO) and variable

partitioning BO (VP-BO), in Chapter 5. The aim of these methods is to address the issues

observed in existing parallel BO algorithms, namely the limited degree of parallelization

that can be achieved and the occurrence of redundant sampling. This is accomplished

by decomposing the design space into a set of distinct partitions along the level sets of

the performance function or according to the partially separable structure of the system.

However, as the system is often not readily observable, the partitioning is instead guided

by a reference model. This allows for an efficient division of high-throughput experiment

(HTE) resources, as the search can be concentrated around regions where the system is

estimated to perform well. We benchmark the performances of LS-BO and VP-BO against

S-BO and a series of parallel approaches found in the literature using a reactor network

case study. Our findings indicate that the proposed paradigms are able to outperform the

existing algorithms both in terms of speed and the value of the solution. We also observe

that our methods are more robust, consistently converging to the region containing the

global solution regardless of where the algorithm is initialized. These results, coupled

with the relatively low computational intensity we observed, demonstrate that LS-BO

and VP-BO provide a set of efficient and targeted parallel experimentation solutions.

117

6.2 Future Research Directions

Establishing Asymptotic Properties for the Reference Model

The performance improvements observed when using a reference model are empirical,

and there is not a clear understanding on how coarse the reference model can be before it

no longer provides useful information. While the results of the case studies indicate that

there appears to be significant leeway, this is likely system-dependent. Establishing a the-

oretical minimum information/accuracy criterion for ensuring that the reference model

is beneficial would provide guidelines for determining under which conditions Ref-BO

remains an effective solution. Solving this problem is obviously complicated by the fact

that, in a realistic setting, determining the accuracy of the reference model is not possible

as the real system model is not available for comparison. However, work by Kandasamy

and colleagues has shown that it is possible to establish conditions under which multi-

fidelity BO that can be proven to perform better than S-BO [145, 146, 147]. These are

largely based on the effective reduction in the search region provided by the low-fidelity

approximations. A similar analysis that determines the degree to which the reference

model narrows down the search space coupled with a regret measure—obtained by de-

termining how a reference model performs given an arbitrary residual—can be used to

establish the theoretical efficacy of Ref-BO.

Alternative Surrogate Models

While Gaussian Processes (GPs) offer significant flexibility and are very data efficient,

they have limitations in placing bounds on prediction values and can struggle to model

highly non-smooth and discontinuous functions. This can lead to infeasible predictions,

especially when the system operates near a feasibility bound of the modeled quantity

or near a discontinuity, which negatively impact the performance of BO by causing it to

sample from suboptimal regions. Parametric models like neural networks and polyno-

mials or bounded output models like skewed sparse GPs can provide a solution to this

118

issue [148, 124, 149, 150]. Additionally, these models scale to higher input dimensions

significantly better than GPs, providing a potential solution for deploying our paradigms

on large-scale applications.

BO in High-dimensional Design Spaces and Integration with Network Modeling Tools

The distribution of the modeling task to various intermediates in composite function BO

offers a solution to the input scaling issues encountered by GPs. As shown in Chapter 4,

the entire set of inputs does not need to be used to model each of the elements in y(x).

By leveraging system connectivity, we can nest the appropriate intermediates within each

other to capture the effects of upstream variables. This allows for the creation of a set of in-

terconnected models, each with a custom set of inputs that is more relevant for predicting

component behavior. Not only does this reduce the number of surrogate inputs, thereby

allowing GPs to continue to be used even at high dimensions, but it also results in more

accurate models. Such an approach is commonly used in modeling network systems (e.g.,

chemical processes), where each intermediate component is often described by its own

model with a unique set of inputs and outputs. While some of the inputs are specified at

the design variable level (e.g., the size of a unit), others depend on the output of another

intermediate (e.g., a feed stream that is the outflow of an upstream unit). BOIS can there-

fore serve as a natural optimization framework for existing network modeling libraries,

facilitating the inclusion of new or difficult-to-model intermediates by treating these as

black-boxes while continuing to utilize readily available component models. Thus, ex-

ploring the integration of BOIS with available modeling tools is a promising and exciting

direction for future research. The results of this work can determine if the distributed

modeling approach presented can be used to overcome the curse of dimensionality ex-

hibited by GPs, while also providing these libraries with a powerful optimization strategy.

119

Automated and Dynamic Design Space Partitioning

Currently, the domain partitions used in LS-BO and VP-BO are set manually. While this

provides an additional opportunity to leverage expert knowledge, requiring the user to

specify all of the partitions can be unreasonable, especially for a large number of paral-

lel experiments. As discussed in Chapter 5, uniform partitioning between the maximum

and minimum of the reference model is a potential solution for automating the decom-

position on X in LS-BO. However, this approach does not allow for the concentration of

resources around more promising regions. In the case of VP-BO, even with methods like

ARD, user input is still required to interpret the results of the analysis and determine the

allocation of the variables. Thus, developing a solution that utilizes information such as

the number and location of minima in the reference model or structural relations between

subcomponents and inputs (i.e., downstream inputs will not affect upstream inputs) to

automatically build a set of partitions, while allowing for manual adjustments, can greatly

streamline the implementation of these methods. Additionally, incorporating a dynamic

element, where the partitions are adaptively modified as more information becomes avail-

able, can reduce the number of suboptimal experiments performed by gradually focusing

in on the identified optimal regions.

Merging Developments into a Single Paradigm

The capabilities we have developed are currently distributed among four different algo-

rithms. Combining these into a unified paradigm could unlock capabilities that would

otherwise be unavailable to each individual method, such as the consideration of variable

hierarchies [151], the inclusion of system constraints [152], dynamic adjustments to the

system configuration/structure [153], and the construction of surrogates that are accurate

across a wide range of the design space [154]. The incorporation of a reference model into

either BOIS, LS-BO, or VP-BO can be done rather seamlessly by simply shifting the sur-

rogate modeling task to a residual. Note that in the case of BOIS, the reference model(s)

would have to be of the intermediate(s). However, merging these three paradigms into

120

one is not as straightforward. While BOIS and VP-BO make use of the same type of

information, VP-BO optimizes each subcomponent individually, whereas BOIS optimizes

the whole system. LS-BO utilizes the level sets of the system-wide performance func-

tion. However, it could instead consider component performance or even the values of

the intermediate variables themselves (to explore different operating regimes). Thus, fu-

ture research should focus on determining the most advantageous manner for integrating

these three methods, testing the resulting framework across various domains to assess its

effectiveness, and optimizing its performance to ensure it can handle large-scale, complex

systems efficiently.

121

Appendix A

S U P P L E M E N TA RY I N F O R M AT I O N

This appendix presents supplementary information from select sections of this disserta-

tion.

A.1 System Models

A.1.1 Reactor-Separator Network Model

The reactor-separator network model considers the generation of product C from two

reagents A and B. As seen in Figure A.1, these reagents are fed into the process where

they are individually compressed and heated. The compressors are modeled with the

IsentropicCompressor module from the BioSTEAM library [155] using the properties

of N2, H2, and NH3 for A, B, and C respectively and the IdealAcitivityCoefficients

and IdealFugacityCoefficients methods. The models calculate the temperatures of the

compressor outlet as well as the power load of the unit. The heaters are assumed to

122

Figure A.1: Schematic diagram of the reactor-separator network modeled in the first case
study.

operate at constant pressure and we can calculate their duties as:

Q̇ = F(Hout − Hin) (A.1a)

= F(H◦ + R · ICPH(Tout)− H◦ − R · ICPH(Tin)) (A.1b)

= FR (ICPH(Tout)− ICPH(Tin)) (A.1c)

where F is the material flowrate through the heater, Tin and Tout are the temperatures of

the heater inlet and outlet respectively, H◦ is the standard enthalpy of the streams, and R

is the universal gas constant. The ICPH function measures the effect of temperature on

enthalpy as is defined as:

ICPH(T) = ∆α (T − T◦) +
∆β

2

(
T2 − (T◦)2

)
+

∆γ

3

(
T3 − (T◦)3

)
− ∆ζ

(
T−1 − (T◦)−1

)
(A.2a)

123

where T◦ is the standard temperature (298 K) and

∆α = ∑
i∈{A,B,C}

xiαi (A.3a)

∆β = ∑
i∈{A,B,C}

xiβi (A.3b)

∆γ = ∑
i∈{A,B,C}

xiγi (A.3c)

∆ζ = ∑
i∈{A,B,C}

xiζi (A.3d)

Here, xi is the molar fraction of species i in the stream and αi, βi, γi, and ζi are a set of

molecule-specific coefficients.

The hot streams are fed to a reactor, RX-1, where A and B undergo the following

gas-phase reaction:

1
2

A(g) +
3
2

B(g)⇐⇒ C(g) (A.4a)

The reaction mixture is assumed to be an ideal gas and, at a given temperature and

pressure, the composition of the reactor effluent is calculated from the following:

∏
i∈{A,B,C}

(yi)
νi = ∏

i∈{A,B,C}

(
ni0 + νiε

n0 + νε

)νi

=

(
PRX

P◦

)−ν

K (A.5)

where yi is the mol fraction of species i in the reactor outlet and νi is its stoichiometric

coefficient; ni0 are the moles of i in the feed stream, ν = ∑i νi and n0 = ∑i ni0; the extent of

the reaction is denoted by ε; PRX is the pressure of the reactor and P◦ is standard pressure

(1 bar). The equilibrium constant, K, is calculated as:

log K = −∆Grxn

RTRX
(A.6)

where TRX is the reactor temperature. The change in the Gibbs free energy of the reaction,

124

∆Grxn, is a function of temperature and has the form:

∆Grxn = ∆H◦rxn −
TRX

T◦
(∆H◦rxn − ∆G◦rxn) + R (ICPH(TRX)− TRX · ICPS(TRX)) (A.7)

where ∆G◦rxn and ∆H◦rxn are the changes in Gibbs free energy and enthalpy of the reac-

tion measured at standard temperature. Similar to the ICPH function, the ICPS function

measures the change in entropy due to temperature effects and is defined as:

ICPS(T) = ∆α (log(T)− log(T◦)) + ∆β (T − T◦)

+
∆γ

2

(
T2 − (T◦)2

)
− ∆ζ

(
T−2 − (T◦)−2

)
(A.8a)

Due to the reaction, the ICPH and ICPS coefficients are now defined as:

∆α = ∑
i∈{A,B,C}

νiαi (A.9a)

∆β = ∑
i∈{A,B,C}

νiβi (A.9b)

∆γ = ∑
i∈{A,B,C}

νiγi (A.9c)

∆ζ = ∑
i∈{A,B,C}

νiζi (A.9d)

Because the reaction occurs at constant temperature and pressure, the duty of the reactor,

Q̇4 is calculated as:

Q̇4 = ṙC (∆H◦rxn + R · ICPH(TRX)) (A.10)

where ṙC is the generation rate of C in the reactor.

The product stream that exits the reactor is fed to a separator, SEP-1, where it is cooled

to TS at pressure PS to allow for the condensation and recovery of C. This unit is mod-

eled with the Flash module from the BioSTEAM library using the same properties and

methods as the compressor models. From this model we obtain the flowrates and compo-

sitions of the resultant product and vapor streams as well as the energy requirements of

125

the separator. A fraction, 1− R, of the vapor stream that exits SEP-1 is purged and leaves

the process. The remainder is re-compressed and heated before being fed back to RX-1.

The performance of the system is expressed as a cost function (negative profit) that

measures the consumption of the reagents along with production rate of C and the corre-

sponding utility requirements of the process at various recycle fractions and reactor and

separator settings; it is formulated as:

f1(x, y(x)) = ∑
j∈{A,B}

wj0Fj + FS ∑
i∈{A,B,C}

wiψi + w3

(
ψCFS − F̄

F̄

)2

(A.11a)

f2(x, y(x)) =
5

∑
h=1

whQ̇h,+we

3

∑
k=1

Ẇk (A.11b)

f (x, y(x)) = f1(x, y(x)) + f2(x, y(x)) (A.11c)

where the total cost f (x, y(x)) is distributed among two functions f1 and f2. Here, f1

considers the the materials flowing in an out of the system: the first term represents the

costs of A and B with wj0 and Fj denoting the cost and feed rate of each reagent; the

second term measures the value of the product stream with FS denoting its flow and ψi

and wi representing the fraction of species i present in this stream and its corresponding

unit value. The final term in f1 is a quadratic penalty term meant to enforce a demand cap

for the production of C, which is denoted by F̄. The flow of energy through the system,

and thereby the cost of utilities, is measured by f2. The heating and cooling requirements

of the feed and recycle heaters, RX-1, and SEP-1 are denoted by Q̇h and these have a unit

cost of wh. Similarly, compressor k has a power load of Ẇk, and this is supplied at a unit

cost of we.

126

Table A.1: Thermodynamic Constants for
the Reactor-Separator Network Model

Parameter Value Units Notes
R 8.314 J/mol·K Universal gas constant
T◦ 298 K Standard temperature
P◦ 1.0 bar Standard pressure
∆H◦rxn 39200 J/mol Standard heat of reaction
∆G◦rxn 32900 J/mol Change in free energy of reaction at T◦

νA −1/2 — Stoichiometric coefficient of A
νB −3/2 — Stoichiometric coefficient of B
νC 1 — Stoichiometric coefficient of C
αA 3.280 — α coefficient of A
αB 3.249 — α coefficient of B
αC 5.578 — α coefficient of C
βA 0.593× 10−3 — β coefficient of A
βB 0.422× 10−3 — β coefficient of B
βC 3.020× 10−3 — β coefficient of C
γA 0.000 — γ coefficient of A
γB 0.000 — γ coefficient of B
γC 0.000 — γ coefficient of C
ζA 0.040× 105 — ζ coefficient of A
ζB 0.083× 105 — ζ coefficient of B
ζC −0.186× 105 — ζ coefficient of C

Table A.2: Relevant Parameters for
the Reactor-Separator Network Model

Parameter Value Units Notes
FA 1000 kmol/hr Feed flow of A
FB 3000 kmol/hr Feed flow of B
F̄ 1900 kmol/hr Target production rate of C
wA0 6.00 USD/kmol Cost of A
wB0 1.40 USD/kmol Cost of B
wA 0.00 USD/kmol Value of A in product stream
wB 0.00 USD/kmol Value of B in product stream
wC 8.50 USD/kmol Value of C in product stream
wh 1.92× 10−2 USD/MJ Cost of heating utility
wh 5.00× 10−3 USD/MJ Cost of cooling utility
we 1.42× 10−1 USD/kWh Cost of power utility

127

A.1.2 Biofertilizer Production Process Model

The biofertilizer production facility we consider, shown in Figure A.2, considers the recov-

ery of consists of 10.59 tonnes/yr of phosphorus (P) from the 20830 tonnes/yr of manure

generated at a hypothetical 1000 animal unit dairy farm. The manure is intially fed into

an anaerobic digester to generate biogas. The biogas, a mixture largely composed of CH4,

CO2, and H2S, is sent to a pair of scrubbers that remove the carbon dioxide and hydrogen

sulfide. The resulting product is a high purity methane stream that can either be exported

or burned on-site to generate electricity.

The digested manure (also referred to as digestate) is passed through a solids-liquids

separator (SLS) that removes the suspended solids present in the digestate. The produced

extrudate is then fed to a series of bag photobioreactors (b-PBRs), along with any urea

required to provide additional nitrogen (N), where it is used as a growth medium for

cyanobacteria (CB) cultivation. The CB growth is assumed to be light-limited and is

simulated as described by [5]:

X(t) = X0 exp(−κt) + Xs (1− exp(−κt)) (A.12a)

XS =
η I0S

V
mν

(A.12b)

κ = YXνmν (A.12c)

Here X is the CB concentration at any given time, X0 is the initial CB concentration, and

XS is the steady-state (t = ∞) CB concentration; the biomass yield per photon is denoted

by YXν and mν is the light energy required for cell maintenance; η is the photosynthetic

efficiency of the cell (i.e., how much of the energy in each photon is captured and con-

verted into biomass); S and V are the irradiated reactor surface area and total reactor

volume respectively, and I0 is the incident light intensity at the surface of the reactor.

Once the CB culture is ready to be harvested, it is sent to a flocculation tank where

self-flocculation is induced. The formed flocs are then fed into a lamella clarifier where

128

they are allowed to settle out of solution. The CB sludge that forms at the bottom of the

clarifier is collected and passed through a pressure filter that produces a concentrated

cyanobacteria solution. The solution is transferred to a thermal dryer where the moisture

removal process is completed, yielding a dry CB biomass product. The CB-free water that

exits the lamella clarifier and pressure filter is mixed, and a fraction of it is recycled back

to the reactors while the remainder is purged to prevent the buildup of impurities within

the system. Depending on the flowrate of the purge, fresh make-up water may need to

be added to the reactors if the water in the incoming manure is not enough to account for

this loss.

Figure A.2: Flow diagram of the biofertilizer production process.

129

The CB production rate is set based on the phosphorus density of the bacteria cells,

ρP (g P/g CB). Given an incoming P flowrate, mP, the CB needed to fully incorporate the

nutrient load is calculated as:

mCB =
mP

ρP
(A.13)

From this, we can determine the amount of urea, mU , required to meet the N demands of

the cells based on a specified nitrogen density, ρN (g N/g CB):

mU = max {0, xUN (mCBρN −mN)} (A.14)

where mN is the flowrate of N in the reactor feed and xUN is the mass fraction of nitrogen

in urea. The amount of fresh makeup water required is also calculated based on the CB

production rate and the final titer of the CB culture:

mFW = max
{

0, mCB

(
ρW

X(tb)
− 1
)
− (mRW + mW)

}
(A.15)

where tb is the reactor batch time, ρW is the density of water, mRW is the flowrate of the

recycled water stream, and mW is the flowrate of water supplied to the b-PBRs from the

manure.

The minimum selling price (MSP) of the biofertilizer is determined by calculating the

price, pCB, that it must be sold at to for the process to achieve a specified discounted return

on investment (DROI) target (15% in this study). The DROI is a profitability measure that

is defined as the discount rate, i, that results in a net present value (NPV) of zero at the

end of a process’ lifetime. We define the NPV as:

NPV = C +
T

∑
j=1

P(1 + i)−j (A.16)

where C is the total capital investment (TCI) of the of the process, P is the annual after-tax

profit (AATP) and T is the process lifetime (in years).

130

The TCI is based on the installed costs of the required units and is calculated according

to their size. If sizing and costing correlations are available, these are used to calculate

these values. Otherwise, they can be obtained from price data found in the literature for

similar units using capacity correlations and price indices:

ck = c′k

(
Sk

S′k

)ϕk
(

PI
PI′k

)
(A.17)

where ck, Sk, and ϕk are cost, size, and scaling factor respectively of the kth unit; c′k and

S′k are the cost and size of a reference unit; PI is the value of the price index for the year

2020 and PI′k is the price index for the year in which the quote for the reference unit was

made. We can then define the inside battery limit (ISBL) cost of the process as:

cIS =
K

∑
k

ck (A.18)

which serves as the basis quantity from which the TCI can be calculated:

cOS = 0.4cIS (A.19a)

cENG = 0.3(cIS + cOS) (A.19b)

cCON = 0.2(cIS + cOS) (A.19c)

(A.19d)

where cOS, cENG, cCON are the outside battery limits (OSBL), engineering, and contingency

costs associated with constructing the process and bringing it online. The total capital

investment required is then:

C = cIS + cOS + cENG + cCON (A.20)

131

The AATP is the net income generated by the process and is expressed as:

P = (1− r) (pCBmCB + pNGmNG + pELẇ−O− d) + d (A.21)

where mCB, mNG, and ẇ are the production rates of cyanobacteria, methane, and electric-

ity respectively and these are sold at unit price of pCB, pNG, and pEL. The tax rate levied

on the process revenue is denoted by r (21% in the US); d is annual depreciation of the

purchased capital equipment and is calculated using a straight-line depreciation scheme

assuming a salvage value of 0:

d =
cIS

T
(A.22)

The total operating cost (TOC) of the process, O, is composed of two parts, fixed operating

costs (FOCs) and variable operating costs (VOCs). FOCs include annual costs that are

not tied to production levels and must be paid in full every year the plant operates.

This includes expenses such as maintenance, operations fees such as licensing costs and

property taxes or leasing costs, overhead costs like insurance, and labor. Maintenance,

operations, and overhead costs are calculated as a fraction of the ISBL:

cMT = 0.05cIS (A.23a)

cOP = 0.025cIS (A.23b)

cOV = 0.05cIS (A.23c)

(A.23d)

and labor costs are calculated as a function of the size of the reaction section, SA (in

acres):

cLB = c′LB

(
SA
SA′

)
(A.24)

where c′LB is the labor cost at a reference facility of size SA′

Variable operating costs consists of items like utilities, raw materials, and storage

132

and transportation costs that fluctuate with production levels. As we do not consider

distribution costs, and we assume that manure and any make-up water required are

provided free of charge, the VOCs in this study consist of the utility, urea, and bag

replacement costs. The utility requirements are obtained either from correlations or by

scaling reported values for similar units from the literature to the desired size, similar to

(A.24). We include a scale factor on the bag replacement and reactor mixing costs of the

form:

λSV

(
S
V

)
= max

{
1, 3

(
S
V(S

V

)
0

)
− 2

}
(A.25)

where
(S

V

)
0 is the surface area to volume ratio of the base design. This penalty reflects

the fact that higher S
V values require more complex geometries which increase the man-

ufacturing costs of the bags and also increase the flow turbulence within the reactors,

resulting in a higher mixing energy requirement. A penalty is also added to the labor

cost:

λLB(tb) = max {0, 0.05(tb0 − tb)} (A.26)

where tb0 is the batch time of the base design and λLB(tb) has units of MMUSD/yr. This

reflects the fact that smaller values of tb increase frequency at which the b-PBRs must be

emptied, cleaned, and refilled and by extension the labor intensity of the process. Finally,

we scale the value of XS by a factor of 0.32 as the model growth model used likely over-

predicts the true titer that is achievable. This places the value of XS within the range of

1-2 g/L for the range of tb we consider, which is the range of titers commonly seen in

practice at commercial CB cultivation facilities.

133

Table A.3: General process information[2, 3, 4, 5]

Parameter Value Units Notes
mM 20830 tonnes/yr Manure feed flowrate
mP 9.64 tonnes/yr P in SLS extrudate
mN 10.60 tonnes/yr N in SLS extrudate
mW 18030 tonnes/yr Water in SLS extrudate
YXν 2.02× 10−9 kg/µmol Biomass yield per photon
mν 255 µmol/kg·s CB cell maintenance light needs
η 0.24 — Photosynthetic effiiciency of CB
X0 0.03 g/L Initial CB concentration
I0 350 µmol/m2·s Light intensity(S

V

)
0 15.4 m−1 S : V ratio of base design

σ 70 kg/m2 Areal density of b-PBRs
tb0 30 days Batch time of base design
ρP0 0.023 g P/ g CB P density of base design
ρN 0.05 g N/g CB N denisty of CB
xUN 0.467 — Mass fraction of nitrogen in urea
PI 596.2 — Cost index for 2020

T 10 years Lifetime of ReNuAl process
pEL 0.11 USD/kW-hr Electricity price
pNG 5.84 USD/1000 SCF Natural gas price
ρW 1000 kg/m3 Water density
ρBG 1.2 kg/m3 Biogas density
ρNG 0.72 kg/m3 Natural gas density

Table A.4: Product yield factors

Product Unit Operation Yield Notes
CH4[156] Anaerobic Digester 3.09× 10−2 kg/kg manure CH4 from biogas production
CO2[156] Anaerobic Digester 1.66× 10−2 kg/kg manure CO2 from biogas production
H2S[156] Anaerobic Digester 1.14× 10−4 kg/kg manure H2S from biogas production
Electricity[157] Electricity Generator 4.33 kW-hr/kg CH4 assumes gas turbine efficiency of 0.3 and CH4 energy content of 1000 BTU/scf
Bedding[158] Solid-Liquid Separator 0.09 kg/kg manure P and N are assumed to be uniformly distributed in digestate liquid and solid fractions
Primary Dewatering Product[159] Lamella Clarifier 1.60× 10−2 kg/L −
Secondary Dewatering Product[160] Pressure Filter 0.27 kg/L −

Table A.5: Capital costs of process units

Item c′k Units PI′k Size Ratio ϕk Notes
Anaerobic Digester (AD)[161] 937.1 (min)

0.6 + 75355 USD 539.1 − − min denotes unit capacity (tonne/yr)
Solid-Liquid Separator (SLS)[161] 14.9min + 1786.9 log (min)− 9506.6 USD 556.7 − − min denotes unit capacity (lb/hr)
Electricity Generator[161] 0.67cADxCH4 USD 539.1 − − cAD denotes cost of AD (USD)

xCH4 denotes fraction of biogas produced used for electricity
H2S Scrubber[162] 348 USD 521.9 2.59× 101

0.6 −
CO2 Scrubber[163] 13.1 MMUSD 444.2 4.37× 10−4

0.8 −
Photobioreactors[164, 165] 279 USD 556.8 1.08× 105

0.6 cost of structural system, bag costs are included in TOC
Flocculation Tank[159] 0.115 MMUSD 585.7 1.57× 10−3

0.6 Scaling is in terms of CB mass
Lamella Clarifier[159] 2.50 MMUSD 585.7 1.57× 10−3

0.6 Scaling is in terms of CB mass
Pressure Filter[160] 0.137 MMUSD 381.8 2.39× 10−1

0.6 −
Dryer[160] 0.706 MMUSD 539.1 2.20× 103

0.6 −

Table A.6: Variable operating costs of process units

Item Operating Cost Units Utilities Notes
Anaerobic Digester[161] 0.096cAD USD/yr electricity cAD denotes cost of AD (USD)
Solid-Liquid Separator[161] 0.488min + 0.1cSLS USD/yr electricity min and cSLS denote capacity and cost of SLS (USD)
H2S Scrubber[162] 66.7 USD/tonne biogas activated carbon gas removal via carbon bed adsorption
CO2 Scrubber[163] 40.0 USD/tonne CO2 amine solution, steam gas removal via amine scrubbing
Photobioreactors[164] 12100 USD/acre/yr electricity, bags, urea, water −
Flocculation Tank[159] 100 USD/tonne CB electricity source includes cost of chemical flocculant
Lamella Clarifier[159] 0.43 USD/tonne CB electricity −
Pressure Filter[160] 2.06 USD/tonne CB electricity −
Dryer[160] 19.3 USD/tonne water natural gas basis is in terms of water removed

134

A.1.3 Reactor Network System Model

Exact Model

The reactor system consists of a pair of CSTRs operating at steady-state and connected

in series. In the first reactor, reactant A is converted into a desired product P, which can

react further to form an undesired product U. An additional reactant D reacts with U

to form A, and is fed to the first reactor to reduce the amount of U formed. In order to

further reduce the amount of U present and increase the value of the product stream, the

outlet of the first reactor is then fed to a second reactor along with an additional reactant

B, which can react with U to form a secondary product E. The reaction mechanism is

complex and given by:

2A←→ P (A.27a)

P←→ 2U (A.27b)

U + B←→ E (A.27c)

U + D → 2A (A.27d)

The rates of each reaction are assumed to be elementary and thus:

r1 = k1C2
A − k1rCP (A.28a)

r2 = k2CP − k2rC2
U (A.28b)

r3 = k3CUCB − k3rCE (A.28c)

r4 = k4CUCD (A.28d)

where Ci is the concentration of species i and k j and k jr are the forward and reverse rate

constants of the jth reaction. In our analysis we assumed that k jr = 0.01k j, indicating that

135

the forward reaction is favored. The material balances are:

0 = FinCAin − FoutCA − 2(r1 − r4)V (A.29a)

0 = FinCPin − FoutCP + (r1 − r2)V (A.29b)

0 = FinCUin − FoutCU + (2r2 − r3 − r4)V (A.29c)

0 = FinCBin − FoutCB − r3V (A.29d)

0 = FinCEin − FoutCE + r3V (A.29e)

0 = FinCDin − FoutCD − r4V (A.29f)

where Fin and Fout are the volumetric flowrates of the reactor feed and outlet respectively,

Ciin is the concentration of species i in the feed stream, and V is the volume of the CSTR.

The reactions in (A.27) are assumed to be exothermic and a cooling jacket is used to

remove excess heat and control the temperature inside of the reactors. The jacket uses a

fluid entering at a temperature Tic and flowing at a mass flowrate of ṁc as the coolant.

The coolant flowrate required to maintain the desired temperature can be determined

from the reactor energy balance:

Hin = ρCpFTin (A.30a)

Hout = ρCpFT (A.30b)

Q̇ = −r1V∆H1 − r2V∆H2 − r3V∆H3 − r4V∆H4 (A.30c)

ṁc =
Hin − Hout + Q̇
Cpc(Toc − Tic)

=
ρCpF(Tin − T) + Q̇

Cpc(Toc − Tic)
(A.30d)

where Tin, is the temperature of the inlet stream, ∆Hj is the heat of reaction for the jth

reaction, and Cpc is the specific heat capacity of the coolant. Additionally, we assume that

reactions do not change the heat capacity Cpin or density ρin of the reactor inlet. This

allows us to set Cp = Cpin = Cpout, ρ = ρin = ρout, and F = Fin = Fout. The relation

136

between the rate constants and temperature is described by the Arrhenius equation:

k = k0 exp
(
−EA

RT

)
(A.31)

where k0 is the pre-exponential factor, EA is the activation energy of the reaction, and R

is the universal gas constant.

The outlet of the second reactor is fed to series of flash separation units to recover the

products from the effluent stream. Product E is recovered in the vapor fraction of the first

vessel as stream v̇1, and product P is recovered in the liquid fraction of the second vessel

as stream l̇2. The relative volatility of the chemicals is set with respect to the vapor-liquid

equilibrium ratio KP; compositions and flows for the exiting streams can be determined

from the following vapor-liquid equilibrium calculation:

xi =
zi

f (KPαi − 1) + 1
(A.32a)

yi = Kpαixi (A.32b)

where zi, xi, and yi are the molar fractions of species i in the feed, liquid, and vapor

streams respectively. The relative volatility of each chemical is denoted by αi and f is the

fraction (on a molar basis) of the feed that exits the vessel in the vapor stream. We set

f according to the molar fraction of the recovered product in the feed, f = zE for the

first vessel, and f = 1− zP for the second vessel. The energy required to vaporize the

desired fraction of the flash’s feed was supplied by a heater that uses steam as the heating

agent. The required flowrate of steam, ṁstm, was determined from the flash vessel energy

balance

Q̇vap = ∑
i∈{A,P,U,B,E,D}

Liyiv̇ (A.33a)

ṁstm =
Q̇vap

LH2O
(A.33b)

137

where Li and LH2O are the latent molar heat of species i and water, respectively.

The performance of the system is expressed as a cost function (negative profit) that

measures the quality of the product streams along with the corresponding utility require-

ments at various temperatures and is formulated as:

f1(T1, T2) = ∑
i∈{A,P,U,B,E,D}

wiyi1v̇1 + ∑
i∈{A,P,U,B,E,D}

wixi2 l̇2 + ∑
i∈{A,B,D}

wiFiCi0 (A.34a)

f2(T1, T2) = wc
(
ṁc + ṁ′c

)
+ wstm

(
ṁstm + ṁ′stm

)
(A.34b)

f (T1, T2) = f1(T1, T2) + f2(T1, T2) (A.34c)

where T1 and T2 are the operating temperatures of the first and second reactor. The molar

fraction of species i in first product stream, v̇1, is denoted by yi1, and xi2 is the molar

fraction of species i in the second product stream l̇2. The price of species i is represented

by wi, and wc and wstm are the costs of the cooling and heating utilities respectively. The

cost of the reagents supplied to the network is captured by the final term in (A.34a) where

Fi and Ci0 are the volumetric flow rate and inlet concentration respectively of species i into

the process.

Reference Model

By substituting the Arrhenius expression (A.31) into the rate expressions (A.28), we can

determine that reaction rates are functions of temperature and concentration; this is a

major source of nonlinearity in the system. We draw inspiration from the use of inferential

sensors that are used in industry to correlate the rates directly to temperature (bypassing

concentrations) in order to develop a reference model. Specifically, in our reference model

we develop a polynomial function that approximates the dependence of the rate on the

temperature. We develop our polynomial model based on the following transformation

of the rate expression:

log r =
−EA

R
1
T
+ n log C (A.35)

138

Figure A.3: Schematic diagram of the serial CSTR reactor system and product recovery
system

where we ignore the reverse reaction due to the comparatively small kr values used. From

the mass balances, we can also determine that the concentration is an implicit function

of the temperature. We choose to capture this relation using higher-order polynomials.

During our analysis, we determined that a third-order polynomial provided satisfactory

performance, resulting in the following approximation for the rate expression:

log r = θ1

(
1
T

)
+ θ2

(
1
T

)2

+ θ3

(
1
T

)3

+ θ0 (A.36)

where θ0, θ1, θ2, and θ3 are the model coefficients. Using (A.36), we can rewrite the

material balances purely as functions of temperature and obtain the following expressions

139

for the various species concentrations:

CA = CAin − 2(r1(T)− r4(T))
V
F

(A.37a)

CP = CPin + (r1(T)− r2(T))
V
F

(A.37b)

CU = CUin + (2r2(T)− r3(T)− r4(T))
V
F

(A.37c)

CB = CBin − r3(T)
V
F

(A.37d)

CE = CEin + r3(T)
V
F

(A.37e)

CD = CDin − r4(T)
V
F

(A.37f)

we then substitute these values into a performance function similar to (A.34) to obtain the

reference model for the system g. This reference model can be seen as an approximate

physical model of the real system (captured by the exact model) and is much easier

to evaluate. However, because this model is comprised of a complex set of algebraic

equations, we further approximate the dependence of the performance function on the

temperatures using a GP model.

140

Appendix B

S U P P L E M E N TA RY I N F O R M AT I O N

This appendix presents supplementary information from select sections of this disserta-

tion.

B.1 Setup of Intermediate Function Gaussian Process Models

B.1.1 Chemical Process Optimization Study

In the composite function BO problem, we treat the reactor and separator as black-boxes.

The behavior of these units is approximated using a set of GP surrogate models, GP ℓ
y,

that estimate the following intermediate functions, y(x): the duties of RX-1 and SEP-1,

Q̇4 and Q̇5 respectively, the product to purge ratio of A, the feed to purge ratio of B, and

purge to product ratio of C. We define these last three variables as:

ηA =
ψAFS

ξAFP
(B.1a)

ηB =
ξBFP

FB
(B.1b)

ηC =
ξCFP

ψCFS
(B.1c)

141

where FP is the flowrate of the purge and ξi is the fraction of species i in this stream.

These intermediates have the following lower and upper feasibility bounds:

l̂y = [10−6, 10−6, 10−6, 10−6, 10−6] (B.2a)

ûy = [1, ∞, ∞, ∞, ∞] (B.2b)

Because B is essentially non-condensable and only present in trace amounts in the product

stream, 1− ηB is equal to the conversion of B in the reactor. As a result, the generation

rates of A, B, and C can be calculated from this variable:

ṙB = −(1− ηB)FB (B.3a)

ṙA =
νA

νB
ṙB (B.3b)

ṙC =
νC

νB
ṙB (B.3c)

Note that the negative sign in (B.3a) is due to the fact that B consumed by the reaction.

Combining these flowrates with ηA and ηC we can calculate the flowrates and composi-

tions of the remaining streams. The purge and recycle streams are specified by:

ξAFP =
FA + ṙA

1 + ηA
(B.4a)

ξBFP = ηBFB (B.4b)

ξCFP =
ηC ṙC

1 + ηC
(B.4c)

FP = ξAFP + ξBFP + ξCFP (B.4d)

FR =
FPR

1− R
(B.4e)

142

where FR is flowrate of the recycle stream; note that the purge and recycle streams have

the same composition. The product stream can similarly be defined:

ψAFS =
ηA(FA + ṙA)

1 + ηA
(B.5a)

ψBFS = 0 (B.5b)

ψCFS =
ṙC

1 + ηC
(B.5c)

FS = ψAFS + ψBFS + ψCFS (B.5d)

(B.5e)

Combining these expressions with the compressor and heater models (which are assumed

to be white-boxes) and the GP estimates for Q̇4 and Q̇5, we can calculate all of the values

in (B.1).

Due to the presence of the recycle stream, we initially surmised that ηB should be

a function of the five inputs as it is essentially a measure of the extent of the reaction.

However, automatic relevance determination (ARD) [143] showed that PS does not appear

to have much of an effect on ηB. This is likely due to fact that TS is able to capture most of

the variability from the separation process. As a result, the GP model of ηB takes only TRX,

PRX, R, and TS as inputs. We then nest ηB within the models of ηA and ηC. These measure

the performance of the separator, which is dependent on the composition of the separator

feed in addition to TS and PS. As the reactor outlet is the separator feed and is directly

dependent on the value of ηB, ηA and ηC should exhibit a similar dependence. This allows

us to avoid having to explicitly consider the recycle fraction and reactor temperature and

pressure (all of which affect the reactor outflow), thereby reducing the input dimension

of the GP models for these intermediates from five to three. Using a similar approach,

we determine that the reactor heat duty can effectively be modeled using TRX, PRX, ηA

and ηB, as the latter two variables are closely correlated to flowrate and composition of

the recycle stream, while the former two establish the equilibrium point of the reactor.

143

Similarly the GP model of Q̇5 uses TRX, R, and ηB along with TS, and PS as these inputs

are closely correlated to the flowrate and composition of the separator feed as well as the

simple and latent heat released by condensation of the product stream. Note that this

approach highlights the high degree of customization composite function BO affords in

the selection of GP model inputs. In addition to improving model quality, this can allow

BO to be extended to high-dimensional systems where standard BO runs into scalability

issues as the individual intermediates do not have to be modeled with the full set of

inputs.

B.1.2 Photobioreactor Design Study

Because of the novelty of the presented CB cultivation system, mature models for this

unit operation are not yet available. The remaining systems (AD, biogas purfication, and

CB harvesting) are established technologies and models of these units can be found in the

literature. As a result, we choose to treat these systems as white-boxes and only model

the b-PBR as a black-box. The design variables of interest are the reactor surface area to

volume ratio, S
V , batch time, tb, and the phosphorus cell density of the CB, ρP.

The intermediate functions we choose to estimate are the required reactor volume V

and the CB titer at harvest time X; we define their feasibility bounds to be:

l̂y = [10−6, 10−6] (B.6a)

ûy = [106, 10] (B.6b)

Using these variables, we can fully specify the outlet flow and size of the b-PBRs:

SA =
ρWV

σ
(B.7a)

mCB = X
(

V
tb/365

)
(B.7b)

mPBR = ρW

(
V

tb/365

)
(B.7c)

144

where mPBR is the mass flow rate out of the reactor. Note that we approximate the density

of the culture as ρW due to the relatively low concentration of the CB; the division of tb

by 365 is done to convert this qunatity from days to years. The GP models developed for

X and V both take in the full set of inputs (S
V , tb, and ρP). This is due to the fact that these

variables have a significant impact on the througput and size of the reactor. As a result,

this case study demonstrates how composite function BO can be used to select sample

points that can be used to develop a surrogate models for a unit of interest while driving

the system the unit is a part of to an optimal configuration. This essentially allows us

to complete two tasks at once and significantly reduces the probability of sampling at

points in highly sub-optimal areas where the unit would likely never operate. As a result,

the developed model is highly refined in the regions around the located optima and,

therefore, is arguably more useful.

145

B I B L I O G R A P H Y

[1] Ranjeet Kumar, Michael J Wenzel, Mohammad N ElBsat, Michael J Risbeck, Kirk H

Drees, and Victor M Zavala. Stochastic model predictive control for central HVAC

plants. Journal of Process Control, 90:1–17, 2020.

[2] Rebecca A. Larson, Mahmoud Sharara, Laura W. Good, Pam Porter, Troy Runge,

Victor Zavala, Apoorva Sampat, and Amanda Smith. Evaluation of manure stor-

age capital projects in the Yahara River watershed. Technical report, University of

Wisconsin-Extension, University of Wisconsin-Madison College of Agricultural and

Life Sciences, Biological Systems Engineering, 2016.

[3] Hui Wang, Horacio A. Aguirre-Villegas, Rebecca A. Larson, and Asli Alkan-

Ozkaynak. Physical properties of dairy manure pre- and post-anaerobic digestion.

Applied Sciences, 9(13):2703, 2019.

[4] Economic Indicators. Chemical Engineering, 128(1):56, 2021.

[5] Ryan L Clark, Laura L McGinley, Hugh M Purdy, Travis C Korosh, Jennifer L Reed,

Thatcher W Root, and Brian F Pfleger. Light-optimized growth of cyanobacterial

cultures: Growth phases and productivity of biomass and secreted molecules in

light-limited batch growth. Metabolic engineering, 47:230–242, 2018.

[6] Kenneth Lange. Optimization. Springer Texts in Statistics. Springer, New York, NY,

2nd edition, 2013.

146

[7] Jasbir S. Arora. Chapter 10 - Numerical methods for unconstrained optimum de-

sign. In Jasbir S. Arora, editor, Introduction to Optimum Design (Third Edition), pages

411–441. Academic Press, Boston, MA, third edition edition, 2012.

[8] Paul T. Boggs and Jon W. Tolle. Sequential quadratic programming. Acta Numerica,

4:1–51, 1995.

[9] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large

scale optimization. Mathematical Programming, 45:503–528, 1989.

[10] Andreas Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization

with Applications in Process Engineering. PhD thesis, Carnegie Mellon University,

Pittsburgh, PA, 2002.

[11] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to Derivative-free Optimiza-

tion. SIAM, 2009.

[12] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The

Computer Journal, 7(4):308–313, 01 1965.

[13] Robert Hooke and T. A. Jeeves. “direct search” solution of numerical and statistical

problems. Journal of the Association for Computing Machinery, 8(2):212–229, 1961.

[14] Pradnya A. Vikhar. Evolutionary algorithms: A critical review and its future

prospects. In 2016 International Conference on Global Trends in Signal Processing, Infor-

mation Computing and Communication (ICGTSPICC), pages 261–265, 2016.

[15] L.N. Vicente and Custódio A.L. Analysis of direct searches for discontinuous func-

tions. Mathematical Programming, 133(1):299–325, 2012.

[16] Robert Michael Lewis, Virginia Torczon, and Michael W. Trosset. Direct search

methods: Then and now. Journal of Computational and Applied Mathematics,

124(1):191–207, 2000.

147

[17] Virginia Joanne Torczon. Multidirectional Search: A Direct Search Algorithm for Parallel

Machines. PhD thesis, Rice University, Houston, TX, 1989.

[18] W.H. Swann. Direct search methods. In W. Murray, editor, Numerical Methods for

Unconstrained Optimization, pages 13–28. Academic Press, New York, NY, 1972.

[19] Juliane Müller. Surrogate model algorithms for computationally expensive black-

box global optimization problems. 2012.

[20] Luis Miguel Rios and Nikolaos V. Sahinidis. Derivative-free optimization: A re-

view of algorithms and comparison of software implementations. Journal of Global

Optimization, 56(3):1247–1293, 2013.

[21] Jeffrey Larson, Matt Menickelly, and Stefan M. Wild. Derivative-free optimization

methods. Acta Numerica, 28:287–404, 2019.

[22] Ivo D. Dinov. Black Box Machine-Learning Methods: Neural Networks and Support Vector

Machines, pages 383–422. Springer International Publishing, Cham, Switzerland,

2018.

[23] G. E. P. Box and K. B. Wilson. On the experimental attainment of optimum condi-

tions. Journal of the Royal Statistical Society, 13(1):1–38, 1951.

[24] H.-M. Gutmann. A radial basis function method for global optimization. Journal of

Global Optimization, 19(3):201–227, 2001.

[25] Harold J. Kushner. A new method for locating the maximum point of an arbitrary

multi-peak curve in the presence of noise. Journal of Basic Engineering, 86(1):97–106,

1964.

[26] V Saltenis. On a method of multi-extremal optimization. Automatic Control and

Computer Sciences (Avtomatika i Vychislitelnayya Tekchnika), 5(3):33–38, 1971.

[27] Jonas Mockus. Bayesian methods of search for an extremum. Automatic Control and

Computer Sciences (Avtomatika i Vychislitelnayya Tekchnika), 6(3):53–62, 1972.

148

[28] R. Garnett. Baysian Optimization. Cambridge University Press, 2023.

[29] Allen Jonathan Román, Shiyi Qin, Julio C. Rodríguez, Leonardo D. González,

Victor M. Zavala, and Tim A. Osswald. Natural rubber blend optimization via

data-driven modeling: The implementation for reverse engineering. Polymers,

14(11):2262, 2022.

[30] Runzhe Liang, Haoyang Hu, Yueheng Han, Bingzhen Chen, and Zhihong Yuan.

Capbo: A cost-aware parallelized Bayesian optimization method for chemical reac-

tion optimization. AIChE Journal, 70(3):e18316, 2024.

[31] Roman Marchant and Fabio Ramos. Bayesian optimisation for informative continu-

ous path planning. In 2014 IEEE International Conference on Robotics and Automation

(ICRA), pages 6136–6143, 2014.

[32] Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in

Bayesian optimization. ACM Computing Surveys, 55(13s):287, 2023.

[33] Joel A. Paulson and Calvin Tsay. Bayesian optimization as a flexible and efficient

design framework for sustainable process systems. arXiv preprint arXiv:2401.16373,

2024.

[34] Tom Savage, Nausheen Basha, Jonathan McDonough, Omar K. Matar, and Ehe-

catl Antonio del Rio Chanona. Multi-fidelity data-driven design and analysis of

reactor and tube simulations. Computers & Chemical Engineering, 179:108410, 2023.

[35] Zahra Zanjani Foumani, Mehdi Shishehbor, Amin Yousefpour, and Ramin Bostan-

abad. Multi-fidelity cost-aware Bayesian optimization. Computer Methods in Applied

Mechanics and Engineering, 407:115937, 2023.

[36] Peter Z. G. Qian and C. F. Jeff Wu. Bayesian hierarchical modeling for integrating

low-accuracy and high-accuracy experiments. Technometrics, 50(2):192–204, 2008.

149

[37] R. Astudillo and P. Frazier. Bayesian optimization of composite functions. In

K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Con-

ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,

pages 354–363. PMLR, 09–15 Jun 2019.

[38] J.A. Paulson and C. Lu. COBALT: COnstrained Bayesian optimizAtion of com-

putaionaLly expensive grey-box models exploiting derivaTive information. Com-

puters & Chemical Engineering, 160:107700, 2022.

[39] M. Balandat, B. Karrer, D.R. Jiang, S. Daulton, B. Letham, A.G. Wislon, and

E. Bashky. BOTORCH: A framework for efficient Monte-Carlo Bayesian optimiza-

tion. In Proceedings of the 34th Conference International Conference on Neural Information

Processing Systems, NIPS ’20, pages 21524–21538. Curran Associates Inc., Dec 2020.

[40] Wenjie Xu, Yuning Jiang, Bratislav Svetozarevic, and Colin N. Jones. Bayesian op-

timization of expensive nested grey-box functions. arXiv preprint arXiv:2306.05150,

2023.

[41] Matthias Schonlau. Computer experiments and global optimization. PhD thesis, Uni-

versity of Waterloo, Waterloo, ON, 1997.

[42] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization

of machine learning algorithms. In Advances in Neural Information Processing Systems,

volume 25, pages 2951–2959. Curran Associates, Inc., 2012.

[43] José Miguel Hernández-Lobato, James Requeima, Edward O. Pyzer-Knapp, and

Alán Aspuru-Guzik. Parallel and distributed Thompson sampling for large-scale

accelerated exploration of chemical space. In Proceedings of the 34th International

Conference on Machine Learning - Volume 70, ICML’17, page 1470–1479. JMLR.org,

2017.

[44] A multi-points criterion for deterministic parallel global optimization based on

Gaussian processes. Technical report.

150

[45] Jian Wu and Peter I. Frazier. The parallel knowledge gradient method for batch

Bayesian optimization. arXiv preprint arXiv:1606.04414, 2018.

[46] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas Poc-

zos. Parallelised Bayesian optimisation via Thompson sampling. In Amos Storkey

and Fernando Perez-Cruz, editors, Proceedings of the Twenty-First International Con-

ference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine

Learning Research, pages 133–142. PMLR, 09–11 Apr 2018.

[47] Quoc Phong Nguyen, Zhaoxuan Wu, Bryan Kian Hsiang Low, and Patrick Jail-

let. Trusted-maximizers entropy search for efficient Bayesian optimization. arXiv

preprint arXiv:2107.14465, 2021.

[48] Amar Shah and Zoubin Ghahramani. Parallel predictive entropy search for batch

global optimization of expensive objective functions. In Proceedings of the 28th Inter-

national Conference on Neural Information Processing Systems - Volume 2, NIPS’15, page

3330–3338. MIT Press, 2015.

[49] Thomas Bayes. An essay towards solving a problem the doctrine of chances. By

the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton,

AMFR S. Philosophical Transactions, 53:370–418, 1763.

[50] Yifan Wu, Aron Walsh, and Alex M. Ganose. Race to the bottom: Bayesian optimi-

sation for chemical problems. Digital Discovery, 3:1086–1100, 2024.

[51] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Ma-

chine Learning. MIT Press, 2006.

[52] Bertil Matérn. Spatial variation : Stochastic models and their application to some

problems in forest surveys and other sampling investigations. In Messages from the

State Forestry Research Institute, volume 49, 1960.

151

[53] B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, and N. de Freitas. Taking the

human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE,

104(1):148–175, 2016.

[54] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feritas.

Bayesian optimization in a billion dimensions via random embeddings. Journal of

Artificial Intelligence Research, 55(1):361–387, 2016.

[55] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using

pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neu-

ral Information Processing Systems, volume 18. MIT Press, 2005.

[56] Dustin Tran, Rajesh Ranganath, and David M. Blei. The variational Gaussian pro-

cess. arXiv preprint arXiv:1511.06499, 2016.

[57] E. Snelson, Z. Ghahramani, and C. Rasmussen. Warped Gaussian processes. In

S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing

Systems, volume 16, pages 337–334. MIT Press, 2004.

[58] Radford M. Neal. Bayesian Learning for Neural Networks. PhD thesis, University of

Toronto, Toronto, ON, 1995.

[59] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and

John P Cunningham. Bayesian optimization with inequality constraints. In ICML,

volume 2014, pages 937–945, 2014.

[60] Jenna C Fromer, David E Graff, and Connor W Coley. Pareto optimization to accel-

erate multi-objective virtual screening. Digital Discovery, 3(3):467–481, 2024.

[61] Raul Astudillo and Peter Frazier. Bayesian optimization of function networks. Ad-

vances in neural information processing systems, 34:14463–14475, 2021.

[62] Donald R. Jones. A taxonomy of global optimization methods based on response

surfaces. Journal of Global Optimization, 21(4):345–383, 2001.

152

[63] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global opti-

mization of expensive black-box functions. Journal of Global optimization, 13:455–492,

1998.

[64] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaus-

sian process optimization in the bandit setting: No regret and experimental design.

arXiv preprint arXiv:0912.3995, 2009.

[65] Nando De Freitas, Alex Smola, and Masrour Zoghi. Exponential regret bounds

for Gaussian process bandits with deterministic observations. arXiv preprint

arXiv:1206.6457, 2012.

[66] Adam D Bull. Convergence rates of efficient global optimization algorithms. Journal

of Machine Learning Research, 12(10), 2011.

[67] AS Yamashita, AC Zanin, and D Odloak. Tuning of model predictive control with

multi-objective optimization. Brazilian Journal of Chemical Engineering, 33(2):333–346,

2016.

[68] Robert W Koller, Luis A Ricardez-Sandoval, and Lorenz T Biegler. Stochastic back-

off algorithm for simultaneous design, control, and scheduling of multiproduct

systems under uncertainty. AIChE Journal, 64(7):2379–2389, 2018.

[69] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian opti-

mization of expensive cost functions, with application to active user modeling and

hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[70] Tamara G Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by

direct search: New perspectives on some classical and modern methods. SIAM

review, 45(3):385–482, 2003.

[71] Jorge L Garriga and Masoud Soroush. Model predictive control tuning methods: A

review. Industrial & Engineering Chemistry Research, 49(8):3505–3515, 2010.

153

[72] Marco Forgione, Dario Piga, and Alberto Bemporad. Efficient calibration of embed-

ded MPC. arXiv preprint arXiv:1911.13021, 2019.

[73] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan

Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable Bayesian

optimization using deep neural networks. In International Conference on Machine

Learning, pages 2171–2180. PMLR, 2015.

[74] Stewart Greenhill, Santu Rana, Sunil Gupta, Pratibha Vellanki, and Svetha

Venkatesh. Bayesian optimization for adaptive experimental design: A review. IEEE

Access, 8:13937–13948, 2020.

[75] Aaron Wilson, Alan Fern, and Prasad Tadepalli. Using trajectory data to improve

bayesian optimization for reinforcement learning. The Journal of Machine Learning

Research, 15(1):253–282, 2014.

[76] J. Mockus. Bayesian Approach to Global Optimization: Theory and Applications, vol-

ume 37. Springer Science & Business Media, 2012.

[77] Farshud Sorourifar, Naitik Choksi, and Joel A. Paulson. Computationally efficient

integrated design and predictive control of flexible energy systems using multi-

fidelity simulation-based Bayesian optimization. Journal of Optimal Control Applica-

tions and Methods, 44(4):549–576, 2023.

[78] K. Kandasamy, G. Dasarathy, J. Schnieder, and B. Pózcos. Multi-fidelity Bayesian

optimisation with continuous approximations. In D. Precup and Y.W. Teh, editors,

Uncertainty in Artificial Intelligence, volume 70 of Proceedings of Machine Learning Re-

search, pages 1799–1808. PMLR, 06–11 Aug 2017.

[79] Jian Wu, Saul Toscano-Palmerin, Peter I. Frazier, and Andrew G. Wilson. Practical

multi-fidelity Bayesian optimization for hyperaparameter tuning. In Uncertainty in

Artifical Intelligence, pages 788–798. PMLR, 2020.

154

[80] Rommel G Regis and Christine A Shoemaker. Constrained global optimization of

expensive black box functions using radial basis functions. Journal of Global opti-

mization, 31(1):153–171, 2005.

[81] Michael JD Powell. A direct search optimization method that models the objective

and constraint functions by linear interpolation. In Advances in optimization and

numerical analysis, pages 51–67. Springer, 1994.

[82] Andrew R Conn and Sébastien Le Digabel. Use of quadratic models with mesh-

adaptive direct search for constrained black box optimization. Optimization Methods

and Software, 28(1):139–158, 2013.

[83] José A Caballero and Ignacio E Grossmann. An algorithm for the use of surrogate

models in modular flowsheet optimization. AIChE journal, 54(10):2633–2650, 2008.

[84] Burcu Beykal, Fani Boukouvala, Christodoulos A Floudas, Nadav Sorek, Hardikku-

mar Zalavadia, and Eduardo Gildin. Global optimization of grey-box computational

systems using surrogate functions and application to highly constrained oil-field

operations. Computers & Chemical Engineering, 114:99–110, 2018.

[85] Nestor V Queipo, Javier V Goicochea, and Salvador Pintos. Surrogate modeling-

based optimization of SAGD processes. Journal of Petroleum Science and Engineering,

35(1-2):83–93, 2002.

[86] Yolanda Mack, Tushar Goel, Wei Shyy, and Raphael Haftka. Surrogate model-

based optimization framework: A case study in aerospace design. In Evolutionary

computation in dynamic and uncertain environments, pages 323–342. Springer, 2007.

[87] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural

networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations. Journal of Computational Physics,

378:686–707, 2019.

155

[88] Florian Häse, Matteo Aldeghi, Riley J. Hickman, Loïc M. Roch, and Alán Aspuru-

Guzik. GRYFFIN: An algorithm for Bayesian optimization of categorical variables

informed by expert knowledge. Applied Physics Reviews, 8(3):031406, 2021.

[89] J. Zhang, S.D. Petersen, T. Radivojevic, A. Ramirez, A. Pérez-Manríquez, E. Abeliuk,

B.J. Sánchez, Z. Costello, Y. Chen, M.J. Fero, H. Garcia Martin, J. Nielsen, J. D.

Keasling, and M.K. Jensen. Combining mechanistic and machine learning mod-

els for predictive engineering and optimization of tryptophan metabolism. Nature

Communications, 11(1):1–13, 2020.

[90] Elvis A Eugene, Xian Gao, and Alexander W Dowling. Learning and optimization

with Bayesian hybrid models. In 2020 American Control Conference (ACC), pages

3997–4002. IEEE, 2020.

[91] Mina Rafiei and Luis A Ricardez-Sandoval. Stochastic back-off approach for inte-

gration of design and control under uncertainty. Industrial & Engineering Chemistry

Research, 57(12):4351–4365, 2018.

[92] Alberto Lucchini, Simone Formentin, Matteo Corno, Dario Piga, and Sergio M

Savaresi. Torque vectoring for high-performance electric vehicles: An efficient MPC

calibration. IEEE Control Systems Letters, 4(3):725–730, 2020.

[93] Farshud Sorourifar, Georgios Makrygirgos, Ali Mesbah, and Joel A. Paulson. A

data-driven automatic tuning method for MPC under uncertainty using constrained

Bayesian optimization. IFAC-PapersOnLine, 54(3):243–250, 2021. 16th IFAC Sympo-

sium on Advanced Control of Chemical Processes ADCHEM 2021.

[94] Joel A Paulson and Ali Mesbah. Data-driven scenario optimization for automated

controller tuning with probabilistic performance guarantees. IEEE Control Systems

Letters, 5(4):1477–1482, 2020.

[95] Danny Drieß, Peter Englert, and Marc Toussaint. Constrained Bayesian optimiza-

tion of combined interaction force/task space controllers for manipulations. In

156

2017 IEEE International Conference on Robotics and Automation (ICRA), pages 902–907.

IEEE, 2017.

[96] Marcello Fiducioso, Sebastian Curi, Benedikt Schumacher, Markus Gwerder, and

Andreas Krause. Safe contextual Bayesian optimization for sustainable room tem-

perature PID control tuning. arXiv preprint arXiv:1906.12086, 2019.

[97] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine, and Claire J Tomlin.

Goal-driven dynamics learning via Bayesian optimization. In 2017 IEEE 56th Annual

Conference on Decision and Control (CDC), pages 5168–5173. IEEE, 2017.

[98] Dario Piga, Marco Forgione, Simone Formentin, and Alberto Bemporad.

Performance-oriented model learning for data-driven MPC design. IEEE control

systems letters, 3(3):577–582, 2019.

[99] James B Rawlings, Nishith R Patel, Michael J Risbeck, Christos T Maravelias,

Michael J Wenzel, and Robert D Turney. Economic MPC and real-time decision

making with application to large-scale HVAC energy systems. Computers & Chemi-

cal Engineering, 114:89–98, 2018.

[100] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[101] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,

David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan

Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,

Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,

C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,

Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,

Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and

157

SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Comput-

ing in Python. Nature Methods, 17:261–272, 2020.

[102] Dipti Jasrasaria and Edward O Pyzer-Knapp. Dynamic control of explore/exploit

trade-off in Bayesian optimization. In Science and Information Conference, pages 1–15.

Springer, 2018.

[103] Gavin Towler and Ray Sinnott. Chemical Engineering Design: Principles, Practice and

Economics of Plant and Process Design. Elsevier, 2012.

[104] George E. P. Box, J. Stuart Hunter, and William G. Hunter. Statistics for Experimenters:

Design, Innovation, and Discovery. Wiley, Second edition, 2005.

[105] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings

of ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–1948.

IEEE, 1995.

[106] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies: A comprehensive

introduction. Natural Computing, 1(1):3–52, 2002.

[107] Remi R. Lam, Matthias Poloczek, Peter I. Frazier, and Karen E. Willcox. Advances in

Bayesian optimization with applications in aerospace engineering. In Proceedings of

the AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,

Boston, MA, 2018. AIAA.

[108] Tijana Radivojević, Zak Costello, Kenneth Workman, and Hector Garcia Martin. A

machine learning automated recommendation tool for synthetic biology. Nature

Communications, 11(1):4879, 2020.

[109] Rémy Priem, Nathalie Bartoli, and Youssef Diouane. On the use of upper trust

bounds in constrained Bayesian optimization infill criterion. In AIAA Aviation 2019

Forum, pages 1–10, Dallas, United States, June 2019.

158

[110] Ankush Chakrabarty, Scott A. Bortoff, and Christopher R. Laughman. Simulation

failure-robust Bayesian optimization for data-driven parameter estimation. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 53(5):2629–2640, 2023.

[111] B. Sohlberg and E.W. Jacobsen. Grey-box modeling – Branches and experiences.

IFAC Proceedings Volumes, 41(2):11415–11420, 2008. 17th IFAC World Congress.

[112] F. Boukouvala and C.A. Floudas. ARGONAUT: AlgoRithms for Global Opti-

mization of coNstrAined grey-box compUTational problems. Optimization Letters,

11(5):895–913, 2017.

[113] Ishan Bajaj, Shachit S. Iyer, and M.M. Faruque Hasan. A trust region-based two

phase algorithm for constrained black-box and grey-box optimization with infeasi-

ble initial point. Computers & Chemical Engineering, 116:306–321, 2018.

[114] Burcu Beykal, Fani Boukouvala, Christodoulos A. Floudas, and Efstratios N. Pis-

tikopoulos. Optimal design of energy systems using constrained grey-box multi-

objective optimization. Computers & Chemical Engineering, 116:488–502, 2018.

[115] Q. Lu, L.D. González, R. Kumar, and V.M. Zavala. Bayesian optimization with

reference models: A case study in MPC for HVAC central plants. Computers &

Chemical Engineering, 154:107491, 2021.

[116] A.K. Uhrenholt and B.S. Jensen. Efficient Bayesian optimization for target vector

estimation. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of the Twenty-

Second International Conference on Artificial Intelligence and Statistics, volume 89 of

Proceedings of Machine Learning Research, pages 2661–2670. PMLR, 16–18 Apr 2019.

[117] Congwen Lu and Joel A. Paulson. No-regret constrained Bayesian optimization of

noisy and expensive hybrid models using differentiable quantile function approxi-

mations. Journal of Process Control, 131:103085, 2023.

159

[118] R. Astudillo and P.I. Frazier. Thinking inside the box: A tutorial on grey-box

Bayesian optimization. In Proceedings of the 2021 Winter Simulation Conference, De-

cember 2021.

[119] Leonardo D. González and Victor M. Zavala. BOIS: Bayesian Optimization of Inter-

connected Systems. arXiv preprint arXiv:2311.11254, 2023.

[120] Mauricio A. Alvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-

valued functions: A review. arXiv preprint arXiv:1106.6251, 2012.

[121] Haitao Liu, Jianfei Cai, and Yew-Soon Ong. Remarks on multi-output Gaussian

process regression. Knowedge-Based Systemsl, 144:102–121, 2018.

[122] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of

Algorithmic Differentiation. SIAM, Philadelphia, 2008.

[123] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Computer

Science, 22(3):317–330, 1983.

[124] J.C. Thompson, V.M. Zavala, and O.S. Venturelli. Integrating a tailored recurrent

neural network with Bayesian experimental design to optimize microbial commu-

nity functions. PLOS Computational Biology, 19(9):1–25, 2023.

[125] Thanh Nhat Nguyen, Thuy Tran Phuong Nhat, Ken Takimoto, Ashutosh Thakur,

Shun Nishimura, Junya Ohyama, Itsuki Miyazato, Lauren Takahashi, Jun Fujima,

Keisuke Takahashi, and Toshiak Taniike. High-throughput experimentation and

catalyst informatics for oxidative coupling of methane. ACS Catalysis, 10(2):921–

932, 2012.

[126] Steven M. Mennen, Carolina Alhambra, C. Liana Allen, Mario Barberis, Simon

Berritt, Thomas A. Brandt, Andrew D. Campbell, Jesús Castañón, Alan H. Cher-

ney, Melodie Christensen, David B. Damon, J. Eugenio de Diego, Susana García-

Cerrada, Pablo García-Losada, Rubén Haro, Jacob Janey, David C. Leitch, Ling

160

Li, Fangfang Liu, Paul C. Lobben, David W. C. MacMillan, Javier Magano, Emma

McInturff, Sebastien Monfette, Ronald J. Post, Danielle Schultz, Barbara J. Sitter, Ja-

son M. Stevens, Iulia I. Strambeanu, Jack Twilton, Ke Wang, and Matthew A. Zajac.

The evolution of high-throughput experimentation in pharmaceutical development

and perspectives on the future. Organic Process Research & Development, 23(6):1213–

1242, 2019.

[127] Michael J. Smanski, Hui Zhou, Ben Shen Claesen, Michael A. Fischbach, and

Christopher A. Voigt. Synthetic biology to access and expand nature’s chemical

diversity. Nature Reviews Microbiology, 14:135–149, 2016.

[128] Joshua A. Selekman, Jun Qiu, Kristy Tran, Jason Stevens, Victor Rosso, Eric Sim-

mons, Yi Xiao, and Jacob Janey. High-throughput automation in chemical process

development. Annual Review of Chemical and Biomolecular Engineering, 8:525–547,

2017.

[129] Michae Shevlin. Practical high-throughput experimentation for chemists. ACS

Medicinal Chemistry Letters, 8(6):601–607, 2017.

[130] Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review.

Statistical Science, pages 273–304, 1995.

[131] Andrew L. Ferguson and Keith A. Brown. Data-driven design and autonomous ex-

perimentation in soft and biological materials engineering. Annual Review of Chem-

ical and Biomolecular Engineering, 13, 2022.

[132] Arpan Biswas, Anna N. Morozovska, Maxim Ziatdinov, Eugene A. Eliseev, and

Sergei V. Kalinin. Multi-objective Bayesian optimization of ferroelectric materials

with interfacial control for memory and energy storage applications. Journal of

Applied Physics, 130(20):204102–1–204102–1, 2021.

[133] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. Kriging is well-

161

suited to parallelize optimization. In Computation Intelligence in Expensive Optimiza-

tion Problems, pages 131–162. Springer, 2010.

[134] Thomas Desautels, Andreas Krause, and Joel W. Burdick. Parallelizing exploration-

exploitation tradeoffs in Gaussian process bandit optimization. Journal of Machine

Learning Research, 15(119):4053–4103, 2014.

[135] Sébastian Marmin, Clément Chevalier, and David Ginsbourger. Differentiating the

multipoint expected improvement for optimal batch design. In Machine Learning,

Optimization, and Big Data. 2015.

[136] M. Todd Young, Jacob Hinkle, Arvind Ramanathan, and Ramakrishnan Kannan.

Hyperspace: Distributed Bayesian hyperparameter optimization. In 2018 30th Inter-

national Symposium on Computer Architecture and High Performance Computing, pages

339–347. IEEE, 2018.

[137] James T. Wilson, Riccardo Moriconi, Frank Hutter, and Marc P. Deisenroth. The

reparameterization trick for acquisition functions. arXiv preprint arXiv:1712.00424,

2017.

[138] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Parallel algorithm con-

figuration. In International Conference on Learning and Intelligent Optimization, pages

55–70. Springer, 2012.

[139] M. Todd Young, Jacob D. Hinkle, Ramakrishnan Kannan, and Arvind Ramanathan.

Distributed Bayesian optimization of reinforcement learning algorithms. Journal of

the Parallel and Distributed Computing, 139(1):43–52, 2020.

[140] Jaspar Snoek, Hugo Larochelle, and Ryan P. Adams. Spearmint. https://github.c

om/HIPS/Spearmint, 2012.

[141] Sungho Shin, Victor M Zavala, and Mihai Anitescu. Decentralized schemes with

https://github.com/HIPS/Spearmint
https://github.com/HIPS/Spearmint

162

overlap for solving graph-structured optimization problems. IEEE Transactions on

Control of Network Systems, 7(3):1225–1236, 2020.

[142] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analy-

sis. Journal of Computational and Graphical Statistics, 15(2):265–286, 2006.

[143] Christopher K. I. Williams and Carl E. Rasmussen. Gaussian processes for regres-

sion. In Advances in Neural Information Processing Systems, volume 8, pages 514–520.

MIT Press, 1996.

[144] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but

many are useful: Learning a variable’s importance by studying an entire class of

prediction models simultaneously. Journal of Machine Learning Research, 20(177):1–

81, 2019.

[145] Kirthevasan Kandasamy, Gautam Dasarathy, Junier B Oliva, Jeff Schneider, and

Barnabás Póczos. Gaussian process bandit optimisation with multi-fidelity evalua-

tions. Advances in neural information processing systems, 29, 2016.

[146] Kirthevasan Kandasamy, Gautam Dasarathy, Junier Oliva, Jeff Schneider, and Barn-

abas Poczos. Multi-fidelity Gaussian process bandit optimisation. Journal of Artificial

Intelligence Research, 66:151–196, 2019.

[147] Kirthevasan Kandasamy, Gautam Dasarathy, Barnabas Poczos, and Jeff Schneider.

The multi-fidelity multi-armed bandit. Advances in neural information processing sys-

tems, 29, 2016.

[148] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mo-

hammed Bennamoun. Hands-on Bayesian neural networks—A tutorial for deep

learning users. IEEE Computational Intelligence Magazine, 17(2):29–48, 2022.

[149] Bowen Lei, Tanner Quinn Kirk, Anirban Bhattacharya, Debdeep Pati, Xiaoning

Qian, Raymundo Arroyave, and Bani K Mallick. Bayesian optimization with adap-

163

tive surrogate models for automated experimental design. Npj Computational Mate-

rials, 7(1):194, 2021.

[150] Kai Chen, Twan van Laarhoven, and Elena Marchiori. Gaussian processes with

skewed Laplace spectral mixture kernels for long-term forecasting. Machine Learn-

ing, 110:2213–2238, 2021.

[151] Markus Grimm, Sébastien Paul, and Pierre Chainais. Process-constrained batch

Bayesian approaches for yield optimization in multi-reactor systems. Computers &

Chemical Engineering, page 108779, 2024.

[152] David Eriksson and Matthias Poloczek. Scalable constrained Bayesian optimiza-

tion. In International Conference on Artificial Intelligence and Statistics, pages 730–738.

PMLR, 2021.

[153] Luca Mencarelli, Qi Chen, Alexandre Pagot, and Ignacio E Grossmann. A review on

superstructure optimization approaches in process system engineering. Computers

& Chemical Engineering, 136:106808, 2020.

[154] Ruth Misener and Lorenz Biegler. Formulating data-driven surrogate models for

process optimization. Computers & Chemical Engineering, 179:108411, 2023.

[155] Yoel Cortes-Peña, Deepak Kumar, Vijay Singh, and Jeremy S. Guest. BioSTEAM:

A fast and flexible platform for the design, simulation, and techno-economic anal-

ysis of biorefineries under uncertainty. ACS Sustainable Chemistry & Engineering,

8(8):3302–3310, 2020.

[156] Elmar Dimpl. Small-scale electricity generation from biomass: Experience with

small-scale technologies for basic energy supply. Technical report, German Federal

Ministry for Economic Cooperation and Development (BMZ), 08 2010.

[157] United States Department of Energy (DoE). How Gas Turbine Power Plants Work,

164

2022. Data retrieved from the Office of Fossil Energy and Carbon Management,

https://www.energy.gov/fecm/how-gas-turbine-power-plants-work.

[158] Horacio A Aguirre-Villegas, Rebecca A Larson, and Mahmoud A Sharara. Anaer-

obic digestion, solid-liquid separation, and drying of dairy manure: Measuring

constituents and modeling emission. Science of the total environment, 696:134059,

2019.

[159] Jonathan N. Rogers, Julian N. Rosenberg, Bernardo J. Guzman, Victor H. Oh,

Luz Elena Mimbela, Abbas Ghassemi, Michael J. Betenbaugh, George A. Oyler,

and Marc D. Donohue. A critical analysis of paddlewheel-driven raceway ponds

for algal biofuel production at commercial scales. Algal Research, 4:76–88, 2014.

[160] Jiaze Ma, Philip Tominac, Brian F. Pfleger, and Victor M. Zavala. Infrastructures

for phosphorus recovery from livestock waste using cyanobacteria: Transportation,

techno-economic, and policy implications. ACS Sustainable Chemistry & Engineering,

9(34):11416–11426, 2021.

[161] Yicheng Hu, Horacio Aguirre-Villegas, Rebecca A. Larson, and Victor M. Zavala.

Managing conflicting economic and environmental metrics in livestock manure

management. ACS ES&T Engineering, 2(5):819–830, 2022.

[162] Suneerat Pipatmanomai, Sommas Kaewluan, and Tharapong Vitidsant. Economic

assessment of biogas-to-electricity generation system with H2S removal by activated

carbon in small pig farm. Applied Energy, 86(5):669–674, 2009.

[163] Berhane H. Gebreslassie, Randall Waymire, and Fengqi You. Global optimization

for sustainable design and synthesis of algae processing network for CO2 mitigation

and biofuel production using life cycle optimization. AIChE Journal, 59(5):1599–

1621, 2013.

[164] Jennifer N. Clippinger and Ryan E. Davis. Techno-economic analysis for the produc-

tion of algal biomass via closed photobioreactors: Future cost potential evaluated

https://www.energy.gov/fecm/how-gas-turbine-power-plants-work

165

across a range of cultivation system designs. Technical report, National Renewable

Energy Laboratory, 2019.

[165] Signature Solar. EG4 BrightMount Solar Panel Ground Mount Rack Kit, 4 Panel

Ground Mount, Adjustable Angle, 2022. Data retrieved from Solar Signature

Mounting Hardware, https://signaturesolar.com/eg4-brightmount-solar

-panel-ground-mount-rack-kit-4-panel-ground-mount-adjustable-angle.

https://signaturesolar.com/eg4-brightmount-solar-panel-ground-mount-rack-kit-4-panel-ground-mount-adjustable-angle
https://signaturesolar.com/eg4-brightmount-solar-panel-ground-mount-rack-kit-4-panel-ground-mount-adjustable-angle

	Title
	Copyright
	Dedication
	Acknowledgments
	Contents
	 List of Figures
	 List of Tables
	 Abstract
	1 Introduction
	1.1 Black-Box Optimization
	1.2 Current State of Bayesian Optimization
	1.2.1 Existing strategies for incorporating physics knowledge in BO
	1.2.2 Existing strategies for enabling parallelized BO

	1.3 Research Objectives
	1.4 Dissertation Outline

	I Incorporating Physics Knowledge
	2 Bayesian Optimization
	2.1 Formulation of Bayesian Optimization
	2.2 The Gaussian Process
	2.3 Acquisition Functions
	2.4 Summary

	3 Bayesian Optimization with Reference Models
	3.1 Introduction
	3.2 Bayesian Optimization with Reference Models
	3.3 Case Study: MPC Tuning for HVAC Plants
	3.4 Conclusions

	4 Bayesian Optimization of Interconnected Systems
	4.1 Introduction
	4.2 Bayesian optimization with composite functions
	4.2.1 Monte Carlo-driven composite function Bayesian optimization
	4.2.2 Optimism-driven composite function BO

	4.3 The BOIS Approach
	4.4 Numerical Experiments
	4.4.1 Optimization of a chemical process
	4.4.2 Design of a photobioreactor

	4.5 Conclusions and Future Work

	II From Sequences to Batches
	5 New Paradigms for Exploiting Parallel Experiments in Bayesian Optimization
	5.1 Introduction
	5.2 Parallel Bayesian Optimization
	5.2.1 Hyperparameter Sampling Algorithm (HP-BO)
	5.2.2 HyperSpace Partitioning Algorithm (HS-BO)
	5.2.3 NMCMC Algorithm (MC-BO)
	5.2.4 Batch Bayesian Optimization Algorithm (q-BO)

	5.3 Parallel Bayesian Optimization using Informed Partitioning
	5.3.1 Level-Set Partitioning Algorithm (LS-BO)
	5.3.2 Variable Partitioning Algorithm (VP-BO)

	5.4 Numerical Case Studies
	5.5 Conclusions and Future Work

	III Final Thoughts
	6 Conclusions and Future Directions
	6.1 Contributions
	6.2 Future Research Directions

	A Supplementary Information
	A.1 System Models
	A.1.1 Reactor-Separator Network Model
	A.1.2 Biofertilizer Production Process Model
	A.1.3 Reactor Network System Model

	B Supplementary Information
	B.1 Setup of Intermediate Function Gaussian Process Models
	B.1.1 Chemical Process Optimization Study
	B.1.2 Photobioreactor Design Study

	 Bibliography

