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abstract

Polygenic risk scores (PRS) are predictors for individuals’ genetic susceptibilities to
disease. The standard protocol for generating PRS requires an external genome-
wide association study (GWAS) independent from the target cohort, creating a
challenge for calculating PRS in large population biobanks due to their frequent
inclusion in GWAS. UK Biobank (UKB), one of the largest human genetic cohorts,
is often used as GWAS. We investigate the performance of UKB Cross-Validated
PRS (CV-PRS) which can be constructed within a single cohort through sample
splitting. We explored type-I-error and predictive performance of CV-PRS for 9
UKB phenotypes including education attainment, height, and number of children.
When sample size is greater than 100,000, CV-PRS shows little or no type-I-error
inflation. We further investigated the effect of sample splitting strategies and find
that the number of folds has minor effect on type-I-error and predictive performance.
We demonstrate that such approach may be a reasonable strategy to produce PRS
in large population cohorts when external GWAS are unavailable.

Genetic nurture refers to a phenomenon that parental genotypes could affect
the family environment through their behaviors, and further affect their children’s
phenotypes. Thus, children’s phenotype, such as education attainment, is influ-
enced not only by their own genotypes, but also by their parents’ genotypes. We use
direct and indirect effect to refer to these two genetic effects. Under this situation,
the genetic correlation for two traits can also be partitioned into correlation of
direct effects and correlation of indirect effects, and other cross-term correlations.
Being able to partition genetic correlation will allow us to get better understanding
about the pathway of genetic correlation. We proposed a linear mixed model to
estimate genetic covariance of direct/indirect effects, and applied it to UK Biobank
siblings on 5 traits. We found significant covariance for educational attainment and
household income indirect effects, height and overall health indirect effects, and
body mass index and overall health direct effects.
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1 introduction

Genome-wide association studies (GWAS) have attracted widespread attention in
the past two decades. Starting from the completion of Human Genome Project
(HGP) in 2003 and the first publication of GWAS in 2005, genome-wide association
approach has achieved remarkable success in identifying risk genes related to
complex traits and revealing new pathways for disease etiology. Up to 2021, more
than 5,700 GWAS have now been reported (Uffelmann et al., 2021), and over 55,000
unique loci have been identified for nearly 5,000 complex traits and diseases (Loos,
2020).

Except for being used to detect signals, GWAS also invoke various applications,
including generating polygenic scores (PGS) for more downsteam analysis, in
silico fine-mapping, pathway analysis, genetic correlation analysis, polygenic risk
prediction, and other hypotheses testing analysis (Uffelmann et al., 2021). These
applications provide insights into the basis of human genetics and shed light on
possibility of clinical use. My thesis mainly focused on PGS and genetic correlation
analysis.

PGS play an important role in measuring the genetic contribution to a complex
trait and predicting genetic risk for a disease (also referred to polygenic risk scores,
PRS), and are especially useful for highly polygenic traits. Rather than being
affected by a few of SNPs or genes, some traits such as education, height, and
Alzheimer’s disease are affected by hundreds or thousands of SNPs. PGS aggregate
the contribution of a large number of SNPs, and have been commonly applied in
various studies. Till now, PGS studies have demonstrated reliable prediction for
many complex genetic phenotypes (Duncan et al., 2019) including blood pressure
(Hoffmann et al., 2017), diabetes (Qi et al., 2017) and height (Wood et al., 2014).
The construction of PGS requires an appropriate large GWAS whose participants
should not be overlapped with PGS samples. Thus, large biobanks such as UK
Biobank (UKB) are often used to produce GWAS. However, generating PRS for
large biobanks themselves become challenging due to limited external GWAS. One
possible solution is to split the whole biobank into non-overlapping subsets, and
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use different sets for training GWAS and calculating PGS. In chapter 2, we explored
the feasibility of this idea, and proposed suggestions for applications.

Besides single-trait analysis, multi-trait analysis based on GWAS also has been
widely studied. Genetic correlation as a key metric to quantify the shared genetic
basis for two traits has gained popularity in the field. It was traditionally used in
animal studies (Lynch et al., 1998; Sodini et al., 2018), and introduced to human
genetics in the 1970s-1980s. Except for improving our understanding of complex
traits, genetic correlation is also utilized in numerous downstream analysis such as
improving prediction accuracy of PRS and exploring possible causality between
traits. It can be easily estimated using individual-level data, or GWAS data. Thus,
the blooming of GWAS studies leads to a large number of genetic correlations
being found, but this also create more challenges in interpreting these correlations,
especially when we studied traits related to socioeconomic factors such as education,
income and occupation. Interpreting the genetic basis of these traits can be difficult
since they are highly affected by the environment or the behaviors from others.

To quantify the possible genetic effects via environment, recent studies have
explored ’genetic nurture’ effects that quantify the effects of parental genotypes
on their offspring phenotypes, which are also denoted as indirect effects. On the
other hand, we denote the genetic effects from own genotypes as direct effects. As
such, partitioning genetic effects into two pathways enables us to obtain better
understanding of the interplay of genetics and environment. In this way, genetic
correlation can also be partitioned into direct and indirect pathways. Chapter 3
of my thesis focused on the partition of genetic correlation using individual-level
data.

Besides these major projects, my work also involves multiple interdisciplinary
collaborations in a variety of biological fields, including parameter-tuning method
using GWAS data (Zhao et al., 2021), review of PRS (Zijie Zhao, 2021), PRS-disease
association in Vitamin D for children with cystic fibrosis (Lai et al., 2022), and
study of gender differences in the association between parity and cognitive function
(submitted).
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2 generating polygenic risk scores in large biobanks
through cross-validation

2.1 Background

Polygenic risk scores (PRS) are genome-wide summaries of genetic propensities for
complex traits (Wray et al., 2007; Choi et al., 2020; Zijie Zhao, 2021). PRS constructed
from well-powered genome-wide association studies (GWAS) have provided novel
insights into the polygenic genetic architecture and pervasive gene-environment
interplays underlying numerous diseases and traits (Purcell et al., 2009; Weiner
et al., 2017; Barcellos Silvia et al., 2018; Shin and Lee, 2021; Arnau-Soler et al., 2019;
Werme et al., 2021b). Recent statistical advances in variant effect estimation have
substantially improved the predictive accuracy of PRS (Ge et al., 2019; Vilhjálmsson
et al., 2015; Hu et al., 2017). Additionally, ever-growing GWAS sample size, particu-
larly the emergence of large population biobanks, is another major achievement in
the field and has greatly accelerated findings in human genetics research. For exam-
ple, UK Biobank (UKB) (Bycroft et al., 2018) is one of the largest population cohorts
in the world, consisting of 500,000 participants from England, Scotland, and Wales,
and has contributed to hundreds of GWAS meta-analyses. It is also often of interest
to produce PRS and perform analyses using these scores in UKB. For instance, a
recent study demonstrated that UKB participants with high PRS for coronary artery
disease show substantially elevated disease risk that is comparable to the risk con-
ferred by monogenic mutations known to cause hypercholesterolemia (Khera et al.,
2018). Another recent study leveraged the education reform information in UK to
demonstrate that PRS can moderate the effects of education on health outcomes
(Barcellos Silvia et al., 2018). However, UKB’s frequent inclusion in GWAS creates a
challenge for PRS analysis in UKB because generating PRS requires an independent
GWAS. Although it may be possible to perform GWAS meta-analysis with UKB
samples excluded, UKB-excluded summary association statistics are not typically

0Co-authors: Fengyi Zheng, Yuchang Wu, Jason M. Fletcher, Qiongshi Lu
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provided by studies. Even when non-UKB GWAS exist, they are often from earlier
studies with substantially reduced statistical power, which leads to poor predictive
performance of PRS.

Cross-validation is a widely used method for estimating prediction error and
choosing tuning parameters in predictive modeling (Bates et al., 2021; Shao, 1993;
Sivula et al., 2020; Zhang, 1993; Dietterich, 1998; Xu and Liang, 2001; Yang, 2007;
Arlot and Celisse, 2010). It provides prediction accuracy estimation by splitting the
samples into non-overlapping training and validation sets. A similar data splitting
procedure may be applied to biobank cohorts for PRS construction. In a nutshell,
we can perform GWAS using training samples, and then use this GWAS to calculate
PRS in the validation set. Through rotating the choice of training and validation
sets, we will eventually produce PRS for all individuals in the dataset. Thus, this
procedure allows PRS construction without an external GWAS. When external
GWAS data are available, they can be meta-analyzed with the GWAS produced
in the biobank training set to further improve PRS performance. Several studies
have explored cross-validation-based PRS. Mefford et al. (Mefford et al., 2020)
applied leave-one-out cross-validation to generate reference-free Linear Mixed
Model (LMM) PRS. However, this method does not account for dependent samples
such as siblings. Mak et al. (Mak et al., 2018) utilized cross-validation and split-
validation methods to solve overfitting problem due to overlap between target and
discovery data. They showed that these methods can lead to a desirable increase
in predictive power than using external GWAS alone, but there is no discussion
about the performance under different number of folds and possible overfitting
issue due to correlation between different folds. Moreover, they did not mention
possible issues related to dependent samples.

In this paper, we assess the empirical validity of cross-validated PRS (CV-PRS)
using UKB data. We quantify the impact of sample size, sample relatedness, and
number of cross-validation folds on the performance of CV-PRS, and provide several
practical guidelines for applying CV-PRS in downstream analysis.
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2.2 Results

Overview of the CV-PRS framework

PRS is a weighted sum of allele counts across many (from dozens to millions of)
single-nucleotide polymorphisms (SNPs). Typically, its calculation requires sum-
mary association statistics from a GWAS as input. Marginal regression coefficients
in GWAS summary statistics, in conjunction with linkage disequilibrium (LD) esti-
mated from a reference panel, are often combined to estimate the SNP effect sizes.
Once the model is trained (i.e., SNP effect sizes are estimated), these effect size
values can be used as SNP weights to calculate PRS in a sample with individual-
level genotype data. To avoid overfitting, it is critical that individuals used in PRS
calculation do not overlap with the samples in GWAS.

CV-PRS differs from a traditional PRS in that it does not rely on any external
GWAS. Instead, the whole sample is equally partitioned into K folds (e.g., K = 4
in Figure 2.1 for illustration). Samples in one fold are used as the target samples
for PRS calculation while the remaining K-1 folds are used to perform GWAS. The
procedure is then repeated by rotating the target fold until PRS is generated for
all samples (Figure 2.1). This procedure is the same as a standard cross-validation
exercise except that the primary goal here is to generate PRS for all samples rather
than estimating prediction error or selecting the optimal PRS model. Although
this method may be useful when no powerful external GWAS is available, it may
also lead to sample PRS correlations caused by the partial sample overlap in GWAS
used in different folds, resulting in biased standard errors and poorly calibrated
type-I error in downstream association analysis. We investigate this issue using
simulations.

CV-PRS produced in large samples have well-calibrated type-I
error

We first examined whether PRS generated from cross-validation can become spuri-
ously correlated between independent samples in different folds. We generated
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Figure 2.1: CV-PRS flowchart. Samples are partitioned into four folds. We perform
a GWAS using data in three folds and calculate PRS for individuals in the remaining
fold. Through rotating the choice of target fold and repeating the procedure, we
obtain CV-PRS for the entire sample.

four-fold CV-PRS using independent individuals in UKB with sample sizes 1k, 5k,
10k, 50k, and 100k respectively, and compared them to a traditional PRS produced
from an external GWAS (EX-PRS). In a total of 200 repeats, each time we simulated
a set of phenotypes based on real genotype data, preset SNP effect sizes, and a
random error term. We then calculated CV-PRS, and standardized them to have
mean 0 and variance of 1 in each repeat. Meanwhile, this set of phenotypes and
genotypes were used to generate a GWAS that was applied to a testing set with a
sample size of 2k to obtain EX-PRS, and also standardized the EX-PRS to have mean
0 and variance 1. Detailed simulation settings are described in the Methods section.
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We estimated the individual-level pair-wise correlations of PRS over 200 repeats
among study samples. When the sample size was less than 10k, we observed a
clear pattern of block-wise correlations for CV-PRS (Figure 2.2). These blocks corre-
sponded to the four folds in CV-PRS. Notably, both between-fold and within-fold
correlations reduced as the total sample size increased, and the pattern became
closer to the correlation plots for EX-PRS (Figure A.1). An interpretation is that
the estimation accuracy of GWAS for each fold improves as sample size increases,
thus the effect sizes estimates are more consistent across the GWAS generated for
different folds, i.e., more similar to an external GWAS.

Figure 2.2: Individual-level pair-wise correlation of CV-PRS. Pairwise correlations
of CV-PRS were calculated for all sample pairs over 200 random repeats. A-E:
sample sizes are 1k, 5k, 10k, 50k, 100k, respectively.

Next, we performed simulations to investigate the type-I error rates in asso-
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ciation analysis based on CV-PRS. We used educational attainment (EA) as an
example trait to produce CV-PRS in the analysis (Methods). We simulated phe-
notypes that were genetically independent of EA by randomly selecting 1% SNPs
(960k) as causal SNPs, generating their effect sizes from a normal distribution (h2
= 0.4), multiplying effect sizes by corresponding genotypes, and finally adding a
random error term. Then, the simulated phenotypes were regressed on CV-PRS
of EA to obtain association p-values. This procedure was repeated 200 times. We
define type-I error rate as the proportion of p-values that are less than or equal to a
specific threshold, i.e. 0.01 or 0.05 in our simulation. We conducted this simulation
under sample sizes of 1k, 5k, 10k, 50k, and 100k. Figure 2.3 shows the type-I error
results. When sample size was relatively small (e.g. N=1k), the type-I error rates
tended to be moderately higher than expected when the threshold was 0.01. As
sample size increased to 50k-100k, no type-I error inflation was observed. This trend
is consistent with the results of individual-level correlation above. Thus, larger
sample size is more desirable for applying CV-PRS. We suggest using a sample size
of at least 50k.

Next, we explored the effect of number of cross-validation folds on the type-I
error of CV-PRS. We calculated CV-PRS for EA in UKB (N = 376,729) with the
number of folds ranging from 4 to 20 (Figure A.2). Regressing these CV-PRS to 200
simulated heritable phenotypes as described above, we did not observe substantial
changes in PRS performance across all settings. Thus, we conclude that the number
of folds has a minor role in CV-PRS and it may be reasonable to choose a lower
number to reduce computational burden.

Sample relatedness affects CV-PRS performance

It is common that participants in large biobanks include related samples. For
example, UKB involves about 17k sibling pairs (identified by KING (Manichaikul
et al., 2010)) and other related samples. When related individuals are present,
application of CV-PRS could be affected by sample splitting strategies. We illustrate
this problem using sibling difference model as an example. Sibling difference
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Figure 2.3: Type-I error results for EA CV-PRS based on various sample sizes.
Sample sizes are 1k/5k/10k/50k/100k for panels A-E, respectively. Each bar shows
the proportion of p-values that were less than or equal to the alpha value (i.e., 0.01
and 0.05).

model is a analytical strategy that regresses the phenotypic differences between
siblings on their genotypic differences which is also equivalent to adjusting for
family fixed effects in sibling-based regression (Fletcher et al., 2021; Metzger and
McDade, 2010). We used CV-PRS of EA to illustrate this problem. We performed
two separate regression analyses in UKB for EA phenotype and EA CV-PRS using 1)
all independent individuals and sibling pairs (N = 404,435), and 2) only sibling pairs
(N = 33,630). We found similar regression coefficients in these analyses (1.14 and
1.33 respectively). However, when we performed the sibling difference analysis on
full sibling pairs, the coefficient estimate became substantially different with flipped
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direction (coefficient = -0.67, Figure 2.4A). As a comparison, we also performed
the sibling difference analysis on UKB PRS that used external GWAS (Lee et al.
2018) and obtained a positive association coefficient 0.45 âŁ“ a weakened but still
positive effect which is consistent with the literature on within-family PRS effect
(Fletcher et al., 2021). We found that this issue was due to overfitting caused by
related samples (i.e., siblings) split into different folds during cross-validation (see
Supplementary Notes for detailed derivations).A simple fix of this issue is to re-
partition samples by family identifier so that siblings from the same family always
fall into the same fold in cross-validation. After doing this, we obtained a regression
coefficient of 0.48 in sibling difference analysis (Figure 2.4A), which is consistent
with population-based analysis results.

We also performed additional simulations to further explore the type-I error
rate for CV-PRS when related samples are included. In addition to sample splitting
strategy, the proportion of related samples in the analysis could be another factor
that affects type-I error. In the analysis we described above, 8.3% of the total samples
were sibling pairs. Will a higher proportion of related samples affect association
testing even if we partitioned samples by family? With the total sample size set
to be 50k, we randomly included 10% and 50% of the samples to be full siblings,
and the remaining to be independent individuals. For each setting, we generated
EA CV-PRS and 200 heritable phenotypes that were genetically independent from
EA using the same procedure described previously. We partitioned samples using
two different approaches: 1) all individuals were randomly assigned to different
folds; and 2) siblings were partitioned into the same fold and independent samples
were randomly assigned. Results were shown in Figures 4B-E. When samples were
partitioned randomly with family structure ignored, we found type-I error inflation
was observed even when the proportion of related samples was relatively low
(10%). With samples partitioned by family structure, we did not observe type-I
error inflation. Based on these simulations and results from UKB, we suggest
partitioning samples by family in CV-PRS applications.
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Figure 2.4: Type-I error rates for CV-PRS with different proportions of related
samples. A-C: proportions of related samples are 10% and 50% respectively, and
samples from the same family were partitioned into the same fold (family structure
were identified by KING[25]). D-F: proportions of related samples are 10% and
50% respectively, and samples were randomly partitioned regardless of their family
structures. The value of each bar represents the proportion of p-values that are less
than or equal to 0.01 or 0.05. G: coefficients of PRS in sibling difference models.
Coefficients from left to right are for sibling difference models using EX-PRS, CV-
PRS with samples partitioned based on family structure, and CV-PRS with samples
randomly partitioned regardless of family structure.

Adjusting for fold assignment in CV-PRS applications

Next, we explore the prediction performance of CV-PRS. Notice that CV-PRS is
constructed by stacking the PRS from each fold. It is possible that the distributions
of PRS are not identical across all folds, which may impact the predictive accuracy
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of CV-PRS. Still using EA as an example, the distributions of CV-PRS in different
folds are normally distributed but with noticeably different means (Figure 2.5). To
identify the source of this variation, we applied the same external GWAS to each
fold to derive EX-PRS. We did not find differences in PRS distributions across folds
(with averaged p-value of 0.46 in pairwise Kolmogorov-Smirnov tests). Thus, the
variation in CV-PRS distribution is explained by the differences in GWAS produced
in different folds.

A consequence of the between-fold CV-PRS variation is reduced predictive
performance (quantified by R-squared values) in downstream regression. We
suggest two approaches for improvement. The first one is to add the fold indicator
as a covariate in regression and report partial R-squared that measures contribution
of CV-PRS only. We note that this approach does not account for the differences in
standard deviation of PRS across folds, but these differences are relatively minor
compared to the variations in means. Another approach is to standardize PRS
within each fold separately before stacking them together (Mefford et al., 2020). We
used EA and height as examples to illustrate that these two methods can indeed
improve predictive performance of CV-PRS. We produced CV-PRS of EA and height
for 408,325 UKB participants, then regressed EA (and height) phenotype on its CV-
PRS to obtain partial R-squared values. We observed that both strategies produced
higher R-squared values than directly combining PRS from each fold (Figure 2.6A).

We have shown in the previous section that number of folds has no effect on
type-I error rate. Now we investigate whether it influences the CV-PRS predictive
performance using CV-PRS of height as an example. Figure 2.6 shows the R-squared
values of linear association model between height and its CV-PRS with the number
of folds ranging from 2 to 20. A visible increase in R-squared values was observed
when the number of folds changed from 2 to 4. This is expected since the GWAS
sample size substantially increased (from 50% to 75% of the total sample size). When
the number of folds is greater than 4, the increase in R-squared values became
relatively small. To balance computation burden and the predictive performance
and also to avoid overfitting, we set the number of folds of 4 as the default choice
in analyses presented in this paper.
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Figure 2.5: Exploratory analysis of EA CV-PRS. A: Distribution of CV-PRS for each
of 4 folds. B: Distribution of PRS calculated by genotypes from each fold and an
external GWAS.

Comparison of R-squared values for EX-PRS and CV-PRS

CV-PRS provides an alternative option when no external GWAS is available. We
compared the predictive R-squared values of EX-PRS and CV-PRS on EA and height.
For EX-PRS, we first performed GWAS in UKB, and then applied GWAS to a set of
holdout samples (N=10k, 50k, and 100k respectively) to generate EX-PRS. The size
of GWAS was chose to be 25%, 50%, 75% and 100% of the size of holdout sample.
We also generated CV-PRS on a randomly drawn sample with N=10k, 50k, and
100k, respectively. Results are shown in Figure 2.6. The R-squared values of CV-PRS
were comparable to R-squared values of EX-PRS when the external GWAS sample
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size is 50%-70% of the holdout sample size for EX-PRS. Thus, when external GWAS
has a smaller size, CV-PRS may yield better predictive performance compared to
EX-PRS.

When a well-powered external GWAS does exist, cross-validation could still
be beneficial because we may combine the external GWAS and cross-validated
GWAS for each fold through meta-analysis to further increase power. Based on the
same settings described above, meta-analyzing external GWAS with cross-validated
GWAS for each fold produced PRS that outperformed the CV-PRS without meta-
analysis (Figure 2.6C-D) except for the case when the target size is 10k for EA due
to limited power of UKB external GWAS. However, when the external GWAS is
obtained from a different study, we generally expect a smaller gain in predictive
power from meta-analysis due to effect heterogeneity across studies, although this
may be compensated if the external GWAS is big. We investigated this using the
same CV-PRS generated before and replacing the external GWAS with published
GWAS not using UKB samples. More specifically, we used the height GWAS from
the GIANT consortium (Wood et al., 2014) (N = 253,288) and the EA GWAS from Lee
et al. (2018) with UKB sample excluded (N = 324,162) (Lee et al., 2018). Since these
are fairly large external GWAS compared to the dataset we used for cross-validation,
EX-PRS based on these external summary statistics always showed substantially
higher predictive R2 compared to CV-PRS. But when the cross-validation sample
size was big (e.g., 100k in our analysis), meta-analysis of external and cross-validated
GWAS further improved PRS performance. However, when the sample size is small
in the cross-validation cohort, the gain was negligible.

2.3 Discussion

The typical procedure to produce PRS requires the GWAS and target samples to be
independent to avoid overfitting. This can be challenging for generating scores in
large population cohorts since they are included in many large GWAS. Summary
statistics independent from these cohorts are usually either unavailable or severely
underpowered. In this paper, we investigated the feasibility of CV-PRS via a variety
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Figure 2.6: Performance of CV-PRS on EA and height. A: Bar plot for regression
R2 under various settings. Fold Aved: average regression R2 across four folds
of cross-validation. Raw: regressing phenotypes on CV-PRS in the combined
sample of all folds. Standardized: standardizing CV-PRS in each fold separately,
then regressing phenotypes on standardized CV-PRS in the combined sample.
Raw+fold: regressing phenotypes on CV-PRS with the fold indicator added as a
covariate. B: CV-PRS R2 on height across a range of fold numbers. C, D: Predictive
R2 of CV-PRS, EX-PRS based on external GWAS performed in UKB, EX-PRS based
on non-UKB GWAS, and CV-PRS based on meta-analysis of cross-validated and
external GWAS. Panels C and D show results of EA and height, respectively.

of simulations and real data applications, shedding light on the influence of sample
size, sample relatedness, number of folds, and data processing strategies on PRS
performance. We found that when sample size is large (e.g., greater than 500k
in UKB), individual-level CV-PRS correlations within and between folds become
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negligible and type-I error of CV-PRS appears under control. Additionally, number
of folds in cross-validation does not have a big impact on the performance of CV-
PRS. However, it is important to partition related study participants into the same
fold to avoid overfitting in downstream analysis. We also recommend either adding
the fold indicator as a covariate in PRS association analysis, or standardizing CV-
PRS within each fold before stacking the scores across all samples. Finally, when
an external GWAS does exist, performing meta-analysis of external and cross-
validated GWAS will further improve PRS performance. These results provide
important guidelines on producing and applying PRS in large cohorts through
cross-validation.

Our study also has some limitations. First, we only studied a simple PRS model
based on clumped GWAS summary statistics without any p-value thresholding.
Whether cross-validation can be applied to more sophisticated PRS models (Ge et al.,
2019) and parameter-tuning strategies (Zhao et al., 2021) remains to be studied
in the future. Second, we only analyzed samples of European descent in this
study and our results only provide guidance on a simple scenario where each
ancestry group is analyzed separately. However, recent studies have convincingly
demonstrated the lack of PRS portability across ancestral populations (Martin et al.,
2019) and highlighted the importance of multi-ancestry GWAS joint modeling (Ruan
et al., 2022; Miao et al., 2022). The best strategy to implement multi-population
integrative analysis of CV-PRS remains elusive and needs to be studied in the future.
Finally, compared to the standard PRS approach, producing CV-PRS can be time
consuming. More work needs to be done to improve the computational efficiency
of implementing cross-validation in large biobank datasets.

Taken together, we provided empirical evidence to support cross-validation as
an alternative strategy for producing PRS in large biobanks. While results based
on CV-PRS need to be interpreted with caution and will ultimately needed to
be validated in external cohorts, these scores can sometimes be the only option
in certain applications and are therefore crucial for hypothesis generation and
exploratory analysis.
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3 partitioning heritability and genetic covariance by
direct and indirect effect paths

3.1 Background

Genetic correlation is an effective metric for quantifying the shared genetic archi-
tecture of multiple complex traits (van Rheenen et al., 2019; Zhang et al., 2021a)
and has quickly gained popularity in genome-wide association studies (GWAS)
in the past few years. Genetic correlation is typically defined as the correlation
between additive genetic components of two complex traits and can be estimated
from genome-wide data of millions of single nucleotide polymorphisms (SNPs).
Several methods have been developed to improve genetic correlation estimation us-
ing individual-level GWAS data (Yang et al., 2011; Loh et al., 2015), GWAS summary
statistics (Bulik-Sullivan et al., 2015b; Lu et al., 2017), or both (Zhang et al., 2021b).
Recent studies have also expanded this concept to quantify genetic correlations in
local genomic regions (Guo et al., 2021b; Werme et al., 2021a; Shi et al., 2017; Zhang
et al., 2021c), between human ancestral populations (Brown et al., 2016; Miao et al.,
2022), and using other types of genetic variations (Guo et al., 2021a). Overall, these
methods have become a routine component of complex trait genetic studies and
provided crucial insights into the genetic basis of numerous human traits.

As genetic correlation analysis becomes standard in GWAS, challenges arise
in interpreting the pervasive correlations observed across many phenotypes. In
particular, interpretation of genetic correlations involving human behavioral phe-
notypes is challenging because most methods for estimating these correlations
ignore the apparent gene-environment correlation underlying human behavior
(Koellinger Philipp and Harden, 2018; Bates et al., 2018; Trejo and Domingue, 2018;
Willoughby et al., 2021; de Zeeuw et al., 2020; Cheesman et al., 2020; Domingue and
Fletcher, 2020; Young et al., 2019; Hwang et al., 2020). For example, we now know
that parents’ genomes can influence parental behaviors and family environment

0Co-authors: Yiqing Zou, Yuchang Wu, Jiacheng Miao, Ze Yu, Jason M. Fletcher, Qiongshi Lu
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which, in turn, shape the phenotypes of their children. Additionally, because parent
and offspring genotypes are correlated, typical GWAS can be severely confounded
by parental genotypes, and effect estimates obtained in GWAS are mixtures of
direct genetic effects (i.e., how one’s own genotypes affect his/her phenotype) and
indirect genetic effects (i.e., how parents’ genotypes affect their children’s pheno-
types; this is also referred to as genetic nurture) (Kong et al., 2018; Wang et al.,
2021). Being able to decompose shared genetics between two traits by direct and
indirect effect paths is crucial for understanding the respective roles of genetics and
environments. Although methods have been developed for separating SNP effects
into direct/indirect paths, and follow-up genetic correlation analyses performed
on direct/indirect association statistics can be a feasible strategy in some cases (Wu
et al., 2021), these GWAS typically require genotype-phenotype data from a large
number of families which can be difficult to obtain even in large biobanks.

In this paper, we introduce a statistical framework to estimate the variance
and covariance components of direct/indirect genetic effects on trait pairs using
data from a limited number of families. This framework enables us to partition
both heritability and genetic covariance into direct and indirect pathways, and
gain better knowledge of how genetics and environment together shape people’s
phenotypes as well as the correlation between a pair of traits. We employ the method
of moments to obtain accurate estimates of variance and covariance parameters and
use a Jackknife approach to obtain confidence intervals. We apply our framework
to five complex traits in UK Biobank (UKB) (Bycroft et al., 2018) for conducting
two-trait analysis for 10 trait pairs in total, and partition the trait-specific and shared
genetic components by direct and indirect effect paths.

3.2 Results

Methods overview

Our approach is built on a pair of linear models for a pair of standardized traits
Y1 and Y2 , standardized own- genotypes X, and standardized parental genotypes
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Xp + Xm as follows:

Y1 = Xα1 + (Xp + Xm)β1 + ε1

Y2 = Xα2 + (Xp + Xm)β2 + ε2

Error term ε1 and ε2 are assumed to behave mean 0 and variance-covariance matrix
Σ. αk and βk (k = 1, 2) are random effect vectors denoting direct (of own- genotypes)
and indirect effects (of parental genotypes) on two traits. They share the variance-
covariance structure below with M being the number of SNPs and IM being the
identity matrix.

var


α1

α2

β1

β2

 =
1
M


σ2
α1
IM ραIM ρα1β1IM ρα1β2IM

ραIM σ2
α2
IM ρα2β1IM ρα2β2IM

ρα1β1IM ρα2β1IM σ2
β1
IM ρβIM

ρα1β2IM ρα2β2IM ρβIM σ2
β2
IM


Here, ρα and ρβ are two key parameters we focus on, although other cross terms

are also estimated and may be of interest in practice. These two parameters quantify
the covariance of direct effects and covariance of indirect effects on two traits,
respectively. We apply the method of moments to produce parameter estimates and
employ a Jackknife approach to quantify the standard error of parameter estimates.
More statistical details are described in the Methods section.

Simulation results

We first performed simulations to demonstrate that our method produces unbiased
estimates with well-calibrated confidence intervals. We randomly selected 2000
families from UKB with data on full sibling pairs and imputed parental genotypes
to perform simulations. The imputation is based on expectation of the average of
parental genotypes using two or more sibling genotypes (Young et al., 2020). We
explored multiple parameter settings. Each setting contained 200 repeats. Details
on simulation settings are described in the Methods section and in Table B.1. Results
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Figure 3.1: Simulation results on point estimates, type-I error, and statistical power
for covariance of direct/indirect effects. Panels A,C: box plot for point estimates of
ρα (i.e., covariance of direct effects) and ρβ (i.e., covariance of indirect effects). Red
dotted lines indicate the true values of ρα. Blue dotted line show the true value of
ρβ. Penals B,D: proportion of p-values 6 0.05 across 200 repeats. In panel B, the
dotted line highlights the type-I error threshold 0.05.

related to covariance of direct effects and covariance of indirect effects are shown
in Figure 3.1. Results for the estimates of all 14 parameters are shown in Figure S1.
We observed unbiased estimates and well-controlled confidence interval coverage
rates for all parameters across various settings.
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Partitioning heritability by direct/indirect effect paths for five
complex traits

We applied our model to 12,571 families in UKB with full sibling data available and
parental genotypes imputed (Methods). We analyzed five quantitative traits: height,
body mass index (BMI), overall health, educational attainment (EA; quantified as
years of education), and household income. For each trait pair, we estimated 14
parameters including trait-specific parameters (which partition heritability), trait
pair parameters (which partition genetic covariance), and parameters for error
terms. The detailed data processing procedure is described in the Methods section.

First, we examined parameter estimates for the variance of genetic direct effects,
genetic variance of indirect effects, and genetic covariance between direct and
indirect effects on the same trait. These parameters are the partitioned terms of
trait heritability; therefore, we can reconstruct total heritability estimates by linearly
combining these three terms. For comparison, we also calculated LDSC heritability
estimates using GWAS performed on the same data. We observed a high correlation
(correlation = 0.962, slope=0.749; Figure 3.2A).

Results of these three parameters are shown in Figure 3.3A and Table B.2. We
found a substantial and statistically significant direct effect component on BMI
(p = 4.9 × 10−5). The BMI indirect effect was closed to zero and not significant.
Similarly, we found a significant direct genetic component (p = 4.8 × 10−3) and
a weaker indirect component for height. Notably, the direct and indirect genetic
components for height showed a significant positive covariance (p = 7.7 × 10−3).
The direct and indirect genetic components for EA were similar in size but only
the indirect component reached statistical significance. Consistent with previous
studies (Wu et al., 2021), we did not find evidence for genetic correlation between
the EA direct and indirect effects. We found null results for household income and
overall health.

We also obtained the estimated covariance between siblings’ error terms for
each trait (Figure 3.3B and Table B.2). Error term covariances are significant for
all 5 phenotypes, suggesting a substantial contribution of shared environment on



22

Figure 3.2: Total heritability and genetic covariance can be recovered from par-
titioned parameter estimates. A: estimates for total heritability. B: estimates for
genetic covariance. X-axis: LDSC estimates. Y-axis: Estimates reconstructed from
parameter estimates in our analysis.

siblings’ phenotypes.. The findings for EA are consistent with Branigan et al. study
(Branigan et al., 2013) that measures variance contribution of shared environment
factors using ACE model based on twin studies. They obtained the estimates from
multiple cohorts, and the results for two UK cohorts showed statistical evidence of
the shared environment variance components with estimates were about 0.3, and
our estimates for the shared environment variance is 0.26 ( as a linear combination of
variance of indirect effects, covariance of direct and indirect effects, and covariance
of errors for two siblings).
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Figure 3.3: Estimation results for 5 complex traits in UKB. Each interval shows the
point estimate and standard error for one parameter. Circles denote significant
parameter estimates at the 0.05 level. Other estimates are denoted by solid circles.
A: variance of direct effects, variance of indirect effects, and covariance of direct
and indirect effects for height, BMI, overall health, EA and income. B: covariance
of error terms for sibling pairs for each trait.

Partitioning genetic covariance for 10 trait pairs

Our approach also partitions the total genetic covariance between two traits into
direct and indirect effect paths. Similar to the analysis for total heritability, we
reconstructed the total genetic covariance estimates based on partitioned parameters
(Methods) and compared them to LDSC estimates. We found a high correlation
between these estimates (Figure 3.2B, correlation = 0.977, slope = 0.703).

Estimation results for ρα (i.e., genetic covariance of direct effects on two traits)
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and ρβ (i.e., genetic covariance of indirect effects on two traits) are shown in Figure
3.4A-B (also see Table B.3). We found a significant direct effect covariance (ρα= 0.044)
between BMI and worse overall health (a higher value in this trait indicates worse
health; see Methods). This contributes to 69% of the total genetic covariance between
BMI and overall health. Several other trait pairs showed significant covariances
of indirect genetic components, including height and BMI (ρβ= - 0.02, 48.7% of
genetic covariance), height and income (ρβ= 0.032, 182% of genetic covariance), and
EA and overall health (ρβ= - 0.018, 40.8% of genetic covariance). EA and income
have substantial and statistically significant covariances in both direct and indirect
genetic components (ρα= 0.044, 72.9% of genetic covariance, ρβ= 0.032, 53.5% of
genetic covariance).

We also estimated other cross-term covariances, including the covariance of
direct effect on one trait and indirect effect on another trait (Figure 3.4C-D). We
identified a number of significant correlations. For example, we found highly
significant correlations between the indirect effect of BMI and the direct effect of
both EA (ρα2β1 = - 0.037, 66.2% of genetic covariance) and income (ρα2β1= - 0.028,
70.5% of genetic covariance). The direct effect of income is also negatively correlated
with the indirect effects of overall health (ρα2β1= - 0.02, 45.5% of genetic covariance).
The direct effect of height is correlated with the indirect effect of better overall
health (ρα1β2= - 0.02, 74.7% of genetic covariance), higher EA (ρα1β2= 0.02, 80.0% of
genetic covariance), and lower income (ρα1β2= - 0.029, 165% of genetic covariance).

3.3 Discussion

In this paper, we introduced a new statistical framework to decompose heritability
and genetic covariance of complex traits by direct and indirect effect paths. Through
simulations and application to five traits using full siblings and their imputed
parental genotypes in UKB, we demonstrated that our model produces unbiased
estimates with well-controlled confidence interval coverage.

Partitioned variance and covariance components can be combined to recover
traditional heritability and genetic covariance estimates. But stratified heritability
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Figure 3.4: Estimation results for covariance of direct/indirect effects on five com-
plex traits. A: upper triangle: heatmap of direct effect genetic covariance (i.e., (ρα);
lower triangle: heatmap of indirect effect genetic covariance (i.e., ρβ). B: covariance
between direct effects of trait 1 (rows) and indirect effects of trait 2 (columns). Size
of the circles visualizes false discovery rate (FDR). Smaller size refers to larger FDR.
Significant correlations with FDR<0.05 are marked by asterisks.

and genetic covariance estimates provided crucial new insights into the genetic
basis of complex traits. First, our analysis confirmed that traits like EA have a
substantial indirect genetic component. That is, a substantial proportion of trait
heritability is mediated through parents and the family environment they create.
For some other traits (e.g., BMI), the contribution of indirect genetic effect is neg-
ligible, and heritability is primarily explained by the direct genetic component.
More importantly, our approach allowed decomposing genetic covariance, which
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is highly novel compared to other approaches in the literature. Similar to findings
in single-trait analysis, our results highlight the importance of considering indirect
genetic components when estimating and interpreting the shared genetic basis
between complex traits. Several trait pairs in our analysis (e.g., height and income)
only showed significant genetic covariance in their indirect genetic components.
Some other traits (e.g., BMI and overall health) have substantial genetic sharing
of the direct effect component. Then, for EA and income, two important socioeco-
nomic GWAS phenotypes, genetic covariance of both direct and indirect genetic
components were substantial and highly statistically significant. Omitting either
one of them in genetic correlation analysis will likely lead to biased interpretation.
For example, if we ignore the covariance of indirect effects, we may conclude that
EA and income are correlated mainly due to the shared genetic basis. However,
the indirect paths play an important role in determining the relatedness of EA and
income. Without noticing this, people may pay little attention in creating a better
family environment to their children’s education if they wish their children to gain
more income in the future. With our approach, it is now possible to carefully de-
compose heritability or shared genetic components into direct and family-mediated
paths, which will be beneficial for post-GWAS analysis in general and analysis of
human sociobehavioral phenotypes in the future.

Our study also has several limitations. First, parental genotypes used in our
analysis were not directly measured but imputed based on siblings’ genotypes. The
imputation accuracy depends on several factors including the number of siblings in
each family and assortative mating. SNIPar adjusted for bias due to assortative mat-
ing, and more siblings for a single family could leads to more reliable imputation
of their parental genotypes. These may affect the accuracy of parameter estimates.
However, we note that our approach can be applied to measured genotypes and
phenotypes in parent-offspring trios if such data are available, but our accessible
trios cohorts have smaller sample sizes compared to UKB full siblings data. Second,
although it is also possible to calculate genetic correlations by combining strati-
fied genetic covariance and heritability estimates for direct/indirect effects, these
estimates for genetic correlations are numerically unstable at the sample size in
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our analysis, which is why we based our inference of shared genetics on genetic
covariance instead. Furthermore, our analyses were limited to quantitative traits.
For applications involving binary outcomes, future work is needed to expand the
statistical model.

Taken together, our method is a first step to explore the covariance structure
of direct and indirect effects for complex human traits. It marks an important
methodological innovation and may have broad and impactful applications in
future GWAS analysis for traits that are highly affected by parental behaviors
and the environment, such as birthweight, the number of children, and some
neurological diseases.
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4 method details for chapter 2 and chapter 3

4.1 Methods for chapter 2

UKB data processing

We used UKB samples with European ancestry, identified from principal component
analysis (data field 22006), to calculate CV-PRS and perform regression analyses.
We used KING (Manichaikul et al., 2010) to infer the pairwise family kinship and
created family identifiers in UKB. Standing height is obtained from data field 50 in
UKB, measured in centimeters and NA values are omitted. For EA, we used the
âŁœqualificationâŁž (data field 6138) to compute the years of schooling as the EA
phenotype following Lee et al. (Lee et al., 2018).

GWAS analysis and PRS calculation

We constructed CV-PRS using 1000 Genomes Project Phase III European samples
as the reference (Auton et al., 2015) for linkage disequilibrium (LD). All GWAS
summary statistics were clumped using PLINK (Purcell et al., 2007) to remove
variants with high LD. We used an LD window size of 1Mb and a pairwise r2
threshold of 0.1. In addition, strand-ambiguous SNPs and SNPs that do not exist in
the UKB imputed genotype data were removed. No additional filtering based on
GWAS p-values was applied. Genetic principal components (PCs) were computed
using flashPCA2 (Abraham et al., 2017). All GWAS were performed using Hail,
with year of birth, sex, genotyping array, and 20 PCs added as covariates. PRS
calculation was implemented in PRSice-2 (Choi and O’Reilly, 2019).

Simulation settings

For the simulations involving individual-level PRS correlation, we simulated heri-
table phenotypes with UKB genotype data. We randomly specified 4k causal SNPs.
Effect size of each causal SNP was sampled from a normal distribution with mean
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zero and total heritability of 0.4. The simulations were performed based on sample
sizes of 1k, 10k, 50k, 100k, and 200k, each of which involves 200 repeats. In each
repeat, we multiplied genotype data by SNP effect sizes, and then added a random
error term with a mean of 0 and a variance of 0.6 to obtain the phenotype values.
These genotype data and simulated phenotype data were used to generate CV-PRS.
For EX-PRS, we performed GWAS on the same data used to produce CV-PRS, and
produced PRS on another set of holdout samples with a size of 2k in each repeat.
By repeating the whole process, we obtained 200 sets of CV-PRS and EX-PRS which
we used to calculate individual-level PRS correlations. The number of folds for
CV-PRS was set to be 4 in these analyses.

We used EA as an example phenotype in the type-I error simulations. First, we
simulated phenotypes that were genetically independent from EA. 1% of SNPs
(960k) were randomly selected to be causal with effect sizes randomly sampled from
a normal distribution and a total heritability of 0.4. Then, we multiplied genotype
data with simulated effect sizes and added a random error term simulated from
a normal distribution of mean 0 and variance 0.6 to produce phenotypes. These
simulated phenotypes were regressed on CV-PRS to obtain association p-values.
We repeated this procedure 200 times to calculate type-I error rate.

For the analysis of number of folds, we chose the cross-validation fold numbers
to be 4/6/8/10/12/14/16/18/20. We used the same phenotypes from previous
simulations to calculate type-I error rates.

For the simulations about sample relatedness, we set the total sample size to be
50k and chose the size of dependent samples to be 10%, 30%, and 50% of the total
sample size. For example, in the setting where 10% of the total sample are related,
we randomly selected 2.5k full sibling pairs (5k samples), and 45k independent
individuals from UKB. The whole dataset was then split into 4 folds 1) by family
identifiers (identified by KING) and 2) completely randomly without considering
sample relatedness. Phenotypes were simulated in the same approach as previous
simulations. Finally, we calculated CV-PRS based on genotype data and simulated
phenotype data, and performed association analysis using CV-PRS and real traits
(i.e., height and EA).
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Real data application in UKB

We used all UKB individuals to investigate CV-PRS performance under various set-
tings and number of folds. For comparison of CV-PRS, EX-PRS, and PRS produced
from meta-analysis of external and cross-validated GWAS, we set the sample sizes
to be 10k, 50k, and 100k. For each sample size setting, we calculated 1) CV-PRS;
2) EX-PRS based on an external GWAS whose size equals to 25%, 50%, 75% and
100% of the total sample size; 3) CV-PRS that involves meta-analysis with EX-PRS
in 2); 4) CV-PRS that involves meta-analysis with non-UKB external GWAS. The
non-UKB external GWAS for height and EA were obtained from the GIANT consor-
tium (Wood et al., 2014) and Lee et al. (2018) (Lee et al., 2018) (with UKB samples
excluded).

4.2 Methods for chapter 3

Model for decomposing heritability and genetic covariance
(degC)

We assume a pair of linear genetic models as follows:

Y1 = Xα1 + (Xp + Xm)β1 + ε1

Y2 = Xα2 + (Xp + Xm)β2 + ε2

where Y1 and Y2 denote two complex traits, X denotes own- genotypes, and Xp and
Xm denote paternal and maternal genotypes. Since we used sibling pairs data as
input (that will be described later in this section), we assume the total number of
sibling pairs is N.Then Y1 and Y2 are vectors with length 2N, and X,Xp and Xm
are 2N-by-M matrices, where M is the total number of SNPs. We assume both
genotypes and phenotypes (Y1, Y2, X, Xp, and Xm) to be standardized. α1 and α2

are random effect terms that quantify the direct genetic effects on Y1 and Y2, i.e.,
how someone’s own genotypes affect their own phenotype. Following conventions
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in the linear mixed model literature on modeling heritability (Yang et al.), we also
assume these effects to follow normal distributions.

αk ∼ N(0,
σ2
αk

M
),k = 1, 2

Here, σ2
α1

and σ2
α2

are the direct genetic variance components for two traits
respectively. Similarly, β1 and β2 are random effect terms for quantifying indirect
genetic effects on two traits, i.e., how the parents’ genotypes affect someone’s
phenotype. These random effects also follow normal distributions.

βk ∼ N(0,
σ2
βk

M
),k = 1, 2

Importantly, direct and indirect effects on the same trait (i.e., αk and βk) can be
correlated. Direct effects on two different traits (i.e., α1 and α2), or indirect effects
on two traits (i.e., β1 and β2), can both be correlated. Fairly generally, we assume
α1, α2, β1, and β2 to have a joint distribution:

α1

α2

β1

β2

 ∼ (0, 1
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)
Here, ρα quantifies the covariance of direct effects on two traits and ρβ is the

covariance of indirect effects on two traits. Similarly, ρα1β1 , ρα1β2 , ρα2β1 , and ρα2β2

are pairwise covariance parameters between α and β. We note that this model is
similar to what is used in the genetic nurture literature(Kong et al., 2018; Wu et al.,
2021) in that it quantifies how parental genotypes shapes children’s phenotypes.
But a difference is that it is a polygenic model that uses random variables αk and βk
to characterize genome-wide effects. This is motivated by the linear mixed model
literature on heritability and genetic covariance estimation.

Based on the model formulation, naturally one would assume that the data
required to fit this model would be genotypes of parents-offspring trios (i.e., X,
Xp, and Xm) and offspring phenotypes on two traits (i.e., Y1 and Y2). While this
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is true, the number of trios available even in large population biobanks such as
UKB is limited. Therefore, we made two important adjustments. One is that in our
analyses, we leveraged the relatively large number of full sibling pairs available in
UKB and recent statistical genetic advances in parental genotype imputation(Young
et al., 2020). We begin with N sibling pairs (thus the total sample size is 2N), then
impute the sum of parental genotypes Xp + Xm. These become the input data in
our analysis. This also leads to the second adjustment we made which has also
been shown above - we do not distinguish paternal and maternal indirect effects
and instead focus on their average. This is similar to what was done in the indirect
effect GWAS literature when sample size was small(Wu et al., 2021). In practice, in
cases where a large number of trios are available, paternal and maternal indirect
effects may be denoted as separate random variables in this framework.

One implication of having sibling pairs instead of independent samples or trios
in the analysis is that we also need to consider the shared environmental effects
between siblings. Error terms on two traits (i.e., ε1 and ε2) are both normally
distributed random variables. But we allow 1) correlation of errors on two traits
for the same individual, which is a common assumption in the genetic correlation
estimation literature (Lu et al., 2017; Bulik-Sullivan et al., 2015a), and importantly,
we also allow 2) correlation of error terms between siblings due to their shared
environments. More specifically, we assume:

εk ∼ N(0, IN ⊗ Σk),Σ1 =

[
σ2
εk

ρεk

ρεk σ2
εk

]
,k = 1, 2

We denote ε1i,ε2i as such family i sibling pair error terms for trait 1 and 2 respectively,
assume [

ε1i

ε2i

]
∼ N(0,

[
Σ1 Σ12

Σ12 Σ2

]
S),whereΣ12 =

[
η δ

δ η

]
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Parameter estimation

For simplicity, we denote the whole set of 14 parameters as

Θ = {σ2
α1

,σ2
β1

, ρε1 , ρα, ρβ,η, δ,σ2
α2

,σ2
β2

, ρε2 , ρα1β1 , ρα1β1 , ρα2β2 , ρα2β1}

, and {Θ}k stands for the kth parameter. Rather than utilizing an iterative restricted
maximum likelihood algorithm to solve the linear mixed model, we employ the
method of moments to improve computational efficiency. This approach produces
parameter estimates by minimizing the distance between the model-derived and em-
pirical variance-covariance matrix of phenotypes, i.e. cov(Y), where Y = [YT1 , YT2 ]T .
Since we assumed an additive penetrance model, we can easily show that the
model-derived covariance also follows an additive form:

var(Y) = I+ ΣkVk{Θ}k

where Vk denote the sample relatedness matrix corresponding to kth parameter.

For example, V1 = 1
M

[
XXT 0

0 0

]
− I4N and V2 = 1

M

[
(Xm + Xp)(Xm + Xp)

T 0
0 0

]
−

I2N. We list all the relatedness matrices in Table B.4. The empirical variance of
phenotypes is the estimates of cov(Y) based on real data, i.e., ˆcov(y) = yyT . We
estimate all parameters by minimizing the following function

L(Θ) =‖ yyT − I− Σk{Θ}kVk ‖2
F

where ‖ ‖̇F is the Frobenius norm. To minimize this function, we can use
gradient descent method. That is, we let ∂L

∂{Θ}k
= 0 for all k and obtain a linear

system of the form AΘ = B,where A is an matrix and B is a vector. Then we could
obtain parameter estimates by solving this linear equation.

While the variance of each parameter estimate can be derived under this statis-
tical framework, they can be numerically unstable (and even turn negative) when
sample size is limited. Therefore, we applied a resampling-based block Jackknife
approach (Efron, 1982) to quantify the variance of parameter estimates. Block
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Jackknife generates variance estimates by dividing the whole dataset into B blocks,
holding out one block and producing parameter estimates using the other B-1
blocks in each time, then repeating this procedure for B times. Finally, we estimate
variances using following formula:

ˆvar({Θ}k) =
B− 1
B

ΣBb=1(
ˆ{Θ}k,b −

¯{Θ}k)
2

where ¯{Θ}k,b denotes the estimate for kth parameter in bth repeat, and ¯{Θ}k
denotes denotes the averaged value across B estimates for parameterΘk. To account
for multiple testing in real data applications, we calculated false discovery rate
(FDR) based on all estimates for all pairs of traits.

Our model can also incorporate fixed effect covariates(Ahn et al.). For simplicity,
we ignore the subscripts in the proposed model and add fix effects as follows:

Y = Zγ+ Xα+ (Xp + Xm)β+ ε

where Z stands for the covariate data matrix and Î3 denotes their fixed effects.
To account for fixed effects, we can multiply a matrix Q that satisfies QZ = 0 to
both sides of the equation. Matrix Q could be obtained by deriving the orthogonal
vector spaces of the singular value decomposition of matrix Z. After multiplying
matrix Q on both sides, the equation becomes the following without a fixed effect
term.

QY = QXα+Q(Xp + Xm)β+Qε

Then, the estimation procedure for all 14 parameters is the same as before.

Reconstructing heritability and genetic covariance using
decomposed variance components

Following the model described above, total heritability h2 and genetic covariance
ρgc can be recovered from the decomposed variance component parameters as
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follows:
h2
i = σ

2
Î±i + σ

2
Î2i + 2ραiβi , i = 1, 2

ρgc = ρα + ρβ + ρα1β2 + ρα2β1

By plugging in empirical estimates on the right-hand side of these equations, we
could obtain estimates for total heritability and genetic covariance (Figure 3.2).

Data processing

UKB samples with European ancestry were identified from principal component
analysis (data field 22006). We used KING (Manichaikul et al., 2010) to infer the
pairwise family kinship and created family identifiers in UKB. Sum of parental
genotypes were imputed by SNIPar (Young et al., 2020). Only autosomal SNPs with
minor allele frequencies (MAF) greater than or equal to 0.05 and missing rate less
than 0.01 were used for the analysis. Genotypes were standardized to have mean 0
and variance 1 using estimated minor allele frequencies, and missing values were
imputed as 0. The sum of parental genotypes was standardized to have a variance
of 2.

For phenotypes, participants were selected as overlapping samples of five phe-
notypes: height, BMI, EA, income, and overall health. We obtained height and
BMI phenotypes from UKB data fields 12144 and 21001. Following previous work
(Lee et al., 2018), we used data field 6138 to compute the EA phenotype as years of
schooling. Household income data were obtained from UKB data field 738. The
answers were coded as follows: (1) - Less than 18,000 (Pounds), (2) - 18,000 to 30,999,
(3) - 31,000 to 51,999, (4) - 52,000 to 100,000, (5) - Greater than 100,000. Overall
health was defined based on data field 100508. The answers were coded as follows:
(1) - Excellent, (2) - Good, (3) - Fair, (4) - Poor. Note that a higher value indicates
poorer health. We removed individuals with missing phenotype values and stan-
dardized all 5 traits to have mean 0 and variance 1. The final dataset we used for
the analysis includes 4,748,473 SNPs and 12,571 sibling pairs (25,142 individuals
and their imputed parents).
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Simulation settings

We randomly selected 2000 full sibling pairs in UKB to perform simulations. A
total of four settings were explored. The parameter values for each setting are listed
in Table B.1. All settings were repeated 200 times. In each repeat, we simulated
phenotypes by generating indirect effects, direct effects, and error terms based on
the proposed penetrance model using the true parameters. Then, we produced pa-
rameter estimates using our statistical framework, and obtained variance estimates
using block Jackknife.

Code availability

Implemented software of our approach is freely available at (https://github.com/qlu-
lab/GV-partition).
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a appendix of "generating polygenic risk scores
through cross-validation"

A.1 Supplementary Notes

CV-PRS in sibling difference model

We observed that when we randomly partition individuals into folds without
considering sample relatedness, the association coefficient of CV-PRS in a sibling
difference model showed flipped effect direction. Here we investigate the statistical
reason behind this observation. Assume we have following penetrance model for
phenotype Y and genotype X,

Y = Xβ+ ε

Without loss of generality, we assume genotypes X are centered at 0. β is genetic
effect term, and ε is the error term and assumed to have mean of 0. A sibling
difference model regresses the phenotypic difference in of siblings on the PRS
difference of siblings, i.e.,

Ysib1 − Ysib2 ΣiXsib1β̂1 − ΣiXsib2β̂2

Notice that in sibling difference model, we only consider sibling pairs. When
we randomly partition all samples into K folds without considering their family
structure, it is possible that two siblings from the same family are partitioned into
different folds. We will focus on this subset of sibling pairs (that two siblings lie in
two folds) and see how they affect the estimated effect for sibling difference model.
For each sibling pair, we randomly assign one sibling as sib1, and the other as sib2.
Then we denote the phenotypes for all sib1’s as Y∗

sib1, and phenotypes for all sib2’s
as Y∗

sib2. Similarly, we denote their genotypes as X∗
sib1 and X∗

sib2 respectively.
For each SNP, the effect size for one fold is estimated using data from the other

K-1 folds. Since sib1 and sib2 lie in different fold, sib1 must be used for deriving
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effect sizes for sib2, and sib2 must be used for deriving effect sizes for sib1. Notice
that except for sib2, there are other samples that are also used for calculation effect
sizes for sib1 (i.e., those sibling pairs that are not be partitioned into different folds
and lie in folds that do not contain sib1). Denote the genotypes for these samples
as X∗

2 , and denote their phenotypes as Y∗
2 . Similarly, for samples that are not sib1

and will be used to calculate effect sizes of sib2, we denote their genotypes to be X∗
1 ,

and their corresponding phenotypes as Y∗
1 . Then the estimated effect size of SNP i

for X∗
sibi is

β̂1,i =

[
X∗
sib2,i

X∗
2,i

]T [
Y∗
sib2

Y∗
2

]
[
X∗
sib2,i

X∗
2,i

]T [
X∗
sib2,i

X∗
2,i

] =
(X∗
sib2,i)

TY∗
sib2 + (X∗

2,i)
TY∗

2

(X∗
sib2,i)

TX∗
sib2 + (X∗

2,i)
TX∗

2,i

Then, the PRS for X∗
sib1 are

PRS∗sib1 = ΣiX
∗
sib1β̂1,i

= ΣiX
∗
sib1

(X∗
sib2,i)

TY∗
sib2 + (X∗

2,i)
TY∗

2

(X∗
sib2,i)

TX∗
sib2 + (X∗

2,i)
TX∗

2,i

=
X∗
sib1(X

∗
sib2,i)

TY∗
sib2

(X∗
sib2,i)

TX∗
sib2 + (X∗

2,i)
TX∗

2,i
+

X∗
sib1(X

∗
2,i)

TY∗
2

(X∗
sib2,i)

TX∗
sib2 + (X∗

2,i)
TX∗

2,i

The second term does not contain information of Y∗
sib2, so let’s denote it as a

number a1,i. For the first term, the denominator is a positive number, and the
numerator is approximately 0.5X∗

sib2
√

2pi(1 − pi), where pi denote the allele fre-
quency of SNP i. Similarly, we can obtain expression for the PRS of X∗

sib2. Thus, the
difference in PRS for sib1’s and sib2’s is
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PRS∗sib1 − PRS
∗
sib2

≈Σi(
0.5Y∗

sib2
√

2pi(1 − pi)

(X∗
sib2,i)

TX∗
sib2,i + (X∗

2,i)
TX∗

2,i
+ a1,i) − Σi(

0.5Y∗
sib1
√

2pi(1 − pi)

(X∗
sib1,i)

TX∗
sib1,i + (X∗

1,i)
TX∗

1,i
+ a2,i)

=(Σi(
0.5
√

2pi(1 − pi)

(X∗
sib2,i)

TX∗
sib2,i + (X∗

2,i)
TX∗

2,i
+ a1,i))Y

∗
sib2 − Σi(

0.5
√

2pi(1 − pi)

(X∗
sib1,i)

TX∗
sib1,i + (X∗

1,i)
TX∗

1,i
+ a2,i)Y

∗
sib1

+ Σi(a1,i − a2,i)

≈(Σi(
0.5
√

2pi(1 − pi)
k−1
k
n
√

2pi(1 − pi)
)(Y∗

sib2 − Y
∗
sib1) + c

≈ 0.5km
n(k− 1)

(Y∗
sib2 − Y

∗
sib1) + c

The last second approximation is based on random sampling. m denotes the
number of SNPs that are used to calculate PRS, n denotes the total sample size, and
c = Σi(a1,i − a2,i) is the term that does not contain Y∗

sib1 and Y∗
sib2.

Based on above, for sibling pairs that two siblings were partitioned to two folds,
their phenotypic difference will be negatively related to the difference in their
CV-PRS. Such sibling pairs occupied 75% of the total. Thus, the effect of sibling
difference model was dominated by the negative association due to these sibling
pairs.

A.2 Supplementary Figures
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Figure A.1: Individual-level pair-wise correlation of EX-PRS. Panels A-E: sample
sizes are 1k/5k/10k/50k/100k, respectively.
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Figure A.2: No type-I error inflation across various choices of number of folds.
Panels A-I illustrate type-I error of EA CV-PRS with the number of folds being
4/6/8/10/12/14/16/18/20 respectively.
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b appendix of "partitioning heritability and genetic
covariance by direct and indirect effect paths"

B.1 Supplementary Tables

Parameters Setting1 Setting2
σ2
α1

0.202 0.180
σ2
β1

0.056 0.025
ρε1 0.099 0.099
ρα 0.000 0.110
ρβ 0.000 -0.050
η 0.038 0.038
δ 0.007 0.007
σ2
α2

0.246 0.22
σ2
β2

0.057 0.024
ρε2 0.198 0.198
ρα1β2 0.012 0.012
ρα1β1 0.040 0.060
ρα2β2 0.007 0.03
ρα2β1 0.015 0.015

Table B.1: Parameter settings for simulations.

height BMI overall health EA income
EST SE EST SE EST SE EST SE EST SE

σ2
α1

0.102 0.036 0.146 0.036 0.015 0.036 0.061 0.036 0.032 0.035
σ2
β1

0.026 0.022 0.006 0.021 0.014 0.021 0.044 0.021 0.002 0.021
ρε1 0.099 0.022 0.198 0.022 0.076 0.020 0.214 0.022 0.235 0.020
σ2
α1β1

0.040 0.015 0.007 0.015 0.018 0.015 -0.003 0.015 0.014 0.014

Table B.2: Estimates for single traits analysis.
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Notations Formula

V1
1
M

[
XXT 0

0 0

]
− I4N

V2
1
M

[
(Xm + Xp)(Xm + Xp)

T 0
0 0

]
− 2I4N

V3

IN ⊗ [0 1
1 0

]
0

0 0


V4

1
M

[
0 XXT

XXT 0

]
V5

1
M

[
0 (Xm + Xp)(Xm + Xp)

T

(Xm + Xp)(Xm + Xp)
T 0

]
V6

[
0 I2N
I2N 0

]

V7

 0 IN ⊗
[

0 1
1 0

]
IN ⊗

[
0 1
1 0

]
0


V8

1
M

[
0 0
0 XXT

]
− I4N

V9
1
M

[
0 0
0 (Xm + Xp)(Xm + Xp)

T

]
− 2I4N

V10

0 0

0 IN ⊗
[

0 1
1 0

]
V11

1
M

[
0 X(Xm + Xp)

T

(Xm + Xp)X
T 0

]
V12

1
M

[
X(Xm + Xp)

T + (Xm + Xp)X
T 0

0 0

]
− 2I4N

V13
1
M

[
0 0
0 X(Xm + Xp)

T + (Xm + Xp)X
T

]
− 2I4N

V14
1
M

[
0 (Xm + Xp)X

T

X(Xm + Xp)
T 0

]
Table B.4: Sample relatedness matrices for cov(Y)

B.2 Supplementary Figures
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Figure B.1: Box plots for estimates of simulation. Red dots: pre-determined true
values. A: boxplot for setting 1. B: boxplot for setting 2.
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