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Energy Access in Resource-Constrained Environments

Maitreyee Sanjiv Marathe

Abstract

Reliable access to electricity is critical to advancing human development. It is esti-
mated that about 3.5 billion people globally have unreliable or no access to electricity.
This issue stems from a lack of access to modern energy services, or limiting one’s en-
ergy use due to socioeconomic constraints. It affects households in both emerging and
developed economies, and is expected to worsen because of climate change and rising
electricity prices. Designing equitable energy access frameworks for such environments is
challenging because of diverse constraints and requirements such as resilience to intermit-
tent remote communication, compatibility with locally available heterogeneous hardware,
affordability, and agreement with sociocultural elements of the community. This necessi-
tates inter-disciplinary research beyond the scope of traditional power engineering tools.
This thesis focuses on developing technology-driven solutions for residential energy access
in such resource-constrained environments.

The thesis proposes a holistic approach that involves (1) identifying complex problems
through community-engagement, (2) distilling technical questions, (3) developing solu-
tions using power engineering research tools such as analytical modeling, mathematical
optimization, numerical simulations, and hardware prototyping, (4) deploying the solu-
tions through pilots, and (5) disseminating findings through energy education platforms.
First, it presents findings from field experiences that illustrate this workflow in diverse
environments including energy access in off-grid rural communities, energy resilience for
individuals dependent on in-home medical devices, and energy access for people experienc-
ing homelessness. Next, the thesis proposes optimized threshold-based energy management
as a candidate framework for energy access in such resource-constrained environments.
Specifically, the proposed framework is developed in the context of energy management
for low-income prepaid electricity customers. The framework shows comparable or im-
proved performance when compared to benchmarks as validated through numerical simu-
lations using real-world energy usage data. Additionally, it does not need frequent remote
communication, detailed demand forecasts, or expensive custom hardware as validated
by implementing it on a basic low-cost microcontroller. Furthermore, the thesis proposes
Picogrid, a low-cost hardware platform for energy research and education, and presents its
use cases in real-world settings. The platform lowers the barrier to entry into hardware
validation for energy researchers and can be used to develop an energy literacy toolkit for
energy awareness and education. Finally, directions for future work are identified. This
thesis aspires to be a roadmap for developing equitable energy access solutions through
holistic approaches.
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Chapter 1

Introduction

1.1 Motivation

Access to a reliable electricity supply has been shown to play a vital role in supporting
and advancing human development across emerging and developed economies [1-3]. The
seventh sustainable development goal (SDG) proposed by the United Nations as a part
of its 17 SDGs under the 2030 Agenda for Sustainable Development [4] is “Ensure access
to affordable, reliable, sustainable and modern energy for all”. In 2022, there were about
685 million people in the world without access to electricity [5]. The definition of “access
to electricity” used by international statistics is “having an electricity source that can
provide very basic lighting, and charge a phone or power a radio for 4 hours per day” [6].
Access to electricity does not necessarily ensure reliability of supply. Using the definition
of a “reasonably reliable” supply as “a maximum threshold of 12 outages in a typical year
and 12 hours of power outage per year”, a 2020 study [7] estimated that there are almost
3.5 billion people globally without reasonably reliable access to electricity.

The electric utility industry metrics for measuring reliability are System Average In-
terruption Duration Index or SAIDI (“minutes of non-momentary electric interruptions,
per year, the average customer experienced”) and System Average Interruption Frequency
Index or SAIFI (“number of non-momentary electric interruptions, per year, the average

customer experienced”) [8]. However, these metrics do not account for factors like the



causes of outages or the equity of their distribution across different communities [9]. It
is important to consider such factors that account for the nuanced contexts of the end-
users in order to design energy solutions that are sustainable, reliable, and affordable. A
household may lack reliable access to electricity for various factors, including infrastruc-
ture issues, such as insufficient generation or equipment damage from extreme weather, or
socioeconomic factors, such as unaffordability of services. In this study, the term energy
poverty is used to refer to a lack of energy services due to absent or damaged infrastruc-
ture, while energy insecurity is used to denote the inability to meet energy needs due to
socioeconomic constraints.

Various forms of energy poverty are experienced by households in emerging as well as
developed economies. Emerging economies are working to extend electricity infrastructure
to remote areas through grid expansion or off-grid solutions like microgrids and solar home
systems, though these solutions often encounter reliability challenges [10,11]. Developed
economies have achieved complete electrification but are experiencing increasing disrup-
tions due to increasing extreme weather events caused by climate change. In the United
States, power outages caused by extreme weather events have doubled in the past decade
and their duration and frequency are at their highest [12]. Similarly, energy insecurity
is prevalent across different parts of the world. Along with outages due to insufficient
solar irradiance and equipment failures, off-grid households served by pay-as-you-go solar
microgrids can face outages when customers run out of energy credits [9]. Grid-connected
customers are disconnected by the utility if they fail to pay bills in time. A million U.S.
households were disconnected across 17 states between March 2020 to April 2021 despite
the moratorium on disconnections due to the COVID-19 pandemic [13]. The U.S. Res-
idential Household Energy Consumption Survey data for 2020 reported that 27% U.S.
households experience some form of energy insecurity [14].

Energy poverty and insecurity are known to disproportionately affect historically un-
derserved and vulnerable communities [15]. It follows that in addition to limitations on the

energy that is available for such households, there are limitations on various factors that



potential energy access solutions need to account for. Households may not have sufficient
disposable funds to spend on purchasing residential energy management hardware, such
as smart home energy management systems (HEMS), and to pay for their maintenance.
Rural areas in emerging economies often lack skilled technicians to service equipment.
In remote areas, cellular communication infrastructure is often unreliable. Additionally,
low-income households with overdue energy bills may also have outstanding internet bills.
Consequently, energy access solutions should minimize reliance on frequent remote com-
munication with cloud-based resources for computation. Residential demand is inherently
volatile making it challenging to generate accurate granular forecasts. Ideally, end-users
want a consistent and affordable electricity supply, greater control over their bills, and
more awareness of their consumption. The goal of this thesis is to develop energy access
frameworks, that meet these objectives for end-users, in environments with constraints
on resources such as local computation and maintenance, remote communication, and

demand forecasts.

1.2 Methodology

The first energy transition was driven by the Industrial Revolution and the shift to using
electricity, a more efficient source of energy than wood. Consequently, energy access has
traditionally been approached as a power engineering problem. However, this transition,
heavily reliant on coal and other fossil fuels, led to significant environmental burdens,
with vulnerable communities disproportionately affected by both environmental harms
and unreliable energy access. With the current energy transition from fossil fuel-based
generation to renewable energy sources, distributed energy resources, and digitization, it
is essential that the transition is rooted in equitable access to clean energy. Therefore,
in addition to power engineering tools, it is necessary to adopt a holistic approach to
designing sustainable energy access frameworks.

The works presented in this thesis are based on steps outlined in this holistic approach,

which is adopted from community-based participatory research frameworks [16]. The steps
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Figure 1.1: A holistic approach to power engineering research

in this framework are outlined in Figure 1.1. The first step is to establish a relationship
and a sense of trust with the community of interest. Once the community consents to
participation, the problem identification phase can include field visits and interviews to
understand the context of the community and identify key problems. Next, researchers
collaborate with the community and other stakeholders to identify requirements for poten-
tial solutions. The next step consists of analytical modeling, simulations, and /or hardware
prototyping. Traditional power engineering research has expertise to execute this step but
has often restricted its scope to this step. It is important to recognize the contributions of
the first three steps in informing the problem that is solved by traditional power engineer-
ing research tools. In order to translate this research to real-world impact, the solution
developed through these tools is then deployed through a pilot to gather feedback from
the community. This is an iterative process, i.e., there can be multiple iterations between
different steps before developing a solution that can be scaled. This approach enables
development of solutions that solve community-identified problems, cater to the nuanced
requirements of the end-users, and are therefore more sustainable. Thus, this approach
facilitates translational power engineering research.

The ideas of community-engaged research are reflected in the field experiences pre-
sented in this thesis. Field experiences in the following three contexts significantly con-
tributed to the motivation for the work in this thesis: energy access in rural Indian com-

munities, energy resilience for home healthcare in the United States, and energy access



for people experiencing homelessness in Wisconsin; these are presented in Part 1. These
contexts are chosen since they reflect experiences across diverse environments in emerging
and developed economies. Each context presented a set of unique as well as overlapping
challenges, requirements, and open questions for energy access frameworks. The challenges
that generalize across the three contexts are listed as follows:

e Hardware heterogeneity: The framework has to work with heterogeneous hardware
components including microcontrollers, meters, inverters, chargers, storage devices,
with minimal requirements for additional custom hardware.

e Topology independence: The framework has to work with minimal or no information
about the topology of the electrical network and support ad hoc operation.

e Intermittent remote communication: The framework has to work with intermittent
and slow remote communication infrastructure.

e Multi-objective driven management of limited energy: The framework should sup-
port multiple objectives of each household such as energy expenditure and serving
critical loads.

e Uncertainty mitigation: The framework should reduce the uncertainty of outages
and energy availability for critical needs.

e Hardware experimental platforms: The need for hardware-based experimental veri-
fication was identified, highlighting that the framework should be demonstrated on
hardware platforms to facilitate translation to real-life deployments.

e Energy education platforms: The need for energy education platforms and energy
literacy was identified to facilitate adoption of such frameworks.

The generic framework proposed in this thesis for energy access in resource-constrained
environments, that addresses the aforementioned requirements and challenges, is depicted
in Figure 1.2. The local nodes represent end-users such as households in grid-connected
or off-grid communities. Each local node has basic computation, communication, and
control capabilities and is responsible for the necessary requirement of stable operation of

the entity. The remote node represents a load serving entity with advanced computation



capabilities, such as a remote server of an electric utility or microgrid operator. It is
responsible for the desirable requirement of optimal operation of all entities.

For reliable operation of a local node irrespective of the state of communication infras-
tructure, local nodes need to be primarily responsible for their own operational stability,
i.e., decision-making at the local level should not have the remote node in the critical path,
but the remote node can inform local decision-making through set points communicated
on a slower timescale. Therefore, simple computation, control, and communication hard-
ware at the local nodes is necessary. The local hardware is limited by the aforementioned
constraints such as purchasing power of the end-users and access to skilled technicians for

maintenance.

remote node local node
local node advanced computation simple computation
simple computation
local node
simple computation

Figure 1.2: Simple local nodes interacting with the remote node

1.3 Document Organization

Part I of this thesis presents field experiences utilizing the workflow summarized in Fig-
ure 1.1. Parts II, III, and IV focus on traditional modeling, simulation, and hardware
prototyping steps of the workflow, proposing frameworks that adhere to the overarching
architecture and theme of the generic framework shown in Figure 1.2. A literature review
focused on the specific environment targeted by each part is included within the respective
chapters. Although Parts II, ITI, and IV design frameworks for environments that may
differ from those in Part I, some requirements overlap across these environments while also
presenting unique challenges. Table 1.1 shows the mapping between the questions iden-
tified in Part I that generalize across environments and are addressed by investigations
presented in Parts II, ITI, and IV of this thesis.

Part I presents field experiences in three contexts, and they are organized into the



Table 1.1: Research questions and methodology mapping

Research questions

Part II

Part 111

Part IV

hardware
heterogeneity

X

X

topology
independence

intermittent remote
communication

multi-objective
driven limited
energy management

uncertainty
mitigation

hardware
experimental
platforms

energy education
platforms

following chapters.

e Chapter 2 — energy access in off-grid rural communities in India

e Chapter 8 — energy resilience and home healthcare in the United States

o Chapter 4 — energy access and homelessness in Wisconsin

In each context, the problem is identified through conversations with end-users, commu-

nity organizations, and other stakeholders. The features of a potential technology-based

solution that can address the problem are identified. Further, a proof-of-concept hard-

ware/software prototype of the solution and/or a proposal for a more thorough solution

is developed. Through this process, requirements for more robust energy frameworks and

research questions that this study aims to address in Parts II, III, and IV are identified.

Part II presents threshold-based energy management as an energy access framework

for different resource-constrained environments.

e Chapter 5 presents stability studies for threshold-based energy management.




e Chapter 6 presents an application of threshold-based energy management to community-
scale microgrids through numerical simulations and a hardware-in-the-loop experi-

ment.

Part III presents models for optimizing thresholds and applies the threshold-based

energy management framework to the context of low-income prepaid electricity customers.

o Chapter 7 presents a mixed-integer linear program-based optimization model for

home energy management for prepaid electricity customers.

o Chapter 8 presents a linear program-based optimization model that can be imple-

mented using simple computation hardware and only daily average demand forecasts.

Part IV presents Picogrid, a low-cost experimental platform that can be used for

hardware validation of energy access frameworks and energy education.
e Chapter 9 presents the Picogrid platform’s hardware and software features.

o Chapter 10 presents a cloud-based solution for remote access to the Picogrid plat-
form. Additionally, it presents a real-world example of how the Picogrid platform

was used in a community workshop.

Chapter 11 summarizes the contributions of this study and presents avenues for future

work.

1.4 Background Papers and Reports

The following papers and reports relate to contributions that fall within the scope of this

thesis (T equal contribution):

e V. Balan, M. Marathe!, and G. Venkataramanan, “A Cloud-Based Solution for
Remote Access to a Microgrid Experimental Platform,” accepted to the 202/ IEEE

International Conference on Power Electronics Drives and Energy Systems, Surathkal,

India
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e M. Marathe and L. A. Roald, “Energy Management for Prepaid Customers: A
Linear Optimization Approach,” 2024 IEEE International Conference on Commu-
nications, Control, and Computing Technologies for Smart Grids, Oslo, Norway,

2024

e M. Marathe and G. Venkataramanan, “Picogrid: An experimental platform for
prosumer microgrids,” 2023 IEEE Energy Conversion Congress and FEzxposition,

Nashville, Tennessee, 2023, pp. 718-725

e M. Marathe and L. A. Roald, “Optimal Energy Rationing for Prepaid Electricity
Customers,” 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 2023, pp. 01-06

e M. Marathe and G. Venkataramanan, “Distributed Optimal Scheduling in Community-
Scale Microgrids,” 2021 IEEE Energy Conversion Congress and Ezxposition (ECCE),
Vancouver, BC, Canada, 2021, pp. 833-840

e B. Bondif, S. Bradshaw!, M. Marathe, and W. Keenanf, “Electric Little Free
Library: Solar Kiosks for Energy Access,” 2022. smplabs.wisc.edu/electric-little-

free-library

e M. Marathe and A. Manur, “Energy Resilience for Home Healthcare.”, 2020,

smplabs.wisc.edu/nsf-icorps//.

The following papers and reports constitute background contributions informing this

thesis and are not included in this document (T equal contribution):

e P. Kourtza!, M. Marathe’, A. Shetty, and D. Kiedanski, “Identification of med-
ical devices using machine learning on distribution feeder data for informing power
outage response.” To appear in the Tackling Climate Change with Machine Learning

workshop at NeurIPS 2022 (Proposals Track), arxiv.org/abs/2211.08310, 2022.

e D. Sehloff, M. Marathe, A. Manur, and G. Venkataramanan, “Self-Sufficient Par-
ticipation in Cloud-Based Demand Response,” IEEE Transactions on Cloud Com-

puting, vol. 10, no. 1, pp. 4-16, 2021.


https://smplabs.wisc.edu/electric-little-free-library/
https://smplabs.wisc.edu/electric-little-free-library/
https://smplabs.wisc.edu/nsf-icorps/
arxiv.org/abs/2211.08310

11

e A. Manur, M. Marathe, and G. Venkataramanan, “A Distributed Approach for
Secondary and Tertiary Layer Control in DC Microgrids,” 2020 IEEE Energy Con-
version Congress and Ezposition (ECCE), Detroit, MI, USA, 2020, pp. 1284-1291

e A. Manur, M. Marathe, A. Manur, A. Ramachandra, S. Subbarao, and G. Venkatara-
manan, “Smart Solar Home System with Solar Forecasting,” in 2020 IEEE Interna-
tional Conference on Power Electronics, Smart Grid and Renewable Energy (PES-

GRE2020), pp. 1-6, IEEE, 2020.
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Energy access is not limited to the technology that underlies energy infrastructure.
Multiple factors such as user experience and the prevalent socioeconomic factors influence
the success and sustainability of energy access solutions. The complexity of the prob-
lem and the dearth of meaningful and definitive publications within traditional literature
calls for detailed investigative methods to address these problems. This part summarizes
three different fieldwork efforts undertaken to understand these challenges and presents
proof-of-concept solutions to address some of them as well as proposals for more thorough
analyses. These proof-of-concept efforts can be considered ‘low-fidelity’ or ‘jugaad’ proto-
types [17] that provide preliminary insights into the problem by engaging with stakeholder
communities. Some of this work was performed as a part of team projects and has been
identified in the text. The objective of the chapters in this part is to provide context for
the assumptions made, requirements considered, and research questions addressed in the
investigations and frameworks presented in Parts II, III, and IV. The research questions
identified in each chapter of this part are collectively summarized at the end of the part.
Each chapter explores energy access through a different lens as summarized below.

Energy access for rural communities is explored through the lens of communities in
rural India. This is based on fieldwork undertaken by the author with a team prior to
graduate school. Based on this fieldwork, a model to propose an optimal energy mix for a
rural Indian household using different energy sources, viz. electricity, kerosene, and wood
is designed and results from numerical simulations are presented.

Energy resilience and home healthcare is explored through the lens of individuals in
the United States who are dependent on in-home medical devices. Over 100 interviews
were conducted by the author and team with stakeholders through the National Science
Foundation’s Innovation Corps program. Insights from these conversations include the
end-user archetype and factors influencing their concern for power outages. A need for
in-home energy backup is identified. Based on these insights, a proposal for a table-
top exercise is presented to further understand the detailed energy requirements of the

medically fragile community. A load scheduler for medical loads connected to an in-home
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energy storage system is designed and validated through numerical simulations.

Energy access and homelessness is explored through the lens of people experiencing
homelessness in Wisconsin. Insights from field visits and interviews conducted by the
author and team are discussed. The hardware prototype development and deployment
process for the Electric Little Free Library, a potential solution for this application, is
described. The successful field deployment of this solution led to a legislative change in
the City of Madison’s zoning laws which legalized the use of Electric Little Free Libraries.
This project acts as a roadmap for community engagement, prototype development, and

legislation for other cities and communities to undertake similar projects.
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Chapter 2

Energy Access and Off-Grid Rural

Communities

The author was a part of a team from the National Institute of Engineering, Mysuru
and University of Wisconsin-Madison that visited villages in different parts of India to
study existing microgrids and study the feasibility of setting up microgrids in villages
with unreliable or no access to electricity [18]. The team also set up solar home systems in
two urban and one rural household [19]. This work inspired the following proof-of-concept
optimization model to compute the optimal energy mix to be used in a rural household
powered by a microgrid. The author acknowledges contributions by Aayushi Singh to the
literature review and in determining parameter values for the case study. The requirements
and research questions for energy frameworks identified from this fieldwork are presented

in the concluding section of Part I.

2.1 Introduction

Despite the rapid growth in electrification in recent years in rural India, there is heavy
dependence on kerosene for lighting. Kerosene is known to pose numerous serious health
risks such as lung impairments and burns [20]. However, studies have found 9% of electri-

fied households surveyed across six states in 2018 to rely on kerosene as their primary fuel.
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One of the main reasons behind the use of kerosene as primary fuel even with an elec-
tricity connection being present has been dissatisfaction due to unreliability in electricity
supply [21]. Villages in remote areas and forest reserves cannot be connected to the main
power grid as running power lines to such areas is either not economical or not permitted
in nature reserves. Such villages are often electrified through off-grid microgrids based
on solar PV and storage. Problems of unreliability are seen in the case of such remote
microgrids as well [22]. India experiences monsoon for about four months and there can
be multiple days with continued poor solar irradiation due to cloud cover. The batteries
in such microgrids get drained and this compromises the reliability of electricity supply.
To address this problem, systems are often oversized and the electricity rate of such sys-
tems without subsidies can be as high as ¥50/kWh which is almost 10 times the rate paid
by grid-connected customers [23]. This leaves residents with no choice but to resort to
unclean fuels such as kerosene and firewood.

The driving question of this study is as follows: How to reduce dissatisfaction with
enerqy service (electricity+kerosene+wood) in an off-grid village supplied by a solar PV
and storage based microgrid without oversizing it? This study proposes a model to account
for multiple energy carriers in a typical rural Indian community, taking into account
multiple parameters such as cost of each energy carrier, weather, and indoor pollution.
The model answers the question of what energy mix should each household use in order to
minimize cost of energy while maintaining healthy limits on air quality without exceeding
electric power use limits. A case study of an off-grid village powered by a solar PV+storage
based microgrid is discussed. The PV+storage capacity is designed such that it is ‘just
enough’ - it does not account for autonomous operation, i.e., it cannot supply loads for
more than a day without adequate sunlight. Each house uses kerosene, firewood, and
electricity from the microgrid to meet its illumination and cooking demands.

The model uses the energy hub concept [24] which has been used to model power flows
in multi-energy carrier systems. An energy hub is defined as “a unit that provides the basic

features in- and output, conversion, and storage of different energy carriers”. This concept
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has been used to model energy use in urban residential entities with in-home combined heat
and power units, plug-in hybrid electric vehicles, time-of-use electricity pricing, thermal
energy storage, demand response, and other modern day technologies [25], [26]. It has also
been used to model community microgrids [27], [28]. However, a majority of these studies
incorporate high-end technologies, with power consumption in the kW to MW range,
and are based in the urban context. This study is set in the context of rural off-grid
communities powered by microgrids with power consumption in the order of 10s of watts
per house. Section 2.2 presents the modeling considerations for representing residential
energy use as an energy hub. Section 2.3 outlines the optimization problem. Section 2.4
presents results from a case study of an off-grid village powered by a PV+storage based

microgrid.

2.2 Rural Household as an Energy Hub

Consider a rural house with energy inputs in the form of electricity, kerosene, and wood
as shown in Figure 2.1. Wood and firewood will be used interchangeably in this study
and both refer to the wood used for cooking. Unlike the conventional energy hub models,
the loads are modeled in terms of end-use function instead of electric/thermal parameters.
The two loads are illumination (L;) measured in terms of lux.hours or lx.h and cooking
(L) measured in terms of person.meal, i.e., the energy required to make one meal for one
person. The inputs are electricity (P.) in Wh, kerosene (Py) in grams or g, and wood (P,)
in g. Note that the inputs and loads are in terms of energy or mass and not power. The
inputs are converted to outputs through devices such as lamps and stoves and these devices
are modeled as converters. The first converter represents light emitting diode (LED) bulbs
with a converter efficiency (7e;) equal to the ratio of useful lz.h generated to Wh consumed.
The second converter represents kerosene pressure lamps with a converter efficiency (n;)
given by useful lx.h generated to g of kerosene consumed. The third converter represents
a kerosene kitchen stove with a converter efficiency (n.) equal to person.meals cooked to

g of kerosene consumed. The fourth converter represents an earthen stove used to burn
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Figure 2.1: Rural house modeled as an energy hub

firewood with the converter efficiency (7y.) given by the ratio of person.meals cooked to
g of wood consumed. The dispatch factor v represents the ratio of kerosene consumed
by lamps to the total kerosene consumed and (1 — v) represents the ratio of kerosene
consumed by the stove to the total kerosene consumed. The energy balance is represented

by Equation 2.1.

L; ; UMk 0
i _ YE Nki Pk (21)
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2.3 Optimization Problem Formulation
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Parameters
aF := cost of using kerosene per lamp per hour
af := cost of using electricity per LED bulb per hour

T; := duration of illumination demand in house %

aFc := cost of kerosene per unit mass

W .= cost of wood per unit mass

@
E* := luminous flux per kerosene lamp

FE° := luminous flux per LED bulb

FE := minimum luminous flux necessary per person

N; := no. of residents in house %

BY := amount of wood necessary to cook one person.meal
(% := amount of kerosene necessary to cook one person.meal

V' := volume of a typical room in a house per capita

cF := PM2.5 emission rate per kerosene lamp
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(2.2a)
(2.2b)
(2.2¢)

(2.2d)

(2.2e)



c? := PM2.5 emission rate per unit wood burnt in stove
T := typical duration of cooking with wood per person.meal

ck .= PM2.5 emission rate per unit kerosene burnt in stove

c
T .= typical duration of cooking with kerosene per person.meal

C® := ambient PM2.5 concentration in areas using kerosene lamps

C™ .= upper limit on PM2.5 concentration according to health guidelines

Rpn, X := resistance and reactance of line mn respectively

P .= maximum power rating of microgrid

Variables
:= no. of kerosene lamps used in house %

né := no. of LED bulbs used in house

wf := mass of kerosene used for cooking in house i
w;’ := mass of wood used in house ¢

Pmn, Qmn = active and reactive power flows from bus m to n respectively
p? := power supplied by microgrid
Pn,d» := active and reactive power injections at bus n respectively

v, := voltage at bus n

20

The optimization problem is given by 2.2. The problem minimizes the cost of energy

for a given day and the decision variables are the number of kerosene lamps, number of

LED bulbs, mass of kerosene, and mass of wood used on the day. Equation 2.2(a) gives

the objective function in terms of cost of energy in X. Equations 2.2(b) and 2.2(c) are a

modified form of Equation 2.1. In the context of the illumination load, it is assumed that

the number of spots to be illuminated with minimum useful lux is equal to the number

of residents of the house, as indicated in 2.2(b). It is assumed that 2 meals per person

per day are cooked in each house, and hence the cooking load is given by 2N; as shown in

2.2(c). Upper limits on 24 hour average indoor pollution in terms of PM2.5 concentration
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(concentration of particulate matter with width less than 2.5um) is given by 2.2(d). The
amount of PM2.5 released due to using nf kerosene lamps for T; hours averaged over 24
hours nf’ckTi /24. The next two terms represent the same quantity for wood and kerosene
used for cooking respectively. It is assumed that the number of rooms in each house equals
the number of residents NV;. The average amount of PM2.5 released during 24 hours due
to the kerosene and wood is divided by IN;V which is the number of rooms multiplied by
the volume of a room in a typical rural house. This gives the average increase in PM2.5
concentration due to these fuels which is then added to C'%, a conservative estimate of the
ambient concentration in regions which use kerosene or wood. LinDistFlow constraints
are given by 2.2(e)-(g). The limit on the amount of electric power that can be drawn from
the microgrid is given by 2.2(h), since it is not oversized to account for additional days of
autonomous operation without adequate sunlight.

The driving question of the study is to reduce dissatisfaction with energy supply.
This study does not claim 24x7 electricity supply through the microgrid but provides
information about when to expect a disruption and resort to other fuels like kerosene. It
uses the battery state of charge to determine the amount of power that can be supplied
through the microgrid during the illumination demand duration. If this power is not
enough, it recommends adequate number of kerosene lamps to be used to satisfy the
demand while maintaining limits on indoor pollution. It calculates this optimal energy
mix on a daily basis so that residents can plan ahead and purchase kerosene and/or collect
firewood. This can result in reduced dissatisfaction due to uncertainty around electricity
supply among families, and can prevent them from totally switching to kerosene and

firewood as their primary source of fuel.
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(a) PV panels (b) Distribution wires

Figure 2.2: Microgrid in the village of Shisawli

2.4 Case Study

2.4.1 Setup

This section presents the results of a case study based on the village of Shisawli, near
the city of Mumbai in western India. The author was a part of team that visited this
village through a microgrid field study project [18]. It is an off-grid village of 43 houses
and is powered by a PV+storage based microgrid, set up by the energy service company
Gram Oorja, as shown in Figure 2.2. Each house has been provided with 5W LED bulbs
and power outlets. The parameter values for the energy hub model for this case study
are given in Table 2.1. Village-specific parameters are either approximated based on the
conversations the author had with residents during the field visit or are obtained from
different sources in literature as indicated. The minimum luminous flux necessary per
person (E) is assumed to be 200 Ix/lamp, a value between E* and E™, and can be
modified according to the requirements of the tasks being performed such as reading and

cooking.
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PV + storage

Houses - 110 43

Figure 2.3: Microgrid network diagram

Parameter Value Reference
oF (65 X /L)(17 g/lamp-hour)(1L/800g) | [29,30]
af (5W /bulb)(0.01 I/Wh)

T min=2h, max=4h
ake (65 %/L)(1L/800g) [30]
EF 76 Ix/lamp [31]
E° 300 Ix/lamp [31]
E 200 lx/lamp
N; min=1 person, max=4 persons
ok 274 g/person.meal [32]
BF 35 g/person.meal [32]
% (7.14 m?)(2.75 m3) [33], [34]
F (500 pg/m?)(6.34 m3) [29]
c? 6.3 g/kg [35]
T 1.375h [32]
<k 0.29g/kg [36]
T 2h [32]
ce 10pg/m3 [29]

Table 2.1: Case study parameter values

The PV+storage system capacity is assumed to be just enough to supply all the illumi-
nation load for the given duration for only one day and no additional days of autonomous
operation without adequate sunlight. Accordingly the PV rating and storage capacity are
calculated to be 700 W and 4 kWh respectively. The network topology is assumed to be
radial as shown in Figure 2.3.

The optimization problem is implemented in Julia using the mathematical program-
ming package JuMP [37] and the CBC solver. Results for variation in weather and the

cost of wood are presented.
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Figure 2.4: Recommended number of lights with variation in weather: When sufficient
insolation is available, no kerosene lights recommended. This agrees with the popular
findings that electric lights are more economical than kerosene and do not degrade indoor
air quality.

2.4.2 Variation in weather

Variation in weather is modeled as reduction in the power output from the microgrid.
Figures 2.4b and 2.4a show the recommended number of lights to be used in each house
for two cases - (a) when it has been cloudy and only 25% of the rated power from the
microgrid can be used, (b) when there is sufficient solar insolation and 100% of the rated
power from the microgrid can be used. In the 25% case, most houses use at least one
kerosene lamp and at most two electric lights. In the 100% case, no house uses a kerosene
lamps and all illumination load is served by electric lights. This agrees with the popular
findings that electric lights are a more economical option to meet the same illumination
load and do not contribute to indoor air pollution. Figure 2.5 shows the bus voltages in
both the cases. The voltage drop at bus 1, i.e., the bus farthest from the PV+storage bus,

in the 25% case is smaller as most of the load is met by kerosene.

2.4.3 Variation in the cost of firewood

Figures 2.6a and 2.6b show the impact of varying the cost of firewood on the recommended
optimal amount of kerosene and firewood to be used for cooking in each house. Firewood
does not have any rupee amount associated with it as it is generally collected from nearby

forests. But it does have an opportunity cost as people spend time going to the forests
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Figure 2.5: Bus voltage with variation in weather: When solar insolation is sufficient, all
illumination load is served by electricity leading to more voltage drop across the radial
distribution line.
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Figure 2.6: Recommended cooking fuel use with variation in firewood cost

while they could be working on their farms or at other jobs. Two cases are presented.
The first case assumes no cost associated with firewood (“0x”) while in the second case,
the rupee amount associated with firewood is such that it will cost twice the amount of
money to make one meal for one person using firewood as it would by using kerosene
stoves (“2x”). Figure 2.6a shows that in the 2x case, no wood use is recommended and
the entire cooking load is satisfied using kerosene. Therefore, as seen in Figure 2.6b, more
kerosene use is recommended in the 2x case as compared to the 0x case.

Note that in both the cases presented above (variation in weather and cost of wood),
The PM 2.5 concentration limit was assumed to be 30 times the WHO Interim target-1
guideline of 75ug/m3 [38] for the problems to remain feasible. One of the reasons can be the
heterogeneity in the sources of data used and the errors in the approximations. A subject
of future work can be using data from a single community to generate recommendations

for fuel use.
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2.5 Conclusion and Future Work

This study presents a framework for last-mile delivery of energy in rural off-grid house-
holds. It presents a holistic approach for modeling energy flows in a rural household using
the energy hub concept. It provides a systematic optimization-based method to balance
cost, reliability, and health concerns in energy provision. It provides a-priori knowledge
of resource availability and may reduce dissatisfaction with electricity supply. This can
prevent households from relying only on fossil-fuels, thereby improving indoor air quality
and reducing energy expenditure.

Some limitations of the model and avenues for future work are presented below. The
model assumes perfect knowledge of illumination and cooking demand as well as microgrid
power output. It assumes that illumination and cooking demand is constant throughout
the day. Some challenges with the implementation of this model include user compliance
with recommendations and availability of computation/communication infrastructure to
solve the model. Future work includes studying the model performance under different
scenarios varying parameters. This model can also be extended to include other commonly
used energy sources such as dung and biogas. The presented framework is modeled as an
operation problem. The problem can also be addressed as a planning problem to provide
recommendations such as optimal sizing for the PV + storage microgrid, whether a house
should invest in a kerosene stove or an earthen firewood stove, and the number of LED
bulbs and kerosene lamps that a household should purchase. Further, the model can
account for non-energy costs such as user inconvenience, health, and other socio-economic

factors.
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Chapter 3

Energy Resilience and Home

Healthcare

In the United States, the number of power outages due to extreme weather events has
doubled in the last two decades while the duration and frequency of outages is at their
highest [12]. This number is expected to further increase as climate change-driven extreme
weather events increase and continue to hamper the operation of the aging power grid.
Reliable and resilient delivery of electricity is a challenge and this can compromise delivery
of many essential services including healthcare. This challenge is compounded by the
recent shift towards delivering healthcare at home, i.e., home healthcare, a trend that
was accelerated through the global COVID-19 pandemic. Nation-wide, there are at least
4.4 million people who rely on in-home electricity-dependent medical devices and services,
such as ventilators, oxygen concentrators, and feeding pumps [39]. This number represents
only Medicare beneficiaries and there are estimated to be millions of more such individuals
covered by other insurances. It is estimated that between 70,000 to 180,000 children fall
into this category as well [40]. A home healthcare patient can be dependent on multiple
electricity-powered in-home medical devices, and a power outage can pose severe health
hazards. Energy resilience and healthcare have been studied in-depth separately. Their

interdependence, especially in the context of in-home delivery of healthcare, remains a
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largely unexplored space.

Existing solutions for powering medical devices during outages include fuel-based gen-
erators, but they are often unsuitable considering the risks with carbon monoxide poison-
ing, fuel availability and storage, and are not an option for those living in apartments. Solar
photovoltaic (PV) and battery based solutions, can overcome some of these problems. The
Energy Assurance Kit (EAK), an energy assurance platform based on microgrid technol-
ogy for powering critical infrastructure during outages, was developed by former students
from the research group of which the author is a member. It is the size of a suitcase,
has in-built battery storage, can be powered through solar panels, and has a monitoring
and control platform that provides a portal for external connection to electricity loads,
fuel-based generators, and phone-charging ports [41], [42]. It has the capacity to become
a self-organizing electrical energy network with assured availability of power [43]. Solar
and battery storage based systems have been used extensively for remote electrification
in developing economies [44]. The EAK and its underlying technology have been used to
power an office building in India [18] and to power solar home systems for households with
unreliable or no access to electricity [19]. The author was a part of a team that applied
to the National Science Foundation’s Innovation Corps (I-Corps) [45] program in order
to explore the EAK’s application in the context of home healthcare in the United States
and understand the problem and the nuanced requirements through conversations with
different stakeholders. The award supports academic groups looking at commercializing
their research by training them in the basics of the Business Model Canvas [46,47] and
populating this canvas through inputs from potential customers and other stakeholders
through the customer discovery process [48]. Through this process, a technology devel-
oper “gets out of the building” and talks to potential end-users to determine if there is
a problem that their technology addresses and if yes, then how pressing is this problem,
what value does the technology deliver, who in the ecosystem will pay for it, etc. The
customer discovery process helps the developer understand the different aspects of the

business model canvas for their technology.
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The insights from I-Corps are summarized in the following section. A detailed report
of the insights can be found in [49]. This is followed by a proposal for a table-top exercise
to understand detailed and nuanced requirements of the medically fragile community.

Further, a load scheduler, an add-on for the EAK to improve its utility, is presented.

3.1 Insights from the NSF I-Corps Program

There can be different underlying conditions that can require an individual to receive
healthcare at home. Since this space is vast, the team focused on two groups which were
perceived to have the greatest need - children who have undergone a tracheostomy and
their families (“trach children” and “trach families” respectively) and mobility impaired
adults. This section will present insights in the context of trach families. Trach children
can use some or all of the following devices for their day-to-day health needs - ventilator,

oxygen concentrator, suction machine, humidifier, feeding pump, nebulizer, pulse oximeter.

3.1.1 Top Concerns

The team would begin an interview with trach families by asking about their top three
concerns. Some of the recurring themes are presented: (1) Medical device malfunctioning
or getting disconnected, (2) Medical emergencies such as formation of mucus plug and
ability /inability of the parents and caregivers to take appropriate action or find help in
time, (3) Power outage, when it occurs, is a very unexpected emergency. Rigorous training
in the hospital to home transition phase or in the individual care plan is not available. (4)
Preemptive concern and anticipatory anxiety. There is a large amount of uncertainty and
a feeling of helplessness in their day-to-day lives which can be very challenging.

It is necessary for the EAK or any product catering to this end-user group to take into
account these nuanced concerns. While studying end-user requirements, it is essential to

speak their language and understand their context.
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3.1.2 Concern around power outages

It was found that the concern associated with power outages can vary in intensity across
trach families. Some of the factors which can determine this include: (1) Past experience
with outages — If a family has experienced a power outage, they will be more concerned
and invest in being prepared for an outage. (2) Locality — Rural areas in general are more
prone to outages and are slower to get power restored after an outage as compared to
urban areas. Families living in rural areas are more prepared for outages. (3) Proximity
to family, friends — Family and friends serve as a backup option for trach families if they
live close enough to drive quickly to, but far enough or served by a different utility so
that they are not affected by the same power outage. In such a case, the trach family
may not be as concerned and may not invest in in-home energy backup. (4) Awareness of
emergency preparedness — If the family has had either first hand experience with emergency
preparedness through their profession (emergency management services, power companies,
scouting), or through family and friends, then they are more likely to be concerned and
invest in preparation for power outages. (5) Number of devices they depend upon, their
criticality, how long they can go without them influences the level of concern for power

outages.

3.1.3 End-user archetype

Developing an end-user persona was one of the exercises during the I-Corps program. The
end-user persona can be useful to develop features for the EAK and other solutions for
the end-user. The team developed such a persona for a typical trach mother “Tracie the
Trach Mom”: Meet Tracie the Trach Mom, she is 35 years old and the CEO of an ICU-
like setup at home. Her child requires a suite of devices - ventilator, oxygen concentrator,
nebulizer, feeding pump, humidifier, and refrigeration for medication. During natural
disasters or power outages, she does everything to avoid the hospital, more so with the
COVID-19 pandemic. Her medical team provided a checklist for emergency preparedness

which is vague and generic for making decisions around energy backup. A gas generator
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is not feasible, she lives in an apartment and the fumes will be dangerous. After the
last power outage, she jerry-rigged marine batteries and bought car inverters, but did not
really understand if it would work for her child’s devices. Her ecosystem includes the
home healthcare agency and hospital, insurance providers, durable equipment provider,
utilities, government representatives, and social media support groups. Her purchasing
decisions are heavily influenced by the different entities in her ecosystem. Her day-to-day
life is full of uncertainties and preemptive concerns. She is a self-taught expert, resilient,
and can go to great lengths to ensure the health and well-being of her child. She wants to
make the space around her trach child resemble that of children without a serious medical
condition. She wants to take her child for walks around the block, modify the feeding
pump to look like a Skip Hop lunchbox, drive to and shop at the local Target store, and
go on vacations just like other families. Her trach mom friends on Instagram help her
identify products that can enable her to do these activities and reduce the uncertainty.”
The end-user persona highlights the lack of context-aware energy backup solutions for

such mothers and their families.

3.1.4 Critical devices

Devices that are critical for a medically fragile individual need not be high technology or
even necessarily medical devices. A refrigerator is a critical device for a diabetic patient
since it is necessary to store insulin. It is critical even for a trach child to store its
feeds and medicines. An air conditioner may be critical for a patient susceptible to heat
stroke. Through conversations, it was observed that devices fall into two categories: life
sustaining (e.g: ventilator to aid in respiration), and life supporting (e.g nebulizer to

administer drugs).

3.1.5 Energy management and lack of information

While driving to doctor’s appointments, families often use car chargers for the patient’s

devices. However, car chargers do not have the capacity to power certain devices and
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families are often unsure of what devices can be safely plugged in. There is no clear
indication for how long the internal batteries of an in-home medical device will last. An
interviewee exclaimed, “Found out through usage that the ventilator batteries last for
shorter than what they are rated for!”. Backup batteries may not have an indication of
the state of charge. Even if they do, this does not translate to how many hours the device
can be used. This is critical as it determines when the family will have to evacuate to
a place that has power such as a hospital. A trach mother used an app to show how
fast the oxygen tank will run out for a given flow rate. This implies that translation of
engineering metrics like state of charge into something more user-friendly like time duration
for powering a device is essential. An apt example of this is a power outage experience
that a trach mother narrated in her interview. Her child needed to use a suction machine
and it had a backup battery. However, she did not use the machine during the outage and
chose to manually provide suction to her child using a suction tube. She said that she was
not sure if they had charged the backup battery and it showed no indication of the state
of charge. She wanted to save the battery until it was absolutely necessary, for example
to drive to the hospital or a location with power. “The pack says 45 minutes of backup -
does it actually have 45 minutes of backup?”. She added that it was too much effort to
go to the living room to find the suction machine with battery backup and get her child
hooked on to that. She did not want to leave her child’s side because she was afraid that
a trach plug might form by the time she got the machine with battery backup set up. She
found the manual suction tube to be the easiest option, closest to where they were in the
house, something that she knew how to use, and did not demand that she move away from
her child. These attributes provide important context for the EAK or any product that
is designed for this end-user group. This example shows that it was not the availability
of energy but the information about how long it will last that was more important. Also,
battery management appears to be a top issue across the board - for batteries in medical

devices as well as for batteries in consumer devices.
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3.1.6 Key takeaways

e A medically fragile family is burdened with multiple medical and financial uncer-
tainties. If a product can reduce the uncertainty in terms of electricity supply, it can
add value and help them regain a sense of control.

e Range anxiety is a major concern around backup batteries sold with the medical
devices. It was found that information about how long the energy backup would last
was essential for the family to be comfortable in using the backup.

e The extent of concern around power outages depends on a number of factors such as
number of critical medical devices, proximity to a hospital, apartment /home owners,
rural /urban locality, etc.

e Existing solutions often follow the one-size-fits-all approach, i.e., a single solar PV
and battery based solution may be designed for use in camping, recreational vehicles,
or in a household with no home healthcare patient. They are not designed taking into
consideration that medically fragile households are like mini-ICUs and have different
requirements ranging from form factor and portability to insurance coverage and
alarm fatigue.

e It was found that there is a lack of awareness around existing energy products among
the families interviewed.

e Coverage of energy backup through insurance varies greatly across providers as well
as states. The most likely payer for a solution like the EAK may be utilities and
community choice aggregators, particularly in regions prone to power outages and

public safety power shutoffs.

There does not appear to be a single entity solely responsible for energy resilience
for home healthcare. The problem surfaces and is tackled through a reactive approach
during focusing events like large scale power outages due to hurricanes and wildfires. It is
necessary to take a proactive approach to meet the needs of this vulnerable community.
A single product like the EAK may not meet these needs entirely, but can be a part of a

larger reliable and sustainable energy framework.
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3.2 Table-Top Exercise

Through the I-Corps interviews it was observed that a more rigorous study would be
necessary to understand the response and needs of medically fragile families during a power
outage. To this end, in one of the I-Corps interviews, an emergency manager at a hospital
recommended conducting a table-top exercise with medically fragile individuals and their
caregivers. A table-top exercise is a discussion of plans and responses to an emergency (in
this case a power outage) by presenting stakeholders with different scenarios while sitting
around a table, i.e., in a low-stress environment [50]. It is necessary that the design choices
used in developing energy solutions be informed by the needs of the community that will
use the solution. The table-top exercise aims at addressing some of these factors. This
section presents a proposed outline for this project. It is a community-engaged project
which will require multiple community partners and needs to be reviewed by the relevant

review boards before execution.

3.2.1 Objectives

The scope of the project is families with medically fragile children residing in the United
States. The first objective of the project is to study the needs and responses of medically
fragile families reliant on electricity-dependent in-home medical equipment during power
outages, specifically: (1) Devices to be powered, (2) In case a backup source is present,
how do they ration the available energy for their critical devices, (3) Amount of time they
will spend at home before vacating to a place with power, (4) Which place are they most
likely to vacate to? (e.g. hospital, fire station). The second objective is to find how the
following factors influence these needs and responses: (1) Underlying medical condition —
medical devices to be used depend on the medical condition, (2) Support groups on social
media, (3) Past experience with outages — often families with such experience are better
prepared for such scenarios, (4) Locality — rural areas are more prone to outages and are
slower to get power restored after an outage as compared to urban areas, (5) Proximity

to family/friends — they serve as a backup option if they stay a short drive away but
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have power during a localized outage, (6) Awareness of emergency preparedness — either
first hand through their profession (emergency management services, power companies,
scouting), or through family/friends, (7) Household income and health insurance, (8)

Type of housing — e.g., apartment, house

3.2.2 Methodology

Emergency response training generally involves the following activities [50]. (1) Orienta-
tion and Education Sessions — to answer questions and concerns, (2) Tabletop Exercise
— a discussion of plans and responses with all stakeholders sitting around a table, i.e.,
in a low-stress environment, (3) Walk-Through Drill — actual performance of emergency
response actions, (4) Functional Drills — to test specific functions like medical response
and notification procedures, not necessarily at the same time, (5) Evacuation Drill — par-
ticipants evacuate by walking along the evacuation pathway, (6) Full-Scale Exercise — an
emergency simulation as close to reality with all stakeholders in action

Tabletop exercises are shown to help participants test their resilience-based capacities,
their ability to leverage partnerships, and other assets during such times [51]. The project
uses the tabletop exercise for the purpose of studying responses and needs during a power
outage. The experiences and needs of the community are at the center of the project
and the exercise is not formulated to be a training from electrical engineers on how the
families should respond to power outages. Subsequent work can be informed by the gaps
and issues that the community identifies through this exercise.

A few potential scenarios and questions to be discussed during the exercise in the
context of trach children and their families are presented. They can be suitably modified
for children with other medical conditions. Trach children use a host of in-home medical
devices such as ventilator, oxygen concentrator, nebulizer, feeding pump, humidifier, and
suction machine. The people involved in the exercise would be the primary caretakers,
most often the trach parents. The questions presented below may not necessarily be

posed verbatim and may need to be rephrased on a case-by-case basis to ensure that the



36

interviewees are not subjected to any stress or discomfort.

Scenario 1 — Outage without prior warning: It is 6 p.m. on a cold winter evening
when the power suddenly goes out.

e What is the first thing that you do?

e How long can your child go without the devices that do not have an internal battery?

e How do you contact the utility? (phone/website/radio news)

e For families that possess backup generator /battery pack - Do you switch this on right
away? Are there any problems to switch on the backup quickly? Which devices do
you power with the backup and for how long?

e If no information is available from the utility, how long will you shelter at home?

e What will your course of action be if you find out that the power will not be back

for another hour/3 hours/6 hours?

Scenario 2 — Outage with prior warning: It is in the news that your locality may
experience an unplanned power outage for up to 24 hours in the next three days due to a
tropical storm or that there may be a planned outage for up to 24 hours in the next three
days due to wildfires. In both cases, you have not been asked to vacate because of the
storm/wildfire.

e How do you prepare for such an event? (items you purchase)

e Do you plan to vacate right away to a place that will have power supply or will you

shelter in place?
e What factors do you consider while making a decision about vacating/sheltering in

place?

3.2.2.1 Benefits

The exercise can help energy engineers better understand the nuanced requirements of
medically fragile families. This understanding can help them design better, context-aware,

resilient energy solutions. Table-top exercises help in identifying both strengths and vul-
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nerabilities in emergency preparedness [52], and this can benefit the end-users as also their
medical and support teams. Table-top exercises can help participants to take actions to
clarify areas of uncertainty and develop more effective plans to deal with emergencies [53].

Although the exercise does not involve literally switching off power to the child’s de-
vices, a hypothetical discussion about a power outage can be stressful for the family. It
may also make them recall some of their past outage experiences. Careful designing of the

scenarios and questions in order to minimize this stress is necessary.

3.2.3 Implementation

This section includes some considerations for implementing this project.

Partners: As this is a multi-disciplinary project between human factors design and health-
care along with energy engineering, experts from these fields may be consulted in designing
and conducting the exercise. A group of participating families will also be consulted to
ensure that the questions/scenarios are appropriate and if they would recommend any
additional ones.

Recruitment: One of the ways of recruiting participants can be by partnering with three
to five children’s hospitals across the country to ensure a variety in underlying medical
condition, income group, and location.

Compensation: Participants can be compensated monetarily through gift cards.
Location: Even before the global COVID-19 pandemic, medically fragile families do not
prefer indoor in-person interactions in order to minimize the risk of infections. Families
will be given an option to participate in this exercise virtually or in-person according to

their preference.

3.2.4 Outputs

After the exercise, the participating families would be asked for recommendations on how
they would like to see the data and findings from this project to be published. In addition,

some of the outputs can be: (1) A distilled easy-to-read version of the insights on the
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project’s social media handle. Since such families are seen to be active on social media,
this can be an easy way to share this information. (2) Recommendations for additions to
the emergency preparation one-pager that home healthcare agencies and hospitals give to
medically fragile families. (3) A system requirements specification sheet for developers of

energy backup solutions for medically fragile families. (4) A research article

3.3 Load Scheduler for the EAK

Medically fragile families use multiple in-home medical devices such as ventilators, feeding
pumps, oxygen concentrators, and suction machines. Through the I-Corps program, it was
found that during a power outage, families prefer to shelter in place instead of vacating
to a fire station or a hospital. Some of the commonly mentioned reasons were that in the
hospital, they may not be able to use their in-home devices and may have to head to the
emergency room (ER) which can have a heavy copay. Devices in the ER are different from
in-home devices and the staff may take time to set up the device settings according to
the child’s comfort. Nurses are more comfortable operating hospital equipment than the
patient’s in-home equipment. If the outage is due to a natural disaster like a hurricane,
hospitals can be inundated with patients and the staff may not have the time to ensure
these settings are according to the child’s comfort. Hospitals and other public places can
also increase the chances of infections for the medically fragile individual. A backup battery
pack, like the EAK, can provide energy for a limited amount of time during an outage
so that the family can shelter in place. Families prefer to maximize this ‘at-home time’
during an outage due to aforementioned reasons. They also need to know the duration of
this at-home time as it helps them plan for a potential evacuation. Off-the-shelf battery
packs do not provide this information and do not have the capacity to perform optimal
load management to maximize this time.

This section presents a load scheduler for the EAK. It is implemented by solving a
scheduling problem in the General Algebraic Modeling System (GAMS) [54]. It uses

the on-board sensors and relays of the EAK. To minimize computation requirements of
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Figure 3.1: Medical load scheduler block diagram

the EAK, the optimization can be implemented on the cloud. The EAK can implement
the threshold-based energy management framework presented in Chapter 5 which ensures
that it will maintain basic operational sufficiency even when there are delays or failures in

communication with the cloud computation platform.

3.3.1 System Configuration

As shown in Figure 3.1, the user will connect their loads to the EAK which can be
considered as a battery pack external to the loads. Some medical loads also have internal
batteries. External battery packs in the affordable range often have limited power output
compared to the total power rating of all appliances such families need during an outage.
The scheduler has to optimally schedule each load and decide whether to power it through
the external battery or to let it draw power from its internal battery so as to not exceed
the power and energy limits of the external battery pack. In line with this, the power
output limit of the external battery pack used in this problem is less than the total power
rating of the loads to be powered.

Objective: Given the specifications of loads and the external battery, along with three
scenarios representing uncertainty in demand for certain loads, the scheduler has to max-

imize the at-home time during an outage and generate a load schedule.
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3.3.2 Model Description

Load Classification: The loads considered are - ventilator, suction machine, oxygen
concentrator, humidifier, and mini-fridge. Loads are classified as continuous use loads and
deferrable loads. C is the set of continuous use loads. These loads are critical and have
to run continuously. The loads which fall under this category are ventilator and suction
machine. D is the set of deferrable loads. These loads have periodic energy requirements,
i.e., they need to be on for a particular duration every hour. The loads which fall under
this category are oxygen concentrator, humidifier, and mini-fridge. Additionally, there is
one uninterruptible load, i.e., it has to be powered only for a specific period of time but
cannot be interrupted in between this period. It is assumed that there is uncertainty in
the demand for this load and is considered using different scenarios. Parameter P; is the
power demand of the uninterruptible load in scenario s. Parameter ys; is the switching
state of the uninterruptible load in scenario s at time ¢. It equals 1 if load has to be on
and 0 if off. It is assumed that this load has to be switched on 3 hours into the outage.
The uninterruptible loads considered in the three scenarios are - television (to watch news
related to the outage), sump-pump (to drain the basement in case of a hurricane related
outage), and a feeding-pump (for feeding the medically fragile patient). It is important to
note that the loads under each category can differ from patient to patient. Furthermore,
there may be loads that have different usage characteristics and do not fall under any of
the considered categories. This model serves as an example for the assumed use case and
can be extended to incorporate additional features.

%
a

Switching States: The binary variable x; , indicates whether load a is connected to
its internal battery at time t, i.e., it equals 1 if connected and 0 otherwise. Similarly, the
binary variable x§ ; indicates whether load a is connected to the external battery (EAK).

Constraint 3.2 ensures that the load is connected to at most one battery. The set of all

time steps in the horizon is represented by 7 and AT is the length of each timestep.
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External battery specifications: Constraint 3.3 ensures that the power drawn by
all loads at each instant ¢ under each scenario s is less than the maximum power draw
from the external battery P™**. Constraint 3.4 ensures that the energy drawn from the
external battery over all intervals under each scenario is less than the energy content of

the external battery at the beginning of the outage E™%*.

Internal battery specifications: Some loads in different sets can have internal batter-
ies. The set of loads that have internal batteries is denoted by Z. The number of backup
hours provided to load a by its internal battery is B,. Constraint 3.5 ensures that each

appliance a is not connected to its internal battery for more than the duration B,.

Load behavior constraints: Continuous use loads cannot be switched off for some
duration and then switched on again. This is ensured by Constraint 3.6. Continuous use
loads are assumed to have a higher priority than deferrable loads. Therefore, any of the
continuous use loads being off implies that none of the deferrable loads can be on. This is
expressed in Constraint 3.7. Deferrable loads need to be on for a particular duration every
hour. The set of time intervals corresponding to the beginning of a new hour is denoted
by H. The fraction of an hour the deferrable load has to be on for is represented by Fj.
The number of intervals of deviation from this requirement per hour per deferrable load

is denoted by the positive variable e, ;. This is expressed in Constraint 3.8.

Objective function: If any of the continuous loads have to be turned off, that instant
is the end of the ‘at-home time’ denoted by the variable z. It is expressed in the maximin
form such that it is less than the time for which each of the continuous use loads are on
as expressed in Constraint 3.9 and the objective function maximizes z. Even though the
continuous use loads are more critical than deferrable loads, when at home, the family
needs the deferrable loads to a certain extent as well. The deferrable load constraint is
implemented as a soft constraint using the error term e,j; which is a positive variable

introduced in the constraint and the negative of this term is maximized through the
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objective function. As the objective has two parts — maximizing the at-home time and
minimizing the error in the deferrable loads constraint, a weighted sum of the two (with

weights A, and \; respectively) is used as the objective function. N, is a normalizing
Emaz 4 Z BaP,

term and is an upper bound on the at home time evaluated as N, = “26 I;f + 1.
a€C
Ny is a normalizing term and is evaluated as Ny = %Q{FG, where np is the number of
deferrable loads and ngy is the number of elements in set H.
Z €a,h
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T
Xil,t? Xg,t € {071}7 ea,h Z 0 (310)

3.3.3 Results

The model is used to generate a load schedule for an 8 hour outage for a total number of
intervals = 48 and AT = 1/6 hours. Load data is given in Table 3.1 and P™* =400 W,
E™% =1000 Wh, F, = 0.17 h for all three scenarios, A, = 0.3, Ay = 0.7. Figure 3.2 shows

the generated schedule. Salient events are marked and described below.
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Table 3.1: Specifications of loads served by the load scheduler

Load ‘ Power (W) ‘ Backup Time (h)
continuous use loads
ventilator 200
suction machine 150 1
deferrable loads
oxygen concentrator 350 -
humidifier 250 -
mini-fridge 100 -
uninterruptible loads
television 150 -
sump-pump 350 -
feeding-pump 120 -
Total 1050

e A - The suction machine is the first continuous use load to be switched off (neither
powered by the internal nor external battery). Therefore, the time it is switched off
is the at-home time = 4.5 h

e B - As P™¥ = 400 W, only a limited number of loads can be powered by the
external battery simultaneously. For example, in the case of event B, the suction
machine and concentrator (rated at 150 W and 350 W respectively), cannot draw
power from the external battery at the same time. Therefore, for the duration the
concentrator is on, the suction machine is connected to its internal battery.

e Deferrable loads (concentrator, humidifier, mini-fridge) are staggered to ensure the
maximum power limit of the external battery is not exceeded.

e Each of the internal batteries get 100% utilized. The external battery utiliza-
tion (amount of energy utilized) is seen to be 93.3%, i.e., there is over 6% en-
ergy remaining. The energy needed by the uninterruptible load in the worst case
scenario(feeding-pump) is 120W * 3 x 1/6h = 60W h which is 6% of the total energy
capacity of the external battery. This verifies that the scheduler saves the amount

of energy necessary to cater to the uninterruptible load in the worst case scenario.
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Figure 3.2: Switching state of medical devices during the outage

3.3.4 Conclusion

An electric load scheduler for an external battery pack to maximize the at-home time
during an outage was implemented and the optimal at-home time with the corresponding
load schedule was generated. The load scheduler takes into consideration the nuanced
requirements of the use case and can be an add-on for the EAK for energy management
and uncertainty mitigation. With optimal scheduling, the external battery pack with a
maximum power output of 400 W was able to run 5 devices with a total power rating
of 1050 W (over 2.5 times the maximum power output of the battery pack). Without
the optimal scheduler, the caregiver must manually determine which loads can connect to
the external battery and which should rely on internal batteries during the outage. This
additional burden may shorten the time they can safely shelter at home, potentially forcing
evacuation to a fire station or hospital. This, in turn, can increase admissions to such
facilities that are often already overburdened during emergencies. Furthermore, manually
managing the appliances can hinder the caregiver’s ability to provide adequate care for
the medically fragile individual or to contact emergency services, potentially leading to
life threatening consequences.

It is important to note that this is a simplified model of the complex process of electric
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load use. Electric processes such as battery charging-discharging efficiencies, medical
factors such as load criticality, and human factors such as determining the relative priorities
for critical and non-critical loads contribute to the complexity. Some of the modifications
that can be made to the model so that it can represent this process more closely include:
(1) The model can account for internal battery charging along with device power draw. (2)
A source such as solar PV can be added to charge the external battery. The intermittency
of solar and its dependency on weather parameters will be an added uncertainty to the
optimization problem. (3) Along with uninterruptible loads, demand uncertainty can be
included for other load types as well. (4) The user experience can be improved through a
software interface and by allowing the user to add more loads online and change the type
and criticality of a load. (5) Finally, it is necessary to implement this in hardware and

deploy it in a user’s home to validate its utility and improve its features.

3.4 Conclusion and Future Work

The intersection of home healthcare and energy resilience is an area that is unexplored
in engineering as well as healthcare research. Energy resilience of the medically fragile
community is a chronic and widespread problem. This problem often comes into focus in
the aftermath of a disaster. Rather than this reactive approach, proactive steps need to be
taken to ensure that this community’s needs are met. With increase in extreme weather
events due to climate change and the aging power grid, it is essential to find distributed,
immediate, plug-n-play solutions that do not rely on just the legacy power grid. Solutions
also need to be aware of the nuanced requirements of this community and cannot be
one-size-fits-all. The table-top exercise can help gain further insights on the requirements
of the community. The solar PV and battery storage based EAK with add-on features
like the load scheduler can be a candidate solution to fit some of their requirements. It
is important to note that a single product like the EAK or the load scheduler will not
solve the problem entirely, but can be one of the pieces within a larger energy resilience

framework.
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Some ideas for future work include:

e Quantification of medical emergencies due to power outages: It is necessary to get
data on hospital admits due to power loss to quantify the size of the problem. These
may be recorded as “social admits”. Some existing studies include [55-57].

e Location and number of medically fragile individuals: Information on the number of
people using in-home medical devices and their locations is important for planning
power outage response. Data about Medicare beneficiaries is available through the
HHS emPOWER map [39], but it is estimated that there are millions more on other
insurances. A proposed approach is to implement load disaggregation on distribution
feeder data to identify the number of medical devices used downstream [58]. The
author has contributed to this work as one of the first authors.

e Energy backup and factors in the ecosystem: The effect of various sociotechnical, geo-
graphical, and medical factors on the benefits of energy backup for a medically fragile
family needs further investigation. Some examples of these factors include past ex-
perience with outages, rural/urban location, proximity to family/friends, awareness
for emergency preparedness, number and criticality of devices.

e Energy awareness and education: The I-Corps interviews revealed that it is challeng-
ing for non-experts to make decisions around energy backup. An energy education
and awareness add-on to the EAK or a precursor to an energy backup solution
that improves energy literacy can be useful. A candidate solution can be the load
scheduler in the form of a smartphone app to study energy needs during different
outage scenarios. A candidate hardware solution can be a platform like the Picogrid
presented in Part IV.

e Energy efficiency and healthcare: Through interviews, it was found that the inter-
section of energy efficiency and health could be a more established research area
in the paradigm of cross-platform problems [59]. Researchers can leverage insights

from this field when exploring the intersection of energy resilience and healthcare.



47

Chapter 4

Energy Access and Homelessness

Unreliable or no access to electricity can have multiple reasons that do not necessarily
pertain to the reliability of the power grid. Even though all homes in the United States
have been connected to the power grid, people who do not have a permanent home do
not have reliable access to electricity. There over 500,000 people nation-wide that expe-
rience homelessness on a single night [60]. About 65% reside in homeless shelters and
35% or about 200,000 people are unsheltered. The presented work focuses on charging
infrastructure for cellphones for people experiencing homelessness and other underserved
communities. Studies show that houseless populations own cellphones, use them for health
and social needs, and this access can bring about a sense of empowerment [61], [62]. A
study showed that even those who reside in shelters can have problems accessing charging
infrastructure for their cellphones [63]. The ideal goal would be to address the root cause
of inaccessibility to electricity which is homelessness. As this problem is complex and may
have stretched timelines, it is necessary to look at the immediate steps and plug-n-play
solutions that can address this problem.

The Great Lakes Community Conservation Corps (GLCCC) [64] is an organization
based out of Racine, WI which works with veterans experiencing homelessness and dis-
advantaged youth. They aim to address climate change, advance greener living, and offer

education and job skills training. GLCCC recognized that their trainees often did not
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have a permanent residence and hence a safe place to charge their personal electronics.
They identified a two-fold need: (1) community solar-powered charging kiosks for their
trainees to charge their electronics for free; and (2) training the trainees to fabricate the
kiosks to improve their employment potential and for them to serve as green ambassadors.
GLCCC received a grant from the Wisconsin Office of Energy Innovation to address these
needs and reached out to UW-Madison for technical assistance in Spring 2021. The author
has worked with a UW team, and with GLCCC and other partners on needs assessment,
development of solar-powered phone charging kiosk prototypes, and deployment and data
analysis. For more details, refer to the project’s web page: smplabs.wisc.edu/electric-

little-free-library.

4.1 Problem Identification and Scoping

The author and team visited the GLCCC facility in Racine in the summer of 2021 to
interact with their trainees and understand the problem (Figure 4.1a). It was clear through
these conversations that cellphones were important for their day-to-day activities like
scheduling healthcare appointments, job interviews, school work, driving and navigation,
and communication with friends and family. A trainee told us “my phone is like my
lifeline”. The conversations also revealed that they had gone to great lengths to keep
their cellphones charged through public charging infrastructure and it was not always
convenient. The public library had charging outlets but parking there was not free. Some
trainees said that they had mobility constraints and could not walk more than a few blocks
for accessing outlets. They would often ask the GLCCC trainers if they could plug in their
cellphone at their facilities. Another trainee said that they would try to charge their phone
at outlets present on the exterior of houses in the neighborhood and added that “That was
the only way I could get off the street. You cannot book appointments or do your work
without a cellphone.” Through this field visit, it was clear that (1) cellphones are a critical
need, (2) access to charging infrastructure is limited and inconvenient, (3) their efforts to

keep their cellphones charged demonstrate that the need for charging infrastructure is


https://smplabs.wisc.edu/electric-little-free-library/
https://smplabs.wisc.edu/electric-little-free-library/
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(a) Field visit to GLCCC, Racine (b) Solympics: Summer Solar Makeathon

Figure 4.1: Racine field visit and the summer solar makeathon

acute and crucial.

The team then introduced the concept of public solar-powered phone charging kiosks
and gathered feedback on required features and locations or environments where such
kiosks will be useful. Some of the locations that came up were bus stops, laundromats,
and parks. The team organized a makeathon at UW-Madison called “Solympics” for
students to ideate and prototype solar-powered kiosks for different environments (Figure
4.1b). A unique feature of the makeathon was that trainees from GLCCC (i.e. the end-
users) were present during the event to offer immediate feedback on useful features and
design considerations. The winning entry of the makeathon was the Electric Little Free
Library (eLFL). A Little Free Library (LFL) is a public book-case and is a part of a
world-wide non-profit movement to promote public book exchange [65]. An eLFL is an
LFL with an add-on solar panel and charging electronics. The team went on to develop

the makeathon model into a field-ready prototype.

4.2 Prototype Development and Deployment

The eLFL prototype is shown in Figure 4.2. The team used commonly available off-the-
shelf components for the power circuit and control circuits. The power circuit includes
a B0W 12V solar panel, 20Ah 12V Li-ion battery, 10A 12V charge controller, and two

12V /USB converters with 2 USB outlets each. The control circuit includes a microcon-
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Figure 4.2: Electric Little Free Library prototype

troller which reads data from sensors and writes it to a data logger. A majority of the
electronics is placed inside the electronics box which is mounted to the back of the LFL
and the solar panel is mounted on the top.

The power circuit is shown in Figure 4.3. The PV panel feeds in to the charge controller.
The battery is connected to the charge controller through a fuse. A current sensor and
voltage sensor monitor its current and terminal voltage respectively. The two 12V /USB
converters are connected to the charge controller through separate fuses. A current sensor
monitors the total current drawn by the two converters. The control circuit is shown in in
Figure 4.4. The voltage and current sensors give analog outputs. A magnetic switch sensor
is placed near the door of the LFL and acts as a door sensor, i.e., to check if the door is
open or closed. The real-time clock module interfaces the microcontroller via I2C and runs
on a coin cell to keep time even if the microcontroller switches off. The microcontroller
sends data to the data logger using serial communication. The two indicator LEDs (green
and red respectively) indicate the state of the battery voltage. If it is greater than 12V,
the green LED is ON indicating that the battery is operating at safe voltage levels with
enough charge. If it is less than 11.5V, the red LED switches ON indicating the battery
is at deep discharge levels. The data from sensors is read into the microcontroller and

logged into the SD card.
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Figure 4.5: Electric Little Free Library deployments

The first prototype of the eLFL was deployed at the GLCCC facility in Racine in Spring
2022 (Figure 4.5a). The author was a part of the UW-Madison Energy Analysis and Policy
capstone project that deployed the second prototype in Madison for 30 days in April-May
2022 (Figure 4.5b). The goals of the capstone project were to assess the energy needs for
underserved communities in Madison, test the feasibility of an eLFL to serve these needs,
and make recommendations for the replicability of such a project to other cities [66]. The
team conducted over 20 interviews with homeless shelters, city agencies, utilities, as also
potential end-users around the deployment location. The following section presents key

insights from these two deployments and multiple conversations with stakeholders.

4.3 Results, Discussion, and Continuing Work

Usage: Data from the Madison eLFL was actively monitored and it was found that the
average number of phone charges per day was 1.6 charges with the maximum charging
days occurring over weekends. The average time per charge per day over the course of the
deployment was 17.3 minutes. The library door was opened an average of 3.7 times per
day. These numbers show that the charging as well as the library portion of the eLFL was

actively used over the course of the 30-day deployment.
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Features: The charging cables from both the prototypes went missing within a few days
of installation. Along with more secure cables, future prototypes need to be vandalism-
proof and also provide secure storage to cell phones while they are being charged through
time-based locking compartments. Along with free access to clean electricity, access to

free WiFi was a common recommendation across stakeholders.

Legislative Impact: The team had conversations City of Madison Council members
including Alder Patrick Heck and found that LFLs do not fit the city’s zoning codes. For
large-scale deployment of eLFLs, an amendment permitting their use would have been
necessary. In order to permit the use of eLFL’s and other public kiosks, Alder Heck
sponsored an ordinance to amend several sections of Chapter 28 of the Madison General
Ordinances to create “Mission Boxes” as a permitted use in various districts. A Mission
Box is defined as “a structure constructed or authorized by the owner of a parcel for the
purpose of providing free items to the public, including, but not limited to, books, food,
clothing and home goods.” Electric Little Free Libraries can be viewed as mission boxes
for clean energy and literacy. The ordinance passed in October 2022. More details can
be found on the City of Madison web page [67]. The project was featured in the State of
Wisconsin Clean Energy Plan, May 2023 [68].

Contributions: The project has generated documentation that can act as a roadmap
for other cities, communities, and individuals to set up eLFLs. For insights and recom-
mendations on technology, field deployment, and community engagement refer [66]. For
a reference on amending zoning codes to allow mission boxes (and in turn eLFLs), refer

City of Madison’s zoning text memo [67].

Continuing work: After this phase of the project, multiple groups of UW-Madison
students and researchers have furthered various aspects of the project.
e A team worked with GLCCC trainees and high school students in Racine to make

multiple eLFLs, meeting the two-fold need of electricity access and job skills training
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identified by GLCCC at the beginning of this project.

e Students identified suitable sites in Madison for eLFLs using a GIS (Geographic
Information System) framework considering variables such as meeting zoning re-
quirements, avoiding areas with air pollution, adequate access to solar, proximity to
community gathering spots (including homeless resources), and bus stops with large
footfall [69].

e A team of students received funding of $5,000 from the City of Madison and Bloomberg
Philanthropies’ Youth Climate Action Fund [70] to install four eLFLs at the locations
in Madison identified by [69].

e Furthermore, there is ongoing research to identify optimal locations across the state
of Wisconsin by maximizing coverage of census tract population weighted by Social
Vulnerability Index (SVI) [71] and energy burden given a set budget of eLFLs.
The initial optimal placements were shared with GLCCC for implementation with
10 eLFLs located in Milwaukee and Racine counties each (personal communication

with one of the authors of the work, Rebecca Taylor, October 2024).

The Electric Little Free Library provides free access to clean electricity to people
experiencing homelessness and underserved communities. It also serves as a platform for
clean energy education and job skills training. It is important to note that the eLFL does
not address the root cause of homelessness and may not be a comprehensive solution for
energy access for such communities. It is, however, a good fit for being a part of a larger
framework for energy access and a symbol for increasing awareness about clean energy as

well as energy equity.
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Chapters in this part have presented field experiences that help to understand three
contexts of energy access and identify research questions. Proof-of-concept prototypes of
solutions that can address some of the questions have been presented and pathways for
future work have been identified. The research questions that were identified in each con-
text which inform the frameworks and investigations presented in Parts II, III, and IV are

summarized below.

Energy access for rural communities

e Hardware heterogeneity: Hardware that is locally available and economical is not
uniform across vendors.

e Topology independence: Households may not want to join a microgrid until they
observe that the participating households are benefiting from the project. Similarly,
participating households may not want to remain a part of the project for the months
when they travel elsewhere for seasonal jobs.

e Intermittent remote communication: Communication infrastructure such as the cel-
lular network has intermittent or no connectivity in remote rural communities.

e Multi-objective driven management of limited energy: Objectives include minimizing
deep discharge of batteries to reduce frequency of replacements, managing loads with
different time-varying priorities, minimizing health risks due to unclean fuels.

e Uncertainty mitigation: Users want to know how much energy is available through
a microgrid or a solar home system so that they can plan on budgets for other needs
such as kerosene.

e Hardware experimental platforms: Field deployment can present multiple challenges
which may not come up in simulation environments in the lab. Hardware-based
experimental platforms are necessary to minimize failures in the field.

Energy resilience and home healthcare
e Multi-objective driven management of limited energy: Medically fragile families want

to increase the time they spend at home during a power outage before evacuating.
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Each medical device has a different priority which can change with time.

e Uncertainty mitigation: Families want to be certain of the amount of time their
energy backup can power their critical loads.

e Energy education platforms: There is a lack of awareness among families about
energy requirements and hence backup system sizing can be challenging. Education
tools such as system sizing tools and outage simulators can act as a useful precursor
for in-home energy backup.

Energy Access and Homelessness

e Energy education platforms: Community organizations such as GLCCC are inter-
ested in energy education platforms for job skills training and for enabling individuals
to become clean energy ambassadors. There is interest from high school and college
students in engaging with such platforms.

e Hardware experimental platforms: Field deployment of the prototype brought forth
many hardware challenges from electronics to mounting. A hardware component in
energy research and educational platforms is critical, particularly if the goal is field
deployment.

e Hardware heterogeneity: If the field prototypes have to be low-budget, the design
needs to be compatible with hardware from different vendors.

Proof-of-concept solutions and proposals presented in this chapter such as the optimal

energy mix model, the table-top exercise, load scheduler for medical devices, and the
Electric Little Free Library attempt to address some of these questions. These questions

inform the frameworks presented in the following parts.
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Chapter 5

Stability Study

This chapter introduces threshold-based energy management, building upon the prior work
on Self-Organizing Local Electrical Energy Network (SOLEEN) within the scope of micro-
grids and solar home systems. Microgrids and solar home systems deployed for energy ac-
cess in remote communities experience unique technological and socioeconomic challenges.
Control frameworks for such energy access solutions need to function with heterogeneous
hardware, minimal technical expertise for maintenance, limited information about network
topology, fit low budgets, and adapt to user preferences. SOLEEN was presented as a con-
trol framework for such lean deployments and shown to satisfy these requirements through
simulation and experimental studies. This study presents the underlying mathematical
framework and proof of stability of threshold-based energy management for prosumer enti-
ties with time-invariant parameters. We show that such entities converge to an equilibrium
where supply-demand balance is maintained. Stability of entities as they switch from one
set of time-invariant parameters to another is illustrated through numerical simulations.
Additionally, we present rules for isolated and interconnected entities to avoid unstable

operating conditions.
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5.1 Introduction

5.1.1 Motivation

Microgrids and solar home systems (SHS) are being used as solutions for energy access in
remote communities and can be a potential solution to provide for the 685 million people
without access to electricity [6]. In addition to providing remote access to clean energy,
microgrids offer indirect benefits such as fostering economic growth, improving health
outcomes, and aiding women empowerment [11,72]. The success of microgrid and SHS
projects hinges on a few common technological and socioeconomic themes [10]. Operation
and maintenance of the equipment is a challenge since there is heterogeneity in the locally
available hardware and a lack of skilled technicians in remote areas. Appropriately sizing
the system capacity depends on estimation of the demand for electricity in a community.
This is challenging, particularly if the community was formerly unelectrified [73]. Systems
are also seen to experience demand-supply imbalance during operation [19]. Getting access
to data and sending corrective set points from a remote central controller in real-time
may not be possible due to unreliable communication infrastructure in remote areas. In
addition to these technological challenges, socioeconomic factors also influence project
success and solutions need to be cognizant of this context [74]. Community-engagement in
the ownership and maintenance of the project is essential for sustained operation. Upfront
costs and tariff structures need to be affordable for rural households with limited means
and this can necessitate innovations in financial models [75]. Furthermore, households
may not want to join a microgrid until they observe that the participating households are
benefiting from the project. Similarly, participating households may not want to remain
a part of the project for the months when they travel elsewhere for seasonal jobs. This
means that the microgrid control framework needs to be agnostic to the changing network
topology. Therefore, these challenges present the following requirements on microgrid and
SHS-based energy access solutions:

1. works with locally available heterogeneous hardware and minimal technical expertise

for maintenance
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2. supports ad-hoc prosumer microgrid formation and works without detailed informa-
tion about network topology

3. works with high latency communication infrastructure

4. fits low budgets in terms of upfront and recurring costs

5. adapts to user preferences and local socioeconomic requirements

5.1.2 Background

Microgrid control paradigms and solutions have addressed some of these requirements. The
use of primary control approaches based on local measurements that do not require commu-
nication between entities [76] has become well-established. Secondary and tertiary control
approaches often require central control, high speed communication between entities, and
system-wide measurements. This becomes challenging in small-scale microgrids deployed
for remote or rural electrification, since communication infrastructure may not be reliable
and may not meet the timing requirements of the power system [77]. Centralized control
is associated with multiple challenges including single-point failure, ownership, and financ-
ing. Studies have proposed distributed secondary and tertiary control strategies but they
often employ consensus algorithms, i.e., need communication between neighbors or need
high-end power converters capable of accepting power quality set-points [78-80]. Simple
converter topologies specifically catered to the remote microgrid/SHS context with mini-
mal communication, cost, skilled maintenance requirements have been proposed in [81-83]
but these solutions still require additional hardware beyond that available commercially
off-the-shelf.

A rural community microgrid deployment, particularly in developing economies, works
on thin budgets where high-end power converters or communication channels are not af-
fordable [23]. In the context of this ‘lean deployment’, the only control handles available at
each household or entity are switches for loads, sources, including import/export with the
network. Self-Organizing Local Electrical Energy Network (SOLEEN) presented in [43]

is a framework for distributed secondary layer control. Since it uses only these switches
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as control handles, it satisfies requirements 1 and 4. It has been shown through simula-
tions and hardware experiments that it satisfies requirements 2 and 3 in that it maintains
operational sufficiency of each entity, i.e., maintains the energy content of the battery at
each entity within given bounds, without central control or communication or information
about network topology. A tertiary layer can be overlaid on SOLEEN to meet the custom
objectives of each participating household in the microgrid as shown through numerical
simulations and hardware-in-the-loop experiments [84] (and Chapter 6), thereby contribut-
ing to meeting requirement 5. SOLEEN has also been proposed as a way to maintain en-
ergy resilience of individual households participating in demand response programs [85].
Previous studies illustrate the use cases of SOLEEN through numerical simulations and
hardware experiments. However, they lack a discussion on the detailed operation and
analytical model, and they fail to provide comprehensive comments on the framework’s

stability. This study aims to bridge this gap.

5.1.3 Threshold-based energy management

Threshold-based energy management is based on the SOLEEN control paradigm. Each
household or entity in the network is assumed to have some form of energy storage in
addition to loads and sources. Each entity can exchange energy with the network through
two separate channels for import and export. The import channel is treated as a source
and the export channel is treated as a load. The discrete energy manager (DEM) in each
entity measures the state of charge of the storage and actuates loads and sources. A block
diagram of an entity, adapted from [43], is shown in Figure 5.1.

The primary goal of threshold-based energy management is to ensure that the energy
content of each entity in the microgrid remains within predefined limits. Each load and
source is assigned a threshold. If the local energy content is greater than the threshold
assigned to a load, the DEM switches the load on; otherwise, it is switched off. On the
other hand, if the local energy content is greater than the threshold assigned to a source,

the DEM switches the source off; otherwise, it is switched on.
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Figure 5.1: Illustration of an entity in a self-organizing local electrical energy network

5.1.4 Contributions

In this study we present the underlying mathematical framework for stability of threshold-
based energy management. We show that not only does it maintain the energy content
within predefined limits but also ensures that entities converge to an equilibrium that
ensures demand-supply balance. We validate the framework through numerical simula-
tions and present rules and recommendations for operation of isolated and interconnected
entities. The contributions of this study are:
e proof of stability of an entity with constant-power sources and loads and constant
thresholds
e numerical simulations to demonstrate stability while switching between two systems
with constant-power sources and loads and constant thresholds

e rules for operation of isolated and interconnected entities

5.1.5 Organization

Section 5.2 outlines the key terms, definitions, and operating rules of the framework and
presents two systems which will be used to illustrate results through numerical simula-
tions. Section 5.3 presents proofs for an entity with a finite number of constant-power

sources and loads and for an entity with an infinite number of sources and loads with an
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infinitesimally small constant power rating. Section 5.4 demonstrates the stability of an
entity while switching between two systems with constant-power loads and sources and
constant thresholds through numerical simulations. Rules for operating isolated and in-
terconnected entities are presented in Section 5.5, which is followed by a brief concluding

section.

5.2 Model

Consider a single entity with energy content x and maximum capacity of storage X. This
study presents analysis for x being energy content of a battery, but this can also represent
any cumulative variable such as the monetary amount in a prepaid energy wallet, the
amount of fuel in a tank, etc. Let the entity have N® number of sources with each source
J supplying power p?, N ! number of loads with each load k consuming power péc. Each
source and load is assigned a threshold in terms of the energy content of the storage.
We assign a threshold z] to source j and a threshold xﬁc to source k. The only control
handles the framework uses are the binary switching states of sources (u$) and loads (ul),

J

determined by equations (5.1) and (5.2) respectively.

ui = step(z; — x) (5.1)

J
ul, = step(x — k) (5.2)

Here, the step() function is defined as step(y) =1 if y > 0 and 0 otherwise. It follows
that, a source is switched on if the energy content of the storage is less than or equal to its
threshold and is switched off otherwise. A load is switched on if the energy is greater than
or equal to its threshold and is switched off otherwise. Equation (5.3) gives the expression

for the rate of change of energy or power input to the storage.

T = ijuj - prcufk. = ij-step(xj- —x) — Zp%step(x — k) (5.3)
J k J

k
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In order to illustrate the results in this section, we define two systems. All power and
energy values are in per unit.
System 1: N° =3, N' =3, X = 1, source and load specifications given in Tables 5.1 and

5.2 respectively.

Table 5.1: System 1: source specifications Table 5.2: System 1: load specifications

| pp 7 k[ a
11015 09 1101 0.1
21 0.2 0.8 2102 0.2
31 0.2 0.7 3103 0.3

System 2: N° =50, N' =50, X =1

Source specifications: p? =0.01 Vj, z7 = 0.5+ %

(0.5—0.1)k

Load specifications: pfk =0.01 Vk, :U%C =01+ %5

Systems 1 and 2 are modeled in MATLAB and numerical results are used to illustrate

and validate the analytical models presented in the following sections.

5.3 Stability Study

In this section, it is assumed that the power consumed by loads and supplied by sources
remains constant and all thresholds are fixed. We offer comments on operation and sta-
bility of systems with time-varying power input/output and time-varying thresholds in

Sections 5.4 and 5.5.

5.3.1 Preliminaries
5.3.1.1 Monotonicity

Let all the N thresholds (N = N* + N') be arranged in ascending order from x1 to zy.

If z; is a threshold corresponding to a load then

i‘xi—1§$<xi - j3|zi§$<$i+1 = pgc >0 (5'4)
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If x; is a threshold corresponding to a source then
i’|xi,1<mgxi - jf‘xi<a:<xi+1 = pls >0 (5-5)
From Equations 5.4 and 5.5, it follows that
By <a<a; — Blaj<e<a,q >0 (5.6)

The phase plane plot of & against z for System 1 is shown in Figure 5.2. It is a

non-increasing function which crosses the x-axis at x = xé = Tq.
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Figure 5.2: Phase-plane plot for System 1: system converges to x = x4

5.3.1.2 System design considerations

For all x < x1, all sources will be active and all loads will be inactive, whereas for all
T > x,, all loads will be active whereas all sources will be inactive. Therefore, as long as
the system is designed such that there is at least one load and at least one source with a

non-zero power rating, we have

Ploca; = 3 05 >0 and dlyng, =— Y ph <0 (5.7)
J k
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If it is assumed that the power consumed by loads, power supplied by sources, and
all thresholds are constant, and since % is a monotonically non-increasing function of x,
changes in & can take place only at a threshold. It follows that there exists a unique

threshold x = x4 such that

.fb’x<xd >0 and $‘I$>xd <0 (58)

It follows that, for a given set of constant-power sources and loads with constant thresholds:
1. z4 is unique

2. x4 1s time-invariant

5.3.2 Continuous variation

Consider a system with a large number of loads and sources, each with an infinitesimally
small constant power rating. The discontinuous plot depicted in Figure 5.2 degenerates to
a continuous straight line intersecting the x-axis at * = z4. Since the loads and sources
of System 2 have a small power rating and are large in number, System 2 is a good
approximation of such a system and its plot of & against x resembles a straight line as
shown in Figure 5.3a. We use the global invariant set theorem to comment on the stability

of such a system.
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V(y) (pu)
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(a) Phase plane plot: (b) Plot of g(y) against y (¢) Lyapunov function
system converges to x = x4 where yg(y) >0 Vy V(y) =y?

Figure 5.3: System 2: phase plane and Lyapunov function plots

Let us define a new variable y := x — x4 and y + ¢g(y) = 0. The plot of g(y) against y is

a straight line passing through the origin; the plot for System 2 is shown in Figure 5.3b.
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Therefore, we have yg(y) > 0 Vy. Consider the Lyapunov function V(y) = 3? (Figure

5.3c). The following conditions are satisfied:

1. V(y) = o0 as ||y|| = oo

2. V(y) = 2yy = —2yg(y) <0 Vy

Let R be the set of all points where V(y) = 0 and M be the largest invariant set in R.
From the above conditions and since this is an autonomous system with g(y) continuous,
the global invariant set theorem is applicable and it follows that all solutions globally
asymptotically converge to M as t — oo [86]. The solutions to V(y) = 0 are y = 0 or
g9(y) =0, i.e., y = 0 is the only point in set R. At y = 0, y = 0 and so that is an invariant
set. Therefore, the system globally asymptotically converges to y = 0. Note that g(y)
need not be a straight line or a monotonic function for this result to hold. As long as
conditions (1) and (2) above are satisfied, the system will globally asymptotically converge
toy = 0.

Figures 5.4a and 5.4b show the plot of x against time for System 2 for different initial
conditions. The system is seen to converge to x = x4 = 0.5 (which corresponds to y = 0)

in finite time.

1 1
0.8 1 0.8
? 0.6 1 ? 0.6
& NS
& 04t E & 04t
0.2 1 0.2
0 : : . . 0 - : - .
0 5 10 15 20 25 0 5 10 15 20 25
t (pu) t (pu)
(a) Initial condition = = 0.85 (b) Initial condition z = 0.15

Figure 5.4: System 2: x against time for two different initial conditions; system converges
to x4 = 0.5 in both cases
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5.3.3 Discontinuous variation

In the case of discontinuous variation, we use the sliding mode control paradigm to com-
ment on the stability of the system. The goal of a control system is to formulate and
implement a control law such that the system tracks a certain desired trajectory. The
goals of the following discussion are to analyze the threshold-based energy management
framework through the sliding mode control paradigm so as to validate the following hy-
potheses about the stability of the system operated using the framework and identify
conditions when they are satisfied.

1. system reaches & = x4 in finite time

2. x = x4 is an invariant set
Let the sliding variable be defined as s := x — x4 = Z. Since x4 is not time-varying,
$ =2 — 24 = &. Therefore, s$ = .
From the definition of z4, it follows that £ > 0 when £ < 0 and £ < 0 when Z > 0.
Therefore,

58 = —[z|l&] = —|s||2]

Let n = min{|#|} which is the minimum of |:'c\3::x;\ = P* and |:c\3::xd+] = — P~ as marked
in Figure 5.2. Therefore,
s§ < —n|s]
1ds?
[ g 5.9
L < s (5.9

Equation 5.9 verifies the sliding condition [86]. Therefore, the system reaches s = 0,
i.e., * = x4 in finite time which is < @ and remains at x = z4. Hence, z = x4 is
an invariant set. This validates the two hypotheses, assuming constant-power sources and
loads and constant thresholds.

Figures 5.5a and 5.5b show the plot of x against time for System 1 for different initial
conditions. The system is seen to converge to x = x4 = 0.3 in finite time.

To limit chattering, practical implementation of such a system introduces a small

amount of hysteresis around each threshold. In the neighborhood of x = x4, let us assume
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Figure 5.5: System 1: x against time for two different initial conditions; system converges
to x4 = 0.3 in both cases

that the width of the dead band is Az. The time for which ©# = P~ and # = P is
given by Az/(—P~) and Axz/P* respectively. Therefore, the average value of 4 in the

neighborhood of z = x4 is given by

. PP e
<z >= N A =0
B
(=P T PT

Therefore, around x = x4, we have < & >= 0, i.e., a balance between supply and

demand is ensured.

This analysis for continuous and discontinuous cases reveals that the threshold-based
energy management framework ensures that the system will converge to the equilibrium

and ensure supply-demand balance.

5.4 Case Studies

The above discussions assumed time-invariant thresholds and constant-power sources and
loads. This section presents case studies that illustrate the operation of an entity that
changes from one system with time-invariant parameters to another system with time-

invariant parameters, depending on different external factors.
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5.4.1 Low Demand

Let us assume that System 1 represents a grid-connected household with a battery that
has three wall chargers and three loads. Consider a scenario when the members of the
household are away and are not using any loads. The plot of & against x is entirely above
the x-axis except at x = x4 as shown in Figure 5.6a and the system continues to converge
to x = x4 in finite time as shown in Figure 5.6b. Here, x4 is equal to the largest threshold
z{ = 0.9. The system will remain there until the load demand becomes non-zero after
which the equilibrium can shift to a different value of x. Note that, in this case if the
initial condition is greater than x4, the system remains at the initial condition since © = 0

when x > x4.
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(a) Phase plane plot: system converges (b) x against time for initial condition z = 0.15
tox =x4

Figure 5.6: System 1: Low demand case

5.4.2 High Demand

If there is a power outage, the wall chargers will not supply any power. In this case, if the
household is using all the loads the plot of & against x is entirely below the x-axis except
at x = x4 as shown in Figure 5.7a and the system continues to converge to x = x4 as
shown in Figure 5.7b. Here, z4 is equal to the lowest threshold xll = 0.1. The system will
remain there until one of the sources becomes available after which the equilibrium can

shift to a different value of z. Note that, in this case if the initial condition is less than
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x4, the system remains at the initial condition since £ = 0 when z < 4.
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Figure 5.7: System 1: High demand case

5.4.3 Increasing demand

Consider a scenario when the demand has an instantaneous increase and System 1 changes
from the low demand case to the high demand case. Figure 5.8 shows the plot of & against
time and the switch happens at ¢ = 0.2. The system first moves towards the low demand
equilibrium (z = 0.9). After the demand increases, the system converges to the high
demand equilibrium (z = 0.1). This shows that the system continues to move towards
the equilibrium corresponding to the current set of parameters (thresholds and load and

source power).

5.4.4 Instability condition

The high and low demand cases show that the system remains stable even if the total
load demand is greater or less than the total source power respectively. However, if
a load/source switches roles, i.e., a load supplies power and a source starts consuming
power, this can lead to instability. Consider a scenario where Source 1 in System 1 is
connected to an external battery. If the external battery ends up drawing power instead

of supplying power to charge the system’s battery, this can lead to the system battery
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Figure 5.8: z against time for System 1 switching from low demand to high demand;
system converges to the high demand case equilibrium of z = 0.1

getting completely drained. Figure 5.9a shows the plot of & against z when this power

draw is ps; = —0.7 and Figure 5.9b shows the plot of x against time. x is seen to become

negative and continue decreasing. Practically, this would lead to the battery getting

completely discharged and remain at zero state of charge.
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Figure 5.9: System 1: Instability when a source becomes a load

The case studies reveal that a load or a source may not interchange their roles, i.e.,

consume or supply negative power respectively, or the system can become unstable. Fur-

thermore, a system may consist of only loads or only sources in certain scenarios. This

degenerates to the trivial case wherein the system converges to the lowest or the highest

threshold respectively. As long as the chosen thresholds are within safe operating limits
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of the energy storage device, these cases do not present threats to the safe operation of

the system.

5.5 Rules for Operating Entities

Entities running the SOLEEN framework can be interconnected to exchange energy and
each entity is observed to maintain its local energy content within predefined limits. This
has been shown through Monte Carlo simulations for a 20-entity network and through
hardware experiments on a 3-entity network [43]. Each entity participates in the network
through two devices - import and export. The import device is treated as a source and
the export device is treated as a load. In this section, we present recommendations for

interconnecting entities. These are also applicable for operation of isolated entities.

Thresholds: If the power supplied or consumed by each source or load respectively as
well as the thresholds vary with time, the plot of & against x may also vary with time.
In this case, x4 will be a function of time x4(t). If & is plotted against = considering the
power and threshold values at any given instant of time ¢, the relation (5.6) will still hold
true at each instant. Therefore, it can be argued that x4(t) will be unique. Since the
equilibrium z4(t) is one of the thresholds, the chosen thresholds should lie within the safe
operating limits of the energy storage device. For example, if a battery’s safe operating
region is between 20% to 90% state of charge, thresholds should be picked within this

range.

Bidirectional power flow: Bidirectional power flow on a load/source may lead to
instability. A source or a load should not change roles, i.e., a source should not consume
power and a load should not supply power since this can lead to instability as illustrated
in the case studies. This is particularly important for energy exchange with the network.
Separate lines for import and export are needed and unidirectionality of power flow has to
be ensured on each line. In dc networks, it can be implemented by having a simple diode

in series in each line as implemented in [43].



74

5.6 Conclusion

This study presents the mathematical framework describing the stability of threshold-
based energy management and shows that entities converge to an equilibrium that main-
tains demand-supply balance. We prove that an entity with constant thresholds and an
infinite number of sources and loads each with an infinitesimally small constant power
rating will globally asymptotically converge to the equilibrium. We prove that an entity
with constant thresholds and a finite number of constant-power sources and loads will
converge to the equilibrium in finite time. We show through numerical simulations that
if an entity’s parameters change from one set of time-invariant load /source power ratings
and thresholds to another similar time-invariant set, it will move towards the equilibrium
corresponding to the current set of parameters. Furthermore, we present two rules for op-
erating isolated or interconnected entities: (1) thresholds should be chosen such that they
lie within the safe operating limits of the energy storage device, (2) no load/source can
support bidirectional power flow, i.e., a load or source cannot supply or consume power
respectively.

Stability study of entities with time-varying parameters (thresholds, power consump-
tion of loads, power supply from sources) is a subject of future work. Additionally, a
stability study of multiple interconnected entities can be undertaken. The framework can
also be extended to incorporate more than one energy storage quantity. For example,
for a household with battery storage and a prepaid energy wallet, the framework can be
implemented through a quantity that is a function of the state of charge and the wallet
amount.

It is important to note that the choice of thresholds can influence how long a partic-
ular load/source is enabled. This can affect tertiary level socioeconomic objectives of an
entity beyond operational stability such as revenue generation through energy exchange
or availability of a critical load. This can be achieved by overlaying a tertiary control layer
on threshold-based energy management, as discussed in Chapter 6. It is also possible to

choose appropriate thresholds to achieve tertiary level objectives. This is presented in Part
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IIT which extends the concept of threshold-based energy management to prepaid wallets,

i.e., the variable of interest is the wallet balance instead of battery state of charge.



76

Chapter 6

Application to Community-Scale

Microgrids

Secondary and tertiary control of microgrids is often centralized and requires system-wide
measurements and communication between entities. Such approaches can be susceptible to
single points of failure especially when communication infrastructure is not reliable. Self-
organizing local electrical energy network (SOLEEN) is a secondary control framework
which ensures operational sufficiency of the network without any central control or com-
munication. Higher layers of control can be overlaid on SOLEEN for optimal operation.
This work presents a distributed approach for realizing tertiary control of SOLEEN-based
dc community microgrids through an optimal scheduler at each entity for local loads and
energy exchange with the network. The scheduler uses integer linear programming to meet
the objectives of the entity such as revenue generation and mazximizing service to criti-
cal loads. The model provides parameters to account for socioeconomic differences across
participating entities which can result in different objectives. It is independent of network
topology, variations in local power sources, making it a plug-n-play option for resource-
constrained deployments in rural communities. The model is verified through computer

simulations and experiments on a hardware-in-the-loop setup.!

'This chapter is based on work by the author and Giri Venkataramanan in [84]. This work was supported
by the Wisconsin Electric Machines and Power Electronics Consortium.
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6.1 Introduction

The paradigm of microgrids is continuing to gather attention as a means for providing
electrical energy services for remote locations and emergency conditions within central-
ized grids. The use of primary control approaches based on local measurements that do
not require communication between entities [76] has become well-established. Secondary
and tertiary control approaches often require central control, high speed communication
between entities, and system-wide measurements. This becomes challenging in small-scale
microgrids deployed for remote or rural electrification, since communication infrastructure
may not be reliable and may not meet the timing requirements of the power system [77].
Centralized control is associated with multiple challenges including single-point failure,
ownership, and financing. Studies have proposed distributed secondary and tertiary con-
trol strategies but they often employ consensus algorithms, i.e., need communication be-
tween neighbors or need high-end power converters capable of accepting power quality
set-points [78], [79], [80]. A rural community microgrid deployment, particularly in devel-
oping economies, works on thin budgets and high-end power converters or communication
channels are not affordable [23]. To reduce upfront costs and lead time while improving re-
silience, interconnecting multiple modular photovoltaics (PV) + storage based solar home
systems is preferred over a centralized PV array + battery bank [82]. In the context of
this ‘lean deployment’, the only control handles available at each household or entity are
switches for loads, sources, including import/export with the network.

Self-organizing local electrical energy network (SOLEEN) is a proposed control frame-
work for distributed secondary layer control [43], useful for such lean dc community micro-
grids. It uses only switches for loads/sources as control handles and ensures operational
sufficiency of each entity in a microgrid without any communication or central control.
With the ‘safety net’ of SOLEEN in place, a distributed tertiary layer that may use com-
munication with a central entity can be incorporated to improve economy of operation
beyond operational sufficiency. This work presents a distributed tertiary layer in the

form of a distributed optimal scheduler (DOS) for dc community microgrids based on the



78

SOLEEN framework. Fig. 6.1 illustrates a community scale microgrid with three electrical
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Figure 6.1: Sketch of a community scale microgrid with three electrical entities (EE)
illustrating various layers of hierarchical control

A community microgrid with multiple prosumer entities and multiple owners repre-
sents operating goals different from single owner microgrids. Each entity pursues its own
operating objective which may not be in complete alignment with that of others [87].
Furthermore, the overall objective function of an entity can be a combination of multiple
objectives such as meeting critical demand and revenue maximization. The proposed DOS
presented here uses integer linear programming to minimize the composite, versatile, and
flexible cost function in order to ensure optimal operation of each entity to meet cus-
tomized objectives. Each entity executes the optimization algorithm locally to schedule
local loads and energy exchange with the network without any central control.

The following section summarizes the main features of SOLEEN and the distributed
optimal scheduler. Section 6.3 presents the mathematical formulation of the optimization
model. Section 6.4 presents computer simulation results for a modest three-entity network.

Results from a hardware-in-the-loop laboratory scale experimental system are presented
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in Section 6.5, followed by a brief concluding section.

6.2 Distributed Optimal Scheduling

The fundamental operational block of SOLEEN is an electrical entity (EE). An EE can
be a prosumer such as a house, a building, or a commercial entity. An EE contains
nominal storage and multiple electric devices (EDs) such as loads, sources, import/export
channels along with a discrete energy manager (DEM). Based on the energy content of
the EE, the DEM sends actuation signals and manages the different EDs. Each ED has
an energy threshold - when the local energy content crosses this threshold, the DEM sends
an actuation signal to the ED [43]. The EE is said to be operationally sufficient if its net
energy level remains within given bounds. The controlled actuation of devices according to
local energy and thresholds forms the base control loop over which higher layers of control
can be overlaid. This base control loop executed in the DEM of each EE maintains the
energy content within given bounds to ensure operational sufficiency, irrespective of the
presence of higher layers of control.

In the context of a microgrid that is self-organizing, each entity in the microgrid op-
timizes ‘itself’ to meet its own objectives without regard to the needs of a community.
Community engagement occurs in the form of participating in interconnection, and ex-
changing energy based on a price structure that is agreed upon by the membership in the
community. In such a scenario, the EE has an added responsibility of scheduling loads,
sources, and energy import/export to satisfy the objectives of the entity beyond ensuring
mere operational sufficiency. Therefore, the tertiary layer controller may be viewed as a
distributed optimal scheduler or DOS.

Such an approach can operate independently in the absence of any central control, real-
time communication with a central entity, or between entities. If the community agrees
upon a price structure that varies with the aggregate energy of the network, a central entity
is necessary to determine the price of energy exchange by computing total energy content

of all entities in the network. In this case, the role of this entity is limited to computing and
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communicating this price to all entities, and it does not make any centralized scheduling
decisions for any entity. Therefore, each entity maintains its autonomy preserving the
distributed nature of the tertiary control scheme.

The scheduler uses an integer linear program for optimal scheduling and is implemented
in each EE. The scheduler is overlaid on the base SOLEEN control loop. Actuation signals
generated by the scheduler take a lower priority than those generated by the base loop as
operational sufficiency is of higher priority than optimal operation.

The model is set in the context of a rural off-grid community, typically located in
developing or underdeveloped economies. Each house or building is modeled as an EE.
Each EE is assumed to have local rooftop solar PV and local storage. Its electrical appli-
ances are classified as either critical or non-critical. All critical appliances are lumped to
form the “critical load” and similarly all non-critical appliances together form the “non-
critical load”. All entities are interconnected so as to form a dc microgrid and enable
energy exchange through an import device and an export device at each EE. Therefore,
the electrical devices present in each EE are import device, export device, critical load,
non-critical load, and the PV source. The scheduler generates actuation signals for the
loads and the import and export devices.

A community microgrid can comprise of various types of entities broadly classified
into two classes - service seekers and revenue seekers as shown in Fig. 6.2. The primary
goal of service seekers is to meet their local demand and the secondary goal is to reduce
expenditure on energy imports. On the other hand, the primary goal of revenue seekers
is to maximize revenue generated through energy export and their secondary goal is to
reduce unmet local demand. Service seekers include residential users and critical infras-
tructure like health clinics. Revenue seekers include commercial entities like shops and
local entrepreneurs [88] who invest in high capacity solar systems with the purpose of gen-
erating revenue through energy export above and beyond serving their local loads. Both
the classes of entities are expected to have critical and non-critical loads. Loads can be

further classified as power and energy loads. Power loads have a constant power demand
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Figure 6.2: Classes of entities and loads in the community microgrid

during a certain period of the day and no demand outside of that, e.g., demand for a
40W light bulb in a residential user’s house from 6:00 to 9:00 p.m. Energy loads are also
constant power loads but have a total daily energy demand and can be serviced anytime
during the day with interruptions, e.g., an irrigation water pump. For the purpose of this
study, it is assumed that all loads of the service seeker and the critical load of the revenue
seeker are power loads, whereas the non-critical load of the revenue seeker is an energy

load.

6.3 Optimal Scheduler Design

The optimal scheduler illustrated here is similar to model predictive control with a window
size of one time step. While the proposed approach does not need any weather forecast
data, it serves as a plug-n-play model for community microgrids across different loca-
tions with varying climatic conditions, using energy price as the only proxy parameter
to represent the network state. Thus, the scheduler receives a price signal p; from the
revenue/energy aggregator, and on the basis of local objectives provides switching signals
for enabling the import device, export device, and the non-critical load over time step ¢
given by u; ¢, Uey, and uyq; respectively. The switching signals can take the values of 0
(OFF) and 1 (ON) which remain unchanged over the duration of the time step, while the
scheduler computes their optimal values for the next time step.

Each entity is assumed to have three different objectives - meet critical demand, gen-

erate revenue (or reduce expenditure), and meet non-critical demand. Meeting critical
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demand has the highest priority while there is a trade-off between generating revenue and
meeting non-critical demand. This has to be accounted for while constructing the overall
objective function of the scheduler. The scheduler has to manage a limited amount of
energy while catering to these objectives. The fundamental basis for DOS is the price

signal that is transmitted to all the entities, which is described further.

6.3.1 Energy Tariff

The price of energy exchange is set to depend on the aggregate energy of the entities
participating in energy exchange. Larger the aggregate energy implies larger supply of
energy available for exchange and hence a lower price. This negative relationship between
aggregate energy and price incentivizes entities with surplus to export when most of the
network is in deficit, facilitating equitable distribution and operational sufficiency. A
positive relationship, on the other hand, may lead to a positive feedback system and
runaway conditions. This study assumes the relation between the aggregate energy and
the price to be a straight line with a negative slope and is given by (6.1). Ciuar and Chuip
are the upper and lower limits on the price, respectively, agreed upon by the community.
p¢ is the price at time ¢ and e;; is the energy content of the ith entity at time t. The unit
of p; is monetary units per unit energy or mu/pu. The plot of energy price vs aggregate

energy is monotonically decreasing and is shown in Fig. 6.3.

Cmax - Cmin
Pt = Cma:c - Z €it (61)

Ema:c

The revenue/ energy aggregator collects information about each participating entity’s
energy content, computes the price, and communicates it to each entity in the network,

and does not make any scheduling decisions.

6.3.2 Revenue/Service Trade-off Model

In order to model the trade-off between generating revenue and meeting non-critical de-

mand, a discrete function that penalizes revenue generation at the expense of serving
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Figure 6.3: Energy price vs aggregate network energy as determined by the revenue/energy
aggregator

non-critical load is defined, as vy = u; ¢ — Uet + Unct, Where w; ¢, Ue s, and Uy represent
the switching functions for import, export, and non-critical loads respectively, set to unity
while they are enabled and zero otherwise. Altogether, v; takes positive values when the
states of these electric devices curtail revenue while it takes negative values when rev-
enue is enhanced. In contrast, positive v; indicates an increase in the service factor for
non-critical loads (NCSF) and vice versa. Service factor (SF) pf a load is defined as the
percentage of demand served over a day or the time-horizon of interest. These aspects
are shown in Table 6.1. Adding the constraint (6.2) ensures that at most one among the
import or export devices can be on, which implies that v; can take one of four discrete
values in {—1,0, 1,2}. With this definition of v;, p;v; represents the expenditure or loss of
revenue due to particular choices of switching states.

Furthermore, an upper bound on the cost of unmet non-critical demand can be de-
termined using Cinaz€:(—v;), where ¢ is the fraction of the unmet energy demand of the
non-critical load, over a day or the time-horizon of interest, at time ¢. Since the algorithm
continuously makes decisions for each time step, €; can be used as a proxy for the unmet
demand over the entire day or time-horizon of interest.

The cost of unmet non-critical demand is weighted using a ‘greediness factor’ § and
discounted from the loss of revenue pyv; to represent the total cost function to be (p; —

BCraz€t)vr. Here, small values of § would lead to maximizing revenue, where large values



84

of 8 would lead to maximizing service.

Table 6.1: Effects of various discrete switching state functions

Uit  Uet Unet V¢ Revenue NCSF w; CSF

0 0 0 0 - - 0 -
o o0 1 1 ! 4 1
o 1 0 -1 4 ! 1
o 1 1 0 - - 2
1 0 o0 1 ! TS B
1 0 1 2 0 + 0o -
Uit + Ut < 1 (6.2)

6.3.3 Critical Demand Model

While the trade-off between revenue and meeting non-critical demand is met using the
cost function described above, meeting the critical demand would generally deemed to
be of higher priority. Therefore, a situation when the local conditions are not sufficient
to meet the critical energy demand for the day overrides the other two objectives. The
scheduler detects this situation by defining an insufficiency flag 2z = floor(E./e:), where
E.; is the total unserviced energy demand of the critical load at time ¢ projected over
the time-horizon of interest, e; is the state of energy reserve of the local storage at time
t, and floor() is the greatest integer function. The insufficiency flag would take the value
z = 1 when the local energy content (or state of charge of the EE’s battery) drops below
a value that can serve the day’s critical energy demand, otherwise z = 0. In this manner,
the scheduler does not control the critical load directly but operates the control actions
of other electric devices to ensure that the critical demand will be met, i.e., increase
the critical service factor (CSF) by decreasing NCSF and revenue. The actions that
hamper meeting critical demand include switching off import, switching on export, and
switching on the non-critical loads. These aspects may be defined using the discrete

function w; = —u;t + et + Une,r in @ manner complementary to the definition of v;. The
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values taken by w; are also shown in Table 6.1 alongside the other variables.
Activation of the insufficiency flag is used to add an override term M z;ws to the cost

function, where M >> C,,,q4z, is defined as the cost override factor in order to be effective.

6.3.4 Objective Function

On the basis of the energy tariff, revenue/service trade-off model, and the critical demand

model, the overall objective function may be defined using (6.3).

min (pt - ﬁcmazet)vt + Mztwt (63)

g, t,Ue,t Unc,t

Thus, the scheduler for a revenue seeker and that for a service seeker have the same
objective function. The value of the greediness factor 8 determines whether the entity
wants to lean towards making revenue or towards meeting non-critical demand.

The scheduler for a service seeker has an additional constraint given by (6.4), as the
non-critical load of the service seeker is a power load. d,. is a binary constant provided
by the user and acts as a ‘demand schedule’, i.e., §,. = 1 when the user needs the load
to be on and §,,. = 0 otherwise. The constraint ensures that the load is not switched on

when there is no demand.

Unet < 6nc,t (64)

In summary, the overall objective function from (6.3), together with the constraints
from (6.4), and (6.2) form the basis for the proposed DOS, which takes p; as inputs and
provides a schedule for the import, export, and non-critical load binary switching state

functions.
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Figure 6.4: Three-entity dc microgrid network
6.4 Three-Entity Microgrid Network - Simulation Study

6.4.1 Model Setup

A three-entity radial dc microgrid network as shown in Fig. 6.4 is modeled in MATLAB
Simulink (version 2019a) and PLECS Blockset. Entity 1 is modeled as a revenue seeker
(RS), Entity 2 as a service seeker (SS), and Entity 3 is modeled without a tertiary layer
scheduler, and is referred to as a neutral party (NP). Entity 3 has only the base SOLEEN
layer whereas Entities 1 and 2 have both, a base SOLEEN layer and a scheduler. The
schedulers at Entities 1 and 2 are modeled using the YALMIP [89] and OPTI [90] toolboxes
for MATLAB and the solver Ipsolve [91]. The solar PV data is taken from the research

group’s field site in India [19].

6.4.2 Illustrative Results
6.4.2.1 Operational Aspects

The operational aspects of the schedulers are demonstrated through a simulation for a
total run time of 60 minutes. The power and energy specifications of the entities are given
in Table 6.2 and the optimization parameters are given in Table 6.3, where 5, and [ are
the greediness factors for the RS and the SS respectively.

Fig. 6.5 shows the time series plots for state of charge and load profile of each entity
when the schedulers are enabled and disabled. All entities have the base SOLEEN layer
enabled at all times and their states of charge remain above the lower bound of 20%,
irrespective of the schedulers, ensuring sufficient operation. Fig. 6.6 shows the critical and

non-critical service factors (SF), and revenue generated by each entity with and without
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Table 6.2: Power and energy specifications for 1hr case-study

Parameter EE1 EE2 EE 3

Storage (pu) 2 0.32 0.8

PV (pu) 0.5 0.1 0

Critical load power (pu) 1 1.2 0.7
Critical load daily energy demand (pu) 0.1 0.12 0.28
Non-critical load power (pu) 2 1.5 0.35

Non-critical load daily energy demand (pu) 0.8 0.3 0.14

Table 6.3: Optimization Parameters for 1hr case-study

Cmaa: (mU/PU) szn (mu/PU) M (mu/pu) /87' 55
50 10 10° 0.1 1

schedulers.

Consider the operation of Entity 1. The non-critical load is served most of the time
with the scheduler disabled, while it is completely curtailed when the scheduler is enabled.
This is reflected in the increase in its revenue when the scheduler is enabled. Now, consider
the operation of Entity 2. The non-critical demand is served longer when the scheduler is
disabled but the critical demand is not met at all. On the other hand, when the scheduler
is enabled, the non-critical load is curtailed and the critical demand is completely met.
Entity 2 also generates a net positive revenue with the scheduler enabled as compared to
a negative revenue (expenditure) when the scheduler is disabled. Entity 3 serves both,
critical and non-critical demands, longer when the schedulers in Entities 1 and 2 are
enabled as compared to when they are disabled. This is reflected in a decrease in revenue
resulting in a net positive expenditure when the schedulers in the other two entities are

enabled.

6.4.2.2 Variation in Greediness Factor

The greediness factor 5 (5, for the revenue seeker and s for the service seeker) acts

like a control handle for the trade-off between generating revenue and serving non-critical
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demand. The effect of 3, and (s on service factors and revenue of each entity is demon-
strated through 9 simulations on the three-entity network, one for each pair (5,, 8s), where
Br, Bs € {0.1,1,10}. The total run time of each simulation is 24 hours and the power spec-
ifications are given in Table 6.4. The schedulers in Entities 1 and 2 are always enabled and
the optimization parameters are same as those given in Table 6.3, except for the values of
Br and fs.

Fig. 6.7 shows the results of critical service factor (CSF), non-critical service factor
(NCSF), and revenue for each entity. Fig. 6.7a shows that the revenue generated by Entity
1 monotonically decreases with increase in 3, as expected. This curve shifts upwards with
increasing 8. This is because an increasing [, indicates an increasing tendency of Entity
2 to import energy. Similarly, Fig. 6.7b shows that the revenue generated by Entity 2
monotonically decreases with increase in 35 as expected. This curve shifts upwards with
increasing (5, as an increasing [, indicates a decreasing tendency of Entity 1 to export
energy. In the case of Entity 3 (Fig. 6.7c), the revenue is seen to monotonically increase
with B¢ and the curve shifts upwards for with increasing 3,.. This is because, increasing
B and B indicate a reducing tendency of Entities 1 and 2 to export, respectively.

The revenue plots demonstrate inter-entity coupling in that variations in 3 of one
entity affect the revenue generated by the other two. However, the trend of decreasing
revenue by increasing the entity’s own /5 (if scheduler present) is maintained. In each of
the revenue plots, there is a larger change in revenue when (3, or 35 changes from 0.1 to 1
as compared to 1 to 10. This shows that the effect of the entity’s own § and the neighbors’
[ diminishes as their values increase. It should be noted that the CSF for all entities is
at almost 100% for all combinations of 3, and SBs. This shows that critical demand has a
higher priority than revenue or non-critical demand, and is met completely irrespective of
the variations in greediness factors.

There can be multiple socioeconomic reasons for revenue seekers as well as service
seekers to tweak the greediness factor towards one of the two objectives on different days.

For instance, a revenue seeker farmer may want to run their water pump (non-critical
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Table 6.4: Power and energy specifications for the 24-hour and 5-day case studies

Parameter EE1 EE2 EE3

Storage (pu) 1 0.1 0.1

PV (pu) 2 0.2 0.2

Critical load power (pu) 0.1 0.12 0.12
Critical load daily energy demand (pu) 0.06 0.072 0.072
Non-critical load power (pu) 0.75 0.15 0.15

Non-critical load daily energy demand (pu) 0.45  0.045 0.045
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Figure 6.7: Critical service factor (CSF), non-critical service factor(NCSF), and revenue for
different (3, and Bs: CSF for all entities remains at almost 100% irrespective of variation

mn B, and Bs.
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load) longer on a day without rain. Increasing the value of 3, will increase percentage of
non-critical demand served by reducing energy export. A service seeker residential user
may want to reduce expenses at the end of the month while they wait for a pay-check.
Reducing fs will increase revenue (decrease expenditure) by compromising on serving
non-critical demand.

The use of 8 as a user-defined control handle is demonstrated through a five day
simulation, without variation in solar irradiance and with the same parameters as in
Tables 6.3 and 6.4, except values of 5, and Bs. 8, is 0.1 on all days except Day 3 when it
is increased to unity in order to improve the NCSF. 85 equals 10 on all days except Day 5
when it is reduced to unity to increase revenue (reduce expenditure). Fig. 6.8 shows the
variation in the two greediness factors and the critical service factor (CSF), non-critical
service factor (NCSF), and the revenue for each entity. On Day 3, as 5, has a higher
value, it is observed in Fig. 6.8a that the NCSF of Entity 1 increases to about 60% and
the revenue dips as the entity does not export as much as other days. This is reflected in
an increase in revenue (dip in expenditure) by Entity 2 (Fig. 6.8b) and decrease in CSF
of Entity 3 (Fig. 6.8¢c) on the same day as there is lower amount of energy available for
import. On Day 5, as 85 has a lower value, it is observed that the NCSF of Entity 2 reduces
to zero while there is an increase in revenue (dip in expenditure) due to lower imports.
This is reflected in a slight decrease in revenue for Entity 1. As Entity 2 reduces its
imports, there is a larger share of energy available for Entity 3 to import which is reflected
as a decrease in revenue (increase in expenditure). Fig. 6.8 demonstrates flexibility the
scheduler offers to a revenue seeker to tilt towards being a service seeker and vice versa

by tweaking their respective greediness factors.

6.4.2.3 Variation in Solar Irradiance

The three-entity network model is simulated for a total run time of 5 days. To emulate
variation in solar irradiance due bad weather, the solar data input to each entity is scaled

by a weather parameter between 0 and 1, which is randomly generated on each day. The
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power and energy specifications of each entity are given in Table 6.4. The optimization
parameters used are same as those in Table 6.3 except S5 equals 10. The simulation is run
with and without the scheduler in Entities 1 and 2.

The weather parameter and results for the critical service factor (CSF), the non-critical
service factor (NCSF), and the daily revenue generated by each entity under both cases
are shown in Fig. 6.9. No significant change in CSF is observed between the two cases for
Entity 1 and its value is almost 100% while its daily revenue with the scheduler is greater
than that without the scheduler for most of the days. This is compensated for by a low
NCSF with the scheduler. For Entity 2, there is a significant increase in the CSF with the
scheduler as compared to that without the scheduler on each day, which is compensated
for by a low NCSF. Its daily revenue with the scheduler is more than that without the
scheduler on most days. Furthermore, even though Entity 3 does not have a scheduler,
there is a slight increase in its CSF on all days in the case when the other two entities have
schedulers enabled as compared to the case when they are not. This is compensated by a
decrease in daily revenue. Therefore, the local optimal schedulers of Entities 1 and 2 are
seen to indirectly benefit Entity 3 in terms of CSF but increase its daily expenditure as
well. Fig. 6.9 demonstrates the ability of the scheduler to optimize performance without
the need for PV forecast data and serve as a plug-n-play model for community microgrids

across different geographies and weather conditions.

6.5 Three-Entity Microgrid Network - Experimental Study

6.5.1 Laboratory Setup

In order to establish the viability of the system in real settings, a hybrid three-entity
network is emulated through a power hardware-in-the-loop (HIL) experimental setup.
Fig. 6.10 shows the block diagram and photograph of the lab scale setup. Entities 1
and 2 are modeled in MATLAB Simulink as described in Section 6.4 while Entity 3 is

implemented in hardware. A Chroma DC' Electronic Programmable Load Model 63201 is
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used as the export device and a Chroma Programmable DC Power Supply Model 62024 P-
40-120 is used as the import device. The MATLAB Simulink model is implemented
on a 16GB RAM and 3.2GHz processor Windows PC labeled as the “Simulink Node”. It
communicates with the programmable load and supply via RS232. The programmable load
measures the voltage of the entity’s battery, sends it to the Simulink Node which computes
the import/export current and sends it to the programmable source/load respectively.
The DEM is a monitoring and computing platform based on the Simple Electric Utility
Platform [41]. Two ac fan loads are used as the critical and non-critical load respectively
and the energy exchange (import/export) is on the dc side. Entity 3 has only the base
SOLEEN layer implemented locally in the DEM whereas Entities 1 and 2 have both, a
base SOLEEN layer and a scheduler. The base SOLEEN layer and the scheduler are a
part of the secondary and tertiary control layers respectively, which work at a time scale
of minutes to hours. They are also based on energy, which is a slow changing quantity.
These factors make RS232 a sufficient choice for HIL implementation of SOLEEN and the

scheduler.

Simulink Node

EE1 EE 2

YA

TEE ing

E‘E‘El 2 _5; Programmable

Rs232 = 7| @ S source and load
™ |
Programmable source
and load

Figure 6.10: Experimental Setup
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6.5.2 Experimental Results

A 60 minute HIL experiment with schedulers enabled is conducted with the same spec-
ifications as the simulation in Section 6.4.2.1, but with Entity 3 being implemented in
hardware. Fig. 6.11a shows the battery voltages, export current, and revenue generated
by each entity in the simulation while Fig.6.11b shows the waveforms for the HIL set-up,
demonstrating excellent qualitative correlation between the simulations and the experi-

ments, establishing the viability of implementing SOLEEN and DOS in real microgrids.
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Figure 6.11: Simulation and Hardware-in-the-loop results: From top to bottom - battery
voltage, export current, revenue

6.6 Conclusion

This chapter has presented a distributed tertiary control layer in the form of a distributed
optimal scheduler which can be overlaid on the secondary SOLEEN layer. It uses inte-
ger linear programming to optimally schedule local loads and energy exchange to meet
the operating goals of each entity in the community microgrid. The optimization model
formulation along with simulation of a three-entity network are presented. Experimental
results are presented for a lab-scale hardware-in-the-loop setup. The main features of the
scheduler are:

e completely distributed; role of central entity limited to computing and communicat-
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ing energy exchange price
e uses only load, source switches as control handles facilitating lean community mi-
crogrid deployment
e accounts for distinction in objectives of participating entities and the multi-objective
nature of optimization within each entity
e plug-n-play, independent of network topology, source variability
Evaluation of the effect of the ratio of revenue seekers to service seekers in a larger and
more diverse network, nature of pricing structure, overall system stability, scalability, and

sufficiency are the subject of future work.
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Chapter 7

Energy Management for Prepaid

Customers

For a large, and recently increasing, number of households, affordability is a major hurdle
in accessing sufficient electricity and avoiding service disconnections. For such households,
in-home energy rationing, i.e., the need to actively prioritize how to use a limited amount
of electricity, is an everyday reality. In this work, we consider a particularly vulnerable
group of customers, namely prepaid electricity customers, who are required to pay for their
electricity a-priori. With this group of customers in mind, we propose an optimization-
based energy management framework to effectively use a limited budget and avoid the
disruptions and fees associated with disconnections. The framework considers forecasts of
future use and knowledge of appliance power ratings to help customers prioritize and limit
use of low-priority loads (electric appliances), with the goal of extending access to their
critical loads. Importantly, the proposed management system has minimal requirements
in terms of in-home hardware and remote communication, lending itself well to adoption
across different regions, utility programs, and income groups. Our case study demonstrates
that by considering both current and future electricity consumption and more effectively

managing use of low-priority loads, the proposed framework increases the value provided
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to customers and avoids disconnections. *

7.1 Introduction

7.1.1 Motivation

Reliability in the electric power systems literature typically focuses on ensuring that the
infrastructure is able to supply electricity to customers on demand. However, for many
low-income households, a main reason for “power outages” is inability to pay electric bills,
which may prompt service disconnections. With limited disposable income, low-income
customers are forced to choose between using energy or fulfilling other critical needs such as
food — referred to as the “heat or eat” problem [93]. A survey showed that 20% households
in the United States reduced or forwent food or medicine to pay energy costs in 2020 [14].
Further, low-income households are seen to reduce energy consumption to unsafe limits
in order to limit financial stress, termed ‘energy limiting behavior’ [94]. A particularly
vulnerable group is customers in prepaid programs, who have to purchase credits for the
energy prior to use, similar to pay-as-you-go phones. These programs are often targeted
towards low-income customers, who may be enrolled either voluntarily or forcefully [95].
While prepaid programs have some advantages, such as the flexibility to make multiple
small payments during the month and avoiding upfront credit checks or deposits, they also
present some significant disadvantages. For example, prepaid customers may pay a higher
price for electricity [95]. While utilities are required to inform postpaid customers before
a disconnection, prepaid customers can be automatically and immediately disconnected if
their credit runs out. These unanticipated disconnections can be dangerous during extreme
heat or cold events and for medically fragile customers. Furthermore, each disconnection-
reconnection event can have a fixed charge as high as $75 [96]. Despite those disadvantages,
it is estimated that there are between 1 to 2.5 million prepaid electricity accounts in the

United States [97], [98] and several million in the United Kingdom [99].

!This chapter is based on work by the author and Line Roald in [92]. This work was supported by
the George Bunn Wisconsin Distinguished Graduate Fellowship provided by the University of Wisconsin-
Madison and the U.S. National Science Foundation under Award Number ECCS-2045860.
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Prepaid metering has been observed to reduce energy consumption as compared to
the more common postpaid metering plans. A study based on the SRP M-Power prepaid
program in Arizona [100] showed a reduction of 12%. This can be due to a combination
of the “conservation effect” (being more mindful about unnecessary consumption due to
real-time feedback from the wallet balance) or because of disconnections (having no power
supply for extended periods because of the inability to refill the prepaid wallet). Some
studies where reduction in energy use was not due to disconnections, such as in Oklahoma
[101] and Texas [102], have observed a reduction of 11% and 10% respectively, where
reduction in energy use was not due to disconnections. Prepaid programs are popular
among low-income households and therefore, the “conservation effect” can partially be
due to energy limiting behavior [94], i.e., reducing energy usage from safe levels (e.g., by
delaying switching on an air conditioner during a heat wave) in order to pay for other
needs. Studies have shown that prepaid customers are more likely to show more severe
energy rationing behavior than other low-income customers [103]. Low-income prepaid
customers may not be able to refill their prepaid accounts with an amount commensurate
with their desired use. Therefore, they have to actively ration their energy use to prevent
disconnections. This presents a need for a home energy management framework which
can help in effective energy rationing for this customer group, a topic that has received

little attention to date.

7.1.2 Background
7.1.2.1 Purpose and scope of home energy management

The underlying assumption of energy rationing is that there is a fixed budget available
for energy. As discussed in [104], home energy management systems (HEMS) generally
aim to optimize one or more of the following objectives: cost, well-being, emissions, and
load profile. In the context of energy rationing, we aim to minimize user inconvenience
(maximize well-being) within a fixed energy budget (a hard constraint on cost). Further,

[104] classify inconvenience modeling into two types: “inconvenience due to timing” (e.g.,



102

shifting a load from the morning to afternoon), and “inconvenience due to undesirable
energy states”. The latter is most closely aligned with our setting, since low-income
families with a limited budget may enter the undesirable energy state where they have to
forego using a load in order to preserve wallet balance for using more critical loads in the
future. Therefore, the underlying assumptions of energy rationing are different from typical
HEMS literature and also significantly different from demand response, which typically
assumes that changes in electricity use should be nearly invisible and non-disruptive to

the customer [105].

7.1.2.2 Adoption of smart home technology

Adoption of smart home technology like HEMS is known to have multiple barriers such as
perceived intrusion (loss of control) and high costs [106]. A strong reason for customers to
switch to or remain on prepaid programs is the increased control over their bills and flex-
ibility in payments [107]. An energy management framework designed for such customers
should therefore lead to minimal perception of loss of control. Furthermore, HEMS often
rely on specific in-home communication, computing, and switching hardware for automa-
tion [108] which may be unaffordable for low-income households. An initial deposit of
$100, to cover for future outstanding advances, has been found to be a significantly large
upfront cost by some customers of a prepaid program (personal communication with an
electric utility offering prepaid metering). Therefore, in order to ensure wide-scale easy
adoption, an energy management framework designed for low-income customers needs
to be minimally intrusive and implementable using minimal additional and inexpensive

in-home hardware.

7.1.2.3 Home energy management and prepaid metering

Aspects of prepaid electricity service have been addressed in terms of meter technology
[109,110], power theft [111], cyber security [112] and data management [113]. However,

home energy management for prepaid electricity customers remains largely unexplored.
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The only study [114] we identified uses load disaggregation which may need additional
hardware or high-speed internet connectivity. Only few HEMS studies explicitly account
for a user-defined budget. The method proposed in [115] generates a time-based schedule
for load actuation and switches each load ON/OFF, which may be experienced as intrusive.
Some studies propose low-cost HEMS for solar PV and battery-based systems [116,117],
but such systems are largely unaffordable for low-income families and inaccessible for

renters.

7.1.3 Contributions

We present a home energy management framework for prepaid customers for effective
energy rationing, i.e., extending the use of their critical loads by reducing discretionary
load usage and preventing disconnections. It can be implemented using minimal additional
hardware and ensures that users have more control over their energy use. It is based
on a simple threshold-based load control scheme adopted from a DC microgrid setting
[43]. Rather than directly actuating loads, this framework enables the use of a load by
comparing the money available in the prepaid account to a monetary threshold assigned
to the load. We refer to the prepaid account as the wallet and the amount of money in the
account as the wallet balance or just balance. If the balance is higher than the threshold,
the load is enabled, i.e., it can be turned on if desired. As opposed to generating a
load schedule or using direct load control which directly turns loads on/off, the proposed
method lets the user decide when to use enabled loads. If the balance is lower than the
threshold, the load is disabled, i.e., the user is notified that the load should remain off in
order to preserve wallet balance for more critical loads in the future. The benefit of the
proposed method is that the available budget may be more evenly spread throughout the
month, and high priority loads (with lower thresholds) can be used longer. Furthermore,
all loads are turned off before a disconnection occurs, thus avoiding potentially expensive
disconnection-reconnection events.

While such a threshold-based method is very easy to implement, it requires careful
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definition of the enabling thresholds. Thus, we formulate an optimization problem that
identifies optimal threshold values while accounting for the available budget and forecasts
of future electricity use. We assume that this problem is solved at regular, yet relatively
infrequent intervals (e.g. daily), such that the approach lends itself well to implementation
with existing in-home hardware and minimal remote communication.

In summary, this work has two main contributions. First, we design an energy manage-
ment framework that incorporates user-defined load priorities and helps users optimally
ration their allocated energy budget, while requiring minimal local computing and remote
communication. This framework builds upon the control framework for prosumers in DC
microgrids presented in [43], but extends it to (i) consider the prepaid wallet balance as
a metric of available energy (ii) optimize the activation thresholds for individual loads to
achieve better user satisfaction. Second, we implement our proposed method in code and
demonstrate its benefit for managing household loads in a case study based on real-life

energy use data obtained through the Pecan Street Dataset [118].

7.1.4 Organization

The remaining chapter is organized as follows. Section 7.2 presents the energy management
framework, the optimization formulation, and comments on practical implementation.
Section 7.3 presents a case study and numerical results, while Section 7.4 summarizes and

concludes the chapter.

7.2 Model

In this section, we provide details on the model setup and the formulation of the optimal
energy rationing problem.
7.2.1 Threshold-based energy management

The proposed energy rationing framework is an extension of the Self-Organizing Local

Electrical Energy Network (SOLEEN), a control framework developed for DC prosumer
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microgrids without central control or communication [43]. In the original SOLEEN design,
each entity or household in the microgrid is assumed to have battery energy storage, with
the battery state of charge representing available energy. Load control is done by assigning
each load a threshold in terms of the state of charge of the battery. If the state of charge
falls below the threshold, the corresponding load is switched off. When it is above the
threshold, the load is enabled, i.e., the user can decide to switch it on or off.

Here, we adapt the SOLEEN methodology for a prepaid customer, who may not have a
battery. Instead, we treat the prepaid wallet balance as a measure of the available energy
and express load thresholds in terms of $ (instead of state of charge) for each load. If
the $ balance falls below this threshold, the load is disabled. Due to this analogy with
battery energy storage, we refer to the refilling of the wallet (in $) as a “recharge”. A
major difference between a battery and a prepaid wallet is that the battery has a fixed
capacity and the state of charge cannot go beyond that, whereas a prepaid wallet does not
have an upper limit. Furthermore, electricity demand typically follows a diurnal pattern
and the battery capacity (if recharged daily, e.g., using solar PV panels) acts as a daily
energy budget. In the case of a prepaid wallet, the user would not typically recharge daily.
To achieve better control over enabling loads, we define a wvirtual wallet which is different
from the actual prepaid wallet, which we will refer to as the real wallet. To match the
daily pattern of electricity usage, we recharge the virtual wallet at the beginning of each

day with a daily budget and compare load $ thresholds to the virtual wallet balance.

7.2.1.1 Illustrative example

Figure 7.1 shows an example of the proposed framework. The upper plot shows the balance
in the virtual wallet along with the threshold for one of the loads, while the lower plot
shows whether or not this load is enabled. In this example, the virtual wallet is refilled
three times (at timestep 0, 960, 1920). As the wallet balance drops below the threshold,
the load is disabled. After this, the considered load does not consume any power and

the balance of the virtual wallet reduces less quickly (other loads with a higher priority
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Figure 7.1: Top: Wallet balance (blue) and load threshold (red) in $. Bottom: Enable
signal for the load. A value of 1 indicates that the load can be turned on, while a value of
0 indicates that the load should remain off.

continue to consume power, such that the wallet balance continues to decrease until it
reaches zero and all loads are disconnected). Once the virtual wallet is recharged, the

balance is above the threshold and the load is again enabled.

7.2.1.2 Determining control variables

With the threshold-based control framework, there are two main control variables that
need to be determined, namely (1) how the virtual wallet is recharged as a function of
the real wallet balance and (2) how to choose thresholds for effective energy rationing.
To determine the daily virtual wallet recharge, we simply divide the most recent recharge
amount for the real wallet by the number of days until the next recharge?. This uniformly
distributes the latest recharge amount across all days till the next recharge. The process
for determining the load enable thresholds is more sophisticated. These thresholds are

obtained by solving an optimization problem as discussed below.

2We assume perfect information about when and what amount will be added to the real wallet. The
effect of imperfect real recharge information may be addressed by more sophisticated daily virtual wallet
recharge schemes, such as allocating a variable daily budget based on the fraction of the average real
recharge per month that has been spent. This is a part of future work.
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Table 7.1: Nomenclature

Parameters
K Set of all loads
T Set of all time steps in the horizon
AT € Ry Duration of time step in hours
m € Rg Large magnitude constant
M e Ry Large magnitude constant
ec€Ryg Small magnitude constant
a € Ry Electricity rate in $/Wh
Ye € Rso Priority factor for load k
P € Rxg Demand in W for load k at time ¢,
dipt € {0,1} Indicator parameter of demand

dps = 11if Py > 0, and 0 otherwise
Zy € R>g Real wallet recharge at time ¢ in $
X €Ryg Virtual wallet recharge at time ¢ in $
Variables
z; € R Real wallet balance at time ¢
u;, € {0,1} Real enable signal for load k at time ¢
x; € R Virtual wallet balance at time ¢
Xkt €R Threshold for load k at time ¢
uy, € {0,1} Virtual enable signal for load k at time ¢
ar; €{0,1} Actuation state of load k at time ¢

7.2.2 Optimization formulation

The optimization model determines thresholds for each load k at time ¢ denoted by x ;.
The thresholds for each load are kept constant throughout each day, so the number of
unique thresholds is equal to the number of loads times the number of days in the op-
timization horizon. The input parameters include user-defined priority order for loads,
demand forecast, and recharge schedule forecast. We implement the model as a rolling
horizon problem with a forecast horizon of seven days and a time step of 15 minutes.
We solve the problem once daily, then use the optimized thresholds for the first day to
simulate the use of loads to calculate the resulting real and virtual wallet balances. These
balances, along with updated forecasts, are used as an input when we re-solve the opti-
mization problem the next day. The resulting optimization problem is a mixed-integer

linear programming problem. The nomenclature is given in Table 7.1.
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7.2.2.1 Real wallet constraints

The amount of money in the real wallet gets updated according to the energy consumption
in the previous time step and the recharge amount scheduled for the current time step as
given by

z = zi-1 + Zt — aAT Z(Pk,t—lak:,t—l) vte T (7.1)
ek

Here, Z; is equal to the recharge scheduled for the day (if any) if ¢ is the first time step of
the day and zero otherwise. The real enable signal uj , expresses whether there is money
in the real wallet. If the real wallet balance z; is positive, uj,, = 1, and otherwise is zero.

This is enforced by

mu,; <~z VEe C,Vte T (7.2)

(M +e)(1—up,) >e—2z VEe K, Vte T (7.3)

7.2.2.2 Virtual wallet constraints

The virtual wallet balance x; is updated according to the energy consumption since the

previous time step and the daily virtual recharge X; computed from the real recharge, i.e.

x; = X¢—1 + Xy — aAT Z(Pk,t—lak,t—l) vteT (7.4)
!

where X; is equal to the recharge scheduled for the day if ¢ is the first time step of the
day and zero otherwise. The virtual enable signal uy , € {0,1} should be 1 if the virtual
wallet balance x; is greater than or equal to the load threshold x;;, or otherwise zero, as

expressed by

Xt — Xgp +€ < (M +e)ug, VEe K,VteT (7.5)

X — Xpp > m(l —ug,) VEe K,\Vte T (7.6)
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Note that x;; is also constrained to be the same for all time steps ¢ during a single day.

7.2.2.3 Actuation constraints

The actuation constraints describe whether a load is on and consuming power. The ac-
tuation state aj; of load k at time t is zero if there is no demand dj ;, the virtual wallet
balance x; is less than its threshold x;, if the real wallet balance z; is less than or equal
to zero, or if the real wallet balance in the next time step z;;; would be less than or equal
to zero if the load is kept on (the latter condition ensures that the real wallet balance does
not go negative by the next time step). In this case, a; = 0 as expressed by the following
constraints

ap;<dpsuy,, ap;<up,;, ay;<uj,. VEeK,VteT

If none of the above conditions are satisfied, the actuation state has to be equal to 1, i.e.,

a,; = 1, as described by

dpgup, +up, +up, g <2+ap; VkeK,VteT (7.7)

7.2.2.4 Objective function

Our goal is to maximize the value provided to the customer from using a limited (less than
desired) amount of electricity. To express this, we make a few key assumptions. First,
some loads bring more value, i.e., have a higher priority, as compared to others and the
value of a load does not necessarily scale with its power rating. For instance, a light bulb
rated at 5W can provide more value than a TV rated at 100W. Second, we assume that
value is associated with whether or not a load is available when desired. Therefore, we
design our objective function to account for (1) the priority assigned to each load by the
user and (2) the percentage of time the load was available when desired.

We introduce the load priority factor v to express the relative value of satisfying the

L , where ng

demand of load k compared to other loads. It is calculated as v =

1
M3 o
ower numbers

)—R‘M

is a number that represents the position of the load in the priority order (
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imply higher priority). For example, if the user ranks loads k = 1, 2, 3 in the order 2, 3, 1
then m = 2, ny = 3, n3 = 1. Note that this is not the only way to determine load priority
factor, and this was chosen since it ensures that ), v, = 1.

Next, we define the Service Factor (SFy) for each load k as the ratio of the amount of
time a load was available to the amount of time it was demanded.

Z Akt

SF, = L 7.8
ST (7.8)
t

The service factor expresses the percentage of time the load was available when desired
and is independent of the power rating of the load. For example, a light rated at 5W
demanded for 6 hours and served for 3 hours will have the same service factor as a TV
rated at 100W demanded for 2 hours and served for 1 hour. Both will have SFj; = 0.5.
The Priority Service Factor (PSF) is the weighted average of the service factors, where

the weight is the load priority factor. Our objective is to maximize the PSF,

max Z’YkSFk (7.9)
ke

7.2.3 Benchmark Cases

To compare the proposed method, we also implement a simulation of two benchmark cases:

7.2.3.1 Baseline

The baseline case does not have any energy manager and assumes that all loads are enabled
as long as the real wallet balance is positive. From a mathematical perspective, this

formulation only considers the real wallet update (7.1) and sets a;; = 1 if dj,; = uz’t =1.

7.2.3.2 Fixed Thresholds

The fixed thresholds case uses a similar model as the one described in Section 7.2.2; except

that the load thresholds x; are fixed (i.e., not optimized). While there could be many
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methods for computing these fixed thresholds, we choose to calculate them once at the
beginning of the month as x;; = % FX Vt. Here, n; is the position of Load k in the
priority order, N is the total number of loads, X is the total recharge amount for the
month (in $), and S is a positive constant less than 1. For this study, § = 0.05 was used.
With this definition, lower priority loads (i.e. those with a higher 7;) are assigned higher

thresholds and will get disabled before higher priority loads as the wallet balance drops.

7.2.4 Implementation through a prepaid program

A benefit of the proposed framework is that it requires minimal additional hardware,
computation and remote communication, and thus lends itself well to implementation
using the existing infrastructure without significant technological overheads.

A) Local computation: Prepaid programs generally install in-home displays in the cus-
tomer’s house that show their wallet balance [119]. The in-home display is connected
to the meter and computes and displays the real wallet balance in real-time. It can be
programmed to keep track of the virtual wallet as well, and since this is a simple algebraic
operation, additional computation hardware may not be necessary.

B) Remote communication: Households that struggle to pay energy bills may also fall
behind on internet and phone bills, thus limiting options for communication. The opti-
mized thresholds can be computed on a remote server and communicated to the in-home
display at the beginning of each day through the same communication channel that the
utility uses to connect to the in-home display (e.g. the Advanced Metering Infrastructure
(AMI) communication system). Since thresholds need to be communicated only once a
day, communication delays can be tolerated.

C) Actuation: Direct actuation of loads in a user’s home requires additional hardware
such as smart switches. If users cannot afford this additional hardware or are not comfort-
able with an application directly controlling certain household appliances such as medical
equipment, either the in-home display or a phone application can instead provide “nudges”

to suggest to the user that they switch off the load to allow them to use higher priority
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Figure 7.2: Load power demand for 30 days (W).

Table 7.2: Load data

Appliance Energy (kWh) Max Power (kW) Load Priority
A air compressor 28 1.9 2
B washing machine 2.0 0.44 4
C microwave 3.6 1.2 3
D refrigerator 41 0.38 1

loads later on.

7.3 Case Study

We next demonstrate our proposed framework for optimal energy rationing with a case

study. We compare the proposed optimal method against the two benchmark cases, and

assess the impact of recharge frequency and overall recharge amount on the priority service

factor and the number of disconnections.

7.3.1 Setup and implementation

We use load data for one month (30 days) from one house in the Pecan Street Dataset [118].

The four loads used are an air compressor (Load A), a washing machine (Load B), a

microwave (Load C), a refrigerator (Load D). Figure 7.2 shows the power demand for each
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load for the duration of the month and Table 7.2 summarizes the total energy demand,
maximum power demand, and priority for each load.

We assume that perfect information about the current and future demand for each
load as well as the recharge amount and timing is available to the model. (Effects of
imperfect information are considered in Chapter 8 and user non-compliance is a part of
future work.) The presented results assume either direct load actuation through smart
switches or total user compliance to the load enable signal nudges given by the model,
i.e., we assume that a load is only in use when the corresponding load actuation signal
is axt = 1. We use an electricity rate of o = 0.16 $/kWh. Since this is a parameter,
time-of-use pricing (i.e. time-varying «(t)) may be incorporated without changing the
complexity of the problem. The total cost of electricity for using the devices in Table 7.2
with a constant o = $0.16/kW h would thus be $11.9 3.

The recharge frequency is the number of times a user recharges their wallet in a month,
and typically varies between 1 and 7 per month [107]. We express the total recharge as the
fraction of the total cost of desired electricity. The recharge amount is the total amount
of money added to the real wallet over the course of the month. We express this amount
as a percentage of the amount needed to cover the desired electricity use listed in Table
7.2. Thus, recharge amounts < 100% imply a need for rationing. We assume that the
total recharge amount is uniformly distributed across all recharges.

The proposed optimization model and the benchmarking cases are implemented in
the Julia programming language [120] (v1.6) and run on a machine with an Intel CPU
@3.2GHz and 16GB memory. In the optimized thresholds case, the simulation calls the
optimization model implemented using JuMP [121] and the Gurobi solver [122]. The
parameter € was set to le-6 which is equal to the default tolerance of the solver Gurobi
to meet constraints. The optimization model computes new thresholds daily, using an
optimization horizon of 7 days. The thresholds for the current day are then implemented

in the simulation. The real and virtual wallet balances at the end of the simulated day

3 Additionally, a transaction cost (fee associated with each recharge) and a monthly fixed cost can be
included and is considered part of future work. Factors such as whether the fixed cost will be deducted
from the wallet per day or upfront at the beginning of the month may influence model performance.
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are then used as an input for the optimization problem the next day.

7.3.2 Comparison with Benchmark Cases

As a first investigation, we compare the performance of the optimal energy rationing
framework with the baseline and fixed thresholds benchmark cases. To do this, we run
each method for the full 30 days and compare the resulting service factors (SF) per load
as defined by (7.8), the overall achieved priority service factor (PSF) as defined by (7.9),
as well as the amount of energy consumed per load. For this evaluation, we assume a
recharge amount of 70% and a recharge frequency of 5 payments per month. Figure 7.3
shows the service factor SF}, for each load and the overall PSF and Table 7.3 shows the
energy use per load. We observe that the different cases lead to very different use of energy
across the different loads. The refrigerator (Load D) has the highest priority, and is also
the load that runs most continuously. The optimized and fixed threshold cases achieve
both a service factor and energy use close to 100% for this load, while the baseline case
(which experiences a prolonged disconnection) only achieves a service factor and energy
use of about 85%. The air compressor (Load A) has a power demand that is much higher
than other loads and the second highest energy demand. Although this load has the
second highest priority, the optimized threshold case compromises serving this load to
ensure better service to the higher priority Load D and the lower priority but lower energy
demand Loads B and C. The baseline and fixed thresholds cases serve more energy to the
air compressor, but have lower service factors for the microwave (Load C) and the washing
machine (Load B). Because of this, the overall PSF in the optimized thresholds case is
greater than that in the other two cases. Further, the optimized thresholds case and the
baseline case fully use the allocated budget of 70% of total desired energy, whereas the
fixed thresholds case only uses 68%. This is because the fixed thresholds case always has
residual balance equal to at least the lowest threshold, i.e., the threshold corresponding

to the highest priority load.
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Figure 7.3: Service factor for the 4 loads and overall priority service factor (PSF) at a
recharge frequency of 5 per month and recharge amount of 70%. Load priority: Load D >

Load A > Load C > Load B

Table 7.3: Energy Usage per Load

Baseline Fixed Optimal
Appliance Thresholds | Thresholds

kWh | % | kWh | % kWh | %
A air compressor 12 43 | 7.5 27 6.7 24
B washing machine | 1.9 95 | 0.34 17 2.0 100
C microwave 3.2 89 | 1.8 50 3.5 97
D refrigerator 35 85 | 41 100 40 98
Total 52.1 70 | 50.6 68 52.2 70
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Figure 7.4: Top: PSF against recharge amount at a recharge frequency of 5 per month.
Bottom: PSF against monthly recharge frequency at a recharge amount of 70%.

7.3.3 Impact of Recharge Amount and Frequency

Next, we compare the achieved PSF and the number of disconnections (i.e., how frequently
the real wallet balance falls below zero and customers lose electricity supply) across dif-

ferent recharge amounts and frequencies.

7.3.3.1 Impact on priority service factor

The upper plot in Figure 7.4 shows the variation in the PSF as the recharge amount
is varied from 60% to 100% with a constant recharge frequency of 5 per month. The
PSF increases with increasing recharge amount for all three cases, as expected. Across all
recharge amounts, the optimized thresholds case has a PSF greater than the baseline while
the fixed thresholds case performs worse due to the residual balance that remains unused.
The bottom plot in Figure 7.4 shows the variation in PSF as the recharge frequency is
varied from 1 to 7 per month while keeping the recharge amount constant at 70%. The
optimized and fixed thresholds cases have minimal variation in PSF even if the recharge
amount is distributed across increasing number of recharges during the month because the
daily virtual wallet recharge remains the same. The optimized thresholds case performs
better than the baseline whereas the fixed thresholds case performs worse due to the

unused residual energy.
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7.3.3.2 Impact on disconnections

We further investigate the impact of recharge frequency and amount on the number of
disconnections. We first vary the recharge amount from 60% to 100% while keeping the
recharge frequency constant at 5 per month, and then vary the recharge frequency from 1
to 7 per month while keeping the recharge amount constant at 70%. In all of these cases,
both the fixed and optimized threshold cases result in zero disconnections as all loads were
disabled before the real wallet balance could fall below zero. This demonstrates that the
simple threshold-based management can avoid disconnections and associated reconnection
fees.

This is quite an improvement relative to the baseline case. With 5 recharges per
month, the baseline case experienced 3 disconnections for recharge amounts of 60% and
70% and one disconnection for recharge amounts > 80 %. When we fix the recharge
amount at 70%, we observe that the number of disconnections increase with increasing
recharge frequency. With one recharge, we only have one disconnection, with 3 recharges
we have 2 disconnections and with 5 and 7 recharges we have 3 disconnections. The reason
for this behavior is that the recharge amounts are distributed uniformly across the month,
whereas the load is not. For low recharge amounts or high recharge frequencies, there
is therefore a higher chance that the real wallet balance might drop to zero before the
next recharge is made whereas for higher recharge amounts and fewer payments, these

intermediate disconnections are avoided.

7.4 Conclusion

This work proposes a threshold-based energy rationing framework for prepaid customers.
This framework compares a predetermined threshold with the prepaid wallet balance to
decide whether a load can be used without impacting other, higher priority loads later.
To determine the optimal threshold values, we formulate and solve a rolling horizon opti-
mization problem.

The case study shows that the framework with optimized thresholds outperforms both
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a baseline without energy management and a method where control thresholds are fixed
solely based on load priority information. Specifically, the proposed method serves higher
priority loads and reduces disconnections by curtailing lower priority loads.

The following chapter studies the effects of imperfect and/or limited forecast informa-
tion. Some avenues for future work include studying the effect of incorporating fixed and
transaction costs to inform overall prepaid program design. Finally, while the framework
has been presented in the context of low-income households in the United States, it can
be extended for other contexts such as postpaid customers on energy assistance programs

and pay-as-you-go solar home system users.
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Chapter 8

Addressing Imperfect Forecasts

and Implementation Constraints

The previous chapter proposed an energy management framework for low-income prepaid
electricity customers that requires detailed demand forecasts, which are challenging to gen-
erate for residential loads. Additionally, the framework involves solving a mized-integer
linear programming problem using an optimization solver on a remote server, which raises
data privacy and cybersecurity concerns. This chapter presents a method based on a linear
optimization problem that only uses average power demand forecasts as an input and can
be solved to optimality using a simple greedy approach without the need for optimization
solvers. We compare the model with two mized-integer linear programming models: (1)
from the previous chapter and (2) a benchmark representative of traditional home energy
management systems which also requires more detailed demand forecasts and optimization
solvers for implementation. In a numerical case study based on real household data, we
assess the performance of the different models under different accuracy and granularity of
demand forecasts. Further, we demonstrate that the proposed model can be implemented
on a basic 8-bit low-cost microcontroller. Our results show that the proposed linear model

is much simpler to implement, while providing similar performance under realistic circum-
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stances. 1

8.1 Introduction

Very few studies investigate energy management methods for prepaid customers. The
method in [114] uses load disaggregation techniques and alerts the user to switch off a
load to preserve wallet balance once it exceeds a target consumption. To perform the
disaggregation, additional hardware or high-speed internet connectivity with a server may
be needed. More traditional home energy management systems (HEMS) [108] generate
specific load schedules to switch loads ON/OFF. This can be viewed as intrusive, and
if automated, it needs expensive in-home hardware such as smart switches for actuating
loads. Furthermore, to be effective, such HEMS typically need forecasts of power demand
of each load at each timestep in a day. Obtaining highly accurate, granular forecasts
can be challenging because of the volatile nature of household-level electricity use, which
depends on various behavioral and environmental factors [124]. Additionally, imperfect
and uncertain information can significantly impact the performance of HEMS [104], [125],
making it necessary to analyze sensitivity of energy management methods to imperfect
information. Overall, energy management methods that use lower granularity forecasts
(e.g., by aggregating loads or averaging in time) may lend themselves better to practical

implementation than very detailed models.

8.1.1 Contributions

To support effective home energy rationing while reducing the need for communication and
computation, [92] proposed the threshold-based energy management framework. To iden-
tify optimal daily load thresholds, [92] uses rolling-horizon mixed-integer optimization with
forecasts of load demand for every 15 min. However, while the thresholds optimization

requires load demand forecasts, real-time measurements of load demand are not necessary

'This chapter is based on work by the author and Line Roald in [123]. This work was supported by
the the George Bunn Distinguished Graduate Fellowship by the University of Wisconsin-Madison and the
U.S. National Science Foundation under Award Number ECCS-2045860.
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once the thresholds are determined. We make the following contributions beyond prior
work:

First, we present a new threshold-based energy management method, which has two
main features that distinguish it from the model in [92] (Chapter 7: (1) It only requires
information regarding the average power demand per day, as compared to detailed power
demand forecasts at each 15 min timestep. In particular, it does not require information
about when certain loads will be used during the day. (2) The resulting optimization
problem is a linear program (LP), which can be solved to optimality using a greedy
approach, thus eliminating the need for a solver.

Next, we compare the proposed model to two benchmark models, the threshold-based
model from [92] and a more traditional home energy management system that generates
a switching schedule for each load at each timestep. We first qualitatively compare the
practicality of implementing and using the different methods, including the computation,
demand forecast information, and communication requirements. Furthermore, we perform
a quantitative comparison where we run the three models on a case study based on real
load data from Pecan Street Dataport [118]. We analyze the performance of the three
models under different levels of accuracy and granularity of demand forecast information.

The results of our comparison show that the proposed method has a similar quantita-
tive performance as the two benchmark models, i.e., it is able to help customers effectively
manage their electric loads. Furthermore, it has significantly lower requirements for de-
mand forecasts and communication, can be implemented using simpler hardware without
optimization solvers, making it a much more viable choice for low-income customers. The

model is made publicly available through a GitHub repository [126].

8.1.2 Organization

The chapter is organized as follows: Section 8.2 describes the mathematical optimization
formulations for the three models. Section 8.3 compares computation, forecast informa-

tion, and communication requirements for implementing the models. Section 8.4 presents



Parameters
K

T

AT € Ry

D

m € Rog

M € Ry

€ € Ry

a € Ry

Z € RZO

Pk,d S R_ZO
dkﬂj c {0, 1}

Xd S Rzo
Szrfgx € RZO

Variables
z; € R

u;, €{0,1}
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Large magnitude constant
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Initial real wallet balance in $

Priority factor for load &

Demand in W for load k£ at time ¢
Average demand in W for load k on day d
Indicator parameter of demand

dps = 11if P,y > 0, and 0 otherwise
Virtual wallet recharge on day d in $
Upper bound on enable duration of load k on
day d in hours

Real wallet balance at time ¢ in $

Real enable signal for load k at time ¢
Virtual wallet balance at time ¢ in $
Threshold for load k on day d in $

Virtual enable signal for load k£ at time ¢
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case studies comparing the performance of the models using real-world energy usage data,

and this is followed by a brief concluding section.

8.2 Model Formulations

This section presents the mathematical optimization formulations of the three models. A

nomenclature with the notation used across models is given in Table 8.1.

The objective of all models is to maximize the value that a user can get from a limited

amount of initial wallet balance. Concretely, we aim to maximize the fraction of time

for which a load was ON when demanded. We refer to this as the service factor SFj for
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Figure 8.1: Illustration of virtual wallet recharge

load k. For example, a lamp demanded for 2 hours and served for 1 hour has a service
factor of 50%. Since some loads are more critical than others, we assign a priority factor
v to each load k, where a higher v indicates a more important load. Finally, we define
the priority service factor (PSF) as the priority factor weighted sum of service factors,
PSF = >  ~xSFy. PSF is a linear measure of user convenience and well-being, and all the

kex
models presented below seek to maximize PSF.

8.2.1 Detailed Forecast MILP (DFM) model

We first summarize the DFM model from [92], which we will use as a benchmark.

8.2.1.1 Modeling considerations

The DFM model uses demand forecasts Py ; per load k at each timestep ¢ and uses rolling-
horizon optimization to determine the optimal thresholds xj, 4, per load %k per day d. The
load thresholds are expressed in terms of prepaid wallet balance (i.e., in $), as the prepaid
wallet balance is a measure of how much energy is available (similar to the battery state
of charge in the case of DC microgrid control [43]). However, the prepaid wallet may be
recharged at infrequent and possibly irregular intervals. To avoid the balance being used
too quickly, [92] defines a wvirtual wallet. This wallet is recharged with regular amounts
from the actual prepaid wallet, which we refer to as the real wallet, and thresholds are
defined in terms of the virtual wallet balances. This setup is illustrated in Figure 8.1. The
DFM model based on [92] defines the the virtual wallet recharge X, as the initial real

wallet balance Z divided by the number of days in the optimization horizon.



8.2.1.2 Mathematical formulation

The mathematical formulation of the DFM problem is given as follows,

s.t.

max PSF = Z’Yk !
k

T z
Xk d Xt 2t Uy 4 U 458kt

Z ag ¢

; di ¢

2 =21 + 2 — aAT Z(Pk,t—lak,t—l) Vie T
k

muy, < —z Vke K,Vte T
(M+e)(1-upy) >e—z VkeKVteT

Xy = X4—1 + Xg — AT Z(kat_lam_l) Vte T
k

Xt —Xpdte< (M +euy, VeeK,VteT
X — Xp,d = m(1 — uy ) VEe C,VteT
ap <dpiUgy, ki<W, agr<Up,

Vkek,VieT
AWy + Wy +Uf g < 2+ agy

Vke K,vte T

124

(8.1a)

(8.1b)

(8.1c)
(8.1d)

(8.1e)

(8.1f)

(8.1g)

(8.1h)

(8.1i)

Here, the objective function is to maximize the PSF as given in (8.1a). Constraints (8.1b)

ensure that the real wallet balance z; is updated at each time step t; the initial real

wallet balance Z is included in the constraint corresponding to the first time step (¢t = 1).

Constraints (8.1c), (8.1d) ensure that the real enable signal uj , is 1 if there is money in the

real wallet, and is 0 otherwise. Constraints (8.1e) update the virtual wallet balance x; at

each timestep ¢; the constant daily virtual wallet recharge X is included in the constraints

corresponding to the first timestep of the day. Constraints (8.1f), (8.1g) ensure that the

virtual enable signal for load k, uy,, is 1 if x; is greater than or equal to the threshold

Xj,d, and is 0 otherwise. Constraints (8.1h), (8.1i) ensure that a load k at time ¢ is OFF,
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i.e., actuation state aj; = 0, if there is no demand, if the virtual enable signal is 0, or if
the real enable signal of the current or next timestep is 0. Similarly, they also ensure that
a,; = 1 if there is demand, virtual enable signal is 1, and the real enable signals for the
current and next timestep are 1. Since ay 4, uzyt, ugt are binary variables this is a MILP
problem. The problem is always feasible if constants €, m, and M are chosen such that: €

is as small as possible (e.g., equal to tolerance of the solver), m < —Z, M > Z.

8.2.2 Average Forecast Greedy (AFG) model

The average forecast greedy (AFG) model is the new model we propose in this work.
Rather than requiring detailed load forecasts, this model only assumes knowledge of the
average power demand Pk,d per load k per day d, which can be obtained by forecasting
total energy consumption per load per day and dividing it by 24 h. The decision variables
in the model are the durations sy 4 for which a load £ is enabled on day d. Based on
the optimal solution Sz’ 4» We can algebraically compute the optimal daily virtual wallet
recharge, Xq, and thresholds per load k per day d, X 4. The AFG model is described
by the optimization model (8.2a)-(8.2c). The objective (8.2a) is to maximize the PSF.
Constraint (8.2b) ensures that the total cost of energy usage for all loads remains within the
initial wallet balance, while (8.2¢) provides an upper bound 32?3‘” for the enable duration
of each load. This upper bound 5}33” = 0 if Pk,d = 0, i.e., when there is no demand for

the load on that day, and s;’3" = 24 h otherwise.

> Sk

_ d
k P )
s.t. Zapkdskd < Z (8.2b)
k,d

Sk.d < Szgx Vk € IC,Vd eD (8.2C)
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8.2.2.1 Solving the AFG model

Since sy, 4 are continuous variables, the AFG model (8.2) is a version of a fractional Knap-
sack problem, which seeks to maximize the value of items in our knapsack while respecting
an overall weight limit. This type of problem can be solved efficiently to optimality using
a greedy approach [127]. In our problem, the “items” to be chosen are enable durations
sk.q per load per day and the “value” of each item is the respective objective function
coefficient b, = 237%. The “weight” of each item is the cost of using the load per hour
for that day, i.e., C;uk,d = aphd. To solve the problem, we first compute the ratios of benefit
per unit weight, r 4 = by /wy q. Note that if wy g = 0, i.e., if there is no demand for a
load on a day, we assign s’,; 4 = 0. We arrange the ratios ry ¢ in non-increasing order in
a vector r. Therefore, we have r(® > r(+1) where r(® represents the ith element of the
vector r. Next, we arrange variables s; 4 in a vector s, parameters szrf;m in vector s"%*,
and parameters f_’k’d in vector f’kd in the same order as that of elements in r, such that
the ith element of s, ™%, and Pk,d map to the same load k& and day d as the ith ele-
ment of r. Given these vectors, we implement the greedy solution approach summarized
in Algorithm 1. Starting from the first element in r, we assign the maximum duration

max(i) 1o each variable s, until we reach the element s*) which leads to a violation of

S
the wallet balance constraint (8.2b). For this marginal load s(i,), we assign a fractional
value equal to the leftover balance divided by the cost of using the load per hour, which
is typically less than sj'G" (i.e., we enable the load only for a fraction of the day). For all
elements after the i th element, i.e., those with a lower 7, 4 value, we set s@ to zero. This

gives us the optimal enable durations s ; for each load k£ and day d. Note that at most

one load k in one day d will have a fractional value, i.e., there is only one marginal load.
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Algorithm 1 Greedy approach to solve (8.2a)-(8.2¢)

sort r in non-increasing order

st 0 Vi

140

while 3" aP®s() < 7 do
g(®) <_Z gmax(i)
141+ 1

end while

i i
, Z-3 aP®s(®)

(% i

s prd
aP @)

8.2.2.2 Computing virtual wallet recharge

The daily virtual wallet recharge X, is calculated as the amount of recharge needed to

support the optimal enable durations sj, ,, i.e.,

Xy = Z asz’df_’k,d,Vd eD
k

The virtual wallet is recharged by X4 at the beginning of the day with no further recharge
during the day, and the virtual wallet balance thus reduces as the loads consume energy.
Once the balance goes below threshold x;, 4, the corresponding load k is disabled and not

enabled again on that day.

8.2.2.3 Computing thresholds

Algorithm 2 presents the method to compute the thresholds x;, 4. To compute the thresh-
olds xj 4 for a given day d for a given load k, we distinguish three cases. First, if s; ; =0
(i.e., the load is disabled for the whole day), then the threshold xy, 4 is assigned a value
slightly larger than the virtual wallet recharge for the day, x; 4 = X4+ €, where € = 1074,
The virtual wallet balance is expected to never exceed the initial charge X; and by setting
the threshold higher than this value, the model expects that it will not be enabled. Sec-
ond, if s ;, = sp'g" (i.e., the load should be enabled for the whole day), then the threshold

Xk,q 1s set to zero. This ensures that the virtual wallet balance never goes negative. Fi-
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nally, we consider the threshold for the marginal load S;; 4 (corresponding to s(i,)) that
has 0 < s7 ; < 579", The threshold of this load xj 4 should be chosen such that the
virtual wallet balance, which is reducing from X, in the beginning of the day, reaches the

threshold xy, 4 after s;; 4 hours. This can be expressed as

Xp,d = Xq — asp g Z Prd,
nesSg"
where the second term is the cost of running all enabled loads on the day, S§* = {n :
s;;,d > 0}, for the duration s,’:,’d. The overall time complexity of the AFG model is very
low and depends mainly on the type of sorting algorithm used. For example, if merge sort

is used, it will be O(nlogn).

Algorithm 2 Computing thresholds
for d € D do
for k € K do
if s,’;’d == (0 then
Xk d < Xg+e€

: ES - max
else if Skd == Shd then
Xk,d < 0
else
. _
Xk,d < Xd — ask,d Z Pn,d
nes§"
— .ok
where S = {n : s}, ; > 0}
end if
end for
end for

8.2.3 Optimal Benchmark MILP (OBM) model

We now describe a model more closely aligned with traditional home energy management
systems proposed in literature. Rather than relying on thresholds, this model directly
decides the activation state of each load at each time step. If given perfect forecasts of
desired consumption, it produces an optimal schedule with the highest possible PSF for a

given budget. Therefore, we refer to this as the optimal benchmark MILP (OBM) model,
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which is given by

Z agt

max PSF = L 8.3a
A ;W > diy (8.32)
t
s.t. Zak,taPk,tAT < Z (8.3b)
k.t
ag ¢ < dk,t Vk € /C,Vt € T (83C)

The model inputs are the demand forecasts Py ; per load k at each timestep ¢, and it
determines the actuation state aj; per load k£ at time ¢, so as to maximize the PSF as
defined by (8.3a). Constraint (8.3b) ensures that the energy usage is within the initial real
wallet balance Z and constraint (8.3c) ensures that a load is actuated only when there is

demand. Since aj; are binary variables, it is a MILP problem.

8.3 Qualitative Comparison - Computation, Communica-

tion, and Information Requirements

In this section, we compare the computation, communication, and information require-
ments of the proposed AFG model with the DFM and OBM models. Ideally, we want a
method that limits the need for expensive local hardware, while also minimizing communi-
cation needs. We frame our discussion in the context of two possible modes of implemen-
tation, purely local, where all computations are performed using local in-home hardware,
or mized mode, where the optimization problems are solved in the cloud on a remote server

and the setpoints are communicated to the local hardware.

8.3.1 Computational requirements

OBM and DFM are MILP problems with a large number of variables, which are generally
hard to solve. In our test cases, the DFM problem can take up to 50 min to converge

(with 30 day optimization horizon, 4 loads) on a system with a state-of-the-art commercial
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MILP solver. The computational effort required to solve the problem indicates that a local
implementation of the problem may be impractical or expensive. In comparison, AFG is
an LP problem that can be solved to optimality with the greedy approach outlined above,
making it quick and easy to solve even with simpler hardware and without optimization
solvers. Therefore, it can be implemented purely locally on existing hardware (e.g., the
in-home displays typically provided to prepaid customers [107]).

In order to illustrate the computational simplicity of the AFG model, we solved it
on an 8-bit microcontroller. We successfully implemented a case with 4 loads and an
optimization horizon of 30 days on an Arduino Nano Every, a microcontroller popularly
used for lab classes and hobby electronics. It uses the ATMEGA4809 processor (8-bit,
6 KB RAM, 48 KB Flash). It generates thresholds with 7 significant figures. The retail
price of the processor is under USD 2.00 (as of November 2024). Implementation on
the simple processor demonstrates that the model can be implemented purely locally on
inexpensive in-home hardware without the need for remote communication with a server,
thus reducing data privacy and cybersecurity concerns. Another option for implementing
the model is on smartphones for customers who have access and are comfortable using

them.

8.3.2 Load information requirements

Load forecasting is challenging, but can be achieved using statistical and machine learning
based methods [124]. The DFM and OBM models require load forecasts with a 15 min
granularity for each load. Creating accurate forecasts with such granularity is a very
challenging task and would require customers to either share granular historical load data
with the remote server, or generate the forecasts locally and communicate them. Either
option may require significant communication bandwidth or local computational power. In
comparison, the AFG model only requires information regarding the total expected energy
demand for each load per day, from which the average power demand can be computed.

This lower granularity forecast would be significantly easier to generate, whether it is done
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Table 8.2: Qualitative comparison of models

OBM DFM AFG
Problem type MILP MILP LP
Variables per day |K||T| ITIBIK|+2)+|K] K] +1
Load forecast in- per timestep per per timestep per average per day
formation load load per load
Control setpoints |K||T]| binary |K| floating-point |K| 4+ 1 floating-
per day numbers numbers point numbers
Mode of imple- mixed mixed purely local

mentation

locally or remotely. Furthermore, we would only need to communicate one value per load
per day. Avoiding the sharing of high fidelity load forecasts is also more desirable from a

privacy and cybersecurity perspective.

8.3.3 Communication of load activation information

In the mized mode of implementation, the optimization problems are solved on a remote
server and we need to communicate the resulting control setpoints (i.e., load activation
information) to the user. For DFM, only a single threshold per load per day needs to be
communicated from the remote server to the local hardware, while AFG requires that the
thresholds and the virtual wallet recharge per day be communicated. For a household with
|K| loads, this means communicating || and |K| 4 1 floating-point numbers per day re-
spectively. For OBM, the actuation states per load per timestep need to be communicated.
This amounts to |K|| 7] binary numbers per day where |7 is the number of timesteps in a
day. This is a much larger number than the number of setpoints to be communicated for
implementing AFG or DFM. Note that for the AFG model, the communication of con-
trol setpoints could be entirely avoided through a purely local implementation. This also
proves to be useful in case the model has to be re-run with new load priority factors. For
example, in case AFG notifies the user that an uninterruptible load such as a dishwasher
has to be turned off in the middle of its operating cycle, the user can choose to assign a
relatively higher priority factor to the load and re-run the model locally for a new set of

thresholds.
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An overview of the comparison is summarized in Table 8.2. We observe that the AFG
model has several significant advantages from an implementation perspective. It is the
least computationally expensive method, making it suitable for a purely local implemen-
tation. If implemented in mixed mode, it communicates only low-dimensional information

regarding loads and control setpoints, thus reducing privacy and cyber-security concerns.

8.4 Quantitative Comparison - Case Study

We next compare the AFG model with the DFM and OBM models in a quantitative case

study based on real-life energy usage data.

8.4.1 Case study setup

We use energy usage data of one household from the Pecan Street Dataset [118] as load
data and “forecasts”. We consider four loads, namely a refrigerator, air compressor,
microwave, and washing machine in that priority order. The priority factors of the four
loads are v = 0.48,0.24,0.16,0.12 respectively. The cost of electricity is assumed to be
a = 0.16 $/kWh. Each optimization model solves a problem to obtain setpoints, for a
duration of 30 days. These setpoints are then used as input to a numerical simulation
for the same 30 days. This process is repeated for three months of data. The Julia
programming language (v1.6) is used with the JuMP package [121] and the Gurobi solver
[122] for implementing the models on an Intel CPU @3.2GHz machine with 16GB memory.

We compare the priority service factor (PSF) from the numerical simulation for AFG,
DFM, OBM, and a simple baseline (BSL) of unrationed energy use, which lets a user
satisfy all energy demand until the wallet balance is zero. We consider a perfect demand
forecast, as well as an imperfect forecast where the order of days is shuffled. Within each
type, we consider two levels of information granularity, a detailed forecast with 15 min
power demand per load and limited forecast with only daily average power demand per
load. To reflect the reality of low income customers who may not have enough money to

cover their desired energy demand, we assume initial wallet balances that are enough to
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supply 70% to 90% total energy demand. The cases and results are described in more

detail below.

8.4.2 Perfect forecast

We first assume perfect forecasts of load demand, and investigate the detailed and limited

information cases.

8.4.2.1 Detailed information

In this set of experiments, models know the true load demand at each 15 min timestep in
the case of OBM and DFM and the true average demand per load per day in the case of
AFG. With this perfect detailed information, the OBM provides a truly optimal solution
since it has complete information about load demand and can decide which load to actuate
at every timestep. The DFM also has information about load demand at each timestep
but can only determine a threshold for enabling each load per day, thus we expect DFM
to have a lower PSF than OBM. Since AFG only uses daily average power demand per
load as input, we expect AFG to have a lower PSF than both DFM and OBM. In these
experiments, we seek to assess the performance drop of AFG and DFM relative to OBM.

Figure 8.2(a) shows improvement in PSF over the baseline for month A, while the
results for all months A, B, and C are shown in Table 8.3. Note that the DFM values are
from the optimization model (and not numerical simulation) because of numerical precision
issues. We observe that OBM has the highest improvement for all recharge amounts
and months. The performance improvement of DFM is 0 — 2 %pt. lower than OBM
depending on the month and recharge level, indicating that there is some performance
drop due to only having the thresholds as a control variable. The AFG model improves
performance relative to the baseline case across all months, despite having significantly
lower granularity of demand information. The PSF improvement is 2 — 6 %pt. lower
than OBM and 0.5 — 5 %pt. lower than DFM, indicating that detailed load forecasts are

important to achieve high performance.
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Figure 8.2: Perfect forecast: Percentage point (%pt.) improvement in priority service

factor (PSF) over baseline for the proposed AFG model (blue) and the benchmark models
DFM (red) and OBM (green)

8.4.2.2 Limited information

To further assess the impact of limited information, we run experiments where we provide
all models with information about the average demand per load per day (i.e., the same
information provided to AFG in the previous case). This is a more realistic case, with an
easier to obtain load forecast. Further, in this case, the OBM and DFM have no obvious
advantage over the AFG model.

Figure 8.2(b) shows the improvement in PSF over the baseline for each model for
month A, with similar numbers provided for months A, B, and C in Table 8.3. AFG and
DFM perform within 1 %pt. of each other in all cases, while the OBM model performs
similar to the others (within 1 %pt. in most cases) or up to 4 %pt. worse in the high
initial balance cases in month B. This confirms that all models perform similarly in the

setting where they all are given limited information.

8.4.3 Imperfect forecast

Next, we assess performance under imperfect forecast information, generated by randomly

shuffling the order of days. The order of shuffling is preserved across models.
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Table 8.3: Perfect forecast: Percentage point improvement in priority service factor (PSF)
over baseline for the proposed AFG model and the benchmarks DFM and OBM

perfect detailed perfect limited
A¥FG DFM OBM | AFG DFM OBM
70% 39.5 415 43.1 | 395 395 385
A 80% 15.1 174 18.2 | 15.1 15.1 15.3
90% 11.2  13.1 13.3 | 11.2 115 114
70% 13.7 146 16.8 | 13.7 13.6 129
B 80% 106 11.3 134 | 10.6 10.5 6.97
90% 8.35 9.01 10.5 | 835 833  5.99
70% 832 132 14.0 | 832 830 876
C 80% 3.63 864 9.02 | 3.63 424 421
90% 2.16 515 518 | 216 294 294

data | balance

8.4.3.1 Detailed information

First, we provide DFM and OBM with (imperfect) 15 min demand information whereas
AFG is provided with (imperfect) average power demand information per day. Figure
8.3(a) shows the PSF for each model for month A, while Table 8.4 shows the results for
months A, B, and C. We observe that in month A, the AFG model outperforms the OBM
and DFM models, while when considering all the months in Table 8.4, we see that PSF of
AFG was sometimes lower than that of DFM. Therefore, the relative performance of the
two models depends on the specific data used. The OBM model has the lowest PSF (up to
61 %pt. lower than AFG) across all months and recharge levels, because it activates loads
at specific times which do not coincide with the true demand. It is also worth noting that
the PSF of the baseline BSL (i.e., no control) is comparable to and sometimes higher than
that of the other models in the imperfect information case. However, the user experiences
a disconnection in each case with the BSL and may require the payment of reconnection
fees. Further, the baseline case leaves the user with no access to power for a prolonged
period of time after the disconnection, e.g., for month A the disconnection time is 17, 7,
and 5 days with 70%, 80%, and 90% initial wallet balance, respectively. Furthermore, it
is also likely that a more realistic implementation of the AFG, DFM, and OBM models,
where setpoint optimization would be rerun frequently (e.g., daily) with information from

actual usage in the previous day, would help close the performance gap with the baseline
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Figure 8.3: Imperfect forecast: Priority service factor (PSF) and customer disconnections
(indicated by ‘x’ mark) for the proposed model AFG (blue), the benchmark models DFM
(red), OBM (green), and the baseline BSL model (purple)

BSL model.

8.4.3.2 Limited information

Next, we provide all models only average power demand data for the shuffled days (same
as what was provided to AFG in the previous case) and results are shown in Figure 8.3(b)
for month A and Table 8.4 for months A, B, and C. Similar to the imperfect-detailed case,
PSF of AFG is higher than that of OBM (up to 22 %pt.) and the relative performance
of AFG and DFM is observed to be dependent on the specific data used as seen in Table
8.4. It can also be seen that the PSF of OBM considerably increases. This is because the
forecast contains demand equaling the daily average power demand for the entire duration
of 24 hours every day, which may have more overlap with the actual demand than in the
previous case.

These results indicate that when all models are provided with perfect-limited infor-
mation, the AFG model performs on par with DFM and OBM. With imperfect-limited
information, AFG performs on par with DFM in most cases and outperforms OBM. The
case study highlights that the proposed AFG model achieves comparable or improved

performance compared to the benchmark models, despite being computationally simpler.
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8.5 Conclusion

This study presents a linear threshold-based energy rationing model for prepaid electricity
customers, which needs only daily average demand forecasts and can be solved to optimal-
ity using a simple greedy strategy. We compare this model with two mixed-integer linear
programming (MILP) models which require demand forecasts at each 15 min timestep
in case studies with perfect, limited, and imperfect forecast information. The proposed
linear model has comparable or improved performance compared with that of the MILP
models, while being computationally inexpensive. Therefore, it can be implemented on
inexpensive local in-home hardware as demonstrated through implementation on a basic
8-bit microcontroller.

Some avenues for future work include modeling user noncompliance to load enable/disable
signals, determining a relationship between forecast error and model performance, formu-
lating the optimization model to incorporate uncertainty in forecasts, and studying the
effects of delays in computation and communication of optimal setpoints for energy ra-

tioning. We would also like to deploy this method in a field experiment.
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Part 1V

Picogrid
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Chapter 9

Picogrid: An Experimental

Platform for Prosumer Microgrids

The microgrid paradigm is gaining momentum as one of the key pieces of technology for
expanding clean energy access and improving energy resilience. Most of the interest in
this pertains to distinct entities that either generate electricity or act as loads, i.e., dis-
tinct producers and consumers. Remote community microgrids and emerging transactive
energy service models with interconnected prosumers do not clearly fit into this paradigm.
Notwithstanding various publications that present concepts and simulations, there has been
a dearth of experimental platforms to study them, due to practical challenges. This work
presents the ‘Picogrid’ - an experimental platform particularly designed for dc prosumer
microgrids. It is a low-power, low-cost hardware platform that enables interconnecting
multiple prosumer entities in a bench-top setup. Fach prosumer sends data to a cloud
dashboard and can receive set points for optimal operation from a remote computer sys-
tem, lending itself to use in a virtual lab setup. The platform enables implementation of
custom power profiles based on real-world generation and demand datasets. Features of

the platform are demonstrated using simulation and experimental results. '

'This chapter is based on work by the author and Giri Venkataramanan in [128]. This work was
supported by the George Bunn Distinguished Graduate Fellowship by the University of Wisconsin-Madison
and the Wisconsin Electric Machines and Power Electronics Consortium.
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Figure 9.1: A sketch of microgrid architectures

9.1 Introduction

Microgrids have shown great potential in contributing towards the clean energy transition
in developed as well as emerging economies since they are key for building electricity
systems that are flexible, resilient, cost-effective, and just. [129]. A microgrid with a single
load-serving entity that owns generation assets and supplies multiple households, has a
“producer-consumer” architecture. This consists of distinct entities for generation, storage,
and loads, as shown in Figure 9.1(a). On the other hand, the “prosumer” architecture as
shown in Figure 9.1(b) is useful to represent modular interconnected solar home systems
in off-grid communities. Each house is a prosumer and can have bidirectional power
exchange with the network. In ad hoc prosumer networks, the absence of a dedicated
load-serving entity opens up questions about supply-demand balance and rate-making
for energy exchange. There is a need for research and education platforms for prosumer
microgrid modeling that address these factors as a part of the broader “transactive energy”
paradigm [130]. Furthermore, legacy power systems curricula need to be updated to train
the new workforce in microgrid technology using such platforms.

Microgrids consist of a physical energy hardware layer, a control and computation soft-
ware layer, and communication links between layers. Operating frameworks for microgrids
need to be developed keeping in mind the engineering requirements and limitations of the
underlying equipment and software tools. Therefore, there is great value in having a hard-
ware platform as opposed to a simulation-only platform for validating such frameworks.

For instance, multi-agent systems (MAS)-based microgrid control, which is a popular op-
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tion for distributed control in multi-entity prosumer networks, is often implemented in
simulations, and studies recommend that the true test of such frameworks can come from
rigorous hardware implementation [131]. Furthermore, microgrid laboratory courses based
on hardware platforms can help in imparting the necessary skills for real-world microgrid
deployment. An ideal research and education experience is offered by setting up a real
prosumer microgrid in a village or a community of households. However, this is often
not practically feasible since it needs a large budget, has a multi-year timeline, and needs
engineers as well as community organizations to deal with the technical and socioeco-
nomic aspects of such a community energy project respectively. The next best option is a
lab-scale setup for research and education.

In this context, examples of microgrid education and experimental platforms at differ-
ent scales and power levels are presented in Table 9.1. Educational institutes are setting
up microgrids on their campus to meet their clean energy and resilience goals and also to
use them as learning labs for students [132,133]. At a lower power scale, hardware-based
laboratory-scale microgrid platforms that incorporate multiple energy sources such as solar
PV, wind, fuel cells, and diesel generators have been developed, for example see [134,135].
To incorporate more flexibility in experimenting with control paradigms and integration
with simulation platforms, hardware-in-the-loop microgrid platforms have also been devel-
oped [136-138]. Several studies like [42,139,140] have developed hardware-based platforms
at the power level of a single-home and have designed curricula for smart home energy
management systems. Purely simulation-based coursework and platforms have also been
developed [141-143]. Various microgrid test beds and experimental platforms are reviewed
in [144,145].

Hardware-based education platforms at the scale of campus-wide microgrid deploy-
ments can be high budget projects. Lab-scale setups that are developed at the power
levels of real-world deployments can also be expensive and have significant operational
and maintenance overheads. Nevertheless, hardware-based platforms are key for effective

microgrid research and education. Furthermore, the option of conducting virtual experi-
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ments on such platforms can prove to be extremely useful as necessitated by the COVID-19
pandemic and the increasing popularity of distance education programs. In summary, the
aforementioned platforms do not address this gap of a low-cost experimental platform for
emerging prosumer microgrid modeling needs.

Table 9.1: Comparison of microgrid education and experimental platforms

References Implementation Power level Typical hardware costs
[132,133] campus microgrid MW $ Millions
[134,135] lab-scale hardware kW $ Tens of thousands
[136-138] hardware-in-the-loop kW $ Tens of thousands

[42,139,140] home energy management W $ Thousands
[141-143] simulation kW -

9.1.1 Contributions

In this work, we present the Picogrid - an experimental platform for dc prosumer mi-
crogrids. Each prosumer entity is represented by low-power hardware and this makes it
cheaper, smaller, and safer to operate tens of such prosumer entities in a lab setting. The
distinguishing features of this platform are: (1) enables experiments based on community
microgrids with prosumer entities, (2) is a low-cost, low-power dc hardware platform, (3)
enables easy bench-top setup of tens of entities, (4) offers a cloud dashboard for visualiz-
ing sensor data, (5) can integrate with computation-heavy tools like optimization solvers
running on any computer system with an internet connection, (6) supports virtual labs
and remote experiments.

The hardware and software source files are made publicly available for interested re-

searchers and educators through a GitHub repository [146].

9.1.2 Organization

The following section presents details about the platform’s components and features. Sec-
tion 9.3 presents three experiments that demonstrate various features of the platform.

This is followed by a brief concluding section.
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Figure 9.2: A sketch of layers of the Picogrid platform

9.2 Platform

As shown in Figure 9.2, the Picogrid platform consists of multiple layers, viz., Pico boards,
a cloud dashboard, and a remote node. These layers together form a small benchtop
microgrid or a “picogrid” and emulate their real-world counterparts. Pico boards emulate
prosumer households. The remote node emulates DERMS (distributed energy resource
management system) or a microgrid operator which provides operating set points to the
prosumers. The cloud dashboard emulates the data transfer system between the prosumers
and the operator. In this section, we present the utility and features of each layer and

briefly discuss the unit price of a Pico board.

9.2.1 Pico board
9.2.1.1 Power circuit

Each prosumer in the picogrid is represented by a Pico board. Figure 9.3 shows the block
diagram of a Pico board connected to the picogrid network. Figure 9.4 shows a photograph
of a Pico board. The Pico board models a prosumer entity which can have battery storage,
channels to import from and export to the network, and local devices that can either act
as power sources or loads. The Pico board has 2 source channels, 3 load channels, an
import channel, and an export channel, bringing the total to 7 channels. Battery storage

is represented by a single Lithium-ion cell. Source channels can be connected to external
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Figure 9.3: Pico board block diagram. The inputs to and outputs from the energy manager
are: v = [Upy VAs UIM UCE VBO),
i=[ipv ias irm icE P01 02 103 iEx], U = [UPY UAS UTM ULl UL2 UL3 UEX].
(Labels: PB = Pico board, PV = PV Source channel, AS = Auxiliary Source channel, IM =
Import channel, CE = cell, CH = charger, BO = boost converter, EM = energy manager, L1 =
Load 1 channel, L2 = Load 2 channel, L3 = Load 3 channel, EX = Export channel)
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Figure 9.4: Photograph of a Pico board that represents a prosumer entity with sources,

loads, storage, import/export channels, and an energy manager.
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power sources rated at 1 pu nominal voltage such as a solar PV panel or a benchtop power
supply. They are labeled as PV and Auxiliary Source (AS). Source and import channels
are connected to a cell charger IC through a diode and a droop resistor. The nominal
voltage of the cell is 0.72 pu. A boost converter boosts this voltage to 1 pu to supply to
the load and export channels. An on-board resistor acts as the load at each load channel.
The per unit base quantities are: voltage = 5 V, current = 0.5 A, energy = 1 Wh. The
channel power ratings are: Source 1 pu, Load 0.37 pu. The cell has an energy capacity of

12.24 pu.

9.2.1.2 Control circuit

The local controller or the energy manager (EM) is implemented using the Particle Argon
microcontroller. It has a WiFi module to communicate with the cloud dashboard. Particle
products are packaged as PaaS (platform-as-a-service) and can effectively support scaling
up of solutions [147]. All 7 channels have a MOSFET switch and the EM determines their
switching state u. It can use pulse-width modulated gate signals to model variable load
and source power profiles. The EM reads voltage v from 5 on-board voltage sensors (PV
channel, AS channel, Import channel, cell terminals, boost converter output) and current
i from 8 on-board current sensors (PV channel, AS channel, Import channel, cell, Load 1-3
channels, Export channel). Figure 9.5 shows 4 Pico boards with PV panels, demonstrating
easy bench-top setup of multiple prosumer entities. To be sure, the system can be scaled

with numerous Pico boards using framed mechanical racks, if so desired.

9.2.1.3 Power modulation

While a naturally modulated power source such as a PV source can be connected to the
Pico board, in order to provide more flexibility and convenience of not being dependent
on weather, a source channel of the Picogrid can be connected to a 1 pu nominal voltage
source. The on-board linear charger draws a constant current of 1 pu (CC mode) until the

cell reaches its regulation charging voltage and the charger switches to constant voltage
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charging (CV mode). Therefore, in the CC mode, the voltage and current at the source
channel are stiff (at 1 pu each). The voltage at the load channel is the voltage output of
the boost converter (1 pu) and the load is an on-board resistor that draws 0.37 pu current
at 1 pu voltage. Therefore, the voltage and current at the load channel are stiff. Since the
voltage and current at source and load channels are stiff, the power through a channel is
only dependent on the duty cycle of the channel’s switch. The power through a channel
at time ¢ is given by p.; = d¢F., where d; is the duty cycle of the gate signal and P, is the
nominal power input/output at the source/load channel. In the prototype system, P. = 1

pu for the source channel and P, = 0.37 pu for the load channel.

9.2.1.4 Interconnecting Pico boards

Pico boards can be interconnected to form a network or a “picogrid”. Each board has
dedicated unidirectional channels to import and export power as shown in Figure 9.3. The
energy manager (EM) controls the switching state of the MOSFET switch while the diode
ensures unidirectional power flow. The EM can turn on the import switch and turn off the
export switch if the prosumer desires to import power from the network whereas it can
turn on the export switch and turn off the import switch if it wishes to export power. Note
that if the EM turns both switches on at the same time, current can circulate within the
Pico board and therefore this should be avoided. To connect a Pico board to the picogrid,
the import and export channels are shorted together and connected to the network via a
resistor that models line resistance. Figure 9.11 shows three Pico boards interconnected

in a radial configuration.

9.2.2 Cloud dashboard

The cloud dashboard is set up using the ThingSpeak IoT platform by MathWorks and
supports REST and MQTT API [148]. Data on the dashboard is displayed in the form
of data channels. There are data channels for data from sensors on Pico boards (called

Pico board data channels) and for setpoints from the remote node (called setpoint data
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Figure 9.5: Photograph of multiple Pico boards that fit easily on a lab bench.

channels). A screenshot of the cloud dashboard showing a Pico board data channel is
shown in Figure 9.6. Pico boards can write data from on-board sensors to their data
channels and can read from setpoint data channels. The remote node can read from the
Pico board data channels and write to the setpoint data channels. The permissions for

reading and writing are controlled through read/write API keys.

9.2.3 Remote node

The remote node is a remote device with greater computation power than the EM on the
Pico boards and can generate setpoints for their operation. It can be any computer system
with internet connectivity, not necessarily in close proximity to the Pico boards. It can
read data from and communicate setpoints to the cloud dashboard. The cloud dashboard
enables the Picogrid platform to be extended to a virtual lab setup. A remote node can
be granted access to the necessary read/write API keys to read from Pico board data

channels and write to setpoint data channels to observe and conduct experiments.
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Figure 9.6: Screenshot of the cloud dashboard showing a Pico board data channel

9.2.4 Bill of Materials

The bill of materials of the Pico board can be broadly divided into 5 categories: (1) PCB
manufacturing, (2) microcontroller, (3) switches, drivers, and sensors, (4) capacitors and
resistors, (5) connectors. The unit cost of a board against number of units is shown in
Figure 9.7. The unit cost is seen to vary from about USD 140 at a single unit to USD 80
at 1000 units (as per prices in 2023). The price point makes the platform affordable for

wide-scale adoption in undergraduate and graduate coursework and research.

9.3 Experimental Results

This section presents three experiments that demonstrate features of the platform. Ex-
periment 1 demonstrates source and load power modulation. Experiment 2 demonstrates
how a Pico board can meet its objectives with local control informed by setpoints from
the remote node. Experiment 3 presents interconnection of three Pico boards to form a
prosumer network. A simulation model of the Pico board is developed using MATLAB

Simulink and PLECS Blockset. Experimental data from Experiments 1 and 3 are used to
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benchmark the simulation model. The model can be used to simulate multiple scenarios

with varying parameters and can help in designing experiments for the platform.

9.3.1 Experiment 1: Source and load power modulation

This experiment demonstrates how a Pico board can emulate variable power profiles of
sources and loads by modulating channel power using PWM. We use rooftop solar photo-
voltaic power generation data and household appliance power consumption data for two
load circuits, viz. refrigerator and kitchen appliances, for 24 hours for a house from the
Pecan Street Dataset [118]. This data is scaled in terms of power and time duration and
is implemented on a Pico board over the duration of a 32 min experiment. PV, Load 1,
and Load 2 channels are used to represent solar photovoltaic, refrigerator, and kitchen
appliances data respectively.

The PV, Load 1, and Load 2 power profiles from the dataset are 24 hour time series
of power values at a sampling interval of 15 min, i.e., 96 values per time series. The EM
runs at a timestep of 10 s which means that the duty cycle of the switches can be updated
once every 10 s. It logs data to the cloud dashboard at every other timestep, i.e., every 20
s due to limitations on the update interval. In order to run experiments in a reasonable
duration of time and ensure that the cloud dashboard logs values without loss of data, we
scaled down the data in terms of time such that the interval between two values in the 96
value time series is 20 s, i.e., the total duration is 1920 s or 32 min. We interpolated this
32 min time series with a sampling interval of 10 s to get 192 values. These values are used
to generate duty cycles for the channel switches and are implemented in the embedded
system code using look-up tables. We denote power values in this time series by pg;. The
power values are scaled down for implementation on the Pico board. The duty cycle is
obtained as d; = apq+/Pg, where a € [0,1] is a scaling factor and Py = max{pq+}. This
ensures that d; € [0,a]. As discussed in Section 9.2.1.3, the power through a channel
at time ¢ is given by p.; = dyP., where P, is the nominal power input/output at the

source/load channel. P. = 1 pu for the source channel and P. = 0.37 pu for the load
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Table 9.2: Power scaling parameters

Channel « P./P;
PV 05 1.4x1073

Loadl 1 27x1073

Load2 1 3.6x1073
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Figure 9.9: Energy supplied by PV and consumed by Loads 1 and 2. Values indicated
on top of simulation and experiment bars represent percentage error with respect to the
dataset

channel. The parameter values used in this experiment are presented in Table 9.2.
Power variation across channels PV, Load 1, and Load 2 obtained experimentally are
plotted with the ideal values from the dataset as shown in Figure 9.8. The experimental
results are seen to closely follow the variations in the values of the time series from the
dataset. To quantify this, we compare the area under the curve, i.e., the energy supplied
by PV and consumed by Loads 1 and 2, with values computed analytically using the
dataset and simulation results. The energy supplied/consumed by a source/load channel
over duration T' of the experiment can be analytically calculated as F4 = fOT D dt =
P, fOT dy dt. Figure 9.9 shows a bar chart that compares the energy supplied by PV and
consumed by Loads 1 and 2 as obtained analytically using the dataset, using the simulation

model, and through the experiment. Values displayed on the top of bars corresponding
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to simulation and experimental results represent percentage error with respect to the
analytically calculated value. We see that the magnitudes of simulation errors are under
0.5% and that of experiment errors are under 7%. This shows that the platform can be

used to effectively model scaled down real-world generation and demand profiles.

9.3.2 Experiment 2: Setpoints from remote node

This experiment, using a single isolated Pico board, demonstrates how different layers of
the platform, viz., Pico board, cloud dashboard, and the remote node, interact with each
other to meet the entity’s objectives. Specifically, we aim to demonstrate how the load
management goals of the entity can be met by its local energy manager (EM) operating
according to the setpoints received from the remote node. The experiment duration of 15
min is divided into three 5 min intervals. The goal is to keep all the three loads on in
the first interval, only Loads 1 and 2 on in the second interval, and only Load 1 on in the
third interval.

The EM implements a threshold-based energy management framework as presented
in [43] wherein each load is assigned a threshold in terms of the state of charge (soc) of
the on-board cell. If the soc exceeds the threshold, the corresponding load is switched on
and if it goes below the threshold the load is switched off. The thresholds are obtained as
setpoints from the remote node which is implemented on a Windows PC. The remote node
runs a Julia script to compute the thresholds and sends them to the cloud dashboard using
REST API. We write the script such that it reads the soc from the Pico board data channel
at the beginning of each interval and computes and sends thresholds to the setpoint data
channel. The EM reads thresholds from the setpoint data channel and implements the
threshold-based energy management framework. In order to determine the thresholds per
interval, we need to determine what is the maximum change in soc that will be possible
over each interval. During the experiment, a 1 pu voltage source is connected to the
Auxiliary Source channel and supplies 1 pu nominal power. Each load channel is rated to

consume 0.37 pu nominal power. The energy capacity of the cell is 12.24 pu. Therefore,
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Figure 9.10: Top: State of charge (soc) variation and load thresholds. Bottom: Load
current. Loads are switched off when the soc is less than their respective thresholds.

the change in soc over any interval will be < 1%. We determine the threshold for Load &
in an interval as soc, + A, where soc, is the soc at the beginning of the interval as read
from the Pico board data channel and Ay is chosen to be greater than 1% if the load is
to be switched off and less than 1% if the load is to be switched on. Table 9.3 shows the

values chosen for Ay.

Table 9.3: Ay, values for each interval and load

Ay Ay Az
Interval 1 -10 -5 -2.5
Interval 2 -10 -5 5
Interval 3 -10 5 10

Figure 9.10 shows the soc and load thresholds on the top and load currents on the
bottom. We can see that all three loads are on in Interval 1; Loads 1 and 2 are on and
Load 3 is switched off in Interval 2; and Load 1 is on and Loads 2 and 3 are switched off in
Interval 3 as expected. This experiment shows that control schemes with a combination

of local and remote control can be implemented on the platform. More advanced schemes
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Figure 9.11: Experimental setup showing three radially connected Pico boards

such as optimization-based control can be implemented using computation resources of

the remote node and can be used to generate setpoints for Pico boards.

9.3.3 Experiment 3: Three-entity prosumer network

This section demonstrates the interconnection of three prosumer entities through simu-
lation and experimental results. The experimental results serve as a benchmark for the
simulation model. Figure 9.11 shows the experimental setup. The three entities repre-
sented by Pico boards (PB1, PB2, PB3) are interconnected radially. It is assumed that
Load 1, Import, and Export are the only channels that are active. The experiment runs
for a duration of 32 min. The load demand is assumed to be constant at the nominal
power of the channel (0.37 pu). The load demand schedule (user schedule) for Load 1
across the entities is as follows: PB1 8-16 min, 24-32 min; PB2 0-16 min, PB3 16-32 min.
Each entity implements threshold-based energy management presented in [43]. Across all
entities, Load 1 is assigned a threshold of 20%, i.e., if the state of charge (soc) of the cell

is less than 20%, the load is switched off, and if it is greater than 20%, the load follows the
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Figure 9.12: Simulation and experimental results (clockwise from top left in each sub-
figure: Load 1 current, state of charge, Import current, Export current) for a network
of three prosumers. Plots show that the simulation model can effectively represent the
behavior of the hardware.

user schedule. Import and Export are both assigned a threshold of 60%, i.e, if the soc is
less than 60%, Import is switched on and Export is switched off, and if it is greater than
60%, Import is switched off and Export is switched on.

Simulation and experimental results are shown in Figure 9.12. Load current plots show
that load schedules are followed in the simulation and the hardware. The soc of no entity
goes below 20% over the duration of the simulation or the experiment and therefore, loads
follow the user schedule as expected. Measurement errors in current sensors lead to a
slight mismatch in the soc computation between the simulation and the experiment. In
the simulation, the soc of PB2 stays just below 60% until the end of the experiment and
so PB2 continues to import current as seen in the Import current plot. The soc of PB1
and PB3 are always above 60% and therefore they continue exporting to PB2 as seen from
the Export current plot. Since the line resistances in series with PB1 and PB3 are of
different values, their export current values also differ. In the experiment, the soc of PB2
reaches 60% by minute 29 and so Import is switched off. Even though the soc of PB1 and

PB3 remain above 60% and their Export channels remain on, since no entity is importing,
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Table 9.4: Error in change in state of charge for each entity in the experiment as compared
to that in the simulation is found to be under 6 %

Quantity Error in change in soc (%)

PB1 —5.77
PB 2 —0.375
PB 3 1.31

the Export currents of PB1 and PB3 also go to zero. The percentage error in change in
state of charge for each entity in the experiment as compared to that in the simulation is
shown in Table 9.4. It is observed to be under 6 %. Overall, the experimental results are
in congruence with simulation results and this can be improved by better calibration of
on-board current sensors.

We observe that the simulation model can effectively represent the behavior of the
hardware. The simulation model can be used to simulate multiple cases with different
parameters for better design of hardware experiments. This experiment also demonstrates

that multiple Pico boards can be interconnected to form a prosumer network or a picogrid.

9.4 Conclusion

This chapter presents the Picogrid, an experimental platform for prosumer microgrid re-
search and education. It is a low-power, low-cost platform which enables interconnection
of multiple prosumer entities on a bench-top setup. Features of the platform such as
implementation of control schemes based on a combination of local and remote control,
implementation of scaled down real-world generation and demand profiles, and intercon-
nection of multiple prosumers to form a network is demonstrated through simulation and
experimental results. The platform has the potential to be extended to form a hardware-
in-the-loop setup where high-power entities modeled in a simulation software on the remote
node interface multiple of Pico boards. Hardware-in-the-loop experiments are using the
Picogrid platform are presented in Chapter 10.

The Picogrid platform has been designed to implement secondary and tertiary level
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control schemes which expect the system response to be of the order of several seconds
to minutes. It cannot be used for testing primary control schemes which expect system
responses to be under seconds, e.g., modeling transients due to interactions between dif-
ferent power electronic converters. Being a dc platform, it also cannot be used to model
ac system dynamics. However, some of these aspects can be incorporated with potential

increases in cost and size of each Pico board and is a subject of future work.
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Chapter 10

Custom Cloud-Based Solution for

Remote Access to the Picogrid

Hardware validation of energy access and energy management paradigms, such as micro-
grids and distributed energy resource management systems, is crucial for bridging the gap
between simulation-based research and real-world applications. However, there are signif-
icant barriers for using hardware experimental platforms including high costs, lab space
requirements, and maintenance challenges. Additionally, users must typically be physi-
cally present with such platforms to effectively conduct experiments. This work presents
a cloud dashboard designed for conducting remote virtual experiments on the ‘Picogrid’,
the existing low-cost open-source experimental microgrid hardware platform presented in
the previous chapter. This enables researchers who build the hardware platform to rent it
out to remote users for specific durations, facilitating remote experimentation through a
hardware-as-a-service model. The approach significantly reduces the burden of developing
and maintaining the hardware infrastructure for researchers, and makes hardware valida-
tion more accessible. Multiple users can simultaneously run experiments on their allocated
hardware instances from any location worldwide, with minimal resource setup. Addition-
ally, the dashboard enables educators to offer virtual laboratory exercises to remote stu-

dents. Three experiments involving remote third-party users demonstrate applications of
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the proposed cloud dashboard, in conjunction with the hardware platform, as a research and
educational tool for smart solar home systems, virtual power plants, and demand response
schemes. Furthermore, the platform was used in a real-world setting, during a community
meeting in Holyoke, MA, to demonstrate demand-response schemes and understand the

potential barriers that the community may face in participating in such utility programs. !

10.1 Introduction

The advent of inexpensive computing hardware, coupled with excellent software platforms
have enabled digital simulation to become a ubiquitous practice in power system engineer-
ing. This approach is extensively used to study various upcoming energy paradigms such
as microgrids, swarm electrification, distributed energy resource management systems, de-
mand response, and virtual power plants. On the other hand, some of the time-sensitive
dynamics, physical uncertainties, cyber-physical interactions, and human mediated aspects
continue to be challenging to study using numerical simulations on software. One needs
to resort to a hybrid approach that is often termed as hardware-in-the-loop simulation to
accurately model and understand such aspects [151]. Thus, hardware validation is deemed
necessary for translating the research concepts to real-world applications.

Hardware experimental platforms generally require high initial costs, needing large
lab space, and adequate resources for maintenance. In order to address this, [128] pre-
sented an accessible open-source solution called the ‘Picogrid’, a low-cost dc prosumer
(producer-consumer) microgrid hardware platform. It is a low-power sandbox for research
and education, and lowers the barriers to entry for hardware validation. Another potential
limitation of hardware platforms is the requirement for users to be physically present to
conduct experiments. Internet of Things (IoT) and cloud-based technologies are emerging

as a solution to remotely access physical hardware, enabling researchers to make their

!This chapter is based on work by the author, Varun Balan, and Giri Venkataramanan in [149]. This
work was supported by the Wisconsin Electric Machines and Power Electronics Consortium. The commu-
nity meeting at Holyoke, MA was in collaboration with a team at the University of Massachusetts Amherst
and was a part of a larger project undertaken by their team [150].
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hardware experimental platforms available through a hardware-as-a-service model [152].
Leveraging cloud computing services also offers multiple advantages such as rapid infras-
tructure deployment and modification, automated failure recovery, scalability, security,
cost efficiency, and use of artificial intelligence and machine learning insights [153].
Various IoT and cloud-based software have been used in experimental platforms for
microgrids, smart grids, and energy management. These include out-of-the-box IoT prod-
ucts developed for hobbyists, makers, and educators such as Mathworks ThingSpeak [154],
Arduino Cloud [155], and ThingsBoard [156]. A simple cloud dashboard, developed using
ThingSpeak, for the Picogrid platform was presented in [128]. While such out-of-the-box
solutions are developer-friendly and do not require extensive experience in cloud soft-
ware development, they do have some notable drawbacks. Firstly, they involve high fixed
costs, meaning users must pay a predetermined fee regardless of their actual usage lev-
els. Furthermore, these solutions impose limitations on customization, data transfer rates,
and data storage. These constraints hinder their effectiveness in enabling the underlying
hardware to be offered through a hardware-as-a-service model. On the other hand, using
software from cloud service providers such as Microsoft Azure [157], Amazon Web Ser-
vices [158], and Google Cloud [159] to build custom solutions from their suite of services
offers greater flexibility and scalability. In this work, we present a customized solution de-
veloped using services offered by the cloud service provider, Microsoft Azure, and the IoT
platform, Particle Cloud, that makes remote access to the Picogrid [128] more affordable

and user-friendly.

10.1.1 Contributions

We make the following contributions beyond prior work. First, we present a custom
cloud dashboard developed using services from Microsoft Azure and Particle Cloud for
the Picogrid hardware. Its features include (1) remote monitoring of sensor data, (2)
sending setpoints to control the hardware, and (3) secure authorized access, enabling re-

searchers and educators who build the Picogrid hardware to offer it for virtual remote
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experimentation through a hardware-as-a-service model, which was not possible using the
platform in [128]. This allows users, without the resources to build the hardware, to
access it remotely for a desired duration. It enables them to focus on validating their
models in hardware without spending time and resources on setting up the infrastructure.
Next, we demonstrate the utility of the dashboard through three experiments: (1) smart
solar home system (experiment conducted on on-campus hardware by two third-party
users from an off-campus location), (2) virtual power plant (a hardware-in-the-loop ex-
periment demonstrating aggregate control), (3) demand response (a hardware-in-the-loop
experiment conducted with hardware at two different locations by two third-party users
in conjunction with a simulation model running at a third location). The cloud dashboard

software is made publicly available through the Picogrid GitHub repository [146].

10.1.2 Organization

Section 10.2 discusses the architecture and pricing of the custom cloud dashboard, Section
10.3 presents experimental results, Section 10.4 presents a real-world example of how
the Picogrid platform was used in a community workshop, and it is followed by a brief

concluding section.

10.2 Platform

10.2.1 Overview of the Picogrid platform

We first present a brief overview of the Picogrid platform presented in [128] (and Chapter
9). The Picogrid platform consists of three layers: Pico boards, cloud dashboard, and a
remote node. The Pico boards are 77 x 5” circuit boards, each representing a prosumer
entity such as a household in a community microgrid. As shown in Figure 10.1, each
Pico board contains an on-board cell for energy storage, two source channels, three load
channels, and an import and export channel to exchange energy with other Pico boards.

A Wi-Fi enabled microcontroller (Argon by Particle) is used to implement local energy



Figure 10.1: Photograph of a Pico board, highlighting important components
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management, read on-board sensor values, and communicate with the cloud dashboard.

Channels have a power semiconductor that can be controlled using pulse-width modulation

to implement custom power profiles. Source channels are connected to an external dc power

supply. The remote node is any computer system with an internet connection and can

represent a microgrid operator, aggregator, or load serving entity. The cloud dashboard

acts as a data transfer system between the remote node and Pico boards. This work

presents a custom cloud dashboard designed to address the flexibility and cost limitations

of the out-of-the-box dashboard discussed in [128].
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Figure 10.3: Screenshot of Data Retrieval Page: Waveform of selected quantity (PV Volt-
age) during the selected interval (14:00-14:55 May 14, 2024) from the selected board (Co).

10.2.2 Custom Cloud Dashboard

In this section, we describe the new custom cloud dashboard proposed in this work. The
requirements from the cloud dashboard are: (1) extract data from the hardware platform
between specific time frames in which users run their experiments, (2) send setpoints from
the dashboard to the hardware with minimal latency to allow dynamic changes during
experiments, (3) secure access to the dashboard to prevent unauthorized third-parties

from sending setpoints or accessing sensor data.

10.2.2.1 Architecture

As seen in Figure 10.2, Azure IoT Hub is used as the bridge between the Wi-Fi enabled

microcontrollers on Pico boards and Microsoft Azure Storage Blobs (cloud data storage).
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Figure 10.4: Screenshot of Setpoint Input Page for selecting threshold levels for Photo-
Voltatic (PV) and Utility Source (US) channels, import (IM) and export (EX) channels,
and load channels (Load 1 to 3)

The microcontrollers are configured to read sensor data on the Pico boards and send to
Azure IoT Hub at each timestep. The length of the timestep, i.e., the resolution of data,
can be chosen based on user requirements and budget. The smallest timestep supported
by Particle microcontrollers is one second. The custom web dashboard was built with
Python and the Flask web framework for users to interact with the Picogrid platform.
The application was hosted on the web using Azure App Service. Only authorized users
are allowed to access the dashboard and security configurations can be set as desired.
Figure 10.3 shows the data retrieval page of the dashboard. The application pulls data
from Azure Blob Storage based on user filters of start/end date (the time duration allotted
to them for running experiments) and the specific instance(s) of Pico boards assigned to
them. Users can choose to plot data from specific sensors and download data in CSV
format for further processing. The application also allows sending setpoints to control the
operation of the Picogrid platform directly using an API token and sending an HTTP
POST request to the Particle microcontroller using the Particle Cloud Functions feature.
The maximum supported frequency is 10 requests per second. For example, if the user
wants to implement a threshold-based load control scheme for dc microgrids, as presented
in [43], the control setpoint for each load and source channel is a threshold in terms of the
on-board cell’s state of charge (soc). A source channel is switched on if the soc is less than
its threshold, and is otherwise switched off. On the other hand, a load channel is switched
on if the soc is greater than its threshold, and is otherwise switched off. Figure 10.4 shows

the page of the dashboard which can be used to send thresholds as control setpoints for
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each channel. The proposed solution allows multiple users to access the cloud dashboard
simultaneously, with each user being able to access data from the Pico boards assigned to

them during their allotted experiment time frame.

10.2.2.2 Pricing

There are four services that are used to create the cloud dashboard and can be billed ac-
cording to use, with each having a “freemium” model. This offers flexibility, customization,
and cost savings since users can choose which tiers to purchase in each service according
to their use cases.

i) Azure IoT Hub: The Azure IoT Hub pricing depends on (1) the number of devices
connected to the IoT Hub, (2) the frequency of sending data from the boards to the IoT
Hub, and (3) the size of each data packet sent (message meter size). In the free tier pricing
of IoT Hub, up to 500 devices can be connected. There is a daily limit of 8000 messages
(for all the devices combined) with each having a meter size of 0.5 KB. In case the limit
of 8000 messages is not enough, buying a higher tier of Azure IoT Hub for $10 per month
would allow 400,000 messages per day with a 4 KB message size.

ii) Azure Blob Storage: The Azure Blob Storage offers scalable data storage in the cloud.
Pricing in the default tier is $0.018/GB of data per month.

iii) Particle Cloud: For sending setpoints to Pico boards using Particle Cloud Functions,
there is a limit of 100,000 data operations (function calls) per month in the free tier which
can be upgraded if necessary.

iv) Azure App Service: The cost associated with the web server to host the application
using Azure App Service is about $10 per month.

In our Picogrid hardware setup, there are 3 Pico boards each with 13 sensors collecting
data at about every 15 seconds. The boards are typically used for 3 hours everyday. The
free tier of Azure IoT Hub and Particle Cloud is sufficient for our hardware requirements.
Storing one year of data collected from the setup in Azure Blob Storage will cost under

$0.02 annually. The web server to host the application costs about $10 per month. There-
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fore, the total costs associated with the cloud dashboard have been limited to less than
$121 per year, of which $120 is just for hosting the web application. Hosting it on a local
server would eliminate this cost, and the annual cost of the data pipeline would be under
$1. On the other hand, the academic research license of ThingSpeak (out-of-the-box plat-
form used in [128]) has a fixed cost of $275 per unit per year (all prices as of May 2024).
Although ThingSpeak offers a plug-n-play platform, our custom cloud solution provides a
more cost-efficient alternative that scales according to the usage levels. Furthermore, our

solution enables creation of custom web dashboards to suit the needs of the end users.

10.3 Experimental Results

This section presents three experiments that demonstrate use cases of the proposed cloud
dashboard integrated with the Picogrid platform. Two of these experiments involve third-
party remote users. For each experiment, we outline the learning objectives, i.e., what
students or researchers are expected to gain, followed by a detailed description of the
experimental setup and a discussion of the results. The power ratings of the channels on
the Pico boards used are: Source channel — 1 pu, Load channel — 0.37 pu. The cell has an
energy capacity of 12.24 pu. The per unit base quantities are: voltage = 5 V, current =

0.5 A, energy = 1 Wh.

10.3.1 Smart Solar Home System

The aim of the experiment is to demonstrate the operation of a smart solar home system.
It was conducted on on-campus Pico boards by two remote third-party users using the

cloud dashboard.

10.3.1.1 Learning Objectives

The target student group for this experiment is senior undergraduate students. The learn-
ing objectives of the experiment are: (1) Explain smart charging methods, for a house with

rooftop solar and battery storage in order to reduce the electricity purchased from the grid,
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(2) Distinguish between critical and non-critical loads, (3) Demonstrate a smart charging

scheme for a house with rooftop solar and storage modeled on the Picogrid platform.

10.3.1.2 Setup

The users were given remote access to one Pico board each for the duration of the experi-
ment. The experiment duration was 20 minutes, with the first half representing “daytime”
and the second half representing “nighttime”. On each board, both source channels were
connected to a 1 pu dc voltage source. Source channel 1 was programmed to emulate
a real-world rooftop solar PV power profile from the Pecan Street Dataset [118] using
pulse-width modulation. Source channel 2 was set up to emulate a constant-power bat-
tery charger connected to the grid. Load 1 and Load 2 were assigned to be critical and
non-critical respectively. Load 3 was not used in this experiment. The objective was to
use solar when present and draw power from the grid-connected charger in other times,
to charge the battery and supply loads. The non-critical load was to be curtailed during
nighttime to minimize demand when solar was not available. The users were asked to
meet these objectives by observing the sensor data on the data retrieval page, determining
appropriate thresholds for each source/load channel, and sending them via the setpoint

input page on the cloud dashboard.

10.3.1.3 Results

Results from one user are shown in Figure 10.5. We can observe that during “daytime”
(until minute 10), the user turned off the charger while solar input was available. During
“nighttime” (after minute 10), the user curtailed the non-critical load, reducing the total
demand, and turned on the charger to charge the battery. The experiment highlights
how the Picogrid platform, in conjunction with the proposed custom cloud dashboard,
can be used as a virtual laboratory by off-campus students. Remote users can use more
complex tools on their computer systems, such as machine learning for solar forecasting

and optimization solvers for optimal actuation of loads, to generate better setpoints for
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Figure 10.5: Demonstration of a smart solar home system, where 20 minutes are mapped
to a full day. Remote users managed sources (top: solar or from charger input) and loads
(bottom) according to solar PV availability.

further minimizing the electricity purchased from the grid.

10.3.2 Virtual Power Plant

The aim of this experiment is to illustrate tracking control for the operation of a virtual
power plant (VPP). A VPP consists of an aggregator controlling a set of distributed energy
resources (DERs) to match the bulk power system’s needs [160]. The Picogrid platform
includes a MATLAB Simulink and PLECS-based model of the Pico board, allowing for
scaling by addition of software-based boards alongside the physical boards for a hardware-

in-the-loop experiment. We present such an experiment below.

10.3.2.1 Learning Objectives

The target audience is graduate students and researchers. The learning objectives are: (1)
Demonstrate the operation of a VPP using Pico boards (combination of physical boards
and software models) to emulate households, (2) Implement a tracking control scheme to
enable the Pico boards to track a target control signal, (3) Analyze the results to determine
the tracking error and reflect on features necessary for developing models that accurately

represent real-world systems.
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Figure 10.6: Sketch of VPP experimental setup illustrating hardware and simulated Pico
boards, aggregator, cloud dashboard

10.3.2.2 Setup

As shown in Figure 10.6, the experiment had 5 Pico boards, 2 in real hardware and
3 modeled on a remote node using MATLAB Simulink and PLECS, each with three
constant-power loads, rated at at 0.37 pu each. The aggregator was modeled in Simulink
and computed thresholds to actuate loads in each real and modeled board for tracking a
target control signal. The aggregator communicated these thresholds to the real boards
via HT'TP POST requests and to the modeled boards through a simultaneously running
real-time simulation. For running real-time simulations in Simulink, there are broadly two
options: Simulink Real-Time (SLRT) and Simulink Desktop Real-Time (SLDRT). SLRT
supports high sampling frequencies (greater than 20 kHz) and needs dedicated real-time
hardware, e.g., Speedgoat systems, which can be expensive. On the other hand, SLDRT is
suitable for low sampling frequencies (less than 20 kHz) and can run on a desktop computer
without additional dedicated expensive hardware. Since we assume that the VPP provides
tertiary control services, the tracking signal is not expected to change faster than the order
of minutes and the response time from the Pico boards can be of the order of seconds.

Therefore, we chose to use SLDRT to conduct the real-time simulation.
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Figure 10.7: VPP operation: Power consumption of a combination of hardware and sim-
ulated Pico boards was coordinated to track a target signal

10.3.2.3 Results

Figure 10.7 shows the target control signal and actual aggregate power consumption of
the Pico boards. The tracking signal has three levels, corresponding to one, two, and
three loads being turned on on each board respectively. It is observed that the aggregate
consumption tracks the target closely. The root mean squared percentage error (RMSPE)
between the target and the actual aggregate power consumption is 9.6 %. Furthermore,
the actual signal has a non-zero response time when there are changes in the tracking
signal and has a positive offset. These artifacts, introduced due to hardware factors such
as sensor calibration and communication delays, can be useful for encouraging students
to reflect on features necessary for developing simulation models that model real-world
phenomena more accurately.

Demonstration of more complex and scalable aggregate control schemes for tracking
control in virtual power plants can be implemented using this setup in conjunction with
SLRT and dedicated real-time hardware for high frequency sampling times. The custom
cloud dashboard can enable researchers at different locations to concurrently conduct

experiments on an aggregation of real and modeled Pico boards.

10.3.3 Demand Response

The aim of this experiment is to illustrate different demand response (DR) programs.
We present a hardware-in-the-loop experiment conducted by two third-party users, with

a Pico board each, in two different locations, in conjunction with a real-time simulation
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running on a system at a third location. We demonstrate how the cloud dashboard enables
students and researchers, who are not physically co-located, to participate in experiments

with their custom-built Pico boards and simulation models.

10.3.3.1 Learning Objectives

The target audience is graduate students, senior undergraduate students, as also potential
DR customers participating in energy awareness programs. The learning objectives are:
(1) Explain the differences between price-based and incentive-based DR programs, (2)
Design an optimal load schedule for participating households to minimize energy costs
and user inconvenience, (3) Implement the load schedule using the Picogrid platform, (4)

Reflect on the barriers for households to participate in such programs.

10.3.3.2 Setup

The 24-minute experiment emulated a 24-hour day. The setup of the experiment is illus-
trated in Figure 10.8.

i) DR programs: The utility, modeled in Simulink, was assumed to serve an energy commu-
nity and offered two DR programs: price-based and incentive-based [161]. For a household
on a price-based DR program, the price of electricity was 50 ¢/kWh between 4 p.m. to
9 p.m. (on-peak period) and 27 ¢/kWh at other times (off-peak period). For a household
on an incentive-based DR program, the utility could execute direct load control for a max-
imum of 1 event lasting 4 hours daily. The price of electricity in this program was constant
at 33 ¢/kWh and if the user chose to participate in this program, they would receive a bill
credit of 60 ¢/day. The utility generated a 4-hour-ahead demand forecast for the energy
community on an hourly basis, and called the DR event once the forecast exceeded a given
threshold. In order to generate data for this forecast, we aggregated electricity usage data
for 336 days for a household from the Pecan Street dataset [118].

ii) Pico boards: Two third-party users were given one hardware Pico board each, were

located in two different buildings on campus with their assigned board, and actuated loads
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on the board using the custom cloud dashboard. Pico board 1 was on the price-based DR
program while Pico board 2 was on the incentive-based program. Two loads on the Pico
boards were used: Load 1 represented a 3 kW HVAC system and Load 2 represented a
6 kW electric vehicle charger (EV). Additionally, there were 5 Pico boards, modeled using
MATLAB Simulink and PLECS, that were assumed to be enrolled in the price-based DR
program. These boards along with the utility were simulated using SLDRT on a system
in a third location on campus.

iii) Home energy management: The objective of each user was to minimize the cost of
electricity while meeting the following constraints: (1) The HVAC system was required to
run for about 8 hours and the EV charger for about 4 hours (a soft constraint representing
user comfort), (2) Both loads could be interrupted, i.e., they could be cycled on and off
multiple times, (3) The user was assumed to take the EV to work between 7 a.m. and
2 p.m. Therefore, they could not turn a load on/off during this time. The 5 Pico boards
modeled in software did not have dedicated energy managers and were used as a baseline
case. They were modeled to have random start times for both loads while meeting the

above constraints.
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Figure 10.8: Sketch of DR experimental setup illustrating hardware and simulated Pico
boards, third-party users, utility, cloud dashboard

10.3.3.3 Results

Figure 10.9 shows plots of the power consumed by loads on the two physical Pico boards.

The time and power scaling factors between the experiment and the emulated system are
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1 min : 1 hour and 1 pu : 6 kW respectively. Pico board 1 was enrolled in price-based
DR. Therefore, the user chose to run the HVAC system for about 8 hours before 4 p.m. to
pre-cool the house and use the EV charger for over 4 hours after 9 p.m. Pico board 2 was
enrolled in the incentive-based DR program. Therefore, when the load forecast exceeded
the assigned threshold (at 4 p.m.), the utility called a demand-response event and both
its loads were turned off via direct load control. The user chose not to override the event
and turned the loads back on after the 4-hour event was over, with the total run time of
the HVAC and EV loads being just under 8 and 4 hours respectively. The electricity bill
incurred by Pico boards 1 and 2 was $13.44 and $13.60 respectively, while the average
cost incurred by boards modeled in software on the price-based DR program without
any energy management was $15.34. This illustrates the need for managing energy usage
according to time-of-use pricing schedules.

Various DR programs and pricing schemes can be implemented using this setup,
through a combination of hardware and software Pico boards participating in a hardware-
in-the-loop experiment from different locations. Instructors can use this platform to fa-
cilitate conversations among students around barriers to participation in such programs.
For example, households working long hours may not be at home to defer load usage when
electricity prices are low and may not be able to afford home automation devices [162].
Researchers can use the platform to educate community members about DR, and gather
their inputs in informing equitable design of such programs, as discussed in the follow-
ing section. In this way, the platform enables a holistic understanding of energy access

problems and solutions.
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Figure 10.9: Top: User of Pico board on price-based DR reduced consumption during
on-peak period between 16:00 and 21:00. Bottom: User of Pico board on incentive-based
DR participated in direct load control during DR event from 16:00 to 20:00

10.4 Demonstration of Demand Response at a Community

Workshop

This section briefly presents how the Picogrid platform was used for demonstrating demand
response during a community workshop in Holyoke, MA. This demonstration was a part of
a larger project by a team of researchers at the University of Massachusetts Amherst that
aims to co-design equitable residential electrification solutions using community-engaged
research [150]. The workshop had about 20 participants who have been a part of monthly
meetings organized by the UMass project team. The goal of the team was to conduct
three activities: (1) demonstrate a generation-demand mismatch leading to a blackout in
order to present the need for demand response (DR), (2) demonstrate an incentive-based
DR scheme, (3) demonstrate a price-based DR scheme. Through these activities, the team
aimed to get inputs from the participants about their concerns and needs around partic-
ipation in such DR schemes. The Picogrid platform was used as one of the educational
tools to conduct the activities.

Figure 10.10 shows a photograph of a workshop facilitator showing a Pico board to
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Figure 10.10: Photograph of a workshop facilitator showing a Pico board to participants

the participants. Pico boards were used to emulate households and were placed with the
participants at their tables. The utility was emulated on a remote node (a laptop computer
set up at the front of the room) operated by the author. The cloud dashboard was rendered
on a display monitor to show total power consumption of loads on the Pico boards. As
shown in Figure 10.11, the educational tools used at the participant tables included a Pico
board, 3D printed models of three appliances (refrigerator, air conditioner, light bulb)
represented by the three loads on the Pico board, and a device mat. The participants
kept an appliance on the green part to indicate that they wanted to turn it on, i.e., not
compromise on using it when necessary, while they kept it on the red part to indicate that
they would be agreeable to turning it off. Participants seated at the same table had to
make a unanimous decision about which appliances to turn on and which ones to turn off
through their participation in incentive-based/price-based DR schemes.

The team observed that community members actively participated in the activities and
engaged with the Picogrid platform. These hands-on activities facilitated interesting table
discussions about potential challenges in keeping certain loads off, the amount of incentives
needed to encourage participation, and potential savings on bills. This illustrates the

potential of using the Picogrid platform in various community energy awareness programs
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Figure 10.11: Photograph of the educational toolkit consisting of a Picoboard, 3D printed
models of three appliances, and a device mat. Participants used the green area of the mat
to indicate turning a device ON and the red area to indicate turning it OFF.

and workshops, in addition to academic research and coursework.

10.5 Conclusion

This study presents a custom cloud solution for remote access to a microgrid hardware
platform. It enables the hardware to be made available for concurrent remote access by
multiple users worldwide through a hardware-as-a-service model. It also enables edu-
cators to make hardware experimentation accessible to students who cannot be present
on-campus, e.g., during times such as the COVID-19 pandemic, and for distance educa-
tion programs. It allows for a more streamlined, secure, and cost efficient way to use the
hardware platform as compared to using an out-of-the-box IoT solution. Future work in-
cludes enhancing data security through end-to-end encryption and further customization
such as sending SMS/email alerts if variables exceed predefined bounds. In this study,
the custom cloud solution was presented in conjunction with the Picogrid, a low-power
experimental platform. The solution is hardware-agnostic and can be used with larger,

high-power ac/dc setups, as well as non-electrical systems.
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Chapter 11

Conclusions, Contributions, and

Future Work

The work presented in this thesis develops energy access frameworks for resource-constrained
environments. It proposes using a holistic approach, based on a combination of community-
engagement and traditional power engineering research tools of analytical modeling, math-
ematical optimization, simulation, and hardware prototyping, for identifying and meeting
the needs of energy poor and energy insecure households. Part I presents field experi-
ences in three contexts: energy access in off-grid rural communities, energy resilience for
individuals dependent on in-home medical devices, energy access for people experiencing
homelessness. It outlines the constraints and heterogeneous requirements of the environ-
ments such as resilience to intermittent remote communication, compatibility with locally
available heterogeneous hardware, affordability, and agreement with sociocultural elements
of the community. Part II presents the threshold-based energy management framework as
a candidate solution for reliable energy access in resource-constrained settings. It presents
a proof of stability of entities operating using this framework and demonstrates the ap-
plication of this framework to community-scale microgrids through numerical simulations
and a hardware-in-the-loop experiment. Part III presents a tool to choose thresholds using

mathematical optimization and demonstrates the application of the framework to effec-
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tive energy rationing for prepaid electricity customers. The presented optimization models
have minimal requirements for additional hardware, demand forecasts, and remote com-
munication, making them suitable for low-income customers. Part IV presents a low-cost
experimental platform for hardware validation of energy access frameworks. It lowers the
barrier for energy researchers and educators to conduct hardware experiments. It presents
a cloud dashboard for remote access to this platform that enables the platform to be
made available through a hardware-as-a-service model for remote researchers, educators,
and students.

The following sections of this chapter present the conclusions and contributions, and

identify pathways for future work.

11.1 Conclusions and Contributions

11.1.1 Part I: Field Experiences

e Energy Access and Off-Grid Rural Communities: A framework for energy usage in
an off-grid rural household based on the energy hub paradigm is developed. This
can help to reduce indoor air pollution and the dependence on fossil fuels as primary
energy sources.

e Energy Resilience and Home Healthcare: The largely unexplored intersection of
energy resilience and home healthcare is identified. A load scheduler for in-home
medical devices is developed with the goal of extending the time for which medically
fragile families can comfortably shelter at home during a power outage. A proposal
for a comprehensive study to understand the energy requirements of this community
is presented.

e Energy Access and Homelessness: The need for energy access solutions for people
experiencing homelessness is recognized. An electric Little Free Library (eLFL) was
co-designed with the community and deployed at two locations, leading to legislative

change in the zoning code of the City of Madison, legalizing the use of such struc-
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tures in multiple districts. The project has generated documentation that can act
as a roadmap for community engagement, engineering, and legislation which can be
useful for other cities and communities. It has initiated multiple student-led projects
focused on optimally locating eLFLs, involving middle school students and commu-
nity partners in prototype development, and has attracted funding for deploying

prototypes.

11.1.2 Part II: Threshold-Based Energy Management

e Stability Study: A proof for stability of prosumer entities using threshold-based
energy management with time-invariant parameters is presented. Rules for operat-
ing entities and interconnecting them are presented and illustrated using numerical
simulations.

e Application to Community-Scale Microgrids: A tertiary layer controller is overlaid
on the threshold-based energy management framework in order to meet the multi-
objective nature of the load scheduling problem in each participating entity. This is

validated through numerical simulations and a hardware-in-the-loop experiment.

11.1.3 Part III: Optimized Threshold-Based Energy Management

e Energy Management for Prepaid Customers: The largely unexplored space of home
energy management for low-income prepaid electricity customers is identified. A
mixed-integer linear program-based model for optimizing thresholds is developed
to aid in effective energy rationing for prepaid electricity customers. The numeri-
cal simulation case study demonstrates that the framework incorporating optimized
thresholds outperforms both a baseline without energy management and a method
with control thresholds fixed solely on load priority information. Specifically, the
proposed method prioritizes higher priority loads and prevents unexpected discon-
nections by curtailing lower priority loads.

e Addressing Imperfect Forecasts and Implementation Constraints: A simpler linear
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optimization-based model is used to generate optimized thresholds. It can be solved
to optimality without an optimization solver and needs only daily average demand
forecasts. The proposed model has comparable or improved performance compared
with that of the MILP model benchmarks, while being computationally inexpensive.
Consequently, it can be implemented on inexpensive local in-home hardware, as val-
idated by implementing it on a low-cost 8-bit microcontroller, which is advantageous

for privacy and cybersecurity.

11.1.4 Part IV: Picogrid

e Picogrid: An Experimental Platform for Prosumer Microgrids: The Picogrid plat-
form is developed as a low-cost sandbox for hardware validation of energy access
frameworks and for energy education. It lowers the barrier to entry for energy re-
searchers into hardware validation.

e Custom Cloud-Based Solution for Remote Access to the Picogrid: A cloud-based
solution which is a more streamlined, secure, and cost efficient way of accessing the
Picogrid hardware as compared to a previously used out-of-the-box IoT solution
is developed. It enables the hardware to be made available for concurrent remote
access by multiple users worldwide through a hardware-as-a-service model. It also
allows educators to provide hardware experimentation opportunities to students who
are off-campus, such as during the COVID-19 pandemic or in distance education
programs. A real-world use case of the Picogrid platform for community education

is presented.

11.2 Future Work

11.2.1 Threshold-Based Energy Management

This part presented a proof of stability for entities with time-invariant parameters, i.e.,

constant thresholds and constant-power loads and sources. Since real-world systems can
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have time-varying power draw by loads and power input by sources while thresholds can
change depending on user demand and load priorities, stability studies for entities with
time-varying parameters is required. Further, studying the stability of multiple intercon-

nected entities (e.g., to form a microgrid) would be useful.

11.2.2 Optimized Threshold-Based Energy Management

The presented models assume a constant electricity rate. Incorporating time-varying rates
in the models will increase their scope to include utility programs that offer time-of-use
pricing. In order to extend optimized threshold-based energy management to solar home
systems, it will be necessary to consider simultaneous power draw from loads and input
from sources (solar PV, wall charger). Furthermore, it will be interesting to explore
using threshold-based energy management for managing thermostatically controlled loads

considering weather forecasts.

11.2.3 Picogrid

The platform can be extended to incorporate ac import/export between Pico boards in
order to increase the scope of experiments it can support. Piloting the platform in classes
on topics such as microgrids, energy markets, and DERs will help to identify necessary
additional features and use cases. The platform can be developed into an energy literacy
toolkit for workshops targeted towards various communities such as outage preparedness
for medically fragile families, introducing stakeholders to different electricity tariff schemes,

and power grid education for high school students.

11.2.4 Broader Questions

This section outlines studies that can be undertaken to investigate the broader questions

that have come up through the course of this work.

Energy resilience and medically fragile families: To further study the intersection
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of energy resilience and home healthcare, the proposed table-top exercise can be con-
ducted. According to its findings, plug-n-play home energy backup systems with adequate
capacity can be designed and lab prototypes can be developed. Working with end-users
to incorporate their feedback and iterating through multiple versions would be essential.
By partnering with engineering and medical-grade technology vendors, deployment-ready
prototypes can be developed and tested through a pilot. In addition to providing energy
backup during outages, these solutions can be designed to participate in demand response
programs and help end-users save on their energy bills. Furthermore, this can be accom-
panied by energy literacy programming to increase awareness about day-to-day energy
use and energy backup requirements. This research has the potential to have far-reaching
impact ranging from better health outcomes for such individuals, to improving emergency

response during outages and reducing emergency room admits.

Threshold-based energy management for multi-energy systems: Systems at the
“grid edge”, such as residential and commercial entities, can consist of multiple energy
storage and carrier systems, like EVs, batteries, and micro-CHP plants. These systems
can be modeled as multi-energy systems (MES). For low-income households without such
expensive assets, it can be promising to explore MES modeling using proxies for energy
storage, such as an energy budget (the amount of money they can spend on energy), a time
budget (the amount of time they can spend on manually doing tasks which can be done
using electric appliances; this is also a measure of the time that could have been spent on
employment or education). An energy management framework enables households to make
decisions such as scheduling loads, participating in demand-response, and choosing elec-
tricity rate plans, while ensuring effective utilization of their resources. Threshold-based
energy management is a candidate framework for single-energy carrier systems, such as,
battery storage and prepaid wallets. The framework ensures operational sufficiency at
each household using simple local computation resources without remote communication.

The framework is suitable for use with heterogeneous local hardware and is resilient to
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intermittent remote communication. In order to extend this control framework to MES,
the following questions can be explored: how to define thresholds when there are multi-
ple energy carriers, how does computation of optimal setpoints scale with the number of
households, what are the effects on system stability when households interconnect to form
a network and exchange energy. Further, applications of this framework to multi-energy

carrier transportation systems such as hybrid electric cars and aircraft can be explored.

Energy management for low-income households: The increasing investments in
grid infrastructure to adapt to extreme weather and to meet increasing demands due to
data center loads is expected to increase electricity prices. Furthermore, if low-income
households are switching from gas-powered appliances like furnaces to cleaner alternatives
like heat pumps, their electricity requirements will further increase. In order to help
such households prioritize between using different loads and effectively manage a limited
energy budget, it is necessary to build technology-driven solutions. By partnering with
households on energy assistance programs, their energy usage data can be recorded and
qualitative requirements can be understood through interviews and workshops. A variety
of energy management solutions that range from highly intrusive and expensive smart
switches for automatic device actuation to minimally intrusive and low-cost smart phone
apps that notify users to switch devices on/off can be explored. A combination of off-
the-shelf components and lab prototypes can be used to develop the candidate solutions,
incorporating feedback from the end-users at each stage. The use of machine learning
for generating forecasts and generative Al for energy education and awareness can be
explored. Field deployments can help validate their use cases. This research can help
to inform energy assistance programs, utility policies for disconnections, participation in
virtual power plants, in addition to improving user experience and health outcomes for

such households.
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Summary

Reliable electricity access is crucial for fostering and promoting human development across
emerging and developed economies. As we transition towards decarbonization, digitiza-
tion, and decentralization of energy, it is essential that the transition is rooted in equitable
access. Moreover, the developed energy access solutions must be context-aware, address
the nuanced requirements of the end-user, and operate effectively in diverse, resource-
constrained environments. This necessitates interdisciplinary translational research that
extends beyond power engineering, incorporating community-engaged scholarship, energy
policy, and other relevant disciplines.

This thesis aspires to be a roadmap for developing energy access solutions in resource-
constrained environments through inter-disciplinary holistic approaches. It can serve as
a guide for the power engineering community to engage with community partners, pol-
icymakers, and other stakeholders to distill technical questions from complex real-world
problems and develop solutions that have the potential for tangible real-world impact.
The work is a significant enabler for addressing the challenge of Sustainable Development

Goal 7: “Ensure access to affordable, reliable, sustainable and modern energy for all”.
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