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Energy Access in Resource-Constrained Environments

Maitreyee Sanjiv Marathe

Abstract

Reliable access to electricity is critical to advancing human development. It is esti-
mated that about 3.5 billion people globally have unreliable or no access to electricity.
This issue stems from a lack of access to modern energy services, or limiting one’s en-
ergy use due to socioeconomic constraints. It affects households in both emerging and
developed economies, and is expected to worsen because of climate change and rising
electricity prices. Designing equitable energy access frameworks for such environments is
challenging because of diverse constraints and requirements such as resilience to intermit-
tent remote communication, compatibility with locally available heterogeneous hardware,
affordability, and agreement with sociocultural elements of the community. This necessi-
tates inter-disciplinary research beyond the scope of traditional power engineering tools.
This thesis focuses on developing technology-driven solutions for residential energy access
in such resource-constrained environments.

The thesis proposes a holistic approach that involves (1) identifying complex problems
through community-engagement, (2) distilling technical questions, (3) developing solu-
tions using power engineering research tools such as analytical modeling, mathematical
optimization, numerical simulations, and hardware prototyping, (4) deploying the solu-
tions through pilots, and (5) disseminating findings through energy education platforms.
First, it presents findings from field experiences that illustrate this workflow in diverse
environments including energy access in off-grid rural communities, energy resilience for
individuals dependent on in-home medical devices, and energy access for people experienc-
ing homelessness. Next, the thesis proposes optimized threshold-based energy management
as a candidate framework for energy access in such resource-constrained environments.
Specifically, the proposed framework is developed in the context of energy management
for low-income prepaid electricity customers. The framework shows comparable or im-
proved performance when compared to benchmarks as validated through numerical simu-
lations using real-world energy usage data. Additionally, it does not need frequent remote
communication, detailed demand forecasts, or expensive custom hardware as validated
by implementing it on a basic low-cost microcontroller. Furthermore, the thesis proposes
Picogrid, a low-cost hardware platform for energy research and education, and presents its
use cases in real-world settings. The platform lowers the barrier to entry into hardware
validation for energy researchers and can be used to develop an energy literacy toolkit for
energy awareness and education. Finally, directions for future work are identified. This
thesis aspires to be a roadmap for developing equitable energy access solutions through
holistic approaches.
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Chapter 1

Introduction

1.1 Motivation

Access to a reliable electricity supply has been shown to play a vital role in supporting

and advancing human development across emerging and developed economies [1–3]. The

seventh sustainable development goal (SDG) proposed by the United Nations as a part

of its 17 SDGs under the 2030 Agenda for Sustainable Development [4] is “Ensure access

to affordable, reliable, sustainable and modern energy for all”. In 2022, there were about

685 million people in the world without access to electricity [5]. The definition of “access

to electricity” used by international statistics is “having an electricity source that can

provide very basic lighting, and charge a phone or power a radio for 4 hours per day” [6].

Access to electricity does not necessarily ensure reliability of supply. Using the definition

of a “reasonably reliable” supply as “a maximum threshold of 12 outages in a typical year

and 12 hours of power outage per year”, a 2020 study [7] estimated that there are almost

3.5 billion people globally without reasonably reliable access to electricity.

The electric utility industry metrics for measuring reliability are System Average In-

terruption Duration Index or SAIDI (“minutes of non-momentary electric interruptions,

per year, the average customer experienced”) and System Average Interruption Frequency

Index or SAIFI (“number of non-momentary electric interruptions, per year, the average

customer experienced”) [8]. However, these metrics do not account for factors like the
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causes of outages or the equity of their distribution across different communities [9]. It

is important to consider such factors that account for the nuanced contexts of the end-

users in order to design energy solutions that are sustainable, reliable, and affordable. A

household may lack reliable access to electricity for various factors, including infrastruc-

ture issues, such as insufficient generation or equipment damage from extreme weather, or

socioeconomic factors, such as unaffordability of services. In this study, the term energy

poverty is used to refer to a lack of energy services due to absent or damaged infrastruc-

ture, while energy insecurity is used to denote the inability to meet energy needs due to

socioeconomic constraints.

Various forms of energy poverty are experienced by households in emerging as well as

developed economies. Emerging economies are working to extend electricity infrastructure

to remote areas through grid expansion or off-grid solutions like microgrids and solar home

systems, though these solutions often encounter reliability challenges [10, 11]. Developed

economies have achieved complete electrification but are experiencing increasing disrup-

tions due to increasing extreme weather events caused by climate change. In the United

States, power outages caused by extreme weather events have doubled in the past decade

and their duration and frequency are at their highest [12]. Similarly, energy insecurity

is prevalent across different parts of the world. Along with outages due to insufficient

solar irradiance and equipment failures, off-grid households served by pay-as-you-go solar

microgrids can face outages when customers run out of energy credits [9]. Grid-connected

customers are disconnected by the utility if they fail to pay bills in time. A million U.S.

households were disconnected across 17 states between March 2020 to April 2021 despite

the moratorium on disconnections due to the COVID-19 pandemic [13]. The U.S. Res-

idential Household Energy Consumption Survey data for 2020 reported that 27% U.S.

households experience some form of energy insecurity [14].

Energy poverty and insecurity are known to disproportionately affect historically un-

derserved and vulnerable communities [15]. It follows that in addition to limitations on the

energy that is available for such households, there are limitations on various factors that



4

potential energy access solutions need to account for. Households may not have sufficient

disposable funds to spend on purchasing residential energy management hardware, such

as smart home energy management systems (HEMS), and to pay for their maintenance.

Rural areas in emerging economies often lack skilled technicians to service equipment.

In remote areas, cellular communication infrastructure is often unreliable. Additionally,

low-income households with overdue energy bills may also have outstanding internet bills.

Consequently, energy access solutions should minimize reliance on frequent remote com-

munication with cloud-based resources for computation. Residential demand is inherently

volatile making it challenging to generate accurate granular forecasts. Ideally, end-users

want a consistent and affordable electricity supply, greater control over their bills, and

more awareness of their consumption. The goal of this thesis is to develop energy access

frameworks, that meet these objectives for end-users, in environments with constraints

on resources such as local computation and maintenance, remote communication, and

demand forecasts.

1.2 Methodology

The first energy transition was driven by the Industrial Revolution and the shift to using

electricity, a more efficient source of energy than wood. Consequently, energy access has

traditionally been approached as a power engineering problem. However, this transition,

heavily reliant on coal and other fossil fuels, led to significant environmental burdens,

with vulnerable communities disproportionately affected by both environmental harms

and unreliable energy access. With the current energy transition from fossil fuel-based

generation to renewable energy sources, distributed energy resources, and digitization, it

is essential that the transition is rooted in equitable access to clean energy. Therefore,

in addition to power engineering tools, it is necessary to adopt a holistic approach to

designing sustainable energy access frameworks.

The works presented in this thesis are based on steps outlined in this holistic approach,

which is adopted from community-based participatory research frameworks [16]. The steps
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Figure 1.1: A holistic approach to power engineering research

in this framework are outlined in Figure 1.1. The first step is to establish a relationship

and a sense of trust with the community of interest. Once the community consents to

participation, the problem identification phase can include field visits and interviews to

understand the context of the community and identify key problems. Next, researchers

collaborate with the community and other stakeholders to identify requirements for poten-

tial solutions. The next step consists of analytical modeling, simulations, and/or hardware

prototyping. Traditional power engineering research has expertise to execute this step but

has often restricted its scope to this step. It is important to recognize the contributions of

the first three steps in informing the problem that is solved by traditional power engineer-

ing research tools. In order to translate this research to real-world impact, the solution

developed through these tools is then deployed through a pilot to gather feedback from

the community. This is an iterative process, i.e., there can be multiple iterations between

different steps before developing a solution that can be scaled. This approach enables

development of solutions that solve community-identified problems, cater to the nuanced

requirements of the end-users, and are therefore more sustainable. Thus, this approach

facilitates translational power engineering research.

The ideas of community-engaged research are reflected in the field experiences pre-

sented in this thesis. Field experiences in the following three contexts significantly con-

tributed to the motivation for the work in this thesis: energy access in rural Indian com-

munities, energy resilience for home healthcare in the United States, and energy access
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for people experiencing homelessness in Wisconsin; these are presented in Part I. These

contexts are chosen since they reflect experiences across diverse environments in emerging

and developed economies. Each context presented a set of unique as well as overlapping

challenges, requirements, and open questions for energy access frameworks. The challenges

that generalize across the three contexts are listed as follows:

• Hardware heterogeneity: The framework has to work with heterogeneous hardware

components including microcontrollers, meters, inverters, chargers, storage devices,

with minimal requirements for additional custom hardware.

• Topology independence: The framework has to work with minimal or no information

about the topology of the electrical network and support ad hoc operation.

• Intermittent remote communication: The framework has to work with intermittent

and slow remote communication infrastructure.

• Multi-objective driven management of limited energy: The framework should sup-

port multiple objectives of each household such as energy expenditure and serving

critical loads.

• Uncertainty mitigation: The framework should reduce the uncertainty of outages

and energy availability for critical needs.

• Hardware experimental platforms: The need for hardware-based experimental veri-

fication was identified, highlighting that the framework should be demonstrated on

hardware platforms to facilitate translation to real-life deployments.

• Energy education platforms: The need for energy education platforms and energy

literacy was identified to facilitate adoption of such frameworks.

The generic framework proposed in this thesis for energy access in resource-constrained

environments, that addresses the aforementioned requirements and challenges, is depicted

in Figure 1.2. The local nodes represent end-users such as households in grid-connected

or off-grid communities. Each local node has basic computation, communication, and

control capabilities and is responsible for the necessary requirement of stable operation of

the entity. The remote node represents a load serving entity with advanced computation
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capabilities, such as a remote server of an electric utility or microgrid operator. It is

responsible for the desirable requirement of optimal operation of all entities.

For reliable operation of a local node irrespective of the state of communication infras-

tructure, local nodes need to be primarily responsible for their own operational stability,

i.e., decision-making at the local level should not have the remote node in the critical path,

but the remote node can inform local decision-making through set points communicated

on a slower timescale. Therefore, simple computation, control, and communication hard-

ware at the local nodes is necessary. The local hardware is limited by the aforementioned

constraints such as purchasing power of the end-users and access to skilled technicians for

maintenance.

Figure 1.2: Simple local nodes interacting with the remote node

1.3 Document Organization

Part I of this thesis presents field experiences utilizing the workflow summarized in Fig-

ure 1.1. Parts II, III, and IV focus on traditional modeling, simulation, and hardware

prototyping steps of the workflow, proposing frameworks that adhere to the overarching

architecture and theme of the generic framework shown in Figure 1.2. A literature review

focused on the specific environment targeted by each part is included within the respective

chapters. Although Parts II, III, and IV design frameworks for environments that may

differ from those in Part I, some requirements overlap across these environments while also

presenting unique challenges. Table 1.1 shows the mapping between the questions iden-

tified in Part I that generalize across environments and are addressed by investigations

presented in Parts II, III, and IV of this thesis.

Part I presents field experiences in three contexts, and they are organized into the
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Table 1.1: Research questions and methodology mapping

Research questions Part II Part III Part IV

hardware
heterogeneity

× ×

topology
independence

×

intermittent remote
communication

× ×

multi-objective
driven limited
energy management

×

uncertainty
mitigation

×

hardware
experimental
platforms

×

energy education
platforms

×

following chapters.

• Chapter 2 – energy access in off-grid rural communities in India

• Chapter 3 – energy resilience and home healthcare in the United States

• Chapter 4 – energy access and homelessness in Wisconsin

In each context, the problem is identified through conversations with end-users, commu-

nity organizations, and other stakeholders. The features of a potential technology-based

solution that can address the problem are identified. Further, a proof-of-concept hard-

ware/software prototype of the solution and/or a proposal for a more thorough solution

is developed. Through this process, requirements for more robust energy frameworks and

research questions that this study aims to address in Parts II, III, and IV are identified.

Part II presents threshold-based energy management as an energy access framework

for different resource-constrained environments.

• Chapter 5 presents stability studies for threshold-based energy management.
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• Chapter 6 presents an application of threshold-based energy management to community-

scale microgrids through numerical simulations and a hardware-in-the-loop experi-

ment.

Part III presents models for optimizing thresholds and applies the threshold-based

energy management framework to the context of low-income prepaid electricity customers.

• Chapter 7 presents a mixed-integer linear program-based optimization model for

home energy management for prepaid electricity customers.

• Chapter 8 presents a linear program-based optimization model that can be imple-

mented using simple computation hardware and only daily average demand forecasts.

Part IV presents Picogrid, a low-cost experimental platform that can be used for

hardware validation of energy access frameworks and energy education.

• Chapter 9 presents the Picogrid platform’s hardware and software features.

• Chapter 10 presents a cloud-based solution for remote access to the Picogrid plat-

form. Additionally, it presents a real-world example of how the Picogrid platform

was used in a community workshop.

Chapter 11 summarizes the contributions of this study and presents avenues for future

work.

1.4 Background Papers and Reports

The following papers and reports relate to contributions that fall within the scope of this

thesis († equal contribution):

• V. Balan†, M. Marathe†, and G. Venkataramanan, “A Cloud-Based Solution for

Remote Access to a Microgrid Experimental Platform,” accepted to the 2024 IEEE

International Conference on Power Electronics Drives and Energy Systems, Surathkal,

India
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• M. Marathe and L. A. Roald, “Energy Management for Prepaid Customers: A

Linear Optimization Approach,” 2024 IEEE International Conference on Commu-

nications, Control, and Computing Technologies for Smart Grids, Oslo, Norway,

2024

• M. Marathe and G. Venkataramanan, “Picogrid: An experimental platform for

prosumer microgrids,” 2023 IEEE Energy Conversion Congress and Exposition,

Nashville, Tennessee, 2023, pp. 718-725

• M. Marathe and L. A. Roald, “Optimal Energy Rationing for Prepaid Electricity

Customers,” 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 2023, pp. 01-06

• M. Marathe and G. Venkataramanan, “Distributed Optimal Scheduling in Community-

Scale Microgrids,” 2021 IEEE Energy Conversion Congress and Exposition (ECCE),

Vancouver, BC, Canada, 2021, pp. 833-840

• B. Bondi†, S. Bradshaw†, M. Marathe†, and W. Keenan†, “Electric Little Free

Library: Solar Kiosks for Energy Access,” 2022. smplabs.wisc.edu/electric-little-

free-library

• M. Marathe and A. Manur, “Energy Resilience for Home Healthcare.”, 2020,

smplabs.wisc.edu/nsf-icorps/.

The following papers and reports constitute background contributions informing this

thesis and are not included in this document († equal contribution):

• P. Kourtza†, M. Marathe†, A. Shetty†, and D. Kiedanski, “Identification of med-

ical devices using machine learning on distribution feeder data for informing power

outage response.” To appear in the Tackling Climate Change with Machine Learning

workshop at NeurIPS 2022 (Proposals Track), arxiv.org/abs/2211.08310, 2022.

• D. Sehloff, M. Marathe, A. Manur, and G. Venkataramanan, “Self-Sufficient Par-

ticipation in Cloud-Based Demand Response,” IEEE Transactions on Cloud Com-

puting, vol. 10, no. 1, pp. 4–16, 2021.

https://smplabs.wisc.edu/electric-little-free-library/
https://smplabs.wisc.edu/electric-little-free-library/
https://smplabs.wisc.edu/nsf-icorps/
arxiv.org/abs/2211.08310
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• A. Manur, M. Marathe, and G. Venkataramanan, “A Distributed Approach for

Secondary and Tertiary Layer Control in DC Microgrids,” 2020 IEEE Energy Con-

version Congress and Exposition (ECCE), Detroit, MI, USA, 2020, pp. 1284-1291

• A. Manur,M. Marathe, A. Manur, A. Ramachandra, S. Subbarao, and G. Venkatara-

manan, “Smart Solar Home System with Solar Forecasting,” in 2020 IEEE Interna-

tional Conference on Power Electronics, Smart Grid and Renewable Energy (PES-

GRE2020), pp. 1–6, IEEE, 2020.
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Part I

Field Experiences
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Energy access is not limited to the technology that underlies energy infrastructure.

Multiple factors such as user experience and the prevalent socioeconomic factors influence

the success and sustainability of energy access solutions. The complexity of the prob-

lem and the dearth of meaningful and definitive publications within traditional literature

calls for detailed investigative methods to address these problems. This part summarizes

three different fieldwork efforts undertaken to understand these challenges and presents

proof-of-concept solutions to address some of them as well as proposals for more thorough

analyses. These proof-of-concept efforts can be considered ‘low-fidelity’ or ‘jugaad’ proto-

types [17] that provide preliminary insights into the problem by engaging with stakeholder

communities. Some of this work was performed as a part of team projects and has been

identified in the text. The objective of the chapters in this part is to provide context for

the assumptions made, requirements considered, and research questions addressed in the

investigations and frameworks presented in Parts II, III, and IV. The research questions

identified in each chapter of this part are collectively summarized at the end of the part.

Each chapter explores energy access through a different lens as summarized below.

Energy access for rural communities is explored through the lens of communities in

rural India. This is based on fieldwork undertaken by the author with a team prior to

graduate school. Based on this fieldwork, a model to propose an optimal energy mix for a

rural Indian household using different energy sources, viz. electricity, kerosene, and wood

is designed and results from numerical simulations are presented.

Energy resilience and home healthcare is explored through the lens of individuals in

the United States who are dependent on in-home medical devices. Over 100 interviews

were conducted by the author and team with stakeholders through the National Science

Foundation’s Innovation Corps program. Insights from these conversations include the

end-user archetype and factors influencing their concern for power outages. A need for

in-home energy backup is identified. Based on these insights, a proposal for a table-

top exercise is presented to further understand the detailed energy requirements of the

medically fragile community. A load scheduler for medical loads connected to an in-home
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energy storage system is designed and validated through numerical simulations.

Energy access and homelessness is explored through the lens of people experiencing

homelessness in Wisconsin. Insights from field visits and interviews conducted by the

author and team are discussed. The hardware prototype development and deployment

process for the Electric Little Free Library, a potential solution for this application, is

described. The successful field deployment of this solution led to a legislative change in

the City of Madison’s zoning laws which legalized the use of Electric Little Free Libraries.

This project acts as a roadmap for community engagement, prototype development, and

legislation for other cities and communities to undertake similar projects.
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Chapter 2

Energy Access and Off-Grid Rural

Communities

The author was a part of a team from the National Institute of Engineering, Mysuru

and University of Wisconsin-Madison that visited villages in different parts of India to

study existing microgrids and study the feasibility of setting up microgrids in villages

with unreliable or no access to electricity [18]. The team also set up solar home systems in

two urban and one rural household [19]. This work inspired the following proof-of-concept

optimization model to compute the optimal energy mix to be used in a rural household

powered by a microgrid. The author acknowledges contributions by Aayushi Singh to the

literature review and in determining parameter values for the case study. The requirements

and research questions for energy frameworks identified from this fieldwork are presented

in the concluding section of Part I.

2.1 Introduction

Despite the rapid growth in electrification in recent years in rural India, there is heavy

dependence on kerosene for lighting. Kerosene is known to pose numerous serious health

risks such as lung impairments and burns [20]. However, studies have found 9% of electri-

fied households surveyed across six states in 2018 to rely on kerosene as their primary fuel.
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One of the main reasons behind the use of kerosene as primary fuel even with an elec-

tricity connection being present has been dissatisfaction due to unreliability in electricity

supply [21]. Villages in remote areas and forest reserves cannot be connected to the main

power grid as running power lines to such areas is either not economical or not permitted

in nature reserves. Such villages are often electrified through off-grid microgrids based

on solar PV and storage. Problems of unreliability are seen in the case of such remote

microgrids as well [22]. India experiences monsoon for about four months and there can

be multiple days with continued poor solar irradiation due to cloud cover. The batteries

in such microgrids get drained and this compromises the reliability of electricity supply.

To address this problem, systems are often oversized and the electricity rate of such sys-

tems without subsidies can be as high as |50/kWh which is almost 10 times the rate paid

by grid-connected customers [23]. This leaves residents with no choice but to resort to

unclean fuels such as kerosene and firewood.

The driving question of this study is as follows: How to reduce dissatisfaction with

energy service (electricity+kerosene+wood) in an off-grid village supplied by a solar PV

and storage based microgrid without oversizing it? This study proposes a model to account

for multiple energy carriers in a typical rural Indian community, taking into account

multiple parameters such as cost of each energy carrier, weather, and indoor pollution.

The model answers the question of what energy mix should each household use in order to

minimize cost of energy while maintaining healthy limits on air quality without exceeding

electric power use limits. A case study of an off-grid village powered by a solar PV+storage

based microgrid is discussed. The PV+storage capacity is designed such that it is ‘just

enough’ - it does not account for autonomous operation, i.e., it cannot supply loads for

more than a day without adequate sunlight. Each house uses kerosene, firewood, and

electricity from the microgrid to meet its illumination and cooking demands.

The model uses the energy hub concept [24] which has been used to model power flows

in multi-energy carrier systems. An energy hub is defined as “a unit that provides the basic

features in- and output, conversion, and storage of different energy carriers”. This concept
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has been used to model energy use in urban residential entities with in-home combined heat

and power units, plug-in hybrid electric vehicles, time-of-use electricity pricing, thermal

energy storage, demand response, and other modern day technologies [25], [26]. It has also

been used to model community microgrids [27], [28]. However, a majority of these studies

incorporate high-end technologies, with power consumption in the kW to MW range,

and are based in the urban context. This study is set in the context of rural off-grid

communities powered by microgrids with power consumption in the order of 10s of watts

per house. Section 2.2 presents the modeling considerations for representing residential

energy use as an energy hub. Section 2.3 outlines the optimization problem. Section 2.4

presents results from a case study of an off-grid village powered by a PV+storage based

microgrid.

2.2 Rural Household as an Energy Hub

Consider a rural house with energy inputs in the form of electricity, kerosene, and wood

as shown in Figure 2.1. Wood and firewood will be used interchangeably in this study

and both refer to the wood used for cooking. Unlike the conventional energy hub models,

the loads are modeled in terms of end-use function instead of electric/thermal parameters.

The two loads are illumination (Li) measured in terms of lux.hours or lx.h and cooking

(Lc) measured in terms of person.meal, i.e., the energy required to make one meal for one

person. The inputs are electricity (Pe) in Wh, kerosene (Pk) in grams or g, and wood (Pw)

in g. Note that the inputs and loads are in terms of energy or mass and not power. The

inputs are converted to outputs through devices such as lamps and stoves and these devices

are modeled as converters. The first converter represents light emitting diode (LED) bulbs

with a converter efficiency (ηei) equal to the ratio of useful lx.h generated toWh consumed.

The second converter represents kerosene pressure lamps with a converter efficiency (ηki)

given by useful lx.h generated to g of kerosene consumed. The third converter represents

a kerosene kitchen stove with a converter efficiency (ηkc) equal to person.meals cooked to

g of kerosene consumed. The fourth converter represents an earthen stove used to burn
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Figure 2.1: Rural house modeled as an energy hub

firewood with the converter efficiency (ηwc) given by the ratio of person.meals cooked to

g of wood consumed. The dispatch factor ν represents the ratio of kerosene consumed

by lamps to the total kerosene consumed and (1 − ν) represents the ratio of kerosene

consumed by the stove to the total kerosene consumed. The energy balance is represented

by Equation 2.1.

Li

Lc

 =

ηei νηki 0

0 (1− ν)ηkc ηwc



Pe

Pk

Pw

 (2.1)
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2.3 Optimization Problem Formulation
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Parameters

αk := cost of using kerosene per lamp per hour

αe := cost of using electricity per LED bulb per hour

Ti := duration of illumination demand in house i

αkc := cost of kerosene per unit mass

αw := cost of wood per unit mass

Ek := luminous flux per kerosene lamp

Ee := luminous flux per LED bulb

E := minimum luminous flux necessary per person

Ni := no. of residents in house i

βw := amount of wood necessary to cook one person.meal

βk := amount of kerosene necessary to cook one person.meal

V := volume of a typical room in a house per capita

ck := PM2.5 emission rate per kerosene lamp
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cw := PM2.5 emission rate per unit wood burnt in stove

T cw := typical duration of cooking with wood per person.meal

cck := PM2.5 emission rate per unit kerosene burnt in stove

T ck := typical duration of cooking with kerosene per person.meal

Ca := ambient PM2.5 concentration in areas using kerosene lamps

Cmax := upper limit on PM2.5 concentration according to health guidelines

Rmn, Xmn := resistance and reactance of line mn respectively

Pmax := maximum power rating of microgrid

Variables

nk
i := no. of kerosene lamps used in house i

ne
i := no. of LED bulbs used in house i

wk
i := mass of kerosene used for cooking in house i

ww
i := mass of wood used in house i

pmn,qmn = active and reactive power flows from bus m to n respectively

ps := power supplied by microgrid

pn,qn := active and reactive power injections at bus n respectively

vn := voltage at bus n

The optimization problem is given by 2.2. The problem minimizes the cost of energy

for a given day and the decision variables are the number of kerosene lamps, number of

LED bulbs, mass of kerosene, and mass of wood used on the day. Equation 2.2(a) gives

the objective function in terms of cost of energy in |. Equations 2.2(b) and 2.2(c) are a

modified form of Equation 2.1. In the context of the illumination load, it is assumed that

the number of spots to be illuminated with minimum useful lux is equal to the number

of residents of the house, as indicated in 2.2(b). It is assumed that 2 meals per person

per day are cooked in each house, and hence the cooking load is given by 2Ni as shown in

2.2(c). Upper limits on 24 hour average indoor pollution in terms of PM2.5 concentration
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(concentration of particulate matter with width less than 2.5µm) is given by 2.2(d). The

amount of PM2.5 released due to using nk
i kerosene lamps for Ti hours averaged over 24

hours nk
i c

kTi/24. The next two terms represent the same quantity for wood and kerosene

used for cooking respectively. It is assumed that the number of rooms in each house equals

the number of residents Ni. The average amount of PM2.5 released during 24 hours due

to the kerosene and wood is divided by NiV which is the number of rooms multiplied by

the volume of a room in a typical rural house. This gives the average increase in PM2.5

concentration due to these fuels which is then added to Ca, a conservative estimate of the

ambient concentration in regions which use kerosene or wood. LinDistFlow constraints

are given by 2.2(e)-(g). The limit on the amount of electric power that can be drawn from

the microgrid is given by 2.2(h), since it is not oversized to account for additional days of

autonomous operation without adequate sunlight.

The driving question of the study is to reduce dissatisfaction with energy supply.

This study does not claim 24x7 electricity supply through the microgrid but provides

information about when to expect a disruption and resort to other fuels like kerosene. It

uses the battery state of charge to determine the amount of power that can be supplied

through the microgrid during the illumination demand duration. If this power is not

enough, it recommends adequate number of kerosene lamps to be used to satisfy the

demand while maintaining limits on indoor pollution. It calculates this optimal energy

mix on a daily basis so that residents can plan ahead and purchase kerosene and/or collect

firewood. This can result in reduced dissatisfaction due to uncertainty around electricity

supply among families, and can prevent them from totally switching to kerosene and

firewood as their primary source of fuel.
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(a) PV panels (b) Distribution wires

Figure 2.2: Microgrid in the village of Shisawli

2.4 Case Study

2.4.1 Setup

This section presents the results of a case study based on the village of Shisawli, near

the city of Mumbai in western India. The author was a part of team that visited this

village through a microgrid field study project [18]. It is an off-grid village of 43 houses

and is powered by a PV+storage based microgrid, set up by the energy service company

Gram Oorja, as shown in Figure 2.2. Each house has been provided with 5W LED bulbs

and power outlets. The parameter values for the energy hub model for this case study

are given in Table 2.1. Village-specific parameters are either approximated based on the

conversations the author had with residents during the field visit or are obtained from

different sources in literature as indicated. The minimum luminous flux necessary per

person (E) is assumed to be 200 lx/lamp, a value between Ek and Ew, and can be

modified according to the requirements of the tasks being performed such as reading and

cooking.
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Figure 2.3: Microgrid network diagram

Parameter Value Reference

αk (65 |/L)(17 g/lamp-hour)(1L/800g) [29,30]

αe (5W/bulb)(0.01 |/Wh)

Ti min=2h, max=4h

αkc (65 |/L)(1L/800g) [30]

Ek 76 lx/lamp [31]

Ee 300 lx/lamp [31]

E 200 lx/lamp

Ni min=1 person, max=4 persons

βw 274 g/person.meal [32]

βk 35 g/person.meal [32]

V (7.14 m2)(2.75 m3) [33], [34]

ck (500 µg/m3)(6.34 m3) [29]

cw 6.3 g/kg [35]

T cw 1.375h [32]

cck 0.29g/kg [36]

T ck 2h [32]

Ca 10µg/m3 [29]

Table 2.1: Case study parameter values

The PV+storage system capacity is assumed to be just enough to supply all the illumi-

nation load for the given duration for only one day and no additional days of autonomous

operation without adequate sunlight. Accordingly the PV rating and storage capacity are

calculated to be 700 W and 4 kWh respectively. The network topology is assumed to be

radial as shown in Figure 2.3.

The optimization problem is implemented in Julia using the mathematical program-

ming package JuMP [37] and the CBC solver. Results for variation in weather and the

cost of wood are presented.
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(a) 25% power output from microgrid (poor
solar insolation)

(b) 100% power output from microgrid (suf-
ficient solar insolation)

Figure 2.4: Recommended number of lights with variation in weather: When sufficient
insolation is available, no kerosene lights recommended. This agrees with the popular
findings that electric lights are more economical than kerosene and do not degrade indoor
air quality.

2.4.2 Variation in weather

Variation in weather is modeled as reduction in the power output from the microgrid.

Figures 2.4b and 2.4a show the recommended number of lights to be used in each house

for two cases - (a) when it has been cloudy and only 25% of the rated power from the

microgrid can be used, (b) when there is sufficient solar insolation and 100% of the rated

power from the microgrid can be used. In the 25% case, most houses use at least one

kerosene lamp and at most two electric lights. In the 100% case, no house uses a kerosene

lamps and all illumination load is served by electric lights. This agrees with the popular

findings that electric lights are a more economical option to meet the same illumination

load and do not contribute to indoor air pollution. Figure 2.5 shows the bus voltages in

both the cases. The voltage drop at bus 1, i.e., the bus farthest from the PV+storage bus,

in the 25% case is smaller as most of the load is met by kerosene.

2.4.3 Variation in the cost of firewood

Figures 2.6a and 2.6b show the impact of varying the cost of firewood on the recommended

optimal amount of kerosene and firewood to be used for cooking in each house. Firewood

does not have any rupee amount associated with it as it is generally collected from nearby

forests. But it does have an opportunity cost as people spend time going to the forests
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Figure 2.5: Bus voltage with variation in weather: When solar insolation is sufficient, all
illumination load is served by electricity leading to more voltage drop across the radial
distribution line.

(a) Amount of firewood for cooking (b) Amount of kerosene for cooking

Figure 2.6: Recommended cooking fuel use with variation in firewood cost

while they could be working on their farms or at other jobs. Two cases are presented.

The first case assumes no cost associated with firewood (“0x”) while in the second case,

the rupee amount associated with firewood is such that it will cost twice the amount of

money to make one meal for one person using firewood as it would by using kerosene

stoves (“2x”). Figure 2.6a shows that in the 2x case, no wood use is recommended and

the entire cooking load is satisfied using kerosene. Therefore, as seen in Figure 2.6b, more

kerosene use is recommended in the 2x case as compared to the 0x case.

Note that in both the cases presented above (variation in weather and cost of wood),

The PM 2.5 concentration limit was assumed to be 30 times the WHO Interim target-1

guideline of 75µg/m3 [38] for the problems to remain feasible. One of the reasons can be the

heterogeneity in the sources of data used and the errors in the approximations. A subject

of future work can be using data from a single community to generate recommendations

for fuel use.
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2.5 Conclusion and Future Work

This study presents a framework for last-mile delivery of energy in rural off-grid house-

holds. It presents a holistic approach for modeling energy flows in a rural household using

the energy hub concept. It provides a systematic optimization-based method to balance

cost, reliability, and health concerns in energy provision. It provides a-priori knowledge

of resource availability and may reduce dissatisfaction with electricity supply. This can

prevent households from relying only on fossil-fuels, thereby improving indoor air quality

and reducing energy expenditure.

Some limitations of the model and avenues for future work are presented below. The

model assumes perfect knowledge of illumination and cooking demand as well as microgrid

power output. It assumes that illumination and cooking demand is constant throughout

the day. Some challenges with the implementation of this model include user compliance

with recommendations and availability of computation/communication infrastructure to

solve the model. Future work includes studying the model performance under different

scenarios varying parameters. This model can also be extended to include other commonly

used energy sources such as dung and biogas. The presented framework is modeled as an

operation problem. The problem can also be addressed as a planning problem to provide

recommendations such as optimal sizing for the PV + storage microgrid, whether a house

should invest in a kerosene stove or an earthen firewood stove, and the number of LED

bulbs and kerosene lamps that a household should purchase. Further, the model can

account for non-energy costs such as user inconvenience, health, and other socio-economic

factors.
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Chapter 3

Energy Resilience and Home

Healthcare

In the United States, the number of power outages due to extreme weather events has

doubled in the last two decades while the duration and frequency of outages is at their

highest [12]. This number is expected to further increase as climate change-driven extreme

weather events increase and continue to hamper the operation of the aging power grid.

Reliable and resilient delivery of electricity is a challenge and this can compromise delivery

of many essential services including healthcare. This challenge is compounded by the

recent shift towards delivering healthcare at home, i.e., home healthcare, a trend that

was accelerated through the global COVID-19 pandemic. Nation-wide, there are at least

4.4 million people who rely on in-home electricity-dependent medical devices and services,

such as ventilators, oxygen concentrators, and feeding pumps [39]. This number represents

only Medicare beneficiaries and there are estimated to be millions of more such individuals

covered by other insurances. It is estimated that between 70,000 to 180,000 children fall

into this category as well [40]. A home healthcare patient can be dependent on multiple

electricity-powered in-home medical devices, and a power outage can pose severe health

hazards. Energy resilience and healthcare have been studied in-depth separately. Their

interdependence, especially in the context of in-home delivery of healthcare, remains a
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largely unexplored space.

Existing solutions for powering medical devices during outages include fuel-based gen-

erators, but they are often unsuitable considering the risks with carbon monoxide poison-

ing, fuel availability and storage, and are not an option for those living in apartments. Solar

photovoltaic (PV) and battery based solutions, can overcome some of these problems. The

Energy Assurance Kit (EAK), an energy assurance platform based on microgrid technol-

ogy for powering critical infrastructure during outages, was developed by former students

from the research group of which the author is a member. It is the size of a suitcase,

has in-built battery storage, can be powered through solar panels, and has a monitoring

and control platform that provides a portal for external connection to electricity loads,

fuel-based generators, and phone-charging ports [41], [42]. It has the capacity to become

a self-organizing electrical energy network with assured availability of power [43]. Solar

and battery storage based systems have been used extensively for remote electrification

in developing economies [44]. The EAK and its underlying technology have been used to

power an office building in India [18] and to power solar home systems for households with

unreliable or no access to electricity [19]. The author was a part of a team that applied

to the National Science Foundation’s Innovation Corps (I-Corps) [45] program in order

to explore the EAK’s application in the context of home healthcare in the United States

and understand the problem and the nuanced requirements through conversations with

different stakeholders. The award supports academic groups looking at commercializing

their research by training them in the basics of the Business Model Canvas [46, 47] and

populating this canvas through inputs from potential customers and other stakeholders

through the customer discovery process [48]. Through this process, a technology devel-

oper “gets out of the building” and talks to potential end-users to determine if there is

a problem that their technology addresses and if yes, then how pressing is this problem,

what value does the technology deliver, who in the ecosystem will pay for it, etc. The

customer discovery process helps the developer understand the different aspects of the

business model canvas for their technology.
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The insights from I-Corps are summarized in the following section. A detailed report

of the insights can be found in [49]. This is followed by a proposal for a table-top exercise

to understand detailed and nuanced requirements of the medically fragile community.

Further, a load scheduler, an add-on for the EAK to improve its utility, is presented.

3.1 Insights from the NSF I-Corps Program

There can be different underlying conditions that can require an individual to receive

healthcare at home. Since this space is vast, the team focused on two groups which were

perceived to have the greatest need - children who have undergone a tracheostomy and

their families (“trach children” and “trach families” respectively) and mobility impaired

adults. This section will present insights in the context of trach families. Trach children

can use some or all of the following devices for their day-to-day health needs - ventilator,

oxygen concentrator, suction machine, humidifier, feeding pump, nebulizer, pulse oximeter.

3.1.1 Top Concerns

The team would begin an interview with trach families by asking about their top three

concerns. Some of the recurring themes are presented: (1) Medical device malfunctioning

or getting disconnected, (2) Medical emergencies such as formation of mucus plug and

ability/inability of the parents and caregivers to take appropriate action or find help in

time, (3) Power outage, when it occurs, is a very unexpected emergency. Rigorous training

in the hospital to home transition phase or in the individual care plan is not available. (4)

Preemptive concern and anticipatory anxiety. There is a large amount of uncertainty and

a feeling of helplessness in their day-to-day lives which can be very challenging.

It is necessary for the EAK or any product catering to this end-user group to take into

account these nuanced concerns. While studying end-user requirements, it is essential to

speak their language and understand their context.
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3.1.2 Concern around power outages

It was found that the concern associated with power outages can vary in intensity across

trach families. Some of the factors which can determine this include: (1) Past experience

with outages – If a family has experienced a power outage, they will be more concerned

and invest in being prepared for an outage. (2) Locality – Rural areas in general are more

prone to outages and are slower to get power restored after an outage as compared to

urban areas. Families living in rural areas are more prepared for outages. (3) Proximity

to family, friends – Family and friends serve as a backup option for trach families if they

live close enough to drive quickly to, but far enough or served by a different utility so

that they are not affected by the same power outage. In such a case, the trach family

may not be as concerned and may not invest in in-home energy backup. (4) Awareness of

emergency preparedness – If the family has had either first hand experience with emergency

preparedness through their profession (emergency management services, power companies,

scouting), or through family and friends, then they are more likely to be concerned and

invest in preparation for power outages. (5) Number of devices they depend upon, their

criticality, how long they can go without them influences the level of concern for power

outages.

3.1.3 End-user archetype

Developing an end-user persona was one of the exercises during the I-Corps program. The

end-user persona can be useful to develop features for the EAK and other solutions for

the end-user. The team developed such a persona for a typical trach mother “Tracie the

Trach Mom”: Meet Tracie the Trach Mom, she is 35 years old and the CEO of an ICU-

like setup at home. Her child requires a suite of devices - ventilator, oxygen concentrator,

nebulizer, feeding pump, humidifier, and refrigeration for medication. During natural

disasters or power outages, she does everything to avoid the hospital, more so with the

COVID-19 pandemic. Her medical team provided a checklist for emergency preparedness

which is vague and generic for making decisions around energy backup. A gas generator
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is not feasible, she lives in an apartment and the fumes will be dangerous. After the

last power outage, she jerry-rigged marine batteries and bought car inverters, but did not

really understand if it would work for her child’s devices. Her ecosystem includes the

home healthcare agency and hospital, insurance providers, durable equipment provider,

utilities, government representatives, and social media support groups. Her purchasing

decisions are heavily influenced by the different entities in her ecosystem. Her day-to-day

life is full of uncertainties and preemptive concerns. She is a self-taught expert, resilient,

and can go to great lengths to ensure the health and well-being of her child. She wants to

make the space around her trach child resemble that of children without a serious medical

condition. She wants to take her child for walks around the block, modify the feeding

pump to look like a Skip Hop lunchbox, drive to and shop at the local Target store, and

go on vacations just like other families. Her trach mom friends on Instagram help her

identify products that can enable her to do these activities and reduce the uncertainty.”

The end-user persona highlights the lack of context-aware energy backup solutions for

such mothers and their families.

3.1.4 Critical devices

Devices that are critical for a medically fragile individual need not be high technology or

even necessarily medical devices. A refrigerator is a critical device for a diabetic patient

since it is necessary to store insulin. It is critical even for a trach child to store its

feeds and medicines. An air conditioner may be critical for a patient susceptible to heat

stroke. Through conversations, it was observed that devices fall into two categories: life

sustaining (e.g: ventilator to aid in respiration), and life supporting (e.g nebulizer to

administer drugs).

3.1.5 Energy management and lack of information

While driving to doctor’s appointments, families often use car chargers for the patient’s

devices. However, car chargers do not have the capacity to power certain devices and
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families are often unsure of what devices can be safely plugged in. There is no clear

indication for how long the internal batteries of an in-home medical device will last. An

interviewee exclaimed, “Found out through usage that the ventilator batteries last for

shorter than what they are rated for!”. Backup batteries may not have an indication of

the state of charge. Even if they do, this does not translate to how many hours the device

can be used. This is critical as it determines when the family will have to evacuate to

a place that has power such as a hospital. A trach mother used an app to show how

fast the oxygen tank will run out for a given flow rate. This implies that translation of

engineering metrics like state of charge into something more user-friendly like time duration

for powering a device is essential. An apt example of this is a power outage experience

that a trach mother narrated in her interview. Her child needed to use a suction machine

and it had a backup battery. However, she did not use the machine during the outage and

chose to manually provide suction to her child using a suction tube. She said that she was

not sure if they had charged the backup battery and it showed no indication of the state

of charge. She wanted to save the battery until it was absolutely necessary, for example

to drive to the hospital or a location with power. “The pack says 45 minutes of backup -

does it actually have 45 minutes of backup?”. She added that it was too much effort to

go to the living room to find the suction machine with battery backup and get her child

hooked on to that. She did not want to leave her child’s side because she was afraid that

a trach plug might form by the time she got the machine with battery backup set up. She

found the manual suction tube to be the easiest option, closest to where they were in the

house, something that she knew how to use, and did not demand that she move away from

her child. These attributes provide important context for the EAK or any product that

is designed for this end-user group. This example shows that it was not the availability

of energy but the information about how long it will last that was more important. Also,

battery management appears to be a top issue across the board - for batteries in medical

devices as well as for batteries in consumer devices.
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3.1.6 Key takeaways

• A medically fragile family is burdened with multiple medical and financial uncer-

tainties. If a product can reduce the uncertainty in terms of electricity supply, it can

add value and help them regain a sense of control.

• Range anxiety is a major concern around backup batteries sold with the medical

devices. It was found that information about how long the energy backup would last

was essential for the family to be comfortable in using the backup.

• The extent of concern around power outages depends on a number of factors such as

number of critical medical devices, proximity to a hospital, apartment/home owners,

rural/urban locality, etc.

• Existing solutions often follow the one-size-fits-all approach, i.e., a single solar PV

and battery based solution may be designed for use in camping, recreational vehicles,

or in a household with no home healthcare patient. They are not designed taking into

consideration that medically fragile households are like mini-ICUs and have different

requirements ranging from form factor and portability to insurance coverage and

alarm fatigue.

• It was found that there is a lack of awareness around existing energy products among

the families interviewed.

• Coverage of energy backup through insurance varies greatly across providers as well

as states. The most likely payer for a solution like the EAK may be utilities and

community choice aggregators, particularly in regions prone to power outages and

public safety power shutoffs.

There does not appear to be a single entity solely responsible for energy resilience

for home healthcare. The problem surfaces and is tackled through a reactive approach

during focusing events like large scale power outages due to hurricanes and wildfires. It is

necessary to take a proactive approach to meet the needs of this vulnerable community.

A single product like the EAK may not meet these needs entirely, but can be a part of a

larger reliable and sustainable energy framework.
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3.2 Table-Top Exercise

Through the I-Corps interviews it was observed that a more rigorous study would be

necessary to understand the response and needs of medically fragile families during a power

outage. To this end, in one of the I-Corps interviews, an emergency manager at a hospital

recommended conducting a table-top exercise with medically fragile individuals and their

caregivers. A table-top exercise is a discussion of plans and responses to an emergency (in

this case a power outage) by presenting stakeholders with different scenarios while sitting

around a table, i.e., in a low-stress environment [50]. It is necessary that the design choices

used in developing energy solutions be informed by the needs of the community that will

use the solution. The table-top exercise aims at addressing some of these factors. This

section presents a proposed outline for this project. It is a community-engaged project

which will require multiple community partners and needs to be reviewed by the relevant

review boards before execution.

3.2.1 Objectives

The scope of the project is families with medically fragile children residing in the United

States. The first objective of the project is to study the needs and responses of medically

fragile families reliant on electricity-dependent in-home medical equipment during power

outages, specifically: (1) Devices to be powered, (2) In case a backup source is present,

how do they ration the available energy for their critical devices, (3) Amount of time they

will spend at home before vacating to a place with power, (4) Which place are they most

likely to vacate to? (e.g. hospital, fire station). The second objective is to find how the

following factors influence these needs and responses: (1) Underlying medical condition –

medical devices to be used depend on the medical condition, (2) Support groups on social

media, (3) Past experience with outages – often families with such experience are better

prepared for such scenarios, (4) Locality – rural areas are more prone to outages and are

slower to get power restored after an outage as compared to urban areas, (5) Proximity

to family/friends – they serve as a backup option if they stay a short drive away but
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have power during a localized outage, (6) Awareness of emergency preparedness – either

first hand through their profession (emergency management services, power companies,

scouting), or through family/friends, (7) Household income and health insurance, (8)

Type of housing – e.g., apartment, house

3.2.2 Methodology

Emergency response training generally involves the following activities [50]. (1) Orienta-

tion and Education Sessions – to answer questions and concerns, (2) Tabletop Exercise

– a discussion of plans and responses with all stakeholders sitting around a table, i.e.,

in a low-stress environment, (3) Walk-Through Drill – actual performance of emergency

response actions, (4) Functional Drills – to test specific functions like medical response

and notification procedures, not necessarily at the same time, (5) Evacuation Drill – par-

ticipants evacuate by walking along the evacuation pathway, (6) Full-Scale Exercise – an

emergency simulation as close to reality with all stakeholders in action

Tabletop exercises are shown to help participants test their resilience-based capacities,

their ability to leverage partnerships, and other assets during such times [51]. The project

uses the tabletop exercise for the purpose of studying responses and needs during a power

outage. The experiences and needs of the community are at the center of the project

and the exercise is not formulated to be a training from electrical engineers on how the

families should respond to power outages. Subsequent work can be informed by the gaps

and issues that the community identifies through this exercise.

A few potential scenarios and questions to be discussed during the exercise in the

context of trach children and their families are presented. They can be suitably modified

for children with other medical conditions. Trach children use a host of in-home medical

devices such as ventilator, oxygen concentrator, nebulizer, feeding pump, humidifier, and

suction machine. The people involved in the exercise would be the primary caretakers,

most often the trach parents. The questions presented below may not necessarily be

posed verbatim and may need to be rephrased on a case-by-case basis to ensure that the
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interviewees are not subjected to any stress or discomfort.

Scenario 1 – Outage without prior warning: It is 6 p.m. on a cold winter evening

when the power suddenly goes out.

• What is the first thing that you do?

• How long can your child go without the devices that do not have an internal battery?

• How do you contact the utility? (phone/website/radio news)

• For families that possess backup generator/battery pack - Do you switch this on right

away? Are there any problems to switch on the backup quickly? Which devices do

you power with the backup and for how long?

• If no information is available from the utility, how long will you shelter at home?

• What will your course of action be if you find out that the power will not be back

for another hour/3 hours/6 hours?

Scenario 2 – Outage with prior warning: It is in the news that your locality may

experience an unplanned power outage for up to 24 hours in the next three days due to a

tropical storm or that there may be a planned outage for up to 24 hours in the next three

days due to wildfires. In both cases, you have not been asked to vacate because of the

storm/wildfire.

• How do you prepare for such an event? (items you purchase)

• Do you plan to vacate right away to a place that will have power supply or will you

shelter in place?

• What factors do you consider while making a decision about vacating/sheltering in

place?

3.2.2.1 Benefits

The exercise can help energy engineers better understand the nuanced requirements of

medically fragile families. This understanding can help them design better, context-aware,

resilient energy solutions. Table-top exercises help in identifying both strengths and vul-



37

nerabilities in emergency preparedness [52], and this can benefit the end-users as also their

medical and support teams. Table-top exercises can help participants to take actions to

clarify areas of uncertainty and develop more effective plans to deal with emergencies [53].

Although the exercise does not involve literally switching off power to the child’s de-

vices, a hypothetical discussion about a power outage can be stressful for the family. It

may also make them recall some of their past outage experiences. Careful designing of the

scenarios and questions in order to minimize this stress is necessary.

3.2.3 Implementation

This section includes some considerations for implementing this project.

Partners: As this is a multi-disciplinary project between human factors design and health-

care along with energy engineering, experts from these fields may be consulted in designing

and conducting the exercise. A group of participating families will also be consulted to

ensure that the questions/scenarios are appropriate and if they would recommend any

additional ones.

Recruitment: One of the ways of recruiting participants can be by partnering with three

to five children’s hospitals across the country to ensure a variety in underlying medical

condition, income group, and location.

Compensation: Participants can be compensated monetarily through gift cards.

Location: Even before the global COVID-19 pandemic, medically fragile families do not

prefer indoor in-person interactions in order to minimize the risk of infections. Families

will be given an option to participate in this exercise virtually or in-person according to

their preference.

3.2.4 Outputs

After the exercise, the participating families would be asked for recommendations on how

they would like to see the data and findings from this project to be published. In addition,

some of the outputs can be: (1) A distilled easy-to-read version of the insights on the
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project’s social media handle. Since such families are seen to be active on social media,

this can be an easy way to share this information. (2) Recommendations for additions to

the emergency preparation one-pager that home healthcare agencies and hospitals give to

medically fragile families. (3) A system requirements specification sheet for developers of

energy backup solutions for medically fragile families. (4) A research article

3.3 Load Scheduler for the EAK

Medically fragile families use multiple in-home medical devices such as ventilators, feeding

pumps, oxygen concentrators, and suction machines. Through the I-Corps program, it was

found that during a power outage, families prefer to shelter in place instead of vacating

to a fire station or a hospital. Some of the commonly mentioned reasons were that in the

hospital, they may not be able to use their in-home devices and may have to head to the

emergency room (ER) which can have a heavy copay. Devices in the ER are different from

in-home devices and the staff may take time to set up the device settings according to

the child’s comfort. Nurses are more comfortable operating hospital equipment than the

patient’s in-home equipment. If the outage is due to a natural disaster like a hurricane,

hospitals can be inundated with patients and the staff may not have the time to ensure

these settings are according to the child’s comfort. Hospitals and other public places can

also increase the chances of infections for the medically fragile individual. A backup battery

pack, like the EAK, can provide energy for a limited amount of time during an outage

so that the family can shelter in place. Families prefer to maximize this ‘at-home time’

during an outage due to aforementioned reasons. They also need to know the duration of

this at-home time as it helps them plan for a potential evacuation. Off-the-shelf battery

packs do not provide this information and do not have the capacity to perform optimal

load management to maximize this time.

This section presents a load scheduler for the EAK. It is implemented by solving a

scheduling problem in the General Algebraic Modeling System (GAMS) [54]. It uses

the on-board sensors and relays of the EAK. To minimize computation requirements of
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Figure 3.1: Medical load scheduler block diagram

the EAK, the optimization can be implemented on the cloud. The EAK can implement

the threshold-based energy management framework presented in Chapter 5 which ensures

that it will maintain basic operational sufficiency even when there are delays or failures in

communication with the cloud computation platform.

3.3.1 System Configuration

As shown in Figure 3.1, the user will connect their loads to the EAK which can be

considered as a battery pack external to the loads. Some medical loads also have internal

batteries. External battery packs in the affordable range often have limited power output

compared to the total power rating of all appliances such families need during an outage.

The scheduler has to optimally schedule each load and decide whether to power it through

the external battery or to let it draw power from its internal battery so as to not exceed

the power and energy limits of the external battery pack. In line with this, the power

output limit of the external battery pack used in this problem is less than the total power

rating of the loads to be powered.

Objective: Given the specifications of loads and the external battery, along with three

scenarios representing uncertainty in demand for certain loads, the scheduler has to max-

imize the at-home time during an outage and generate a load schedule.
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3.3.2 Model Description

Load Classification: The loads considered are - ventilator, suction machine, oxygen

concentrator, humidifier, and mini-fridge. Loads are classified as continuous use loads and

deferrable loads. C is the set of continuous use loads. These loads are critical and have

to run continuously. The loads which fall under this category are ventilator and suction

machine. D is the set of deferrable loads. These loads have periodic energy requirements,

i.e., they need to be on for a particular duration every hour. The loads which fall under

this category are oxygen concentrator, humidifier, and mini-fridge. Additionally, there is

one uninterruptible load, i.e., it has to be powered only for a specific period of time but

cannot be interrupted in between this period. It is assumed that there is uncertainty in

the demand for this load and is considered using different scenarios. Parameter Ps is the

power demand of the uninterruptible load in scenario s. Parameter ys,t is the switching

state of the uninterruptible load in scenario s at time t. It equals 1 if load has to be on

and 0 if off. It is assumed that this load has to be switched on 3 hours into the outage.

The uninterruptible loads considered in the three scenarios are - television (to watch news

related to the outage), sump-pump (to drain the basement in case of a hurricane related

outage), and a feeding-pump (for feeding the medically fragile patient). It is important to

note that the loads under each category can differ from patient to patient. Furthermore,

there may be loads that have different usage characteristics and do not fall under any of

the considered categories. This model serves as an example for the assumed use case and

can be extended to incorporate additional features.

Switching States: The binary variable xi
a,t indicates whether load a is connected to

its internal battery at time t, i.e., it equals 1 if connected and 0 otherwise. Similarly, the

binary variable xe
a,t indicates whether load a is connected to the external battery (EAK).

Constraint 3.2 ensures that the load is connected to at most one battery. The set of all

time steps in the horizon is represented by T and ∆T is the length of each timestep.
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External battery specifications: Constraint 3.3 ensures that the power drawn by

all loads at each instant t under each scenario s is less than the maximum power draw

from the external battery Pmax. Constraint 3.4 ensures that the energy drawn from the

external battery over all intervals under each scenario is less than the energy content of

the external battery at the beginning of the outage Emax.

Internal battery specifications: Some loads in different sets can have internal batter-

ies. The set of loads that have internal batteries is denoted by I. The number of backup

hours provided to load a by its internal battery is Ba. Constraint 3.5 ensures that each

appliance a is not connected to its internal battery for more than the duration Ba.

Load behavior constraints: Continuous use loads cannot be switched off for some

duration and then switched on again. This is ensured by Constraint 3.6. Continuous use

loads are assumed to have a higher priority than deferrable loads. Therefore, any of the

continuous use loads being off implies that none of the deferrable loads can be on. This is

expressed in Constraint 3.7. Deferrable loads need to be on for a particular duration every

hour. The set of time intervals corresponding to the beginning of a new hour is denoted

by H. The fraction of an hour the deferrable load has to be on for is represented by Fa.

The number of intervals of deviation from this requirement per hour per deferrable load

is denoted by the positive variable ea,h. This is expressed in Constraint 3.8.

Objective function: If any of the continuous loads have to be turned off, that instant

is the end of the ‘at-home time’ denoted by the variable z. It is expressed in the maximin

form such that it is less than the time for which each of the continuous use loads are on

as expressed in Constraint 3.9 and the objective function maximizes z. Even though the

continuous use loads are more critical than deferrable loads, when at home, the family

needs the deferrable loads to a certain extent as well. The deferrable load constraint is

implemented as a soft constraint using the error term ea,h which is a positive variable

introduced in the constraint and the negative of this term is maximized through the
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objective function. As the objective has two parts – maximizing the at-home time and

minimizing the error in the deferrable loads constraint, a weighted sum of the two (with

weights λc and λd respectively) is used as the objective function. Nz is a normalizing

term and is an upper bound on the at home time evaluated as Nz =
Emax+

∑
a ∈ I∩C

BaPa∑
a ∈ C

Pa
+1.

Nd is a normalizing term and is evaluated as Nd = nDnHFa

∆T , where nD is the number of

deferrable loads and nH is the number of elements in set H.

maximize λc
z

Nz
− λd

∑
a ∈ D, H

ea,h

Nd
(3.1)

subject to xi
a,t + xe

a,t ≤ 1 ∀a, ∀T (3.2)∑
a

xe
a,tPa + ys,tPs ≤ Pmax ∀T, ∀s (3.3)

∑
a,t

xe
a,tPa∆T +

∑
T

ysTPs∆T ≤ EMAX ∀s (3.4)

∑
t

xi
a,t∆T ≤ Ba ∀a ∈ I (3.5)

(xi
a,t + xe

a,t)− (xi
a,t−1 + xe

a,t−1) ≤ 0 t >= 2, ∀a ∈ C (3.6)∑
a ∈ D

(xi
a,t + xe

a,t) ≤ (xi
a,t + xe

a,t) ∀T, ∀a ∈ C (3.7)

h+1/∆T∑
t=h

(xi
a,t + xe

a,t) ≥
Fa

∆T
− ea,h ∀t ∈ H, ∀a ∈ D (3.8)

z ≤
∑
T

(xi
a,t + xe

a,t)∆T ∀a ∈ C (3.9)

xi
a,t, x

e
a,t ∈ {0, 1}, ea,h ≥ 0 (3.10)

3.3.3 Results

The model is used to generate a load schedule for an 8 hour outage for a total number of

intervals = 48 and ∆T = 1/6 hours. Load data is given in Table 3.1 and Pmax = 400 W,

Emax = 1000 Wh, Fa = 0.17 h for all three scenarios, λc = 0.3, λd = 0.7. Figure 3.2 shows

the generated schedule. Salient events are marked and described below.
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Table 3.1: Specifications of loads served by the load scheduler

Load Power (W) Backup Time (h)

continuous use loads

ventilator 200 6

suction machine 150 1

deferrable loads

oxygen concentrator 350 -

humidifier 250 -

mini-fridge 100 -

uninterruptible loads

television 150 -

sump-pump 350 -

feeding-pump 120 -

Total 1050

• A - The suction machine is the first continuous use load to be switched off (neither

powered by the internal nor external battery). Therefore, the time it is switched off

is the at-home time = 4.5 h

• B - As Pmax = 400 W, only a limited number of loads can be powered by the

external battery simultaneously. For example, in the case of event B, the suction

machine and concentrator (rated at 150 W and 350 W respectively), cannot draw

power from the external battery at the same time. Therefore, for the duration the

concentrator is on, the suction machine is connected to its internal battery.

• Deferrable loads (concentrator, humidifier, mini-fridge) are staggered to ensure the

maximum power limit of the external battery is not exceeded.

• Each of the internal batteries get 100% utilized. The external battery utiliza-

tion (amount of energy utilized) is seen to be 93.3%, i.e., there is over 6% en-

ergy remaining. The energy needed by the uninterruptible load in the worst case

scenario(feeding-pump) is 120W ∗ 3 ∗ 1/6h = 60Wh which is 6% of the total energy

capacity of the external battery. This verifies that the scheduler saves the amount

of energy necessary to cater to the uninterruptible load in the worst case scenario.
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Figure 3.2: Switching state of medical devices during the outage

3.3.4 Conclusion

An electric load scheduler for an external battery pack to maximize the at-home time

during an outage was implemented and the optimal at-home time with the corresponding

load schedule was generated. The load scheduler takes into consideration the nuanced

requirements of the use case and can be an add-on for the EAK for energy management

and uncertainty mitigation. With optimal scheduling, the external battery pack with a

maximum power output of 400 W was able to run 5 devices with a total power rating

of 1050 W (over 2.5 times the maximum power output of the battery pack). Without

the optimal scheduler, the caregiver must manually determine which loads can connect to

the external battery and which should rely on internal batteries during the outage. This

additional burden may shorten the time they can safely shelter at home, potentially forcing

evacuation to a fire station or hospital. This, in turn, can increase admissions to such

facilities that are often already overburdened during emergencies. Furthermore, manually

managing the appliances can hinder the caregiver’s ability to provide adequate care for

the medically fragile individual or to contact emergency services, potentially leading to

life threatening consequences.

It is important to note that this is a simplified model of the complex process of electric
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load use. Electric processes such as battery charging-discharging efficiencies, medical

factors such as load criticality, and human factors such as determining the relative priorities

for critical and non-critical loads contribute to the complexity. Some of the modifications

that can be made to the model so that it can represent this process more closely include:

(1) The model can account for internal battery charging along with device power draw. (2)

A source such as solar PV can be added to charge the external battery. The intermittency

of solar and its dependency on weather parameters will be an added uncertainty to the

optimization problem. (3) Along with uninterruptible loads, demand uncertainty can be

included for other load types as well. (4) The user experience can be improved through a

software interface and by allowing the user to add more loads online and change the type

and criticality of a load. (5) Finally, it is necessary to implement this in hardware and

deploy it in a user’s home to validate its utility and improve its features.

3.4 Conclusion and Future Work

The intersection of home healthcare and energy resilience is an area that is unexplored

in engineering as well as healthcare research. Energy resilience of the medically fragile

community is a chronic and widespread problem. This problem often comes into focus in

the aftermath of a disaster. Rather than this reactive approach, proactive steps need to be

taken to ensure that this community’s needs are met. With increase in extreme weather

events due to climate change and the aging power grid, it is essential to find distributed,

immediate, plug-n-play solutions that do not rely on just the legacy power grid. Solutions

also need to be aware of the nuanced requirements of this community and cannot be

one-size-fits-all. The table-top exercise can help gain further insights on the requirements

of the community. The solar PV and battery storage based EAK with add-on features

like the load scheduler can be a candidate solution to fit some of their requirements. It

is important to note that a single product like the EAK or the load scheduler will not

solve the problem entirely, but can be one of the pieces within a larger energy resilience

framework.
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Some ideas for future work include:

• Quantification of medical emergencies due to power outages: It is necessary to get

data on hospital admits due to power loss to quantify the size of the problem. These

may be recorded as “social admits”. Some existing studies include [55–57].

• Location and number of medically fragile individuals: Information on the number of

people using in-home medical devices and their locations is important for planning

power outage response. Data about Medicare beneficiaries is available through the

HHS emPOWER map [39], but it is estimated that there are millions more on other

insurances. A proposed approach is to implement load disaggregation on distribution

feeder data to identify the number of medical devices used downstream [58]. The

author has contributed to this work as one of the first authors.

• Energy backup and factors in the ecosystem: The effect of various sociotechnical, geo-

graphical, and medical factors on the benefits of energy backup for a medically fragile

family needs further investigation. Some examples of these factors include past ex-

perience with outages, rural/urban location, proximity to family/friends, awareness

for emergency preparedness, number and criticality of devices.

• Energy awareness and education: The I-Corps interviews revealed that it is challeng-

ing for non-experts to make decisions around energy backup. An energy education

and awareness add-on to the EAK or a precursor to an energy backup solution

that improves energy literacy can be useful. A candidate solution can be the load

scheduler in the form of a smartphone app to study energy needs during different

outage scenarios. A candidate hardware solution can be a platform like the Picogrid

presented in Part IV.

• Energy efficiency and healthcare: Through interviews, it was found that the inter-

section of energy efficiency and health could be a more established research area

in the paradigm of cross-platform problems [59]. Researchers can leverage insights

from this field when exploring the intersection of energy resilience and healthcare.
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Chapter 4

Energy Access and Homelessness

Unreliable or no access to electricity can have multiple reasons that do not necessarily

pertain to the reliability of the power grid. Even though all homes in the United States

have been connected to the power grid, people who do not have a permanent home do

not have reliable access to electricity. There over 500,000 people nation-wide that expe-

rience homelessness on a single night [60]. About 65% reside in homeless shelters and

35% or about 200,000 people are unsheltered. The presented work focuses on charging

infrastructure for cellphones for people experiencing homelessness and other underserved

communities. Studies show that houseless populations own cellphones, use them for health

and social needs, and this access can bring about a sense of empowerment [61], [62]. A

study showed that even those who reside in shelters can have problems accessing charging

infrastructure for their cellphones [63]. The ideal goal would be to address the root cause

of inaccessibility to electricity which is homelessness. As this problem is complex and may

have stretched timelines, it is necessary to look at the immediate steps and plug-n-play

solutions that can address this problem.

The Great Lakes Community Conservation Corps (GLCCC) [64] is an organization

based out of Racine, WI which works with veterans experiencing homelessness and dis-

advantaged youth. They aim to address climate change, advance greener living, and offer

education and job skills training. GLCCC recognized that their trainees often did not
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have a permanent residence and hence a safe place to charge their personal electronics.

They identified a two-fold need: (1) community solar-powered charging kiosks for their

trainees to charge their electronics for free; and (2) training the trainees to fabricate the

kiosks to improve their employment potential and for them to serve as green ambassadors.

GLCCC received a grant from the Wisconsin Office of Energy Innovation to address these

needs and reached out to UW-Madison for technical assistance in Spring 2021. The author

has worked with a UW team, and with GLCCC and other partners on needs assessment,

development of solar-powered phone charging kiosk prototypes, and deployment and data

analysis. For more details, refer to the project’s web page: smplabs.wisc.edu/electric-

little-free-library.

4.1 Problem Identification and Scoping

The author and team visited the GLCCC facility in Racine in the summer of 2021 to

interact with their trainees and understand the problem (Figure 4.1a). It was clear through

these conversations that cellphones were important for their day-to-day activities like

scheduling healthcare appointments, job interviews, school work, driving and navigation,

and communication with friends and family. A trainee told us “my phone is like my

lifeline”. The conversations also revealed that they had gone to great lengths to keep

their cellphones charged through public charging infrastructure and it was not always

convenient. The public library had charging outlets but parking there was not free. Some

trainees said that they had mobility constraints and could not walk more than a few blocks

for accessing outlets. They would often ask the GLCCC trainers if they could plug in their

cellphone at their facilities. Another trainee said that they would try to charge their phone

at outlets present on the exterior of houses in the neighborhood and added that “That was

the only way I could get off the street. You cannot book appointments or do your work

without a cellphone.” Through this field visit, it was clear that (1) cellphones are a critical

need, (2) access to charging infrastructure is limited and inconvenient, (3) their efforts to

keep their cellphones charged demonstrate that the need for charging infrastructure is

https://smplabs.wisc.edu/electric-little-free-library/
https://smplabs.wisc.edu/electric-little-free-library/


49

(a) Field visit to GLCCC, Racine (b) Solympics: Summer Solar Makeathon

Figure 4.1: Racine field visit and the summer solar makeathon

acute and crucial.

The team then introduced the concept of public solar-powered phone charging kiosks

and gathered feedback on required features and locations or environments where such

kiosks will be useful. Some of the locations that came up were bus stops, laundromats,

and parks. The team organized a makeathon at UW-Madison called “Solympics” for

students to ideate and prototype solar-powered kiosks for different environments (Figure

4.1b). A unique feature of the makeathon was that trainees from GLCCC (i.e. the end-

users) were present during the event to offer immediate feedback on useful features and

design considerations. The winning entry of the makeathon was the Electric Little Free

Library (eLFL). A Little Free Library (LFL) is a public book-case and is a part of a

world-wide non-profit movement to promote public book exchange [65]. An eLFL is an

LFL with an add-on solar panel and charging electronics. The team went on to develop

the makeathon model into a field-ready prototype.

4.2 Prototype Development and Deployment

The eLFL prototype is shown in Figure 4.2. The team used commonly available off-the-

shelf components for the power circuit and control circuits. The power circuit includes

a 50W 12V solar panel, 20Ah 12V Li-ion battery, 10A 12V charge controller, and two

12V/USB converters with 2 USB outlets each. The control circuit includes a microcon-
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(a) External structure (b) Inside the electronics box

Figure 4.2: Electric Little Free Library prototype

troller which reads data from sensors and writes it to a data logger. A majority of the

electronics is placed inside the electronics box which is mounted to the back of the LFL

and the solar panel is mounted on the top.

The power circuit is shown in Figure 4.3. The PV panel feeds in to the charge controller.

The battery is connected to the charge controller through a fuse. A current sensor and

voltage sensor monitor its current and terminal voltage respectively. The two 12V/USB

converters are connected to the charge controller through separate fuses. A current sensor

monitors the total current drawn by the two converters. The control circuit is shown in in

Figure 4.4. The voltage and current sensors give analog outputs. A magnetic switch sensor

is placed near the door of the LFL and acts as a door sensor, i.e., to check if the door is

open or closed. The real-time clock module interfaces the microcontroller via I2C and runs

on a coin cell to keep time even if the microcontroller switches off. The microcontroller

sends data to the data logger using serial communication. The two indicator LEDs (green

and red respectively) indicate the state of the battery voltage. If it is greater than 12V,

the green LED is ON indicating that the battery is operating at safe voltage levels with

enough charge. If it is less than 11.5V, the red LED switches ON indicating the battery

is at deep discharge levels. The data from sensors is read into the microcontroller and

logged into the SD card.
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Figure 4.3: Electric Little Free Library: power circuit

Figure 4.4: Electric Little Free Library: control circuit
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(a) GLCCC, Racine (image source: The Jour-
nal Times)

(b) Lisa Link Peace Park, Madison

Figure 4.5: Electric Little Free Library deployments

The first prototype of the eLFL was deployed at the GLCCC facility in Racine in Spring

2022 (Figure 4.5a). The author was a part of the UW-Madison Energy Analysis and Policy

capstone project that deployed the second prototype in Madison for 30 days in April-May

2022 (Figure 4.5b). The goals of the capstone project were to assess the energy needs for

underserved communities in Madison, test the feasibility of an eLFL to serve these needs,

and make recommendations for the replicability of such a project to other cities [66]. The

team conducted over 20 interviews with homeless shelters, city agencies, utilities, as also

potential end-users around the deployment location. The following section presents key

insights from these two deployments and multiple conversations with stakeholders.

4.3 Results, Discussion, and Continuing Work

Usage: Data from the Madison eLFL was actively monitored and it was found that the

average number of phone charges per day was 1.6 charges with the maximum charging

days occurring over weekends. The average time per charge per day over the course of the

deployment was 17.3 minutes. The library door was opened an average of 3.7 times per

day. These numbers show that the charging as well as the library portion of the eLFL was

actively used over the course of the 30-day deployment.
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Features: The charging cables from both the prototypes went missing within a few days

of installation. Along with more secure cables, future prototypes need to be vandalism-

proof and also provide secure storage to cell phones while they are being charged through

time-based locking compartments. Along with free access to clean electricity, access to

free WiFi was a common recommendation across stakeholders.

Legislative Impact: The team had conversations City of Madison Council members

including Alder Patrick Heck and found that LFLs do not fit the city’s zoning codes. For

large-scale deployment of eLFLs, an amendment permitting their use would have been

necessary. In order to permit the use of eLFL’s and other public kiosks, Alder Heck

sponsored an ordinance to amend several sections of Chapter 28 of the Madison General

Ordinances to create “Mission Boxes” as a permitted use in various districts. A Mission

Box is defined as “a structure constructed or authorized by the owner of a parcel for the

purpose of providing free items to the public, including, but not limited to, books, food,

clothing and home goods.” Electric Little Free Libraries can be viewed as mission boxes

for clean energy and literacy. The ordinance passed in October 2022. More details can

be found on the City of Madison web page [67]. The project was featured in the State of

Wisconsin Clean Energy Plan, May 2023 [68].

Contributions: The project has generated documentation that can act as a roadmap

for other cities, communities, and individuals to set up eLFLs. For insights and recom-

mendations on technology, field deployment, and community engagement refer [66]. For

a reference on amending zoning codes to allow mission boxes (and in turn eLFLs), refer

City of Madison’s zoning text memo [67].

Continuing work: After this phase of the project, multiple groups of UW-Madison

students and researchers have furthered various aspects of the project.

• A team worked with GLCCC trainees and high school students in Racine to make

multiple eLFLs, meeting the two-fold need of electricity access and job skills training
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identified by GLCCC at the beginning of this project.

• Students identified suitable sites in Madison for eLFLs using a GIS (Geographic

Information System) framework considering variables such as meeting zoning re-

quirements, avoiding areas with air pollution, adequate access to solar, proximity to

community gathering spots (including homeless resources), and bus stops with large

footfall [69].

• A team of students received funding of $5,000 from the City of Madison and Bloomberg

Philanthropies’ Youth Climate Action Fund [70] to install four eLFLs at the locations

in Madison identified by [69].

• Furthermore, there is ongoing research to identify optimal locations across the state

of Wisconsin by maximizing coverage of census tract population weighted by Social

Vulnerability Index (SVI) [71] and energy burden given a set budget of eLFLs.

The initial optimal placements were shared with GLCCC for implementation with

10 eLFLs located in Milwaukee and Racine counties each (personal communication

with one of the authors of the work, Rebecca Taylor, October 2024).

The Electric Little Free Library provides free access to clean electricity to people

experiencing homelessness and underserved communities. It also serves as a platform for

clean energy education and job skills training. It is important to note that the eLFL does

not address the root cause of homelessness and may not be a comprehensive solution for

energy access for such communities. It is, however, a good fit for being a part of a larger

framework for energy access and a symbol for increasing awareness about clean energy as

well as energy equity.
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Chapters in this part have presented field experiences that help to understand three

contexts of energy access and identify research questions. Proof-of-concept prototypes of

solutions that can address some of the questions have been presented and pathways for

future work have been identified. The research questions that were identified in each con-

text which inform the frameworks and investigations presented in Parts II, III, and IV are

summarized below.

Energy access for rural communities

• Hardware heterogeneity: Hardware that is locally available and economical is not

uniform across vendors.

• Topology independence: Households may not want to join a microgrid until they

observe that the participating households are benefiting from the project. Similarly,

participating households may not want to remain a part of the project for the months

when they travel elsewhere for seasonal jobs.

• Intermittent remote communication: Communication infrastructure such as the cel-

lular network has intermittent or no connectivity in remote rural communities.

• Multi-objective driven management of limited energy: Objectives include minimizing

deep discharge of batteries to reduce frequency of replacements, managing loads with

different time-varying priorities, minimizing health risks due to unclean fuels.

• Uncertainty mitigation: Users want to know how much energy is available through

a microgrid or a solar home system so that they can plan on budgets for other needs

such as kerosene.

• Hardware experimental platforms: Field deployment can present multiple challenges

which may not come up in simulation environments in the lab. Hardware-based

experimental platforms are necessary to minimize failures in the field.

Energy resilience and home healthcare

• Multi-objective driven management of limited energy: Medically fragile families want

to increase the time they spend at home during a power outage before evacuating.
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Each medical device has a different priority which can change with time.

• Uncertainty mitigation: Families want to be certain of the amount of time their

energy backup can power their critical loads.

• Energy education platforms: There is a lack of awareness among families about

energy requirements and hence backup system sizing can be challenging. Education

tools such as system sizing tools and outage simulators can act as a useful precursor

for in-home energy backup.

Energy Access and Homelessness

• Energy education platforms: Community organizations such as GLCCC are inter-

ested in energy education platforms for job skills training and for enabling individuals

to become clean energy ambassadors. There is interest from high school and college

students in engaging with such platforms.

• Hardware experimental platforms: Field deployment of the prototype brought forth

many hardware challenges from electronics to mounting. A hardware component in

energy research and educational platforms is critical, particularly if the goal is field

deployment.

• Hardware heterogeneity: If the field prototypes have to be low-budget, the design

needs to be compatible with hardware from different vendors.

Proof-of-concept solutions and proposals presented in this chapter such as the optimal

energy mix model, the table-top exercise, load scheduler for medical devices, and the

Electric Little Free Library attempt to address some of these questions. These questions

inform the frameworks presented in the following parts.
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Part II

Threshold-Based Energy

Management



58

Chapter 5

Stability Study

This chapter introduces threshold-based energy management, building upon the prior work

on Self-Organizing Local Electrical Energy Network (SOLEEN) within the scope of micro-

grids and solar home systems. Microgrids and solar home systems deployed for energy ac-

cess in remote communities experience unique technological and socioeconomic challenges.

Control frameworks for such energy access solutions need to function with heterogeneous

hardware, minimal technical expertise for maintenance, limited information about network

topology, fit low budgets, and adapt to user preferences. SOLEEN was presented as a con-

trol framework for such lean deployments and shown to satisfy these requirements through

simulation and experimental studies. This study presents the underlying mathematical

framework and proof of stability of threshold-based energy management for prosumer enti-

ties with time-invariant parameters. We show that such entities converge to an equilibrium

where supply-demand balance is maintained. Stability of entities as they switch from one

set of time-invariant parameters to another is illustrated through numerical simulations.

Additionally, we present rules for isolated and interconnected entities to avoid unstable

operating conditions.
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5.1 Introduction

5.1.1 Motivation

Microgrids and solar home systems (SHS) are being used as solutions for energy access in

remote communities and can be a potential solution to provide for the 685 million people

without access to electricity [6]. In addition to providing remote access to clean energy,

microgrids offer indirect benefits such as fostering economic growth, improving health

outcomes, and aiding women empowerment [11, 72]. The success of microgrid and SHS

projects hinges on a few common technological and socioeconomic themes [10]. Operation

and maintenance of the equipment is a challenge since there is heterogeneity in the locally

available hardware and a lack of skilled technicians in remote areas. Appropriately sizing

the system capacity depends on estimation of the demand for electricity in a community.

This is challenging, particularly if the community was formerly unelectrified [73]. Systems

are also seen to experience demand-supply imbalance during operation [19]. Getting access

to data and sending corrective set points from a remote central controller in real-time

may not be possible due to unreliable communication infrastructure in remote areas. In

addition to these technological challenges, socioeconomic factors also influence project

success and solutions need to be cognizant of this context [74]. Community-engagement in

the ownership and maintenance of the project is essential for sustained operation. Upfront

costs and tariff structures need to be affordable for rural households with limited means

and this can necessitate innovations in financial models [75]. Furthermore, households

may not want to join a microgrid until they observe that the participating households are

benefiting from the project. Similarly, participating households may not want to remain

a part of the project for the months when they travel elsewhere for seasonal jobs. This

means that the microgrid control framework needs to be agnostic to the changing network

topology. Therefore, these challenges present the following requirements on microgrid and

SHS-based energy access solutions:

1. works with locally available heterogeneous hardware and minimal technical expertise

for maintenance
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2. supports ad-hoc prosumer microgrid formation and works without detailed informa-

tion about network topology

3. works with high latency communication infrastructure

4. fits low budgets in terms of upfront and recurring costs

5. adapts to user preferences and local socioeconomic requirements

5.1.2 Background

Microgrid control paradigms and solutions have addressed some of these requirements. The

use of primary control approaches based on local measurements that do not require commu-

nication between entities [76] has become well-established. Secondary and tertiary control

approaches often require central control, high speed communication between entities, and

system-wide measurements. This becomes challenging in small-scale microgrids deployed

for remote or rural electrification, since communication infrastructure may not be reliable

and may not meet the timing requirements of the power system [77]. Centralized control

is associated with multiple challenges including single-point failure, ownership, and financ-

ing. Studies have proposed distributed secondary and tertiary control strategies but they

often employ consensus algorithms, i.e., need communication between neighbors or need

high-end power converters capable of accepting power quality set-points [78–80]. Simple

converter topologies specifically catered to the remote microgrid/SHS context with mini-

mal communication, cost, skilled maintenance requirements have been proposed in [81–83]

but these solutions still require additional hardware beyond that available commercially

off-the-shelf.

A rural community microgrid deployment, particularly in developing economies, works

on thin budgets where high-end power converters or communication channels are not af-

fordable [23]. In the context of this ‘lean deployment’, the only control handles available at

each household or entity are switches for loads, sources, including import/export with the

network. Self-Organizing Local Electrical Energy Network (SOLEEN) presented in [43]

is a framework for distributed secondary layer control. Since it uses only these switches
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as control handles, it satisfies requirements 1 and 4. It has been shown through simula-

tions and hardware experiments that it satisfies requirements 2 and 3 in that it maintains

operational sufficiency of each entity, i.e., maintains the energy content of the battery at

each entity within given bounds, without central control or communication or information

about network topology. A tertiary layer can be overlaid on SOLEEN to meet the custom

objectives of each participating household in the microgrid as shown through numerical

simulations and hardware-in-the-loop experiments [84] (and Chapter 6), thereby contribut-

ing to meeting requirement 5. SOLEEN has also been proposed as a way to maintain en-

ergy resilience of individual households participating in demand response programs [85].

Previous studies illustrate the use cases of SOLEEN through numerical simulations and

hardware experiments. However, they lack a discussion on the detailed operation and

analytical model, and they fail to provide comprehensive comments on the framework’s

stability. This study aims to bridge this gap.

5.1.3 Threshold-based energy management

Threshold-based energy management is based on the SOLEEN control paradigm. Each

household or entity in the network is assumed to have some form of energy storage in

addition to loads and sources. Each entity can exchange energy with the network through

two separate channels for import and export. The import channel is treated as a source

and the export channel is treated as a load. The discrete energy manager (DEM) in each

entity measures the state of charge of the storage and actuates loads and sources. A block

diagram of an entity, adapted from [43], is shown in Figure 5.1.

The primary goal of threshold-based energy management is to ensure that the energy

content of each entity in the microgrid remains within predefined limits. Each load and

source is assigned a threshold. If the local energy content is greater than the threshold

assigned to a load, the DEM switches the load on; otherwise, it is switched off. On the

other hand, if the local energy content is greater than the threshold assigned to a source,

the DEM switches the source off; otherwise, it is switched on.
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Figure 5.1: Illustration of an entity in a self-organizing local electrical energy network

5.1.4 Contributions

In this study we present the underlying mathematical framework for stability of threshold-

based energy management. We show that not only does it maintain the energy content

within predefined limits but also ensures that entities converge to an equilibrium that

ensures demand-supply balance. We validate the framework through numerical simula-

tions and present rules and recommendations for operation of isolated and interconnected

entities. The contributions of this study are:

• proof of stability of an entity with constant-power sources and loads and constant

thresholds

• numerical simulations to demonstrate stability while switching between two systems

with constant-power sources and loads and constant thresholds

• rules for operation of isolated and interconnected entities

5.1.5 Organization

Section 5.2 outlines the key terms, definitions, and operating rules of the framework and

presents two systems which will be used to illustrate results through numerical simula-

tions. Section 5.3 presents proofs for an entity with a finite number of constant-power

sources and loads and for an entity with an infinite number of sources and loads with an
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infinitesimally small constant power rating. Section 5.4 demonstrates the stability of an

entity while switching between two systems with constant-power loads and sources and

constant thresholds through numerical simulations. Rules for operating isolated and in-

terconnected entities are presented in Section 5.5, which is followed by a brief concluding

section.

5.2 Model

Consider a single entity with energy content x and maximum capacity of storage X. This

study presents analysis for x being energy content of a battery, but this can also represent

any cumulative variable such as the monetary amount in a prepaid energy wallet, the

amount of fuel in a tank, etc. Let the entity have N s number of sources with each source

j supplying power psj , N
l number of loads with each load k consuming power plk. Each

source and load is assigned a threshold in terms of the energy content of the storage.

We assign a threshold xsj to source j and a threshold xlk to source k. The only control

handles the framework uses are the binary switching states of sources (usj) and loads (ulk),

determined by equations (5.1) and (5.2) respectively.

usj = step(xsj − x) (5.1)

ulk = step(x− xlk) (5.2)

Here, the step() function is defined as step(y) = 1 if y ≥ 0 and 0 otherwise. It follows

that, a source is switched on if the energy content of the storage is less than or equal to its

threshold and is switched off otherwise. A load is switched on if the energy is greater than

or equal to its threshold and is switched off otherwise. Equation (5.3) gives the expression

for the rate of change of energy or power input to the storage.

ẋ =
∑
j

psju
s
j −

∑
k

plku
l
k =

∑
j

psjstep(x
s
j − x)−

∑
k

plkstep(x− xlk) (5.3)



64

In order to illustrate the results in this section, we define two systems. All power and

energy values are in per unit.

System 1: N s = 3, N l = 3, X = 1, source and load specifications given in Tables 5.1 and

5.2 respectively.

Table 5.1: System 1: source specifications

j psj xsj
1 0.15 0.9
2 0.2 0.8
3 0.2 0.7

Table 5.2: System 1: load specifications

k plk xlk
1 0.1 0.1
2 0.2 0.2
3 0.3 0.3

System 2: N s = 50, N l = 50, X = 1

Source specifications: psj = 0.01 ∀j, xsj = 0.5 + (0.9−0.5)j
Ns

Load specifications: plk = 0.01 ∀k, xlk = 0.1 + (0.5−0.1)k
N l

Systems 1 and 2 are modeled in MATLAB and numerical results are used to illustrate

and validate the analytical models presented in the following sections.

5.3 Stability Study

In this section, it is assumed that the power consumed by loads and supplied by sources

remains constant and all thresholds are fixed. We offer comments on operation and sta-

bility of systems with time-varying power input/output and time-varying thresholds in

Sections 5.4 and 5.5.

5.3.1 Preliminaries

5.3.1.1 Monotonicity

Let all the N thresholds (N = N s +N l) be arranged in ascending order from x1 to xN .

If xi is a threshold corresponding to a load then

ẋ|xi−1≤x<xi − ẋ|xi≤x<xi+1 = plk ≥ 0 (5.4)
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If xi is a threshold corresponding to a source then

ẋ|xi−1<x≤xi − ẋ|xi<x<xi+1 = pls ≥ 0 (5.5)

From Equations 5.4 and 5.5, it follows that

ẋ|xi−1<x<xi − ẋ|xi≤x<xi+1 ≥ 0 (5.6)

The phase plane plot of ẋ against x for System 1 is shown in Figure 5.2. It is a

non-increasing function which crosses the x-axis at x = xl3 := xd.
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Figure 5.2: Phase-plane plot for System 1: system converges to x = xd

5.3.1.2 System design considerations

For all x < x1, all sources will be active and all loads will be inactive, whereas for all

x > xn, all loads will be active whereas all sources will be inactive. Therefore, as long as

the system is designed such that there is at least one load and at least one source with a

non-zero power rating, we have

ẋ|x<x1 =
∑
j

psj > 0 and ẋ|x>xn = −
∑
k

plk < 0 (5.7)
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If it is assumed that the power consumed by loads, power supplied by sources, and

all thresholds are constant, and since ẋ is a monotonically non-increasing function of x,

changes in ẋ can take place only at a threshold. It follows that there exists a unique

threshold x = xd such that

ẋ|x<xd
> 0 and ẋ|x>xd

< 0 (5.8)

It follows that, for a given set of constant-power sources and loads with constant thresholds:

1. xd is unique

2. xd is time-invariant

5.3.2 Continuous variation

Consider a system with a large number of loads and sources, each with an infinitesimally

small constant power rating. The discontinuous plot depicted in Figure 5.2 degenerates to

a continuous straight line intersecting the x-axis at x = xd. Since the loads and sources

of System 2 have a small power rating and are large in number, System 2 is a good

approximation of such a system and its plot of ẋ against x resembles a straight line as

shown in Figure 5.3a. We use the global invariant set theorem to comment on the stability

of such a system.
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(a) Phase plane plot:
system converges to x = xd
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(c) Lyapunov function
V (y) = y2

Figure 5.3: System 2: phase plane and Lyapunov function plots

Let us define a new variable y := x − xd and ẏ + g(y) = 0. The plot of g(y) against y is

a straight line passing through the origin; the plot for System 2 is shown in Figure 5.3b.
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Therefore, we have yg(y) ≥ 0 ∀y. Consider the Lyapunov function V (y) = y2 (Figure

5.3c). The following conditions are satisfied:

1. V (y)→∞ as ||y|| → ∞

2. V̇ (y) = 2yẏ = −2yg(y) ≤ 0 ∀y

Let R be the set of all points where V̇ (y) = 0 and M be the largest invariant set in R.

From the above conditions and since this is an autonomous system with g(y) continuous,

the global invariant set theorem is applicable and it follows that all solutions globally

asymptotically converge to M as t → ∞ [86]. The solutions to V̇ (y) = 0 are y = 0 or

g(y) = 0, i.e., y = 0 is the only point in set R. At y = 0, ẏ = 0 and so that is an invariant

set. Therefore, the system globally asymptotically converges to y = 0. Note that g(y)

need not be a straight line or a monotonic function for this result to hold. As long as

conditions (1) and (2) above are satisfied, the system will globally asymptotically converge

to y = 0.

Figures 5.4a and 5.4b show the plot of x against time for System 2 for different initial

conditions. The system is seen to converge to x = xd = 0.5 (which corresponds to y = 0)

in finite time.
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(a) Initial condition x = 0.85
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(b) Initial condition x = 0.15

Figure 5.4: System 2: x against time for two different initial conditions; system converges
to xd = 0.5 in both cases
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5.3.3 Discontinuous variation

In the case of discontinuous variation, we use the sliding mode control paradigm to com-

ment on the stability of the system. The goal of a control system is to formulate and

implement a control law such that the system tracks a certain desired trajectory. The

goals of the following discussion are to analyze the threshold-based energy management

framework through the sliding mode control paradigm so as to validate the following hy-

potheses about the stability of the system operated using the framework and identify

conditions when they are satisfied.

1. system reaches x = xd in finite time

2. x = xd is an invariant set

Let the sliding variable be defined as s := x − xd = x̃. Since xd is not time-varying,

ṡ = ẋ− ẋd = ẋ. Therefore, sṡ = x̃ẋ.

From the definition of xd, it follows that ẋ > 0 when x̃ < 0 and ẋ < 0 when x̃ > 0.

Therefore,

sṡ = −|x̃||ẋ| = −|s||ẋ|

Let η = min{|ẋ|} which is the minimum of |ẋ|x=x−
d
| = P+ and |ẋ|x=x+

d
| = −P− as marked

in Figure 5.2. Therefore,

sṡ ≤ −η|s|

1

2

ds2

dt2
≤ −η|s| (5.9)

Equation 5.9 verifies the sliding condition [86]. Therefore, the system reaches s = 0,

i.e., x = xd in finite time which is ≤ |s(t=0)|
η and remains at x = xd. Hence, x = xd is

an invariant set. This validates the two hypotheses, assuming constant-power sources and

loads and constant thresholds.

Figures 5.5a and 5.5b show the plot of x against time for System 1 for different initial

conditions. The system is seen to converge to x = xd = 0.3 in finite time.

To limit chattering, practical implementation of such a system introduces a small

amount of hysteresis around each threshold. In the neighborhood of x = xd, let us assume
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(b) Initial condition x = 0.15

Figure 5.5: System 1: x against time for two different initial conditions; system converges
to xd = 0.3 in both cases

that the width of the dead band is ∆x. The time for which ẋ = P− and ẋ = P+ is

given by ∆x/(−P−) and ∆x/P+ respectively. Therefore, the average value of ẋ in the

neighborhood of x = xd is given by

< ẋ >=
P− ∆x

(−P−)
+ P+ ∆x

P+

∆x
(−P−)

+ ∆x
P+

= 0

Therefore, around x = xd, we have < ẋ >= 0, i.e., a balance between supply and

demand is ensured.

This analysis for continuous and discontinuous cases reveals that the threshold-based

energy management framework ensures that the system will converge to the equilibrium

and ensure supply-demand balance.

5.4 Case Studies

The above discussions assumed time-invariant thresholds and constant-power sources and

loads. This section presents case studies that illustrate the operation of an entity that

changes from one system with time-invariant parameters to another system with time-

invariant parameters, depending on different external factors.
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5.4.1 Low Demand

Let us assume that System 1 represents a grid-connected household with a battery that

has three wall chargers and three loads. Consider a scenario when the members of the

household are away and are not using any loads. The plot of ẋ against x is entirely above

the x-axis except at x = xd as shown in Figure 5.6a and the system continues to converge

to x = xd in finite time as shown in Figure 5.6b. Here, xd is equal to the largest threshold

xs1 = 0.9. The system will remain there until the load demand becomes non-zero after

which the equilibrium can shift to a different value of x. Note that, in this case if the

initial condition is greater than xd, the system remains at the initial condition since ẋ = 0

when x ≥ xd.
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(a) Phase plane plot: system converges
to x = xd
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(b) x against time for initial condition x = 0.15

Figure 5.6: System 1: Low demand case

5.4.2 High Demand

If there is a power outage, the wall chargers will not supply any power. In this case, if the

household is using all the loads the plot of ẋ against x is entirely below the x-axis except

at x = xd as shown in Figure 5.7a and the system continues to converge to x = xd as

shown in Figure 5.7b. Here, xd is equal to the lowest threshold xl1 = 0.1. The system will

remain there until one of the sources becomes available after which the equilibrium can

shift to a different value of x. Note that, in this case if the initial condition is less than
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xd, the system remains at the initial condition since ẋ = 0 when x ≤ xd.
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to x = xd

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

(b) x against time for initial condition
x = 0.85

Figure 5.7: System 1: High demand case

5.4.3 Increasing demand

Consider a scenario when the demand has an instantaneous increase and System 1 changes

from the low demand case to the high demand case. Figure 5.8 shows the plot of ẋ against

time and the switch happens at t = 0.2. The system first moves towards the low demand

equilibrium (x = 0.9). After the demand increases, the system converges to the high

demand equilibrium (x = 0.1). This shows that the system continues to move towards

the equilibrium corresponding to the current set of parameters (thresholds and load and

source power).

5.4.4 Instability condition

The high and low demand cases show that the system remains stable even if the total

load demand is greater or less than the total source power respectively. However, if

a load/source switches roles, i.e., a load supplies power and a source starts consuming

power, this can lead to instability. Consider a scenario where Source 1 in System 1 is

connected to an external battery. If the external battery ends up drawing power instead

of supplying power to charge the system’s battery, this can lead to the system battery
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Figure 5.8: x against time for System 1 switching from low demand to high demand;
system converges to the high demand case equilibrium of x = 0.1

getting completely drained. Figure 5.9a shows the plot of ẋ against x when this power

draw is ps1 = −0.7 and Figure 5.9b shows the plot of x against time. x is seen to become

negative and continue decreasing. Practically, this would lead to the battery getting

completely discharged and remain at zero state of charge.
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(b) x continues to decrease with time

Figure 5.9: System 1: Instability when a source becomes a load

The case studies reveal that a load or a source may not interchange their roles, i.e.,

consume or supply negative power respectively, or the system can become unstable. Fur-

thermore, a system may consist of only loads or only sources in certain scenarios. This

degenerates to the trivial case wherein the system converges to the lowest or the highest

threshold respectively. As long as the chosen thresholds are within safe operating limits
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of the energy storage device, these cases do not present threats to the safe operation of

the system.

5.5 Rules for Operating Entities

Entities running the SOLEEN framework can be interconnected to exchange energy and

each entity is observed to maintain its local energy content within predefined limits. This

has been shown through Monte Carlo simulations for a 20-entity network and through

hardware experiments on a 3-entity network [43]. Each entity participates in the network

through two devices - import and export. The import device is treated as a source and

the export device is treated as a load. In this section, we present recommendations for

interconnecting entities. These are also applicable for operation of isolated entities.

Thresholds: If the power supplied or consumed by each source or load respectively as

well as the thresholds vary with time, the plot of ẋ against x may also vary with time.

In this case, xd will be a function of time xd(t). If ẋ is plotted against x considering the

power and threshold values at any given instant of time t, the relation (5.6) will still hold

true at each instant. Therefore, it can be argued that xd(t) will be unique. Since the

equilibrium xd(t) is one of the thresholds, the chosen thresholds should lie within the safe

operating limits of the energy storage device. For example, if a battery’s safe operating

region is between 20% to 90% state of charge, thresholds should be picked within this

range.

Bidirectional power flow: Bidirectional power flow on a load/source may lead to

instability. A source or a load should not change roles, i.e., a source should not consume

power and a load should not supply power since this can lead to instability as illustrated

in the case studies. This is particularly important for energy exchange with the network.

Separate lines for import and export are needed and unidirectionality of power flow has to

be ensured on each line. In dc networks, it can be implemented by having a simple diode

in series in each line as implemented in [43].
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5.6 Conclusion

This study presents the mathematical framework describing the stability of threshold-

based energy management and shows that entities converge to an equilibrium that main-

tains demand-supply balance. We prove that an entity with constant thresholds and an

infinite number of sources and loads each with an infinitesimally small constant power

rating will globally asymptotically converge to the equilibrium. We prove that an entity

with constant thresholds and a finite number of constant-power sources and loads will

converge to the equilibrium in finite time. We show through numerical simulations that

if an entity’s parameters change from one set of time-invariant load/source power ratings

and thresholds to another similar time-invariant set, it will move towards the equilibrium

corresponding to the current set of parameters. Furthermore, we present two rules for op-

erating isolated or interconnected entities: (1) thresholds should be chosen such that they

lie within the safe operating limits of the energy storage device, (2) no load/source can

support bidirectional power flow, i.e., a load or source cannot supply or consume power

respectively.

Stability study of entities with time-varying parameters (thresholds, power consump-

tion of loads, power supply from sources) is a subject of future work. Additionally, a

stability study of multiple interconnected entities can be undertaken. The framework can

also be extended to incorporate more than one energy storage quantity. For example,

for a household with battery storage and a prepaid energy wallet, the framework can be

implemented through a quantity that is a function of the state of charge and the wallet

amount.

It is important to note that the choice of thresholds can influence how long a partic-

ular load/source is enabled. This can affect tertiary level socioeconomic objectives of an

entity beyond operational stability such as revenue generation through energy exchange

or availability of a critical load. This can be achieved by overlaying a tertiary control layer

on threshold-based energy management, as discussed in Chapter 6. It is also possible to

choose appropriate thresholds to achieve tertiary level objectives. This is presented in Part
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III which extends the concept of threshold-based energy management to prepaid wallets,

i.e., the variable of interest is the wallet balance instead of battery state of charge.
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Chapter 6

Application to Community-Scale

Microgrids

Secondary and tertiary control of microgrids is often centralized and requires system-wide

measurements and communication between entities. Such approaches can be susceptible to

single points of failure especially when communication infrastructure is not reliable. Self-

organizing local electrical energy network (SOLEEN) is a secondary control framework

which ensures operational sufficiency of the network without any central control or com-

munication. Higher layers of control can be overlaid on SOLEEN for optimal operation.

This work presents a distributed approach for realizing tertiary control of SOLEEN-based

dc community microgrids through an optimal scheduler at each entity for local loads and

energy exchange with the network. The scheduler uses integer linear programming to meet

the objectives of the entity such as revenue generation and maximizing service to criti-

cal loads. The model provides parameters to account for socioeconomic differences across

participating entities which can result in different objectives. It is independent of network

topology, variations in local power sources, making it a plug-n-play option for resource-

constrained deployments in rural communities. The model is verified through computer

simulations and experiments on a hardware-in-the-loop setup.1

1This chapter is based on work by the author and Giri Venkataramanan in [84]. This work was supported
by the Wisconsin Electric Machines and Power Electronics Consortium.
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6.1 Introduction

The paradigm of microgrids is continuing to gather attention as a means for providing

electrical energy services for remote locations and emergency conditions within central-

ized grids. The use of primary control approaches based on local measurements that do

not require communication between entities [76] has become well-established. Secondary

and tertiary control approaches often require central control, high speed communication

between entities, and system-wide measurements. This becomes challenging in small-scale

microgrids deployed for remote or rural electrification, since communication infrastructure

may not be reliable and may not meet the timing requirements of the power system [77].

Centralized control is associated with multiple challenges including single-point failure,

ownership, and financing. Studies have proposed distributed secondary and tertiary con-

trol strategies but they often employ consensus algorithms, i.e., need communication be-

tween neighbors or need high-end power converters capable of accepting power quality

set-points [78], [79], [80]. A rural community microgrid deployment, particularly in devel-

oping economies, works on thin budgets and high-end power converters or communication

channels are not affordable [23]. To reduce upfront costs and lead time while improving re-

silience, interconnecting multiple modular photovoltaics (PV) + storage based solar home

systems is preferred over a centralized PV array + battery bank [82]. In the context of

this ‘lean deployment’, the only control handles available at each household or entity are

switches for loads, sources, including import/export with the network.

Self-organizing local electrical energy network (SOLEEN) is a proposed control frame-

work for distributed secondary layer control [43], useful for such lean dc community micro-

grids. It uses only switches for loads/sources as control handles and ensures operational

sufficiency of each entity in a microgrid without any communication or central control.

With the ‘safety net’ of SOLEEN in place, a distributed tertiary layer that may use com-

munication with a central entity can be incorporated to improve economy of operation

beyond operational sufficiency. This work presents a distributed tertiary layer in the

form of a distributed optimal scheduler (DOS) for dc community microgrids based on the
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SOLEEN framework. Fig. 6.1 illustrates a community scale microgrid with three electrical

entities (EE) illustrating various layers of hierarchical control.

Figure 6.1: Sketch of a community scale microgrid with three electrical entities (EE)
illustrating various layers of hierarchical control

A community microgrid with multiple prosumer entities and multiple owners repre-

sents operating goals different from single owner microgrids. Each entity pursues its own

operating objective which may not be in complete alignment with that of others [87].

Furthermore, the overall objective function of an entity can be a combination of multiple

objectives such as meeting critical demand and revenue maximization. The proposed DOS

presented here uses integer linear programming to minimize the composite, versatile, and

flexible cost function in order to ensure optimal operation of each entity to meet cus-

tomized objectives. Each entity executes the optimization algorithm locally to schedule

local loads and energy exchange with the network without any central control.

The following section summarizes the main features of SOLEEN and the distributed

optimal scheduler. Section 6.3 presents the mathematical formulation of the optimization

model. Section 6.4 presents computer simulation results for a modest three-entity network.

Results from a hardware-in-the-loop laboratory scale experimental system are presented
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in Section 6.5, followed by a brief concluding section.

6.2 Distributed Optimal Scheduling

The fundamental operational block of SOLEEN is an electrical entity (EE). An EE can

be a prosumer such as a house, a building, or a commercial entity. An EE contains

nominal storage and multiple electric devices (EDs) such as loads, sources, import/export

channels along with a discrete energy manager (DEM). Based on the energy content of

the EE, the DEM sends actuation signals and manages the different EDs. Each ED has

an energy threshold - when the local energy content crosses this threshold, the DEM sends

an actuation signal to the ED [43]. The EE is said to be operationally sufficient if its net

energy level remains within given bounds. The controlled actuation of devices according to

local energy and thresholds forms the base control loop over which higher layers of control

can be overlaid. This base control loop executed in the DEM of each EE maintains the

energy content within given bounds to ensure operational sufficiency, irrespective of the

presence of higher layers of control.

In the context of a microgrid that is self-organizing, each entity in the microgrid op-

timizes ‘itself’ to meet its own objectives without regard to the needs of a community.

Community engagement occurs in the form of participating in interconnection, and ex-

changing energy based on a price structure that is agreed upon by the membership in the

community. In such a scenario, the EE has an added responsibility of scheduling loads,

sources, and energy import/export to satisfy the objectives of the entity beyond ensuring

mere operational sufficiency. Therefore, the tertiary layer controller may be viewed as a

distributed optimal scheduler or DOS.

Such an approach can operate independently in the absence of any central control, real-

time communication with a central entity, or between entities. If the community agrees

upon a price structure that varies with the aggregate energy of the network, a central entity

is necessary to determine the price of energy exchange by computing total energy content

of all entities in the network. In this case, the role of this entity is limited to computing and
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communicating this price to all entities, and it does not make any centralized scheduling

decisions for any entity. Therefore, each entity maintains its autonomy preserving the

distributed nature of the tertiary control scheme.

The scheduler uses an integer linear program for optimal scheduling and is implemented

in each EE. The scheduler is overlaid on the base SOLEEN control loop. Actuation signals

generated by the scheduler take a lower priority than those generated by the base loop as

operational sufficiency is of higher priority than optimal operation.

The model is set in the context of a rural off-grid community, typically located in

developing or underdeveloped economies. Each house or building is modeled as an EE.

Each EE is assumed to have local rooftop solar PV and local storage. Its electrical appli-

ances are classified as either critical or non-critical. All critical appliances are lumped to

form the “critical load” and similarly all non-critical appliances together form the “non-

critical load”. All entities are interconnected so as to form a dc microgrid and enable

energy exchange through an import device and an export device at each EE. Therefore,

the electrical devices present in each EE are import device, export device, critical load,

non-critical load, and the PV source. The scheduler generates actuation signals for the

loads and the import and export devices.

A community microgrid can comprise of various types of entities broadly classified

into two classes - service seekers and revenue seekers as shown in Fig. 6.2. The primary

goal of service seekers is to meet their local demand and the secondary goal is to reduce

expenditure on energy imports. On the other hand, the primary goal of revenue seekers

is to maximize revenue generated through energy export and their secondary goal is to

reduce unmet local demand. Service seekers include residential users and critical infras-

tructure like health clinics. Revenue seekers include commercial entities like shops and

local entrepreneurs [88] who invest in high capacity solar systems with the purpose of gen-

erating revenue through energy export above and beyond serving their local loads. Both

the classes of entities are expected to have critical and non-critical loads. Loads can be

further classified as power and energy loads. Power loads have a constant power demand
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Figure 6.2: Classes of entities and loads in the community microgrid

during a certain period of the day and no demand outside of that, e.g., demand for a

40W light bulb in a residential user’s house from 6:00 to 9:00 p.m. Energy loads are also

constant power loads but have a total daily energy demand and can be serviced anytime

during the day with interruptions, e.g., an irrigation water pump. For the purpose of this

study, it is assumed that all loads of the service seeker and the critical load of the revenue

seeker are power loads, whereas the non-critical load of the revenue seeker is an energy

load.

6.3 Optimal Scheduler Design

The optimal scheduler illustrated here is similar to model predictive control with a window

size of one time step. While the proposed approach does not need any weather forecast

data, it serves as a plug-n-play model for community microgrids across different loca-

tions with varying climatic conditions, using energy price as the only proxy parameter

to represent the network state. Thus, the scheduler receives a price signal pt from the

revenue/energy aggregator, and on the basis of local objectives provides switching signals

for enabling the import device, export device, and the non-critical load over time step t

given by ui,t, ue,t, and unc,t respectively. The switching signals can take the values of 0

(OFF) and 1 (ON) which remain unchanged over the duration of the time step, while the

scheduler computes their optimal values for the next time step.

Each entity is assumed to have three different objectives - meet critical demand, gen-

erate revenue (or reduce expenditure), and meet non-critical demand. Meeting critical
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demand has the highest priority while there is a trade-off between generating revenue and

meeting non-critical demand. This has to be accounted for while constructing the overall

objective function of the scheduler. The scheduler has to manage a limited amount of

energy while catering to these objectives. The fundamental basis for DOS is the price

signal that is transmitted to all the entities, which is described further.

6.3.1 Energy Tariff

The price of energy exchange is set to depend on the aggregate energy of the entities

participating in energy exchange. Larger the aggregate energy implies larger supply of

energy available for exchange and hence a lower price. This negative relationship between

aggregate energy and price incentivizes entities with surplus to export when most of the

network is in deficit, facilitating equitable distribution and operational sufficiency. A

positive relationship, on the other hand, may lead to a positive feedback system and

runaway conditions. This study assumes the relation between the aggregate energy and

the price to be a straight line with a negative slope and is given by (6.1). Cmax and Cmin

are the upper and lower limits on the price, respectively, agreed upon by the community.

pt is the price at time t and ei,t is the energy content of the ith entity at time t. The unit

of pt is monetary units per unit energy or mu/pu. The plot of energy price vs aggregate

energy is monotonically decreasing and is shown in Fig. 6.3.

pt = Cmax −
Cmax − Cmin

Emax

∑
i

ei,t (6.1)

The revenue/ energy aggregator collects information about each participating entity’s

energy content, computes the price, and communicates it to each entity in the network,

and does not make any scheduling decisions.

6.3.2 Revenue/Service Trade-off Model

In order to model the trade-off between generating revenue and meeting non-critical de-

mand, a discrete function that penalizes revenue generation at the expense of serving
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Figure 6.3: Energy price vs aggregate network energy as determined by the revenue/energy
aggregator

non-critical load is defined, as vt = ui,t − ue,t + unc,t, where ui,t, ue,t, and unc,t represent

the switching functions for import, export, and non-critical loads respectively, set to unity

while they are enabled and zero otherwise. Altogether, vt takes positive values when the

states of these electric devices curtail revenue while it takes negative values when rev-

enue is enhanced. In contrast, positive vt indicates an increase in the service factor for

non-critical loads (NCSF) and vice versa. Service factor (SF) pf a load is defined as the

percentage of demand served over a day or the time-horizon of interest. These aspects

are shown in Table 6.1. Adding the constraint (6.2) ensures that at most one among the

import or export devices can be on, which implies that vt can take one of four discrete

values in {−1, 0, 1, 2}. With this definition of vt, ptvt represents the expenditure or loss of

revenue due to particular choices of switching states.

Furthermore, an upper bound on the cost of unmet non-critical demand can be de-

termined using Cmaxϵt(−vt), where ϵt is the fraction of the unmet energy demand of the

non-critical load, over a day or the time-horizon of interest, at time t. Since the algorithm

continuously makes decisions for each time step, ϵt can be used as a proxy for the unmet

demand over the entire day or time-horizon of interest.

The cost of unmet non-critical demand is weighted using a ‘greediness factor’ β and

discounted from the loss of revenue ptvt to represent the total cost function to be (pt −

βCmaxϵt)vt. Here, small values of β would lead to maximizing revenue, where large values
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of β would lead to maximizing service.

Table 6.1: Effects of various discrete switching state functions

ui,t ue,t unc,t vt Revenue NCSF wt CSF

0 0 0 0 - - 0 -
0 0 1 1 ↓ ↑ 1 ↓
0 1 0 -1 ↑ ↓ 1 ↓
0 1 1 0 - - 2 ↓
1 0 0 1 ↓ ↑ -1 ↑
1 0 1 2 ↓ ↑ 0 -

ui,t + ue,t ≤ 1 (6.2)

6.3.3 Critical Demand Model

While the trade-off between revenue and meeting non-critical demand is met using the

cost function described above, meeting the critical demand would generally deemed to

be of higher priority. Therefore, a situation when the local conditions are not sufficient

to meet the critical energy demand for the day overrides the other two objectives. The

scheduler detects this situation by defining an insufficiency flag zt = floor(Ec,t/et), where

Ec,t is the total unserviced energy demand of the critical load at time t projected over

the time-horizon of interest, et is the state of energy reserve of the local storage at time

t, and floor() is the greatest integer function. The insufficiency flag would take the value

z = 1 when the local energy content (or state of charge of the EE’s battery) drops below

a value that can serve the day’s critical energy demand, otherwise z = 0. In this manner,

the scheduler does not control the critical load directly but operates the control actions

of other electric devices to ensure that the critical demand will be met, i.e., increase

the critical service factor (CSF) by decreasing NCSF and revenue. The actions that

hamper meeting critical demand include switching off import, switching on export, and

switching on the non-critical loads. These aspects may be defined using the discrete

function wt = −ui,t + ue,t + unc,t in a manner complementary to the definition of vt. The
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values taken by wt are also shown in Table 6.1 alongside the other variables.

Activation of the insufficiency flag is used to add an override term Mztwt to the cost

function, where M >> Cmax, is defined as the cost override factor in order to be effective.

6.3.4 Objective Function

On the basis of the energy tariff, revenue/service trade-off model, and the critical demand

model, the overall objective function may be defined using (6.3).

min
ui,t,ue,t,unc,t

(pt − βCmaxϵt)vt +Mztwt (6.3)

Thus, the scheduler for a revenue seeker and that for a service seeker have the same

objective function. The value of the greediness factor β determines whether the entity

wants to lean towards making revenue or towards meeting non-critical demand.

The scheduler for a service seeker has an additional constraint given by (6.4), as the

non-critical load of the service seeker is a power load. δnc is a binary constant provided

by the user and acts as a ‘demand schedule’, i.e., δnc = 1 when the user needs the load

to be on and δnc = 0 otherwise. The constraint ensures that the load is not switched on

when there is no demand.

unc,t ≤ δnc,t (6.4)

In summary, the overall objective function from (6.3), together with the constraints

from (6.4), and (6.2) form the basis for the proposed DOS, which takes pt as inputs and

provides a schedule for the import, export, and non-critical load binary switching state

functions.
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Figure 6.4: Three-entity dc microgrid network

6.4 Three-Entity Microgrid Network - Simulation Study

6.4.1 Model Setup

A three-entity radial dc microgrid network as shown in Fig. 6.4 is modeled in MATLAB

Simulink (version 2019a) and PLECS Blockset. Entity 1 is modeled as a revenue seeker

(RS), Entity 2 as a service seeker (SS), and Entity 3 is modeled without a tertiary layer

scheduler, and is referred to as a neutral party (NP). Entity 3 has only the base SOLEEN

layer whereas Entities 1 and 2 have both, a base SOLEEN layer and a scheduler. The

schedulers at Entities 1 and 2 are modeled using the YALMIP [89] andOPTI [90] toolboxes

for MATLAB and the solver lpsolve [91]. The solar PV data is taken from the research

group’s field site in India [19].

6.4.2 Illustrative Results

6.4.2.1 Operational Aspects

The operational aspects of the schedulers are demonstrated through a simulation for a

total run time of 60 minutes. The power and energy specifications of the entities are given

in Table 6.2 and the optimization parameters are given in Table 6.3, where βr and βs are

the greediness factors for the RS and the SS respectively.

Fig. 6.5 shows the time series plots for state of charge and load profile of each entity

when the schedulers are enabled and disabled. All entities have the base SOLEEN layer

enabled at all times and their states of charge remain above the lower bound of 20%,

irrespective of the schedulers, ensuring sufficient operation. Fig. 6.6 shows the critical and

non-critical service factors (SF), and revenue generated by each entity with and without
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Table 6.2: Power and energy specifications for 1hr case-study

Parameter EE 1 EE 2 EE 3

Storage (pu) 2 0.32 0.8
PV (pu) 0.5 0.1 0

Critical load power (pu) 1 1.2 0.7
Critical load daily energy demand (pu) 0.1 0.12 0.28

Non-critical load power (pu) 2 1.5 0.35
Non-critical load daily energy demand (pu) 0.8 0.3 0.14

Table 6.3: Optimization Parameters for 1hr case-study

Cmax (mu/pu) Cmin (mu/pu) M (mu/pu) βr βs

50 10 106 0.1 1

schedulers.

Consider the operation of Entity 1. The non-critical load is served most of the time

with the scheduler disabled, while it is completely curtailed when the scheduler is enabled.

This is reflected in the increase in its revenue when the scheduler is enabled. Now, consider

the operation of Entity 2. The non-critical demand is served longer when the scheduler is

disabled but the critical demand is not met at all. On the other hand, when the scheduler

is enabled, the non-critical load is curtailed and the critical demand is completely met.

Entity 2 also generates a net positive revenue with the scheduler enabled as compared to

a negative revenue (expenditure) when the scheduler is disabled. Entity 3 serves both,

critical and non-critical demands, longer when the schedulers in Entities 1 and 2 are

enabled as compared to when they are disabled. This is reflected in a decrease in revenue

resulting in a net positive expenditure when the schedulers in the other two entities are

enabled.

6.4.2.2 Variation in Greediness Factor

The greediness factor β (βr for the revenue seeker and βs for the service seeker) acts

like a control handle for the trade-off between generating revenue and serving non-critical
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demand. The effect of βr and βs on service factors and revenue of each entity is demon-

strated through 9 simulations on the three-entity network, one for each pair (βr, βs), where

βr, βs ∈ {0.1, 1, 10}. The total run time of each simulation is 24 hours and the power spec-

ifications are given in Table 6.4. The schedulers in Entities 1 and 2 are always enabled and

the optimization parameters are same as those given in Table 6.3, except for the values of

βr and βs.

Fig. 6.7 shows the results of critical service factor (CSF), non-critical service factor

(NCSF), and revenue for each entity. Fig. 6.7a shows that the revenue generated by Entity

1 monotonically decreases with increase in βr as expected. This curve shifts upwards with

increasing βs. This is because an increasing βs indicates an increasing tendency of Entity

2 to import energy. Similarly, Fig. 6.7b shows that the revenue generated by Entity 2

monotonically decreases with increase in βs as expected. This curve shifts upwards with

increasing βr as an increasing βr indicates a decreasing tendency of Entity 1 to export

energy. In the case of Entity 3 (Fig. 6.7c), the revenue is seen to monotonically increase

with βs and the curve shifts upwards for with increasing βr. This is because, increasing

βr and βs indicate a reducing tendency of Entities 1 and 2 to export, respectively.

The revenue plots demonstrate inter-entity coupling in that variations in β of one

entity affect the revenue generated by the other two. However, the trend of decreasing

revenue by increasing the entity’s own β (if scheduler present) is maintained. In each of

the revenue plots, there is a larger change in revenue when βr or βs changes from 0.1 to 1

as compared to 1 to 10. This shows that the effect of the entity’s own β and the neighbors’

β diminishes as their values increase. It should be noted that the CSF for all entities is

at almost 100% for all combinations of βr and βs. This shows that critical demand has a

higher priority than revenue or non-critical demand, and is met completely irrespective of

the variations in greediness factors.

There can be multiple socioeconomic reasons for revenue seekers as well as service

seekers to tweak the greediness factor towards one of the two objectives on different days.

For instance, a revenue seeker farmer may want to run their water pump (non-critical
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Table 6.4: Power and energy specifications for the 24-hour and 5-day case studies

Parameter EE 1 EE 2 EE 3

Storage (pu) 1 0.1 0.1
PV (pu) 2 0.2 0.2

Critical load power (pu) 0.1 0.12 0.12
Critical load daily energy demand (pu) 0.06 0.072 0.072

Non-critical load power (pu) 0.75 0.15 0.15
Non-critical load daily energy demand (pu) 0.45 0.045 0.045
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load) longer on a day without rain. Increasing the value of βr will increase percentage of

non-critical demand served by reducing energy export. A service seeker residential user

may want to reduce expenses at the end of the month while they wait for a pay-check.

Reducing βs will increase revenue (decrease expenditure) by compromising on serving

non-critical demand.

The use of β as a user-defined control handle is demonstrated through a five day

simulation, without variation in solar irradiance and with the same parameters as in

Tables 6.3 and 6.4, except values of βr and βs. βr is 0.1 on all days except Day 3 when it

is increased to unity in order to improve the NCSF. βs equals 10 on all days except Day 5

when it is reduced to unity to increase revenue (reduce expenditure). Fig. 6.8 shows the

variation in the two greediness factors and the critical service factor (CSF), non-critical

service factor (NCSF), and the revenue for each entity. On Day 3, as βr has a higher

value, it is observed in Fig. 6.8a that the NCSF of Entity 1 increases to about 60% and

the revenue dips as the entity does not export as much as other days. This is reflected in

an increase in revenue (dip in expenditure) by Entity 2 (Fig. 6.8b) and decrease in CSF

of Entity 3 (Fig. 6.8c) on the same day as there is lower amount of energy available for

import. On Day 5, as βs has a lower value, it is observed that the NCSF of Entity 2 reduces

to zero while there is an increase in revenue (dip in expenditure) due to lower imports.

This is reflected in a slight decrease in revenue for Entity 1. As Entity 2 reduces its

imports, there is a larger share of energy available for Entity 3 to import which is reflected

as a decrease in revenue (increase in expenditure). Fig. 6.8 demonstrates flexibility the

scheduler offers to a revenue seeker to tilt towards being a service seeker and vice versa

by tweaking their respective greediness factors.

6.4.2.3 Variation in Solar Irradiance

The three-entity network model is simulated for a total run time of 5 days. To emulate

variation in solar irradiance due bad weather, the solar data input to each entity is scaled

by a weather parameter between 0 and 1, which is randomly generated on each day. The
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power and energy specifications of each entity are given in Table 6.4. The optimization

parameters used are same as those in Table 6.3 except βs equals 10. The simulation is run

with and without the scheduler in Entities 1 and 2.

The weather parameter and results for the critical service factor (CSF), the non-critical

service factor (NCSF), and the daily revenue generated by each entity under both cases

are shown in Fig. 6.9. No significant change in CSF is observed between the two cases for

Entity 1 and its value is almost 100% while its daily revenue with the scheduler is greater

than that without the scheduler for most of the days. This is compensated for by a low

NCSF with the scheduler. For Entity 2, there is a significant increase in the CSF with the

scheduler as compared to that without the scheduler on each day, which is compensated

for by a low NCSF. Its daily revenue with the scheduler is more than that without the

scheduler on most days. Furthermore, even though Entity 3 does not have a scheduler,

there is a slight increase in its CSF on all days in the case when the other two entities have

schedulers enabled as compared to the case when they are not. This is compensated by a

decrease in daily revenue. Therefore, the local optimal schedulers of Entities 1 and 2 are

seen to indirectly benefit Entity 3 in terms of CSF but increase its daily expenditure as

well. Fig. 6.9 demonstrates the ability of the scheduler to optimize performance without

the need for PV forecast data and serve as a plug-n-play model for community microgrids

across different geographies and weather conditions.

6.5 Three-Entity Microgrid Network - Experimental Study

6.5.1 Laboratory Setup

In order to establish the viability of the system in real settings, a hybrid three-entity

network is emulated through a power hardware-in-the-loop (HIL) experimental setup.

Fig. 6.10 shows the block diagram and photograph of the lab scale setup. Entities 1

and 2 are modeled in MATLAB Simulink as described in Section 6.4 while Entity 3 is

implemented in hardware. A Chroma DC Electronic Programmable Load Model 63201 is
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Figure 6.9: Weather parameter, critical service factor, non-critical service factor, and
revenue with and without optimal schedulers and with variation in solar irradiance; CSF
improved for all entities at the expense of NSCF/revenue
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used as the export device and a Chroma Programmable DC Power Supply Model 62024P-

40-120 is used as the import device. The MATLAB Simulink model is implemented

on a 16GB RAM and 3.2GHz processor Windows PC labeled as the “Simulink Node”. It

communicates with the programmable load and supply via RS232. The programmable load

measures the voltage of the entity’s battery, sends it to the Simulink Node which computes

the import/export current and sends it to the programmable source/load respectively.

The DEM is a monitoring and computing platform based on the Simple Electric Utility

Platform [41]. Two ac fan loads are used as the critical and non-critical load respectively

and the energy exchange (import/export) is on the dc side. Entity 3 has only the base

SOLEEN layer implemented locally in the DEM whereas Entities 1 and 2 have both, a

base SOLEEN layer and a scheduler. The base SOLEEN layer and the scheduler are a

part of the secondary and tertiary control layers respectively, which work at a time scale

of minutes to hours. They are also based on energy, which is a slow changing quantity.

These factors make RS232 a sufficient choice for HIL implementation of SOLEEN and the

scheduler.

Figure 6.10: Experimental Setup
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6.5.2 Experimental Results

A 60 minute HIL experiment with schedulers enabled is conducted with the same spec-

ifications as the simulation in Section 6.4.2.1, but with Entity 3 being implemented in

hardware. Fig. 6.11a shows the battery voltages, export current, and revenue generated

by each entity in the simulation while Fig.6.11b shows the waveforms for the HIL set-up,

demonstrating excellent qualitative correlation between the simulations and the experi-

ments, establishing the viability of implementing SOLEEN and DOS in real microgrids.
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Figure 6.11: Simulation and Hardware-in-the-loop results: From top to bottom - battery
voltage, export current, revenue

6.6 Conclusion

This chapter has presented a distributed tertiary control layer in the form of a distributed

optimal scheduler which can be overlaid on the secondary SOLEEN layer. It uses inte-

ger linear programming to optimally schedule local loads and energy exchange to meet

the operating goals of each entity in the community microgrid. The optimization model

formulation along with simulation of a three-entity network are presented. Experimental

results are presented for a lab-scale hardware-in-the-loop setup. The main features of the

scheduler are:

• completely distributed; role of central entity limited to computing and communicat-
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ing energy exchange price

• uses only load, source switches as control handles facilitating lean community mi-

crogrid deployment

• accounts for distinction in objectives of participating entities and the multi-objective

nature of optimization within each entity

• plug-n-play, independent of network topology, source variability

Evaluation of the effect of the ratio of revenue seekers to service seekers in a larger and

more diverse network, nature of pricing structure, overall system stability, scalability, and

sufficiency are the subject of future work.
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Part III

Optimized Threshold-Based

Energy Management
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Chapter 7

Energy Management for Prepaid

Customers

For a large, and recently increasing, number of households, affordability is a major hurdle

in accessing sufficient electricity and avoiding service disconnections. For such households,

in-home energy rationing, i.e., the need to actively prioritize how to use a limited amount

of electricity, is an everyday reality. In this work, we consider a particularly vulnerable

group of customers, namely prepaid electricity customers, who are required to pay for their

electricity a-priori. With this group of customers in mind, we propose an optimization-

based energy management framework to effectively use a limited budget and avoid the

disruptions and fees associated with disconnections. The framework considers forecasts of

future use and knowledge of appliance power ratings to help customers prioritize and limit

use of low-priority loads (electric appliances), with the goal of extending access to their

critical loads. Importantly, the proposed management system has minimal requirements

in terms of in-home hardware and remote communication, lending itself well to adoption

across different regions, utility programs, and income groups. Our case study demonstrates

that by considering both current and future electricity consumption and more effectively

managing use of low-priority loads, the proposed framework increases the value provided
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to customers and avoids disconnections. 1

7.1 Introduction

7.1.1 Motivation

Reliability in the electric power systems literature typically focuses on ensuring that the

infrastructure is able to supply electricity to customers on demand. However, for many

low-income households, a main reason for “power outages” is inability to pay electric bills,

which may prompt service disconnections. With limited disposable income, low-income

customers are forced to choose between using energy or fulfilling other critical needs such as

food – referred to as the “heat or eat” problem [93]. A survey showed that 20% households

in the United States reduced or forwent food or medicine to pay energy costs in 2020 [14].

Further, low-income households are seen to reduce energy consumption to unsafe limits

in order to limit financial stress, termed ‘energy limiting behavior’ [94]. A particularly

vulnerable group is customers in prepaid programs, who have to purchase credits for the

energy prior to use, similar to pay-as-you-go phones. These programs are often targeted

towards low-income customers, who may be enrolled either voluntarily or forcefully [95].

While prepaid programs have some advantages, such as the flexibility to make multiple

small payments during the month and avoiding upfront credit checks or deposits, they also

present some significant disadvantages. For example, prepaid customers may pay a higher

price for electricity [95]. While utilities are required to inform postpaid customers before

a disconnection, prepaid customers can be automatically and immediately disconnected if

their credit runs out. These unanticipated disconnections can be dangerous during extreme

heat or cold events and for medically fragile customers. Furthermore, each disconnection-

reconnection event can have a fixed charge as high as $75 [96]. Despite those disadvantages,

it is estimated that there are between 1 to 2.5 million prepaid electricity accounts in the

United States [97], [98] and several million in the United Kingdom [99].

1This chapter is based on work by the author and Line Roald in [92]. This work was supported by
the George Bunn Wisconsin Distinguished Graduate Fellowship provided by the University of Wisconsin-
Madison and the U.S. National Science Foundation under Award Number ECCS-2045860.
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Prepaid metering has been observed to reduce energy consumption as compared to

the more common postpaid metering plans. A study based on the SRP M-Power prepaid

program in Arizona [100] showed a reduction of 12%. This can be due to a combination

of the “conservation effect” (being more mindful about unnecessary consumption due to

real-time feedback from the wallet balance) or because of disconnections (having no power

supply for extended periods because of the inability to refill the prepaid wallet). Some

studies where reduction in energy use was not due to disconnections, such as in Oklahoma

[101] and Texas [102], have observed a reduction of 11% and 10% respectively, where

reduction in energy use was not due to disconnections. Prepaid programs are popular

among low-income households and therefore, the “conservation effect” can partially be

due to energy limiting behavior [94], i.e., reducing energy usage from safe levels (e.g., by

delaying switching on an air conditioner during a heat wave) in order to pay for other

needs. Studies have shown that prepaid customers are more likely to show more severe

energy rationing behavior than other low-income customers [103]. Low-income prepaid

customers may not be able to refill their prepaid accounts with an amount commensurate

with their desired use. Therefore, they have to actively ration their energy use to prevent

disconnections. This presents a need for a home energy management framework which

can help in effective energy rationing for this customer group, a topic that has received

little attention to date.

7.1.2 Background

7.1.2.1 Purpose and scope of home energy management

The underlying assumption of energy rationing is that there is a fixed budget available

for energy. As discussed in [104], home energy management systems (HEMS) generally

aim to optimize one or more of the following objectives: cost, well-being, emissions, and

load profile. In the context of energy rationing, we aim to minimize user inconvenience

(maximize well-being) within a fixed energy budget (a hard constraint on cost). Further,

[104] classify inconvenience modeling into two types: “inconvenience due to timing” (e.g.,
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shifting a load from the morning to afternoon), and “inconvenience due to undesirable

energy states”. The latter is most closely aligned with our setting, since low-income

families with a limited budget may enter the undesirable energy state where they have to

forego using a load in order to preserve wallet balance for using more critical loads in the

future. Therefore, the underlying assumptions of energy rationing are different from typical

HEMS literature and also significantly different from demand response, which typically

assumes that changes in electricity use should be nearly invisible and non-disruptive to

the customer [105].

7.1.2.2 Adoption of smart home technology

Adoption of smart home technology like HEMS is known to have multiple barriers such as

perceived intrusion (loss of control) and high costs [106]. A strong reason for customers to

switch to or remain on prepaid programs is the increased control over their bills and flex-

ibility in payments [107]. An energy management framework designed for such customers

should therefore lead to minimal perception of loss of control. Furthermore, HEMS often

rely on specific in-home communication, computing, and switching hardware for automa-

tion [108] which may be unaffordable for low-income households. An initial deposit of

$100, to cover for future outstanding advances, has been found to be a significantly large

upfront cost by some customers of a prepaid program (personal communication with an

electric utility offering prepaid metering). Therefore, in order to ensure wide-scale easy

adoption, an energy management framework designed for low-income customers needs

to be minimally intrusive and implementable using minimal additional and inexpensive

in-home hardware.

7.1.2.3 Home energy management and prepaid metering

Aspects of prepaid electricity service have been addressed in terms of meter technology

[109, 110], power theft [111], cyber security [112] and data management [113]. However,

home energy management for prepaid electricity customers remains largely unexplored.
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The only study [114] we identified uses load disaggregation which may need additional

hardware or high-speed internet connectivity. Only few HEMS studies explicitly account

for a user-defined budget. The method proposed in [115] generates a time-based schedule

for load actuation and switches each load ON/OFF, which may be experienced as intrusive.

Some studies propose low-cost HEMS for solar PV and battery-based systems [116, 117],

but such systems are largely unaffordable for low-income families and inaccessible for

renters.

7.1.3 Contributions

We present a home energy management framework for prepaid customers for effective

energy rationing, i.e., extending the use of their critical loads by reducing discretionary

load usage and preventing disconnections. It can be implemented using minimal additional

hardware and ensures that users have more control over their energy use. It is based

on a simple threshold-based load control scheme adopted from a DC microgrid setting

[43]. Rather than directly actuating loads, this framework enables the use of a load by

comparing the money available in the prepaid account to a monetary threshold assigned

to the load. We refer to the prepaid account as the wallet and the amount of money in the

account as the wallet balance or just balance. If the balance is higher than the threshold,

the load is enabled, i.e., it can be turned on if desired. As opposed to generating a

load schedule or using direct load control which directly turns loads on/off, the proposed

method lets the user decide when to use enabled loads. If the balance is lower than the

threshold, the load is disabled, i.e., the user is notified that the load should remain off in

order to preserve wallet balance for more critical loads in the future. The benefit of the

proposed method is that the available budget may be more evenly spread throughout the

month, and high priority loads (with lower thresholds) can be used longer. Furthermore,

all loads are turned off before a disconnection occurs, thus avoiding potentially expensive

disconnection-reconnection events.

While such a threshold-based method is very easy to implement, it requires careful
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definition of the enabling thresholds. Thus, we formulate an optimization problem that

identifies optimal threshold values while accounting for the available budget and forecasts

of future electricity use. We assume that this problem is solved at regular, yet relatively

infrequent intervals (e.g. daily), such that the approach lends itself well to implementation

with existing in-home hardware and minimal remote communication.

In summary, this work has two main contributions. First, we design an energy manage-

ment framework that incorporates user-defined load priorities and helps users optimally

ration their allocated energy budget, while requiring minimal local computing and remote

communication. This framework builds upon the control framework for prosumers in DC

microgrids presented in [43], but extends it to (i) consider the prepaid wallet balance as

a metric of available energy (ii) optimize the activation thresholds for individual loads to

achieve better user satisfaction. Second, we implement our proposed method in code and

demonstrate its benefit for managing household loads in a case study based on real-life

energy use data obtained through the Pecan Street Dataset [118].

7.1.4 Organization

The remaining chapter is organized as follows. Section 7.2 presents the energy management

framework, the optimization formulation, and comments on practical implementation.

Section 7.3 presents a case study and numerical results, while Section 7.4 summarizes and

concludes the chapter.

7.2 Model

In this section, we provide details on the model setup and the formulation of the optimal

energy rationing problem.

7.2.1 Threshold-based energy management

The proposed energy rationing framework is an extension of the Self-Organizing Local

Electrical Energy Network (SOLEEN), a control framework developed for DC prosumer
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microgrids without central control or communication [43]. In the original SOLEEN design,

each entity or household in the microgrid is assumed to have battery energy storage, with

the battery state of charge representing available energy. Load control is done by assigning

each load a threshold in terms of the state of charge of the battery. If the state of charge

falls below the threshold, the corresponding load is switched off. When it is above the

threshold, the load is enabled, i.e., the user can decide to switch it on or off.

Here, we adapt the SOLEEN methodology for a prepaid customer, who may not have a

battery. Instead, we treat the prepaid wallet balance as a measure of the available energy

and express load thresholds in terms of $ (instead of state of charge) for each load. If

the $ balance falls below this threshold, the load is disabled. Due to this analogy with

battery energy storage, we refer to the refilling of the wallet (in $) as a “recharge”. A

major difference between a battery and a prepaid wallet is that the battery has a fixed

capacity and the state of charge cannot go beyond that, whereas a prepaid wallet does not

have an upper limit. Furthermore, electricity demand typically follows a diurnal pattern

and the battery capacity (if recharged daily, e.g., using solar PV panels) acts as a daily

energy budget. In the case of a prepaid wallet, the user would not typically recharge daily.

To achieve better control over enabling loads, we define a virtual wallet which is different

from the actual prepaid wallet, which we will refer to as the real wallet. To match the

daily pattern of electricity usage, we recharge the virtual wallet at the beginning of each

day with a daily budget and compare load $ thresholds to the virtual wallet balance.

7.2.1.1 Illustrative example

Figure 7.1 shows an example of the proposed framework. The upper plot shows the balance

in the virtual wallet along with the threshold for one of the loads, while the lower plot

shows whether or not this load is enabled. In this example, the virtual wallet is refilled

three times (at timestep 0, 960, 1920). As the wallet balance drops below the threshold,

the load is disabled. After this, the considered load does not consume any power and

the balance of the virtual wallet reduces less quickly (other loads with a higher priority
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Figure 7.1: Top: Wallet balance (blue) and load threshold (red) in $. Bottom: Enable
signal for the load. A value of 1 indicates that the load can be turned on, while a value of
0 indicates that the load should remain off.

continue to consume power, such that the wallet balance continues to decrease until it

reaches zero and all loads are disconnected). Once the virtual wallet is recharged, the

balance is above the threshold and the load is again enabled.

7.2.1.2 Determining control variables

With the threshold-based control framework, there are two main control variables that

need to be determined, namely (1) how the virtual wallet is recharged as a function of

the real wallet balance and (2) how to choose thresholds for effective energy rationing.

To determine the daily virtual wallet recharge, we simply divide the most recent recharge

amount for the real wallet by the number of days until the next recharge2. This uniformly

distributes the latest recharge amount across all days till the next recharge. The process

for determining the load enable thresholds is more sophisticated. These thresholds are

obtained by solving an optimization problem as discussed below.

2We assume perfect information about when and what amount will be added to the real wallet. The
effect of imperfect real recharge information may be addressed by more sophisticated daily virtual wallet
recharge schemes, such as allocating a variable daily budget based on the fraction of the average real
recharge per month that has been spent. This is a part of future work.
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Table 7.1: Nomenclature

Parameters
K Set of all loads
T Set of all time steps in the horizon
∆T ∈ R>0 Duration of time step in hours
m ∈ R<0 Large magnitude constant
M ∈ R>0 Large magnitude constant
ϵ ∈ R>0 Small magnitude constant
α ∈ R>0 Electricity rate in $/Wh
γk ∈ R>0 Priority factor for load k
Pk,t ∈ R≥0 Demand in W for load k at time t,
dk,t ∈ {0, 1} Indicator parameter of demand

dk,t = 1 if Pk,t > 0, and 0 otherwise
Zt ∈ R≥0 Real wallet recharge at time t in $
Xt ∈ R≥0 Virtual wallet recharge at time t in $
Variables
zt ∈ R Real wallet balance at time t
uz
k,t ∈ {0, 1} Real enable signal for load k at time t

xt ∈ R Virtual wallet balance at time t
xk,t ∈ R Threshold for load k at time t
ux
k,t ∈ {0, 1} Virtual enable signal for load k at time t

ak,t ∈ {0, 1} Actuation state of load k at time t

7.2.2 Optimization formulation

The optimization model determines thresholds for each load k at time t denoted by xk,t.

The thresholds for each load are kept constant throughout each day, so the number of

unique thresholds is equal to the number of loads times the number of days in the op-

timization horizon. The input parameters include user-defined priority order for loads,

demand forecast, and recharge schedule forecast. We implement the model as a rolling

horizon problem with a forecast horizon of seven days and a time step of 15 minutes.

We solve the problem once daily, then use the optimized thresholds for the first day to

simulate the use of loads to calculate the resulting real and virtual wallet balances. These

balances, along with updated forecasts, are used as an input when we re-solve the opti-

mization problem the next day. The resulting optimization problem is a mixed-integer

linear programming problem. The nomenclature is given in Table 7.1.
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7.2.2.1 Real wallet constraints

The amount of money in the real wallet gets updated according to the energy consumption

in the previous time step and the recharge amount scheduled for the current time step as

given by

zt = zt−1 + Zt − α∆T
∑
k∈K

(Pk,t−1ak,t−1) ∀t ∈ T (7.1)

Here, Zt is equal to the recharge scheduled for the day (if any) if t is the first time step of

the day and zero otherwise. The real enable signal uz
k,t expresses whether there is money

in the real wallet. If the real wallet balance zt is positive, u
z
k,t = 1, and otherwise is zero.

This is enforced by

muz
k,t ≤ −zt ∀k ∈ K,∀t ∈ T (7.2)

(M + ϵ)(1− uz
k,t) ≥ ϵ− zt ∀k ∈ K,∀t ∈ T (7.3)

7.2.2.2 Virtual wallet constraints

The virtual wallet balance xt is updated according to the energy consumption since the

previous time step and the daily virtual recharge Xt computed from the real recharge, i.e.

xt = xt−1 +Xt − α∆T
∑
k

(Pk,t−1ak,t−1) ∀t ∈ T (7.4)

where Xt is equal to the recharge scheduled for the day if t is the first time step of the

day and zero otherwise. The virtual enable signal ux
k,t ∈ {0, 1} should be 1 if the virtual

wallet balance xt is greater than or equal to the load threshold xk,t, or otherwise zero, as

expressed by

xt − xk,t + ϵ ≤ (M + ϵ)ux
k,t ∀k ∈ K,∀t ∈ T (7.5)

xt − xk,t ≥ m(1− ux
k,t) ∀k ∈ K,∀t ∈ T (7.6)
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Note that xk,t is also constrained to be the same for all time steps t during a single day.

7.2.2.3 Actuation constraints

The actuation constraints describe whether a load is on and consuming power. The ac-

tuation state ak,t of load k at time t is zero if there is no demand dk,t, the virtual wallet

balance xt is less than its threshold xk,t, if the real wallet balance zt is less than or equal

to zero, or if the real wallet balance in the next time step zt+1 would be less than or equal

to zero if the load is kept on (the latter condition ensures that the real wallet balance does

not go negative by the next time step). In this case, ak,t = 0 as expressed by the following

constraints

ak,t≤dk,tu
x
k,t, ak,t≤uz

k,t, ak,t≤uz
k,t+1 ∀k∈K, ∀t∈T

If none of the above conditions are satisfied, the actuation state has to be equal to 1, i.e.,

ak,t = 1, as described by

dk,tu
x
k,t + uz

k,t + uz
k,t+1 ≤ 2 + ak,t ∀k ∈ K,∀t ∈ T (7.7)

7.2.2.4 Objective function

Our goal is to maximize the value provided to the customer from using a limited (less than

desired) amount of electricity. To express this, we make a few key assumptions. First,

some loads bring more value, i.e., have a higher priority, as compared to others and the

value of a load does not necessarily scale with its power rating. For instance, a light bulb

rated at 5W can provide more value than a TV rated at 100W. Second, we assume that

value is associated with whether or not a load is available when desired. Therefore, we

design our objective function to account for (1) the priority assigned to each load by the

user and (2) the percentage of time the load was available when desired.

We introduce the load priority factor γk to express the relative value of satisfying the

demand of load k compared to other loads. It is calculated as γk = 1
ηk

1∑
k

1
ηk

, where ηk

is a number that represents the position of the load in the priority order (lower numbers
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imply higher priority). For example, if the user ranks loads k = 1, 2, 3 in the order 2, 3, 1

then η1 = 2, η2 = 3, η3 = 1. Note that this is not the only way to determine load priority

factor, and this was chosen since it ensures that
∑

k γk = 1.

Next, we define the Service Factor (SFk) for each load k as the ratio of the amount of

time a load was available to the amount of time it was demanded.

SFk =

∑
t
ak,t∑

t
dk,t

(7.8)

The service factor expresses the percentage of time the load was available when desired

and is independent of the power rating of the load. For example, a light rated at 5W

demanded for 6 hours and served for 3 hours will have the same service factor as a TV

rated at 100W demanded for 2 hours and served for 1 hour. Both will have SFk = 0.5.

The Priority Service Factor (PSF) is the weighted average of the service factors, where

the weight is the load priority factor. Our objective is to maximize the PSF,

max
∑
k∈K

γkSFk (7.9)

7.2.3 Benchmark Cases

To compare the proposed method, we also implement a simulation of two benchmark cases:

7.2.3.1 Baseline

The baseline case does not have any energy manager and assumes that all loads are enabled

as long as the real wallet balance is positive. From a mathematical perspective, this

formulation only considers the real wallet update (7.1) and sets ak,t = 1 if dk,t = uz
k,t = 1.

7.2.3.2 Fixed Thresholds

The fixed thresholds case uses a similar model as the one described in Section 7.2.2, except

that the load thresholds xk,t are fixed (i.e., not optimized). While there could be many
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methods for computing these fixed thresholds, we choose to calculate them once at the

beginning of the month as xk,t = ηk
N βX ∀t. Here, ηk is the position of Load k in the

priority order, N is the total number of loads, X is the total recharge amount for the

month (in $), and β is a positive constant less than 1. For this study, β = 0.05 was used.

With this definition, lower priority loads (i.e. those with a higher ηk) are assigned higher

thresholds and will get disabled before higher priority loads as the wallet balance drops.

7.2.4 Implementation through a prepaid program

A benefit of the proposed framework is that it requires minimal additional hardware,

computation and remote communication, and thus lends itself well to implementation

using the existing infrastructure without significant technological overheads.

A) Local computation: Prepaid programs generally install in-home displays in the cus-

tomer’s house that show their wallet balance [119]. The in-home display is connected

to the meter and computes and displays the real wallet balance in real-time. It can be

programmed to keep track of the virtual wallet as well, and since this is a simple algebraic

operation, additional computation hardware may not be necessary.

B) Remote communication: Households that struggle to pay energy bills may also fall

behind on internet and phone bills, thus limiting options for communication. The opti-

mized thresholds can be computed on a remote server and communicated to the in-home

display at the beginning of each day through the same communication channel that the

utility uses to connect to the in-home display (e.g. the Advanced Metering Infrastructure

(AMI) communication system). Since thresholds need to be communicated only once a

day, communication delays can be tolerated.

C) Actuation: Direct actuation of loads in a user’s home requires additional hardware

such as smart switches. If users cannot afford this additional hardware or are not comfort-

able with an application directly controlling certain household appliances such as medical

equipment, either the in-home display or a phone application can instead provide “nudges”

to suggest to the user that they switch off the load to allow them to use higher priority
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Figure 7.2: Load power demand for 30 days (W).

Table 7.2: Load data

Appliance Energy (kWh) Max Power (kW) Load Priority

A air compressor 28 1.9 2
B washing machine 2.0 0.44 4
C microwave 3.6 1.2 3
D refrigerator 41 0.38 1

loads later on.

7.3 Case Study

We next demonstrate our proposed framework for optimal energy rationing with a case

study. We compare the proposed optimal method against the two benchmark cases, and

assess the impact of recharge frequency and overall recharge amount on the priority service

factor and the number of disconnections.

7.3.1 Setup and implementation

We use load data for one month (30 days) from one house in the Pecan Street Dataset [118].

The four loads used are an air compressor (Load A), a washing machine (Load B), a

microwave (Load C), a refrigerator (Load D). Figure 7.2 shows the power demand for each
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load for the duration of the month and Table 7.2 summarizes the total energy demand,

maximum power demand, and priority for each load.

We assume that perfect information about the current and future demand for each

load as well as the recharge amount and timing is available to the model. (Effects of

imperfect information are considered in Chapter 8 and user non-compliance is a part of

future work.) The presented results assume either direct load actuation through smart

switches or total user compliance to the load enable signal nudges given by the model,

i.e., we assume that a load is only in use when the corresponding load actuation signal

is ak,t = 1. We use an electricity rate of α = 0.16 $/kWh. Since this is a parameter,

time-of-use pricing (i.e. time-varying α(t)) may be incorporated without changing the

complexity of the problem. The total cost of electricity for using the devices in Table 7.2

with a constant α = $0.16/kWh would thus be $11.9 3.

The recharge frequency is the number of times a user recharges their wallet in a month,

and typically varies between 1 and 7 per month [107]. We express the total recharge as the

fraction of the total cost of desired electricity. The recharge amount is the total amount

of money added to the real wallet over the course of the month. We express this amount

as a percentage of the amount needed to cover the desired electricity use listed in Table

7.2. Thus, recharge amounts < 100% imply a need for rationing. We assume that the

total recharge amount is uniformly distributed across all recharges.

The proposed optimization model and the benchmarking cases are implemented in

the Julia programming language [120] (v1.6) and run on a machine with an Intel CPU

@3.2GHz and 16GB memory. In the optimized thresholds case, the simulation calls the

optimization model implemented using JuMP [121] and the Gurobi solver [122]. The

parameter ϵ was set to 1e-6 which is equal to the default tolerance of the solver Gurobi

to meet constraints. The optimization model computes new thresholds daily, using an

optimization horizon of 7 days. The thresholds for the current day are then implemented

in the simulation. The real and virtual wallet balances at the end of the simulated day

3Additionally, a transaction cost (fee associated with each recharge) and a monthly fixed cost can be
included and is considered part of future work. Factors such as whether the fixed cost will be deducted
from the wallet per day or upfront at the beginning of the month may influence model performance.
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are then used as an input for the optimization problem the next day.

7.3.2 Comparison with Benchmark Cases

As a first investigation, we compare the performance of the optimal energy rationing

framework with the baseline and fixed thresholds benchmark cases. To do this, we run

each method for the full 30 days and compare the resulting service factors (SF) per load

as defined by (7.8), the overall achieved priority service factor (PSF) as defined by (7.9),

as well as the amount of energy consumed per load. For this evaluation, we assume a

recharge amount of 70% and a recharge frequency of 5 payments per month. Figure 7.3

shows the service factor SFk for each load and the overall PSF and Table 7.3 shows the

energy use per load. We observe that the different cases lead to very different use of energy

across the different loads. The refrigerator (Load D) has the highest priority, and is also

the load that runs most continuously. The optimized and fixed threshold cases achieve

both a service factor and energy use close to 100% for this load, while the baseline case

(which experiences a prolonged disconnection) only achieves a service factor and energy

use of about 85%. The air compressor (Load A) has a power demand that is much higher

than other loads and the second highest energy demand. Although this load has the

second highest priority, the optimized threshold case compromises serving this load to

ensure better service to the higher priority Load D and the lower priority but lower energy

demand Loads B and C. The baseline and fixed thresholds cases serve more energy to the

air compressor, but have lower service factors for the microwave (Load C) and the washing

machine (Load B). Because of this, the overall PSF in the optimized thresholds case is

greater than that in the other two cases. Further, the optimized thresholds case and the

baseline case fully use the allocated budget of 70% of total desired energy, whereas the

fixed thresholds case only uses 68%. This is because the fixed thresholds case always has

residual balance equal to at least the lowest threshold, i.e., the threshold corresponding

to the highest priority load.
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Figure 7.3: Service factor for the 4 loads and overall priority service factor (PSF) at a
recharge frequency of 5 per month and recharge amount of 70%. Load priority: LoadD>
LoadA>LoadC>LoadB

Table 7.3: Energy Usage per Load

Appliance
Baseline

Fixed Optimal
Thresholds Thresholds

kWh % kWh % kWh %

A air compressor 12 43 7.5 27 6.7 24
B washing machine 1.9 95 0.34 17 2.0 100
C microwave 3.2 89 1.8 50 3.5 97
D refrigerator 35 85 41 100 40 98

Total 52.1 70 50.6 68 52.2 70
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Figure 7.4: Top: PSF against recharge amount at a recharge frequency of 5 per month.
Bottom: PSF against monthly recharge frequency at a recharge amount of 70%.

7.3.3 Impact of Recharge Amount and Frequency

Next, we compare the achieved PSF and the number of disconnections (i.e., how frequently

the real wallet balance falls below zero and customers lose electricity supply) across dif-

ferent recharge amounts and frequencies.

7.3.3.1 Impact on priority service factor

The upper plot in Figure 7.4 shows the variation in the PSF as the recharge amount

is varied from 60% to 100% with a constant recharge frequency of 5 per month. The

PSF increases with increasing recharge amount for all three cases, as expected. Across all

recharge amounts, the optimized thresholds case has a PSF greater than the baseline while

the fixed thresholds case performs worse due to the residual balance that remains unused.

The bottom plot in Figure 7.4 shows the variation in PSF as the recharge frequency is

varied from 1 to 7 per month while keeping the recharge amount constant at 70%. The

optimized and fixed thresholds cases have minimal variation in PSF even if the recharge

amount is distributed across increasing number of recharges during the month because the

daily virtual wallet recharge remains the same. The optimized thresholds case performs

better than the baseline whereas the fixed thresholds case performs worse due to the

unused residual energy.
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7.3.3.2 Impact on disconnections

We further investigate the impact of recharge frequency and amount on the number of

disconnections. We first vary the recharge amount from 60% to 100% while keeping the

recharge frequency constant at 5 per month, and then vary the recharge frequency from 1

to 7 per month while keeping the recharge amount constant at 70%. In all of these cases,

both the fixed and optimized threshold cases result in zero disconnections as all loads were

disabled before the real wallet balance could fall below zero. This demonstrates that the

simple threshold-based management can avoid disconnections and associated reconnection

fees.

This is quite an improvement relative to the baseline case. With 5 recharges per

month, the baseline case experienced 3 disconnections for recharge amounts of 60% and

70% and one disconnection for recharge amounts ≥ 80 %. When we fix the recharge

amount at 70%, we observe that the number of disconnections increase with increasing

recharge frequency. With one recharge, we only have one disconnection, with 3 recharges

we have 2 disconnections and with 5 and 7 recharges we have 3 disconnections. The reason

for this behavior is that the recharge amounts are distributed uniformly across the month,

whereas the load is not. For low recharge amounts or high recharge frequencies, there

is therefore a higher chance that the real wallet balance might drop to zero before the

next recharge is made whereas for higher recharge amounts and fewer payments, these

intermediate disconnections are avoided.

7.4 Conclusion

This work proposes a threshold-based energy rationing framework for prepaid customers.

This framework compares a predetermined threshold with the prepaid wallet balance to

decide whether a load can be used without impacting other, higher priority loads later.

To determine the optimal threshold values, we formulate and solve a rolling horizon opti-

mization problem.

The case study shows that the framework with optimized thresholds outperforms both
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a baseline without energy management and a method where control thresholds are fixed

solely based on load priority information. Specifically, the proposed method serves higher

priority loads and reduces disconnections by curtailing lower priority loads.

The following chapter studies the effects of imperfect and/or limited forecast informa-

tion. Some avenues for future work include studying the effect of incorporating fixed and

transaction costs to inform overall prepaid program design. Finally, while the framework

has been presented in the context of low-income households in the United States, it can

be extended for other contexts such as postpaid customers on energy assistance programs

and pay-as-you-go solar home system users.
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Chapter 8

Addressing Imperfect Forecasts

and Implementation Constraints

The previous chapter proposed an energy management framework for low-income prepaid

electricity customers that requires detailed demand forecasts, which are challenging to gen-

erate for residential loads. Additionally, the framework involves solving a mixed-integer

linear programming problem using an optimization solver on a remote server, which raises

data privacy and cybersecurity concerns. This chapter presents a method based on a linear

optimization problem that only uses average power demand forecasts as an input and can

be solved to optimality using a simple greedy approach without the need for optimization

solvers. We compare the model with two mixed-integer linear programming models: (1)

from the previous chapter and (2) a benchmark representative of traditional home energy

management systems which also requires more detailed demand forecasts and optimization

solvers for implementation. In a numerical case study based on real household data, we

assess the performance of the different models under different accuracy and granularity of

demand forecasts. Further, we demonstrate that the proposed model can be implemented

on a basic 8-bit low-cost microcontroller. Our results show that the proposed linear model

is much simpler to implement, while providing similar performance under realistic circum-
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stances. 1

8.1 Introduction

Very few studies investigate energy management methods for prepaid customers. The

method in [114] uses load disaggregation techniques and alerts the user to switch off a

load to preserve wallet balance once it exceeds a target consumption. To perform the

disaggregation, additional hardware or high-speed internet connectivity with a server may

be needed. More traditional home energy management systems (HEMS) [108] generate

specific load schedules to switch loads ON/OFF. This can be viewed as intrusive, and

if automated, it needs expensive in-home hardware such as smart switches for actuating

loads. Furthermore, to be effective, such HEMS typically need forecasts of power demand

of each load at each timestep in a day. Obtaining highly accurate, granular forecasts

can be challenging because of the volatile nature of household-level electricity use, which

depends on various behavioral and environmental factors [124]. Additionally, imperfect

and uncertain information can significantly impact the performance of HEMS [104], [125],

making it necessary to analyze sensitivity of energy management methods to imperfect

information. Overall, energy management methods that use lower granularity forecasts

(e.g., by aggregating loads or averaging in time) may lend themselves better to practical

implementation than very detailed models.

8.1.1 Contributions

To support effective home energy rationing while reducing the need for communication and

computation, [92] proposed the threshold-based energy management framework. To iden-

tify optimal daily load thresholds, [92] uses rolling-horizon mixed-integer optimization with

forecasts of load demand for every 15 min. However, while the thresholds optimization

requires load demand forecasts, real-time measurements of load demand are not necessary

1This chapter is based on work by the author and Line Roald in [123]. This work was supported by
the the George Bunn Distinguished Graduate Fellowship by the University of Wisconsin-Madison and the
U.S. National Science Foundation under Award Number ECCS-2045860.
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once the thresholds are determined. We make the following contributions beyond prior

work:

First, we present a new threshold-based energy management method, which has two

main features that distinguish it from the model in [92] (Chapter 7: (1) It only requires

information regarding the average power demand per day, as compared to detailed power

demand forecasts at each 15 min timestep. In particular, it does not require information

about when certain loads will be used during the day. (2) The resulting optimization

problem is a linear program (LP), which can be solved to optimality using a greedy

approach, thus eliminating the need for a solver.

Next, we compare the proposed model to two benchmark models, the threshold-based

model from [92] and a more traditional home energy management system that generates

a switching schedule for each load at each timestep. We first qualitatively compare the

practicality of implementing and using the different methods, including the computation,

demand forecast information, and communication requirements. Furthermore, we perform

a quantitative comparison where we run the three models on a case study based on real

load data from Pecan Street Dataport [118]. We analyze the performance of the three

models under different levels of accuracy and granularity of demand forecast information.

The results of our comparison show that the proposed method has a similar quantita-

tive performance as the two benchmark models, i.e., it is able to help customers effectively

manage their electric loads. Furthermore, it has significantly lower requirements for de-

mand forecasts and communication, can be implemented using simpler hardware without

optimization solvers, making it a much more viable choice for low-income customers. The

model is made publicly available through a GitHub repository [126].

8.1.2 Organization

The chapter is organized as follows: Section 8.2 describes the mathematical optimization

formulations for the three models. Section 8.3 compares computation, forecast informa-

tion, and communication requirements for implementing the models. Section 8.4 presents
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Table 8.1: Nomenclature

Parameters Model
K Set of all loads AFG, DFM, OBM

T Set of all time steps in the horizon DFM, OBM

∆T ∈ R>0 Length of time step in hours DFM, OBM

D Set of all days in the horizon AFG, DFM

m ∈ R<0 Large magnitude constant DFM

M ∈ R>0 Large magnitude constant DFM

ϵ ∈ R>0 Small magnitude constant DFM

α ∈ R>0 Electricity rate in $/Wh AFG, DFM, OBM

Z ∈ R≥0 Initial real wallet balance in $ AFG, DFM, OBM

γk ∈ R>0 Priority factor for load k AFG, DFM, OBM

Pk,t ∈ R≥0 Demand in W for load k at time t DFM, OBM

P̄k,d ∈ R≥0 Average demand in W for load k on day d AFG

dk,t ∈ {0, 1} Indicator parameter of demand DFM, OBM

dk,t = 1 if Pk,t > 0, and 0 otherwise
Xd ∈ R≥0 Virtual wallet recharge on day d in $ DFM

smax
k,d ∈ R≥0 Upper bound on enable duration of load k on

day d in hours
AFG

Variables
zt ∈ R Real wallet balance at time t in $ DFM

uz
k,t ∈ {0, 1} Real enable signal for load k at time t DFM

xt ∈ R Virtual wallet balance at time t in $ DFM

xk,d ∈ R Threshold for load k on day d in $ AFG, DFM

ux
k,t ∈ {0, 1} Virtual enable signal for load k at time t DFM

ak,t ∈ {0, 1} Actuation state of load k at time t DFM, OBM

sk,d ∈ R≥0 Enable duration of load k on day d in hours AFG

Xd ∈ R≥0 Virtual wallet recharge on day d in $ AFG

case studies comparing the performance of the models using real-world energy usage data,

and this is followed by a brief concluding section.

8.2 Model Formulations

This section presents the mathematical optimization formulations of the three models. A

nomenclature with the notation used across models is given in Table 8.1.

The objective of all models is to maximize the value that a user can get from a limited

amount of initial wallet balance. Concretely, we aim to maximize the fraction of time

for which a load was ON when demanded. We refer to this as the service factor SFk for
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daily virtual wallet  recharge

$ threshold load C
$ threshold load B

$ threshold load A

virtual walletreal wallet

Figure 8.1: Illustration of virtual wallet recharge

load k. For example, a lamp demanded for 2 hours and served for 1 hour has a service

factor of 50%. Since some loads are more critical than others, we assign a priority factor

γk to each load k, where a higher γ indicates a more important load. Finally, we define

the priority service factor (PSF) as the priority factor weighted sum of service factors,

PSF =
∑
k∈K

γkSFk. PSF is a linear measure of user convenience and well-being, and all the

models presented below seek to maximize PSF.

8.2.1 Detailed Forecast MILP (DFM) model

We first summarize the DFM model from [92], which we will use as a benchmark.

8.2.1.1 Modeling considerations

The DFM model uses demand forecasts Pk,t per load k at each timestep t and uses rolling-

horizon optimization to determine the optimal thresholds xk,d, per load k per day d. The

load thresholds are expressed in terms of prepaid wallet balance (i.e., in $), as the prepaid

wallet balance is a measure of how much energy is available (similar to the battery state

of charge in the case of DC microgrid control [43]). However, the prepaid wallet may be

recharged at infrequent and possibly irregular intervals. To avoid the balance being used

too quickly, [92] defines a virtual wallet. This wallet is recharged with regular amounts

from the actual prepaid wallet, which we refer to as the real wallet, and thresholds are

defined in terms of the virtual wallet balances. This setup is illustrated in Figure 8.1. The

DFM model based on [92] defines the the virtual wallet recharge Xd as the initial real

wallet balance Z divided by the number of days in the optimization horizon.
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8.2.1.2 Mathematical formulation

The mathematical formulation of the DFM problem is given as follows,

max
xk,d,xt,zt,ux

k,t,u
z
k,t,ak,t

PSF =
∑
k

γk

∑
t
ak,t∑

t
dk,t

(8.1a)

s.t. zt = zt−1 + Z − α∆T
∑
k

(Pk,t−1ak,t−1) ∀t ∈ T (8.1b)

muz
k,t ≤ −zt ∀k ∈ K, ∀t ∈ T (8.1c)

(M + ϵ)(1− uz
k,t) ≥ ϵ− zt ∀k ∈ K, ∀t ∈ T (8.1d)

xt = xt−1 +Xd − α∆T
∑
k

(Pk,t−1ak,t−1) ∀t ∈ T (8.1e)

xt − xk,d + ϵ ≤ (M + ϵ)ux
k,t ∀k ∈ K, ∀t ∈ T (8.1f)

xt − xk,d ≥ m(1− ux
k,t) ∀k ∈ K,∀t ∈ T (8.1g)

ak,t≤dk,tu
x
k,t, ak,t≤uz

k,t, ak,t≤uz
k,t+1

∀k∈K,∀t∈T (8.1h)

dk,tu
x
k,t + uz

k,t + uz
k,t+1 ≤ 2 + ak,t

∀k ∈ K, ∀t ∈ T (8.1i)

Here, the objective function is to maximize the PSF as given in (8.1a). Constraints (8.1b)

ensure that the real wallet balance zt is updated at each time step t; the initial real

wallet balance Z is included in the constraint corresponding to the first time step (t = 1).

Constraints (8.1c), (8.1d) ensure that the real enable signal uz
k,t is 1 if there is money in the

real wallet, and is 0 otherwise. Constraints (8.1e) update the virtual wallet balance xt at

each timestep t; the constant daily virtual wallet recharge Xd is included in the constraints

corresponding to the first timestep of the day. Constraints (8.1f), (8.1g) ensure that the

virtual enable signal for load k, ux
k,t, is 1 if xt is greater than or equal to the threshold

xk,d, and is 0 otherwise. Constraints (8.1h), (8.1i) ensure that a load k at time t is OFF,
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i.e., actuation state ak,t = 0, if there is no demand, if the virtual enable signal is 0, or if

the real enable signal of the current or next timestep is 0. Similarly, they also ensure that

ak,t = 1 if there is demand, virtual enable signal is 1, and the real enable signals for the

current and next timestep are 1. Since ak,t,u
z
k,t,u

x
k,t are binary variables this is a MILP

problem. The problem is always feasible if constants ϵ, m, and M are chosen such that: ϵ

is as small as possible (e.g., equal to tolerance of the solver), m ≤ −Z, M ≥ Z.

8.2.2 Average Forecast Greedy (AFG) model

The average forecast greedy (AFG) model is the new model we propose in this work.

Rather than requiring detailed load forecasts, this model only assumes knowledge of the

average power demand P̄k,d per load k per day d, which can be obtained by forecasting

total energy consumption per load per day and dividing it by 24 h. The decision variables

in the model are the durations sk,d for which a load k is enabled on day d. Based on

the optimal solution s∗k,d, we can algebraically compute the optimal daily virtual wallet

recharge, Xd, and thresholds per load k per day d, xk,d. The AFG model is described

by the optimization model (8.2a)-(8.2c). The objective (8.2a) is to maximize the PSF.

Constraint (8.2b) ensures that the total cost of energy usage for all loads remains within the

initial wallet balance, while (8.2c) provides an upper bound smax
k,d for the enable duration

of each load. This upper bound smax
k,d = 0 if P̄k,d = 0, i.e., when there is no demand for

the load on that day, and smax
k,d = 24 h otherwise.

max
sk,d

PSF =
∑
k

γk

∑
d

sk,d∑
d

smax
k,d

(8.2a)

s.t.
∑
k,d

αP̄k,dsk,d < Z (8.2b)

sk,d ≤ smax
k,d ∀k ∈ K,∀d ∈ D (8.2c)
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8.2.2.1 Solving the AFG model

Since sk,d are continuous variables, the AFG model (8.2) is a version of a fractional Knap-

sack problem, which seeks to maximize the value of items in our knapsack while respecting

an overall weight limit. This type of problem can be solved efficiently to optimality using

a greedy approach [127]. In our problem, the “items” to be chosen are enable durations

sk,d per load per day and the “value” of each item is the respective objective function

coefficient bk = γk∑
d
smax
k,d

. The “weight” of each item is the cost of using the load per hour

for that day, i.e., wk,d = αP̄k,d. To solve the problem, we first compute the ratios of benefit

per unit weight, rk,d = bk/wk,d. Note that if wk,d = 0, i.e., if there is no demand for a

load on a day, we assign s∗k,d = 0. We arrange the ratios rk,d in non-increasing order in

a vector r. Therefore, we have r(i) ≥ r(i+1), where r(i) represents the ith element of the

vector r. Next, we arrange variables sk,d in a vector s, parameters smax
k,d in vector smax,

and parameters P̄k,d in vector P̄k,d in the same order as that of elements in r, such that

the ith element of s, smax, and P̄k,d map to the same load k and day d as the ith ele-

ment of r. Given these vectors, we implement the greedy solution approach summarized

in Algorithm 1. Starting from the first element in r, we assign the maximum duration

smax(i) to each variable s(i), until we reach the element s(i
′
) which leads to a violation of

the wallet balance constraint (8.2b). For this marginal load s(i
′
), we assign a fractional

value equal to the leftover balance divided by the cost of using the load per hour, which

is typically less than smax
k,d (i.e., we enable the load only for a fraction of the day). For all

elements after the i
′
th element, i.e., those with a lower rk,d value, we set s(i) to zero. This

gives us the optimal enable durations s∗k,d for each load k and day d. Note that at most

one load k in one day d will have a fractional value, i.e., there is only one marginal load.
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Algorithm 1 Greedy approach to solve (8.2a)-(8.2c)

sort r in non-increasing order
s(i) ← 0 ∀i
i← 0
while

∑
i
αP̄(i)s(i) < Z do

s(i) ← smax(i)

i← i+ 1
end while
i
′ ← i

s(i
′
) =

Z−
∑
i
αP̄(i)s(i)

αP̄(i
′
)

8.2.2.2 Computing virtual wallet recharge

The daily virtual wallet recharge Xd is calculated as the amount of recharge needed to

support the optimal enable durations s∗k,d, i.e.,

Xd =
∑
k

αs∗k,dP̄k,d, ∀d ∈ D

The virtual wallet is recharged by Xd at the beginning of the day with no further recharge

during the day, and the virtual wallet balance thus reduces as the loads consume energy.

Once the balance goes below threshold xk,d, the corresponding load k is disabled and not

enabled again on that day.

8.2.2.3 Computing thresholds

Algorithm 2 presents the method to compute the thresholds xk,d. To compute the thresh-

olds xk,d for a given day d for a given load k, we distinguish three cases. First, if s∗k,d = 0

(i.e., the load is disabled for the whole day), then the threshold xk,d is assigned a value

slightly larger than the virtual wallet recharge for the day, xk,d = Xd+ ϵ, where ϵ = 10−4.

The virtual wallet balance is expected to never exceed the initial charge Xd and by setting

the threshold higher than this value, the model expects that it will not be enabled. Sec-

ond, if s∗k,d = smax
k,d (i.e., the load should be enabled for the whole day), then the threshold

xk,d is set to zero. This ensures that the virtual wallet balance never goes negative. Fi-
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nally, we consider the threshold for the marginal load s∗k,d (corresponding to s(i
′
)) that

has 0 ≤ s∗k,d ≤ smax
k,d . The threshold of this load xk,d should be chosen such that the

virtual wallet balance, which is reducing from Xd in the beginning of the day, reaches the

threshold xk,d after s∗k,d hours. This can be expressed as

xk,d = Xd − αs∗k,d
∑

n∈Sen
d

P̄n,d,

where the second term is the cost of running all enabled loads on the day, Send ≡ {n :

s∗n,d > 0}, for the duration s∗k,d. The overall time complexity of the AFG model is very

low and depends mainly on the type of sorting algorithm used. For example, if merge sort

is used, it will be O(n log n).

Algorithm 2 Computing thresholds

for d ∈ D do
for k ∈ K do
if s∗k,d == 0 then
xk,d ← Xd + ϵ

else if s∗k,d == smax
k,d then

xk,d ← 0
else
xk,d ← Xd − αs∗k,d

∑
n∈Sen

d

P̄n,d

where Send ≡ {n : s∗n,d > 0}
end if

end for
end for

8.2.3 Optimal Benchmark MILP (OBM) model

We now describe a model more closely aligned with traditional home energy management

systems proposed in literature. Rather than relying on thresholds, this model directly

decides the activation state of each load at each time step. If given perfect forecasts of

desired consumption, it produces an optimal schedule with the highest possible PSF for a

given budget. Therefore, we refer to this as the optimal benchmark MILP (OBM) model,
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which is given by

max
ak,t

PSF =
∑
k

γk

∑
t
ak,t∑

t
dk,t

(8.3a)

s.t.
∑
k,t

ak,tαPk,t∆T < Z (8.3b)

ak,t ≤ dk,t ∀k ∈ K, ∀t ∈ T (8.3c)

The model inputs are the demand forecasts Pk,t per load k at each timestep t, and it

determines the actuation state ak,t per load k at time t, so as to maximize the PSF as

defined by (8.3a). Constraint (8.3b) ensures that the energy usage is within the initial real

wallet balance Z and constraint (8.3c) ensures that a load is actuated only when there is

demand. Since ak,t are binary variables, it is a MILP problem.

8.3 Qualitative Comparison - Computation, Communica-

tion, and Information Requirements

In this section, we compare the computation, communication, and information require-

ments of the proposed AFG model with the DFM and OBM models. Ideally, we want a

method that limits the need for expensive local hardware, while also minimizing communi-

cation needs. We frame our discussion in the context of two possible modes of implemen-

tation, purely local, where all computations are performed using local in-home hardware,

or mixed mode, where the optimization problems are solved in the cloud on a remote server

and the setpoints are communicated to the local hardware.

8.3.1 Computational requirements

OBM and DFM are MILP problems with a large number of variables, which are generally

hard to solve. In our test cases, the DFM problem can take up to 50 min to converge

(with 30 day optimization horizon, 4 loads) on a system with a state-of-the-art commercial
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MILP solver. The computational effort required to solve the problem indicates that a local

implementation of the problem may be impractical or expensive. In comparison, AFG is

an LP problem that can be solved to optimality with the greedy approach outlined above,

making it quick and easy to solve even with simpler hardware and without optimization

solvers. Therefore, it can be implemented purely locally on existing hardware (e.g., the

in-home displays typically provided to prepaid customers [107]).

In order to illustrate the computational simplicity of the AFG model, we solved it

on an 8-bit microcontroller. We successfully implemented a case with 4 loads and an

optimization horizon of 30 days on an Arduino Nano Every, a microcontroller popularly

used for lab classes and hobby electronics. It uses the ATMEGA4809 processor (8-bit,

6 KB RAM, 48 KB Flash). It generates thresholds with 7 significant figures. The retail

price of the processor is under USD 2.00 (as of November 2024). Implementation on

the simple processor demonstrates that the model can be implemented purely locally on

inexpensive in-home hardware without the need for remote communication with a server,

thus reducing data privacy and cybersecurity concerns. Another option for implementing

the model is on smartphones for customers who have access and are comfortable using

them.

8.3.2 Load information requirements

Load forecasting is challenging, but can be achieved using statistical and machine learning

based methods [124]. The DFM and OBM models require load forecasts with a 15 min

granularity for each load. Creating accurate forecasts with such granularity is a very

challenging task and would require customers to either share granular historical load data

with the remote server, or generate the forecasts locally and communicate them. Either

option may require significant communication bandwidth or local computational power. In

comparison, the AFG model only requires information regarding the total expected energy

demand for each load per day, from which the average power demand can be computed.

This lower granularity forecast would be significantly easier to generate, whether it is done
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Table 8.2: Qualitative comparison of models

OBM DFM AFG

Problem type MILP MILP LP

Variables per day |K||T | |T |(3|K|+2)+ |K| |K|+ 1

Load forecast in-
formation

per timestep per
load

per timestep per
load

average per day
per load

Control setpoints
per day

|K||T | binary
numbers

|K| floating-point
numbers

|K| + 1 floating-
point numbers

Mode of imple-
mentation

mixed mixed purely local

locally or remotely. Furthermore, we would only need to communicate one value per load

per day. Avoiding the sharing of high fidelity load forecasts is also more desirable from a

privacy and cybersecurity perspective.

8.3.3 Communication of load activation information

In the mixed mode of implementation, the optimization problems are solved on a remote

server and we need to communicate the resulting control setpoints (i.e., load activation

information) to the user. For DFM, only a single threshold per load per day needs to be

communicated from the remote server to the local hardware, while AFG requires that the

thresholds and the virtual wallet recharge per day be communicated. For a household with

|K| loads, this means communicating |K| and |K| + 1 floating-point numbers per day re-

spectively. For OBM, the actuation states per load per timestep need to be communicated.

This amounts to |K||T | binary numbers per day where |T | is the number of timesteps in a

day. This is a much larger number than the number of setpoints to be communicated for

implementing AFG or DFM. Note that for the AFG model, the communication of con-

trol setpoints could be entirely avoided through a purely local implementation. This also

proves to be useful in case the model has to be re-run with new load priority factors. For

example, in case AFG notifies the user that an uninterruptible load such as a dishwasher

has to be turned off in the middle of its operating cycle, the user can choose to assign a

relatively higher priority factor to the load and re-run the model locally for a new set of

thresholds.



132

An overview of the comparison is summarized in Table 8.2. We observe that the AFG

model has several significant advantages from an implementation perspective. It is the

least computationally expensive method, making it suitable for a purely local implemen-

tation. If implemented in mixed mode, it communicates only low-dimensional information

regarding loads and control setpoints, thus reducing privacy and cyber-security concerns.

8.4 Quantitative Comparison - Case Study

We next compare the AFG model with the DFM and OBM models in a quantitative case

study based on real-life energy usage data.

8.4.1 Case study setup

We use energy usage data of one household from the Pecan Street Dataset [118] as load

data and “forecasts”. We consider four loads, namely a refrigerator, air compressor,

microwave, and washing machine in that priority order. The priority factors of the four

loads are γ = 0.48, 0.24, 0.16, 0.12 respectively. The cost of electricity is assumed to be

α = 0.16 $/kWh. Each optimization model solves a problem to obtain setpoints, for a

duration of 30 days. These setpoints are then used as input to a numerical simulation

for the same 30 days. This process is repeated for three months of data. The Julia

programming language (v1.6) is used with the JuMP package [121] and the Gurobi solver

[122] for implementing the models on an Intel CPU @3.2GHz machine with 16GB memory.

We compare the priority service factor (PSF) from the numerical simulation for AFG,

DFM, OBM, and a simple baseline (BSL) of unrationed energy use, which lets a user

satisfy all energy demand until the wallet balance is zero. We consider a perfect demand

forecast, as well as an imperfect forecast where the order of days is shuffled. Within each

type, we consider two levels of information granularity, a detailed forecast with 15 min

power demand per load and limited forecast with only daily average power demand per

load. To reflect the reality of low income customers who may not have enough money to

cover their desired energy demand, we assume initial wallet balances that are enough to
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supply 70% to 90% total energy demand. The cases and results are described in more

detail below.

8.4.2 Perfect forecast

We first assume perfect forecasts of load demand, and investigate the detailed and limited

information cases.

8.4.2.1 Detailed information

In this set of experiments, models know the true load demand at each 15 min timestep in

the case of OBM and DFM and the true average demand per load per day in the case of

AFG. With this perfect detailed information, the OBM provides a truly optimal solution

since it has complete information about load demand and can decide which load to actuate

at every timestep. The DFM also has information about load demand at each timestep

but can only determine a threshold for enabling each load per day, thus we expect DFM

to have a lower PSF than OBM. Since AFG only uses daily average power demand per

load as input, we expect AFG to have a lower PSF than both DFM and OBM. In these

experiments, we seek to assess the performance drop of AFG and DFM relative to OBM.

Figure 8.2(a) shows improvement in PSF over the baseline for month A, while the

results for all months A, B, and C are shown in Table 8.3. Note that the DFM values are

from the optimization model (and not numerical simulation) because of numerical precision

issues. We observe that OBM has the highest improvement for all recharge amounts

and months. The performance improvement of DFM is 0 − 2 %pt. lower than OBM

depending on the month and recharge level, indicating that there is some performance

drop due to only having the thresholds as a control variable. The AFG model improves

performance relative to the baseline case across all months, despite having significantly

lower granularity of demand information. The PSF improvement is 2 − 6 %pt. lower

than OBM and 0.5− 5 %pt. lower than DFM, indicating that detailed load forecasts are

important to achieve high performance.
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(a) Detailed information (b) Limited information

Figure 8.2: Perfect forecast: Percentage point (%pt.) improvement in priority service
factor (PSF) over baseline for the proposed AFG model (blue) and the benchmark models
DFM (red) and OBM (green)

8.4.2.2 Limited information

To further assess the impact of limited information, we run experiments where we provide

all models with information about the average demand per load per day (i.e., the same

information provided to AFG in the previous case). This is a more realistic case, with an

easier to obtain load forecast. Further, in this case, the OBM and DFM have no obvious

advantage over the AFG model.

Figure 8.2(b) shows the improvement in PSF over the baseline for each model for

month A, with similar numbers provided for months A, B, and C in Table 8.3. AFG and

DFM perform within 1 %pt. of each other in all cases, while the OBM model performs

similar to the others (within 1 %pt. in most cases) or up to 4 %pt. worse in the high

initial balance cases in month B. This confirms that all models perform similarly in the

setting where they all are given limited information.

8.4.3 Imperfect forecast

Next, we assess performance under imperfect forecast information, generated by randomly

shuffling the order of days. The order of shuffling is preserved across models.
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Table 8.3: Perfect forecast: Percentage point improvement in priority service factor (PSF)
over baseline for the proposed AFG model and the benchmarks DFM and OBM

data balance
perfect detailed perfect limited

AFG DFM OBM AFG DFM OBM

A
70% 39.5 41.5 43.1 39.5 39.5 38.5
80% 15.1 17.4 18.2 15.1 15.1 15.3
90% 11.2 13.1 13.3 11.2 11.5 11.4

B
70% 13.7 14.6 16.8 13.7 13.6 12.9
80% 10.6 11.3 13.4 10.6 10.5 6.97
90% 8.35 9.01 10.5 8.35 8.33 5.99

C
70% 8.32 13.2 14.0 8.32 8.30 8.76
80% 3.63 8.64 9.02 3.63 4.24 4.21
90% 2.16 5.15 5.18 2.16 2.94 2.94

8.4.3.1 Detailed information

First, we provide DFM and OBM with (imperfect) 15 min demand information whereas

AFG is provided with (imperfect) average power demand information per day. Figure

8.3(a) shows the PSF for each model for month A, while Table 8.4 shows the results for

months A, B, and C. We observe that in month A, the AFG model outperforms the OBM

and DFM models, while when considering all the months in Table 8.4, we see that PSF of

AFG was sometimes lower than that of DFM. Therefore, the relative performance of the

two models depends on the specific data used. The OBM model has the lowest PSF (up to

61 %pt. lower than AFG) across all months and recharge levels, because it activates loads

at specific times which do not coincide with the true demand. It is also worth noting that

the PSF of the baseline BSL (i.e., no control) is comparable to and sometimes higher than

that of the other models in the imperfect information case. However, the user experiences

a disconnection in each case with the BSL and may require the payment of reconnection

fees. Further, the baseline case leaves the user with no access to power for a prolonged

period of time after the disconnection, e.g., for month A the disconnection time is 17, 7,

and 5 days with 70%, 80%, and 90% initial wallet balance, respectively. Furthermore, it

is also likely that a more realistic implementation of the AFG, DFM, and OBM models,

where setpoint optimization would be rerun frequently (e.g., daily) with information from

actual usage in the previous day, would help close the performance gap with the baseline
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(a) Detailed information (b) Limited information

Figure 8.3: Imperfect forecast: Priority service factor (PSF) and customer disconnections
(indicated by ‘x’ mark) for the proposed model AFG (blue), the benchmark models DFM
(red), OBM (green), and the baseline BSL model (purple)

BSL model.

8.4.3.2 Limited information

Next, we provide all models only average power demand data for the shuffled days (same

as what was provided to AFG in the previous case) and results are shown in Figure 8.3(b)

for month A and Table 8.4 for months A, B, and C. Similar to the imperfect-detailed case,

PSF of AFG is higher than that of OBM (up to 22 %pt.) and the relative performance

of AFG and DFM is observed to be dependent on the specific data used as seen in Table

8.4. It can also be seen that the PSF of OBM considerably increases. This is because the

forecast contains demand equaling the daily average power demand for the entire duration

of 24 hours every day, which may have more overlap with the actual demand than in the

previous case.

These results indicate that when all models are provided with perfect-limited infor-

mation, the AFG model performs on par with DFM and OBM. With imperfect-limited

information, AFG performs on par with DFM in most cases and outperforms OBM. The

case study highlights that the proposed AFG model achieves comparable or improved

performance compared to the benchmark models, despite being computationally simpler.
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8.5 Conclusion

This study presents a linear threshold-based energy rationing model for prepaid electricity

customers, which needs only daily average demand forecasts and can be solved to optimal-

ity using a simple greedy strategy. We compare this model with two mixed-integer linear

programming (MILP) models which require demand forecasts at each 15 min timestep

in case studies with perfect, limited, and imperfect forecast information. The proposed

linear model has comparable or improved performance compared with that of the MILP

models, while being computationally inexpensive. Therefore, it can be implemented on

inexpensive local in-home hardware as demonstrated through implementation on a basic

8-bit microcontroller.

Some avenues for future work include modeling user noncompliance to load enable/disable

signals, determining a relationship between forecast error and model performance, formu-

lating the optimization model to incorporate uncertainty in forecasts, and studying the

effects of delays in computation and communication of optimal setpoints for energy ra-

tioning. We would also like to deploy this method in a field experiment.
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Part IV

Picogrid
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Chapter 9

Picogrid: An Experimental

Platform for Prosumer Microgrids

The microgrid paradigm is gaining momentum as one of the key pieces of technology for

expanding clean energy access and improving energy resilience. Most of the interest in

this pertains to distinct entities that either generate electricity or act as loads, i.e., dis-

tinct producers and consumers. Remote community microgrids and emerging transactive

energy service models with interconnected prosumers do not clearly fit into this paradigm.

Notwithstanding various publications that present concepts and simulations, there has been

a dearth of experimental platforms to study them, due to practical challenges. This work

presents the ‘Picogrid’ - an experimental platform particularly designed for dc prosumer

microgrids. It is a low-power, low-cost hardware platform that enables interconnecting

multiple prosumer entities in a bench-top setup. Each prosumer sends data to a cloud

dashboard and can receive set points for optimal operation from a remote computer sys-

tem, lending itself to use in a virtual lab setup. The platform enables implementation of

custom power profiles based on real-world generation and demand datasets. Features of

the platform are demonstrated using simulation and experimental results. 1

1This chapter is based on work by the author and Giri Venkataramanan in [128]. This work was
supported by the George Bunn Distinguished Graduate Fellowship by the University of Wisconsin-Madison
and the Wisconsin Electric Machines and Power Electronics Consortium.
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(a) Producer-consumer microgrid (b) Prosumer microgrid

Figure 9.1: A sketch of microgrid architectures

9.1 Introduction

Microgrids have shown great potential in contributing towards the clean energy transition

in developed as well as emerging economies since they are key for building electricity

systems that are flexible, resilient, cost-effective, and just. [129]. A microgrid with a single

load-serving entity that owns generation assets and supplies multiple households, has a

“producer-consumer” architecture. This consists of distinct entities for generation, storage,

and loads, as shown in Figure 9.1(a). On the other hand, the “prosumer” architecture as

shown in Figure 9.1(b) is useful to represent modular interconnected solar home systems

in off-grid communities. Each house is a prosumer and can have bidirectional power

exchange with the network. In ad hoc prosumer networks, the absence of a dedicated

load-serving entity opens up questions about supply-demand balance and rate-making

for energy exchange. There is a need for research and education platforms for prosumer

microgrid modeling that address these factors as a part of the broader “transactive energy”

paradigm [130]. Furthermore, legacy power systems curricula need to be updated to train

the new workforce in microgrid technology using such platforms.

Microgrids consist of a physical energy hardware layer, a control and computation soft-

ware layer, and communication links between layers. Operating frameworks for microgrids

need to be developed keeping in mind the engineering requirements and limitations of the

underlying equipment and software tools. Therefore, there is great value in having a hard-

ware platform as opposed to a simulation-only platform for validating such frameworks.

For instance, multi-agent systems (MAS)-based microgrid control, which is a popular op-
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tion for distributed control in multi-entity prosumer networks, is often implemented in

simulations, and studies recommend that the true test of such frameworks can come from

rigorous hardware implementation [131]. Furthermore, microgrid laboratory courses based

on hardware platforms can help in imparting the necessary skills for real-world microgrid

deployment. An ideal research and education experience is offered by setting up a real

prosumer microgrid in a village or a community of households. However, this is often

not practically feasible since it needs a large budget, has a multi-year timeline, and needs

engineers as well as community organizations to deal with the technical and socioeco-

nomic aspects of such a community energy project respectively. The next best option is a

lab-scale setup for research and education.

In this context, examples of microgrid education and experimental platforms at differ-

ent scales and power levels are presented in Table 9.1. Educational institutes are setting

up microgrids on their campus to meet their clean energy and resilience goals and also to

use them as learning labs for students [132, 133]. At a lower power scale, hardware-based

laboratory-scale microgrid platforms that incorporate multiple energy sources such as solar

PV, wind, fuel cells, and diesel generators have been developed, for example see [134,135].

To incorporate more flexibility in experimenting with control paradigms and integration

with simulation platforms, hardware-in-the-loop microgrid platforms have also been devel-

oped [136–138]. Several studies like [42,139,140] have developed hardware-based platforms

at the power level of a single-home and have designed curricula for smart home energy

management systems. Purely simulation-based coursework and platforms have also been

developed [141–143]. Various microgrid test beds and experimental platforms are reviewed

in [144,145].

Hardware-based education platforms at the scale of campus-wide microgrid deploy-

ments can be high budget projects. Lab-scale setups that are developed at the power

levels of real-world deployments can also be expensive and have significant operational

and maintenance overheads. Nevertheless, hardware-based platforms are key for effective

microgrid research and education. Furthermore, the option of conducting virtual experi-
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ments on such platforms can prove to be extremely useful as necessitated by the COVID-19

pandemic and the increasing popularity of distance education programs. In summary, the

aforementioned platforms do not address this gap of a low-cost experimental platform for

emerging prosumer microgrid modeling needs.

Table 9.1: Comparison of microgrid education and experimental platforms

References Implementation Power level Typical hardware costs

[132,133] campus microgrid MW $ Millions
[134,135] lab-scale hardware kW $ Tens of thousands
[136–138] hardware-in-the-loop kW $ Tens of thousands

[42,139,140] home energy management W $ Thousands
[141–143] simulation kW -

9.1.1 Contributions

In this work, we present the Picogrid - an experimental platform for dc prosumer mi-

crogrids. Each prosumer entity is represented by low-power hardware and this makes it

cheaper, smaller, and safer to operate tens of such prosumer entities in a lab setting. The

distinguishing features of this platform are: (1) enables experiments based on community

microgrids with prosumer entities, (2) is a low-cost, low-power dc hardware platform, (3)

enables easy bench-top setup of tens of entities, (4) offers a cloud dashboard for visualiz-

ing sensor data, (5) can integrate with computation-heavy tools like optimization solvers

running on any computer system with an internet connection, (6) supports virtual labs

and remote experiments.

The hardware and software source files are made publicly available for interested re-

searchers and educators through a GitHub repository [146].

9.1.2 Organization

The following section presents details about the platform’s components and features. Sec-

tion 9.3 presents three experiments that demonstrate various features of the platform.

This is followed by a brief concluding section.
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Figure 9.2: A sketch of layers of the Picogrid platform

9.2 Platform

As shown in Figure 9.2, the Picogrid platform consists of multiple layers, viz., Pico boards,

a cloud dashboard, and a remote node. These layers together form a small benchtop

microgrid or a “picogrid” and emulate their real-world counterparts. Pico boards emulate

prosumer households. The remote node emulates DERMS (distributed energy resource

management system) or a microgrid operator which provides operating set points to the

prosumers. The cloud dashboard emulates the data transfer system between the prosumers

and the operator. In this section, we present the utility and features of each layer and

briefly discuss the unit price of a Pico board.

9.2.1 Pico board

9.2.1.1 Power circuit

Each prosumer in the picogrid is represented by a Pico board. Figure 9.3 shows the block

diagram of a Pico board connected to the picogrid network. Figure 9.4 shows a photograph

of a Pico board. The Pico board models a prosumer entity which can have battery storage,

channels to import from and export to the network, and local devices that can either act

as power sources or loads. The Pico board has 2 source channels, 3 load channels, an

import channel, and an export channel, bringing the total to 7 channels. Battery storage

is represented by a single Lithium-ion cell. Source channels can be connected to external
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Figure 9.4: Photograph of a Pico board that represents a prosumer entity with sources,
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power sources rated at 1 pu nominal voltage such as a solar PV panel or a benchtop power

supply. They are labeled as PV and Auxiliary Source (AS). Source and import channels

are connected to a cell charger IC through a diode and a droop resistor. The nominal

voltage of the cell is 0.72 pu. A boost converter boosts this voltage to 1 pu to supply to

the load and export channels. An on-board resistor acts as the load at each load channel.

The per unit base quantities are: voltage = 5 V, current = 0.5 A, energy = 1 Wh. The

channel power ratings are: Source 1 pu, Load 0.37 pu. The cell has an energy capacity of

12.24 pu.

9.2.1.2 Control circuit

The local controller or the energy manager (EM) is implemented using the Particle Argon

microcontroller. It has a WiFi module to communicate with the cloud dashboard. Particle

products are packaged as PaaS (platform-as-a-service) and can effectively support scaling

up of solutions [147]. All 7 channels have a MOSFET switch and the EM determines their

switching state u. It can use pulse-width modulated gate signals to model variable load

and source power profiles. The EM reads voltage v from 5 on-board voltage sensors (PV

channel, AS channel, Import channel, cell terminals, boost converter output) and current

i from 8 on-board current sensors (PV channel, AS channel, Import channel, cell, Load 1-3

channels, Export channel). Figure 9.5 shows 4 Pico boards with PV panels, demonstrating

easy bench-top setup of multiple prosumer entities. To be sure, the system can be scaled

with numerous Pico boards using framed mechanical racks, if so desired.

9.2.1.3 Power modulation

While a naturally modulated power source such as a PV source can be connected to the

Pico board, in order to provide more flexibility and convenience of not being dependent

on weather, a source channel of the Picogrid can be connected to a 1 pu nominal voltage

source. The on-board linear charger draws a constant current of 1 pu (CC mode) until the

cell reaches its regulation charging voltage and the charger switches to constant voltage
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charging (CV mode). Therefore, in the CC mode, the voltage and current at the source

channel are stiff (at 1 pu each). The voltage at the load channel is the voltage output of

the boost converter (1 pu) and the load is an on-board resistor that draws 0.37 pu current

at 1 pu voltage. Therefore, the voltage and current at the load channel are stiff. Since the

voltage and current at source and load channels are stiff, the power through a channel is

only dependent on the duty cycle of the channel’s switch. The power through a channel

at time t is given by pc,t = dtPc, where dt is the duty cycle of the gate signal and Pc is the

nominal power input/output at the source/load channel. In the prototype system, Pc = 1

pu for the source channel and Pc = 0.37 pu for the load channel.

9.2.1.4 Interconnecting Pico boards

Pico boards can be interconnected to form a network or a “picogrid”. Each board has

dedicated unidirectional channels to import and export power as shown in Figure 9.3. The

energy manager (EM) controls the switching state of the MOSFET switch while the diode

ensures unidirectional power flow. The EM can turn on the import switch and turn off the

export switch if the prosumer desires to import power from the network whereas it can

turn on the export switch and turn off the import switch if it wishes to export power. Note

that if the EM turns both switches on at the same time, current can circulate within the

Pico board and therefore this should be avoided. To connect a Pico board to the picogrid,

the import and export channels are shorted together and connected to the network via a

resistor that models line resistance. Figure 9.11 shows three Pico boards interconnected

in a radial configuration.

9.2.2 Cloud dashboard

The cloud dashboard is set up using the ThingSpeak IoT platform by MathWorks and

supports REST and MQTT API [148]. Data on the dashboard is displayed in the form

of data channels. There are data channels for data from sensors on Pico boards (called

Pico board data channels) and for setpoints from the remote node (called setpoint data
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Figure 9.5: Photograph of multiple Pico boards that fit easily on a lab bench.

channels). A screenshot of the cloud dashboard showing a Pico board data channel is

shown in Figure 9.6. Pico boards can write data from on-board sensors to their data

channels and can read from setpoint data channels. The remote node can read from the

Pico board data channels and write to the setpoint data channels. The permissions for

reading and writing are controlled through read/write API keys.

9.2.3 Remote node

The remote node is a remote device with greater computation power than the EM on the

Pico boards and can generate setpoints for their operation. It can be any computer system

with internet connectivity, not necessarily in close proximity to the Pico boards. It can

read data from and communicate setpoints to the cloud dashboard. The cloud dashboard

enables the Picogrid platform to be extended to a virtual lab setup. A remote node can

be granted access to the necessary read/write API keys to read from Pico board data

channels and write to setpoint data channels to observe and conduct experiments.
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Figure 9.6: Screenshot of the cloud dashboard showing a Pico board data channel

9.2.4 Bill of Materials

The bill of materials of the Pico board can be broadly divided into 5 categories: (1) PCB

manufacturing, (2) microcontroller, (3) switches, drivers, and sensors, (4) capacitors and

resistors, (5) connectors. The unit cost of a board against number of units is shown in

Figure 9.7. The unit cost is seen to vary from about USD 140 at a single unit to USD 80

at 1000 units (as per prices in 2023). The price point makes the platform affordable for

wide-scale adoption in undergraduate and graduate coursework and research.

9.3 Experimental Results

This section presents three experiments that demonstrate features of the platform. Ex-

periment 1 demonstrates source and load power modulation. Experiment 2 demonstrates

how a Pico board can meet its objectives with local control informed by setpoints from

the remote node. Experiment 3 presents interconnection of three Pico boards to form a

prosumer network. A simulation model of the Pico board is developed using MATLAB

Simulink and PLECS Blockset. Experimental data from Experiments 1 and 3 are used to
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Figure 9.8: Power variation across PV, Load 1, Load 2 obtained experimentally matches
closely with that from the dataset
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benchmark the simulation model. The model can be used to simulate multiple scenarios

with varying parameters and can help in designing experiments for the platform.

9.3.1 Experiment 1: Source and load power modulation

This experiment demonstrates how a Pico board can emulate variable power profiles of

sources and loads by modulating channel power using PWM. We use rooftop solar photo-

voltaic power generation data and household appliance power consumption data for two

load circuits, viz. refrigerator and kitchen appliances, for 24 hours for a house from the

Pecan Street Dataset [118]. This data is scaled in terms of power and time duration and

is implemented on a Pico board over the duration of a 32 min experiment. PV, Load 1,

and Load 2 channels are used to represent solar photovoltaic, refrigerator, and kitchen

appliances data respectively.

The PV, Load 1, and Load 2 power profiles from the dataset are 24 hour time series

of power values at a sampling interval of 15 min, i.e., 96 values per time series. The EM

runs at a timestep of 10 s which means that the duty cycle of the switches can be updated

once every 10 s. It logs data to the cloud dashboard at every other timestep, i.e., every 20

s due to limitations on the update interval. In order to run experiments in a reasonable

duration of time and ensure that the cloud dashboard logs values without loss of data, we

scaled down the data in terms of time such that the interval between two values in the 96

value time series is 20 s, i.e., the total duration is 1920 s or 32 min. We interpolated this

32 min time series with a sampling interval of 10 s to get 192 values. These values are used

to generate duty cycles for the channel switches and are implemented in the embedded

system code using look-up tables. We denote power values in this time series by pd,t. The

power values are scaled down for implementation on the Pico board. The duty cycle is

obtained as dt = αpd,t/Pd, where α ∈ [0, 1] is a scaling factor and Pd = max{pd,t}. This

ensures that dt ∈ [0, α]. As discussed in Section 9.2.1.3, the power through a channel

at time t is given by pc,t = dtPc, where Pc is the nominal power input/output at the

source/load channel. Pc = 1 pu for the source channel and Pc = 0.37 pu for the load
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Table 9.2: Power scaling parameters

Channel α Pc/Pd

PV 0.5 1.4× 10−3

Load 1 1 2.7× 10−3

Load 2 1 3.6× 10−3
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Figure 9.9: Energy supplied by PV and consumed by Loads 1 and 2. Values indicated
on top of simulation and experiment bars represent percentage error with respect to the
dataset

channel. The parameter values used in this experiment are presented in Table 9.2.

Power variation across channels PV, Load 1, and Load 2 obtained experimentally are

plotted with the ideal values from the dataset as shown in Figure 9.8. The experimental

results are seen to closely follow the variations in the values of the time series from the

dataset. To quantify this, we compare the area under the curve, i.e., the energy supplied

by PV and consumed by Loads 1 and 2, with values computed analytically using the

dataset and simulation results. The energy supplied/consumed by a source/load channel

over duration T of the experiment can be analytically calculated as EA =
∫ T
0 pc,t dt =

Pc

∫ T
0 dt dt. Figure 9.9 shows a bar chart that compares the energy supplied by PV and

consumed by Loads 1 and 2 as obtained analytically using the dataset, using the simulation

model, and through the experiment. Values displayed on the top of bars corresponding
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to simulation and experimental results represent percentage error with respect to the

analytically calculated value. We see that the magnitudes of simulation errors are under

0.5% and that of experiment errors are under 7%. This shows that the platform can be

used to effectively model scaled down real-world generation and demand profiles.

9.3.2 Experiment 2: Setpoints from remote node

This experiment, using a single isolated Pico board, demonstrates how different layers of

the platform, viz., Pico board, cloud dashboard, and the remote node, interact with each

other to meet the entity’s objectives. Specifically, we aim to demonstrate how the load

management goals of the entity can be met by its local energy manager (EM) operating

according to the setpoints received from the remote node. The experiment duration of 15

min is divided into three 5 min intervals. The goal is to keep all the three loads on in

the first interval, only Loads 1 and 2 on in the second interval, and only Load 1 on in the

third interval.

The EM implements a threshold-based energy management framework as presented

in [43] wherein each load is assigned a threshold in terms of the state of charge (soc) of

the on-board cell. If the soc exceeds the threshold, the corresponding load is switched on

and if it goes below the threshold the load is switched off. The thresholds are obtained as

setpoints from the remote node which is implemented on a Windows PC. The remote node

runs a Julia script to compute the thresholds and sends them to the cloud dashboard using

REST API. We write the script such that it reads the soc from the Pico board data channel

at the beginning of each interval and computes and sends thresholds to the setpoint data

channel. The EM reads thresholds from the setpoint data channel and implements the

threshold-based energy management framework. In order to determine the thresholds per

interval, we need to determine what is the maximum change in soc that will be possible

over each interval. During the experiment, a 1 pu voltage source is connected to the

Auxiliary Source channel and supplies 1 pu nominal power. Each load channel is rated to

consume 0.37 pu nominal power. The energy capacity of the cell is 12.24 pu. Therefore,
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Figure 9.10: Top: State of charge (soc) variation and load thresholds. Bottom: Load
current. Loads are switched off when the soc is less than their respective thresholds.

the change in soc over any interval will be ≤ 1%. We determine the threshold for Load k

in an interval as soco +∆k, where soco is the soc at the beginning of the interval as read

from the Pico board data channel and ∆k is chosen to be greater than 1% if the load is

to be switched off and less than 1% if the load is to be switched on. Table 9.3 shows the

values chosen for ∆k.

Table 9.3: ∆k values for each interval and load

∆1 ∆2 ∆3

Interval 1 -10 -5 -2.5
Interval 2 -10 -5 5
Interval 3 -10 5 10

Figure 9.10 shows the soc and load thresholds on the top and load currents on the

bottom. We can see that all three loads are on in Interval 1; Loads 1 and 2 are on and

Load 3 is switched off in Interval 2; and Load 1 is on and Loads 2 and 3 are switched off in

Interval 3 as expected. This experiment shows that control schemes with a combination

of local and remote control can be implemented on the platform. More advanced schemes
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PB2

PB1

PB3

Figure 9.11: Experimental setup showing three radially connected Pico boards

such as optimization-based control can be implemented using computation resources of

the remote node and can be used to generate setpoints for Pico boards.

9.3.3 Experiment 3: Three-entity prosumer network

This section demonstrates the interconnection of three prosumer entities through simu-

lation and experimental results. The experimental results serve as a benchmark for the

simulation model. Figure 9.11 shows the experimental setup. The three entities repre-

sented by Pico boards (PB1, PB2, PB3) are interconnected radially. It is assumed that

Load 1, Import, and Export are the only channels that are active. The experiment runs

for a duration of 32 min. The load demand is assumed to be constant at the nominal

power of the channel (0.37 pu). The load demand schedule (user schedule) for Load 1

across the entities is as follows: PB1 8-16 min, 24-32 min; PB2 0-16 min, PB3 16-32 min.

Each entity implements threshold-based energy management presented in [43]. Across all

entities, Load 1 is assigned a threshold of 20%, i.e., if the state of charge (soc) of the cell

is less than 20%, the load is switched off, and if it is greater than 20%, the load follows the
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Figure 9.12: Simulation and experimental results (clockwise from top left in each sub-
figure: Load 1 current, state of charge, Import current, Export current) for a network
of three prosumers. Plots show that the simulation model can effectively represent the
behavior of the hardware.

user schedule. Import and Export are both assigned a threshold of 60%, i.e, if the soc is

less than 60%, Import is switched on and Export is switched off, and if it is greater than

60%, Import is switched off and Export is switched on.

Simulation and experimental results are shown in Figure 9.12. Load current plots show

that load schedules are followed in the simulation and the hardware. The soc of no entity

goes below 20% over the duration of the simulation or the experiment and therefore, loads

follow the user schedule as expected. Measurement errors in current sensors lead to a

slight mismatch in the soc computation between the simulation and the experiment. In

the simulation, the soc of PB2 stays just below 60% until the end of the experiment and

so PB2 continues to import current as seen in the Import current plot. The soc of PB1

and PB3 are always above 60% and therefore they continue exporting to PB2 as seen from

the Export current plot. Since the line resistances in series with PB1 and PB3 are of

different values, their export current values also differ. In the experiment, the soc of PB2

reaches 60% by minute 29 and so Import is switched off. Even though the soc of PB1 and

PB3 remain above 60% and their Export channels remain on, since no entity is importing,
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Table 9.4: Error in change in state of charge for each entity in the experiment as compared
to that in the simulation is found to be under 6 %

Quantity Error in change in soc (%)

PB 1 −5.77
PB 2 −0.375
PB 3 1.31

the Export currents of PB1 and PB3 also go to zero. The percentage error in change in

state of charge for each entity in the experiment as compared to that in the simulation is

shown in Table 9.4. It is observed to be under 6 %. Overall, the experimental results are

in congruence with simulation results and this can be improved by better calibration of

on-board current sensors.

We observe that the simulation model can effectively represent the behavior of the

hardware. The simulation model can be used to simulate multiple cases with different

parameters for better design of hardware experiments. This experiment also demonstrates

that multiple Pico boards can be interconnected to form a prosumer network or a picogrid.

9.4 Conclusion

This chapter presents the Picogrid, an experimental platform for prosumer microgrid re-

search and education. It is a low-power, low-cost platform which enables interconnection

of multiple prosumer entities on a bench-top setup. Features of the platform such as

implementation of control schemes based on a combination of local and remote control,

implementation of scaled down real-world generation and demand profiles, and intercon-

nection of multiple prosumers to form a network is demonstrated through simulation and

experimental results. The platform has the potential to be extended to form a hardware-

in-the-loop setup where high-power entities modeled in a simulation software on the remote

node interface multiple of Pico boards. Hardware-in-the-loop experiments are using the

Picogrid platform are presented in Chapter 10.

The Picogrid platform has been designed to implement secondary and tertiary level
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control schemes which expect the system response to be of the order of several seconds

to minutes. It cannot be used for testing primary control schemes which expect system

responses to be under seconds, e.g., modeling transients due to interactions between dif-

ferent power electronic converters. Being a dc platform, it also cannot be used to model

ac system dynamics. However, some of these aspects can be incorporated with potential

increases in cost and size of each Pico board and is a subject of future work.
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Chapter 10

Custom Cloud-Based Solution for

Remote Access to the Picogrid

Hardware validation of energy access and energy management paradigms, such as micro-

grids and distributed energy resource management systems, is crucial for bridging the gap

between simulation-based research and real-world applications. However, there are signif-

icant barriers for using hardware experimental platforms including high costs, lab space

requirements, and maintenance challenges. Additionally, users must typically be physi-

cally present with such platforms to effectively conduct experiments. This work presents

a cloud dashboard designed for conducting remote virtual experiments on the ‘Picogrid’,

the existing low-cost open-source experimental microgrid hardware platform presented in

the previous chapter. This enables researchers who build the hardware platform to rent it

out to remote users for specific durations, facilitating remote experimentation through a

hardware-as-a-service model. The approach significantly reduces the burden of developing

and maintaining the hardware infrastructure for researchers, and makes hardware valida-

tion more accessible. Multiple users can simultaneously run experiments on their allocated

hardware instances from any location worldwide, with minimal resource setup. Addition-

ally, the dashboard enables educators to offer virtual laboratory exercises to remote stu-

dents. Three experiments involving remote third-party users demonstrate applications of
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the proposed cloud dashboard, in conjunction with the hardware platform, as a research and

educational tool for smart solar home systems, virtual power plants, and demand response

schemes. Furthermore, the platform was used in a real-world setting, during a community

meeting in Holyoke, MA, to demonstrate demand-response schemes and understand the

potential barriers that the community may face in participating in such utility programs. 1

10.1 Introduction

The advent of inexpensive computing hardware, coupled with excellent software platforms

have enabled digital simulation to become a ubiquitous practice in power system engineer-

ing. This approach is extensively used to study various upcoming energy paradigms such

as microgrids, swarm electrification, distributed energy resource management systems, de-

mand response, and virtual power plants. On the other hand, some of the time-sensitive

dynamics, physical uncertainties, cyber-physical interactions, and human mediated aspects

continue to be challenging to study using numerical simulations on software. One needs

to resort to a hybrid approach that is often termed as hardware-in-the-loop simulation to

accurately model and understand such aspects [151]. Thus, hardware validation is deemed

necessary for translating the research concepts to real-world applications.

Hardware experimental platforms generally require high initial costs, needing large

lab space, and adequate resources for maintenance. In order to address this, [128] pre-

sented an accessible open-source solution called the ‘Picogrid’, a low-cost dc prosumer

(producer-consumer) microgrid hardware platform. It is a low-power sandbox for research

and education, and lowers the barriers to entry for hardware validation. Another potential

limitation of hardware platforms is the requirement for users to be physically present to

conduct experiments. Internet of Things (IoT) and cloud-based technologies are emerging

as a solution to remotely access physical hardware, enabling researchers to make their

1This chapter is based on work by the author, Varun Balan, and Giri Venkataramanan in [149]. This
work was supported by the Wisconsin Electric Machines and Power Electronics Consortium. The commu-
nity meeting at Holyoke, MA was in collaboration with a team at the University of Massachusetts Amherst
and was a part of a larger project undertaken by their team [150].
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hardware experimental platforms available through a hardware-as-a-service model [152].

Leveraging cloud computing services also offers multiple advantages such as rapid infras-

tructure deployment and modification, automated failure recovery, scalability, security,

cost efficiency, and use of artificial intelligence and machine learning insights [153].

Various IoT and cloud-based software have been used in experimental platforms for

microgrids, smart grids, and energy management. These include out-of-the-box IoT prod-

ucts developed for hobbyists, makers, and educators such as Mathworks ThingSpeak [154],

Arduino Cloud [155], and ThingsBoard [156]. A simple cloud dashboard, developed using

ThingSpeak, for the Picogrid platform was presented in [128]. While such out-of-the-box

solutions are developer-friendly and do not require extensive experience in cloud soft-

ware development, they do have some notable drawbacks. Firstly, they involve high fixed

costs, meaning users must pay a predetermined fee regardless of their actual usage lev-

els. Furthermore, these solutions impose limitations on customization, data transfer rates,

and data storage. These constraints hinder their effectiveness in enabling the underlying

hardware to be offered through a hardware-as-a-service model. On the other hand, using

software from cloud service providers such as Microsoft Azure [157], Amazon Web Ser-

vices [158], and Google Cloud [159] to build custom solutions from their suite of services

offers greater flexibility and scalability. In this work, we present a customized solution de-

veloped using services offered by the cloud service provider, Microsoft Azure, and the IoT

platform, Particle Cloud, that makes remote access to the Picogrid [128] more affordable

and user-friendly.

10.1.1 Contributions

We make the following contributions beyond prior work. First, we present a custom

cloud dashboard developed using services from Microsoft Azure and Particle Cloud for

the Picogrid hardware. Its features include (1) remote monitoring of sensor data, (2)

sending setpoints to control the hardware, and (3) secure authorized access, enabling re-

searchers and educators who build the Picogrid hardware to offer it for virtual remote
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experimentation through a hardware-as-a-service model, which was not possible using the

platform in [128]. This allows users, without the resources to build the hardware, to

access it remotely for a desired duration. It enables them to focus on validating their

models in hardware without spending time and resources on setting up the infrastructure.

Next, we demonstrate the utility of the dashboard through three experiments: (1) smart

solar home system (experiment conducted on on-campus hardware by two third-party

users from an off-campus location), (2) virtual power plant (a hardware-in-the-loop ex-

periment demonstrating aggregate control), (3) demand response (a hardware-in-the-loop

experiment conducted with hardware at two different locations by two third-party users

in conjunction with a simulation model running at a third location). The cloud dashboard

software is made publicly available through the Picogrid GitHub repository [146].

10.1.2 Organization

Section 10.2 discusses the architecture and pricing of the custom cloud dashboard, Section

10.3 presents experimental results, Section 10.4 presents a real-world example of how

the Picogrid platform was used in a community workshop, and it is followed by a brief

concluding section.

10.2 Platform

10.2.1 Overview of the Picogrid platform

We first present a brief overview of the Picogrid platform presented in [128] (and Chapter

9). The Picogrid platform consists of three layers: Pico boards, cloud dashboard, and a

remote node. The Pico boards are 7” × 5” circuit boards, each representing a prosumer

entity such as a household in a community microgrid. As shown in Figure 10.1, each

Pico board contains an on-board cell for energy storage, two source channels, three load

channels, and an import and export channel to exchange energy with other Pico boards.

A Wi-Fi enabled microcontroller (Argon by Particle) is used to implement local energy
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Figure 10.1: Photograph of a Pico board, highlighting important components

Pico boards
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Figure 10.2: Sketch of data pipeline between Pico boards and cloud dashboard

management, read on-board sensor values, and communicate with the cloud dashboard.

Channels have a power semiconductor that can be controlled using pulse-width modulation

to implement custom power profiles. Source channels are connected to an external dc power

supply. The remote node is any computer system with an internet connection and can

represent a microgrid operator, aggregator, or load serving entity. The cloud dashboard

acts as a data transfer system between the remote node and Pico boards. This work

presents a custom cloud dashboard designed to address the flexibility and cost limitations

of the out-of-the-box dashboard discussed in [128].
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Variable Chosen: v_pv

Download Specific Data Download Complete Data

Figure 10.3: Screenshot of Data Retrieval Page: Waveform of selected quantity (PV Volt-
age) during the selected interval (14:00-14:55 May 14, 2024) from the selected board (Co).

10.2.2 Custom Cloud Dashboard

In this section, we describe the new custom cloud dashboard proposed in this work. The

requirements from the cloud dashboard are: (1) extract data from the hardware platform

between specific time frames in which users run their experiments, (2) send setpoints from

the dashboard to the hardware with minimal latency to allow dynamic changes during

experiments, (3) secure access to the dashboard to prevent unauthorized third-parties

from sending setpoints or accessing sensor data.

10.2.2.1 Architecture

As seen in Figure 10.2, Azure IoT Hub is used as the bridge between the Wi-Fi enabled

microcontrollers on Pico boards and Microsoft Azure Storage Blobs (cloud data storage).
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Enter Threshold Values (as a decimal from 0.000 to 1.000 with 3 decimal places)

PV Threshold: 
US Threshold: 
IM Threshold: 
Load 1 Threshold:
Load 2 Threshold: 
Load 3 Threshold: 
EX Threshold: 
Choose which picoboard's data you require: Co Submit

Figure 10.4: Screenshot of Setpoint Input Page for selecting threshold levels for Photo-
Voltatic (PV) and Utility Source (US) channels, import (IM) and export (EX) channels,
and load channels (Load 1 to 3)

The microcontrollers are configured to read sensor data on the Pico boards and send to

Azure IoT Hub at each timestep. The length of the timestep, i.e., the resolution of data,

can be chosen based on user requirements and budget. The smallest timestep supported

by Particle microcontrollers is one second. The custom web dashboard was built with

Python and the Flask web framework for users to interact with the Picogrid platform.

The application was hosted on the web using Azure App Service. Only authorized users

are allowed to access the dashboard and security configurations can be set as desired.

Figure 10.3 shows the data retrieval page of the dashboard. The application pulls data

from Azure Blob Storage based on user filters of start/end date (the time duration allotted

to them for running experiments) and the specific instance(s) of Pico boards assigned to

them. Users can choose to plot data from specific sensors and download data in CSV

format for further processing. The application also allows sending setpoints to control the

operation of the Picogrid platform directly using an API token and sending an HTTP

POST request to the Particle microcontroller using the Particle Cloud Functions feature.

The maximum supported frequency is 10 requests per second. For example, if the user

wants to implement a threshold-based load control scheme for dc microgrids, as presented

in [43], the control setpoint for each load and source channel is a threshold in terms of the

on-board cell’s state of charge (soc). A source channel is switched on if the soc is less than

its threshold, and is otherwise switched off. On the other hand, a load channel is switched

on if the soc is greater than its threshold, and is otherwise switched off. Figure 10.4 shows

the page of the dashboard which can be used to send thresholds as control setpoints for
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each channel. The proposed solution allows multiple users to access the cloud dashboard

simultaneously, with each user being able to access data from the Pico boards assigned to

them during their allotted experiment time frame.

10.2.2.2 Pricing

There are four services that are used to create the cloud dashboard and can be billed ac-

cording to use, with each having a “freemium” model. This offers flexibility, customization,

and cost savings since users can choose which tiers to purchase in each service according

to their use cases.

i) Azure IoT Hub: The Azure IoT Hub pricing depends on (1) the number of devices

connected to the IoT Hub, (2) the frequency of sending data from the boards to the IoT

Hub, and (3) the size of each data packet sent (message meter size). In the free tier pricing

of IoT Hub, up to 500 devices can be connected. There is a daily limit of 8000 messages

(for all the devices combined) with each having a meter size of 0.5 KB. In case the limit

of 8000 messages is not enough, buying a higher tier of Azure IoT Hub for $10 per month

would allow 400,000 messages per day with a 4 KB message size.

ii) Azure Blob Storage: The Azure Blob Storage offers scalable data storage in the cloud.

Pricing in the default tier is $0.018/GB of data per month.

iii) Particle Cloud: For sending setpoints to Pico boards using Particle Cloud Functions,

there is a limit of 100,000 data operations (function calls) per month in the free tier which

can be upgraded if necessary.

iv) Azure App Service: The cost associated with the web server to host the application

using Azure App Service is about $10 per month.

In our Picogrid hardware setup, there are 3 Pico boards each with 13 sensors collecting

data at about every 15 seconds. The boards are typically used for 3 hours everyday. The

free tier of Azure IoT Hub and Particle Cloud is sufficient for our hardware requirements.

Storing one year of data collected from the setup in Azure Blob Storage will cost under

$0.02 annually. The web server to host the application costs about $10 per month. There-
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fore, the total costs associated with the cloud dashboard have been limited to less than

$121 per year, of which $120 is just for hosting the web application. Hosting it on a local

server would eliminate this cost, and the annual cost of the data pipeline would be under

$1. On the other hand, the academic research license of ThingSpeak (out-of-the-box plat-

form used in [128]) has a fixed cost of $275 per unit per year (all prices as of May 2024).

Although ThingSpeak offers a plug-n-play platform, our custom cloud solution provides a

more cost-efficient alternative that scales according to the usage levels. Furthermore, our

solution enables creation of custom web dashboards to suit the needs of the end users.

10.3 Experimental Results

This section presents three experiments that demonstrate use cases of the proposed cloud

dashboard integrated with the Picogrid platform. Two of these experiments involve third-

party remote users. For each experiment, we outline the learning objectives, i.e., what

students or researchers are expected to gain, followed by a detailed description of the

experimental setup and a discussion of the results. The power ratings of the channels on

the Pico boards used are: Source channel – 1 pu, Load channel – 0.37 pu. The cell has an

energy capacity of 12.24 pu. The per unit base quantities are: voltage = 5 V, current =

0.5 A, energy = 1 Wh.

10.3.1 Smart Solar Home System

The aim of the experiment is to demonstrate the operation of a smart solar home system.

It was conducted on on-campus Pico boards by two remote third-party users using the

cloud dashboard.

10.3.1.1 Learning Objectives

The target student group for this experiment is senior undergraduate students. The learn-

ing objectives of the experiment are: (1) Explain smart charging methods, for a house with

rooftop solar and battery storage in order to reduce the electricity purchased from the grid,
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(2) Distinguish between critical and non-critical loads, (3) Demonstrate a smart charging

scheme for a house with rooftop solar and storage modeled on the Picogrid platform.

10.3.1.2 Setup

The users were given remote access to one Pico board each for the duration of the experi-

ment. The experiment duration was 20 minutes, with the first half representing “daytime”

and the second half representing “nighttime”. On each board, both source channels were

connected to a 1 pu dc voltage source. Source channel 1 was programmed to emulate

a real-world rooftop solar PV power profile from the Pecan Street Dataset [118] using

pulse-width modulation. Source channel 2 was set up to emulate a constant-power bat-

tery charger connected to the grid. Load 1 and Load 2 were assigned to be critical and

non-critical respectively. Load 3 was not used in this experiment. The objective was to

use solar when present and draw power from the grid-connected charger in other times,

to charge the battery and supply loads. The non-critical load was to be curtailed during

nighttime to minimize demand when solar was not available. The users were asked to

meet these objectives by observing the sensor data on the data retrieval page, determining

appropriate thresholds for each source/load channel, and sending them via the setpoint

input page on the cloud dashboard.

10.3.1.3 Results

Results from one user are shown in Figure 10.5. We can observe that during “daytime”

(until minute 10), the user turned off the charger while solar input was available. During

“nighttime” (after minute 10), the user curtailed the non-critical load, reducing the total

demand, and turned on the charger to charge the battery. The experiment highlights

how the Picogrid platform, in conjunction with the proposed custom cloud dashboard,

can be used as a virtual laboratory by off-campus students. Remote users can use more

complex tools on their computer systems, such as machine learning for solar forecasting

and optimization solvers for optimal actuation of loads, to generate better setpoints for



169

0 2 4 6 8 10 12 14 16 18 20
time (min)

0

0.5

1

so
u
rc

e 
p
ow

er
 (

p
u
)

solar
charger

0 2 4 6 8 10 12 14 16 18 20
time (min)

0

0.5

1

lo
ad

 p
ow

er
 (

p
u
)

Figure 10.5: Demonstration of a smart solar home system, where 20 minutes are mapped
to a full day. Remote users managed sources (top: solar or from charger input) and loads
(bottom) according to solar PV availability.

further minimizing the electricity purchased from the grid.

10.3.2 Virtual Power Plant

The aim of this experiment is to illustrate tracking control for the operation of a virtual

power plant (VPP). A VPP consists of an aggregator controlling a set of distributed energy

resources (DERs) to match the bulk power system’s needs [160]. The Picogrid platform

includes a MATLAB Simulink and PLECS-based model of the Pico board, allowing for

scaling by addition of software-based boards alongside the physical boards for a hardware-

in-the-loop experiment. We present such an experiment below.

10.3.2.1 Learning Objectives

The target audience is graduate students and researchers. The learning objectives are: (1)

Demonstrate the operation of a VPP using Pico boards (combination of physical boards

and software models) to emulate households, (2) Implement a tracking control scheme to

enable the Pico boards to track a target control signal, (3) Analyze the results to determine

the tracking error and reflect on features necessary for developing models that accurately

represent real-world systems.
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Aggregator

SimulationHardware

Cloud
Dashboard

VPP

Figure 10.6: Sketch of VPP experimental setup illustrating hardware and simulated Pico
boards, aggregator, cloud dashboard

10.3.2.2 Setup

As shown in Figure 10.6, the experiment had 5 Pico boards, 2 in real hardware and

3 modeled on a remote node using MATLAB Simulink and PLECS, each with three

constant-power loads, rated at at 0.37 pu each. The aggregator was modeled in Simulink

and computed thresholds to actuate loads in each real and modeled board for tracking a

target control signal. The aggregator communicated these thresholds to the real boards

via HTTP POST requests and to the modeled boards through a simultaneously running

real-time simulation. For running real-time simulations in Simulink, there are broadly two

options: Simulink Real-Time (SLRT) and Simulink Desktop Real-Time (SLDRT). SLRT

supports high sampling frequencies (greater than 20 kHz) and needs dedicated real-time

hardware, e.g., Speedgoat systems, which can be expensive. On the other hand, SLDRT is

suitable for low sampling frequencies (less than 20 kHz) and can run on a desktop computer

without additional dedicated expensive hardware. Since we assume that the VPP provides

tertiary control services, the tracking signal is not expected to change faster than the order

of minutes and the response time from the Pico boards can be of the order of seconds.

Therefore, we chose to use SLDRT to conduct the real-time simulation.
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Figure 10.7: VPP operation: Power consumption of a combination of hardware and sim-
ulated Pico boards was coordinated to track a target signal

10.3.2.3 Results

Figure 10.7 shows the target control signal and actual aggregate power consumption of

the Pico boards. The tracking signal has three levels, corresponding to one, two, and

three loads being turned on on each board respectively. It is observed that the aggregate

consumption tracks the target closely. The root mean squared percentage error (RMSPE)

between the target and the actual aggregate power consumption is 9.6 %. Furthermore,

the actual signal has a non-zero response time when there are changes in the tracking

signal and has a positive offset. These artifacts, introduced due to hardware factors such

as sensor calibration and communication delays, can be useful for encouraging students

to reflect on features necessary for developing simulation models that model real-world

phenomena more accurately.

Demonstration of more complex and scalable aggregate control schemes for tracking

control in virtual power plants can be implemented using this setup in conjunction with

SLRT and dedicated real-time hardware for high frequency sampling times. The custom

cloud dashboard can enable researchers at different locations to concurrently conduct

experiments on an aggregation of real and modeled Pico boards.

10.3.3 Demand Response

The aim of this experiment is to illustrate different demand response (DR) programs.

We present a hardware-in-the-loop experiment conducted by two third-party users, with

a Pico board each, in two different locations, in conjunction with a real-time simulation
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running on a system at a third location. We demonstrate how the cloud dashboard enables

students and researchers, who are not physically co-located, to participate in experiments

with their custom-built Pico boards and simulation models.

10.3.3.1 Learning Objectives

The target audience is graduate students, senior undergraduate students, as also potential

DR customers participating in energy awareness programs. The learning objectives are:

(1) Explain the differences between price-based and incentive-based DR programs, (2)

Design an optimal load schedule for participating households to minimize energy costs

and user inconvenience, (3) Implement the load schedule using the Picogrid platform, (4)

Reflect on the barriers for households to participate in such programs.

10.3.3.2 Setup

The 24-minute experiment emulated a 24-hour day. The setup of the experiment is illus-

trated in Figure 10.8.

i) DR programs: The utility, modeled in Simulink, was assumed to serve an energy commu-

nity and offered two DR programs: price-based and incentive-based [161]. For a household

on a price-based DR program, the price of electricity was 50 ¢/kWh between 4 p.m. to

9 p.m. (on-peak period) and 27 ¢/kWh at other times (off-peak period). For a household

on an incentive-based DR program, the utility could execute direct load control for a max-

imum of 1 event lasting 4 hours daily. The price of electricity in this program was constant

at 33 ¢/kWh and if the user chose to participate in this program, they would receive a bill

credit of 60 ¢/day. The utility generated a 4-hour-ahead demand forecast for the energy

community on an hourly basis, and called the DR event once the forecast exceeded a given

threshold. In order to generate data for this forecast, we aggregated electricity usage data

for 336 days for a household from the Pecan Street dataset [118].

ii) Pico boards: Two third-party users were given one hardware Pico board each, were

located in two different buildings on campus with their assigned board, and actuated loads
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on the board using the custom cloud dashboard. Pico board 1 was on the price-based DR

program while Pico board 2 was on the incentive-based program. Two loads on the Pico

boards were used: Load 1 represented a 3 kW HVAC system and Load 2 represented a

6 kW electric vehicle charger (EV). Additionally, there were 5 Pico boards, modeled using

MATLAB Simulink and PLECS, that were assumed to be enrolled in the price-based DR

program. These boards along with the utility were simulated using SLDRT on a system

in a third location on campus.

iii) Home energy management: The objective of each user was to minimize the cost of

electricity while meeting the following constraints: (1) The HVAC system was required to

run for about 8 hours and the EV charger for about 4 hours (a soft constraint representing

user comfort), (2) Both loads could be interrupted, i.e., they could be cycled on and off

multiple times, (3) The user was assumed to take the EV to work between 7 a.m. and

2 p.m. Therefore, they could not turn a load on/off during this time. The 5 Pico boards

modeled in software did not have dedicated energy managers and were used as a baseline

case. They were modeled to have random start times for both loads while meeting the

above constraints.

Utility

SimulationHardware

Cloud 
Dashboard

Third-Party
User

Customers

Figure 10.8: Sketch of DR experimental setup illustrating hardware and simulated Pico
boards, third-party users, utility, cloud dashboard

10.3.3.3 Results

Figure 10.9 shows plots of the power consumed by loads on the two physical Pico boards.

The time and power scaling factors between the experiment and the emulated system are
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1 min : 1 hour and 1 pu : 6 kW respectively. Pico board 1 was enrolled in price-based

DR. Therefore, the user chose to run the HVAC system for about 8 hours before 4 p.m. to

pre-cool the house and use the EV charger for over 4 hours after 9 p.m. Pico board 2 was

enrolled in the incentive-based DR program. Therefore, when the load forecast exceeded

the assigned threshold (at 4 p.m.), the utility called a demand-response event and both

its loads were turned off via direct load control. The user chose not to override the event

and turned the loads back on after the 4-hour event was over, with the total run time of

the HVAC and EV loads being just under 8 and 4 hours respectively. The electricity bill

incurred by Pico boards 1 and 2 was $13.44 and $13.60 respectively, while the average

cost incurred by boards modeled in software on the price-based DR program without

any energy management was $15.34. This illustrates the need for managing energy usage

according to time-of-use pricing schedules.

Various DR programs and pricing schemes can be implemented using this setup,

through a combination of hardware and software Pico boards participating in a hardware-

in-the-loop experiment from different locations. Instructors can use this platform to fa-

cilitate conversations among students around barriers to participation in such programs.

For example, households working long hours may not be at home to defer load usage when

electricity prices are low and may not be able to afford home automation devices [162].

Researchers can use the platform to educate community members about DR and gather

their inputs in informing equitable design of such programs, as discussed in the follow-

ing section. In this way, the platform enables a holistic understanding of energy access

problems and solutions.
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Figure 10.9: Top: User of Pico board on price-based DR reduced consumption during
on-peak period between 16:00 and 21:00. Bottom: User of Pico board on incentive-based
DR participated in direct load control during DR event from 16:00 to 20:00

10.4 Demonstration of Demand Response at a Community

Workshop

This section briefly presents how the Picogrid platform was used for demonstrating demand

response during a community workshop in Holyoke, MA. This demonstration was a part of

a larger project by a team of researchers at the University of Massachusetts Amherst that

aims to co-design equitable residential electrification solutions using community-engaged

research [150]. The workshop had about 20 participants who have been a part of monthly

meetings organized by the UMass project team. The goal of the team was to conduct

three activities: (1) demonstrate a generation-demand mismatch leading to a blackout in

order to present the need for demand response (DR), (2) demonstrate an incentive-based

DR scheme, (3) demonstrate a price-based DR scheme. Through these activities, the team

aimed to get inputs from the participants about their concerns and needs around partic-

ipation in such DR schemes. The Picogrid platform was used as one of the educational

tools to conduct the activities.

Figure 10.10 shows a photograph of a workshop facilitator showing a Pico board to
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Figure 10.10: Photograph of a workshop facilitator showing a Pico board to participants

the participants. Pico boards were used to emulate households and were placed with the

participants at their tables. The utility was emulated on a remote node (a laptop computer

set up at the front of the room) operated by the author. The cloud dashboard was rendered

on a display monitor to show total power consumption of loads on the Pico boards. As

shown in Figure 10.11, the educational tools used at the participant tables included a Pico

board, 3D printed models of three appliances (refrigerator, air conditioner, light bulb)

represented by the three loads on the Pico board, and a device mat. The participants

kept an appliance on the green part to indicate that they wanted to turn it on, i.e., not

compromise on using it when necessary, while they kept it on the red part to indicate that

they would be agreeable to turning it off. Participants seated at the same table had to

make a unanimous decision about which appliances to turn on and which ones to turn off

through their participation in incentive-based/price-based DR schemes.

The team observed that community members actively participated in the activities and

engaged with the Picogrid platform. These hands-on activities facilitated interesting table

discussions about potential challenges in keeping certain loads off, the amount of incentives

needed to encourage participation, and potential savings on bills. This illustrates the

potential of using the Picogrid platform in various community energy awareness programs
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Figure 10.11: Photograph of the educational toolkit consisting of a Picoboard, 3D printed
models of three appliances, and a device mat. Participants used the green area of the mat
to indicate turning a device ON and the red area to indicate turning it OFF.

and workshops, in addition to academic research and coursework.

10.5 Conclusion

This study presents a custom cloud solution for remote access to a microgrid hardware

platform. It enables the hardware to be made available for concurrent remote access by

multiple users worldwide through a hardware-as-a-service model. It also enables edu-

cators to make hardware experimentation accessible to students who cannot be present

on-campus, e.g., during times such as the COVID-19 pandemic, and for distance educa-

tion programs. It allows for a more streamlined, secure, and cost efficient way to use the

hardware platform as compared to using an out-of-the-box IoT solution. Future work in-

cludes enhancing data security through end-to-end encryption and further customization

such as sending SMS/email alerts if variables exceed predefined bounds. In this study,

the custom cloud solution was presented in conjunction with the Picogrid, a low-power

experimental platform. The solution is hardware-agnostic and can be used with larger,

high-power ac/dc setups, as well as non-electrical systems.
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Chapter 11

Conclusions, Contributions, and

Future Work

The work presented in this thesis develops energy access frameworks for resource-constrained

environments. It proposes using a holistic approach, based on a combination of community-

engagement and traditional power engineering research tools of analytical modeling, math-

ematical optimization, simulation, and hardware prototyping, for identifying and meeting

the needs of energy poor and energy insecure households. Part I presents field experi-

ences in three contexts: energy access in off-grid rural communities, energy resilience for

individuals dependent on in-home medical devices, energy access for people experiencing

homelessness. It outlines the constraints and heterogeneous requirements of the environ-

ments such as resilience to intermittent remote communication, compatibility with locally

available heterogeneous hardware, affordability, and agreement with sociocultural elements

of the community. Part II presents the threshold-based energy management framework as

a candidate solution for reliable energy access in resource-constrained settings. It presents

a proof of stability of entities operating using this framework and demonstrates the ap-

plication of this framework to community-scale microgrids through numerical simulations

and a hardware-in-the-loop experiment. Part III presents a tool to choose thresholds using

mathematical optimization and demonstrates the application of the framework to effec-
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tive energy rationing for prepaid electricity customers. The presented optimization models

have minimal requirements for additional hardware, demand forecasts, and remote com-

munication, making them suitable for low-income customers. Part IV presents a low-cost

experimental platform for hardware validation of energy access frameworks. It lowers the

barrier for energy researchers and educators to conduct hardware experiments. It presents

a cloud dashboard for remote access to this platform that enables the platform to be

made available through a hardware-as-a-service model for remote researchers, educators,

and students.

The following sections of this chapter present the conclusions and contributions, and

identify pathways for future work.

11.1 Conclusions and Contributions

11.1.1 Part I: Field Experiences

• Energy Access and Off-Grid Rural Communities: A framework for energy usage in

an off-grid rural household based on the energy hub paradigm is developed. This

can help to reduce indoor air pollution and the dependence on fossil fuels as primary

energy sources.

• Energy Resilience and Home Healthcare: The largely unexplored intersection of

energy resilience and home healthcare is identified. A load scheduler for in-home

medical devices is developed with the goal of extending the time for which medically

fragile families can comfortably shelter at home during a power outage. A proposal

for a comprehensive study to understand the energy requirements of this community

is presented.

• Energy Access and Homelessness: The need for energy access solutions for people

experiencing homelessness is recognized. An electric Little Free Library (eLFL) was

co-designed with the community and deployed at two locations, leading to legislative

change in the zoning code of the City of Madison, legalizing the use of such struc-
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tures in multiple districts. The project has generated documentation that can act

as a roadmap for community engagement, engineering, and legislation which can be

useful for other cities and communities. It has initiated multiple student-led projects

focused on optimally locating eLFLs, involving middle school students and commu-

nity partners in prototype development, and has attracted funding for deploying

prototypes.

11.1.2 Part II: Threshold-Based Energy Management

• Stability Study: A proof for stability of prosumer entities using threshold-based

energy management with time-invariant parameters is presented. Rules for operat-

ing entities and interconnecting them are presented and illustrated using numerical

simulations.

• Application to Community-Scale Microgrids: A tertiary layer controller is overlaid

on the threshold-based energy management framework in order to meet the multi-

objective nature of the load scheduling problem in each participating entity. This is

validated through numerical simulations and a hardware-in-the-loop experiment.

11.1.3 Part III: Optimized Threshold-Based Energy Management

• Energy Management for Prepaid Customers: The largely unexplored space of home

energy management for low-income prepaid electricity customers is identified. A

mixed-integer linear program-based model for optimizing thresholds is developed

to aid in effective energy rationing for prepaid electricity customers. The numeri-

cal simulation case study demonstrates that the framework incorporating optimized

thresholds outperforms both a baseline without energy management and a method

with control thresholds fixed solely on load priority information. Specifically, the

proposed method prioritizes higher priority loads and prevents unexpected discon-

nections by curtailing lower priority loads.

• Addressing Imperfect Forecasts and Implementation Constraints: A simpler linear
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optimization-based model is used to generate optimized thresholds. It can be solved

to optimality without an optimization solver and needs only daily average demand

forecasts. The proposed model has comparable or improved performance compared

with that of the MILP model benchmarks, while being computationally inexpensive.

Consequently, it can be implemented on inexpensive local in-home hardware, as val-

idated by implementing it on a low-cost 8-bit microcontroller, which is advantageous

for privacy and cybersecurity.

11.1.4 Part IV: Picogrid

• Picogrid: An Experimental Platform for Prosumer Microgrids: The Picogrid plat-

form is developed as a low-cost sandbox for hardware validation of energy access

frameworks and for energy education. It lowers the barrier to entry for energy re-

searchers into hardware validation.

• Custom Cloud-Based Solution for Remote Access to the Picogrid: A cloud-based

solution which is a more streamlined, secure, and cost efficient way of accessing the

Picogrid hardware as compared to a previously used out-of-the-box IoT solution

is developed. It enables the hardware to be made available for concurrent remote

access by multiple users worldwide through a hardware-as-a-service model. It also

allows educators to provide hardware experimentation opportunities to students who

are off-campus, such as during the COVID-19 pandemic or in distance education

programs. A real-world use case of the Picogrid platform for community education

is presented.

11.2 Future Work

11.2.1 Threshold-Based Energy Management

This part presented a proof of stability for entities with time-invariant parameters, i.e.,

constant thresholds and constant-power loads and sources. Since real-world systems can
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have time-varying power draw by loads and power input by sources while thresholds can

change depending on user demand and load priorities, stability studies for entities with

time-varying parameters is required. Further, studying the stability of multiple intercon-

nected entities (e.g., to form a microgrid) would be useful.

11.2.2 Optimized Threshold-Based Energy Management

The presented models assume a constant electricity rate. Incorporating time-varying rates

in the models will increase their scope to include utility programs that offer time-of-use

pricing. In order to extend optimized threshold-based energy management to solar home

systems, it will be necessary to consider simultaneous power draw from loads and input

from sources (solar PV, wall charger). Furthermore, it will be interesting to explore

using threshold-based energy management for managing thermostatically controlled loads

considering weather forecasts.

11.2.3 Picogrid

The platform can be extended to incorporate ac import/export between Pico boards in

order to increase the scope of experiments it can support. Piloting the platform in classes

on topics such as microgrids, energy markets, and DERs will help to identify necessary

additional features and use cases. The platform can be developed into an energy literacy

toolkit for workshops targeted towards various communities such as outage preparedness

for medically fragile families, introducing stakeholders to different electricity tariff schemes,

and power grid education for high school students.

11.2.4 Broader Questions

This section outlines studies that can be undertaken to investigate the broader questions

that have come up through the course of this work.

Energy resilience and medically fragile families: To further study the intersection
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of energy resilience and home healthcare, the proposed table-top exercise can be con-

ducted. According to its findings, plug-n-play home energy backup systems with adequate

capacity can be designed and lab prototypes can be developed. Working with end-users

to incorporate their feedback and iterating through multiple versions would be essential.

By partnering with engineering and medical-grade technology vendors, deployment-ready

prototypes can be developed and tested through a pilot. In addition to providing energy

backup during outages, these solutions can be designed to participate in demand response

programs and help end-users save on their energy bills. Furthermore, this can be accom-

panied by energy literacy programming to increase awareness about day-to-day energy

use and energy backup requirements. This research has the potential to have far-reaching

impact ranging from better health outcomes for such individuals, to improving emergency

response during outages and reducing emergency room admits.

Threshold-based energy management for multi-energy systems: Systems at the

“grid edge”, such as residential and commercial entities, can consist of multiple energy

storage and carrier systems, like EVs, batteries, and micro-CHP plants. These systems

can be modeled as multi-energy systems (MES). For low-income households without such

expensive assets, it can be promising to explore MES modeling using proxies for energy

storage, such as an energy budget (the amount of money they can spend on energy), a time

budget (the amount of time they can spend on manually doing tasks which can be done

using electric appliances; this is also a measure of the time that could have been spent on

employment or education). An energy management framework enables households to make

decisions such as scheduling loads, participating in demand-response, and choosing elec-

tricity rate plans, while ensuring effective utilization of their resources. Threshold-based

energy management is a candidate framework for single-energy carrier systems, such as,

battery storage and prepaid wallets. The framework ensures operational sufficiency at

each household using simple local computation resources without remote communication.

The framework is suitable for use with heterogeneous local hardware and is resilient to
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intermittent remote communication. In order to extend this control framework to MES,

the following questions can be explored: how to define thresholds when there are multi-

ple energy carriers, how does computation of optimal setpoints scale with the number of

households, what are the effects on system stability when households interconnect to form

a network and exchange energy. Further, applications of this framework to multi-energy

carrier transportation systems such as hybrid electric cars and aircraft can be explored.

Energy management for low-income households: The increasing investments in

grid infrastructure to adapt to extreme weather and to meet increasing demands due to

data center loads is expected to increase electricity prices. Furthermore, if low-income

households are switching from gas-powered appliances like furnaces to cleaner alternatives

like heat pumps, their electricity requirements will further increase. In order to help

such households prioritize between using different loads and effectively manage a limited

energy budget, it is necessary to build technology-driven solutions. By partnering with

households on energy assistance programs, their energy usage data can be recorded and

qualitative requirements can be understood through interviews and workshops. A variety

of energy management solutions that range from highly intrusive and expensive smart

switches for automatic device actuation to minimally intrusive and low-cost smart phone

apps that notify users to switch devices on/off can be explored. A combination of off-

the-shelf components and lab prototypes can be used to develop the candidate solutions,

incorporating feedback from the end-users at each stage. The use of machine learning

for generating forecasts and generative AI for energy education and awareness can be

explored. Field deployments can help validate their use cases. This research can help

to inform energy assistance programs, utility policies for disconnections, participation in

virtual power plants, in addition to improving user experience and health outcomes for

such households.
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Summary

Reliable electricity access is crucial for fostering and promoting human development across

emerging and developed economies. As we transition towards decarbonization, digitiza-

tion, and decentralization of energy, it is essential that the transition is rooted in equitable

access. Moreover, the developed energy access solutions must be context-aware, address

the nuanced requirements of the end-user, and operate effectively in diverse, resource-

constrained environments. This necessitates interdisciplinary translational research that

extends beyond power engineering, incorporating community-engaged scholarship, energy

policy, and other relevant disciplines.

This thesis aspires to be a roadmap for developing energy access solutions in resource-

constrained environments through inter-disciplinary holistic approaches. It can serve as

a guide for the power engineering community to engage with community partners, pol-

icymakers, and other stakeholders to distill technical questions from complex real-world

problems and develop solutions that have the potential for tangible real-world impact.

The work is a significant enabler for addressing the challenge of Sustainable Development

Goal 7: “Ensure access to affordable, reliable, sustainable and modern energy for all”.
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