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Abstract 

Lipids are important for a vast array of cellular functions including energy storage and 

transport, membrane structure, protein binding, and cell signaling. Due to the overlap of pathways 

involved in lipid metabolism, abnormal metabolism of a single lipid class may cause a cascade of 

dysfunctions across multiple lipid classes and cellular functions. Diseases such as obesity, insulin 

resistance, and non-alcoholic fatty liver disease (NAFLD) are all associated with abnormal lipid 

metabolism. Not only have these diseases become more pervasive in the last fifty years, but they 

have also become some of the leading causes of death in developed countries.  Thus, abundance 

of various lipid classes, and individual lipid species within those classes, must be tightly regulated. 

However, due to the diversity of lipids’ structure and function and incomplete understanding of all 

proteins that affect lipid metabolism, we are far from understanding the intricate, whole-cell 

regulation of these important molecules.  

Chapter 1 summarizes the structural and functional diversity of lipids and complexity of 

their regulation, including the overlap of biosynthetic pathways, enzymes involved in lipid 

metabolism, and consequences of dysregulation. Recent advances in lipidomics such as better 

instrumentation and automatic identification are also discussed. Finally, two methods to parse out 

mechanisms of lipid regulation are presented. The first, an unbiased approach, uses a genetically 

diverse, environmentally controlled sample set to identify genomic loci that regulate the 
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abundance of specific lipid species. The second is a focused approach and describes and in-

depth investigation of a single protein to determine if and how it affects lipid metabolism.  

Chapters 2 and 3 present the unbiased approach, utilizing the BXD recombinant inbred 

line to identify genetic and environmental regulators of liver and plasma lipid levels. We describe 

the first use of individual lipid species as quantitative, mappable traits, providing a key resource 

for future studies. We focus on lipid species of the same class that associate differentially with of 

health and disease, depending on their degrees of unsaturation. Together our results provide a 

foundation for future lQTL studies and reiterate the importance of exploring the role individual lipid 

species, rather than classes, have on physiological traits.  

Chapter 4 discusses PREPL, a putative peptidase implicated in the human disease 

hypotonia cystinuria syndrome (HCS).  We demonstrate that the long isoform (PREPLL) localizes 

to the mitochondria and exhibits specific activity against an ester substrate, thereby providing the 

first evidence of in vitro activity for the protein. Finally, we investigate the effect of loss of functional 

PREPL on mouse and cell culture lipid profiles. 

Chapter 5 discusses caveats and future directions for mapping lipid QTLs, including 

expanding the lipids quantified and the genetic diversity of the study group. Furthermore, we 

consider the next steps in validating candidate genes and identifying novel genes involved in lipid 

metabolism from our lQTL resource and briefly discuss the advantages of mapping lQTLs on an 

organellar rather than cellular level. Finally, we outline future efforts to identify the in vivo substrate 

of PREPL, focusing on identifying structural similarities among lipids specifically altered in the 

knockout models. 

Collectively, this work describes two methods for investigating the regulation of lipid 

metabolism. The first identifies the genetic and dietary impact on individual lipid species and 

provides a foundational resource for future lQTL studies. The second looks to identify how a 

specific enzyme, PREPL, affects lipid metabolism using bioinformatics and in vitro biochemistry. 

The first, unbiased approach provides a method for identifying and prioritizing novel genes 



iii 
 

involved in lipid metabolism. However, the second, focused approach, is required for validation of 

candidate genes and truly characterizing proteins of unknown function. In conjunction, these two 

approaches are both important to advance our understanding of the intricacies of the regulation 

of lipid metabolism.  
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Chapter 1: Introduction 

Molly T. McDevitt 

 

Overview of lipids 

A brief history of lipids 

 As early as 1539, the word “fat” appeared in the Oxford English Dictionary, referring to the 

“oily concrete substance of which the fat parts of an animal are chiefly composed” (Gidez, 1984). 

However, the association with what we now call adipose tissue and that part of the animal used 

in cooking, candle making, etc. far predates even the earliest use of the word. Despite having 

been aware of the existence of lipids for hundreds of years, it is only now that we are beginning 

to understand not only the sheer number of lipids in each cell, but also the vital and diverse roles 

they play in cellular function. 

 It wasn’t until the 19th century that real advancements in lipid biochemistry began to take 

place. Michel Chevreul, a French organic chemist and one of the fathers of lipid chemistry, is 

credited for first identifying and isolating fatty acids (Chevreul, 1813) and demonstrating that fat 

was made up of a combination of glycerol and fatty acids (Chevreul, 1815). Other work from that 

century includes the realization that fat, along with protein and carbohydrate, are all necessary 

for a healthy diet (Rosenfeld, 2003) and the demonstration that fats could by synthesized with 

one part glycerol to three parts fatty acid. Over time, the term “fat” became associated with a 

single class of lipids, now known as triglycerides. The term “lipid” is now widely used to describe 

the ever-expanding list of water-insoluable hydrophobic or amphipathic hydrocarbons (Fahy et 

al., 2011; Gidez, 1984). 

Although all lipids are made up of primarily carbon and hydrogen atoms containing a 

backbone attached to one or more long hydrocarbon tail, the structural diversity of lipids is 

immense. Hydrocarbon tails are made up of various repeating units such as fatty acyls, isoprenes, 
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and polyketides (Figure 1A). Additionally each repeating unit can differ in length (number of 

carbons) as well as number and positions of double bonds. These repeating hydrocarbon units 

are then attached to backbone structures such as glycerol and sphingosine (Figure 1B) in an 

almost endless array of combinations. To date, there are over 43,000 unique lipid structures in 

the LIPID MAPS structural database, but it is estimated that there could be as many as 100,000 

unique lipid species (Fahy et al., 2011; Sud et al., 2007). So while initial studies may have focused 

on triglycerides and lipids’ role in fat/energy storage, it is unsurprising that over time we have 

discovered their roles in the cell to be nearly as diverse as the lipids’ structures themselves.  

Lipids are not only an important energy reserve but also serve as a method of energy 

transport. Moving lipids from the liver to tissues with high energy needs such as the heart and 

muscle is essential, especially during fasting conditions when glucose needs to be reserved for 

the brain (Luiken et al., 1999; Neely and Morgan, 1974). Additionally, lipids are largely responsible 

for the structure of all cell membranes, including the formation of a lipid bilayer facilitated by the 

amphipathic nature of the membrane lipids and the degree of membrane curvature (Chen and 

Rand, 1997; Hammond et al., 1984; Kooijman et al., 2005). In 1997 it was discovered that the 

lipid microenvironment in cell membranes can affect both protein binding and activity (Simons 

and Ikonen, 1997).  Beyond their roles in storage and structure, many lipids such as fatty acids 

can act as signaling molecules to alter cell function in response to various stimuli (Hannun, 1994; 

Lee et al., 2001; Nishizuka, 1992) 

Classification of lipids 

 Lipids are divided into eight categories: fatty acyls, glycerolipids, glycerophospholipids, 

sphingolipids, saccharolipids, polyketides, sterol lipids and prenol lipids (Figure 1C). Of these 

categories, sterol and prenol lipids are built from isoprene units while the rest are made by the 

condensation of ketoacyl groups (Fahy et al., 2011). Due to the limited scope of our study, only 

those groups which I worked with will be further explored here – fatty acyls, glycerolipids, and 
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glycerophospholipids. However, it is important to note that list of lipids identified and quantified in 

this thesis is far from exhaustive. 

 While free fatty acids themselves are only found at low levels in organisms, they are 

important building blocks for almost all of the eight lipid categories (Figure 1C). Consisting of a 

carboxylic acid and a long hydrophobic hydrocarbon chain, fatty acids play many roles in the cell. 

Fatty acids are a large source of cellular energy, serving as the substrates for beta-oxidation in 

the mitochondria. Additionally, they play roles in cell signaling, for example activating a number 

of G protein-coupled receptors (Briscoe et al., 2003; Forman et al., 1997; Tolhurst et al., 2012), 

as well as membrane stabilization (Leekumjorn et al., 2009). 

 Perhaps the most well studied lipids are glycerolipids. Glycerolipids consist of a glycerol 

backbone attached to one, two, or three fatty acid tails (Figure 1C). Known as mono-, di-, and 

triacylglycerols (triglycerides, TAG), these lipids are the main source of energy storage in the cell. 

Additionally, because high levels of free fatty acids is detrimental, TAG serves as a way to 

transport these energy rich molecules to energy-requiring tissues that do not have the capacity to 

retain their own fat reserves (Haemmerle et al., 2006). Mono- and diacylglycerols (DAG), are also 

important precursors of TAG and can act as signaling molecules in their own right (Berridge, 1984; 

Werner et al., 1992). 

 Glycerophospholipids consist of lipids made up of fatty acid chains and a glycerol 

backbone with various polar headgroups at the sn-3 position (Figure 1C). In general, 

glycerophospholipids fall into six classes – phosphatidic acid (PA), phosphatidylethanolamine 

(PE), phosphatidylcholine (PC), phosphatidyl serine (PS), phosphatidyl inositol (PI), and 

cardiolipin (CL), a unique phospholipid consisting of three glycerol backbones and four fatty acid 

tails (Figure 1C). Due to their amphipathic nature, glycerophospholipids naturally form lipid 

bilayers, and therefore constitute the majority of both the plasma and organellar membranes. Due 

to its cylindrical nature (i.e., the head group and fatty acyl tails are approximately the same width), 

PC is the major component of cellular membranes. Others such as PI, PE and CL form conical 
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shapes, with either the head group or fatty acyl tails being larger than the other (Figure 1D). Lipid 

rafts (microenvironments having increased levels of specific lipids) made from PE, PI, and CL 

induce membrane curvature and bind and activate proteins at the membrane surface 

(Ramamurthi and Losick, 2009; Renner and Weibel, 2011). Moreover, while PA and PI can act 

as second messengers themselves, their role as precursors to various signaling molecules is 

perhaps more important (Berridge, 1984). 

Lipid Metabolism 

 Although fat is an important part of a healthy diet, most of the lipids we ingest are 

triglycerides and cholesterol. However, as outlined above, lipids are required for much more than 

energy storage. Thus, lipid metabolism, both biosynthesis and breakdown, is essential for proper 

cellular function. Importantly, despite the vast diversity between individual lipid species, there is 

considerable overlap between the metabolism of different lipid classes (Figure 1E). This is 

perhaps unsurprising given the fact that lipids, despite their structural and functional diversity, are 

made up of a limited set of “building blocks”. Here I will highlight two of the many examples – 

phosphatidic acid (PA) and diacylglycerol (DAG) (Figure 1E). 

 Diacylglycerol is a simple molecule with complex functions. When concentrated in small 

areas of cellular membranes it induces membrane curvature and can improve membrane-protein 

interaction by exposing the hydrophobic parts of nearby lipids (Goni and Alonso, 1999; Shemesh 

et al., 2003). Additionally, it can act as a second messenger, playing an integral part in lipid-

mediated signaling. Finally, it is an important hub of lipid metabolism and acts as a precursor for 

multiple lipids (Coleman and Lee, 2004; Kennedy et al., 1956) (Figure 1E). It serves as the link 

between phospholipid and TAG biosynthesis as it is utilized for TAG, PC, PE, and PS 

biosynthesis. In fact, dysregulation of DAG metabolism can cause deleterious effects on 

phospholipid biosynthesis (Verrier et al., 2004). Moreover, when ceramide is converted to 

sphingomyelin, DAG forms as a byproduct. Interestingly, both ceramide and DAG act as second 

messengers, but with opposing effects (Bourbon et al., 2000; Gault et al., 2010; Villani et al., 
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2008). Thus, it is possible that the delicate balance between ceramides and DAGs plays an 

important role in cell fate. 

 PA is a precursor for glycerophospholipids and TAGs, thus serving as a link between lipids 

as energy reserves, membrane components, and signaling molecules (Athenstaedt and Daum, 

1999). Due to its role in CL and PG formation, PA can also affect membrane curvature, albeit 

indirectly. Beyond its role as a lipid precursor, phosphatidic acid also acts as a second messenger 

involved in the activation of cellular kinases and phospholipases (Fang et al., 2001; Moritz et al., 

1992). Additionally, in yeast the protonation state of the phosphate head group affects protein 

binding. In response to glucose starvation, pH decreases, disrupting the interaction between PA 

and the phospholipid metabolism repressor Opi1. Opi1 relocates to the nucleus, inhibiting 

phospholipid metabolism, thus making PA an important link between membrane biogenesis and 

metabolism (Young et al., 2010).  

 

Enzymes involved in lipid metabolism 

In order to synthesize, breakdown, remodel, and sense the vast array of lipids, a cell must 

employ a large number of enzymes to carry out these processes. Interestingly, many of these 

proteins are members of the serine hydrolase superfamily. As one of the largest enzyme classes, 

serine hydrolases make up nearly 1% of the known human proteome. These ~200 enzymes are 

characterized by a nucleophilic serine in the active site that is used for substrate hydrolysis, the 

majority of which contain an α/β hydrolase fold (Ollis et al., 1992). It is unsurprising then that this 

huge superfamily includes enzymes that cleave esters, amides, or thioester bonds in small 

metabolites, lipids, peptides, or proteins (Simon and Cravatt, 2010). 

In these enzymes, serine is part of a catalytic dyad (Ser-Lys or Ser-Asp) or triad (Ser-His-

Asp or Ser-Ser-Lys) that creates an environment in which the serine can perform a nucleophilic 

attack on the substrate (Dodson and Wlodawer, 1998; Patricelli et al., 1999). Catalysis occurs via 
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activation of the nucleophilic serine which then attacks the electrophilic substrate, forming a 

covalent acyl-enzyme intermediate. The product is released and the enzyme is regenerated 

following hydrolysis catalyzed by a water molecule. Lipases, phospholipases, acyltransferases, 

esterases, and hydratases are all subclasses of the serine hydrolase superfamily and all play 

important roles in lipid metabolism. These, as well as transport and binding proteins, regulate lipid 

abundance in the cell.  

Considerable effort has been made to identify features of these enzymes that indicate 

substrate specificity. However due to their similarity and promiscuity (Scaloni et al., 1994; 

Stafforini et al., 1987; Wang et al., 2006) it is often difficult to determine the specific substrates 

based on primary sequence alone (Derewenda and Derewenda, 1991; Karlsson et al., 1997). For 

example, esterases and lipases both cleave ester bonds, but despite often exhibiting high 

sequence similarity, their ester-containing substrates are radically different. Analysis of three-

dimensional structure as well as electrostatics have also been used to differentiate the two, but 

have met with limited success. Lipases tend to have more nonpolar residues on the surface, but 

evidence is not strong enough to determine the substrate for novel hydrolases. Moreover, the 

active site is often buried under secondary structural elements that may or may not need to 

change formation prior to substrate binding (Cygler et al., 1993). Though it is likely that these 

structural elements are important for substrate specificity, their exact roles have, by in large, been 

difficult to ascertain.  

Additionally, there are peptidases, such as APEH, that also exhibit esterase activity. 

Chapter 4 will further discuss one example, PREPL – a putative peptidase which lacks peptidase 

activity but exhibits low levels of esterase activity. However, to fully understand lipid metabolism 

it will be important to identify in vivo substrates of all enzymes that act on various lipids. 

Understanding the specificity of these proteins may also give insight into why individual lipids in 

each class are not regulated in the same manner.  

 .  
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 Dysfunctional lipid metabolism and its relationship to disease 

 It did not take long to link lipid buildup to disease. In fact, as early as 1913 Nikolai N. 

Anitschkow noticed that rabbits fed a cholesterol-rich diet developed severe atherosclerosis, a 

hardening and narrowing of the arteries (Anitschkow  and Chalatow, 1913; Buja, 2014). Overall, 

the main disorders of lipid metabolism involve triglycerides and cholesterol, including 

hypercholesterolemia and hypertriglyceridemia. Elevated levels of cholesterol and triglycerides 

(often caused by increased fatty acids) are associated with atherosclerosis which can eventually 

lead to cardiovascular disease such as myocardial infarctions and strokes. Additionally, 

hypertriglyceridemia causes a host of other metabolic disorders, including acute pancreatitis and 

non-alcoholic fatty liver disease (NAFLD) (Granger and Remick, 2005; Osono et al., 1995). Made 

more severe by the fat and carbohydrate-rich Western diet, cardiovascular disease has quickly 

become one of the leading causes of death. Regulation of glycerolipid metabolism is essential to 

cellular homeostasis with disruptions of proper metabolism leading to obesity, type II diabetes, 

and even kidney failure (Li et al., 2017; Weijers, 2012). However, diseases associated with 

aberrant lipid metabolism are not isolated to cholesterol and glycerolipid metabolism.  

 Besides being one of the underlying factors contributing to hypertriglyceridemia 

dysregulated fatty acid metabolism can cause a number of diseases. For example, the inability to 

oxidize fatty acids prohibits individuals from utilizing their fat stores for energy when glucose has 

run out. Although it can be treated by diet modification, left unchecked it leads to a buildup of fatty 

acids in the liver and other organs and energy deficiency via decreased levels of reducing 

equivalents made by fatty acid oxidation and the TCA cycle and ketone bodies (Vishwanath, 

2016). 

 Dysregulation of various glycerophospholipids also leads to a wide variety of diseases. 

For example, in a controlled screen, levels of three specific PC species were significantly 

decreased in Alzheimer’s patients (Whiley et al., 2014). In fact, phospholipase D and A2 enzymes, 

which catalyze the breakdown of PC, have been directly associated with Alzheimer’s disease 
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(Dennis et al., 2011; Li and Vance, 2008; Selvy et al., 2011). Additionally, it seems that the PC/PE 

ratio is important for metabolic homeostasis, as it can affect everything from energy production in 

the mitochondria to metabolic disorders such as insulin resistance, obesity, and NAFLD (Arendt 

et al., 2013). Furthermore, cardiolipin (CL), an essential part of the inner mitochondrial membrane, 

is an important part of optimal mitochondrial function/oxidative phosphorylation. Alterations in CL 

levels are associated with multiple diseases, including aging and heart failure (Mejia et al., 2014). 

Moreover, dysregulation of the remodeling of CL fatty acid tails is associated with such diseases 

as Barth Syndrome – a disease characterized by cardiac and skeletal myopathies (Lou et al., 

2018). Thus it seems that both the overall abundance as well as proper remodeling of CL are 

imperative for proper cellular function. 

 Disruption of the biosynthesis of the prenol lipid CoQ is causes a variety of mitochondrial 

disorders. Clinical manifestation ranges from fatal multisystem disorders to isolated 

encephalopathy and nephropathy and can show itself anywhere from birth onward (Acosta et al., 

2016). As CoQ is an essential part of the electron transport chain, the mechanism for 

pathogenesis seems clear at first glance – a decrease in cellular energy production. However, 

due to the extreme differences in disease manifestation, it is likely that other aspects of CoQ 

function are also disease-causing. 

Inhibition of sphingolipid synthesis increases insulin sensitivity in mice (Bijl et al., 2009; 

van Eijk et al., 2009). Additionally, increased sphingolipids (such as sphingomyelin) and DAGs 

have been associated with Alzheimer’s disease (AD) (He et al., 2010; Wood et al., 2015). Other 

neuronal diseases such as Parkinson’s disease (PD) and bipolar disorder are also associated 

with alterations in lipid profiles (Cheng et al., 2011). Finally, altered lipid metabolism is common 

in a number of cancers including some prostrate and breast cancers (Beloribi-Djefaflia et al., 

2016). 
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The complexity of lipid metabolism 

 As outlined above, lipids play a diverse set if essential roles in maintaining cellular 

homeostasis and dysfunctions in one or more of these pathways can have deleterious effects. 

Although alterations in lipid abundance has been implicated in numerous diseases, the exact 

mechanism of pathogenesis is rarely, if ever, fully understood. There are a number of reasons for 

this lack of understanding. First, we do not fully understand the relationships between 

biosynthesis of different lipid classes, and perhaps even more importantly the balance within 

classes. To date, lipid classes are often measured en masse, assuming that all lipids within a 

class are regulated the same way, which is often not the case (Jha et al., 2018a; Jha et al., 2018b). 

Second, lipids play such a central role in metabolism that we have not fully grasped all of the 

implications alterations in lipid abundance can cause. It is difficult to ascertain the mechanism of 

pathogenesis when one does not even understand all of the effects. Finally, lipid metabolism is 

heavily influenced by both genetics and environmental factors and it has been difficult to piece 

apart the effects of each. Thus, it is clear that we have barely begun to fully understand the 

intricacies, crosstalk, and balance between these pathways. However, the explosion in lipidomics 

technology has made it possible to identify and quantify single lipid species, giving us a better 

understanding of how single species are regulated and related to each other. 

 

Advancements in lipidomics 

Advances in mass spectrometry  

Unlike genomics, transcriptomics, and proteomics, lipidomics platforms are not well 

established yet. In fact, the term lipidomics has emerged quite recently, in large part due to the 

advancements in mass spectrometry (MS). Previously, it has been customary to quantify entire 

lipid classes due to the complexity of measuring a hundreds or thousands of different species 

whose abundance spans five to ten orders of magnitude (Yang et al., 2009). Fueled by advances 

in instrumentation, lipidomics via MS has become routine. The structural information about head 
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groups and acyl chain lengths obtained from tandem MS experiments (MS/MS), combined with 

the highly accurate intact masses obtained from high resolution, high mass accuracy analzyers 

such as the orbitrap (Ogiso et al., 2008; Schuhmann et al., 2011) allows for the unambiguous 

identification of hundreds of lipid species from a single complex mixture. In the past five years 

alone, we have gone from measuring a hundred lipid species to nearly one thousand. 

 Different MS-based techniques have been utilized in lipidomics. One of the biggest 

differences is whether or not separation via liquid chromatography occurs prior to MS analysis 

(LC-MS/MS). Both have been used successfully. Direct-injection methods are accurate, 

reproducible, sensitive, and quick. In 2003, Han and Gross first utilized electrospray ionization 

(ESI) MS in a direct-injection lipidomics technique. Product ion, precursor ion, and neutral loss 

scans along with selected reaction monitoring (SRM) are all used to identify individual lipid 

species. While much quicker, direct-infusion methods often have some difficulty in distinguishing 

different lipid molecules (especially isomers) and depending on the number of species being 

identified can require more sample than their LC-based counterparts (Li et al., 2014). 

 LC-MS has quickly become the most widely used method for analysis of biological 

samples samples. It is widely used for its high resolution and reproducibility. Additionally, due to 

its setup, samples are largely isolated from the environment, preventing lipid degradation.  

Typically, LC-MS is used for either targeted or discovery-based analysis. In targeted methods, 

users develop methods focused on the detection of specific lipid species. Due to the nature of the 

method, it is highly sensitive and able to detect low level species more accurately and 

reproducibly. This technique has been used to target everything from specific lipid classes to 

various lipids of interest (Jha et al., 2018a; Stefely et al., 2016). Unlike targeted methods, 

discovery-based methods seek to profile all lipids in a given sample. Although some sensitivity 

can be lost, discovery-based methods are best for unbiased studies, and have been used to 

define the lipidome of everything from yeast to human plasma (Ejsing et al., 2009; Quehenberger 

and Dennis, 2011) 
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Optimization of lipid extraction methods 

 Due to the complexity of biological samples, it is almost always necessary to extract lipids 

prior to analysis to remove interference that comes from proteins and other small molecules. 

Regardless of the MS technique used, its success relies largely on the efficiency of lipid extraction 

from samples. The most commonly used method was developed by Folch in 1957 and involves 

using chloroform/methanol (2:1, v/v) to extract lipids (Folch et al., 1957). Two years later, Bligh 

and Dyer improved the method by using water to further induce phase separation leading to 

increased extraction efficiency and lipid degradation prevention (Bligh and Dyer, 1959).  

 Recently, extraction solvents besides chloroform and methanol have been adopted. An 

extraction solution comprised of butanol and methanol (BUME) has been shown to have 

extraction efficiencies comparable or better than the Folch method, while also being much quicker 

and high throughput than the older method (Lofgren et al., 2012). A method using methyl tert-

butyl ether (MTBE), methanol, and water to extract lipids was also recently developed. Due to 

MTBE’s low density the organic layer is on top, making for easier and cleaner recovery of lipids 

in the organic layer. Similar to the BUME method, recovery is comparable to both the Folch and 

Bligh and Dyer methods (Matyash et al., 2008). Additionally, this method can be used to extract 

both lipids and non-polar metabolites simultaneously, a huge advantage when sample is limited 

(Chen et al., 2013). 

Improved lipid identification and quantification via bioinformatics 

 Due to the structural diversity of lipids, even within a single class, it is difficult to create 

models for all possible lipid species. For example, a single lipid head group is attached to one to 

four fatty acid tails, each of which can have varying number of carbons and points of unsaturation. 

Furthermore, these double bonds can vary in type and location, not to mention the other 

modifications that can occur. The combinations are nearly endless, making it almost impossible 

to not only create a library containing all possible structures but to even begin to search such a 

library in a timely and computationally efficient manner.  Important steps, such as creating lipid 
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library databases such as LIPID MAPS, have been taken to narrow the search space (Sud et al., 

2007). As of now, more than 40,000 unique lipid species are listed in the LIPID MAPS database, 

a number that will likely continue to grow.  

In the past, automated lipid identification was often difficult due to the complexity of the 

sample. Co-eluting peaks and isomers made it hard for software to identify and properly quantify 

individual lipid species. However, manual peak identification and quantification is a time-intensive 

process and limited the complexity of samples that could be identified. However, as lipidomics 

has become more mainstream, efforts have been made to streamline the process. Metabolite 

databases such as LIPID MAPS, Lipid Bank, LipidHOME, and LipidBlast include intact masses 

and in silico fragmentation to compare to actual data acquired. By automating this search, as well 

as subsequent peak quantification and removal of ionization artifacts, hundreds of lipids can be 

measured from a single complex solution (Hutchins et al., 2018). Software is available both freely 

and commercially, allowing labs of all sizes to profile large lipid datasets in a high-throughput 

manner. However, as lipid databases continue to grow these methods will need to be continuously 

tweaked.  

Additionally, future advancements in lipid bioinformatics should include rigorous statistical 

analysis such as that seen in genomics, transcriptomics, proteomics, and metabolomics (Niemela 

et al., 2009; Pauling and Klipp, 2016). Although statistical analysis alone will help identify specific 

lipids altered in certain metabolic sites, it is also important to examine the data in a biochemical 

context. LIPID MAPS, KEGG, and PubChem have recently been linked to aid in the visualization 

of lipids in various metabolic pathways. However, it is impractical, if not impossible, to represent 

all possible lipids and all possible pathways in these databases. One way of addressing the 

problem involves identifying lipids that are co-regulated and reconstructing biochemical pathways 

(Yetukuri et al., 2007). Finally, methods of integrating lipidome profiles with the spatial and 

temporal models of lipid systems may reveal the roles lipids play in cellular maintenance. 
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Quantitative trait loci (QTL) mapping: a method for linking genotype and phenotype  

One of the difficulties in fully understanding the roles lipids play in cellular metabolism is 

the complex regulation of lipid species and the quantitative nature of lipid abundance. Unlike 

discontinuous traits which fall into discrete groups and are often regulated by a single gene, 

quantitative traits arise from interactions between multiple genetic and environmental factors and 

are often distributed in a Gaussian manner. Before we are able to predict disease risks and 

identify personalized treatments, we must first identify regions of the genome that make 

individuals more susceptible to disease or sensitive to treatment. While complex interactions 

make identifying links between genotype and phenotype more challenging, the large effects of 

specific genetic loci on some phenotypes have made it possible to establish links between 

genotype and these quantitative traits using QTL mapping. 

QTL mapping is a statistical method that utilizes genetic variation of a population to link 

complex phenotypes to specific regions of the chromosome, called loci. Successful QTL mapping 

requires a measurable trait that varies across a genetically diverse sample set. In the early 

twentieth century, it was observed that some characteristics were inherited in simple Mendelian 

ratios. It was determined that these characteristics, such as size inheritance in plants, were 

dependent on multiple genetic factors (Sax, 1923). However, limited polymorphic markers made 

QTL mapping difficult, until the advancements in sequencing technology developed in 1980s and 

1990s (Davey et al., 2011; Mackay et al., 2009). As advances in fast and cost-effective genotyping 

became commonplace, new statistical methods of varying complexity for QTL mapping have also 

been developed. 

Initially, a relatively simple statistical analysis called marker regression was used for QTL 

mapping. At each marker, samples are split into groups based on genotype and average 

phenotypes are compared. It is simple and covariates are easily added. However, missing 

genotypes cannot be inferred and therefore, individuals missing genotypes must be thrown out 
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and if markers are far apart, it is difficult to ascertain an accurate location of a QTL (Broman, 

2001). 

To overcome some of these weaknesses Lander and Botstein introduced interval mapping 

(Lander and Botstein, 1989). Like marker regression, a single QTL is assumed and each location 

of the genome is tested separately for presence of a QTL. Unlike marker regression, however, 

QTL positions between markers can be inferred. This eliminates the requirement for complete 

marker data reducing the amount of data thrown out for each experiment (Lincoln and Lander, 

1992). Since then, various forms of interval mapping have been developed, each using a slightly 

different method for dealing with missing genetic information (Arends et al., 2010; Bobb et al., 

2011; Haley and Knott, 1992). 

Logarithm of odds (LOD) scores are used to estimate the likelihood that a genetic linkage 

is present between a genetic marker/locus and the measured trait of interest. Simply put, a LOD 

score is the log10 likelihood ratio comparing the alternative hypothesis that there is a QTL at the 

marker to the null hypothesis that there is not a QTL in the entire genome. Although it is true that 

the higher LOD scores serve as greater evidence for the presence of a QTL in that region, it 

should be noted that for analyses in which the entire genome is being tested, it is imperative to 

correct for multiple hypothesis testing, often via permutation tests (Churchill and Doerge, 1994) 

QTL mapping has already successfully identified genes contributing to a large range of 

phenotypes, including glucose tolerance and oxygen consumption rates (Andreux et al., 2012), 

as well as susceptibility to diseases such as diabetes and alcoholism (McClearn et al., 1997; 

Saxena et al., 2007). However, it should be noted that identifying a QTL is only the first step to 

identifying a causative gene. Loci can span large chromosomal regions, containing hundreds of 

genes. Methods for prioritizing genes (Jha et al., 2018a) and rigorous follow-up work is required 

to identify even a single causative gene. 

Initially, QTL mapping was limited to gross phenotypes such as body weight, body size, 

hair color, etc. Clinical traits such as glucose tolerance and respiration, as well as susceptibility 
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to diseases such as type 2 diabetes could also be reproducibly measured, and thus lent 

themselves well for QTL mapping. As microarrays, and now RNA sequencings (RNA-Seq), 

became more affordable a whole new level of QTLs could be mapped – transcripts. Expression 

QTLs (eQTLs) have the advantage that the gene location is often known, often making it easier 

to pinpoint causative genes. In the past two years, mass spectrometry-based methods have made 

it possible to also identify protein QTLs (pQTLs) and lipid QTLs (lQTLs) (Chick et al., 2016; Jha 

et al., 2018a; Jha et al., 2018b; Williams et al., 2016). Utilizing all of these method on the same 

individuals creates a multilayered portrait of what is going on at both the whole-body and 

molecular level and can provide novel insight into complex systems. 

 

The BXD recombinant inbred lines 

 Theoretically, successful QTL mapping relies only on having a measurable trait that 

changes across a genetically diverse population. However, by the very nature of quantitative 

traits, it is likely that genetics as well as environment play crucial roles in trait manifestation. So 

although the human population is incredibly diverse, it is nearly impossible to control all 

environmental factors, often complicating the ability to identify causative regions of the genome. 

Instead, model organisms such as mice and various plants are often used as it is easier to control 

breeding and environmental factors.  

Derived from careful manipulation of mating between the progeny of an initial cross 

between two unique inbred strains, recombinant inbred lines (RILs) have been particularly useful 

in QTL mapping studies. While backcrosses and intercrosses create genetic diversity, one must 

genotype each individual and deal with complications of heterozygosity (Broman, 2005). Although 

time and cost intensive, creation of RILs results in a genetically diverse but renewable population. 

Only a single individual from each RIL must be genotyped and the availability of biological 

replicates enables statistical analysis, which can be used to eliminate environmental and technical 

error. Perhaps the most important long-term advantage of RILs is that data is cumulative. Each 
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additional study adds to the growing database of knowledge, revealing a more complete picture 

of the links between genetic and environmental factors and various phenotypes. 

The BXD cohort is the one of the largest and most studied murine RIL panels. Two 

common inbred laboratory strains, C57BL/6J (B6) and DBA/2J (D2), were bred to create ~160 

new genetically unique inbred lines. These two founders’ strains were used because they are 

both well-studied and differ in a number of ways, including susceptibility to type II diabetes, 

atherosclerosis and alcohol. As the number of studies done on the BXD cohort increases, we 

have been able leverage previous results, especially with the addition of eQTLs, to prioritize and 

identify causative genes (Jha et al., 2018a; Williams et al., 2016).  

 

Significance of lipid QTL mapping 

As lipid identification continues to improve and expand, QTL mapping will be a powerful 

tool in understanding their complex regulation. It has become clear that not only are lipid classes 

regulated differently, but individual species within those classes as well. If we are ever to truly 

understand the intricacies of lipid metabolism, we must understand how individual lipid species, 

as well as classes, are affected by various genetic and environmental factors. Due to the 

quantitative nature of lipid abundance, QTL mapping offers the most promising path to success. 

Not only will these studies give further insight into lipids’ role in health and disease, but they may 

help identify new proteins involved in lipid metabolic regulation. Morever, when combined with 

other eQTL and pQTL data, these multilayered analyses may reveal the underlying mechanisms 

by which various forms of dysregulated lipid metabolism cause disease.  
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Figures 

 

Figure 1. Building blocks of lipid biosynthesis and its complex regulation. 

(A) Three building blocks of the long hydrocarbon portion of lipid classes depicted in (C); fatty 

acyls (light blue), isoprene units (turquoise), and ketides (dark blue). 

(B) Examples of common backbone structures of lipid classes depicted in (C); glycerol, 

sphingosine, and sterol. Boxes around names indicate the way in which that backbone is shown 

in (C). 

(C) Depiction of example lipids representing each of the eight categories based on the LIPID 

MAPS classification system. Blue shaded bars represent the respective repeated building blocks 



18 
 

P 

in (A) while gray boxes represent backbones shown in (B). Red circles represent any of a number 

of head groups and          represents a phosphate group. 

(E) Schematic of general shape of membrane lipids (cones and cylinders), and how the conical 

shape of the lipids listed help induce membrane curvature. 

(D) Examples of the overlap of biosynthesis and complex regulation of a subset of lipid classes. 

Arrows indicate biosynthesis pathways. Glycerol 3-phosphate (glycerol-3-P); Lyso PA 

(lysophosphatidic acid); PA (phosphatidic acid); DAG (diacylglycerol); TAG (triacylglycerol); CDP-

DAG (cytidine diphosphate diacylglycerol); PG (phosphatidylglycerol); CL (cardiolipin); PI 

(phosphatidylinositol); PE (phosphatidylethanolamine); PC (phosphatidylcholine); PS 

(phosphatidylserine). 
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Summary 

The genetics of individual lipid species and their relevance in disease is largely unresolved. We 

profiled a subset of storage, signaling, membrane, and mitochondrial liver lipids across 385 

mice from 47 strains of the BXD mouse population fed chow or high-fat diet and integrated 

these data with complementary multi-omics datasets. We identified several lipid species and 

lipid clusters with specific phenotypic and molecular signatures and, in particular, cardiolipin 

species with signatures of healthy and fatty liver. Genetic analyses revealed quantitative trait 

loci for 68% of the lipids (lQTL). By multi-layered omics analyses, we show the reliability of 

lQTLs to uncover candidate genes that can regulate the levels of lipid species. Additionally, we 

identified lQTLs that mapped to genes associated with abnormal lipid metabolism in human 

GWASs. This work provides a foundation and resource for understanding the genetic regulation 

and physiological significance of lipid species. 
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Introduction 

An enormous number of chemically distinct molecular lipid species arise from the various 

combinations of fatty acids and backbone structures such as glycerol. However, it is not intuitively 

clear why nature has created so many different forms of lipids (Wenk, 2005). Advancements of 

lipidomics technologies have provided the first step towards generating a repertoire of all lipid 

species on a systems scale. The next major challenge is to elucidate their regulation, function 

and physiological impact and to discover how these lipids interact to influence specific biological 

processes.  

Combining systems genetics with multi-omics strategies is helpful to understand the 

association of lipid species with genes, proteins or physiological traits (Civelek and Lusis, 2014; 

Hyotylainen and Oresic, 2014). Similar to the novel insights gained from quantitative trait loci 

(QTL) analysis of transcripts, proteins or phenotypes (Andreux et al., 2012; Williams et al., 2016; 

Wu et al., 2014), the QTLs of lipid species in liver can provide insights into their genetic regulation. 

Transcriptomic, proteomic and phenotypic data can additionally be used to generate lipid–

transcript, –protein or –phenotype correlations, providing a more comprehensive view of how 

lipids fit in the network of cellular processes. Likewise, reducing large lipidomic data to clusters of 

co-regulated lipids enables the identification of functionally related lipid species and helps to 

clarify the relationship of the lipid clusters with phenotypic traits. 

It has long been possible to quantify entire classes of lipids en masse. Recently however, 

it has been shown that by dissecting broad lipid classes into specific lipid species, one can 

develop a more granular understanding of lipid-related disease etiology, thereby improving the 

capacity to find and validate drug targets. For instance, neutrophils from patients with periodontal 

tissue disease accumulate specific diacylglycerol (DAG) species, in particular 1,2-dipalmitoyl 

DAG (Gronert et al., 2004). Similarly, only some molecular species of ceramides were shown to 

be associated with certain types of cancers or with pathways that lead to ceramide-induced 

apoptosis (Koybasi et al., 2004; Kroesen et al., 2001). Given the challenges in identifying gene-
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environment interactions (GxE) influencing the levels of lipid species in humans (Franks and 

McCarthy, 2016), we exploited the BXD mouse genetic reference population (GRP), descending 

from crosses between C57BL/6J mothers and DBA/2J fathers (Peirce et al., 2004). In this 

genetically diverse population, we can tightly control the dietary state of the individual mice over 

months to analyze how genes (genotype), environment (diet) and their interactions influence 

hepatic lipid species. We used systems genetics strategies (Civelek and Lusis, 2014) including 

QTL mapping, network construction, and module-trait correlation integrated with multi-omics 

datasets (genomics, transcriptomics, proteomics, and phenomics) to understand the relationship 

between levels of lipid species and molecular and clinical traits. These approaches helped us to 

identify specific cardiolipin species with signatures of healthy or fatty liver and candidate genes 

that regulate the levels of specific lipid species.  
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Results 

 

Liver lipid profiles and their relationship with clinical and molecular traits 

We used targeted lipidomics to measure 96 hepatic lipid species in 385 mice belonging to 

84 cohorts of the BXD GRP—43 fed CD and 41 fed HFD from 47 BXD strains. Over 29 weeks, 

the mice underwent extensive metabolic phenotyping (Williams et al., 2016). After an overnight 

fast, mice were sacrificed and liver samples were collected for lipidomics analyses. To test the 

quality of mass spectrometry (MS) measurements, we performed pairwise-correlation of technical 

and extraction replicates, which showed consistently robust correlations (Figures S1A and S1B). 

Furthermore, we performed all possible pairwise correlations between the measured lipid species 

from different groups to assess the sensitivity of our measurements in detecting diet- and strain-

driven differences (Figure S1C). The correlation of biological replicates within each strain in either 

diet was higher than within strain-across diet (CD vs. HFD) correlation, and, as expected, the 

correlation across strains on a given diet (either CD or HFD) was higher than across strain-across 

diet correlation (Figure S1C). The lipids measured include free fatty acids (FFA, 8 species), 

glycerolipids [triacylglycerol (TAG, 38 species) and diacylglycerol (DAG, 6 species)], 

glycerophospholipids [phospholipids (PL, 20 species) cardiolipins (CL, 23 species)] and 

coenzyme Q9 (Table S1). Hierarchical cluster analysis demonstrated that BXD cohorts did not 

completely segregate based on their diet, indicating that the GxE interaction can overpower the 

strong dietary impact on lipid profiles (Figure 1A). To obtain an overview of the interaction between 

lipid species, we performed an unweighted correlation network analysis, which showed most lipids 

to be highly correlated and the correlations within class to be generally stronger (Figure 1B (p<1e-

04) and S1D (p<1e-03)). Some dietary effects were evident in the correlation networks, such as 

TAG species, which formed a tight-knit cluster in CD but were more interspersed in HFD, revealing 

the change in neutral lipid homeostasis in HFD (green nodes; Figure 1B, and S1D). While the 

CLs, found primarily in the mitochondrial inner membrane, formed a tight cluster in both diets, the 
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PLs, that are the general cellular membrane lipids, were highly interspersed between different 

lipid classes in both diets (red and yellow nodes, respectively; Figure 1B and S1D). This scattered 

PL profile is in line with the fact that PLs are the main substrates and intermediates in the 

biosynthesis of various lipid classes (Han, 2016).  

To identify lipids with similar physiological and molecular characteristics, we performed a 

weighted correlation network analysis (WGCNA), which clusters correlated groups of lipids into 

modules (Langfelder and Horvath, 2008). More than half of the lipids were clustered in 8 modules 

in both diets (66% in CD and 58% in HFD) (Figures 1C and Figure S2A; Table S2) and most 

module composition was conserved in both diets (Figures S2B and S2C). We then performed 

correlation analysis between the eigenlipid (first principal component) of each module and clinical 

traits related to liver function (Figure 1D). In CD, the DAG (black), TAG (brown) and CL (yellow) 

modules positively correlated with obesity and other traits associated with liver dysfunction, while 

the CD-specific TAG-PL purple module—containing species with a higher degree of unsaturation 

(Figure 1C)—negatively correlated with these traits (Figure 1D). In HFD, several modules showed 

positive correlation with obesity-associated traits, particularly DAG (black), TAG (brown and 

magenta) and CL (blue and yellow) modules (Figure 1D). Interestingly, none of the TAG modules 

correlated with the total TAG concentration in liver and plasma despite the significant correlation 

with liver weight (Figure 1D). This disparity can be explained by the fact that we measured only 

38 TAG species and 6 DAG species which constitutes only a fraction (~15%) of all the TAGs and 

DAGs that exist in mouse liver. Therefore, this subset may not necessarily reflect the total TAG 

concentration measured by the enzymatic assay. 

To identify molecular mechanisms underlying the lipid clustering, we correlated the module 

eigenlipids with liver proteome (2,622 proteins) from the same mouse cohort (Williams et al., 

2016). We selected all proteins that significantly correlated with each module eigenlipid and 

performed KEGG enrichment analysis for all positively and negatively correlated proteins, 

separately. Interestingly, modules that earlier correlated with obesity and liver dysfunction in both 



33 
 

diets, including DAG (black), TAG (brown and turquoise) and CL (blue and yellow) modules 

(Figure 1D), positively correlated with pathways associated with fatty acid and glycolytic 

metabolism, peroxisome and PPAR signaling (Figure 1E). Further, these modules correlated 

negatively with oxidative and proliferative pathways like oxidative phosphorylation, lysosome and 

ribosome pathways (Figure 1E). In line, the TAG & PL purple module showed the opposite trend, 

negatively correlating with fatty acid metabolic pathways and positively with oxidative pathways, 

following the same trend as in the module-trait correlations (Figures 1D and 1E). Collectively, 

these findings reveal that all lipid species of a lipid class do not necessarily have the same 

molecular regulation and phenotypic impact.  

 

Identification of cardiolipin species as signatures of healthy and fatty liver  

From all lipids measured, we identified two clusters of lipid species with strong diet-

independent association with liver mass (Figure 2A). A cluster of 13 species composed of TAGs 

and DAGs with a low degree of unsaturation (1-3 double bonds; dominated by lipids from the 

black and brown modules) correlated positively with liver mass (Figure 2A; green font); whereas, 

another cluster of 6 lipids comprising highly unsaturated TAGs (6-7 double bonds; dominated by 

lipids from the purple module) along with two phosphatidylserine species, correlated negatively 

with liver mass (Figure 2A; orange font). Since the diet changed the landscape of most liver lipids, 

we next analyzed lipids that strongly associated with liver mass in each individual diet (Figure 

2B). Twenty-seven lipids in CD and 40 in HFD (including all 19 lipids from Figure 2A) strongly 

correlated with liver mass. Of note, liver mass was centrally positioned in the resulting HFD 

network showing dense correlations with the 40 lipid species compared to the CD network where 

liver mass was at the periphery of the network with 27 lipids (Figure 2B). Interestingly, a subset 

of nine CL and monolyso-CL (MLCL) species showed a predominant association with liver mass 

in HFD, but not in CD (Figure 2B; red nodes). This finding is noteworthy because CL—the 

signature phospholipid of the mitochondrial inner membrane—is indispensable for a range of 
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mitochondrial activities (Claypool and Koehler, 2012). Alterations in the content and/or structure 

of CL have been reported in several tissues in a variety of pathological settings. However, a major 

unresolved question is whether CL molecules with different acyl chain compositions differ 

functionally (Claypool and Koehler, 2012). Of these nine species, only tetralinoleoyl-CL 

(CL(LLLL)) and its precursor/remodeling intermediate, trilinoleoyl-MLCL (MLCL(LLL)) (neither 

belonging to any module) showed negative correlation with liver mass; whereas the other seven 

CLs enriched in monounsaturated FAs (MUFA), oleic (O) and palmitoleic (Po) acid (all from the 

yellow module), positively correlated with liver mass (Figure 2C). This demonstrates a change in 

CL remodeling under HFD that depletes the CL predominant in healthy tissue—CL(LLLL) (Chicco 

and Sparagna, 2007), and its precursor, MLCL(LLL)—suggesting that these CL species may be 

signatures of healthy/ normal liver. Conversely, the other seven MUFA enriched CLs that 

correlated positively with liver mass in HFD may be considered as signatures of unhealthy/ fatty 

liver. 

We next tested whether this change in the profile of nine CL species is a general 

phenomenon in other dietary-induced models of hepatic steatosis and mitochondrial dysfunction 

and if the profile can be reverted by ameliorating hepato-steatosis via enhancing mitochondrial 

function. We have previously shown that nicotinamide riboside (NR) treatment ameliorates high-

fat high-sucrose (HFHS) diet induced fatty liver disease by boosting nicotinamide adenine 

dinucleotide (NAD+) levels and thereby enhancing mitochondrial function (Gariani et al., 2016). 

Therefore, we performed lipidomic profiling from the livers of C57BL/6J mice—the most commonly 

used laboratory mouse strain—fed on (i) CD (ii) HFHS diet for 18 weeks or (iii) HFHS + 

nicotinamide riboside (NR), added 9 weeks after the start of the HFHS diet (therapeutic approach) 

(Gariani et al., 2016). In line with our findings from the HFD-fed BXD study, HFHS diet decreased 

the CL signatures of healthy/ normal liver—CL(LLLL) and MLCL(LLL)—whereas it increased the 

six CL signatures of unhealthy /fatty liver—MLCL(LOO), MLCL(LLO), CL(LOOPo), CL(LLPoP), 

CL(LOOO), CL(OOOP)—enriched in MUFAs (Figures 2D and 2E). CL(OOOO), detected in the 
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BXD study (Figure 2B/2C), was too low to be detected in all samples from the NR study. 

Interestingly, NR treatment increased the levels of the healthy CLs, whereas it decreased the 

levels of the unhealthy CLs (Figures 2D and 2E). Importantly, the two healthy CLs correlated 

negatively with obesity and NAFLD traits while the unhealthy CLs showed positive correlation 

(Figure 2F). These data show that all lipid species within a class do not necessarily behave 

similarly, as demonstrated here with specific CL species that have signatures of healthy or fatty 

liver.  

 

Liver lipids are influenced by multiple genomic loci  

We next analyzed globally how genotype and diet influence lipid species (Figure 3A). 63% 

of the measured lipids were significantly impacted by diet: 28 upregulated in CD (green font) and 

33 upregulated in HFD (blue font) (Figure 3A and Table S3). Approximately half of the lipids 

correlated positively between the diets, 24 of them being significant (orange bars, Figure 3A and 

Table S3). Next, we assessed the heritability (h2; percentage of trait variation attributed to additive 

genetic factors) for all lipid species within dietary groups (CD-light red and HFD-dark red, Figure 

3A) and across both diets combined (CD+HFD / Mixed)(Belknap, 1998) (Table S4). Within a 

dietary cohort, 30% to 60% of the observed variance in lipid levels could be explained by genetic 

differences across strains (i.e. h2 ≥ 30%) for the strong majority of lipid species (66% in CD and 

76% in HFD). Conversely, when dietary cohorts were combined, only 13% of lipids had h2 above 

30% (Table S4).  

Next, we mapped QTLs for all lipid species (lQTL) and lipid modules (modQTL) (Table 

S5). Most chromosomes contained at least one lQTL and some hotspot regions on chromosomes 

2, 4, 6, 9, 15 and X were quite distinct (Figure 3A). We detected 136 lQTLs:  55 in CD and 81 in 

HFD from 37 and 46 lipid species, respectively (Figure 3B). While over half of these lipids had 

only one QTL (26 CD and 21 HFD), the remaining lipids had more than one lQTL (11 in CD and 

25 in HFD), indicating a polygenic regulation of lipid species (Figure 3B). lQTLs were typically 
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unique to either CD or HFD, with only one lipid species—TAG(58:8)—mapping to the same locus 

on chromosome 11 (118.9-118.5 Mb) in both diets (Figure S3A). Interestingly, this locus harbors 

genes involved in lipid (Acox1, Fasn, P4hb, St6galnac1) and carbohydrate (Afmid, Gaa, Galk1) 

metabolic processes. Importantly, these genes (among others in this region) also have cis-

e/pQTLs in liver and coding sequence variants in the BXDs (Figure S3A). Furthermore, TAG(58:8) 

levels were not significantly different across diets and were among those having high h2 in both 

dietary cohorts (h2>40%) and also when dietary cohorts were combined (33.5%) (Figure S3B). 

This indicates that TAG(58:8) is predominantly under the same genetic control in both diets. The 

lack of cross-diet overlap in rest of the lQTLs suggests that GxE factors regulate nearly all lipid 

species. 

 

Genetic assessment of the lQTLs 

To assess the efficacy of lQTLs and find candidate genes that regulate lipid levels, we 

performed an in-depth analysis of all significant and suggestive lQTLs (Figure 4A, lQTLs above 

the blue dotted line; 55 in CD and 81 in HFD). All genes under these lQTLs were filtered along 

four parallel pipelines (Figure 4B): transcripts/proteins under lQTLs (i) with non-synonymous 

SNPs, (ii) with self-regulating QTLs (cis e- and/or p-QTL), (iii) with significant correlation (p<0.05) 

with the lipid itself, and (iv) with variable transcript expression (standard deviation >0.25). While 

the integration of proteomics data was advantageous, transcriptomics data was substantially 

more consequential to candidate selection as more genes were assayed (~20,000 with 

transcriptomic vs ~2600 with proteomics data) and this also avoids post-translational and protein 

regulation variations. Genes passing 2 of the 4 filters in either diet (299 of 2845 genes in CD and 

327 of 3818 in HFD) were analyzed for gene ontology (GO) pathway enrichment (Figure 4B). 

Remarkably, the filtered lQTL candidate genes were enriched in lipid metabolic pathways (Figure 

4C). We next applied the same filtering criteria for the top 14 lQTLs (Figure 4A, lQTLs above the 
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black dotted line) comprising of 4 CL, 6 TAG, 2 PL, and the FFA 16:0 and 16:1n7 lQTLs (Figure 

4D). These lQTLs had many genes fulfilling 3-4 of our filtering criteria (Figure 4D, genes indicated 

in orange and red font) and several with known association with metabolic and liver-associated 

phenotypes (Figure 4D, genes indicated with asterisks). In total, 104 candidate genes that fulfilled 

2 or more of the filtering criteria from these 14 lQTLs were subsequently analyzed for enrichment 

of KEGG pathways. In line with the above findings, these genes were enriched in FA metabolic 

processes in addition to inflammatory response (Figure 4E). We have provided an exhaustive list 

of candidate genes (based on the filtering pipeline of Figure 4B) for each lQTL (Table S6; CD and 

HFD lQTLs provided in separate excel sheets). Additionally, genes under the lQTLs that pass at 

least two filters are tabulated in Table S5. Taken together, these data show that lipid species of 

the same class can be regulated by several loci throughout the genome and demonstrate the 

utility of integrating multi-omics datasets with lQTLs in the identification of putative genetic 

regulators of lipid species.  

 

The FFA module maps to a genetic hotspot associated with FA metabolism and signaling 

Next, we analyzed one of the diet-specific hotspot lQTL region to demonstrate the validity 

of our lQTLs at the genetic and physiological level. Module-level QTL scans showed a QTL for 

the Red module (comprising six of the eight FFAs measured) only in HFD and not CD on 

chromosome 4 (Figure 5A). The QTL for the Red module overlapped with that of its constituent 

FFAs and contained several genes passing one or more of our filtering criteria (from Figure 4B), 

including 12 genes involved in fatty acid metabolism, insulin, interferon and toll-like receptor 

signaling, suggesting a robust hotspot region of these metabolic processes associated with FFAs 

(Figure 5B) (Jump, 2011; Malhi and Gores, 2008). Among these 12 genes, it is important to 

highlight methylthioadenosine phosphorylase (MTAP), which passes all 4 filtering criteria. MTAP 
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deficiency has recently been shown to increase the risk for progression of chronic liver disease 

due to compromised liver proteome methylation (Bigaud and Corrales, 2016).  

Having identified the potential genetic regulatory region of these FFAs under HFD, we next 

tested if oleic and palmitoleic acids of the module—showing the strongest strength of association 

(Figure 5A [right], thickness of edges)—show the typical biological profile of Stearoyl-CoA 

Desaturase (SCD)-mediated MUFA synthesis under HFD (Figure 5C, adapted from (Jump, 2011). 

Indeed, SCD activity index, as assessed by the ratios of MUFA to saturated FA (SFA)—

16:1n7/16:0 and 18:1n9/18:0—was significantly increased in HFD cohorts (Figure 5D). 

Additionally, the lipid ratios as readouts of the SCD activity index showed positive correlation with 

both mRNA and protein levels of SCD in HFD, but not in CD (Figure 5E).  

Since fat is the predominant energy source in HFD (60.3% kcal from fat; 27.3% kcal from 

carbohydrate) as opposed to carbohydrate in CD (6.2% kcal from fat; 44.2% kcal from 

carbohydrate), we tested whether the FFAs in this module reflect this at the physiological level. 

To do so, we tested if the red module eigenlipid correlated negatively with respiratory exchange 

ratio (RER). RER is a measurement of the primary energy substrate used by an organism:  

lower RER values indicate fat is the predominant energy source, while higher values indicate 

higher contribution from carbohydrates. Indeed, the red module correlated negatively with RER 

in HFD cohorts, which have lower basal RER (Figure 5F; black dots confined towards left of the 

x-axis), whereas no significant correlation was observed in CD cohorts (Figure 5F; green dots 

spread toward the right of the x-axis). These findings demonstrate the validity of our QTL mapping 

and highlight the potential utility of WGCNA clustering of lipids in modules for lipidomics analysis 

and the identification of biologically relevant modQTLs.  

  

Identification of lQTL genes associated with abnormal lipid metabolism in human GWAS 

and mapping of lQTLs in TAG biosynthetic pathway  
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Human GWAS have identified many genetic variants associated with plasma lipids and 

abnormal lipid metabolism (http://jjwanglab.org/gwasdb, https://www.ebi.ac.uk/gwas/). Taking 

advantage of these genes identified in GWAS studies (Table S7), we screened the lQTLs for the 

presence of any human GWAS genes associated with abnormal lipid metabolism (Figure 6A). We 

screened only those genes under the lQTLs which fulfilled at least two of the four filtering criteria, 

shown in Figure 4B. 27 lQTLs (7 CD and 20 HFD) harbored 20 out of 494 genes pre-selected 

from human GWAS for abnormal of lipid metabolism (Figure 6A; see Table 7 for extended 

information on the identified hits). To test the probability of this overlap by chance, we performed 

10,000 permutations, each of which involved comparing the number of genes that overlap 

between a random set of 494 human genes and the 566 BXD lQTL genes (from Table S5). The 

distribution of the overlap across all permutations formed the null distribution. Only 1.49% of 

random trials had an overlap greater than or equal to the true overlap of 20 genes (Figure S3C) 

corresponding to a p value of 0.0149. This indicates that the probability that 20 or more GWAS 

genes found to overlap by chance under the calculated null distribution is only 1.49%. 

Of note, the QTL position of three lipid species: TAG(54:6)_2, TAG(56:8) and 

PI(20:4_16:0) mapped to genes implicated in NAFLD in human GWAS, including TM6SF2, 

NCAN, CILP2,  PPP1R3B and LYPLAL1(Anstee and Day, 2013; Kahali et al., 2015; Lusis et al., 

2016) (Figures 6A and 6B). TAG(54:6)_2 mapped to Tm6sf2 (influences TG secretion and hepatic 

lipid droplet content), and Ncan (cell adhesion) on chromosome 8; notably, these two genes along 

with Cilp2 (carbohydrate binding) have protein coding variants in the BXDs. Additionally, the 

region of Ncan, Tm6sf2 and Cilp2 is syntenic with the localization of these genes on human 

chromosome 19 (Figure 6B, middle) suggesting a conserved role/regulation of these genes in 

both mice and humans. TAG(56:8) mapped to Ppp1r3b (limits glycogen breakdown) on 

chromosome 8 and PI(20:4_16:0) mapped to Lyplal1 (having lysophospholipase activity) on 

chromosome 1 (Figure 6B) both of which have coding variants and cis-eQTLs in liver, heart, 

muscle and adipose tissue of BXDs. Taken together, these links from human GWAS to lQTLs 

http://jjwanglab.org/gwasdb
https://www.ebi.ac.uk/gwas/
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provide a basis for understanding both the function of numerous understudied and/or 

uncharacterized GWAS genes and the role of the individual lipid species in health and disease.  

Next, we tested whether the total TAG content mapped to any of the 8 genes (PNPLA3, GCKR, 

TRIB1, LYPLAL1, PPP1R3B, TM6SF2, NCAN and CILP2) proven to cause or increase the 

susceptibility to hepatic steatosis/NAFLD in human GWAS (Anstee and Day, 2013; Kahali et al., 

2015; Lusis et al., 2016). Hepatic TAG quantification (normalized to protein levels) in BXDs did 

not show any significant difference between the CD and HFD cohorts (Figure S4A). However, the 

TAG content in CD cohorts correlated with proteins and transcripts that were enriched in lipid 

metabolic processes (Figure S4B) and the TAG content in HFD cohorts correlated positively with 

body weight and fat mass and negatively with the lean mass (Figure S4C). This association of 

hepatic TAG content with its expected physiological and molecular function affirms the reliability 

of the TAG measurement. QTL mapping of the hepatic TAG content showed two suggestive QTLs 

at chromosomes 4 and 17 in HFD cohorts, whereas no QTL was observed in CD (Figure S4D). 

Notably, TAG content did not map to any of the human NAFLD GWAS genes, nor to any of the 

individual TAG lQTLs. This indicates a diverse genetic regulation of individual TAG species, 

different from the regulation of total TAG content and highlights the importance of examining 

individual TAG species. Therefore, we examined whether genes known to be involved in the TAG 

biosynthesis pathway (Table S7) were found to fulfill any one of the four filtering criteria shown in 

Figure 4B in either diet for individual TAG, FFA, and PL lQTLs. 14 genes (4 CD, 7 HFD, and 3 

CD+HFD) involved in TAG biosynthesis were found under 30 lQTLs (Figure 6C). Collectively, our 

data demonstrate the complexity of the genetic regulation of different lipid species and the 

importance of studying individual lipid species to find common targets between mice and humans.  
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Discussion 

Data on the genetic regulation and physiological significance of individual lipid species on 

a population scale is very limited for both mouse (Hui et al., 2015) and human populations 

(Gronert et al., 2004; Koybasi et al., 2004; Kroesen et al., 2001). Here, we profiled subset of liver 

lipid species from different classes and integrated them with multi-omics datasets (genetics, 

transcriptomics, proteomics and phenomics) to understand their genetic, environmental and GxE 

regulations and physiological roles. We identified individual lipid species and lipid modules that 

impact different clinical traits, revealing a link between their levels and their physiological and 

molecular functions. In particular, specific CL species were identified that associate either 

positively or negatively with obesity and NAFLD signatures. Last, we demonstrate the reliability 

of lQTLs through several examples that were supported by multi-omics analysis and provide a 

resource of candidate genes that can regulate many of the lipid species we measured. Our 

findings illustrate the importance of studying individual lipid species and provide a platform for 

further mechanistic studies of lipid species.  

Similar to the plasma lipids in our companion article (Jha et al., 2018), hepatic lipid species 

are also correlated across lipid class. By clustering lipids into modules, we established functional 

links between these modules and their molecular and physiological signatures. Two observations 

were particularly distinct between the plasma and liver lipids. First, in contrast to the plasma lipids 

profile, where unsupervised hierarchical clustering distinctly separated the CD and HFD groups 

(Jha et al., 2018), liver lipids profile did not show a distinct dietary separation. Second, the h2 of 

the liver lipids was lower than that of plasma lipids. These differences can be attributed to the fact 

that (i) liver, being the hub of most metabolic processes, is more dynamic and influenced by a 

multitude of factors (diet, hormones, stress) vs. the plasma lipid profile, which represents an 

equilibrium state as a result of metabolic processes from all peripheral tissues; (ii) additional steps 

such as tissue homogenization and normalization to protein levels is required for liver lipidomics, 
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increasing the possibility of technical error. 

A high fat dietary challenge had a striking impact on the cardiolipin profile, wherein the CL 

signatures of healthy liver (CL(LLLL) and MLCL(LLL)) were decreased and the signatures of fatty 

liver (MUFA-enriched CLs and MLCLs) were increased. Notably, CL(LLLL) comprises the majority 

of CLs in the inner mitochondrial membrane and a loss in CL(LLLL) content typically reflects the 

loss of mitochondrial mass (Koekemoer and Oelofsen, 2001). While a decrease in CL(LLLL) has 

been categorically associated with heart failure, senescence and the Barth syndrome (Chicco and 

Sparagna, 2007), its role in hepatic steatosis/NAFLD has not been clearly established (Cole et 

al., 2016). Therefore, we validated our findings from the HFD-BXD study in another model of 

HFHS-induced hepatic steatosis, which confirmed that indeed healthy CLs decrease in NAFLD 

and negatively correlate with obesity and NAFLD traits and conversely, unhealthy CLs increase 

in NAFLD and positively correlate with obesity and NAFLD traits. This suggests that this change 

in the CL profile, in particular a decrease in CL(LLLL) content, could be one of the underlying 

causes of hepatic steatosis and may in itself serve as a disease biomarker. If this is the case, 

then interventions to ameliorate steatosis should be accompanied by increase in healthy CLs and 

a decrease in unhealthy CLs, as illustrated by treating mice having NAFLD with the NAD+ 

precursor, NR. This finding adds to the conceptual understanding of the pathways via which NR 

may act to boost mitochondrial function (Gariani et al., 2016), i.e. by increasing CL(LLLL) and 

MLCL(LLL) content in liver.  

QTL analysis showed that about half of the lipids (having QTLs) mapped to multiple QTLs, 

suggesting a polygenic regulation of lipid species. This is in line with the diverse functional roles 

of lipids in signaling, in protein-binding, in membrane function, and as energy substrates (Han, 

2016). These results furthermore show that lipid species are complex traits affected not only by 

the environment, but also by multiple genetic pathways—i.e. not regulated primarily by single rate-

limiting enzymatic pathways. The complexity of lipidomics can be better appreciated when 

compared and contrasted with metabolomics/metabolites where often there is one key regulatory 
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enzyme for a reaction or a pathway to which metabolite QTLs will frequently map to (Wu et al., 

2014). In contrast, for most lipid species, it is uncommon that one enzyme regulates the level of 

a particular lipid species. The number of genes and proteins in a particular lipid biosynthetic 

pathway is a lot fewer than the species in each class of lipid, (Quehenberger and Dennis, 2011) 

indicating that (1) one gene regulates a number of lipid species and (2) many genes can regulate 

one lipid species. 

To prove the reliability of the lQTLs, we performed a multi-omics analysis of candidate 

genes under the lQTLs, which provided compelling candidate genes and enriched pathways 

associated with lipid metabolic processes. If the mouse is to serve as a model of metabolic and 

lipid traits in humans, it is important that the relevant pathways are conserved in the two species. 

One measure of such conservation is the degree of overlap between mouse QTLs and human 

GWAS data. Our data shows several lQTLs harboring human GWAS candidate genes for lipids 

and associated metabolic traits. These findings build a strong foundation for future mechanistic 

studies to find common links between the genetic control of lipid metabolism between mouse and 

human, as has been successfully achieved by the hybrid mice diversity panel (HMDP) for other 

traits, such as osteoporosis, obesity, blood cell levels and heart failure (Lusis et al., 2016). Hence, 

we provide here candidate genes for all lQTLs, as a cornerstone for future research on the 

regulation of individual lipids across species, with human translational value. 

Interestingly, total hepatic TAG content did not have any significant QTL overlap individual 

TAG lQTLs. This highlights a key point: the regulation of individual lipid species is diverse and 

distinct from the total concentration of the class to which they belong. Therefore, it is necessary 

to have more focused studies on individual lipid species, which can uncover their functions as 

well. In agreement with this, we have illustrated in our companion article (Jha et al., 2018) that 

specific TAG species can have positive or negative signatures of NAFLD. Future work on other 

important lipid classes including extensive coverage of ceramides, DAGs and eicosanoids will be 

helpful in dissecting other equally relevant NAFLD and metabolic syndrome signatures.  
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In summary, this liver-centric lipidomics study provides a framework to uncover the genetic 

regulation and physiological impact of individual lipid species, with an ultimate goal to improve 

our understanding of diseases linked to abnormal lipid metabolism. This insight may help to 

identify new drug targets involved in lipid disorders and to guide the development of clinically 

relevant disease signatures.  
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Experimental procedures 

Mice 

BXD strains were obtained from University of Tennessee Health Science Center 

(Memphis, TN, USA) and JAX (The Jackson Laboratory) and bred at the École Polytechnique 

Fédérale de Lausanne (EPFL) animal facility for more than two generations before incorporation 

into the study. Cohorts of 47 BXD strains with ∼5 males each on CD and HFD were used in this 

study. Mice from 43 strains were fed a chow diet [CD; 2018 Teklad Global 18% Protein Rodent 

Diet (6.2% kcal from fat; 44.2% kcal from carbohydrate; 18.6% kcal from protein)] and from 41 

strains a high fat diet [HFD; Harlan Teklad, TD.06414 (60.3% kcal from fat; 27.3% kcal from 

carbohydrate; 18.4% kcal from protein)] for 21 weeks, starting 8 weeks of age. During the course 

of 21 weeks, mice underwent extensive metabolic phenotyping as described (Williams et al., 

2016). At week 29, animals were fasted overnight before sacrifice at 9:00 am. Blood was collected 

from isoflurane-anesthetized mice via the vena cavae, and immediately afterwards animals were 

perfused with 4°C PBS, through the left ventricle, then organs were harvested. Blood was 

collected in lithium-heparin (LiHep)–coated tubes (Microvette CB 300 Hep-Lithium, Sarstedt) 

shaken and kept in ice. The blood samples were centrifuged at 4500 revolutions per minute (rpm) 

for 10 min at 4°C before being flash-frozen in liquid nitrogen for subsequent measurement of 

plasma lipid species (see companion article (Jha et al., 2018)) and plasma clinical traits. Due to 

breeding limitations and unforeseen deaths of some mice during the course of phenotyping, all 

strains do not have 5 mice each, average being 3-5 mice/strain. 

For in vivo validation of CL species, liver samples were used from our previous study 

(Gariani et al., 2016). In brief, male C57BL/6J mice were separated into three groups of 6-9 mice 

per group, at the age of 7 weeks. Animal cohorts were fed a CD, a Western high-fat and high-

sucrose (HFHS) diet [HFHS; Harlan Teklad, TD.08811, (44.6% kcal from fat; 40.7% kcal from 

carbohydrate; 14.7% kcal from protein)] or a HFHS diet that was supplemented with NR 
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(400 mg/kg/day) at week 16 till week 25 (9 weeks). Mice were sacrificed after a 4 hour fast at 9:00 

am. All experiments were approved by the Swiss cantonal veterinary authorities of Vaud under 

licenses 2257, 2257.1 and 2465. 

 

Fatty Acid Composition (%) in the Diet of BXD Cohorts 

Fatty acids Symbol CD HFD 

Palmitic C16:0 0.7 8.02 

Stearic C18:0 0.2 3.93 

Oleic C18:1n9 1.2 14.68 

Linoleic C18:2n6 3.1 4.7 

Linolenic C18:3n3 0.3 0.55 

Saturated fat 
 

0.9 12.48 

Monounsaturated fat 
 

1.3 16.05 

Polyunsaturated fat 
 

3.4 5.4 

Total fat 
 

6.2 34.3 

 

Plasma clinical traits of BXD cohorts 

Plasma parameters were measured on 2 times diluted samples (1:1 ratio of plasma to 

diluent) using Dimension®Xpand Plus (Siemens Healthcare Diagnostics AG, Dudingen, 

Switzerland). The biochemical tests were performed according to the manufacturer instructions 

for each parameters: AST (Siemens Healthcare, DF41A), ALT (Siemens Healthcare, DF143), 

Glucose (Siemens Healthcare, DF40), HDL (Siemens Healthcare, DF48B), LDL (Siemens 

Healthcare, DF131), Cholesterol (Siemens Healthcare, DF27), LDH (Siemens Healthcare, DF54), 
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TG (Siemens Healthcare, DF69A) and FFA (FUJIFILM Wako Dignostics, NEFA-HR (2)). Insulin 

concentration was measured with an ELISA assay kit (Mouse Insulin ELISA Kit; Mercodia). 

Clinical traits used for correlation of lipid signatures with metabolic phenotypes in 

C57BL/6J mice (Figure 2F) was obtained from our previous study (Gariani et al., 2016). BXD 

metabolic and clinical data can be obtained from (Williams et al., 2016) and also available on 

GeneNetwork (http://www.genenetwork.org). 

 

Body composition (EchoMRI) 

In addition to the body weight measurements taken each week and before each 

phenotyping experiment, body composition was recorded at 16, 23, and 25 weeks of age. To do 

so, each mouse was placed briefly in an EchoMRI (magnetic resonance imaging) machine (the 

3-in-1, EchoMedical Systems), where lean and fat mass are recorded, along with total body 

weight, taking ∼1 min per individual. Data was normalized to total body weight. 

 

TAG measurement of BXD livers 

For BXDs, 15 μl of the liver lipid extract (same extract as used for liver lipid MS 

measurement, see companion article (Jha et al., 2018) was used for TAG quantification using the 

Serum Triglyceride determination kit (Sigma-Aldrich), as per manufacturer’s instructions. The 

organic solvent mix used for dissolving lipids for the MS (mixture of acetonitrile (ACN)/isopropyl 

alcohol (IPA)/water (H2O), (65:30:5, v/v/v, 100 μL)) was used as a blank and for standard curves. 

 

NAD+ Measurement of C57BL/6J Livers 

∼20 mg of frozen liver samples were used for NAD+ extraction in 10% perchloric acid and 

neutralized in 3 M K2CO3 on ice. After centrifugation, the supernatant was filtered and the internal 

standard (NAD-C13) was added and loaded onto a column (150 Å ~ 2.1 mm; Kinetex EVO C18, 
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100 Å). HPLC was run for 1 min at a flow rate of 300 mL/min with 100% buffer A (Methanol/H2O, 

80/20%, v/v). Then, a linear gradient to 100% buffer B [H2O + 5 mM ammonium acetate] was 

performed (at 1 to 6 min). Buffer B (100%) was maintained for 3 min (at 6 to 9 min), and then a 

linear gradient back to 100% buffer A (at 9 to 13 min) began. Buffer A was then maintained at 

100% until the end (at 13 to 18 min). NAD+ eluted as a sharp peak at 3.3 min and was quantified 

on the basis of the peak area ratio between NAD+ and the internal standard and normalized to 

tissue weight. 

 

Lipidomics sample preparation and analysis 

Internal standards (IS) used 

For BXD liver samples we used Q6, PC(15:0/15:0), PS(17:0/17:0), PE(15:0/15:0), 

PA(17:0/17:0), PG(15:0/15:0), CL(56:0) and FA(15:0/15:0) as internal standards. For NAFLD 

signature validation experiments in mice (Figure 2), we used the standard mix 

SPLASH® Lipidomix® Mass Spec Standard | 330707, supplemented with Q6 and CL(56:0). 

Extractions 

Liver samples were weighed and homogenized using a Potter-Elvehjem tissue grinder in 

1.5 mL homogenization buffer (8 M urea, 50 mM TEAB, 100 mM NaCl, 1 mM CaCl, protease and 

phosphatase inhibitors (Roche)). Protein concentration was determined by BCA and all samples 

were diluted to 8 mg/mL with homogenization buffer. Samples were aliquoted with each tube 

containing 1 mg of protein (125 μL) and flash frozen in liquid N2 and stored at -80°C. Frozen 

aliquots of liver extracts were thawed on ice and processed for lipid extraction as previously 

described (Stefely et al., 2016). In brief, liver extracts were thawed on ice then internal standards 

were added (20 μL) and samples were vortexed (30 s). Chloroform/methanol (1:1, v/v, 1000 μL) 

was added and samples were vortexed (60 s). Subsequently, HCl (1 M, 200 μL) was added to 

induce phase separation, followed by vortexing (60 s) and centrifugation (3,000 g, 3 min, 4°C) to 
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complete phase separation. 550 μL of the organic phase was dried under Ar2(g). The organic 

residue was reconstituted in ACN/IPA/H2O (65:30:5, v/v/v, 100 μL) by vortexing (60 s) and 

transferred to a glass vial for LC-MS analysis. Samples were stored at -80°C until further use. 

LC–MS analysis was performed on an Ascentis Express C18 column held at 50°C 

(150 mm × 2.1 mm × 2.7 μm particle size; Supelco) using an Accela LC Pump (500 μL/min flow 

rate; Thermo). Mobile phase A consisted of 10 mM ammonium acetate in ACN/H2O (70:30, v/v) 

containing 250 μL/L acetic acid. Mobile phase B consisted of 10 mM ammonium acetate in 

IPA/ACN (90:10, v/v) with the same additives. 10 μL of sample were injected by an HTC PAL 

autosampler (Thermo). Initially, mobile phase B was held at 40% for 30 s and then increased to 

50% over an additional 30 s. It was then increased to 55% over 4 min after which, it was increased 

to 99% over 6 min and held there for 3 min. Prior to the next injection, the column was 

reequilibrated for 2 min. The LC system was coupled to a Q Exactive mass spectrometer (Build 

2.3 SP2) by a HESI II heated ESI source kept at 325°C (Thermo). The inlet capillary was kept at 

320°C, sheath gas was set to 35 units, auxiliary gas to 15 units, and the spray voltage was set to 

3,000 V in negative mode and 4,000 V in positive mode. 

Several scan functions, including targeted and untargeted, were used to ensure optimal 

data acquisition for each lipid class. For fatty acids, selected ion monitoring (SIM) scans were 

taken from 0-3 min. MS1 data was acquired in negative mode for 220-600 m/z at a resolving power 

of 17,500 and an AGC target of 1 × 105. For phospholipids, diacylglycerols, and CoQ, parallel 

reaction monitoring (PRM) was used. The instrument was run in negative mode with a resolving 

power of 17,500, an AGC target of 2 × 105, a maximum injection time of 75 ms, and isolation 

window of 1.2 Th. Scans targeting each species were scheduled between 0-10.3 min based on 

previously determined retention times. For triglycerides, a separate set of runs was done where 

in addition to the targeted method described above, the MS was operated in positive mode from 
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10.1-13 min with resolving power set at 17,500 and the AGC target set to 5 × 105. Ions from 750-

1,100 m/z were isolated (Top 2) and fragmented. 

Measurement, normalization and quality control 

The selection of lipid species for measurement was based on their abundance, stability, 

polarity and ease of ionization. For the BXDs, peaks were automatically integrated using 

TraceFinder software (Thermo) and integrations were checked manually. NR mice were 

processed as described in our companion article (Jha et al., 2018). Lipids were normalized in 

three different ways - to internal standards (of each class), to total lipids in each sample and to all 

lipids in each class. Basic quality check and QTL analysis was performed from all the datasets, 

however the dataset normalized to total lipids was used for all the analyses and figures shown in 

the manuscript due to the overall low relative standard deviation in this dataset (data not shown). 

Additionally, normalization to total lipids has two major advantages over the other normalization 

methods; 1) All lipids measured did not have a true internal standard, 2) for lipid classes that have 

few lipid species measured, normalizing to class will be largely driven by one or two highly 

abundant lipids. Quality assessment of the MS measurements was performed by comparing the 

reproducibility of the technical and extraction replicates (see Figures S1A–S1C). Note: lipid pairs 

marked with “_1” and “_2” (TAGs 54:5, 54:6, 56:7; PI(Dha_S) and CL(LLOPo) indicate two 

isobaric peaks. The TAGs are isobaric peaks with different fatty acid compositions while the PI 

and CL are isobaric because they have the same fatty acid composition but are likely ordered 

differently to cause chromatographic separation. 

 

Quantification and statistical analysis 

Bioinformatic and genetic analyses 

Data normality for each lipid species was checked by the Shapiro-Wilk test in R, with a 

W ≥ 0.90 considered normal distribution. Correlations are Pearson’s r or Spearman’s rho, as 
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indicated. Student’s t-test was used for two group comparisons in normal data of equal variances, 

and Welch’s t-test otherwise. Heatmaps were generated using the “heatmap.2” function in R. 

Unweighted correlation network graphs were performed using Spearman correlation, keeping all 

edges with P values less than 1e-4, 1e-03 or 0.05 (indicated in the figure) in R using the custom 

package imsbInfer, currently on Github (https://github.com/wolski/imsbInfer). GO and KEGG 

pathway enrichment analysis for was performed using the R package “clusterProfiler” (Yu et al., 

2012) (https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html). Enriched 

pathways after Benjamini-Hochberg correction (p < 0.05) are shown in the figures. For Circos plot 

(Figure 3) data were pre-processed in R followed by plot construction using web 

based (http://circos.ca/) (Krzywinski et al., 2009) and then modified in Adobe Illustrator. 

QTL calculations were performed using the R/qtl (v 1.39-5) package (Broman et al., 2003) 

on the log2 transformed data. The BXD genotype used for QTL calculations is provided in 

the Table S8. Parametric QTL calculation was performed for normally distributed lipids and non-

parametric for those that were not normally distributed. QTLs with logarithm of the odds ratio 

(LOD) score >2.5 and p-value <0.40 were used for all the analysis, which includes both significant 

(p-value < 0.05) and suggestive QTLs (p-value between 0.05 and 0.40) at genome-wide 

significant threshold, computed by permutation analysis. [Genome-wide p-values of 0.63 

correspond approximately to a local p-value of 0.05, i.e. which is significant in case of prior 

knowledge used to search for a QTL at that specific location]. All significant and suggestive 

threshold lines in the paper represent genome-wide p-value of 0.05 and 0.63 respectively. 

All graphs and analyses were performed either in R or GraphPad. For R, standard R 

plotting packages included in gplots or ggplot2—e.g., stripchart, plotCI, and barplot2 were used. 

Final figures were prepared with Adobe Illustrator. 

QTL candidate gene retrieval 
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To perform QTL candidate gene retrieval biomaRt was used in R to obtain lists of genes 

located within each QTL region (+/- 5 Mb around the mapped SNP). Gene lists were imported 

into MATLAB for subsequent parallel filtering of candidate genes as follows: (i) genes with non-

synonymous SNPs, insertion/deletion/splice site mutations, or high impact non-coding SNPs in 

the BXDs (Wang et al., 2016); (ii) genes under the lQTLs with cis e- and/or p-QTLs; (iii) genes/ 

proteins with significant correlation (p<0.05) with the lipid itself; and (iv) genes with variable 

transcript expression (standard deviation >0.25) across BXD strains. Pearson’s correlation was 

used to correlate transcript and protein abundances with log2-transformed lipid levels. 

GeneNetwork was used to obtain liver gene transcript and peptide values for each BXD strain for 

mRNA standard deviation and mRNA/protein correlation calculations. Genes passing two or more 

of the above filtering criteria are provided in Table S5 and a detailed list of each lQTL candidate 

gene with the information on each filtering criteria is provided in Table S6. 

BXD lQTL and human GWAS genes overlap 

Human GWAS genes (having p-value <1e-07) were retrieved from the database 

GWASdb2 (http://jjwanglab.org/gwasdb) (Li et al., 2016) and complemented with the data from 

the GWAS Catalog (https://www.ebi.ac.uk/gwas/) (MacArthur et al., 2017). The categories of 

GWAS gene sets retrieved from these databases included “Abnormality of lipid 

metabolism” and “fatty liver disease”. Additionally, published papers reporting the relevant GWAS 

studies, not included in the above-mentioned databases (in particular, the references indicated 

by their PMID in Table S7) were manually mined to retrieve the candidate genes having p-value 

<1e-07. Taken together, the compiled list comprised of 494 genes (Table S7). Only those lQTL 

genes (± 5 Mb on either side of the peak QTL), which passed at least 2 filtering criteria (as shown 

in Figure 4B) were matched for any evidence of them being associated with abnormal lipid 

metabolism in human GWAS (i.e. matched for their presence in 494 human GWAS gene list). 

Weighted gene correlation network analysis 

http://jjwanglab.org/gwasdb
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Weighted gene correlation network analysis (WGCNA) (Figures 1 and S2) was performed 

as described (Langfelder and Horvath, 2008) by using the WGCNA R software package (v1.51). 

To construct the weighted lipid coexpression network, we calculated a correlation matrix 

containing all pairwise Pearson’s correlations between all pairs of lipids across all BXD strains for 

both CD and HFD. We defined a “signed hybrid” network in which the adjacency takes values 

between 0 and 1 when the correlation is positive and 0 if the correlation is negative. A power of 

27 was chosen for both CD and HFD datasets. We selected the minimum power in which both 

datasets followed the Scale-Free Topology Criterion (model fitting index R2 > 0.8) and showed a 

similar connectivity. The selection of a high power (threshold) has the effect of suppressing low 

correlations that may be due to noise, penalize weaker connections and strengthen stronger 

connections. The result is a network adjacency that is zero for negatively correlated lipids and is 

positive for positively correlated lipids. Adjacency of weakly correlated lipids is nearly zero due to 

the power transformation. Next, the lipids were hierarchically clustered using the distance 

measure and modules were determined by choosing a height cutoff for the resulting dendrogram 

by using a dynamic tree-cutting algorithm, selecting a minimum module size of 5. Modules with a 

correlation higher than 0.75 were merged. The resulting lipid modules were assigned color names 

and identified using the eigenvector of each module, named as module eigenlipid. Module 

eigenlipid (ME) is defined as the first principal component of the standardized expression profiles 

and can be considered the best summary of the standardized module expression data. Each 

module is represented by different colors; lipids not grouped in any module (34% in CD and 42% 

in HFD) were represented in grey color. By and large, modules were dominated by lipids from the 

same class (Figure S2A). Modules containing lipids from the same class exhibited high adjacency 

between them in both diets (eg. CL modules). Correspondence analysis between CD and HFD 

was performed by calculating the overlaps of each pair of CD-HFD modules and analyzed using 

the Fisher’s exact test (Figure S2B). From the 8 modules identified in both diets, 3 of them showed 

total correspondence between CD and HFD: DAG (black), FFA (red) and TAG (brown) modules; 
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while the 3 CL modules (green, blue and yellow) showed a very high correspondence between 

CD and HFD (Figure S2B). Module-trait relationships (Figure 1D) were calculated by Pearson’s 

correlation between MEs and selected metabolic phenotypes in order to identify modules related 

to metabolic functions. For module pathway association (Figure 1E), KEGG enrichment analysis 

was performed for all positively and negatively correlated proteins (p < 0.05) separately, with the 

modules. Module QTL (modQTL) was calculated from the values of the MEs as phenotype traits 

using the R package R/qtl (v 1.39-5) (Broman et al., 2003) using the same methods and criteria 

as for lQTLs. 

Enrichment analysis of proteins and transcripts with liver TAG concentration 

KEGG enrichment analysis was performed for all proteins and transcripts that correlated 

with total liverTAG levels (Figure 6B). For liver proteomics correlation: 333 proteins in CD and 74 

in HFD out of 2,622 measured proteins (by SWATH) significantly correlated with liver total TAG 

concentration. For liver transcriptomics correlation: 1,752 transcripts in CD and 879 transcripts in 

HFD out of 35,556 transcripts measured (using Affy Mouse Gene 1.0ST) significantly correlated 

with total liverTAG concentration. Benjamini-Hochberg corrected (p < 0.05) enriched pathways 

are shown in the figure. No significant enrichment was observed in HFD cohorts. 

 

Data and Software Availability 

Raw MS data files are available through the CHORUS project data repository (Project ID 

1432, Experiment ID 3217 and 3218). Additionally, normalized MS data is deposited in 

GeneNetwork (http://www.genenetwork.org) as a resource for public use. To access and analyze 

the data in GeneNetwork, choose Mouse (mm10)” for “Species, “BXD” for “Group”, 

“Phenotypes” for “Type”, “BXD Published Phenotype” for “Data Set” and enter 

“LiverLipidomics” for “Get Any”. Normalized MS data (normalized to total lipids) is provided 

in Table S1. Lipid QTLs are provided in Table S5. lQTL genes passing two of the four filtering 
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criteria (as shown in Figure 4B) are provided in Table S5 and the exhaustive list for the same is 

provided in Table S6. BXD genotype data used for QTL calculation is provided in Table S8. 
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Figures and tables 

 

Figure 1. Liver lipid species profile and their association with physiological and 

molecular traits. 

(A) Heatmap analysis with unsupervised hierarchical clustering of 96 lipid species for each BXD 

cohort shows mixed dietary and genetic impact.  

(B) Spearman correlation network (p < 1e-04) of all lipid species measured in CD and HFD. Lipid 

species are color coded as seven major lipid classes. The side chain FA composition of lipids has 

been abbreviated (O, oleic acid; P, palmitic acid; Po, palmitoleic acid; S, stearic acid; L, linoleic 

acid; Dha, docosahexaenoic acid). Refer to table S1 for abbreviation and composition. (C) Legend 

of the module composition, indicating the range of total number of carbons and degree of 

unsaturation.  
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(D) Lipid module-clinical trait correlation. Each cell is color coded by the Pearson’s correlation 

coefficient according to the legend color on the right. The stars in the cells represent the p value 

of the correlation (*p < 0.05, **p < 0.01, ***p < 0.001).  

(E) Module and its corresponding KEGG enriched pathway correlation. Red and blue cells 

represent the enriched pathways with the positively (scale bar: log10 p value) and negatively (scale 

bar: -log10 p value) correlated proteins, respectively. Lipid classes hereafter are abbreviated as 

follows: TAG/TG, triacylglycerol; DAG, diacylglycerol; FFA, free-fatty acid; PL, phospholipid (PA, 

phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, 

phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; CL, cardiolipin; MLCL, 

monolysocardiolipin. 

See also Figures S1 and S2, Tables S1 and S2.  
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Figure 2. Identification of cardiolipin signatures of healthy and fatty liver. 

(A) Correlation diagram (corrgram) showing diet-independent association of lipid species with 

liver mass. Lipid species with Spearman’s correlation p value <0.05 with liver mass (both 

normalized to body weight [%] and unnormalized [weight in grams] in both CD and HFD were 

selected.  

(B) Spearman correlation network of diet specific significant correlation of lipid species with liver 

mass in CD (left) and HFD (right).  

(C) Corrgram of CLs that significantly correlate with liver mass in HFD.  

(D-F) C57BL/6J mice were fed with CD, high-fat high-sucrose (HFHS) diet for 18 weeks or 

nicotinamide riboside (NR) supplemented HFHS diet, 9 weeks after the start of the HFHS diet 

(HFHS+NR). Levels of healthy (D) and unhealthy (E) CL species in livers of the three cohorts. 
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Note that the CLs—CL(LOOPo), CL(LLPoP) and CL(OOOP)—are shown in the figure with an 

additional CL species because the two are isobaric and inseparable chromatographically.  

(F) Corrgram showing negative correlation of obesity and NAFLD traits with healthy CL species 

and positive correlation with unhealthy CL species. 

For (D) and (E), data are represented as means ± SEM. *p < 0.05; **p < 0.001; ***p < 0.0001.  
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Figure 3. Genetics of lipid species.  

(A) Circos plot of all lipids measured. Blue bars in the outermost ring represent the log2 fold 

change (HFD versus CD) of the lipids. Lipids increased in CD or HFD are shown in green and 

blue font, respectively. Orange bars represent the correlation of lipids between CD and HFD. 

Significant correlations (adjusted p value <0.05) are represented by asterisks.  Red bars represent 

lipid h2 in CD (light red) and HFD (dark red). The inner ring of yellow bars represents the strength 

of lQTLs in CD (light yellow) and HFD (dark yellow). Number of bars per lipid is equivalent to the 

number of lQTLs. The lines between the two innermost rings stem from the peak lQTL bar (with 

LOD > 3) and terminates on their approximate chromosomal position of the innermost ring. Lipid 
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pairs marked with "_1" and "_2" (TAGs 54:5, 54:6, 56:7; PI(22:8_18:0) and CL(LLPoP) indicate 

two isobaric peaks.  

(B) Schematic representation of the lQTLs. A total of 136 lQTLs (55 CD and 81 HFD) were 

mapped from 37/46 lipids in CD/HFD. The number of QTLs (red font) per lipid species (blue font) 

is indicated.  

See also Figure S3 and Tables S3-S5.  
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Figure 4. Genetic assessment of lQTLs. 

(A) Manhattan plot of lipid species in CD and HFD. Names of the lipid species with genome-wide 

p value < 0.05 are indicated.  

(B) All genes under the lQTLs (± 5 Mb from the peak) were filtered through four independent 

pipelines as indicated. Genes fulfilling two or more of the filtering criteria were analyzed for 

enrichment of GO biological process (BP).  

(C) Enriched GO BP from 566 filtered lQTL genes.  

(D) lQTL position of the top 14 QTLs (p < 0.05). The candidate genes fulfilling four (red font), three 

(orange font) and two (gray font) of the four filtering criteria are indicated below each lQTL peak. 

Genes indicated with asterisks are associated with metabolic phenotypes.  

(E) KEGG enrichment analysis of genes under the top 14 lQTLs passing 2 of the filtering criteria. 

For A and D, blue and black dotted lines represent suggestive and significant QTL threshold 

respectively. 
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See also Tables S5 and S6.  
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Figure 5. FFA module identifies a genetic hotspot locus associated with fatty acid 

metabolism and signaling. 

(A) Red module QTL showing significant peak on chromosome 4 (left) in HFD and the weighted 

correlation network of the FFAs (right) in the red module.  

(B) Hotspot region on chromosome 4 showing the overlapping QTL of the red module and the 

individual FFAs of the module. modQTL genes involved in fatty acid metabolic processes and 

signaling are indicated along with their biological function. 

(C) Schematic representation of monounsaturated fatty acid (MUFA) synthesis.  

(D) Stearoyl-CoA Desaturase (SCD) activity index represented as ratios of MUFA to saturated 

fatty acid (SFA). Data are represented as means ± SEM 

(F) Spearman correlation between hepatic expression of SCD transcript and protein (SWATH) 

with SCD activity index.  
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(E) Pearson’s correlation between the basal RER and the red module. 

For (A) and (B), blue and black dotted lines represent suggestive and significant QTL threshold, 

respectively.  
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Figure 6. lQTL genes associated with abnormal lipid metabolism in human GWAS and 

with the TAG biosynthetic pathway.  

(A) lQTL genes fulfilling two or more filtering criteria as shown in Figure 4B were screened for any 

known association with abnormal lipid metabolism in human GWAS. The screening identified 20 

GWAS genes from 27 lQTLs (top). Each box of the table represents the lQTL(s) for the indicated 

gene(s) and the GWAS phenotype associated with those genes.  

(B) QTL position of the three lipid species (TAG(54:6)_2, TAG(56:8), and PI(20:4_16:0)) which 

map to the indicated genes (in red) implicated in hepatic steatosis in human GWAS studies. The 

loci of Cilp2, Tm6sf2 and Ncan is syntenic in mice (left) as well as in humans (middle). The 

genomic location of the genes is shown in red in the positive strand for NCAN and CILP2 and in 
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the negative strand for TM6SF2. Blue and black dotted lines represent suggestive and significant 

QTL threshold, respectively. 

(C) Schematic representation of TAG biosynthetic pathways showing only those candidate genes 

that are under the lQTLs and fulfill one or more of our filtering criteria. lQTLs are represented in 

gray. Genes under CD lQTLs are in blue, those under HFD lQTLs in red, and those under both 

CD and HFD lQTLs in purple.  

See also Figures S3C and S4; Table S7.  
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Figure S1. Quality assessment of MS measurements and lipid species interaction in the 

two diets. Related to Figure 1 and Table S1. 

(A) Heatmap of correlation between technical replicates (from two separate runs) of two liver 

samples showing high spearman correlation between the replicates vs. between the strains.  

(B) Heatmap of extraction replicates of the same liver sample extracted and run in 14 batches, 

equivalent to the 14 batches of the total BXD samples. Ref 03 was discarded due to extraction 

error.  

(C) Pairwise correlation to assess variation across different groups indicated along the X-axis. 

Red dot represents mean; the three lines represent median, upper and lower quartile.  

(D) Spearman correlation network of all lipid species measured in CD and HFD (p < 1e-03 versus 

p < 1e-04 in Fig 1B). Lipid species are color coded as 7 major lipid classes. Blue edges represent 
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positive correlations and red, negative. The FFAs abbreviations are as follows: O, oleic; P, 

palmitic; Po, palmitoleic; S, stearic; L, linoleic and Dha, docosahexaenoic acid. The short 

abbreviation for side chain lipid composition has been used in the figure (refer to table S1).  
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Figure S2. Weighted correlation network analysis (WGCNA) of liver lipids. Related to 

Figure 1 and Table S2. 

(A) Hierarchical clustering dendogram and heatmap analysis of modules defined in the WGCNA. 

Dendograms are generated using modules eigenlipid (ME). Heatmap plots represent the ME 

adjacencies, where each row and column corresponds to each module, represented by a color 

(names indicated on top) and labeled by the main lipid class contained therein (bottom). Red 

indicates high ME adjacency (positive correlation) and blue low ME adjacency (negative 

correlation) as shown in the color legend (right). The legend on the right represents the range of 

the carbons and the degree of unsaturation of the side chains in the module.  

(B) Color table representing the correspondence of CD- and HFDspecific modules described in 

panel A. Numbers on the side/below the colors indicate the number of lipid species in each 

module. Numbers in the table represent the number of lipid species that are common in both the 
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CD and HFD modules. Grey color represents lipids that were not assigned to any module 

(background lipids). Color legend (white-red) indicates the negative base-10 logarithmic of the p-

value obtained with the Fisher test.  

(C) Module networks in CD and HFD. Lipid nodes in each module are represented by their module 

color. The thickness of the edges in the network represents the strength of correlation between 

the lipids.  
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Figure S3. CD-HFD conserved lQTL and permutation test to check BXD lQTL and human 

GWAS genes overlap by chance. Related to Figures 3, 6A, Tables S5 and S6.  

(A) Of the 96 lipid species measured, only TAG (58:8) had the same QTL locus in both diets. 

Genes under the QTL having lipid-associated function are indicated.  

(B) Levels of TAG (58:8) do not show significant difference across diets and has high h2 in both 

dietary cohorts.  

(C) Permutation test (with 10,000 permutations) analyzing the gene set overlap size between 

lQTL genes from the BXDs and a random set of 494 human genes.  
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Figure S4. TAG variation in BXDs, its association with KEGG pathways, phenotypes and 

QTL mapping. Related to Figure 6.  

(A) Hepatic TAG concentration in the BXD strains.  

(B) KEGG enrichment analysis for all proteins (333) and transcripts (1,752) that correlated with 

total liver TAG levels in CD.  

(C) TAG content in HFD correlates positively with body weight and fat mass and negatively with 

lean mass.  

(D) Mapping of hepatic TAG content does not show any significant or suggestive QTL in CD, 

whereas 2 suggestive QTLs at chromosome 4 and 17 were detected in the HFD cohort. Blue and 

black dotted lines represent suggestive and significant QTL threshold respectively. 

 

*All supplemental tables are available with the published manuscript at DOI: 

10.1016/j.cels.2018.05.016 

 

 

https://doi.org/10.1016/j.cels.2018.05.016
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Summary 

The genetic regulation and physiological impact of most lipid species are unexplored. Here, we 

profiled 129 plasma lipid species across 49 strains of the BXD mouse genetic reference 

population fed either chow or a high-fat diet. By integrating these data with genomics and 

phenomics datasets, we elucidated genes by environment (diet) interactions that regulate 

systemic metabolism. We found quantitative trait loci (QTLs) for ∼94% of the lipids measured. 

Several QTLs harbored genes associated with blood lipid levels and abnormal lipid metabolism 

in human genome-wide association studies. Lipid species from different classes provided 

signatures of metabolic health, including seven plasma triglyceride species that associated with 

either healthy or fatty liver. This observation was further validated in an independent mouse model 

of non-alcoholic fatty liver disease (NAFLD) and in plasma from NAFLD patients. This work 

provides a resource to identify plausible genes regulating the measured lipid species and their 

association with metabolic traits. 
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Introduction 

Lipids are central to all biological processes, from storing energy to forming cell 

membranes to signaling (Han, 2016). Although lipids are composed of few structural ‘building 

blocks’, their vast combinatorial side chain possibilities yield ~100,000 distinct endogenous 

molecular species (http://www.lipidmaps.org) (Fahy et al., 2005). Understanding the physiological 

contributions of these diverse lipids is important because species within the same class have 

differential association with disease states (Puri et al., 2009; Quehenberger and Dennis, 2011; 

Rhee et al., 2011). Moreover, routine measurements of whole lipid class abundance using 

enzymatic assays often do not correlate with the abundance of individual lipid species in disease 

states (Quehenberger and Dennis, 2011).  

The endogenous lipid profile in mammals is determined by the combined influences of 

genes, environmental factors and their interactions (GxE). The profile varies based on changes 

in dietary lipids, de novo lipogenesis (DNL), and alterations in the activities of the hundreds of 

enzymes that modulate length, desaturation and incorporation of fatty acids (FA) into more 

complex lipid molecules. Aberrant levels of storage lipids (triacylglycerol, TAG), circulating lipid–

protein complexes (lipoprotein particles), and membrane lipids (phospholipids (PL) and 

diacylglycerols (DAG)) have been linked to metabolic dysfunction, such as seen in the metabolic 

syndrome, whose features include obesity, insulin resistance, cardiovascular diseases, and non-

alcoholic fatty liver disease (NAFLD) (Farese et al., 2012; Han, 2016; Puri et al., 2009; 

Quehenberger and Dennis, 2011). However, the contribution of individual lipid species per se to 

metabolic dysfunction or to a healthy metabolic state is poorly understood. In the past decade, 

genome wide association studies (GWAS) have identified numerous genetic variants and loci 

associated with different lipid classes and complex metabolic traits (Dewey et al., 2016; Diabetes 

Genetics Initiative of Broad Institute of et al., 2007; Global Lipids Genetics et al., 2013); however, 

these loci explain only (5-20%) of the variance observed (Johansen et al., 2011; Manolio et al., 

http://www.lipidmaps.org/
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2009). This problem is furthermore compounded as many traits, such as lipids, are strongly 

modulated by GxE interactions, which are difficult to control in human studies. In contrast, studies 

of mouse genetic reference populations (GRPs) in which environmental factors can be controlled 

have been able to provide a stable platform for identifying major genetic, environmental, and GxE 

factors influencing complex traits (Hui et al., 2015; Sittig et al., 2016; Williams and Auwerx, 2015). 

While earlier mouse population studies have identified specific loci associated with different lipid 

classes (Hui et al., 2015; Zhang et al., 2012), no study in a GRP has specifically profiled individual 

lipid species or identified loci associated with them—nor has GxE been examined for these traits.  

In this study, we performed lipidomic profiling across 49 distinct inbred strains of the BXD 

GRP (descending from crosses between C57BL/6J mothers and DBA/2J fathers) fed either chow 

diet (CD) or high fat diet (HFD) and subjected, in parallel, to an extensive battery of metabolic 

tests (Williams et al., 2016). Both genetic and multilayered omics approaches were used to gain 

a comprehensive understanding of the genetic and dietary impact on lipid species and to uncover 

the potential of lipid species as signatures of metabolic health.  
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Results 

 

Plasma lipid species profile across the BXD GRP 

To characterize the physiological significance of the plasma lipidome, we used 78 BXD 

cohorts from 49 different strains—44 cohorts fed CD and 34 fed HFD (280 mice) for 21 weeks. 

While on their respective diet, mice underwent extensive metabolic phenotyping (Williams et al., 

2016; Wu et al., 2014). Subsequently, mice were sacrificed in an overnight fasted state and 

plasma samples were analyzed using a discovery LC-MS/MS lipidomics platform. Lipid species 

were separated via reversed phase chromatography and identified using high-resolution 

precursor and fragmentation scans. Collectively, we identified eight distinct lipid classes, including 

free fatty acids (FFAs; 16 species), triacylglycerol (TAG; 53), diacylglycerol (DAG; 6), 

phosphatidylcholine (PC; 28) phosphatidylethanolamine (PE; 15), phosphatidylinositol (PI; 7), 

phosphatidylglycerol (PG; 2) and coenzyme Q (CoQ) (2) (Table S1). The high quality and 

reproducibility of the mass spectrometry (MS) measurements are evidenced by the pairwise-

correlation of technical and extraction replicates, showing consistent robust correlation (Figure 

S1). Furthermore, we performed all possible pairwise correlations between the BXD lipidomes 

from different groups to assess the sensitivity of our measurements in detecting global diet- and 

strain-driven differences (Figure 1A). The correlation of all lipids within each strain (biological 

replicates) in either diet (CD or HFD) was higher than within strain-across diet (CD vs. HFD) 

correlation, implying that the global effect of diet is larger than that of the biological replicates of 

the strains. As expected, the correlation across strains on a given diet (either CD or HFD) was 

higher than across strain-across diet correlation (Figure 1A). Hierarchical cluster analysis 

demonstrated that most BXD cohorts segregated based on diet (Figure 1B), which was also 

evident in the first dimension (PC1) of the principal component analysis (PCA) (Figure 1C). 

However, the variance explained by the sum of the first two principal components is only 53%, 
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which indicates that the lipidomic profile of the BXDs is highly variable in both diets (Figure 1C). 

Of the 129 lipid species measured, 93 were significantly different between the two dietary cohorts 

(53 upregulated and 40 downregulated, HFD vs. CD), (Table S2A), indicating a major effect of 

diet on lipid profiles.  

We next evaluated the impact of diet on monounsaturated fatty acid (MUFA) and 

polyunsaturated fatty acid (PUFA) synthesismajor determinants of the lipid profileby 

analyzing the levels of serum FFAs from mice on both diets (Figure 1D). Though the saturated 

fatty acids (SFAs) and MUFAs were ~13-19 times higher in the diet of HFD vs. CD cohorts, only 

stearic (18:0) and oleic (18:1n9) acids were significantly increased in the plasma of HFD cohorts, 

indicating increased accumulation under HFD (Figure 1D, top). Furthermore, the desaturation and 

elongation products of 18:1n9 (20:1n9, 22:1n9, 24:1n9) were not increased in HFD cohorts. This 

indicates a specific accumulation/enrichment of oleic acid side chains in lipid species increased 

on HFD (Figure 1D; top, Figure 1E). Though the essential fatty acids (EFAs), including linoleic 

(18:2n6) and linolenic (18:3n3) acids were 1.5 and 1.8 times higher in the diet of HFD cohorts, 

their levels were decreased in the plasma of HFD cohorts (Figure 1D, bottom). This reflects 

increased utilization of the EFAs in HFD cohorts to build long chain FFAs (e.g. 20:4n6 and 22:4n6) 

and their use as an energy source as evidenced by increased peroxisomal- oxidation in HFD 

cohorts (Figure 1D, bottom).  

To evaluate the effect of diet on side chain composition of lipid species, we calculated the 

FA composition of all side chains from the lipid species. [For co-eluting isobaric species (Table 

S1), all possible fatty acid combinations for which there was evidence were used in this 

calculation]. The majority of side chains were comprised of palmitic, stearic, oleic, palmitoleic, 

linoleic, arachidonic and docosahexaenoic (DHA) acid. Lipid species with at least one palmitic, 

stearic or oleic acid in their side chain were enriched in HFD cohorts, while species with at least 

one palmitoleic, linoleic and linolenic acid in their side chain were enriched in CD cohorts (Figure 
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1E). Lipid species with an arachidonic acid side chain were either enriched in HFD or remained 

unchanged, while lipids with DHA side chains were either enriched in CD or remained unchanged 

(Figure 1E). Notably, the dietary enrichment of all these fatty acids (except palmitic acid) in the 

lipid species observed here also reflects the FFA profile seen in Figure 1D. Taken together, these 

results demonstrate that diet has a strong influence in determining the lipid profile and that FFAs 

in general can reflect the side chain enrichment of lipid species. These data suggest that in HFD 

there may be a switch towards lipid species being enriched in palmitic, stearic and oleic acids 

while being depleted in linoleic acid because of its increased utilization to meet the energy 

demand (metabolic flexibility) since the energy from carbohydrate is only 27% kcal in HFD vs. 

44% kcal in CD. 

 

Plasma lipid species have high heritability 

Next, we assessed the degree of genetic, dietary, and GxE regulation of lipid species. 

Heritability (h2; percentage of trait variation attributed to additive genetic factors) was calculated 

for all lipid species within (CD and HFD) and across (CD+HFD / Mixed) dietary groups (Belknap, 

1998) (Figure 2A and Table S2B). Additionally, the variation attributed by GxE, diet and non-

genetic, non-dietary variance (Unexplained) was calculated (Figure 2A and Table S2B). Within a 

dietary cohort, more than half of the observed variance in lipid levels could be explained by genetic 

differences across strains (i.e. h2 ≥ 50%) for the strong majority of lipid species (80% in CD and 

75% in HFD). Conversely, when dietary cohorts were combined, only 22% of lipids had h2 above 

50%. However, even when the dietary cohorts were mixed, the diet-independent genetic factor 

(Figure 2A, "Genetics (CD + HFD /mixed)") was the strongest contributor to variance explained. 

The contribution of GxE ("GxE Effect") or diet alone ("Diet Effect") did not explain even 50% of 

observed variance for a single lipid species. Together, these three controlled factors—genetics, 

environment, and GxE—explained more than half of the variance for 85% of all lipid species, 

whereas only 15% lipids had more than 50% of their variance attributed to unexplained factors 
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(Figure 2A, “Unexplained”). For many lipids, the variance in their levels both within and across 

diets reflected their h2 and variance explained by genetics (CD+HFD/ Mixed), diet and GxE. For 

instance, TAG(52:2) levels were significantly increased by HFD, where the diet explained its 

maximal variance (48%) (Figure 2B). Conversely, PC(20:1_22:6) levels were not different 

between the two cohorts, showing high h2 in both diets and mixed variance (attributed to genetic 

factors) explained most of its variance (70%) and dietary effect was only 3% (Figure 2C). 

Collectively, these results indicate a high degree of genetic regulation of lipid species in both diets.  

 

Plasma lipids are influenced by many genomic loci, including several associated with lipid 

levels in human GWAS 

Next, we mapped quantitative trait loci (QTL) for all lipid species (lQTL), identifying 212 

lQTLs in CD and 94 in HFD (Figure 3A [lQTLs above blue dotted line] and Table S4). It is not 

surprising that most lipids had more than one significant QTL, given the fact that many 

independent processes and pathways regulate lipid species. Only three lipid species (DAG(36:2), 

TAG(54:1) and eicosenoic acid/ 20:1) had the same lQTL position (within 5Mb) in CD and HFD 

(Figure 3A, black bold font), which signifies that diet can influence the genetic factors regulating 

most lipid species. Of note, the CD-HFD lQTL pair of DAG(36:2)—mixture of [18:1_18:1 and 

18:0_18:2]—mapped to the region containing genes with protein coding variants involved in lipid 

metabolic processes (Slc2a2, Kcnmb2, Bbs12, Fgf2, Pld1), insulin secretion and homeostasis 

(Slc2a2, Kcnmb2, Bbs12) (Figure 3B, left). This finding is consistent with the role of DAGs in 

insulin sensitivity (Farese et al., 2012) and the fact that DAG (18:0/18:2) has been proposed as 

one of the 21 plasma lipid predictors in the diabetes risk classification model (Wong et al., 2013). 

Importantly, the glucose transporter Slc2a2 (Dupuis et al., 2010)—associated with glucose levels, 

type 2 diabetes, and metabolic syndrome—showed a strong positive association with metabolic 

syndrome phenotypes along with DAG(36:2) (Figure 3B, right). A prominent metabolic IQTL 
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hotspot, common to 14 lipid species, was observed on Chr2 in CD (Figure 3A and 3C). This region 

(101-113 Mb) contained 10 genes (among others) encoding proteins involved in lipid metabolic 

processes including FoxO signaling, lipid transport, and having phospholipase and acyl 

transferase activity (Figure 3C, bottom). Of note are Cat (catalase; FoxO signaling), Pdhx 

(Pyruvate Dehydrogenase Complex Component X; acyl transferase activity), Chrm5 (Cholinergic 

receptor, muscarinic 5; phospholipase activity), and CD44 (CD44 antigen) which have non-

synonymous SNPs in the BXDs (Figure 3C, bottom). For each lQTL, we have provided the lQTL 

genes having nsSNP/ncSNP/indel in Table S4. Of the 306 lQTLs, 172 lQTLs harbor 97 genes 

(having non-synonymous SNPs in BXDs) that are known to be directly associated with lipid 

metabolic terms including “lipid metabolic process”, “lipid particle”, and “lipid binding”, “transferase 

activity”, and “transferring acyl groups” (Table S4). 

 Human GWAS have identified many genetic variants associated with plasma lipids and 

associated metabolic traits (http://jjwanglab.org/gwasdb, https://www.ebi.ac.uk/gwas/) (Diabetes 

Genetics Initiative of Broad Institute of et al., 2007; Kathiresan et al., 2009; Willer et al., 2013). 

Because of the close homology between mouse and human genomes, the mouse can be used 

to add evidence to genes suggested by human studies. Taking advantage of these genes 

identified in GWAS studies (Table S5), we screened the 306 lQTLs (Table S4) for the presence 

of any human GWAS genes associated with plasma lipids and associated metabolic traits (Figure 

3D). We applied a stringent approach by screening only those lQTL genes that have non-

synonymous SNPs in BXDs. This screening identified 40 GWAS candidate genes (out of 494 

GWAS genes) under 93 lQTLs: 65 lQTLs in CD from 55 lipids and 28 lQTLs in HFD from 25 lipids 

(Figure 3D; Tables 1 and S5). While 45 lipids in CD and 22 in HFD had only one lQTL harboring 

the GWAS genes, 10 lipids in CD and 3 in HFD had 2 lQTLs each harboring two different GWAS 

genes, indicating a polygenic regulation of these lipid species by different genes (Figure 3D). Only 

12 lipids had lQTL in both diets, of which 10 mapped to different GWAS loci in the two diets and 

http://jjwanglab.org/gwasdb
https://www.ebi.ac.uk/gwas/
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only 2 ((DAG(36:2)/ DAG(18:1_18:1 and 18:0_18:2), and eicosenoic acid_ 20:1) mapped at the 

same GWAS loci (within 5Mb) in both diets (Figure 3A; Tables 1 and S5). Importantly, we found 

6 syntenic GWAS regions in humans (0.04-0.9 Mb) that were also syntenic in mice (0.4-0.8 Mb) 

(Table 1 [genes indicated by prefix “#”] and S5 [genes indicated in red font]). 

Apart from the genes in Table 1, some lQTLs harbored prominent human GWAS genes 

(associated with blood lipids and metabolic traits) which do not have non-synonymous SNPs in 

BXDs but may be linked to the causal variant. For instance, TAG(50:3) had a QTL at the locus of 

glucokinase regulatory protein (Gckr) and Lrpap1 (LDL Receptor Related Protein Associated 

Protein 1). Gckr is one of the most robust loci implicated in TAG metabolism (Figure S2A) 

(Diabetes Genetics Initiative of Broad Institute of et al., 2007). It has been replicated in GWAS of 

plasma TAG concentration, NAFLD and hypertriglyceridemia by an excess of rare variants in 

patients (Johansen et al., 2011; Kathiresan et al., 2009; Speliotes et al., 2011). Lrpap1 shares the 

same locus as Gckr (within 5Mb) and has been associated with TAG, HDL-C and LDL-C (Figure 

S2A). Fatty acid desaturase (Fads 1, 2 and 3) is another prominent gene, which has been 

associated with TAG, PLs and type 2 diabetes in numerous GWAS studies (Diabetes Genetics 

Initiative of Broad Institute of et al., 2007; Johansen et al., 2011; Kathiresan et al., 2009; Speliotes 

et al., 2011) (Figure S2B). In line, two TAGs and 4 PCs had lQTLs at the Fads locus (Figure S2B). 

Interestingly the FADs locus is syntenic in both mice and humans (Figure S2B). These data 

suggest that a large number of GWAS genes associated to total lipid levels in humans can also 

regulate many individual lipid species. 

 

Lipid species provide a signature of metabolic health status 

Since many lipid species shared common QTLs, we hypothesized that they are correlated/ 

co-regulated. To assess this, we performed an unweighted correlation network analysis of all the 

lipid species, giving an overview of interactions between different lipid species and classes (Figure 
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4A and 4B). In both CD and HFD cohorts, lipid species were highly correlated both within and 

across different lipid classes. The network in both cohorts showed a strong dense grouping of 

TAGs, PCs, FFAs and DAGs (Figure 4A and 4B, red ellipse). This cluster is indicative of the PC 

and TAG synthesis from DAG intermediates (Han, 2016). Diet specific interactions were also 

observed; e.g., TAGs with high carbon number (56-64) were not connected in the CD network but 

were integrated with other TAGs in the HFD network (Figure 4A and 4B, green ellipse). These 

results suggest that lipids across different classes are correlated, and that a change in one or 

more species may impact the levels of many other lipid species independent of the lipid class.  

Based on this conception, we hypothesized that it may be possible to predict metabolic 

health based on the variation in lipid levels and vice-versa. From the extensive phenotypic 

profiling performed in these mice (Williams et al., 2016), we acquired 30 unique traits reflective of 

metabolic health/fitness. These traits included fat and lean mass, physical fitness (treadmill 

exercise, activity wheel, VO2 max), oral glucose tolerance test, heart rate and plasma biochemical 

markers (e.g. alanine transaminase (ALT), aspartate transaminase (AST), cholesterol, FFAs, 

etc.), among others. Spearman correlation was calculated between all lipid species and the 

metabolic traits (Table S6). The correlation rho value was used to perform a heatmap analysis 

with unsupervised hierarchical clustering of all lipid species and traits (Figure S3A). In both CD 

and HFD, two lateral clusters (extreme right and left) of lipid species could easily be identified, 

that correlated with most of the metabolic traits (Figure S3A). From these two lateral clusters in 

each diet (Figure S3B), we identified 36 lipid species that showed the strongest correlations with 

metabolic traits in both diets (Figure 4C and 4D). Among them, 19 lipids were identified as “healthy 

markers” in both diets (Figure 4C and 4D, vertical green cluster), since they positively correlated 

with healthy metabolic traits (Figure 4C and 4D, horizontal green cluster) and negatively with 

unhealthy traits (Figure 4C and 4D, horizontal red cluster). While 17 lipids were identified as 

“unhealthy markers” showing the inverse correlation pattern (4C and 4D, vertical red cluster). 
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Note that FFA, kidney weight, heart weight and heart rate cluster with healthy metabolic 

phenotypes. The fact that FFAs provide 60-70% of the heart’s energy requirement (van der Vusse 

et al., 2000) and are also the predominant energy source for the kidney (tubular epithelial cells) 

(Kang et al., 2015) explains the clustering of these traits together. Interestingly, only 7 of the 36 

lipids identified as metabolic health predictors are amongst the most abundant lipids in their class 

[PC(20:4_18:0), PC(20:4_16:0), PC(22:6_16:0), PC(36:1), TAG(52:2), TAG(52:4), TAG(54:3)]; 

the remaining 29 lipids have low abundance in plasma (Table S2). Taken together, these data 

suggest that lipid species reflect metabolic health and that the most abundant species may not 

necessarily be the best predictors of health.  

 

Identification of signature lipid species for NAFLD 

Since plasma lipids associated with metabolic traits, we next tested this finding in the 

context of a disease. Taking advantage of the liver lipidome from the same cohort of mice from 

our companion article (Jha et al., 2018), we tested whether plasma lipid species can be indicative 

of NAFLD, characterized by excess TAG accumulation in liver (Kleiner et al., 2005). Both in 

humans and different mouse strains, plasma and liver TAG levels are highly variable and are not 

always increased in NAFLD or by HFD, indicating a complex polygenic regulation (Browning et 

al., 2004; Johansen et al., 2011; Kirk et al., 1995; Lin et al., 2005; Romeo et al., 2008). In line, 

plasma and liver TAG levels were highly variable in the BXDs, although no significant difference 

was observed between CD and HFD cohorts (Figure 5A). Moreover, the liver and plasma total 

TAG levels did not correlate (Figure 5B). Therefore, we sought to identify individual lipid species 

in plasma that are representative of their levels in liver. Of the 55 common lipids measured in 

plasma and liver, 30 in CD and 21 in HFD correlated with a Spearman’s rho (absolute value) > 

0.32 (Figure 5C; orange and green bar, Table S7). Additionally, there was a strong positive 

correlation between plasma and liver lipids across diets (Figure 5D). In particular, plasma and 



89 
 

liver values of nine of these lipids significantly and tightly correlated across both diets (Figure 5D; 

dark green and orange dots), implying that the plasma levels of these lipids reflect their 

abundances in liver in both diets (Figure 5E). Of these nine lipids, four TAG species (TAG: 52:2, 

54:3, 56:3 and 54:1) were increased in the HFD cohorts in both plasma and liver, while three TAG 

species (TAG: 52:5, 52:4 and 54:6) were increased in the CD cohorts in both plasma and liver 

(Figure 5E and S4). TAG(50:2) was significantly increased in HFD in plasma but not in liver 

(Figure S4). While DAG(L_P) (DAG(18:2_16:0)) showed a negative correlation between liver and 

plasma (Figure 5E) because on HFD, it was decreased in plasma, but increased in liver (Figure 

S4). The accumulation of DAG(L_P) in liver and reduction in plasma (Figure S4) suggests that its 

release from liver into the plasma may have been minimized.  

Correlation analysis of these TAG species, alongside total TAG concentration in liver and 

plasma, was performed with phenotypes linked with NAFLD including fasting insulin, glucose, 

cholesterol, ALT, AST, fat mass, liver mass and body weight (Figure 5F). For either diet, the total 

TAG concentration in plasma or liver either did not correlate or had a weak correlation with NAFLD 

associated phenotypes, which was in contrast to the individual TAG species (Figure 5F). The 

TAGs: 52:2, 54:3, 56:3 and 50:2, showed positive correlation, while the TAGs: 52:5, 52:4 and 

54:6 showed negative correlation with the NAFLD readouts in both diets in liver and plasma, 

(Figure 5F, red and blue font respectively). Importantly, these seven lipids had high h2 (55-84%) 

in plasma in both CD and HFD cohorts (Table S3). Of note, DAG(L_P), which shows a negative 

correlation between plasma and liver (increased in CD in plasma and in HFD in liver) (Figure 5E, 

S4), is the only lipid among the nine lipids showing an opposite correlation with NAFLD 

phenotypes between liver and plasma (Figure 5F). TAG(54:1) can be considered a diet-specific 

NAFLD marker since it correlated positively with NAFLD markers in CD and negatively in HFD, 

indicative of a GxE effect, where the HFD effect reverses the genetic effect; its h2 in CD being 

57% and in HFD, 48% (Table S3). The unexplained variance for both TAG(54:1) and DAG(L_P) 
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was 35% and 48% respectively (Table S3), suggesting that these two lipids may be less reliable 

plasma signatures for NAFLD. These findings suggest that elevation of TAGs with fewer double 

bonds: 52:2, 54:3, 56:3 and 50:2 comprise a pro-NAFLD signature, whereas an increase in TAGs 

with more double bonds: 52:5, 52:4 and 54:6 comprise an anti-NAFLD signature, irrespective of 

the diet. Notably, the pro-NAFLD TAGs: 52:2, and 54:3, and the anti-NAFLD TAGs: 52:5, 52:4 

and 54:6 are also amongst the systemic unhealthy and healthy metabolic markers (Figure 4C and 

4D). Our data also signifies the importance of having a strong correlation between a plasma and 

liver lipid in order for it to be established as a disease signature.  

 

Assessment of identified NAFLD signatures in mice and humans 

We then tested the relevance of these lipid markers as readouts of fatty liver in a different 

mouse model of NAFLD (induced by high-fat high-sucrose (HFHS) diet) and tested whether a 

NAFLD lowering therapeutic intervention, i.e. nicotinamide adenine dinucleotide (NAD+) 

precursor, nicotinamide riboside (NR), impacts these lipid markers. As such, we compared the 

liver lipidome of mice fed CD, HFHS diet for 18 weeks, or mice that were fed HFHS diet 

supplemented with NR 9 weeks after the start of HFHS diet, at which point they had already 

developed NAFLD (a therapeutic intervention, HFHS+NR) (Figure S5A) (Gariani et al., 2016). 

Though liver total TAG concentration was significantly elevated in the HFHS group and decreased 

by NR (Figure S5B)(Gariani et al., 2016), all individual TAG species did not show this obvious 

profile despite the uniform genetic background (C57BL/6J) (Figure S5C). Of all the TAG species 

measured, only 53% were increased in the HFHS cohort while 33% were decreased and 14% 

remained unchanged (data not shown). Importantly, all four pro-NAFLD lipids (TAGs 52:2, 54:3, 

56:3 and 50:2) from the BXD HFD study (Figure 5F) were also increased in C57BL6/J mice fed 

HFHS diet, whereas the three anti-NAFLD lipids (TAGs 52:5, 52:4 and 54:6) were decreased in 

HFHS diet cohorts (Figure 6A). NR significantly lowered three of the four pro-NAFLD lipids (TAGs 
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54:3, 56:3, 50:2), but increased the anti-NAFLD lipids only to a slight extent (Figure 6A). 

Importantly, the pro-NAFLD lipids correlated positively, whereas the anti-NAFLD lipids correlated 

negatively with clinical NAFLD readouts (Figure 6B). Notably, the liver NAD+ levels correlated 

negatively with the pro-NAFLD lipids, and positively with anti-NAFLD lipids (Figure 6B), fully in 

line with our previous work which showed that NAD+ levels are depleted in steatotic livers and are 

replenished after NR treatment (Gariani et al., 2016). 

To further explore the clinical relevance of these findings, we analyzed the plasma 

lipidome of healthy patients, patients with steatosis, early stage NASH (mild to moderate fibrosis 

(F1+F2)) and advanced stage NASH (severe bridging fibrosis or cirrhosis (F3+F4)). The first 

dimension (PC1) of the PCA of 55 TAG species segregated nearly all of the healthy individuals 

from the steatosis and NASH group (Figure S5D). However, the variance explained by the PC1 

was only 46%, implying that the TAG profile in humans is highly variable possibly due to the high 

genetic variation (Figure S5D). Despite the significant differences in total TAG plasma levels 

between the healthy and NAFLD groups (Figure S5E), only a few individual TAG species were 

significantly changed, which is in line with the findings from mice. Only 20% of TAG species were 

increased in steatosis vs. healthy, while 64% increased in early stage NASH vs. healthy and 49% 

increased in advanced stage NASH vs. healthy group (data not shown). However, the pro-NAFLD 

lipids were increased in steatosis and/or the two NASH groups. Compared to the healthy group, 

TAG(50:2) was increased in both steatosis and the two NASH groups (F1+F2 and F3+F4), while 

TAG(52:2) was increased only in the two NASH groups; whereas TAG(54:3) and TAG(56:3) were 

increased in the two NASH vs. the steatosis groups (Figure 6C). Conversely, the three anti-

NAFLD lipids, TAG(52:5), TAG(52:4) and TAG(54:6), were decreased in advanced stage 

compared with early stage NASH (Figure 6C). In line, the pro-NAFLD lipids correlated positively 

with NAFLD readouts whereas, the anti-NAFLD markers correlated negatively (Figure 6D). Taken 

together, these data confirm the findings from the BXDs in a different model of diet-induced 
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NAFLD in mice as well as in humans, indicating that these lipid species may be a more universal 

signature of NAFLD across different diets and also relevant in humans. 

To obtain insight on the affinity of the pro- and anti-NAFLD signatures with TAG-

metabolizing enzymes, we tested the association of adipose triglyceride lipase (ATGL)—the rate 

limiting TAG-metabolizing enzyme—with these NAFLD TAG signatures. Atgl expression in white 

adipose tissue (WAT) negatively correlated with the pro-NAFLD signatures and positively 

correlated with the anti-NAFLD signatures in both CD and HFD cohorts (Figure 6E). This 

correlation was also observed with the expression of ATGL in other metabolic tissues (liver, heart 

and muscle) (Figure S5F), however, the strongest association was observed with WAT Atgl 

expression, since Atgl lipase activity is ~10 times higher in WAT compared to the other tissues 

(Haemmerle et al., 2006). These findings are consistent with our previous experimental findings 

showing that Atgl is important for protection from steatohepatitis and that Atgl -KO mice are 

susceptible to develop NAFLD/NASH (Jha et al., 2014). Additionally, the pro-NAFLD signatures 

in both plasma and liver correlated positively with lipid biosynthetic pathways and negatively with 

oxidative pathways (Figure S5G). Conversely, the anti-NAFLD signatures correlated positively 

with oxidative pathways and negatively with inflammatory pathways (FigureS5G). Taken together, 

these biological corroborations of the TAG signatures provide proof of concept validation of the 

lipid species measured and validate the usefulness of the resource.  
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Discussion 

Here we used a systems approach—combining genetics, lipidomics and phenomics—to 

examine the dietary and genetic regulation of plasma lipids and their potential to reflect metabolic 

health status. Our study reveals that most plasma lipids have high heritability and map to a QTL, 

several of which harbor genes associated with abnormal lipid metabolism in human GWAS. As 

such we show that specific plasma lipids can be used as signatures of metabolic health status. 

We further validate the potential of seven TAG species as plasma signatures of NAFLD in mice 

and humans.  

As expected, the change in diet from CD (6% calories from fat) to HFD (60% calories from 

fat) had a significant impact on a large proportion (70%) of the plasma lipid species measured. 

Due to the unique genetic background of each of the strains, even within the same dietary cohort, 

most lipids were highly variable across strains, an observation similar to that in humans (Shin et 

al., 2014). Across all conditions, roughly 50% of variation could be attributed to diet-independent 

genetic factors, with an additional ~10% of variation being attributable to uniform diet-induced 

changes, or a strain-dependent response to dietary differences. Together, our study can explain 

more than half of the observed variation in plasma lipid levels for 85% of the 129 measured lipid 

species. For the variation attributable to genetic or GxE factors, we identified about 300 novel 

lQTLs containing known and novel putative regulators of lipid metabolism. Taking advantage of 

the known human GWAS loci/genes associated with blood lipid levels and associated traits, we 

uncovered, via a cross-species examination, the association between 40 human GWAS genes 

and 93 lQTLs, including 7 syntenic regions common in mice and humans. This link underscores 

the power of mouse GRPs beyond finding novel loci/genes controlling levels of lipid species to 

their potential to complement human genetic studies. The fact that our data are derived from a 

genetically diverse mouse population, which mimics the genetic variation observed in humans, 
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increases its translational value and suggests that such populations provide a proper setting for 

additional mechanistic studies related to lipid metabolism. 

Network analysis showed that lipid species are correlated and co-regulated, both within 

and across lipid classes. This resonates with the underlying fact that any change in a lipid 

metabolic pathway induced by an experimental or physiological intervention will almost assuredly 

result in compensatory changes in other pathways affecting discrete lipid pools (Farese et al., 

2012). Our findings furthermore demonstrate that within the same lipid class, some lipid species 

are associated with healthy metabolic traits and others with unhealthy metabolic traits, providing 

testimony to the fact that all lipid species in a class do not have the same physiological impact 

(Farese et al., 2012; Quehenberger and Dennis, 2011; Rhee et al., 2011). We tested this 

computational finding by comparing the lipidome of plasma (this study) and liver (Jha et al., 2018) 

and identified plasma lipids that are reflective of liver lipid accumulation in NAFLD across diets 

and genetic background. Our results demonstrate that pro-NAFLD TAG signatures have fewer 

double bonds compared to the anti-NAFLD TAG signatures. These findings are in line with a 

previous study in humans showing that TAGs with lower carbon and double bond content were 

associated with increased risk of diabetes (Rhee et al., 2011) and therefore, underscores the 

potential of mouse population genetics for translational research. Indeed, we validated the TAG 

signatures in another dietary model of NAFLD and in human NAFLD subjects with consistent 

results. 

Some technical limitations in this study need to be considered. First, our lipidomic platform 

did not provide a complete coverage of the whole plasma lipidome. Many lipid classes, including 

ceramides, lysophospholipids, cholesterol esters etc., were not part of our validated lipidomics 

method at the time these measurements were made. However, our goal was to measure a 

substantial subset of the plasma lipidome across hundreds of samples in the most accurate way, 

and by the simplest method, from only 20 µl of plasma, in order to power QTL and other systems 
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analyses. Second, our measurements do not provide absolute quantification of lipid species. 

Since the major thrust of this work is the identification of genetic loci regulating lipid levels and 

the association of lipid species with metabolic phenotypes rather than providing absolute 

concentrations for lipid species. We acknowledge that more work is required to extend our other 

genetic and phenotypic findings, which is beyond the scope of this current article. This resource, 

however, lays the foundation for future mechanistic insight into the complex biology of lipids. 

In conclusion, this study uncovers the potential of plasma lipidomics combined with 

systems genetics approaches in a mouse population to identify potent markers for human health 

and disease. Identifying genes and genetic variants associated with plasma lipid species enriches 

our understanding of biochemical pathways and the substrate specificity of numerous enzymes 

associated with lipid metabolism, while at the same time facilitating the design of new therapies 

for metabolic diseases. The wealth of information on novel lQTLs and the phenotypic footprint of 

these lipid species furthermore provide a robust resource to the scientific community for further 

in-silico data analysis. Our findings illustrate the need, importance, and scope of studying 

individual lipid species and provide a platform for further mechanistic studies of lipid species, as 

demonstrated in our companion article (Jha et al., 2018). 
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Experimental procedures 

Mice 

BXD strains were obtained from University of Tennessee Health Science Center 

(Memphis, TN, USA) and JAX (The Jackson Laboratory) and bred at the École Polytechnique 

Fédérale de Lausanne (EPFL) animal facility for more than two generations before incorporation 

into the study. Cohorts of 49 BXD strains with ∼5 males each on CD and HFD were used in this 

study. Mice were fed a chow diet [CD; 2018 Teklad Global 18% Protein Rodent Diet (6.2% kcal 

from fat; 44.2% kcal from carbohydrate; 18.6% kcal from protein)] or a high fat diet [HFD; Harlan 

Teklad, TD.06414 (60.3% kcal from fat; 27.3% kcal from carbohydrate; 18.4% kcal from protein)] 

for 21 weeks, starting at 8 weeks of age. All mice were phenotyped as described (Williams et al., 

2016) (see Method Details section). At week 29, animals were fasted overnight before sacrifice 

at 9:00 am. Blood was collected from isoflurane anesthetized mice via the vena cavae, and 

immediately afterwards the animals were perfused with ice cold PBS, through the left ventricle. 

Blood was collected in lithium-heparin (LiHep)–coated tubes (Microvette CB 300 Hep-Lithium, 

Sarstedt) shaken and kept in ice. The blood samples were centrifuged at 4500 revolutions per 

minute (rpm) for 10 min at 4°C before being flash-frozen in liquid nitrogen. Due to insufficient 

plasma from all cohorts, lipidomics analysis could be performed only on 44 CD and 34 HFD strains 

with 2-5 mice/strain. 

For in vivo validation of the lipid markers in mice, lipidomics was performed on liver 

samples from our previous study (Gariani et al., 2016). In brief, male C57BL/6J mice were 

separated into three groups at the age of 7 weeks. Animal cohorts were fed a CD, a Western 

high-fat and high-sucrose (HFHS) diet [HFHS; Harlan Teklad, TD.08811, (44.6% kcal from fat; 

40.7% kcal from carbohydrate; 14.7% kcal from protein)] or a HFHS diet that was supplemented 

with NR (400 mg/kg/day) at week 16 till week 25 (9 weeks) (HFHS+NR). Mice were sacrificed 

after a 4hr fast at 9:00 am. All mice experiments were approved by the Swiss cantonal veterinary 

authorities of Vaud under licenses 2257, 2257.1 and 2465. 
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Fatty Acid Composition (%) in the Diet of BXD Cohorts 

Fatty acids Symbol CD HFD 

Palmitic C16:0 0.7 8.02 

Stearic C18:0 0.2 3.93 

Oleic C18:1n9 1.2 14.68 

Linoleic C18:2n6 3.1 4.7 

Linolenic C18:3n3 0.3 0.55 

Saturated fat 
 

0.9 12.48 

Monounsaturated fat 
 

1.3 16.05 

Polyunsaturated fat 
 

3.4 5.4 

Total fat 
 

6.2 34.3 

 

Human Subjects 

Human Study Design and Participants 

The prospective cohort consisted of patients aged ≥ 18 years with biopsy-proven NASH 

and healthy controls who agreed to participate in the study. Prospective sample collection was 

approved by local Ethic committee of Medical University of Vienna number: 474/2011 (patient), 

1022/2013 (controls) and all subjects were included after obtaining written inform consent. 

Subjects were excluded if they had history of current and past alcohol consumption of more than 

20-30 g per day, presence of other liver diseases, secondary causes of NAFLD, medications 

known to cause fatty liver during the previous 6 months and inability to provide informed consent. 

Demographic data of all participants (29 males, 15 females) were obtained by structured 

interview. Their clinical data is provided below. Liver biopsies were evaluated by a board certified 
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pathologist to score for histologic features, according to the histologic scoring system (NAFLD 

Activity Score) developed by Kleiner et al.,(Kleiner et al., 2005). Patients were classified 

into 3 groups based on fibrosis score: simple steatosis (no fibrosis), early stage NASH (fibrosis 

stage 1-2), advanced stage NASH (fibrosis stage 3-4). 

Human Plasma Biochemistry 

Fasting whole blood samples were obtained by venipuncture after an overnight fast of 8 

hours or more and processed for plasma within 2 hours on the day of liver biopsy. Routine blood 

tests were performed at the university hospital of Medical University of Vienna and included 

measures of ALT, AST, fasting TAG, cholesterol, glucose and insulin. The clinical information of 

the participants is provided in the table below. 

 
Healthy Steatosis NASH, Early Stage NASH, Adv. 

Stage 
p-value 

Age (years) 27.83 ± 1.64 42.14 ± 3.29 46.43 ± 3.77 58.18 ± 2.78 a,b,c,e,f 

Body weight 65.4 ± 1.92 105.14 ± 10.63 94.92 ± 4.79 111.64 ± 8.90 a,b,c 

BMI (Kg/m2) 21.89 ± 0.50 33.91 ± 3.21 32.37 ± 1.63 36.95 ± 2.79 a,b,c 

Fibroscan (kPa) 4.28 ± 0.28 9.03 ± 2.41 8.81 ± 1.21 19.58 ± 2.88 c,e,f 

Steatosis (%) - 38.57 ± 7.46 64.64 ± 5.70 45.45 ± 8.08 d 

NAS score - 3.29 ± 0.47 4.93 ± 0.29 4.64 ± 0.48 d 

ALT (U/L) 18.92 ± 1.43 50.14 ± 6.97 84.79 ± 15.34 70 ± 10.98 b,c 

AST (U/L) 22.50 ± 1.31 30.29 ± 2.73 44.79 ± 5.14 72.82 ± 27.52 c 

Cholesterol 
(mg/dl) 

173 ± 11.39 204.71 ± 25.37 179.21 ± 9.82 173.09 ± 9.76 
 

Triglyceride 
(mg/dl) 

73.25 ± 7.71 190.43 ± 36.18 167.14 ± 17.21 140.82 ± 2 a,b 

Fasting glucose  

(mg/dl) 

84.08 ± 2.30 100.14 ± 6.60 138.43 ± 15.81 120.18 ± 9.53 b 

Fasting insulin 
(μU/mL) 

6.70 ± 1.11 24.33 ± 10.06 19.34 ± 1.91 23.72 ± 3.16 a,c 

 

 
Subjects: n=44; 12 healthy, 7 steatosis, 14 early stage NASH, 11 adv. Stage NASH 

Values of mean ± SEM are represented.∗p<0.05 from one-way ANOVA with Tukey’s  multiple comparison test correction. 

Significant difference between groups are indicated as: 
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“a” between Healthy and Steatosis 

“b” between Healthy and NASH, early stage 

“c” between Healthy and NASH, Adv. Stage 

“d” between Steatosis and NASH, early stage 

“e” between Steatosis and NASH, Adv. Stage“f” between NASH, early stage and NASH, Adv. stage 

 

Metabolic Phenotyping of BXD Cohorts 

Metabolic phenotyping including, OGTT, heart rate, exercise performance test (VO2 max. 

and activity wheels) and EchoMRI) were performed as described (Williams et al., 2016) and 

elaborated below. 

Oral Glucose Tolerance Test (OGTT) 

At 17 weeks of age, after 9 weeks of dietary treatment, all cohorts underwent an oral 

glucose tolerance test. Mice were fasted overnight before the test, and fasted glucose was tested 

with a glucometer at the tail vein. Mice were then weighed and given an oral gavage of 20% 

glucose solution at 10 mL per kg of weight. Glucometer strips were used at 15, 30, 45, 60, 90, 

120, 150, and 180 min after the gavage to examine glucose response over time. Blood was also 

collected at 0 (pregavage), 15, and 30 min to examine insulin levels. 

Heart Rate 

Two weeks later, at 19 weeks of age, a noninvasive heart rate measurement was 

performed using a tail-cuff system (BP-2000 Blood Pressure Analysis System, Series II, Visitech 

Systems) over 4 days. The first 2 days were considered as adaptation to the apparatus, and the 

second 2 days were used for data analysis, and heart rate measurements were averaged across 

both days. Outliers on a per-measurement basis were removed, but outlier mice were retained. 

Exercise Performance Test 

At 23 weeks of age, all mice performed a VO2 max treadmill experiment (pre-training) 

using the Metabolic Modular Treadmill (Columbus Instruments). For the first 15 min in the 

machine for each mouse, the treadmill was off while basal respiratory parameters were 



100 
 

calculated. The last 2 minutes of data before the treadmill turned on were considered basal levels 

(most mice spend the first few minutes exploring the device). The treadmill then started at a pace 

of 4.8 m per minute (m/min), followed by a gradual increase over 60 s to 9 m/min, then 4 min at 

that pace before increasing to 12 m/min over 60 s, then four min at that pace before increasing to 

15 m/min over 60 s, then 4 min at that pace, then the speed increased continuously by 0.015 m 

per second (or +0.9 m/min) thereafter until the end of the experiment at 63.5 min, 1354.5 m, or 

when the mouse is exhausted. CD cohorts ran against a 10° incline, whereas HFD cohorts were 

set at 0°. For this test, no mice reached the maximum distance recorded by the machine—all 

were taken out when exhausted (considered as inability to run). The distance run, maximum VO2, 

and maximum RER were recorded. Maximum VO2 and RER were taken by averaging the last ten 

measurements. Immediately after the treadmill experiment, mice were placed in individual open-

air cages with ad libitum access to activity running wheels (Bioseb BIO-ACTIVW-M, Vitrolles, 

France) for 10 days. For most strains (with some exceptions), all 10 days of activity wheel usage 

was recorded, for others the average of last 24 hrs was taken. This running distance constitutes 

the "24hr run distance" phenotype. After the 10th day, at ∼25 weeks of age, mice underwent an 

identical VO2 max treadmill experiment (post-training) as described above at 23 weeks of age. 

After this experiment, mice were returned to their standard housing cages—individually—for 

4 weeks. Mice were fasted overnight before they were sacrificed. 

Body Composition (EchoMRI) 

In addition to the body weight measurements taken each week and before each 

phenotyping experiment, body composition was recorded at 16, 23, and 25 weeks of age. To do 

so, each mouse was placed briefly in an EchoMRI (magnetic resonance imaging) machine (the 

3-in-1, EchoMedical Systems), where lean and fat mass are recorded, along with total body 

weight, taking ∼1 min per individual. All tests were normalized to total body weight in our 

analyses. 

TAG Measurement of BXD Livers 
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For BXDs, 15μl of the liver lipid extract (same extract as used for liver lipid MS 

measurement, see companion article (Jha et al., 2018) was used for TAG quantification using the 

Serum Triglyceride determination kit (Sigma-Aldrich), as per manufacturer’s instructions. The 

organic solvent mix used for dissolving lipids for the MS (mixture of acetonitrile (ACN)/isopropyl 

alcohol (IPA)/water (H2O), (65:30:5, v/v/v, 100μL)) was used as blank and for standard curve. 

NAD+ Measurement of C57BL/6J Livers 

∼20 mg of frozen liver samples were used for NAD+ extraction in 10% perchloric acid and 

neutralized in 3MK2CO3 on ice. After centrifugation, the supernatant was filtered and the internal 

standard (NAD-C13) was added and loaded onto a column (150 Å∼ 2.1 mm; Kinetex EVO C18, 

100 Å). HPLC was run for 1 min at a flow rate of 300 ml/min with 100% buffer A (Methanol/H2O, 

80/20% v,v). Then, a linear gradient to 100% buffer B [H2O + 5mM ammonium acetate] was 

performed (at 1 to 6 min). Buffer B (100%) was maintained for 3 min (at 6 to 9 min), and then a 

linear gradient back to 100% buffer A (at 9 to 13 min) began. Buffer A was then maintained at 

100% until the end (at 13 to 18 min). NAD+ eluted as a sharp peak at 3.3 min and was quantified 

on the basis of the peak area ratio between NAD+ and the internal standard and normalized to 

tissue weight. 

Plasma Clinical Traits of BXD Cohorts 

Plasma parameters were measured on 2 times diluted samples (1:1 ratio of plasma to 

diluent) using Dimension®Xpand Plus (Siemens Healthcare Diagnostics AG, Dudingen, 

Switzerland). The biochemical tests were performed according to the manufacturer instructions 

for each parameters: AST (Siemens Healthcare, DF41A), ALT (Siemens Healthcare, DF143), 

Glucose (Siemens Healthcare, DF40), HDL (Siemens Healthcare, DF48B), LDL (Siemens 

Healthcare, DF131), Cholesterol (Siemens Healthcare, DF27), LDH (Siemens Healthcare, DF54), 

TG (Siemens Healthcare, DF69A) and FFA (FUJIFILM Wako Dignostics, NEFA-HR (2)). Insulin 

concentration was measured with an ELISA assay kit (Mouse Insulin ELISA Kit; Mercodia). 
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Clinical traits used for correlation of lipid signatures with metabolic phenotypes in 

C57BL/6J mice (Figure 6B) were obtained from our previous study (Gariani et al., 2016). BXD 

metabolic and clinical data can be obtained from (Williams et al., 2016) and also available on 

GeneNetwork (http://www.genenetwork.org). 

 

Lipidomics Sample Preparation and Analysis 

Internal Standards (IS) Used 

For BXD plasma samples we used Q6, PC(15:0/15:0), PS(17:0/17:0), PE(15:0/15:0), 

PA(17:0/17:0), PG(15:0/15:0), CL(56:0) and FA(15:0/15:0) as internal standards. For NAFLD lipid 

signature validation experiments in mice and human samples (Figure 6), we used the standard 

mix SPLASH® Lipidomix® Mass Spec Standard | 330707, supplemented with Q6 and CL(56:0). 

Extractions 

Lipid extraction was performed as previously described (Stefely et al., 2016). In brief, 20 μl 

of IS was added to 20 μl of thawed plasma samples and vortexed (30 s). Chloroform/methanol 

(1:1, v/v, 1000 μL) was added and samples vortexed (60 s). Subsequently, hydrochloric acid (1M, 

200 μL) was added to induce phase separation, followed by 60 s vortex and centrifugation (3,000 

g, 3 min, 4°C) to complete phase separation. 550 μL of the organic phase was dried under Ar2(g). 

The organic residue was reconstituted in a mixture of acetonitrile (ACN)/isopropyl alcohol 

(IPA)/water (H2O) (65:30:5, v/v/v, 100μL) by vortexing (60 s) and transferred to a glass vial for 

LC-MS analysis. Samples were stored at -80°C until further use. 

Discovery Lipidomics 

LC-MS analysis was performed on an Ascentis Express C18 column (150 mm x 2.1 mm 

x 2.7 μm particle size, Waters) using an Accela LC Pump (400 μL/min flow rate, Thermo Scientific, 

San Jose, CA). Mobile Phase A consisted of 10 mM ammonium acetate in ACN/H2O (70:30, v/v) 

containing 250 μL/L acetic acid. Mobile phase B consisted of 10 mM ammonium acetate in 

IPA/ACN (90:10, v/v) with the same additives. Mobile phase B started at 2% and increased to 
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85% over 20 min, then increased to 99% over 1 min and held there for 7 min. The column was 

reequilibrated for 2 min before the next injection. 10 μL of sample was injected for each run. The 

LC system was coupled to a Q Exactive mass spectrometer by a HESI II heated ESI source kept 

at 300°C. The inlet capillary was kept at 300°C, sheath gas was set to 25 units, and auxiliary gas 

to 10 units. Spray voltage was set to 3,000 V and the MS was operated in polarity switching mode. 

Ions from 200-1,600 m/z were isolated (Top 2) for fragmentation by stepped higher-energy 

collisional dissociation (HCD) (20, 30, 40). 

Lipid Species Measurement and Normalization 

The resulting spectra were processed using LipidSearch (Thermo Scientific), an 

automated lipid identification and quantification software in which acquired MS2s are compared 

to a lipid database containing more than 1.5 million lipid ions and their predicted fragment ions. 

Peaks were detected and lipids identified by comparing their fragmentation to predicted 

fragmentation pattern (m-score > 25). Results from each sample were aligned (RT tolerance of 

0.25 min, c-score >25) and quantified by integration of the MS1 peak. After elimination of all lipids 

with a grade C or lower, the remaining lipids identity and quantification was verified by manual 

inspection. Basic quality check and QTL analysis was performed on all datasets normalized 

differently (normalized to IS, to total lipids and to the lipid class), however, the dataset normalized 

to total lipids was used for all the analysis and figures shown in this paper due to overall low 

relative standard deviation in this dataset (data not shown). Normalization to total lipids also has 

two major advantages over the other normalization methods; 1) all lipids measured did not have 

a true internal standard, 2) for lipid classes that have few lipid species measured, normalizing to 

class will be largely driven by one or two highly abundant lipids. Quality assessments of the MS 

measurements was performed by comparing the reproducibility of the technical and extraction 

replicates (Figure S1). Note: lipid pairs marked with "_1" and "_2" (TAG 54:5, 54:6 and 58:10) 

indicate two isobaric peaks. The two peaks are chromatographically separated and consist of 
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unique combinations of fatty acid tails, despite the total number of carbon molecules and double 

bonds being equivalent. 

 

Quantification and Statistical Analysis 

Bioinformatic and Genetic Analyses 

Data normality was checked by the Shapiro-Wilk test in R, with a W ≥ 0.90 considered 

normal distribution. Correlations are Pearson’s r or Spearman’s rho as indicated in the figures. 

Student’s t-test was used for two groups comparisons in normal data of equal variances, and 

Welch’s t-test otherwise. Heatmaps were generated using the “heatmap.2” function in R. PCA 

analysis was performed using “prcomp” function in R. Unweighted correlation network graphs 

were performed using Spearman correlation, keeping all edges with p-values less than 1e-05 in 

both CD and HFD in R using the custom package imsbInfer, currently on Github 

(https://github.com/wolski/imsbInfer). GO-BP pathway enrichment analysis (Figure S5G) was 

performed using the R package “clusterProfiler” (Yu et al., 2012) 

(https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html). Enriched pathways 

after Benjamini-Hochberg correction (p < 0.05) are shown in the figures. 

Heritability (h2) was calculated by one-way (CD/HFD) or two-way (Mixed) ANOVA. The 

variance explained by GxE, diet and unexplained variance (non-dietary, non-genetic) was 

calculated by two-way ANOVA. QTL calculations were performed using the R/qtl (v 1.39-5) 

package (Broman et al., 2003) on the log2 transformed data. The BXD genotype used for QTL 

calculations is provided in the Supplemental Information (Table S8). Parametric QTL calculation 

was performed for normally distributed lipids and non-parametric QTLs were determined for lipids, 

those were not normally distributed. QTLs with logarithm of the odds ratio (LOD) score >2.5 and 

p-value <0.40 were used for all the analysis, which includes both significant (p-value < 0.05) and 

suggestive QTLs (p-value between 0.05 and 0.40) at genome-wide significant threshold, 

computed by permutation analysis. [Genome-wide p-values of 0.63 correspond approximately to 
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a local p-value of 0.05, i.e. which is significant in case of prior knowledge used to search for a 

QTL at that specific location]. 

All graphs and analyses were either made in R or GraphPad. For R, standard R plotting 

packages included in gplots or ggplot2—e.g., stripchart, plotCI, and barplot2 were used. Final 

figures were all prepared with Adobe Illustrator. 

QTL Candidate Gene Retrieval 

For retrieving lQTL genes, biomaRt was used in R to obtain list of genes located within 

each QTL region (+/- 5 Mb around the mapped SNP). Genes with nsSNP/ncSNP/indel in BXDs 

(Wang et al., 2016) under each lQTL with LOD score >2.5 and p-value <0.40 were then filtered 

and represented in Table S4 and use for all figures and tables reporting lQTL genes. 

BXD lQTL and Human GWAS Genes Overlap 

Human GWAS genes (having p-value <1e-07) were retrieved from the database 

GWASdb2 (http://jjwanglab.org/gwasdb) (Li et al., 2016) and complemented with the data from 

the GWAS Catalog (https://www.ebi.ac.uk/gwas/) (MacArthur et al., 2017). The categories of 

GWAS gene-sets retrieved from these databases included “Abnormality of lipid 

metabolism” and “fatty liver disease”. Additionally, published papers reporting the relevant GWAS 

studies, not included in the above-mentioned databases (in particular, the references indicated 

by their PMID in Table S5) were manually mined to retrieve the candidate genes having p-value 

<1e-07. Taken together, the compiled list comprised of 494 genes (Table S5). These GWAS 

genes were used for searching for their presence under the lQTLs. Only those lQTL genes (± 5 

Mb on either side of the peak QTL) having non-synonymous SNPs in BXDs were matched for any 

evidence of them being associated with abnormal lipid metabolism in human GWAS (i.e. matched 

for their presence in 494 human GWAS genes). 

 

Data and Software Availability 
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Raw MS data files are available through the CHORUS project data repository (Project ID 

1432, Experiment ID 3219). Additionally, normalized MS data is deposited in GeneNetwork 

(http://www.genenetwork.org) as a resource for public use. To access and analyze the data in 

GeneNetwork, choose “Mouse (mm10)” for “Species”, “BXD” for “Group”, “Phenotypes” for 

“Type”, “BXD Published Phenotype” for “Data Set and and enter “PlasmaLipidomics” for “Get 

Any”. Normalized MS data (normalized to total lipids) is provided in Table S1. Lipid QTLs are 

provided in Table S4. Lipid species and metabolic trait correlations is provided in Table S7. BXD 

genotype data used for QTL calculation is provided in Table S8. 
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Figures and tables

 

Figure 1. Dietary impact on the plasma lipidome.  

(A) Pairwise correlation to assess the sensitivity of MS to detect global diet- and strain-driven 

differences across 280 samples. Red dot represents mean; the three lines represent median, 

upper and lower quartile.  

(B) Heatmap of unsupervised hierarchical clustering of 129 lipid species for each BXD cohort.  

(C) PCA of all lipids in each BXD strain (indicated by the strain number).  

(D) Schematic representation of the systemic profile of saturated fatty acids (SFAs) and 

monounsaturated fatty acids (MUFAs) (top) and polyunsaturated fatty acids (PUFAs) (bottom) in 

BXDs, based on the levels of the free fatty acids (FFAs) measured. Significant changes (HFD 

versus CD; p < 0.05) for FFA levels and activity of the desaturases and elongases (ratio of product 

and precursor FFA) are shown as red for increase or blue for decrease.  
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(E) Pie chart showing the dietary enrichment of eight common side chain FAs in the lipid species 

in either diet. Number in the center indicates the total number of side chains having at least one 

indicated FA side chain. For each pie chart, the three colors represent the number of lipids (having 

the indicated FA side chain) increased in HFD versus CD (red), CD versus HFD (blue), or 

unchanged (gray).  
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Figure 2. Plasma lipid species have high heritability. 

(A) Heritability/variance explained of all lipid species. Number of lipids (out of 129) that have 

≥ 50% of their variance explained by the factors along the x-axis is indicated. Purple line 

represents median variance explained. 

(B and C) Example of two lipid species having high h2 (h2 > 50%) in both diets but highly affected 

by diet (TAG(52:2)) (B), or unaffected by diet (PC(20:1_22:6)) (C). Bar plot showing the variation 

of the two lipids in the BXD population is shown on the left and the percentage of h2/variance 

explained by the different factors is indicated in the graph as well as graphically represented on 

the right. Data are represented as ± SEM. 

See all Table S3. 
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Figure 3. Plasma lipids are influenced by many genomic loci, including several associated 

lipid levels in human GWAS. 

(A) Manhattan plot of lipid species. Lipids indicated in black bold font (DAG(36:3), TAG(54:1) and 

20:1) have the same QTL position in CD and HFD. lQTLs with p-value < 0.01 are indicated on the 

plot. The black and blue dotted lines represent significant and suggestive QTL threshold, 

respectively.  

(B) lQTLs for one of the three lipids (DAG(36:2)) having a QTL at the same locus in both diets 

(top-left). Select lQTL genes and their function are indicated below (bottom-left). Pearson 

correlation of DAG(36:2) alongside the expression of its liver lQTL genes in CD with metabolic 

syndrome phenotypes (right).  
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(C) Hotspot region comprising 14 lQTLs on chromosome 2. Genes associated with lipid 

metabolism in this region are indicated below.  

(D) Genes with protein coding variants under 306 lQTLs were screened for any known association 

with blood lipids and associated metabolic traits in human GWAS. The screening identified 40 

GWAS genes (with nsSNPs) from 93 lQTLs. 55/25 lipids contributed to 65/28 QTLs harboring 

GWAS genes in CD/HFD with 12 lipids in common across diet. 45/22 lipids mapped to one GWAS 

gene each in CD/HFD whereas, 10/3 lipids mapped to two different GWAS genes each. 

See also Tables S4 and S5.
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Figure 4. Association of lipid species with metabolic traits. 

(A and B) Spearman correlation network of all lipid species in CD (A) and HFD (B). Lipid species 

are color coded as 10 major lipid classes.  

(C and D) Heatmap with an unsupervised hierarchical clustering of Spearman’s correlation rho 

value of 36 lipids with metabolic phenotypes. These 36 lipids show the same correlation trend 

with metabolic in both CD (C) and HFD (D). The horizontal green phenotype cluster represents 

healthy metabolic traits, whereas the red cluster represents unhealthy metabolic traits. The 

vertical green lipid cluster represents the healthy markers of metabolic health/fitness, whereas 

the red cluster represents the unhealthy markers of metabolic health/fitness. Table S6 provides 

the rho and p values for each lipid-phenotype correlation. 

See also Figure S3 and Table S6. 
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Figure 5. Identification of lipid species as markers of NAFLD. 

(A and B) Plasma and liver TAG concentration (A) and correlation (B) in BXD cohorts. Data are 

represented as means ± SEM. 

(C-D) 55 common lipid species between plasma and liver were correlated using Spearman’s 

method. (C) Histogram of the rho correlation value of these 55 lipid pairs in CD (left) and HFD 

(right). (D) Correlation of rho values between CD and HFD from (C) to identify lipids, which behave 

similarly despite the dietary switch. Green dots indicate lipid species with positive correlation 

(wherein dark green dots are significant; p < 0.05), red and orange dot indicates lipids with 

negative correlation (wherein red dot is significant; p < 0.05). Purple dots indicate lipid species 

with opposite correlation in CD and HFD, reflective of GxE effect.  

(E) Pearson correlation of nine significant lipid species identified in (D) (dark green and red dots) 

in liver and plasma.  
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(F) Correlation matrix showing the Pearson correlation of the 9 lipids, alongside plasma and liver 

TAG with NAFLD readouts.  

See also Figure S4 and Table S7.
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Figure 6. Validation of NAFLD TAG signatures in mice and humans. 

(A) Levels of pro- and anti- NAFLD markers in C57BL/6J mice fed on CD, high-fat high-sucrose-

diet (HFHS) and HFHS diet supplemented with NR, 9 weeks after the initiation of HFHS diet (NR). 

Data are represented as means ± SEM. 

(B) Pearson correlation matrix of the pro- and anti-NAFLD markers with NAFLD readouts 

including the NAS score (NAFLD activity score) and liver NAD+ levels.  

(C) Levels of plasma NAFLD signatures in human subjects with various degrees of NAFLD. Data 

are represented as means ± SEM.  

(D) Pearson correlation matrix of the NAFLD signatures with NAFLD readouts in human subjects. 

(E) Pearson correlation of Atgl expression in subcutaneous WAT with pro- and anti-NAFLD 
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plasma TAG signatures in BXD strains. For mice: n=6-9 per group. For human subjects: n=12, 

healthy; n=7, steatosis; n=14, early stage NASH; n=11, advanced stage NASH. Differences in 

mean TAG species were compared using two-sample t tests. *p<0.05, **p<0.01, ***p<0.001. 

See also Figure S5.  
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LIPID Diet Chr : Mb LOD Gene @ chr, Mb GWAS 
Phenotype  

GWAS validated PMID 

DAG(18:2_16:0) CD Chr1: 116.10 2.7 Insig2 @chr1, 121.30 TC, LDL-C 24097068 

TAG[48:0, 50:0] CD Chr1: 172.17 3.3 Fmn2 @chr1, 174.50 TG 23063622 

PC(32:2) HFD Chr1: 176.20 3.2       

PI(20:4_18:0) CD Chr2: 60.44 2.9 Ifih1 @chr2, 62.59 T1D 17554260 

PC(22:6_16:0) CD Chr2: 60.44 2.9 Grb14 @chr2, 64.91 HDL-C, BMI 24097068, 25673412 

PC(19:0_22:6) CD Chr2: 61.07 3.6 Cobll1 @chr2, 65.08 HDL-C, BMI 24097068, 25673412 

DAG(18:2_18:2) CD Chr2: 98.18 3.8 Cd44 @chr2, 102.81 TG, TC, HDL-C 23063622 

TAG(54:6)_2, PC(36:1) CD Chr2: 98.18 3.1     

PC(16:0_18:1) CD Chr2: 100.98 3.7     

TAG[51:4, 52:4, 52:5, 54:7]  CD Chr2: 101.38 6.1     

PC(18:0_20:5) CD Chr2: 101.72 2.9     

Oleic acid CD Chr2: 104.01 3.4       

Eicosenoic acid CD Chr2: 115.49 3.2 Plcb2 @chr2, 118.70 TG 23063622 

PE(18:1_18:2) CD Chr2: 115.50 2.9 Capn3 @chr2, 120.46 TG 20686565, 24097068  

PE(16:0_18:2) CD Chr2: 115.87 4.2 Ubr1 @chr2, 120.86 TG 25961943 

TAG(58:9) CD Chr2: 168.43 3.0 Plcg1 @chr2, 160.73 TC 27790247 

TAG(54:6)_2 HFD Chr2: 161.74 3.0 Cd40 @chr2, 165.05 TG 23063622 

PC(16:0_18:1) HFD Chr2: 163.54 2.6       

DAG(18:1_18:1) CD Chr3: 28.72 4.1 Slc2a2 @chr3, 28.69 Fasting glucose 20081858 

DAG(18:1_18:1) HFD Chr3: 33.75 6.1       

PC(36:2) CD Chr3: 134.24 2.8 Mttp @chr3, 138.089 TG 19060911 

Nervonic acid CD Chr4: 125.58 2.8 Macf1 @chr4, 123.34 HDL-C 25961943 

PC(18:0_16:0) CD Chr4: 128.85 3.0 Pigv @chr4, 133.66 TG, LDL-C,HDL-C 24097068, 28334899 

TAG(48:3) CD Chr5: 24.30 2.7 Nos3 @chr5, 24.36 TG, CAD  23063622, 26343387 

TAG(50:3) CD Chr5: 29.53 3.5     

Eicosenoic acid HFD Chr5: 21.20 3.3       

TAG(53:2) CD Chr5: 72.02 3.2 Corin @chr5, 72.30 TG 23063622 

TAG(56:2) CD Chr5: 72.31 2.8     

TAG(51:1) CD Chr5: 73.34 2.6     

TAG[52:1, 54:1] CD Chr5: 73.63 4.2       

PC(17:1_18:2) HFD Chr5: 104.14 2.8 Klhl8 @chr5, 103.86 TG, HDL-C 28334899 

PC(16:0e_20:4) HFD Chr5: 106.04 2.7       

PC(32:2) CD Chr6: 82.5 5.5 Alms1 @chr6, 85.58 TG, TC, HDL-C,  23063622 

TAG(56:5) CD Chr6: 86.27 2.7  LDL-C   

TAG(53:3) CD Chr6: 87.14 2.6       

PE(20:0e_22:6) CD Chr7: 23.78 2.9 Apoe @chr7, 19.69 TC, HDL-C, LDL-C 25961943, 28371326 

DAG(18:1_18:2), PC(34:2) CD Chr7: 24.50 3.1     

PC(16:0_18:1), PC(33:1) HFD Chr7: 17.13 3.0     

TAG(50:3) HFD Chr7: 19.25 2.7       

PC(20:0_22:6) CD Chr8: 30.89 3.1 Ppp1r3b @chr8, 35.37 TC, HDL-C,  25961943, 20686565, 

PI(18:0_18:2) HFD Chr8: 30.62 2.7  LDL-C, PL 21829377 

PE(18:0_18:2), TAG(49:2) HFD Chr8: 30.82 3.3     

TAG(58:4) CD Chr8: 43.37 2.8 Msr1 @chr8, 39.58 TG 23063622 

PC(16:0_18:1) CD Chr8: 44.62 3.2       

PC(16:0e_20:4) CD Chr9: 99.75 2.7 Pccb @chr9, 100.98 TG, HDL-C 24097068, 25961943 

PC(20:4_22:6), PC(38:2) CD Chr9: 110.75 3.3 Acad11 @chr9, 104.06 HDL-C, LDL-C 28334899, 24097068  

PE(20:4_18:0) HFD Chr9: 105.94 2.9       

PC(32:2) CD Chr11: 73.26 2.8 Aloxe3 @chr11, 69.12 TG 23063622 

PE[(16:0_18:1), (18:1_18:2)] CD Chr11: 73.26 4.3 Dlg4 @chr11, 70.017 TC, LDL-C 24097068 

Nisinic acid CD Chr11: 73.64 3.0 Pld2 @chr11, 70.54 PL, TG 22359512, 25961943 

TAG(54:2) HFD Chr11: 104.68 2.9 Mpp3 @chr11, 101.99 TG 24097068 

        Cd300lg @chr11, 102.04 HDL-C 28270201 

FA: [16:0, 20:4, 22:6] CD Chr11: 120.48 5.6 Srp68 @chr11, 116.24 TG 23063622 

TAG[(54:6)_1, 51:4] CD Chr11: 120.48 2.6     

FA: [18:0, 20:3], PC(18:0_16:0) CD Chr11: 120.95 4.0     
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TAG[50:4, 52:5, 48:3] CD Chr11: 120.95 3.1     

PC(20:4_18:0) CD Chr11: 120.95 2.6       

PC(19:0_22:6) CD Chr13: 39.32 2.9 Sycp2l @chr13, 41.11 PL 21829377 

PC(20:2_22:6) CD Chr13: 95.82 2.8 Poc5 @chr13, 96.38 Obesity 23563607 

DHA CD Chr13: 97.78 3.4 Ankdd1b @chr13, 96.41 TG 19060911 

Eicosenoic acid CD Chr13: 99.68 3.2 Polk @chr13, 96.48 TC, LDL-C 28270201, 28334899  

DGLA HFD Chr13: 91.20 2.9     

Nisinic acid HFD Chr13: 91.47 2.8     

PC(38:2) HFD Chr13: 97.51 2.9     

Eicosenoic acid HFD Chr13: 97.78 4.2     

PC(20:4_22:6) HFD Chr13: 99.86 2.8     

TAG(48:1) HFD Chr13: 101.86 3.1     

TAG(56:8) HFD Chr13: 102.64 3.7       

PE(20:2_22:6) HFD Chr13: 107.03 2.8 Map3k1 @chr13, 111.74 TG 28334899 

PE[(18:0e_18:1), (18:0e_18:2)] HFD Chr13: 115.53 4.4     

PE(20:0e_18:2) HFD Chr13: 115.53 3.3       

TAG(52:3) CD Chr16: 10.70 2.6 Rmi2 @chr16, 10.83 HDL-C 25961943 

        Pdxdc1 @chr16, 13.83 TG 28334899 

TAG(56:8 HFD Chr17: 31.93 2.6 Angptl4 @chr17, 33.77 TG, HDL-C 25961943 

TAG(54:7) HFD Chr17: 33.11 3.1 Btnl2 @chr17, 34.35 Lipid levels 19936222 

PE(18:0e_22:6) CD Chr19: 60.04 2.7 Pnliprp2 @chr19, 58.75 PL 22359512 

GWAS phenotype abbreviation: TG, triglyceride; TC, total cholesterol; HDL-C, HDL cholesterol; LDL-C, LDL cholesterol; PL, phospholipid; BMI, body 
mass index; T1D: Type 1 diabetes; CAD, coronary artery disease 

Table 1. lQTLs harboring genes associated with abnormal lipid metabolism in human 

GWAS. 

Each box (27 loci) of the table represents the lQTL(s) in either diet, harboring the indicated 40 

GWAS genes (having protein coding variants in BXDs) and the GWAS phenotype associated with 

the gene(s). Genes in red font are syntenic in mice and humans (6 loci). GWAS phenotype 

abbreviation: TG, triglyceride; TC, total cholesterol; HDL-C, HDL cholesterol; LDL-C, LDL 

cholesterol; PL, phospholipid; BMI, body mass index; T1D, type 1 diabetes; CAD, coronary artery 

disease. An extended version of this table is provided in Table S5. 

See also Figure S2 and Table S5.  
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Figure S1. Quality assessment of MS measurements and reproducibility. Related to Figure 

1.  

(A) Heatmap of correlations between technical replicates (from separate runs) of six plasma 

samples showing high Spearman correlation between the replicates vs. between the strains.  

(B) Heatmap of extraction replicates of the same liver sample extracted and run in 12 batches, 

equivalent to the 12 batches of the BXD samples.  
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Figure S2. lQTLs harboring genes associated with abnormal lipid metabolism in human 

GWAS. Related to Figure 3.  

(A) QTL locus for TAG(50:3) enclosing the human GWAS gene: Gckr and Lrpap1.  

(B) QTL hotspot locus for the 6 lipid species on mouse Chr19 enclosing the GWAS genes: Fads 

1, 2, 3. The syntenic region on human Chr11 is shown below. The genomic location of the genes 

is shown in green in the positive stand for FADS2 and in the negative strand for FADS1 and 

FADS3. The GWAS phenotypes associated with the genes is indicated on the right. Blue dotted 

line represents the suggestive QTL threshold.  
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Figure S3. Association of lipid species with metabolic traits. Related to Figure 4 and Table 

S6.  

(A and B) Heatmap with an unsupervised hierarchical clustering of Spearman’s correlation rho of 

(A) all the lipid species and metabolic traits in CD (top) and HFD (bottom); (B) select lipid species 

in each diet which show maximum number of significant correlation with metabolic traits (the 

lateral lipid species cluster of panel A). For panel B, the vertical green lipid cluster represents 

healthy lipids (specific and common in each diet), whereas the vertical red cluster represents the 

unhealthy lipids (specific and common in each diet). For A and B the horizontal green phenotype 

cluster represents healthy metabolic traits whereas the red cluster represents unhealthy metabolic 

traits. Red indicates positive correlation and blue negative correlation.  
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Figure S4. Plasma and liver levels of 9 TAG species having the most significant correlation 

between plasma and liver in both diets. Related to Figure 5 and Table S2.  

Dot plot showing the levels of 9 shortlisted lipids as potential lipid signatures of NAFLD in plasma 

and liver. Lipids in red font indicate pro-NAFLD signatures and those in blue font indicate anti-

NAFLD signatures. P-value < 0.05 by Welch’s t-test was considered significant between diets.  
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Figure S5. Assessment of TAG NAFLD signatures in mice and humans and their 

association with biosynthetic pathways. Related to Figure 6.  

(A-C) C57BL/6J mice: (A) Schematic illustration of the three experimental groups used for 

validation of the NAFLD signatures; mice on CD (green), mice on HFHS diet from 7-25 weeks 

(grey), mice starting HFHS diet at 7 weeks and treated with nicotinamide riboside (NR) 9 weeks 

after the start of HFHS diet until the end of the study (for 9 weeks - therapeutic intervention, 

magenta). (B) Liver total TAG concentration (normalized to liver weight). (C) Principal component 

analysis (PCA) of 55 TAG species shows clear separation of only the CD group on PC1.  

(D and E) Human subjects: (D) PCA of 55 TAG species measured in human plasma from healthy, 

steatosis and NASH patients. (E) Plasma total TAG levels in human samples.  

(F and G) BXDs: (F) Correlation matrix showing the Pearson correlation of Atgl mRNA expression 

in four different metabolic tissues with the pro- and anti-NAFLD TAG signatures in plasma (left) 

and liver (right) for both diets. (G) Gene ontology biological processes (GO BP) associated with 

NAFLD TAG signatures. Pathway enrichment analysis was performed with the liver transcripts 

that significantly correlated (both positively and negatively) with the PC1 of pro- and antiNAFLD 

signatures in liver and plasma. Red and blue cells represent the enriched pathways with the 

positively (scale bar: log10 p-value) and negatively (scale bar: -log10 p-value) correlated liver 

transcripts respectively. For B and E differences in mean TAG levels were compared using two-

sample t tests. *p<0.001. 

 

*All supplemental tables are available with the published manuscript at DOI: 

10.1016/j.cels.2018.05.009 
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Summary 

 Deletions on chromosome 2p21 are associated with hypotonia-cystinuria syndrome 

(HCS), a rare disease characterized by low muscle tone (hypotonia), growth impairment, and 

buildup of cysteine in the urine. Initial patients were found to have a microdeletion of a portion of 

the genes SLC3A1, which produces a subunit of an amino acid transporter, and PREPL, a 

putative peptidase of unknown function. Recent studies suggest that loss of functional PREPL 

alone causes the hypotonia associated with HCS. However, the mechanism by which PREPL 

causes the disease remains unknown, in large part because, to date, it has no known function. 

Though sequence homology suggests that PREPL is a peptidase no peptide substrate has been 

identified. Interestingly, though it shares the highest homology with prolyl endopeptidase (PREP), 

other members of the family include peptidases, as well as esterases and lipases. Strikingly, we 

find that though PREPL was not active against a peptide substrate, it exhibited specific esterase 

activity against 4-nitrophenyl octonoate, dependent on the nucleophilic serine in the active site. 

Though the activity was reproducible, it was small, making it unlikely that 4-nitrophenyl octonoate 

was the substrate in vivo. Convinced that PREPL cleaves ester bonds, but uncertain if the in vivo 

substrate was a small molecule ester or a larger molecule such as a lipid, we conducted lipidomics 

and metabolomics analyses in PREPL knockout mice and cell culture. Indeed, loss of PREPL 

caused alterations in the lipid profiles compared to wild type; however, our current lipid search 

methods could not determine the specific identity of the lipids being altered. Future work will focus 

on unambiguous lipid identification and biological follow-up by examining structural similarities 

among lipids specifically altered in the knockout models and in vitro assays to determine if 

alterations in these candidate lipids are in direct consequence to lack of active PREPL.   
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Introduction 

 Hypotonia-cystinuria syndrome (HCS) is rare disease associated with low muscle tone, 

slow growth, large amounts of cysteine in the urine, and overall failure to thrive (Jaeken et al., 

2006; Lone et al., 2014; Regal et al., 2014). In affected individuals, sequencing revealed various 

microdeletions of SLC3A1 and PREPL genes on chromosome 2 (Figure 1A). Defects in one of 

these, SLC3A1 are known to cause cystinuria. SLC3A1 is a component of an amino acid 

transporter and defects inhibit the reabsorption of amino acids, especially cysteine, causing 

excess cysteine to be excreted in urine (Calonge et al., 1994; Font-Llitjos et al., 2005; Goodyer, 

2004). Since expression of the flanking genes (PPM1B and CAMKMT) was unchanged in the 

initial characterization of HCS (Jaeken et al., 2006), the additional symptoms were attributed to 

the deletion of PREPL. The role of SLC3A1 has since been confirmed when cystinuria was absent 

in individuals exhibiting only deletions in PREPL and CAMKMT (Bartholdi et al., 2013). More 

severe forms of the disease have been associated with additional deletions in CAMKMT (atypical 

HCS, Figure 1A) and both flanking genes, PPM1B and CAMKMT, (2p21 deletion syndrome, 

Figure 1A) (Chabrol et al., 2008; Parvari et al., 2005).  

In order to study the role of PREPL in the non-cystinuria symptoms of HCS, a mouse 

model consisting of a full-body PREPL null (PREPL-/-) mouse was created (Lone et al., 2014). 

PREPL-/- mice suffered minor growth defects and hypotonia. Moreover, around the same time, an 

individual with mutation that lead to loss of PREPL, but did not affect neighboring genes, was 

described, with subsequent work showing that similar mutations cause hypotonia and growth 

hormone deficiency (Regal et al., 2014; Silva et al., 2018). These results simultaneously and 

separately support the hypothesis that deletion of PREPL in humans is responsible for the same 

growth defect and hypotonia symptoms identified in mice. However, as the function of PREPL 

has yet to be elucidated, the role PREPL in patients with HCS is difficult to establish and has yet 

to be defined. 
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First identified in brain, due to its strong reaction with a biotinylated fluorophosphonate, 

(FP-biotin), an irreversible inhibitor of serine hydrolases (Liu et al., 1999), prolyl endopeptidase-

like protein (PREPL) gets its name due to the sequence homology it shares with 

prolylendopeptidase (PREP) and oligopeptidase B, which are both well-studied peptidases. 

Although it is ubiquitously expressed, expression levels are highest in the brain, and to a lesser 

extent skeletal muscle, heart, and kidney (Jaeken et al., 2006). Although sequence homology 

between PREPL and PREP and oligopeptidase B low (29% and 44%, respectively), they are the 

closest homologs by primary sequence. Although, like its homologs, PREPL is thought to be a 

peptidase, no peptidase activity has been observed, despite multiple efforts (Boonen et al., 2011; 

Szeltner et al., 2005).  

 Like PREP, PREPL is a member of the S9 family of serine hydrolases, characterized by 

the presence of a catalytic triad consisting of an aspartate (D), serine (S) and histidine (H). 

Although no peptidase activity has been found for PREPL, the catalytic triad is conserved 

(Martens et al., 2006). Furthermore, its ability to bind FP-biotin indicates that the catalytic serine 

can still act as a nucleophile, suggesting that, at least in vivo, the protein is likely active. 

Intriguingly, the S9 family of serine hydrolases is not limited to peptidases. Other family members 

include esterases/lipases (PAFAH2, PLA2G7) (Rice et al., 1998; Stafforini et al., 1987) and one 

family member, APEH, has even been found to have both esterase and peptidase activity. Taken 

together, this data suggests that despite inability to identify a peptide substrate, PREPL is likely 

an active protein – perhaps acting as an esterase or lipase instead of a peptidase. 

PREPL has two main protein isoforms, short (PREPLS) and long (PREPLL), which has an 

additional 89 amino acids (Figure 1B). These two proteins arise from seven distinct mRNA 

isoforms (Figure 1C), with isoforms 1-4 giving rise to the 638 aa PREPLS, while 5-7 generates the 

727 aa PREPLL isoform. The two proteins are identical except for the 89 additional amino acids 

on the N-terminus of the long isoform. Interestingly, these 89 amino acids contain a mitochondrial 
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localization sequence (MLS), while PREPLS is cytosolic (Radhakrishnan et al., 2013). Both 

proteins maintain the catalytic triad, and it is therefore possible that they carry out the same 

function in both the cytosol and mitochondria. However, that is difficult to ascertain given that its 

enzymatic activity is, as yet, undefined. 

Although based on primary sequence PREPL looks similar to PREP, identification of a 

peptide substrate remains elusive despite many intense efforts. Moreover, based on these efforts 

it is possible that its substrate is not a peptide at all. Here we use a combination of structure 

predictions, in vitro activity assays, lipidomics, and metabolomics investigate the functional role 

of PREPL. Our data show that PREPL has structural similarity to PREP and other S9 serine 

hydrolases, that PREPL exhibits esterase activity in vitro, that PREPLL localizes to the 

mitochondria, and that PREPL-/- mice have altered brain mitochondrial lipid profiles. At present, 

our data suggest that PREP and PREPL have distinct functions in the cell, and that PREPL’s 

esterase activity may play an important role in growth and development that could contribute to 

its role in HCS. Future work will seek to identify specific lipid components that may be PREPL 

substrates, elucidate the roles played by PREPLS and PREPLL in altering lipid profiles, and 

determine how these functions contribute to HCS etiology. 
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Results 

 

PREPL exhibits sequence similarity to other members of the S9 family and maintains the 

catalytic triad 

 A sequence alignment reveals that PREPL shows substantial sequence similarity to 

members of the S9 family of serine hydrolases (Figure 2A). Like other members of the serine 

hydrolase superfamily, the S9 family is characterized by a catalytic triad consisting of a serine, 

aspartate, and histidine. The nucleophilic serine is surrounded by a GxSxG or AxSxG motif (Long 

and Cravatt, 2011). Specifically looking at the active site, it is clear that PREPL maintains the 

characteristic Ser-Asp-His catalytic triad required for the enzymatic activity of the other family 

members (Figure 2B). To more closely examine the structural similarities between PREPL and 

other family members, we attempted to crystallize PREPL. Though we were able to grow crystals, 

refinement proved difficult as we were never able to develop a completely satisfactory model. This 

resulted in only a fragmented model of the PREPL structure that did not include any of the active 

site residues. Therefore, we proceeded to use a structure prediction via Protein Homology/ 

analogY Recognition Engine V 2.0, Phyre2, (Kelley et al., 2015) to derive insight from a 

comparison of PREPL’s three-dimensional structure with the closest S9 family member homolog 

PREP. The Phyre model of the structure of PREPL (gray, MLS in blue) shows that in addition to 

sharing sequence homology with PREP (light blue), the secondary structure of the two proteins 

is also very similar (Figure 2C). Like PREP, PREPL appears to consist of an α/β hydrolase fold, 

characteristic of the S9 family (Long and Cravatt, 2011), in addition to a β propeller covering the 

central tunnel (Figure 2C). A view down the tunnel created by the β propeller further demonstrates 

structural similarity (Figure 2D). Though β propellers are hypothesized to aid in substrate 

specificity (Chen et al., 2011; Polgar, 1992), lacking known PREPL substrates leaves us unable 

to speculate on its role in PREPL’s activity. 
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The S9 serine hydrolase family contains esterases in addition to peptidases 

Including PREP, the S9 serine hydrolase family contains a number of peptidases that 

cleave at prolyl bonds, including a number of dipeptidyl peptidases (DPP) (Figure 2A). While the 

exact role of PREP, DPP8, and DPP9 remain unclear, DPP4 regulates the levels of glucagon-like 

peptide-1, having important pharmaceutical implications. However, though PREPL bears 

significant sequence homology to PREP, to date no peptide substrates have been identified, 

despite extensive investigation (Boonen et al., 2011; Szeltner et al., 2005). Our data is consistent 

with this, as PREPL lacked activity against known PREP substrates in our hands. Interestingly, 

other members of the S9 family included not only peptidases but also esterases/lipases PAFAH2 

and PLA2G7 which both catalyze the degradation of platelet-activating factor (Figure 2A). 

Additionally, one member APEH, an acylaminoacyl-peptide hydrolase has been shown to exhibit 

both esterase and peptidase activity (Figure 2A) (Bartlam et al., 2004; Scaloni et al., 1994; Wang 

et al., 2006), a feature which is not uncommon between esterases and acylpeptide hydrolases.  

Due to the lack of discernible peptidase activity and the possibility that PREPL may have 

esterase activity like other S9 family members, we decided to compare the active site of PREPL 

to other known esterases, lipases, and peptidases (Figure 2E). Immediately evident upon close 

examination of the active site structures of PREP, oligopeptidase B, and PREPL is that instead 

of GxSxG motif surrounding the nucleophilic serine as seen for PREP and oligopeptidase B 

(OpdB), PREPL contains an AxSxG motif (Figure 2E). Interestingly, this motif is also found in 

LPLA2 and C1d1p, both lipases (Figure 2E). Furthermore, similar to a number of the lipases, 

including PAFAH2 and PLA2G2, PREPL contains an aspartate (D) near the histidine (H) of the 

catalytic triad which could act as the acyltransferase aspartate. 

 

PREPL exhibits specific activity against p-nitrophenyl ester substrates 

 In order to test whether PREPL exhibited esterase activity, we utilized an in vitro assay 

composed of various p-nitrophenyl esterase substrates (Figure 3A). Upon cleavage of the ester 
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bond p-nitrophenol is released, which absorbs at 405 nm, allowing for observance of development 

of the reaction. Although esterases and lipases both cleave ester bonds, their substrates differ 

dramatically. While esterases prefer small molecules or short chain fatty acids, lipases are 

equipped to cleave long fatty acid tails such as palmitate (C16). Because we were unsure whether 

PREPL would exhibit esterase activity, and we lacked any evidence as to whether chain length 

influenced specificity, we tested whether it had activity against substrates of varying chain lengths; 

two carbons (pNP-C2), four carbons (pNP-C4), eight carbons (pNP-C8), ten carbons (pNP-C10), 

twelve carbons (pNP-C12), and sixteen carbons (pNP-C16) (Figure 3B, dark gray bars). No 

activity against chain length longer than C10 was observed, and while there seems to be some 

activity against pNP-C2, due to autohydrolysis, it was difficult to determine whether the activity 

was enzyme specific. However, PREPL exhibited low, but reproducible activity against short-

medium length chains such as pNP-C4, pNP-C8, and pNP-C10. Importantly, the activity was 

abolished upon mutation of the catalytic serine (Figure 3B, light gray bars). Based on these 

results, pNP-C8 was used for all additional assays. Additionally, the esterase activity was 

dependent on substrate concentration (Figure 3C). Although non-linear, in general there was an 

association between higher concentrations of pNP-C8 and higher levels of enzymatic activity. 

To differentiate whether the esterase was specific to PREPL or due to the promiscuity of 

serine hydrolases, we purified PREP to test whether it too had esterase activity similar to PREPL. 

As an additional control, to ensure that we were using active PREP, we also tested for activity 

against the known PREP substrate Z-Gly-Pro-pNA, a peptide-like substrate that contains an 

amide instead of ester bond (Figure 3D). The promiscuity of serine hydrolases was apparent when 

the lipase control exhibited high levels of activity against pNP-C8 (3D, white bar). While PREPL 

was able to cleave pNP-C8, activity which was abolished upon mutation of the catalytic serine, 

PREP was not. As expected, PREPL showed no activity against the peptide substrate. Taken 

together, we have demonstrated that PREPL, despite its sequence homology to the peptidase 

PREP, is an active serine hydrolase that likely cleaves ester instead of peptide substrates. 
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PREPLL localizes to the mitochondria 

 PREPL has seven isoforms which give rise to two distinct proteins, a long and short 

isoform (PREPLL and PREPLS, respectively). Although PREPLS is more highly and universally 

expressed, PREPLL is more specifically expressed in brain and muscle tissue (Parvari et al., 2005) 

which could explain the marked hypotonia observed in HCS and PREPL deletion patients. Despite 

this fact, all previous studies of PREPL have focused solely on PREPLS (Lone et al., 2011; 

Radhakrishnan et al., 2013; Szeltner et al., 2005). 

Though PREPLS was previously found to be cytosolic (Radhakrishnan et al., 2013), recent 

studies have found to be localized to the mitochondrial matrix (Rhee et al., 2013). Interestingly, 

the additional 89 amino acids in PREPLL include a predicted mitochondrial localization sequence 

(MLS) (Figure 4A, blue font). We compared the localization of the two isoforms, which were 

tagged with FLAG at the C-terminus for detection via an anti-FLAG antibody, to that of green 

fluorescent protein with an N-terminal mitochondrial localization sequence (MLS-GFP) in HEK293 

cells using confocal microscopy (Figure 4B). Lack of overlap between PREPLS-FLAG and MLS-

GFP indicate that the short isoform is cytosolic (Figure 4B, top). However, PREPLL-FLAG 

colocalizes with MLS-GFP, indicating that addition of the predicted MLS in PREPLL localizes the 

protein to the mitochondria (Figure 4B, bottom). Interestingly, not only does the high density of 

mitochondria and large amount of ATP required in muscle tissue make it high susceptible to 

mitochondrial dysfunction, but hypotonia is also common symptom in a wide range of 

mitochondrial diseases, therefore, we hypothesize that it is the mitochondrial isoform, PREPLL, 

that is largely responsible for the symptoms seen in HCS and PREPL deletion patients. However, 

it should be noted that as both isoforms exhibit the same esterase activity in vitro (data not shown). 

Though it is unclear whether the two isoforms have unique functions or provide the same function 

in different cellular locations (Lewendon et al., 1988), our data suggests that PREPLL cannot be 

completely ignored in future studies. 
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PREPL-/- mouse brain mitochondria have altered lipid profiles compared to WT 

 Based on our in vitro activity assays we hypothesized that PREPL cleaved ester bonds. If 

true, one would expect loss of PREPL to alter the lipidomic or metabolic profile. To test this we 

utilized the available PREPL-/- mouse model and performed lipidomics and metabolomics (Figure 

5A). It is clear that PREPL cleaves ester bonds, but unclear if it works on lipids or small molecule 

esters, therefore both lipidomics and metabolomics were performed. We chose to focus on the 

brain because of PREPL’s high expression levels in the organ (Parvari et al., 2005). Furthermore, 

because hypotonia, one of the major symptoms of HCS and previously attributed to loss of 

functional PREPL (Jaeken et al., 2006; Regal et al., 2014; Silva et al., 2018), is commonly 

associated with mitochondrial dysfunction and an individual with a PREPL deletion was recently 

found to have defective complex IV activity (Legati et al., 2016), we limited our search to 

mitochondrial substrates by purifying mitochondria prior to lipid or metabolite extraction. In order 

to limit contamination from other organelles such as the endoplasmic reticulum (ER), mitochondria 

were purified using sucrose gradients. Three replicates of wild type (WT) and PREPL-/- were 

subjected to lipidomic and metabolomic analysis. 

 We identified 2,702 lipids and 191 metabolites across all samples. Due to interference 

from sucrose (data not shown) the metabolite data was sparse and no significant differences were 

identified; it is likely the interference masked metabolite differences and future work will endeavor 

to eliminate the sucrose gradient interference. We identified 28 lipids significantly altered in 

PREPL-/- mouse brain (q-value ≤ 0.05), suggesting that lack of PREPL influences lipid 

composition (Figure 5B). However, we were unable to unambiguously identify the lipid species, 

indicating that they were perhaps previously unknown/uncharacterized lipid species, or low 

abundance species that did not yield clear fragmentation spectra. Further work will include efforts 

to identify these lipids unambiguously and investigate them using in vitro assays with PREPL to 

determine substrate specificity.   
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Discussion 

Although PREPL has been implicated in HCS and is thought to be responsible for the 

hypotonia associated with the disease (Lone et al., 2014; Regal et al., 2014), the mechanism by 

which it affects muscle tone remains unknown in large part because its function remains elusive. 

Here, we found that the predicted MLS for the long isoform of PREPL (PREPL
L
), indeed targeted

the protein to the mitochondria while PREPL
S
 was cytosolic. However, it is unclear whether the

two isoforms perform distinct functions or the same function in different locations.  

PREPL and its closest homolog, prolylendopeptidase (PREP) are both members of the 

S9 family of serine hydrolases. Despite the fact that PREP is a known peptidase, to date no 

peptidase activity has been detected for PREPL (Boonen et al., 2011; Szeltner et al., 2005). Upon 

closer inspection of the family, we noticed that although a number of other members of the family 

were peptidases like PREP, there were a number that were esterases or lipases. Additionally, 

comparison of a structure model of PREPL to PREP indicate that despite lack of peptidase 

activity, the proteins’ three-dimensional structure is very similar. Analysis of the active site 

identified an AxSxG motif and HxxxD motif that exist in other lipases and esterases but not 

peptidases. Taken together, this data suggested that PREPL may cleave ester rather than amide 

bonds. 

Using in vitro assays, we demonstrated that PREPL exhibits specific esterase activity 

against pNP-C8 that is dependent on protein activity and substrate concentration. Despite only 

exhibiting low levels of activity, this is the first catalytic activity definitively attributed to PREPL. 

Importantly, PREP did not exhibit any activity against the ester substrate. 

Finally, we demonstrated that loss of PREPL in mice induces alterations in the brain 

mitochondrial lipidome.  (Though it remains unclear if PREPL works on a small ester molecule or 

longer fatty acid, metabolomic data was inconclusive). Due to limitations of lipid identification, 

though they were identified and quantified, none of these lipids could be unambiguously named. 
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Future work will focus on identifying these lipids. For example, other work from our lab has looked 

at the effect of loss of PREPL on HAP1 cells, a nearly haploid cell line. Using CRISPR technology, 

PREPL deletion was confirmed in two separate knockouts. One would expect species altered in 

both mouse and HAP1 cells to be likely candidates for PREPL substrates. However, it is difficult 

to compare the two datasets unless they are searched together, which remains to be done. 

Additionally, it is likely that many of these alterations are indirect targets, thus identification of any 

potential substrate would require biochemical follow-up. 

In summary, this study demonstrates the first documented catalytic activity of PREPL. 

Unlike its closest homolog, PREP, PREPL is an esterase. The ultimate goal is to identify an in 

vivo substrate of PREPL, though the current work falls short. Identification of in vivo substrate will 

help to understand and possibly treat the mechanism by which PREPL causes hypotonia and 

growth defects in HCS patients. Though the current work falls short of substrate identification, it 

serves as a starting point for future enzymatic analyses.  



143 
 

Experimental Procedures 

 

Sequence analysis 

Protein homologs were defined by Homologene and reciprocal protein BLAST searches (NCBI, 

2015). 

 

Structural model 

To create a structural model of the three-dimensional structure of PREPL, we used Phyre 2 

(Kelley et al., 2015). PyMOL was used to visualize and compare the PREPL model to the solved 

crystal structure of PREP (PDB:3DDU). 

 

Recombinant protein expression and purification 

Human PREPLS, PREPLL, and PREP. 8His-MBP-[TEV]-protein constructs were expressed and 

purified as previously described (Reidenbach et al., 2018; Stefely et al., 2015). In short, constructs 

were overexpressed in E. coli by autoinduction (Fox and Blommel, 2009). Cells were isolated and 

resuspended in Lysis Buffer [20 mM HEPES (pH 7.2), 300 mM NaCl, 10% glycerol, 5 mM 2-

mercaptoethanol (BME), 0.25 mM phenylmethylsulfonyl fluoride (PMSF)] (4 °C). Cells were lysed 

by sonication, lysate was clarified by sonication and purified using cobalt IMAC resin (Talon resin). 

His-tagged protein was eluted from the resin with Elution Buffer [20 mM HEPES (pH 7.2), 300 

mM NaCl, 10% glycerol, 5 mM BME, 0.25 mM PMSF, 100 mM imidazole] and concentrated. 

Following an exchange into Storage Buffer [20 mM HEPES (pH 7.2), 300 mM NaCl, 10% glycerol, 

5 mM BME] the 8His-MBP tag was cleaved with Δ238TEV protease (1:50, TEV/fusion protein, 

mass/mass) overnight. The TEV protease reaction mixture was mixed with cobalt IMAC resin 

(Talon resin), incubated (4 °C, 1 h) and the unbound proteins was collected, concentrated, and 

exchanged into storage buffer. Point mutations were introduced by PCR-based mutagenesis and 

confirmed by DNA sequencing and then were purified as described above. 
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pNP assay to assess protein activity 

Esterase activity was assayed by measuring the rate of hydrolysis of various p-nitrophenyl 

substrates at 37°C. Method adapted from (Gupta et al., 2002) for compatibility with small volumes 

and measurement with a plate reader. A reaction mixture of 30 µL enzyme extract, 200 µL Tris-

HCl buffer (50 mM Tris-HCl, 500 mM NaCl, 1 mM DTT, 1 mM EDTA, pH 8.0), and 0.75 mM pNP 

dissolved in Triton X-100 (1.25% of final volume) was prepared. The progress of p-nitrophenol 

release was measured by its absorption at 405 nm. Activity was calculated by determining the 

amount of p-nitrophenol released over time per amount of enzyme present (nmol/min/mg). 

 

Subcellular localization via confocal microscopy 

On the day prior to transfection, HEK293 cells were plated at a densityof 75,000 cells/well onto 

poly-D-lysine-coated coverslips in 6-well dishes. Cells were transiently transfected with a mix of 

1 μg pcDNA3.1 gene-FLAG, 0.5 μg plasmid encoding green fluorescent protein with an N-terminal 

mitochondrial localization sequence (MLS-GFP), 7.5 μg PEI, and 200 μL Opti-MEM. After 24 

hours, the cells were fixed (4% paraformaldehyde in PBS), permeabilized (0.2% Triton X-100 in 

PBS), blocked (1% BSA in PBS), and probed with mouse anti-FLAG M2 1° antibody (F1804, 

Sigma, 1:2000 (v/v) in 1% BSA in PBS) and Alexa Fluor 594-conjugated goat antimouse 2° 

antibody (LifeTechnologies, 1:2000 (v/v) in 1% BSA in PBS) in 1% BSA in PBS. Hoechst dye (1 

μg/mL) was used to label nuclear DNA. Slides were placed in mounting medium (1:1, v/v, 

glycerol/PBS). Confocal images were captured using the Nikon A1R system, Plan Apo VC 60X 

oil immersion optics, with sequential laser excitation using 561 nm (Alexa Fluor), 488 nm (GFP), 

and 408 nm (Hoechst) lasers. Images were collected and assembled into a Z-stack using the 

NISElements software. 

 

PREPL-\- mouse model 
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Breeding, colony maintenance, sacrificing, and tissue harvesting of mice were previously 

described (Lone et al., 2014). In short, PREPL-/- mice were generated by creation of a construct 

in which exon 11, the exon containing the catalytic serine, was located between two Cre 

recombinase recognition sites. The construct was introduced into embryonic stem (ES) cells. 

Neomycin selection and Southern blots were used to ensure that selected ES cells incorporated 

the correct construct in the correct location. These ES cells were injected into blastocytes and 

implanted into mice. PREPL-/+ mice were generated by crossing these mice with mice expressing 

Cre recombinase, which removed exon 11 from Prepl. PREPL-/+ were bred, producing a mixture 

of PREPL-/+, PREPL+/+, PREPL-/- mice, the last two groups of which were used for this study. 

 

Purification of mitochondria from mouse brains 

Method adapted from (Chinopoulos et al., 2011). Tissues were homogenized in 1 mL isolation 

medium (225 mM sucrose, 75 mM mannitol, 5 mM HEPES, 1 mM EGTA, pH 7.4) + 0.2 mg/mL 

BSA (fatty acid free) at 4°C using a Potter-Elvehjem homogenizer. An additional 700 mL of 

isolation medium + BSA was added and homogenate mixed by inversion. Homogenate was 

initially centrifuged (500 x g, 5 min, 4°C) to remove cell debris and nuclei. Supernatant was 

subjected to a faster spin (14000 x g, 10 min, 4°C) to isolate crude mitochondria. Pellets were 

resuspended in 0.2 mL of 12% Percoll in isolation medium, layered on top of 1 mL of 24% Percoll 

in isolation medium and centrifuged (18000 x g, 15 min, 4°C). The top portion of the sample was 

aspirated off (~700 mL) followed by addition of 1.2 mL isolation medium and centrifugation (18000 

x g, 5 min, 4°C). After aspirating off ~1.5 mL of supernatant, the pellet was resuspended in the 

remaining buffer, an additional 1.5 mL of isolation medium was added at the centrifugation step 

was repeated. The remaining pellet consisted of the purified mitochondria and was used for 

lipidomics and metabolomics.  

 

Lipidomics sample preparation and analysis 
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Lipid Extractions 

Lipids were extracted from samples containing 70 µg of protein as determined by BCA as 

described in our previous studies defining the lipidome of the BXD cohort (Jha et al., 2018a; Jha 

et al., 2018b). In short, Lipid extraction was performed as previously described (Stefely et al., 

2016). In brief, 20 μl of IS was added to 20 μl of thawed plasma samples and vortexed (30 s). 

Chloroform/methanol (1:1, v/v, 1000 μL) was added and samples vortexed (60 s). Subsequently, 

hydrochloric acid (1M, 200 μL) was added to induce phase separation, followed by 60 s vortex 

and centrifugation (3,000 g, 3 min, 4°C) to complete phase separation. 550 μL of the organic 

phase was dried under Ar2(g). The organic residue was reconstituted in a mixture of acetonitrile 

(ACN)/isopropyl alcohol (IPA)/water (H2O) (65:30:5, v/v/v, 100μL) by vortexing (60 s) and 

transferred to a glass vial for LC-MS analysis. Samples were stored at -80°C until further use. 

Discovery Lipidomics 

LC-MS analysis was performed on an Ascentis Express C18 column (150 mm x 2.1 mm 

x 2.7 μm particle size, Waters) using an Accela LC Pump (400 μL/min flow rate, Thermo Scientific, 

San Jose, CA). Mobile Phase A consisted of 10 mM ammonium acetate in ACN/H2O (70:30, v/v) 

containing 250 μL/L acetic acid. Mobile phase B consisted of 10 mM ammonium acetate in 

IPA/ACN (90:10, v/v) with the same additives. Mobile phase B started at 2% and increased to 

85% over 20 min, then increased to 99% over 1 min and held there for 7 min. The column was 

reequilibrated for 2 min before the next injection. 10 μL of sample was injected for each run. The 

LC system was coupled to a Q Exactive mass spectrometer by a HESI II heated ESI source kept 

at 300°C. The inlet capillary was kept at 300°C, sheath gas was set to 25 units, and auxiliary gas 

to 10 units. Spray voltage was set to 3,000 V and the MS was operated in polarity switching mode. 

Ions from 200-1,600 m/z were isolated (Top 2) for fragmentation by stepped higher-energy 

collisional dissociation (HCD) (20, 30, 40). 

Lipid Species Measurement and Normalization 
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The resulting spectra were processed using Lipidex, an open source, automated lipid 

identification and quantification software in which acquired MS2s are compared to a variety of in 

silico libraries accurately modeling fragmentation of diverse lipid types (Hutchins et al., 2018).  

Data was normalized to total abundance of lipids identified. The log2 fold change between 

PREPL+/+ and PREPL-/- was compared for each lipid. Student’s t-test was used to calculate p-

values. q-values were calculated in R (Storey et al., 2018) and were used to determine statistical 

significance.  

 

Metabolomics sample preparation and analysis 

Metabolite extraction and derivatization  

Metabolites were extracted from samples containing 70 µg of protein as determined by BCA as 

described in (Stefely et al., 2016). Briefly, samples were immediately submerged into 

ACN/MeOH/H2O (2:2:1, v/v/v, 1.5 mL, pre-cooled to −20 °C) and were stored at −80 °C prior to 

analysis. Samples and internal standards (25 μL aqueous mixture of isotopically labelled alanine-

2,3,3,3-d4, adipic acid-d10, and xylose-13C5 acid, 5 ppm in each) were aliquoted into a 2 mL plastic 

tube and dried by vacuum centrifuge (~ 1 hr). The dried metabolites were resuspended in pyridine 

(25 μL) and vortexed. 25 μL of N-methyl-N-trimethylsilyl]trifluoroacetamide (MSTFA) with 1% 

trimethylchlorosilane (TMCS) was added, and the sample was vortexed and incubated (60 °C, 30 

min).  

Metablolite measurement and data analysis 

Samples were then transferred to a glass autosampler vials and analyzed using a GC/MS 

instrument comprising a Trace 1310 GC coupled to a Q Exactive Orbitrap mass spectrometer.  

The resulting GC-MS data were processed using an in-house software suite developed by the 

Coon Lab. Briefly, all m/z peaks are aggregated into distinct chromatographic profiles (i.e., 

feature) using a 10 ppm mass tolerance. These chromatographic profiles are then grouped 

according to common elution apex (i.e., feature group). The collection of features (i.e., m/z peaks) 
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sharing a common elution apex, therefore, represent an individual EI-MS spectrum of a single 

eluting compound. The EI-MS spectra were then compared against a matrix run and a 

background subtraction was performed. Remaining EI-MS spectra are then searched against the 

NIST 12 MS/EI library and subsequently subjected to a high resolution filtering (HRF) technique 

as described elsewhere. EI-MS spectra that were not identified were assigned a numeric 

identifier. Feature intensity, which was normalized using total metabolite signal, was used to 

estimate metabolite abundance. The log2 fold change between PREPL+/+ and PREPL-/- was 

compared for each metabolite. Student’s t-test was used to calculate p-values. 
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Figure 1. PREPL is implicated in hypotonia-cystinuria syndrome (HCS) and consists of a 

long and short isoform 

(A) Schematic of gene deletions on the 2p21 chromosome resulting in individuals with HCS and 

related diseases. Lines indicate genes with deletions in each of the listed diseases. Isolated 

deletions in PREPL are associated with hypotonia (red). 

(B) PREPL consists of 14 exons and has two protein isoforms; short (PREPLS) and long (PREPLL) 

created by separate start sites in exon 1B (PREPLL) and exon 2 (PREPLS). These proteins are 

identical except for the additional amino acids on the N-terminus of PREPLL. 

(C) The seven mRNA isoforms of PREPL that give rise to the two distinct protein isoforms shown 

in (B). Isoforms 1-4 produce a 638 aa product (PREPLS) while 5-7 generate a 727 aa product 

(PREPLL).  
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Figure 2. PREPL maintains the catalytic triad and exhibits sequence similarity to 

peptidases as well as esterases and lipases 

(A) PREPL and its closest homolog PREP are members of the S9 family of serine hydrolases. 

The S9 family consists of peptidases (circled in black) and esterases (red). 

(B) Sequence alignment of PREPL, other members of the S9 family, PREP and APEH, and a 

bacterial homolog oligopeptidase B (OpdB) indicate that PREPL maintains the characteristic Ser-

Asp-His catalytic triad (teal) required for enzymatic activity. 
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(C and D) Overlay of structure model of PREPL (gray, MLS in blue) and PREP (light blue) 

illustrates the similarity in secondary structure of the two proteins. Both proteins are made up of 

an α/β hydrolase fold (C, top) and a β propeller (C, bottom) covering the tunnel into the active 

site. A view down the tunnel created by the β propeller (D) further illustrates the similarity in 

secondary structure. 

(E) Active site comparison of PREPL and other peptidases and lipases. Active site residues are 

shown in teal. Conserved residues are highlighted in gray (glycine), light blue (alanine), and red 

(valine). Unlike other peptidases in the S9 family (PREPL, DPP4, DPP8, and DPP9) PREPL 

contains an AxSxG around the catalytic serine, similar to that seen in the lipases LPLA2 and 

C1d1p, and an aspartate near the active site histidine (HxxxD motif, highlighted in light blue) 

similar to PAFAH2 and PLA2G7.  
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Figure 3. PREPL exhibits specific esterase activity against pNP-C8 

(A) Structure of p-nitrophenyl ester substrates. A carbon tail of varying lengths is connected to a 

p-nitrophenol group via an ester linkage. Activity is determined by the amount of p-nitrophenol 

that is released after ester cleavage. 

(B) PREPL activity against pNP-ester substrates of various length, two carbons (C2), four carbons 

(C4), eight carbons (C8), ten carbons (C10), twelve carbons (C12), and sixteen carbons (C16). 

Wild type (WT) and catalytically dead mutant (S470A) are shown in dark and light gray, 

respectively. 

(C) PREPL activity against increasing concentrations of pNP-C8. Activities against concentrations 

ranging from 0.01 mM – 1 mM are shown. 

(D) Comparison of PREPL (dark and light gray bars for WT and S470A, respectively) and PREP 

(light blue) activity against the ester substrate pNP-C8 and the peptide substrate Z-Gly-Pro-pNA.  
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Figure 4.  Predicted mitochondrial localization sequence targets PREPLL to the 

mitochondria 

(A) N-terminus of PREPL, showing the start sites of both isoforms (PREPLS and PREPLL). The 

predicted mitochondrial localization sequence (MLS) is indicated in teal.  

(B) Localization of PREPLS-FLAG (top, left) and PREPLL-FLAG (bottom, left) and green 

fluorescent protein with an N-terminal mitochondrial localization sequence (MLS-GFP, middle). 

Overlay of the FLAG tagged proteins and MLS-GFP (right). PREPL-FLAG isoforms are shown in 

red, MLS-GFP in green and overlap is indicated in yellow. 
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Figure 5.  Loss of PREPL alters the mitochondrial lipidome in mice. 

(A) Experimental setup. Briefly, mitochondria were isolated from wild type (WT) and PREPL-/- mice 

brains in triplicate. Lipids and polar metabolites were extracted from each sample and analyzed 

using LC-MS (lipidomics) or GC-MS (metabolomics)  

(B) Volcano plot comparing the abundance of the 2,702 lipids identified in WT and PREPL-/- mice. 

Red dots indicate significance (q < 0.05). 
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Chapter 5: Conclusions and future directions 

Conclusions 

Summary 

 Lipids are a diverse set of macromolecules important for many cellular processes such as 

energy storage, signaling, and membrane structure (Hannun, 1994; Kooijman et al., 2003; 

Kooijman et al., 2005; Lee et al., 2001). Dysfunctional lipid metabolism is associated with common 

diseases such as obesity, insulin resistance, and fatty liver disease (Granger and Remick, 2005; 

Li et al., 2017; Weijers, 2012) as well as less common diseases such as Barth Syndrome (Lou et 

al., 2018; Vreken et al., 2000). Despite extensive studies and considerable progress, our 

understanding of the intricacies of lipid metabolism is far from complete. This is, in large part, due 

to the complexity of lipid metabolism as a whole. The biosynthetic pathways for different lipid 

classes overlap at multiple points, with some lipids such as PA and DAG serving as substrates in 

other lipid biosynthetic pathways. Therefore, defects in one pathway will often deleteriously affect 

other lipid metabolism pathways in the cell. Additionally, there remains the issue of the vast 

number of combinations of head groups and fatty acid tails (including number of carbons, number 

of double bonds, and positions of these double bonds). Beyond regulation of class abundance, it 

has become increasingly clear that not all lipids in a class are regulated in the same manner. Yet, 

the mechanisms by which the cell regulates individual lipid species within a class remain 

unknown. Although the issue is a complex one, it can largely be boiled down to a single issue – 

a lack of knowledge of all proteins that can affect lipid metabolism. In the projects outlined here, 

we sought to better understand the proteins involved in lipid metabolism via two distinct methods.  

In the first, we sought to identify novel genes involved in lipid metabolism using QTL 

mapping. Though abundances of total classes such as TAG and cholesterol has been mapped, 

before my graduate research began, individual lipid species had not been used for QTL mapping 

studies in genetic reference populations. Collectively, we established that individual lipid levels, 
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like protein and transcript levels, can serve as quantifiable, mappable traits and identified novel 

candidate genes involved in lipid metabolism. Our data also supports the fact that not all lipids of 

the same class are regulated in the same way, as is evidenced by the discovery that some TAG  

species may serve as signatures of a fatty liver, while others are associated with a healthy one.  

In the second, we took a more focused approach, looking at whether a single protein of 

unknown function, PREPL, affected lipid metabolism – specifically if it showed enzymatic activity 

against esters. We demonstrated that that additional amino acid sequence on the long isoform of 

PREPL (PREPLL) (when compared to the short isoform) targeted it to the mitochondria. Prior to 

our work, PREPL was thought to be a peptidase, despite no peptide substrate ever having been 

identified. We have established that PREPL exhibits esterase activity dependent on catalytic 

activity and our work provides a new focus for further characterization of the enzyme. 

 

The first QTL mapping of individual hepatic lipids and power of multi-omics approaches 

 Recent advances in mass spectrometry have made it possible to measure many lipids 

from a single extraction accurately across hundreds of samples. Previous studies focused on 

measuring lipid classes as a whole yet recent evidence strongly suggests that not only are all 

lipids within a class not regulated concurrently, but individual lipid species can be associated with 

disease (Gronert et al., 2004; Koybasi et al., 2004; Kroesen et al., 2001).  Based on these 

advancements, we developed a method targeting hepatic lipid species across 84 cohorts of BXD 

mice fed either a CD or HFD. We were able to quantify 96 lipids from a variety of classes (FFA, 

TAG, DAG, PL, CL and CoQ) across 385 mice.  

 Interestingly, a weighted correlation network analysis (WGCNA) which clusters correlated 

groups of lipids into modules, showed multiple modules containing TAG and CL species indicating 

that species within these classes may be differentially regulated. Surprisingly, although two of the 

TAG modules both correlated with obesity and liver dysfunction traits, they correlated inversely to 

each other. Furthermore, we found that the fully remodeled CL, CL(LLLL) and MLCL(LLL) 
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correlated negatively with liver weight and obesity and NAFLD readouts while CLs containing 

MUFAs such as oleic and palmitoleic acid correlated positively in both the BXD mice and an 

additional mouse model. Taken together, this data suggests these CLs may be signatures of 

healthy or fatty liver, respectively (Jha et al., 2018a). These findings demonstrate that not all lipid 

species within a class are regulated in the same manner. 

Using the lipid abundance measurements, we mapped suggestive/significant 136 lQTLs. 

Unsurprisingly, loci contained a vast number of genes. In order to prioritize candidate genes, we 

developed a novel QTL mining pipeline integrating multi-omic datasets to identify genes most 

likely to be regulating lipid species. The pipeline prioritized genes that (i) contained non-

synonymous SNPS, (ii) had a cis eQTL or pQTL, (iii) exhibited significant correlation with the lipid 

in question, and (iv) displayed variation in transcript expression, with those genes exhibiting three 

or more of these factors given higher priority. Importantly, the prioritized candidate genes were 

enriched in lipid metabolic pathways (Jha et al., 2018a). These findings demonstrate the power 

of a multi-omics approach in lQTL mapping and provide a key resource of candidate genes for 

future studies. 

Collectively, our work demonstrates that lipids, like transcripts and proteins, can be used 

as traits for QTL mapping. Additionally, it illustrates the growing importance of studying individual 

lipid species, rather than just lipid classes as a whole. Finally, this analysis provides a framework 

for using multi-omics to prioritize candidate lQTL genes and a resource of candidate genes that 

may directly regulate the lipid species measured. 

 

Plasma lipids are influenced by both genetic and environmental factors and can serve as 

a reflection of overall metabolic health 

 We profiled 129 plasma lipids across 49 BXD strains and two diets (CD and HFD). 

Unsurprisingly, diet (environment) had a strong influence on the lipid profile, affecting 72% of 

lipids identified. We next set out to determine the genetic component of alterations in lipid 
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abundance across the profiled mouse strains by looking at the variation across strains and 

heritability (h2) of each lipid species. The variability within strains and diets was significantly lower 

than that across strains, indicating that at least some of the variance observed could be attributed 

to genetic variation (Jha et al., 2018b). Importantly, a calculation of heritability revealed that within 

diets more than half of the observed variance in the majority of lipids could be explained by the 

genetic differences between the BXD strains (h2 ≥ 50%). Furthermore, for 85% of lipids controlled 

factors (genetics, environment, and their interactions [GxE]) explained more than 50% of variance 

observed (Jha et al., 2018b). Taken together, these results show that despite the strong influence 

of diet, genetic factors also have a significant impact on the abundance of individual lipid species, 

indicating that both environmental and genetic factors can regulate lipid metabolism. 

 Interestingly, most lipids mapped to more than once loci, which may not be surprisingly 

given the high number of individual pathways that regulate lipid levels, and the fact that plasma 

lipid levels are likely influence by lipid levels in a variety of tissues. We next sought to identify 

whether our mouse data was translatable to the human population by screening the 306 lQTLs 

identified for the presence of any human GWAS genes associated with plasma lipid levels. We 

identified 40 GWAS genes, many of which are known to affect total lipid, or total class levels. 

Thus, it seems, perhaps unsurprisingly, that genes associated with total lipid levels can also 

regulate individual lipid species. Additionally, these data suggest that BXD and other mouse lQTL 

studies can be used to support and further study results suggested from human GWAS. 

 Because lipid abundance was highly correlated both within and across different lipid 

classes, it is likely that an alteration in the abundance of a single lipid species could impact the 

abundance of various other lipids independent of the class. We, therefore, sought to determine 

whether the abundance of certain lipids could serve as predictors of metabolic health. Indeed, 

across 30 traits that reflect metabolic health (both healthy and unhealthy traits), we identified two 

clusters of lipids that correlated with most metabolic traits, independent of diet. The first cluster, 

consisting of 19 lipids, positively correlated with healthy metabolic traits such as run distance and 
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VO2 max and negatively correlated with unhealthy traits such as fasting insulin and body weight. 

The second cluster, consisting of 17 lipids, displayed the inverse correlation pattern. These data 

suggest that abundance of some individual plasma lipid species can reflect metabolic health. 

Because these effects were seen in both CD and HFD cohorts it is possible that these 36 lipids 

may serve as universal signatures of health and may also be relevant in humans. 

 Knowing that lipid abundance could reflect overall metabolic health, we next sought to 

determine if they could also reflect a disease state. Specifically, we tested whether plasma lipid 

species can be indicative of non-alcoholic fatty liver disease (NAFLD), by first identifying plasma 

lipid species that were representative of their levels measured in liver (Jha et al., 2018a). In order 

to increase the chances that the results would be relevant in a human population where 

environmental factors such as diet are difficult to control, narrowed the list to the 9 species whose 

plasma and liver levels correlated irrespective of diet. Correlation of the abundance of these 

species with NAFLD-linked phenotypes such as fasting insulin, fat mass, and liver mass revealed 

that TAG species with fewer double bonds correlated positively with pro-NAFLD traits, while TAGs 

with more double bonds correlated negatively with pro-NAFLD traits (Jha et al., 2018b). We 

confirmed these findings in different mouse model of NAFLD as well as human patients with 

healthy livers or livers in various stages of steatosis. Together, these data suggest that levels of 

individual plasma lipid species may provide insight into liver health in mice and more importantly, 

the human population. 

 Together with the liver manuscript, this work demonstrates the importance of the role of 

individual lipid species in health and disease. We illustrate that both diet and genetic factors 

regulate the abundance of individual plasma lipid species and that many lipid species are likely 

co-regulated, despite being parts of different classes. Finally, we show that not only can plasma 

lipid levels reflect overall metabolic health, but they may also serve as pro- or anti-NAFLD 

signatures in mice. Importantly, we demonstrate that NAFLD signatures in mice may be relevant 
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in humans as well, indicating that it may be possible to use individual lipid species as biomarkers 

of disease in the future. 

 

PREPL exhibits esterase activity 

 Though PREPL has been implicated in hypotonia cystinuria syndrome (HCS) and even 

been shown in be the source of the hypotonia seen in affected individuals (Jaeken et al., 2006; 

Regal et al., 2014; Silva et al., 2018), its role in the disease remains unknown, in large part 

because the substrate has yet to be elucidated. It most closely resembles PREP, a prolyl 

endopeptidase, in sequence yet despite many efforts, no peptide substrate has been identified. 

However, sequence alignment clearly indicates that PREPL maintains the catalytic triad Ser-Asp-

His required for enzymatic activity (Martens et al., 2006). 

 Knowing this, we sought to determine whether PREPL’s sequence or structure suggested 

an alternative activity to cleavage of a peptide bond. Using a structural model of PREPL, we 

compared its secondary structure to that of PREP. Interestingly, the three-dimensional structures 

were extremely similar, both consisting of an α/β hydrolase fold in addition to a β propeller 

covering the central tunnel. Though the three-dimensional structures appeared similar, it seemed 

unlikely that PREPL acted as a peptidase given previous studies (Boonen et al., 2011; Szeltner 

et al., 2005). In order to reassess the possible enzymatic activities PREPL could be carrying out 

in the cell, we next took a closer look at the other members of the S9 serine hydrolase family. 

While we noticed a number of peptidases, the family also includes esterases and lipases, notably 

PAFAH2 and PLA2G7, and one protein, APEH, that has been shown to exhibit both esterase and 

peptidase activity (Bartlam et al., 2004; Scaloni et al., 1994; Wang et al., 2006). 

 Given the lack of peptidase activity and the esterase members of the S9 serine hydrolase 

family, we next compared PREPL’s active site to other peptidases, esterases, and lipases, looking 

for residues that may indicate any activity other than cleavage of amide bonds. We found two 

amino acids that suggest PREPL may act as an esterase in vivo. First, the catalytic serine of 
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PREPL contains an alanine (A) rather than a glycine (G) in the motif containing its catalytic serine 

(AxSxG vs GxSxG) which is also found in the lipases LPLA2 and C1d1p. Second, PREPL has an 

aspartate (D) near the active site histidine (HxxxD motif) similar to a number of lipases including 

the S9 family members PAFAH2 and PLA2G7, which may act as an acyltransferase. 

 We found that PREPL exhibited low, but reproducible activity against pNP-C8, a medium 

length carbon chain consisting of eight carbons in vitro. Importantly, this activity was abolished 

upon mutation of the catalytic serine and was specific to PREPL, as PREP showed no activity 

against the ester substrate. Based on our in vitro assays, we hypothesized that PREPL cleaved 

ester bonds. We tested this using a previously described PREPL-/- mouse model (Lone et al., 

2014). Because it remains unclear whether PREPL’s in vivo substrate is a lipid or a small 

molecule, we performed both lipidomics and metabolomics on brain tissue of wild type (WT) and 

PREPL-/- mice. We identified 2,702 lipids and 191 metabolites, including 28 lipids that were 

significantly altered in the PREPL-/- brain samples. 

 Taken together, our results illustrate that though sequence homology suggests that 

PREPL is a peptidase, closer inspection of other family members and residues around the active 

site suggest that PREPL could act as an esterase/lipase in vivo. Our data demonstrates the first 

specific, catalytic activity of the PREPL against an esterase (or any other substrate). Additionally, 

we show that PREPLL localizes to the mitochondria and that loss of PREPL alters brain 

mitochondrial lipid profiles. However, it is unclear how these alterations may contribute to HCS 

etiology and it remains to be determined whether these alterations are due to direct or indirect 

effects. 

 

Future Directions 
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Verification of candidate genes identified in lQTLs 

 Although it is often difficult, the end goal of any QTL mapping study is to identify a gene 

(or genes) in an identified locus which is verified to be directly responsible for the phenotype 

mapped there. For cis-eQTLs and pQTLs verification process is simpler, as the phenotype is 

usually directly attributed to the gene/protein in question. However, lipids lack such a 

straightforward linkage. Additionally, due to the complexity of lipid metabolism (overlapping 

pathways, etc.) it is likely that multiple genes are regulating the abundance of a given species, 

making it even more difficult to identify causal genes. Despite these difficulties, it nevertheless 

remains the end goal of QTL mapping studies, and should be the focus of future studies. 

 The resource of candidate genes provided in (Jha et al., 2018a; Jha et al., 2018b) serve 

as a foundation of future analyses, in our group and others. Initially, we selected six candidate 

genes from our list of candidates that fulfilled all four of our pipeline requirements to test in cell 

culture: Methylthioadensine phosphorylase (MTAP), phospholipase B domain containing 1 

(Plbd1), fatty acid binding protein 1 (Fabp1), NADPH-dependent 3 keto-steroid reductase 

(Hsd3b5), UbiA prenyltransferase domain containing 1 (ubiAD1) and zinc finger protein 277 

(zfp277.) Though some of these, such as Fabp1 and Hsd3b5 were already known to be 

associated with lipid metabolism, the effect each had on individual specific lipid species, if any, 

were unknown. We hypothesized that if these genes were truly causative, overexpression or 

knockdown in cell culture would alter the lipid profile compared to wild type (WT), specifically 

those lipids which mapped to the area of the gene in question. Because these lQTLs were initially 

identified in mouse liver tissue, we conducted overexpression and knockdown experiments in a 

mouse liver cell line, AML12. However, we were unable to get >90% knockdown of any gene and 

cells would not overexpress the constructs. Given these difficulties we were never able to test 

whether the candidate genes affected lipid profiles. If these avenues are to be pursued in the 

future we will use an alternate cell line – either another immortal mouse liver cell line or one such 

as HEK293s which are robust and easy to transfect – and likely knockout the genes using 
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CRISPR-Cas9 technology (Cong et al., 2013; Jinek et al., 2012; Qi et al., 2013) to ensure so 

remnant protein remains. 

 Outside of cell culture, there are other ways to follow-up on candidate genes. One method 

would be to try to increase resolution by including additional BXD strains (especially those which 

exhibit homologous recombination in the area of interest) or perhaps even more useful, strains 

from other mouse genetic reference populations, as these strains will exhibit genetic differences 

not seen in the BXD cohort. In vitro assays and knockout mouse models can be used to directly 

test a protein’s role in lipid metabolism. Our lab and others will continue to build an lQTL resource 

and utilize multi-omic approaches to prioritize and eventually verify candidate genes novel roles 

in lipid metabolism. 

 

The expansion of lQTL mapping 

 Perhaps the most important aspect of our work is the demonstration that individual lipids 

are quantifiable traits that can used in QTL mapping studies. From there, the possibilities are 

nearly endless. One caveat of the BXD cohort is that because the two founders strains are both 

inbred laboratory strains, they are the same at many genetic locations, making these areas blind 

to QTL mapping. Work is already being done to expand lQTL mapping into more diverse cohorts 

such as the Collaborative Cross (Chesler et al., 2008) which will provide better resolution as well 

as identify QTLs that could not be identified via the BXD cohort due to the increased genetic 

diversity. Coupled clinical phenotype QTLs, eQTLs, and pQTLs, this will be a powerful resource 

for future insight into the regulation of lipid metabolism. 

 Additionally, though we limited our study to liver because it is the hub of metabolism, it is 

not the only tissue in which lipid regulation is important. Thus, future work should expand lQTL 

mapping to include additional tissues such as brain where lipid signaling is important for important 

processes such as synaptic activation (Bazan, 2005; Ogasawara et al., 2016). Furthermore, given 

that we found the abundance of some plasma lipid species to be indicative of their levels in liver, 
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it is possible that by looking at all tissues we will be able to better understand the tissues and 

processes involved in regulating plasma lipid levels. Moreover, similar to the NAFLD signatures 

we identified, it may be possible to identify other plasma lipids which reflect other disease states. 

 Another caveat to the studies described in this thesis is a lack of granularity at the cellular 

and organellar level. The liver consists of multiple cell types, including hepatocytes, hepatic 

stellate cells, Kupffer cells, and liver sinusoidal endothelial cells, each having its own unique role 

in proper lipid function (Ding et al., 2016). Therefore, it is not far-fetched to assume that each of 

these cells likely contains unique lipid profiles. By homogenizing lipid pieces from different areas 

of the liver, not only are we inducing heterogeneity in biological samples, but we may also be 

masking the alterations in lipid abundance in specific cell types. Furthermore, it is known that lipid 

composition or organelles is not always reflective of the lipid composition of whole cells (van Meer 

and de Kroon, 2011) and that lipids are often transferred between organelles. By focusing on 

individual organelles, future lQTL mapping studies may be able to better understand the 

regulation and importance of proper lipid transport between organelles and identify novel genes 

involved in these processes. 

 Finally, even over the past few years lipidomics technology has advanced substantially. 

Instead of identifying ~100 lipid species, programs such as Lipidex (Hutchins et al., 2018) can 

now identify thousands. Future lQTL studies should expand on the lipids identified and include 

other lipid classes including lysophospholipids, sphingolipids, and cholesterol esters. Additional 

work should be applied to identifying peaks that were quantified by not identified by the software. 

For example, if multiple unknown species map to the same locus and share a similar 

fragmentation pattern it is possible they make up a novel lipid class regulated by a gene in that 

area. In order to fully understand lipid metabolism, it will be important to push forward in defining 

the entire cellular lipidome. 
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Automating the prioritization of candidate genes 

 As lQTL mapping continues to expand so too does eQTL and pQTL mapping. Though 

more data is often a good thing, it is useless if we do not know how to analyze it. We present a 

simple method of prioritizing candidate genes (Jha et al., 2018a; Jha et al., 2018b) however, it 

requires manual inspection subject to some observer subjectivity and ignores data such as trans-

eQTLs and pQTLs. As databases continue to grow, identification of candidate genes becomes a 

bottleneck. In the future, great efforts should be made to not only automate the process of 

selecting and ranking candidate but to create a truly multi-omic platform for data analysis. 

 

Investigation of lipids altered by loss of PREPL 

 Though software was unable to identify the lipids altered in the PREPL-/- mice, due to 

inability to match the fragmentation pattern to any lipids in the searched in silico libraries. Future 

work will include manually inspecting the fragmentation spectra in an effort to identify structural 

similarities among lipids specifically altered in the PREPL-/- mice. Due to the promiscuous nature 

of many serine hydrolases it is possible that, in vivo, PREPL acts on multiple lipids of an as of yet 

unidentified lipid class. Additionally, though we may be unable to identify the lipid species in 

question, it is possible that the fragmentation data may reveal an important functional group or 

moiety for PREPL substrates, which we could test in our established in vitro assays.  

 

Characterization of the effects of loss of PREPL in HAP1 cells 

 In a separate study, we have measured both lipids and metabolites in two unique PREPL 

knockout (KO) HAP1 cell lines. Future efforts will directly compare the mouse and cell culture 

datasets, by searching the samples together to maximize identified lipids and to ensure quantified 

but unidentified peaks are indeed the same lipid species in both sample sets. However, it should 

be noted that because these samples were run at separate times, retention time shifts may limit 

the lipids identified in both samples. Since both KO cell lines have been confirmed, we 
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hypothesize that direct effects of loss of PREPL will be seen in both KO lines, while indirect or 

non-specific effects are likely to be seen only in a single KO. Therefore, future work will limit 

possible substrates to those lipids significantly altered in both HAP KO lines.  

 Current evidence does not definitively indicate whether the substrate of PREPL is a lipid 

or a metabolite. Despite efforts to identify metabolites altered in the PREPL-/- mice, sucrose 

interference not only limited the species we identified, but may also have overwhelmed some of 

the changes. Metabolomics of the HAP1 KOs did not suffer from this interference, therefore, future 

work will seek to identify metabolites altered in these cell lines compared to WT. Admittedly, these 

metabolomic analyses took place on whole cells, which may mask the alterations if they are 

mitochondrial specific. Therefore, our next steps should include purification of mitochondria from 

the HAP1 cell lines and subjection of them to metabolomic analysis. Interestingly, comparing the 

results from the mitochondria to supernatant/cytosolic fraction may also give insight into whether 

or not PREPLL and PREPLS have distinct roles in the cell or merely perform the same action in 

different subcellular localizations. 

 If, as we hypothesize, PREPLL, the mitochondrial isoform of the protein, is responsible for 

the hypotonia seen in individuals suffering from HCS it is possible that loss of PREPL has a 

deleterious effect on mitochondrial function. One way to test this is to measure the oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) of WT and PREPL KO HAP1 

cell lines using the Seahorse XF Analyzer (Wu et al., 2007). Interestingly, some individuals with 

PREPL deletions exhibit mitochondrial dysfunction (Legati et al., 2016). Future work will 

determine whether loss of PREPL alters mitochondrial respiration and if so, if this phenotype is 

rescuable by addition of active PREPL. Not only could defects in mitochondrial respiration verify 

the importance of PREPLL but would also offer insight into mechanism by which loss of PREPL 

causes hypotonia. 

 



170 
 

 

The role of PREPL in HCS etiology 

 Once the in vivo substrate of PREPL has been identified, its role in the cell can be further 

investigated. Though we are a long ways from explaining the mechanism by which PREPL causes 

hypotonia in affected individuals, there are nevertheless a few interesting questions to be 

speculated upon.  

First, what are the functions of the two PREPL isoforms in vivo? Upon identification of 

substrates, future work should identify the role of each isoform. Though both isoforms exhibited 

equal esterase in our hands, and it is unlikely that substrate specificity would be altered by protein 

structure as the MLS on PREPLL is likely cleaved upon entrance into the mitochondria leaving a 

protein that is essentially identical to PREPLS, it is possible that, due to their different subcellular 

locations they work on different substrates. Substrate availability, product concentration, or 

alternative interacting partners based on localization could influence the in vivo substrate of each 

isoform. Second, why would a protein highly expressed in the brain have such a marked effect on 

muscle tone? Perhaps PREPL’s substrate or product is an important signaling molecule. Though 

we cannot answer these questions right now, overall, these results suggest a new activity for 

PREPL and demonstrate new insight into the identity of PREPL’s in vivo substrate. Furthermore, 

the biochemical analyses performed for this project provide a framework for investigation into 

candidate genes in lQTL studies.   
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