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Abstract

This thesis explores several theoretical aspects of quantum information processing. First

we examine several questions regarding circuit quantum electrodynamics architecture with

a double quantum dot system. We find that there exists a quantum signature in the pho-

tovoltaic effects in the current spectrum through the unbiased DQD when the microwave

resonator is subject to an AC drive. We demonstrate that this signature is due to the

entanglement between the single photon field and the charge states in the DQD. We ad-

ditionally show that this entanglement is essential to consider the photon statistics, which

exhibits both a sub-Poissonian distribution and antibunching. This photon statistics can

be measured by the current progress in Josephson photomultipliers.

We then investigate the dynamics of a two-level system with slow varying external

parameters and weakly coupled to an Ohmic environment. Specifically, we generalize the

Bloch-Redfield approach to time-dependent problems in a perturbative manner, and apply

this formalism to two well-suited problems. For a qubit subject to a rotating magnetic

field, we demonstrated that the Berry curvature, and hence the Berry phase are immune to

quantum fluctuations arising from the environment at zero temperature. For the Landau-

Zener problem, on the other hand, it is evident that the incoherent excitation and relaxation

processes are leading mechanism.

Next, we consider a Hamiltonian for many-body localization, a generalized example of

Anderson localization in interacting quantum many-body systems. Previously literatures

stated that for such systems, the eigenstate thermalization hypothesis fails to work. To

have a deeper understanding this statement, we apply a local quench to the system and

analyze the response of the system. We show that the level spacing statistics and inverse

participation ratio both suggest a clear difference between localized and delocalized phase.

We further demonstrate that the edges of the localized states can be visualized by the

mobility edge via local spin measurements, and by using the same sets of data, the many-

body localization length can be evaluated as well.

Lastly, we apply a harmonic drive to the many-body localized Hamiltonian. Benefited
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from the Floquet theory, we evaluate the Bures displacement of the system in the Hilbert

space caused by the drive for both phases, in which the distinction in the average value of

Bures displacement can be revealed for a system with ten spins or so. We also show that

from thermodynamics point of view, the two phases can be distinguished by von Neumann

entropy, energy fluctuations and spin diffusions.
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crossing speed v = 0.5∆2, the high energy cutoff for the environment is Ec = 10∆

and J0 = 0. We take P∞ = Pe(t = 4Ec/v). . . . . . . . . . . . . . . . . . . . . 88

4.13 Transition probability P∞ as a function of the coupling parameter of the qubit

and the environment, α, at different environment temperatures for n‖ẑ. Level-
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Chapter 1

Introduction

1.1 Introduction to quantum information

As suggested by Feynman in 1982[1], and succeeded by an argument provided by Deutsch

in 1985[2], physicists have been inspired by the idea of quantum computation in such a

way that the computation task is carried out by a number of quantum degrees of freedoms.

In the classical computing, the information is stored in bits, which takes either 0 or 1,

while the quantum information can be stored as a superposition of 0 and 1, due to its

quantum nature. Benefitted by the quantum superposition, the number of states increases

exponentially and all possible quantum information can be stored simultaneously as the

system size goes up. The advantage of quantum computation can be revealed by the so

called “quantum parallelism”. Roughly speaking, in classical computation, the system

evolves according to stochastic matrices which preserves the sum of probabilities, while

the quantum computation is performed by a unitary transformation that preserves both

total probabilities and phase coherence. Consequently, each single quantum operation is

reversible, and moreover a combination of stochastic and unitary transformations is also

allowed. In this sense, classical algorithms form a subset of quantum algorithms. As such,

the huge improvement on the efficiency of manipulation of information results in numerous

applications such as Shor’s factoring algorithm[3], Grover’s search algorithm[4] and quantum
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adiabatic algorithm[5, 6].

Unfortunately, the pragmatic implementation of quantum computation remains an ex-

traordinary challenge for scientists and engineers. One inevitable problem is the loss of

quantum coherence, or named decoherence in literatures, due to the interaction between

qubits with its nearby environment. One has to control over the operations of single qubit

or multiple qubits to the order of thousands extremely precisely in the sense that any un-

known evolution that affects the quantum states, such as decoherence, should be taken into

account. Indeed, the coherence time realized by quantum error correction to date does not

exceed any of the individual components, which is one of the main restrictions to realize a

fault-tolerant quantum computer.

As for physical systems suitable for quantum computation, a number of potential im-

plementation has been suggested. Of all existing proposals, most of them encode quantum

information in terms of “natural” microscopic quantum states, such as photons[7], trapped

ions[8], neutral atoms[9] or nuclear spins[10], for which the quantum description is nat-

urally established. On the other hand, some macroscopic systems with a large number

of atoms assembled in confined geometry can also be used, such as superconducting cir-

cuits and semiconductor quantum dots[11], both of whose fabrication and design being well

developed using modern development in electronics. In these systems, the quantum infor-

mation is represented by the collective degrees of freedom as a result of robust macroscopic

phenomenon, that is, Josephson effects for superconducting qubits and Coulomb blockade

for both cases, endowing well-defined macroscopic quantum states controlled by tunable

parameters.

In contrast to a harmonic LC oscillator, in the superconducting circuits, the nonlinearity

in the Josephson tunnel junction insulates the transition between the ground state and the

excited state from the rest of circuit states. By tuning the relevant parameters, such as

capacitance, inductance and Josephson energy, there are three basic types of qubits, namely

flux, phase[12] and charge qubits, indicating the physical extent of the computational basis.

In addition, improved descendants of basic designs, known as transmon[13], fluxonium[14]
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and quantronium[15], are later constructed to reduce decoherence mechanism in the basic

types.

In a semiconductor quantum dot, the electrons trapped at the interface forms a two

dimensional electron gas, or 2DEG for abbreviation. These electrons are geometrically

confined by external gate voltages into a small “box” in such way that the energy levels

of the trapped electron are discrete, with its level-spacing greater than the experiment

temperature. In this manner, the single electron states are well defined, so either the

quantization of charge or spin can be used to encode quantum information. A typical

charge qubit in double quantum dot is initialized by biasing the electrostatic potential such

that single electron is well localized in one of the dot, and the manipulation of quantum

states is controlled by tunnel elements and gate voltages. States with higher number of

electrons are energetically penalized due to the Coulomb blockade effect. On the other

hand, if one consider the spin degrees of freedom, each quantum dot has one electron,

forming four possible spin states, one singlet labeled as S and three triplets labeled as

T0, T+, T−, respectively. The quantum information is stored in the S and T0 states because

they are both unaffected by external magnetic field and can be measured by the external

current, with the benefited of the “spin blockade” technique.

One remarkable dividend of solid state qubits is that they can be strongly coupled to

single photon mode, like an atom. This new class of experiment called circuit quantum

electrodynamics (cQED) is achieved by the dipole moment formed by the separation of

charges in such devices, coupled to a single mode microwave resonator, which is usually

engineered as a coplanar waveguide to mediate long range interaction between qubits. In

such hybrid device, qubit operations and readouts can be controlled by the frequency of

the resonator and its external drive, by the well-developed quantum optical techniques.

With small photon numbers in the resonator, high efficiency microwave photon detection

enables the readout of the qubit in the regime where the qubit states and photon states are

highly entangled. The underlying physics can be exemplified by preparation of maximum

entangled states and parametric amplifier. It is therefore essential to explore the models
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of on-chip photon detectors, and analyze the new physics in the quantum regime in the

presence of coupling to an environment.

1.2 Quantum computing with solid state qubits

As mentioned above, qubits made out of solid state devices could offer appreciable advan-

tages for practical use since in principle modern lithographic methods allows for scalability

and flexibility in design. Indeed, the quantum information encoded in the computational

basis of an “artificial ” solid-state atoms, such that in contrast to “neutral” atoms, has

specific freedom to manipulate at microwave frequency, and can be easily embedded in

electronic circuits for external control. This tunability makes solid-state qubits as a supe-

rior candidates to those of “neutral” atoms. On the other hand, it is also worth mentioning

that there is a large variety of unwanted decoherence sources in solid state qubits.

Double Quantum Dots

Quantum dots are fabricated nano-structures from semiconductor materials, where elec-

trostatic potentials confine electrons into small “boxes” geometrically such that just a few

discrete energy levels are obtained; these energy levels can be tuned by lithography meth-

ods, such that one can cover large areas with zillions of tiny quantum dots and control

these states by lasers. This scenario is called optically activated quantum dots, since the

transition between particular states are controlled by light absorption and/or emission, and

they are not connected to any electrodes.

The measurement and control of discrete levels become even easier for transport quan-

tum dots, which are attached to noninteracting electron reservoirs, also known as leads, so

that the electrons can be transferred from one lead to another. The coupling between states

in the dot and leads brings in broadening of the discrete levels. In the sense, to ensure the

energy levels still survives, the charging energy, EC , a energy scale which separates levels

with different electron occupation numbers by ±1, should dominates over the broadening of

individual states Γ. This is the so-called Coulomb blockade regime, in which single electron
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states are well defined. Naturally, though, spin states of those confined electrons are great

candidate for solid state qubits, we will only consider the qubits encoded by the charge

degrees of freedom–those called charge qubits will be the only model discussed for quantum

dot systems.

The simplest way to build a charge qubit is to consider a double quantum dots, with

each of them in the Coulomb blockade regime. Being discrete, the energy spectrum of

the electron states in both dots can be adjusted by the external gate voltages in such a

way that one can align the Coulomb energies of states (1, 0) and (0, 1), where (N1, N2)

denotes the state with N1 (N2) electrons in the left (right) dot. If the energy detuning of

between the two states is sufficiently small compared to the charging energy, other charging

states are far apart and can be disregarded. Thereby we denote the states (1, 0)→ |0〉 and

(0, 1)→ |1〉 to construct the computational basis from a double quantum dot. As shown in

Figure 1.1, the double quantum dot can be understood as a model comprising of coherent

(T ) and incoherent (ΓL/R) tunneling processes, and the energy splitting between the two

eigenstates can be tuned into microwave frequency for iradiative manipulation.

The parameters of the qubit Hamiltonian consists of energy detuning ε, as well as a

coherent tunneling amplitude T between the two charging states. The Hamiltonian then

reads:

H =

 ε/2 T

T −ε/2

 =
1

2
εσz + T σx. (1.1)

The ground state of the qubit is then given by

|G〉 = −(|0〉+ |1〉)sin(θ/2)√
2

+ (|1〉 − |0〉)cos(θ/2)√
2

, (1.2)

where the rotating angle θ = arctan(ε/2T ). The manipulation of qubit state can be achieved

by applying a resonant oscillating fields with frequency ω '
√
ε2 + 4T 2 in such way that the

transition between the two eigenstates of qubit can be coherently controlled. To readout

the qubit, one measures the charge in the quantum dot by measuring the current in the

nearby quantum point contacts (QPC) because the transmission coefficient of the QPC, T0,

depends on the number of electrons of the dot. By varying the number of electrons by ±1,
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Figure 1.1: (a) Micrograph of a DQD device with gate voltages applied to gates L, R and
T . Gates L and R are used to adjust the detuning, ε, and gate T sets the coherent interdot
tunnel amplitude T . The conductance gs of a nearby quantum point contact monitors the
occupation of each dot. (b) The transport properties of a DQD that attached two leads are
defined by coherent amplitude T and incoherent rates ΓL(R). (c) Energy diagram of the
DQD qubit, which can be manipulated by a radiative drive with frequency ω.
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the electrostatic potential felt by the QPC acquires a slight change, therefore leading to an

increment in transmission coefficient δT , or in current δI = δT e2/π~ ' 1nA, an amount

large enough to be measured within 0.2 ms. Since the net charge in each dot is either 0 or

1, the current through the QPC is quantized with two values, separated by ' 1nA, each

representing a single charge states. Therefore, the readout of charge qubit can be performed

by measuring the current though the QPC.

Superconducting qubits

The superconducting qubits based on Josephson junction are so far the most successful

realizations of solid state qubits that have been made. The main reason is that in order to

isolate a useful qubit from the eigenstates of some small solid state device, it is necessary

to have some nonlinear elements that breaks the harmonicity of the spectrum. Indeed,

for superconducting circuits, the nonlinear elements are naturally embedded as a result of

Josephson junction, with much less uncontrollable external fluctuations, which is the reason

why superconducting qubits have a promising future.

The Josephson junction is a tunnel junction consisting of a layer of insulating material,

sandwiched by two layers of superconducting material. Due to Andreev reflection, super-

current in the superconductors is converted to normal current in the normal materials at

the two interfaces, and vice versa. This is a coherent tunneling process, and the constructive

interference of the electron- and hole-like excitations gives rise to the supercurrent, yielding

the following Josephson equations:

U(φ) = Φ0
∂φ

∂t
(1.3)

I(φ) = Ic sin(φ), (1.4)

where U(φ) and I(φ) are the voltage and current across the Josephson junction, φ(t) is the

phase difference across the junction, Φ0 = ~/2e is the magnetic flux quantum, and Ic is the

critical current of the Josephson junction. If the junction is current-biased with an external

current above Ic, the Josephson effects break down. With the dependence of U(φ) and I(φ)
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Figure 1.2: Schematic energy levels of superconducting LC-circuit (a) without a Josephson
junction or (b) with a Josephson junction.

on the phase φ, one can construct a circuit Hamiltonian for the Josephson junction:

HJJ = −Φ0Ic
2π

cosφ+
Q2

2C
, (1.5)

where Q is the charge operator and C is the capacitance of the junction. In Eq. (1.5), the

charge operator Q is a conjugate operator to phase φ, [Q,φ] = −2i; indeed, the nonlinear

dependence of current I as a function of phase φ indicates that the energy splittings in the

spectrum of HJJ are not equal, thereby the lowest two energy levels are well separated to

others. When inserted into an LC circuit, the Josephson junction is a nonlinear element

which breaks the harmonicity of spectrum, see Figure 1.2. The superconducting qubit works

with the benefits of nonlinear quantum circuits.

The circuit for the phase qubit can be understood as the ground and first excited state

of the metastable potential well in the Josephson junction with a biased current. Similarly

the circuit for the flux qubit can be understood as a Josephson junction with external

magnetic flux through the ring-shaped circuit. Flux quantization in the ring forces the

supercurrent in the flux qubit to flow either clockwise or anti-clockwise, and these two states

of current flow defines the qubit states. A superconducting charge qubit is formed by a tiny
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superconducting island coupled by a Josephson junction. For the circuit operating in the

charging regime, the number of Cooper pairs on the island is a good quantum number, and

therefore the lowest two charge states form the qubit states. The corresponding Hamiltonian

reads

HCQ = EC

(
Ng −

1

2

)
σz −

EJ
2
σx. (1.6)

Here, the offsite charge Ng = CgVg/2e with Cg and Vg being the gate capacitance and gate

voltage respectively. EJ = IcΦ0/2π is the Josephson energy and EC = (2e)2/eC is the

charging energy.

Even though any choice of superconducting qubits is not specifically chosen in the

thesis, it worth mentioning that in the family of superconducting qubits, several modern

descendants, such as transmon[13] and Xmon[16] are designed to work in the regime EC �

EJ by shunting a large capacitance in parallel to the Josephson junction. This setting

reduces the charge dispersion exponentially but the anharmonicity of the spectrum in a

weak power law. As a result, the spectrum is much less sensitive to the offset charge to

reduce charge noise, while maintaining sufficient anharmonicity for selective qubit states.

Circuit Quantum Electrodynamics

The interaction between quantized electromagnetic field to a two-level system was usually

achieved in a tiny laser cavity. The energy exchange between the field and the system, called

Rabi oscillations, occurs at a frequency ΩR proportional to the strength of the coupling

constant between the system and the field. In the strong coupling limit, the Rabi frequency

ΩR is much greater than both the decoherence rate of the two level systems and the cavity

field, and the underlying physics is called cavity quantum electrodynamics.

For the last decades, however, such setting was successfully achieved in a hybrid system

consisting of a microwave resonator and a superconducting qubit or quantum dot qubit.

The coupling between these devices is achieved either by galvanic or direct electrostatic

coupling, while the qubit is fabricated inside the resonator, or by capacitive or inductive

coupling while the qubit is fabricated ouside the resonator. In all cases, the Rabi interaction
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between the microwave resonator and the qubit is described by the Hamiltonian

HRabi =
1

2
ωqσz + ωra

†a+ gσx

(
a+ a†

)
, (1.7)

where a and a† are the annihilation and creation operators of the microwave field and ωr is

the frequency of the resonator field. In most cases that ω ' ω0 and ω � g, it is reasonable

to make a rotating wave approximation to drops off the so-called counter-rotating terms,

aσ− and a†σ+, where σ+ and σ− are the raising and lowering operators of the qubit. The

resulting expression is the well-known Jaynes-Cummings model:

HJC =
1

2
ωqσz + ωra

†a+ g(σ+a+ σ−a†). (1.8)

The Jaynes-Cummings model is exactly solvable because the interaction term g(aσ++a†σ−)

only connects the states in the subspace |n−1, ↑〉 and |n, ↓〉, which leads to a block-diagonal

Hamiltonian. This allows for an exact analytic solution for the eigenstates

|0〉 = |0, ↓〉, (1.9)

|n,+〉 = cos θn|n− 1, ↑〉+ sin θn|n, ↓〉, (1.10)

|n,−〉 = − sin θn|n− 1, ↑〉+ cos θn|n, ↓〉, (1.11)

and for the eigenvalues

E0 = −∆

2
, (1.12)

En,± = nωr ±
1

2

√
4g2n+ ∆2, (1.13)

for n = 1, 2, . . . denoting the number of photons and ∆ = ωq − ωr is the qubit-resonator

detuning and θn yields

tan(2θn) =
2g
√
n

∆
. (1.14)

These general solutions of the Hamiltonian are called dressed states. When ∆ = 0, the

angles θn = π/4, resulting in maximum entangled states between photon and qubit.

In the experiment, the coupling constant g depends on the specific implementation of

the setting of the qubit as well as the geometry of the microwave resonator.
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Adiabatic quantum computation and many-body localization

In regarding of conventional quantum computation, the computation scheme works similarly

to a classical computer in such a way that the qubits are connected as a circuit through

quantum gates to perform fundamental computation tasks.

However, as proposed in Ref.[5], benefited from the quantum adiabatic theorem, a new

computational scheme called adiabatic quantum computation could be an efficient candidate

for quantum computation as well. It works as following: At time t = 0, the quantum

mechanical system is described by a Hamiltonian Hi, whose eigenstates are easy to prepare.

Next, the system is slowly evolved into a more complicated final Hamiltonian Hf . By

the adiabatic theorem, for a adiabatic process, the system remains in its instantaneous

eigenstate if there is a gap between the eigenvalue and the rest of the spectrum. Further

details about AQC can be found in the review article Ref.[17].

While in principle the AQC is a universal scheme for quantum computing, actually

performing operations on this machines are equivalent to quantum simulation of the ground

states (and sometimes the entire spectrum) of a complicated Hamiltonian. Therefore for

any two quantum spin systems whose Hamiltonians are connected by a simple function of

external parameters, the AQC scheme can be applied to understand the ground state of a

unsolvable Hamiltonian. For instance, as an active research field recently, the many-body

localization (MBL) physics is a regime which can be found in interacting one-dimensional

spin systems with quench disorder. Recently, extensive numerical and analytical efforts

have been devoted to understand the thermal and dynamical properties of the 1D random

field Heisenberg model,

H =
∑
i

hiσz + J
∑
i

~σi · ~σi+1, (1.15)

where hi ∈ [−W,W ] are random numbers, and concluded that for this model there is a

transition of state with localized spins to a delocalized state when W is below the critical

value Wc while remain J fixed. From an experimental perspective, in each simulation

one can fix the disorder realization {hi} for an noninteracting spin system, J = 0, a regime

where spins are deeply localized with eigenstates as simple product states |ψ〉 =
⊗

i| ↑ (↓)〉i.
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Then one gradually turns on J , ending up with a delocalized state when W/J is below the

critical value Wc/J . With such systems, we propose and examine the dynamical aspect of

MBL using a local quench or a harmonic drive, both of which take advantage of accurate

methods for quantum control. The details will be discussed later in the thesis.

1.3 Open quantum systems

In practice, all quantum systems are open to the environment to some extent, and the

larger a system of interest is, the more important its coupling to the nearby environment

would be. For solid state qubits, the computational basis usually consists of macroscopic

quantum states, and therefore the coupling leads to very severe decoherence, a term implies

irreversible process that turns quantum superposition into classical mixtures. Specifically,

starting with a pure state |ψ〉, the system is entangled with the environment upon time

evolution, and eventually turned into a mixed state ρ. Besides, quantum information pro-

cessing is less useful until a measurement of quantum states is made. So to speak, the

measuring apparatus (usually as a quantum-classical interface) is indeed coupled to the

system of interest, and for this reason the quantum state cannot be described by a pure

state.

For a particular class of problems, the Born and Markov approximations are both valid.

The essential idea is that the system couples weakly to an environment which consists of a

large number of degrees of freedom in such a way that the system is not greatly affected by

the environment which relaxes itself in a short time scale.

The standard approach to derive the equations of motion for a system interacting with

the environment is to trace out the environmental degrees of freedom. After the truncation,

the resulting time evolution of the reduced density matrix for the system is called master

equation, for historical reasons. Decomposing the entire Hamiltonian as H = H0 + V =

HS +HE +V , where HS is the Hamiltonian for the system, HE is that for the environment

and V is the coupling between the two, the dynamics of the entire density matrix ρtot reads
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ρ̇tot(t) = −i[H, ρtot(t)]. (1.16)

In the interaction picture, the density matrix is given by

ρtot(t) = exp (−iH0t)ρtot;int(t) exp (iH0t), (1.17)

where ρtot;int(t) is governed by

ρ̇tot;int(t) = −i[Vint(t), ρtot;int(t)], (1.18)

with Vint(t) = eiH0tV e−iH0t. The general solution of Eq. (1.18) and can be expanded

perturbatively:

ρtot;int(t) = ρtot;int(0)−
∫ t

0
dt′[V (t′), ρtot;int(t

′)]. (1.19)

Tracing out the environment degrees of freedom, the above solution correspond to the

following equation of motion for the density matrix of the system:

ρ̇tot;int(t) = −iTrE[V (t), ρtot;int(t)]−
∫ t

0
dt′TrE[V (t), [V (t′), ρtot;int(t

′)]]. (1.20)

This is an integro-differential equation for the system density matrix, which is difficult to

solve because of the time dependence of ρ in the integral term. Assuming that at t = 0, there

is no entanglement between system and the environment, that is, ρtot(t) = ρ(0)
⊗
ρE(0).

Typically the system couples to many energy levels of the environment that are close in

energy, therefore the time variable t′ for the reduced density matrix in integrand in Eq. (1.19)

can be replaced by t and make the lower limit of the integral starting from −∞. This is

the Markov approximation, a memoryless property caused by the fast equilibration of the

environment. To this end, we obtain the Born-Markov master equation:

ρ̇(t) = −i[V (t), ρ(t)]−
∫ t

−∞
dt′TrE[V (t), [V (t′), ρ(t)]]. (1.21)

As a result, the time evolution of the system is governed by modified quantum dynamics,

which is probabilistically conserved in a non-unitary way. In the following, the Born-Markov

master equation will presented in more compact forms with further details. Namely, two

types of approach will be introduced, as they were used extensively throughout the thesis.



14

The Bloch-Redfield master equation

The Born-Markov master equation is presented in arbitrary basis, and therefore is still

not convenient for numerical implementation. For the particular problem of interests, one

can diagonalize the system Hamiltonian HS =
∑

n ωn|n〉〈n| and the density matrix can be

written in the eigenbasis |n〉 with elements ρmn = 〈m|ρ|n〉 yielding

ρ̇mn(t) = −iωmnρmn(t)−
∑
k,l

Rmnklρkl(t). (1.22)

The first term represents the coherent part of the in the equation of motion with transition

frequencies ωnm = ωn−ωm, and the second term describes incoherent time evolution, where

Rmnkl is called Bloch-Redfield tensor that reads

Rmnkl = δln
∑
r

Γ
(>)
mrrk + δmk

∑
r

Γ
(<)
lrrn − Γ

(>)
lnmk − Γ

(<)
lnmk. (1.23)

The rates Γ
(>)
mnkl and Γ

(<)
mnkl are expressed by Golden rule

Γ
(>)
mnkl =

∫ ∞
0

dte−iωklt〈Vint,mn(t)Vint,kl(0)〉E (1.24)

Γ
(<)
mnkl =

∫ ∞
0

dte−iωmnt〈Vint,mn(0)Vint,kl(t)〉E . (1.25)

Here 〈. . . 〉E = TrE (. . . ρE) denotes the thermal average over the environment degrees of

freedoms. In other words, the Redfield tensor is obtained by the Fourier transform of

the correlation function 〈Vint(0)Vint(t)〉E at given frequency differences in the eigenbasis.

In reality, the environment degrees of freedoms are modeled by a set of N independent

harmonic oscillators whose coordinate variables are coupled to the system degrees of freedom

linearly. This model is referred to as the Caldeira-Leggett model, which is useful for a system

with many levels in principle. To incorporate the environmental effects into the system, we

introduce the spectral density of the environmental coupling:

J(ω) =
∑
α

λ2
αδ(ω − ωα), (1.26)
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where α is the indices of the environmental mode and λα is the corresponding coupling

constant between mode α to the system, such that the thermal average is given by

C(t) = 〈Vint(t)Vint(0)〉E =

∫ ∞
0

dωJ(ω)

[
coth

(
βω

2

)
cos(ωt)− i sin(ωt)

]
. (1.27)

Therefore, the Redfield tensor is decomposed into products of system operators S and the

spectral density:

Γ
(>)
mnkl =

1

2
SknSlmC̃(ωml) (1.28)

Γ
(<)
mnkl =

1

2
SknSlmC̃

†(ωml), (1.29)

with C̃(ω) =
∫∞

0 dteiωtC(t). With Eqs. (1.28) and (1.29) and the tensor Rmnkl given in

Eq. (1.23) we arrived at the Bloch-Redfield master equation. The spectral density can

be obtained either by spectroscopy experiment or detailed calculations, and those system

operators S are listed by all possible operators associated with two eigenstates in the Hilbert

space of the system that are coupled to the environment. The Bloch-Redfield equation is

widely used in different aspects of physics to model decoherence and dissipation processes.

For the application in the physics of quantum information science, detailed analysis

of the qubit dynamics benefits from the theoretical understanding of the dynamics of dis-

sipative two-level systems, which could be reduced to spin-boson model under realistic

conditions. The spin-boson model has been systematically studied in Ref.[18], with careful

discussions about the effects of an Ohmic bath, J(ω) ∼ ω, the most common case in re-

gards to qubit dynamics. Based on Bloch-Redfield master equation, a theoretical approach

to dissipative qubit dynamics of a time-dependent Hamiltonian will be discussed in Chapter

4 and Ref.[19]. Especially, Landau-Zener transition will be reexamined in the presence of a

dissipative environment. At the time of writing of this thesis the author is aware that with

the progresses in AQC, more profound understanding of dissipative Landau-Zener physics

is seriously desired.
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The Lindblad master equation

The Lindblad master equation is a equation of motion for the system state ρ(t), given by

ρ̇(t) = −i[H, ρ(t)] +
∑
µ

γµD[Lµ]ρ. (1.30)

The first term is the von Neumann equation for the renormalized Hamiltonian H that

includes the system Hamiltonian as well as the renormalization in the presence of the

environment such as Lamb shifts and Stark shifts. The second term describes the dissipation

of the system: γµ is the rate for the collapse operator Lµ and the superoperator D[A] called

Lindblad superoperator is given by

D[A]ρ ≡ AρA† − 1

2

(
A†Aρ+ ρA†A

)
. (1.31)

The operators Lµ can be specified not only from a microscopic picture, but also in a phe-

nomenological way.

The Lindblad master equation can be written a

ρ̇(t) = Lρ(t), (1.32)

where L is the total Liouvillian operator. Eq. (1.32) has a simple form of solution ρ(t) =

eLtρ(0), in which the time evolution operator Λt = eLt is a dynamical quantum map de-

scribing the state change of the open system over time t.

1. Λt is completely positive and trace preserving.

2. Tr
[
Λtρ(0)Ô

]
is continuous in t for all valid observables Ô.

3. Λt is Markovian, namely Λt1+t2 = Λt1 · Λt2 and Λ0 = I.

The first property ensures that the dynamical quantum map connects valid quantum states,

and the second property ensures that there are no discontinuity in the time evolution of

observables. The third property states that Λt does not depend on the memory of the time

evolution, only on specific point in time.
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While the Lindblad master equation is easily defined with a wide range range of ap-

plications, a lot of mathematical details and their consequences will not be discussed here.

However, for problems originated from quantum information processing, it is crucial to con-

sider the time correlation functions of observables, as well as the corresponding fluctuation

spectrum, which is defined in terms of the Fourier transform of the correlation function.

Suppose we have a set of system operators {Si}, and the time evolution of their expec-

tation values yields a closed linear combination of them,

d

dt
〈Si(t)〉 =

∑
j

Gij〈Sj〉 (1.33)

with some coefficient matrix Gij . With the Liouvillian operator L, the relation can be

rewritten as

d

dt
〈Si(t)〉 = TrS {SiLρ(t)} = TrS

{(
L†Si

)
ρ(t)

}
= TrS


∑

j

GijSj

 ρ(t)

 , (1.34)

which leads to

L†Si =
∑
j

GijSj . (1.35)

Therefore we obtain

d

dτ
〈Si(t+ τ)Sk(t)〉 = TrS

{(
L†Si

)
Λt+τΛ−1

t Skρ(t)
}

(1.36)

=
∑
j

Gij〈Sj(t+ τ)Sk(t)〉,

a conclusion called quantum regression theorem. The significance of the theorem is that it

allows us to evaluate explicit expressions for the time correlation functions and naturally

the fluctuation spectrum once the solution for the expectation value given by Eq. (1.33), is

known.

1.4 Outline of the thesis

The thesis is structured as the following. The first part of the thesis explores realistic

problems originated from quantum information processing. Chapters 2 through 4 covers
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the first part. The second part of the thesis scrutinizes the dynamical aspects of many-body

localization; those materials are presented in Chapter 5 and 6.

In Chapter 2, we analyze the photovoltaic current through a double quantum dot system

coupled to a high-quality driven microwave resonator. The conversion of photons in the

resonator to electronic excitations produces a current flow even at zero bias across the leads

of the double quantum dot system. We demonstrate that due to the quantum nature of

the electromagnetic field in the resonator, the photovoltaic current exhibits a double peak

dependence on the frequency ω of an external microwave source. The distance between the

peaks is determined by the strength of interaction between photons in the resonator and

electrons in the double quantum dot. The double peak structure disappears as strengths of

relaxation processes increases, recovering a simple classical condition for maximal current

when the microwave frequency is equal to the resonator frequency.

In Chapter 3, we analyze the full counting statistics of photons emitted by a double

quantum dot (DQD) coupled to a high-quality microwave resonator by electric dipole inter-

action. We show that at the resonant condition between the energy splitting of the DQD

and the photon energy in the resonator, photon statistics exhibits both a sub-Poissonian

distribution and antibunching. In the ideal case, when the system decoherence stems only

from photodetection, the photon noise is reduced below one-half of the noise for the Pois-

son distribution and is consistent with current noise. The photon distribution remains

sub-Poissonian even at moderate decoherence in the DQD. We demonstrate that Josephson

junction based photomultipliers can be used to experimentally assess statistics of emitted

photons.

In Chapter 4, we study the dynamics of a two-level system described by a slowly varying

Hamiltonian and weakly coupled to the Ohmic environment. We follow the Bloch–Redfield

perturbative approach to include the effect of the environment on qubit evolution and take

into account modification of the spectrum and matrix elements of qubit transitions due

to time-dependence of the Hamiltonian. This formalism is applied to two problems. (1)

We consider a qubit, or a spin-1/2, in a rotating magnetic field. We show that once the
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rotation starts, the spin has a component perpendicular to the rotation plane of the field that

initially wiggles and eventually settles to the value proportional to the product of angular

rotation velocity of the field and the Berry curvature. (2) We re-examine the Landau–Zener

transition for a system coupled to environment at arbitrary temperature. We show that

as temperature increases, the thermal excitation and relaxation become leading processes

responsible for transition between states of the system. We also apply the Lindblad master

equations to these two problems and compare results with those obtained from the Bloch–

Redfield equations.

In Chapter 5, we consider a one dimensional spin 1/2 chain with Heisenberg interaction

in a random parallel magnetic field. This system is known to exhibit the MBL transition

at critical strength of random field. We analyze the response of the chain when additional

perpendicular magnetic field is applied to an individual spin. We show that the response

changes across the MBL transition. Then, we propose a method for accurate determina-

tion of the mobility edge via local spin measurements. We further demonstrate that the

exponential decrease of the spin response with the distance between perturbed spin and

measured spin can be used to characterize the localization length in the MBL phase.

In Chapter 6, we consider a one dimensional spin chain system with quenched disorder

and in the presence of a local harmonic drive. We study the time evolution of the system

in the Floquet basis and evaluate the Bures displacement of the system in the Hilbert

space caused by the drive per one period. This displacement can be used to identify two

phases of the system: (1) the many-body localized phase, in which the distribution of the

distance exhibits long tails while its average value decreases rapidly as disorder increases;

and (2) the ergodic phase, in which the displacement distribution is narrow and its average

value weakly depends on disorder. This distinction in the average value of the displacement

between the two phases develops readily for system with ten or more spins. Therefore,

recently built networks of superconducting qubits subject to a local microwave drive can

simulate dynamics of a system in the many-body localization regime. We also show that

from thermodynamics point of view, the two phases can also be distinguished and hence
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probed by von Neumann entropy, energy fluctuations and spin diffusions, as long as the

drive is sufficiently weak.

1.5 Publication List

The work in this thesis is presented in six chapters. The contents of Chapter 2, 3 and 4

have appeared in three separate published works. The material of Chapter 5 and 6 is at

present being prepared for publication. In addition, there is another coauthored publication,

Ref.[20], whose material is not presented in the thesis.

Chapter 2 is based on Ref.[21], titled Quantum photovoltaic effect in double quantum

dots, and published in January 2013. This work was completed with Maxim G. Vavilov.

Support for this work was provided in part by NSF (DMR-1105178) and the Donors of

the American Chemical Society Petroleum Research Fund. Fruitful discussions with R.

McDermott and J. Petta were helpful.

Chapter 3 is based on Ref.[22], titled Full counting statistics of photons emitted by a dou-

ble quantum dot, and published in November 2013. This work was completed with Maxim

G. Vavilov. Support for this work was provided in part by NSF Grant No. DMR-1105178,

ARO and LPS Grant No. W911NF-11-1-0030. Fruitful discussions with R. McDermott, H.

Treci and J. Petta were helpful.

Chapter 4 is based on Ref.[19], titled Nonadiabatic dynamics of a slowly driven dissi-

pative two-level system, and published in May 2014. This work was completed with Amrit

Poudel and Maxim G. Vavilov. Support for this work was provided in part by NSF Grants

No. DMR-1105178 and DMR-0955500, ARO and LPS Grant No. W911NF-11-1-0030.

Fruitful discussions with I. Aleiner, A. Glaudell, F. Nori, A. Polkovnikov, S. Shevchenko

and A. Levchenko were helpful.

Chapter 5 is based on a work preparing for submission, titled Response to a local quench

of a system near many body localization transition, as well as a related unpublished work.

This work was completed with Maxim G. Vavilov. Support for this work was provided

in part by NSF Grants No. DMR-1105178 and DMR-0955500, ARO and LPS Grant No.



21

W911NF-11-1-0030. Fruitful discussions with D. Basko, D. Huse, L. Ioffe, R. Nandkishore

and V. Oganesyan were helpful.

Chapter 5 is based on a work preparing for submission, titled Many-body localization in

a quantum system subject to a local periodic drive. This work was completed with Maxim

G. Vavilov. Support for this work was provided in part by NSF Grants No. DMR-1105178

and DMR-0955500, ARO and LPS Grant No. W911NF-11-1-0030. Fruitful discussions

with D. Basko, D. Huse, L. Ioffe, R. Nandkishore and V. Oganesyan were helpful.



22

Chapter 2

Quantum photovoltaic effect in

double quantum dots

2.1 Introduction

The interaction of electrons in conductors with electromagnetic fields has long been consid-

ered within a classical picture of electromagnetic (EM) radiation. A widely–known example

is the photon assisted tunneling (PAT) in double quantum dot (DQD) systems[23], when

the EM field brings an electron trapped at the ground state to an excited state and fa-

cilitates electron transfer. This classical description of the EM field breaks in high-quality

microwave resonators based on superconducting transmission line geometry[24]. Interaction

of such EM fields with electronic devices require a quantum treatment known as the circuit

quantum electrodynamics (cQED)[25, 26].

Recently, several experimental groups studied systems consisting of a superconducting

high quality resonator and a DQD[27, 28, 29, 30, 31] or a voltage biased Cooper pair box[32].

The coupling strength between a resonator photon mode and electron states in a DQD is

characterized by the vacuum Rabi frequency g with reported values in the range of g/2π ∼

108Hz. These systems call for re-examination of the PAT by taking into account a quantum

description of the EM field in terms of photon excitations. One may expect at least two
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Figure 2.1: (a) An illustration of a DQD and a transmission line resonator coupled to an
external microwave source µw. (b) A schematic view of the DQD. Electrons are confined to
the left (L) and right (R) dots by barrier gates BL, BM, and BR that also control electron
tunneling rates between the source, S, and the left dot, the left and right dots, and the right
dot and the drain, D, respectively. Electrostatic energies of two quantum dots are defined
by the plunger gates, PL and PR, and the PL gate is also connected to an antinode of the
resonator, see e.g. Refs.[29, 31]. (c) Electronic states of the DQD are presented in both
the eigenstate basis (solid lines) and the left–right basis (dashed lines). Tunneling from the
excited state, |e〉, to the left/right lead, with rate Γe,L/R and from the left/right lead to the
ground state, |g〉, with rate ΓL/R,g are illustrated by arrows.

important distinctions from the classical treatment: (1) the Lamb shift that renormalizes

quantum states of electrons and photons; (2) spontaneous photon emission that breaks

symmetry between absorption and emission processes and is important in systems with

either a finite voltage bias between the leads[33, 34, 35] or an inhomogeneous temperature

distribution[36].

In this chapter we study the photovoltaic current through a DQD coupled to a high-

quality microwave resonator at zero bias across the DQD. The resonator is driven by external

microwave source that populates a photon mode of the resonator, see Figure. 2.1. The

photons excite electrons in the DQD and produce electric current even at zero bias, similar

to the classical PAT case[23, 37, 38]. We show that due to the coupling of electrons and

photons, the current as a function of the source frequency has a multiple peak structure

with splitting between the peaks determined by the coupling strength g and reflects the
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Lamb shift of electronic energy states. We also demonstrate that the interaction-induced

splitting is sensitive to the energy and phase relaxation rates in the DQD.

We note that the photovoltaic effect discussed here is a common phenomenon when

the current in an electronic circuit is generated by out-of-equilibrium EM environment.

Examples of this phenomenon include the current response of a DQD in the vicinity of the

biased quantum point contact[39] or another circuit element out of equilibrium[40] with

the electronic system. However, because out-of-equilibrium photons of the environment

have a broad spectrum, the generated current does not exhibit a resonant dependence on

parameters of the system that we observe in a system of a single mode high quality resonator

and a DQD.

2.2 Model

We consider a DQD system with each dot connected to its individual electron reservoir at

zero temperature and at zero bias between the reservoirs, see Figure. 2.1(b,c). The gate

voltages of the DQD are adjusted near a triple point of its stability diagram[23]. To be

specific, we choose a triple degeneracy point between (Nl, Nr), (Nl+1, Nr) and (Nl, Nr+1)

electron states in the DQD and denote these states as |0〉, |L〉 and |R〉, respectively. We

model the system by the Hamiltonian H̃ = HDQD +Hr+Hint, where HDQD describes states

with an extra electron in the left or right dot, |L〉 or |R〉:

HDQD =
1

2
ετz + T τx, (2.1)

with ε being the electrostatic energy difference between the two states, and T being the

tunnel matrix element of an electron between the dots. The Pauli matrices are defined in

the subspace of states |L〉 and |R〉 as τx = |R〉 〈L| + |L〉 〈R| and τz = |R〉 〈R| − |L〉 〈L|. A

resonator driven by an external microwave source is described by the Hamiltonian

Hr = ~ω0a
†a+ 2~F (a† + a) cosωt (2.2)

with a (a†) denoting the annihilation (creation) operators for microwave photons in the

resonator, ~F being the amplitude of the external drive of the resonator and ω0 (ω) being
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frequency of the resonator (source). The interaction between the microwave field and the

DQD system is represented by [33]

Hint = ~g0(a† + a)τz. (2.3)

This interaction describes the shift of energy difference between states |R〉 and |L〉 due

to the electric potential of the plunger gates defined by the microwave photon field. We

assume that the photon field is distributed between the left and right plunger gates, see

Figure. 2.1(b) and does not influence the source and drain voltage to avoid the rectification

effects[41, 42, 43].

Further calculations are more convenient in the basis of the ground, |g〉, and excited,

|e〉 states of the Hamiltonian, Eq. (3.1):

|e〉 = cos(θ/2) |L〉+ sin(θ/2) |R〉 ,

|g〉 = − sin(θ/2) |L〉+ cos(θ/2) |R〉 . (2.4)

Here θ = arctan(2T /ε) characterizes the hybridization of the |L〉 or |R〉 states. The energy

splitting between the eigenstates ~Ω =
√
ε2 + 4T 2 can be tuned independently by varying

ε and T via dc gate voltages. We further eliminate the time-dependence in Hamiltonian

Eq.(2.2) by applying unitary operator U = exp(−iωt(a†a+ σz/2)) and utilize the rotating

frame approximation to obtain [33, 35]

H

~
=

1

~
U†H̃U − i∂U

†

∂t
U =

Ω− ω
2

σz (2.5)

+ (ω0 − ω)a†a+ g(aσ+ + a†σ−) + F (a† + a),

where g = g0 sin θ characterizes the actual strength of the coupling between the microwave

field and DQD states responsible for photon absorption or emission, the Pauli matrices

σz = |e〉 〈e| − |g〉 〈g|, σ− = |g〉 〈e| and σ+ = |e〉 〈g| are defined in terms of eigenstates of the

electron Hamiltonian, Eq. (3.1).

We analyze the behavior of the system with Hamiltonian Eq. (2.5) in the presence of

relaxation in electron and photon degrees of freedom by employing the Born-Markov master
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equation for the full density matrix

ρ̇ = Ltotρ = − i
~

[H, ρ] + Ldissρ. (2.6)

The first term on the r.h.s. of Eq.(3.4) describes the unitary evolution of the system and

the second term accounts for the dissipative processes in the resonator and DQD systems

[39]

Ldissρ ≡ κD(a)ρ+ γD(σ−)ρ+
γφ
2
D(σz)ρ

+ (ΓL,g + ΓR,g)D(c†g)ρ+ (Γe,L + Γe,R)D(ce)ρ,

(2.7)

where D(x)ρ =
(
2xρx† − x†xρ− ρx†x

)
/2 is the Lindblad superoperator. The relaxation

of the photon field in the resonator with rate κ is represented by κD(a)ρ and the electron

relaxation from the excited state |e〉 to the ground state |g〉 with rate γ is represented by

γD(σ−)ρ. The last two Lindblad superoperators account for the loading of the ground

state |g〉 and unloading of the excited state |e〉 of the double quantum dot via electron

tunneling in terms of operators ce = |0〉 〈e| and c†g = |g〉 〈0|, respectively. The tunneling

rates ΓL,g = Γl cos2(θ/2), ΓR,g = Γr sin2(θ/2), Γe,L = Γl sin
2(θ/2) and Γe,R = Γr cos2(θ/2)

are written in terms of tunneling rates Γl/r in the basis of |L〉 and |R〉 states.

Note that in Eq.(3.4), the dynamics of state |0〉 only appears via the tunneling terms

involving D(ce)ρ and D(c†g)ρ. These terms can be categorized by whether the empty state is

loaded from the left or right lead with coefficients depending on projection of the eigenstates

onto the left/right states, as shown in Figure. 2.1. In this picture,[39] the photovoltaic

current is given by

I = eΓr

(
cos2 θ

2
〈e| ρ̄ |e〉 − sin2 θ

2
〈0| ρ̄ |0〉

)
. (2.8)

in terms of the reduced density matrix ρ̄ = Trph{ρ}, where we traced out photon degrees

of freedom of the resonator. We also analyze the number of photons in the resonator,

N̄ = Tr
{
a†aρ

}
, (2.9)

where we trace out both photon and electron degrees of freedom.
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Figure 2.2: The average number of photons in the resonator and the photovoltaic current
as functions of level bias ε for T /2π = 1 GHz, F = 50 µs−1 and ω0/2π = 8 GHz. The
current is generated near the resonant condition when ε = ±

√
~2ω2

0 − 4T 2 (vertical lines).
The three curves represent different dephasing rates γφ the DQD.
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Figure 2.3: The average number of photons in the resonator and the photovoltaic current
as a function of the frequency ω of the microwave drive for T /2π = 1 GHz, F = 50 µs−1

and Ω = ω0 = 2π × 8 GHz, g/2π = 48.5 MHz. For γφ = 0, both average number of
photons N̄ and the photovoltaic current show local minima at ω = ω0 and local maxima
near ω = (E1,± − E0)/~, shown by vertical lines. As the dephasing rate γφ increases, the
double peaks merge to a single peak at ω = ω0.



29

2.3 Results

The average number of photons in the resonator, N̄ , and the dc component of photocurrent

can be found using the steady state solution of the master equation, (3.4), with ρ̇ = 0. We

numerically find the full density matrix ρ for a double quantum dot and photon field of the

resonator in the Fock’s space using Quantum Optics Toolbox [44] and QuTiP [45], both of

which provide consistent results. The steady state solution for the density matrix ρ defines

the average number of photons N̄ , Eq. (2.9), and the photocurrent, Eq. (2.8).

Our choice of parameters is motivated by Ref. [29]. We choose the relaxation rate γ =

2π×25 MHz, the resonator relaxation rate κ/2π = 8 MHz, tunneling amplitude between the

individual dots T /2π = 1 GHz, the tunneling rate from a dot to a lead Γl/r = 2π×30 MHz,

and the resonator frequency ω0/2π = 8GHz. We note that to keep the coupling constant

finite, we have to take T ∼ ~Ω, since g = g0 sin θ, Eq. (2.5), vanishes for T = 0. Below we

fix g0/2π = 200MHz.

First, we investigate dependence of the photocurrent on the separation between energy

levels in the double quantum dot, controlled by the electrostatic energy difference ε. We

take frequency ω of microwave source to be equal to the resonator frequency, ω = ω0, and

fix the drive amplitude F = 50 µs−1. Dependence of the average number of photons in the

resonator and the photocurrent on energy ε is presented in Figure. 3.2 for three values of

the dephasing rate γφ/2π = 0, 10, 20MHz. As the energy difference between the excited

and ground states of the quantum dot goes through the resonance Ω = ω0, we observe a

significant suppression of the photon number in the resonator, see the top panel and the

inset in Figure 3.2. This is expected behavior because the DQD system enhances photon

absorption in the resonator at Ω ' ω0. Absorbed photons cause transitions between the

ground and excited electronic states. These electrons tunnel to the leads and generate

electric current though the DQD. This current is shown in the lower panel of Figure 3.2

and is peaked at ε = ±
√

~2ω2
0 − 4T 2 or ε/(2π~) ' ±7.75GHz, indicated by dashed vertical

lines.

One feature in Figure 3.2 is that the photon number is also reduced at zero bias ε, when
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Figure 2.4: The average number of photons in the resonator and the photovoltaic current
as a function of the frequency ω of the microwave drive for detuned DQD and resonator
system with Ω/2π = 8.1 GHz, ω0/2π = 8.0 GHz, the intradot tunneling T /2π = 1 GHz,
and the drive amplitude F = 50 MHz. The photon average number has a peak at ω =
(E1,− −E0)/~, Eq. (2.10), while the photovoltaic current exhibits a double peak feature at
ω = (E1,± − E0)/~ (vertical lines).
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the photovoltaic current vanishes. This suppression is a result of strong enhancement of

the coupling constant g = g0 at ε = 0, resulting in stronger dissipation in the resonator and

increase of off-resonant absorption rate. At the same time the photovoltaic current vanishes

at ε = 0 due to cancellation between the two terms in Eq.(2.8).

The curves for the photon number and the current do not significantly change after

the dephasing rate γφ is introduced in addition to the energy relaxation rate γ. Dephasing

smears the resonant condition for the photon absorption by the DQD and has two effects:

(1) the number of photons increases a little near the resonance Ω ' ω0, see the inset

in Figure 3.2; (2) the resonant absorption of photons by electrons is suppressed resulting

in reduction of the photocurrent. We note that in the case presented in Figure 3.2 the

first effect is stronger than the second effect and dephasing increases the magnitude of

photocurrent for the case of fixed ω = ω0.

Next, we consider the case when the frequency of the microwave source, ω, is varied

while the energy splitting ~Ω of the DQD and the resonator frequency ω0 are fixed. The

microwave radiation is mostly reflected when its frequency does not match the difference

between energies En,± of the resonator and DQD system defined by the Jaynes-Cummings

spectrum:

En,± = n~ω0 ±
~
2

√
4g2n+ ∆2, E0 =

~∆

2
, (2.10)

where ∆ = ω0 − Ω is the detuning between the DQD and the resonator. We demonstrate

that for DQD with weak energy and phase relaxations, this resonant admittance of the

microwave source to the resonator results in the peak structure of the average photon

number and the photocurrent.

In Figure 3.3, we plot the average number of photons in the resonator and the pho-

tocurrent as a function of the drive frequency ω for ω0 = Ω and for the choice of other

system parameters identical to those for curves in Figure 3.2. At vanishing dephasing rate,

γφ = 0, we observe a double peak feature in both photon number and photocurrent curves,

see Figure 3.3. These peaks at ω± = (E1,± − E0)/~ are defined by the level spacing of

the Jaynes-Cummings Hamiltonian and are shown by vertical dashed lines in Figure 3.3.
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The two peaks merge at ω = ω0 as the dephasing rate increases and destroys quantum

entanglement between photons and DQD states.

At finite detuning between the resonator and the DQD, ∆ & g = 2π × 48.5 MHz,

the eigenstates of the system become dominantly photon states or electron states of the

DQD. As a result, the microwave source increases the number of photon excitations in

the resonator when the microwave frequency is in resonance with the transition between

the photon–like states, ω1,− = (E1,− − E0)/~. But the source has a weak effect at the

resonance with the electron-like states at frequency ω1,+ = (E1,+ − E0)/~. We present the

corresponding dependence of the photon number and the photocurrent in Figure 3.4 for

ω0/2π = 8 GHz, Ω/2π = 8.1 GHz (∆ = 100 MHz) and other parameters identical to those

for in Figs. 3.2 and 3.3. We indeed observe one large peak in the photon number near

the resonant condition for the dominantly photon state with energy E1,− while the photon

number does not show significant enhancement near the second resonance, corresponding

to the transition to the dominantly electronic state with energy E1,+. The photocurrent

still exhibits double peak feature, but the peak corresponding to the photon resonance is

higher, when the microwave drive produces a higher photon population.

We now consider a more idealistic regime of significantly reduced tunneling and re-

laxation rates Γl = Γr = γ = 2π × 100 kHz, the drive amplitude F/2π = 30 MHz and

ω0 = Ω = 2π × 8 GHz. In this case additional resonances develop, see Figure 3.6. These

resonances correspond to excitations of several photons in the cavity by the microwave

source. When the frequency of the source satisfies ~ωn = En,± − E0, the DQD-resonator

system experiences transitions from the ground state to the energy state En,±, cf. Ref. [46].

These multiphoton transitions result in peaks of the average photon number and the mag-

nitude of the photocurrent. Curves in Figure 3.6 have three pairs of peaks at frequencies

ωn,± = ω0 ± g/
√
n marked by vertical dashed lines for n = 1, 2, 3. We notice that for

ω = ω1,2 the average photon number is nearly the same, see the top panel in Figure 3.6(a),

while the photon distribution function is different, Figure 3.6(b): at ω = ω2,− a non-zero

P2 develops for a probability that the resonator contains two photons. This difference in
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Figure 2.5: (a) The average number of photons in the resonator and the photovoltaic
current as a function of the frequency ω of the microwave drive for Ω = ω0 = 2π × 8 GHz,
the intradot tunneling T /2π = 1 GHz, and the drive amplitude F/2π = 30 MHz and
extremely low tunneling rates to the leads and the energy relaxation rate, Γl = Γr = γ =
2π × 100 kHz. The photon average number and the photocurrent have several peaks at
ωn,± = (En,± − E0)/n~ with n = 1, 2, 3, these frequencies, calculated from Eq. (2.10) are
shown by vertical lines). (b) The histogram presents the probabilities Pn to have n photons
in the resonator steady state at drive frequency ω1 (dark bars) and ω2 (grey bars). (c) The
diagram is a schematic picture for the Jaynes-Cummings energy levels showing single and
two photon excitations.
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Pn indicates that the microwave drive line does not match the resonator to produce a two

photon occupation of the resonator at ω = ω1, but it matches the resonator to populate

the state with the energy E2,±, which then decays to the lower energy states with n = 1, 0.

Next, we investigate dependence of the photon number in the resonator and the mag-

nitude of the photovoltaic current for different amplitudes F of the drive. The above

discussion was mostly focused on a resonator containing less than one photon. As the drive

increases, the double peak feature evolves to a single peak at the drive frequency equal

to the frequency of the resonator, ω = ω0. We interpret this cross-over as a signature of

changed hierarchy of the terms in the system Hamiltonian. At weak drive, we have a JC

Hamiltonian with its peculiar energy levels, Eq.(2.10), and the drive can be viewed as a

weak probe testing the spectral structure of the coupled resonator and DQD system. Once

the drive reaches the strength of the g coupling, g ' 2π×50 MHz, a proper way to treat the

system is to start with the Floquet–type states[38, 47, 48] of the driven resonator and then

to take into account the interaction of these states with the DQD system as a perturbation.

In this picture, the photon resonance happens at ω = ω0. The coupling g is responsible for

the formation of the broader “wings” in curves for the average photon number and the pho-

tocurrent. These wings are more pronounced in the photovoltaic current, which is entirely

due to the coupling between resonator and DQD. This broad structure of the generated

current as a function of the source frequency is preserved even at stronger drive. Thus, the

shape of the photovoltaic curve might provide an experimental approach to quantify the

strength of the JC coupling constant.

2.4 Discussion and Conclusion

We analyzed the photovoltaic current through a DQD system at zero voltage bias between

the leads. The double quantum dot interacts through its dipole moment to a quantized

electromagnetic field of a high quality microwave resonator. The interaction is described

by the Jaynes–Cummings Hamiltonian of a quantized electromagnetic field and a two level

quantum system, represented by ground and excited electronic states of the double quantum
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Figure 2.6: Dependence of the average photon number and the current on microwave fre-
quency ω for several values of the drive amplitude F/2π = 5, 10, 15 MHz, at zero dephasing
γφ = 0 and other parameters are the same as in data in Figure 3.3. As the amplitude of
the drive increases, the two peaks merge together to a single peak at ω = ω0.



36

dot. When a weak microwave radiation is applied to the resonator, the source acts as a

spectral probe that causes excitation of the system when the energy difference between its

eigenstates is equal to the photon energy ~ω of the source. If this resonance condition is

satisfied, the microwave source populates the photon mode of the resonator and generates

a direct current though the double dot system even at zero bias.

We demonstrated that at finite, but still low energy and phase relaxation rates of the

DQD, both the average number of photons in the resonator and the photocurrent through

the DQD have a double-peak structure as functions of the frequency of the microwave

source. This double peak structure reflects an avoided crossing of the energy states of the

DQD and the resonator photons due to the interaction between the two subsystems and is

reminiscent of the Lamb shift by a single electromagnetic mode. We also found that in the

limit if extremely weak relaxation rates of the DQD, multiphoton resonances develop when

the energy difference between the states of the coupled system is a multiple of ~ω.

As energy and phase relaxation rates of the DQD increase, the peaks in the photon

number and the photocurrent broaden and eventually merge in a single resonance peak at

the frequency ω0 of the resonator. In this limit, the resonator photon mode and the DQD

are no longer described as an entangled quantum system and the resonant condition for the

interaction of the microwave source with the system corresponds to equal frequencies of the

source and the resonator mode, ω = ω0.

At stronger microwave drive, frequency dependence of the average photon number in the

resonator evolve from the Jaynes-Cummings double peaks at ω = ω0± g to a single peak at

the resonator frequency ω0. The single peak at ω = ω0 is a result of multi-photon transitions

at strong drive by the microwave source that all merge together due to finite width of multi-

photon resonances. Similar evolution to a single peak occurs for the photocurrent response,

although the photocurrent curve has a broader width as a function of the source frequency

ω, this width corresponds to the strength of the coupling g between the photon mode of

the resonator and the DQD and may be used to characterize the strength of this coupling

in experiments.
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Chapter 3

Full Counting Statistics of Photons

Emitted by Double Quantum Dot

3.1 Introduction

The statistics of photons emitted by an electric current depends on the electron state of a

conductor. If the electric current were classical, the photon field would be in a coherent state

[49] with Poissonian statistics. An electron system with strong inelastic processes is char-

acterized by thermal distribution and produce black-body radiation with super-Poissonian

statistics of emitted photons. However, if the electron distribution is far from equilibrium,

the photon counting statistics may become sub-Poissonian [50, 51, 52].

I Several experiments have recently been developed to study the statistics of photons

in the GHz frequency range. Experiments [53, 54, 55] measured the photon statistics in a

steady state of high quality resonator and distinguished between the thermal source and

a coherent drive. The photon noise of a quantum point contact at finite bias was also

investigated using an amplifier [56]. An alternative approach to study photon statistics uti-

lizes a photon counter [57, 58]. An individual photon counter can provide the statistics of

emitted photons, while a system with two counters can be used for Hanbury Brown-Twiss

(HBT) interferometry [59], e.g. measurement of the second-order intensity correlation func-
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Figure 3.1: (a) An illustration of a DQD and a resonator (a λ/2–transmission line) coupled
to a photon counter (PC). (b) In the DQD, electrons are confined to the left (L) and right
(R) dots by barrier gates BL, BM, and BR that also control electron tunneling rates between
the source, S, and the left dot, the left and right dots, and the right dot and the drain, D,
respectively. Electrostatic energies of two quantum dots are defined by the plunger gates,
PL and PR, and the PL gate is also connected to an antinode of the transmutation line. (c)
Electronic eigenstates of the DQD and tunneling from the left lead to the ground/excited
state with rate ΓL,g/e, and from the ground/excited state to the right lead with rate Γg/e,R.

tion g(2)(τ). Generic HBT measurement indicates that noninteracting bosons and fermions

would exhibit bunching and antibunching, respectively [60], while several more complicated

examples of photon statistics caused by quantum electron transport have been proposed in

systems with quantum point contact [50, 51, 52] and quantum Hall regime [61].

In this chapter we study statistics of photon radiation from a DQD coupled to a mi-

crowave resonator, a system that was recently studied experimentally by several groups

[28, 27, 31, 29]. We show that photon statistics is sub-Poissonian with reduced noise in

the flux of emitted photons from the resonator. This regime of reduced noise is robust

for the considered system. While it is widely expected that photons produced by an elec-

tron source may show sub-Poissonian statistics, such a regime usually occurs under several

stringent conditions. In particular, the emission statistics of a quantum point contact is

sub-Poissonian only if the voltage bias does not exceed twice the photon energy and the

contact has a single conduction channel, otherwise photons have super-Poissonian distri-

bution [50, 51, 52]. In the setup considered here, a combination of Fermi statistics and
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repulsion of electrons maintains the reduced noise in photon flux in a wide range of system

parameters. Even a short dephasing time which is the main constraint for observation of

quantum effects in DQDs hardly changes the distribution of emitted photons. It is the

energy relaxation processes in the DQD that drive the photon distribution from sub- to

super–Poissonian as the relaxation causes equilibration of the whole system and brings the

photon field to a state similar to that of a thermal radiation. We argue that the system

of a coupled DQD and a resonator can be used to study a cross-over from non-equilibrium

to a thermal state in an interacting quantum system. Finally, our analysis indicates that

the Josephson-based photon counters [57, 58] are suitable for studies of photon emission

statistics by a DQD.

3.2 Counting Statistics Formalism

Double quantum dot coupled to a resonator

We study the statistical properties of photon emission by a voltage–biased DQD. The

Hamiltonian for a system of a DQD and a resonator, shown in Figure 3.1, is presented as

a combination of three terms, H = HDQD + Hph + Hint. The Hamiltonian of a DQD in

the Coulomb blockade regime near a triple point in its electrostatic stability diagram [23]

is represented by

HDQD =
1

2
~ετz + ~T τx, (3.1)

in the basis of electron states in the left, |L〉, and right, |R〉, quantum dots with electrostatic

energy ε and the tunneling amplitude T ; in this basis, τz = |L〉 〈L| − |R〉 〈R| and τx =

|R〉 〈L|+ |L〉 〈R|. The term Hph = ~ω0a
†a represents a noninteracting photon mode in the

resonator. The interaction between charge and photon degrees of freedom is described by

the Hamiltonian Hint = ~g0

(
a† + a

)
τz [33, 35, 62, 21].

In further calculations, we use the eigenstates of the DQD Hamiltonian, Eq. (3.1),
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namely the ground, |g〉, and excited, |e〉, states:

|e〉 = cos(θ/2) |L〉+ sin(θ/2) |R〉 ,

|g〉 = − sin(θ/2) |L〉+ cos(θ/2) |R〉 .
(3.2)

Here θ = arctan(2T /ε) characterizes the hybridization between states |L〉 and |R〉 due to

inter dot tunneling. The energy splitting between the eigenstates ~Ω = ~
√
ε2 + 4T 2 can be

tuned via gate voltages [23]. In the eigenstate basis, Eq. (3.2), and within rotating wave

approximation, the Hamiltonian H is

H =
~Ω

2
σz + ~ω0a

†a+ ~g(a†σ− + aσ+), (3.3)

where g = g0 sin θ is the effective electron–photon coupling constant, and σ− = |g〉 〈e|,

σ+ = |e〉 〈g|.

We analyze the behavior of the system with Hamiltonian Eq. (3.3) in the presence of

decoherence in electron and photon degrees of freedom and tunneling of electrons between

the DQD and the leads by employing the master equation for the full density matrix

ρ̇ = Lρ = − i
~

[H, ρ] +Dtotρ, (3.4)

where the commutator describes the unitary evolution of the system and

Dtotρ = κK(a)ρ+DDQDρ (3.5)

accounts for the total dissipative evolution described by Lindblad superoperators

K(x)ρ =
(

2xρx† − x†xρ− ρx†x
)
/2. (3.6)

The first term, κK(a)ρ, represents photon detection by an ideal photon counter with rate

κ. The second term,

DDQDρ = γrK(σ−)ρ+
γφ
2
K(σz)ρ+ ΓlK(c†l )ρ+ ΓrK(cr)ρ, (3.7)

describes dissipative dynamics of the DQD. Here, γrK(σ−)ρ corresponds to electron re-

laxation from the excited to ground states at zero temperature; γφK(σz)ρ/2 represents
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dephasing with rate γφ; the last two terms in DDQDρ account for the processes [35] of load-

ing state |L〉 from the source with tunneling rate Γl and unloading state |R〉 to the drain

with tunneling rate Γr, see Figure 3.1, and we introduced cr = |0〉 〈R| and c†l = |L〉 〈0|.

We calculate the full counting statistics (FCS) of emitted photons defined as probability

distribution Pn(t) to count n photons during measurement time t. For a lossless resonator,

the average photon count 〈n〉 =
∑
nPn(t) = κN̄t is determined by the photon number

N̄ = 〈a†a〉st = Tr{ρsta
†a} in the resonator and the photon detection rate [63] κ, here ρst is

the steady state solution of Eq. (3.4): Lρst = 0. In particular, we are interested in the Fano

factor, Fph = [〈n2〉 − 〈n〉2]/〈n〉, that characterizes its noise property. By definition, photon

emission is Poissonian if Fph = 1, while for sub-(super-) Poissonian processes, Fph < 1

(Fph > 1).

Quantum jump approach

In this section we utilize the quantum jump approach [64] to calculate the FCS. The Liou-

villian in Eq. (3.4) can be decomposed as

ρ̇(t) = Lρ(t) = (L0 + J ) ρ(t), (3.8)

where we have singled out the jump superopertor, J ρ = κaρa†, to describe the stochastic

quantum jump associated with photon detection, and L0 governing the deterministic dy-

namics of the system. Since quantum jumps are discretized in counted photon numbers,

the full density matrix ρ(t) can be resolved in terms of individual components ρ(n)(t) repre-

senting a quantum trajectory with n photons being counted by the photon detector during

time interval [0, t]:

ρ(t) =
∑
n

ρ(n)(t). (3.9)

By definition, the equation of motions for ρ(n)(t) is

ρ̇(n)(t) = L0ρ
(n)(t) + J ρ(n−1)(t). (3.10)
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These equations of motion are coupled and therefore hard to solve. It is more convenient

to define the generalized density matrix

ρ̃(t, s) =
∑
n

snρ(n)(t), (3.11)

by introducing the counting variable for photons, s. The equations of motion for ρ̃(t, s) is

obtained by multiplying Eq. (3.10) by sn and taking sum over n,

˙̃ρ(t, s) =M(s)ρ̃(t, s), (3.12)

with

M(s) = L0 + sJ . (3.13)

For s = 1, Eq. (3.12) reduces to the original master equation Eq. (3.4). The formal solution

of Eq. (3.12) is

ρ̃(t, s) = eM(s)tρ̃(0, s), (3.14)

where the initial state is chosen to be the steady state, ρ̃(0, s) = ρst.

Next, we introduce moment generating function

G(t, s) = Tr {ρ̃(t, s)} = Tr
{
eM(s)tρ̃(0, s)

}
. (3.15)

This function permits one to calculate the higher order moments. Indeed, the n resolved

density matrix allows us to obtain the FCS of the system by taking trace of ρ(n)(t):

Pn(t) = Tr{ρ(n)(t)}. (3.16)

Then, according to Eqs. (3.11) and (3.15), we identify

G(t, s) =
∑
n

snPn(t). (3.17)

The probability distribution Pn(t) is given by the inverse Fourier transform in parameter

s = exp(iχ):

Pn(t) =

∫ 2π

e−inχG(t, eiχ)
dχ

2π
. (3.18)
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The factorial moments 〈〈nm〉〉f of n can be obtained by derivatives of G(t, s):

〈〈nm〉〉f =
∑
n

Pn(t)
m−1∏
i=0

(n− i) =
∂mG(t, s)

∂sm

∣∣∣∣
s=1

. (3.19)

We note that Eq. (3.14) is understood as a Dyson series, therefore the generalized density

matrix can be expanded into a sum of n photon detections:

ρ̃(t, s) =S(t, 0)ρst +
∑
n

∫ t

dtn · · ·
∫ t2

dt1 (3.20)

S(t, tn)s(tn)J (tn) · · · S(t2, t1)J (t1)S(t1, 0)ρst,

where S(t1,t2) = exp [L0(t1 − t2)] .

Computation of the Fano factor

In principle, the method described in the previous subsection can be used to calculate

Pn(t) and then the Fano factor in terms of the first and second order factorial moments,

using Eq. (3.19). However, evaluation of factorial moments involve derivatives of generating

function G(t, s) over s, which is not convenient in practice for numerical calculations. In

this subsection, we describe a numerical method more suitable for numerical evaluation of

Fano factors.

As mentioned in the previous subsection, photon counts over measurement time t are

associated with evolution of the generalized density matrix subject to the corresponding

quantum jump J . Fluctuations in the number of counts are given by

〈δn2(t)〉 =
1

2

∫ t

0
dt1

∫ t

0
dt2 〈{δJ (t1), δJ (t2)}〉 , (3.21)

where δJ (t) = J (t) − J(t) is the quantum fluctuation of the photon counting measure-

ment and J(t) = κN̄(t) = TrJ ρst is the average photon count rate; {A,B} stands for an

anticommutator. According to Eq. (3.20), we take first two orders of derivatives over s and
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find the correlation function of photon counts during measurement time t:

〈n2(t)〉 =

∫ t

dt1

∫ t

dt2
δ2Trρ̃(t, s)

δs(t1)δs(t2)

∣∣∣∣
s=1

(3.22)

+

∫ t

dt
δTrρ̃(t, s)

δs(t)

∣∣∣∣
s=1

= 2

∫ t

dt1

∫ t1

dt2 〈J (t1)S(t1, t2)J (t2)〉

+ 〈n(t)〉.

Note that we have implied t1 ≥ t2 in the second line and thus the term with t1 ≤ t2 is

added to symmetrize the expression with switching on time labels. Then, one can integrate

Eq. (3.22) with respect to t1 and t2

〈δn2〉 = 〈n2(t)〉 −
∫ t ∫ t

dt1dt2J
2 (3.23)

= 〈n(t)〉+ 2

∫ t

dτ(t− τ)
[
Tr (JS(τ)J ρst)− J2

]
= 〈n(t)〉+ 2J2

∫ t

dτ(t− τ)
(
g

(2)
ph (τ)− 1

)
,

using the second order correlation functiont of photon field:

g
(2)
ph (τ) =

〈a†a†(τ)a(τ)a〉
〈a†a〉2 =

Tr
{
a†aeLτ

(
aρsta

†)}
Tr {a†aρst}2

(3.24)

Eq. (3.23) is the famous Mandel’s photon counting formula [65]. Taking into account that

t is large compared to the characteristic memory time of the system, Eq. (3.23) reduces to

the expression for the photon Fano factor, independent of t [65, 66]

Fph =
〈δn2〉
〈n(t)〉 = 1 + 2J

∫ ∞
dτTr

{
g

(2)
ph (τ)− 1

}
. (3.25)

Following Refs. [67, 68], we introduce the “Dirac notation” in Liouvillian space for

steady state |st〉〉 ≡ ρst and a dual vector 〈〈e| ≡ 1̂. The inner product defined in Liouvillian

space is the trace over operator “ket” in state “bra”. For example, the inner product of the

two former objects is given by 〈〈e|st〉〉 ≡ Trρst = 1. It is then useful to define the projector

P = P2 = |st〉〉〈〈e| onto the steady state as well as its complement Q = 1 − P. Note that

a useful property of P is LP = L|st〉〉〈〈e| = 0 and PL = 0, and therefore L = QLQ. The
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propagator S(τ) in the second line of Eq. (3.23) can be decomposed as S(τ) = P+QS(τ)Q,

and thus Tr (JPJ ρst) = 〈〈e|J |st〉〉〈〈e|J |st〉〉 = J2. We obtain

Fph = 1 +
2

J

∫ t→∞
dτJQS(τ)QJ (3.26)

= 1− 2

J
Tr
{
JQL−1QJ ρst

}
= 1− 2

J
〈〈e|JRJ |st〉〉,

where R = QL−1Q is the inverse of the Liouvillian projected out of the steady state.

Eq. (3.26) is the key step to evaluate photon Fano factor. We also have to find the

inverse of the Loiouvillian, R, and project the result out of the steady state. In practice,

inverse of the Liouvillian matrix with large dimension is numerically unstable, but we can

evaluate the combination |W〉〉 = RJ |st〉〉 determined by the following equation

L|W〉〉 = LRJ |st〉〉 = QJ |st〉〉

= J |st〉〉 − |st〉〉〈〈e|J |st〉〉, (3.27)

where the second equality is obtained by the relation LR = LQL−1Q = L(1−P)L−1Q = Q.

To this end, the solution |W〉〉 in Eq. (3.27) is equivalent to the inverse R [67]. At the end

of the calculation we fix the solution by projection out of the steady state by condition

〈〈e|W〉〉 = Tr {RJ ρst} = 0, accomplished by premultiplication of projector Q|W〉〉.

Charge full counting statistics

Charge FCS through a double quantum dot was studied earlier in Refs. [69, 70, 71, 72, 73,

68, 67, 74, 75]. Here we provide a quick review of the relations for the electric current and

current noise through the DQD using the master equation formalism. The current operator

is defined as Î = eΓr|R〉〈R| = eΓrc
†
rcr. The dc current is given by the expectation value of

Î with respect to the steady state solution ρst for the density matrix,

I = eΓrTr{|R〉 〈R| ρst}. (3.28)
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Figure 3.2: Dependences of (a) the electric current I through the DQD, (b) the average
photon number N̄ in the resonator, (c) the electron Fano factor Fel and (d) the Fano factor
Fph for emitted photons are shown as functions of the electrostatic bias ~ε near the resonance

at ε0 = −
√
ω2

0 − 4T 2. Solid (dashed) lines represent the case for γr = 0 (γr = 2Γ). Other
system parameters are Γl,r = Γ, ω0 = 800Γ, T = 200Γ, g0 = 5Γ, κ = 2Γ and γφ = 0.
Dotted line in panel (a) refers to elastic electric current through a non-interacting DQD.

The spectral density of the current fluctuations is defined by the relation

S(ω) =

∫ ∞
−∞
〈〈Î(t)Î(t+ τ)〉〉eiωtdt, (3.29a)

〈〈Î(t)Î(t+ τ)〉〉 =
〈
Î(t)Î(t+ τ)

〉
− I2. (3.29b)

The first term in Eq. (3.29b) accounts for the concurrence of two electrons at times t and

t+ τ

〈Î(t)Î(t+ τ)〉 = I2g
(2)
el (t, τ) + eIδ(τ), (3.30)

where the second order correlation function g
(2)
el (τ) is given by

g
(2)
el (τ) =

Tr
{
c†rcre

Lτ
(
crρstc

†
r

)}
Tr
{
c†rcrρst

}2 . (3.31)
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The last term in Eq. (3.30) represents counting the same electron at t and t+ τ .

Using Eqs. (3.29) and (3.31), we can write the current noise spectral function in the

form:

S(ω) = I2

∫ ∞
−∞

(
g

(2)
el (τ)− 1

)
eiωτdτ + eI. (3.32)

This result shows that the second order correlation function g
(2)
el (τ) is related to the current

noise in both frequency and time domains. In particular, the Fano factor Fel of the charge

current that characterizes the low frequency limit of S(ω) is [72]

F =
S(0)

eI
= 1 +

2I

e

∫ ∞ (
g

(2)
el (τ)− 1

)
dτ. (3.33)

The formalism discussed above can be further generalized to study cross-correlation

functions of electron charge transfer and photon emission1 Experimental observation of

such cross–correlations is a challenging task, but can be achieved by combining charge

sensing measurements [76] and photon detection [57].

3.3 Ideal Photon Counter

In this section we consider a system consisting of an ideal photon counter and a DQD with

equal tunneling rates through left and right contacts, Γl,r = Γ, and the interdot tunneling

amplitude T = 200Γ. We take ω0 = 800Γ, and the electron-photon bare coupling g0 = 5Γ.

In Figure 3.2 we present (a) dependence of electric current I = eΓr〈c†rcr〉st, (b) the

average number of photons in the resonator, N̄ = 〈a†a〉st, (c) the Fano factor of electronic

current, Fel, and (d) the Fano factor for photon flux, Fph. For the former two quantities,

we evaluate ρst and take corresponding expectation values. Solid lines in Figure 3.2 are

evaluated for an ideal quantum dot with γr = γφ = 0. In this case, the amplitudes of

electric current and the photon flux have a well pronounced peak at the resonant condition

Ω = ω0, while away from the resonance, photon production is suppressed, N̄ → 0, and the

current approaches I0 = eT 2Γ/(ε2 + 3T 2) (a dotted line in Figure 3.2a) for elastic electron

transfer through a DQD decoupled from the resonator [77]. Fano factors for both electric

1to be discussed elsewhere.
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Figure 3.3: (a) The second order correlation function g2
ph(2)(τ) for photons as a function

of time τ at resonant condition Ω = ω0 for different values of energy, γr, and phase, γφ,
relaxation rates. (b) The photon Fano factor Fph as a function of relaxation rate γ in three
cases γr = γφ = γ (solid line), γr = γ and γφ = 0 (dotted line), γφ = γ and γr = 0 (dashed
line). (c) Fph as a function of photon detection rate κ shows a flat behavior for κ & Γ.
Other system parameters in both panels are Γl,r = Γ, ω0 = 800Γ, T = 200Γ, g0 = 5Γ,
κ = 2Γ and γφ = 0[for (a) and (b)].

current and photon flux are reduced below 1/2, indicating sub-Poissonian statistics with

strong suppression of charge and photon noise at the resonance.

Inelastic relaxation facilitates electron transfer through the DQD and increases the

electric current above I0 even far away from the resonance, |Ω− ω0| � Γ. In the presence

of such background current, only a weak enhancement of the current occurs at Ω = ω0. The

electron Fano factor is reduced below unity for γr 6= 0, and a resonant electron transfer with

photon emission does not significantly affects Fel, see Figure 3.2c. We observe a resonant

emission in the photon flux, see dashed line in Figure 3.2b, but the photon Fano factor,

Fph, is closer to the value for the Poissonian statistics, F = 1.
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Figure 3.4: Probabilities Pn to have n emitted photons during time t at resonance Ω = ω0

for (a) an ideal DQD without decoherence of electronic states, γr = γφ = 0 and t = 75/Γ;
(b) a DQD with inelastic relaxation γr = 2Γ, γφ = 0 and t = 145/Γ. Other system
parameters in both panels are Γl,r = Γ, ω0 = 800Γ, T = 200Γ, g0 = 5Γ and κ = 2Γ. A thin

curve in both panels represents the corresponding Poisson distribution P
(P )
n = e−n̄n̄n/n!

with n̄ =
∑

n nPn equal to the average number of emitted photons.

To evaluate the second order correlation function g
(2)
ph (τ) shown in Figure 3.3a, we

compute ρst and diagonalize the total Liouvillian superoperator L to obtain exp (Lτ). The

thick solid line shows g
(2)
ph (τ) for an ideal DQD, γr = γφ = 0. The probability to observe

two photons simultaneously is reduced, g
(2)
ph (0) < 1, indicating photon antibunching. As

τ becomes longer than ∼ 1/Γ, function g
(2)
ph (τ) increases and eventually approaches its

asymptote, g
(2)
ph (τ → ∞) = 1. The integral in Eq. (3.25) with such g

(2)
ph (τ) is negative and

Fph < 1 (sub-Poissonian) 2.

In the presence of inelastic relaxation in the DQD, g
(2)
ph (0) increases and g

(2)
ph (τ) reaches

its long-time asymptotic value 1 at a shorter time scale. However, pure dephasing, γφ, does

not significantly change the shape of g
(2)
ph (τ), because individual photon emission is phase-

destructive. We also investigate the dependence of Fph on inelastic, γr, and dephasing, γφ

in Figure 3.3b. The inelastic relaxation, γr = γ and γφ = 0, recovers Fph to its Poissonian

2the modified BR equations can be numerically solved using standard integration methods for a system
of linear differential equations with time-dependent coefficients. Alternatively, we obtained same results
using the BR functions of the QUTIP package [45] with a proper adjustment of the system Hamiltonian and
the interaction term, see e.g. Eqs. (4.19) and (4.12), for time–dependence of the eigenstate basis.
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Figure 3.5: Dependence of photon noise Fano factor on (a) photon detection rate κ and
(b) the bare coupling constant g0. In panel (a), the bare coupling constant is fixed g0 = 5Γ
and in panel (b) the photon detection rate is fixed κ = 10Γ. Solid (dashed) lines represent
results for numerical (analytical) calculations with method described in Sec. 3.2(Sec. 3.4).
Other system parameters are Γl,r = Γ, ω0 = 800Γ, T = 200Γ. Both plots indicate that the
analytical results agree with numerical in the limit κ & g0,Γ.

value, Fph = 1, as a consequence of the reduced memory of the system, g
(2)
ph (τ) → 1,

due to inelastic relaxation. Pure dephasing, γφ = γ and γr = 0, has weak effect on Fph

even for large values of γφ, as dephasing does not change g
(2)
ph (τ) to modify the integral

in Eq. (3.25) for Fph. The addition of dephasing to relaxation, γφ = γr = γ, makes no

significant corrections to Fph when compared to Fph(γr, 0).

The dependence of the photon Fano factor on the photon detection rate κ is also studied.

As κ decreases, the average photon number in the resonator increases. At large N̄ , photons

already present in the resonator cause stimulated emission by the DQD [32, 35]. For an

ideal DQD without energy relaxation, γr = 0, the photon Fano factor grows fast for κ . Γ;

see Figure 3.3c. On the other hand, if the energy relaxation in the DQD is significant, the

photon Fano factor can exceed unity and the photon field exhibits properties of a thermal

state. In this respect, inelastic processes in the DQD enhance photon noise. For a strong

photon detection rate, κ & γr, g, and consequently a low photon number in the resonator,
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the back-action of the photon field on electrons is negligible.

In Sec 3.4 we apply the adiabatic elimination method [59, 34, 78] to study photon

statistics emitted by a quantum dot.

Next, we present the distribution function of the photon counts n over time t. For this

purpose, we compute ρ̃(t, s) with matrix exponent exp [M(s)t] and integrate over counting

field χ, see Eq. (3.15) and Eq. (3.19). For γr = γφ = 0, we take t = 75/Γ and the distribution

Pn(t) is shown in Figure 3.4a. The average value of photon counts, 〈n〉 =
∑

n nPn ' 27.6

is consistent with 〈n〉 = N̄κt with N̄ = 0.184 and their variance 〈n2〉 − 〈n〉2 ' 11.6, in

turn gives Fph = 0.42, both of which coincide with previous calculation, see Figure 3.2b,d

at ε = ε0. We present the Poisson distribution with the same expectation value 〈n〉 by

narrow black dots in Figure 3.4a. Pn is closer to the Poisson distribution for a system

with relaxation γr = 2Γ [see Figure 3.4b], where t = 145/Γ, 〈n〉 ' 27.6 (N̄ = 0.095) and

Fph = 0.76.

3.4 Adiabatic elimination of photon degrees of freedom

In the limit of strong photon detection rate, κ � γ, g,Γ, the photon field decays so fast

that the density matrix can be approximately factorized as

ρ(t) ' ρD(t) (|0〉〈0|) , (3.34)

where |0〉 is the vacuum state of the photon in the transmission line and ρD(t) is the

reduced density matrix of the DQD. Thus we can adiabatically eliminate the photon mode,

and obtain the equation of motion for the reduced density matrix ρ̃D(t, s) in the interaction

picture [59],

˙̃ρD(t, s) =ΓlD(c†l )ρ̃D(t, s) + ΓrD(cr)ρ̃D(t, s) (3.35)

+ γ∗D(σ−)ρ̃D(t, s) + (s− 1)J (σ−)ρ̃D(t, s),

where γph = 4g2/κ is the photon-induced relaxation rate associated with the spontaneous

emission in this large κ limit and γ∗ = γr + γph. Therefore photon absorptions can be
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reflected by the jump superoperator J (σ−)ρ̃D(t, s) = γphσ
−ρ̃D(t, s)σ+. In the basis ρD =

(ρ0, ρg, ρge, ρeg, ρe)
T , the matrix M(s) in Eq. (3.12) is given by:

M(s) =
1

4



−4Γl −2ΓrCθ,− −ΓrSθ −ΓrSθ 2ΓrCθ,+
2ΓlCθ,+ 2ΓrCθ,− −ΓrSθ −ΓrSθ 4γr + 4sγph

−2ΓlSθ −ΓrSθ −2Γr − 2γ∗ 0 −ΓrSθ
−2ΓlSθ −ΓrSθ 0 −2Γr − 2γ∗ −ΓrSθ
−2ΓlCθ,− 0 −ΓrSθ −ΓrSθ −2ΓrCθ,+ − 4γ∗


,

(3.36)

where Sθ = sin θ and Cθ,± = cos θ ± 1.

To calculate the generating function G(s, t) and its derivatives, we take the Laplace

transform of the generalized density matrix, Eq. (3.14),

ρ̃(z, s)D = (z −M(s))−1ρ̃(0, s)D. (3.37)

Since the long time behavior of the solution is determined by the residue of the generating

function at the pole near z = 0, i.e., G(t, s) ∼ g(s)ez0t with g(1) = 1, we can expand the

pole around s = 1:

z0 =
∑
i>0

ci(s− 1)i, (3.38)

and obtain, from Eq. (3.19), the first two moments, 〈〈ni〉〉 = 〈(n− 〈n〉)i〉:

〈〈n〉〉 =
∂g

∂s

∣∣∣∣
s=1

+ c1t, (3.39)

〈〈n2〉〉 =
∂2g

∂s2

∣∣∣∣
s=1

−
[(

∂g

∂s

)2

− ∂g

∂s

]∣∣∣∣∣
s=1

+ (c1 + 2c2) t, (3.40)

which give the mean and variance of the probability distribution, respectively. In the

asymptotic limit, t→∞, all the information about the moments is included in the expansion

coefficients ci. For instance, the Fano factor is given by [34, 78]

F ≡ 〈n
2〉 − 〈n〉2
〈n〉 = 1 +

2c2

c1
. (3.41)

To find the coefficients c1 and c2, we consider the equation

det
(
z01̂−M(s)

)
= 0, (3.42)
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with z0 = c1(s − 1) + c2(s − 1)2 + O(s − 1). Then we can expand Eq. (3.42) in powers of

s and let the coefficients for each power of s− 1 be zero. This procedure generates a set of

equations with ci to arbitrarily large i. We provide two examples below.

First, we consider Γl = Γr = Γ and θ → π with fixed coupling constant g, the case in

which the two levels in the DQD are weakly overlapping, and we obtain

c1 =
γphΓ

2γ∗ + Γ
, (3.43)

c2 = −
γ2

phΓ(γ∗ + 2Γ)

(2γ∗ + Γ)3 . (3.44)

The Fano factor is given by

F = 1− 2γph(γ∗ + 2Γ)

(2γ∗ + Γ)2 < 1, (3.45)

corresponding to the sub-Poissonian noise. When the DQD is tuned to its charge degener-

acy, θ = π/2, the solutions then read

c1 =
γphΓ(γ∗ + 2Γ)

6γ2
∗ + 11γ∗Γ + 4Γ2

, (3.46)

c2 = −
γ2

phΓ(γ∗ + 2Γ)
(
4γ3
∗ + 14γ2

∗Γ + 31γ∗Γ
2 + 20Γ3

)
(6γ2
∗ + 11γ∗Γ + 4Γ2)3 . (3.47)

The Fano factor in this case is

F = 1− 2γph

(
4γ3
∗ + 14γ2

∗Γ + 31γ∗Γ
2 + 20Γ3

)
(6γ2
∗ + 11γ∗Γ + 4Γ2)2 , (3.48)

again, giving the sub-Poissonian noise. In both cases, Fano factors are below 1 for γph 6= 0,

indicating that it is the interaction between photons and electrons that gives rise to the

sub-Poissonian statistics.

As mentioned above, this analytical method is valid in the limit when κ is large. We

hereby make a comparison between analytical and numerical results, see Figure 3.5. In both

plots, we do not consider dephasing effects. The calculations indicate that the analytical

method presented above agrees with numerical results in the limit κ & g0,Γ.
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3.5 Photon Counting Statistics Measured By Josephson

Photomultipliers

In this section, we demonstrate that emitted photon statistics can be measured and justi-

fied by actual devices. A possible measurement is based on recently developed Josephson

photomultipliers (JPM) [57, 79]. In these devices the Josephson coupling EJ dominates

over charging energy Ec, therefore it is convenient to write the Hamiltonian of the JPM in

terms of the phase operator φ across the Josephson junction:

HJPM = −Ec
2

d2

dφ2
− EJ

(
cosφ− I

I0
φ

)
, (3.49)

where I is the biased current and I0 is the critical current of the junction. For I . I0, the

potential energy takes a “washbroad”shape, with a few discrete energy levels in the minima

separated from the continuum. In this manner, we can tune the biased current such that

only two phase states are bounded in the local minima.

Next we couple the microwave resonator to the JPM with Jaynes-Cummings type in-

teraction. The total Hamiltonian is then written as

H̃ = H + ~gJPM(a†υ− + aυ+) +
~ωJPM

2
υz, (3.50)

where H is the Hamiltonian Eq. (3.3), gJPM the coupling constant between the JPM and

a resonator mode, and the Pauli matrices υ± and υz are defined in the basis of eigenstates

of the JPM spanned by |E〉 and |G〉. In a similar manner, the dynamics of the system is

governed by the following master equation

ρ̇ = Lρ = − i
~

[H̃, ρ] +Dtotρ, (3.51a)

Dtotρ = κ0K(a)ρ+DDQDρ+DJPMρ, (3.51b)

where

DJPMρ = γtK (|V 〉〈E|) ρ+ γdK(υ−)ρ+ γcapK(|G〉〈V |)ρ (3.51c)

with |V 〉 referring to a voltage regime of the junction, γt is the tunneling to this regime from

the excited state and γcap is the capturing rate from the voltage regime to the ground state.
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By defining state |V 〉, we imply that the junction is out of the Hilbert space of two localized

states |G〉, |E〉 near a local minima of the Josephson energy and does not correspond to a

particular quantum state. While the junction evolves out of these two states, a finite voltage

develops that can be identified by the measurement circuit as a photon detection signal.

Then, the dissipation in the circuit leads to recapturing the junction in its ground state

and the operation cycle closes. For this measurement scheme, we use the similar formalism

introduced in Section 3.2 to calculate the Fano factor and FCS associated with the jump

operator J ρ = γt|V 〉〈E|ρ|E〉〈V |.

Black thick lines in Figure 3.6 correspond to the JPM measurement without energy

relaxation and thin line are taken from Figure 3.2d and correspond to the Fano factor

measured by an ideal photon counter for the same set of parameters of the DQD. Even

though Rabi splitting appears due to coupling between JPM and microwave mode, a fairly

good agreement between the ideal and JPM models of the photon counter indicates that

sub-Poissonian statistics of photon emission by a DQD can be experimentally observed.

The green lines in Figure 3.6 represent the measured Fano factor with energy relaxation

rate γd = 1.5Γ in the JPM, indicating that energy relaxation of the measurement device

would spoil the noise characteristics. This is reminiscent of reduction of quantum efficiency

of measurement device [58]. The FCS of JPM recordings is shown in Figure 3.7 for cases

γr = 0, 2Γ, both of which agree with Fano factor calculation in Figure 3.6.

3.6 Conclusions

We investigated the statistics of photons emitted by a biased DQD coupled to a lossless res-

onator. We calculated the time correlation function g
(2)
ph (τ) and found that photons exhibit

antibunching, g(2)(τ) < g(2)(τ → ∞) = 1. We also calculated photon counting statistics

Pn(t) of observing n photons during a fixed time interval t. We find that distribution

Pn(t) shows a sub-Poissonian statistics if measured by an ideal photon counter. We also

demonstrate that photon full counting statistics can be accurately studied experimentally

by utilizing a Josephson photomultiplier [57, 79].
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Figure 3.6: Comparison of Fano factor measured by an ideal photon detector and JPM
with the same set of parameters of a DQD. Other additional parameters for JPM model
are gJPM = 5Γ, ωJPM = ω0, κ0 = 0.6Γ, γcap = 1.5Γ and γt = 1.5Γ. When we introduce
the energy relaxation rate γd = 1.5Γ for the JPM, the resultant Fano factor (green lines)
increase towards unity.
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Figure 3.7: Probabilities Pn to have n JJ recordings during time t at resonance Ω = ω0

for (a) an ideal DQD without decoherence of electronic states, γr = γφ = 0 and t = 132/Γ;
(b) a DQD with inelastic relaxation γr = 2Γ, γφ = 0 and t = 293.3/Γ. Other system
parameters in both panels are Γl,r = Γ, ω0 = 800Γ, T = 200Γ, g0 = 5Γ and κ = 2Γ. A thin

curve in both panels represents the corresponding Poisson distribution P
(P )
n = e−n̄n̄n/n!

with n̄ =
∑

n nPn equal to the average number of emitted photons.

In recent experiments, decoherence rates were comparable to the strength of the electron–

photon coupling. For this reason, we investigated the effect on charge and photon statistics

of pure dephasing in the DQD and energy relaxation. We found that pure dephasing does

not significantly modify the charge transfer or photon emission statistics, but the inelastic

relaxation processes result in several drastic changes (see Figure 3.2): (i) The electric cur-

rent and its noise acquire strong background as the inelastic processes facilitate the charge

transfer throughout the DQD, and the peak in I and the pit in Fel at the resonant condition

Ee −Eg = ~ω0 are flattened. (ii) The photon number N̄ at the resonance is suppressed as

the effective photon source is reduced due to additional channels for the e → g transition

via inelastic events. (iii) Photon Fano factor Fph as a function of the level spacing is flatten

as well. In the presence of inelastic electron relaxation, the memory time of the DQD is

reduced, which increases the photon correlation function g
(2)
ph at short time scales[see Fig-
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ure 3.3a] and brings the photon Fano factor to its Poisson value, Fph = 1, as shown in

Figure 3.2.
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Chapter 4

Nonadiabatic dynamics of a slowly

driven dissipative two-level system

4.1 Introduction

The increasing demand for accurate control of quantum devices using high-fidelity control

protocols [80, 81, 82, 83, 84] has stimulated interest in the study of the dynamics of quantum

systems in response to slowly varying Hamiltonian. Moreover, rapid progress in the field

of adiabatic quantum computing has fueled further interest in and need for more careful

analysis of the dynamics of quantum systems whose parameters vary slowly in time. [85] In

addition, decoherence in any real quantum system sets a rigid constraint on the time interval

during which a quantum protocol must be carried out, limiting all protocols to intermediate

time intervals that are shorter than the decoherence time. At these intermediate time scales,

both non-adiabatic corrections and coupling to the environment become equally important.

The previous analysis [80, 81, 86, 87] of the qubit dynamics with time-dependent Hamil-

tonians was based on the Lindblad master equation [88, 89] that describes the interac-

tion with environment in terms of dephasing and transition processes characterized by

phenomenological decoherence rates. An alternative microscopic approach, formulated

as a perturbative theory for a quantum system with a time-independent Hamiltonian
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interacting with its environment, introduces the Bloch–Redfield (BR) master equation

[90, 91, 92, 93, 94]. If the Hamiltonian of the system changes in time, the BR approach has

to be modified to properly account for a non-adiabatic corrections.

In this chapter we extend the BR approach to account for slow evolution of the system

Hamiltonian in the presence of the environment. The main concept of the BR theory is based

on the identification of decoherence processes in terms of the matrix elements for transitions

caused by environment in the eigenstate basis of the quantum system [90, 91, 94]. For the

Hamiltonian that varies with time, one can still use a basis defined by eigenvectors of the

Hamiltonian [95, 96, 92, 97, 98, 99, 100, 101, 102, 103], where the Hamiltonian is always

represented by a diagonal matrix H̃ = UHU †, where the unitary transformation U denotes

a transition from the original basis to the eigenstate basis. Time-dependence of U produces

an extra term in the time evolution of the quantum system that is effectively described by

the new Hamiltonian H̃ − iU∂tU †. This expression is not necessarily diagonal and another

basis transformation is required. Such series of diagonalization transformations can be

continued indefinitely, but for slowly changing Hamiltonian, the series can be truncated after

a finite number of transformations neglecting terms of the higher order in time-derivatives

of the parameters in the Hamiltonian. In addition to changes in the effective spectrum of

the system, matrix elements representing coupling between the quantum system and its

environment are also modified, resulting in a redefinition of the transition rates for the

system.

We focus our analysis on the dynamics of a two-level quantum system — a qubit or a

spin-1/2 system — in the presence of time-dependent field, which we refer to below as the

control field of the qubit. We study the dynamical response of the transverse magnetization

to quench velocity of the control field. The transverse magnetization measurements can

provide the value of the Berry curvature of a quantum system [87, 104] and,consequently,

characterize topological properties of a ground state of the system.

Since any real qubit is always coupled to its environment, it is necessary to perform

detailed analysis of the non-adiabatic dynamics of a qubit system in the presence of dissi-
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pation. To this end, we investigate the effect of pure dephasing and energy relaxation due

to the Ohmic bath on the qubit polarization. Our results indicate that the decoherence sup-

presses the transient wiggles of the out-of-plane qubit projection, thereby bringing up the

linear relation between the qubit response and the quench velocity. Thus, the dissipation

facilitates the Berry curvature measurement based on the non-adiabatic response, proposed

in Ref. [104]. Furthermore, our study is also applicable to other experimental techniques

that are based on an interference effect for the Berry phase measurement in qubits since

the drive parameter was changed slowly in measurements reported in Ref. [105], see also

Refs. [106, 100, 107] for theoretical analysis of the influence of environment on the Berry

phase.

We also apply the modified BR equation to the Landau–Zener (LZ) problem [108, 109,

110, 111] in a qubit coupled to environment at arbitrary temperature. The LZ problem in a

quantum system coupled to its environment has attracted significant interest recently, where

the environment was considered either as a source of classical noise [112, 113], or quantum

fluctuations that cause transitions between qubit states [114, 115, 116, 101, 117, 118, 119,

120, 121], or pure dephasing [122, 86]. More recently, the LZ interferometry has attracted

a growing interest [123, 124, 125, 126, 127, 128, 129, 130]. Here we focus on the role of

quantum fluctuations in the environment that cause transitions between the eigenstates of

the qubit in the LZ problem. We argue that during the LZ transition, the matrix elements

of the coupling between the qubit and its environment must be considered in the basis of

eigenstates of the full qubit Hamiltonian and therefore, the matrix elements acquire an ex-

plicit time dependence due to rotation of the eigenstate basis in addition to straightforward

dependence on the energy difference between the eigenstates. This treatment modifies the

previous results of Refs. [114, 115, 116] and generalizes the results of Refs. [101, 119], where

a similar basis transformation was naturally included in the calculations. We disregard the

effect of the Lamb–Stark shift on the qubit spectrum due to coupling to the environment,

considered in Ref. [120], since this can be included in the redefined control field of the qubit.

We focus solely on the transition effects due to non-unitary evolution of the qubit density
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matrix. We consider the quantum fluctuations of the environment that are fixed along the

direction of the control field at very long initial and final moments of the LZ transition

so that the matrix element that characterizes the transition between qubit states at long

times is absent and environment produces dephasing only. For arbitrary direction of the

fluctuating field, the transition remains effective over long time and will effectively bring the

qubit to the ground state for zero temperature environment. We also consider “dephasing”

coupling [122, 86] when the quantum fluctuations occur only in the direction parallel to the

direction of the control field in the parameter space of the qubit Hamiltonian. Our result is

in agreement with Ref. [86] of the same problem within Lindblad master equation, in the

limit of a high-temperature environment.

This chapter is organized as follows. In section 4.2, we present a formalism of the BR

equations in transformed basis for time-dependent Hamiltonians. In section 6.2, we study

the evolution of a qubit whose control field rotates in a plane with a constant magnitude

and consider different directions of the environmental coupling field. In section 4.4, we

consider the LZ problem in the presence of zero and finite temperature environment and

show that transition is dominated by thermal excitation of the qubit at finite temperatures.

In section 4.5, we analyze the non-adiabatic effects within the Lindblad formalism. We end

with conclusions in section 6.5.

4.2 Bloch–Redfield approach to time-dependent

Hamiltonians

We consider a spin coupled to a bath of harmonic oscillators. The full Hamiltonian Ĥ =

Ĥ0 + Ĥint + Ĥenv is a sum of the Hamiltonian for the spin in the magnetic field b(t)

Ĥ0 = −1

2
b(t) · σ̂, (4.1)

the interaction Hamiltonian of the spin with the environment [18]

Ĥint =
∑
q

λqn · σ̂
âq + â†q

2
(4.2)
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and the bath Hamiltonian

Ĥenv =
∑
q

~ωq(â†qâq + 1/2). (4.3)

Here we assume that each environment oscillator interacts with the spin as a quantized

magnetic field λq(â
†
q + âq)/2 in the common direction n, â†q and âq are raising and lowering

operators of the field.

The reduced density matrix ρ̂ of the spin is determined by tracing out environment

degrees of freedom of the full density matrix ρ̂full. The full density matrix satisfies the

unitary master equation

dρ̂full(t)

dt
=

1

i ~

[
Ĥ(t), ρ̂full(t)

]
. (4.4)

There are several approaches to obtain the corresponding equations for time evolution of

the reduced density matrix for the qubit. Here we consider the limit of weak coupling of a

qubit to the environment, when the density matrix is defined by the BR equations, [90, 91]

see also Refs. [92, 94, 101] where a diagrammatic technique was developed to treat the weak

coupling to environment.

The environmental effects are characterized by the spectral density function of the cou-

pling J(ε) = π
∑

q λ
2
qδ(ε−~ωq). A generic spectral function has a power law dependence on

energy at small energies, J(ε) ∼ εs, and vanishes rapidly for energies above the ultraviolet

cutoff Ec. Here, we consider the Ohmic (s = 1) environment with exponential high-energy

cutoff:

J(ε) = 2παε exp(−ε/Ec), (4.5)

where the dimensionless parameter α defines the strength of coupling between the qubit and

its environment and Ec is the cutoff. We restrict ourself to the weak coupling limit, α� 1.

Our approach can be adapted to non-Ohmic environments by utilizing the corresponding

spectral functions J(ε) in the calculations below.

In general, the effect of weak environment on the qubit dynamics is twofold. On one

hand, the qubit Hamiltonian is renormalized by the environment modes with ε < Ec,
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known as the Lamb and Stark effects. On the other hand, when we integrate out the

environmental degrees of freedom, we also obtain non-unitary terms in the evolution of the

quantum system. Both of these effects are accounted for by the BR equation [91, 90, 94]

for the qubit density matrix ρ̂(t).

We first consider the case of a constant external magnetic field along ẑ direction, b = bẑ.

Then, the BR equation has the following form in the eigenstate basis ρ̇00(t)

ρ̇11(t)

 =

 −Γe Γr

Γe −Γr


 ρ00(t)

ρ11(t)

 , (4.6a)

ρ̇01(t) = (iε− Γ2)ρ01(t), (4.6b)

ρ̇10(t) = (−iε− Γ2)ρ10(t). (4.6c)

We obtained the above equations within secular approximation that neglects fast oscillating

terms with frequencies larger than the decoherence rates.

The equation in the matrix form, Eq. (4.6a), determines the evolution of diagonal ele-

ments of the density matrix. The relaxation and excitation rates, Γr and Γe, are defined

by the spectral density J(ε) at the energy corresponding to the energy difference between

two states of the qubit:

Γr =
n2
x + n2

y

2~
J(ε)(N(ε) + 1), (4.7a)

Γe =
n2
x + n2

y

2~
J(ε)N(ε), (4.7b)

and N(ε) = 1/[exp(ε/T )−1] is the Planck’s function. The factor n2
x+n2

y indicates that only

the component of the fluctuating environment field that is perpendicular to the direction

of the control field b gives rise to the qubit flip processes.

The off-diagonal elements of the density matrix are characterized by the decoherence

rate Γ2 and pure dephasing rate Γϕ given by

Γ2 =
1

2
(Γr + Γe) + Γϕ, Γϕ = n2

zJ0. (4.7c)

The decoherence stems from two processes — the qubit flip processes with rate Γr + Γe,

and pure dephasing which is not responsible for energy transitions at low frequency with
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rate J(ε ' 0) ≡ J0. The only source of pure dephasing is the fluctuating fields of the

environment along the external field b, hence the factor cos θ in the definition of the pure

dephasing term, Γϕ ∝ n2
z.

The renormalization of the qubit Hamiltonian by the environment due to the Lamb

or Stark effects are determined by the imaginary part of the environmental correlation

function, as discussed in Ref. [94]. Explicitly, the renormalized qubit energy ε is

ε = b+ δε, δε = −P

∫
dω

4π

J(ω) coth(ω/2T )

ω − b , (4.8)

where P denotes the Cauchy principal value. Below, we assume that the control field b

already includes renormalization effects from the environment. The goal of this chapter is to

investigate the features of the qubit evolution originating from decoherence characterized by

rates Γr and Γe, respectively. The significance of the effect of the Lamb and Stark shifts on

the evolution of the qubit was demonstrated in Ref. [120] in the context of the LZ problem.

We note that the qubit density matrix can be defined in terms of the magnetization in

x, y and z directions as

ρ̂(t) =
1

2
(1 + m(t) · σ) . (4.9)

Then the BR equations, Eq. (4.6), acquire a more common form of the Bloch equations

ṁz = (Γr − Γe)− (Γr + Γe)mz, (4.10a)

ṁx = −iεmy − Γ2mx (4.10b)

ṁy = iεmx − Γ2my. (4.10c)

The above BR equations were obtained in the basis of qubit eigenstates. In case when

the control field b(t) changes in time, we perform transformation Û1(t) of the basis that

keeps the qubit Hamiltonian diagonal. This basis is commonly referred to as adiabatic. The

corresponding transformation has two consequences.

The first consequence of Û1(t) transformation is that the Hamiltonian in the new basis

acquires an extra term originating from the time dependence of the transformation Û1(t).
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Thus, the qubit Hamiltonian in the new basis is

ĤU1
0 (t) = −ε(t)

2
σ̂z − iÛ1(t)

˙̂
U †1(t) . (4.11)

The resulting Hamiltonian still may remain non-diagonal due to the Berry connection term,

iÛ1(t)
˙̂
U †1(t). We can introduce a new transformation Û2(t) that diagonalizes the right hand

side of (4.11), but this transformation generates a new term iÛ2(t)
˙̂
U †2(t) and the “diago-

nalization” series of transformations Ûn(t) does not stop for an arbitrary time evolution

of b(t), because the Berry connection terms appearing in each consecutive diagonalization

transformation acquires an extra time derivative. However, for slow time evolution, the

series of transformations can be truncated by the first one or two transformations. Since

the BR treatment of environmental effect requires anyway that the system changes in time

slower than the rates given by Eqs. (4.7) and (4.7c) in the master equation, the truncation

to a limited number of transformations Ûn(t) under slow evolution of b(t) is justified. Also,

in a special case of constant rotation of b(t) in a plane, the second transformation Û2 is

time-independent and transformation series stops after this second basis rotation.

The second consequence of the basis transformations is the modified interaction term

in that the coupling between the qubit and its environment

˜̂
Hint =

∑
q

λqn
′(t)σ̂

âq + â†q
2

, n′(t)σ̂ = nV̂ (t)σ̂V̂ †(t) (4.12)

is modified from the initial coupling operator n · σ to the environment field by the trans-

formation matrix V̂ (t) = Ûn(t) . . . Û1(t). This transformation changes the corresponding

“projection” factors n{x,y,z} in Eqs. (4.7) as well as the spectral weights J(ε).

Modification of the coupling between the qubit and its environment, introduced by

Eq. (4.12), swaps components of the fluctuating field responsible for the pure dephasing

and transition processes. For example, in case of a fixed external field b‖ez, fluctuations

along ez give rise to pure dephasing and do not cause transition processes between qubit

eigenstates. However, as b(t) rotates while n remains in ez direction, the fluctuating com-

ponent along field b(t) is the only one responsible for the dephasing with the corresponding

rate proportional to the spectral weight of its low-frequency fluctuations J0, while the com-
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ponent of the fluctuating field perpendicular to b will produce qubit flip processes with the

rate characterized by the spectral weight of fluctuating field with the energy equal to the en-

ergy of qubit flip J(ε(t)). The second unitary transformation further mixes matrix elements

of the coupling to environment representing qubit flip processes and pure dephasing.

Below, we present explicit expressions for the rates in Eqs. (4.7) for two special cases

of evolution of b(t) for different types of environment. We focus on the effect of qubit flip

processes due to environment and assume that J0 = 0 in most numerical solutions. We

note that the pure dephasing produced by the low frequency noise of the environment can

be successfully described in terms of fluctuations of the classical field and may also include

non–Markovian time correlations that are omitted in the BR approach. Effects of classical

noise were discussed in Refs. [131, 122, 132, 112, 133, 113] for the LZ transition and in

Refs. [106, 100] for Berry phase measurements.

4.3 Qubit rotation in a plane

We first consider a qubit with the Hamiltonian characterized by a time-dependent field

in x − z plane: b(t) = ∆{sin θ(t), 0, cos θ(t)}. By definition, θ(t) = 0 for t < 0. The

transformation to adiabatic basis is defined by:

Û1(t) = exp(iσ̂yθ(t)/2) (4.13)

and the resulting qubit Hamiltonian has the form

ĤU1
0 = −∆σ̂z + θ̇(t)σ̂y

2
. (4.14)

Here, the second term is responsible for the non-diagonal form of the Hamiltonian for time-

dependent rotation angle θ(t) and causes the resultant field to point out of the rotation

plane of b(t). This Hamiltonian has eigenvalues ε± = ±
√

∆2 + θ̇2/2 and eigenvectors,

which are different from the vectors of the adiabatic basis. The latter two represent spin

states in the (x− z) plane with my = 0. On the contrary, the qubit in the ground state |g〉

of the Hamiltonian (4.14) has a non-zero expectation value of the polarization my in the
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direction perpendicular to the (x− z) plane of the control field b:

my = 〈g|σ̂y|g〉 = − θ̇√
∆2 + θ̇2

. (4.15)

In the limit of slow rotations, θ̇(t) � ∆, this result is consistent with a more general

expression that connects a generalized force fi = −〈g|∂Ĥ(X)/∂Xi|g〉 to time-dependent

parameters X(t) of the Hamiltonian through the Berry curvature Fij as [104, 87]

fi = −〈g|∂Ĥ(X)

∂Xi
|g〉 =

∑
j

FijẊj(t). (4.16)

Comparing Eq. (4.15) and Eq. (4.16), we identify fy = my/2, Ẋ = θ̇ and Fyθ = 1/(2∆).

Explicitly, the coefficient of the linear term in the rate of change of the magnetic field, i.e.

∆Ω, is the Berry curvature 1/2∆2. Indeed, this value of the Berry curvature gives the

Berry phase Φ = π for one full rotation of the control field in the (x − z) plane after its

integration over the half-sphere,
∫
S(b) ds/(2∆2) = π. This relation holds for an isolated

qubit controlled by field b(t), assuming that b(t) is a slowly varying function of time with

continuous higher derivatives.

However, if the rotation of the control field b starts instantaneously with constant

angular velocity θ̇(t) = Ω, i.e. θ(t) = Ωt, the rotation is equivalent to a quantum quench in

the representation of Eq. (4.14) from θ̇ = 0 to θ̇ = Ω.1 The qubit that was initially in the

ground state of the original time-independent Hamiltonian, −bσ̂z/2, is in the superposition

of eigenstates of the new Hamiltonian and exhibits precession around new direction of the

effective field (0,Ω, b). This precession causes oscillations of

my(t) = Tr{σ̂yρ̂(t)} (4.17)

around its average value given by Eq. (4.15), as illustrated in Figure 4.1(a). Here we use

Ω = 0.2∆ for a qubit decoupled to the environment. The qubit trajectories on the Bloch

sphere in the original state basis is a cycloid along the equator in the plane of rotation of

the control field and the “height” of the cycloid is proportional to Ω.

1A simple realization of this setup for superconducting qubits is to apply a microwave pulse in the
resonance of the original qubit energy splitting to let the qubit relax to its ground state in the rotated basis,
and then to produce excitation with the same amplitude but shifted in frequency by Ω.
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Figure 4.1: The Bloch sphere representation of the qubit state in the diabetic basis with
Ω = 0.2∆ and initial condition z = 1 for (a) α = 0 and (b) α = 0.02 at T = 0. For the
dissipationless dynamics the trajectory of the qubit state form cycloids along the equator
y = 0. However, for the dissipative dynamics the cycloidal trajectory flattens to a circular
one with a finite value my(∞).

In the rest of this section, we analyze the effect of the environment on qubit response

to rotating control field. We demonstrate that a qubit coupled to a zero-temperature

environment relaxes towards the lower eigenstate of Hamiltonian (4.14) and for long time

limit after the rotation started, the qubit state obeys Eq. (4.15). For rotation with constant

angular velocity Ω, the transformed Hamiltonian, Eq. (4.14) is time independent and can

be diagonalized by the second basis transformation

Û2 = cos η/2− iσ̂x sin η/2, tan η = Ω/∆. (4.18)

The qubit Hamiltonian in a new basis after a full transformation V̂ (t) = Û2Û1(t) becomes

fully diagonal with time-independent eigenvalues:

ĤV
0 = Û2Ĥ

U1
0 Û †2 = −W

2
σ̂z , W =

√
∆2 + Ω2. (4.19)

We can apply the BR equation for the qubit density matrix, where the rates in Eq. (4.6)

are defined by the interaction term Hint, Eq. (4.2), with σ · n replaced by its transforma-

tion under V̂ (t) according to Eq. (4.12). The result of the V̂ (t) transformation depends
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Figure 4.2: Time dependence of the out-of-plane polarization, my(t), at zero temperature
of environment for α = 0.02 (solid line) and α = 0.05 for fluctuating environment field out
of the plane of rotation, n = ŷ. The pure dephasing rate is zero, J0 = 0. The frequency of
rotation of the control field is Ω = 0.1∆. The thin horizontal line represents the asymptotic
values of my(∞).

on the original orientation of the vector n in the qubit space. Below, we consider three

orientations of n. We note that for the limit Ω� ∆ considered in this section, the shift of

eigenvalues of Hamiltonian (4.19) and modification of the coupling to environment by the

second transformation Û2 ' 1 is not significant and can be disregarded to the lowest order

in Ω.

Environment field perpendicular to the rotation plane

We first consider the case when the coupling between the qubit and its environment is

determined by the vector n = ŷ perpendicular to the plane of rotation of the external field
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b(t). For time independent Hamiltonian, this coupling causes qubit flip processes and the

corresponding decoherence rates are defined by the environment spectral function at the

excitation energies equal to the qubit energy splitting. For time-dependent Hamiltonian

with rotating b(t), we have to write the qubit coupling operator n · σ in the rotated basis

that diagonalizes the original Hamiltonian. As we discussed above, the transformation

is a product of two consecutive transformations. The first transformation, Û1(t) to the

adiabatic basis does not change the coupling operator Û1(t) n · σ Û †1(t) = σ̂y. The second

transformation results in

Σ̂y = V̂ (t) σ̂yV̂
†(t) = σ̂y cos η + σ̂z sin η. (4.20)

Here, the first term represents the qubit flip process, while the second term preserves the

qubit orientation and causes pure dephasing. The corresponding rates in the BR equations

are given by

Γr =
cos2 η

2
J(W )[N(W ) + 1], (4.21a)

Γe =
cos2 η

2
J(W )N(W ), (4.21b)

Γ2 =
Γr + Γe

2
+

sin2 η

2
J0, (4.21c)

with W and η defined by Eqs. (4.19) and (4.18). The qubit dynamics is characterized by the

relaxation and excitation rates proportional to the spectral function J(W ) of environment

at energy W , these rates appear with factor cos2 η = ∆2/W 2 and recover the case of the

qubit with a time-independent Hamiltonian with b⊥n when only environment modes in

resonance with the qubit contribute to the qubit dynamics. At finite Ω, however, the pure

dephasing mechanism arises after transformation Û2 and originates from the low frequency

modes of the environment with spectral density J0. The pure dephasing rate contains factor

sin2 η = Ω2/W 2 which is small for slow rotation with Ω� ∆.

The Bloch equations Eq. (4.10) with rates given by Eq. (4.21) can be solved to get the

qubit density matrix ρ̂U2(t) in the secondly rotated basis. In conjunction with the initial

condition, the time evolution of my(t) is then obtained by Tr[Σ̂yρ̂(t)], see Figure 4.1(b) for
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Figure 4.3: Time dependence of the out-of-plane polarization, my(t), at various tempera-
tures of environment: T = 0 (solid line), T = 0.5∆ (dashed line) and T = ∆ (dotted line)
for fluctuating environment field out of the plane of rotation, n = ŷ. The pure dephasing
rate is zero, J0 = 0. The frequency of rotation of the control field is Ω = 0.1∆. The cou-
pling to environment α = 0.05. The thin horizontal lines represent the asymptotic values
of my(∞) at different temperatures.

Ω = 0.2∆ and α = 0.02. Initially, after the rotation starts, the qubit state at the Bloch

sphere exhibits wiggles, similar to those in Figure 4.1(a) for an isolated system. As rotation

continues, wiggles flatten out and the quit evolution on the Bloch sphere becomes a circle

cross-section of the sphere by an x− z plane shifted along y−axis.

First, we provide an exact analytical solution by choosing the initial state to be a thermal

state ρ(0)(0) = 1/2 + tanh(W/2T )σz/2. Defining m0 = tanh(W/2T ), the initial condition

for the Bloch equation becomes mz(0) = m0 cos η, mx(0) = 0 and my(0) = m0 sin η.
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Integrating the Bloch equation with the above initial condition yields

my(t) = −m0 sin η (4.22)

×
(

1− 2 sin2 η

2
e−Γtott − cos ηe−Γtott/2 cosWt

)
,

where Γtot = Γr+Γe and we assumed J0 = 0. In the long times limit, t→∞, my(t) reaches

its stationary state solution

my(∞) = − Ω

W
tanh

W

2T
' −Ω

∆
tanh

∆

2T
, (4.23)

regardless of the form of the initial state. The significance of this expression is that the

dynamical transverse response of the qubit subject to a rotating magnetic field is a con-

sequence of the geometric phase effect in the sense that the stationary value my(∞) does

not depend on the strength of the coupling to environment. Therefore, my(∞) is purely

geometrical and immune to quantum zero-temperature fluctuations of the environment.

Next, in order to get the numerical solution of the BR equations (4.6) we utilize stan-

dard integration methods for a system of linear differential equations with time-dependent

coefficients. Alternatively, we obtain the same results using the BR functions of the QuTiP

package [45, 134] with a proper adjustment to the system Hamiltonian and the interaction

term, see Eqs. (4.12) and (4.19), for time–dependence of the eigenstate basis, as presented

in Figs. 4.2 and 4.3. We verified that the results shown in the plots are identical to numer-

ical integration of the BR equations with the rates given by Eqs. (4.21). In both plots, the

initial condition of the density matrix is chosen to be the ground state at t = 0 when b‖ez.

We obtain plots consistent with the analytical result, Eq. (4.22), for the thermal state of

the density matrix at t = 0.

In Figure 4.2, we present the time evolution of my(t) for several values of the cou-

pling to the environment. From the plot it is clear that the role of the environment is

to suppress transient wiggles of my and to bring the system to the steady state, defined

by Eq. (4.23) with tanh(∆/2T ) → 1. However, the transverse magnetization is fragile to

thermal fluctuations, since these fluctuations create excitation to the higher energy state.

The result is shown in Figure 4.3, where we fix α and plot my(t) for different temperatures
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Figure 4.4: Time dependence of the out-of-plane polarization, my(t), at zero temperature of
environment, for α = 0.05 (solid line) and α = 0.1 (dashed line) for fluctuating environment
field in the plane of rotation, n = ẑ. The pure dephasing rate is zero, J0 = 0. The frequency
of rotation of the control field is Ω = 0.1∆. The relaxation is reduced for time intervals
when Ωt ' πn. The thin horizontal line represents the asymptotic values of my(∞).

T = {0, 1/2, 1}∆. We note that since the dephasing rate, Γ2 = (Γr + Γe)/2 grows with

the temperature, the oscillations decay faster for higher temperatures. Also, at finite tem-

peratures, the spin has nonzero probability to stay in the excited state, the asymptote of

my(t→∞) is reduced in agreement with Eq. (4.23).

Environment field in the rotation plane

We now consider the qubit interacting with environment field in the plane of rotation. We

take n = ez and for b‖ez the coupling to the environment results in pure dephasing and

is characterized by the low frequency spectral density J0. As b rotates, the effect of envi-



75

ronment alternates between pure dephasing and qubit transitions between eigenstates. We

obtain this variation in qubit flip and dephasing rates already after applying transformation

Û1 = exp(iσ̂yθ/2) to the interaction Hamiltonian of the qubit and environment, Eq. (4.2).

However, for rotating b(t) we have to take into account the gauge term −iÛ1(t)∂tÛ
†
1(t) in

Eq. (4.11) by applying the second transformation Û2 to Ĥint. We obtain

V̂ (t)σ̂zV̂
†(t) = −σ̂x sin Ωt− (σ̂y sin η − σ̂z cos η) cos Ωt (4.24)

that contains matrix elements for qubit flip processes at any moment of time. The corre-

sponding rates in the Bloch–Redfield equations are

Γr =
G(t)

2
J(W )[N(W ) + 1], (4.25a)

Γe =
G(t)

2
J(W )N(W ), (4.25b)

Γ2 =
Γr + Γe

2
+ J0 cos2 η cos2 Ωt, (4.25c)

where G(t) ≡ sin2 η + sin2 Ωt cos2 η and thus the qubit flip rates are nonzero as a function

of time.

The evolution of the qubit in this case corresponds to precession of a spin in the mag-

netic field with initial state distinct from its new ground state after the quench. Namely,

its dynamics will correspond to suppression of off-diagonal elements of its density matrix

with the rate Γ2(t) and equilibration of the diagonal elements of ρ with rates Γr/e(t). We

emphasize that in this case all decoherence rates are time-dependent.

We calculate time-dependence of my(t) by numerically solving the BR equations with

the rates given by Eq. (4.25). We present the result of integration in Figure 4.4 for two

different values of α at zero temperature and find clear evidence that the decoherence rates

are roughly one half smaller compared to the result of previous subsection for the same

value of α. Meanwhile, in Figure 4.5 we fix α and plot my(t) for different temperatures. At

time longer than the relaxation time 1/Γ2, my(t) becomes constant with its value my(∞) =

−Ω/W tanh(W/2T ), see Eq. (4.23)
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Figure 4.5: Time dependence of the out-of-plane polarization, my(t), for α = 0.1 and T = 0
(solid line), T = 0.5∆ (dashed line) and T = ∆ (dotted line) in case when fluctuating
environment field is in the plane of rotation, n = ẑ. The pure dephasing rate is zero,
J0 = 0. The frequency of rotation of the control field is Ω = 0.1∆. The thin horizontal
lines represent the asymptotic values of my(∞) at different temperatures.

Longitudinal coupling to environment

We also consider a somewhat artificial scenario when the coupling vector n = sin Ωt ex +

cos Ωt ez in Eq. (4.2) rotates together with the external field b(t) 2. For a stationary

Hamiltonian this environment does not produce qubit flip processes and results in pure

dephasing, when the diagonal elements of the density matrix do not change and only off

diagonal elements decrease with time. In case when the direction of the control field rotates

with frequency Ω, the basis transformation term in Eq. (4.11) introduces qubit flip processes

2This case may be realized if the interaction of the environment with the qubit is introduced through
a fluctuating field along the external field b(t), e.g. when b(t) is realized as two quadratures of microwave
pulse driving a qubit and the environment is described by longitudinal quantum fluctuations of the pulse.
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for this coupling with the rates in Eqs. (4.6) given by

Γr =
sin2 η

2
J(W )[N(W ) + 1], (4.26a)

Γe =
sin2 η

2
J(W )N(W ), (4.26b)

Γ2 =
Γr + Γe

2
+ cos2 ηJ0. (4.26c)

For slow rotation Ω � ∆, we have sin η � 1 and qubit flip processes are small. In this

case, dephasing will suppress precession on time scale ∼ 1/J0, and further equilibration of

the system occurs on a longer time scale ∼ ∆/πΩ2. We describe the evolution of a qubit

coupled to high–temperature environment using a dephasing Lindblad model in Sec. 4.5.

Coupling to a strongly damped Quantum oscillator

In this subsection we consider the interaction of a qubit with a single damped quantum

harmonic oscillator. This model can be used to describe environment with a sharp spectral

function J(ε). The interaction part of the Hamiltonian is similar to Eq. (4.2):

Ĥint =
λ

2
(â+ â†)n · σ (4.27)

and the single-mode Hamiltonian of the oscillator is Ĥo/c = ω0(â†â + 1/2). We describe

dissipation of the oscillator using the Lindblad relaxation operators for the full density

matrix ρ̄(t) of the qubit and the oscillator system:

˙̄ρ(t) = −i[Ĥ(t), ρ̄]− κ
(
â†âρ̄+ ρ̄â†â− 2âρ̄â†

)
(4.28)

This equation is a standard Lindblad master equation with time dependent Hamiltonian.

The difference with the previous calculations of this Section is that we keep a full quantum

mechanical treatment of the qubit interaction with the oscillator and perform all transfor-

mations of the qubit basis for the full Hamiltonian of the qubit and the oscillator. At the

same time, we assume that the Lindblad superoperator for the relaxation of the harmonic

oscillator, represented by the last term in Eq. (4.28), is not affected by these transforma-

tions.
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Figure 4.6: Time dependence of the out-of-plane polarization, my(t), at zero temperature
of environment for a qubit coupled to a damped harmonic oscillator with damping rate
κ = 0.2∆ and coupling constant between the qubit and environment λ = 0.1∆. Coupling
vector n ‖ ŷ (solid line) and n ‖ ẑ (dash-dotted line). For comparison, the solution for the
Bloch–Redfield equation is presented (dashed line) with α = 0.03 and J0 = 0. The rotation
angular velocity is Ω = 0.1∆. The thin horizontal line represents the asymptotic values of
my(∞).

We evaluate the qubit projection perpendicular to the rotation plane of the control

field as a function of time. Figure 4.6 shows the comparison between calculation of Bloch-

Redfield equations and damped quantum oscillator with different coupling directions at zero

temperature. All three curves saturate at universal value my(∞) = −Ω/W . It is worth

pointing out that the n ‖ ẑ coupling results in time-dependent transition rates that are at

minimum when b ‖ n and at maximum when b⊥n, as one can conclude from the amplitude

of oscillations of my(t) for n‖ez. Effectively, the overall relaxation is slower than that of

the case n ‖ ŷ and the amplitude of oscillating my at tΩ = nπ decays insignificantly. The
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Figure 4.7: Time dependence of the out-of-plane polarization, my(t), at environment tem-
perature T = 0.5∆ for a qubit coupled to a damped harmonic oscillator with damping rate
κ = 0.2∆ and coupling constant between the qubit and environment λ = 0.1∆. Coupling
vector n ‖ ŷ (solid line) and n ‖ ẑ (dash-dotted line). For comparison, the solution for the
Bloch–Redfield equation is presented (dashed line) with α = 0.03 and J0 = 0. The rotation
angular velocity is Ω = 0.1∆. The thin horizontal line represents the asymptotic values of
my(∞).

calculations at finite temperature T = 0.5∆ are plotted in Figure 4.7 and in all cases my(∞)

is consistent with Eq. (4.23).

4.4 Landau–Zener Transition

In this section we consider the Landau–Zener transition in a qubit coupled to its en-

vironment. The external field in the qubit Hamiltonian (5.3) has the following form

b(t) = {∆, 0, vt}, where ∆ is the minimal level separation and v characterizes the rate at

which the Hamiltonian changes. For the Landau–Zener problem, the qubit is initially in the
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(a) (b) (c)

Figure 4.8: Representation of a qubit state during the Landau–Zener process on the Bloch
sphere in (a) diabatic basis of states | ↑〉 and ↓〉 along fixed ẑ axis; (b) adiabatic basis of
the ground, |g〉, and excited, |e〉, states; (c) in the “improved” eigenstate basis, |g〉 and |e〉,
obtained from the diabetic basis by U2 transformation. In the diabatic basis the trajectory
of qubit state moves across the sphere from state | ↓〉 (ground state at t → −∞) towards
| ↑〉 and slowly approaches the circle of constant precession at t → ∞. The trajectory in
the adiabatic basis and eigenstate basis shows a simpler trajectory and fast switch to the
constant precession circle. Level-crossing speed v = 0.5∆2 and no coupling to environment.

ground state |g〉 with the density matrix ρ̂(t→ −∞) = |g〉〈g|. The task is to find the proba-

bility of the system to be in the excited state |e〉 which is given by P∞ = limt→+∞〈e|ρ̂(t)|e〉.

Effects of the environment on qubit’s dynamics can be separated into pure dephasing of

the qubit state during the LZ process and inelastic qubit flips. When we consider a qubit

coupled to its environment that causes qubit flip processes, we have to be careful with the

formulation of the LZ problem. Indeed, the LZ process is formally infinitely long and the

qubit flip processes accompanied by the energy exchange will result in equilibration of the

qubit system with its environment. In particular, for the zero temperature environment,

the qubit will relax to the ground state even if it was temporarily excited during the LZ

process. For environment at finite temperature, the qubit state will tend to thermal state

ρ̂(t) = diag{ρ00, ρ11} with ρ11/ρ00 = exp(−E(t)/T ). But as formally E(t) → ∞ for long

times t, the qubit will relax to the ground state and we find P∞ = 0.

Previous considerations, see e.g. [114], predicted P∞ → 0 for the Ohmic environment

with large high-frequency cutoff in the environment modes.3 But in this case the problem

3Notice that the projection of the coupling vector between a qubit and the environment does not change
in time in Ref. [114] as required for the proper treatment of environment–qubit interaction.
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looses its meaning since the LZ transition is shadowed by trivial relaxation of a quantum

system to its ground state by releasing its energy to the environment. One can reformulate

the problem in terms of finite time LZ process, which may be experimentally relevant situ-

ation in some cases. Alternatively, one can assume that the environment spectral function

has a relatively low cutoff at high frequencies Ec ∼ ∆ and the relaxation is absent after time

t & Ec/v. Here, we consider a special orientation of the coupling vector with environment

when n‖ez,where ez is defined by b̂(t→ ±∞)‖ez. In this situation, the relaxation processes

becomes weak at long times |t| � ∆/v. This type of coupling is expected to be dominant

in qubits with relatively long energy relaxation times, but with short dephasing time due

to dominant coupling with the fluctuating field parallel to the qubit field along ez.

We utilize the Bloch–Redfield approach to the problem of Landau–Zener transitions in

the presence of environment with n = ez. In principle, we need to write the BR equations

in the basis where the transformed qubit Hamiltonian is diagonal after an infinite series

of basis transformations given by Ûn, which can be an infinite series. However, under the

condition v . ∆2, the series of basis transformations can be limited by Û2(t)Û1(t).

The first transformation changes the representation from diabatic basis of states | ↑〉

and | ↓〉 along ez to the adiabatic basis of the ground, |g〉, and excited, |e〉, states, where

the Hamiltonian is diagonal. The first transformation matrix Û1(t) has the same form as

in Eq. (4.13) except the rotation angle θ(t), which is now defined as

cos θ(t) = − vt√
v2t2 + ∆2

. (4.29)

The transformed Hamiltonian in the adiabatic basis has the form [96, 99, 98, 97]

ĤU1
0 = −E(t)

2
σ̂z −

v∆

2E2(t)
σ̂y, E(t) =

√
v2t2 + ∆2. (4.30)

The second transformation is chosen to diagonalize matrix ĤU1
0 and has the form

Û2(t) = exp

(
− iη

2
σ̂x

)
, tan η(t) =

v∆

E3(t)
. (4.31)
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Figure 4.9: projection of a qubit state during the Landau–Zener process on the Bloch
sphere on | ↓〉 state in the diabatic basis (dash-dotted line) and on the ground state in the
adiabatic basis (solid line) and the “improved” eigenstate basis (dashed line). In the diabatic
basis the projection of the qubit state shows long oscillations with amplitude decreasing as
a power law in time, while the eigenstate projections quickly reach the asymptotic value.
Level-crossing speed v = 0.5∆2 and no coupling to environment.

The Hamiltonian in this “improved eigenstate” basis has the form

ĤU2
0 = −W (t)

2
σ̂z −

η̇

2
σ̂x, (4.32a)

W (t) =

√
E2(t) +

v2∆2

E4(t)
, η̇ =

3v3∆t

E3(t)W 2(t)
. (4.32b)

Without dissipation, the LZ problem is equivalent in all three representations, with

a properly written Hamiltonian, i.e., Eq. (5.3) for the diabatic basis, Eq. (4.30) for the

adiabatic basis, and Eq. (4.32a) for “improved eigenstate” basis. In all representations,

the qubit follows the appropriate instantaneous control field b̃(t), but since this field is

time-dependent, the qubit deviates from the instantaneous direction of b̃(t) and acquires an
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additional precession around the control field. When the original field eventually reaches its

final direction, b‖ez at t� ∆/v, the direction of the control field becomes time independent

and the qubit simply precesses around ez with a non-zero projection of its state on the

excited state, given by the known expression [108, 109, 111]

PLZ∞ = exp

(
−π∆2

2v

)
. (4.33)

Note that in Figure 4.8 this precession remains in all three considered representations, but

the overall trajectories are smoother in the transformed representations. As we look at the

projection of the qubit state on the “excited state” P (t) = 〈e|ρ̂(t)|e〉 in the appropriate

basis, see Figure 4.9, the oscillations decrease faster in the transformed representations,

because the control field b(t) aligns faster with its final direction. We also note that since

the control field remains aligned with its initial direction longer in transformed basis, the

numerical computation can run over shorter time intervals thus making computation faster

and more accurate.

Next, we take into account interaction with the environment within the Bloch–Redfield

approach. The coupling to the environment is modified in the diagonal basis of the Hamil-

tonian, see Eq. (4.12) and Ref. [97]. Under the Markovian approximation and to the second

order in the coupling to environment, we obtain the corresponding BR equations in the

form

ρ̇00 = i
η̇

2
(ρ01 − ρ10)− Γeρ00 + Γrρ11, (4.34a)

ρ̇11 = −i η̇
2

(ρ01 − ρ10) + Γeρ00 − Γrρ11, (4.34b)

ρ̇01 = −(Γ2 + iW (t))ρ01 + i
η̇

2
(ρ00 − ρ11), (4.34c)

ρ̇10 = −(Γ2 − iW (t))ρ10 − i
η̇

2
(ρ00 − ρ11), (4.34d)

where W (t) and η̇ are given by Eq. (4.32b). The rates for the above equations are

Γr =
GLZ(t)

2
J(W (t))[N(W (t)) + 1], (4.35a)

Γe =
GLZ(t)

2
J(W (t))N(W (t)), (4.35b)

Γ2 =
Γr + Γe

2
+ J0 cos2 η cos2 θ(t), (4.35c)
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where GLZ(t) = sin2 η + sin2 θ(t) cos2 η is a function of time–dependent basis rotation

angles θ(t) and η(t) defined by Eqs. (4.29) and (4.31). We note that the above equations

for BR rates are given by truncation of transformation series of interaction Hamiltonian,

Eq. (4.12), up to the second order, V̂ = Û2(t)Û1(t). An equivalent approach with only first

order transformation V̂ = Û1(t) was studied in Ref. [129]. Therefore, the rates are defined

within O(η2) . O(v2/∆4) accuracy. The unitary evolution described by either ĤU1
0 or ĤU2

0

has no approximations and is valid for arbitrary values of v. We emphasize that once the

basis transformation gives rise to non-zero decoherence rates, the qualitative results are

similar regardless of our choice of the BR rates in the basis obtained after either Û1 or Û2Û1

transformations. The rates in the Û1 basis are given by Eq. (4.35) with η = 0. We now

discuss solution of Eq. (4.34).

Zero temperature dissipative environment

We first consider the zero temperature environment and set J0 = 0 to focus solely on qubit

flips rather than dephasing. We numerically integrate the BR equation (4.34) and plot the

probability of the system to be in the excited state Pe(t) = 〈e|ρ(t)|e〉 as a function of time

in Figure 4.10 for α = 0.05. For numerical integration, we used both direct integration

of linear differential equations (4.34) and the QuTiP’s package for numerical solution of

the Bloch–Redfield equations [45, 134], obtaining identical results. As the qubit levels go

over the avoided crossing, the probability of the qubit to be in the excited state increases,

roughly following the same function of time as Pe(t) for an isolated qubit, α = 0. As the

levels further depart from each other, the relaxation of the qubit from the excited state

becomes the dominant process in the qubit dynamics, and Pe(t) monotonically decreases

and becomes constant once the level separation ∼ vt exceeds the ultraviolet cutoff Ec, or

t & Ec/v and the qubit is effectively decoupled from the environment. In Figure 4.10

we compare the behavior of Pe(t) for different values of Ec. For finite ultraviolet cutoff

Ec = 5∆, the probability Pe(t) saturates for t∆ & 10. For Ec → ∞, the probability Pe(t)

slowly decreases for all t > ∆/v.
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Figure 4.10: The probability of occupation of the excited state in the Landau–Zener
transition in the U2 basis. The temperature of environment is zero, T = 0, the level
velocity is v = 0.5∆2. We assume that the dephasing is absent, J0 = 0. The asymptotic
curve for Ec =∞ is given by Eq. (4.36b) with a proper choice of integration constant C.

To evaluate this suppression, we can utilize Eqs. (4.34) in the asymptotic regime for

t� v/∆, when Γr(t)� η̇(t). We write

dPe(t)

dt
= − ∆2

2v2t2
J(vt)Pe(t), (4.36a)

Pe(t) = C exp

(
−πα∆2

v
ln
vt

∆

)
∝ t−πα∆2/v. (4.36b)

where we used the relaxation rate Γr from Eq. (4.35a). The latter equation demonstrates

that even for environment with n‖ez, the relaxation on long times scales is important.

Formally, the power–law dependence of Pe(t) on time originates from the slow converging

integral
∫
dtJ(vt)/v2t2 ∼ ln vt/∆ due to linearly increasing environment spectral function

J(ε) with energy. With a proper choice of integration constant C, we obtain a good agree-
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ment between computed Pe(t) in Figure 4.10 and asymptote, defined by Eq. (4.36b).

This power–law dependence stops and reaches a fixed value P∞ when the qubit level

separation exceeds the environment ultra-violet cutoff at times t & Ec/v. We evaluate the

long time asymptotic value of Pe(t� Ec/v) = P∞ by taking into account the high energy

cutoff in the environment spectral function, Eq. (4.5). We obtain

P∞(T = 0) = CΠ, Π = exp

{
−πα∆2

v
ln

2Ec
eγ∆

}
, (4.37)

where γ ' 0.577 is the Euler’s constant, the integration constant C ∼ PLZ∞ and factor Π

describes suppression of the excited state due to slow relaxation while qubit level separation

increases from its minimum ∆ to values above the cutoff energy Ec, see Appendix A for

the derivation of Eq. (4.37).

Equations (4.36) are valid for α � 1. For larger values of α, one has to take into

account the renormalization of qubit Hamiltonian when the off-diagonal matrix element in

the original Hamiltonian ∆r is given by the following self-consistent relation [18]

∆r = ∆ exp

(
−1

2

∫ ∞
0

J(ω)

ω2 −∆2
r

dω

)
(4.38)

with solution ∆r = ∆(∆/Ec)
α/(1−α). Hence the relaxation rate is [119]

Γr(E) =
π∆r

2Γ(2α)

(
E

∆r

)2α−1

(4.39)

where Γ(x) is the gamma–function. The integration over time with E(t) ' vt gives [119]

ρ11(t) = C ′ exp

(
− π∆2

r

4αΓ(2α)v

(vt)2α

∆2α
r

)
. (4.40)

Notice that in the limit α � 1, ∆r = ∆, the relaxation rate Γr reduces to Γr(E) =

πα∆2/E in agreement with the relaxation rate in Eq. (4.36a). Similarly, Eq. (4.40) becomes

Eq. (4.36b)

Finite temperatures

At finite temperatures, the excitation and relaxation rates may exceed η̇ terms for strong

enough coupling of the qubit to its environment and slow drive v. In this case, we disregard
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Figure 4.11: The probability of occupation of the excited state, Pe(t) in the Landau–Zener
transition in the U2 basis at finite temperature of environment for v = 0.5∆2, α = 0.05
and J0 = 0. The solid lines represent solutions of rate equations (4.41) that show good
agreement with the BR equations at higher temperatures.

η̇ terms in Eq. (4.34) and the diagonal elements of the density matrix satisfy the rate

equations. Since the rate equations preserve the trace of the density matrix, Pg(t)+Pe(t) =

1, with Pg(t) = 〈g|ρ(t)|g〉, we introduce m(t) = Pg(t) − Pe(t) and obtain the differential

equation for m(t):

1

Γ0

dm

dt
= 1−m coth

W (t)

2T
, Γ0 = παW (t)GLZ(t),

GLZ(τ) =
∆2(v2 + (v2τ2 + ∆2)2)

v2∆2 + (v2τ2 + ∆2)3
.

(4.41)

The initial condition is m(ti) = 1 for ti = −∞. While we can write a formal solution to

Eq. (4.41), the solution is not well defined due to logarithmic divergence of
∫
ti

Γ0(t)dt for

the spectral function J(ε) without a cutoff. We present the result of numerical solution of
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Eqs. (4.34) and the rate equations in Figure 4.11. We notice that for higher temperatures,

these two solutions are indistinguishable because the thermal effects dominate only in short

time scales |vt| < T such that the time window is long enough for the qubit to be thermalized

and its off-diagonal elements of density matrix vanish.

Integrating Eq. (4.41) over t yields the following solution of P∞ = 1/2−m(∞)/2:

P∞ =

∫ ∞
−∞

Γe(t)e
−

∫∞
t Γ0(t′) coth

W (t′)
2T

dt′dt. (4.42)

The integral over time t is understood as thermal activation processes with rate Γe(t) and

integral in the exponent can be considered as contribution of relaxation processes after

thermalization. For weak coupling α � 1 and not very high temperatures αT � v/∆,

the integral in the exponential is a slow function of t. Therefore, we can replace the lower

bound of the integration by t = 0. We obtain P∞ in the limit of low temperatures T � ∆

P∞ '
2πα∆2

v

√
πT

2∆
e−∆/TΠ, (4.43)

and in the limit of higher temperatures T � ∆

P∞ '
2π2αT∆

v
Π, (4.44)

where Π is defined by Eq. (4.37). The details of the derivation of the above equations are

presented in Appendix 4.7. We remind that Eqs. (4.42) – (4.44) are valid when the rate

equations (4.41) are a good approximation to the BR equations (4.34). In this case, the

transition of the system to the excited state is a consequence of incoherent excitation by

environment of the qubit, and is not the coherent phenomenon that leads to the excitation

in the Landau–Zener transition of an isolated quantum system. However, the excitation

processes only happen when the adiabatic eigenstates of the qubit have a non-zero matrix

elements with the coupling to environment, the latter happens when the “control field”

b̂ is not parallel to the environment field which happens during time ∆/v, when the ex-

citation rate can be estimated as παT , resulting in the excitation probability ∝ αT∆/v,

cf. to Eq. (4.44). As the level separation E(t) exceeds temperature, only relaxation pro-

cess remains that causes transitions to the ground state. The effect of this relaxation is

represented by the exponential factor in Eqs. (4.43) and (4.44), cf. to Eq. (4.36b).
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Figure 4.12: Transition probability P∞ as a function of environment temperature T , at
different values of coupling between the qubit and the environment for n‖ẑ. Level-crossing
speed v = 0.5∆2, the high energy cutoff for the environment is Ec = 10∆ and J0 = 0. We
take P∞ = Pe(t = 4Ec/v).

From the above analysis, we conclude that a finite temperature of the environment

leads to the “equilibration” between the ground and excited states of the qubit, and as

temperature increases, the probability of the transition to the excited state in the LZ process

increases monotonically, cf. Refs. [96, 97]. This behavior is demonstrated in Figure 4.12,

where P∞ is shown as a function of T for several values α of coupling between the qubit and

its environment. We also note that the temperature effects appear at T & ∆, at smaller

T , values of P∞ are characterized by the excitation through unitary evolution with the

subsequent relaxation.

When we consider P∞ as a function of coupling α for several values of T , we observe

a more complicated behavior. For T = 0, shown by the solid line in Figure 4.13, the
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Figure 4.13: Transition probability P∞ as a function of the coupling parameter of the qubit
and the environment, α, at different environment temperatures for n‖ẑ. Level-crossing
speed v = 0.5∆2, the high energy cutoff for the environment is Ec = 10∆ and J0 = 0. We
take P∞ = Pe(t = 3Ec/v).

transition probability P∞ monotonically decreases from its value PLZ∞ , Eq. (4.33), as α

increases, in agreement with Eq. (4.37). At finite temperatures, P∞ increases for smaller

values of α, as the excitation process becomes more efficient and provides extra boost for

transitions to the excited state in addition to that produced by unitary dynamics. However,

this boost is only a linear function of α, see Eqs. (4.43) and (4.44), and at stronger values

of α the exponential dependence of Π on α results in decreasing P∞ as α increases. The

non-monotonic dependence of P∞ on α can be understood as a competition between energy

relaxation and thermal activation, whereas the competition between energy relaxation and

driving was analyzed in Ref. [117].
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Figure 4.14: Transition probability P∞ as a function of environment temperature T for
n‖b̂, at different values of drive velocity. The high energy cutoff for the environment is
Ec = 10∆ and J0 = 0. The solid lines represent solutions of rate equations Eq. (4.41). We
take P∞ = Pe(t = 4Ec/v).

Longitudinal coupling

We also consider the environment that produces fluctuating field along the direction of

the control field, n‖b, in the Landau–Zener problem. The decoherence rates in the BR

equations (4.34) are given by

Γr =
sin2 η

2
J(W (t))[N(W (t)) + 1], (4.45a)

Γe =
sin2 η

2
J(W (t))N(W (t)), (4.45b)

Γ2 =
Γr + Γe

2
+ J0 cos2 η. (4.45c)

For this configuration of coupling between the qubit and environment, the matrix elements

for transitions between different eigenstates of the qubit caused by the environment are
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small and the qubit flip rates Γr,e are proportional to sin2 η . v2∆2/E6(t) ≤ v2/∆4 and

vanish fast for |t| & ∆/v as Γr,e ∼ ∆2/v4t6. Such fast decrease of the qubit flip rates in

time simplifies either numerical or analytical integration of the BR equation and makes P∞

independent from the high-energy cutoff Ec.

In particular, for finite temperatures, when the BR equations can be reduced to the rate

equations, time evolution of m(t) = Pg(t)−Pe(t) is given by Eq. (4.41) with GLZ(t) = sin2 η.

The general solution of the rate equation takes similar form to Eq. (4.42):

P∞ =

∫ ∞
−∞

Γe(t)e
−

∫∞
t Γl(t

′) coth
W (t′)
2T

dt′dt,

Γl = παW (t) sin2 η(t).

(4.46)

Performing time integration in Eq. (4.46) gives for T � ∆:

P∞ = αv

√
π3

32T∆3
exp

(
−∆

T

)
exp

(
−2παv

3∆2

)
. (4.47)

For high temperatures, T � ∆, we obtain (see Appendix B)

P∞ =
1

2

[
1− exp

(
−3π2

4
α
Tv

∆3

)]
. (4.48)

As we mentioned above, the results in Eqs. (4.46) and (4.48) are independent from the

cutoff energy Ec. Equation (4.47) shows that P∞ vanishes in the low temperature limit,

unless we take into account non-adiabatic unitary evolution of the quantum state in the LZ

problem. In the limit of high temperatures T � ∆, but still weak coupling, αvT � ∆3, we

obtain the linear dependence of P∞ on T :

P∞ =
3π2

8
α
Tv

∆3
, (4.49)

which follows from Eq. (4.48).

Since simple form of P∞ can not be obtained in the intermediate temperature regime,

we numerically calculate the solution of rate equation as well as that of Bloch-Redfield

equation for comparison, see Figure 4.14. When the level-crossing speed v is small enough,

the transition is mainly due to thermalization at short times and energy relaxation at

longer times. In this regime, the rate and BR equations are in a very good agreement, as
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demonstrated in Figure 4.14 for v = 0.25∆2. However, as the level–crossing speed increases,

the non-adiabatic unitary evolution also contributes to the transition to the excited state

increasing the probability for a system to be in the excited state. Since the non-adiabatic

unitary evolution is not incorporated in the rate equations, the equations underestimate

the probability of the excitation in the LZ process, compare the solid and dashed curves in

Figure 4.14 for v = 0.5∆2.

4.5 Lindblad dephasing evolution

We compare the results obtained from the BR equations in the case of longitudinal cou-

pling with the theory based on the Lindblad equation for pure dephasing operators. For

both problems, the qubit Hamiltonian can be parametrized by the control field b =

E(t){sin θ, 0, cos θ}, where E(t) is the magnitude of the control field equal to the qubit

level separation. The corresponding equation for the density matrix in the adiabatic basis

has the form:

ρ̇ =
iE(t)

2
[σz, ρ] +

iθ̇

2
[σy, ρ] +

γ

2
(σzρσz − ρ). (4.50a)

In the component form the above equation is

ρ̇00 =
θ̇

2
(ρ01 + ρ10), ρ̇11 = − θ̇

2
(ρ01 + ρ10), (4.50b)

ρ̇01 = (iE(t)− γ)ρ01 −
θ̇

2
(ρ00 − ρ11), (4.50c)

ρ̇10 = (−iE(t)− γ)ρ10 −
θ̇

2
(ρ00 − ρ11). (4.50d)

These equations are similar to Eqs. (4.6), but because they are not written in the eigenstate

basis, the last two equations contain extra terms. Time derivatives of diagonal terms contain

the off-diagonal terms of the density matrix multiplied by the quantity characterizing the

off-diagonal part of the Hamiltonian, θ̇. Time derivatives of the off-diagonal components

of the density matrix have the terms identical to those in Eqs. (4.6) and the extra terms

characterized by the diagonal matrix elements and parameter θ̇. In this section we again

consider the two cases: (1) the qubit rotation with a constant angular velocity θ̇ = Ω,
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i.e. θ(t) = Ωt, and E(t) = ∆; (2) the LZ problem with E(t) =
√

∆2 + v2t2 and θ(t) =

arctan ∆/vt.

Rotating field

When the control field rotates in (x − z) plane, b(t) = ∆{sin Ωt, 0, cos Ωt}, the effective

Hamiltonian is time independent. To make a comparison with the calculation of BR equa-

tions, one can look for a quasi-stationary state solution of the density matrix at time scale

t ∼ 1/γ with ansatz that the off-diagonal elements are ρ01/10 ∝ Ω. We disregard Ω2 terms

for ρ̇00/11 and take ρ00 = 1. Then, we have ρ01 = Ω/2(i∆ − γ), ρ10 = Ω/2(−i∆ − γ) and

the out of plane qubit projection is [87]

my(L) = −Ω

2

∆

∆2 + γ2
. (4.51)

We argue, however, that the above expression does not hold for authentic steady state,

˙̂ρ = 0, at longer times and for general configuration of the initial conditions. We present the

result of numerical integration of the Lindblad equations (4.50) in Figure 4.15 for Ω = 0.1∆

and γ = 0.1∆. In our calculation, we consider the case when the qubit is prepared in the

ground state prior to rotation for t < 0. When the rotation starts, the Hamiltonian acquires

extra terms ∼ Ω and the qubit exhibits a precession around new direction of the control

field. This precession is reduced by the decoherence with rate Γ2 ' γ and the oscillatory

component in my(t) vanishes for times t ∼ 1/γ.

At longer times, the diagonal matrix elements start changing as well and the system

will eventually relax to ρ00 = ρ11 = 1/2 and ρ01 = ρ10 = 0. The reason for this behavior

is that at long times, the diagonal elements acquire significant changes even though these

changes have small factor Ω2. In the language of the BR equation, the Lindblad pure

dephasing operator contains relaxation and excitation components in the eigenstate basis

of the transformed Hamiltonian ĤV
0 and Γe = Γr = γΩ2/(∆2 + Ω2), which is the high

temperature limit because it does not distinguish processes with absorption or emission of

environment excitations. Correspondingly, the density matrix reaches the high-temperature
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Figure 4.15: Polarization my(t) as a function of time t for dephasing Lindblad evolution.
The decoherence rate γ = 0.1∆ and rotation velocity Ω = 0.1∆. After the rotation starts,
polarization shows an oscillatory behavior originating from the qubit precession, at longer
times the precession stops and the qubit relaxes to unpolarized state according to Eq. (4.52).

limit with equal probabilities of occupation of eigenstates of the qubit Hamiltonian

m(L)
y (t) = − Ω√

∆2 + Ω2
exp

(
− 2Ω2γt

Ω2 + ∆2

)
. (4.52)

This asymptotic behavior is consistent with the result obtained from the numerical solution

of the Lindblad equation (4.50), shown in Figure 4.15.

Landau–Zener problem

The expression for Landau–Zener problem to the lowest order in v can be obtained from

the explicit form of the Lindblad equation (4.50) with E(t) given by Eq. (4.30) and Ω =

v∆/E2(t). We assume that the changes in the system are slow and disregard ρ̇01 and ρ̇10
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Figure 4.16: Transition probability P∞ as a function of daphasing rate γ for different level–
crossing speeds v/∆2 = 0.1, 0.25, 0.5. Solid lines are numerical solution of the Lindblad
equation, Eq. (4.50), and dashed lines are given by Eq. (4.53).

in Eqs. (4.50). Then we find ρ01 = Ω/2(−iE + γ)[ρ00 − ρ11] and ρ10 = [ρ01]∗. Substituting

these expressions to Eq. (4.50b), we obtain:

P (L)
∞ =

1

2

[
1− exp

(
−γ
∫ ∞
−∞

v2∆2

E4(t)

dt

γ2 + E2(t)

)]
=

1

2

[
1− exp

(
− πv

2∆2
R
( γ

∆

))]
, (4.53)

where

R(x) =
2 + (x2 − 2)

√
x2 + 1

x3
√
x2 + 1

. (4.54)

In the limit v � ∆2, we recover the result of Ref. [86]:

P (L)
∞ = − πv

4∆2
R
( γ

∆

)
. (4.55)
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At small decoherence rate and slow drive, γ � ∆, we take R(x � 1) ' 3x/4 and

reproduce the previous result, Eq. (4.49), if we identify γ = 2παT . The agreement between

Eqs. (4.49) and (4.53) has a simple interpretation. The Lindblad equation can be viewed

as the high–temperature limit of the BR equation for the Ohmic environment [135]. The

Lindblad equation (4.50) is written in the basis that does not completely diagonalize the

Hamiltonian operator, and when we rewrite this equation in the basis diagonalizing matrix

E(t)σ̂z+Ωσ̂x, we arrive to the collapse operators that represent transition processes between

the eigenstates with equal excitation and relaxation rates Γ
(L)
e,r ≈ γ(Ω2(t)/E2(t)). It is the

excitation processes that cause transitions of the system to the excited state with the

population of an excited state P∞ in accordance with Eq. (4.53). To account for finite

temperatures, the Lindbladian operators are to be written in the eigenstate basis of the

“dressed” Hamiltonian, see Ref. [136].

Large decoherence rate, γ � ∆, suppresses the off-diagonal elements of the density

matrix, and effectively reduces the excitation and relaxation rates ∼ γΩ2/(E2 + γ2). As a

result, the qubit is more likely to stay in its ground state without experiencing an excitation

during the LZ avoided level crossing. The maximum of R(xm) ≈ 0.42 is reached at xm =

1.14.

We compare Eq. (4.53) (dashed lines) with the result of numerical integration of the

Lindblad equation (4.50) (solid lines) in Figure 4.16. We observe that at stronger decoher-

ence rate, when the off-diagonal unitary terms in the evolution of the density matrix can

be neglected in comparison with the decoherence terms, γ � v/∆ in the LZ problem, the

two solutions are equivalent.

4.6 Discussion and Conclusions

In conclusion, we have presented a detailed analysis of the dynamics of an open quantum

system in the presence of time-varying control field. Specifically, we formulated a time-

dependent Bloch-Redfield approach to study the dynamics of a spin-1/2 system whose

Hamiltonian varies slowly with time. Here we studied the dynamics in the presence of the
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Ohmic environment, however, our formalism can be readily applied to non-Ohmic cases as

well. Using modified BR approach, we investigated two problems. In the first problem, we

studied the response of a qubit to a rotating control field of the qubit with a fixed magnitude.

We noted that when the qubit basis is transformed to keep the effective Hamiltonian in the

diagonal form, which is required for proper perturbative analysis of the coupling between the

qubit and its environment, the transformed Hamiltonian acquires extra gauge terms. The

gauge terms result in the modification of the qubit–environment coupling and are related

to the renormalization of the mass and friction terms due to changing parameters of the

Hamiltonian, cf. Ref. [137]. The exact form of the renormalization depends on a particular

orientation of the control field with respect to the fluctuating environment field. We have

illustrated this scenario by considering different orientations of the environment field: (1)

control field and fluctuations are always perpendicular to each other, and the corresponding

relaxation rates are time-independent; (2) control and fluctuation fields are parallel only at

some moments of time, in which case the relaxation rates significantly oscillate in time; (3)

fluctuations are always along the direction of the control field, then the relaxation rates are

small in the parameter given by the ratio of the rotation velocity and level separation.

Our analysis offers a clear evidence of robustness of topological features against external

noises. To see this one needs to consider a long time limit where the qubit density matrix

reaches a steady state solution that at zero temperature coincides with the ground state of

the effective Hamiltonian. When this ground-state qubit configuration is looked at in the

original laboratory basis, the qubit has a constant projection in the direction perpendicular

to the plane of rotation and the magnitude of the projection is proportional to the product

of rotation velocity of the control field and the Berry curvature of the qubit ground state.

In the long time limit, this response is unaffected by the environmental coupling field, at

least for zero temperature environment. This relation of the response at long times and

the Berry curvature can be utilized as a practical method for measurements of the Chern

number [138] of a quantum system.

We also considered an environment with a very sharp spectral function. We represent
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this environment by a quantum harmonic oscillator that has internal relaxation. In this

case we solve the Lindblad master equation for the system of coupled qubit and oscillator

and find that the results are qualitatively similar to the solution of the BR equation with

properly chosen relaxation rates.

In the second example, we revisited the Landau–Zener problem. In this case, the modi-

fication of the matrix elements for transitions between eigenstates of the qubit Hamiltonian

is essential, even though it was not always taken into account. [114, 116] The eigenstate

basis that is necessary to use in treatment of interaction of the qubit with its environment

is also convenient for numerical evaluation because in this basis the system behavior during

the Landau–Zener level crossing is represented by a smooth function that quickly reaches

its long-time asymptotic value.

For a qubit weakly coupled to the environment, the evolution, long after the level

crossing, reduces to suppression of the off-diagonal elements of the density matrix and

relaxation of the excited state to the ground state, the latter is accurately described by

the rate equations. For the fluctuating field along the asymptotic direction of the control

field, the relaxation rate decreases as the level separation increases due to suppression of

the matrix elements of qubit transition between eigenstates caused by the environment.

However, this suppression is not sufficient to cut the relaxation in the long time limit, and

the relaxation results in a power law decay of the excited state, until the separation between

the qubit states exceeds the ultra-violet cutoff of the environment.

At finite temperature, in addition to enhancement of decoherence rates for the qubit,

the excitation processes produce transitions from the ground to the excited qubit states,

eventually increasing the probability for the qubit to appear in the excited state after

the transition. The BR equations accurately describe the crossover for the Landau–Zener

transition in an isolated quantum system, Eq. (4.33), with unitary evolution, to the open

system at arbitrary temperature, see Sec. 4.4.

Furthermore, we compare the results obtained from the generalized BR equations with

that from the Lindblad master equation. In particular, we focused on the case of pure
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dephasing Lindblad superoperators, [86, 87] that are equivalent to the longitudinal coupling

of the environment (fluctuating field of the environment is along the control field). We found

that the two results are consistent in the high temperature limit, when the Lindblad and

BR equations are equivalent, but application of the Lindblad equation for a system coupled

to low temperature environment may result in unphysical solutions.

Finally, we note that the generalization of the Bloch–Redfield equations can be applied

to accurately evaluate the fidelity of quantum gates. By taking into account proper mod-

ification of the transition and dephasing rates caused by time-varying parameters in the

Hamiltonian, optimization techniques for gate operations can be further improved. Simi-

larly, the BR equations for time-dependent Hamiltonian are also required for accurate de-

scription of protocols for adiabatic quantum computing and the Berry phase measurement

in recent experiments. [139].

4.7 appendix

Solution of rate equations for the avoided level crossing

Here we evaluate the integral in Eq. (4.42). Notice that while the integral over t′ in the

exponent,

I1(t) =

∫ ∞
t

Γ0(t′) coth
W (t′)

2T
dt′ (4.56)

originates on long interval from ∼ ∆/v to Ec/v, the second integral converges for time

|t| . T/v, for not very large temperatures, we can replace the low limit of integration in

Eq. (4.56) by t = 0. In this case, we have

P∞ = e−I1(0)I2, I2 =

∫ ∞
−∞

Γe(t)dt, (4.57)

whereW (t) =
√

∆2 + v2t2 + v2∆2/(∆2 + v2t2)2 '
√

∆2 + v2t2, Γe(t) = GLZ(t)J(W (t))N(W (t))/2,

Γ0 = GLZ(t)J(W (t))/2 with GLZ ' ∆2/(∆2 + v2t2) and J(ω) = 2παω exp(−ω/Ec). First,

let us change the integration variable t =
√
s2 −∆2/v such that dt = s/v

√
s2 −∆2ds and
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the integral in the exponential then reads

I1(0) =

∫ ∞
∆

πα∆2

v
√
s2 −∆2

coth
s

2T
exp(−s/Ec)ds. (4.58)

This integral can be evaluated in two cases. First, we consider the low temperature limit

T → 0, in which the hyperbolic cotangent coth s/2T → 1 + 2 exp(−s/T ). Therefore, the

integral is obtained

I1(0) =
πα∆2

v
[2K0(∆/T ) +K0(∆/Ec))] , (4.59)

where K0(x) is the 0th order modified Bessel function of the second kind with the following

asymptotes: K0(x) '
√
π/2x exp(−x) for x � 1and K0(x) ' − ln(xeγ/2) for x � 1,

γ ' 0.577 is the Euler constant. As the result, for T � ∆, we have

I1(0) ' πα∆2

v

[√
2πT

∆
e−∆/T + ln(2Ec/∆)− γ

]
. (4.60)

The first term can be disregarded for T � ∆.

At higher temperatures, there is a stronger contribution to I1(0) originating from short

time interval |t| . T/v. We can estimate this contribution as

δI1 =
πα∆2

v

∫ ∞
∆

2T

s
√
s2 −∆2

ds =
πα∆2

v

πT

∆
. (4.61)

We emphasize that this is the contribution which we do not evaluate correctly when replace

Eq. (4.42) by Eq. (4.57). Therefore, we can treat the above expression for δI1 as the

boundary of applicability of our approximation, indicating that transition from Eq. (4.42)

to (4.57) is justified not for very high temperatures, such that δI1 � 1.

Next, we evaluate the integral

I2 =

∫ ∞
−∞

Γe(t)dt = 2

∫ ∞
∆

ds
2πα∆2

v
√
s2 −∆2

exp(−s/Ec)
exp(s/T )− 1

. (4.62)

As before, we first consider the low temperature limit, T � ∆, in which we approximate

1/[exp(s/T )− 1] ' exp(−s/T ). Then the integral becomes

I2 '
2πα∆2

v
K0(∆/T ) ' 2πα∆2

v

√
πT

2∆
e−∆/T . (4.63)
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In the high temperature limit, we utilize 1/[exp(s/T )− 1] ' T/s, and we obtain

I2 =
π2αT∆

v
. (4.64)

This equation is valid for high temperature limit T � ∆, provided that our substitution of

Eq. (4.42) by (4.57) is justified, or αT � v/∆.

To sum up, we evaluated P∞ in the limits of low and moderately high temperatures.

The results are presented by Eqs. (4.43) and (4.44).

Solution of rate equations for the avoided level crossing for environment

with longitudinal coupling

For the longitudinal coupling, the transition probability P∞ in limit of low temperatures

T . ∆ can be evaluated similarly to the calculations in Appendix A. We replace Eq. (4.46),

where the integral over time t converges fast for |t| . T/v, by the following expression

P∞ = I2e
−I1 , I2 =

∫ ∞
−∞

Γe(t)dt (4.65)

I1 =

∫ ∞
0

Γl(t)dt, (4.66)

where in the last integral we take the lower limit of integration to zero and cothW/2T → 1.

In the above expression, W (t) =
√

∆2 + v2t2 + v2∆2/(∆2 + v2t2)2 '
√

∆2 + v2t2, Γe(t) =

GLZ(t)J(W (t))N(W (t))/2, Γ0 = GLZ(t)J(W (t))/2 with GLZ ' v2∆2/(v2t2 + ∆2)3 and

J(ω) = 2παω exp(−ω/Ec). Similarly, let us change the integration variable t =
√
s2 −∆2/v

such that dt = s/v
√
s2 −∆2ds. The integral I1 then reads

I1 =

∫ ∞
∆

πα∆2v

s4
√
s2 −∆2

ds =
2παv

3∆2
. (4.67)

We note that this integral converges fast and the high-energy cutoff of the environment can

be omitted. Similarly, the integral over Γe(t) can be rewritten as

I2 =

∫ ∞
∆

2πα∆2v

s4
√
s2 −∆2

ds

exp (s/T )− 1

'
∫ ∞

∆

√
2πα∆3/2v

s4
√
s−∆

exp (−s/T ) ds

' αv
√

π3

32T∆3
exp (−∆/T ) .

(4.68)
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In the high temperature limit, we follow a different approach. We assume that the

environment is at high temperature and the relaxation rates are enhanced by factor T/W (t).

In this case, we also have a fast convergence of integrals
∫

Γ0(t)dt at |t| . ∆/v and for

T � ∆, we can simplify the rate equation (4.41) to

dm

dt
= −2παT

v2∆2

W 2(t)E4(t)
m(t). (4.69)

This equation can be integrated to find m(t) with initial condition m(−∞) = 1, and used

to define P∞ = (1−m(+∞))/2:

P∞ =
1− e−I3

2
, I3 = 2παT

∫ ∞
−∞

v2∆2dt

W 2(t)E4(t)
. (4.70)

For v � ∆2, we obtain

I3 =
3π2

4

αTv

∆3
, (4.71)

arriving to Eq. (4.48).
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Chapter 5

Response to a local quench of a

system near many body

localization transition

5.1 Introduction

Localization phenomena in disordered quantum systems has over half century history start-

ing with the seminal work by Anderson [140]. A system of non-interacting electrons in

one and two dimensions exhibit localization at zero temperature as follows from the scaling

considerations[141]. The role of electron-electron interactions, however, is ambiguous. The

onset of localization, known as weak localization [142], is destroyed by electron–electron

interaction at finite temperatures [143] as the interaction results in dephasing of electron

wave functions. At the same time, electron–electron interactions give rise to the Coulomb

gap at the Fermi energy, driving the system to localization [144]. Recent development in

theory of localization in disordered system of interacting electrons was put forward in the

work of Basko, Aleiner and Altshuler [145]. This chapter proposed an infinite order per-

turbation theory in the electron–electron interaction and determines an energy threshold.

Below the threshold, the interactions between electrons cannot facilitate electron hopping
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between localized single electron states and systems remains localized. As energy of the

electron system increases above the threshold value, a large phase space of the system

allows electrons to rearrange and form an extended many-electron quantum state. This

many-electron quantum state corresponds to dephasing in a single electron language.

Along with more theoretical studies of localization in many body systems [146, 147],

experimental observation of localization remains a challenging task due to electron-phonon

interaction that effectively spoils many-particle states of the electron system in real metals.

The interest in search of systems that might exhibit many-body localization (MBL) has

shifted to ultra-cold atomic gases [148], trapped ions [149, 150] and artificial quantum

systems composed of several interacting qubits [151]. Systems that contain relatively small

number of quantum particles, such as qubit chains and trapped ions, have another advantage

as their individual elements can be controlled and measured with high precision as well

as these systems can be simulated numerically by exact diagonalization of corresponding

Hamiltonians or by approximate methods with controllable accuracy. Thus, more recent

theoretical work was focused on studies of interacting one dimensional spins chains [152,

153, 154, 155, 156, 157, 158, 159, 160, 161]. Numerical and theoretical studies [152, 153, 154,

155, 156, 157, 158, 159, 160, 161] have shown that spin systems containing more than ten

spins and involving more than a thousand of many-body eigenstates show MBL behavior

in sufficiently strong disorder.

A model that captures effects of interactions and disorder in a fermonic system is the one-

dimensional hopping Hamiltonian for spinless electrons with periodic boundary conditions

(cL+1 = c1),

H0 =
L∑
l=1

[
Jc†l+1cl + hlnl + J ′nlnl+1

]
+ h.c., (5.1)

where cl is the annihilation operator of electron on site l and nl = c†l cl − 1/2 defines the

site occupation. Parameter J describes the tunneling amplitude between neighboring sites,

J ′ defines the interaction between fermions on neighboring sites and hl is an energy of an

electron on site l. The onsite fields hi are independent random fields, uniformly distributed

in the range [−W,W ], where W is the disorder strength in the system. The Hamiltonian
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(5.1) can be rewritten as an antiferromagnetic Heisenberg spin-1/2 chain of L spins with

the periodic boundary condition ~σL+1 = ~σ1 and and random fields hl along the z direction.

H0 =
L∑
l=1

[
J(σxl σ

x
l+1 + σyl σ

y
l+1) + J ′σzl σ

z
l+1 + hlσ

z
l

]
, (5.2)

This model has been the focus of recent detailed studies [156]. The system is assumed to

be tuned at half-filling, when the number of spinless electrons is L/2 for a system with the

Hamiltonian (5.1) or Sztot =
∑

l σ
z
l = 0.

At weaker disorder, W . J , the system is in the delocalized regime and has several

characteristics reminiscent of conduction phase of a disordered metal. In particular, the

level statistics shows a distribution of level spacing similar to the Wigner-Dyson statistics

with level repulsion. At strong disorder, on the other hand, the Hamiltonian (5.1) shows

localized behavior, as the level spacings acquire a Poisson distribution with high probability

to find two levels with a small level separation, and the dynamic susceptibility vanishes.

According to previous numerical studies, the transition from the delocalized regime to the

localized regime takes place at W = Wc ' 3J .

At strong disorder, W > Wc, the evolution of the system depends on the strength of

interaction, J ′. If a system is split into two subsystems and its wave function is prepared

in a product state, the entanglement entropy quickly reaches a non-zero value and remains

constant for longer times for non-interacting system, J ′ = 0, this value of the entanglement

entropy remains independent of the system size L. When the interaction is turned on,

J ′ 6= 0, the entanglement entropy shows growth on a logarithmic scale and saturates on a

exponentially long time scale [156, 157]. The saturated value of the entanglement entropy

scales linearly with the system size.

This intriguing system is currently can be investigated numerically using exact numerical

diagonalization of the Hamiltonian for a system size L . 16. Further increase of the

system size requires significant increase in computing power and memory requirements.

At the same time, this system can be simulated using current state of quantum devices.

Recently, a system of superconducting qubits with pairwise interaction between neighbors
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was demonstrated to have long decoherence times and future efforts are focused on building

larger systems of such qubits [151]. Alternative system considered for such simulations is a

system of trapped ions [150, 149].

Regardless of a particular realization of the system for simulation, a plausible measure-

ments, such as spectroscopy or transport, will result in violation of the particle conservation

(for system (5.1)) or spin along z−axis (for system (5.2)). Previous studies have conjectured

that the nature of two phases are distinguished by the validity of eigenstate thermalization

hypothesis (ETH). Such attribution allows one to construct translational invariant Hamil-

tonians in which the onset of MBL phase transition is caused by interactions. Another

idea to examine the relation between ETH and MBL states is to drive the system out of

equilibrium and test if the phase transition is restored.

The MBL phase can be characterized by the existence of infinite number of local integrals

of motion [152, 153, 154, 155], the entanglement structure [156, 157, 158, 159, 160, 161],

as well as the spectral properties of eigenstates [147]. While these characteristics can be

measured in principle, the corresponding experiments are very burdened as they require

either a full quantum tomography or full energy spectroscopy of such systems. In this

chapter we propose an alternative strategy to identify the localization in a disordered system

of interacting spins. We first study the level spacing statistics of a Heisenberg spin chain in

random magnetic field along z axis with turning on a local transverse field. Then, we switch

to analyze the response of a pure state of this model to a sudden application of a magnetic

field perpendicular to z that acts on a single qubit. We evaluate the inverse participation

ratio of an eigenstate of unperturbed Hamiltonian in the basis of the perturbed Hamiltonian.

The participation ratio is small in the delocalized regime when the initial state overlaps with

many eigenstates of the new Hamiltonian. In the localized regime, an application of a local

perturbation does not affect majority of eigenstates and the IPR increases rapidly. Points

at which the IPR starts increasing fast form a curve in the energy vs disorder strength

plane. This curve defines the upper and lower mobility edges.

Since the IPR is not easily measurable in experiments, we also investigate correlations
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in single spin measurements before and after the onset of the local perpendicular field.

The covariance between these two measurements is small for delocalized states, but rapidly

increases for localized states, as an applied perpendicular magnetic field does not change

significantly configuration of spins far away from the perturbation. The mobility edge

obtained from the covariance is consistent with the mobility edge obtained through the

IPR, as well as through analysis of the entanglement entropy [162, 163]. Moreover, at

strong disorder in the localization regime, the response of the spins to the applied local

field decreases exponentially as a function of the distance of the monitored spin from the

perturbation. We utilize this exponential decay to evaluate the localization length as a

function of disorder and demonstrate that the localization length diverges near the mobility

edge.

5.2 Level Spacing Statistics of the MBL Hamiltonian

To be specific, consider a 1D Heisenberg spin chain with random on-site field in the z

direction with periodic boundary condition, described by the Hamiltonian

H0 =
∑
i

hiσ
(i)
z + J

∑
i

σ(i) · σ(i+1), (5.3)

where hi on each site is a random variable distributed uniformly in the interval [−W,W ]

and σ(i) is the Pauli matrix for spin at site i. Throughout the chapter, we use J as a

fundamental unit and set J = 1, we also denote eigenstates of H0 by |α〉. In fact, there

are two global conserved quantities in the system, namely the energy and the total spin in

z direction Sz =
∑

i σ
(i)
z . Previous numerical [164, 161] and theoretical [165] studies were

focused on the subspace Sz = 0, where the MBL phase develops at strong disorder with

W & 3.4.

Since the total spin along z direction is conserved, the natural approach is to truncate

the Hamiltonian at half-filling. We start by analyzing the spectral properties of H0 at

half-filling by performing exact diagonalization (ED) of the Hamiltonian for L = 14 sites.

The standard approach is to compute the ratio of consecutive level spacings, defined by
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rn = min(δn, δn+1)/max(δn, δn+1), where δn is the energy separation between adjacent

many-body eigenstates δn = En+1 − En. This quantity rn has the advantage that it is

dimensionless and independent of local density of states. Thus such a distribution permits

a transparent distinction from the band edges to the dense part of the spectrum.

It is well-known that at strong disorder, the eigenvalues are uncorrelated and therefore

the probability distribution of δn is Poisson, which corresponds to Pp(r) = 2/(1 + r)2.

On the other hand, at weak disorder, the random matrix theory as a phenomenological

approach is adopted. Here, the eigenvalues are correlated, which is highlighted by the onset

of level repulsion, P (r) → 0 at small r limit. However, it remains an open question to

understand the discrepancies of spectral properties between GOE and MBL Hamiltonian

at weak disorder in the thermodynamic limit. Therefore throughout our analysis, instead of

comparison to GOE or correspondingly Wigner-Dyson statistics, the main concern is about

the onset level repulsion. For this purpose, we extract the exponent of P (r) in the limit

r → 0:

κ = lim
r→0

d lnP (r)

d ln r
, (5.4)

as a universal measure of level repulsion.

In the top panel of Figure 5.1, we present the probability distribution P (r) in the log-log

scale . The data is obtained from ED for 104 disorder realizations with L = 14 and several

disorder strengths. At small r limit, there is a clear crossover from κ ' 1 at weak disorder

(W = 1) to κ ' 0 at strong disorder (W = 30). In between the two limits, the fractional

value of κ in [0, 1] is attributed to mixing between correlated and uncorrelated states. In the

inset, the same set of data of P (r) is plotted in linear to show the decreasing of the average

value of r with increasing W . As discussed in Ref. [147], 〈r〉 grows smoothly from 0.38 for

Poisson ensemble to 0.54 for GOE as a resemblance to the weak disorder Hamiltonian. Our

numerical result agrees with this findings. In the bottom panel, we plot the dependence

of κ as functions of W for L = 10, 12 and 14. For all three curves, the exponent κ drops

from unity at weak disorder to zero at strong disorder. However, in contrast to the study of
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Figure 5.1: Level spacing statistics of the static Hamiltonian for 3 typical values of W =
0.3, 4, 30. Results are obtained with L = 14 spins, and are averaged over 104 realizations.
The corresponding bare fittings with GSP distribution are also shown. In the strong disorder
regime, the GSP distribution reduces to the well-known result with Poisson distribution. In
contrast, at weak disorder, it remains unclear whether Wigner-Dyson, GSP or even more
complicated distribution provides a correct result. Inset: the same set of data but plotted
in log-log scale. Instead of the overall distribution of r, the slope of the linear dependence
at small r limit is another method to obtain exponent α.

dynamic polarization in Ref. [164], in the critical regime, the curves with different system

size are parallel other than crossing to each other.

5.3 Level Spacing Statistics of the Quenched Hamiltonian

Then, we study the case when Hamiltonian (5.3) suddenly acquires additional local pertur-

bation breaking Sz conservation law. In particular, the new Hamiltonian is H̃ = H0 + V ,

where V = fσ
(i=0)
x , see Figure 5.2. As noted before, the total spin projection Sz =

∑
i σ

(i)
z

is a good quantum number for H0, therefore the perturbation term breaks the conserva-

tion of Sz. Quite generally, when the eigenstates are not correlated, the level spacings are
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independently distributed upon varying external parameter(s). On the other hand, when

the perturbation is turned on, the perturbed eigenstates acquires components set by the

matrix elements of the perturbation term, divided by the differences in energies. In this

manner, the level spacing statistics is no longer independent. One can check the statistics

of the new eigenvalues of the perturbed Hamiltonian, similar as the procedure in the pre-

vious section. In our numerics, in order to evidence the spectral properties of the entire

spectrum in which all families of total Sz is included, we first examine the distribution of

the difference in indexes for states in the Sz = 0 sector.

J

hiz

x

y

i =
L

2
− 1

i = L − 1

i = 0

i = 1

f

h0

Figure 5.2: Schematic of the one-dimensional spin-1/2 chain with periodic boundary
condition. Along the chain, each spin is subject to a random onsite field hi along z direction
and the spins are coupled by nearest neighbor Heisenberg interactions with strength J . At
time t0 when the local quench is turned on, a transverse magnetic field f is applied to one
of the spin, labeled by i0.

Figure 5.3 shows the distribution of ∆index for both ergodic and localized regime.

Here we find for the ergodic regime, there is an interesting repulsion of states with the

same total spin. In other words, two adjacent eigenvalues are much more likely from two

different families of Sz, rather than from the same value. Therefore, one can expect that

the distribution of r for the entire spectrum are mainly dominated by the states with

different Sz. States that are far apart in energy are far apart in the phase space as well,

but the reverse is not true. Therefore in the ergodic regime, states with the same Sz are
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Figure 5.3: The distribution of ∆index for the Sz = 0 sector of the spectrum in (a) the
ergodic regime, W = 1, or (b) the localized regime, W = 10. Data is obtained for L = 12
with 100 disorder realizations. Insets: the pattern of states labeled by different Sz in the
middle of the band for one arbitrary disorder realization. Different markers correspond to
different Sz. In the ergodic regime, states with the same Sz are more likely separated by at
least one state with a different Sz, whereas for the localized regime, states with the same
Sz more likely appear in adjacent pairs.

not grouped together. On the other hand, for the localized regime, the distribution is

monotonic, indicating that states different Sz more likely appear in adjacent pairs. These

differences in the distribution of ∆index, however, resulting both Poisson-like distribution

for either weak or strong disorder. In the former case, selection rules between states with

different Sz are vulnerable to the weak perturbation, whereas for the latter case, both intra-

and inter-couplings between states within different families are exponential small.

To reveal the non-trivial deviations in the distribution of r, we turn on the perturbation

fσ
(1)
x . To this end, two eigenstates from different families of Sz are perturbed by the finite

matrix elements given by σx. In this manner, in the phase space the boundary between

states with quantum numbers Sz are blurred. In this case, the nature of the quantum states
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can be examined without reliance on symmetry arguments or restriction of selection rules.

After that, the connectivity of between states in the phase space is a criteria of localization.

As shown in Ref. [166], for this particular spin model a tentative local conserved quantity of

the MBL states are the local spins in z-direction, dressed by their neighbors with strengths

set by the many-body localization length ξ. If ξ is comparable to the lattice spacing, local

spins are oblivious to each other, so that the two configurations are not connected in the

phase space. On the other hand, these operators become extended if the localization length

is comparable to the system size and therefore looses its meaning.

Above arguments imply that within the entire spectrum of the driven Hamiltonian for

a finite system highlights the remarkable role played by the perturbation. The role of the

perturbation to distinguish the two phases can be seen as a reminiscent of its non-local

response that forms a rearrangement of local conserved quantities. In the thermodynamic

limit, the two phases can be recognized by if there is a orthogonal catastrophe due to small

changes in the amplitude f . Unfortunately, this calculation is not permitted in the present

work due to the limitation of computational resources, and remains an open question for

future work.

In what follows, we consider the distribution function P (r) of the dimensionless param-

eter r with respect to various values of drive amplitude. As a result of increasing f , the

quantum states unveil their nature of localization/delocalization. To see this, we vary the

amplitude of the drive from f = 0 to f = 0.6J or more for each disorder realization with

fixed parameters of the static Hamiltonian for both ergodic and localized regime. For each

sample, we collect the data of r over all states and compute the histogram of r for both

cases.

As expected, at f = 0, the distribution P (r) is Poisson-like statistics with minor devia-

tions for both cases. While the external drive is turned on, the behavior of the statistics for

W = 1 and W = 10 are qualitatively different. For strong disorder, W = 10, even though

the perturbation induce a finite matrix element between states with different Sz, this effect

on level spacing statistics is minor because a considerable portion of eigenstates are still
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Figure 5.4: The probability distribution of r for (a) the ergodic regime, W = 1 and (b)
the localized regime, W = 10 with varying amplitude of perturbation f . Data is obtained
for L = 12 with 1000 disorder realizations.

being localized and thus remains uncorrelated. Consequently from the distribution function

P (r) for finite drive amplitude at small r there is no apparent level repulsion developed.

On the other hand for weak drive, W = 1, the effects of the perturbation is sensitive on

the amplitude f . As f grows, signature of level repulsion quickly reveals up to f = 0.1J ,

as shown in Figure 5.4.

Quite interestingly, the onset of level repulsion can be quantified by looking at the

following quantity “maximum distance” (MD) between cumulative distribution r, Q(r) =∫ r
0 P (r′)dr′ between Poisson and actual distribution P (r):

MD =

∫ r0

0
|Pp(r)− P (r)| dr, (5.5)

where Pp(r) = 2/(1 + r)2 is the Poisson distribution function for r and r0 is the point of

P (r) to maximize the cumulative distributions, i.e., the first intersection point of Pp(r) and

P (r). The advantage of this measure of similarity between different distribution function is
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that the data of cumulative distribution is less noisy than P (r) itself, and it is also sensitive

on the onset of level repulsion because only data in the small r limit is considered.
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Figure 5.5: Dependence of MD on the amplitude of perturbation f for weak (W = 1) and
strong (W = 10) disorder. As a measure of deviation from Poisson statistics, the MD for
the ergodic regime is sensitive on f and grows quickly to ' 0.24, while for the localized
regime MD roughly remains constant at a small value ' 0.01. Inset: The definition of MD
is given by the maximum distance between cumulative distribution functions of r between
Poisson statistics and actual statistics.

The dependence of MD on amplitude of drive has different behavior in the two phases,

as shown in Figure 5.5. In our numerics, the cumulative distribution of Q(r) is obtained

by the labels of the sorted data of r. In this manner, even for 100 disorder realizations,

Q(r) is smooth enough for our computation purposes. For weak disorder, the MD quick

saturates to ' 0.24 at f ' 0.4J , while for strong disorder MD remains constant at a small

value ' 0.01.

It is worth pointing out that our numerical result agrees with the previous studies on the

average of r, namely 〈r〉 ' 0.39 for Poisson distribution and 〈r〉 ' 0.53 for GOE. However,

the reason why we use MD instead of 〈r〉 as a measure to distinguish the distributions

is that the existence of universality for the entire spectrum at weak disorder is specious.

Hence we are only simply interested in the deviation of the distribution from the Poisson

one.
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5.4 Long Time Dynamics of Local Quench

In this section we consider a system that was originally prepared as a pure state |ψ〉 in the

subspace of states with Sz|ψ〉 = 0 and calculate its response over a long time after the onset

of V = fσ
(i=0)
x :

¯〈O〉 = lim
T→∞

1

T

∫ T

0
Ô(t)dt = Trρ(t)Ô = Trρ

|ψ〉
DEÔ, (5.6)

where ρ(t) = exp (−iHt)ρ(0) exp (iHt) is the density matrix and ρ
|ψ〉
DE = ρ(t) is the time-

averaged density matrix initialized in a pure state, ρ(0) = |ψ〉〈ψ|,

ρ
|ψ〉
DE =

∑
α

Pα̃ |〈α̃|ψ〉|2 , Pα̃ = |α̃〉〈α̃| (5.7)

and Pα̃ is the projection operator on new eigenstates |α̃〉 of H̃. The off-diagonal elements

of ρ
|ψ〉
DE are averaged to zero and this density matrix is equivalent to a diagonal ensemble

[167] where the off-diagonal elements are absent due to dephasing.

Below we concentrate on initial states |ψ〉 that coincide with eigenstates of the initial

HamiltonianH0 and have Sz = 0. We denote these states by |α0〉, where the level index α0 =

1, . . . N(L, 0) runs over eigenstates of H0 ordered with increasing values of eigenenergies,

N(L, S) = (2L)!/[(2L−S)!(2L+S)!].

We demonstrate that the Hamiltonian with local perturbation, H̃, still exhibits the MLB

phase. The first indicator of many-body localization we study is the inverse participation

ratio (IPR), defined as

IPRα0 =

2L∑
α̃=1

|〈α0|α̃〉|4 = Trρ̄
|α0〉
DE Pα0 , (5.8)

where Pα0 = |α0〉〈α0|. The IPR is a measure of portion of the Hilbert space explored by

the system after the perturbation V is turned on [168]. At weak disorder, the motion of the

system is ergodic and the state travels over a large fraction of the Hilbert space and results

in minimal values of the IPR about ∼ 2−L. On the other hand, in the strong disorder limit,

the ergoicity breaks down and the many-body wavefunction evolves within a small section

of the Hilbert space bounded by the local integral of motion [152, 165, 153]
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For both limits, the distribution of log2 IPRα0 is highly concentrated and transition

between these two limits can serve as an indicator of the mobility edge that separates

localized and delocalized many body states. We note that the fluctuations of IPR are

enhanced substantially near the mobility edge. Indeed, when |α〉 is chosen to be close

enough to the mobility edge, the excitations is a combination of delocalized and localized

states. The compromise between them gives rise to diverging standard deviations in IPR.

To demonstrate the behavior described above, we perform exact diagonalization for

L = 12 spins and N = 2000 realizations to obtain all the eigenstates |α〉s for H0 and

|α̃〉s for H to evaluate ρDE. If the system is initialized with an eigenstate |α0〉 of H0 with

Sz = 0, and as long as the quench is fast enough the system will be in the eigenstate |α0〉.

We then evaluate both |α0〉 and |α̃〉 that define the corresponding density matrix in diagonal

ensemble as ρ
|α0〉
DE .

The result of this analysis is presented in Figure 5.6. The average IPR as a function

of disorder strength W and ε is plotted in Figure 5.6(a). The averaged value of IPR(W, ε)

with respect to disorder realizations clear reveals the existence of a mobility edge that

distinguishes delocalized states to localized states, here ε = α0/N(L, 0) position of eigenstate

within the energy band. To justify the nature of the mobility edge, we plot the histogram

of the distribution of log2 IPR in Figure 5.6(b). In the weak and strong disorder limit,

the distributions of log2 IPR are highly concentrated at somewhere ∝ L and 0 respectively.

However, log2 IPR in the critical region is broadly distributed between the two limits with

its standard deviation proportional to L and the standard deviation eventually diverges

at the mobility edge in the thermodynamic limit. In fact, these critical fluctuations is a

reminiscent of the many-body mobility edge which separates the two distinct phases. For

this reason, we can use this approach to identify the phase boundary of an MBL transition.

We note that similar divergence has been found in the fluctuations of the entanglement

entropy [161].

In the lower panels Figure 5.6(c), we make two vertical cuts at fixed disorder strengths

W = 3, 7 on the phase diagram. For moderate disorder strength W = 3 and in the presence
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Figure 5.6: (a) Averaged participation ratio over disorder realizations as functions of
disorder strength W and energy density ε for a system of L = 12 and 1000 realizations.
Marked by white color, the many body mobility edge encloses a region of delocalized states
with IPR ∼ 2−L. The horizontal and vertical cut indicates the parameters for panel (c)
and (d). (b) The histogram of log2 IPR in the middle of the band for W = 0.5, 4 and 10.
The distributions are concentrated for weak and strong disorder, but highly fluctuating in
the critical region. (c) The IPR at fixed disorder W = 3, for which case the states are
delocalized in the middle of the band but localized in the edges, and W = 7 where all states
are localized. (d) The IPR and its standard deviation for fixed energy density ε = 0.5.
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of mobility edge, the PR reaches ∼ 0.4 in both edges in an unsymmetrical manner, but it

sharply drops to ∼ 10−2 and forms a flat basin in the middle of the band. At strong disorder

W = 7, all states are localized and this can be justified by the large value of IPR throughout

the band & 0.4, indicating that the mobility edge is closed. When we fix the energy density

at the middle of the band, ε = 0.5, we observe the stand deviation can identify that the

mobility edge closes at the critical value Wc ' 3.5, accompanied by a kink in the standard

deviation of IPR.

While the above approach to detect mobility edge through IPR is suitable for numerical

calculations, it is hardly realized experimentally. For experimental detection of the mobility

edge, we propose a different approach. We study the dynamics of single spins and investigate

the correlation of the their expectation values 〈σ(i)
z 〉 before and after a local perturbation.

Our motivation is based on the previous observations [169] that in the MBL regime the

ETH is violated and information about the local observables at sufficiently long times can

be traced back to its initial condition resulting in correlations between spin states before

and after perturbation V is turned on. Otherwise, in the delocalized regime the motion is

ergodic and all correlations with initial conditions are lost.

For an interacting system, the observables set by a finite degrees of freedom can be

evaluated by the reduced density matrices in which the off-diagonal elements are essentially

zero due to dephasing even if the system starts in some arbitrary pure state. One can mea-

sure the local observables in this steady state, and then apply the local perturbation to the

Hamiltonian so that the system approaches a new quasistationary state in the eigenbasis

of the perturbed Hamiltonian. In this sense, time averaged expectation values of a local

operator are characterized by a diagonal ensemble ρDE. In this case, a good description

of response for arbitrary initial state can be obtained by analyzing correlations between

expectation P iα0
of a local operator for an unperturbed system with Hamiltonian H0 initial-

ized in an eigenstate |α0〉 and its expectation value after system is perturbed, Qiα0
. Here

we introduced notations for the expectation values of 〈σ(i)
z 〉 of monitored spin i and initial

system state |α0〉 as P iα0
and Qiα0

for a system before and after the local perturbation at
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Figure 5.7: Scatter plot of (P i|α〉, Q
i
|α〉) for (a) the localized regime with W = 10 and (b)

the ergodic regime with W = 2.5 for states |α〉 in the middle of the band. Data obtained
with L = 12 and N = 1000. The corresponding probability distribution of Pi and Qi for
(c) the localized regime in which the single spin measurement with and without a quench
coincides with each other and for the (d) ergodic regime the disparity in the distribution
with and without the quench indicates a thermalization.

site i′ = 0 is turned on. These quantities are given by

P iα0
=〈α0|σ(i)

z |α0〉, (5.9a)

Qiα0
=
∑
α̃

|〈α0|α̃〉|2〈α̃|σ(i)
z |α̃〉 = Tr

{
ρ̄
|α0〉
DE σ

(i)
z

}
. (5.9b)

Running over all eigenstates |α0〉 in the Sz = 0 sector, we collect P iα0
and Qiα0

for a

number of disorder realizations. In Figure (5.7), we present the scatter plot for pairs of

(P iα0
, Qiα0

) of spin i = 0 (directly perturbed spin) and i = L/2− 1 (the farthest spin from

the local perturbation) in the middle of the band, α0 ' N(L, 0)/2 for weak (W = 2.5) and

strong (W = 10) disorder. In the localized phase at strong disorder, the eigenstates are

product states consisting of physical spins |α〉 =
⊗

i |↓ (↑)〉i and therefore the local spin
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projection is good quantum number P iα0
' ±1.

In this sense, all eigenstates are interchangeable by disorder realizations, and thereby all

states are localized at infinite temperature. Provided that the quench intensity f is small

compared to the local onsite field, the eigenstate of the quenched Hamiltonian is perturbed

to the order of O(f/W ), resulting in an almost unchanged eigenstate with Q|ψ〉 ' ±1.

On the scatter plot, each pair of (P i|α〉, Q
i
|α〉) is distributed along the line P i|α〉 = Qi|α〉,

indicating the two measurements being strongly correlated. In the delocalized regime at

weak disorder (W = 2.5), the eigenstate is a linear combination of a large number of

product states, and therefore local spin projection is not good quantum number. The

result of two sets of measurement form a elliptic cloud. This observation is an indicator

of thermalization: upon thermalization, the distribution of single spin measurement for

all possible spin configurations is centered at P (Q) = 0 and narrowed down because the

memory of the initial condition is lost. In Figure , we plot the distribution of P and Q for the

both strong and weak disorders. Remarkably, the distributions are almost indistinguishable

for W = 10 and the contrast between the distribution in the ergodic regime W = 2.5 is

apparent due to the re-equilibration of the system after the local quench.

The correlation between P|ψ〉 and Q|ψ〉 can be characterized by the covariance: Ci|α〉 =

(P i|α〉 − P i|α〉) · (Qi|α〉 −Qi|α〉) = P i|α〉Q
i
|α〉, where Qi|α〉 and Qi|α〉 are averaged to zero with

respect to disorder realizations. As an indicator of ergodicity breaking, the covariance is

used to mapped out the phase diagram as a function W and ε, as shown in Figure 5.8. In

the ergodic regime the averaged value C approaches to 0 and eventually saturates to 1 deep

in the localized regime where both Q and P takes the same value ±1. Similar to the IPR,

this measure C can reveal the many-body mobility edge, marked in white.

With decreasing the spatial separation between the quenched spin and the monitored

spin, we observe a larger deviation from the ideal case P i|α〉 = Qi|α〉 because the quenched

spin can be thermalized locally. At meanwhile, in the ergodic regime, the distribution of

(P i|α〉, Q
i
|α〉) is insensitive to the spatial separations between quenched spin and monitored

spin, suggesting that the response to the quench is uniform along the system. Indeed, the
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Figure 5.8: (a) Measure Ci|α〉 = P i|α〉Q
i
|α〉 as functions of disorder strength W and energy

density ε for L = 12 and N = 1000. The many-body mobility edge is marked in white. (b)
“Euclidean distance” Di as a function of distance between monitored spin and quenched
spin (solid lines), and the corresponding fitting curve, Eq. (5.11) (dashed lines). (c) The
many-body localization length ξ extracted from D(i) as a function of disorder strength. The
dashed line corresponds to the ξ = 1 to show that the at sufficiently strong disorder the
system is localized in the atomic limit.

ensemble P i|α〉 and Qi|α〉) with respect to disorder realizations can be used to evaluate the

many-body localization length. Intuitively the localization length is a scale below which

spin texture form localized clusters and thereby the ergodicity is broken. Essentially deep in

the localized regime, localization occurs in the atomic limit with localization length ξ = 1.

With decreasing disorder, the localization length grows and once the scale is beyond the

system size, the entire system cannot be decomposed into independent clusters and the

ergodicity reoccurs. Therefore, the localization length is an indicator of the onset of MBL

regime that can be determined by the spatial sensitivity of the response to the local quench.

The deviation between the measurement P i|α〉 and Qi|α〉 averaged over disorder realizations
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is given by “Euclidean distance”:

Di
|α〉 =

√
(P i|α〉 −Qi|α〉)2. (5.10)

We argue that in the localized regime Di
|α〉 is an exponentially decaying function with

respect to the distance between spin i to the quenched spin:

Di
|α〉/D

0
|α〉 = e−i/ξ + e−|L−i|/ξ − e−L/ξ, (5.11)

where ξ is the localization length. The first two exponential terms in Eq. (5.11) arise

from the periodic boundary condition, and the second term is a normalization constant.

Therefore, we fit the undetermined parameter ξ for each disorder strength and for all spin

indices i in Di
|α〉. In Figure 5.8(b) we present the ratio Di/D0 as a function of spatial

separation i for several different disorder strengths W = 3, 5, 10 in the middle of the band.

In Figure 5.8(c), we illustrate the extracted localization length ξ from the scaling form of

Di. Due to the finite size of the system, at the critical disorder Wc ' 3.3 the localization

length ξ does not diverge but remains a finite value larger than the system size, consistent

with our argument above. On the other hand, ξ saturates to 1 deep in the localization

regime, indicating that the localization effect occurs at atomic limit.

5.5 Summary

To summarize, we showed that as a result of local quench, the absence of thermalization

can be characterized by the inverse participation ratio of the eigenstates of the quenched

Hamiltonian into the unquenched eigenbasis in a many-body localized system. In partic-

ular, the IPR has critical fluctuations at the transition with disorder realizations in the

thermodynamic limit and becomes more robust deep in both phases. Meanwhile, our anal-

ysis of the single spin measurements in the presence of quench provides a concrete example

to perform experiment for better understanding of many-body localization length. In this

scenario, performing measurements of z component of physical spins, other than more com-

plicated measurement of many-particle entanglement or pseudo-spins is sufficient, even for
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a quantum system with short T2, as long as the relaxation time T1 is long enough such that

the diagonal ensemble is a good approximation of transient quantum state, a regime where

quantum simulation of many-body system is currently accessible. Our analysis demon-

strated that for a realistic system that supports many-body localization, simple single spin

measurement can reveal the indispensable characteristics, complementary to more sophis-

ticated routes to check the growth of entanglement entropy [156, 157] or quantum revivals

[170] under time revolution.
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Chapter 6

Many-body localization in a

quantum system subject to a local

periodic drive

6.1 Introduction

In practice, one simplest scenario to study the dynamics of a quantum system is to apply a

local harmonic drive to one of the spins. At long times after the drive is turned on, states

that obey/disobey ETH would predict different expectation values for observables, whereas

the former is insensitive to the specifics of the initial state and coincides with the prophecy

of a thermal state at infinite temperature. This leads us to propose the description of the

thermodynamics in terms of the time-averaged state, not of thermal ensembles.

The purpose of this chapter is to continue our discussion about the dynamical aspects

of a MBL system, with an experimental accessible method to observe MBL phases by using

a local harmonic drive on one of the spin. The Hamiltonian we consider is the following:

H = H0 + f [cos(ωt)σ(1)
x + sin(ωt)σ(1)

y ], (6.1)

where f is the amplitude of the external drive and H0 is the static MBL Hamiltonian.
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Besides, one by-product of the formalism is that one can construct the long-time av-

eraged density matrix using the Floquet basis. On one hand, such density matrix can be

used to calculate the thermodynamic quantities that distinguish the two phases; on the

other hand, by examining of the thermodynamic quantities with different initial conditions

we conjecture there is a mobility edge in the spectrum of the static static Hamiltonian

beyond which the states doe not obey ETH even for a less disordered Hamiltonian. The

origin of such mobility edge is due to the finite size of the system and disappears in the

thermodynamic limit.

The chapter is structure as follows: We first derive a formalism that can be used to

analyze the AC driving scenario for the model, 6.1, within Floquet theory. In particular,

we study the response of the quantum system by evaluating the average quantum infidelity

between the evolution of the system with and without an AC drive. Next, we use the

formalism to evaluate the thermodynamic characteristics at long times, which can reveal

the validity or breakdown of ETH in different phases.

6.2 Evolution in the Floquet Representation

Now we analyze the response of a quantum system Eq. (5.2) in the presence of a harmonic

drive, Eq. (6.1) with period τ = 2π/ω. For a periodic drive, the evolution operator U(t =

nτ) after n periods can be represented as the nth power of the Floquet operator Uf (τ)

per one period τ : U(t = nτ) = Unf . The Floquet operator is unitary and has a set of

eigenvectors, that form a Floquet basis:

Uf |α〉 = e−iΩαt|α〉, (6.2)

where we use greek indices to numerate Floquet basis, α = 1, . . . , 2L, and Ωα are quasiener-

gies. After n periods of the drive, the system evolves from its initial state |ψ0〉 to the state

|ψ(nτ)〉 = Unf |ψ0〉, Uf = e−iΩαt|α〉〈α| (6.3)

with Uf written in the Floquet basis.
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To evaluate the Floquet operator, we notice that the transformation

U1(t) = exp

(
− iωt

2

L∑
l=1

σ(l)
z

)
(6.4)

removes explicit time-dependence in the full Hamiltonian of the system, Eq. (6.1):

H̃ = U1HU
†
1 − iU1U̇

†
1 = H̃0 +

f

2
σ(1)
x , H̃0 = H0 −

∑
l

ω

2
σ(l)
z . (6.5)

After this transformation, the Floquet operator can be defined as an exponent of time-

independent Hermitian operator

Uf = exp(−iH̃τ)U1(τ), (6.6)

where U1(τ) = (−1)L1, and 1 is the identity matrix. Using Eq. (6.6), we find that the

Floquet basis is simply given by the eigenstates of the transformed Hamiltonian (6.5),

HF = H̃.

The effect of a harmonic drive on a state of the system can be defined the displacement

of this state |ψf (τ)〉 after one period of the drive from the free evolution over the period

τ of the same state |ψ0(τ)〉. For an arbitrary initial state |ψi〉, the state after one period

is |ψf (τ)〉 = Uf |ψi〉 for a harmonic drive with amplitude f , and |ψ0(τ)〉 = U0|ψi〉, where

U0 = Uf→0 = exp(−iH0τ). The corresponding distance between the two states in the

Fubini-Study metric is simply determined by the overlap of these two states:

Fψi = |〈ψ0(τ)|ψf (τ)〉|2 = |〈ψi|U|ψi〉|2 , (6.7)

where we introduced a unitary operator

U = U †0Uf (6.8)

representing a mismatch between the evolution of the system with and without drive.

We characterize a typical response of an arbitrary state to the drive over a single period

in terms of the uniform average over initial states |ψi〉 of the overlap Fψi . The corresponding

average, known as a quantum fidelity between two unitary operations, is completely defined

in terms of operator U as [171]

F̄ =
M + |Tr{U}|2
M(M + 1)

(6.9)
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and M = 2L is the dimensionality of the Hilbert space.

The matrix element of U taken between the energy eigenstate |i〉 of the static Hamilto-

nian H0 and the Floquet state |α〉 has the form

〈i|U|α〉 = Aαi exp(−i(Ωα − Ei)τ), Aαi = 〈i|α〉, (6.10)

where Aαi is the overlap amplitudes between energy eigenstates of the static Hamiltonian

and the Floquet states. This relation leads to the matrix elements of U in the energy

eigenstate basis of H0:

Uij = 〈i|U|j〉 =
∑
α

exp(−i(Ωα − Ei)τ)(Aαi )∗Aαj . (6.11)

According to this equation, the evolution of the system reduces to a search of the compo-

nents Aαi of the Floquet states in the basis of the static Hamiltonian, and the corresponding

eigenenergies and quasi energies. Below we present numerical evaluation of these matrix

elements and argue that the statistical properties Aαi change across the many body localiza-

tion transition. We also show later in this chapter that in the long time limit, the Floquet

amplitudes define thermodynamic characteristics of the system such as absorbed energy

and the change in entropy and, consequently, these characteristics also change across the

transition.

For quantitative analysis of the effect of the drive on the system, we consider a Hermitian

matrix

T = i
1− U
1 + U (6.12)

instead of the unitary matrix U . A simple choice of the norm as ∝ Tr
{
T 2
}

can be inter-

preted as the power of the drive applied to the system. This is especially meaningful in

the limit of weak drive when T is linear in the drive amplitude f . In its eigenvector basis,

operator U is presented by a diagonal matrix with elements eiδa (a = 1, . . . ,M) and T is

also diagonal with diagonal elements [T ]aa = tan(δ/2). The norm of T is

Tr
{
T 2
}

=

M∑
a=1

tan2 δa
2

(6.13)
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and Tr
{
T 2
}
→∞ when one of the scattering phases reaches the unitary limit, δa = π, so

that corresponding eigenvector |a〉 of U completely flips just after a single period of the drive,

U|a〉 = −|a〉. This strong effect of the system states does not necessarily reduce fidelity F̄ ,

however, the system rearrangement over energy states |i〉 of the stationary Hamiltonian H0

per cycle of the drive becomes significant if 〈i|a〉 6= 0 for many states |i〉.

Utilizing Eq. (6.10) and (6.12), we can write the system of linear equations for the

Floquet amplitudes Aαi :

∑
j

〈i|tan((Ωα − Ei)τ/2) + T
1− iT |j〉Aαj = 0. (6.14)

This equation can be reduced to a hopping problem[172] of a particle with on-site energy

tan((Ωα − Ei)τ/2) and hopping amplitude T between sites in the Hilbert space:[
tan

(Ωα − Ei)τ
2

+ T
]
|χα〉 = 0, (6.15)

where |χα〉 =
∑

j(1 − iT )−1|j〉Aαj is an eigenstate at zero energy existing for a set of

quasienergies Ωα of the Floquet operator Uf . Equation (6.14) is in particular useful in the

limit of weak drive when it establishes a simple relation between the Floquet amplitudes

Aαi and hopping amplitudes Tij .

6.3 Relation between Floquet amplitudes and hopping

matrix

In this subsection, we consider in detail the limit of weak external drive, taking into account

only the linear in drive amplitude f terms in the hopping matrix T and the unitary matrix

U . First, we expand the operator U , defined by Eq. (6.8), to the lowest order in f , and

obtain the following expression for the hopping matrix:

T = − ifτ
2

×
(
σ(1)
x + iτ [H̃0, σ

(1)
x ] +

(iτ)2

2!
[H̃0, [H̃0, σ

(1)
x ]] + . . .

)
.

(6.16)
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This expression indicates that the matrix elements of Tij can be easily written in the eigen-

state basis of Hamiltonian H̃0 in terms of 〈i|σ(1)
x |j〉. Here we present an alternative deriva-

tion of Tij . We notice that for f = 0, the Floquet states |α〉 and eigenvectors of stationary

Hamiltonian H̃0 as well as quasienergies Ωα and energies Ẽi coincide,

〈i|αf=0〉 = δiα, Ωα = Ẽα(mod 2π/τ). (6.17)

We consider Eq. (6.14) up to the first order in T and apply Eq. (6.17) to find a relation

between off diagonal elements of matrices Aj 6=ii and Tji written in the eigenstate basis:

Tij = iAα→ji sin
π(Ẽi − Ẽj)

ω
eiπ(Ẽi−Ẽj)/ω. (6.18)

To the lowest order in f , overlap between Floquet states and eigenstates of H̃0 can be eval-

uated from the first order perturbation theory as Aα→ji 6=j = (f/2)〈i|σ(1)
x |j〉/(Ẽi − Ẽj). Note

that while the difference between eigenenergies Ei of H0 and Ẽi of H̃0 is not important in

Eq. (6.18), this difference is important in the denominator of Aα→ji 6=j , that represents transi-

tion between states with different values of total spin along the z−axis, due to absorption

or emission of energy ~ω. We obtain the following expression for matrix elements of the

hopping matrix in the basis of eigenstates of H0 that coincides with eigenstates of H̃0:

Tij =
f

2

〈i|σ(1)
x |j〉

Ẽi − Ẽj
sin

π(Ẽi − Ẽj)
ω

eiπ(Ẽi−Ẽj)/ω. (6.19)

At weak drive, U = 1 + 2iT − 2T 2 + . . . and we obtain an expression for the average

fidelity

F̄ =
M +M2 − 4MTrT 2

M(M + 1)
' 1− 4p, p =

Tr
{
T 2
}

M + 1
, (6.20)

and the average displacement of the states per period of the drive, or infidelity, is propor-

tional to the dimensionless power p of the drive, 1 − F̄ = 4p, provided that p � 1. In the

above expression we disregarded terms that contain (Tr {T })2 since Tr {T } vanishes to the

linear order in f , cf. Eq. (6.18)

We apply Eq. (6.18) to argue that the infidelity 1 − F̄ is a universal, M−independent

measure of the effect of a harmonic drive on the system in either ergodic or MBL regimes.
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We write

p ≤ 1

M

∑
i

∑
α 6=i
|Aαi |2 =

∑
i P

(i)
esc

M
= P

(i)
esc, (6.21)

where P
(i)
esc is the escape probability P

(i)
esc = 1 − |Aii|2 of the system from initial state |i〉 at

long drive time, averaged over states |i〉.

We can provide more accurate estimate of infidelity ε̄ by applying Eq. (6.19):

p ' π2f2

4ω2M

∑
i 6=j

sin2(π(Ei − Ej)/ω)

[π(Ẽi − Ẽj)/ω]2

∣∣∣〈i|σ(1)
x |j〉

∣∣∣2 . (6.22)

First, we evaluate the average value of p over realizations of the random magnetic field for

ergodic regime of weak disorder W . J . At frequencies of the drive exceeding the mean

level spacing, ω & (Ei − Ej), we omit the energy dependent factor and estimate p as

p ∝ π2f2

4ω2
. (6.23)

Here we assumed that a typical matrix element for i 6= j can be estimated as∑
i 6=j

∣∣∣〈i|σ(1)
x |j〉

∣∣∣2 '∑
i,j

∣∣∣〈i|σ(1)
x |j〉

∣∣∣2 = M. (6.24)

In the limit of strong disorder, the distribution of p is more complicated. As we demon-

strate below from numerical analysis, the distribution becomes extremely wide and its aver-

age value actually looses its meaning. More meaningful is the distribution of the logarithm

of p, lg(p). The logarithmic distribution is a common characteristic of strongly disordered,

glassy systems that exhibit a wide hierarchy of scales. In our case, the broad distribution is

formed due to rival realizations of the random magnetic field. For some realizations the spin

states are strongly localized and effectively decoupled from the rest of the system, for other

realizations the system develops a resonance between spins in the chain and may result in

the dimensionless power exceeding the average power in the ergodic regime, cf. Eq. (6.23).

The contribution from configurations representing localized spins dominates for average

value of lg(p), and results in monotonically decreasing value of ensemble averaged lg(p). For

localized states in case when the local magnetic field for a driven spin is strong, |h1| � J ,

the eigenstates |i〉 are factorized and we can reduce the evaluation of p in Eq. (6.22) as

p ' f2

4M

M

2

sin2(πh1/ω)

h2
1

∣∣∣〈↓ |σ(1)
x |↑〉

∣∣∣2 . (6.25)
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Assuming that the localized configurations give the main contribution to lg(p), we integrate

lg(p) given by Eq. (6.25) over uniformly distributed h1 and obtain

lg(p) ∝ −2 lg
W

J
. (6.26)

We note that our estimates for p in the limit of weak or strong disorder are independent on

the dimensionality of the M = 2L, see Eqs. (6.23) and (6.25).

6.4 Statistical properties of the hopping matrix

In this section, we numerically evaluate statistical properties of the strength p ∝ Tr
{
T 2
}

of the hopping matrix. We evaluate matrix T directly from Eq. (6.12), by computing the

matrix exponents for evolution matrices U0 and Uf , and therefore, our computation is not

restricted to the weak drive limit considered in the previous section. For f � J , we obtained

the bilinear response of p ∝ f2 and recover all relations between the Floquet amplitudes

Aαi , quasienergies and matrix elements of σ
(1)
x between unperturbed eigenstates of H0 that

we discussed in the previous section. We also observed that the bilinear regime is satisfied

for average value of p or lg(p) for f . J , and chose f = J/
√

10 for analysis of p at different

values of disorder strength W . This choice of f allows us to compare some conclusions from

the previous section with the numerical results, and at the same time demonstrates that

the properties of p remain similar at moderate drive amplitudes, f ' J . At stronger drive,

multi photon processes become important and their analysis deserve a separate discussion.

First, we study the probability distributions of P (p) of the drive strength p over ensemble

realizations of the random field {hi} defined by a constant distribution of local fields within

the interval |hi| ≤W . Because our numerical analysis required evolution of matrix exponent

and inverting matrices, to reach a large number of realizations N = 104, we took the

system size L = 10. We present the normalized histogram in the top panel of Figure 6.1

for weak and moderate strength of disorder. As the strength of disorder increases, the

distribution broadens and shifts to smaller values of p. However, while more realizations

have smaller value of p, there are some realizations at moderate disorder that exhibit p
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Figure 6.1: Distribution of dimensionless power p, Eq. (6.20), over N = 104 realizations
of the random magnetic field {hi} for a system with L = 10 spins. The top panel shows
the distribution of the power itself for W/J = 0.3 (blue long-dashed line) and W/J = 3
(green short-dashed line), while the bottom panel shows the distribution of lg p for all three
values of disorder for three values of the disorder strength W/J = 0.3, 3 and 30 (red solid
line). We scaled the distribution curves for W/J = 3 by factor two and for W/J = 30 by
factor six. The inset shows the logarithm of the distribution of lg p for W/J = 30 and the
dash-dotted line represents the slop ∼ p−1/2. The drive amplitude f = J/

√
10 and ω = J .



134

exceeding maximal values of p in weakly disordered system, see the tail to the right in the

top panel of Figure 6.1. This behavior becomes even more pronounced at strong disorder,

W = 30J , when the distribution collapses to extremely small values of p, but its tail extends

to larger values of p than the values found for weak and moderate disorder.

We characterize the distribution in the strong disorder limit by lg(p). In such logarithmic

presentation, we can compare all three cases of weak, moderate and strong disorder on the

same plot, as shown in the bottom panel of Figure 6.1. At strong disorder, distribution

of lg(p) shows that in most realizations, the drive power p is significantly reduced below

its values for the ergodic regime. at the same time, we find the tail that extends to larger

values of p, which are not realized at weaker disorder. In these rear events, p > 1 and our

bilinear analysis is not applicable, in particular, relation (6.20) between the infidelity 1− F̄

and the dimensionless power is no longer valid, even though p has no upper bound. For

realizations with large values of p, the system exhibits occasional resonances between spins

in the chain that lead to strong coupling of the drive to the spin system. In this case, the

spin system subject to a drive strongly deviates from its free evolution.

We plot the logarithm of the distribution of lg(p) in the limit of strong disorder in

the inset in Figure 6.1 and observe that the right slope is consistent with ∼ −(1/2) lg(p).

This behavior implies that the probability distribution function for p decays as a power

law ∝ p−3/2, and we conclude that the distribution of p is Pareto type. Such slow power

law decrease makes the cummulants ill-defined, including the expectation value, unless the

power law terminates at larger p. According to Figure 6.1, the power law terminates at

sufficiently large p, making the expectation value of p over disorder sensitive to the rare large

realizations of p. This sensitivity to rear fluctuations of p does not allow us to numerically

study average value of p at strong disorder, as even for a very large number of samples,

N & 104 for smaller systems, L = 6, the average value of p was not converging well.

To characterize the effect of disorder strength on the dimensionless power, we numeri-

cally evaluate lg(p) that represents the expectation value of lg(p). The result is presented in

Figure 6.2. We observe that lg(p) does not strongly depend on the system size L, as points
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for L = 8, 10 and 12 are aligned along the same curve. At weak disorder, lg(p) changes

weakly with disorder strength, as demonstrated by the nearly flat values of lg(p) for disorder

strength corresponding to the ergodic regime with W . 3J . At stronger disorder, in the

localization regime W & 3J , lg(p) decreases linearly in ∼ −2 lg(W/J), in agreement with

estimate (6.26).

Figure 6.2: Average value of the logarithm of dimensionless power, lg(p), as a function
of disorder strength W for a spin system of size L = 8 (circles), L = 10 (diamonds) and
L = 12 (triangles). The average is evaluated over N = 103 samples for L = 8, 10, and for
N = 200 for L = 12. The drive amplitude f = J/

√
10 and ω = J .

As shown in Refs.[162, 163], with extensive numerical simulations the phase diagram

of delocalization/localization can be visualized by quantities of interests as functions of

disorder strength W with energy resolutions; in particular, the many-body mobility edge

can be understood as boundary between the two phases. This procedure can be applied to

the numerical simulation of T 2 as well, as shown in Figure 6.3. To be specific, we evaluate
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T 2 for each disorder realization in the eigenbasis of H0 with total Sz = 0. These eigenstates

are labeled from α = 1 · · · I, with I = L!/(L/2)!2 the total number of states, according to

the descendant order of their eigenvalues. After taking disorder average over lg T 2, we plot

the result as functions of both W and the energy density ε defined by the corresponding

label α/I. With energy resolution, we are able to map out the phase diagram of the system

whereas the two phases are separated by the mobility edge. Recall that the matrix T is

interpreted as hopping amplitude between Floquet states to the static eigenstates; threfore,

the frequency of the drive is chosen to be slow, ω = 0.01J in order to prevent unwanted

optical resonances. On the other hand, if the frequency is comparable to J , a localized state

below the mobility edge could be in resonance with a delocalized state within the mobility

edge, and this process will mix the two states. In this sense, if a great number of optical

resonances occur when the frequency of drive is comparable to mean level spacings, the

mobility edge looses its meaning and T 2 will not be a function of ε any more.
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Figure 6.3: Measure lg T 2 as functions of disorder strength W and energy density ε for
L = 10 and N = 4000. The many-body mobility edge is marked in white.
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6.5 Thermodynamic characteristics

Time evolution

A quantum state of the system (6.1) driven by a harmonic perturbation after n periods is

defined by the unitary transformation of its initial state |ψ0〉 given by Eq. (6.3). Using this

expression for the state, we can evaluate a value of any observable M at time t = nτ as

〈M(tn)〉 = Tr {Mρn} , (6.27)

where the stroboscopic density matrix operator with initial condition |ψ0〉 is given by

ρn =
∑
α,β

e−i(Ωα−Ωβ)nτ |α〉〈α|ψ0〉〈ψ0|β〉〈β|. (6.28)

For the purposes of practicality, one can study the time-average of an observable,

〈M(tn)〉 = Tr {Mρ̄} , ρ̄|ψ0〉 =
∑
α

|〈α|ψ0〉|2 |α〉〈α|, (6.29)

where the off-diagonal elements of the density matrix are averaged out. If |ψ0〉 = |ψi〉 is an

eigenstate of time-independent Hamiltonian, |〈α|ψi〉|2 = |Aαi |2 are the Floquet amplitudes

defined in Eq. (6.10).

The fact that the time averaged density matrix is diagonal in the Floquet basis facilitates

the calculations of time average values of observables, 〈M(tn)〉, which can be treated as

thermodynamic characteristics of the system, depending on the nature of the density matrix

ρ̄. Essentially, since the spectrum of the static Hamiltonian Given that ETH is valid in the

ergodic regime, the density matrix ρ̄ is a thermal state with some temperature T . Therefore

the average values of the observables coincide with the thermal state at T . On the other

hand, in the localized phase, deviations of these average values from that given by the

thermal state can be viewed as a diagnosis of invalidity of ETH.

In the thermodynamic limit, the overall spectrum is universal. Therefore for delocalized

regime, we expect that all the Floquet basis are equally distributed in the eigenstate basis,

such that the coefficient Aiα ∼ 1/
√
N , and the IPR vanishes as IPR ∼ 1/N . On the other

hand, for the localized regime, each Floquet basis has a good one-to-one correspondence
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with the eigenstate basis in the sense that after one period of driving, the wavefunction of

the system is localized in the Hilbert space and hopping amplitudes to other eigenstates

are exponentially small with space size. Therefore, we expect Aiα ' δi,α, and the IPR is of

order unity.

Energy Fluctuations

Next we consider the fluctuations of the energy absorbed/emitted by the system in the

presence of the external drive at long times. Since the external drive can be seen as an

energy source, provided that ETH is valid, the system would approach to a thermal state

with infinite temperature, ρ(T →∞) = 1̂/M , regardless of the initial state.

The absorbed or emitted energy of the steady state is given by the difference Tr(Hρ̂(∞))−

Ei, with energy of the initial state Ei. In general the width of the distribution in eigen-

states are determined by whether the system is ergodic or localized. In particular, for our

current setting with f & J the system saturates to a thermal state with infinite tempera-

ture. Therefore in the thermodynamic limit the width of the distribution in eigenstates is

comparable to the bandwidth. To this end, we can introduce the following dimensionless

quantity Q to make a fair comparison between different system size:

Q =

√
var

[
Tr(Hρ̄|ψi〉 − Ei

]
var [Tr(Hρ̂(β → 0))− Ei]

(6.30)

=

√
var

[
Tr(Hρ̄|ψi〉 − Ei

]
var [Ei]

(6.31)

where ρ̂(β → 0) = 1̂/N is the density matrix at infinite temperature, and var is the

variance over index i. In Figure 6.4 we present the result of energy absorption, with different

amplitudes of drive and system sizes. As a measure of overlap between themal state and

density matrix at long times, the quantity Q decays exponentially in the localized regime,

indicating that the system violates ETH.
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Figure 6.4: Average value of the normalized absorbed energy Q evaluated by using
Eq. (6.39) as functions of the disorder strength W for a spin system of size L = 8, L = 10
and L = 12. The average is evaluated over N = 104 samples for L = 8, 10 and N = 200
for L = 12 and drive amplitudes are f = 0.1J and f = J . The dependence of Q on W
in the localized regimes suggests that an exponential small overlap between thermal state
with infinite temperature and actual density matrix.

Spin Diffusion

Finally we evaluate the total spin projection in z direction, Sz =
∑

i s
i
z by averaging over

the initial eigenstates with Sz = 0. Since Sz is a good quantum number for the static

Hamilonian while rotating field in xy plane would break the conservation of Sz, the wave

function acquires components with nonzero Sz.

If the eigenstates are uniformly occupied for a thermal state with infinite temperature,
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the expectation value of S2
z is

S2
z =

1

2L

L∑
n=0

 L

n

 (L− 2n)2 = L. (6.32)
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Figure 6.5: Expectation value of S2
z as functions of disorder strength W for a spin system

of size L = 8, 10 and 12. Parameters are the same as Figure 6.4

Even though through Sec.(6.3) we find there is still a good correspondence between

Floquet basis and eigenbasis, averaging observables defined by the time-averaged density

matrix over initial conditions chosen as all eigenstates is close to that of a thermal state

with infinite temperature in the thermodynamic limit.

Therefore we calculate the following quantity

〈S2
z 〉/L =

1

NL

N∑
i=1

Tr
(
S2
z ρ̄|ψi〉

)
, (6.33)
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where ρ̄|ψi〉 is the time-averaged density matrix with initial eigenstate |ψi〉 and N is the

total number of eigenstates in the sector Sz = 0.

In Figure (6.5) we present the result of numerical calculation of 〈S2
z 〉/L with two ampli-

tudes of the drive. We see that in the ergodic regime, the expectation value of 〈S2
z 〉/L→ 1

in the long time limit. On the other hand, in the localized regime the wavefunction are

localized and therefore the expectation value of S2
z remains zero.

Bures distance and inverse partition ratio

We characterize the deviation of the time average density matrix ρ̄|ψ0〉 from the initial

density matrix ρ0 = |ψ0〉〈ψ0| using the Uhlmann fidelity[173]

F (ψ0) =
[
Tr
{√√

ρ0ρ̄|ψ0〉
√
ρ0

}]2

. (6.34)

that defines the Bures angle between the two density matrices as θB = arccos
√
F (ψ0)[174].

In our case, the Bures angle can be viewed as a measure of displacement of time-averaged

density matrix from its configuration before the onset of the drive. Due to a simple form

of ρ0, we have

F (ψ0) =
∑
α

|〈α|ψ0〉|4 , Fi =
∑
α

|Aαi |4 . (6.35)

Below we consider only special cases when |ψ0〉 is taken as one of eigenstates |i〉 of time-

independent Hamiltonian, (5.2). In this case, the fidelity F (ψi) = Fi is determined by

the Floquet amplitudes, as shown by the second equation (6.35). After averaging over all

eigenstates of time-independent Hamiltonian, we arrive to the expression for the inverse

partition function, as defined in the previous chapter

IPR =
1

N

∑
α,i

|Aiα|4, (6.36)

where |i〉 is the set of eigenstates of static Hamiltonian.

However, in reality levels close to the band edges are not universal and contribute to

finite size effects, which can be reduced by averaging the value of the IPR over all eigenstates.

In Figure 6.6 we show the IPR as functions of the disorder strength W for different system
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Figure 6.6: Average value of the IPR over all eigenstates defined in Eq.(40), as functions
of disorder strength W for a system of size L = 8, L = 10 and L = 12. Parameters are the
same as Figure 6.4

size and drive amplitudes. Since the system saturates for f & J , the case f = J is close

to ideal estimation of IPR that increases from 1/N to unity. At weaker drive, the one-to-

one correspondence between Floquet states and eigenstates is restored even in the ergodic

regime, hence the IPR approaches to unity.

Finally, we notice that the inverse partition ratio also defines the change in the linear

entropy of the system under the harmonic drive. For a pure state, the linear entropy is

zero, but becomes positive for the time-average density matrix ρ̄i:

S
(i)
lin = 1− Tr

{
ρ̄2
i

}
. (6.37)

We average this expression over all eigenstates |i〉 the time-independent Hamiltonian (5.2)
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and obtain

Slin = 1− IPR. (6.38)

Von Neumann entropy

In this section we discuss the von Neumann entropy S = Tr {ρ ln ρ} of the time-average

density matrix ρ̄|ψ0〉 for initial state |ψ0〉. Because ρ̄|ψ0〉 is diagonal in the Floquet basis,

the entropy is given by

S|ψ0〉 = −
∑
α

|〈α|ψ0〉|2 ln(|〈α|ψ0〉|2), (6.39)

which is an observable.

The entropy reaches a maximum when an initial state |ψ0〉 has equal overlap with all

Floquet states, namely, |〈α|ψ0〉|2 ' 2−L. The value of maximal entropy is Smax = L ln(2).

On the other hand, if for one value of α, we have |〈α′|ψ0〉| = 1 and |〈α 6= α′|ψ0〉| = 0, the

time averaged density matrix ρ̄|ψ0〉 represents a pure state and S|ψ0〉 = 0.

Of course, the above estimation is only valid in the thermodynamic limit where finite

size effects are eliminated. However, as discussed before, eigenstates close to the band edge

are not universal, therefore thermodynamic quantities obtained through these states are not

good characterizations. Hence to avoid these states, we average the von Neumann entropy

with respect to all eigenstates as initial conditions.

As demonstrated in Sec.6.5, the system starts to saturate at f & J , a parameter regime

where the entropy would reaches maximum value in the thermodynamic limit. In Figure 6.7

we present our calculation of the averaged von Neumann entropy for two chosen amplitudes

of drive. In the ergodic regime, the entropy shows finite size scaling and we expect that

for f = J the it approaches to L ln 2 ' 0.69L in the thermodynamic limit. The entropy

smoothly drops to zero regardless of system size and drive amplitude.
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Figure 6.7: Averaged von Neumann entropy obtained by averaging over all eigenstates as
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thermodynamic limit at weak disorder and drops to 0 at strong disorder. Parameters are
the same as Figure 6.4.

6.6 Summary

In conclusion, we discussed spectral and dynamics of a quantum Heisenberg spin chain that

is subject to a harmonic local drive. We have shown that, the many-body localization can

be seen by the level spacings from the bulk of the static Hamiltonian. In the presence of the

drive, a natural measure of the localized/ergodic phases is the quantum infidelity between

evolution operator with and without the local drive. The distribution of the fidelity are

qualitatively different in the two phases. For the ergodic regime the distribution of the

infidelity is narrow and weakly depends on disorder, while for the localized regime the
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distribution has an exponential small tail. It is surprising that the average value of the

infidelity is independent of system size, indicating quantum simulation with L ' 10 spins

would be sufficient to see the distinction between two phases.

In the thermodynamic point of view, the bulk part of the spectrum are expected to

obey the ETH. For these states we have found that the average of observables approaches

to that of a thermal state with infinite temperature in the thermodynamic limit.
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Chapter 7

Conclusion

Over the course of this these, we have covered several different aspects of superconducting

and semiconducting qubits, and presented several new and interesting results. In chapter

2, we discussed the quantum photovoltaic effects in a hybrid quantum system consist of a

double quantum dot and a microwave resonator. In particular, we found that the spectrum

of photovoltaic current exhibits multiple peak feature due to Rabi splitting determined

by coupling strength and photon number, similar to the structure of a strongly coupled

cQED. Furthermore, we explicitly showed where fundamental differences between classical

and quantum photovoltaic effects arise from, in terms of various system parameters. Our

analysis demonstrated that the Rabi splitting in the current spectrum is a consequence of

entanglement between the DQD and the resonator.

In chapter 3, we have also looked at the similar DQD plus resonator system to determine

the statistical properties of the emitted photons from a voltage biased DQD. While there

had been evidences for lasing state in the presence of an external drive to the high Q

microwave resonator, we have shown that interesting physics may appear when the drive

is turned off. Specifically, we have shown that in contrast to the Poisson statistics for the

coherent state, the noise of emitted photon arising from coherent charge transfer satisfies

a sub-Poisson statistics when the energy relaxation rate of the DQD is much smaller than

the dephasing rate. We have also shown that the statistics can be measured by a Josephson
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photomulitiplier, which has been implemented experimentally.

In chapter 4, we have presented a detailed analysis of the dynamics of an open quantum

system in the presence of a time-dependent control field. In principle, this approach can be

applied to study the dynamics a spin one half in the presence of the Ohmic or non-Ohmic

environment. We have shown that, the time-dependent parameters in the qubit Hamiltonian

can be eliminated perturbatively by a series of digitalization procedures and under certain

circumstances, this series is finite up to several orders. For the qubit dynamics in a rotating

control field, there had been experimental studies suggesting robust quantization of Chern

numbers at low temperatures with dissipative environments; our approach in parallel showed

that this is the case, while Lindblad approach failed to predict the correct value at long

times.

For the Landau-Zener problem, modifications of the matrix elements between eigen-

states of the Hamiltonian was taken into account, because naturally in the Bloch-Redfield

approach it is required to work in the eigenbasis of the qubit. In this basis, the fast oscilla-

tions between “spin up” or “spin down” is replaced by a fast monotonic behavior between

ground and excited state. At zero temperature, the decay of the occupation of excited state

exhibits a power law in time since the off-diagonal elements are suppressed. At finite tem-

perature, thermal excitation process facilitates transitions from the ground to the excited

state, resulting in monotonic increasing of its occupation as a function of temperatures.

The remaining chapters of the thesis are devoted to the discussion of many-body local-

ization. In chapter 5, we have investigated the response of a MBL Hamiltonian under a local

quench, in terms of inverse participation ratio, level spacing statistics, and in particular the

single spin measurements. There exist a clear many-body mobility edge and localization

length that appear to be measurable for certain experimental procedure; it is our desire that

the single spin measurements can be performed using suitable spin systems. In chapter 6,

we continue to discuss the dynamical aspects of an MBL system. Here we apply an AC drive

to the system and apply the Floquet theory to present the result of quantum fidelity given

by the evolution operator with or without the drive. Finally and perhaps most importantly,
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we pointed out that for driven systems, the many-body localization transition can be well

addressed when thermalization is absent correspondingly from the thermodynamic point of

view.
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[72] C. Emary, C. Pöltl, A. Carmele, J. Kabuss, A. Knorr, and T. Brandes, “Bunching
and antibunching in electronic transport,” Physical Review B, vol. 85, p. 165417, Apr
2012.

[73] D. A. Bagrets and Y. V. Nazarov, “Full counting statistics of charge transfer in
Coulomb blockade systems,” Physical Review B, vol. 67, p. 085316, Feb 2003.

[74] T. Brandes, “Waiting times and noise in single particle transport,” Annalen der
Physik, vol. 17, pp. 477–496, July 2008.

[75] D. Marcos, C. Emary, T. Brandes, and R. Aguado, “Finite-frequency counting statis-
tics of electron transport: Markovian theory,” New Journal of Physics, vol. 12,
p. 123009, Dec 2010.
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[80] H. Jirari and W. Pötz, “Optimal coherent control of dissipative N-level systems,”
Physical Review A, vol. 72, p. 013409, July 2005.

[81] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. Wilhelm, “Simple Pulses for Elim-
ination of Leakage in Weakly Nonlinear Qubits,” Physical Review Letters, vol. 103,
p. 110501, Sep 2009.

[82] A. Poudel and M. G. Vavilov, “Effect of an Ohmic environment on an optimally
controlled flux-biased phase qubit,” Physical Review B, vol. 82, p. 144528, Oct 2010.



156

[83] M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio,
V. Giovannetti, R. Mannella, and O. Morsch, “High-fidelity quantum driving,” Nature
Physics, vol. 8, pp. 147–152, Dec 2011.

[84] M. Thorwart and P. Hänggi, “Decoherence and dissipation during a quantum xor
gate operation,” Phys. Rev. A, vol. 65, p. 012309, Dec 2001.

[85] A. M. Childs, E. Farhi, and J. Preskill, “Robustness of adiabatic quantum computa-
tion,” Physical Review A, vol. 65, p. 012322, Dec 2001.

[86] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech, “Landau-Zener Tunneling for
Dephasing Lindblad Evolutions,” Communications in Mathematical Physics, vol. 305,
pp. 633–639, May 2011.

[87] J. E. Avron, M. Fraas, G. M. Graf, and O. Kenneth, “Quantum response of dephasing
open systems,” New Journal of Physics, vol. 13, p. 053042, May 2011.

[88] G. Lindblad, “On the generators of quantum dynamical semigroups,” Communica-
tions in Mathematical Physics, vol. 48, pp. 119–130, June 1976.

[89] G. Lindblad, “Entropy, information and quantum measurements,” Communications
in Mathematical Physics, vol. 33, pp. 305–322, Dec 1973.

[90] F. Bloch, “Generalized Theory of Relaxation,” Physical Review, vol. 105, pp. 1206–
1222, Feb 1957.

[91] A. G. Redfield, “On the Theory of Relaxation Processes,” IBM Journal of Research
and Development, vol. 1, pp. 19–31, Jan 1957.

[92] H. Schoeller and G. Schön, “Mesoscopic quantum transport: Resonant tunneling in
the presence of a strong Coulomb interaction,” Physical Review B, vol. 50, pp. 18436–
18452, Dec 1994.

[93] Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with
Josephson-junction devices,” Reviews of Modern Physics, vol. 73, pp. 357–400, May
2001.

[94] Y. Makhlin, G. Schön, and A. Shnirman, “Dissipative effects in Josephson qubits,”
Chemical Physics, vol. 296, pp. 315–324, Jan 2004.

[95] P. Ao and J. Rammer, “Influence of dissipation on the Landau-Zener transition,”
Physical Review Letters, vol. 62, pp. 3004–3007, June 1989.



157

[96] P. Ao and J. Rammer, “Quantum dynamics of a two-state system in a dissipative
environment,” Physical Review B, vol. 43, pp. 5397–5418, Mar 1991.

[97] M. Grifoni and P. Hänggi, “Driven quantum tunneling,” Physics Reports, vol. 304,
pp. 229–354, Oct 1998.

[98] N. V. Vitanov, “Transition times in the Landau-Zener model,” Physical Review A,
vol. 59, pp. 988–994, Feb 1999.

[99] S. N. Shevchenko, A. S. Kiyko, A. N. Omelyanchouk, and W. Krech, “Dynamic
behaviour of Josephson-junction qubits: crossover between Rabi oscillations and
Landau-Zener transitions,” Low Temperature Physics, vol. 31, p. 569, Dec 2004.

[100] R. S. Whitney, Y. Makhlin, A. Shnirman, and Y. Gefen, “Geometric Nature of the
Environment-Induced Berry Phase and Geometric Dephasing,” Physical Review Let-
ters, vol. 94, p. 070407, Feb 2005.

[101] V. L. Pokrovsky and D. Sun, “Fast quantum noise in the Landau-Zener transition,”
Physical Review B, vol. 76, p. 024310, July 2007.
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U. Schneider, and I. Bloch, “Observation of many-body localization of interacting
fermions in a quasi-random optical lattice,” arXiv:1501.05661, Jan 2015.

[149] C. Senko, J. Smith, P. Richerme, A. Lee, W. C. Campbell, and C. Monroe, “Coher-
ent imaging spectroscopy of a quantum many-body spin system,” Science, vol. 345,
pp. 430–433, July 2014.

[150] R. Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards,
C.-C. J. Wang, J. K. Freericks, and C. Monroe, “Emergence and frustration of mag-
netism with variable-range interactions in a quantum simulator,” Science, vol. 340,
pp. 583–587, May 2013.

[151] R. Barends, L. Lamata, J. Kelly, L. Garcia-Alvarez, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, I. C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan,
A. Vainsencher, J. Wenner, E. Solano, and J. M. Martinis, “Digital quantum simula-
tion of fermionic models with a superconducting circuit,” Nat. Commun., vol. 6, July
2015.
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[157] M. Serbyn, Z. Papić, and D. a. Abanin, “Universal slow growth of entanglement in
interacting strongly disordered systems,” Phys. Rev. Lett., vol. 110, p. 260601, June
2013.

[158] A. Nanduri, H. Kim, and D. A. Huse, “Entanglement spreading in a many-body
localized system,” Phys. Rev. B, vol. 90, p. 064201, Aug 2014.
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