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Abstract

This thesis explores several theoretical aspects of quantum information processing. First
we examine several questions regarding circuit quantum electrodynamics architecture with
a double quantum dot system. We find that there exists a quantum signature in the pho-
tovoltaic effects in the current spectrum through the unbiased DQD when the microwave
resonator is subject to an AC drive. We demonstrate that this signature is due to the
entanglement between the single photon field and the charge states in the DQD. We ad-
ditionally show that this entanglement is essential to consider the photon statistics, which
exhibits both a sub-Poissonian distribution and antibunching. This photon statistics can
be measured by the current progress in Josephson photomultipliers.

We then investigate the dynamics of a two-level system with slow varying external
parameters and weakly coupled to an Ohmic environment. Specifically, we generalize the
Bloch-Redfield approach to time-dependent problems in a perturbative manner, and apply
this formalism to two well-suited problems. For a qubit subject to a rotating magnetic
field, we demonstrated that the Berry curvature, and hence the Berry phase are immune to
quantum fluctuations arising from the environment at zero temperature. For the Landau-
Zener problem, on the other hand, it is evident that the incoherent excitation and relaxation
processes are leading mechanism.

Next, we consider a Hamiltonian for many-body localization, a generalized example of
Anderson localization in interacting quantum many-body systems. Previously literatures
stated that for such systems, the eigenstate thermalization hypothesis fails to work. To
have a deeper understanding this statement, we apply a local quench to the system and
analyze the response of the system. We show that the level spacing statistics and inverse
participation ratio both suggest a clear difference between localized and delocalized phase.
We further demonstrate that the edges of the localized states can be visualized by the
mobility edge via local spin measurements, and by using the same sets of data, the many-
body localization length can be evaluated as well.

Lastly, we apply a harmonic drive to the many-body localized Hamiltonian. Benefited



ii

from the Floquet theory, we evaluate the Bures displacement of the system in the Hilbert
space caused by the drive for both phases, in which the distinction in the average value of
Bures displacement can be revealed for a system with ten spins or so. We also show that
from thermodynamics point of view, the two phases can be distinguished by von Neumann

entropy, energy fluctuations and spin diffusions.
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(a) Averaged participation ratio over disorder realizations as functions of disor-

der strength W and energy density € for a system of L = 12 and 1000 realizations.

Marked by white color, the many body mobility edge encloses a region of de-

localized states with IPR. ~ 2%, The horizontal and vertical cut indicates the

parameters for panel (c¢) and (d). (b) The histogram of log, IPR in the middle

of the band for W = 0.5, 4 and 10. The distributions are concentrated for weak

and strong disorder, but highly fluctuating in the critical region. (c) The IPR

at fixed disorder W = 3, for which case the states are delocalized in the middle

of the band but localized in the edges, and W = 7 where all states are localized.

(d) The IPR and its standard deviation for fixed energy density e = 0.5. | . . .

Scatter plot of (P|la>, |’a>) for (a) the localized regime with W = 10 and (b)

the ergodic regime with W = 2.5 for states |a) in the middle of the band. Data

obtained with L. = 12 and N = 1000. The corresponding probability distribution

of P; and Q); for (c) the localized regime in which the single spin measurement

with and without a quench coincides with each other and for the (d) ergodic

regime the disparity in the distribution with and without the quench indicates
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(a) Measure C!

|a)

= P|Z>Q|ia> as functions of disorder strength W and energy

density € for L = 12 and N = 1000. The many-body mobility edge is marked

in white. (b) “Euclidean distance” D* as a function of distance between moni-

tored spin and quenched spin (solid lines), and the corresponding fitting curve,

Eq. (5.11) (dashed lines). (c) The many-body localization length ¢ extracted

from D® as a function of disorder strength. The dashed line corresponds to the

& = 1 to show that the at sufficiently strong disorder the system is localized in
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6.1

Distribution of dimensionless power p, Eq. (6.20), over N = 10" realizations

of the random magnetic field {h;} for a system with L = 10 spins. The top

panel shows the distribution of the power itself for W/.J = 0.3 (blue long-dashed

line) and W/J = 3 (green short-dashed line), while the bottom panel shows the

distribution of lg p for all three values of disorder for three values of the disorder

strength W/J = 0.3, 3 and 30 (red solid line). We scaled the distribution curves

for W/J = 3 by factor two and for W/J = 30 by factor six. The inset shows

the logarithm of the distribution of lgp for W/J = 30 and the dash-dotted line

represents the slop ~ p~1/2. The drive amplitude f = J/v10 and w = J. | Ce

Average value of the logarithm of dimensionless power, lg(p), as a function of

disorder strength W for a spin system of size L = 8 (circles), L = 10 (diamonds)

and L = 12 (triangles). The average is evaluated over N = 10° samples for

L =8, 10, and for N = 200 for L = 12. The drive amplitude f = J/+/10 and
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6.3

Measure lg 72 as functions of disorder strength W and energy density e for

L =10 and N = 4000. The many-body mobility edge is marked in white.| . . .
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and L = 12. The average is evaluated over N = 10* samples for L = 8,10

and N = 200 for . = 12 and drive amplitudes are f = 0.1J and f = J. The

dependence of () on W in the localized regimes suggests that an exponential small
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Chapter 1

Introduction

1.1 Introduction to quantum information

As suggested by Feynman in 1982[I], and succeeded by an argument provided by Deutsch
in 1985[2], physicists have been inspired by the idea of quantum computation in such a
way that the computation task is carried out by a number of quantum degrees of freedoms.
In the classical computing, the information is stored in bits, which takes either 0 or 1,
while the quantum information can be stored as a superposition of 0 and 1, due to its
quantum nature. Benefitted by the quantum superposition, the number of states increases
exponentially and all possible quantum information can be stored simultaneously as the
system size goes up. The advantage of quantum computation can be revealed by the so
called “quantum parallelism”. Roughly speaking, in classical computation, the system
evolves according to stochastic matrices which preserves the sum of probabilities, while
the quantum computation is performed by a unitary transformation that preserves both
total probabilities and phase coherence. Consequently, each single quantum operation is
reversible, and moreover a combination of stochastic and unitary transformations is also
allowed. In this sense, classical algorithms form a subset of quantum algorithms. As such,
the huge improvement on the efficiency of manipulation of information results in numerous

applications such as Shor’s factoring algorithm[3], Grover’s search algorithm[4] and quantum



adiabatic algorithm[5] [6].

Unfortunately, the pragmatic implementation of quantum computation remains an ex-
traordinary challenge for scientists and engineers. One inevitable problem is the loss of
quantum coherence, or named decoherence in literatures, due to the interaction between
qubits with its nearby environment. One has to control over the operations of single qubit
or multiple qubits to the order of thousands extremely precisely in the sense that any un-
known evolution that affects the quantum states, such as decoherence, should be taken into
account. Indeed, the coherence time realized by quantum error correction to date does not
exceed any of the individual components, which is one of the main restrictions to realize a
fault-tolerant quantum computer.

As for physical systems suitable for quantum computation, a number of potential im-
plementation has been suggested. Of all existing proposals, most of them encode quantum
information in terms of “natural” microscopic quantum states, such as photons[7], trapped
ions[8], neutral atoms[9] or nuclear spins[I0], for which the quantum description is nat-
urally established. On the other hand, some macroscopic systems with a large number
of atoms assembled in confined geometry can also be used, such as superconducting cir-
cuits and semiconductor quantum dots[11], both of whose fabrication and design being well
developed using modern development in electronics. In these systems, the quantum infor-
mation is represented by the collective degrees of freedom as a result of robust macroscopic
phenomenon, that is, Josephson effects for superconducting qubits and Coulomb blockade
for both cases, endowing well-defined macroscopic quantum states controlled by tunable
parameters.

In contrast to a harmonic LC oscillator, in the superconducting circuits, the nonlinearity
in the Josephson tunnel junction insulates the transition between the ground state and the
excited state from the rest of circuit states. By tuning the relevant parameters, such as
capacitance, inductance and Josephson energy, there are three basic types of qubits, namely
flux, phase[I2] and charge qubits, indicating the physical extent of the computational basis.

In addition, improved descendants of basic designs, known as transmon[I3], fluxonium[14]



and quantronium[I5], are later constructed to reduce decoherence mechanism in the basic
types.

In a semiconductor quantum dot, the electrons trapped at the interface forms a two
dimensional electron gas, or 2DEG for abbreviation. These electrons are geometrically
confined by external gate voltages into a small “box” in such way that the energy levels
of the trapped electron are discrete, with its level-spacing greater than the experiment
temperature. In this manner, the single electron states are well defined, so either the
quantization of charge or spin can be used to encode quantum information. A typical
charge qubit in double quantum dot is initialized by biasing the electrostatic potential such
that single electron is well localized in one of the dot, and the manipulation of quantum
states is controlled by tunnel elements and gate voltages. States with higher number of
electrons are energetically penalized due to the Coulomb blockade effect. On the other
hand, if one consider the spin degrees of freedom, each quantum dot has one electron,
forming four possible spin states, one singlet labeled as S and three triplets labeled as
To, T4, T—, respectively. The quantum information is stored in the S and Tj states because
they are both unaffected by external magnetic field and can be measured by the external
current, with the benefited of the “spin blockade” technique.

One remarkable dividend of solid state qubits is that they can be strongly coupled to
single photon mode, like an atom. This new class of experiment called circuit quantum
electrodynamics (cQED) is achieved by the dipole moment formed by the separation of
charges in such devices, coupled to a single mode microwave resonator, which is usually
engineered as a coplanar waveguide to mediate long range interaction between qubits. In
such hybrid device, qubit operations and readouts can be controlled by the frequency of
the resonator and its external drive, by the well-developed quantum optical techniques.
With small photon numbers in the resonator, high efficiency microwave photon detection
enables the readout of the qubit in the regime where the qubit states and photon states are
highly entangled. The underlying physics can be exemplified by preparation of maximum

entangled states and parametric amplifier. It is therefore essential to explore the models



of on-chip photon detectors, and analyze the new physics in the quantum regime in the

presence of coupling to an environment.

1.2 Quantum computing with solid state qubits

As mentioned above, qubits made out of solid state devices could offer appreciable advan-
tages for practical use since in principle modern lithographic methods allows for scalability
and flexibility in design. Indeed, the quantum information encoded in the computational
basis of an “artificial ” solid-state atoms, such that in contrast to “neutral” atoms, has
specific freedom to manipulate at microwave frequency, and can be easily embedded in
electronic circuits for external control. This tunability makes solid-state qubits as a supe-
rior candidates to those of “neutral” atoms. On the other hand, it is also worth mentioning

that there is a large variety of unwanted decoherence sources in solid state qubits.

Double Quantum Dots

Quantum dots are fabricated nano-structures from semiconductor materials, where elec-
trostatic potentials confine electrons into small “boxes” geometrically such that just a few
discrete energy levels are obtained; these energy levels can be tuned by lithography meth-
ods, such that one can cover large areas with zillions of tiny quantum dots and control
these states by lasers. This scenario is called optically activated quantum dots, since the
transition between particular states are controlled by light absorption and/or emission, and
they are not connected to any electrodes.

The measurement and control of discrete levels become even easier for transport quan-
tum dots, which are attached to noninteracting electron reservoirs, also known as leads, so
that the electrons can be transferred from one lead to another. The coupling between states
in the dot and leads brings in broadening of the discrete levels. In the sense, to ensure the
energy levels still survives, the charging energy, E¢, a energy scale which separates levels
with different electron occupation numbers by 41, should dominates over the broadening of

individual states I'. This is the so-called Coulomb blockade regime, in which single electron



states are well defined. Naturally, though, spin states of those confined electrons are great
candidate for solid state qubits, we will only consider the qubits encoded by the charge
degrees of freedom—those called charge qubits will be the only model discussed for quantum
dot systems.

The simplest way to build a charge qubit is to consider a double quantum dots, with
each of them in the Coulomb blockade regime. Being discrete, the energy spectrum of
the electron states in both dots can be adjusted by the external gate voltages in such a
way that one can align the Coulomb energies of states (1,0) and (0, 1), where (N7, N2)
denotes the state with N; (N2) electrons in the left (right) dot. If the energy detuning of
between the two states is sufficiently small compared to the charging energy, other charging
states are far apart and can be disregarded. Thereby we denote the states (1,0) — |0) and
(0,1) — |1) to construct the computational basis from a double quantum dot. As shown in
Figure the double quantum dot can be understood as a model comprising of coherent
(7)) and incoherent (I'y,/g) tunneling processes, and the energy splitting between the two
eigenstates can be tuned into microwave frequency for iradiative manipulation.

The parameters of the qubit Hamiltonian consists of energy detuning e, as well as a
coherent tunneling amplitude 7 between the two charging states. The Hamiltonian then

reads:

/2 T 1
H = = 5E0% + T oy (1.1)
T —¢/2
The ground state of the qubit is then given by

sin(6/2) cos(6/2)
SO (- oy =22,

where the rotating angle § = arctan(e/27). The manipulation of qubit state can be achieved

&) = —(10) + 1)) (1.2)

by applying a resonant oscillating fields with frequency w ~ v/e2 + 472 in such way that the
transition between the two eigenstates of qubit can be coherently controlled. To readout
the qubit, one measures the charge in the quantum dot by measuring the current in the
nearby quantum point contacts (QPC) because the transmission coefficient of the QPC, Ty,

depends on the number of electrons of the dot. By varying the number of electrons by +1,
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Figure 1.1: (a) Micrograph of a DQD device with gate voltages applied to gates L, R and
T. Gates L and R are used to adjust the detuning, €, and gate T sets the coherent interdot
tunnel amplitude 7. The conductance gs of a nearby quantum point contact monitors the
occupation of each dot. (b) The transport properties of a DQD that attached two leads are
defined by coherent amplitude 7 and incoherent rates I',(R). (c) Energy diagram of the
DQD qubit, which can be manipulated by a radiative drive with frequency w.



the electrostatic potential felt by the QPC acquires a slight change, therefore leading to an
increment in transmission coefficient 7", or in current §1 = §7Te?/nh ~ 1nA, an amount
large enough to be measured within 0.2 ms. Since the net charge in each dot is either 0 or
1, the current through the QPC is quantized with two values, separated by ~ 1nA, each
representing a single charge states. Therefore, the readout of charge qubit can be performed

by measuring the current though the QPC.

Superconducting qubits

The superconducting qubits based on Josephson junction are so far the most successful
realizations of solid state qubits that have been made. The main reason is that in order to
isolate a useful qubit from the eigenstates of some small solid state device, it is necessary
to have some nonlinear elements that breaks the harmonicity of the spectrum. Indeed,
for superconducting circuits, the nonlinear elements are naturally embedded as a result of
Josephson junction, with much less uncontrollable external fluctuations, which is the reason
why superconducting qubits have a promising future.

The Josephson junction is a tunnel junction consisting of a layer of insulating material,
sandwiched by two layers of superconducting material. Due to Andreev reflection, super-
current in the superconductors is converted to normal current in the normal materials at
the two interfaces, and vice versa. This is a coherent tunneling process, and the constructive
interference of the electron- and hole-like excitations gives rise to the supercurrent, yielding
the following Josephson equations:

9¢
Oot
I(¢) = Icsin(¢), (1.4)

U(g) =2 (1.3)

where U(¢) and I(¢) are the voltage and current across the Josephson junction, ¢(¢) is the
phase difference across the junction, ®y = f/2e is the magnetic flux quantum, and I is the
critical current of the Josephson junction. If the junction is current-biased with an external

current above I., the Josephson effects break down. With the dependence of U(¢) and I(¢)



Figure 1.2: Schematic energy levels of superconducting LC-circuit (a) without a Josephson
junction or (b) with a Josephson junction.

on the phase ¢, one can construct a circuit Hamiltonian for the Josephson junction:

(I)OIC Q2
cos ¢ + Yok

Hyy=—
JJ o

(1.5)

where @) is the charge operator and C' is the capacitance of the junction. In Eq. , the
charge operator () is a conjugate operator to phase ¢, [Q, ¢] = —2i; indeed, the nonlinear
dependence of current I as a function of phase ¢ indicates that the energy splittings in the
spectrum of Hj; are not equal, thereby the lowest two energy levels are well separated to
others. When inserted into an LC' circuit, the Josephson junction is a nonlinear element
which breaks the harmonicity of spectrum, see Figure[I.2] The superconducting qubit works
with the benefits of nonlinear quantum circuits.

The circuit for the phase qubit can be understood as the ground and first excited state
of the metastable potential well in the Josephson junction with a biased current. Similarly
the circuit for the flux qubit can be understood as a Josephson junction with external
magnetic flux through the ring-shaped circuit. Flux quantization in the ring forces the
supercurrent in the flux qubit to flow either clockwise or anti-clockwise, and these two states

of current flow defines the qubit states. A superconducting charge qubit is formed by a tiny



superconducting island coupled by a Josephson junction. For the circuit operating in the
charging regime, the number of Cooper pairs on the island is a good quantum number, and
therefore the lowest two charge states form the qubit states. The corresponding Hamiltonian
reads

1 E;

Here, the offsite charge N, = CyV,/2e with Cy and Vj being the gate capacitance and gate
voltage respectively. E; = I.®o/27 is the Josephson energy and Ec = (2¢)?/eC is the
charging energy.

Even though any choice of superconducting qubits is not specifically chosen in the
thesis, it worth mentioning that in the family of superconducting qubits, several modern
descendants, such as transmon[I3] and Xmon[16] are designed to work in the regime E¢ >
FE; by shunting a large capacitance in parallel to the Josephson junction. This setting
reduces the charge dispersion exponentially but the anharmonicity of the spectrum in a
weak power law. As a result, the spectrum is much less sensitive to the offset charge to

reduce charge noise, while maintaining sufficient anharmonicity for selective qubit states.

Circuit Quantum Electrodynamics

The interaction between quantized electromagnetic field to a two-level system was usually
achieved in a tiny laser cavity. The energy exchange between the field and the system, called
Rabi oscillations, occurs at a frequency {2p proportional to the strength of the coupling
constant between the system and the field. In the strong coupling limit, the Rabi frequency
Qg is much greater than both the decoherence rate of the two level systems and the cavity
field, and the underlying physics is called cavity quantum electrodynamics.

For the last decades, however, such setting was successfully achieved in a hybrid system
consisting of a microwave resonator and a superconducting qubit or quantum dot qubit.
The coupling between these devices is achieved either by galvanic or direct electrostatic
coupling, while the qubit is fabricated inside the resonator, or by capacitive or inductive

coupling while the qubit is fabricated ouside the resonator. In all cases, the Rabi interaction
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between the microwave resonator and the qubit is described by the Hamiltonian
1 t t
Hg.bi = JWa0= 4+ wra'la+ go, (a +a ) , (1.7)

where a and af are the annihilation and creation operators of the microwave field and w, is
the frequency of the resonator field. In most cases that w ~ wy and w > g, it is reasonable
to make a rotating wave approximation to drops off the so-called counter-rotating terms,
ac™ and alot, where ¢ and ¢~ are the raising and lowering operators of the qubit. The

resulting expression is the well-known Jaynes-Cummings model:
1 i ta4 oal
Hchiwqaz—era a+g(cTa+o"a). (1.8)

The Jaynes-Cummings model is exactly solvable because the interaction term g(act +afo™)
only connects the states in the subspace [n—1,1) and |n, |), which leads to a block-diagonal

Hamiltonian. This allows for an exact analytic solution for the eigenstates

10) =10,1), (1.9)
In, +) = cosbp|n —1,1) +sinb,|n, ), (1.10)
In, —) = —sinby|n — 1,1) 4+ cosbOy|n, |), (1.11)

and for the eigenvalues
By = -2 (1.12)

2
1

E,+ =nw, £ 5 4g%n + A2, (1.13)
for n = 1,2,... denoting the number of photons and A = w; — w, is the qubit-resonator

detuning and 6,, yields

2

tan(20,) = gg/ﬁ. (1.14)

These general solutions of the Hamiltonian are called dressed states. When A = 0, the
angles 0, = 7/4, resulting in maximum entangled states between photon and qubit.
In the experiment, the coupling constant g depends on the specific implementation of

the setting of the qubit as well as the geometry of the microwave resonator.
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Adiabatic quantum computation and many-body localization

In regarding of conventional quantum computation, the computation scheme works similarly
to a classical computer in such a way that the qubits are connected as a circuit through
quantum gates to perform fundamental computation tasks.

However, as proposed in Ref.[5], benefited from the quantum adiabatic theorem, a new
computational scheme called adiabatic quantum computation could be an efficient candidate
for quantum computation as well. It works as following: At time ¢ = 0, the quantum
mechanical system is described by a Hamiltonian H;, whose eigenstates are easy to prepare.
Next, the system is slowly evolved into a more complicated final Hamiltonian Hy. By
the adiabatic theorem, for a adiabatic process, the system remains in its instantaneous
eigenstate if there is a gap between the eigenvalue and the rest of the spectrum. Further
details about AQC can be found in the review article Ref.[17].

While in principle the AQC is a universal scheme for quantum computing, actually
performing operations on this machines are equivalent to quantum simulation of the ground
states (and sometimes the entire spectrum) of a complicated Hamiltonian. Therefore for
any two quantum spin systems whose Hamiltonians are connected by a simple function of
external parameters, the AQC scheme can be applied to understand the ground state of a
unsolvable Hamiltonian. For instance, as an active research field recently, the many-body
localization (MBL) physics is a regime which can be found in interacting one-dimensional
spin systems with quench disorder. Recently, extensive numerical and analytical efforts
have been devoted to understand the thermal and dynamical properties of the 1D random

field Heisenberg model,
H:Zhiaz+JZ&i'5i+17 (1.15)

where h; € [-W, W] are random numbers, and concluded that for this model there is a
transition of state with localized spins to a delocalized state when W is below the critical
value W, while remain J fixed. From an experimental perspective, in each simulation
one can fix the disorder realization {h;} for an noninteracting spin system, J = 0, a regime

where spins are deeply localized with eigenstates as simple product states |[¢) = @ | T (1))
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Then one gradually turns on J, ending up with a delocalized state when W/.J is below the
critical value W, /J. With such systems, we propose and examine the dynamical aspect of
MBL using a local quench or a harmonic drive, both of which take advantage of accurate

methods for quantum control. The details will be discussed later in the thesis.

1.3 Open quantum systems

In practice, all quantum systems are open to the environment to some extent, and the
larger a system of interest is, the more important its coupling to the nearby environment
would be. For solid state qubits, the computational basis usually consists of macroscopic
quantum states, and therefore the coupling leads to very severe decoherence, a term implies
irreversible process that turns quantum superposition into classical mixtures. Specifically,
starting with a pure state |¢), the system is entangled with the environment upon time
evolution, and eventually turned into a mixed state p. Besides, quantum information pro-
cessing is less useful until a measurement of quantum states is made. So to speak, the
measuring apparatus (usually as a quantum-classical interface) is indeed coupled to the
system of interest, and for this reason the quantum state cannot be described by a pure
state.

For a particular class of problems, the Born and Markov approximations are both valid.
The essential idea is that the system couples weakly to an environment which consists of a
large number of degrees of freedom in such a way that the system is not greatly affected by
the environment which relaxes itself in a short time scale.

The standard approach to derive the equations of motion for a system interacting with
the environment is to trace out the environmental degrees of freedom. After the truncation,
the resulting time evolution of the reduced density matrix for the system is called master
equation, for historical reasons. Decomposing the entire Hamiltonian as H = Hyo +V =
Hg+ Hp+V, where Hg is the Hamiltonian for the system, Hg is that for the environment

and V is the coupling between the two, the dynamics of the entire density matrix po; reads
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p.tot(t) = _i[Ha ptot(t)]' (116)

In the interaction picture, the density matrix is given by

Prot (t) = exp (—iHot) prot:int (t) exp (1Hot), (1.17)

where prot:int () is governed by

ﬁtot;int(t) = _i[‘/int(t)aptot;int(t)]a (118)

with Vig(t) = efotye=iHot  The general solution of Eq. (1.18) and can be expanded

perturbatively:

¢
Protsint (t) = Prot:int (0) — / dt'[V(t'), protsint (t))- (1.19)
0

Tracing out the environment degrees of freedom, the above solution correspond to the
following equation of motion for the density matrix of the system:
t

Protsint (t) = —ITre[V (), protsint (£)] — /0 dt Trg[V (1), [V(t'), protiins (t')]]- (1.20)
This is an integro-differential equation for the system density matrix, which is difficult to
solve because of the time dependence of p in the integral term. Assuming that at ¢ = 0, there
is no entanglement between system and the environment, that is, pot(t) = p(0) Q) pr(0).
Typically the system couples to many energy levels of the environment that are close in
energy, therefore the time variable ¢’ for the reduced density matrix in integrand in Eq.
can be replaced by t and make the lower limit of the integral starting from —oo. This is
the Markov approximation, a memoryless property caused by the fast equilibration of the

environment. To this end, we obtain the Born-Markov master equation:

p(t) = —i[V(t), p(t)] —/_ dt' Tre[V (2), [V(t), p(t)]]. (1.21)

As a result, the time evolution of the system is governed by modified quantum dynamics,
which is probabilistically conserved in a non-unitary way. In the following, the Born-Markov
master equation will presented in more compact forms with further details. Namely, two

types of approach will be introduced, as they were used extensively throughout the thesis.
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The Bloch-Redfield master equation

The Born-Markov master equation is presented in arbitrary basis, and therefore is still
not convenient for numerical implementation. For the particular problem of interests, one
can diagonalize the system Hamiltonian Hg = ), wy|n)(n| and the density matrix can be

written in the eigenbasis [n) with elements py,, = (m|p|n) yielding

pmn(t) = _iwmnpmn(t) - Z Rmnk’lpkl(t)' (122)
k,l

The first term represents the coherent part of the in the equation of motion with transition
frequencies wyy;, = Wy, —wm, and the second term describes incoherent time evolution, where

R,ni1 1s called Bloch-Redfield tensor that reads
Ryt = 0 > T 45 r{<) ) p) 1.23
mnkl In Z mrrk + Omk Z lrrn Inmk Inmk* ( . )

T s

The rates Ff;gkl and FE;ZM are expressed by Golden rule

Ffiﬁkl = / dte™ N (Vips mn (8) Ving x1(0)) 2 (1.24)
0

Mo = [ e Womn (OVina ) (1.25)
0

Here (...)p = Trg(...pg) denotes the thermal average over the environment degrees of
freedoms. In other words, the Redfield tensor is obtained by the Fourier transform of
the correlation function (Vin(0)Vint(t))r at given frequency differences in the eigenbasis.
In reality, the environment degrees of freedoms are modeled by a set of N independent
harmonic oscillators whose coordinate variables are coupled to the system degrees of freedom
linearly. This model is referred to as the Caldeira-Leggett model, which is useful for a system
with many levels in principle. To incorporate the environmental effects into the system, we

introduce the spectral density of the environmental coupling:

J(w) = A2d(w — wa), (1.26)
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where « is the indices of the environmental mode and A, is the corresponding coupling

constant between mode a to the system, such that the thermal average is given by
> Pw .
C(t) = (Vine(t)Vine (0)) £ = dwJ(w) |coth ER cos(wt) — isin(wt) | . (1.27)
0

Therefore, the Redfield tensor is decomposed into products of system operators S and the

spectral density:

1 -

Fggkl = §Skn5lmc(wml) (128)
1 -

I §Skn5lmCT(wml), (1.29)

with C(w) = Jo© dte™tC(t). With Egs. and and the tensor R,k given in
Eq. we arrived at the Bloch-Redfield master equation. The spectral density can
be obtained either by spectroscopy experiment or detailed calculations, and those system
operators S are listed by all possible operators associated with two eigenstates in the Hilbert
space of the system that are coupled to the environment. The Bloch-Redfield equation is
widely used in different aspects of physics to model decoherence and dissipation processes.

For the application in the physics of quantum information science, detailed analysis
of the qubit dynamics benefits from the theoretical understanding of the dynamics of dis-
sipative two-level systems, which could be reduced to spin-boson model under realistic
conditions. The spin-boson model has been systematically studied in Ref.[18], with careful
discussions about the effects of an Ohmic bath, J(w) ~ w, the most common case in re-
gards to qubit dynamics. Based on Bloch-Redfield master equation, a theoretical approach
to dissipative qubit dynamics of a time-dependent Hamiltonian will be discussed in Chapter
4 and Ref.[19]. Especially, Landau-Zener transition will be reexamined in the presence of a
dissipative environment. At the time of writing of this thesis the author is aware that with
the progresses in AQC, more profound understanding of dissipative Landau-Zener physics

is seriously desired.
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The Lindblad master equation

The Lindblad master equation is a equation of motion for the system state p(t), given by
p(t) = —i[H, p(t)] + Z’YMD[LM]P- (1.30)
n

The first term is the von Neumann equation for the renormalized Hamiltonian H that
includes the system Hamiltonian as well as the renormalization in the presence of the
environment such as Lamb shifts and Stark shifts. The second term describes the dissipation
of the system: +, is the rate for the collapse operator L, and the superoperator D[A] called

Lindblad superoperator is given by
DlAlp = ApAT — % (Al4p+pala). (1.31)

The operators L,, can be specified not only from a microscopic picture, but also in a phe-
nomenological way.

The Lindblad master equation can be written a

p(t) = Lp(t), (1.32)

where L is the total Liouvillian operator. Eq. (1.32]) has a simple form of solution p(t) =

Lt

eﬁtp(O), in which the time evolution operator A; = e~" is a dynamical quantum map de-

scribing the state change of the open system over time t.
1. A; is completely positive and trace preserving.
2. Tr [Atp(O)OA} is continuous in ¢ for all valid observables O.
3. A; is Markovian, namely A, 4+, = Ay, - Ay, and Ag = Z.

The first property ensures that the dynamical quantum map connects valid quantum states,
and the second property ensures that there are no discontinuity in the time evolution of
observables. The third property states that A; does not depend on the memory of the time

evolution, only on specific point in time.
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While the Lindblad master equation is easily defined with a wide range range of ap-
plications, a lot of mathematical details and their consequences will not be discussed here.
However, for problems originated from quantum information processing, it is crucial to con-
sider the time correlation functions of observables, as well as the corresponding fluctuation
spectrum, which is defined in terms of the Fourier transform of the correlation function.

Suppose we have a set of system operators {S;}, and the time evolution of their expec-

tation values yields a closed linear combination of them,
d
3 (Si(0) = > Gi(S)) (1.33)
J

with some coefficient matrix G;;. With the Liouvillian operator £, the relation can be

rewritten as

d

%<Si(t)> =Trg {SiLp(t)} = Trg {(ﬂsz) P(t)} =Trg z]: GijS; | p(t) ¢ (1.34)

which leads to

LIS =Y "GyS;. (1.35)
J
Therefore we obtain
d _
—(Si(t+T)SK(E) = Trs {(ﬂsi) Apsrh ISkp(t)} (1.36)

= ) Gii(S;t+7)Sk(1)),
J

a conclusion called quantum regression theorem. The significance of the theorem is that it
allows us to evaluate explicit expressions for the time correlation functions and naturally
the fluctuation spectrum once the solution for the expectation value given by Eq. (1.33)), is

known.

1.4 Outline of the thesis

The thesis is structured as the following. The first part of the thesis explores realistic

problems originated from quantum information processing. Chapters 2 through 4 covers
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the first part. The second part of the thesis scrutinizes the dynamical aspects of many-body
localization; those materials are presented in Chapter 5 and 6.

In Chapter 2, we analyze the photovoltaic current through a double quantum dot system
coupled to a high-quality driven microwave resonator. The conversion of photons in the
resonator to electronic excitations produces a current flow even at zero bias across the leads
of the double quantum dot system. We demonstrate that due to the quantum nature of
the electromagnetic field in the resonator, the photovoltaic current exhibits a double peak
dependence on the frequency w of an external microwave source. The distance between the
peaks is determined by the strength of interaction between photons in the resonator and
electrons in the double quantum dot. The double peak structure disappears as strengths of
relaxation processes increases, recovering a simple classical condition for maximal current
when the microwave frequency is equal to the resonator frequency.

In Chapter 3, we analyze the full counting statistics of photons emitted by a double
quantum dot (DQD) coupled to a high-quality microwave resonator by electric dipole inter-
action. We show that at the resonant condition between the energy splitting of the DQD
and the photon energy in the resonator, photon statistics exhibits both a sub-Poissonian
distribution and antibunching. In the ideal case, when the system decoherence stems only
from photodetection, the photon noise is reduced below one-half of the noise for the Pois-
son distribution and is consistent with current noise. The photon distribution remains
sub-Poissonian even at moderate decoherence in the DQD. We demonstrate that Josephson
junction based photomultipliers can be used to experimentally assess statistics of emitted
photons.

In Chapter 4, we study the dynamics of a two-level system described by a slowly varying
Hamiltonian and weakly coupled to the Ohmic environment. We follow the Bloch—Redfield
perturbative approach to include the effect of the environment on qubit evolution and take
into account modification of the spectrum and matrix elements of qubit transitions due
to time-dependence of the Hamiltonian. This formalism is applied to two problems. (1)

We consider a qubit, or a spin-1/2, in a rotating magnetic field. We show that once the
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rotation starts, the spin has a component perpendicular to the rotation plane of the field that
initially wiggles and eventually settles to the value proportional to the product of angular
rotation velocity of the field and the Berry curvature. (2) We re-examine the Landau-Zener
transition for a system coupled to environment at arbitrary temperature. We show that
as temperature increases, the thermal excitation and relaxation become leading processes
responsible for transition between states of the system. We also apply the Lindblad master
equations to these two problems and compare results with those obtained from the Bloch—
Redfield equations.

In Chapter 5, we consider a one dimensional spin 1/2 chain with Heisenberg interaction
in a random parallel magnetic field. This system is known to exhibit the MBL transition
at critical strength of random field. We analyze the response of the chain when additional
perpendicular magnetic field is applied to an individual spin. We show that the response
changes across the MBL transition. Then, we propose a method for accurate determina-
tion of the mobility edge via local spin measurements. We further demonstrate that the
exponential decrease of the spin response with the distance between perturbed spin and
measured spin can be used to characterize the localization length in the MBL phase.

In Chapter 6, we consider a one dimensional spin chain system with quenched disorder
and in the presence of a local harmonic drive. We study the time evolution of the system
in the Floquet basis and evaluate the Bures displacement of the system in the Hilbert
space caused by the drive per one period. This displacement can be used to identify two
phases of the system: (1) the many-body localized phase, in which the distribution of the
distance exhibits long tails while its average value decreases rapidly as disorder increases;
and (2) the ergodic phase, in which the displacement distribution is narrow and its average
value weakly depends on disorder. This distinction in the average value of the displacement
between the two phases develops readily for system with ten or more spins. Therefore,
recently built networks of superconducting qubits subject to a local microwave drive can
simulate dynamics of a system in the many-body localization regime. We also show that

from thermodynamics point of view, the two phases can also be distinguished and hence
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probed by von Neumann entropy, energy fluctuations and spin diffusions, as long as the

drive is sufficiently weak.

1.5 Publication List

The work in this thesis is presented in six chapters. The contents of Chapter 2, 3 and 4
have appeared in three separate published works. The material of Chapter 5 and 6 is at
present being prepared for publication. In addition, there is another coauthored publication,
Ref.[20], whose material is not presented in the thesis.

Chapter 2 is based on Ref.[21], titled Quantum photovoltaic effect in double quantum
dots, and published in January 2013. This work was completed with Maxim G. Vavilov.
Support for this work was provided in part by NSF (DMR-1105178) and the Donors of
the American Chemical Society Petroleum Research Fund. Fruitful discussions with R.
McDermott and J. Petta were helpful.

Chapter 3 is based on Ref.[22], titled Full counting statistics of photons emitted by a dou-
ble quantum dot, and published in November 2013. This work was completed with Maxim
G. Vavilov. Support for this work was provided in part by NSF Grant No. DMR-1105178,
ARO and LPS Grant No. W911NF-11-1-0030. Fruitful discussions with R. McDermott, H.
Treci and J. Petta were helpful.

Chapter 4 is based on Ref.[I9], titled Nonadiabatic dynamics of a slowly driven dissi-
pative two-level system, and published in May 2014. This work was completed with Amrit
Poudel and Maxim G. Vavilov. Support for this work was provided in part by NSF Grants
No. DMR-1105178 and DMR-0955500, ARO and LPS Grant No. W911NF-11-1-0030.
Fruitful discussions with I. Aleiner, A. Glaudell, F. Nori, A. Polkovnikov, S. Shevchenko
and A. Levchenko were helpful.

Chapter 5 is based on a work preparing for submission, titled Response to a local quench
of a system near many body localization transition, as well as a related unpublished work.
This work was completed with Maxim G. Vavilov. Support for this work was provided

in part by NSF Grants No. DMR-1105178 and DMR-0955500, ARO and LPS Grant No.
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WO911NF-11-1-0030. Fruitful discussions with D. Basko, D. Huse, L. Ioffe, R. Nandkishore
and V. Oganesyan were helpful.

Chapter 5 is based on a work preparing for submission, titled Many-body localization in
a quantum system subject to a local periodic drive. This work was completed with Maxim
G. Vavilov. Support for this work was provided in part by NSF Grants No. DMR-1105178
and DMR-0955500, ARO and LPS Grant No. W911NF-11-1-0030. Fruitful discussions
with D. Basko, D. Huse, L. Ioffe, R. Nandkishore and V. Oganesyan were helpful.
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Chapter 2

Quantum photovoltaic effect in

double quantum dots

2.1 Introduction

The interaction of electrons in conductors with electromagnetic fields has long been consid-
ered within a classical picture of electromagnetic (EM) radiation. A widely—known example
is the photon assisted tunneling (PAT) in double quantum dot (DQD) systems[23], when
the EM field brings an electron trapped at the ground state to an excited state and fa-
cilitates electron transfer. This classical description of the EM field breaks in high-quality
microwave resonators based on superconducting transmission line geometry[24]. Interaction
of such EM fields with electronic devices require a quantum treatment known as the circuit
quantum electrodynamics (cQED)[25] 26].

Recently, several experimental groups studied systems consisting of a superconducting
high quality resonator and a DQD[27], 28, 29] 30} 1] or a voltage biased Cooper pair box[32].
The coupling strength between a resonator photon mode and electron states in a DQD is
characterized by the vacuum Rabi frequency g with reported values in the range of g/27 ~
108Hz. These systems call for re-examination of the PAT by taking into account a quantum

description of the EM field in terms of photon excitations. One may expect at least two
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Figure 2.1: (a) An illustration of a DQD and a transmission line resonator coupled to an
external microwave source uw. (b) A schematic view of the DQD. Electrons are confined to
the left (L) and right (R) dots by barrier gates BL, BM, and BR that also control electron
tunneling rates between the source, S, and the left dot, the left and right dots, and the right
dot and the drain, D, respectively. Electrostatic energies of two quantum dots are defined
by the plunger gates, PL. and PR, and the PL gate is also connected to an antinode of the
resonator, see e.g. Refs.[29, BI]. (c) Electronic states of the DQD are presented in both
the eigenstate basis (solid lines) and the left—right basis (dashed lines). Tunneling from the
excited state, |e), to the left /right lead, with rate I, 1,/r and from the left /right lead to the
ground state, |g), with rate I'y, /g , are illustrated by arrows.

important distinctions from the classical treatment: (1) the Lamb shift that renormalizes
quantum states of electrons and photons; (2) spontaneous photon emission that breaks
symmetry between absorption and emission processes and is important in systems with
either a finite voltage bias between the leads[33], 34} 35] or an inhomogeneous temperature
distribution[36].

In this chapter we study the photovoltaic current through a DQD coupled to a high-
quality microwave resonator at zero bias across the DQD. The resonator is driven by external
microwave source that populates a photon mode of the resonator, see Figure. The
photons excite electrons in the DQD and produce electric current even at zero bias, similar
to the classical PAT case[23] 37, 38]. We show that due to the coupling of electrons and
photons, the current as a function of the source frequency has a multiple peak structure

with splitting between the peaks determined by the coupling strength g and reflects the
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Lamb shift of electronic energy states. We also demonstrate that the interaction-induced
splitting is sensitive to the energy and phase relaxation rates in the DQD.

We note that the photovoltaic effect discussed here is a common phenomenon when
the current in an electronic circuit is generated by out-of-equilibrium EM environment.
Examples of this phenomenon include the current response of a DQD in the vicinity of the
biased quantum point contact[39] or another circuit element out of equilibrium[40] with
the electronic system. However, because out-of-equilibrium photons of the environment
have a broad spectrum, the generated current does not exhibit a resonant dependence on
parameters of the system that we observe in a system of a single mode high quality resonator

and a DQD.

2.2 Model

We consider a DQD system with each dot connected to its individual electron reservoir at
zero temperature and at zero bias between the reservoirs, see Figure. [2.1(b,c). The gate
voltages of the DQD are adjusted near a triple point of its stability diagram[23]. To be
specific, we choose a triple degeneracy point between (N, N;.), (N;+1, N;.) and (N;, N, +1)
electron states in the DQD and denote these states as |0), |L) and |R), respectively. We
model the system by the Hamiltonian H= Hpqp + H, + Hing, where Hpgp describes states

with an extra electron in the left or right dot, |L) or |R):

1
Hpgp = 36T + T T, (2.1)

with € being the electrostatic energy difference between the two states, and 7 being the
tunnel matrix element of an electron between the dots. The Pauli matrices are defined in
the subspace of states |L) and |R) as 7, = |R) (L| + |L) (R| and 7, = |R) (R| — |L) (L|. A

resonator driven by an external microwave source is described by the Hamiltonian
H, = hwoa'a + 2hF(a' 4 a) cos wt (2.2)

with a (a') denoting the annihilation (creation) operators for microwave photons in the

resonator, AiF' being the amplitude of the external drive of the resonator and wy (w) being
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frequency of the resonator (source). The interaction between the microwave field and the

DQ@QD system is represented by [33]
Hine = hgo(a’ + a)7s. (2.3)

This interaction describes the shift of energy difference between states |R) and |L) due
to the electric potential of the plunger gates defined by the microwave photon field. We
assume that the photon field is distributed between the left and right plunger gates, see
Figure. [2.1[b) and does not influence the source and drain voltage to avoid the rectification
effects[41] [42], 43].

Further calculations are more convenient in the basis of the ground, |g), and excited,

le) states of the Hamiltonian, Eq. (3.1)):

le) = cos(0/2) |L) + sin(0/2) |R) ,

lg) = —sin(6/2) |L) + cos(8/2) |R) . (2.4)

Here 6 = arctan(27 /e) characterizes the hybridization of the |L) or |R) states. The energy
splitting between the eigenstates 72 = v/e2 + 472 can be tuned independently by varying
¢ and T via dc gate voltages. We further eliminate the time-dependence in Hamiltonian
Eq. by applying unitary operator U = exp(—iwt(afa + ¢./2)) and utilize the rotating

frame approximation to obtain [33] 35]

H 1 .- out Q—w
= U HU — iU TR (2.5)

+ (wo —w)a'a + glac™ +a'o7) 4+ F(a' + a),

where g = gg sin 6 characterizes the actual strength of the coupling between the microwave
field and DQD states responsible for photon absorption or emission, the Pauli matrices
o, =le){e| —|g) {g], 0= = |g) (e| and o = |e) (g| are defined in terms of eigenstates of the
electron Hamiltonian, Eq. .

We analyze the behavior of the system with Hamiltonian Eq. in the presence of

relaxation in electron and photon degrees of freedom by employing the Born-Markov master
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equation for the full density matrix

7

h [H7 p] + »Cdissp- (26)

p = Liotp =

The first term on the r.h.s. of Eq.(3.4) describes the unitary evolution of the system and
the second term accounts for the dissipative processes in the resonator and DQD systems
[39]

Laissp = KD(a)p +~vD(0™ )p + %D(az)p
(2.7)

+ [Ty + FR,g)D(C;)P + (Pe, +Te,r)D(ce)ps

where D(x)p = (23:pr —ztap — pmu‘) /2 is the Lindblad superoperator. The relaxation
of the photon field in the resonator with rate x is represented by kD(a)p and the electron
relaxation from the excited state |e) to the ground state |g) with rate 7 is represented by
vD(0~)p. The last two Lindblad superoperators account for the loading of the ground
state |g) and unloading of the excited state |e) of the double quantum dot via electron
tunneling in terms of operators c. = |0) (e| and cg = |g) (0|, respectively. The tunneling
rates 'y ; = Iy cos?(0/2), gy = Ty sin?(6/2), T, = Iy sin?(0/2) and Te g = T cos?(0/2)
are written in terms of tunneling rates I';/, in the basis of |L) and |R) states.

Note that in Eq., the dynamics of state |0) only appears via the tunneling terms
involving D(c.)p and D(c};) p. These terms can be categorized by whether the empty state is
loaded from the left or right lead with coefficients depending on projection of the eigenstates
onto the left/right states, as shown in Figure. In this picture,[39] the photovoltaic

current is given by
0 0
I=el, <c082 3 (elp ) — sin? 3 0| p \0>) . (2.8)

in terms of the reduced density matrix p = Trpn{p}, where we traced out photon degrees

of freedom of the resonator. We also analyze the number of photons in the resonator,
N =Tr {aTap} , (2.9)

where we trace out both photon and electron degrees of freedom.
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Figure 2.2: The average number of photons in the resonator and the photovoltaic current
as functions of level bias € for 7/27r = 1 GHz, F = 50 us~! and wy/27 = 8 GHz. The
current is generated near the resonant condition when e = +4/h%wg — 47?2 (vertical lines).
The three curves represent different dephasing rates 7,4 the DQD.
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Figure 2.3: The average number of photons in the resonator and the photovoltaic current
as a function of the frequency w of the microwave drive for 7/2m = 1 GHz, F = 50 ps™*
and Q = wy = 27 x 8 GHz, g/2n = 48.5 MHz. For v, = 0, both average number of
photons N and the photovoltaic current show local minima at w = wpy and local maxima
near w = (E1+ — Ey)/h, shown by vertical lines. As the dephasing rate 74 increases, the
double peaks merge to a single peak at w = wy.
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2.3 Results

The average number of photons in the resonator, IV, and the dc component of photocurrent
can be found using the steady state solution of the master equation, , with p = 0. We
numerically find the full density matrix p for a double quantum dot and photon field of the
resonator in the Fock’s space using Quantum Optics Toolbox [44] and QuTiP [45], both of
which provide consistent results. The steady state solution for the density matrix p defines
the average number of photons N, Eq. , and the photocurrent, Eq. .

Our choice of parameters is motivated by Ref. [29]. We choose the relaxation rate v =
27 x 25 MHz, the resonator relaxation rate k /27w = 8 MHz, tunneling amplitude between the
individual dots 7 /27 = 1 GHz, the tunneling rate from a dot to a lead I';, = 27 x 30 MHz,
and the resonator frequency wy/2m = 8GHz. We note that to keep the coupling constant
finite, we have to take 7 ~ k), since g = gosin@, Eq. , vanishes for 7 = 0. Below we
fix go/2m = 200MHz.

First, we investigate dependence of the photocurrent on the separation between energy
levels in the double quantum dot, controlled by the electrostatic energy difference . We
take frequency w of microwave source to be equal to the resonator frequency, w = wy, and
fix the drive amplitude F = 50 us~!. Dependence of the average number of photons in the
resonator and the photocurrent on energy ¢ is presented in Figure. for three values of
the dephasing rate v4/2m = 0, 10, 20MHz. As the energy difference between the excited
and ground states of the quantum dot goes through the resonance {2 = wy, we observe a
significant suppression of the photon number in the resonator, see the top panel and the
inset in Figure [3.2] This is expected behavior because the DQD system enhances photon
absorption in the resonator at 2 ~ wg. Absorbed photons cause transitions between the
ground and excited electronic states. These electrons tunnel to the leads and generate
electric current though the DQD. This current is shown in the lower panel of Figure [3.2
and is peaked at € = ++/h%w3 — 4T?2 or £/(27h) ~ £7.75GHz, indicated by dashed vertical
lines.

One feature in Figure is that the photon number is also reduced at zero bias e, when
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Figure 2.4: The average number of photons in the resonator and the photovoltaic current
as a function of the frequency w of the microwave drive for detuned DQD and resonator
system with /27 = 8.1 GHz, wy/2m = 8.0 GHz, the intradot tunneling 7 /27 = 1 GHz,
and the drive amplitude F' = 50 MHz. The photon average number has a peak at w =
(Ey— — Ey)/h, Eq. , while the photovoltaic current exhibits a double peak feature at
w = (Ey 4+ — Ep)/h (vertical lines).
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the photovoltaic current vanishes. This suppression is a result of strong enhancement of
the coupling constant g = gy at € = 0, resulting in stronger dissipation in the resonator and
increase of off-resonant absorption rate. At the same time the photovoltaic current vanishes
at € = 0 due to cancellation between the two terms in Eq..

The curves for the photon number and the current do not significantly change after
the dephasing rate <y, is introduced in addition to the energy relaxation rate v. Dephasing
smears the resonant condition for the photon absorption by the DQD and has two effects:
(1) the number of photons increases a little near the resonance 2 ~ wp, see the inset
in Figure (2) the resonant absorption of photons by electrons is suppressed resulting
in reduction of the photocurrent. We note that in the case presented in Figure [3.2] the
first effect is stronger than the second effect and dephasing increases the magnitude of
photocurrent for the case of fixed w = wy.

Next, we consider the case when the frequency of the microwave source, w, is varied
while the energy splitting 72 of the DQD and the resonator frequency wg are fixed. The
microwave radiation is mostly reflected when its frequency does not match the difference
between energies F), 4+ of the resonator and DQD system defined by the Jaynes-Cummings

spectrum:
h hA
E, + = nhwy £ 5\/49271 + A2, Ey= ER (2.10)

where A = wp — ) is the detuning between the DQD and the resonator. We demonstrate
that for DQD with weak energy and phase relaxations, this resonant admittance of the
microwave source to the resonator results in the peak structure of the average photon
number and the photocurrent.

In Figure [3.3] we plot the average number of photons in the resonator and the pho-
tocurrent as a function of the drive frequency w for wy = Q and for the choice of other
system parameters identical to those for curves in Figure At vanishing dephasing rate,
74 = 0, we observe a double peak feature in both photon number and photocurrent curves,
see Figure These peaks at wy = (E1+ — Ep)/h are defined by the level spacing of

the Jaynes-Cummings Hamiltonian and are shown by vertical dashed lines in Figure [3.3
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The two peaks merge at w = wy as the dephasing rate increases and destroys quantum
entanglement between photons and DQD states.

At finite detuning between the resonator and the DQD, A 2 g = 27 x 48.5 MHz,
the eigenstates of the system become dominantly photon states or electron states of the
DQD. As a result, the microwave source increases the number of photon excitations in
the resonator when the microwave frequency is in resonance with the transition between
the photon-like states, wi - = (E1,— — Ep)/h. But the source has a weak effect at the
resonance with the electron-like states at frequency wy + = (E7 4+ — Ep)/h. We present the
corresponding dependence of the photon number and the photocurrent in Figure for
wo/2m = 8 GHz, /271 = 8.1 GHz (A = 100 MHz) and other parameters identical to those
for in Figs. and We indeed observe one large peak in the photon number near
the resonant condition for the dominantly photon state with energy E; _ while the photon
number does not show significant enhancement near the second resonance, corresponding
to the transition to the dominantly electronic state with energy F7 . The photocurrent
still exhibits double peak feature, but the peak corresponding to the photon resonance is
higher, when the microwave drive produces a higher photon population.

We now consider a more idealistic regime of significantly reduced tunneling and re-
laxation rates I'y = I, = v = 2w x 100 kHz, the drive amplitude F/2r = 30 MHz and
wo = ) = 27 x 8 GHz. In this case additional resonances develop, see Figure These
resonances correspond to excitations of several photons in the cavity by the microwave
source. When the frequency of the source satisfies iwn = F, + — Ep, the DQD-resonator
system experiences transitions from the ground state to the energy state E,, 1, ¢f. Ref. [46].
These multiphoton transitions result in peaks of the average photon number and the mag-
nitude of the photocurrent. Curves in Figure have three pairs of peaks at frequencies
wn+ = wo £ g/+/n marked by vertical dashed lines for n = 1,2,3. We notice that for
w = wj 2 the average photon number is nearly the same, see the top panel in Figure 3.6(a),
while the photon distribution function is different, Figure (b): at w = wa _ a non-zero

P, develops for a probability that the resonator contains two photons. This difference in
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Figure 2.5: (a) The average number of photons in the resonator and the photovoltaic
current as a function of the frequency w of the microwave drive for 2 = wg = 27 x 8 GHz,
the intradot tunneling 7 /27 = 1 GHz, and the drive amplitude F/2r = 30 MHz and
extremely low tunneling rates to the leads and the energy relaxation rate, Iy =1, = v =
2m x 100 kHz. The photon average number and the photocurrent have several peaks at
wn+ = (En+ — Eo)/nh with n = 1, 2, 3, these frequencies, calculated from Eq. are
shown by vertical lines). (b) The histogram presents the probabilities P, to have n photons
in the resonator steady state at drive frequency w; (dark bars) and wa (grey bars). (c¢) The
diagram is a schematic picture for the Jaynes-Cummings energy levels showing single and
two photon excitations.
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P,, indicates that the microwave drive line does not match the resonator to produce a two
photon occupation of the resonator at w = wi, but it matches the resonator to populate
the state with the energy Fs +, which then decays to the lower energy states with n = 1,0.

Next, we investigate dependence of the photon number in the resonator and the mag-
nitude of the photovoltaic current for different amplitudes F' of the drive. The above
discussion was mostly focused on a resonator containing less than one photon. As the drive
increases, the double peak feature evolves to a single peak at the drive frequency equal
to the frequency of the resonator, w = wg. We interpret this cross-over as a signature of
changed hierarchy of the terms in the system Hamiltonian. At weak drive, we have a JC
Hamiltonian with its peculiar energy levels, Eq., and the drive can be viewed as a
weak probe testing the spectral structure of the coupled resonator and DQD system. Once
the drive reaches the strength of the g coupling, g ~ 27 x 50 MHz, a proper way to treat the
system is to start with the Floquet—type states[38|, [47), 48] of the driven resonator and then
to take into account the interaction of these states with the DQD system as a perturbation.
In this picture, the photon resonance happens at w = wg. The coupling g is responsible for
the formation of the broader “wings” in curves for the average photon number and the pho-
tocurrent. These wings are more pronounced in the photovoltaic current, which is entirely
due to the coupling between resonator and DQD. This broad structure of the generated
current as a function of the source frequency is preserved even at stronger drive. Thus, the
shape of the photovoltaic curve might provide an experimental approach to quantify the

strength of the JC coupling constant.

2.4 Discussion and Conclusion

We analyzed the photovoltaic current through a DQD system at zero voltage bias between
the leads. The double quantum dot interacts through its dipole moment to a quantized
electromagnetic field of a high quality microwave resonator. The interaction is described
by the Jaynes—Cummings Hamiltonian of a quantized electromagnetic field and a two level

quantum system, represented by ground and excited electronic states of the double quantum
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Figure 2.6: Dependence of the average photon number and the current on microwave fre-
quency w for several values of the drive amplitude F'/27m = 5, 10, 15 MHz, at zero dephasing
74 = 0 and other parameters are the same as in data in Figure As the amplitude of
the drive increases, the two peaks merge together to a single peak at w = wy.
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dot. When a weak microwave radiation is applied to the resonator, the source acts as a
spectral probe that causes excitation of the system when the energy difference between its
eigenstates is equal to the photon energy fuw of the source. If this resonance condition is
satisfied, the microwave source populates the photon mode of the resonator and generates
a direct current though the double dot system even at zero bias.

We demonstrated that at finite, but still low energy and phase relaxation rates of the
DQD, both the average number of photons in the resonator and the photocurrent through
the DQD have a double-peak structure as functions of the frequency of the microwave
source. This double peak structure reflects an avoided crossing of the energy states of the
DQD and the resonator photons due to the interaction between the two subsystems and is
reminiscent of the Lamb shift by a single electromagnetic mode. We also found that in the
limit if extremely weak relaxation rates of the DQD, multiphoton resonances develop when
the energy difference between the states of the coupled system is a multiple of Aw.

As energy and phase relaxation rates of the DQD increase, the peaks in the photon
number and the photocurrent broaden and eventually merge in a single resonance peak at
the frequency wqg of the resonator. In this limit, the resonator photon mode and the DQD
are no longer described as an entangled quantum system and the resonant condition for the
interaction of the microwave source with the system corresponds to equal frequencies of the
source and the resonator mode, w = wy.

At stronger microwave drive, frequency dependence of the average photon number in the
resonator evolve from the Jaynes-Cummings double peaks at w = wg + ¢ to a single peak at
the resonator frequency wg. The single peak at w = wyq is a result of multi-photon transitions
at strong drive by the microwave source that all merge together due to finite width of multi-
photon resonances. Similar evolution to a single peak occurs for the photocurrent response,
although the photocurrent curve has a broader width as a function of the source frequency
w, this width corresponds to the strength of the coupling g between the photon mode of
the resonator and the DQD and may be used to characterize the strength of this coupling

in experiments.
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Chapter 3

Full Counting Statistics of Photons

Emitted by Double Quantum Dot

3.1 Introduction

The statistics of photons emitted by an electric current depends on the electron state of a
conductor. If the electric current were classical, the photon field would be in a coherent state
[49] with Poissonian statistics. An electron system with strong inelastic processes is char-
acterized by thermal distribution and produce black-body radiation with super-Poissonian
statistics of emitted photons. However, if the electron distribution is far from equilibrium,
the photon counting statistics may become sub-Poissonian [50], 511, [52].

I Several experiments have recently been developed to study the statistics of photons
in the GHz frequency range. Experiments [53] [54] [55] measured the photon statistics in a
steady state of high quality resonator and distinguished between the thermal source and
a coherent drive. The photon noise of a quantum point contact at finite bias was also
investigated using an amplifier [56]. An alternative approach to study photon statistics uti-
lizes a photon counter [57, [58]. An individual photon counter can provide the statistics of
emitted photons, while a system with two counters can be used for Hanbury Brown-Twiss

(HBT) interferometry [59], e.g. measurement of the second-order intensity correlation func-
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Figure 3.1: (a) An illustration of a DQD and a resonator (a \/2-transmission line) coupled
to a photon counter (PC). (b) In the DQD, electrons are confined to the left (L) and right
(R) dots by barrier gates BL, BM, and BR that also control electron tunneling rates between
the source, S, and the left dot, the left and right dots, and the right dot and the drain, D,
respectively. Electrostatic energies of two quantum dots are defined by the plunger gates,
PL and PR, and the PL gate is also connected to an antinode of the transmutation line. (c)
Electronic eigenstates of the DQD and tunneling from the left lead to the ground/excited
state with rate I'z, /., and from the ground /excited state to the right lead with rate Lg/er-

tion ¢ (7). Generic HBT measurement indicates that noninteracting bosons and fermions
would exhibit bunching and antibunching, respectively [60], while several more complicated
examples of photon statistics caused by quantum electron transport have been proposed in
systems with quantum point contact [50, 51, 52] and quantum Hall regime [61].

In this chapter we study statistics of photon radiation from a DQD coupled to a mi-
crowave resonator, a system that was recently studied experimentally by several groups
[28, 27, 31l 29]. We show that photon statistics is sub-Poissonian with reduced noise in
the flux of emitted photons from the resonator. This regime of reduced noise is robust
for the considered system. While it is widely expected that photons produced by an elec-
tron source may show sub-Poissonian statistics, such a regime usually occurs under several
stringent conditions. In particular, the emission statistics of a quantum point contact is
sub-Poissonian only if the voltage bias does not exceed twice the photon energy and the
contact has a single conduction channel, otherwise photons have super-Poissonian distri-

bution [50, 61, 52]. In the setup considered here, a combination of Fermi statistics and
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repulsion of electrons maintains the reduced noise in photon flux in a wide range of system
parameters. FEven a short dephasing time which is the main constraint for observation of
quantum effects in DQDs hardly changes the distribution of emitted photons. It is the
energy relaxation processes in the DQD that drive the photon distribution from sub- to
super—Poissonian as the relaxation causes equilibration of the whole system and brings the
photon field to a state similar to that of a thermal radiation. We argue that the system
of a coupled DQD and a resonator can be used to study a cross-over from non-equilibrium
to a thermal state in an interacting quantum system. Finally, our analysis indicates that
the Josephson-based photon counters [57, 58] are suitable for studies of photon emission

statistics by a DQD.

3.2 Counting Statistics Formalism

Double quantum dot coupled to a resonator

We study the statistical properties of photon emission by a voltage—biased DQD. The
Hamiltonian for a system of a DQD and a resonator, shown in Figure is presented as
a combination of three terms, H = Hpqp + Hpn + Hing. The Hamiltonian of a DQD in
the Coulomb blockade regime near a triple point in its electrostatic stability diagram [23]
is represented by

1
HDQD = §ﬁ€7'z + AT 7, (3.1)

in the basis of electron states in the left, |L), and right, | R), quantum dots with electrostatic
energy ¢ and the tunneling amplitude 7 in this basis, 7, = |L) (L| — |R) (R| and 7, =
|R) (L| + |L) (R|. The term Hp, = hwoa'a represents a noninteracting photon mode in the
resonator. The interaction between charge and photon degrees of freedom is described by
the Hamiltonian Hine = hgo (a’ + a) 7. [33, 35, 62, 21].

In further calculations, we use the eigenstates of the DQD Hamiltonian, Eq. (3.1)),
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namely the ground, |g), and excited, |e), states:

le) = cos(6/2) |L) + sin(6/2) |R) , (3.2)
lg) = —sin(0/2) |L) + cos(0/2) |R) .

Here 6 = arctan(27 /¢) characterizes the hybridization between states |L) and |R) due to
inter dot tunneling. The energy splitting between the eigenstates A2 = hv/e2 + 472 can be
tuned via gate voltages [23]. In the eigenstate basis, Eq. (3.2), and within rotating wave

approximation, the Hamiltonian H is

Q
H = %O’Z + hwoa'a + hg(aTo™ + ac™), (3.3)

where g = gpsinf is the effective electron—photon coupling constant, and o~ = |g) (e,
ot =le) (gl

We analyze the behavior of the system with Hamiltonian Eq. (3.3) in the presence of
decoherence in electron and photon degrees of freedom and tunneling of electrons between

the DQD and the leads by employing the master equation for the full density matrix
p=Lo=—[H,o] + Drp (3.4)
where the commutator describes the unitary evolution of the system and
Diotp = kK(a)p + Dpqpp (3.5)
accounts for the total dissipative evolution described by Lindblad superoperators

K(z)p = <2:15,0&:Jr —zlap — p:UTx) /2. (3.6)

The first term, kK (a)p, represents photon detection by an ideal photon counter with rate

k. The second term,
Dpgpp =7 K(c7)p + l;’C(ffz)p +TuK(c])p + TuK(cr)p, (3.7)

describes dissipative dynamics of the DQD. Here, 7,/C(c7)p corresponds to electron re-

laxation from the excited to ground states at zero temperature; ’}/¢IC(UZ)[)/2 represents
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dephasing with rate 74; the last two terms in Dpqpp account for the processes [35] of load-
ing state |L) from the source with tunneling rate I'; and unloading state |R) to the drain
with tunneling rate I';, see Figure and we introduced ¢, = |0) (R| and c; = |L) (0].

We calculate the full counting statistics (FCS) of emitted photons defined as probability
distribution P,(t) to count n photons during measurement time ¢. For a lossless resonator,
the average photon count (n) = Y.nP,(t) = kNt is determined by the photon number
N = (a'a)g; = Tr{psta’a} in the resonator and the photon detection rate [63] x, here pg; is
the steady state solution of Eq. : Lpst = 0. In particular, we are interested in the Fano
factor, Fyn = [(n?) — (n)?]/(n), that characterizes its noise property. By definition, photon
emission is Poissonian if Fj,;, = 1, while for sub-(super-) Poissonian processes, F, < 1

(Fpn > 1).

Quantum jump approach

In this section we utilize the quantum jump approach [64] to calculate the FCS. The Liou-
villian in Eq. (3.4)) can be decomposed as

p(t) = Lp(t) = (Lo + T) p(t), (3.8)

where we have singled out the jump superopertor, Jp = kapa’, to describe the stochastic
quantum jump associated with photon detection, and Ly governing the deterministic dy-
namics of the system. Since quantum jumps are discretized in counted photon numbers,
the full density matrix p(t) can be resolved in terms of individual components p(™ (t) repre-
senting a quantum trajectory with n photons being counted by the photon detector during
time interval [0, ¢]:

p(t) = pM(t). (3.9)

By definition, the equation of motions for p(™(t) is

P (t) = Lop™ (t) + T V(). (3.10)
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These equations of motion are coupled and therefore hard to solve. It is more convenient

to define the generalized density matrix

it s) = S 5" ), (3.11)

by introducing the counting variable for photons, s. The equations of motion for p(t, s) is

obtained by multiplying Eq. (3.10) by s™ and taking sum over n,
p(t,s) = M(s)p(t, s), (3.12)
with
M(s) = Lo+ sT. (3.13)

For s = 1, Eq. (3.12) reduces to the original master equation Eq. (3.4)). The formal solution

of Eq. is
p(t, s) = eMBE 50, ), (3.14)

where the initial state is chosen to be the steady state, p(0,s) = pst.

Next, we introduce moment generating function
G(t,s) =Tr{p(t,s)} =Tr {eM(s)tﬁ(O, s)} . (3.15)

This function permits one to calculate the higher order moments. Indeed, the n resolved

density matrix allows us to obtain the FCS of the system by taking trace of p(™ (¢):

Po(t) = Tr{p™ ()} (3.16)

Then, according to Egs. (3.11) and (3.15), we identify

G(t,s) = s"Pu(t). (3.17)

n
The probability distribution P, (t) is given by the inverse Fourier transform in parameter
s = exp(ix):

o —in iy AX
Pn(t)—/ e Xg(t,ex)%. (3.18)
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The factorial moments ((n™))¢ of n can be obtained by derivatives of G(¢, s):

m—1 m s
()= Y Pat) [J (n ) = L0 (319)

=0

s=1
We note that Eq. (3.14]) is understood as a Dyson series, therefore the generalized density

matrix can be expanded into a sum of n photon detections:

AL, s) =S(t,0)pu + 3 / - / " (3.20)
S(ty ) s(tn) T (1) - - - S(to, 1) T (£1)S (1, 0)psts

where S(tlytg) = exp [ﬁo(tl — tg)] .

Computation of the Fano factor

In principle, the method described in the previous subsection can be used to calculate
P,(t) and then the Fano factor in terms of the first and second order factorial moments,
using Eq. . However, evaluation of factorial moments involve derivatives of generating
function G(t,s) over s, which is not convenient in practice for numerical calculations. In
this subsection, we describe a numerical method more suitable for numerical evaluation of
Fano factors.

As mentioned in the previous subsection, photon counts over measurement time ¢ are
associated with evolution of the generalized density matrix subject to the corresponding

quantum jump J. Fluctuations in the number of counts are given by

1 t t
n20) =5 [t [ o (167 (0). 0T 021} (3.21)

where 07 (t) = J(t) — J(t) is the quantum fluctuation of the photon counting measure-
ment and J(t) = kN (t) = TrJ ps is the average photon count rate; {A, B} stands for an

anticommutator. According to Eq. (3.20)), we take first two orders of derivatives over s and
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find the correlation function of photon counts during measurement time t:

§2Trp(t, 0" Trp(t,s)

/ dtl/ dt? 5s(t1)ds(ta) |,
t

/ g 1At 5) 5Trp(t s)

b
) s=1

= 2/ dty /tl dta (T (t1)S(t1,t2)T (t2))

(3.22)

_l’_

Note that we have implied t; > t5 in the second line and thus the term with ¢; < to is
added to symmetrize the expression with switching on time labels. Then, one can integrate

Eq. (3.22) with respect to t; and ¢y

(6n?) / / dtydtyJ? (3.23)
= 00y +2 [ ar(t ) [T (TS0 Tpa) - )
— (n(t)>+2J2/ dr(t — 1) (gr(i)( ) — 1),

using the second order correlation functiont of photon field:

@/ _ (aTal(T)a(T)a) _ Tr {a'ae’™ (apsal) }
ol (afa)? Tr {atapy }?

(3.24)

Eq. (3.23) is the famous Mandel’s photon counting formula [65]. Taking into account that
t is large compared to the characteristic memory time of the system, Eq. (3.23]) reduces to

the expression for the photon Fano factor, independent of ¢ [65], 66]

_ (om?) _ > @)
e e 2J/ dTTr{gpi (r) — 1}. (3.25)

Following Refs. [67, [68], we introduce the “Dirac notation” in Liouvillian space for
steady state |st)) = pst and a dual vector ((¢| = 1. The inner product defined in Liouvillian
space is the trace over operator “ket” in state “bra”. For example, the inner product of the
two former objects is given by ((e|st)) = Trpg, = 1. It is then useful to define the projector
P = P2 = |st)){{e| onto the steady state as well as its complement Q = 1 — P. Note that

a useful property of P is LP = L|st))({e| = 0 and PL = 0, and therefore £L = QLQ. The
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propagator S(7) in the second line of Eq. (3.23) can be decomposed as S(17) = P+ QS(7)Q,
and thus Tr (TPJT pst) = ({e|T|st))({e|T|st)) = J?. We obtain

t—o00
Fon=1+ 3/ drJOS(1)QT (3.26)

2
zl—jﬂLﬂM”QJw}

2
=1- S {(elTRIIst)),

where R = QL7 1Q is the inverse of the Liouvillian projected out of the steady state.

Eq. is the key step to evaluate photon Fano factor. We also have to find the
inverse of the Loiouvillian, R, and project the result out of the steady state. In practice,
inverse of the Liouvillian matrix with large dimension is numerically unstable, but we can

evaluate the combination |W)) = RJ|st)) determined by the following equation

LIW)) = LRI |st)) = QT [st))
= Jlst)) = Ist)){{e| T Ist)), (3.27)

where the second equality is obtained by the relation LR = LOL1Q = LO-P)L7'Q = Q.
To this end, the solution |W)) in Eq. (3.27)) is equivalent to the inverse R [67]. At the end
of the calculation we fix the solution by projection out of the steady state by condition

((elW)) = Tr {RT pst} = 0, accomplished by premultiplication of projector Q|W)).

Charge full counting statistics

Charge FCS through a double quantum dot was studied earlier in Refs. [69} [70] [71], [72, [73]
68, [67, [74], [75]. Here we provide a quick review of the relations for the electric current and
current noise through the DQD using the master equation formalism. The current operator
is defined as I = el',|R)(R| = el'vclc,. The de current is given by the expectation value of

I with respect to the steady state solution pg for the density matrix,

I'= el Tr{|R) (R pst }- (3.28)
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Figure 3.2: Dependences of (a) the electric current I through the DQD, (b) the average
photon number N in the resonator, (c) the electron Fano factor F,j and (d) the Fano factor
F,y, for emitted photons are shown as functions of the electrostatic bias he near the resonance
at €9 = —y/wi — 4T2. Solid (dashed) lines represent the case for v, = 0 (7, = 2T'). Other
system parameters are I';, = I', wg = 800I', 7 = 200I', go = 5I', k = 2I' and v, = 0.
Dotted line in panel (a) refers to elastic electric current through a non-interacting DQD.

The spectral density of the current fluctuations is defined by the relation

S(w) = /_OO ((T®)I(t+7)))edt, (3.29a)
(T)I(t+7)) = <f(t)f(t + T)> e (3.29b)

The first term in Eq. (3.29b|) accounts for the concurrence of two electrons at times ¢t and
t+7
(F) It +7)) = g2 (t,7) + el8(7), (3.30)

(2)

el

Tr {c:[cre“ (cr pstci> }

i 2
Tr { CrCrPst }

where the second order correlation function g’ (7) is given by

gg)(T) — (3.31)
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The last term in Eq. (3.30) represents counting the same electron at ¢ and t + 7.

Using Egs. (3.29) and (3.31), we can write the current noise spectral function in the

form:

S(w) = I? /00 (gg)(T) - 1) e“Tdr + el. (3.32)

—00

(2)

o () is related to the current

This result shows that the second order correlation function g
noise in both frequency and time domains. In particular, the Fano factor Fy of the charge

current that characterizes the low frequency limit of S(w) is [72]

o0 gy % /Oo (g(z)(T) . 1) dr. (3.33)

el el

The formalism discussed above can be further generalized to study cross-correlation
functions of electron charge transfer and photon emissionﬂ Experimental observation of
such cross—correlations is a challenging task, but can be achieved by combining charge

sensing measurements [76] and photon detection [57].

3.3 Ideal Photon Counter

In this section we consider a system consisting of an ideal photon counter and a DQD with
equal tunneling rates through left and right contacts, I';,, = I, and the interdot tunneling
amplitude 7 = 200I". We take wg = 800", and the electron-photon bare coupling gy = 5I".

In Figure we present (a) dependence of electric current I = eF,,(c;[cr)St, (b) the
average number of photons in the resonator, N = (afa)s, (¢) the Fano factor of electronic
current, Fgj, and (d) the Fano factor for photon flux, Fpy,. For the former two quantities,
we evaluate pg and take corresponding expectation values. Solid lines in Figure [3.2] are
evaluated for an ideal quantum dot with . = 74 = 0. In this case, the amplitudes of
electric current and the photon flux have a well pronounced peak at the resonant condition
Q) = wg, while away from the resonance, photon production is suppressed, N — 0, and the
current approaches Iy = eT2T'/(%2 4+ 3T?) (a dotted line in Figure ) for elastic electron

transfer through a DQD decoupled from the resonator [77]. Fano factors for both electric

Lo be discussed elsewhere.
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Figure 3.3: (a) The second order correlation function gﬁh(2)(7) for photons as a function
of time 7 at resonant condition 2 = wy for different values of energy, 7., and phase, -4,
relaxation rates. (b) The photon Fano factor Fpj, as a function of relaxation rate + in three
cases v, = Y4 = 7y (solid line), 7, = v and 7, = 0 (dotted line), 74 = v and v, = 0 (dashed
line). (c) Fpn as a function of photon detection rate x shows a flat behavior for x 2 T
Other system parameters in both panels are I';, = I', wg = 800I', T = 200I', gg = 5T,
x = 2I" and 4 = O[for (a) and (b)].

current and photon flux are reduced below 1/2, indicating sub-Poissonian statistics with
strong suppression of charge and photon noise at the resonance.

Inelastic relaxation facilitates electron transfer through the DQD and increases the
electric current above I even far away from the resonance, |2 —wp| > I'. In the presence
of such background current, only a weak enhancement of the current occurs at ) = wg. The
electron Fano factor is reduced below unity for v, # 0, and a resonant electron transfer with
photon emission does not significantly affects Fy, see Figure [3.2c. We observe a resonant
emission in the photon flux, see dashed line in Figure [3.2b, but the photon Fano factor,

F, is closer to the value for the Poissonian statistics, F' = 1.
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Figure 3.4: Probabilities P, to have n emitted photons during time ¢ at resonance {2 = wy
for (a) an ideal DQD without decoherence of electronic states, 7. = 74 = 0 and t = 75/T;
(b) a DQD with inelastic relaxation 7, = 2I', 74 = 0 and ¢t = 145/T". Other system

parameters in both panels are I'; , =T, wg = 800I', 7 = 2001, gg = 5I' and x = 2I'. A thin

curve in both panels represents the corresponding Poisson distribution P,sp) = e "n"/n!

with 7 =) nP, equal to the average number of emitted photons.

To evaluate the second order correlation function glgi) (1) shown in Figure , we

compute pg and diagonalize the total Liouvillian superoperator £ to obtain exp (£7). The

thick solid line shows gl()i) (1) for an ideal DQD, 7 = 74 = 0. The probability to observe

two photons simultaneously is reduced, gr()i)(O) < 1, indicating photon antibunching. As

7 becomes longer than ~ 1/T", function gr(i) (1) increases and eventually approaches its
asymptote, gl(i) (1 — o0) = 1. The integral in Eq. with such gl(i) (1) is negative and
Fon < 1 (sub-Poissonian) H

In the presence of inelastic relaxation in the DQD, g}(i) (0) increases and gr(i) (1) reaches
its long-time asymptotic value 1 at a shorter time scale. However, pure dephasing, v, does
not significantly change the shape of gSl)(T), because individual photon emission is phase-
destructive. We also investigate the dependence of Fy, on inelastic, ., and dephasing, 74

in Figure |3.3p. The inelastic relaxation, v, = v and 74 = 0, recovers F},}, to its Poissonian

2the modified BR equations can be numerically solved using standard integration methods for a system
of linear differential equations with time-dependent coefficients. Alternatively, we obtained same results
using the BR functions of the QUTIP package [45] with a proper adjustment of the system Hamiltonian and
the interaction term, see e.g. Egs. and @, for time—dependence of the eigenstate basis.
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Figure 3.5: Dependence of photon noise Fano factor on (a) photon detection rate x and
(b) the bare coupling constant go. In panel (a), the bare coupling constant is fixed go = 5T
and in panel (b) the photon detection rate is fixed x = 10I". Solid (dashed) lines represent
results for numerical (analytical) calculations with method described in Sec. (Sec. .
Other system parameters are I';,, = I, wog = 800I", 7 = 200I". Both plots indicate that the
analytical results agree with numerical in the limit x 2 go, .

value, F,, = 1, as a consequence of the reduced memory of the system, ggﬂ) (1) — 1,

due to inelastic relaxation. Pure dephasing, 74 = 7 and ~, = 0, has weak effect on Fyy
even for large values of 74, as dephasing does not change 9;(51) (1) to modify the integral
in Eq. for F},,. The addition of dephasing to relaxation, v4 = v, = <, makes no
significant corrections to Fp, when compared to Fun(7r,0).

The dependence of the photon Fano factor on the photon detection rate & is also studied.
As k decreases, the average photon number in the resonator increases. At large N, photons
already present in the resonator cause stimulated emission by the DQD [32] 35]. For an
ideal DQD without energy relaxation, . = 0, the photon Fano factor grows fast for k < T
see Figure 3.3c. On the other hand, if the energy relaxation in the DQD is significant, the
photon Fano factor can exceed unity and the photon field exhibits properties of a thermal

state. In this respect, inelastic processes in the DQD enhance photon noise. For a strong

photon detection rate, x 2 v, g, and consequently a low photon number in the resonator,
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the back-action of the photon field on electrons is negligible.

In Sec we apply the adiabatic elimination method [59, [34] [78] to study photon
statistics emitted by a quantum dot.

Next, we present the distribution function of the photon counts n over time ¢. For this
purpose, we compute p(t, s) with matrix exponent exp [M(s)t] and integrate over counting
field , see Eq. and Eq. . For v, = 74 = 0, we take t = 75/I" and the distribution
P, (t) is shown in Figure 3.4h. The average value of photon counts, (n) = > nP, ~ 27.6
is consistent with (n) = Nkt with N = 0.184 and their variance (n?) — (n)? ~ 11.6, in
turn gives Fp, = 0.42, both of which coincide with previous calculation, see Figure 7d
at € = g9. We present the Poisson distribution with the same expectation value (n) by
narrow black dots in Figure [3.4a. P, is closer to the Poisson distribution for a system
with relaxation 7, = 2T' [see Figure [3.4b], where t = 145/T, (n) ~ 27.6 (N = 0.095) and
Fon = 0.76.

3.4 Adiabatic elimination of photon degrees of freedom

In the limit of strong photon detection rate, k > v, g,I", the photon field decays so fast

that the density matrix can be approximately factorized as

p(t) = po(t) (10)(0]), (3.34)

where |0) is the vacuum state of the photon in the transmission line and pp(t) is the
reduced density matrix of the DQD. Thus we can adiabatically eliminate the photon mode,
and obtain the equation of motion for the reduced density matrix gp(t, s) in the interaction

picture [59],

po(t,s) =I/D(c])pp(t, 5) + TnD(cy)ppl(t, s) (3.35)
+7%D(0 7 )pp(t,s) + (s = )T (07 )pp(t, s),

where v, = 4¢?/k is the photon-induced relaxation rate associated with the spontaneous

emission in this large s limit and . = 7, + vpn. Therefore photon absorptions can be
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reflected by the jump superoperator J (o7 )pp(t,s) = vpho~ pp(t, s)ot. In the basis pp =

(P0, Pg» Pges Pegs Pe) s the matrix M(s) in Eq. (3.12) is given by:

—4T;  —20,C-  —T.Sy —T,.Sy 2T, Co +
2ICy+  21Cy,— —I'Sy —I'Sp 4y + 457ypn
M(s) = i Sy ISy 2T, — 27, 0 -I,.Sy ;
Sy ISy 0 —oT, — 27, .
—2TCy.— 0 . ~-T,Sp  —2TCoy — 47s

(3.36)
where Sp = sinf and Cp + = cosf & 1.

To calculate the generating function G(s,t) and its derivatives, we take the Laplace

transform of the generalized density matrix, Eq. (3.14]),

pz,8)p = (2 = M(s))"'5(0, 5)p. (3.37)

Since the long time behavior of the solution is determined by the residue of the generating
function at the pole near z = 0, i.e., G(t,s) ~ g(s)e*! with g(1) = 1, we can expand the

pole around s = 1:

20 = Z ci(s — 1), (3.38)
i>0
and obtain, from Eq. (3.19), the first two moments, ((n?)) = ((n — (n))"):
99

== t :
() = 55 _ + ait, (3.39)
<<n2>>—a—29 _| (%9 2—@ + (c1 4 2¢2) t (3.40)

08|, Os 0s » ! 20 '
which give the mean and variance of the probability distribution, respectively. In the

asymptotic limit, ¢ — oo, all the information about the moments is included in the expansion

coefficients ¢;. For instance, the Fano factor is given by [34] [7§]

1+ 3.41
) o ()

To find the coefficients ¢; and ¢y, we consider the equation
det (201 — M(s)) =0, (3.42)
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with zp = ¢1(s — 1) + c2(s — 1)+ O(s — 1). Then we can expand Eq. in powers of
s and let the coefficients for each power of s — 1 be zero. This procedure generates a set of
equations with ¢; to arbitrarily large ¢. We provide two examples below.

First, we consider I'; = I', = I" and 8 — 7w with fixed coupling constant g, the case in

which the two levels in the DQD are weakly overlapping, and we obtain

’Vphr
= 3.43
C1 27* + Fa ( )
2
Yo I'(ys + 2T
o = —Lg). (3.44)
(27 + 1)
The Fano factor is given by
2 2T
le_M<17 (3.45)

(27 + F)2
corresponding to the sub-Poissonian noise. When the DQD is tuned to its charge degener-

acy, 6 = m/2, the solutions then read

_ 3.46
4T 692 4 119,00 + 402 (3.46)
V2L (s + 2T) (493 + 14927 + 317,12 + 20T%) (3.47)

C P . .

? (672 + 117, + 472)3
The Fano factor in this case is
2von (4792 + 14~42T + 31,12 + 2013

P A G T ) (3.48)

(692 + 117,T + 41'2)

again, giving the sub-Poissonian noise. In both cases, Fano factors are below 1 for v, # 0,

indicating that it is the interaction between photons and electrons that gives rise to the
sub-Poissonian statistics.

As mentioned above, this analytical method is valid in the limit when & is large. We

hereby make a comparison between analytical and numerical results, see Figure In both

plots, we do not consider dephasing effects. The calculations indicate that the analytical

method presented above agrees with numerical results in the limit x 2> gg, .
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3.5 Photon Counting Statistics Measured By Josephson

Photomultipliers

In this section, we demonstrate that emitted photon statistics can be measured and justi-
fied by actual devices. A possible measurement is based on recently developed Josephson
photomultipliers (JPM) [57, [79]. In these devices the Josephson coupling E; dominates
over charging energy F., therefore it is convenient to write the Hamiltonian of the JPM in

terms of the phase operator ¢ across the Josephson junction:

E, &*

Hyjpy = ——S—
JPM 2 g2

—Ey (cosqb — éqﬁ) , (3.49)

where [ is the biased current and I is the critical current of the junction. For I < I, the
potential energy takes a “washbroad”shape, with a few discrete energy levels in the minima
separated from the continuum. In this manner, we can tune the biased current such that
only two phase states are bounded in the local minima.

Next we couple the microwave resonator to the JPM with Jaynes-Cummings type in-

teraction. The total Hamiltonian is then written as

hwypm "
2 zZ9

H = H + hgipm(a'v™ +avt) + (3.50)

where H is the Hamiltonian Eq. (3.3), gspm the coupling constant between the JPM and
a resonator mode, and the Pauli matrices v* and v, are defined in the basis of eigenstates
of the JPM spanned by |E) and |G). In a similar manner, the dynamics of the system is

governed by the following master equation

p = Lp= _%[ﬁa pl + Diotp, (3.51a)
Dtotp = /io/C(a)p + DDQDp =+ DJPMp, (3.51b)

where
Dypmp = 1K ([VIE]) p+7aK (07 )p + YeapL(|G) (V) p (3.51c)

with |V') referring to a voltage regime of the junction, - is the tunneling to this regime from

the excited state and ~ycap is the capturing rate from the voltage regime to the ground state.
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By defining state |V'), we imply that the junction is out of the Hilbert space of two localized
states |G), |E) near a local minima of the Josephson energy and does not correspond to a
particular quantum state. While the junction evolves out of these two states, a finite voltage
develops that can be identified by the measurement circuit as a photon detection signal.
Then, the dissipation in the circuit leads to recapturing the junction in its ground state
and the operation cycle closes. For this measurement scheme, we use the similar formalism
introduced in Section [3.2] to calculate the Fano factor and FCS associated with the jump
operator Jp = w|V)(E|p|E)(V].

Black thick lines in Figure |3.6| correspond to the JPM measurement without energy
relaxation and thin line are taken from Figure [3.2d and correspond to the Fano factor
measured by an ideal photon counter for the same set of parameters of the DQD. Even
though Rabi splitting appears due to coupling between JPM and microwave mode, a fairly
good agreement between the ideal and JPM models of the photon counter indicates that
sub-Poissonian statistics of photon emission by a DQD can be experimentally observed.
The green lines in Figure [3.6] represent the measured Fano factor with energy relaxation
rate 74 = 1.5I" in the JPM, indicating that energy relaxation of the measurement device
would spoil the noise characteristics. This is reminiscent of reduction of quantum efficiency
of measurement device [58]. The FCS of JPM recordings is shown in Figure for cases

v = 0,20, both of which agree with Fano factor calculation in Figure [3.6

3.6 Conclusions

We investigated the statistics of photons emitted by a biased DQD coupled to a lossless res-
onator. We calculated the time correlation function gl(i) (1) and found that photons exhibit
antibunching, ¢ (1) < ¢® (7 — 00) = 1. We also calculated photon counting statistics
P,(t) of observing n photons during a fixed time interval ¢. We find that distribution
P, (t) shows a sub-Poissonian statistics if measured by an ideal photon counter. We also
demonstrate that photon full counting statistics can be accurately studied experimentally

by utilizing a Josephson photomultiplier [57, [79].
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Figure 3.6: Comparison of Fano factor measured by an ideal photon detector and JPM
with the same set of parameters of a DQD. Other additional parameters for JPM model
are gyjpm = o', wipm = wo, ko = 0.6, Ycap = 1.5I' and ~; = 1.5I". When we introduce
the energy relaxation rate 74 = 1.5I" for the JPM, the resultant Fano factor (green lines)
increase towards unity.
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Figure 3.7: Probabilities P, to have n JJ recordings during time t at resonance ) = wy
for (a) an ideal DQD without decoherence of electronic states, v, = 74 = 0 and t = 132/T;
(b) a DQD with inelastic relaxation 7, = 2I', 75 = 0 and t = 293.3/I". Other system

parameters in both panels are I'; , =T, wg = 800I", 7 = 200I', go = 5I' and x = 2I'. A thin

curve in both panels represents the corresponding Poisson distribution Pép) = e "n"/n!

with n =) nP, equal to the average number of emitted photons.

In recent experiments, decoherence rates were comparable to the strength of the electron—
photon coupling. For this reason, we investigated the effect on charge and photon statistics
of pure dephasing in the DQD and energy relaxation. We found that pure dephasing does
not significantly modify the charge transfer or photon emission statistics, but the inelastic
relaxation processes result in several drastic changes (see Figure[3.2): (i) The electric cur-
rent and its noise acquire strong background as the inelastic processes facilitate the charge
transfer throughout the DQD, and the peak in I and the pit in Fy; at the resonant condition
E. — E4 = hwy are flattened. (#) The photon number N at the resonance is suppressed as
the effective photon source is reduced due to additional channels for the e — g transition
via inelastic events. (7i) Photon Fano factor Fy as a function of the level spacing is flatten
as well. In the presence of inelastic electron relaxation, the memory time of the DQD is

reduced, which increases the photon correlation function gﬁ) at short time scales[see Fig-
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ure ] and brings the photon Fano factor to its Poisson value, F},;, = 1, as shown in

Figure |3.2
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Chapter 4

Nonadiabatic dynamics of a slowly

driven dissipative two-level system

4.1 Introduction

The increasing demand for accurate control of quantum devices using high-fidelity control
protocols [80} 81} 82, [83],[84] has stimulated interest in the study of the dynamics of quantum
systems in response to slowly varying Hamiltonian. Moreover, rapid progress in the field
of adiabatic quantum computing has fueled further interest in and need for more careful
analysis of the dynamics of quantum systems whose parameters vary slowly in time. [85] In
addition, decoherence in any real quantum system sets a rigid constraint on the time interval
during which a quantum protocol must be carried out, limiting all protocols to intermediate
time intervals that are shorter than the decoherence time. At these intermediate time scales,
both non-adiabatic corrections and coupling to the environment become equally important.

The previous analysis [80), [81) 86, [87] of the qubit dynamics with time-dependent Hamil-
tonians was based on the Lindblad master equation [88, [89] that describes the interac-
tion with environment in terms of dephasing and transition processes characterized by
phenomenological decoherence rates. An alternative microscopic approach, formulated

as a perturbative theory for a quantum system with a time-independent Hamiltonian
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interacting with its environment, introduces the Bloch-Redfield (BR) master equation
[90, 91, [92] 93], 94]. If the Hamiltonian of the system changes in time, the BR approach has
to be modified to properly account for a non-adiabatic corrections.

In this chapter we extend the BR approach to account for slow evolution of the system
Hamiltonian in the presence of the environment. The main concept of the BR theory is based
on the identification of decoherence processes in terms of the matrix elements for transitions
caused by environment in the eigenstate basis of the quantum system [90] 911, [94]. For the
Hamiltonian that varies with time, one can still use a basis defined by eigenvectors of the
Hamiltonian [95] [96, 92, 07, 98, 99, 100} 10T, 102}, 103], where the Hamiltonian is always
represented by a diagonal matrix H = UHU', where the unitary transformation U denotes
a transition from the original basis to the eigenstate basis. Time-dependence of U produces
an extra term in the time evolution of the quantum system that is effectively described by
the new Hamiltonian H — iU8,UT. This expression is not necessarily diagonal and another
basis transformation is required. Such series of diagonalization transformations can be
continued indefinitely, but for slowly changing Hamiltonian, the series can be truncated after
a finite number of transformations neglecting terms of the higher order in time-derivatives
of the parameters in the Hamiltonian. In addition to changes in the effective spectrum of
the system, matrix elements representing coupling between the quantum system and its
environment are also modified, resulting in a redefinition of the transition rates for the
system.

We focus our analysis on the dynamics of a two-level quantum system — a qubit or a
spin-1/2 system — in the presence of time-dependent field, which we refer to below as the
control field of the qubit. We study the dynamical response of the transverse magnetization
to quench velocity of the control field. The transverse magnetization measurements can
provide the value of the Berry curvature of a quantum system [87, [104] and,consequently,
characterize topological properties of a ground state of the system.

Since any real qubit is always coupled to its environment, it is necessary to perform

detailed analysis of the non-adiabatic dynamics of a qubit system in the presence of dissi-
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pation. To this end, we investigate the effect of pure dephasing and energy relaxation due
to the Ohmic bath on the qubit polarization. Our results indicate that the decoherence sup-
presses the transient wiggles of the out-of-plane qubit projection, thereby bringing up the
linear relation between the qubit response and the quench velocity. Thus, the dissipation
facilitates the Berry curvature measurement based on the non-adiabatic response, proposed
in Ref. [104]. Furthermore, our study is also applicable to other experimental techniques
that are based on an interference effect for the Berry phase measurement in qubits since
the drive parameter was changed slowly in measurements reported in Ref. [105], see also
Refs. [106), 100} 107] for theoretical analysis of the influence of environment on the Berry
phase.

We also apply the modified BR equation to the Landau-Zener (LZ) problem [108], 109,
110}, IT1] in a qubit coupled to environment at arbitrary temperature. The LZ problem in a
quantum system coupled to its environment has attracted significant interest recently, where
the environment was considered either as a source of classical noise [112] [113], or quantum
fluctuations that cause transitions between qubit states [114) 115, 116} 10T, 117, 118, 119,
120, [121], or pure dephasing [122, [86]. More recently, the LZ interferometry has attracted
a growing interest [123, 124, [125| [126] 127, 128, 129, 130]. Here we focus on the role of
quantum fluctuations in the environment that cause transitions between the eigenstates of
the qubit in the LZ problem. We argue that during the LZ transition, the matrix elements
of the coupling between the qubit and its environment must be considered in the basis of
eigenstates of the full qubit Hamiltonian and therefore, the matrix elements acquire an ex-
plicit time dependence due to rotation of the eigenstate basis in addition to straightforward
dependence on the energy difference between the eigenstates. This treatment modifies the
previous results of Refs. [114) 115 116] and generalizes the results of Refs. [101] [119], where
a similar basis transformation was naturally included in the calculations. We disregard the
effect of the Lamb—Stark shift on the qubit spectrum due to coupling to the environment,
considered in Ref. [120], since this can be included in the redefined control field of the qubit.

We focus solely on the transition effects due to non-unitary evolution of the qubit density
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matrix. We consider the quantum fluctuations of the environment that are fixed along the
direction of the control field at very long initial and final moments of the LZ transition
so that the matrix element that characterizes the transition between qubit states at long
times is absent and environment produces dephasing only. For arbitrary direction of the
fluctuating field, the transition remains effective over long time and will effectively bring the
qubit to the ground state for zero temperature environment. We also consider “dephasing”
coupling [122 86] when the quantum fluctuations occur only in the direction parallel to the
direction of the control field in the parameter space of the qubit Hamiltonian. Our result is
in agreement with Ref. [86] of the same problem within Lindblad master equation, in the
limit of a high-temperature environment.

This chapter is organized as follows. In section we present a formalism of the BR
equations in transformed basis for time-dependent Hamiltonians. In section we study
the evolution of a qubit whose control field rotates in a plane with a constant magnitude
and consider different directions of the environmental coupling field. In section we
consider the LZ problem in the presence of zero and finite temperature environment and
show that transition is dominated by thermal excitation of the qubit at finite temperatures.
In section we analyze the non-adiabatic effects within the Lindblad formalism. We end

with conclusions in section [6.5]

4.2 Bloch—Redfield approach to time-dependent

Hamiltonians

We consider a spin coupled to a bath of harmonic oscillators. The full Hamiltonian H =

Hy + Hint + Hepy is a sum of the Hamiltonian for the spin in the magnetic field b(t)

Hy = —%b(t) s (4.1)

the interaction Hamiltonian of the spin with the environment [18]

oo ot

A Qg+ a

Hint:E )\qn-aqTq (4.2)
q



63

and the bath Hamiltonian

Heny = Z hwq(&:;&q + 1/2) (43)
q

Here we assume that each environment oscillator interacts with the spin as a quantized
magnetic field )\q(dg + G4)/2 in the common direction n, dz and a, are raising and lowering
operators of the field.

The reduced density matrix p of the spin is determined by tracing out environment
degrees of freedom of the full density matrix pg. The full density matrix satisfies the

unitary master equation

oa®) _ [0, pran0)] (4.4

There are several approaches to obtain the corresponding equations for time evolution of
the reduced density matrix for the qubit. Here we consider the limit of weak coupling of a
qubit to the environment, when the density matrix is defined by the BR equations, [90], 9]
see also Refs. [92] [94], [101] where a diagrammatic technique was developed to treat the weak
coupling to environment.

The environmental effects are characterized by the spectral density function of the cou-
pling J(e) =73 _, A20(e —hwg). A generic spectral function has a power law dependence on
energy at small energies, J(€) ~ €, and vanishes rapidly for energies above the ultraviolet
cutoff E.. Here, we consider the Ohmic (s = 1) environment with exponential high-energy
cutoff:

J(€) = 2raeexp(—¢/E,), (4.5)

where the dimensionless parameter « defines the strength of coupling between the qubit and
its environment and FE. is the cutoff. We restrict ourself to the weak coupling limit, o < 1.
Our approach can be adapted to non-Ohmic environments by utilizing the corresponding
spectral functions J(e€) in the calculations below.

In general, the effect of weak environment on the qubit dynamics is twofold. On one

hand, the qubit Hamiltonian is renormalized by the environment modes with ¢ < E,
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known as the Lamb and Stark effects. On the other hand, when we integrate out the
environmental degrees of freedom, we also obtain non-unitary terms in the evolution of the
quantum system. Both of these effects are accounted for by the BR equation [91] 90} [94]
for the qubit density matrix p(t).

We first consider the case of a constant external magnetic field along 2 direction, b = bz.

Then, the BR equation has the following form in the eigenstate basis

poo(t) _ -I. T, poo(t) | (4.60)
p11(t) re -Iy p11(t)
por(t) = (ie = T2)por(t), (4.6b)
/310(75) = (—iE — Fg)pm(t). (4.60)

We obtained the above equations within secular approximation that neglects fast oscillating
terms with frequencies larger than the decoherence rates.

The equation in the matrix form, Eq. , determines the evolution of diagonal ele-
ments of the density matrix. The relaxation and excitation rates, I', and I'., are defined
by the spectral density J(e) at the energy corresponding to the energy difference between

two states of the qubit:

n2 n2

re= "2 20N (0 + 1), (4.7a)
712 n2

r, - %J(@N(e), (4.7b)

and N (e) = 1/[exp(e/T) —1] is the Planck’s function. The factor n2+n? indicates that only
the component of the fluctuating environment field that is perpendicular to the direction
of the control field b gives rise to the qubit flip processes.

The off-diagonal elements of the density matrix are characterized by the decoherence

rate I'y and pure dephasing rate I'y, given by

1
Ty =3 (T, +Te) + Ty, Ty, =n2Jo. (4.7¢)

The decoherence stems from two processes — the qubit flip processes with rate I', + I,

and pure dephasing which is not responsible for energy transitions at low frequency with
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rate J(e ~ 0) = Jy. The only source of pure dephasing is the fluctuating fields of the
environment along the external field b, hence the factor cos in the definition of the pure
dephasing term, I', o< n2.

The renormalization of the qubit Hamiltonian by the environment due to the Lamb
or Stark effects are determined by the imaginary part of the environmental correlation

function, as discussed in Ref. [94]. Explicitly, the renormalized qubit energy e is

€—b4de, de——P / dw J(w) coth(w/2T) (4.8)

47 w—"b ’

where P denotes the Cauchy principal value. Below, we assume that the control field b

already includes renormalization effects from the environment. The goal of this chapter is to

investigate the features of the qubit evolution originating from decoherence characterized by

rates ', and I', respectively. The significance of the effect of the Lamb and Stark shifts on

the evolution of the qubit was demonstrated in Ref. [120] in the context of the LZ problem.
We note that the qubit density matrix can be defined in terms of the magnetization in

x, y and z directions as

pt) = 5 (1+m(t)- o). (4.9)

N =

Then the BR equations, Eq. (4.6]), acquire a more common form of the Bloch equations

e = Iy = Te) = (I 4+ Le)me, (4.10a)
Ty = —iemy — Tomg (4.10b)
My = iemg — Lamy,. (4.10¢)

The above BR equations were obtained in the basis of qubit eigenstates. In case when
the control field b(t) changes in time, we perform transformation Uj(t) of the basis that
keeps the qubit Hamiltonian diagonal. This basis is commonly referred to as adiabatic. The
corresponding transformation has two consequences.

The first consequence of Uy (t) transformation is that the Hamiltonian in the new basis

acquires an extra term originating from the time dependence of the transformation U1 (t).
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Thus, the qubit Hamiltonian in the new basis is
~ et . A X
aHY () = —(2) L — i (UL (). (4.11)

The resulting Hamiltonian still may remain non-diagonal due to the Berry connection term,
it (t)UlT (t). We can introduce a new transformation Us(t) that diagonalizes the right hand
side of (4.11), but this transformation generates a new term ’LﬁQ(t)Ug(t) and the “diago-
nalization” series of transformations Un(t) does not stop for an arbitrary time evolution
of b(t), because the Berry connection terms appearing in each consecutive diagonalization
transformation acquires an extra time derivative. However, for slow time evolution, the
series of transformations can be truncated by the first one or two transformations. Since
the BR treatment of environmental effect requires anyway that the system changes in time
slower than the rates given by Egs. (4.7) and in the master equation, the truncation
to a limited number of transformations U, (t) under slow evolution of b(t) is justified. Also,
in a special case of constant rotation of b(t) in a plane, the second transformation Us is
time-independent and transformation series stops after this second basis rotation.

The second consequence of the basis transformations is the modified interaction term

in that the coupling between the qubit and its environment

X Q qf R R
Hi = 3 Agn/(£)5° 2 -; Y (e =V (D)aV(1) (4.12)
q

Q>

is modified from the initial coupling operator n - ¢ to the environment field by the trans-
formation matrix V (t) = Uy(t)...U;(t). This transformation changes the corresponding
“projection” factors ny, , .y in Eqgs. as well as the spectral weights J(e).
Modification of the coupling between the qubit and its environment, introduced by
Eq. , swaps components of the fluctuating field responsible for the pure dephasing
and transition processes. For example, in case of a fixed external field b|le,, fluctuations
along e, give rise to pure dephasing and do not cause transition processes between qubit
eigenstates. However, as b(t) rotates while n remains in e, direction, the fluctuating com-
ponent along field b(t) is the only one responsible for the dephasing with the corresponding

rate proportional to the spectral weight of its low-frequency fluctuations Jy, while the com-
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ponent of the fluctuating field perpendicular to b will produce qubit flip processes with the
rate characterized by the spectral weight of fluctuating field with the energy equal to the en-
ergy of qubit flip J(e(t)). The second unitary transformation further mixes matrix elements
of the coupling to environment representing qubit flip processes and pure dephasing.
Below, we present explicit expressions for the rates in Egs. for two special cases
of evolution of b(t) for different types of environment. We focus on the effect of qubit flip
processes due to environment and assume that Jyg = 0 in most numerical solutions. We
note that the pure dephasing produced by the low frequency noise of the environment can
be successfully described in terms of fluctuations of the classical field and may also include
non-Markovian time correlations that are omitted in the BR approach. Effects of classical
noise were discussed in Refs. [131], 122} 132} 112}, 133], 113] for the LZ transition and in

Refs. [106, [100] for Berry phase measurements.

4.3 Qubit rotation in a plane

We first consider a qubit with the Hamiltonian characterized by a time-dependent field
in  — z plane: b(t) = A{sinf(t),0,cos0(t)}. By definition, 6(t) = 0 for ¢ < 0. The

transformation to adiabatic basis is defined by:

A

U (t) = exp(i5,0(t)/2) (4.13)

and the resulting qubit Hamiltonian has the form

AG, + ()5,

agl
A = 5

(4.14)

Here, the second term is responsible for the non-diagonal form of the Hamiltonian for time-
dependent rotation angle 6(¢) and causes the resultant field to point out of the rotation
plane of b(t). This Hamiltonian has eigenvalues e+ = +v/ A2+ 02/2 and eigenvectors,
which are different from the vectors of the adiabatic basis. The latter two represent spin
states in the (z — z) plane with m, = 0. On the contrary, the qubit in the ground state |g)

of the Hamiltonian (4.14]) has a non-zero expectation value of the polarization m,, in the
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direction perpendicular to the (z — z) plane of the control field b:
my = (g]6y|9) %9‘
= g = ——
y = \919yl9 NI

In the limit of slow rotations, 6(t) < A, this result is consistent with a more general

(4.15)

expression that connects a generalized force f; = —(g|0H(X)/0X;|g) to time-dependent

parameters X(t) of the Hamiltonian through the Berry curvature Fj; as [104} 87]

fi= 1o 25 g) = 3 Ry %, ) (4.16)
J

Comparing Eq. and Eq. , we identify f, = m,/2, X =6 and Fyo = 1/(2A).
Explicitly, the coefficient of the linear term in the rate of change of the magnetic field, i.e.
AQ, is the Berry curvature 1/2A2. Indeed, this value of the Berry curvature gives the
Berry phase ® = 7 for one full rotation of the control field in the (z — z) plane after its
integration over the half-sphere, | S(b) ds/(2A%) = 7. This relation holds for an isolated
qubit controlled by field b(¢), assuming that b(¢) is a slowly varying function of time with
continuous higher derivatives.

However, if the rotation of the control field b starts instantaneously with constant
angular velocity G(t) =Q, i.e. O(t) = Qt, the rotation is equivalent to a quantum quench in
the representation of Eq. from 6 = 0 to 0 = Q The qubit that was initially in the
ground state of the original time-independent Hamiltonian, —b5,/2, is in the superposition
of eigenstates of the new Hamiltonian and exhibits precession around new direction of the

effective field (0,€2,b). This precession causes oscillations of

my (t) = Te{5,p()} (4.17)

around its average value given by Eq. (4.15)), as illustrated in Figure (a). Here we use
Q = 0.2A for a qubit decoupled to the environment. The qubit trajectories on the Bloch
sphere in the original state basis is a cycloid along the equator in the plane of rotation of

the control field and the “height” of the cycloid is proportional to €.

LA simple realization of this setup for superconducting qubits is to apply a microwave pulse in the
resonance of the original qubit energy splitting to let the qubit relax to its ground state in the rotated basis,
and then to produce excitation with the same amplitude but shifted in frequency by 2.
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Figure 4.1: The Bloch sphere representation of the qubit state in the diabetic basis with
2 = 0.2A and initial condition z = 1 for (a) @« = 0 and (b) @ = 0.02 at T' = 0. For the
dissipationless dynamics the trajectory of the qubit state form cycloids along the equator
y = 0. However, for the dissipative dynamics the cycloidal trajectory flattens to a circular
one with a finite value m,,(00).

In the rest of this section, we analyze the effect of the environment on qubit response
to rotating control field. We demonstrate that a qubit coupled to a zero-temperature
environment relaxes towards the lower eigenstate of Hamiltonian and for long time
limit after the rotation started, the qubit state obeys Eq. . For rotation with constant
angular velocity €2, the transformed Hamiltonian, Eq. is time independent and can

be diagonalized by the second basis transformation
Uy = cosn/2 — iy sinn/2, tann = Q/A. (4.18)

The qubit Hamiltonian in a new basis after a full transformation V (t) = UsU; (t) becomes

fully diagonal with time-independent eigenvalues:
BY = ol 0f = 6., W=/AZ T Q2 (4.19)

We can apply the BR equation for the qubit density matrix, where the rates in Eq.
are defined by the interaction term Hiy, Eq. (4.2), with o - n replaced by its transforma-

tion under V(¢) according to Eq. (#.12). The result of the V() transformation depends
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Figure 4.2: Time dependence of the out-of-plane polarization, m,(t), at zero temperature
of environment for o = 0.02 (solid line) and o = 0.05 for fluctuating environment field out
of the plane of rotation, n = y. The pure dephasing rate is zero, Jy = 0. The frequency of
rotation of the control field is €2 = 0.1A. The thin horizontal line represents the asymptotic
values of my(c0).

on the original orientation of the vector n in the qubit space. Below, we consider three
orientations of n. We note that for the limit 2 < A considered in this section, the shift of
eigenvalues of Hamiltonian and modification of the coupling to environment by the
second transformation Uy ~ 1 is not significant and can be disregarded to the lowest order

in Q.

Environment field perpendicular to the rotation plane

We first consider the case when the coupling between the qubit and its environment is

determined by the vector n = § perpendicular to the plane of rotation of the external field
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b(t). For time independent Hamiltonian, this coupling causes qubit flip processes and the
corresponding decoherence rates are defined by the environment spectral function at the
excitation energies equal to the qubit energy splitting. For time-dependent Hamiltonian
with rotating b(t), we have to write the qubit coupling operator n - o in the rotated basis
that diagonalizes the original Hamiltonian. As we discussed above, the transformation
is a product of two consecutive transformations. The first transformation, U;(t) to the
adiabatic basis does not change the coupling operator U;(t)n - aUlT (t) = 6y. The second

transformation results in

~ A

Xy = V(t) &,VI(t) = 6, cosn + &, sin. (4.20)

Here, the first term represents the qubit flip process, while the second term preserves the
qubit orientation and causes pure dephasing. The corresponding rates in the BR equations

are given by

2
T, = 0052 Ty INW) + 1, (4.21a)
2
T, = COZ Trow N W), (4.21D)
2
=1 ; Le st 1 1o, (4.21c)

with W and 7 defined by Egs. (4.19)) and (4.18). The qubit dynamics is characterized by the

relaxation and excitation rates proportional to the spectral function J(W) of environment
at energy W, these rates appear with factor cos?n = A2?/W? and recover the case of the
qubit with a time-independent Hamiltonian with b1ln when only environment modes in
resonance with the qubit contribute to the qubit dynamics. At finite 2, however, the pure
dephasing mechanism arises after transformation Us and originates from the low frequency
modes of the environment with spectral density Jy. The pure dephasing rate contains factor
sin?n = Q%/W? which is small for slow rotation with Q < A.

The Bloch equations Eq. with rates given by Eq. can be solved to get the
qubit density matrix pU2(t) in the secondly rotated basis. In conjunction with the initial

condition, the time evolution of m,(t) is then obtained by Tr[3,5(t)], see Figure (b) for
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Figure 4.3: Time dependence of the out-of-plane polarization, m,(t), at various tempera-
tures of environment: 7" = 0 (solid line), T' = 0.5A (dashed line) and T' = A (dotted line)
for fluctuating environment field out of the plane of rotation, n = y. The pure dephasing
rate is zero, Jo = 0. The frequency of rotation of the control field is 2 = 0.1A. The cou-
pling to environment o = 0.05. The thin horizontal lines represent the asymptotic values
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of my(00) at different temperatures.

Q) = 0.2A and o = 0.02. Initially, after the rotation starts, the qubit state at the Bloch
sphere exhibits wiggles, similar to those in Figure (a) for an isolated system. As rotation

continues, wiggles flatten out and the quit evolution on the Bloch sphere becomes a circle

cross-section of the sphere by an x — z plane shifted along y—axis.

First, we provide an exact analytical solution by choosing the initial state to be a thermal
state p(9(0) = 1/2 + tanh(W/2T)o. /2. Defining mo = tanh(W/2T), the initial condition

for the Bloch equation becomes m.(0) = mgcosn, mz(0) = 0 and m,(0) = mgsinn.
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Integrating the Bloch equation with the above initial condition yields

my(t) = —mgsinn (4.22)

X (1 — 2sin? ge_rmtt — CoS ne_F“’tt/? coS Wt) ,

where I'toy = I'; + e and we assumed Jy = 0. In the long times limit, ¢ — oo, m,(t) reaches

its stationary state solution
Q
my(00) = —— tanh — ~ ——tanh — (4.23)

regardless of the form of the initial state. The significance of this expression is that the
dynamical transverse response of the qubit subject to a rotating magnetic field is a con-
sequence of the geometric phase effect in the sense that the stationary value my(co) does
not depend on the strength of the coupling to environment. Therefore, m,(co0) is purely
geometrical and immune to quantum zero-temperature fluctuations of the environment.
Next, in order to get the numerical solution of the BR equations (4.6 we utilize stan-
dard integration methods for a system of linear differential equations with time-dependent
coefficients. Alternatively, we obtain the same results using the BR functions of the QuTiP

package [45] [134] with a proper adjustment to the system Hamiltonian and the interaction

term, see Eqgs. (4.12)) and (4.19)), for time-dependence of the eigenstate basis, as presented

in Figs. [4.2] and [£.3] We verified that the results shown in the plots are identical to numer-
ical integration of the BR equations with the rates given by Eqgs. . In both plots, the
initial condition of the density matrix is chosen to be the ground state at ¢ = 0 when b|e,.
We obtain plots consistent with the analytical result, Eq. , for the thermal state of
the density matrix at ¢t = 0.

In Figure we present the time evolution of my(t) for several values of the cou-
pling to the environment. From the plot it is clear that the role of the environment is
to suppress transient wiggles of m, and to bring the system to the steady state, defined
by Eq. with tanh(A/2T) — 1. However, the transverse magnetization is fragile to
thermal fluctuations, since these fluctuations create excitation to the higher energy state.

The result is shown in Figure where we fix a and plot my(t) for different temperatures
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Figure 4.4: Time dependence of the out-of-plane polarization, m,(t), at zero temperature of
environment, for a = 0.05 (solid line) and o = 0.1 (dashed line) for fluctuating environment
field in the plane of rotation, n = z. The pure dephasing rate is zero, Jy = 0. The frequency
of rotation of the control field is @ = 0.1A. The relaxation is reduced for time intervals
when Qt ~ n. The thin horizontal line represents the asymptotic values of my(00).

T = {0,1/2,1}A. We note that since the dephasing rate, I's = (I'; + I'c)/2 grows with
the temperature, the oscillations decay faster for higher temperatures. Also, at finite tem-
peratures, the spin has nonzero probability to stay in the excited state, the asymptote of

my(t — 00) is reduced in agreement with Eq. (4.23]).

Environment field in the rotation plane

We now consider the qubit interacting with environment field in the plane of rotation. We
take n = e, and for b|le, the coupling to the environment results in pure dephasing and

is characterized by the low frequency spectral density Jy. As b rotates, the effect of envi-
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ronment alternates between pure dephasing and qubit transitions between eigenstates. We
obtain this variation in qubit flip and dephasing rates already after applying transformation
Uy = exp(i6,,0/2) to the interaction Hamiltonian of the qubit and environment, Eq. (4.2).
However, for rotating b(t) we have to take into account the gauge term —ilj; (t)@tff{[(t) in

Eq. (4.11) by applying the second transformation Us to Hine. We obtain

A A

V ()6, VI(t) = —6,sin Qt — (6, sinn — 6, cosn) cos Qt (4.24)

that contains matrix elements for qubit flip processes at any moment of time. The corre-

sponding rates in the Bloch—Redfield equations are

T, = G;t) TOV)IN(W) + 1, (4.25a)
.= GS)J(W) NW), (4.25Db)
Iy = Lr ;—F + Jo cos® ) cos? O, (4.25¢)

where G(t) = sin? 7 + sin? Qt cos? 77 and thus the qubit flip rates are nonzero as a function
of time.

The evolution of the qubit in this case corresponds to precession of a spin in the mag-
netic field with initial state distinct from its new ground state after the quench. Namely,
its dynamics will correspond to suppression of off-diagonal elements of its density matrix
with the rate I'y(t) and equilibration of the diagonal elements of p with rates I, /.(t). We
emphasize that in this case all decoherence rates are time-dependent.

We calculate time-dependence of my(t) by numerically solving the BR equations with
the rates given by Eq. . We present the result of integration in Figure for two
different values of « at zero temperature and find clear evidence that the decoherence rates
are roughly one half smaller compared to the result of previous subsection for the same
value of a. Meanwhile, in Figure we fix o and plot my(t) for different temperatures. At

time longer than the relaxation time 1/T'g, m,(t) becomes constant with its value m,(co) =

—Q/W tanh(W/2T), see Eq. (4.23))
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Figure 4.5: Time dependence of the out-of-plane polarization, m,(t), for a« = 0.1 and 7' = 0
(solid line), T = 0.5A (dashed line) and T" = A (dotted line) in case when fluctuating
environment field is in the plane of rotation, n = z. The pure dephasing rate is zero,
Jo = 0. The frequency of rotation of the control field is 2 = 0.1A. The thin horizontal
lines represent the asymptotic values of m,(oco) at different temperatures.

Longitudinal coupling to environment

We also consider a somewhat artificial scenario when the coupling vector n = sinQte, +
cosQte, in Eq. rotates together with the external field b(t) ﬂ For a stationary
Hamiltonian this environment does not produce qubit flip processes and results in pure
dephasing, when the diagonal elements of the density matrix do not change and only off
diagonal elements decrease with time. In case when the direction of the control field rotates

with frequency €2, the basis transformation term in Eq. (4.11)) introduces qubit flip processes

2This case may be realized if the interaction of the environment with the qubit is introduced through
a fluctuating field along the external field b(¢), e.g. when b(¢) is realized as two quadratures of microwave
pulse driving a qubit and the environment is described by longitudinal quantum fluctuations of the pulse.
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for this coupling with the rates in Eqgs. (4.6)) given by

i a2
T, — S”; L) [NW) +1], (4.26a)
i a2
T, = Sm2 "W N W), (4.26b)
T, +T.
Iy = ; + cos® n.Jy. (4.26¢)

For slow rotation 2 <« A, we have sinn < 1 and qubit flip processes are small. In this
case, dephasing will suppress precession on time scale ~ 1/.Jy, and further equilibration of
the system occurs on a longer time scale ~ A /72, We describe the evolution of a qubit

coupled to high—temperature environment using a dephasing Lindblad model in Sec.

Coupling to a strongly damped Quantum oscillator

In this subsection we consider the interaction of a qubit with a single damped quantum
harmonic oscillator. This model can be used to describe environment with a sharp spectral

function J(€). The interaction part of the Hamiltonian is similar to Eq. (4.2)):

A~

A
Hi = S(a+ ahn - o (4.27)

and the single-mode Hamiltonian of the oscillator is ﬁo/c = wo(a'a + 1/2). We describe
dissipation of the oscillator using the Lindblad relaxation operators for the full density

matrix p(t) of the qubit and the oscillator system:

5(t) = —i[H(t), ] — & (&T&p + pata — 2@@*) (4.28)
This equation is a standard Lindblad master equation with time dependent Hamiltonian.
The difference with the previous calculations of this Section is that we keep a full quantum
mechanical treatment of the qubit interaction with the oscillator and perform all transfor-
mations of the qubit basis for the full Hamiltonian of the qubit and the oscillator. At the
same time, we assume that the Lindblad superoperator for the relaxation of the harmonic
oscillator, represented by the last term in Eq. , is not affected by these transforma-

tions.
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Figure 4.6: Time dependence of the out-of-plane polarization, m,(t), at zero temperature
of environment for a qubit coupled to a damped harmonic oscillator with damping rate
k = 0.2A and coupling constant between the qubit and environment A = 0.1A. Coupling
vector n || y (solid line) and n || z (dash-dotted line). For comparison, the solution for the
Bloch-Redfield equation is presented (dashed line) with a = 0.03 and Jy = 0. The rotation
angular velocity is 2 = 0.1A. The thin horizontal line represents the asymptotic values of
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We evaluate the qubit projection perpendicular to the rotation plane of the control
field as a function of time. Figure [£.6] shows the comparison between calculation of Bloch-
Redfield equations and damped quantum oscillator with different coupling directions at zero
temperature. All three curves saturate at universal value my(oo) = —Q/W. It is worth
pointing out that the n || z coupling results in time-dependent transition rates that are at
minimum when b || n and at maximum when b_ln, as one can conclude from the amplitude
of oscillations of my(t) for n|le.. Effectively, the overall relaxation is slower than that of

the case n || y and the amplitude of oscillating m,, at tQ2 = n7 decays insignificantly. The
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Figure 4.7: Time dependence of the out-of-plane polarization, m,(t), at environment tem-
perature T' = 0.5A for a qubit coupled to a damped harmonic oscillator with damping rate
k = 0.2A and coupling constant between the qubit and environment A = 0.1A. Coupling
vector n || y (solid line) and n || z (dash-dotted line). For comparison, the solution for the

Bloch-Redfield equation is presented (dashed line) with a = 0.03 and Jy = 0. The rotation
angular velocity is 2 = 0.1A. The thin horizontal line represents the asymptotic values of
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calculations at finite temperature T' = 0.5A are plotted in Figure and in all cases my (o)
is consistent with Eq. (4.23).

4.4 Landau—Zener Transition

In this section we consider the Landau—Zener transition in a qubit coupled to its en-
vironment. The external field in the qubit Hamiltonian (5.3)) has the following form
b(t) = {A,0,vt}, where A is the minimal level separation and v characterizes the rate at

which the Hamiltonian changes. For the Landau—Zener problem, the qubit is initially in the
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Figure 4.8: Representation of a qubit state during the Landau—Zener process on the Bloch
sphere in (a) diabatic basis of states | 1) and |) along fixed z axis; (b) adiabatic basis of
the ground, |g), and excited, |e), states; (c) in the “improved” eigenstate basis, |¢g) and |e),
obtained from the diabetic basis by Us transformation. In the diabatic basis the trajectory
of qubit state moves across the sphere from state | |) (ground state at ¢ — —o0) towards
| 1) and slowly approaches the circle of constant precession at ¢ — co. The trajectory in
the adiabatic basis and eigenstate basis shows a simpler trajectory and fast switch to the
constant precession circle. Level-crossing speed v = 0.5A% and no coupling to environment.

ground state |g) with the density matrix p(t — —o0) = |g)(g|. The task is to find the proba-
bility of the system to be in the excited state |e) which is given by Ps = lims— 100 {e|p(t)]e).

Effects of the environment on qubit’s dynamics can be separated into pure dephasing of
the qubit state during the LZ process and inelastic qubit flips. When we consider a qubit
coupled to its environment that causes qubit flip processes, we have to be careful with the
formulation of the LZ problem. Indeed, the LZ process is formally infinitely long and the
qubit flip processes accompanied by the energy exchange will result in equilibration of the
qubit system with its environment. In particular, for the zero temperature environment,
the qubit will relax to the ground state even if it was temporarily excited during the LZ
process. For environment at finite temperature, the qubit state will tend to thermal state
p(t) = diag{poo, p11} with p11/poo = exp(—E(t)/T). But as formally E(t) — oo for long
times ¢, the qubit will relax to the ground state and we find P, = 0.

Previous considerations, see e.g. [I14], predicted Py, — 0 for the Ohmic environment

with large high-frequency cutoff in the environment modesﬂ But in this case the problem

3Notice that the projection of the coupling vector between a qubit and the environment does not change
in time in Ref. [114] as required for the proper treatment of environment—qubit interaction.
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looses its meaning since the LZ transition is shadowed by trivial relaxation of a quantum
system to its ground state by releasing its energy to the environment. One can reformulate
the problem in terms of finite time LZ process, which may be experimentally relevant situ-
ation in some cases. Alternatively, one can assume that the environment spectral function
has a relatively low cutoff at high frequencies F. ~ A and the relaxation is absent after time
t 2 E./v. Here, we consider a special orientation of the coupling vector with environment
when nl|e,,where e, is defined by b(t — 400)||e. In this situation, the relaxation processes
becomes weak at long times [t| > A/v. This type of coupling is expected to be dominant
in qubits with relatively long energy relaxation times, but with short dephasing time due
to dominant coupling with the fluctuating field parallel to the qubit field along e,.

We utilize the Bloch—Redfield approach to the problem of Landau—Zener transitions in
the presence of environment with n = e,. In principle, we need to write the BR equations
in the basis where the transformed qubit Hamiltonian is diagonal after an infinite series
of basis transformations given by Un, which can be an infinite series. However, under the
condition v < A2, the series of basis transformations can be limited by Uy (t)U; ().

The first transformation changes the representation from diabatic basis of states | 1)
and | |) along e, to the adiabatic basis of the ground, |g), and excited, |e), states, where
the Hamiltonian is diagonal. The first transformation matrix U; (t) has the same form as

in Eq. (4.13) except the rotation angle 6(t), which is now defined as

vt

VU2 + A7

The transformed Hamiltonian in the adiabatic basis has the form [96, 99| 08 O7]

. E A
A~ ét) 5, — %&y, E(t) = Vo2 + A2, (4.30)

cosf(t) = — (4.29)

The second transformation is chosen to diagonalize matrix Hé] ! and has the form

Us(t) = exp <Z;7az> tann(t) = Egi). (4.31)
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Figure 4.9: projection of a qubit state during the Landau—Zener process on the Bloch
sphere on | |) state in the diabatic basis (dash-dotted line) and on the ground state in the
adiabatic basis (solid line) and the “improved” eigenstate basis (dashed line). In the diabatic
basis the projection of the qubit state shows long oscillations with amplitude decreasing as
a power law in time, while the eigenstate projections quickly reach the asymptotic value.
Level-crossing speed v = 0.5A% and no coupling to environment.

The Hamiltonian in this “improved eigenstate” basis has the form

Hy? = =5 0z~ 50, (4.32a)
v2A? 3v3At

W(t) = | E2(t) + ——— )= — - 4.32b

(0= \[B0+ . 1= e (1.320)

Without dissipation, the LZ problem is equivalent in all three representations, with
a properly written Hamiltonian, i.e., Eq. for the diabatic basis, Eq. for the
adiabatic basis, and Eq. for “improved eigenstate” basis. In all representations,
the qubit follows the appropriate instantaneous control field B(t), but since this field is

time-dependent, the qubit deviates from the instantaneous direction of B(t) and acquires an
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additional precession around the control field. When the original field eventually reaches its
final direction, blle, at ¢ > A /v, the direction of the control field becomes time independent
and the qubit simply precesses around e, with a non-zero projection of its state on the

excited state, given by the known expression [108], 109} [111]

Lz _7TA2
P = exp< 5 > . (4.33)

Note that in Figure this precession remains in all three considered representations, but
the overall trajectories are smoother in the transformed representations. As we look at the
projection of the qubit state on the “excited state” P(t) = (e|p(t)|e) in the appropriate
basis, see Figure the oscillations decrease faster in the transformed representations,
because the control field b(t) aligns faster with its final direction. We also note that since
the control field remains aligned with its initial direction longer in transformed basis, the
numerical computation can run over shorter time intervals thus making computation faster
and more accurate.

Next, we take into account interaction with the environment within the Bloch—Redfield
approach. The coupling to the environment is modified in the diagonal basis of the Hamil-
tonian, see Eq. and Ref. [97]. Under the Markovian approximation and to the second

order in the coupling to environment, we obtain the corresponding BR equations in the

form
poo = Zg(pm — p10) — Lepoo + T'rp11, (4.34a)
p11 = —ig(P01 — p10) + Lepoo — Trp11s (4.34Db)
ot = (T2 + i () pos + 2 (o0 — ), (4.340)
10 = —(T — iW(H))pro — 72 (o0 — pra), (4.344)

where W(t) and 7 are given by Eq. (4.32b). The rates for the above equations are

I, = GLg(t)J(W(t))[N(W(t)) +1], (4.35a)
r, = GLg(t) TOW ()N (W (1), (4.35b)
Iy = L+l + Jo cos® ncos? O(t), (4.35¢)

2
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where Grz(t) = sin?n + sin?0(t) cos?n is a function of time-dependent basis rotation
angles 0(t) and n(t) defined by Egs. and ([4.31)). We note that the above equations
for BR rates are given by truncation of transformation series of interaction Hamiltonian,
Eq. , up to the second order, V = Ug(t)Ul (t). An equivalent approach with only first
order transformation V = U (t) was studied in Ref. [129]. Therefore, the rates are defined
within O(n?) < O(v?/A*) accuracy. The unitary evolution described by either H* or HJ>
has no approximations and is valid for arbitrary values of v. We emphasize that once the
basis transformation gives rise to non-zero decoherence rates, the qualitative results are
similar regardless of our choice of the BR rates in the basis obtained after either U 1 Or (72 (71

transformations. The rates in the U basis are given by Eq. (4.35) with n = 0. We now
discuss solution of Eq. (4.34)).

Zero temperature dissipative environment

We first consider the zero temperature environment and set Jy = 0 to focus solely on qubit
flips rather than dephasing. We numerically integrate the BR equation and plot the
probability of the system to be in the excited state P.(t) = (e|p(t)|e) as a function of time
in Figure for @ = 0.05. For numerical integration, we used both direct integration
of linear differential equations and the QuTiP’s package for numerical solution of
the Bloch—Redfield equations [45], [134], obtaining identical results. As the qubit levels go
over the avoided crossing, the probability of the qubit to be in the excited state increases,
roughly following the same function of time as P.(t) for an isolated qubit, & = 0. As the
levels further depart from each other, the relaxation of the qubit from the excited state
becomes the dominant process in the qubit dynamics, and P.(t) monotonically decreases
and becomes constant once the level separation ~ vt exceeds the ultraviolet cutoff E., or
t 2 E./v and the qubit is effectively decoupled from the environment. In Figure
we compare the behavior of P.(t) for different values of E.. For finite ultraviolet cutoff
E. = 5A, the probability P.(t) saturates for tA 2 10. For E. — oo, the probability P.(t)

slowly decreases for all £ > A/v.
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Figure 4.10:  The probability of occupation of the excited state in the Landau—Zener
transition in the Us; basis. The temperature of environment is zero, 7' = 0, the level
velocity is v = 0.5A%. We assume that the dephasing is absent, Jy = 0. The asymptotic
curve for F, = oo is given by Eq. with a proper choice of integration constant C.
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To evaluate this suppression, we can utilize Eqgs. (4.34) in the asymptotic regime for

t > v/A, when I',(t) > n(t). We write

dP.(1) A2
- 1P (1), 4,
i 50212 J(vt)P.(t) (4.36a)

2
P.(t) = Cexp (—FQUA In X) o tTOA%/Y (4.36b)

where we used the relaxation rate I', from Eq. . The latter equation demonstrates
that even for environment with nlle,, the relaxation on long times scales is important.
Formally, the power-law dependence of P.(t) on time originates from the slow converging
integral [ dtJ(vt)/v*? ~ Invt/A due to linearly increasing environment spectral function

J(€) with energy. With a proper choice of integration constant C, we obtain a good agree-
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ment between computed P, (t) in Figure and asymptote, defined by Eq. .

This power—law dependence stops and reaches a fixed value P, when the qubit level
separation exceeds the environment ultra-violet cutoff at times t > E./v. We evaluate the
long time asymptotic value of P.(t > E./v) = Py, by taking into account the high energy

cutoff in the environment spectral function, Eq. (4.5). We obtain

(4.37)

A?  2FE,
Poo(T = 0) = CTI, H:exp{—m 1 }

v 1 evA
where v ~ 0.577 is the Euler’s constant, the integration constant C' ~ PLZ and factor II
describes suppression of the excited state due to slow relaxation while qubit level separation
increases from its minimum A to values above the cutoff energy FE., see Appendix A for
the derivation of Eq. .

Equations are valid for o < 1. For larger values of «, one has to take into
account the renormalization of qubit Hamiltonian when the off-diagonal matrix element in

the original Hamiltonian A, is given by the following self-consistent relation [18§]

1 [ Jw)
with solution A, = A(A/E,)*/(1=%)_ Hence the relaxation rate is [I19]
ﬂ_AT E 2a—1
I'(E) = 310 <Ar> (4.39)

where I'(z) is the gamma—function. The integration over time with E(t) ~ vt gives [119]

_ _ A7 (vt)*
p11(t) = C'exp ( JaT(2a)0 A2 ) (4.40)

Notice that in the limit @« < 1, A, = A, the relaxation rate I', reduces to I'.(E) =

maA?/E in agreement with the relaxation rate in Eq. (#.362). Similarly, Eq. (4.40)) becomes
Eq. (4.36b))
Finite temperatures

At finite temperatures, the excitation and relaxation rates may exceed 71 terms for strong

enough coupling of the qubit to its environment and slow drive v. In this case, we disregard
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Figure 4.11: The probability of occupation of the excited state, P.(t) in the Landau—Zener
transition in the U, basis at finite temperature of environment for v = 0.5A2, o = 0.05
and Jy = 0. The solid lines represent solutions of rate equations that show good
agreement with the BR equations at higher temperatures.

n terms in Eq. (4.34) and the diagonal elements of the density matrix satisfy the rate
equations. Since the rate equations preserve the trace of the density matrix, P (t)+ Pe(t) =
1, with Py(t) = (g|p(t)|g), we introduce m(t) = P,(t) — P.(t) and obtain the differential

equation for m(t):

1 dm (1)
Lam_ WV aw
To di m cot o 0 =maW (t)Grz(t),

A2(v2 + (1)27_2 +A2)2) (4'41)
G = .
12(7) = SR (B A2
The initial condition is m(t;) = 1 for t; = —oo. While we can write a formal solution to

Eq. (4.41)), the solution is not well defined due to logarithmic divergence of ftz [o(t)dt for

the spectral function J(g) without a cutoff. We present the result of numerical solution of
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Eqgs. and the rate equations in Figure We notice that for higher temperatures,
these two solutions are indistinguishable because the thermal effects dominate only in short
time scales |vt| < T such that the time window is long enough for the qubit to be thermalized
and its off-diagonal elements of density matrix vanish.

Integrating Eq. (4.41)) over ¢ yields the following solution of Py, = 1/2 — m(o0)/2:

= — [ To(t') coth W gy
POO:/ De(t)e™Je tolt)cottmrat gy, (4.42)

—0o0

The integral over time ¢ is understood as thermal activation processes with rate I'c(¢) and
integral in the exponent can be considered as contribution of relaxation processes after
thermalization. For weak coupling o < 1 and not very high temperatures a7 < v/A,
the integral in the exponential is a slow function of . Therefore, we can replace the lower

bound of the integration by ¢ = 0. We obtain P in the limit of low temperatures T" < A

2ralA? 7T A
P~ —= AT 4.4
o 1\ 3A° , (4.43)

and in the limit of higher temperatures 7' > A

22aTA
~ AT A

Py~ , (4.44)

v

where II is defined by Eq. . The details of the derivation of the above equations are
presented in Appendix We remind that Egs. - are valid when the rate
equations are a good approximation to the BR equations . In this case, the
transition of the system to the excited state is a consequence of incoherent excitation by
environment of the qubit, and is not the coherent phenomenon that leads to the excitation
in the Landau—Zener transition of an isolated quantum system. However, the excitation
processes only happen when the adiabatic eigenstates of the qubit have a non-zero matrix
elements with the coupling to environment, the latter happens when the “control field”
b is not parallel to the environment field which happens during time A/v, when the ex-
citation rate can be estimated as maT', resulting in the excitation probability oc aTA /v,
cf. to Eq. . As the level separation E(t) exceeds temperature, only relaxation pro-

cess remains that causes transitions to the ground state. The effect of this relaxation is

represented by the exponential factor in Eqs. (4.43)) and (4.44)), ¢f. to Eq. (4.36D)).




89

0.30[

0.20

0.10

Transition probability, P.,

OOO ==, a a 1 a a a a 1
0 1 2 3

Temperature, 7/4

Figure 4.12: Transition probability P, as a function of environment temperature T', at
different values of coupling between the qubit and the environment for n||z. Level-crossing
speed v = 0.5A2, the high energy cutoff for the environment is E. = 10A and Jy = 0. We
take Py, = P.(t = 4E./v).

From the above analysis, we conclude that a finite temperature of the environment
leads to the “equilibration” between the ground and excited states of the qubit, and as
temperature increases, the probability of the transition to the excited state in the LZ process
increases monotonically, cf. Refs. [96) [97]. This behavior is demonstrated in Figure [4.12]
where P, is shown as a function of T for several values « of coupling between the qubit and
its environment. We also note that the temperature effects appear at T' 2> A, at smaller
T, values of P, are characterized by the excitation through unitary evolution with the
subsequent relaxation.

When we consider P, as a function of coupling « for several values of T, we observe

a more complicated behavior. For T' = 0, shown by the solid line in Figure the
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Figure 4.13: Transition probability Ps, as a function of the coupling parameter of the qubit
and the environment, «, at different environment temperatures for n||z. Level-crossing
speed v = 0.5A2, the high energy cutoff for the environment is . = 10A and Jy = 0. We
take Py, = P.(t = 3E./v).

transition probability Ps, monotonically decreases from its value PL? Eq. ([#.33), as «
increases, in agreement with Eq. (4.37). At finite temperatures, Py, increases for smaller
values of «, as the excitation process becomes more efficient and provides extra boost for

transitions to the excited state in addition to that produced by unitary dynamics. However,

this boost is only a linear function of a, see Eqs. (4.43)) and (4.44]), and at stronger values

of a the exponential dependence of II on « results in decreasing P,, as « increases. The
non-monotonic dependence of P, on a can be understood as a competition between energy
relaxation and thermal activation, whereas the competition between energy relaxation and

driving was analyzed in Ref. [117].
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Figure 4.14: Transition probability P, as a function of environment temperature 1" for
nHE, at different values of drive velocity. The high energy cutoff for the environment is
E. =10A and Jy = 0. The solid lines represent solutions of rate equations Eq. . We
take Py, = P.(t = 4E./v).

Longitudinal coupling

We also consider the environment that produces fluctuating field along the direction of

the control field, n||b, in the Landau-Zener problem. The decoherence rates in the BR

equations (4.34) are given by

I, = Sm;nJ(W(t))[N(W(t)) +1], (4.45a)
r, — SiI;QnJ(W(t))N(W(t)), (4.45D)
Iy = Ir —5 Le + Jo cos? 1. (4.45¢)

For this configuration of coupling between the qubit and environment, the matrix elements

for transitions between different eigenstates of the qubit caused by the environment are
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small and the qubit flip rates I',.. are proportional to sin?n < v2A2/ES(t) < v2/A* and
vanish fast for [t| > A/v as Ty ~ A?/v*5. Such fast decrease of the qubit flip rates in
time simplifies either numerical or analytical integration of the BR equation and makes P,
independent from the high-energy cutoff E..

In particular, for finite temperatures, when the BR equations can be reduced to the rate
equations, time evolution of m(t) = P,(t)—P.(t) is given by Eq. with Grz(t) = sin? 7.

The general solution of the rate equation takes similar form to Eq. (4.42):

oo !
Poo — / Fe (t)€_ ftoo T (t') coth VV;; )dt/dt’
o0 (4.46)
Iy = maW (t) sin? 5(t).

Performing time integration in Eq. (4.46) gives for T" < A:

[ 73 A 2mav
Poo = QU m exp <—T> exp (— 3A2 > . (447)

For high temperatures, T' > A, we obtain (see Appendix B)

1 3r2 Tw

As we mentioned above, the results in Egs. and are independent from the
cutoff energy E.. Equation (4.47) shows that P, vanishes in the low temperature limit,
unless we take into account non-adiabatic unitary evolution of the quantum state in the LZ
problem. In the limit of high temperatures 7' > A, but still weak coupling, cvT < A3, we

obtain the linear dependence of Py, on T

372 T

which follows from Eq. (4.48]).

Since simple form of P, can not be obtained in the intermediate temperature regime,
we numerically calculate the solution of rate equation as well as that of Bloch-Redfield
equation for comparison, see Figure When the level-crossing speed v is small enough,
the transition is mainly due to thermalization at short times and energy relaxation at

longer times. In this regime, the rate and BR equations are in a very good agreement, as
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demonstrated in Figure for v = 0.25A2. However, as the levelcrossing speed increases,
the non-adiabatic unitary evolution also contributes to the transition to the excited state
increasing the probability for a system to be in the excited state. Since the non-adiabatic
unitary evolution is not incorporated in the rate equations, the equations underestimate

the probability of the excitation in the LZ process, compare the solid and dashed curves in

Figure for v = 0.5A2.

4.5 Lindblad dephasing evolution

We compare the results obtained from the BR equations in the case of longitudinal cou-
pling with the theory based on the Lindblad equation for pure dephasing operators. For
both problems, the qubit Hamiltonian can be parametrized by the control field b =
E(t){sin6, 0,cosf}, where E(t) is the magnitude of the control field equal to the qubit
level separation. The corresponding equation for the density matrix in the adiabatic basis

has the form:
iE(t) i0

b=yl + oy ol + 5 (02002 = ). (4.500)
In the component form the above equation is
. f . 0
poo = 5(,001 +p10), P11 = —5(001 + p10), (4.50b)
por = (1E(t) = 7)por — g(/)oo - p11), (4.50¢)
pro = (—1E(t) = v)pro — g(Poo — p11)- (4.50d)

These equations are similar to Egs. , but because they are not written in the eigenstate
basis, the last two equations contain extra terms. Time derivatives of diagonal terms contain
the off-diagonal terms of the density matrix multiplied by the quantity characterizing the
off-diagonal part of the Hamiltonian, §. Time derivatives of the off-diagonal components
of the density matrix have the terms identical to those in Egs. and the extra terms
characterized by the diagonal matrix elements and parameter §. In this section we again

consider the two cases: (1) the qubit rotation with a constant angular velocity 0 = Q,
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ie. O(t) = Qt, and E(t) = A; (2) the LZ problem with E(t) = VA2 +v%t2 and 6(t) =

arctan A /vt.

Rotating field

When the control field rotates in (z — z) plane, b(t) = A{sinQt, 0,cosQt}, the effective
Hamiltonian is time independent. To make a comparison with the calculation of BR equa-
tions, one can look for a quasi-stationary state solution of the density matrix at time scale
t ~ 1/~ with ansatz that the off-diagonal elements are pg;,19 o 2. We disregard 02 terms
for pgo 11 and take poo = 1. Then, we have po1 = Q/2(iIA — ), p1o = Q/2(—iA — 7) and

the out of plane qubit projection is [87]

Q A

my(L) = =5 ey e

(4.51)

We argue, however, that the above expression does not hold for authentic steady state,
,5 = 0, at longer times and for general configuration of the initial conditions. We present the
result of numerical integration of the Lindblad equations in Figure for Q = 0.1A
and v = 0.1A. In our calculation, we consider the case when the qubit is prepared in the
ground state prior to rotation for ¢ < 0. When the rotation starts, the Hamiltonian acquires
extra terms ~ {2 and the qubit exhibits a precession around new direction of the control
field. This precession is reduced by the decoherence with rate I's ~ v and the oscillatory
component in m,(t) vanishes for times t ~ 1/~.

At longer times, the diagonal matrix elements start changing as well and the system
will eventually relax to poo = p11 = 1/2 and pp1 = p10 = 0. The reason for this behavior
is that at long times, the diagonal elements acquire significant changes even though these
changes have small factor Q2. In the language of the BR equation, the Lindblad pure
dephasing operator contains relaxation and excitation components in the eigenstate basis
of the transformed Hamiltonian H} and T, = T, = v0%/(A? + Q2), which is the high
temperature limit because it does not distinguish processes with absorption or emission of

environment excitations. Correspondingly, the density matrix reaches the high-temperature
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Figure 4.15: Polarization my(t) as a function of time ¢ for dephasing Lindblad evolution.
The decoherence rate v = 0.1A and rotation velocity 2 = 0.1A. After the rotation starts,
polarization shows an oscillatory behavior originating from the qubit precession, at longer
times the precession stops and the qubit relaxes to unpolarized state according to Eq. .

limit with equal probabilities of occupation of eigenstates of the qubit Hamiltonian

Q 2024t
(L)) = — 2" L L
my(t) = GpreD exp ( o 2> . (4.52)

This asymptotic behavior is consistent with the result obtained from the numerical solution

of the Lindblad equation (4.50), shown in Figure

Landau—Zener problem

The expression for Landau—Zener problem to the lowest order in v can be obtained from
the explicit form of the Lindblad equation (4.50) with E(t) given by Eq. (4.30) and =

vA/E?%(t). We assume that the changes in the system are slow and disregard po; and p1g
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Figure 4.16: Transition probability Ps, as a function of daphasing rate  for different level—
crossing speeds v/A? = 0.1, 0.25, 0.5. Solid lines are numerical solution of the Lindblad

equation, Eq. (4.50]), and dashed lines are given by Eq. (4.53).

in Egs. (4.50). Then we find pg1 = Q/2(—iE + v)[poo — p11] and p1g = [po1]*. Substituting
these expressions to Eq. (4.50b|), we obtain:

1 0 H2ZA2 dt
(L) — Z 11 _
=5 { eXp( 'Y/oo EA(t) 2 +E2<t>>}

1 ™ ol
=5 [1-ee (502 (1)) (4.53)
where
2+ (22 —2)Va? +1

Rz) = 2H @ ZDVer+ 1 (4.54)

z3vVr? +1

In the limit v < A2, we recover the result of Ref. [86]:

(L T p(L
j2it el (A) . (4.55)
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At small decoherence rate and slow drive, v < A, we take R(z < 1) ~ 3z/4 and

reproduce the previous result, Eq. (4.49)), if we identify v = 2raT. The agreement between

Eqgs. (4.49) and (4.53) has a simple interpretation. The Lindblad equation can be viewed

as the high—-temperature limit of the BR equation for the Ohmic environment [I35]. The
Lindblad equation is written in the basis that does not completely diagonalize the
Hamiltonian operator, and when we rewrite this equation in the basis diagonalizing matrix
E(t)6,+Q06,, we arrive to the collapse operators that represent transition processes between
the eigenstates with equal excitation and relaxation rates I‘g}) ~ v(Q2(t)/E%(t)). It is the
excitation processes that cause transitions of the system to the excited state with the
population of an excited state P, in accordance with Eq. . To account for finite
temperatures, the Lindbladian operators are to be written in the eigenstate basis of the
“dressed” Hamiltonian, see Ref. [136].

Large decoherence rate, v > A, suppresses the off-diagonal elements of the density
matrix, and effectively reduces the excitation and relaxation rates ~ yQ2?/(E? +~2). As a
result, the qubit is more likely to stay in its ground state without experiencing an excitation
during the LZ avoided level crossing. The maximum of R(z,,) ~ 0.42 is reached at x,, =
1.14.

We compare Eq. (dashed lines) with the result of numerical integration of the
Lindblad equation (4.50)) (solid lines) in Figure We observe that at stronger decoher-
ence rate, when the off-diagonal unitary terms in the evolution of the density matrix can
be neglected in comparison with the decoherence terms, v > v/A in the LZ problem, the

two solutions are equivalent.

4.6 Discussion and Conclusions

In conclusion, we have presented a detailed analysis of the dynamics of an open quantum
system in the presence of time-varying control field. Specifically, we formulated a time-
dependent Bloch-Redfield approach to study the dynamics of a spin-1/2 system whose

Hamiltonian varies slowly with time. Here we studied the dynamics in the presence of the
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Ohmic environment, however, our formalism can be readily applied to non-Ohmic cases as
well. Using modified BR approach, we investigated two problems. In the first problem, we
studied the response of a qubit to a rotating control field of the qubit with a fixed magnitude.
We noted that when the qubit basis is transformed to keep the effective Hamiltonian in the
diagonal form, which is required for proper perturbative analysis of the coupling between the
qubit and its environment, the transformed Hamiltonian acquires extra gauge terms. The
gauge terms result in the modification of the qubit—environment coupling and are related
to the renormalization of the mass and friction terms due to changing parameters of the
Hamiltonian, cf. Ref. [I37]. The exact form of the renormalization depends on a particular
orientation of the control field with respect to the fluctuating environment field. We have
illustrated this scenario by considering different orientations of the environment field: (1)
control field and fluctuations are always perpendicular to each other, and the corresponding
relaxation rates are time-independent; (2) control and fluctuation fields are parallel only at
some moments of time, in which case the relaxation rates significantly oscillate in time; (3)
fluctuations are always along the direction of the control field, then the relaxation rates are
small in the parameter given by the ratio of the rotation velocity and level separation.

Our analysis offers a clear evidence of robustness of topological features against external
noises. To see this one needs to consider a long time limit where the qubit density matrix
reaches a steady state solution that at zero temperature coincides with the ground state of
the effective Hamiltonian. When this ground-state qubit configuration is looked at in the
original laboratory basis, the qubit has a constant projection in the direction perpendicular
to the plane of rotation and the magnitude of the projection is proportional to the product
of rotation velocity of the control field and the Berry curvature of the qubit ground state.
In the long time limit, this response is unaffected by the environmental coupling field, at
least for zero temperature environment. This relation of the response at long times and
the Berry curvature can be utilized as a practical method for measurements of the Chern
number [I38] of a quantum system.

We also considered an environment with a very sharp spectral function. We represent
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this environment by a quantum harmonic oscillator that has internal relaxation. In this
case we solve the Lindblad master equation for the system of coupled qubit and oscillator
and find that the results are qualitatively similar to the solution of the BR equation with
properly chosen relaxation rates.

In the second example, we revisited the Landau—Zener problem. In this case, the modi-
fication of the matrix elements for transitions between eigenstates of the qubit Hamiltonian
is essential, even though it was not always taken into account. [I14] [IT16] The eigenstate
basis that is necessary to use in treatment of interaction of the qubit with its environment
is also convenient for numerical evaluation because in this basis the system behavior during
the Landau—Zener level crossing is represented by a smooth function that quickly reaches
its long-time asymptotic value.

For a qubit weakly coupled to the environment, the evolution, long after the level
crossing, reduces to suppression of the off-diagonal elements of the density matrix and
relaxation of the excited state to the ground state, the latter is accurately described by
the rate equations. For the fluctuating field along the asymptotic direction of the control
field, the relaxation rate decreases as the level separation increases due to suppression of
the matrix elements of qubit transition between eigenstates caused by the environment.
However, this suppression is not sufficient to cut the relaxation in the long time limit, and
the relaxation results in a power law decay of the excited state, until the separation between
the qubit states exceeds the ultra-violet cutoff of the environment.

At finite temperature, in addition to enhancement of decoherence rates for the qubit,
the excitation processes produce transitions from the ground to the excited qubit states,
eventually increasing the probability for the qubit to appear in the excited state after
the transition. The BR equations accurately describe the crossover for the Landau—Zener
transition in an isolated quantum system, Eq. , with unitary evolution, to the open
system at arbitrary temperature, see Sec.

Furthermore, we compare the results obtained from the generalized BR equations with

that from the Lindblad master equation. In particular, we focused on the case of pure
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dephasing Lindblad superoperators, [86] [87] that are equivalent to the longitudinal coupling
of the environment (fluctuating field of the environment is along the control field). We found
that the two results are consistent in the high temperature limit, when the Lindblad and
BR equations are equivalent, but application of the Lindblad equation for a system coupled
to low temperature environment may result in unphysical solutions.

Finally, we note that the generalization of the Bloch—Redfield equations can be applied
to accurately evaluate the fidelity of quantum gates. By taking into account proper mod-
ification of the transition and dephasing rates caused by time-varying parameters in the
Hamiltonian, optimization techniques for gate operations can be further improved. Simi-
larly, the BR equations for time-dependent Hamiltonian are also required for accurate de-
scription of protocols for adiabatic quantum computing and the Berry phase measurement

in recent experiments. [139].

4.7 appendix

Solution of rate equations for the avoided level crossing

Here we evaluate the integral in Eq. (4.42). Notice that while the integral over ¢’ in the

exponent,

w(t) .,
7t (4.56)

oo
I (t) = / Fo(tl) coth
t
originates on long interval from ~ A/v to E./v, the second integral converges for time

|t| < T/v, for not very large temperatures, we can replace the low limit of integration in

Eq. (4.56]) by t = 0. In this case, we have

Py =e 11O, 1,= / L. (t)dt, (4.57)

—00

where W (t) = /A2 + 0212 + v2A2 /(A2 + v2£2)2 = /A2 + 022 T (t) = Gz (t) J(W ()N (W (t))/2,
Lo = Grz(t)J(W(t))/2 with Grz ~ A?/(A? +v?t?) and J(w) = 2maw exp(—w/Ec). First,
let us change the integration variable ¢ = v/s?2 — A2 /v such that dt = s/vVs? — A2%ds and
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the integral in the exponential then reads

©  ral?

- A vVs2 — A2

This integral can be evaluated in two cases. First, we consider the low temperature limit

1,(0) coth % exp(—s/E,)ds. (4.58)

T — 0, in which the hyperbolic cotangent coths/2T — 1+ 2exp(—s/T). Therefore, the

integral is obtained

2
L(0) = Ta

2Ko(A/T) + Ko(A/EC))], (4.59)

where Ky(z) is the Oth order modified Bessel function of the second kind with the following
asymptotes: Ko(z) ~ /m/2zexp(—zx) for x > land Ky(z) ~ —In(ze?/2) for z < 1,

v =~ 0.577 is the Euler constant. As the result, for T < A, we have

,/%fﬂ/T +1In(2E./A) — | . (4.60)

The first term can be disregarded for T < A.

a2

v

11(0) ~

At higher temperatures, there is a stronger contribution to I;(0) originating from short

time interval |t| < T'/v. We can estimate this contribution as

TaAZ [ 2T ralA2 7T
6.[]_ = " /A SmdS == TK (461)

We emphasize that this is the contribution which we do not evaluate correctly when replace
Eq. by Eq. . Therefore, we can treat the above expression for dI; as the
boundary of applicability of our approximation, indicating that transition from Eq.
to is justified not for very high temperatures, such that §1; < 1.

Next, we evaluate the integral

> > malA?  exp(—s/E,
I = / T, (t)dt = 2 /A dsv\ig?_AiA?expp((s /T/>E_ )1. (4.62)

As before, we first consider the low temperature limit, 7" < A, in which we approximate

—00

1/[exp(s/T) — 1] ~ exp(—s/T'). Then the integral becomes

2 2
I ~ 2B (A T) ~ 2R \/%e*A/T. (4.63)
v

v
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In the high temperature limit, we utilize 1/[exp(s/T") — 1] ~ T'/s, and we obtain

2
= orA (4.64)

(Y

This equation is valid for high temperature limit 7' > A, provided that our substitution of

Eq. (4.42) by (4.57) is justified, or T < v/A.

To sum up, we evaluated P, in the limits of low and moderately high temperatures.

The results are presented by Egs. (4.43) and (4.44).

Solution of rate equations for the avoided level crossing for environment

with longitudinal coupling

For the longitudinal coupling, the transition probability P, in limit of low temperatures
T < A can be evaluated similarly to the calculations in Appendix A. We replace Eq. (4.46)),

where the integral over time t converges fast for |t| < T'/v, by the following expression
o

Po=Le ™, I :/ L. (t)dt (4.65)

—00

L= /O Ty(t)dt, (4.66)

where in the last integral we take the lower limit of integration to zero and coth W/2T — 1.

In the above expression, W (t) = /A2 + v2t2 + v2A2/(A2 + v212)2 =~ /A2 + 022 T, (t) =
Grz(®)J(W()N(W(t))/2, To = Grz(t)J(W(t))/2 with Gz ~ v2A?/(v*? + A?)? and
J(w) = 2raw exp(—w/Ec). Similarly, let us change the integration variable t = v/s2 — A2 /v

such that dt = s/vvs? — A2ds. The integral I; then reads

Gt A (4.67)

We note that this integral converges fast and the high-energy cutoff of the environment can

/°° a2y 2T
L = =

be omitted. Similarly, the integral over I'c(¢) can be rewritten as

I _/"o 2ra?v ds
2T a sisZ—Azexp(s/T) — 1
© \/2raA3/2y
~ - —s/T)d 4.68
[T e (/1) ds (4.68)

[ w3 A
>~ v mexp (— /T)
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In the high temperature limit, we follow a different approach. We assume that the
environment is at high temperature and the relaxation rates are enhanced by factor T'/W (t).
In this case, we also have a fast convergence of integrals [To(t)dt at |t| < A/v and for

T > A, we can simplify the rate equation (4.41]) to

dm. U2A2
7 = —ZWQTWm(t). (4.69)

This equation can be integrated to find m(t) with initial condition m(—o0) = 1, and used

to define Py, = (1 — m(+00))/2:

1—e I3 B2 A2dt
Po=-—" L—oraT [ U2 4.70
2 3= sma /_oo W2(1)E4(2) (4.70)

For v < A?, we obtain

ﬁ aTv

arriving to Eq. (4.48).
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Chapter 5

Response to a local quench of a
system near many body

localization transition

5.1 Introduction

Localization phenomena in disordered quantum systems has over half century history start-
ing with the seminal work by Anderson [140]. A system of non-interacting electrons in
one and two dimensions exhibit localization at zero temperature as follows from the scaling
considerations[I41]. The role of electron-electron interactions, however, is ambiguous. The
onset of localization, known as weak localization [142], is destroyed by electron—electron
interaction at finite temperatures [I43] as the interaction results in dephasing of electron
wave functions. At the same time, electron—electron interactions give rise to the Coulomb
gap at the Fermi energy, driving the system to localization [144]. Recent development in
theory of localization in disordered system of interacting electrons was put forward in the
work of Basko, Aleiner and Altshuler [I45]. This chapter proposed an infinite order per-
turbation theory in the electron—electron interaction and determines an energy threshold.

Below the threshold, the interactions between electrons cannot facilitate electron hopping
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between localized single electron states and systems remains localized. As energy of the
electron system increases above the threshold value, a large phase space of the system
allows electrons to rearrange and form an extended many-electron quantum state. This
many-electron quantum state corresponds to dephasing in a single electron language.

Along with more theoretical studies of localization in many body systems [146], [147],
experimental observation of localization remains a challenging task due to electron-phonon
interaction that effectively spoils many-particle states of the electron system in real metals.
The interest in search of systems that might exhibit many-body localization (MBL) has
shifted to ultra-cold atomic gases [148], trapped ions [149, I50] and artificial quantum
systems composed of several interacting qubits [I51]. Systems that contain relatively small
number of quantum particles, such as qubit chains and trapped ions, have another advantage
as their individual elements can be controlled and measured with high precision as well
as these systems can be simulated numerically by exact diagonalization of corresponding
Hamiltonians or by approximate methods with controllable accuracy. Thus, more recent
theoretical work was focused on studies of interacting one dimensional spins chains [152]
153, [154] [155], 156, 157, 158, 159, 160, 161]. Numerical and theoretical studies [152] [153], 154,
155], 156, 157, 158 159, 160l 161] have shown that spin systems containing more than ten
spins and involving more than a thousand of many-body eigenstates show MBL behavior
in sufficiently strong disorder.

A model that captures effects of interactions and disorder in a fermonic system is the one-
dimensional hopping Hamiltonian for spinless electrons with periodic boundary conditions
(CL+1 = Cl)v

L
Hy = Z [Jc;“cl + hyng + J'myngq| +hee, (5.1)
=1

where ¢; is the annihilation operator of electron on site [ and n; = czrcl — 1/2 defines the
site occupation. Parameter J describes the tunneling amplitude between neighboring sites,
J' defines the interaction between fermions on neighboring sites and h; is an energy of an
electron on site [. The onsite fields h; are independent random fields, uniformly distributed

in the range [—W, W], where W is the disorder strength in the system. The Hamiltonian
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(5.1) can be rewritten as an antiferromagnetic Heisenberg spin-1/2 chain of L spins with

the periodic boundary condition &1 = &1 and and random fields h; along the z direction.

L
Ho =Y [J(ofof,1 +0lo},,) + J'ofofs + hioi] (5.2)
=1

This model has been the focus of recent detailed studies [156]. The system is assumed to
be tuned at half-filling, when the number of spinless electrons is L/2 for a system with the
Hamiltonian or Si = > ,0f =0.

At weaker disorder, W < J, the system is in the delocalized regime and has several
characteristics reminiscent of conduction phase of a disordered metal. In particular, the
level statistics shows a distribution of level spacing similar to the Wigner-Dyson statistics
with level repulsion. At strong disorder, on the other hand, the Hamiltonian shows
localized behavior, as the level spacings acquire a Poisson distribution with high probability
to find two levels with a small level separation, and the dynamic susceptibility vanishes.
According to previous numerical studies, the transition from the delocalized regime to the
localized regime takes place at W = W, ~ 3J.

At strong disorder, W > W,_, the evolution of the system depends on the strength of
interaction, J'. If a system is split into two subsystems and its wave function is prepared
in a product state, the entanglement entropy quickly reaches a non-zero value and remains
constant for longer times for non-interacting system, J’ = 0, this value of the entanglement
entropy remains independent of the system size L. When the interaction is turned on,
J' # 0, the entanglement entropy shows growth on a logarithmic scale and saturates on a
exponentially long time scale [156] [I157]. The saturated value of the entanglement entropy
scales linearly with the system size.

This intriguing system is currently can be investigated numerically using exact numerical
diagonalization of the Hamiltonian for a system size L. < 16. Further increase of the
system size requires significant increase in computing power and memory requirements.
At the same time, this system can be simulated using current state of quantum devices.

Recently, a system of superconducting qubits with pairwise interaction between neighbors
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was demonstrated to have long decoherence times and future efforts are focused on building
larger systems of such qubits [I51]. Alternative system considered for such simulations is a
system of trapped ions [150}, [149].

Regardless of a particular realization of the system for simulation, a plausible measure-
ments, such as spectroscopy or transport, will result in violation of the particle conservation
(for system ) or spin along z—axis (for system ) Previous studies have conjectured
that the nature of two phases are distinguished by the validity of eigenstate thermalization
hypothesis (ETH). Such attribution allows one to construct translational invariant Hamil-
tonians in which the onset of MBL phase transition is caused by interactions. Another
idea to examine the relation between ETH and MBL states is to drive the system out of
equilibrium and test if the phase transition is restored.

The MBL phase can be characterized by the existence of infinite number of local integrals
of motion [152] [153], 154, [155], the entanglement structure [156, 157, 158 159, [160) 161],
as well as the spectral properties of eigenstates [147]. While these characteristics can be
measured in principle, the corresponding experiments are very burdened as they require
either a full quantum tomography or full energy spectroscopy of such systems. In this
chapter we propose an alternative strategy to identify the localization in a disordered system
of interacting spins. We first study the level spacing statistics of a Heisenberg spin chain in
random magnetic field along z axis with turning on a local transverse field. Then, we switch
to analyze the response of a pure state of this model to a sudden application of a magnetic
field perpendicular to z that acts on a single qubit. We evaluate the inverse participation
ratio of an eigenstate of unperturbed Hamiltonian in the basis of the perturbed Hamiltonian.
The participation ratio is small in the delocalized regime when the initial state overlaps with
many eigenstates of the new Hamiltonian. In the localized regime, an application of a local
perturbation does not affect majority of eigenstates and the IPR increases rapidly. Points
at which the IPR starts increasing fast form a curve in the energy wvs disorder strength
plane. This curve defines the upper and lower mobility edges.

Since the IPR is not easily measurable in experiments, we also investigate correlations
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in single spin measurements before and after the onset of the local perpendicular field.
The covariance between these two measurements is small for delocalized states, but rapidly
increases for localized states, as an applied perpendicular magnetic field does not change
significantly configuration of spins far away from the perturbation. The mobility edge
obtained from the covariance is consistent with the mobility edge obtained through the
IPR, as well as through analysis of the entanglement entropy [162, [163]. Moreover, at
strong disorder in the localization regime, the response of the spins to the applied local
field decreases exponentially as a function of the distance of the monitored spin from the
perturbation. We utilize this exponential decay to evaluate the localization length as a
function of disorder and demonstrate that the localization length diverges near the mobility

edge.

5.2 Level Spacing Statistics of the MBL Hamiltonian

To be specific, consider a 1D Heisenberg spin chain with random on-site field in the z

direction with periodic boundary condition, described by the Hamiltonian

Hy=Y hio® + 73 o . o+, (53

where h; on each site is a random variable distributed uniformly in the interval [—W, W]
and o is the Pauli matrix for spin at site . Throughout the chapter, we use J as a
fundamental unit and set J = 1, we also denote eigenstates of Hy by |a). In fact, there
are two global conserved quantities in the system, namely the energy and the total spin in
z direction S, =), o). Previous numerical [164], [161] and theoretical [I65] studies were
focused on the subspace S, = 0, where the MBL phase develops at strong disorder with
W 2 3.4.

Since the total spin along z direction is conserved, the natural approach is to truncate
the Hamiltonian at half-filling. We start by analyzing the spectral properties of Hy at
half-filling by performing exact diagonalization (ED) of the Hamiltonian for L = 14 sites.

The standard approach is to compute the ratio of consecutive level spacings, defined by
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T = min(dy, 0pt1)/max(dy, dpt1), where 6, is the energy separation between adjacent
many-body eigenstates 0, = E,+1 — F,. This quantity r, has the advantage that it is
dimensionless and independent of local density of states. Thus such a distribution permits
a transparent distinction from the band edges to the dense part of the spectrum.

It is well-known that at strong disorder, the eigenvalues are uncorrelated and therefore
the probability distribution of &, is Poisson, which corresponds to P,(r) = 2/(1 + r)2.
On the other hand, at weak disorder, the random matrix theory as a phenomenological
approach is adopted. Here, the eigenvalues are correlated, which is highlighted by the onset
of level repulsion, P(r) — 0 at small r limit. However, it remains an open question to
understand the discrepancies of spectral properties between GOE and MBL Hamiltonian
at weak disorder in the thermodynamic limit. Therefore throughout our analysis, instead of
comparison to GOE or correspondingly Wigner-Dyson statistics, the main concern is about
the onset level repulsion. For this purpose, we extract the exponent of P(r) in the limit

r — 0:

(5.4)

as a universal measure of level repulsion.

In the top panel of Figure we present the probability distribution P(r) in the log-log
scale . The data is obtained from ED for 10* disorder realizations with L = 14 and several
disorder strengths. At small r limit, there is a clear crossover from x ~ 1 at weak disorder
(W =1) to k ~ 0 at strong disorder (W = 30). In between the two limits, the fractional
value of x in [0, 1] is attributed to mixing between correlated and uncorrelated states. In the
inset, the same set of data of P(r) is plotted in linear to show the decreasing of the average
value of r with increasing W. As discussed in Ref. [I47], (r) grows smoothly from 0.38 for
Poisson ensemble to 0.54 for GOE as a resemblance to the weak disorder Hamiltonian. Our
numerical result agrees with this findings. In the bottom panel, we plot the dependence
of x as functions of W for L = 10,12 and 14. For all three curves, the exponent x drops

from unity at weak disorder to zero at strong disorder. However, in contrast to the study of
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Figure 5.1: Level spacing statistics of the static Hamiltonian for 3 typical values of W =
0.3,4,30. Results are obtained with L = 14 spins, and are averaged over 10* realizations.
The corresponding bare fittings with GSP distribution are also shown. In the strong disorder
regime, the GSP distribution reduces to the well-known result with Poisson distribution. In
contrast, at weak disorder, it remains unclear whether Wigner-Dyson, GSP or even more
complicated distribution provides a correct result. Inset: the same set of data but plotted
in log-log scale. Instead of the overall distribution of r, the slope of the linear dependence
at small 7 limit is another method to obtain exponent .

dynamic polarization in Ref. [I64], in the critical regime, the curves with different system

size are parallel other than crossing to each other.

5.3 Level Spacing Statistics of the Quenched Hamiltonian

Then, we study the case when Hamiltonian suddenly acquires additional local pertur-
bation breaking S, conservation law. In particular, the new Hamiltonian is H = Hy + V/,
where V = fa,gizo), see Figure As noted before, the total spin projection S, =), ag)
is a good quantum number for Hj, therefore the perturbation term breaks the conserva-

tion of S,. Quite generally, when the eigenstates are not correlated, the level spacings are
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independently distributed upon varying external parameter(s). On the other hand, when
the perturbation is turned on, the perturbed eigenstates acquires components set by the
matrix elements of the perturbation term, divided by the differences in energies. In this
manner, the level spacing statistics is no longer independent. One can check the statistics
of the new eigenvalues of the perturbed Hamiltonian, similar as the procedure in the pre-
vious section. In our numerics, in order to evidence the spectral properties of the entire

spectrum in which all families of total S, is included, we first examine the distribution of

the difference in indexes for states in the S, = 0 sector.

1=L—-1

Figure 5.2:  Schematic of the one-dimensional spin-1/2 chain with periodic boundary
condition. Along the chain, each spin is subject to a random onsite field h; along z direction
and the spins are coupled by nearest neighbor Heisenberg interactions with strength J. At
time tg when the local quench is turned on, a transverse magnetic field f is applied to one
of the spin, labeled by 7.

Figure shows the distribution of Aindex for both ergodic and localized regime.
Here we find for the ergodic regime, there is an interesting repulsion of states with the
same total spin. In other words, two adjacent eigenvalues are much more likely from two
different families of S,, rather than from the same value. Therefore, one can expect that
the distribution of r for the entire spectrum are mainly dominated by the states with
different S,. States that are far apart in energy are far apart in the phase space as well,

but the reverse is not true. Therefore in the ergodic regime, states with the same S, are
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Figure 5.3: The distribution of Aindex for the S, = 0 sector of the spectrum in (a) the
ergodic regime, W = 1, or (b) the localized regime, W = 10. Data is obtained for L = 12
with 100 disorder realizations. Insets: the pattern of states labeled by different S, in the
middle of the band for one arbitrary disorder realization. Different markers correspond to
different S,. In the ergodic regime, states with the same S, are more likely separated by at
least one state with a different S,, whereas for the localized regime, states with the same
S, more likely appear in adjacent pairs.

not grouped together. On the other hand, for the localized regime, the distribution is
monotonic, indicating that states different S, more likely appear in adjacent pairs. These
differences in the distribution of Aindex, however, resulting both Poisson-like distribution
for either weak or strong disorder. In the former case, selection rules between states with
different S, are vulnerable to the weak perturbation, whereas for the latter case, both intra-
and inter-couplings between states within different families are exponential small.

To reveal the non-trivial deviations in the distribution of r, we turn on the perturbation
fag(cl). To this end, two eigenstates from different families of S, are perturbed by the finite
matrix elements given by o,. In this manner, in the phase space the boundary between

states with quantum numbers S, are blurred. In this case, the nature of the quantum states
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can be examined without reliance on symmetry arguments or restriction of selection rules.
After that, the connectivity of between states in the phase space is a criteria of localization.
As shown in Ref. [166], for this particular spin model a tentative local conserved quantity of
the MBL states are the local spins in z-direction, dressed by their neighbors with strengths
set by the many-body localization length £. If £ is comparable to the lattice spacing, local
spins are oblivious to each other, so that the two configurations are not connected in the
phase space. On the other hand, these operators become extended if the localization length
is comparable to the system size and therefore looses its meaning.

Above arguments imply that within the entire spectrum of the driven Hamiltonian for
a finite system highlights the remarkable role played by the perturbation. The role of the
perturbation to distinguish the two phases can be seen as a reminiscent of its non-local
response that forms a rearrangement of local conserved quantities. In the thermodynamic
limit, the two phases can be recognized by if there is a orthogonal catastrophe due to small
changes in the amplitude f. Unfortunately, this calculation is not permitted in the present
work due to the limitation of computational resources, and remains an open question for
future work.

In what follows, we consider the distribution function P(r) of the dimensionless param-
eter r with respect to various values of drive amplitude. As a result of increasing f, the
quantum states unveil their nature of localization/delocalization. To see this, we vary the
amplitude of the drive from f = 0 to f = 0.6J or more for each disorder realization with
fixed parameters of the static Hamiltonian for both ergodic and localized regime. For each
sample, we collect the data of r over all states and compute the histogram of r for both
cases.

As expected, at f = 0, the distribution P(r) is Poisson-like statistics with minor devia-
tions for both cases. While the external drive is turned on, the behavior of the statistics for
W =1 and W = 10 are qualitatively different. For strong disorder, W = 10, even though
the perturbation induce a finite matrix element between states with different S, this effect

on level spacing statistics is minor because a considerable portion of eigenstates are still
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Figure 5.4: The probability distribution of r for (a) the ergodic regime, W = 1 and (b)
the localized regime, W = 10 with varying amplitude of perturbation f. Data is obtained
for L = 12 with 1000 disorder realizations.

being localized and thus remains uncorrelated. Consequently from the distribution function
P(r) for finite drive amplitude at small r there is no apparent level repulsion developed.
On the other hand for weak drive, W = 1, the effects of the perturbation is sensitive on
the amplitude f. As f grows, signature of level repulsion quickly reveals up to f = 0.1J,
as shown in Figure 5.4

Quite interestingly, the onset of level repulsion can be quantified by looking at the
following quantity “maximum distance” (MD) between cumulative distribution r, Q(r) =

Jo P(r")dr’ between Poisson and actual distribution P(r):
ro
MD = /0 (By(r) — P(r)| dr, (5.5)

where P,(r) = 2/(1 + r)? is the Poisson distribution function for 7 and 7y is the point of
P(r) to maximize the cumulative distributions, i.e., the first intersection point of P,(r) and

P(r). The advantage of this measure of similarity between different distribution function is
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that the data of cumulative distribution is less noisy than P(r) itself, and it is also sensitive

on the onset of level repulsion because only data in the small 7 limit is considered.
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Figure 5.5: Dependence of MD on the amplitude of perturbation f for weak (W = 1) and
strong (W = 10) disorder. As a measure of deviation from Poisson statistics, the MD for
the ergodic regime is sensitive on f and grows quickly to ~ 0.24, while for the localized
regime MD roughly remains constant at a small value ~ 0.01. Inset: The definition of MD
is given by the maximum distance between cumulative distribution functions of r between
Poisson statistics and actual statistics.

The dependence of MD on amplitude of drive has different behavior in the two phases,
as shown in Figure In our numerics, the cumulative distribution of Q(r) is obtained
by the labels of the sorted data of r. In this manner, even for 100 disorder realizations,
Q(r) is smooth enough for our computation purposes. For weak disorder, the MD quick
saturates to ~ 0.24 at f ~ 0.4J, while for strong disorder MD remains constant at a small
value ~ 0.01.

It is worth pointing out that our numerical result agrees with the previous studies on the
average of r, namely (r) ~ 0.39 for Poisson distribution and (r) ~ 0.53 for GOE. However,
the reason why we use MD instead of (r) as a measure to distinguish the distributions
is that the existence of universality for the entire spectrum at weak disorder is specious.
Hence we are only simply interested in the deviation of the distribution from the Poisson

one.
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5.4 Long Time Dynamics of Local Quench

In this section we consider a system that was originally prepared as a pure state [¢) in the
subspace of states with S,|¢) = 0 and calculate its response over a long time after the onset

of V= fagzo):

~

1 (7. 2
(0) = Jim /0 O(t)dt = Trp(t)O = TrpltL O, (5.6)

where p(t) = exp (—iHt)p(0) exp (¢Ht) is the density matrix and p‘gg = p(t) is the time-

averaged density matrix initialized in a pure state, p(0) = [¢)(¢|,
ot =3 Pal(@)l?, Pa=la)al (5.7)

and Pj is the projection operator on new eigenstates |&) of H. The off-diagonal elements
of p‘gﬁ] are averaged to zero and this density matrix is equivalent to a diagonal ensemble
[167] where the off-diagonal elements are absent due to dephasing.

Below we concentrate on initial states |i) that coincide with eigenstates of the initial
Hamiltonian Hy and have S, = 0. We denote these states by |ag), where the level index ag =
1,...N(L,0) runs over eigenstates of Hy ordered with increasing values of eigenenergies,
N(L, §) = (21)1/[(2L-5)1(25+5))).

We demonstrate that the Hamiltonian with local perturbation, H, still exhibits the MLB

phase. The first indicator of many-body localization we study is the inverse participation

ratio (IPR), defined as

2L
IPRo, = 3 [(a0l@)|! = Tepy P, (5.8)
a=1

where P,, = |ag)(ao|. The IPR is a measure of portion of the Hilbert space explored by
the system after the perturbation V' is turned on [168]. At weak disorder, the motion of the
system is ergodic and the state travels over a large fraction of the Hilbert space and results
in minimal values of the IPR about ~ 277, On the other hand, in the strong disorder limit,
the ergoicity breaks down and the many-body wavefunction evolves within a small section

of the Hilbert space bounded by the local integral of motion [152, 165 153]
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For both limits, the distribution of logy IPR,, is highly concentrated and transition
between these two limits can serve as an indicator of the mobility edge that separates
localized and delocalized many body states. We note that the fluctuations of IPR are
enhanced substantially near the mobility edge. Indeed, when |a) is chosen to be close
enough to the mobility edge, the excitations is a combination of delocalized and localized
states. The compromise between them gives rise to diverging standard deviations in TPR.

To demonstrate the behavior described above, we perform exact diagonalization for
L = 12 spins and N = 2000 realizations to obtain all the eigenstates |a)s for Hp and
|&)s for H to evaluate ppg. If the system is initialized with an eigenstate |ag) of Hyp with
S, =0, and as long as the quench is fast enough the system will be in the eigenstate |ag).
We then evaluate both |ag) and |&) that define the corresponding density matrix in diagonal
ensemble as p'lgég.

The result of this analysis is presented in Figure The average IPR as a function
of disorder strength W and e is plotted in Figure [5.6(a). The averaged value of IPR(W,¢)
with respect to disorder realizations clear reveals the existence of a mobility edge that
distinguishes delocalized states to localized states, here € = a/N (L, 0) position of eigenstate
within the energy band. To justify the nature of the mobility edge, we plot the histogram
of the distribution of log, IPR in Figure (b) In the weak and strong disorder limit,
the distributions of log, IPR are highly concentrated at somewhere oc L and 0 respectively.
However, log, IPR in the critical region is broadly distributed between the two limits with
its standard deviation proportional to L and the standard deviation eventually diverges
at the mobility edge in the thermodynamic limit. In fact, these critical fluctuations is a
reminiscent of the many-body mobility edge which separates the two distinct phases. For
this reason, we can use this approach to identify the phase boundary of an MBL transition.
We note that similar divergence has been found in the fluctuations of the entanglement
entropy [161].

In the lower panels Figure (c), we make two vertical cuts at fixed disorder strengths

W = 3, 7 on the phase diagram. For moderate disorder strength W = 3 and in the presence
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Figure 5.6: (a) Averaged participation ratio over disorder realizations as functions of
disorder strength W and energy density € for a system of L = 12 and 1000 realizations.
Marked by white color, the many body mobility edge encloses a region of delocalized states
with IPR ~ 27%. The horizontal and vertical cut indicates the parameters for panel (c)
and (d). (b) The histogram of logy IPR in the middle of the band for W = 0.5, 4 and 10.
The distributions are concentrated for weak and strong disorder, but highly fluctuating in
the critical region. (c) The IPR at fixed disorder W = 3, for which case the states are

delocalized in the middle of the band but localized in the edges, and W = 7 where all states
are localized. (d) The IPR and its standard deviation for fixed energy density € = 0.5.
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of mobility edge, the PR reaches ~ 0.4 in both edges in an unsymmetrical manner, but it
sharply drops to ~ 1072 and forms a flat basin in the middle of the band. At strong disorder
W =7, all states are localized and this can be justified by the large value of IPR throughout
the band 2 0.4, indicating that the mobility edge is closed. When we fix the energy density
at the middle of the band, ¢ = 0.5, we observe the stand deviation can identify that the
mobility edge closes at the critical value W, ~ 3.5, accompanied by a kink in the standard
deviation of IPR.

While the above approach to detect mobility edge through IPR is suitable for numerical
calculations, it is hardly realized experimentally. For experimental detection of the mobility
edge, we propose a different approach. We study the dynamics of single spins and investigate
the correlation of the their expectation values <a§i)> before and after a local perturbation.
Our motivation is based on the previous observations [169] that in the MBL regime the
ETH is violated and information about the local observables at sufficiently long times can
be traced back to its initial condition resulting in correlations between spin states before
and after perturbation V is turned on. Otherwise, in the delocalized regime the motion is
ergodic and all correlations with initial conditions are lost.

For an interacting system, the observables set by a finite degrees of freedom can be
evaluated by the reduced density matrices in which the off-diagonal elements are essentially
zero due to dephasing even if the system starts in some arbitrary pure state. One can mea-
sure the local observables in this steady state, and then apply the local perturbation to the
Hamiltonian so that the system approaches a new quasistationary state in the eigenbasis
of the perturbed Hamiltonian. In this sense, time averaged expectation values of a local
operator are characterized by a diagonal ensemble ppg. In this case, a good description
of response for arbitrary initial state can be obtained by analyzing correlations between
expectation Péo of a local operator for an unperturbed system with Hamiltonian H( initial-
ized in an eigenstate |ap) and its expectation value after system is perturbed, ng. Here
we introduced notations for the expectation values of <O'£i)> of monitored spin ¢ and initial

system state |ag) as Péo and ng for a system before and after the local perturbation at



120

o =0
(b) . i=Lj2-1
0.5
@: 0 o .
-05 W =25
Delocalized
-1 . . .
-1 -0.5 0 0.5 1
(1()
) 10 /e
_Pﬂu/ N
5 5 8’ ' ___Qﬁ((Z—l
g 5 ;
2 2 h
B B 6 "
© © !
2 > P
= = 4t !
o o !
© © 1
o Qo 1
o o ol
N 1
0 : ' : 0 A
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
L/2—1 L/2—-1 L/2—1 L/2—1
Pﬂ'(l/ ’ (lu/ Pflu/ 9 (Yu/

Figure 5.7: Scatter plot of (Pfa), fa>) for (a) the localized regime with W = 10 and (b)
the ergodic regime with W = 2.5 for states |«) in the middle of the band. Data obtained
with L = 12 and N = 1000. The corresponding probability distribution of P; and @Q; for
(c) the localized regime in which the single spin measurement with and without a quench
coincides with each other and for the (d) ergodic regime the disparity in the distribution
with and without the quench indicates a thermalization.

site ' = 0 is turned on. These quantities are given by

P =(aolo|ag), (5.9a)

o = l{aola) P (@lo ) = {5 ol | (5.90)

Running over all eigenstates |ap) in the S, = 0 sector, we collect P} and Qi for a
number of disorder realizations. In Figure (5.7), we present the scatter plot for pairs of

(Pa

ap?

L) of spin i = 0 (directly perturbed spin) and i = L/2 — 1 (the farthest spin from
the local perturbation) in the middle of the band, ag ~ N(L,0)/2 for weak (W = 2.5) and
strong (W = 10) disorder. In the localized phase at strong disorder, the eigenstates are

product states consisting of physical spins |a) = @), || (1)); and therefore the local spin
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projection is good quantum number PC’;0 ~ +1.

In this sense, all eigenstates are interchangeable by disorder realizations, and thereby all
states are localized at infinite temperature. Provided that the quench intensity f is small
compared to the local onsite field, the eigenstate of the quenched Hamiltonian is perturbed
to the order of O(f/W), resulting in an almost unchanged eigenstate with Q) ~ +1.
On the scatter plot, each pair of (P‘iaw Ta)> is distributed along the line Pfa> = Ta>,
indicating the two measurements being strongly correlated. In the delocalized regime at
weak disorder (W = 2.5), the eigenstate is a linear combination of a large number of
product states, and therefore local spin projection is not good quantum number. The
result of two sets of measurement form a elliptic cloud. This observation is an indicator
of thermalization: upon thermalization, the distribution of single spin measurement for
all possible spin configurations is centered at P(Q) = 0 and narrowed down because the
memory of the initial condition is lost. In Figure , we plot the distribution of P and @ for the
both strong and weak disorders. Remarkably, the distributions are almost indistinguishable
for W = 10 and the contrast between the distribution in the ergodic regime W = 2.5 is
apparent due to the re-equilibration of the system after the local quench.

The correlation between Py and Q)y) can be characterized by the covariance: C"ia> =

(Pl

respect to disorder realizations. As an indicator of ergodicity breaking, the covariance is

—%) - ( ‘ia> — fa>) = P|Z>Q|ia>, where Q|ia> and QT@) are averaged to zero with

used to mapped out the phase diagram as a function W and e, as shown in Figure In
the ergodic regime the averaged value C approaches to 0 and eventually saturates to 1 deep
in the localized regime where both @ and P takes the same value +1. Similar to the IPR,
this measure C' can reveal the many-body mobility edge, marked in white.

With decreasing the spatial separation between the quenched spin and the monitored
spin, we observe a larger deviation from the ideal case P|Za> = Qfa> because the quenched
spin can be thermalized locally. At meanwhile, in the ergodic regime, the distribution of
(P|ia>7 fa>) is insensitive to the spatial separations between quenched spin and monitored

spin, suggesting that the response to the quench is uniform along the system. Indeed, the
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Figure 5.8: (a) Measure C? y = P|ia>Q‘ia> as functions of disorder strength W and energy

[0
density € for L = 12 and N |: 1000. The many-body mobility edge is marked in white. (b)
“Buclidean distance” D' as a function of distance between monitored spin and quenched
spin (solid lines), and the corresponding fitting curve, Eq. (dashed lines). (c) The
many-body localization length ¢ extracted from D) as a function of disorder strength. The
dashed line corresponds to the £ = 1 to show that the at sufficiently strong disorder the
system is localized in the atomic limit.

ensemble Pfa> and Q|ia>) with respect to disorder realizations can be used to evaluate the
many-body localization length. Intuitively the localization length is a scale below which
spin texture form localized clusters and thereby the ergodicity is broken. Essentially deep in
the localized regime, localization occurs in the atomic limit with localization length £ = 1.
With decreasing disorder, the localization length grows and once the scale is beyond the
system size, the entire system cannot be decomposed into independent clusters and the
ergodicity reoccurs. Therefore, the localization length is an indicator of the onset of MBL
regime that can be determined by the spatial sensitivity of the response to the local quench.

The deviation between the measurement Pfa> and Q‘io{> averaged over disorder realizations
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is given by “Euclidean distance”:

o) =V (Flay = Qlay)* (5-10)

%
e

We argue that in the localized regime D ) is an exponentially decaying function with

respect to the distance between spin ¢ to the quenched spin:
i 0 _ —i/¢ —|L—il/€ —L/¢
Diy /DRy = e e e bilE — em g, (5.11)

where £ is the localization length. The first two exponential terms in Eq. arise
from the periodic boundary condition, and the second term is a normalization constant.
Therefore, we fit the undetermined parameter £ for each disorder strength and for all spin
indices ¢ in D|ia)' In Figure (b) we present the ratio D?/DO as a function of spatial
separation ¢ for several different disorder strengths W = 3,5, 10 in the middle of the band.
In Figure (c), we illustrate the extracted localization length £ from the scaling form of
D'. Due to the finite size of the system, at the critical disorder W, ~ 3.3 the localization
length £ does not diverge but remains a finite value larger than the system size, consistent
with our argument above. On the other hand, & saturates to 1 deep in the localization

regime, indicating that the localization effect occurs at atomic limit.

5.5 Summary

To summarize, we showed that as a result of local quench, the absence of thermalization
can be characterized by the inverse participation ratio of the eigenstates of the quenched
Hamiltonian into the unquenched eigenbasis in a many-body localized system. In partic-
ular, the IPR has critical fluctuations at the transition with disorder realizations in the
thermodynamic limit and becomes more robust deep in both phases. Meanwhile, our anal-
ysis of the single spin measurements in the presence of quench provides a concrete example
to perform experiment for better understanding of many-body localization length. In this
scenario, performing measurements of z component of physical spins, other than more com-

plicated measurement of many-particle entanglement or pseudo-spins is sufficient, even for
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a quantum system with short 75, as long as the relaxation time 77 is long enough such that
the diagonal ensemble is a good approximation of transient quantum state, a regime where
quantum simulation of many-body system is currently accessible. Our analysis demon-
strated that for a realistic system that supports many-body localization, simple single spin
measurement can reveal the indispensable characteristics, complementary to more sophis-
ticated routes to check the growth of entanglement entropy [156] [157] or quantum revivals

[170] under time revolution.
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Chapter 6

Many-body localization in a
quantum system subject to a local

periodic drive

6.1 Introduction

In practice, one simplest scenario to study the dynamics of a quantum system is to apply a
local harmonic drive to one of the spins. At long times after the drive is turned on, states
that obey/disobey ETH would predict different expectation values for observables, whereas
the former is insensitive to the specifics of the initial state and coincides with the prophecy
of a thermal state at infinite temperature. This leads us to propose the description of the
thermodynamics in terms of the time-averaged state, not of thermal ensembles.

The purpose of this chapter is to continue our discussion about the dynamical aspects
of a MBL system, with an experimental accessible method to observe MBL phases by using

a local harmonic drive on one of the spin. The Hamiltonian we consider is the following:

H = Hy + flcos(wt)o'!) + sin(wt)o(V], (6.1)

where f is the amplitude of the external drive and Hy is the static MBL Hamiltonian.
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Besides, one by-product of the formalism is that one can construct the long-time av-
eraged density matrix using the Floquet basis. On one hand, such density matrix can be
used to calculate the thermodynamic quantities that distinguish the two phases; on the
other hand, by examining of the thermodynamic quantities with different initial conditions
we conjecture there is a mobility edge in the spectrum of the static static Hamiltonian
beyond which the states doe not obey ETH even for a less disordered Hamiltonian. The
origin of such mobility edge is due to the finite size of the system and disappears in the
thermodynamic limit.

The chapter is structure as follows: We first derive a formalism that can be used to
analyze the AC driving scenario for the model, [6.1} within Floquet theory. In particular,
we study the response of the quantum system by evaluating the average quantum infidelity
between the evolution of the system with and without an AC drive. Next, we use the
formalism to evaluate the thermodynamic characteristics at long times, which can reveal

the validity or breakdown of ETH in different phases.

6.2 Evolution in the Floquet Representation

Now we analyze the response of a quantum system Eq. in the presence of a harmonic
drive, Eq. with period 7 = 27 /w. For a periodic drive, the evolution operator U(t =
nT) after n periods can be represented as the nth power of the Floquet operator Us(r)
per one period 7: U(t = nr1) = Uf. The Floquet operator is unitary and has a set of

eigenvectors, that form a Floquet basis:
Upla) = e=%"|a), (6.2

where we use greek indices to numerate Floquet basis, o = 1,...,2%, and Q, are quasiener-

gies. After n periods of the drive, the system evolves from its initial state |¢) to the state

[$(n7)) = UFlyo), Uy = e a)(al (6.3)

with Uy written in the Floquet basis.
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To evaluate the Floquet operator, we notice that the transformation

L
Ui(t) = exp <_w21t Z aé”) (6.4)

=1

removes explicit time-dependence in the full Hamiltonian of the system, Eq. (6.1)):

i = U HUT — 0y = o + gggx Ay = Ho— Y2 %00, (6.5)
1
After this transformation, the Floquet operator can be defined as an exponent of time-

independent Hermitian operator
Us = exp(—iHT)U1(7), (6.6)

where U1(7) = (—1)*1, and 1 is the identity matrix. Using Eq. (6.6, we find that the
Floquet basis is simply given by the eigenstates of the transformed Hamiltonian ,
Hp=H.

The effect of a harmonic drive on a state of the system can be defined the displacement
of this state |1;(7)) after one period of the drive from the free evolution over the period
7 of the same state [¢)o(7)). For an arbitrary initial state [i;), the state after one period
is |¢f(7)) = Ugltp;) for a harmonic drive with amplitude f, and |¢o(7)) = Uplt);), where

Up = Uso = exp(—iHot). The corresponding distance between the two states in the

Fubini-Study metric is simply determined by the overlap of these two states:
Fy, = [@o(n) [y (r)* = [{alud|i)] (6.7)
where we introduced a unitary operator
U=Ulu; (6.8)

representing a mismatch between the evolution of the system with and without drive.

We characterize a typical response of an arbitrary state to the drive over a single period
in terms of the uniform average over initial states |1);) of the overlap F,. The corresponding
average, known as a quantum fidelity between two unitary operations, is completely defined

in terms of operator U as [171]

_ M+ | Te{U})?
F= M(M +1) (6.9
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and M = 2 is the dimensionality of the Hilbert space.
The matrix element of U taken between the energy eigenstate |i) of the static Hamilto-

nian Hj and the Floquet state |«) has the form
(ilU|a) = A exp(—i(Qo — Ei)T), AT = (i), (6.10)

where A$ is the overlap amplitudes between energy eigenstates of the static Hamiltonian
and the Floquet states. This relation leads to the matrix elements of ¢/ in the energy

eigenstate basis of Hy:
Uij = (ilU]f) =) exp(—i(Qa — Ei)7) (A7) AL, (6.11)

According to this equation, the evolution of the system reduces to a search of the compo-
nents A of the Floquet states in the basis of the static Hamiltonian, and the corresponding
eigenenergies and quasi energies. Below we present numerical evaluation of these matrix
elements and argue that the statistical properties AS change across the many body localiza-
tion transition. We also show later in this chapter that in the long time limit, the Floquet
amplitudes define thermodynamic characteristics of the system such as absorbed energy
and the change in entropy and, consequently, these characteristics also change across the
transition.

For quantitative analysis of the effect of the drive on the system, we consider a Hermitian

matrix
1-U
T_Zl +U

(6.12)

instead of the unitary matrix ¢. A simple choice of the norm as « Tr {TQ} can be inter-
preted as the power of the drive applied to the system. This is especially meaningful in
the limit of weak drive when 7T is linear in the drive amplitude f. In its eigenvector basis,
operator U is presented by a diagonal matrix with elements e (¢ = 1,..., M) and T is

also diagonal with diagonal elements [T ]q, = tan(d/2). The norm of T is

M 5
2 2 Ya
lr{ ] } = ag 1 tan 5 (6.13)
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and Tr {TZ} — 0o when one of the scattering phases reaches the unitary limit, d, = 7, so
that corresponding eigenvector |a) of U completely flips just after a single period of the drive,
U|a) = —|a). This strong effect of the system states does not necessarily reduce fidelity F,
however, the system rearrangement over energy states |i) of the stationary Hamiltonian H
per cycle of the drive becomes significant if (ila) # 0 for many states [i).

Utilizing Eq. and , we can write the system of linear equations for the

Floquet amplitudes A"

tan((Qa — EDT/2)+ T, .

Z<z| e ) A% = 0. (6.14)
J

This equation can be reduced to a hopping problem[172] of a particle with on-site energy

tan((Qq — E;)7/2) and hopping amplitude 7 between sites in the Hilbert space:
Qq — E;
[tan (2)7- + T [Xa) =0, (6.15)

where |xa) = >;(1 — iT) ™Y J)A§ is an eigenstate at zero energy existing for a set of
quasienergies €, of the Floquet operator Us. Equation (6.14]) is in particular useful in the
limit of weak drive when it establishes a simple relation between the Floquet amplitudes

A$ and hopping amplitudes 7;;.

6.3 Relation between Floquet amplitudes and hopping

matrix

In this subsection, we consider in detail the limit of weak external drive, taking into account
only the linear in drive amplitude f terms in the hopping matrix 7 and the unitary matrix
U. First, we expand the operator U, defined by Eq. , to the lowest order in f, and

obtain the following expression for the hopping matrix:

- (iT)2 ~ ~ (6.16)
X (Ug(cl) + iT[HOaUg(gl)] + T[H@, [HO, J:(cl)]] 4+ .. ) .
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This expression indicates that the matrix elements of 7;; can be easily written in the eigen-
state basis of Hamiltonian Hy in terms of (2’\0;&1) |7). Here we present an alternative deriva-
tion of 7;;. We notice that for f = 0, the Floquet states |«) and eigenvectors of stationary

Hamiltonian Hy as well as quasienergies €, and energies E; coincide,
(iloaj=0) = biary Qo = En(mod 27/7). (6.17)

We consider Eq. (6.14) up to the first order in 7 and apply Eq. (6.17) to find a relation
between off diagonal elements of matrices Ag# and 7j; written in the eigenstate basis:

Tij = iAY 7 sin m(Ei— By) BBy fw, (6.18)
w

To the lowest order in f, overlap between Floquet states and eigenstates of Hy can be eval-
uated from the first order perturbation theory as A?;gj = (f/2)(i\ag(cl)]j>/(Ei — E;). Note
that while the difference between eigenenergies F; of Hy and E,- of lEIO is not important in
Eq. , this difference is important in the denominator of Aio;é_;j , that represents transi-
tion between states with different values of total spin along the z—axis, due to absorption
or emission of energy Aiw. We obtain the following expression for matrix elements of the

hopping matrix in the basis of eigenstates of Hy that coincides with eigenstates of Hoy:

g (1)) BN L~ -
i@‘aw 7) sin m(E; Ej)em(Ei—Ej)/w‘

Ty = st
‘ QEZ'—EJ' w

(6.19)

At weak drive, U = 1+ 2iT — 272 + ... and we obtain an expression for the average

fidelity

M + M? — AMTrT? T {T?}
M5 1) ~1—4p, p=——= (6.20)

F= M1’
and the average displacement of the states per period of the drive, or infidelity, is propor-
tional to the dimensionless power p of the drive, 1 — F' = 4p, provided that p < 1. In the
above expression we disregarded terms that contain (Tr {7°})2 since Tr {7} vanishes to the
linear order in f, ¢f. Eq.

We apply Eq. to argue that the infidelity 1 — F is a universal, M —independent

measure of the effect of a harmonic drive on the system in either ergodic or MBL regimes.
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We write
P -
p< o S jap = 2l b (6.21)
i i
where P is the escape probability P8 =1- | A%|% of the system from initial state |i) at

long drive time, averaged over states |i).

We can provide more accurate estimate of infidelity € by applying Eq. (6.19):
w2 f2 sin?(r(E; — Ej)/w)

WM Z2[w(B — By wl?

First, we evaluate the average value of p over realizations of the random magnetic field for

P~ [ilo®1)| (6.22)

ergodic regime of weak disorder W < J. At frequencies of the drive exceeding the mean

level spacing, w 2 (E; — E;), we omit the energy dependent factor and estimate p as

B 7T2f2

_ 2
P (6.23)

Here we assumed that a typical matrix element for i # j can be estimated as
S [lo1| = 3 [tlo 1] = o (6.24)
1#] 1,3
In the limit of strong disorder, the distribution of p is more complicated. As we demon-
strate below from numerical analysis, the distribution becomes extremely wide and its aver-
age value actually looses its meaning. More meaningful is the distribution of the logarithm
of p, 1g(p). The logarithmic distribution is a common characteristic of strongly disordered,
glassy systems that exhibit a wide hierarchy of scales. In our case, the broad distribution is
formed due to rival realizations of the random magnetic field. For some realizations the spin
states are strongly localized and effectively decoupled from the rest of the system, for other
realizations the system develops a resonance between spins in the chain and may result in
the dimensionless power exceeding the average power in the ergodic regime, cf. Eq. .
The contribution from configurations representing localized spins dominates for average
value of 1g(p), and results in monotonically decreasing value of ensemble averaged 1g(p). For
localized states in case when the local magnetic field for a driven spin is strong, |h1| > J,

the eigenstates |i) are factorized and we can reduce the evaluation of p in Eq. (6.22)) as

ﬁ% sin?(mhy Jw)

P=mr2

[ 1m| (6.25)
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Assuming that the localized configurations give the main contribution to lg(p), we integrate

lg(p) given by Eq. (6.25)) over uniformly distributed h; and obtain

w
lg(p) x —21g N (6.26)

We note that our estimates for p in the limit of weak or strong disorder are independent on

the dimensionality of the M = 2, see Egs. (6.23) and (6.25).

6.4 Statistical properties of the hopping matrix

In this section, we numerically evaluate statistical properties of the strength p o Tr {T2}
of the hopping matrix. We evaluate matrix 7 directly from Eq. , by computing the
matrix exponents for evolution matrices Uy and Uy, and therefore, our computation is not
restricted to the weak drive limit considered in the previous section. For f < J, we obtained
the bilinear response of p oc f? and recover all relations between the Floquet amplitudes
A$', quasienergies and matrix elements of Jg) between unperturbed eigenstates of Hy that
we discussed in the previous section. We also observed that the bilinear regime is satisfied
for average value of p or lg(p) for f < .J, and chose f = J/+/10 for analysis of p at different
values of disorder strength W. This choice of f allows us to compare some conclusions from
the previous section with the numerical results, and at the same time demonstrates that
the properties of p remain similar at moderate drive amplitudes, f ~ J. At stronger drive,
multi photon processes become important and their analysis deserve a separate discussion.

First, we study the probability distributions of P(p) of the drive strength p over ensemble
realizations of the random field {h;} defined by a constant distribution of local fields within
the interval |h;| < W. Because our numerical analysis required evolution of matrix exponent
and inverting matrices, to reach a large number of realizations N = 10%, we took the
system size L = 10. We present the normalized histogram in the top panel of Figure
for weak and moderate strength of disorder. As the strength of disorder increases, the
distribution broadens and shifts to smaller values of p. However, while more realizations

have smaller value of p, there are some realizations at moderate disorder that exhibit p
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Distribution of dimensionless power p, Eq. (6.20), over N = 10 realizations

of the random magnetic field {h;} for a system with L = 10 spins. The top panel shows

values of disorder for three values of the disorder strength W/J = 0.3, 3 and 30 (red solid

line). We scaled the distribution curves for W/J = 3 by factor two and for W/J = 30 by
factor six. The inset shows the logarithm of the distribution of lgp for W/J = 30 and the

(green short-dashed line), while the bottom panel shows the distribution of lg p for all three
dash-dotted line represents the slop ~ p~1/2. The drive amplitude f

the distribution of the power itself for W/J = 0.3 (blue long-dashed line) and W/J = 3

Figure 6.1:
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exceeding maximal values of p in weakly disordered system, see the tail to the right in the
top panel of Figure This behavior becomes even more pronounced at strong disorder,
W = 30J, when the distribution collapses to extremely small values of p, but its tail extends
to larger values of p than the values found for weak and moderate disorder.

We characterize the distribution in the strong disorder limit by lg(p). In such logarithmic
presentation, we can compare all three cases of weak, moderate and strong disorder on the
same plot, as shown in the bottom panel of Figure [6.1] At strong disorder, distribution
of lg(p) shows that in most realizations, the drive power p is significantly reduced below
its values for the ergodic regime. at the same time, we find the tail that extends to larger
values of p, which are not realized at weaker disorder. In these rear events, p > 1 and our
bilinear analysis is not applicable, in particular, relation between the infidelity 1 — F
and the dimensionless power is no longer valid, even though p has no upper bound. For
realizations with large values of p, the system exhibits occasional resonances between spins
in the chain that lead to strong coupling of the drive to the spin system. In this case, the
spin system subject to a drive strongly deviates from its free evolution.

We plot the logarithm of the distribution of lg(p) in the limit of strong disorder in
the inset in Figure and observe that the right slope is consistent with ~ —(1/2)1g(p).
This behavior implies that the probability distribution function for p decays as a power
law o p~3/2, and we conclude that the distribution of p is Pareto type. Such slow power
law decrease makes the cummulants ill-defined, including the expectation value, unless the
power law terminates at larger p. According to Figure the power law terminates at
sufficiently large p, making the expectation value of p over disorder sensitive to the rare large
realizations of p. This sensitivity to rear fluctuations of p does not allow us to numerically
study average value of p at strong disorder, as even for a very large number of samples,
N > 10* for smaller systems, L = 6, the average value of p was not converging well.

To characterize the effect of disorder strength on the dimensionless power, we numeri-
cally evaluate M that represents the expectation value of 1g(p). The result is presented in

Figure We observe that lg(p) does not strongly depend on the system size L, as points
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for L = 8, 10 and 12 are aligned along the same curve. At weak disorder, 1g(p) changes
weakly with disorder strength, as demonstrated by the nearly flat values of 1g(p) for disorder
strength corresponding to the ergodic regime with W < 3J. At stronger disorder, in the

localization regime W 2 3.J, lg(p) decreases linearly in ~ —21g(W/J), in agreement with

estimate ((6.26)).

lg(p)

A L=12,N=200 ey
31O L=10,N=1000 &2
e L=8, N=1000 oo

AF e DlgWa) N
| 4

0.1 1 10 100
W/

Figure 6.2: Average value of the logarithm of dimensionless power, 1g(p), as a function
of disorder strength W for a spin system of size L = 8 (circles), L = 10 (diamonds) and
L = 12 (triangles). The average is evaluated over N = 10% samples for L = 8, 10, and for
N =200 for L = 12. The drive amplitude f = .J/v/10 and w = J.

As shown in Refs.[162), [163], with extensive numerical simulations the phase diagram
of delocalization/localization can be visualized by quantities of interests as functions of
disorder strength W with energy resolutions; in particular, the many-body mobility edge
can be understood as boundary between the two phases. This procedure can be applied to

the numerical simulation of 72 as well, as shown in Figure To be specific, we evaluate
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T2 for each disorder realization in the eigenbasis of Hy with total S, = 0. These eigenstates
are labeled from o = 1---1I, with I = L!/(L/2)!? the total number of states, according to
the descendant order of their eigenvalues. After taking disorder average over lg 7?2, we plot
the result as functions of both W and the energy density e defined by the corresponding
label a/I. With energy resolution, we are able to map out the phase diagram of the system
whereas the two phases are separated by the mobility edge. Recall that the matrix T is
interpreted as hopping amplitude between Floquet states to the static eigenstates; threfore,
the frequency of the drive is chosen to be slow, w = 0.01J in order to prevent unwanted
optical resonances. On the other hand, if the frequency is comparable to J, a localized state
below the mobility edge could be in resonance with a delocalized state within the mobility
edge, and this process will mix the two states. In this sense, if a great number of optical
resonances occur when the frequency of drive is comparable to mean level spacings, the

mobility edge looses its meaning and 72 will not be a function of ¢ any more.

I3

12.5

1.5

0.5

2 4 6 8 10
%%

Figure 6.3: Measure lg 7?2 as functions of disorder strength W and energy density e for
L =10 and N = 4000. The many-body mobility edge is marked in white.
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6.5 Thermodynamic characteristics

Time evolution

A quantum state of the system ([6.1)) driven by a harmonic perturbation after n periods is
defined by the unitary transformation of its initial state |ip) given by Eq. (6.3)). Using this

expression for the state, we can evaluate a value of any observable M at time t = n7 as
<M(tn)> =Tr {Mpn} ) (627)
where the stroboscopic density matrix operator with initial condition |¢) is given by

pn = e P00 a) (ayio) 00| B) (B]. (6.28)
a,B

For the purposes of practicality, one can study the time-average of an observable,

(M(tn)) = T {Mp}, Py = _ lalvo)* la)(al, (6.29)

where the off-diagonal elements of the density matrix are averaged out. If [¢)g) = |1;) is an
cigenstate of time-independent Hamiltonian, |(a|y;)|> = |A¥|? are the Floquet amplitudes
defined in Eq. .

The fact that the time averaged density matrix is diagonal in the Floquet basis facilitates
the calculations of time average values of observables, (M(ty)), which can be treated as
thermodynamic characteristics of the system, depending on the nature of the density matrix
p. Essentially, since the spectrum of the static Hamiltonian Given that ETH is valid in the
ergodic regime, the density matrix p is a thermal state with some temperature 7. Therefore
the average values of the observables coincide with the thermal state at I". On the other
hand, in the localized phase, deviations of these average values from that given by the
thermal state can be viewed as a diagnosis of invalidity of ETH.

In the thermodynamic limit, the overall spectrum is universal. Therefore for delocalized
regime, we expect that all the Floquet basis are equally distributed in the eigenstate basis,
such that the coefficient A;, ~ 1/v/N, and the IPR vanishes as IPR ~ 1/N. On the other

hand, for the localized regime, each Floquet basis has a good one-to-one correspondence
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with the eigenstate basis in the sense that after one period of driving, the wavefunction of
the system is localized in the Hilbert space and hopping amplitudes to other eigenstates
are exponentially small with space size. Therefore, we expect A;o >~ 0; o, and the IPR is of

order unity.

Energy Fluctuations

Next we consider the fluctuations of the energy absorbed/emitted by the system in the
presence of the external drive at long times. Since the external drive can be seen as an
energy source, provided that ETH is valid, the system would approach to a thermal state
with infinite temperature, p(T" — 0o0) = 1/M, regardless of the initial state.

The absorbed or emitted energy of the steady state is given by the difference Tr(H p(o0))—
FE;, with energy of the initial state F;. In general the width of the distribution in eigen-
states are determined by whether the system is ergodic or localized. In particular, for our
current setting with f = J the system saturates to a thermal state with infinite tempera-
ture. Therefore in the thermodynamic limit the width of the distribution in eigenstates is
comparable to the bandwidth. To this end, we can introduce the following dimensionless

quantity ) to make a fair comparison between different system size:

var |Tr(Hpyy.y — E;
0= [Tr(Hpjy, — Ei] (6.30)
var [Tr(Hp(S — 0)) — E4)
var |Tr(Hpyyy — E;
var [E;]
where p(8 — 0) = 1/N is the density matrix at infinite temperature, and var is the

variance over index . In Figure[6.4 we present the result of energy absorption, with different
amplitudes of drive and system sizes. As a measure of overlap between themal state and
density matrix at long times, the quantity ) decays exponentially in the localized regime,

indicating that the system violates ETH.
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Figure 6.4:  Average value of the normalized absorbed energy ) evaluated by using

Eq. as functions of the disorder strength W for a spin system of size L =8, L = 10
and L = 12. The average is evaluated over N = 10% samples for L = 8,10 and N = 200
for L = 12 and drive amplitudes are f = 0.1J and f = J. The dependence of Q on W
in the localized regimes suggests that an exponential small overlap between thermal state
with infinite temperature and actual density matrix.

Spin Diffusion

Finally we evaluate the total spin projection in z direction, S, = ) . s\ by averaging over
the initial eigenstates with S, = 0. Since S, is a good quantum number for the static
Hamilonian while rotating field in xy plane would break the conservation of S,, the wave
function acquires components with nonzero S,.

If the eigenstates are uniformly occupied for a thermal state with infinite temperature,
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the expectation value of S? is

_ L
52 = iLZ (L —2n)?=L. (6.32)
2 n=0 n
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Figure 6.5: Expectation value of Sig as functions of disorder strength W for a spin system
of size L = 8,10 and 12. Parameters are the same as Figure

Even though through Sec. we find there is still a good correspondence between
Floquet basis and eigenbasis, averaging observables defined by the time-averaged density
matrix over initial conditions chosen as all eigenstates is close to that of a thermal state
with infinite temperature in the thermodynamic limit.

Therefore we calculate the following quantity

N
(82)/L = ﬁ z; Tr (S2p14) - (6.33)
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where pjy,) is the time-averaged density matrix with initial eigenstate [¢);) and N is the

total number of eigenstates in the sector S, = 0.

In Figure (6.5) we present the result of numerical calculation of (S2) /L with two ampli-
tudes of the drive. We see that in the ergodic regime, the expectation value of (S2)/L — 1
in the long time limit. On the other hand, in the localized regime the wavefunction are

localized and therefore the expectation value of S2 remains zero.

Bures distance and inverse partition ratio

We characterize the deviation of the time average density matrix pjy,) from the initial

density matrix pg = |¢o) (10| using the Uhlmann fidelity [173]

F(o) = [T {/Vamum v} (630

that defines the Bures angle between the two density matrices as 0p = arccos / F (¢ [174].
In our case, the Bures angle can be viewed as a measure of displacement of time-averaged
density matrix from its configuration before the onset of the drive. Due to a simple form

of pg, we have
F(po) = Kalwo)l*, Fi=) |47 (6.35)

Below we consider only special cases when [i) is taken as one of eigenstates |i) of time-
independent Hamiltonian, . In this case, the fidelity F(¢;) = F; is determined by
the Floquet amplitudes, as shown by the second equation . After averaging over all
eigenstates of time-independent Hamiltonian, we arrive to the expression for the inverse

parti(ion function7 as deﬁned in the preViOUS Chapter
a,t ' 7 '

where |i) is the set of eigenstates of static Hamiltonian.
However, in reality levels close to the band edges are not universal and contribute to
finite size effects, which can be reduced by averaging the value of the IPR over all eigenstates.

In Figure we show the IPR as functions of the disorder strength W for different system
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Figure 6.6: Average value of the IPR over all eigenstates defined in Eq.(40), as functions
of disorder strength W for a system of size L = 8, L = 10 and L = 12. Parameters are the

same as Figure

size and drive amplitudes. Since the system saturates for f = J, the case f = J is close
to ideal estimation of IPR that increases from 1/N to unity. At weaker drive, the one-to-
one correspondence between Floquet states and eigenstates is restored even in the ergodic
regime, hence the IPR approaches to unity.

Finally, we notice that the inverse partition ratio also defines the change in the linear
entropy of the system under the harmonic drive. For a pure state, the linear entropy is

zero, but becomes positive for the time-average density matrix p;:

S — 1 —Te {p?). (6.37)

lin

We average this expression over all eigenstates |i) the time-independent Hamiltonian ([5.2))
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and obtain

Sim =1 — IPR. (6.38)

Von Neumann entropy

In this section we discuss the von Neumann entropy S = Tr{plnp} of the time-average
density matrix py,) for initial state [10). Because pjy, is diagonal in the Floquet basis,
the entropy is given by

Swey = = Y [(elto)[* n([(a]ebo)[?), (6.39)

a

which is an observable.

The entropy reaches a maximum when an initial state |1g) has equal overlap with all
Floquet states, namely, |(a|tg)|? ~ 27%. The value of maximal entropy is Smax = L In(2).
On the other hand, if for one value of «, we have |(a/|1o)] = 1 and [{a # '[1)p)| = 0, the
time averaged density matrix pj,,) represents a pure state and S,y = 0.

Of course, the above estimation is only valid in the thermodynamic limit where finite
size effects are eliminated. However, as discussed before, eigenstates close to the band edge
are not universal, therefore thermodynamic quantities obtained through these states are not
good characterizations. Hence to avoid these states, we average the von Neumann entropy
with respect to all eigenstates as initial conditions.

As demonstrated in Sec the system starts to saturate at f = J, a parameter regime
where the entropy would reaches maximum value in the thermodynamic limit. In Figure[6.7]
we present our calculation of the averaged von Neumann entropy for two chosen amplitudes
of drive. In the ergodic regime, the entropy shows finite size scaling and we expect that
for f = J the it approaches to L1In2 ~ 0.69L in the thermodynamic limit. The entropy

smoothly drops to zero regardless of system size and drive amplitude.



144

B -0— & —0-f-g -0
o

L =238
L =8
0.5¢-0-0-000~-5 g L=1
L=1
L=1
L 1

Figure 6.7: Averaged von Neumann entropy obtained by averaging over all eigenstates as
initial conditions. At f = J we expect that the entropy approaches to Lln2 ~ 0.69L in the
thermodynamic limit at weak disorder and drops to 0 at strong disorder. Parameters are
the same as Figure

6.6 Summary

In conclusion, we discussed spectral and dynamics of a quantum Heisenberg spin chain that
is subject to a harmonic local drive. We have shown that, the many-body localization can
be seen by the level spacings from the bulk of the static Hamiltonian. In the presence of the
drive, a natural measure of the localized/ergodic phases is the quantum infidelity between
evolution operator with and without the local drive. The distribution of the fidelity are
qualitatively different in the two phases. For the ergodic regime the distribution of the

infidelity is narrow and weakly depends on disorder, while for the localized regime the
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distribution has an exponential small tail. It is surprising that the average value of the
infidelity is independent of system size, indicating quantum simulation with L ~ 10 spins
would be sufficient to see the distinction between two phases.

In the thermodynamic point of view, the bulk part of the spectrum are expected to
obey the ETH. For these states we have found that the average of observables approaches

to that of a thermal state with infinite temperature in the thermodynamic limit.
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Chapter 7

Conclusion

Over the course of this these, we have covered several different aspects of superconducting
and semiconducting qubits, and presented several new and interesting results. In chapter
2, we discussed the quantum photovoltaic effects in a hybrid quantum system consist of a
double quantum dot and a microwave resonator. In particular, we found that the spectrum
of photovoltaic current exhibits multiple peak feature due to Rabi splitting determined
by coupling strength and photon number, similar to the structure of a strongly coupled
cQED. Furthermore, we explicitly showed where fundamental differences between classical
and quantum photovoltaic effects arise from, in terms of various system parameters. Our
analysis demonstrated that the Rabi splitting in the current spectrum is a consequence of
entanglement between the DQD and the resonator.

In chapter 3, we have also looked at the similar DQD plus resonator system to determine
the statistical properties of the emitted photons from a voltage biased DQD. While there
had been evidences for lasing state in the presence of an external drive to the high Q
microwave resonator, we have shown that interesting physics may appear when the drive
is turned off. Specifically, we have shown that in contrast to the Poisson statistics for the
coherent state, the noise of emitted photon arising from coherent charge transfer satisfies
a sub-Poisson statistics when the energy relaxation rate of the DQD is much smaller than

the dephasing rate. We have also shown that the statistics can be measured by a Josephson
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photomulitiplier, which has been implemented experimentally.

In chapter 4, we have presented a detailed analysis of the dynamics of an open quantum
system in the presence of a time-dependent control field. In principle, this approach can be
applied to study the dynamics a spin one half in the presence of the Ohmic or non-Ohmic
environment. We have shown that, the time-dependent parameters in the qubit Hamiltonian
can be eliminated perturbatively by a series of digitalization procedures and under certain
circumstances, this series is finite up to several orders. For the qubit dynamics in a rotating
control field, there had been experimental studies suggesting robust quantization of Chern
numbers at low temperatures with dissipative environments; our approach in parallel showed
that this is the case, while Lindblad approach failed to predict the correct value at long
times.

For the Landau-Zener problem, modifications of the matrix elements between eigen-
states of the Hamiltonian was taken into account, because naturally in the Bloch-Redfield
approach it is required to work in the eigenbasis of the qubit. In this basis, the fast oscilla-
tions between “spin up” or “spin down” is replaced by a fast monotonic behavior between
ground and excited state. At zero temperature, the decay of the occupation of excited state
exhibits a power law in time since the off-diagonal elements are suppressed. At finite tem-
perature, thermal excitation process facilitates transitions from the ground to the excited
state, resulting in monotonic increasing of its occupation as a function of temperatures.

The remaining chapters of the thesis are devoted to the discussion of many-body local-
ization. In chapter 5, we have investigated the response of a MBL Hamiltonian under a local
quench, in terms of inverse participation ratio, level spacing statistics, and in particular the
single spin measurements. There exist a clear many-body mobility edge and localization
length that appear to be measurable for certain experimental procedure; it is our desire that
the single spin measurements can be performed using suitable spin systems. In chapter 6,
we continue to discuss the dynamical aspects of an MBL system. Here we apply an AC drive
to the system and apply the Floquet theory to present the result of quantum fidelity given

by the evolution operator with or without the drive. Finally and perhaps most importantly,
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we pointed out that for driven systems, the many-body localization transition can be well
addressed when thermalization is absent correspondingly from the thermodynamic point of

view.
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