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ABSTRACT

NMR as a means of precision measurement promises fundamental frequency uncertainties

reaching the 10s of pico-Hz level. This level of precision opens the to door to a rich variety of

applications for NMR oscillators, from fundamental physics to inertial navigation. However, lon-

gitudinal NMR with hyper-polarized noble gas and embedded ultra-sensitive atomic magnetometer

detection suffers from systematic errors, such as the alkali field shift of the NMR frequency, which

degrade the stability of the device. The novel method of NMR with hyper-polarized gases as pre-

sented in this thesis, suppresses the alkali field shift by over a factor of 2500 and projects photon

shot noise limited NMR frequency sensitivities below 10nHz/
√

Hz. The suppression is accom-

plished by first applying the NMR bias field as a sequence of alkali 2π pulses, which allows us to

polarize the alkali atoms perpendicular to the bias field. The alkali polarization is then modulated

at the NMR frequency, which polarizes the noble gas via spin exchange collisions. On resonance,

the noble gas and alkali spins co-precess, despite a 1000 fold difference in their gyromagnetic

ratios, which means that the time average torque on the noble gas due to the alkali is zero, thus

eliminating the NMR frequency shift due to the alkali field. The successful implementation of

static transverse optical pumping in Earth-scale bias fields and synchronous spin exchange optical

pumping are presented in this thesis.



1

Chapter 1

Introduction

The usefulness of atomic sensors as precision measurement devices has been under develop-

ment for many years. From atomic clocks [Kasevich, Riis, Chu, and Devoe, 1989] to atomic

magnetometers [Allred, Lyman, Kornack, and Romalis, 2002] to atom interferometers [Kasevich

and Chu 1991] the methodologies are rich and varied. The sensitivities and stabilities promised

with these devices drive applications in many areas from inertial navigation to fundamental tests of

physics. Although I will compare to other methods, the main focus in this thesis will be on nuclear

magnetic resonance as a method for ultra-sensitive and ultra-stable measurements of both inertial

rotations and fundamental physics. The new NMR approach developed here should greatly sup-

press systematic errors that plague other implementations of NMR oscillators and our first results

promise for sensitivity levels that are on par with more developed methods with plenty of room for

improvement.

1.1 The NMR Oscillator: Benefits and Drawbacks

The basic principle of the NMR oscillator is a precision measurement of the resonance fre-

quency associated with the nuclei of a particular noble gas species. In terms of measurements, this

frequency has two important contributions. The first is from the bias field B0 and the second, X ,

is the rotation or anomalous spin coupling to be measured:

f = γKB0 +X (1.1)

where γK is the gyromagnetic ratio of the noble gas.
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Figure 1.1: The basic setup for longitudinal NMR has the pump light aligned along the same axis as the bias

field, thus polarizing the alkali through direct optical pumping and the noble gas by spin exchange optical

pumping. The transverse polarization of the noble gas is then excited by resonant modulation along the

transverse direction. The nuclear polarization is detected by either the NMR drive coils or by the embedded

magnetometer. Figure from Ref [Walker and Happer, 1997]



3

The basic setup for longitudinally pumped NMR is shown in Fig. 1.1. In order to observe

the noble gas precession, angular momentum must be transferred to the nuclei. This is done by

optically pumping alkali atoms with circularly polarized pump light parallel to B̄0; then through

spin-exchange collisions, the alkali atoms transfer angular momentum to the nuclei of the noble

gas. Once the noble gas is polarized along B̄0, it is resonantly driven by a transverse AC magnetic

field, which creates a maximum transverse noble gas polarization when f = γB0. The nuclei then

precess about B̄0 at their characteristic frequency. This precession can subsequently be detected

by one of two methods. The first is to use the driving coils to pick up the oscillating field produced

by the noble gas. The second is to use the ultra-sensitive embedded alkali magnetometer, which

benefits from the Fermi contact interaction that enhances the noble gas field by up to a factor of

1000.

For many applications the frequency shifts X are very small. For example, a gyroscope that

is to be used for commercial airline navigation needs a bias stability of 0.01◦/hr [Groves, 2008],

[Budker and Kimball, 2013] which for 131Xe is a field stability of about 5fT. The best magnetome-

ters that are able to operate in large bias fields have a stability of around 10fT/
√

Hz. To mitigate

the stringent requirements on field stability, two isotopes can be used. In this case we have:

f1 = γ1B0 +X1 (1.2)

f2 = γ2B0 +X2 (1.3)

The magnetic field dependence of the two isotopes differ due to their gyromagnetic ratios, so the

field can be stabilized by locking one isotope to a submultiple of a clock. When this is done, the

second isotope resonance frequency is independent of magnetic field:

f2 =
γ2

γ1

fC +X2 −
γ2

γ1

X1 (1.4)

With techniques such as these NMR oscillators are able to reach the required sensitivity levels.

With this technique, which will be explained in more detail in this thesis, and with other techniques

NMR gyroscopes have shown bias stabilities of near 0.02◦/hr and angle random walk numbers of

2× 10−3◦/
√

hr [Kornack, Ghosh, and Romalis, 2005].
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Figure 1.2: The size of the gyro under development at Northrop Grumman. The scalability of NMR gyros

is one of the many benefits of this technology.

Other gyroscope technologies that are being developed such as atom interferometers are capa-

ble of an angle random walk of 3 × 10−6◦/
√

hr with a bias instability of 7 × 10−5 ◦/hr [Durfee,

Shaham, and Kasevich, 2006], [Kitching, Knappe, and Donley, 2011]. Much more common are

ring laser gyroscopes, which have an angle random walk in commercial units that is equivalent to

NMR gyroscopes of around 3 × 10−3◦/
√

hr and a bias instability that is 5 × 10−4 ◦/hr [Chow,

Gea-Banachioche, Pedrottie, Schleich, and Scully, 1984]. So why do we bother with a new tech-

nology when something well developed already exists and, in the case of atom interferometers, is

much better? The problem with both of these devices is that their sensitivity scales with size; the

larger they are, the better they are. For example, the atom interferometer numbers quoted above

are for a 2m device; while the ring laser gyro is smaller, it is still at 4.5 × 8.8cm. The NMR

gyroscope benefits from being scalable to smaller sizes and much progress has been made in the

way of miniturizing and microfabricating magnetometers and NMR gyroscopes [Jimenes-Martinez

et al., 2014], [Mhaskar, Knappe, and Kitching, 2012]. Figure 1.2 shows a gyroscope developed

at Northrop Grumman that demonstrates the attainable compact size. Also, there are many po-

tential advances in NMR gyroscopes that will close the gap in sensitivity. Our approach aims to

accomplish this.

Along with the benefits of NMR come some drawbacks. Equation 1.1 is oversimplified; there

are two other contributions to f that introduce systematic errors and degrade bias stability:
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f = γK(B0 +BA) +Q+X (1.5)

The two parameters introduced are the quadrupole interaction Q and the alkali field BA. The

shift from the quadrupole interaction arises from the large electric field gradients interacting with

I > 1/2 nuclei at the cell walls [Cohen-Tannoudji, 1963], [Kwon, Mark, and Volk, 1981]. In

longitudinally pumped NMR described above, the alkali is polarized along the bias field direction

and the magnetic field generated by the alkali is sensed by the noble gas, and therefore contributes

to the NMR frequency. Because the alkali field is dependent on the alkali density and polarization,

any fluctuation in these two parameters will degrade the sensitivity of the oscillator. There is a

tradeoff between the quadrupole and the alkali shifts. The quadrupole shift can be eliminated by

using spin-1/2 nuclei such as 129Xe and 3He, but then there is a large differential alkali field that

cannot be taken away by dual species operation as described above.

Methods have been developed that deal with these two systematic errors. In Ref [Bulatowicz

et al., 2013], two Xe isotopes are used to essentially cancel out the effect of the alkali frequency

shift. Assuming that there is no isotopic difference in the alkali field seen by the noble gas, the

frequency shift will be proportional to the respective Xe gyromagnetic ratio and cancel in the

deduced frequency ratio. However, as this experiment discovered, there is a differential frequency

shift, which adds a term proportional to BA to the frequency ratio:

f2 =
γ2

γ1

f1 −
γ2

γ1

X1 +X2 + γ2(BA2 −BA1) (1.6)

The third term is the physics factor of interest. The differential shift set a limit of δBA/BA = 0.2%

on how well this experiment could eliminate the effect of the alkali field shift. This experiment

will be discussed in more detail below.

Another method is presented in Ref [Kornack et al., 2005]. It uses spin-1/2 nuclei 3He to

eliminate Q. The magnetometer is then configured so that the alkali atoms operate in zero field by

cancelling the magnetic field produced by the noble gas with an applied bias field. The noble gas

then adiabatically follows and cancels drifts in the external magnetic field.
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The method outlined in this thesis plans to eventually use only spin-1/2 nuclei and eliminates

the effect of the alkali field by polarizing the alkali atoms perpendicular to the bias field and parallel

to the noble gas.

1.2 Applications: Tests for Fundamental Physics

We have talked a little about using NMR for gyroscopy. Another application is in the search

for exotic physics. Of particular interest for this thesis is the experiment done by Ref [Bulatowicz

et al., 2013] in which a search for axions was carried out. The axion is a dark matter candidate that

would have a scalar-pseudoscalar coupling to the polarized nucleus of a noble gas. This coupling

causes a shift in the NMR frequency corresponding to the product gsgnp for which this experiment

improved the upper bound by two orders of magnitude at sub-mm length scales.

The experiment is done by using 129Xe to measure, as a function of time, the magnetic field

fluctuations due to alkali polarization drifts and real magnetic field noise. The 131Xe is then used

to isolate any frequency shifts that would arise from an exotic spin coupling. The difference in the

ratio of the noble gas frequencies with the rod close to and far from the cell is used to measure

the relevant frequency shift. An anomalous spin coupling would show up as a field dependent

change in the ratio of gyromagnetic ratios, which is a well known constant [Brinkmann, 1963].

The following description of this experiment illustrates how the quadrupole interaction and the

alkali field shift affect a precision measurement using NMR.

The quadrupole shift in 131Xe is accounted for by fitting the free induction decay signals to the

averaged quadrupole interaction arising from the individual faces of the cell. As can be seen in

Fig 1.3 the quadrupole interaction makes for a very complicated waveform that, even so, is well

accounted for with the fitting function. To the extent that the field experienced by the noble gas is

the same for the two isotopes, the alkali frequency shift is cancelled in the ratio of the frequencies

being measured. However, as mentioned above, there is an isotope dependence.

As can be seen in Fig 1.4, there is a slight change in the ratio of gyromagnetic ratios that is

correlated to the product of alkali polarization direction and magnetic field direction. This effect

can be accounted for by a 0.2% difference in the alkali field sensed by the two isotopes. An actual
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Figure 1.3: In the axion experiment, the 131Xe free induction decay signal is complicated by the quadrupole

interaction. This figure shows a fit to this interaction and the data; as can be seen, the quadrupole is well

described.

Figure 1.4: This figure shows a sample of the data for the axion experiment. There is a correlation between

the ratio of gyromagnetic ratios and the product of the polarization and magnetic field. This is consistent

with a differential alkali field shift of δBA/BA = 0.2%.
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Figure 1.5: The results of the axion experiment are shown in red. The results in 2: [Tullney et al., 2013]

were published at nearly the same time. The methodology outlined in this thesis hopes to improve on the

red curve by three orders of magnitude. The other limits were set by 3:[Chu et al., 2013], 4: [Petukhov,

Pignol, Jullien, and Andersen, 2010], and 5: [ Youdin, Krause, Jagannathan, Hunter, and Lamoreaux, 1996]

axion signal, as Eqn 1.6 describes, would exhibit a change in the ratio of gyromagnetic ratios

that only depends on magnetic field, not polarization. The new bound on the scalar-pseudoscalar

coupling is shown in Fig 1.5. The goal of the method described in this thesis is to improve on the

upper limit of the axion interaction by three orders of magnitude by completely eliminating the

effects of both the quadrupole and alkali field frequency shifts.

Other searches for fundamental physics include the comagnetometer search for Lorentz in-

variance in Refs [Smiciklas, Brown, Cheuk, Smullin, and Romalis, 2011], [Allmendinger et al.,

2014], searches for permanent electric dipole moment Refs [Vold, Raab, Heckel, and Fortson,

1984],[Rosenberry and Chupp, 2001], and anomalous spin couplings Ref [Glenday, Cramer, Phillips,

and Walsworth, 2008]

1.3 This Work

This thesis describes the work done towards implementing a novel form of NMR that promises

to eliminate the systematic errors that plague the conventional methods. The NMR frequency shift
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experienced from the alkali field is suppressed by optically pumping the alkali atoms perpendicular

to the bias field and parallel to the Xe. The way we do this is by applying the bias field, not as a

DC field, but as a sequence of alkali 2π pulses that are transverse to the optical pumping direction

and whose repetition rate sets the size of the bias field: fpulse = γRbBbias where the gyromagnetic

ratio is γRb = 2µB
2I+1

, µB is the Bohr magneton, and I is the alkali nuclear spin. Since a 2π pulse is

the same as a 0π pulse, the alkali can be polarized up to 100% perpendicular to the large effective

bias field without significant magnetometer response loss. By subsequently flipping the alkali spin

polarization at the NMR frequency, fXe = γXeBbias where Bbias is defined by the pulse repetition

rate, the Xe is spin exchange optically pumped synchronously with the Rb. The two species then

co-precess even though their magnetic moments differ by a factor of 1000. This means that the

time average torque on the noble gas due to the Rb is zero, and the NMR frequency shift from the

alkali is eliminated.

Two publications have resulted from this work: [Korver, Wyllie, Lancor, and Walker, 2013]

and [Korver, Wyllie, Lancor, and Walker, 2015]. The first introduces the transverse optical pump-

ing procedure and studies the additional relaxation mechanism that results from the application of

the 2π pulses. This paper, as discussed in Chapter 2 of this thesis, shows that despite the additional

relaxation, the magnetometer is only a factor of three less sensitive than a SERF magnetometer,

and it is a factor of 30 better than the light narrowed magnetometer described in [Smullin, Savukov,

Vasilakis, Ghosh, and Romalis, 2009] that operates in equivalently high magnetic fields. The sec-

ond paper, Chapter 3 of this thesis, utilizes the transverse optical pumping results to implement

synchronous spin exchange optical pumping of 131Xe and 129Xe. It points out that though the

alkali field does not shift the NMR frequency, it broadens the linewidth. This effect can be com-

pensated by applying a magnetic field 180◦ out of phase with the alkali polarization modulation,

thus narrowing the line to the T1 limit.

In addition to the methodology that enables us to execute synchronous spin exchange optical

pumping, I also include the first results for dual species operation, a summary of noise measure-

ments and figure of merit projections, magnetometer and NMR characterization measurements,

and a detailed description of the apparatus and the procedures undertaken to optimize it.
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The thesis will progress as follows. In chapter 2 I will talk about the method we use to apply

the bias field that allows us to obtain up to 100% transverse polarization. In chapter 3 I will pro-

ceed with a discussion about how we synchronously pump the noble gas nuclei, so that the time

averaged alkali and the noble gas spins are parallel. Chapter 4 will go into more detail about the

characteristics of the NMR when using the synchronous spin exchange optical pumping technique;

it will cover the essential measurements we took to characterize the cell as well as the measure-

ment of a density dependent wall relaxation mechanism in 131Xe. The next chapter will cover

details concerning the figures of merit for the NMR oscillator with dual species implementation

and the accompanying noise measurements. Also included are techniques we tried to reduce the

noise in the system. Chapters 6 and 7 will explain more about the technical details of the apparatus

itself including the circuitry, optics, detection schemes, and magnetometer characteristic measure-

ments. Chapter 8 will cover preliminary experiments on dual noble gas species operation. The

final chapter summarizes the accomplishments of the past several years and speaks to future work.
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Chapter 2

Transverse Optical Pumping with Pulsed Parametric Modulation

Zero field atomic magnetometers are a well developed technology, but operation in high mag-

netic fields without significant loss of atomic spin polarization and response is an outstanding

problem. The technique developed here is a new method for operating atomic magnetometers in

Earth scale magnetic fields. It employs an extension of the spin dressing technique first done by

Haroche and Cohen-Tannoudji [Haroche and Cohen-Tannoudji 1970] in the 70s. Instead of their

sinusoidal field dressing, we use a sequence of short pulses that each produce an alkali 2π rotation.

With this method, we are able to operate in fields on the order of 0.1G without significant loss in

spin polarization or magnetometer gain. This chapter will describe the successful implementation

of the method as well its limitations. Compared to a zero field SERF magnetometer, our Pulsed

Parametric Resonance (PPR) magnetometer loses only a factor of 3 in gain when operating at high

fields. Also, in comparison to a standard high field magnetometer, the PPR is a factor of 30 more

sensitive. The success of this magnetometer as published in [Korver et al., 2013] opens the door

to polarizing the alkali atoms up to 100% transverse to a large magnetic field that, in subsequent

experiments, is the bias field for NMR; these experiments are discussed in Chapter 3 of this thesis.

Before introducing the details of the PPR magnetometer, I will describe zero field magnetome-

ter operation since it is vital for an understanding of all else that follows. I will then detail the

PPR magnetometer and how it supresses the rate of angular momentum loss due to spin-exchange

collisions that enables us to operate in high fields. The success of this method is then shown by a

comparison to a zero field SERF magnetometer and a light narrowed, high field magnetometer.
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2.1 Optical Pumping and Magnetometry

The simple picture of an atomic magnetometer can be seen in Fig. 2.1. Circularly polarized

optical pumping light aligns the atomic spins along the pump light axis. A simplified illustration

is shown in Fig 2.2. Because of angular momentum selection rules, we can exclusively excite

the atoms in one sublevel of the ground state, leaving the other level unaffected. Once in the

excited state, the atoms undergo collisions with the buffer gas that randomize the electron spin

and eventually de-excite the atoms equally into both ground states; therefore, in steady state, all

the atoms will be pumped into the dark state, aligned along the pumping direction. A magnetic

field that is perpendicular to the alignment of the atoms will cause the spins to tilt into the probe

direction. This tilt is detected by Faraday rotation of the probe polarization with an angle that

corresponds to the magnitude of the magnetic field.

What is not included in the simplified version outlined above is the interaction with the alkali

nuclear spin. The behavior of an atomic magnetometer is generally complicated by nuclear spin

effects, but is simplified in the regime where the spin exchange collision rate ΓSE = nσSEv̄ is much

higher than any other rate. In particular, it must be much higher than the Larmor precession rate

associated with a magnetic fieldB, ΓSE >> gsµBB/(2I+1) where σSE is the spin exchange cross

section; gs is the electron g-factor; µB is the Bohr magneton, and I is the nuclear spin. At any given

polarization in this regime, the electron angular momentum is distributed amongst the hyperfine

sublevels of the ground state. It is important to note that the two total angular momentum levels F

of the ground state have equal and opposite magnetic moments, where F = I+S = I±1/2 and I is

the nuclear spin of the alkali isotope: 3/2 for 87Rb and 5/2 for 85Rb. When the alkali atoms undergo

spin-exchange collisions, the population of the energy levels is redistributed amongst the sublevels,

so there is a probability that any particular atom will switch hyperfine levels, thus changing the sign

of its magnetic moment. In the presence of a magnetic field, the electron is precessing at the Larmor

rate between collisions, so when it undergoes an F level changing collision, it will subsequently

precess in the opposite direction. Therefore, although total angular momentum is preserved in a

spin exchange collision, the electron spin orientation is not. Thus spin exchange collisions, when
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Figure 2.1: In this simplified simplified magnetometer setup the pump is directed along x̂ and the probe

along ŷ , so that the atoms are sensitive to Bz . The rotation is detected by Faraday rotation of the probe.
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Figure 2.2: This is a simplified picture of D1 line optical pumping where σ+ pump light excites only the

atoms in m = −1/2 thus pumping the atoms into the m = 1/2 dark state. The figure is adapted from

[Walker and Happer, 1997]
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they happen at a rate much slower than the Larmor rate, cause the precession to quickly decohere.

However, if the spin exchange rate is much faster than the Larmor precession, the electron does not

rotate very far before undergoing another spin exchange collision. In this regime where the sign of

the magnetic moment is changing rapidly with respect to the Larmor precession rate, the magnetic

moment averages to a smaller value and the spin precesses at a slowed rate. This is called the the

spin-temperature regime where the density matrix is well described by the statistical distribution

ρ ∝ e−βmF [Happer and Tam, 1977] [Happer, 1972] [Anderson, Pipkin, and Baird, 1960] where β

is the spin temperature parameter:

β = 2 arctan (P ) (2.1)

where P is the electron polarization. This formalism is used to relate the average angular momen-

tum of the electron to the average total angular momentum of the atoms via the slowing down

factor:
〈Fz〉
〈Sz〉

= q = 1 + (2I + 1) ∗ coth
[β

2

]
∗ coth

[
β(I +

1

2
)
]
− coth

[β
2

]
(2.2)

The slowing down factor q is vital for a full understanding of the relaxation processes we observe in

transverse optical pumping; its value varies smoothly from zero polarization to 100% polarization

as shown in Fig. 2.3. It’s effects will be described in more detail in this chapter.

For the purposes of the discussion about relaxation in transverse optical pumping, it is helpful to

know what a spin temperature distribution looks like and how it relates to alkali polarization. Fig-

ure 2.4 illustrates the population distribution amongst the mF levels that corresponds to different

initial Rb polarizations. Fig. 2.5 illustrates the redistribution of the sublevels as a result of a partic-

ular spin-exchange collision. It is important to note that as the polarization increases, the electron

occupies higher |F,m〉 states until, at 100% polarization, the electron is in the state |F,m〉 = |2, 2〉.

In this state, a spin exchange collision results in very little population redistribution. This is the

light-narrowed regime, where the increased polarization suppresses the decoherence due to spin-

exchange relaxation; later in this chapter I will compare the results of the PPR magnetometer to a

purely light narrowed magnetometer.
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Figure 2.3: The slowing down factor polarization dependence for 87Rb in blue and 85Rb in red. The

slowing down factor describes the fraction of the total angular momentum stored in the electron: F = qS.

For the measurements and calculations done for the 2π pulse spin exchange relaxation model, it is vital that

the slowing down factor is properly taken into account.

Figure 2.4: The figure illustrates the spin temperature distrbution that corresponds to various initial Rb

polarizations. Important for our discussion is the fact that as the polarization gets higher, the population in

the |2, 2〉 state increases.
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Figure 2.5: The figure, taken from [Walker and Happer, 1997], shows the m level distribution associated

with a spin exchange collision. Total angular momentum is preserved, while the m level populations are

redistributed. Atoms in different F levels precess in opposite directions.



18

When operating in the spin-temperature regime, the time evolution of the spins is well de-

scribed by the Bloch equations [Allred et al., 2002], [Ledbetter, Savukov, Aosta, Budker, and

Romalis, 2008]:

q(P )
dP

dt
= P ×Ω + Rŝ− Γ′P (2.3)

where P̄ = 2〈S̄〉 is the electron polarization, S is the electron spin, R is the pumping rate, ŝ is

optical pumping vector, Γ′ is the relaxation rate, and Ω is the Larmor angular rotation rate defined

as 2πγB̄. Solving the system of equations for the steady state solution, we obtain

P =
RΓ′ + R×Ω + Ω(Ω ·R)/Γ′

Γ′2 + Ω2
(2.4)

Depending on probe direction, the magnetometer is sensitive to a magnetic field perpendicular

to the optical pumping direction. For example, if the probe is directed along ŷ , then there is ẑ field

sensitivity:

Py =
RΩz + ΩxΩyR/Γ

′

Γ′2 + Ω2
(2.5)

For a well nulled magnetometer this reduces to:

Py =
RΩz

Γ′2 + Ω2
z

(2.6)

which is dispersive in form. The magnetometer gain or response is defined by the slope of the above

equation at Ωz = 0, and is affected by the width of the response curve as defined by Γ′ = R+Γ0. A

narrower linewidth typically means a larger response; additional relaxation broadens the linewidth

thus degrading the magnetometer performance.

SERF magnetometry is only valid in small magnetic fields where the condition ΓSE >>

gsµBB/(2I + 1) holds true, and since the spin-exchange relaxation rate increases quadratically

with field [Happer and Tam, 1977],[Allred et al., 2002]:

ΓSE
2 = Ω2TSE

(1

2
− (2I + 1)2

2q2

)
(2.7)
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the maximum measured fields for SERF magnetometry are on the order of 10nT. When the field is

much greater than this, means must be taken to restore the response.

One such method for high field operation is parametric modulation where an oscillating field is

applied perpendicular [Haroche and Cohen-Tannoudji 1970] [Smullin et al., 2009] to the bias field

such that

fPM = γRbBbias (2.8)

In this way the magnetometer sensitivity in higher fields is restored, but not fully. The linewidth

of the transverse spin component is also broadened due to the contribution of the spin-exchange

collisions to the transverse relaxation rate:

Γ2 =
R

4
+

ΓSE

5
(1− P ) (2.9)

for the light narrowed magnetometer of [Smullin et al., 2009] where ΓSEis the spin exchange rate,

R is the optical pumping rate, and P is the longitudinal alkali polarization.

The sinusoidally modulated parametric fields can achieve a maximum transverse spin polariza-

tion of only 30% due to the Bessel function associated with the rotating components. However,

there is nothing that limits us to a sinusoidally modulating field. It turns out, as will be described in

detail below, that the optimal parametric modulation field shape is a sequence of alkali 2π pulses.

In the limit of delta function pulses, transverse spin polarization reaches 100% and the magne-

tometer response is restored to the zero field response.

2.2 Pulsed Parametric Resonance (PPR) Essentials

The operation and derivation of the transverse pulsed parametric modulation (PPR) magne-

tometer is similar to sinusoidal parametric modulation. The essential components of operation are

shown in Fig. 2.6 and further details are described in Chapter 6. The pump is directed along x̂ , the

probe along ŷ , and the bias field B0 +B1(t) is along ẑ . In the original experiment as described in

[Korver et al., 2013], we applied a large DC magnetic field B0 = Ω0/(2πγ)ẑ and super-imposed

an AC coupled 2π pulsing field B1(t) = Ω1(t)/(2πγ)ẑ at repetition rate f1 = Ω0/2π. Because

B1(t) is AC coupled the time average magnetic field is zero; between the pulses the magnetometer
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Figure 2.6: The essential optical components for the pulsed parametric modulation magnetometer consist

of the pump directed along x̂ and the probe along ŷ . The DC field and the pulsed field are applied along

ẑ. The insets show models of the applied B1(t) and the resulting atomic precession as would be seen on Py

and Px.
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is in the SERF regime because B1 = −|B0|, cancelling the applied DC magnetic field. In later

chapters, the AC coupling is removed for simplicity’s sake and for NMR, we came to realize that

the same purpose is accomplished with and without it. For this experiment, however, we simulate

operation in a large magnetic field that is not purposefully applied, such as Earth’s magnetic fields.

The Bloch equation formalism governing the spin polarization P transverse to the bias field is

given by:

dP+

dt
= i[Ωz + Ω1(t)]P+ − Γ2P+ +R (2.10)

where P+ = Px + iPy. Setting P+ = A+e
iφ1 where φ1 =

∫
Ω1dt we get

dA+

dt
= iΩzA+ − Γ2A+ +Re−iφ (2.11)

Fourier expanding with A+ =
∑

pA+pe
ipω1t and eiφ1 =

∑
p jpe

ipω1t we arrive at:

dA+p

dt
= A+p[i(Ωz − pω1)− Γ2] +Rjp (2.12)

The resonantly enhanced Fourier component is p = 1 and the steady state solution becomes

P+ ≈
Rj1

Γ2 − i(Ωz − ω1)
eiω1t (2.13)

The time average then gives the DC spin polarization:

P+ =
R|j1|2

Γ2 − i(Ωz − ω1)
(2.14)

If Ω1(t) is sinusoidal, as in Ref. [Smullin et al., 2009], then jp = Jp(|Ω1|/ω1) are Bessel functions

that give the maximum attainable transverse polarization P+ = J2
1 (1.84) ≈ 0.34. However, there

is no reason we must restrict ourselves to sinusoidal modulation. It turns out that the function that

gives the highest polarization, the largest value of j, is a sequence of δ functions.

Given the parametric field as a Dirac delta function comb:

B1 = b1[−1 + comb(f1t)] (2.15)
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where we have defined it in such a way that the integral of Eqn. 2.15 over one period is 0, meaning

B1 is AC coupled. We can then define as we have previously φ1 = γ
∫
B1(t)dt so the Fourier

coefficient is given by:

eiφ1 =
∑
p

jpe
ip2πf1t → jp = f1

∫ 1/2f1

−1/2f1

eiφ1e−ip2πf1tdt (2.16)

Integrating the above equation and reducing gives the Fourier coefficient for a δ function as:

j−1 = −sinc
[
π
(

1− γb1

f1

)]
(2.17)

which maximizes at 1, thus theoretically giving a transverse polarization of 1 when optimized at

γb1 = f1, i.e. the pulse repetition rate is the Larmor frequency corresponding to the bias field. As

will be shown below, when the pulses are not δ functions, their finite duration allows relaxation

which reduces the polarization.

2.3 2π Pulse Area

We discuss the 2π pulse optimization in chapter 7, so we will here only point out the important

features for the current experiments. The first feature of interest in Fig. 2.7a is the shape and timing

of the pulse width. The actual width of the pulse is longer than the ”nominal” pulse width applied

to the pulsing circuit for reasons explained in Sec. 7.1. For the purposes of the experiments below,

it is the actual width of the pulse that matters; this is measured from the beginning of the pulse

trigger to the point where the pulse tail reaches zero. Although not well defined, this crossing can

be determined with error bars of < 10% of the full pulse width for the shortest pulses. The second

important feature shown in Fig 2.7b shows no atom rotation between the pulses, demonstrating the

all-important point that the field between the 2π pulses is zero.
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(a) 2π pulse signal (b) 2π pulse train

Figure 2.7: The figure on the left shows the 2π pulse signal for which it is important to note that although

the applied pulse width was 1µs, the resulting pulse width due to circuit constraints is ≈ 1.5µs. The pulse

width used in the calculations and data analysis below use the actual width as measured from the start of

the trigger to the zero crossing with about 10% error. The figure on the right is an oscilloscope screen shot

of the train of 2π pulses. The fact that there is no signal between the pulses, demonstrates that there is no

residual field between the pulses, an all-important fact for the operating principles of the PPR magnetometer

2.4 Spin Exchange Relaxation

We have assumed that the response of the magnetometer is not degraded significantly beyond

the response of a SERF magnetometer even though it is operating in high magnetic fields. This

assumption rests on the fact that the magnetic field is zero for the majority of the time and therefore

in the SERF regime where spin exchange collisions do not contribute to relaxation. Our assumption

upon starting this project was that the 2π pulses would be so short that we could neglect any

relaxation that would happen when the field is pulsed. Due to longer pulses than originally hoped,

the 2π pulse widths are on par with TSE; therefore, on average, there is one collision per pulse. This

is experimentally demonstrated by the increase in the effective relaxation rate of the magnetometer

when pulsing is turned on.
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The measurements we take compare the x̂ polarization at zero field to the x̂ polarization with

the pulsing on. We have a good handle on how to calibrate the Rb polarization measurement from

using the 2π pulse signal (Fig. 2.7a). Since the 2π pulse quickly rotates the atoms from x̂ into ŷ,

the amplitude of the signal measures Px. The amplitude can be calibrated to polarization units by

measuring it as a function of pump intensity which is proportional to pumping rate. A polarization

normalization factor V0,amp is then extracted:

P =
R

R + Γ0

→ Vamp =
V0,ampR

R + Γ0

(2.18)

This measurement needs to be done at low pulsing repetition rates (50Hz) to minimize the duty

cycle dependence of the spin exchange relaxation. We then have two equations for the polarization

we measure. For the SERF:

P =
R

Γ′
(2.19)

and with pulsing:

P =
R

Γ′ + Γ1

(2.20)

where Γ′ = R + Γ0 and Γ1 is the additional relaxation rate with the pulses. Combining these two

equations results in a measurement of the relative relaxation rates:

Γ1

Γ′
=
PSERF

Ppulse

− 1 (2.21)

We find that there are three parameters that increase the relaxation rate Γp: increasing the pulse

repetition rate (Fig. 2.8a), increasing the pulse width (Fig. 2.8b), and decreasing the intensity of the

pump light (Figs. 2.9b). The conclusion is that there is a duty cycle and pumping rate dependence

to the additional relaxation rate, which strongly indicates relaxation during the pulse.

Since the pulse width is on the order of TSE = 2µs, we assume assume that for short pulses,

there can only be one spin exchange relaxing collision during a pulse. As a qualitative understand-

ing each collision can potentially change the hyperfine level of the alkali, so if this happens after

an angle φ out of 2π is rotated, then the electron will finish its rotation in the opposite direction.

The resulting total precession angle will be off by 2φ at the end of the pulse. Since the field during
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(a) The relaxation rate increases as pulse repetition

rate increases.

(b) The relaxation rate has a stronger frequency de-

pendence for the longer pulse width.

Figure 2.8: The figure shows the frequency and width dependencies of the relaxation rate with 2π pulses

on; it is normalized to the relaxation rate with 2π pulsing off.

(a) The relaxation rate decreases pump intensity in-

creases. (b) The slopes of the data on the right

Figure 2.9: The figure shows the frequency dependence of the relaxation rate with 2π pulsing on as a

function of pump intensity normalized to the relaxation rate without pulsing. The data points in figure (b)

are the slopes of the lines in figure (a) plotted against their respective relative intensities.
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a pulse is ≈ 1G, the spin-exchange rate is not fast compared to the Larmor rate; therefore, for the

system as a whole, the relaxation rate due to spin exchange collisions during the pulses increases

above that of the SERF magnetometer. The effect, however, is limited to the short interval of the

pulse, thus resulting in the duty cycle dependence shown above.

As to the pumping rate effect, the amount the angle error contributes to relaxation is depen-

dent on the initial polarization of the alkali atoms. As the initial polarization increases, the spin-

exchange collisions are less likely to change the hyperfine level, which results in a lower relaxation

rate. This light-narrowing suppression of the spin-exchange rate is utilized in other experiments as

will be discussed in section 2.5.

Knowing the parameters that affect the relaxation, we can develop a model that accounts for the

polarization loss we observe. Starting with a fractional angular momentum loss ∆Fx/Fx = α(Px)

we can define the new relaxation mechanism:

dF

dt
= −α(Px)dΓSEF = ΓpF (2.22)

where d = τf is the duty cycle of the pulses with width τ and frequency f . The duty cycle

and α(Px) describe the suppression of ΓSE when using pulsed parametric resonance. The new

relaxation rate is:

Γ1 = α(Px)τfΓSE (2.23)

The function that defines α(Px) is complicated by the atoms’ behavior at intermediate polar-

izations due to the hyperfine interaction; therefore, numerical modeling is necessary to extract the

behavior of the atoms as the polarization decreases from 1 to zero. Following the formalism in

[Happer, Jau, and Walker, 2009], this modeling was done by assuming spin temperature and then

analyzing the evolution of the density matrix accounting for the full hyperfine interaction as the

alkali undergoes its 2π precession. A simplified version of this modeling is detailed in Appendix

A.

The results of this modeling are seen in Fig 2.10; the y-axis is the fractional total angular

momentum loss α and the x-axis is Px. The portion between 0.6 and 1 where we usually operate

closely follows a linear trend α(Px) = α′(1 − Px) with α′ ≈ 0.3. The nearest fit to the model for
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Figure 2.10: The result of the SE modeling is shown with the blue points and the nearest fit to a quadratic

function (Eqn. 2.24) is shown in red. The model calculates the fractional angular momentum loss due to

the 2π pulsing as a function of Rb polarization.

all polarizations is:

α(Px) = 0.2063− 0.2762P 2 + 0.06995P 4 (2.24)

as shown in red in Fig 2.10.

In order to analyze the experimental data to see whether or not it fits to the model we take the

data that shows the frequency, pulse rate, and polarization dependence of the relaxation rate and

organize it to extract values for α . Taking the analysis similar to that which gave us Eqn. 2.21 we

get
PSERF

Ppulse

− 1 = α(Px)τf + af (2.25)

The additional term af is used to account for an observed offset that we assume is due to imperfect

pulsing. These imperfections are most likely pulse width and repetition rate fluctuations. The

frequency f is the applied pulse repetition rate. When (PSERF

Ppulse
− 1)/f is plotted against τf , the

slope of the resulting line is α(Px). We can do these measurements at different densities, which

correspond to different spin-exchange rates: ΓSE = κSE[Rb] and Γ1 = dΓSEα(Px) to get an even

broader understanding of the behavior.
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The above analysis needs to be expanded, however, to account for the slowing down factor,

which is vital for an accurate understanding of the data. The slowing down factor describes the

fraction of the total angular momentum stored in the electron spin: F = qS, where q is the slowing

down factor. At high polarizations it is 2I + 1 (4 for 87Rb and 6 for 86Rb) where I is the nuclear

spin; it increases to 6 for 87Rb at low alkali polarizations. When we pull it into the analysis:

q
dSx
dt

=
R|j−1|2

2
− Γ′

Px
2
− Γp

qPx
2

(2.26)

Becomes, in steady state

Px =
R|j−1|2

Γ′ + qΓp
(2.27)

which reduces to
PSERF

Ppulse

− 1 =
qΓp
Γ′

(2.28)

so that

Γp =
Γ′

q

(Px(0)

Px(f)
− 1
)

= α(Px)τfkSE[Rb] + Γp0 (2.29)

We add the term Γp0 = af as we did for Eqn. 2.25 to account for the fact that when extrapolating

Γp, it does not go through zero. Mapping out

α(Px) =

(
Px(0)
Px(f)

− 1
)

Γ′(Px)
q(Px)

1
f
− a

τΓSE

(2.30)

as a function of the different measured parameters τ , f , [Rb], pumping rates, and offset a, we

obtain curves such as in Fig. 2.11, which shows all the parameters varied at a constant pulse width

τ = 1µs. With no free parameters, the extracted data generally match the model to within 20%. We

did a similar analysis for several different pulse widths ranging from 1−8µs and extracted α(0) by

scaling the numerical factor equation; this results in an experimentally meaured α(0) = 0.2±0.01.

The results of this procedure are seen in Fig. 2.12. The data agree well with the model, showing

a light-narrowing suppression as well as a duty cycle suppression of the spin-exchange relaxation

rate.
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Figure 2.11: Each data point corresponds to an α value extracted from measurements of the pulse width,

pulse repetition rate, Rb polarization, and Γ′ as well as the known values of κSE and q(Px) as described in

Eqn. 2.30. The data presented here is for a single pulse width τ = 1.5µs.The two curves shown are the

theoretical prediction (solid black) and the theoretical prediction scaled by a constant (dashed black).

Figure 2.12: This plot combines multiple sets of data for different pulse widths and extracts α(P = 0).

These points give a scaled α(0) = 0.2± 0.01, while theory predicts α(0) = 0.21.
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2.5 Comparison to SERF and Light Narrowed Magnetometer

The success of the PPR magnetometer is determined by whether or not, with the suppression

of the spin-exchange relaxation, we are able to maintain magnetometer sensitivity comparable to

SERF sensitivity when working in a large magnetic field. Since the SERF magnetometer is not

designed to work in high magnetic fields, we also compare the PPR magnetometer to methods

configured to work in similar regimes. For the purposes of simplicity in our comparisons, we

direct the pumping light along the bias field direction and detect the response to changes in Ωx.

The response of a magnetometer is determined by the slope of the response of the sensitive

direction. From Eqn. 2.4 with ẑ pumping and ŷ detection the SERF magnetometer detects:

Py =
RΩx

Γ′2 + Ω2
x

(2.31)

which is only valid in small fields. Here Γ′ = R + Γ0, so if we optimize Eqn. 2.31 for pumping

rate, we obtain R = Γ0. Then, to find the magnetometer’s response, take the derivative of Eqn.

2.31 with respect to Ωx and get

M =
(4Γ2

0 + Ω2
x)Γ0 − 2Γ0Ω2

x

(4Γ2
0 + Ω2

x)
2

(2.32)

Setting Ωx = 0, the resulting magnetometer response isM = 1
4Γ0

.

Doing a similar procedure for the PPR magnetometer where we now have Γ2 = Γ′/q+αdΓSE,

we start with the steady state solution for Py:

Py =
RΩx

Γ2
2 + Ω2

x

(2.33)

and take its derivative to find the sensitivity

M =
(Ω2

x + Γ2
2)R− 2RΩ2

x

(Γ2
2 + Ω2

x)
2

(2.34)

Once again, we are operating where Ωx = 0 and the sensitivity reduces toM = R/Γ2
2 = P/Γ2

with Γ2 = Γ0 + R + dα(1 − Px)ΓSE. In order to optimize for the pumping rate that maximizes

sensitivity, we must simultaneously solve P = R/Γ2 andM to extractM(R) then find δRM = 0.
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(a) SERF and PPR at zero field (b) SERF and PPR in high magnetic field

Figure 2.13: Figure (a) is an experimental comparison of the SERF and PPR magnetometer responses at

zero field. The difference in their responses is a factor of 3.5. Figure (b) is a comparison of the SERF mag-

netometer operating at ”high” magnetic field and the PPR magnetometer operating at high magnetic field.

Although the bias field for the SERF case is 300× smaller than the bias field for the PPR magnetometer the

PPR magnetometer’s response is 10× higher.

This results in R =
√

Γ0α′qdΓSE + Γ2
0, which is higher than the optimum pumping rate for the

SERF magnetometer due to the additional relaxation. Plugging this value of R into Eqn 2.34 on

resonance, we obtain a PPR magnetometer sensitivity of

M =
[Rb]|j−1|2

2
√

Γ0α′qdΓSE + Γ0

(2.35)

Figure 2.13a shows the comparison between a SERF and PPR magnetometer. There is a factor of

3.5 between the slopes of their responses. If we plug into Eqn 2.35 the experimentally measured

values Γ0 = 500/s, α′ = 0.3, d = 0.05, q, and ΓSE = 2 × 105/s we calculate that the ratio

should be 3, which puts us in reasonable agreement. Figure 2.13b is a comparison between a

SERF magnetometer operating in a relatively high magnetic field and a PPR magnetometer. Take

note that the magnetic field for the PPR is 300× larger than the field for the SERF magnetometer,

but its response is still 10× higher.

The other more relevant point of comparison is between the response of the PPR magnetometer

to an analogous magnetometer operating where Ωz >> ΓSE. The scalar magnetometer described

in Ref. [Smullin et al., 2009] operates with a bias field B0 along the direction of the pumping.
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A transverse RF field at ω1 = γB0 is then applied, and the response to other transverse fields

is detected. The RF amplitude is optimized for maximum signal and its frequency is scanned

through resonance, resulting dispersive and absorptive signals. The Rb is at high polarizations in

this magnetometer and is therefore ”light narrowed” in a way analagous to the (1−P ) dependence

of the PPR magnetometer: Γ2 ≈ ΓSE(1 − P )/5 [Smullin et al., 2009]. A simplistic analysis

indicates that the linewidth of the optimized PPR should be 13 times narrower than the optimized

light-narrowed scalar magnetometer.

Figure 2.14a shows a comparison of individually optized PPR and scalar magnetometers. The

PPR magnetometer has a sensitivity that is 33 times greater than the scalar magnetometer. If we

remove the light narrowing effect by operating at low polarizations, we obtain linewidths as seen

in Fig 2.14b. The PPR magnetometer’s linewidth is still narrow due to the duty cycle suppression

of the spin exchange relaxation rate, while the scalar magnetometer line has broadened since it is

no longer benefiting from the full (1− P ) spin-exchange suppression.

2.6 Significance

In conclusion, using pulsed parametric modulation to operate an atomic magnetometer in high

fields is successful. We have nearly restored SERF sensitivity in fields orders of magnitude above

SERF operating conditions. Additionally, the PPR magnetometer out performs other types of mag-

netometers that operate in equivalent fields. However, one may naively say the result is inconse-

quential, arguing what we are doing is adding a large magnetic field ”shim” to cancel another large

magnetic field; the only difference is that instead of a DC cancelling field, we apply an AC coupled

pulsed field, which is worse because it has this additional relaxation. What this method gains us

over and above simply shimming out the bias field is that the alkali polarization is transverse to the

bias field. By itself, this may not be particularly interesting, but the beauty and usefulness of this

method is seen in its applications, which will be the subject of the rest of this thesis.
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(a) High polarization PPR vs light narrowed (b) Low polarization PPR v light narrowed

Figure 2.14: Figure (a) is a comparison of the PPR magnetometer to a light narrowed magnetometer

[Smullin et al., 2009]. Both magnetometers benefit from the light narrowing effect. Beyond the light

narrowing effect, the PPR also suppresses spin-exchange relaxation collisions via the duty cycle effect, so

its response is 33× greater than the light narrowed magnetometer. If we essentially take away the light

narrowing effect, we obtain the comparison in (b) where the PPR magnetometer is virtually unchanged and

the light narrowed magnetometer’s response is greatly suppressed. This demonstrates the effectiveness of

the duty cycle suppression of which the PPR magnetometer takes advantage.
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2.7 Strange Results from Sinusoidal Longitudinal Operation

As a side note, we experimented with another method of high field operation that gave us

unexpected results. We originally thought that the best comparison would be to a longitudinal,

sinusoidal parametric modulation magnetometer, which is another method for operating in high

bias field conditions. This magnetometer is set up so that the pump light is along the same direction

as the bias and the oscillating field.

The analysis is similar to the transverse case. We start with the transverse spin components

S+ = Sx + iSy and look at their time evolution:

dS+

dt
= i(Ωz + Ω1(t))S+ − iΩ+Sz − Γ2S+ (2.36)

Making the rotating wave spproximation such that S+ = A+e
iφ1 where φ1 =

∫
Ω1dt this gets us

to
dA+

dt
= (iΩz − Γ2)A+ − iΩ+Sze

−iφ1 (2.37)

Fourier expanding eiφ =
∑

P J
∗
pe
−ipωt and A+ =

∑
P A+pe

−ipωt we reduce to

A+ =
−iΩ+SzJ

∗
−1

Γ2 − i(Ωz − ω1)
(2.38)

Then translating back to S+ on resonance Ωz − ω1 = 0

〈S+〉 =
−iΩ+Sz

Γ2

|J∗−1|2 (2.39)

Substituting in for Sz = R
Γ′

〈Sy〉 =
−ΩxR

Γ2Γ′
|J∗−1|2 (2.40)

The best case scenario is the SERF regime where R = Γ0. At high Rb polarization, for

sinusoidal parametric modulation Γ2 ≈ ΓSE(1 − Pz)/5 and for pulsed parametric modulation

Γ2 ≈ dα′ΓSE(1 − Pz); therefore in the pulsed case, the spin-exchange relaxation contribution to

Γ2 should be reduced further than the sinusoidal case by dα′. Also, in the sinusoidal case, the

maximum transeverse polarization that can be achieved is 0.3, whereas it is 1 in the pulsed case.

Using the simplistic expression Γ2 = Γ0 +R+ΓSE(1−Pz), we can find the optimum pumping

rate to beR =
√

Γ2
0 + ΓSEΓ0. If we plug in the optimized pumping rate then calculate the response
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of the longitudinal sinusoidal magnetometer, we find, theoretically, that the PPR should be 20×

more sensitive than the longitudinal sinusoidal magnetometer. As can be seen in Fig2.15, this is

not the case experimentally. This was a surprising result; the longitudinal sinusoidal modulated

magnetometer performed much better than we expected and we never found a way to break it.
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Figure 2.15: This figure shows the strange results we obtained for the longitudinally pumped sinusoidally

modulated magnetometer. The pulsed case is only a factor of 3 better than the sinusoidal case, whereas we

would expect a factor of ≈ 20 for optimized conditions.
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Chapter 3

Synchronous Spin Exchange Optical Pumping

In this chapter, we expand the use of transverse optical pumping from high field magnetometry

to NMR. The basic innovation is to replace the usual DC bias field by a sequence of alkali 2π

pulses. A simplistic, but accurate way of understanding how our pulsed bias field works is to

consider the rotation due to the pulsing field experienced by a noble gas nucleus as compared to

the rotation experienced by an alkali electron. Due to the vastly different gyro-magnetic ratios,

a 2π pulse for 87Rb is equivalent to a 2πγXe/γRb = 0.005 radian rotation for 131Xe and a 0.016

radian rotation for 129Xe. The 2π bias field therefore causes the noble gas isotopes to rotate in a

manner similar to a DC field, but the alkali experience no net precession. To do NMR we reverse

the alkali polarization twice every noble gas Larmor period, forcing the alkali and the noble gas

to co-precess despite the factor of 1000 difference in their gyromagnetic ratios. This is what we

call synchronous spin exchange optical pumping (SSEOP). The essential components required to

demonstrate SSEOP are seen in Fig. 3.1a. To the PPR magnetometer setup, Fig. 3.1b, we have

added liquid crystal variable retarders that flip the handedness of the circularly polarized pump

beams, which in turn flips the alkali polarization synchronously with the noble gas precession.

The resonance frequency is detected via the embedded magnetometer, which has benefits and

drawbacks. One serious drawback is that the polarized alkali atoms produce a large magnetic field

that can shift the NMR frequency. The new method discussed here that utilizes transverse optical

pumping with pulsed parametric modulation, eliminates the alkali field shift.

This chapter discusses the successful implementation of synchronous spin exchange optical

pumping and shows a factor of at least 2500 suppression of the alkali field shift. Although this

method gets rid of the frequency shift of the alkali field, it does not eliminate the alkali field itself.
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The linewidth broadening effect of the now perpendicular alkali field is also detailed here along

with its compensation.

(a) Synchronous SEOP (b) PPR Magnetometer

Figure 3.1: Simplified schematics are shown of the optical setup for transverse optical pumping (b) and

synchronous spin exchange optical pumping (a). The major changes from (b) to (a) are dual sided pumping,

the insertion of the liquid crystal variable retarders to flip the pump polarization, and the probe along ẑ

instead of ŷ . The bias field has also changed from B+B1(t) to just B1(t) due to the fact that we no longer

AC couple the 2π pulses, so there is no longer a large DC field being applied.

3.1 Synchronous Spin Exchange Optical Pumping

This new method operates on the basic principles of spin exchange optical pumping. Starting

with a vapor of alkali metal atoms and a high density of noble gas, circularly polarized light

first imparts angular momentum to the alkali atoms’s valence electron giving it a certain spin

polarization (as described in Sec. 2.1). Subsequently, through collisions with the noble gas, the

alkali’s electron exchanges some of its angular momentum with the nucleus of the noble gas, so

that it becomes spin polarized. The two primary means of angular momentum exchange between

the noble gas and the alkali are binary collisions and van der Waals molecules, which will be

discussed in more detail in Sec. 4.2.5. In conventional NMR, transverse noble gas polarization is
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generated by the application of a resonant transverse rf field and the subsequent precession about

the bias field is detected by the embedded magnetometer.

To implement SSEOP, we turn on the 2π pulsing that corresponds to a certain bias fieldBbias =

fpulse/γRb where γRb = 2µB/(2I + 1) from which the Xe resonance frequency is calculated

fres = γKBbias = γK/γRbfpulse. The liquid crystal modulators then flip the pump polarization,

i.e. the alkali polarization, at a frequency f near the Xe resonance frequency. The oscillating

Rb polarization, which replaces the electro-magnetic drive in conventional NMR, synchronously

pumps the noble gas. As the Xe precesses, it produces an oscillating field By, which is directly

detected by the magnetometer via Faraday rotation of the ẑ probe. Figure 3.2a shows an example

of what the Xe signal looks like on resonance. Because the magnetometer gain changes sign twice

every noble gas Larmor period, the Xe precession signal is a square wave modulated sine wave.

This signal is then fed into a lock-in that detects at 2f . Figure 3.2b shows a sample resonance

linewidth taken by scanning the alkali polarization modulation frequency f . The red trace is the

in phase component of the Xe signal and the blue trace is the quadrature signal, 90◦ out of phase

with the red. The black is the Kz component of the Xe spin that produces a ẑ field (the mechanism

that generates a ẑ polarization will be discussed in detail below). In order to observe the Kz signal,

we apply a small, low frequency ( 1kHz) field along x̂ . This acts as a parametric modulation that,

when demodulated, allows us to detect the field that is parallel to the probe propagation direction.

It is small enough and low enough frequency that it does not perturb the 2π pulse rotation, but still

gives us sufficient signal to detect Bz as produced by Kz.

The time evolution of the transverse components of the nuclear spin, 〈K+〉 = 〈Kx + iKy〉, of

the noble gas is given by:

d〈K+〉
dt

= −(Γ2 + iγKB̄bias)〈K+〉+ ΓSE〈Sx〉(t) (3.1)

where Γ2 is the transverse relaxation rate; γK is the gyromagnetic ratio of the noble gas; B̄1 is the

average magnetic field of the alkali 2π pulses, which defines the noble gas precession ω0 = γkB̄1;

ΓSE is the spin exchange rate between the alkali and the noble gas; and 〈Sx〉(t) is the optical

pumping waveform that describes the flipping of the alkali polarization. If we then define the
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optical pumping term so that 〈Sx〉(t) =
∑

p spe
−ipωt the steady state solution is

K+ =
ΓSEsp

Γ2 + i(ω0 − pω)
e−ipωt = K̃+e

−ipωt (3.2)

where we have defined K̃+ as the transverse polarization in the rotating frame. The magnitude of

this polarization is Kmax = ΓSEsp/Γ2. We measure the two components K̃x and K̃y. Both of these

should have a maximum noble gas field of Kmax and a linewidth of Γ2. Typically, unless limited

by field gradients, Γ2 = Γ1.

3.2 Importance of the Alkali Field: Broadening

As mentioned in Sec. 1.1 the importance of this method is derived from the fact that, due to the

co-precessing Rb and Xe, the alkali field shift of the Xe resonance frequency has been eliminated.

For this reason, all preliminary analysis of the system was done neglecting the contribution of BA

to the time evolution of the noble gas spins. However, there are several pieces of evidence that

this is not the case. The first is that the raw signal itself exhibits no phase shift as seen in Fig.

3.2a; the blue Xe signal trace is detuned one linewidth from resonance. The lack of phase shift

is dramatically demonstrated when looking at the quadrature signal from the lock-in. Fig. 3.2b

shows the in phase, quadrature, and Bz signals as resonance is scanned. The linewidth of these

curves is much broader than expected and the quadrature signal is almost zero. Also surprising is

the fact that there is a Bz signal from the Xe nuclei that are supposed to be rotating solely in the x̂

-ŷ plane.

3.2.1 Accounting for Alkali Field

If we now add in the effect of the alkali field, we see that when the pumping is off resonance, a

phase shift between the alkali and the noble gas is accumulated. The alkali field exerts a torque on

K̃y, which will tip the nuclear spin into ẑ : −γKBKS × 〈K〉 = γKBKSK̃yẑ. We define bKSS̄ as

the alkali field that the Xe sees and bSKK̄ as the Xe field the alkali sees. This is the cause for the

unexpectedly large ẑ component of the noble gas polarization, and can be seen as the reason for

the suppression of K̃y. Factoring in the torque felt by the nuclei due to the alkali field on the time
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(a) Uncompensated Xe signals (b) Uncompensated Xe linewidths

Figure 3.2: The two figures correspond to the Xe signal and accompanying linewidths for a system that

does not compensate for the alkali field. In (a) the red trace is the on resonance signal and the blue trace is

tuned halfway down the in phase resonance curve; there is no apparent phase shift in the signal. Figure (b)

shows the dramatic suppression of the quadrature component of the signal in blue.
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evolution of the ẑ component of the Xe:

dKz

dt
= −γkbx(t)Ky − Γ1Kz (3.3)

The alkali field bx(t) = bKS〈Sx〉(t) is oscillating in phase with Sx as in Eqn 3.1 so we obtain in

steady state:

Kz = −γbx,pK̃y

Γ1

= − tan (α)K̃y (3.4)

where we have defined the parameter tanα = γKbx,p
Γ1

as the angle the Xe tilts into ẑ due to the

torque exerted by the alkali field. The parameter bx,p is the pth Fourier amplitude of the alkali field.

Now seeing the effect BAx̂ has, we want to know how it changes the characteristic lineshapes

we measure. For the transverse noble gas polarization

dK+

dt
= ΓSESx(t)− (Γ2 + iγKB1(t))K+ + iγKbx(t)Kz (3.5)

this can be reduced to

dK+

dt
= −K+(Γ2 + iω0) + (ΓSEsp − iΓ1 tanα2K̃y)e

−ipωt (3.6)

Defining ∆ = pω−ω0 we can separate Eqn 3.6 into its real and imaginary steady state components

to obtain

K̃x =
ΓSEsp − K̃y∆

Γ2

(3.7)

and

K̃y =
K̃x∆

Γ2 + Γ1 tanα2
(3.8)

Solving these two equations simultaneously gives

K̃+ =
Kmax

1 + ∆
Γeff

(
1 +

i∆Γ2

Γ2
eff

)
(3.9)

where Kmax = ΓSEsp/Γ2. The new effective linewidth that we measure with the alkali field taken

into account is

Γeff =
√

Γ2
2 + Γ1Γ2 tan2 (α) (3.10)
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which is broadened over Γ2 by a term proportional to the alkali field squared. The second term of

Eqn. 3.9 which describes the quadrature behavior, is suppressed by a factor Γ2/Γeff . These new

equations describe the behavior of data.

As an interesting side note, this broadening effect is very similar in form to power broadening

as presented in Abragam, 1990. Conceptually the analogy is that as the noble gas tilts into the z-

axis, the alkali field is acting as an electromagnetic drive that is essentially over-driving the noble

gas resonance. This causes braodening of the linewidth:

Γeff =

√
Γ2

2 +
Γ2

Γ1

γ2B2 (3.11)

The difference between the two effects is that the effect we see conserves the peak value; as the

linewidth broadens, the peak polarization remains constant. This is because on resonance, there is

no phase shift between the alkali and the noble gas, thus no torque. Other broadening mechanisms

like power broadening see a decrease in the peak value on resonance.

3.2.2 Alkali Field: Narrowing

The important feature of the alkali field is that it follows the alkali polarization modulation

waveform, which is a square wave; therefore, we are able to essentially turn it off by applying a

square wave magnetic field along x̂ 180◦ out of phase with the alkali polarization modulation. This

means that in Eqn 3.3 we now put bx(t) = bKS〈Sx〉(t) − Bc(t) where Bc(t) is the compensation

field. The effect of this compensation field is dramatic. The plot in Fig 3.3a shows the in phase,

quadrature, and ẑ components of the resonance without the compensating field on and Fig 3.3b

shows the same signals with the compensating field. Doing this procedure narrows the linewidth

a factor of ≈ 15 and enhances the quadrature slope up to a factor of ≈ 75 at high density. A very

clear way to see that the phase sensitivity is restored is to look at the raw Xe signal again and see

that the blue trace in the uncompensated case of Fig. 3.4 now demonstrates a phase shift. As can

be seen, the ẑ signal is suppressed, but not entirely eliminated; suppressing it beyond this point

does not significantly affect the in and out of phase signals, but, with more careful nulling, we have

been able to achieve over a factor of 30 suppression of the induced ẑ field.
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(a) Uncompensated linewidths (b) Compensated linewidths

Figure 3.3: The addition of a Bx field to compensate for the alkali field produces a change in the in phase,

quadrature, andBz signals as shown from (a) to (b). The inewidth narrows a factor of 15 and the quadrature

slope enhances a factor of up to 75 at high density.

Careful adjustment of the compensation field is then done by scanning across resonance to

minimize Kz. This procedure is complicated by the fact that both the amplitude and the phase

of the compensating field must be adjusted in order to obtain perfect cancellation. The phase

of the compensating field depends on how quickly the alkali atoms flip their polarization, which

causes a slight delay in the alkali field timing from the triggered polarization flip. If the phase is

not adjusted, then the amplitude of the in phase signal is significantly reduced as can be seen in

Fig 3.5. There is a residual loss in amplitude that cannot be compensated for by phase or field

adjustment.

As a measure of how well we compensate, the width of the in phase and the slope of the quadra-

ture can be plotted as a function of compensating field. They should minimize/ maximize at the

alkali field value. The measurement is taken by starting where the compensation field amplitude

and phase are well adjusted to the alkali field; then points with different compensation field am-

plitudes are taken. The width of the in phase signal as a function of compensation field should

follow

width =

√
Γ2

2 +
Γ2

Γ1

γ2(B −Bc)2 (3.12)
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Figure 3.4: The uncompensated and compensated Xe signals show the enhanced phase behavior of the

signal. The blue traces in the above signals correspond to the Xe signal detuned by one linewidth. Because

of the narrowing, the compensated signal is detuned only 5mHz, while the uncompensated signal is detuned

50mHz. The phase shift is now apparent in the signal.
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Figure 3.5: The phase of the alkali compensation field must be adjusted to maintain maximum Xe am-

plitude. The blue and the green curves are taken at the same applied compensation field, but are different

in phase by 5.55◦. There is a residual loss in amplitude that cannot be compensated for by phase or field

adjustment.
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Figure 3.6: The linewidth as a function of compensation field value shows the narrowing effect at sev-

eral different densities for 131Xe and at one density for the third sub-harmonic of 129Xe. The measured

compensation field point agrees fairly well with the calculated alkali field.

and the slope of the quadrature signal should follow:

dK̃y

d∆
|∆→0 =

Kmaxγ2

Γ2
2 + Γ1Γ2 tanα2

(3.13)

The data and fits for this experiment are shown in Fig 3.6. We also took this data at several different

densities, which correspond to several different alkali field values.

A regime that was not fully explored was that of very high alkali densities corresponding to

very high alkali fields. We suspect that as the alkali field increases at higher densities, we will start

to see a feedback effect between the large BSKKz and the large BA.

3.3 Sub-Harmonic Pumping

A neat feature that we exploited for some of these experiments is using the higher harmon-

ics generated by our square wave polarization modulation to synchronously pump 129Xe at a

lower pump modulation frequency γKB/p. When we do this the Fourier amplitude is reduced

by jp = 2/πp where p is the harmonic number; this means tanα = 2γK(bA−bC)
pπΓ1

is reduced and the

broadening is not as pronounced.
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We start, once again, with the time evolution of the noble gas (Eqn 3.5):

dK+

dt
= Rsign[cos(ωt)]− (Γ2 + iγKB1(t))K+ + iγKBAsign[cos(ωt)]Kz (3.14)

Fourier expanding and assuming a single resonance s cos(ωt) = jpe
−ipωt where

dK+

dt
= Rjpe

−ipωt − (Γ2 + iγKB1(t))K+ + iγKBAjpe
−ipωtKz (3.15)

where the Fourier coefficient

jp =
2

pπ
(−1)p−1/2 (3.16)

Multiplying and dividing the first two terms by Γ1 allows us to redefine both the maximum polar-

ization:

K⊥,max =
jpR

Γ1

(3.17)

and the new tanα

tanα =
jpγKBA

Γ1

(3.18)

Both of these terms are now reduced by the Fourier coefficient jp as defined above. A scan of the

pump polarization modulation frequency is shown in Fig 3.7. The third subharmonic of 129Xe is

inverted, reduced in amplitude by jp, and narrower due to the smaller tanα as compared to the

first harmonic.

Because the signal is squarewave modulated, it is important to lock to the correct harmonic

and know the subsequent reduction in amplitude. The signal into the lock-in is the square wave

(at ω) modulated Xe signal ( at pω), which has the largest signal component at p± 1, with smaller

components at p± 3 etc. So the lock-in out of phase signal:

Vout ∝ 〈sign[cos(ωt)] sin(pωt) sin((p+ 1)ωt)〉 (3.19)

and the in phase signal

Vin ∝ 〈sign[cos(ωt)] cos(pωt) cos((p+ 1)ωt)〉 (3.20)
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Figure 3.7: When the alkali polarization modulation frequency is scanned starting from the 129Xe reso-

nance at 21Hz down to the 131Xe resonance at 6Hz, a third, inverted resonance peak is seen at 7Hz. This

is due to the 129Xe resonance being excited at the thrid harmonic of pump modulation frequency. The

proximity of the third subharmonic of 129Xe and the first harmonic of 131Xe allows us to couple the two

isotopes.

These time averages must be computed for the each harmonic in order to obtain the correct ampli-

tude ratio between the out of phase and the in phase signals. With first harmonic pumping the ratio

Vout/Vin is 2, while higher harmonics reduce the relative amplitudes.

Extensions to this method are used in pumping two species at the same time and will be dis-

cussed in more detail in Chapter 9.

3.4 Upper Limit on Longitudinal Alkali Polarization

This chapter started out by claiming that the importance of successful SSEOP is that it elimi-

nates the alkali field shift from NMR measurements, so it is vital to know by how much we have

reduced it. This measurement was done indirectly, for technical reasons that will be described

below, by measuring the residual ẑ polarization of the alkali. A scan of the Xe resonance is taken

monitoring both K̃y and Sz; a DC offset in Sz where K̃y crosses zero corresponds to non-zero
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alkali polarization along the bias field direction, which would cause a shift in the NMR frequency.

Using this method at [Rb] = 2.3 × 1013/cm3we measure 〈Sz〉 < 2 × 10−4 which is equivalent to

an alkali field of 170nG or a frequency shift of 60µ Hz. This is a factor of 2500 reduction from

longitudinal NMR. The data is shown in Fig 3.8.

Figure 3.8: The alkali field shift limit is calculated from the DC offset of Pz and is 60µ Hz for this data.

This corresponds to a suppresion of 2500 from a longitudinally pumped NMR by ×2500.

3.4.0.1 Failed Methods

The above method is not the most straightforward method of making this measurement. The

best way would be to flip BA and see if there is a frequency shift, but it is not possible to flip the

alkali field since it is oscillating at the NMR frequency. We can flip the bias field direction by

switching the polarity of the 2π pulses. However, this experiment resulted in a large frequency

shift that would correspond to a 30% polarization of the Rb along the bias field direction; the two

polarities are shown in Fig. 3.9. We know that the pump, probe, and field coil misalignment is not

that bad; therefore, there must be some other effect that is causing such a dramatic change.

Options present themselves as a means of explanation. If the probe is slightly circularly polar-

ized it will cause an AC Stark shift along ẑ , which exhibits itself as a magnetic field. We would

subsequently null out the AC Stark induced shift in the energy levels with a real magnetic field.
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Figure 3.9: Two resonance curves for 129Xe correspond to the two polarities of the 2π pulsing field. The

frequency splitting is 0.205Hz.

Figure 3.10: The frequency shift between the two polarities of the 2π pulsing field is plotted as a function

of probe intensity. If the AC Stark generated by the probe was the sole cause of the frequency shift we

see, then the two polarity curves would cross at zero probe intensity. The fact that they do not indicates a

residual effect.
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Neither the AC Stark shift, that the noble gas does not see, nor the added ẑ shim, which the no-

ble gas does see, would change direction as a function of 2π pulse polarity, so it would appear

as though the NMR resonance shifts frequency when the bias field is flipped due to the added ẑ

shim. An experiment that demonstrates this effect is measuring the Xe resonance frequency for the

two field polarities as a function of probe intensity. The AC Stark shift decreases as light intensity

decreases, so the resonance frequency shift should go to zero at zero probe intensity.The result of

this experiment shows in Fig. 3.10 that the two polarities cross as a non-zero probe intensity. The

conclusion is that the AC Stark induced by the probe may contribute to some of the frequency shift

we see, but not to all of it.

The second is that we are not able to reliably reset the 2π pulse area in such a way that is

consistent enough for this experiment. As calculated in Sec. 5.1, we are able to set the 2π pulse

area to better than 3 parts in 10000, which corresponds to 4.2mV out of 14V applied 2π pulse

voltage. From Sec 7.1.2, we see that a 0.024V change in the 2π pulse voltage results in 1kHz

alkali frequency shift. This corresponds to a 1Hz noble gas frequency shift for a 0.032V change in

2π pulse voltage. If we want a factor of 2500 suppression as quoted from the Pz experiment above,

we would need to set the 2π pulse voltage to better than 1µV. We are obviously not able to do this

with our current setup. It is interesting to note that the precision with which we are able to set the

2π pulses, 4.2mV, corresponds to a 0.125Hz frequency shift in the 131Xe. This is close to what we

see. Although it has not been proven, there seems to be reason to believe that this is not the case

since the frequency shift was not varying wildly. When these frequency shift measurements were

taken, we were not aware of the sensitivity of the resonance frequency to 2π pulse voltage, so it

would be worthwhile to look into it more with this in mind.

One piece of evidence that indicates that the alkali field is not causing a significant shift in the

NMR frequency is the fact that when we turn on the x̂ compensation field, the resonance frequency

does not change from uncompensated to fully compensated to < 0.4mHz.
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A possible explanation for all this is that we are not able to reliably switch the bias field direc-

tion. Likely, there is some coupling of the large pulsed magnetic field to the shield that is exacer-

bated by the asymmetrical positioning of the cell within the shield. However, we are confident that

it is not directly because of any significant alkali polarization along ẑ .
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Chapter 4

NMR Characterization

4.1 Characterization of Xe

In order to gauge the success of our new method of SEOP, we need to first characterize the

cell. Most of the experiments performed for this thesis were done in an 8mm ”sphere” that is

shown in Fig 6.2. This cell contains 32 Torr of 129Xe and 8 Torr of 131Xe. It also has ≈ 300

Torr of N2 as a buffer gas for the 85Rb optical pumping. Since the spin-exchange rate between Xe

and Rb is not well known theoretically and depends on composition, the first and most important

characterization measurement is that of the spin-exchange rate coefficient. This number dictates the

maximum Xe polarization we can attain at a particular alkali density, which allows us to quantify

our signals. I present here several methods that all work to varying degrees along with the one

that gives satisfactory experimental data as well as a well understood analysis method. We then

compare the experimental values to the ones extracted from detailed theoretical modeling. During

the course of these measurements we observed in 129Xe an X-factor analogous to that found in 3He

in [Babcock, Chann, Walker, Chen, and Gentile, 2006]. The X-factor describes the increase in the

wall relaxation rate of the Xe as a function of [Rb] which puts a limit on the maximum attainable

polarization.
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Figure 4.1: This is the cell used for the majority of experiments in this thesis. Its Ehrlenmeyer flask like

shape caused the laser beams to be greatly distorted.
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4.2 Spin-Exchange Rate Measurement Methods

We tried five different methods for measuring the spin-exchange rate coefficient. I will present

these methods and their respective pitfalls and then describe the final method, which is the cleanest

measurement of this important characterization. We found the unreliable methods still valuable in

that they gave us a better grasp of the system as a whole.

To evaluate how we will measure ΓSE, we start with the basic equation that describes the Xe

polarization:

PXe =
ΓSEPRb

ΓSE + Γ0

(4.1)

We have a good handle on PRb as described in Sec. 6.8.1, so in order to get a measurement of the

spin-exchange rate ΓSE, we need to measure the Xe polarization and Γ1 = ΓSE + Γ0 where Γ0 is

the fundamental relaxation rate due to the cell and its composition; this includes the wall relaxation

rate.

The Xe polarization is found from a calculation of the Xe field:

BXe =
8πgk
3µN

( e~
2Mc

)2

κ[Xe]PXe (4.2)

combined with a calibrated measurement of the Xe field. In the above equation κ is the Fermi

contact enhancement factor, PXe is the Xe polarization, [Xe] is the Xe density, and M is the proton

rest mass. The calibration for the Xe field is done by applying a magnetic field of known amplitude

(using the applied voltage, the output resistance, and the coil’s current to field conversion) at the

Xe resonance frequency along ŷ . The resulting fake Xe signal’s amplitude or, if lock-in detection

is used, demodulated signal gives a calibration of signal size in volts to magnetic field. Factors of

2 are easy to miss in this calibration. For example, care must be taken that the numbers being used

are amplitudes and not peak to peak values.

4.2.1 DC Pulse Measurement

The first ΓSE method involves a time dependent measurement of the Xe polarization. Theoreti-

cally, by turning on the pump or flipping the pump polarization and measuring the buildup of field
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Figure 4.2: The figure shows the data from the attempt at extractingΓSE from the DC pulse method. This

set was taken at a low bias field where it is more likely that there is mixing of the two isotopes in the

resulting signal.

along x̂ , we can extract a value for the maximum Xe field at t =∞:

PXe(t) = PXe(∞)(1− exp[−(ΓSE + Γ0)t]) (4.3)

and subsequently extract the spin-exchange rate from knowing that the time constant from the

buildup gives ΓSE + Γ0 = Γ1 therefore

ΓSE =
Γ1PXe(∞)

PRb

(4.4)

In this measurement, since we expect ΓSE to be different for either isotope it is important to

separate the two Xe isotopes so that the extracted P∞ is specific to an individual isotope. We

accomplish this by applying a known DC x̂ field and a transverse oscillating ẑ field at one of the

isotopes’ resonance frequencies; this tilts that isotope into the transverse plane. The signal when

the pump light is turned on contains only one isotope. We measure the buildup of the x̂ field by

lock-in detection of an applied ŷ field. Sample curves are shown in Figs 4.2 and 4.3.

The experiment done at low DC x̂ field has a clean buildup of field when the pump turns on, but

at this low bias field, the Xe isotopes are not well separated in frequency space. Because of this the
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Figure 4.3: This data for the DC pulse method was done at a high bias field where there should be little

mixing of the two isotopes in the resulting signal. However, the signal does not follow a clear exponential

buildup.
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buildup likely contains both isotopes, and without knowing more about the spin-exchange rate for

each isotope, we cannot separate the two time constants. As the bias field is increased, however,

other unknown issues begin to crop up and the field buildup is no longer a clean exponential.

Likely, there is interference in the buildup due to all the competing fields that are applied for

separation and detection.

4.2.2 Longitudinal NMR

The second method is a longitudinal NMR measurement in which a bias field is applied along

the pump direction x̂ and the transverse Xe spin is excited by application of a resonant field perpen-

dicular to the polarization. The tilt of the Xe polarization into ẑ is found from the time evolution

of the transverse components P+ = Py + iPz on resonance:

dP+

dt
= −Γ2P+ − i

Ωy

2
Px (4.5)

where Ωy = 2πγBy cos (ωt). The imaginary portion gives Pz which is the transverse polarization

component we detect:

Pz = −ΩyPx
2Γ2

(4.6)

Along the pumping direction:

dPx
dt

= −Γ1Px + ΓSEPRb +
ΩyPz

2
(4.7)

In steady state, we obtain

Px =
ΓSEPRb + ΩyPz/2

Γ1

(4.8)

Plugging Eqn 4.8 into Eqn 4.6 and rearranging, the resulting transverse polarization as a function

of drive field Ωy is

Pz =
−2ΩyΓSEPRb
4Γ1Γ2 + Ω2

y

(4.9)

We can optimize this equation with respect to drive field amplitude to get an expression for ΓSE:

ΓSE =
PXe

PRb

√
Γ1Γ2 (4.10)

The procedure for this method goes as follows:



60

Figure 4.4: Shown are the NMR linewidths for 131Xe and 129Xem which were used in the second method

for measuring ΓSE.

• Apply a large enough Bx to separate the two Xe isotope resonance frequencies

• Apply a sinusoidal By at either the 129Xe or 131Xe resonance frequency

• Monitor the response to that frequency

• Scan the frequency to obtain a resonance peak

• Using a calibration for the Xe field, as described in Sec. 4.2, this gives PXe

• Take a series of these measurements as a function of By amplitude

This procedure produces well defined resonance peaks for the two isotopes as can be seen in

Fig 4.4. Scanning By and plotting the amplitude of the resonance curve as a function of applied

field amplitude results in Fig 4.5, which can subsequently be fit to Eqn 4.9 to extract Γ1Γ2 and ΓSE.

From the fit to this data, the extracted ΓSE = 0.034/s and Γ1Γ2 = 0.062/s2. In order to double

check this method, we need to verify the value for Γ1Γ2 and extract a value for Γ2. If solve for the

steady state ẑ polarization off resonance:

Pz = 2

√
S2
zΓ

2
SEΩ2

d

(4Γ1Γ2 + Ω2
d)

2 + 16Γ1(ω − Ωz)2
(4.11)
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Figure 4.5: In the second method for measuring ΓSE we took data corresponding to the peak Xe polarization

(normalized Xe field) as a function of drive field amplitude. This method resulted in a reasonable fit for

ΓSE, but failed to agree with subsequent measurements.
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Figure 4.6: A plot of the measured resonance width as a function of drive field amplitude. The extracted

values for Γ1 and Γ2 and ΓSE do not agree with the values obtained from the measurement of Xe polarization

as a function of drive field amplitude.

If we define an amplitude A as being A(4Γ1Γ2 + Ω2
d) = 2ΩdΓSESz then we can reduce Eqn 4.11 to

Pz =
A√

1 +
16Γ2

1∆2

(4Γ1Γ2+Ω2
d)2

(4.12)

In Eqn 4.12, there is a detuning ∆ and we define a width parameter 1/γ2 =
16Γ2

1

(4Γ1Γ2+Ω2
d)2 . Now we

can use the width of the NMR resonance as a function of drive field amplitude to extract values for

Γ1 and Γ2 from the parameter γ

γ = Γ2(1 +
Ω2
d

4Γ1Γ2

) (4.13)

When we do this, we obtain data and fit as seen in Fig 4.6. There are several issues with the

results of this measurement. The first and most prominent is that the Γ1Γ2 = 0.043/s2 extracted

from the above method does not match Γ1Γ2 = 0.063/s2 extracted from the fit with Eqn 4.9.

The second issue is that the NMR lineshapes are asymmetrical revealing that there is something

missing in the analysis. Third, the NMR frequency seems to be drifting. I will address the latter

two concerns first.

The lineshapes in Fig 4.4 are lopsided and look as though the phase of the lock-in detection

is off. The phase of the lock-in is carefully set to zero far off the Xe resonance frequency, but as
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Figure 4.7: The NMR peaks are aymmetrical due the Xe phase changing as resonance is scanned. The

different colors correspond to different drive field amplitudes

the frequency is scanned, the phase of the Xe changes with respect to the Rb thus distorting the

lineshape. If we then return to the equation for the transverse spin components and introduce a

phase dependence K+ = K⊥e
iωt and then translate back to K+ we obtain

K+ =
2ΩdΓSES

4i∆Γ1 + 4Γ1Γ2 + Ω2
d

e−iωt (4.14)

Using the same definition for A,

K+ = A
cosα− ∆ sinα

γ

1 + ∆2

γ2

(4.15)

where we now have the parameter α that accounts for the phase of the Xe as resonance is scanned.

This accounts for the skewed lineshapes and the apparent resonance frequency shift as seen in Fig

4.7.

Of the first concern, we never came to a definitive conclusion as to why the values for Γ1 and Γ2

never align with each other, but hypothesized that because the theory analyzing the NMR behavior

is complex, that we are still missing a piece. As subsequent studies revealed, this piece may have

been an alkali field issue. The theory also becomes more complicated when using 131Xe, which

has a nulcear spin of 3/2. Because of both of these factors, we abandoned this method in search of

one that is more straight forward.
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4.2.3 Γ1 Measurement Procedure

In conjunction with the above procedure, we worked on a separate method to measure Γ1. If

we were to use this method to extract a value for ΓSE, we would need to combine it with NMR

linewidth measurements to obtain Γ2 and BXe. However, this method runs into the same prob-

lem as described above in that we do not understand the NMR lineshapes well enough to extract

meaningful results for Γ2 and ΓSE, but it is a straight forward way to measure Γ1.

The procedure goes as follows:

• Polarize all atoms along the x̂ direction with an applied bias field to separate the two isotope

frequencies

• Turn off the pumping for time τ

• Turn the pump light back on and apply to one of the isotopes a transverse resonant RF pulse

• Measure the Xe signal amplitude after the pulse as a function of τ , the time the pump is off

The data and fits for Γ1 of both isotopes can be seen in Figures 4.8 and 4.9. Care must be taken

to ensure that the time the pump is turned on is sufficiently long so that the Xe is fully polarized

when the pump is once again blocked.

4.2.4 π Pulse Method

In order to free the spin-exchange rate measurement from the complications due to the NMR

linewidths, we settled on a separate experiment in which we once again apply a bias field large

enough to separate the isotope frequencies. An RF pulse is applied along a transverse direction

to flip one of the isotopes π radians. The time constant of the field buildup along the x̂ direction,

measured by lock-in detection of the response to an oscillating By, will give us Γ1 and the Xe field

can be extracted from the peak value of the signal that results from the pulse. This is similar to the

first method, but we are using the RF field to excite the isotope we want to measure.
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Figure 4.8: The Xe field as a function of time the pump is turned off results in Γ1 = 1/22s for 129Xe at

this particular density of 2× 1013.

Figure 4.9: The 131Xe data taken at the same density as Fig 4.8 results in Γ1 = 1/27s for 131Xe at

[Rb]≈ 2× 1013.
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In this new method, we have eliminated the need for a Γ2 measurement. Previously, when

using the NMR method, we get ΓSE from

ΓSE =
PXe
PRb

2
√

Γ1Γ2 (4.16)

Now when the resonant drive field is eliminated, we have no transverse relaxation contribution and

the spin-exchange rate is simply:

ΓSE =
PXe
PRb

Γ1 (4.17)

where the Xe polarization is obtained from the ratio of the measured Xe field to the calculated

maximum field produced by the total amount of Xe in the cell: PXe = BXe/BXe,100. PRb is

measured in the usual way described in Sec 6.8.1. The peak Xe field is extracted from the peak of

the curve and Γ1 is extracted from the time constant. Doing these measurements at a few different

densities gives Fig 4.10 from which a spin-exchange rate coefficient of κ = 3.28× 10−16cm3/s is

found.

There are a couple of issues with this method that throw doubt on the result. One of these is the

introduction of the wrong isotope into the signal since when the π pulse is not perfectly tuned, it is

easy to introduce signal from the wrong isotope. Separating the two isotopes once again proves to

be difficult because of similar behavior as was seen in the first method; as the bias field increases,

the signal size decreases. Although we are unsure of the origin, this behavior may be because

the magnetometer sensitivity gets smaller with an added field of around 1-2 mG or the fields are

complicating the alkali rotation as discussed with the first method. We ended up operating where

the signal maximizes. Pulse shape considerations are important to consider as well. Any DC offset

or ”tail” to the applied RF pulse results in mixing the isotope signals. This was a particularly

difficult issue when measuring 131Xe. If there was any imperfection in the RF pulse applied to

excite 131Xe, 129Xe was very easily excited as well since it is so much more sensitive to fields.

The other main concern with this measurement comes from the fact that at low density the π

pulse measurement has very poor signal to noise, so it is difficult to obtain a consistent peak field

and Γ1 measurement. There are a several options for how this noise is introduced. The simplest
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Figure 4.10: The spin exchange rate as measured by the π pulse method is plotted as a function of density.

This method results in κSE = 3.28× 10−16cm3/s, which, despite the noise troubles, is in good agreement

with the final method.
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solution is a noisy Bx shim, but switching the Bx shim driver to a very stable laser current source

shows no difference.

A more complicated, but still viable option is a noisy AC Stark shift, i.e. pump intensity

and frequency noise, which would also increase x̂ field noise. In order to evaluate this issue, we

measured the field noise that would be created by pump intensity and frequency fluctuations to see

if they have substantial contributions to the noise level we see. To obtain a calibration of pump

intensity or pump frequency to Bx, we monitor the change in Bx as a function of either relative

intensity or pump frequency. With this information, we can then convert the measured pump

intensity or frequency fluctuations to magnetic field fluctuations. Pump intensity is monitored

via far off resonance pump transmission. The most sensitive measurement of pump frequency is

monitoring the pump transmission halfway down the absorption spectrum. The results of these

tests show that pump intensity fluctuations are too small to account for the field noise, but pump

frequency fluctuations may contribute. This path was not pursued any further due to the success of

the next ΓSE method.

Something to note is that there is a difference in the frequency noise between the two laser

drivers. We are using a Thorlabs driver for one laser and an SRS driver for the other. The SRS con-

troller has high frequency components, while the Thorlabs controller does not. We never switched

the controllers to see if this behavior was controller or laser dependent, but it is something to keep

in mind for potential future questions. We never resolved the Bx noise issue since we moved on to

the final ΓSE method.

4.2.5 The Reliable Spin-Exchange Rate Measurement and Accompanying Ex-
periments

The beauty of this method of measuring ΓSE is that we can do a simultaneous measurement of

both isotopes. The process is to polarize all the Xe along x̂ with an applied Bx quantization field

for a time τ then hit the Xe with a strong DC pulse along ŷ . The two Xe isotopes will then precess

in the x̂ -ẑ plane about By with their respective characteristic frequencies. The resulting signal
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follows

sig = B129 sin (2πf129t) +B131 sin (2πf131t) (4.18)

The fit will result in the respective frequencies and field amplitudes for the two isotopes at time

τ . After the measurement is taken, the pump light is turned off long enough so that the Xe is

completely depolarized. A series of these measurements are then taken as a function of τ to extract

a rise time corresponding to Γ1 and a maximum value for PXe(∞) for each isotope.

A couple of things are important to be wary of for this experiment to work properly. The first

is that the time the pump is off must be sufficiently long so as to ensure that the Xe is completely

depolarized before the next pulse is applied. The second is the timing of the x̂ bias and ŷ pulsing

fields. As we increase the x̂ quantization field, we expect the measured Xe field to level off. This

is because Bx helps to define the pumping axis, which allows for a more stable Xe polarization

along that single axis. When using the two large fields that are perpendicular (x̂ quantization and

ŷ pulsing), it is crucial that the x̂ bias field is turned off when the ŷ DC pulse is applied so that

the axis about which the Xe precesses is clearly defined. If there is a time delay in simultaneously

triggering off Bx and turning on the By pulse, the two fields will overlap. This small (70ms)

timing error accounts for the Xe field falling off at higher bias fields; once it is resolved we obtain

the green dashed curve in Fig 4.11 and Fig 4.11b instead of the solid black line. The 129Xe still

drops off a little at the very high bias fields, but there may still be a residual triggering issue to

which the 129Xe is more susceptible.

Calibrating the fields correctly is also vitally important. The measurement being made is Py

Py =
ΩzRx + ΩyΩxRx/Γ

′

Ω2
y + Γ′2

(4.19)

which gives sensitivity to both Bx and Bz

Py =
Rx

Ωy

(
Ωz

Ωy

+
Ωx

Γ′
) (4.20)

Assuming Ωy >> Γ′, the sensitive field is Ωx even though Ωz will also respond since the DC

pulse is along ŷ . The ratio of Ωx/Ωz for the measurements I was taking is 20; if they were much

closer, it would be necessary to do a more complicated form of calibration.
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(a) Xe field as a function of Bx for 129Xe. (b) Xe field as a function of Bx for 131Xe.

Figure 4.11: The Xe field is plotted as a function of applied Bx. We found that due to a timing issue in how

we made the measurement the Xe field would fall off at high Bx. The green trace is with the timing issue

resolved and the black is with it unresolved. As quantization field along the pumping direction is added,

the Xe field size should increase and level off at the max field value. This is because the quantization field

helps to define the pumping axis allowing a more stable Xe polarization along that single axis.

(a) (b)

Figure 4.12: Xe signals from the ΓSE measurement. (a) is the measurement done for short pumping time

and (b) is the measurement done for long pumping times. These curves are fit to a sum of two sine waves

to extract the size of the Xe field as a function of pumping time.
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(a) Γ1 for 131Xe (b) Γ1 for 129Xe

Figure 4.13: The measurement for T1 comes from the fit of the Xe signal as a function of pumping time.

The maximum Xe field is also extracted from this curve.

With the quantization axis defined by Bx and the field behavior understood, the Γ1 measure-

ment proceeds smoothly. The Xe rotation data is shown in Fig 4.12a and 4.12b for short and

long pumping times. The resulting field buildup is seen in Figs 4.13a and 4.13b. These measure-

ments are done at several different densities and the spin-exchange rate as a function of density is

shown in Figs 4.14a and 4.14b. The spin exchange rate coefficient can then be extracted from the

measured Γ1 and PXe via:

ΓSE =
PXe

PRb

Γ1 (4.21)

One simple way to check if the rates are near what is expected is to compare the 131Xe to

the 129Xe spin-exchange rate. We start with the van der Waals molecule contribution to the spin

exchange rate:

ΓSE =
1

2Tx
(
ατ

~
)2 (4.22)

where Tx is the molecular formation rate and τ is the molecular breakup rate and α is the interaction

strength. We know that the molecular formation rate must be the same as the molecular breakup

rate:

[Xe]

Tx
=

[RbXe]

τ
=
κchem[Xe]

τ
(4.23)
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(a) The spin exchange rate coefficient for 129Xe (b) The spin exchange rate coefficient for 131Xe

Figure 4.14: The spin exchange rate is plotted as a function of density.

then
1

Tx
=
κchem[Rb]

τ
(4.24)

which will give

ΓSE =
κchem[Rb]

2

α2τ

~2
(4.25)

The interaction strength α is proportional to the gyromagnetic ratio, so the ratio of the Xe spin

exchange rates should be proportional to the square of the gyromagnetic ratios:

ΓSE(131)

ΓSE(129)
=
(γ131

γ129

)2

=
1

11.4
(4.26)

We then need to use our measure quantities Γ1 and PXe

ΓSE(131) =
3

5

P131

PRb

Γ1(131) (4.27)

and

ΓSE(129) =
P129

PRb

Γ1(129) (4.28)

gives
ΓSE(131)

ΓSE(129)
=

3/5P131

P129

Γ1(131)

Γ2(129)
(4.29)

The factor of 3/5 comes from the fact that

PK =
〈Kz〉
K

=
ε(P )

2K
PS

ΓSE

Γ1

(4.30)
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Figure 4.15: This is a comparison of the ratio of the spin exchange rate at different densities for 129Xe and
131Xe. Theoretical analysis says that this ratio should be 11.4, which is the black line in the figure.

where ε(PK) is the slowing down factor, which is ≈ 5 at intermediate polarizations and K = 3/2

for 87Rb. Taking our measurements for we obtain a result for the ratio of the two spin exchange

rates that is consistent with 11.4 at each of the densities as seen in Fig4.15.

If we then combine the spin exchange rate from van der Waals molecules with the binary spin

exchange rate we get an expression for the spin exchange rate coefficient:

κSE = κbinary +
κchem

2

α2τ

~2
(4.31)

The full calculation is a little tricky because the different lifetimes of the van der Waals molecules

account for different rates of exchange and must be accounted for accordingly. The literature is

also lacking a consensus for κchem. Nevertheless, the resulting calculation agrees with the mea-

sured spin exchange rate coefficient. Using the values from literature for α = 29MHz [Bhaskar,

Happer, and McClelland, 1982] and [Bhaskar, Happer, Larsson, and Zeng, 1983] and κchem = 213

[Nelson and Walker, 2001] and κbinary = 1.75 × 10−16cm3/s [Jau, Kuzma, and Happer, 2002],

we obtain for 129Xe the calculated coefficient is κSE = 3.84 × 10−16cm3/s and the measured is

κSE = 3.5× 10−16cm3/s. For 131Xe, since the calculation is much more complex due to its being
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a spin-3/2 particle, we simply divide the above calculated value for 129Xe by 11.4 and obtain the

calculated coefficient is κSE = 3.37× 10−17cm3/s and the measured is κSE = 3.2× 10−17cm3/s.

4.3 X-Factor

During the course of making the measurement for ΓSE, we discovered a phenomenon that has

previously been studied in 3He [Babcock et al., 2006] called the X factor. This is manifested in the

fact that we see a density dependence of the wall relaxation rate shown in Fig 4.16. The cause of

this phenomenon is unknown, but it is substantially less for 131Xe as is seen in Fig4.17. The wall

relaxation rate is measured by taking the measured Γ1 = ΓSE + Γwall and subtracting ΓSE from it.

The most important manifestation of the effect of the X factor is the limit it puts on the Xe

polarization. Without the X factor, the Xe polarization can approach the Rb polarization as the

density is increased:

PXe =
κSEnPRb

κSEn+ Γwall

→ PRb (4.32)

When the X factor is added to the wall relaxation rate such that Γwall,meas = κSEnX + Γ0,wall

the Xe polarization is limited to

PXe =
κSEnPRb

κSEn(1 +X) + Γ0,wall

→ PRb
1 +X

(4.33)

This behavior is seen when the ratio of Xe polarization to Rb polarization is plotted as a func-

tion of density. Fitting the data to Eqn 4.32 gives the fit in Fig 4.18a while fitting it to Eqn 4.33 of

Fig 4.18b.

The fit from the data gives an X-factor of 3.4 which limits the 129Xe polarization to 0.225PRb.

We had hoped that by increasing [Rb] we would be able to increase the Xe polarization universally,

but for 129Xe, this is not the case; we are close to maximum polarization at a few ×1013/cm3. This

might be an inhibiting factor in the argument for using cells with lower Xe density as presented in

Sec. 8.1.
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Figure 4.16: The wall relaxation rate for 129Xe is plotted against density.

Figure 4.17: The wall relaxation rate for 131Xe is plotted against density. There is very little dependence

which means that the X-factor for this isotope is negligible.
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(a) Poor fit without x factor (b) Good fit with x factor

Figure 4.18: These are plots of the ratio of 129Xe polarization to Rb polarization as a function of density.

Since the X-factor dictates the fraction of alkali polarization can be imparted to the Xe nuclei, looking at

this fraction as a function of density reveals the maximum attainable polarization. The figure on the right

shows the ratio of Xe polarization to Rb polarization and the black fit does not fold in the X-factor. The

figure on the right shows the same data with a fit that folds in the X-factor. An X-factor of 3.4 is extracted

which limits the Xe polarization to 22.5% of the Rb polarization.
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The exploration of the X-factor is something we did not pursue in my tenure here, but it is a

simple experiment that could easily be fleshed out using our lower denisity Xe cells.
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Chapter 5

Noise Measurements

The sensitivity of any device is limited by its noise floor, so it is vital to know this boundary

and reduce it as much as possible, but at some point, fundamental noise levels are hit and the noise

cannot be lowered any further. All of the noise measurements we make naturally lead to figures

of merit for the applications of the NMR oscillator. In the first part of this chapeter, I will make

projections for angle random walk (ARW) and bias stability. These projections are based on noise

levels we have measured in the lab, as well as levels we believe are reasonably attainable. As I will

point out, they all assume successful dual species operation.

The second part of the chapter discusses noise studies of the PPR magnetometer. These studies

were made to determine the best operating parameters for probe laser detuning and direction, 2π

pulse settings, and parametric modulation schemes. I will step through each of these and how they

change the noise characteristics.

5.1 Noise Projections for Dual Species Pumping

The frequency noise for an NMR oscillator has two main contributions:

δφ̇ = γδBz +
δφ

2πT2

(5.1)

where δBz is the noise in the bias field, T2 is the transverse relaxation time, and δφ is the noise

in the phase between the NMR drive (the alkali polarization modulation) and the spin precession,

which can be re-written as δφ = (SNR)−1 = δBy/BXe so that
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δφ̇ = γδBz +
1

2πT2

δBy

BXe

(5.2)

In dual species operation, δBz can be stabilized using one of the isotopes, while the measurement

is taken with the other. The precession frequency of one species is:

f1 = γ1(Bz + δBz) +
1

2πT2,1

δBy1

BXe1

+X1 (5.3)

where we have introduced X1 which is the parameter we are interested in measuring. The other

noble gas species has frequency:

f2 = γ2(Bz + δBz) +
1

2πT2,2

δBy2

BXe2

+X2 (5.4)

We can now lock one isotope’s frequency to a sub-multiple of a clock at frequency fc, so that

Bz + δBz =
(
fc − x1 −

Γ2,1δBy,1

2πBXe1

)2π

γ1

(5.5)

Then f2 is independent of Bz + δBz

f2 =
γ2

γ1

fc +X2 −
γ2

γ1

X1 +
Γ2,2δBy,2

2πBXe2

− γ2

γ1

Γ2,1δBy,1

2πBXe1

(5.6)

and in terms of X1 and X2

−X1 +
γ2

γ1

X2 = X =
γ2

γ1

fc − f2 +
Γ2,2δBy,2

2πBXe2

− γ2

γ1

Γ2δBy,1

2πBXe1

(5.7)

If we then add the noise terms in quadrature and assume that δB2
y,1 ≈ δB2

y,2, BXe1 ≈ BXe2, and

Γ2,1 ≈ Γ2,2, we find the noise associated with the measured parameter X :

δX =
(

1 +
γ2

2

γ2
1

)1/2(Γ2δBy

2πBXe

)
(5.8)

If we use the numbers we have measured for δBz = 2nG/
√

Hz, δBy = 2nG/
√

Hz, δν = 10

mHz, and BXe = 180µG, the noise, as calculated with Eqn 5.8, without dual species stabilization

is 700 nHz/
√

Hz and with stabilization it is 100 nHz/
√

Hz. This means that using dual species

will reduce the total noise by a factor of 8.
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One limit to the magnetic noise levels we measure is the photon shot noise. This is the noise

inherent to the detection due to the fact that photons are discrete particles. The limit is given by:

δθ =
1

2

√
e

I
(5.9)

where θ is the rotation angle of the probe light polarization. The rotation of the light results in a

current, so the shot noise in terms of photocurrent is:

δI =
√

2eItot (5.10)

In measurements of the shot noise, one must be careful to measure the actual photocurrent, not just

the power of the light hitting the photodiodes.

We can compare this measured shot noise limit to the theoretical value calculated in [Budker

and Kimball, 2013]:

SN =
Γ′

πγS

√
2

ηΦOD0

(5.11)

where we have also folded in the magnetometer response to change it to field units. All the param-

eters in the above equation are measureable quantities, or are known constants. The on-resonance

optical depth OD0 = nσ0 with σ0 being the on resonance cross section, Φ is the photon flux, η is

the detector efficiency, Γ′ is the measured magnetometer relaxation rate, and γS ≈ µB/3~. We can

use our measured shot noise limit to calculate the shot noise limited performance of the oscillator.

Putting in measured numbers, the shot noise level is δBy = 0.13nG/
√

Hz, giving δX =

10nHz/
√

Hz, which is almost a factor of 10 better than the Romalis co-magnetometer of Ref.

[Kornack et al., 2005]. We are not currently at this limit for DC detection mostly due to technical

noise on the probe and poor shielding. We believe these technical issues can be overcome by some

of the improvements to our setup that have been mentioned throughout this thesis.

The second figure of merit is the bias stability which defines the long term drift of the NMR

gyroscope. In Chapter 3, it was shown that the residual alkali field shift is 60µHz for single species

operation. When dual species Xe NMR is implemented, this frequency shift will reduce by the

differential alkali field that was discovered in [Bulatowicz et al., 2013] resulting in a 120nHz alkali
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field shift. The bias stability of the oscillator will then be determined by drifts in the system (such

as alkali polarization) about this number.

An Allan deviation measurement determines the bias stability by measuring the frequency

deviation over a long integration period. In this analysis, the long time series noise = y(t) of

length T is divided into n = T/τ time segments where τ is the averaging time. The average value

of the signal ȳi is computed for each of those segments then the square of the difference between

two consecutive bins is taken and summed over all the time segments. The Allan variance for that

particular integration time τ is then:

σ2 =
1

2(n− 1)

n−1∑
i=0

(
ȳi+1 − ȳi

)2

(5.12)

The square root of σ is the Allan deviation. Ideally, when the deviation is computed for increasing

averaging times it will decrease to a minimum value, where the initial decrease reflects the ARW

and the minimum corresponds to the bias stability. At some point the 1/f noise that is inherent to

the system dominates and the stability measurement increases.

The projected Allan deviation for our setup follows

σ =

√
δB2

y

8π2τ 3B2
Xe

+
γ2δB2

z

2τ
+
δν2δB2

y

2τB2
Xe

(5.13)

where the first term is the angle white noise or noise between the phase of the drive and the phase of

the noble gas rotation. This component dominates the first part of the Allan variance measurement

decreasing as 1/τ 3 where τ is the averaging time and BXe is the noble gas field. The other two

terms describe the ARW contributions from the bias field and the phase fluctuations inherent in the

noble gas detection, as limited by δν. Figure 5.1 is an Allan variance projection that uses measured

noise, field, and T2 numbers; it results in an uncertainty of ≈ 0.006deg after 1 hr of averaging. We

ultimately do not know the limits to the bias stability since it depends on the specific system’s long

term drifts.
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Figure 5.1: An Allan deviation simulation that uses the numbers we currently measure. This results in a

bias stability of ≈ 0.006deg/
√

hr after 1 hr of averaging.
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5.1.1 Parametric Modulation

For many of our purposes we need the ability to measure magnetic field components both

perpendicular and parallel to the probe beam. To do this we implement parametric modulation

along the pump beam direction. For reasons that will be explained, this parametric modulation is

non-conventional and, therefore, warrants some explanation.

In conventional parametric modulation an sinusoidally oscillating field is applied along the

pump direction. The field components to be detected appear as the first and second harmonic

signals on the probe Faraday rotation. For sinusoidal modulation, the relative amplitude of the

response as a function of the oscillating field amplitude follows a Bessel function. This means that

the oscillating field amplitude can be adjusted so that both the 1f and the 2f components have good

response. Parametric modulation allows us to observe with a ŷ probe, By at the first harmonic:

Sy =
2J0J1ΩyR

Γ′2 + J2
0 Ω2

y

sin(ωt) (5.14)

and Bz at the second harmonic:

Sy =
2J0J2ΩzR

Γ′2 + J2
0 Ω2

z

sin(2ωt) (5.15)

For sinusoidal modulation J0, J1, and J2 are Bessel functions. The above equations can be used

for ẑ detection as well, but now the first harmonic detects Bz and the second harmonic detects By.

For future experiments, it is important to point out that the parametric modulation is not limited

to sinusoidal modulation, but can be any periodic function. This is important because we need the

modulating field to be zero during the 2π pulses, otherwise uncontrolled alkali rotations will occur.

The desire is to create a field waveform that closely mimics sinusoidal modulation, but is zero

during the 2π pulses. The resulting waveform is that shown in Fig 5.2. The waveform has been

adjusted to be zero for longer than the 2π pulse to ensure that there is no overlap. Technically,

because of the characteristics of the driving circuit, the shape of the waveform and the timing of

the zero crossings must ultimately be finely adjusted by hand while looking at the applied field and

the 2π pulses.
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Figure 5.2: The parametric modulation waveform created ostensibly to have zero field during the 2π pulses.

Note that because of AC coupling, the actual waveform applied to the circuit is the integral of this function.
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5.2 ŷ Detection: Noise from 2π Pulsing

When using the PPR magnetometer to make noise measurements with the parametric modula-

tion as described above, we originally found that the noise levels increase a factor of 10 above the

SERF magnetometer’s noise. Figure 5.3 shows the By noise level with and without the 2π pulses.

In addition to the unexpected factor of 10 increase, the ŷ and ẑ noise levels are the same (Fig. 5.4).

We instead anticipated higher Bz noise since we expected the pulsing field along ẑ to be noisy.

Because this is not the case, but instead δBy and δBz are at similar levels, it is likely that what we

are detecting is not real magnetic noise along either direction.

These noise measurements are taken with our original PPR detection direction, which is ŷ , so

that the 2π atom rotation can be observed directly. Along with this benefit comes the drawback that

any pulse fluctuation shows up as polarization noise on the probe. The polarization noise on the the

detection would then be seen as equal By and Bz noise. We can verify the pulse noise dependence

by measuring the field noise as a function of the pulsing parameters: width and repetition rate.

Figure 5.5a shows the difference in noise for 10kHz and 25kHz pulsing as compared to the no

pulsing case. Figure 5.5b is data for multiple pulse frequencies and widths. The repetition rate

dependence is simply explained by the fact that as the noise source from the pulsing comes less

frequently, the noise decreases. The pulse width trend shows that for narrower pulses, any pulse

width fluctuations become a more significant error on the total atom rotation, resulting in higher

noise. The trend minimizes at the optimal pulse width, then begins to increase once again, but not

as dramatically, most likely due to multiple spin exchange collisions during the pulse. Another

interesting conclusion that can be drawn from these pulse width and repetition rate results is that

a higher n for 2nπ pulses gives lower noise. Not only can the repetition rate be decreased while

keeping the same bias field, but the noise for a 6π pulse at 25kHz is lower than the noise of a 2π

pulse at the same rate.

One further test to ensure that the noise we measure with the ŷ probe is not magnetic noise

introduced by the pulsing, that couples in some way to ŷ , is to direct the pump parallel to the

pulsing field. Because the pump and the field are parallel, the 2π pulses will not rotate the atoms;
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Figure 5.3: The majority of the noise is introduced with the 2π pulsing.

Figure 5.4: An unexpected result is that the By and Bz noise are the same. We would expect the Bz noise

to be higher since that is the direction of the 2π pulses. This is a strong indication that we introduce noise

polarization due to pulse area fluctuations when the 2π pulses are turned on.
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(a) (b)

Figure 5.5: The figure on the left shows the noise spectra as the pulse repetition rate changes for two

frequencies. The figure on the right plots the noise for several different pulse repetition rates and pulse

widths. As the repetition rate decreases, the noise decreases due to the noise source becoming less frequent.

As the width narrows, any fluctuation on the pulse becomes a more significant error on the total rotation;

therefore, the noise increases.
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Figure 5.6: As a test for polarization noise caused by fluctuations on the pulse, we direct the pump parallel

to the pulsing field. The fact that the noise level does not increase when the 2π pulses are turned on indicates

that the high noise level is not magnetic field noise introduced by pulse width fluctuations.

in this way, we can measure the field noise, not the polarization noise, introduced by the 2π pulses.

The results of this experiment are seen in Fig. 5.6. As can be seen, the noise with the 2π pulsing on

does not increase when the pump is directed along ẑ. This is a clear indication that the increased

noise level is from polarization fluctuations on the probe due to noisy 2π pulses.

The results of these experiments raised the question of how stable the pulses need to be in

order to reach the non-pulsing noise levels. A rough estimate of the pulse width stability required

to reach 1× 10−13 T/
√

Hz is calculated by equating the pulse width τp and its error σp to the field

fluctuations between pulses σ and the time the pulses are off τ : σpτp = στ . Then we can use the

duty cycle to define σ = dσp and the field noise:

δB =
dσr,p/γτp√

f
(5.16)

where f is the pulsing frequency and σr,p is now the pulse width fluctuations in rotation units.

Solving for the pulse rotation fluctuation noise required to get 1 × 10−13 T/
√

Hz we find σr,p =

3 × 10−6. Converting this to a pulse width using γ 1
2
Bδτp = 3 × 10−6 we find δτp = 13 ps. This

is much more stable than anticipated from our current pulse drive circuit. In order to stabilize the
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pulse widths even further, a new capacitive discharge circuit was built. However, this circuit, as

described in detail in section 7.2, gave us no better pulse stability than the other.

5.3 ẑ Detection: New Parametric Modulation

The results of the above experiments reveal that detecting along ŷ is not an option. For this

reason, we redirected the probe along ẑ so that we would no longer pick up the 2π pulse rotations.

The first attempt was unsuccessful as seen in Figure 5.7, but a mixing of the ŷ polarization noise

into ẑ can simply be explained by a stray Bx during the 2π pulses: Pz ∝ ΩyRx + ΩzΩxRx/Γ
′.

This is experimentally demonstrated (Fig 5.8) by adding a DC Bx and observing the By noise

increase, while the Bz noise stays the same. The conclusion from this test is that, even with the

fancy parametric modulation scheme, there is a residual Bx during the 2π pulses that mixes Py

noise into the ẑ probe. This hypothesis is proven by turning off the parametric modulation field

while using ẑ probe detection and measuring a reduced noise level. The green trace in Fig 5.9 is

the By noise with ẑ detection without parametric modulation; it is lowered to the level of the noise

without 2π pulsing, which is the blue trace.

Because of these results, we implement a new parametric modulation scheme where the para-

metric field is a sequence of π/2 pulses instead of a continuous waveform. In this way, the separa-

tion between the PM pulses can be adjusted so as to ensure zero field when a 2π pulse comes. The

adjusted pulse sequence is shown in Fig 5.10a, where the spacing in the parametric modulation has

been appropriately adjusted. The resulting 1f (Bz) signal is shown in red and the 2f (By) signal is

shown in green in Fig 5.10b.

Figure 5.11 shows that once this new form of parametric modulation is implemented, the noise

with and without the pulsing is the same. In conclusion, the dramatic increase in noise that we

observe when using ŷ detection or ẑ detection with a non-optimum parametric modulation field

is due to pulse fluctuations causing polarization noise. The experiments reveal that the pulses

we generate are stable to at least 100 ps out of 2µs, but that is not stable enough to continue

using ŷ detection, so the probe must be moved to ẑ and pulsing parametric modulation must be
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Figure 5.7: The initial noise measurements with ẑ probe compared to the ŷ probe measurements show no

reduction in noise.

Figure 5.8: By and Bz noise are plotted as a function of applied Bx. This experiment demonstrates the

mixing of Py noise into Pz by a stray Bx during the 2π pulse.
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Figure 5.9: The red trace is the noise level for ẑ probe with the parametric modulation. The blue trace is the

noise without 2π pulsing, but with parametric modulation. The green trace is the noise with 2π pulsing, but

without parametric modulation. The noise very clearly decreases when parametric modulation is turned off

indicating that the parametric modulation is the source of the stray Bx that mixes the ŷ polarization noise

into ẑ .
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(a) (b)

Figure 5.10: The figure on the left is a train of the parametric modulation pulses (solid) shown staggered

with the 2π pulses (dashed). The spacing of the PM pulses has to be adjusted to accomodate the 2π pulses.

Changing the spacing of the 2π pulses did not work; probably for reasons described in Sec. 7.1.2. The

figure on the right shows the expected 1f and 2f signals due to the PM pulsing sequence.

implemented in order to measure By and Bz simultaneously. Doing this, we get the noise numbers

quoted at the beginning of this chapter.

5.3.1 Pulse Parametric Modulation Cross-Talk

There is one outstanding issue with this new method of parametric modulation which is cross

talk between the ŷ and ẑ channels.This problem is exacerbated by the fact that the Rb atoms have

a relaxation rate which tends to mix the 1f and 2f signals making it necessary to choose a pulsing

frequency that is fast enough to make the Rb relaxation negligible. The current pulsing frequency

of 33kHz is almost fast enough, but due to the fact that the pulses have a finite width and we

need to time them with the 2π pulses, increasing this frequency is not particularly viable. Since

discovering these issues, we have moved away from optimized parametric modulation detection

for both ŷ and ẑ fields and use direct detection for By and a very small x̂ sinusoidal perturbation

for Bz only when it is necessary.

Some work modeling the effect of the cross talk has been done by Mike Bulatowicz, but the

results he obtained in regards to pulse spacing and shape have not yet been tested.



93

Figure 5.11: Using the staggared pulsed parametric modulation scheme, the noise does not increase when

the 2π pulsing turns on.
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Chapter 6

Apparatus Setup and Operation Details

This chapter details the apparatus’ components and their respective optimization procedures.

Also contained in this chapter are alkali magnetometer operation procedures for optimizing the al-

kali polarization and density and characterizing relaxation rates. Operation details that are specific

to the noble gas are in Chapter 4.

As a point of reference, a photo of the shield, placement of the apparatus in the shield, and the

majority of the optics is shown in Fig 6.1.

Figure 6.1: The apparatus is shown within the shields. Note the asymmetry of the ports in the shield; this

forces us to place the cell and field coil setup closer to one endcap than the other, which is a main cause of

field gradients. The pulsing field coils have been designed to minimize these gradients.
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6.1 Cell and Heaters

Most of the measurements in this work were taken in a nominally spherical cell with an 8mm

diameter filled with 40Torr of Xe with 80% 131Xe, 300 Torr N2, and 85Rb. The cell is mounted

in a 3-D printed ceramic form housed in a boron-nitride heatsink, this oven is heated by two pairs

of 50Ω Minco resistive film heaters adhered to two of its sides. In order to cancel to first order

residual fields produced by the heaters, the heater pads are sandwiched and wired in such a way

that the resistors are in series, but the current in a pair flows in opposite directions. We further

suppress any stray DC field produced by the heaters by running AC current through them at a

frequency outside of the bandwidth of our magnetometer. The heater circuit needs to supply 8W

of power in order to heat the cell to 120C; we do this by using an audio amplifier to amplify an

input signal at 20kHz. We use this frequency because the power amplifier is rated to only 50kHz

and its output starts to fall off at 20kHz. This is not quite high enough in frequency to eliminate all

residual signal from the heaters. In the future we hope to increase this frequency to about 100kHz.

The heat sink and heaters are all wrapped in aerogel insulation and inserted into the center of our

magnetic field coils.

We currently have no active temperature sensor in our setup, so we take absorption lineshape

measurements to monitor the density of the Rb atoms. These linewidths we fit to:

[Rb] = m(f−f0)+I0 ∗exp
[
− 3foscnlc

2

2f 2

∆n

∆p

×
( 7/12

1 + 4((f − f1)/∆p)2
+

5/12

1 + 4((f − f2)/∆p)2

)]
(6.1)

where f1 = f0 + 1.77 GHz and f2 = f0 − 1.265 GHz are the hyperfine resonance frequencies in

GHz; fosc is the oscillator strength (0.696 for the D2 transition and 0.342 for the D1 transition).

∆p = 7.4GHz is the pressure broadened linewidth, which is found at very low density by fitting

the absorption profile and letting ∆p be a free parameter; it should be approximately 18Ghz/Amg

[Romalis, Miron, and Cates, 1997]. ∆n = 6MHz is the natural linewidth. We also have inserted a

linear term to Eqn. 6.1 that accounts for the changes in laser intensity as the frequency is scanned.
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Figure 6.2: This is the cell used for the majority of experiments in this thesis. Its Ehrlenmeyer flask like

shape caused the beams to be greatly distorted.

A DC offset is also inserted to account for residual light seen by the photodiodes. These measure-

ments are consistent day to day, with variations within 10%, but we hope to put in a thermistor for

active stabilization in the next iteration.

6.1.1 Cell Imperfections

The cell that we are currently using is a non-ideal shape: they are nominally spherical with a

pull-off and a flat section opposite it (see Fig 6.2. Because of this shape the light going through

the cell, although collimated upon entrance, is highly distorted by the time it exits. This causes

three main problems. The first is the difficulty of alignment, which will be discussed in the section

below. The second is related to alignment, and deals with the distortion within the cell. Since the

light upon exiting is distorted, it is likely that the light within the cell is also distorted and travelling

in many different directions. This leads to uncertainty in both pump and probe directions within

the active region. It is likely that we have pump light along directions that are not x̂, which would

cause a multitude of potential problems including: a decrease in polarization, a non-perpendicular
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alignment of the pump and probe, atom signal in directions there should be no atom signal, alkali

fields pointed in uncompensable directions, etc. Despite the potential seriousness of each of these

problems, we have not been able to pinpoint anything in particular that inhibits our ability to do

the experiments; therefore, we have been able to do many proof of principle experiments in this

non-ideal cell. Once we get down to the details of noise measurements where these problems may

compound, we will need to either switch to a cubic cell or make sure the noise is not dependent on

this issue. The former is the easier solution. We have not yet switched to the new cell because the

current cell is so well characterized.

6.2 Magnetic Field Coils

The magnetic field coils that we have implemented are designed for our particular setup to

minimize field gradients at the center of the cell with low inductance and low coupling to the

magnetic shields. The magnetic shield that we are currently using forces us to place the cell off

center (see the optical access ports in Fig 6.1), closer to one endcap than the other. Because of the

proximity of the endcap, if we use a simple field coil design, such as a Helmhotz configuration, we

have significant field gradients across the cell due to reflections in the end-caps. If the field is not

uniform then there will be points in the cell that produce slightly less than a 2π rotation and points

that produce slightly more. The inductance requirement is for ease of driving the current quickly

through the circuit. We are not sure that inductive coupling to the shield will cause us any issues,

but there are a couple of experiments that we have done to indicate it might be a problem, e.g Sec.

3.4.0.1. Since the DC shim fields are small, the x̂ , ŷ , and ẑ shim coils can all be approximately

Helmholtz configurations. The x̂ and ŷ are three turns with a field/current calibration of 1.13G/A

and the ẑ is 10 turns with a field/current calibration of 2G/A. The coil calibrations are all done

using the atoms as a measure of a resonance frequency: x̂ and ŷ with the noble gas frequency from

free induction decay and ẑ from an AC coupled PPR magnetometer experiment. The measured

calibrations agree well with calculated field/current calibrations.

The pulsing coils deserve a little more attention. The first iteration for uniform field, based on

a Merrit configuration as described in [Kirschvink, 1992], did not take into account the magnetic
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Figure 6.3: This is a side view of the field coil frame. The pulsing coil consists of the two large frames on

the end and the two near the center.

(a) A finite element analysis of the first coil design

that was intended to cancel the magnetic moment at

the shield shows a large field gradient due to not tak-

ing the asymmetry of the shield into account.

(b) A finite element analysis for the coils designed

by Mike Bulatowicz shows a much improved mag-

netic field gradient across the cell as compared to the

figure on the right

Figure 6.4: The color in both images shows departure from volumetric average in parts per million. Scales

are different in figures (a) and (b). Figure (a) spans 6000ppm; figure (b) spans 2000ppm.
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shielding and its effect on the field in the cell, so the configuration produced the field gradient seen

in Fig 6.4. Because of this dramatic gradient, we enlisted the help of Mike Bulatowizc to design

a set of coils that would reduce the field gradient, and have low coupling to the shields and low

inductance. The field uniformity of his final design is shown in Fig. 6.4. It consists of two pairs of

square coils:

• Coil 1: backward polarity; 3 loops; 10.906 cm side length; centered at x = -3.471 cm

• Coil 2: forward polarity; 10 loops; 5.93 cm side length; centered at x = -1.600 cm

• Coil 3: forward polarity; 10 loops; 5.93 cm side length; centered at x = +1.602 cm

• Coil 4: backward polarity; 3 loops; 10.906 cm side length; centered at x = +3.472 cm

The different polarities of the field help to cancel the magnetic moment at the shield; the slight

asymmetry cancels the resulting gradient from the endcap.

Because it is important to know in order to build the pulsing circuit, we measure the inductance

of the pulsing coils with a simple LR circuit. By sending in a square wave or a pulse, we can

measure the voltage over the resistor to extract the inductance from the time constant τ = L/R

associated with the voltage buildup. The pulsing coil set is 29µH in good agreement with the

calculated 32µH.

6.3 Mounting Cell and Field Coils in the Shield

Because the cell needs to be mounted precisely in the center of the mutually perpendicular

field coils, we designed a single 3D printed frame around which all the field coils are wound. The

frame also has a hole for the cell oven that is centered in the field coil frame. Because this space

for the oven was designed with room for the insulation, the reliability of perfectly centering the

cell can be improved. The frame was printed at the WID on the UW campus out of black ABS

plastic. A higher temperature grade plastic is desirable in the future since this plastic warps at the

temperatures we keep the oven inspite of several layers of insulation between the oven and the coil

frame. The warping is not significant enough to change the coil placement.
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Future iterations of the coil frame and general setup design might want to take some of these

suggestions:

• Higher grade/ higher temperature plastic for the field coil frame

• Better coil frame stand: can be put back in the exact same place within the shield and is held

in place within the shield

• Different design for x̂ , ŷ , and ẑ shim coils. The x̂ and ŷ coils are currently very difficult to

wind well. Currently there is no actual frame design for the ẑ coils since we had originally

planned to run both the pulsing and shim fields through the pulsing coils.

• Symmetric magnetic shield

• Windows on the oven to mitigate hot air currents

• Put all the probe optics on pedastal stands to mitigate vibrational noise at ≈ 40Hz.

• Change the optical table legs to floating legs.

• 3D printed alignment pinholes that ensure centering

• Better heating setup: the biomagnetism project has designed a ”puzzle” heater system con-

sisting of four resistive heaters adhered directly to the cell at the active area. These heaters

are designed to have minimal stray fields and will be heated with AC current; they have been

implemented on that project with good results

• Active temperature monitor

• Better cell holder/oven that has more thermal contact with the cell and less wiggle room

• More reliable way of placing the cell/oven in the coil frame: ensure centering

• Implement a ŷ probe by sending the laser through the cubic cell off-center so that it does not

hit the pull-off. This is not necessary, but it would be nice to have for 2π pulse diagnostics.
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• Implement an automatic de-gaussing circuit.

• Develop and automatic magnetometer response and noise measurement program for the

FPGA

• Develop a PID look within Labview with variable gains

The coil frame is mounted inside the magnetic shield by resting it on a semi-circular mounting

block, also 3D printed. The mount is then manually aligned with a set of ports along x̂ and ŷ ,

where ẑ is always defined as the long axis of the shield.

6.4 Lasers and Optics

We use three DFB lasers from Eagleyard Photonics. Two of these lasers are centered on theD1

transition to be used as our pumping lasers. The other is centered on th D2 transition to be used

as the probe laser. A simplified schematic of the optical setup can be seen in Fig. 6.5. Each laser

comes out of the diode linearly polarized, but then acquires some degree of elliptical polarization

while traversing the optics; for this reason the polarization is cleaned up with a polarizing beam

splitter before the pump light is circularly polarized. The polarizing beam splitter also lends itself

to intensity control of the individual beams with the addition of a λ/2 plate in the beam path, which

adjusts the extinction of the light through the PBS.

In the schematic can be seen the essential components of operation. The probe laser is linearly

polarized upon exiting the DFB and its intensity is controlled, for various purposes, by rotating the

λ/2 plate to change the transmission through the polarizing beam splitter. The λ/4 plate is in place

to null out slight elliptical polarizations that may be introduced into the beam. On the other side

of the cell is another polarizing beam splitter to separate out the two polarization components for

a Faraday rotation measurement.

The frequencies of the two pump beams are determined by the AC Stark shift and are detuned in

such as way as to cancel out the average shift seen by the alkali atoms. The effects of the AC Stark

shift will be discussed in more detail below. The two beams are combined on a non-polarising
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Figure 6.5: A simplified schematic of the optical setup shows the essential components for transverse

optical pumping and synchronous spin exchange optical pumping. The two colors of pump light (equally

detuned above and below resonance) are combined on a non-polarizing beam splitter then directed along

±x̂. The polarizing beam cubes that clean up the pump polarization are not shown. The probe beam is

along ẑ since we now have no access to ŷ and the Faraday rotation detection optics are shown.
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beam splitter and we can subsequently counter-propagate the two, now combined, pump lasers to

minimize intensity gradients across the cell.
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6.5 Optics: Pump

6.5.1 Pump Polarization Optics

As can be seen in Fig. 6.5, the pump polarizing optics consist of a polarizing beam cube, a

liquid crystal variable retarder, and a quarter waveplate. The PBS serves the purpose of cleaning

up the beam polarization and providing a method, along with the λ/2 plate immediately after the

laser output, of controlling the beam intensity without changing the frequency. After the PBS the

light enters the liquid crystal variable retarder which either flips the linear polarization of the light

exiting the PBS by 90◦ or leaves it unaffected. The light then enters the λ/4 plate and becomes

circularly polarized. Every time the voltage on the LCVR is changed to take the liquid crystals

from zero retardance to half-wave retardance the pump light polarization switches from σ+ to σ−

and vice versa. We flip the polarization twice every noble gas Larmor period.

The liquid crystal variable retarders deserve a little more mention in terms of optimizing their

parameters and making note of their deficiencies. We procured these devices from Meadowlark

Optics as a simple way to switch the light polarization quickly at a controllable frequency; the

time for switching the light polarization with this device is ≈ 150µs, which is short compared to

the optical pumping time. The slower the switching time, the longer it takes for the Rb atoms

to become re-polarized leading to a decrease in Xe polarization and a larger phase shift in the

alkali compensation field (Sec. 3.2.2). It would be possible to compensate for this time delay by

adding a π pulse every time the polarization is flipped, but this is difficult to implement because of

interferance with the 2π pulse sequence.

The liquid crystal device works by changing the orientation of the individual crystals, which

in turn changes the birefringence of the device from zero wave (maximum applied voltage) to full

wave retardance. The main issue with this device is that it is not consistent from one device to

another and changes with time of operation. The latter is the more serious of the two affronts.

The former is fixed by acquiring two drivers and individually optimizing the respective crystals;

however, the optimization voltage changes over the course of days and weeks. This change has

never been systematically tracked. Most of the time there is a reduction in polarization/signal size
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or a change in AC Stark nulling that indicates that the circular polarization of the pump beam has

shifted, thus causing one direction of light to be pumping more effectively. Once this is noticed

the pump polarization is re-optimized.

The process for optimization is a bit of an art. The typical method begins by adjusting the PBS

and the quarter waveplate without the liquid crystal to obtain good circular polarization > 0.99.

The liquid crystal is then inserted between the PBS and the λ/4 plate. The goal is to obtain zero

retardance and half-wave retardance with the liquid crystal, so preliminary voltage adjustments are

made to obtain the same degree of circular polarization at a high voltage (zero wave), a maximum

of 80V for the LCVR, and a mid voltage (half wave), around 30V. The handedness must then

be checked by looking at a magnetometer signal and ensuring that the signal flips 180◦ when the

voltage switches. An indication that the same degree of circular polarization has been obtained, is

that the resulting signal size for σ+ should be the same as the size for σ−.

If good polarization cannot be obtained in this simple way, then the art of balancing σ+ and

σ− by alternately twisting the λ/4 plate and adjusting the LCVR voltage at low and high voltage

begins. The goal is to get as high and as similar of values for the degree of σ+ and σ− as possible.

If this is not obtained, then there will be a pumping imbalance that may affect the effectiveness

of pumping the noble gas and result in a 1f noble gas signal. The imbalance can theoretically be

nulled by adjusting the duty cycle of the pumping. The effects of unbalanced pumping have not

been studied in full, but it is something to keep in mind.

The best way to help attain high levels of circular polarization is to have all the pump polar-

ization optics in a row immediately before entering the cell. In this way, elliptical polarization is

not introduced in between the individual components. As it is now set up, the light exiting the

liquid crystal bounces off one mirror before going through the λ/4 and then into the cell. This is

because there is not enough room between the last mirror and the shield to put all the necessary

optics (PBS, LCVR, and λ/4).
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6.5.1.1 Other Options for Light Polarization Modulation

The LCVRs have imperfections that make them frustrating to work with. First of all, they are

not able to hold their retardance over long periods of operation. This effect has not been studied in

detail, but we do notice a degradation of the circular polarization after some time, which could only

be attributed to the liquid crystals. They are also finicky to adjust and at times it is very difficult

to get good circular polarization. An option for replacing these devices is to use either a spatial

light modulator or a MEMS optical switch (Thorlabs OSW12-780E) that will allow us to switch

the pump beam path very quickly from one path that gives σ+ and another that gives σ−. Some

more thought needs to go into this in terms of coupling the light to the device.

6.5.2 AC Stark Nulling

An oscillating electric field will cause a shift in the atomic energy levels that is analogous to

the energy level shift cause by a static magnetic field. For this reason, the AC Stark shift will

introduce a false magnetic signal along whichever direction the laser light is propagating; this

would then be nulled out with a real magnetic field. The discrepancy between a false magnetic

field and a real magnetic field is particularly important when doing synchronous spin exchange

optical pumping. First of all, the noble gas nuclei are only susceptible to the applied fields, not

the shift induced by the light. Secondly, the AC Stark shift is dependent on whether the laser is

σ+ or σ− polarized light; therefore when we switch the polarization between σ+ and σ−, an AC x̂

field is introduced if an x̂ field was added to cancel the AC Stark field. This is our first handle on

nulling the effect. By applying an oscillating ẑ field, we can monitor the amount of x̂ field that is

introduced when the pump polarization is flipped. Assuming the degree of circular polarization is

the same for σ+ and σ−, we can make adjustments to the other parameters on which the AC Stark

depends in order to null it. The other two handles used to null the AC Stark are the detuning and

intensity of each pump laser. Two lasers at 795nm are combined on a 50/50 beam splitter and their

detunings are set to roughly equal and opposite sides of the optical transition, where the AC Stark

is approximately equal and opposite. A quick and easy way to do this is to observe the size of the

signal for each pump individually and adjust the detuning close to resonance until the signal sizes
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(a) Pump intensity as a function of position (b) Polarization as a function of position

Figure 6.6: The pump intensity and the atom polarization as a function of position in the cell are shown for

single (dashed) and dual )solid sided pumping. As can be seen, dual sided pumping greatly mitigates the

polarization gradient across the cell.

of the respective pump beams match. Fine adjustments are made to further null out the effect by

observing the oscillating ẑ field and adjusting the intensity of an individual pump until all signal is

nulled, or is centered on its phase shift, when the pump polarization flips.

6.5.3 Dual Side Pumping

A second order effect that is a concern is the AC Stark gradient. As the pump light propagates

through the cell it is attenuated resulting in a linear intensity gradient across the cell. We do not

fully know the effect of this gradient, but naively it would compound with the Rb polarization

gradient and degrade the magnetometer perfomance. For this reason we implement dual sided

(±x̂) pumping so that the intensity gradient is quadratic instead of linear. The arrangement of the

pump polarizing optics must be carefully chosen to ensure that the two pump beams are working

together to add angular momentum to the alkali atoms. The basic scheme of the pump polarization

optics can once again be seen in Fig. 6.5. The light is transmitted through the polarizing beam

splitter, so each beam has the same linear polarization prior to the λ/4. The quarter waveplates

are oriented parallel to each other, so that upon entering the cell the light has the same circular

polarization. It is easy to see the effect of the pump beams not working in concert to supply

angular momentum; there will be no response. In this case, the λ/4 needs to be rotated by 45◦.
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6.5.4 Setting and Detection of 2π Pulses with Dual Side Pumping

Since we have optical access to the transmitted laser beam on only two of the three axes, we

sacrifice the direct ŷ detection of the 2π pulses so that we can implement dual sided pumping; this

means that the probe beam is directed along the ẑ direction. However, we still need to access the

information that allows us directly to set the 2π pulse area. This gives us two choices: detect pump

transmission or use circular dichroism [Lancor, Babcock, Wyllie, and Walker, 2010].

Using pump transmission to measure the rotation of the spins about the ẑ axis is not as sen-

sitive as a Faraday rotation measurement or a circular dichroism measurement, so we decided to

try a circular dichroism measurement of the 2π pulse rotation signal. Circular dichroism uses a

circularly polarized probe beam to measure the polarization of the atoms as they rotate in the plane

of the probe light. Since the absorption cross section σ = σ0(1 − P/2) for P3/2 where σ0 is the

cross section for unpolarized light this method will give us not only a measure of the 2π pulse area,

but also a simple measure of the Rb polarization. As the Rb rotates in the x̂ -ŷ plane, the signal

goes from P = 1 99K P = 0 99K P = −1 99K P = 0 99K P = 1. The measurements that we

take consist of four different transmitted intensities. The first is the 100% transmission intensity

found by going far off resonance (the intensity change as a function of detuning must be accounted

for); secondly, the P = 0 intensity is found by blocking the pump beams; third and fourth are the

intensities associated with the polarization rotation from P = 1 to P = −1. When the atoms are

100% polarized the 2π pulse signal size should equal the difference in transmitted intensity from

100% transmission (far off resonance) to P = 0 (blocked pump beams) and the P = 1 and P = −1

levels should be centered on the P = 0 intensity level.

When implementing this measurement, the signal is not what we expect from simple analysis.

The glaring error is that the P = 0 intensity is not between the P = 1 and P= −1 signals. Also, the

calculated polarization is far from what we measure with Faraday rotation. We eventually came

to realize that the signals we see are due to light interaction with the hyperfine levels. In spin

temperature at high polarization, the atoms are pumped into the F=3 hyperfine level; however, if

the pump detuning is near the F=2 hyperfine level where the electron spin is opposite that of the

F=3 level, the polarization will be lower than the actual polarization due to the electron spins in
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the respective F levels subtracting. Conversely, if the pump is close to the F=3 level, then the

polarization measurement will be overestimated. This effect can be corrected:

αP∞ =
T(P)− T(−P)

T(P) + T(−P)
(6.2)

It’s form can be seen in Fig. 6.7. The colors range from P= 0.1− 0.9 where low polarization has

the largest correction factor.

Needless to say, this measurement turned out to be more complex than we were expecting, so

we temporarily turned to the non-ideal method of detecting the transmission of the pump to set the

2π pulses.

6.5.5 Method for Setting 2π Pulses

Because of the imprecision of pump transmission as a method of setting the 2π pulses,we

eventually moved away from this method of direct detection to a more precise, indirect method.

The other way to set the 2π pulse area when there is no access to Py is to utilize the feature that

an incomplete 2π rotation causes a non-zero Bz. The method is as follows: the fields are shimmed

with the pulsing circuit unplugged. Once this is done, the pulsing circuit is plugged back in and

Bz is monitored with an oscillating x̂ field; this signal should start at a null point after the initial

field shimming, but because of leakage currents in the pulsing circuit, this is not the case. The 2π

pulse area is increased until Bz is re-nulled. This method is used to set 2nπ pulse areas by adding

area until the nth null point is reached. One must be careful in using this method because there are

also ”null” points that correspond to (2n− 1)π pulses where the response of the magnetometer is

zero. Using this method, the 2π pulses can be set accurately to a part in 3 × 104. We calculate

this accuracy by knowing the noble gas resonance frequency. If the 2π pulse is set incorrectly, the

bias field (Bz) and thus the resonance frequency of the noble gas will be off, so we calculate this

number by measuring:

fRb

fXe

=
γRb

γXe

(6.3)
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Figure 6.7: The correction needed for the circular dichroism measurement due to the asymmetry introduced

from the hyperfine interaction is plotted as a function of pump detuning. The colors range from 0.1− 0.9%

with low polarization having the largest correction factor.
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The Rb frequency is known from setting the 2π pulse repetition rate with the FPGA, which is

referenced to an atomic clock. The Xe resonance frequency is extracted from a synchronous spin

exchange experiment.

For one random experiment chosen from many, the pulse rep rate was at 14kHz and we ex-

tracted a resonance frequency of 10.479Hz, which makes fRb

f131
= 1336.01. The exact ratio of

gyromagnetic ratios gives:

2µB
(2I + 1)γ131

=
2× 1.39962

6× 349.11
= 1336.37 (6.4)

where µB is the Bohr magneton and I is the nuclear spin for 85Rb, and γ131 is the gyromagnetic

ratio of 131Xe. This gives measured
theory

= 0.99973 implying that with our current nulling methods we

can set the 2π pulse area to a couple parts in 104.

6.6 Optics: Probe

6.6.1 Probe Optimization

We run the probe laser at about 30mW, but because of the nature of the cell we use, the maxi-

mum transmission through the cell and hence the detected power is typically less than half of that.

The probe detuning is set to maximize response; therefore, with a signal applied along the magne-

tometer’s sensitive direction, we scan the probe frequency to maximize the size of the signal. This

optimal detuning changes with probe intensity and with [Rb]. It will also change depending on

whether or not the probe contains any degree of circular polarization in it.

Circular polarization in the probe is seen as a pumping mechanism along the wrong direction

with respect to the desirec optical pumping of the atoms and will result in a smaller signal and

at times very strange looking signals. It also results in incorrect measurements of magnetometer

relaxation rates, so it is vital that there is as little probe pumping as possible. Even though we

clean up the probe polarization with a PBS before the cell, we have noticed some residual probe

pumping effects. The easiest way to see probe pumping is to block the pump beams and apply

large magnetic signals along the different axes. If any of the applied fields generate a signal, then

we use a λ/4 plate placed after the PBS to null it out.
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6.6.2 Atom Detection: Faraday Rotation

Detection of the atoms is done by Faraday rotation detection. The detection optics consist of

a λ/2 plate, a polarizing beam splitter, and two photodiodes hardwired as a differential detector.

For measurements of fast signals, such as the 2π pulses, we have a 75MHz bandwidth differential

detector from Thorlabs. This detector is vital for direct detection of the 2π pulses and making alkali

polarization measurements, but is difficult to free-space align; therefore, for noise measurements,

where we want minimal intensity flutuations due to the laser wandering on the photodiodes and we

don’t need highbandwidth, we use large area photodiodes with a smaller bandwidth. There is also

a saturation effect that we observe when using this high bandwidth detector; at high powers, the

observed magnetometer response is no longer linear with probe intensity, i.e. a factor of 2 increase

in probe power does not correspond to a factor of 2 increase in response. When we noticed this

effect, the probe power we were using was close to the limit of the detectors; therefore, the probe

intensity was reduced by about a factor of 5, which seems to fix the problem. We have since moved

away from using the fast photodiodes entirely unless we need to measure a 2π pulse signal for a

polarization calibration measurement. In this case, care must be taken to keep the photodiodes

from saturating by operating at lower intensities.

The principle of Faraday rotation is that as the alkali spins rotate, they change the index of

refraction of the vapor. This causes the linear polarization of the probe beam to rotate by an angle

[Ledbetter et al., 2008]:

φ =
1

4
lrecfnPxD(ν) (6.5)

where l is the path length, re is the radius of the electron, c is the speed of light, f is the oscillator

strength, n is the number density of the alkali, Px is the alkali polarization. The last term

D(ν) =
∆ν

∆ν2 + (∆Γ/2)2
(6.6)

The vertical and the horizontal components of the probe polarization are then separated by the

polarizing beam splitter and their difference is detected:
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φ =
I1 − I2

2(I1 + I2)
(6.7)

where I1 and I2 are the respective intensities associated with the two polarization components.

The factor of 1/2 comes from the fact that the probe light first enters the λ/2 which rotates the

polarization by 2φ. Knowing the response of the magnetometer in units of radians/Tesla allows us

to compare magnetometer responses across different systems.

6.6.3 Other Detection Options

We have discussed another idea for detection that may help lower the 1/f probe noise that we

believe is polarization fluctuations from hot air currents. This detection scheme uses two probe

lasers tuned to either side of the optical transition and with orthogonal polarizations; this results

in the common mode fluctuations (such as intensity noise) to only be second order effects, thus

making the atom rotation signal dominate.

With a single beam, the differential detection sig ∝ sin (2φ) and incoming common mode

polarization fluctuations look like atom signal rotations. If there are two probe beams with or-

thogonal polarizations at the same frequency, then with differential detection their signals would

cancel. With two beams with orthogonal polarizations and equal and opposite detunings, the signal

is only dependent on real magnetic fluctuations and common mode noise is of second order.

6.7 System Optimization

6.7.1 Nulling Stray Magnetic Fields

Before all measurements with the magnetometer are made, the stray fields must be nulled. This

is best done without parametric modulation or 2π pulses, but it is useful, when using a cell with

noble gas nuclei in it, to apply pump polarization modulation to keep the noble gas from becoming

polarized and adding x̂ field. The procedure goes as follows:

• Balance the photocurrents in the detector with the pump beams blocked

• Null out any probe pumping effects as described above
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• Adjust the sensitive direction field (By for ẑ detection and Bz for ŷ detection) until at zero

• For ẑ detection: Apply an oscillating Bx at a frequency within the magnetometer bandwidth

and at an amplitude within the magnetic width; zero any resulting signal withBz. Sometimes

the signal will not pass through zero, but will instead phase shift in which case, center it on

the phase shift.

• Apply an oscillating Bz and null the resulting signal with Bx in the same manner as above

• Iterate the previous three steps until the signal is zero and there is no response to applied Bx

or Bz.

This procedure follows the magnetometer response equations outline in Sec. 2.1.

6.7.2 Alignment

It is vital that the pump and probe are perpendicular to each other and that each beam is well

aligned with its respective axis of the magnetic field coils. If this is not the case then the light

will pump the atoms along a direction that is not x̂, causing precession about uninteded axes.

Misalignment can easily be seen by looking at the raw photodiode signal of the probe along ẑ

while the 2π pulses are on. A misalignment between the probe and the 2π pulse coils will result in

an atom signal at the 2π pulse frequency. These signals can be large, but if calibrated to polarization

units, they are quite small in comparison to the polarization along x̂ . This would be a convenient

method of alignment if we had a means of making fine angular adjustments to the beam directions.

As it now stands the lever arms on both the pump and the probe are much too long for aligning

with the atoms as a reference.

A few of the measurements that could be sensitive to the alignment are:

• Apparent alkali field frequency shift

• Xe 1f signal. This is a signal at the first harmonic of the nuclear precession. It can be caused

by a non-zero By, but with both misalignments and non-zero AC Stark shifts, there is also

a 1f signal that cannot be nulled with By. In this case, the AC Stark needs to be re-nulled
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or if it is very bad, the alignment checked. There is also the unexplored hypothesis that

it is actually a Xe signal at 1f. Some inconclusive studies of the 1f component as the Xe

resonance is scanned have been made.

• Poor cross axis rejection when using parametric modulation to detect both Bz and By

Because we cannot actively null any of these signals, the alignment is instead done through a

painstaking process of using irises and beam cubes. The pump and the probe alignment is done

in either one of two ways. The first is carefully aligning the probe beam with respect to the screw

holes on the table with the help of irises. A beam cube is then inserted in its path and in the path of

the pump. Care is taken to ensure that the probe beam is perpendicular to the face of the beam cube

by aligning the beam cube with the table holes as well. The transmitted/reflected probe and the

reflected/transmitted pump are then overlapped in the far field. This is the less reliable of the two

methods because when the field coils are inserted there is no way to know if the beam is parallel

to its respective field coil axis.

Therefore, the better method of alignment is to remove the cell and the shield entirely and

prop the magnetic field coils up at the height of the shield ports; pinholes that are centered on

the windows of the cell oven are then affixed to the coil frame. Removing the shield facilitates

the alignment, since with it in place there is no good way to see where the light hits the pinholes.

The alignment of the pumps and the probe is adjusted such that the maximum amount of light

goes through the pinholes. Because the field coils are designed and built with the three axes

perpendicular to each other, aligning the lasers with the coils themselves should ensure that the

pump and the probe are perpendicular and that the two pumps are parallel. The alignment will

be as good as the alignment of the pinholes. The main issue with this method of alignment is the

vertical placement of the coils outside the shield. There is no height adjustment for the coil frame

and it already sits high with respect to the light access ports, so it is vital that the height is correct

before aligning the lasers. The best way to accomplish this is to do a rough alignment with the

pump and probe and mark where the probe light hits the coil frame, once the shield is taken out,

the position can then be readjusted with respect to these marks.



116

Another issue is that the length over which the light is aligned when using the pinholes on

either side of the coil frame is only several centimeters. The alignment is only as good as the

horizontal and vertical alignment of the pinholes and could get better as the length over which this

is done increases. So instead of aligning the beams using pinholes that are afixed to the coil frame,

this alignment could also be done by using irises on either side of the shield. The benefit of this

method, besides a longer path length, is that it is not necessary to remove the shielding, but it is

still necessary, due to the distorting nature of the cell, to remove the cell.

The largest uncertainty in any of these alignment procedures is the fact that even if the lasers

are well aligned without the cell in place, once it has been put in, the distortion of the light within

the cell might be great enough to negate the alignment efforts. The extent of the effects of this

distortion will be unknown until we put in a cubic cell.

6.7.3 Density Optimization

The alkali density and the detuning of the pumps are set to ensure optimum Rb polariza-

tion of about 50% at high density. This is done by first decreasing the density to approximately

2×1012/cm3 where we can obtain high Rb polarization. The pump detunings are then individually

set to give between 70% − 80% polarization on either side of resonance; this should be approxi-

mately equally detuned on either side of the optical transition where the AC Stark shift magnitude

should be equal. The AC Stark nulling is then completed following the procedure in the above

section. Once this process is complete, the density is increased while monitoring the transmission

of circularly polarized pump light until 10% is being transmitted. It is preferable to not block one

side of the pump while monitoring the transmission, so a glass coverslip pick-off is used; in this

way, the majority of the pump light is incident upon the cell from both sides. This procedure en-

sures that at the entrance to the cell, the polarization is at least 70% and falls to about 50% in the

middle.
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6.8 Rb Magnetometer Characterization Measurements

This section will cover the measurements needed to characterize the alkali magnetometer. The

characteristic measurements for Xe are described in Sec. 4.1.

6.8.1 Polarization

The alkali polarization is measured via the 2π pulse signal seen in Fig 6.8. The benefit of the

2π pulse signal is that it quickly transfers polarization from along the pump direction to along the

probe direction on a time scale that is fast compared to the relaxation mechanisms, which results

in an accurate calibration of signal size to alkali polarization. This measurement can also be done

with a ẑ probe, in which case pulsing must be along ŷ instead of ẑ . The polarization of the alkali

is

P =
R

R + Γ0

(6.8)

and the pumping rate R is proportional to the intensity of the pump beam. Therefore, a calibration

of the voltage of the 2π pulse signal to polarization is made by measuring the 2π pulse signal

amplitude as a function of pump light intensity and extracting a 100% polarization voltage value:

V2π =
V0,2πR

R + Γ0

(6.9)

This measurement must be taken at low pulsing frequency to avoid relaxation as described in Sec.

2.4. The extracted value V0,2π can then be used to find Px by dividing any 2π pulse signal by it. It

can also be used to calibrate the polarization along the probe direction.

These measurements are best done at low density where the polarization is high and the fit to

Eqn. 6.9 is reliable. The low density calibration can then be multiplied by the ratio of densities to

extract a high density calibration. When doing this measurement at low density for the purposes of

a high density calibration, the detuning of the probe must be at the desired high density detuning

since the calibration changes as a function of probe detuning (although it can easily be done, we

never calibrated the signal size as a function of probe detuning).
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Figure 6.8: The 2π pulse signal as seen with a ŷ probe. A 2π pulse signal can also be seen detecting Pz

when the pulsed field is applied along ŷ . The red trace corresponds to a well tuned 2π pulse. When the

circuit was AC coupled and a resonance condition between the applied B0 and the pulsing repetition rate

had to be met, the blue would correspond to either a detuned pulse frequency or a change in B0. Now

that the circuit is no longer AC coupled, the blue trace only corresponds to a change in the DC shim of the

sensitive direction. The black trace corresponds to a non-optimized 2π pulse area for AC coupled pulses.
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At high density, there are optical thickness issues where the polarization drops off too quickly.

Sometimes the optical thickness can be worked around by detuning the pumps further from reso-

nance. A characteristic feature of optical thickness adversely affecting this measurement is if the

fit gives an offset to R (the relative intensity); i.e. the polarization signal goes to zero before the

intensity does.

6.8.2 Γ′, Γ0, R

Since Γ′ = R + Γ0, R and Γ0 are extracted from measurements of Γ′. The fundamental

relaxation rate (spin destruction, wall relaxation, etc.) is the relaxation rate when R = 0, so to

find it, we take measurements of Γ′ as a function of decreasing R (decreasing pump power) and

the extrapolate to R = 0 to get Γ0. Once Γ0 is known, then it can be subtracted from any Γ′

measurement to obtain R.

Because of complications due to the slowing down factor, the measurement of Γ′ is best done

as a steady state experiment. This is done by scanning the magnetic width of the magnetometer.

Without the 2π pulsing on, zero the SERF magnetometer then scan the sensitive field direction. Fit

the resulting dispersive waveform to

D =
∆

1 + ( ∆
width

)2
(6.10)

where the width parameter is Γ′ in magnetic field units. To convert from field units to the relaxation

rate, Γ′ = 2πµB × width. Since this is a steady state experiment, there is no slowing down factor.

In a cell containing noble gas, this measurement is best done at low [Rb] to minimize the effect of

collisions with the noble gas.

6.9 Magnetometer Noise Measurement Procedure

A noise spectrum is the Fourier transform of the signal of interest; in our case, this is the

magnetic signal along the sensitive direction of the magnetometer. This means that the Fourier

transform in raw signal units must be calibrated to field units taking into account the frequency
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response; this bandwidth is determined by the relaxation time of the magnetometer. In order to

measure the bandwidth, an oscillating field of known amplitude (in field units) at frequency f is

applied along the sensitive axis. The magnetometer response (in raw signal units) is then measured

as a function of f and fit to a Lorenztian:

Lor =
1√

1 + (f−f0
Γ

)2

(6.11)

where Γ is the bandwidth. Once we have the bandwidth information where the response is con-

verted to Vsig/Gauss, we Fourier transform a time series of the signal of interest, scale it, then

divide by the bandwidth response function. The procedure for scaling the FFT in IGOR can be

found in Appendix C.
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Chapter 7

Circuits

This chapter describes several of the circuits we developed to meet the requirements of pulsing

large magnetic fields as well as measuring the resulting signal.

Developing a circuit to meet the requirements of the 2π pulsing was a challenge. The issue was

that the circuit needs to drive high currents through a coil with a large inductance in < 5µs. The

coil is high inductance because of the large amount of uniform field it needs to produce over1cm3.

Fortunately, Mike Bulatowicz was able to design a set of coils that reduced the inductance a factor

of 7 (down to 32µH), which only requires 15V to drive a 2µs pulse (instead of 100V).

We developed two circuits for the purposes of driving this large coil, so in this chapter I will

present the preliminary design and discuss the concerns that we had with it and our reasons for

developing a second circuit. Chapter 5 Section 5.2 will go into more depth about noise issues we

faced that motivated the second design.

There were also a couple of attempts at a new circuit design for quiet pulsing that did not

succeed; I will describe these in less detail.

7.1 Circuit Idea 1

The circuit diagram for Circuit 1 is shown in Fig. 7.1. The switch M1, which is driven by a

MOSFET driver, remains open until it is triggered closed by a function generator that controls both

the width and the repetition rate of the pulsing. Our particular function generator, AFG2002C from

Tektronix, produces pulses with pico-second stability, which is better than what can be produced

by many FPGAs. Any modulation of the pulse frequency (as required in dual species pumping;
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Figure 7.1: The first circuit idea. Voltage is dropped through L1 when the switch is closed and the back

emf once the switch closes decays through the 150V zener diode D1.
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see section 8.2) or phase synchronization (as required by the parametric modulation schemes; see

Sec. 5.3) is controlled by the FPGA that generates the frequency trigger for the function generator.

The switch is only closed for approximately half of the pulse width. Once it is opened, the sudden

change in current through the inductor generates a large back EMF whose voltage is limited by

D1, a 150V zener diode. The current then decays through D1 until the voltage is less than the

zener breakdown voltage after which it completes its decay through R1. The voltage drop across

the inductor during this process is integrated and converted to field according to

V = L
dI

dt
= Lk

dB

dt
(7.1)

where k = dI/dB is the pulsing coil’s conversion from field to current. This results in the sample

field pulse shape shown in Fig. 7.2. The rate of the current buildup is controlled by the width of

the pulse, but the slope of the decay of the current is fixed by the zener. The area under the curve

corresponds to a 2π rotation:

2πγRb

∫
Bdt = 2π (7.2)

Most of the decay is governed by the diode, but R1 must be carefully chosen so that the re-

maining current decay is smooth and fast. A resister that is too small will cut short the decay

through the zener, which significantly lengthens the pulse. A resister that is too large will result in

oscillations after the pulse (Fig 7.2). The optimum resistor value depends on the inductance of the

pulsing coils. I only have two data points that correspond to a 160ns (R = 200Ω and L = 32µH)

and 300ns (R = 750Ω and L = 225µH) time constant since we only studied this problem with two

field coil designs.

7.1.1 AC Coupling Options

As seen in Fig. 7.1, there is a capacitor C1 at the base of the field coil L1. This AC coupling

capacitor was used in the experiments described in Chapter 2, but it has subsequently been taken

out. The preliminary AC coupling method, however, was not a capacitor, but a transformer. This

method was disposed of fairly early on due to the difficulty of making a transformer that impedance
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Figure 7.2: The black trace is the voltage at the bottom of the inductor during a 2π pulse, while the voltage

at the top remains constant at the applied Vp. The red trace is the integral of the voltage drop across the

inductor and corresponds to the current (field) through the coils. The pulse is asymmetric due to the decay

being governed by the zener diode voltage. There are oscillations at the end of the pulse due to the resistance

value being chosen incorrectly.
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matched the inductor we were trying to drive. We had poor coupling efficiency and poor power

transfer, so we moved to AC coupling with a capacitor. The capacitor must be large so that the

decay of charge through the circuit in between pulses is negligible, which means that we chose

the largest capacitor available without resorting to electrolytic capacitors; this is a 30µF tantalum

capacitor.

With the AC coupling capacitor in place, the circuit requires a much larger voltage to drive

a 2π pulse. Because the capacitor acquires charge during the pulse and does not fully discharge

between pulses, the required applied voltage increases as pulse duty cycle increases.

7.1.2 Frequency and Pulse Width Dependence

The circuit and its ability to make a 2π pulse is very sensitive to the pulse repetition rate. A

0.024 V change in the applied 2π pulsing voltage is equivalent to a 1kHz shift in the 2π pulsing fre-

quency. Figure 7.3 shows this dependence. It also shows a strange feature of the circuit where the

required voltage suddenly increases around 10kHz. Also to be noted on the plot is the dependence

of the ŷ shim field on 2π pulsing voltage. All these features are unique to this particular configu-

ration of the circuit (R = 200Ω and L = 32µH) and may change depending on the inductance of

the coil, the resistance, etc.

7.1.3 Pulse Area Stability and Other Concerns

The main concern with this circuit is the pulse stability. If there is a fluctuation in pulse width,

this will lead to a fluctuation in ẑ field, as well as a fluctuation of Py; this latter effect is discussed

more in Sec. 5.2 in regards to polarization noise. The necessary pulse stability to obtain a rea-

sonable noise level of 10−13T/
√

Hz was calculated in section 5.2 as σp = 10−6 rotations which is

equivalent to 10 pico-seconds pulse width stability or micro-Gauss pulse amplitude stability; all

of these stability requirements are very stringent. We were concerned that the pulses produced by

this circuit would not be that stable enough for our noise requirements, so we designed Circuit 2,

which should have well defined pulse parameters.
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Figure 7.3: As the 2π pulse frequency changes the pulse area changes, which means the voltage required

to make a 2π pulse changes. This results in a change in the ẑ shim field and will shift the NMR resonance.

Also shown on this plot is the change in the By shim as the pulse frequency changes.
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Another concern that cropped up regarding this circuit is the fact the the pulses applied are

asymmetric. If one side of the pulse is shorter than the other, then the time averaged alkali spin is

pointed more in one direction than the other. The pulse can be forced into being symmetric by an

appropriate choice of the zener diode, which governs the rate of the current decay. However, when

we did this, we noticed no change in behavior.

A third issue, is that this circuit seems to be limited to total pulse widths of 1.5µs for reasons

we could never figure out. There was always a tail that would lengthen it no matter how short the

first part of the pulse was made.

7.1.4 Circuit Parts List

See Appendix D.

7.2 Circuit Idea 2

7.2.1 Reasons to Design a New Circuit

Because of the concern about the stability of the pulse area, we decided to design a circuit that

delivers a very specific amount of charge each time a pulse is triggered. Capacitive discharge is

the easiest means for accomplishing this. Figure 7.4a shows the basic idea of this circuit. The idea

is that when S2 is open and S1 closed, C1 will accumulate Q = V/C1 over a time τ = R1C1.

When S2 is closed and S1 is open, the capacitor will discharge through the inductor. The diode

D1 keeps any charge from flowing the wrong direction through the circuit. The resulting pulse of

current through L1 (Fig. 7.5b) is half a sine wave with width determined by τp = L/C. The full

2π rotation is in turn set by the applied voltage which controls the amount of charge buildup.

7.2.2 Design Idea

The implementation of this circuit resulted in Fig. 7.4b. In order to prevent current from

flowing through the coils directly from the power supply during a pulse, we insert M1, which is

a p-type MOSFET. Driving the gate of this MOSFET turns out to be slightly complicated since,

in order to turn on, the gate needs to be 10V below the source. In our case, the source voltage
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(a) Basic circuit idea (b) Full circuit

Figure 7.4: The diagrams for the basic capacitive discharge circuit (a) and the implemented capacitive

discharge circuit (b). The main difference is the way in which we implement the switches.

(a) Voltage at the top of the inductor (b) Current through the inductor.

Figure 7.5: The pulse created by Circuit 2. The time starts when the switch at the bottom of the inductor

closes and the capacitor is fully charged. This means that the voltage at the top of the inductor is one diode

drop lower than VC . The figure on the right is the integral of (a) and is the current through the inductor.
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changes as a 2π pulse is set. To keep the gate perpetually 10V below the drain, we insert a 10V

zener diode between the source and the gate. The timing of M1’s gate is then controlled by M2;

when M2 is closed, the gate voltage of M1 is 10V below its source voltage, so M2 is also closed

and C1 charges. The presence of R1 and R2 control the current flow. When M2 is open, M1 is also

open so that current cannot flow from Vp through L1. Because there is a time constant associated

with turning M1 off due to its internal capacitance, it must be nominally turned off well before M3

is turned on, but not so long as to allow too much charge to decay from C1.

The capacitive discharge portion of the circuit is the same as described above except for the

addition of R4, which controls ringing through L1 after M3 is turned off.

There are a couple timing issues with the circuit’s MOSFETs that were never tracked down and

solved. The issue is that M2 must be turned back on at the same time M3 is turned off, whereas

we originally thought that we would need to wait a short while after M3 turns off to turn on the

charging portion of the circuit. This may be due to the high current through M2 during the charging

portion of the circuit. The interaction between M2 and M3 might be mitigated if we could better

isolate the two portions of the circuit.

7.2.3 Circuit Performance

The purpose of designing this circuit was to reduce noise that we hypothesized was due to pulse

width instabilities. Unfortunately, we saw no improvement once this circuit was implemented.

This seems to indicate that any pulse instability problem we may have is currently overshadowed

by another noise source.

7.2.4 Circuit Parts List

See Appendix D.

7.3 High Voltage Op Amp Circuit

In the pursuit of a circuit that generates stable pulses, we came up with another interesting idea

that was never fully implemented.
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Figure 7.6: The basic high voltage op amp circuit that works by controling the current through R3 by

controlling the shape of the pulse. It also compensates for noise through feedback on the pulses.
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The circuit is shown in Fig. 7.6. The idea is to control the shape of the voltage pulse across

RL with feedback, and thus control the current through the inductor. The pulse will be stabilized

since any fluctuation in the current through the inductor will be registered as a deviation from the

inverting input of OA1, so the output will correct for it. Therefore, in addition to controlling the

pulse shape, the voltage noise and hence the current noise at V+ will be suppressed:

V1 = G(V+ − V−) (7.3)

V+ =
RL

RL + jωL
(vn −

R2

R1

V1) (7.4)

V+ =

RL

RL+jωL
vn + RL

RL+jωL
R2

R1
GV−

1 + RL

RL+jωL
R2

R1
GV−

(7.5)

for large G the noise is greatly suppressed:

V+ =
R2

R1

vn
G

+ V− (7.6)

This circuit worked well when driving small inductive loads. When driving large inductive

loads, however, OA2 needs to be a high power op-amp and bandwidth limits the performance.

7.3.1 Circuit Parts List

See Appendix D.

7.4 Pulse Gating Circuit

When using the lock in to demodulate the parametric modulation signal, it is necessary to

suppress the signal from the 2π pulses, because they saturate the lock in input. This of course is

obsolete (almost) with a ẑ probe. In this circuit, pictured in Fig 7.7, the MOSFET is triggered

off for slightly longer than a 2π pulse. In order to minimize transients on the resulting signal, the

second part of the circuit works to hold the signal constant while the pulse is gated out. There

are still transients, but the amplitude of the signal that appears at the 2π pulse frequency is greatly

suppressed.
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Figure 7.7: The circuit designed to eliminate the large signals due to the 2π pulsing when using lock-in

detection of Py.
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Chapter 8

Dual Species Operation

In this section, I will describe the method for exciting two noble gas species simultaneously.

The gyromagnetic ratios of the two Xe isotopes differ by a factor of 3.373 [Brinkmann, 1963],

so using a single frequency alkali polarization modulation is not possible. We therefore had to

devise a scheme that would couple the two species and synchronously pump them simultaneously,

without excessive loss of signal. The results described here are only preliminary.

8.1 Choice of Noble Gas

The choice of noble gas is determined by potential signal to noise ratio, quadrupole behavior,

and relaxation times. Our original idea was to use 129Xe and 3He as the two isotopes since both

are spin-1/2 and therefore do no have the quadrupole interaction. However, as the experiment

progressed and we did intensive studies of 131Xe, we could find no indication of a quadrupole

interaction. Future work should intentionally test for its presence, but we have looked at many

FID signals that show no evidence of quadrupole effects. This has led us to postulate that, due to

our unique method of pumping the noble gas, there will be no first order quadrupole interaction.

If this is the case, then there is essentially no reason to choose 3He over 129Xe. It is true that the

relaxation times in 3He are potentially much longer than they are in Xe, but the Fermi contact

interaction is also 100 times smaller. For these reasons and for ease of use, these preliminary

studies have concentrated on Xe.
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There is also the interesting question of how much noble gas pressure is ideal for the operation

of the oscillator. A rough approximation indicates that the Faraday rotation signal should be inde-

pendent of [Xe]. This means we could operate with low [Xe] which would allows us to go to high

[Rb] to increase the signal. The approximation begins with the signal proportional to the Faraday

rotation of the Rb into the probe direction:

φ ∝ [RbPz (8.1)

where

Pz ≈
PxΩ

ΓRb +R
(8.2)

and we take the field Ω ∝ [Xe]PXe as the magnitude of the Xe field. This results in:

signal ∝ [Rb]Px[Xe]PXe

ΓRb +R
(8.3)

Substituting in

PXe = Px
ΓSE

ΓSE + Γwall

(8.4)

and

Px =
R

R + ΓRb

(8.5)

the signal maximizes at R = ΓRb. Knowing that the Rb relaxation rate is dominated by spin

exchange collisions with the Xe, we have ΓRb ≈ kSE[Xe] and ΓSE = kSE[Xe] we see that the

result:

signal ∝ [Rb][Xe]

8kSE

ΓSE

ΓSE + Γwall

(8.6)

has no dependence on the Xe density at a fixed [Rb]. Knowing this, it might be beneficial to

move to lower [Xe], which would allow us to increase the temperature, i.e increase [Rb], by the

same amount [Xe] is decreased. This would give us more signal and higher Xe polarizations by

avoiding the additional relaxation losses that result when the [Rb] is increased in the presence of

large amounts of Xe. Since making this conjecture, however, we have learned several sobering

things. First is the X-factor in 129Xe. Since its wall relaxation rate increases so dramatically as

a function of [Rb], its polarization is limited to ≈ PRb/3, so we will not gain significantly in its

polarization, whereas there is no significant X-factor for 131Xe, so its polarization should increase.
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The other issue that presents itself upon turning up the [Rb] is the broadening of the linewidth

due to the alkali field which increases in proportion to the [Rb]. At higher density, the alkali field

will be quite large, which means that we are going to need to apply a large compensating field to

mitigate its effects. It is not immediately apparent that this will cause us issues, but at some point

the additional magnetic field will begin degrading the magnetometer’s performance. We certainly

do not want to apply a field that is greater than the magnetic width of the magnetometer, which,

assuming everything scales as it should, would be the case if we increased the [Rb] a factor of 10

as we originally hoped.

8.2 Dual Species Pumping Scheme

For dual species pumping we utilize extensions of sub-harmonic pumping that was discussed

in detail in section 3.3. One way to pump both isotopes is to vary the bias field so that the first har-

monic of 131Xe and the third subharmonic of 129Xe are on resonance for part of the time. Looking

at the simple scheme of modulating the DC ẑ field to couple these two resonances, then the fre-

quency difference between the third subharmonic of 129Xe and the first harmonic of 131Xe would

require an 8mG oscillation in a 0.053 mG bias field. This requirement is far above the mag-

netometer’s magnetic width of 1.5 mG, so it would introduce non-llinearities into the detection.

Therefore, instead of modulating the field itself, we can modulate the frequency of the 2π pulses.

As was discussed in Chapter 3 the 2π pulse frequency sets the bias field magnitude, which means

that modulating the pulses has the same effect as modulating the ẑ field, but avoids changing the

actual field amplitude. This means that the alkali are unaffected by a modulation of the 2π pulse

frequency since an alkali 2π pulse is the same as a 0π pulse.

The frequencies that govern this coupling are defined by γ129B = 3f + f0 and γ131B = f − f0

where B is the bias field defined by B = Bbias = fRb/γRb. The two frequencies that are now

”pumping” the Xe are f which is the pump modulation frequency and f0 which is the rate of

the 2π pulse modulation. The depth of the 2π pulse modulation can be adjusted to maximize the

response to both the isotopes. In more mathematical detail, we start with the time evolution of the

noble gas polarization in the transverse plane:
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dK+

dt
= (−iγB + Γ)K+ +R (8.7)

where B = B0 +B1(t) and B0 is the bias field and B1(t) = B1 cos (ω1t) is the modulation applied

to the 2π pulses. We can then make K+ = A+e
−i2πγB1t and Fourier expanding R =

∑
pRpe

ipωt

and e−iφ1 =
∑

q Jqe
iqω1t

A+ =
RpJqe

i(pω+qω)t

Γ + i(ω0 + pω + qω1)
(8.8)

which is in the rotating frame; if we go back to the lab frame then we pick up another J

K+ =
RpJqe

i(pω+qω1)t

Γ + i(ω0 + pω + qω1)
e−iω1t (8.9)

→

K+ =
RpJqJse

i(pω+qω1)t

Γ + i(ω0 + pω + qω1)
e−isω1t (8.10)

There are two options for doing the 2π pulse modulation: sine or square wave. We have

chosen the square wave modulation because we are better able to compensate for the error in the

2π pulsing circuit that is generated when the pulse repetition rate changes (see details in section

7.1.2). Depending on which is chosen, the Fourier amplitude changes. For sinusoidal modulation,

the Js are Bessel functions, while for the square wave modulation

J =
1

T1

∫ T

0

eiφ1e−iqω1tdt (8.11)

where

φ1 = 2πγB1

t t < T1/2

T1 − t t > T1/2

(8.12)

Integrating Eqn 8.11 we get the functions as shown in Fig 8.1. The traces correspond to what

Bessel function looks like and what the square wave integral looks like. As can be seen they are

fairly similar.

With a square wave modulation, we have another free parameter to vary and that is the duty

cycle of the wave. As has been the case for everything we have done, the Fourier amplitude loss

decreases as the duty cycle decreases. Changing the duty cycle changes Eqn. 8.12 to:
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Figure 8.1: The green trace is the Bessel function for sinusoidal modulation for 131Xe. The blue trace is

with square wave modulation. The yellow is square wave modulation with β → γ129/γ131β for 129Xe

φ1 =
2πγB1

2


t
d

t < dT1

T1−t
1−d dT1 < t < T1

(8.13)

Figure 8.2 shows the above integral 8.11, with the duty cycle at 10%.

If we go one step further and use a demodulation scheme that can eliminate the additional

reduction due to J0, by demodulating with the exact signal waveform, then we have what is seen in

Fig. 8.3. In this case, we pump the 131Xe on resonance (with J0) and the 129Xe with the J1 which

gives us very little loss on either isotope except for the factor of three in the case of 129Xe due to

the third subharmonic pumping.
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Figure 8.2: If the modulation of the 2π pulses is not a 50/50 duty cycle, then the amplitudes of the Fourier

components will increase. This figure is for a 10% duty cycle.

Figure 8.3: If, in addition to the duty cycle, the signal is demodulated with the phase of the modulation

waveform taken into account, then the additional J0 loss is regained.
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8.3 Issues Encountered

The first issue we encounter is that the 2π pulsing circuit requires a different applied voltage

for different 2π pulse frequencies. The error is about 0.024Vapp/kHzRb. When the depths we use

to modulate are on the order of 1kHz, this means we are shifting the Xe resonance by a significant

amount with the modulation on. The first simple solution is to apply a compensating field along

ẑ to cancel what the 2π pulse modulation adds in. This becomes a problem when access to the ẑ

coils for other purposes is necessary. A second option is to vary the pulse width to make up for the

2π rotation error. Upon calibrating the necessary pulse width fluctuation we found that the changes

necessary are in the 10s of pico-second range, which is much better resolution than we have control

over. The third option is to vary the voltage applied to the pulsing circuit with a summing junction.

We have successfully implemented this scheme as a substitute for varying Bz directly.

8.3.1 Single Species Excitation

Figure 8.4 shows preliminary data for simultaneous resonance scans of the two isotopes using

the procedure: γ129B = 3f + f0 and γ131B = f − f0 where f is the pump modulation frequency

and f0 is the 2π pulse modulation rate. The depth of the 2π pulse modulation rate is scanned to

optimize the amplitudes. The relative amplitudes of these signals are not fully understood, but

other preliminary studies promise the successful use of this procedure in the near future.
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Figure 8.4: Preliminary scans of the two Xe isotopes using 2π pulse modulation as explained above show

successful excitation, but smaller amplitude.
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Chapter 9

Conclusions and Future Directions

I have shown in this thesis the successful implementation of transverse optical pumping and

synchronous spin exchange optical pumping. I proposed that the new method would eliminate the

alkali field shift systematic error from measurements of the NMR frequency and I have demon-

strated at least a factor of ×2500 suppression of that shift. The results of noise characterization

measurements predict a frequency sensitivity of less than 10nHz/
√

Hz forphoton shot noise lim-

ited dual species operation, which is better by an order of magnitude than other comagnetometer

approaches to NMR. It is true that we have work to do in order to reach this number, but it is clear

that the method of synchronous spin exchange optical pumping is a viable method for precision

measurements with NMR.

9.1 Earth’s Rotation Rate Measurement

Once the system is fully operational as a dual species oscillator, the plan is to take a measure-

ment of the Earth’s rotation. This should be a fairly simple proof of principle experiment since

the rate at which the earth rotates is 6µHz, a factor of 100 above the current noise floor. For the

purposes of this mesurement, we have a large 4′ × 4′ lazy-susan, which will enable us to rotate the

apparatus to align it with the earth’s axis of rotation.

9.2 Axion

As described in Sec. 1.2 and Ref [Bulatowicz et al., 2013] work has already been done with

NMR in the search for axion-like interactions. With the new system that has been described in
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this thesis, we should be able to put a more stringent limit on the scalar-pseudo scalar coupling

since the bias stability is reduced due to the alkali field shift suppression. This will be done in

collaboration with Mike Snow at Indiana University who, along with his students, is currently

designing a rotating mass apparatus for use with our setup.

9.3 Gyro with Northrop-Grumman

Our work has been done with some collaboration with the engineers and scientists at Northrop-

Grumman Corporation. They have an interest in our work because of the potential for excellent

gyroscope performance. We will therefore at some point be collaborating more closely to help

them operate/build a gyroscope that implements the technology we have developed.
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Appendix A: Spin Exchange Relaxation Model

The purpose of this model is to explain the angular momentum loss due to a spin exchange

collision that occurs in the middle of a 2π pulse. The two hyperfine levels F = 1 and F = 2 have

equal and opposite magnetic moments, so that during a 2π pulse, atoms in one level will precess

in the opposite direction as the other. If a spin exchange collision occurs after a rotation θ and the

hyperfine level changes, then the atom will subsequently precess in the opposite direction for the

remainder of the 2π pulse and will attain a rotation error of 2θ. I will outline the basic idea of

the calculation for the fractional angular momentum loss due to this process. This simple analysis

results in a behavior that is fairly close to what a more complex analysis obtains.

We start with the spin temperature distribution where we know that in the spin temperature

distribution F = a+ b and S = a−b
4

where

a =
4 + q

2q
(A.1)

and

b = F − a (A.2)

are the populations in F = 2 and F = 1 respectively. The slowing down factor, q is defined as

q = 1 + (2I + 1) ∗ coth
[β

2

]
coth

[
β
(
I +

1

2

)]
− coth

[β
2

]
(A.3)

with

β = 2 arctanP (A.4)

We can then relate F and S:

F = qS = qP/2 (A.5)

where P is the electron polarization. As the atom rotates during a 2π pulse, it is necessary to

recalculate each parameter at the new angle.

We start with an initial polarization steady state P0 along x̂ before the 2π pulse. We use it to

calculate the intial values q0, F0, and a0 = 4+q0
2q0

F0 and b0 = F0 − a0. The atoms then rotate by θ
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resulting in a new distribution given by:

Fθ = a0e
−iθ + b0e

iθ (A.6)

From this new value Fθ, we calculate Pθ, qθ, aθ, and bθ. At this point, the atoms undergo a spin

exchange collision and change hyperfine levels, so that they complete the 2π rotation of 2π − θ

radians precessing in the opposite direction. This results in the final distribution:

F2π = aθe
iθ + bθe

−iθ (A.7)

The cumulative effect relates the final state to the initial state:

F2π = Fθ

(qθ + 4

2qθ
e−iθ +

qθ − 4

2qθ
eiθ
)

(A.8)

Fθ = F0

(q0 + 4

2q0

eiθ +
q0 − 4

2q0

e−iθ
)

(A.9)

→ F2π = F0

(q0 + 4

2q0

eiθ +
q0 − 4

2q0

e−iθ
)(qθ + 4

2qθ
e−iθ +

qθ − 4

2qθ
eiθ
)

(A.10)

F2π = F0
32 + 2q0qθ

4q0qθ
(A.11)

The fraction of angular momentum that is lost is then

∆F

F
=
F2π − F0

F0

(A.12)

∆F

F
=

1

2
− 8

q0qθ
(A.13)

The result is seen in Fig A.1a where the fraction of angular momentum lost is plotted against

initial polarization. The more complex model that involves the full treatment of the density matrix

evolution gives the result in Fig A.1b.
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(a) Simple model result (b) Full model result

Figure A.1: The modeling of the fractional angular momentum loss α(Px) results in (a) for the simple

model and (b) for the more complex model



146

Appendix B: Feedback

In this appendix I will outline the strange features of the NMR line shapes that are observed

upon implementing feedback along the bias field direction. The analysis and use of this method

are not fully developed.

While feedback is useful to lower the magnetic noise levels to the probe noise limit on Bz, it

is not useful along By since the Xe signal of interest is a magnetic field along By. Whatever, the

signal to noise ratio of that channel is, we are stuck with it. This is a tricky situation since due to

the SSEOP, there are transients at the Xe frequency that show up as large components in the FFT.

We have come up with a potential solution to this problem that will be presented in the chapter on

dual species.

Feedback along ẑ is a different matter, however, and we have successfully implemented it

in the PPR magnetometer so that the magnetic noise drops to the probe noise level. When using

parametric modulation, this probe noise is at the photon shot noise limit. When using this feedback

in the context of the NMR, however, we observe interesting line narrowing effects on the linewidth

and the slope of the quadrature component. A schematic of the setup with feedback in place is

shown in FigB.1

Looking at the equation for the quadrature component of the Xe signal:

K̃y =
Kmax

1 + ∆2/Γ2
eff

∆Γ2

Γeff2

(B.1)

and the ẑ component of the Xe polarization

Kz = tan (α)K̃y (B.2)

We can then add feedback along ẑ such that Sy = bSKKz + δBz + Bf → 0 which implies that

∆→ ∆0 − γBf and we get

K̃y =
KmaxΓ2

Γ2
eff

(∆0 − γbSK tan (α)K̃y + γδBz) (B.3)
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Figure B.1: A schematic showing the feedback network. The Sz polarimeter signal is filtered such that we

can separate the Xe signal at 2f0 where f0 is the pump modulation frequency and the 950HzBx modulation

signal that measuresBz . The Xe signal is demodulated to give K̃x and K̃y. The other signal is demodulated

given some gain and then fedback to keep Bz = 0.
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then

K̃y =
∆0 + γδBz

Γ2
eff

KmaxΓ2
+ γbSK tan (α)

(B.4)

From this we can define the slope of the quadrature to be

A =
1

Γ2
eff

KmaxΓ2
+ γbSK tan (α)

(B.5)

which approaches infinity as the compensation field is adjusted so that tan (α) → − Γ2
eff

KmaxΓ2

1
γbSK

.

Without feedback, the slope of the quadrature component is limited to Kmax/Γ2. The noise of the

resonance frequency is then δ∆0 = δK̃y

A
− γδBz. With δBy = bSKδK̃y

δ∆0 =
δBy

bSKA
+ γδBz (B.6)

We see that as A increases towards infinity, the ŷ contribution to the noise is eliminated. The ẑ

contribution remains, but with dual species operation, we hope to eliminate its contribution as well.

This would be a spectacular result if we can accomplish it. So far we have not been able to get low

enough δBz to see the suppression of the ŷ noise, but we plan to work on this in the near future.

What we have demonstrated is a successful narrowing of the Xe linewidth and demonstration

of a greatly enhanced quadrature slope, which can be seen in Fig B.2. The quadrature slope is

enhanced a factor of ×500 above the uncompensated slope and a factor of×14 above the compen-

sated, no feedback case.

The narrowing of the linewidth by application of feedback along ẑ has several interesting fea-

tures. First of all, in the full solution to the Xe linewidth behavior as a function of tan (α), there

are three separate solutions regions for three tan (α) regions:

tan (α) = − Γ2
eff

KmaxΓ2

1

γbSK
(B.7)

tan (α) < − Γ2
eff

KmaxΓ2

1

γbSK
(B.8)

tan (α) > − Γ2
eff

KmaxΓ2

1

γbSK
(B.9)

Equation B.7 is the point of infinite slope while Eqns B.8 and B.9 describe the regions where there

is hysteresis and broadening for 131Xe. The full solution for the behavior of Kx and Ky where
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(a) In phase signals (b) Quadrature signals

Figure B.2: These figures depict the in phase (a) and the quadrature signal (b) for uncompensated (green),

compensated (blue), and compensated withBz feedback (red). The improvement in slope from the compen-

sated to the compensated with feedback is×14 and the overall improvement from the uncompensated to the

compensated with feedback is ×500. If you look closely, there is still small, < 0.1mHz, bit of hysteresis.
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∆ 6= 0 is very complicated and results in three solutions for each of the tan (α) regions, which leads

to hysteretic behavior that is seen in Figs B.3a and B.3b. These figures show the theory overlaid on

the data since the fitting equation is quite complex. In a different tan (α) region, there is broadening

instead of hysteresis: Figs B.3c and B.3d. Finally, by tuning the compensation field very finely, we

obtain the third tan (α) ”region” with near infinite slope: Fig B.4. The hysteresis is still present,

but it is < 0.1mHz. An interesting question to ask in the process of adding feedback and tuning the

compensation field to obtain very narrow widths is whether or not the characteristic relaxation rate

is also changing. This relaxation rate typically defines the width of the Xe resonance. By doing a

field growth measurement, we can extract what the characteristic rate actually is with and without

feedback; it does not change.

The shape of the curves in the three regions changes with isotope since the gyromagnetic ratio

changes sign. For 129Xe we obtain the curves in FigB.5 which also mimic the theory rather well.

Another feature of the feedback is the sensitivity of the NMR resonance frequency on the phase

of the compensation field. If the phase is adjusted slightly, then the resoanance frequency jumps

significantly, as is seen in Fig B.6.

In addition to the question as to whether or not this feedback narrowing result will be useful,

there is also the question as to whether or not this feature of feedback is unique to our system of

synchronously pumped noble gas, which it isn’t; it is a feature of any system where the feedback

is operated near a point of instability, i.e. where the denomenator goes to zero. The hysteretic

behavior can also be demonstrated by appropriate application of feedback to Ky. The procedure

for this feedback is slightly different. Using the Ky signal, feedback to Bz with only proportional

gain; to get the full spectrum (broadening, narrowing, hysteresis), the phase of the Ky lock-in must

be adjusted by 180◦. With this procedure, we see the same behavior. Strangely though, the 131Xe

signal looks like the 129 signal with our other form of feedback. Since this was simply a proof of

principle experiment, we did not explore this effect further.
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(a) In phase hysteresis (b) Quadrature hysteresis

(c) In phase broadening (d) Quadrature broadening

Figure B.3: The different characteristic curves for 131Xe for different tan (α) values. The fits are not fits

to the data, bu the theoretical model overlaid on the data with adjusted parameters.
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Figure B.4: The fully compensated with feedback data. There is still a < 0.1mHz amount of hysteresis.

Figure B.5: The characteristic curve for 129Xe. Where 131Xe gives hysteresis, 129Xe gives a ”mushroom”

shape.
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(a) Good fit with x factor (b) Poor fit without x factor

(c) Poor fit without x factor

Figure B.6: This series of figures shows the compensation phase dependence of the in phase and quadrature

(a) and (b) components with and without feedback (c). With feedback there is a strong phase dependence

to the shape of the curves and the resonance frequency appears to shift. Without feedback, there is no

observable frequency shift; the only adverse affect of an incorrect phase is a reduction in amplitude.
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B.1 Noise Measurements with Xe and Feedback

In order to determine the merit of feedback, we close the loop and measure δK̃y to see if the

noise is suppressed by tuning the feedback to its optimal position. Taking noise measurements

with the Xe signal takes a long time since its bandwidth is so small and we are truly interested in

the very low frequency noise. For this, we developed a program that chirps the pump modulation

at very low frequency. The function itself is: chirp = sin (2πexp[t/T2]− t/T2). We monitor the

quadrature signal as the Xe moves through resonance then take the FFT of the signal as the chirp is

applied and divide by the FFT of the chirp itself to obtain the Xe response. We then proceed with

the noise measurement in the usual manner.

We want to do this measurement with feedback to see if there is a dependence of the noise

on the compensation field as tan (α) is scanned. We ran into issues with this measurement due

the time it takes to get good resolution at the low frequencies where the slope enhancement is a

maximum. Figure B.7 shows the response change as feedback is turned on and optimized. The

actual noise measurements may have shown a suppression in noise, but were inconclusive. This

warrants a much more detailed study.
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Figure B.7: The change in response when feedback is added. The green trace is the response without

feedback, then when feedback is added and the x̂ compensation field is not changed, the response increases,

but is not centered on zero. Adjusting the compensation field dramatically increases the response and moves

the center closer to zero. The response increases a factor of 7.
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Appendix C: Igor Fourier Transform

When a Fourier transform is done in Igor, it must be scaled in order to result in a power

spectrum. We start by deriving the power spectral density of a continuous noisy signal n(t). The

standard deviation is

σ2 =
1

T

∫ T/2

−T/2
n(t)2dt (C.1)

If we then Fourier transform n(t) we get

σ2 =
1

T

∫ T/2

−T/2
dt

∫
dfñ(f)e−2πift

∫
df1ñ(f1)e−2πif1t (C.2)

=

∫
dfñ(f)

∫
df1ñ(f1)sinc[πT (f1 − f)] (C.3)

which reduces to

σ2 =

∫ ∞
−∞

df
|ñ(f)|2

T
(C.4)

if we assume f1 = f where the sinc function is peaked. We can then define the power sprectral

density as

σ2 =
1

2

∫ ∞
0

dfPn(f) (C.5)

Pn(f) =
2|ñ(f)|2

T
(C.6)

and the power spectrum is the squareroot of Pn(f).

Moving to the Igor FFT, which is discrete. The data that is Fourier transformed in Igor is a set

of data n(tp) with N points separated in time by δt so that T = Nδt. The function ñ(fq) can be

written as:

ñ(fq) = δt

N/2∑
−N/2

n(ti)e
2πi(qtp/T ) (C.7)

where

Nq =

N/2∑
−N/2

n(ti)e
2πi(qtp/T ) (C.8)

is the typical discrete Fourier transform that Igor gives. We can then relate this to ñ(fq)

ñ(fq) =
T

N
Nq (C.9)
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Now using the definition for the power spectral density from above

Pn(f) =
2|ñ(fq)|2

T
=

2T

N2
|Nq|2 (C.10)

and the resulting power spectrum is

δn(f) =
√
Pn(f) =

√
2T

N
|Nq| (C.11)

This means that the magnitude FFT that Igor gives must be scaled by
√

2T
N

.



158

Appendix D: Circuit Components

D.1 Circuit 1

Components in the Circuit Diagram:

• M1: IRF840

• D1: 1N5369B (50V zener)

• D2: 1N4448 (fast rectifier)

• R1 = 195Ω

• L1 = 29µH

• C1 = 33µF

Components not in circuit diagram:

• MOSFET driver: MIC4420

• Buffer before and after MOSFET driver: BUF634

All ICs are wired with their suggested filter capacitors.
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D.2 Circuit 2

Components in the Circuit Diagram:

• M1: F9530N

• M2: IRF840

• M3: IRF840

• D1: 1N5347B (10V zener)

• D2: 1N4448 (fast rectifier)

• C1 = 100nF (for a 2 µs pulse)

• R1 = 1000Ω

• R2 = 1000Ω

• R3 = 10Ω

• R4 = 200Ω

• L1 = 29µH

Components not in circuit diagram:

• MOSFET driver for n-type: MIC4420
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D.3 High Voltage Circuit

Because this circuit is no longer in use and we have no plans to use it in the future, there is not

a complete list of parts. The one important part being the high power op-amp which is PA107DP

from APEX.
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