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ABSTRACT

Magnetic reconnection is a process that converts magnetic energy into
kinetic energy in a plasma system through a change in topology of the
magnetic field lines, and it allows explosive events such as coronal mass
ejections and sawtooth crashes in magnetically-confined nuclear fusion
experiments to occur. Reconnection mediates the transfer of solar wind
plasma into Earth’s magnetosphere. To learn more about the process of
magnetic reconnection, NASA launched its Magnetospheric Multiscale
(MMS) mission in 2015. In this thesis, we consider aspects of magnetic
reconnection in relation to MMS observations and goals. We begin by
further examining anisotropic equations of state (EoS) previously devel-
oped to describe the pressure parallel to and perpendicular to the local
magnetic field. We find that the EoS holds near the z-line for an MMS
event in the guide-field regime, and hybrid simulations (kinetic ions, fluid
electrons with the EoS as a closure) are able to properly reproduce the
MMS observations. We then apply the EoS to derive scalings of the elec-
tron bulk heating in the exhaust with upstream parameters. Afterwords,
we examine another MMS event in the guide-field regime, this time much
farther from the z-line, and show that the EoS also hold here. This event
took place in a region of active compression, and we extend the model of
the EoS to account for the energy gains from compression, showing that
local electron trapping plays a role in additional perpendicular heating
of the electrons. Finally, we present a drift-kinetic method that links agy-
rotropy, the lack of symmetry in the velocity space plane perpendicular
to the magnetic field, to gradients in plasma properties. The method can
predict gradients in fluid properties of the plasma based on a distribution
function measured at a single spatial point, and could add significant
utility to MMS observations.



1 INTRODUCTION

1.1 Magnetic Reconnection Basics

Magnetic reconnection is a topological rearrangement of magnetic field
lines in a plasma [1, 4]. The process is associated with explosive energy
releases across a diverse and far-reaching set of plasma systems. From the
scale of laboratory fusion experiments, where sawtooth crashes cause the
loss of core confinement in tokamaks[5], to the astrophysical scale, where
reconnection may play a role in y-ray bursts[6], reconnection is ubiquitous.
Reconnection is also crucial in our solar system, energizing solar flares
and coronal mass ejections from the sun and moderating the interactions
of the solar wind and Earth’s magnetosphere. Reconnection was first
proposed by Dungey [7] in 1953 as a source of high energy astrophysical
particles, and it was also linked to solar flares and aurorae. In the past ~ 65
years, many models and observations have refined our understanding of
magnetic reconnection, but several crucial aspects of the process are still
poorly understood. This is in no small part due to the innately kinetic
nature of reconnection in collisionless plasma systems, such as are common
in Earth’s magnetosphere and the heliosphere.

Reconnection is remarkable, in part, because it is forbidden in ideal
magnetohydrodynamics (MHD), the simplest reasonably comprehensive
model of plasma behavior. Ideal MHD treats the plasma as a perfectly
conducting fluid, then merges the fluid equations with a low-frequency
approximation of Maxwell’s equations (no displacement current) to model
the system. Since the fluid conducts perfectly, in the frame of the fluid’s
bulk velocity there can be no electric field. This implies the condition
that the magnetic flux is “frozen-in" to a fluid element and will convect
with the bulk flow. Magnetic field lines are then tied to the fluid, and the
magnetic topology is constant, as it cannot be altered by the continuous



deformations of the fluid; but real plasmas are not perfect conductors, and
resistive or kinetic effects can allow the frozen-in condition to be broken
in a localized sense. These local departures from the ideal MHD model
can have profound consequences on the global dynamics.

A first question that reconnection studies look to answer is what is
responsible for the breaking of the frozen-in condition for the electron
fluid? Several options exist, including resistive effects, pressure tensor
divergences, electron inertia, and anomalous resistivity from other kinetic
effects. These can be encompassed in a Generalized Ohm’s Law of the

form
me dj

nezdt

where the terms on the right hand side of the equation represent depar-

1
E+va:nj+%(j><B—V-pe)+ (1.1)

tures from a perfectly conducting fluid. These can break the frozen-in
condition, with the exception of the Hall term j x B/ne, which cannot
break the frozen-in condition for the electron fluid.

Analytical and numerical studies have uncovered the importance of
other terms on the right hand side of Eq. 4.1. For example, the Geospace
Environment Modeling (GEM) challenge has shown that the Hall-term
and the related dispersive waves [8] play a key role in fast reconnection
when the guide field is small, as will be discussed further in Section 1.2.
In the presence of a guide magnetic field, not only the Hall term, but
also effects related to the electron pressure tensor p. are expected to be
important [9], and indeed, they have been found to break the frozen-in
law in MMS observations of the magnetotail [10]. In general, the pressure
tensor is anisotropic and includes off-diagonal elements, which account
for a finite plasma viscosity that can break the frozen-in condition for
the electrons [11]. Pressure tensor effects become important at length
scale characterized by the electron Larmor radius p. However, due to the
complexity of the physics associated with a tensor pressure, much analyti-

cal work on magnetic reconnection relies on the simplifying assumption



that the pressure is isotropic and can be described by a scalar function.
This is also the case for most numerical fluid simulations, although some
theoretical work has included anisotropic pressures (py, p. ) parallel and
perpendicular to the magnetic field.

In studies including anisotropic pressure, the electron inertia term,
(me/(ne?))dj/dt, can be important [12], including its convective component,
v - V, which can remain finite even in steady state [5]. This has been
observed to be responsible for breaking the frozen-in condition on at the
magnetopause in an MMS event [13]. In this case the characteristic length
scale for the current profile is comparable to the electron skin depth c/wy..
In many models this term is crucial in obtaining electron momentum
balance at the z-line.

One aspect of interest is the reconnection rate, or how quickly flux
is dissipated in reconnection. In a 2D context, the out-of-plane electric
tield at the x-line is also commonly referred to as the reconnection rate,
as 0A,/0t = —E,, where A, is the flux function in an z-z slab regime.
Often, the reconnection rate is reported in normalized form, which is
generally quoted as the characteristic Alfvén crossing time divided by the
characteristic time for flux dissipation. As will be discussed in Section
1.2, “fast" reconnection has a normalized reconnection rate on the order of
107!, regardless of the mechanism responsible for breaking the frozen-in
condition. This was not true of some early historical models.

Another important question in reconnection is how the magnetic en-
ergy gets transferred to other types of energy, and in what partition?
Furthermore, can reconnection generate the power law tails of electron
and ion distributions at high energies, and if so, how? These questions are
all inherently kinetic and are active subjects of research, which now draws
from fully-kinetic simulations, analytic theory, spacecraft observations
of Earth’s magnetosphere, and laboratory experiments. These tools are

all available to us now, but when reconnection was first proposed, the



strongest tool available was MHD theory in relatively simple analytic con-
figurations. In the next section, we will discuss the historical development

of models of magnetic reconnection.

1.2 Historical Models of Magnetic

Reconnection

Magnetic reconnection is, as mentioned, forbidden in ideal MHD through
the frozen flux theorem. The simplest way to allow for magnetic field lines
to break is by adding in some resistivity 7 to the plasma. If it is uniform,
then we can derive the induction equation from Maxwell’s equations
(in the low frequency limit, dropping the displacement current) and the
simple Ohm’s law E + v x B = 7j. This leads to the magnetic induction
equation

%]? — V x (vxB)+ :UVQB (1.2)
which is frozen-in but for the resistive term. The magnetic diffusion has a
characteristic time scale 7p = uoL?/n, where L is the characteristic length
scale of the gradient. It is useful to compare this to the propagation time
of Alfvénic perturbations across the system. This leads to the Lundquist
number S = 7p/74 = povaL/n. For a typical magnetized plasma, S >
1, meaning the effect of a uniform resistivity on breaking the frozen-in
condition is minimal over the course of an Alfvén crossing time, and
resistive diffusion alone cannot begin to describe the fast energy release
observed in solar flares.

The first model that gives a meaningful reconnection process (much
faster than the uniform resistive diffusion) is the Sweet-Parker model
[14, 15]. The Sweet-Parker model gets around the long diffusive time by
imagining a long, thin, resistive current layer separating two regions that
are frozen-in to opposing fields. Figure 1.1 shows the basic setup of Sweet-
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Figure 1.1: Diagram of Sweet-Parker reconnection. The shaded rectangle
is the current carrying (into page) diffusion region of half length L and
half width 6. The true aspect ratio would be much smaller

Parker reconnection. The resistive layer is a rectangular region with half
width ¢ and half length L; this region carries a uniform current density j.
On either side of the resistive layer, we find oppositely oriented magnetic
fields of equal strength with inward flows at a constant velocity. To the left
and right of the diffusion region, we find symmetric outflows at a constant
speed, leading to a steady-state solution. The Sweet-Parker model also
assumes the density in the inflow matches the density in the outflow.

The equations that must be solved in this model are the MHD continuity
and momentum equations, along with Maxwell’s equations in the MHD
limit. First, we apply the integrated form of the continuity equation to the
diffusion region.

0 Vin )

an(SL = 2Lvin — 20vo4n =0 —> . =7 (1.3)




The next condition comes from Ampére’s law. By drawing an Amperian
loop around the perimeter of the diffusion region, it can be seen that
By

fo0

Faraday’s law provides another constraint. In steady-state,

0B
— = E =0. 1.
Y V X 0 (1.5)

The boundary between the diffusion region and upstream applies another
condition. Since we do not allow variation in the out-of-plane direction,
the curl-free condition on the electric field implies that the out of plane
electric field is uniform in space. This means the electric field driving the
current in the diffusion region is the same as the electric field driving the
inflows via the E x B drifts. As such,

Erec = 7]] = UinBO- (16)

We next look at MHD force balance in both in-plane directions. First,
we can look at force balance in the z-direction along the line + = 0. We
neglect the fluid inertial term in the inflow, as we expect the kinetic energy
in the bulk inflow to be small compared to the magnetic energy being
dissipated. Force balance becomes

0 B? B?

J— — ) = O — max — 70’ 17
where py is the pressure far upstream and py,x is the maximum pressure,
which is attained at the origin. A similar condition applies along the line
z = 0, except the magnetic field has been depleted here and we allow for



considerable inertia in the outflow.

B 1 1
5P+ §pv§) =0 = po+ §pvgm = Pmax (1.8)

Combining Equations 1.7 and 1.8, we find that

By
v/ Hop

meaning the outflow velocity is the upstream Alfvén velocity. This allows

= V4, (19)

Vout =

for the full solution of the problem. By combining the results of Equations
1.3,1.4,1.6, 1.9, and the definition of the Lundquist number above, we find

2 _ ZA _ 512, (1.10)
meaning that 0 < L in the typical regime of S >> 1, and the Sweet Parker
reconnection time is the geometric mean of the diffusive and Alfvén times.
While this is not as dismal as the diffusive rate that scales as S, it is still
not sufficient to explain the fast evolution of solar flares, coronal mass
ejections, and sawtooth reconnection in fusion experiments. For the solar
flare problem, the diffusive time scale is on the order of years. For the
Sweet-Parker model, that can reduce to months. Reconnection in solar
flares takes place on the order of tens of minutes.

The first model to provide truly fast reconnection was the model by
Petschek [16], which applies slow shocks to the reconnection region to
help speed up the process. The shock fronts allow for a much shorter
current layer, meaning a larger opening angle in the exhaust, which eases
the continuity constraint.

Petschek’s model gives a maximum reconnection rate of

Vin T
Vout ~ 8IS’

(1.11)
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Figure 1.2: Diagram of Petschek reconnection. The shaded rectangle is
the current carrying (into page) diffusion region of half length L and half
width 0. Black lines represent slow shock fronts.

which is nearly independent of Lundquist number, allowing for apprecia-
ble reconnection rates in realistic naturally-occurring reconnection con-
ditions with S > 1. This made the Petschek model a promising one for
explaining solar flares.

While the Petschek model predicts fast reconnection, the associated
shocks are not observed in experiments or simulations of realistic natural
reconnection configurations. MHD simulations with localized anomolous
resistivity are able to reproduce the Petschek solution, but there is little
physical justification for this ever occurring naturally. It is notable, however,
that as computational models have advanced in the field, fast reconnection
is frequently seen. Fully-kinetic simulations of collisionless (or weakly
collisional) magnetic reconnection display uniformly fast reconnection
rates, meaning that some physics included in fully-kinetic models but not
in standard resistive MHD is responsible for fast reconnection.



The minimum requirements for fast reconnection were the subject of
the Geospace Environment Modeling (GEM) Reconnection Challenge,
which was completed in 2001 through a synthesized analysis from a num-
ber of teams [8]. By simulating a symmetric 2D Harris sheet under a variety
of models (including fully-kinetic models [17-19], hybrid models with and
without electron mass and off-diagonal pressure elements [19, 20], Hall
MHD models with and without electron mass [19, 21-23], and non-Hall
MHD models [17, 22]), it was found that if resistive effects were sufficiently
small and/or sufficiently localized, all models that included the Hall term
in Ohm’s law led to nearly-identical fast reconnection rates. The Hall term
alone is not capable of breaking the electron frozen-in condition, but it
does set a fast reconnection rate regardless of the specific mechanism that
actually breaks the electron frozen-in condition.

How does the Hall term allow for fast reconnection? As the width
of the current layer drops below the ion kinetic scale (the maximum of
d; = c/wy and p; = vy, /§)e;), the ions and electrons decouple. In the sense
of Sweet-Parker scalings, this happens when the electron collision length
is smaller than the length of the current sheet.

The ions are thought to be unmagnetized at the length scale of the ion
skin depth ¢/w,;, while the electrons are magnetized down to the electron
skin depth c/w,.. As such, the reconnecting flux pulls the electrons in
closer to the X-line than the ions, creating a separation of flows. The
differing electron and ion flow patterns at this scale comprise the so-called
Hall currents, which create a characteristic quadrupolar magnetic field
structure, as is illustrated in Figure 1.3. Due to the dispersion relation
of the reconnecting mode near the X-line, the reconnection rate becomes
insensitive to the mechanism that is actually responsible for breaking
the frozen-in law [19]. The characteristic Hall magnetic fields have been
observed at the magnetopause [24], in the near-Earth region of the mag-
netotail [25-27], and also in the deep magnetotail [28].
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Figure 1.3: Structure of the reconnection region for a typical antiparallel
event. The ion flow decouples from the magnetic field in the ion diffu-
sion/dissipation region, while the electrons stay frozen-in to the field
down to the electron diffusion/dissipation region. The separation of the
flows at this scale creates a current pattern that generates a characteristic
quadrupolar magnetic field in the out-of-plane direction. Reproduced
from Fig. 4 of Ref. [1].

More recent work in reconnection has shown that fast reconnection
can be attained even in MHD regimes through the plasmoid instability
[29, 30]. This is an MHD instability associated with long Sweet-Parker
current layers that causes the layer to break up into a chain of magnetic
islands or “plasmoids" along the layer. This instability can form secondary
reconnection layers that will in turn fall victim to the plasmoid instability,
leading to fast reconnection in the MHD regime. However, in this scheme,
the current layers will eventually reach the kinetic scale, at which point

fast reconnection proceeds anyway in a physical system [31].
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1.3 Anisotropic Model of Electron Dynamics in

Magnetic Reconnection

In contrast to solid conductors, plasmas are remarkable in that their elec-
trical conductivity increases with increasing temperature. The hot fusion
plasmas that have driven the development of plasma physics as a discipline
are very good conductors, preventing magnetic diffusion and allowing
the frozen-in condition to apply almost everywhere. Although collisions
are infrequent enough to keep the magnetic field well frozen-in, fusion
plasmas still tend to have collision times that are much shorter than typical
dynamical times, such that the electron distributions are isotropic and
nearly Maxwellian. Even relatively small collision frequencies can signifi-
cantly alter the kinetic structure of reconnection [32]. This is not the case
in many space plasmas, which have much longer collision times thanks to
their reduced density. In fact, an electron in the solar wind will typically
travel an order unity fraction of the distance from the sun to the Earth
(~ 1 AU) before experiencing a collision. For dynamic systems like Earth’s
magnetosphere, which are small in comparison to the collision length, this
makes the plasma truly collisionless, and the electron distribution function
need not maintain isotropy. This section will cover the anisotropic electron
model that will be used extensively in this thesis, largely following Ref. [2].

In a truly collisionless plasma system, the kinetic equation is Hamilto-
nian, and therefore Liouville’s theorem [33] applies, meaning the distribu-
tion function is constant along characteristic trajectories. This allows for a
model to connect the distribution function at a certain location to some
upstream distribution through the characteristic particle trajectories. To
do this, it is most useful to move to a reduced model that incorporates
some common assumptions about the plasma; in this case, the drift kinetic
model is an appropriate level of reduction. Drift kinetics assumes that the

particles are well-magnetized, and we can ignore the fast gyroorbit about
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the magnetic field lines. Consequently, this encodes the conservation of
the first adiabatic invariant magnetic moment p = mv? /2B, and reduces
the perpendicular dynamics to those of the drift velocity. For the electrons,
the drift kinetic equation is

of

=5 = 1.12
=0, (112)

E—F (VH +VD> .V]E-i- l,uaaf —6(VH +VD> E]

where £ = m(vf + v1)/2 is the kinetic energy of the electron, f is the
gyroaveraged distribution function, and

2

ExB muv? muj,
_ - vB -y, 11
VD 52 Wz b x VB B X K (1.13)

is the guiding center drift, with the unit vector b = B/B aligned with the
magnetic field and the curvature vector K = (b - V)b. The guiding center
orbits of electrons are the characteristics of this equation, along which f
is constant. Some fraction of the guiding center orbits may be trapped in
the magnetic geometry, while other orbits pass along field lines without
changing the direction travelled along a field line. The distinction between
these two types of orbits will be crucial to describing the dynamics of
magnetic reconnection.

Particles trapped in slowly changing fields are fundamentally char-
acterized by their first two adiabatic invariants— the magnetic moment
p = mvi /2B corresponding to the gyromotion, and the action integral
J = ¢ v)dl corresponding to the bounce motion. With orbits fully char-
acterized by these two quantities [34-37], it follows that the distribution
function can be written as f = g(u, J), which can be an arbitrary function
matching the appropriate boundary conditions. Generally, when the re-
connection region is approached, B decreases. To conserve ;, v, must

also decrease. At the same time, bounce orbit lengths tend to decrease,
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which requires v to increase to conserve J. As such, in the limit of a fully-
trapped distribution, such as existed in an infinite cusp configuration for
reconnection experiments on the Versitile Toroidal Facility (VIF) [35, 38],
strong anisotropy favoring the parallel temperature develops.

In general reconnection scenarios, the magnetic field strength does
not decrease so much near the reconnection region that all electrons be-
come trapped. Early Wind spacecraft measurements of electron distri-
bution functions during reconnection in Earth’s magnetotail revealed
strongly anisotropic features [28]. The magnetic trapping model used
on VTF worked well to describe the distribution of higher energy elec-
trons, but in order to properly match at lower energies, an acceleration
potential ¢ = [;° Edl needed to be invoked [39]. Strictly speaking, this
is a pseudopotential, as it includes inductive components of the electric
tield, though it represents the fields experienced during a particle orbit
well. This acceleration potential added additional electric trapping, which
is independent of energy. For the Wind event, the acceleration poten-
tial was nontrivial and much larger than expected e¢| ~ 37T.. As such, a
proper model for reconnection must account for both electric and magnetic
trapping effects while allowing for untrapped “passing" particles.

The model can be divided between trapped and passing cases in a 1D
flux tube model. Figure 1.4 shows the basic division of the model, with
the flux tube fed by upstream distributions from either side of the parallel
direction, and trapped particles existing between them. Under the limit of
fast electron transit time for passing particles, the lowest order terms of
Eq. 1.12 yield
oh _
o€
By integrating along the characteristic orbit (this is the magnetic field

V|- Vfo—e(v)-E) 0 (1.14)

line in the drift-kinetic limit), a solution for passing electrons is obtained.

fo(€1,€L) = fool€ — €df — B, 1Bxo) (1.15)
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Figure 1.4: Illustration of an expanding flux tube. Each side of the distribu-
tion is fed by an upstream "half-Maxwellian" distribution. The distribution
below the flux tube is representative of a location somewhere inside the
tube, where the blue and red portions correspond to passing electrons
originating from the corresponding upstream distributions. The green
portion of the distribution represents electrons that are trapped by some
combination of a magnitude of B that is depressed relative to the field
strength at the ends of the flux tube and the parallel electric potential ¢),.
Figure reproduced from Fig. 3 of Ref. [2].

with ¢ﬁt = [ Eydl corresponding to the acceleration potential to
either end of the flux tube. The boundary between trapped and passing
particles is defined by £ — eqbﬁ — pBs = 0, meaning that a marginally
trapped electron will deplete its energy exactly at the end of the flux tube.

Trapped electrons are confined long enough that no terms are negli-
gible in Eq. 1.12; however, as mentioned earlier, the trapped trajectories
are fully defined by their adiabatic invariants, and as such f; = g(u, J) for
the trapped portion of phase space. As such, it is only needed to find a
g(p, J) that satisfies the boundary conditions at the ends of the flux tube
for marginally trapped particles, i.e. (i, J) = fuo (SHOO(M, ), E oot J))
corresponding to the energies at which the trapped electrons entered the
flux tube.
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By conservation of the magnetic moment, £, (i, J) = pBe. Exact
calculation of £ requires knowledge of the electric and magnetic ge-
ometry; however, to become trapped, the particle must have a flux tube
transit time at least comparable to the development time of the electric and
magnetic wells, which develop slowly compared to the thermal transit of
the flux tube. As such, it is useful to approximate the electrons as having
no parallel energy at the ends of the flux tube. This leads to the trapped

solution

Jo(€1,€L) = foo(Eoor ELoe) = foo(0, 1Bxo) (1.16)

Combining the trapped and passing populations, we arrive at the full

description of the distribution function

f&L,€EL) = |
foo(€ — €d)| — B, 1Bs)  passing.

_ {foo(O, pBss) trapped (1.17)

This model has inputs of the upstream distribution function, the paral-
lel potential ¢, and the upstream magnetic field strength. The simplest
case models the upstream distribution as an isotropic Maxwellian with
density n., and temperature 7.. With these constraints, there are four dis-
tinct regimes based on the sign of the parallel potential ¢ and the strength
of the local magnetic field B relative to the upstream value B,. These
parameters determine the shape of the trapped-passing (TP) boundary,
which accounts for most of the interesting features of the model. The TP
boundary is described by the curve where &) = £ — e¢| — B = 0,
where positive values are passing and negative values are trapped. Figure
1.5 shows contours of sample distributions for each case.

Near the z-line in the 2D picture of reconnection, the in plane mag-

netic field goes to zero, while the guide field tends not to increase by an
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appreciable fraction of the reconnecting field. This means that near the
current sheet, we will typically expect to see cases where B < B, and
magnetic trapping will play a significant role in the electron dynamics.
As it turns out, electrons tend to also be electrically trapped with ¢, > 0
in reconnection inflows, producing two passing populations shifted by
the parallel potential and a large trapped region dividing the two passing
populations. The trapped-passing boundary is a hyperbola with foci on
the v-axis. If ¢, < 0, magnetic trapping still effects particles with pitch
angles near 90°, but the two inflows are no longer separated. The trapped-
passing boundary is now a half hyperbola with foci on the v, -axis. The
case with B > B, is less common in reconnection scenarios, but we will
see that it is occasionally relevant in Chapter 3. For the case with ¢ > 0
and B > B, the trapped region is a bounded semi-ellipse surrounded by
the passing region. In the final case, ¢;; < 0 and B > B, no trapping is
allowed, and the resulting distribution function is purely passing particles
shifted by the parallel potential from the upstream.

Since constant contours of the distribution function are horizontal lines
in the trapped portions of phase space, the trapped region will always
contribute more to p| than it will to p, . Meanwhile, the passing portions
of the distribution reflect the isotropy of the upstream distribution. As
such, larger trapped regions imply stronger pressure anisotropy pj/p.,
with p)|/p. > 1 for an isotropic upstream distribution. As such, the typical
case of both electric and magnetic trapping will produce the most strongly
anisotropic distributions, while the case with no trapping will result in
completely isotropic distributions.

With an analytic solution to the distribution function for any given
the upstream distribution, the parallel potential, and the ratio of the local
magnetic field strength to the upstream magnetic field, moments can
be taken to gain insight into the fluid properties of the plasma in this

model. For simplicity, we tend to model the upstream distribution as either
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Figure 1.5: Four cases of the theoretical model distribution with a
Maxwellian upstream distribution. The form of the distribution func-
tion is intimately related to the shape of the trapped-passing boundaries
(black), which are determined by the parameters ¢ and B/B. Trapped
portions of the distribution are shaded. ¢ determines the intersection of
the trapped-passing boundaries with the v|| axis (or the closest approach
thereof) and B/B., determines the opening angle of the trapped-passing
boundaries. Note that in the case of ¢| < 0 and B > B, the entire distri-
bution is composed of passing electrons. In these figures, ¢ = £7, /e and

B/B., = 2%
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an isotropic Maxwellian, or a bi-Maxwellian with separate parallel and
perpendicular temperatures, but this is not a requirement of the model.

For any upstream distribution function that decreases monotonically in
both parallel and perpendicular energy, the partial derivative of the phase
space density with respect to ¢ is positive in passing regions and zero
in trapped regions. At the TP boundary, increasing ¢ will expand the
trapped region, and trapped electrons at any given . have higher phase
space density than passing particles with the same ;. value. Since there
are always portions of phase space which are passing, at a given value
of B/B., every purely even moment of the distribution function is con-
tinuous and strictly increasing in ¢;| (the moments that are odd in any
of the three orthogonal velocities are zero with the assumed symmetry),
and all tend toward 0 and oo as ¢ — Foo, respectively. As such, there
exist bijective mappings gax 212m : R — (0,00) for k,1,m € Ny such that
9ok21.2m())) is the moment [ vi*vT 0% fd*v. As these mappings are bijec-
tive, any purely even moment of the distribution function can in principle
be inverted to find the parallel potential. This is most useful with the
density.

Solving for the parallel and perpendicular pressures in terms of the
local density and magnetic field relative to their upstream values gives
equations of state (EoS, these specifically will be referred to as “the EoS")
which give insight into the behavior of the plasma and can potentially
provide a closure for fluid treatments of the electrons. While analytic
forms of the EoS do exist for the isotropic Maxwellian upstream case
[40], they involve hypergeometric functions and are costly to compute
without providing much intuitive value. In practice, it is easier to do
the inversion numerically to calculate equations of state. Through this
procedure, the EoS were verified to hold in fully-kinetic simulations of
magnetic reconnection [41].

In the context of simulating a fluid species, calculating the EoS through
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numerical inversion is expensive, so it may be desirable to have a reduced
model that approximates the EoS at lower cost. An approximate fit of the
EoS for typical reconnection parameters is given in [41], which interpolates
the asymptotic limits of the model. This fit is given by

2 T3 2«
D = T ~ 1.18
o=y T B 2a 1 1 (1.18)
1 O}
DL =Tl nB 1.19
PL n1+a+n a+1 ( )

where for a local quantity (@), Q=0Q / Qoo With Q) the “upstream” value at
the end of the flux tube and « = 7%/ 52. In the small « limit, ; and 5, both
scale as 7. This is an isotropic isothermal limit, which is the Boltzmann
limit of particles working against a potential. In the large « limit, p), scales
as i’/ B?and p, scales as n.B, which corresponds to the double adiabatic
Chew-Goldberger-Low (CGL) model [42], which is intended to model
trapped particles conserving their first two adiabatic invariants. The EoS
incorporates both limits, roughly mediated by the fraction of particles that
are trapped.

Egs. 1.18-1.19 have been implemented as an electron closure in two-
fluid simulations of magnetic reconnection [43] in the HiFi multi-fluid
modeling framework[44]. Aside from the EoS as the electron closure, the
simulations use an adiabatic ion closure and compressible flows. Hyper-
resistivity allows for the frozen-in condition to be broken, and the addition
of ion viscosity and thermal conductivity provides numerical stability. The
simulations were compared to equivalent simulations using an isotropic
isothermal electron closure. The anisotropic closure was able to reproduce
some aspects of fully-kinetic simulations that the isotropic closure could
not. In particular, the extended embedded current layers that mark Regime
3 of Ref. [45] were seen with the anisotropic closure, but not the isotropic
one. These extended current layers form where the marginal electron
firehose condition is approached, i.e. yio(pe1 — pe))/B* ~ 1. Clearly, this



20

limit cannot be approached in the context of an isotropic electron closure,
as the firehose condition is identically zero.

Likewise, the closure has been successfully implemented [46] in the
H3DI[47] hybrid framework, which treats the electrons as a fluid and
the ions kinetically through the particle-in-cell (PIC) method. Similarly
to the two fluid results, the extended current sheet developed with the
anisotropic closure, but not with an isotropic isothermal closure. This
allows for an intermediate level of modeling that retains full ion kinetic
effects, while not requiring the costly resolution of the electron kinetic
scale.

Beyond computational considerations, this anisotropic EoS can be ap-
plied to better understand the bulk heating of electrons in the magnetic
reconnection exhaust. Observational evidence has suggested that the tem-
perature gain in the reconnection exhaust scales as AT, ~ m;v% [3], where
the Alfvén speed is based on the reconnecting component of the magnetic
field only. A theoretical scaling consistent with the observational data
can be derived through the anisotropic EoS in the weak to intermediate
guide-field regime[48]. The crucial elements of the analysis are the EoS,
force balance across a steady-state reconnection layer, an adiabatic ion
closure, and the assumption that the minimal magnetic field point in the
exhaust (where density and electron temperatures will be maximal by
force balance and the EoS) is regulated by the marginal electron firehose
condition. This creates a system of four equations with the same number
of unknowns, which can be solved numerically and shown to be consis-
tent with the observational data. The bulk heating of electrons during
reconnection is encoded in the dynamics leading to the EoS.
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1.4 The Magnetospheric Multiscale Mission

NASA launched the Magnetospheric Multiscale (MMS) mission on March
12, 2015, with the goal of studying magnetic reconnection in Earth’s mag-
netosphere in more detail than ever before possible. MMS is composed
of four spacecraft that orbit Earth in a tetrahedral formation, each inde-
pendently measuring electric and magnetic fields and full distribution
functions for ions and electrons. The formation was originally set to orbit
such that it would pass through the magnetopause to observe dayside re-
connection, and has since had its orbit adjusted to observe reconnection in
the nightside magnetotail. When passing through a reconnection region,
MMS can go into “burst mode," where data is taken at a faster cadence,
with electron distributions recorded every 30 ms and ion distributions
every 150 ms, allowing for the evolution of the distribution function to
be observed in detail as the reconnection layer is crossed [49]. Moreover,
the spacecraft separation is typically approximately 10 km for the dayside
campaign and 100 km for the tail campaign, as the lower density of the tail
lengthens the ion and electron skin depths which correspond to the kinetic
scales of reconnection. For the dayside, this represents about 10 d., which
is smaller than the ion kinetic scale, allowing for some spatial data relating
to local gradients. A basic illustration of the MMS formation is shown in
Figure 1.6, noting that the tetrahedral side length is adjusted according to
the mission phase. It should be noted that the ~ 10 km spacing of MMS
during the dayside campaign is a remarkable technical achievement in
itself, and in 2016 the MMS tetrahedron became the tightest formation
ever flown by multiple spacecraft.

Generally speaking, the MMS data I will be analyzing in this thesis
will come from two of the five SMART instrument suites with which MMS
is equipped, the layout of which is shown in Figure 1.7. The FIELDS [50]
suite measures electric and magnetic fields. Electric field measurements
come from the DC electric field measured by the Electric field Double
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Figure 1.6: An illustration of the tetrahedral formation of MMS at the
magnetopause and in the magnetotail. To compensate for the higher
density at the magnetopause (and thus smaller kinetic scales), MMS flew
in a tighter formation during the magnetopause portion of the mission.
Image credit: NASA.

Probe (EDP) instrument. Magnetic field measurements come from the
Flux Gate Magnetometer (FGM) instrument, which measures the mag-
netic flux on three orthogonal axes. Distribution functions come from the
Fast Plasma Investigastion (FPI) [49], which consists of four dual electron
spectrometers (DES) and four dual ion spectrometers (DIS) per spacecraft.
Each can measure the corresponding particle distribution in exponentially
spaced energy bins from 10eV to 30keV in an array of 16 x 32 angular
positions offering full 47 solid angle coverage. Other data suites exist,
such as the Hot Plasma Component Analyzer (HPCA) [51], which can
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Figure 1.7: An illustration of the instrument suites mounted to MMS.
Image credit: NASA.

determine the composition of ions measured, and the Energetic Particle
Detector (EPD) [52], which measures ions in the higher energy range of
20-500 keV. While these instrument suites certainly provide information
useful to reconnection (and other related space plasma physics), they will
not be used in this thesis. More information about how data from MMS is
handled and interpreted in this thesis can be found in Appendix A.

This influx of high quality data on naturally occurring magnetic recon-

nection has inspired many numerical and theoretical studies to explain
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what is seen in the data. This thesis will largely fall into that category,
though one chapter will focus on a model that can improve the utility of
MMS data, and another will focus on a model based on earlier spacecraft
observations and kinetic simulations of the magnetotail.

MMS data is driving high-quality research along many avenues. On the
dayside, at least 32 MMS crossings through or nearly through the electron
diffusion region have been identified [53]. Examples of research using
MMS data include explanations for crescent-type distributions observed
at the magnetopause [54, 55], studies of Ohm’s law at the x-line [10, 13, 56],
and observations of extended current layers [57]. Beyond the primary
mission of studying magnetic reconnection, MMS has also fueled work on
the solar wind turbulence [58, 59] and particle acceleration mechanisms
at Earth’s bowshock [60].

1.5 OQutline of Thesis

This thesis will cover a variety of topics related to current research in
magnetic reconnection. Chapters in this thesis will often be inspired by
specific reconnection events observed by MMS, and they will include a
combination of theory, computation, and analysis of MMS data; Chapter 4
is inspired by the MMS setup, but not by any particular event, though it
has the potential to aid in the interpretation of MMS data for many events.
Chapter 2 will discuss the validation of an anisotropic electron pressure
closure with in situ MMS spacecraft data. This includes a comparison
between MMS observations of a reconnection region, the predictions of
the anisotropic equations of state (EoS), and simulations designed to match
the MMS observation. Two simulations will be compared, showing that a
hybrid simulation using kinetic ions and an electron fluid following the
EoS outperforms a fully-kinetic simulation with the reduced mass ratio

m;/m. = 100. With the closure validated, a prediction of electron heating
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in the exhausts of high guide field reconnection events that relies on the
EoS is presented.

Chapter 3 extends the work of Chapter 2 to another set of MMS ob-
servations, this time of an asymmetric event. It is shown that the EoS
can predict the observed electron pressure when using separate upstream
populations corresponding to the two inflows and the exhaust. This event
was far downstream of the x-line ( 100d;), which is farther out than the EoS
had been tested before. Furthermore, this event was embedded in a region
undergoing magnetic compression, and this requires some corrections to
the adiabatic model, which are shown to model the observed perpendicu-
lar electron heating on top of the original EoS, with local trapping playing
a significant role.

Chapter 4 presents a drift kinetic model for obtaining gradients in
plasma properties based on local (single-point) distribution function mea-
surements. This model allows for the first order prediction of perpendicu-
lar gradients of arbitrary moments of the electron distribution function of
a plasma where the electron dynamics are assumed to be gyrotropic. This
model is verified with data from a fully kinetic PIC simulation.

Chapter 5 summarizes and concludes the thesis.
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5> VALIDATION OF ANISOTROPIC ELECTRON FLUID
CLOSURE THROUGH i Situ SPACECRAFT OBSERVATIONS

OF M AGNETIC RECONNECTION

2.1 Introduction

During magnetic reconnection, a plasma converts magnetic energy into
particle kinetic energy through a change in the magnetic topology of the
system [7]. This process undergirds many explosive energetic processes
across the universe, from sawtooth crashes in tokamaks [5], to coronal
mass ejections in the sun [4], even possibly to gamma ray bursts in distant
galaxies [6].

Understanding the heating of electrons during reconnection is a funda-
mental problem [3, 61-63], which is not least because of their complicated
kinetic dynamics. While fully-kinetic codes are available for reconnec-
tion studies [64—66], systems such as solar flares remain far too large to
be numerically tractable. Furthermore, even for smaller systems, fully-
kinetic models are often implemented at reduced ion-to-electron mass
ratio m;/m. < 1836, which can impact the properties of the electron fluid.
Simplified fluid closures are thus desired in large part because of the re-
duction in computational intensity they provide. For a fluid closure to be
useful, it must retain the dominant kinetic effects of the system in question
while not requiring resolution of the smallest of the disparate scales that
arise in plasma physics.

Several closures have been formulated to capture certain aspects of
kinetic physics. For example, the Hammett-Perkins closure [67] is derived
by matching the linear Landau damping rate and then adding in various
kinetic effects important to the system being studied [68-72]. Other clo-
sures aim to maintain the Hamiltonian structure of the kinetic equation
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[73] or add specific source terms [74]. Some closures incorporate pressure
anisotropy, such as the Chew-Goldberger-Low (CGL) [42] model and its
extensions [75]. Recently, anisotropic Hammett-Perkins-like closures have
been applied to reconnection studies [76, 77].

In this chapter we revisit a closure by Lé et al. [41] (as introduced in
Section 1.3, and which we will refer to as “the EoS") derived in the adiabatic
limit of fast electron transit time. In this limit of v;,. — 0o, the Hammett-
Perkins closure predicts fully isotropic distributions; however, the model
by Lé et al. retains electron trapping effects moderating their heat fluxes
and permitting pressure anisotropy to build. Previously this closure has
tested favorably against 2D kinetic simulations, but no observational data
with sufficiently high resolution was available to rigorously test the closure
against naturally occurring reconnection geometries. Here we apply in
situ Magnetospheric Multiscale (MMS) [54] observations to validate the
closure. Notably, the model does not include off-diagonal elements of
the pressure tensor, which can be important in breaking the frozen in
condition [78]; however, on-diagonal anisotropy is sufficient to characterize
the electron fluid outside the electron diffusion region. The confirmation
of the closure model emphasizes the important role of electron trapping
in regulating the anisotropic electron temperatures, providing reviewed
insight to the processes most important for electron energization during

magnetic reconnection.

2.2 Basic Physics Governing Electron Pressure

Anisotropy

In collisionless magnetized plasmas such as the solar wind and Earth’s
magnetosphere, the electron fluid’s pressure tensor components parallel
and perpendicular to the local magnetic field become decoupled, and
the electron distribution function often develops significant anisotropy.
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The renowned analysis by Chew, Goldberger, and Low [42] considered
well magnetized particles in a collisionless plasma and used a kinetic
description to derive the following evolution equations for the parallel
and perpendicular pressure components

713 d pHB2
npY (“) +V-(g:b)+¢V-b=0 . (2.2)
dt \nB

Here the parallel heat flux q; = (¢, + 2¢s)b, with ¢, = [mwj fd’v and
¢s = 1/2 [ mw?}w fd*v representing the parallel flux of parallel and per-
pendicular thermal energies, respectively, where w represents the random
thermal motion with (w) = 0. The special case where the heat fluxes ¢,, and
¢s vanish is known as the CGL limit, in which it follows that p, « n*/B*
and p, x nB [42].

In general, however, plasmas can support large heat fluxes. In a well-
magnetized plasma, the parallel heat flux tends to be much larger than
the heat flux across field lines. In a collisional plasma the parallel heat
flux is well modeled as q; = (¢, + 2¢s)b = —x) V| T [79]. In the case of a
collisionless plasma, as is seen in Earth’s magnetosphere, this Braginskii
scaling implies an infinitely high heat conduction « ~ V2 Teollision — 0O-
Egs. 2.1 and 2.2 then yield the Boltzmann limit where the plasma is isother-
mal along field lines. Derivations of the CGL and Boltzmann scalings can
be found in Appendix B.

In reality, even in the collisionless limit, heat conduction remains finite,
as it is limited by the finite thermal speed v;;,. This effect is captured in
Hammett-Perkins-like closures [69], including those recently implemented
for collisionless reconnection simulations [77]. Here the CGL limit is ap-
proached for perturbations with w/(kjjv,) > 1, whereas the Boltzmann re-

sponse emerges in the opposite limit, w/(kv:,) < 1. For a typical reconnec-
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tion inflow speed of 0.1v,4, (Where the Alfvén velocity is based on only the
reconnecting component of the magnetic field 5,), we may estimate for the
reconnection region dynamic time and length scales that 27 /w ~ d;/(0.1v,4)
and 2 /ky =~ 10d;\/ B2 + B?/ B, (the length of fieldlines assuming the sys-
tem scale is 10d; in the direction of the reconnecting field), such that
for electrons w/(kjjvin.e) = (va/vine)\/ B2+ B2/B, = \/me/m;i/\/Be. This
implies that in magnetospheric reconnection geometries the electron dy-
namics fall in the regime w/(kjvn.e) ~ 1/1/1836//0.1 ~ 0.1 < 1. Thus,
Hammett-Perkins-like closures predict that the electron thermal streaming
is sufficiently large that the electron fluid should be well represented by
the Boltzmann limit.

For a collisionless plasma we find another mechanism, particle trap-
ping (not included in the Hammett-Perkins closure scheme), to be most
important for moderating the electron heat fluxes. Conservation of energy
and magnetic moment for magnetized particles allows for trapping both
by the mirror force and electric pseudopotentials that develop along field
lines. In essence, the trapped particles have no heat exchange with the
external plasma and the pressure components of the trapped population
follow the CGL limit where p; o« n*/B? and p, « nB. The closure of
the EoS accurately distinguishes between the passing populations (with
infinite heat conduction), and trapped populations (with zero heat con-
duction), yielding a smooth transition between the Boltzmann and CGL
limits based the relative fraction of trapped particles. The theoretical basis
for the model is discussed further below, with MMS observations pro-
viding examples of the structure of the electron distribution functions
underpinning this EoS closure.
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2.3 MMS Observations

On October 31, 2015 around 07:16 UT, MMS encountered a reconnec-
tion region, as described by Ref. [80]. As illustrated in Fig. 2.1a), MMS
passed through the exhaust ~ 7 — 10 d; from the z-point. In this event,
reconnection occurred between two colliding reconnection exhaust jets
in a compressed current sheet at the center of a magnetic flux rope at
Earth’s magnetopause and was roughly symmetric with a large guide
tield, B, ~ 2B,. Fig. 2.1b) shows the magnetic field components and how
the guide field dominates. The drift kinetic model of Refs. [2, 81] provided

the basis for the EoS and predicts electron distributions of the form

fxv) = (2.3)

foo(0, pBso) trapped
foo(5 - €¢|| — puBo, MBOO) passing

for a potentially anisotropic upstream distribution function f.(&,€.)
with upstream magnetic field strength B, and fieldline integrated paral-
lel electric potential ¢;| [34], where 1 is the adiabatic invariant magnetic
moment, and £ is the electron kinetic energy. MMS observations for this
event follow this form of the distribution function for a bi-Maxwellian
upstream distribution with n., = 7.1cm™3, By, =55.5nT, T,, o, = 32.4€V,
and Tgjjoo = 1.22 T¢ | .

By calculating the density moment n(B, ¢) = [ fd*v of Eq. 2.3, it is
clear that ¢ is important in regulating the density of the electrons [41]. An
ambipolar parallel electric field develops across ion scales, and a profile of
¢ develops to ensure n. ~ n;, required by the principle of quasineutral-
ity. The relatively large parallel potential (e¢|| > T.|~) that forms in the
exhaust leads to elongated distributions with enhanced electron density,
while ¢; < 0 repels electrons and leads to a lower density. This can be
seen in Figs. 2.1c), d), and e), corresponding to the inflow, density cavity,

and density peak, respectively, where the distribution function measured
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Figure 2.1: a) Sample geometry of magnetic reconnection and the path
MMS3 took through the exhaust. Examples of typical trapped and passing
particle trajectories are drawn in. b) Magnetic field traces that MMS3
measured along its trajectory. c), d), and e) are the electron distribution
functions measured by MMS3 at the points marked in a), which correspond
to the inflow, the density cavity, and the peak density in the exhaust.
Black contours represent the trapped-passing boundaries, and the model
distribution is to the right. The dashed theoretical contours correspond to
the same phase space density in all three distributions.

by MMS is overlaid with the theoretical contours. The inflow is weakly
anisotropic and contains a small trapped population. The density cavity
has a repulsive potential, causing all electrons in the chosen time window
to belong to the passing population. In this strong guide field regime, the
magnitude of the magnetic field does not change much across the reconnec-
tion layer. As such, electrons are primarily trapped by ¢, demonstrated
by the small opening angle of the trapped-passing boundary.

Asis evident from Fig. 2.2b) this event exhibited strong parallel electron
heating, especially where the density was enhanced in the reconnection
exhaust. It is also notable that 7| did not drop in the exhaust’s density

cavity. The observed levels of anisotropic heating can be predicted based
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on the model for f in Eq.2.3. Asin Ref. [41], higher order velocity moments
of this distribution can be taken to also obtain p; and p, as functions
of B/B and ¢. Notably, for any given value of B, n(¢)) is invertible,
such that ¢|(n) can be used in the pressure moment equations to yield
the equations of state (EoS) p|(n, B) and p, (n, B). This is readily done
numerically for any reasonable upstream distribution f.. (&, £1).

The parallel and perpendicular ele ctron temperatures measured as
MMS3 traverses from the density cavity to the density peak are shown as
a function of density in Fig. 2.2a). Scaling predictions for T, in the Boltz-
mann and CGL regimes are overlaid on the plot, as well as the EoS scalings
that span the two regimes. It can be seen that the CGL scaling holds in
the high density regime, where a stronger parallel potential develops and
traps more electrons, simultaneously inhibiting heat conduction along
field lines. In the low density regime, the majority of electrons come from
passing orbits, which are mostly shifted in energy by ¢,. This causes the
low density regions to approach the familiar Boltzmann limit of constant
temperature. The EoS, shown with black dotted lines, are able to success-
fully span these two regimes and predict the parallel and perpendicular
electron temperatures accurately.
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Figure 2.2: a) Electron parallel and perpendicular temperatures, plotted
as functions of the number density. These measurements recorded by
MMS3 are compared to Boltzmann, CGL, and the EoS scalings. The data
plotted correspond to the segment of time marked by the red bars in b)
and Fig. 2.1 b). b) Electron density and temperatures measured by MMS3,
with density normalized to ng = 8 cm™® and temperatures normalized to
Ty = 34eV.
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24 Comparison to Simulations

The EoS can be applied in simulations, where aspects of the kinetic behav-
ior of the electrons can be captured without introducing disparate time
and spatial scales. Previously, fluid simulations using the EoS closure
have been shown to reproduce some regimes of kinetic electron dynamics
in reconnection [43, 48], while ion kinetic effects can be retained through
the use of hybrid (kinetic ion/fluid electron) simulations. To compare
with MMS data, we performed an H3D hybrid simulation [47] with an
anisotropic electron pressure closure [46] with parameters to match the
event presented in this chapter (B,/B, = 1.75, 8. = 0.02, T; /T, = 9.1) with
force-free initial conditions. In this simulation, the ions are treated kineti-
cally via the particle-in-cell (PIC) method, and the electrons are modeled
as a fluid with pressures determined by an approximate form of the EoS
[41], as in [46], with upstream anisotropy T¢|| = 1.22 T;,. The domain is
2048 x 1024 cells = 80d; x 40d; and contains 400 numerical ion particles
per cell. An explicit hyperresistivity breaks the frozen-in condition.

The results of this simulation at ¢ = 80/¢2; are comparable to the MMS
observations. Color contours of electron density can be seen in Fig. 2.3a).
The exhaust was identified to be approximately 3.5 d; wide in Ref. [80].
We identify a cut of the exhaust in the simulation with approximately this
width. Fig. 2.3b) shows the electron temperatures and density (normalized
to upstream values) along this cut. These results are in good quantitative
agreement with MMS observations in Fig. 2.2a).

Fully-kinetic simulations at reduced mass ratio do not reproduce the
electron heating as accurately as the hybrid simulation with the EoS. The
cut obtained from a VPIC [66] simulation with m;/m. = 100 and the
same upstream parameters is shown in Fig. 2.3c). A significant dip in T,
is observed within the density cavity. This is in contrast to the hybrid
simulation, which breaks from the CGL-like scaling at low values of n.

The distinction comes from the large parallel heat flux allowed by the
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passing electrons when the electrons stream much faster than the bulk
reconnection dynamics. For low mass ratio PIC simulations the electron
thermal speed, which scales as y/m;/m. relative to the Alfvén speed, does
not provide sufficient parallel heat flux to prevent a temperature dip in
the density cavity. This follows from the analysis of the Hammett-Perkins
closure in Section 2.2, where w/(kjjvn.e) = /me/m;//Be; however, with
a reduced mass ratio of 100, we now have w/(kvin.) =~ 1 which is no
longer in the asymptotic limit for the actual physical mass ratio, and
even fully passing populations of numerical electrons cannot support
the physical heat flux. As such, the massless electron limit of the EoS more
accurately models the parallel heat flux of the physical system. Thus, for
trapped electron dynamics during reconnection, the limit m,/m. — oo is
more faithful to the true system dynamics than a fully-kinetic simulation
with m;/m. ~ 100 while simultaneously being far less computationally

intensive.
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Figure 2.3: Density profile of the a) hybrid and b) fully-kinetic simula-
tions. c) Normalized electron density and temperatures from the hybrid
simulation along the cut marked in a). d) Normalized electron density
and temperatures from the fully-kinetic mass ratio 100 simulation along
the cut marked in b).

2.5 Heating Predictions

The observational results presented above document how the electron
heating is controlled by the local values of n and B relative to n, and By,
of the external plasma feeding the electrons parallel streaming into the
region. Thus, with the EoS the electron heating problem is reduced to
the problem of determining representative exhaust values of n/n. and
B/B. This process was previously shown in [48] for a moderate guide
field regime and [82] near the x-point in antiparallel reconnection. For
moderate to low guide field regimes, the electrons approach the firehose

limit where p,| — p.1 ~ B?/uo providing (with force balance across the



37

layer) equations that can be applied for determining n/n., and B/Bx
and thereby estimating the electron heating as a function of the upstream
plasma parameters.

In the limit of high guide field, the current sheet typically does not
approach the marginal firehose condition, meaning that some other condi-
tion must be applied to estimate typical values of 7 and B. Here, we use
the ansatz that the overall magnetic field strength should reduce to the
strength of the guide field where the temperature peaks. We then solve
for the density perturbation through force balance across the layer with
adiabatic ions. In the limit that 3, > ., the inputs for the EoS become

. B 1\ T
BB ﬁ:<1+> | 2.4
/B + B2 Br

where (3, the ion beta based on the reconnecting field strength. From
this, AT, /T, can be defined as (| + 2p.1)/(3n) — 1. Fig. 2.4 shows the
predicted electron heating across the layer versus .. This can be compared
to observations in [3], which identify AT to scale as m;us? = B2 /nu,. For
high beta plasmas, we do not expect much heating. On the contrary, in
the low-beta regime we asymptotically expect heating to go as

T, B+ B T B? —I— B? —¢

ATe - 7T€ g r - — 6 Sk — r 2.
- ot = T2 g 25)

based on the approximate form of the EoS found in Eq. 4 of [83].

When normalized relative to the previously assumed scaling of m;v4?,
we see that only a weak beta dependence is retained, making it roughly
consistent with a constant over the range of 3 observed, where guide field

strength and electron-ion temperature ratios play a more significant role.
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Figure 2.4: Predictions for electron temperature gain across the recon-
nection layer by the EoS with an adiabatic ion closure. Note the weak
scaling relative to that laid out in [3]. This plot was produced assuming
Tiso/Tess = 10. The X roughly marks the temperature gain observed in
the 10/31/15 event, where B, = 1.75 and ., = 0.085, while the observa-
tional scaling of Ref. [3] is shown as a green dashed line.
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1Y A

(2.6)

Based on this weak asymptotic scaling and the curves of the full force

balance solution in Figure 2.4, we conclude that AT, /(m;v%) ~ 0.02 for
B,/B, 2 1 and typical magnetospheric ..o, ~ 1072 — 107!, and as such,
this heating scaling is consistent with the observed scaling in [3].
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2.6 Discussion and Conclusions

In summary, we have demonstrated the validity of the EoS for guide field
reconnection with in situ MMS observations of magnetic reconnection for
the first time. Furthermore, we find that an implementation of the EoS
as an electron fluid closure for hybrid simulations with PIC ions better
reproduces these MMS observations than fully-kinetic PIC simulations
at reduced values of m;/m.. This highlights how the closure of the EoS is
applicable to numerical simulations, especially pertaining to the problem
of electron energization in large scale plasma configurations subject to
magnetic reconnection. Finally, we used the EoS to predict how electron
heating scales in the exhausts of strong guide field reconnection, finding
a result that is consistent with existing observational evidence. Going
forward, the EoS can provide further insight into the interpretation of
MMS data. For example, by fitting MMS data to the EoS it is possible to
infer the upstream conditions, which may not be clear from the data traces
provided by MMS. This theme will partially be explored in Chapter 3,
where we will see an event whose upstream conditions are nowhere seen
in the MMS data trace. The results of this chapter were published in
Ref. [84].
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3 ANisotrorIC ELECTRON FLuiD CLOSURE
VALIDATED BY in Situ SPACECRAFT OBSERVATIONS IN

THE FAR ExHAUST OF GUIDE-FIELD RECONNECTION

3.1 Introduction

Magnetic reconnection is the process that changes the magnetic topology
of a plasma system [7] and is often associated with a rapid conversion
of magnetic energy into kinetic energy in bulk flows, fast particles, and
thermal heating. Reconnection fuels energetic events in many plasma
systems, including solar flares and coronal mass ejections on the sun [4, 85]
and magnetic substorms in Earth’s magnetotail [86]. Reconnection is the
key process that allows solar wind plasma to enter Earth’s magnetosphere
[87, 88], chiefly at the dayside magnetopause.

While it is known that reconnection converts magnetic energy into par-
ticle kinetic energy, the details of the energy transfer are still only partially
understood. In particular, the processes by which electrons gain energy
are important, as radiation originating from hot electrons constitutes the
best observational evidence of astrophysical magnetic reconnection [1].
Observational work has shown that the electron temperature gain via bulk
heating AT, in the reconnection exhaust scales proportionally to m;v3,
where v, is the Alfvén speed in the inflow based on only the reconnect-
ing component of the magnetic field [3]. Further work with fully-kinetic
simulations suggests that an electron heating mechanism must satisfy
several properties, including the experimentally observed scalings with
little dependence on the distance from the z-line, and preferential heating
in the direction parallel to the local magnetic field [89].

Electron energization occurs both in the electron diffusion region and

outside of it [82]. Inside the electron diffusion region, electrons are acceler-



41

ated during the course of meandering orbits [90, 91]. Several methods for
electron energization outside of the electron diffusion region have been
proposed, which can broadly be categorized by whether the acceleration
is a result of the parallel or perpendicular components of the electric field.
Direct acceleration models rely on parallel electric fields (seeded by the
reconnecting electric field) to accelerate electrons along field lines. In the
guiding center limit, perpendicular electric fields can energize electrons
through a nonzero dot product with electron drifts. Fermi-type mod-
els [62] rely on the dot product of perpendicular electric fields and the
electron curvature drift. The V B drift can also energize electrons [61],
which in the adiabatic limit constitutes betatron heating. Dependence of
energization on velocity space also varies between the mechanisms. Direct
acceleration via a single z-line provides a relatively constant energy boost,
while the mechanisms that energize via perpendicular electric fields can
provide energy gains proportional to the initial electron energy, allow-
ing for power-law tails to develop in the electron distribution function.
Fermi-type mechanisms primarily energize in the direction parallel to the
magnetic field and the heating efficiency decreases significantly in the
presence of a guide magnetic field [63]. For comparison to observation, it
is also important that Fermi-type models generally consider the heating
of particles in closed systems, providing an evaluation of the average heat-
ing as magnetic flux loops contract, with no information on temperature
variations along the magnetic flux tubes.

In nature, however, reconnection regions are often embedded in larger
plasma systems. Given the low mass of the electrons, their thermal speed
is (in most cases of interest) much larger than the Alfvénic plasma bulk
motion. The heat fluxes of the electrons streaming along magnetic field
lines then become essential to the regulation of the electron temperature.
In fact, as discussed in Section 2.2, by making a few estimates regarding

the geometry of the reconnection region, closures derived from simple
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kinetic models [69] show space plasmas with 5. 2 100m,./m; ~ 0.05 have

an electron thermal speed large enough to imply that they can support
sufficiently strong heat conduction for the plasma to be in an MHD-like
regime; in this regime, the electron temperature throughout the reconnec-
tion region is uniform and set by the temperature of the ambient plasma.
As such, the electron pressure would follow the Boltzmann scaling p = nT"
with a fixed temperature 7' = T',. Guided by spacecraft observation [92]
it has been established that the main mechanism for reducing the parallel
electron heat flux is trapping of electrons in their rapid motion along mag-
netic field lines. This trapping can be a consequence of both the magnetic
mirror force as well as parallel electric fields. Considering the limit of a
vanishing electron mass (m. — 0) a kinetic model [93] for the electron
distribution function was developed, which can account for the variations
of the electron distribution function along magnetic field lines, taking the
source of electrons streaming in along the magnetic field lines from the
plasma ambient to the reconnection region into account.

Given the rather different kinetic response of the electrons parallel and
perpendicular to the magnetic field, the electron pressure tensor compo-
nent aligned with the magnetic field decouples from those perpendicular
to the local magnetic field. The kinetic model of Ref. [93] has been shown
to hold through kinetic simulations near the z-line [41] and the types of
elongated distributions that the model produces have been observed in
spacecraft data [37, 92, 94]. Based on the kinetic description a fluid closure
model was distilled into equations of state [2, 41] (from here on, referred
to as “the EoS") that determine the parallel and perpendicular pressure
based on local density and magnetic field strength normalized by the
conditions of the upstream plasma populations. Within their realm of
validity (B, > 0.2B,.. [45], and Beoc > y/m./m; [95]) the success of the EoS
in describing electron bulk heating in reconnection demonstrates that heat

fluxes from the upstream reservoir play an important role in the process.
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While the predicted form of the electron distribution functions and the
EoS have been verified near the z-line in simulations and with new data
[84, 96] from the Magnetospheric Multiscale (MMS) mission [54], so far
the model has not been tested in the region far from the z-line.

In this chapter we analyze the MMS event considered by Ref. [97] and
demonstrate the applicability of the EoS electron closure model extends
far into the exhaust, ~ 100d; downstream from the z-line. The implica-
tions of this analysis are important because they emphasize the role of
nonlocal kinetic effects including electron trapping in regulating the elec-
tron energization and heat fluxes at the global scale of magnetospheric
reconnection exhausts. The chapter is organized as follows— Section 3.2
begins by revisiting past results on the structure of the reconnection region
during guide-field reconnection, including the origin of the quadrupolar
density perturbation, which are not widely-known, but are important
to understanding the nature of the electron heating process. Section 3.3
presents evidence that the event considered in this chapter is embedded
in a region of broad-scale compression, with implications for the scaling
of the electron energization. In Section 3.4, we show that the EoS holds
for this event far downstream of the z-line for three distinct regions corre-
sponding to the slightly asymmetric inflows and the exhaust. In Section
3.5, we extend the model to include additional perpendicular heating far
into the exhaust. Section 3.6 concludes the chapter with a discussion of
the results.
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3.2 General Structure of Electric Fields and
Plasma Density during Guide-Field

Reconnection

In this section, we review the basic physics underlying the EoS in guide-
field regimes of reconnection and demonstrate that the well-known quadrupole
density structure is a direct consequence of the in-plane potential and is not
tied to the kinetic Alfvén wave— a result that is not widely-appreciated. In
Fig. 3.1 we present data from a kinetic simulation for a configuration with
B;/B,e. = 0.8 implemented at m;/m,. = 1836 for a domain of 20 x 20d;.
This simulation was part of the study presented in Ref. [45], which pro-
vides more details on the run.

In estimating the electron heating during guide-field reconnection, it is
tempting to assume that the electrons are simply accelerated by the com-
ponent of the reconnecting electric field aligned with the guide magnetic
field [98, 99]. For the present simulation this so-called direct acceleration
can be quantified as ¢, = [ Eye, - dl, where the integral is computed
from a point x along the corresponding magnetic field line out to the
ambient plasma. As such, in Fig. 3.1a) we calculate ¢, by integrating along
the direction of the field lines indicated by the arrows all the way to the
simulation boundary. Because of the guide field, the path of the integral
for points close to two of the four separatrices will include relatively long
sections running nearly parallel to the z-line in the out-of-plane direction.
Thus, along two of the separatrices we observed e¢, ~ 507, which is the
amount of energization that an electron will gain from the reconnection
electric field F, when streaming along a magnetic field line through the
reconnection region.

This strong energization estimated by ¢,, however, is not physical as
it would cause charge separation not permitted in a plasma; instead, in-
plane electric fields develop to quell the electron acceleration. In fact, from
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Figure 3.1: a) The so-called direct acceleration potential e¢, /T, integrating
the out-of-plane electric field along field lines whose in-plane projections
are shown in black. b) The in-plane electrostatic potential e¢/T.. c) The
combined effect of these two components, the parallel potential e¢) /1. =
e(¢+ ¢,)/T., with an example of an electron orbit in black. d) The electron
density n. given by the simulation. e) Estimate for the ion density given
by Eq. 3.2, based on the profiles of ¢ and B.
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the ideal Ohm’s law E + v x B = 0 throughout the bulk of the plasma
we have E - B ~ 0. Thus, the regular in-plane electrostatic potential ¢ in
Fig. 3.1b) develops, which to lowest order can be approximated as ¢ ~ —¢,,
and prevents significant energization of electrons streaming along the
magnetic field lines. In reconnection with a strong guide field B, > B,..,
the in-plane bulk plasma flow is approximately givenby v = - V¢ xe,/B,,
where ¢ is recognized as the plasma flow function, familiar from theoretical
models [100] and measured directly in reconnection experiments [35].
To be more accurate, plasma may include parallel electric fields de-

scribed by
_ Vipe

Ey =
en,

(3.1)

(note that within the electron diffusion region additional terms become
important to balance £)). This permits a small difference to develop be-
tween —¢ and ¢,. As in Refs. [93, 101], we will denote this difference as the
acceleration potential ¢ = ¢ + ¢, = [° E - dl, shown in Fig. 3.1c). Strictly
speaking, this is not an electrostatic potential, but rather a psuedopotential,
as inductive field components are included. If we assume a constant elec-
tron temperature by integrating Eq. 3.1, it follows that e ~ T, log(n./n.0).
Indeed, with the density profile in Fig. 3.1d) it is clear that n. and ¢| are
correlated. However, the amplitude of e¢) /T, is much larger than the
estimate provided by max(log(n./n.y)) ~ 1. This is evidence of parallel
electron heating, which will be explored below.

In contrast to the electrons, the ions, with their relatively slow thermal
motion, do not travel extended distances along the magnetic field lines, and
the ion density is therefore largely insensitive to the profile of ¢;. However,
the in plane electric fields characterized by —V ¢ can induce strong ion
polarization currents J, = —(nm;/B?)0E, /0t (= env,). Combining this
with the Lagrangian version of the continuity equation, dn/dt+nV-v, = 0,
for a fluid element following a magnetic flux-tube into the reconnection
region, it follows that logn/ny = (m;/B*)V?*¢. In addition, neglecting



47

parallel bulk motion, the ions will compress/decompress together with the
magnetic field and this effect can be modeled as n/ny = B/By. Combining
the two effects we obtain an estimate for the ion density as
B ( amiVng)

n >~ Nop— ex
0B, TP\ T ep2

(3.2)

which is displayed in Fig. 3.1e). Here we have included a heuristic factor
a =~ (.5 as the full ion-polarization response is reduced where the struc-
tures of ¢ are below the ion Larmor radius and where the convective time
derivative of V¢ is too fast for the ions to respond. The electron density in
Fig. 3.1d) displays enhanced regions in the exhaust left over from the initial
Harris sheet population. All other features in n. are well accounted for
by Eq. 3.2. These features include the density enhancements and cavities
observed along the separatrices.

The ion density perturbation described above has implications for the
dynamics in the vicinity of the z-line. Again, in guide-field reconnection
a strong in-plane potential ¢ develops such that E - B ~ 0, requiring
that ¢ ~ —¢,. In turn, the ions” polarization response causes density
perturbations which from Eq. 3.2 can be estimated as An ~ (nm;/eB*)V?¢.
By quasineutrality the electron and ion densities must be equal, and the
perturbations in the ion density are matched by identical perturbations in
the electron density. In turn by Eq. 3.1 these can then support a parallel
electric field on the order of £ ~ p?VV?¢, where p, = /m/1./eB is
the ion sound Larmor radius. This was explored in ground breaking
simulations by Kleva et al.[100] and later verified experimentally [102],
coupling the reconnection dynamics to the kinetic Alfvén wave [103].
Still, we emphasize that the density perturbation itself (see Eq. 3.2) is
independent of 7, and is therefore independent of the dynamics associated
with p;.

An understanding of how the electron density regulates to match the
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ion density is provided by the drift-kinetic model of Refs. [2, 81], which

predicts electron distributions of the form

fxv) = Joo(0, uBss) trap}.)ed | 63
foo(€ — ed — 1Boo, nBs) passing

where 4 is the adiabatic invariant magnetic moment, and £ is the elec-
tron kinetic energy. The model assumes a source f.(&|,£1) which is a
potentially anisotropic upstream distribution function characterizing the
passing electrons streaming into the region from an undisturbed ambient
plasma with a magnetic field strength B.,. The model is derived in the
double adiabatic limit where the electron bounce time is faster than any
other time scale associated with the reconnection dynamics. An impor-
tant part of the model is to distinguish the behaviour of passing electrons
(streaming along magnetic field lines), and trapped electrons for which an
example is given in Fig. 3.1c). By integrating Eq. 3.3 over velocity space,
a relationship n. = ne(B , <z~5||) is found, such that the electron density is
controlled by the normalized quantities B = B/B,, and ¢| = e¢/T.oo-
Previous studies [2, 41] have shown how n, = n.(B, (5”) can account for
the relationship between n. and ¢ displayed in Figs. 3.1(c,d).

The function n, = n.(B, qBH) is well-behaved and can be inverted to
yield ¢; = ¢ (7, B). The electron distribution in Eq. 3.3 may then be
recast on the form f = f(7,, B ), from which the pressure moments can
be computed numerically. For a given upstream distribution f(&,£1), a
set of Equations of State (the EoS) are then obtained, p; = pj (7, B),p. =
p1 (7, B). As discussed in Ref. [41], in the limit of 7./B < 1 the electrons
are mostly passing, yielding a Boltzman scaling such that the electron
temperature matches the upstream values. In the opposite limit 71,/ B >
1 heat fluxes are limited by trapping and the anisotropic temperatures
approach the CGL limit with T.; o 72/5% and T,, « B. These effects
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are accurately captured by the EoS. Again, using fully kinetic simulations
and spacecraft observations, the model has been shown to account for
the anisotropic electron heating for guide-field reconnection, considering
length scales up to 10d; from the reconnection region [43, 84, 96].

3.3 Evidence of Magnetic Compression

The main subject of the present chapter is an analysis of the reconnection
exhaust encounter observed by MMS on January 21, 2016 at approximately
01:06 UT. We will denote this encounter as Event B, wherein MMS crossed
through a reconnection exhaust roughly 100 d; downstream of the z-line,
as analyzed in Ref. [97]. This event had a guide field of roughly 70% of the
reconnecting magnetic field component and the inflows were somewhat
asymmetric.

As a point of comparison, we will also consider a reconnection event
(Event A) that MMS observed on October 31, 2015 as reported in Ref. [80]
and Chapter 2 of this thesis. In this event, MMS traversed a reconnection
exhaust about 10d; downstream of the z-line, and our previous analysis of
the event provides confirmation of the applicability of the EoS, accurately
accounting for the detailed variations in 7;; and 7., across the exhaust.
A representation of some of the details of the two events are shown in
Fig. 3.2. Event A was a relatively symmetric event with strong guide
field that was unusual in the sense that it occurred within colliding re-
connection exhausts at the magnetopause [80, 104], but in the sense of the
reconnection dynamics observed, it was fairly typical. Meanwhile, as will
be demonstrated below, from the details of Event B it is inferred that the
full exhaust and inflow regions were compressed such that the magnetic
field strength recorded was larger than that of the far away regions from
which parallel streaming electrons are sourced.

The EoS is based on the model of a flux tube convecting into the recon-
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Figure 3.2: Illustration of what the reconnection region could look like on
a global scale for Event B. The diagrams on the left roughly correspond to
the boxes drawn in the magnetosphere drawing. In Event B, MMS encoun-
ters the reconnection outflow farther from the z-line than most kinetic
simulations will include. We believe this region is compressed relative to
the unperturbed upstream parameters, which occur even farther out. It is
notable that this region is actively compressing during the transit of a pass-
ing electron from the upstream distribution to the observed location such
that 0B/0t # 0. In contrast, Event A occurred within the magnetosphere,
and was not compressed relative to the upstream parameters.

necting region. Figure 3.3 shows how the magnetic field strength along a
flux tube changes over time in a typical reconnection scenario as compared
to a compressing scenario. In a typical reconnection scenario, as a flux
tube convects in the reconnection inflow towards the z-line, the magnetic
tield strength decreases as the reconnecting component of the magnetic
field annihilates. As such, an initially uniform magnetic field evolves to
include a dip near the z-line, but the ends of the flux tube are generally
unaffected. This reduction in the magnetic field allows for the magnetic
trapping of well-magnetized electrons, increasing the fraction of trapped
electrons relative to the case with only electric trapping.

The typical case of the EoS joins the Boltzmann and CGL [42] scalings

as limits of low and high trapped fraction of electrons, respectively. In
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Figure 3.3: How the flux tube evolves from its initial uniform state in a
typical reconnection scenario versus the effects of the compression on B.
In the compressing scenario, we seed the initial profile of B with several
local dips, which can globally trap particles in the initial scenario. As the
magnetic field is compressed, the magnetic field at the local minima rises
above the upstream field strength, allowing for particles to be locally, but
not globally, trapped.

the isothermal Boltzmann limit the temperatures are constant, and in this
limit both T, and T, are independent of n. In the CGL limit, 7., scales
only with B. As such, 7., is nonincreasing in n/B in the typical case that
spans these limits.

Quantities measured by MMS over the course of Event A are shown
in Figure 3.4a-c). A particular focus is paid to the region of the exhaust
between the density cavity and the density peak, as marked in Fig. 3.4c).
Fig. 3.4d) shows that T, increases from the cavity to the peak, while 7, |
decreases slightly, with notable breaks between the Boltzmann and CGL
scalings, as would be expected from the scalings of the typical case of
the EoS with a strong guide field. The break occurs at n = n, and is
conveniently illustrated by Event A for which the cavity has n lower than
its upstream value, while at its the peak n is higher than its upstream
value.

The electron distribution function in Fig. 3.4e) observed by MMS within
the cavity is relatively isotropic, and all particles are passing due to a neg-
ative ¢|. This is consistent with the negative values of ¢ also observed in
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Fig. 3.1c) along the locations of the density cavities. Meanwhile, moving
to the density peak in Fig. 3.4f), the corresponding distribution is sig-
nificantly elongated in the parallel direction due to a strong, positive ¢;.
The elongation continues to electrons with large 1 (and becomes slightly
stronger) as both electric and magnetic trapping are present in this event.

We now contrast these findings with those of Event B, where the time
series measurements of MMS2 are shown in Figs. 3.4g-i), to demonstrate
that the reconnection region was embedded in a region where the magnetic
field was actively compressing. Looking back to Fig. 3.3 for the case of
broad scale compression, the magnetic field strength is increased relative to
the upstream value. This significantly alters the dynamics of the electrons
as the flux tube convects towards the z-line, as incoming electrons must
work against the mirror force to get into the compressed region.

Fig. 3.4j) shows the electron temperatures measured by MMS2 in the
region between the density cavity and peak marked in Fig. 3.4i) plotted
against the observed values of 7/ B. Notably, both T and T, increase
from the cavity to the peak with n/B. As shown above, in the standard case
the EoS spans the Boltzmann and CGL limits, which thereby imposes that
T., is nonincreasing in n/B. As such, the profile of T, , that increases with
n/B is indicative of an atypical guide-field reconnection event. In the EoS
this feature can only be realized for the case of compression where n > n,
and B > B. This scaling continues for the entire region between the
cavity and the peak; as such, n > n,, and B > B, at every point measured
by MMS2 during this event, consistent with broad-scale compression.

A closer look at the electron distribution functions of Event B provides
further evidence of the compression. In Fig. 3.4k) we infer a small region
in velocity space composed of trapped electrons resulting from a small but
positive parallel potential. The trapped-passing boundaries are indicated
by the black-lines, and their shape is qualitatively different from those of

Event A. This is because for Event B where B > B, the mirror force works
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opposite to ¢ and electrons with sufficiently high values of 1 will become
passing. Fig. 3.41) provides a perhaps clearer example of the compression,
where a larger fraction of the electrons are trapped. In their journeys from
the far upstream regions these electrons will have experienced a positive
energy gain of (B — By)p, so although B may locally be declining the
fraction of trapped particles (heated by (B — B ) 1) increases leading to the
observed increase in 7', as a function of increasing n/B (which is opposite
the CGL predictions).

The case for compression is further supported by a closer look at the
trapped-passing boundaries of distributions measured by MMS. In the
context of the model, the half-ellipse form of the trapped-passing boundary
is uniquely indicative of the case of n > n, and B > B.. Figure 3.5 shows
electron distribution functions at times marked in Figure 3.6a) with the
color range optimized to examine features in the thermal range. The phase
space density has a clear reduction at the trapped-passing boundary, owing
to a difference in dynamics between the two populations. The coincidence
of the trapped-passing boundaries, given by £ — e¢ — uB = 0, and the
location and shape of these reductions helps to constrain the upstream
conditions [2]. For this closed curve trapped-passing boundary, we must
have ¢ > 0 and B > B, again implying both the density and magnetic
field strength are enhanced relative to their far upstream values where the
passing electrons are sourced.

In this section, we have argued that the data for Event B is indicative of
ongoing compression, but how might this be realized in the context of the
reconnection event? The locations of both the bowshock and reconnection
region relative to the magnetopause are not fixed, and the placement of
these regions varies. The increased values of n and B may potentially be
explained by a reconnection region that is relatively near the bow shock,
where density and magnetic field are compressed, while the upstream
populations reside in less compressed regions of the magnetosheath. Fig-



54

MMS3, 31 October 2015, 07:18 UT

MMS?2, 21 January 2016, 01:06 UT

a) 2 et
SOF S0f—— ]
= Bl By = 1
= B ——~— = 0
op——r N j oL Bl By
ok ]
— . B, By ]
b) . - , h) ‘
wlof 1 1of e
7 «
6+ 1 sk b
Inflow 1 v Exhaust Inflow 2 Inflow 1 Exhaust Inflow 2
C) s0F T T T ] 1) T
| L o % }H
oo T, 1 > el
eL
A~ 407
40r S T \\”\‘wf
f—  ———— — P T—————]
D 30+
36 A 38 40

At [s] 40

d)y 8of’

0
-1

05y 1

I
2 log, O(f/(s3/cm6)) 26

i)

k
) 1
4
-
05
0
-1

1
) 1
05
0
El

£ B0

05 0 05y 1 05 0 05y 1

I I
27 log, O(f/(s3/cm6)) 25

Figure 3.4: a) and g) Magnetic fields, b) and h) electron number density, c)
and i) electron temperatures measured by MMS crossing the reconnecting
layer. d) and j) show the variation of electron parallel and perpendicular
temperatures with 71/ B in a region between an electron density cavity
(marked by the magenta triangles) and peak (marked by the magenta
circles), as well as the predictions of the EoS in the dashed lines. e) and
k) show distributions measured in the density cavities, while f) and 1)
show the distributions at the density peaks. Even in the density cavity,
the parallel potential for the 1/21/2016 event remains positive, which
accounts for the increasing nature of the 7;, curve in j).
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Figure 3.5: MMS2 distributions from a) Inflow 1 and b) Inflow 2, as marked
in Fig. 3.6a), with the color scale set to emphasize the discontinuity at the
trapped-passing boundary.

ure 3.2 illustrates how this may happen, while comparing to Event A, a
case without compression. Event A and Event B differ in the presence
of compression and the distance from the z-line MMS passed. In Event
B, MMS crossed the reconnection exhaust further downstream of the z-

line than the boundaries of most fully-kinetic simulations of magnetic
reconnection.

3.4 Identifying Asymmetric Upstream

Populations

In this section, we apply the EoS to Event B. Similar to the technique used in
Ref. [105], we use separate upstream parameters for the two inflows. That
study considered strongly asymmetric reconnection, and the dominant
contribution to the exhaust a combination of the passing populations of
the two inflows, which were identifiable based on regions of phase space.
In contrast, in this limit of weak asymmetry that Event B resides in, the
potential difference (and mirror force) developed between the high and
low density sides is not strong enough to ensure that electron trapping is
minimal in the exhausts. In fact, electron trapping is sizeable in the exhaust



Neo [Cm _3] By [HT] Teloo [eV] Te||oo/ Te1oo
Inflow 1 | 47 30 28 0.9
Exhaust | 41 29 30 1.0
Inflow 2 | 40 41 30 0.9

Table 3.1: Upstream parameters corresponding to the three upstream
populations.

as required to explain the anisotropic pressures observed. Therefore,
we choose to model the exhaust as having its own upstream population
rather than an explicit prescription of the two inflows. The parameters
determined for f., can be seen in Table 3.1. Notably, the observed density
and magnetic field strength stay above the upstream values for the duration
of this crossing, as is consistent with the compressing picture presented
in Section 3.5. This holds true for the observed temperatures as well,
implying that the inflow plasma is heated by compression outside the
reconnection region and is thus warmer than the external plasma sourcing
the incoming passing electrons.

Figure 3.6b) shows the electron temperatures observed by MMS2 (col-
ored lines) alongside the predictions of the EoS (black lines). The electron
temperatures measured by MMS?2 are colored according to the upstream
population used in the EoS. The predictions of the EoS, which are de-
termined by the inputs of Fig. 3.6a) and Table 3.1, mostly track T, and
T., well. In several areas, MMS data are colored as magenta rather than
their upstream color. In these locations, there are significant deviations
between the observed and predicted temperatures. This is mostly due
to perpendicular heating related to local trapping that is not covered in
the original model underlying the EoS, which will be further discussed in
Section 3.5. This is also reflected in Figs. 3.6d-e), which show distribution
functions measured by MMS2 at times marked in Fig. 3.6a) compared
to the predictions of the theoretical model. While there are some subtle

differences in the model and the data owing to the perpendicular heating,
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Figure 3.6: MMS2 measurements of a) density and magnetic field strength
b) T, and T, for the three upstream regions in color vs the EoS predictions
in black. Magenta sections mark significant departures from the EoS,
which can be attributed to locally trapped electrons. c) ¢+, the parallel
potential inferred in each direction along the magnetic field in blue and red,
and the potential difference between the two in black. d) and e) are MMS2
(left) and the model of the EoS (right) electron distribution functions at
the points marked in a), which correspond to the first inflow and the
density cavity. Model contours and black trapped-passing boundaries are
superposed.
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the general form matches well.

The parallel potential is defined by integrating the parallel electric field
along magnetic field lines out to the ambient plasma. As such, two differ-
ent values for the parallel potential, ¢, and ¢ are obtained based on the
direction (parallel or antiparallel to B) chosen for the integration. How-
ever, from theory [2], for nearly-symmetric reconnection configurations
quasineutrality of the plasma imposes that that |¢|; — ¢ | is small, and the
model in Eq. 3.3 simply uses ¢ ~ ¢| ... Based on the energy shifts of the
parallel and antiparallel streaming electrons in the detailed distributions
provided by MMS, we can directly test this assumption and infer ¢, and
¢|—- The result of this analysis is shown in Fig. 3.6c), which confirms that
@)+ ~ ¢|—. This is borne out by the maximum of |¢|. — ¢|_| being about
an order of magnitude smaller than |¢; + ¢|_|, and the variation of both
within the exhaust is considerably larger than the difference between the
two.

Again, given the moderately asymmetric reconnection setup, each in-
flow has a different upstream distribution, and mixing of the populations
occurs in the outflow, which we have treated as a third set of upstream
conditions. These regions are clearly discernible as three distinct charac-
teristics in ((n /B)?, TII) space which correspond to the two inflows and
the mixed exhaust, as seen in Fig. 3.7a). As could be expected, the exhaust
characteristic lies between those of the two inflows. This three-pronged
characteristic could potentially be used as an identifier for reconnection
events with asymmetric inflow populations.

The analysis of Ref. [97] noted the minima in observed electron tem-
peratures within the density cavity at the separatrix (the point marked e)
in Fig. 3.6a) with corresponding measured and theoretical distributions
in Fig. 3.6e)). Because the observed temperature is lower than the tem-
perature of the plasma surrounding the density cavity, it was suggested

that (in the terminology of the present work) a negative ¢ is the cause of
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the apparent cooling. However, cooling by electric fields is not physical,
as it is not consistent with the standard Boltzmann response. In fact, the
effect of a negative ¢ is directly illustrated in Event A, where, as evident
in Fig. 3.4d), only the electron density (and not 7)) is sensitive to ¢ in the
range where ¢ < 0. The apparent cooling is in fact not cooling; rather,
the present analysis of Event B shows that compared to T, of the far away
regions (from which the passing electrons are sourced), 7} within the
cavity is also heated by ¢ > 0, but the heating is smaller than that of
the immediate vicinity measured by MMS, where the larger values of n
necessitate a larger ¢ under the EoS and thus also larger parallel heating
of the electrons. As such, the electrons have been subject to parallel heating
along the entire MMS trajectory of Event B, but less so within the density
cavity, where reduced values ¢ are required to maintain quasineutrality.
Thus, the apparent cooling of the density cavity provides further support
for our interpretation of large scale compression.

While the parallel temperature measurements are quite well charac-
terized by the EoS, in certain regions of both inflows the perpendicular
temperature measurements diverge from the EoS. Fig. 3.6b) shows the pre-
dictions of the EoS for the perpendicular temperatures observed by MMS.
To more clearly separate the populations, different offsets (of 0, 10 and 20
eV) have been applied to the traces. Section 3.5 below we will discuss the
cause for the discrepancy between the EoS and the particular regions of
enhanced values of T, as marked by magenta in Fig. 3.6. These regions
where the EoS become inaccurate coincide with local dips in B associated
with local trapping, introducing new physical effects not considered in
the model in Eq. 3.3.
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Figure 3.7: a) MMS2 measurements of distinct characteristics in (n*/B?, T
) space for the two inflows and the exhaust. Black dashed lines correspond
to the prediction of the EoS for each branch, while starred points are MMS2
measurements. b) The same plots for 7, ,, with offsets for each exhaust
to separate the data. Magenta regions, as indicated in Fig. 3.6b), do not
follow the EoS due to heating by local trapping.

3.5 Perpendicular Heating of Locally Trapped

Electrons

In Section 3.3, it was established that Event B occurred in a region under-
going compression. Further, at the end of Section 3.4, we noted several
regions where the EoS significantly underestimate the perpendicular elec-
tron temperature. While not immediately obvious, the perpendicular
heating can be seen in Figure 3.7 d), which shows the distribution func-
tion measured by MMS2 compared with the theoretical model. In the
small parallel velocity portions of the passing populations, the phase space
density observed by MMS is slightly enhanced relative to the model.
Magnetic field compression can provide a source of perpendicular
heating in the form of nonzero [ 0B /0tdt along an electron orbit. The
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original model is derived in the adiabatic limit of infinitely fast electron
thermal speed (and thus zero transit time), causing the integral to go to
zero for passing particles. In this limit of fast electron transit, compression
of the magnetic field causes well-magnetized electrons coming from the
upstream distribution to sacrifice their parallel velocity to maintain their
magnetic moments, thereby increasing the transit time. Furthermore, as
we discussed above, for B > B, the passing regions include electrons
with v, = 0 which violate the assumption of a short transit time. In
addition, local trapping in local regions of low magnetic fields can cause
confinement and further violation of the fast transit-time approximation.
We will see that both of these finite transit time effects most strongly apply
to electrons with small v, necessitating an additional energy shift A in
Eq. 3.4 and enhancing the phase space density where v < v.

To capture the effects of local trapping, we extend the model of Refs. [2,
81] described in Eq. 3.3 to predict electron distributions of the form

foo(Oa ,uBoo) tra ed
f(x,v) = PP (3.4)
foo(E — e — pBs — AE, nBy,) passing

We will show that this expression is consistent with the distributions
recorded by MMS for which a detailed analysis allows us to estimate the
new term AE. It should be noted, however, that there exists no formal de-
pendence of A€ on n and B, and it is therefore not possible to incorporate
the effect of A€ into an improved generalized version of the EoS.

Figure 3.8 illustrates how local magnetic trapping can enter into a
model of a flux tube undergoing broad scale compression. In the typical
reconnection case, the flux tube expands as it approaches the reconnection
region, and electrons can become magnetically trapped in the expanded
regions. These electrons are trapped in a global sense. In the compressing

case, the flux tube enters the compression in some initial state, which may
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Figure 3.8: Examples of flux tube evolution in a typical reconection sce-
nario and the compressing scenario. In the typical scenario, the flux tube
expands as it approaches the z-point, allowing for electrons to become
magnetically trapped in the global sense. In the compressing case, we
consider the initial flux tube to be perturbed to have some portions ex-
panded, again allowing for magnetic trapping. As compression acts on
the flux tube, these regions are compressed relative to the upstream ends
of the flux tube, but remain local minima in the magnetic field strength.
As such, particles that were trapped in the initially expanded regions may
remained locally trapped, experiencing perpendicular energization in the
compression process.

have some local expansions in the flux tube in which electrons may be
trapped. Once the compression starts, the magnetic field is increased on a
broad scale, and the portions of the flux tube in the compressing region are
compacted. After the compression, the regions that were once expanded
may be more compressed than the upstream ends of the flux tube. This
implies that the electrons that began trapped in these regions are no longer
magnetically trapped in a global sense; however, if the compression is
relatively uniform about the initial trapping regions, the electrons will
remain locally trapped and will experience heating by ;0B /0t over the
course of the compression.

Remaining agnostic about the exact dynamics of the heating caused
from a finite electron travel time, we can surmise the energization that
an electron has gone through to reach a certain point in the phase space,
AE = p [ 0B/0t(x(t))dt. An electron that is trapped over the duration of
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the compression will experience perpendicular energy gain A€ = pAB =
£, AB/B. This can be viewed as a bounding case for an orbit that experi-
ences the full effect of the compression. To infer AE from MMS data, we
can determine the AE(E, 0), where 6 is the electron pitch angle, that makes
the new model of Eq. 3.4 match the distributions measured by MMS.

We note that in both the original and the extended model, electrons
streaming parallel to the magnetic field lines have their energies altered by
only e¢|. This means that the distortion from the upstream distribution
will be small for particles traveling nearly parallel to the magnetic field
lines. As such, the upstream distribution was chosen to match the parallel
portion of the measured distribution being offset by e¢, with the lower
energies set to match MMS observations and a polynomial fit of degree 2
in velocity for the tail of the logarithmic distribution.

With an explicit form for the upstream distribution, we then numeri-
cally invert Eq. 3.4 to solve for AE(&, ). Figs. 3.9 a-c) show distribution
functions measured by MMS?2 at times labeled in Fig. 3.6c), while Figs. 3.9
e-g) show the inferred value of AE/E as a function of pitch angle and
energy. The base model distribution with AE = 0 for time C is shown in
Fig. 3.9d). The MMS distribution displays a considerable boost in phase
space density relative to the base model, which is particularly noticeable
for energies above 169 eV.

The energization AE can be viewed as a function of time as well.
Fig. 3.10 shows AE/E, as a function of time and pitch angle for four
separate energy bins measured by MMS. As expected, the magenta re-
gions of Fig. 3.6b) correspond to times with strong AE/& . The red and
black contours represent the pitch angle at which an electron would reflect
upon encountering a barrier of 62nT and 75nT, respectively. In other
words, electrons inside these contours are locally magnetically trapped if
the maximum value of B along the flux tube exceeds the aforementioned

value. Notably, the largest values of AE /€, are encircled by the red con-
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Figure 3.9: a-c) Electron distributions measured by MMS?2 at times A, B,
and C marked in Fig. 3.6¢), respectively. d) Electron distribution function
predicted by Eq. 3.4 with A€ = 0 at time C. e-f) Inferred energy gain AE/E
as a function of pitch angle and energy for times A-C respectively.

tours, where electrons are most deeply trapped and evidently confined
during the full compression process. Furthermore, for the deeply trapped
electrons in Inflow 2, the peak value of (£, + AE)/E, ~ 1.35 corresponds
almost exactly to B/B., ~ 1.34, the value expected for electrons which
have been trapped for the full compression of B. This implies that local
trapping in a region undergoing compression is responsible for the regions
of strong perpendicular energization observed.

In Fig. 3.10 we observe regions encircled by the red contour (indicative
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of low B) but which are not associated with large values of AE. An exam-
ple is the time point marked by A with the corresponding distribution and
inferred A€ displayed in Figs. 3.9a) and e), respectively. The distributions
can be explained by the trapped portions of the electron distributions
being lost. In fact, distributions with a form similar to those with large AE
observed in Fig. 3.9f) have been found to cause instabilities [106], which
in turn could help scatter and drain the deeply trapped populations. In-
terestingly, throughout the reconnection exhaust marked in Fig. 3.10 we
observed AE/E, < 0.1, suggesting that the confinement of the locally
trapped populations is lost. As a consequence, for the present event the
electron populations which are most significantly heated are observed
within the regions of deeply trapped electrons that exist in the inflows

outside the reconnection exhaust.
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Figure 3.10: a-d) Inferred energization AE /€, as a function of pitch angle
and time for various energy bins measured by MMS2. The red and black
contours represent the pitch angle at which an electron will reflect in a
magnetic field of 62nT and 75nT, respectively.

3.6 Discussion and Conclusion

In summary, we have revisited some of the physics governing guide-field
reconnection, including the generation of an in-plane electrostatic poten-
tial to maintain quasineutrality where the reconnecting electric field is
aligned with a guide field. This potential is responsible for the well-known
quadrupolar density perturbation in guide-field reconnection. We have
also demonstrated the validity of the EoS for guide-field reconnection
with in situ MMS observations of magnetic reconnection for regions far
from (~ 100 d;) the z-line, which is significantly farther downstream than
the EoS had previously been validated with MMS [84] and particle-in-cell
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(PIC) simulation [41] data. Furthermore, we note that slightly asymmetric
reconnection creates distinct characteristics in (7, n/B) space correspond-
ing to the reconnection exhaust and each inflow region. We suspect the
three-pronged form of Fig. 3.7a) to be general to weakly asymmetric guide-
tield reconnection, and as such, this sort of plot could serve to identify
exhaust crossings in MMS data.

Additionally, we have extended the model to include first-order ef-
fects of local trapping, which match the observed distribution function
and provide an improved understanding of the dynamics that permit
perpendicular electron energization in regions of plasma compression.
The energy gain by the compression and the original EoS model are both
reversible. As such, “heating" may not be the correct word to describe
the energy gains from this model, absent collisional effects. The plasma
could hypothetically return to the upstream conditions and the energy
gain would be lost, but this event shows that the energy gains are still
present deep into the exhaust. We note that the EoS has been successfully
implemented as an electron fluid closure for hybrid simulations with PIC
ions [46] and in two-fluid simulations [43]. For the case of some MMS
observations, such a hybrid simulation has better reproduced observation
than fully-kinetic PIC simulations at reduced values of m;/m. [84]; this
highlights how the EoS closure will be useful to numerical simulation
of large scale plasma configurations subject to magnetic reconnection in
reproducing important aspects of the reconnection process at far lower
computational cost.

As a final note, we point out that the physics described by the EoS
can satisfy all three requirements of an electron heating mechanism put
forth in Ref. [89] for events with guide fields strong enough to keep elec-
trons magnetized in the reconnection exhaust and g, > \/m./m; ~ 0.02
large enough to avoid nonadiabatic parallel dynamics, as required by the

model. The heating provided by the model is clearly anisotropic in fa-
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vor of T, . Furthermore, in combination with roughly steady-state force
balance across the exhaust, the model has been shown to predict similar
scalings for AT, in the exhaust for a variety of guide field regimes [48, 84]
as the observed scalings of Ref. [3]. The heating predicted by the EoS in
these scalings is primarily regulated by the density and magnetic field
strength required in the exhaust for force balance across the layer. So long
as the upstream inflows are relatively uniform in the direction of the re-
connecting field, the heating should have little dependence on the distance
from the z-line. As such, the EoS satisfies the observational constraints of
Refs. [3, 89] for the electron heating mechanism for magnetic reconnection
in the moderate /3. guide-field regime.
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4 A Drirr-KINETIC METHOD FOR OBTAINING
(GRADIENTS IN PLASMA PROPERTIES FROM

SINGLE-POINT MEASUREMENTS

4.1 Introduction

The properties of the plasma in the Earth’s magnetosphere as well as the
connection between large scale plasma dynamics on the Sun and the near
Earth environment have been studied intensely over the past decades
using increasingly sophisticated spacecraft. With a few exceptions, most
of these studies have been carried out through the use of a single space-
craft. A significant and fundamental problem to interpreting spacecraft
measurements is that the relative speed between large-scale magnetic
structures and the spacecraft is generally not known. This often makes it
impossible to characterize the length scales of the dynamical plasma struc-
tures encountered because it is not possible to distinguish time variation
from spatial variation. The problem can be overcome by applying several
spacecraft flying in close formation [107, 108]; length scales on the order
of the spacecraft separation can then be determined accurately.

The resolution of fine scales is crucial to the understanding of many
processes in collisionless plasma physics. Of particular interest, in mag-
netic reconnection the thickness of the current layer can be on the electron
kinetic scale, while various terms in the generalized Ohm’s law, which can

be written as

me dj
nezdt ’

1
E+v><B:77j+%(j><B—V~pe)+ 4.1)

decouple at different scales; for example, V - p. becomes important for
gradient scales on the order of the thermal electron Larmor radius p. =
mevy, /e B or electron skin depth d. = ¢/w,.. Thus, characterizing the terms
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down to the kinetic scale would require a tight spacecraft formation to
tully resolve, which would also sacrifice overall coverage. Determining
local gradients go a long way towards interpreting the overall structure of
a current layer.

In this chapter, we develop new methods that allow length scales
of plasma structures to be determined at spatial scales as small as the
electron Larmor radius p. ~ v/B.d., allowing for d. scale gradients to
be accurately characterized if /. is not too large. Our methods could
be implemented using the full three dimensional electron distribution
function, which is now available with sufficiently fast time resolution
from the Fast Plasma Investigation (FPI) instrumentation suite of NASA’s
Magnetospheric Multiscale (MMS) mission [49], and will likely be available
to future spacecraft missions. The methods make a connection between
the apparent agyrotropy of magnetized distributions and gradients in
plasma properties perpendicular to the magnetic field lines.

Agyrotropy is the breaking of the symmetry of a distribution function
about the magnetic field line, and it is commonly used as a signature for
the demagnetization of electrons near the x-line in magnetic reconnection
[109]. In principle, in a well-magnetized plasma, the fast motion of the
gyroorbit will cause the distribution to be constant about its nearly circular
trajectory; therefore, a departure from gyrotropy is often implied to be
the result of the demagnetization of the particle species. For the electrons
in reconnection, this would happen in the electron diffusion region. Sev-
eral measures of agyrotropy (sometimes called nongyrotropy) have been
developed [109-111], generally measuring the deviation from a diagonal
pressure tensor with entries (p), p.,p.) in a magnetic field aligned basis.
In these measures, agyrotropy is strong not only in the electron diffusion
region, but also along the topological boundaries formed by the separatri-
ces. Thus, in these measures, agyrotropy is not a unique signature of the

electron diffusion region. The agyrotropy associated with the separatrices
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is based on a transition between two topological regions on the scale of a
Larmor radius. While electron distributions measured at the separatrix
are strongly agyrotropic in the frame of the reconnection region, taking the
drift-kinetic approach of measuring f(x,.) to be the phase space density
of particles with guiding centers at x,. = x — p(v) rather than current
position at x can in many cases lead to gyrotropic distributions. This tells
the story of separate well-magnetized plasma populations interpenetrat-
ing at the depth of a Larmor radius, sometimes resulting in crescent-type
distributions [55].

Recent observational work on magnetic reconnection has emphasized
these agyrotropic crescent distributions. For example, Burch et al. [54]
found the presence of crescent-shaped distributions, both in the perpen-
dicular plane and a parallel-perpendicular plane. This sort of agyrotropic
distribution is thought to be a hallmark of the electron diffusion region.
However, as noted above, crescent shaped distributions can also a result of
crossing the separatrix, where large density gradients exist in asymmetric
reconnection. These highly-agyrotropic distributions can be seen as hall-
marks of strong gradients in the reconnection geometry. In this chapter,
we will explicitly link the agyrotropy of the electron distribution function
with spatial gradients. Section 4.2 contains an analysis of the effects of den-
sity gradients on the commonly-used measures of agyrotropy. In Section
4.3, we build up a framework to characterize length scales smaller than
the separation distance between spacecraft, then verify it using data from
several VPIC fully-kinetic simulations in Section 4.4, demonstrating that
this method can accurately characterize gradients in density and pressure
on the scale of p.. The chapter concludes with a discussion in Section 4.5.
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4.2 Apparent Agyrotropy of Simple
Distributions that are Gyrotropic in the

Guiding Center Frame

As mentioned in Section 4.1, strongly agyrotropic distributions are often
associated with regions where plasma properties vary sharply. Previous
work has also noted the relationship between agyrotropy and gradients
at the scale of the Larmor radius [112, 113], but has focused primarily on
reconnection scenarios rather than simple model equilibria with density
gradients. While agyrotropy can arise from several factors in the drift-
kinetic limit, here we focus in on a model where the density gradient is
the primary contributor. In this section, we compute measures of agy-
rotropy for a simple guiding center distribution with a spatially varying
density. We choose the simplest magnetized guiding center distribution

with perpendicular density gradients.

m|v|?

f= (2::;); (ng +aVn)e 21 (4.2)

We choose B = BZ and T to be constant for simplicity. We will not

have an electric field in this example, but it can be shown that an arbitrary
perpendicular electric field will not change the results of the calculation
of the agyrotropy parameters, though the intermediate steps will be more
complicated and include a velocity shift to the E x B frame. An electric
field of E = T'Vn/(ngB)Z is important, as it will allow the species to be
in fluid and drift-kinetic equilibrium. We note that the distribution of
Eq. 2 is binned by the location of the guiding center of the particle rather
than the particle’s instantaneous position, as a spacecraft will typically
measure. As such, to evaluate the local distribution function f(x, v), we

must account for the shift of the vector Larmor radius p. We now calculate
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f=f&—¢0=<ég>2Qm+Vn(r—??>>€@ﬁ . (43)

Notably, in this toy model f becomes negative for particles with large
enough v,. This means that particles with larger Larmor radii than the
gradient scale will be represented by an unphysical phase space density
due to the simplified form of Eq. 2, but this is a negligible contribution
for gradient scales that are small relative to the thermal Larmor radius.
Having an analytic form of the distribution function allows us to take
moments at x = 0. It can easily be seen that the density moment gives us
n = ng. The bulk velocity moment reflects the diamagnetic drift.

TVn

u=-———-
any

(4.4)

With this, the pressure tensor can be straightforwardly calculated as

p— (%mT) [ —wv—w <n0 - %ﬂw) Py (45)

vn \°
= nT [I—mT g0 . (4.6)
Tlqu

Simple symmetry arguments show that off-diagonal elements are zero;

however, the tensor is still not gyrotropic, as the perpendicular pressures
are not identical. If we define Ly = |ng/Vn| and py, = |muy, /qB|, we can
define £ = py,/ Ly as the ratio between the gradient scale and the Larmor
scale, and define all of our agyrotropy measures in terms of this parameter.

We will calculate AQ, /2 [109], D,,, [110], and /@ [111]. All of these
parameters measure agyrotropy associated with this gradient, and gy-
rotropic distributions will return a value of 0. AQ./2 and /@ take the

value of 1 for a maximally agyrotropic distribution, though D,, has a
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different normalization that is dependent on 7} /7', .

2
AD. /2 = 2f_§2 4.7)
_V/2¢?

Vo= N & - (4.9)

V/Q clearly has issues for £ > 1, but that is a result of the nonphysical
behavior of this model distribution in that regime (as can easily be seen
in Eq. 4.6). All three measures reduce to zero in the gradient-free limit.
A plot of AD./2 and /@ can be seen in Fig. 4.1. \/Q is less sensitive
to small gradients than the other two measures, but all three measures
are increasing functions of the strength of the density gradient, even
though the guiding center distribution is perfectly isotropic. This allows
for the possibility of determining unknown gradients through a measure
of the agyrotropy of a distribution function, though more factors will be

accounted for in the treatment of the following section.
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Figure 4.1: AJ./2 and /@ plotted against the ratio of the Larmor scale to
the gradient scale, &, for the relevant range.

4.3 Theoretical Basis for Length Scale

Characterization

In the previous section, we considered a simple example and showed that
agyrotropy develops as a result of gradients in the distribution function.
In this section, we will consider more general geometries and rigorously
show how gradient scales can be inferred through measurements of the dis-
tribution function. Before deriving the model in detail, we first provide a
heuristic description of how the plasma length scales can be obtained from
electron distributions measured by a single spacecraft. Fig. 4.2 illustrates
a model geometry of a spacecraft sampling the electron distribution f. We
assume that there is a gradient in f pointing in the negative x direction.
With B in the negative z-direction it follows that the flux of electrons ob-
served in the positive y-direction will be enhanced while the flux received
from the negative y-direction is reduced. Furthermore, considering the
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separation of the respective guiding centers (2p.) in Fig. 4.2, it is clear that
the relative difference in these fluxes must be given by 2p.V f/ f, where p.
is the electron Larmor radius for the energy considered. This anisotropy

of particle flux is the origin of the diamagnetic drift.

Figure 4.2: Illustration of how a single spacecraft sampling the electron
distribution can be applied for characterizing the gradient in the gyrotropic
electron distribution function Vf.

The approach outlined with the heuristic arguments above is made
concrete in this chapter. We can rigorously derive expressions for perpen-
dicular distribution function gradients starting from the kinetic Vlasov
equation governing collisionless plasma. Although we are primarily inter-
ested in properties of the electron distribution, we will derive expressions
for a general species in the drift-kinetic limit. By inserting the appropriate
mass, charge, and distibution, the electron equations are easily recovered.
We begin by noting, as is discussed in great detail in the book by Hazeltine
and Meiss [114], that in the drift-kinetic limit the Vlasov equation imposes

that the first-order expectation of the variation from gyrotropy f can be
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expressed as:

. OA Of of 7
fx, U p,y,t) =p- [qata(]; —q(bx vD)ai—Vf]

+1g’:g£ (pfu:Vb—;b-V ><b> . (4.10)
Here f = f(x, U, u,t) is the gyro-averaged distribution, U is total particle
energy (kinetic plus an electrostatic potential), 2, = ¢B/m is the signed
cyclotron frequency, 1 is the (first adiabatic invariant) magnetic moment,
7 is the gyrophase such that p = b x v/, = p(e;siny + e| 5 cosv), with
(b,e.1,e,2) forming a right-handed local coordinate system, and

BB (EVB e V)b 4y 2P @11)
m [ ot

\%
PToBr T,
is the drift velocity expected for a particle at each location in phase space.
We are most interested in the gradient information that can be recovered
from an individual spacecraft that bins the distribution as a function of
velocity rather than the adiabatic invariants. Thus, we note that the change
in coordinates to (v, v, ) space provides a mixing between coordinate and
velocity spaces,
9, 9,

Vi = Ve, = Viigo = VU5 (4.12)

Importantly, this eliminates any contribution to f from the V B drift and

alters the inductive electric field in Eq. 4.10 to be the full electric field.
By multiplying each side of Eq. 4.10 by the vector Larmor radius p and

integrating over the gyrophase v, we find the perpendicular component

of the gradient of f:

) J? 1 27

(b x vp) ou w2 o pfdy (4.13)
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Notably, the terms not dotted into the gyroradius in Eq. 4.10 integrate out
to zero. It can also be shown that the E x B drift term in Eq. 4.10 combines
with the E| term to form eE,0f/0& inan (&, &) basis:

- of 5 Ob of of
— _gE, 2L ) el I O
V. f q L@SL + (mvH(b V)b + muy 815) (35¢ 35”)

1 27
- / pfdy. (4.14)
mp? Jo

While this expression fully describes V, f, this is not generally a quantity
that is useful to compare to, and the velocity space derivatives must be
evaluated judiciously on a spacecraft such as MMS, where there are a
finite number of logarithmically-binned energies to evaluate derivatives
on. If the goal is still to estimate V| f, we provide an estimate based on the
assumption of a drifting two temperature Maxwellian distribution, where

this assumption is only used for the following equation:

podEL T T ob\ _fi"pfdy
Vilnf= T + .7, 25“ [(b-V)b] + muy En 7'rp2f_'

(4.15)

This form can make a justification for dropping all drift terms except
qE /T, (corresponding to the E x B drift) on the basis of dependence
on temperature anisotropy, which will generally be small (as will be the
magnitude of the associated drifts). This can be of importance to spacecraft
data, as direct measurement of these factors is not generally possible at
the single-spacecraft level. While this form contains an abundance of
information, it lacks a strong basis for comparison with our intuition on
the fluid description of plasma. To this end, we can now take moments of
V. f to find the perpendicular gradients of fluid quantities. In particular,
we define
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My = /vﬁvﬁfd?’v = /vﬁ“vﬁfdvud?udv . (4.16)

It can be shown that the V|, operator commutes with the moment op-
erator on f, and thus V, M, = [ vﬁvﬁ V. fd®v. Evaluating these integrals,
we find:

ViM = —20:b x /Vlvﬁvﬁ’zfdsv
+ 27TqEJ_

0%0 / vﬁﬁ‘dv” + k‘/vﬁvﬁ_lfdvldv”

L (b-V)b {(z )My, — 2n (5k0 [ ol oy + k [ ol fdmdv”)]

b

+ % {le,l—l — 27 (5k0/v|l|+1f||dv|| + k/vﬁ“vﬁ_lfdt&dv”ﬂ , (4.17)

where 0; is the Kronecker delta and we have used the shorthand f” to
identify f(v, = 0). We note that the drift terms not including f; have
resulted from integration by parts in v, in Eq. 4.14. The f; terms no
longer have v, coefficients, and are thus integrals of a full derivativein v,
resulting in the values at the bounds of the integral. If we define

N (4.18)
My = 27r/v|l|fdv||dvb (4.19)
where M_, ; follows the definition of Eq. 4.16, but M_,, does not (as a

result of the aforementioned integration of a full derivative), this can be
written slightly more concisely as:

E
Vi My = —20,b x /VJ_UﬁUﬁ*Qfdg’U + %(k + 5k0)Mk_271

+(b-V)b[(l+ )My — (k + dko) Mi—2,42]
Ob

+ N IMpg—1 — (K + ko) Mp—2141] . (4.20)
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Of particular interest are gradients in density and pressure. In this

gyrotropic definition of f, we note that

n = M070 (421)
pL= %Mzo (4.22)

By evaluating Eq. 4.20, we then find that

27TqEJ_
m

Vin= /fHdUH +(b-V)b <n - 2ﬂ/v2lf||dv>

— ?;; (27?/v||f||dv||) — 2/pp£d3v (4.23)

ob
Vip, =nq(E; +u, X B)—mnung—l—(b'V)b (pL — P — mnuﬁ) . (4.24)

These equations present the best estimate of the gradients, but several
terms are not locally measured by a single spacecraft. We can see that in
the absence of the Ob/0t and (b - V)b terms (which are not readily avail-
able to single spacecraft observation), the perpendicular pressure gradient
term becomes equivalent to the statement that the nonideal electric field
is entirely attributable to the diamagnetic drift. This is somewhat unfor-
tunate, as it means that using only the measurements readily available
to a single spacecraft, this model does not allow for Ohm’s Law terms
that can account for reconnection. As such, in this framework, not much
can be learned from a single spacecraft about non-ideal dynamics within
electron diffusion regions. However, if one desires to estimate pressure
gradients for reasons other than determining the breaking of the frozen-in
law, this method should provide a good estimate for most magnetized
plasma environments that do not simultaneously experience strong cur-

vature and temperature anisotropy. Notably, anisotropy is measurable at
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the single-spacecraft level, and strong curvature will be accompanied by
sharp shifts in the time series measurement of b, so regions where drop-
ping the curvature term may cause significant error should be identifiable.
We also note that it may be possible to estimate 0b/0t and (b - V)b by
matching their contributions to Eq. 4.24 to the remaining terms in Eq. 4.1,

or a multi-spacecraft reconstruction of the local magnetic geometry:.

4.4 PIC Verification of Length Scale

Characterization

In order to verify the drift-kinetic model’s ability to characterize density
and pressure gradients in a plasma, we calculate the gradients derived
from the model on particle data obtained from a series of fully-kinetic
VPIC [66] particle-in-cell simulations. While these simulations are two
dimensional, mathematically our methods should apply equally well for
fully three dimensional reconnection scenarios. The simulations are per-
formed in a modified Harris sheet configuration [115] at m;/m. = 400
with a variety of background density asymmetries representing the low
density magnetosphere and high density magnetosheath (herein denoted
as n1/ny). The runs correspond to the setup of a suite of simulations de-
scribed in Chapter 3 of Ref. [116] and are antiparallel. This means that the
electrons will not be magnetized everywhere, but this is a small region
of the simulations, and demagnetized electrons are soon remagnetized.
As such, the results of Section 4.3 should hold over most of the simu-
lation domain. These simulations use periodic boundary conditions in
the z-direction and conducting/reflecting boundaries in the z-direction,
have a domain size of 6720 x 3360 cells = 80 d; x 40 d; based on the higher
upstream density n;, and employ the reduced value of w,. /w.. = 1.5, with
p1 = 3. In total, each run contains ~ 18 billion numerical particles.

We evaluate gradients in two ways: via an implementation of the drift-



82

kinetic method (Eqgs. 4.23 and 4.24) directly on particle data and via direct
finite difference calculation of spatial gradients of the density and pressure
profiles. The PIC distribution functions are created from particles within a
box of approximately 2 d. x 6 d. (containing on average ~ 80, 000 electron
particles), with a measurement centered every 1d, in the NV direction.
We note that there is still a considerable amount of noise in our density
gradient measurements at this domain size, but we do some smoothing to
present the picture of the full domain. We present the data in a normalized
form that represents the inverse gradient length scale in terms of the
electron inertial length to indicate the fine scale structure encountered in
the reconnection geometry. The results for density gradients can be seen
in Figure 4.3 while gradients in perpendicular pressure are compared in
Figure 4.4. General agreement in both form and magnitude is noted.
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Figure 4.3: Normalized components of V| log n for a simulation of antipar-
allel reconnection with n; /ny = 1.4 through Eq. 4.23 and a direct finite
difference method. The dashed line represents the cut taken in Figure
4.5a).
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Figure 4.4: Normalized components of V| logp, for a simulation of an-
tiparallel reconnection with n;/ny, = 1.4 through Eq. 4.24 and a direct
finite difference method. The color scale is slightly saturated to emphasize
the quality of the low amplitude match. The dashed line represents the
cut taken in Fig. 4.5a).
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It should be noted that there are some limits to the validity of this
model. Most importantly, in strongly asymmetric reconnection with low
guide field, strong electric fields tend to develop with a width on the
order of the electron Larmor radius on the low density separatrix. In these
conditions, the drift-kinetic assumptions are violated, and our framework
significantly overestimates the gradients. The model should be valid if
p. - Vugp < vy, and if gradient scales are larger than the electron Larmor
radius. The fields at the separatrix in strongly asymmetric reconnection
produce vgp ~ vy, with a width on the order of a few electron Larmor
radii, and this is not easily overcome in this model framework, but else-
where, the model assumptions are generally satisfied. Figure 4.5 shows
a comparison of V| n calculated by the two methods for a variety of up-
stream density asymmetry values in antiparallel reconnection. For the
antiparallel run with density asymmetry of 16 presented, our model is
observed to provide an accurate estimate of the density gradient at the
separatrices, and accuracy is expected only to improve for configurations
including a guide magnetic field.

We do note that these simulations do not fully encompass the parame-
ters of magnetospheric reconnection. In particular, #; = 3.0 is rather high,
leading to weaker electric fields at the separatrix and an effectively higher
thermal speed. This helps to keep the model within its limits. In realistic
magnetopause conditions, a range of upstream f3, as well as temperature
and density asymmetries must be considered. Testing the model in a sep-
arate simulation designed to match the event of Ref. [54] (the simulation
used in Ref. [55]) that has lower ; that includes temperature asymmetry,
the drift-kinetic model overestimates the gradients at the separatrices by a
factor of 2-3. Combined with the results of the simulations shown, this
implies that the method should be viable for the majority of magneto-
spheric conditions, though gradient scales can only be trusted to an order
of magnitude in cases with some combination of lower 3 and more intense
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asymmetry than those in the simulations employed in this chapter.

Figure 4.5: Cuts of normalized N components of V| logn for simulations
of antiparallel reconnection with n; /n, = 1.4,7.8, and 16 through Eq.4.23
and a direct finite difference method.

4.5 Discussion and Conclusion

In this chapter, we have derived and demonstrated a novel method for
inferring plasma gradients from the distribution function measurements

of a single spacecraft, linking variations measured within a gyro orbit in
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velocity space with spatial gradients of a well-magnetized distribution
function. This model successfully replicates pressure and density gra-
dients in PIC simulations, and can in principle be applied to MMS data.
The PIC verification shows that the gradient estimates can be quite noisy,
though they clearly approximate the correct gradients. This may be a
challenge when implementing the technique on spacecraft data. Further-
more, it should be noted that this technique requires the electrons to stay
well-magnetized to be accurate. As such, in the absence of a strong guide
field, this technique is likely not useful immediately at the x-line, though
it can be useful in determining the reconnection geometry away from the
x-line.

This model also has implications for the way we think of agyrotropy in
distribution functions. Using the drift-kinetic method, we have shown that
apparent agyrotropy in the electron distribution function can correspond
to spatial gradients in a distribution function that is gyrotropic when spa-
tially sorted to match guiding centers. In this sense, a well-magnetized
distribution can be agyrotropic in the standard models of agyrotropy
[109, 111]. Agyrotropy is often used as a measure of demagnetization, but
without accounting for spatial gradients in the plasma properties, this
is not inherently true. In particular, strong gradients often exist around
the separatrices in asymmetric reconnection. While the agyrotropy mea-
sure may be high at the separatrix, this does not generally imply that the
electrons are demagnetized.

The results of this Chapter were published in Ref. [117]. A more in-
tuitive (but subtly incorrect) alternative derivation of the drift-kinetic

gradient method can be found in Appendix C.
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5 CONCLUSION

In this thesis, we have delved into several topics related to magnetic re-
connection and the Magnetospheric Multiscale mission. These topics have
all focused on anisotropic distribution functions resulting from the colli-
sionless kinetic physics of well-magnetized electrons, with drift-kinetics
being the primary theoretical basis used. Chapters 2 and 3 focused on
applications of an existing anisotropic model [41, 81], in which the diago-
nal pressure tensor component parallel to the magnetic field decouples
from those perpendicular to the magnetic field, to MMS data with some
extensions. Chapter 4, rather than looking at differences in dynamics
along the magnetic field relative to those perpendicular to the magnetic
field, investigated agyrotropy, the loss of symmetry in the perpendicular
plane, and connected it to gradients in fluid plasma properties.

In Chapter 2, we noted that a valid fluid model for electrons in collision-
less space plasmas is desirable for understanding the structure and evolu-
tion of magnetic reconnection geometries. Additionally, such a fluid model
would be useful for the simulation of systems too large to be tractable in
a fully kinetic model. Using MMS spacecraft observations, we provided
direct confirmation of the EoS for the electron pressure tensor during
guide field reconnection and demonstrated that the closure can be applied
in efficient numerical simulation, yielding new physical insight to the
electron heating problem. Furthermore, we applied the EoS to derive
a scaling of electron heating in the exhaust comparable to the available
observational data.

In Chapter 3, we applied the anisotropic electron heating predictions of
the EoS to reconnection in the Earth’s magnetosheath. The model is appli-
cable to open systems where electrons are streaming along magnetic field
lines into the reconnection region, sourced by fixed external reservoirs

of plasma ambient to the reconnection region. While Chapter 2 showed
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the EoS hold in the region near the X-line, we found that for an event
observed far downstream (~ 100d;) from the X-line both inflows and the
exhaust follow the predictions of the EoS and correspond to three separate
upstream sets of parameters. Furthermore, the model underlying the EoS
was extended to include additional perpendicular heating terms relevant
to the considered event undergoing active magnetic compression with lo-
cal electron trapping. The agreement between the spacecraft observations
and the EoS emphasizes the roles of the ambient plasma sources and the
dynamics of trapped and passing electrons in setting and controlling the
anisotropic electron heating at large scale in naturally occurring plasma
configurations.

In Chapter 4, we derived a new drift-kinetic method for estimating
gradients in the plasma properties through a velocity space distribution
at a single point. The gradients are intrinsically related to agyrotropic
features of the distribution function. This method predicts the gradients in
the magnetized distribution function and can predict gradients of arbitrary
moments of the gyrotropic background distribution function. The method
allows for estimates on density and pressure gradients on the scale of a
Larmor radius, proving to resolve smaller scales than any method currently
available to spacecraft. The model was verified with a set of fully kinetic
VPIC particle-in-cell simulations.

Several topics discussed herein deserve further attention. For instance,
in Chapter 2, a prediction was made for the scaling of exhaust electron
heating in guide field reconnection with several parameters. We have
merely derived the scaling and showed it to be comparable to general
predictions for such heating in the magnetosphere, but made no effort to
see how this heating actually depends on the parameters in the scaling
in comprehensive simulations or observations of naturally-occurring re-
connection. A series of 2D (mainly for computational cost considerations)
kinetic simulations scanning f..., B,/ B,, and T; /T, could test this predic-
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tion rather easily. It would also be interesting to delve further into guide
field reconnection events observed by MMS and characterize the scaling
of the naturally occurring events.

Chapters 2 and 3 showed that the EoS of Ref. [41] holds for some events,
and it can potentially identify asymmetric upstream populations. A more
detailed statistical examination of MMS reconnection events would be
interesting to see how universally these anisotropic equations of state
hold in magnetospheric reconnection. Furthermore, Chapter 3 introduced
corrections to the model to account for magnetic field compression and
local electron trapping. By examining a broader range of MMS events
we could say something more about how often the compressing case is
observed and whether it is intrinsically tied to being far downstream of
the X-line.

Chapter 4 introduced a drift-kinetic model for predicting spatial gradi-
ents in the electron distribution function based on agyrotropic variations
in velocity space. The model was derived with the application of MMS
data in mind, but this has not been successfully applied yet. A careful
implementation of the drift-kinetic method on MMS data could provide
useful context to the interpretation of events, though noise could be a
considerable issue without a thoughtful method to account for it. With
the drift-kinetic method, gradients can be measured down to the scale of
the electron gyroradius, which is generally smaller than the separation
between spacecraft. Beyond the increased resolution, having a gradient
measure at the location of each of the four spacecraft rather than a single
measure at the center of the tetrahedral formation can provide additional
information about the geometry of events, including an estimate in the
second-order variation of fluid properties.

With implementation issues resolved, the method has great potential
to provide insight into magnetospheric plasma physics in a variety of

ways. This is not limited to magnetic reconnection, as the method is
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general to collisonless plasmas wherein the species of interest remains
well-magnetized. This means that for spacecraft like MMS, the method can
be used along the majority of the formation’s orbit, including regions of
the solar wind and Earth’s magnetosphere. Those interested in processes

occurring in those regions could benefit from the drift-kinetic method.
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A MMS DAtA INTERPRETATION AND COORDINATE

SYSTEMS

A.1 LMN Coordinates

Current sheets in magnetospheric reconnection are not consistently aligned
in the same direction. As such, a coordinate transformation to locally align
the current sheet with typical simulation coordinates is useful. In this way,
MMS events may be more easily mapped to computational simulations.

MMS records its vector and tensor measurements in two coordinate
systems— geocentric solar ecliptic (GSE) and geocentric solar magneto-
spheric (GSM). Both coordinates align the X direction along the Earth-Sun
vector. GSE coordinates align the Z axis perpendicular to the ecliptic plane
(the plane of Earth’s orbit), with North positive. The GSM coordinate sys-
tem aligns its Z axis with the projection of Earth’s dipole axis on the plane
perpendicular to the X axis. Both systems define Y as the unit vector that
makes XY Z a right-handed orthonormal basis.

Generally, data in this thesis comes from the data dumped in GSE coor-
dinates. To analyze data, we will often rotate to a local right-handed LMN
basis that we will use to compare to 2.5D kinetic simulations. The L vector
should be the transverse direction (the direction of the reversing magnetic
tield, equivalent to = used in most of our simulations). N represents the
normal direction, along which the primary gradient in the magnetic field
is aligned, or the z direction in the kinetic simulations. M constitutes the
out-of-plane direction in the 2D slab picture of reconnection, equivalent
to the y direction in the simulations, and the direction along which the
guide field would align.

Traditionally, the N vector can be determined through a minimum
variance analysis of the magnetic field [118]. This means that N is chosen
to be the unit vector such that B - N has the smallest variance over a
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layer crossing. More recently, L has been identified by the maximally
varying component of B [119]. The process of finding the transformation
to the local LMN system can be sensitive to small variations under typical
magnetospheric conditions, as the smallest two eigenvalues of the variance
of B are often not well separated, leading to degeneracy in the A/ N-plane.
Newer methods that incorporate gradients in B measured by multiple
spacecraft are more stable, but still have uncertainties on the order of
5° — 10°, which may be significant in interpreting data [120]. As such,
some adjustments may be made to the LMN coordinate system to better
match the context of the data measured.

In this thesis, the LMN coordinates have entered explicitly only in
Figures 2.1b) and 3.4a) and g) through components of the magnetic field. In
these cases, we used LMN bases found by previous authors in Refs. [80, 97]
and did not need to adjust them in any way. The LMN basis is crucial in
determining the guide field of the event. This is important, as it showed
we were in a guide-field regime in both Chapters 2 and 3, and it allows for

simulations to properly match the event parameters.

A.2 Converting MMS Distributions to
Field-Aligned Coordinates

Breaking down vector quantities into field-aligned parallel and perpendic-
ular components is straightforward. All that needs to be done is to project
onto the field-aligned basis. The field-aligned basis can be specified as
(b, 1,,1,), withb=B/B|, L; =& x b/|f x b|,and 1, = b x 1, for
some unit vector & # b. To avoid degeneracy in the perpendicular plane, f
should be chosen to align minimally with b over the course of an event.
In the context of dayside reconnection, this role is generally well-served
by the Earth-Sun direction vector X.

Rotating the distribution function data into field aligned coordinates is
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a little more difficult. The data is stored as fosr (&, ©, ), where © and ¢
are the azimuthal and polar angles of the spherical transformation of the
GSE coordinates. We want to transform this to f(&, 6, ), where 0 is the
pitch angle and  is the gyrophase. To do this, we create a new grid on
which the distribution function will be interpolated and utilize the trans-
formg(f,v) = (O, @) through the relation f(£,0,v) = fase(E,8(6,7)). All
that is left is to find the form of g(#, 7). Analytic determination of g(f, v)
is messy, but it is simple to due numerically through the intermediate step
of finding x(6, ) for the full grid of interpolation points. These unit vector
coordinates are then easily converted back to the GSE (O, ®) angles for
data interpolation, where at each time there is a transform defined (by b
at the time of the measurement) to be used on each energy.

In this way, we obtain a field-aligned distribution function. Every MMS-
measured distribution presented in this thesis has been gyroaveraged over
7, as agyrotropy is generally small. Most of the distributions are plotted
in the v, v, plane, where (vj,v.) = /2€/m(cosf,sinf). This is only a
matter of choosing plotting points, as distributions measured by MMS are

already in velocity space density rather than energy-angle space density.
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B DERIVING THE BortzMANN AND CGL Limits

The two limits of the standard case of the equations of state of Ref. [41] are
the Boltzmann and CGL limits, corresponding to the cases of no electron
trapping and full electron trapping, respectively. In this section, I will
derive the scalings of each limit.

The Boltzmann limit is that of a collisionless plasma working against an
electric field. We begin with the Vlasov equation governing collisionless
plasma distribution functions,

of

aJr(v-V)er%(EJrva)

of

Zo=0 . (B.1)

We reduce to the simple unmagnetized case with no magnetic field and
search for a steady-state solution. This requires that
of

q
(v-V)f~ Ve =0 . (B.2)

This is a Hamiltonian system with U = mv?/2 + ¢® conserved along
trajectories. If the distribution function at a location xy where ® is chosen
to be zero depends only on kinetic energy & = mv?/2, i.e. is isotropic, by
Liouville’s theorem we have that

f(x, &) = f(x0, € +q®) (B.3)

If the initial distribution is Maxwellian, we have

m >3/2 _&4gq® q®
(&

£(x,E) = ng (M S Y (B.4)

Importantly, this implies that the distribution is only modified by a scalar
multiple determined by position, and the velocity space structure remains

unchanged. This means that the density varies according to the potential
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(fewer particles will inhabit the regions where their potential energy is
higher), but the temperature does not. As such, the Boltzmann limit is an
isothermal limit. In the magnetized sense, this translates to being isother-
mal along field lines, as can be seen by the passing solution described in
Eq. 1.15.

The CGL limit is a doubly-adiabatic limit of particles trapped in a
flux tube. The trapped particles will conserve their first two adiabatic
invariants, the magnetic moment . = mv? /2B and the second adiabatic
invariant J = § v dl associated with the bounce motion action integral. We
will do a simple analysis of the scaling of parallel and perpendicular tem-
peratures with density and magnetic field strength given the conservation
laws governing a uniform, closed flux tube.

First, we argue that the perpendicular temperature scales as T’y ~ uB3
and the parallel temperature scales as T}] ~ m.J?/L?, where L is the length
of the bounce orbit (in the case of the closed uniform flux tube, this is the
length of the tube). 11, J, and m are conserved along orbits, so we find that

T ~B (B.S)
TH ~ L% . (B6)

This is fine for the perpendicular temperature, but not particularly
enlightening for the parallel temperature without characterizing the orbit
length with respect to other parameters. We consider a flux tube of length
L, cross sectional area A, and density n. Conservation of flux (as defined by
the flux tube) implies that B A is constant. Conservation of the total number
of particles in the flux tube implies that LAn is also constant. Combining
these two observations, Ln/B is also constant. As such L ~ B/n, giving
the final scaling for the parallel temperature

n ()
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These scalings exhibit a strong degree of anisotropy. By combining Equa-

tions B.5 and B.7, we see that the temperature anisotropy scales as

T n?
T—l ~ 5 (B.8)

which has strong dependence on both density and magnetic field strength.



98

c INTUITIVE DERIVATION OF (GRADIENTS OF

MAGNETIZED DISTRIBUTIONS

While the derivation in Chapter 4 is the correct one, a more intuitive
derivation can reproduce similar results. First, we define a gyrotropic
distribution to be one with the property

f(x,v,t) = f(x— p,v—vp,t). (C.1)

Then, we approximate the full distribution function by a first-order

Taylor expansion of f in position and velocity space.

of
_'V'D.i

feev,t) = fixv.t) ~ p- V o

(C.2)

x,v,t x,v,t

By multiplying Eq. C.2 by p, integrating over the gyrophase, and solv-
ing for the gradient term, we find

Vi.f= PR " (C.3)
In the same coordinate system, Eq. 4.13 would be written as
_ eE, 0f b f f
Vlfze Laf—l— ><VD<8f_Ui6f>_ Lde% (C.4)
mu) Qv p dvy v Oy mp

where the E | term cancels with the E x B drift term’s dependence on the
parallel velocity, making Eq. C.3 match Eq. C.4 when the only drift is the
E x B drift. The difference in the results of the two derivation then lies
in the inclusion of the V B drift in the Taylor method, and the extra term
proportional to 0f /Jv for the db/9t and curvature drifts. If we exclude
the curvature drift in this analysis (its terms have a singularity), we can

approximate gradients of moments of the distribution function as well.
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The result will differ from Eq. 4.20 by (I + 1) My (b - V)b + IM;,,_10b/0t.

As such, this simplified approach gives a reasonable heuristic under-
standing of what the drift kinetic equations are doing, but without some
insight into the subtleties of the drift kinetic limit.
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