
Data Driven Modeling, Monitoring and Control for Smart and
Connected Systems

by

Chao Wang

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Industrial and Systems Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2019

Date of final oral examination: 06/12/2019

This dissertation is approved by the following members of the Final Oral Committee:
Shiyu Zhou, Professor, Department of Industrial and Systems Engineering
Jeffrey Linderoth, Professor, Department of Industrial and Systems Engineering
Kaibo Liu, Associate Professor, Department of Industrial and Systems Engineering
Kam-Wah Tsui, Professor, Department of Statistics
Xiaojin Zhu, Professor, Department of Computer Sciences



© Copyright by Chao Wang 2019

All Rights Reserved



i

acknowledgments

The research presented in this dissertation benefited from valuable insights and support of

many people. It is my great pleasure to express my sincere gratitude to all of them.

First and foremost, I would like to thank my PhD advisor, Prof. Shiyu Zhou for his

outstanding guidance, mentorship and full support in my PhD studies. Words cannot

express my heartfelt gratitude for his efforts towards my development as a good researcher

and a future academic mentor. I have been so lucky to benefit from not only his expertise

in academic research, but also his great personality in all other aspects.

I would like to express my special thanks to my doctoral committee members Prof.

Jeffrey Linderoth, Prof. Kaibo Liu, Prof. Kam-Wah Tsui and Prof. Xiaojin Zhu for

serving on my committee and providing suggestions and helps to improve my research.

My thanks also go to my friends in my lab: Junbo Son, Yuhang Liu, Raed Kontar,

Salman Jahani, Akash Deep, Jaesung Lee and Congfang Huang. Thank you for being

supportive and accompanying me in my PhD studies. You really make my life in Madison

enjoyable and memorable.

Lastly and most importantly, I want to thank my parents for their unconditional

love, support and encouragement. Without their support, I would not have made this

achievement in my life. I would also thank my wife Yuting Lu for her patience, love and

company during my study.



ii

contents

Contents ii

List of Tables vi

List of Figures vii

Abstract ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Transfer Learning of Structures of Ordered Block Graphical Models Using Infor-

mative Priors 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Assumptions and outline of the basic approach . . . . . . . . . . . . . . . . 14

2.2.1 Notations and assumptions . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Outline of the basic approach for information sharing . . . . . . . . 16

2.3 Construct informative prior distribution . . . . . . . . . . . . . . . . . . . 20

2.3.1 Determine P (Gik = gk,s|Di) . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Construct consistent sample space . . . . . . . . . . . . . . . . . . . 24

2.4 The overall learning procedure . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



iii

2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8.1 Derivation of P (Gk = gk,s∗|D1, · · · ,Dn) . . . . . . . . . . . . . . . . 40

2.8.2 Proof of lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8.3 Derivation of P (D|G) . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Approximate Key Performance Indicators Joint Distribution through Ordered

Blocked Model and Pair Copula Construction 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Problem formulation and KPI quantification . . . . . . . . . . . . . . . . . 51

3.2.1 Problem formulation and assumptions . . . . . . . . . . . . . . . . 51

3.2.2 Review of pair-copula construction . . . . . . . . . . . . . . . . . . 54

3.2.3 OBM-PCC method and its property . . . . . . . . . . . . . . . . . 58

3.2.4 Estimate the OBM-PCC model . . . . . . . . . . . . . . . . . . . . 61

3.2.5 Summary of the OBM-PCC method . . . . . . . . . . . . . . . . . 64

3.3 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 M/M/1 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 G/G/1 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.3 Serial production lines . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.1 Kendall’s tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.2 Proof of lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.3 The bi-variate Gaussian copula . . . . . . . . . . . . . . . . . . . . 78

3.5.4 The bi-variate Student copula . . . . . . . . . . . . . . . . . . . . . 79

3.5.5 The bi-variate Clayton copula . . . . . . . . . . . . . . . . . . . . . 80

3.5.6 The bi-variate Gumbel copula . . . . . . . . . . . . . . . . . . . . . 80



iv

3.5.7 The bi-variate Frank copula . . . . . . . . . . . . . . . . . . . . . . 81

3.5.8 K-S test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Contamination Source Identification Based on Sequential Bayesian Approach for

Water Distribution Network with Stochastic Demands 84

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Sequential update for P (z|Y(I), X) using Bayesian approach . . . . . . . . 93

4.3.1 Monte Carlo simulation procedure for estimating observation proba-

bility distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.2 Variation analysis of posterior probability . . . . . . . . . . . . . . 100

4.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6.1 Variance of Equation 4.8 . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Control of Key Performance Indicators of Manufacturing Production Systems

through Pair Copula Modeling and Stochastic Optimization 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 problem formulation and KPI control . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Problem formulation and assumptions . . . . . . . . . . . . . . . . 119

5.2.2 Review of OBM-PCC model . . . . . . . . . . . . . . . . . . . . . . 120

5.2.3 KPI control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.1 M/M/1 queuing network . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.2 G/G/1 queuing network . . . . . . . . . . . . . . . . . . . . . . . . 132



v

5.3.3 Serial production line . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5.1 Proof of lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Research Work To Date and Future Work 140

Bibliography 144



vi

list of tables

2.1 Possible realizations of (G1
4 ,G2

4). . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Parameter setting for M/M/1 queue. . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Detailed results for M/M/1 queue. . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Parameter setting for G/G/1 queue. . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Detailed results for G/G/1 queue. . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Parameter setting for the serial production line. . . . . . . . . . . . . . . . . . 73

3.6 Detailed results for serial production line. . . . . . . . . . . . . . . . . . . . . 74

3.7 Time consumption comparison for generating 7000 samples. . . . . . . . . . . 74

3.8 Kendall’s tau of various bi-variate copulas. . . . . . . . . . . . . . . . . . . . . 77

4.1 Illustration for notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 The identification ability evolves with sensor alarms. . . . . . . . . . . . . . . 107

4.3 Comparison of the correct identification probability among different methods. 108

5.1 Parameter setting for M/M/1 queuing network. . . . . . . . . . . . . . . . . . 129

5.2 KPI control results for M/M/1 queuing network. . . . . . . . . . . . . . . . . 131

5.3 Parameter setting for G/G/1 queuing network. . . . . . . . . . . . . . . . . . 133

5.4 KPI control results for G/G/1 queuing network. . . . . . . . . . . . . . . . . . 133

5.5 Parameters for serial production line. . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 KPI control results for serial production line. . . . . . . . . . . . . . . . . . . . 136



vii

list of figures

2.1 Diagram of an ordered block model. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Illustration of graph random variable G with nodes 1, 2, 4 in two stages. . . . 11

2.3 The data generation framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Regression based hypothesis testing for edge presences. . . . . . . . . . . . . . 21

2.5 Structure prior learning from the ith historical process to the new process. . . 25

2.6 The designed historical graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 One possible new production line in the manufacturing system. . . . . . . . . 33

2.8 The structure learning performance for new production line. . . . . . . . . . . 33

2.9 The influence of λ on the structure learning performance. . . . . . . . . . . . . 34

2.10 The car body assembly process. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Physical layout for the assembly process in the case study. . . . . . . . . . . . 35

2.12 The new assembly line layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.13 The learning results for historical lines. . . . . . . . . . . . . . . . . . . . . . . 36

2.14 The final learning result for the assembly process. . . . . . . . . . . . . . . . . 36

2.15 Interpretations of two identified direct influences. . . . . . . . . . . . . . . . . 37

3.1 KPIs in a manufacturing process. . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Dependence structure in the M/M/1 queue. . . . . . . . . . . . . . . . . . . . 51

3.3 A four-variate D-vine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Difference and relationship between ordinary PCC and OBM-PCC. . . . . . . 59

3.5 Simulation for M/M/1 queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Comparison of waiting time in M/M/1 queue. . . . . . . . . . . . . . . . . . . 68

3.7 Comparison of cycle time in M/M/1 queue. . . . . . . . . . . . . . . . . . . . 68

3.8 Simulation result for G/G/1 queue. . . . . . . . . . . . . . . . . . . . . . . . . 70



viii

3.9 Comparisons of waiting time and cycle time for G/G/1 queue. . . . . . . . . . 71

3.10 Simulation result for serial production line. . . . . . . . . . . . . . . . . . . . . 72

3.11 Illustration of K-S test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Diagram of water distribution network with sensors. . . . . . . . . . . . . . . . 85

4.2 Illustration of computing posterior of z = 7. . . . . . . . . . . . . . . . . . . . 97

4.3 Layout of the case study water distribution network. . . . . . . . . . . . . . . 102

4.4 Posterior probability and significance probability . . . . . . . . . . . . . . . . 104

4.5 Comparison between Beta fitting method and Bootstrapping method . . . . . 105

4.6 Probability of each node being correctly identified . . . . . . . . . . . . . . . . 106

5.1 KPIs in a manufacturing process. . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Simulation for M/M/1 queuing network. . . . . . . . . . . . . . . . . . . . . . 130

5.3 Objective function response comparison for the M/M/1 queuing network. . . . 132

5.4 Dependence structure in the G/G/1 queuing network. . . . . . . . . . . . . . . 133

5.5 Simulation for serial production line. . . . . . . . . . . . . . . . . . . . . . . . 135



ix

abstract

Information revolution is turning modern engineering systems into smart and connected

systems. The smart and connected systems are defined by three characteristics: tangible

physical components that comprise the system, connectivity among components that en-

ables data acquisition and sharing, and smart data analytics and decision making capability.

Examples of smart and connected systems include GM’s OnStar® tele-service system and

the InSite® tele-monitoring system from GE. The unprecedented data availability in smart

and connected systems provides significant opportunities for data analytics. For example,

since we have observations from potentially a very large number of similar units, we can

compare their operations, share the information, and extract some common knowledge to

enable accurate prediction and control at the individual level. In addition, for a complex

system such as multistage manufacturing processes, we can collect synchronized data from

multiple stations within the system so that we can identify the operational relationships

among these stations. Such relationship can enable better process control.

On the other hand, the tremendous data volume and types also reveal critical challenges.

First, the high dimensional data with heterogeneity often poses difficulties in sharing

common information within/across similar units/processes in the smart and connected

systems. This problem becomes more severe when the system under the start-up pe-

riod, where insufficient data and experience could result in the deficiency of data driven

approaches. Second, the non-Gaussian data and non-linear relationship among various

units impede the quantitative description of the inter-relationship of processes in the

smart and connected systems. Although existing non-parametric methods, e.g., Kriging,

can deal with these situations to some extent, limited description power (focus on mean

value prediction) and lack of physical interpretation are the common drawbacks in these

methods. Moreover, the real time monitoring and control for the smart and connected



x

systems require efficient and scalability algorithms and strategies to meet the rapid and

large scale response under advanced sensing and data acquisition environment. Lastly, the

efficient control of the smart and connected systems also becomes challenging due to the

complex relationship among units. Data-driven methods are required to meet the exigent

demands for effectively formulating and solving the control problem.

To address the issues listed above, four tasks are investigated in this dissertation under

different applications in the smart and connected systems.

1 Transfer learning among heterogeneous multistage manufacturing pro-

cesses. A series of data analytical methods for modeling and learning

inter-relationships among product quality characteristics in multistage

connected manufacturing processes are developed. The methods offer a

rigorous way to reveal commonalities among heterogeneous data from

different manufacturing processes to benefit the learning in complex con-

nected manufacturing processes.

2 Statistical modeling and inference for Key Performance Indicators (KPI)

in production systems. A surrogate model for inference and prediction

at distribution level of different KPIs is developed. This model utilizes

the pair-copula construction to capture the non-linear association in the

non-Gaussian data.

3 Real time contamination detection in water distribution network. A

contamination source identification framework is proposed for real time

tracking and detection of contamination released in the urban water

distribution network. The framework utilizes the Bayesian theory to

sequentially update the posterior probability for determining the contam-

ination source upon very limited sensor readings.



xi

4 Control of KPIs in manufacturing production systems. The KPI control

problem is formulated as a stochastic optimization problem, where the

noise distribution in the cost function depends on the decision variables.

The standard uniform distributions are employed to link the KPI rela-

tionship surrogate model and the objective function to efficiently solve

the KPI control problem.

The proposed methods can be applied to a broad range of data analytics problems,

and the emerging challenges in modeling, monitoring and control of smart and connected

systems can be effectively addressed.
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1 introduction

1.1 Motivation

Smart and connected systems and internet of things (IoT), as emerging engineering tech-

nologies, have the great potential of bringing broad disruptive societal impacts, particularly

on economic competitiveness, quality of life, public health, and essential infrastructure.

The smart and connected systems are defined by three characteristics: tangible physical

components that comprise the system, connectivity among components that enables data

acquisition and sharing, and smart data analytics and decision making capability [1].

Such systems have become increasingly available in practice. Examples include GM’s

OnStar® tele-service system, the Konnect® system from Kohler, and Connected Enterprise

initiative by Rockwell. Various industries have seen the great potential of IoT enabled

smart and connected systems and start to invest heavily in this area. Cisco Systems

estimates that, by 2022, the potential value at stake from IoT is $14.4 Trillion (representing

increased revenues and cost reductions), with the industrial and manufacturing sector

having the most potential impact [2]. For example, by utilizing smart and connected

system technology in manufacturing systems, we can make system operations transparent

and enable smart operation decision to improve various key performance measures and

hence competitiveness.

The essential feature of engineering analytics problem for IoT enabled smart and

connected system is that a large amount of data from multiple similar units and from

multiple components within the system during their operations in real time are avail-

able. The unprecedented data availability in smart and connected systems poses both

intellectual opportunities and challenges for data analytics and decision making for opera-

tions management. The opportunities are: i) In a smart and connected system, we can
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often collect data from a large number of similar units. Such data availability provides

convenience for knowledge transfer and information fusion among different yet similar

units to achieve improved modeling and prediction for a specific individual unit. ii) In a

smart and connected system, data are often available in real time from cascaded units

within systems. This provides great opportunity for identifying the interactions among the

operations of connected units, which will significantly benefit the global decision making

and management of the smart and connected system. iii) The tremendous data availability

provides remarkable opportunities to rigorously test and validate the intuitive hypothesis

and engineering knowledge that often held by field engineers in an un-structured form.

On the other hand, the integration of domain knowledge with data-driven analytics can

significantly improve model effectiveness and accuracy. However, the intellectual chal-

lenges also exist: i) The high dimensional data with heterogeneity often poses difficulties

in sharing common information within/across similar units/processes in the smart and

connected systems. This problem becomes more severe when the system under the start-up

period, where insufficient data and experience could result in the deficiency of data driven

approaches. ii) The non-Gaussian data and non-linear relationship among various units

impede the quantitative description of the inter-relationship of processes in the smart

and connected systems. Although existing non-parametric methods, e.g., Kriging, can

deal with these situations to some extent, limited description power (focus on mean value

prediction) and lack of physical interpretation are the common drawbacks in these methods.

iii) The real time monitoring and control for the smart and connected systems require

efficient and scalability algorithms and strategies to meet the rapid and large scale response

under advanced sensing and data acquisition environment. iv) The efficient control of the

smart and connected systems also becomes challenging due to the complex relationship

among units. Moreover, data-driven methods are required to meet the exigent demands
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for effectively formulating and solving the control problem.

As a result, novel data driven methods with efficient involvement of domain knowledge

play a significant role in fulfilling the promise of smart and connected systems and

facilitating the transformation from data-rich into decision-smart.

1.2 Research Objectives

To address the challenges mentioned in Section 1.1, a series of data-driven statistical

methods are proposed in this dissertation that are tailored for the opportunities and the

needs of modeling, monitoring and control for the smart and connected systems. More

specifically, the research tasks can be summarized as follows

1 Information sharing and transfer learning among individualized smart

and connected systems. The interactions among units in the smart

and connected systems are crucial to understand and further model the

system. For example, the interactions among stations in the multistage

manufacturing system reveal the uncertainty flow and manufacturing

sequence in the whole process. However, the interaction fitting is very

challenging due to the complexity of the system, especially when the

data is insufficient in some start-up processes. In this task, we propose

to use transfer learning to take advantage of the historical data from

existing processes to benefit the understanding of interactions in new

process. We use various multistage manufacturing processes as examples

to demonstrate the method and deal with heterogeneity problem among

different stations in different processes.

2 Inter-relationship modeling and inference with non-linear and non-Gaussian



4

data. The Normal/Gaussian noise assumption is widely used in engi-

neering applications due to its concise form and practical properties [3].

However, in the production system, especially the queuing network, the

Gaussian distribution cannot cover most of the practical situations. Mean-

while, due to the complexity of production system, it is very common that

non-linear relationship exist among variables in the production system.

As a result, it is very difficult to have close form characterization of the

general production system. Our goal in this task is to develop a surrogate

model that can quantitatively represent the inter-relationship among

variables in the production system.

3 Real time detection for smart and connected systems. The efficiency of

anomaly detection becomes significant in the smart and connected system

under the unprecedented data availability. The explosive data need to be

handled in real time to provide useful information for anomaly detection

during the system operation. On the other hand, the large amount of

collected data reveals great opportunities on exploring system patterns

and rules offline. It is imperative to develop methods to structure, analyze

and finally combine such off line information into the online monitoring

to benefit the efficiency of anomaly detection.

4 Efficient data-driven control on complex systems. In practice, we often

need to control the system performance to be at certain level to optimize

the operation schedules and maximize the profit. To achieve this goal,

a specific control problem needs to be formulated based on the system

variables relationship. However, the complicated variables relationship sets

difficulties in formulating the control problem since it is very challenging
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to coordinate all the variables to contribute to the desirable system

performance under complex variable relationship. We propose to formulate

the system control as an endogenous stochastic optimization problem,

which is further analyzed, simplified and solved by ordinary stochastic

approximation techniques.

Targeting the above mentioned research goals, four specific research tasks that corre-

spond to each chapter of this dissertation are summarized in the next section. The details

of state of art and literature survey for each topic are presented in the corresponding

chapters.

1.3 Outline of the Dissertation

The remainder of the dissertation focuses on solving the aforementioned research problems

for smart and connected systems, which is organized as follows:

Chapter 2: Transfer Learning of Structures of Ordered Block Graphical Models Using

Informative Priors

In this chapter, a transfer learning framework for learning interactions among stations

in multistage connected manufacturing process is developed. The framework effectively

takes advantages of heterogeneous data from different but related manufacturing processes

to reveal the commonalities among these processes in a statistically rigorous way. The

shared information is then put into a Bayesian presentation of mixture Gaussian models

to complete the knowledge transfer towards a specific process to benefit the learning

in complex connected manufacturing processes. The proposed method is general to

interaction learning in multistage system for various characteristics and indexes. The
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obtained interactions build the fundamental understanding of multistage connected systems

and can be further applied in system modeling, inference and diagnostics.

Chapter 3: Approximate Key Performance Indicators Joint Distribution through Ordered

Block Model and Pair Copula Construction

The key performance indicators (KPIs) are often used to characterize critical system

objectives. The prediction and quantification of KPIs relationship will lead a better

understanding of the system. In multistage manufacturing system, the KPIs are often

random variables with complex interactions due to the intrinsically dynamic and random

process in manufacturing system. In this chapter, a surrogate model based on pair-

copula construction is proposed to capture the non-linear association among KPIs in

manufacturing production lines through approximating the joint distribution of KPIs. The

approximation employs physical knowledge of manufacturing production lines to remove

redundant pair-copulas to reduce computational load. Theoretical properties are also

derived to guarantee the iterative and analytical estimation of the joint distribution.

Chapter 4: Contamination Source Identification Based on Sequential Bayesian Approach

for Water Distribution Network with Stochastic Demands

This chapter chooses the case study of contamination source identification in urban

water distribution network to demonstrate the efficient algorithm in anomaly detection for

smart and connected system. It is suggested to identify the contamination source in water

distribution networks through real time sensor readings and efficient Bayesian strategies.

The tremendous offline (prior) information of possible contamination source is organized

into a concise tree structure to avoid combinatorial explosion. Then this information is

used to compute the posterior probability of each source from the online sensor readings.

Chapter 5: Control of Key Performance Indicators of Manufacturing Production
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Systems through Pair Copula Modeling and Stochastic Optimization

In this chapter, we would employ the KPI relationship quantified in Chapter 3 and

formulate a KPI control framework. Our objective is to minimize the average operation

cost in a system. The KPI control is framed into a stochastic optimization problem,

where the noise distribution in the cost function depends on the decision variables. We

propose to solve this stochastic optimization problem by employing the standard uniform

distribution to link the variable relationship and the cost function so that the objective

function is degenerated into an ordinary problem. The efficiency of the proposed method

is investigated through various queuing systems.

Finally, Chapter 6 summarizes the contributions of the dissertation and discusses the

future work.
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2 transfer learning of structures of ordered

block graphical models using informative priors ∗

In this chapter, we use the ordered block model (OBM) to model the interactions in

multistage manufacturing systems. The interactions in multistage manufacturing systems

can be presented by the relationship among various random variables that characterize

the system performance. The OBM is a special form of directed graphical model, which

can characterize the random distribution in a compact form. In our approach, we focus

on the learning of random variable inter-relationship in OBM, also known as structure

learning, based on prior knowledge obtained from historical data. Since the historical

manufacturing systems may not contain the same variables as those in the target system,

the sample space of the graphical structure of the historical OBMs and the new OBM

may be inconsistent. We deal with this issue by adding pseudo variables with probability

normalization, then removing extra variables through marginalization to align the sample

space between historical OBMs and the new OBM. The performance of the proposed

method is illustrated and compared to conventional methods through numerical studies

and a real car assembly process. The results show the proposed informative structure

prior can effectively boost the performance of the structure learning procedure, especially

when the data from the new OBM is small.

2.1 Introduction

Graphical model is a tool for exploiting structures in complex joint probability distributions.

A graphical model includes a set of nodes V and a set of (directed or undirected) edges E.
∗This chapter is based on the paper: Wang C., Zhu X., Zhou S. and Zhou Y. “Learning of Structures

of Ordered Block Graphical Models Using Informative Prior”, submitted to The Annals of Applied
Statistics.
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Each node represents a random variable and each edge linking two nodes indicates the

conditional dependence between the corresponding random variables. A graphical model

often can describe a complex joint distribution compactly and allows the distribution

to be constructed and utilized effectively [4]. The ordered block model (OBM) [5] is a

special form of directed graphical model, where the nodes of the model are split into

ordered blocks and an edge can only point from a node in a preceding block to a node in

a later block. Fig. 2.1 shows a typical OBM, where q nodes are ordered and partitioned

into numbered blocks. The directed edge is an indicator variable that represents the

interaction from the parent node to the child node conditioning on all other nodes in the

graph. For example, the directed edge from node 1 to 2 in Fig. 2.1 means the node 1

interacts the node 2 conditioning on other nodes. The OBM can find broad applications

in practices, especially for sequential processes and experiments. For example, Bernard

and Hartemink investigated the transcriptional regulatory network by setting the gene

expression data into blocks according to the sample instants, and the interactions among

the genes are learned under the blocked model [6]. Huang et al. also employed the OBM

to investigate the interactions among the number of phone calls in a call center at different

time periods, where the number of phone calls within 10-min are modeled as blocked

random variables [7]. Another important example of OBM is the manufacturing multistage

assembly process, where the dimensional quality measures at each work station can be

modeled as nodes in the same block [8]. As discussed in [9], it is highly desirable to identify

the joint distribution of the quality measures in multistage manufacturing processes for

process control and quality improvement purposes.

This work concerns the learning of the structure of an OBM from data. The structure

learning of a graphical model is a very challenging problem and extensive literature exists

[6, 10, 11, 12, 13, 14, 15, 16]. The available approaches can be roughly classified into
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Figure 2.1: Diagram of an ordered block model.

methods based on conditional independence testing and methods based on scores [4]. The

methods based on conditional independence testing are relatively easy to implement but

suffer from the multiple testing issue, which makes the structure learning restrictive and

inaccurate [17]. In this chapter, we focus on the score based method and use the Bayesian

formulation of the learning problem as follows [18]:

g∗ = argmax
g

P (G = g|D) ∝ argmax
g

P (D|G = g) · π(G = g) (2.1)

where D is the data collected from the nodes in the graph, G is a categorical random

variable representing the unobservable structure of the graph, g is a specific realization of

G, P (D|G) is the data likelihood and π(G) is the prior distribution of G.

The concept of graph random variable G is very important and we would like to

elaborate it further here. G is a finite categorical random variable and its sample space,

defined as ΩG, contains all possible graph structures constructed by its nodes. Fig. 2.2

illustrates the sample space of G with 3 nodes 1, 2, and 4. Please note that here we only

concern with OBM and thus there are only 4 possible realizations of G. In the structure

learning formulation (2.1), we want to compute the posterior distribution P (G|D) of G,

and then find the realization g∗ that maximizes the posterior probability as the structure.

The computation of P (G|D) will need data likelihood P (D|G) and the prior π(G) of G. In

most existing literature, the prior π(G) is simply selected as non-informative. For example,
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π(G) = P (G = gi) = 0.25, i = 1, 2, 3, 4 for G shown in Fig. 2.2.

Figure 2.2: Illustration of graph random variable G with nodes 1, 2, 4 in two stages.

The non-informative prior makes the structure learning purely depend on the likelihood

part, which often requires a large amount of data to achieve certain level of accuracy.

Unfortunately, such a large dataset often is not available in practice. For example, in

biomedical applications, the data collection can be very expensive and time-consuming [19].

In manufacturing applications, we often want to have the graphical model for quality and

process control purposes. The nodes in the graph server as random variables representing

the deviation from nominal values in the manufacturing processes. However, it is obvious

that for a new process or a new product, the nodes data will be scarce. To deal with

this situation, an alternative way is to employ knowledge learned from the data collected

from existing similar processes to help the structure learning of the new process with

limited data. Indeed, in manufacturing applications, it is rare that one manufacturing

system only produces one type of product [20]. Instead, a product family, e.g., different

car bodies, is often produced in the same manufacturing system. It is reasonable to expect

that the graphical model structures for the production processes of different products in

the same family will share some similarities due to the similarities in product features

and production steps. This implies that to learn a new graphical model structure, we

may take advantage of the historical data from other existing processes. The Bayesian

framework in Equation (2.1) can naturally incorporate additional information into the

structure learning: we can construct an informative prior π(G) based on historical data to
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benefit the structure learning process. This idea can be formulated as:

g∗ = argmax
g

P (G|D1, · · · ,Dn,D)

= argmax
g

P (D|G,D1, · · · ,Dn)P (G|D1, · · · ,Dn)

= argmax
g

P (D|G)P (G|D1, · · · ,Dn)

(2.2)

where we denote the data collected from n historical processes as D1, · · · ,Dn, and

P (G|D1, · · · ,Dn) is the informative prior we want to obtain from the historical data.

Please note that from the second step to the third step in Equation (2.2), we used the fact

that D is conditionally independent of D1, · · · ,Dn if the underlying graphical structure is

given.

The basic idea shown in Equation (2.2) is straightforward. However, there are challenges

in rigorously constructing the informative prior P (G|D1, · · · ,Dn). One obvious challenge

is that in general, the underlying sample spaces of D and Di, i = 1, ..., n are different.

For example, consider the process in Fig. 2.2, represented by G, containing nodes 1, 2,

and 4. If we have a historical process, represented by G̃1, contains nodes 1, 3, and 4

(1 and 3 in the first stage and 4 in the second stage). Then clearly although there is

some similarity between G and G̃1 (i.e., both contain nodes 1 and 4 and their order is

the same), ΩG 6= ΩG̃1 . Under rare situations, two processes will have exact the same set

of nodes. How to transfer knowledge from similar yet different process is a challenging

problem. In addition, we may have multiple historical processes and each of them has a

different sample space. How to rigorously integrate the information in such a situation

to obtain P (G|D1, · · · ,Dn) is challenging. Very limited works exist studying the impacts

of informative prior distributions on the graphical structure learning, and to the best of

our knowledge no existing works address above mentioned challenges. Mansinghka et al
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proposed a structure prior distribution construction method that can control the density

of edges within the constructed graph [5]. Koski et al. further developed an algorithm that

can set probabilities to control the existence of each edge in the prior of structures [21].

These two methods can quantitatively control the structure prior distribution. However,

the structure prior is specified rather than learned from historical data in these methods.

Flores et al. proposed to use expert knowledge elicitation for structure learning, which

combines the domain knowledge from the experts to redistribute the prior structure

distribution [22]. Again, their method cannot be integrated with learning algorithms based

on observational data.

In this article, we propose a new structure learning method to effectively use the data

collected from historical processes. As mentioned above, we treat G as a categorical random

variable and thus the construction of P (G|D1, · · · ,Dn) is to estimate the parameters of

the categorical distribution using data (D1, · · · ,Dn). Denote Gi as the categorical random

variable underlying the data Di, i = 1, ..., n. We first assume all Gi, i = 1, ..., n, have

the same sample space as G and let them follow the same categorical distribution P (G).

Because we only observe (D1, · · · ,Dn) and not the realization of Gi, we formulate the

problem into a problem of categorical distribution estimation with unobservable responses

and provide a Bayesian estimation approach to solve it. In this way, we can obtain

P (G|D1, · · · ,Dn). In the general situation of inconsistent sample space among different

processes, we first add “pseudo nodes” to make up the missing nodes between the historical

process and the new process, and then marginalize different nodes between the historical

process and the new process to get the consistent sample space. As a result, the data from

the consistent sample space will be used in the estimation of P (G). The numerical study

and the real world example illustrate that the proposed learning approach can effectively

help to identify the graphical structure with limited data. The contribution of our work is
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to provide a rigorous Bayesian framework for incorporating data from related but different

processes to benefit the structure learning of new process.

The rest of the chapter is organized as follows: Section 2.2 gives the problem formulation

and presents the basic idea of the proposed graph structure learning method. Section

2.3 presents the detailed steps of constructing informative prior using historical data.

The complete learning procedure is introduced in Section 2.4. Numerical studies will be

conducted in Section 2.5 to show the effectiveness of the proposed method. Section 2.6

illustrates the application of the technique through a case study on the car body assembly

process. Section 2.7 draws conclusion remarks.

2.2 Assumptions and outline of the basic approach

2.2.1 Notations and assumptions

We use upper case letter G to denote the graph random variable, and the lower case

letter g to represent a specific realization of G. We use the plain notation G and D to

denote the graph random variable and the corresponding data for the new process under

study, respectively. We use super-scripted symbol Di, i ∈ {1, 2, , · · · , n} to represent the

data collected from n historical processes. To differentiate the sample space consistency

between the historical process and the new process, we denote G̃i as the graph random

variable underlying Di with arbitrary sample space, while Gi as the graph random variable

transformed from G̃i such that it has consistent sample space as the new process. Assume

there are q nodes in G. We let Y = (Y1, Y2, · · · , Yq)′ ∈ Rq be a random vector representing

the corresponding random variables. For a specific node k in the graph, we denote Gk as

a sub-graph that contains k as the child node and all nodes in stages before k. Please

note in Gk, only k can be the child node. In other words, edges in Gk can only be from
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preceding nodes to k. Further, the sample space of Gk is defined as ΩGk containing all

the possible realizations of Gk, which are denoted as gk,s, s = 1, ..., |ΩGk |, where | · | is the

cardinality of a set. We define an operator V(·) on a graph, where V(G) is the set of all

the nodes in G. We use symbol “\” to represent excluding an element from a set. Thus,

V(Gk) \ k is the set of the nodes in stages before the node k in Gk. We further define

notations ℘k and ℘̄k to represent the parent and non-parent nodes in the realization of

Gk. There is a directed edge from a parent node to k, while there is no edge between a

non-parent node to k. We have ℘k ∪ ℘̄k = V(Gk)\k. The number of edges that direct to a

node is called the in-degree of a node.

With these notations, if we constrain the largest possible in-degree to node k be d in

Gk, then we have

|ΩGk | =
min(d,|V(Gk)\k|)∑

i=0

(
|V(Gk) \ k|

i

)
(2.3)

The graphical structure learning is often built on assumptions with theoretical and

data generation constraints [4]. We list the assumptions required for our work:

A1 We focus on Gaussian graphical model, i.e., Y ∼ Nq(0,Σ) with nonsingu-

lar covariance matrix Σ.

A2 We assume the modularity property [23] for the graphical models, which

means we have P (G) = ∏q
k=1 P (Gk). This allows us to separate the global

graph learning into q independent sub-graph learning.

A3 We assume the largest in-degree of the graphical models is d. This sparsity

constraint [24] has been widely used in graphical model structure learning

and can reduce the computational complexity.
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The above assumptions are commonly used in graphical model learning literature and

are not restrictive. This work concerns transferring knowledge from historical processes

to the new process under study. We do not require the node set of G be identical to the

historical processes, i.e., V(G) may not be equal to V(G̃i). We assume the overlapping

nodes V(G) ∩V(G̃i) to be known and for the sake of notation convenience, we assume

the nodes in V(G) ∩ V(G̃i) have the same node index in G and G̃i, respectively. Also,

we assume the nodes in V(G) ∩V(G̃i) follow consistent proceeding block order. In other

words, if both nodes k and j are in V(G) and V(G̃i) and k is in the preceding stage of

node j in G, then k is also in the preceding stage of node j in G̃i. These assumptions

essentially require there is some similarity between G and G̃i. After all, if there are no

similarities, then there will be no information to be shared and transferred.

2.2.2 Outline of the basic approach for information sharing

Graph structure learning with informative prior is formulated in Equation (2.2), where we

need to compute the informative prior and the data likelihood. The calculation of data

likelihood P (D|G) follows ordinary procedures under the Bayesian linear model, which will

be briefly reviewed in Section 2.4. Here we focus on the informative prior construction.

To compute the P (G|D1, · · · ,Dn), we utilize the modularity assumption A2,

P (G|D1, · · · ,Dn) =
q∏

k=1
P (Gk|D1, · · · ,Dn) (2.4)

Equation (2.4) divides the prior for G into prior for sub-structures Gk for k = 1, ..., q.

If there is no historical processes containing node k, then we cannot get any information

from historical data for the learning of Gk. Thus, we can simply assign a non-informative
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prior for P (Gk|D1, · · · ,Dn) as

P (Gk|D1, · · · ,Dn) = 1
|ΩGk |

, for k 6∈
n⋃
i=1

V(G̃i) (2.5)

Please note that when we plug Equation (2.5) into Equation (2.4), this non-informative

probability assignment will not change the ranking of probability of different realizations

of G and thus the final learning result in Equation (2.2) will not be influenced. We shall

focus on computing P (Gk|D1, · · · ,Dn) when k ∈ ⋃ni=1 V(G̃i), where information sharing

occurs. To facilitate easy exhibition, we first assume the node sets and hence the sample

spaces of the historical process and the new process are identical (using Gi instead of G̃i).

The case when they are not consistent will be addressed in details in Section 2.3.2.

The essential idea enabling information sharing between G and Gi, i = 1, ..., n is that we

assume G and Gi follow the same underlying categorical distribution π(G). We can utilize

the data from Gi, i = 1, ..., n, to estimate the parameters of the categorical distribution

π(G) and then the estimated distribution will in turn provides the informative prior for the

learning of G. In this way, the information in the data collected from Gi, i = 1, ..., n, are

shared in the structure learning of G and the common categorical distribution π(G) is the

vehicle carrying the shared information. This idea is further illustrated in Fig. 2.3, where

we use a graph containing three nodes (1, 2 and 4) as an example. In Fig. 2.3, we want to

estimate the event probabilities (p1, p2, p3, p4) of the common categorical distribution π(G4)

based on the observed data D1,D2, ...,Dn and then it will be used as the informative prior

P (G4|D1, · · · ,Dn).

In Fig. 2.3, each Gi4 is a random variable following distribution π(G4). The Di is the data

collected from the corresponding graphical model, which is an unobservable realization of

Gi4. If the samples from π(G4), i.e., the specific realizations of G1
4 , G2

4 ,..., and Gn4 , are directly

observable, then the estimation of (p1, p2, p3, p4) will be straightforward. Unfortunately,
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Figure 2.3: The data generation framework.

the challenge is that such samples are not observable. Rather, we only observe D1, · · · ,Dn,

whose distribution is related with such samples. This problem can be framed into a general

problem of estimating categorical distributions with indirect observations. Maximum

likelihood estimation (MLE) method could be applied by transforming the above problem

into a mixture Gaussian model estimation problem [25]. However, the objective function of

MLE is non-convex, and it often suffers singularity and identifiability issues. Alternatively,

we propose to use a Bayesian approach to estimate the categorical distribution. The

Bayesian approach treats the event probabilities (e.g., p1, p2, p3, p4 in Fig. 2.3) as random

variables rather than fixed values, and calculates the posterior of these random variables

based on data D1,D2, ...,Dn and a non-informative prior. To compute the posterior

probability and due to the indirect observations, we need to consider all the possible

combinations of the realizations of Gi4, i = 1, ..., n. It is easy to see that the number of such

combinations is |ΩGk |n. For example, for G4 in Fig. 2.3, the combination of realization is
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Table 2.1: Possible realizations of (G1
4 ,G2

4).

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
G1

4 g4,1 g4,1 g4,1 g4,1 g4,2 g4,2 g4,2 g4,2 g4,3 g4,3 g4,3 g4,3 g4,4 g4,4 g4,4 g4,4
G2

4 g4,1 g4,2 g4,3 g4,4 g4,1 g4,2 g4,3 g4,4 g4,1 g4,2 g4,3 g4,4 g4,1 g4,2 g4,3 g4,4

4n. More specifically, assume n = 2. Then we have 16 possible realizations of (G1
4 ,G2

4) as

shown in Table 2.1 with the first row as the index of realizations.

This illustrates that the collected data (D1,D2) may come from any of the 16 combi-

nations of graph realizations.

For the sake of clear logic flow, we put the description of the Bayesian approach into

appendix 2.8.1 and only present the result as below:

P (Gk = gk,s∗|D1, · · · ,Dn)

∝
|ΩGk |

n∑
j=1

{ Γ(|ΩGk |)
Γ(∑|ΩGk |l=1 cl + |ΩGk |)

·
|ΩGk |∏
l=1

(
Γ(1 + cl)

)
·
n∏
i=1

P (Gik = gk,S(i,j)|Di)
} (2.6)

where gk,S(i,j) is the realization of Gik in the jth realization combination and S(i, j) is the

corresponding realization index. Using the realization combinations shown in Table 1

as an example. S is actually a 2 × 16 matrix consisting of the second subscript index

of g in Table 1. For instance, we have g4,S(2,10) = g4,2 and thus S(2, 10) is the index 2.

With this notation, we further have cl = 1(s∗ = l) + ∑n
i=1 1(S(i, j) = l), where 1(·) is

the indicator function; Γ(·) is the Gamma function. Please note that in Equation (2.6),

we need to sum over |ΩGk |n possible realization combinations, which could be a large

value. This complication is resulted from the fact that the realization of π(Gk) is not

directly observable and we need to try all the possible values of the sample in the Bayesian

approach. For large number of n, numerical approximations to Equation (2.6) is available

[26]. We also discuss the computational issue in the last section of the chapter.
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2.3 Construct informative prior distribution

Equation (2.6) provides the fundamental methods for constructing the informative prior

from multiple historical processes. Combining with Equation (2.2), we can fulfill the

transfer learning of graphical model structures. In this section, we present a method of

computing P (Gik = gk,s|Di) in (2.6), where s is an arbitrary realization index of Gik. We

will also discuss how to address the issue of sample space inconsistency.

2.3.1 Determine P (Gik = gk,s|Di)

Determining P (Gik = gk,s|Di) is a general problem in structure learning of graphical models.

Several methods using the Bayes rule are available [27]. However, most of these methods

require the specification of the prior distribution of the parameters of the graphical model

and the performance is sensitive to such specification [4, 27, 28]. In this work, we propose

to degrade the problem from graph level to edge level and use regression based hypothesis

tests to specify P (Gik = gk,s|Di).

Specifically, we can express the P (Gik = gk,s|Di) as follows:

P (Gik = gk,s|Di) = P (Ek,s = 1, Ēk,s = 0|Di) (2.7)

where Ek,s = [E1
℘k,s

, · · · , El
℘k,s

] with l = |℘k,s|; Ēk,s = [E1
℘̄k,s

, · · · , Er
℘̄k,s

] with r = |℘̄k,s|;

℘k,s and ℘̄k,s are the parent set and non-parent set of gk,s, respectively; Ew
℘k,s

is the binary

edge indicator variable corresponding to the edge from the wth node in ℘k,s to the child

and similarly, Eu
℘̄k,s

corresponds to the edge from the uth node in ℘̄k,s to the child. With

this notation, Equation (2.7) simply states that edges exist from parent nodes and do

not exist from non-parent nodes to the child node (i.e., node k) in gk,s. We can further

decompose the probability in Equation (2.7) using the following lemma.
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Lemma 1: For the sub-graph gk,s, we can decompose P (Gik = gk,s|Di) as l + r multipli-

cations as follows:

P (Gik = gk,s|Di)

∝
l∏

w=1
P (Ew

℘k,s
= 1|Ēk,s = 0,Di)·

r∏
u=1

(
1− P (Eu

℘̄k,s
= 1|Ē−uk,s = 0,Di)

)
(2.8)

where Ē−uk,s is the same indicator vector as Ēk,s except for the absence of the edge indicator

variable Eu
℘̄k,s

.

The proof of lemma 1 is presented in appendix 2.8.2. Each P (·|·) in Equation (2.8)

represents the probability of the presence of a specific single edge given that a subset of

edges do not exist. To test the presence of an edge, we can establish a conditional normal

linear regression model and test if a corresponding coefficient is zero [29]. This property

motivates us to use the p-value of the hypothesis testing on the coefficient to represent our

belief on the probability of the existence of that edge in the graph and thus quantify each

P (·|·) in Equation (2.8). We use an example to illustrate how to set up the corresponding

regression model and the hypothesis test.

Figure 2.4: Regression based hypothesis testing for edge presences.
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Figure 2.4 shows a sub-graph realization g4,1 containing 4 nodes (1,2,3,4) and the node

4 is the child node. The parent and non-parent set for g4,1 is ℘4,1 = {1, 2} and ℘̄4,1 = {3},

respectively. According to the lemma 1, we need three P (·|·) to obtain the P (G4 = g4,1|Di),

which are shown as the ‘Edge probability needed’ column in Fig. 2.4. The corresponding

hypothesis testing and the associated full and reduced models are shown in the third and

the fourth columns of Fig. 2.4. From this example, we can see it is straightforward to test

the presence of an edge: we just remove the nodes that do not have an edge to child (as

indicated by the conditioning part of P (·|·)) to construct the full model and then remove

the node corresponding to the edge we want to test from the full model to construct the

reduced model. Note that the β0 in the test could be set to 0 due to the assumption

A1. The p-value of a hypothesis testing is a random variable that quantifies the power

of rejecting the null hypothesis. Intuitively, the higher the p-value from the testing, the

weaker the evidence to reject the null hypothesis, which results in the lower possibility of

the edge presence. Based on this idea, we can characterize the probability of the presence

of an edge through p-value of the corresponding hypothesis testing as:

P (Ej = 1|Qj = qj)

= f(Qj = qj|Ej = 1)P (Ej = 1)
f(Qj = qj)

= f(Qj = qj|Ej = 1)P (Ej = 1)
f(Qj = qj|Ej = 1))P (Ej = 1) + f(Qj = qj|Ej = 0)P (Ej = 0)

(2.9)

where Ej is the edge indicator variable for the edge from node j to the child, Qj is the

random variable representing the corresponding p-value of the hypothesis testing, f(·) is

the probability density function, and P (Ej) is the prior probability mass function of Ej . To

compute P (Ej = 1|Qj = qj), we need the prior distribution P (Ej), and f(Qj = qj|Ej = 1),

f(Qj = qj|Ej = 0), which are the p-value distribution given the alternative and the null,
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respectively. It is known that given the null hypothesis is true, the p-value is uniformly

distributed on [0,1] [30]. Thus, we can simply assign

f(Qj = qj|Ej = 0) = 1, qj ∈ [0, 1] (2.10)

The p-value distribution under alternative is complicated and there is no explicit result.

We only know that given the alternative is true, the p-value should tend to be near 0 [30].

Here we adopt the truncated exponential distribution as the p-value distribution under

alternative case:

f(Qj = qj|Ej = 1) = λj ·
e−λj ·qj

1− e−λj (2.11)

where λj is the scaling parameter of the truncated exponential distribution. This density

function is a monotonically decreasing function on [0, 1]. Although this distribution is

generally not the true distribution of the p-value, it is shown that it can quantify the link

between the p-value and our belief on the probability of edge presence and thus serves the

purpose of graph structure learning well [6].

The specification of the prior distribution P (Ej = 1) is relatively straightforward. Let

P (Ej = 1) = αj. Then if we have specific knowledge on the presence of certain edges, we

can assign the corresponding αj, otherwise we can choose the non-informative prior as

αj = 0.5.

With above specifications, Equation (2.9) becomes

f(Ej = 1|Qj = qj) = λj · αj · e−λj ·qj
λj · αj · e−λj ·qj + (1− e−λj) · (1− αj)

(2.12)

To compute Equation (2.12), we also need the value of the parameter λj. From

Equation (2.11), we can see that a small value of λj close to zero leads to a “flat” p-value

distribution, while a large value of λj leads to a sharp distribution of p-value. In practices,
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it is sometimes hard to pick a single value for λj. Here we use a robust approach that

avoids the selection of a single value and instead marginalizes over λj. We assume the λj

is uniformly distributed over the interval [λLj , λHj ] and integrate λj out of Equation (2.12):

f(Ej = 1|Qj = qj)

= 1
λHj − λLj

∫ λHj

λLj

λj · αj · e−λj ·qj
λj · αj · e−λj ·qj + (1− e−λj) · (1− αj)

dλj
(2.13)

The λLj can be selected as near 0 to represent the possible “flat” p-value distribution, and

the value of λHj depends on our believe on the power of the test. If we have a large dataset

and we believe the data quality is good, we can select a relatively large value of λHj . The

influence on the structure learning performance by choosing λLj and λHj will be discussed

in Section 2.5.

Finally, each edge probability in Equation (2.8) can be calculated by Equation (2.13)

through the p-values obtained by the hypothesis test procedures in Fig. 2.4. We can thus

specify the term P (Gik = gk,s|Di).

2.3.2 Construct consistent sample space

The sample space of the graph random variable for historical processes is assumed to be

identical to that of Gk in previous discussion. However, as we introduced in Section 2.1,

in most cases, the node set and hence the sample space of Gk and historical graphical

random variables will be different. Recall the notation G̃ik in Section that represents the

general historical graphical random variable with arbitrary sample space. Here we propose

a method of adding “pseudo nodes” with probability normalization and removing extra

nodes through marginalization to align the sample space between G̃ik and Gk. The basic

idea is illustrated in Fig. 2.5.
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Figure 2.5: Structure prior learning from the ith historical process to the new process.
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In Fig. 2.5, ΩG̃i4 shown in (a) is obviously different from ΩG4 shown in (d). Compared

with G4, G̃i4 does not have node 2 but has an extra node 3. To construct a consistent

sample space from ΩG̃i4 to ΩG4 , we first add a pseudo node 2 into G̃i4 and expand its sample

space to Ḡ4 as shown by the step (a)→(b) in Fig. 2.5. Because we do not have any prior

knowledge about the relationship between the pseudo node with other existing nodes in

Gi4, the probabilities on Ḡ4 simply duplicates that for ΩG̃i4 with a normalization as shown

in (b). In the second step, we marginalize the extra node, which is node 3, in Ḡi4. This

step is shown as (b)→(c) in Fig. 2.5. With the marginalization step, the sample space in

(c), denoted as ΩGi4 , will be the same as ΩG4 and the probability P (Gi4|Di) can then be

used in Equation (2.6).

Below we give a general result for dealing with the inconsistency between the probability

sample space ΩG̃i
k

and ΩGi
k
, where ΩGi

k
= ΩGk :

P (Gik = gk,s|Di) =
∑
j∈s+ P (G̃ik = g̃ik,j|Di)

2a∗
(2.14)

where a∗ =
∣∣∣V(Gik)\

(
V(Gik)

⋂V(G̃ik)
)∣∣∣ represents the number of pseudo nodes we need to

add to G̃k, s+ contains the indices of a selected set of realizations of G̃ik such that gk,s ⊆

ḡk,j, j ∈ s+. Clearly the operations in the numerator achieves the marginalization step and

dividing by 2a∗ is the normalization step. Taking the example in Fig. 2.5, we can specify

P (Gi4 = g4,1|Di) from Equation (2.14) as: P (Gi4 = g4,1|Di) = P (G̃i4=g̃i4,1|D
i)+P (G̃i4=g̃i4,2|D

i)
2 =

0.4+0.3
2 = 0.35.

With Equation (2.14) we can transform the probability space of an arbitrary graph

random variable into a probability space that is consistent with the current graphical

model under study and then use it for information sharing.
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2.4 The overall learning procedure

Section 2.3 introduces the way to obtain the informative prior for the graph structure

learning. To complete the learning process, we still need to have the data likelihood

part. Due to the assumption A1, this likelihood part can be analytically obtained under

the Bayesian linear model with conjugate priors [31]. We will briefly introduce the idea

of constructing the Bayesian linear model and directly give the likelihood result. Some

derivation details are in the appendix 2.8.3.

According to the assumption A1, for a sub-graph realization gk,s∗ , we can have the

following relationships among nodes:

Y k = Z℘k,s∗βk,s∗ + εk,s∗

εk,s∗ ∼ N(0, σ2
k,s∗)

(2.15)

where βk,s∗ is the coefficient vector for the parent nodes in gk,s∗ , and σ2
k,s∗ is the variance

for Yk. Note that we use the vector Z℘k,s∗ to represent a sample of parent nodes in gk,s∗ .

Equation (2.15) describes the conditional distribution of Yk given the Z℘k,s∗ . The basic

idea of Bayesian linear model is to assign a Normal-inverse-Gamma distribution for the

parameters βk,s∗ and σ2
k,s∗ . As a result, the P (βk,s∗ , σ2

k,s∗) will be the conjugate prior for

P (Yk|βk,s∗ , σ2
k,s∗), which makes the likelihood P (D|G) analytically available.

We denote µβk,s∗ and Vβk,s∗ as the mean vector and covariance matrix in the normal

distribution for βk,s∗ , the γk,s∗ and ηk,s∗ as the parameters in the inverse Gamma distribution

IG(., .) for σ2
k,s∗ . Then, we can have likelihood term in terms of µβk,s∗ ,Vβk,s∗ , γk,s∗ , ηk,s∗
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and D as:

P (D|G) =
q∏

k=1

η
γk,s∗
k,s∗ Γ(γk,s∗ + v

2)
√
|V∗k,s∗|

(2π) v2 Γ(γk,s∗)
√
|Vβk,s∗ |

[
ηk,s∗ + 1

2{Y
T
kYk+

µTβk,s∗V
−1
βk,s∗

µβk,s∗ − µ
∗
k,s∗

TV∗k,s∗
−1µ∗k,s∗}

]−(γk,s∗+ v
2 )

(2.16)

where

µ∗k,s∗ = (V−1
βk,s∗

+ Z̃T

℘k,s∗
Z̃℘k,s∗ )

−1(V−1
βk,s∗

µβk,s∗ + Z̃T

℘k,s∗
Yk)

V∗k,s∗ = (V−1
βk,s∗

+ Z̃T

℘k,s∗
Z̃℘k,s∗ )

−1
(2.17)

where Z̃℘k,s∗ = {Z1
℘k,s∗

, · · · ,Zv
℘k,s∗
}T represents the v samples of the random variable vector

Z℘k,s∗ . Once we obtain the informative prior and the data likelihood, we can conduct the

structure learning according to Equation (2.2).

To benefit the new OBM structure learning, the prior must be correctly specified.

A mis-specified prior will mislead the new OBM learning process. However, in the real

OBM structure learning problem, it is not guaranteed the prior knowledge about OBMs

is correctly specified. Under some extreme situations, the learning process with wrong

prior knowledge may need more data and time to find the underlying OBM comparing

with the learning with non-informative prior. To overcome the non-conformity between

the prior knowledge and the new OBM, we propose a prior correcting algorithm to correct

the potential misleading information in the informative prior.

The correcting algorithm is based on the Bayes factor, which is a widely used criterion

for model selection in Bayesian analysis [32]. The general idea of Bayes factor is to compare

the ratio of data likelihood of the two models: b1,2 = P (D|M1)
P (D|M2) , where P (D|Mm) is the

data likelihood for model Mm,m = 1, 2. If b1,2 > 1, we choose model 1, otherwise we

choose model 2. In the OBM structure learning, we can first use the proposed method and
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the method with non-informative prior to learn the graph structure. The two methods

give two learned graph structures denoted as gI and gII, respectively. Then, we can

use the Bayes factor to choose between the two learning results. With this procedure,

when the prior knowledge is misleading, the final learning result will degenerate to the

non-informative method. In this chapter, we directly use the likelihood in Equation (2.16)

as the non-informative method.

The informative prior based structure learning methodology is summarized as follows:

Algorithm 1 Graphical structure learning based on informative prior
Main algorithm:

1. In the new OBM with q nodes, employ expert knowledge and engineering experience,

determine the maximum indgree d. Identify the n related historical graphs that have

enough data for structure prior learning;

2. Obtain the sub-graph informative prior P (G1|D1, · · · ,Dn), · · · ,P (Gq|D1, · · · ,Dn) for

every node in the new graph through the sub algorithm, and multiply them together to

get P (G|D1, · · · ,Dn);

3. Split the D into D0.8 and D0.2 that represent the 80% and 20% of the new process

data, respectively;

4. Construct the Bayesian score with P (D0.8|G) and P (G|D1, · · · ,Dn), and find the

underlying OBM according to Equation (2.2). Denote the learned OBM as gI;

5. Construct the Bayesian score with P (D0.8|G) and an uniformly distributed prior

Puni(G), and find the underlying OBM according to Equation (2.2). Denote the learned

OBM as gII;

6. Use the Bayes factor bgI,gII = P (D0.2|gI)
P (D0.2|gII)

to select the final learn graph gOBM =

gI · 1(bgI,gII > 1) + gII · 1(bgI,gII ≤ 1).

Output: gOBM .
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Sub algorithm for correcting informative prior:

If k /∈ ⋃ni=1 V(G̃i)

Use Equation (2.5) to get the P (Gk|D1, · · · ,Dn).

Else if sample space consistent

1. Use Equation (2.8) to calculate P (Gik = gk,s|Di) for i = 1, · · · , n;

2. Plug all the P (Gik = gk,s|Di) into Equation (2.6) to get P (Gk|D1, · · · ,Dn).

Else

1. Use Equation (2.8) to calculate P (G̃ik = g̃ik,s|Di) for i = 1, · · · , n;

2. Use Equation (2.14) to get P (Gik = gk,s|Di);

3. Plug all the P (Gik = gk,s|Di) into Equation (2.6) to get P (Gk|D1, · · · ,Dn).

End

2.5 Numerical studies

In this section, we apply the proposed method in learning graph structures and compare the

performance with the widely used non-informative prior metric [15]. The simulation proce-

dure is as follows: First, we choose a new process layout and n historical process layouts,

and evaluate the sample space consistency of each sub-graph between the new process and

historical processes. Then, the sub-algorithm introduced in the algorithm 1 is employed

to obtain the sub-graph informative prior P (G1|D1, · · · ,Dn), · · · ,P (Gq|D1, · · · ,Dn). The

learning of the new graph is completed by using the main algorithm in the algorithm 1.

To test the robustness of the proposed method and show the effectiveness of the prior

correction method, the same informative prior will be used in learning different new

processes. Some of the new process structures may not be presented by the informative

prior, which simulates the non-conformity between the prior and the graph structure. To

obtain different new processes, we randomize the edge existence in the new process with
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fixed nodes layout. Finally, the performance of the structure learning using the same

informative prior will be evaluated with different new processes. In our simulations, we

choose two historical graphs (n = 2) as shown in Fig. 2.6, whose nodes layout is inspired

by the real case study in the following section. Nodes in the graph will follow Equation

(2.15) to construct a multivariate normal distribution, where we set all σ = 20 and β = 1

for the directed edges. We set the edge existence probability α = 0.5 for all edges. In the

practical applications, the α can be adjusted based on expert knowledge to improve the

efficiency of the learning process. The sparsity constraint is set as d = 3. The new graph

layout and an example of the new graph structure is shown in Fig. 2.7.

Figure 2.6: The designed historical graphs.

We follow the steps in Section 2.4 to construct the informative prior and learn the

new graph structure. Here we introduce an index to describe the power of the informative

prior in learning the new graph:

NE = max
i

nei,new
nenew

(2.18)

where nei,new is the number of nodes that have the same parent nodes between the ith

historical graph and the new graph, nenew is the number of nodes in the new graph. The

larger the NE is, the higher power the informative prior can obtain. For example, in Fig.
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2.7, we have NE = max( 9
15 ,

7
15) = 0.6. In the simulations, we randomly rearrange the

edges in the new graphs so that we get different new processes with different values of NE.

To evaluate the learning results, we use the percentage of correctly identified edges [33] as

the index to indicate the effectiveness of two methods. We average 100 times structure

learning results when using different number of observation data. All the scaling parameter

λs introduced in Equation (2.11) are assumed to follow an uniform distribution between

(0,1000). The new graph structure learning results for different NEs are shown in Fig. 2.8.

We can see that with the help of the informative prior, it is more accurate in the graph

structure learning. Even if we mismatch 30% of edges among the new graph and historical

graphs, the learning result still outperforms the traditional non-informative prior metric.

When we have most of the edges in the historical graphs mismatched in the new graph, we

can still learn the graph as effective as the non-informative prior case due to the correcting

algorithm we adopted. Thus, the simulation studies show the superiority and effectiveness

of the proposed informative prior construction and graph learning methods. Furthermore,

we investigate the influence of λ on the effectiveness on the proposed method. The results

of different ranges of λ are shown in Fig. 2.9, where we take the NE = 80% case for

illustration. We can see that as the integration range of λ becomes smaller, the proposed

algorithm gradually degenerates to the non-informative Bayesian score. This is consistent

with the analysis in Equation (2.12) that as λ→ 0 the edge existence probability becomes

α = 0.5, which is independent with the historical data.

2.6 Case study

We apply the proposed methodology to the car body assembly process shown in the Fig.

2.10. The final product of the car body assembly process is shown in Fig. 2.10(a). Fig.

2.10(b) is a simplified assembly process, where a set of sequenced assemblies, e.g., dash,
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Figure 2.7: One possible new production line in the manufacturing system.

Figure 2.8: The structure learning performance for new production line.
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Figure 2.9: The influence of λ on the structure learning performance.

body sides, roof, are presented. Due to the complexity of the process, it is important to

identify the mutual influences among key product characteristics (KPCs). To simplify

the analysis and show the effectiveness of the proposed method, we choose 14 KPCs to

validate the proposed method. These KPCs are random variables that denote the position

deviations from the nominal value in the corresponding features. The physical layout of

these KPCs is illustrated in Fig. 2.11(a). The assembly line for different products have

different KPCs, and two historical assembly lines with selected KPCs are shown in Fig.

2.11(b). The new assembly line’s KPC layout is in Fig. 2.12, which contains different

KPCs with historical lines. Our task is to identify the mutual relationship among KPCs

in the new line with the help of two historical lines. The assembly process is simulated in

3DCS, a commercially used dimensional variation simulation software for assembly and

machining processes. This software is based on the governing physical laws in joining to

simulate the assembly and is widely used in practice for dimension management. The

KPCs in different lines can be obtained through the outputs of 3DCS. The normality and

linear interaction assumptions of the data are validated in the work [34, 35]. We go through

the steps in Section 2.4 and assign α = 0.5 and λ ∈ (0, 1000). The learned historical

graphs are shown in Fig. 2.13. We construct the Bayesian score with the informative prior
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and the final learned graph is shown in Fig. 2.14, where we use only 31 observation data

points. The non-informative Bayesian score can also converge to the graph in Fig. 2.14,

but with 67 observation data points in each node.

Figure 2.10: The car body assembly process.

Figure 2.11: Physical layout for the assembly process in the case study.
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Figure 2.12: The new assembly line layouts.

Figure 2.13: The learning results for historical lines.

Figure 2.14: The final learning result for the assembly process.

We use the method proposed in [36] to validate the structure learning result for the

case study. The general idea in [36] is to re-sample the data using bootstrapping method,

and learn the graph structure using the re-sample data to check the robustness of the

learning result. In our work, we use the non-parametric bootstrapping to re-sample the

case study data 100 times, and the learning result presented in Fig. 2.14 appears 94 times

among the re-sample based structure learning, which validates that the learning result in

Fig. 2.14 fits the data best.

It is also verified the identified interactions among nodes can be interpreted by their
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physical relationships. For example, nodes 4, 9 and 10 represent the deviations of points

on the flush surface of the right body side (x4), the right rear edge of the roof (x9), and the

outer surface of the rear door (x10), respectively. The relationships diagram for these three

nodes in the car body assembly process are shown in Fig. 2.15. The body side will be

first welded on the underbody, then the roof will be added by fixtures located on the body

side. The rear door installation is also related to the hinges attached on the body side.

Thus, the body side decides the positions of the roof and the rear door, which justifies the

identified relationship from node 4 to node 9 and 10. It is also clear that node 9 and node

10 do not interaction with each other, which is also reflected in the identified graph in Fig.

2.14. This case study verifies the effectiveness and superiority of the proposed informative

prior based graph structure learning method.

Figure 2.15: Interpretations of two identified direct influences.

2.7 Conclusion and Discussion

In this chapter, we propose a structure learning method for ordered block graphical

models. This is a score based method and mainly uses the Bayesian score framework that

consists of the likelihood term and the structure prior term. The key innovation in this
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method is that we establish an informative structure prior by merging different historical

graphs into the structure prior term under the Bayesian framework. The informative

structure prior is expected to use historical information to benefit new graph structure

learning. The key challenge of knowledge transferring in this work is the inconsistency of

the sample space between historical processes and the new process. We propose a strategy

by marginalizing inconsistent nodes and adding pseudo nodes to make the sample space

consistent. A correcting algorithm based on the Bayes factor is also proposed to deal with

the non-conformity between the prior knowledge and the new graph. We investigate the

robustness of the proposed method and find that the proposed method performs better

than the method using non-informative priors in most practical cases and no worse than

the non-informative prior based method in general. The proposed method is also verified

through a car body assembly process, where we successfully identify the relationships

among assembly stations with much less data than that in the traditional method.

We would like to point out that although our work focuses on the OBM based structure

learning, it can be extended to the structure learning of general graphical models. The

idea is to use the “ordering based search” [18] to first order the nodes according to prior

knowledge (or randomly order), then use our OBM method to learn the ordered graph.

According to the learning result, we can cache the learning results and re-order all the

nodes and repeat the OBM learning method. As the re-ordering proceeds, lots of ordered

sub-graphs have already been learned and cached in the previous calculation, which offers

computation efficiency. As a result, our algorithm can be integrated with existing searching

algorithm to learn the general graphical models. How to leverage on the ordering based

search method with the proposed method in general graphical model learning is the

problem we will study in the future.

Another point we would like to mention is the calculation issue in Equation (2.6),
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where we need to go through |ΩGk |n different sub-graph realizations and sum over them.

Although Equation (2.6) provides a rigorous way to infer the sub-graph distribution,

the exponentially increasing calculation load makes it feasible only for small number of

historical graphs. Alternatively, when we need to deal with large amount of historical

graphs, the Markov Chain Monte Carlo (MCMC) method, e.g., Gibbs sampling, can be

used to numerically approximate the predictive distribution. The details about MCMC

based approximation can be found in [26]. Another practical issue is the selection of the

sparse constrain of d when we do not have prior knowledge about d. In this case, we can

resort to the unique identification property of the OBM, which says the structure learning

of OBM will have an unique solution if sufficient data is given [4]. In practice, we may

only have limited data and this result may not hold strictly. Nevertheless, we can use this

property to develop a simple heuristic procedure to select d: we can first set a small d, say

2 or 3 and conduct the proposed graphical structure learning. Then we gradually increase

d until the learning result does not change.

Some other interesting open issues remain in the proposed method. For example, In

general, avoiding “negative” transfer of information, i.e., removing the historical data

that does not help the learning, is an important yet challenging problem in transfer

learning. The method of using the Bayes factor to correct the graphs in the post-analysis

step is a primitive way of avoiding “negative” transfer. It will be interesting to develop

more sophisticated method to avoid “negative” transfer during the learning, rather than

post-learning. Another open issue is the multi-normal assumption. In our work, the

normality assumption offers great convenience in modeling the graphical model learning

as a conditional regression framework. However, this assumption may be violated in some

cases, especially when the dataset is small. Some kernel based testing approaches [37]

have been proposed to relax the normality assumption in conditional independence testing.
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How to efficiently combine these methods and ideas into the graphical structure learning

problem is another interesting yet challenging task to be studied in the future.

2.8 Appendix

2.8.1 Derivation of P (Gk = gk,s∗|D1, · · · ,Dn)

We first deal with the general case for our problem, and then present our result shown in

the chapter.

Suppose G ∼ Cat(p1, · · · , pK) and (P1, · · · , PK) ∼ Dir(ξ1, · · · , ξK). We have n i.i.d

samples from G and the observed data Di are samples from Y ∼ N(0,Σi), where Σi

represents the co-variance matrix depends on the ith sample from G, i = 1, · · · , n. Then

we can estimate the event probabilities pg∗ , g∗ ∈ {1, · · · ,K} as follows:

P (G = g∗|D1, · · · ,Dn)

=
∑
g

P (G = g∗|D1, · · · ,Dn, g)P (G = g,D1, · · · ,Dn)

=
∑
g

P (G = g∗|g)P (D1, · · · ,Dn|G = g)P (G = g)

=
∑
g

P (G = g∗, g)
n∏
i=1

P (Di|G = gi)

∝
∑
g

P (G = g∗, g)
n∏
i=1

P (G = gi|Di)
P (G = gi)

(2.19)

where g = {g1, · · · , gn} is a vectored set of possible samples from the categorical distribu-

tion for sampling n times, and gi ∈ {1, · · · ,K}, i = 1, · · · , n.

Consider the g∗ and g are i.i.d. samples from the categorical distribution, and the

event probabilities of the categorical distribution follow the Dirichlet distribution, we have
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the P (G = g∗, g)as follows for every possible g:

P (G = g∗, g) =
∫
p
f(p)

K∏
l=1

pcll dp (2.20)

where f(p) is the probability density function of the Dirichlet distribution and cl is the

number of samples that equals to j, e.g., cl = ∑n
i=1 1(gi = l) + 1(g∗ = l) with gi ∈ g

and 1(·) is the indicator function. Furthermore, Equation (2.20) can be treated as the

expectation of ∏Kl=1 p
cl
l over the p, and we have:

∫
p
f(p)

K∏
l=1

pcll dp = E(
K∏
l=1

pcll ) = Γ(∑Kl=1)
Γ
(∑K

l=1(ξl + cl)
) K∏
l=1

Γ(ξl + cl)
Γ(ξl)

(2.21)

Thus, we have:

P (G = g∗|D1, · · · ,Dn) ∝
∑
g

{ Γ(∑Kl=1 ξl)
Γ
(∑K

l=1(ξl + cl)
) K∏
l=1

Γ(ξl + cl)
Γ(ξl)

n∏
i=1

P (G = gi|Di)
}

(2.22)

By using the flat Dirichlet distribution that uniformly assigns the density of event

probabilities, e.g.,ξ1 = · · · = ξ|ΩGk | = 1, we can have the result as:

P (G = g∗|D1, · · · ,Dn) ∝
∑
g

{ Γ(K)
Γ
(∑K

l=1(cl) +K
) K∏
l=1

Γ(1 + cl)
1

n∏
i=1

P (G = gi|Di)
}

(2.23)

Applying Equation (2.23) to our problem by replacing the categorical random variable

G as Gk. Also note that the index vector g has |ΩGk |n different combinations, which can

be indexed by S(i,j), i = 1, · · · , n, j = 1, · · · , |ΩGk |. As a result, we have:
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P (Gk = gk,s∗ |D1, · · · ,Dn) ∝
|ΩGk |

n∑
j=1

{ Γ(|ΩGk |)
Γ(∑|ΩGk |l=1 cl + |ΩGk |)

|ΩGk |∏
l=1

(
Γ(1+cl)

)
·
n∏
i=1

P (Gik = gk,S(i,j)|Di)
}

(2.24)

2.8.2 Proof of lemma 1

Let Q,W, T and Z be random vectors. The following properties of conditional independence

will be used:

P1 Q |= (W,T )|Z ⇒ Q |= W |Z and Q |= T |Z.

P2 Q |= W |Z and Q |= T |Z ⇒ Q |= (W,T )|Z.

Property P1 historical whenever Q,W, T and Z have a positive joint density with

respect to a product measure. P2 is true only when Q,W, T and Z are jointly normal.

The Equation (7) in the manuscript can be reformulated as follows:

P (Gik = gk,s|Di) = P (Ek,s = 1, Ēk,s = 0|Di)

= P (Ek,s = 1|Ēk,s = 0,Di)P (Ēk,s = 0|Di)
(2.25)

The first part in Equation (2.25) can be reformulated based on the chain rule:

P (Ek,s = 1|Ēk,s = 0,Di)

= P (E1
℘k,s

= 1|Ēk,s = 0,Di) · · ·P (El
℘k,s

= 1|E1
℘k,s

= 1, · · · , El−1
℘k,s

= 1, Ēk,s = 0,Di)

∝
l∏

w=1
P (Ew

℘k,s
= 1|Ēk,s = 0,Di)

(2.26)
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The second part in Equation (2.25) represents tests for the conditional independencies,

we define ℘k,s = [Y 1
℘k,s

, · · · , Y l
℘k,s

] and ℘̄k,s = [Y 1
℘̄k,s

, · · · , Y r
℘̄k,s

] as the parent nodes and

non-parent nodes for the node Yk,s, then we can have:

Ēk,s = 0|Di ≡ Yk,s |= (Y 1
℘̄k,s

, · · · , Y r
℘̄k,s

)|Y 1
℘k,s

, · · · , Y l
℘k,s

(2.27)

With the properties P1 and P2 and the assumption A1, we can have:

Yk,s |= (Y 1
℘̄k,s

, · · · , Y r
℘̄k,s

)|Y 1
℘k,s

, · · · , Y l
℘k,s

≡ (Yk,s |= Y 1
℘̄k,s
|Y 1
℘k,s

, · · · , Y l
℘k,s

), · · · , (Yk,s |= Y r
℘̄k,s
|Y 1
℘k,s

, · · · , Y l
℘k,s

)

≡ (E1
℘̄k,s

= 0|Ē−1
k,s = 0,Di), · · · , (Er

℘̄k,s
= 0|Ē−rk,s = 0,Di)

(2.28)

Then we can have the P (Ēk,s = 0|Di) as follows:

P (Ēk,s = 0|Di) ∝
r∏

u=1
P (Eu

℘̄k,s
= 0|Ē−uk,s = 0,Di) (2.29)

Plug Equation (2.26) and (2.29) into Equation (2.25), we can have:

P (Gik = gk,s|Di)

∝
l∏

w=1
P (Ew

℘k,s
= 1|Ēk,s = 0,Di) ·

r∏
u=1

(
1− P (Eu

℘̄k,s
= 1|Ē−uk,s = 0,Di)

) (2.30)

2.8.3 Derivation of P (D|G)

Based on the Equation (15) in the manuscript and the assumtption A2, we can decompose

the likelihood term:

P (D|G) =
q∏

k=1
P (Yk|gk,s∗ , ℘k,s∗) (2.31)
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where D = {Y1, · · · ,Yq}, Yk = (Y 1
k , Y

2
k , · · · , Y v

k )T represents the v samples of the random

variable Yk. Since the Yk also depends on βk,s∗ and σ2
k,s∗ , we have:

P (D|G)

=
q∏

k=1

∫
β,σ2|gk,s∗ ,℘k,s∗

v∏
m=1

P (Y m
k |gk,s∗ , ℘k,s∗ ,βk,s∗ , σ2

k,s∗) · P (β, σ2|gk,s∗ , ℘k,s∗)dβ, σ2|gk,s∗ , ℘k,s∗

=
q∏

k=1

∫∫
βk,s∗ ,σ

2
k,s∗

v∏
m=1

P (Y m
k |βk,s∗ , σ2

k,s∗) · P (βk,s∗ , σ2
k,s∗)dβk,s∗dσ2

k,s∗

(2.32)

We further assume βk,s∗ and σ2
k,s∗ jointly follow the Normal-inverse-Gamma distribution,

then the P (βk,s∗ , σ2
k,s∗) will be the conjugate prior for P (Y m

k |βk,s∗ , σ2
k,s∗) and gives:

P (βk,s∗ , σ2
k,s∗) = P (βk,s∗|σ2

k,s∗)P (σ2
k,s∗) = N(µβk,s∗ , σk,s∗Vβk,s∗ ) · IG(γk,s∗ , ηk,s∗) (2.33)

where µβk,s∗ and σk,s∗ ·Vβk,s∗ are the mean vector and covariance matrix in the conditional

normal distribution for βk,s∗ , the γk,s∗ and ηk,s∗ are the parameters in the inverse Gamma

distribution IG(., .) for σ2
k,s∗ . Define c = |℘k,s∗| as the number of parent nodes. The

derivation can be formulated as follows:

P (Yk) =
∫∫
βk,s∗ ,σ

2
k,s∗

v∏
m=1

P (Y m
k,s∗|βk,s∗ , σ2

k,s∗)P (βk,s∗ , σ2
k,s∗)dβk,s∗dσ2

k,s∗

=
η
γk,s∗
k,s∗

(2π) c+1
2 Γ(γk,s∗)

√
|Vβk,s∗ |

∫∫
βk,s∗ ,σ

2
k,s∗

( 1
σ2
k,s∗

)γk,s∗+ c+1+v
2 +1

·

exp
{
− 1
σ2
k,s∗

[
ηk,s∗ + 1

2{(βk,s
∗ − µβk,s∗ )

TVβk,s∗ (βk,s∗ − µβk,s∗ )+

(Yk − Z̃℘k,s∗βk,s∗)
T (Yk − Z̃℘k,s∗βk,s∗)}

]}
dβk,s∗dσ2

k,s∗

(2.34)

The key to deriving the marginal distribution is the integration part, which requires the
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multivariate completion of squares identity as follows:

µTAµ− 2αTµ = (µ− A−1α)TA(µ− A−1α)−αTA−1α (2.35)

Then Equation (2.34) can be reformulated as:

P (Yk)

=
η
γk,s∗
k,s∗

(2π) c+1
2 Γ(γk,s∗)

√
|Vβk,s∗ |

∫∫
βk,s∗ ,σ

2
k,s∗

( 1
σ2
k,s∗

)γk,s∗+ c+1+v
2 +1

× exp
{
− 1
σ2
k,s∗

[
ηk,s∗+

1
2{µ

T
βk,s∗

V−1
βk,s∗

µβk,s∗ + YT
kYk − µ∗k,s∗

TV ∗k,s∗
−1µ∗k,s∗}+

1
2(βk,s∗ − µ∗k,s∗)TV ∗k,s∗

−1(βk,s∗ − µ∗k,s∗)
]}

dβk,s∗dσ2
k,s∗

=
η
γk,s∗
k,s∗

(2π) c+1+v
2 Γ(γk,s∗)

√
|Vβk,s∗ |

×
Γ(γk,s∗ + v

2)(2π) c+1
2
√
|V ∗k,s∗|(

ηk,s∗ + 1
2{µ

T
βk,s∗

V−1
βk,s∗

µβk,s∗ + YT
kYk − µ∗k,s∗TV ∗k,s∗−1µ∗k,s∗}

)γk,s∗+ v
2

=
η
γk,s∗
k,s∗ Γ(γk,s∗ + v

2)
√
|V ∗k,s∗ |

(2π) v2 Γ(γk,s∗)
√
|Vβk,s∗ |

×

[
ηk,s∗ + 1

2{µ
T
βk,s∗

V−1
βk,s∗

µβk,s∗ + YT
kYk − µ∗k,s∗

TV ∗k,s∗
−1µ∗k,s∗}

]−(γk,s∗+ v
2 )

(2.36)

where

µ∗k,s∗ = (V−1
βk,s∗

+ Z̃T

℘k,s∗
Z̃℘k,s∗ )

−1(V−1
βk,s∗

µβk,s∗ + ℘Tk,s∗Yk)

V ∗k,s∗ = (V−1
βk,s∗

+ Z̃T

℘k,s∗
Z̃℘k,s∗ )

−1
(2.37)

where Z̃℘k,s∗ = {Z1
℘k,s∗

, · · · ,Zv
℘k,s∗
}T represents the v samples of the random variable set

Z℘k,s∗ in Gk,s∗ .
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3 approximate key performance indicators joint

distribution through ordered blocked model and

pair copula construction∗

Key performance indicators (KPIs) play an important role in comprehending and improving

the manufacturing system. This chapter focuses on quantifying non-Gaussian data under

non-linear relationship and proposes a novel method using ordered block model and

pair-copula construction (OBM-PCC) to approximate the multivariate distribution of

KPIs. The KPIs are treated as random variables in the OBM and studied under the

stochastic queuing framework. The dependence structure of the OBM represents the

influence flow from system input parameters to KPIs. Based on the OBM structure, the

PCC is employed to simultaneously approximate the joint probability density function

represented by KPIs and quantify the KPI values. The OBM-PCC model removes the

redundant pair-copulas in traditional modeling, at the same time enjoys the flexibility and

desirable analytical properties in KPI modeling, thus efficiently providing the accurate

approximation. Extensive numerical studies are presented to demonstrate the effectiveness

of the OBM-PCC model.

3.1 Introduction

Key Performance Indicators (KPIs) are designed to measure critical system objectives

and play an important role in performance evaluation and management. It is well

documented that the prediction and quantification of KPIs relationship will lead to a better
∗This chapter is based on the paper: Wang C. and Zhou S. (2018), “Approximate Key Perfor-

mance Indicator Joint Distribution through Ordered Block Model and Pair Copula Construction”, IISE
Transactions, Accepted.
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understanding of the system and benefit the manufacturing productivity improvement [38,

39, 40]. For example, redundant KPIs can be discovered and the continuous improvement

can be implemented based on the predicted KPI and their relationships.

To study the manufacturing system performance and KPI, stochastic queuing system

model is often used [41, 42]. A typical manufacturing process is illustrated as a queuing

network in Fig. 1, where λ represents the arrival rate, c is the cycle time, µi and qj are the

service rate and queuing time for the server i and buffer j, respectively. Each buffer has

a fixed buffer size Nj ∈ {1, 2, · · · }. We define the input (λ, µi) of the process as system

parameters and the output such as (c, qj) as the response KPIs. The overall layout is shown

in Fig. 1 (b), where l is the number of system input parameters and p is the total number

of input parameters and response KPIs. For effective manufacturing system control, it is

highly desirable to obtain the relationship among the system input parameters and the

response KPIs. It is well known that for a queuing system, the output is stochastic for a

given fixed input parameters even under stationary condition. Thus, to fully quantify the

relationship between inputs and outputs, we need the multivariate distributions of response

KPIs conditional on system input parameters, such as f(q1, c|λ, µ1) and f(q1, q2, q3|λ).

With the multivariate conditional distributions, we can get mean, variance, quantile and

their relationships under the interested system inputs to better understand the system.

Here we would like to point out that the conditional distributions are referred to the

stationary distributions of response KPIs.

There are some existing works on quantifying the relationship between system inputs

and the response KPIs. However, most of existing methods cannot recover the multivariate

conditional distribution of KPIs. For example, flexible simulation models were developed

to quantify and predict process input-output values [43, 44]; different queuing models

on batch arrivals [45] and mix products [46] were proposed to approximate the real
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manufacturing system; data-driven based quantile regression for cycle time in the general

queuing system was proposed to give estimation of cycle time under different arrival and

service rate [47]. These methods are either time-consuming (simulation based) or restricted

to explicit relationship among KPIs (regression based), thus cannot provide flexible and

comprehensive picture of the KPI distributions. Non-parametric models, such as Kriging

and spline, do not require explicit forms of the KPI relationships [39]. However, those

non-parametric methods mainly focus on the relationship among the moments of KPIs

(e.g., mean relationship). The comprehensive multivariate distribution of KPIs are not

provided in those methods.

Figure 3.1: KPIs in a manufacturing process.

In order to obtain the multivariate distributions of an arbitrary combination of KPIs

conditioning on a wide range of system input parameters, we propose a novel approximation

method in this chapter. The basic idea is that we treat both the response KPIs and

the system input parameters as random variables, and fit the joint probability density

function (pdf) among them, e.g., f(λ, µ1, · · · , µl−1, q1, · · · , c), using the simulated system

input-output data under stationary condition. Then, an arbitrary conditional pdfs can be

obtained through sampling strategies, e.g., Markov Chain Monte Carlo, from the joint
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pdf. In more details, in the first step, we can generate a set of training samples from the

assumed joint distribution, e.g., f(λ, µ1, · · · , µl−1, q1, · · · , c), through simulation. Without

the loss of generality, we can specify the system input parameters to follow non-informative

uniform distributions, where the range of the distribution is based on the interested range

of the input parameters. We sample from the specified uniform distributions and then

use the sampled input parameters to simulate the production system. Once the system is

in the stationary state, we pick the system response as a sample of KPIs corresponding

to the sampled input parameters. We then repeat this process multiple times to obtain

a training dataset with samples from the joint distribution f(λ, µ1, · · · , µl−1, q1, · · · , c).

In the second step, we need to fit the joint distribution using the training samples. This

is an important step because with the fitted joint distribution, we can easily obtain

the conditional distribution of KPIs under an arbitrary input parameter setting without

conducting tedious and time consuming system simulation.

Fitting high dimensional multivariate distribution function is in general a challenging

problem. Some methods have been proposed [48, 49, 50, 51, 52, 53]. These methods can

be roughly classified as parametric methods [48, 49, 50] and non-parametric methods

[51, 52, 53]. In practice, the distribution of KPIs and their relations for a production

system is often very complex. In this chapter, we propose to apply copula analysis

to approximate the joint pdf and quantify the relationship among KPIs. Copula is a

multivariate probability distribution with standard uniform univariate margins, which

links the marginal distribution and the joint distribution in the multivariate analysis [54].

The pair-copula construction (PCC) first proposed in [55] is a hierarchical extension for

the copulas through the construction of different pair-wise bi-variate copulas. The PCC is

widely used in the multivariate dependence quantification in financial and risk management

area [56, 57] due to its flexibility and easy-to-get analytic form. PCC also provides great
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potential in approximating the complex joint pdf for multivariate random variables. One

specific challenge in applying PCC to a high dimensional distribution fitting is how to

refine and estimate concise pair-copulas from large amount of candidates. To address

this challenge, we will take advantage of the prior knowledge of the dependence structure

among the variables in our problem. Such knowledge can help to remove redundant PCCs

and improve the PCC efficiency. For a production system that is modeled as a queuing

system, the dependence structure among variables can be obtained through queuing theory

or data-driven statistical tests [37]. For example, in the M/M/1 queuing, the arrival rate

and service rate (system input parameters) determine the queuing time and the cycle

time (response KPIs). As a result, the M/M/1 queuing has the dependence structure in

Fig. 2, where only the system input parameters can influence on the response variables,

which is represented by directed edges in the figure. The relationship in Fig. 2 gives

a graphical representation of the dependence structure among variables, which can be

formally described as an ordered block model (OBM) [5]. As introduced in Chapter 2,

the OBM is a special form of graphical models, where the order of nodes representing the

random variables in the OBM is assumed to be known. The inputs and outputs of queuing

systems can be put into an OBM form. By combining OBM with PCC approach, we can

establish an effective multivariate joint distribution approximation method for KPIs in

production systems. The proposed method takes advantages of both domain knowledge

for the queuing system and the PCC flexibility in approximating the joint distribution.

Furthermore, parameter estimation can be computed recursively and efficiently due to the

analytic form of PCC.

The rest of the chapter is organized as follows: Section 3.2 gives the detailed problem

formulation and presents the proposed multivariate distribution approximation method for

KPIs. Simulation experiments will be conducted in Section 3.3 to show the effectiveness
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Figure 3.2: Dependence structure in the M/M/1 queue.

of the proposed method. Section 3.4 draws conclusion remarks.

3.2 Problem formulation and KPI quantification

3.2.1 Problem formulation and assumptions

In this work, we model the production system as a queuing system. We use variables

X1, ..., Xp to represent the system input parameters and response KPIs. Specifically,

the arrival rate λ and the service rate µ at different servers are considered as the input

parameters, and the queuing time q for each server and the cycle time c are chosen as the

response KPI variables. Please note that the proposed method is general for continuous

random variables. Other continuous responses such as server utilizations can also be

included as response KPIs. We further define {Xi : i ∈ I}, I = {1, ..., l} and {Xj, j ∈ O},

O = {l + 1, ..., p} as the input parameters and response KPIs, respectively. Figure 1 (b)

illustrates these variables, where X1 = λ,X2 = µ1, ..., Xl+1 = q1, ..., Xp = c. Here we give

two assumptions on the process:

A4 The process {Xk
j , j ∈ O} is stationary for a given set {Xi = xi, i ∈ I},

and Xk
j , j ∈ O converges in distribution to the corresponding random
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variable Xj, j ∈ O for the given set {Xi = xi, i ∈ I} as k →∞, where k

is the observation or the sample index.

A5 The process {Xk
j , j ∈ O} is φ-mixing for a given set {Xi = xi, i ∈ I}. In

other words, let M e
−∞ and M∞

e+d be σ-fields generated by {Xk
j , j ∈ O; k ≤

e} and {Xk
j , j ∈ O; k ≥ e+ d} given {Xi = xi, i ∈ I}, if D1 ∈ M e

−∞ and

D2 ∈M∞
e+d, then

|P (D2|D1)− P (D2)| ≤ φ(d), ∀e, (3.1)

where the σ-field serves as the collection of subsets for which the corre-

sponding probability measure P (·) is defined [58], e ∈ Z, d ∈ N+ and φ(d)

is strictly non-increasing for d ≥ 1, and lim
d→∞

φ(d) = 0 [59].

These two assumptions are commonly adopted in queuing analysis [47, 60]. It is worth

mentioning that although A4 is difficult to be formally validated in general situations, it

is fairly intuitive and not restrictive to many applications. A5 imposes the dependence on

the consecutive response observations, and assumes the dependence between two samples

decreases as the samples become farther apart from each other. Therefore, if we take

samples sufficiently far apart from each other in the steady state as the observations, they

can be regarded as independent and identically distributed (i.i.d.) samples according to

A4 and A5.

We use OBM to model the dependence structure among the variables in a queuing

system. Let G(V,E) be an OBM based on a set of nodes V and a set of directed edges

E. Each variable X1, ..., Xp has a corresponding node in the V = {1, ..., p}. In the rest of

the chapter, we will use nodes and random variables interchangeably. The directed edge

E is an indicator variable that represents the influence from the parent node variable(s)
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(Xpa(i)) to the descendant node variable (Xi) conditioning on all other nodes. For example,

we have Xpa(3) = {X1, X2} in Fig. 2, which means nodes λ and µ have direct influence

on the node q conditioning on other nodes. One of the important features of the OBM is

that it can factorize the joint probability density function of (X1, ..., Xp) in terms of the

parent/descendant relationship as follows:

f(x1, ..., xp) =
p∏
i=1

fi|pa(i)
(
xi|xpa(i)

)
. (3.2)

where the conditioning is on xpa(i), the set of parent variables of Xi. We further define

Xnd(i) as the set of non-descendants of the node Xi. Then we say the joint density function

of (X1, ..., Xp) has the local Markov property with respect to G if

Xi |=Xnd(i)\pa(i)|Xpa(i), ∀i ∈ V, (3.3)

where we use symbol ‘\’ to represent excluding element(s) from a set. If the conditional

independence holds, then there is no edge between Xi and Xnd(i)\pa(i), and vice versa.

The system input parameters and response KPIs of a queuing system construct a two

stage OBM as shown in Fig. 1 (b). In this chapter, we assume the dependence relationship

between the elements in these two stages are known. For a simple queuing system, the

dependence relationship can be easily inferred from queuing theory. However, for a complex

queuing network, the relationship may not be obvious. In such case, statistical testing

methods can be applied to identify the edges in an OBM. For example, the kernel-based

conditional independence test [37] can be used to identify the edges in an OBM for the

variables in a queuing network, where most variables follows non-Gaussian distribution.

Based on the OBM structure, we want to approximate the joint pdf and quantify the

response KPIs given specific system input parameters. A brief review of PCC will be given
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in Section 3.2.2. Section 3.2.3 will build the link between OBM and PCC, and introduce

the property of the proposed OBM-PCC method. The OBM-PCC based joint distribution

approximation will be presented in Section 3.2.4. The overall summary of the proposed

techniques is presented in Section 3.2.5.

3.2.2 Review of pair-copula construction

The copula is a multivariate cumulative distribution function (cdf) C : [0, 1]p → [0, 1], p ∈ N

such that all the univariate marginals are uniform distributions on the interval [0, 1]. The

Sklar’s theorem [61] shows that every cdf F : Rp → [0, 1] with univariate marginal F1, ..., Fp

can be written as:

F (x1, ..., xp) = C
(
F1(x1), ..., Fp(xp)

)
, (3.4)

for some copula C and all x1, ..., xp ∈ R. If F is absolutely continuous and F1, ..., Fp are

strictly increasing, we can transform Equation (5.8) to the pdf expression as:

f(x1, ..., xp) = c
(
F1(x1), ..., Fp(xp)

) p∏
i=1

fi(xi), (3.5)

where the copula pdf c is uniquely determined. The cdf C and pdf c of copula can be

solved by marginal quantile functions. More specifically, we have

C(u1, ..., up) = F
(
F−1

1 (u1), ..., F−1
l (up)

)
, (3.6)

c(u1, ..., up) =
f
(
F−1

1 (u1), ..., F−1
l (up)

)
∏p
i=1 fi

(
F−1
i (ui)

) , (3.7)
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for all u1, ..., up ∈ [0, 1]. Equation (5.10) represents the multivariate copula, which is hard

to model directly due to its complex tail behavior and heavy computation load. Joe,

Bedford and Cooke [55, 62, 63] therefore proposed a flexible way to construct multivariate

copulas through bi-variate copulas (pair-copula). The key idea of pair-copula construction

is a graphical representation called ‘regular vine’ that consists of a sequence of trees, where

each edge in the tree is associated with a certain pair-copula. We will briefly review the

PCC using the example of D-vine, which is one of the widely applied regular vines.

Let F be the pdf of a D-vine PCC on Rp and let V = {1, ..., p}. The first row (or tree)

in Fig. 5.2 of the D-vine comprises the p nodes that represent the univariate margins

Fi of F . These nodes are connected by p − 1 edges from node i − 1 to i, i ∈ V \{1}.

These edges represent the unconditional pair-copulas C(i−1),i. The subsequent trees of the

D-vine are then derived from their predecessors by turning all edges into nodes and by

introducing a new edge whenever two nodes share all but two indices. Those two indices

form the conditioned set and the remaining ones the conditioning set of the associated

pair-copula. The edges of the second tree, for example, denote the conditional pair-copula

Ci,(i+2)|(i+1), i ∈ V \{p− 1, p}. The D-vine with p nodes will have p− 1 trees and
(
p
2

)
edges.

The pdf of F can be described in terms of pair-copula as follows [64]:

f(x) =
p−1∏
i=1

p−i∏
j=1

cj,j+i|(j,j+i)
(
Fj|(j,j+i)(xj|x(j,j+i)), Fj+i|(j,j+i)(xj+i|x(j,j+i))

) p∏
k=1

fk(xk), (3.8)

where we have x(j,j+i) , (xj+1, ..., xj+i−1) for all i ≤ p−1 and j ≤ p−i. We also denote the

conditional cdf of Xj given X(j,j+i) = x(j,j+i) by Fj|(j,j+i)(xj|x(j,j+i)). Comparing Equation

(5.12) and (5.9), we can see that the high dimension copula can be defined with
(
p
2

)
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(conditional) bi-variate copulas as follows:

c(u1, · · · , up) =
p−1∏
i=1

p−i∏
j=1

cj,j+i|(j,j+i)
(
Fj|(j,j+i)(uj|u(j,j+i)), Fj+i|(j,j+i)(uj+i|u(j,j+i))

)
, (3.9)

There are many studies on evaluating the stability of using bi-variate copulas to approximate

the high dimension copula (joint distribution) [57, 65, 66]. The general conclusion is that

the estimation of bi-variate copulas leads to stable performance in describing the high

dimension copula (distribution) [65].

According to [55], the conditional cdfs Fj|K , j ∈ V,K ⊆ V \j can be computed using

the recursive formula:

Fj|K(xj|xK) =
∂Cjk|(K\{k})

(
Fj|(K\{k})(xj|x(K\{k})), Fk|(K\{k})(xk|x(K\{k}))

)
∂Fk|(K\{k})(xk|x(K\{k}))

, (3.10)

for k ∈ K. For instance, we can iteratively compute the values of Fj|(j,j+i) and Fj+i|(j,j+i)

in tree i of the D-vine by choosing k = j + i− 1 and k = j + 1, respectively. Note that

all the copulas needed in the current conditional cdf computation are already specified in

preceding iterations. Thus, all the pair-copulas in a D-vine can be estimated recursively if

we know the marginal cdf for each variable.

Take the four nodes D-vine in Fig. 5.2 for example, there are
(

4
2

)
= 6 edges (pair-

copulas) for formulating the joint pdf as follows:
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Figure 3.3: A four-variate D-vine.

f(x)

=c12
(
F1(x1), F2(x2)

)
· c23

(
F2(x2), F3(x3)

)
· c34

(
F3(x3), F4(x4)

)
· c13|2

(
F1|2(x1|x2), F3|2(x3|x2)

)
· c24|3

(
F2|3(x2|x3), F4|3(x4|x3)

)
· c14|23

(
F1|23(x1|x2, x3), F4|23(x4|x2, x3)

) 4∏
i=1

fi(xi),

(3.11)

where the unconditional pair-copula c12
(
F1(x1), F2(x2)

)
, c23

(
F2(x2), F3(x3)

)
and c34

(
F3(x3)

, F4(x4)
)

can be obtained through the cdf F1(x1), F2(x2), F3(x3) and F4(x4). Then, the con-

ditional cdf F1|2(x1|x2), F3|2(x3|x2), F2|3(x2|x3) and F4|3(x4|x3) can be achieved by Equation

(5.13). For example, F1|2(x1|x2) =
∂C12

(
F1(x1),F2(x2)

)
∂F2(x2) , where the C12 has already been ob-

tained. With these conditional cdfs, the conditional pair-copula c13|2
(
F1|2(x1|x2), F3|2(x3|x2)

)
and c24|3

(
F2|3(x2|x3), F4|3(x4|x3)

)
can be obtained. Similarly, by getting the conditional

cdf F1|23(x1|x2, x3) and F4|23(x4|x2, x3) from Equation (5.13), the c14|23
(
F1|23(x1|x2, x3),

F4|23(x4|x2, x3)
)

is obtained. It is straightforward to see that getting the joint pdf is

initialized with the marginal cdf for each variable, and the whole process is recursively

proceeded.
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3.2.3 OBM-PCC method and its property

The traditional PCC allows to model the multivariate joint distribution from the marginal

distribution by assuming all the variables are pair-wisely connected. However, in real

situations, it is rare that all the nodes connect with each other [33]. For example, we model

the M/M/1 queuing using the four-variate D-vine and the OBM-PCC, respectively. The

results are shown in Fig. 3.4, where the four-variate D-vine is rearranged from Fig. 5.2 to

better characterize the (conditional) copulas in the queuing system. It is clear that the

OBM-PCC represents the variable interactions in the M/M/1 correctly, while the ordinary

PCC (D-vine) gives two redundant pair-copulas (edge 12 and edge 34|12). Moreover,

the calculation load under pair-wise connection (ordinary PCC) will be unacceptable

when we have large amount of nodes. As a result, the variable connection/disconnection

information should be incorporated to improve the traditional PCC method. Bauer et al.

proposed a general method for incorporating the structure information of the direct acyclic

graph (DAG) into the PCC [57]. However, it requires complex numerical integration in

the pair-copula estimation, which impedes the efficiency of the algorithm. In the KPI

analysis, the two stage OBM works as a special case of the DAG, where we can reasonably

assume the system input variables are independent with each other. This offers extra

information compared with regular DAGs and provides benefits for the PCC process.

Thus, We propose the OBM-PCC method to remove redundant edges (pair-copula) among

nodes by taking the OBM structure information into the PCC, at the same time retain

the recursive property in pair-copula estimation to keep the algorithm efficiency.

The OBM structure provides the dependence information (edges E) for the pair-copula

construction. In an OBM G(V,E), for every node i ∈ V , we order the elements of pa(i)
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Figure 3.4: Difference and relationship between ordinary PCC and OBM-PCC.

increasingly and set:

pa(i;w) , {κ ∈ pa(i)|Si(κ) < Si(w)}, w ∈ pa(i), (3.12)

where Si(·) is the specified order for pa(i). This order can be specified by the Kendall’s

tau [54], which is introduced in the appendix 3.5.1.

The example in the D-vine reveals that each edge in the OBM corresponds to a

pair-copula, which can be specified based on Equation (5.14) as:

ciw|pa(i;w)
(
Fi|pa(i;w)(xi|xpa(i;w)), Fw|pa(i;w)(xw|xpa(i;w))

)
, ∀i ∈ V, ∀w ∈ pa(i), (3.13)

Under this situation, the number of (conditional) pair-copulas to be estimated reduces from(
p
2

)
to ∑p

i=1 |pa(i)|, where | · | represents the number of elements in a set. Moreover, the

OBM-PCC method retains the recursive property when we construct all the pair-copulas.

More specifically, we can have the lemma for the recursive property as follows:

Lemma 2: In a two-stage OBM with p variables, the p-dimension joint distribution

can be recursively constructed by ∑p
i=1 |pa(i)| (conditional) pair-copulas:

ciw|pa(i;w)
(
Fi|pa(i;w)(xi|xpa(i;w)), Fw|pa(i;w)(xw|xpa(i;w))

)
, ∀i ∈ V, ∀w ∈ pa(i).

The proof of the lemma is in the appendix 3.5.2.
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The four nodes OBM in Fig. 3.2 can help to understand the basic idea of the lemma 2.

In Fig. 3.2, if we assume S3(2) < S3(1) and S4(1) < S4(2), then pa(1;∅) = ∅, pa(2;∅) =

∅, pa(3; 1) = {2}, pa(4; 1) = ∅, pa(3; 2) = ∅ and pa(4; 2) = {1}. Consequently, the joint

pdf in Fig. 3.2 contains only 4 (conditional) pair-copulas: c23
(
F2(x2), F3(x3)

)
, c14

(
F1(x1),

F4(x4)
)
, c13|2

(
F1|2(x1|x2), F3|2(x3|x2)

)
and c24|1

(
F2|1(x2|x1), F4|1(x4|x1)

)
. Note that the

four-variate D-vine in Section 3.2.2 requires 6 (conditional) pair copulas. In Fig. 3.2,

c23
(
F2(x2), F3(x3)

)
and c14

(
F1(x1), F4(x4)

)
can be estimated from the marginal cdfs,

which provide the conditional cdfs F3|2(x3|x2) and F4|1(x4|x1) for the rest two conditional

pair-copulas as follows:

F3|2(x3|x2) =
∂C23

(
F2(x2), F3(x3)

)
∂F2(x2)

F4|1(x4|x1) =
∂C14

(
F1(x1), F4(x4)

)
∂F1(x1) ,

(3.14)

However, the conditional cdf F2|1(x2|x1) and F1|2(x1|x2) is not available. This is due

to the OBM removes the edge between node 1 and 2 based on the OBM structure that

the inputs for the queuing are independent. As a result, we also apply X1 |= X2 to the

conditional cdf and find F2|1(x2|x1) = F2(x2), F1|2(x1|x2) = F1(x1). Under this situation,

the conditional pair-copulas in Fig. 3.2 can be recursively specified from the marginal cdfs,

which offers the computational efficiency.

The lemma 2 provides an efficient way for representing the joint distribution with

pair-copulas when the structure information among variables is available. Furthermore, due

to the recursive property in lemma 2, the OBM-PCC method guarantees the calculation

efficiency.
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3.2.4 Estimate the OBM-PCC model

The OBM-PCC model introduced in Section 3.2.3 decomposes the joint distribution into

(conditional) pair-copulas. To correctly approximate the joint distribution, we need to

identify the types of these pair-copulas and estimate the parameters in the corresponding

ones. With reference to Sklar’s theorem, we restrict our considerations to the joint

distribution with uniform [0, 1] univariate margins. In real data application, empirical

cdfs [67] can be applied to transform the data to uniform [0, 1]. More specifically, given

n samples of a p-dimensional random vector Xk = (Xk
1 , ..., X

k
p ) with k = 1, ..., n, we

construct the pseudo-observations uk = (uk1, ..., ukp) by first retaining the rank rki of the

variable Xi among all variables X1, ..., Xp in the kth sample. Then, we can scale each

element in uk by a factor n+ 1 to ensure that all values are inside (0, 1):

uki = T (Xk
i )

= rki
n+ 1 =

∑n
t=1 1(X t

i ≤ Xk
i )

n+ 1 ,

(3.15)

where T (·) is the transformation function for the original observation to scale as the

pseudo-observations.

With these pseudo-observations, the OBM-PCC model yields the log-likelihood function

as:

L(θ; u) =
n∑
k=1

∑
i∈V

∑
w∈pa(i)

logciw|pa(i;w)
(
Fi|pa(i;w)(uki |ukpa(i;w)), Fw|pa(i;w)(ukw|ukpa(i;w));θ

)
,

(3.16)

where θ = (θiw|pa(i;w))i∈V,w∈pa(i) is a parameter vector for the pair-copula parameter of the

corresponding edge in the OBM, u = (u1, ...,un) with uk ∈ [0, 1]p, n ∈ N, k = 1, · · · , n

is n i.i.d. samples of the random variables U = (u1, ..., up). The order of the parent can
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be specified based the Kendall’s tau between parent nodes and their shared child node.

Higher Kendall’s tau between a parent and a specific child node will give higher priority

to the parent in the order [68]. To correctly specify the MLE of Equation (5.19), we are

concerned not only the parameter vector θ, but the specific type of the pair-copula for

each edge in the OBM. To complete the comprehensive inference for the OBM-PCC model,

we give algorithm 2 to specify the type of each copula and the initial value for the MLE of

Equation (5.19), where we choose the Akaike’s information criterion (AIC) [69] to select

the pair-copula. The AIC in copula selection is comprehensively studied in [70], where a

large scale simulation study shows that copula selection using the AIC is more reliable

than that using goodness-of-fit tests (based on probability integral transform). In general,

AIC can give stable result with quick response, which makes it a widely used criterion in

selecting copula [64].

Algorithm 2 Identify the pair-copula and initial value of θ
Input: Transformed pseudo-observations u1, ...,un.

Initialize Count variable Cv=0.
for Cv = 0→ |V | do

1. Find all pair-copulas with |pa(i;w)| = Cv;
2. For each such pair-copula, estimate the parameter(s) through MLE by assuming

the copula type is Gaussian, Student, Frank, Clayton, Gumbel as well as the reflected
Frank, reflected Clayton and reflected Gumbel;

3. Use AIC to select the best copula type and record the parameter value.
end for

Output: Each pair-copula’s type and parameter values.

With the pair-copula’s type and the corresponding parameter initial values from the

algorithm 2, the Equation (5.19) can be numerically optimized. The candidate copulas in

algorithm 2 are typical copulas utilized in the pair-copula modeling [71] and we use the

AIC to choose the appropriate pair-copula for each edge. The details about these copulas

can be found in the appendix 3.5.3 - 3.5.7.
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To further estimate the response KPIs given specific system input parameter values,

we can sample from the constructed OBM-PCC model to approximate the joint pdf f(x).

The sampling strategy is discussed in [64]. Here we give brief steps on approximating the

f(x).

First, sample ω1, ..., ωp independently from the uniform distribution on [0,1]. Then, set

samplings as:

ui =


ω1, i = 1

F−1
i|1,...,i−1(ωi|u1, ..., ui−1;θ), i = 2, ..., p,

(3.17)

For example, the sampling for the OBM-PCC in Fig. 3.2 is as follows:

u1 = ω1,

u2 = F−1
2|1 (ω2|u1) = F−1

2 (ω2) = ω2,

u3 = F−1
3|12(ω3|u1, u2;θ) = h−1

32|1(h31(ω3, u1;θ31), u2;θ32|1)

u4 = F−1
4|123(ω4|u1, u2, u3;θ) = h−1

42|1(h41(ω4, u1;θ41), u2;θ42|1),

(3.18)

where we use the function hrv(r, v,Θ) to represent the conditional distribution function

when r and v are uniform, i.e., f(r) = f(v) = 1, F (r) = r and F (v) = v. That is:

hrv(r, v,Θ) = Fr|v(r|v) = ∂Crv(r, v; Θ)
∂v

, (3.19)

where the second parameter of h(·) always corresponds to the conditioning variable and Θ

denotes the set of parameters for the bi-variate copula. Further, let h−1
rv (r, v; Θ) be the

inverse of the h-function with respect to the first variable r, or equivalently the inverse of

the conditional distribution function. The details about the candidate h and h−1 functions
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are in the appendix 3.5.3 - 3.5.7.

After obtaining the PCC samples, we can use the inverse empirical cdf T−1(uk) to get

the samples for (xk1, ...xkp), which results in the numerical joint pdf f̂(x). The numerical

conditional distribution by conditioning on system input parameters can also be obtained.

For example, we can get f̂(q, c|λ, µ), f̂(q|λ, µ) and f̂(c|λ, µ) for the OBM-PCC model in

Fig. 3.2. The performance of the proposed OBM-PCC model in estimating response KPIs

will be introduced in Section 3.3.

3.2.5 Summary of the OBM-PCC method

Section 3.2.2 to Section 3.2.4 introduce the OBM-PCC model and the joint distribution

approximation method for system input parameters and response KPIs. We give a

comprehensive summary to numerically approximate the joint pdf of KPIs, which is shown

in the following algorithm 3.

Algorithm 3 Numerical approximation of f(x1, · · · , xp)
Input: Sample vectors for each KPI variables x1, ...,xp;

The system input parameter and response KPI variables sets I and O;
The size of system input parameter variables l = |I|.

1. Identify OBM structure based on the physical information or statistical tests [37];
2. Decompose the pair-copula based on the OBM structure to get the OBM-PCC model;
3. Employ Equation (5.18) to get the pseudo-observations u1, ...,un;
4. Use algorithm 1 and MLE to estimate the OBM-PCC model parameters;
5. With the OBM-PCC model and Equation (5.20), sample in the pseudo-observation
space;
6. Take the inverse of Equation (5.18) to the pseudo-observation samples to obtain KPI
samples;
7. Numerically approximate f(x) with the KPI samples.

Output: f̂(x).
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3.3 Numerical studies

In this section, extensive numerical studies are conducted to demonstrate the effectiveness of

the proposed OBM-PCC method. More specifically, we will apply our method to the M/M/1

queue, G/G/1 queue and a serial production system with 4 servers to approximate the joint

distribution of system input parameters and response KPIs in these systems. Based on the

approximated joint distribution, we will demonstrate the conditional distribution for each

response KPI given the system input parameters. To validate the approximated conditional

distributions, we will perform the Kolmogorov-Smirnov test (K-S test) to evaluate the

goodness-of-fit of the approximated distribution to the underlying true distribution [72, 73].

The K-S test is a non-parametric test of the equality of continuous probability distributions

that can be used to compare a sample with a theoretic probability distribution (one-sample

K-S test), or to compare two samples (two-sample K-S test). The one-sample K-S test

evaluates the goodness-of-fit between the observed distribution function (ODF) and the

theoretical distribution (TDF). The two-sample K-S test is used to test whether two ODFs

differ with each other. We define D1 as the largest discrepancy between the ODF and

TDF, and D2 as the largest discrepancy between two ODFs. More technical details about

the one-sample K-S test and two-sample K-S test is in the appendix 3.5.8. The K-S test is

chosen to validate our method’s performance due to the following advantages: (i) It is

easy to compute and the critical values are tabulated. (ii) The statistical properties are

distribution-free. (iii) It is always consistent against all alternative continuous distribution

functions, i.e., the power of the tests approaches 1 as the sample size goes to infinity.

3.3.1 M/M/1 system

First, we consider the M/M/1 queuing system with the first come first serve (FCFS)

dispatching rule for waiting lines. The diagram for M/M/1 queue is shown in Fig. 5.5 (a),
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where we choose infinity buffer size to demonstrate our method. The simulation parameters

are listed in Table 3.1. In the simulation, we first randomly pick a pair of λ and µ1 from

the corresponding uniform distributions. Then, the arrival and service distributions are set

according to Table 3.2 for the M/M/1 queue. As the simulation goes to the steady state,

we can sample and record q1 and c. Then, we re-pick another pair of λ and µ1 and repeat

the process. The simulation is implemented in Simulink, Matlab 2017. In our simulations,

we sample 800 different pairs of system input parameters and the corresponding response

KPIs as inputs for the algorithm 3. By implementing algorithm 3, we can obtain the

OBM-PCC model, which is shown in Fig. 5.5 (b). The pair-copulas attached on the lines

are the MLE results by algorithm 2. More detailed results are shown in Table 3.2, where

we demonstrate the estimation results for 10 different pairs of system input parameters by

giving mean and variance of the corresponding conditional distributions of response KPIs.

The conditional distributions of different response KPIs are obtained from 1000 samples

of the approximated joint distribution f̂(x), which is the output of algorithm 3. It is well

known that steady state M/M/1 queue has analytical distributions for response KPIs.

All the mean and variance values in Table 3.2 are validated with theoretical results, e.g.,

E(c) = 1
µ−λ , V ar(c) = 1

(µ−λ)2 , and have relative error less than 5%. Besides comparisons in

moment level, we also perform the one-sample K-S test to compare our model result with

the theoretical truth in the distribution level. The 1000 samples for response KPIs are used

to construct the ODF, which is compared with the analytical distribution TDF under the

one-sample K-S test. We show the D1 (the largest discrepancy between ODF and TDF)

in Table 3.2, where we also give critical value SD1 at 95% confidence level. It can be seen

that all D1s are smaller than the critical value SD1 , which means we cannot reject the null

hypothesis that the 1000 samplings are from the underlying true conditional distributions.

Besides, D1s in Table 3.2 maintain at small values indicate the approximated conditional



67

distributions are very close to those underlying truth. To have an overall view of the

OBM-PCC results, we give 7000 samples of the mean of the conditional response KPIs

reproduced by the 800 original simulation samples. Fig. 3.6 (a) and Fig. 3.7 (a) show the

approximated samples track the simulation samples well and fill the gaps the simulation

samples cannot reach. Fig. 3.6 (b) and Fig. 3.7 (b) are the comparisons between the

approximated samples and the mean response surface from theoretical results, where we

can see the approximated samples represent the theoretical response surface very well.

Figure 3.5: Simulation for M/M/1 queue.

Table 3.1: Parameter setting for M/M/1 queue.

Parameter Type Mean Variance Min Max
Arrival interval Exponential 1

λ
1
λ2 0 ∞

Service interval Exponential 1
µ1

1
µ2

1
0 ∞

λ Uniform 3.5 1
12 3 4

µ1 Uniform 5 1
12 4.5 5.5
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Figure 3.6: Comparison of waiting time in M/M/1 queue.

Figure 3.7: Comparison of cycle time in M/M/1 queue.

Table 3.2: Detailed results for M/M/1 queue.

Input

parameter

λ 3.05 3.85 3.25 3.48 3.32 3.17 3.01 3.80 3.89 3.12

µ1 5.24 4.96 4.99 4.72 5.13 5.26 4.71 5.49 5.31 5.38

Response

KPIs

(conditional)

q1

Sample Mean 0.268 0.709 0.383 0.610 0.369 0.290 0.379 0.413 0.520 0.278

Sample variance 0.174 0.829 0.311 0.674 0.292 0.198 0.321 0.344 0.499 0.184

D1(SD1 = 0.043) 0.021 0.017 0.010 0.026 0.014 0.011 0.012 0.006 0.018 0.007

c

Sample Mean 0.456 0.906 0.578 0.815 0.560 0.476 0.589 0.591 0.708 0.458

Sample variance 0.208 0.844 0.348 0.701 0.328 0.231 0.359 0.362 0.528 0.216

D1(SD1 = 0.043) 0.030 0.023 0.014 0.034 0.018 0.017 0.021 0.007 0.027 0.021
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3.3.2 G/G/1 system

Generally, the G/G/1 queuing model provides more flexibility in approximating real systems

compared to M/M/1 queues. However, the stationary distribution of response KPIs in

G/G/1 queue is hard to derive analytically. Therefore, we compare the performance of

our method in G/G/1 queuing with simulated moments and distributions. The parameter

sets are shown in Table 3.3 and we choose infinity buffer size to demonstrate our method.

Similar to that in Section 3.3.1, we have 800 samples of different pairs of system input

parameters and the corresponding response KPIs as training data. Fig. 3.8 shows the OBM-

PCC results. Table 3.4 gives details about 10 different sets of system input parameters

and the corresponding response KPIs distribution information. Different with that in

Section 3.3.1, all the mean and variance in Table 3.3 are compared with simulated mean

and variance from G/G/1 simulation rather than theoretical results. Here we treat the

results from the G/G/1 simulation as underlying truth. Relative error less than 5% for

these mean and variance are validated. We also perform the two-sample K-S test for the

distributions, where we sample 1000 times from our approximated distribution and 1000

times from the G/G/1 simulation to construct two ODFs. We report the D2 and the

critical value SD2 at 95% confidence level in Table 3.3. It can be seen that all the D2s are

smaller than the critical value SD2 , which means we cannot reject the null hypothesis that

the 1000 samplings are from the same distribution. Besides, we also give the overall view

of the between original samples and the approximated samples in Fig. 3.9. We can see

the approximated samples well match the original samples, which verifies the effectiveness

of our method in modeling G/G/1 queuing.
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Table 3.3: Parameter setting for G/G/1 queue.

Parameter Type Mean Variance Min Max

Arrival interval Log-normal 1
λ

1 0 ∞

Service interval Erlang 1
µ1

1
2µ2

1
0 ∞

λ Uniform 3.5 1
12 3 4

µ1 Uniform 5.5 1
12 5 6

Figure 3.8: Simulation result for G/G/1 queue.

Table 3.4: Detailed results for G/G/1 queue.

Input

parameter

λ 3.13 3.28 3.85 3.10 3.19 3.15 3.23 3.20 3.51 3.71

µ1 5.91 5.55 5.93 5.82 5.49 5.26 5.91 5.74 5.88 5.99

Response

KPIs

(conditional)

q1

Sample Mean 0.536 0.805 1.242 0.542 0.737 0.825 0.596 0.632 0.854 0.996

Sample variance 0.404 0.804 1.232 0.543 0.741 0.832 0.599 0.636 0.853 0.987

D2(SD2 = 0.043) 0.040 0.033 0.034 0.041 0.028 0.027 0.031 0.017 0.037 0.031

c

Sample Mean 0.705 0.986 1.409 0.713 0.919 1.016 0.765 0.806 1.023 1.161

Sample variance 0.418 0.814 1.651 0.431 0.703 0.863 0.490 0.544 0.885 1.131

D2(SD2 = 0.043) 0.031 0.027 0.029 0.036 0.024 0.021 0.022 0.010 0.028 0.017

3.3.3 Serial production lines

In this section, we consider a serial production system consisting of four workstations

(servers). The diagram of the production line is shown in Fig. 3.10 (a) and the parameters
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Figure 3.9: Comparisons of waiting time and cycle time for G/G/1 queue.

are in Table 3.5. In this case, we use finite buffer size between servers, and the buffer size

for each queue is shown in Fig. 3.10 (a). Similar steps as those in Section 3.3.1 and 3.3.2

are followed, which result in the OBM-PCC for the production line in Fig. 3.10 (b).

Detailed analysis for each response KPIs are shown in Table 3.6, where we show 10

different sets of system input parameters and the corresponding response KPIs features.

Again, the serial G/G/1 simulations are conducted and act as the underlying truth to

compare with our method’s performance. All the mean and variance values in Table 3.6 are

validated, and have relative error less than 8%. We also perform the two-sample K-S test

for the distributions and report the D2 and the critical value SD2 at 95% confidence level.

It can be seen that all the D2s are smaller than the critical value SD2 , which means we

cannot reject the null hypothesis that the 1000 samplings are from the same distribution.

Due to the high-dimension of system input parameters, we are unable to visually show the

comparison between original samples and the approximated samples. Nevertheless, the

two-sample K-S test verifies the effectiveness of our methods in the serial production lines.

To illustrate the computation load of the proposed method, we give a comparison of

computational time in Table 3.7. Specifically, after we obtain the OBM-PCC model, we

randomly generate 7000 samples of the system input parameter and the corresponding
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Figure 3.10: Simulation result for serial production line.

response KPIs (sample from the OBM-PCC based joint distribution), and record the

computational time. For the same 7000 system input parameters, we run the queuing

simulation to obtain the corresponding response KPIs, and record the computational time.

We repeat these procedures 100 times and list the mean value of time consumption.

From Table 3.7, we can see that the OBM-PCC model needs significantly less time

compared with the simulation model. This is because the simulation model needs to

reach steady state for each sample, which is quite time-consuming. All the calculation is

implemented in Simulink, Matlab 2017.
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Table 3.5: Parameter setting for the serial production line.

Parameter Type Mean Variance Min Max

Arrival interval Log-normal 1
λ

1 0 ∞

Service 1 interval Erlang 1
µ1

1
2µ2

1
0 ∞

Service 2 interval Erlang 1
µ2

1
2µ2

2
0 ∞

Service 3 interval Erlang 1
µ3

1
2µ2

3
0 ∞

Service 4 interval Erlang 1
µ4

1
2µ2

4
0 ∞

λ Uniform 2 1
12 1.5 2.5

µ1 Uniform 5 1
3 4 6

µ2 Uniform 4.5 1
3 3.5 5.5

µ3 Uniform 4 1
3 3 5

µ4 Uniform 3.5 1
12 3 4

From the extensive case studies, we can find that the proposed OBM-PCC method can

be successfully applied to a wide class of production systems with satisfactory accuracy.

Note that although the traditional simulation method can mimic the underlying truth,

it is time consuming to set up the simulation for different system input parameters due

to ‘warm-up’ period in the simulation. On the other hand, our method can approximate

response KPIs under any configuration of system input parameters once we complete the

modeling, which is efficient and desirable in practice use. This property is particularly

useful when we are interested in specific systems input parameters’ influence on the

response KPIs, where we can numerically marginalize the miscellaneous input parameters

and focus on specific input parameters. For example, we can get f̂(q1, q2|λ) in the serial

production line to investigate the influence on the queuing time only from the arrival rate.

This is difficult to evaluate through simulations since the simulation cannot deal with the

marginalization on specific parameters.
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Table 3.6: Detailed results for serial production line.

Input

parameter

λ 1.64 2.16 1.94 1.85 2.10 2.44 1.59 1.71 2.12 1.67

µ1 4.84 4.07 4.76 5.66 4.53 5.75 5.63 4.60 5.36 5.96

µ2 5.33 5.20 5.03 4.67 4.81 4.60 5.14 4.44 4.29 4.93

µ3 4.58 4.87 4.59 4.10 4.39 4.25 4.44 3.46 3.73 4.00

µ4 3.96 3.68 3.19 3.92 3.75 3.59 3.15 3.84 3.99 3.47

Response

KPIs

(conditional)

q1

Sample Mean 0.119 0.461 0.209 0.118 0.303 0.263 0.049 0.156 0.198 0.075

Sample variance 0.051 0.348 0.094 0.039 0.176 0.140 0.009 0.062 0.089 0.024

D2(SD2 = 0.062) 0.025 0.031 0.028 0.021 0.027 0.018 0.024 0.038 0.040 0.035

q2

Sample Mean 0.072 0.123 0.136 0.172 0.177 0.367 0.086 0.124 0.311 0.103

Sample variance 0.017 0.043 0.049 0.071 0.074 0.215 0.017 0.036 0.174 0.028

D2(SD2 = 0.062) 0.045 0.038 0.038 0.027 0.034 0.021 0.037 0.048 0.024 0.029

q3

Sample Mean 0.147 0.148 0.157 0.211 0.221 0.382 0.218 0.283 0.417 0.191

Sample variance 0.059 0.064 0.065 0.099 0.120 0.276 0.093 0.159 0.320 0.085

D2(SD2 = 0.062) 0.032 0.019 0.041 0.027 0.030 0.028 0.032 0.043 0.032 0.038

q4

Sample Mean 0.152 0.395 0.545 0.202 0.339 0.784 0.182 0.166 0.237 0.223

Sample variance 0.063 0.306 0.628 0.109 0.233 1.013 0.084 0.083 0.129 0.120

D2(SD2 = 0.062) 0.039 0.026 0.042 0.030 0.029 0.023 0.042 0.033 0.026 0.026

c

Sample Mean 1.287 2.061 1.990 1.583 1.977 2.727 1.286 1.667 2.115 1.454

Sample variance 0.254 1.072 1.163 0.483 0.950 2.396 0.297 0.508 1.109 0.357

D2(SD2 = 0.062) 0.051 0.048 0.055 0.041 0.058 0.038 0.050 0.054 0.049 0.047

Table 3.7: Time consumption comparison for generating 7000 samples.
Models OBM-PCC Simulation model

Queuing system M/M/1 G/G/1 4 serial G/G/1 M/M/1 G/G/1 4 serial G/G/1

Time consumption 7.781s 8.111s 51.346s 29112s 29774s 86956s

To guarantee the model performance, we give several important guidelines for simulation

data generation and prediction procedures:

1 We suggest sample system input parameters from uniform distributions.

This procedure provides convenience for copula estimation that needs

standard uniform data.
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2 The simulated queuing system should be able to reach the steady state,

e.g., λ < µ.

3 The response KPIs should be sampled only after the system reaches steady

state. This can be guaranteed by checking the steady state of the Markov

Chains [74, 75].

4 The support of uniform distribution of system input parameters should

cover the prediction scope to enable the interpolation rather than the

extrapolation for the prediction. This is because the copula based extrap-

olation has the extreme value problems [76, 77]

5 The larger the sample size of simulation data, the more accurate the

estimation result. We suggest take at least 800 samples according to the

Dvoretzky–Kiefer–Wolfowitz inequality [78].

3.4 Conclusion

In this chapter, we propose to approximate the KPIs joint distribution through sampling

from the OBM-PCC model. First, the KPIs are modeled as random variables and the

process is formulated under the OBM framework. Then, the pair-copulas are constructed

based on the OBM structure to approximate the KPIs joint distribution. The feature of

the proposed method is that it focuses on the distribution level approximation rather than

the individual KPI estimation, which offers the feasibility in high dimensional modeling for

KPIs under any configurations. Moreover, compared with traditional simulation method,

the proposed method is more efficient due to the closed-form sampling procedures. The

effectiveness and accuracy of the proposed method are verified through various numerical
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studies.

Some interesting open issues remain in the proposed method. First, the approximated

distribution can be further summarized into monitoring statistics to conduct KPI condition

monitoring and prediction. The KPI monitoring based on the proposed method benefits

from not only the rich information embedded in the approximated joint distribution, but

the elimination of redundant relationships due to OBM structure. These features provide

extra information for the KPI monitoring and potentially offer quicker response to change

detection. Second, the domain knowledge incorporation in the OBM-PCC can be further

studied. In our current work, the domain knowledge mainly helps build the OBM and

reduce the PCC calculation load. A more efficient way to employ domain knowledge is to

directly benefit the PCC process. One possible way is to extract PCC domain knowledge,

e.g, copula type and parameter, from existing processes, then transfer such knowledge to

the PCC for target process. However, the variable inconsistency in different processes sets

difficulties in fusing and transferring information in this approach. Another possible topic

based on this work is to do the KPI control and optimization for system input parameters.

For example, given a specific required waiting time distribution, we want to find out the

optimal arrival and service rate parameters or distributions. Since we can approximate the

KPIs joint distribution, a simple way to conduct this KPI control task is brute-force search

over the system input parameter space. However, the high-dimension of the system input

parameter space poses difficulties in the search procedure. We will study these topics in

future work.
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3.5 Appendix

3.5.1 Kendall’s tau

The Kendall’s tau is widely used as the dependence measure in the copula analysis due to

its scale-invariant property [54]. The exact relationship between the Kendall’s tau and

various copula parameters is shown in Table 3.8, where the larger the Kendall’s tau, the

stronger the dependence.

Table 3.8: Kendall’s tau of various bi-variate copulas.

Copula Gaussian Student Clayton Gumbel Frank

Parameter ρ ρ, ν δ δ δ

Kendall’s τ 2
π
arcsin(ρ) 2

π
arcsin(ρ) δ

δ+2
δ−1
δ

1 +
4
(
D(δ)−1

)
δ

D(δ) = 1
δ

∫ δ
0

t
exp(t)−1dt

3.5.2 Proof of lemma 2

We first show that the p-dimension joint distribution can be represented by ∑p
i=1 |pa(i)|

(conditional) pair-copulas:

According to the OBM structure, {Xi, i ∈ I} are in the first stage and independent

with each other. Thus, |pa(i)| = 0, i ∈ I. The number of pair-copulas now only depends

on the parent set of {Xi, i ∈ O}, which is ∑ |pa(i)|, i ∈ O. Since |pa(i)| = 0, i ∈ I, we

have ∑ |pa(i)|, i ∈ O equals to ∑p
i=1 |pa(i)|. Thus, the p-dimension joint distribution can

be represented by ∑p
i=1 |pa(i)| (conditional) pair-copulas.

Then, we will show that all the (conditional) pair-copulas can be recursively constructed

from the marginal cdfs F1(x1), · · · , Fp(xp). We give the proof through induction, where we

will use the simplified notation, e.g., ciw|pa(i;w), to represent the (conditional) pair-copula.
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Si(w) = 1:

The ciw|pa(i;w) is a unconditional pair-copula, it is easy to see the lemma holds.

Si(w) = k:

We suppose the lemma holds, which means all the ciw|pa(i;w),∀i ∈ V, ∀w ∈ pa(i) are

available from F1(x1), · · · , Fp(xp).

Si(w) = k + 1:

ciw|pa(i;w) depends on Fi|pa(i;w)(xi|xpa(i;w)) and Fw|pa(i;w)(xw|xpa(i;w)).

Note that w |= pa(i;w), which results in Fw|pa(i;w)(xw|xpa(i;w)) = Fw(xw).

According to Equation (5.13), we have Fi|pa(i;w)(xi|xpa(i;w)) = ∂Ciw′|(pa(i;w)\{w′})
∂Fw′|(pa(i;w)\{w′})

, Si(w′) =

k.

Since Ciw′|(pa(i;w)\{w′}),Si(w′) = k is available from F1(x1), · · · , Fp(xp), Fi|pa(i;w)(xi|xpa(i;w))

is also available.

Thus, ciw|pa(i;w), ∀i ∈ V, ∀w ∈ pa(i) are available from F1(x1), · · · , Fp(xp) when

Si(w) = k + 1.

The lemma holds.

3.5.3 The bi-variate Gaussian copula

The density of the bi-variate Gaussian copula is given by

c(u, v; ρ) = 1√
1− ρ2 exp

{
−ρ

2(x2
1 + x2

2)− 2ρx1x2

2(1− ρ2)

}
, (3.20)

where ρ ∈ (−1, 1) is the parameter of the copula, x1 = Φ−1(u), x2 = Φ−1(v) and Φ−1(·) is

the inverse of the standard univariate Gaussian distribution function. For this copula, the
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h-function is given by

huv(u, v; ρ) = Φ
(

Φ−1(u)− ρΦ−1(v)√
1− ρ2

)
, (3.21)

and the inverse of the h-function is :

h−1
uv (u, v; ρ) = Φ

(
Φ−1(u)

√
1− ρ2 + ρΦ−1(v)

)
, (3.22)

The dependence represented by a bi-variate Gaussian copula is 2
π

arcsin(ρ).

3.5.4 The bi-variate Student copula

The density of the bi-variate Student copula is given by

c(u, v; ρ, τ) =
Γ( τ+2

2 )/Γ( τ2 )
τπdt(x1, τ)dt(x2, τ)

√
1− ρ2

{
1 + x2

1 + x2
2 − 2ρx1x2

τ(1− ρ2)

}− τ+1
2

, (3.23)

where ρ ∈ (−1, 1) and τ ∈ N are the parameters of the copula, x1 = t−1
τ (u), x2 = t−1

τ (v),

and dt(·, τ) and t−1
τ (·) are the probability density and the quantile function, respectively,

for the univariate standard Student-distribution with τ degrees of freedom. For this copula,

the h-function is given by

huv(u, v; ρ, τ) = tτ+1

 t−1
τ (u)− ρt−1

τ (v)√
τ+(t−1

τ (v))2(1−ρ2)
τ+1

, (3.24)

and the inverse of the h-function is given by

h−1
uv (u, v; ρ, τ) = tτ

t−1
τ+1(u)

√
τ + (t−1

τ (v))2(1− ρ2)
τ + 1 + ρt−1

τ (v)

, (3.25)
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The dependence represented by a bi-variate student copula is 2
π

arcsin(ρ).

3.5.5 The bi-variate Clayton copula

The density of the bi-variate Clayton copula is given by

c(u, v; δ) = (1 + δ)(u · v)−1−δ(u−δ + v−δ − 1)−1/δ−2, (3.26)

where δ ∈ (0,∞) is the parameter of the copula. For this copula, the h-function is given

by

huv(u, v; δ) = v−δ−1(u−δ + v−δ − 1)−1−1/δ, (3.27)

and the inverse of the h-function is given by

h−1
uv (u, v; δ) =

(
(u · vδ+1)−

δ
δ+1 + 1− v−δ

)−1/δ

, (3.28)

The dependence represented by a bi-variate Clayton copula is δ
δ+2 .

3.5.6 The bi-variate Gumbel copula

Let ũ = − log u and ṽ = − log v. The density of the bi-variate Gumbel copula is given by

c(u, v; δ) = C(u, v; δ)(u · v)−1 (ũṽ)δ−1

(ũδ + ṽδ)2−1/δ

C(u, v; δ) = exp{−(ũδ + ṽδ)1/δ},
(3.29)
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where δ ∈ [1,∞) is the parameter of the copula. For this copula, the h-function is given by

h−1
uv (u, v; δ) = v−1 exp

(
− (ũδ + ṽδ)1/δ

)
·
(

1 +
(
ũ

ṽ

)δ)−1+1/δ

, (3.30)

and the inverse of the h function must be obtained numerically using, for example, Newton-

Raphson method [79]. The dependence represented by a bi-variate Gumbel copula is

1− 1
δ
.

3.5.7 The bi-variate Frank copula

The density of the bi-variate Frank copula is given by

c(u, v; δ) =
δη exp

(
− δ(u+ v)

)
(
η −

(
1− exp(δu)

)(
1− exp(δv)

))2

η = 1− exp(−δ),

(3.31)

where δ ∈ [0,∞) is the parameter of the copula. For this copula, the h-function is given by

h−1
uv (u, v; δ) = e−δv

1−e−δ
1−e−δu + e−δv − 1

, (3.32)

and the inverse of the h-function is given by

h−1
uv (u, v; δ) = − log

{
1− 1− e−δ

(u−1 − 1)eδv + 1

}/
δ, (3.33)

The dependence represented by a bi-variate Frank copula is 1 +
4
(
D(δ)−1

)
δ

, where D(δ) =
1
δ

∫ δ
0

t
exp(t)−1dt.
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3.5.8 K-S test

Suppose we have samples x1, · · · , xn for a random variable, and a theoretical distribution

function (TDF) F (x). The one-sample K-S test shows:

H0 : x1, · · · , xn are from F (x).

HA : x1, · · · , xn are not from F (x).

D1 = sup
d
|F̂n(d)− F (d)|

Test statistic : S1 =
√
n ·D1,

(3.34)

where F̂n(d) is the observed distribution function (ODF) from the samples. It is clear that

D1 is the the largest vertical discrepancy between ODF and TDF, as shown in Fig. 5.4.

The one-sample K-S test gives a measure of the distance between the empirical distribution

function of samples and F (x). Similarly, we can have the two-sample K-S test for samples

Figure 3.11: Illustration of K-S test.
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x1 = {x1
1, · · · , x2

n} and x2 = {x2
1, · · · , x2

m}:

H0 : x1 and x2 are from the same distribution.

HA : x1 and x2 are not from the same distribution.

D2 = sup
d
|F̂n(d)− F̂m(d)|

Test statistic : S2 =
√

nm

n+m
·D2,

(3.35)

where F̂n(d) and F̂m(d) are the ODFs from x1 and x2, respectively. The critical values for

the K-S test are well studied and can be explicitly obtained [72, 73]. According to these

studies, the critical values for the test statistics under 90%, 95% and 99% confidence level

are 1.22, 1.36 and 1.63, respectively.
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4 contamination source identification based on

sequential bayesian approach for water

distribution network with stochastic demands∗

Efficient anomaly detection is crucial to the safe operation of smart and connected

systems. In this chapter, we choose the contamination source identification problem in

water distribution network to demonstrate the efficient anomaly detection technique in

network based systems. In the water distribution network, sensor alarms are recorded in

multiple simulations to establish the observation probability distribution function. Then

the observation probability distribution information is used to compute the posterior

probability of each possible source for the observed alarm pattern in real time. Finally

the contamination source is identified based on the ranking of the posterior probability.

The critical contribution of this work is that the probability distributions for all possible

observations are organized into a concise hierarchical tree structure and the challenge

of combinatorial explosion is avoided. Furthermore, the variation analysis towards the

posterior probability is conducted to give significance probability to the identification

result we obtained. The effectiveness of this method is verified by a case study with a

realistic water distribution network.

4.1 Introduction

Urban water distribution network is an important part of civil infrastructure that provides

clean water and ensures quality of life. A water distribution network usually consists
∗This chaper is based on the paper: Wang C. and Zhou S. (2017). “Contamination Source Identifica-

tion Based on Sequential Bayesian Approach for Water Distribution Network with Stochastic Demands”.
IISE Transactions, 49 (9): 899-910
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of water consumption locations, such as water taps at home (referred as nodes), pumps,

pipes and storage tanks [80]. The water distribution network is vulnerable to a range

of threats including direct physical attacks on the water supply infrastructure, sabotage

of supervisory control and/or data acquisition instruments, and chemical or biological

contamination [81]. Thus, a warning system is important to protect water distribution

networks from possible pipe breaks and accidental or intentional contaminant events [82].

Figure 4.1 is an illustration of a simple water distribution network with two detection

sensors. The network includes a reservoir (e.g. a treatment plant), six consuming nodes,

a storage tank and several pipes connecting the nodes. The water is pumped from the

reservoir into the network for the consumption by each node. The water flow rate and

direction within pipes are determined by factors such as the pump power, water demands

at nodes, and the tank volume. The flow rate and direction along time are called hydraulic

characteristics of a water distribution network, which can be calculated by iteratively

balancing the hydraulic energy getting in and out of the node [83].

Figure 4.1: Diagram of water distribution network with sensors.

The sensors allocated in node 4 and node 7 in Fig. 4.1 serve to detect the concentration

and/or existence of contamination materials, such as chlorine. The contamination is
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identified by four parameters: location (e.g. the node of contamination), time (starting

time instant and duration), intensity, and material. Once the contamination happens, the

contamination material released from the source node will flow with water and reach the

accessible nodes as time goes by. In a warning system, the sensor readings are periodically

collected. If the warning system detects contamination at one or more sensor locations,

algorithms should be carried out to determine the four parameters for contamination.

Particularly, the contamination location should be identified first to isolate the source

hydraulically from the large network, so that it is possible to limit the total contamination

mass added [84]. In this article, we will focus on the problem of identifying the location

(i.e., node) of the contamination source.

Many methods have been proposed to identify the contamination source in the water

distribution network. These methods can be roughly put into two categories: deterministic

methods and stochastic methods. The deterministic methods assume the water demands at

each node are deterministic and all the hydraulic characteristics in the water distribution

network are known at each time instant, which means the water flows and directions in

pipes have a fixed pattern that can be predicted. The stochastic methods treat all the

water demands at each node as random variables so that the water flows and directions in

pipes are stochastic and cannot be exactly predicted.

Among the deterministic approaches, Laird et al. framed the contamination source

identification problem into a least-square formulation, where the contamination source is

identified by minimizing the sum of squares of the difference between the simulated and

measured contamination concentration detected by sensors [85, 86]. They constructed the

objective function by comparing the hydraulic characteristics with and without contami-

nation injection terms (i.e., the location and injection time of the contamination source).

This method depends on accurate simulation of the hydraulic characteristics of the network.
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However, in practice, the simulation is very time consuming and thus the optimization step

often needs a large amount of time to get a sufficiently accurate result, which is impractical

for the urgent remedy for water distribution networks [87]. Further, this method needs

relatively accurate contamination concentration readings [88]. To tackle this problem, De

Sanctis et al. [84] employed binary sensor data (i.e., reading of normal vs abnormal) and

used Particle Backtracking Algorithm (PBA) [89] to compute the contamination source

weight at each node and then determine the candidate contamination sources in real time

based on the weights. PBA computes the inverse propagation of contamination based

on the hydraulic characteristics, which works from the alarmed sensors back to upstream

nodes. PBA can give the contamination weights contributed from every upstream node

to specified downstream nodes. Once the weight goes beyond a certain threshold, the

node status will be updated. The number of sample period and the corresponding node

status at that time are then used for the contamination source identification. This work

was further extended with Bayesian probabilistic approach to consider false positives and

false negatives in sensor readings [90]. Due to the efficient PBA, the method in [84] can

quickly get the candidate contamination locations and injection time. Similar works for

considering the measurement noise can be found in [91, 92, 93] with Bayesian filter. The

PBA based method proposed in [84] and the optimization oriented method introduced in

[85, 86] were extended in a few later works [94, 95, 96, 97, 98]. However, the deterministic

approaches assume the hydraulic characteristics to be deterministic and precisely known,

which is restrictive in practice.

The stochastic methods relax the restrictive assumptions of deterministic parameters

in the water distribution network and treat the water demands, the water flow rates

and directions in the pipes as random variables. The stochastic methods are mainly

data-driven, which focus on the modeling of the sensor alarm information rather than
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the hydraulic process of water flows. Bayesian approach has been a popular approach

for monitoring the stochastic data given its capacity for providing probabilistic inference

and incorporating prior knowledge [99, 100], thus draws attention to the application in

the water distribution network with stochastic demands. Dawsey et al. first applied

Bayesian belief networks (BBN) to the monitoring and contamination source identification

of water distribution networks [101]. They classified nodes into several clusters so that

water flows among clusters can construct a directed graph. Then, the BBN analysis is

performed with prior information about the water distribution network to identify the

possible clusters that contain contamination sources. This BBN method can deal with

the stochastic water demand to some extent. However, when the cluster size becomes too

big due to large demand variances, the identification result will not be accurate enough

to locate the contamination node. Wang and Harrison utilized Bayesian analysis and

data mining techniques to estimate the contamination source information given the sensor

alarm observations [102]. The randomness of water demands is transferred to the sensor

alarm observations, then the Bayesian analysis is employed to deal with the observations.

However, in their model, only one sensor in the water distribution network is allowed,

which leads to identifiability issues. Furthermore, the likelihood function in the Bayesian

analysis can only be obtained by running a large number of simulations. Wang and

Harrison further improved their method by using support vector regression to reduce

the computation load [103]. Nonetheless, the improved method still suffers from the low

identifiability and accuracy problems, which is caused by the assumption that only one

sensor is in the water distribution network.

Considering the limitations of the existing methods, we propose a sequential Bayesian

method for contamination source identification in water distribution network with stochastic

demands. The basic idea of the work is relatively simple. In offline mode, we first obtain the
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probability distributions of the sensor observations given a node being the contamination

node through simulations. Then in real time, we compute the probability (also called

posterior probability) of the node being the contamination node given the current sensor

observations. If we go through this process for each node in the network, we can compare

the posterior probability of each node and select the node with the highest posterior

probability as the contamination node in real time. The idea is simple but one critical

challenge is how to obtain an efficient way to represent the probability distribution of a large

number of types of the observations due to the combinatorial explosion and compute the

posterior probability. The main contribution of this work is that through the factorization

of the posterior probability, we establish a concise hierarchical “tree” type of structure to

represent the observation probability distribution. The hierarchical tree is a commonly

used method in modeling the hierarchical nature of a structure in a graphical form. It was

widely used in decision making [104], image processing [105] and classification [106].We

propose to employ the hierarchical tree structure to model the observation probability

distribution so that the posterior probability of the node being contamination node can

be easily computed. Another highlight of our method is that the posterior probability

calculation is conducted in a sequential way along with the arrival of the observations.

In other words, as soon as we receive the first sensor alarm, we can start to update the

posterior probability for each node using the Bayesian approach. Then each time we get

a new observation (i.e., either a new alarm at another sensor or no alarm at all), the

posterior probability is updated. Further, not only the information of which sensors alarm

but also the time interval between sensors are taken into consideration. The effectiveness

of proposed approach is illustrated with a realistic municipal water distribution network.

The rest of this chapter is organized as follows. Section 4.2 formulates the problem with

some assumptions and notation definitions. The proposed sequential Bayesian update
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approach is introduced in Section 4.3, where the procedures to obtain the observation

probability distribution function and the variation analysis of the result are also presented.

Section 4.4 presents a case study based on EPANET simulation to show the effectiveness

of our method. Section 4.5 draws conclusion remarks.

4.2 Problem formulation

In a water distribution network, the contamination may happen at any node and at any

time. We want to identify the location of the contamination source after at least one

sensor alarms. In our proposed method, we have the following assumptions:

A6 There is only one contamination node during the identification time period.

This assumption will significantly reduce the computational load.

A7 The contamination happens as a step input, which means once the contam-

ination injected into one of the nodes, it will keep releasing contamination

at that node. This assumption is consistent with the fact that the typical

water contamination resulted from chemical leakage or biological pollution

will continue or even become worse until remedial actions are implemented

[107].

A8 Water demands at each node have truncated Gaussian distribution with

specified mean and variance. The demands below zero are truncated from

the Gaussian distribution [94, 108].

A9 All sensors are binary type with readings of normal/abnormal. The noise

in the senor readings are ignored. Further, all the sensor readings are

sampled at the same time instant and with the same sample interval.

Once the sensor alarms, it keeps alarming until intervention is conducted.
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We adopt these assumptions mainly due to the need of the consistency with system

physics, computational load reduction, and system identifiability considerations. In

fact, these assumptions are widely used in existing literatures and realistic in real water

distribution network [102, 109].

We define the following notations to mathematically formulate the contamination source

identification problem.

Notations:

-C(k): Until the kth observation, the number of sensors that have been triggered.

-Ki: Observation index that represents the first time i sensors have alarmed.

Ki = inf(k ≥ 0 : C(k) = i) (4.1)

Then, the alarming time instant for n sensors is represented by K(n):

K(n) = {K1, K2, · · · , Kn}, 1 ≤ n ≤ I (4.2)

where I = max(C(k)) represents the total number of alarmed sensors until the kth

observation.

- S(k): At the kth observation, the most recently alarmed sensor.

Then, the alarmed sensor sequence until the nth sensor alarms can be given by S(n):

S(n) = {S(K1), S(K2), · · · , S(Kn)}, 1 ≤ n ≤ I (4.3)

With the above definitions, the information about sensor alarm until the time instant
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Ki (the time instant when the ith sensor alarm) can be represented by Y(i):

Y(i) = {K(i),S(i)}, 1 ≤ i ≤ I (4.4)

We further define the random variable X as the number of observations between the

current observation instant and the most recent alarm time,

X = k −KI (4.5)

Y(I) and X fully represent the observation sequence until the kth observation: the

observation has sensor alarm sequence S(I) with corresponding alarm time K(I) followed

by X non-alarm observations.

To illustrate how these notations work, we give a simple example in Table 4.1, where

there are 3 sensors in the water distribution network. To indicate the sensor alarm status,

we use ‘1 ’ to indicate abnormal reading, whereas ‘0 ’ as normal reading.

In Table 4.1, the sensor 1, 3, 2 alarms in sequence at the observation instant 1,k and

n, which results in I = 1, I = 2 and I = 3 at corresponding alarm instants. The alarm

information Y(i) = {K(i),S(i)} can be obtained by making (Ki, i) and (S(k), i) columns

into vectors through Equation 4.2 and 4.3.

If we let a random variable z represent the contamination source location and P0(z) as

the prior probability mass function (pmf) of z, then the contamination source identification

problem can be formulated as the problem of computing the posterior distribution of z

given all the observed alarm information, P (z|Y(I), X). Those nodes with high posterior

probabilities can be picked as potential contamination nodes.
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Table 4.1: Illustration for notations.

Sensor index
Observation index k C(k) (Ki, i) (S(k), i) I X

1 2 3

1 0 0 1 1 (1, 1) (1, 1) 1 0

1 0 0 2 1 (1, 1) (1, 1) 1 1
... ... ... ... ... ... ... ... ...

1 0 0 k − 1 1 (1, 1) (1, 1) 1 k − 1

1 0 1 k 2 (k, 2) (3, 2) 2 0

1 0 1 k + 1 2 (k, 2) (3, 2) 2 1
... ... ... ... ... ... ... ... ...

1 1 1 n 3 (n, 3) (2, 3) 3 0
... ... ... ... ... ... ... ... ...

4.3 Sequential update for P (z|Y(I), X) using

Bayesian approach

With notations defined in Section 4.2, we can utilize Bayesian formula to compute

P (z|Y(I), X) as follows:

P (z|Y(I), X) = P (Y, X|z) · P0(z)∑
z P (Y, X|z) · P0(z) (4.6)

The numerator of Equation 4.6 consists of the likelihood term P (Y(I), X|z) and the

prior distribution P0(z). Without the loss of generality, we can set the prior P0(z) as a

noninformative uniform multinomial distribution. The denominator is a normalization

constant to ensure the posterior distribution sums to unity. Since we mainly concern about
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which node is the most probable contamination source rather than the exact value of the

posterior probability, we only need to consider the numerator term. Thus, we can have

the problem simplified as follows:

P (z|Y(I), X) ∝ P (Y(I), X|z) · P0(z) (4.7)

Since the P0(z) is set as uniform (i.e., each node has the same prior probability), we

can only consider P (Y(I), X|z):

P (Y(I), X|z) = P (X|Y(I), z) · P (Y(I)|z) (4.8)

Equation 4.8 has two terms. For P (X|Y(I), z), with the law of total probability, we

have:

P (X|Y(I), z) =
m∑

S(KI+1)=0
P
(
X|z,Y(I), S(KI+1)

)
· P
(
S(KI+1)|z,Y(I)

)
(4.9)

where m is the total sensor number, and S(KI+1) = 0 represents the situation of no further

alarm since I alarms happen.

If we define fT |Y(p),z(T ) be the pmf of time T between two consecutive sensor alarms (i.e.,

the (p−1)th and the pth alarms) given Y(p) and z, and noting that P
(
X|z,Y(I), S(KI+1)

)
=1−∑X

T=1 fT |Y(I+1),z(T ), then Equation 4.9 can be further expanded as:

P (X|Y(I), z) =
m∑

S(KI+1)=0

(
1−

X∑
T=1

fT |Y(I+1),z(T )
)
· P
(
S(KI+1)|z,Y(I)

)
(4.10)
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For the second term P (Y(I)|z) in Equation 4.8, we have

P (X|Y(I), z) =
m∑

S(KI+1)=0

(
1−

X∑
T=1

fT |Y(I+1),z(T )
)
· P
(
S(KI+1)|z,Y(I)

)
(4.11)

Equation 4.11 can be derived as follows:

P (Y(I)|z) = P
(
Y(I − 1), KI , S(KI)|z

)
= P

(
KI |z,Y(I − 1), S(KI)

)
· P
(
S(KI)|z,Y(I − 1)

)
· P
(
Y(I − 1)|z

)
= fT |Y(KI),z(KI −KI−1) · P

(
S(KI)|z,Y(I − 1)

)
· P
(
Y(I − 1)|z

) (4.12)

where the term P (Y (I − 1)|z) can be iteratively calculated through the process from

Equation 4.12. Then we can get the result in Equation 4.11. Combining Equation 4.10

and 4.11, we can have the final posterior probability expression as:

P (Y(I), X|z)

=
( m∑
S(K(I+1))=0

(
1−

X∑
T=1

fT |Y (I+1),z(T )
)
· P
(
S(KI+1)|z,Y(I)

))
·

I∏
q=2

(
fT |Y(q),z(Kq −Kq−1) · P

(
S(Kq)|z,Y(q − 1)

))
· P
(
S(K1)|z

)
(4.13)

Equation 4.13 shows the computing procedure for P (Y(I), X|z) and the information

we will need in the calculation. To give an intuitive understanding of the procedure, we

provide an illustrative example. Assume we have a water distribution network with 3

sensors and we want to check if node 7 is the contamination node. The terms we will

need to evaluate Equation 4.13 is shown in Fig. 4.2. The first row in Fig. 4.2 shows the

distribution of the first alarmed sensor given z = 7, i.e.,P
(
S(K1)|z = 7

)
, where horizontal

axis represents the sensor index and the number “4” means no sensor alarms (please

note that it is possible that no sensor is alarmed even if node 7 is contaminated). The
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probability of the next alarming sensor P
(
S(K2)|z = 7,Y(1)

)
is marked on the arrow

line. The corresponding distribution of the time from the first alarm
(
fT |Y(2),z=7(T )

)
is shown in the second row of Fig. 4.2. Similarly, the probabilities and distributions

corresponding to the third alarm are shown in the third row. With this information,

the posterior probability of P (z = 7) given the observed alarm sequence can be easily

computed. For example, if the observed sensor alarm sequence is 1 → 3 → 2 with 2

time units between 1 and 3 and 3 time units between 3 and 2, then P
(
z = 7|Y(3)

)
can

be computed by multiplying the probabilities circled in Fig. 4.2 according to Equation

4.13. For an intermediate observation, the posterior probability of P (z = 7) can also be

computed. For example, if we have observed the alarms from sensor 1 and 3 and one time

unit has passed after the alarm at sensor 3, i.e., Y(2) = {(0, 2), (1, 3)} and X = 1, then

P
(
z = 7|Y(2), X

)
is to multiply the circled probabilities in the first two rows and the term(

1− fT |Y(3),z=7(T = 1)
)
· P
(
S(K3 = 2)|z = 7,Y(2)

)
+
(

1− P
(
S(K3 = 2)|z = 7,Y(2)

))
according to Equation 4.13, where Y(3) = {(0, 2, 1), (1, 3, 2)}.

Figure 4.2 illustrates how we obtain the posterior probability for node 7 being the

contamination node given the alarm observations. Intuitively, if we have the required

probability distribution information as shown in Fig. 4.2 for other nodes (we will discuss

how we can obtain such information through simulation in the following section), we can

compute the posterior probability for other nodes being the contamination node. By

comparing the posterior probabilities, we can determine the possible contamination node.

Specifically, we define

z1 = arg max
z

(
P (z|Y(I), X)

)
zi =arg max

z 6=z1,z2,··· ,zi−1

(
P (z|Y(I), X)

) (4.14)

where z1 represents the node with the highest posterior probability and zi is the node
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with the ith highest posterior distribution. Then we can use the rule

z ∈ {z1, z2, · · · , zG} (4.15)

to estimate the contamination node, where G is a selected small positive integer.

Figure 4.2: Illustration of computing posterior of z = 7.

4.3.1 Monte Carlo simulation procedure for estimating

observation probability distribution

In the posterior probability updating procedure, we need the pmf term fT |Y(p),z(T ) and

weights term P
(
S(KI+1)|z,Y(I)

)
in Equation 4.13. The values of these two terms can be
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obtained through a Monte Carlo simulation procedure. The basic idea of Monte Carlo

simulation is to conduct a large number simulation runs of the hydraulic characteristics

of the water distribution network for a given contamination node. For each run, we will

obtain simulated sensor alarm observations. Then we can count the frequencies of the

alarm observations and from which, we can obtain the required observation probability

information. We first define two counting variables to help record different alarming

situations.

(1) Du, u = 1, 2, · · · ,m+ 1 is defined as the number of simulation runs that

the first alarm is by sensor u, where m is the total sensor number and

m+ 1 represents the situation that no alarm occurs.

(2) F(Y (v), Kv−K(v− 1)), v = 2, 3, · · · , d is defined as the number of simula-

tion runs that the alarm Y(v) is observed with the time between two most

recent alarms being Kv −Kv−1, where d is the total number of alarmed

sensors in the simulation run. Please note that Y(v) and Kv − Kv−1

should exhaust all the possible alarm patterns and thus we have a large

number of FY(v),Kv−Kv−1s.

With the defined counting variables, the detailed simulation steps are as follows:

1) Initiating all the counting variables to 0 and set the contamination node

z = 1.

2) Randomly select a contamination time and inject the contamination and

generate the water demand in each node using the truncated Gaussian

distribution.

3) Run EPANET to calculate the hydraulic characteristics and the contami-

nation propagation in the network.
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4) Record the sensor alarm sequence and time and update the counting

variables accordingly.

5) Repeat step 2) to 4) N times to get the final value of the all the counting

variables.

6) Setting the contamination node to a different node and repeat Step 1) to

5). This process should be conducted for each node in the network.

With the counting variable values for each contamination node, we can estimate the

terms in Equation 4.13 as follows:

P̂
(
S(K1)|z

)
= DS(K1)∑m+1

u=1 Du

, S(K1) = 1, 2, · · · ,m+ 1 (4.16)

f̂T |Y,z(T ) = FY(v),T∑
r FY(v),r

, T = 0, 1, 2, · · · (4.17)

To compute Equation 4.13, we also need P
(
S(Kv+1|z,Y(v)

)
, which is the probability

for observing alarm from sensor S(Kv+1) after we already observed alarm information

Y(v),

P̂
(
S(Kv+1)|z,Y(v)

)
=
∑
r FY(v+1),r

FY(v),r
(4.18)

In one simulation for the specific contamination node, the no alarm count in Equation

4.16 is determined by observing no sensor alarm at the end of the simulation, which is

affected by the simulation duration and the contamination injection time. The simulation

repetition number N is related with the network size, demands variance, sensor location

and accuracy of the result. In practice, people can use trial and error method to determine

the parameter N to get desired result accuracy for specific network and warning system.

Another point we would like to mention is that although the Monte Carlo simulations

for obtaining the observation probability distribution function consumes time, it is an
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offline process and can be carried out concurrently on many computers. Once this

process finishes, the contamination source identification process based on the observation

probability distribution function is fast.

4.3.2 Variation analysis of posterior probability

From Section 4.3.1, we can see that the observation probability distribution function is

estimated based on a finite simulation runs of the underlying multinomial distributions.

Thus, observation probability distribution function contains variations, which in turn leads

to the variations in the posterior probability for a given node and a specific observation.

The decision making rule (Equation 4.15) is determined by the ranking of the posterior

probabilities. In this section, we would like to investigate uncertainty in the obtained

order of the posterior probability. Specifically, we would like to obtain the probability

P
(

min(p̂1, · · · , p̂G) > max(p̂i, i = G+ 1, · · · , l)
)

(4.19)

where p̂i = P̂ (z = i|Y(I), X) and i is the ranking of the posterior probability, l is the total

number of node in the network, the symbol ˆ indicates that the value is an estimated

value. The probability in Equation 4.19 indicates how confident we are regarding the

identified group of nodes. Considering the independence among p̂is, Equation 4.19 can be

transformed to:
G∏

H=1

l∏
s=G+1

P (p̂H > p̂s) (4.20)

To compute the probability, we will need the probability distribution of estimated

posterior probability pi, i = 1, · · · , l. However, the analytical form the distribution is not

tractable. Here we propose an approximation approach.

(1) In this first step, we calculate the mean and variance of the estimated
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posterior probability of each node. Fortunately, through a tedious analysis

of Equation 4.8, the variance of the estimated posterior probability can

be obtained analytically as a function of number of simulation runs. Due

to the long expression, the result is presented in the appendix. Readers

interested in the derivation procedure can contact authors.

(2) In the second step, we will approximate the distribution of the estimated

posterior probability of each node by fitting a Beta distribution with the

mean and variance. Beta distribution is very flexible and is widely used

to represent the distribution of a probability [110]. A Beta probability

density function is determined by two parameters α and β. If the mean

(µ) and variance (σ2) of the Beta random variable is known, then the

distribution parameters can be obtained as

α = µ2

σ2 −
µ3

σ2 − µ (4.21)

β = α

µ
− α (4.22)

(2) With the fitted Beta distribution function, we can easily obtain the terms

in Equation 4.20. We define this probability as significance probability.

We compared this proposed procedure with a computational intensive bootstrapping

procedure in the following case study section.

4.4 Case study

In the case study, we adopt the popular simulation software EPANET, which can simulate

extended period of hydraulic and water quality behavior within pressurized pipe networks
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[111]. EPANET can track the flow of water in each pipe, the pressure at each node, the

height of water in each tank, and the concentration of a chemical species throughout

the network during a simulation period comprised of multiple time steps. The water

distribution network in the case study is from [112], which includes 126 nodes, 168 pipes,

one constant head source, two tanks, two pumps, and eight valves. The whole network is

shown in Fig. 4.3. All the hydraulic parameters and water demand patterns for each node

are left unchanged. The detailed parameter values can be found in the study of [113].

Figure 4.3: Layout of the case study water distribution network.

In this case study, the simulated duration is 48 h with hydraulic time step 0.5 h and

water quality time step 10 min (which means we sample the sensor readings every 10 min).

The contamination injection is set as 1.0 kg/min at a random hydraulic period between 0

and 24 h. The contamination can reach any accessible node within the 48 h simulation
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period. Only one injection node is considered in each simulation run. The water demand

at each node within each hydraulic period is set as the truncated normal with mean equal

to the demand data in the study of [113]. A 40% coefficient of variation is applied at each

of the truncated normal distribution to model the variance. This stochastic water demands

setting has also been applied elsewhere in [102]. Total 5 sensors are placed in the system

and the locations are shown in Fig. 4.3. For the offline information collection, at each node,

we conduct N = 3000 times of repeated simulation runs to obtain the needed observation

probability distribution function. Then, a node is randomly selected as the contamination

node and the alarm observations are simulated. Based on the alarm observations and the

observation probability distribution function, we can use the proposed Bayesian approach

to identify the contamination node and check if it is correct.

Specifically, we illustrate an example of how the contamination source identification is

conducted. In this example, we inject the contamination at node 20 at a randomly chosen

injection time. We first observe the alarm at sensor 5, then sensor 1 alarms after two time

units, and then sensor 3 alarms after seventeen time units. No further alarms are observed.

Following the posterior probability calculation procedure, we can compute the posterior

probability for each node being the contamination node at each time unit. The posterior

probabilities of top three nodes are shown in Fig. 4.4(a). The true contamination node,

represented by the line with stars in Fig. 4.4(a), ranks the highest at most of time during

the identification process and finally stands out, which shows the effectiveness of our

proposed method. We can also observe the downward trend of the posterior probability

of the true contamination node and the upward trends of that of two different nodes

(node 19 and node 21 in Fig. 4.3) between the second and the third sensor alarms. This

is because node 19 and node 21 are close to node 20, thus their observation probability

distribution functions are similar in some parts. To address this problem, we can use
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the variation analysis technique introduced in Section 4.3.2 to obtain the significance

probability of the ranking of the posterior probabilities. In Fig. 4.4(b), we show the

probability P
(

min(p1) > max(pi, i = 2, · · · , l)
)
, the probability that the node with the

highest posterior probability is indeed the node with the highest posterior probability, in

Fig. 4.4(b) by the line with solid circles. We can see that the probability drops dramatically

between the second and the third alarms and keeps under 50% before the third alarm

happens. This means that we cannot make confident decisions about which node is with

the highest posterior probability. Under this situation, we should include more nodes as

the candidate contamination nodes or wait for more observations to make decision.

Figure 4.4: Posterior probability and significance probability

We further evaluated the effectiveness of the proposed method of computing the sig-

nificance probability based on Beta distribution fitting through a comparison with a

computational intensive bootstrapping method. Bootstrapping is a commonly used re-

sampling technique to obtain uncertainty measures on estimated statistical values [114].

In Fig. 4.5, we plotted the significance probability obtained from bootstrapping and



105

the proposed method based on Beta distribution fitting. There is little difference in the

comparison results. Please note that the proposed method can be computed through

a closed form expression thus requires much less computational load comparing with

bootstrapping method. Thus, the proposed Beta distribution fitting method is a fairly

effective and efficient method for significance probability evaluation.

Figure 4.5: Comparison between Beta fitting method and Bootstrapping method

Above discussion illustrates the sequential contamination node identification procedure

along the arrival of observations. To evaluate how well the procedure can identify the true

contamination node, we conduct 500 times of cases of simulation for each node being the

contamination node and randomly choosing the contamination time. In 48.1% of these

63000 (126×500) verification cases, the true contamination node can be correctly identified

if we use G = 1 in the decision rule, i.e., the node with the highest posterior probability is
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the contamination node. If we use G = 3 in the decision rule, i.e., the contamination node

is among the top three nodes with the highest posterior probabilities, then in 70.2% of all

the verification cases, the true contamination node can be correctly identified. In Fig. 4.6,

we provide a visualization of how well each node can be identified. In Fig. 4.6, the larger

the point indicates that the higher possibility that the node can be identified with the

decision rule of G = 3. We can see that many nodes can be (almost) always identified,

but some nodes can never be identified. Intuitively, the distribution of the nodes that can

be easily identified and the nodes that cannot be identified will be influenced by sensor

number and sensor location. The reason that some nodes can never be identified is that

the contamination from those nodes may not be able to reach the sensor locations.

Figure 4.6: Probability of each node being correctly identified

We also investigate the relationship between sensor alarms number and the probability
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that we can correctly identify the true contamination node. The result is shown in Table

4.2, where we give the percentage among all the verification cases that we correctly identify

the true contamination node under different number of sensor alarms. Not surprisingly,

we can see that with only one sensor alarm, it is difficult to identify the contamination

node, while with more sensor alarms, we get higher percentages of correct identification.

Table 4.2: The identification ability evolves with sensor alarms.

Alarm number(s) 1 2 3 4 5
Identifiability 2.7% 17.6% 37.9% 52.5% 70.2%

The probability of correctly identifying the true contamination node is a very important

measure of the effectiveness of an identification method. A correct identification rate of

48.1% for G = 1 and 70.2% for G = 3 seem not high. However, if we consider there are 126

nodes in the system, the water demand is stochastic, and the sensor readings are simple

binary readings, the result is quite impressive. Indeed, a noninformative identification

procedure (i.e., randomly pick G nodes as the contamination node) can only reach a correct

identification probability of 0.8% for G=1 and 2.4% for G=3. The improvement over the

noninformative method is quite significant. We also compared our performance under

G=1 with that of several existing works, which is shown in Table 4.3. The benchmark

methods are from [109] and [84]. In [109], the sensor readings at each time are regressed

through logistic regression to indicate the probability of sensor alarming at each time for

a specific contamination location. In [84], De Sanctis et al. utilized Particle Backtracking

Algorithm (PBA) to compute the contamination source weight at each node and then

determine the candidate contamination sources in real time based on the weights. We

apply our method into the water distribution network in [109] and [84], respectively. We

can see that our method outperforms in the probability of correct identification. This

shows the effectiveness and accuracy of our method, which mainly because we use both
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the sensor alarm sequence and time between successive alarms so that we can use more

available information.

Table 4.3: Comparison of the correct identification probability among different methods.

Methods Liu et al. De Sanctis et al. De Sanctis et al.
(sensors,nodes) (4, 97) (6, 97) (8, 97)

Identifiability(Benchmark) < 27% < 20% < 21%
Identifiability(Proposed) 36.1% 39.2% < 40.2%

The computation load in our method includes the offline part for constructing the

observation probability distribution function and the online part for updating posterior

distribution and variation analysis. The offline part contains N times simulations for each

node (126×N simulations in total in our case study), and each simulation consumes around

7 seconds. Although the offline computation load is large, it can be operated in parallel

on many computers to reduce the time. The online part including the real time updating

and the variation analysis takes only 50 seconds for each new observation, which means

the decision of contamination node identification can be made within 1 min. This satisfies

the real time warning system with 10 min or 5 min sensor reading period, and provides

potential extension to larger water distribution networks. Our method operates with a

PC 3.3 GHz, 32 GB RAM on Matlab 2014b.

4.5 Conclusion

In this chapter, we propose a sequential Bayesian scheme for contamination source identifi-

cation in the water distribution network. This method treats the sensor alarm as available

information and takes advantage of alarm sequence and time delay between alarms to do

real time contamination source identifications. The posterior probabilities of each node

being the contamination source is calculated and used for decision making. Moreover, the
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variation analysis of the obtained posterior probability is conducted to give significance

probability of the result we get. Our method considers the hydraulic information and

stochastic water demands in the water distribution network, which is less restrictive in

practice. The effectiveness of the method is verified by a case study in EPANET with a

126 nodes water distribution network.

The proposed method can be further explored in several directions. First, the compu-

tational load in our method will increase exponentially as the number of contamination

parameters increases, which will limit the application of the proposed method in the

multi-parameter identification case. Studies on reducing the computational load in order

to extend the proposed method need to be done. Another interesting area is the influence

of sensor layout on the result of contamination source identification. The sensor layout

that includes the sensor number and sensor location needs to be optimized. We intend to

work on these problems in the future.

4.6 Appendix

4.6.1 Variance of Equation 4.8

P̂ (Y(I), X|z) =
( m∑
S(KI+1)=0

(
1−

X∑
T=1

f̂T |Y(I+1),z(T )
)
· P̂
(
S(KI+1)|z,Y(I)

))
·

( I∏
q=2

f̂T |Y(q),z(K1 −Kq−1) · P̂
(
S(Kq)|z,Y(q − 1)

)
· P̂
(
S(K1)|z

))

Let

A = ∑m
S(KI+1)=0

(
1−∑X

T=1 f̂T |Y(I+1),z(T )
)
· P̂
(
S(KI+1)|z,Y(I)

)
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B = ∏I
q=2 f̂T |Y(q),z(K1 −Kq−1) · P̂

(
S(Kq)|z,Y(q − 1)

)
· P̂
(
S(K1)|z

)
Then we have

Var
(
P̂ (Y(I), X|z)

)
= Var(A ·B)

= E2(A) · Var(B) + E2(B) · Var(A) + Var(A) · Var(B)
(4.23)

where Var(A) = Var(∑m
i=0 Ai) = ∑m

i=0 Var(Ai) + 2
(∑m−1

i=0
∑m
j=i+1 Cov(Ai, Aj)

)

Ai =
(
1−

X∑
T=1

f̂T |Y(I+1),z(T )
)
· P̂
(
S(KI+1) = i|z,Y(I)

)
, 0 ≤ i ≤ m (4.24)

Let

P̂Y(i+1),j = P̂
(
S(Ki+1) = j|z,Y(i)

)
, 1 ≤ i ≤ I

p̂Y(i+1),j(T ) = f̂T |Y(i),S(Ki+1)=j,z(T ), 1 ≤ i ≤ I

Then, we have

Var(Ai)

=
(
1−

X∑
T=1

f̂T |Y(I+1),z(T )
)2
·
P̂Y(I+1),i(1− P̂Y(I+1),i)∑

r FY(I),r
+
(
(P̂Y(I+1),i)2 + P̂Y(I+1),i(1− P̂Y(I+1),i)∑

r FY(I),r

)
·

( X∑
T=1

p̂Y(I+1),j(T )
(
1− p̂Y(I+1),j(T )

)
∑
r FY(I+1),r

+ 2
( X−1∑
Ti=1

Tj=X∑
Tj=Ti

−
p̂Y(I+1),j(Ti) · p̂Y(I+1),j(Tj)∑

r FY(I+1),r

))

(4.25)
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Cov(Ai, Aj)

=
X∑

Tl,To=1

((
P̂Y(I+1),i · P̂Y(I+1),i −

P̂Y(I+1),i · P̂Y(I+1),j∑
r FY(I),r

)
· p̂Y(I+1),i(Tl) · p̂Y(I+1),j(To)−

P̂Y(I+1),i · p̂Y(I+1),i(Tl) · P̂Y(I+1),j · p̂Y(I+1),j(To)
)
−
P̂Y(I+1),i · P̂Y(I+1),j∑

r FY(I),r
+

X∑
To=1

(
p̂Y(I+1),j(To) ·

(
P̂Y(I+1),i · P̂Y(I+1),j −

P̂Y(I+1),i · P̂Y(I+1),j∑
r FY(I),r

)
− P̂Y(I+1),i · p̂Y(I+1),j(To) · P̂Y(I+1),j

)
+

X∑
Tl=1

(
p̂Y(I+1),i(Tl) ·

(
P̂Y(I+1),i · P̂Y(I+1),j −

P̂Y(I+1),i · P̂Y(I+1),j∑
r FY(I),r

)
− P̂Y(I+1),i · p̂Y(I+1),i(Tl) · P̂Y(I+1),j

)

(4.26)

E(A) =
m∑
i=0

(
1−

X∑
T=1

p̂Y(I+1),i(T )
)
· (P̂Y(I+1),i) (4.27)

Var(B) = Var
(∏I

q=2 f̂T |Y(q),z(K1 −Kq−1) · P̂
(
S(Kq)|z,Y(q − 1)

)
· P̂
(
S(K1)|z

))
Let

C = ∏I
q=2 f̂T |Y(q),z(K1 −Kq−1)

D = P̂
(
S(K1)|z

)
·∏l

w=2 P̂
(
S(Kw)|z,Y(w − 1)

)
Then we have:

Var(B) = Var(C ·D) = E2(C) · Var(D) + E2(D) · Var(C) + Var(D) · Var(C) (4.28)

where:

Var(C)

=
I∏
q=2

((
p̂Y(q),S(Kq)(Kq −Kq−1)

)2
+ P̂Y(w),S(Kw)(1− P̂Y(w),S(Kw))∑

r FY(q),r

)
−

I∏
q=2

(
p̂Y(q),S(Kq)(Kq −Kq−1)

)2

(4.29)



112

Var(D)

=P̂ 2
(
S(K1)|z

)
·
( I∏
w=2

(
(P̂Y,S(Kw))2 + P̂Y,S(Kw)(1− P̂Y,S(Kw))∑

r FY(w−1),r

)
−

I∏
w=2

(P̂Y,S(Kw))2
)

+

( I∏
w=2

P̂Y,S(Kw)
)2
·
P̂
(
S(K1)|z

)(
1− P̂

(
S(K1)|z

))
∑
uDu

+
P̂
(
S(K1)|z

)(
1− P̂

(
S(K1)|z

))
∑
uDu

·

( I∏
w=2

(
(P̂Y,S(Kw))2 + P̂Y,S(Kw)(1− P̂Y,S(Kw))∑

r FY(w−1),r

)
−

I∏
w=2

(P̂Y,S(Kw))2
)

(4.30)

E(C) =
I∏
q=2

p̂Y(q),S(Kq)(Kq −Kq−1) (4.31)

E(D) = P̂
(
S(K1)|z

)
·

I∏
w=2

P̂Y(w),S(Kw) (4.32)

E(B) = P̂
(
S(K1)|z

)
·
( I∏
q=2

P̂Y(q),S(Kq) · p̂Y(q),S(Kq)(Kq −Kq−1)
)

(4.33)

Through Equation 4.24 to 4.33, we can get the variance of P (Y(I), X|z) in Equation 4.23.
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5 control of key performance indicators of

manufacturing production systems through pair

copula modeling and stochastic optimization∗

Key performance indicators (KPIs) modeling and control is important for efficient design

and operation of complex manufacturing production systems. This paper proposes to

implement the KPI control based on KPI modeling and stochastic optimization. The KPI

relationship is first approximated using ordered block model and pair-copula construction

(OBM-PCC) model, which is a non-parametric model that facilitates a flexible surrogate

of the KPI relationship. Then, the KPI control is framed into a stochastic optimization

problem, where the randomness in the cost function depends on the decision variables. To

solve this stochastic optimization problem, the standard uniform distribution is employed

to link the OBM-PCC model and the cost function to degenerate the problem into an

ordinary stochastic optimization problem. The proposed method is efficient in KPI control

and the performance is robust to the cost function. Extensive numerical studies and

comparisons are presented to demonstrate the effectiveness of the proposed KPI control

framework.

5.1 Introduction

Key Performance Indicators (KPIs) are designed to measure critical system objectives and

conduct performance evaluation and control of complex manufacturing systems. It is well

documented that the prediction and quantification of KPIs relationship will lead to a better
∗This chapter is based on the paper: Wang C. and Zhou S. , “Control of Key Performance Indicators

of Manufacturing Production Systems through Pair Copula Modeling and Stochastic Approximation”,
IISE Transactions, under review.
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understanding of the system and further benefit the system productivity improvement

through KPI control [38, 40]. In practice, we often need to control the system KPI to be

at certain level to optimize the operation and maximize the profit. To achieve this goal,

the relationship between the KPIs and controllable variables (inputs) need to be identified

and quantified. Then, a specific control problem needs to be formulated based on the

relationship, and finally be solved efficiently.

To study the KPI modeling and control problem in manufacturing production systems,

a stochastic queuing model is often used. For example, Buzacott and Shanthikumar [41]

employed the stochastic queuing to model, predict and optimize various manufacturing

systems including flow lines, transfer lines, dynamic job shops and flexible assembly

systems. A typical manufacturing process can be represented by a multi-stage queue in

Fig. 5.1 (a), where we have l − 1 servers and the corresponding l − 1 service rates, buffers

and queuing time in the buffers. We represent the µi and qj as the service rate and queuing

time for the server i and buffer j, respectively. The Nj ∈ {1, 2, · · · } is the fixed buffer size

and the λ is arrival rate. It is straightforward to see that the λ and µis are the inputs of

the manufacturing process and the qjs are the system responses. The overall layout of the

system inputs and responses is shown in Fig. 1 (b), where we define the λ and µis as the

system input parameters and the qjs and c as the response KPIs. We denote c as process

cycle time and p as total number of system input parameters and response KPIs. It is well

known that for a queuing system, the response KPIs are stochastic for given fixed system

input parameters even under stationary condition. As a result, the relationship between

system input parameters and response KPIs is quantified by the multivariate distributions

of response KPIs conditional on system input parameters, e.g., f(q1, q2, c|λ, µ1). If these

multivariate conditional distributions can be efficiently obtained and evaluated, we can

have better understanding and control of the queuing networks. The M/M/1 queue, for
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example, is the elementary and widely studied model in queuing theory, which facilitates

the close-form expressions of such conditional distributions thus the relationship between

system input parameters and many response KPIs can be explicitly characterized. The

dependence structure for a M/M/1 queue is shown in Fig. 5.1 (c). Various studies were

conducted to provide control guidance/policy on system input parameters (λ, µ1, µ2, · · · )

for maximizing the KPI performance in M/M/1 queue (networks). One of the most

representative and general works in the KPI control was introduced by Stidham and Weber

[115], where they assumed the arrival rate is fixed and showed that under weak conditions

there exists a monotone optimal policy for the service rate control problem in the M/M/1

queue. An important application and extension of [115] is the design and control of call

centers, where the objective is to minimize the operation costs by selecting the staffing

level for each call server and determining a routing rule for assigning calls to different

severs [116, 117]. Although the above mentioned works in queuing control and analysis are

of great importance and success, it is pointed out that the M/M/1 based queue can only

cover the arrival and service time interval pattern in limited scenarios [118]. Meanwhile,

the analytical relationship between system input parameters and response KPIs and the

theoretical properties/policies of KPI control in M/M/1 queue are very difficult to be

generalized to different queuing models.

To facilitate a general framework for KPIs control in manufacturing systems, we need i)

an efficient surrogate model to quantify the relationship between system input parameters

and response KPIs, and ii) a flexible KPI control framework that integrates the surrogate

model to optimize the KPI control objective function. In the stochastic queuing context,

various data driven surrogate models were proposed to accurately approximate the KPI

relationship. These works can be classified into simulation based models [43, 44, 45, 46]

and regression based models [47, 119, 120, 121, 122]. The simulation based models are
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Figure 5.1: KPIs in a manufacturing process.

very general and can be applied to many complex queuing scenarios, but these models

suffer from the computational issue and are difficult to adapt to customized changes in

the queuing systems. The regression based models, especially the Kriging based models,

are very flexible in modeling KPI relationship. However, the Kriging based surrogate

models also require high computational load in learning and predicting the surrogate

model, which significantly impairs the efficiency of the whole algorithm. Furthermore,

these methods mainly focus on the relationship among the moments of KPIs (e.g., mean),

and the comprehensive multivariate distribution information of KPIs is not provided. To

characterize the multivariate distribution among KPIs and quantify the KPI relationship,

we adopt the ordered block model-pair copula construction (OBM-PCC) method proposed

in Chapter 3 to approximate KPI joint distribution [123] in this work. The OBM-PCC is

a non-parametric method that can efficiently capture the KPI relationship in distribution
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level and provide accurate surrogate samples of the system input parameters and response

KPIs for various queuing systems. We will give a brief review of the OBM-PCC based

surrogate model in Section II-B.

The second step in KPI control is to formulate the control problem using the surrogate

model. In this chapter, we consider a serial queuing model in Fig. 5.1 (a) with general

arrival and service distributions, where the holding costs and service costs are non-

decreasing functions of the mean of queuing time/queuing length/cycle time and service

rate, respectively. The objective is to find the system input parameters that minimize the

overall cost for the queuing system in steady state. To solve this problem, a stochastic

optimization framework is constructed, where the system input parameters serve as decision

variables and the KPIs are in the objective functions. For example, we consider a service

rate control problem in a G/G/1 queuing with fixed arrival rate: min
µ

E[q + c+ µ]. The

critical challenge in this optimization setting is that the distributions of variables q and c

depend on the decision variable µ, which requires repetitive evaluations of distributions

of q and c in the optimization process thus impairs the optimization efficiency. Such

optimization problem is called endogenous noise based optimization [124], where the ‘noise’

represents the uncertainty in the cost function and the ‘endogenous’ means the uncertainty

distribution depends on the decision variables. The exogenous noise based optimization is

the other type of optimization problem, where the cost function uncertainty distribution

is independent with the decision variables. Please note we would use the ‘endogenous

noise’ and ‘exogenous noise’ to represent these two types of optimization problems in the

following descriptions. The common way to solve the endogenous noise problem is to

use generative data to iteratively optimize the decision variable values through repetitive

evaluations of the objective function (and its gradient) at each decision variable candidate

value [125, 126]. This idea is widely used in sample average approximation, stochastic
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approximation and metamodel optimization. However, it is prohibitive to use generative

data in queuing model since the evaluation and data preparation at new system input

parameters needs long time (run a new queuing simulation until stationary). Please note

the Kriging based surrogate model for KPI cannot be used to generate data for objective

function evaluation since the Kriging based surrogate model only describes the mean of

each KPI instead of the mean of a function of each KPI (objective function). The decision

dependent stochastic programming (DDSP) [127] is another way for solving stochastic

optimization with endogenous noise. However, existing DDSP techniques [128, 129] are

based on linear approximation of the objective function and can only be applied to binary

decision variables, which is not applicable in the queuing context.

To solve the KPI control problem, we propose to accommodate the OBM-PCC model

to the stochastic optimization framework to degenerate the original endogenous noise

problem into an exogenous noise one. The basic idea is to first perform a strictly monotone

transformation of both system input parameters and response KPIs. Then the joint

distribution of the transformed system input parameters and response KPIs can be

approximated by the pair-copula using independent and identically distributed (i.i.d.)

random variables. As a result, the randomness and dependence between the transformed

system input parameters and response KPIs is fully represented by the i.i.d. random

variables using pair-copula, which are exogenous. We illustrate this idea using one

dimension decision variable x and the corresponding objective function G(x) = Eg
(
x, ξ(x)

)
,

where the ξ(x) is the randomness in the cost function that depends on the decision

variable. The proposed method enables another formulation of the objective function with

independent randomness (exogenous): G̃(x̃) = Eg̃
(
x̃, ξ

)
, where x̃ is the transformed x,

g̃ is constructed by the OBM-PCC model and the ξ is a random variable independent

of x̃. Please note that the evaluation of the original objective function needs to run the
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time-consuming simulations due to the endogenous ξ(x), whereas the evaluation on the

transformed model is efficient. With the transformed model, we can perform standard

stochastic approximation methods to efficiently solve the optimization problem in the

transformed domain. The last step in our method is to show the objective function

equivalence between the original problem and the transformed problem. To solve this issue,

we propose a lemma to demonstrate that the exogenous property in the transformed system

input parameters and response KPIs can be inherited to the original problem so that the

optimization of the transformed problem is equivalent to solving the original problem.

The key feature in the proposed method is that i) the pair-copula formulation enables the

i.i.d. random variables to quantify the relationship among the transformed variables and

ii) we discover the equivalent objective function that employs the pair-copula and the i.i.d.

standard uniform random variables to degenerate the original objective function into an

exogenous one. To solve the degenerated problem, we resort to simultaneous perturbation

stochastic approximation (SPSA) to obtain the optimized system input parameters for

KPI control.

The rest of the chapter is organized as follows: Section 5.2 gives the detailed problem

formulation and presents the proposed OBM-PCC based stochastic optimization for KPI

control. Numerical experiments will be conducted in Section 5.3 to show the effectiveness

of the proposed method. Section 5.4 draws conclusion remarks.

5.2 problem formulation and KPI control

5.2.1 Problem formulation and assumptions

In this work, we model the production system as a queuing system. We will use the same

assumptions and notations as those in Chapter 3, and omit the elaborations here.
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To mathematically study the KPI control problem, we formulate the objective function

and constraints as follows:

min
xI

ExO|xI
[
g(xI ,xO)

]
subject to: B−(i) ≤ xi ≤ B+(i), i = 1, · · · , l,

(5.1)

where xI = (x1, · · · , xl) is the system input parameter variables vector (decision variables),

xO = (xl+1, · · · , xp) is the KPI variables vector, B−(i) and B+(i) are real values that

represent the lower and upper constraints for xi, i = 1, · · · , l. The function g(·) is a cost

function that applies to xI and xO, and the conditional expectation of g(xI ,xO) with

respect to xO|xI constructs the objective function.

Equation 5.1 is a general form for stochastic optimization with endogenous variables

in the cost function. The stochastic optimization with endogenous noise is in general

very difficult to solve, but there are unique features in parameters relationship in queuing

models that allow us to solve the problem numerically using PCC technique. We will

first review the OBM-PCC model in section 5.2.2 to provide a surrogate model of KPI

relationship. Then, the details of solving Equation 5.1 will be introduced in section 5.2.3.

5.2.2 Review of OBM-PCC model

We adopt the method proposed in Chapter 3 to approximate the KPI joint distribution

to numerically represent the KPI relationship [123]. The copula itself is a multivariate

cumulative distribution function (cdf) C : [0, 1]p → [0, 1], p ∈ N such that all the univariate

marginals are uniform distributions on the interval [0, 1] [54]. The Sklar’s theorem [61]

shows for an arbitrary continuous joint probability distribution, we have:

f(x1, ..., xp) = c
(
F1(x1), ..., Fp(xp)

) p∏
i=1

fi(xi), (5.2)
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where Fi(·) is the marginal cdf for variable xi, and the copula pdf c is uniquely determined.

The Sklar’s theorem lays the theoretical foundation for joint distribution fitting using

copula: With the result in Equation 5.2, we can estimate the marginal distribution for each

variable and then estimate the joint copula function c(·). However, the direct estimation of

high dimensional copula function c(·) is challenging. To simply the fitting process, the PCC

was proposed to decompose the high dimensional copula fitting into multiple pair-wise

(bi-variate) copula fittings [55, 64]. Moreover, the special dependence structure between

system input parameters and response KPIs in queuing models can provide additional

information for PCC. For example, the dependence structure of system input parameters

and response KPIs in the M/M/1 queuing is shown in Fig. 5.1 (c), where only the system

input parameters can have influence on the response KPIs. The relationship in Fig. 5.1

(c) gives a graphical representation of the dependence structure, which can be formally

described as an OBM [5]. The basic idea in OBM-PCC model is to use the OBM to capture

the qualitative dependence information between system input parameters and response

KPIs, then the dependence information is integrated into the PCC to facilitate a more

efficient and accurate approximation of the joint distribution among queuing variables. As

a result, the high dimensional copula can be simplified using OBM-PCC model as follows:

c
(
F1(x1), ..., Fp(xp)

)
=

p∏
i=1

∏
w∈pa(i)

ciw|pa(i;w)
(
Fi|pa(i;w)(xi|xpa(i;w)), Fw|pa(i;w)(xw|xpa(i;w))

)
,

(5.3)

where xpa(i) is the set of parent variables of Xi, e.g., Xpa(3) = {X1, X2} in Fig. 5.1

(c), pa(i;w) is the wth set of parent variables of node i, ciw|pa(i;w) is a conditional pair-

copula describing the variable dependence between i and w conditional on pa(i;w). The
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conditional cdfs Fj|K , j ∈ V,K ⊆ V \j can be computed using the recursive formula:

Fj|K(xj|xK) =
∂Cjk|(K\{k})

(
Fj|(K\{k})(xj|x(K\{k})), Fk|(K\{k})(xk|x(K\{k}))

)
∂Fk|(K\{k})(xk|x(K\{k}))

, (5.4)

for k ∈ K.

The parameter estimation and copula type selection are conducted through maximum

likelihood estimation and Akaike information criterion [69]. The estimated OBM-PCC

model is a surrogate model for f(x1, · · · , xp), and large number of samples can be efficiently

generated based on the surrogate model to represent the stochastic relationship among p

variables. More details about the OBM-PCC model can be referred to Chapter 3.

5.2.3 KPI control

The KPI control problem in Equation 5.1 is in general difficult to solve directly since

the endogenous noise changes with the decision variables. We propose to employ the

OBM-PCC model to separate the endogenous noise from decision variable and degenerate

the problem in Equation 5.1 into a traditional stochastic optimization. To achieve this

goal, we need to perform a strictly monotone transformation Ti on xi to generate the

standard uniformly distributed variables that facilitate the OBM-PCC model:

x̃i = Ti(xi), i = 1, · · · , p (5.5)

where the Ti can be kernel transformations or empirical cdfs. We further denote x̃I =

(x̃1, · · · , x̃l). With the Equation 5.4 and the OBM-PCC model, we can get the transformed
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conditional response KPIs:

x̃i|x̃I = hi(x̃I , ξi), i = l + 1, · · · , p (5.6)

where

hi(x̃I , ξi) =


F−1
l+1|1,...,l(ξl+1|x̃I ;θ) i = l + 1

F−1
i|1,...,i−1(ξi|x̃I , x̃l+1, ..., x̃i−1;θ) i = l + 2, · · · , p

(5.7)

is defined by the inverse function of Equation 5.4 with θ as the estimated OBM-PCC

parameters and ξi as the i.i.d standard uniform distributed variables.

With Equation 5.5 and 5.7, we can degenerate the problem in Equation 5.1 into an

exogenous noise based optimization, and we have the lemma as follows:

Lemma 3: Given the Ti(·) is a strictly monotone transformation and the hi(·, ξi) is a

strictly monotone function on ξi, Equation 5.1 can be degenerated with the OBM-PCC

model as follows:

min
x̃I

Eξ
[
g
(
T−1

1 (x̃1), · · · , T−1
l (x̃l), T−1

l+1

(
hl+1(x̃I , ξl+1)

)
, · · · , T−1

p

(
hp(x̃I , ξp)

))]

subject to: Ti
(
B−(i)

)
≤ x̃i ≤ Ti

(
B+(i)

)
, i = 1, · · · , l

(5.8)

where ξ = {ξl+1, · · · , ξp}. After we get the optimized x̃I , we can apply T−1
i (·) on x̃I

to get the xI . Please note that in Equation 5.8, the {T−1
1 (x̃1), · · · , T−1

l (x̃l)} is xI and

the {T−1
l+1

(
hl+1(x̃I , ξl+1)

)
, · · · , T−1

p

(
hp(x̃I , ξp)

)
} is xO. Thus we only re-formulate the

problem with transformed decision variables and do not change the objective function.

The derivation of the lemma is in the appendix.

Equation 5.8 has three notable features that simplify the KPI control problem.

i Equation 5.8 becomes a stochastic optimization with exogenous noise.

The noise in the cost function is defined by the i.i.d. standard uniform
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variable vector ξ, and the decision variables x̃I have no influence on the

noise. The reason Equation 5.8 becomes exogenous is that the function

hi(x̃I , ξi) can represent the dependence between x̃I and each transformed

response KPI variable with exogenous noise ξi in an explicit form using

pair-copula construction. We can indeed represent such relationship using

other tools, e.g., Kriging or spline, but the final objective function may

not become exogenous. This important feature degenerates the Equation

5.1 into an ordinary stochastic optimization problem.

ii The efficient evaluation of the cost function g. For a specific x̃I and ξ,

the function hi typically has a close-form expression determined by the

selected pair-copula type and estimated parameters. The inverse function

T−1
i might not have an explicit form, but it is a one-to-one mapping that

is efficient to evaluate. We do not need to re-run the queuing model with

new set of x̃I during the optimization, which significantly improve the

algorithm efficiency.

iii Adjustable uncertainty level in the cost function. The cost function uncer-

tainty adjustability is important for convergence efficiency in stochastic

approximation methods [130]. The uncertainty in the cost function de-

pends on the form of the cost function g and how we evaluate the g. In

solving the Equation 5.8 using stochastic approximation, we can generate

several ξ vectors and take the average over sampled g(·, ξ) as the cost

function to adjust the uncertainty level. This is an efficient process due

to the property in ii), while the same process for endogenous problems

would involve extra computation load in evaluating the distribution of

cost functions.
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We want to point out that the optimization performance of Equation 5.8 also depends

on the OBM-PCC accuracy in approximating the queuing models. The intuition the

OBM-PCC model can accurately represent the general queuing model is that the pair-

copula is invariant under monotone transformation [131], which means all the pair-copula

types and parameters remain the same if we apply a monotone transformation to each of

(x1, · · · , xp). This property provides great convenience in validating the OBM-PCC model

through trying different transformation functions Ti(·). In practice, we can first validate

the accuracy of the fitted OBM-PCC model through Kolmogorov-Smirnov test [72], then

apply the validated model into Equation 5.8. As a result, these three features together

contribute to the efficiency of the KPI control problem in queuing models.

To solve Equation 5.8, we resort to simultaneous perturbation stochastic approximation

method that specifically addresses multivariate optimization problems [132]. The SPSA

only requires the objective function values to approximate the underlying gradient and

is therefore easy to implement. Moreover, SPSA only requires two function evaluations

at each iteration regardless of the dimension of the decision variable space, which could

potentially reduce the computational cost significantly in high dimensional problems. The

general idea of SPSA is as follows:

x̃I,n+1 =
∏
Θ

(
x̃I,n − an∇̂g(x̃I,n)

)
∇̂gi(x̃I,n) = g(x̃I,n + dn∆n, ξ

+
n )− g(x̃I,n − dn∆n, ξ

−
n )

2dn∆n,i

(5.9)

where n is the iteration index, ∏Θ(x̃I) is a projection of x̃I back into the feasible region

Θ defined by the constraints [? ], g(·, ξ) is the representation of objective function of

Equation 5.8, ∇̂gi(x̃I,n) is the estimate of the ith entry of the gradient ∇g(x̃I,n), an > 0 is

the step size, ∆n = (∆n,1, · · · ,∆n,1) ∈ Rp is assumed to be i.i.d. distributed, dn > 0 is the
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finite difference step size, and ξ±n denotes the randomness. The optimal convergence rate

for SPSA is O(n−1/3). The perturbation sequence ∆n = (∆n,1, · · · ,∆n,1) must have mean

zero and finite inverse moments. As a result, the Gaussian distribution is not applicable.

One of the most common distributions for {∆n,i} is the symmetric Bernoulli taking a

positive and negative value, i.e., ±1 with probability 0.5 [130], and we will use this setting

in the simulation studies. In addition, an appropriately scaled x̃I,n is asymptotically

normal for large n, and the relative efficiency of SPSA also depends on the choice of {an},

{dn} and the noise level.

We summarize the algorithm for KPI control in algorithm 4.

Algorithm 4 KPI control
Input: Sample vectors for each variable x1, ...,xp;

The system input parameter and response KPI variables sets I and O;

The cost function g(xI ,xO).

1. Transform the sample vector xi to uniformly distributed using Equation 5.5;

2. Fit the OBM-PCC model and validate the accuracy;

3. Re-formulate the objective function using Equation 5.8;

4. Choose the appropriate {an} and {dn} for SPSA;

5. Solve the Equation 5.8 using SPSA through Equation 5.9 and obtain the optimal

solution x̃I,opt;

5. Apply T−1
i (·) to x̃I,opt to get the desirable KPI control input xI,opt.

Output: xI,opt.

5.3 Numerical studies

Various numerical studies are implemented in this section to validate the effective of the

proposed OBM-PCC based KPI control strategy. We provide three settings using different

queuing models: i) M/M/1 queuing network with two servers and infinite buffer size; ii)
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G/G/1 queuing network with two servers and infinite buffer size; iii) G/G/1 queuing

network with four servers and finite buffer size. We first apply the OBM-PCC model to

each of the queuing model to build the surrogate model, then the KPI control will be

conducted for different cost functions. The KPI control quality will be evaluated using

the relative error of the optimization results. To demonstrate the superiority of proposed

method, we compare the method with the Kriging based KPI control. The basic idea

in Kriging based optimization is to treat the objective function as a unknown function

of decision variables, and this unknown function will be modeled/predicted using noisy

readings at available decision variables. More specifically, the Gaussian process [133] and

stochastic Kriging [122] will be used to model the response and noise of the objective

function. For example, the objective function in Equation 5.1 will be re-formulated for

Kriging based optimization as follows:

min
xI

g∗(xI)

subject to: B−(i) ≤ xi ≤ B+(i), i = 1, · · · , l
(5.10)

where g∗(xI) = ExO|xI
[
g(xI ,xO)

]
. Based on the available samples of xI , the queuing

simulation could provide samples of xO conditional on xI , and the samples of g∗(xI) can

be obtained consequently. The Gaussian process or the stochastic Kriging will then be

employed to model the sample tuples
(
xI , g

∗(xI)
)

to interpolate the function g∗(·) within

the parameter space of xI . As a results, Equation 5.10 becomes a conventional non-linear

optimization and various solvers can be applied to solve it. The main difference between

the Gaussian process and stochastic Kriging is the Gaussian process assumes the noise

on samples of g∗(xI) is i.i.d. across the parameter space of xI , whereas the stochastic

Kriging allows heterogeneous noise, e.g., the sample noise on g∗(xI) depends on the value

of xI . The stochastic Kriging is clearly a better choice for modeling the g∗(·) due to
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the endogenous noise in the queuing context. However, the stochastic Kriging requires

multiple samples of g∗(xI) given a specific xI to provide the co-variance estimation, which

would consume a large number of simulation repetitions. Meanwhile, the computation

efficiency is a common issue in all the Kriging based methods. We will discuss the KPI

control quality in terms of computation efficiency and accuracy among different methods.

5.3.1 M/M/1 queuing network

First, we consider the M/M/1 queuing network with the first come first serve (FCFS)

dispatching rule for waiting lines. The M/M/1 queue has the close form steady state

distributions of queue waiting time and cycle time, and we will use these properties to

identify the underlying truth of the KPI control problem for validation purpose. Figure

5.2 (a) gives the diagram of the M/M/1 queuing network under study, where the buffer

sizes are set to be infinite. The simulation parameters are listed in Table 5.1. In the

simulation, we set the arrival rate as fixed (λ=1) and randomly pick a pair of µ1 and µ2

according to the uniform distributions. Then, the service time distributions are set based

on Table 5.1 for the queuing network. As the simulation reaches the steady state, we can

sample and record q1, q2 and c. Then, we re-pick another pair of µ1 and µ2 and repeat the

process. We perform the simulation with Simulink, Matlab 2017. We can then employ

the OBM-PCC method to approximate the relationship between these variables, and the

results is shown in Fig. 5.2 (b). The selected pair-copula and the parameters are attached

on the lines. Based on the OBM-PCC model, we use algorithm 4 to implement the KPI

control with the objective function as follows:

ExO|xI
[
g(xI ,xO)

]
= E(q1 + q2 + c) + 0.4µ1 + 0.3µ2

subject to: 2 ≤ µ1 ≤ 4, 2 ≤ µ2 ≤ 4
(5.11)
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where we set the cost rate for queuing time and cycle as 1 and the cost rate for server

1 as 0.4 and the cost rate for server 2 as 0.3. Equation 5.11 is with endogenous noise

and needs to be transformed into the exogenous form in Equation 5.8 through the fitted

OBM-PCC model in Fig. 5.2 (b). Then, the SPSA can be applied to solve the KPI control

problem. When implementing the SPSA method, we choose the {an} and {dn} based on

the suggestions in [130] as follows:

an = a

(A+ n+ 1)0.602

dn = d

(n+ 1)0.101

(5.12)

where a and A are related with the maximum number of iteration and the smallest desired

change magnitude of x̃I in each iteration, the larger the allowed iteration number and the

smallest change magnitude, the larger the A and a will be, the d is positively related with

the noise level of the cost function. In the our simulation settings, we choose a = 0.064,

A = 1000 and d = 0.8.

Table 5.1: Parameter setting for M/M/1 queuing network.

Parameter Type Mean Variance Min Max
Arrival interval Exponential 1 1 0 ∞
Server 1 interval Exponential 1

µ1
1
µ2

1
0 ∞

Server 2 interval Exponential 1
µ1

1
µ2

1
0 ∞

µ1 Uniform 3 1
3 2 4

µ2 Uniform 3 1
3 2 4

Since it is a M/M/1 based queuing network and the buffer size is infinite, we can easily

get the close form of Equation 5.11 as follows:

ExO|xI
[
g(xI ,xO)

]
= 2
µ1 − 1 + 2

µ2 − 1 + 0.4µ1 + 0.3µ2

subject to: 2 ≤ µ1 ≤ 4, 2 ≤ µ2 ≤ 4
(5.13)
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Figure 5.2: Simulation for M/M/1 queuing network.

where we only consider the scenario when queuing time is large than 0 (otherwise the

conditional distribution of q would not be exactly continuous). We can then get the KPI

control input parameter by minimizing Equation 5.13, which results in the minimized

objective function value 4.038 when µ1 = 3.236 and µ2 = 3.582. The value 4.038 will be

used as the underlying truth to compare with the optimization results of the proposed

method and the Kriging based methods. The results are shown in Table 5.2, where we

demonstrate the computation time and results accuracy (relative error with 4.038) among

different methods under different number of xI samples. The computation time in Table

5.2 includes the model fitting and optimization solving. For Kriging based methods, we use

the Nelder-Mead simplex approach [134] to find the minimum of the predicted response

surface.

In Table 5.2, we can see the OBM-PCC based KPI control performs the best with

the least time consumption. The stochastic Kriging modeling demonstrates comparable
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Table 5.2: KPI control results for M/M/1 queuing network.

Sample number 100 400 900
Proposed method error 16.81% 9.12% 5.76%

Time consumed 17.12s 60.83s 139.11s
Gaussian process method error 29.18% 24.39% 19.09%

Time consumed 17.89s 471s 4508s
Stochastic Kriging method error 19.45% 12.91% 8.68%

Time consumed 30.39s 907s 8876s

accuracy to that of the proposed method, but it requires much more time to achieve the

satisfactory result, especially when the number of data points becomes large. This is

because the stochastic Kriging needs to conduct the inverse of large matrices (dimension

determined by the number of data) two times, which consumes large amount of computation

resource as the matrix dimension increases. The Gaussian process based method is also

time-consuming and performs the worst, which is mainly due to the lack of heterogeneous

noise characterization in the Gaussian process. Another reason the Gaussian process is not

suitable for KPI control is that the objective samples are very noisy. We can see the true

objective function (Equation 5.13) in Fig. 5.3 (a), which is straightforward to locate the

minimum point at (µ1 = 3.236, µ2 = 3.582). However, the samples of objective function

from the queuing simulations, shown in Fig. 5.3 (b), are too noisy to capture the profile

of the objective function. This is because the cost function in Equation 5.11 has three

variables and the sample variance of the Gaussian process is the addition of these three

variables. On the other hand, the proposed method always deals with bi-variate (pair-

copula) variance regardless of the form of the cost function. As a result, the performance

of the proposed method is expected to be more robust to the cost function form and it is

not surprising the Gaussian process fails in the KPI control in this setting.
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Figure 5.3: Objective function response comparison for the M/M/1 queuing network.

5.3.2 G/G/1 queuing network

The G/G/1 queuing models provide more flexibility in characterizing real systems. However,

there is no general formula to capture the stationary distribution of KPIs in G/G/1 queue.

As a result, the data-driven methods become compelling in G/G/1 queuing analysis. We

compare the proposed method and the two Kriging based methods in G/G/1 queuing

system KPI control. The queuing system configuration is the same as that in Fig. 5.2

(a) and the parameter sets are shown in Table 5.3, where the arrival interval follows

log-normal distribution and the service interval follows Erlang distribution. Similar to the

M/M/1 case, we run the queuing simulation in various system input parameters settings

and collect the samples of KPIs. The OBM-PCC model for G/G/1 queuing network is

shown in Fig. 5.4. We use a different objective function as follows:

ExO|xI
[
g(xI ,xO)

]
= E(c) + 0.4µ1 + 0.3µ2

subject to: 2 ≤ µ1 ≤ 4, 2 ≤ µ2 ≤ 4
(5.14)
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where we only consider the cycle time cost in the objective function. This may potentially

reduce the observation noise for Kriging based method since the variance of cost function

only comes from c. The KPI control results are shown in Table 5.4, where we run extensive

simulations to figure out the objective truth for error comparisons.

Figure 5.4: Dependence structure in the G/G/1 queuing network.

Table 5.3: Parameter setting for G/G/1 queuing network.

Parameter Type Mean Variance Min Max
Arrival interval Log-normal 1 1 0 ∞
Server 1 interval Erlang 1

µ1
1

2µ2
1

0 ∞
Server 2 interval Erlang 1

µ2
1

2µ2
2

0 ∞
µ1 Uniform 3 1

3 2 4
µ2 Uniform 3 1

3 2 4

Table 5.4: KPI control results for G/G/1 queuing network.

Sample number 100 400 900
Proposed method error 16.36% 8.44% 4.91%

Time consumed 17.08s 57.94s 126.92s
Gaussian process method error 20.53% 16.00% 10.56%

Time consumed 15.48s 442s 4426s
Stochastic Kriging method error 16.45% 9.07% 4.87%

Time consumed 30.42s 857s 8517s
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In Table 5.4 we can see the time consumption in three methods does not change

significantly. However, there is some improvement in the KPI control result using Kriging

methods, especially the Gaussian process. This observation validates the KPI control

performance of the Kriging methods is sensitive to the cost function g. In Equation 5.14,

the sample noise only comes from the variable c, which is much smaller than that in

Equation 5.11. On the other hand, the OBM-PCC based KPI control is robust against the

cost function and the performance is consistently more efficient than the Kriging based

methods.

5.3.3 Serial production line

In this section, we test the KPI control performance in a serial production system with

four servers. The production line diagram is shown in Fig. 5.5 (a) and (b), where the

system input parameters are listed in Table 5.5 and the finite buffer sizes are attached

below the servers. We consider a different objective function as follows:

ExO|xI
[
g(xI ,xO)

]
= E(q1q2 + q3 + q4 + c) + 0.12µ1 + 0.24µ2 + 0.38µ3 + 0.31µ4

subject to: 4 ≤ µ1 ≤ 6, 3.5 ≤ µ2 ≤ 5.5, 3 ≤ µ3 ≤ 5, 3 ≤ µ4 ≤ 4
(5.15)

where the cost function involves quadratic terms. We demonstrate the KPI control results

in Table 5.6, where we can see the OBM-PCC method again performs the best with the

least time consumption.

From the extensive case studies, we find the proposed OBM-PCC based KPI control

method can adapt to various production processes and achieve satisfactory control results.

Please note that although the traditional queuing simulation can be directly applied to the

stochastic optimization of the objective function, it would be extremely time-consuming to

run the new simulation in each optimization iteration. Our method provides an effective
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Figure 5.5: Simulation for serial production line.

Table 5.5: Parameters for serial production line.

Parameter Type Mean Variance Min Max
Arrival interval Log-normal 1 1 0 ∞
Server 1 interval Erlang 1

µ1
1

2µ2
1

0 ∞
Server 2 interval Erlang 1

µ2
1

2µ2
2

0 ∞
Server 3 interval Erlang 1

µ3
1

2µ2
3

0 ∞
Server 4 interval Erlang 1

µ4
1

2µ2
4

0 ∞
µ1 Uniform 5 1

3 4 6
µ2 Uniform 4.5 1

3 3.5 5.5
µ3 Uniform 4 1

3 3 5
µ4 Uniform 3.5 1

12 3 4
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Table 5.6: KPI control results for serial production line.

Sample number 100 400 900
Proposed method error 22.94% 14.17% 10.03%

Time consumed 82.7s 276.1s 541.8s
Gaussian process method error 38.53% 27.00% 21.56%

Time consumed 94.6s 1904s 16808s
Stochastic Kriging method error 26.33% 18.57% 13.40%

Time consumed 179.6s 3479s 30157s

surrogate of the queuing simulation under any system inputs, which is then integrated into

the stochastic optimization to degenerate the endogenous cost function into the exogenous

one. This is a very important step and contributes to the efficiency of the whole KPI

control algorithm.

To guarantee the model performance, we give several important guidelines for simulation

data generation and prediction procedures:

1 It is suggested to generate system input parameters samples from uniform

distributions. This would simplify the copula estimation process.

2 The simulated queuing system should be able to reach the steady state,

e.g., λ < µ, and the response KPIs should be sampled in the steady state.

3 The support of uniform distributions of system input parameters should

cover the constraints in the SPSA to guarantee the optimization is con-

ducted within the OBM-PCC approximation region.

4 The sequence {an} and {dn} needs to be chosen carefully. More details

about setting the sequence parameter can be found in [130].
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5.4 Conclusion

In this chapter, we propose to integrate the OBM-PCC model into the KPI control in general

queuing systems. The KPI control is essentially an endogenous stochastic optimization

problem, where the distribution of randomness in the cost function depends on the decision

variables. The OBM-PCC model is a flexible surrogate model for approximating the

system input parameter and response KPI relationship in queuing systems. We investigate

the properties of this relationship and develop a KPI control scheme that assimilates the

unique feature of the OBM-PCC model, which degenerates the endogenous stochastic

optimization into the ordinary optimization problem. The key contribution of the chapter

is that we employ the standard uniform distribution to link the OBM-PCC model and the

KPI control problem so that the endogenous stochastic optimization in KPI control can be

solved using existing solvers. Moreover, the developed method is validated with extensive

simulation studies to show the robustness towards the cost function. The proposed method

is compared with Kriging based methods in KPI control, and the results demonstrate the

effectiveness and superiority of our method.

Some interesting open problems remain in the proposed method. First, the pair-copula

utilized in the OBM-PCC model can only approximate monotonic relationship between

variables. Although the queuing system particularly fits this requirement, it limits the

application of the proposed method in general KPI control problems. Some non-monotone

pair-copula can be considered to generalize the method in modeling and controlling more

complex systems. One critical challenge in applying the non-monotone pair-copula is the

computational issue since the non-monotone pair-copula is typically piece-wise constructed

with limited distribution families, where the numerical integration may be involved and

the efficiency of the algorithm would be a potential concern. Another possible topic is

the simultaneous control of multiple similar systems, e.g., production lines for different
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types of food or pharmaceutical. These systems typically share most of the production

features and perform in a similar pattern. The control over these similar systems can be

greatly simplified if we can capture the similarity and identify the unique difference among

the systems. This requires a multi-task modeling and control framework that extracts

the production knowledge in each system, where our proposed method can serve as a

sub-module for individual system modeling and control. We will study these topics in

future work.

5.5 Appendix

5.5.1 Proof of lemma 3

We give a proof sketch of the equivalence between Equation 5.1 and Equation 5.8. Please

note the xI is conditioned and treated as a constant. As a result, it is general enough to

consider a cost function with xO only.

Based on Equation 5.5 and 5.7, we have:

xO|xI = T−1
[
h
(
T (xI), ξ

)]
(5.16)

where T and T−1 are the general transformation and inverse transformation between x

and x̃, h is the general form of Equation 5.7. Since T, T−1 and h are all strictly monotonic,

we define a strictly monotonic function l with inverse function v as follows:

xO|xI = l(xI , ξ)

ξ|xI = v(xO,xI)
(5.17)
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As a result, we have

ExO|xIg(xO) =
∫
g(xO)fxO|xI (xO)dxO (5.18)

where fxO|xI (xO) is the pdf of xO|xI . Please note that

fxO|xI (xO) = fξ|xI
(
v(xO,xI)

)
· v′(xO,xI)dxO (5.19)

where fξ|xI is the pdf of ξ|xI and v′ is the first order derivative towards xO|xI . Further

notice that ξ and xI are independent, then we have

ExO|xIg(xO) =
∫
g

(
T−1

[
h
(
T (xI), ξ

)])
fξ(ξ)dξ = Eξg

(
T−1

[
h
(
T (xI), ξ

)])
(5.20)

Equation 5.20 demonstrates the Equation 5.1 and 5.8 are equivalent.
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6 research work to date and future work

The unprecedented data availability from smart and connected systems poses both oppor-

tunities and challenges for data analytics and decision making for operations management.

This dissertation focuses on three specific challenges: i) Information sharing under hetero-

geneous systems. ii) Inter-relationship modeling and inference of non-linear association

data under non-Gaussian distribution. iii) Efficient real time anomaly detection in smart

and connected system. iv) Efficient control for minimizing the system operation cost under

complex variable relationship.The contribution for each of the work is conclude as follows:

1 Transfer Learning of Structures of Ordered Block Graphical Models Using

Informative Priors

In this study, we propose a structure learning method for ordered block

graphical models. This is a score based method and mainly uses the

Bayesian score framework that consists of the likelihood term and the

structure prior term. The key innovation in this method is that we estab-

lish an informative structure prior by merging different historical graphs

into the structure prior term under the Bayesian framework. The infor-

mative structure prior is expected to use historical information to benefit

new graph structure learning. The key challenge of knowledge transferring

in this work is the inconsistency of the sample space between historical

processes and the new process.We propose a strategy by marginalizing

inconsistent nodes and adding pseudo nodes to make the sample space

consistent. A correcting algorithm based on the Bayes factor is also

proposed to deal with the non-conformity between the prior knowledge

and the new graph. We investigate the robustness of the proposed method
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and find that the proposed method performs better than the method

using non-informative priors in most practical cases and no worse than

the non-informative prior based method in general.

2 Approximate Key Performance Indicator Joint Distribution through Or-

dered Block Model and Pair Copula Construction

We propose to approximate the KPIs joint distribution through sampling

from the OBM-PCC model. First, the KPIs are modeled as random vari-

ables and the process is formulated under the OBM framework. Then, the

pair-copulas are constructed based on the OBM structure to approximate

the KPIs joint distribution. The feature of the proposed method is that it

focuses on the distribution level approximation rather than the individual

KPI estimation, which offers the feasibility in high dimensional modeling

for KPIs under any configurations. Moreover, compared with traditional

simulation method, the proposed method is more efficient due to the

closed-form sampling procedures. The effectiveness and accuracy of the

proposed method are verified through various numerical studies.

3 Contamination Source Identification Based on Sequential Bayesian Ap-

proach for Water Distribution Network with Stochastic Demands

In this work, we propose a sequential Bayesian scheme for contamination

source identification in a water distribution network. This method treats a

sensor alarm as available information and takes advantage of the sequence

of alarms and time delay between alarms to perform real-time identification

of a contamination source. The posterior probabilities of a node being

the source of the contamination is calculated and used to make decisions.

Moreover, a variation analysis of the obtained posterior probability is
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conducted to obtain the significance probability of the obtained result. Our

method considers hydraulic information and stochastic water demands in

the water distribution network, which is less restrictive in practice. The

effectiveness of the method is verified by a case study in EPANET with a

126-node water distribution network.

4 Control of Key Performance Indicators of Manufacturing Production

Systems through Pair Copula Modeling and Stochastic Optimization

In this chapter, we propose to integrate the OBM-PCC model into the

KPI control in general queuing systems. The KPI control is essentially

an endogenous stochastic optimization problem, where the distribution

of noise variable in the cost function depends on the decision variables.

The OBM-PCC model is a flexible surrogate model for approximating

the system input parameter and response KPI relationship in queuing

systems. We investigate the properties of this relationship and develop

a KPI control scheme that assimilates the unique feature of the OBM-

PCC model, which degenerates the endogenous stochastic optimization

into the traditional optimization problem. The key contribution of the

chapter is that we employ the standard uniform distribution to link the

OBM-PCC model and the KPI control problem so that the endogenous

stochastic optimization in KPI control can be solved using traditional

solvers. Moreover, the developed method is validated with extensive

simulation studies to show the robustness towards the cost function,

which is another benefit of the algorithm resulting from the integration of

OBM-PCC model and the KPI control problem. The proposed method is

compared with Kriging based methods in KPI control, and the results
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demonstrate the effectiveness and superiority of our method.

Recent innovations across all disciplines have converged to make smart and connected

systems technically/economically feasible. However, new methods are urgently needed

for data analytics and decision making for operations management to complete this

transformation towards smart and connected systems. I will continue to investigate novel

data-driven based decision making methodologies and apply these techniques into emerging

areas with smart and connected products/systems. More specifically, I will focus on:

1 Information transfer for smart and connected system with big data

Building upon my research accomplishments, I will continue to investigate

novel data-driven methods to enable flexible and efficient transfer learning

methodologies by integrating various stochastic processes and graphical

models. In addition, sophisticated data-level fusion will be investigated

to extract useful information from prodigious amount of data.

2 Data-driven reinforcement learning for optimal management of smart and

connected system

The reinforcement learning can learn from the feedback signal and build

a virtuous circle to balance the system performance and cost. The

availability of data in smart and connected systems provide natural

advantages for reinforcement learning, while the system uncertainty and

complexity stump the learning. I will be dedicated on reinforcement

learning with other data-driven techniques for better managing the smart

and connected system.

The achievements of the proposed work will be reported in the future.
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