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abstract

Brain stimulations have seen various applications in medical treatment, pre-surgical
evaluation, and understanding of brain functions. Despite the popularity, the func-
tional interaction among different regions during the stimulation remains unclear. In
this work, we propose to use the multivariate autoregressive model with exogenous
stimulation (MVARX) to model evoked response excited by brain stimulation and
use the model to advance our understanding of brain networks during stimulation
sessions.

We start by showing that the MVARX model well characterizes cortical signals by
modeling intracerebral electroencephalography (EEG) excited by current stimulation.
The application of the model in learning structural properties is demonstrated
with models learned under two different structural hypotheses from subjects in
wakefulness and sleep. We also estimate MVARX model from intracerebral EEG
with the self-connected group lasso (SCGL) regularization and present the capability
of the SCGL in identifying sparsity pattern of coefficient matrices in wakefulness
and sleep.

Building on the results in cortical level, we propose to model the sensor level
evoked response excited by brain stimulation with a linear state space model in
which the cortical activities are characterized with the MVARX model. We use the
transcranial magnetic stimulation (TMS)-EEG data to demonstrate the applicability
of the model. The regions of interest in the model are selected with a data driven ap-
proach based on cortical signal power and the model parameters are estimated with
an expectation-maximization algorithm. We demonstrate that the model is capable
of modeling the TMS-EEG evoked response and that the feedback connections in
model is necessary in characterizing the data in wakefulness.

Finally, the linear state space model is further considered from the Bayesian
paradigm in which we consider imposing two classes of priors with differing struc-
tural preferences. We propose a variational inference procedure for learning the
posterior distribution of the parameters. We demonstrate that the structural prefer-
ences encoded in the priors encourage identification of underlying network patterns
with several simulated studies.
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1 introduction

Brain stimulation is widely used in treatment of brain illness [1, 2], pre-surgical
evaluation [3], and understanding of brain functionality [4]. A variety of stimulation
modalites are used, including transcranial magnetic stimulation (TMS), intracerebral
electrical stimulation, and deep brain stimulation. Despite the broad application of
brain stimulation, the functional interactions among different brain areas in response
to stimulation remain largely unknown. Therefore it is of great interest to study the
interaction mechanism from a systematic point of view.

Dynamic causal modeling (DCM) has been a popular method for analyzing
magneto-/electroencephalography (M/EEG) evoked responses [5, 6]. The model
is a Bayesian nonlinear state space model where the source activities are charac-
terized with neural mass models, which are formulated as differential equations,
and the sensor-space measurements are modeled as linear combinations of the
source activities. In DCM, the stimulation directly excites neural populations in
the source model and generates the evoked response according to the differential
equations. Despite being physiologically plausible, the very large number of pa-
rameters in DCM makes it infeasible to consider networks with more than a few,
e.g., 5-7, nodes. Moreover, DCM recommends learning the model parameters from
the average evoked response, which is obtained by averaging over multiple trials
[7]. The limited number of data samples in the average evoked response makes it
challenging to estimate the parameters reliably. Furthermore, the focus on evoked
response also means that DCM doesn’t characterize the trial-by-trail fluctuations in
the data, which also contain rich information about the brain [8].

Another popular model for modeling brain data is the multivariate autoregres-
sive (MVAR) model. The evoked response due to stimulation manifests a time-
varying mean, which is contrary to the stationary assumption of the MVAR model.
In the literature, adaptive MVAR models have been proposed to study evoked re-
sponses. In [8], the authors proposed viewing each trial with multiple overlapping
short windows and subtracting ensemble means from each time point in the win-
dow to make each window of constant mean. MVAR models are then estimated
from each window. Subtracting the mean limits this procedure from characterizing
information in the average evoked responses and degrades the signal-to-noise ratio
(SNR) of the data, which in turn enlarges the mean squared error of the estimated
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parameters. Another approach [9] models the evoked response with time varying
MVAR coefficients and considers modeling to be a tracking problem. Recursive least
squares (RLS) algorithms are used to estimate the coefficients. Nevertheless, neither
of the adaptive MVAR models directly consider the exogenous input in the model as
in DCM. Furthermore, the adaptive MVAR models proposed in these works require
a preprocessing step to estimate cortical signals from the measurements, which
limits the modeling procedures to high SNR data.

The MVAR model is linear and simpler to work with than nonlinear models like
DCM. Moreover, as was shown in [10], consistent estimates of the MVAR parameters
can be estimated from low SNR data by modeling EEG with a linear state space
model and jointly estimating the cortical source orientation, cortical signal and
MVAR model parameters with the expectation-maximization (EM) algorithm. The
estimation performance obtained with the state space approach and the simplicity
of MVAR models suggest that MVAR models have promising potential for modeling
responses evoked by brain stimulation.

The objective of this research is to extend the MVAR model to directly accom-
modate the exogenous stimulation. We propose to model the evoked response to
be a multivariate autoregressive with exogenous stimulation (MVARX) process.
Our MVARX model represents the stimulation as an input that is passed through
a bank of FIR filters, which model the effect of fibers of passage from the stimula-
tion location to the cortical regions of interest (ROIs). We consider issues around
model selection and validation. The EM algorithm proposed in [10] is extended to
estimate MVARX model parameters from scalp recordings such as TMS-EEG. Lasso
regularization and Bayesian priors are utilized to incorporate structural hypotheses
on the MVARX model in a data driven way. We apply the MVARX model to human
brain activity to gain new insights into brain connectivity.

Specifically, in Chapter 2 we consider modeling intracerebral EEG excited by
current stimulation with the MVARX model. We perform model selection with
cross-validation and model checking with a residual whiteness test. We show that
the estimated models work well in characterizing the evoked response and one-step
predicting fluctuations in single trial data. We compare the structures of the brain
networks during wakefulness and sleep by estimating models with two different
structural hypotheses and assess the performance of the models in characterizing
the evoked responses. Finally we show an application of the MVARX model in
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measuring level of consciousness with the integrated information theory.
Building from the results in modeling intracerebral EEG, in Chapter 3 we further

consider identifying the structure of network with a data-driven way utilizing the
self-connected group lasso penalty. We show that the sparse models outperform the
unconstrained models in characterizing the data. We conclude that the identified
sparse network structure agrees with physiological understandings of the brain.

In Chapter 4 we consider scalp EEG responses triggered by exogenous stimula-
tion with a linear state space model. The scalp measurements are linear combinations
of cortical signals, which in turn are modeled as an MVARX process. We propose
jointly estimating the model parameters and the cortical signals with an EM algo-
rithm. We use TMS-EEG measurements to demonstrate validity of our methods.
The model is applied to estimate models under two different structural hypotheses
and to demonstrate the difference between data in wakefulness and sleep.

Finally Chapter 5 considers the linear state space model from the Bayesian
point of view. We consider prior distributions over the parameters and estimate
approximate posterior distribution of the parameters with a variational inference
procedure. We show the estimation procedure for priors under two classes of
structural assumptions and compare the priors by studying several simulations.
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2 multivariate autoregressive models with exogenous
inputs for intracerebral responses to direct electrical
stimulation of the human brain

2.1 Introduction

The remarkable cognitive abilities of the healthy human brain depend on an exquisite
balance between functional specialization of local cortical circuits and their func-
tional integration through long-range connections 1 2. Hence, there is considerable
interest in characterizing long-range cause and effect or directional interactions in
the human brain. Multivariate autoregressive (MVAR) models, sometimes referred
to as vector autoregressive (VAR) models, have been widely applied to study direc-
tional cortical network properties from both intracranial data (e.g., [11, 12, 13, 14, 15])
and scalp EEG or MEG (e.g., [16, 17]). An MVAR model describes each signal as a
weighted combination of its own past values and the past values of other signals
in the model — an autoregression — plus an error term. The weights relating the
present of one signal to the past of another capture the causal or directed influence
between signals. A variety of different metrics for summarizing the directed inter-
actions in MVAR models have been proposed, including directed transfer functions
[18], directed coherence [19], conditional Granger causality [20], and integrated
information [21].

MVAR models assume the data is stationary and of constant mean. While
stationarity and constant mean may be reasonable assumptions for a relatively short
duration of spontaneous data, evoked or event-related data appear to violate these
assumptions. For example, the mean or average response to a stimulus varies with
time. An MVAR model fit to data with a time-varying mean results in spurious
interactions because the assumption of stationarity is violated. Adaptive or time-
varying methods have been developed to relax stationarity assumptions [8, 22,
23]. For example, a time-varying mean response is removed by subtracting the

1Reprinted from [J.-Y. Chang, A. Pigorini, M. Massimini, G. Tononi, L. Nobili, and B. D. Van
Veen, “Multivariate autoregressive models with exogenous inputs for intracerebral responses to
direct electrical stimulation of the human brain,” Frontiers in human neuroscience, vol. 6, 2012.].

2This research was supported in part by the National Institute of Biomedical Imaging and
Bioengineering under grant R21EB009749.
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ensemble average [8] and the MVAR model parameters are allowed to vary with
time. Adaptive models require specification of an adaptation rate parameter that
effectively determines how much of the past data is used to estimate the present
model parameters, or equivalently, how fast the model is changing. Models that use
fast adaptation are able to track faster changes in the underlying data, but employ
less data to estimate model parameters and consequently possess more variability
in the estimated model parameters (see [23] for assessment of these issues).

During the presurgical evaluation of drug-resistant epileptic patients, direct
electrical stimulation of the brain is systematically performed for diagnostic purposes
to identify the epileptogenic zone [24]. Electrical stimulation generates a time-
varying response at the recording sites. In this paper we propose describing the
response of the brain using stationary MVAR models with an exogenous input
(MVARX) derived from the stimulus characteristics. MVARX models are commonly
used in econometric time series analysis [25]. The advantage of the MVARX model is
that it does not require subtraction of the mean and consequent reduction in signal-
to-noise ratio (SNR) or the complication of time-varying models to capture the
response evoked by direct electrical stimulation. The model captures both the mean
evoked response and the background activity present during the recordings. We
demonstrate the effectiveness of the MVARX model using intracerebral recordings
from epilepsy patients.

Direct electrical stimulation of the brain presents several modeling challenges.
Although the timing and location of the stimulus is known precisely, the response
of the brain in the near vicinity of the stimulus cannot be measured due to elec-
trical artifacts and the propagation of the stimulus to more distant sites depends
on the topology of axons in the vicinity of the stimulation site [26]. Electrical stim-
ulation creates action potentials in neurons whose axons pass near the stimulus
site. These neurons synapse both near and distant to the stimulation site, so the
stimulus actually activates multiple, a priori unknown areas. The MVARX model
explicitly accounts for this effect with a bank of finite impulse response (FIR) filters
that capture the impact of the exogenous input, i.e., stimulus, on all recording sites.
The exogenous input filter coefficients and the MVAR model parameters are simul-
taneously estimated from the recordings and knowledge of the stimulation times
using a least squares procedure. The exogenous input filter coefficients describe
the conduction paths from the stimulus site to each recording site, while the MVAR
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model parameters capture the causal interactions between recording sites.
The MVARX model is applied to 10 datasets collected from three subjects in

wakefulness and NREM sleep. Two stimulation levels are studied in one subject,
and two stimulation sites in another. The data consists of the intracranial response
to 30 current impulses separated by one second. A cross-validation procedure
is introduced for choosing the memory in the MVARX model. We demonstrate
that a stationary MVARX model accurately describes the activity evoked by direct
electrical stimulation. Comparison to a series of univariate autoregressive models
with exogenous inputs (ARX) reveals that causal interactions must be modeled to
accurately describe the measured activity. The series of ARX models result in much
larger modeling error than the MVARX model. One-step prediction performance is
used to demonstrate that the MVARX model also captures spontaneous fluctuations
in the recorded data. The MVARX model errors pass a whiteness test while the
univariate ARX models do not, further supporting the applicability of the MVARX
model.

The MVARX models are employed to contrast integrated information in wake-
fulness and sleep. Integrated information is a measure of the extent to which the
information generated by the causal interactions in the model cannot be partitioned
into independent subparts of the system. Hence, integrated information measures
the balance between functional specialization and integration represented by the
model. Theoretical considerations [27, 28, 29, 30] indicate that integrated informa-
tion should be less in sleep than in wakefulness. This prediction is confirmed in all
10 datasets using our MVARX model.

This paper is organized as follows. Section 2.2 describes the data and prepro-
cessing procedures. Section 2.3 defines the MVARX model, introduces the method
for estimating the model parameters, including our cross-validation approach for
selecting model memory, and presents the residual whiteness test. Section 2.4
demonstrates the effectiveness of the proposed model using the 10 datasets de-
scribed above and Section 2.5 applies the MVARX models to contrast integrated
information in wakefulness and sleep. This paper concludes with a discussion in
Section 2.6. For notation, boldface lower and upper case symbols represent vectors
and matrices, respectively, while superscript T denotes matrix transpose and super-
script −1 denotes matrix inverse. The trace of a matrix A is tr[A] and the determinant
is det(A). E{a} denotes the expectation of a random variable a. The Euclidean norm
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of a vector x is ||x||2 =
√

xTx. The number of elements in a set S is |S|. x ∼ N(µ,Σ)
means that the vector x is normally distributed with mean µ and covariance matrix
Σ.

2.2 Data

Subjects and experimental protocol

Three subjects with long-standing drug-resistant focal epilepsy participated in this
study. All patients were candidates for surgical removal of the epileptic focus. Dur-
ing pre-surgical evaluation the patients underwent individual investigation with
stereotactically implanted intracerebral multilead electrodes for precise localization
of the epileptogenic areas [31]. All patients gave written informed consent before
intracerebral electrode implantation as approved by the local Ethical Committee.
Confirmation of the hypothesized seizure focus and localization of epileptogenic
tissue in relation to essential cortex was achieved by simultaneous scalp and intrac-
erebral electrode recording, as well as intracerebral stimulation during wakefulness
and sleep to further investigate connectivity of epileptogenic and healthy tissue
[32, 33]. The decision on implantation site, duration of implantation and stimulation
site(s) was made entirely on clinical needs. Stereoelectroencephalography (SEEG)
activity was recorded from platinum-iridium semiflexible multilead intracerebral
electrodes, with a diameter of 0.8 mm, a contact length of 2 mm, an intercontact dis-
tance of 1.5 mm and a maximal contact number of 18 (Dixi Medical, Besançon, France)
[31]. The individual placement of electrodes was ascertained by post-implantation
tomographic imaging (CT) scans. Scalp EEG activity was recorded from two plat-
inum needle electrodes placed during surgery at “10–20” positions Fz and Cz on
the scalp. Electroocular activity was registered at the outer canthi of both eyes, and
submental electromyographic activity was acquired with electrodes attached to the
chin. EEG and SEEG signals were recorded using a 192-channel recording system
(Nihon-Kohden Neurofax-110) with a sampling rate of 1000 Hz. Data was recorded
and exported in EEG Nihon-Kohden format [34, 35]. The data for each channel is
obtained using bipolar referencing to a neighboring contact located entirely in the
white matter. Intracerebral stimulations were started on the third day after electrode
implantation. In eight out of ten cases we discuss, stimulation of strength 5 mA
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Figure 2.1: Recording and stimulation electrode placements for the subjects. Black
dots represents recording channels while black ‘X’ represents stimulating channel(s).
(a) Subject A, left hemisphere is shown. 1 - inferior frontal opercular, 2 - anterior
horizontal lateral fissure, 3 - middle frontal gyrus, 4 - middle frontal sulcus, 5 -
superior temporal sulcus, 6 - inferior frontal sulcus, 7 - middle temporal gyrus, 8 -
middle frontal gyrus, 9 - middle temporal gyrus, 10 - orbital gyrus, 11 - precentral
gyrus, 12 - superior frontal sulcus, X - middle frontal gyrus. (b) Subject B, right
hemisphere is shown. 1 - inferior frontal gyrus, 2 - superior temporal sulcus, 3
- posterior lateral fissure, 4 - postcentral solcus, 5 - superior temporal gyrus, 6 -
transversal temporal sulcus, 7 - superior frontal gyrus, 8 - subcentral gyrus. X (L1) -
precentral gyrus, X (L2) - subcentral sulcus. (c) Subject C, right hemisphere is shown.
1 - precentral gyrus, 2 - posterior middle temporal gyrus, 3 - inferior parietal lobule,
4 - postcentral gyrus, 5 - postcentral sulcus, 6 - angular gyrus, 7 - supramarginal
gyrus, 8 - anterior middle temporal gyrus, inferior temporal gyrus, X - superior
parietal lobule.

were performed, while for the other two cases stimulation of 1 mA were applied. At
each stimulation session, the stimulation is applied at a single channel and SEEG
recordings were obtained from all other channels. A single stimulation session
consisted of a 30 impulse stimulation train at intervals of 1 s. Each impulse is of
0.2-ms duration. The channels that were stimulated were chosen based on clinical
requirements. All patients included in this study were stimulated during wake-
fulness and stage 4 of NREM sleep. Sleep staging was performed using standard
criteria [36]. Stimulations which elicited muscle twitches, sensations or cognitive
symptoms, were excluded from this study, in order to prevent possible awareness
of stimulation or alteration of sleep depth.

In our analysis, we consider a subset of 8-12 recording channels of all channels
for each subject, as illustrated in Fig. 2.1. The 8-12 channels were selected based
on approximately maximizing the distance between the subset of channels that are
both artifact free and near the surface of the cortex.
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Preprocessing

During each stimulation session, a raw trigger signal that indicates the occurrence
of current stimulation with 1 and the absence of stimulation with 0 is collected at
a sampling rate of 1000 Hz in addition to the SEEG recordings. We use a Tukey-
windowed median filter to remove volume conduction artifacts within 39 ms of
each stimulus. First, a median filter of order 19 is applied to the raw data channel
by channel. Next, the raw data within a 39-ms window centered at each stimulus
is replaced with a weighted average of the raw data and the median filtered data
to eliminate the artifact. The weights for the median filtered data take the form of
a Tukey window ([37], pg. 69) and are zero for +/- 20 ms away from the stimulus,
a cosine rising from 0 to 1 beginning at 19 ms prior to the stimulus and ending
at 10 ms prior to the stimulus, unity until 10 ms poststimulus, and then a cosine
decreasing from 1 to 0 ending at 19 ms poststimulus. The weighting applied to the
raw data are one minus those applied to the median filtered data. Fig. 2.2 illustrates
the results of this process. The cleaned data is then lowpass filtered by an FIR filter
with passband-edge of 48 Hz and stopband-edge of 49.9 Hz to eliminate 50 Hz
powerline contamination, and the lowpass filtered data is downsampled by a factor
of 10 to a sampling frequency of 100 Hz. The filtering and downsampling limits the
affect of filtering to very edges of the Nyquist band. The stimulated portion of the
downsampled data are further segmented into 30 epochs of data y(j)

n , each of which
contains 100 samples. The start of each epoch is from 12 samples (0.12 s) before the
occurrence of a stimulus and the end is 87 samples (0.87 s) post-stimulus. Similarly,
the raw trigger signal is lowpass filtered, downsampled by 10, and partitioned into
100-sample epochs x(j)n .

In principle, filtering the signal may have an impact on model estimation and
causality inference [38]. We minimize the potential impact of filtering by specifying
the stop-band edge of the lowpass filter close to the Nyquist frequency.

Identification of outlying epochs

An automated procedure is employed to exclude epochs that markedly deviate from
the majority of epochs due to nonstationary brain activity or other factors. Let y(j)

n =

[y
(j)
1,n, y(j)2,n, · · · , y(j)d,n]

T represent the d channels of recordings at time n = 1, 2, · · · ,Nj
from epochs j = 1, 2, · · · , J. For epoch m, we compute the time-varying mean
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Figure 2.2: Tukey-windowed median filtering for eliminating volume conduction
artifacts. The upper trace depicts an example of raw data (blue solid line) and the
weighted cosine-tapered median filter output (red dashed line). The lower trace
depicts the weighting applied to the raw data (blue solid line) and the median
filtered data (red solid line) to eliminate the volume conduction artifact.

µ−m
y (n) and time-varying covariance matrix Σ−m

y (n) from all other epochs. That is,

µ−m
y (n) =

1
J− 1

J∑
j=1,j6=m

y(j)
n (2.1)

Σ−m
y (n) =

1
J− 2

J∑
j=1,j6=m

(
y(j)
n − µ−m

y (n)
)(

y(j)
n − µ−m

y (n)
)T

, (2.2)

for n = 1, · · · , 100. Herem = 1 to J and J is 30 for all data sets considered. Then the
squared Mahalanobis distance [39] between the epoch m and the other epochs is
computed as

D2(m) =

100∑
n=1

(
y(m)
n − µ−m

y (n)
)T (

Σ−m
y (n)

)−1 (
y(m)
n − µ−m

y (n)
)

. (2.3)

Epochs with D2(m) exceeding

100 · d+ 60
√

2 · 100 · d (2.4)
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Table 2.1: Number of non-outlying epochs used in analysis

Dataset Wakefulness epochs Sleep epochs
Subject A, 1 mA 29 25
Subject A, 5 mA 28 22

Subject B, L1 30 24
Subject B, L2 30 29

Subject C 30 29

are declared as outliers and removed from subsequent analysis. Intuitively, if the
data is Gaussian, then D2(m) is Chi-squared distributed with 100 · d degrees of
freedom. This implies that the threshold rules out an epochm if D2(m) exceeds its
mean plus 60 standard deviations. Thus this threshold only excludes epochs that
have a large deviation from the temporal average of the other epochs. The number
of epochs retained for analysis are given in Table 2.1.

2.3 Methods

MVARX model

The MVARX model of order (p, `) describes the data as follows [25]:

y(j)
n =

p∑
i=1

Aiy(j)
n−i +

∑̀
i=0

bix(j)n−i + w(j)
n , (2.5)

where x(j)n denotes the input at timen and epoch j. The d×dmatrices Ai = {am,n(i)}

contain autoregressive coefficients describing the influence of channel n on channel
m at lag i, and the d × 1 vectors bi = {bm(i)} contain filter coefficients from the
stimulus to channelm at lag i. The vectors w(j)

n are d× 1 zero-mean noise vectors
with covariance matrixQ and are assumed to satisfy E

{
w(i)
n (w(j)

s )T
}
= 0, for either

i 6= j or n 6= s. The model assumes that the data is stationary over time and epochs.
We further assume that the epochs are of varying lengths Nj and are possibly
disconnected in time to accommodate rejection of outlying epochs. Fig. 2.3 depicts
a schematic diagram of an example MVARX model. The diagram assumes there are
three recording electrodes corresponding to the recordings y1,n,y2,n, and y3,n (the
epoch index j is omitted in the figure for simplicity). The intracranial EEG signals
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recorded at the electrodes contain contributions due to the current stimulus response
and background brain activity. The exogenous input xn represents the current
stimulation. If B = [b0, · · · , b`] is a d× (`+1) matrix of exogenous input coefficients,
then the i-th row of B, [B]i,:, is the impulse response of the filter representing
the unknown transmission characteristics between the current stimulus and the
i-th recording channel. The autoregressive coefficients A = [A1, · · · , Ap] indicate
how past values of the recorded signals affect present values. The autoregressive
order p determines the time extent of the past that affect the present values and
may be regarded as the memory of the system. The signals w1,n, w2,n, and w3,n

can be interpreted as modeling errors or alternatively as a process that generates
spontaneous activity.

Electrodes can be used either as stimulating or recording electrodes but cannot be
used simultaneously for recording and stimulation. Moreover, the electrodes closest
to the stimulation site are affected by huge electrical artifacts and they cannot be used
because of consequent low SNR. Hence the recorded data y(j)

n contains recordings
of the effect of the stimulation at distant sites, not the stimulation itself. Stimulation
depolarizes the membranes of neurons passing through the neighborhood of the
stimulating electrode, possibly creating action potentials in neurons that synapse
near the stimulation site and at distant locations [26], a phenomenon termed fibers
of passage. Thus, stimulation generates an “input” that is conveyed to potentially
all recording sites in a manner that depends on the axonal topology in the vicinity
of the stimulation site. This topology and consequent stimulation effects are usually
unknown and described in our MVARX model by the exogenous input filters B. In
our model we assume the exogenous input is given by the trigger signal associated
with delivery of a current pulse, so B captures both the shape of the delivered
stimulus and the unknown direct propagation of the input to each recording site.

Denote y(j)
n,s and y(j)

n,e as the spontaneous activity and stimulus response to the
exogenous input, respectively, at time n from epoch j. Equation (2.5) can be alterna-



13

tively expressed as

y(j)
n = y(j)

n,s + y(j)
n,e (2.6)

y(j)
n,s =

p∑
i=1

Aiy(j)
n−i,s + w(j)

n (2.7)

y(j)
n,e =

p∑
i=1

Aiy(j)
n−i,e +

∑̀
i=0

bix
(j)
n−i. (2.8)

Note that in practice y(j)
n,s and y(j)

n,e are not directly observed and cannot be separated
from y(j)

n without knowledge of the MVARX model parameters. The stimulus re-
sponse component y(j)

n,e is a deterministic term that depends entirely on the stimulus
and the model. Given the model parametersΘ = [A, B], we can generate y(j)

n,e by
applying the stimulus sequence x(j)

n to (2.8) with zero initial conditions. Recall that
w(j)
n is assumed to be zero mean, so y(j)

n,s is a zero mean random process reflecting
the spontaneous component of the recordings. It is common in MVAR modeling to
subtract the mean prior to estimating MVAR model parameters [8]. This corresponds
to removing the stimulus response y(j)

n,e and is unnecessary with the MVARX model.
We shall assume that the stimulus is repeated multiple times such that averaging
y(j)
n,e with respect to the stimulus onset times produces the evoked response of the

system. This is not required by the model in (2.5) but is consistent with conventional
electrophysiology practice.

The autoregressive parameters A model the inherent neural connectivity between
sites - how activity at one site propagates to another site. This is evident in (2.5-
2.8) by the fact that the Ai are applied to y(j)

n−i. If the spontaneous activity y(j)
n,s is

very weak relative to y(j)
n,e then the response is described entirely by (2.8) and the

measured data y(j)
n ≈ y(j)

n,e. In this case there is a potential modeling ambiguity as
there are many different combinations of Ai and bi that could be used to describe
y(j)
n,e over a finite duration. For example, y(j)

n,e can be described on 1 6 n 6 `+ 1 by
setting Ai = 0 and only using bi. We control potential ambiguities associated with
relatively weak spontaneous activity by limiting ` to a value commensurate with the
expected duration of stimulus propagation through fibers of passage. This ensures
that B is not able to capture long duration interactions associated with feed forward
and feedback connectivity between sites. Based on previous experimental evidence
[40], we set ` = 10 to accommodate a 100 ms duration of propagation through fibers



14

y1,n
a1,2

a2,1

a3,2

a2,3

a1,3 a3,1y2,n

y3,n

a1,1

a3,3

w2,n

a2,2

w1,n

w3,n

[B]1,:
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Figure 2.3: Schematic diagram of the MVARX model. yi,n denotes the recorded
signals at the electrodes while xn represents current stimulation and wi,n is model
error, or equivalently, a random input that generates spontaneous activity. ai,j
captures the a priori unknown connectivity between recording sites while [B]i,:
represents the a priori unknown transmission characteristics between the stimulus
and recording sites.

of passage. We will discuss this choice more thoroughly in Section 2.6.

Estimation of MVARX model parameters

Suppose that we have the recordings and inputs {(y(j)
n , x(j)n ) : j = 1, 2, · · · , J,n =

1, 2, · · ·Nj} for J epochs of Nj samples each. Denote n0 = max(p, `), and suppose
that Nj > n0 + 1, for all j. Using the first n0 samples as the initial values, the model
in (2.5) can be rewritten in a simplified form:

y(j)
n =Θz(j)

n−1 + w(j)
n , (2.9)

for j = 1, · · · , J, n = n0 +1, · · · ,Nj, where the d× (dp+ `+1) matrixΘ = [A, B] and
the vector of dimension dp+ `+ 1, z(j)

n−1 = [(y(j)
n−1)

T , (y(j)
n−2)

T , · · · , (y(j)
n−p)

T , x(j)n , x(j)n−1,
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· · · , x(j)n−`]T . The vectors y(j)
n , w(j)

n , and z(j)
n−1 can be further concatenated as columns

of the matrices Y j,Zj, andWj to write:

Y j =ΘZj +Wj (2.10)

where Y j = [y(j)
n0+1, · · · , y(j)

Nj
],Zj = [z(j)

n0 , · · · , z(j)
Nj−1], and Wj = [w(j)

n0+1, · · · , w(j)
Nj
].

This expression takes the form of a linear regression model, and we can obtain an
ordinary least square (OLS) estimate of (Θ,Q) as ([25], chap. 10.3):

Θ̂ =
( J∑
j=1

Y jZ
T
j

)( J∑
j=1

ZjZ
T
j

)−1, Q̂ =
1
Nt

J∑
j=1

(
Y j − Θ̂Zj

)(
Y j − Θ̂Zj

)T , (2.11)

whereNt =
∑J
j=1Nj−n0J. If w(j)

n is Gaussian, then the OLS estimate (Θ̂, Q̂) is also
the maximum-likelihood estimate of (Θ,Q) [25].

Model Selection with cross-validation

In practice the order p could be chosen using numerous different model selection cri-
teria, including Akaike information criterion and the Bayesian information criterion
[25, 41]. Here we use cross-validation (CV) to determine p in a data-driven fashion
(see [42] for another example of using CV to select model parameters with neuro-
physiological data). The data y(j)

n and input x(j)n are partitioned into training and
test sets. The goal is to choose the value p that produces the best prediction of test
data when the modelΘ = [A,B] is estimated from the training data. We consider
two components in assessing model predictive capability. The first is the one-step
prediction error, a measure of the model’s ability to track the sample-to-sample and
epoch-to-epoch fluctuations in the data. The second is the error between the average
evoked response predicted by the model and the measured average response. This
measures the quality of the model’s response to the stimulus.

Partition the epochs of available data into training sets Rm and test sets Sm and
assume there are m = 1, 2, · · · ,M such partitions. Assume the sets Sm are non-
overlapping and are of approximately the same size. LetΘm be the model estimated
from Rm as described in the preceding subsection. The one-step prediction error
at time n, e(j)n (Θm) is the difference between the recording y(j)

n and the one-step
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prediction made byΘm using the n0 samples prior to time n, that is, z(j)n−1:

e(j)n (Θm) = y(j)
n − ŷ(j)

n (Θm) (2.12)

where the one-step prediction ŷ(j)
n (Θm) =Θmz

(j)
n−1. Similarly we define the average

response error as
εn(Θm) = yn(Sm) − ŷn(Θm,Sm) (2.13)

where the average evoked response yn(Sm) = 1/|Sm| ·
∑
j∈Sm y(j)

n and the av-
erage model response ŷn(Θm,Sm) over epochs in Sm, ŷn(Θm,Sm) = 1/|Sm| ·∑
j∈Sm y(j)

n,e(Θm). Here y(j)
n,e(Θm) is generated using Θm as described following

(2.8). We define a CV score as a weighted combination of the one-step prediction
and average response errors averaged over all training/test data partitions

CV(p) =
1
M

M∑
m=1

[
CVe(p,m)

we
+

CVε(p,m)

wε

]
(2.14)

where CVe(p,m) is the mean square one-step prediction error of a p-th order model
Θm(p) in predicting data in Sm:

CVe(p,m) =
1

|Sm|

∑
j∈Sm

1
Nj − n0

Nj∑
n=n0+1

||e(j)n (Θm(p))||
2
2 (2.15)

and CVε(p,m) is the mean square value of the average response error on Sm:

CVε(p,m) =
1
N

N∑
n=1

||εn(Θm(p))||
2
2. (2.16)

Here N is the assumed duration of the average response. The weights we and wε
vary the emphasis between the one-step prediction error and average response
error. In the analysis below, we set we and wε to the medians of CVe(p,m) and
CVε(p,m), respectively, for m = 1, · · · ,M and all p considered. This approach
places approximately equal emphasis on the two errors. The model order p is
chosen as the p that minimizes CV(p) over the range of p evaluated.

Several practical issues require attention for computing the average response
error. First, use of an average evoked response assumes the stimulus is nominally
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identical for each epoch. Second, care must be taken in computing the average
response of the model Θ to the stimulus x(j)n over epochs in Sm if the effects of
preceding stimuli extend into Sm. In such a case the brain is not “at rest” upon the
arrival of the new stimulus in Sm, but is still responding to the preceding stimulus.
This situation occurs when the response time of the cortex is longer than the inter-
stimulus interval. We mimic this aspect of the measured data when computing the
average model response by presenting the entire train of stimuli to the model and
averaging over the responses corresponding to epochs in Sm.

Model quality assessment

A key assumption for the consistency of the OLS estimates is that the residuals
w(j)
n be serially uncorrelated, that is, temporally white. Serial correlation in w(j)

n

may be a sign of mis-specifying the model or incorrect selection of order (p, `)
[43, 44]. We use a consistent test developed in [44] to validate our models. Denote
Γw(r) = E{w(j)

n (w(j)
n−r)

T } the covariance at lag r, the hypotheses of interest are:

H0 : Γw(r) = 0, for all r 6= 0 vs.

H1 : Γw(r) 6= 0, for some r 6= 0. (2.17)

Let the residual at time n in epoch j be ŵ(j)
n = y(j)

n − Θ̂z(j)
n−1. Let q(·) be a window

function of bounded support L, that is, q(r) > 0, for |r| 6 L and q(r) = 0 for |r| > L.
Suppose that the last epoch is of length longer than (J− 1)L, that is, NJ > (J− 1)L.
The test statistic derived in [44] for testing H0 vs H1 is

TNc =
Nc
∑L
r=1 q

2(r)tr[CTŵ(r)C
−1
ŵ (0)Cŵ(r)C

−1
ŵ (0)] − d2MNc(q)

[2d2VNc(q)]
1/2 (2.18)

where Nc =
∑J
j=1Nj − (J− 1)L and

Cŵ(r) =
1
Nc

J−1∑
j=1

Nj∑
n=r+1

ŵ(j)
n (ŵ(j)

n+r)
T +

NJ∑
n=r+1+(J−1)(L−r)

ŵ(J)
n (ŵ(J)

n+r)
T

 , (2.19)
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for r = 0, 1, · · · ,L, are the estimated residual covariance matrices. The functionals
MNc(q) and VNc(q) of q(·) and Nc are defined as [44]:

MNc(q) =

L−1∑
i=1

(
1 −

i

Nc

)
q2(i) (2.20)

VNc(q) =

L−2∑
i=1

(
1 −

i

Nc

)(
1 −

(i+ 1)
Nc

)
q4(i). (2.21)

We use the Bartlett window defined as q(j) = 1 − |j/L|, j 6 L and q(j) = 0, j > L
with a window width L = d3N0.3

c e as suggested in [44]. For example, in our datasets
the longest possible single epoch would haveNc = 3000 samples, which leads to the
maximum value L = 34. Thus the test statistic (2.18) is based on estimated residual
covariance matrices at lags less than or equal to 34. Under the assumption that
both y(j)

n and x(j)n are stationary, the test statistic is one-sided and asymptotically
standard normally distributed (see [44] Theorem 1). It declares that the residuals
are serially correlated if TN > z1−α and are white otherwise, where z1−α is the value
of the inverse cumulative distribution function of the standard normal distribution
at 1 − α and α is the significance level of the test.

2.4 Results

Model parameters

We have varying definitions and lengths of epochs throughout our data processing
procedures. For detection of outlying epochs we choose all epochs to be of length
Nj = 100 samples based on the time between subsequent current stimuli. In model
estimation and assessment of residual whiteness, the epochs are defined as the
maximum contiguous segments between the time segments removed by the outlier
detection process. This minimizes the impact of the initial conditions z(j)

n0 required
at the start of each epoch. Hence, Nj varies across epochs and conditions. In CV,
the epoch lengths are set to be equal with Nj = 100. This, along with choosing the
test sets Sm to contain approximately the same number of epochs, makes the test
sets span roughly the same amount of time.

As shown in Table 2.1, the number of outlying epochs is generally larger in sleep



19

Table 2.2: Model order parameters for wakefulness and sleep data sets.

Wakefulness Sleep
Dataset CV Part. MVARX p ARX p CV Part. MVARX p ARX p

Subj A, 1 mA 7 20 30 8 20 30
Subj A, 5 mA 7 26 30 11 26 26

Subj B, L1 10 30 28 8 30 24
Subj B, L2 10 18 22 7 22 30

Subj C 10 16 30 7 12 30

than in wakefulness, most likely due to the presence of slow waves during sleep.
The number of partitions of the available epochs used in the CV procedure for
determining model order p and the corresponding model order is shown in Table
2.2. We did not consider model orders higher than p = 30. We also evaluated an
unconnected model consisting of d univariate ARX models to assess the importance
of the coupling or connectivity between channels. The univariate models were
estimated by applying the procedure described above to each channel. With the
exception of subject B, stimulus location 1 (L1), the CV procedure picks a higher
model order for the unconnected model and in many cases chooses the maximum
order considered.

The whiteness test described in Section 2.3 was applied to the residuals from all
models using a significance level α = 0.1. Note that since exceeding the threshold
implies the residuals are not white, use of a relatively large value for α leads to a
more stringent test, that is, makes it easier to declare the residuals are not white. The
MVARX models passed the whiteness test for every data set, while the unconnected
models failed the test for every data set.

Evoked response model performance

In Figs. 2.4–2.6 we compare the average evoked response and average model re-
sponse for a subset of subjects and conditions. The average responses are generated
following the CV approach described in Section 2.3. Figs. 2.4 (A) and (B) show the
average CV evoked responses yn(S) =M−1∑M

m=1 yn(Sm) and average CV model
responses ŷn(Θ,S) =M−1∑M

m=1 ŷn(Θm,Sm) in channels 1, 4, 7, and 11 of subject
A in wakefulness for 1 mA and 5 mA stimulation, respectively. Here 0 s on the
time axis corresponds to the stimulus onset. The averaging is first done within
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the testing block for each CV partition, then a second phase of averaging is done
over the average responses of the test blocks for all CV partitions. The average CV
model response of the MVARX model (blue dashed line) follows the dynamics of
the average CV evoked response (green solid line) in each channel, for both stimulus
amplitudes and a range of channel response levels. In contrast, the average CV
model response of the unconnected model (red dashed dot line) only tracks the
average CV evoked response in channels with the largest amplitudes, even though
the univariate model is fit independently to each channel. In the figures, error bars
indicating one standard error are displayed every five samples. Figs. 2.4 (C)–(F)
summarize the model performance on a channel-by-channel basis. Let yi,n(S) and
ŷi,n(Θ,S) be the average CV evoked response and average CV model response at
time n in the i-th channel. Figs. 2.4 (C) and (E) depict the normalized mean-squared
difference (NMSD) between the average CV evoked and average CV model response
for 1 mA and 5 mA stimulation, respectively, where the NMSD in channel i is
defined as

NMSD(i) =

∑N
n=1(yi,n(S) − ŷi,n(Θ,S))2∑N

n=1 y
2
i,n(S)

. (2.22)

Figs. 2.4 (D) and (F) depict the relative root mean-squared energy (RRMS) for 1
mA and 5 mA stimulations, respectively, for each channel. The RRMS for channel i
is defined as the ratio of the root mean-squared energy in channel i to that of the
channel with the largest root mean-squared energy. More precisely,

RRMS(i) =

√∑N
n=1 y

2
i,n(S)

max
i ′=1,··· ,d

√∑N
n=1 y

2
i ′,n(S)

. (2.23)

The unconnected model only gives comparable NMSD to that of full model in
channel 11, which has the largest energy. The difference between the MVARX model
and the unconnected model in terms of per-channel NMSD is less significant for
the 1 mA stimulation, than for the 5 mA stimulation.

Figs. 2.5 (A) and (B) depict the average CV evoked and average CV model
responses for subject A during NREM sleep with current stimulation of 1 mA and
5 mA, respectively. The four traces, from top to bottom, show the responses in
channels 1, 7, 4, and 11, respectively. Panels (C) and (E) depict the NMSD, while (D)
and (E) depict RRMS for 1 mA and 5 mA stimulation, respectively as a function of
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channel.
The average CV evoked responses and the average CV model responses in wake-

fulness for subject B, with two different stimulating sites L1 and L2, and both with
current stimulus of 5 mA, are shown in panels (A) and (B) of Fig. 2.6. The four traces,
from top to bottom, depict the responses in channels 1, 3, 6, and 8, respectively. The
difference between the two stimulating sites lies mainly in channels with smaller
energy, i.e., channels 1, 3, and 6. Panels (C) and (E) depict NMSD in each channel
when the stimulating channel is L1 and L2, respectively. Panels (D) and (F) show
the RRMS in each channel.

Define the normalized mean-squared response difference (NMRD) over all chan-
nels as the ratio of the mean-squared response difference to the mean-squared
average CV evoked response. That is,

NMRD =

∑N
n=1 ||yn(S) − ŷn(Θ,S)||22∑N

n=1 ||yn(S)||22
. (2.24)

Fig. 2.7 depicts NMRD of the MVARX models for all five data sets considered.
Generally the MVARX models captures the dynamics in average evoked response
reasonably well with NMRD no larger than 0.25.

One-step prediction model performance

The ability of the model to predict the present recorded value of the data given past
recordings reflects a different attribute than the modeling of the average evoked
response. One-step prediction performance indicates the model’s ability to follow
spontaneous fluctuations in the data. Fig. 2.8 compares the recording y(j)

n and one-
step prediction ŷ(j)

n (Θ) of the signals recorded from subject B for 1.5 s of prestimulus
data followed by two and a half epochs of evoked data, when the stimulating site
is L2. The models used to perform prediction in Fig. 2.8 are trained from data
excluding the data plotted. Panels (A) and (B) shows the signals in wakefulness and
sleep, respectively. Similar results are obtained for the other epochs, subjects, and
conditions. The traces show the signals in channels 1, 3, 6, and 8 respectively. These
results indicate that the MVARX model performs accurate one-step prediction in
wakefulness and sleep and for both prestimulus and evoked data segments.

Define the normalized mean-squared one-step prediction error (NMSE) as the
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Figure 2.4: Comparison between average CV evoked and average CV model re-
sponses of subject A to two different stimulation strengths in wakefulness. In panels
(A) and (B) the black dotted lines indicate the origin while the error bars denote
the standard error of the mean. (A) Average CV evoked and average CV model
responses of channels 1, 7, 4, and 11 with 1 mA current stimulation. (B) Average
CV evoked and average CV model responses of channels 1, 7, 4, and 11 with 5 mA
current stimulation. (C) Normalized mean-squared difference in each channel for
1 mA stimulation. (D) Relative root mean-squared energy in each channel for 1
mA stimulation. (E) Normalized mean-squared difference in each channel for 5
mA stimulation. (F) Relative root mean-squared energy in each channel for 5 mA
stimulation.

ratio of the mean-squared prediction error over the samples to the mean squared
energy. That is,

NMSE =

1
J(N−n0)

∑J
j=1
∑N
n=n0+1 ||y

(j)
n − ŷ(j)

n (Θ)||22
1
JN

∑J
j=1
∑N
n=1 ||y

(j)
n ||22

. (2.25)

As a reference, the NMSE of the model Θ = 0 is approximately 1. The bar di-
agrams in Fig. 2.9 show the NMSE of the MVARX models for all five datasets
considered. Overall, our models give NMSE less than 0.06 for one-step prediction
of the recordings and less than 0.02 in seven of the ten data sets studied.
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Figure 2.5: Comparison between average CV evoked and average CV model re-
sponses of subject A to two different stimulation strengths in sleep. In panels (A)
and (B) the black dotted lines indicate the origin while the error bars denote the
standard error of the mean. (A) Average CV evoked and average CV model re-
sponses of channels 1, 7, 4, and 11 with 1 mA current stimulation. (B) Average
CV evoked and average CV model responses of channels 1, 7, 4, and 11 with 5 mA
current stimulation. (C) Normalized mean-squared difference in each channel for
1 mA stimulation. (D) Relative root mean-squared energy in each channel for 1
mA stimulation. (E) Normalized mean-squared difference in each channel for 5
mA stimulation. (F) Relative root mean-squared energy in each channel for 5 mA
stimulation.

Bmatrices

Fig. 2.10 depicts the exogenous input filters B matrices estimated for all 10 datasets
as color plots. The i-th row of each matrix represents the FIR filter coefficients
representing the path from the stimulus site to the i-th channel. Hence, rows with
greater extremes of color have the strongest paths from the stimulus site.
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Figure 2.6: Comparison between average CV evoked responses and average CV
model responses of subject B with two different stimulating locations in wakefulness.
In panels (A) and (B) the black dotted lines indicate the origin while the error bars
denote the standard error of the mean. (A) Average CV evoked and average CV
model responses of channels 1, 3, 6, and 8 when the stimulating channel is L1. (B)
Average CV evoked and average average CV model responses of channels 1, 3, 6,
and 8 when the stimulating channel is L2. (C) Normalized mean-squared difference
in each channel when the stimulating channel is L1. (D) Relative root mean-squared
energy in each channel when the stimulating channel is L2. (E) Normalized mean-
squared difference in each channel when the stimulating channel is L1. (F) Relative
root mean-squared energy in each channel with the stimulating channel is L2.

2.5 Application to Consciousness Assessment

Numerous network characteristics can be obtained from an MVARX model. For
example, graphs with partially directed coherence or conditional Granger causality
as edges can be obtained by computing partially directed coherence or conditional
Granger causality from the MVARX parameters. In this section we demonstrate
the application of the model to assessment of consciousness by measuring the inte-
grated information of the estimated MVARX model. The integrated information
theory [27, 45, 46] starts from two self-evident axioms about consciousness: every
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Figure 2.7: Normalized mean-squared response difference (see (2.24)) in each
dataset.

experience is one out of many and generates information because it differs in its
own way from the large repertoire of alternative experiences; and every experience
is one, that is, integrated, because it cannot be decomposed into independent parts.
The theory formalizes these notions by postulating that a physical system generates
information by reducing uncertainty about which previous states could have caused
its present state, and that this information is integrated to the extent that it cannot
be partitioned into the information generated by parts of the system taken indepen-
dently. The theory predicts that integrated information in wakefulness is higher than
that in sleep. Integrated information can be measured rigorously in models such
as the MVARX model presented here. The integration of information is captured
by A andQ in the MVARX model — B only indicates how stimulation enters the
network. In this section we contrast integrated information in wakefulness and sleep
using a variation on the procedure introduced in [21] for obtaining a bipartition
approximation to integrated information in MVAR systems. Our variation is based
on use of “effective information” (Kullback-Leibler divergence) [47] in place of the
difference in mutual information and ensures that integrated information is always
positive [48].

Suppose yn describes a stable MVAR(p) process:

yn =

p∑
i=1

Aiyn−i + wn, (2.26)



26

−1 0 1 2

1 mv

Time (s)
(A)

5 mv

−1 0 1 2

1 mv

Time (s)
(B)

5 mv

 

 

Measured signal

One−step prediction

Figure 2.8: Comparison between recorded signal and one-step prediction of subject
B when the stimulating site is L2. 1.5 s prestimulus is shown followed by two-and-
a-half epochs of evoked data. The black dotted lines in the figures indicate the
origin. The model is estimated from data beginning with the fourth epoch. (A)
Wake recorded and predicted signals in channels 1, 3, 6, and 8 ordered from top to
bottom. (B) Non-REM sleep recorded and predicted signals in channels 1, 3, 6, and
8 ordered from top to bottom.

where wn are i.i.d. zero-mean Gaussian noise vectors with covarianceQ. Then the
MVAR(p) process is wide sense stationary and yn ∼ N(0,Σ(y)) withΣ(y) = E{ynyTn}.
Given that the state at time n, yn = y, the conditional distribution of the state τ
samples prior to sample n, yn−τ, follows

yn−τ|(yn = y) ∼ N(Γτ(y)Σ(y)−1y,Σ(yn−τ|yn)) (2.27)
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Figure 2.9: Normalized mean-squared one-step prediction error (see (2.25)) in each
dataset.

where Γτ(y) = E{yn−τyTn} and

Σ(yn−τ|yn) = Σ(y) − Γτ(y)Σ(y)−1Γτ(y)T . (2.28)

Given A andQ, the matrices Σ(y) and Γτ(y) for τ = 1, · · · , ρ, with ρ > p − 1, are
computed as described in [21].

Let the set of the channels be S = {1, 2, · · · ,d}. A bipartiton B = {M1,M2}, di-
vides the channels into two mutually non-overlapping and non-empty sub-networks,
S =M1⋃M2. Denote two sub-systemsm1

n andm2
n within which are the measure-

ments in the channels corresponding to the elements in M1 and M2 at time n,
respectively. Given Σ(y) and Γτ(y), we have Σ(mi) = [Σ(y)]Mi,Mi and Γτ(mi) =

[Γτ(y)]Mi,Mi , for i = 1, 2. Hence, given the present state, the conditional distri-
bution of the subsystem i at τ samples into the past is given by mi

n−τ|(m
i
n =

mi) ∼ N(Γτ(m
i)Σ(mi)−1mi,Σ(mi

n−τ|m
i
n)), for i = 1, 2, where Σ(mi

n−τ|m
i
n) =

Σ(mi) − Γτ(m
i)Σ(mi)−1Γτ(m

i)T .
Define the effective information for the system y over a lag of τ samples under

partition B as (see [21] (0.32))

ϕ(y; τ,B) =
1
2

log2

(
det(Σ(m1

n−τ|m
1
n)) · det(Σ(m2

n−τ|m
2
n))

det(Σ(yn−τ|yn))

)
bits. (2.29)

The effective information is the Kullback-Leibler divergence between a system con-
sisting of two mutually independent sub-systemsm1

n andm2
n and the system yn.
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Figure 2.10: Exogenous input filters B for each channel as a function of time. The
identical colormap is used for each row. (A) Subject A Wake, 1 mA. (B) Subject A
Sleep, 1 mA. (C) Subject A Wake, 5 mA. (D) Subject A Sleep, 5 mA. (E) Subject B
Wake, Stimulation site L1. (F) Subject B Sleep, Stimulation site L1. (G) Subject B
Wake, Stimulation site L2. (H) Subject B Sleep, Stimulation site L2. (I) Subject C
Wake. (J) Subject C Sleep.

The integrated information measured at a time difference of τ is defined as

φ(y; τ) = ϕ(y; τ,BMIB) (2.30)

where the minimum information bipartion (MIB) is defined as

BMIB = arg min
B

(
ϕ(y; τ,B)

K2(B)

)
(2.31)

with
K2(B) = min(H(m1

n),H(m2
n)) (2.32)
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Table 2.3: p-values of the Wilcoxon rank sum test of whether integrated information
in wakefulness and sleep are different.

Subj A, 1 mA Subj A, 5 mA Subj B, L1 Subj B, L2 Subj C
p-value 3.18e-4 0.0012 2.06e-4 0.0068 0.0553

and the differential entropy ofmi
n, H(mi

n) is given by

H(mi
n) =

1
2

log2

(
(2πe)|Mi| det(Σ(mi))

)
. (2.33)

Figure 2.11 depicts the integrated information of subject A for stimulus of 5 mA,
as the time difference τ varies from 10 ms to 300 ms. The integrated information
in wakefulness is higher than that in sleep. In both wakefulness and sleep, the
integrated information increases until the time difference is approximately 100 ms
and then remains approximately constant. We further used the CV procedures
described in Section 2.3 to study the difference between integrated information in
wakefulness and sleep. Specifically, we estimated a model from the training set
of each CV partition and compute integrated information for each CV partition.
This provides M different estimates of integrated information for each data set,
where M is the number of CV partitions. We compare the maximum values of
the estimates of integrated information for each CV partition in wakefulness and
sleep using the Wilcoxon rank sum test, which tests the null (H0) hypothesis that
the measured maximum integrated information values in wakefulness and sleep
for all CV partitions are samples from continuous distributions with equal medians,
against H1 that they are not. The p-values of the rank sum test for each conditions
are shown in Table 2.3. With the exception of Subject C, all of the cases have p-values
below 0.05, and Subject C is only slightly above 0.05. Figure 2.12 depicts the average
maximum value of integrated information and average time delay τ at which the
maximum value is achieved, where the averaging is done across CV results, and
error bars indicates one standard error.
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Figure 2.11: Integrated information of subject A, when the stimulation current is of
5 mA.

2.6 Discussion

The results demonstrate the effectiveness of the MVARX model for intracerebral
electrical stimulation data. Excellent agreement between measured and modeled
evoked responses is found across channels, two stimulus amplitudes, vigilance
states, stimulus sites, and subjects (Figs. 2.4–2.7). One-step prediction is used to
show that the MVARX model also accurately captures the spontaneous fluctuations
in the measured signals (Figs. 2.8 and 2.9). We contrasted the MVARX models with
a series of univariate ARX models, one for each channel, to illustrate the importance
of accounting for the interaction between cortical signals (Figs. 2.4–2.6). In some
channels for some subjects/conditions the univariate ARX model describes the
evoked response as well as the MVARX model. However, in general modeling
interactions between cortical signals is necessary to capture the measured response.
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Figure 2.12: (A) Average maximum values of integrated information with error
bars indicating one standard error. (B) Average lag at which maximum integrated
information is achieved, with error bars indicating one standard error.

For example, in Fig. 2.4 (B) the univariate model fails to model the responses in
channels 1, 4, and 7 beyond 200 ms after the stimulation.

The MVARX model explicitly represents both evoked and spontaneous (or back-
ground) brain activity using a deterministic input term to capture the effect of stimuli
and a random input term to generate spontaneous activity. Stimuli generally give
rise to a non-zero mean component in the response that varies with time, i.e., is non-
stationary. Conventional approaches to MVAR modeling of cortical event-related
potentials (e.g.,[8]), subtract the ensemble mean of the data before processing to
avoid the negative effects of the nonstationary mean on the MVAR model. However,
subtraction of the ensemble mean significantly reduces the SNR of the data and
is not necessary if the exogenous input is properly accounted for in the modeling
procedure.

The effect of the stimulus on each recording channel is addressed by applying
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a separate filter in each channel to the stimulus signal. The filter coefficients are
estimated jointly with the autoregressive model parameters from the measured
evoked data. This approach accounts for the generally unknown and different char-
acteristics of the transmission paths from the stimulation to each measurement site.
The length of the filters (` samples in (2.5)) should be limited based on physiological
expectations for the stimulus paradigm. Indeed, the autoregressive coefficients Ai
and filters bi are estimated simultaneously and the evoked response (y(j)

n,e in (2.8))
is often much larger than the spontaneous component (y(j)

n,s in (2.7)). If ` is set equal
to the duration of one epoch of y(j)

n,e, then it is possible to perfectly model y(j)
n,e using

only the bi while setting the Ai = 0. We have shown that the MVARX models are
capable of characterizing yn,s by one-step prediction of data not used to estimate
the model (see Fig. 2.8). Moreover, the model describes the dynamics in yn,e, as
was shown in Figs 2.4 – 2.6.

In order to define a practical value for `we refer to previous electrophysiolog-
ical studies on intracerebral evoked potentials [40, 49, 50]. In these studies from
Matsumoto and colleagues the possible generator mechanisms of intracerebral po-
tentials evoked by direct electrical stimulation are thoroughly discussed. In all of
these studies it has been shown that the duration of the “purely evoked” response
expires within 100 ms. Based on these results and our 100 Hz sampling frequency
we set ` = 10. The 100 ms value is also consistent with our data. Indeed, the first
100 ms post-stimulus of the evoked waveforms exhibit quite different character
than later portions. Typically the initial 100 ms of the measured response contain
relatively sharp, high frequency waveforms, while later portions of the response
have a smoother, lower frequency behavior. This suggests two regimes in the mod-
eling process. The exogenous input filters account for the sharp initial response,
as evident by the filter impulse responses shown in Fig. 2.10. Channels having
relatively large impulse response tend to rapidly transition from negative to positive
maxima over one or two samples, consistent with the sharp features in the early
portions of the evoked response. These sharp inputs to the channels are smoothed
by the autoregressive component of the model to obtain the later portions of the
response. The filter responses depicted in Fig. 2.10 decay to relatively small values
by the 10-th lag (100 ms) and generally contain most of their energy in the first
through sixth lags, that is between 10 and 60 ms. This further supports the choice
of ` = 10.
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The energy transmission characteristics shown in Fig. 2.10 are consistent with
physiological expectations for modeling stimulation of fibers of passage. There
is general consistency between wakefulness and sleep in all subjects (Fig. 2.10,
left column vs. right column) even though the evoked responses differ markedly
(Fig. 2.4 vs. Fig. 2.5); channels with strong and weak responses are the same in
wakefulness and sleep, and the shape of the responses in each channel are generally
very similar. The subtle differences between wakefulness and sleep may be due to
changes in neural excitability. Comparing 1 mA and 5 mA stimulation in subject
A (Fig. 2.10 (A–B) and (C–D)) reveals that channel 11 has the strongest response
in both stimulation levels and the strength of the response increases roughly by
a factor of five, consistent with the factor of five change in the stimulation level.
This is because we used the trigger signal to represent the exogenous input without
adjusting its amplitude. However, the shape of the response in channel 11 differs
slightly, with the 5 mA case having reduced latency by approximately 10 ms and a
higher frequency response reflected by the sharper, shorter duration of the filter.
This suggests that the higher stimulus level is associated with a faster response. The
two stimulation sites L1 and L2 in subject B (Fig. 2.10 (E–F) and (G–H)) both involve
channels 8 and 4 as the strongest response, suggesting similar fibers of passage are
excited at the two sites. However, the overall gain differs by a factor of two and the
shape of the response in channel 8 and 4 differ, especially in wakefulness. Subject C
(Fig. 2.10 (I–J)) exhibits multiple channels with strong linkage to the stimulus site.

Our MVARX approach assumes the dynamic interactions between evoked and
spontaneous cortical signals follow the same model, that is, both evoked and spon-
taneous activity are described by one set of Ai. The excellent one-step prediction
performance in the pre-stimulus interval of Fig. 2.8 combined with the high quality
fitting of the evoked responses suggests this is a reasonable assumption, at least for
these particular data sets. This approach also assumes that the measured signal is
the sum of the evoked and spontaneous activity.

The windowed median filtering procedure successfully eliminated the volume
conduction artifact without changing the measured signal at and beyond 20 ms post-
stimulus. The outlier detection strategy only eliminates epochs that have significant
deviation from the average evoked response. Both of these strategies significantly
improve model fidelity to the measured data. Seven times as many outlier epochs
were identified in sleep than in wakefulness, likely due to the presence of occasional
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slow waves during an epoch. However, in seven of the 10 data sets we analyzed 28
or more of the 30 available epochs, which indicates our artifact detection procedure
is not overly restrictive. Subject A had the most outlier epochs and in the worst
case (5 mA, sleep) our procedure eliminated eight of the possible 30 epochs. The
CV strategy for choosing MVAR model order is effective, as demonstrated by the
fidelity of the model evoked responses (Figs. 2.4–2.7) and the ability of the models
to accurately perform one-step prediction on pre-stimulus data (Fig. 2.8). Outlier re-
jection helps the data meet the stationarity assumption of the MVARX model. While
it is unlikely that the data is truly stationary, the accuracy with which the model
describes the data and the whiteness of the residuals suggests that the stationarity
assumption is reasonable.

As a proof of concept application, we used the MVARX model to assess changes
in the level of information integration between wakefulness and deep sleep in hu-
man subjects. Using a simple, bipartition approximation we found that, as predicted
by theoretical considerations [27, 30], integrated information is higher in wakeful-
ness than sleep for each subject/condition, supporting the notion that integrated
information reflects the capacity for consciousness. We note that the integrated in-
formation results presented here only apply to the recordings analyzed. Analysis of
the dependence of integrated information on recording coverage is beyond the scope
of this paper. Our findings indicate that the human cerebral cortex is better suited
at information integration — being both functionally specialized and functionally
integrated — when awake and conscious. In contrast, when consciousness fades
in deep sleep, the parameters of the system change in such a way that information
integration is diminished, in line with theoretical predictions [27] and consistent
with qualitative evidence obtained from experiments employing transcranial mag-
netic stimulation and high density EEG [51]. We also found that the lag at which the
maximum level of information integration is attained is consistently longer in sleep
than wakefulness. Maximum information integration in wakefulness occurred at
lags of 30 to 110 ms, while those in sleep were from 70 to 140 ms longer, consistent
with the increased low frequency activity of sleep.
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3 sparse multivariate autoregressive models with
exogenous inputs for modeling intracerebral responses
to direct electrical stimulation of the human brain

3.1 Introduction

The remarkable power of the human brain is widely believed to be due to a delicate
balance between functional segregation and integration of cortical systems, that
is, network properties. Multivariable autoregressive (MVAR) models have been
widely applied to magneto-/electroencephalography (M/EEG) to study effective
connectivity [52] between cortical regions from scalp EEG [53] or between recording
sites from intracranial data [54] 1. In this paper we employ MVAR-based Granger
causality [55] as metric for assessing effective connectivity associated with direct
electrical stimulation of the cortex. An overview of other models and metrics for
accessing effective connectivity is given in [52].

Evidence that brain networks have the small world property and hub topologies
[56] suggests that brain networks are likely not fully connected and motivates the
sparse MVAR time series model in [57]. In the model, we partition the autoregres-
sive coefficients into groups with each group containing parameters associated
with the individual connections between nodes. An `1 penalty on the groups is
added to the squared error to encourage MVAR models with a sparse number of
connections between nodes. The `1 regularization not only provides information
about the structure of the brain network model but also facilitates estimation of
large-scale network models from limited data. The group penalty on the MVAR
coefficients leads to a group lasso [58] procedure for identifying the MVAR model.
The self-connected group lasso (SCGL) [57] is the focus of this paper. It assumes
each node is driven by its own past and does not penalize self connections.

During pre-surgical evaluation of drug-resistant epileptic patients, direct electri-
cal stimulation of the brain is systematically performed for diagnostic purposes to
identify the epileptogenic zone [59]. Electrical stimulation generates a time-varying

1©2013 IEEE. Reprinted, with permission, from [J.-Y. Chang, A. Pigorini, F. Seregni, M. Massimini,
L. Nobili and B. Van Veen, “Sparse multivariate autoregressive models with exogenous inputs for
modeling intracerebral responses to direct electrical stimulation of the human brain,” 2013 Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA, 2013, pp. 803-807.].



36

evoked response at the recording sites. This violates the stationary MVAR model
assumption that the process is of constant mean. In this paper we model the re-
sponse of the brain to electrical stimulation using stationary MVAR models with an
exogenous input (MVARX) derived from the stimulus characteristics. The advantage
of the MVARX model is that it does not require subtraction of the mean (as in [60])
and consequent reduction in signal-to-noise ratio (SNR) or the complication of time-
varying models for describing the evoked response [9]. The MVARX model captures
both the mean evoked response and the background activity present during the
recordings.

In this paper we adapt the SCGL to the the MVARX model by adding groups
of coefficients associated with the exogenous stimulation to the set of penalized
groups. We use this modified form of SCGL to find a sparse MVARX model for 31
channels of intracranial measurements from a human subject. The sparse model is
then compared to a full MVARX model in terms of the model predicted responses
and one-step prediction errors. We compare sparse MVARX models for the subject
in either wakefulness or non-rapid eye movement (NREM) sleep using two different
stimulation sites. Common and differing characteristics of the networks are then
discussed in terms of the set of active connections and Granger causality.

This paper is organized as follows. Section 2 describes the sparse MVARX model
and the SCGL problem. Section 3 describes the data. Section 4 presents results for
sparse network modelling under different conditions. This paper then concludes
with a discussion of the results in Section 5. For notation, boldface lower and up-
per case symbols represent vectors and matrices, respectively, while superscript T
denotes matrix transpose and superscript −1 denotes matrix inverse.

3.2 Methods

Suppose that the considered process is stationary and can be described by the
MVARX model of order (p, `) [55]:

y(j)
t = v+

p∑
i=1

Aiy(j)
t−i +

∑̀
i=0

bix(j)t−i + w(j)
t (3.1)
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for time t = t0 + 1, · · · , Ts, and epoch j = 1, · · · , J, where t0 = max(p, `), y(j)
t ∈ RK

is the recorded data from K different sites at time t = 1, · · · , Ts and epoch j, x(j)t
is the input at time t and epoch j, v ∈ RK is a constant and w(j)

t ∈ RK is the
unmodeled residual. We assume that in each epoch, samples y(j)

1 , y(j)
2 , · · · , y(j)

t0
and

inputs x(j)1 , x(j)2 , · · · , x(j)t0
are also available. The residuals at different time samples are

assumed to be uncorrelated and identically distributed with mean 0 and covariance
matrixQ. The matrices Ai = [am,n(i)]

K,K
m=1,n=1 contain autoregressive coefficients

describing the influence of channel n on channel m at lag i, and the vectors bi =
[bm(i)]

K
m=1 contain filter coefficients from the exogenous stimulus to channel m

at lag i. Let z(j)
t−1 = [1, (y(j)

t−1)
T , (y(j)

t−2)
T , · · · , (y(j)

t−p)
T , x(j)t , x(j)t−1, · · · , x(j)t−`]T , A = [A1,

· · · , Ap], B = [b0, · · · , b`], Y j = [y(j)
t0+1, · · · , y(j)

Ts
], Zj = [z(j)

t0
, · · · , z(j)

t0+Ts−1] , Wj

= [w(j)
t0+1, · · · , w(j)

Ts
] and Θ = [v, A, B]. The MVARX model then can be recast as

Y =ΘZ+W with Y = [Y1, · · · ,YJ], Z = [Z1, · · · ,ZJ], andW = [W1, · · · ,WJ].
The least square estimate of them-th row of the full MVARX model can obtained

by solving: Θ̂T

m,: = arg mincm
1
T
||YTm,:−Z

Tcm||
2
2 where Ym,: is them-th row of Y and

T =
∑J
j=1 Ts − Jt0. Then Θ̂ = [Θ̂

T

1,:, · · · , Θ̂T

K,:]
T and Q̂ = (Y − Θ̂)(Y − Θ̂)T/T . The

SCGL procedure adds an `1/`2 penalty to the least squares problem and takes the
form

(Θ̂
SCGL
m,: (λ))T = arg min

cm

1
T
||YTm,: − Z

Tcm||
2
2

+λ(

K∑
n=1,n 6=m

√
p||am,n||Dn +

√
`+ 1||bTm,:||Dx) (3.2)

where am,n = [am,n(1), · · · ,am,n(p)]
T is the group of autoregressive coefficients

connecting channel n to channelm, bm,: is them-th row of B and ||u||D =
√
uTDu.

Note that here am,n and bm,: are not separate variables, but are subsets of cm. The
notation in (3.2) is intended to explicitly indicate the nature of the penalty on the
model parameters. We haveDn = σ2

nIp where σ2
n = ||Yn,:||

2
2/T is the measurement

power in recording n andDx = σ2
xI`+1 with σ2

x =
∑J
j=1
∑Ts
t=t0+1(x

(j)
t )2/T being the

stimulation power. In the group lasso literature, the signals are often assumed to
be normalized to have equal power before solving the group lasso problem. The
parameters solved with the group lasso procedure are then rescaled to account for
the normalization (see [57] and references therein). This procedure is equivalent to
substituting the norm ||u||D for the `2-norm in the classical group lasso objective, as
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is done here in (3.2) [61]. The terms √p and
√
`+ 1 are included to adjust for the

group sizes [61]. The penalty parameter λ determines the level of sparsity of the
estimated model – as λ increases, more groups of coefficients are set to zero. The
SCGL problem can be solved with group lasso algorithms. Discussion of appropri-
ate algorithms can be found in [61] and references in [57].

It is well-known that the group lasso penalty shrinks the nonzero coefficients
toward zero. This could lead to biased inference of network properties so we intro-
duce a debiasing step in our analysis. Once the active set is identified by the SCGL
estimate, we solve a least squares problem involving only the coefficients belonging
to the active set. This gives us the sparse model parameterized by λ, Θ̂(λ) and Q̂(λ).

In practice, (p, `) and λ are not given and are determined with model selection
procedures or physiological knowledge. We postpone the rationale for our selection
of ` to Section III. p and λ are chosen with cross-validation (CV). Our CV criterion
focuses both on the minimization of the one-step prediction error – a measure of
the model’s ability to track the sample-to-sample and epoch-to-epoch fluctuations
in the data, and the average response error – a measure of the quality of the model’s
response to the stimulus. In performing CV, we partition the epochs of available
data into I non-overlapping sets S1, · · · ,SI of approximately the same duration. For
each subset Si, we “train” a model from all subsets except for Si and obtain a model
denoted as Θ̂i(p, λ). This model is then tested on the set Si to obtain the two error
measures. The one-step prediction error at time t, e(j)t (i,p, λ), is the difference be-
tween the recorded data y(j)

t and the one-step prediction made by Θ̂i(p, λ) using the
t0 samples prior to time t, that is, z(j)t−1 so we have e(j)t (i,p, λ) = y(j)

t − Θ̂i(p, λ)z(j)t−1.
In our data, the stimulation is applied every Ts samples. We define one epoch as

the Ts samples corresponding to a single stimulation interval. The average evoked
response over set Si is given by yt(i) =M

−1
i

∑
j∈Si y(j)

t for t = 1, · · · , Ts, whereMi

is the number of epochs in Si. The average model response over set Si is given by
ŷt(i,p, λ) =M−1

i

∑
j∈Si y(j)

t,e(i,p, λ) where y(j)
t,e(i,p, λ) is the output of model Θ̂i(p, λ)

in response to the stimulus alone, that is, when w(j)
t = 0. The average response error

is given as εt(i,p, λ) = yt(i) − ŷt(i,p, λ).
The CV score is defined as a weighted combination of the one-step prediction
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and average response errors averaged over all I subsets

CV(p, λ) = 1
I

I∑
i=1

[
CVe(i,p, λ)

we
+

CVε(i,p, λ)
wε

]
(3.3)

where the mean square one-step prediction error component is given as CVe(i,p, λ) =
Mi

−1∑
j∈Si

1
Ts−t0

∑Ts
t=t0+1 ||e

(j)
t (i,p, λ)||22 and the mean square response error com-

ponent is defined as CVε(i,p, λ) = 1
Ts

∑Ts
t=1 ||εt(i,p, λ)||22. The weights we and wε

vary the emphasis between the one-step prediction error and average response
error. In the analysis below, we set we and wε to the medians of CVe(i,p, λ) and
CVε(i,p, λ), respectively, for i = 1, · · · , I and all p and λ considered. This approach
places approximately equal emphasis on the two errors. p and λ are chosen as values
that minimize CV(p, λ).

The MVARX model assumes the residuals are uncorrelated and identically dis-
tributed, so we use the whiteness test proposed in [62] to check model consistency.
A model is selected by the CV criterion only if it passes the whiteness test.

3.3 Data

The data we analyze in this paper is collected from a subject with long-standing
drug resistant focal epilepsy. The patient was a candidate for surgical removal of the
epileptic focus. The decision on stimulation sites and duration of implantation was
made entirely on clinical needs. A train of 30 electrical pulses of strength 5 mA are
applied at intervals of 1 s. The subject is in either wakefulness or stage 4 of NREM
sleep. The 31 channels analyzed are located in 19 different cortical areas. We have
no access to the stimulation channel due to physiological and recording technology
limitations. The raw data is sampled at 1000 Hz and is low pass filtered by an FIR
filter with passband-edge of 48 Hz and stopband-edge of 49.9 Hz to eliminate 50
Hz powerline contamination, and downsampled by 10 to a sampling rate of 100 Hz.
Nonphysiological artifacts and outliers are excluded from our analysis based on the
windowed median filter and outlier rejection procedures discussed in [63].

We choose ` to be 10, that is, 100 ms, based on the discussion of the possible gen-
erator mechanisms of intracerebral potentials evoked by direct electrical stimulation
[64]. Their results show that the duration of the “purely evoked” responses last no
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longer than 100 ms. This choice is further discussed in [63].

3.4 Results

In this section we present the results of the sparse MVARX model for wakefulness
and sleep and for two different stimulation sites labeled L15 and R14. The number
of epochs rejected are 7 for L15 wakefulness, 7 for R14 in wakefulness, 4 for L15 in
sleep, and 7 for R14 in sleep.

We search over model orders p = 4, 8, · · · , 32 and penalty parameters −7.5 >

λ > −36 dB. Use of a logarithmic scale is typical for λ [65]. The largest value of λ is
chosen as the one for which all coefficient groups are zero, and smallest value as that
for which none of the coefficient groups are zero. The selected p and λ correspond
to the model that gives the least CV score, as discussed in Section II, among the
models passing the whiteness test. The value λ = -19.5 dB is selected in each of the
four cases. The order of the models are p = 16 for L15 in wakefulness, p = 16 for
R14 in wakefulness, p = 12 for L15 in sleep and p = 16 for R14 in sleep, respectively.
Both full and sparse models use the same order p.

We compare the prediction performance of the sparse model to that of the full
model to show its effectiveness. Panels (A) and (B) of Fig. 1 show the CV evoked
responses (green dash-dot lines) and the CV model responses of the sparse model
(blue solid lines) and the full model (red dashed lines). That is, the curves indicate
the average over yt(i) or ŷt(i,p, λ) for different subsets Si and the error bars indicate
the standard error of the mean. The upper two traces are shown using a scale
of 1 mv and the bottom two are using a 5-mv scale. In panels (C) and (D) we
present the channel-wise normalized squared one-step prediction error (NMSE),
which, for subset Si, is defined asM−1

i

∑
j∈Si

1
Ts−t0

∑Ts
t=t0+1(e

(j)
m,t(i,p, λ))2/σ2

m. Here
e
(j)
m,t(i,p, λ) is the m-th component of e(j)t (i,p, λ) and σ2

m is the average power in
channelm. The NMSE of a zero model would be approximately 1, hence the NMSE
quantifies the relative mis-predicted portion of the measured signals. The bars show
the average NMSE over CV subsets and error bars show the standard error of the
mean. The channel-wise NMSE varies from 0.02 to 0.4. The overall NMSE as a ratio
of the mean squared one step prediction error in all channels to the power in all
channels is 0.08 for the sparse model in wakefulness, 0.10 for the sparse model in
sleep, and 0.09 for the full model in wakefulness, and 0.11 for the full model in sleep.
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Panels (E) and (F) show the channel-wise normalized squared response difference
(NMRD), which is defined as

∑Ts
t=1(εm,t(i,p, λ))2/

∑Ts
t=1(ym,t(i))

2, for CV subset Si,
where εm,t(i,p, λ) and ym,t(i) are respectively the m-th components of εt(i,p, λ)
and yt(i). The bars indicate the average NMRD over CV subsets and error bars show
standard error of the mean. The channel-wise NMRD varies from 0.2 to 0.75. The
overall ratio of the mean squared response difference in all channels to the power of
the evoked response in all channels is 0.34 for the sparse model in wakefulness, 0.43
for the sparse model in sleep, 0.39 for the full model in wakefulness, and 0.41 for
the full model in sleep.

In Fig. 3.2, we show the active connections in all four sparse MVARX models. The
red-edged blocks depict channels located in a common cortical area. For instance,
channels 6 to 9 are located in the same area. Table 1 presents the ratio of the number
of active connections to the total number of connections (excluding self connections),
the ratio of the number of active connections within a cortical regions to the total
number possible, and the ratio of the number of active connections between cortical
regions to the total number possible. The results suggest that sleep involves a sparser
model and that a greater percentage of connections are active within cortical regions
than between them.

Fig. 3.3 depicts the Granger causality connectivity matrix between the 19 cortical
areas sampled by the 31 electrodes. Node i is said to Granger cause node j if the
inclusion of node i in the model decreases the prediction error in node j, compared to
the model that excludes node i. This notion is sometimes called conditional Granger
causality for networks with more than three nodes. The Granger causality measures
are computed with the procedure described in [66] from the sparse MVARX models.
For example the Granger causality from region 2 to region 4 reflects the extent to
which past values in channels 2 and 3 decrease the prediction errors in channels 6-9.
We note that Granger causality is computed using only Â and Q̂; the exogenous
input parameters B̂ do not play a role. Also, the stimulation is closest to region 19
(channel 31) in the L15 case and to region 12 (channel 22) in the R14 case.

3.5 Discussion

We have modified the SCGL of [57] to estimate sparse MVARX models of the cortical
interactions excited by direct current stimulation of the cortex. The parameters
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in the MVARX model are partitioned into non-overlapping groups such that each
group contains parameters belonging to a particular connection between channels.
The SCGL penalizes all connections except for the self connections, and produces
an MVARX model that is sparsely connected, yet best fits the observed data. The
level of sparsity is controlled by a penalty parameter λ. Increasing λ produces a
sparser model. Sparse models of brain activity are motivated by small world and
other properties [56] suggesting a balance between integration and segregation.

The sparse MVARX model is determined by the data and three parameters: λ,
which controls the level of sparsity, `, which controls the duration of the stimulus
effects, and p, the memory of the model. We choose ` based on physiological consid-
erations reported in the literature and use a CV procedure to select the p and λ that
attain the lowest CV score among the models with residuals passing a whiteness
test. We compare both the one-step prediction error performance and the mean
response error to that of a fully connected MVARX model. We consider two different
stimulation locations for both wakefulness and NREM sleep in an epilepsy patient.
We observe that NMSE for sparse models are smaller than those of the full models,
both on a channel-by-channel basis and overall. In some cases the sparse models
produce slightly worse NMRD than the full models, although the differences in the
mean responses are subtle as shown in panels (A) and (B) of Fig. 1.

It is not possible to know the true underlying network. However, the sparse
MVARX models are consistent with physiological evidence on several levels. First of
all, we expect channels within a given cortical region to be more densely connected
than those between regions. This property is evident in all cases as shown in Table
3.1. While the percentage of active within region connections is larger overall, some
cortical regions are more densely connected within themselves than others. For
example, region 11 (channels 18-21) has many more active internal connections
than region 4 (channels 6-9) in all four scenarios. A second physiological property
evident in our sparse MVARX models is reduced connectivity in sleep [4]. The
results in Table 3.1 and Figs. 1 and 2 indicate that the MVARX models for sleep are
less well connected in terms of the number of active connections and the richness of
the Granger causality representations.

Finally, there is a reasonable level of consistency across the four cases in the
nature of the networks as illustrated in Figs. 2 and 3. Clearly the anatomical con-
nectivity is the same in all cases, which supports a common network structure.



43

Table 3.1: Ratio of Number of Active Connections to Total Number of Possible
Connections for Different Scenarios and Combinations.

Overall Within common regions Between different regions
L15 in Wake 0.45 0.67 0.44
R14 in Wake 0.41 0.75 0.40
L15 in Sleep 0.29 0.53 0.28
R14 in Sleep 0.34 0.75 0.33

However, we expect significant differences in effective connectivity between wake
and sleep based on previous research [4, 63]. Also the similarity between networks
identified from different stimulation sites has not yet been studied as best we know.
In spite of these caveats, there are a number of common features. For example, Fig.
2 suggests that there are relative few active connections to channels 8-11. In Fig.
3 we see connections from region 7 to 8 and 8 to 7 in all four cases. There is also
a cluster of connections between regions 9-11 that is similar across all four cases.
There appear to be stimulation dependent effects in the networks identified using
this procedure. Stimulus location L15 is very close to region 19 while stimulus
location R14 is very close to region 12. We see elevated connectivity from regions 19
and 12 and suppressed connectivity to regions 19 and 12 for stimuli L15 and R14,
respectively. This could reflect either physiological effects of the stimulation chang-
ing the nature of the network or be an artifact of the modeling procedure. From a
model perspective, signals recorded in regions adjacent to the stimulus generally
have a very large evoked response component that is well described using only
self-connections, hence the absence of connections to these channels. Furthermore,
the large nature of the evoked response makes it well suited to predicting the evoked
responses in other channels, which leads to the strong apparent connections to other
regions.

The SCGL sparse MVARX model shows significant promise for network discov-
ery using intracranial EEG with direct electrical current stimulation and warrants
further exploration.
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Figure 3.1: (A) Average evoked and model responses of channels 1, 24, 8, and 31 in
wakefulness when stimulating from L15, (B) Average evoked and model responses
of channels 1, 24, 8, and 31 in sleep when stimulating from L15, (C) Channel-wise
normalized mean squared prediction error (NMSE) in wakefulness when stimulating
from L15, (D) Channel-wise NMSE in sleep when stimulating from L15, (E) Channel-
wise normalized mean squared response difference (NMRD) in wakefulness when
stimulating from L15, (F) Channel-wise NMRD in sleep when stimulating from L15.
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Figure 3.2: Connectivity matrices for the sparse models. Black squares denote that
the connection between the specified channels is turned off. Red borders indicate
channels located in the same cortical region. (A) L15 in wakefulness, (B) R14 in
wakefulness, (C) L15 in sleep, (D) R14 in sleep.
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Figure 3.3: Granger causality connectivity matrices between 19 cortical regions. (A)
L15 in wakefulness, (B) R14 in wakefulness, (C) L15 in sleep, (D) R14 in sleep.
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4 assessing recurrent interactions in cortical
networks: modeling eeg response to transcranial
magnetic stimulation

4.1 Introduction

The development of multichannel transcranial magnetic stimulation (TMS)-compatible
electroencephalography (EEG) amplifiers [67, 68, 69] has recently opened the pos-
sibility of recording the electrical response of the human brain to a direct cortical
stimulation 1. TMS/high-density electroencephalography (hd-EEG) stimulates and
records directly from the cerebral cortex, while by-passing sensory pathways and
motor pathways. Unlike traditional sensory-evoked potentials and TMS-evoked
muscle potentials, this approach does not depend on the integrity/status of sensory
and motor systems and can be applied to directly assess changes in cortical reactiv-
ity and cortico-cortical connectivity in physiological and pathological conditions.
For example, perturbing different cortical targets with TMS in healthy, awake hu-
mans always triggers a complex, compound response which involves a distributed
set of cortical areas and lasts for about 300 ms. In contrast, during non-rapid eye
movement (NREM) sleep the same stimulus elicits a much simpler response of
comparable duration [4]. This simpler response to TMS has also been observed in
other conditions in which consciousness is lost, such as general anesthesia [70] and
the vegetative state [71]. Based on these observations, the perturbational complexity
index (PCI) was developed to quantify the complexity of the overall EEG response
to TMS [72]. PCI has proven to be a reliable index of consciousness [72, 73]. The
slow-wave-like response typical of NREM sleep has always been found associated
with low values of PCI.

Although these empirical findings have practical implications, the basic mecha-
nisms underlying the physiological EEG response to TMS are still largely unknown.
Previous in computo works suggest that the specificity of the complex EEG response
to TMS elicited during wakefulness may be associated with long-range connec-
tions [74] and a combination of intrinsic neuronal properties and cortico-cortical

1This work was supported in part by the National Institutes of Health under awards R21EB015542
and R01GM116916, the European Union under awards H2020-FETOPEN-2014-2015-RIA and HBP-
SP3-T32-2 and the Swiss National Science Foundation under award CRSII3_160803/1.
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circuits interactions [75]. Intracranial EEG recordings in humans also point to the
importance of long-range recurrent connections [76]. However, the extent to which
these factors contribute to the physiological EEG response to TMS during wakeful-
ness and to the breakdown of effective connectivity and complexity during loss of
consciousness still remains to be clarified.

Here we address the role of recurrent connections by interpreting TMS-evoked
potentials (TEPs) using a modeling perspective. Specifically, we estimate models
from single-trial EEG responses to TMS while exploring two different hypotheses
for the complex, long-lasting compound response observed in wakefulness and
sleep: (1) a segregated model (Figure 4.1 (a)) in which TMS results in a feedfor-
ward sweep that engages a number of cortical regions with different properties
whose independent responses result in the TEP; (2) an integrated model (Figure
4.1 (b)) in which the initial feedforward sweep due to TMS is followed by recurrent
interactions among cortical regions to produce the TEP. The identical set of cortical
regions are used in both models. A semi-data-driven procedure that is independent
of the models is used to select the regions for each subject across both wakefulness
and sleep conditions. Hence, the only difference between the integrated and segre-
gated models is the presence/absence of recurrent interactions between the selected
cortical regions.

We examined the integrated and segregated hypotheses by extending the linear
state-space model (SSM) framework developed in [53] for spontaneous EEG to
incorporate the feedforward pathways engaged by exogenous stimulation such
as TMS. Our method estimates the coefficients associated with the feedforward
pathways to the cortical regions and the (possible) recurrent interactions between
regions. We use this new method to compare the two different models for TMS/EEG
recordings during both wakefulness and NREM sleep. The integrated model (Figure
4.1 (b)) assumes the cortical regions involved in the response are fully connected and
interacting. In contrast, the segregated model (Figure 4.1 (a)) assumes the cortical
regions involved in the response do not interact with one another. The segregated
and integrated models mimic the absence or presence of long-range connections,
respectively.

The estimated models are compared using the TMS evoked response and cross-
validation of one-step prediction errors on single trials. Our results show that the
brain dynamics evoked by TMS during NREM sleep can be described equally well
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Figure 4.1: Schematic diagram of multivariate autoregressive with exogenous stim-
ulation (MVARX) network models. Each gray circle represents a cortical ROI, and
directed edges denote non-zero MVARX coefficients. The Bi represent the direct or
indirect feedforward effect of TMS on each ROI. (a) Segregated model assumes each
cortical region acts independently of all others. (b) Integrated model represents
network interactions between cortical regions.

by both segregated and integrated models over the entire response duration. In
contrast, integrated and segregated models provide comparable fit to the actual TEP
in wakefulness only for the assumed feedforward path duration. After feedforward
effects subside the integrated model provides a much better fit to the actual TEP.
Similarly, the integrated model has lower one-step prediction error than the seg-
regated model on single trials not used to train the models. The results strongly
suggest that the high levels of complexity typical of TMS/EEG responses during
wakefulness, as also assessed by PCI, requires the presence of effective recurrent
interconnections.

4.2 Methods

Data

Subjects Seven healthy volunteers participated in the study. All subjects gave
written informed consent, and the experiment was approved by the Comitato Etico
Interaziendale Milano Area A, Milan, Italy. A clinical examination was performed
before the experiment to exclude potential adverse effects of TMS. TMS was per-
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formed in accordance with current safety guidelines. TMS/EEG data was initially
collected during wakefulness when subjects were alert and relaxed, with eyes open,
and then the same stimulation was performed after subjects entered a consolidated
period of NREM sleep.

TMS Targeting Stimulation was performed by a focal figure-of-eight coil (mean/outer
winding diameter 50/70 mm, biphasic pulse shape, pulse length 280 µs, and focal
area of the stimulation 0.68 cm2) driven by a Mobile Stimulator Unit (eXimia TMS
Stimulator, Nexstim Ltd.). Cortical TMS targets were identified on MRI (magnetic
resonance imaging) scans acquired on a 3T magnetic resonance scanner (Trio Tim,
Siemens, Germany) using a T1-weighted MP-RAGE (magnetization-prepared rapid
acquisition gradient echo) sequence. We controlled TMS parameters by means of
a Navigated Brain Stimulation (NBS) system (Nexstim, Helsinki, Finland). A 3D
infrared tracking position sensor unit was employed to locate the relative positions
of the coil and subject’s head referenced to the individual MRI scan with an error
tolerance of 3 mm. The NBS system also calculated the distribution and the intensity
of the intracranial electric field induced by TMS on the cortical surface in real time.
The output of the stimulating unit was adjusted to induce an electric field of 90 V/m
on the cortical surface, which is above the threshold (50 V/m) for a significant EEG
response [77, 78]. The stimulation coordinates were passed to a software aiming tool
that ensured the reproducibility of position, direction, and angle of the stimulator
throughout the session. At least 200 trials were collected. TMS was delivered with
an interstimulus interval jittering randomly between 2000 and 2300 ms (0.4–0.5 Hz).

EEG Recordings During TMS We recorded TMS-evoked potentials by means of
a TMS-compatible 60-channel amplifier (Nexstim), a device that prevents amplifier
saturation by means of a proprietary sample-and-hold circuit [67]. The analog
output of the amplifier is held constant from 100 µs before stimulus to 2 ms after
stimulus. The impedance at all electrodes was kept below 5 kΩ. The EEG signals
were referenced to an additional electrode on the forehead, bandpass filtered (0.1–
350 Hz) and sampled at 1450 Hz with 16-bit resolution. Two extra sensors were
used to record the electro-oculogram (EOG). Well established procedures were
followed for collecting TMS/EEG. Subjects wore earplugs and a sound was played
continuously to avoid contamination of TMS-evoked potential by auditory potentials
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evoked by the click associated with the TMS discharge [4, 79, 80]. Bone conduction
was attenuated by placing a thin layer of foam between coil and scalp [81]. These
precautions ensure the measured EEG is due to direct cortical stimulation [82].

General Experimental Procedures During the experiment each subject was lying
on a reclining chair with a head-rest that allowed a comfortable and stable head posi-
tion. The navigation system was calibrated with a muscle artifact free target location
in the left/right premotor (Brodmann area 6 or BA6) or the left/right posterior pari-
etal (BA7) cortex identified prior to TMS/EEG data collection in wakefulness. These
areas were stimulated along the midline, thus reducing the possibility of inducing
muscular activation [83] and/or any possible secondary cortical response due to
somatosensory perception [84]. A second TMS/EEG data collection session using
identical stimulation parameters was initiated after subjects entered a consolidated
period (>5 min) of NREM sleep stage 3.

TMS evoked potential In order to measure the duration of TMS induced response,
we calculated the evoked potential and the duration of significant response following
procedures in [4]. Figure 4.2 (a) and (b) show the TMS evoked potentials and
the temporal extent of significant response (in red) during wakefulness and sleep
for a single subject. In panel (c), we show the average and standard deviation of
the maximum extent of the TMS-induced response among the seven subjects in
wakefulness and sleep.

Data Preprocessing Data analysis was performed using MATLAB (MathWorks).
First, TMS/EEG trials were visually inspected to detect and reject trials containing
excessive noise, muscle activity, or eye movements. Next, trials were segmented
into windows of ±800 ms around the TMS stimulus. Channels with large residual
artifacts or bad signal quality were excluded from further analysis. All sessions
analyzed used a minimum of 52 channels. The EEG data were average referenced,
baseline corrected and independent component analysis (ICA) was applied in order
to remove residual artifacts.

The data was further downsampled by a factor of 15 in two stages using the
MATLAB function resample to obtain an effective sampling rate of 96.67 Hz. The
downsampled data was then zero-phase high-pass filtered with a Butterworth
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Figure 4.2: TMS-evoked potential and significant response durations. (a) and (b)
Butterfly plots of TMS evoked potentials from 60 channels, recorded from the same
subject during wakefulness and sleep, respectively. The red portions of the traces
indicate the duration during which TMS induced a statistically significant response
(calculated as in [4] - bootstrap statistics, p < 0.01). (c) Mean and standard deviation
of extent of TMS-induced response for the seven subjects in wakefulness (red) and
sleep (blue). There is no statistically significant difference between wakefulness and
sleep (Wilcoxon rank-sum test, p < 0.01).

filter with passband edge frequency of 2 Hz. The downsampled, filtered data was
baseline-corrected once more to make each channel of each trial zero-mean. We
then followed a procedure similar to that described in [63] to identify outlying TEPs.
The Mahalanobis distance [85] between the data in the trial being tested as an outlier
and the remaining trials was computed. Trials with Mahalanobis distances having
probability less than 0.1 were excluded from the subsequent analysis. A minimum
of 115 trials were available for each session. Each trial of the data used for analysis
included 310.3 ms prior to stimulation onset, 403.4 ms post stimulation and contains
70 samples. The TMS onset was at the 31st sample.

Perturbational Complexity Index (PCI) PCI [72] is a nonparametric measure of
the data’s spatio-temporal complexity. It is hypothesized to reflect the ability of many
functionally specialized thalamo-cortical modules to interact producing a complex
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response. PCI was calculated by first band-pass filtering TEPs with a 0.1–45 Hz
passband and then down-sampling to 362.5 Hz. Second, the cortical current density
was estimated using a three-sphere head model [86, 87] and an empirical Bayes
solution with weighted minimum norm constraint [88, 89, 90]. Next, significant
cortical activations representing the deterministic pattern of TMS-evoked responses
at the source level were obtained by applying a non-parametric bootstrap-based
statistic [91, 92], leading to a 2D binary space-time matrix. The normalized Lempel-
Ziv complexity [93] of this matrix was finally accumulated over space to obtain the
temporal evolution of PCI, PCI(t).

Figure 4.3 depicts the temporal evolution of PCI (cumulative PCI) and the rate
of complexity divergence in the difference between cumulative PCI in wakefulness
and sleep.

Figure 4.3: (a) Cumulative PCI is shown for every subject (thin lines) and at the
group level (thick lines) for both wakefulness (red) and sleep (blue). (b) The rate of
divergence of difference in cumulative PCI between wakefulness and sleep, ∆PCI,
calculated from single-subject differences between cumulative PCI during wakeful-
ness and sleep, with 25-ms time bins. Statistical significance with respect to zero
across bins is indicated in asterisks (significance level α = 0.01, Mann-Whitney).

Model

The linear SSM framework developed in [53] is extended to TMS/EEG recordings
by explicitly modeling the feedforward effects of TMS stimulation as illustrated in
Figure 4.1. The SSM model for TMS/EEG consists of two linear equations. A state
equation describes the evolution of cortical activity as a multivariate autoregressive
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process with exogenous stimulation (MVARX), where the stimulation is TMS. An
observation equation characterizes the measured single-trial EEG recordings as
a weighted sum of cortical activity and noise. The parameters of the SSM are
unknown, but assumed to be constant during the measurement time. An expectation-
maximization (EM) algorithm is employed to find the maximum likelihood estimates
(MLE) of the unknown parameters.

State Equation The K cortical signals representing activity in the K cortical ROIs
at time n and trial j are denoted by the K by 1 vector xn,j = [x1

n,j, x2
n,j, · · · , xKn,j]

>

where xkn,j is the cortical signal in ROI k at time n and trial j. The cortical activity is
modeled as an MVARX-(p, `) process [55, 63]:

xn,j =

p∑
i=1

Aixn−i,j +
`−1∑
i=0

biun−i,j + wn,j (4.1)

for n = 1, 2, · · · ,N and j = 1, 2, · · · , J. TMS is represented by the input un,j. We
have uno,j = 1 if TMS is applied at time no in trial j, and un,j = 0 for n 6= no.
The residual error wn,j is modeled as a zero-mean normally distributed random
variable with K by K covariance matrix Q. The K by Kmatrix Ai characterizes how
cortical signals from i time samples in the past influence present cortical signals.
The (m,k)th element of Ai, am,k

i , is a weight that models the contribution of the
signal from ROI k at i time samples in the past to the prediction of the signal from
ROI m at the current time. The segregated model (Figure 4.1 (a)) constrains the
Ai to be diagonal while the integrated model has no constraints on the Ai. The K
by 1 vector bi captures the influence of the TMS on each of the K ROIs i samples
following stimulation onset. Thus, the bi coefficients model the feedforward volley
of activity induced by TMS in the ith ROI. This feedforward volley is assumed to
include indirect effects of TMS through brain regions not included in the cortical
regions being modeled. The number of bi, `, models the maximum latency in
significant feedforward connections from the stimulation site directly or indirectly
to the K ROIs.

We collect the bi into a K by ` matrix B = [b0, b1, · · · , b`−1] for notational con-
venience. Similarly, we collect the Ai into a K by Kp matrix A = [A1, A2, · · · , Ap].
We assume the initial state for each trial j, [x>0,j, x>−1,j, · · · , x>−p+1,j]

>, is normally
distributed with identical, but unknown mean µ0 and covariance matrix σ2

0 · I. A
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and Q may be used to compute functional and effective connectivity and measures
of integrated information [53, 94].

Observation Equation Let theM by 1 vector yn,j denote the measured data inM
EEG channels at time n and trial j. The observation equation models yn,j as the sum
of activity due to each ROI, Hkλkx

k
n,j, plus observation noise vn,j:

yn,j =

K∑
k=1

Hkλkx
k
n,j + vn,j. (4.2)

TheM by 1 vector of observation noise vn,j is assumed to be zero-mean normally
distributed with covariance matrix R = σ2

R·I. Here Hk is anM by 3 matrix describing
the forward model for the kth cortical ROI. Hk is a cortical patch basis [95]. The 3 by
1 vector λk specifies the orientation of the source with respect to the basis formed
by the columns of Hk and is assumed to be unit norm but unknown.

We assume the leadfield matrix is based on known dipole orientations and thus
Hk is a rank-3 approximation to the space spanned by the columns of the leadfield
vectors associated with all dipole sources within ROI k. More detailed discussion of
the observation model is available in [53].

EM Algorithm

The parameters to be estimated in the SSM are θ = {A, B, Q,λ1,λ2, · · · ,λK, R, µ0,
σ2

0}. Our goal is to find the MLE of θ. MLEs have the least variance of all unbiased
estimates for sufficiently large data sets [96]. We write the log likelihood function as

L(θ) = log p(Y|U,θ) = log
∫
p(Y, X|U,θ)dX

=

J∑
j=1

log p(y1,j, y2,j, · · · , yN,j|U,θ) (4.3)

where Y denotes the collection of measured data from all trials, U denotes the TMS
input and X denotes the collection of cortical signals. The MLE is the solution to
the optimization problem: maxθ L(θ). This optimization problem does not have
a closed-form solution and in general is not convex as it involves latent variables
X. The EM algorithm is an iterative coordinate ascent algorithm for finding MLEs
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[97, 53]. The algorithm starts with an initial guess θ(0) and iterates the E- and
M-steps:

• E-step: Evaluate the probability distribution p(X|Y, U,θ(k)) and the condi-
tional expectation Q(θ, θ(k)) = EX|Y,U,θ(k) [log p(Y, X|U,θ)]

• M-step: Find θ(k+1) = arg max
θ

Q(θ,θ(k)).

A convergence criterion is employed to decide whether or not the algorithm should
terminate at iteration k. The convergence criterion involves comparing L(θ(k))

and L(θ(k−1))[98] in the E-step. The EM algorithm is guaranteed to monotonically
increase the objective function L(θ). Thus, at worst the EM algorithm finds a local
maximum of the log likelihood function. We start our EM algorithm at multiple
initial guesses and choose the solution with largest log likelihood to improve the
chances of finding the global maximum. The EM algorithm has been shown to give
more accurate model estimates for spontaneous data than two-step methods that
employ source reconstruction followed by estimation of the cortical multivariate
autoregressive model [53]. Additional details of the modeling procedure and the
EM algorithm are presented in A.

Region Selection

We choose the subject-specific ROIs using a semi-data-driven sequential method.
First, a minimum norm estimate of source activity at each dipole is reconstructed.
Second, patches with the largest power for both wakefulness and sleep are sequen-
tially added into the subject’s ROI set.

The cerebral cortex of each subject’s brain was modeled as a three-dimensional
grid of 3004 fixed dipoles oriented normally to cortical surface. This model was
adapted to the anatomy of each subject using the Statistical Parametric Mapping
software package (SPM5, http://www.fil.ion.ucl.ac.uk/spm/) using the same pa-
rameters used in [77]. Finally, the inverse transformation was applied to the Montreal
Neurological Institute (MNI) canonical mesh of the cortex for approximating to real
anatomy.

Cortical patches are defined as collections of dipoles. We exclude deep dipoles
from the analysis to avoid source activity with very low signal-to-noise ratio. Deep
dipoles are defined based on the distances from the dipole to all electrodes. Our
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criteria results in 2295 dipoles being included in the construction of patches. We gen-
erated 617 patches of geodesic radius 2 cm that are overlapping and approximately
uniformly distributed.

The power in the measured data associated with each candidate patch is com-
puted using the minimum norm method for each subject’s wake and sleep data set.
We select the ROI set according to patch signal power using a sequential approach.
The first ROI is chosen as the patch with the largest normalized average power
over wake and sleep from the Brodmann area targeted by TMS. In each subsequent
iteration, the patch with the largest normalized average power over wake and sleep
is added to the ROI set, under the constraint that this new patch does not physically
overlap with any of the already selected patches. This procedure is repeated until
bM/3c patches are selected whereM is the smaller of the numbers of artifact free
channels in wakefulness and sleep. b·c denotes the greatest integer less than oper-
ation. Note that bM/3c is the maximum number of regions that can be modeled
without introducing linearly dependent components into the observation equation.
A detailed description of the region selection procedure is described in B.

Model Selection

The number of regions included in the model, K, and the memory, p, are se-
lected using the Akaike information criterion (AIC) [55]. We considered K =

3, 6, 9, · · · , bM/3c and p = 5, 10, 15, · · · , 30. The model parameter ` represents the
approximate duration the feedforward volley of TMS-induced activity to the ROIs
in samples. The actual duration may vary from one region to another; however, we
chose a single value for all regions as a modeling compromise. We choose ` = 5,
` = 10, and ` = 15 corresponding to maximum feedforward volley durations of 50
ms, 100 ms, and 150 ms, for the results presented in the paper. These choices are
motivated by previous research that suggests feedforward effects are approximately
limited to within 100 ms post-stimulus [99, 100, 101].
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Model Evoked Response

The evoked response of the model is obtained by setting wn,j = 0 in Eq. (4.1),
vn,j = 0 in Eq. (4.2), and

un,j =

{
1, n = no

0, n 6= no

where no corresponds to the time that the stimulus is applied. Note that setting
wn,j = 0 and vn,j = 0 eliminates the dependence of the model on j, so no averaging
is utilized in obtaining the model evoked response.

Insight into the nature of the two models is obtained by expressing the evoked
response in terms of the feedforward and feedback model parameters. For simplicity
of presentation we assume p = 1 and drop the trial subscript j. Denote the evoked
response of the model in the cortical regions as x̂n. Using x̂n = 0 for n < no we
have

x̂no = b0;

x̂no+1 = A1x̂no + b1;

x̂no+2 = A1x̂no+1 + b2;
...

x̂no+`−1 = A1x̂no+`−2 + b`−1;

x̂no+` = A1x̂no+`−1;
...

x̂k = A1x̂k−1, for k > no + `;

These expressions indicate that it is possible to exactly fit the first ` values of a
measured evoked response xn for any A1 by choosing the bi appropriately. If we
choose b0 = xno , and set bi = xno+i − A1xno+i−1 for i = 1, 2, . . . , `− 1, then x̂n = xn
for no 6 n 6 no + ` − 1. That is, structural constraints on A1 do not necessarily
manifest in the first ` values of the model evoked response. The model evoked
response after the first ` time steps evolves according to only A1, and this is when
we expect differences between integrated and segregated model evoked responses
to be most evident.



59

4.3 Results

Model Performance in Capturing TEPs

A detailed description of results for one subject and ` = 10 is given first and is
followed by a summary of results for all seven subjects and values of ` studied.

Figure 4.4 depicts the ROIs selected for the analysis of the subject (see 4.2). The
numerical label on each ROI indicates the order in which the patch was chosen
during the region selection process. The TMS target was in the left parietal cortex
(BA7), which is shown in red. The TMS-evoked and model-evoked responses in a

Figure 4.4: ROIs and TMS stimulation site in the analysis of Subject 1. The number
associated with each ROI (in yellow) represents the order in which the ROIs were
identified by the ROI selection procedure. TMS stimulation was applied to the left
parietal cortex, which is shown in red.

representative set of six channels are shown in Figure 4.5 during both wakefulness
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and sleep. The number of ROIsK and order p of the segregated model were set equal
to the values selected by AIC for the integrated model (see 4.2). Figures 4.6 and 4.7

Figure 4.5: Measured and modeled TMS-evoke response of subject 1. (a) and (b)
Butterfly display of 60-channel TMS-evoked response of subject 1 in wakefulness
and sleep, respectively. (c) and (d) Measured and modeled TMS-evoked response
in selected channels for Subject 1 in wakefulness and sleep, respectively.

show per-channel normalized squared response error (NSRE) measured over the
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interval of 100 to 400 ms post stimulus for each channel. Let yn be the TMS-evoked
response and ŷn(θ̂) be the model evoked response where (θ̂) denotes the functional
dependence of the model evoked response on the estimated parameters θ̂. The
per-channel NSRE in themth channel is defined as

per-channel NSREm =

∑70
n=41(yn,m − ŷn,m(θ̂))

2∑70
n=41 y

2
n,m

where yn,m is the TMS-evoked response from themth channel at time n and ŷn,m(θ̂)

is the model evoked response of the mth channel at time n. The interval 100 to
400 ms post stimulus was chosen to isolate the effect of feedback interactions from
the feedforward TMS distribution modeled by the Bi (Figure 4.1). The channels
depicted in Figure 4.5 are marked with colored bars. Channel indices that are not
shown were identified as artifactual during data preprocessing.

Figure 4.6: Per-channel normalized squared response error (NSRE) between the
measured and modeled TMS-evoked response for Subject 1 in wakefulness assuming
` = 10. The light red vertical bars indicate channels whose waveforms are displayed
in Figure 4.5.

Scatter plots of global NSRE for models with different `’s are depicted in Figure
4.8 as a function of the global mean field power (GMFP) [102] ratio. The global NSRE
is measured over all channels and the time interval of [10`, 400] ms poststimulus.
More specifically, it is defined as

global NSRE(`) =
∑70
n=`+31 ||yn − ŷn(θ̂)||22∑70

n=`+31 ||yn||22
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Figure 4.7: Per-channel NSRE between the measured and modeled TMS-evoked
response for Subject 1 in sleep assuming ` = 10. The light blue vertical bars indicate
channels whose waveforms are displayed in Figure 4.5.

where ||y||2 denotes the Euclidean norm of the vector y. The GMFP ratio is formed
as the ratio of the average GMFP over the interval of 0 ms to 400 ms post stimulation
to a constant representing a bootstrapped estimate [103] of the maximum GMFP
over the pre-stimulation interval -300 ms to -50 ms. Panels (a) and (b) depict global
NSRE measured from 50 to 400 ms for models with ` = 5. Panels (c) and (d) show
global NSRE measured from 100 to 400 ms for models with ` = 10. Panels (e) and
(f) depict global NSRE measured from 150 to 400 ms for models with ` = 15. Robust
linear fits of global NSRE as a function of GMFP ratio are also shown in Figure 4.8.
The robust linear fits are estimated with the iteratively reweighted least squares
algorithm.

The cumulative NSRE was computed as a function of time by summing the SRE
over all channels from stimulus onset to the current time

cumulative NSRE(n) =
∑n
n ′=31 ||yn ′ − ŷn ′(θ̂)||22∑n

n ′=31 ||yn ′ ||22
.

Figure 4.9 depicts cumulative NSRE for all subjects with models of ` = 5, ` =

10, and ` = 15 in wakefulness and sleep. There is variability in the cumulative
NSRE as a function of time across subjects in both wakefulness and sleep. A clear
difference is apparent between integrated and segregated models in wakefulness
when feedforward effects subside.

We also compared the integrated and segregated models using cross-validated
mean squared prediction error (MSPE). The MSPE evaluates the models’ ability
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Figure 4.8: Global NSRE between measured and modeled TMS-evoked responses
summed over all channels as a function of global mean field power (GMFP) ratio
for all seven subjects. (a) Wakefulness, ` = 5 (b) Sleep, ` = 5 (c) Wakefulness, ` = 10.
(d) Sleep, ` = 10. (e) Wakefulness, ` = 15. (f) Sleep, ` = 15.

to predict single trials of the scalp measurements one step into the future. The
model fitting procedure (see 4.2) minimizes the error between model predictions
and measured single trials in a probabilistic sense. This motivates the MSPE as an
intuitive measure for the model fit to single trials.

Cross validation is used to control for the possibility of overfitting by the in-
tegrated model and involves splitting the single trials into test and training sets.
The training set is used to estimate the model parameters while the test set is used
to evaluate the models’ ability to generalize to new data. We used ten-fold cross
validation, so the data is partitioned into ten groups, with each group containing
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Figure 4.9: Cumulative normalized squared response error (NSRE). Thin lines
indicate individual subject values while think lines indicate averages across seven
subjects. (a) Wakefulness, ` = 5. (b) Sleep, ` = 5. (c) Wakefulness, ` = 10. (d) Sleep,
` = 10. (e) Wakefulness, ` = 15. (f) Sleep, ` = 15.

roughly the same number of trials. For the ith fold of validation, the trials in the ith

group are used as the test set, and the other nine groups of trials are used as the
training set. The model parameters are first estimated from the training set. Then
the test trails withheld from training are used to evaluate one-step MSPE of the
model estimated from the training set. The one-step MSPE of fold i is defined as

MSPEi =
1/|Groupi| ·

∑
j∈Groupi

∑70
n=1 ||yn,j − ỹn,j(n− 1, θ̂−i)||22

1/J ·
∑
j∈J
∑70
n=1 ||yn,j − ỹn,j(n− 1, θ̂−i)||22

where Groupi denotes the set of trials assigned to group i, ỹn,j(n− 1, θ̂−i) denotes
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the one-step prediction of yn,j using the measurements up to time point n − 1 in
trial j and the estimated parameters θ̂−i. Here subscript −i denotes that the model
parameters are estimated from all trials except for those in the ith group. The one-
step prediction error is computed with Kalman-filtering procedures (see Appendix
A and [104]).

The difference between segregated and integrated models in MSPE for each
group of trials and subject are depicted in Figure 4.10. The differences are greater
in wake than sleep for all subjects and choices of `. A nonparametric Wilcoxon
signed-rank test was used to test the hypothesis that the mean of the difference
is zero. This hypothesis is rejected at an α = 0.01 significance level in all subjects
in wake and four of the seven subjects in sleep, for all three choices of `. We also
performed a two-way ANOVA and obtained a significant (p < 0.01) difference
between integrated and segregated models in wakefulness but not in sleep.

4.4 Discussion

We have presented a method for assessing recurrent interactions in the cortex based
on an MVARX model for the cortical activity induced by TMS and patch-based
forward models for mapping the cortical activity to the scalp EEG. The MVARX
model describes the cortical activity in each ROI as a weighted combination of past
activity in all ROIs plus feedforward activation by TMS. The MVARX model ap-
proximates the complex interactions in the cortex with a linear model—the simplest
causal model that can account for the rich temporal dynamics associated with EEG.
Linear models benefit from reduced computational complexity, simpler parameter
estimation approaches, and increased robustness to noise. We previously reported
on MVARX models for intracranial EEG with direct electrical current stimulation
[63]. Here we extend the MVARX approach to modeling cortical activity due to
TMS using scalp EEG.

In contrast, while nonlinear models such as DCM [105] offer the potential of
parameters with physiological meaning and higher degrees of freedom in modeling
complex responses, they are rarely applied to more than six or seven ROIs due to the
computational complexity of estimating model parameters and the difficulty of en-
suring convergence of estimated parameters to good solutions. We did not consider
DCM or other nonlinear models in this study because of this effective limitation to a
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Figure 4.10: Difference between segregated and integrated model cross-validated
MSPE for ten partitions of the trials. (a) ` = 5. (b) ` = 10. (c) ` = 15.

smaller number of ROIs. The TMS-evoked response is relatively widely distributed
throughout the cortex, especially in wakefulness [4]. Consequently in this paper we
routinely use twelve or more ROIs to capture as many sources of activity as possible.
The number of ROIs considered is constrained to be smaller than the number of
measurement channels divided by three, otherwise the observation equation would
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become degenerate. Using the maximum possible number of ROIs also helps reduce
sensitivity to the ever present hidden node problem with network models.

An EM algorithm is presented for estimating the MVARX model parameters from
single-trial scalp EEG. Our EM approach directly estimates the cortical model from
the scalp EEG using the maximum likelihood criterion. This avoids the suboptimal
nature of two-step methods that first attempt to solve the inverse problem to obtain
cortical activity, and then solve a second problem to fit a model to the estimated
cortical activity. Our one-step approach has the potential for significantly better
performance at modest and low SNR than two-step approaches. This is because the
inverse problem is ill-posed and its solution amplifies noise. Noise in the estimated
cortical activity contaminates and biases the model parameter estimates in the
second step. While the cortical signals and models are unknown in human data, a
comparison between EM and two-step approaches in a related problem [53] provides
clear support for this reasoning. The results in this paper show that our approach
leads to models with good fidelity to TEP.

The role of recurrent interactions in cortical networks is assessed by comparing
and contrasting the performance of two MVARX models—an integrated model
with all possible interactions between ROIs (Figure 4.1 (b)) and a segregated model
with no interactions between ROIs (Figure 4.1 (a))—in both wakefulness and sleep.
We evaluated the effect of reentrant connectivity on a given set of ROIs using a
model independent, semi-data-driven procedure to chose a common set of ROIs
across both conditions for each subject. Using different numbers or choices of ROIs
across models or conditions would confound the respective choices with the effect
of network structure.

Our results show that the integrated model provides significantly better visual
agreement with the measured TEP than the segregated model for the more complex
responses associated with wakefulness (Figures 4.5 (a), 4.6, 4.8), especially later
than 10`ms post stimulus for all three values of ` studied. Consistent with previous
intracranial recordings in monkeys [99] and humans [106], a previous non-invasive
TMS/EEG experiment showed that a maximum spread of activation, possibly re-
flecting the first feedforward sweep, can occur 80-100 ms after the stimulation [77].
In line with these studies, we considered durations for the exogenous parts of both
integrated and segregated models of 50 ms (` = 5), 100 ms (` = 10), and 150 ms
(` = 15).
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Modeling of the feedforward effects accounts for the fidelity of the model re-
sponses during the first 10`ms post stimulus (Figure 4.9). The EM algorithm chooses
the model parameters using the single trials and does not explicitly fit the TEP. How-
ever, the TEP is a large component of the response right after the stimulus, and
thus it is not surprising that both integrated and segregated models choose their
feedforward parameters to closely fit the TEP in the first 10` ms as discussed in
Section 4.2. However, after the first 10`ms the interactions between ROIs provided
by the integrated model make a significant difference in modeling the more complex
responses of wakefulness. The TEP in sleep is of comparable duration (Figure 4.2),
but is not as complex and thus is nearly equally well described by the integrated
and segregated models.

The NSRE is computed over the interval 10`ms - 400 ms post stimulus to quan-
titatively assess the impact of the recurrent interactions in the model on the TEP.
The per-channel NSRE for Subject 1 (Figure 4.6) shows that the integrated model
performs better in every single channel during wakefulness. Normalization enables
us to see how the error compares to the amplitude of the signal. This avoids the
deceptive implications of very small errors that are associated with very low ampli-
tude channels. In contrast, the largest normalized errors in Figure 4.6 correspond to
channels with very weak amplitude signals. The global NSRE across all channels
shows that the integrated model performs significantly better for all seven subjects
in wakefulness (Figure 4.8 (a), (c), (e)). These results highlight the important role of
recurrent interactions in producing the complex TMS response patterns associated
with wakefulness. In contrast, the difference between integrated and segregated
models is much less in sleep (Figures 4.5 (b), 4.7, 4.8 (b), (d), (f)) than in wakefulness.

The cumulative NSRE (Figure 4.9) shows that the performance of integrated and
segregated models is nearly identical in the first 10`ms post TMS in both wakefulness
and sleep. This is due to the identical duration assumed for the feedforward volley
in both models. In wakefulness the integrated and segregated model NSREs diverge
after 10`ms post TMS and continue to diverge as time increases (Figure 4.9 (a), (c),
(e)). Interestingly, these results are paralleled by the time course of the PCI metric
shown in Figure 4.3. The population cumulative PCI for wakefulness and sleep is
similar up to 75-100 ms, maximally diverge between 100 and 125 ms and then the
cumulative PCI for wakefulness increases significantly, while that for sleep does not.
The cumulative PCI thus suggests that a more complex model is required to describe
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the TEP in wakefulness than sleep. Overall, our findings seem to suggest that the
build-up of the complex responses observed during wakefulness after feedforward
effects subside requires the engagement of recurrent interactions among cortical
nodes and that these interactions are impaired during NREM sleep. This mechanism
and its timeframe are generally consistent with the results of a recent intracranial
study employing single-pulse electrical stimulations and stereo EEG recordings
[76]. This study showed that during wakefulness electrical stimulation triggers a
sequence of deterministic phase-locked activations in its cortical targets. In contrast,
during NREM sleep cortical neurons have the tendency to fall into a silent down-
state upon receiving a input due to underlying bistability. The downstate occurs
as early as 100 ms after the pulse and obliterates the deterministic effects of the
initial input, as indicated by a sharp drop of phase-locked activity. Thus, one
may hypothesize that while during wakefulness the initial feedforward activation
triggered by cortical stimulation evolves after 100 ms into a chain of deterministic
interactions among cortical ROIs leading to a complex response, during NREM
sleep the same feedforward sweep simply triggers down-state in target neurons
which blocks the build up of complex interactions.

The integrated model has more parameters than the segregated model. We used
cross validation on the MSPE [104] to assess whether the improved performance
of the integrated model in wakefulness could be due to overfitting. The reduced
MSPE for the integrated model is statistically significant in all of the seven subjects
in wakefulness. Figure 4.10 shows the ten differences between segregated and
integrated model cross-validated MSPE are positive for every subject in wakefulness.
This strongly suggests that the improved performance of the integrated model in
wakefulness is not due to overfitting the data—it shows that the integrated model
generalizes better to data not used to train the model. Note that cross validation
provides a very robust approach to model selection that naturally controls for model
complexity. If the more complex model is fitting noise, then it will have poor
performance describing data not used to train the model. In contrast, if the cross-
validated MSPE is lower for the more complex model, then additional parameters
are genuinely contributing to better modeling the data. Cross validation in principle
also provides a more robust approach to selecting other model parameters, such as
the number of regions and the memory p. However, cross validation has a very high
computational cost and thus we chose to limit its use here to a binary comparison
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of integrated and segregated models.
It is possible that an MVARX model with a subset of the feedback connections

in the integrated model—that is, some connections between ROIs constrained to
zero—could improve upon the performance of the fully integrated model. Reducing
model degrees of freedom potentially reduces the variance associated with model
parameter estimation. We did not explore limiting the number of feedback connec-
tions due to the very large number of such models possible for even twelve ROIs.
Furthermore, it would not change the conclusion that effective feedback connections
between ROIs appear to be required to produce the TMS/EEG in wakefulness. The
contrast between fully integrated and segregated models provides evidence for the
importance of at least some feedback connections. It does not imply that a fully
connected model is necessary.

Modeling involves a compromise between computation and parameter estima-
tion considerations and the faithfulness of the model to the underlying, typically
unknown, phenomenon. This tradeoff is manifest in our decisions to employ a linear
model versus a nonlinear model, only consider a fully connected model versus
partially connected models, and use the same values of p in all connections.

A challenging aspect of applying the modeling methodology described here
is identification of the ROIs to include in the cortical network model. Any prior
information of brain regions involved in the paradigm being studied should be
used to select ROIs as illustrated in the spontaneous EEG studies of [107, 108].
Semi-data-driven ROI selection, such as used in the present study, is closely re-
lated to the source localization problem and thus, any source localization method
may be used. However, we strongly recommend that the ROI selection process be
based on mapping source localization results onto the bases used to represent the
ROIs in the observation equation. This ensures ROI selection maps directly to ROI
representation in the model.

Source localization methods are unlikely to identify ROIs that are relatively silent
in the scalp EEG due to depth or weak electrical activity. Similarly, our method
for MVARX model estimation will have difficulty identifying network interactions
involving ROIs that do not contribute measurable activity to the scalp EEG.

The problem of hidden nodes is endemic to any network model. If an important
ROI is not included in the model, then it is possible to draw false inferences about
causal influences and connectivity within the true underlying network. Our proce-
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dure for selecting ROIs includes those with the most significant contributions to the
measured scalp EEG. It is possible that an ROI with very weak activity, or a deep ROI,
plays a significant role in network interactions in this study. However, the difference
we found between integrated and segregated models is likely insensitive to hidden
nodes since a hidden node would only change the connectivity of the integrated
model. In contrast, the potential impact of hidden nodes must be considered in
studies that rely on comparing connectivity within a single model.

Theoretical considerations have been used to argue complex network interactions
as a basis for consciousness [109]. This study concurs with others [63] that highlight
the role of network interactions for supporting consciousness. The TEP in sleep,
when the subjects are unconscious, is explained almost as well by the segregated
model as it is by the integrated model. Including network interactions provides
marginal benefit in describing the measured TEP or to the model’s one-step pre-
diction performance of single trials. In contrast, during wakefulness the network
interactions of the integrated model result in substantially better fit to the TEP and
improved one-step prediction of single trials.
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5 variational bayesian inference for state-space
models

5.1 Introduction

In signal processing, two recurring questions are model order selection and learning
of the structural pattern of the parameter. To answer these questions with point
estimation frameworks we have been concerned with thus far, the estimation proce-
dure has to be done multiple times with different model specifications as in model
selection and with different sets of data as in bootstrapping or cross-validation.

In Bayesian inference, instead of point estimation, we learn posterior distributions
of the parameters. With the posterior distribution, we can address the question
of model complexity from a different perspective. The posterior covariance of the
parameters provide a measure of uncertainty of the parameters in credible interval.
In addition, when making predictions or learning model evoked responses, we are
not limited to working with a single estimate. We can infer statistics of interest by
averaging over the posterior with Bayesian integration.

In this chapter we will be concerned with an inference algorithm for the posterior
distribution of the parameters from the full probability model of the TMS-EEG data,
which extends the model introduced in Chapter 4 by imposing prior distribution
over the parameters. Inferencing the posterior distributions involves marginalization
over the cortical activity and parameters, which is analytically intractable [110, 111].
In the literature, two classes of approximation inference methods – Markov chain
Monte Carlo (MCMC) [112, 113] and variational inference [110, 114, 115, 111] –
have been considered. The former methods are asymptotically exact but can be
computationally demanding. The latter are based on analytical approximations
of the posterior distribution and have the advantage of explicit objective function,
less computational overhead and hence scalability to large data applications. We
consider the variational inference methods in this chapter for its lower computational
expense.

A major challenge in performing variational inference in the state space model
(SSM) is to learn the posterior distribution of the cortical activities. Previous work
in the literature have proposed using message passing algorithm [110] and Kalman
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filter with augmented observation [114] to infer the distribution of the cortical ac-
tivities. However, both considered square state transition matrix A and none of
the work considered autoregressive order p > 1. As we have seen in the previ-
ous chapters, autoregressive order p > 1 is essential in modeling M/EEG signal.
Another limitation in the previous work is that they assumed no constraint over
the orientations of the states, which in turn leads to their assumptions of identity
state noise matrix. Our model assumes that the cortical signals lie in subspaces
determined by the regions of interest and the lead field. In this chapter we adapt the
augmented Kalman filter procedure [114] by expressing the transition matrix as As
as in Chapter 4 to learn the posterior distribution from processes with autoregressive
order p > 1. We also consider that the cortical signal of fixed orientation and we
estimate the orientationsΛ and assume that the state covariance matrix is a scaled
identity matrix with an unknown scaling factor.

With Bayesian inference, no only can we learn the credible interval of each
parameter, we can also impose different priors over the parameters and hence our
beliefs for the working mechanism of the system can be deployed to guide our
reasoning. In this chapter, we consider two classes of prior over the state transition
matrices A and B. We will show how the inference can be done with both classes of
priors and compare their performance over different simulated cases.

The rest of the chapter is structured as follows. Section 2 introduces the full
probability model in the Bayesian SSM. Section 3 presents variational inference
procedures. Section 4 demonstrates the evaluation of the evidence lower bound and
optimization procedures of the hyperparameters. Section 5 demonstrates the use of
the proposed methods with several simulated cases and compares the two classes
of priors.

5.2 Bayesian Linear State Space Model

In the linear state space model, the measurements fromM electrodes at time n from
trial j, yn,j is modeled as

xn,j = Azn−1,j + Bun,j + wn,j

yn,j = HΛxn,j + vn,j
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for time n = 1, 2, · · · ,N and epoch j = 1, 2, · · · , J, where the K by 1 vector xn,j is the
cortical signals from the K regions of interest (ROIs) at time n and trial j, the Kp by
1 vector zn,j = [x>n,j, x>n−1,j, · · · , x>n−p+1,j]

> denotes the system state, the ` by 1 vector
un,j = [un,j,un−1,j, · · · ,un−`+1,j]

> is the exogenous input vector, un,j is 1 if the stim-
ulation is applied at time n and epoch j and 0 otherwise. The autoregressive matrix
A and the exogenous input matrix B follow the same formulation and interpretation
as in Chapter 4. The K by 1 vector wn,j is zero-mean Gaussian system noise with
covariance matrix Q and theM by 1 vector vn,j is zero-mean Gaussian observation
noise with covariance matrix R. The initial state z0,j of each trial is assumed to be
Gaussian with mean π0 and covariance matrix Σ0. The matrix H can be formed by
low-dimensional approximation of the lead field sub-matrix for each ROI, following
the descriptions in the previous chapter or [53].

In the following we will consider diagonal state and observation noise covari-
ance matrices. More specifically, we parameterize the state and observation noise
precision matrices with scalars ρq and ρr and we have the precision matrices given
asΛQ = Q−1 = ρq · I andΛR = R−1 = ρr · I.

The complete log likelihood function for the linear state space model is given as

log p(Y, Z|A, B, ρq, ρr,Σ0)

= −
1
2

J∑
j=1

[ N∑
n=1

(
xn,j − Azn−1,j − Bun,j

)>
ΛQ
(
xn,j − Azn−1,j − Bun,j

)
+
(
yn,j − HΛxn,j

)>
ΛR
(
yn,j − HΛxn,j

)
+
(
z0,j − π0

)>
Σ−1

0
(
z0,j − π0

)]
+ const.

= −
1
2

J∑
j=1

[ N∑
n=1

(
zn,j − Aszn−1,j − Bsun,j

)>
ΛQ,s

(
zn,j − Aszn−1,j − Bsun,j

)
+
(
yn,j − Czn,j

)>
ΛR
(
yn,j − Czn,j

)
+
(
z0,j − π0

)>
Σ−1

0
(
z0,j − π0

)]
+ const.

where Y = [y1,1, · · · , yN,1, y1,2, · · · , yN,J] and Z = [z1,1, · · · , zN,1, z1,2, · · · , zN,J]. In the
second equality, instead of xn,j, we work with the zn,j in the state equation, the state



75

transition matrix As and exogenous input matrix Bs are given as

As =

[
A

IK(p−1) 0K(p−1)×K

]
Bs =

[
B

0K(p−1)×`

]
.

The block-diagonal matrixΛQ,s = block_diag(Q−1, 0K(p−1)) is not a proper precision
matrix and serves the purpose for presenting our results hereafter. The observation
matrix C = [HΛ, 0M×K(p−1)].

We did not explicitly express the dependence of the complete log likelihood
function log p(Y, Z|A, B, ρq, ρr,Σ0) onΛ and π0, as we are only considering priors
over A, B, ρq, ρr, and Σ0. We will sometimes represent the collection of the param-
eters A, B, ρq, ρr, and Σ0 as θ. Both θ and the individual parameters will be used
interchangeably in the following. In our analysis we considerΛ and π0 as fixed and
unknown parameters. We will discuss how the inference can be done with priors
specified overΛ and π0 as future works in the last chapter.

Priors over the Parameters

We consider two classes of conjugate priors over the parameters with different
structural preference for A and B. The priors over the rest of the parameters are
defined identically for both classes of the priors. In addition to the priors over
the parameters, we also specify hierarchical priors over some parameters. The
hierarchical priors decrease the number of hyperparameters in our priors. They
also encourage sharing of information among different groups of parameters and
shrinkage different parameters that depends on common hierarchical priors to
common means [113].

Matrix Normal Prior In the matrix normal prior, the priors are given by

Kκ ∼ W(·|νκ, Sκ)

ρq ∼ G(·|αq,βq)

Ξ ∼ MN(·|0, 1/ρq · I, K−1
κ )

ρr ∼ G(·|αr,βr)

ρs,j ∼ G(·|αs,βs) j = 1, 2, · · · ,Kp
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where Ξ = [A, B] and the ρsj’s parameterize Σ0 as Σ0 = diag(1/ρs1 , 1/ρs2 , · · · ,
1/ρsKp). Kκ is a K-by-K precision matrix specifies the covariance among the columns
of Ξ. νκ, Sκ, αq, βq,αr, βr, αs, and βs are hyperparameters of the prior. The matrix
normal distribution, the gamma distribution and the Wishart distribution are given
by

MN(Ξ|Ξµ,Λ−1
Q , K−1

κ ) = (2π)−K(Kp+`)/2|Kκ|K/2|ΛQ|
(Kp+`)/2

· exp
{
−

1
2

tr
[
(Ξ− Ξµ)

>ΛQ(Ξ− Ξµ)Kκ
]}

G(ρ|a,b) =
1
Γ(a)

baρa−1 exp(−bρ)

W(W|ν, S) =
(
2νK/2ΓK(ν/2)

)−1
|S|−ν/2|W|(ν−K−1)/2

· exp
(
−

1
2

tr(S−1W)
)

where Γ(x) is the gamma function, ΓK(x) = πK(K−1)/4∏K
j=1 Γ(x + (1 − j)/2) is the

multivariate gamma function and S is a K-by-K positive definite matrix [116, 117].
A graphical model for the prior and the data generative model is depicted in Figure
5.1(A). Combining the priors, we have the matrix normal prior specified as

p(Kκ, ρq,Ξ, ρr,ρs) = p(Kκ)p(ρq)p(Ξ|ρq, Kκ)p(ρr)p(ρs)

= p(Kκ)p(ρq)p(Ξ|ρq, Kκ)p(ρr)
Kp∏
j=1

p(ρsj).

ARD Prior In the automatic relevance determination (ARD) prior [118, 119, 120],
the priors over the parameters are given by

γa,i,j ∼ G(·|αa,βa) i = 1, 2, · · · ,K, j = 1, 2, · · · ,Kp

γb,i,j ∼ G(·|αb,βb) i = 1, 2, · · · ,K, j = 1, 2, · · · , `

ρq ∼ G(·|αq,βq)

ξ ∼ N(·|0, (ρqΛξ)−1)

ρr ∼ G(·|αr,βr)

ρs,j ∼ G(·|αs,βs) j = 1, 2, · · · ,Kp
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(A) Matrix normal prior
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(B) ARD prior

Figure 5.1: Graphical model for the linear state space model with the two classes
of priors. Circular nodes are random and each follows a distribution. Nodes with
double circles are observed and those with single circles are latent variables .The
directed edges indicate dependence. Nodes represented by single dots are fixed
variables. The panels represent repetitions. (A) Matrix normal prior. (B) ARD prior.

where ξ = vec(Ξ) = vec([A, B]), Λξ = diag(γA,γB), γA = [γa1,1 ,γa2,1 , · · · , γaK,1 ,
γa1,2 , · · · , γaK,Kp ]

>, γB = [γb1,1 ,γb2,1 , · · · ,γbK,` ]
>. αa, βa, αb, βb, αq, βq, αr, βr, αs,

and βs are hyperparameters of the prior. N(x|ν,Σ) denotes the multivariate normal
distribution. The ARD prior assumes that each system coefficient is independent
and Gaussian with precision ρqγai,j (or ρqγbi,j). The precision coefficients are also
learned in our analysis and have the property of pruning individual system coef-
ficient to zero when the corresponding precision ρqγai,j (or ρqγbi,j) is large. The
prior and the data generative model is illustrated in Figure 5.1(B). The product of
different factors in the prior is given as

p(γA,γB, ρq,ξ, ρr,ρs) =

K∏
i=1

Kp∏
j=1

p(γai,j)

K∏
i ′=1

∏̀
j ′=1

p(γbi ′ ,j ′ )p(ρq)p(ξ|ρq,γA,γB)

·p(ρr)
Kp∏
j=1

p(ρsj).

We can modify the aforementioned ARD prior – which we will refer to as the
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independent ARD prior henceforth – by adding structural preference [121]. We
follow the same grouping idea as in the self-connected group lasso [57, 122] and
define the self-connected ARD prior as

γai,j ∼ G(·|αa,βa) i = 1, 2, · · · ,K, j = 1, 2, · · · ,K

γbi ∼ G(·|αb,βb) i = 1, 2, · · · , `

ξ ∼ N(·|0, (ρqΛξ)−1)

where Λξ = diag(γa,γb), γa = 1p⊗ [γa1,1 ,γa2,1 , · · · ,γa1,2 , · · · ,γaK,K ]
>, 1p is a p-by-1

all-one vector, ⊗ denotes the Kronecker product and γb = [γb1 ,γb2 , · · · ,γb` ]> ⊗ 1K.
In the prior we group the coefficients by the two ROIs each coefficient connects and
the direction of the connection. Each group comprises the autoregressive coefficients
from ROI i to ROI j with delays 1 to p, and the coefficients for ROI j to ROI i belong
to a separate group. The self-connected ARD prior will encourage each directed link
with different delays be pruned off together in a data driven way. We also group the
coefficients in the B matrix by the delay in time, which can help in understanding
the order of B. The self-connected ARD prior is put together as

p(γa,γb, ρq,ξ, ρr,ρs) =

K∏
i=1

K∏
j=1

p(γai,j)
∏̀
i ′=1

p(γbi ′ )p(ρq)p(ξ|ρq,γa,γb)

·p(ρr)
Kp∏
j=1

p(ρsj).

5.3 Variational Inference

The joint probability of Y and θ of our model is given as

p(Y, θ) =
∫
p(θ)p(Y, Z|θ)dZ.

Recall that θ denotes the collections of parameters in the prior. Our goal is to learn
p(θ|Y), which would require marginalization over θ and is intractable as the cortical
activities Z and the parameters θ are both unknown and coupled in the integral.

Instead of finding the exact posterior distribution, we resort to an approximate
function q(θ, Z) to the true posterior p(θ, Z|Y) that minimizes the KL divergence
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KL(q||p) = Eq(θ,Z)
[

log q(θ, Z) − log p(θ, Z|Y)
]
. The KL divergence can be related to

the model evidence p(Y) with the equality:

log p(Y) = L+ KL(q||p)

where the evidence lower bound (ELOB) L [111] is given by

L = Eq(θ,Z)[log p(Y, Z, θ)] +H(q)

andH(q) is the differential entropy of q. The ELOB is a lower bound to the logarithm
of the model evidence p(Y), which expresses the preference shown by the data for
the model [123, 124].

If no constraint is imposed over q(·), the optimum q(·) that minimizes the KL
divergence (or maximizes the ELOB) is p(θ, Z|Y), which is intractable to find. To
solve the problem analytically, we consider approximate posterior distributions that
assume a mean field form

q(θ, Z) =
N∏
i=1

q(θi)q(Z)

where {θi} is a partition over θ. With this factorized form, the approximate posterior
distribution is iteratively optimized. For each iteration, the update procedure cycles
through each factor q(θi) (or q(Z)) by maximizing ELOB with respect to q(θi) (or
q(Z)), with the rest factors fixed [124, 110]:

q(θi) ∝ exp
{
Eq(Z)

∏N
j=1;j6=i q(θj)

[
log p(θi|θA(i)) + log p(Y, Z|θ)

]}
for i = 1, 2, · · · ,N

q(Z) ∝ exp
{
E∏N

i=1 q(θi)

[
log p(Y, Z|θ)

]}
.

until the convergence of ELOB or a pre-specified maximum number of iterations. In
the expression, θA(i) denotes the set of the parameters in θ that depends on θi, as
specified in the prior.

In the following we show how the approximate posterior distribution can be
found for each prior. We constrain the search space of the approximate posterior
within the mean-field factorized form of q(θ, Z). For each prior we assume different
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factorization over q(θ), but we always assume that q(Z) is independent of the
approximate posterior over the parameters. By assuming that q(Z) is independent
of the rest factors, we can learn q(Z) following the same procedure for all three
priors. We start by showing the procedures for finding the q(θi)’s for each prior.
Then we demonstrate how q(Z) can be learned by Kalman filtering with augmented
observed variables [114].

Update of q(θi)

Matrix Normal Prior We assume that the approximate posterior over Kκ, ρq,Ξ, ρr,
and ρs can be factored as

q(θ) = q(Kκ)q(ρq,Ξ)q(ρr)
Kp∏
i=1

q(ρsi).

We start by finding the updating procedure for q(ρq,Ξ). Following the updating
equation for q(θi) we have in last subsection, we write out log q(ρq,Ξ) as

log q(ρq,Ξ) = log p(ρq) + Eq(Kκ)

[
log p(Ξ|ρq, Kκ)

]
+ Eq(Z)

[
log p(Z|ρq,Ξ)

]
+ const.

= (αq − 1) log ρq − βqρq −
1
2

tr
[
Ξ>ΛQΞ · Eq(Kκ)

[
Kκ
]]

+
Kp+ `

2
log |ΛQ|+ Eq(Z)

[
log p(Z|ρq,Ξ)

]
+ const.

Following similar steps as in [124, 125], we can find q(Ξ|ρq) as

log q(Ξ|ρq) = −
ρq

2
tr
[
Ξ>Ξ · Eq(Kκ)

[
Kκ
]]

−
ρq

2

J∑
j=1

N∑
n=1

tr
{
Eq(Z)

[
xn,jx>n,j

]
− Eq(Z)

[
xn,jm>n,j

]
Ξ>

−Ξ · Eq(Z)
[
mn,jx>n,j

]
+ Ξ · Eq(Z)

[
mn,jm>n,j

]
Ξ>
}
+ const.

= −
ρq

2
tr
[
Ξ · Eq(Kκ)

[
Kκ
]
Ξ>
]

−
ρq

2
tr
[
RXX − RXMΞ

> − ΞRMX + ΞRMMΞ
>]+ const.

= −
ρq

2
tr
{[(
Ξ− RXMR−1

M̄M̄

)
RM̄M̄

(
Ξ− RXMR−1

M̄M̄

)>
+ RX|M̄

]}
+ const.
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where mn,j = [z>n−1,j, u>n,j]
>,

RXX =

J∑
j=1

N∑
n=1

Eq(Z)
[
xn,jx>n,j

]
RXM =

J∑
j=1

N∑
n=1

Eq(Z)
[
xn,jm>n,j

]
RM̄M̄ = RMM + Eq(Kκ)

[
Kκ
]
=

J∑
j=1

N∑
n=1

Eq(Z)
[
mn,jm>n,j

]
+ Eq(Kκ)

[
Kκ
]

RX|M̄ = RXX − RXMR−1
M̄M̄R>XM.

Hence we conclude that

q(Ξ|ρq) = MN
(
Ξ; Ξ̂µ, 1

ρq
· I, K̂−1)

where Ξ̂µ = RXMR−1
M̄M̄ and K̂ = RM̄M̄. In the above expressions we can see that, to

find q(Ξ|ρq) we need Eq(Kκ)
[
Kκ
]

and the expectation over the sufficient statistics
formed by {zn,j} with respect to q(Z). We will present the former term later in this
subsection and return to the latter in the next subsection.

Next we determine q(ρq) using the equality log q(ρq) = log q(ρq,Ξ) − log q(Ξ),
we have

log q(ρq) = (αq − 1) log ρq − βqρq +
JNK

2
log ρq −

ρq

2
tr(RX|M̄)

+const.

From which we have
q(ρq) = G

(
ρq; α̂q, β̂q

)
where α̂q = αq + JNK/2 and β̂q = βq + 1/2 · tr(RX|M̄).

The updating procedure for q(Kκ) can be found by inspecting

log q(Kκ) = log p(Kκ) + Eq(ρq,Ξ)
[

log p(Ξ|1/ρq · I, K−1
κ )
]
+ const.

= log p(Kκ) +
K

2
log |Kκ|−

1
2

tr
[
KκEq(ρq,Ξ)

[
ρqΞ

TΞ
]]

+ const.

= (
νκ − 1 + K

2
) log |Kκ|−

1
2

tr

[
Kκ

(
W−1
κ + Eq(ρq,Ξ)

[
ρqΞ

TΞ
])]

+ const.
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In the expression we need Eq(ρq,Ξ)
[
ρqΞ

TΞ
]
, which can be shown to be [116]

Eq(ρq,Ξ)
[
ρqΞ

TΞ
]
= K · K̂−1 +

α̂q

β̂q
· Ξ̂>µ Ξ̂µ.

Thus we conclude that
q(Kκ) = W(Kκ; ν̂κ, Ŵκ)

where ν̂κ = νκ + K and Ŵκ =
[
W−1
κ + Eq(ρq,Ξ)

[
ρqΞ

TΞ
]]−1

. With q(Kκ) found, it is
straight forward that Eq(Kκ)

[
Kκ
]
= ν̂κŴκ.

The updating procedure for q(ρr) can be found through

log q(ρr) = log p(ρr) + Eq(Z)
[

log p(Y|Z, ρr)
]
+ const.

= (αr − 1) log ρr − βrρr +
JNM

2
· log ρr −

ρr

2

J∑
j=1

N∑
n=1

tr
[
yn,jy>n,j

−yn,jEq(Z)
[
z>n,j
]
Λ>H> − HΛEq(Z)

[
zn,j
]
y>n,j

+HΛ · Eq(Z)
[
zn,jz>n,j

]
Λ>H>

]
+ const.

which leads to the updating equation given as

q(ρr) = G(ρr; α̂r, β̂r)

where α̂r = αr+JNM/2, β̂r = βr+ 1/2·tr
[
RYY−RYZΛ

>H>−HΛRZY +HΛRZZΛ
>H>

]
,

RYY =
∑J
j=1
∑N
n=1 yn,jy>n,j, and RYZ =

∑J
j=1
∑N
n=1 yn,j · Eq(Z)

[
z>n,j
]

Finally the updating equation for q(ρsi)’s can be found by inspecting

log q(ρsi) = log p(ρsi) +
J∑
j=1

Eq(Z)
[

log p(z0,j|π0,Σ0)
]
+ const.

= (αs − 1) log ρsi − βsρsi +
J

2
log ρsi −

1
2
[V0]i,i · ρsi + const.

where V0 =
∑J
j=1 Eq(Z)

[(
z0,j−Eq(Z)[z0,j]

)(
z0,j−Eq(Z)[z0,j]

)>]
+
(
Eq(Z)[z0,j]−π0

)(
Eq(Z)[z0,j]−

π0
)>. Hence we have

q(ρsi) = G(ρsi ; α̂si , β̂si)

for i = 1, 2, · · · ,Kp, α̂si = αs + J/2 and β̂si = βs + 1/2 · [V0]i,i and [M]i,i denotes
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the i-th diagonal component of the square matrix M.

Independent ARD prior In the independent ARD prior, we assume that the ap-
proximate posterior q(θ) assumes the factorized form of

q(θ) =

K∏
i=1

Kp∏
j=1

q(γai,j)

K∏
i=1

∏̀
j=1

q(γbi,j)q(ρq,ξ)q(ρr)
Kp∏
i=1

q(ρsi).

The updating procedure of q(ρr) and q(ρsi)’s are the same as those for the matrix
normal prior. We will focus on the updating procedures of the rest factors.

We begin by finding the updating equation for q(ρq,ξ), of which the logarithm
takes the form of

log q(ρq,ξ) = log p(ρq) + Eq(γA)q(γB)
[

log p(ξ|ρq,Λξ)
]

+Eq(Z)
[

log p(Z|ρq,ξ)
]
+ const.

Similar to the derivations of q(ρq,Ξ) for the matrix normal prior, we write out
log q(ξ|ρq) as

log q(ξ|ρq) = Eq(γA)q(γB)
[

log p(ξ|ρq,Λξ)
]
+ Eq(Z)

[
log p(Z|ρq,ξ)

]
+ const.

= −
ρq

2
ξ>Eq(γA)q(γB)

[
Λξ
]
ξ

+ρqξ
>vec(RXM) −

ρq

2
ξ>(RMM ⊗ I)ξ+ const.

= −
ρq

2
ξ>(Eq(γA)q(γB)

[
Λξ
]
+ RMM ⊗ I)ξ+ ρqξ>vec(RXM) + const.

From which we conclude that

q(ξ|ρq) = N(ξ; ξ̂µ, 1
ρq
· Λ̂−1

ξ )

where Λ̂ξ = Eq(γA)q(γB)
[
Λξ
]
+ RMM ⊗ I and ξ̂µ = Λ̂

−1
ξ vec(RXM).

With that, we have log q(ρq) = log q(ρq,ξ) − log q(ξ|ρq) given as

log q(ρq) = (αq − 1) log ρq − βqρq +
JNK

2
log ρq −

ρq

2
tr(RXX)

+
ρq

2
ξ̂
>
µ Λ̂ξξ̂µ + const.
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From which we conclude that

q(ρq) = G(ρq; α̂q, β̂q)

where α̂q = αq + JNK/2 and β̂q = βq + 1/2 ·
[
tr(RXX) − ξ̂

>
µ Λ̂ξξ̂µ

]
.

As for the updating procedure for the q(γai,j)’s, we have log q(γai,j) expressed
as

log q(γai,j) = log p(γai,j) + Eq(ρq,ξ)
[

log p(ξ|ρq,Λξ)
]
+ const.

= (αa − 1) log γai,j − βaγai,j +
1
2

log γai,j

−γai,j ·
1
2

[
Eq(ρq,ξ)

[
ρqξξ

>]]
(j−1)K+i,(j−1)K+i

+ const.

where Eq(ρq,ξ)
[
ρqξξ

>] = Λ̂−1
ξ + α̂q/β̂q · ξ̂µξ̂

>
µ . Hence we have

q(γai,j) = G(γai,j ; α̂ai,j , β̂ai,j)

for i = 1, 2, · · · ,K, j = 1, 2, · · · ,Kp where α̂ai,j = αa + 1/2 and β̂ai,j = βa + 1/2 ·[
Eq(ρq,ξ)

[
ρqξξ

>]]
(j−1)K+i,(j−1)K+i

. Similarly, we have

q(γbi,j) = G(γbi,j ; α̂bi,j , β̂bi,j)

for i = 1, 2, · · · ,K, j = 1, 2, · · · , ` where α̂bi,j = αb + 1/2 and β̂bi,j = βb + 1/2 ·[
Eq(ρq,ξ)

[
ρqξξ

>]]
K2p+(j−1)K+i,K2p+(j−1)K+i

.

Self-Connected ARD prior In the self-connected ARD prior, we consider q(θ)
with the factorized form of

q(θ) =

K∏
i=1

K∏
j=1

q(γai,j)
∏̀
i=1

q(γb,i)q(ρq,ξ)q(ρr)
Kp∏
i=1

q(ρsi).

The updating procedure for all factors are the same as those of the independent
ARD prior expect for q(γai,j) and q(γbi).
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We can again find the updating procedure for q(γai,j) by inspecting log q(γai,j)

log q(γai,j) = log p(γai,j) + Eq(ρq,ξ)
[

log p(ξ|ρq,Λξ)
]
+ const.

= (αa − 1) log γai,j − βaγai,j +
p

2
log γai,j

−γai,j ·
1
2

p∑
m=1

[
Eq(ρq,ξ)

[
ρqξξ

>]]
(m−1)K2+(j−1)K+i,(m−1)K2+(j−1)K+i

+const.

Hence we have
q(γai,j) = G(γai,j ; α̂ ′ai,j , β̂

′
ai,j

)

for i = 1, 2, · · · ,K, j = 1, 2, · · · ,K where α̂ ′ai,j = αa + p/2 and β̂ ′ai,j = βa + 1/2 ·∑p
m=1

[
Eq(ρq,ξ)

[
ρqξξ

>]]
(m−1)K2+(j−1)K+i,(m−1)K2+(j−1)K+i

. Similarly,

q(γbi) = G(γbi ; α̂ ′bi , β̂
′
bi
)

for i = 1, 2, · · · , `, where α̂ ′bi = αb + K/2 and β̂ ′bi = βb + 1/2 ·
∑K
m=1

[
Eq(ρq,ξ)

[
ρqξξ

>]]
K2p+K(i−1)+m,K2p+K(i−1)+m

.

Update of q(Z)

As can be seen from the previous section, in order to update q(θi), instead of
q(Z) itself, we are mainly interested in the expectation of the sufficient statistics
Eq(Z)

[
zn,j
]
, Eq(Z)

[
zn,jz>n,j

]
, and Eq(Z)

[
zn,jz>n−1,j

]
. In the following we will begin by

inspecting log q(Z). Then we follow the procedures as proposed in [114] to augment
the measurement yn,j to derive Kalman filtering and smoothing procedure to find
the moments.
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The logarithm of the updating step for q(Z) can be expressed as

log q(Z) = Eq(ρq,A,B)q(ρr)q(ρs)
[

log p(Y, Z|A, B, ρq, ρr,ρs)
]
+ const.

= −
1
2

J∑
j=1

{
N∑
n=1

E
[
ρr
]
(yn,j − Czn,j)

>(yn,j − Czn,j)

+E
[
(zn,j − Aszn−1,j − Bsun,j)

>ΛQ,s(zn,j − Aszn−1,j − Bsun,j)
]

+(z0,j − π0)
>E
[
Σ−1

0
]
(z0,j − π0)

}
+ const.

= −
1
2

J∑
j=1

{
N∑
n=1

E
[
ρr
]
(yn,j − Czn,j)

>(yn,j − Czn,j)

+(zn,j − E
[
As
]
zn−1,j − E

[
Bs
]
un,j)

>E
[
ΛQ,s

]
(zn,j − E

[
As
]
zn−1,j − E

[
Bs
]
un,j)

+

[
zn−1,j

un,j

]> [
ΣA ΣAB

Σ>AB ΣB

][
zn−1,j

un,j

]
+(z0,j − π0)

>E
[
Σ−1

0
]
(z0,j − π0)

}
+ const.

whereΣA = E
[
A>ΛQA

]
−E
[
A>
]
E
[
ΛQ
]
E
[
A
]
,ΣAB =E

[
A>ΛQB

]
−E
[
A>
]
E
[
ΛQ
]
E
[
B
]
,

and ΣB = E
[
B>ΛQB

]
− E

[
B>
]
E
[
ΛQ
]
E
[
B
]
. With the second equality, we have

separated the variance over the fluctuations of the parameters from the mean
in the quadratic forms. In the above expressions E[A] and E[B] can be obtained
from the mean of q(Ξ|ρq) for the matrix normal prior or the mean of q(ξ|ρq)
for the ARD priors. E[As] and E[Bs] are formed by substituting E[A] and E[B]
for A and B in As and Bs, respectively. In addition, E

[
ΛQ
]

= α̂q/β̂q · I and

E
[
ΛQ,s

]
= block_diag(E

[
ΛQ
]
, 0). For all three priors, we can evaluate Eq(ρq,Ξ)

[
(Ξ−

E
[
Ξ
]
)>ΛQ(Ξ−E

[
Ξ
]
)

]
then index proper submatrices to get ΣA, ΣAB, and ΣB. With

the matrix normal prior, Eq(ρq,Ξ)
[
(Ξ − E

[
Ξ
]
)>ΛQ(Ξ − E

[
Ξ
]
)
]
= Eq(ρq,Ξ)

[
ρq · (Ξ −

E
[
Ξ
]
)>(Ξ− E

[
Ξ
]
)
]
= K · K̂−1. With the ARD priors, we have

vec
(
Eq(ρq,ξ)

[
(Ξ− E

[
Ξ
]
)>ΛQ(Ξ− E

[
Ξ
]
)
])>

= vec
(
Eq(ρq,ξ)

[
ρq(Ξ− E

[
Ξ
]
)>(Ξ− E

[
Ξ
]
)
])>

= vec(I)>Eq(ρq,ξ)

[
ρq · (Ξ− Ξ̂µ)⊗ (Ξ− Ξ̂µ)

]
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where Eq(ρq,ξ)

[
ρq · (Ξ− Ξ̂µ)⊗ (Ξ− Ξ̂µ)

]
can be obtained by rearranging the com-

ponents of Eq(ρq,ξ)[ρq ·(ξ−ξ̂µ)(ξ−ξ̂µ)>] = Λ̂
−1
ξ . Hence Eq(ρq,Ξ)

[
(Ξ−E

[
Ξ
]
)>ΛQ(Ξ−

E
[
Ξ
]
)
]

can be obtained by rearranging Λ̂−1
ξ and aggregating the components.

We can further re-express log q(Z) by grouping the terms that involve zn,j based
on time index n

log q(Z) = −
1
2

J∑
j=1

{
N−1∑
n=1

[
E
[
ρr
]
(yn,j − Czn,j)

>(yn,j − Czn,j)

+z>n,jΣAzn,j + 2u>n+1,jΣ
>
ABzn,j

+(zn,j − E
[
As
]
zn−1,j − E

[
Bs
]
un,j)

>E
[
ΛQ,s

]
(zn,j − E

[
As
]
zn−1,j − E

[
Bs
]
un,j)

]
+E
[
ρr
]
(yN,j − CzN,j)

>(yN,j − CzN,j)

+(zN,j − E
[
As
]
zN−1,j − E

[
Bs
]
uN,j)

>E
[
ΛQ,s

]
·(zN,j − E

[
As
]
zN−1,j − E

[
Bs
]
uN,j)

+(z0,j − π0)
>E
[
Σ−1

0
]
(z0,j − π0) + z>0,jΣAz0,j + 2u>1,jΣ

>
ABz0,j

}
+ const.

We define the augmented observation variable as ỹn,j = [y>n,j,−u>n+1,jLB, 0>kp×1]
>,

for n = 1, 2, · · · ,N − 1, and j = 1, 2, · · · , J. We also augment the observation
matrix and observation covariance matrix as: C̃ =

[
C>,ΣAB(L−1

B )>, LA|B

]> and Λ̃R

= block_diag(E
[
ρr
]
Ik, I`, Inp) where ΣB = LBL>B , ΣA − ΣABΣ

−1
B Σ

>
AB = LA|BL>A|B.

Finally, we let Σ̃0 = (E
[
Σ−1

0
]
+ ΣA)

−1 and π̃0 = Σ̃0

(
E
[
Σ−1

0
]
π0 − ΣABu1,j

)
. We can

rewrite log q(Z) as

log q(Z)

= −
1
2

J∑
j=1

{
N−1∑
n=1

[
(ỹn,j − C̃zn,j)

>Λ̃R(ỹn,j − C̃zn,j)

+(zn,j − E
[
As
]
zn−1,j − E

[
Bs
]
un,j)

>E
[
ΛQ,s

]
(zn,j − E

[
As
]
zn−1,j − E

[
Bs
]
un,j)

]
+E
[
ρr
]
(yN,j − CzN,j)

>(yN,j − CzN,j)

+(zN,j − E
[
As
]
zN−1,j − E

[
Bs
]
uN,j)

>E
[
ΛQ,s](zN,j − E

[
As
]
zN−1,j − E

[
Bs
]
uN,j)

+(z0,j − π̃0)
>Σ̃

−1
0 (z0,j − π̃0)

}
+ const.

As we noted before, what is of main interest is the expectation of the sufficient
statistics. With the above expressions, we can follow the Kalman filter procedure (as
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listed in Algorithm 1) and the standard Kalman smoother procedure (with E
[
As
]

and E
[
Bs
]

substituted for As and Bs, respectively, c.f. Appendix A) to find the
expectation of the sufficient statistics [126]. Note that similar to the EM algorithm
for TMS-EEG data, in filtering and smoothing the covariance matrices Vn|n ′ and
cross covariance matrices Vn,n−1|n ′ , we only need to compute the filtering and
smoothing procedure over a single epoch, as the expected values of the model
coefficients remain the same throughout the epochs. Similar to the EM algorithm,
the sufficient statistics are given by

Eq(Z)
[
zn,j] = zn|N,j n = 0, 1, · · · ,N

Eq(Z)
[
zn,jz>n,j

]
= Vn|N + zn|N,jz>n|N,j n = 0, 1, · · · ,N

Eq(Z)
[
zn,jz>n−1,j

]
= Vn,n−1|N + zn|N,jz>n−1|N,j n = 1, 2, · · · ,N

for j = 1, 2, · · · , J.

Algorithm 1 Kalman Filter
1: procedure Forward
2: z0|0,j = π̃0

3: V0|0 = Σ̃0
4: for n = 1 to N− 1 do
5: zn|n−1,j = E

[
As
]
zn−1|n−1,j + E

[
Bs
]
un,j

6: Vn|n−1 = E
[
As
]
Vn−1|n−1E

[
A>s
]
+ block_diag(E

[
ΛQ
]−1, 0)

7: K = Vn|n−1C̃>(C̃Vn|n−1C̃> + Λ̃
−1
R )−1

8: zn|n,j = zn|n−1,j + K(ỹn,j − C̃zn|n−1,j)
9: Vn|n = (I − KC̃)Vn|n−1

10: end for
11: zN|N−1,j = E

[
As
]
zN−1|N−1,j + E

[
Bs
]
uN,j

12: VN|N−1 = E
[
As
]
VN−1|N−1E

[
A>s
]
+ block_diag(E

[
ΛQ
]−1, 0)

13: K = VN|N−1C>(CVN|N−1C> + E
[
ρr
]−1 · I)−1

14: zN|N,j = zN|N−1,j + K(ỹN,j − CzN|N−1,j)
15: VN|N = (I − KC)VN|N−1
16: end procedure
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5.4 Evidence Lower Bound

In this section, we discuss the evaluation of the evidence lower bound (ELOB), which
is used to check convergence of the variational inference procedure. The ELOB, as
we have seen before, is given by

L = Eq
[

log p(Y, Z, θ)
]
+H(q)

= Eq(θ)q(Z)
[

log p(Y, Z|θ)
]
− Eq(Z)

[
log q(Z)

]
− KL(q(θ)||p(θ)).

The KL divergence in the above expression differs among the priors and the evalua-
tion of this term is standard, which we report in Appendix C.2. As for the first two
terms, [110] showed how they can be evaluated with autoregressive model of order
1. Here we extend their work to order p > 1. We start by inspecting the two terms:

Eq(θ)q(Z)
[

log p(Y, Z|θ)
]
− Eq(Z)

[
log q(Z)

]
= Eq(θ)q(Z)

[
log p(Y, Z|θ)

]
− Eq(Z)

[
Eq(θ)

[
log p(Y, Z|θ)

]
− logZ ′

]
= logZ ′

where logZ ′ = log
∫

exp
(
Eq(θ)

[
log p(Y, Z|θ)

])
dZ. The evaluation of logZ ′ follows

closely the procedures for evaluating the log likelihood function in the EM algorithm
[10] and was addressed in the accompanying code of [114]. Our model is differing
from [114] in our consideration of p > 1 and cortical signal orientations Λ, We
report the derivation and evaluation procedures for logZ ′ in Appendix C.1.

Hyperparameter Learning

The hyperparameters in the priors can be optimized by maximizing the ELOB. We
proceed by taking derivative of the ELOB with respect to the hyperparameter and
find the updates by solving the equation with the derivative equated to 0. We are
mainly interested in optimizing the hyperparameters of two classes of distributions:
the gamma distribution and the Wishart distribution. We will use the optimizing
steps of the hyperparameters of p(ρs) and p(Kκ) as an example.

We begin by finding the updating procedure for the hyperparameters of p(ρs).
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Setting the derivatives of ELOB with respect to αs and βs to 0, we have the equations:

ψ(αs) = logβs +
1
Kp

Kp∑
i=1

Eq(ρs)
[

log ρs,i
]

1
βs

=
1

αs · Kp

Kp∑
i=1

Eq(ρs)
[
ρs,i
]
.

From which we can simplify by setting c = 1/Kp ·
∑Kp
i=1 Eq(ρs)

[
log ρs,i

]
, d = 1/Kp ·∑Kp

i=1 Eq(ρs)
[
ρs,i
]

and βs = αs/d to arrive at

ψ(αs) − logαs + log d− c = 0.

Hence the solution αs to the above equation is the update to αs. Following [110],
we optimize αs by with iterating with the Newton step

αnew
s ← αs exp

(
−
ψ(αs) − logαs + log d− c

αsψ ′(αs) − 1

)
where ψ(x) is the trigamma function. Upon convergence, we update αs by setting it
to αnew

s and update βs by setting it to αnew
s /d.

The hyperparameters of p(Kκ) can be found similarly by setting the derivatives
with respect to νk and Wk to zero:

ψKp+`(
νk

2
) = − log |Wk|− (Kp+ `) log 2 + Eq(Kκ)

[
log |Kκ|

]
νkW−1

k = W−1
k Eq(Kκ)

[
Kκ
]
W−1
k .

Let c = −(Kp+ `) log 2 + Eq(Kκ)
[

log |Kκ|
]
, D = Eq(Kκ)

[
Kκ
]
, and Wk = 1/νk ·D, we

have
ψKp+`(

νk

2
) − (Kp+ `) log νk + log |D|− c = 0.

We again iterate over the follow Newton step to find the update for νk [127]:

νnew
k ← (νk − (Kp+ `) + 1)

· exp

[
ψKp+`(νk/2) − (Kp+ `) log νk + log |D|− c

(νk − (Kp+ `) + 1)/2 ·ψ ′Kp+`(νk/2) − (Kp+ `)(νk − (Kp+ `) + 1)/νk

]
+(Kp+ `) − 1
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where ψKp+`(x) is the multivariate trigamma function. On convergence the νk is
set to νnew

k and Wk is set to D/νnew
k .

Finally, we update π0 andΛ by

π0 =

J∑
j=1

z0,j|N

and

Λ = arg max
Λ

−
1
2

J∑
j=1

N−1∑
n=1

[
z>n,j|NC̃>C̃zn,j|N − 2z>n,j|NC̃>ỹn,j

]
+z>N,j|NC>CzN,j|N − 2z>N,j|NC>yN,j

subject to ||λi|| = 1 for i = 1, 2, · · · ,K

where C = [HΛ, 0], Λ = block_diag(λ1, λ2, · · · , λK). We note that the updating
steps for π0 andΛ resembles those of M-step in the EM algorithm for the maximum
likelihood estimate. Similar to EM algorithm, an iteration of Kalman filtering and
smoothing of q(Z) and updating π0 andΛmonotonically increases a lower bound
to logZ ′.

5.5 Simulation Results

In the first simulation we simulate data from a true model with six ROIs and MVAR
model order p of ten. We consider a sparse network that contains one-third of the
possible connections. The coefficients in A are turned on/off groupwise as in the
self-connected prior, six out of the 30 non-diagonal connections are present with
the rest being off. All diagonal connections are present. Data of four epoch sizes:
four, sixteen, 64, and 256 epochs are generated. For each epoch size we simulate
ten different realizations of data. All ten realizations follow the same network
matrix A and state-space model parameters. The model is set up so that the average
evoked response is 10 dB larger than the spontaneous signal - the observed signal
components due to the non-deterministic components in the cortical signal. In
other words, the spontaneous signal is Czn,j minus the average evoked response.
Moreover the spontaneous signal is 3 dB larger than the observed noise vn,j.
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In Figures 5.2 and 5.3 we depict Hinton diagrams of the A matrices in the true
model and of the posterior mean for different priors and different number of epochs
in a single realization. The Hinton diagram represents each coefficient in the A
matrix as a square. The color of the squares denotes the sign of the coefficients:
white (+) and black (-) and the area of the squares denotes the magnitude of the
coefficients. The similarity in the patterns between the posterior mean and the
true coefficient shows the performance of the estimated posterior distribution. We
observe that the self-connected ARD prior, having more information about the true
model, outperforms the other two priors. Even with relatively few number of epochs,
the posterior mean of the self-connected ARD prior detects the sparsity pattern in
the true model. The independent ARD prior is inferior to the self-connected ARD
prior but also identifies the pattern with intermediate size of data (64 epochs). The
posterior mean of the matrix normal prior is always dense, which is what we would
expect from the prior assumption. The difference in the posterior means of the
priors are more significant when data is of smaller size. As the number of epochs
increase, the difference becomes less significant. This observation agrees with our
understanding of Bayesian inference in that the prior beliefs affect the posterior
more when we have less data and the posterior mean of a conjugate prior becomes
the maximum likelihood estimate when we have infinite amount of data.

In Figure 5.4, the posterior mean-squared error (MSE) in A is depicted. The
posterior MSE is defined as

MSE =

K∑
i=1

Kp∑
j=1

E[(ai,j − āi,j)
2]

where the expectation is taken over the posterior marginal distribution q(A) and
ai,j denote the (i, j)-th component of A, which is a random variable drawn from
q(A) and āi,j is the (i, j)-th component of the true autoregressive coefficient Ā. In
Figure 5.4 (A), we show the MSE over the coefficients that corresponds to the ‘Off’
connections in A. The MSE can be analytical evaluated as individual coefficient in A
is Gaussian given the state precision ρq and is marginally t-distributed. In the figure,
each point is the average posterior MSEs, averaged over the posterior MSEs from
each of the ten data realizations. The error bars indicate the standard deviations of
the posterior MSEs. The posterior MSEs show similar trends as we observe from the
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Figure 5.2: Hinton diagram of the sparse network. In each panel we show the
Hinton diagrams of A matrices of the true model and the posterior mean of the
approximate posterior with different priors and different number of epochs. The
true model is a sparse network in that only 6 out of 30 non-diagonal connections
in the true model exists. The diagonal connections are always present. Each rows
from top to bottom correspond to: (A) - (B) True model. (E) - (H) Self-connected
ARD prior. (I) - (L) Independent ARD Prior. (M) - (P) Matrix normal prior. Columns
from left to right correspond to: 4 and 16 epochs.

Hinton diagrams of a single realization in Figures 5.2 and 5.3. The self-connected
ARD outperforms the rest two priors and the MSE and the difference among the
three priors decreases as we have more data. In Figure 5.4 (B) we show the MSE
over the ‘On’ connections and in Figure 5.4 (C) the normalized mean squared error
(NMSE) over the ‘On’ connections is depicted. The NMSE is the ratio of the sum of
mean squared errors of all ‘On’ coefficients to the sum of squared ‘On’ coefficient
values and is given as

NMSE =

∑
{i,j|āi,j 6=0} E[(ai,j − āi,j)

2]∑
{i,j|āi,j 6=0} ā

2
i,j

.

The NMSE indicates how well the posteriors characterize the true coefficients with
larger values. The NMSE shows similar trends as the MSE of the ’Off’ connections
(in Figure 5.4 (A)) but the difference between the priors are less significant. The
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Figure 5.3: Hinton diagram of the sparse network. In each panel we show the
Hinton diagrams of A matrices of the true model and the posterior mean of the
approximate posterior with different priors and different number of epochs. The
true model is a sparse network in that only 6 out of 30 non-diagonal connections
in the true model exists. The diagonal connections are always present. Each rows
from top to bottom correspond to: (A) - (D) True model. (E) - (H) Self-connected
ARD prior. (I) - (L) Independent ARD Prior. (M) - (P) Matrix normal prior. Columns
from left to right correspond to: 64 nd 256 epochs.

posterior variance of the ‘Off’ coefficients of the ARD priors are shrunken to zero.
On the other hand the posterior of the ’On’ coefficients remain non-zero valued.
Thus the difference in the NMSE among the priors are less significant over the ‘On’
coefficients. The self-connected ARD prior outperforms the other two priors as we
have coded more information about the structure of the true model in the prior.

In Figure 5.5, we illustrate how the posterior distribution characterizes the evoked
response. The model evoked response are generated with the posterior mean of
A and B, which are the maximum a posteriori estimates of A and B from the ap-
proximate posteriors. Each point is the average mean squared error over the 10
realizations and the error bars indicate the standard deviations. The trend in the
MSE of the evoked response resembles the trend in the NMSE of the ‘On’ coefficients
but the differences among the priors are less significant.

In the second simulation we simulate data from a true model of a dense network
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Figure 5.4: Posterior mean squared error in A, with the true A being a sparse
network. Each data point is the average posterior mean squared error in A where
the average is done across the posterior distributions obtained from each of the
10 realizations. The error bars show the standard deviation in the mean squared
errors. (A) Mean squared error over zero-valued true coefficients (‘Off’ connections).
(B) Mean squared error over non-zero-valued true coefficients (‘On’ connections).
(C) Normalized mean squared error over non-zero-valued true coefficients (‘On’
connections).
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Figure 5.5: Mean squared error in the evoked response of the sparse network.

over six ROIs. The coefficients in A are turned on/off groupwise. The six diagonal
connections are all present. 24 out of the 30 non-diagonal connections are present
with the rest being off. Thus the network is more dense compared to the first network.
We consider data of four epoch sizes: four, sixteen, 64, and 256 epochs are generated.
For each epoch size we simulate 10 different realizations of data from the same
model A and state-space model parameters.

In Figures 5.6 and 5.7, we show the Hinton diagrams of the A matrices of the true
model and the posterior mean of the approximate posterior for each prior. Compared
to Figures 5.2 and 5.3, the difference across the posteriors are less significant in this
case. In Figure 5.8 we depict the posterior MSE in A. Similar to what we see from
the Hinton diagrams in Figures 5.6 and 5.7, the difference among the priors are less
significant, compared to the sparse true model in the first example. We still see some
performance gain from the ARD priors when we have less data. This is intuitive
as the ARD priors would prune away the posterior mean and covariance of the
zero-valued true coefficients. The matrix normal prior outperform the ARD priors
in estimating the ‘On’ coefficients when the data is of larger size, which means the
ARD prior can overshrink the estimates. On the other hand the matrix normal prior
doesn’t encode structure preference and outperforms in estimating the actual value
of the ‘On’ coefficients when the data is larger enough.

In Figure 5.9, we show the mean squared error in the evoked response, the model
evoked response is generated by the posterior mean of A and B. The difference
among the priors is insignificant for this case, compared to what we see from the
sparse network in Figure 5.5.
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Figure 5.6: Hinton diagram of the dense network. Hinton diagram of A matrices of
the true model and the posterior mean of the approximate posterior with different
priors and different number of epochs. The true model is a dense network in
that 24 out of 30 non-diagonal connections in the true model exists. The diagonal
connections are always present. Each rows from top to bottom correspond to: (A)
- (D) True model. (E) - (H) Self-connected ARD prior. (I) - (L) Independent ARD
Prior. (M) - (P) Matrix normal prior. Columns from left to right correspond to: 4
and 16 epochs.

In the third simulated case, we revisit the sparse model as in the first case. We
generate ten different sparse networks, each of them has six out of 30 non-diagonal
groups of coefficients being switched on, but the six groups vary across the ten
networks. In addition, all six diagonal group of connections are on. Figure 5.10
depicts the average posterior MSE over the ten networks. The performance difference
among the priors over the ‘Off’ coefficients trend similarly as we observed from
Figure 5.4. That is, the self-connected ARD prior outperform the rest two priors as
it encodes the information of sparsity and group structure. The independent ARD
prior comes in second since it encodes sparsity. Moreover the similarity in trends
among the panels in Figures 5.4 and 5.10 shows the stability of our algorithm. Despite
the difference in network structure, the algorithm concludes with agreeing result
among networks with shared structure properties. On the other hand, the difference
in NMSE in the ‘On’ coefficients in Figure 5.10 among the priors is less significant,
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Figure 5.7: Hinton diagram of the dense network. Hinton diagram of A matrices of
the true model and the posterior mean of the approximate posterior with different
priors and different number of epochs. The true model is a dense network in
that 24 out of 30 non-diagonal connections in the true model exists. The diagonal
connections are always present. Each rows from top to bottom correspond to: (A)
- (D) True model. (E) - (H) Self-connected ARD prior. (I) - (L) Independent ARD
Prior. (M) - (P) Matrix normal prior. Columns from left to right correspond to: 64
and 256 epochs.

compared to what we saw in Figure 5.4, but we still observe the superiority of the
self-connected ARD prior.

In the fourth simulated case, we consider the patterns in which the coefficients
don’t switch on/off groupwise. Out of the 300 non-diagonal coefficients in the A
matrix, 60 of them are switched on. The 60 diagonal coefficients are all ‘On’. The
number of ‘On’ coefficients remain unchanged from the previous simulation. The
sets of ‘On’ coefficients vary across the ten simulated networks. In Figure 5.11 we
show the average posterior MSE among the ten networks. One notable difference
from Figure 5.10 is that the independent ARD prior outperforms the other two
priors, particularly over the ‘Off’ coefficients. This again shows that the prior helps
identifying the pattern if we code the proper structural belief in the prior.
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Figure 5.8: Posterior mean squared error in A, with the true A being a dense
network. Each data point is the average posterior mean squared error in A where
the average is done across the posterior distributions obtained from each of the
10 realizations. The error bars show the standard deviation in the mean squared
errors. (A) Mean squared error over zero-valued true coefficients (‘Off’ connections).
(B) Mean squared error over non-zero-valued true coefficients (‘On’ connections).
(C) Normalized mean squared error over non-zero-valued true coefficients (‘On’
connections).



100

4 16 64 256
Number of Epoch 

10
−4

10
−3

10
−2

Matrix Normal
Independent ARD
Self-Connected ARD

Figure 5.9: Mean squared error in the evoked response of the dense network.

5.6 Conclusion

In this chapter we presented the mean field variational inference procedure for the
Bayesian linear state-space model of the TMS-EEG data. We considered cortical
signals of fixed but unknown orientations and autoregressive model of order p > 1.
We considered two classes of priors with different structural preferences: the matrix
normal prior and the ARD prior. We presented variational inference procedures for
learning approximate posteriors of the parameters for both classes of priors. We
compared these priors by studying several simulated cases and we showed that the
priors, when specified properly with structural information, help identify the actual
network structure.
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Figure 5.10: Posterior mean squared error in A, with A being of ten different
sparse networks with group structure. Each data point is the average posterior
mean squared error in A where the average is done across the posterior distributions
obtained from each of the ten different sparse networks. The coefficients are switched
on group-wise. The error bars show the standard deviation in the mean squared
errors. (A) Mean squared error over zero-valued true coefficients (‘Off’ connections).
(B) Mean squared error over non-zero-valued true coefficients (‘On’ connections).
(C) Normalized mean squared error over non-zero-valued true coefficients (‘On’
connections).
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Figure 5.11: Posterior mean squared error in A, with A being of ten different
sparse networks with no group structure. Each data point is the average posterior
mean squared error in A where the average is done across the posterior distributions
obtained from each of the ten different sparse networks. The coefficients are switched
on independently. The error bars show the standard deviation in the mean squared
errors. (A) Mean squared error over zero-valued true coefficients (‘Off’ connections).
(B) Mean squared error over non-zero-valued true coefficients (‘On’ connections).
(C) Normalized mean squared error over non-zero-valued true coefficients (‘On’
connections).
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6 future work and summary

6.1 Future Work

In the previous chapters we showed how the MVARX model can be used to model
the cortical level and source level measurements. We demonstrated how structural
assumption of the models can be utilized to show difference in model complexity
between models of data in wakefulness and sleep. We also explored the potential of
learning the structure of brain network without explicitly imposing constraints with
the self-connected group lasso regularization and Bayesian inference procedures.

While we have investigated analysis of evoked response triggered by TMS during
wakefulness and sleep, the functional interactions of the brain during various forms
of stimulation remain to be explored. An interesting future work is to analyze
evoked responses triggered by brain stimulation modalities such as sensory motor
stimulation, optogenetic stimulation, and deep brain stimulation.

Instead of explicitly adopting structural hypotheses to learn different models as
we did in integrated and segregated models, a future work would be to utilize the
self-connected group lasso regularization in the linear state space model to learn the
structural pattern of brain network in a data-driven way. The Bayesian linear state
space model we presented in Chapter 5 can also be used to identify the network
structure. In particular, one can follow similar procedures as in DCM to perform
model selection by comparing the evidence lower bounds of priors with different
structural preferences [5].

Another interesting future work is to analyze multiple subjects under the same
condition altogether. Recall that the Bayesian priors discussed in Chapter 5 are
hierarchical priors. Specifically, we can learn common posteriors of the higher
level parameters for all subjects and learn independent posteriors of the lower level
coefficients for each subject. For instance, with the independent ARD prior, we can
learn group level means α̂ai,j/β̂ai,j of the posteriors of the gamma distribution that
the precision coefficients draw from and learn the individual posterior mean of the
precision γ̂ai,j for each subject. The group level means of posterior distributions can
be utilized to compare different groups of subjects. The difference between group
level means between, for instance, groups of subjects in wakefulness and sleep, can
help us learn new insights about the brain.
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Finally in Chapters 4 and 5 we assumed that the source orientation λ is of fixed
direction throughout the measurement session. The assumption can be relaxed
by assuming that the orientation varies across trials or within a trial for every
several milliseconds. We can also consider assessing the assumption by extending
the Bayesian framework. For example we can assume that the source orientations
of each source in different trials are independent and identically distributed and
follow the von Mises-Fisher distribution [128]. With the prior, the posteriors of the
source orientations will be the vector Bingham-von Mises-Fisher distribution and
the posterior means cannot be analytically evaluated. However one can apply the
Gibbs sampling procedures proposed in [128] to estimate the posterior means. The
full Bayesian linear state space model will be useful in validating our modeling
assumptions and understanding of the data.

6.2 Summary

Chapter 2 presented the application of the MVARX model in modeling intracerebral
EEG triggered by current stimulation. We presented an outlier detection process to
exclude outlying epochs from the data analysis. The model order p was selected
with cross-validation and model checking was done with a residual whiteness test.
The performance of the model in characterizing the data was evaluated with evoked
response and one-step prediction of the test datasets. Moreover, we estimated
models under two different structural hypotheses - full (integrated) and diagonal
(segregated) - and demonstrated that the models are capable of characterizing
the difference between level of integration in wakefulness and sleep. Finally an
application of the MVARX model in computing the integrated information of the
brain in wakefulness and sleep was presented.

Chapter 3 extended the results of Chapter 2 to consider learning MVARX model
from intracerebral EEG with self-connected group lasso regularization. We com-
pared sparse models learned in a data-driven way to full models introduced in
Chapter 2. We demonstrated that sparse models generally outperform the full mod-
els in one-step prediction and evoked-response characterization. We also showed
that the group lasso regularization identifies sparser brain connectivity patterns
during sleep, compared to those during wakefulness. Moreover the regularization
encourages denser interconnections between nodes in a common cortical area than



105

those between different areas.
Chapter 4 built upon the results of Chapter 2 and [10] to model the scalp evoked

responses to exogenous stimulation with a linear state space model in which the
state equation characterizes the cortical activity excited by the exogenous stimulation
as an MVARX process. We demonstrated the application of the model by modeling
TMS-EEG measurements. We selected the ROIs based on cortical signal power and
estimated the model parameters with an EM algorithm. An application of the model
was shown to learn models according to two structural hypotheses - integrated and
segregated - and we showed that the feedback path supported by the integrated
model is necessary to characterize the evoked response in wakefulness.

Chapter 5 considered imposing priors over the parameters in the linear state
space model discussed in Chapter 4 and presented variational Bayesian inference
procedures for learning approximated posteriors of the parameters and cortical
activities. We considered two classes of priors with differing structural preferences
and demonstrated the learning procedures for both classes of priors. We also showed
how the evidence lower bound can be evaluated. The lower bound can be utilized
to determine convergence of the algorithm and to perform model selection. Finally,
the priors were compared with simulation studies to show their performance in
learning the parameters.
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a em algorithm for tms/eeg

Eq. (4.1) in the paper may be rewritten as the state equation:

zn,j = Aszn−1,j + Bsun,j + w̃n,j (A.1)

where the Kp by one state vector zn,j is the concatenation of present cortical signals
and the previous p − 1 cortical signals, zn,j = [x>n,j, x>n−1,j, · · · , x>n−p+1,j]

>, the ` by
one input vector un,j is the concatenation of ` consecutive samples of un,j in time,
un,j = [un,j,un−1,j, · · · ,un−`+1,j]

>, and the Kp by one state noise w̃n,j = [w>n,j, 0]>.
The Kp by Kp state transition matrix As is given as

As =

[
A
I 0

]

and the Kp by `matrix Bs is given as

Bs =

[
B
0

]
.

Similarly, Eq. (4.2) can be reexpressed as

yn,j = HΛxn,j + vn,j

= Czn,j + vn,j

where theM by 3Kmatrix H = [H1, H2, · · · , HK], the 3K by KmatrixΛ is given as

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λK

 ,

and theM by Kpmatrix C = [HΛ, 0].
The maximum likelihood estimate (MLE) is found by solving

max
θ

log p(Y|U, θ) = max
θ

∫
log p(Y, X|U, θ)dX.
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The EM algorithm is an iterative method for finding the MLEs in the presence of
latent variables X. Each iteration of the EM algorithm involves two steps. Given
θ(k), the estimate at iteration k, we first complete the E step by computing

Q(θ, θ(k)) = EX|Y,U,θ(k) [log p(Y, X|U, θ)].

Next, we find θ(k+1) in the M step as θ(k+1) = arg maxθ Q(θ, θ(k)). The details of the
E- and M-steps are as follows.

E-step In the E-step we evaluate Q(θ, θ(k)) = EX|Y,U,θ(k) [log p(Y, X|U, θ)].
The complete data log likelihood function of the parameter θ, log p(Y, X|U, θ),

is given as

log p(Y, X|U, θ)

=

J∑
j=1

[
log p(z0,j|π0,σ2

0 · I)) +
N∑
n=1

log
(
p(yn,j|zn,j,Λ, R)p(zn,j|zn−1,j, un,j, As, Bs, Qs)

)]

where

p(z0,j|π0,σ2
0 · I) = N(z0,j;π0,σ2

0 · I)

p(yn,j|zn,j,Λ, R) = N(yn,j; Czn,j, R)

p(zn,j|zn−1,j, un,j, As, Bs, Qs) = N(zn,j; Aszn−1,j + Bsun,j, Qs).

Here N(x;π, V) denotes the probability density function of a Gaussian random
vector x with mean π and covariance matrix V. Hence the E-step involves evaluating
the posterior expectations of the following sufficient statistics:

zn|N,j = EX|Y,U,θ(k) [zn,j] (A.2)

Pn|N,j = EX|Y,U,θ(k) [zn,jz>n,j] (A.3)

Pn,n−1|N,j = EX|Y,U,θ(k) [zn,jz>n−1,j], (A.4)

for n = 1, 2, · · · ,N, j = 1, 2, · · · , J. These sufficient statistics can be computed
with the fixed-interval smoother (also known as the Rauch-Tung-Striebel smoother)
[129, 126]. The fixed interval smoother starts with Kalman filtering (forward pass),
which is as follows.
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• Initialize with z0|0,j = π
(k)
0 and V0|0 = V(k)

0 where π(k)
0 and σ2,(k)

0 · I are respec-
tively the estimates of initial mean and covariance matrix of each trial after
the k-th iteration.

• Prediction

zn|n−1,j = A(k)
s zn−1|n−1,j + B(k)

s un,j,

Vn|n−1 = A(k)
s Vn−1|n−1(A(k)

s )> + Q(k)
s ,

where A(k)
s , B(k)

s , and Q(k)
s are respectively the estimates of state transition

matrix, exogenous input matrix, and state noise covariance matrix after the
k-th iteration.

• Updating

Kn = Vn|n−1(C(k))>(R(k) + C(k)Vn|n−1(C(k))>)−1,

zn|n,j = zn|n−1,j + Kn(yn,j − C(k)zn|n−1,j),

Vn|n = (I − KnC(k))Vn|n−1,

where C(k) = [HΛ(k), 0]; the matrices Λ(k) and R(k) are respectively the esti-
mates of Λ and R after the k-th iteration.

Kalman filtering proceeds sequentially from n = 0 to N for all j. Note that the
covariance matrices Vn|n−1, Vn|n and the Kalman gain Kn are independent of the
trial index j. Thus, the computational cost is reduced by implementing updates for
these matrices in only one trial. The updates for the states zn|n−1,j and zn|n,j must
be performed for all trials.

The log likelihood function at θ(k) is expressed as [97]:

L(θ(k)) = −
1
2

J∑
j=1

N∑
n=1

log |Vn|n−1|

+(yn,j − C(k)zn|n−1,j)
>(Vn|n−1)

−1(yn,j − C(k)zn|n−1,j).

The EM algorithm is terminated at iteration k if [L(θ(k))−L(θ(k−1)]/[L(θ(k))−L(θ(0))]

is sufficiently small.
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The fixed-interval smoother uses the results of the Kalman filter as initial value
to obtain the sufficient statics in (A.2) - (A.4) by computing the following recursions
backward from n = N− 1 all the way to n = 0.

• Backward recursion for n = N− 1,N− 2, · · · , 0:

Jn = Vn|n(A(k)
s )>(Vn+1|n)

−1,

zn|N,j = zn|n,j + Jn(zn+1|N,j − A(k)
s zn|n,j − B(k)

s un+1,j),

Vn|N = Vn|n + Jn(Vn+1|N − Vn+1|n)(Jn)>,

Vn+1,n|N = Vn+1|N(Jn)>.

The smoothing steps on the covariance matrices Vn|N, Vn+1,n|N, and the matrix Jn
are independent of trial index and thus only need to be computed for one trial.

The results of the fixed-interval smoother are used to form the conditional ex-
pectation of the sufficient statistics Eqs. (A.2)-(A.4). zn|N,j is already computed,
Pn|N,j = Vn|N + zn|N,j(zn|N,j)

>, and Pn,n−1|N,j = Vn,n−1|N + zn|N,j(zn−1|N,j)
>.

Square-root Kalman filtering and smoothing minimize numerical computation
error propagation [130] and increase the stability of E-step.

M-step In the following we provide the M-step updates of the estimates for
A, B,Λ,R,Q,π0, and V0.

• Update for Λ:
Define the matrices F and G as

F =

J∑
j=1

N∑
n=1

xn|N,j(xn|N,j)
>

and

G =

J∑
i=1

N∑
n=1

yn,j(xn|N,j)
>

where xn|N,j is formed by the first K elements of zn|N,j.
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The terms in Q(θ, θ(k)) that involve Λ are given as:

q(Λ) , −
1
2

tr
{

R−1
[ J∑
j=1

N∑
n=1

yn,j(yn,j)
> − HΛ

J∑
j=1

N∑
n=1

xn|N,j(yn,j)
>

−

J∑
i=1

N∑
n=1

yn,j(xn|N,j)
>Λ>H> + HΛ

J∑
j=1

N∑
n=1

xn|N,j(xn|N,j)
>Λ>H>

]}

where tr(·) denotes the trace of a matrix. In the following we will substitute
R(k) for R in q(Λ). To findΛ(k+1), we need to solve the following optimization
problem

min
Λ

−q(Λ) (A.5)

subject to ||λi||
2
2 = 1, i = 1, 2, · · · ,K.

We solve this problem with the interior-point method [131]. We set the ini-
tial guess Λ0 by finding an unconstrained analytical solution that minimizes
−q(Λ). Equating the derivative of q(Λ) with respect to each of λi to zero and
reformulating gives the system of linear equation as

H>1 (R(k))−1H1f1,1 · · · H>1 (R(k))−1HKfK,1

H>2 (R(k))−1H1f1,2 · · · H>2 (R(k))−1HKfK,2
... . . . ...

H>K(R(k))−1H1f1,K · · · H>K(R(k))−1HKfK,K



λ1

λ2
...
λK



=


H>1 (R(k))g1

H>2 (R(k))g2

...
H>K(R(k))gK

 (A.6)

where fi,j denotes the (i, j)-th element of F and gi denotes the i-th column
of G. Each λi obtained by solving Eq. (A.6) is normalized to obtain Λ0. The
result of solving the constrained optimization problem (A.5) is Λ(k+1).
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• Update for R:

R(k+1) = σ2
R · I

σ2
R =

1
JNM

· tr

[
J∑
j=1

N∑
n=1

yn,j(yn,j)
> − HΛ(k+1)G> − G(Λ(k+1))>H>

+HΛ(k+1)F(Λ(k+1))>H>
]

.

Note that we assume isotropic observation noise in our study. The update is
easily modified for R an arbitrary covariance matrix.

• Update for A and B:

Define the Kp+ ` by Kp+ `matrix K and the K by Kpmatrix L as

K =


J∑
j=1

N∑
n=1

Pn|N,j
J∑
j=1

N∑
n=1

zn|N,jun,j
>

J∑
j=1

N∑
n=1

un,jz>n|N,j

J∑
j=1

N∑
n=1

un,ju>n,j



L = [IK, 0]

[
J∑
j=1

N∑
n=1

Pn,n−1|N,j

]
.

The derivative of Q(θ, θ(k)) with respect to [A, B] is,

∂Q(θ, θ(k))
∂[A, B]

= Q−1 (L + [A, B]K) .

Equating this derivative to zero gives

[A(k+1), B(k+1)] = LK−1.

• Update forQ:

Q(k+1) =
1
JN

(
F − LK−1L>

)
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• Update for π0:

π
(k+1)
0 =

1
J

J∑
j=1

z0|N,j

• Update of σ2
0:

σ
2,(k+1)
0 =

1
JKp

J∑
j=1

tr
[

V0|N,j + (z0|N,j − π
(k+1)
0 )(z0|N,j − π

(k+1)
0 )>

]
.

Note that this form of update ensures numerical stability by computing the
estimate as a sum of positive semidefinite matrices.
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b region selection procedure

We select ROIs for inclusion in the model by first using a minimum norm method
to reconstruct source activity at 3004 dipoles tesselating the cortical surface. Next
the estimated source activity is used to estimate the combined normalized power in
each cortical patch across both wakefulness and sleep data sets for each subject. The
ROIs in the model are selected based on the combined normalized power across the
entire patch set.

Consider theM by P leadfield matrix L where P = 3004 is the number of dipoles.
Let the dipole activity originating from voxel β be represented by the signal rβn,j, and
the concatenation of the dipole signals be the P by 1 vector rn,j = [r1

n,j, r2
n,j, · · · , rPn,j]

>.
The measured data can be expressed as

yn,j = Lrn,j + nn,j

where nn,j is noise. The minimum norm solution for rn,j satisfies

min
rn,j

J∑
j=1

N∑
n=1

||yn,j − Lrn,j||
2
2 + ηM||rn,j||

2
2.

We choose η using the generalized cross-validation (GCV) method proposed in
[132]. The GCV objective is given as

η̂ = arg min
η

1
M

∑J
j=1
∑N
n=1 ||(I−A(η))yn,j||

2
2

[ 1
M

tr(I−A(η))]2

where A(η) = L(L>L + ηM · I)−1L>. Once η̂ is selected, the signals from all dipoles
are reconstructed as [133]

rn,j = L>(LL> + (η̂M)I)−1yn,j.

Define L` as theM by G` matrix containing the G` columns of L corresponding
to the G` dipoles within patch ` and let L` = UΣV> be the singular value decompo-
sition. Define theM by 3 patch basis [95] D` = Ũ`Σ̃` where theM by 3 matrix Ũ`

contains the three dominant left singular vectors and Σ̃` is a 3 by 3 diagonal matrix
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of the three largest singular values. Assuming L` is well approximated by a rank 3
matrix [95], then the Gram matrix L`(L`)> can be approximated as D`(D`)>. This
result will be used below.

Next we use the reconstructed dipole activity to estimate the cortical signal
power associated with the `-th patch. The signals from dipoles within patch ` are
r`n,j = (L`)>(LL> + (η̂M)I)−1yn,j. We model the cortical signal from each patch as
a scalar s`n,j with the orientation of the signal with respect to the columns of D`

given by λ`. That is, the measured signal components originating from patch ` are
modeled as y`n,j ≈ D`λ`s`n,j. Ignoring noise, we have y`n,j = L`r`n,j and thus

s`n,j = (λ`)
>
(Σ̃`)−1(Ũ`)>y`n,j

= (λ`)
>
(Σ̃`)−1(Ũ`)>L`(L`)>(LL> + (η̂M)I)−1yn,j

= (λ`)
>
(D`)

>
(LL> + (η̂M)I)−1yn,j

where we used L`(L`)> ≈ D`(D`)
>
= Ũ`(Σ̃`)

2
(Ũ`)> and (Σ̃`)−1(Ũ`)>Ũ`(Σ̃`)

2
(Ũ`)>

= Σ̃
`
(Ũ`)> = (D`)

>. We choose the orientation λ` to maximize the power associated
with s`n,j, that is

λ` = arg max
λ`

(λ`)
>
(D`)>(LL> + (η̂M)I)−1Ry(LL> + (η̂M)I)−1D`λ`

subject to (λ`)
>
λ` = 1 as in [133]. Here the spatial covariance matrix Ry = 1/JN ·∑J

j=1
∑N
n=1 yn,j(yn,j)

> − µyµ
>
y and µy = 1/JN ·

∑J
j=1
∑N
n=1 yn,j. The solution is

to choose λ` as the eigenvector corresponding to the maximum eigenvalue of
(D`)>(LL> + (η̂M)I)−1Ry(LL> + (η̂M)I)−1D`. The power σ(`) associated with s`n,j

is equal to the maximum eigenvalue.
The power associated with the `th patch of the data collected from a subject

during wakefulness and sleep is denoted σw(`) and σs(`), respectively. We form a
weighted average of wakefulness and sleep patch powers to obtain a normalized
index

σ(`) =
σw(`)

tr(Ry,w)
+

σs(`)

tr(Ry,s)

where the normalizing weights tr(Ry,w) and tr(Ry,s) are overall signal power of the
data in wakefulness and sleep, respectively.

The first ROI is selected as the one that maximizes σ(`). The second ROI max-
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imizes σ(`) after all ROIs that overlap with the first one are excluded. The third
patch maximizes σ(`) after all patches that overlap with the first two are excluded.
This procedure continues until bM/3c patches are selected.
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c evaluation of evidence lower bound

C.1 Evaluation of logZ ′

We can reexpress the logZ ′

logZ ′

=

J∑
j=1

log
∫
dz0,jdx1:N,j exp

(
Eq(θ)

[
log p(Y, Z|θ)

])
=

J∑
j=1

log
∫
dz0,jdx1:N,j exp

{
−
Kp

2
log 2π+

1
2
Eq(ρs)

[
log |Σ−1

0 |
]

−
1
2
(z0,j − π0)

>Eq(ρs)
[
Σ−1

0
]
(z0,j − π0)

+

N∑
n=1

[
−
K

2
log 2π+

K

2
Eq(ρq)

[
log ρq

]
−

1
2
Eq(ρq,Ξ)

[
ρq · (xn,j − Azn−1,j − Bun,j)

>(xn,j − Azn−1,j − Bun,j)
]

−
M

2
log 2π+

M

2
Eq(ρr)

[
log ρr

]
−
Eq(ρr)

[
ρr
]

2
(yn,j − Czn,j)

>(yn,j − Czn,j)
]]}

=

J∑
j=1

log
∫
dz0,jdx1:N,j exp

{
−
Kp

2
log 2π+

1
2

log |Σ̃
−1
0 |−

1
2
(z0,j − π̃0)

>Σ̃
−1
0 (z0,j − π̃0)

+
1
2
Eq(ρs)

[
log |Σ−1

0 |
]
−

1
2

log |Σ̃
−1
0 |+

1
2
π̃>0 Σ̃

−1
0 π̃0 −

1
2
π>0 Eq(ρs)

[
Σ−1

0
]
π0 −

1
2

u>1,jΣBu1,j

+

N−1∑
n=1

[
−
K

2
log 2π+

K

2
log Eq(ρq)

[
ρq
]
−
Eq(ρq)

[
ρq
]

2
(xn,j − E[A]zn−1,j − E[B]un,j)

>

·(xn,j − E[A]zn−1,j − E[B]un,j) +
K

2
Eq(ρq)

[
log ρq

]
−
K

2
log Eq(ρq)

[
ρq
]

−
M+ Kp+ `

2
log 2π+

1
2

log |Λ̃R|−
1
2
(ỹn,j − C̃zn,j)

>Λ̃
−1
R

·(ỹn,j − C̃zn,j) +
Kp+ `

2
log 2π+

M

2
E
[

log ρr
]
−

1
2

log |Λ̃R|

]
−
K

2
log 2π+

K

2
log Eq(ρq)

[
ρq
]
−
Eq(ρq)

[
ρq
]

2
(xN,j − E[A]zN−1,j − E[B]uN,j)

>
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·(xN,j − E[A]zN−1,j − E[B]uN,j) +
K

2
Eq(ρq)

[
log ρq

]
−
K

2
log Eq(ρq)

[
ρq
]

−
M

2
log 2π+

M

2
log E[ρr] −

E[ρr]

2
(yN,j − CzN,j)

>(yN,j − CzN,j)

+
M

2
E
[

log ρr
]
−
M

2
log E[ρr]

}

=

J∑
j=1

{
1
2
Eq(ρs)

[
log |Σ−1

0 |
]
−

1
2

log |Σ̃
−1
0 |+

1
2
π̃>0 Σ̃

−1
0 π̃0 −

1
2
π>0 Eq(ρs)

[
Σ−1

0
]
π0

−
1
2

u>1,jΣBu1,j +N ·
(
K

2
Eq(ρq)

[
log ρq

]
−
K

2
log Eq(ρq)

[
ρq
]

+
M

2
E
[

log ρr
]
−
M

2
log E[ρr]

)
+ (N− 1) · Kp+ `

2
log 2π

+ log
∫
dz0,jdx1:N,j ·

[
N(z0,j; π̃0, Σ̃0)

N−1∏
n=1

[
N(xn,j;E[A]zn−1,j − E[B]un,j,E

[
ρq
]−1 · I)

·N(ỹn,j, C̃zn,j, Λ̃
−1
R )
]

·N(xN,j;E[A]zN−1,j − E[B]uN,j,E
[
ρq
]−1 · I)N(yN,j, CzN,j,E

[
ρr
]−1 · I)

]}
.

Thus we can let the last term as log f(ỹ1,j, ỹ2,j, · · · , ỹN−1,j, yN,j), which we can further
expand as log f(ỹ1,j, ỹ2,j, · · · , ỹN−1,j, yN,j) = log f(ỹ1,j) +

∑N−1
n=2 log f(ỹn,j|ỹ1:n−1,j) +

log f(yN,j|ỹ1:N−1,j). Hence we conclude that the lnZ ′ can be evaluated with the
Kalman filter procedure similar to how we evaluate log likelihood function for the
frequentist EM algorithm:

logZ ′ =

J∑
j=1

{
1
2
Eq(ρs)

[
log |Σ−1

0 |
]
−

1
2

log |Σ̃
−1
0 |+

1
2
π̃>0 Σ̃

−1
0 π̃0 −

1
2
π>0 Eq(ρs)

[
Σ−1

0
]
π0

−
1
2

u>1,jΣBu1,j +N ·
(
K

2
Eq(ρq)

[
log ρq

]
−
K

2
log Eq(ρq)

[
ρq
]

+
M

2
E
[

log ρr
]
−
M

2
log E[ρr]

)
+ (N− 1) · Kp+ `

2
log 2π

−(N− 1) · M+ Kp+ `

2
log 2π−

1
2

N−1∑
n=1

[
log |En|n−1|+ e>n|n−1,jE−1

n|n−1en|n−1,j
]

−
M

2
log 2π−

1
2

log |EN|N−1|+ e>N|N−1,jE−1
N|N−1eN|N−1,j

}
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where en|n−1,j = ỹn,j−C̃zn|n−1,j, En|n−1 = C̃Vn|n−1C̃>+Λ̃−1
R for n = 1, 2, · · · ,N−1,

eN|N−1,j = yN,j − CzN|N−1,j and EN|N−1CVN|N−1C> + E[ρr]
−1 · I.

C.2 Evaluation KL(q(θ)||p(θ)) in the Evidence Lower
Bound

Matrix Normal Prior The KL divergence between the approximate posterior q(θ)
and the prior p(θ) can be written out as

KL(q(θ)||p(θ)) = −H(q(θ)) − E
[

log p(θ)
]

= −H(q(ρq)) − Eq(ρq)
[
H(q(Ξ|ρq)

]
−H(q(Kκ))

−H(q(ρr)) −H(q(ρs))

−Eq(ρq)
[

log p(ρq)
]
− Eq(ρq,Ξ)q(Kκ)

[
log p(Ξ|ρq, Kκ)

]
−Eq(Kκ)

[
log p(Kκ)

]
− Eq(ρr)

[
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)
−
ν̂k

2
tr(W−1

k Ŵk)
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ψ(x) = d log Γ(x)/dx is the digamma function and ψp(x) = d log Γp(x)/dx is the
multivariate digamma function.

Independent ARD prior The KL divergence from the approximate posterior q(θ)
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