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Abstract

Reaction networks, or interaction networks, encapsulate rules how entities, be it chemical

species or organisms, may interact with one another. The dynamics of such interactions may

be difficult to analyze, given the intricate connections. At times, however, network structure

dictates the possible behaviours of the system. Detailed-balanced and complex-balanced mass-

action systems are good examples; they enjoy a variety of algebraic and stability properties.

However, they also typically describe ideal systems, which are rare in biochemistry and biology.

In this thesis, we extend properties of detailed-balanced and complex-balanced systems to

models that approximate them in certain senses. These include: mass-action systems that are

dynamically equivalent to complex-balanced ones, and perturbing the rate constants of robustly

permanent complex-balanced systems while maintaining global stability. We also consider

vertex-balanced steady states, the analog of complex-balanced ones, for generalized mass-action

systems, where the rate functions do not match the stoichiometric coefficients. Finally, for

mass-action kinetics with delay, we study delay stability (asymptotic stability independent of

rate constants and delay parameters.
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Chapter 1

Introduction

In applications ranging from chemistry, biochemistry, to population dynamics, different entities

interact according to preset rules. Different molecules may chemically react while others are

inert; proteins and genes interact in certain ways; predators prey on specific animals; diseases

may spread upon contacts. These rules of interactions can be summarized by a network, and

one can use mathematical tools to analyze the dynamics. The models can be deterministic

or stochastic; continuous or discrete; homogeneous or spatially distributed. These typically

high-dimensional and non-linear models can be approached numerically or analytically, or a

combination thereof.

Different assumptions behind biological models lead to different mathematical

techniques being employed [47, 51, 54, 125]. These could involve continuous state spaces, e.g.,

ordinary differential equations (ODEs), partial differential equations (PDEs), delay differential

equations (DDEs). But they could also involve discrete state spaces, such as in continuous-time

Markov chains and Boolean networks.

One could argue that among the different models, the simplest of which are ODE

deterministic models. However, even here, the diversity of possible dynamics is staggering.

For example, the three networks in Figure 1.1 generate wildly different dynamics under mass-

action kinetics. Mass-action systems, whose systems of ODEs have polynomial right-hand

sides, can exhibit global stability (Figure 1.1(a)), bistability (Figure 1.1(b)), and oscillation

(Figure 1.1(c)). The network in Figure 1.1(c) is a version of Sel’kov’s model of glycolysis [120].

In higher dimensions, it is even possible for a mass-action system to exhibit chaotic dynamics.
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We defer a detailed discussion of mass-action kinetics, the focus of this thesis, until Section 1.3.

It suffices to say that ODE models have had a long history, dating back to Thomas Malthus’

exponential growth model for human populations in 1978 [100], and Pierre-François Verhulst’s

first logistic model in 1838 [130].

0 X

X + Y

(a)

0 X

Y
2X 3X

(b)

0 X

Y

3X

2X + Y

(c)

Figure 1.1: Possible dynamics under mass-action kinetics: (a) network with a
globally stable equilibrium, (b) one that exhibits bistability, and (c) one with a
stable limit cycle.

ODE models, unlike those using PDEs, assume the system is spatially homogeneous,

i.e., they contain no spatial information. Within the cell, however, not only are there

physical boundaries (e.g., cell membranes), but there are processes that crucially rely on

chemical gradients. Two examples are ion gradients, used to generate electric potential across

membranes, and proton gradient, involved in the production of ATP, the energy currency of

living organisms. In other scenarios, diffusion or transport play important roles [99]. In cases

where spatial information is consequential, PDEs models, keeping track of concentrations or

population sizes as functions of time and space, are more appropriate.

Where diffusion influences the dynamics, one could use reaction-diffusion equations.

This is one of the most studied mathematical model for macroscopic patterns or markings in
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organisms [90]. Figure 1.2 hints at how the reaction-diffusion equation is a candidate for the

theoretical underpinning of pattern formation in biology.

Figure 1.2: Examples of Turing patterns on surfaces from [135].

Delay models incorporate a delay time between initiation of a chemical reaction and

its termination. The time lag could also come from simplifying an existing model, say, by

combining several reaction steps into one. Delay models form the topic of Chapter 4.

When the number of biomolecules is so low that “concentration” cannot be defined,

stochastic models are better suited for the job. Instead of keeping track of concentrations,

one instead keeps track of the exact number of each type of molecules as a function of time.

At randomly determined times, a reaction may fire; which reaction fires is also randomly

determined. The molecular count X(t) ∈ Zn≥ is a continuous-time Markov chain. See [5, 134]

for introductions.

A different discrete model is that of Boolean networks [89, Chapter 5]. The state space

of a Boolean model is simply {0, 1}n, with 0 representing the “off” state and 1 representing

the “on” state. In the context of gene regulatory networks, a Boolean network can be used

to model when genes are switched on or off based on current understanding of how genes and

their downstream proteins interact.

The models described above only represent a fraction of the possibilities. For example,

stochastic differential equations were not even mentioned, but can be used to include a noise
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Spatially

Inhomogeneous

Spatially

Homogeneous

Low Conc.

High Conc.
PDE

Reaction-Diffusion

Agent-Based

Models

ODE

Power-Law

ODE

Mass-Action

Markov Chain

Mass-Action

Figure 1.3: Several mathematical models for biochemical systems and their
applicability with respect to spatial homogeneity and molecular counts.

on the average system behaviour, or when there is low molecular count alongside spatial

inhomogeneity [1]. Moreover, the above assumptions can be combined in many different ways,

and each model has its place, depending on the biological questions of interest.

The lengthy discussion thus far only speaks to biological dynamics. Researchers are

also working on fitting experimental data, identifying parameters, extrapolating relations

from high-throughput data; this is in addition to designing and controlling system dynamics.

The application of mathematics and quantitative methods to biology can be and should be

approached from many different fronts.

1.1 Overview

The starting point of modelling a system’s dynamics is a network that describes the interactions

of all relevant participants. The remainder of this introductory chapter defines reaction

networks, mass-action systems, and notions that are relevant to this thesis. In particular,

Section 1.4 reviews what is known about detailed-balanced and complex-balanced systems,

collectively called toric systems in this thesis. Their algebraic and dynamical properties are

reviewed in Sections 1.4.1 and 1.4.2, respectively.
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Chapter 2 extends toric systems’ global stability1 to other mass-action systems. In

Section 2.2, we characterize when single-target models, a family of mass-action systems that

are not weakly reversible, are essentially detailed-balanced via dynamical equivalence. In

Section 2.3, we prove that under the Permanence Conjecture, mass-action systems that came

from perturbing the rate constants in a complex-balanced system, are globally stable.

In Chapter 3, complex-balancing is extended to power-law kinetics within the framework

of generalized mass-action systems. We study the existence and uniqueness of vertex-balanced

steady states in every invariant polytope generated by mass conservation relations. Essentially,

we extend Birch’s Theorem (Theorem 1.4.4), which states that for a fixed vector subspace

S ⊆ Rn, the intersection (x0 + S) ∩ (x∗ ◦ expS⊥) consists of exactly one point for any x0,

x∗ ∈ Rn>. Our generalization provides conditions for when (x0 + S)∩ (x∗ ◦ exp S̃⊥) consists of

exactly one point for any x0, x
∗ ∈ Rn>, where S and S̃ ⊆ Rn are vector subspaces.

Finally, in Chapter 4, we look at mass-action systems with delay. We provide an

algebraic condition in Section 4.2 for when any positive steady state is asymptotically stable,

independent of the delay parameters, i.e., absolutely stable. The rest of the chapter introduces

the directed species-reaction graph and provides a graph-theoretic condition for asymptotic

stability independent of delay parameters and rate constants. That is the content of Section 4.5.

1.2 Reaction networks

In this section, we introduce reaction network as a mathematical object and two

representations of it. One of these has its roots in Chemical Reaction Network Theory [59,

73, 78, 136] and is more readily recognizable by biologists and chemists. The other, more

recent and geometric, representation is especially useful when studying mass-action kinetics

in relation to its network structure. This latter perspective is important to our work. The

notations established in this section are used throughout this thesis.

1Global stability is conjectured for toric systems in general, with some cases proven. We will only consider
those that are known to be globally stable.
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Although called a reaction network, it should be thought of more as an interaction

network, as the population model in Example 1.2.2 shows. Nonetheless, we retain the historical

terminology while acknowledging that the theory discussed in this chapter has wider application

than to chemical reactions.

Example 1.2.1. Leonor Michaelis and Maud Menten [81, 102] investigated the enzymatic

mechanism

E + S ES E + P

whereby a substrate S is converted to a product P by an enzyme E, via an intermediate ES.

In the language of Chemical Reaction Network Theory, the chemical species are S, P, E, and

ES; these are the entities whose concentrations we are interested in.

The Michaelis–Menten equation for enzyme kinetics

d[P]

dt
=

Vmax[S]

KM + [S]

describes the initial reaction rate as a function of substrate concentration [S]. In a biochemistry

textbook, this equation might be derived from mass-action kinetics under the quasi-steady state

approximation, i.e., that the concentration of the intermediate [ES] is approximately constant.

Related but more restrictive is the rapid equilibrium assumption, where one assumes that the

reaction ES → E + S proceeds much faster than ES → E + P, and that [ES] + [E] � [S]. The

same Michaelis–Menten equation follows [79]. Michaelis and Menten in [102] applied the rapid

equilibrium assumption, and the quasi-steady state approximation was proposed by Briggs and

Haldane in 1925 [118].

The mechanism consists of three elementary reactions. One such reaction is the binding

of E to S in order to produce the intermediate ES. One typically assumes that the reaction

proceeds at some prescribed rate, mass-action kinetics being an extremely common assumption.

Finally, the non-negative combinations of species appearing as either the source (or
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reactant) or target (or product) of reactions are called complexes. The mechanism above has

three complexes: E + S, ES, and E + P. The coefficients of the species in each complex are its

stoichiometric coefficients.

Example 1.2.2. Consider the Lotka–Volterra predator-prey model [10, 97, 98, 132], where a

prey X, say a snowshoe hare, is hunted by a predator Y, e.g., a Canadian lynx. Also assume

that the hares are reproducing and lynxes die over time naturally. Together, these interactions

can be represented by the (interaction) network

X 2X X + Y 2Y Y 0

with two species (X and Y), three reactions, and six complexes (X, 2X, X + Y, Y, 2Y, and 0).

In the interaction X + Y → 2Y, the reactant complex is X + Y, while the product complex is

2Y; the stoichiometric coefficients of the reactant species X and Y are 1 and 1 respectively,

while the stoichiometric coefficients of the product species Y is 2.

Historically, a chemical reaction network is the triple N = (S, C,R), where S =

{X1,X2, . . . ,Xn} is the set of species, C is the set of complexes, and R is the set of reactions [59].

The concentration of the species Xi is denoted xi, and the vector of concentrations is an element

of RS≥. The whole framework was designed to avoid imposing an order on the chemical species.

However, practicality wins; when building a model for n species, we often impose an (arbitrary)

order on the species and identify the space RS with Rn. With this ordering of the species, each

complex is naturally associated to a vector whose components are its stoichiometric coefficients.

Edges between the distinct complexes are reactions. A reaction network is fundamentally a

directed graph.

In Example 1.2.2, let X be the first species and Y be the second. Then we have a graph

with three edges:

1

0

→
2

0

 ,

1

1

→
0

2

 , and

0

1

→
0

0

 .
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Definition 1.2.3. A reaction network is a finite directed graph G = (V,E) whose vertices

are vectors in Rn≥2. We assume that the graph G has no self-loops and no vertices are isolated3.

A vertex is also called a complex . An edge (yi,yj), also denoted yi → yj or (i, j), is called

a reaction . If yi → yj and yj → yi are edges in E, we denote the reaction pair as yi 
 yj .

Finally, the vector yj − yi is the reaction vector of the edge yi → yj .

The reader might have noticed a jump from a complex being associated to a vector,

to a complex being de facto a vector. In the literature, a reaction network whose vertices

are vectors in Rn is sometimes more explicitly called a Euclidean embedded graph or E-

graph [31]. In this view, a reaction is a bona fide vector originating from its source complex.

For example, the Euclidean embedded graph of the Lotka–Volterra model of Example 1.2.2

is in Figure 1.4(a). The labels of the complexes, which can be read from the coordinates

of the vertices, are extraneous but provided here for the reader’s convenience. From this

point on, we do not distinguish between the more geometric representation of the Euclidean

embedded graph (Figure 1.4(a)) and the more traditional representation writing out the source

and product complexes (Example 1.2.2). We use either representation as needed.

X0 2X

X + Y

2Y

Y

(a)

R

I

S

S + I
2I

I

R

(b)

Figure 1.4: The Euclidean embedded graphs of (a) the Lotka–Volterra model in
Example 1.2.2 and (b) the SIR model for infectious disease Example 1.3.2.

2Traditionally, vertices, whose coefficients represent the stoichiometry in a reaction, are restricted to Zn≥. The
most general setting, allowing vertices to be any vectors in Rn, has some dynamical implications for mass-action
kinetics. These will be remarked on in due course.

3These assumptions will have no effect on any dynamics that we will consider. They present minor annoyances
when defining the Laplacian matrix in Equation (1.6).
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Two graph-theoretic properties of reaction networks are related to special classes of

equilibria in mass-action systems.

Definition 1.2.4. Let G = (V,E) be a reaction network.

(a) We say G is reversible if whenever yi → yj ∈ E, then yj → yi ∈ E. In other words,

the set of reactions can be written as the set of reaction pairs.

(b) We say G is weakly reversible if every edge is part of an oriented cycle. Equivalently,

whenever there is a directed path from yi to yj , then there exists a directed path from

yj to yi.

For example, all three networks in Figure 1.1 are weakly reversible, but the network

in Figure 1.1(c) is also reversible. The networks of the Lotka–Volterra model and the SIR

model for infectious disease in Figure 1.4 are neither weakly reversible nor reversible. Clearly,

a reversible network is weakly reversible.

1.3 Kinetic models

In this section, we consider how to construct a deterministic ODE model for the time evolution

of concentrations. This is accomplished by choosing a kinetics, an assumption on how fast each

reaction proceeds.

Although we use the language of chemistry and biochemistry (e.g., concentrations), the

framework is applicable in other contexts, such as populations dynamics in the Lotka–Volterra

predatory-prey model of Example 1.2.2. In population models, the analogue of concentration

is either number of individuals, or population density.

We now discuss assumptions common to many deterministic ODE models. First,

determinism implies that if the system starts from the same state4, the dynamics will be

exactly the same. Systems at a macro level tend to be deterministic in nature, in the sense

4For non-autonomous systems that involve external influences dependent on time, it is assumed that these
influences also remain the same at the appropriate time.
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that in all observable ways they behave the same. This reflects the averaging that occurs when

measuring macroscopic properties.

Second, the system is assumed to be spatially homogeneous, i.e., the concentration

at one corner of the container is the same as at another location. Also known as the well-

mixed assumption, this is frequently accomplished by mechanical stirring in the reaction vessel.

Spatial homogeneity is approximately true if the timescales of the reactions are much slower

than the timescale of diffusion.

Finally, it is assumed that all the actions associated to a reaction happens

instantaneously. Reactant species are consumed at the same time product species become

available. Again, at a molecular scale this is simply untrue; reactions go through transition

states. But if the timescales of the transitions are much faster than that of the reactions,

then this approximation holds. In Chapter 4, we drop this assumption when discussing delay

models.

Under the assumptions discussed above, we model the time evolution of the state

variables as governed by the reaction network G = (V,E), using the system of ordinary

differential equations

dx

dt
=

∑
(i,j)∈E

νij(x, t)
(
yj − yi

)
, (1.1)

where a choice of kinetics determines the rate functions νij : Rn≥ × R → R≥. For example,

Michaelis–Menten kinetics assumes that the initial rate of the reaction S → P, catalyzed by

an enzyme E is modelled by

ν([S], [P], t; [E]0) =
Vmax[S]

KM + [S]
,

where the total concentration of enzyme [E]0 is taken to be a parameter5.

5Based on the derivation from mass-action kinetics, KM is proportional to [E]0.
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Another example is mass-action kinetics, which we visit in more detail in Sections 1.3

and 2.3. It assumes that νij(x, t) = κijx
yi where κij > 0 is a proportionality constant,

and xyi is the monomial whose exponents comes from the stoichiometric coefficients of the

source complex. Mass-action kinetics can be derived from first principles; the monomial

xyi reflects the collision probability of the reactant species (in the correct proportion) [5].

Mass-action kinetics was derived for ideal systems, and as such is only an approximation of

reality. Non-idealities can occur; for example, solvent molecules can shield a protein and

effectively slow ligand binding [55]. The standard treatment from a thermodynamics point of

view is to replace the concentration vector x in the monomial xyi by the vector of activities6.

Mathematically, mass-action kinetics can be replaced by power-law kinetics, which assumes

that νij(x, t) = κijx
zi , where zi may be different from the stoichiometric coefficients of the

reactant complex yi. We explore power-law kinetics (in the framework of generalized mass-

action systems of [107,108]) in Chapter 3.

Note that the rate function νij(x, t) often depends not only on concentration, but also

on environmental conditions such as temperature, pressure, pH. If these external conditions are

kept constant, then most often they are reflected in the value of the proportionality constants

κij . In short, deterministic kinetic models are at best approximations of reaction kinetics, and

the factors that perhaps should be taken into consideration are plentiful.

Suppose a network has n species and R reactions. Equation (1.1) can be written as

dx

dt
= Γν(x, t), (1.2)

where the columns of the stoichiometric matrix Γ ∈ Rn×R are the reaction vectors of the

network, and ν = (ν1, ν2, . . . , νR)> is the vector of rate functions. Clearly ẋ is confined to

the linear space S = ran Γ, and any trajectory is confined to the affine space x(0) + S, where

6Informally, the activity of a chemical species is its “effective concentration” when it comes to reactivity.
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x(0) ∈ Rn≥ is the initial condition. The stoichiometric subspace

S = span{yj − yi : yi → yj ∈ E} = ran Γ (1.3)

can easily be read from the Euclidean embedded graph. For example, the stoichiometric

subspace of the Lotka–Volterra model in Figure 1.4(a) is S = R2, while that of the SIR model

in Figure 1.4(b) is the two dimensional subspace S = span{(−1, 1, 0)>, (0,−1, 1)>} with the

ordering X1 = S, X2 = I, and X3 = R. Sometimes dimS is referred to as the rank of the

network. Notice that for the SIR model, S⊥ = span(1, 1, 1)>, reflecting the fact that the total

population [S] + [I] + [R] is constant; no births or deaths are included in the dynamics. We call

this a conservation relation of the system7.

1.3.1 Mass-action systems

Mass-action kinetics is an assumption on the reaction rate functions. We define a mass-action

system as a mathematical object that has the dynamics expected from a reaction network

under mass-action kinetics. To properly introduce mass-action kinetics, consider the reaction

X + Y 2X

where X converts a molecule of Y to a copy of itself. We assume this reaction proceeds

at a rate proportional to the concentration of the reactant species, i.e., the rate function

is ν(x) = κxy = κx1y1, where the rate constant8 κ > 0 is a proportionality constant.

Note that the exponents in the monomial are the stoichiometric coefficients of the source

complex. A proper model needs to account for the relative change of the different species’

concentrations. Thus, we multiply the rate function by the reaction vector and arrive at the

7In the literature, conservation relation or conservation law may refer to not a vector in S⊥, but rather one
in S⊥ ∩ Rn> as a nod towards conservation of mass. We do not require this more stringent condition here.

8The word “constant” can be misleading, as the proportionality constant κ depends on external conditions
such as temperature, pressure, pH.
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system of differential equations

dx

dt
= κxy

 1

−1

 .

If a reaction network contains multiple reactions, we simply add together the relevant

terms. For example, say the conversion reaction we considered above is actually reversible:

X + Y 2X .

Since there are two source complexes, there are two monomials — xy as well as x2 — in the

associated system of ODEs

dx

dt
= κ+xy

 1

−1

+ κ−x
2

−1

1

 .

There are two (possibly different) rate constants, one for each reaction.

Definition 1.3.1. A mass-action system is a weighted directed graph (G,κ), where

G = (V,E) is a reaction network, and κ ∈ RE> is a vector of rate constants. Its associated

system of differential equations on Rn≥ is

dx

dt
=

∑
(i,j)∈E

κijx
yi
(
yj − yi

)
, (1.4)

where xy = xy11 x
y2
2 · · ·x

yn
n .

To say x(t) is a solution to the mass-action system, we mean it is a solution to the

associated system of ODEs (1.4) for some initial value in Rn>.

Under mass-action kinetics, Rn≥ is forward invariant, i.e., if x(0) ∈ Rn≥, then the solution

x(t) ∈ Rn≥ for all t ≥ 0 for which the solution is defined. We often start with a positive initial

condition x(0) ∈ Rn>. Recall that the vector field lies in the stoichiometric subspace S. Thus
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for any initial condition x(0) ∈ Rn>, the solution x(t) to (1.4) is confined to the affine space

x(0) + S, where the addition is over the elements of S. The stoichiometric compatibility

class of x(0) is the polytope (x(0) + S)> = (x(0) + S) ∩ Rn>. Finally, we remark that if

the stoichiometric coefficients are restricted to yi = 0 or yi = 1 for any complex y, then the

right-hand side of (1.4) is Lipschitz, so uniqueness of solution is guaranteed.

Example 1.3.2. We write down the SIR model for infectious disease, whose reaction network

appears in Figure 1.4(b). The network has two reactions with different source complexes;

hence the associated system of ODEs has two monomials. Let x = [S] represent the fraction

of the population that is susceptible to the disease, y = [I] the fraction that is infected and

also infectious, and z = [R] the fraction that has recovered and immune to the disease. The

associated system (with arbitrary rate constants κi > 0) is

dx

dt
= −κ1xy

dy

dt
= κ1xy − κ2y

dz

dt
= κ2y.

If we think of Equation (1.4) as a “species-centric” view, then a “reaction-centric”

formulation is the matrix equation

dx

dt
= Γ


κ1x

y1

κ2x
y2

...

κRx
yR

 . (1.5)

The same monomial may appear more than once in Equation (1.5) with different rate constants,

if multiple reactions share the same source complex.

We introduce yet another matrix decomposition of the system (1.4) that is “complex-

centric”. Suppose the reaction network G has m vertices. Let κij be the rate constant of
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yi → yj for i, j = 1, 2, . . . ,m, with the convention that κij = 0 whenever yi → yj 6∈ E. Define

the complex matrix Y ∈ Rn×m to have the complexes as its columns. The Laplacian

matrix 9 (or the kinetic matrix ) of the weighted directed graph (G,κ) is given by

[Aκ]ij =


κji if i 6= j

−
∑
p

κjp if i = j
. (1.6)

It is normally written as Aκ = (W −D)>, where [W]ij = κij is the matrix of weights on the

edges, and D = diag(d1, d2, . . . dm) with di =
∑m

p=1[W]ip [66]. Equation (1.4) can then be

written as

dx

dt
= YAκx

Y, (1.7)

where xY = (xy1 ,xy2 , . . . ,xym)> is exponentiation with the columns of Y. The vector xY

consists of the monomials defined by the complexes. We illustrate these different formulations

with examples.

Example 1.3.3. Consider two reversible pairs of reactions

2X X + Y 2Y
κ12

κ21

κ23

κ32

with rate constants as labelled. Under mass-action kinetics, the variables x and y, for the

concentrations of X and Y respectively, evolve according to

d

dt

x
y

 = κ12x
2

−1

1

+ κ21xy

 1

−1

+ κ23xy

−1

1

+ κ32y
2

 1

−1


=

−κ12x2 + κ21xy − κ23xy + κ32y
2

κ12x
2 − κ21xy + κ23xy − κ32y2

 .

9What is defined here is actually the negative transpose of the Laplacian matrix; however, since we refer to
this matrix repeatedly, we call the matrix (1.6) the Laplacian.
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Let x = (x, y)>. Another way to rewrite the system of ODEs above is

dx

dt
= Γν(x) =

−1 1 −1 1

1 −1 1 −1



κ12x

2

κ21xy

κ23xy

κ32y
2

 .

Note the columns of Γ are the reaction vectors. For a reversible system like this, there is a

certain amount of redundancy. We can combine reaction pairs and instead write

dx

dt
=

−1 −1

1 1

κ12x2 − κ21xy
κ23xy − κ32y2

 .

While this may be useful for certain purposes, and indeed sometimes the literature takes this

perspective, we avoid this, thereby restricting the vector of rate functions ν(x) to take non-

negative or positive values.

The “complex-centric” formulation captures the network structure. Numbering the

complexes from left to right, the complex matrix and the Laplacian matrix are

Y =

2 1 0

0 1 2

 and Aκ =


−κ12 κ21

κ12 −κ21 − κ23 κ32

κ23 −κ32

 .

The second column of Aκ reflects the fact that two reactions are leaving the second complex

X + Y: one to the first complex 2X with rate constant κ21 and another to the third complex 2Y

with rate constant κ23. The vector xY = (x2, xy, y2)> is precisely the monomials associated

to the three complexes in this order. Thus, the system of ODEs can also be written as

dx

dt
= YAκx

Y =

2 1 0

0 1 2



−κ12 κ21

κ12 −κ21 − κ23 κ32

κ23 −κ32



x2

xy

y2

 .
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By flux across the reaction yi → yj , we refer to the value of the rate function κijx
yi at a

specified concentration level x > 0. Observe that any component of

Aκx
Y =


κ21xy − κ12x2

κ12x
2 + κ32y

2 − (κ21 + κ23)xy

κ23xy − κ32y2


is the net difference, at the corresponding complex, between incoming and outgoing fluxes at

the current state. We study the structure of Aκx
Y as it relates to the class of complex-balanced

steady states more generally in Section 1.4.1.

Example 1.3.4. Consider a version of Sel’kov’s model of glycolysis with an ordering of the

complexes in Figure 1.6(a). Let κij be the rate constant of the reaction yi → yj . The mass-

action system defined by this network is

dx

dt
=

κ12 − κ21x− κ23x + κ32y − κ45x3 + κ54x
2y

κ13 + κ23x− κ31y − κ32y + κ45x
3 − κ54x2y

 ,

or with the complex and Laplacian matrices,

dx

dt
=

0 1 0 3 2

0 0 1 0 1




−(κ12+κ13) κ21 κ31

κ12 −(κ21+κ23) κ32

κ13 κ23 −(κ31+κ32)

−κ45 κ54

κ45 −κ54





1

x

y

x3

x2y


.

The non-linearity of mass-action systems lies with the monomials. The Newton

polytope10, or reactant polytope [69], can be used to see which monomial dominates, i.e.,

is orders of magnitude stronger than, other monomials in certain region of the state

space [22,31,45,69].

10In algebra, the Newton polytope is defined for a single polynomial, while here, we use all the polynomials
appearing on the right-hand side.
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Definition 1.3.5. The Newton polytope of a reaction network G = (V,E) is the convex hull

of the source complexes, i.e.,

Newt(G) =

∑
y∈Vs

αyy : αy ≥ 0 and
∑
y∈Vs

αy = 1

 ,

where Vs ⊆ V is the set of source complexes. The relative interior of the Newton polytope

is the set

Newt(G)◦ =

∑
y∈Vs

αyy : αy > 0 and
∑
y∈Vs

αy = 1

 .

The Newton polytopes of two networks are shown in Figures 1.5(a) and 1.6(a).

Figures 1.5(b) and 1.6(b) roughly splits the state space into regions where a single monomial

dominates; between these regions, there is no clear winner. The precise boundary of these

regions depend on the relative magnitude of rate constants. Shown in each region is the

reaction vector(s) associated to the dominant monomial. For details on how these regions are

determined and which monomial dominates where, see [22,31].

X0 2X

X + Y

2Y

Y

(a)

dominates
y

x dominates

dominates
xy

x

y

(b)

Figure 1.5: (a) Highlighted is the Newton polytope of the Lotka–Volterra model.
(b) The regions of state space where a monomial dominates over all others. The
vector shows the corresponding dominant reaction in each region, while the cone
shows the possible direction of the vector field.
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y2y1

y3 y5

y4

(a)

y
dom.

0
dom.

x2y
dom.

x3
dominates

x

y

(b)

Figure 1.6: (a) Highlighted is the Newton polytope of a version of the Sel’kov
model. (b) The regions of state space where a monomial dominates over all others.
The vector(s) shows the corresponding dominant reaction(s) in each region, while
the cone shows the possible direction of the vector field.

1.4 Toric systems

In this section, we introduce two classes of positive steady states for mass-action systems

— detailed-balanced and complex-balanced — that enjoy remarkable stability and algebraic

properties. Detailed-balancing dates back to Boltzmann [13,14,15]. Complex-balancing, which

generalizes the former, was analyzed extensively in the 1970’s [56,60,76,78].

Boltzmann introduced detailed-balancing for the collision of ideal gas particles. He

assumed microscopic reversibility, that is, one cannot distinguish between the process forward

in time and backward in time. Later, Wegscheider and Lewis, among others, generalized

it to chemical processes, where detailed-balanced implies that across every reversible pair of

reactions, the forward reaction proceeds at the same rate as the backward reaction [93,109,133].

Detailed-balancing has thermodynamic implications. Horn and Jackson called complex-

balancing a quasi-thermodynamics property [78]. While kinetics has deep connection to

thermodynamics, we will not broach this broad subject. The reader is referred to [59, Chapter

13] for an introduction.
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Definition 1.4.1. Let (G,κ) be a mass-action system with associated system of ODEs

dx
dt = f(x).

(a) Its set of positive11 steady states is

Eκ = {x∗ > 0 : f(x∗) = 0} . (1.8)

(b) A positive steady state x∗ is detailed-balanced if for every yi → yj ∈ E, we have

κij(x
∗)yi = κji(x

∗)yj . (1.9)

Let Dκ denote the set of detailed-balanced steady states. If Dκ 6= ∅, we say the mass-

action system (G,κ) is detailed-balanced .

(c) A positive steady state x∗ is complex-balanced if for every complex yi ∈ V , we have

∑
(i,j)∈E

κij(x
∗)yi =

∑
(j,i)∈E

κji(x
∗)yj . (1.10)

Let Zκ denote the set of complex-balanced steady states. If Zκ 6= ∅, we say the mass-

action system (G,κ) is complex-balanced .

The detailed-balancing condition (1.9) ensures that the fluxes across each reversible pair

are equal. For this reason, a system that admits a detailed-balanced steady state is necessarily

reversible. The complex-balancing condition (1.10) ensures that the net flux flowing across

each vertex is zero. For this reason, a system that admits a complex-balanced steady state

is necessarily weakly reversible [31, 136]. In the literature, detailed-balancing is also known

as edge-balancing, while complex-balancing is also called vertex-balancing. In Chapter 3, we

extend the notion of vertex-balancing beyond mass-action systems.

11The relevant steady states are non-negative. In this thesis, we are only concerned about positive steady
states.
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Example 1.4.2. Consider the simple reaction network

Y X + Y

X

with complexes ordered clockwise, starting with Y being y1. If all rate constants are κij = 1,

then the steady state (x, y) = (1, 1)> is detailed-balanced, hence also complex-balanced.

However, if the rate constants are chosen such that the clockwise ones are κ12 = κ23 = κ31 = 1,

while the counterclockwise ones are κ21 = κ32 = κ13 = 2, then (x, y) = (1, 1)> is complex-

balanced but not detailed-balanced.

If a steady state is detailed-balanced, then it is complex-balanced, i.e., Dκ ⊆ Zκ,

although the converse may not be true. More surprisingly, if a mass-action system has one

complex-balanced steady state, then all its positive steady states are complex-balanced, i.e.,

Zκ = Eκ if Zκ 6= ∅. Similarly, if a mass-action system has one detailed-balanced steady

state, then all its positive steady states are detailed balanced, i.e., Dκ = Eκ if Dκ 6= ∅ [78].

Therefore, it makes sense to call a mass-action system complex-balanced or detailed-balanced.

Generally, the rate constants need to satisfy some algebraic constraints for a weakly

reversible system to be complex-balanced [35, 56, 76]. If in addition, the network is reversible

and the rate constants satisfy additional constraints known as formal-balancing [49], then the

system is also detailed-balanced. See [35] for a discussion on a necessary and sufficient condition

on the rate constants for complex-balancing, and [59, Chapter 14.4] for detailed-balancing.

In what follows, we limit our discussion to complex-balanced systems, while keeping in

mind that detailed-balanced systems share the same properties. We list the most foundational

results below [76,78,82]. An assumption behind this list is the existence of a complex-balanced

steady state. In Section 1.4.1 we look at conditions for when such a steady state exists.
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Theorem 1.4.3. Let (G,κ) be a complex-balanced system, with complex-balanced steady state

x∗ ∈ Zκ. Let ẋ = YAκx
Y be its associated system of ODEs, and S its stoichiometric subspace.

(a) Then x∗ is a solution to Aκ(x∗)Y = 0.

(b) Every positive steady state is complex-balanced, i.e., Zκ = Eκ.

(c) The set Zκ can be represented as

Zκ =
{
x > 0 : lnx− lnx∗ ∈ S⊥

}
= x∗ ◦ expS⊥, (1.11)

where ln(·), ◦, and exp(·) are the component-wise logarithm, multiplication and

exponentiation respectively.

(d) There is exactly one positive steady state in every stoichiometric compatibility class.

(e) The function

L(x) =
n∑
i=1

xi (lnxi − lnx∗i − 1) + x∗i (1.12)

is a strictly convex Lyapunov function on Rn> for the mass-action system, with global

minimum at x = x∗.

(f) Every positive steady state is asymptotically stable within its stoichiometric compatibility

class.

(g) Every positive steady state is linearly stable within its stoichiometric compatibility class.

Theorem 1.4.3(a)–(d) are algebraic in nature. In Section 1.4.1, we look more

closely at these algebraic properties, and explain why in a sense, the system has toricity.

Theorem 1.4.3(e)–(g) focus on the dynamics of complex-balanced systems, which is the focus

of Section 1.4.2.
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1.4.1 Algebraic properties of complex-balanced systems

In this section, we focus on some algebraic properties of complex-balanced systems.

Mathematically, complex-balanced and detailed-balanced systems — collectively called toric

systems in this thesis, for reason to be seen in this section — enjoy a variety of algebraic

properties in addition to their stable dynamics. Algebraists and algebraic geometers are

bringing their tool-kits to biology and chemistry [35, 50, 62, 63, 64, 67, 68, 70, 71, 87, 88, 108].

We can only expect more algebraic structure in nature to be discovered.

Horn and Jackson called a system whose positive steady state set has the representation

x∗ ◦ expS⊥ quasi-thermostatic [78]; elsewhere such a system is called a toric dynamical

system [35]. At the heart of both works are complex-balanced systems. Notably, Horn and

Jackson thought of the algebraic and the dynamical aspects separately, referring to Lyapunov

stability (Theorem 1.4.3(e)) as quasi-thermodynamic. Craciun et al. were mostly focused on

the algebraic aspect of complex-balanced systems12. In Chapter 3, we see that certain non-

mass-action systems also share the same algebraic properties as complex-balancing, sometimes

without the dynamical properties [107,108].

If we accept that Zκ = x∗ ◦expS⊥ [59,73,78], where x∗ is one complex-balanced steady

state of the system, it follows that Zκ admits a monomial parametrization. For example,

suppose {u,v} is a basis for S⊥. If t is a positive scalar and u ∈ Rn is a vector, denote by tu

the vector (tu1 , tu2 , . . . , tun)>. Then

Zκ = {x∗ ◦ exp(au+ bv) : a, b ∈ R}

=
{
x∗ ◦ (ea)u ◦ (eb)v : a, b ∈ R

}
= {x∗ ◦ su ◦ tv : s, t > 0} .

In other words, Zκ admits the parametrization (x∗1s
u1tv1 , x∗2s

u2tv2 , . . . , x∗ns
untvn)> with s,

t > 0. The same calculation holds even when S⊥ is of higher dimensions.

12In the second half of [35], they studied stability and proved the Global Attractor Conjecture for detailed-
balanced systems whose stoichiometric compatibility class is two-dimensional and bounded.
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The existence and uniqueness of a complex-balanced steady state within every

stoichiometric compatibility class can be interpreted as the intersection of two surfaces. This

result, by the name of Birch’s Theorem [11], is also related to the maximum likelihood

estimate in algebraic statistics [111].

Theorem 1.4.4. Let S ⊆ Rn be a vector subspace. Then for any x0, x∗ ∈ Rn>, the intersection

(x0 + S) ∩ (x∗ ◦ expS⊥) has exactly one point.

In Section 3.3, we generalize this to the existence and uniqueness of intersection points

in (x0 + S) ∩ (x∗ ◦ exp S̃⊥) for any x0, x
∗ > 0, where S and S̃ are two vector subspaces that

satisfy certain geometric conditions. Although for now we leave behind Birch’s Theorem,

in Corollary 2.2.5, we apply this in a surprising way to show that the family of single-

target networks, though not weakly reversible, are essentially always detailed-balanced (up

to dynamical equivalence; see Definition 2.1.1).

That a complex-balanced steady state x∗ is a solution to Aκx
Y = 0 follows from our

observation in Example 1.3.3 that the components Aκx
Y measure the net flux flowing across

the vertices. We now look at the kernel of Aκ in more depth. Because Ak is column-conserving,

i.e., (1, 1, . . . , 1)> ∈ ker A>κ , it is not full ranked. Theorem 1.4.7 describes a basis for ker Aκ.

Suppose there are m complexes in the mass-action system (G,κ), i.e., Aκ ∈ Rm×m. For

simplicity, let κij = 0 whenever yi → yj is not a reaction. The components of

Aκx
Y =


−
(∑

j κ1j

)
xy1 +

∑
j κj1x

yj

...

−
(∑

j κmj

)
xym +

∑
j κjmx

yj


measure the net flux flowing across each complex. If one imagines each vertex as a bucket, and

edges allow the flow of water between buckets, then Aκx
Y measures the net flow of water into

each bucket. Complex-balancing occurs precisely when the net flow across vertices is zero.
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Before continuing, we need some graph-theoretic objects and a generalization of the

Matrix-Tree Theorem [35,74,76,83]. A subgraph of G is connected if in the undirected version

of G, there exists a path between any two of its vertices. A maximally connected subgraph is

a connected component or linkage class, of G. A subgraph of G is strongly connected if

there exists a directed path between any two of its vertices. A maximally strongly connected

subgraph is a strongly connected component or strong linkage class. A terminal

strongly connected component or terminal strong linkage class is a strongly connected

component with no edge leaving it. Figure 1.7 illustrates these terms with an example.

1 2 3 4 5

6

7

Figure 1.7: A directed graph with two connected components (linkage classes);
emphasized are its four strongly connected components (strong linkage classes), of
which three are terminal strongly connected (terminal strong linkage classes).

Definition 1.4.5. Let G = (V, E) be a directed graph, with no loops and no isolated vertices.

Label each edge (i, j) with the variable κij .

(a) If G is connected, a spanning tree T is a directed tree of G containing all of V. Let

κ(T ) =
∏

(i,j)∈T

κij .

(b) For a fixed vertex i, a spanning tree rooted at i is a spanning tree of the connected

component of i, such that its unique sink is i. Let Ti be the set of all spanning trees

rooted at i.
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(c) The tree constant of the vertex i is the polynomial

Ki =
∑
T ∈Ti

κ(T ). (1.13)

We take G to be a reaction network without the information about the complexes, and

κij to be the rate constants. The formula for the tree constants is not as important as the

fact that there is an explicit way to compute them, and that each Ki is a polynomial in the

labels κij . Indeed, Kirchoff’s Matrix Theorem states that Ki is equal to the determinant of

Mi, where Mi is obtained by deleting the ith row and ith column from Aκ [48].

1 2

3

4 5

67

Figure 1.8: A graph with two connected components, whose rooted spanning trees
are shown in Figure 1.9. See Example 1.4.6 for detail.

Example 1.4.6. Consider the graph with two connected components in Figure 1.8, whose

rooted spanning trees are shown in Figure 1.9. For example, there are two spanning trees

rooted at the vertex 1. As the figure shows, the more edges are present, the more rooted

spanning trees there are. For example, by Cayley’s formula, a complete graph with m nodes

has mm−2 spanning trees [25]. More generally in a directed graph, the number of spanning

trees rooted at the vertex i is the determinant of Mi, where Mi is obtained by deleting the ith

row and ith column from Aκ, with κ = (1)ij [26].

Let κij be the label on the edge (i, j) in the graph of Figure 1.8. The tree constants are

K1 = κ21κ31 + κ23κ31, K2 = κ31κ12, K3 = κ12κ23,

K4 = κ56κ67κ74, K5 = κ67κ74κ45, K7 = κ45κ56κ67 + κ46κ56κ67,

K6 = κ45κ56κ76 + κ46κ56κ76 + κ74κ46κ56 + κ74κ45κ56.
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1 2

3

1 2

3

1 2

3

1 2

3

4 5

67

4 5

67

4 5

67

4 5

67

4 5

67

4 5

67

4 5

67

4 5

67

Figure 1.9: The rooted spanning trees of the graph in Figure 1.8.

The tree constants play a prominent role in the kernel of the Laplacian matrix Aκ,

which is supported on the terminal strongly connected components of a reaction network G.

Moreover, dim(Aκ) is equal to the number of terminal strongly connected components. The

following result and example are drawn from [35,61,73,74,83,103,108].

Theorem 1.4.7. Let (G,κ) be a mass-action system with Laplacian matrix Aκ. Suppose T1,

T2, . . . , Tt are the terminal strongly connected components, and let Vj ⊆ V be the subset of

complexes in a terminal strongly connected component. For each terminal strongly connected

component Tj, define a vector in Rm by

χj(i) =

 Ki if yi ∈ Vj

0 otherwise
(1.14)

where Ki is the tree constant of vertex i as defined in (1.13). Then {χ1,χ2, . . . ,χt} is a basis

for ker Aκ.



28

If the network is weakly reversible, then every connected component is strongly

connected and terminal. Hence the above, when applied to a weakly reversible mass-action

system, can be used to determine when a system is complex-balancing.

Example 1.4.8. With respect to the network in Figure 1.8, the kernel of Aκ is spanned by

(
K1,K2,K3, 0, 0, 0, 0

)>
and

(
0, 0, 0,K4,K5,K6,K7

)>
,

where the constants Ki are given in Example 1.4.6. The vector xY is in ker Aκ if and only if

it is orthogonal to a basis for (ker Aκ)⊥. A basis for (ker Aκ)⊥ is

(
−K2,K1, 0, 0, 0, 0, 0

)>
,
(

0,−K3,K2, 0, 0, 0, 0, 0
)>

,(
0, 0, 0,−K5,K4, 0, 0

)>
,
(

0, 0, 0, 0,−K6,K5, 0
)>

,
(

0, 0, 0, 0, 0,−K7,K6

)>
.

So xY ∈ ker Aκ if and only if

K1x
y2 −K2x

y1 = 0, K2x
y3 −K3x

y2 = 0,

K4x
y5 −K5x

y4 = 0, K5x
y6 −K6x

y5 = 0, K6x
y7 −K7x

y6 = 0.

This calculation generalizes to any weakly reversible mass-action system. In other words, when

the network is weakly reversible, Aκx
Y = 0 if and only if for every complexes yi and yj in

the same connected component,

Kix
yj −Kjx

yi = 0, (1.15)

where Ki is the tree constant of the vertex i.

Indeed, now we see why complex-balanced systems are also called toric systems; they

are characterized by the binomials Kix
yj −Kjx

yi . The authors of [35] used these binomials to

define the toric balancing ideal of a reaction network. They also eliminated the state variables
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x from the binomials13, and obtain a necessary and sufficient condition on the rate constants

for the system to be complex-balanced. The number of polynomial equations on the tree

constants (hence the number of polynomial equations on the rate constants) is given by the

network’s deficiency. This important invariant measures how far is the set of positive steady

state from being complex-balanced.

Definition 1.4.9. Let G = (V,E) be a reaction network with ` connected components and

let S be its stoichiometric subspace. The deficiency of the network is

δ = |V | − `− dimS. (1.16)

Equivalently, δ = dim(ker Y ∩ ran IE), where IE is the incidence matrix of G [83].

Example 1.4.10. Consider the mass-action system (G,κ) given by

0 X

Y X + Y

κ1 κ3

κ4

κ6

κ2

κ5

where the rate constants ki > 0 are not yet specified. The network has |V | = 4 complexes,

` = 1 connected component, and S = R2, so δ = 1. The system is complex-balanced if and

only if the rate constants satisfy some algebraic constraints, which we now derive.

A steady state (x, y) > 0 is complex-balanced if and only if

κ1 + κ6 = κ4x, κ2y = κ1 + κ5xy, (κ3 + κ5)xy = κ6 + κ2y, and κ4x = κ3xy.

Using the first and last equations rewrite the state variables x, y as polynomials of the rate

13This is accomplished using Gröbner basis, or if the example is small, by hand.
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constants, and subbing these into the second equation leads to

κ1κ3 + κ1κ5 + κ5κ6 = κ2κ4,

which is necessary and sufficient for the system to be complex-balanced. Slices of this variety

are shown in Figure 1.10.

For a different approach, order the vertices as y1 = 0, y2 = Y, y3 = X + Y, and y4 = X.

The characterizing binomial equations for complex-balancing are K1y = K2, K2xy = K3y and

K3x = K4xy, from which we can easily derive K1K4 = K2K3, where Ki is the tree constant

of the complex yi. Given that the tree constants are polynomials in the rate constants, the

resulting polynomial could be complicated, e.g.,

[κ2κ4(κ1 + κ6)]κ2κ
2
3 = [κ2κ4(κ1 + κ6)]κ4(κ1κ3 + κ5(κ1 + κ6)).

After simplification, κ2κ
2
3 = κ4(κ1κ3 + κ5(κ1 + κ6)), which still looks quite different from the

condition derived directly from the complex-balancing condition (1.10), even though each of

the two polynomial equations is necessary and sufficient for complex-balancing, since δ = 1 [35].

(a) (b)

Figure 1.10: Slices in parameter space for when the mass-action system in
Example 1.4.10 is complex-balanced. Parameters chosen in (a) are κ3 = 0.1,
κ4 = 0.25, κ6 = 0.15; and in (b) κ5 = κ6 = 0.1, κ4 = 5.
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Geometrically, the deficiency δ measures the linear independence of the stoichiometric

subspaces, as well as the affine independence of the complexes within each connected

component [59, Chapter 6.4].

Theorem 1.4.11. A reaction network has deficiency zero if and only if

(a) the complexes within each connected component are affinely independent, and

(b) the stoichiometric spaces of the connected components are linearly independent.

Proof. A description of the notation is longer than the proof. Let G1, G2, . . . , G` be the

connected components of the reaction network, and Si the stoichiometric subspace of the ith

connected component, i.e., it is the span of reaction vectors in the ith connected component.

Finally let δi = |Vi| − 1− dimSi be the deficiency of the ith connected component. Then

δ = |V | − `− dimS

=
∑̀
i=1

(|Vi| − 1− dimSi) +
∑̀
i=1

dimSi − dimS

=
∑̀
i=1

δi +
∑̀
i=1

dimSi − dimS ≥
∑̀
i=1

δi,

with equality if and only if the vector spaces S1, S2, . . . , S` are linearly independent. Moreover,

δ = 0 if and only if δi = 0 for all i, which implies that dimSi = |Vi| − 1, i.e., the complexes

within any connected component are affinely independent.

Deficiency zero networks not only have a nice geometric interpretation, but also there

is no condition on the rate constants for the system to be complex-balanced. This is the

well-known Deficiency Zero Theorem [56, 57,60,76,78].

Theorem 1.4.12. Let G be a weakly reversible reaction network. The mass-action system

(G,κ) is complex-balancing for all choice of rate constants κ > 0 if and only if the deficiency

is δ = 0.
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There is also the Deficiency One Theorem [57]. More recently, we relax the algebraic

conditions on the rate constants while keeping the same dynamics as those of complex-balanced

systems. We search for possible network structures (along with their rate constants) that would

give rise to the same associated system of ODEs; these new mass-action systems are said to

be dynamically equivalent to the original one [39,40]. See Section 2.1 for more detail.

As a nod to the efforts characterizing rate constants needed for equilibrium, we

mention the Wegscheider condition for detailed-balancing [109,133]. A more nuanced algebraic

condition for detailed-balancing can be found in [58].

Let G be a reversible network with p reversible pairs of edges, i.e., the network has 2p

reactions. Choose a forward direction for each reversible pair and let κr+ be its rate constant;

let κr− be the rate constant of the backward direction. Let Γ′ ∈ Rn×p be the matrix whose

columns are the reaction vector of the forward directions. The ratio κr+/κr− is the equilibrium

constant from thermodynamics, appearing, for example, in balancing Gibbs free energy14.

Theorem 1.4.13 (Wegscheider Condition). The reversible mass-action system (G,κ) is

detailed-balanced if and only if every γ ∈ ker Γ′ ⊆ Rn×p satisfies the Wegscheider condition

p∏
r=1

(κr+)γr =

p∏
r=1

(κr−)γr .

Proof. For a fixed reversible pair yr 
 y′r, whose rate constants are κr+ and κr− for the forward

and backward reaction respectively, detailed-balancing occurs if and only if κr+x
yr = κr−x

y′r .

Equivalently,

ln

(
κr+
κr−

)
= lnxy

′
r−yr = 〈y′r − yr, lnx〉,

14Gibbs free energy is used if temperature and pressure are constant. Other free energies are used for different
environmental conditions.
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where 〈 · , · 〉 is the standard inner product of Rn. Collecting these terms into a vector leads to

ln

(
κr+
κr−

)
r

= Γ′> lnx.

In other words, ln(κr+/κr−) lies in ran(Γ′>). Since ran(Γ′>) = (ker Γ′)⊥, the linear system is

solvable, i.e., a solution lnx exists, if and only if for every γ ∈ ker Γ′, we have

0 =

〈
ln

(
κr+
κr−

)
r

, γ

〉
=

p∑
r=1

γr ln

(
κr+
κr−

)
=

p∏
r=1

ln

(
κr+
κr−

)γr
.

Rearranging this equation gives the Wegscheider condition.

1.4.2 Dynamical properties of complex-balanced systems

One reason why complex-balanced (and detailed-balanced) systems are fascinating is their

stability: admitting a Lyapunov function, linear stability; conjectured to be globally stable,

persistent, and permanent (Definition 1.4.19). As is convention, when we speak about a steady

state’s stability, we refer to its stability relative to its stoichiometric compatibility class.

Most of what will be discussed in this section are well-known within the Chemical

Reaction Network Theory community. Arguably, much of it dates back to Horn and Jackson’s

seminal paper [78]. As such, our aim is to review the most important results and conjectures.

Proofs of these results can be found in [45,59,73,78,82,122].

We introduced in Theorem 1.4.3 the Lyapunov function

L(x) =

n∑
i=1

xi (lnxi − lnx∗i − 1) + x∗i , (1.17)

which Horn and Jackson used to show asymptotic stability of a complex-balanced steady

state [78]. Shown in Figure 1.11 are level sets of L(x) in various dimensions. Horn and

Jackson called L(x) a pseudo-Helmholtz function, acknowledging that it plays a similar role as
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the Helmholtz free energy15 in thermodynamics. Horn and Jackson in [78] were interested in

systems that display properties expected at thermodynamic equilibrium, regardless of whether

or not the system is at equilibrium.

(a) (b) (c)

Figure 1.11: The Horn–Jackson Lyapunov function L(x) in (1.17): (a) its graph
on R>, (b) level sets on R2

> and (c) level sets on R3
>. In (b) and (c), some level

sets intersect the coordinate faces.

As Figures 1.11(b) and 1.11(c) illustrate, some of the level sets of L(x) on R2
> and R3

>

intersect the faces of the state space. Nonetheless, L(x) is a strict Lyapunov function on Rn>
and also within each stoichiometric compatibility class. Horn and Jackson called a mass-action

system quasi-thermodynamic if the system is quasi-thermostatic (i.e., toric, see Section 1.4.1)

and the inequality (1.18) holds [78]. The inequality A(lnB − lnA) ≤ B − A is critical to the

proof; for a full proof of the following theorem, see [3, 78].

Theorem 1.4.14. Let ẋ = f(x) be a complex-balanced system, and let x∗ be a complex-

balanced steady state. For any x ∈ (x∗ + S)>, we have

∇L(x) · f(x) ≤ 0, (1.18)

with equality if and only if x = x∗. In particular, for any trajectory x(t) > 0, we

have d
dtL(x(t)) ≤ 0, with equality at the complex-balanced steady state of the stoichiometric

compatibility class.

15The Helmholtz free energy is useful when temperature and volume are held constant. Gibbs free energy is
used when temperature and pressure are constant. The form of L(x) also appears as the entropy function; for
example, see Boltzmann’s work on the H-theorem [13].
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Not only is a complex-balanced steady state asymptotically stable within its

stoichiometric compatibility class (via the Horn–Jackson Lyapunov function), it is linearly

stable. Indeed, a complex-balanced steady state is what is known as D-stable — when the

Jacobian matrix is stable even after multiplying by arbitrary positive diagonal matrices [19].

We will not concern ourselves with D-stability or the slightly different notion of diagonal

stability, but instead refer the reader to [19].

For a linear system ẋ = Jx, its stable (respective unstable and centre) subspace is

the span of eigenspaces whose eigenvalues have negative (respectively positive and zero) real

parts. Suppose ẋ = Jx arises as the linearization of a non-linear system ẋ = f(x) about a

hyperbolic steady state x∗, i.e., the centre subspace of the linearized system is trivial. The stable

(respectively unstable) subspace of ẋ = Jx is tangent to the stable (respectively unstable)

manifold of ẋ = f(x). Moreover, the Hartman–Grobman Theorem guarantees that ẋ = f(x)

and ẋ = Jx share the same qualitative dynamics [113]. Let S = span{f(x) : x ∈ Rn>};

unsurprisingly, if S = ran J coincides with the stable subspace, then trajectories that start

near the steady state x∗ exponentially converge to it.

For a complex-balanced system, the stable manifold coincides with the stoichiometric

subspace S. For a proof of the following theorem, see [19,122].

Theorem 1.4.15. Let ẋ = f(x) be a complex-balanced system, with complex-balanced steady

state x∗. Then the linearized system ẋ = Jx about x∗ has eigenvalues with non-positive real

parts. Moreover, the stable subspace coincides with the stoichiometric subspace S, and the

centre subspace is diag(x∗)S⊥. In particular, x∗ is linearly stable within its stoichiometric

compatibility class.

When discussing the stability of complex-balanced systems, one cannot avoid the Global

Attractor Conjecture and the related Persistence and Permanence Conjectures. In 1974,

Horn identified that the Horn–Jackson Lyapunov function L(x) is not sufficient to prevent

trajectories from converging to a face of Rn>; nonetheless he conjectured that indeed a complex-

balanced steady state is globally attracting within its stoichiometric compatibility class [77].
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The conjecture was christianed in [35].

Conjecture 1.4.16 (Global Attractor Conjecture [35]). For a complex-balanced system,

any positive steady state is a global attractor within its stoichiometric compatibility class.

This is one of the most important open problems in the field. Many special cases have

been proved, with some of the more well-known and recent ones being:

• networks with a single connected component [2, 17];

• systems in R3
> [45];

• networks whose stoichiometric subspace has dimS = 3 [112];

• strongly endotactic networks [4, 69].

A proof for the general case has been proposed [30, 31]. Most of the results above attempt to

prove the stronger Persistence Conjectures, which claims that trajectories do not converge to

the faces of Rn>, highlighting the problem the Horn–Jackson Lyapunov function has near the

boundary of the state space.

We formally introduce two more network structures that captures the notion of “inward

pointing” [45,69,85]. Some examples are shown in Figure 1.12.

Definition 1.4.17. Let G = (V,E) be a reaction network.

(a) It is said to be endotactic if, for every w ∈ Rn and any yi → y′i ∈ E with

〈w, y′i − yi〉 < 0, there exists another reaction yp → y′p ∈ E such that 〈w, y′p − yp〉 > 0

and 〈w, yp − yi〉 < 0.

(b) A reaction network is strongly endotactic if it is endotactic and the reaction yp → y′p

can be chosen such that 〈w, yp − y〉 ≤ 0 for every source complex y.
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w

(a) (b)

w

(c) (d)

Figure 1.12: Networks that are (a) weakly reversible and endotactic; (b) weakly
reversible, endotactic and strongly endotactic; (c) endotactic; (d) endotactic and
strongly endotactic. In (a) and (c), labelled is the directionw for which the network
fails the strongly endotactic condition.

For technical reasons, instead of working with complex-balanced systems (with fixed

rate constants), attempts at the Global Attractor and Persistence Conjectures worked with

weakly reversible systems whose rate constants are allowed to vary. These are called variable-κ

systems [30,31,45], or systems with bounded kinetics [2, 17].

Definition 1.4.18. Let G = (V,E) be a reaction network, and fix 0 < ε < 1. A variable-κ

mass-action system (G,κ(t)) is associated to the non-autonomous system of ODEs on Rn≥

dx

dt
=

∑
(i,j)∈E

κij(t)x
yi
(
yj − yi

)
, (1.19)

where ε ≤ κij(t) ≤ 1/ε for all t ≥ 0.

In a nutshell, persistence occurs when trajectories always stay away from the faces of

Rn>, while permanence implies there is a globally attracting compact set within a forward

invariant set.

Definition 1.4.19. Let ẋ = f(x, t) be a system of ODEs on Rn>.

(a) It is persistent if for any initial condition x(0) ∈ Rn>, the solution x(t) satisfies

lim inft→∞ xi(t) > 0 for all i = 1,, 2, . . . , n.
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(b) It is permanent on a forward invariant set U ⊆ Rn> if there exists a compact set

K ⊆ U such that for any initial condition x(0) ∈ U , the solution x(t) is eventually in K,

i.e., there exists t0 ≥ 0 such that for all t ≥ t0 we have x(t) ∈ K.

For a mass-action system (autonomous or variable-κ), we say it is permanent if it

is permanent on every stoichiometric compatibility class. In Section 2.3, we prove that the

Extended Permanence Conjecture implies not only that complex-balanced systems are globally

stable, but that the system is globally stable even after its rate constants have been perturbed.

Since for networks with positive deficiencies, complex-balancing is sensitive to the choice of rate

constants, the result in Section 2.3 proves global stability for a family of mass-action systems.

Conjecture 1.4.20 (Persistence Conjecture [45, 57]).

A weakly reversible mass-action system is persistent.

Conjecture 1.4.21 (Permanece Conjecture [45]).

A weakly reversible mass-action system is permanent.

Conjecture 1.4.22 (Persistence Conjecture for variable-κ systems).

A weakly reversible variable-κ system is persistent.

Conjecture 1.4.23 (Permanece Conjecture for variable-κ systems).

A weakly reversible variable-κ system is permanent.

Conjecture 1.4.24 (Extended Persistence Conjecture [45]).

An endotactic variable-κ mass-action system is persistent.

Conjecture 1.4.25 (Extended Permanence Conjecture [45]).

An endotactic variable-κ mass-action system is permanent.
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Clearly there are more conjectures with slightly different assumptions. For example,

one can study instead endotactic mass-action system with constant rate constants. Let v-κ be

short for variable-κ. The above conjectures are logically related in the following way.

Extended Persistence

Conjecture

Extended Permanence

Conjecture

Persistence Conjecture

for v-κ systems

Permanence Conjeture

for v-κ systems

Persistence ConjecturePermanence Conjecture

Global Attractor Conjecture
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Chapter 2

Beyond deficiency theory

In this chapter, we extend some global stability results of mass-action systems, particularly

those of detailed-balancing and complex-balancing, in two directions. First, we introduce

the notion of dynamical equivalence, and how a system that is not weakly reversible can be

dynamically equivalent to a complex-balanced or detailed-balanced one, thus enjoying all of

their nice dynamical properties. In Section 2.1, we characterize all single-target networks

under mass-action kinetics based on the geometry of the network. These networks — possibly

with high deficiencies — either have no positive steady state for any rate constants, or are

dynamically equivalent to a detailed-balanced system for any rate constant. Second, we

introduce the notion of robust permanence, and prove in Section 2.3 that even when the rate

constants of a complex-balanced system have been perturbed, the system is still globally stable

as long as the complex-balanced system is robustly permanent.

2.1 Dynamical equivalence

The associated dynamical system (1.4) of a mass-action system (G,κ) is uniquely defined;

however, different reaction networks can give rise to the same system of ODEs under mass-

action kinetics [39, 46, 127]. When studying mass-action kinetics, it is the associated system

of ODEs that is of interest. Dynamical equivalence occurs when different mass-action systems

(networks along with their rate constants) have the same differential equations. Regardless

of the initial network structure, if a system is dynamically equivalent to a complex-balanced

one, then it shares the same algebraic and dynamical properties expected of one [23,39,40]. In

what follows, we adopt the convention that the empty sum is 0, i.e.,
∑

(i,j)∈∅

κij(yj − yi) = 0.
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Definition 2.1.1. Let G = (V,E) and G′ = (V ′, E′) be two reaction networks. We say

the mass-action systems (G,κ) and (G′,κ′) are dynamically equivalent if their associated

systems of ODEs agree on all of Rn≥. Equivalently, for all vertices1 yi ∈ V ∪ V ′, we have

∑
(i,j)∈E

κij(yj − yi) =
∑

(i,k)∈E′
κ′ik(yk − yi). (2.1)

We say that (G′,κ′) is another realization of (G,κ), or that (G,κ) and (G′,κ′) realize the

common system of ODEs.

κ2

κ3κ1

(a)

κ2

κ3κ1
2

κ1
2

(b)

κ2 κ32κ1
κa

κb κc

(c)

Figure 2.1: Three dynamically equivalent mass-action systems: (a) not weakly
reversible with δ = 1, (b) reversible and δ = 0, (c) weakly reversible and δ = 1,
assuming κb = κc and κa = κb + κc.

Example 2.1.2. Figure 2.1 shows three dynamically equivalent mass-action systems. In

Figure 2.1(c), there is a linear relation on the rate constants κa, κb, and κc, namely,

κa

0

1

+ κb

−1

−1

+ κc

 1

−1

 =

0

0

 .

All three has as its associated system of ODEs

dx

dt
= κ1xy

2

 0

−2

+ κ2

1

2

+ κ3x
2

−1

2

 .

1By which we mean either yi ∈ V or yi ∈ V ′. It suffices to check for source vertices in V and V ′.
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The relation (2.1) only needs to be checked on all the source vertices, namely at

0

0

 ,

1

2

 ,

2

0

 , and

1

1

 .

Dynamical equivalence as defined in Definition 2.1.1, which utilizes the linear independence of

monomials, is truly a linear property.

Remark 2.1.3. The stoichiometric subspaces for dynamically equivalent systems can in

principle be different. However, the two systems share the same kinetic subspaces, the smallest

vector space containing the image of the right-hand side of the associated system of ODEs [61].

For example, in Figure 2.2 the four new reactions in Figure 2.2(b) that are not in (a) contribute

the zero vector to the system of ODEs. In particular, trajectories of both systems in Figure 2.2

are confined to an affine line parallel to (−1, 1)>.

κ1

κ2

(a)

κ1

κ2

κa κa

κb

κb

(b)

Figure 2.2: Two dynamically equivalent mass-action systems with different
stoichiometric subspaces and Newton polytopes.

To go from having the same associated ODEs to the linear relation (2.1), we looked

at each monomial independently. For other types of kinetics, one can analogously define

dynamical equivalence using Equation (2.1) if each rate function depends only on the source

vertex and they are linearly independent2. This chapter focuses on mass-action kinetics.

2One can relax this further by grouping all linearly dependent rate functions to originate from one source
vertex, in a sense, by replacing the Euclidean embedded graph with a directed graph, whose source vertices are
labelled with (linearly independent) rate functions, and stoichiometric coefficients to define the reaction vectors.
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We divorce the non-linear from the linear in the definition of dynamical equivalence.

Another notion that divorces the non-linear from the linear is fluxes. The flux of an edge

yi → yj in a mass-action system (G,κ) is the quantity κijx
yi where x > 0 is a fixed state.

Definition 2.1.4. A flux vector J ∈ RE> on a reaction network G = (V,E) is a vector of

positive numbers, one for each edge. We call the tuple (G,J) a flux system .

This idea of fluxes on a reaction network may be familiar to anyone who has worked with

stoichiometric network analysis or flux balance analysis. One form of the analysis is to solve

the linear equation ΓJ = 0, where Γ is the stoichiometric matrix, and the unknown vector J

has nonnegative coordinates [28,110,129]. Since we are interested in relating network structure

with dynamics, if yi → yj ∈ G, we ask that Jij > 0. Also if yi 
 yj is a reversible reaction

in G, then Jij and Jji are two positive components of the vector J . At steady state, we do

not require that detailed-balancing or Jij = Jji. A positive solution J to the equation ΓJ = 0

corresponds to a positive steady state x0 if J = ν(x0), where ν(x0) is a vector of rate functions

evaluated at x0. We define the flux analogues of positive steady state, detailed-balanced steady

state, and complex-balanced steady state.

Definition 2.1.5. A steady state flux on a network G = (V,E) is a flux vector J ∈ RE> in

the cone ker Γ ∩ RE>, i.e.,

∑
(i,j)∈E

Jij(yj − yi) = 0. (2.2)

A steady state flux J ∈ RE> is said to be detailed-balanced if for every y → y′ ∈ E, we have

Jij = Jji. (2.3)

A steady state flux J ∈ RE> is said to be complex-balanced if for every yi ∈ V , we have

∑
(i,j)∈E

Jij =
∑

(j,i)∈E

Jji. (2.4)
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As a shorthand, we refer to the flux system (G,J) as detailed-balanced if J is a detailed-

balanced flux on G. Similarly defined is a complex-balanced flux on G. It will be clear from

context whether a complex-balanced (respectively detailed-balanced) system refers to a mass-

action system or a flux system.

Indeed, the relevant concepts in a mass-action system (G,κ) and a flux system (G,J)

are strongly related by taking Jij = κijx
yi . We relate the two frameworks, with details in [39].

Definition 2.1.6. Two flux systems (G,J) and (G′,J ′) are flux equivalent if for every vertex

yi ∈ V ∪ V ′, we have

∑
(i,j)∈E

Jij(yj − yi) =
∑

(i,k)∈E′
J ′ik(yk − yi). (2.5)

We say that (G′,J ′) is another realization of (G,J).

Proposition 2.1.7. Let (G,κ) be a mass-action system, and fix a state x ∈ Rn>. For each

reaction yi → yj ∈ G, let Jij = κijx
yi so J is a flux vector on G. For a different mass-action

system (G′,κ′), define (G′,J ′) analogously with J ′ij = κ′ijx
yi.

(a) The flux vector J is a steady state flux on G if and only if x is a positive steady state of

(G,κ). Indeed, J is detailed-balanced (respectively complex-balanced) if and only if x is

detailed-balanced (respectively complex-balanced) for (G,κ).

(b) The mass-action systems (G,κ), (G′,κ′) are dynamically equivalent if and only if (G,J)

and (G′,J ′) are flux equivalent3.

(c) Suppose (G,J) is flux equivalent to (G′,J ′) where J ′ is detailed-balanced (respectively

complex-balanced). Then (G,κ) is dynamically equivalent to a mass-action system

(G′,κ′) with detailed-balanced (respectively complex-balanced) steady state x. Moreover,

κ′ij =
J ′ij
xyi

> 0.

3We only require this for J and J ′ defined at some state x, not necessarily for all x ∈ Rn>.
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In the parallels between dynamical equivalence and flux equivalence, we see that

dynamical equivalence is truly a linear property. Indeed, one might have noticed that the

dynamical equivalence condition (2.1) and the flux equivalence condition (2.5) are, for all

intent and purpose, the same4. While the non-uniqueness of reaction networks giving rise to

the same dynamics pose a challenge for network identifiability, it provides a mathematical tool

to analyze the dynamics of non-linear systems in general.

There are many numerical methods, mostly based on linear programming, for searching

dynamically equivalent mass-action systems that have special properties [41,86,94,95,96,116,

128], e.g., detailed-balanced, complex-balanced, reversible, weakly reversible, deficiency zero.

In those works, one searches for networks after fixing a set of complexes. For every new choice

of complex set, among which must be the monomials of the associated system of ODEs, there is

a new linear feasibility problem. See [39] for proof of the following result, that when searching

for a complex-balanced realization, it suffices to consider the set of complexes associated to the

monomials appearing explicitly in system of ODEs. The theorem still holds when “complex-

balanced” is replaced with “detailed-balanced”, “reversible”, or “weakly reversible”.

Theorem 2.1.8. A mass-action system (G,κ) is dynamically equivalent to a complex-balanced

system if and only if it is dynamically equivalent to a complex-balanced system (G′,κ′) that

only uses the source vertices, i.e., V ′ ⊆ Vs, where Vs ⊆ V is the set of source vertices of G.

2.2 Single-target networks

We apply the notions of dynamical equivalence and fluxes to study the family of single-target

networks. In [40], we classify all single-target networks under mass-action kinetics: those that

have a globally attracting positive steady state for any choice of positive rate constants, and

those that have no positive steady state for any choice of rate constants. The former occurs if

and only if the target is in the relative interior of the Newton polytope.

4Theorem 8 of [41] used this flexibility to scale the rate constants originating from any complex of the reaction
network, to prove that the sign pattern of the matrix YAκ admitting a complex-balanced realization is the same
sign pattern as that admitting a weakly reversible realization.
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It is not difficult to show that if every reaction vector points to the relative interior of the

Newton polytope, then the mass-action system is always dynamically equivalent to a (weakly)

reversible system. It follows immediately that the system has a positive steady state [16] and

conjectured to be permanent [45]. In the case of a single-target network with such “inward

pointing” reaction vectors, we show that under mass-action kinetics, the dynamics is essentially

that of a detailed-balanced system. Single-target networks are reminiscent of star-like networks

in [59], which are reversible networks connected at a centre vertex. These have been shown to

have a unique asymptotically stable steady state within each stoichiometric compatibility class

under mass-action kinetics. We show that a strongly endotactic single-target network always

gives rise to a dynamically equivalent star-like system, which is detailed-balanced.

Definition 2.2.1. A reaction network G = (V,E) is a single-target network if there

exists a vertex y∗ such that V \ {y∗} is the set of source vertices, and the set of edges is

E = {y → y∗ : y 6= y∗}. We call y∗ the target vertex , while the remaining vertices are

source vertices.

(a) (b) (c) (d)

Figure 2.3: (a) A single-target network that is globally stable under mass-action
kinetics. (b)–(c) Single-target networks that do not admit any positive steady
state. (d) Not a single-target network.

Example 2.2.2. The reaction networks (a)–(c) in Figure 2.3 are single-target networks, while

(d) is not a single-target network. The target vertex of (a) is in the relative interior of its

Newton polytope. We show that network (a) is typical of single-target networks that gives

rise to detailed-balanced dynamics, while the networks (b) and (c) have no positive steady

state under any reasonable kinetics. More precisely, there can be no steady state flux on the

networks (b) and (c). The deficiencies of these networks depend on the dimension s of the
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stoichiometric subspace. The deficiencies of the networks (a)–(c) are δ = 6− s, whille that of

(d) is δ = 7− s.

The geometry of a single-target network, namely whether the target is in the relative

interior of the Newton polytope, determines whether the network admits a steady state flux,

a necessary condition for positive steady states under mass-action kinetics. In particular, the

geometry can rule out the existence of positive steady states under any reasonable kinetics

with a vector of rate functions ν : Rn> → RE>.

Lemma 2.2.3. Let G be a single-target network. There exists a steady state flux on G if and

only if the target vertex is in the relative interior of its Newton polytope.

Proof. Let y∗ denote the target vertex, and enumerate the source vertices y1, y2, . . . ,ym. Let

Ji be the flux on the edge yi → y∗. The flux vector J is a steady state flux if and only if

m∑
i=1

Ji(y
∗ − yi) = 0.

Rearranging, we see that y∗ =
∑

i
Ji
JT
yi, where JT =

∑
j Jj , and each Ji > 0. By definition,

y∗ ∈ Newt(G)◦.

For a single-target networkG whose target vertex is outside of Newt(G)◦, there can be no

positive steady state under mass-action kinetics. For example, the networks in Figure 2.3(b)–

(c) can have no positive steady states for any choice of rate constants under mass-action kinetics

or Michaelis–Menten kinetics.

Even with the target vertex in Newt(G)◦, to deduce a positive steady state from a

steady state flux J involves finding a positive solution x to the nonlinear equations Ji = kix
yi

for every yi → y∗ ∈ E. Moreover, there is the entire cone of steady state flux from which to

draw J . We prove the existence of a steady state for such single-target mass-action systems in

Corollary 2.2.5. Our proof of the existence and global stability of a positive state makes use of
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Birch’s Theorem [11, 78, 111] (see Theorem 1.4.4) and the Global Attractor Theorem for one

connected component [2, 17] (see Conjecture 1.4.16).

As a quick reminder, Birch’s Theorem states that the intersection (x0+S)∩(x∗◦expS⊥)

consists of exactly one point for any x0, x
∗ ∈ Rn>, where S ⊆ Rn is any vector subspace.

The Global Attractor Conjecture has been proven for when the network has one connected

component; therefore any complex-balanced (or detailed-balanced) steady state x∗ ∈ Rn> of

such a system is globally stable within its stoichiometric compatibility class.

Theorem 2.2.4. Let G be a single-target network whose target vertex is in the relative interior

of the Newton polytope. Then for any vector of rate constants κ > 0, the mass-action system

(G,κ) is dynamically equivalent to a detailed-balanced system that has a single connected

component.

Proof. Let y∗ denote the target vertex, and enumerate the source vertices y1, y2, . . . ,ym. Let

Γ ∈ Rn×m be the stoichiometric matrix, whose jth column is the reaction vector y∗ − yj . Let

κj > 0 be an arbitrary rate constant for the edge yj → y∗. Let Newt(G)◦ be the relative

interior of the Newton polytope, i.e.,

Newt(G)◦ =


m∑
j=1

αjyj : αj > 0 and

m∑
j=1

αj = 1

 .

We want to prove that (G,κ) is dynamically equivalent to a detailed-balanced system with

vertex set VG′ = VG and edge set EG′ = EG ∪ {y∗ → yj}mj=1. Moreover, for the original edges

yj → y∗, we keep the same rate constants κj . Let κ′j denote the rate constant of the reversible

edge y∗ → yj , whose value is to be determined. Thus our goal is to find positive rate constants

κ′j for each edge y∗ → yj and a positive state x ∈ Rn> satisfying two conditions:

m∑
j=1

κ′j(yj − y∗) = 0, (2.6)

κjx
yj = κ′jx

y∗ for all 1 ≤ j ≤ m. (2.7)
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The first condition (2.6) ensures that the resulting system (G′,κ′) is dynamically equivalent

to the original. The second ensures that (G′,κ′) is a detailed-balanced system with positive

steady state x. Condition (2.6) written in matrix form is κ′ ∈ ker Γ, where dim(ker Γ) = m−s.

Isolating κ′j in condition (2.7), we obtain

κ′j = κjx
yj−y∗ = κje

〈yj−y∗, logx〉,

where logx is the component-wise logarithm. Let exp(z) denote component-wise

exponentiation, and ◦ component-wise multiplication. Then condition (2.7) is equivalent to

κ′ ∈ κ ◦ exp(ran Γ>). Therefore, the existence of a vector of rate constants κ′ ∈ Rm> and a

positive vector x for a dynamically equivalent system that is detailed-balanced is reduced to

the existence of κ′ in the intersection ker Γ ∩ (κ ◦ exp(ran Γ>)) ⊆ Rm> .

By Lemma 2.2.3, there exists a steady state flux J on G, i.e., J ∈ ker Γ. Hence,

ker Γ ∩ (κ ◦ exp(ran Γ>)) = (J + ker Γ) ∩ (κ ◦ exp(ker Γ)⊥),

which is guaranteed to be non-empty for any positive J , κ by Birch’s Theorem

(Theorem 1.4.4) [11,78]. In other words, (G,κ) is dynamically equivalent to a detailed-balanced

system (G′,κ′), where G′ consists of the edges {yi 
 y∗}mi=1.

The results above classify all single-target networks under mass-action kinetics.

Corollary 2.2.5. Let G be a single-target network. For any vector of rate constants κ > 0, let

(G,κ) denote the corresponding mass-action system. Then exactly one of the following holds.

1. For any κ, the mass-action system (G,κ) has no positive steady states.

2. For any κ, the mass-action system (G,κ) has exactly one positive steady state within

each of its stoichiometric compatibility class. Furthermore, this steady state is globally

stable within its compatibility class.
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The latter occurs if and only if the target vertex of G is in the relative interior of the Newton

polytope.

Proof. If y∗ 6∈ Newt(G)◦, by Lemma 2.2.3 the network G admits no positive steady state flux,

i.e., ker Γ ∩Rm> = ∅; therefore, any mass-action system generated by G cannot have a positive

steady state. However, if y∗ ∈ Newt(G)◦, then by Theorem 2.2.4 the mass-action system is

dynamically equivalent to a detailed-balanced system with one connected component for any

choice of rate constants. Since detailed-balanced systems are complex-balanced, this system,

with one connected component, has within each of its stoichiometric compatibility class exactly

one positive steady state, which is globally stable [2, 17].

2.3 Global stability of perturbed complex-balanced systems

In the previous section, we saw a family of networks, possibly with high deficiencies, that

nonetheless enjoy all the dynamical properties of complex-balanced systems. Recall that for a

reaction network with positive deficiency, the rate constants must satisfy certain polynomial

constraints for the resulting mass-action system to be complex-balanced. In this section,

we show under an assumption implied by the Permanence Conjecture for variable-κ system

(Conjecture 1.4.23), the rate constants only need to approximately satisfy those algebraic

equations for the system to be globally stable.

Recall from Definition 1.4.19 that a system ẋ = f(x, t) is said to be permanent on a

forward invariant set U ⊆ Rn if there exists a globally attracting compact set K ⊆ U . In the

context of mass-action system, U is taken to be a certain compatibility class U = (x0+S)>, and

the mass-action system is simply said to be permanent if it is permanent on every stoichiometric

compatibility class. We define the stronger notion of robust permanence , when there is a

common globally attracting set for the family of systems obtained by perturbing the rate

constants. Let ‖ · ‖∞ denote the maximum norm on Rn.
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Definition 2.3.1. Consider a system of differential equations ẋ = f(x;κ) on U ⊆ Rn, with

unspecified parameters κ ∈ RR>. The system ẋ = f(x;κ∗) is robustly permanent on U if

there exist δ > 0 and a compact set K ⊆ U such that whenever ‖κ− κ∗‖∞ < δ, the solution

x(t) of ẋ = f(x;κ) with initial condition x(0) ∈ Rn> is eventually in K, i.e., there exists some

t0 > 0 such that x(t) ∈ K for all t ≥ t0.

We say a mass-action system (G,κ∗) is robustly permanent if the associated system

of ODEs ẋ = f(x;κ∗) is robustly permanent on every stoichiometric compatibility class.

Not surprisingly, robust permanence follows from the Permanence Conjecture for variable-κ

systems: a weakly reversible variable-κ mass-action system is permanent.

Proposition 2.3.2. Assume the Permanence Conjecture for variable-κ systems. Then a

complex-balanced system (G,κ∗) is robustly permanent.

Proof. Let (G,κ∗) be a complex-balanced system. Choose ε > 0 such that ε ≤ κ∗ij ≤ 1/ε

for every yi → yj ∈ E. There exists δ > 0 such that whenever |κij − κ∗ij | < δ, we still have

ε ≤ κij ≤ 1/ε. Fix a stoichiometric compatibility class (x0+S)>. The Permanence Conjecture

for variable-κ systems implies that there exists a compact set Kε ⊆ (x0 + S)> that is globally

attracting for any variable-κ system with parameter ε. Indeed, Kε is a globally attracting

compact set for the mass-action system (G,κ) for any ‖κ− κ∗‖∞ < δ.

Remark 2.3.3. Robust permanence implies permanence. If a complex-balanced system is also

permanent, then each complex-balanced steady state is globally stable within its stoichiometric

compatibility class. The goal is to extend this global stability to a perturbation of the system.

We now show that a robustly permanent complex-balanced system is globally stable even

when its rate constants are perturbed. In other words, global stability for complex-balanced

systems is robust. We make use of a result from [124]. Consider a system of differential

equations (with parameters κ)

dz

dt
= F (z;κ), (2.8)
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where F : U × Λ → Rn with U ⊆ Rn, Λ ⊆ RR, and the Jacobian matrix DzF (z;κ) is

continuous on U × Λ. Assume that solutions of the initial value problems are unique and

remain in U for all t ≥ 0 and for any κ ∈ Λ. Let z(t;κ, z0) denote the solution with initial

value z(0) = z0.

Theorem 2.3.4 (Corollary 2.3 [124]). Consider the system (2.8). Assume that

(a) F (z∗;κ∗) = 0, where z∗ is an interior point of U ;

(b) all eigenvalues of DzF (z∗;κ∗) have negative real parts; and

(c) z∗ is globally attracting for solutions of the system (2.8) when κ = κ∗

Suppose there is a compact set K ⊆ U such that for each κ ∈ Λ and initial condition z0 ∈ U ,

we have z(t;κ, z0) ∈ K for all large t. Then there exist ε > 0 and a unique point ẑ(κ) ∈ U

for all ‖κ− κ∗‖ < ε such that F (ẑ(κ);κ) = 0 and limt→∞ z(t;κ, z0) = ẑ(κ) for all z0 ∈ U .

Remark 2.3.5. The function κ 7→ ẑ(κ) is continuous on a neighbour of κ∗ [124]. It follows

that ẑ(κ) is an interior point of U .

Recall from Theorem 1.4.15 that if x∗ is a complex-balanced steady state, then the

stable manifold coincides with the stoichiometric compatibility class (x0 + S)>, the unstable

manifold is trivial, and the tangent space of the centre manifold is diag(x∗)S⊥ [82, 122]. In

other words, the dynamics along the centre manifold is stationary, and the dynamics along the

stable manifold is diffeomorphic to some non-linear system

dZs

dt
= F̃ (Zs,Zc), (2.9)

where Zc the state variables of the centre manifold, determined by the initial condition (the

compatibility class), stays constant for t ≥ 0. Therefore, a change of coordinates reduces to

the autonomous non-linear system (2.9) in the state variables Zs. Combining the results of

[122,124] leads to the main theorem of this section.
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Theorem 2.3.6. Let (G,κ∗) be a robustly permanent complex-balanced system. Then for

every stoichiometric compatibility class, there exists ε > 0 such that whenever ‖κ− κ∗‖∞ < ε,

the mass-action system (G,κ) has a unique globally stable positive steady state within every

stoichiometric compatibility class.

Proof. For a mass-action system (G,κ), denote its associated system by

ẋ = f(x;κ). (2.10)

If κ = κ∗, the system is complex-balanced. Fix a stoichiometric compatibility compatibility

class Ũ = (x0 +S)>, and let x∗ be the unique linearly stable steady state in Ũ [78,82]. Indeed,

x∗ is globally stable by Remark 2.3.3. Let Λ be the δ-ball in RR> around κ∗ that implies

robust permanence, and K̃ be the attracting compact set in Ũ . In other words, whenever

‖κ− κ∗‖∞ < δ, the solution x(t) to the system (2.10) is eventually in the compact set K̃, for

any initial condition in Ũ .

The complex-balanced system ẋ = f(x;κ∗)|Ũ is diffeomorphic (say via Φ) to a s-

dimensional dynamical system

ż = F (z;κ∗). (2.11)

Let U = Φ(Ũ) be the domain of the system (2.11). The reduced system (2.11) has a unique

steady state z∗ = Φ(x∗) in the interior of U , because x∗ is an interior point of its stoichiometric

compatibility class. The steady state z∗ inherits linear stability as well, i.e., all the eigenvalues

of the Jacobian DzF (z∗;κ∗) have negative real parts. Moreover, z∗ is a global attractor for

the system (2.11) on U .

Let K = Φ(K̃) be the image of the compact set under the diffeomorphism. For any

‖κ− κ∗‖∞ < δ and any initial condition in U , the solution z(t) to the system (2.11) is

eventually in K. By Theorem 2.3.4, there exists some ε > 0 such that for all ‖κ− κ∗‖∞ < ε,

there is a unique globally attracting steady state ẑ(κ) ∈ U to the system ż = F (z;κ), where
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ẑ(κ) is an interior point of U .

Let x̂(κ) be the preimage of ẑ(κ) under the diffeomorphism Φ. Then in the

stoichiometric compatibility class Ũ = (x0 +S)>, the point x̂(κ) is the unique positive steady

state of the system ẋ = f(x;κ), and x̂(κ) is globally stable.

Remark 2.3.7. The bound ε depends on κ∗ and the stoichiometric compatibility class.

Corollary 2.3.8. Assume the Permanence Conjecture for variable-κ systems. Let (G,κ∗) be

a complex-balanced system. Then there exists ε > 0 such that whenever ‖κ− κ∗‖∞ < ε, the

mass-action system (G,κ) is globally stable.

We conclude this chapter with a conjecture. In Chapter 3 we introduce generalized

mass-action systems; these can arise in several manners, one of which is by perturbing the

reaction vectors in a mass-action system [106]5. The dynamics of interest is given by

dx

dt
=

∑
(i,j)∈E

κijx
yiwε

ij , (2.12)

where wε
ij ≈ yj −yi. Viewing the reaction vectors {wε

ij : (i, j) ∈ G} as parameters instead of

the rate constants, one can try to apply Theorem 2.3.4 by Smith and Waltman. Clearly, linear

stability is inherited for small perturbations. Less obvious is an analog of the Permanence

Conjecture, a sufficient condition for robust permanence. We conjecture that under mild

assumptions, system (2.12) is globally stable if the unperturbed version is complex-balanced.

Conjecture 2.3.9. Let (G,κ∗) be a complex-balanced system. There exist δ > 0 and ε > 0

such that the perturbed mass-action system

dx

dt
=

∑
(i,j)∈E

κδijx
yiwε

ij (2.13)

5One can instead perturb the exponents in the monomials instead. There is a certain amount of symmetry
between the two views.
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is globally stable for all ‖κ− κ∗‖∞ < δ, and
∥∥∥wε

ij − (yj − yi)
∥∥∥
2
< ε such that the perturbed

network is endotactic.

One possible approach uses toric differential inclusions [30, 31, 45, 112]. Consider the

weakly reversible network G in Figure 2.4(a), which is complex-balanced for some choice

of rate constants κ∗ under mass-action kinetics. Figure 2.4(b) illustrates some permitted

perturbations on reaction vectors. The key condition is no reactions may point outside the

Newton polytope Newt(G), so the network is endotactic (Definition 1.4.17). Indeed, for any

such permitted perturbations, the system can be realized by the network in Figure 2.4(b).

Put another way, any variable-κ system on the network in (b) is dynamically equivalent

to some variable-κ system on the reversible network G′ in (c). Moreover, the networks in

Figures 2.4(b) and 2.4(c) are endotactic, so any variable-κ system on G′ can be embedded

into a toric differential inclusion [34], shown in Figure 2.4(d). For systems in R2 like this, one

can construct a polygonal forward-invariant region [45], the boundary of which is outlined in

purple in Figure 2.4(d). Therefore, the system (G′,κ′(t)) is persistent. It remains to show that

this region is globally attracting (Conjecture 1.4.25). For this particular example, (G′,κ′(t))

is permanent by two separate results: by [45, Theorem 6.4], any variable-κ endotactic system

with two species is permanent; and by [17, Theorem 4.2], any weakly reversible variable-κ

system with one connected component is permanent.

More generally, suppose the assumptions in Conjecture 2.3.9. Analogous to the network

in Figure 2.4(c), consider an endotactic network G′ that can incorporate the perturbed system

(2.13); notably there should be reaction vectors along every edge on the boundary of the

Newton polytope. Next, embed G′ into a toric differential inclusion [34]. Either by explicit

construction or by Conjecture 1.4.25, any variable-κ system on G′ is permanent. Because any

of our perturbed system can be realized using the variable-κ system, there is a compact set

in Rn> that is globally attracting for any κ ≈ κ∗ and wε
ij ≈ yj − yi such that the resulting

network can in realized using G′. By Theorem 2.3.4, the perturbed system is globally stable.
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(a) (b)

(c)

x

y

(d)

Figure 2.4: Example illustrating the idea of Conjecture 2.3.9: global stability is
inherited after perturbing the reaction vectors of (a) a complex-balanced system
such that (b) the resulting network is endotactic. Any variable-κ system (b) is
always dynamically equivalent to one on (c), which can be embedded into a toric
differential inclusion, with a forward invariant region (purple).
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Chapter 3

Power-Law Kinetics

It was mentioned in the introductory chapter that mass-action kinetics was derived for ideal

reaction systems. When those assumptions do not hold, the dynamics is expected to deviate

from that modelled by a mass-action system. While other mathematical tools exist, ranging

from stochastic processes to delay differential equations — the latter being the topic of the

next chapter — these methods are generally more difficult to analyze. However, one can

absorb the non-idealities of the system by changing the exponents in mass-action kinetics,

analogous to replacing concentrations with activities in thermodynamics of reactions. This

change in the reaction orders broadly fall under the name power-law kinetics [117,131]. There

are other methods of arriving at a power-law system, e.g., such as restricting reactants to a

lower dimensional surface [91,92].

Power-law systems are (often autonomous) systems of ordinary differential equations.

What differentiates power-law kinetics from mass-action kinetics is that the exponents in

the monomials may not correspond to the stoichiometric coefficient of the reactants. In the

traditional view that stoichiometric coefficients are non-negative integers, mass-action systems

use polynomials as the right-hand side of the ODEs1. In power-law kinetics, polynomials are

replaced with generalized polynomials, whose exponents are real numbers. More importantly,

the reaction rate function may depend on concentrations of species that are not reactants, a

scenario that could arise when simplifying reaction mechanism diagrams and lumping several

reactions together.

1Emphatically not the view we take in this thesis, and not the typical view in works that follow from those
of Horn, Jackson, and Feinberg. The exponents in the non-linear rate functions are typically taken to be non-
negative real numbers. In this thesis, the main difference between mass-action kinetics and power-law kinetics is
whether the exponents in the rate functions correspond to the stoichiometric coefficients of the reactant complex.
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In this chapter, we retain the focus on reaction networks, and decouple the stoichiometric

coefficients from the rate functions. Section 3.1 reviews the framework of generalized mass-

action systems, and the notion of complex-balancing is extended to that of vertex-balancing

in Section 3.2. We give a condition on vector spaces in Section 3.3 for the existence and

uniqueness of vertex-balanced steady states within each stoichiometric compatibility class.

This generalizes Birch’s Theorem (Theorem 1.4.4) for classical mass-action systems.

3.1 Generalized mass-action systems

In this section, we introduce yet another representation of kinetics model: that of generalized

mass-action systems2 as introduced by Stefan Müller and Georg Regensburger in [107,108].

Recall from Chapter 1 that a reaction network consists of a directed graph G = (V,E)

whose vertices are assigned vectors in Rn≥. A mass-action system (G,κ) is defined when the

edges of the graph are given positive weights called rate constants. The associated system of

ODEs on Rn≥ can be written as

dx

dt
= YAκx

Y. (3.1)

The complex matrix Y appears once as related to the reaction vectors and once more in the

monomials in xY. What if we are interested in decoupling these two aspects of the differential

equations: the linear stoichiometric coefficients and the non-linear rate functions? In other

words, what if Equation (3.1) looks like ẋ = YAκx
Ỹ instead?

We illustrate the idea of generalized reaction network using two examples before the

formal definition. We also illustrates what their representations as classical reaction networks

would look like, if the same dynamics were generated by a classical mass-action system. The

first example echoes how perhaps one might run into a generalized network in the wild, but

the second example, which starts out more abstractly, better resembles the definition.

2In their seminal paper [78], Horn and Jackson also referred to generalized mass-action kinetics, whereby
they meant to allow non-integer stoichiometric coefficients. Here, we refer to the Horn–Jackson framework as
classical mass-action kinetics.
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y4

y1

y2 y3

y5

(a)

y1 = 0

(xỹ1 = 1)

y4 = X

(xỹ4 = x2)

(xỹ3 = xy)

y3 = X + Y

(xỹ2 = y)

y2 = Y

(b)

Y
(y)

2 X + Y
(xy)

3

0
(1)

1 X
(x2)

4

(c)

Figure 3.1: (a) A classical reaction network in Example 3.1.1 that is not weakly
reversible. However, by “translating” the reaction y5 → y3 left, (b) the resulting
graph appears weakly reversible. To avoid changing the dynamics, one needs to
keep track of the corresponding rate functions in addition to the stoichiometric
coefficients. (c) How a generalized reaction network is usually depicted in this
chapter, with the stoichiometric coefficients above the rate functions in each vertex.

Example 3.1.1. Consider the classical3 reaction network with the complexes labelled as in

Figure 3.1(a). Noting that y3 − y5 = y2 − y4 = (−1, 1)>, we can write the associated system

of ODEs under mass-action kinetics as

dx
dt = κ14x

y1 (y4 − y1) + κ21x
y2 (y1 − y2) + κ23x

y2 (y3 − y2)

+ κ34x
y3 (y4 − y3) + κ53x

y5 (y2 − y4) .
(3.2)

At the same time, we notice that the monomial xy4 does not appear, since y4 is not a source

complex in the reaction network.

3Emphasis added to contrast the main object of this chapter with those of previous chapters.
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What if we start with the weakly reversible graph G = (V, E) in Figure 3.1(b) and assign

two labels to each vertex: one corresponding to the monomials, and another corresponding to

stoichiometric coefficients that give the correct reaction vector? This leads to a generalized

reaction network (Definition 3.1.3). For three of the vertices, let

y1 = ỹ1 = (0, 0)>, y2 = ỹ2 = (0, 1)>, and y3 = ỹ3 = (1, 1)>.

For the final vertex, let

y4 = (1, 0)>, while ỹ4 = (2, 0)>.

Now the system of ODEs

dx

dt
=
∑

(i,j)∈E

κijx
ỹi
(
yj − yi

)
,

with appropriately chosen rate constants κij from (3.2) above.

Figure 3.1(b) contains all the information needed to define a generalized reaction

network. A more standard representation of one is shown in Figure 3.1(c). Each vertex of

the graph G is labelled with a stoichiometric complex on top, and a monomial corresponding

to the kinetic-order complex below. The stoichiometric complexes yi give rise to the relevant

reaction vectors, while the kinetic-order complexes ỹi define the respective rate functions. The

motivating procedure of this example is known as network translation [83]. This is a common

way to generate a generalized mass-action system, and has biological applications [84].

Example 3.1.2. Consider the abstract graph G in Figure 3.2(a) with two connected

components. Assign two sets of vectors to the vertices, the first set as shown in Figure 3.2(b):

Y(v1) = y1 = (0, 0)>, Y(v2) = y2 = (1, 1)>,

Y(v3) = y3 = Y(v4) = y4 = (2, 1)> and Y(v5) = y5 = (1, 0)>,
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v1 v2

v3 v4

v5

(a) G

y1

y2

y5

y3 = y4

(b) Y(G)

ỹ1

ỹ2 = ỹ3 ỹ4

ỹ5

(c) Ỹ(G)

Figure 3.2: (a) An abstract graph G, and its images under the maps (b) Y and (c)
Ỹ from Example 3.1.2. The Newton polytope of the associated system is shown
in (c). Together, (G,Y, Ỹ) defines a generalized reaction network.

and the second set as seen in Figure 3.2(c):

Ỹ(v1) = ỹ1 = (0, 0)>, Ỹ(v2) = ỹ2 = Ỹ(v3) = ỹ3 = (1, 1)>,

Ỹ(v4) = ỹ4 = (2, 1)> and Ỹ(v5) = ỹ5 = (1, 0)>.

Letting κij be the rate constants of the edge (i, j), define the system of ODEs

dx

dt
=
∑

(i,j)∈E

κijx
ỹi
(
yj − yi

)

= κ12

1

1

+ κ21xy

−1

−1

+ κ45x
2y

−1

−1

+ κ53x

1

1

+ κ35xy

−1

−1

 .

Observe that the term corresponding to v3 → v4 does not appear, since a self-loop in the graph

Y(G) results in the zero reaction vector. Second, because Ỹ maps both v2 and v3 to (1, 1)>,

the monomial xy is associated to edges leaving those two vertices. The Newton polytope of the

system is given by Ỹ(G), as shown in Figure 3.2(c). As this example illustrates, the dynamics

of a generalized mass-action system is determined by (G,Y, Ỹ) with positive rate constants

assigned to each edge.

Definition 3.1.3. A generalized reaction network is given by (G,Y, Ỹ), where G = (V, E)

is a finite directed graph with no self-loops and no isolated vertices, and Y : V → Rn maps
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each vertex vj to a stoichiometric complex yj , while Ỹ : Vs → Rn maps each source vertex

vj to a kinetic-order complex ỹj .

Remark 3.1.4. We do not assume that the maps Y and Ỹ are injective (the definition initially

given by Müller and Regensburger in [107]). Injectivity was dropped from the definition in

[108]. Also, as in classical mass-action systems, the assumptions of no self-loops and no isolated

vertices do not affect the dynamics. Instead, they pose minor inconveniences when defining

the Laplacian matrix. As demonstrated in Figure 3.2, the graphs G, Y(G), and Ỹ(G) may

have different topologies.

We adopt the terms reversible and weakly reversible but now referring to the

abstract graph G. While it may appear that we are stating the obvious, soon we need to

distinguish between the abstract graph G and the images Y(G) and Ỹ(G), which can be

regarded as separate directed graphs themselves.

Definition 3.1.5. A generalized mass-action system is the quadruple (G,Y, Ỹ,κ), where

(G,Y, Ỹ) is a generalized reaction network, and κ ∈ RE> is a vector of rate constants. Its

associated system of differential equations on Rn> is

dx

dt
=
∑

(i,j)∈E

κijx
ỹi
(
yj − yi

)
. (3.3)

The system (3.3) can be written in matrix form. Let m be the number of vertices in

G = (V, E). By an abuse of notation, let Y and Ỹ ∈ Rn×m be matrices with columns filled by

stoichiometric and kinetic-order complexes respectively; if vj is not a source vertex, then set

the jth column of Ỹ to be the zero vector 04. Then the system (3.3) can be written as

dx

dt
= YAκx

Ỹ, (3.4)

4This choice is arbitrary since the corresponding monomial in xỸ does not appear in the associated system

system of ODEs or in Aκx
Ỹ.
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where Aκ is the Laplacian matrix or kinetic matrix5 of the abstract graph G, i.e.,

[Aκ]ij =


κji if i 6= j and (i, j) ∈ E

−
∑

p κjp if i = j

0 otherwise

.

Let IG ∈ RV×E be the incidence matrix of the graph G. Let S = span{yj −yi : (i, j) ∈

E} = ran YIG be the stoichiometric subspace . Again ẋ ∈ S, so for any positive

initial condition x(0) > 0, the solution x(t) of system (3.3) or (3.4) is confined to the

invariant affine subspace x(0) + S. The stoichiometric compatibility class of x0 ∈ Rn> is

(x0 + S)> = (x0 + S) ∩ Rn>. Here, we make no claim on whether Rn> is forward invariant.

As observed in Example 3.1.2, the Newton polytope is given by the kinetic-order

complexes. If every vertex is a source, we define kinetic-order subspace to be

S̃ = span{ỹj − ỹi : (i, j) ∈ E} = ran ỸIG . (3.5)

From here on unless otherwise stated, we assume that every vertex of G is a source vertex,

so that the kinetic-order subspace S̃ is well-defined. Generally speaking, we assume that G is

weakly reversible, unless otherwise stated (as in Remark 3.2.2 when trying to distinguish

between vertex-balancing for generalized mass-action systems and complex-balancing for

classical mass-action systems).

3.2 Vertex-balanced steady states

Given the matrix equation (3.4), it is natural to extend the notion of complex-balancing to

generalized mass-action system. We shall see that these steady states enjoy some, but not all,

of the algebraic properties of complex-balanced steady states of classical mass-action systems.

5As is the case with classical mass-action systems, strictly speaking Aκ is the negative transpose of the
Laplacian matrix.
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Definition 3.2.1. Let (G,Y, Ỹ,κ) be a generalized mass-action system with associated system

ẋ = YAκx
Ỹ. A positive steady state x∗ is vertex-balanced6 if for every vi ∈ V, we have

∑
(i,j)∈E

κij(x
∗)ỹi =

∑
(j,i)∈E

κji(x
∗)ỹj . (3.6)

Equivalently Aκ(x∗)Ỹ = 0. Let Zκ denote the set of vertex-balanced steady states.

Remark 3.2.2. It is worth emphasizing that the graph on which vertex-balancing is obtained

is the abstract graph G, not Y(G), as this simple example (G,Y, Ỹ,κ)

0

(1)

1 X

()

2

0

()

3 X

(x)

4

1

1

illustrates. The associated system, also generated by the classical mass-action system (G,κ)

0 X
1

1

is ẋ = 1− x. The positive steady state x∗ = 1 is not vertex-balanced on G, yet it is complex-

balanced for (G,κ). There are non-trivial biological examples of this phenomenon [84].

Despite the difference between vertex-balanced steady states (for generalized mass-

action systems) and complex-balanced steady states (for classical mass-action systems), they

share some algebraic properties. A generalized mass-action system (G, Ỹ, Ỹ,κ) is associated

to the system of ODEs ẋ = ỸAκx
Ỹ. So a positive solution to Aκx

Ỹ is vertex-balanced for

(G, Ỹ, Ỹ,κ); it is also complex-balanced for the classical mass-action system (Ỹ(G),κ). As

6Others have also called it a complex balancing equilibrium [107, 108] or generalized complex-balanced steady
state [83]. As the examples in Remark 3.2.2 and [84] illustrate, there are cases where a generalized mass-action
system might have a steady state that is complex-balanced in a sense but certainly not vertex-balanced.
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such, the set of vertex-balanced steady states Zκ admits the representation

Zκ = {x > 0 : lnx− lnx∗ ∈ S̃⊥} = x∗ ◦ exp S̃⊥,

where x∗ is a vertex-balanced steady state (if one exists). Unlike complex-balancing, without

additional assumptions we cannot conclude that every positive steady state is vertex-balanced.

When thinking about complex-balancing, one cannot avoid a discussion on deficiency;

similarly for vertex-balancing. Recall from Definition 1.4.9 that the deficiency of a reaction

network G (in the context of classical mass-action kinetics) is δG = m − ` − dimS, where m

is the number of complexes, i.e., vertices, in the graph G, which has ` connected components,

and S is the stoichiometric subspace. In the context of generalized reaction network, there are

three graphs — G, Y(G) and Ỹ(G) — and two linear subspaces — S and S̃; there are three

deficiencies for a generalized reaction network.

Definition 3.2.3. Let (G,Y, Ỹ) be a generalized reaction network, where G = (V, E) has `

connected components. Let IG be the incidence matrix of G. Assume that every vertex is a

source. Let S and S̃ be the stoichiometric and kinetic-order subspaces respectively.

(a) The stoichiometric deficiency is the non-negative integer δ = |V| − ` − dimS.

Equivalently, δ = dim(ker Y ∩ ran IG).

(b) The kinetic deficiency7 is the non-negative integer δ̃ = |V| − `− dim S̃. Equivalently,

δ̃ = dim(ker Ỹ ∩ ran IG).

(c) The effective deficiency is the non-negative integer δ′ = m′−`′−dimS, where m′ and `′

are the number of vertices and connected components respectively in Y(G). Equivalently,

δ′ = dim(ker Y′ ∩ ran IY(G)), where Y′ ∈ Rn×m′ is the truncated complex matrix8 and

IY(G) is the incidence matrix of the graph Y(G) [84].

7Also called kinetic-order deficiency in [44].
8By truncating from Y the repeated columns that come from different vertices being mapped to the same

stoichiometric complex.
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The stoichiometric deficiency δ and kinetic deficiency δ̃ were introduced in [107], while

the effective deficiency δ′ was introduced in [84]. Note that δ and δ̃ depend on the abstract

graph G and on Y and Ỹ respectively, while δ′, which is less than or equal to δ, depends only

on the graph Y(G). Finally, when G is weakly reversible, we can replace ran IG with ran Aκ

in the formulae for δ and δ̃ above [73]. Similarly, if Y(G) is weakly reversible, then ran IY(G)

can be replaced by the range of the Laplacian matrix of Y(G). For example, the generalized

network in Figure 3.2 has

δ = 5− 2− 1 = 2, δ̃ = 5− 2− 2 = 1, and δ′ = 4− 2− 1 = 1.

As another example, the generalized network in Remark 3.2.2 has

δ = 4− 2− 1 = 1 but δ′ = 2− 1− 1 = 0.

When first seeing this latter example, no doubt the reader was extremely tempted to say this

example is effectively complex-balanced and fails to be vertex-balanced for technical reasons.

Indeed, the network’s effective deficiency hints at as much. If δ′ = 0, then every positive steady

state of a generalized mass-action system is complex-balanced on Y(G) [84].

Example 3.2.4. To illustrate this, consider this example involving histidine kinase from [84].

In this network, a histidine kinase X phosphorylates itself, before it transfer the phosphate

group to a response regulator Y, which then dephosphorylates [29]. The two-component system

is responsible for signal-tranduction in bacteria [126]. The mass-action system

X Xp

Xp + Y X + Yp

Yp Y

κ1

κ2

κ3

κ4

can be translated [83] by adding Y to the first reaction, and X to the last reaction. The

resulting generalized mass-action system is shown in Figure 3.3. The reader may notice that
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there is an additional edge in the generalized network from the third vertex to the fourth. This

edge contributes nothing to the dynamics since the stoichiometric complexes are both X + Yp.

X + Y
(x)

1 Xp + Y
(xp · y)

2

X + Yp
(x · yp)

3X + Yp
(yp)

4

κ1

κ4 κ2κ3

ζ

Figure 3.3: A generalized mass-action system that generates the same dynamics
as the histidine kinase two-component system in Example 3.2.4.

The network in Figure 3.3, with or without the “ghost” edge with rate constant ζ,

has stoichiometric deficiency δ = 1 but effective deficiency δ′ = 0. In particular, while

dim(Y ∩ ran Aκ(G)) = 1 but dim(Y ∩ ran Aκ(Y)) = 0, where

Aκ(G) =


−κ1 κ4

κ1 −κ2 κ3

κ2 −κ3 − ζ

ζ −κ4

 and Aκ(Y) =


−κ1 κ4

κ1 −κ2 κ3

κ2 −κ3 − κ4



are the Laplacian matrices of the abstract graph G and the stoichiometric graph Y(G)

respectively. While for any choice of rate constants, we may expect balancing across the

vertices of Y(G), a scenario that is worthy of being called “complex-balancing”, we do not

expect in general balancing across vertices of G, especially if the ghost edge is not present

and the graph is not weakly reversible. We now look at this problem from two perspectives:

algebraically first, then graph-theoretically for an intuitive idea.

With the ordering of species X, Y, Xp, then Yp, the complex matrix and truncated
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complex matrix are

Y =


1 0 1 1

1 1 0 0

0 1 0 0

0 0 1 1

 and Y′ =


1 0 1

1 1 0

0 1 0

0 0 1

 .

Note that (0, 0, 1,−1)> ∈ ker Y, so (0, 0, ζ,−ζ)> ∈ ker Y. At this point, it is not difficult to

show that

YAκ(G) =


1 0 1 1

1 1 0 0

0 1 0 0

0 0 1 1




−κ1 κ4

κ1 −κ2 κ3

κ2 −κ3 − ζ

ζ −κ4



=


1 0 1

1 1 0

0 1 0

0 0 1



−κ1 κ4

κ1 −κ2 κ3

κ2 −κ3 − κ4

 = Y′Aκ(Y).

Next, we want to have a more intuitive and graph-theoretical understanding of why

“complex-balancing”, in the context of generalized mass-action systems, must imply the

existence of a generalized system with the same dynamics but is also vertex-balancing. First

recognize that that “complex-balancing” means balancing the flux across the nodes of Y(G).

So the graph Y(G) is necessarily weakly reversible, and there is a complex-balancing flux on

Y(G). Each vertex in Y(G) can be understood as a conglomerate of vertices in G; indeed, each

vertex holds the preimage Y−1(y) of a stoichiometric complex y. Zero in on the subgraph of

G that contains Y−1(y) with half-edges that leave/come from all other vertices; connect these

half-edges to a new vertex v∗ (far far away). In the case of the histidine kinase system, we

would focus on vertices 3 and 4. We already know the fluxes across the half-edges balance,

so it remains to craft a new generalized subnetwork that would be vertex-balancing. Because
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the vertices in this subgraph share the same stoichiometric complex, adding an edge between

the vertices do not change the associated system of ODEs. Analogous to introducing a canal

between buckets with different water level, one can add edges from vertex vi with a net in-flux

J to a vertex vj with net out-flux. The rate constant of this edge is κij = J/xỹi , where ỹi

is the kinetic-order complex assigned to vi, and x is the “complex-balanced” steady state.

This procedure can then be repeated. Moreover, it must terminate at some point; otherwise

there would be a vertex with non-zero net flux, which implies that the fluxes across v∗ are not

balanced. This procedure of diverting fluxes does not in general uniquely determine the edges

needed in the abstract graph G.

Of course, if δ′ = dim(ker Y′ ∩ ran Aκ(Y)) = 0, then any steady state to a generalized

mass-action system (G,Y, Ỹ) must be “complex-balancing”, regardless of the choice of rate

constants κ. Therefore, there exists a generalized mass-action system (with the construction

described above) that shares the same associated system of ODEs, and the set of positive

steady state of (G,Y, Ỹ,κ) is now vertex-balanced [84].

We summarize some known algebraic properties of vertex-balanced steady states.

Theorem 3.2.5 ([84,107,108]). Let (G,Y, Ỹ,κ) be a generalized mass-action system.

(a) If Zκ 6= ∅ for some κ > 0, then the graph G is weakly reversible.

(b) If x∗ ∈ Zκ, then Zκ = {x ∈ Rn> : lnx− lnx∗ ∈ S̃⊥} = x∗ ◦ exp S̃⊥.

(c) For a weakly reversible generalized reaction network, δ̃ = 0 if and only if Zκ 6= ∅ for any

choices of rate constants κ > 0.

(d) For a weakly reversible generalized reaction network, if δ = 0, then for any choice of

rate constants κ > 0, any positive steady state is a vertex-balanced steady state, i.e.,

Eκ = Zκ.

(e) If δ′ = 0, then there exists a generalized mass-action system (G′,Y′, Ỹ′,κ′) with the same
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associated systems of ODEs such that its set of vertex-balanced steady states Z ′κ′ is the

set of positive steady states of (G,Y, Ỹ,κ).

Even if Zκ 6= ∅, it does not follow that every stoichiometric compatibility class has

a vertex-balanced steady state. This leads to the question: can we conclude the existence

and uniqueness of a vertex-balanced steady state in every stoichiometric compatibility class

under some appropriate conditions? Towards this end, there are three essentially equivalent

problems: (i) about vertex-balanced steady states for generalized mass-action systems, (ii)

about the intersection of an affine space with a manifold, similar in spirit to Birch’s Theorem

(Theorem 1.4.4), and (iii) about the bijectivity of a generalized polynomial map onto a

polyhedral cone. Below, we summarize these three questions. This thesis is only concerned

about the first two problems.

The first of the three is phrased in the context of generalized mass-action systems.

Suppose that there is a vertex-balanced steady state x∗ ∈ Zκ. What is a condition (E)

on the network (G,Y, Ỹ) for the existence of a vertex-balanced steady state within every

stoichiometric compatibility class? Similarly, what condition (U) on (G,Y, Ỹ) characterizes

uniqueness of a vertex-balanced steady state within its stoichiometric compatibility class? We

would like these conditions to be independent of the rate constants κ.

Problem (1). Let (G,Y, Ỹ,κ) be a generalized mass-action system. Suppose that Zκ 6= ∅.

What are conditions (E) and (U) on (G,Y, Ỹ), so that the following statements are true?

1. If (G,Y, Ỹ) satisfies condition (E), then there is at least one vertex-balanced steady

state in every stoichiometric compatibility class, i.e., (x0 +S)∩Zκ contains at least one

point for any x0 ∈ Rn>.

2. If (G,Y, Ỹ) satisfies condition (U), then there is at most one vertex-balanced steady

state in every stoichiometric compatibility class, i.e., (x0 +S)∩Zκ contains at most one

point for any x0 ∈ Rn>.

Recall that Zκ = x∗ ◦ exp S̃⊥ ⊆ Rn> for any x∗ ∈ Zκ. Thus, the vertex-balanced steady
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states within any stoichiometric compatibility class belong to the intersection (x0 +S)∩ (x∗ ◦

exp S̃⊥) for some x0 > 0. This leads us to the another reformulation of the problem:

Problem (2). Let S and S̃ ⊆ Rn be vector subspaces. What are conditions (E) and (U) on S

and S̃, so that the following statements are true?

1. If S and S̃ satisfy condition (E), then (x0 + S) ∩ (x∗ ◦ exp S̃⊥) contains at least one

point, for any x0, x∗ ∈ Rn>.

2. If S and S̃ satisfy condition (U), then (x0 + S) ∩ (x∗ ◦ exp S̃⊥) contains at most one

point, for any x0, x∗ ∈ Rn>.

If a generalized mass-action system happens to be a classical mass-action system, then

its stoichiometric subspace S is also the kinetic-order subspace S̃. The existence and uniqueness

of a point in the intersection (x0 + S) ∩ (x∗ ◦ expS⊥) for any x0, x
∗ ∈ Rn> is the content of

Birch’s Theorem (Theorem 1.4.4).

Another reformulation of the above problems was introduced by Müller and

Regensburger [107], in terms of injectivity/surjectivity of an exponential map or a generalized

polynomial map onto a polyhedral cone. Such polynomial maps appear in other applications;

for example, a renormalized version appears in computer graphics and geometric modelling,

where the map being injective implies that the curve or surface does not self-intersect [38].

We need to define these maps; for details of the following, see [106,107,108]. Let x∗ ∈ Rn>
be an arbitrary vector, and S, S̃ ⊆ Rn two vector subspaces, with d = codimS, d̃ = codim S̃.

Choose a basis for S⊥ and let the basis vectors be the rows of the matrix W ∈ Rd×n. Similarly,

choose a basis for S̃⊥ and let the basis vectors be the rows of W̃ ∈ Rd̃×n. Write the two matrices

in terms of their columns: W = (w1,w2, . . . ,wn) and W̃ = (w̃1, w̃2, . . . , w̃n). In this manner,

S⊥ = ran W>, S = ker W, and S̃⊥ = ran W̃>, S̃ = ker W̃. Finally, let C◦(W) be the set of
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all positive combinations of {wi}ni=1. For any x∗ ∈ Rn>, define the maps

fx∗ :
Rd̃> → C◦(W) ⊆ Rd,

ξ 7→ W(x∗ ◦ ξW̃) =
n∑
i=1

x∗i ξ
w̃iwi

and

Fx∗ :
Rd̃ → C◦(W) ⊆ Rd,

λ 7→ W (x∗ ◦ exp(W̃>λ)) =

n∑
i=1

x∗i e
〈w̃i,λ〉wi

.

Then the problem about intersection is equivalent to the following.

Problem (3). Let S and S̃ ⊆ Rn be vector subspaces. What are conditions (E) and (U) on S

and S̃, so that the following statements are true?

1. If S and S̃ satisfy condition (E), then the map fx∗ (respectively Fx∗) is surjective onto

C◦(W), for any x∗ ∈ Rn>.

2. If S and S̃ satisfy condition (U), then the map fx∗ (respectively Fx∗) is injective, for

any x∗ ∈ Rn>.

Müller and Regensburger characterized when the maps fx∗ and Fx∗ are injective and

indeed when they are in a sense robustly bijective as explained in Theorem 3.2.6 below. Their

characterization — as well as ours in the following section — are in terms of the sign vectors of

the stoichiometric subspace S and the kinetic-order subspace S̃. Briefly, the set of sign vectors

σ(S) is the image of S under the coordinate-wise sign function (Definition 3.3.1). They proved

that the maps fx∗ and Fx∗ are injective if and only if σ(S) ∩ σ(S̃⊥) = {0} [107, Theorem

3.6]. The authors also provided a sufficient condition for bijectivity: if σ(S) = σ(S̃) and

(+, · · · ,+)> ∈ σ(S⊥), then fx∗ and Fx∗ are bijective, indeed, real analytic isomorphisms) [107,

Proposition 3.9].
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In Theorem 3.3.10 we somewhat generalized this result; more precisely, we prove that if

σ(S) ⊆ σ(S̃⊥), with the closure operation defined in Definition 3.3.1, then there always exists

exactly one intersection point in (x0+S)∩(x∗ ◦exp S̃⊥) for all x0, x
∗ > 0. In other words, the

maps fx∗ and Fx∗ are bijective. Müller, Hofbauer, and Regensburger characterized when fx∗

and Fx∗ are bijective for arbitrary x∗ ∈ Rn> [106]. They also proved that the sign condition

σ(S) ⊆ σ(S̃⊥ε ) is necessary and sufficient for Fx∗ to be bijective for all x∗ > 0 and all small

perturbations S̃ε of the subspace S.

Theorem 3.2.6 (Robust Deficiency Zero Theorem [106, Theorem 46]). Let (G,Y, Ỹ) be

a weakly reversible generalized reaction network. There exists a unique vertex-balanced steady

state in every stoichiometric compatibility class for any choice of rate constants and for all

small perturbations of kinetic-order complexes Ỹ if and only if δ = δ̃ = 0 and σ(S) ⊆ σ(S̃⊥).

We were careful in not claiming that the three problems are equivalent. Problems (2)

and (3) are equivalent. However, Problem (1) is weaker; it assumes the existence of a particular

vertex-balanced steady state x∗ to obtain a representation of Zκ. So strictly speaking, the three

problems are equivalent only when the kinetic deficiency is δ̃ = 0, and the rate constants κ is

chosen so that x∗ has the designated values.

3.3 Sign condition for vertex-balancing

In this section, we give a sufficient condition for the existence and uniqueness of a vertex-

balanced steady state within any stoichiometric compatibility class in a generalized mass-

action system. The results here appeared in [44]. The condition is in terms of the relative sign

vectors of the stoichiometric subspace S and the kinetic-order subspace S̃ (Definition 3.3.1).

Informally speaking, we show that if S and S̃ point in the same orthant9 of Rn, then for any

x0, x
∗ ∈ Rn>, the intersection (x0 +S)∩ (x∗ ◦ exp S̃⊥) has exactly one point. In particular, if a

generalized mass-action system has a vertex-balanced steady state x∗, then every stoichiometric

compatibility class has exactly one vertex-balanced steady state.

9Along with a boundary case involving coordinate faces of neighbouring orthants.
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Existence of such an intersection point make up the main difficulty. Our result relies on

transversality and intersection theory. We first introduce the relevant concepts of sign vectors

and transversality.

Definition 3.3.1. Given a vector x ∈ Rn, its sign vector is

σ(x) = (sgn(x1), sgn(x2), . . . , sgn(xn))> ∈ {0,+,−}n. (3.7)

The set of sign vectors for a subset S ⊆ Rn is the collection σ(S) = {σ(x) : x ∈ S}. Consider

the partial order on {0,+,−} where + > 0 and − > 0; the set {0,+,−}n inherits this partial

order, i.e., we say τ ≥ τ ′ if and only if τj ≥ τ ′j for all 1 ≤ j ≤ n. The closure of a set Λ of

sign vectors is the set

Λ = {τ ∈ {0,+,−}n : there exists τ ′ ∈ Λ such that τ ≤ τ ′}. (3.8)

Geometrically, the sign vector tells approximately which direction a vector is pointing.

Define an orthant10 of Rn to be the preimage of any sign patterns, i.e., an orthant is a maximal

subset of Rn on which σ is constant. For example, in R2 beside the four typical quadrants,

there are also the positive and negative coordinate axes and the origin. In other words, R2 has

nine orthants in total, whose sign vectors are

+

+

 ,

−
+

 ,

−
−

 ,

+

−

 ,

+

0

 ,

−
0

 ,

0

+

 ,

0

−

 ,

0

0

 .

In R3, there are the eight 3-dimensional orthants (whose sign vectors have only non-zero

components), twelve 2-dimensional orthants (whose sign vectors have exactly one 0), six 1-

dimensional orthants (the coordinate axes, and whose sign vector has exactly two 0), and

finally the origin. Therefore, R3 has twenty-seven orthants.

10This differs from the typical definition of an orthant, which is full dimensional. We call lower dimensional
faces orthants as well.
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Figure 3.4: Example sign vectors (colour-coded) in (a) R2 and (b) R3.

In Figure 3.4(a) are some examples in R2 with their sign vectors. The vectors u1, u2

share the same sign (+,+)>. The sign vector of u3 is (−,+)>. The sign vector (0,+)> of u4

is in the closures σ({u1,u2}) and σ(u3). This reflects the fact that this coordinate face, the

positive y-axis, borders those two orthants.

In Figure 3.4(b) are some examples in R3 with their sign vectors. Vectors that share

the same sign are colour-coded together. The signs of u1 and u2, which lie above the positive

y-axis, are (0,+,+)>. The vectors u3, u4, and u5 pointing out of the page towards the viewer

have the sign (+,+,+)>. The closure of (+,+,+)> includes the three coordinate faces with

non-negative coordinates (shaded faces) as well as the positive x-, y- and z-axes and the origin.

The closure of (0,+,+)> (green shaded face) includes the positive y- and z-axes and the origin.

The closure of a set of sign vectors Λ includes all of Λ and any sign vector of Λ with

one or more of its components replaced by zeroes. A + or a − that has been replaced by 0 can

be understood geometrically as sweeping a vector until it hits one of the adjacent coordinate

faces that is one dimension lower.

There is also an orthogonality relation defined on {0,+,−}n. We say two sign vectors

τ and τ ′ are orthogonal , denoted τ ⊥ τ ′, if
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i) either τj · τ ′j = 0 for all 1 ≤ j ≤ n, or

ii) there exist indices i, j such that τi · τ ′i = + and τj · τ ′j = −,

where the operation on signs is as one would expect from multiplication:

+ ·+ = − · − = +, + · − = −, and + · 0 = − · 0 = 0 · 0 = 0.

The sign vectors τ and τ ′ are orthogonal if and only if there exist orthogonal vectors x and y

such that σ(x) = τ and σ(y) = τ ′.

Much more could be said about the structure of sign vectors, especially in the context

of oriented matroids. For a brief introduction to sign vectors of linear subspaces, we refer the

reader to the appendix in [107].

The notion of transversality encapsulates the idea of generic intersection, that an

intersection does not disappear when the surfaces are perturbed. Informally, transversal

intersections is the opposite of being tangent. We do not use the full power of the theory

of transversality; for a comprehensive treatment of differential topology, see [72,121].

(a)

•

(b)

•

(c)

•

(d)

Figure 3.5: (a)–(b) Examples in R3 of transversal intersections, and (c)–(d) those
in R3 that do not intersecting transversally.

Definition 3.3.2. Two manifolds X and Y of Rn intersect transversally if at each

intersection point p ∈ X ∩ Y , their tangent spaces span the entire Euclidean space, i.e.,

Tp(X) + Tp(Y ) = Rn.

Transversality is quickly generalized to that between a map and a manifold, as seen in

the following differential topology result.
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Theorem 3.3.3 ([121, Theorem 3.5.1]). Let X and Y be manifolds and Z ⊆ Y a submanifold,

where Z and Y are boundaryless. Let f : X → Y be a smooth map. Suppose f intersects Z

transversally and f |∂X also intersects Z transversally. Then f−1(Z) is a submanifold of X

with boundary ∂(f−1(Z)) = ∂X ∩ f−1(Z), and codimX(f−1(Z)) = codimY (Z).

When the ambient manifold is Y = Rn>0, and f is the inclusion map of a submanifold X

into Rn>0, to say that the maps f and f |∂X intersect the manifold Z transversally is equivalent

to the manifolds X and ∂X intersect Z transversally. The preimage f−1(Z) is the submanifold

X ∩ Z. Moreover, the dimension of the intersection X ∩ Z is given by the equation

dimX − dim(X ∩ Z) = codimX(X ∩ Z) = codimRn>0
(Z) = n− dimZ.

In other words, dim(X ∩ Z) = dimX + dimZ − n. Therefore, for our purpose, we restate

Theorem 3.3.3 as follows.

Corollary 3.3.4. Let X and Z ⊆ Rn>0 be submanifolds, where Z is boundaryless. Suppose X

intersects Z transversally and ∂X also intersects Z transversally. Then X ∩ Z is a manifold

with boundary ∂(X ∩ Z) = ∂X ∩ Z and has dimension dim(X ∩ Z) = dimX + dimZ − n.

We first show in Lemma 3.3.6 that the sign condition σ(S) ⊆ σ(S̃) implies the uniqueness

condition in [107]. In Lemma 3.3.8, we establish the transversality of the manifolds x+S and

x∗◦exp S̃⊥. Lemma 3.3.7 prevents our desired intersection point from escaping to the boundary

of Rn> or to infinity. Finally, these results lead to Theorem 3.3.9, concluding the existence and

uniqueness of a point in the intersection (x0 + S) ∩ (x∗ ◦ exp S̃⊥) for any x0, x
∗ ∈ Rn>.

Proposition 3.3.5 ([107, Proposition 3.1]). Let S and S̃ ⊆ Rn be vector subspaces. The

following are equivalent:

(a) σ(S) ∩ σ(S̃⊥) = {0};

(b) for any x0, x∗ ∈ Rn>, the intersection (x0+S)∩(x∗◦exp S̃⊥) contains at most one point.
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Lemma 3.3.6. Let S and S̃ ⊆ Rn be vector subspaces. If σ(S) ⊆ σ(S̃), then σ(S) ∩ σ(S̃⊥) =

{0}. In particular, for any x0, x∗ ∈ Rn>, the intersection (x0 + S) ∩ (x∗ ◦ exp S̃⊥) contains at

most one point.

Proof. By assumption, σ(S)∩ σ(S̃⊥) ⊆ σ(S̃)∩ σ(S̃⊥). Let τ ∈ σ(S̃)∩ σ(S̃⊥) be a sign vector,

so there exist vectors u ∈ S̃ and v ∈ S̃⊥ such that τ ≤ σ(u) and τ = σ(v). If τ ≤ σ(u)

but τ ⊥ σ(u), then τ = 0. Therefore, σ(S) ∩ σ(S̃⊥) = σ(S̃) ∩ σ(S̃⊥) = {0}. By [107],

σ(S)∩ σ(S̃⊥) = {0} is necessary and sufficient for the intersection (x0 + S)∩ (x∗ ◦ exp S̃⊥) to

contain at most one point for any x0, x
∗ ∈ Rn>.

Lemma 3.3.7. Let S and S̃ ⊆ Rn be vector subspaces, K ⊆ Rn> a compact subset, and

x∗ ∈ Rn>. Suppose σ(S) ⊆ σ(S̃). Then (K + S) ∩ (x∗ ◦ exp S̃⊥) is a compact subset of Rn>.

Proof. Let Γ = (K + S) ∩ (x∗ ◦ exp S̃⊥). Since x∗ ◦ exp S̃⊥ ⊆ Rn>, the intersection Γ also lies

in Rn>. We first claim that Γ is bounded away from infinity and from the boundary of Rn>.

Suppose for a contradiction that this is not the case. Let (xp)p be a sequence in Γ such that

either lim supp→∞ x
p
i =∞ or lim infp→∞ x

p
i = 0 for some 1 ≤ i ≤ n. Passing to a subsequence,

we may assume that

lim
p→∞

xpi =∞ for i ∈ I1,

lim
p→∞

xpi = 0 for i ∈ I2,

lim
p→∞

xpi ∈ (0,∞) for i ∈ I3,

where I1, I2, I3 partition the index set {1, 2, . . . , n}, and I1 ∪ I2 6= ∅.

On one hand, xp ∈ K + S, with decomposition xp = vp + sp, where vp ∈ K and

sp ∈ S. Since K ⊆ Rn> is compact, each component of vp is uniformly bounded from above

and below from zero. Thus for i ∈ I1 where xpi →∞, we have spi →∞; in particular, spi > 0 for

sufficiently large p. Similarly, if i ∈ I2, then spi < 0 for sufficiently large p, because xpi → 0 and

lim infp v
p
i > 0. Therefore, the sign of spi does not change for any i ∈ I1 ∪ I2 and p sufficiently
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large. Because σ(sp) ∈ σ(S) ⊆ σ(S̃) for sufficiently large p, there is a vector u ∈ S̃ such that

ui > 0 if i ∈ I1 and ui < 0 if i ∈ I2.

On the other hand, xp ∈ x∗ ◦ exp S̃⊥, that is ln
(
xp

x∗

)
∈ S̃⊥, where the division is

understood to be component-wise. For all p, we have u ⊥ ln
(
xp

x∗

)
and

0 =

〈
u , ln

(
xp

x∗

)〉
=
∑
i∈I1

ui ln

(
xpi
x∗i

)
+
∑
i∈I2

ui ln

(
xpi
x∗i

)
+
∑
i∈I3

ui ln

(
xpi
x∗i

)
.

The sum over I3 is uniformly bounded for all p. Now let p → ∞. For i ∈ I1, we know ui > 0

and xpi → ∞, so the sum over I1 is positive and unbounded. For i ∈ I2, we know ui < 0 and

xpi → 0, so ln
(
xpi
x∗i

)
→ −∞, so the sum over I2 is also positive and unbounded. Consequently,

0 = limp→∞〈u, ln
(
xp

x∗

)
〉 = ∞, a contradiction. Therefore, Γ ⊆ Rn> is bounded away from

infinity and away from the boundary of Rn>.

Finally, we show that Γ ⊆ Rn> is closed in the topology of Rn. Fix ε > 0 such that Γ lies

inside the hypercube Q = [ε, 1/ε]n ⊆ Rn>. Being the intersection of two closed sets, Q∩(K+S)

is closed. The set Q∩ (x∗ ◦ exp S̃⊥) is diffeomorphic to [ln ε, ln(1/ε)]n ∩ (lnx∗ + S̃⊥), which is

again closed. Therefore, the set (K + S)∩ (x∗ ◦ exp S̃⊥) = [Q∩ (K + S)]∩ [Q∩ (x∗ ◦ exp S̃⊥)]

is the intersection of closed sets, thus itself closed in Rn>.

In Lemma 3.3.6, we showed that the sign condition σ(S) ⊆ σ(S̃) implies that the

intersection (x0 +S)∩ (x∗ ◦ exp S̃⊥) contains at most one point. The lemma below claims that

the weaker sign condition together with dimS = dim S̃ implies that the manifolds x0 + S and

x∗ ◦ exp S̃⊥ intersect transversally. Figure 3.6 demonstrates how existence of an intersection

point fails when the sign condition σ(S) ⊆ σ(S̃) is not satisfied. Shown are curves x∗ ◦ exp S̃⊥

(in various shades of orange) for several S̃; off to the right are the corresponding S̃, each with

σ(S̃) = {0, (±,±)>}. Note that x∗ ◦ exp S̃⊥ and S̃⊥ share the same sign vectors. Figure 3.6

also shows a compatibility class (x0 + S)> (blue) that does not intersect x∗ ◦ exp S̃⊥. Note

here that σ(S) = {0, (±,∓)>}.
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x∗ ◦ exp S̃⊥

S

S̃

S̃
S̃ (±,±)>

(±,∓)>

(x0 + S)>
x

y

Figure 3.6: How existence of intersection point can fail when the sign condition

σ(S) ⊆ σ(S̃) is not satisfied. For some x0 > 0, the line segment (x0 + S)>
(blue) fails to intersect with any of the curves x∗ ◦ exp S̃⊥ (shades of orange) when

σ(S) 6⊆ σ(S̃⊥).

Lemma 3.3.8. Let S and S̃ ⊆ Rn be vector subspaces such that σ(S)∩ σ(S̃⊥) = {0}. Let x0,

x∗ ∈ Rn> be any positive vectors. The tangent spaces of x0 + S and x∗ ◦ exp S̃⊥ satisfy

Tp(x0 + S) ∩ Tp(x∗ ◦ exp S̃⊥) = {0}

at any point p ∈ (x0 + S) ∩ (x∗ ◦ exp S̃⊥). If in addition dimS = dim S̃, then x0 + S and

x∗ ◦ exp S̃⊥ intersect transversally at any intersection point p.

Proof. For any intersection point p ∈ (x0 + S) ∩ (x∗ ◦ exp S̃⊥), note that Tp(x0 + S) = S and

Tp(x∗ ◦ exp S̃⊥) = p ◦ S̃⊥ and hence σ(Tp(x∗ ◦ exp S̃⊥)) = σ(S̃⊥), because p > 0. For any

v ∈ Tp(x0 + S) ∩ Tp(x∗ ◦ exp S̃⊥), its sign vector is σ(v) ∈ σ(S) ∩ σ(S̃⊥) = {0}, i.e., v = 0.

Consequently, Tp(x0 + S) ∩ Tp(x∗ ◦ exp S̃⊥) = {0}.

If we further assume that dimS = dim S̃, the linear space Tp(x0+S)+Tp(x∗◦exp S̃⊥) is

of dimension n. In other words, the manifolds x0+S and x∗◦exp S̃⊥ intersect transversally.

Now we are ready to state and prove the main result of this chapter: that the

sign condition σ(S) ⊆ σ(S̃⊥) essentially implies the existence of an intersection point in

(x0 +S)∩ (x∗ ◦ exp S̃⊥) for any x0, x
∗ > 0. There need not be an intersection point when the
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sign condition fails; for example, see Figure 3.6. The proof starts with a known intersection

point, x∗ ∈ (x∗+ S)∩ (x∗ ◦ exp S̃⊥). Next, we translate the affine space (x∗+ S) to (x0 + S),

creating a (d+1)-dimensional strip of the form K+S, where d = dimS and K is a line segment

in Rn>. This strip intersects x∗ ◦ exp S̃⊥ transversally, and we use Corollary 3.3.4 to conclude

that the intersection (K + S) ∩ (x∗ ◦ exp S̃⊥) is a one-dimensional manifold, whose boundary

lies on the boundary of the affine strip K + S. Finally, the existence of a boundary point on

x0 + S follows from Lemma 3.3.6. For a visual sketch of the proof, see Figure 3.7.

K + S

x∗ ◦ exp S̃⊥ x∗ + S

x0 + S

Intersection
curve Γ

x∗

x0

K

Figure 3.7: A sketch of the proof of Theorem 3.3.9. Let K be the line segment
between x∗ and x0; then K + S (shaded green) is an affine strip. It intersects the
manifold x∗ ◦ exp S̃⊥ along a curve Γ (orange). If a boundary point of Γ lies on
x0 + S, then there exists a point in the intersection (x0 + S) ∩ (x∗ ◦ exp S̃⊥).

Theorem 3.3.9. Let S and S̃ ⊆ Rn be vector subspaces of equal dimension such that σ(S) ⊆

σ(S̃). Then for any positive vectors x0, x∗ ∈ Rn>, the intersection (x0 + S) ∩ (x∗ ◦ exp S̃⊥)

consists of exactly one point.

Proof. Let x0, x
∗ ∈ Rn> be arbitrary positive vectors. Lemma 3.3.6 implies that the intersection

(x0 + S)∩ (x∗ ◦ exp S̃⊥) contains at most one point; hence it remains to show the existence of

such a point. Clearly if x∗ ∈ x0 + S, then (x0 + S) ∩ (x∗ ◦ exp S̃⊥) = {x∗}.

Suppose x∗ 6∈ x0 + S, and let d = dimS. We define a (d + 1)-dimensional affine strip,

which we intersect with x∗ ◦ exp S̃⊥. To define this affine strip, consider the interpolation



82

function

K : [0, 1] → Rn>,

δ 7→ δx0 + (1− δ)x∗.

Since the line segment K([0, 1]) ⊆ Rn> is compact, the intersection (K([0, 1]) + S) ∩ (x∗ ◦

exp S̃⊥) ⊆ Rn> is compact by Lemma 3.3.7. Moreover, the manifolds K([0, 1]) + S and

x∗ ◦ exp S̃⊥ intersect transversally by Lemma 3.3.8, because

Tp(K([0, 1]) + S) + Tp(x∗ ◦ exp S̃⊥) ⊇ Tp(x∗ + S) + Tp(x∗ ◦ exp S̃⊥) = Rn.

By Corollary 3.3.4, the intersection Γ = (K([0, 1]) + S) ∩ (x∗ ◦ exp S̃⊥) is a manifold with

boundary where ∂Γ ⊆ ∂(K([0, 1]) + S) = (x∗ + S) ∪ (x0 + S). In addition, Γ is 1-dimensional

because

dim(Γ) = dim(K([0, 1]) + S) + dim(x∗ ◦ exp S̃⊥)− n = 1 + dimS + dim S̃⊥ − n = 1.

Consider the connected component Γ∗ ⊆ Γ containing the point x∗. The point x∗ must

be an endpoint of Γ∗; otherwise uniqueness fails at K(δ0) + S for some small δ0 > 0. Since Γ∗

is compact, it is a curve with two endpoints. As ∂Γ∗ ⊆ ∂Γ = (x∗+S)∪(x0+S), by uniqueness

the other endpoint of Γ∗ must be in x0+S. Thus, a point exists in (x0+S)∩(x∗◦exp S̃⊥).

We now apply Theorem 3.3.9 to generalized mass-action systems by combining with

previously known results, especially those of [107,108].

Theorem 3.3.10. Let (G,Y, Ỹ) be a weakly reversible generalized reaction network, with

stoichiometric subspace S, and kinetic-order subspace S̃. Assume that σ(S) ⊆ σ(S̃) and

dimS = dim S̃. Then the following hold.

(a) Suppose for some vector of rate constants κ > 0, the generalized mass-action

system (G,Y, Ỹ,κ) admits a vertex-balanced steady state. Then every stoichiometric
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compatibility class contains exactly one vertex-balanced steady state.

(b) If the kinetic deficiency is δ̃ = 0, then11 for all choices of rate constants κ, the

generalized mass-action system (G,Y, Ỹ,κ) admits a vertex-balanced steady state, and

every stoichiometric compatibility class contains exactly one vertex-balanced steady state.

(c) Suppose (G,Y, Ỹ,κ) admits a vertex-balanced steady state for some choice of rate

constants κ, and the stoichiometric deficiency is δ = 0. Then every stoichiometric

compatibility class contains exactly one positive steady state, which is vertex-balanced.

Proof. As x∗ is a vertex-balanced steady state for (G,Y, Ỹ,κ), the set of vertex-balanced

steady states is Zκ = x∗ ◦ exp S̃⊥. By Theorem 3.3.9 Zκ intersects the stoichiometric

compatibility class x0 + S exactly once for any x0 ∈ Rn>. This proves (a).

The first implication of (b) was proved in [108, Theorem 1(a)]. By (a), we conclude that

every stoichiometric compatibility class contains exactly one vertex-balanced steady state.

If in addition we have δ = 0, then Eκ = Zκ, i.e., there is no positive steady state

that is not vertex-balanced [107]. Consequently, there exists a unique steady state within each

stoichiometric compatibility class, which is vertex-balanced.

Corollary 3.3.11. Let (G,Y, Ỹ) be a weakly reversible generalized reaction network, with

stoichiometric subspace S and kinetic-order subspace S̃. Suppose that dimS = dim S̃ and

σ(S) ⊆ σ(S̃). Further suppose that the stoichiometric deficiency and kinetic deficiency are

δ = δ̃ = 0. Then for any choice of rate constants, every stoichiometric compatibility class

contains exactly one positive steady state, which is vertex-balanced.

We conclude this chapter with several examples. The first demonstrates the necessity of

the sign condition σ(S) ⊆ σ(S̃). The remaining illustrate some subtleties with vertex-balancing

in contrast with what is expected from complex-balancing of classical mass-action systems.

11By [108, Theorem 1(a)], this implication can be replaced by “if and only if”.
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y1

y2

(a) Y(G)

y1

y2

(b) Ỹ(G)

x

y

Zκ

x0 + S

(c)

Figure 3.8: (a)–(b) A generalized mass-action system with two vertex-
balanced steady states within the same stoichiometric compatibility class. See
Example 3.3.12. (c) A stoichiometric compatibility class and the set Zκ=1.

Example 3.3.12. Figure 3.8(a)–(b) define the generalized mass-action system (G,Y, Ỹ,κ)

0

(x2)

1 X + Y

(xy2)

21

1

with rate constants κ = 1. The stoichiometric and kinetic deficiencies are δ = δ̃ = 0. By

[107, 108], we conclude that there is a vertex-balanced steady state independent of choice of

rate constants, and every positive steady state is vertex-balanced, i.e., ∅ 6= Zκ = Eκ. How the

set of steady states intersects stoichiometric compatibility classes is a separate question. As

seen in Figure 3.8(a)–(b), the sign condition of Corollary 3.3.11 is not satisfied, because

σ(S̃) =


+

−

 ,

−
+

 and σ(S̃) =


+

−

 ,

−
+

 ,

0

±

 ,

±
0

 ,

0

0

 ,

but (+,+)>, which is in σ(S), is not in σ(S̃). In Figure 3.8(c) is a plot of Zκ = {(t2, t)> : t >

0} and a stoichiometric compatibility class that intersects Zκ twice. Indeed, any compatibility

class x0 + S = {(r, ε+ r) : r ∈ R} with 0 < ε < 1/4 would intersect Zκ twice.

As mentioned in this chapter’s introduction, beside network translation [83], generalized

mass-action systems naturally arise from using power-law kinetics as an approximation

of classical mass-action kinetics. For a complex-balanced mass-action system, if such
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perturbations do not violate the sign condition σ(S) ⊆ σ(S̃), the complex-balanced

steady states naturally become vertex-balanced steady states, and inherit their predecessors’

asymptotic stability.

2X
(x2+ε)

1 Y
(y)

2

Z
(z)

3

κ1

κ2
κ3

Figure 3.9: A generalized mass-action system modelling the perturbed dynamics
in Example 3.3.13, where ε > 0. Dynamics (with ε = 0 and ε > 0) shown in
Figure 3.10.

(a) (b)

Figure 3.10: Projection of phase portraits of system (3.9), and (3.10) with ε = 10,
from Example 3.3.13, where κi = 1 and x + 2y + 2z = 10. The steady states are
(a) complex-balanced and (b) vertex-balanced respectively.

Example 3.3.13. The mass-action system (G,κ)

2X Y

Z

κ1

κ2
κ3
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is associated to the system of ODEs

dx

dt
= −2κ1x

2 + 2κ3z

dy

dt
= κ1x

2 − κ2y (3.9)

dz

dt
= κ2y − κ3z.

Suppose the reagent X is confined to a fractal-like surface. Simulations and experiments

show that the rate function with reactant complex X + X is proportional to [X]2+ε, where

ds = 2(1 + ε)−1 is the spectral dimension [91, 92]. The resulting dynamics, modelled by the

generalized mass-action system in Figure 3.9 with ε > 0, is associated to the system of ODEs

dx

dt
= −2κ1x

2+ε + 2κ3z

dy

dt
= κ1x

2+ε − κ2y (3.10)

dz

dt
= κ2y − κ3z.

Figure 3.10 shows the projected (onto the yz-plane) phase portraits of systems (3.9) and (3.10).

For any ε > 0, the stoichiometric and kinetic deficiencies are δ = δ̃ = 0. Moreover, the

two-dimensional subspaces S and S̃ share the same set of sign vectors; these include the zero

vector, and


+

−

0

 ,


+

−

−

 ,


+

0

−

 ,


+

+

−

 ,


0

+

−

 ,


−

+

−

 ,

and their negatives. Therefore the sign condition σ(S) ⊆ σ(S̃) is satisfied. By Corollary 3.3.11,

every stoichiometric compatibility class has exactly one positive steady state, which is vertex-

balanced.
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It is worth emphasizing that for a generalized mass-action system, even when every

stoichiometric compatibility class has exactly one positive (vertex-balanced) steady state, one

cannot expect everything from classical complex-balancing. First, we show an example with

a unique vertex-balanced steady state, although there are other positive steady states of the

system that are not complex-balanced.

2X + Y
(x2y)

1 3X
(xy2)

2

X + 2Y
(x3)

3 3Y
(y3)

4

1

1

0.1

0.1

(a)

y1

y2

y3

y4

(b) Y(G)

y1

y2

y3

y4

(c) Ỹ(G)

Figure 3.11: A generalized mass-action system modelling with a unique vertex-
balanced steady state in addition to two non-vertex-balancing steady states in
each stoichiometric compatibility class. See Example 3.3.14.

Figure 3.12: Phase portrait of the system in Example 3.3.14 and Figure 3.11(a).
Each stoichiometric compatibility class has exactly one vertex-balanced steady
state at (x, x)>, and two non-vertex-balancing steady states.

Example 3.3.14. Consider the generalized mass-action system in Figure 3.11(a). For

convenience, its images under the stoichiometric and kinetic-order maps are shown in (b) and
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(c) respectively. Note that S = S̃ = span(−1, 1)>, so clearly the sign condition σ(S) ⊆ σ(S̃)

is satisfied. It follows from Theorem 3.3.9 that every stoichiometric compatibility class has

exactly one vertex-balanced steady state. Note however, that the deficiencies are δ = δ̃ = 1.

The associated system of ODEs

dx

dt
= x2y − xy2 − 0.1x3 + 0.1y3

dy

dt
= −x2y + xy2 + 0.1x3 − 0.1y3

has as its steady state set three lines, shown in Figure 3.12, one of which is the set of vertex-

balanced steady state. Indeed, note that the vertex-balanced conditions are

xy2 = xy2 and x3y3,

or x = y. Thus, the middle line in Figure 3.12 is the set of vertex-balanced steady state. It is

certainly true that each stoichiometric compatibility class has only one vertex-balanced steady

state, but it is not only steady state.

One cannot expect similar dynamical behaviour as classical complex-balanced

mass-action systems. We illustrate this with the Lotka–Volterra predator-prey model.

Generalizations of Lotka–Volterra-type models were studied in the framework of generalized

mass-action system in [18]; the authors characterized which Ỹ would give rise to a center, like

the phase portrait shown in Figure 3.13(b).

Example 3.3.15. Consider the generalized mass-action system in Figure 3.13(a). The

associated system of the generalized mass-action system (G,Y, Ỹ,κ)

dx

dt
= κ12x− κ23xy

dy

dt
= κ23xy − κ31y



89

Y
(y)

3

X
(xy)

20
(x)

1 κ12

κ23
κ31

(a)

(b)

Figure 3.13: (a) A generalized mass-action system that gives rise to dynamics as
that of Lotka–Volterra under mass-action kinetics. See Example 3.3.15. (b) A
phase portrait, where the unique positive steady state (orange) is a center.

is the same as that generated by the network in Figure 1.4(a) under mass-action kinetics. It is

known that for any choice of rate constants κij > 0, the system has one positive steady state,

surrounded by periodic solutions as seen in Figure 3.13(b). Therefore, the same dynamical

behaviour is exhibited by (G,Y, Ỹ,κ).

As for the generalized mass-action system, the stoichiometric and kinetic deficiencies are

δ = δ̃ = 0. Moreover, the stoichiometric and kinetic-order subspaces are both S = S̃ = R2, so

they trivially satisfy the sign condition σ(S) ⊆ σ(S̃). By Corollary 3.3.11, the unique positive

steady state (shown in Figure 3.13(b) surrounded by periodic orbit) is vertex-balanced.

The next example demonstrates that even having a unique positive steady states that

is vertex-balanced is no guarantee that it is stable. The dynamical behaviour of generalized

mass-action systems is complicated.

Example 3.3.16. Consider the generalized mass-action system (G,Y, Ỹ,κ) in Figure 3.14.

Its associated system of ODEs

dx

dt
= −x2 + 2y − 4x+ 2y2
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X
(x2)

1 2Y
(y)

2

2X
(x)

3 Y
(y2)

4

1

2

2

1

Figure 3.14: A generalized mass-action system with a unique positive steady state,
which is vertex-balanced but unstable. The dynamics is shown in Figure 3.15.

y1y3

y2

y4

(a) (b)

Figure 3.15: (a) A classical mass-action system (with all rate constants κij =
1) that shares the same dynamics as the generalized mass-action system of
Example 3.3.16. (b) Its phase portrait showing that the only positive steady state
(1, 1)> is unstable and most trajectories either converge to the origin or become
unbounded.
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dy

dt
= 2x2 − 4y + 2x− y2

has exactly one positive steady state at (1, 1)>. The same system of ODEs is generated by the

classical mass-action system in Figure 3.15(a). It is not difficult to check that δ = δ̃ = 0, so the

steady state is vertex-balanced. However, it is unstable as the phase portrait Figure 3.15(b)

shows . Indeed, the Euclidean embedded graph hints that the system is unstable, where for

any choice of rate constants, trajectories outside of the one dimensional stable manifold either

converge to the boundary or towards infinity.

We conclude this chapter with a brief remark on stability of vertex-balanced steady

states. As Examples 3.3.15 and 3.3.16 illustrate, vertex-balancing enjoy many of the algebraic

properties of complex-balancing; however, dynamics is a different story altogether. One

cannot hope, without additional information, for even asymptotic stability. However, if similar

to Example 3.3.13, a generalized mass-action system arises as a perturbation of a classical

complex-balanced system, by continuity one can conclude the system is asymptotically stable,

indeed linearly stable.

More precisely, let (G,κ) be a complex-balanced system. View the network G as an

abstract graph G, and let Y collect the complex information from G. Suppose Ỹ ≈ Y,

in the `2-norm, and σ(S) ⊆ σ(S̃) where S and S̃ are the stoichiometric and kinetic-order

subspaces. Then the generalized mass-action system (G,Y, Ỹ,κ) has a unique vertex-balanced

steady state in its stoichiometric compatibility class that is asymptotically stable within its

stoichiometric compatibility class. At the end of Chapter 2, we speculated on when such a

generalized mass-action system is actually globally stable. For another work on the stability

of vertex-balanced steady states, see [19].
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Chapter 4

Delay Reaction Kinetics

In this chapter we investigate the stability of mass-action systems with delay. We work

with a system of delay differential equations, which is appropriate when the dynamics

depends not only on the current state but also at earlier times. In population dynamics and

epidemiology, there may be a significant time delay between the initiation of an interaction to

the observed effect [21]. In chemistry and biochemistry, time delay can be used to account for

protein conformational change, or arises from clumping several reactions into one, simplifying

mechanisms [52, 54, 115]. Delay models have also been used for a possible mathematical

explanation of chemical oscillators [53].

There are two main types of delays. A system with discrete delays involves only the

current state and past states at discrete times. For example, consider the SIR model with fixed

period temporary immunity [21,123]. The delay system

Ṡ(t) = −βI(t)S(t) + γI(t− τ)

İ(t) = βI(t)S(t)− γI(t)

Ṙ(t) = γI(t)− γI(t− τ)

depends on the current state at time t as well as at a previous time at t − τ for some τ ≥ 0.

The corresponding network (with delayed interaction labelled)

I + S 2I

I R S
τ
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illustrates how the delay system is built on top of the standard SIR model; the recovered R

once again become suspectible S after a time lag.

A system with distributed delays involves the state variable over a continuous time

interval, possibly unbounded. Volterra studied a delay predatory-prey model [119,123]

ẋ(t) = κ1x(t)− κ2x(t)y(t)

ẏ(t) = −κ3y(t) + κ4

∫ t

−∞
x(τ)k(t− τ) dτ

where k(t−τ) accounts for the time needed between feeding on prey and reproducing offsprings.

Other variations include delays that depend on the current state, on control parameters

or functions of time. Similar to the case of ODEs, there are autonomous and non-autonomous

delay equations. This chapter deals exclusively with autonomous systems with discrete delays.

Much could still be said about delay systems. For example, their state space, instead of

being Rn≥, is usually the Banach space of continuous (or differentiable) functions on the interval

[−τ , 0] where τ is the maximal delay parameter. Initial conditions are also functions over the

time interval. We refer the reader to textbooks on the theory of existence of solutions [9,123].

We now deviate from the approach of previous chapters. While there has been progress

extending results about complex-balanced systems [94], we do not impose such stringent

condition on our reaction systems. Instead, we study delay reaction systems via linearization.

In this chapter, we focus on mass-action kinetics with delay. In Section 4.1, we linearize

a delay mass-action system and discuss the various types of stability. In Section 4.2, we

provide an algebraic condition for absolute stability — asymptotic stability independent of

delay parameters. The conditions are given by principal minors of the modified Jacobian matrix

(Equation (4.6)), aptly named because it is both a modified version of the Jacobian matrix of

the system of ODEs, and the Jacobian matrix of a slightly different reaction network under

mass-action kinetics. In Section 4.3, we construct this modified network. The remainder of

the chapter aims to give a graph-theoretic condition for delay stability — asymptotic stability
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independent of delay parameters and rate constants. Section 4.4 introduces the directed species-

reaction graph while Section 4.5 proves the main result.

4.1 Delay mass-action systems

Delay mass-action systems are mass-action systems equipped with delay parameters. For the

model to be chemically consistent, we assume that at the moment a reaction occurs, the

reactant species are no longer available for other reactions, while product species only become

available after a fixed time lag. Moreover, we assume that inflow reactions, reactions of the

form 0 → X, and outflow reactions, those of the form X → 0, do not admit delays [115]. In

fact, generalized inflow and outflow reactions, those of the form αX→ 0 and 0→ αX for some

α > 0, also occur without delays.

As a quick note about notation, in this chapter we take a reaction-centred view. Let

E = {yr → y′r : 1 ≤ r ≤ R} be the set of reactions. When indexing over the set of reactions,

as in r ∈ E, we really mean the reaction yr → y′r. This choice is to avoid excess subscripts.

The rate constant of this reaction is κr and its delay parameter τr.

Definition 4.1.1. A delay mass-action system (G,κ, τ ) is a mass-action system (G,κ)

with a vector of delays τ ∈ RE≥. Its associated system of delay differential equations on Rn≥ is

dx(t)

dt
=
∑
r∈E

κr

(
[x(t− τr)]yry′r − [x(t)]yryr

)
. (4.1)

Remark 4.1.2. In principle, we allow different delay parameters for different product species

of the same reaction. For example, in the following modified enzymatic reaction

E + S SE E + P
τP, τE

the product species P may become available for other reactions after a delay time τP, while

the enzyme E might take τE for it to return to its initial conformation. The associated delay
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system for this reaction scheme is

d[E]

dt
= −κ1[S][E] + κ2[SE] + κ3[SE](t− τE)

d[S]

dt
= −κ1[S][E] + κ2[SE]

d[ES]

dt
= κ1[S][E]− κ2[SE]− κ3[SE]

d[P]

dt
= + κ3[SE](t− τP)

where dependence on the current time t has been suppressed for simplicity. To avoid

unnecessary notation, we assume that τ ∈ RE≥; however, the reader should keep in mind

that different delay parameters for different products is an option.

If there is no delay, i.e., τ ≡ 0, then the delay system reduces to the ODE model (1.4)

of a mass-action system [8]. Similar to the ODE model, (4.1) has non-negative solution for

initial conditions in Rn≥ [12, 94]. Moreover, the delay and ODE models share the same set of

positive steady states [94].

Recall that for a mass-action system (ODE model) with positive initial data θ ∈ Rn>,

the solution satisfies

x(t)− θ ∈ S,

where S = span{y′ − y : y → y′ ∈ E} is the stoichiometric subspace. Similarly, the delay

system (4.1), with continuous and positive initial data θ defined on the interval [−τ , 0] where

τ = max {τr : r ∈ E}, may admit a conservation relation [94]

x(t)− θ(0) +
∑
r∈E

κr

(∫ t

t−τr
[x(u)]yr du−

∫ 0

−τr
[θ(u)]yr du

)
yr ∈ S.

While the ODE and delay models share the same set of positive equilibria, when S ( Rn solving

for the delay model’s steady states that respect the conservation relation can be difficult. This

chapter is only about systems whose stoichiometric subspace S is the whole Rn.
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2X Y X

0

κ1

τ1

κ2

τ2

κ3
κ4

κ5

Figure 4.1: The delay mass-action system of Examples 4.1.3, 4.1.5 and 4.2.1.

Example 4.1.3. Consider the delay mass-action system in Figure 4.1. Its associated system

of delay differential equations

dx(t)

dt
=

κ3 − κ4x(t)− 2κ1[x(t)]2 + κ2y(t− τ2)

−κ5y(t) + κ1[x(t− τ1)]2 − κ2y(t)


has one positive steady state at

x∗ =

(
κ2 + κ5

2κ1(κ2 + 2κ5)

)(√
κ24 + 4κ1κ3

(
κ2 + 2κ5
κ2 + κ5

)
− κ4

)
and y∗ =

κ1(x
∗)2

κ2 + κ5
.

In general, a delay mass-action system is non-linear. As is the case of non-linear ODEs,

we study the local stability of a delay system by linearizing about a positive steady state

x(t) ≡ x∗ ∈ Rn>, assuming a solution of the form x(t) = x∗ + ueλt where λ ∈ C, and

computing a characteristic equation, which is transcendental rather than polynomial. Where

in the complex plane the roots of the characteristic equation are located can determine the

asymptotic stability of the steady state x∗.

Consider a single reaction y → y′ with rate constant κ = 1 and delay τ ≥ 0. Let

xτ (t) = x(t− τ). The associated delay system is

dx(t)

dt
= [xτ (t)]yy′ − [x(t)]yy.

To linearize, consider a small perturbation from a positive steady state x∗, i.e., x(t) =
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x∗ + δx(t), where δx(t) is a function on [−τ, 0]. The linearized delay system is

dδx(t)

dt
=

 ∂xyτ
∂(xτ )1

y′ . . .
∂xyτ
∂(xτ )n

y′


∣∣∣∣∣∣∣
xτ (t)≡x∗︸ ︷︷ ︸

Jτ

xτ (t)−

∂xy
∂x1

y . . .
∂xy

∂xn
y


∣∣∣∣∣∣∣
x(t)≡x∗︸ ︷︷ ︸

J0

x(t).

Assuming that δx(t) = ueλt, we arrive at

λδx =
dδx

dt
=
(
e−λτJτ − J0

)
︸ ︷︷ ︸

Jλ

δx.

In other words, λu = Jλu, which has a non-trivial solution u if and only if det(Jλ−λId) = 0.

For a network with more than one reactions, we simply add the relevant terms. Let

(G,κ, τ ) be a delay mass-action system and x∗ a positive steady state. Its linearization is

dδx(t)

dt
=
∑
r∈E

κr

(
Jτr(x

∗,κ, τ )x(t− τr)− Jr(x
∗,κ)x(t)

)
, (4.2)

where

Jτr(x,κ, τ ) =

 ∂x
yr
τr

∂(xτr)1
y′r . . .

∂x
yr
τr

∂(xτr)n
y′r


and

Jr(x,κ) =

∂xyr
∂x1

yr . . .
∂xyr

∂xn
yr

 .

Assume a solution of the form x(t) = x∗ + ueλt, so the linearized equation (4.2) is equivalent
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to λu = Jλ(x∗,κ, τ )u, where

Jλ(x,κ, τ ) =
∑
r∈E

κr

∂1xyr (e−λτry′r − yr) . . . ∂nx
yr
(
e−λτry′r − yr

) , (4.3)

with ∂ix
y = ∂xy

∂xi

∣∣∣
x∗

=
∂xyτr
∂(xτr )i

∣∣∣
x∗

for any r ∈ E. The linearized system has a non-trivial

solution u if and only if

det(Jλ(x∗,κ, τ )− λId) = 0, (4.4)

which is the characteristic equation of the delay system (4.1).

Remark 4.1.4. When τ ≡ 0, the matrix Jλ of (4.3) reduces to the Jacobian matrix of the

ODE counterpart:

J(x,κ) =
∑
r∈E

κr

∂1xyr (y′r − yr) . . . ∂nx
yr (y′r − yr)

 . (4.5)

Example 4.1.5. We continue with Example 4.1.3 and the system in Figure 4.1. The

linearization of the delay model is

dδx(t)

dt
=

−(4κ1x
∗ + κ4)x(t) + κ2x(t− τ2)

−(κ2 + κ5)y(t) + 2κ1x
∗x(t− τ1)

 .

We also have

Jλ(x,κ, τ ) =

−4κ1x− κ4 κ2e
−λτ2

2κ1xe
−λτ1 −κ2 − κ5

 ,
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whose characteristic equation is the quasi-polynomial [9] equation

0 = λ2 + λ (4κ1x
∗ + κ2 + κ4 + κ5) + (4κ1x

∗ + κ4) (κ2 + κ5)− 2κ1κ2x
∗e−λ(τ1+τ2).

The characteristic equation is in general a polynomial of λ and exp(−λτi), with coefficients

that depend on κ and x∗. In general, there can be infinitely many roots to the transcendental

function, which is analytic on C [123].

As in the case of ODEs, where the roots of the characteristic equation are with respect

to the left half of the complex plane provides information about local stability. A steady

state x∗ > 0 of a delay mass-action system (G,κ, τ ) is asymptotically stable if every root

of the characteristic equation (4.4) has negative real part; it is said to be unstable if the

characteristic equation has a root with positive real part [123, Theorem 4.8].

We are interested in delay models that are asymptotically stable independent of the delay

parameters and/or rate constants. The former is described by absolute stability, as opposed to

conditional stability, when asymptotic stability depends on the delay parameters [20].

Definition 4.1.6. A mass-action system (G,κ) is absolutely stable if for any positive steady

state and any choice of delay parameters τ ≥ 0, every root of the characteristic equation (4.4)

of the delay system (G,κ, τ ) has negative real part.

Definition 4.1.7. A reaction network G is delay stable if the mass-action system (G,κ)

is absolutely stable for any choice of rate constant κ > 0. In other words, the delay system

(G,κ, τ ) is asymptotically stable for all κ > 0 and τ ≥ 0.

4.2 Algebraic condition for absolute stability

In this section, we provide a sufficient algebraic condition for absolute stability of a delay

mass-action system. Since the characteristic equation (4.4) is a transcendental equation, in

principle with infinitely many roots, we would like to analyze polynomial equations instead. In
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Theorem 4.2.3, we show that if the Jacobian matrix is non-singular and if the principal minors

of a certain matrix, which does not involve the delay parameters, are non-positive, then all

the roots of the characteristic equation have negative real parts, thus ensuring the asymptotic

stability of the delay mass-action system. The result of this section is published in [42].

The modified Jacobian matrix of a mass-action system (G,κ) is the n× n matrix

J̃(x,κ) =
∑
r∈E

κr

∂1xyr (y′r + ỹ
(1)
r

)
. . . ∂nx

yr

(
y′r + ỹ

(n)
r

) , (4.6)

where ỹ(j) = (y1, . . . ,−yj , . . . yn)> is the vector y with a change of sign of its jth component.

The matrix J̃ is reminiscent of the Jacobian matrix J in (4.5); in the jth column, we replace

each reaction vector y′r − yr with y′r + y
(j)
r .

Example 4.2.1. We continue with Examples 4.1.3 and 4.1.5, i.e., the system shown in

Figure 4.1. The modified Jacobian matrix

J̃(x,κ) = J(x,κ) =

−4κ1x− κ4 κ2

2κ1x −κ2 − κ5


is identical to the Jacobian matrix of the ODE counterpart. This is true in general if the

network contains no one-step catalysis reaction. A one-step catalysis is when the same species

appears as the reactant and as the product. Delay systems with no one-step catalysis is the

focus of Section 4.5. The principal minors of −J̃(x,κ) are det(−J̃[1]) = 4κ1x + κ4 > 0, and

det(−J̃[2]) = κ2 + κ5 > 0, and

det(−J̃) = 2κ1x(κ2 + 2κ5) + κ4(κ2 + κ5) > 0.

It will follow from Theorem 4.2.3 and Corollary 4.2.4 that the reaction network in Figure 4.1

is delay stable, i.e., for any choice of rate constants κ > 0 and delay parameters τ ≥ 0, any

positive steady state of the delay mass-action system (G,κ, τ ) is asymptotically stable.
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X + Y Z

X Y

0
κ1

τ1

κ2

τ2

κ6

κ5κ4κ3

Figure 4.2: The delay mass-action system of Examples 4.2.2 and 4.2.6.

Example 4.2.2. Consider the delay mass-action system in Figure 4.2, whose associated delay

system is

dx

dt
=


κ3 − κ4x− κ1xy − κ2x

− κ5y − κ1xy + κ2xτ2

− κ6z + κ1xτ1yτ1

 ,

where xτi(t) = x(t − τi) and yτi(t) = y(t − τi). The system has one positive steady state

(x∗, y∗, z∗)>. The Jacobian matrix of the ODE model is

J(x,κ) =


−κ1y − κ2 − κ4 −κ1x 0

−κ1y + κ2 −κ1x− κ5 0

κ1y κ1x −κ6

 ,

and with the changes highlighted, the modified Jacobian matrix is

J̃(x,κ) =


−κ1y − κ2 − κ4 +κ1x 0

+κ1y + κ2 −κ1x− κ5 0

κ1y κ1x −κ6

 .

The characteristic equation can quickly get complicated:

0 = e−λτ2
(
λκ1κ2x

∗ + κ1κ2κ6x
∗
)

+ λ3 + λ2
(
κ1(x

∗ + y∗) + κ2 + κ4 + κ5 + κ6

)
+ λ

(
(κ1y

∗ + κ2 + κ4)(κ1x
∗ + κ5)− κ21x∗y∗ + κ6(κ1(x

∗ + y∗) + κ2 + κ4 + κ5)
)

+
(
κ6(κ1y

∗ + κ2 + κ4)(κ1x
∗ + κ5)− κ21κ6x∗y∗

)
.
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Generally, the characteristic equation is of the form 0 = P (λ) + Q(λ, e−λτi), where P and Q

are polynomials with coefficients dependent on κ and x∗.

The theorem below is inspired by [75, Lemma 1], where the off-diagonal terms are

dominated by the diagonal ones. Delay terms that appear off-diagonal in Jλ are intimately

related to reactions which consume and produce the same species. A reaction y → y′ is said

to be autocatalytic if a chemical species is a reactant as well as a product, and there is a

net production of the species; more precisely supp(y) ∩ supp(y′) 6= ∅, and y′p > yp for all

p ∈ supp(y) ∩ supp(y′)1. We are interested in non-autocatalytic networks, i.e., networks

with no autocatalytic reactions. In particular, for any reaction y → y′ in our network and any

p ∈ supp(y) ∩ supp(y′), we have y′p ≤ yp.

Note that det J 6= 0 is an assumption, a consequence of which is that the network is

full rank, i.e., S = Rn and the system has no conservation relation. The proof uses Gershgorin

Circle Theorem, which claims that the spectrum of a matrix lies in disks in C that are centred

on the diagonal value with radius given by `1-norm of the rows except the diagonal term. Two

matrix properties are used. If all the principal minors are non-negative, we say this matrix is

a P0-matrix [65,80]. A matrix is reducible if it can be put into block upper triangular form

by simultaneous row and column permutations; otherwise it is irreducible .

Theorem 4.2.3. Let G be a non-autocatalytic network. For any κ > 0 and τ ≥ 0, let (G,κ, τ )

be the delay mass action system and x∗ > 0 be a positive steady state. Let Jλ, J, and J̃ be the

matrices defined in (4.3), (4.5), and (4.6) respectively, evaluated at x∗ > 0, κ, and τ . Suppose

that det J 6= 0, [−J̃]pp > 0 for all 1 ≤ p ≤ n and −J̃ is a P0-matrix. Then every root of the

characteristic equation det(Jλ−λId) = 0 has negative real part. In particular, the mass-action

system (G,κ) is absolutely stable.

Proof. Any root λ ∈ C of the characteristic equation (4.4) is not zero because Jλ reduces to

1For a comparison, a one-step catalysis does not require a net production of the species, only that
supp(y) ∩ supp(y′) 6= ∅. In particular, an autocatalytic reaction is a one-step catalysis, while the converse
may not be true.
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[Jλ]pp

−Re[Jλ]pp

R

iR

•

(a) A Gershgorin disk of first case,
centred at [Jλ]pp < 0 with radius Rp ≤
−Re[Jλ]pp.

[Jλ]pp

< −Re[Jλ]pp

•
R

iR

(b) A Gershgorin disk of second case,
centred at [Jλ]pp with Re[Jλ]pp < 0
and has radius Rp < −Re[Jλ]pp.

Figure 4.3: Two types of Gershgorin disks in the proof of Theorem 4.2.3. Any
(non-zero) root of the characteristic equation (4.4) always has negative real part.

the non-singular matrix J when λ = 0. Suppose for a contradiction that the characteristic

equation det(Jλ − λId) = 0 has a root λ with Re(λ) ≥ 0. This root is an eigenvalue of Jλ.

Note that |e−λτr | ≤ 1. Comparing the off-diagonal terms for p 6= q,

[Jλ]pq =
∑
r∈E

κr∂qx
yr
[
y′rpe

−λτr − yrp
]

and [J̃]pq =
∑
r∈E

κr∂qx
yr
[
y′rp + yrp

]
,

we see that |[Jλ]pq| ≤ [J̃]pq, so [J̃]pq 6= 0 if [Jλ]pq 6= 0. Suppose for now that J̃ is irreducible.

Because −J̃ is an irreducible P0-matrix, there exists a vector v > 0 such that J̃v ≤ 0 [65,

Theorem 5.8]. In other words, for p = 1, 2, . . . , n, we have

[J̃]ppvp +
∑
q 6=p

[J̃]pqvq ≤ 0.

Let D = diag(v1, v2, . . . , vn) and consider the matrix D−1JλD, which shares the same

eigenvalues as Jλ. To apply the Gershgorin Theorem, we look at the disks Bp centred at [Jλ]pp

with radius Rp = v−1p
∑

q 6=p |[Jλ]pq| vq. For each p = 1, 2, . . . , n, there are two types of disks,

as illustrated in Figure 4.3.
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The first case concerns [Jλ]pp ∈ R. More precisely, suppose for every reaction yr → y′r

such that y′rp 6= 0, we have e−λτr ∈ R. Necessarily e−λτr ≤ 0, and

[Jλ]pp =
∑
r∈E

κr∂px
yr
[
y′rpe

−λτr − yrp
]
≤
∑
r∈E

κr∂px
yr
[
y′rp − yrp

]
= [J̃]pp < 0,

where the last inequality follows from our hypothesis on the diagonal of J̃. Gathering the

inequalities thus far, we see that

Rp = v−1p
∑
q 6=p
|[Jλ]pq| vq ≤ v−1p

∑
q 6=p

[J̃]pqvq ≤ −[J̃]pp ≤ −[Jλ]pp = −Re[Jλ]pp.

Therefore, the disk Bp is like that of Figure 4.3(a) with centre [Jλ]pp < 0 and radius

Rp ≤ −Re[Jλ]pp. Note that Bp lies in the strict left-half of the complex plane, with the

exception of {0}.

The second case concerns [Jλ]pp 6∈ R. More precisely, suppose there is at least one

reaction yr → y′r in the network for which y′rp 6= 0 and e−λτr 6∈ R, where τr is its delay

parameter. For each such reaction,

e−λτr = e−Re(λ)τr
[

cos(Im(λ)τr)− i sin(Im(λ)τr)
]
,

where sin(Im(λ)τr) 6= 0, and hence cos(Im(λ)τr) < 1. It follows that y′rpRe(e−λτr) < y′rp, and

Re[Jλ]pp =
∑
r∈E

κr∂px
yr
[
y′rpRe(e−λτr)− yrp

]
<
∑
r∈E

κr∂px
yr
[
y′rp − yrp

]
= [J̃]pp < 0.

From

Re[Jλ]ppvp +
∑
q 6=p
|[Jλ]pq| vq < [J̃]ppvp +

∑
q 6=p

[J̃]pqvq ≤ 0, (4.7)
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we find that

Rp = v−1p
∑
q 6=p
|[Jλ]pq| vq < −Re[Jλ]pp.

The disk Bp looks like that of Figure 4.3(b), whose centre [Jλ]pp lies in the left-half plane with

radius Rp < −Re[Jλ]pp. Note that Bp does not intersect the imaginary axis.

Consequently, for p = 1, 2, . . . , n, any non-zero element in the disk Bp with centre [Jλ]pp

and radius Rp = v−1p
∑

q 6=p |[Jλ]pq| vq has negative real part. By the Gershgorin Theorem, the

eigenvalues of D−1JλD are contained in the union of the disks Bp, so any non-zero eigenvalue

of Jλ has negative real part. This contradicts our assumption that Re(λ) ≥ 0.

Now suppose that J̃ is reducible. Up to a permutation of basis, we may assume that

J̃ is an upper block triangular matrix with irreducible blocks along the diagonal [75]. The

principal minors of J̃ are unchanged. For every off-diagonal entry, [J̃]pq = 0 implies [Jλ]pq = 0,

so each irreducible diagonal block of J̃ corresponds to a (possibly reducible) diagonal block of

Jλ. So det(Jλ − λId) is the product of det(Mj − λId), where each Mj is a diagonal block

of Jλ corresponding to an irreducible diagonal block of J̃. Since λ is an eigenvalue of Jλ, it

is an eigenvalue of some Mj . Now the argument above can be applied to the corresponding

irreducible P0-block of J̃. Because J = J(x∗,κ) and J̃ = J̃(x∗,κ) are independent of the delay

parameters τ , absolute stability follows.

Delay stability — linear stability independent of delay parameters and rate constants

— follows from Theorem 4.2.3 when the hypotheses of the theorem holds for all κ and x∗. In

Section 4.5 we give a graph-theoretic condition sufficient for delay stability.

Corollary 4.2.4. Let G be a non-autocatalytic network. Let J and J̃ be the matrices defined

in (4.5) and (4.6) respectively, as functions of κ > 0 and x > 0. Suppose that det(J) 6= 0,

[J̃]pp < 0 for all 1 ≤ p ≤ n and −J̃ is a P0-matrix for all κ and any steady state x of the

mass-action system (G,κ). Then G is delay stable.
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Remark 4.2.5. Although Theorem 4.2.3 and Corollary 4.2.4 are stated explicitly for mass-

action systems, the results hold for more general kinetics under mild assumptions. More

precisely, the results hold when the rate function ν(x) for any reaction y → y′ is non-decreasing,

i.e., ∂pν ≥ 0 for all p, and monotically depends on the reactant species, i.e., ∂pν > 0 whenever

p ∈ supp(y) = {i : yi 6= 0}. The difference in the proof lies with the strict inequality in (4.7).

Example 4.2.6. We apply Corollary 4.2.4 to Example 4.2.2 and the system in Figure 4.2.

The network has no autocatalytic reaction, and

det(J) = −κ6
[
κ1κ5y + 2κ1κ2x+ (κ2 + κ4)κ5

]
6= 0.

It is clear from the expression of the modified Jacobian matrix J̃(x,κ) in Example 4.2.2 that

the 1× 1 and 2× 2 principal minors of −J̃ are always strictly positive. Moreover,

det(−J̃) = κ6

[
κ1κ4x+ κ1κ5y + κ5(κ2 + κ4)

]
> 0

for any x > 0 and κ > 0. Therefore −J̃ is a P0-matrix. By Corollary 4.2.4, the reaction

network in Figure 4.2 is delay stable.

So far, we have reduced the difficult problem of analyzing the transcendental

characteristic equation to more tenable polynomial equations that are the principal minors

of the modified Jacobian matrix. The name of this matrix goes beyond the mere fact that we

modified some terms in the Jacobian matrix; we show that the matrix is the Jacobian matrix

of a different mass-action system. The rest of the chapter is devoted to constructing this other

reaction network and providing a graph-theoretic condition for when the modified Jacobian

matrix is a P0-matrix.

4.3 Modified Jacobian and its reaction network

In this section, we describe how to construct a mass-action system whose Jacobian matrix

is the modified Jacobian matrix (4.6). For the purpose of communication, we refer to the
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starting network as the “original network” and the newly constructed network as the “modified

network”. The precise language needed obscures the simplicity of the construction. We

introduce the procedure via an example.

Example 4.3.1. The mass-action system

X + Y 2Z
κ1

κ2

X + 2Y + Z W 0
κ3 κ4

has

J̃(x,κ) =


−κ1y − κ3y2z κ1x+ 2κ3xyz 2κ2z + κ3xy

2 0

κ1y + 2κ3y
2z −κ1x− 4κ3xyz 2κ2z + 2κ3xy

2 0

2κ1y + κ3y
2z 2κ1x+ 2κ3xyz −4κ2z − κ3xy2 0

κ3y
2z 2κ3xyz κ3xy

2 −κ4


as its modified Jacobian matrix. In constructing our modified network, we do not change

the reactions involving less than two reactant species. For any reaction involving two or

more reactant species, we create new reactions where the reactant species are migrated to the

product side; for example, the reaction X + Y → 2Z splits into two reactions: X→ 2Z + Y and

Y → 2Z + X.

Fix a positive state x∗ = (x∗, y∗, z∗, w∗)>. The modified mass-action system (G̃, κ̃)

contains the reactions

W 0
κ4

2Z X + Y
κ2

X 2Z + Y
κ1y∗

Y 2Z + X
κ1x∗

X W + 2Y + Z
κ3(y∗)2z∗

2Y W + X + Z
κ3x∗z∗

Z W + X + 2Y
κ3x∗(y∗)2
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and whose Jacobian matrix is

J(x; κ̃(κ,x∗)) =


−κ1y∗ − κ3(y∗)2z∗ κ1x

∗ + 2κ3x
∗z∗y 2κ2z + κ3x

∗(y∗)2 0

κ1y
∗ + 2κ3(y

∗)2z∗ −κ1x∗ − 4κ3x
∗z∗y 2κ2z + 2κ3x

∗(y∗)2 0

2κ1y
∗ + κ3(y

∗)2z∗ 2κ1x
∗ + 2κ3x

∗z∗y −4κ2z − κ3x∗(y∗)2 0

κ3(y
∗)2z∗ 2κ3x

∗z∗y κ3x
∗(y∗)2 −κ4

 ,

which depends on x∗ = (x∗, y∗, z∗, w∗)> as well as x = (x, y, z, w)>. In particular, J̃(x∗,κ) =

J(x∗; κ̃(κ,x∗)).

It is worth emphasizing that the modified Jacobian matrix J̃(x,κ) happens to be the

Jacobian matrix of another mass-action system, with carefully chosen rate constants and at a

specific state. The two mass-action systems do not necessarily share the same set of steady

states. There are generally more reactions in the modified network, and more importantly, its

rate constants depend on a chosen state of the original system.

For the general procedure to construct the modified network, consider a mass-action

system (G,κ) consisting of a single reaction:

a1X + a2Y + a3Z b1X + b2Y + b3Z + b4W
κ

with a1, a2, a3 > 0 and b1, . . . , b4 ≥ 0. Fix a positive state x∗. Define the modified mass-action

system (G̃, κ̃) with the reactions

a1X b1X + (a2 + b2)Y + (a3 + b3)Z + b4W
κ̃1

a2Y (a1 + b1)X + b2Y + (a3 + b3)Z + b4W
κ̃2

a3Z (a1 + b1)X + (a2 + b2)Y + b3Z + b4W
κ̃3

where κ̃1 = κ(y∗)a2(z∗)a3 , κ̃2 = κ(x∗)a1(z∗)a3 and κ̃3 = κ(x∗)a1(y∗)a2 .
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The matrix J(x; κ̃(κ,x∗)) has contributions from three reactions, each filling a column:

J(x; κ̃(κ,x∗)) =


κ̃1∂1x

a1(b1 − a1) κ̃2∂2y
a2(b2 + a2) κ̃3∂3z

a3(b3 + a3) 0

κ̃1∂1x
a1(b1 + a1) κ̃2∂2y

a2(b2 − a2) κ̃3∂3z
a3(b3 + a3) 0

κ̃1∂1x
a1(b1 + a1) κ̃2∂2y

a2(b2 + a2) κ̃3∂3z
a3(b3 − a3) 0

κ̃1∂1x
a1(b4) κ̃2∂2y

a2(b4) κ̃3∂3z
a3(b4) 0

 .

In each column, there is a sign change off-diagonal, just as one expects in the modified Jacobian

matrix J̃ of the network G. Moreover, the coefficient, say in first column, is

κ̃1∂1x
a1 = κa1x

a1−1(y∗)a2(z∗)a3 .

Thus, when x = x∗, the modified Jacobian matrix J̃(x∗,κ) is exactly J(x∗; κ̃(κ,x∗)).

The construction above generalizes to reactions involving even more species. What

is remarkable is that the resulting modified network does not depend on the choice of rate

constants and the positive state. We now formally state the construction for a general reaction

network. Let êi be the ith standard basis vector of Rn.

Definition 4.3.2. Let (G,κ) be a mass-action system, and fix a positive state x∗. Let Ẽ be

the set of the following reactions, with rate constants κ̃ as specified:

(a) any reaction y → y′ ∈ E with | supp(y)| ≤ 1, with rate constant κy→y′ , and

(b) for any y → y′ ∈ E with | supp(y)| ≥ 2 and any p ∈ supp(y), the reactions

ypêp → y′ + y − ypêp,

with rate constant κy→y′(x
∗)y/(x∗p)

yp .

Let Ṽ be the set of source and target complexes of the reactions in Ẽ. Then G̃ = (Ṽ , Ẽ) is the

modified network of G and (G̃, κ̃) is the modified mass-action system at x∗.
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Proposition 4.3.3. Let (G,κ, τ ) be a delay mass-action system, and J̃ be the modified

Jacobian matrix (4.6) evaluated at some positive state x∗. Let (G̃, κ̃) be the modified mass-

action system at x∗. Then J̃ is the Jacobian matrix of (G̃, κ̃) evaluated at x∗.

The proof of this proposition follows by treating each reaction as in the sample

calculation above, and noting that the Jacobian matrix is linear with respect to reactions.

4.4 The directed species-reaction (DSR) graph

The aim of this section is to introduce the directed species-reaction graph (DSR graph) [33],

and in Section 4.5 we provide a condition on the DSR graphs of the original and modified

networks that is sufficient to conclude delay stability.

The DSR graph, and its closely related cousin the species-reaction graph were used to

study injectivity of a reaction network, i.e., the negative Jacobian is positive for any positive

rate constants and at any positive state [32,33,36,37]. In particular, injectivity can be used to

rule out the capacity for multistationarity, since an injective network cannot admit multiple

positive steady states for any choice of rate constants.

The DSR graph can also be used to study stability of matrices [6, 7]. A n ×m matrix

M is naturally associated to a bipartite graph with n + m vertices, where an edge connects

vertices i and j if and only if [M]ij 6= 0. Sign information can also be recorded as labels on

the edges. Each cycle in the graph corresponds to a minor expansion. For example, a cycle

〈i, j, k, `〉 is associated to the minor with rows i, k and columns j and `. There are other

variants of the DSR graph, including Petri nets from computer science and Volpert’s graph for

chemical reactions. We focus on a version that is a hybrid of what is defined in [37] and [33].

In the previous section, we have considered non-autocatalytic networks, i.e., there is

no net production of a chemical species involved both as a reactant and a product. In this

section, we further restrict ourselves to networks with no one-step catalysis. A reaction is a

one-step catalysis if a species appears as a reactant as well as a product. Hence, for a network
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with no one-step catalysis, we have supp(y) ∩ supp(y′) = ∅ for any reaction y → y′.

In this more restrictive setting, the DSR graph takes on a simpler form. Here, we give

a definition of the directed species-reaction graph that is sufficient for our purpose. We first

illustrate how a DSR graph is drawn for a given network.

Example 4.4.1. Consider the reaction network

X + Y 2Z Z

Y

X

0

with three species and five edges, one of which is a reversible pair. Two reactions (0→ X and

0 → Y) are inflows and will not appear in DSR graph. Its DSR graph, shown in Figure 4.4,

contains three species node and three reaction nodes. For the reaction X + Y → 2Z, the source

species X and Y are connected to the reaction node by undirected edges, which are labelled

with their stoichiometric coefficients (1 and 1 respectively). The product species Z receives

an incoming edge from the reaction node, labelled with its stoichiometric coefficient 2. For

a reversible reaction like that of X 
 Y, the edges connecting the reaction node and the

corresponding species nodes are undirected. In a DSR graph, an undirected edge should be

understood as bidirectional.

X

Y

ZX + Y → 2Z

Z→ X

X 
 Y

1

1

2

1

1

1

1

X

Y

ZX + Y → 2Z

Z→ X

X 
 Y

Figure 4.4: The DSR graph of Examples 4.4.1 and 4.4.5. The edges (orange)
connecting the S-nodes X and Y to the R-node of the bispecies reaction is a c-pair
(Definition 4.4.4).
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Let G = (V,E) be a network with n species and no one-step catalysis. Let E∗ denote

the subset of reactions that are neither (generalized) inflows nor outflows2, with the caveat

that any reversible pair of reactions count as one element. In other words,

E∗ =
{
{y,y′} : y, y′ 6= 0, and either y → y′ or y′ → y ∈ E

}
.

The DSR graph of G then consists of n S-nodes, one for each species, and |E∗| R-nodes, one

for each element of E∗.

Definition 4.4.2. A directed species-reaction graph (DSR-graph) D = (VS ,VR, E , σ) is

a bipartite graph (VS ,VR, E) with a map σ : E → R>. Vertices in VS are S-nodes (species

nodes), while those in VR are R-nodes (reaction nodes). Each edge in E , either oriented

or unoriented, is assigned a stoichiometric coefficient by the map σ.

To simplify the language, we refer to a S-node as if it is the species, and a R-node as if it

is the relevant reaction. For example, an R-node R is irreversible if the corresponding reaction

in the network is irreversible. Any edge in the DSR graph will be denoted by the ordered pair

in VS × VR; whether it is oriented or not will be explicitly stated.

An edge connects a S-node Xi and a R-node R if and only if Xi participates as a

reactant or product species in the reaction (pair) R. The edge is oriented from R to Xi if R is

an irreversible reaction and Xi is a product; otherwise it is unoriented. Finally, suppose the

species Xi participates in a reaction corresponding to R = {y,y′} (either y → y′ or y 
 y′),

the stoichiometric coefficient of the edge (Xi,R) is the non-zero coefficient yi+y
′
i = max{yi, y′i}.

Remark 4.4.3. DSR graph is defined for more general reaction networks. If the network has

a one-step catalysis, its DSR graph is a multigraph [33, 37]. For example, the DSR graph of

the reaction X + Y → 2X has two edges between the S-node X and the R-node, one of which is

unoriented and assigned a stoichiometric coefficient 1, while the other is oriented and assigned

a coefficient 2. In this work, we avoid any one-step catalysis.

2By generalized inflows and outflows, we mean reactions of the form aX→ 0 or 0→ aX for some a > 0.
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The aim is to deduce information about the determinant of the Jacobian matrix from

the DSR graph [32, 33, 37]. Cycles in the DSR graph are of interest to us. A subset of edges

defines a subgraph of the DSR graph. A path is an open simple walk compatible with any edge

orientation (whenever present), and a cycle is a closed simple walk compatible with any edge

orientation. If C1 and C2 are two cycles, the intersection C1 ∩ C2 is non-empty if there is at

least one edge in C1 ∩ C2, and the orientation (whenever present) of every edge is consistent

with that of C1 and also that of C2.

Definition 4.4.4. Let D = (VS ,VR, E , σ) be the DSR graph of a reaction network with no

one-step catalysis.

(a) A c-pair (complex-pair) is a pair of edges adjacent to a R-node such that the two

adjacent species are reactants in the same reaction.

(b) A cycle is an e-cycle (even-cycle) if it contains an even number of c-pairs.

(c) A cycle is an o-cycle (odd-cycle) if it contains an odd number of c-pairs.

(d) Alternatingly multiply and divide the stoichiometric coefficients along a cycle. If the

result is equal to 1, then the cycle is an s-cycle .

(e) Two cycles C1 and C2 have an S-to-R intersection if C1 ∩ C2 consists of paths that

start at an S-node and terminate at an R-node. We say D has an S-to-R intersection

if there exist two cycles in D with an S-to-R intersection.

Example 4.4.5. We revisit the DSR graph in Figure 4.4. The highlighted (orange) edges

connecting the S-nodes X and Y, to the R-node of the irreversible bispecies reaction, form a

c-pair. There are three cycles in the DSR graph: the left-most cycle C1 contains only the

S-nodes X and Y; the upper-right cycle C2 contains only the S-nodes X and Z; and running

along the outer edges of the graph, C3 contains all three S-nodes. The left-most cycle C1

passing through only X and Y is a s-cycle and an o-cycle, since all stoichiometric coefficients

are 1 and C1 contains the c-pair. The cycle C2 passing through only X and Z is not a s-cycle,



114

but it is an e-cycle. The cycle C3 passing through all S-nodes is an e-cycle but not a s-cycle.

Finally, C1 and C2 have a S-to-R intersection, since C1 ∩C2 is half of the c-pair inheriting the

orientations of the two cycles. Similarly, C1 and C3 have a S-to-R intersection. However, C2

and C3 do not have a S-to-R intersection even though C2 ∩ C3 6= ∅.

Cycles in the DSR graph are intimately connected to the principal minors of the

Jacobian matrix [6, 7, 32,33,37].

Theorem 4.4.6. Let G be a network with no one-step catalysis, and there is an outflow for

every species. Suppose its DSR graph satisfies the following conditions:

(a) all cycles are o-cycles or s-cycles, and

(b) no two e-cycles have a S-to-R intersection.

Then the negative Jacobian matrix −J of the mass-action system (G,κ) is a P0-matrix for any

κ and x > 0. Moreover, det(−J) > 0.

More is true than what we have stated here. Not only are the principal minors of −J

non-negative, but that each of them are positive combinations of monomials in κ and x∗ [36].

In Section 4.2, we gave an algebraic condition for delay stability based on the modified

Jacobian matrix J̃. We then related J̃ to the Jacobian matrix of a different mass-action system

in Proposition 4.3.3. Therefore, by Theorem 4.4.6 delay stability follows if the modified mass-

action system has a DSR graph that satisfies the above graph theoretic conditions.

Furthermore, our construction of the modified network always results in reactions

involving at most one reactant species, so there is no c-pair in the DSR graph of the modified

network, and all cycles are e-cycles. This simplifies Theorem 4.4.6.

Corollary 4.4.7. Let G be a network with no one-step catalysis, and there is an outflow for

every species. For any choice of rate constants κ > 0, let (G,κ) denote the mass-action system,
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and let (G̃, κ̃) be its modified mass-action system at any positive state x∗ > 0, with Jacobian

matrix J̃. Suppose the DSR graph D̃ of G̃ satisfies the following conditions:

(a) all cycles are s-cycles, and

(b) there is no S-to-R intersection.

Then −J̃ is a P0-matrix, and det(−J̃) > 0.

4.5 DSR-graph condition for delay stability

In this section, we relate the DSR graphs of a reaction network and that of the modified

network. In general, the modified network has many more reactions than the original, and its

DSR graph contains more nodes and cycles. Moreover, the modified network is an artifact of

the proof of Theorem 4.2.3; it may not have any biological relevance. The aim is to deduce

delay stability based on the structure of the DSR graph of the original network instead of that

of the modified network.

For the main result of this section, we require four assumptions on the network.

(N1) Every species has a generalized outflow, i.e., aiXi → 0 for some ai > 0 is a reaction.

(N2) The network has no one-step catalysis, i.e., supp(y) ∩ supp(y′) = ∅ for any reaction

y → y′.

(N3) Every reaction has at most two different reactant species, i.e., | supp(y)| ≤ 2 for any

reaction y → y′.

(N4) Any bispecies reaction is irreversible.

Many reasonable biochemical systems satisfy (N1) and (N3). Condition (N1) typically

reflects the natural degradation of molecules. Condition (N3) is similar to, but more relaxed

than, the common assumption that a reaction requiring three participating molecules is a rare
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event and can be safely neglected from the model.

The remainder of this section is structured as follows. First we state the main results;

then apply them to several networks. Next we illustrate by way of examples the difference

between the DSR graphs of the original and modified networks. Finally we state and prove

a series of lemmas, leading to a proof of the main theorem. We have chosen to structure the

section this way because the last proof is technical and not particularly enlightening, and the

reader may feel justified to skip the proof if so desired.

Definition 4.5.1. Let R be a R-node of an irreversible reaction involving two reactant species.

Let X be a S-node corresponding to one of the product species of the reaction. The edge (X,R)

in D is a bispecies production edge .

To conclude delay stability, we would like to avoid cycles with bispecies production

edges. Such a cycle can be interpreted as a feedback loop. For example, the reaction network

X + Y Z X

whose DSR graph, shown in Figure 4.10(a) has a cycle with a bispecies production edge.

This cycle points out that the product Z of a bispecies reaction is eventually used to feed the

production of reactant X. The main results of this section are the following.

Theorem 4.5.2. Let G be a reaction network satisfying conditions (N2)–(N4). For any

vector of rate constants κ > 0, let (G,κ) denote the mass-action system, and let (G̃, κ̃) be its

modified mass-action system at any positive state. In the DSR graph D̃ of the network G̃,

(i) all cycles are s-cycles, and

(ii) there is no S-to-R intersection,

if and only if in the DSR graph D of the network G,

(a) no cycle contains a bispecies production edge;
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(b) all cycles are s-cycles, and

(c) there is no S-to-R intersection.

Theorem 4.5.3. Let G be a reaction network satisfying conditions (N1)–(N4). Suppose D,

the DSR graph of G, satisfies the following:

(a) no cycle contains a bispecies production edge;

(b) all cycles are s-cycles, and

(c) there is no S-to-R intersection.

Then G is delay stable, i.e., for any rate constants κ > 0 and any delay parameters τ ≥ 0,

any positive steady state of the delay mass-action system (G,κ, τ ) is asymptotically stable.

Proof. Let G be a reaction network satisfying (N1)–(N4), and suppose its DSR graph D

satisfies (a)–(c) of Theorem 4.5.3. Let G̃ be the modified network as in Definition 4.3.2, and

D̃ be its DSR graph. By Theorem 4.5.2, all cycles in D̃ are s-cycles, and D̃ has no S-to-R

intersection. By Corollary 4.4.7, its Jacobian matrix −J̃ is a P0-matrix, independent of the

choice of rate constant κ > 0 and the positive state. Proposition 4.3.3 says that J̃ is the

modified Jacobian matrix of the delay mass-action system (G,κ, τ ).

It remains to be shown — independent of κ > 0, x > 0 — that [J̃]pp < 0 for all

1 ≤ p ≤ n and det(J) 6= 0, where J is the Jacobian matrix of the mass-action system

(G,κ). Condition (N1) — that every species has an outflow reaction — guarantees that

[J̃]pp = [J]pp < 0. Finally, the conditions on the DSR graph of G also ensures that J itself is

a P0-matrix and that det(−J) > 0 by Theorem 4.4.6. Therefore, delay stability of G follows

from Corollary 4.2.4.

Since the proof of Theorem 4.5.2 is very technical and does not shed light on the

underlying structure on the DSR graph, it suffices to say that (i) the s-cycles of D and D̃
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are related (Lemma 4.5.8 and Proposition 4.5.11); (ii) there is a S-to-R intersection in D̃ if

and only if either there is one in D or there is a cycle containing a bispecies production edge

(Proposition 4.5.12). So instead, we explore several examples applying Theorem 4.5.3 before

proving Theorem 4.5.2.

Several physical and biochemical processes are believed to follow a nucleation-

propagation mechanism, from crystallization in solution, polymerization reactions including

micelles formation [27, 105], and DNA double-helix formation [101, 104, 114]. Under this

mechanism, nucleation, whereby the process is initiated, is the rate determining step, followed

by the faster propagation step that takes the process to completion or termination.

Example 4.5.4. A DNA helix comprises of two complementary single-stranded DNA. During

the nucleation step, several base pairs must find their partners in the complementary strand.

However, once that happens, the two strands zip together like a zipper; this is the propagation

step [24, Chapter 23].

As a toy model of duplex formation, consider two single-stranded DNA (S) forming a

duplex (D) reversibly with some time delays. Reality is of course much more complicated;

we are neglecting that the single-stranded DNA should be complementary, not identical.

Moreover, in DNA replication, usually one strand forms a template, and the other strand is

built from individual nucleotides. Finally, we are also neglecting the physical process whereby

the double-stranded DNA twists to form a helix, and the thermodynamics when long sequences

are involved. In this toy model, we assume that the delay parameters are proportional to the

length of the DNA sequence. Moreover, we include the degradation of D, and the synthesis

and degradation of S.

The delay mass-action system under consideration

2S D 0 S
κ1, τ1

κ2, τ2

κD κS+

κS−

satisfies conditions (N1)–(N4). By an abuse of notation, let S and D be the concentration
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variables of the single-stranded and double-stranded DNA respectively. The associated system

of delay equations

dS(t)

dt
= κS+ − κS−S(t)− 2κ1[S(t)]2 + 2κ2D(t− τ2)

dD(t)

dt
= −κDD(t) + κ1[S(t− τ1)]2 − κ2D(t)

has a single positive steady state for any choice of rate constants. These are given by

κ1S2

κ2 + κD
= D =

κS+ − κS−S

2κD
.

The resulting quadratic equation 2κ1κDS2 + κS−(κ2 + κD)S− κS+(κ2 + κD) = 0 always has a

positive root and a negative root, leading to a unique positive steady state.

The characteristic equation (4.4) of the delay system is

0 = det

−κS − 4κ1S− λ 2κ2e
−λτ2

2κ1Se−λτ1 −2κ2 − κD − λ


= λ2 + λ (4κ1S + κS− + 2κ2 + κD)

+ (4κ1S + κS−) (2κ2 + κD)− 4κ1κ2Se−λ(τ1+τ2).

Of course, one can check the criteria of Theorem 4.2.3 or Corollary 4.2.4, which is not difficult

since the modified Jacobian matrix (which also happens to be the Jacobian matrix)

J̃ =

−κS − 4κ1S 2κ2

2κ1S −2κ2 − κD


is only a 2 × 2 matrix. However, we look instead at its DSR graph, shown in Figure 4.5.

The DSR graph has no cycle, so conditions (a)–(c) of Theorem 4.5.3 are trivially satisfied.

Therefore, the network corresponding to duplex formation is delay stable, i.e., asymptotically

stable for any choice of rate constants and delay parameters.
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S D2S 
 D
2 1

Figure 4.5: The DSR graph of Example 4.5.4 has no cycle. Thus, the toy model for
the formation of double-stranded helix via the nucleation-propagation mechanism
is delay stable.

We now return to a discussion leading up to a proof of Theorem 4.5.2. One can imagine if

the reaction network G has only one bispecies reaction, then G differs from its modified network

G̃ only by the relevant reaction (two reactions from the view of G̃), and their respective DSR

graphs differ only near the relevant R-node(s).

X

Y

Z2X + Y → Z

2

1

1

X

Y

Z2X + Y → Z

(a)

X

Y

Z

2X→ Z + Y

Y → Z + 2X

2

1

1

2

1

1

X

Y

Z

2X→ Z + Y

Y → Z + 2X

(b)

Figure 4.6: The DSR graphs of (a) the original network {2X + Y → Z} and (b) its
modified network from Example 4.5.5.

Example 4.5.5. Consider the reaction network consisting of a single reaction

2X + Y Z

whose DSR graph D is shown in Figure 4.6(a). Independent of the choice of rate constants

and positive state, the modified network consisting of two reactions

2X Z + Y

Y Z + 2X
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has the DSR graph D̃ in Figure 4.6(b). The edges are coloured in the figure to show

correspondence with those in Figure 4.6(a). Each R-node in D̃ has degree 3, and its adjacent

edges have the same set of stoichiometric coefficients. A s-cycle is present in D̃ even though

D has no cycle.

On the DSR graphs in Figure 4.6, we define a graph homomorphism Φ: D̃ → D. It

acts as the identity on the S-nodes, and maps the two R-nodes in D̃ to the R-node in D. So Φ

maps any edge of D̃ correspondingly (edges colour-coded as such in Figure 4.6). Note that the

stoichiometric coefficient of any edge is preserved by Φ. Finally, note that an oriented edge in

D̃ may become unoriented in D under the graph homomorphism Φ.

Regarding the DSR graphs of a reaction network and its modified network, it is not

difficult to imagine all the actions happening around a R-node that involves two reactant

species, which we call a bispecies R-node .

aiXi 0

aiXi + ajXj0

aiXi 0

aiXi ajXj + (· · · )

aiXi ajXj

aiXi + ajXj (· · · )

Figure 4.7: A reaction network satisfying conditions (N2)–(N4) can only admit
reactions of these form. In each case, i 6= j and ai, aj > 0. By (· · · ), we allow any
combination of species except for Xi and Xj .

In what follows, we start with a reaction network satisfying conditions (N2)–(N4). The

only reactions allowed are those of the forms in Figure 4.7. By definition, the three left-most

reactions in Figure 4.7 are omitted from VR in the DSR graph. As a result, VR only contain

R-nodes corresponding to reactions in the latter two columns in Figure 4.7.

Remark 4.5.6. In how we defined the modified network in Definition 4.3.2, an awkward

scenario can occur. If we start with the reaction network G
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X + Y 0 X Y

then the modified network G̃ consisting of

X Y

Y X
X Y

awkwardly has a reaction repeated! Technically, the set of R-nodes E∗ will only have one copy

of the reaction X → Y; however, for the rest of this section, we ensure that both R-nodes are

included in the DSR graph. See Figure 4.8 for the DSR graphs of G and G̃. This is to ensure

that cycles are not lost in going from the modified DSR graph to the original DSR graph.

X

Y

2X + Y → 0X→ Y

X

Y

2X + Y → 0X→ Y

(a)

X

Y

X→ Y

Y → X

X→ Y

X

Y

X→ Y

Y → X

X→ Y

(b)

Figure 4.8: The DSR graphs of (a) the original network and (b) the modified
network from Remark 4.5.6. Duplicated R-nodes can arise and should be kept.

We now define a graph homomorphism from the modified DSR graph to the original,

smaller DSR graph.

Definition 4.5.7. Let D = (VS ,VR, E , σ) be the DSR graph of a reaction network satisfying

(N2)–(N4), and D̃ = (VS , ṼR, Ẽ , σ̃) the DSR graph of the modified network. Define a graph

homomorphism Φ: VS ∪ ṼR → VS ∪ VR by Φ(X) = X for any X ∈ VS . For any R̃ ∈ ṼR that

is not a bispecies reaction, there is a unique R ∈ VR associated to it by the construction in

Definition 4.3.2; let Φ(R̃) = R. Finally, any bispecies R-node R ∈ VR is naturally associated to

two R-nodes R̃1, R̃2 ∈ ṼR, so let Φ(R̃i) = R.

We claim that Φ is a graph homomorphism. First, consider an edge (X, R̃) ∈ D̃, where
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Φ(R̃) is not a bispecies R-node. The map Φ acts as the identity on these vertices. If the

edge is unoriented, either the reaction is reversible, or X is a reactant species in an irreversible

reaction. Thus (X,Φ(R̃)) ∈ D is unoriented. If the edge is oriented, necessarily the reaction is

irreversible and X is a product species; hence the resulting edge is also oriented.

Now consider an edge (X, R̃) ∈ D̃, where Φ(R̃) is a bispecies R-node. If the edge is

unoriented, then X is a reactant species in the bispecies reaction. Hence (X,Φ(R̃)) ∈ D is also

unoriented. However, if the edge in D̃ is oriented, the species X is either a product in the

bispecies reaction (in which case (X,Φ(R̃)) is also oriented), or X is a reactant in the bispecies

reaction (in which case (X,Φ(R̃)) is unoriented). Regardless, the directions of the edges are

consistent under Φ.

Therefore, Φ is a graph homomorphism. By an abuse of notation, we let Φ: D̃ → D,

and allow Φ to act on both vertices and edges of D̃. We start with a simple observation.

Lemma 4.5.8. The map Φ preserves stoichiometric coefficients, i.e., σ ◦ Φ = σ̃.

Proof. This follows from the construction in Definition 4.3.2; reactant species are always moved

together with their stoichiometric coefficients.

Remark 4.5.9. Let C̃ ⊆ D̃ be a cycle that gets mapped to a c-pair under Φ. As Figure 4.6(b)

clearly illustrates, the edges adjacent to any S-node in C̃ shares the same stoichiometric

coefficient. Therefore, then C̃ is a s-cycle.

In the following lemma, we show that if no cycle in D contains a bispecies production

edge, then there is a one-to-one correspondence between the cycles in D̃ and the set of cycles

and c-pairs in D. By ruling out bispecies production edges, the R-nodes in D̃ associated to a

bispecies reaction can only be adjacent to its reactant S-nodes in any cycle.

Lemma 4.5.10. Suppose also that no cycle in D contains a bispecies production edge. If

C̃ ⊆ D̃ is a cycle, then Φ(C̃) is either a cycle or a c-pair in D. If Φ(C̃) is a cycle, then Φ
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acts bijectively on C̃. Then for any cycle C ⊆ D, there exists a unique cycle C̃ ⊆ D̃ such that

Φ(C̃) = C. In other words, there is a one-to-one correspondence between the set of cycles in

D̃, and the set of cycles and c-pairs in D.

Proof. Restrict the map Φ to the cycle C̃ ⊆ D̃. If Φ is one-to-one (on the vertices of C̃), then

Φ(C̃) is a cycle. However, if Φ is not one-to-one, then there exist R-nodes R̃)i 6= R̃j in C̃ such

that R = Φ(R̃i) = Φ(R̃j) is a bispecies R-node. Condition (N3) implies that there are two

reactant S-nodes to R, say Xi and Xj . Figure 4.9(b) shows a similar setup. Note that R̃i is

adjacent to edges (Xi, R̃i), (Xj , R̃i), and possibly oriented edges to some other species Xk (i.e.,

in the preimage of the bispecies production edge). Because no cycle in D contains a bispecies

production edge, Φ(C̃) cannot contain an oriented edge like (Xk,Φ(R̃i)). Therefore, C̃ cannot

contain edges like (Xk, R̃i) or (Xk, R̃j). Because each of R̃i and R̃j has only one incoming

(unoriented) edge, it must be the case that C̃ =
〈

Xi, R̃i,Xj , R̃j
〉

, so Φ(C̃) is a c-pair.

Conversely, let C ⊆ D be a cycle. If C does not contain any bispecies R-nodes, then

because Φ acts bijectively on the cycle, Φ−1(C) ⊆ D̃ is the unique cycle mapping to C. Suppose

however, that C contains a bispecies R-node; we claim that there is a unique cycle in D̃ that

gets mapped to C, as illustrated in Figure 4.9. For now, assume there is exactly one bispecies

R-node R. Let the cycle C be 〈v` = v0, v1, v2, . . . , v`−1〉, where v1 = R is the bispecies R-node,

with reactant species S-nodes v0 = Xi and v2 = Xj . For k 6= 1, the vertex vk has a unique

preimage under Φ. However, the preimage of v1 consists of two R-nodes: R̃i for the modified

reaction where Xi is the reactant, and R̃j for the reaction where Xj is the reactant. Then Φ

maps the cycle
〈
v` = v0, R̃i, v2, . . . , v`−1

〉
⊆ D̃ uniquely to C.

If C contains multiple bispecies R-node, a similar argument can be made locally at

each bispecies R-node. Suppose vk = R is a bispecies R-node, then vk−1 and vk+1 are S-

nodes corresponding to the reactants of R. Say vk−1 = Xi and vk+1 = Xj . In the DSR

graph D of the modified network, R is associated to two R-nodes: R̃i with reactant Xi and

R̃j another with reactant Xj . Then for the segment 〈vk−1, vk, vk+1〉 of the cycle, choose〈
vk−1 = Xi, R̃i, vk+1 = Xj

〉
as its preimage under Φ.
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Xi

Xj

R

Xi

Xj

R

(a)

Xi

Xj

R̃i

R̃j

v`−1

v3

Xi

Xj

R̃i

R̃j

(b)

Figure 4.9: If no cycle in D contains a bispecies production edge, the preimage of
a cycle in D is a unique cycle in D̃. A cycle C ⊆ D containing a bispecies R-node
(a) is uniquely mapped from the cycle in (b). The edges adjacent to the R-node
are coloured to emphasize the pairing in the DSR graphs, and arrows indicate
direction of the cycle.

We are ready to approach the proof of Theorem 4.5.2. When no cycle contains a

bispecies production edge, Proposition 4.5.11 relates the s-cycles of the DSR graphs, while

Proposition 4.5.12 relates the S-to-R intersections. These two propositions together imply

Theorem 4.5.2.

Note that in the following proposition, it is not necessary to assume that D does not

have a cycle with a bispecies product edge. With this assumption, the proof greatly simplifies.

Proposition 4.5.11. Assumes that no cycle in D contains a bispecies production edge. Then

all cycles in D are s-cycles if and only if all cycles in D̃ are s-cycles.

Proof. Suppose all cycles in D are s-cycles. Let C̃ ⊆ D̃ be a cycle. Lemma 4.5.10 implies that

Φ(C̃) is either a cycle or a c-pair. Recall that Φ preserves the stoichiometric coefficients. Thus

C̃ is a s-cycle by assumption in the former case and by Remark 4.5.9 in the latter.

Conversely, suppose all cycles in D̃ are s-cycles, and let C ⊆ D be any cycle. By

Lemma 4.5.10, Φ−1(C) is a cycle, thus a s-cycle by assumption. Hence, its image C is also a

s-cycle.

Finally, we reached our last proposition, and the subtle connection between the DSR
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graphs of a network and its modified version. Figure 4.10 shows that if D has a cycle with a

bispecies production edge, then there is a S-to-R intersection in D̃.

X

Y

ZX + Y → Z

Z→ X

X

Y

ZX + Y → Z

Z→ X

(a)

X

Y

X

Y

Z

(b)

Figure 4.10: (a) The DSR graph of a network that has a cycle with a bispecies
production edge. (b) The DSR graph of the modified network, which contains a
S-to-R intersection. Two cycles are highlighted whose intersection is one edge.

Proposition 4.5.12. There is a S-to-R intersection in D̃ if and only if there is either

(a) a S-to-R intersection in D, or

(b) a cycle in D containing a bispecies production edge.

Proof. First we prove that if D has no S-to-R intersection and no cycles with a bispecies

production edge, then D̃ cannot have a S-to-R intersection. Let C̃1 6= C̃2 be two cycles in

D̃ with at least one common R-node and a S-node; we need to show that C̃1 ∩ C̃2 is not a

S-to-R intersection. Without loss of generality, Lemma 4.5.10 implies we have three cases

(Figure 4.11) to handle separately:

1. Φ(C̃1) and Φ(C̃2) are c-pairs;

2. Φ(C̃1) is a cycle while Φ(C̃2) is a c-pair;

3. Φ(C̃1) and Φ(C̃2) are both cycles.
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In the case where Φ(C̃1) and Φ(C̃2) are c-pairs (Figure 4.11(a)), they must share the

same R-node, which is a bispecies R-node in D. Since a bispecies R-node has exactly two

incoming (unoriented in this case) edges, C̃1 = C̃2, which contradicts our assumption.

In the next case, the unique R-node of the c-pair Φ(C̃2) is a bispecies R-node in the

cycle Φ(C̃1). Because the two edges in Φ(C̃2) form part of the cycle, Φ(C̃2) has the form of

the partially shown cycle in Figure 4.11(b). The intersection C̃1 ∩ C̃2 consists of exactly two

edges in D̃ that get mapped to the c-pair. The intersection in D̃ is similar to the segment〈
Xi, R̃i,Xj

〉
in Figure 4.9. Thus, C̃1 ∩ C̃2 starts and ends at S-nodes, i.e., it is not a S-to-R

intersection.

In the final case, Φ(C̃1) and Φ(C̃2) are cycles. Since no cycle in D contains a bispecies

production edge, Φ acts bijectively on the cycles C̃1 and C̃2, and Φ(C̃1 ∩ C̃2) = Φ(C̃1)∩Φ(C̃2).

Because D does not have any S-to-R intersection, C̃1 ∩ C̃2 is not a S-to-R intersection.

(a) (b) (c)

Figure 4.11: Preimages in D̃ of two cycles with at least one common node. The
three cases to consider in the proof of Proposition 4.5.12: when (a) both Φ(C̃i)
are c-pairs, (b) one of them is a c-pair, and (c) neither is a c-pair. In (a) and (b),
the intersection C̃1 ∩ C̃2 is the preimage of the c-pair. In (c), because Φ(C̃1) and
Φ(C̃2) are cycles on which Φ acts bijectively, Φ(C̃1 ∩ C̃2) = Φ(C̃1) ∩ Φ(C̃2).

Conversely, first suppose now that no cycle contains a bispecies production edge, but

that there are two cycles C1 6= C2 in D whose intersection C1 ∩C2 is a S-to-R intersection. By

Lemma 4.5.10, let C̃1 and C̃2 be the unique cycles mapped to C1 and C2 respectively. Since Φ

acts bijectively on these cycles, we have Φ(C̃1 ∩ C̃2) = C1 ∩C2, a S-to-R intersection; therefore

C̃1 ∩ C̃2 is also a S-to-R intersection.
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Now suppose that a cycle C in D contains a bispecies production edge (Xk,R) where R is

the bispecies R-node, with reactant S-nodes Xi and Xj . Figure 4.10 hints at the proof. Let C̃∗

be the s-cycle that is the preimage of the c-pair adjacent to R; say C̃∗ =
〈

Xi, R̃i,Xj , R̃j
〉

.

We will construct a cycle in D̃ whose intersection with C̃∗ is a S-to-R intersection. Let

C = 〈v` = v0, v1, . . . , v`−1〉, where v1 = R, v0 = Xi, and v2 = Xk. Then Φ maps the segment〈
Xi, R̃i,Xk

〉
to the 〈v0, v1, v2〉 part of the cycle C. Note that the intersection of

〈
Xi, R̃i,Xk

〉
with C̃∗ is (Xk, R̃i), a S-to-R intersection. More precisely, whenever vk is a bispecies R-node,

and vk−1 = Xi, choose R̃i from the preimage of vk. The result is a cycle in D̃, whose intersection

with C̃∗ is precisely (Xk, R̃i), a S-to-R intersection.

Proof of Theorem 4.5.2

Recall that we supposed G satisfy conditions (N2)–(N4); Theorem 4.5.2 claims that in the

DSR graph D̃ of the network G̃,

(i) all cycles are s-cycles, and

(ii) there is no S-to-R intersection,

if and only if in the DSR graph D of the network G,

(a) no cycle contains a bispecies production edge;

(b) all cycles are s-cycles, and

(c) there is no S-to-R intersection.

Proposition 4.5.12 claims (ii) is equivalent to (a) and (c). Assuming (a), Proposition 4.5.11

proves the equivalence of (i) and (b). Clearly, (a)–(c) implies (i)–(ii). Towards the other

direction, (ii) implies (a) and (c). Hence, we may take (a) as an assumption, and conclude (b)

from (i).
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Logical relations of implications

Results have become more intertwined in this section; it is worth spelling out the logical

implications.

Lemma 4.5.8

Remark 4.5.9

Lemma 4.5.10

Proposition 4.5.11

Proposition 4.5.12

Theorem 4.5.2

Theorem 4.5.3

Corollary 4.2.4

Proposition 4.3.3

Corollary 4.4.7

Theorem 4.2.3
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