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Abstract

Many high dimensional phenomena observed in applications are simple and can be approxi-

mated by a small combination of a potentially infinite number of building blocks or atoms. It

is possible to estimate such simple objects robustly from a limited number of noisy measure-

ments. Atomic norm regularization proposed in this thesis is a convex optimization problem

that can be used for deriving efficient estimators of such high dimensional structures in a

large number of cases.

This thesis provides a general approach to regularization using an atomic norm penalty

which unifies previous literature on high dimensional statistics. We will revisit two fundamen-

tal problems in signal processing and systems theory – line spectral estimation and system

identification, which are classically treated as nonlinear parameter estimation problems. We

will see that the convex approach proposed in this thesis can provide a principled way of

tackling these problems and provide optimal theoretical guarantees in the presence of noise.

In contrast, parametric approaches often need to estimate the number of atoms or the model

order and need heuristics to robustify nonlinear estimation.

The approach in this thesis can be thought of as a generalization of the Lasso estimator

for handling continuous infinite dimensional sparse recovery problems. For the problem of

line spectral estimation, I will provide efficient algorithms based on an exact semidefinite

characterization of the proposed estimator and also more generally show that discretization

provides a scalable alternative to approximate the solution for a number of problems.
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1 Introduction

We live in a world of data abundance. Due to advancements in data collection, and massive

storage capabilities, we now have a dizzying amount of high dimensional data to analyze.

The task of the data scientist is to infer a simple model to describe the data. Fortunately, many

naturally occurring phenomena often have a simple structure. This allows us to efficiently

represent them using a few building blocks or features, even if they are observed in a high

ambient dimension. The challenge is to exploit the simplicity of these objects and recover

them robustly from limited measurements. This can be a formidable task even for simple

instances of the problem.

For example, imagine a data series composed of n measurements that can be described by

a linear model, in terms of a large number p� n of potential predictor variables or features.

Finding the linear model from these limited measurements is a hopelessly underdetermined

problem. However, when the linear model is simple and it is known a priori that only a small

subset of the features are actually active, the problem of determining the linear model is no

longer ill posed. A simple description of the data series expresses the data series in terms of a

few active features and corresponding feature weights. Our task of choosing the “right” model

for the data can be cast as a combinatorial feature selection problem with the objective of

finding the smallest subset of features that describe the data well. This is called the “small n,

large p” problem in statistics and such datasets are ubiquitous - For example, a biologist might

want to identify the active genes by looking at only a few samples of a microarray experiment

which simultaneously measures thousands of genes. Machine learning practitioners might

want to infer the active features from a large feature space with a relatively small number of

measurements.

A naïve algorithm would explore all the possible subsets of features in increasing order
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of size till we find a solution. There does not appear to be an efficient algorithm for this as

there are an exponential number of subsets to choose from. In fact, this selection problem is

provably NP-HARD1 [75]. This does not however preclude the possibility of designing efficient

algorithms that work on most instances. In fact, there is now a large body of literature on the

theoretical understanding of the surprising success of convex relaxation methods in efficiently

solving the sparse recovery problem most of the time.

Instead of the hard combinatorial problem of directly minimizing sparsity of the feature

weights, the idea of using the `1 norm of the feature weights as a convex proxy was known to

several early practitioners in Geophysics and seismology [35, 98, 68, 86]. The authors were

also aware of the robustness of `1 regularization to outliers and noise. This was introduced in

statistics as a sparsity inducing regularization in [100] and in Signal Processing as a means

of exact and robust decomposition by [31] and subsequently studied by Donoho and his

coworkers [42, 41]. Since the seminal publications of [17, 74], which rigorously established

the exact recovery and model selection properties, the study of convex penalties for feature

selection has been a subject of intense research. This theory was extended to other high

dimensional structures including group sparse vectors[107] and low rank matrices [84].

The unifying theme in different structures in high dimension is some notion of simplicity

like sparsity for vectors or rank for matrices. This thesis builds on a recent publication [30]

which discusses the notion of simple objects as a sparse combination of atoms from a possibly

infinite dictionary. This unifies several related problems in sparse recovery and approximation.

Simple objects may be expressed as a sparse linear combination of a few basic atoms drawn

from a possibly infinite dictionary of atoms. For instance, a sparse vector in high dimension is

a combination of a few canonical unit vectors. A low rank matrix is a combination of a few
1Informally, this means that it is at least as hard as a large number of well known problems in complexity

theory, widely believed to have no algorithm that can solve them in a time proportional to any polynomial function
of the number of observations.
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rank-1 matrices. A signal with a finite discrete spectrum is a combination of a few frequencies.

The authors propose using “atomic norm” as a convex heuristic to recover simple models

from linear measurements. The atomic norm may be thought of as a convex proxy to the

combinatorial objective function that arises naturally in sparse recovery problems.

Furthermore, the atomic norm framework allows us to naturally extend convex relaxations

to work on infinite dimensional objects which cannot be handled satisfactorily using standard

finite dimensional Lasso. We will see how to denoise with atomic norms and then apply these

ideas to revisit two fundamental signal processing problems – line spectral estimation and

system identification, from the perspective of convex methods. I will also discuss efficient

algorithms for these problems.

Line Spectral Estimation involves estimating frequencies and amplitudes from a limited

number of noisy measurements. This is a fundamental problem in signal processing and there

are a number of classical algorithms dating back to Prony. Surprisingly, using convex methods

in this thesis, we can empirically outperform these classical techniques and also theoretically

show near minimax optimal performance.

Another foundational problem in Signals and Systems theory is that of inferring a linear

system from observed measurements. I will show that we can robustly recover a low order

system from a limited set of noisy measurements, using the convex methods discussed in the

thesis. We will see that it compares favorably in terms of prediction errors to the popular

subspace ID method.

Contributions and Organization

In Chapter 2, I will present the atomic norm framework in depth and show how it unifies

many linear inverse problems in high dimensional statistics. Extending this framework, I will
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introduce a general regularized estimator using the atomic norm penalty which we will call

Atomic Norm Soft Thresholding (AST). This may be thought of as an infinite dimensional

version of the Lasso [100]. I will first establish universal properties of the estimator and

indicate when accelerated convergence rates are possible. The choice of the regularization

parameter for AST depends upon extremal properties of the dual atomic norm of noise, and

we will examine general techniques for estimating the regularization parameter.

In Chapter 3, I show how to apply atomic norm soft thresholding estimator to denoise line

spectral signals. I will show that this produces a consistent estimate for all signals which holds

universally with very little assumptions on the measurement model. By exploiting properties

of a dual certificate constructed in [20, 19], we will see that we can achieve accelerated

convergence rates when the frequencies in the line spectral signal are well separated. As is

the case for coherent designs using Lasso, this is nearly minimax optimal. This result may be

thought of as a local version of coherence – Although our dictionary is highly coherent, as

long as the signal we wish to recover is composed of relatively incoherent frequencies, it is

possible to recover it robustly.

I will also show that the frequencies localized by AST tend to be near the true frequencies.

With extensive experiments, I will demonstrate that the proposal in this thesis outperforms

several classical line spectral estimation algorithms.

In Chapter 4, I will show how these techniques can be adapted for the System Identifi-

cation problem. I will describe a general regularization problem for different kinds of linear

measurements of the system. For the special case of frequency samples, I will show how to

derive finite sample guarantees on the H2 prediction error of the transfer function of the

linear system using AST.

Finally, in Chapter 5, I will discuss algorithms for AST. It turns out that we can efficiently

solve AST as long as we have a reasonably efficient algorithm to test membership in the unit
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ball of the atomic norm. For the case of Fourier measurements, the atomic norm balls can

be characterized by a semidefinite program (SDP), which can be readily solved using any of

the various SDP solvers. While the positive case is classical and is well known, the general

case is a non-trivial extension. I will describe a fast parallelizable algorithm for the SDP using

Alternating Directions Method of Multipliers (ADMM), and also provide an alternative efficient

discretized version of AST which can be used in the absence of semidefinite characterizations,

and in general for large problem sizes. This boils down to solving a Lasso problem on a grid. I

will show the convergence of the Lasso solution which provides justification for discretization

and Lasso on a grid as a general computational strategy.
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2 Simple Models and Atomic Norms

The foundation that underlies the techniques discussed in this chapter is the work on atomic

norms for linear inverse problems in [30]. In this work, the authors describe how to reconstruct

models that can be expressed as sparse linear combinations of atoms from some basic set A.

The set A can be very general and is not assumed to be finite. For example, if the signal is

known to be a low rank matrix, A could be the set of all unit norm rank-1 matrices, since a

low rank matrix can indeed be written as a sparse combination of such rank-1 atoms.

I will first review the notion of simple models defined in [30] and describe how this

generalizes various notions of sparsity and structure. Then, we will see how to use an atomic

norm penalty to denoise a signal known to be a sparse nonnegative combination of atoms from

a set A. Atomic norms provide a natural convex penalty function for discouraging specialized

notions of complexity. These norms generalize the `1 norm for sparse vector estimation [18]

and the nuclear norm for low-rank matrix reconstruction [84, 21].

The first contribution described in this chapter, is an abstract theory of denoising with

atomic norms. I show a unified approach to denoising with the atomic norm that provides

a standard approach to computing low mean-squared-error (MSE) estimates. We will see

how certain Gaussian statistics and geometrical quantities of particular atomic norms are

sufficient to bound estimation rates with these penalty functions. This approach is essentially

a generalization of the Lasso [100, 31] to infinite dictionaries.

Organization of this chapter

The denoising problem is obtaining an estimate x̂ of the signal x? from y = x? + w, where

w is additive noise. Let us make the structural assumption that x? is a sparse nonnegative

combination of points from an arbitrary, possibly infinite set A ⊂ Cn. This assumption is very
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expressive and generalizes many notions of sparsity [30]. The atomic norm ‖·‖A, introduced

in [30], is a penalty function specially catered to the structure of A as we shall examine in

depth in Section 2.1, and is defined as:

‖x‖A = inf {t > 0 | x ∈ t conv(A)} . (2.1)

where conv(A) is the convex hull of points in A. Then, we will look at the denoising perfor-

mance of an estimate that uses the atomic norm to encourage sparsity in A.

Decomposition. Section 2.2 considers vectors x? that may be written as a sparse nonnega-

tive combination of elements from the atomic set A and asks how one might certify that x?

has a unique sparsest decomposition in terms of the atoms. We will see how the existence of

certain vectors in the dual space can reveal the composing atoms and certify uniqueness of

the sparsest decomposition under some mild technical conditions.

Denoising. Section 2.3 characterizes the performance of the estimate x̂ that solves

minimize
x

1
2‖x− y‖

2
2 + τ‖x‖A. (2.2)

where τ is an appropriately chosen regularization parameter, and y = x? + w is a a vector of

noisy measurements. I will show an upper bound on the MSE of the estimate when the noise

statistics are known. Before stating the theorem, note that the dual norm ‖·‖∗A, corresponding

to the atomic norm, is given by

‖z‖∗A = sup
a∈A
〈z, a〉,

where 〈x, z〉 = Re(z∗x) denotes the real inner product.
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Theorem 2.1 (Universal Denoising Guarantee). Suppose we observe the signal y = x? + w

where x? ∈ Cn is a sparse nonnegative combination of points in A. The estimate x̂ of x? given

by the solution of the atomic soft thresholding problem (2.2) with τ ≥ E‖w‖∗A has the expected

(per-element) MSE
1
n
E‖x̂− x?‖22 ≤

τ

n
‖x?‖A.

This theorem implies that when E‖w‖∗A is o(n), the estimate x̂ is consistent.

Choosing the regularization parameter. In Section 2.4, I will discuss the choice of regu-

larization parameter τ . The lower bound on τ is in terms of the expected dual norm of the

noise process w, equal to

E‖w‖∗A = E[sup
a∈A
〈w, a〉].

That is, the optimal τ and achievable MSE can be estimated by studying the extremal values

of the stochastic process indexed by the atomic set A.

Accelerated Convergence Rates The MSE rates given by Theorem 2.1 are not the best

possible. Section 2.5, we will see a condition on the atomic sets that enables accelerate

convergence rates. This is a generalization of the weak compatibility criterion [53] and unifies

the condition for fast rates for several atomic sets. In particular, under this assumption, I will

show that we can recover fast convergence rates published in literature for sparse vectors and

low rank matrices.

2.1 Preliminaries

The notion of atomic sets and simple models introduced in [30] subsumes several structures

in high dimensional geometry, including sparse vectors, low rank matrices, discrete measures,
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linear systems of small order. The authors also define a notion of an atomic norm as a natural

convex penalty for encouraging simplicity with respect to these structures. In this section, we

shall review these preliminaries.

Let F be C or R. The atomic set A is a possibly infinite subset of Fn and every signal we

shall consider is composed of a combination of atoms from this dictionary. A target signal

x? ∈ Fn is simple, if it can be written as a nonnegative combination of small subset T ⊂ A

of atoms. Call such a T , a support of x?. If the number of elements k = |T | in the support is

small relative to the dimension n of the signal, call such an x? a (k) simple combination of

atoms.

Allowing the dictionary or atomic set to be infinite offers tremendous flexibility in the kind

of high dimensional structures that can be modeled. To see this, we consider specific instances

of the setup, that will serve as motivation for this framework. In subsequent chapters, we will

revisit some of these examples.

2.1.1 Examples

Estimating Nearly Black Objects Consider the estimation of the nonnegative vector x? ∈

Rm from the noisy observations y = x? +w with the assumption that x? is nearly black — i.e.,

most of its entries are zero. This problem was considered in [46, 61], in order to shed light

on the superresolution properties of the maximum entropy estimator for nearly black MRI

images. In this framework, such an x? is a sparse combination of A = {±e1, . . . ,±en} where

ei is the ith canonical unit vector.

Compressed Sensing and Sparse Recovery Many phenomena observed in high dimensions

are sparse in a suitable dictionary. For instance, natural images can be well approximated by a

small combination of basis functions of a suitable wavelet transform. This means the actual
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data is highly redundant and it is actually sparse when suitably transformed. Compression

techniques can exploit this sparse representation and represent the same high dimensional

vector with fewer bits with no loss of accuracy and thus reduce storage costs. The idea

of compressed sensing also reduces acquisition costs by only taking a few random linear

measurements of the high dimensional vector. When the representation is sparse, a high p

dimensional vector can be recovered from a small number n� p of linear measurements.

Let θ? ∈ Rp be sparse in a known orthogonal basis Φ ∈ Rp×p. Suppose we make n

observations x?i = 〈ψi, θ?〉 where {ψi}ni=1 are randomly chosen Gaussian vectors. Then, x? is

a simple combination of atoms from the atomic set given by
{
±ΨTΦj

∣∣∣ j = 1, . . . , p
}

where

Ψ ∈ Rp×n is the matrix with ψi for its columns.

Low Rank Matrix Estimation and Matrix Completion The problem of finding a minimum

rank matrix from incomplete data arises in a number of applications including collaborative

filtering, system identification and document classification. The data available to us could

be a fraction of the entries of the matrix, or in general any set of linear measurements of the

matrix. Let A be the one dimensional manifold composed of all unit norm rank-1 matrices.

Then a low rank matrix x? can be expressed as a sparse combination of rank-1 matrices, and

consequently the observations of this matrix can be expressed as a sparse combination of

observations due to these rank-1 matrices. In this example, note that it is not sufficient to

consider a finite atomic set, since the set of all low rank matrices are not sparse in any finite

dictionary.

Line Spectral Estimation Line Spectral Estimation concerns with the recovery of signals

whose spectrum consists only of a finite number of frequencies. In other words, line spectral

signals are simply a finite mixture of complex exponentials. An important signal processing
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task is to recover the frequencies and amplitudes of the complex exponentials from a limited

number of time samples. For each frequency f in [−W,W ], let a(f) denote the vector of

observed time samples of a complex exponential with a frequency f . Then the set A of

different observations a(f) due to each frequency f comprises the atomic set for samples of

line spectral signals.

System Identification An important task in modeling is the identification of a linear system

with the minimum number of states from its input and output. Let A denote the set of transfer

functions corresponding to single pole systems. Then an LTI system with small order has a

transfer function which is a sparse combination of atoms from A. Therefore the task of system

identification reduces to finding the comprising atoms given linear measurements.

The last two examples can be seen as an instance of continuous sparse recovery problem,

since there are continuously many atoms. In most previous literature, sparse recovery problems

are analyzed only in discrete settings. In fact, in previous literature, authors have advocated a

discretization approach which amounts to working with a finite set Ã instead of the infinite

atomic set A. However, a finer gridding of the atomic set results in a more coherent dictionary

and the usual compressed sensing theoretical guarantees degrade with the grid size. We

will see that we can bypass this by directly analyzing the continuous case using a different

approach. It turns out that the coherence of the dictionary is not a fundamental limitation

and that we can get increasingly accurate results by finer and finer discretizations.

In succeeding chapters, I will concentrate on the application of the atomic norm framework

to these examples. It is not the goal of this section to provide an exhaustive catalogue of

examples of the framework and I would refer the interested reader to [30], which contains

several more interesting applications.
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2.1.2 Atomic Norm

Definition 2.2 (Atomic Norm). The atomic norm ‖·‖A corresponding to A ⊂ Fn is the

Minkowski functional (also called the gauge function) associated with conv(A) (the convex

hull of A):

‖x‖A = inf {t > 0 | x ∈ t conv(A)} . (2.3)

The gauge function is a norm in Fn if conv(A) is compact, centrally symmetric, and

contains a ball of radius ε around the origin for some ε > 0. Nevertheless, we shall call it

atomic norm even if it is not as a norm, as the authors in [30] do. When A is the set of unit

norm 1-sparse elements in Cn, the atomic norm ‖·‖A is the `1 norm [18]. Similarly, when A

is the set of unit norm rank-1 matrices, the atomic norm is the nuclear norm [84]. In [30],

the authors showed that minimizing the atomic norm subject to equality constraints provided

exact solutions of a variety of linear inverse problems with nearly optimal bounds on the

number of measurements required.

While not necessary for the definition of the atomic norm, we will assume some weak

regularity conditions in the rest of the thesis. These are satisfied for a number of examples

and they allow us to phrase our theorems without restating assumptions explicitly each time.

We will assume that the atomic set A satisfies the following properties:

1. No atom can be written as a conical combination of other atoms in A. In other words,

we assume that a 6∈ conv(A\{a}) for every a ∈ A. This guarantees that elements in A

are the extreme points of the set conv(A).

2. The set A is a closed subset of Fn. This assumption is always true for finite sets.

3. The spark of a set of vectors A ⊂ Fn is defined as the smallest number σ such that there

exists a subcollection of σ elements of A which are linearly dependent. We will assume
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that the spark of A is n. As a consequence, any decomposition of a vector x? into < n/2

atoms is necessarily unique [41].

4. We will assume that conv(A) has a non-empty interior to avoid degenerate cases.

2.1.3 Dual Atomic Norm

Corresponding to the atomic norm, we can define the dual atomic norm, which is given by

‖z‖∗A = sup
‖x‖A≤1

〈x, z〉, (2.4)

implying

〈x, z〉 ≤ ‖x‖A‖z‖∗A. (2.5)

We shall assume throughout the thesis that 〈x, y〉 always stands for the real inner product

Rex∗y even if x, y ∈ Cn, unless otherwise noted. The supremum in (2.4) is achievable,

namely, for any x, there is a z that achieves equality. Since A contains all extremal points

of {x : ‖x‖A ≤ 1}, we are guaranteed that the optimal solution will actually lie in the set A

(see [9] for a proof). So, we can write

‖z‖∗A = sup
a∈A
〈a, z〉. (2.6)

The dual norm will play a critical role throughout, as our asymptotic error rates will be in

terms of the dual atomic norm of noise processes. The dual atomic norm also appears in the

dual problem of (2.2).
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2.2 Decomposition

A natural question is whether it is always possible to recover the composing atoms of a simple

x?. As stated, the problem is ill-posed, for there could many decompositions. However,

under our assumptions, there is a unique sparsest decomposition of x? provided there is a

decomposition that is at most n/2 sparse. So, the question is well posed as long as we start

with such an x?.

The goal of atomic norm decomposition is to write x? in terms of composing atoms such

that the sum of the coefficients is the atomic norm. We will call such a decomposition an

atomic norm achieving decomposition. While not always true, the decomposition that achieves

the atomic norm is often the sparsest and this section will provide some geometric insight to

when this is true. This section also describes a procedure to find such a decomposition using

the dual.

2.2.1 Dual Certificate

A useful device is that of a dual certificate, which is one of the subgradients of the atomic

norm. For a convex differentiable function f , the gradient defines a global linear under

approximator for the function. Subgradients generalize this property to nonsmooth convex

functions by characterizing all linear under approximators of the function. A vector q is said

to be in the subgradient of f at x if for every y,

f(y) ≥ f(x) + 〈q, y − x〉.

When f is differentiable at x, the set of subgradients at x is simply the singleton set containing

the gradient at x. It is easy to verify that q is a subgradient of ‖·‖A at x? if and only if
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〈q, x?〉 = ‖x?‖A and ‖q‖∗A ≤ 1. A decomposition of a vector x? gives an upper bound for its

atomic norm. Subgradients in the dual space can provide a dual certificate of the optimality

of a decomposition if it produces a matching lower bound.

Definition 2.3 (Dual Certificate). A vector q is a dual certificate for the support T ⊂ A if

〈q, a〉 = 1 for every a ∈ T and 〈q, a〉 ≤ 1 whenever a 6∈ T . Furthermore, the vector q is called a

strict dual certificate if 〈q, a〉 < 1 for every a 6∈ T.

This has an intuitive geometric interpretation, when all the vectors are real. By definition

of the dual certificate, for every non-empty set T , ‖q‖∗A = supa∈A〈q, a〉 = 1, which guarantees

that all the atoms (and hence conv(A)) lie on one side of a half plane determined by q, and

also that atoms in T (and hence conv(T )) intersect this hyperplane. Geometrically, this says

that q is a supporting hyperplane for the exposed face conv(T ) of the convex set conv(A). The

following proposition indicates why this is important.

Proposition 2.4. Suppose x? can be written in terms of atoms in T , i.e., x? =
∑
a∈T caa for

some {ca} > 0. If q is a dual certificate for T, then,
∑
a∈T caa is an atomic norm achieving

decomposition of x? and q is a subgradient of the atomic norm at x?.

Proof. Then, by the definition of atomic norm ‖x?‖A ≤
∑
a∈T ca. Now,

〈q, x?〉 =
∑
a∈T

ca〈q, a〉 =
∑
a∈T

ca

But

〈q, x?〉 ≤ ‖q‖∗A‖x?‖A = ‖x?‖A.

Combining these two equations, we get
∑
a∈T ca = ‖x?‖A = 〈q, x〉, which completes the

proof.
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Conversely, the presence of a strict dual certificate which is also a subgradient of ‖·‖A at

x? guarantees that x? may be written as a combination of atoms in T.

Proposition 2.5. Suppose q is a subgradient of ‖·‖A at x? ∈ cone(A) and is a strict dual

certificate for T ⊂ A, then x? has an atomic norm achieving decomposition in terms of atoms

from T, i.e., there exists ca > 0 such that x? =
∑
a∈T caa with ‖x?‖A =

∑
a∈T ca.

Under our assumptions (that A has full spark), we are guaranteed that this is the unique

sparsest decomposition of x? in terms of the atoms provided |T | < n/2. This is especially

useful as it allows us to determine a support of x? purely in terms of the properties of the

dual. For a generic set, there is no guarantee that the atomic norm achieving decomposition is

n/2 sparse and therefore that it recovers the correct support. However, we have a rich theory

now that this is indeed true for many interesting cases[40, 18, 25].

Returning to our geometric interpretation, the existence of a dual certificate guarantees

that x?/‖x?‖A is in an exposed face of conv(A). Recall that a face in convex geometry

is considered simplicial if every element in the face can be written as a unique convex

combination. Due to our assumptions on A, the faces are indeed simplicial and there is a

unique way of writing x? as a combination of vertices in the face. Furthermore, When the face

is also low dimensional, the decomposition of x? is unique. So, we can always recover the

support of a sparse vector provided all sparse combinations lie on low dimensional exposed

simplicial faces. Again, while this may not always be true, it holds with large probability for

random constructions of the atomic set and we refer the interested reader to [44] for this

geometric interpretation of sparse recovery.

In practice, it may be hard to find a strict dual certificate by optimization. However, if A

has full spark like we assumed, any dual certificate will suffice to find a set of atoms for a

decomposition that achieves the atomic norm. Given a simple x?, our recipe involves solving
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the semi-infinite program

maximize
q

〈q, x?〉

subject to 〈q, a〉 ≤ 1, for every a ∈ A.
(2.7)

to obtain a solution q̂ which is one of the dual certificates of the support and a subgradient

of ‖·‖A at x?. However, 〈q, a〉 is 1 only for at most n atoms under our assumptions. In

fact, if 〈q, a〉 has the same value for n+ 1 atoms a1, . . . , an+1, we have 〈q, ai+1 − ai〉 = 0 for

i = 1, . . . , n and using the full spark assumption, we can conclude that q is identically zero.

This means q is in fact a strict dual certificate for a support comprising at most n atoms which

certifies that the atomic norm achieving decomposition can be composed in terms of the atoms

where 〈q, a〉 = 1. The coefficients of the decomposition can be determined by solving a linear

system.

2.3 Denoising

Now, let us look at a scheme that is robust to measurement noise. To set up the atomic norm

denoising problem, suppose we observe a signal y = x? + w where w is a noise vector and

that we know a priori that x? can be written as a linear combination of a few atoms from

A. One way to estimate x? from these observations would be to search over all short linear

combinations from A to select the one which minimizes ‖y − x‖2. However, this could be

formidable: even if the set of atoms is a finite collection of vectors, this problem is the NP-hard

SPARSEST VECTOR problem [75].

On the other hand, the problem (2.2) is convex, and reduces to many familiar denoising

strategies for particular A. The mapping from y to the optimal solution of (2.2) is called the

proximal operator of the atomic norm applied to y, and can be thought of as a soft thresholded
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version of y. Indeed, when A is the set of 1-sparse atoms, the atomic norm is the `1-norm, and

the proximal operator corresponds to soft-thresholding y by element-wise shrinking towards

zero [45]. Similarly, when A is the set of rank-1 matrices, the atomic norm is the nuclear

norm and the proximal operator shrinks the singular values of the input matrix towards zero.

We now establish some universal properties about the problem (2.2). First, we collect a

simple consequence of the optimality conditions in a lemma:

Lemma 2.6 (Optimality Conditions). x̂ is the solution of (2.2) if and only if

(i) ‖y − x̂‖∗A ≤ τ , (ii) 〈y − x̂, x̂〉 = τ‖x̂‖A.

Proof. The function f(x) = 1
2‖y−x‖

2
2 + τ‖x‖A is minimized at x̂, if for all α ∈ (0, 1) and all x,

f(x̂+ α(x− x̂)) ≥ f(x̂)

or equivalently,

α−1τ (‖x̂+ α(x− x̂)‖A − ‖x̂‖A) ≥ 〈y − x̂, x− x̂〉 − 1
2α‖x− x̂‖

2
2 (2.8)

Since ‖·‖A is convex, we have

‖x‖A − ‖x̂‖A ≥ α−1 (‖x̂+ α(x− x̂)‖A − ‖x̂‖A) ,

for all x and for all α ∈ (0, 1). Thus, by letting α→ 0 in (2.8), we note that x̂ minimizes f(x)

only if, for all x,

τ (‖x‖A − ‖x̂‖A) ≥ 〈y − x̂, x− x̂〉. (2.9)
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However if (2.9) holds, then, for all x

1
2‖y − x‖

2
2 + τ‖x‖A ≥

1
2‖y − x̂+ (x̂− x)‖22 + 〈y − x̂, x− x̂〉+ τ‖x̂‖A

implying f(x) ≥ f(x̂). Thus, (2.9) is necessary and sufficient for x̂ to minimize f(x).

Note. The condition (2.9) simply says that τ−1 (y − x̂) is in the subgradient of ‖·‖A at x̂ or

equivalently that 0 ∈ ∂f(x̂).

We can rewrite (2.9) as

τ‖x̂‖A − 〈y − x̂, x̂〉 ≤ inf
x
{τ‖x‖A − 〈y − x̂, x〉} (2.10)

But by definition of the dual atomic norm,

sup
x
{〈z, x〉 − ‖x‖A} = I{w:‖w‖∗A≤1}(z) =


0 ‖z‖∗A ≤ 1

∞ otherwise.
(2.11)

where IA(·) is the convex indicator function. Using this in (2.10), we find that x̂ is a minimizer

if and only if ‖y − x̂‖∗A ≤ τ and 〈y − x̂, x̂〉 ≥ τ‖x̂‖A. This proves the theorem.

Lemma 2.7 (Dual Problem). The dual problem of (2.2) is

maximize
z

1
2
(
‖y‖22 − ‖y − z‖22

)
subject to ‖z‖∗A ≤ τ.

The dual problem admits a unique solution ẑ due to strong concavity of the objective function.

The primal solution x̂ and the dual solution ẑ are specified by the optimality conditions and there
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is no duality gap:

(i) y = x̂+ ẑ, (ii) ‖ẑ‖∗A ≤ τ, (iii) 〈ẑ, x̂〉 = τ‖x̂‖A.

Proof. We can rewrite the primal problem (2.2) as a constrained optimization problem:

minimize
x,u

1
2‖y − x‖

2
2 + ‖u‖A

subject to u = x.

Now, we can introduce the Lagrangian function

L(x, u, z) = 1
2‖y − x‖

2
2 + ‖u‖A + 〈z, x− u〉.

so that the dual function is given by

g(z) = inf
x,u

L(x, u, z) = inf
x

(1
2‖y − x‖

2
2 + 〈z, x〉

)
+ inf

u
(τ‖u‖A − 〈z, u〉)

= 1
2
(
‖y‖22 − ‖y − z‖22

)
− I{w:‖w‖∗A≤τ}(z).

where the first infimum follows by completing the squares and the second infimum follows

from (2.11). Thus the dual problem of maximizing g(z) can be written as in (2.7).

The solution to the dual problem is the unique projection ẑ of y on to the closed convex

set C = {z : ‖z‖∗A ≤ τ}. By projection theorem for closed convex sets, ẑ is a projection

of y onto C if and only if ẑ ∈ C and 〈z − ẑ, y − ẑ〉 ≤ 0 for all z ∈ C, or equivalently if

〈ẑ, y − ẑ〉 ≥ supz 〈z, y − ẑ〉 = τ‖y − ẑ‖A. These conditions are satisfied for ẑ = y − x̂ where

x̂ minimizes f(x) by Lemma 2.6. Now the proof follows by the substitution ẑ = y − x̂ in

the previous lemma. The absence of duality gap can be obtained by noting that the primal
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objective function at x̂,

f(x̂) = 1
2‖y − x̂‖

2
2 + 〈ẑ, x̂〉 = 1

2‖ẑ‖
2
2 + 〈ẑ, x̂〉 = g(ẑ).

Conclusions (ii) and (iii) of the lemma say that τ−1ẑ is a subgradient of the atomic norm

at x?, where ẑ is the solution to the dual problem (2.7). So, a straightforward corollary of

Proposition 2.5 is a certificate of the support of the solution to (2.2):

Corollary 2.8 (Dual Certificate of Support). Suppose for some S ⊂ A, ẑ is a solution to the

dual problem (2.7) satisfying

1. 〈ẑ, a〉 = τ whenever a ∈ S,

2. |〈ẑ, a〉| < τ if a 6∈ S.

Then, any solution x̂ of (2.2) admits a decomposition x̂ =
∑
a∈S caa with ‖x̂‖A =

∑
a∈S ca.

Thus the dual solution ẑ provides a way to determine a decomposition of x̂ into a set of

elementary atoms that achieves the atomic norm of x̂. In fact, one could evaluate the inner

product 〈ẑ, a〉 and identify the atoms where the absolute value of the inner product is τ . When

the signal-to-noise-ratio (SNR) is high, we expect that the decomposition identified in this

manner should be close to the original decomposition of x? under certain assumptions.

We are now ready to state a proposition which gives an upper bound on the MSE with the

optimal choice of the regularization parameter.

Proposition 2.9. If the regularization parameter τ > ‖w‖∗A, the optimal solution x̂ of (2.2) has

the MSE
1
n
‖x̂− x?‖22 ≤

1
n

(τ‖x?‖A − 〈x?, w〉) ≤
2τ
n
‖x?‖A. (2.12)
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Proof.

‖x̂− x?‖22 = 〈x̂− x?, w − (y − x̂)〉 (2.13)

= 〈x?, y − x̂〉 − 〈x?, w〉+ 〈x̂, w〉 − 〈x̂, y − x̂〉

≤ τ‖x?‖A − 〈x?, w〉+ (‖w‖∗A − τ)‖x̂‖A (2.14)

≤ (τ + ‖w‖∗A)‖x?‖A + (‖w‖∗A − τ)‖x̂‖A (2.15)

where for (2.14) we have used Lemma 2.6 and (2.5). The theorem now follows from (2.14)

and (2.15) since τ > ‖w‖∗A. The value of the regularization parameter τ to ensure the MSE is

upper bounded thus, is ‖w‖∗A.

Example: Sparse Model Selection We can specialize our stability guarantee to Lasso [100]

and recover known results. Let Φ ∈ Rn×p be a matrix with unit norm columns, and suppose

we observe y = x? + w, where w is additive noise, and x? = Φc? is an unknown k sparse

combination of columns of Φ. In this case, the atomic set is the collection of columns of

Φ and −Φ, and the atomic norm is ‖x‖A = min {‖c‖1 : x = Φc}. Therefore, the proposed

optimization problem (2.2) coincides with the Lasso estimator [100]. This method is also

known as Basis Pursuit Denoising [31]. If we assume that w is a gaussian vector with variance

σ2 for its entries, the expected dual atomic norm of the noise term, ‖w‖∗A = ‖Φ∗w‖∞ is simply

the expected maximum of p gaussian random variables. Using the well known result on

the maximum of gaussian random variables [65], we have E‖w‖∗A ≤ σ
√

2 log(p). If x̂ is the

denoised signal, we have from Theorem 2.1 that if τ = E‖w‖∗A = σ
√

2 log(p),

1
n
E‖x̂− x?‖22 ≤ σ

√
2 log(p)
n

‖c?‖1,

which is the stability result for Lasso reported in [56] assuming no conditions on Φ.
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2.4 Dual Atomic Norm Bounds

As noted in Theorem 2.1, the optimal choice of the regularization parameter is dictated by the

dual atomic norm of the noise process. To see why this is the case, let us consider the dual

problem to Atomic Soft Thresholding, given by Lemma 2.7:

minimize
z

‖y − z‖2

subject to ‖z‖∗A ≤ τ.

Using the optimality conditions in Lemma 2.7, we see that the primal solution x̂ is a good

estimate of the target x? if the dual solution is a good estimate of the noise vector w. Thus

τ should be proportional to noise and may be interpreted as a parameter controlling the

amount of shrinkage towards origin. In fact, when τ > ‖y‖∗A, we have ẑ = y and x̂ = 0.

This suggests a choice of τ = E‖w‖∗A, which corresponds to the strongest mean-squared-error

guarantee in Theorem 2.1. Specializing this to the case of sparse vectors in noise, we see that

the recommendation τ = E‖w‖∞ ≈
√

2 log(n) coincides with the optimal tuning parameter

in [45].

The quantity

E‖w‖∗A = E sup
a∈A
〈w, a〉

where w ∈ N (0, In) is called the Gaussian width of the atomic set A. In some cases, the

parameterization of the atoms in A allow the Gaussian width to be viewed as an extremum

of a Gaussian process and thus this can be estimated using standard tools such as Dudley’s

inequality [66], or Talagrand’s method of generic chaining [94].
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2.5 Accelerated Convergence Rates

In this section, we provide conditions under which a faster convergence rate can be obtained

for AST.

Proposition 2.10 (Fast Rates). Suppose the set of atoms A is centrosymmetric and ‖w‖∗A

concentrates about its expectation so that P (‖w‖∗A ≥ E ‖w‖∗A + t) < δ(t). For γ ∈ [0, 1], define

the cone

Cγ(x?,A) = cone({z : ‖x? + z‖A ≤ ‖x?‖A + γ‖z‖A}).

Suppose

φγ(x?,A) := inf
{
‖z‖2
‖z‖A

: z ∈ Cγ(x?,A)
}

(2.16)

is strictly positive for some γ > E‖w‖∗A/τ . Then

‖x̂− x?‖22 ≤
(1 + γ)2τ2

γ2φγ(x?,A)2 (2.17)

with probability at least 1− δ(γτ − E‖w‖∗A).

Having the ratio of norms bounded below is a generalization of the Weak Compatibility

criterion used to quantify when fast rates are achievable for the Lasso [53]. As shown

in [53], this is a weak condition for fast MSE rates and generalizes the argument for Restricted

Isometry[18], Restricted Eigenvalue [7] or Coherence conditions [24] which are often assumed

in literature for deriving fast rates for the Lasso problem. One difference is that we define

the corresponding cone Cγ where φγ must be controlled in parallel with the tangent cones

studied in [30]. There, the authors showed that the mean width of the cone C0(x?,A)

determined the number of random linear measurements required to recover x? using atomic
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norm minimization. In our case, γ is greater than zero, and represents a “widening” of the

tangent cone. When γ = 1, the cone is all of Rn or Cn (via the triangle inequality), hence τ

must be larger than the expectation to enable our proposition to hold.

Proof. Since x̂ is optimal, we have,

1
2‖y − x̂‖

2
2 + τ‖x̂‖A ≤ 1

2‖y − x
?‖22 + τ‖x?‖A

Rearranging and using (2.5) gives

τ‖x̂‖A ≤ τ‖x?‖A + 〈w, x̂− x?〉 (2.18)

=⇒ τ‖x̂‖A ≤ τ‖x?‖A + ‖w‖∗A‖x̂− x?‖A. (2.19)

Since ‖w‖∗A concentrates about its expectation, with probability at least 1− δ(γτ − E‖w‖∗A),

we have ‖w‖∗A ≤ γτ and hence x̂− x? ∈ Cγ . Using (2.13), if τ > ‖w‖∗A,

‖x̂− x?‖22 ≤ (τ + ‖w‖∗A)‖x̂− x?‖A ≤
(1 + γ)τ
γφγ(x?,A)‖x̂− x

?‖2

So, with probability at least 1− δ(γτ − E‖w‖∗A):

‖x̂− x?‖22 ≤
(1 + γ)2τ2

γ2φγ(x?,A)2

The main difference between (2.17) and (2.12) is that the MSE is controlled by τ2 rather

than τ‖x∗‖A. As we will now see (2.17) provides minimax optimal rates for the examples of

sparse vectors and low-rank matrices.

Example: Sparse Vectors in Noise Let A be the set of signed canonical basis vectors in Rn.

In this case, conv(A) is the unit cross polytope and the atomic norm ‖·‖A, coincides with the
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`1 norm, and the dual atomic norm is the `∞ norm. Suppose x? ∈ Rn and T := supp(x?) has

cardinality k. Consider the problem of estimating x? from y = x? + w where w ∼ N (0, σ2In).

Proposition 2.11. Let A = {±e1, . . . ,±en}, be the set of signed canonical unit vectors in Rn.

Suppose x? ∈ Rn has k nonzeros. Then φγ(x?,A) ≥ (1−γ)
2
√
k

.

Proof. Let z ∈ Cγ(x?,A). For some α > 0 we have,

‖x? + αz‖1 ≤ ‖x?‖1 + γ‖αz‖1

In the above inequality, set z = zT + zT c where zT are the components on the support of T

and zT c are the components on the complement of T . Since x? + zT and zT c have disjoint

supports, we have,

‖x? + αzT ‖1 + α‖zT c‖1 ≤ ‖x?‖1 + γ‖αzT ‖1 + γ‖αzT c‖1 .

This inequality implies

‖zT c‖1 ≤
1 + γ

1− γ ‖zT ‖1

that is, z satisfies the null space property with a constant of 1+γ
1−γ . Thus,

‖z‖1 ≤
2

1− γ ‖zT ‖1 ≤
2
√
k

1− γ ‖z‖2

This gives the desired lower bound. We have therefore shown that in this case φγ(x?,A) >
(1−γ)
2
√
k

. We also have τ0 = E‖w‖∞ ≥ σ
√

2 log(n). Pick τ > γ−1τ0 for some γ < 1. Then, using
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our lower bound for φγ in (2.17), we get a rate of

1
n
‖x̂− x?‖22 = O

(
σ2k log(n)

n

)
(2.20)

for the AST estimate with high probability. This bound coincides with the minimax optimal

rate derived by Donoho and Johnstone [43]. Note that if we had used (2.12) instead, our

MSE would have instead been O
(√

σ2k logn‖x?‖2/n
)
, which depends on the norm of the

input signal x?.

Example: Low Rank Matrix in Noise Let A be the manifold of unit norm rank-1 matrices

in Cn×n. In this case, the atomic norm ‖·‖A, coincides with the nuclear norm ‖·‖∗, and the

corresponding dual atomic norm is the spectral norm of the matrix. Suppose X? ∈ Cn×n

has rank r, so it can be constructed as a combination of r atoms, and we are interested in

estimating X? from Y = X? +W where W has independent N (0, σ2) entries.

Proposition 2.12. Let A be the manifold of unit norm rank-1 matrices in Cn×n. Suppose

X? ∈ Cn×n has rank r. Then φγ(X?,A) ≥ 1−γ
2
√

2r .

Proof. Let UΣV H be a singular value decomposition of X? with U ∈ Cn×r, V ∈ Cn×r and

Σ ∈ Cr×r. Define the subspaces

T = {UX + Y V H : X,Y ∈ Cn×r}

T0 = {UMV H : M ∈ Cr×r}

and let PT0 , PT , and PT⊥ be projection operators that respectively map onto the subspaces

T0, T , and the orthogonal complement of T . Now, if Z ∈ Cγ(X?,A), then for some α > 0, we
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have

‖X? + αZ‖∗ ≤ ‖X?‖∗ + γα‖Z‖∗ ≤ ‖X?‖∗ + γα‖PT (Z)‖∗ + γα‖PT⊥(Z)‖∗. (2.21)

Now note that we have

‖X? + αZ‖∗ ≥ ‖X? + αPT0(Z)‖∗ + α‖PT⊥(Z)‖∗

Substituting this in (2.21), we have,

‖X? + αPT0(Z)‖∗ + α‖PT⊥(Z)‖∗ ≤ ‖X?‖∗ + γα‖PT (Z)‖∗ + γα‖PT⊥(Z)‖∗.

Since ‖PT0(Z)‖∗ ≤ ‖PT (Z)‖∗, we have

‖PT⊥(Z)‖∗ ≤
1 + γ

1− γ ‖PT (Z)‖∗.

Putting these computations together gives the estimate

‖Z‖∗ ≤ ‖PT (Z)‖∗ + ‖PT⊥(Z)‖∗ ≤
2

1− γ ‖PT (Z)‖ ≤ 2
√

2r
1− γ ‖PT (Z)‖F ≤

2
√

2r
1− γ ‖Z‖F .

That is, we have φγ(X?,A) ≥ 1−γ
2
√

2r as desired.

Using this proposition, φγ(X?,A) ≥ 1−γ
2
√

2r . To obtain an estimate for τ , we note that the

spectral norm of the noise matrix satisfies ‖W‖ ≤ 2
√
n with high probability [38]. Substituting

these estimates for τ and φγ in (2.17), we get the minimax optimal MSE

1
n2 ‖X − X̂‖

2
F = O

(
σ2r

n

)
.
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2.6 Conclusion

In this chapter, we defined atomic norms and the use of atomic norm penalty to denoise using

AST (2.2) which may be thought of as a infinite dimensional version of Lasso. The chapter

showed how the regularization parameter may be chosen for AST, and also a procedure to

determine the composing atoms in the solution to AST. We also saw a universal convergence

rate which holds for all atomic sets and all signals and saw general conditions under which a

fast rate is possible. In the following chapters, we will use this framework and apply to the

problems of line spectral estimation and system identification.
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3 Line Spectrum Estimation

3.1 Introduction

Extracting the frequencies and relative phases of a superposition of complex exponentials from

a small number of noisy time samples is a foundational problem in statistical signal processing.

These line spectral estimation problems arise in a variety of applications, including the direction

of arrival estimation in radar target identification [28], sensor array signal processing [64] and

imaging systems [11] and also underlies techniques in ultra wideband channel estimation [73],

spectroscopy [105], molecular dynamics [1], and power electronics [67]

Despite of hundreds of years of research on the fundamental problem of line spectrum

estimation, there still remain several open questions in this area. This chapter addresses a

central one of these problems: how well can we determine the locations and magnitudes of

spectral lines from noisy temporal samples? We establish lower bounds on how well we can

recover such signals and demonstrate that these worst case bounds can be nearly saturated by

solving a convex programming problem. Moreover, we prove that the estimator approximately

localizes the frequencies of the true spectral lines.

While polynomial interpolation using Prony’s technique can estimate the frequency content

of a signal exactly from as few as 2k samples if there are k frequencies, Prony’s method is

inherently unstable due to sensitivity of polynomial root finding. Several methods have been

proposed to provide more robust polynomial interpolation [89, 85, 60] (for an extensive bibli-

ography on the subject, see [91]), and these techniques achieve excellent noise performance

in moderate noise. However, the denoising performance is often sensitive to the model order

estimated, and theoretical guarantees for these methods are all asymptotic with no finite

sample error bounds. Motivated by recent work on atomic norms [30], we will see how a
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convex relaxation approach can denoise a mixture of complex exponentials, with theoretical

guarantees of noise robustness and a better empirical performance than previous subspace

based approaches.

Specializing the denoising results of the previous chapter to the line spectral estimation, I

will provide mean-squared-error estimates for denoising line spectra with the atomic norm.

The denoising algorithm amounts to soft thresholding the noise corrupted measurements

in the atomic norm and so we may refer to the problem as Atomic norm Soft Thresholding

(AST). Furthermore, it can be shown that AST achieves near minimax rates for estimating line

spectral signals when the frequencies are reasonably well separated. We can give bounds on

how well we can localize the frequencies using this technique.

3.1.1 Outline and summary of results

Denoising line spectral signals.

Let us specialize the results of the abstract denoising problem in the previous chapter to line

spectral estimation in Section 3.2. Consider the continuous time signal x?(t), t ∈ R with a line

spectrum composed of k unknown frequencies ω?1, . . . , ω
?
k bandlimited to [−W,W ]. Then the

Nyquist samples of the signal are given by

x?m := x?
(
m

2W

)
=

k∑
l=1

c?l e
i2πmf?l ,m = 0, . . . , n− 1 (3.1)

where c?1, . . . , c
?
k are unknown complex coefficients and f?l = ω?l

2W for l = 1, . . . , k are the

normalized frequencies. By swapping the roles of frequency and time or space, the signal

model (3.1) also serves as a proper model for superresolution imaging where we aim to

localize temporal events or spatial targets from noisy, low-frequency measurements [20, 19].
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So, the vector x? = [x?0 · · · x?n−1]T ∈ Cn can be written as a nonnegative linear combination

of k points from the set of atoms

A =
{
ei2πφ[1 ei2πf · · · ei2π(n−1)f ]T , f ∈ [0, 1], φ ∈ [0, 1]

}
.

The set A can be viewed as an infinite dictionary indexed by the continuously varying

parameters f and φ. When the number of observations, n, is much greater than k, x? is

k-sparse and thus line spectral estimation in the presence of noise can be thought of as a

sparse approximation problem.

The first result is a global error rate that holds for line spectral signals by specializing the

results in the previous chapter. In particular, we can apply AST and choose the regularization

parameter for the strongest guarantee in Theorem 2.1 in terms of the expected dual norm of

the noise. This can be explicitly computed for many noise models. For example, when the

noise is Gaussian, we have the following theorem for the MSE:

Theorem 3.1. Assume x? ∈ Cn is given by x?m =
∑k
l=1 c

?
l e
i2πmf?l for some unknown complex

numbers c?1, . . . , c
?
k, unknown normalized frequencies f?1 , . . . , f

?
k ∈ [0, 1] and w ∈ N (0, σ2In).

Then the estimate x̂ of x? obtained from y = x? + w given by the solution of atomic soft

thresholding problem (3.7) with τ = σ
√
n log(n) has the asymptotic MSE

1
n
E‖x̂− x?‖22 . σ

√
log(n)
n

k∑
l=1
|c?l |.

It is instructive to compare this to the trivial estimator x̂ = y which has a per-element

MSE of σ2. In contrast, Theorem 3.1 guarantees that AST produces a consistent estimate

when k = o
(√

n/ log(n)
)
. While this rate holds for any line spectral signal, AST can perform

considerably better when the frequencies are well separated.
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Theorem 3.2. Suppose the line spectral signal x? is given by (3.1) and we observe n noisy

consecutive samples yj = x?j + wj where wj is i.i.d. complex Gaussian with variance σ2. If the

frequencies {fl}kl=1 in x? satisfy a minimum separation condition

min
p 6=q

d(fp, fq) > 4/n (3.2)

with d(·, ·) the distance metric on the torus, then we can determine an estimator x̂ satisfying

1
n
‖x̂− x?‖22 = O

(
σ2k log(n)

n

)
(3.3)

with high probability by solving a semidefinite programming problem.

Note that if we exactly knew the frequencies fj , the best rate of estimation we could

achieve would be O(σ2k/n) [14]. This upper bound is merely a logarithmic factor larger than

this rate. On the other hand, minimax theory can demonstrate that a logarithmic factor is

unavoidable when the support is unknown. Hence, the proposed estimator is nearly minimax

optimal.

It is instructive to compare this stability rate to the optimal rate achievable for estimating

a sparse signal from a finite, discrete dictionary [22]. In the case that there are p incoherent

dictionary elements, no method can estimate a k-sparse signal from nmeasurements corrupted

by Gaussian noise at a rate less than O(σ2 k log(p/k)
n ). In this problem, there are an infinite

number of candidate dictionary elements and it is surprising that we can still achieve such a

fast rate of convergence with our highly coherent dictionary. None of the standard techniques

from sparse approximation can be immediately generalized to this case. Not only is the

dictionary infinite, but also it does not satisfy the usual assumptions such as restricted

eigenvalue conditions [7] or coherence conditions [24] that are used to derive stability results
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in sparse approximation. Nonetheless, in terms of mean-square error performance, I will show

results match those obtained when the frequencies are restricted to lie on a discrete grid.

In the absence of noise, polynomial interpolation can exactly recover a line spectral signal

of k arbitrary frequencies with as few as 2k equispaced measurements. In the light of our

minimum frequency separation requirement (3.2), why should one favor convex techniques for

line spectral estimation? The stability result in this chapter coupled with minimax optimality

establish that no method can perform better than convex methods when the frequencies are

well-separated. And, while polynomial interpolation and subspace methods do not impose any

resolution limiting assumptions on the constituent frequencies, these methods are empirically

highly sensitive to noise. To the best of my knowledge, there is no result similar to Theorem 3.2

that provides finite sample guarantees about the noise robustness of polynomial interpolation

techniques.

Localizing the frequencies using the Dual

The atomic formulation not only offers a way to denoise the line spectral signal, but also

provides an efficient frequency localization method. After we obtain the signal estimate x̂

by solving (3.7), we can also obtain the solution ẑ to the dual problem as ẑ = y − x̂. As we

shall see in Corollary 1, the dual solution ẑ both certifies the optimality of x̂ and reveals the

composing atoms of x̂. For line spectral estimation, this provides an alternative to polynomial

interpolation for localizing the constituent frequencies.

Indeed, when there is no noise, Candés and Fernandez-Granda showed the dual solution

recovers these frequencies exactly under mild technical conditions [20]. This frequency lo-

calization technique is later extended in [95] to the random undersampling case to yield a

compressive sensing scheme that is robust to basis mismatch. When there is noise, numeri-

cal simulations show that the atomic norm minimization problem (3.7) gives approximate
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frequency localization.

I will theoretically characterize how well spectral lines can be localized from noisy obser-

vations. The frequencies estimated by any method will never exactly coincide with the true

frequencies in the signal in the presence of noise. However, we can characterize the localiza-

tion performance of our convex programming approach, and summarize this performance in

Theorem 3.3.

Before stating the theorem, let us introduce a bit of notation. Define neighborhoods

Nj around each frequency fj in x? by Nj := {f ∈ T : d(f, fj) ≤ 0.16/n}. Also define

F = T\ ∪kj=1 Nj as the set of frequencies in T which are not near any true frequency.

The letters N and F denote the regions that are near to and far from the true supporting

frequencies. The following theorem summarizes the localization guarantees.

Theorem 3.3. Let x̂ be the solution to the same semidefinite programming (SDP) problem as

referenced in Theorem 3.2 and n > 256. Let ĉl and f̂l form the decomposition of x̂ into coefficients

and frequencies, as revealed by the SDP. Then, there exist fixed numerical constants C1, C2 and

C3 such that with high probability

i.)
∑
l:f̂l∈F |ĉl| ≤ C1σ

√
k2 log(n)

n

ii.)
∑
l:f̂l∈Nj |ĉl|

{
minfj∈T d(fj , f̂l)

}2
≤ C2σ

√
k2 log(n)

n

iii.)
∣∣∣cj −∑l:f̂l∈Nj ĉl

∣∣∣ ≤ C3σ
√

k2 log(n)
n .

iv.) If for any frequency fj , the corresponding amplitude |cj | > C1σ
√

k2 log(n)
n , then with high

probability there exists a corresponding frequency f̂j in the recovered signal such that,

∣∣∣fj − f̂j∣∣∣ ≤ √
C2/C1
n

 |cj |

C1σ
√

k2 log(n)
n

− 1


−1

2
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Part (i) of Theorem 3.3 shows that the estimated amplitudes corresponding to frequencies

far from the support are small. We rarely ever find any spurious frequencies in the far region,

suggesting that our bound (i) is conservative. Parts (ii) and (iii) of the theorem show that

in a neighborhood of each true frequency, the recovered signal has amplitude close to the

true signal. Part (iv) shows that the larger a particular coefficient is, the better our method is

able to estimate the corresponding frequency. In particular, note that if |cj | > 2C1σ
√

k2 log(n)
n ,

then
∣∣∣fj − f̂j∣∣∣ ≤ √C2/C1

n . In all four parts, note that the localization error goes to zero as the

number of samples grows.

Organization of this chapter

Section 3.2 describes how we can approach line spectral estimation using the framework

of atomic norms. Section 3.3 describes how we can localize the frequencies using the dual

problem. We will see a choice of the regularization parameter in 3.4 and to this end, derive

nonasymptotic upper and lower bounds for the Gaussian width of the atomic set for line

spectral estimation. Specializing the results of the previous chapter, we can derive a mean

squared error rate that holds for all signals in Section 3.5. I present minimax lower bounds

which show the best rate that can be achieved for well separated signals in 3.6. We will

then see the proofs of Theorem 3.2 showing near minimax MSE and Theorem 3.3 showing

frequency localization guarantees in Section 3.7. Section 3.8 contextualizes the results of

this chapter in the canon of line spectral estimation and emphasize the advantages and

shortcomings of prior art.
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3.2 Denoising Line Spectral Signals

Suppose we wish to estimate the amplitudes and frequencies of a signal x(t), t ∈ R given as a

mixture of k complex sinusoids:

x(t) =
k∑
l=1

cl exp(i2πflt)

where {cl}kl=1 are unknown complex amplitudes corresponding to the k unknown frequencies

{fl}kl=1 assumed to be in the torus T = [0, 1]. Such a signal may be thought of as a normalized

band limited signal and has a Fourier transform given by a line spectrum:

µ(f) =
k∑
l=1

clδ(f − fl) (3.4)

Denote by x? the n = 2m+ 1 dimensional vector composed of equispaced Nyquist samples

{x(j)}mj=−m for j = −m, . . . ,m.

The goal of line spectral estimation is to estimate the frequencies and amplitudes of the

signal x(t) from the finite, noisy samples y ∈ Cn given by

yj = x?j + wj

for −m ≤ j ≤ m, where wj ∼ CN (0, σ2) is i.i.d. circularly symmetric complex Gaussian noise.

We can model the line spectral observations x? = [x?−m, . . . , x?m]T ∈ Cn as a sparse

combination of atoms a(f) which correspond to observations due to single frequencies. The

atomic set in this case consists of samples of individual sinusoids, af,φ ∈ Cn, given by

af,φ = ei2πφ
[
1 ei2πf · · · ei2π(n−1)f

]T
. (3.5)



38

The infinite set A = {af,φ : f ∈ [0, 1], φ ∈ [0, 1]} forms an appropriate collection of atoms for

x?, since x? in (3.1) can be written as a sparse nonnegative combination of atoms in A. In

fact, x? =
∑k
l=1 c

?
l af?l ,0 =

∑k
l=1 |c?l |af?l ,φl , where c?l = |c?l |ei2πφl .

The corresponding dual norm takes an intuitive form:

‖v‖∗A = sup
f,φ
〈v, af,φ〉 = sup

f∈[0,1]
sup
φ∈[0,1]

ei2πφ
n−1∑
l=0

vle
−2πilf = sup

|z|≤1

∣∣∣∣∣∣
n−1∑
l=0

vlz
l

∣∣∣∣∣∣ . (3.6)

In other words, ‖v‖∗A is the maximum absolute value attained on the unit circle by the

polynomial ζ 7→
∑n−1
l=0 vlζ

l. Thus, in what follows, we will frequently refer to the dual

polynomial as the polynomial whose coefficients are given by the dual optimal solution of the

AST problem defined in (2.2), reproduced here for convenience:

minimize
x

1
2‖x− y‖

2
2 + τ‖x‖A. (3.7)

Chapter 5 studies algorithms for solving AST and we will see that we can solve it exactly

using a semidefinite program and approximate it with a Lasso estimate. In this chapter, let us

restrict ourselves to theoretically analyzing the performance of AST.

3.3 Determining the frequencies

As shown in Corollary 2.8, the dual solution can be used to identify the frequencies of the

primal solution. For line spectra, a frequency f ∈ [0, 1] is in the support of the solution x̂ of

(3.7) if and only if

|〈ẑ, af,φ〉| =

∣∣∣∣∣∣
n−1∑
l=0

ẑle
−i2πlf

∣∣∣∣∣∣ = τ
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Figure 3.1: Frequency Localization using Dual Polynomial: The actual location of the
frequencies in the line spectral signal x? ∈ C64 is shown in red. The blue curve is the dual
polynomial obtained by solving (2.7) with y = x? + w where w is noise of SNR 10 dB.

That is, f is in the support of x̂ if and only if it is a point of maximum modulus for the dual

polynomial. Thus, the support may be determined by finding frequencies f where the dual

polynomial attains magnitude τ .

Figure 3.1 shows the dual polynomial for (3.7) with n = 64 samples and k = 6 randomly

chosen frequencies. In the next section, let us consider the choice of the regularization

parameter τ .

3.4 Choosing the regularization parameter

The choice of the regularization parameter is dictated by the noise model and we derive the

optimal choice for white gaussian noise samples in our analysis. As noted in Theorem 2.1,
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the optimal choice of the regularization parameter depends on the dual norm of the noise.

A simple lower bound on the expected dual norm occurs when we consider the maximum

value of n uniformly spaced points in the unit circle. Using the result of [65], the lower bound

whenever n ≥ 5 is

σ
√
n log(n)− n

2 log(4π log(n)) .

Using standard results on the extreme value statistics of Gaussian distribution, we can also

obtain a non-asymptotic upper bound on the expected dual norm of noise for n > 3:

σ

(
1 + 1

log(n)

)√
n log(n) + n log(16π3/2 log(n))

We will examine these computations in detail in the following section.

3.4.1 Estimation of Gaussian Width

This section derives non-asymptotic upper and lower bounds on the expected dual norm of

gaussian noise vectors, which are asymptotically tight upto log log factors. Recall that the dual

atomic norm of w is given by
√
n supf∈[0,1] |Wf | where

Wf = 1√
n

n−1∑
m=0

wme
−i2πmf .

Here, the noise variables w1, w2, . . . are circularly symmetric independent sequence of

standard complex normal variables.

If we define two independent i.i.d sequences of standard normal numbers {gk}∞1 and

{hk}∞1 , note that we can write

Wf = 1√
2n

n−1∑
k=0

[gk cos(2πkf)− hk sin(2πkf)] . (3.8)
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Note that Wf is a normal random variable with zero mean and a variance of 1/2.

3.4.2 Upper Bound

Let us use a 1/N -net of the torus T to estimate the expectation of supf∈TWf . Define

T = {t ∈ T | |t− k/N | ≤ 1/N} .

We have

E
[
sup
f∈T
|Wf |

]
≤ E

[
sup

1≤k≤N
|Wk/N |

]
+ E

[
sup
f∈Tk

∣∣∣Wf −Wk/N

∣∣∣]

≤
√

log(N) + 2πn√
3N

E
[

sup
f∈Tk

|Yf |
]

(3.9)

where

Yf =

√
3N

(
Wf −Wk/N

)
4πn . (3.10)

We can use Dudley’s integral inequality (See, for example [66]) to bound E
[
supf∈Tk |Yf |

]
. To

proceed, let us compute the pseudometric ρ of the Gaussian process
{
Wf

}
f induced on the

index set. For indices t and s in Tk,

ρ2(t, s) := E |Yt − Ys|2

= 3N2

8π2n2 E |Xt −Xs|2

= 3N2

2π2n3

n−1∑
k=0

sin2(πk(t− s))

≤ N2(t− s)2.
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Thus, the diameter of the index set Tk with respect to ρ

diamρ(Tk) := sup
t,s∈Tk

ρ(t, s) = 1.

Consequently the number N(Tk, ρ, ε) of ε balls needed to cover Tk under this metric ρ is 1/ε.

Now, the application Dudley’s integral inequality yields

E
[

sup
t∈Tk
|Yf |

]
≤ 24

∫ diamρ(Tk)

0

√
N(Tk, ρ, ε)dε (3.11)

≤ 24
∫ 1

0

√
log(1/ε)dε = 12

√
π. (3.12)

Thus, from (3.12) and (3.9),

E
[
sup
f∈T
|Wf |

]
≤
√

log(N) + 16π3/2n

N

Substituting N = 16n
√
π3 log(n), we get

E
[
sup
f∈T

Wf

]
≤
(

1 + 1
log(n)

)√
log(n) + log(16π3/2 log(n))

By the concentration to mean of the Gaussian process,

sup
f∈T
|〈w, a(f)〉| ≤ 2E

[
sup
f∈T
|Wf |

]
(3.13)

with high probability.
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3.4.3 Lower Bound

The covariance function of Wf is

E
[
Wf1W

∗
f2

]
= 1
n

n−1∑
m=0

exp(2πm(f1 − f2)) = eπ(n−1)(f1−f2) sin(nπ(f1 − f2))
n sin(π(f2 − f2)) .

Thus, the n samples
{
Wm/n

}n−1

m=0
are uncorrelated and thus independent because of their

joint gaussianity. This gives a simple non-asymptotic lower bound using the known result for

maximum value of n independent gaussian random variables [65] whenever n > 5:

E
[
sup
t∈T
|Wt|

]
≥ E

[
max

m=0,...,n−1
Re
(
Wm/n

)]
=
√

log(n)− log log(n)+log(4π)
2 .

Combining this result with the upper bound, we can see that the lower bound is asymptot-

ically tight neglecting log log terms.

3.5 Universal Mean Squared Error Guarantee

We can set the regularization parameter τ greater than the upper bound on the expected dual

atomic norm, i.e., we pick η ∈ [1,∞] and let

τ = ση

(
1 + 1

log(n)

)√
n log(n) + n log(16π3/2 log(n)). (3.14)

The application of Theorem 2.1 with the choice η = 1 guarantees Mean-Squared Error

consistency of AST for Line spectral Estimation. This choice of τ then yields the asymptotic

result in Theorem 3.1. However, as noted in Section 2.5, faster convergence rates may be

possible under some conditions, whenever η > 1. Due to concentration to mean (3.13),
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whenever η > 1, with overwhelming probability,

sup
f∈T
|〈w, a(f)〉| ≤ 2η−1τ. (3.15)

A recent result by Candes and Fernandez-Granda [20] establishes that in the noiseless case,

the frequencies localized by the dual polynomial are exact provided the minimum separation

between the frequencies is at least 4/n where n is the number of samples in the line spectral

signal. Under similar separation condition, numerical simulations suggest that (3.7) achieves

approximate frequency location in the noisy case.

In fact, we can also theoretically show that signals with well separated frequencies are

well behaved and achieve faster convergence rates. Unlike previous work on fast rates for

Lasso, the condition for fast rates is on the signal instead of the measurement operator. In fact,

as frequencies can be arbitrarily close, the measurement operator which samples line spectral

signals is highly coherent and it may be impossible to achieve robust recovery if frequencies

can be close to each other.

3.6 What is the best rate we can expect?

Using results about minimax achievable rates for linear models [22, 83], we can deduce

that the convergence rate stated in (3.3) is near optimal. Define the set of k well separated

frequencies as

Sk =
{

(f1, . . . , fk) ∈ Tk
∣∣∣ d(fp, fq) ≥ 4/n, p 6= q

}
The expected minimax denoising error Mk for a line spectral signal with frequencies from

Sk is defined as the lowest expected denoising error rate for any estimate x̂(y) for the worst
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case signal x? with support T (x?) ∈ Sk. Note that we can lower bound Mk by restricting the

set of candidate frequencies to smaller set. To that end, suppose we restrict the signal x? to

have frequencies only drawn from an equispaced grid on the torus Tn := {4j/n}n/4
j=1. Note

that any set of k frequencies from Tn are pairwise separated by at least 4/n. If we denote by

Fn a n× (n/4) partial DFT matrix with (unnormalized) columns corresponding to frequencies

from Tn, we can write x? = Fnc
? for some c? with ‖c?‖0 = k. Thus,

Mk := inf
x̂

sup
T (x?)∈Sk

1
n
E‖x̂− x?‖22

≥ inf
x̂

sup
‖c?‖0≤k

1
n
E‖x̂− Fnc?‖22

≥ inf
ĉ

sup
‖c?‖0≤k

1
n
E‖Fn(ĉ− c?)‖22

≥ n

4

{
inf
ĉ

sup
‖c?‖0≤k

4
n
E‖ĉ− c?‖22

}
.

Here, the first inequality is the restriction of T (x?). The second inequality follows because

we have projected out all components of x̂ that do not lie in the span of Fn. Such projections

can only reduce the Euclidean norm. The third inequality uses the fact that the minimum

singular value of Fn is n since F ∗nFn = nIn/4. Now we may directly apply the lower bound

for estimation error for linear models derived by Candés and Davenport. Namely, Theorem 1

of [22] states that

inf
ĉ

sup
‖c?‖0≤k

4
n
E‖ĉ− c?‖22 ≥ Cσ2

k log
(
n
4k

)
‖Fn‖2F

.

With the preceding analysis and the fact that ‖Fn‖2F = n2/4, we can thus deduce the following
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theorem:

Theorem 3.4. Let x? be a line spectral signal as described by (3.1) with the support T (x?) =

{f1, . . . , fk} ∈ Sk and y = x? + w, where w ∈ Cn is circularly symmetric Gaussian noise with

variance σ2In. Let x̂ be any estimate of x? using y. Then,

Mk = inf
x̂

sup
T (x?)∈Sk

1
n
E‖x̂− x?‖22 ≥ Cσ2

k log
(
n
4k

)
n

for some constant C that is independent of k, n, and σ.

This theorem and Theorem 3.2 certify that AST is nearly minimax optimal for spectral

estimation of well separated frequencies.

3.7 Proofs for well separated frequencies

In this section, there are many numerical constants. Unless otherwise specified, C will denote

a numerical constant whose value may change from equation to equation. Specific constants

will be highlighted by accents or subscripts.

Before sketching the proof of Theorems 3.2 and 3.3, we will need some the preliminaries

and notations. We will also need to recall some recent results that are relevant for the problem.

3.7.1 Preliminaries

The sample x?j may be regarded as the jth trigonometric moment of the discrete measure µ

given by (3.4):

x?j =
∫ 1

0
ei2πjfµ(df)
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for −m ≤ j ≤ m. Thus, the problem of extracting the frequencies and amplitudes from noisy

observations may be regarded as the inverse problem of estimating a measure from noisy

trigonometric moments.

We can write the vector x? of observations [x?−m, . . . , x?m]T in terms of an atomic decompo-

sition

x? =
k∑
l=1

cla(fl)

or equivalently in terms of a corresponding representing measure µ given by (3.4) satisfying

x? =
∫ 1

0
a(f)µ(df)

There is a one-one correspondence between atomic decompositions and representing measures.

Note that there are infinite atomic decompositions of x? and also infinite corresponding

representing measures. However, since every collection of n atoms is linearly independent, A

forms a full spark frame [41] and therefore the problem of finding the sparsest decomposition

of x? is well-posed if there is a decomposition which is at least n/2 sparse.

The atomic norm of a vector z defined in (2.1) is the minimum total variation norm [97,

29] ‖µ‖TV of all representing measures µ of z. So, minimizing the total variation norm is the

same as finding a decomposition that achieves the atomic norm.

3.7.2 Dual Certificate and Exact Recovery

Atomic norm minimization attempts to recover the sparsest decomposition by finding a

decomposition that achieves the atomic norm, i.e., find cl, fl such that x? =
∑
l cla(fl)

and ‖x?‖A =
∑
l |cl| or equivalently, finding a representing measure µ of the form (3.4)

that minimizes the total variation norm ‖µ‖TV. The authors of [20] showed that when
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n > 256, the decomposition that achieves the atomic norm is the sparsest decomposition

by explicitly constructing a dual certificate [23] of optimality, whenever the composing

frequencies f1, . . . , fk satisfy a minimum separation condition (3.2). In the rest of the chapter,

let us always make the technical assumption that n > 256. The following is just a restatement

of Definition 2.3 for trigonometric moments:

Definition 3.5 (Dual Certificate). A vector q ∈ Cn is called a dual certificate for the decomposi-

tion

x? =
k∑
l=1

cla(fl)

if for the corresponding trigonometric polynomial Q(f) := 〈q, a(f)〉, we have

Q(fl) = sign(cl), l = 1, . . . , k

and

|Q(f)| < 1

whenever f 6∈ {f1, . . . , fk}.

The authors of [20] not only explicitly constructed such a certificate characterized by the

dual polynomial Q, but also showed that their construction satisfies some stability conditions,

which is crucial for showing that denoising using the atomic norm provides stable recovery in

the presence of noise.

Theorem 3.6 (Dual Polynomial Stability, Lemma 2.4 and 2.5 in [19]). For any f1, . . . , fk

satisfying the separation condition (3.2) and any sign vector v ∈ Ck with |vj | = 1, there exists a

trigonometric polynomial Q = 〈q, a(f)〉 for some q ∈ Cn with the following properties:

1. For each j = 1, . . . , k, Q interpolates the sign vector v so that Q(fj) = vj
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2. In each neighborhood Nj corresponding to fj defined by Nj =
{
f : d(f, fj) < 0.16/n

}
, the

polynomial Q(f) behaves like a quadratic and there exist constants Ca, C ′a so that

|Q(f)| ≤ 1− Ca
2 n2(f − fj)2 (3.16)

|Q(f)− vj | ≤
C ′a
2 n2(f − fj)2 (3.17)

3. When f ∈ F = [0, 1]\ ∪kj=1 Nj , there is a numerical constant Cb > 0 such that

|Q(f)| ≤ 1− Cb

This chapter uses results in [19] and [6] and borrows several ideas from the proofs in [19],

with nontrivial modifications to establish the error rate of atomic norm regularization.

3.7.3 Near optimal MSE

In this section, we will see a proof of Theorem 3.2. Let µ̂ be the representing measure for the

solution x̂ of (2.2) with minimum total variation norm, that is,

x̂ =
∫ 1

0
a(f)µ̂(df)

and ‖x̂‖A = ‖µ̂‖TV. Denote the error vector by e = x? − x̂. Then, the difference measure

ν = µ− µ̂ is a representing measure for e. Express the denoising error ‖e‖22 as the integral of
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the error function E(f) = 〈e, a(f)〉, against the difference measure ν:

‖e‖22 = 〈e, e〉

=
〈
e,

∫ 1

0
a(f)ν(df)

〉

=
∫ 1

0
〈e, a(f)〉 ν(df)

=
∫ 1

0
E(f)ν(df).

Using a Taylor series approximation in each of the near regions Nj , we will see that the

denoising error (or in general any integral of a trigonometric polynomial against the difference

measure) can be controlled in terms of an integral in the far region F and the zeroth, first, and

second moments of the difference measure in the near regions. The precise result is presented

in the following lemma:

Lemma 3.7. Define

Ij0 :=
∣∣∣∣∣
∫
Nj

ν(df)
∣∣∣∣∣

Ij1 := n

∣∣∣∣∣
∫
Nj

(f − fj)ν(df)
∣∣∣∣∣

Ij2 := n2

2

∫
Nj

(f − fj)2|ν|(df)

Il :=
k∑
j=1

Ijl , for l = 0, 1, 2 .

Then for any mth order trigonometric polynomial X, we have

∫ 1

0
X(f)ν(df) ≤ ‖X(f)‖∞

(∫
F
|ν|(df) + I0 + I1 + I2

)
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Proof. Split the domain of integration into the near and far regions.

∣∣∣∣∣
∫ 1

0
X(f)ν(df)

∣∣∣∣∣ ≤
∣∣∣∣∫
F
X(f)ν(f)

∣∣∣∣+ k∑
j=1

∣∣∣∣∣
∫
Nj

X(f)ν(df)
∣∣∣∣∣

≤ ‖X(f)‖∞
∫
F
|ν|(df) +

k∑
j=1

∣∣∣∣∣
∫
Nj

X(f)ν(df)
∣∣∣∣∣ . (3.18)

by using Hölder’s inequality for the last inequality. Using Taylor’s theorem, we may expand

the integrand X(f) around fj as

X(f) = X(fj) + (f − fj)X ′(fj) + 1
2X
′′(ξj)(f − fj)2

for some ξj ∈ Nj . Thus,

|X(f)−X(fj)−X ′(fj)(f − fj)|

≤ sup
ξ∈Nj

1
2 |X

′′(ξ)|(f − fj)2

≤ 1
2n

2‖X(f)‖∞(f − fj)2,

where for the last inequality follows from a theorem of Bernstein for trigonometric polynomials

(see, for example [87]):

|X ′(fj)| ≤ n‖X(f)‖∞

|X ′′(fj)| ≤ n2‖X(f)‖∞.
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As a consequence, we have

∣∣∣∣∣
∫
Nj

X(f)ν(df)
∣∣∣∣∣ ≤ ∣∣X(fj)

∣∣ ∣∣∣∣∣
∫
Nj

ν(df)
∣∣∣∣∣+ ∣∣X ′(fj)∣∣

∣∣∣∣∣
∫
Nj

(f − fj)ν(df)
∣∣∣∣∣

+ 1
2n

2‖X(f)‖∞
∫
Nj

(f − fj)2|ν|(df)

≤ ‖X(f)‖∞
(
Ij0 + Ij1 + Ij2

)
.

Substituting back into (3.18) yields the desired result.

Applying Lemma 3.7 to the error function, we get

‖e‖22 ≤ ‖E(f)‖∞
(∫

F
|ν|(df) + I0 + I1 + I2

)
(3.19)

As a consequence of the choice of τ given by (3.14), we can show that ‖E(f)‖∞ ≤ (1+2η−1)τ

with high probability. In fact, we have

‖E(f)‖∞ = sup
f∈[0,1]

|〈e, a(f)〉|

= sup
f∈[0,1]

|〈x? − x̂, a(f)〉|

≤ sup
f∈[0,1]

|〈w, a(f)〉|+ sup
f∈[0,1]

|〈y − x̂, a(f)〉|

≤ sup
f∈[0,1]

|〈w, a(f)〉|+ τ

≤ (1 + 2η−1)τ ≤ 3τ,with high probability. (3.20)

The second inequality follows from the optimality conditions for (2.2) and the penultimate

inequality is from (3.15).

Therefore, to complete the proof, it suffices to show that the other terms on the right hand
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side of (3.19) are O(kτn ). While there is no exact frequency recovery in the presence of noise,

we can hope to get the frequencies approximately right. Hence, we can expect that the integral

in the far region can be well controlled and the local integrals of the difference measure in the

near regions are also small due to cancellations. Next, we could utilize the properties of the

dual polynomial in Theorems 3.6 and another polynomial given in Theorem A.1 in Appendix

A to show that the zeroth and first moments of ν may be controlled in terms of the other two

quantities in (3.19) to upper bound the error rate. The following lemma is similar to Lemmas

2.2 and 2.3 in [19], but we have made several modifications to adapt it to our signal and

noise model.

Lemma 3.8. There exists numeric constants C0 and C1 such that

I0 ≤ C0

(
kτ

n
+ I2 +

∫
F
|ν|(df)

)
I1 ≤ C1

(
kτ

n
+ I2 +

∫
F
|ν|(df)

)
.

Proof. Consider the polar form

∫
Nj

ν(df) =
∣∣∣∣∣
∫
Nj

ν(df)
∣∣∣∣∣ eiθj .

Set vj = e−iθj and let Q(f) be the dual polynomial promised by Theorem 3.6 for this v. Then,

we have

∣∣∣∣∣
∫
Nj

ν(df)
∣∣∣∣∣ =

∫
Nj

e−iθjν(df)

=
∫
Nj

Q(f)ν(df) +
∫
Nj

(e−iθj −Q(f))ν(df)

Summing over j = 1, . . . , k yields
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I0 =
k∑
j=1

∣∣∣∣∣
∫
Nj

ν(df)
∣∣∣∣∣

=
k∑
j=1

∫
Nj

Q(f)ν(df) +
k∑
j=1

∫
Nj

(vj −Q(f))ν(df)

≤
∣∣∣∣∣
∫ 1

0
Q(f)ν(df)

∣∣∣∣∣+
∫
F
|ν|(df) + C ′aI2, using triangle inequality and (3.17)

≤ Ckτ

n
+
∫
F
|ν|(df) + C ′aI2, using (A.13). (3.21)

We can use a similar argument for bounding I1 but this time use the dual polynomial Q1(f)

guaranteed by Theorem A.1. Again, start with the polar form

∫
Nj

(f − fj)ν(df) =
∣∣∣∣∣
∫
Nj

(f − fj)ν(df)
∣∣∣∣∣ eiθj = Ij1e

iθj/n

Set vj = e−iθj in Theorem A.1 to obtain

Ij1 = n

∫
Nj

e−iθj (f − fj)ν(df)

= n

∫
Nj

(vj(f − fj)−Q1(f))ν(df) + n

∫
Nj

Q1(f)ν(df)
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Summing over j = 1, . . . , k yields

I1 =
k∑
j=1

Ij1

= n
k∑
j=1

∫
Nj

(vj(f − fj)−Q1(f))ν(df) + n
k∑
j=1

∫
Nj

Q1(f)ν(df)

≤ C1
aI2 + n

∣∣∣∣∣
∫ 1

0
Q1(f)ν(df)

∣∣∣∣∣+ n

∣∣∣∣∫
F
Q1(f)ν(df)

∣∣∣∣
≤ C1

aI2 + Ckτ

n
+ C1

b

∫
F
|ν|(df) (3.22)

The first inequality uses (A.1) and triangle inequality, and the last inequality uses (A.14) and

(A.2). Equations (3.21) and (3.22) complete the proof.

All that remains to complete the proof is an upper bound on I2 and
∫
F |ν|(df). The key

idea in establishing such a bound is deriving upper and lower bounds on the difference

‖PT c(ν)‖TV − ‖PT (ν)‖TV between the total variation norms of ν on and off the support. The

upper bound can be derived using optimality conditions. We lower bound ‖PT c(ν)‖TV −

‖PT (ν)‖TV using the fact that a constructed dual certificate Q has unit magnitude for every

element in the support T of PT (ν) whence we have ‖PT (ν)‖TV =
∫
TQ(f)ν(df). A critical

element in deriving both the lower and upper bounds is that the dual polynomial Q has

quadratic drop in each near regions Nj and is bounded away from one in the far region F .

Finally, by combing these bounds and carefully controlling the regularization parameter, we

get the desired result summarized in the following lemma.

Lemma 3.9. Let τ = ησ
√
n log(n). If η > 1 is large enough, then there exists a numerical

constant C such that, with high probability

∫
F
|ν|(df) + I2 ≤

Ckτ

n
.
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Proof. Denote by PT (ν) the projection of the difference measure ν on the support set T =

{f1, . . . , fk} of x? so that PT (ν) is supported on T . Then, setting Q(f) the polynomial in

Theorem 3.6 that interpolates the sign of PT (ν), we have

‖PT (ν)‖TV =
∫ 1

0
Q(f)PT (ν)(df)

≤
∣∣∣∣∣
∫ 1

0
Q(f)ν(df)

∣∣∣∣∣+
∣∣∣∣∫
T c
Q(f)ν(df)

∣∣∣∣
≤ Ckτ

n
+
∑
fj∈T

∣∣∣∣∣
∫
Nj/{fj}

Q(f)ν(df)
∣∣∣∣∣+

∣∣∣∣∫
F
Q(f)ν(df)

∣∣∣∣ ,
where the first inequality follows from triangle inequality and for the last inequality is given

by (A.13). The integration over F is can be bounded using Hölder’s inequality

∣∣∣∣∫
F
Q(f)ν(df)

∣∣∣∣ ≤ (1− Cb)
∫
F
|ν|(df)

Continue with

∣∣∣∣∣
∫
Nj/{fj}

Q(f)ν(df)
∣∣∣∣∣ ≤

∣∣∣∣∣
∫
Nj/{fj}

|Q(f)||ν|(df)
∣∣∣∣∣

≤
∫
Nj/{fj}

(1− 1
2n

2Ca(f − fj)2)|ν|(df)

≤
∫
Nj/{fj}

|ν|(df)− CaIj2 .
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As a consequence, we have

‖PT (ν)‖TV ≤
Ckτ

n
+
∑
fj∈T

∫
Nj/{fj}

|ν|(df)− CaI2 + (1− Cb)
∫
F
|ν|(df)

≤ Ckτ

n
+
∑
fj∈T

∫
Nj/{fj}

|ν|(df) +
∫
F
|ν|(df)

︸ ︷︷ ︸
‖PTc‖TV

−CaI2 − Cb
∫
F
|ν|(df)

or equivalently,

‖PT c(ν)‖TV − ‖PT (ν)‖TV ≥ CaI2 + Cb

∫
F
|ν|(df)− Ckτ

n
. (3.23)

Now, appeal to the optimality conditions (2.18) of AST to obtain

‖x̂‖A ≤ ‖x?‖A − 〈w, e〉/τ

and thus

‖µ̂‖TV ≤ ‖µ‖TV + |〈w, e〉|/τ. (3.24)

Using Lemma 3.7,

|〈w, e〉| = |〈w,
∫ 1

0
a(f)ν(df)|〉

=
∣∣∣∣∣
∫ 1

0
〈w, a(f)〉 ν(df)

∣∣∣∣∣ (3.25)

≤ ‖〈w, a(f)〉‖∞
(
Ckτ

n
+ I0 + I1 + I2

)
≤ 2η−1τ

(
Ckτ

n
+ I0 + I1 + I2

)
≤ Cη−1τ

(
kτ

n
+ I2 +

∫
F
|ν|(df)

)
(3.26)
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with high probability, where for the penultimate inequality uses the choice of τ in (3.14) and

thus ‖〈w, a(f)〉‖∞ ≤ 2η−1τ with high probability from (3.15).

Substituting (3.26) in (3.24), we get

‖µ‖TV + Cη−1τ

(
kτ

n
+ I2 +

∫
F
|ν|(df)

)
≥ ‖µ̂‖TV

= ‖µ+ ν‖TV

≥ ‖µ‖TV − ‖PT (ν)‖TV + ‖PT c(ν)‖TV

Canceling ‖µ‖TV yields

‖PT c(ν)‖TV − ‖PT (ν)‖TV ≤ Cη−1τ

(
kτ

n
+ I2 +

∫
F
|ν|(df)

)
(3.27)

As a consequence of (3.23) and (3.27), we get,

C(1 + η−1)kτ
n
≥ (Cb − η−1C)

∫
F
|ν|(df) + (Ca − η−1C)I2

whence the result follows for large enough η.
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Putting together Lemmas 3.7, 3.8 and 3.9, we can finally prove our main theorem:

1
n
‖e‖22 ≤

‖E(f)‖∞
n

(∫
F
|ν|(df) + I0 + I1 + I2

)
≤ ‖E(f)‖∞

n

(
C1kτ

n
+ C2

∫
F
|ν|(df) + C3I2

)
≤ ‖E(f)‖∞

n

Ckτ

n

≤ Ckτ2

n2

= O

(
σ2k log(n)

n

)
.

The first three inequalities come from successive applications of Lemmas 1, 2 and 3

respectively. The fourth inequality follows from (3.20) and the fifth by the choice of τ

according to Eq. (3.14). This completes the proof of Theorem 3.2.

3.7.4 Approximate Frequency Localization

In this section, we will see a proof of Theorem 3.3. The first two statements in Theorem

3.3 are direct consequences of Lemma 3.9. For (iii.), we will follow [52] and use the dual

polynomial Q?j (f) = 〈q?j , a(f)〉 constructed in Lemma 2.2 of [52] which satisfies

Q?j (fj) = 1

|1−Q?j (f)| ≤ n2C ′1(f − fj)2, f ∈ Nj

|Q?j (f)| ≤ n2C ′1(f − fj′)2, f ∈ Nj′ , j
′ 6= j

|Q?j (f)| ≤ C ′2, f ∈ F.
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Note that cj −
∑
f̂l∈Nj ĉl =

∫
Nj
ν(df). Then, by applying triangle inequality several times,

∣∣∣∣∣
∫
Nj

ν(df)
∣∣∣∣∣ ≤

∣∣∣∣∣
∫
Nj

Q?j (f)ν(df)
∣∣∣∣∣+

∣∣∣∣∣
∫
Nj

(1−Q?j (f))ν(df)
∣∣∣∣∣

≤
∣∣∣∣∣
∫ 1

0
Q?j (f)ν(df)

∣∣∣∣∣+
∣∣∣∣∣
∫
Nc
j

Q?j (f)ν(df)
∣∣∣∣∣+

∣∣∣∣∣
∫
Nj

(1−Q?j (f))ν(df)
∣∣∣∣∣

≤
∣∣∣∣∣
∫ 1

0
Q?j (f)ν(df)

∣∣∣∣∣+
∣∣∣∣∫
F
Q?j (f)ν(df)

∣∣∣∣
+

k∑
j′ 6=j
j′=1

∫
Nj′

∣∣∣Q?j (f)
∣∣∣ |ν|(df) +

∫
Nj

∣∣∣1−Q?j (f)
∣∣∣ |ν(df)| .

We will upper bound the first term using Lemma A.3 in Appendix A which yields

∣∣∣∣∣
∫ 0

1
Q?j (f)ν(df)

∣∣∣∣∣ ≤ Ckτ

n

The other terms can be controlled using the properties of Q?j :

∣∣∣∣∫
F
Q?j (f)ν(df)

∣∣∣∣ ≤ C ′2 ∫
F
|ν|(df)

k∑
j′ 6=j
j′=1

∫
Nj′

∣∣∣Q?j (f)
∣∣∣ |ν|(df) +

∫
Nj

∣∣∣1−Q?j (f)
∣∣∣ |ν|(df) ≤ C ′1

k∑
j′=1

∫
Nj′

n2(f − fj′)2|ν|(df) = C1I2

Using Lemma 3.9, both of the above are upper bounded by Ckτ
n . Now, by combining these

upper bounds, we finally have

∣∣∣∣∣∣∣cj −
∑

l:f̂l∈Nj

ĉl

∣∣∣∣∣∣∣ ≤
C3kτ

n

This shows part (iii) of the theorem. Part (iv) can be obtained by combining parts (ii) and
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(iii).

3.8 Related Work

The classical methods of line spectral estimation, often called linear prediction methods, are

built upon the seminal interpolation method of Prony [81]. In the noiseless case, with as little

as n = 2k measurements, Prony’s technique can identify the frequencies exactly, no matter

how close the frequencies are. However, Prony’s technique is known to be sensitive to noise

due to instability of polynomial rooting [62]. Following Prony, several methods have been

employed to robustify polynomial rooting method including the Matrix Pencil algorithm [60],

which recasts the polynomial rooting as a generalized eigenvalue problem and cleverly uses

extra observations to guard against noise. The MUSIC [89] and ESPRIT [85] algorithms

exploit the low rank structure of the autocorrelation matrix.

Cadzow [15] proposed a heuristic that improves over MUSIC by exploiting the Toeplitz

structure of the matric of moments by alternately projecting between the linear space of

Toeplitz matrices and the space of rank k matrices where k is the desired model order.

Cadzow’s technique is very similar [108] to a popular technique in time series literature [63,

54] called Singular Spectrum Analysis [103], which uses autocorrelation matrix instead of

the matrix of moments for projection. Both these techniques may be viewed as instances of

structured low rank approximation [34] which exploit additional structure beyond low rank

structure used in subspace based methods such as MUSIC and ESPRIT. Cadzow’s method has

been identified as a fruitful preprocessing step for linear prediction methods [8]. A survey of

classical linear prediction methods can be found in [8, 92] and an extensive list of references

is given in [91].

Most, if not all of the linear prediction methods need to estimate the model order by
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employing some heuristic and the performance of the algorithm is sensitive to the model

order. In contrast, AST and the Lasso based approximation discussed in Chapter 5 only needs

a rough estimate of the noise variance. The experiments in Chapter 5 provides the true model

order to Matrix Pencil, MUSIC and Cadzow methods, but only an estimate of noise variance

for AST. However, AST still compares favorably to the classical line spectral methods.

In contrast to linear prediction methods, a number of authors [32, 72, 12] have suggested

using compressive sensing and viewing the frequency estimation as a sparse approximation

problem. For instance, [72] notes that the Lasso based method has better empirical localization

performance than the popular MUSIC algorithm. However, the theoretical analysis of this

phenomenon is complicated because of the need to replace the continuous frequency space by

an oversampled frequency grid. Compressive sensing based results (see, for instance, [47])

need to carefully control the incoherence of their linear maps to apply off-the-shelf tools from

compressed sensing. It is important to note that the performance of our algorithm improves

as the grid size increases. But this seems to contradict conventional wisdom in compressed

sensing because our design matrix Φ becomes more and more coherent, and limits how fine

we can grid for the theoretical guarantees to hold.

Directly working in the continuous parameter space circumvents the problems in the

conventional compresssive sensing analysis, and allows us step away from such notions as

coherence, focusing on the geometry of the atomic set as the critical feature. By showing that

the continuous approach is the limiting case of the Lasso based methods using the convergence

of the corresponding atomic norms, we could justify denoising line spectral signals using

Lasso on a large grid. Furthemore, Candès and Fernandez-Granda [20] showed that our SDP

formulation exactly recovers the correct frequencies in the noiseless case.

More recently, approaches based on convex optimization have gained favor and have

been demonstrated to perform well on a variety of spectrum estimation tasks [72, 12, 3,
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111]. These convex programming methods restrict the frequencies to lie on a finite grid of

points and view line spectral signals as a sparse combination of single frequencies. While

these methods are reported to have significantly better localization properties than subspace

methods (see for example, [72]) and admit fast and robust algorithms, they have two

significant drawbacks. First, while finer gridding may lead to better performance, very fine

grids are often numerically unstable. Furthermore, traditional compressed sensing theory

does not adequately characterize the performance of fine gridding in these algorithms as the

dictionary becomes highly coherent.

Some very recent work [6, 20, 19] bridges the gap between the performant discretized

algorithms and continuous subspace approaches by developing a new theory of convex relax-

ations for infinite continuous dictionary of frequencies. Chapter 5 demonstrates empirically

that the algorithm proposed in the chapter compares favorably with both the classical and

recent convex approaches which assume the frequencies are on an oversampled DFT grid. We

saw that we can derive a weak but asymptotically consistent convergence rate with no as-

sumption about the separation between frequencies. When the frequencies are well separated,

we saw that much faster convergence rates can be achieved.

This work is closely related to recent results established by Candès and Fernandez-

Granda [20] on exact recovery using convex methods and their recent work [19] on exploiting

the robustness of their dual polynomial construction to show super-resolution properties of

convex methods. The total variation norm formulation used in [19] is equivalent to the atomic

norm specialized to the line spectral estimation problem.

Robustness bounds were established both in earlier work [6] and in the work of Candès and

Fernandez-Granda [19]. In [6], a slow convergence rate was established with no assumptions

about the separation of frequencies in the true signal. In [19], the authors provide guarantees

on the L1 energy of error in the frequency domain in the case that the frequencies are well
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separated. The noise is assumed to be adversarial with a small L1 spectral energy. In contrast,

we saw near minimax denoising error under Gaussian noise in this chapter. It is also not clear

that there is a computable formulation for the optimization problem analyzed in [19]. While

the guarantees the authors derive in [19] are not comparable with our results, several of their

mathematical constructions are used in the proofs here.

Additional recent work derives conditions for approximate support recovery under the

Gaussian noise model using the Beurling-Lasso [2]. There, the authors show that there is a

true frequency in the neighborhood of every estimated frequency with large enough amplitude.

The Beurling-Lasso is equivalent to the atomic norm algorithm in this chapter. A more recent

paper by Fernandez-Granda[52] improves this result by giving conditions on recoverability

in terms of the true signal instead of the estimated signal and prove a theorem similar to

Theorem 3.3, but use a worst case L2 bound on the noise samples. This chapter improves

these results in Theorem 3.3, providing tighter guarantees under the Gaussian noise model.

3.9 Conclusion

The Atomic norm formulation of line spectral estimation provides several advantages over prior

approaches. Performing the analysis in the continuous domain permits deriving simple closed

form rates using fairly straightforward techniques. This approach allowed us to circumvent

some of the more complicated theoretical arguments that arise when using concepts from

compressed sensing or random matrix theory.

This chapter demonstrated stability of atomic norm regularization by analysis of specific

properties of the atomic set of moments and the associated dual space of trigonometric

polynomials. The key to this analysis is the existence and properties of various trigonometric

polynomials associated with signals with well separated frequencies.
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4 System Identification

Identifying dynamical systems from noisy observation of their input-output behavior is of

fundamental importance in systems and control theory. Often times models derived from

physical first principles are not available to the control engineering, and computing a surrogate

model from data is essential to the design of a control system. System identification from

data is thus ubiquitous in problem domains ranging from process engineering, dynamic

modeling of mechanical and aerospace systems, and systems biology. Though there are a

myriad of approaches and excellent texts on the subject (see, for example [70]), there is still

no universally agreed upon approach for this problem. One reason is that quantifying the

interplay between system parameters, measurement noise, and model mismatch tends to be

challenging.

This chapter draws novel connections between contemporary high-dimensional statistics,

operator theory, and linear systems theory to prove consistent estimators of linear systems

from small measurement sets. In particular, building on recent studies of atomic norms in

estimation theory [30, 6], I propose a penalty function which encourages estimated models to

have small McMillan degree.

A related family of system identification techniques use finite sample Hankel matrices to

estimate dynamical system models, using either singular value decompositions (e.g, [104,

76]) or semidefinite programming [51, 69, 90, 84]. In all of these techniques, no statistical

guarantees were given about the quality of estimation with finite noisy data, and it was

difficult to determine how sensitive these methods were to the hidden system parameters

or measurement noise. Moreover, since these problems were dealing with finite, truncated

Hankel matrices, it is never certain if the size of the Hankel matrix is sufficient to reveal the

true McMillan degree. Moreover, the techniques based on semidefinite programming are
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challenging to scale to very large problems, as their complexity grows superlinearly with the

number of measurements.

In contrast, the atomic norm regularizer proposed in this chapter is not only equivalent to

the sum of the Hankel singular values (the Hankel nuclear norm), but is also well approximated

by a finite dimensional, `1 minimization problem. I show that solving least-squares problems

regularized by atomic norm is consistent, and scales gracefully with the stability radius, the

McMillan degree of the system to be identified, and the number of measurements. Numerical

experiments validate these theoretical underpinnings, and show that this method has great

promise to provide concrete estimates on the hard limits of estimating linear systems.

Notation

We will adopt standard notation; D and S will denote respectively the open unit ball and the

unit circle in the complex plane C . H2 and H∞ will denote the Hardy spaces of functions

analytic outside D, with the norms

‖f‖H2 = 1
2π

∫ 2π

0
|f(eiθ)|2dθ and ‖f‖H∞ = sup

z∈S
|f(z)|

respectively. `2([a, b]) will denote the set of square summable sequences on the integers in

[a, b].

4.1 Atomic Decompositions of Transfer Functions

In this chapter, we will concern ourselves with Single Input Single Output (SISO) systems.

Suppose we wish to estimate a SISO, LTI system with transfer function G?(z) from a finite

collection of measurements y = Φ(G?). The set of all transfer functions is an infinite

dimensional space, so reconstructing G? from this data is ill-posed. In order to make it well
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posed, a common regularization approach constructs a penalty function pen(·) that encourages

“low-complexity” models and solves the optimization problem

minimize
G

‖Φ(G)− y‖22 + µ pen(G) . (4.1)

This formulation uses the parameter µ to balance between model complexity and fidelity to

the data. The least-squares cost can be modified to other convex loss functions if knowledge

about measurement noise is available (as in [90, 77]), though in general it is less clear how to

design a good penalty function.

In many applications, we know that the true model can be decomposed as a linear

combination of very simple building blocks. For instance, as described in Chapter 2, sparse

vectors can be written as short linear combinations of vectors from some discrete dictionary

and low-rank matrices can be written as a sum of a few rank-one factors. Here, let us recall

some of the preliminaries from Chapter 2. In [30], Chandrasekaran et al. proposed a universal

heuristic for constructing regularizers based on such prior information. If we assumed that

G? =
r∑
i=1

ciai , for some ai ∈ A, ci ∈ C ,

where A is an origin-symmetric set of atoms normalized to have unit norm and r is relatively

small, then the appropriate penalty function is the atomic norm induced by the atomic set A:

‖G‖A : = inf {t : G ∈ t conv(A)} = inf

∑
a∈A
|ca| : G =

∑
a∈A

caa

 . (4.2)

In [30], it is shown that minimizing the atomic norm subject to compressed measurements

yielded the tightest known bounds for recovering many classes of models from linear mea-

surements. Moreover, in Chapter 2, we saw the atomic norm regularizer in the context of
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denoising problems and saw that it produces consistent estimates at nearly optimal estimation

error rates for many classes of atoms.

Corresponding to the atomic norm, there is a dual atomic norm. For an atomic set A, the

dual norm is given by

‖z‖∗A = sup
a∈A
〈a, z〉 .

Note that for this norm, we have the generalization of Hölder’s inequality 〈x, z〉 ≤ ‖x‖A‖z‖∗A.

Moreover, note that

α‖x‖A′ ≤ ‖x‖A ≤ β‖x‖A′

for some α ≤ 1 and β ≥ 1 for all x if and only if

β−1‖z‖∗A′ ≤ ‖z‖∗A ≤ α−1‖z‖∗A′

for all z. For more details, see Chapter 2

To apply these atomic norm techniques to system identification, we must first determine

the appropriate set of atoms. For discrete time LTI systems with small McMillan degree, we

can always decompose any finite dimensional, strictly proper system G(z) as:

G(z) =
s∑
i=1

ci
z − ai

.

via a partial fraction expansion. Hence, it makes sense that our set of atoms should be

single-pole transfer functions. So, define the atomic set for linear systems by

A =
{
ϕw(z) = 1− |w|2

z − w
: w ∈ D

}
.

The numerator is normalized so that the Hankel norm of each atom is 1. See the discussion in



69

Section 4.2 for precisely why this normalization is desirable.

The atomic norm penalty function associated with these atoms is

‖G(z)‖A = inf

∑
w∈D
|cw| : G(z) =

∑
w∈D

cw(1− |w|2)
z − w

 , (4.3)

where the summation implies that only a countable number of terms have nonzero coefficients

cw. This expression finds the decomposition of G(z) into a linear combination of single pole

systems such that the `1 norm, weighted by the norms of the single poles, is as small as

possible.

With this penalty function in hand, we can now turn to analyzing its utility. In Section 4.2,

I will first show that for most systems of interest ‖G‖A is a well-defined, bounded quantity.

Moreover, we will see that the atomic norm is equivalent to the nuclear norm of the Hankel

operator associated with G. Hence, the models that are preferred by our penalty function will

have low-rank Hankel operators, and thus low McMillan degrees.

Section 4.2.3 describes practical algorithms for approximating atomic norm regularization

problems for several classes of measurements. We will show that with finite data, our

atomic norm minimization problem is well-approximated by a finite-dimensional `1 norm

regularization problem. In particular, using specialized algorithms adapted to the solution

of the LASSO [106], we can solve atomic norm regularization problems in time competitive

with respect to techniques that regularize with the nuclear norm and SVD-based subspace

identification methods. We will leave the actual analysis of the approximation by discretization

to Chapter 5 on algorithms.

Finally, Section 4.3 analyzes the statistical performance of atomic norm minimization and

shows that the proposed algorithm is asymptotically consistent over several measurement

ensembles of interest. We will focus on sampling the transfer function on the unit circle and
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present H2 error bounds in terms of the stability radius, Hankel singular values, H∞ norm,

and McMillan degree of the system to be estimated.

4.2 The Hankel Nuclear Norm and Atomic Norm Minimization

Let us first show that most LTI systems of interest do indeed have finite atomic norm, and,

moreover, that the atomic norm is closely connected with the sum of the Hankel singular

values.

4.2.1 Preliminaries: the Hankel operator

Recall that the Hankel operator, ΓG, of the transfer function G is defined as the mapping from

the past to the future under the transfer function G. Given a signal u supported on (−∞,−1],

the output under G is given by g ∗ u where “∗” denotes convolution and g is the impulse

response of G:

G(z) =
∞∑
k=1

gkz
−k .

ΓG is then simply the projection of g ∗ u onto [0,∞). An introduction to Hankel operators in

control theory can be found in [48, Chapter 4] or [109, Chapter 7].

The Hankel norm of G is the operator norm of ΓG considered as an operator mapping

`2(−∞,−1] to `2[0,∞). The Hankel nuclear norm of G is the nuclear norm (aka the trace

norm or Schatten 1-norm) of ΓG. To be precise, an operator T is in the trace class S1 if the

trace of (T ∗T )1/2 is finite. This implies first that T is a compact operator and admits a singular

value decomposition

T (f) =
∞∑
i=1

σi〈vi, f〉ui .

The sequence σi are called the Hankel singular values of T . Moreover, the Schatten 1-norm of
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T is given by

‖T‖1 = trace
(
(T ∗T )1/2

)
=
∞∑
i=1

σi .

4.2.2 The atomic norm is equivalent to the Hankel nuclear norm

The rank of the Hankel operator determines the McMillan degree of the linear system defined

by G. Rank minimization is notoriously computationally challenging (see [84] for a discus-

sion), and we don’t expect to be able to directly penalize the norm of the Hankel operator

in implementations. Thus, as is common, a reasonable heuristic for minimizing the rank of

the Hankel operator would be to minimize the sum of the Hankel singular values, i.e., to

minimize the Schatten 1-norm of the Hankel operator. For rational transfer functions, we can

compute the Hankel nuclear norm via a balanced realization [109]. On the other hand, while

the maximal Hankel singular value can be written variationally as an LMI, we are not aware

of any such semidefinite programming formulations for the Hankel nuclear norm.

The following theorem provides a path towards minimizing the Hankel nuclear norm,

minimizing the atomic norm ‖G(z)‖A as a proxy. Indeed, from the view of Banach space

theory, the atomic norm is equivalent to the Hankel nuclear norm.

Theorem 4.1. Let G ∈ H2. Then ΓG is trace class if and only if there exists a sequence {λk} ∈ `1

and a sequence {wk} with wk ∈ D such that

g(z) =
∞∑
i=1

λk
1− |wk|2

z − wk
. (4.4)

Moreover, we have the following chain of inequalities

π
8 ‖G‖A ≤ ‖ΓG‖1 ≤ ‖G‖A (4.5)
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where ‖G‖A is given by (4.2).

Proof Outline Theorem 4.1 follows by carefully combining several different results from

operator theory. Peller first showed that transfer functions with trace class Hankel operators

formed a Besov space [80]. Peller’s argument can be found in his book [79]. The atomic

decomposition of such operators is due to Coifman and Rochberg [36]. The norm bounds (4.5)

were proven by Bonsall and Walsh [10]. There they show that the π
8 is the best possible lower

bound. They also show that if ‖Γg‖1 ≤ C‖g‖A for all g, then C must be at least 1
2 , so the chain

of inequalities is nearly optimal. A concise presentation of the full argument can be found

in [78]. A modern perspective using the theory of reproducing kernels can be found in [110].

Theorem 4.1 asserts that a transfer function has a finite atomic norm if and only if the sum

of its Hankel singular values is finite. In particular, this means that every rational transfer

function has a finite atomic norm. More importantly, the atomic norm is equivalent to the

Hankel nuclear norm. Thus if we can approximately solve atomic norm-minimization, we can

approximately solve Hankel nuclear norm minimization and vice-versa.

4.2.3 System Identification using Atomic Norms

From here on, let us assume that the G? that we seek to estimate has all of its poles of

magnitude at most ρ ( we will call ρ the stability radius, and treat it as a known parameter).

Let Dρ denote the set of all complex numbers with norm at most ρ. Note that if G? has stability

radius ρ then

‖G‖A := inf

 ∑
w∈Dρ

|cw| : G(z) =
∑
w∈Dρ

cw(1− |w|2)
z − w

 .

That is, we can restrict the set of atoms to only be those single pole systems with stability

radius equal to ρ. For the remainder of this manuscript, assume that A only consists of such
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single pole systems.

In what follows, let us focus on linear measurement maps. Let Li : H 7→ C be a linear

functional that serves as a measurement operator for the system G(z). Many maps of interest

can be phrased as linear functionals of the transfer function,

1. Samples of the frequency response Lk(G) := G(eiθk) for k = 1, . . . , n. From a control

theoretic perspective, this measurement operator corresponds to measuring the gain

and phase of the linear system at different frequencies.

2. Samples of the impulse response, Lk(G) := gik for k = 1, . . . , n and ik ∈ [1,∞).

3. Convolutions of the impulse response with a pseudorandom signal uk: Lk(G) :=∑∞
j=1 gjuk−j .

In all of these cases, consider the problem

minimize
G

1
2

n∑
i=1
|Li(G)− yi|2 + µ‖G‖A . (4.6)

This problem is equivalent to the constrained, semi-infinite programming problem

minimizex,G 1
2
∑n
k=1 |xk − yk|2 + µ

∑
w∈Dρ |cw|

subject to xk = Lk(G) for i = 1, . . . , n

G =
∑
w∈Dρ

cw(1−|w|2)
z−w

Eliminating the equality constraint gives yet another equivalent formulation

minimizex 1
2
∑n
k=1 |xk − yk|2 + µ

∑
w∈Dρ |cw|

subject to xk =
∑
w∈Dρ cwLk

(
1−|w|2
z−w

)
for i = 1, . . . , n .

(4.7)
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Note that in this final formulation, our decision variable is x, a finite dimensional vector, and

cw, the coefficients of the atomic decomposition. The infinite dimensional variable G has been

eliminated. Let us define a norm on Rn based on the formulation (4.7)

‖x‖L(A) = inf

 ∑
w∈Dρ

|cw| : xi =
∑
w∈Dρ

cwLi

(
1− |w|2

z − w

) .

Then we see that problem (4.6) is equivalent to the denoising problem

minimize
x

1
2‖x− y‖

2
2 + µ‖x‖L(A) . (4.8)

Note that the first term is simply the squared Euclidean distance between y and x in Rn.

The second term is an atomic norm on Rn induced by the linear map of the set of transfer

functions via the measurement operator L.

In order to tractably solve (4.6), we will need computational schemes for approximating

‖x‖L(A). Such computational considerations are treated in Chapter 5. In that chapter, I show

that a sufficiently fine discretization of the unit disk can yield a good approximation for the

solution. In particular, we will need the following proposition proved in Chapter 5.

Proposition 4.2. Let D(ε)
ρ be a finite subset of the unit disc such that for any w ∈ Dρ there exists

a v ∈ D(ε)
ρ satisfying |w − v| ≤ ε. Define

‖x‖L(Aε) = inf


∑

w∈D(ε)
ρ

|cw| : xi =
∑

w∈D(ε)
ρ

cwLi

(
1− |w|2

z − w

) .

Then there exists a constant Cε ∈ [0, 1] such that

Cε‖x‖L(Aε) ≤ ‖x‖L(A) ≤ ‖x‖L(Aε) .
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The set D(ε)
ρ is called an ε-net for the set Dρ. We show in chapter 5 that when Lk(G) = G(eiθk),

Cε is at least (1− 16ρε
π(1−ρ)). Other measurement ensembles can be treated similarly. Chapter 5

gives a way to solve (4.8) approximately.

4.3 Statistical Bounds

Let Li : H 7→ C be a linear functional that serves as a measurement operator for the system

H(z). In this section, let us suppose that we obtain noisy measurements of the form

yi = Li (H(z)) + ωi i = 1, . . . , n.

where ωi is a noise sequence consisting of independent, identically distributed random

variables. In this section, we will specialize our results to the case where L returns samples

from the frequency response at uniformly spaced frequencies:

Lk(H(z)) = H(zk), zk = e
2πik
m , k = 1, . . . , n.

Our goal in this section is to prove that solving the DAST optimization problem yields a

good approximation to the transfer function we are probing. The following theorem provides

a precise statistical guarantee on the performance of our algorithm.

Before going to the proof, let us recall the optimality conditions of atomic soft thresholding

proved in Chapter 2, reproduced here for convenience:

Theorem 4.3. Let Q ⊂ Rn be an arbitrary set of atoms. Suppose that we observe y = x? + ω

where ω ∼ N (0, σ2I). Let x̂ denote the optimal solution of

minimize
x

1
2‖x− y‖

2
2 + µ‖x‖Q
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with µ ≥ ‖ω‖∗Q. Then we have

‖x̂− x?‖22 ≤ 2µ‖x?‖Q (4.9)

‖x̂‖Q ≤ ‖x?‖Q + µ−1〈ω, x̂− x?〉 . (4.10)

We will use these inequalities in the proof of the main theorem.

Theorem 4.4. Let G? be a strictly proper transfer function with bounded Hankel nuclear norm.

Suppose the noise sequence ωi is i.i.d. Gaussian with mean zero and variance σ2. Choose δ ∈ (0, 1)

and set ε = π(1−ρ)δ
16ρ . Let D(ε)

ρ be as in Proposition 4.2 and let ĉ be the optimal solution of (5.29)

with

µ = 2σ

√√√√n log
(

11ρ2

δ(1− ρ)

)
.

Set Ĝ(z) =
∑
w∈D(ε)

ρ
ĉw

1−|w|2
z−w . Then if the set of vectors {L(ϕa) ∈ Rn : a ∈ D(ε)

ρ } spans Rn, we

have

‖Ĝ(z)−G?(z)‖2H2 ≤ 1861 + ρ

1− ρ


√√√√σ2 log

(
11ρ2

(1− ρ)ε

)√
‖ΓG?‖21
n(1− δ)2 + 4‖ΓG?‖21

πn(1− δ)2


with probability 1− e−o(n).

Proof. To upper bound the H2 norm, let us use some properties of functions which admit

atomic decompositions. Note that for any function, H(z) =
∑
w∈D cwϕw(z) with ‖H‖A =
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∑
w∈D |cw|, we have, for any z1, z2 ∈ S,

|H(z1)|2 − |H(z2)|2 = (|H(z1)| − |H(z2)|)(|H(z1)|+ |H(z2)|)

≤ 2|H(z1)−H(z2)|‖H‖H∞

≤ 2

∑
w∈D
|cw||ϕw(z1)− ϕw(z2)|

∑
w∈D
|cw|‖ϕw‖H∞

 , (4.11)

where the last inequality is just the triangle inequality. Now, to upper bound the first term

in (4.11), we could connect the distance between the poles to the distance between the atoms.

Let zj = eiθj , j = 1, 2. Then,

|ϕa(z1)− ϕa(z2)| =
∣∣∣∣∣1− |a|2z1 − a

− 1− |a|2

z2 − a

∣∣∣∣∣
≤ (1− |a|2)

∣∣∣∣∣ z1 − z2
(z1 − a)(z2 − a)

∣∣∣∣∣
≤ (1− |a|2)

(1− |a|)2 |z1 − z2| ≤
1 + ρ

1− ρ |θ1 − θ2| .

Next, we could upper the H∞ norm (4.11) globally. Note that for any a ∈ D, ‖ϕa(z)‖H∞ ≤ 2.

In fact, for z = exp(iθ), |1−|a|
2

z−a | ≤ |
1−|a|2
1−|a| | ≤ 1 + |a| ≤ 2. Using these computations, we finally

have

|H(z1)|2 − |H(z2)|2 ≤ 41 + ρ

1− ρ

∑
w∈D
|cw|

2

|θ1 − θ2|

= 41 + ρ

1− ρ‖H‖
2
A|θ1 − θ2| .
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Let ∆ = G? − Ĝ and θk = 2πk
n . Then we can bound the norm of ∆ as

‖∆‖2H2 = 1
2π

∫ 2π

0
|∆(eiθ)|2dθ

= 1
2π

n−1∑
k=0

∫ θk+1

θk

|∆(eiθ)|2dθ

≤ 1
2π

n−1∑
k=0

∫ θk+1

θk

(
|∆(eiθk)|2 + 41 + ρ

1− ρ‖∆‖
2
A|θ − θk|

)
dθ

= 1
n

n−1∑
k=0
|∆(eiθk)|2 + 4π

n

1 + ρ

1− ρ‖∆‖
2
A .

The inequality here follows from our preceding argument.

Now, in this expression, we need to both upper bound the size of ∆ on the measured

frequencies and its atomic norm. The following chain of inequalities bounds the latter in

terms of the former:

‖∆‖A ≤ ‖G?‖A + ‖Ĝ‖A (4.12)

= ‖G?‖A + ‖L(Ĝ)‖L(Aε) (4.13)

≤ ‖G?‖A + ‖L(G?)‖L(Aε) + µ−1〈ω,L(Ĝ−G?)〉 (4.14)

≤ ‖G?‖A + (1− δ)−1‖L(G?)‖L(A) + µ−1〈ω,L(Ĝ−G?)〉 (4.15)

≤ 2− δ
1− δ‖G?‖A + µ−1〈ω,L(Ĝ−G?)〉 (4.16)

≤ 2− δ
1− δ‖G?‖A + µ−1‖ω‖2

n−1∑
k=1
|∆(eiθk)|2

1/2

. (4.17)

(4.12) is the triangle inequality. (4.13) follows from how we defined Ĝ. (4.14) follows from

Theorem 4.3. (4.15) follows from Proposition 5.14. (4.16) follows because ‖L(H)‖L(A) ≤

‖H‖A for all linear maps L and transfer functions H. (4.17) is Hölder’s inequality. Note that
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the quantity ‖L(G?)‖L(Aε) could be infinite if the set {L(φa) : a ∈ D(ε)
ρ } does not span Rn.

This is precisely what leads to us including this assumption in the theorem statement.

To bound the size of ∆ on the frequency grid, use Theorem 4.3:

1
n

n−1∑
k=1
|∆(eiθk)|2 ≤ 2µ

n
‖L(G?)‖L(Aε) ≤

2µ
n

(1− δ)−1‖G?‖A .

Let ω ∼ N (0, σ2In). Using the well known upper bound for maximum of Gaussian

variables (see, for example [65]), we have

E[‖ω‖∗L(Aε)] = E

 sup
a∈D(ε)

ρ

〈L(ϕa), ω〉

 ≤ σ( sup
a∈Dρ

‖L(ϕa)‖2

)√
2 log |D(ε)

ρ | .

Now, ‖L(ϕa)‖2 ≤
√
n‖ϕa‖H∞ ≤ 2

√
n. Moreover, by a simple volume argument, |D(ε)

ρ | ≤
1024ρ4

π2(1−ρ)2δ2 . To see this, suppose S is a maximal set of points on Dρ which are separated by

at least τ . The maximal size of such a set is at most 4ρ2

τ2 . Moreover, |S| ≥ |D(δ)
ρ |. Now set

τ = ε = π(1−ρ)δ
16ρ . In particular, note that we have E[‖ω‖∗L(Aε)] = 1

2µ.

Now we can put all of the ingredients together.

‖∆‖2H2 ≤
(

1 + 8π‖ω‖22
µ2

1 + ρ

1− ρ

)
1
n

n−1∑
k=1
|∆(eiθk)|2

+ 16π
n(1− δ)2

1 + ρ

1− ρ‖G?‖
2
A

≤
(

1 + 2π1 + ρ

1− ρ

) 8σ
1− δ

√√√√2 log( 1024ρ4

π2(1−ρ)2δ2 )
n

‖G?‖A

+ 16π
n(1− δ)2

1 + ρ

1− ρ‖G?‖
2
A

≤ 591 + ρ

1− ρ


√√√√4σ2 log

(
11ρ2

(1− ρ)δ

)√
‖G?‖2A
n(1− δ)2 + ‖G?‖2A

n(1− δ)2


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as desired.

Applying the inequality ‖G?‖A ≤ 8
π‖ΓG?‖1 completes the proof.

Corollary 4.5. There is a quantity C depending on ρ and σ such that for sufficiently large n

‖Ĝ(z)−G?(z)‖2H2 ≤ C‖ΓG?‖1n
− 1

2

with probability exceeding 1− e−o(n).

Now, let us look the consequence of the theorem. First of all, the right hand side is a parameter

of the number of samples, the Hankel nuclear norm of the true system, and the stability radius

of the true system. Also, if the McMillan degree of G?(z) is d, then we can upper bound the

Hankel nuclear norm by the product of the McMillan degree and the Hankel norm of G?:

‖ΓG?‖1 ≤ d‖ΓG?‖. Second, note that as n tends to infinity, the right hand side tends to zero.

In particular, this means that the discretized algorithm is consistent, and we can quantify the

worst case convergence rate.

4.4 Conclusion

By using the atomic norm framework of [30], this chapter posits a reasonable regularizer

for linear systems. We looked at a computational method to handle such a regularizer, and

analyzed its statistical performance. Since it is closely connected to the Hankel nuclear norm

but is computationally more practical, the atomic norm could be useful in a variety of practical

implementations and also in theoretical analysis.
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5 Algorithms

In the preceding chapters, we concentrated on the theoretical performance of regularization

using an atomic norm penalty, but did not show how one may compute it. The problems

of atomic norm decomposition and regularization are convex optimization problems with

linear and quadratic objectives, and can be efficiently solved if we can test membership in the

constraint sets efficiently. The constraint sets of the primal and dual problems are the sublevel

sets of the atomic and the dual atomic norm. Therefore, it is sufficient to develop efficient

characterizations of the the unit ball of the atomic norm.

For the special case of Fourier measurements, the atomic norm ball has an exact semidef-

inite characterization which I will derive in this chapter. The positive case is classical and

comes from moment theory and the dual theory of positive polynomials. I will review the

results for the positive case and provide the proofs for completeness. We will also see a

semidefinite characterization for the more general complex case using these results. I then

provide a reasonably fast method for solving this SDP via the Alternating Direction Method

of Multipliers (ADMM) [4, 13]. The ADMM implementation given in this chapter can solve

instances with a thousand observations in a few minutes.

Discretization essentially reduces to solving a Lasso problem on an overcomplete grid.

The proofs for discretized atomic soft thresholding (DAST) demonstrate why Lasso is often

successful even for off-grid data. In fact, we will see that solving the Lasso problem on an

oversampled grid of frequencies approximates the solution of the atomic norm minimization

problem to a resolution sufficiently high to guarantee excellent mean-squared error (MSE).

For line spectral estimation, the gridded problem reduces to the Lasso, and by leveraging the

Fast Fourier Transform (FFT), can be rapidly solved with freely available software such as

SpaRSA [106]. A Lasso problem with thousands of observations can be solved in under a
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second using Matlab on a laptop. The prediction error and the localization accuracy for line

spectral estimation both increase as the oversampling factor increases, even if the actual set

of frequencies in the line spectral signal are off the Lasso grid.

In this chapter, we will also see the experimental results using these algorithms on Line

Spectral Signals. Section 5.6 compares and contrasts AST and Lasso, with classical line

spectral algorithms including MUSIC [89],and Cadzow’s [15] and Matrix Pencil [60] methods.

The experiments indicate that both AST and the Lasso approximation outperform classical

methods in low SNR even when we provide the exact model order to the classical approaches.

Moreover, AST has the same complexity as Cadzow’s method, alternating between a least-

squares step and an eigenvalue thresholding step. The discretized Lasso-based algorithm has

even lower computational complexity, consisting of iterations based upon the FFT and simple

linear time soft-thresholding.

Summary and Organization of this chapter

The goal in this chapter is to develop an algorithm to solve the Atomic Soft Thresholding

(AST) problem, defined in Chapter 2:

minimize
x

1
2‖y − x‖

2
2 + τ‖x‖A, (5.1)

and its corresponding dual problem:

maximize
q

1
2
(
‖y‖22 − ‖y − τq‖22

)
subject to ‖q‖∗A ≤ 1.

(5.2)

For certain atomic sets, we can compute the atomic norms efficiently. We will develop

computable characterizations of the atomic norm and its dual for line spectral atomic sets
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defined in Chapter 3. First, let us recall the definition of the trigonometric monomial a(f),
which form the basic atoms for Line Spectral Estimation:

a(f) =


1

ei2πf

...

ei2πf(n−1)

 .

The first part of this chapter gives a computable algebraic characterization of the atomic

norm balls of the following atomic sets derived from these atoms:

A+ = {a(f) | f ∈ T} (5.3)

A = {a(f) exp(i2πφ) | f, φ ∈ T} . (5.4)

The first set A+ is a one dimensional manifold called the trigonometric moment curve and

the second set A is the two dimensional manifold corresponding to a phase-symmetric

trigonometric moment curve. The unit norm ball of the atomic sets are precisely the convex

hulls of the atomic sets. Section 5.1 examines these atomic sets and describes the classical

characterization of the conical hull of A+ which is called the moment cone. This corresponds

to allowable observations for the case of line spectral estimation with nonnegative amplitudes,

or in other words, valid trigonometric moments of a positive measure on the torus T.

Based on these classical results, I derive semidefinite characterizations of the atomic

sets in Section 5.2. As a straightforward consequence, we can write down a semidefinite

characterization of conv(A+). Before stating the result, we will need a bit of notation. Define
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the map Tn : Cn → Cn×n which creates a Hermitian Toeplitz matrix out of its input, that is

Tn(x) =



x1 x2 . . . xn

x∗2 x1 . . . xn−1
...

...
. . .

...

x∗n x∗n−1 . . . x1


In the following, the subscript in Tn may be supressed unless the idea is to explicitly charac-

terize the dependence on n. So we will write it as T (x) or Tx. Also, denote the corresponding

adjoint map by T ∗.

Theorem 5.1 (SDP for Positive Trigonometric Moments). Suppose x = (x0 · · ·xn−1)T ∈ Cn.

Then,

‖x‖A+ =


x0, Tx � 0,

+∞, otherwise.

Note that this is an example when atomic norm is not really a norm on Fn, but is

nevertheless useful. In contrast to conv(A+), the semidefinite characterization of conv(A)

requires some calculation. The characterization of the moment cone allows us to describe

the convex hull of the general atomic moments conv(A) and we will derive the following

semidefinite characterization:

Theorem 5.2 (SDP for General Trigonometric Moments). For x ∈ Cn,

‖x‖A = inf

 1
2n tr(Tn(u)) + 1

2 t

∣∣∣∣∣∣∣
Tn(u) x

x∗ t

 � 0

 . (5.5)

The characterization of atomic norm ball of A can also be derived by working on the dual
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problem, as we shall see in Section 5.3. In fact, for any x, the optimization problem

minimize
q

〈q, x〉

such that ‖q‖∗A ≤ 1.
(5.6)

is the dual characterization which has an optimum value ‖x‖A. For the atomic set of general

trigonometric moments, the constraint set in Equation (5.6)

{q ∈ Cn | ‖q‖∗A ≤ 1} =
{
q ∈ Cn

∣∣∣∣∣ sup
a∈A
〈q, a〉 ≤ 1

}
(5.7)

=

q ∈ Cn
∣∣∣∣∣∣
∣∣∣∣∣∣
n−1∑
j=0

qj exp(i2πjf)

∣∣∣∣∣∣ ≤ 1, for all f ∈ T

 (5.8)

corresponds precisely to the set of complex trigonometric polynomials with a maximum

modulus of 1 and is characterized by the Bounded Real Lemma. We provide details of applying

Alternating Directions Method of Multipliers (ADMM) for solving the SDP for the AST problem

in Section 5.4.

When there are no efficient characterizations, we may resort to a discretized approach

which may be thought of as an approximation to the atomic norm defined by equation (5.6) by

relaxing the infinite linear constraints in the semi-infinite program to a finite set of inequalities.

In Section 5.5, we will look at convergence rates of this approximation for the line spectral

estimation problem and the system identification problem. In this case, the atomic soft

thresholding problem can be approximated by solving a Lasso problem on an overcomplete

grid.

A number of Prony-like techniques have been devised that are able to achieve excellent

denoising and frequency localization even in the presence of noise. In Section 5.6, we will

turn to comparing our ADMM implementation of SDP and DAST by Lasso with these classical
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algorithms. The experiments in this section demonstrate that the proposed estimation algo-

rithms outperform Matrix Pencil, MUSIC and Cadzow’s methods. Both AST and the discretized

Lasso algorithms obtain lower MSE compared to previous approaches, and the discretized

algorithm is much faster on large problems. Furthermore, the semidefinite programming

approach outperforms MUSIC [89] and Cadzow’s technique [16], in terms of the localization

metrics defined by parts (i), (ii) and (iii) of Theorem 3.3.

5.1 Preliminaries

As described in section 3.7.1, the observations in a spectral estimation problem may be

regarded as trigonometric moments of a measure on the torus T = [0, 1].

Definition 5.3 (Trigonometric Moments). Given a measure µ defined on the torus T, the mth

trigonometric moment is defined by

xm =
∫
T
ei2πmfµ(df) (5.9)

By a simple reparametrization, the mth trigonometric moment may also be described as

complex moments
∫
T z

mµ(dz) when we regard µ as a measure supported on the unit circle in

the complex plane. This section will review two classical results for trigonometric moments

due to positive measures.

The first theorem, due to Herglotz gives a complete characterization of the infinite sequence

of Trigonometric moments for positive measures. Since the proof is not too long, I will provide

it here.

Theorem 5.4 (Herglotz Theorem). The sequence of complex numbers {xm}∞m=−∞ are trigono-

metric moments of a positive Borel measure µ on T if and only if the sequence {xm}∞m=−∞ is
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positive definite.

Proof. A sequence {xm} is positive definite if for every n ∈ N, and every sequence (c1, . . . , cn)

of n complex numbers,
∑n
k,l=1 xk−lckc

∗
l ≥ 0. Alternatively, we may write this condition as

Tnx � 0 for every n ∈ N.

Suppose indeed the set {xm} is a sequence of trigonometric moments corresponding to

some measure µ > 0 on T. Then, for any n ∈ N,

n∑
k,l=1

xk−lckc
∗
l =

n∑
k,l=1

ckc
∗
l

∫
exp(i2π(k − l)t)µ(dt)

=
∫  n∑

k=1
ck exp(i2πkt)

 n∑
k=1

cl exp(i2πlt)

∗ µ(dt)

=
∫ ∣∣∣∣∣∣

n∑
k=1

ck exp(i2πkt)

∣∣∣∣∣∣
2

µ(dt) ≥ 0.

Conversely, if the sequence {xm} is positive semidefinite, then for any t ∈ R, we have

Xn(t) = 1
n

n∑
k,l=1

xk−le
i2π(k−l)t ≥ 0

But, we have

Xn(t) =
(n−1)∑

k=−(n−1)

(
1− |k|

n

)
xk exp(i2πkt)

By Fourier Series theory, we have that for every |k| ≤ n,

(
1− |k|

n

)
xk =

∫ 1

0
Xn(t) exp(i2πkt)dt (5.10)
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Define a sequence of measures µn given by

µn(B) =
∫
B
Xn(t)dt

for every Borel subset B ⊂ [0, 1]. The sequence of measures {µn} are tight and therefore

by the Helly selection theorem, there exists a subsequence µnk which converges weakly to a

measure µ on T. Finally, using 5.10 we conclude that {xk} is the sequence of moments for the

measure µ.

The Herglotz theorem characterizes arbitrary positive measures on the torus. However,

for line spectral estimation, we are interested in discrete positive measures, i.e., measures

composed of a finite number of atoms at f1, . . . , fk, so we can write

µ(f) =
k∑
l=1

clξfl

where ξf denotes the point measure at f and {cl} > 0 are the amplitudes. The first n moments

of such a measure concentrated on k atoms corresponds to a k simple combination of atomic

moment sequences a(f). In fact,

xm =
∫
T
ei2πmf

k∑
l=1

clξfl(df)

=
k∑
l=1

cle
i2πflm.

So, the corresponding moment vector x = (x0 · · · xn−1) ∈ Cn given by

x =
k∑
l=1

cla(fl)
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is a simple combination of line spectral atoms. To see when such simple moment vectors

actually correspond to a partially observed sequence of moments of a positive discrete measure,

we will now review a second classical result due to Caratheodory and Toeplitz.

Theorem 5.5 (Caratheodory-Toeplitz theorem, [101, 27, 26]). x ∈ Cn corresponds to the first

n trigonometric moments of a measure µ (i.e., x ∈ cone(A+)) if and only if Tx � 0. Furthermore,

if k = rank(Tx), there exists positive numbers c1, . . . , ck and f1, . . . , fk ∈ T such that

µ =
k∑
l=1

clδ(f − fl)

so that

x =
∫
T
a(f)µ(df)

=
k∑
l=1

cla(fl)

Finally, when k < n, there is a unique extension of x to an infinite positive definite sequence and

only a unique measure µ with x for its moments.

This theorem can be proved using Herglotz theorem [59] and the theorems on flat ex-

tensions of moment sequences studied in [37]. See [57] for an algebraic proof of this

theorem. This theorem guarantees the existence of a unique discrete measure under easily

verifiable conditions. Due to this guarantee, it is possible to write a set of recurrence relations

connecting the moments and algebraically solve for the atoms of this measure, as demon-

strated by Prony [81]. A straightforward corollary of Caratheodory’s theorem is the following

Vandermonde Decomposition for positive definite Toeplitz matrices.
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Corollary 5.6 (Vandermonde Decomposition). Any positive semidefinite Toeplitz matrix P ∈

Cn×n can be represented as follows

P = V DV ∗,

where
V = [a (f1) · · · a (fr)] ,

D = diag ([d1 · · · dr]) ,

dk are real positive numbers, and r = rank(P ).

Proof. Write P as Tn(x) for some x ∈ Cn. By assumption, Tn(x) � 0 and rank(Tn(x)) = r.

Therefore by Caratheodory-Toeplitz theorem, x can be written as
∑r
l=1 dla(fl). Thus,

P = Tn(x) =
r∑
l=1

dlTn(a(fl))

=
r∑
l=1

dla(fl)a(fl)∗

= V DV ∗,

where V and D are defined as in the statement of the theorem.

5.2 SDP for Trigonometric Moments

5.2.1 Positive Trigonometric Moments

As a consequence of the Caratheodory’s characterization of the moment cone, we can prove

the characterization of the the convex hull of A+, as given by Theorem 5.1.

If Tx � 0, then there exists an atomic decomposition x =
∑
l cla(fl) by Caratheodory-

Toeplitz theorem since it is in the conical hull of the atomic set A+. Since we have an invariant
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x0 =
∑
l cl for any such decomposition, we have that

‖x‖A+ = inf

∑
l

cl

∣∣∣∣∣∣ x =
∑
l

cla(fl)

 = x0.

On the other hand, if Tx 6� 0, x 6∈ cone(A+) and thus ‖x‖A+ = +∞. In other words, whenever

x is a valid (partial) sequence of trigonometric moments, the atomic norm is x0. Otherwise, it

is unbounded by definition.

5.2.2 General Trigonometric Moments

For the general trigonometric atoms, let us denote the atoms by two indices for frequency and

phase,

a(f, φ) = a(f) exp(i2πφ)

so that A = {a(f, φ) | f, φ ∈ T} .

Proof of Theorem 5.2. Denote the value of the right hand side of (5.5) by SDP(x). Suppose

x =
∑
k cka(fk, φk) with ck > 0. Defining u =

∑
k cka(fk, 0) and t =

∑
k ck, we note that

T (u) =
∑
k

cka(fk, 0)a(fk, 0)∗ =
∑
k

cka(fk, φk)a(fk, φk)∗.

Therefore,

T (u) x

x∗ t

 =
∑
k

ck

a(fk, φk)

1


a(fk, φk)

1


∗

� 0 (5.11)

Now, 1
n trace(T (u)) = t =

∑
k ck so that SDP (x) ≤

∑
k ck. Since this holds for any

decomposition of x, we conclude that ‖x‖A ≥ SDP(x).
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Conversely, suppose for some u and x,

T (u) x

x∗ t

 � 0 . (5.12)

In particular, T (u) � 0. Form a Vandermonde decomposition

T (u) = V DV ∗

as promised by Lemma 5.6. Since V DV ∗ =
∑
k dka(fk, 0)a(fk, 0)∗ and ‖a(fk, 0)‖2 =

√
n, we

have 1
n tr(T (u)) = tr(D).

Using this Vandermonde decomposition and the matrix inequality (5.12), it follows that x

is in the range of V , and hence

x =
∑
k

wka(fk, 0) = V w

for some complex coefficient vector w = [· · · , wk, · · · ]T . Finally, by the Schur Complement

Lemma, we have

V DV ∗ � t−1V ww∗V ∗

Let q be any vector such that V ∗q = sign(w). Such a vector exists because V is full rank. Then

tr(D) = q∗V DV ∗q � t−1q∗V ww∗V ∗q = t−1

∑
k

|wk|

2

.
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implying that tr(D)t ≥ (
∑
k |wk|)

2. By the arithmetic geometric mean inequality,

1
2n tr(T (u)) + 1

2 t = 1
2 tr(D) + 1

2 t ≥
√

tr(D)t ≥
∑
k

|wk| ≥ ‖x‖A

implying that SDP(x) ≥ ‖x‖A since the previous chain of inequalities hold for any choice of

u, t that are feasible.

5.3 SDP for Trigonometric Polynomials

The dual problem to AST involves trigonometric polynomials instead of moments.

5.3.1 Positive Trigonometric Polynomials

Definition 5.7. A vector q ∈ Cn is a positive trigonometric polynomial if for every f ∈ T,

〈q, a(f)〉 = Re

n−1∑
j=0

qj exp(i2πjf)

 ≥ 0.

Such polynomials have a simple characterization due to spectral factorization theorem.

Theorem 5.8. q ∈ Cn is a positive polynomial if and only if there exists Q � 0 such that

T ∗Q = q.

Proof. Suppose there exists Q � 0 such that T ∗Q = q. Then, for any f ∈ T,

〈q, a(f)〉 = 〈T ∗Q, a(f)〉 = 〈Q,Ta(f)〉.

Since a(f) is a valid moment sequence Ta(f) � 0. Thus, 〈q, a(f)〉 ≥ 0 since the inner product

between two positive nonnegative matrices is nonnegative.
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On the other hand, we can show that Q exists by using the spectral factorization theorem.

Define P (f) = 〈q, a(f)〉. Since P (f) is positive on the unit circle, there exists P̃ (f) =∑n−1
j=0 q̃je

i2πfj such that P (f) = P̃ (f)P̃ (f)∗. Introduce the notation q̃ =
(
q̃0 . . . q̃n−1

)T
∈

Cn so that P̃ (f) = a(f)∗q̃. Define Q = q̃q̃∗ � 0. Now, for any f ∈ T,

P (f) = P̃ (f)P̃ (f)∗

= a(f)∗q̃q̃ ∗ a(f)

= tr(a(f)∗Qa(f))

= tr(Qa(f)a(f)∗)

= 〈Q,T (a(f))〉

= 〈T ∗Q, a(f)〉.

Comparing coefficients, we conclude that indeed q = T ∗Q.

5.3.2 General Trigonometric Polynomials

Recall from (3.6) that the dual atomic norm of a vector v ∈ Cn is the maximum absolute

value of a complex trigonometric polynomial V (f) =
∑n−1
l=0 vle

−2πilf . As a consequence, a

constraint on the dual atomic norm is equivalent to a bound on the magnitude of V (f):

‖v‖∗A ≤ τ ⇔ |V (f)|2 ≤ τ2,∀f ∈ [0, 1].

Equivalently, function q(f) = τ2 − |V (f)|2 is thus a positive trigonometric polynomial. Using

the characterization given by Theorem 5.8, one can derive the following result called the

Bounded Real Lemma. (See for example, Theorem 4.24 in [49].)
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Lemma 5.9 (Bounded Real Lemma). For any given causal trigonometric polynomial V (f) =∑n−1
l=0 vle

−2πilf , |V (f)| ≤ τ if and only if there exists complex Hermitian matrix Q such that

T ∗(Q) = τ2e1 and

Q v

v∗ 1

 � 0.

Here, e1 is the first canonical basis vector with a one at the first component and zeros elsewhere

and v∗ denotes the Hermitian adjoint (conjugate transpose) of v.

Proof. The polynomial |V (f)|2 can be written as

|V (f)|2 = |〈v, a(f)〉|2

= a(f)∗vv∗a(f)

= tr (a(f)∗vv∗a(f))

= 〈vv∗, Ta(f)〉

= 〈T ∗(vv∗), a(f)〉.

Thus, |q(f)|2 = τ2 − |V (f)|2 = 〈τ2e1 − T ∗(vv∗), a(f)〉. Now,Theorem 5.8 promises the

existence of P � 0 such that τ2e1 − T ∗(vv∗) = T ∗P. Equivalently, there exists Q � vv∗ (equal

to P + vv∗) such that τ2e1 = T ∗Q. Using Schur complements, we can rewrite Q � vv∗ asQ v

v∗ 1

 � 0, and this completes the proof.

5.3.3 Deriving the primal characterization from dual

The dual characterization in the previous section via the theory of positive polynomials

provides an alternative route to rederive the SDP characterization of the atomic norm derived
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in section 5.2.2.

Using Lemma 5.9, we rewrite the atomic norm ‖x‖A = sup‖v‖∗A≤1 〈x, v〉 as the following

semidefinite program:

maximizev, Q 〈x, v〉

subject to

Q v

v∗ 1

 � 0, T ∗(Q) = e1.
(5.13)

The dual problem of (5.13) (after a trivial rescaling) is then equal to the atomic norm of x:

‖x‖A = mint,u 1
2(t+ u1)

subject to

T (u) x

x∗ t

 � 0.

Thus, we have another proof of the characterization in Theorem 5.2.

5.4 AST using Alternating Direction Method of Multipliers

Using the characterization of the atomic norm given by Lemma 5.9, we can see that the atomic

denoising problem (2.2) for the set of trigonometric atoms is equivalent to

minimizet,u,x 1
2‖x− y‖

2
2 + τ

2 (t+ u1)

subject to

T (u) x

x∗ t

 � 0.
(5.14)

This semidefinite program (5.14) can be solved by off-the-shelf solvers such as SeDuMi [93]

and SDPT3 [102]. However, these solvers tend to be slow for large problems. So, we will look

at a reasonably efficient algorithm based upon the Alternating Direction Method of Multipliers.
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A thorough survey of the ADMM algorithm is given in [13]. I only present the details

essential to the implementation of atomic norm soft thresholding. To put the problem in an

appropriate form for ADMM, rewrite (5.14) as

minimizet,u,x,Z 1
2‖x− y‖

2
2 + τ

2 (t+ u1)

subject to Z =

T (u) x

x∗ t


Z � 0.

and dualize the equality constraint via an Augmented Lagrangian:

Lρ(t, u, x, Z,Λ) = 1
2‖x− y‖

2
2 + τ

2 (t+ u1)+

〈
Λ, Z −

T (u) x

x∗ t

〉+ ρ

2

∥∥∥∥∥∥∥Z −
T (u) x

x∗ t


∥∥∥∥∥∥∥

2

F

ADMM then consists of the update steps:

(tl+1, ul+1, xl+1)← arg min
t,u,x
Lρ(t, u, x, Z l,Λl)

Z l+1 ← arg min
Z�0
Lρ(tl+1, ul+1, xl+1, Z,Λl)

Λl+1 ← Λl + ρ

Z l+1 −

T (ul+1) xl+1

xl+1∗ tl+1


 .
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The updates with respect to t, x, and u can be computed in closed form:

tl+1 = Z ln+1,n+1 +
(

Λln+1,n+1 −
τ

2

)
/ρ

xl+1 = 1
2ρ+ 1(y + 2ρzl1 + 2λl1)

ul+1 = W

(
T ∗(Z l0 + Λl0/ρ)− τ

2ρe1

)

Here W is the diagonal matrix with entries

Wii =


1
n i = 1

1
2(n−i+1) i > 1

and we introduced the partitions:

Z l =

Z l0 zl1

zl1
∗

Z ln+1,n+1

 and Λl =

Λl0 λl1

λl1
∗ Λln+1,n+1

 .
The Z update is simply the projection onto the positive definite cone

Z l+1 := arg min
Z�0

∥∥∥∥∥∥∥Z −
T (ul+1) xl+1

xl+1∗ tl+1

+ Λl/ρ

∥∥∥∥∥∥∥
2

F

. (5.15)

Projecting a matrix Q onto the positive definite cone is accomplished by forming an eigenvalue

decomposition of Q and setting all negative eigenvalues to zero.

To summarize, the update for (t, u, x) requires averaging the diagonals of a matrix (which

is equivalent to projecting a matrix onto the space of Toeplitz matrices), and hence operations

that are O(n). The update for Z requires projecting onto the positive definite cone and
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requires O(n3) operations. The update for Λ is simply addition of symmetric matrices.

Note that the dual solution ẑ can be obtained as ẑ = y − x̂ from the primal solution x̂

obtained from ADMM by using Lemma 2.7.

5.5 Discretization

In general the atomic sets may not have a computable characterization. Even if there is an

SDP characterization and an efficient implementation using techniques like ADMM, when

the number of samples is larger than a few hundred, the running time of the ADMM method

is dominated by the cost of computing eigenvalues and is usually expensive. This is not

avoidable as there is no cheap way to find projections on the positive definite cone. For very

large problems, we will see that we can use discretization and hence Lasso as an alternative

to the semidefinite program (5.14).

5.5.1 Discretized Atomic Soft Thresholding

Suppose we solve AST (2.2) on a different set Ã (say, an ε-net of A) instead of A. If for some

M > 0,

M−1‖x‖Ã ≤ ‖x‖A ≤ ‖x‖Ã

holds for every x, then Theorem 2.1 still applies with a constant factor M . Our justification for

using the finite dimensional Lasso as an alternative to the general infinite atomic norm soft

thresholding problem relies on approximation guarantees for epsilon-nets of the atomic sets.

To be precise, in the next section we see that M approaches unity as ε→ 0. Thus, the solution

to the discretized atomic soft thresholding (DAST) problem approaches the AST solution.

The following proposition demonstrates that the universal guarantee in Theorem 2.1

continues to hold with only a penalty of a small multiplicative constant when DAST is used in
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place of AST.

Proposition 5.10. Suppose

‖z‖∗Ã ≤ ‖z‖
∗
A ≤M‖z‖∗Ã for every z, (5.16)

or equivalently

M−1‖x‖Ã ≤ ‖x‖A ≤ ‖x‖Ã for every x, (5.17)

then under the same conditions as in Theorem 2.1,

1
n
E‖x̃− x?‖22 ≤

Mτ

n
‖x?‖A

where x̃ is the optimal solution for (2.2) with A replaced by Ã.

Proof. By assumption, E
(
‖w‖∗A

)
≤ τ . Now, (5.16) implies E

(
‖w‖∗

Ã

)
≤ τ. Applying Theorem

2.1, and using (5.17), we get

1
n
E‖x̃− x?‖22 ≤

τ

n
‖x?‖Ã ≤

Mτ

n
‖x?‖A.

5.5.2 Approximated Atomic Norms

In this section, we will see that atomic norms can be approximated by choosing a large

ε-net of atoms instead of the original set of atoms. The proof of approximation and the

characterization of the convergence depends upon using a Euclidean ε cover of the atomic set

A, and the equivalence between Euclidean and atomic norms in finite dimensions.

If A ∈ Fn, there exists C, possibly depending on n such that ‖x‖A ≤ C‖x‖2 for any

choice of atomic set. The minimum volume ellipsoid that circumscribes conv(A) is called the
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Löwner-John ellipsoid after Charles Löwner who discovered the uniqueness of the minimum

volume circumscribing ellipsoid for any convex sets and Fritz John who proved the existence.

This is often a scaled version of the Euclidean ball when the atomic set is symmetric and it

provides an optimal choice of C.

Using the characterization of John, we have the following condition for Euclidean ball to

be the minimum volume circumscribing ellipsoid of conv(A).

Theorem 5.11. If there exists positive numbers λ1, . . . , λm > 0 and atoms a1, . . . , am for m ≥ n

such that
m∑
i=1

λiai = 0 and In =
m∑
i=1

λi(aia∗i ),

the Euclidean ball B = {x | ‖x‖2 ≤ 1} is the unique minimum volume ellipsoid that circumscribes

conv(A). If in addition, A is centrosymmetric, for any x,

‖x‖2 ≤ ‖x‖A ≤
√
n‖x‖2

The conditions in the previous theorem hold for a number of interesting atomic set

including Fourier measurements discussed in Chapter 3, and one may argue that the minimum

volume ellipsoid is often a Euclidean sphere. When the condition in Theorem 5.11 is satisfied,

defining Aε as an ε-net of A, we can write

‖z‖∗A = sup
x∈A
〈z, x〉

≤ sup
x̂∈Aε
〈z, x̂〉+ inf

x̂∈Aε
‖z‖∗A‖x− x̂‖A

≤ sup
x̂∈Aε
〈z, x̂〉+ ‖z‖∗A sup

‖w‖2≤ε
wA

≤ ‖z‖∗Aε +
√
nε‖z‖∗A,
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whence we get ‖z‖∗A ≤ (1 −
√
nε)−1‖z‖∗Aε . Also, since Aε ⊂ A, by definition ‖z‖∗Aε ≤ ‖z‖

∗
A.

Combining these two, we have the following approximation

‖z‖∗Aε ≤ ‖z‖
∗
A ≤ (1−

√
nε)−1‖z‖∗Aε . (5.18)

We will need the following lemma to restate the ε approximation in terms of the atomic

norm, instead of dual.

Lemma 5.12. ‖z‖∗A ≤M‖z‖∗Ã for every z iff M−1‖x‖Ã ≤ ‖x‖A for every z.

Proof. Let us show the forward implication – the converse will follow since the dual of the

dual norm is again the primal norm. By (2.5), for any x, there exists a z with ‖z‖∗
Ã
≤ 1 and

〈x, z〉 = ‖x‖Ã. So,

M−1‖x‖Ã = M−1〈x, z〉

≤M−1‖z‖∗A‖x‖A by (2.5)

≤ ‖x‖A by assumption.

Now, we can write the approximation for atomic norm. For any x,

(1−
√
nε)‖x‖Aε ≤ ‖x‖A ≤ ‖x‖Aε . (5.19)

While this method is generic, simpler and sometimes stronger arguments may be possible

for specific atomic sets. In the succeeding sections, we use techniques similar to what we just

outlined and characterize the atomic norm approximation for the atomic sets for line spectral

estimation and system identification.
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5.5.3 DAST for Line Spectral Signals

To proceed, pick a uniform grid of N frequencies and form

AN =
{
am/N,φ

∣∣∣ 0 ≤ m ≤ N − 1
}
⊂ A

and solve (2.2) on this grid. i.e., we solve the problem

minimize
1
2‖x− y‖

2
2 + τ‖x‖AN . (5.20)

To see why this is to our advantage, define Φ be the n×N Fourier matrix with mth column

am/N,0. Then for any x ∈ Cn we have ‖x‖AN = min {‖c‖1 : x = Φc}. So, we solve

minimize
1
2‖Φc− y‖

2
2 + τ‖c‖1. (5.21)

for the optimal point ĉ and set x̂N = Φĉ or the first n terms of the N term discrete Fourier

transform (DFT) of ĉ. Furthermore, Φ∗z is simply the N term inverse DFT of z ∈ Cn. This

observation coupled with Fast Fourier Transform (FFT) algorithm for efficiently computing

DFTs gives a fast method to solve (5.20), using standard compressed sensing software for

`2 − `1 minimization, for example, SparSA [106].

Because of the relatively simple structure of the atomic set, the optimal solution x̂ for

(5.20) can be made arbitrarily close to (5.14) by picking N a constant factor larger than n.

In fact, the following section furnishes the proof that the atomic norms induced by A and a

discretized version AN are equivalent.

Due to the efficiency of the FFT, the discretized approach has a much lower algorithmic

complexity than either Cadzow’s alternating projections method or the ADMM method de-
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scribed in section 5.4, which each require computing an eigenvalue decomposition at each

iteration. Indeed, fast solvers for (5.21) converge to an ε optimal solution in no more than

1/
√
ε iterations. Each iteration requires a multiplication by Φ and a simple “shrinkage” step.

Multiplication by Φ or Φ∗ requires O(N logN) time and the shrinkage operation can be

performed in time O(N).

This fast form of basis pursuit has been proposed by several authors. However, analyzing

this method with tools from compressed sensing has proven daunting because the matrix Φ

is nowhere near a restricted isometry. Indeed, as N tends to infinity, the columns become

more and more coherent. However, common sense says that a larger grid should give better

performance, for both denoising and frequency localization! Indeed, by appealing to the

atomic norm framework, makes it possible to show exactly this point: the larger one makes N ,

the closer one approximates the desired atomic norm soft thresholding problem. Moreover,

we do not have to choose N to be too large in order to achieve nearly the same performance

as the AST.

Approximation of the Dual Atomic Norm

Note that the dual atomic norm of w is given by

‖w‖∗A =
√
n sup
f∈[0,1]

∣∣∣Wn(ei2πf )
∣∣∣ . (5.22)

i.e., the maximum modulus of the polynomial Wn defined by

Wn(ei2πf ) = 1√
n

n−1∑
m=0

wme
−i2πmf . (5.23)
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Treating Wn as a function of f , with a slight abuse of notation, define

‖Wn‖∞ := sup
f∈[0,1]

∣∣∣Wn(ei2πf )
∣∣∣ .

We will see that we can approximate the maximum modulus by evaluating Wn in a uniform

grid of N points on the unit circle. To show that as N becomes large, the approximation

is close to the true value, let us bound the derivative of Wn using Bernstein’s inequality for

polynomials.

Theorem 5.13 (Bernstein, See, for example [88]). Let pn be any polynomial of degree n with

complex coefficients. Then,

sup
|z|≤1
|p′(z)| ≤ n sup

|z|≤1
|p(z)|.

Note that for any f1, f2 ∈ [0, 1], we have

∣∣∣Wn(ei2πf1)
∣∣∣− ∣∣∣Wn(ei2πf2)

∣∣∣ ≤ ∣∣∣ei2πf1 − ei2πf2
∣∣∣ ‖W ′n‖∞

= 2| sin(2π(f1 − f2))|‖W ′n‖∞

≤ 4π(f1 − f2)‖W ′n‖∞

≤ 4πn(f1 − f2)‖Wn‖∞,

where the last inequality follows by Bernstein’s theorem. Letting s take any of the N values

0, 1
N . . . , N−1

N , we see that,

‖Wn‖∞ ≤ max
m=0,...,N−1

∣∣∣Wn

(
ei2πm/N

)∣∣∣+ 2πn
N
‖Wn‖∞.
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Since the maximum on the grid is a lower bound for maximum modulus of Wn, we have

max
m=0,...,N−1

∣∣∣Wn

(
ei2πm/N

)∣∣∣ ≤ ‖Wn‖∞ (5.24)

≤
(

1− 2πn
N

)−1
max

m=0,...,N−1

∣∣∣Wn

(
ei2πm/N

)∣∣∣
≤
(

1 + 4πn
N

)
max

m=0,...,N−1

∣∣∣Wn

(
ei2πm/N

)∣∣∣ . (5.25)

Thus, for every w,

‖w‖∗AN ≤ ‖w‖
∗
A ≤

(
1− 2πn

N

)−1
‖w‖∗AN (5.26)

or equivalently, for every x,

(
1− 2πn

N

)
‖x‖AN ≤ ‖x‖A ≤ ‖x‖AN (5.27)

(
1− 2πn

N

)
‖x‖AN ≤ ‖x‖A ≤ ‖x‖AN ,∀x ∈ Cn (5.28)

Using Proposition 5.10 and (3.14), we conclude

1
n
E‖x̂N − x?‖2

2 ≤
σ
(

log(n)+1
log(n)

)
‖x?‖A

√
n log(n) + n log(4π log(n))

n
(
1− 2πn

N

) = O

(
σ

√
log(n)
n

‖x?‖A(
1− 2πn

N

))

5.5.4 DAST for System Identification

The following proposition asserts that we can approximate this finite dimensional atomic

norm defined the atomic set of measurements of single pole systems via a sufficiently fine

discretization of the unit disk.
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Proposition 5.14. Let D(ε)
ρ be a finite subset of the unit disc such that for any w ∈ Dρ there

exists a v ∈ D(ε)
ρ satisfying |w − v| ≤ ε. Define

‖x‖L(Aε) = inf


∑

w∈D(ε)
ρ

|cw| : xi =
∑

w∈D(ε)
ρ

cwLi

(
1− |w|2

z − w

) .

Then there exists a constant Cε ∈ [0, 1] such that

Cε‖x‖L(Aε) ≤ ‖x‖L(A) ≤ ‖x‖L(Aε) .

The set D(ε)
ρ is called an ε-net for the set Dρ. We will see that when Lk(G) = G(eiθk), Cε is at

least (1− 16ρε
π(1−ρ)). Other measurement ensembles can be treated similarly.

When we replace ‖x‖L(A) with its discretized counterpart ‖x‖L(A) in (4.8),

minimize
x

1
2‖x− y‖

2
2 + µ‖x‖L(Aε)

is equivalent to

minimize
c

1
2‖Mc− y‖22 + µ

∑
w∈D(ε)

ρ

|cw| (5.29)

where

Mij = Li
(

1−|wj |2
z−wj

)

and j indexes the set D(ε)
ρ . That is M is an n× |D(ε)

ρ | matrix. Problem (5.29) is a weighted `1

regularization problem with real or complex data depending on specific problem.

This DAST problem can be solved very efficiently with a variety of off-the-shelf tools in-

cluding SPARSA [106], FPC [58] or even more general purpose packages such as YALMIP [71]

or CVX [55]. DAST yields an approximate solution to problem (4.6), and, as we will see, yields
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a statistically consistent estimate provided the parameter ε is adjusted to meet the desired

numerical accuracy.

As in section 5.5.2, the proof of proposition 5.14 depends upon connecting the Euclidean

distance between the atoms indexed by the discretization of the unit disc to the distances

induced by the atomic norm. We already know from theorem 4.1 in Chapter 4 that the Hankel

nuclear norm and the atomic norm are equivalent. So, we will need the following lemma

that connects the Hankel nuclear norm of the atomic functions {ϕa} to the distances in the

complex planes for poles a ∈ C.

Lemma 5.15. For any a, b ∈ Dρ,

‖Γϕa − Γϕb‖1 ≤
2ρ

1− ρ |a− b| . (5.30)

Proof. The Hankel operator for ϕa(z) is given by the semi-infinite, rank one matrix

(1− |a|2)



1 a a2 a3 · · ·

a a2 a3 a4 · · ·

a2 a3 a4 a5 · · ·
...

. . .


= (1− |a|2)



1

a

a2

a3

...





1

a

a2

a3

...



T

.

Let ζa =
√

1− |a|2
[

1 a a2 a3 · · ·
]T

. Note that ζa ∈ `2 with norm equal to 1. Also note

that we have

〈ζa, ζb〉 =
√

1− |a|2
√

1− |b|2
1− āb . (5.31)
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Then we have

‖Γϕa − Γϕb‖1 = ‖ζaζTa − ζbζTb ‖1

= ‖ζa(ζa − ζb)T + (ζa − ζb)ζTb ‖1 (5.32a)

≤ ‖ζa(ζa − ζb)T ‖1 + ‖(ζa − ζb)ζTb ‖1 (5.32b)

= 2‖ζa − ζb‖`2 (5.32c)

= 2
√

2

√
1−Re

√
1− |a|2

√
1− |b|2

1− āb (5.32d)

≤ 2ρ
1− ρ |a− b|

Here, (5.32b) is the triangle inequality. (5.32c) follows because the nuclear norm of a rank

one operator is equal to the product of the `2 norm of the factors. (5.32d) follows from (5.31).

The final inequality follows from analyzing the taylor series of the preceding expression.

Now, we are ready to prove our main proposition.

Proof of Proposition 5.14

First note that for any atomic sets A ⊂ A′, ‖x‖A′ ≤ ‖x‖A. The harder part of this proposition

is the lower bound. To proceed, let us use the dual norm.

Let D(τ)
ρ be a subset of Dρ such that for every a ∈ Dρ, there exists an â ∈ D(τ)

ρ satisfying

|a− â| ≤ τ . For each a ∈ Dρ, denote â as the closest point in D(τ)
ρ to a.

Now observe that

‖L(ϕâ − ϕa)‖L(A) ≤ ‖ϕâ − ϕa‖A ≤
8
π
‖Γϕâ − Γϕa‖1 ≤

16ρτ
π(1− ρ) .
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Here, the first inequality follows from the reasoning in Section 4.2.3. The second inequality is

Theorem 4.1, and the final inequality is by (5.30).

We can then compute

‖z‖∗L(A) = sup
a∈Dρ
〈L(ϕa), z〉

= sup
a∈Dρ
〈L(ϕâ), z〉+ 〈L(ϕa − ϕâ), z〉

≤ sup
a∈D(τ)

ρ

〈L(ϕâ), z〉+ sup
a∈Dρ
〈L(ϕa − ϕâ), z〉

= ‖z‖∗L(Aτ ) + sup
a∈Dρ
〈L(ϕa − ϕâ), z〉

≤ ‖z‖∗L(Aτ ) + sup
a∈Dρ

‖L(ϕâ − ϕa)‖L(A)‖z‖∗L(A)

≤ ‖z‖∗L(Aτ ) + 16ρτ
π(1− ρ)‖z‖

∗
L(A) .

Rearranging both sides of this inequality gives

‖z‖∗L(A) ≤ C
−1
τ ‖z‖∗L(Aτ )

with Cτ = 1− 16ρτ
π(1−ρ) , completing the proof.

5.6 Experiments for Line Spectral Estimation

I compared the performance of AST, the discretized Lasso approximation, the Matrix Pencil,

MUSIC and Cadzow’s method, both in terms of the mean squared estimation error as in

Theorem 3.2 and frequency localization. For my experiments, I generated k normalized fre-

quencies f?1 , . . . , f
?
k uniformly randomly chosen from [0, 1] such that every pair of frequencies
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are separated by at least 1/2n. The signal x? ∈ Cn is generated according to (3.1) with k

random amplitudes independently chosen from χ2(1) distribution (squared Gaussian). All of

our sinusoids were then assigned a random phase (equivalent to multiplying c?k by a random

unit norm complex number). Then, the observation y is produced by adding complex white

gaussian noise w such that the input signal to noise ratio (SNR) is −10,−5, 0, 5, 10, 15 or 20

dB. We compare the average MSE of the various algorithms in 20 trials for various values of

number of observations (n = 64, 128, 256), and number of frequencies (k = n/4, n/8, n/16).

AST needs an estimate of the noise variance σ2 to pick the regularization parameter

according to (3.14). In many situations, this variance is not known to us a priori. However,

we can construct a reasonable estimate for σ when the phases are uniformly random. It is

known that the autocorrelation matrix of a line spectral signal (see, for example Chapter 4 in

[92]) can be written as a sum of a low rank matrix and σ2I if we assume that the phases are

uniformly random. Since the empirical autocorrelation matrix concentrates around the true

expectation, we can estimate the noise variance by averaging a few smallest eigenvalues of

the empirical autocorrelation matrix. For the following experiments, I formed the empirical

autocorrelation matrix using the MATLAB routine corrmtx using a prediction order m = n/3

and averaging the lower 25% of the eigenvalues, and used this estimate in equation (3.14) to

determine the regularization parameter for both the AST and Lasso experiments.

First, I implemented AST using the ADMM method and used the stopping criteria described

in [13] and set ρ = 2 for all experiments, and used the dual solution ẑ to determine the

support of the optimal solution x̂ using the procedure described in Section 3.3. Once the

frequencies f̂l are extracted, I ran the least squares problem minimizeα‖Uα − y‖2 where

Ujl = exp(i2πjf̂l) to obtain a debiased solution. After computing the optimal solution αopt,

one can compute the prediction x̂ = Uαopt.

After implementing Lasso, I obtained an estimate x̂ of x? from y by solving the optimization
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problem (5.20) with debiasing. I used the algorithm described in Section 5.5.3 with grid of

N = 2m points where m = 10, 11, 12, 13, 14 and 15. Because of the basis mismatch effect, the

optimal copt has significantly more non-zero components than the true number of frequencies.

However, we can observe that the frequencies corresponding to the non-zero components

of copt cluster around the true ones. We therefore extract one frequency from each cluster

of non-zero values by identifying the grid point with the maximum absolute copt value and

zero everything else in that cluster. I then ran a debiasing step which solves the least squares

problem minimizeβ‖ΦSβ − y‖2 where ΦS is the submatrix of Φ whose columns correspond

to frequencies identified from copt. This gave the estimate x̂ = ΦSβopt. I used the freely

downloadable implementation of SpaRSA to solve the Lasso problem. A stopping parameter

of 10−4, but otherwise used the default parameters.

I implemented Cadzow’s method as described by the pseudocode in [8], the Matrix

Pencil as described in [60] and MUSIC [89] using the MATLAB routine rootmusic. All these

algorithms need an estimate of the number of sinusoids. Rather than implementing a heuristic

to estimate k, I fed the true k to our solvers. This provides a huge advantage to these algorithms.

Neither AST or the Lasso based algorithm are provided the true value of k, and the noise

variance σ2 required in the regularization parameter is estimated from y.

Let {ĉl} and {f̂l} denote the amplitudes and frequencies estimated by any of the algorithms

- AST, MUSIC or Cadzow. I used the following error metrics to characterize the frequency

localization of various algorithms:

(i) Sum of the absolute value of amplitudes in the far region F , m1 =
∑
l:f̂l∈F |ĉl|

(ii) The weighted frequency localization error, m2 =
∑
l:f̂l∈Nj |ĉl|{minfj∈T d(fj , f̂l)}2

(iii) Error in approximation of amplitudes in the near region, m3 =
∣∣∣cj −∑l:f̂l∈Nj ĉl

∣∣∣
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These are precisely the quantities that we prove tend to zero in Theorem 3.3.
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Figure 5.1: MSE vs SNR plots: This graph compares MSE vs SNR for a subset of experiments
with n = 128 samples. From top left, clockwise, the plots are for combinations of 8, 16, and
32 sinusoids with amplitudes and frequencies sampled at random.

Figure 5.1 shows MSE vs SNR plots for a subset of experiments when n = 128 time

samples are taken to take a closer look at the differences. It can be seen from these plots that

the performance difference between classical algorithms such as MUSIC and Cadzow with

respect to the convex optimization based AST and Lasso is most pronounced at lower sparsity

levels. When the noise dominates the signal (SNR ≤ 0 dB), all the algorithms are comparable.

However, AST and Lasso outperform the other algorithms in almost every regime.
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Figure 5.2: (a) Plot of MSE vs SNR for Lasso at different grid sizes for a subset of experiments
with n = 128, k = 16
(b) Lasso Frequency localization with n = 32, k = 4, SNR = 10 dB. Blue represents the true
frequencies, while red are given by Lasso. For better visualization, we threshold the Lasso
solution by 10−6.

Note that the denoising performance of Lasso improves with increased grid size as shown

in the MSE vs SNR plot in Figure 5.2(a). The figure shows that the performance improvement

for larger grid sizes is greater at high SNRs. This is because when the noise is small, the dis-

cretization error is more dominant and finer gridding helps to reduce this error. Figures 5.2(a)

and (b) also indicate that the benefits of increasing discretization levels are diminishing with

the grid sizes, at a higher rate in the low SNR regime, suggesting a tradeoff among grid size,

accuracy, and computational complexity.

Finally, Figure 5.2(b) provides numerical evidence supporting the assertion that frequency

localization improves with increasing grid size. Lasso identifies more frequencies than the
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true ones due to basis mismatch. However, these frequencies cluster around the true ones,

and more importantly, finer discretization improves clustering, suggesting over-discretization

coupled with clustering and peak detection as a means for frequency localization for Lasso.

This observation does not contradict the results of [33] where the authors look at the full

Fourier basis (N = n) and the noise-free case. This is the situation where discretization effect

is most prominent. We instead look at the scenario where N � n.

Figure 5.3 shows how the error metrics vary with increasing SNR for AST, MUSIC and

Cadzow. The plots only show experiments with n = 256 samples. These plots demonstrate

that AST localizes frequencies substantially better than MUSIC and Cadzow even for low

signal to noise ratios as there is very little energy in the far region of the frequencies (m1) and

has the smallest weighted mean square frequency deviation (m2). Although we have plotted

the average value in these plots, we observed spikes in the plots for Cadzow’s algorithm as

the average is dominated by the worst performing instances. These large errors are due to the

numerical instability of polynomial root finding.

I use performance profiles to summarize the behavior of the various algorithms across all of

the parameter settings. Performance profiles provide a good visual indicator of the relative

performance of many algorithms under a variety of experimental conditions[39]. Let P be

the set of experiments and let MSEs(p) be the MSE of experiment p ∈ P using the algorithm

s. Then the ordinate Ps(β) of the graph at β specifies the fraction of experiments where the

ratio of the MSE of the algorithm s to the minimum MSE across all algorithms for the given

experiment is less than β, i.e.,

Ps(β) = # {p ∈ P : MSEs(p) ≤ βmins MSEs(p)}
#(P)

From the performance profile in Figure 5.4(a), we see that AST is the best performing
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Figure 5.3: For n = 256 samples, the plots from left to right in order measure the average
value over 20 random experiments for the error metrics m1,m2 and m3 respectively. The top,
middle and the bottom third of the plots respectively represent the subset of the experiments
with the number of frequencies k = 16, 32 and 64.
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Figure 5.4: (a) Performance Profile comparing various algorithms and AST. (b) Performance
profiles for Lasso with different grid sizes.

algorithm, with Lasso coming in second. Cadzow does not perform as well as AST, even

though it is fed the true number of sinusoids. When Cadzow is fed an incorrect k, even off

by 1, the performance degrades drastically, and never provides adequate mean-squared error.

Figure 5.4(b) shows that the denoising performance improves with grid size.
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Figure 5.5: Performance Profiles for AST, MUSIC and Cadzow. (a) Sum of the absolute value
of amplitudes in the far region (m1) (b) The weighted frequency localization error, m2 (c)
Error in approximation of amplitudes in the near region, m3

The performance profiles in Figure 5.5 show that AST is the best performing algorithm for

all the three metrics for frequency localization. AST in fact outperforms MUSIC and Cadzow

by a substantial margin for metrics m1 and m2.
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6 Conclusion and Future Work

The convex optimization perspective on problems in signal processing and systems holds a lot

of promise. This work forms the rudiments of continuous sparse recovery which underlies a

number of estimation problems in parametric signal processing, systems theory and machine

learning. In fact, using the atomic norm framework introduced by [30], we were able to revisit

classical problems and empirically and theoretically demonstrate performance favorable to

and comparable to the state-of-art.

The primary contribution of this thesis is a novel way to analyze regularization with convex

penalties for the case of continuous dictionaries that occur naturally in several problems. In

fact, we saw that the recovery performance is more tied to the target we wish to estimate

and not the arbitrary coherence of the atomic set. This turns the attention away from

global properties of dictionaries which answer the question “Which dictionaries enable sparse

recovery using relaxations?” to properties of signals. By employing a local coherence condition

characterized by minimum separation between frequencies for line spectral signals, we instead

ask question “Which target signals are recoverable using convex relaxations?”.

However, we have only scratched the surface of what is possible by continuing this line of

inquiry. In [97], the authors extended the work descrived in this thesis to show that using

the atomic norm framework, we could achieve continuous compressed sensing using Fourier

measurements. My theoretical analysis of the optimal performance for continuous sparse

recovery is heavily tied to Fourier measurements and properties of trigonometric polynomials

derived in [20, 19]. Future work should explore abstract conditions when we can guarantee

similarly optimal rates.

Though chapter 3 makes significant progress at understanding the theoretical limits of line-

spectral estimation and superresolution, the bounds could still be improved. For instance, it
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remains open as to whether the logarithmic term in Theorem 3.2 can be improved to log(n/k).

Deriving such an upper bound or improving our minimax lower bound would provide an

interesting direction for future work. Additionally, it is not clear if our localization bounds in

Theorem 3.3 have the optimal dependence on the number of sinusoids k. For instance, one

expects that the condition on signal amplitudes for approximate support recovery should not

depend on k, by comparison with similar guarantees that have been established for Lasso [24].

It is reasonable to conjecture that for a large enough regularization parameter, there should

will be no spurious recovered frequencies in the solution. That is, there should be no non-zero

coefficients in the “far region” F in Theorem 3.3. Future work should investigate whether

better guarantees on frequency localization are possible.

The analysis in chapter 4 also focused on the particular case of sampling the frequency

response at regular intervals. While this example contains the critical ingredients to computing

convergence rate, it is not straightforward to extend to the other sampling models described

in Section 4.2.3. A useful line of study would extend this analysis to estimating transfer

functions from pairs of input-output time series. The rates derived demonstrate that the

DAST algorithm is asymptotically consistent, but is quite crude. It may be possible to improve

the rates by leveraging more of the geometry of the set of single-pole transfer functions. It

would be interesting to find reasonable lower-bounds on the reconstruction error from limited

measurements, and to see how close we can match these worst-case estimates via a new

analysis.

Algorithmically, the success of the method depends on whether we can efficiently compute

atomic norms. We saw that we can sometimes get exact semidefinite characterizations and

provided scalable algorithms. We also saw that discretization approximates the solution

although it does not yield as sparse a solution as the exact approach. An interesting line of

work is showing how to bootstrap an approximate solution from a fast discretization algorithm
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and incrementally increase the accuracy of the solution. While gridding enables us to quickly

solve atomic norm problems, a main drawback is that we can never exactly localize the

true composing atoms without an extremely fine grid. One recent proposal to enable such a

localization uses a linearization technique to simultaneously fit a model on the grid points and

at the derivatives of the transfer functions at these grid points [50]. It would be interesting to

see whether this argument can give rigorous guarantees of localization for general atomic

sets.

Analysis of the convergence of greedy algorithms provides yet another fruitful direction

for scaling the performance of atomic norm regularization. While there is already some

interesting work on employing greedy methods for atomic norms [99, 82], the proof of

convergence depends upon global restricted smoothness property. It would be interesting to

pursue improvements to this assumption.



121

A Appendix

In this section, I collect useful results about the dual polynomial for line spectral signals from

previous work, which is used in the analysis in Chapter 3. For some of these theorems, I

also derive some useful corollaries for some of these theorems which we used. In addition to

Theorem 3.6, we will need another result in [19] where the authors show the existence of a

trigonometric polynomial Q1 that is linear in each Nj which is also an essential ingredient in

the proofs.

Theorem A.1 (Lemma 2.7 in [19]). For any f1, . . . , fk satisfying (3.2) and any sign vector

v ∈ Ck with |vj | = 1, there exists a polynomial Q1 = 〈q1, a(f)〉 for some q1 ∈ Cn with the

following properties:

1. For every f ∈ Nj , there exists a numerical constant C1
a such that

|Q1(f)− vj(f − fj)| ≤
n

2C
1
a(f − fj)2 (A.1)

2. For f ∈ F , there exists a numerical constant C1
b such that

|Q1(f)| ≤ C1
b

n
. (A.2)

We will also need the following straightforward consequence of the constructions of the

polynomials in Theorem 3.6, Theorem A.1, and Section 3.7.4.

Lemma A.2. There exists a numerical constant C such that the constructed Q(f) in Theorem



122

3.6, Q1(f) in Theorem A.1, and Q?j (f) in Section 3.7.4 satisfy respectively

‖Q(f)‖1 :=
∫ 1

0
|Q(f)|df ≤ Ck

n
(A.3)

‖Q1(f)‖1 ≤
Ck

n2 (A.4)

‖Q?j‖1 ≤
Ck

n
. (A.5)

Proof. I will give a detailed proof of (A.3), and list the necessary modifications for proving

(A.4) and (A.5). The dual polynomial Q(f) constructed in [20] is of the form

Q (f) =
∑
fj∈T

αjK
(
f − fj

)
+
∑
fj∈T

βjK
′ (f − fj) (A.6)

where K (f) is the squared Fejér kernel (recall that m = (n− 1)/2)

K (f) =

sin
((

m
2 + 1

)
πf
)

(
m
2 + 1

)
sin (πf)


4

and for n ≥ 257, the coefficients α ∈ Ck and β ∈ Ck satisfy [20, Lemma 2.2]

‖α‖∞ ≤ Cα

‖β‖∞ ≤ Cβ
n

for some numerical constants Cα and Cβ. Using (A.6) and triangle inequality, we bound
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‖Q(f)‖1 as follows:

‖Q(f)‖1 =
∫ 1

0
|Q (f)| df

≤ k ‖α‖∞
∫ 1

0
|K (f)| df + k ‖β‖∞

∫ 1

0

∣∣K ′ (f)
∣∣ df (A.7)

≤ Cαk

∫ 1

0
|K (f)| df + Cβ

n
k

∫ 1

0

∣∣K ′(f)
∣∣ df, (A.8)

To continue, note that
∫ 1

0 |K(f)|df =
∫ 1

0 |G(f)|2df =: ‖G(f)‖22 where G(f) is the Fejér

kernel, since K(f) is the squared Fejér kernel. We can write

G(f) =

sin
(
π
(
m
2 + 1

)
f
)

(
m
2 + 1

)
sin(πf)


2

=
m/2∑

l=−m/2
gle
−i2πfl (A.9)

where gl =
(
m
2 + 1− |l|

)
/
(
m
2 + 1

)2
. Now, by using Parseval’s identity, we obtain

∫ 1

0
|K(f)|df =

∫ 1

0
|G(f)|2df =

m/2∑
l=−m/2

|gl|2

= 1(
m
2 + 1

)4

(m
2 + 1

)2
+ 2

m/2∑
l=1

(
m

2 + 1− l
)2


= 1(
m
2 + 1

)4

(m
2 + 1

)2
+ 2

m/2∑
l=1

l2


≤ C

n
(A.10)

for some numerical constant C when n = 2m+ 1 ≥ 10.

Now let us turn our attention to
∫ 1

0 |K ′(f)|df . Since K(f) = G(f)2, we have

∫ 1

0
|K ′(f)|df = 2

∫ 1

0
|G(f)G′(f)|df ≤ 2‖G(f)‖2‖G′(f)‖2 (A.11)
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We have already established that ‖G(f)‖22 ≤ C/n. Let us now show that ‖G′(f)‖22 ≤ C ′n.

Differentiating the expression for G(f) in (A.9), we get

G′(f) = −2πi
m/2∑

l=−m/2
lgle
−i2πfl

Therefore, by applying Parseval’s identity again, we get

‖G′(f)‖22 = 4π2
m/2∑

l=−m/2
l2|gl|2

≤ π2m2
m/2∑

l=−m/2
|gl|2

≤ C ′n

Plugging back into (A.11) yields

∫ 1

0
|K ′(f)|df ≤ C (A.12)

for some constant C. Combining (A.12) and (A.10) with (A.8) gives the desired result in

(A.3).

The dual polynomial Q1(f) is also of the form (A.6) with coefficient vectors α1 and β1,

which satisfy [19, Proof of Lemma 2.7]

‖α1‖∞ ≤
Cα1

n
,

‖β1‖∞ ≤
Cβ1

n2 .

Combining the above two bounds with (A.7), (A.12) and (A.10) gives the desired result in
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(A.4).

The last polynomial Q?j also has the form (A.6) with coefficient vectors α? and β?. Accord-

ing to [52, Proof of Lemma 2.2], these coefficients satisfy

‖α?‖∞ ≤ Cα? ,

‖β?‖∞ ≤
Cβ?
n
,

which yields (A.5) following the same argument leading to (A.3).

Using Lemma A.2, we can derive the estimates we need in the following lemma.

Lemma A.3. Let ν = µ̂ − µ be the difference measure. Then, there exists numerical constant

C > 0 such that

∣∣∣∣∣
∫ 1

0
Q(f)ν(df)

∣∣∣∣∣ ≤ Ckτ

n
(A.13)∣∣∣∣∣

∫ 1

0
Q1(f)ν(df)

∣∣∣∣∣ ≤ Ckτ

n2 (A.14)∣∣∣∣∣
∫ 1

0
Q?j (f)ν(df)

∣∣∣∣∣ ≤ Ckτ

n
. (A.15)

Proof. Let Q0 = 〈q0, a(f)〉 be a general trigonometric polynomial associated with q0 ∈ Cn.
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Then,

∣∣∣∣∣
∫ 1

0
Q0(f)ν(df)

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0
〈q0, a(f)〉ν(df)

∣∣∣∣∣
=
∣∣∣∣∣〈q0,

∫ 1

0
a(f)ν(df)〉

∣∣∣∣∣
= |〈q0, e〉|

= |〈Q0(f), E(f)〉|

≤ ‖Q0(f)‖1‖E(f)‖∞ .

The penultimate equality follows from Parseval’s theorem and the last inequality is an applica-

tion of Hölder’s inequality. Then, the result follows by using Lemma A.2 and (3.20).
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