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Abstract

Many high dimensional phenomena observed in applications are simple and can be approxi-
mated by a small combination of a potentially infinite number of building blocks or atoms. It
is possible to estimate such simple objects robustly from a limited number of noisy measure-
ments. Atomic norm regularization proposed in this thesis is a convex optimization problem
that can be used for deriving efficient estimators of such high dimensional structures in a
large number of cases.

This thesis provides a general approach to regularization using an atomic norm penalty
which unifies previous literature on high dimensional statistics. We will revisit two fundamen-
tal problems in signal processing and systems theory — line spectral estimation and system
identification, which are classically treated as nonlinear parameter estimation problems. We
will see that the convex approach proposed in this thesis can provide a principled way of
tackling these problems and provide optimal theoretical guarantees in the presence of noise.
In contrast, parametric approaches often need to estimate the number of atoms or the model
order and need heuristics to robustify nonlinear estimation.

The approach in this thesis can be thought of as a generalization of the Lasso estimator
for handling continuous infinite dimensional sparse recovery problems. For the problem of
line spectral estimation, I will provide efficient algorithms based on an exact semidefinite
characterization of the proposed estimator and also more generally show that discretization

provides a scalable alternative to approximate the solution for a number of problems.



1 Introduction

We live in a world of data abundance. Due to advancements in data collection, and massive
storage capabilities, we now have a dizzying amount of high dimensional data to analyze.
The task of the data scientist is to infer a simple model to describe the data. Fortunately, many
naturally occurring phenomena often have a simple structure. This allows us to efficiently
represent them using a few building blocks or features, even if they are observed in a high
ambient dimension. The challenge is to exploit the simplicity of these objects and recover
them robustly from limited measurements. This can be a formidable task even for simple
instances of the problem.

For example, imagine a data series composed of n measurements that can be described by
a linear model, in terms of a large number p > n of potential predictor variables or features.
Finding the linear model from these limited measurements is a hopelessly underdetermined
problem. However, when the linear model is simple and it is known a priori that only a small
subset of the features are actually active, the problem of determining the linear model is no
longer ill posed. A simple description of the data series expresses the data series in terms of a
few active features and corresponding feature weights. Our task of choosing the “right” model
for the data can be cast as a combinatorial feature selection problem with the objective of
finding the smallest subset of features that describe the data well. This is called the “small n,
large p” problem in statistics and such datasets are ubiquitous - For example, a biologist might
want to identify the active genes by looking at only a few samples of a microarray experiment
which simultaneously measures thousands of genes. Machine learning practitioners might
want to infer the active features from a large feature space with a relatively small number of
measurements.

A naive algorithm would explore all the possible subsets of features in increasing order



of size till we find a solution. There does not appear to be an efficient algorithm for this as
there are an exponential number of subsets to choose from. In fact, this selection problem is
provably NP-HARD! [75]. This does not however preclude the possibility of designing efficient
algorithms that work on most instances. In fact, there is now a large body of literature on the
theoretical understanding of the surprising success of convex relaxation methods in efficiently
solving the sparse recovery problem most of the time.

Instead of the hard combinatorial problem of directly minimizing sparsity of the feature
weights, the idea of using the ¢; norm of the feature weights as a convex proxy was known to
several early practitioners in Geophysics and seismology [35, 98, 68, 86]. The authors were
also aware of the robustness of ¢; regularization to outliers and noise. This was introduced in
statistics as a sparsity inducing regularization in [100] and in Signal Processing as a means
of exact and robust decomposition by [31] and subsequently studied by Donoho and his
coworkers [42, 41]. Since the seminal publications of [17, 74], which rigorously established
the exact recovery and model selection properties, the study of convex penalties for feature
selection has been a subject of intense research. This theory was extended to other high
dimensional structures including group sparse vectors[107] and low rank matrices [84].

The unifying theme in different structures in high dimension is some notion of simplicity
like sparsity for vectors or rank for matrices. This thesis builds on a recent publication [30]
which discusses the notion of simple objects as a sparse combination of atoms from a possibly
infinite dictionary. This unifies several related problems in sparse recovery and approximation.
Simple objects may be expressed as a sparse linear combination of a few basic atoms drawn
from a possibly infinite dictionary of atoms. For instance, a sparse vector in high dimension is

a combination of a few canonical unit vectors. A low rank matrix is a combination of a few

'Informally, this means that it is at least as hard as a large number of well known problems in complexity
theory, widely believed to have no algorithm that can solve them in a time proportional to any polynomial function
of the number of observations.



rank-1 matrices. A signal with a finite discrete spectrum is a combination of a few frequencies.
The authors propose using “atomic norm” as a convex heuristic to recover simple models
from linear measurements. The atomic norm may be thought of as a convex proxy to the
combinatorial objective function that arises naturally in sparse recovery problems.

Furthermore, the atomic norm framework allows us to naturally extend convex relaxations
to work on infinite dimensional objects which cannot be handled satisfactorily using standard
finite dimensional Lasso. We will see how to denoise with atomic norms and then apply these
ideas to revisit two fundamental signal processing problems — line spectral estimation and
system identification, from the perspective of convex methods. I will also discuss efficient
algorithms for these problems.

Line Spectral Estimation involves estimating frequencies and amplitudes from a limited
number of noisy measurements. This is a fundamental problem in signal processing and there
are a number of classical algorithms dating back to Prony. Surprisingly, using convex methods
in this thesis, we can empirically outperform these classical techniques and also theoretically
show near minimax optimal performance.

Another foundational problem in Signals and Systems theory is that of inferring a linear
system from observed measurements. I will show that we can robustly recover a low order
system from a limited set of noisy measurements, using the convex methods discussed in the
thesis. We will see that it compares favorably in terms of prediction errors to the popular

subspace ID method.

Contributions and Organization

In Chapter 2, I will present the atomic norm framework in depth and show how it unifies

many linear inverse problems in high dimensional statistics. Extending this framework, I will



introduce a general regularized estimator using the atomic norm penalty which we will call
Atomic Norm Soft Thresholding (AST). This may be thought of as an infinite dimensional
version of the Lasso [100]. I will first establish universal properties of the estimator and
indicate when accelerated convergence rates are possible. The choice of the regularization
parameter for AST depends upon extremal properties of the dual atomic norm of noise, and
we will examine general techniques for estimating the regularization parameter.

In Chapter 3, I show how to apply atomic norm soft thresholding estimator to denoise line
spectral signals. I will show that this produces a consistent estimate for all signals which holds
universally with very little assumptions on the measurement model. By exploiting properties
of a dual certificate constructed in [20, 19], we will see that we can achieve accelerated
convergence rates when the frequencies in the line spectral signal are well separated. As is
the case for coherent designs using Lasso, this is nearly minimax optimal. This result may be
thought of as a local version of coherence — Although our dictionary is highly coherent, as
long as the signal we wish to recover is composed of relatively incoherent frequencies, it is
possible to recover it robustly.

I will also show that the frequencies localized by AST tend to be near the true frequencies.
With extensive experiments, I will demonstrate that the proposal in this thesis outperforms
several classical line spectral estimation algorithms.

In Chapter 4, I will show how these techniques can be adapted for the System Identifi-
cation problem. I will describe a general regularization problem for different kinds of linear
measurements of the system. For the special case of frequency samples, I will show how to
derive finite sample guarantees on the #? prediction error of the transfer function of the
linear system using AST.

Finally, in Chapter 5, I will discuss algorithms for AST. It turns out that we can efficiently

solve AST as long as we have a reasonably efficient algorithm to test membership in the unit



ball of the atomic norm. For the case of Fourier measurements, the atomic norm balls can
be characterized by a semidefinite program (SDP), which can be readily solved using any of
the various SDP solvers. While the positive case is classical and is well known, the general
case is a non-trivial extension. I will describe a fast parallelizable algorithm for the SDP using
Alternating Directions Method of Multipliers (ADMM), and also provide an alternative efficient
discretized version of AST which can be used in the absence of semidefinite characterizations,
and in general for large problem sizes. This boils down to solving a Lasso problem on a grid. I
will show the convergence of the Lasso solution which provides justification for discretization

and Lasso on a grid as a general computational strategy.



2 Simple Models and Atomic Norms

The foundation that underlies the techniques discussed in this chapter is the work on atomic
norms for linear inverse problems in [30]. In this work, the authors describe how to reconstruct
models that can be expressed as sparse linear combinations of atoms from some basic set A.
The set A can be very general and is not assumed to be finite. For example, if the signal is
known to be a low rank matrix, A could be the set of all unit norm rank-1 matrices, since a
low rank matrix can indeed be written as a sparse combination of such rank-1 atoms.

I will first review the notion of simple models defined in [30] and describe how this
generalizes various notions of sparsity and structure. Then, we will see how to use an atomic
norm penalty to denoise a signal known to be a sparse nonnegative combination of atoms from
a set A. Atomic norms provide a natural convex penalty function for discouraging specialized
notions of complexity. These norms generalize the ¢; norm for sparse vector estimation [18]
and the nuclear norm for low-rank matrix reconstruction [84, 21].

The first contribution described in this chapter, is an abstract theory of denoising with
atomic norms. I show a unified approach to denoising with the atomic norm that provides
a standard approach to computing low mean-squared-error (MSE) estimates. We will see
how certain Gaussian statistics and geometrical quantities of particular atomic norms are
sufficient to bound estimation rates with these penalty functions. This approach is essentially

a generalization of the Lasso [100, 31] to infinite dictionaries.

Organization of this chapter

The denoising problem is obtaining an estimate & of the signal z* from y = * + w, where
w is additive noise. Let us make the structural assumption that z* is a sparse nonnegative

combination of points from an arbitrary, possibly infinite set A C C". This assumption is very



expressive and generalizes many notions of sparsity [30]. The atomic norm ||| 4, introduced
in [30], is a penalty function specially catered to the structure of A as we shall examine in

depth in Section 2.1, and is defined as:
|z||4 =inf{t >0 |z € tconv(A)}. 2.1)

where conv(.A) is the convex hull of points in .A. Then, we will look at the denoising perfor-

mance of an estimate that uses the atomic norm to encourage sparsity in A.

Decomposition. Section 2.2 considers vectors z* that may be written as a sparse nonnega-
tive combination of elements from the atomic set .4 and asks how one might certify that z*
has a unique sparsest decomposition in terms of the atoms. We will see how the existence of
certain vectors in the dual space can reveal the composing atoms and certify uniqueness of

the sparsest decomposition under some mild technical conditions.

Denoising. Section 2.3 characterizes the performance of the estimate & that solves

o1
minimize in —yll3 + 7|2 4 (2.2)

where 7 is an appropriately chosen regularization parameter, and y = z* + w is a a vector of
noisy measurements. I will show an upper bound on the MSE of the estimate when the noise
statistics are known. Before stating the theorem, note that the dual norm ||-||*j, corresponding

to the atomic norm, is given by

2[4 = sup (z,a),
acA

where (z, z) = Re(z*x) denotes the real inner product.



Theorem 2.1 (Universal Denoising Guarantee). Suppose we observe the signal y = x* + w
where x* € C™ is a sparse nonnegative combination of points in A. The estimate & of x* given
by the solution of the atomic soft thresholding problem (2.2) with T > E||w||* has the expected
(per-element) MSE

1 . T
—E|& - 2*[3 < —llz*]|a-
n n

This theorem implies that when E||w|* is o(n), the estimate Z is consistent.

Choosing the regularization parameter. In Section 2.4, I will discuss the choice of regu-
larization parameter 7. The lower bound on 7 is in terms of the expected dual norm of the
noise process w, equal to

Ellwl’ = E[sg)‘ (w,a)].

That is, the optimal 7 and achievable MSE can be estimated by studying the extremal values

of the stochastic process indexed by the atomic set .A.

Accelerated Convergence Rates The MSE rates given by Theorem 2.1 are not the best
possible. Section 2.5, we will see a condition on the atomic sets that enables accelerate
convergence rates. This is a generalization of the weak compatibility criterion [53] and unifies
the condition for fast rates for several atomic sets. In particular, under this assumption, I will
show that we can recover fast convergence rates published in literature for sparse vectors and

low rank matrices.

2.1 Preliminaries

The notion of atomic sets and simple models introduced in [30] subsumes several structures

in high dimensional geometry, including sparse vectors, low rank matrices, discrete measures,



linear systems of small order. The authors also define a notion of an atomic norm as a natural
convex penalty for encouraging simplicity with respect to these structures. In this section, we
shall review these preliminaries.

Let F' be C or R. The atomic set A is a possibly infinite subset of '™ and every signal we
shall consider is composed of a combination of atoms from this dictionary. A target signal
x* € F™ is simple, if it can be written as a nonnegative combination of small subset 7' C A
of atoms. Call such a 7', a support of z*. If the number of elements & = |T'| in the support is
small relative to the dimension n of the signal, call such an x* a (k) simple combination of
atoms.

Allowing the dictionary or atomic set to be infinite offers tremendous flexibility in the kind
of high dimensional structures that can be modeled. To see this, we consider specific instances
of the setup, that will serve as motivation for this framework. In subsequent chapters, we will

revisit some of these examples.

2.1.1 Examples

Estimating Nearly Black Objects Consider the estimation of the nonnegative vector z* €
R™ from the noisy observations y = z* 4+ w with the assumption that x* is nearly black — i.e.,
most of its entries are zero. This problem was considered in [46, 61], in order to shed light
on the superresolution properties of the maximum entropy estimator for nearly black MRI
images. In this framework, such an z* is a sparse combination of A = {+ey, ..., +e,} where

e; is the ¢th canonical unit vector.

Compressed Sensing and Sparse Recovery Many phenomena observed in high dimensions
are sparse in a suitable dictionary. For instance, natural images can be well approximated by a

small combination of basis functions of a suitable wavelet transform. This means the actual
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data is highly redundant and it is actually sparse when suitably transformed. Compression
techniques can exploit this sparse representation and represent the same high dimensional
vector with fewer bits with no loss of accuracy and thus reduce storage costs. The idea
of compressed sensing also reduces acquisition costs by only taking a few random linear
measurements of the high dimensional vector. When the representation is sparse, a high p
dimensional vector can be recovered from a small number n < p of linear measurements.
Let * € RP be sparse in a known orthogonal basis ® € RP*P. Suppose we make n
observations z} = (¢, 0*) where {¢;}"_, are randomly chosen Gaussian vectors. Then, z* is
a simple combination of atoms from the atomic set given by {j:\I!T@j ‘ ji=1,..., p} where

¥ € RP*" js the matrix with ¢); for its columns.

Low Rank Matrix Estimation and Matrix Completion The problem of finding a minimum
rank matrix from incomplete data arises in a number of applications including collaborative
filtering, system identification and document classification. The data available to us could
be a fraction of the entries of the matrix, or in general any set of linear measurements of the
matrix. Let A be the one dimensional manifold composed of all unit norm rank-1 matrices.
Then a low rank matrix z* can be expressed as a sparse combination of rank-1 matrices, and
consequently the observations of this matrix can be expressed as a sparse combination of
observations due to these rank-1 matrices. In this example, note that it is not sufficient to
consider a finite atomic set, since the set of all low rank matrices are not sparse in any finite

dictionary.

Line Spectral Estimation Line Spectral Estimation concerns with the recovery of signals
whose spectrum consists only of a finite number of frequencies. In other words, line spectral

signals are simply a finite mixture of complex exponentials. An important signal processing
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task is to recover the frequencies and amplitudes of the complex exponentials from a limited
number of time samples. For each frequency f in [-W, W], let a(f) denote the vector of
observed time samples of a complex exponential with a frequency f. Then the set A of
different observations a(f) due to each frequency f comprises the atomic set for samples of

line spectral signals.

System Identification An important task in modeling is the identification of a linear system
with the minimum number of states from its input and output. Let A denote the set of transfer
functions corresponding to single pole systems. Then an LTI system with small order has a
transfer function which is a sparse combination of atoms from .A. Therefore the task of system
identification reduces to finding the comprising atoms given linear measurements.

The last two examples can be seen as an instance of continuous sparse recovery problem,
since there are continuously many atoms. In most previous literature, sparse recovery problems
are analyzed only in discrete settings. In fact, in previous literature, authors have advocated a
discretization approach which amounts to working with a finite set .4 instead of the infinite
atomic set .4. However, a finer gridding of the atomic set results in a more coherent dictionary
and the usual compressed sensing theoretical guarantees degrade with the grid size. We
will see that we can bypass this by directly analyzing the continuous case using a different
approach. It turns out that the coherence of the dictionary is not a fundamental limitation
and that we can get increasingly accurate results by finer and finer discretizations.

In succeeding chapters, I will concentrate on the application of the atomic norm framework
to these examples. It is not the goal of this section to provide an exhaustive catalogue of
examples of the framework and I would refer the interested reader to [30], which contains

several more interesting applications.
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2.1.2 Atomic Norm

Definition 2.2 (Atomic Norm). The atomic norm ||-|4 corresponding to A C F™ is the
Minkowski functional (also called the gauge function) associated with conv(A) (the convex
hull of A):

|x||4 = inf {t > 0| 2z € tconv(A)}. 2.3)

The gauge function is a norm in F" if conv(.A) is compact, centrally symmetric, and
contains a ball of radius ¢ around the origin for some ¢ > 0. Nevertheless, we shall call it
atomic norm even if it is not as a norm, as the authors in [30] do. When A is the set of unit
norm 1-sparse elements in C”, the atomic norm ||-|| 4 is the ¢; norm [18]. Similarly, when A
is the set of unit norm rank-1 matrices, the atomic norm is the nuclear norm [84]. In [30],
the authors showed that minimizing the atomic norm subject to equality constraints provided
exact solutions of a variety of linear inverse problems with nearly optimal bounds on the
number of measurements required.

While not necessary for the definition of the atomic norm, we will assume some weak
regularity conditions in the rest of the thesis. These are satisfied for a number of examples
and they allow us to phrase our theorems without restating assumptions explicitly each time.

We will assume that the atomic set A satisfies the following properties:

1. No atom can be written as a conical combination of other atoms in .A. In other words,
we assume that a ¢ conv(.A\ {a}) for every a € A. This guarantees that elements in .4

are the extreme points of the set conv(A).
2. The set A is a closed subset of F". This assumption is always true for finite sets.

3. The spark of a set of vectors .A C F™ is defined as the smallest number o such that there

exists a subcollection of o elements of A which are linearly dependent. We will assume
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that the spark of A is n. As a consequence, any decomposition of a vector z* into < n /2

atoms is necessarily unique [41].

4. We will assume that conv(.A) has a non-empty interior to avoid degenerate cases.

2.1.3 Dual Atomic Norm

Corresponding to the atomic norm, we can define the dual atomic norm, which is given by

Iz = sup (z,z), 2.4
lzlla<1
implying
(z,2) < [lz]lallz]4- (2.5)

We shall assume throughout the thesis that (x, y) always stands for the real inner product
Rex*y even if z,y € C", unless otherwise noted. The supremum in (2.4) is achievable,
namely, for any z, there is a z that achieves equality. Since A contains all extremal points
of {x : ||z]|4 < 1}, we are guaranteed that the optimal solution will actually lie in the set A

(see [9] for a proof). So, we can write

2[4 = sup (a, 2). (2.6)
acA

The dual norm will play a critical role throughout, as our asymptotic error rates will be in
terms of the dual atomic norm of noise processes. The dual atomic norm also appears in the

dual problem of (2.2).
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2.2 Decomposition

A natural question is whether it is always possible to recover the composing atoms of a simple
x*. As stated, the problem is ill-posed, for there could many decompositions. However,
under our assumptions, there is a unique sparsest decomposition of x* provided there is a
decomposition that is at most n/2 sparse. So, the question is well posed as long as we start
with such an z*.

The goal of atomic norm decomposition is to write z* in terms of composing atoms such
that the sum of the coefficients is the atomic norm. We will call such a decomposition an
atomic norm achieving decomposition. While not always true, the decomposition that achieves
the atomic norm is often the sparsest and this section will provide some geometric insight to

when this is true. This section also describes a procedure to find such a decomposition using

the dual.

2.2.1 Dual Certificate

A useful device is that of a dual certificate, which is one of the subgradients of the atomic
norm. For a convex differentiable function f, the gradient defines a global linear under
approximator for the function. Subgradients generalize this property to nonsmooth convex
functions by characterizing all linear under approximators of the function. A vector ¢ is said

to be in the subgradient of f at x if for every vy,

fly) > f(z) +{q,y — 2).

When f is differentiable at x, the set of subgradients at x is simply the singleton set containing

the gradient at z. It is easy to verify that ¢ is a subgradient of ||-|4 at z* if and only if
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(q,2*) = ||=*]|.4 and [|g||* < 1. A decomposition of a vector z* gives an upper bound for its
atomic norm. Subgradients in the dual space can provide a dual certificate of the optimality

of a decomposition if it produces a matching lower bound.

Definition 2.3 (Dual Certificate). A vector q is a dual certificate for the support T C A if
(q,a) =1 for every a € T and (q,a) < 1 whenever a ¢ T. Furthermore, the vector q is called a

strict dual certificate if (q,a) < 1 forevery a & T.

This has an intuitive geometric interpretation, when all the vectors are real. By definition
of the dual certificate, for every non-empty set 7', ||¢||%y = sup,c4(¢, a) = 1, which guarantees
that all the atoms (and hence conv(.A)) lie on one side of a half plane determined by ¢, and
also that atoms in 7" (and hence conv(7’)) intersect this hyperplane. Geometrically, this says
that ¢ is a supporting hyperplane for the exposed face conv(T’) of the convex set conv(.A). The

following proposition indicates why this is important.

Proposition 2.4. Suppose z* can be written in terms of atoms in T, i.e., * = 3 o7 cqa for
some {cq} > 0. If ¢ is a dual certificate for T, then, > ,cr cqa is an atomic norm achieving

decomposition of x* and q is a subgradient of the atomic norm at x*.

Proof. Then, by the definition of atomic norm ||2*|| 4 < > ,c7 o Now,

(g, 2%) = calga) =) ca

a€T a€T
But
(@ 27) < llallallz™lla = llz"]l -
Combining these two equations, we get >~ ,.rc, = ||z*||4 = (¢, x), which completes the

proof. O
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Conversely, the presence of a strict dual certificate which is also a subgradient of ||-|| 4 at

x* guarantees that z* may be written as a combination of atoms in 7.

Proposition 2.5. Suppose g is a subgradient of ||-||4 at z* € cone(A) and is a strict dual
certificate for T C A, then x* has an atomic norm achieving decomposition in terms of atoms

from T i.e., there exists c, > 0 such that 2* =Y o cqa with ||z*|| 4 = > ,e7 Ca

Under our assumptions (that A has full spark), we are guaranteed that this is the unique
sparsest decomposition of z* in terms of the atoms provided |T'| < n/2. This is especially
useful as it allows us to determine a support of z* purely in terms of the properties of the
dual. For a generic set, there is no guarantee that the atomic norm achieving decomposition is
n/2 sparse and therefore that it recovers the correct support. However, we have a rich theory
now that this is indeed true for many interesting cases[40, 18, 25].

Returning to our geometric interpretation, the existence of a dual certificate guarantees
that 2*/||z*|| 4 is in an exposed face of conv(.A). Recall that a face in convex geometry
is considered simplicial if every element in the face can be written as a unique convex
combination. Due to our assumptions on A, the faces are indeed simplicial and there is a
unique way of writing 2* as a combination of vertices in the face. Furthermore, When the face
is also low dimensional, the decomposition of z* is unique. So, we can always recover the
support of a sparse vector provided all sparse combinations lie on low dimensional exposed
simplicial faces. Again, while this may not always be true, it holds with large probability for
random constructions of the atomic set and we refer the interested reader to [44] for this
geometric interpretation of sparse recovery.

In practice, it may be hard to find a strict dual certificate by optimization. However, if A
has full spark like we assumed, any dual certificate will suffice to find a set of atoms for a

decomposition that achieves the atomic norm. Given a simple x*, our recipe involves solving
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the semi-infinite program

maximize (q, ")
! (2.7)
subject to (q,a) < 1, for every a € A.

to obtain a solution § which is one of the dual certificates of the support and a subgradient
of ||-||4 at *. However, (q,a) is 1 only for at most n atoms under our assumptions. In
fact, if (g, a) has the same value for n + 1 atoms ay, ..., an+1, we have (g, a;+1 — a;) = 0 for
1 =1,...,n and using the full spark assumption, we can conclude that ¢ is identically zero.
This means ¢ is in fact a strict dual certificate for a support comprising at most n atoms which
certifies that the atomic norm achieving decomposition can be composed in terms of the atoms
where (q,a) = 1. The coefficients of the decomposition can be determined by solving a linear

system.

2.3 Denoising

Now, let us look at a scheme that is robust to measurement noise. To set up the atomic norm
denoising problem, suppose we observe a signal y = z* + w where w is a noise vector and
that we know a priori that z* can be written as a linear combination of a few atoms from
A. One way to estimate z* from these observations would be to search over all short linear
combinations from .A to select the one which minimizes ||y — z||2. However, this could be
formidable: even if the set of atoms is a finite collection of vectors, this problem is the NP-hard
SPARSEST VECTOR problem [75].

On the other hand, the problem (2.2) is convex, and reduces to many familiar denoising
strategies for particular .A. The mapping from y to the optimal solution of (2.2) is called the

proximal operator of the atomic norm applied to y, and can be thought of as a soft thresholded
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version of y. Indeed, when A is the set of 1-sparse atoms, the atomic norm is the ¢;-norm, and
the proximal operator corresponds to soft-thresholding y by element-wise shrinking towards
zero [45]. Similarly, when A is the set of rank-1 matrices, the atomic norm is the nuclear
norm and the proximal operator shrinks the singular values of the input matrix towards zero.

We now establish some universal properties about the problem (2.2). First, we collect a

simple consequence of the optimality conditions in a lemma:

Lemma 2.6 (Optimality Conditions). Z is the solution of (2.2) if and only if

@ [y — 2% <7, () (y — 2,2) = 7(|2]| 4.

Proof. The function f(z) = %|ly — z[|3 + 7||z||.4 is minimized at £, if for all « € (0,1) and all ,
f(@+alz—2) = f(2)
or equivalently,
—1 ~ ~ A PN A 1 112
a7 (2 +alz = 2)lla - 12]la) = {y - 2,2 - 2) - Sallz - 2] (2.8)

Since ||-|| 4 is convex, we have

lzlla = 12lla > a7 (12 + alz = 2)]la = [12]l4),
for all = and for all « € (0, 1). Thus, by letting & — 0 in (2.8), we note that Z minimizes f(z)
only if, for all z,

T(lzlla=l2[l4) = (v — 2,2 — 2). (2.9)
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However if (2.9) holds, then, for all
]_ 2 ]- A~ ~ 2 A A A
sy =zl +7lzllazFlly -2+ (@ —2)lz + (y — 2,2 — &) + 72]|.a

implying f(x) > f(z). Thus, (2.9) is necessary and sufficient for Z to minimize f(x).

Note. The condition (2.9) simply says that 7= (y — 2) is in the subgradient of |-|| 4 at & or

equivalently that 0 € Of(%).

We can rewrite (2.9) as
rlélla — (g — &8) < inf {rllalla — (y - &)} (2.10)
But by definition of the dual atomic norm,

0 [zl <1
Sgp{<z,fv> = lzllat = oy < (2) = (2.11)
oo otherwise.

where 14(+) is the convex indicator function. Using this in (2.10), we find that Z is a minimizer

if and only if ||y — 2||% < 7 and (y — &, %) > 7||2||.4. This proves the theorem. O
Lemma 2.7 (Dual Problem). The dual problem of (2.2) is
maximize £ (|lyl3 — 1y — =I3)
1 5 2 2
subject to ||z||% < 7.

The dual problem admits a unique solution % due to strong concavity of the objective function.

The primal solution % and the dual solution Z are specified by the optimality conditions and there
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is no duality gap:
Dy=2+2, 4D [|2[|y <, (i) (£,2) = 7(|2] 4
Proof. We can rewrite the primal problem (2.2) as a constrained optimization problem:
| 2
minimize o [ly — {|3 + [|ull.a
subject to u = .

Now, we can introduce the Lagrangian function
1 2
L(w,u,2) = 5lly = @l + Julla+ (2, - w).
so that the dual function is given by

1
olz) = inf L, ) = int (5 ly = ol3 + (2,2} ) + it (rulla — (z,)

= 2 (190~ ly = #13) = Tpupugseny )

where the first infimum follows by completing the squares and the second infimum follows
from (2.11). Thus the dual problem of maximizing ¢(z) can be written as in (2.7).

The solution to the dual problem is the unique projection 2 of y on to the closed convex
set C' = {z : ||z||’4 < 7}. By projection theorem for closed convex sets, Z is a projection
of y onto C if and only if 2 € C and (z — 2,y — 2) < 0 for all z € C, or equivalently if
(2,y — 2) > sup, (z,y — 2) = 7|ly — || 4. These conditions are satisfied for Z = y — & where
Z minimizes f(x) by Lemma 2.6. Now the proof follows by the substitution 2 = y — % in

the previous lemma. The absence of duality gap can be obtained by noting that the primal
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objective function at Z,

oo L . s Ly X A 5
7(8) = 5lly = 33 + (2,8 = S 1203 + (2, ) = g(2)

O

Conclusions (ii) and (iii) of the lemma say that 7—'2 is a subgradient of the atomic norm
at x*, where Z is the solution to the dual problem (2.7). So, a straightforward corollary of

Proposition 2.5 is a certificate of the support of the solution to (2.2):

Corollary 2.8 (Dual Certificate of Support). Suppose for some S C A, % is a solution to the

dual problem (2.7) satisfying
1. (2,a) = 7 whenever a € S,
2. |Z,a)| <Tifa &S.
Then, any solution z of (2.2) admits a decomposition & =3 ,.g cqa With ||Z]|4 = > 4cq Ca-

Thus the dual solution 2 provides a way to determine a decomposition of & into a set of
elementary atoms that achieves the atomic norm of Z. In fact, one could evaluate the inner
product (2, a) and identify the atoms where the absolute value of the inner product is 7. When
the signal-to-noise-ratio (SNR) is high, we expect that the decomposition identified in this
manner should be close to the original decomposition of z* under certain assumptions.

We are now ready to state a proposition which gives an upper bound on the MSE with the

optimal choice of the regularization parameter.

Proposition 2.9. If the regularization parameter T > ||w||%, the optimal solution & of (2.2) has

the MSE

1 A * |12 1 * * 27 *
—||z — < - — < — . 2.12
g — a3 < 2 (Fllatlla - (2, w) < o]l (212)
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Proof.

12— 2*)|5 = (2 — 2", w — (y — 2)) (2.13)
= <(L‘*,y - £'> - <.’IJ*,’LU> + <£7w> - <£7y - £'>

*

< 7latfla = (@ w) + ([w]Z — 7)) (2.14)

< (7 + llwlZo =" la + (lwlZ = 7)l12] .4 (2.15)

where for (2.14) we have used Lemma 2.6 and (2.5). The theorem now follows from (2.14)
and (2.15) since 7 > ||w||*. The value of the regularization parameter 7 to ensure the MSE is

upper bounded thus, is |jw]|%. O

Example: Sparse Model Selection We can specialize our stability guarantee to Lasso [100]
and recover known results. Let ® € R"*P be a matrix with unit norm columns, and suppose
we observe y = z* + w, where w is additive noise, and * = ®¢* is an unknown k sparse
combination of columns of ®. In this case, the atomic set is the collection of columns of
® and —&, and the atomic norm is ||z|| 4 = min {||c||; : # = ®c}. Therefore, the proposed
optimization problem (2.2) coincides with the Lasso estimator [100]. This method is also
known as Basis Pursuit Denoising [31]. If we assume that w is a gaussian vector with variance
o for its entries, the expected dual atomic norm of the noise term, ||w||% = ||®*w||« is simply
the expected maximum of p gaussian random variables. Using the well known result on
the maximum of gaussian random variables [65], we have E|w||* < o+/2log(p). If Z is the
denoised signal, we have from Theorem 2.1 that if 7 = E||w||% = o+/21og(p),

1 N 21o
g - a3 < o V2B oy

which is the stability result for Lasso reported in [56] assuming no conditions on ®.
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2.4 Dual Atomic Norm Bounds

As noted in Theorem 2.1, the optimal choice of the regularization parameter is dictated by the
dual atomic norm of the noise process. To see why this is the case, let us consider the dual

problem to Atomic Soft Thresholding, given by Lemma 2.7:

minimize ||y — z||2
z

subject to ||z|| < 7.

Using the optimality conditions in Lemma 2.7, we see that the primal solution # is a good
estimate of the target x* if the dual solution is a good estimate of the noise vector w. Thus
7 should be proportional to noise and may be interpreted as a parameter controlling the
amount of shrinkage towards origin. In fact, when 7 > ||y||%, we have 2 = y and = 0.
This suggests a choice of 7 = E||w||*, which corresponds to the strongest mean-squared-error
guarantee in Theorem 2.1. Specializing this to the case of sparse vectors in noise, we see that
the recommendation 7 = E||lw||~ = /2 log(n) coincides with the optimal tuning parameter
in [45].
The quantity

B} = Esup(w, a)
a

where w € N (0, I,,) is called the Gaussian width of the atomic set .A. In some cases, the
parameterization of the atoms in .4 allow the Gaussian width to be viewed as an extremum
of a Gaussian process and thus this can be estimated using standard tools such as Dudley’s

inequality [66], or Talagrand’s method of generic chaining [94].
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2.5 Accelerated Convergence Rates

In this section, we provide conditions under which a faster convergence rate can be obtained

for AST.

Proposition 2.10 (Fast Rates). Suppose the set of atoms A is centrosymmetric and |w||%

concentrates about its expectation so that P(||w[* > E ||w|%y +t) < d(t). For v € [0, 1], define

the cone
Cy(z", A) = cone({z : [|2" + 2[4 < [|2"]|.4 + [lz[|.4})-
Suppose
¢y(x*, A) := inf { ||’|j||’|2 1z € C«,(a:*,A)} (2.16)
A

is strictly positive for some v > E||w||* /7. Then

(1+7)*72

[ A —— 2.17
V26 (2, A)? (2.17)

|2 — 2*]3 <

with probability at least 1 — 6(y7 — Ellw||%).

Having the ratio of norms bounded below is a generalization of the Weak Compatibility
criterion used to quantify when fast rates are achievable for the Lasso [53]. As shown
in [53], this is a weak condition for fast MSE rates and generalizes the argument for Restricted
Isometry[18], Restricted Eigenvalue [7] or Coherence conditions [24] which are often assumed
in literature for deriving fast rates for the Lasso problem. One difference is that we define
the corresponding cone C, where ¢, must be controlled in parallel with the tangent cones
studied in [30]. There, the authors showed that the mean width of the cone Cy(z*, A)

determined the number of random linear measurements required to recover x* using atomic
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norm minimization. In our case, v is greater than zero, and represents a “widening” of the
tangent cone. When ~ = 1, the cone is all of R” or C™ (via the triangle inequality), hence 7

must be larger than the expectation to enable our proposition to hold.

Proof. Since 7 is optimal, we have,
slly =213+ 7ll2]a < Sy —2*)3 + 7lla*]|a
Rearranging and using (2.5) gives

Tl[Efa < Tl a+ (w, & —27) (2.18)

= Tl2lla < 7l a+ lwlallZ — 274 (2.19)

Since ||w|* concentrates about its expectation, with probability at least 1 — §(y7 — E[jw|%),

we have ||w|*y <7 and hence & — 2* € C,. Using (2.13), if 7 > [Jw||%,

R R L+9)7 .
& —a*||5 < (7 + [|lwllX l‘—x*A§<7w—:L‘*2
I 12 < (7 + [lwlZ)]] | o (@, A) I |
So, with probability at least 1 — §(y7 — E|w||%):
A * (|2 (1 +’7)27-2
T—x < —
| o< ’72¢7($*a~/4)2 ]

The main difference between (2.17) and (2.12) is that the MSE is controlled by 72 rather
than 7||z*|| 4. As we will now see (2.17) provides minimax optimal rates for the examples of
sparse vectors and low-rank matrices.

Example: Sparse Vectors in Noise Let A be the set of signed canonical basis vectors in R".

In this case, conv(.A) is the unit cross polytope and the atomic norm ||-|| 4, coincides with the
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¢, norm, and the dual atomic norm is the /., norm. Suppose z* € R™ and T := supp(z*) has

cardinality k. Consider the problem of estimating x* from y = 2* + w where w ~ N(0, 021,,).

Proposition 2.11. Let A = {#*ey,...,+e,}, be the set of signed canonical unit vectors in R".

Suppose z* € R™ has k nonzeros. Then ¢~(z*, A) > (;:/%).

Proof. Let z € C,(x*, A). For some o > 0 we have,
2" + azlly < |lz%]lL + yllezll

In the above inequality, set z = 2z + zp- where zp are the components on the support of T'
and zp. are the components on the complement of 7. Since z* + 2z and zp. have disjoint

supports, we have,
2% + azrlls + allzrelly < [[#%]l1 + Yllazr(ly + yllozrel|: -
This inequality implies

1+v
lzre ]l <
=7

[l

that is, ~ satisfies the null space property with a constant of 2. Thus,
1—y

2 2k
IMhél 2zl < ll2|l2

- L—n
This gives the desired lower bound. We have therefore shown that in this case ¢, (z*,.A) >

%. We also have 1y = E||w|« > 01/2log(n). Pick 7 > v~ !7; for some v < 1. Then, using
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our lower bound for ¢, in (2.17), we get a rate of

2
lH@ —2*3=0 (aklog(n)) (2.20)
n

n

for the AST estimate with high probability. This bound coincides with the minimax optimal
rate derived by Donoho and Johnstone [43]. Note that if we had used (2.12) instead, our
MSE would have instead been O (\/ o?klognl||z*||2/n ), which depends on the norm of the

input signal x*. O

Example: Low Rank Matrix in Noise Let A be the manifold of unit norm rank-1 matrices
in C"*". In this case, the atomic norm ||-|| 4, coincides with the nuclear norm ||-||, and the
corresponding dual atomic norm is the spectral norm of the matrix. Suppose X* € C"*"
has rank r, so it can be constructed as a combination of » atoms, and we are interested in

estimating X* from Y = X* + W where W has independent N'(0, o) entries.

Proposition 2.12. Let A be the manifold of unit norm rank-1 matrices in C"*". Suppose

X* € C"*™ has rank r. Then ¢, (X*, A) > 1\;;7.

Proof. Let ULV H be a singular value decomposition of X* with U € C"*", V € C"*" and

Y € C"*". Define the subspaces

T={UX+YV? . XY ecC™}

To={UMVH . M ecC™}

and let Pr,, Pr, and Pp. be projection operators that respectively map onto the subspaces

Ty, T, and the orthogonal complement of T". Now, if Z € C, (X*, A), then for some a > 0, we
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have

X"+ aZ|« < [ X[l + el Z]« < [ X7 [ls + el Pr(2)[ls + 1] Pra(Z)] (2.21)

Now note that we have

| X* + aZ|s > | X* + aPr (2)|« + af|Pro(2)])«

Substituting this in (2.21), we have,

1X* + aPry (2)[|+ + al[Pro(2)[ls < 1X7 |« + el Pr(2) |« + ol Pro(2)|l-

Since || P7,(Z) |« < ||Pr(Z)||«, we have

14+

« < T
Prs (D)) < 72

[Pr(Z)]

Putting these computations together gives the estimate

2 2¢/2r 2427
121« < IPr2)lls + Pro(D)lle < T P2l < T—IPr(2)|lr < T— I Z]IF -
Y Y Y
That is, we have ¢, (X*, A) > 21\;277 as desired. O

Using this proposition, ¢~ (X*, A) > % To obtain an estimate for 7, we note that the

spectral norm of the noise matrix satisfies ||| < 2,/n with high probability [38]. Substituting

these estimates for 7 and ¢, in (2.17), we get the minimax optimal MSE

1 N o’r
SIIX-X|z=0—].
poll 17 <n>
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2.6 Conclusion

In this chapter, we defined atomic norms and the use of atomic norm penalty to denoise using
AST (2.2) which may be thought of as a infinite dimensional version of Lasso. The chapter
showed how the regularization parameter may be chosen for AST, and also a procedure to
determine the composing atoms in the solution to AST. We also saw a universal convergence
rate which holds for all atomic sets and all signals and saw general conditions under which a
fast rate is possible. In the following chapters, we will use this framework and apply to the

problems of line spectral estimation and system identification.
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3 Line Spectrum Estimation

3.1 Introduction

Extracting the frequencies and relative phases of a superposition of complex exponentials from
a small number of noisy time samples is a foundational problem in statistical signal processing.
These line spectral estimation problems arise in a variety of applications, including the direction
of arrival estimation in radar target identification [28], sensor array signal processing [64] and
imaging systems [11] and also underlies techniques in ultra wideband channel estimation [73],
spectroscopy [105], molecular dynamics [1], and power electronics [67]

Despite of hundreds of years of research on the fundamental problem of line spectrum
estimation, there still remain several open questions in this area. This chapter addresses a
central one of these problems: how well can we determine the locations and magnitudes of
spectral lines from noisy temporal samples? We establish lower bounds on how well we can
recover such signals and demonstrate that these worst case bounds can be nearly saturated by
solving a convex programming problem. Moreover, we prove that the estimator approximately
localizes the frequencies of the true spectral lines.

While polynomial interpolation using Prony’s technique can estimate the frequency content
of a signal exactly from as few as 2k samples if there are k frequencies, Prony’s method is
inherently unstable due to sensitivity of polynomial root finding. Several methods have been
proposed to provide more robust polynomial interpolation [89, 85, 60] (for an extensive bibli-
ography on the subject, see [91]), and these techniques achieve excellent noise performance
in moderate noise. However, the denoising performance is often sensitive to the model order
estimated, and theoretical guarantees for these methods are all asymptotic with no finite

sample error bounds. Motivated by recent work on atomic norms [30], we will see how a



31

convex relaxation approach can denoise a mixture of complex exponentials, with theoretical
guarantees of noise robustness and a better empirical performance than previous subspace
based approaches.

Specializing the denoising results of the previous chapter to the line spectral estimation, I
will provide mean-squared-error estimates for denoising line spectra with the atomic norm.
The denoising algorithm amounts to soft thresholding the noise corrupted measurements
in the atomic norm and so we may refer to the problem as Atomic norm Soft Thresholding
(AST). Furthermore, it can be shown that AST achieves near minimax rates for estimating line
spectral signals when the frequencies are reasonably well separated. We can give bounds on

how well we can localize the frequencies using this technique.

3.1.1 Outline and summary of results
Denoising line spectral signals.

Let us specialize the results of the abstract denoising problem in the previous chapter to line
spectral estimation in Section 3.2. Consider the continuous time signal z*(¢), ¢ € R with a line
spectrum composed of £ unknown frequencies wj, . .., wj; bandlimited to [-W, W]. Then the

Nyquist samples of the signal are given by

k
o *
xy, =" (%) :ch*eﬂ”mfl .m=0,....,n—1 (3.1
=1
. . wi
where cj, ..., c; are unknown complex coefficients and f = 5 for [ = 1,...,k are the

normalized frequencies. By swapping the roles of frequency and time or space, the signal
model (3.1) also serves as a proper model for superresolution imaging where we aim to

localize temporal events or spatial targets from noisy, low-frequency measurements [20, 19].
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* *

So, the vector 7* = [z} --- z5_,]7 € C" can be written as a nonnegative linear combination

of k points from the set of atoms
A= {eimu 2l ... e2r(n=DAT £ c10,1],6 € [0, 1]}.

The set A can be viewed as an infinite dictionary indexed by the continuously varying
parameters f and ¢. When the number of observations, n, is much greater than k, x* is
k-sparse and thus line spectral estimation in the presence of noise can be thought of as a
sparse approximation problem.

The first result is a global error rate that holds for line spectral signals by specializing the
results in the previous chapter. In particular, we can apply AST and choose the regularization
parameter for the strongest guarantee in Theorem 2.1 in terms of the expected dual norm of
the noise. This can be explicitly computed for many noise models. For example, when the

noise is Gaussian, we have the following theorem for the MSE:

Theorem 3.1. Assume x* € C" is given by ¥, = S5, ¢re®™™ I for some unknown complex
numbers cf, ..., c}, unknown normalized frequencies ff,..., ff € [0,1] and w € N(0,0%L,).
Then the estimate & of x* obtained from y = x* + w given by the solution of atomic soft

thresholding problem (3.7) with 7 = o+/nlog(n) has the asymptotic MSE

1 A * (12 < log(n) u *
EEHJf—m”QNU TZ’Cr
=1

It is instructive to compare this to the trivial estimator Z = y which has a per-element
MSE of 2. In contrast, Theorem 3.1 guarantees that AST produces a consistent estimate
when k = o ( n/ log(n)>. While this rate holds for any line spectral signal, AST can perform

considerably better when the frequencies are well separated.
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Theorem 3.2. Suppose the line spectral signal x* is given by (3.1) and we observe n noisy
consecutive samples y; = x5 + w; where w; is i.i.d. complex Gaussian with variance o*. If the

frequencies { f;}¥_, in x* satisfy a minimum separation condition
min d(f,, fg) > 4/n (3.2)
p7q

with d(-, -) the distance metric on the torus, then we can determine an estimator I satisfying

Liz—a=0 <o2’“ log(”)) (3.3)
n n

with high probability by solving a semidefinite programming problem.

Note that if we exactly knew the frequencies f;, the best rate of estimation we could
achieve would be O(c%k/n) [14]. This upper bound is merely a logarithmic factor larger than
this rate. On the other hand, minimax theory can demonstrate that a logarithmic factor is
unavoidable when the support is unknown. Hence, the proposed estimator is nearly minimax
optimal.

It is instructive to compare this stability rate to the optimal rate achievable for estimating
a sparse signal from a finite, discrete dictionary [22]. In the case that there are p incoherent

dictionary elements, no method can estimate a k-sparse signal from n measurements corrupted

o2k log(p/k)

by Gaussian noise at a rate less than O( -

). In this problem, there are an infinite
number of candidate dictionary elements and it is surprising that we can still achieve such a
fast rate of convergence with our highly coherent dictionary. None of the standard techniques
from sparse approximation can be immediately generalized to this case. Not only is the

dictionary infinite, but also it does not satisfy the usual assumptions such as restricted

eigenvalue conditions [7] or coherence conditions [24] that are used to derive stability results
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in sparse approximation. Nonetheless, in terms of mean-square error performance, I will show
results match those obtained when the frequencies are restricted to lie on a discrete grid.

In the absence of noise, polynomial interpolation can exactly recover a line spectral signal
of k arbitrary frequencies with as few as 2k equispaced measurements. In the light of our
minimum frequency separation requirement (3.2), why should one favor convex techniques for
line spectral estimation? The stability result in this chapter coupled with minimax optimality
establish that no method can perform better than convex methods when the frequencies are
well-separated. And, while polynomial interpolation and subspace methods do not impose any
resolution limiting assumptions on the constituent frequencies, these methods are empirically
highly sensitive to noise. To the best of my knowledge, there is no result similar to Theorem 3.2
that provides finite sample guarantees about the noise robustness of polynomial interpolation

techniques.

Localizing the frequencies using the Dual

The atomic formulation not only offers a way to denoise the line spectral signal, but also
provides an efficient frequency localization method. After we obtain the signal estimate 2
by solving (3.7), we can also obtain the solution Z to the dual problem as 2 = y — &. As we
shall see in Corollary 1, the dual solution Z both certifies the optimality of # and reveals the
composing atoms of Z. For line spectral estimation, this provides an alternative to polynomial
interpolation for localizing the constituent frequencies.

Indeed, when there is no noise, Candés and Fernandez-Granda showed the dual solution
recovers these frequencies exactly under mild technical conditions [20]. This frequency lo-
calization technique is later extended in [95] to the random undersampling case to yield a
compressive sensing scheme that is robust to basis mismatch. When there is noise, numeri-

cal simulations show that the atomic norm minimization problem (3.7) gives approximate
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frequency localization.

I will theoretically characterize how well spectral lines can be localized from noisy obser-
vations. The frequencies estimated by any method will never exactly coincide with the true
frequencies in the signal in the presence of noise. However, we can characterize the localiza-
tion performance of our convex programming approach, and summarize this performance in
Theorem 3.3.

Before stating the theorem, let us introduce a bit of notation. Define neighborhoods
N; around each frequency f; in 2* by N; := {f € T : d(f, f;) < 0.16/n}. Also define
F =T\ U;‘?:l N; as the set of frequencies in T which are not near any true frequency.
The letters N and F' denote the regions that are near to and far from the true supporting

frequencies. The following theorem summarizes the localization guarantees.

Theorem 3.3. Let % be the solution to the same semidefinite programming (SDP) problem as
referenced in Theorem 3.2 and n > 256. Let ¢; and f; form the decomposition of & into coefficients
and frequencies, as revealed by the SDP. Then, there exist fixed numerical constants C1,Cy and

Cj5 such that with high probability

) Ypjerltl < Croy @

i) Sy, 16 {ming,cr d(fj, fi)} < ooy /221280
i) [ej = e, @] < Caoy/ 80,

iv.) If for any frequency f;, the corresponding amplitude |c;| > Cyo4/ %, then with high

probability there exists a corresponding frequency fj in the recovered signal such that,

A

‘fj il < VO /Ch &1

- n Cro /P lc;lg(n) B
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Part (i) of Theorem 3.3 shows that the estimated amplitudes corresponding to frequencies
far from the support are small. We rarely ever find any spurious frequencies in the far region,
suggesting that our bound (i) is conservative. Parts (ii) and (iii) of the theorem show that
in a neighborhood of each true frequency, the recovered signal has amplitude close to the
true signal. Part (iv) shows that the larger a particular coefficient is, the better our method is

able to estimate the corresponding frequency. In particular, note that if |c;| > 2C10

3

k2 log(n)
n

then ’ fi— f]‘ < 7VCfL/Cl In all four parts, note that the localization error goes to zero as the

number of samples grows.

Organization of this chapter

Section 3.2 describes how we can approach line spectral estimation using the framework
of atomic norms. Section 3.3 describes how we can localize the frequencies using the dual
problem. We will see a choice of the regularization parameter in 3.4 and to this end, derive
nonasymptotic upper and lower bounds for the Gaussian width of the atomic set for line
spectral estimation. Specializing the results of the previous chapter, we can derive a mean
squared error rate that holds for all signals in Section 3.5. I present minimax lower bounds
which show the best rate that can be achieved for well separated signals in 3.6. We will
then see the proofs of Theorem 3.2 showing near minimax MSE and Theorem 3.3 showing
frequency localization guarantees in Section 3.7. Section 3.8 contextualizes the results of
this chapter in the canon of line spectral estimation and emphasize the advantages and

shortcomings of prior art.
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3.2 Denoising Line Spectral Signals

Suppose we wish to estimate the amplitudes and frequencies of a signal z(t),¢ € R given as a

mixture of k£ complex sinusoids:

k
x(t) = Z ¢ exp(i2m fit)

=1

where {¢;}F_, are unknown complex amplitudes corresponding to the k unknown frequencies
{fi}f:_, assumed to be in the torus T = [0, 1]. Such a signal may be thought of as a normalized

band limited signal and has a Fourier transform given by a line spectrum:

k
u(f)=>_ad(f—f) (3.4)
=1

Denote by z* the n = 2m + 1 dimensional vector composed of equispaced Nyquist samples
{2()}_, for j = —m,...,m.

The goal of line spectral estimation is to estimate the frequencies and amplitudes of the

signal z(t) from the finite, noisy samples y € C" given by
Yyj = i +w;j

for —m < j < m, where w; ~ CN(0,0?) is i.i.d. circularly symmetric complex Gaussian noise.
We can model the line spectral observations 2* = [z*,,...,75]T € C" as a sparse

combination of atoms a( f) which correspond to observations due to single frequencies. The

atomic set in this case consists of samples of individual sinusoids, a4 € C", given by

T
app =€\ giznf .. gi2n(n=1)f| (3.5)
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The infinite set A = {as4 : f € [0,1], ¢ € [0,1]} forms an appropriate collection of atoms for
x*, since z* in (3.1) can be written as a sparse nonnegative combination of atoms in .A. In

k k ;
fact, o* = Sy cfagy o = Sy [eflagy g, where f = [cf €™,

The corresponding dual norm takes an intuitive form:

n—1 n—1
|v|’4 = sup(v,arg4) = sup sup ei2md Z ve” 2 = sup Z vzt (3.6)
e f€l0,1] ¢€[0,1] 1=0 l21<1]i=0

In other words, ||v[/* is the maximum absolute value attained on the unit circle by the
polynomial ¢ +— Zfz_ol v¢t. Thus, in what follows, we will frequently refer to the dual
polynomial as the polynomial whose coefficients are given by the dual optimal solution of the

AST problem defined in (2.2), reproduced here for convenience:
| 9
m1n1$m1ze§Hx—yHQ + 7|z A- (3.7)

Chapter 5 studies algorithms for solving AST and we will see that we can solve it exactly
using a semidefinite program and approximate it with a Lasso estimate. In this chapter, let us

restrict ourselves to theoretically analyzing the performance of AST.

3.3 Determining the frequencies

As shown in Corollary 2.8, the dual solution can be used to identify the frequencies of the
primal solution. For line spectra, a frequency f € [0, 1] is in the support of the solution Z of

(3.7) if and only if

[(2,ar4)| = =T

n—1
Z 2l6—z27rlf
=0
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Figure 3.1: Frequency Localization using Dual Polynomial: The actual location of the
frequencies in the line spectral signal z* € C% is shown in red. The blue curve is the dual
polynomial obtained by solving (2.7) with y = 2* 4+ w where w is noise of SNR 10 dB.

That is, f is in the support of # if and only if it is a point of maximum modulus for the dual
polynomial. Thus, the support may be determined by finding frequencies f where the dual
polynomial attains magnitude 7.

Figure 3.1 shows the dual polynomial for (3.7) with n = 64 samples and k£ = 6 randomly
chosen frequencies. In the next section, let us consider the choice of the regularization

parameter 7.

3.4 Choosing the regularization parameter

The choice of the regularization parameter is dictated by the noise model and we derive the

optimal choice for white gaussian noise samples in our analysis. As noted in Theorem 2.1,
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the optimal choice of the regularization parameter depends on the dual norm of the noise.
A simple lower bound on the expected dual norm occurs when we consider the maximum
value of n uniformly spaced points in the unit circle. Using the result of [65], the lower bound

whenever n > 5 is

a\/n log(n) — 4 log(4mlog(n)) .

Using standard results on the extreme value statistics of Gaussian distribution, we can also

obtain a non-asymptotic upper bound on the expected dual norm of noise for n > 3:

1
o <1 + log(n)> \/n log(n) + nlog(1673/21og(n))
We will examine these computations in detail in the following section.

3.4.1 Estimation of Gaussian Width

This section derives non-asymptotic upper and lower bounds on the expected dual norm of
gaussian noise vectors, which are asymptotically tight upto log log factors. Recall that the dual

atomic norm of w is given by v/nsup (o 1) [Wy| where

1 n—1 ]
Wy=— Z wpe” 2
\/ﬁ m=0

Here, the noise variables w1, ws, ... are circularly symmetric independent sequence of
standard complex normal variables.
If we define two independent :.i.d sequences of standard normal numbers {g;}{° and

{hi}{°, note that we can write

1 n—1

W; = Ton kz:% [gr cos(2mk f) — hy sin(27k f)] . (3.8)
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Note that W is a normal random variable with zero mean and a variance of 1/2.

3.4.2 Upper Bound

Let us use a 1/N-net of the torus T to estimate the expectation of sup sy Wy. Define

T={teT||t—k/N|<1/N}.

We have
E[sup|Wf| <E| sup [Wyn|| +E|sup ’WfWk/N”
fer 1<k<N feTs
2mn
< 4/log(N)+ ——E | sup |Y; (3.9
\/log(N) 73N L@EI f]
where
V3N (Wf—Wk/N)
Yy = . (3.10)
4mn

We can use Dudley’s integral inequality (See, for example [66]) to bound E [sup FeTy |Yf|}. To
proceed, let us compute the pseudometric p of the Gaussian process {W,} f induced on the

index set. For indices ¢ and s in T},

pP(t,s) == E|Y; — Ysf”

3N?
= g X = XF
3N2 n—1 '
=523 Z sin?(wk(t — s))
k=0

< N%(t—s)2



Thus, the diameter of the index set T}, with respect to p

diam,(Ty) := sup p(t,s) = 1.
t,SETk
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Consequently the number N (Ty, p, €) of e balls needed to cover T}, under this metric p is 1/e.

Now, the application Dudley’s integral inequality yields

diam, (T%)
<o N(Ts. p, €)de
0

<24 /01 Jlog(1/€)de = 12+/7.

E lsup Yy
teTy

Thus, from (3.12) and (3.9),

1673/2n

< +/log(N
_og()+N

E |sup |W¢|
feT

Substituting N = 16n+/73 log(n), we get

E lsup Wf] < (1 + log1(n)> \/log(n) + log(1673/210g(n))

feT

By the concentration to mean of the Gaussian process,

sup [(w, a(f))| < 2E
fer

sup |Wf|]
feT

with high probability.

(3.11)

(3.12)

(3.13)
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3.4.3 Lower Bound

The covariance function of W is

IR = _an=1)(fi—fo) SID(nT (f1 — f2))
B (W3 Wi] = 5 3 explammfy = f) = DB ST =

n—1

Thus, the n samples {Wm /n} , are uncorrelated and thus independent because of their
m=

joint gaussianity. This gives a simple non-asymptotic lower bound using the known result for

maximum value of n independent gaussian random variables [65] whenever n > 5:

= s i
teT

>E {m max 9{2( m/n)} \/log w

geeey

Combining this result with the upper bound, we can see that the lower bound is asymptot-
ically tight neglecting log log terms.
3.5 Universal Mean Squared Error Guarantee

We can set the regularization parameter 7 greater than the upper bound on the expected dual

atomic norm, i.e., we pick n € [1, oo] and let

on ( og(n ) \/nlog ) + nlog(16m3/2log(n)). (3.14)

The application of Theorem 2.1 with the choice » = 1 guarantees Mean-Squared Error
consistency of AST for Line spectral Estimation. This choice of 7 then yields the asymptotic
result in Theorem 3.1. However, as noted in Section 2.5, faster convergence rates may be

possible under some conditions, whenever > 1. Due to concentration to mean (3.13),
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whenever n > 1, with overwhelming probability,

sup |[(w, a(f))] < o 1T (3.15)
feT

A recent result by Candes and Fernandez-Granda [20] establishes that in the noiseless case,
the frequencies localized by the dual polynomial are exact provided the minimum separation
between the frequencies is at least 4/n where n is the number of samples in the line spectral
signal. Under similar separation condition, numerical simulations suggest that (3.7) achieves
approximate frequency location in the noisy case.

In fact, we can also theoretically show that signals with well separated frequencies are
well behaved and achieve faster convergence rates. Unlike previous work on fast rates for
Lasso, the condition for fast rates is on the signal instead of the measurement operator. In fact,
as frequencies can be arbitrarily close, the measurement operator which samples line spectral
signals is highly coherent and it may be impossible to achieve robust recovery if frequencies

can be close to each other.

3.6 What is the best rate we can expect?

Using results about minimax achievable rates for linear models [22, 83], we can deduce
that the convergence rate stated in (3.3) is near optimal. Define the set of k£ well separated

frequencies as

Se={(f1s- 1) €T | d(fypo fg) > 4/n,p # a}

The expected minimax denoising error M, for a line spectral signal with frequencies from

Sy, is defined as the lowest expected denoising error rate for any estimate #(y) for the worst
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case signal x* with support 7'(z*) € Si. Note that we can lower bound M, by restricting the
set of candidate frequencies to smaller set. To that end, suppose we restrict the signal z* to
have frequencies only drawn from an equispaced grid on the torus 7,, := {4j/ n};'ﬁ Note
that any set of k frequencies from T, are pairwise separated by at least 4/n. If we denote by
F, an x (n/4) partial DFT matrix with (unnormalized) columns corresponding to frequencies

from T,,, we can write x* = F),¢* for some ¢* with ||¢*||o = k. Thus,

1
My, :=inf sup —E|&—z*|3
T T(ar)es, T

1
>inf sup ~E|7 — Fne'|
T lello<k T

1
>inf sup —E||F,(¢— C*)Hg
€ Jlexllo<k T

4
>Z{'r}f sup Ena—c*r\%}.

€ Jlerllo<k ™

Here, the first inequality is the restriction of 7'(z*). The second inequality follows because
we have projected out all components of # that do not lie in the span of F,,. Such projections
can only reduce the Euclidean norm. The third inequality uses the fact that the minimum
singular value of F;, is n since F}; F, = nl, ;. Now we may directly apply the lower bound
for estimation error for linear models derived by Candés and Davenport. Namely, Theorem 1

of [22] states that

4 klog (1
inf sup Eua—c*uszcﬂ(‘é’g-
¢ let]lo<k T HFTLHF

With the preceding analysis and the fact that || F},||% = n?/4, we can thus deduce the following
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theorem:

Theorem 3.4. Let z* be a line spectral signal as described by (3.1) with the support T'(z*) =
{fi,-.., fx} € Sk and y = 2* + w, where w € C" is circularly symmetric Gaussian noise with

variance %1, Let & be any estimate of x* using y. Then,

1 klog ( 1+
My =inf sup —E|Z— x*”% > ngﬂ
Z T )es, T n

for some constant C' that is independent of k, n, and o.

This theorem and Theorem 3.2 certify that AST is nearly minimax optimal for spectral

estimation of well separated frequencies.

3.7 Proofs for well separated frequencies

In this section, there are many numerical constants. Unless otherwise specified, C' will denote
a numerical constant whose value may change from equation to equation. Specific constants
will be highlighted by accents or subscripts.

Before sketching the proof of Theorems 3.2 and 3.3, we will need some the preliminaries

and notations. We will also need to recall some recent results that are relevant for the problem.

3.7.1 Preliminaries

The sample 2 may be regarded as the jth trigonometric moment of the discrete measure y

given by (3.4):

r ..
o= [ e )
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for —m < j < m. Thus, the problem of extracting the frequencies and amplitudes from noisy
observations may be regarded as the inverse problem of estimating a measure from noisy
trigonometric moments.

We can write the vector z* of observations [z*,,, ...,z ] in terms of an atomic decompo-
sition

k
= qalf)
=1

or equivalently in terms of a corresponding representing measure yu given by (3.4) satisfying

v = [ ahutan

There is a one-one correspondence between atomic decompositions and representing measures.
Note that there are infinite atomic decompositions of x* and also infinite corresponding
representing measures. However, since every collection of n atoms is linearly independent, .4
forms a full spark frame [41] and therefore the problem of finding the sparsest decomposition
of z* is well-posed if there is a decomposition which is at least n/2 sparse.

The atomic norm of a vector z defined in (2.1) is the minimum total variation norm [97,
291 ||u|lry of all representing measures p of z. So, minimizing the total variation norm is the

same as finding a decomposition that achieves the atomic norm.

3.7.2 Dual Certificate and Exact Recovery

Atomic norm minimization attempts to recover the sparsest decomposition by finding a
decomposition that achieves the atomic norm, i.e., find ¢, f; such that * = >, qa(f;)
and ||z*||4 = >_;|c| or equivalently, finding a representing measure x of the form (3.4)

that minimizes the total variation norm | u||ry. The authors of [20] showed that when
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n > 256, the decomposition that achieves the atomic norm is the sparsest decomposition
by explicitly constructing a dual certificate [23] of optimality, whenever the composing
frequencies f1,.. ., fx satisfy a minimum separation condition (3.2). In the rest of the chapter,
let us always make the technical assumption that n > 256. The following is just a restatement

of Definition 2.3 for trigonometric moments:

Definition 3.5 (Dual Certificate). A vector g € C" is called a dual certificate for the decomposi-
tion

k
=" qalf)
=1

if for the corresponding trigonometric polynomial Q(f) := (q,a(f)), we have

Q(f1) =sign(e),l=1,...,k

and

QNI <1

whenever f & {f1,..., fx}-

The authors of [20] not only explicitly constructed such a certificate characterized by the
dual polynomial @), but also showed that their construction satisfies some stability conditions,
which is crucial for showing that denoising using the atomic norm provides stable recovery in

the presence of noise.

Theorem 3.6 (Dual Polynomial Stability, Lemma 2.4 and 2.5 in [19]). For any fi,..., f&
satisfying the separation condition (3.2) and any sign vector v € C* with |v;| = 1, there exists a

trigonometric polynomial Q = (q, a(f)) for some q € C™ with the following properties:

1. Foreach j =1,...,k, Q interpolates the sign vector v so that Q(f;) = v;
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2. In each neighborhood N; corresponding to f; defined by N; = {f : d(f, f;) < 0.16/n}, the

polynomial Q(f) behaves like a quadratic and there exist constants C,, C!, so that

QU <1 - S2n(f — ) (3.16)
QU) — vl < n?(7 - 1 (3.17)

3. When f € F =1[0,1]\ Ug?:l Nj, there is a numerical constant Cy, > 0 such that
QNI <1-C

This chapter uses results in [19] and [6] and borrows several ideas from the proofs in [19],

with nontrivial modifications to establish the error rate of atomic norm regularization.

3.7.3 Near optimal MSE

In this section, we will see a proof of Theorem 3.2. Let i be the representing measure for the

solution Z of (2.2) with minimum total variation norm, that is,

p= [ ath)atan

and ||Z||4 = ||ii||Tv. Denote the error vector by e = z* — Z. Then, the difference measure

v = u — [i is a representing measure for e. Express the denoising error ||e||3 as the integral of
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the error function E(f) = (e, a(f)), against the difference measure v:

lell3 = <676>

/01 )
- /O E(f)v(df)

Using a Taylor series approximation in each of the near regions NV;, we will see that the
denoising error (or in general any integral of a trigonometric polynomial against the difference
measure) can be controlled in terms of an integral in the far region F' and the zeroth, first, and
second moments of the difference measure in the near regions. The precise result is presented

in the following lemma:

Lemma 3.7. Define

Ig =

/. V(df>‘

J

—n| [ (f—fj)V(df)’
N;j

2
Bo= [ U e

I := Z 7, forl=0,1,2.

Then for any mth order trigonometric polynomial X, we have

/X ) < X ([ )+ To+ 11+ 1)
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Proof. Split the domain of integration into the near and far regions.

‘ [ xtwan

<|[ Xt +i /. jX(f)V(df)’

k
SN RZTIEDS
j=1

/ X(f)y(df)’ . (3.18)
N

by using Holder’s inequality for the last inequality. Using Taylor’s theorem, we may expand

the integrand X (f) around f; as

1
X(f) = X() + (f = X' (F) + 5 X" &) = 1)
for some {; € N;. Thus,

(X (f) = X(f5) = X" (F)(f = £i)

1
<SP I X (Dlleo(f = £5)7,

where for the last inequality follows from a theorem of Bernstein for trigonometric polynomials

(see, for example [87]):

X<l X (oo

X" (£ < 02| X ()]l oo-
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As a consequence, we have

‘ [ X(wian
Nj

< |x(5)] ‘ /. v

X)) ‘ |- fj)V(df)‘
# g IX Dl [ = 1P ia)

<X (Nlloo (B + 1 + 1)

Substituting back into (3.18) yields the desired result. O

Applying Lemma 3.7 to the error function, we get

lell2 < 1B e ( [+ o+ 11+ 12) (3.19)

As a consequence of the choice of 7 given by (3.14), we can show that || E(f)|le < (1+2n )7

with high probability. In fact, we have

IE(f)llsc = sup [(e,a(f))]
fel0,1]

= sup [(z* —&,a(f))]
f€l0,1]

< sup [(w,a(f))[+ sup [{y -2, a(f))|
refo.1] refo.1]

< sup [(w,a(f)[+7
feloq]

< (1 + 2717 < 37, with high probability. (3.20)

The second inequality follows from the optimality conditions for (2.2) and the penultimate
inequality is from (3.15).

Therefore, to complete the proof, it suffices to show that the other terms on the right hand
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side of (3.19) are O(’%). While there is no exact frequency recovery in the presence of noise,
we can hope to get the frequencies approximately right. Hence, we can expect that the integral
in the far region can be well controlled and the local integrals of the difference measure in the
near regions are also small due to cancellations. Next, we could utilize the properties of the
dual polynomial in Theorems 3.6 and another polynomial given in Theorem A.1 in Appendix
A to show that the zeroth and first moments of » may be controlled in terms of the other two
quantities in (3.19) to upper bound the error rate. The following lemma is similar to Lemmas
2.2 and 2.3 in [19], but we have made several modifications to adapt it to our signal and

noise model.

Lemma 3.8. There exists numeric constants Cy and C such that

Iy < Co ("7’;+12+/F\v\(df>)
L <C <IZ+1—2+/F‘V‘(df)>-

Proof. Consider the polar form

6i9j .

/. i) = ’ /. i)

Set v; = =% and let Q(f) be the dual polynomial promised by Theorem 3.6 for this v. Then,

we have

J;

J

y(df)‘ - /N ()

:/ Q(f)v(df) +/ (7" — Q())w(df)
N; Nj

J

Summing over j = 1,..., k yields
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k

=3 /N V(df)‘

k k
- [, Qe *3 s = Qi

<

/ QU

+ / lv|(df) + C. I, using triangle inequality and (3.17)
F

< Okt +/ lv|(df) + C/ 15, using (A.13). (3.21)
n F

We can use a similar argument for bounding /; but this time use the dual polynomial Q) (f)

guaranteed by Theorem A.1. Again, start with the polar form

i = 1]t /n

Jo U = man) = ‘ J, U = it

Set v; = e~ in Theorem A.1 to obtain

H=n [ (= )

J

=n [ (@l = ) = @) + /. awan



55

Summing over j = 1,..., k yields

k .
W=y
j=1
k k
=n3 [, @ = 1) - @ia + D> [, @

1
<Cih+n| [ Qufw(d)| +n

Ckr

n

[ @it

<0+ 2Ty o) /F Iv|(df) (3.22)

The first inequality uses (A.1) and triangle inequality, and the last inequality uses (A.14) and

(A.2). Equations (3.21) and (3.22) complete the proof. O

All that remains to complete the proof is an upper bound on /5 and [ |v|(df). The key
idea in establishing such a bound is deriving upper and lower bounds on the difference
|Pre(v)||Tv — || Pr(v)||Tv between the total variation norms of v on and off the support. The
upper bound can be derived using optimality conditions. We lower bound || Pre(v)||Tv —
|Pr(v)||Tv using the fact that a constructed dual certificate ) has unit magnitude for every
element in the support 7" of Pr(v) whence we have || Pr(v)||rv = [; Q(f)v(df). A critical
element in deriving both the lower and upper bounds is that the dual polynomial @) has
quadratic drop in each near regions N; and is bounded away from one in the far region F.
Finally, by combing these bounds and carefully controlling the regularization parameter, we

get the desired result summarized in the following lemma.

Lemma 3.9. Let 7 = noy/nlog(n). If n > 1 is large enough, then there exists a numerical
constant C' such that, with high probability

Ckr

n

[l + 1 <
a
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Proof. Denote by Pr(v) the projection of the difference measure v on the support set 7' =
{f1,..., fx} of x* so that Pp(v) is supported on 7. Then, setting Q(f) the polynomial in

Theorem 3.6 that interpolates the sign of Pr(v), we have

1
1Pr@)lry = [ QUIPr) @)

<

/ L QUw(dr)

S%—FZ

n
fj cT

+| [ ewwan)

+| [ atpmarn),

/N gy QU

where the first inequality follows from triangle inequality and for the last inequality is given

by (A.13). The integration over F' is can be bounded using Holder’s inequality

/ @(f)v(df)\ < (1= [ pl@)
F F
Continue with
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As a consequence, we have
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or equivalently,

Ck:T

n

1Prellry = I1Pr()llv = Cula+Cs [ [vl(df) -

Now, appeal to the optimality conditions (2.18) of AST to obtain

2[4 < |lz*[la — (w,e)/T
and thus
lallrv < [lpllry + [ (w, e)l/T.

Using Lemma 3.7,

w0l = I, [ alwia)y

[ ot viar)

0
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Ckr
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X[ e+ [ Cut =G [ i
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(3.23)

(3.24)

(3.25)

(3.26)
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with high probability, where for the penultimate inequality uses the choice of 7 in (3.14) and
thus ||(w, a(f))|lec < 2n~'7 with high probability from (3.15).
Substituting (3.26) in (3.24), we get

_ kT
Il + €077 (5 4+ 1o+ [ v
n F
> ||y
= e +virv

> lpllry = 1Pr(@)lltv + [ Pre(v)[|Tv

Canceling ||u||Tv yields

k
1Pre@llay ~ [Pr)lry < On7'r (4 1o+ [ i) (3.27)

As a consequence of (3.23) and (3.27), we get,

kT

CL+n7)" 2 (Co=n7'C) [ I + (Co =07 C) s

whence the result follows for large enough 7. O
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Putting together Lemmas 3.7, 3.8 and 3.9, we can finally prove our main theorem:

Selp < Ve (f ujap) + 1o+ 1+ 1)

< 1E) o (ClnkT +02/F’V’(df) +C312>

n
_ 1Bl Chr
n n
Ckr?
<

-0 (nglog(n)> .

n

The first three inequalities come from successive applications of Lemmas 1, 2 and 3
respectively. The fourth inequality follows from (3.20) and the fifth by the choice of 7

according to Eq. (3.14). This completes the proof of Theorem 3.2.

3.7.4 Approximate Frequency Localization

In this section, we will see a proof of Theorem 3.3. The first two statements in Theorem
3.3 are direct consequences of Lemma 3.9. For (iii.), we will follow [52] and use the dual

polynomial Q3 (f) = (g}, a(f)) constructed in Lemma 2.2 of [52] which satisfies

Q;(f;)) = 1
1-Q5(f) < n’Cif - f;)% fEN;
Q5N < n*CL(f = fy) f € Ny j' # 5

Cy, f € F.



Note that ¢; — fien; =/ N, v(df). Then, by applying triangle inequality several times,

|/Nj1/(df) / Qi(f df| ‘/ (1-Qi(f df)‘
< /0 Q;<f>v(df>’+| /. Q)| + Nj(l—Q]*-(f))V(df)‘
1
<\[ @uwan|+ | [ Qrwian)

k
2
i'#d

=1

v Q;(f)"’/‘(df)—i-/]v"1—Qj(f)‘|y(df)‘

We will upper bound the first term using Lemma A.3 in Appendix A which yields

0
| | @oman)

The other terms can be controlled using the properties of Q5

[ @stnwian| <c [ i)

k

> [ e
7

J:
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i + [ 1= Q50| i) <clz/ 2 = 5Pl = il

Using Lemma 3.9, both of the above are upper bounded by % Now, by combining these

upper bounds, we finally have

Cskt
n

Cj — Z él_

l:fleN]

This shows part (iii) of the theorem. Part (iv) can be obtained by combining parts (ii) and
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(iii).

3.8 Related Work

The classical methods of line spectral estimation, often called linear prediction methods, are
built upon the seminal interpolation method of Prony [81]. In the noiseless case, with as little
as n = 2k measurements, Prony’s technique can identify the frequencies exactly, no matter
how close the frequencies are. However, Prony’s technique is known to be sensitive to noise
due to instability of polynomial rooting [62]. Following Prony, several methods have been
employed to robustify polynomial rooting method including the Matrix Pencil algorithm [60],
which recasts the polynomial rooting as a generalized eigenvalue problem and cleverly uses
extra observations to guard against noise. The MUSIC [89] and ESPRIT [85] algorithms
exploit the low rank structure of the autocorrelation matrix.

Cadzow [15] proposed a heuristic that improves over MUSIC by exploiting the Toeplitz
structure of the matric of moments by alternately projecting between the linear space of
Toeplitz matrices and the space of rank k£ matrices where k is the desired model order.
Cadzow’s technique is very similar [108] to a popular technique in time series literature [63,
54] called Singular Spectrum Analysis [103], which uses autocorrelation matrix instead of
the matrix of moments for projection. Both these techniques may be viewed as instances of
structured low rank approximation [34] which exploit additional structure beyond low rank
structure used in subspace based methods such as MUSIC and ESPRIT. Cadzow’s method has
been identified as a fruitful preprocessing step for linear prediction methods [8]. A survey of
classical linear prediction methods can be found in [8, 92] and an extensive list of references
is given in [91].

Most, if not all of the linear prediction methods need to estimate the model order by
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employing some heuristic and the performance of the algorithm is sensitive to the model
order. In contrast, AST and the Lasso based approximation discussed in Chapter 5 only needs
a rough estimate of the noise variance. The experiments in Chapter 5 provides the true model
order to Matrix Pencil, MUSIC and Cadzow methods, but only an estimate of noise variance
for AST. However, AST still compares favorably to the classical line spectral methods.

In contrast to linear prediction methods, a number of authors [32, 72, 12] have suggested
using compressive sensing and viewing the frequency estimation as a sparse approximation
problem. For instance, [72] notes that the Lasso based method has better empirical localization
performance than the popular MUSIC algorithm. However, the theoretical analysis of this
phenomenon is complicated because of the need to replace the continuous frequency space by
an oversampled frequency grid. Compressive sensing based results (see, for instance, [47])
need to carefully control the incoherence of their linear maps to apply off-the-shelf tools from
compressed sensing. It is important to note that the performance of our algorithm improves
as the grid size increases. But this seems to contradict conventional wisdom in compressed
sensing because our design matrix ® becomes more and more coherent, and limits how fine
we can grid for the theoretical guarantees to hold.

Directly working in the continuous parameter space circumvents the problems in the
conventional compresssive sensing analysis, and allows us step away from such notions as
coherence, focusing on the geometry of the atomic set as the critical feature. By showing that
the continuous approach is the limiting case of the Lasso based methods using the convergence
of the corresponding atomic norms, we could justify denoising line spectral signals using
Lasso on a large grid. Furthemore, Candes and Fernandez-Granda [20] showed that our SDP
formulation exactly recovers the correct frequencies in the noiseless case.

More recently, approaches based on convex optimization have gained favor and have

been demonstrated to perform well on a variety of spectrum estimation tasks [72, 12, 3,
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111]. These convex programming methods restrict the frequencies to lie on a finite grid of
points and view line spectral signals as a sparse combination of single frequencies. While
these methods are reported to have significantly better localization properties than subspace
methods (see for example, [72]) and admit fast and robust algorithms, they have two
significant drawbacks. First, while finer gridding may lead to better performance, very fine
grids are often numerically unstable. Furthermore, traditional compressed sensing theory
does not adequately characterize the performance of fine gridding in these algorithms as the
dictionary becomes highly coherent.

Some very recent work [6, 20, 19] bridges the gap between the performant discretized
algorithms and continuous subspace approaches by developing a new theory of convex relax-
ations for infinite continuous dictionary of frequencies. Chapter 5 demonstrates empirically
that the algorithm proposed in the chapter compares favorably with both the classical and
recent convex approaches which assume the frequencies are on an oversampled DFT grid. We
saw that we can derive a weak but asymptotically consistent convergence rate with no as-
sumption about the separation between frequencies. When the frequencies are well separated,
we saw that much faster convergence rates can be achieved.

This work is closely related to recent results established by Candés and Fernandez-
Granda [20] on exact recovery using convex methods and their recent work [19] on exploiting
the robustness of their dual polynomial construction to show super-resolution properties of
convex methods. The total variation norm formulation used in [19] is equivalent to the atomic
norm specialized to the line spectral estimation problem.

Robustness bounds were established both in earlier work [6] and in the work of Candés and
Fernandez-Granda [19]. In [6], a slow convergence rate was established with no assumptions
about the separation of frequencies in the true signal. In [19], the authors provide guarantees

on the L, energy of error in the frequency domain in the case that the frequencies are well
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separated. The noise is assumed to be adversarial with a small ; spectral energy. In contrast,
we saw near minimax denoising error under Gaussian noise in this chapter. It is also not clear
that there is a computable formulation for the optimization problem analyzed in [19]. While
the guarantees the authors derive in [19] are not comparable with our results, several of their
mathematical constructions are used in the proofs here.

Additional recent work derives conditions for approximate support recovery under the
Gaussian noise model using the Beurling-Lasso [2]. There, the authors show that there is a
true frequency in the neighborhood of every estimated frequency with large enough amplitude.
The Beurling-Lasso is equivalent to the atomic norm algorithm in this chapter. A more recent
paper by Fernandez-Granda[52] improves this result by giving conditions on recoverability
in terms of the true signal instead of the estimated signal and prove a theorem similar to
Theorem 3.3, but use a worst case Ly bound on the noise samples. This chapter improves

these results in Theorem 3.3, providing tighter guarantees under the Gaussian noise model.

3.9 Conclusion

The Atomic norm formulation of line spectral estimation provides several advantages over prior
approaches. Performing the analysis in the continuous domain permits deriving simple closed
form rates using fairly straightforward techniques. This approach allowed us to circumvent
some of the more complicated theoretical arguments that arise when using concepts from
compressed sensing or random matrix theory.

This chapter demonstrated stability of atomic norm regularization by analysis of specific
properties of the atomic set of moments and the associated dual space of trigonometric
polynomials. The key to this analysis is the existence and properties of various trigonometric

polynomials associated with signals with well separated frequencies.
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4 System ldentification

Identifying dynamical systems from noisy observation of their input-output behavior is of
fundamental importance in systems and control theory. Often times models derived from
physical first principles are not available to the control engineering, and computing a surrogate
model from data is essential to the design of a control system. System identification from
data is thus ubiquitous in problem domains ranging from process engineering, dynamic
modeling of mechanical and aerospace systems, and systems biology. Though there are a
myriad of approaches and excellent texts on the subject (see, for example [70]), there is still
no universally agreed upon approach for this problem. One reason is that quantifying the
interplay between system parameters, measurement noise, and model mismatch tends to be
challenging.

This chapter draws novel connections between contemporary high-dimensional statistics,
operator theory, and linear systems theory to prove consistent estimators of linear systems
from small measurement sets. In particular, building on recent studies of atomic norms in
estimation theory [30, 6], I propose a penalty function which encourages estimated models to
have small McMillan degree.

A related family of system identification techniques use finite sample Hankel matrices to
estimate dynamical system models, using either singular value decompositions (e.g, [104,
76]) or semidefinite programming [51, 69, 90, 84]. In all of these techniques, no statistical
guarantees were given about the quality of estimation with finite noisy data, and it was
difficult to determine how sensitive these methods were to the hidden system parameters
or measurement noise. Moreover, since these problems were dealing with finite, truncated
Hankel matrices, it is never certain if the size of the Hankel matrix is sufficient to reveal the

true McMillan degree. Moreover, the techniques based on semidefinite programming are
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challenging to scale to very large problems, as their complexity grows superlinearly with the
number of measurements.

In contrast, the atomic norm regularizer proposed in this chapter is not only equivalent to
the sum of the Hankel singular values (the Hankel nuclear norm), but is also well approximated
by a finite dimensional, /; minimization problem. I show that solving least-squares problems
regularized by atomic norm is consistent, and scales gracefully with the stability radius, the
McMillan degree of the system to be identified, and the number of measurements. Numerical
experiments validate these theoretical underpinnings, and show that this method has great

promise to provide concrete estimates on the hard limits of estimating linear systems.

Notation

We will adopt standard notation; D and S will denote respectively the open unit ball and the
unit circle in the complex plane C . Hy and H, will denote the Hardy spaces of functions

analytic outside D, with the norms

2 .
1f 17 = 217r/0 [f(e?)Pd6  and | flln. = Stelglf(Z)l

respectively. /5([a, b]) will denote the set of square summable sequences on the integers in

[a, b].

4.1 Atomic Decompositions of Transfer Functions

In this chapter, we will concern ourselves with Single Input Single Output (SISO) systems.
Suppose we wish to estimate a SISO, LTI system with transfer function G,(z) from a finite
collection of measurements y = ®(G,). The set of all transfer functions is an infinite

dimensional space, so reconstructing GG, from this data is ill-posed. In order to make it well
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posed, a common regularization approach constructs a penalty function pen(-) that encourages

“low-complexity” models and solves the optimization problem
mingnize |®(G) — y||3 + ppen(G). 4.1)

This formulation uses the parameter p to balance between model complexity and fidelity to
the data. The least-squares cost can be modified to other convex loss functions if knowledge
about measurement noise is available (as in [90, 77]), though in general it is less clear how to
design a good penalty function.

In many applications, we know that the true model can be decomposed as a linear
combination of very simple building blocks. For instance, as described in Chapter 2, sparse
vectors can be written as short linear combinations of vectors from some discrete dictionary
and low-rank matrices can be written as a sum of a few rank-one factors. Here, let us recall
some of the preliminaries from Chapter 2. In [30], Chandrasekaran et al. proposed a universal

heuristic for constructing regularizers based on such prior information. If we assumed that

i,
G. =) _cia;, for some a; € A, ¢; € C,

=1

where A is an origin-symmetric set of atoms normalized to have unit norm and r is relatively

small, then the appropriate penalty function is the atomic norm induced by the atomic set .A:

|Glla:=1inf{t : Ge€tconv(A)} =infS > fca| : G= ceay . (4.2)
acA acA

In [30], it is shown that minimizing the atomic norm subject to compressed measurements
yielded the tightest known bounds for recovering many classes of models from linear mea-

surements. Moreover, in Chapter 2, we saw the atomic norm regularizer in the context of
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denoising problems and saw that it produces consistent estimates at nearly optimal estimation
error rates for many classes of atoms.

Corresponding to the atomic norm, there is a dual atomic norm. For an atomic set A, the
dual norm is given by

2[4 = sup(a, z) .
acA

Note that for this norm, we have the generalization of Holder’s inequality (z, z) < [|z||.a||z||%-
Moreover, note that

allzfla < flzfla < Bzl

for some o < 1 and 3 > 1 for all z if and only if

Bzl < Nzl < a7 Mzl

for all z. For more details, see Chapter 2
To apply these atomic norm techniques to system identification, we must first determine
the appropriate set of atoms. For discrete time LTI systems with small McMillan degree, we

can always decompose any finite dimensional, strictly proper system G(z) as:

Gz) =Y &

=17 W

via a partial fraction expansion. Hence, it makes sense that our set of atoms should be

single-pole transfer functions. So, define the atomic set for linear systems by

R Bl

AZ{cpw(z)— : wE]D)}.

Z—Ww

The numerator is normalized so that the Hankel norm of each atom is 1. See the discussion in
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Section 4.2 for precisely why this normalization is desirable.

The atomic norm penalty function associated with these atoms is

— ) _ cw(l — |w]?)
IG()a=infq > few| + G2) =) , (4.3)

web weD Fow

where the summation implies that only a countable number of terms have nonzero coefficients
cw- This expression finds the decomposition of G(z) into a linear combination of single pole
systems such that the ¢; norm, weighted by the norms of the single poles, is as small as
possible.

With this penalty function in hand, we can now turn to analyzing its utility. In Section 4.2,
I will first show that for most systems of interest ||G|| 4 is a well-defined, bounded quantity.
Moreover, we will see that the atomic norm is equivalent to the nuclear norm of the Hankel
operator associated with G. Hence, the models that are preferred by our penalty function will
have low-rank Hankel operators, and thus low McMillan degrees.

Section 4.2.3 describes practical algorithms for approximating atomic norm regularization
problems for several classes of measurements. We will show that with finite data, our
atomic norm minimization problem is well-approximated by a finite-dimensional ¢/; norm
regularization problem. In particular, using specialized algorithms adapted to the solution
of the LASSO [106], we can solve atomic norm regularization problems in time competitive
with respect to techniques that regularize with the nuclear norm and SVD-based subspace
identification methods. We will leave the actual analysis of the approximation by discretization
to Chapter 5 on algorithms.

Finally, Section 4.3 analyzes the statistical performance of atomic norm minimization and
shows that the proposed algorithm is asymptotically consistent over several measurement

ensembles of interest. We will focus on sampling the transfer function on the unit circle and
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present #, error bounds in terms of the stability radius, Hankel singular values, ., norm,

and McMillan degree of the system to be estimated.

4.2 The Hankel Nuclear Norm and Atomic Norm Minimization

Let us first show that most LTI systems of interest do indeed have finite atomic norm, and,
moreover, that the atomic norm is closely connected with the sum of the Hankel singular

values.

4.2.1 Preliminaries: the Hankel operator

Recall that the Hankel operator, I, of the transfer function G is defined as the mapping from
the past to the future under the transfer function GG. Given a signal u supported on (—oo, —1],
the output under G is given by g * u where “x” denotes convolution and g is the impulse

response of G:

G(z) = Z gz "
k=1

I'¢; is then simply the projection of ¢ * u onto [0, c0). An introduction to Hankel operators in
control theory can be found in [48, Chapter 4] or [109, Chapter 7].

The Hankel norm of G is the operator norm of I'; considered as an operator mapping
ly(—00, —1] to £2[0,00). The Hankel nuclear norm of G is the nuclear norm (aka the trace
norm or Schatten 1-norm) of I';. To be precise, an operator T is in the trace class Sy if the
trace of (T*T)'/? is finite. This implies first that 7" is a compact operator and admits a singular

value decomposition

T(f) =Y oi{vi, fui.
iz

The sequence o; are called the Hankel singular values of T. Moreover, the Schatten 1-norm of
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T is given by
1T = trace( (T*T) 1/2) ZO’Z

4.2.2 The atomic norm is equivalent to the Hankel nuclear norm

The rank of the Hankel operator determines the McMillan degree of the linear system defined
by G. Rank minimization is notoriously computationally challenging (see [84] for a discus-
sion), and we don’t expect to be able to directly penalize the norm of the Hankel operator
in implementations. Thus, as is common, a reasonable heuristic for minimizing the rank of
the Hankel operator would be to minimize the sum of the Hankel singular values, i.e., to
minimize the Schatten 1-norm of the Hankel operator. For rational transfer functions, we can
compute the Hankel nuclear norm via a balanced realization [109]. On the other hand, while
the maximal Hankel singular value can be written variationally as an LMI, we are not aware
of any such semidefinite programming formulations for the Hankel nuclear norm.

The following theorem provides a path towards minimizing the Hankel nuclear norm,
minimizing the atomic norm ||G(z)||4 as a proxy. Indeed, from the view of Banach space

theory, the atomic norm is equivalent to the Hankel nuclear norm.

Theorem 4.1. Let G € Ho. Then I'g is trace class if and only if there exists a sequence {\;} € {1

and a sequence {wy,} with wy, € D such that

oo

Z)\ Ll U 4.4)

Z — Wy

Moreover, we have the following chain of inequalities

sIGIa < [Tell < IG]la (4.5)
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where ||G|| 4 is given by (4.2).

Proof Outline Theorem 4.1 follows by carefully combining several different results from
operator theory. Peller first showed that transfer functions with trace class Hankel operators
formed a Besov space [80]. Peller’s argument can be found in his book [79]. The atomic
decomposition of such operators is due to Coifman and Rochberg [36]. The norm bounds (4.5)
were proven by Bonsall and Walsh [10]. There they show that the § is the best possible lower
bound. They also show that if | T4[|; < C||g| .4 for all g, then C must be at least £, so the chain
of inequalities is nearly optimal. A concise presentation of the full argument can be found

in [78]. A modern perspective using the theory of reproducing kernels can be found in [110].

Theorem 4.1 asserts that a transfer function has a finite atomic norm if and only if the sum
of its Hankel singular values is finite. In particular, this means that every rational transfer
function has a finite atomic norm. More importantly, the atomic norm is equivalent to the
Hankel nuclear norm. Thus if we can approximately solve atomic norm-minimization, we can

approximately solve Hankel nuclear norm minimization and vice-versa.

4.2.3 System Identification using Atomic Norms

From here on, let us assume that the G, that we seek to estimate has all of its poles of
magnitude at most p ( we will call p the stability radius, and treat it as a known parameter).
Let D, denote the set of all complex numbers with norm at most p. Note that if G, has stability

radius p then

cw(1 — |w|?
|G||la:= inf{ Z lew| @ G(z) = Z w}

weD, web, W
That is, we can restrict the set of atoms to only be those single pole systems with stability

radius equal to p. For the remainder of this manuscript, assume that .4 only consists of such
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single pole systems.
In what follows, let us focus on linear measurement maps. Let £; : H — C be a linear
functional that serves as a measurement operator for the system G(z). Many maps of interest

can be phrased as linear functionals of the transfer function,

1. Samples of the frequency response L (G) := G(e*%) for k = 1,...,n. From a control
theoretic perspective, this measurement operator corresponds to measuring the gain

and phase of the linear system at different frequencies.
2. Samples of the impulse response, L(G) := g;, for k=1,...,n and i} € [1,00).

3. Convolutions of the impulse response with a pseudorandom signal u;: Li(G) :=

> 721 GjUk—j-

In all of these cases, consider the problem

miniGmize%Z\ﬁi(G) — il + pl|Glla- (4.6)
=1

This problem is equivalent to the constrained, semi-infinite programming problem

minimize, ¢ %Zzzl |23 — yk|2 + MZwEDp |cwl

subject to xp=Ly(G) fori=1,...,n

cw(1—|wl|?
G = Yyep, i

Eliminating the equality constraint gives yet another equivalent formulation

minimize, 5 35 [or — yel® + 1 X wep, lewl 4.7)

_|wl2 A
subject to @k = X e, Cwlk (1 [l ) fori=1,...,n.

zZ—w
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Note that in this final formulation, our decision variable is x, a finite dimensional vector, and
cw, the coefficients of the atomic decomposition. The infinite dimensional variable G has been

eliminated. Let us define a norm on R" based on the formulation (4.7)

. 1— |w|2

weD, webD,

Then we see that problem (4.6) is equivalent to the denoising problem
minimize 3|l — y|13 + el ca) - (4.8)

Note that the first term is simply the squared Euclidean distance between y and z in R™.
The second term is an atomic norm on R" induced by the linear map of the set of transfer
functions via the measurement operator L.

In order to tractably solve (4.6), we will need computational schemes for approximating
lz]| £(4)- Such computational considerations are treated in Chapter 5. In that chapter, I show
that a sufficiently fine discretization of the unit disk can yield a good approximation for the

solution. In particular, we will need the following proposition proved in Chapter 5.

Proposition 4.2. Let ]D)Ef) be a finite subset of the unit disc such that for any w € D, there exists

ave ID)Ef) satisfying |w — v| < e. Define

. 1— |w|?
[zl cay =inf S > lew| @ mi= > cwli| ———

zZ— W
wE]D)ée) we]D)Ef)

Then there exists a constant C. € [0, 1] such that

Cellzllziay < 1zllzeay < lzllzay) -
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The set Dﬁf) is called an e-net for the set D,. We show in chapter 5 that when L;(G) = G(e¥),

16pe
n(1-p)

gives a way to solve (4.8) approximately.

C. is at least (1 — ). Other measurement ensembles can be treated similarly. Chapter 5

4.3 Statistical Bounds

Let £; : H — C be a linear functional that serves as a measurement operator for the system

H(z). In this section, let us suppose that we obtain noisy measurements of the form

yi =L (H(z)) + w; i=1,...,n.

where w; is a noise sequence consisting of independent, identically distributed random
variables. In this section, we will specialize our results to the case where £ returns samples

from the frequency response at uniformly spaced frequencies:

2mik

Lr(H(z)) = H(zk), zr=em k=1 ... n.

Our goal in this section is to prove that solving the DAST optimization problem yields a
good approximation to the transfer function we are probing. The following theorem provides
a precise statistical guarantee on the performance of our algorithm.

Before going to the proof, let us recall the optimality conditions of atomic soft thresholding

proved in Chapter 2, reproduced here for convenience:

Theorem 4.3. Let @ C R" be an arbitrary set of atoms. Suppose that we observe y = z, + w

where w ~ N(0,021). Let & denote the optimal solution of

minimize ||« — yl3 + ulz]o



76

with pu > ||wl||G. Then we have

12 — 2.l < 2ullz.llo (4.9)

2]l < llzwllo + 1~ Hw, & — 2.) . (4.10)

We will use these inequalities in the proof of the main theorem.

Theorem 4.4. Let G, be a strictly proper transfer function with bounded Hankel nuclear norm.

Suppose the noise sequence w; is i.i.d. Gaussian with mean zero and variance 0. Choose § € (0,1)

and set € = ”(IIT_;))‘;. Let fo) be as in Proposition 4.2 and let ¢ be the optimal solution of (5.29)

with
11p2
=2 | — .
8 “¢”°g<&1—m>
Set G(z) = Zwefo) Cuw 1;111”1!2. Then if the set of vectors {L(p,) € R" : a € Dge)} spans R", we
have

. 1+p 11p2 ITe, I3 4|lq, |13
— 2 <1 —_ " 21 * 111 * 111
I6(2) - G, < 1861F2 Jacg L) el el

with probability 1 — e=°("),

Proof. To upper bound the #3 norm, let us use some properties of functions which admit

atomic decompositions. Note that for any function, H(z) = ) cp Cwpw(2) With |[H|| 4 =
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> web |cw|, we have, for any z1, 2 € S,

[H(21)]* = [H(22) | = (|H(21)| — |H(22))(|H(21)| + [H(22)])

< 2|H(z1) — H(22)|[| H |,

<2 (Z ’CwH(Pw(Zl) (Pw 22 ) (Z ’Cw‘H‘PwHHoo) ) (4.11)

weD weD

where the last inequality is just the triangle inequality. Now, to upper bound the first term
in (4.11), we could connect the distance between the poles to the distance between the atoms.
Let z; = €%, j = 1,2. Then,

1—la*> 1—laf?
zZ1—a zZ9 —Q
< (1—la)

(1 |af?)
=T ja)?

la(21) — wa(z2)| =

21 — 22

(21 —a)(22 — a)

14p
|21 — 22 <71 |6 — 62].

Next, we could upper the #, norm (4.11) globally. Note that for any a € D, ||¢q(2)|n. < 2.

In fact, for z = exp(if), |1 lal® | < \11 |‘“a||2| <1+ |a|] < 2. Using these computations, we finally

have

|H (21)]> = |H(22)]” < 41+7p (Z \Cw|> |61 — 6s|

weD

1+p
= 47”"——[”,4‘91 0| -
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Let A =G, — G and 6, = % Then we can bound the norm of A as

|AHHF2 / IR
/9k+ 19 2d9
Ok
Ok41 i ]_—|-p
<y / (18R + 47L1a 0 — 60 ) a0

47r1+p
*Z!A )P+ HAHA

The inequality here follows from our preceding argument.
Now, in this expression, we need to both upper bound the size of A on the measured
frequencies and its atomic norm. The following chain of inequalities bounds the latter in

terms of the former:

IA]l4 < [Gulla + 1G]la (4.12)
= |Gulla + 1£(G)ll 2 (4.13)
<N Gulla + LGl zany + 1w, £(G = Gy)) (4.14)
<1 Galla + (1= 6) LG | ey + 1w, LG = GL)) (4.15)
2—-9 N
< mHG*HA*FM_lW,ﬁ(G—G*» (4.16)
2 - 1/2
< HG L+ Hlwlla (Z |Ae)] ) : (4.17)

(4.12) is the triangle inequality. (4.13) follows from how we defined G. (4.14) follows from
Theorem 4.3. (4.15) follows from Proposition 5.14. (4.16) follows because ||L(H)||z4) <

|H || 4 for all linear maps £ and transfer functions H. (4.17) is Holder’s inequality. Note that
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the quantity || £(Gx)l|(4.) could be infinite if the set {L£(¢,) : a € D,(f)} does not span R".
This is precisely what leads to us including this assumption in the theorem statement.

To bound the size of A on the frequency grid, use Theorem 4.3:

n

1 2 24 _
- Yo IA(E)P < LGl ean = -1 =9) HIGsla-
k=1

Let w ~ N(0,0%1I,). Using the well known upper bound for maximum of Gaussian

variables (see, for example [65]), we have

Elllwllza)] =E [ sup <E(<pa),w>] <o <sup IIE(soa)llz) V2log[DY|.

(€) acD
€b, P

Now, |[£(¢a)ll2 < vallalln. < 2v/n. Moreover, by a simple volume argument, |DY| <

4 . . . . .
%. To see this, suppose S is a maximal set of points on D, which are separated by

. . . 2
at least 7. The maximal size of such a set is at most Ai. Moreover, |S| > |]D,(,5)|. Now set

T=€= (1165) In particular, note that we have E[||w||7 4] = u.

Now we can put all of the ingredients together.

8m||lwl|l5 1 +
mn%bs(u Itz ") Zm )

167 1+p
_ Gy
s e [N
1024p*
1+p\ 8 |2 log(ﬁ(l,p)zgz)
<{142
< (re2rt )1_5J TN
167 1+p
_ Gy
e e T

14 1152 IGl1% G
< 59— 4021
=912, J ’ Og((l—ma n(T—0)2 " (-6
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as desired.

Applying the inequality ||G,|[4 < 2|T'q, ||1 completes the proof. O

Corollary 4.5. There is a quantity C depending on p and o such that for sufficiently large n
A _1
IG(2) = Gu(2)I3, < ClTg.[in"2

with probability exceeding 1 — e ("),

Now, let us look the consequence of the theorem. First of all, the right hand side is a parameter
of the number of samples, the Hankel nuclear norm of the true system, and the stability radius
of the true system. Also, if the McMillan degree of G,(z) is d, then we can upper bound the
Hankel nuclear norm by the product of the McMillan degree and the Hankel norm of G,:
ITq, |1 < d||Tq,||- Second, note that as n tends to infinity, the right hand side tends to zero.
In particular, this means that the discretized algorithm is consistent, and we can quantify the

WOrSst case convergence rate.

4.4 Conclusion

By using the atomic norm framework of [30], this chapter posits a reasonable regularizer
for linear systems. We looked at a computational method to handle such a regularizer, and
analyzed its statistical performance. Since it is closely connected to the Hankel nuclear norm
but is computationally more practical, the atomic norm could be useful in a variety of practical

implementations and also in theoretical analysis.
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5 Algorithms

In the preceding chapters, we concentrated on the theoretical performance of regularization
using an atomic norm penalty, but did not show how one may compute it. The problems
of atomic norm decomposition and regularization are convex optimization problems with
linear and quadratic objectives, and can be efficiently solved if we can test membership in the
constraint sets efficiently. The constraint sets of the primal and dual problems are the sublevel
sets of the atomic and the dual atomic norm. Therefore, it is sufficient to develop efficient
characterizations of the the unit ball of the atomic norm.

For the special case of Fourier measurements, the atomic norm ball has an exact semidef-
inite characterization which I will derive in this chapter. The positive case is classical and
comes from moment theory and the dual theory of positive polynomials. I will review the
results for the positive case and provide the proofs for completeness. We will also see a
semidefinite characterization for the more general complex case using these results. I then
provide a reasonably fast method for solving this SDP via the Alternating Direction Method
of Multipliers (ADMM) [4, 13]. The ADMM implementation given in this chapter can solve
instances with a thousand observations in a few minutes.

Discretization essentially reduces to solving a Lasso problem on an overcomplete grid.
The proofs for discretized atomic soft thresholding (DAST) demonstrate why Lasso is often
successful even for off-grid data. In fact, we will see that solving the Lasso problem on an
oversampled grid of frequencies approximates the solution of the atomic norm minimization
problem to a resolution sufficiently high to guarantee excellent mean-squared error (MSE).
For line spectral estimation, the gridded problem reduces to the Lasso, and by leveraging the
Fast Fourier Transform (FFT), can be rapidly solved with freely available software such as

SpaRSA [106]. A Lasso problem with thousands of observations can be solved in under a
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second using Matlab on a laptop. The prediction error and the localization accuracy for line
spectral estimation both increase as the oversampling factor increases, even if the actual set
of frequencies in the line spectral signal are off the Lasso grid.

In this chapter, we will also see the experimental results using these algorithms on Line
Spectral Signals. Section 5.6 compares and contrasts AST and Lasso, with classical line
spectral algorithms including MUSIC [89],and Cadzow’s [15] and Matrix Pencil [60] methods.
The experiments indicate that both AST and the Lasso approximation outperform classical
methods in low SNR even when we provide the exact model order to the classical approaches.
Moreover, AST has the same complexity as Cadzow’s method, alternating between a least-
squares step and an eigenvalue thresholding step. The discretized Lasso-based algorithm has
even lower computational complexity, consisting of iterations based upon the FFT and simple

linear time soft-thresholding.

Summary and Organization of this chapter

The goal in this chapter is to develop an algorithm to solve the Atomic Soft Thresholding

(AST) problem, defined in Chapter 2:
1
minixmizeiHy—:BH%—i—THxHA, (5.1)
and its corresponding dual problem:

o1
max;mlzei (H?JH% —lly - 7"]”%)
(5.2)

subject to ||g||% < 1.

For certain atomic sets, we can compute the atomic norms efficiently. We will develop

computable characterizations of the atomic norm and its dual for line spectral atomic sets



83

defined in Chapter 3. First, let us recall the definition of the trigonometric monomial a(f),

which form the basic atoms for Line Spectral Estimation:

6i27rf(n7 1)

The first part of this chapter gives a computable algebraic characterization of the atomic

norm balls of the following atomic sets derived from these atoms:

Ap ={a(f) | f €T} (5.3)
A={a(f)exp(i2n¢) | f,¢ € T}. (5.4)

The first set A, is a one dimensional manifold called the trigonometric moment curve and
the second set A is the two dimensional manifold corresponding to a phase-symmetric
trigonometric moment curve. The unit norm ball of the atomic sets are precisely the convex
hulls of the atomic sets. Section 5.1 examines these atomic sets and describes the classical
characterization of the conical hull of A, which is called the moment cone. This corresponds
to allowable observations for the case of line spectral estimation with nonnegative amplitudes,
or in other words, valid trigonometric moments of a positive measure on the torus T.

Based on these classical results, I derive semidefinite characterizations of the atomic
sets in Section 5.2. As a straightforward consequence, we can write down a semidefinite

characterization of conv(.A ). Before stating the result, we will need a bit of notation. Define
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the map 7,, : C* — C™*" which creates a Hermitian Toeplitz matrix out of its input, that is

r1  To ... Iy
TS5 T1 ... Tp
Tw(z) =
* *
| Th T Ty

In the following, the subscript in 7,, may be supressed unless the idea is to explicitly charac-
terize the dependence on n. So we will write it as 7'(x) or T'z. Also, denote the corresponding

adjoint map by 7.

Theorem 5.1 (SDP for Positive Trigonometric Moments). Suppose x = (zg---2,_1)7 € C™.
Then,

xo, Tz = 0,

|4y =
400, otherwise.
Note that this is an example when atomic norm is not really a norm on F", but is

nevertheless useful. In contrast to conv(.A,), the semidefinite characterization of conv(.A)
requires some calculation. The characterization of the moment cone allows us to describe

the convex hull of the general atomic moments conv(.A) and we will derive the following

semidefinite characterization:

Theorem 5.2 (SDP for General Trigonometric Moments). For z € C",

T,(u) x
|z||4 = inf ﬁ tr(Th(u)) + %t S =0,. (5.5)
x* t

The characterization of atomic norm ball of A can also be derived by working on the dual
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problem, as we shall see in Section 5.3. In fact, for any z, the optimization problem

minimize (q, )
¢ (5.6)
such that ||¢||’ < 1.

is the dual characterization which has an optimum value ||z|| 4. For the atomic set of general

trigonometric moments, the constraint set in Equation (5.6)

{aeC[lqllx <1} = {q ecC” su£>l<q7a> < 1} (5.7)
ac
n—1
=SqeC"| | gjexp(i2mjf)| <1, forall f€T (5.8)
7=0

corresponds precisely to the set of complex trigonometric polynomials with a maximum
modulus of 1 and is characterized by the Bounded Real Lemma. We provide details of applying
Alternating Directions Method of Multipliers (ADMM) for solving the SDP for the AST problem
in Section 5.4.

When there are no efficient characterizations, we may resort to a discretized approach
which may be thought of as an approximation to the atomic norm defined by equation (5.6) by
relaxing the infinite linear constraints in the semi-infinite program to a finite set of inequalities.
In Section 5.5, we will look at convergence rates of this approximation for the line spectral
estimation problem and the system identification problem. In this case, the atomic soft
thresholding problem can be approximated by solving a Lasso problem on an overcomplete
grid.

A number of Prony-like techniques have been devised that are able to achieve excellent
denoising and frequency localization even in the presence of noise. In Section 5.6, we will

turn to comparing our ADMM implementation of SDP and DAST by Lasso with these classical
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algorithms. The experiments in this section demonstrate that the proposed estimation algo-
rithms outperform Matrix Pencil, MUSIC and Cadzow’s methods. Both AST and the discretized
Lasso algorithms obtain lower MSE compared to previous approaches, and the discretized
algorithm is much faster on large problems. Furthermore, the semidefinite programming
approach outperforms MUSIC [89] and Cadzow’s technique [16], in terms of the localization

metrics defined by parts (i), (ii) and (iii) of Theorem 3.3.

5.1 Preliminaries

As described in section 3.7.1, the observations in a spectral estimation problem may be

regarded as trigonometric moments of a measure on the torus T = [0, 1].

Definition 5.3 (Trigonometric Moments). Given a measure u defined on the torus T, the mth

trigonometric moment is defined by

Ty = /?r eI 1 (df) (5.9)

By a simple reparametrization, the mth trigonometric moment may also be described as
complex moments [ 2™ 1(dz) when we regard p as a measure supported on the unit circle in
the complex plane. This section will review two classical results for trigonometric moments
due to positive measures.

The first theorem, due to Herglotz gives a complete characterization of the infinite sequence
of Trigonometric moments for positive measures. Since the proof is not too long, I will provide

it here.

Theorem 5.4 (Herglotz Theorem). The sequence of complex numbers {x,,}5°____ are trigono-

—00

metric moments of a positive Borel measure p on T if and only if the sequence {x,,}>°__ _ is
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positive definite.

Proof. A sequence {z,,} is positive definite if for every n € N, and every sequence (ci, ..., ¢p)
of n complex numbers, >y, ¥ crc; > 0. Alternatively, we may write this condition as

T,z = 0 for every n € N.

Suppose indeed the set {x,,} is a sequence of trigonometric moments corresponding to

some measure x> 0 on T. Then, for any n € N,

Z Tp_1CKC] = Z e /exp(iQﬂ'(k — Dt)p(dt)

k=1 k=1

:/ (z": Ck exp(ikat)) (z": C exp(i27rlt)) p(dt)
k=1

g

Conversely, if the sequence {z,,} is positive semidefinite, then for any ¢t € R, we have

2
p(dt) > 0.

Z ¢ exp(i2mkt)
k=1

1 & ;
Xn(t) _ E Z .%'k,leﬂw(k_l)t >0
k=1

But, we have

RS L
Xn(t) = Z <1 - n) xy exp(i2mkt)

k=—(n—1)

By Fourier Series theory, we have that for every |k| < n,

n

< ~ W) T = / ' X (1) exp(i2nkt)dt (5.10)
0
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Define a sequence of measures pu,, given by

,U/n(B) :/BXn(t)dt

for every Borel subset B C [0, 1]. The sequence of measures {x,, } are tight and therefore
by the Helly selection theorem, there exists a subsequence 1, which converges weakly to a
measure » on T. Finally, using 5.10 we conclude that {x} is the sequence of moments for the

measure L. 0

The Herglotz theorem characterizes arbitrary positive measures on the torus. However,

for line spectral estimation, we are interested in discrete positive measures, i.e., measures

composed of a finite number of atoms at fi,..., fx, SO we can write
k
u(f) =>agy,
=1

where ¢ denotes the point measure at f and {¢;} > 0 are the amplitudes. The first » moments
of such a measure concentrated on k atoms corresponds to a k simple combination of atomic

moment sequences a(f). In fact,

' k
Ty = AezZWmf ;lefl (df)

k .
— Z Clez27rflm.
=1

So, the corresponding moment vector x = (zg -+ z,—1) € C" given by

k
=Y aalf)
=1
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is a simple combination of line spectral atoms. To see when such simple moment vectors
actually correspond to a partially observed sequence of moments of a positive discrete measure,

we will now review a second classical result due to Caratheodory and Toeplitz.

Theorem 5.5 (Caratheodory-Toeplitz theorem, [101, 27, 26]). x € C" corresponds to the first
n trigonometric moments of a measure y (i.e., x € cone( Ay )) if and only if Tx = 0. Furthermore,

if k = rank(T'x), there exists positive numbers cy,...,c; and fi,..., fr € T such that

k
p="> ad(f—f)

=1

so that

Finally, when k < n, there is a unique extension of x to an infinite positive definite sequence and

only a unique measure j with x for its moments.

This theorem can be proved using Herglotz theorem [59] and the theorems on flat ex-
tensions of moment sequences studied in [37]. See [57] for an algebraic proof of this
theorem. This theorem guarantees the existence of a unique discrete measure under easily
verifiable conditions. Due to this guarantee, it is possible to write a set of recurrence relations
connecting the moments and algebraically solve for the atoms of this measure, as demon-
strated by Prony [81]. A straightforward corollary of Caratheodory’s theorem is the following

Vandermonde Decomposition for positive definite Toeplitz matrices.
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Corollary 5.6 (Vandermonde Decomposition). Any positive semidefinite Toeplitz matrix P €
C™*™ can be represented as follows

P=VDV*

where

V=la(f1) -a(f)],
D = diag([dy---d;]) ,

dy, are real positive numbers, and r = rank(P).

Proof. Write P as T),(x) for some x € C". By assumption, 7,,(xz) >~ 0 and rank(7,(x)) = r.

Therefore by Caratheodory-Toeplitz theorem, x can be written as Y ;_; d;a(f;). Thus,

P=T,(z) = Z diTu(a(fr))
=1

=S dia(fi)alh)
=1

=VDV™,

where V and D are defined as in the statement of the theorem. O

5.2 SDP for Trigonometric Moments

5.2.1 Positive Trigonometric Moments

As a consequence of the Caratheodory’s characterization of the moment cone, we can prove
the characterization of the the convex hull of A, as given by Theorem 5.1.
If Tz > 0, then there exists an atomic decomposition x = >, ¢;a(f;) by Caratheodory-

Toeplitz theorem since it is in the conical hull of the atomic set A, . Since we have an invariant
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xo = y_; ¢ for any such decomposition, we have that

2[4, = inf {Z a
1

= zclam)} — 2.
l

On the other hand, if T'x % 0, x € cone(.A4) and thus ||z|| 4, = +oc. In other words, whenever
x is a valid (partial) sequence of trigonometric moments, the atomic norm is xy. Otherwise, it

is unbounded by definition.

5.2.2 General Trigonometric Moments

For the general trigonometric atoms, let us denote the atoms by two indices for frequency and

phase,
a(f,¢) = a(f) exp(i2m¢)

so that A = {a(f,¢) | f,¢ € T}.

Proof of Theorem 5.2. Denote the value of the right hand side of (5.5) by SDP(x). Suppose

x = > cpa(fr, ox) with ¢, > 0. Defining u = >"; cxa(fx,0) and ¢t = >, c¢x, we note that

T(u) = cra(fr, 0)a(fr, 0)" = cxalfu, dr)alfr, dr)*
P %

Therefore,

*

T : )
(u) = _ ch a(fes on) | |a(fr: D) =0 (5.11)
¥t k 1 1
Now, %trace(T(u)) =t = Y, cx so that SDP(z) < 37, ¢ Since this holds for any

decomposition of x, we conclude that ||z|| 4 > SDP(z).
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Conversely, suppose for some v and =z,
> 0. (5.12)

In particular, 7'(u) > 0. Form a Vandermonde decomposition
T(u) =VDV*

as promised by Lemma 5.6. Since VDV* = ", dra(fx,0)a(fr,0)* and ||a(fx,0)|l2 = v/n, we
have 1 tr(T'(u)) = tr(D).
Using this Vandermonde decomposition and the matrix inequality (5.12), it follows that x

is in the range of V, and hence
x = Zwka(fk,O) =Vuw
k

for some complex coefficient vector w = [--- ,wy, ---]7. Finally, by the Schur Complement
Lemma, we have

VDV* = t 'Wuww*V*

Let ¢ be any vector such that V*¢ = sign(w). Such a vector exists because V' is full rank. Then

2
tr(D) = ¢*VDV*q = t ¢ Vww Vg =t7! (Z |wk|) .
k
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implying that tr(D)t > (32, |wi|)%. By the arithmetic geometric mean inequality,

o= tr(T(u) + 5t = S tr(D) + 3t > /tr(D)t > > wy| > [|z]/4
k

implying that SDP(x) > ||z|| 4 since the previous chain of inequalities hold for any choice of

u, t that are feasible. O

5.3 SDP for Trigonometric Polynomials

The dual problem to AST involves trigonometric polynomials instead of moments.

5.3.1 Positive Trigonometric Polynomials

Definition 5.7. A vector ¢ € C" is a positive trigonometric polynomial if for every f € T,

n—1
(g,a(f)) = Re (Z qj eXp(i%jf)) > 0.

=0
Such polynomials have a simple characterization due to spectral factorization theorem.

Theorem 5.8. ¢ € C" is a positive polynomial if and only if there exists () = 0 such that

T°Q =q.

Proof. Suppose there exists ( = 0 such that 7*(@Q) = ¢. Then, for any f € T,

(g,a(f)) = (T7Q, a(f)) = (@, Ta(f))-

Since a(f) is a valid moment sequence T'a(f) = 0. Thus, (¢, a(f)) > 0 since the inner product

between two positive nonnegative matrices is nonnegative.
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On the other hand, we can show that @) exists by using the spectral factorization theorem.

Define P(f) = (g,a(f)). Since P(f) is positive on the unit circle, there exists P(f) =
T

"~ @™/ such that P(f) = P(f)P(f)*. Introduce the notation § = ((Io qnl) €

C" so that P(f) = a(f)*q. Define Q = §G* > 0. Now, for any f € T,

P(f) = P(f)P(f)*
= a(f)*qq * a(f)
= tr(a(f)"Qa(f))
= tr(Qa(f)a(f)")
=(Q, T (a())))
= (T"Q,a(f))-

Comparing coefficients, we conclude that indeed ¢ = T*Q. O

5.3.2 General Trigonometric Polynomials

Recall from (3.6) that the dual atomic norm of a vector v € C" is the maximum absolute
n—1

value of a complex trigonometric polynomial V' (f) = 37 vie ™/, As a consequence, a

constraint on the dual atomic norm is equivalent to a bound on the magnitude of V' (f):
ol < 7 & V(P < 72,¥F € [0,1].

Equivalently, function ¢(f) = 72 — [V (f)|? is thus a positive trigonometric polynomial. Using
the characterization given by Theorem 5.8, one can derive the following result called the

Bounded Real Lemma. (See for example, Theorem 4.24 in [49].)
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Lemma 5.9 (Bounded Real Lemma). For any given causal trigonometric polynomial V (f) =

S ue™ 2 |V (f)| < 1 if and only if there exists complex Hermitian matrix Q such that
Q
T°(Q) = e, and = 0.

Here, e is the first canonical basis vector with a one at the first component and zeros elsewhere

and v* denotes the Hermitian adjoint (conjugate transpose) of v.

Proof. The polynomial |V (f)|? can be written as

V(NP = (o, alf))
= a(f) vv*a(f)
= tr(a(f) vv a(f))
= (v*, Ta(f))
= (T"(vv"), a(f))-

Thus, |¢(f)|? = 72 — |[V(f)|*> = (r%e; — T*(vv*),a(f)). Now,Theorem 5.8 promises the
existence of P = 0 such that 72e; — T*(vv*) = T* P. Equivalently, there exists Q = vv* (equal

to P + vv*) such that 72e; = T*Q. Using Schur complements, we can rewrite Q) > vv* as

Q

v* 1

>~ 0, and this completes the proof. O

5.3.3 Deriving the primal characterization from dual

The dual characterization in the previous section via the theory of positive polynomials

provides an alternative route to rederive the SDP characterization of the atomic norm derived
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in section 5.2.2.
Using Lemma 5.9, we rewrite the atomic norm ||z||4 = SUD) |47, <1 (x,v) as the following

semidefinite program:

maximize, ¢ (z,v)

Q v (5.13)
subject to =0, T*(Q) = eq.

The dual problem of (5.13) (after a trivial rescaling) is then equal to the atomic norm of x:

[z][a = mingy 3t +u1)
T(u) =

subject to > 0.
¥t

Thus, we have another proof of the characterization in Theorem 5.2.

5.4 AST using Alternating Direction Method of Multipliers

Using the characterization of the atomic norm given by Lemma 5.9, we can see that the atomic

denoising problem (2.2) for the set of trigonometric atoms is equivalent to

minimize; x5/l — yl3 + Z(t+ u1)

T(u) =z (5.14)
subject to = 0.

This semidefinite program (5.14) can be solved by off-the-shelf solvers such as SeDuMi [93]
and SDPT3 [102]. However, these solvers tend to be slow for large problems. So, we will look

at a reasonably efficient algorithm based upon the Alternating Direction Method of Multipliers.
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A thorough survey of the ADMM algorithm is given in [13]. I only present the details
essential to the implementation of atomic norm soft thresholding. To put the problem in an

appropriate form for ADMM, rewrite (5.14) as

minimize; yz 7z 3l — yl3 + Z(t +u1)

T(u) =
subject to Z =

ot

Z = 0.

and dualize the equality constraint via an Augmented Lagrangian:

1 T
Lo(tyu, 2, 2,A) = Sllo —yll3 + St +u)+

2
T(u) =x T(u) =x
<A,Z— ) >+g z- "
z* ot Tt
F

ADMM then consists of the update steps:

(t”l,ulﬂ,x”l) +— arg ]tmin L,(t,u,x, A Al)
’u7x
Zl+1 — argrznilgﬁp(tlﬂ,ul“,:ﬂl“, Z, Al)

T(ul—H) :El+1

*
lerl tlJrl

Al+1 Vs Al+p Zl+1 o



The updates with respect to ¢, x, and u can be computed in closed form:

! l l T
= Zypi1in + (An+1,n+1 - 2) /p

1
g = 51 (y + 2p28 +2)\1)

Wt =w (T*(Z(l) + A /p) — 2Tpel>

Here W is the diagonal matrix with entries

% 1=1
Wi =
1 .
s > 1
and we introduced the partitions:
Zy A Ay N
ARS and Al=
1* ol L* Al
21 Zn+1,n+1 Al An+1,n+1

The Z update is simply the projection onto the positive definite cone

2
+AlYp

F

T(qu) e
ARRES argmin || Z —
Zr0 L ey
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(5.15)

Projecting a matrix () onto the positive definite cone is accomplished by forming an eigenvalue

decomposition of ) and setting all negative eigenvalues to zero.

To summarize, the update for (¢, u,x) requires averaging the diagonals of a matrix (which

is equivalent to projecting a matrix onto the space of Toeplitz matrices), and hence operations

that are O(n). The update for Z requires projecting onto the positive definite cone and
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requires O(n?) operations. The update for A is simply addition of symmetric matrices.
Note that the dual solution Z can be obtained as 2 = y — & from the primal solution %

obtained from ADMM by using Lemma 2.7.

5.5 Discretization

In general the atomic sets may not have a computable characterization. Even if there is an
SDP characterization and an efficient implementation using techniques like ADMM, when
the number of samples is larger than a few hundred, the running time of the ADMM method
is dominated by the cost of computing eigenvalues and is usually expensive. This is not
avoidable as there is no cheap way to find projections on the positive definite cone. For very
large problems, we will see that we can use discretization and hence Lasso as an alternative

to the semidefinite program (5.14).

5.5.1 Discretized Atomic Soft Thresholding

Suppose we solve AST (2.2) on a different set A (say, an e-net of A) instead of A. If for some
M >0,

M7 Yjz)| 7 < llzfla < llz] 5

holds for every x, then Theorem 2.1 still applies with a constant factor M. Our justification for
using the finite dimensional Lasso as an alternative to the general infinite atomic norm soft
thresholding problem relies on approximation guarantees for epsilon-nets of the atomic sets.
To be precise, in the next section we see that M approaches unity as ¢ — 0. Thus, the solution
to the discretized atomic soft thresholding (DAST) problem approaches the AST solution.
The following proposition demonstrates that the universal guarantee in Theorem 2.1

continues to hold with only a penalty of a small multiplicative constant when DAST is used in
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place of AST.

Proposition 5.10. Suppose
12115 < 1214 < M|z[|5 for every z, (5.16)
or equivalently
Mzl 3 < [lzlla < ||| g for every =, (5.17)

then under the same conditions as in Theorem 2.1,
1 B Mt
~E|E —a*|3 < — "]l
n n

where % is the optimal solution for (2.2) with A replaced by A.

Proof. By assumption, E (|jw|%) < 7. Now, (5.16) implies E (”ijZ) < 7. Applying Theorem
2.1, and using (5.17), we get

1 T Mt
ZEli — *2<7 X~ < 20 %] 4.
~E|lz — '} < Tlle*l y < —lla*]la m

5.5.2 Approximated Atomic Norms

In this section, we will see that atomic norms can be approximated by choosing a large
e-net of atoms instead of the original set of atoms. The proof of approximation and the
characterization of the convergence depends upon using a Euclidean e cover of the atomic set
A, and the equivalence between Euclidean and atomic norms in finite dimensions.

If A € F", there exists C, possibly depending on n such that ||z||4 < C|z||2 for any

choice of atomic set. The minimum volume ellipsoid that circumscribes conv(.A) is called the
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Lowner-John ellipsoid after Charles Lowner who discovered the uniqueness of the minimum
volume circumscribing ellipsoid for any convex sets and Fritz John who proved the existence.
This is often a scaled version of the Euclidean ball when the atomic set is symmetric and it
provides an optimal choice of C.

Using the characterization of John, we have the following condition for Euclidean ball to

be the minimum volume circumscribing ellipsoid of conv(.A).

Theorem 5.11. If there exists positive numbers A1, ..., \,, > 0 and atoms ay, ..., ay, form >n

such that

Z)\i@i =0and I, = Z)\i(aiaf)a
i=1 i=1

the Euclidean ball B = {x | ||z||2 < 1} is the unique minimum volume ellipsoid that circumscribes

conv(A). If in addition, A is centrosymmetric, for any z,

[zll2 < llzfla < Vallzl2

The conditions in the previous theorem hold for a number of interesting atomic set
including Fourier measurements discussed in Chapter 3, and one may argue that the minimum
volume ellipsoid is often a Euclidean sphere. When the condition in Theorem 5.11 is satisfied,

defining A, as an e-net of A, we can write

2] = sup(z, z)
zeA

< . inf o A
< sup (z,2) + Inf [[z[%]lz — 2[4

2eAe

IN

sup (z,8) + |2l sup wa

2eA. llwll2<e

IN

1[4, + Vnellz]1%,
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whence we get ||z[[* < (1 — y/ne)~!|z]|%_ . Also, since A C A, by definition [|z]|% < ||z/%.

Combining these two, we have the following approximation

2%, < Nzl < (1= Vo)~ 2], - (5.18)

We will need the following lemma to restate the ¢ approximation in terms of the atomic

norm, instead of dual.
Lemma 5.12. |z||% < MHszZfor every z ij_‘fM*IHa:HZ < ||x|| 4 for every z.

Proof. Let us show the forward implication — the converse will follow since the dual of the
dual norm is again the primal norm. By (2.5), for any z, there exists a z with ||z||fZ <1and

(2,2) = |l2ll ;- So,

M_leHZ = MYz, z)
< M7zl 2l by (2.5)

< |z|la by assumption. ]

Now, we can write the approximation for atomic norm. For any =,

(1= vne)lzlla, < llzlla < [l].a.- (5.19)

While this method is generic, simpler and sometimes stronger arguments may be possible
for specific atomic sets. In the succeeding sections, we use techniques similar to what we just
outlined and characterize the atomic norm approximation for the atomic sets for line spectral

estimation and system identification.
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5.5.3 DAST for Line Spectral Signals

To proceed, pick a uniform grid of N frequencies and form
and solve (2.2) on this grid. i.e., we solve the problem
| 9
minimize §Hf’7—y||2+7'||33HAN- (5.20)

To see why this is to our advantage, define ® be the n x N Fourier matrix with mth column

am/N,0- Then for any z € C" we have ||z|[ 4, = min {[|c[1 : # = ®c}. So, we solve
. . . 1 2
minimize §H<I>c—y\|2 + 7|lellr- (5.21)

for the optimal point ¢ and set &y = ®¢ or the first n terms of the N term discrete Fourier
transform (DFT) of ¢. Furthermore, ®*2 is simply the N term inverse DFT of z € C". This
observation coupled with Fast Fourier Transform (FFT) algorithm for efficiently computing
DFTs gives a fast method to solve (5.20), using standard compressed sensing software for
¢ — {1 minimization, for example, SparSA [106].

Because of the relatively simple structure of the atomic set, the optimal solution Z for
(5.20) can be made arbitrarily close to (5.14) by picking NV a constant factor larger than n.
In fact, the following section furnishes the proof that the atomic norms induced by .4 and a
discretized version Ay are equivalent.

Due to the efficiency of the FFT, the discretized approach has a much lower algorithmic

complexity than either Cadzow’s alternating projections method or the ADMM method de-
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scribed in section 5.4, which each require computing an eigenvalue decomposition at each
iteration. Indeed, fast solvers for (5.21) converge to an ¢ optimal solution in no more than
1/4/e iterations. Each iteration requires a multiplication by ® and a simple “shrinkage” step.
Multiplication by ® or ®* requires O(NN log N) time and the shrinkage operation can be
performed in time O(N).

This fast form of basis pursuit has been proposed by several authors. However, analyzing
this method with tools from compressed sensing has proven daunting because the matrix ®
is nowhere near a restricted isometry. Indeed, as N tends to infinity, the columns become
more and more coherent. However, common sense says that a larger grid should give better
performance, for both denoising and frequency localization! Indeed, by appealing to the
atomic norm framework, makes it possible to show exactly this point: the larger one makes V,
the closer one approximates the desired atomic norm soft thresholding problem. Moreover,
we do not have to choose NV to be too large in order to achieve nearly the same performance

as the AST.

Approximation of the Dual Atomic Norm

Note that the dual atomic norm of w is given by
|’y = v sup ’Wn(e”“f)‘. (5.22)
felo.1]
i.e., the maximum modulus of the polynomial W,, defined by

. 1 nl ,
Wn(eﬂ”f) = % Z wye2rms (5.23)
m=0
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Treating W, as a function of f, with a slight abuse of notation, define

[Walloo := sup | W (™).
se.]

We will see that we can approximate the maximum modulus by evaluating ¥, in a uniform
grid of N points on the unit circle. To show that as N becomes large, the approximation
is close to the true value, let us bound the derivative of W,, using Bernstein’s inequality for

polynomials.

Theorem 5.13 (Bernstein, See, for example [88]). Let p,, be any polynomial of degree n with

complex coefficients. Then,

sup |p/(2)| < n sup |p(z)|.
2|<1 121<1

Note that for any fi, fo € [0, 1], we have

’Wn(eﬂﬂfl) < ei27rf1 _€i27rf2 ”W;LHOO

_ ‘Wn (ei%fz)

= 2|sin(27(f1 — )W), ]l
<An(fi — f2)IW) lloo

< 47rn(f1 - f2)||WnHOO>

where the last inequality follows by Bernstein’s theorem. Letting s take any of the IV values

0, % ..., 21, we see that,

Walloo < e, [Wa (27| 4+ 22017, o
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Since the maximum on the grid is a lower bound for maximum modulus of W,,, we have

i2rm/N
25y [P () < Wl .29
< (]_ _ 27Tn> - max W, (eiQWm/N)‘
- N m=0,..N—11 "
dmn i2rm/N
< (1 + N) ng?é?](v_l W (e )‘ . (5.25)
Thus, for every w,
N N 2mn ! N
Julli, < ol < (1= 25 ) el (5.26)
or equivalently, for every z,
2mn
(15 tallay < lella < llzlay 5.27)
2mn n
(1= 5 ey < lalla < flallays Vo € (5.28)

Using Proposition 5.10 and (3.14), we conclude

1%%2%1)||x*||A¢nlog<n>+nlog<4w1og<n>>O(J log(n) 12" L. )

1 (
7E Ao k(2 <
n [Zn — 2|2 < n (1 — zgn)

5.5.4 DAST for System Identification

The following proposition asserts that we can approximate this finite dimensional atomic
norm defined the atomic set of measurements of single pole systems via a sufficiently fine

discretization of the unit disk.
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Proposition 5.14. Let ID)ff) be a finite subset of the unit disc such that for any w € D, there

exists a v € DY satisfying |w — v| < e. Define

. 1— |w?
2]l gan =inf S D ewl @ mi= > cwls

z— W
wEID)Ef) wG]D)Ef)

Then there exists a constant C. € [0, 1] such that

Cellzllzeany < Nzllzeay < llzllzea -

The set DY is called an e-net for the set D,. We will see that when £, (G) = G(e%), C. is at

16pe
m(1-p)

When we replace ||z (1) with its discretized counterpart ||z||(4) in (4.8),

least (1 —

). Other measurement ensembles can be treated similarly.

minixmize %Hx . yH% + pllzll 2 a.

is equivalent to

minicmize%HMc—yH% + Z |cw| (5.29)
wE]D);f)

where
A e (1
= (1228
and j indexes the set ]D)Ef). That is M is an n x |}D>,(f)| matrix. Problem (5.29) is a weighted /;
regularization problem with real or complex data depending on specific problem.
This DAST problem can be solved very efficiently with a variety of off-the-shelf tools in-

cluding SPARSA [106], FPC [58] or even more general purpose packages such as YALMIP [71]

or CVX [55]. DAST yields an approximate solution to problem (4.6), and, as we will see, yields
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a statistically consistent estimate provided the parameter ¢ is adjusted to meet the desired
numerical accuracy.

As in section 5.5.2, the proof of proposition 5.14 depends upon connecting the Euclidean
distance between the atoms indexed by the discretization of the unit disc to the distances
induced by the atomic norm. We already know from theorem 4.1 in Chapter 4 that the Hankel
nuclear norm and the atomic norm are equivalent. So, we will need the following lemma
that connects the Hankel nuclear norm of the atomic functions {y,} to the distances in the

complex planes for poles a € C.

Lemma 5.15. For any a,b € D,

2p
ITpe = Tyl < 1

la —b|. (5.30)

Proof. The Hankel operator for ¢,(z) is given by the semi-infinite, rank one matrix

- 4 AT
- - 1 1
1 a a® &
a a
9 a (lz CLS (14 s 9
(1 —lal?) =1 —=lal”) | a? a?
a2 CL3 CL4 a5 s
(13 CL3
T
Let(o=+/1—|al?| 1 a a® a® ... | . Notethat(, € ¢, with norm equal to 1. Also note

that we have

VI=TaPyT=ToP

<C(la Cb> = 1—ab

(5.31)
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Then we have

T, — Tyl = 16aCT — ¢4 I

= [1¢a(Ca = G)" + (Ca = G)CE It (5.32a)
< [1¢a(Ga = )Tl + 11(Ga = )& h (5.32b)
= 2|0 — Glle, (5.32¢)
— \/5\/1 e VLo |1“|j£ — [b* (5.32d)
< iya — b

Here, (5.32b) is the triangle inequality. (5.32c) follows because the nuclear norm of a rank
one operator is equal to the product of the ¢ norm of the factors. (5.32d) follows from (5.31).

The final inequality follows from analyzing the taylor series of the preceding expression. [

Now, we are ready to prove our main proposition.

Proof of Proposition 5.14

First note that for any atomic sets A C A’ ||z|| 4 < ||z||4. The harder part of this proposition

is the lower bound. To proceed, let us use the dual norm.

Let ]D),(DT) be a subset of D, such that for every a € D,, there exists an a € ID)%T)

|a — a| < 7. For each a € D, denote a as the closest point in ]D)Ef) to a.

satisfying

Now observe that

8 16pT
1£(pa — a)llcay < llpa — walla < ;HF% — Tyl < l—p)
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Here, the first inequality follows from the reasoning in Section 4.2.3. The second inequality is
Theorem 4.1, and the final inequality is by (5.30).

We can then compute
2[4y = sup (L(¢a), 2)
a€bh,

= sup (L(pa), 2) + (L(pa — ©a), 2)

< sup (L(wa),z) + sup (L(pa — ¥a), 2)
G,ED(T) aer
P

= [|zllz(a,) + sup (L(pa — a), 2)
a€D,

< llzllzca,) + sup 1£(pa = @a)llcalllza)
aclp

N 16p7 N
< lzllzea,) + m”ZHL(A) :

Rearranging both sides of this inequality gives

2124 < Cr 1202

with C; =1 — %, completing the proof.

5.6 Experiments for Line Spectral Estimation

I compared the performance of AST, the discretized Lasso approximation, the Matrix Pencil,
MUSIC and Cadzow’s method, both in terms of the mean squared estimation error as in
Theorem 3.2 and frequency localization. For my experiments, I generated k& normalized fre-

quencies f7, ..., f7 uniformly randomly chosen from [0, 1] such that every pair of frequencies
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are separated by at least 1/2n. The signal z* € C” is generated according to (3.1) with &
random amplitudes independently chosen from x?(1) distribution (squared Gaussian). All of
our sinusoids were then assigned a random phase (equivalent to multiplying ¢} by a random
unit norm complex number). Then, the observation y is produced by adding complex white
gaussian noise w such that the input signal to noise ratio (SNR) is —10, —5, 0, 5, 10, 15 or 20
dB. We compare the average MSE of the various algorithms in 20 trials for various values of
number of observations (n = 64, 128, 256), and number of frequencies (k = n/4,n/8,n/16).

AST needs an estimate of the noise variance o2 to pick the regularization parameter
according to (3.14). In many situations, this variance is not known to us a priori. However,
we can construct a reasonable estimate for 0 when the phases are uniformly random. It is
known that the autocorrelation matrix of a line spectral signal (see, for example Chapter 4 in
[92]) can be written as a sum of a low rank matrix and 27 if we assume that the phases are
uniformly random. Since the empirical autocorrelation matrix concentrates around the true
expectation, we can estimate the noise variance by averaging a few smallest eigenvalues of
the empirical autocorrelation matrix. For the following experiments, I formed the empirical
autocorrelation matrix using the MATLAB routine corrmtx using a prediction order m = n/3
and averaging the lower 25% of the eigenvalues, and used this estimate in equation (3.14) to
determine the regularization parameter for both the AST and Lasso experiments.

First, I implemented AST using the ADMM method and used the stopping criteria described
in [13] and set p = 2 for all experiments, and used the dual solution % to determine the
support of the optimal solution Z using the procedure described in Section 3.3. Once the
frequencies f, are extracted, I ran the least squares problem minimize, ||Ua — y||> where
Uji = exp(i2mj f1) to obtain a debiased solution. After computing the optimal solution Qopt»
one can compute the prediction & = Uapt.

After implementing Lasso, I obtained an estimate & of 2* from y by solving the optimization
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problem (5.20) with debiasing. I used the algorithm described in Section 5.5.3 with grid of
N = 2™ points where m = 10, 11,12, 13, 14 and 15. Because of the basis mismatch effect, the
optimal ¢, has significantly more non-zero components than the true number of frequencies.
However, we can observe that the frequencies corresponding to the non-zero components
of copt cluster around the true ones. We therefore extract one frequency from each cluster
of non-zero values by identifying the grid point with the maximum absolute c,p; value and
zero everything else in that cluster. I then ran a debiasing step which solves the least squares
problem minimizes||®s3 — y||? where ®g is the submatrix of ® whose columns correspond
to frequencies identified from c,p;. This gave the estimate & = ®gf,pt. I used the freely
downloadable implementation of SpaRSA to solve the Lasso problem. A stopping parameter
of 1074, but otherwise used the default parameters.

I implemented Cadzow’s method as described by the pseudocode in [8], the Matrix
Pencil as described in [60] and MUSIC [89] using the MATLAB routine rootmusic. All these
algorithms need an estimate of the number of sinusoids. Rather than implementing a heuristic
to estimate k, I fed the true k to our solvers. This provides a huge advantage to these algorithms.
Neither AST or the Lasso based algorithm are provided the true value of k, and the noise
variance o? required in the regularization parameter is estimated from y.

Let {¢;} and {f;} denote the amplitudes and frequencies estimated by any of the algorithms
- AST, MUSIC or Cadzow. I used the following error metrics to characterize the frequency

localization of various algorithms:
(i) Sum of the absolute value of amplitudes in the far region F', m; = 3, fer ]
(i) The weighted frequency localization error, mg =37, 5 N, |&{min g, er d(fj, )2

(iii) Error in approximation of amplitudes in the near region, ms = ’Cj = Yjen, G
. J
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These are precisely the quantities that we prove tend to zero in Theorem 3.3.

10 : 10 ;
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Figure 5.1: MSE vs SNR plots: This graph compares MSE vs SNR for a subset of experiments
with n = 128 samples. From top left, clockwise, the plots are for combinations of 8, 16, and
32 sinusoids with amplitudes and frequencies sampled at random.

Figure 5.1 shows MSE vs SNR plots for a subset of experiments when n = 128 time
samples are taken to take a closer look at the differences. It can be seen from these plots that
the performance difference between classical algorithms such as MUSIC and Cadzow with
respect to the convex optimization based AST and Lasso is most pronounced at lower sparsity
levels. When the noise dominates the signal (SNR < 0 dB), all the algorithms are comparable.

However, AST and Lasso outperform the other algorithms in almost every regime.
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Figure 5.2: (a) Plot of MSE vs SNR for Lasso at different grid sizes for a subset of experiments
with n = 128,k = 16

(b) Lasso Frequency localization with n = 32,k = 4, SNR = 10 dB. Blue represents the true
frequencies, while red are given by Lasso. For better visualization, we threshold the Lasso
solution by 1076,

Note that the denoising performance of Lasso improves with increased grid size as shown
in the MSE vs SNR plot in Figure 5.2(a). The figure shows that the performance improvement
for larger grid sizes is greater at high SNRs. This is because when the noise is small, the dis-
cretization error is more dominant and finer gridding helps to reduce this error. Figures 5.2(a)
and (b) also indicate that the benefits of increasing discretization levels are diminishing with
the grid sizes, at a higher rate in the low SNR regime, suggesting a tradeoff among grid size,
accuracy, and computational complexity.

Finally, Figure 5.2(b) provides numerical evidence supporting the assertion that frequency

localization improves with increasing grid size. Lasso identifies more frequencies than the
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true ones due to basis mismatch. However, these frequencies cluster around the true ones,
and more importantly, finer discretization improves clustering, suggesting over-discretization
coupled with clustering and peak detection as a means for frequency localization for Lasso.
This observation does not contradict the results of [33] where the authors look at the full
Fourier basis (N = n) and the noise-free case. This is the situation where discretization effect
is most prominent. We instead look at the scenario where N > n.

Figure 5.3 shows how the error metrics vary with increasing SNR for AST, MUSIC and
Cadzow. The plots only show experiments with n = 256 samples. These plots demonstrate
that AST localizes frequencies substantially better than MUSIC and Cadzow even for low
signal to noise ratios as there is very little energy in the far region of the frequencies (/1) and
has the smallest weighted mean square frequency deviation (ms). Although we have plotted
the average value in these plots, we observed spikes in the plots for Cadzow’s algorithm as
the average is dominated by the worst performing instances. These large errors are due to the
numerical instability of polynomial root finding.

I use performance profiles to summarize the behavior of the various algorithms across all of
the parameter settings. Performance profiles provide a good visual indicator of the relative
performance of many algorithms under a variety of experimental conditions[39]. Let P be
the set of experiments and let MSE,(p) be the MSE of experiment p € P using the algorithm
s. Then the ordinate P,([) of the graph at /3 specifies the fraction of experiments where the
ratio of the MSE of the algorithm s to the minimum MSE across all algorithms for the given

experiment is less than j, i.e.,

_ #{p e P : MSE4(p) < Smins MSE,(p)}

From the performance profile in Figure 5.4(a), we see that AST is the best performing



—AST
—MUSIC
— Cadzow

250

0 5 10
SNR (dB)

200

150
g

100

50)

o

0 5 10
SNR (dB)

15 20

0.05 5
—AST —AST
—MUSIC
0.04 — Cadzow
0.03 k=16
0.02]
0.01
—(10 0 5 10 1 20 —(10 0 5 10
SNR (dB) SNK (dB)
0.04;
—AST
—MUSIC
0.03 —Cadzow
k=32
£0.02
0.01
jiO 0 5 10 20 7({0 0 5 10 20
SNR (dB) SNR (dB)
0.03 7
—AST —AST
—MUSIC
0.025
— Cadzow
0.02]
k=64
£0.015
0.01
0.005
—qO 15 20 —HO 15

0 5 10
SNR (dB)

0 5 10
SNR (dB)

20

116

Figure 5.3: For n = 256 samples, the plots from left to right in order measure the average
value over 20 random experiments for the error metrics m1, mo and mg respectively. The top,
middle and the bottom third of the plots respectively represent the subset of the experiments
with the number of frequencies k = 16, 32 and 64.



117

15
¢
’
0.8 5
o 10
H —_ i
80.6 x . Lasso 2II
— F] p— =="Lasso2
N : AST . 12 |
0411 == =Lasso 2" Lasso 213
== MUSIC ~*+=Lasso 2"~
0.2 » Cadzow * Lasso 2]
Matrix Pencil Lasso 2'°
0 L L L L L T T L L L L L L T T
2 4 6 8 10 12 14 O] 2 3 4 5 6 7 8 9 10
B B
(a) (b)

Figure 5.4: (a) Performance Profile comparing various algorithms and AST. (b) Performance
profiles for Lasso with different grid sizes.

algorithm, with Lasso coming in second. Cadzow does not perform as well as AST, even
though it is fed the true number of sinusoids. When Cadzow is fed an incorrect k, even off
by 1, the performance degrades drastically, and never provides adequate mean-squared error.

Figure 5.4(b) shows that the denoising performance improves with grid size.
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Figure 5.5: Performance Profiles for AST, MUSIC and Cadzow. (a) Sum of the absolute value
of amplitudes in the far region (/1) (b) The weighted frequency localization error, ms (c)
Error in approximation of amplitudes in the near region, ms

The performance profiles in Figure 5.5 show that AST is the best performing algorithm for
all the three metrics for frequency localization. AST in fact outperforms MUSIC and Cadzow

by a substantial margin for metrics m; and mo.
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6 Conclusion and Future Work

The convex optimization perspective on problems in signal processing and systems holds a lot
of promise. This work forms the rudiments of continuous sparse recovery which underlies a
number of estimation problems in parametric signal processing, systems theory and machine
learning. In fact, using the atomic norm framework introduced by [30], we were able to revisit
classical problems and empirically and theoretically demonstrate performance favorable to
and comparable to the state-of-art.

The primary contribution of this thesis is a novel way to analyze regularization with convex
penalties for the case of continuous dictionaries that occur naturally in several problems. In
fact, we saw that the recovery performance is more tied to the target we wish to estimate
and not the arbitrary coherence of the atomic set. This turns the attention away from
global properties of dictionaries which answer the question “Which dictionaries enable sparse
recovery using relaxations?” to properties of signals. By employing a local coherence condition
characterized by minimum separation between frequencies for line spectral signals, we instead
ask question “Which target signals are recoverable using convex relaxations?”.

However, we have only scratched the surface of what is possible by continuing this line of
inquiry. In [97], the authors extended the work descrived in this thesis to show that using
the atomic norm framework, we could achieve continuous compressed sensing using Fourier
measurements. My theoretical analysis of the optimal performance for continuous sparse
recovery is heavily tied to Fourier measurements and properties of trigonometric polynomials
derived in [20, 19]. Future work should explore abstract conditions when we can guarantee
similarly optimal rates.

Though chapter 3 makes significant progress at understanding the theoretical limits of line-

spectral estimation and superresolution, the bounds could still be improved. For instance, it
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remains open as to whether the logarithmic term in Theorem 3.2 can be improved to log(n/k).
Deriving such an upper bound or improving our minimax lower bound would provide an
interesting direction for future work. Additionally; it is not clear if our localization bounds in
Theorem 3.3 have the optimal dependence on the number of sinusoids k. For instance, one
expects that the condition on signal amplitudes for approximate support recovery should not
depend on k, by comparison with similar guarantees that have been established for Lasso [24].
It is reasonable to conjecture that for a large enough regularization parameter, there should
will be no spurious recovered frequencies in the solution. That is, there should be no non-zero
coefficients in the “far region” F' in Theorem 3.3. Future work should investigate whether
better guarantees on frequency localization are possible.

The analysis in chapter 4 also focused on the particular case of sampling the frequency
response at regular intervals. While this example contains the critical ingredients to computing
convergence rate, it is not straightforward to extend to the other sampling models described
in Section 4.2.3. A useful line of study would extend this analysis to estimating transfer
functions from pairs of input-output time series. The rates derived demonstrate that the
DAST algorithm is asymptotically consistent, but is quite crude. It may be possible to improve
the rates by leveraging more of the geometry of the set of single-pole transfer functions. It
would be interesting to find reasonable lower-bounds on the reconstruction error from limited
measurements, and to see how close we can match these worst-case estimates via a new
analysis.

Algorithmically, the success of the method depends on whether we can efficiently compute
atomic norms. We saw that we can sometimes get exact semidefinite characterizations and
provided scalable algorithms. We also saw that discretization approximates the solution
although it does not yield as sparse a solution as the exact approach. An interesting line of

work is showing how to bootstrap an approximate solution from a fast discretization algorithm
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and incrementally increase the accuracy of the solution. While gridding enables us to quickly
solve atomic norm problems, a main drawback is that we can never exactly localize the
true composing atoms without an extremely fine grid. One recent proposal to enable such a
localization uses a linearization technique to simultaneously fit a model on the grid points and
at the derivatives of the transfer functions at these grid points [50]. It would be interesting to
see whether this argument can give rigorous guarantees of localization for general atomic
sets.

Analysis of the convergence of greedy algorithms provides yet another fruitful direction
for scaling the performance of atomic norm regularization. While there is already some
interesting work on employing greedy methods for atomic norms [99, 82], the proof of
convergence depends upon global restricted smoothness property. It would be interesting to

pursue improvements to this assumption.
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A Appendix

In this section, I collect useful results about the dual polynomial for line spectral signals from
previous work, which is used in the analysis in Chapter 3. For some of these theorems, I
also derive some useful corollaries for some of these theorems which we used. In addition to
Theorem 3.6, we will need another result in [19] where the authors show the existence of a
trigonometric polynomial ); that is linear in each IN; which is also an essential ingredient in

the proofs.

Theorem A.1 (Lemma 2.7 in [19]). For any f1,..., fi satisfying (3.2) and any sign vector
v € Ck with |vj| = 1, there exists a polynomial Q1 = (q1,a(f)) for some ¢ € C" with the

following properties:

1. Forevery f € Nj, there exists a numerical constant C} such that
no 2
QU —oi(f ~ F)] < 5CHF ~ ) (A1)

2. For f € F, there exists a numerical constant C} such that

1
Qi) < 2 (a2

We will also need the following straightforward consequence of the constructions of the

polynomials in Theorem 3.6, Theorem A.1, and Section 3.7.4.

Lemma A.2. There exists a numerical constant C such that the constructed Q)(f) in Theorem
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3.6, Q1(f) in Theorem A.1, and Q3 (f) in Section 3.7.4 satisfy respectively

QU = / QUi < <" (a.3)
QI < 55 (A
@5l < <. (A5

Proof. 1will give a detailed proof of (A.3), and list the necessary modifications for proving

(A.4) and (A.5). The dual polynomial Q(f) constructed in [20] is of the form

= D> oK (f—f)+ Y, LK (f- 1) (A.6)

fi€T fi€T

where K (f) is the squared Fejér kernel (recall that m = (n — 1)/2)

(20
K (% + 1) sin (7 f)

and for n > 257, the coefficients a € C¥ and 3 € CF satisfy [20, Lemma 2.2]

lofle < Ca
C
n

for some numerical constants C,, and Cg. Using (A.6) and triangle inequality, we bound
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1Q(f)|1 as follows:

1
QI = /O\Q(f)!df
1 1
kuaum/o \K(f)lderkHﬂlloo/O K (f)] df A7)

IN

1 Cﬁ 1 ,
< Gk [ 1K WA+ 2k [ K] (A.8)

To continue, note that [} |K(f)|df = [y |G(f)df =: |G(f)|3 where G(f) is the Fejér

kernel, since K (f) is the squared Fejér kernel. We can write

n(r(z 1)) g2
_ S\ T 5 _ iz fl .
G(f) ( (% + 1) Sin(ﬂ'f) ) 12/2 ne (A 9)

2
where g; = (% +1—|l \) / (% + 1) . Now, by using Parseval’s identity, we obtain

m/2

fywow = oot = 3 o
m m/2 2
: @il)‘*((? ACRN)
i T;il)“ ((?H) Hmfﬁ)

IN

(A.10)

for some numerical constant C when n = 2m + 1 > 10.

Now let us turn our attention to [ |K’(f)|df. Since K (f) = G(f)?, we have

[ 1@l =2 [ 16016 Dldr <2060 1IG D (1D
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We have already established that ||G(f)||3 < C/n. Let us now show that ||G'(f)||3 < C'n.

Differentiating the expression for G(f) in (A.9), we get

m/2

G'(f) = —2mi Z Lg% /1

l=—m/2
Therefore, by applying Parseval’s identity again, we get

m/2
art >0 Plaf
l=—m/2
m/2

< 7m? Z gi?
l=—m/2

IG"(A)II3

C'n

IN

Plugging back into (A.11) yields

1
/0 K'(f)|df < C (A.12)

for some constant C. Combining (A.12) and (A.10) with (A.8) gives the desired result in
(A.3).
The dual polynomial Q:(f) is also of the form (A.6) with coefficient vectors «; and f,

which satisfy [19, Proof of Lemma 2.7]

C,
Joaloe < =22,

Cs,
n?’

1B1lloo <

Combining the above two bounds with (A.7), (A.12) and (A.10) gives the desired result in
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(A.4).
The last polynomial Q; also has the form (A.6) with coefficient vectors o* and 8*. Accord-

ing to [52, Proof of Lemma 2.2], these coefficients satisfy

0" ]loo < C,,

Cs,
Belloo < =22,
n

which yields (A.5) following the same argument leading to (A.3).

Using Lemma A.2, we can derive the estimates we need in the following lemma.

Lemma A.3. Let v = i — u be the difference measure. Then, there exists numerical constant

C > 0 such that

1
/ Q(f)v(df) S% (A.13)
0 n
1
' [ aurman| < < (A14)
0 n
1
'/0 Q5 (f)v(df) S%. (A.15)

Proof. Let Qo = {(qo,a(f)) be a general trigonometric polynomial associated with ¢, € C".
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Then,

‘ / lQo(f)V(df)‘ - ‘ / 1<qo,a(f)>V(df)‘
0 0

@ [ a(f)l/(df)>‘

= (g0, €)|
= [(Qo(f), E(f))|
< Qo (N1 IIE () oo -

The penultimate equality follows from Parseval’s theorem and the last inequality is an applica-

tion of Holder’s inequality. Then, the result follows by using Lemma A.2 and (3.20). O
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