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Abstract

The tumor-node-metastasis (TNM) staging system has been the anchor of cancer

diagnosis, treatment, and prognosis for many years. For meaningful clinical use, an

orderly, progressive grouping of the T and N categories into an overall staging system

needs to be defined, usually with respect to a time-to-event outcome. This can be

considered as a model selection problem for censored response with respect to features

arranged on a partially ordered two-way grid, and the aim is to select the grouping

that best classifies the patients.

This dissertation presents the effort to develop such cancer stage groupings. Two

model selection methods are proposed for this task. As a first, exploratory attempt, a

bootstrap model selection method is proposed by maximizing bootstrap estimates of

the chosen statistical criteria. The criteria are based on prognostic ability including

a landmark measure of the explained variation, the area under the ROC curve, and a

concordance probability generalized from Harrell’s c-index. We illustrate the utility

of our method by applying it to the staging of colorectal cancer. The pros and cons

of the method are discussed.

In order to overcome some of the drawbacks of the bootstrap method, a penal-

ized regression method is proposed which resembles the lasso method. Instead of

penalizing the L1-norm of the coefficients like lasso, in order to enforce the stage
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grouping we place L1 constraints on the differences between neighboring coefficients.

The underlying mechanism is the sparsity-enforcing property of the L1 penalty, which

forces some estimated coefficients to be the same and hence leads to stage grouping.

A series of optimal groupings with different numbers of stages can be obtained by

varying the tuning parameter, which gives a tree-like structure offering a visual aid

on how the groupings are progressively made. We hence call the proposed method

the lasso tree. Again, we illustrate the utility of our method by applying it to the

staging of colorectal cancer. Simulation studies are carried out to examine the finite

sample performance of the selection procedure. We demonstrate that the lasso tree

is able to give the right grouping with moderate sample size, is stable with regard

to changes in the data, and is not affected by random censoring. Furthermore, with

slight modification of the penalties and proper choice of regularization parameters,

we show that the lasso tree grouping procedure is consistent; namely, the estimator

is root-n consistent and gives the correct grouping asymptotically.

The lasso tree methodology has general appeal to cancers and other diseases that

use aggregate risk scores based on risk factors. With proper modification, it is applied

to the risk stratification of colorectal cancer. To facilitate the efficiency of colorec-

tal cancer screening, there is a need to stratify risk for colorectal cancer among the

90% of U.S. residents who are considered “average risk”. Logistic regression is tradi-

tionally used to estimate the risk of advanced colorectal neoplasia. However, logistic

regression may be prone to overfitting and instability in variable selection. Since most
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of the risk factors have several categories, it is tempting to collapse these categories

into fewer risk groups. In light of these considerations, a modification of the lasso

tree, a penalized logistic regression method, is proposed which automatically and

simultaneously selects variables, groups categories, and estimates their coefficients,

by penalizing the L1-norm of both the coefficients and their differences. It encour-

ages sparsity in the categories, i.e. grouping of the categories, and sparsity in the

variables, i.e. variable selection. The method is applied to a recently completed large

cohort study of colorectal cancer. The important variables are selected, with close

categories simultaneously grouped, by penalized regression models with and without

the interactions terms. The models are validated with 10-fold cross-validation. The

ROC curves of the penalized regression models dominate the ROC curve of naive

logistic regressions, indicating a superior discriminative performance.
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Chapter 1

Introduction

1.1 The Cancer Staging Problem

The development of accurate prognostic classification schemes is of great interest and

concern in many areas of clinical research. In oncology, much effort has been made

to define a cancer classification scheme that can facilitate prognosis, provide a basis

for making treatment or other clinical decisions, and identify homogeneous groups

of patients for clinical trials [1–3]. Among various classification schemes, the tumor-

node-metastasis (TNM) staging system is widely used because of its simplicity and

prognostic ability.

The basis of TNM staging is the anatomic extent of disease. It has three com-

ponents: T for primary tumor, N for lymph nodes, and M for distant metastasis.
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TNM staging is periodically updated. Using its 6th edition, in the case of colorectal

cancer which we will use as an example in this dissertation, there are 4 categories of

T, 3 of N, and 2 of M [1]. Details of the categories are provided in Table 1.1. These

TNM categories jointly define 24 distinct groups, which are unwieldy for meaningful

clinical use [4]. Therefore, the American Joint Committee on Cancer (AJCC) and

International Union against Cancer (UICC) defined an orderly, progressive grouping

of the TNM categories which reduces the system to fewer stages (4 main stages and

7 sub stages under the 6th edition [1], see Figure 1.1). Alternative grouping schemes

have also been proposed by other authors.

Table 1.1: The TNM staging system for colorectal cancer

T : Primary Tumor
T1 Tumor invades submucosa
T2 Tumor invades muscularis propria
T3 Tumor invades into pericolorectal tissues
T4 Tumor directly invades or is adherent to other organs

N : Lymph Nodes
N0 No regional lymph node metastasis
N1 Metastasis in 1-3 regional lymph nodes
N2 Metastasis in 4 or more regional lymph nodes

M : Distant Metastasis
M0 No distant metastasis
M1 Distant metastasis

The value and usefulness of these TNM staging systems are, however, very much

debated [5]. Some of the main concerns are as follows. First, the AJCC system, as well

as other proposed systems based on TNM, represent only few of the numerous possible
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Figure 1.1: Schematic showing the AJCC 6th edition staging system for colorectal
cancer.

combinations of the T, N and M categories. Yet they are defined without systematic

empirical investigation. By systematic, we mean the extensive division of the table in

Figure 1.1 into all possible staging systems. There is also a lack of commonly accepted

statistical methods for developing staging systems. Although a vast literature in

the medical community exists on cancer staging systems, they are solely focused

on evaluating and comparing existing proposals of TNM groupings [6, 7]. There

have been few literature reports of statistical techniques for developing cancer stage

groupings. Begg and others considered the problem of comparing alternative stage

groupings where three non model-based statistical criteria were applied and compared

[8]. Hothorn and Zeileis used maximally selected log rank statistics to select the

optimal two-class partition determined by the T and N categories of rectal cancer

patients [9]. The maximal selection, however, are unstable with regard to small

changes in the data [10]. These critiques apply to staging of all types of cancers.

Here and below, M1 patients will be omitted and relegated, as they usually are,

to separate consideration. The reasons for this are two-fold: 1) M1 cancers are
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considered systemic diseases, as opposed to M0, which is considered localized; and 2)

M1 has historically been the strong indicator of poor prognosis for almost all cancers.

Our goal in this dissertation is to answer the question: does the AJCC staging scheme

outperform other possible T and N combinations in prognosis? If not, what is the

best system out of all possible T and N combinations?

1.2 Motivating Example: Colorectal Cancer

Our motivating data example is the de-identified database of 1,326 patients with

non-metastatic colorectal cancer treated at Memorial Sloan-Kettering Cancer Center

(MSKCC) between January 1, 1990 and December 27, 2000 [11]. All patients are

diagnosed with AJCC stage 1 to 3c disease (6th edition). The primary outcome used

in the analysis is cancer-specific survival (only deaths attributable to recurrent cancer

were counted as events). Of the 1,326 patients, 379 died by end of follow-up and the

median survival was 115 months. Median follow-up time was 61.4 months. Table 1.2

presents the sample size, hazard ratio, and 10-year survival for each cell in the T×N

table. With a couple of exceptions, apparently due to small sample sizes, there is

a strong upward trend in risk with increasing T and N involvement. However, we

observe a relatively poor separation of the Kaplan-Meier survival curves under the

AJCC 6th edition staging system (Figure 1.2), which indicates that there might be

room for improvement for the current AJCC system.



5

Table 1.2: Estimated cancer-specific 10-year survivals/hazard ratios by TNM
classifications (sample size): colorectal cancer patients at Memorial Sloan-

Kettering Cancer Center (MSKCC).

T1 T2 T3 T4

N0 0.87/1.00 (213) 0.73/2.44 (209) 0.33/5.63 (468) 0.50/4.99 (53)
N1 0.83/0.93 (14) 0.57/2.54 (34) 0.36/5.56 (197) 0.58/6.00 (27)
N2 0.50/4.37 (3) 1.00/0.00 (5) 0.33/8.00 (81) 0.43/10.27 (22)

Figure 1.2: Cancer-survival of colorectal cancer patients at Memorial Sloan-
Kettering Cancer Center (MSKCC), by the 6th edition AJCC staging system: (A)

three main stages; (B) including sub stages.
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As some committee members pointed out, the MSKCC data is small and might

not be representative of the United States population. Some of the categories simply

have too few samples to be considered representative, such as the categories T1N2
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(3 samples) and T2N2 (5 samples). Therefore, a second, much larger data set is

obtained and analyzed to illustrate the utility of our methods. We use data from the

Surveillance, Epidemiology, and End Results (SEER) program, a large national can-

cer registry that collects patient records from multiple sites across the United States

[12]. This national program includes 12 regional registries that cover approximately

14% of the U.S. population. The database was designed to reflect the overall char-

acteristics of the U.S. population, including the diverse array of racial and/or ethnic

groups, geographic locations, and types of cities and states [13].

For the purpose of illustration, we identify and evaluate 17,297 patients diagnosed

with colon adenocarcinoma in the SEER national cancer registry the year of 2000

(January 1, 2000 - December 31, 2000). Mean age (± standard deviation) for the

cohort is 68.7 ± 13.1 years. Females represent 49.9% of the group, and the overall

racial and/or ethnic distribution is 84.2% whites, 8.4% blacks, and 7.4% other. All

patients are diagnosed with AJCC stage 1 to 3c disease (6th edition). The primary

outcome is cancer-specific survival. Of the 17,297 patients, 5,700 (33.0%) died by

end of follow-up and the median follow-up time was 54 months. Overall 5-year colon

cancer-specific survival for the cohort was 64.8%. Table 1.3 presents the sample

size, hazard ratio, and 5-year survival for each cell in the T×N table. Unlike the

MSKCC data, the SEER data, with ample samples, show a strong upward trend

in risk with increasing T and N involvement with no exceptions. There is also a

substantial separation of the Kaplan-Meier survival curves under the 3-stage AJCC
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system (Figure 1.3 (A)). However, when the sub-stages are considered, the survivals

are again not in strict order with the stages (Figure 1.3 (B)).

Table 1.3: Estimated 5-year survivals/hazard ratios by TNM classifications (sam-
ple size): colorectal cancer patients identified in the Surveillance, Epidemiology,

and End Results (SEER) national cancer registry.

T1 T2 T3 T4

N0 0.81/1.00 (2048) 0.76/1.37 (2438) 0.70/1.88 (5773) 0.55/3.21 (920)
N1 0.77/1.34 (181) 0.70/1.58 (477) 0.60/2.63 (2855) 0.42/4.76 (555)
N2 0.73/1.70 (30) 0.62/2.54 (110) 0.38/4.82 (1471) 0.22/8.80 (439)

Figure 1.3: Survival of colorectal cancer patients identified in the Surveillance,
Epidemiology, and End Results (SEER) national cancer registry, by the 6th edition

AJCC staging system: (A) three main stages; (B) including sub stages.
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1.3 Scope of this Dissertation

Searching for the best TNM grouping posed a challenging statistical problem. In this

dissertation, we reframe the cancer staging problem into a model selection problem

for censored response with respect to features arranged on a partially ordered two-

way grid. The aim is to select the grouping that best classifies the patients. Two

model selection methods are proposed for this task: 1) a bootstrap selection method,

and 2) a L1 penalized regression method. We illustrate the utility of both methods

by applying them to the staging of colorectal cancer. Considered a more promising

method, the penalized regression method is further studied through simulations and

its theoretical properties are developed. Extension of the penalized regression method

to other applications is also studied.

The structure of the dissertation is as follows. The bootstrap selection method is

described in Chapter 2, where we also introduce the three statistical criteria for eval-

uating cancer staging systems and illustrate the utility of the bootstrap method on

the staging of colorectal cancer. In Chapter 3, we introduce the penalized regression

method, which we call the lasso tree, and apply it to the colorectal cancer example.

Simulation studies are carried out to examine the finite sample performance of the

lasso tree selection procedure. The asymptotic theory of the lasso tree is also pro-

vided. Finally in Chapter 4, we turn to an extended application of the penalized
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regression method: the development of risk stratification models for colorectal can-

cer. Using this example, we illustrate how the penalized regression method can be

modified to meet different modeling requirements and have applications to a wide

range of disease areas and scientific questions.
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Chapter 2

The Bootstrap Selection Method

2.1 Introduction

In this chapter, a bootstrap model selection method is proposed for the task of cancer

staging based on the following considerations. First, not all T and N combinations

are eligible staging systems. As both categories are ordinal, only those combinations

are eligible which are ordered in T given N and vice versa. A search algorithm that

satisfies this partial ordering rule is needed for generating all eligible staging systems.

Second, the best staging systems can be simply defined as the ones that optimize the

selection criterion chosen. Ideally, an external validation with a new population

is desirable before determining the best system. In the absence of independently

collected data, bootstrapping could be used as an alternative to provide replicate
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data sets for validating the selection [14]. Hence a bootstrap resampling strategy is

proposed to estimate the optimal staging system, and to provide inference procedures

(e.g. confidence intervals).

Selection criteria need to be identified that quantify the prognostic ability of can-

didate staging systems. A common approach for model development based on cen-

sored survival data is through the use of Cox proportional hazards model. Whereas

the partial likelihood function as a statistical criterion is informative for looking at

magnitude of effect, in certain clinical situations it might not be the most desirable

option. It might be difficult to interpret for a non-statistician. Furthermore, since

our problem is centered on evaluating prognostic classification schemes, which are in-

herently fully categorical and hence model-free, measures that check goodness-of-fit

or that address model selection are less suitable for the task at hand. In view of these

considerations, we elect to use measures that directly assess the prognostic ability of

the staging systems. Several measures and ad hoc methods have been proposed for

assessing prognostic ability; detailed reviews of these measures have been given by

Schemper and Stare [15] and by Graf et al. [16], among others. In this paper, we

elect to use the three criteria proposed by Begg et al. [8] and adapt them for compar-

ison with our search algorithm: the explained variation for a specified “landmark”

time, the area under the ROC curve for a landmark, and a concordance probability

generalized from Harrell’s c-index.
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The rest of this chapter is structured as follows. In Section 2.2 we describe the

proposed bootstrap selection method. The criteria for finding the optimal staging

system are explained in Section 2.3. The method is then illustrated on the colorectal

cancer example in Section 2.4. Discussions and conclusions are given in Section 2.5.

2.2 The Bootstrap Method

To identify the best staging system, we propose a search algorithm that scans through

all eligible possibilities. In general, suppose the T descriptor has p categories, the

N descriptor has q categories, and a k-stage system is desirable. The problem can

be described by borrowing the framework of an outcome-oriented cutpoint selection

problem for a censored response partitioned with respect to two ordered categorical

covariates and their interaction. That is, we aim to estimate the “best” k−1 partition

lines (cutpoints) that classify a partially ordered p× q table into k ordinal groups.

Calculating the number of all eligible partitions falls into the general mathematical

problem of compositions of a grid graph [17], yet an analytical solution is not available

for the general case. Numerical solutions can be obtained through computerized

enumeration for small k, p, and q values, and they are given in Table 2.1 for small

k’s with p = 4 and q = 3, relevant to our colorectal cancer example.
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Table 2.1: Number of eligible staging systems given k.

number of stage k 2 3 4 5 6
number of eligible systems 33 388 2,362 8,671 20,707

A value nmin is pre-specified for the minimum size of a stage, for example, nmin

equals 5% of the sample size. Any system violating the nmin criterion will be dropped,

and the remaining are the candidate systems. Let S denote the set of candidate

systems, and let Ts denote the selection criterion value (see technical discussions in

Section 2.3) for candidate system s ∈ S. The maximally selected criterion is

Tmax = maxsTs. (2.1)

The maximally selected TN combination s∗ is defined to be the one for which the

maximum is attained, that is, for which the value of statistical criterion Ts∗ equals

Tmax given k.

Our task differs from the usual cutpoint estimation problem which utilizes the

maximally selected statistics. Under the maximally selected tests, the null hypothesis

of interest is the independence between the covariate (to be dichotomized) and the

response, and the estimation of a cutpoint comes after the rejection of the null hy-

pothesis. This null hypothesis is irrelevant in our case as the prognostic ability of the

T and N categories is well established and assumed to hold. Our inquiry takes one
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step further to ask, is the maximally selected TN combination s∗ truly the optimal

staging system for the population?

A bootstrap model selection strategy is therefore applied to estimate the optimal

staging system. B bootstrap samples of size n (where n is the original sample size) are

drawn with replacement from the original data. Denoting the bootstrap replication

of T̂s by T̂ bs , the bootstrap estimated criterion for candidate system s is given by

T̃s =
1

B

B∑
b=1

T̂ bs . (2.2)

The bootstrap estimate of the best staging system s̃∗ is defined as the system that

maximizes T̃s.

There are two reasons that lead us to choose the bootstrap procedure:

1. The bootstrap method provides inference procedures (e.g. confidence intervals)

for not only the optimal selected but all candidate systems, which enables us

to examine the relative performance of any staging systems of interest and

allows flexibility in the decision making process for clinical researchers and

practitioners. In the analysis in Section 2.4, the standard bootstrap variance

estimate was employed to construct the variance estimates of the measures

for each candidate system, and the confidence intervals are also produced by

bootstrapping.



15

2. The bootstrap selection procedure can easily adopt any measure of prognostic

ability. In the next part of this chapter, three such measures will be introduced.

Note that a complete search through all eligible partitions for all bootstrap sam-

ples is, however, thwarted by combinational explosion. To overcome this problem, we

can first compute the criterion for each eligible system using the complete data, and

then only include the top m systems, say m = 200, (and the currently used staging

system proposed by AJCC) as the “finalists” for the bootstrap selection procedure.

2.3 Criteria for Assessing Staging Systems

In this section, we discuss the three measures / criteria we choose for assessing the

prognostic power of candidate staging systems.

2.3.1 Landmark Measures

An appealing way to simplify the analysis of survival data is to use a “landmark”

time-point, such as 5-year or 10-year survival, and deal with only the censored binary

outcome. This is frequently used in medical investigations. Here we elect to use

the two landmark measures described by Begg et al. [8], the explained variation

and the area under the ROC curve. Let θi, i = 1, . . . , c, denote the probabilities of
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survival at the chosen landmark time or each of the c categories in the staging system,

and pi denote the prevalence of the stage categories. Let µ =
∑
piθi represent the

unconditional mean outcome, and νi be the variance of θi. Then the estimated

proportion of explained variation π̂ is given by

π̂ =

∑
p̂iθ̂

2
i − (

∑
p̂iθ̂i)

2 −
∑
p̂iν̂i

(
∑
p̂iθ̂i)(1−

∑
p̂iθ̂i)

, (2.3)

and the area under the ROC curve Â is estimated as

Â =
c∑
i=1

p̂i(1− θ̂i)
2µ̂(1− µ̂)

{
2
i−1∑
j=1

p̂j θ̂j + p̂iθ̂i

}
(2.4)

where {θ̂i} are the Kaplan-Meier [18] estimates of the survival probabilities at the

landmark time, {p̂i} are the observed relative frequencies of the staging categories,

and {ν̂i} are the variances of the observed values of {θ̂i} obtained from the Greenwood

formula.

Using landmark times are less efficient statistically than using the entire survival

distribution but provides for easier communication of results. In fact certain land-

mark times have become standards of reporting in various cancers such as 5 and 10

years in localized colorectal cancer. We include these measures also because in some

situations landmark survival analysis can be more desirable than using the full sur-

vival. These include comparisons in which proportionality is obviously violated (e.g.,
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when one stage is usually treated with a therapy which has a substantial immediate

failure rate and another stage’s failures tend to occur later) or those in which a land-

mark analysis is preferred for scientific reasons. An example of the latter might be a

childhood cancer in which life extension is less relevant than the cure rate, and so a

landmark measure such as 5-year survival could be used to stage these patients as a

surrogate for cure.

2.3.2 Concordance Probability

Harrell et al. [19, 20] proposed the c-index as a way of estimating the concordance

probability for survival data. It is defined as the probability that, for a randomly

selected pair of participants, the person who fails first has the worse prognosis as

predicted by the model. A limitation of Harrell’s c-index is that it only takes into

account usable pairs of subjects, at least one of whom has suffered the event. Begg et

al. proposed an improved estimator of concordance which is adapted to account for

all pairs of observations, including those for which the ordering of the survival times

cannot be determined with certainty [8]. It requires the estimation of the probability

of concordance for each pair of subjects and thus is computationally intensive for large

sample sizes, particularly when bootstrapping. It also assumes that if the patient with

the shorter censored value lives as long as the observed censored survival time in the

paired patient, the remaining conditional probability of concordance is 1/2. As a
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result there is likely to be a conservative bias in the concordance estimator in the

presence of high censoring rates [8].

Here we develop an estimator of the concordance probability under a classification

scheme. Similar to Begg’s approach, the new method utilizes the Kaplan-Meier

estimates to evaluate the probabilities. Let K be the probability of concordance.

For two patients randomly selected with stage (class) and survival time denoted by

(S1, T1) and (S2, T2),

K = P{(S1 > S2, T1 < T2) or (S1 < S2, T1 > T2)}. (2.5)

Here we assume the survival time is inherently continuous although there could be

ties in observed survival times. If S1 = S2, then the most common approach is

to consider it equivalent to S1 > S2 with probability 1/2 and to S1 < S2 with

probability 1/2. Thus (2.5) can be written as

K = 2P (S1 > S2, T1 < T2) + P (S1 = S2, T1 < T2). (2.6)

Letting S1 = j and S2 = i, 1 ≤ i < j ≤ k, the first part of (2.6) can be estimated

as



19

P̂ (S1 > S2, T1 < T2) = P̂ (T1 < T2|S1 > S2)P̂ (S1 < S2)

=
∑∑

j>i

P̂ (T1 < T2|j, i)P̂ (j, i)

=
∑∑

j>i

P̂ (T1 < T2|j, i)
NjNi

N(N − 1)

(2.7)

where Ni, Nj are the sample sizes of stages i and j, respectively, and N is the total

sample size.

Given i and j, and the last event time in all groups denoted by tmax, we have

P (T1 < T2) = P (T1 < T2, T1 ≤ tmax) + P (T1 < T2, T1 > tmax). (2.8)

When at least one event occurred,

P (T1 < T2, T1 ≤ tmax) =

∫ ∞
0

dt2

∫ t2

0

f1(t1)f2(t2)dt1

=
∑
t∈{tj}

[Sj(t
−)− Sj(t)]Si(t)

(2.9)

where Si and Sj can be estimated by the Kaplan-Meier survival estimators in stage

i and j, and {tj} are the observed event times in stage j.

In the case when both observations are censored,

P (T1 < T2, T1 > tmax) = S1(tmax)S2(tmax)P (T1 < T2|T1, T2 > tmax). (2.10)
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The conditional probability P (T1 < T2|T1, T2 > tmax) is not estimable, but can be

conservatively assumed to be 1/2 as in Begg et al., or assumed to be equal to the

overall concordance P (T1 < T2). The latter is adopted in our method. That is,

P̂ (T1 < T2) =

∑
t∈{t}j [Ŝj(t

−)− Ŝj(t)]Ŝi(t)

1− Ŝ1(tmax)Ŝ2(tmax)
. (2.11)

Similarly the second part of (2.6) can be estimated as

P̂ (S1 = S2, T1 < T2) =
1

2

∑
i

Ni(Ni − 1)

N(N − 1)
(2.12)

and the overall concordance estimator is given by

K̂ = 2
∑∑

j>i

{
NjNi

N(N − 1)

∑
t∈{t}j [Ŝj(t

−)− Ŝj(t)]Ŝi(t)

1− Ŝ1(tmax)Ŝ2(tmax)

}
+

1

2

∑
i

Ni(Ni − 1)

N(N − 1)
.

(2.13)

The new estimator improves upon Harrell’s c-index, particularly in the presence of

a large amount of censoring, by including comparisons between censored individuals.

It is also much faster to implement than Begg’s method. The statistic suffers from

the usual criticism applied to concordance statistics; that is, they look only at the

ranks of individuals and thus might be insensitive to small model improvements.

Using survival times, however, often requires parametric modeling and alternative

measures that are sensitive to small changes can also be sensitive to model choice.
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Using ranks can also be a benefit in that K is robust to outlying observations.

2.4 Application to Colorectal Cancer

We illustrated the utility of the proposed bootstrap method by applying it to the

staging of colorectal cancer. The number of stages is given as k = 3 and k = 6,

corresponding to numbers of main and sub-stages in the 6th edition AJCC staging

system. For the percent explained variation and the area under the curve measures,

we tried both landmark times of 5 years and 10 years, based on the median follow-up

time, and the results are very similar. We hence report here only the results from the

5-year landmark analysis. We use the MSKCC data as the primary example and base

our major presentation on them, including the bootstrap selection, the inferences, and

the validations, in Sections 2.4.1 to 2.4.4. In Section 2.4.5 we describe our experiment

with the SEER data.

2.4.1 MSKCC Data: Bootstrap Selection

The staging systems selected by maximizing the bootstrap estimates of each of the

criteria described in Section 2.3, given k = 3 and k = 6, respectively, are presented

in Figure 2.1, as well as the AJCC system for comparison. The systems selected

by the three criteria are similar to each other and quite different from the AJCC
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system. Unlike the AJCC which separates stage 3 horizontally at N1, the bootstrap

selected systems all classify groups primarily by the T categories (vertically). This is

consistent with what we observe in Table 1.2, where the estimated 10-year survivals

are much lower and the hazard ratios are much greater in categories T3 and T4.

Figure 2.1: Schematic showing staging systems selected by bootstrap based on
the MSKCC data and the AJCC 6th edition staging system. VAR: explained

variation; AUC: area under the ROC curve; K: concordance probability.

Let A1 and A2 denote the 3-stage systems selected by explained variation, and

by area under the curve and concordance probability, respectively, and let B1, B2,

and B3 denote the 6-stage systems selected by the three criteria, respectively. Table
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Table 2.2: Selected systems and the AJCC: the estimated criteria and their
standard errors (MSKCC data).

Criteria (SE)
System VAR AUC K

k = 3
A1 0.684 (0.010) 0.705 (0.011) 0.662 (0.008)
A2 0.684 (0.010) 0.705 (0.012) 0.663 (0.007)

AJCC 0.627 (0.008) 0.643 (0.011) 0.622 (0.008)

k = 6

B1 0.688 (0.009) 0.708 (0.011) 0.667 (0.008)
B2 0.688 (0.009) 0.709 (0.011) 0.666 (0.008)
B3 0.687 (0.009) 0.708 (0.011) 0.667 (0.007)

AJCC 0.642 (0.012) 0.660 (0.013) 0.623 (0.008)

2.2 shows the estimated value of the three criteria for these selected systems and

the AJCC. The bootstrap selected systems are very similar with respect to all three

criteria, which is not surprising given that the systems highly resemble each other.

The prognostic power increases minimally as the number of stages increase from 3

to 6, indicating there is not much to gain by adding more sub-stages. In addition,

of course, a 3-stage system is easier to use than a 6-stage one. The AJCC system is

inferior to the selected ones in all cases.

Kaplan-Meier survival curves for the selected staging systems are displayed in

Figure 2.2. All five systems show a substantial degree of prognostic separation and a

clear advantage over the AJCC system in Figure 1.2. There is considerable overlap

of survival curves in the right panel because of the larger number of stages, which

again raise the question whether 6 distinct stages are too many.
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Figure 2.2: Cancer-specific survival of colorectal cancer patients by the selected
staging systems (MSKCC data). Left panel: 3-stage systems; right panel: 6-stage

systems.
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Figure 2.3: Confidence intervals for the criteria: the top-ranked systems based
on the MSKCC data and the AJCC (red). Left panel: 3-stage systems; right panel:

6-stage systems.
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Figure 2.4: Majority voted systems. Grey bars show the % time each system
is ranked from #1 to #10, and the systems are ordered by their % time ranked
#1. The x-axis represents the index of the candidate systems. Left panel: 3-stage

systems; right panel: 6-stage systems.
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2.4.2 MSKCC Data: Confidence Intervals

The bootstrap selection provides inference procedures for not only the optimal se-

lected, but all candidate systems. Figure 2.3 shows the confidence intervals of each

of the criteria for the top-ranked systems and the AJCC. The systems are ordered by

their rankings with regard to the bootstrap estimated criteria. The top systems are

in fact very close in terms of prognostic power, especially for 6-stage systems where

the top 100 systems are virtually identical due to the fact that the systems are only

slightly different from one another in their definition. It is hence difficult to select

one best system, but it allows flexibility in the decision making process for clinical

researchers, who might incorporate both statistical evidence and medical insight into

their considerations. Among the 388 3-stage systems (only the top 150 shown), the

AJCC ranks around 135 (35%), and it ranks around 12500 (60%) among the 20707

6-stage systems (the top 125 shown). Again, the AJCC demonstrates clearly lower

prognostic power than the top systems.

2.4.3 MSKCC Data: Majority Vote Rule

Instead of choosing the system to maximize the bootstrap estimated criteria, the

optimal staging system can also be decided by a simple majority vote rule. For each

bootstrap replication, the candidate systems are ranked with respect to the criterion,

and the systems ranked top 10 at least 5% of the time are defined to be “good”
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staging systems. We show these “good” systems in Figure 2.4. There is an obvious

differential effect for 3-stage systems; the top-3 ranked systems are consistent under

all criteria and enjoy a majority of votes. This is not the case for 6-stage systems

whose votes are very widely spread.

The x-axis represents the index of the candidate systems. Among the 3-stage

systems, candidates #38, #8, and #63 are constantly selected as the top systems,

showing a clear advantage over other candidates. Candidates #38 and #8 are in fact

systems A1 and A2, respectively, in Section 5.1. The top-ranked 6-stage systems,

#8314, #7371, and #8032, correspond to systems B1, B2, and B3, respectively. The

AJCC system is included but it is never ranked top 10.

2.4.4 MSKCC Data: Cross-Validation

Table 2.2 compares maximally selected values with the one given by fixed model,

the AJCC, without adjusting for the maximization process. This could result in

maximization bias that elevates the performance of the bootstrap selected systems,

a problem well known in the context of model selection or cutpoint selection [21–23].

One approach for correcting the maximization bias is the use of cross-validation [21].

Here we use 10-fold cross-validation to reevaluate the bootstrap procedure. Basically,

the data are randomly split into ten parts of similar size. Ten times we use 9/10 of

the data for selection and each time apply the selected system to the omitted 1/10th
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of the data. Once the procedure is complete, all patients in the sample have been

assigned to a stage. We then compute the estimated criteria under this staging

assignment. For example, here we use the bootstrap selection procedure with the

concordance criterion and set the desired number of stages to be 3. With the cross-

validation adjustment, the estimated criteria are 0.669 (VAR), 0.688 (AUC), and

0.650 (K), which are still substantially superior to the estimates for AJCC in Table

2.2, indicating there is much room for improvement in the current system.

2.4.5 The SEER Data Example

As a tertiary cancer center, the Memorial Sloan-Kettering Cancer Center does not

typically have a representative sample of all cancer patients. In fact, as one of the

top cancer centers in the U.S., the MSKCC is very likely to see a different patient

population from the general colon cancer population. Analyses of data that are more

representative of the U.S. population are needed before a valid recommendation could

be made about improving cancer staging systems. Given the limited scope of this

dissertation, we will only present here a brief example using the national population-

based data from the SEER cancer registry. More detailed explorations using such

national databases are very desirable in future publications in statistical journals and

medical journal as well.
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Figure 2.5: Schematic showing staging systems selected by bootstrap based on
the SEER data and the AJCC 6th edition staging system. VAR: explained varia-

tion; AUC: area under the ROC curve; K: concordance probability.

The bootstrap selected optimal systems based on the SEER data, as expected, are

slightly different from those based on the MSKCC data due to the inherent differences

between these two populations. Figure 2.5 displays the selected systems under each

statistical criterion, given k = 3 and k = 6, respectively, as well as the AJCC system

for comparison. Again, the systems selected by the three criteria are similar to each

other and quite different from the AJCC system. Unlike the AJCC system or the

optimal systems selected based on the MSKCC data which separate stages in “straight

lines”, either horizontally or vertically, the optimal systems obtained from the SEER
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data partition the T×N table into more irregular shapes. Many of the stages lie

along the diagonals in the T×N rectangular. This demonstrates the flexibility of the

bootstrap selection method; any “eligible” combinations of the T and N categories

that satisfy the partial ordering constrains can be a potential optimal system. Other

than the partial ordering constraints we explicitly and intentionally avoid starting

the process with judgments about which groups should be combined. On the other

hand, these more irregularly configured systems might raise a concern as to whether

they are clinically practical or useful, in which case it is necessary to seek the input

from clinical and medical experts.

Table 2.3: Selected systems and the AJCC: the estimated criteria and their
standard errors (SEER data).

Criteria (SE)
System VAR AUC K

k = 3
C1 0.634 (0.001) 0.665 (0.002) 0.612 (0.002)
C2 0.633 (0.001) 0.666 (0.002) 0.613 (0.002)
C3 0.634 (0.002) 0.666 (0.002) 0.613 (0.002)

AJCC 0.625 (0.002) 0.655 (0.001) 0.604 (0.002)

k = 6

D1 0.646 (0.002) 0.677 (0.002) 0.624 (0.002)
D2 0.645 (0.001) 0.677 (0.002) 0.624 (0.002)
D3 0.646 (0.002) 0.676 (0.001) 0.625 (0.002)

AJCC 0.635 (0.002) 0.664 (0.002) 0.614 (0.002)

Let C1, C2 and C3 denote the 3-stage systems selected by explained variation, by

area under the curve, and by concordance probability, respectively, and let D1, D2,

and D3 denote the 6-stage systems selected by the three criteria, respectively. Table
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2.3 shows the estimated values of the three criteria for these selected systems and for

the AJCC. The bootstrap selected systems are very similar with respect to all three

criteria, which is not surprising given that the systems highly resemble each other.

The prognostic power increases slightly as the number of stages increases from 3 to

6. The AJCC system is inferior to the selected ones in all cases.

Kaplan-Meier survival curves for the selected staging systems are displayed in

Figure 2.6. All six systems show a substantial degree of prognostic separation. When

3-stage systems are of concern, the advantage of the selected systems over the AJCC

(Figure 1.3) is not visibly apparent, despite the fact that the AJCC ranks around

100th (26%) amongst all 388 candidate systems. In fact, for SEER data, most of

the eligible 3-stage combinations give similarly good separations in survivals. For

instance, the system ranks 260 out of all 388 eligible 3-stage systems has the survival

separation as shown in Figure 2.7. The reason lies in the fact that the partial ordering

rule already guarantees that any eligible system is well ordered in terms of disease

severity, and that the large sample size of the SEER data ensures that any grouping

would have sufficient sample size in each stage (in a 3-stage system). In other words,

randomness is largely removed. The same cannot be said for systems with more

stages, for example, 6-stage systems where randomness could be preserved in stages

with small numbers of subjects. The gain in prognostic separation is considerable for

6-stage systems as shown in Figure 2.6 (right panel).
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Figure 2.6: Cancer-specific survival of colorectal cancer patients by the selected
staging systems (SEER data). Left panel: 3-stage systems; right panel: 6-stage

systems.
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Figure 2.7: Kaplan-Meier survival curves based on the 260th ranked 3-stage
system out of 388 eligible systems (SEER data).
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2.5 Discussion and Conclusions

An accurate staging system is crucial for predicting patient outcome and guiding

treatment strategy. For decades investigators have developed and refined stage group-

ings using a combination of medical knowledge and observational studies, yet there

appears to be no well established statistical method for objectively incorporating

quantitative evidence into this process. In this chapter, we have proposed a system-

atic selection method for the development of cancer staging systems, and illustrated

the utility of this method by applying it to the staging of colorectal cancer. The

staging systems selected by the three criteria are similar to each other while quite

different from and superior to the current AJCC system, indicating there might be

room for improvement in selecting it.

Our analysis of the colorectal cancer data has provided some insight into the
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prognostic power of the TNM staging system. For example, the selected systems

based on the MSKCC data (A1, A2, B1, B2, and B3) are virtually identical in their

prognostic accuracy regardless of which of the three evaluative measures is used. The

selected 6-stage systems are a further division of the 3-stage systems with no apparent

improvement in separating the survivals. The findings from the SEER data suggest

similar conclusions. Thus, it might be reasonable to favor a more parsimonious

system as urged in Gönen and Weiser [4]. Naturally, the choice between systems

with three, six, or other numbers of stages involves a variety of considerations. The

solution is an essentially medical one which combines issues of treatment regimen

distinctions, diagnostic ease, and clinical practice. We recommend that an analyst

give medical researchers several staging systems in a range of practical sizes along

with their performance score as in Table 2.2 to allow them to compare the systems’

prognostic capabilities.

We use bootstraps to provide bias-corrected estimates of performance for the stag-

ing systems. This addresses the internal validity which is a prerequisite for external

validity yet does not guarantee it. External validity of a prognostic system can be

established by being tested and found accurate across increasingly diverse settings.

The selected systems should be tested across multiple independent investigators, ge-

ographic sites, and follow-up periods for accuracy and generalizability. The use of

population-based datasets is important in establishing a staging system that is useful

for the general patient population.
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All final systems obtained from the MSKCC data suggest that the most essen-

tial information is contained in the contrast between the tumor invading through the

muscularis propria (T3 and T4) and otherwise (T1 and T2). This is in sharp contrast

to AJCC where the primary distinction is between node-positive (N1 and N2) and

node-negative (N0) cancers. On the other hand, the findings from the SEER data

suggest otherwise: the groupings primarily lie along the diagonals of the T×N table.

The differences in the results come from the inherent differences between the two pop-

ulations, which again prompts the need for external validations across independent

populations.

As we mentioned, the relatively irregularly configured systems obtained from the

SEER data could raise concerns as to whether they are clinically practical or use-

ful. Because cancer staging has been as much about anatomic interpretation as it

is about accurate prognosis, a staging system that is prognostically optimal is un-

likely to be adopted if it does not respect the anatomic extent of disease. Staging

systems are most useful when they are both prognostically optimal and anatomically

interpretable. If such anatomical interpretability requires a more “regular” config-

uration, we can always identify, from the confidence interval plots or the bar plots,

other near-top systems that satisfy such requirement, and a compromise can be reach

between statistical evaluation and medical preference and common sense. Another

reasonable proposal would be to use clinically sensible combinations as a way to con-

strain which groupings are allowed from the beginning rather than in the end. After
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all, there is nothing in our selection method which forbids certain ways of grouping

or combination being pre-specified.

TNM staging is applicable to virtually any type of solid tumor hence, although

we used colorectal cancer as illustration, our methodology has general appeal to

other cancers and other diseases that use aggregate risk scores based on ordinal (or

ordinalized) risk factors, such as the ATP III score for high-blood cholesterol that can

benefit from optimal aggregation [24]. Our methodology is applicable in principle to

binary outcomes as well.



38

Chapter 3

Penalized Regression Method: The

Lasso Tree

3.1 Introduction

The bootstrap selection method for cancer staging suffers from the following draw-

backs: 1) the number of stages needs to be pre-specified; 2) a complete search through

all eligible partitions is thwarted by combinational explosion when the desired num-

ber of stages is large; and 3) the procedure, essentially a form of best subset model

selection, could be unstable with regard to small changes in the data [10].
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An intuitive approach that could speed up the computation is to use tree-based

methods such as recursive partitioning [25]. However, these tree-based methods do

not capture all types of T and N combinations. At each split, trees must have full

/ complete separation with respect to one variable. That is, in the T×N table, a

tree method will split fully along all columns or rows conditional on the existing

splits. In other words, the grouping that results from a tree must have partitions in

straight lines. Yet the true staging system might have a different configuration. For

instance, the newly published AJCC 7th edition has a partition along the diagonal

[2], which can not be achieved by a tree method. Hence, a more flexible and less

computationally intensive method is needed for estimating cancer stage groupings.

In this chapter, we propose a L1 penalized regression method that satisfies these

requirements. Specifically, the development of cancer stage groupings can be con-

sidered a model selection problem for a censored response grouped with respect to

features arranged on a partially ordered two-way grid (the T×N table), with the T

and N categories partial ordered. An attractive way to reduce the time complexity

of an exhaustive search is to introduce an L1 penalty in a regression model. In order

to yield the grouping effect, we constrain the differences of coefficients that are one

unit apart in both directions to be small. To be specific, we require

∑
|βj,k − βj,k−1|+

∑
|βj,k − βj−1,k| ≤ s (3.1)



40

where βj,k is the coefficient for the cell with T = j and N = k, and s > 0 is a pre-

specified tuning parameter. The constraint leads to some of the estimated coefficients

being exactly the same, which provides the desired stage grouping. An attractive

feature of this method is that a series of optimal groupings with different numbers of

groups can be obtained as a function of the tuning parameter s. This gives a tree-

like structure for partitioning the T×N table, and thus offers doctors and medical

researchers a visual aid on how the groupings are made progressively and a freedom

to choose among different numbers of stages. We use the term “lasso tree” for the

proposed method.

The continuous constraint function shrinks the difference of coefficients toward

zero continuously and is expect to result in a more stable stage grouping than that

provided by best subset selection [26]. This strategy has been proved to be appropri-

ate in other statistical problems such as fused lasso [27, 28]. Unlike the fused lasso,

the lasso tree only focuses on sparsity in the differences of the coefficients but not the

coefficients themselves. It also takes into account the partial ordering characteristic

of the T and N categories.

The structure of this chapter is as follows. In Section 3.2 we describe the lasso

tree and the algorithm for obtaining the estimates. The method is illustrated on the

colorectal cancer data example in Section 3.3, where we also show that the proposed
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method can incorporate information from the AJCC or other sources by posing dif-

ferent weights on the penalty terms. Simulation studies comparing the lasso tree with

the best subset selection methods are presented in Section 3.4. Section 3.5 establishes

the asymptotic properties of the penalized likelihood estimators. Some discussion is

given in Section 3.6.

3.2 The Lasso Tree

3.2.1 A Lasso-type Selection Procedure for Survival Out-

comes

In general, suppose the T descriptor has p categories and the N descriptor has q

categories. The data for n subjects are of the form (y1, δ1, X1), . . . , (yn, δn, Xn), with

δi describing whether yi is a survival time (δi = 1) or a censoring time (δi = 0) and Xi

denoting the vector of covariates for the ith individual. Under the Cox proportional

hazards model, the T×N table can be seen as a categorical covariate with p× q levels

and the model can be written as

λ(t) = λ0(t)exp(βTX) (3.2)
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where β = {βj,k}, j = 1, ..., p, k = 1, ..., q, are the regression coefficients for cells in

the T×N table and λ0(t) is an unspecified baseline hazard function. Equation (3.2)

can be solved through maximizing the partial likelihood function

L(β) =
∏
r∈D

exp(βTXr)∑
j∈Rr

exp(βTXj)
(3.3)

where D is the set of indices of the events and Rr denotes the set of indices of the

individuals at risk at time tr − 0.

The grouping problem can be addressed by borrowing the framework of a lasso-

type model selection problem; instead of estimating β such that some of its compo-

nents are exactly 0 as in the usual implementation of the lasso, we aim to estimate

β such that some of the solution coefficients are exactly the same. Hence, instead of

constraints on the coefficients we pose constraints on the differences between neigh-

boring coefficients. For the stage grouping problem specifically, β is ordered in both

T and N directions such that βj,1 ≤ . . . ≤ βj,q and β1,k ≤ . . . ≤ βp,k, j = 1, ..., p,

k = 1, ..., q, and this partial ordering constraint is also applied. We propose to esti-

mate β as follows

β̂ = argmax `(β), subject to

p∑
j=1

q∑
k=2

|βj,k − βj,k−1|+
p∑
j=2

q∑
k=1

|βj,k − βj−1,k| ≤ s

and βj,1 ≤ . . . ≤ βj,q and β1,k ≤ . . . ≤ βp,k, j = 1, ..., p, k = 1, ..., q

(3.4)
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or, equivalently,

β̂ = argmin

{
−`(β) + λ(

p∑
j=1

q∑
k=2

|βj,k − βj,k−1|+
p∑
j=2

q∑
k=1

|βj,k − βj−1,k|)

}

subject to βj,1 ≤ . . . ≤ βj,q and β1,k ≤ . . . ≤ βp,k, j = 1, ..., p, k = 1, ..., q

(3.5)

where `(β) = logL(β) and s, λ > 0 are tuning parameters. The underlying mechanism

is the sparsity-enforcing property of the L1 penalty, which is expected to give a

reduced number of unique βj,k values that represent different groups.

3.2.2 Computational Approach

If each neighboring difference is penalized equivalently, as in (3.4) and (3.5), because

of the ordering constraint, the absolute values can be dropped and the objective

function can be simplified as

min
β

{
−`(β) + λ

(
−

p−1∑
j=1

βj,1 −
q−1∑
k=1

β1,k +

p∑
j=2

βj,q +

q∑
k=2

βp,k

)}

subject to βj,1 ≤ . . . ≤ βj,q and β1,k ≤ . . . ≤ βp,k, j = 1, ..., p, k = 1, ..., q.

(3.6)

Note that only the coefficients of the “boundary cells” in the T×N table are taken

into account in (3.6). Yet this is mathematically equivalent to (3.4) and (3.5) and

will give the same estimates as (3.4) and (3.5).
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Tibshirani gave an iterative procedure to solve the L1 penalized Cox propor-

tional hazards model by expressing the usual Newton-Raphson update as an iterative

reweighted least squares (IRLS) step and then replacing the weighted least squares

step by a constrained weighted least squares procedure [26]. Since our problem does

not involve high-dimensional data, this procedure is quite adequate for computing its

estimates. Define η = Xβ, u = ∂`/∂η, A = −∂2`/∂ηηT , and z = η + A−1u. Denote

Pλ(β) = λ(−
∑p−1

j=1 βj,1−
∑q−1

k=1 β1,k +
∑p

j=2 βj,q +
∑q

k=2 βp,k). The iterative procedure

is as follows:

1. Fix λ and initialize β̂ = 0.

2. Compute η, u, A and z based on the current value of β̂.

3. Minimize (z −Xβ)TA(z −Xβ) + Pλ(β) subject to βj,1 ≤ . . . ≤ βj,q and β1,k ≤

. . . ≤ βp,k.

4. Repeat Steps 2 and 3 until convergence of β̂.

With the absolute values dropped, the minimization in Step 3 is a simple quadratic

program with linear inequality constraints. It requires O(n2) computations with A

being a full matrix. To speed up the computation, one can replace A with a diagonal

matrix D with the diagonal entries of A [26]. The procedure typically runs between

p and q iterations, and converges quickly based on our empirical experience.
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3.2.3 The Tuning Parameter and The Lasso Tree

The estimates from (3.5) depend on the tuning parameter λ. When λ = 0, the solu-

tion is the usual Cox model estimate. As λ increases the absolute differences between

neighboring coefficients go to 0 successively, corresponding to the successive grouping

of the cells, until all cells are in one group. This is similar to pruning a tree bottom-

up and hence we call the proposed method the lasso tree. The estimated coefficients

from the lasso tree fit can be displayed as a function of the tuning parameter λ; an

example is given in Section 3.3. “Warm starts” are used to efficiently compute the

path of solutions over a grid of values for λ: starting at a solution for the previous

λ, the solution for the next λ can be found relatively quickly.

We propose to use the Bayesian Information Criterion (BIC) [29]

BIC(λ) = −2`(β̂λ) + kλln(n) (3.7)

to select the tuning parameter λ, where `(β̂λ) is the log-partial likelihood for the

constrained fit with λ, and kλ is the degrees of freedom in the model. Here we

estimate kλ by the number of unique parameters (the number of groups identified).

Intuitively, the BIC inflates the negative log-partial likelihood by a penalty term

proportional to the effective number of parameters. The BIC is calculated over a

grid of values of λ which are uniformly distributed on the log-scale from 0 (yielding
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p×q stages) to some big number (reducing to a single stage), and the value λ̂ yielding

the lowest estimated BIC is selected.

Other popular methods for tuning parameter selection include the Akaike Infor-

mation Criterion (AIC) [30], cross-validation (CV), and generalized cross-validation

(GCV) [31]. It is known that the BIC is consistent for model selection while the CV,

GCV and AIC are not [32]. Since our primary focus is model selection rather than

prediction we elect to use BIC as the tuning parameter selection criterion in this

paper. In fact, simulation studies have shown that the GCV statistic is inferior to

the BIC in terms of selecting the correct grouping. In addition, AIC tends to select

less sparse groupings compared to BIC.

3.3 Application to Colorectal Cancer

In this section, we illustrate the utility of the lasso tree method by applying it to the

staging of colorectal cancer. Again, we use the MSKCC data as the primary example

and base our major presentation on them, including the lasso tree selection and the

incorporation of prior information, in Section 3.3.1 and 3.3.2. In Section 3.3.3 we

describe our experiment with the SEER data.
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3.3.1 MSKCC Data: The Lasso Tree

Figure 3.1 shows the estimated coefficients from the lasso tree fit as a function of

the log tuning parameter log(λ). Labels on top of the graph show when the group-

ings occur. The cell T1N0 is set to be the reference group. There is a left-right

tree structure and the cells merge successively in a roughly monotone fashion. The

monotonicity is with respect to the grouping process, where a higher level grouping

always contains the lower ones as subsets.

The tree structure starts with 8 groups instead of 12 because some of the cells are

forced to merge by the partial ordering constraints. Specifically, the unconstrained

coefficients in cells T2N0, T2N1, T1N2 and T2N2 are not in line with the natural

ordering and hence these cells are aggregated into one group at the very beginning.

The same can be said for cells T3N0 and T4N0. Interestingly, T1N1 starts very

close to T1N0 but separates from it until it merges with a higher stage. Note that

since only 1 patient died among the 14 patients in T1N1, this behavior of β̂1,1 can be

attributed to the large variation within this subcategory.

The vertical dotted line is drawn at 1.66, the value of log(λ) that minimizes the

BIC. The grouping selected by BIC has 4 stages (Figure 3.2(b)), with estimated

hazard ratios exp(β̂) = (1.00, 1.75, 3.96, 5.19). Unlike the AJCC grouping (Figure

3.2(a)) which divides stage 3 horizontally at N1, the lasso tree selected grouping

classifies stages primarily by the T categories (vertically), which is in fact very similar
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Figure 3.1: The lasso tree based on the MSKCC data: coefficient estimates and
BIC for the colorectal cancer example, as a function of log(λ). The dotted line
represents the staging for log(λ̂) = 1.66, selected by minimizing BIC. K represents

the number of groups.
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to the systems selected by the bootstrap method. The Kaplan-Meier survival curves

for the AJCC and the lasso tree selected staging are displayed in Figure 3.3(a-b).

Clearly, the lasso tree selected staging scheme gives a better separation of survivals

than does the AJCC staging system. This result again indicates that there could be

much room for improvement for the current AJCC staging.
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To formally evaluate the AJCC and the lasso tree selected staging systems, we use

the three criteria for cancer staging proposed in Chapter 2: 1) explained variation; 2)

area under the ROC curve; and 3) the probability of concordance of stage and sur-

vival. Table 3.1 shows for the two systems the estimated values of the three criteria.

The estimates of standard errors are obtained by bootstrapping. As expected, the

lasso tree selected system has substantially greater prognostic power as measured by

all three criteria than the AJCC system.

Figure 3.2: Schematic showing the staging schemes for M0 colorectal cancer by
(a) AJCC 6th edition staging, (b) the lasso tree selected staging, and (c) the lasso

tree selected staging incorporating information from the AJCC.

Table 3.1: The AJCC and the lasso tree selected systems: the estimated criteria
and their standard errors. VAR: explained variation; AUC: area under the ROC

curve; Concordance: the probability of concordance.

Criteria (SE)
System VAR AUC Concordance

AJCC 0.642 (0.012) 0.660 (0.013) 0.623 (0.008)
Lasso tree selected 0.686 (0.009) 0.706 (0.011) 0.664 (0.008)
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Figure 3.3: Survivals of colorectal cancer patients by (a) AJCC staging, (b) the
lasso tree selected staging, and (c) the lasso tree selected staging incorporating

information from the AJCC.
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(c) Lasso tree incorporating AJCC
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3.3.2 MSKCC Data: Incorporating Information from the

AJCC System

The AJCC staging system has been seen as the most concerted effort to design a

universally acceptable staging system and, since its introduction, has been used in

clinical practice throughout the world. We recognize that suggesting a redefinition of

the AJCC grouping scheme can be very difficult and comes with a cost regarding our

future ability to make comparisons to past experience. On the other hand, the AJCC

staging scheme has been developed using a combination of medical knowledge and

observational studies, and hence could contain valuable information on prognostic

separation of cancer patients. It is reasonable to incorporate this information when

developing new systems, which can be done by modifying the penalty terms to reflect

it.

Figure 3.4: The AJCC 6th edition staging scheme for colorectal cancer: big
arrows link cells in the same substage; small arrows link cells in the same main stage
but different substages. Heavier weights are imposed on differences represented by
the arrows to reflect the AJCC staging, with the big arrows having the heavier

weight.
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We include the information from AJCC in the regression model by posing a

heavier penalty on the differences between cells that are in the same stage according

to AJCC, in other words, the differences that are zero under AJCC. More specifically,

the 6th edition AJCC on colorectal cancer has three main stages and six substages.

The differences that are zero under the substage grouping are β1,2 − β1,1, β2,2 − β2,1,

β2,4 − β2,3, β3,2 − β3,1, β3,3 − β3,2, and β3,4 − β3,3 (big arrows in Figure 3.4); and the

additional differences that are zero under the main stage grouping are β1,4 − β1,3,

β2,3 − β2,2, β3,1 − β2,1, β3,2 − β2,2, β3,3 − β2,3, and β3,4 − β2,4 (small arrows in Figure

3.4). Different weights are imposed on these two sets of differences to reflect these

two levels of grouping; cells in the same substage are expected to be closer than

cells in the same main stage but different substages. Penalty terms |βj,k − βj,k−1|

(or |βj,k − βj−1,k|) in (3.5) corresponding to the first set of differences are replaced

by w1|βj,k − βj,k−1| (or w1|βj,k − βj−1,k|), and penalty terms corresponding to the

second set of differences are replaced by w2|βj,k − βj,k−1| (or w2|βj,k − βj−1,k|), where

w1 > w2 > 1. The remaining differences have weights of 1. These cells (linked by

arrows in Figure 3.4) are hence forced to aggregate more aggressively than the rest,

leading to a staging system that might look more like the AJCC.

We apply this modified modeling on the colorectal cancer data with two choices

of wi’s: 1) w1 = 4, w2 = 2; and 2) w1 = 10, w2 = 5. The optimal groupings selected

by the BIC are identical under both choices of wi’s with slightly different hazard ratio

estimates. The selected scheme has 5 groups (Figure 3.2(c)), with exp(β̂) = (1.00,
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1.83, 1.99, 4.28, 5.66) when w = (4, 2) and exp(β̂) = (1.00, 1.71, 2.23, 3.98, 5.37)

when w = (10, 5). This grouping is in fact almost identical to the one selected by

the lasso tree alone, except that the cell T2N0 is now separated as a single stage.

The information contained in the AJCC scheme is overwhelmed by the information

contained in the data. Figure 3.3(c) shows the survival curves under this 5-stage

system. As a further division of the previous 4-stage scheme, the 5-stage scheme

seems to offer no apparent improvement in separating the survivals. Thus, it might

be reasonable to favor a more parsimonious system as urged by Gönen and Weiser

[4].

3.3.3 The SEER Data Example

In this section, we describe our brief experiment with the SEER data. We apply

the lasso tree method to the SEER data by searching through a range of λ’s. The

estimated coefficients from the lasso tree fit as a function of the log tuning parameter

log(λ) are shown in Figure 3.5, as well as the BIC as a function of log(λ). Again, there

is a left-right tree structure and the cells merge successively in a roughly monotone

fashion.

With the SEER data, the tree structure starts with 10 groups as the cells T1N2,

T2N1, and T2N2 are forced to merge at the very beginning by the partial ordering

constraints. The vertical dashed line is drawn at 2.54, the value of log(λ) that
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Figure 3.5: The lasso tree based on the SEER data: coefficient estimates and
BIC for the colorectal cancer example, as a function of log(λ). The dotted line
represents the staging for log(λ̂) = 2.54, selected by minimizing BIC. K represents

the number of groups.
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minimizes the BIC. Unlike the sparse, 4-stage grouping selected based on the MSKCC

data, the grouping selected by BIC here has as many as 9 stages. A schematic of this

optimally selected grouping is shown in Figure 3.6(a): every single cell in the T×N

table forms a unique stage, with the exception of the cells T1N1, T1N2, T2N1, and
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T2N2. The corresponding estimated hazard ratios are exp(β) = (1.00, 1.30, 1.53,

1.97, 2.50, 2.97, 3.37, 4.43, 7.98). The BIC increases as the cells are further grouped.

The very large sample size of the SEER data has contributed to this less sparse

grouping. The only considerable randomness in this data lies in these few small

cells: T1N1, T1N2, T2N1, and T2N2. Once these four cells merge, the unexplained

variation in the model is largely removed and an optimal staging system is reached

judged by the BIC. A more sparse system might be reached by using a criterion that

impose a larger penalty on the number of explanatory variables than the BIC.

Figure 3.6: Schematic showing the optimal staging schemes selected by lasso tree
based on the SEER data: (a) the 9-stage system selected by BIC, (b) the selected

6-stage system, and (c) the selected 3-stage system.

Despite the selection of a 9-stage system by the BIC, we can always choose other

optimal systems given by the lasso tree if a more sparse system is desired. Figure

3.6 shows two such systems with 6 stages and 3 stages, respectively. Similar to those

selected based on the MSKCC data, these selected groupings classify stages primarily

by the T categories (vertically). However, they are quite different from the systems
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selected by bootstrap based on the same data (Figure 2.5), on which more discussions

will be given shortly.

Similar to what we found previously with the MSKCC data, the category of T1N1

starts close to T1N0 but separates from it until it merges with a higher stage (the

group of T1N2, T2N1, and T2N2). Again, this is due to the relatively small sample

size of this category. With 181 subjects (compared to the average cell sample size

of 1,442), this behavior of β̂1,1 can be attributed to the large variation within this

category. When λ increases, heavier penalties will drag β̂1,1 towards β̂1,2 and β̂2,1, the

coefficients in its neighboring cells. Although there is also penalty on the difference

between T1N1 and T1N0, this effect is outweighed by the joint effect from T1N2 and

T2N1.

This particular behaver of β̂1,1 in fact reveals an interesting, and probably use-

ful, feature of the lasso tree method. In our method, the penalties / constraints are

imposed upon the differences between neighboring coefficients, where“neighbors” are

defined as adjacent cells in the rows or in the columns. This hence does not include

adjacent cells in the diagonal direction. Therefore, rather than merging with a cell

next to them along the diagonal, cells are much more likely to be grouped with their

row or column neighbors. This implies that the resulting systems will most likely

have stages configured in rectangular shapes. In this particular example, this feature

leads to the merging of T1N1 with its two adjacent cells, T1N2 and T2N1 (and hence
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also T2N2), which results in the rectangular group of the four cells combined (stage

3 in Figure 3.6(a)), rather than the merging of T1N1 and T1N0 which would result

in a lower triangle group of T1N2, T2N1, and T2N2. This feature also explains the

difference between the systems selected by the bootstrap method and the lasso tree

method. The bootstrap method, by exhaustively searching through all eligible sys-

tems and judging them solely by their prognostic abilities, might select systems that

have irregular configurations like those presented in Figure 2.5. While the lasso tree

method, by using constraints on immediate row and column neighbors, would have

selected systems as in Figure 3.6 that have more regular, rectangular configurations.

Both approaches have pros and cons, and we believe the lasso tree method, by pro-

ducing more regularly configured, and hence more interpretable, systems, will prove

useful in many situations.

The Kaplan-Meier survival curves for the 3-stage and 6-stage lasso tree selected

systems (we suspect the 9-stage system too unwieldy for clinical use and hence do

not include it here) and the AJCC are displayed in Figure 3.7. Again, the lasso tree

selected 6-stage scheme gives a better separation of survivals than does the 6-stage

AJCC staging system, while the difference in prognostic ability is not substantial

when 3-stage systems are of concern.
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Figure 3.7: Survivals of colorectal cancer patients by (a) AJCC staging, (b) the
lasso tree selected staging, and (c) the lasso tree selected staging incorporating

information from the AJCC.
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3.4 Simulation Studies

In this section we present simulation studies to investigate the finite sample properties

of the lasso tree. The performance of the lasso tree and the existing approaches for

cancer staging will be compared from two aspects: the ability to select the correct
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grouping and robustness with regard to changes in the data. We also investigate the

role of the partial ordering constraint on the lasso tree.

3.4.1 Ability to Select the Correct Grouping

A hypothetical 4-stage system is used to generate the data, whose sample distribution

in the T×N table is chosen to be representative of the real colorectal cancer data.

The sample size is set to be 1000, also representative of the colorectal cancer data.

Based on the “true” grouping, we generate survival times from two models: (A) the

exponential model logλ = x′β; and (B) the log-normal model logT = −x′β + σW ,

where W has a standard normal distribution and σ = 0.8. The coefficients are set

to be β = log(1, 2, 4, 8) for a moderate effect and β = log(1.0, 1.2, 1.5, 2.0) for a

small effect. Censoring times are generated from a Unif(0, τ) distribution, where τ

is chosen to produce 40% and 80% censoring.

For comparison, the bootstrap and best subset methods are included and the

criteria for selection are chosen to be the area under ROC curve (AUC) for 10-year

survival and the probability of concordance of grouping and survival (Concordance).

Other selection criteria that quantify the prognostics ability of candidate groupings,

such as the partial likelihood, BIC, etc., can also be use under the bootstrap and
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best subset methods. Yet they perform unfavorably as compared to AUC and Con-

cordance, and hence are dropped from the simulation. Note that both these two

approaches assume the true number of groups K is known or pre-specified.

Table 3.2 reports the empirical probabilities (based on 1000 simulations) of se-

lecting the correct 4-stage system. Two significant digits are shown based on the

maximum Monte Carlo standard error (
√

0.5 ∗ 0.5/1000 = 0.016). For the lasso tree,

we report selection probabilities both when assuming the true number of groups K =

4 is known and when K is unknown and estimated by the BIC. The empirical results

show that the lasso tree is able to select the correct grouping, especially when the

true number of groups K is pre-specified; the probability of selecting the true group-

ing when fixing K = 4 is over 70% in all scenarios studied. When the BIC is used

to select the grouping, the successful rate is slightly lower (around 65%). However,

it is worthwhile to emphasize that most of the remaining groupings selected by the

BIC are in fact nested in the true 4-stage grouping, and so their errors involve falsely

splitting stages rather than erroneously combining them. Moreover, the grouping

selected by the BIC is very robust to the degree of censoring and the effect size. The

bootstrap and best subset methods give less satisfactory results, especially the best

subset selection methods which show very low probabilities of selecting the correct

grouping even though the true number of groups K is pre-specified.
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Table 3.2: Selection probabilities based on 1000 simulations (sample size = 1000)

Method for Selection
Lasso Tree Bootstrap Best Subset

True model % Censored K known K unknown AUC Concordance AUC Concordance

A*(1,2,4,8)
40% 0.94 0.68 0.57 0.62 0.40 0.33
80% 0.88 0.65 0.38 0.43 0.23 0.14

A*(1.0, 1.5, 40% 0.80 0.68 0.44 0.48 0.22 0.14
2.5, 4.0) 80% 0.72 0.62 0.32 0.31 0.13 0.09

B*(1,2,4,8)
40% 0.99 0.74 0.81 0.82 0.78 0.77
80% 0.95 0.73 0.67 0.67 0.62 0.63

B*(1.0, 1.5, 40% 0.94 0.74 0.56 0.58 0.53 0.52
2.5, 4.0) 80% 0.89 0.74 0.51 0.50 0.46 0.44

* A: exponential model; B: log-normal model.
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3.4.2 Estimation Stability

Bootstrap samples are drawn from the colorectal cancer data set with replacement

to evaluate the estimation stability of the lasso tree with respect to changes in the

data. For comparison, we include the best subset selection and assume the number of

groups to be K = 3 and K= 6, corresponding to the two AJCC 6th edition groupings,

respectively. The lasso tree selection is made accordingly and, additionally, by esti-

mating K with the BIC. The empirical selection proportions based on 1000 bootstrap

samples are shown in Figure 3.8. The algorithm is stable if it selects one grouping

large proportion of time.

As expected, the lasso tree gives most stable results, with one dominant staging

when fixing K = 3 or estimating K with BIC, and a few dominant groupings when K

= 6. The estimate is more stable towards the top of the lasso tree (when K is small).

The best subset selection gives most unstable results, especially when K is large.

3.4.3 The Partial Ordering Constraint

The partial ordering constraint βj,1 ≤ . . . ≤ βj,q and β1,k ≤ . . . ≤ βp,k, j = 1, ..., p,

k = 1, ..., q, is included in (3.5) to assure the estimates are ordered in both T and

N. One could expect to relax this constraint when the ordinal trends in T and N

are apparent. We are interested in whether formulation (3.5) will give similar results
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Figure 3.8: Selection proportions based on 1000 bootstrap samples from the
colorectal cancer data set. The x-axis indexes the staging systems selected most
often by the lasso tree, and the groupings are ordered by the percentage of time
they are selected by the lasso tree. K represents the pre-specified number of groups.

Conc = the concordance criterion.
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with and without the ordering constraint. This is equivalent to asking if the refor-

mulation in (3.6) (when the ordering constraint is present) gives results similar to

formulation (3.5) without the ordering constraint. Here we investigate the role of the

partial ordering by removing it from the lasso tree and rerunning the simulations in

Section 3.4.1. The results for the exponential model are shown in Table 3.3. The

selection probabilities are not much affected even for small effects, indicating that

the two formulations are almost equivalent when the ordinal trends in T and N are

apparent.
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Table 3.3: Selection probabilities based on 1000 simulations

Lasso Tree
With constraint Without constraint

True model % Censored K known K unknown K known K unknown

A*(1,2,4,8)
40% 0.94 0.68 0.94 0.67
80% 0.88 0.65 0.86 0.64

A*(1.0, 1.5, 40% 0.80 0.68 0.78 0.65
2.5, 4.0) 80% 0.72 0.62 0.70 0.60

* A: exponential model

3.5 Asymptotic Theory of the Lasso Tree

3.5.1 Consistency of the Grouping Procedure

Fan and Li [33, 34] established the sampling property and oracle property for a class

of variable selection procedures via nonconcave penalized likelihood. With proper

choice of regularization parameters, they showed that the smoothly clipped absolute

deviation (SCAD) penalty perform as well as the oracle procedure in variable selec-

tion; namely, they work as well as if the correct submodel were known. However, the

lasso estimator does not possess the oracle properties as the lasso shrinkage produces

biased estimates for the large coefficients.

The lasso tree solves a different problem rather than selecting non-zero variables:

the grouping of parameters. We hence define its “oracle property”, or the consistency
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of the grouping procedure, accordingly. Denote by β0 ∈ Rp the true value of β. There

exists a partition {G0
1 ,G0

2 , ...,G0
K0} of {1, 2, ..., p} that groups the values of β0 into K0

groups, and a vector µ0 ∈ RK0
such that the true values of β can be written as

β0 =
K0∑
k=1

µ0
k1G0k , (3.8)

where 1G is the indicator function of the set G ⊆ {1, 2, ..., p}, i.e. the p-dimensional

vector whose j-th coordinate is 1 if j ∈ G and 0 otherwise. Similarly, let {Ĝ1, Ĝ2, ..., ĜK̂}

be the partition for the lasso tree estimate β̂, K̂ the estimated number of groups,

and µ̂ ∈ RK̂ the estimated vector of group values. Following the language of Fan and

Li [33], we say the lasso tree grouping procedure is consistent if β̂ has the following

properties asymptotically:

1. Is root-n consistent;

2. Identifies the correct grouping, {G0
1 ,G0

2 , ...,G0
K0} = {Ĝ1, Ĝ2, ..., ĜK̂}.

In this section we will show that an improved, adaptive lasso tree grouping proce-

dure possesses the consistency properties with a proper choice of the regularization

parameter.
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3.5.2 Adaptive Lasso Tree

To explore the asymptotic behavior of the lasso tree, we first consider the one-

dimensional situation (e.g. only T or N is of interest). The penalized likelihood

estimator is

β̂ = argmin

{
−`x(β) + nλn

p∑
j=2

|βj − βj−1|

}
, (3.9)

where the β’s may be unconstrained or subject to some ordering constraints (e.g.

β1 ≤ . . . ≤ βp in the cancer staging case). It is easily noticed that the model can be

reparameterized by writing θ = {θj} = (β1, β2 − β1, ..., βp − βp−1)T and

θ̂ = argmin

{
−`z(θ) + nλn

p∑
j=2

|θj|

}
, (3.10)

where z = {zij} with zij =
∑p

k=j xij. Hence the grouping problem has been trans-

formed into a regular lasso problem, and proving its consistency properties is equiva-

lent to proving the oracle properties for a regular lasso, which, according to Fan and

Li [34], does not hold. Next, we improve the lasso tree method in order to achieve

the consistency properties.

To improve the lasso tree method, we apply the adaptive idea which has been

used by various authors (Wang, Li and Tsai [35]; Zou [36]; Zhang and Lu [37]) that

penalizes different coefficients differently. Specifically, we consider the weighted L1
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penalty,

argmin

{
−`x(β) + nλn

p∑
j=2

wj|βj − βj−1|

}
, (3.11)

where the positive weights w = (w2, ..., wp)
T are chosen adaptively by data. We

elect to use wj = 1/|β̃j − β̃j−1|, where β̃ = (β̃1, ..., β̃p)
T is the maximum likelihood

estimator of β. This way, small penalties are imposed on large differences and large

penalties on small differences, which avoids excessive penalties on large differences.

By reparameterization, the problem is transformed into

argmin

{
−`z(θ) + nλn

p∑
j=2

|θj|/|θ̃j|

}
, (3.12)

where θ̃ is the maximizer of the log partial likelihood `z(θ). This is equivalent to the

adaptive lasso which has been shown to enjoy the oracle property [36, 37]. Therefore,

the adaptive lasso tree grouping procedure in (3.11) also enjoys the consistency

properties as defined in Section 3.5.1. Note that any consistent estimators of β can

be used, and β̃ is just a convenient choice [36, 37].

If the β’s are ordered as in the cancer staging example, i.e. β1 ≤ . . . ≤ βp, then

(3.12) would subject to θj ≥ 0, j = 1, ..., p and the absolute-signs can be dropped

for the θ’s. The consistency properties can be proved following the same argument

in Zhang and Lu [37] with no extra difficulty.
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3.5.3 Two-dimensional Case

Now let’s consider the two-dimensional situation as in (3.5). Similarly, we propose

the adaptive lasso tree with adaptively weighted L1 penalties as follows

β̂ = argmin

{
−`x(β) + nλn

p∑
j=1

q∑
k=2

|βj,k − βj,k−1|
|β̃j,k − β̃j,k−1|

+ nλn

p∑
j=2

q∑
k=1

|βj,k − βj−1,k|
|β̃j,k − β̃j−1,k|

}
(3.13)

where β̃ = (β̃1,1, ..., β̃j,k)
T is the maximum likelihood estimator of β. We will use steps

similar to the proofs of Zhang and Lu [37] to establish the consistency properties of

the adaptive lasso tree for our grouping problem, under the Cox model with general

settings. It will be shown that the adaptive lasso tree estimator converges at rate

Op(n
−1/2) and gives the correct grouping asymptotically. In this section, we only

state the theoretical results. The proofs will be given in the Appendix.

The following theorem shows that β̂ is root-n consistent if λn → 0 at an appropri-

ate rate. With no extra difficulty, the root-n consistency property can be generalized

to cases where the β’s are naturally ordered such that βj,1 ≤ . . . ≤ βj,q and β1,k ≤

. . . ≤ βp,k, j = 1, . . . , p, k = 1, . . . , q.

Theorem 3.1. Assume that (x1, T1, C1), . . . , (xn, Tn, Cn) are independently and iden-

tically distributed according to the population (x, T, C), and that Ti and Ci are in-

dependent given xi. If
√
nλn = Op(1), then the two-dimensional adaptive lasso tree

estimator satisfies ‖β̂ − β0‖ = Op(n
−1/2).
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Next we show that, when the β’s are naturally ordered as in the cancer staging

example, i.e. βj,1 ≤ . . . ≤ βj,q and β1,k ≤ . . . ≤ βp,k, j = 1, . . . , p, k = 1, . . . , q, and

the penalized likelihood estimator (3.13) is obtained under this ordering constraint,

the adaptive lasso tree estimator has the oracle property as defined in Section 3.5.1

if λn is chosen properly.

Theorem 3.2. Assume that the β’s are naturally ordered such that βj,1 ≤ . . . ≤

βj,q and β1,k ≤ . . . ≤ βp,k, j = 1, . . . , p, k = 1, . . . , q, and that the adaptive lasso tree

estimator is obtained under this ordering constraint. If
√
nλn → 0 and nλn → ∞,

then under the condition of Theorem 1, with probability tending to 1, the root-n

adaptive lasso tree estimator β̂ must identify the correct grouping: {G0
1 ,G0

2 , ...,G0
K0} =

{Ĝ1, Ĝ2, ..., ĜK̂}.

The two theorems together establish the consistency of the adaptive lasso tree

grouping procedure. With proper choice of regularization parameter λn and adap-

tive weights w (the inverse of any root-n consistent estimator of β0), the penalized

likelihood estimators possess the consistency properties under some mild regularity

conditions. In practice, data-driven methods, such as BIC (Section 3.2.3) and GCV,

are employed to select λn. For regular lasso with linear estimators (in terms of re-

sponse variable), asymptotic optimal properties of choice of λn have been studied in

series of papers by Wahba [38] and Li [39] and references therein. With the local
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quadratic approximations in Section 3.2.2, the resulting estimators will be approxi-

mately locally linear. It is of interest to establish the asymptotic properties of the

proposed estimators with a data-driven λn. Further studies on this issue are needed,

but it is beyond the scope of this dissertation.

3.6 Discussion and Conclusions

In this chapter, we have proposed and studied the lasso tree stage selection method

for censored survival data via a penalized likelihood approach. With slight mod-

ification of the penalties and proper choice of regularization parameters, we show

that the lasso tree grouping procedure is consistent; namely, the estimator is root-n

consistent and gives the correct grouping asymptotically. In finite sample situations

the method is shown to be effective in estimating the best staging system and its

estimates stable with regard to changes in the data. The tree structure resulting

from varying the tuning parameter provides a visual aid on how the groupings are

made progressively and allows flexibility in the decision making process for clinical

researchers and practitioners.

Our analysis of the colorectal cancer data partly confirms the findings in Chap-

ter 2. From the MSKCC data, the selected systems (Figure 3.2(b)) is very similar

to the ones selected by the bootstrap method in terms of their configuration and
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prognostic accuracy. Again, the selected scheme suggests that the most essential

information is contained in the contrast between the tumor invading through the

muscularis propria (T3 and T4) and otherwise (T1 and T2), rather than between

node-positive (N1 and N2) and node-negative (N0) cancers as in AJCC. The findings

from the SEER data suggest similar trend. The considerable difference between the

prognostic ability of the optimal systems and the AJCC categories is concerning es-

pecially in light of the fact that optimal systems are comparable to AJCC in terms

of simplicity and interpretability. We hope these findings could sparkle some discus-

sions within the statistical and medical communities and contribute to an improved

cancer staging system.

In Section 3.3.2, we tried combining prior beliefs on cancer staging - the AJCC

system - into the selection process by imposing different weights on the penalty terms.

Since the AJCC grouping bears almost no resemblance to the data selected grouping,

the data eventually overwhelmed the prior belief in both choices of weights. The same

task might be tackled from a Bayesian perspective. The prior domain knowledge

can be quantified in the form of prior distributions elicited from the AJCC. More

specifically, we may obtain the prior distributions of the regression coefficients by

fitting the AJCC model / grouping to an independent data set, for example the

SEER data. Posterior distributions of model parameters can then be obtained for

the penalized Cox proportional hazards model using Bayesian methodology.
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The findings from the SEER data reveal an important property of the lasso tree

grouping procedure. That is, by penalizing only the differences between row and

column “neighbors”, the method forces the cells in the T×N table to aggregate into

more rectangular groups. In other words, the resulting optimal systems will most

likely be more regularly configured, and therefore simpler and more anatomically in-

terpretable, than the systems selected by the bootstrap selection method. This could

become another attractive feature of the lasso tree method, because staging systems

are most useful when they are both prognostically optimal and anatomically inter-

pretable. A staging system that is prognostically optimal is unlikely to be adopted

if it does not respect the anatomic extent of disease.

In the data analysis in Section 3.3.1 we notice that the 4 and 5-stage groupings

selected by the lasso tree have nearly identical BIC’s. A careful examination of the

analysis suggests that the 4-stage grouping is indeed more desirable because it aggre-

gates T1N1, the second stage in the 5-stage grouping with inadequate sample size,

into a larger group. Stages with low prevalence are not useful for clinical treatment

decisions. In fact, one of the many criteria for a good staging system defined by

Groome and others is a balanced distribution of patients across the groups [6]. This

was achieved by minimizing BIC in the colorectal cancer example, yet in more general

cases it might be desirable to pursue a balanced distribution of patients by modifying
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the penalty as follows

β̂ = argmin

{
−`(β) + λ(

p∑
j=1

q∑
k=2

τj,k|βj,k − βj,k−1|+
p∑
j=2

q∑
k=1

υj,k|βj,k − βj−1,k|)

}

subject to βj,1 ≤ . . . ≤ βj,q and β1,k ≤ . . . ≤ βp,k, j = 1, ..., p, k = 1, ..., q

(3.14)

where the positive weights τ and υ are chosen to be inversely proportional to the

sample size in the corresponding cells. That is, τj,k = 1/(nj,k + nj,k−1) and υj,k =

1/(nj,k + nj−1,k), where nj,k is the sample size in the cell with T = j and N = k.

This places a heavier penalty on cells with small sample sizes and forces them to

aggregate, leading to a more balanced distribution of stage sample sizes.
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Chapter 4

Risk Stratification by Penalized

Logistic Regression

In this chapter, we will see one example of how the lasso tree method can be modified

and extended to applications in other scientific areas. More specifically, we will see

how it can be applied to risk stratification problems under logistic regression model

settings.

4.1 Introduction

Risk stratification models are useful tools in medicine to support tasks such as bench-

marking, identification of patients at risk, and individual clinical decision making. A
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number of techniques have been suggested for the development of clinical risk strat-

ification models, including a variety of statistical methods (e.g., logistic and linear

regression, discriminant analysis, and recursive partitioning), and the clinical judg-

ment of experts [25, 40]. For predicting binary outcomes, such as mortality or the

presence of disease, logistic regression has emerged as the statistical technique of

choice [41].

Logistic regression is widely used to model medical problems because the method-

ology is well established and coefficients may have intuitive clinical interpretations.

However, when a number of risk factors are presented, logistic regression may be

inadequate to handle these variables including their interactions; such highly pa-

rameterized models may overfit the data and could perform poorly for prediction.

Moreover, the logistic model breaks down in the face of sparse outcomes for the

different categories determined by these risk factors. To identify the “important”

variables in predicting the outcome, model selection methods such as stepwise dele-

tion and subset selection are often adopted. These techniques, though practically

useful, are prone to problems such as a lack of stability as analyzed, for example, by

Breiman [10]. Another disadvantage of logistic regression is that, unlike classification

methods such as decision trees [25], it cannot be easily converted to a set of rules, a

limitation that may reduce its clinical utility.

In this chapter, we focus on scenarios where the risk factors are categorical, which
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is common in clinical settings. In cases where there is no a priori ordering expected

between the categories and the outcome, a categorical covariate is modeled by the use

of dummy variables. However, in many cases including the cancer staging problem,

we expect the effect of category on the outcome to follow some natural ordering. For

instance, the hazard ratio for the light smoker category is expected to be smaller

than that for the heavy smoker category. Similar to the staging problem, when the

coefficients of two neighboring categories are close in risk magnitude, it is tempting to

collapse them into one risk group for easier clinical use. This, along with the above-

mentioned concerns, motivates us to propose a modified logistic regression method

that could automatically and simultaneously selects variables, groups categories, and

estimates their coefficients.

Following the same line of thought that gave rise to the lasso tree, we attempt

the double tasks of selection and grouping by using a lasso-type penalty in the usual

logistic regression. Specifically, we pose constraints on neighboring coefficients such

that ∑
j

|βj,1|+
∑
j

∑
k

|βj,k − βj,k−1| ≤ s (4.1)

where βj,k is the coefficient for the kth level of the jth covariate, and s > 0 is a

pre-specified tuning parameter. These penalty terms together encourage sparsity in

both variable selection and the grouping of the categories.

An attractive feature of this penalized regression method is that, by including
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fewer variables into the model and at the same time aggregating their categories, it

produces a relatively small number of unique predicted values. These predicted values

can then be directly used in decision rules for risk stratification or treatment selection.

The well-known tree-based methods, being self-explanatory and easily converted to a

set of rules, are theoretically applicable [25]. However, since a decision tree does not

assign estimated coefficient values to the variables deemed important, the magnitude

of the covariate effects could be somewhat unclear. Moreover, as decision trees use

a “divide and conquer” method, they tend to perform well if a few highly relevant

attributes exist, but less so if many complex interactions are present.

The penalized regression method can be easily adapted to handle two-way in-

teractions of interest. This represents another strength of the proposed approach.

For instance, for colorectal cancer which we use as our motivating example in Sec-

tion 4.2, none existing epidemiology studies of this disease has explore interactions

systematically.

The structure of this chapter is as follows. In Section 4.2 we describe the motivat-

ing data example of advanced colorectal neoplasia. The proposed penalized logistic

regression method is described in Section 4.3 along with the computational approach

and estimation of the tuning parameter. The method is then illustrated using the

example of advanced colorectal neoplasia in Section 4.4. Discussion and conclusions

are presented in Section 4.5.
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4.2 The Advanced Colorectal Neoplasia Data

Colorectal cancer (CRC) is the second leading cause of death from cancer in the

United States. This year, it is estimated that there will be 147,000 newly diagnosed

cases of CRC and nearly 50,000 deaths associated with this disease [42]. Screening

is an effective way to reduce cause-specific mortality. Colonoscopy is the most com-

monly used screening test in the U.S., promoted in cancer-prevention guidelines for

people starting at age 50 because of its higher sensitivity than other less costly pro-

cedures such as stool-sample tests [43–45]. Colonoscopy allows doctors to examine

the entire colon and remove abnormal tissue growths called adenomatous polyps that

may progress to cancer. However, high non-adherence to colonoscopy is observed be-

cause of its risks, cost, feasibility (availability and insurance coverage), and uncertain

incremental benefit over other screening tests for meaningful patient outcomes such

as cancer-related morbidity and mortality [46, 47].

One reason for support of widespread colonoscopic screening is that there is no

accurate and precise way to stratify risk for advanced colorectal neoplasia (CRC and

advanced, adenomatous polyps) among the 90% of U.S. residents who are considered

“average risk”. If such stratification could be established, then a tailored screening

recommendation would be both highly effective and cost-effective. For example,

people in the subgroup at very low risk for advanced neoplasia could have screening

deferred or performed with methods less invasive than colonoscopy; for people at high
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risk, colonoscopy would be considered the preferred strategy. Tailoring according to

risk of advanced neoplasia could also be useful for allocating CRC screening resources.

In this chapter, we investigate such risk stratification rules for advanced neoplasia

among people considered to be average-risk. We use a recently completed large co-

hort study funded by the National Cancer Institute of subjects undergoing first time

screening colonoscopy in a variety of clinical outpatient settings. The targeted risk

factors are derived from the NCI’s CRC Risk Assessment tool (http://www.cancer.gov/

colorectalcancerrisk) and include a previous cancer-negative sigmoidoscopy / colonoscopy

in the last 10 years, polyp history in the last 10 years, history of CRC in first-degree

relatives, aspirin and non-steroidal anti-inflammatory drug (NSAID) use, cigarette

smoking, body mass index (BMI), leisure-time vigorous activity, vegetable consump-

tion, and for women, post-menopausal estrogen use. All risk factors are categorical

variables, with two to four levels. The derived rules are expected to facilitate decisions

about initial CRC screening.

Logistic regression models have been used in the literature to estimate the risks

of CRC based on quantifiable risk factors. For instance, with a similar group of

variables, Freedman et al. developed models for men and women that use logistic

regression to estimate future risk for CRC [48]. Here we will illustrate that the

proposed penalized logistic regression can be a better choice for developing such risk

stratification tools than the usual logistic regression.
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4.3 Penalized Logistic Regression

4.3.1 A Modification of the Lasso Tree

We consider a prediction problem with N cases having binary outcomes y1, y2, ..., yN

and covariates xij, i = 1, 2, ..., N, j = 1, 2, ..., p. In logistic regression, the outcome

yi follows a Bernoulli probability function that takes on the value 1 with probability

πi and 0 with probability 1− πi, where πi varies over the observations as an inverse

logistic function of the vector xi:

πi =
1

1 + exp(−βTxi)
. (4.2)

To estimate β, we can maximize the conditional log-likelihood

`(β) =
N∑
i=1

[
yilogπi + (1− yi)log(1− πi)

]
=

N∑
i=1

[
yiβ

Txi − log(1 + exp(βTxi))
] (4.3)

with respect to the regression coefficients β = {βj}, j = 1, 2, ..., p. The usual itera-

tively reweighted least squares (IRLS) procedure is used to obtain maximum likeli-

hood estimates of the parameters [49].

We focus on situations where the covariates are categorical, which corresponds

to the advanced colorectal neoplasia study and is very common in clinical settings.
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We rewrite β as {βj,k}, j = 1, 2, ..., q, k = 1, 2, ..., nj, where q is the number of

covariates and nj is the number of categories or levels (excluding the reference level)

for covariate j. Suppose that all covariates have an a priori ordering. Then, without

loss of generality, β is ordered such that 0 ≤ βj,1 ≤ . . . ≤ βj,nj
, j = 1, ..., q, with 0

being the coefficient of the reference level. The double tasks of selection and grouping

can be attempted by using a lasso-type model selection technique. We propose to

estimate β as follows

β̂ = argmin

{
−`(β) + λ

q∑
j=1

|βj,1|+ λ

q∑
j=1

ni∑
k=2

|βj,k − βj,k−1|

}

subject to 0 ≤ βj,1 ≤ . . . ≤ βj,nj
, j = 1, . . . , q

(4.4)

where λ is the tuning parameter. The two penalty terms together encourage sparsity

in the variables, i.e. variable selection, and sparsity in the categories, i.e. grouping

of the categories.

The sparsity-enforcing property of the penalty results in fewer variables as well as

fewer categories in the final model, leading to a relatively small number of unique pre-

dicted values. These predicted values can then be directly used as decision rules for

risk stratification or for guiding a management strategy. The penalty provides a con-

tinuous model that ensures the stability of model selection. It also facilitates model

stability in the presence of sparse outcome data for different categories determined

by these risk factors.
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Our method naturally deals with ordinal and categorical risk factors by imposing

constraints. Again, with the ordering constraint, the absolute values in (4.4) can be

dropped and the objective function can be simplified as

min
β

{
−`(β) + λ

q∑
j=1

βj,nj

}

subject to 0 ≤ βj,1 ≤ . . . ≤ βj,nj
, j = 1, . . . , q.

(4.5)

Note that only the coefficient for the highest level category of each covariate is taken

into account in (4.5). Yet this is mathematically equivalent to (4.4) and will give

the same estimates as the original formulation. Normally, different weights are given

to covariates with different numbers of levels in order to avoid excess penalty on

covariates with large number of categories. This is not needed here since the penalty

only involves one coefficient for each covariate.

The penalty can be easily adapted for covariates without a priori ordering or

that are partially ordered. For covariates without a priori ordering, the penalty is

the summation of all pairwise absolute differences (including the differences with the

reference level):

λ

nj∑
k=1

|βj,k|+ λ

nj∑
k=2

k−1∑
l=1

|βj,k − βj,l|. (4.6)

Now with all pairwise absolute differences included, a smaller weight will be given to

the penalty term in order to avoid excess penalty on this covariate. This is similar

for covariates that are partially ordered.
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4.3.2 Computational Approach

With the absolute values dropped, the penalized logistic regression in (4.5) can be

solved by the usual IRLS procedure with the weighted least squares step replaced

by a constrained weighted least squares procedure. Let X denote the design matrix

with xi as the ith row and π = (π1, ..., πn)T , where πi = 1/(1 + e−β
T xi). Denote

A = diag
(
πi(1− πi)

)
, z = Xβ +A−1(y− π), and Pλ(β) = λ

∑q
j=1 βj,nj

. Then at the

k’th iteration, β̂(k) is the solution of

argmin
{

(z −Xβ)TA(z −Xβ) + Pλ(β)
}
, (4.7)

where z and A are based on β̂(k−1). The iterative procedure is as follows:

1. Fix λ and initialize β̂ = 0.

2. Compute π, A and z based on the current value of β̂.

3. Minimize (z − Xβ)TA(z − Xβ) + Pλ(β) subject to 0 ≤ βj,1 ≤ . . . ≤ βj,nj
,

j = 1, ..., q.

4. Repeat steps 2 and 3 until convergence of β̂.

The minimization in step 3 can be done through a quadratic programming procedure.

When “warm starts” are used for computing the path of solutions over a grid of λ’s,

the initial β̂ in step 1 is set to be the solution for the previous λ.
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When covariates without a priori ordering are present, their contribution to the

penalty as in (4.6) can be added into Pλ(β) with proper weights. The same iterative

procedure is then applied. The computation can become more difficult when the

absolute values remain in the penalty. In this case, the computational approach

introduced by Tibshirani et al. for the fused lasso can be applied as an alternative

[27].

As in the lasso tree method, estimates from (4.5) depend on the tuning param-

eter λ. When λ = 0, the solution is the usual logistic regression estimate. As

λ increases the absolute differences between neighboring coefficients go to 0 succes-

sively, corresponding to the successive grouping and dropping of the coefficients, until

all coefficients are dropped. The BIC is again used for the automatic estimation of

the tuning parameter λ.

4.3.3 Inclusion of Two-way Interactions

The penalized regression method can be adapted to handle two-way interactions of

interest. For simplicity, we consider a model with two categorical covariates with p

and q levels (excluding the reference levels), respectively, and their interaction terms.

With some abuse of notation, we denote θ = (α1, ..., αp, β1, ..., βq, ν1,1, ..., νp,q)
T as

the model parameters, where α’s and β’s are regression coefficients for the two main

effects and ν’s are coefficients for the two-way interaction. Let X denote the design
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matrix with the interaction and xi the ith row of X. The log-likelihood is

`(θ) =
N∑
i=1

[
yiθ

Txi − log(1 + exp(θTxi))
]
.

To develop the penalty, we consider the interaction terms {νj,k}, j = 1, ..., p,

k = 1, ..., q, as features arranged on a two-way grid, like the T×N table. It is then

very natural to constrain the differences between neighboring coefficients in both

directions in the two-way grid, as well as the difference with the reference, such that

|ν1,1|+
∑
|νj,k − νj,k−1|+

∑
|νj,k − νj−1,k| ≤ s. (4.8)

Hence when both main effects are a priori ordered, the penalized logistic regression

can be written as

θ̂ = argmin

{
−`(θ) + λ

(
αp + βq + |ν1,1|+

p∑
j=1

q∑
k=2

|νj,k − νj,k−1|+
p∑
j=2

q∑
k=1

|νj,k − νj−1,k|
)}

subject to 0 ≤ α1 ≤ . . . ≤ αp and 0 ≤ β1 ≤ . . . ≤ βq.

(4.9)

We do not assume here the interactions are ordered whenever the main effects

are ordered. In many cases it might be safe to assume this, and the interactions will

satisfy a partial ordering constraint, i.e. 0 ≤ νj,1 ≤ ... ≤ νj,q and 0 ≤ ν1,k ≤ ... ≤ νp,k,

j = 1, ..., p, k = 1, ..., q. The penalty then can be further simplified given these
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constraints.

Table 4.1: Summary of variables in the advanced colorectal neoplasia data set

Male Female
Variable Categories

(n = 2160) (n = 2304)

0 = younger than 65 1910 2019
Age group

1 = older than 65 250 285

0 = Unknown screen or polyps 301 314
1 = Screened and NO polyps 24 14
2 = No screening 1793 1938

Sigmoidoscopy /
colonoscopy and
polyp history

3 = Screened and polyps 39 38

0 = 0 relatives w/ CRC 1554 1430
1 = 1 relative w/ CRC 432 575

Number of
Relatives with
CRC 2 = 2 or more relatives w/ CRC 174 299

0 = 0 pack-year 1172 1537
1 = greater then 0 and < 20 460 437

Cigarette
smoking,
pack-years 2 = 20 or more pack-years 528 330

0 = greater than 4 hrs/week 1341 1127
1 = 2 - 4 hrs /week 161 203
2 = 0 - 2 hrs/week 114 134

Leisure-time
vigorous activity

3 = 0 hrs/week 544 840

0 = 5 or more servings/day 73 141Vegetable
consumption 1 = less than 5 servings/day 2087 2163

0 = less than or equal to 24.9 410
1 = greater than 24.9 and ≤
29.9

974
1581

Body mass
index (BMI)

2 = greater than 29.9 776 723

0 = Regular user of Aspirin/N-
SAID

1148 1089

NSAID use
1 = Nonuser of Aspirin/NSAID 1012 1215

0 = estrogen use in the past 2
yrs

- 953
Estrogen use
(female) 1 = no estrogen use in the past

2 yrs
- 1351
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4.4 Data Analysis and Results

Study subjects were aged 50 to 80 years and underwent first-time screening colonoscopy

between 12/2004 and 9/2011. Advanced neoplasia, the outcome of interest, is de-

fined as a tubular adenoma greater than 1cm, a polyp with villous histology or high-

grade dysplasia, or CRC. Among 4,526 subjects (mean age 57.30± 6.78 years; 51.8%

women), the prevalence of advanced neoplasia was 7.96%. Among the 4,464 (98.6%)

with complete data (mean age 57.25 ± 6.70 years; 51.6% women), the prevalence of

advanced neoplasia was 8.36%, including 46 subjects with CRC.

4.4.1 Fitted Models

Data from men and women are analyzed separately. Table 4.1 presents a summary of

the variables included in the analysis. There are eight risk factors for men and nine

for women. Among the nine variables, eight are a priori ordered with greater index

associated with higher risk, and one (screening and polyp history) is partially ordered

- patients in category 3 are expected to have higher risk than those in category 1.

BMI is divided into three categories for men and two categories for women. Some

categories have very few cases in them (e.g. categories 1 and 3 of screening and polyp

history), which might be problematic under a naive logistic regression.
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Table 4.2: Estimated coefficients for men. LR = logistic regression; PLR-1 =
penalized logistic regression with only main effects; PLR-2 = penalized logistic

regression with main effects and their two-way interactions.

Variable Categories LR PLR-1 PLR-2

0 = younger than 65
Age group

1 = older than 65 Age1 0.996 0.798 0.611

0 = Unknown screen or polyps
1 = Screened and NO polyps SigCol1 0.610 0.167 0
2 = No screening SigCol2 0.739 0.383 0

Sigmoidoscopy /
colonoscopy and
polyp history

3 = Screened and polyps SigCol3 2.006 0.734 0.317

0 = 0 relatives w/ CRC
1 = 1 relative w/ CRC Rel1 0.196

Number of
Relatives with
CRC 2 = 2 or more relatives w/ CRC Rel2 0.346

0.090 0.023

0 = 0 pack-year
1 = greater then 0 and < 20 Packyear1 0.855 0.766 0.197

Cigarette
smoking,
pack-years 2 = 20 or more pack-years Packyear2 0.971 0.826 0.302

0 = greater than 4 hrs/week
1 = 2 - 4 hrs /week Act1 -0.276 0 0
2 = 0 - 2 hrs/week Act2 0.113 0.022 0

Leisure-time
vigorous activity

3 = 0 hrs/week Act3 0.469 0.412 0.379

0 = 5 or more servings/dayVegetable
consumption 1 = less than 5 servings/day Veg1 -0.047 0 0

0 = less than or equal to 24.9
1 = greater than 24.9 and ≤ 29.9 BMI1 -0.229 0 0

Body mass
index (BMI)

2 = greater than 29.9 BMI2 -0.121 0 0

0 = Regular user of Aspirin/N-
SAID

NSAID use
1 = Nonuser of Aspirin/NSAID NSAID1 0.217 0.167 0

Packyear1&2 : SigCol2&3 - - 0.245
Packyear1&2 : NSAID1 - - 0.271
Packyear1&2 : Rel1&2 - - 0.159

Age1 : SigCol2&3 - - 0.168
Age1 : NSAID1 - - 0.067

Interactions

SigCol2&3 : NSAID1 - - 0.142
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Table 4.3: Estimated coefficients for women. LR = logistic regression; PLR-1
= penalized logistic regression with only main effects; PLR-2 = penalized logistic

regression with main effects and their two-way interactions.

Variable Categories LR PLR-1 PLR-2

0 = younger than 65
Age group

1 = older than 65 Age1 0.815 0.692 0.530

0 = Unknown screen or polyps
1 = Screened and NO polyps SigCol1 1.152 0.364 0
2 = No screening SigCol2 0.937 0.364 0

Sigmoidoscopy /
colonoscopy and
polyp history

3 = Screened and polyps SigCol3 2.827 1.624 0.617

0 = 0 relatives w/ CRC
1 = 1 relative w/ CRC Rel1 0.330 0.247

Number of
Relatives with
CRC 2 = 2 or more relatives w/ CRC Rel2 0.567 0.318

0.062

0 = 0 pack-year
1 = greater then 0 and < 20 Packyear1 0.680 0.562 0.063

Cigarette
smoking,
pack-years 2 = 20 or more pack-years Packyear2 1.150 0.972 0.482

0 = greater than 4 hrs/week
1 = 2 - 4 hrs /week Act1 -0.188 0 0
2 = 0 - 2 hrs/week Act2 -0.205 0 0

Leisure-time
vigorous activity

3 = 0 hrs/week Act3 0.308 0.265 0.041

0 = 5 or more servings/dayVegetable
consumption 1 = less than 5 servings/day Veg1 -0.314 0 0

0 = less than or equal to 29.9Body mass
index (BMI) 1 = greater than 29.9 BMI1 0.521 0.389 0.130

0 = Regular user of Aspirin/N-
SAID

NSAID use
1 = Nonuser of Aspirin/NSAID NSAID1 0.140 0 0

0 = estrogen use in the past 2 yrs
Estrogen use

1 = no estrogen use in the past 2
yrs

Estrogen1 0.708 0.558 0

Packyear1&2 : SigCol3 - - 0.073
Packyear1&2 : BMI1 - - 0.087

Packyear1&2 : Estrogen1 - - 0.437
Age1 : SigCol2&3 - - 0.123

SigCol2&3 : Estrogen1 - - 0.093
Act3 : Estrogen1 - - 0.321

BMI1 : Rel1&2 - - 0.088
BMI1 : Estrogen1 - - 0.151

Interactions

Rel1&2 : Estrogen1 - - 0.248
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We fit a naive logistic regression, a penalized logistic regression with only main ef-

fects (PLR-1), and a penalized logistic regression with main effects and their two-way

interactions (PLR-2). Table 4.2 presents the model estimates for men. Because of the

natural ordering, all coefficients are expected to be positive. The penalized regression

models are able to preserve these orders by dropping unimportant variables and by

merging the categories that violate the ordering constraints. This is not guaranteed

by the naive logistic regression, where the coefficients for vegetable consumption and

BMI are negative, contradictory to common knowledge. These variables are found

to be not significant for predicting advanced neoplasia under all models.

Six and five variables are selected, respectively, by the main effect penalized model

and the penalized model with interactions. Vegetable consumption and BMI are

deemed unimportant variables under both models. The estimated coefficients are

shrunk to reach a more stable model. The coefficients for polyp history are shrunk

the most since this risk factor is most likely to be correlated with other risk factors.

Close categories are grouped simultaneously under both models. For instance, the

four-level variable of leisure-time activity can be simplified into two groups, non-active

and active, under the penalized model with interactions.

In addition to five main effects, the interaction model selects six interaction terms

(of possibly grouped categories). At the same time, some main effect coefficients

become much smaller in the interaction model, especially cigarette smoking and polyp
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Figure 4.1: Coefficient estimates for men for the six selected variables under the
main effect penalized logistic regression model as a function of log(λ). The dotted

line represents the value of log(λ) that minimized the BIC.

history. It appears that these variables, as well as NSAID / aspirin use, which is

dropped under the interaction model, exhibit risk that is modified by other factors.
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For example, cigarette smoking does more harm when other risk factors (i.e. polyp

positive, non-user of NSAID / aspirin, and relatives with CRC) are presented. Hence

this model sheds more light on how the variables interact and better explains the risk

of advanced neoplasia than the main effect model.

Figure 4.1 shows the estimated coefficients for men for the six selected variables

under the main effect penalized model as a function of the log tuning parameter

log(λ). The dotted line is where the BIC is minimized. From this figure, we gain a

glimpse of the relative importance of the risk factors. For instance, cigarette smoking,

non-activity, and older age all retain large coefficients for most values of λ, reflecting

the significance of their effects on the risk for advanced neoplasia.

Table 4.3 displays the model estimates for female subjects. For women, seven

of nine variables are selected by the main effect penalized model. The findings and

interpretations are similar to those for men. One thing worth mentioning is that the

main effect coefficient of estrogen use is zero under the interaction model because of

its significant interactions with many other risk factors. Again, the penalized regres-

sion is considered superior and provides more information than the simple logistics

regression.

In summary, the penalized logistic regression simultaneously selects important

risk factors and provides models with fewer categories. The penalized model with

interactions is more desirable since it offers more detailed risk stratification. As the
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penalized interaction models have only 12 and 16 distinct estimated coefficients for

men and women, respectively (compared to a full interaction model which would

have 83), these models can be conveniently developed into risk stratification rules for

guiding treatment strategy.

Table 4.4: Areas under ROC curves for the risk prediction models. The p-values
are for comparing the penalized models to the naive logistic regression.

Male Female
AUC 95% C.I. p-value AUC 95% C.I. p-value

LR 0.567 (0.531, 0.604) - 0.573 (0.535, 0.611) -
PLR-1 0.586 (0.549, 0.623) 0.322 0.589 (0.551, 0.629) 0.339
PLR-2 0.615 (0.578, 0.651) 0.026 0.618 (0.580, 0.657) 0.009

4.4.2 Model Validation

We validate and compare the discriminatory performances of the logistic regression

models using receiver operating characteristic (ROC) curves. The area under an ROC

curve (AUC) indicates how well a prediction model discriminates between healthy

patients and patients with disease. ROC curves are generated by means of 10-fold

cross-validation for the three models. The increase in the AUC was evaluated and

tested for significance using the test proposed by DeLong et al. [50].

The ROC curves of the penalized regression models dominate that of naive logistic

regression at most cutoff thresholds for men (Figure 4.2). The naive logistic regression



94

achieves an AUC of 0.567 (95% C.I., 0.531 - 0.604). The penalized regression models

achieve AUCs of 0.586 (95% C.I., 0.549 - 0.623) and 0.615 (95% C.I., 0.578 - 0.651)

without and with interactions, respectively. The penalized model with interactions

performs significantly better (p-value = 0.026) than the naive logistic regression,

while the difference between the main effect penalized model and the naive logistic

regression is not significant (p-value = 0.322). No statistically significant difference

is found between the AUCs of the two penalized models (p-value = 0.394). These

findings suggest that the proposed penalized logistic regression models, in particular

the model with interactions, have a favorable performance compared to naive logistic

regression. The modest discriminatory power suggests the need to find additional

strong risk predictors.

Validation is also performed for women and similar improvement in performance is

observed (Table 4.4). The ROC curves are shown in Figure 4.3. Again, the penalized

model with interactions performs significantly better (p-value = 0.009) than the naive

logistic regression. No statistically significant difference is found between the AUCs

of the two penalized models (p-value = 0.155).
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Figure 4.2: Receiver-operating characteristic (ROC) curves for the risk prediction
models: male subjects.
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4.5 Discussion and Conclusions

In this chapter, we have extended the lasso tree strategy and proposed a penalized

logistic regression method that automatically selects variables, groups categories, and

estimates their coefficients. The model penalizes the L1-norm of both the coefficients

and their differences. Thus it encourages sparsity in the categories via grouping of

the categories, and also sparsity in the variables via variable selection. The method

can investigate many variables including their interactions in logistic regression where
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Figure 4.3: Receiver-operating characteristic (ROC) curves for the risk prediction
models: female subjects.
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traditional maximum likelihood based method can break down due to the high num-

ber of parameters and insufficient outcome data for certain categories. The order

and partial order constraints we put on risk factors in the model incorporates exist-

ing scientific findings so that the probability of disease does not decrease at a higher

level of risk. The penalty we put on odds ratio coefficients for adjacent categories

encourage grouping and lead to parsimonious models. We have applied our method

to a recently completed colon cancer screening data. Advantage of our method is

seen in terms of both the ROC curves and fitted coefficients for risk factors over the

naive logistic regression. The capability for investigating various interactions among
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numerous risk factors should make our method a powerful tool for cancer risk model-

ing because currently very few, if any, scientific publications systematically consider

interaction terms when there are many risk factors.

This example again illustrate the usefulness of the penalized regression methods.

The penalized model is flexible enough to accommodate practical variations. In

particular, if no convincing knowledge supports order constraint of a variable, such

constraint can be easily dropped from our method. The variables in the colon cancer

screening example are entirely categorical, but the penalized regression model can be

applied to continuous variables with no extra difficulty. In addition to binary and

time to event outcomes, our method can generalize to other types of outcomes such

as continuous ones.

Theoretically, the method can also incorporate more than two way interactions.

However the computation will be much more involved. Meaningful interpretations of

multi-way interactions are extraordinarily difficult to provide. Moreover, when the

number of risk factors is large, including multi-way interactions will most likely render

the model non-identifiable. In fact, as a preliminary analysis, we attempted to fit a

saturated model with the CRC data. With 8 risk factors, the number of parameters

in the saturated model is an astonishing 2,304, which is close to the number of data

points. The computation hence was very difficult and the result was not meaningful.
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Chapter 5

Conclusion and Future Work

This dissertation is motivated by the desire to develop cancer staging systems. In

the process, we reframe the task of cancer staging into a model selection context and

two model selection methods are proposed for the task: a bootstrap selection method

and a penalized regression method, i.e. the lasso tree. The utility of both methods

are illustrated on the staging of colon cancer, and their properties studied through

simulations.

Of the two approaches, the penalized regression method is considered more promis-

ing given its many advantages over the bootstrap selection method. It is more compu-

tationally efficient, gives more general and more useful results (the tree-like structure

that gives a series of optimal staging systems with different numbers of stages), and

is consistent such that it gives the “correct” grouping when the sample size tends
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to infinity. It gives more regularly configured, and therefore simpler and more in-

terpretable, staging systems. It is also generally applicable to many diseases other

than cancers that use risk scores based on risk factors. One example is given in

Chapter 4 where a risk stratification model for colorectal cancer is developed using

a penalized logistic regression. Using this example, we illustrate how the penalized

regression method can be modified to meet different modeling requirements and have

applications to a wide range of disease areas and scientific questions.

We expect that the penalized regression method will be used in the future for

the staging of other cancers and for the risk stratification or risk assessment of other

diseases. Therefore, further investigations will be needed in order to fully understand

the properties and performance of the method under different scenarios and make

adjustments when needed. In this final chapter, we will point to several interesting

directions for future work.

5.1 Cancer Staging and The Lasso Tree

The penalized regression method has general appeal to cancers and many other dis-

eases that use aggregate risk scores based on risk factors. In Chapter 3, the lasso tree

is based on the Cox model for censored survival data. But our methodology is appli-

cable in principle to binary outcomes as well, as the example in Chapter 4 illustrated.
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In some situations a landmark survival time, such as 5-year or 10-year survival, can

be more desirable than using the full survival. A logistic regression model is proposed

by Jung for landmark survival analysis [51], and an extension of the lasso tree to this

model is also quite possible. Future work to illustrate and evaluate the method’s

performance on these different models will be important to further understand the

method and support its application in a much wider field of medical research and

practice.

One difficulty with the development of staging systems has been that the current

treatment strategies are stage-dependent. Thus the survival outcomes for patients

could be confounded by the actual staging system that was used in their care. A

possible remedy is to control for the treatment assignment, which can be done by

including the treatment covariate in the penalized proportional hazards model. This

would be an interesting and important topic for future work. Otherwise we must

acknowledge that our and others’ results may combine two or more categories whose

outcomes have been rendered similar by varying treatment regiments.

In many situations, it is important to incorporate “outside information”, such as

prior beliefs, medical knowledge or experience, practical considerations or constraints,

preference, etc., into the process of developing cancer staging systems. For instance,

we can incorporate the information from the current AJCC system into the regression

model by posing a heavier penalty on the differences between cells that are in the same
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stage according to AJCC, which leads to a staging system that might look more like

the AJCC. The same strategy can be applied to incorporate other prior knowledge

besides AJCC. In our study, we have chosen arbitrarily the ratios of heavier penalties

to lighter penalties, i.e. ratios between the lasso parameter λ’s. A less arbitrary way

to choose these penalties would be an interesting topic for future work. For example,

these ratios between λ’s can also be treated as tuning parameters for the penalized

regression, and be estimated by optimizing certain criteria, such as BIC.

Another example of incorporating preference and prior belief into the modeling

procedure is to pose heavier penalties on cells with small sample sizes. By doing

this, categories of lower prevalence will be forced to aggregate more progressively

and therefore it results in a more balanced distribution of stage sample sizes. Other

possibilities include incorporating prior information using Bayesian modeling meth-

ods. The prior domain knowledge can be quantified in the form of prior distributions.

Then the posterior distributions of model parameters can be obtained for the penal-

ized regression model using Bayesian methodology. These are only three examples of

how “outside information” can be incorporated into our lasso tree method by using

different penalties, i.e. by choosing different sets of tuning parameter λ’s, or by using

prior distributions. Many possibilities remain to be explored in this area.

One of the advantages of using the bootstrap selection, as we mentioned in Chap-

ter 2, is that it provides a ranges of staging systems given k, the target number of
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stages, and the means to compare them. It gives inference procedures such as confi-

dence intervals for not only the optimally selected, but all candidate systems, which

enables us to evaluate the relative performance of any candidate systems of interest.

This cannot be said for the lasso tree method; it directly computes the estimated

coefficients which then gives the number of stages. In our experience, output from

the lasso tree typically only contains one or two systems for a certain k. This might

be a disadvantage of the lasso tree, that is, it would not be able to give, for example,

the “best 10” staging systems for a given k.

5.2 CRC and Penalized Regression Methods

In Chapter 4, we applied the penalized logistic regression model to the risk stratifica-

tion of CRC. Our models estimate the probability of developing advanced neoplasia

over a prespecified time interval from data collected from a recently completed large

cohort study. There have been a large amount of scientific investigations on the topic

of CRC risk stratification and we hope our study would be a further contribution to

the growing literature. Some of the “important” risk factors selected by our mod-

els confirm the findings in other studies. The capability for investigating various

interactions among numerous risk factors should make our results valuable and our

method a powerful tool for cancer risk modeling because currently very few, if any,
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scientific publications systematically consider interaction terms when there are many

risk factors.

We acknowledge the preliminary nature of our data and analysis. Our data are

reasonably representative of the US population, yet external validations will still be

required to support further evaluation of the prognostic models across increasingly

diverse settings. Among the fitted models, the ones with interactions are particularly

interesting. Validation of these models will need to be further evaluated.

Although the fitted penalized models have shown advantages, they are still far

from establishing a recommendation or changing medical practice. Many important

practical questions remain: How can the fitted models be translated into clinical

rule for deciding screening regimens? The sparsity-enforcing property of the penalty

results in fewer variables as well as fewer categories in the final model, leading to a

relatively small number of unique predicted values. These predicted values could be

further “grouped” and used as decision rules for guiding a management strategy. If

this can be done, then, should we recommend less frequent or no screening test for

“low risk” patients? And what amount of benefit can be derived from this recom-

mendation? The solution is also an essentially medical one which combines issues of

treatment regimen distinctions, diagnostic ease, and clinical practice. Further work

is needed from both the statistical community and the medical community to address

these questions. Ultimately, we hope this preliminary attempt will be a contribution
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to the development of risk stratification models for CRC and aid physicians and their

patients in deciding on screening regimens.

Applications of the penalized logistic regression to the risk stratification for other

diseases would be an important topic for future work. This may include both well-

established and emerging areas of disease stratification. For example, the penalized

logistic regression model can be used to reexamine the well-known Gail model that

established the risk assessment model for breast cancer [52]. Using data from the

Breast Cancer Detection Demonstration Project (BCDDP), Gail et. al. developed

a model for the absolute risk of breast cancer for women in a given age interval.

It takes into account seven key risk factors for breast cancer, including age, age at

first period, age at the time of the birth of her first child (or has not given birth),

family history of breast cancer (mother, sister or daughter), number of past breast

biopsies, number of breast biopsies showing atypical hyperplasia, and race/ethnicity.

According to this model, women with a five-year risk of 1.67 percent or higher are

classified as “high-risk”. Noticing that all seven risk factors are categorical and most

of them ordinal, similar to the CRC risk model, the proposed penalized regression

is well suited for modeling such breast cancer risk assessment models. A revisit of

the BCDDP data or analyses of other breast cancer datasets using the penalized

regression method might be of interest. In particular, the ability of our method to

detect important interactions between risk factors might prove useful and add value

to the existing risk assessment models for breast cancer.
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Our penalized regression method has some limitations. The computation could be

demanding when high-dimensional data are involved; the procedure in Section 4.3.2

might not be adequate for computing the estimates. The LAR algorithm of Efron

et al. solves efficiently a wide spectrum of lasso problems [53] by exploiting the fact

that the solution profiles are piecewise linear functions of the L1-bound. However,

an LAR-style algorithm for quickly solving the fused lasso type problem can be much

more complex because of the many possible ways that the active sets of constraints

can change. This would present interesting challenges for future work.

Similar to the lasso tree method, the selection of the tuning parameter λ needs to

be further investigated. A possible improvement of the current penalized regression

method would be incorporating the sparse group lasso idea that utilizes different sets

of penalties (or λ’s) [54]. In the penalized model with interactions, interactions terms

between two risk factors can be consider a group. It might be desirable to pose heavier

penalties (λ1) on the groups as a whole, such that when the interaction between two

factors is weak, we drop the whole group all together. Only when the interaction as

a group is strong enough the penalty will be lifted and another set of penalty (λ2)

will be posed on each individual interaction terms to determine their estimates. The

benefit of using this sparse group lasso is that fewer interaction “groups” will remain

in the final model, but when the interaction between two certain factors are present

we would have more detailed information on each interaction terms.
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Appendix A

Proofs of Consistency for the Lasso

Tree

This Appendix gives the proofs of the two theorems presented in Chapter 3 which

establish the consistency of the lasso tree grouping procedure. Before we present the

proofs, we first establish the reparameterizations of the penalized regression model

in (3.5). Then we follow steps similar to the proofs in Fan and Li [34] and Zhang and

Lu [37] in proving the theorems.
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A.1 Reparameterization

There are many different ways to reparameterize the model by rewriting the β’s in

the T×N table using their neighboring differences. Figure A.1 shows two examples.

If we look at the p × q table by columns, then the β’s can be reparameterized into

θ = (θ1,1, ..., θp,q)
T , where

θj,k =


β1,1 if j = 1 and k = 1

β1,k − β1,k−1 if j = 1 and k ≥ 2 ,

βj,k − βj−1,k if j ≥ 2

i.e. the inter-column (for the first row) and intra-column differences (red arrows in

Figure A.1). Similarly, if we consider the p× q table by rows, then we can reparam-

eterize the model with δ = (δ1,1, ..., δp,q)
T , where

δj,k =


β1,1 if j = 1 and k = 1

βj,1 − βj−1,1 if j ≥ 2 and k = 1 ,

βj,k − βj,k−1 if k ≥ 2

i.e. the inter-row (for the first column) and intra-row differences (black arrows in

Figure A.1).
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Figure A.1: Schematic showing two examples of reparameterizing the β’s. Red
arrows are reparameterizion with the inter-column and intra-column differences;
and black arrows are reparameterizion with the inter-row and intra-row differences.

Under such parameterizations, θ and δ have the following relationship

θj,1 = δj,1, j = 1, ..., p ;

θ1,k = δ1,k, k = 1, ..., q ;

θj,k =
k∑
l=1

δj,l −
k∑
l=2

δj−1,l, j ≥ 2 and k ≥ 2 ;

δj,k =

j∑
l=1

θl,k −
j∑
l=2

θl,k−1, j ≥ 2 and k ≥ 2 .

Both parameterizations are equivalent mathematically to the original model. The

adaptive lasso tree can then be reformulated under the two parameterizations as

argmin

−`z(θ) + nλn
∑

(j,k) 6=(1,1)

|θj,k|
|θ̃j,k|

+ nλn

p∑
j=2

q∑
k=2

|
∑j

l=1 θl,k −
∑j

l=2 θl,k−1|
|
∑j

l=1 θ̃l,k −
∑j

l=2 θ̃l,k−1|


(A.1)
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and

argmin

−`z′(δ) + nλn
∑

(j,k)6=(1,1)

|δj,k|
|δ̃j,k|

+ nλn

p∑
j=2

q∑
k=2

|
∑k

l=1 δj,l −
∑k

l=2 δj−1,l|
|
∑k

l=1 δ̃j,l −
∑k

l=2 δ̃j−1,l|

 ,

(A.2)

respectively. The third term in each formulation represents the differences between

neighboring cells that are not directly represented by the θ’s (or δ’s), i.e. the “com-

plementary arrows” in the T×N table. In general, these “complementary arrows” can

always be written as some linear combinations of the parameters, e.g. ν(θ), under

any parameterization.

The grouping of β implies that some components of θ and δ are exactly 0. Let

Θ = {(j, k) : θ0
j,k 6= 0} and ∆ = {(j, k) : δ0

j,k 6= 0}. Using the relationship between θ

and δ, we can write

Θ′ = {(j, k) :

j∑
l=1

θ0
l,k −

j∑
l=2

θ0
l,k−1 6= 0, j ≥ 2, k ≥ 2} = {(j, k) : (j, k) ∈ ∆, j ≥ 2, k ≥ 2},

∆′ = {(j, k) :
k∑
l=1

δ0
j,l −

k∑
l=2

δ0
j−1,l 6= 0, j ≥ 2, k ≥ 2} = {(j, k) : (j, k) ∈ Θ, j ≥ 2, k ≥ 2} .

Note that these are only two examples of reparameterization. By moving the

arrows around we can achieve numerous other reparameterizations. A third example

is shown in Figure A.2. These reparameterizations will be used in the following

sections to prove the consistency of the lasso tree grouping procedure.
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Figure A.2: Schematic showing a third example of reparameterizing the β’s.

A.2 Proof of Theorem 1

Proving Theorem 1 is equivalent to proving the root-n consistency for the estimator

under any reparameterization. Here we show the proof for the parameterization

using θ. That is, when
√
nλn = Op(1), the penalized likelihood estimator θ̂ from

(A.1) satisfies ‖θ̂ − θ0‖ = Op(n
−1/2), where θ0 is the true value of θ.

Following the notation in Andersen and Gill [55], define the counting and at-risk

processes Ni(t) = I{Ti ≤ t, Ti ≤ Ci} and Yi(t) = I{Ti ≥ t, Ci ≥ t}, respectively.

The covariate z is allowed to be time-dependent, denote by z(t). Without loss of

generality, assume that t ∈ [0, 1]. The Fisher information matrix

I(θ0) =

∫ 1

0

ν(θ0, t)s(0)(θ0, t)h0(t)dt

is finite positive definite, where
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ν(θ, t) =
s(2)(θ, t)

s(0)(θ, t)
−
(s(1)(θ, t)

s(0)(θ, t)

)(s(1)(θ, t)

s(0)(θ, t)

)T
,

and s(k)(θ, t) = E[z(t)
⊗
kY (t)exp{θT z(t)}], k = 0, 1, 2. The regularity conditions (A)

- (D) used in Andersen and Gill [55] are assumed throughout the section.

The log-partial likelihood `(θ) can be written as

`(θ) =
n∑
i=1

∫ 1

0

θT zi(s)dNi(s)−
∫ 1

0

log
{ n∑

i=1

Yi(s)exp(θT zi(s))
}
dN̄(s), (A.3)

where N̄ =
∑n

i=1Ni. Using Theorem 4.1 and Lemma 3.1 of Andersen and Gill [55],

it follows that for each θ in a neighborhood of θ0,

1

n
{`(θ)− `(θ0)} =

∫ 1

0

[
(θ − θ0)T s(1)(θ0, t)− log

{ s(0)(θ, t)

s(0)(θ0, t)

}
s(0)(θ0, t)

]
λ0(t)dt

+Op(
‖θ − θ0‖√

n
).

Define sn(θ) = ∂`(θ)/∂θ and ∇sn(θ) = ∂sn(θ)/∂θT . We have sn(θ0)/
√
n = Op(1)

and ∇sn(θ0)/n = I(θ0) + op(1).

Denote the penalized log partial likelihood function by

Q(θ) = `z(θ)− nλn
∑

(j,k)6=(1,1)

|θj,k|
|θ̃j,k|

− nλn
p∑
j=2

q∑
k=2

|
∑j

l=1 θl,k −
∑j

l=2 θl,k−1|
|
∑j

l=1 θ̃l,k −
∑j

l=2 θ̃l,k−1|
.
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It is sufficient to show that for any given ε > 0, there exists a large constant C such

that

P

{
sup
‖u‖=C

Q(θ0 + n−1/2u) < Q(θ0)

}
≥ 1− ε. (A.4)

This implies that with probability at least 1 − ε that there exists a local maximum

in the ball {θ0 + n−1/2u : ‖u‖ ≤ C}. Hence, there exists a local maximizer θ̂ such

that ‖θ̂ − θ0‖ = Op(n
−1/2).

By Taylor’s expansion, we have

1

n

{
`(θ0 + n−1/2u)− `(θ0)

}
=

1

n

(
sTn (θ0)/

√
n
)
u− 1

2n
uT
(
∇sn(θ0)/n

)
u+

1

n
uTop(1)u

= − 1

2n
uT
{
I(θ0) + op(1)

}
u+

1

n
Op(1)

p∑
j=1

q∑
k=1

|uj,k|

= −C2n−1Op(1) + Cn−1Op(1)

where u = (u1,1, ..., up,q)
T . Then we have

Dn(u) ≡ 1

n

{
Q(θ0 + n−1/2u)−Q(θ0)

}
=

1

n

{
`(θ0 + n−1/2u)− `(θ0)

}
− λn

∑
(j,k)6=(1,1)

(
|θ0
j,k + n−1/2uj,k|
|θ̃j,k|

−
|θ0
j,k|
|θ̃j,k|

)

− λn
p∑
j=2

q∑
k=2

(
|
∑j

l=1 θ
0
l,k −

∑j
l=2 θ

0
l,k−1 + n−1/2(

∑j
l=1 ul,k −

∑j
l=2 ul,k−1)|

|
∑j

l=1 θ̃l,k −
∑j

l=2 θ̃l,k−1|

−
|
∑j

l=1 θ
0
l,k −

∑j
l=2 θ

0
l,k−1|

|
∑j

l=1 θ̃l,k −
∑j

l=2 θ̃l,k−1|

)
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≤ −C2n−1Op(1) + Cn−1Op(1) +
1√
n
λn

∑
(j,k)∈Θ

|uj,k|
|θ̃j,k|

+
1√
n
λn

∑
(j,k)∈Θ′

|
∑j

l=1 ul,k −
∑j

l=2 ul,k−1|
|
∑j

l=1 θ̃l,k −
∑j

l=2 θ̃l,k−1|
.

(A.5)

Since the maximum likelihood estimator θ̃ satisfies ‖θ̃−θ0‖ = Op(n
−1/2), we have,

for (j, k) ∈ Θ,

1

|θ̃j,k|
=

1

|θ0
j,k|
−

sign(θ0
j,k)

(θ0
j,k)

2
(θ̃j,k − θ0

j,k) + op(|θ̃j,k − θ0
j,k|)

=
1

|θ0
j,k|

+
Op(1)√

n
,

and for (j, k) ∈ Θ′,

1

|
∑j

l=1 θ̃l,k −
∑j

l=2 θ̃l,k−1|
=

1

|
∑j

l=1 θ
0
l,k −

∑j
l=2 θ

0
l,k−1|

−
sign(

∑j
l=1 θ

0
l,k −

∑j
l=2 θ

0
l,k−1)

(
∑j

l=1 θ
0
l,k −

∑j
l=2 θ

0
l,k−1)2

×

{ j∑
l=1

(θ̃l,k − θ0
l,k)−

j∑
l=2

(θ̃l,k−1 − θ0
l,k−1)

}
+ op(|θ̃ − θ0|)

=
1

|
∑j

l=1 θ
0
l,k −

∑j
l=2 θ

0
l,k−1|

+
Op(1)√

n
.

In addition, since
√
nλn = Op(1), we have the third term in (A.5)

1√
n
λn

∑
(j,k)∈Θ

|uj,k|
|θ̃j,k|

=
1√
n
λn

∑
(j,k)∈Θ

( |uj,k|
|θ0
j,k|

+
|uj,k|√
n
Op(1)

)
≤ C

n

√
nλnOp(1) = Cn−1Op(1),
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and similarly, the fourth term in (A.5)

1√
n
λn

∑
(j,k)∈Θ′

|
∑j

l=1 ul,k −
∑j

l=2 ul,k−1|
|
∑j

l=1 θ̃l,k −
∑j

l=2 θ̃l,k−1|
≤ Cn−1Op(1).

Therefore in (A.5), by choosing a sufficiently large C, the first term is of the order

C2n−1. The rest of the terms are of the order Cn−1, which are dominated by the first

term. Hence (A.4) holds and this completes the proof of Theorem 1. When the β’s are

naturally ordered as in the cancer staging example, i.e. βj,1 ≤ . . . ≤ βj,q and β1,k ≤

. . . ≤ βp,k, j = 1, . . . , p, k = 1, . . . , q, the penalized likelihood estimator (3.13) will

be obtained under the ordering constraint and the absolute values in the penalties

can be dropped. This does not impact the proofs and the same result can be reached.

A.3 Proof of Theorem 2

We now show that the adaptive lasso tree identifies the correct grouping. It is equiv-

alent to showing that, for any difference between two neighboring cells in the T×N

table (i.e. arrows in Figure A.1 or A.2), if its true value is 0, i.e. the two cells belong

to the same group, then its estimator must be exactly 0 under the lasso tree penalized

model. This must be true under any parameterization; the penalized likelihood to

be maximized is convex and hence there must exist a global solution. Under the two
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parameterizations in Section A.1, for example, this means θ̂j,k = 0 for all (j, k) ∈ ΘC

and δ̂j,k = 0 for all (j, k) ∈ ∆C .

With some abuse of notation, here and below we will use θ to denote the differences

between neighboring cells under any parameterization. It is sufficient to show that,

for any given θj,k such that θ0
j,k = 0, there exists a parameterization under which

θ̂j,k = 0.

Since the penalized likelihood is maximized subject to βj,1 ≤ . . . ≤ βj,q and β1,k ≤

. . . ≤ βp,k, j = 1, . . . , p, k = 1, . . . , q, the reparameterization is maximized subject

to

θ ≥ 0 and ν(θ) ≥ 0,

where ν(θ) = {νl(θ), l = 1, ...,m} are m linear combinations of θ representing the

“complementary arrows” in the T×N table, i.e. the m pairwise differences which are

not presented by θ’s directly under this particular parameterization. The penalized

log partial likelihood function can be written as

Q(θ) = `z(θ)− nλn
∑ θj,k

|θ̃j,k|
− nλn

∑ νl(θ)

|νl(θ̃)|
. (A.6)

Let θ∗ denote a sequence of θ satisfying ‖θ∗− θ0‖ = Op(n
−1/2). Proving Theorem

2 is then equivalent to proving that, for any θj,k such that θ0
j,k = 0, there exists a

parameterization under which the maximizer of Q(θ∗) is θ̂∗ where θ̂∗j,k = 0. It is
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sufficient to show that, for any given θj,k such that θ0
j,k = 0, with probability tending

to 1,

∂Q(θ)

∂θj,k
< 0 for θj,k ∈ (0, Cn−1/2) (A.7)

for any θ satisfying ‖θ − θ0‖ = Op(n
−1/2).

In order to show (A.7), we will examine the partial derivatives of the three com-

ponents of Q(θ) respectively. The first term involves the partial derivative of `(θ).

For each θ in a neighborhood of θ0, by (A.3) and Taylor expansion,

`(θ) = `(θ0) + nf(θ) +Op(
√
n‖θ − θ0‖),

where f(θ) = −1
2
(θ − θ0)T{I(θ0) + o(1)}(θ − θ0). We have

∂`(θ)

∂θj,k
= Op(n

1/2). (A.8)

The second term of Q(θ) involves θj,k directly. Since
√
n(θ̃j,k − 0) = Op(1) and

√
nλn = Op(1), we have the partial derivative

−nλn
1

|θ̃j,k|
= −(nλn)n1/2 1

|
√
nθ̃j,k|

= −(nλn)Op(n
1/2) = −Op(n),

(A.9)
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which dominates the first term when n is large. If the third term in (A.6), the linear

combinations, does not involve θj,k, then

∂Q(θ)

∂θj,k
= Op(n

1/2)−Op(n) (A.10)

Hence ∂Q(θ)/∂θj,k is negative when n is large, which establishes (A.7) and completes

the proof.

When θj,k is involved in the linear combinations, we can always find a parameter-

ization where θj,k has a positive contribution to all the linear combinations in which

it is involved. This way, the partial derivative of the third term becomes

−nλn
∑ 1

|νl(θ̃)|
,

where the summation is over all νl(θ) that involve θj,k. Notice that ν(θ) are also dif-

ferences between neighboring cells, and some of their true values might be 0. Without

loss of generality, denote by vl(θ), l = 1, ...,m1, the linear combinations that involve

θj,k, among which vl(θ), l = 1, ...,m0, m0 ≤ m1, satisfy νl(θ
0) = 0. Then we have

√
nνl(θ̃) = Op(1), l = 1, ...,m0, and
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−nλn
m1∑
l=1

1

|νl(θ̃)|
= −nλnn1/2

m0∑
l=1

1

|
√
nνl(θ̃)|

− nλn
m1∑

l=m0+1

1

|νl(θ̃)|

= −(nλn)n1/2Op(1)− (nλn)Op(1)

= −Op(n)−Op(n
1/2).

(A.11)

Hence the derivative becomes

∂Q(θ)

∂θj,k
= Op(n

1/2)−Op(n)−Op(n)−Op(n
1/2)

= Op(n
1/2)−Op(n),

(A.12)

which is negative when n is large. This again establishes (A.7) and completes the

proof.

To see how we can always find a parameterization where θj,k has a positive con-

tribution to all the linear combinations ν(θ) in which it is involved, let us look at

one example. Figure A.3 shows a parameterization where the thick black (and red)

arrows represent the θ’s and the thin blue arrows represent the pairwise differences

which are not presented by θ’s directly. Suppose the one red, vertical arrow is the

θj,k to be proved. Then under this parameterization, it has a positive contribution

to all the linear combinations, i.e. the blue arrows, in which it is involved. In fact, in

general θj,k would only be involved in the differences / arrows one column to the left

and one column to the right of itself. In this example, they are the two horizontal blue
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arrows between T2 and T3 and the two vertical blue arrows in column T4. Among

them, the differences to the left of θj,k always involve a positive θj,k; these arrows are

always pointing at θj,k. The differences to the right, on the other hand, have two

different effects. The horizontal arrows to the right, pointing away from θj,k, always

involve a negative θj,k. While the vertical arrows to the right, parallel to θj,k, involve

a positive θj,k. In this example, blue arrows to the right are only present in vertical

forms, and hence only involve positive θj,k. Therefore, as long as all ν(θ) to the right

of θj,k (the one we want to prove in (A.7)) are vertical arrows, i.e. differences between

rows, we will have positive involvement of θj,k in all ν(θ), which assures the proof

of Theorem 2. This kind of parameterization is in fact not hard to find for any θj,k,

that is, any arrow in the two-way table.

Figure A.3: Schematic showing an example of parameterization (in thick ar-
rows) where θj,k (the thick red arrow) has a positive contribution to all the linear

combinations ν(θ) (thin blue arrows) in which it is involved.
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