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Abstract

The work in this thesis has two main focal points, The Colmez Conjecture and theta lift-
ing for signature (1,1) quadratic spaces. These two topics both have important relations
to the theory of complex multiplication of abelian varieties.

While trying to formulate a product formula for periods of abelian varieties, Colmez
conjectured a relation between Faltings Heights of CM abelian varieties and logarithmic
derivatives of associated L-functions. We start in the unitary case, where the CM field
contains an imaginary quadratic field. By using recent work in the averaged version of
the conjecture, and by studying the class functions that arise, we are able to reduce the
unitary Colmez Conjecture to a simpler case. Furthermore, we use the Galois action to
prove new cases of the Colmez Conjecture.

We then turn from unitary CM fields to imprimitive CM fields, which are CM fields
which contain smaller CM subfields. We apply similar methods as in the unitary case
to reduce the Colmez Conjecture to simpler CM types.

The final section of this thesis deals with theta lifting for signature (1,1) quadratic
spaces. Kudla derived formulas for the integral of the theta lift of a weakly holomorphic
modular form for a signature (n,2) quadratic space. Inspired by this work, we calculate

the corresponding integral for a signature (1,1) quadratic space.
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Chapter 1

Complex Multiplication

1.1 Introduction to L-functions

The Riemann zeta function ((s) is the first example of an L-function to show up in

number theory. Initially defined by the formula ((s) = Z % for real part of s greater
than 1. Riemann proved that this function has a mer;inorphic continuation to the
complex plane with a simple pole at s = 1. The first immediate connection to number
theory can be seen by the Euler product expansion of ((s), given by

=TI ==

p prime

This product expansion holds for real part of s > 1. As s € R approaches 1 from the
right, the divergence of the harmonic series implies that ((s) has a pole at s = 1. By
the Euler product expansion, the pole at s = 1 implies the existence of infinitely many
primes. Of course, this is not the first proof, nor the most straightforward proof, that
there are infinitely many prime numbers, but the idea has been generalized by number
theorists over the years. Values of L-functions at s = 1, and other special values, often
encode a huge amount of arithmetic information.

The next simplest example of an L-function is defined as a Dirichlet series by

L(s,xa) =1—1/3+1/5°—1/T°+--- .



In contrast to ((s), this L-function doesn’t have a pole at s = 1. In fact, by using the

Taylor series for arctan(s), one can calculate that L(1,x4) = 7 = %.

This L-function, and in particular this value L(1,x4), can be interpreted in terms
of the arithmetic of the field Q(i). The relationship between this particular L-function
and the field Q(7) is due to the fact that a prime p € Z splits into a product of 2
Gaussian primes if and only if p = 1 (mod 4), which are exactly the primes such that
the coefficient of ]% is positive in L(s, x4)-

The power of 27 tells us that up to complex conjugation, there is only 1 embedding
of Q(i) into C. The 1 in the numerator that is not an exponent tells us that the class
number of Q(i) is 1, that is to say, the associated ring of integers Z[i| is a unique
factorization domain. The 4 in the denominator tells us that the field Q(7) contains the
4" roots of unity. The —4 inside the square root of the denominator is the discriminant
of the extension Q(i)/Q, a fundamental invariant that describes the complexity of a
number field.

Dirichlet’s class number formula (Chapter 7 of [15] has a wonderful exposition of
this topic) is a classical generalization of this result, and a lot of number theory has
been developed to provide arithmetic interpretations of special values of L-functions.

The setting where we will focus on is the theory of abelian varieties with complex

multiplication.

1.2 Elliptic Curves

Complex multiplication is both a very classical and very modern part of number theory.

In the first chapter of this thesis, we will describe some aspects of this beautiful story,



with a particular focus on what is relevant to the Colmez Conjecture.

Consider the elliptic curve X given by the equation
y2 =2 + 2.

Being an abelian group, X has endomorphisms associated to every integer. For every
n € Z, we denote by [n] the multiplication by n map on X. For example, the map
[2] on X sends a point P to [2]P := P + P. And the map [—2] on X sends P to
[—2]P := —P — P, where —P is the additive inverse of the point P. This defines an
embedding Z — End(X).

For most elliptic curves (in a sense of “most” which can be made precise, but we
won’t do so here), these are all of the endomorphisms. However, for our particular choice

of X, we also have the following endomorphism

x i x

(%,y) = (_xaiy)‘

For a point P = (x,y) € X, when we apply this map to P twice, we get

2@, y) = [ ([, 9) = )(=2,i9) = (@, ~y).

Since (z, —y) = [—1](z, y) is the additive inverse of P, we have the relation that [;]? = —1.
In fact, this gives an isomorphism Z[i] = X and we say that X has complex multiplication
(or CM) by Z][i].

More so than just being the endomorphism ring, this implies a very strong relation-
ship between the elliptic curve X and the arithmetic of the number field Q(¢). Here

we focus on abelian extensions of Q(i). We briefly follow the discussion in Chapter 6



of [22], which we strongly encourage the reader to read as an introduction to complex
multiplication for our specific curve X.

For an integer n, let X[n] C X (Q) denote the set of all n torsion points on the curve

X. That is, P € X|[n] if and only if [n]P = 0.

Theorem 1.1. Let K,, := Q(i)(X|[n]) denote the field generated over Q(i) by the coor-

dinates of the points in X[n]. Then we have that,
1. K, is an abelian extension of Q(i).

2. Moreover, if K is any abelian extension of Q(i), then there is some integer n with

K CK,.

The above theorem generalizes to all imaginary quadratic fields. This is one of the
ways in which complex multiplication provides an explicit version of Class Field Theory
for these number fields. The interested reader should read Chapter 2 of [21] for a more
advanced and complete discussion of the theory of complex multiplication of elliptic

curves.

1.3 Abelian Varieties with Complex Multiplication

Class Field Theory was one of the crowning achievements of early 20th century number
theory, and motivated by the successes of the 1 dimensional theory of the complex
multiplication of elliptic curves, mathematicians sought to generalize this story to higher
dimensions.

Imaginary quadratic fields are fundamental in the theory of complex multiplication

of elliptic curves. A CM field plays the analogous role for the higher dimensional CM



theory.

Definition 1.2. A totally imaginary number field FE is a CM field if E is a quadratic

extension of a totally real number field F'.

Since Q is a totally real number field, any imaginary quadratic field is a CM field.
For n > 2, let ¢, denote a primitive n'" root of unity. Then Q((,) is a CM Field with
totally real subfield Q(¢, + ¢;!).

Alternatively, a CM field can also be defined as a number field with a well-defined

non-trivial complex conjugation, in the following sense.
Lemma 1.3. Let E be a number field of degree 2n. The following are equivalent.

1. E is a CM field.

2. There is an non-trivial automorphism p : E — E such that for every embedding

o: E — C, we have that o(p(x)) = o(x) for x € E and o(x) denotes the complex

conjugate of o(x).

Proof. First, suppose that F is a CM field. That is, E is a totally imaginary number
field that is a degree 2 extension of a totally real number field F'. Let p be the non-trivial
element in Gal(E/F).

Let 0 : E — C be an embedding. We want to show that the two embeddings o o p
and @ are equal. Since I is a totally real field, we have that p is the identity map on F
and o(F') C R. Therefore, the two maps ¢ o p and & agree on F.

Two embeddings of E into C which agree on F' can differ only by complex conjuga-
tion. So we must have that either c o p = @ or 0 0o p = . Since p is not the identity

map, we must have that cop =7.



On the other hand, suppose FE is a number field with such a non-trivial automorphism
E. Since complex conjugation has order 2, we have that p has order 2 as well. Since p
is non-trivial, we must have that E is totally imaginary. Let F' be the field fixed by p.
This implies that for any embedding o : F' — C, we have that @ = o, and so o(F) C R,

which means that F' is a totally real field. O

In the rest of this thesis, £ will denote a CM field, F' C E will be the totally real
number field with [F : F] = 2, and p : F — E will denote the complex conjugation, as
in the above lemma.

Also very important in the higher dimensional CM theory is the notion of a CM type.
CM types are trivial in the imaginary quadratic case (due to the Galois equivalence
which we will discuss in Chapter 2 of this thesis) but they are needed in the higher
dimensional theory. The embeddings of F into C come in conjugate pairs, and choosing

one embedding from each of these pairs constitutes a CM type.

Definition 1.4. Let E be a CM field with complex conjugation p. A subset ® of
Hom(FE,C) is a CM type if the following two equalities hold,

dNpd =g,

® U p® = Hom(FE,C).

We also present the following equivalent definition of a CM type. This definition

better serves to motivate some of Colmez’s constructions to be defined later.

Definition 1.5. Let E be a CM field with complex conjugation p. A function ¢ :

Hom(E,C) — {0,1} is a CM type if ®(0) + ®(po) =1 for every o € Hom(E,C).



To switch between the above two definitions of CM types, we identify a CM type
¢ C Hom(F, C) with its characteristic function ® : Hom(E, C) — {0, 1}.

If £ is a CM field and ® is a CM type of E, we can not necessarily restrict ® to
CM subfields of E. However, ® can be extended to larger CM fields. For M a CM field

containing F, we can extend ® to be a CM type of M via
= {0 € Hom(M,C) : 0| € ®}.

The Colmez Conjecture has an analytic side and a geometric side. The geometric
side uses the (stable) Faltings height of an abelian variety, which we define here. In this
thesis, we choose certain normalizations to the Faltings height to agree with [8],[27]. Let
2n = [E : Q] and let ® be a CM type of E. Let Xg be an abelian variety with CM
by (Og,®). Here, Of is the full ring of integers of E. This means that we have an
embedding Op — End(Xs) and the action of Og on the holomorphic differentials of
Xg is described by ®.

Since X has CM, we can find a number field L such that Xg is defined over L and
has everywhere good reduction [14]. Let Xy be the Neron model of Xg defined over the
ring of integers Op. Let € : Spec(Op) — Xg be the zero section of the Neron model. Let
Wxy /0, = € (A"Qx,/0,) and take a non-zero a € wyx,,0,. Then, the Faltings height of

Xo is defined by

hpa(Xo) : 04 A af| +loglwx, 0, /Oral.

o:L—C

This is independent of L and «. Similarly, we define the Faltings height of a CM type

® by
1

hFal((I)) [E Q]

hFal(X<I>)



Under these normalizations, Colmez showed [8] that hp, (®) does not change if we extend
® to the extended CM type on a larger CM field containing E. This invariance under

CM field extension will be very useful for us and we will use it often.

1.4 The Colmez Conjecture

In this section, we introduce the Colmez Conjecture [8] and state some applications
and cases where the conjecture is known. The conjecture involves a good amount of
background constructions, so we start with a very brief overview before delving into the
specific details.

We start with a CM field F together with ®, a CM type of E, and Xg an abelian
variety with CM by (Og, ®). Starting from ®, we can obtain a class function A% on
Gal(E°/Q). We can rewrite this class function in terms of the irreducible characters of
the Galois group. From these irreducible characters, we create a meromorphic function
Z(s, AY) related to logarithmic derivatives of certain L-functions. The Colmez Conjec-
ture is that a special value of this function is related to the Faltings height of Xg.

To go into more detail, we start with the Galois closure of F, which we will call E*¢
and is also a CM field. For a CM type ® of E, we let ®¢ denote the extension of ® to
E°. Now, we pick an identification of Hom(E*, C) with Gal(E°/Q). Of course, such an
identification is only well defined up to conjugacy. However, we will eventually produce
a class function A}, and hence the choice of identification will not effect the final result.

Next, we have the reflex CM type ®c. The reflex type is most naturally defined via



the function view of a CM type, via

dc : Gal(E°/Q) — {0,1}

g— (g7

Then, we define a function Ag : Gal(£¢/Q) — Q by taking a normalized convolution
of & and @° thusly

1 c Te 0—1
As(g) = ZCal(E)Q) EG%c/Q)‘I’ (o)®<(0c™"g).

Then to obtain our class function A%, we take the average of Ap among the conjugates

in Gal(£°/Q). More precisely,

1

409 =z

Z Ag(hgh™ )

heGal(E</Q)

As AY is a class function, we can write A% as

A% = Z G’XX7
X
where y ranges through the irreducible representations of Gal(£°/Q) and a, € C. For

each character x, define the function Z(s,x) by

L'(s,x) 1
Z(s,x) = =2 X) 2
(37X) L(S,X) + 9 ngx,

where L(s, x) is the Artin L-function of x and f, is the Artin conductor of x. Then, we

linearly extend Z(s,—) to AY via
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We define Q°™ as the compositum of all CM number fields. This field is infinite
degree over Q, and has a unique automorphism p acting as complex conjugation. Us-
ing the projection Gal(Q™/Q) — Gal(E°/Q), we can view A} as a class function on
Gal(Q°"/Q).

In his paper [8], Colmez considers the space CM°, the Q-vector space of class
functions f : Gal(Q™) — Q such that the quantity f(g) + f(pg) is independent of
g € Gal(Q*™/Q). For any CM type ® of E, the function A% is an element of CAM°.

Colmez defined a Q-linear height function ht : CM" — R such that if Xg is an

abelian variety with CM by (O, ®), then
hpa(Xe) = —ht(Ag).
Finally with all of the above set up, we can state the Colmez Conjecture from [8].
Conjecture 1.6 (Colmez). For any CM type ®, ht(A}) = Z(0, A}).

In the rest of this chapter, we discuss a bit of what is known about the Colmez
Conjecture and how it can be used.

The Colmez Conjecture for imaginary quadratic fields is a reformulation of the clas-
sical Chowla-Selberg formula [7]. For abelian CM fields F, the conjecture was proven
by combined work of Colmez [8], and Obus [16]. The first non-abelian case was due to
Yang [24], [25], [26], who proved the Colmez Conjecture for certain classes of non-abelian
quartic CM fields.

A major breakthrough recently came with the proof of the Average Colmez Conjec-
ture, which was originally conjectured by Colmez in his 1993 paper and proven indepen-

dently by two groups of mathematicians [1], [28] . Rather than focus on a single CM
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type, the average version of the conjecture makes a statement about all CM types of a

CM field. For a CM field E, let ®(F) denote the set of CM types of E.

Theorem 1.7 (Andreatta, Goren, Howard, Madapusi Pera and Yuan, Zhang). For a
CM field E of degree [E : Q] = 2n, we have
1 1 1
on > (@ Z Z(0,A%) = — - 2(0,x5/r) — 7 log(2).
Ded(E) <1>e<1>
The proof of the Average Colmez Conjecture spurred a lot of work in the Colmez
Conjecture, in particular trying to leverage group theoretic constraints to prove further
cases of Colmez. The Conjecture has been proven in the case where the Galois group
is as large as possible for a CM field, a so-called Weyl CM field [2]. Along these lines,
in [27], the authors study the case of unitary CM fields, which are CM fields containing
imaginary quadratic field. In Chapter 2 of this thesis, we will discuss this work further.
Mathematicians have been able to work out some consequences from the known cases
of the Colmez Conjecture. Many analytic techniques are known for bounding logarithmic
derivatives of L-functions, and applications have come from using the Colmez Conjecture
to translate these bounds into bounds on the Faltings height. Most notably was the work
of Tsimerman in proving the Andre-Oort Conjecture for A, [23], and there has also been

work applying these bounds to Faltings heights of elliptic curves [9].

1.5 Outline of This Thesis

The new work for this thesis begins in the unitary setting for the Colmez Conjecture,
which we discuss in Chapter 2 of this thesis. There, we further examine Yang and Yin’s

work [27]. The main result of that chapter is to show that the Colmez Conjecture for
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unitary CM fields reduces to certain special CM types. Furthermore, we can use these
results and some group theoretic arguments to prove some new cases of the Colmez
Conjecture.

In Chapter 3 of this thesis, we attempt to generalize the work from Chapter 2. A
unitary CM field is a CM field which contains an imaginary quadratic field. In Chapter
3, we look at CM fields which contain CM subfields. Unfortunately, the complexity of
the field theoretic set up does limit how far we can push the arguments in Chapter 2.
However we do obtain relations amongst the different constructions of Colmez in this
setting.

In Chapter 4, we derive a formula for a signature (1, 1) theta lift of a weakly holo-
morphic modular form in terms of an Eisenstein series. This chapter of the thesis is
separate from the previous chapters which focused on the Colmez Conjecture, and we

provide an introduction to these ideas in that chapter.
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Chapter 2

The Unitary Colmez Conjecture

2.1 Unitary CM Fields

In this chapter, we discuss unitary CM fields and what is known about the Colmez

Conjecture in this setting.

Definition 2.1. A unitary CM field E is a CM field that contains an imaginary quadratic

subfield k C E.

Let E be a unitary CM field. If F'is the maximal totally real subfield of E and k is
the imaginary quadratic subfield of F, then we have F = kF'.

One very important feature of unitary CM fields is that we are able to stratify the set
of CM Types by their signature. The signature of a CM type is related to the fact that
an embedding o : E' < C can be restricted to k to obtain an embedding ol : k — C.

The discussion of signature will be greatly simplified by viewing £ C C. In this
viewpoint, Hom(k, C) consists of two elements, the identity map, 1, and its complex
conjugate p. The reader is correct to be skeptical of such a simplification. Chapter 3 of
this thesis deals with the more general setting where a much more careful discussion of

signature is needed.

Definition 2.2. Let E = kF be a unitary CM field of degree 2n. A CM type & C
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Hom(E,C) has signature (n—r,r) if exactly n —r of the embeddings in ® restrict to the

identity map k — C.

The study of unitary CM fields in connection to the Colmez Conjecture began with
the work of Yang and Yin [27]. Building on the recent work on the average Colmez
Conjecture, they proved the following theorems which will be useful in our discussion.
Their first theorem says that the Colmez Conjecture holds if we average amongst CM
types of a given fixed signature. Moreover, they are able to calculate a value for this

average Faltings height.

Theorem 2.3 (Yang-Yin). Let E = kF be a unitary CM field of degree 2n and denote
by ®(E), the set of all CM types of E of signature (n —r,r). Let 1 < r <mn, let (} be
the zeta function for k, and let xi o and xg/r be the quadratic characters associated to

the quadratic extensions k/Q and E/F respectively. Then,

Yo hra(®) =Y —Z(0,A3)

QcP(E), dcd(E),

_ _Tl (Z) Z(0, ) + (Z : f) Z(0, xx/0) — % (n: f) Z(0,XE/F)-

r

For the CM types not included in the above theorem, Yang and Yin are able to prove

more, in fact they prove that the Colmez Conjecture holds for these CM types.
Theorem 2.4 (Yang-Yin). Let E = kF' be a unitary CM field of degree 2n
(a) If @ is a CM type of signature (n,0) or (0,n), then hpu(®) = FZ(0, (k).

(b) If ® is a CM type of signature (n — 1,1) or (1,n — 1), then

—1

1 1
hFal(q)) - TZ«)a gk) + EZ(Oa Xk/@) - EZ(Oa XE/F)
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In fact, part (a) of the above theorem is a restatement of the classical Chowla-Selberg

formula.

2.2 Signature (n —2,2) CM Types

After Yang and Yin tackled signature (n — 1,1) CM types, one might wonder what we
can say about signature (n — 2,2) CM types. In this end, we have the following result

from [17].

Theorem 2.5 (Parenti). Let E = kF be a unitary CM field of degree 2n. Then, the
Colmez Congecture holds for E if and only if it holds for all CM types of signature

(n—2,2).

In the remainder of this section, we discuss a proof of the above theorem.

Let’s introduce some notation relevant to the theorem. Let £ = kF be a unitary CM
field. Let F°, B¢ denote the Galois closures of F' and E respectively. Then E¢ = kF*.
Let H := Gal(F¢/F) < Gal(F*/Q) =: G and let h = #H. Then we can identify the
embeddings of F into C, which we will call {01, ...,0,}, with coset representatives for
H\G.

An embedding F — C is uniquely determined by a pair of embeddings F' — C and
k — C. We denote by {1, p} the two embeddings of k into C, and for an embedding
o: F — C, we write p'o for the embedding of F into C associated to the pair {p*,c}.
If 7+ = 0, we simply write o for 1o.

A CM type for E consists of a choice of one of the embeddings k£ — C for each

embedding F' < C. Thus, we can parametrize CM types of E via subsets of {1,2,...,n}.
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Given S C {1,2,...,n}, the corresponding CM type of F is given by
by ={plio;:j;=1ifi€ S, j;=0ifi g S}.

Thus ®g is a CM type of signature (n — r,7) where r = #S. We often write these

CM types as sums,

(I)S = ZpO’l + Z(Ti = trE/k: —|—(p — 1) ZUZ'.

€S iZS €S

where trg,, = Y I, 0; consists of all of the embeddings E' < C which restrict to the
identity on k.
The first step in the reduction to (n — 2,2) signature CM types is the following

computation of A%.

Theorem 2.6. Let S C {1,2,...,n} be a subset of size r. Then,

1 r r
A%S — 5 trEc/k —5(1 - p) tI'E'C/k: +ﬁXlndg (XO)

+ #(1 —p)z ( Z O'iHO'j1>.

geG \i#jeS
where o is the trivial character.

Proof. First, we need to extend ®g to ®¢, the CM type on E¢. To do so, we need to
determine which embeddings of E¢ into C, when restricted to E, are in $g. Because FE
is a unitary CM field, we have an isomorphism Gal(E¢/Q) = Gal(E¢/k) x Gal(k/Q) =

G x Z/2. Therefore, we have

i€S
Since we have written the CM type as elements of Gal(£¢/Q), finding the reflex type

of ®¢ amounts to inverting every element thusly,

C/b\g, = trEC/k —I—(p — 1) ZHO’],_l.

jes
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Taking the convolution of ®§ and &)\g gives

1 —~
S S T
S [Ec . Q] S=Ss

1 _
= S (trEc/k—i— —1) ZO’Z ><U"Ec/k+(p—1)ZHUjl>

€S JjES

As

1 T
= §trEc/k—ﬁ(1—p)trEc/k+ ZUzHU

1,jES
Now we project Ag, onto the space of class functions to obtain Ay .- Note that
trpe i, = Gal(£°/k) is a normal subgroup of Gal(E¢/Q) and so we have

1 r
AV = Ztrpe ——(1 — p) trpe H
®s ~ 5 TEe/k n< p) fE/k—i- ZQ(ZJ o; >

geG i,jES

The main difficulty in the above equation is the final term. First, look at the diagonal
terms where 7 = j,

o St o 5 (o'

geG €S geG

-3 (o)

1€S geG

Combining the above equation and the following Lemma 2.7 will complete the proof. [

Lemma 2.7. Let xo : H — C be the trivial character. As functions G — C, we have

the relation

Z gHg_l = hXIndg(Xo)’

geG

Proof. The induced representation Indg(x()) is given by

Ind%(xo) = {f: G — C: f(zg) = f(9)Vz € H,g € G}.
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where the action of GG is by right translation. This space is exactly the space of functions
f: H\G — C. Thus, the representation Ind% (y) is isomorphic to the representation
coming from the action of G on H\G via g- Ho = Hog™*

The character of a permutation representation is the number of fixed points. That

is, for 0 € G,

XIndHXO( ) #{Ze{l 2 n}:U'HJi:HUi}

=#{ie{1,2,---,n}:0 €0;Ho; '}
On the other side of the equation, we have

(ZgHg ) =#{gecG:oecgHg '}

geG
For i such that o € aiHai_l, then every g € o, H satisfies 0 € gHg™!, and so we have
that ZgHg*1 = hxlndg(xo). O]
geG
For CM types of signature (n,0),(n — 1,1), and (n — 2,2), Theorem 2.6 takes the
form

0 1

q){z} 2 trEc/k7

1 1 1
A%{ } = g Bk ——(1 — p) trgesk +ﬁ(1 — ) X1nd$ (xo):

1 2 2
0 _
Agyy = 5 teek = (1= p)trpep+—5 (1 = P)Xtna (o)

1 . .
+ 2(1—p)2(90iH% g +goHoi g 1>'

geG

Next we will rewrite A%, for any CM type @, in terms of the above CM types.

Lemma 2.8. For any subset S C {1,2,...,n} of size r, we have

(r—1(0r-2) ,
Z A‘I’{z i) (r—2) ZA@{}+ 2 A‘D{z}

{i,7}CS (ISh)
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Proof. This proposition is clear when r = 0, 1, where we interpret an empty sum as 0.

For r > 2, we have

1 2 2
0 _
> A, = D <§ trpesk = (1= p) e/ +-5 (1 = P)Xtna (o)

{i,5}CS {i,j}CS
1 o o
+ g (l=p) > (gffz-Hffj g7+ goHa g 1))
geG
B r(r—1) r(r—1) r(r—1

)
(1= p) trpe/n+ 2 (1 = P)X1mag (xo)

+ #(1 —p) Zg( Z aiHaj’l)gfl.

geG i#£jES

trge/, —
1 TEe/k

Therefore, we have

—(r+1)(r—-2) r(r—2)
A%S - Z A%{i,j} = 4 trEc/k+ n (]. — p) trEc/k

{i,j}Cs
r(r—2)
- n2 (1 - p)XInde(Xo)
_ 0 (r—1)(r—2) 4
=—(r-2) Z A‘I’{i} + 9 A‘I’{@}'

€S

With this result, we can finally prove our theorem.

Theorem 2.9. Let E = kF be a unitary CM field of degree 2n. If the Colmez Conjecture

holds for all CM types of E of signature (n—2,2), then the Colmez Conjecture holds for
all CM types of E.

Proof. Colmez defined a Q-linear height function ht and conjectured that ht(A%) =

Z(0, A%) for any CM type ® of a CM field. We also note that the function Z(0,-) is

Q-linear.
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In [27], Yang and Yin show that the Colmez Conjecture holds for all CM types of
signature (n,0) and (n — 1,1). Then, if the Colmez Conjecture also holds for any @, ;,

and if S C {1,2,...n} has size r, we have that

0 (e—1)(e—=2)
ht(Agg) = ( Z A‘I’{ i} (€~2) ZA‘I’{ g T 92 A‘I’{z}

{i,j}CS €S

6—1 €
Z ht(A @{ } (e —2) th @{} +%ht(%l%{g})

{i,3}CS €S
(6 —1)(e —2)

= Y 204, )~ (-9 Y 2044, )+ T2 g0,y )

{i,j}CS i€S

e—1)(e—2)
( > Ay, —(e=2) ZAq){ﬁ—Q A%{g})
{i,7}CS €S

= 7(0,A3,).

2.3 Galois Action

There is a Galois action on the set of CM types. An element g € Gal(E¢/Q) acts on a
CM type ® by g-® = {go : 0 € ®}. If &; and P, are CM types that are equivalent
under this action, then A§ = Af .

As before, F = kF is a unitary CM field where F¢ is the Galois closure of F,
G = Gal(F*°/Q) and H = Gal(F°/F). Then Gal(E°/Q) = G xZ/2. The Z/2 component
of Gal(E°/Q) is complex conjugation, taking a CM type of signature (n — r,r) to a
corresponding CM type of signature (r,n — r). The action of Gal(E°/k) = G fixes the

signature of a CM type.
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The action of Gal(E¢/k) = G on the set of CM types of signature (n — r,r) is
isomorphic to the action of G on the subsets of G/H of size r.

One of the main results of [27] is that the Colmez Conjecture holds if we average
amongst CM types of a given signature. That is, if ®(E), denotes all CM types of E of
signature (n — r,r), then

> ont(Ay) = Y Z(0,Ay).

Ped(E), PR (E)r

If all CM types of a given signature are equivalent, then this result immediately
implies the Colmez Conjecture for those CM types. This is how Yang and Yin proved
their result that the Colmez Conjecture holds for signature (n,0) and (n—1,1). In both
of those cases, the Galois action forces all CM types of that signature to be equivalent.

Combining this idea and our previous theorem gives the following theorem.

Theorem 2.10. Let E = kF be a unitary CM field. Let H := Gal(F*°/F) < Gal(F*°/Q) =:

G. If G acts doubly transitively on G/H, then the Colmez Conjecture is true for E.

The first question to ask after such a result is whether or not this result actually
tells us anything. That is to say, do there really exist such pairs (G, H)? Thankfully,
the answer is yes.

In particular, PSL,(F,) and PGL,(F,) both act doubly transitively on P"~'(F,), and
so if we take H to be the stabilizer of a point in each of those groups. More precisely,

we can take

ai;p a2 ... Qip

0 o2 ... Q2pn
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When n = 2, H is the Borel subgroup of upper triangular matrices, which gives the main
result of [18]. In that paper, we compute Ay explicitly, rather than using this signature
(n — 2,2) result.

For small values of n, ¢, the groups PSL,(F,) and PGL,(F,) can be realized as the
Galois groups of totally real number fields over Q. In particular, consulting the LMFDB
[13] shows that for ¢ < 11, the groups PSLy(F,) and PGL.(F,) appear as the Galois
groups of totally real fields.

Furthermore, the fact that G is the Galois group of the Galois closure of F', and H
is the subgroup that fixes the field F' implies that the action of G on G/H induces an
embedding G — Sym(G/H) of G into the symmetric group on the set of cosets of G by
H.

Thus, we may apply Theorem 2.10 to any G which is a doubly transitive subgroup
of a symmetric group. As a corollary of the classification of finite simple groups, a
classification of doubly transitive groups is known. There are infinite families of examples
and sporadic examples. We list the other doubly transitive groups and refer the reader
to [10], [4] for further details on these groups and their doubly transitive actions. As a
caution to the reader, in our present discussion we change some of the notations from
the above sources to match more modern usage.

The alternating and symmetric groups A, and S,, are doubly transitive subgroups
of S, for any n. For these groups, we take H to be A,,_; and S,,_; respectively. The
Colmez Conjecture was already discussed in this case by Yang and Yin [27].

Another family of examples is the symplectic groups Sp,,,(Fs) for m > 2. For
these groups, two choices of subgroups induce doubly transitive actions. This discussion

involves quadratic forms, symmetric bilinear forms, and alternating bilinear forms in
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characteristic 2, so we will explain in detail. Let 0,, and 1,, denote the m x m zero and

identity matrix respectively and define the matrix J by

If we denote 27 to be the transpose of a matrix =, we define the symplectic group as
Spy,,(F2) := {2 € GLy,,(Fo) : 2 Jx = J}.

We can also view Sp,,,(Fs) as the set of linear transformations which preserve the fol-

lowing alternating bilinear form 1,

Y F3m x F2™ — [y

Uy U1
, = U1+ Vg — U * V1.
Uz V2

That is to say,
SPy,, (F2) := {2 € GLop(F2) : Y(zu, 2v) = Y(u,v) Yu,v € F3™}.

However, 1) is also a symmetric form over Fy and the doubly transitive action we are

interested in involves orthogonal groups of associated quadratic forms.

Definition 2.11. IfV is a vector space over Fy, then a quadratic form on'V is a function

q:V — Fy such that
1. q(0\) = N2q(v) for all X € Fy,v € V;

2. The function f(u,v) := q(u+v) — q(u) — q(v) is a symmetric bilinear form.
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Over Fy, a quadratic form determines a symmetric bilinear form, but many quadratic
forms can determine the same symmetric bilinear form. Up to isometry, there are two

quadratic forms on F3™, given by

QT (v1,. .+, Vom) = VU1 + +* + VU2,

Q (V1. .., Vam) = V1Vt + -+ + VU2 + Uy + V2.

These quadratic forms can be distinguished by their Witt index, the largest dimension
of an isotropic subspace.
We define two orthogonal groups, O3 (Fy) and O, (Fy), as the isometry groups of

these quadratic forms,
03,,(Fy) = {x € GLy,(F2) : QF(a2v) = Q*(v) Vv € F3m}.

Both QT and )~ determine the same bilinear symmetric form, 1), and thus we have
that O3, (F) C Sp,,,(F2) and O, (Fs) C Spy,,(Fs). Furthermore, Sp,,, (F2) acts doubly
transitively on the cosets by either of the aforementioned subgroups.

Applying Theorem 2.10 to this situation shows that if F' is a totally real number field
whose Galois closure F° has Galois group Sp,,,(F2) and F is the fixed field by either
O3 (Fy) or O, (F5), then the Colmez Conjecture holds for E := kF.

Another class of examples is the unitary groups PSU3(F,) and PU3(FF,) where ¢ is a
prime power. To describe these groups and the relevant subgroups, we will follow the

convention of [10], however there are different choices possible for the bilinear form. Let
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¢ be the following bilinear form on T2,

. T3 3
QD . ]qu X ]qu — ]FqQ
Uq U1
q q q
( TAERED > = U153 + UgVy + U3V .

us U3

We define U3(F,) to be the matrices which preserve this form,
Us(F,) := {A € GL3(Fp2) : o(Au, Av) = p(u,v) Vu,v € FL}.

The action of Uz(F,) on the 1-dimensional subspaces of F22 defines the projective group
PU;(F,) and taking those matrices of determinant 1 defines the group PSU;3(F,).

An isotropic vector v € F?, is a vector such that ¢(v,v) = 0. The groups PU3(TF,) and
PSU3(F,) both act doubly transitively on the set of 1-dimensional isotropic subspaces
of IF22, so therefore we may take H to be the stabilizer of any 1-dimensional isotropic

subspace. A quick calculation shows that the stabilizer in PSU3(F,) and PU3(F,) of
1

the subspace spanned by || is exactly the upper triangular matrices of the respective

0
group.

Applying Theorem 2.10 to this group action shows that the Colmez Conjecture holds
for F := kF where k is an imaginary quadratic field, F' is a totally real number field
such that Gal(£¢/Q) = PSU;3(F,) or PU3(F,) and Gal(F°/F) is the subgroup of upper
triangular matrices.

There are a two more infinite families and a few more sporadic examples which we

list here.
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e The Suzuki groups Sz(q) for ¢ an odd power of 2 is a doubly transitive subgroup

Of Sq2+1.

e The Ree groups R(gq) for ¢ an odd power of 3 is a doubly transitive subgroup of

Sq3+1 .

e The Mathieu groups My, Mis, Mas, Mssz, Moy are doubly transitive subgroups of

511, Slg, 522, 823, and SQ4 respectively.

e The Mathieu group Mi; is a doubly transitive subgroup of S and PSLy(Fy;) is a

transitive subgroup of Si;.
e The alternating group Ay is a transitive subgroup of Ss.
e The Higman-Sims group HS is a doubly transitive subgroup of Siz.
e The Conway group Cos is a doubly transitive subgroup of Sa76.

The above list is a complete classification of doubly transitive subgroups of symmetric
groups, which is a complete list of the fields where our previous work together with the

Galois theoretic constraints imply the Colmez Conjecture.
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Chapter 3

Imprimitive CM Fields

3.1 Imprimitive CM Fields

The work in this section is joint with Jiuya Wang.

In this section, we aim to generalize some of the results of the previous chapter. A
unitary CM field is a CM field where the complex conjugation “comes from” an imaginary
quadratic field. In this section, we will study CM fields whose complex conjugation

“comes from” smaller CM fields.

Definition 3.1. Let K/Q be a totally real field, and let L be a CM field with totally real

subfield ¥ C K. Then LK is an L-imprimitive CM field.

It is useful to look at a field diagram in this case. And to set up notation we will use

in the rest of this chapter, let [K : F] =n and [F : Q] = f.

/
\

/\/
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Taking L = k to be an imaginary quadratic field, then a k-imprimitive CM field
is exactly the same as a unitary CM field. And the reason we exclude F' being equal
to K is that if ' = K, then the imprimitivity condition says nothing. This notion of
imprimitive lets us interpolate between a unitary CM field and a general CM field.

One ultimate hope of these ideas would be a sort of inductive procedure for the
Colmez Conjecture. Perhaps it is too optimistic to hope to deduce the Colmez Conjecture
for LK from the Colmez Conjecture for L, but maybe something can be said in that

case.

3.2 Signatures of CM Types in Imprimitive CM Fields

To emulate some of our results from the unitary case, we will define a notion of signature
for an imprimitive CM field. In the unitary case, the signature of a CM type depended
on a distinguished embedding of the imaginary quadratic field into C. For a general CM
field L, there is no such embedding, and hence, the signature of an imprimitive CM field
is slightly more complicated than in the unitary case.

Let &y be a CM type of L. This choice determines a labelling of the embeddings of
L into C. That is to say, we label the embeddings of L into C by 7, p7i1,..., 7, p7y,
where ®y = {r,..., 77} and p denotes complex conjugation.

This choice of ®( also determines a labelling of Hom(L K, C). Label the elements of

Hom(LK,C) by {711, s Tty s Tflye o s Tfms PT11s - - -, PTEn }, Where 7 5| = 7.

Definition 3.2. A CM type ® has ®q-signature (a1, b, ..., ar,by) if ® consists of a;

many of the {T;1,...,Tin} and b; many of the {pTi1,...,pTin}-

By the definition of a CM type, we have that a; +b; = n for each i. And similarly to
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the unitary case, we can specify a CM type by Sy, ..., S, where each S; C {1,2,...n}.
Le. if ®is a CM type corresponding to Sy, ..., Sf, then k € §; if and only if p7; , € . So
if each S; has size b;, then the corresponding CM type has ®g-signature (n—by, by, ..., n—
br,by).

If & is a CM type of LK, and ®y, ; are two different CM types of L, then the
P(-signature of ¢ is different from the ®;-signature of ®. Let (a1,b1,...,ar,bs) be the
®(-signature of ®. Then for every i such that 7, € &g N P;, we swap a; and b; to
determine the ®;-signature of ®.

For example, if £ = kF is a unitary CM field, there are only two CM types of the
imaginary quadratic field &, we will call them ®; and ®, with ®, N ®, = g. If P is a
CM type of E with ®;-signature (a,b), then the ®,-signature of ® is (b, a).

Alternatively, we could also define the signature of a CM type ® of LK as an un-
ordered set of unordered pairs of numbers. Le. if the ®-signature of ® is (a1, by, ..., ar, by),
we could define the signature of ® as {{a1,01},...,{ays,bs}}. This definition is indepen-
dent of the choice of ®,. However, we are interested in extending the Colmez Conjecture

from L to LK, and it will be useful for us to have ®, explicit in our notation.

3.3 An Imprimitive (n — 2,2) Theorem

In this imprimitive setting, we would like to generalize the (n — 2,2) theorem of the
previous chapter. To have any hope of extending the Colmez Conjecture from L to LK,

we will need to make some assumptions about the Colmez Conjecture on L.

Theorem 3.3. Using the notation in the beginning of this chapter, let LK be an L-

imprimitive CM field for a CM field L. Let ®y be a CM type of L, and assume that
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the Colmez Conjecture is true for ®y. Let ® be a CM type of LK. If the Colmez
Congecture s true for all CM types Q7 1y, for subsets Ty,..., Ty C{1,2,...,n} such

that #T1 + #15 + - - - #Ty < 2, then the Colmez Conjecture is true for ®.

Just as in the unitary case, we will prove the above theorem by explicitly writing Ag
in terms of simpler CM types. That is, the above theorem is a direct corollary of the

following result.

Theorem 3.4. Let LK be an L-imprimitive CM field for a CM field L. Let ®y be a
CM type of L, and let ® be a CM type of LK. Then, the class function appearing in the

Colmez Conjecture, A can be written as a sum

where ony,..ry € Q are explicit constants and Qq, 1, are CM types corresponding to
subsets Tv, ..., Ty C {1,2,...,n} such that #11 + #1o + -- - #Ty < 2. See equations

(3.1),(3.2), (3.3) for the explicit calculation of Ae in terms of these simpler CM types.

The 2 in the above theorem is in some sense “the same” 2 as in the (n—2, 2) theorem.
Throughout this calculation, we can see that this 2 seems to come from the quadratic

nature of the convolution involved in the definition of Ag.

Proof. Since ® is a CM type, ® corresponds to a set of subsets Sy, ...,5; C {1,2,...,n}.

Note that this correspondence depends on the CM type .
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Our first step will be explicitly calculating A}. To be more precise about the corre-

spondence between ® and Sy, ..., Sy, we have

=g+ Tt T+ Ty

=0y + (p Zﬁz ‘+Z7'f,i

1€S1 i€Sy
Next, we need to extend @ to (LK), the Galois closure of LK. Let H = Gal((LK)°/LK).

Then,

(I)C:Tl,1H+"“|’7'1,nH+"'+7'f,1H+"‘+7'f,nH

ZTLZ'H + -+ ZTf’iH

i€S1 iGSf

i€S] iESf
where ®f denotes the extension of &, from L to (LK)°.

Now to calculate 213, we need to invert every element showing up in ®¢, which gives

O=05+(p—1) | D Hr}+-+ Y Hry}
JEST iGSf
Next we calculate Ag 1= —L—dede,

[(LEK)e:Q]
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A¢—F<I>C<I>C—|—(p 1)< )(@C(ZHT +ZH%)

JjEST JESY
+ (ZTLZ‘H—F R ZTf,iH)(/ﬁ(E)
1€S] iESf
—2(#H)<Zﬁ7i+'”+ZTﬁi)H(ZTl_,jl ZTM)>
1€S] iESf JEST jESf

We will rewrite Ag in terms of simpler CM types. Suppose each S; has size b;.
To simplify notation, if 7; C {1,2,...,n}, we will write ®r, to indicate the CM type
corresponding to the set of subsets &, --- ,T;,--- , & and Ap, to indicate the function
As,. .

First, we will take Ag and subtract away all of the CM types corresponding to the 2

element subsets of Sy, ..., Ss. More precisely, we have

Ap — Z Aferay — - — Z A{Cfvdf}

{c1,d1}CS1 {cg,df}CSy

<1<2>~-f<b;>>/4%
o0 () (e [ (3 >+<§W>@%

—2(#H) [ (2-b) ZT“HTM—F Z leHT2j o Z 7'1,1'H7-];j1

1€5, 1€851,j€S2 1€51,j€S}

+ Z 7—2@]—]7—1_,].1 + (2 —by) Z 7—277;H7'2_7i1 4ot Z T27Z'HT;J.1

1€S2,7€51 [ISep) 1€52,J€S

+ [N

+ Z TfJHTl_’jl + -+ Z Tf,z‘HTf__le + (2 - bf) Z Tf,i]_‘h—f_,i1

1€S5y,j€S1 €Sy, JESy 1 €Sy
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Next, we will subtract away all of the CM types coming from elements of S; x .S;

with ¢ < j, giving

Ao— Y Apay—-— > Agap— D > Apyasy

{c1,d1}CS1 {cp,ds}CSy 1<i<G<f (04,B5)€S;: XS5

by by
:<1_<2>—...—<2)— Z bibj>Aq>O
1<i<y<f

;
+(p—1) (Z_blz_fﬁ”_bf> (;cpf} <Z H%ﬁ) N (ZTkH> ;

JESK €Sk

_2(#]—_[) ZTlviHTl_,il—l—"'—'—ZvaiHT;,il

€51 i€S;
Now, the quantity on the right hand side of the above expression can be written in
terms of CM types coming from 1 element subsets of each of the S;, together with the
empty set.

That is to say, our above calculations show that

Ag = Z Aferary +oo F Z Afesas + Z Z Afait {8} (3.1)

{c1,d1}CS1 {cs,df}CSy 1<i<j<f (ai,8;)€8: % S;
i1 €51 ifGSf
b1 by
=) —13) - > bbby = (2=by— - —bp) (b -+ by) | Ag,
1<i<j<f

(3.3)

]
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3.4 Further Imprimitive Results

Ideally, we would like to prove a version of the Average Colmez Conjecture in the
imprimitive setting. Currently, this result is out of reach, but in this section, we record
some partial results towards this goal.

First, let us consider the Galois equivalence. Note that the only CM type of ®-
signature (n,0,7n,0,...,n,0) is the extension of ®; to LK. Since the Galois group
Gal((LK)¢/Q) acts transitively on Hom(LK,C), we have that all CM types of ®¢-

signature
(n—1,1,n,0,...,n,0),(n,0,n—1,1,...,n,0),...,(n,0,n,0,...,n—1,1)

are equivalent. That is to say, all CM types corresponding to sets Si,..., Sy with
#S1 + -+ #S55 = 1 are equivalent.
Before we calculate the A% for such a CM type, we need the following calculations

on group characters.

Lemma 3.5. Consider the following set up of fields.
M

Let G = Gal(M/Q) and suppose there is a p in the center of G such that Gal(L/F') =

(p). Let xr/p : Hi — {£1} be the non-trivial map factoring through H. That is to say,
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xrr(H) =1 and xr/r(pH) = —1. Let m = Ind§ (x1/r). Then,

Xz = (1=p) Z fgngil‘
geG/Hy

Proof. Let f denote the function on the right hand side of the statement of the lemma.

For s € GG, we have

wels) = —— S0 xayetst™)

#H,
teG tst—1cH;

:#%(#{teG:tst—leH}—#{tGGrtst_lépH})-
1

On the other hand, let g4, ..., g, be a set of simultaneous left and right cosets for H;

in G. Then,

f(s) =#{i:gisg;' € Hy —#{i : gisg; ' € pH}.

Now if g;sg;* € H, then (hg;)s(hg;)™" € H for any h € H, (here we use that p is
in the center of (). Similarly, if g;sg; ' € pH, then (hg;)s(hg;)™" € pH for any h € H.

Thus, the result follows. m

Now, we’d like to calculate A% for simple CM types. In terms of ®-signature, the
simplest CM type is the extension of &y to LK. This is the only CM type with signature
(n,0,...,n,0). As ®¢ is an arbitrary CM type of L, it is perhaps too much to hope for
to give a decomposition of Aj into irreducible characters of Gal((LK)®/Q). However,
we can use A%O as a tool in describing the more complicated class functions.

Now, we turn to the calculation of A} for a CM type with #5; 4+ ---+#S5; = 1. We

can prove the Colmez Conjecture for these CM types.

Theorem 3.6. Let LK be an imprimitive CM field containing a CM field L. Let ®y be

a CM type of L and assume the Colmez Conjecture is true for ®q,. Then, the Colmez
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Conjecture holds for a CM type ®(; ;) of LK, where
D(ij) = o+ (p — D7y
See equation (3.4) for an explicit calculation of As, -

Proof. We will prove this by explicit calculation. We calculate Ag, , and then notice

that the Colmez Conjecture is known for the class functions that arise. First, we extend

to the Galois closure via we have that
G =P+ (p— D H,

and so

— — 1

=5+ (p—DHT ;.

Now we can calculate A(I,(L]) [(LK) @]<I>( )<I>f”)

A@(m’) - meg +(p— 1)Ti,jH)(€}% +(p— 1>H7—i7_jl)

=Ag, +(p—1) (T”HCDC + CI)CHT_I (#H)Ti,jHTijjl> )

1
2fn(#H)
Since all CM types with #S5; + --- + #S5; = 1 are equivalent, we can sum the above

expression over all (i, j) to obtain

1 _ _
an%’j) = fnds, + (p—1) ] Z (mHQ)C +OGHT L (#H)Ti’jHTi,j1>

2fn(#H

= fnde, + (p — )2f (#H) (@g?ﬂg + BLDE — 2(#H) Z Ti,jHTij)

,J

= fTLAq)O - 2(1 - p)ACDO _I_ %Xlndgal((LK)C/K)(XLK/K).
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Therefore,

2 1
(1= p)Aay + =5 X1

Aren = An =y (fup

gal((LK)C/K)(XLK/K) )

And from here, we can pass to the class function in a straightforward way,

2
0 _ A0 0
Ay = Aoy = 71— P)As, +

1
(fn)? Xlndgal((LK)C/K)(XLK/K) :

We would like to write the decomposition of A%m in terms of irreducible characters
of G. Unfortunately as ®( is an arbitrary CM type of L, we have no chance of explicitly
determining such characters, so we rely on the fact that we are assuming the Colmez
Conjecture holds for ®.

By Proposition 2.1 in Yang-Yin [27], we know that the Colmez Conjecture holds for
the character x kK.

We would like to say something about the expression (1 — p)A%O. Suppose we write

Agg = ZaC[C’] =a1x1+ Z%Xm
c £l
where C' ranges through conjugacy classes of Gal(L¢/Q) and 7 ranges through irreducible
representations of Gal(L¢/Q), and y; represents the trivial representation. Moreover,
we have that pAg (g9) = Ag, (pg)-

In [9], Colmez shows that every x, # 1 that shows up in the decomposition of A%O

is an odd character, i.e. xx(pg) = —xx(9).

Therefore,

pAG, = arX1 — Y anxe = 2a1x1 — Ag,,
w#£l
and so

(1—p)AY, =248, — 2a1x1.
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Therefore,

4 1

)Ag, + —aix1 +

4
—_— fn WXIndgal((LK)c/K)(XLK/K)'

T (3.4)

A%(m =1~
]

The remaining CM types from Theorem 3.3 are those CM types with #S514--- #S5; =
2. These CM types come in two forms, based on whether or not there is an ¢ with S; = 2.

We hope to address these remaining calculations in future work.
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Chapter 4

Theta Lifting in Signature (1, 1)

4.1 Theta Lifting Introduction

In this chapter, we will turn our focus from results on the Colmez Conjecture to theta
lifting. The main result is the calculation of an integral of a Borcherds product on a
signature (1, 1) quadratic space, extending the work of Kudla [12], Schofer [19], Ehlen
[11], and Bruinier-Yang [6].

In the first section of this chapter, we set up all the notation we will use throughout.
In section 2, we introduce Eisenstein series and the Siegel-Weil formula. Section 3 will
go through the main calculation of the integral, and section 4 contains technical details
justifying some of the steps used in section 3.

Let D > 0 be a fundamental discriminant, and consider the Q quadratic space
V = Q(v/D) with quadratic form ¢(z) = 2Z. Then, V is a signature (1,1) quadratic
space. Let H = GSpin(V) = G, where k = Q(v/D) (viewing Q(v/D) as a field rather
than a quadratic space), and then SO(V) = G, ;..

We will use the symmetric space D, the space of positive definite lines of V(R). For
z € D a positive definite line in V(R), and x € V(R), let (z,z), denote the majorant

associated to z. That is,

(r,z), = (v,,2,) — (X0, 2,1).
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—m@2):  This Gaussian will

With this majorant, we define the Gaussian as oo (z,2) = e
be used in the infinite component of our theta function.

For K a compact subgroup of H(Ay), let Xk denote the space
Xy = HQ)\ (D x H(Af)/K).

Let L be an even lattice in V with dual lattice L. Let S(V(Ay)) be the space of
Schwartz functions on V(Ay). Inside of S(V(Ay)), we have the subspace Sy, which is
the space of Schwartz functions supported on L' ®7 and constant on the cosets of L&Z.
The space Sy, is finite dimensional with basis {¢,},cr//1, where ¢, is the characteristic
function of the coset u+ L ® Z.

Fort e H,z € D,h € H(Ay), and ¢y € S(V(Ay)), we define the theta function as

0r, 2.k, o) 1= 3 w(gr) (9ol =2) B(B)iy ) (2).

zeV(Q)

In the above expression for 6, g, € SLy(R) such that g, - i = 7, and w is the Weil
Representation.
Associated to the lattice L we have the theta function 6, : H x D x H(Ay) — Sp,

defined by

LTz h) = ) 0(7,2,h,8,) 8,

peL'/L

The final input into the theta lift is F' : H — S a weakly holomorphic vector valued
modular form with representation py,. We will use the Fourier expansion of F', which we
write as,

F(r)= ) Fu7)d,

neL’/L

= Z Z cu(m)q" o

nw meQ
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With all of this, we can define the theta lift, first introduced by Borcherds in [3]. For

7,2, h, F' as above, let
O(2,h, F) = 9;15{ Jim /Ft ; F,(1)0(T, 2, h, gzﬁﬂ)v_"_zdudv},

where F; = {r =u+wvi € H: |[u] < %, |7| > 1, and v < t} is the fundamental domain
for SLy(Z) up to a height v < ¢, and by UC:TO we mean the constant term in the Laurent
expansion at o = 0.

The above is the general definition of the theta lift. However for our purposes, the
integral with converge at the value ¢ = 0 and hence we need not worry about the Laurent
expansion in terms of o.

The main goal of this chapter is to use the Siegel-Weil formula to compute the integral

1

_ ®(z,h, F')dzdh in terms of an Eisenstein series.
VOI(XK) /XK ( )

4.2 Eisenstein Series and the Siegel-Weil Formula

In this section, we introduce the Eisenstein series and state the Siegel-Weil formula,
which will be the connection between theta series and Eisenstein series. But first, we
introduce some notation.

For x € Q"\A*, let xv(z) = (z,D)s be the adelic quadratic character. For a €

a 0 1 b
A* b e A, let m(a),n(b) € SLa(A) denote the matrices : respectively.

0 at 0 1

For s € C, let I(s, xy) be the principal series representation
I(s,xv) = {CD : SLy(A) — C : ®(n(b)m(a)g, s) = xv(a)|ali (g, 3)}

There is an action of SLy(A) on I(s,xv) by right translation. We also have an SLy(A)
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intertwining map
A S(V(A) = 10, xv)
o M)(g) = ((9)2)(0).

We call a section ®(g,s) € I(s, xv) standard if the restriction of ® to the subgroup
SOy (R) SLQ(Z) is independent of s. For a Schwartz function ¢ € S(V(A)), there is a
unique extension of A\(p) to a standard section A(¢,s) € I(s, xv) such that A(¢,0) =
Ap)-

Let P < SLy(Q) be the subgroup of upper triangular matrices. For g € SLy(A), s €
C, and ¢ a standard section, define the Eisenstein series E(g, s, ®) by

E(g,5®) = Y ®(1gs).

~EP\ SL2(Q)

This Eisenstein series converges for s € C with Re(s) > 1, and moreover it has a
meromorphic continuation to C.
For our use, we will use a slightly more explicit Eisenstein series. For an integer /.

let x¢ be the character of SO5(R) of weight ¢. That is,
SO, (R) X% C*

cos(f)  sin(6)

— ewe

—sin(f) cos(6)
Let ®¢_ (g, s) be the standard section of SLy(R) induced by x,. Then, for ¢; € S(V(Ay)),

let E(T,s,¢,) denote the Eisenstein series
E(r,5,6,0) = v? E(g,, 5, 8%, © A(¢y)).

The connection between Eisenstein series and the theta series from the previous

section is due to the Siegel-Weil formula. For a much more thorough discussion, we refer
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the reader to Chapter 4 of [12]. Originally, the Siegel-Weil formula related the sum of
theta functions associated to quadratic forms with classical Eisenstein Series. The adelic
version below is the greatly generalized version due to Kudla.

Theorem 4.1 (Siegel-Weil). Let po, For g € SLy(A), oy € S(V(Ay)), we have

1

E(QTaoagooo ® 90) = WA (9(7-72>h730f) du(z,h)

For the proof of this theorem, see Theorem 2.1 in [12].

4.3 Evaluation of the Integral

This section contains the main theorem of this chapter of the thesis

Theorem 4.2. Using all of the notation set up in the previous sections of this chapter,

we have

1
—_ ®(z,h, F)d h) = lim —2| Constant Tt F,(T)E(T.0 2
Vol(Xr) /XK (z,h, F)du(z,h) Jim < onstan erm; W(T)E(T,0, ¢y, )) B

Proof. The main idea of this proof is to exchange the order of integration, use the
Siegel-Weil theorem to integrate the theta function, and then use Stokes’ theorem with
the lowering operators to evaluate the remaining integral. These ideas were set forth by
[12], where Kudla works out the corresponding integral for a signature (n,2) quadratic
space.

In the next section, we will show that we can switch the order of integration and

plug in ¢ = 0 to determine the theta lift. That is, in the next section, we will show that
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the following manipulation is valid,

/XK O(z, h, F) dp(z, h)z/ {}g&/ > Fu(r)o(r, z,h,qﬁu)v_"_?dudv}du(z,h)

= lim/ / (7,2, h, $,)v" 2 dp(z, h)dudv.
Xk

t—o00

Next, we note that each F),(7) is independent of z, h and so we can simplify the above

integral and then use the Siegel-Weil formula,

/ ®(z, h, F)du(z, h) = lim/ ZF 9 (7, 2, h, ¢,) dpu(z, h)v™2 dudv
XK

t—o00

T -2
_tlggo/ ZF E(1,0, ¢,,0)v~% dudv.

Next, we use the lowering operator for Eisenstein series. This is an operator taking
an Eisenstein series of weight k£ to an Eisenstein series of weight £ — 2. For a thorough
discussion on the Lie Algebra background of this operator, see [12]. However, for our
purposes, we will only need to discuss how this operator behaves on the upper half plane.

For any Schwarz function ¢, we have that

9 -2
aT{4zE(T 0,4,0,2)} = E(71,0,p,0)07".

1
First, using the lowering operator relation and the fact that dudv = ;d?dT, we have
7

[z

From this, we can apply Stokes’ theorem

/ (ZF E(7,0, ¢,,2) )—Q/BEZF E(7,0,6,,2) dr

that

E(7,0,¢,,0)v"? dudv = 2/ d <Z F,(m)E(T,0, ¢“,2)d7> .
Fi

I3 j
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Finally, with the modularity of F}, and E(7,0, ¢,,2) we can make cancellations along

different boundary components of 0F;. Doing this leaves

—L4g
/ VE(7,0, ¢, 2 dT—2/2 ZF E(7,0, ¢y, 2)du
OF T, +it
=2 (Constant Term Z F.(T)E(T,0,6,, 2))
1% v=t
O

This ends the main proof of this chapter of the thesis. We believe that these ideas
can be used to give interesting formulas for the integrals of certain modular forms along

geodesics associated to real quadratic fields.

4.4 Technical Details on Absolute Convergence

The purpose of this section is to show that the following integral absolutely converges,

justifying the exchange of integration of the previous section,

/X Jim /f > Fu(r)6(7, 2, b, ¢ )v? dudvdp(z, h).
K t m

First, we note that the region F; can be split into two pieces, F;, = F; + B;, where
-1 1
B,={r=u+iv: -5 <u< o1 1 <wv < t}. Since Fj is a compact region, absolute
convergence of the integral is guaranteed, so we can replace F; by B; in the integral.

So we would like to prove absolute convergence of the integral

fo 7 [ oo s it
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1/2

Let C(v,z,h) = 0T / / Z F(7)0(T, z, h, $,)du. If we use the Fourier expansions
~1/2
m

of both 6 and }_  F),, we get that

C(v,z,h) Z Z cu(—m) Z G (h ™ a)e?™(@rws),

o meQ zeV(Q)
Qz)=m

Since ¢, is an indicator function, we can bound C(v, z, h) by

C(v,z,h) < Z Z ¢, (—m) Z e, 1)

©n meQ xchlL’!
Q(z)=m

Let L, = QzN L and similarly, let L,. = Qz* N L. For x € (hL.) ® (hL,.), write
@ =z, + 2,1 for the associated decomposition. Let £ € V(R) such that (hL,.) = Z(

Then we have

C(v,2z,h)| < Z Z|Cu(_m)| Z A0z, 1)

u meQ ze(hL:)' ®(hL 1)
Qz)=m

)

Zat 47rvt2Q )

t=0

where
ar(m) = ‘{x =2, +a,0 € (hL) ® (hL,.) : Q(z) =m,x,. = +tl}|.

Let’s look at a;(m) for a moment. For x = z,+x,1 in the set being counted by a;(m),
we have that Q(z) = Q(z.)+Q(z,1), i.e. m = Q(z,)+t>Q({). Since Q(z,) = m—t2Q(()
and z is a 1-dimensional space, there are at most two possibilities for z,. So we have
that a;(m) < 2. Moreover, for a fixed t € N, we have that a;(m) = 0 for m sufficiently
negative. We can be a little more precise and say that for a fixed ¢t € N, there are O(#?)

many non-zero values of a;(m).
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Below, we have the following bounds for |C(v, z, h)|, where the rearranging of sums

is valid since all terms are positive,

Clo, 2] < 30 Y Jeu=m)| 3 alm)ete®
t=0

p meQ

- Z Z@;‘Cu m)|a( )€4m2Q@
n me

- Z ; ZQ@ m)|a( )€4m2Q(Z)
w me

_ Z Z Arot2Q(0) Z |C )|
m meQ

It will be important to look at the sum Z lc,(—m)|a;(m). For each p and ¢, it is a
meQ
finite sum. Since there are only finitely many negative Fourier coefficients

> D leul=m)lac(m)

n m>0
is a constant that is independent of ¢. For the negative values of m, we use a result of [5].

There exists a constant C' > 0 such that c,(—m) = O(e“VI™!) as m — —oco. Therefore,

S S feu(—m)lar(m) = O(™).

p meQ

Finally, we turn to absolute convergence of the integral

/ / C(v, z, )™ dvdpu(z, h).
Xx J1

To show the absolute convergence of the above integral, we need to show convergence of

I, where

I::/ / |C(v, z, h) v~ 2dvdu(z, ).
Xg J1
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We can bound I by

I</XK/ SN e, (—m)v | dvdp(z, h)

nw meQ zeV(Q)

Q(z)=m
ST § esagn
n meQ e€(hL:)@(hL,, )
Q(x)=m
=[S e Y a0 )
n meQ t=0
/ / ZZ 4mvi2Q(D) /2 (Z|C#(—m)at(m)> dvdy(z, h)
X W meQ
<< / / Z —3/2Zt2 Ct+47rvt2Q(Z)dvdlu(Z h)
XK
To study the asymptotics (in terms of v) of the inner sum Z t260t+47r“t2@(2), we can
t=0

look at the integral (and recall that Q(¢) < 0)

=3 -3
/’OO t2647rvt2Q(Z)dt _ Q(f) 2v2
0 32T

Using this, we get

I <</ /00 v_?’Q(Z)_?’/dedu(z, h)
Xg J1

<< | QU)*Pdu(z,h).

XK
As a function of z and h, Q(Z)_g’/ 2 is a non-vanishing continuous function on the
compact space Xg. Therefore, the integral f Xx Q(Z)_g/ 2du(z, h) converges and so we

have absolute convergence of our original integral.
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