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Abstract 
 
 A novel, catalytic synthesis of either enantiomer of the widely used synthetic building 

block Garner’s aldehyde from a single alkene was developed. Rhodium-catalyzed asymmetric 

hydroformylation (AHF) with the bis(diazaphospholane) (BDP) ligands developed by Landis and 

coworkers affords each Garner’s aldehyde enantiomer in high yield and enantiomeric purity in 

an atom economical, regio- and facially-selective alkene hydroformylation. This is the first 

reported AHF with a 1,2-disubstituted alkene with a different heteroatom on each carbon. 

Three AHF-based synthetic strategies toward the analgesic tapentadol are described. A 

styrene AHF strategy was abandoned due to poor regioselectivity producing the desired aldehyde 

as a minor component. A diene AHF strategy was attempted but resulted in very poor 

enantioselectivity due to rhodium allylic rearrangements during the AHF catalytic cycle. AHF of 

a trisubstituted olefin resulted in a complex mixture of aldehydes. 

 A rhodium-mediated domino annulation (RMDA) of δ-alkynyl ketones and α-boryl-α,β-

unsaturated esters producing fused pyranones was developed. Transmetallation of the vinyl 

boronic ester with the rhodium catalyst produces a vinyl rhodium intermediate that undergoes a 

highly regioselective syn addition to the alkyne to produce a second vinyl rhodium intermediate 

that immediately attacks the pendant ketone, forming a new five-membered ring. The rhodium 

alkoxide formed by the cyclization transesterifies with the α,β-unsaturated ester to form a fused 

lactone ring system. Overall, two new carbon-carbon bonds and one new carbon-oxygen bond 

are formed, creating two new rings. Several examples are shown exploring substrate functional 

group tolerance and steric limitations.  



 iv 
A total synthesis of the recently isolated natural product linderagalactone C was 

initiated, but production of both components of the RMDA met significant synthetic roadblocks. 

A planned Eschenmoser-Tanabe fragmentation failed to form the necessary δ-alkynyl ketone and 

the boronic ester for the RMDA was unable to be accessed from α-halo esters due to the severe 

electron withdrawing effects of the carbonyls. 



 v 
 

Table of Contents 

Dedication           i 

Acknowledgements          ii 

Abstract           iii 

Table of Contents          v 

Abbreviations and Acronyms        vii 

Chapter 1. Introduction to Asymmetric Hydroformylation    1 

 1.1 The Hydroformylation Reaction       2 

 1.2 Linear Hydroformylation Tandem Reactions     4 

 1.3 Asymmetric Hydroformylation       5 

  1.3.1 AHF with Directing Groups      6 

  1.3.2 Catalyst-Controlled AHF      8 

 1.4 Catalyst-Controlled AHF Tandem Reactions     9 

 1.5 Burke Group AHF Tandem Applications to Total Synthesis   11 

 References          13 

Chapter 2. Synthesis of Garner’s Aldehyde by Asymmetric Hydroformylation 25 

 2.1 Garner’s Aldehyde        26 

 2.2 Synthesis of Garner’s Aldehyde by AHF      27 

 2.3 Future Directions         30 

 Experimental Details         33 

 References          39 



 vi 
Chapter 3. Efforts Toward the Total Synthesis of Tapentadol via Asymmetric 

Hydroformylation/Reductive Amination One-Pot Sequence    47 

 3.1 Background         48 

 3.2 Styrene AHF Strategy        49 

 3.3 Diene AHF Strategy        51 

 3.4 Trisubstituted Olefin AHF Strategy      55 

 3.5 Future Directions         57 

 Experimental Details         60 

 References          66 

Chapter 4. Development of a Rhodium-Mediated Domino Annulation and Efforts Toward 

the Total Synthesis of Linderagalactone C       72 

 4.1 Background and [2+2+2] Strategies      73 

 4.2 Development of a Rhodium-Mediated Domino Annulation (RMDA)  79 

 4.3 Efforts Toward the Total Synthesis of Linderagalactone C   86 

 4.4 Future Directions         89 

 Experimental Details         94 

 References          108 

Appendix A. 1H and 13C NMR Spectra and SFC Traces     126 

Appendix B. Crystallographic Data       220 

Appendix C. Increasing Efficiency in Organic Synthesis Through the Development of New 

Reaction Technology          232 

Prepared for the WISL Graduate Student Award to Promote Graduate Chemistry to the 

Public.         



 vii 
Abbreviations and Acronyms 

Ac   acetyl 

acac    acetylacetonate 

AHF   asymmetric hydroformylation 

AIBN   2,2’-azobis(2-methylpropionitrile) 

BDP   bis(diazaphospholane) 

BDPP   bis(diphenylphosphino)pentane 

BINAP  1,1′-(binaphthalene-2,2′-diyl)bis(diphenylphosphine) 

Bn   benzyl 

Boc   tert-butyl carbamate 

Bpe   1,2-bis 

Bu   butyl 

cat.   catalyst 

Cbz   benzyl carbamate 

cod   1,5-cyclooctadiene 

Cp   cyclopentadienyl 

CSA   camphor-10-sulfonic acid 

d.r.   diastereomer ratio 

DBU   1,8-diazabicyclo[5.4.0]undec-7-ene 

DCC   N,N’-dicyclohexylcarbodiimide 

DiBAl-H  di-iso-butylaluminum hydride 

DMAP   N,N-dimethyl 4-aminopyridine 

DMF   N,N-dimethylformamide 



 viii 
DMSO   dimethylsulfoxide 

DPEphos  (oxydi-2,1-phenylene)bis(diphenylphosphine) 

dppf   1,1’-bis(diphenylphosphino)ferrocene 

e.r.   enantiomer ratio 

ee   enantiomeric excess 

EI   electron impact 

ESI   electrospray ionization 

Et   ethyl 

EtOAc   ethyl acetate 

eq.   equivalents 

Fmoc   9-fluorenylmethyl carbamate 

HMPA   hexamethylphosphoramide 

HRMS   high-resolution mass spectrometry 

IC50   half maximal inhibitory concentration 

imid.   imidazole 

IR   infrared spectroscopy 

LDA   lithium di-iso-propylamide 

LHF   linear hydroformylation 

mCPBA  3-chloroperbenzoic acid 

Me   methyl 

MIDA   N-methyliminodiacetate 

mol. sieves  molecular sieves 

MOM   methoxymethyl 



 ix 
Ms   methanesulfonyl  

MS   mass spectrometry 

NBS   N-bromosuccinimide 

NMR   nuclear magnetic resonance 

PCC   pyridinium chlorochromate 

Ph   phenyl 

pin   -O-C(CH3)2-C(CH3)2-O- 

PMB   p-methoxybenzyl 

PPTS   pyridinium p-toluenesulfonate 

Pr   propyl 

RMDA  rhodium-mediated domino annulation 

rt   room temperature 

SFC   supercritical fluid chromatography 

STAB-H  sodium triacetoxyborohydride 

Stryker’s reagent (triphenyl phosphine)copper hydride hexamer 

TBAF   tetrabutylammonium fluoride 

TBDPS  tert-butyldiphenylsilyl 

TBS   tert-butyldimethylsilyl 

TFAA   trifluoroacetic anhydride 

THF   tetrahydrofuran 

Ts   p-toluenesulfonyl 

TMS   trimethylsilyl 



 1 

 

 

 

 

 

Chapter 1. Introduction to Asymmetric Hydroformylation 
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1.1 The Hydroformylation Reaction 

Hydroformylation is a powerful synthetic transformation that has seen great use in 

industrial and academic chemistry since its discovery in 1938.1 Employing easily obtainable 

alkenes and syngas with a metal catalyst, hydroformylation produces aldehydes, arguably the 

most synthetically versatile functional group (Scheme 1A).  It is widely used for the industrial 

production of many solvents, plasticizers, and other commodity chemicals and is the oldest 

reaction still used for commercial production.2  

Scheme 1A. General Hydroformylation Reaction 

R
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R Me
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O
O
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Hydroformylation has near perfect atom economy and thus has seen renewed interest 

with the chemical community’s aspiration for more efficient synthetic methods. Although the 

first catalysts were cobalt compounds, rhodium compounds are now very common catalysts for 

hydroformylation.2 Rhodium catalysts have many advantages over other metals both in reactivity 

and selectivity. They are 100 to 1000 times more reactive than cobalt catalysts, allowing for 

lower catalyst loading. Rhodium catalysts also require much lower pressures and temperatures, 

do not reduce the aldehyde product to an alcohol, and can be used with phosphine ligands to 

limit the reduction of alkenes to alkanes.2  

Phosphorus-based ligands are the ligands of choice for hydroformylation.  Phosphine 

ligands were initially discovered to lower the necessary temperature and syngas pressure for 

hydroformylation as well as suppress alkene hydrogenation,3 but phosphite3b,4 and other 

phosphorus-based ligands5 have been developed and used successfully. Three of the most 

popular ligands for linear hydroformylation are xantphos, biphephos, and bisbi (Figure 1A).  
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Figure 1A. Common Linear Hydroformylation Ligands 
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The mechanism of rhodium-catalyzed hydroformylation is understood to start with the 

formation of a ligated dicarbonylrhodium hydride from the rhodium precatalyst reacting with 

syngas and a ligand.6 Freeing of a coordination site by loss of CO allows for the coordination of 

an alkene substrate. Anti-Markovnikov insertion of the alkene into the Rh-H bond produces the 

linear alkyl-rhodium species while Markovnikov insertion creates a branched alkyl rhodium 

Scheme 1B. Hydroformylation Mechanism 
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 4 
complex, often with a carbon stereocenter. Sterically, the anti-Markovnikov insertion is 

preferred, though electron-withdrawing groups can favor Markovnikov insertion.7 This insertion 

is thought to typically be irreversible,8 but reversible insertion has been observed.5b Alkyl 

migration from rhodium to the carbonyl ligand produces the acyl rhodium complex.  

Coordination and oxidative addition of dihydrogen followed by reductive elimination releases 

the aldehyde product and the rhodium hydride, thought to be the active catalyst.  Significant 

solvent, temperature, and pressure effects have been observed, necessitating experimentation and 

optimization with each substrate.9 

1.2 Linear Hydroformylation Tandem Reactions 

The mild conditions of the hydroformylation reaction are compatible with a variety of 

other reagents and functional groups, and relatively simple phosphine or phosphite ligands can 

provide excellent selectivity for the linear aldehyde.3-5 Because of this, many tandem and one-pot 

reactions have been developed (Scheme 1C). 3a-d,4a-d,5a,10 Hydroformylation of the vinyl group of 

1C1 produces aldehyde 1C2, which is condensed with the appended 1,2-amino alcohol to form 

the N,O-acetal 1C3 in good yield and excellent d.r.4a  Stabilized Wittig reagents, such as 1C5, 

are unreactive until the aldehyde (1C6) is produced, at which point 1C6 is olefinated to form the 

unsaturated ester 1C7.4b In another example of self-condensation, hydroformylation of 1C8 

produced aldehyde 1C9, which then condensed on the sulfonamide to form the enamine 1C10.4c 

Hydroformylation of 1-heptene (1C11) to octanal (1C12) with the phosphine ligand DPPon is 

followed by the addition of malonic acid and DBU, which undergo condensation of the aldehyde 

and decarboxylation to produce unsaturated carboxylic acid 1C13.3a These examples illustrate 

how the exploitation of the reactive aldehyde in situ allows for the rapid construction of 
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molecular complexity from simple starting materials while reducing the time and resources 

spent on purification. 

Scheme 1C. Recent Linear Hydroformylation Tandem and One-Pot Reaction Examples 
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1.3 Asymmetric Hydroformylation 

Asymmetric hydroformylation (AHF) is a powerful and atom economical synthesis of 

chiral aldehydes from alkenes.3a-d,4a-d,5a,10 Most often employed on a vinyl group, AHF results 

from Markovnikov insertion of the coordinated alkene into the rhodium-hydride bond.3f,7,11 The 

α-methyl chiral aldehydes formed are common synthetic intermediates, especially in the 

synthesis of polyketide natural products. Generally, AHF of di-substituted alkenes produces α-

alkyl chiral aldehydes,11a-d,12 and AHF 1,1-disubstituted alkenes produce β-chiral aldehydes since 

formation of the quaternary stereocenter is greatly disfavored due to steric congestion.11b,13 
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1.3.1 AHF with Directing Groups 

In 1986, Burke and Cobb reported the first example of the use of a phosphorus auxiliary 

acting as a ligand for a hydroformylation catalyst and influencing the facial- and regioselectivity 

of a hydroformylation in their synthesis of phyllanthocin (Scheme 1D).14 Phosphine-substituted 

benzoate ester 1D1 coordinates to the rhodium catalyst to form adduct 1D2. The ester positions 

Scheme 1D. First Use of Phosphorus Directing Group by Burke and Cobb 
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the catalyst on the concave face of the alkene and controls the facial selectivity of the 

hydroformylation to produce a 26:1 mixture of aldehyde isomers at the C3 position favoring the 

concave face (1D3). The length of the tether favors hydroformylation of the C3 carbon 8:1 over 

the C4 carbon. A small amount hydroformylation on the convex face of the alkene presumably 

results from non-ligated catalyst. Since this seminal publication, phosphorus-based directing 

groups have become a commonly exploited method to induce stereo- and regiocontrol in 

hydroformylation reactions, either as a transient and catalytic additive or as a stoichiometric 

auxiliary.15  

The Tan group (Scheme 1E) uses phosphine ligands (1E2 and 1E7) that are able to 

undergo acetal exchange with alcohols and amines (1E1, and 1E6, respectively) to form adducts 

(1E3 and 1E8).16 Selective hydroformylation of the near carbon (C1) of 1E3 and release of the 

covalently-bonded directing group allows the primary alcohol of 1E4 to attack the newly 

formed aldehyde.  This lactol is oxidized to the lactone product (1E5) with PCC.  Alternatively, 
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Scheme 1E. AHF with Tan’s Directing Groups 
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reduction of the aldehyde produced by AHF of C1 of 1E8 to alcohol 1E9 allows for easy 

analysis of the efficiency of Tan’s directed AHF. 

Scheme 1F. AHF with Breit’s Directing Groups 
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The Breit group has published extensively on directed AHF reactions.17 In a recent 

synthesis of (+)-clabolonine (1F3), the auxiliary directing group in 1F1 couples with the 

substrate stereochemistry to efficiently direct hydroformylation to the back face of the 1,1 

disubstituted alkene (Scheme 1F). The alkene insertion is selective for C2 because of the sterics 

of the 1,1-disubstituted alkene.17f Another example is the desymmetrization of the non-

conjugated diene 1F4. A catalytic phosphinite ligand reacts with 1F4 to form adduct 1F5 to 
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direct hydroformylation to the near carbon to form aldehyde 1F6.  Methanolysis of the 

phosphinite adduct and oxidation of the resulting lactol produces the lactone product 1F7 in good 

yield.17g  

1.3.2 Catalyst-Controlled AHF 

The most ideal and applicable catalytic systems for AHF are those that exercise a high 

degree of catalyst control over the stereochemistry and regiochemistry of the aldehyde product. 

Unfortunately, no one catalyst-ligand system has been developed that is able to effectively 

control stereoselectivity and regioselectivity on all types of alkenes, but there are many ligands 

that are effective across a range of substrates.3f,7,11-13 

Figure 1B. Common Ligands for Catalyst-Controlled AHF 
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There are several types of phosphorus ligands, including phosphine,7,13a,11p-q,12h-i,18 

phosphite,11a-d,11q,12e,19 and mixed phosphine-phosphite ligands.11i,20 Other phosphorus-based 

ligands have also been reported.11n-o,q-r,12b,21 In the quest for perfect selectivity, new ligands are 

continually being developed, including ligands with phosphorus-centered chirality13 and chiral 

cores based on sugars11a or helical compounds.11l Self-assembled supramolecular ligands,11c-d and 

non-phosphorus based ligands like N-heterocyclic carbines11k and diamines17b also broaden the 

synthetic utility of AHF. Several of the most commonly employed ligands are shown in Figure 

1B.11g-h,22-23 The Landis group has recently developed diastereomeric bis(diazaphospholane) 

(BDP) ligands (see box in Figure 1B) with complimentary enantioselectivity that provide 

excellent conversion and enantioselectivity with low catalyst and ligand loading, mild 

temperatures, and moderate pressures.7,18a  

1.4 Catalyst-Controlled AHF Tandem Reactions 

Despite the plethora of examples of tandem and one-pot linear hydroformylation 

examples and the growing synthetic utility of AHF reactions either with directing groups or  

under catalyst control, there are only a few examples of catalyst-controlled AHF tandem or one- 

pot reactions (Scheme 1G). AHF of styrene (1G2) has been combined with proline-catalyzed 

aldol addition of acetone (1G1) for the direct synthesis of stereodiads 1G4 and 1G5.24  

In a recent synthesis of the C1-C12 fragment of tedanolide C (1G9), Smith and 

coworkers used AHF of the diene of 1G6 to the α-methyl aldehyde 1G7 that was methylated in 

situ with MeTi(OiPr)3 to form a mixture of alcohol epimers at C11 (1G8).25 Oxidation of the 

1G8 mixture to the methyl ketone (1G9) was the final step in the fragment synthesis. The C10 

epimer of 1G9 was also prepared using the other enantiomer of binaphos for the 

AHF/methylation one-pot reaction. Initial experiments of tandem reactions with Landis BDP 
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ligands have shown that stabilized Wittig reagents26 and reductive amination conditions27 do 

not interfere with the AHF reaction and that racemization of the α-chiral aldehydes is not 

competitive with reaction at the carbonyl under these conditions (Scheme 1H).  

Scheme 1G. Reported Tandem and One-Pot Catalyst-Controlled AHF Reactions 
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Scheme 1H. Initial AHF Tandem Reactions with BDP Ligands 
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1.5 Burke Group AHF Tandem Applications to Total Synthesis 

Recent research in the Burke group has focused on building a program to exploit BDP 

ligands’ efficient generation of α-chiral aldehydes for the synthesis of complex organic 

molecules.  In particular, we wish to couple AHF with other reactions for tandem or one-pot 

sequences that produce stereochemically complex advanced intermediates in few synthetic steps. 

As a demonstration of the power of this methodology, the Burke group has published 

exceptionally efficient syntheses of (+)-patulolide C28 (1I6, Scheme 1I) and the (–)-Prelog-

Djerassi lactone29 (1J9, Scheme 1J). 

Scheme 1I. Burke’s Synthesis of (+)-Patulolide C 

OH AcO

1% Rh(CO)2(acac),
2% (S,S,S)-BDP, THF,

150 psi CO/H2, 50 ˚C, 24 h

OH OAc
O

O C C PPh3
PhMe, 110 ˚C

O OAc
O

62%

OH
N

Ph2P 1% [RhCl(cod)]2, 
AcOH, THF, 
110 ˚C, 24 h2%

82%

PFL
pH = 7 

phosphate buffer

O OH
O

99%O OAc
OO

PPh3

1I6
62% overall yield

1I1 1I2 1I3

1I4 1I5

- O=PPh3

 

Alkyne 1I130 was converted into Z-vinyl acetate 1I2 via a rhodium-catalyzed anti-

Markovnikov addition of acetic acid.31 AHF using the (S,S,S)-BDP ligand formed aldehyde 1I3, 

which was then added to a solution of the Bestmann ylide.32 This effected lactonization by 

esterification with the secondary alcohol to form stabilized ylide 1I4, which subsequently reacted 

with the appended aldehyde to give the unsaturated lactone 1I5 in 62% yield.  Deacetylation with 

Pseudomonas fluorescens lipase33 produced the natural product in three steps from known 

alkynyl alcohol 1I1.   
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The second example began with the orthoester 1J1.  AHF to 1J2 proceeded with 

excellent regioselectivity and good enantioselectivity.  One-pot crotylation with 1J3 produced 

the stereotriad 1J4 in good yield with excellent diastereoselectivity.34 Another one-pot 

transformation from terminal alkene 1J4 to unsaturated ester 1J6 via ozonolysis and Wittig 

olefination with stabilized reagent 1J5 proceeded in good yield.35 Diastereoselective 

hydrogenation of the alkene 

Scheme 1J. Burke’s Synthesis of the (–)-Prelog-Djerassi Lactone 

O

O
O

O

O
O

O B
O

O
O

O
O

OH
1. O3, CH2Cl2, -78 ˚C;
PPh3, 25 ˚C
2. PhMe, 110 ˚C

CO2MePh3P

O

O
O

OH
CO2Me

1% [Rh(cod)(S)-BINAP]ClO4
1000 psi H2, CH2Cl2 O

O
O

O

Me

O

O

MeO

O

O

1% (R,R,S)-BDP,
0.5% Rh(CO)2(acac),

160 psi 3:1 CO/H2,
THF, 40 ˚C

AcOH,
THF/H2O O

O

O

O

OHHO

1. LiOH, THF/H2O
2. TMSCHN2, MeOH
3. Otera's cat., 
PhMe, 110 ˚C

1J1 1J2

1I3

1J4

1J5

1J6

1J7 1J8 1J9

12:1 branched:linear
93% ee d.r. >95:5

d.r > 32:1

57% overall yield

83%
91%

76%

 

of 1J6 and subsequent lactonization was accomplished in excellent diastereoselectivity to form 

lactone 1J7.36  Acidic decomposition of the orthoester to ester 1J8,37 saponification with LiOH, 

and methylation with (trimethylsilyl)diazomethane38 produced a mixture of lactone and open 

chain esters, which was converted to the lactone 1J9 with Otera’s catalyst39 in good yield.  

Overall, 1J9 was synthesized in three steps with an overall 57% yield, which is considerably 

more efficient than all other published syntheses of the Prelog-Djerassi lactone.40,41 

AHF is a rapidly growing field of study, with new ligands and applications continually 

being developed.  Alkenes can be converted to chiral aldehydes with high selectivity and 

combined with tandem or one-pot reactions for extremely rapid generation of molecular 

complexity.  This AHF/tandem or one-pot reaction strategy has been demonstrated in particular 
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by the Burke group in the synthesis of (+)-patulolide C and the (–)-Prelog-Djerassi lactone. 

Since chiral aldehydes are such a valuable commodity to the synthetic community, AHF has the 

potential to revolutionize their production.  
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2.1 Garner’s Aldehyde 

Garner’s aldehyde (2A4) is a popular chiral synthetic building block derived from serine 

(2A1) that was first reported in 1984 by Philip Garner (Scheme 2A).1-3 Other N-protecting 

groups have been reported for 4-formyl-2,2-dimethyl-3-oxazolidinone, including CBz,4 benzyl,5 

methyl carbamate,6 Fmoc,7 and o-phenylbenzoyl groups,8 but the Boc group is by far the most 

commonly employed protecting group.  A wide variety of synthetic transformations have been 

performed on 2A4, including addition of organometallic reagents,9 olefination,10 aldol addition,11 

reductive amination,12 alkynylation,13 and incorporation of the aldehyde into other functional 

Scheme 2A. Synthesis of Garner’s Aldehyde from Serine 
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groups such as nitrones14 and oximes.15 In an unusual use, nitrones derived from 2A4 have been 

shown to cyclize with ketenes to produce chiral oxindoles, thereby employing 2A4 as a chiral 

auxiliary instead of a building block.14b The use of 2A4 in synthesis has been reviewed,16 but 

several more natural products recently synthesized with 2A4 are illustrated in Figure 

2A.9a,e,j,10c,14a 

Figure 2A: Recent Uses of Garner’s Aldehyde in Synthesis 
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2.2 Synthesis of Garner’s Aldehyde by AHF 

Although both enantiomers of 2A4 can be prepared from the respective enantiomer of 

2A1,2 we envisioned that a facial-and regioselective hydroformylation of oxazoline 2B1, 

previously reported by Funk and coworkers (Scheme 2B),18 would produce 2A4 in a single step.  

Scheme 2B. Synthesis of Both Enantiomers of 2A4 by AHF 

The Landis group has studied AHF of alkenes with vinyl heteroatoms using their 

bisdiazaphospholane (BDP) ligands (Scheme 2C).19,20 However, no substrate has had competing 

direction by two different heteroatom functionalities.  Our hypothesis was that the vinyl 

carbamate in 2B1 would be the stronger director because of its enhanced electron-withdrawing 

effects due to the carbamate protecting group. 

Scheme 2C. AHF of Vinyl Heteroatomic Substrates with BDP Ligands 
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Since 2B1 has been reported previously,18 its synthesis followed published procedures 

(Scheme 2D). Carboxylic acid 2D321 was synthesized from racemic serine methyl ester 

hydrochloride (2D1) by protection of the amine as a Boc carbamate and installation of the 
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isopropylidene to furnish oxazolidine 2D2 in a 79% yield over two steps.  Saponification of 

the methyl ester with aqueous LiOH formed carboxylic acid 2D3 in excellent yield. 2D3 was 

then subjected to a two-step oxidative decarboxylation/elimination procedure with Pb(OAc)4 and 

NH4Br to form 2B1 in 42% yield from 2D3.18   

Scheme 2D. Synthesis of 2B1 
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Screening AHF conditions with 2B1 quickly indicated the AHF was proceeding with the 

desired regiochemistry and 2A4 as the major product (Table 2A). Analysis of the 1H NMR 

spectrum of the crude reaction allowed for the simultaneous determination of completion and 

regioselectivity by the absence of signals for 2B1 and comparison of the product aldehyde  

Table 2A. Optimization of AHF of 2B1* 

*Rh=mol % Rh(CO)2(acac); [2B1] in THF; Ligand=BDP; Conv.=conversion (determined by 1H NMR of crude 
mixture);Yield (isolated); e.r. determined by SFC after reduction and esterification (vide infra) 
 

Experimental Conditions Results 
Rh T (˚C) [2B1] Time Ligand Conv. 4-CHO:5-CHO Yield e.r. 
1% 44 0.8 3 d (R,R,S) 70% 17:1 56% 96:4 
1% 60 0.8 3 d (R,R,S) >95% 12:1 68% 93:7 
1% 50 1.15 3 d (S,S,S) 56% 11:1 49% 1:99 
1% 56 0.8 2 d (S,S,S) >95% 11:1 74% 2:98 
1% 41 1.07 16 h (S,S,S) 57% 26:1 - - 
1% 41 1.31 16 h (S,S,S) 32% 12:1 - - 
1% 50 1.2 16 h (S,S,S) 66% 17:1 40% 1:99 
1% 57 1.2 16 h (S,S,S) 89% 8:1 72% 2:98 
2% 56 0.5 16 h (S,S,S) 74% 16:1 63% 2:98 
2% 55 0.5 3 d (S,S,S) >95% 20:1 70% 2:98 
2% 55 0.5 3 d (R,R,S) >95% 13:1 71% 97:3 
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signals, respectively (Figure 2B). Balancing conversion and regioselectivity was the biggest 

obstacle; a slower reaction often gave excellent regioselectivity, but did not go to completion in a 

reasonable amount of time. A faster reaction often sacrificed regioselectivity for conversion.   

Figure 2B. Aldehyde 1H NMR Signals (CDCl3) of Crude AHF Reaction 

 

 

 

 

 

 

Balancing catalyst and substrate concentrations was challenging.  We found that the 

catalyst concentration must be at least 0.01 M for effective hydroformylation, but regioselectivity 

was improved with dilution of 2B1. Optimization of conditions to 55 ˚C, 0.5 M concentration, 

2% catalyst loading, and a reaction time of three days furnished (S)-2A4 in 70% and (R)-2A4 in 

71% isolated yields (Scheme 2E). There are differences in enantio- and regioselectivity and 

isolated yield because the BDP ligands are diastereomeric. The energy difference between 20:1 

regioselectivity and 13:1 regioselectivity at 55 ˚C was calculated to be about 0.28 kcal/mol using 

the Boltzmann distribution. 

Scheme 2E. Synthesis of Both Enantiomers of 2A4 by AHF of 2B1 
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Optical rotation data for both enantiomers of 2A4 has been reported,2 but for a more 

accurate determination of enantiopurity both enantiomers of 2A4 were reduced to primary 

alcohols (2F1) and esterified with 4-bromobenzoyl chloride to produce esters 2F2 (Scheme 2F).  

The enantiomeric ratios for 2F2 were determined to be 97:3 for the R-enantiomer and 98:2 for 

the S-enantiomer by supercritical fluid chromatography (SFC). Absolute configuration was 

assigned based on enantiomerically pure (S)-2F2 prepared from L-serine methyl ester 

hydrochloride. 

Scheme 2F. Reduction and Esterification of (R)-2A4 for Enantioselectivity Analysis 
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2.3 Future Directions 

The low yielding oxidative decarboxylation/elimination sequence and dependence on 

serine are limitations of the synthesis of 2B1. To circumvent these problems, an independent 

synthesis of 2B1 was imagined from known oxazolidine 2G3, prepared in two steps from 

ethanolamine (2G1) (Scheme 2G).22 Free-radical dibromination with N-bromosuccinimide 

(NBS)23 to dibromooxazolidine 2G4 and reductive debromination with NaI24 would furnish 2B1 

in fewer synthetic steps than the serine oxidative decarboxylation and from simpler and less 

expensive starting materials. 

Scheme 2G. Potential Non-Serine Synthesis of 2B1 
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This free radical dibromination/reductive debromination strategy can also be applied to 

dioxolane 2H1 (Scheme 2H).25  The dibromination of 2H1 has been investigated and preliminary 

data show excellent conversion to the dibromide 2H2, which could be dehalogenated with NaI in 

3-pentanone to form known dioxole 2H3.26 Experiments for debromination with Zn0 or Mg0 

have been unsuccessful, presumably because of the volatility of 2H3 and the more complicated 

Scheme 2H. Glyceraldehyde Acetonide by AHF 

OO
NBS, AIBN, PhH, 80 ˚C OO

Br Br

NaI, 3-pentanone
OO OO

O

OO

O

Rh(CO)2-(acac), BDP ligand
CO/H2 THF

or

2H1 2H2 2H3 (S)-2H4 (R)-2H4  

work up for these superstoichiometric metal reductions. The relatively low boiling point of 2H3 

(71 ˚C) suggests isolation by distillation from the reaction mixture, but 3-pentanone should be 

the solvent, not acetone, because of its higher boiling point (102 ˚C vs. 56 ˚C). Dioxoles are 

excellent potential AHF substrates because of their high symmetry and electronic activation as 

vinylic ethers.  AHF of 2H3 would produce glyceraldehyde acetonide 2H4, which is a very 

common chiral building block produced from the chiral pool.27 

Other common acetal-protected glyceraldehydes are 2I228 and 2I4,29 which could be 

produced by AHF of dioxoles 2I1 and 2I3 (Scheme 2I).30 However, the above 

brominaton/debromination procedure cannot produce 2I1 and 2I3. The oxygen-bearing  

Scheme 2I. Acetal Protected Glyceraldehydes by AHF 
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methylenes of 2J1,31 and 2J332 are deactivated to hydrogen atom abstraction relative to the 

other methylenes, so bromination does not occur on the dioxolane ring (Scheme 2J). Instead, 

bromoalkyl dioxolanes 2J2 and 2J4 are produced.31,33 An alternative synthesis of 2I1 and 2I3 

must be developed for their exploitation by AHF. 

Scheme 2J. Free Radical Bromination of Alkyl-Substituted Dioxolanes 2J1 and 2J3 

 

Because of the mild conditions of AHF, all of the chiral aldehydes so produced can be 

subjected to tandem or one-pot reactions, thus mitigating the epimerization and polymerization 

of glyceraldehydes27 and allowing for the rapid generation of complex, chiral material (Scheme 

2K).  Comparison of the reaction conversion data in Table 2A (>95%) and isolated yields (70 

and 71%) shows that over 25% of the product is lost in purification by flash column 

chromatography.  This product can be used and not lost if additional reagents are present for a 

tandem reaction, or added after the completion of the AHF for a one-pot procedure. Many of the 

reactions with 2A4 reported above could be done in a tandem or one-pot sequence. Recently 

reported transformations of acetal- protected glyceraldehydes that would work in a tandem 

Scheme 2K. Tandem or One-Pot Reactions of 2A4 and 2H4 
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or one-pot reaction with AHF are Wittig and Horner-Wadsworth-Emmons olefinations,34 

allylation and crotylation,35 Grignard additions,36 and conversion to a terminal alkyne.13a,37 

Additional tandem reactions can be developed and exploited for rapid construction of molecular 

complexity with practically simple procedures.   

 Preparation of 2A4 by AHF is an efficient and atom economical method to access a 

common synthetic building block. The mild conditions of AHF can be exploited with tandem or 

one-pot reactions on the crude aldehyde for the rapid generation of complex chiral molecules 

with reduced purification and waste. An alternative synthesis of oxazoline 2B1 from 

ethanolamine would further increase the efficiency of this sequence. Additionally, the 

heterocycle AHF/tandem or one-pot reaction can be applied to the synthesis of acetal-protected 

glyceraldehydes and their derivatives, which also are popular chiral synthetic building blocks. 

Experimental Details 

3-(1,1-Dimethylethyl) 4-methyl 2,2-dimethyl-3,4-oxazolidinedicarboxylate (2D2) 

Di-tert-butyl carbonate (43.8 g, 201 mmol) was added to a solution of rac-serine methyl 

ester hydrogen chloride (2D1) (25.0 g, 161 mmol) in THF (49 mL) and saturated aqueous 

NaHCO3 (196 mL). The biphasic mixture was stirred vigorously 16 h, was diluted with H2O (500 

mL) and stirred for 10 min, then partitioned with EtOAc (100 mL) and stirred for an additional 5 

min.  The aqueous phase was extracted with EtOAc (50 mL) and the combined organic phases 

were dried (Na2SO4) and concentrated.  Stirring under low pressure was necessary for complete 

removal of residual solvent due to the viscosity of the oil, which was then dissolved in acetone 

(500 mL) and 2,2-dimethoxypropane (178 mL, 1.45 mol).  Neat BF3•OEt2 (2.0 mL, 16.1 mmol) 

was added dropwise and the dark red solution stirred overnight.  The reaction was concentrated 

under reduced pressure and the crude, dark red oil was dissolved in CH2Cl2 (50 mL) and washed 
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with 1:1 saturated aqueous NaHCO3/H2O and brine (40 mL of each), then dried (Na2SO4), 

concentrated, and fractionally distilled (b.p. 111˚C, 1.8 Torr) to give 31.89 g (76% over two 

steps) of 2D2.  The spectroscopic data matched reported literature values. 

3-(1,1-Dimethylethyl) 2,2-dimethyl-3,4-oxazolidinedicarboxylate (2D3) 

Aqueous LiOH (18.4 mL, 1 M, 18.4 mmol) was added to a solution of 2D2 (4.34 g, 16.7 

mmol) in MeOH (28 mL) at 0˚C and the solution stirred for 16 h.  The reaction was concentrated 

under reduced pressure and the crude oil partitioned with Et2O and H2O (20 mL of each).  The 

Et2O layer was discarded and the aqueous layer was acidified to pH 4 with 10% citric acid, 

precipitating a white solid. The aqueous suspension was extracted with EtOAc (3x10 mL), dried 

(Na2SO4), and concentrated to give a white solid 2D3 (3.91 g, 95%) whose spectroscopic 

properties matched the reported literature. 

3-(1,1-Dimethylethyl) 2,2-dimethyl-3-oxazolinecarboxylate (2B1) 

 Lead(IV) acetate (6.0 g, 13.5 mmol) was added to a solution of carboxylic acid 2D3 (3.0 

g, 12.2 mmol) in benzene (49 mL) and refluxed for 16 h.  After cooling to 25 ˚C, the solids were 

filtered off through a pad of Celite® with EtOAc (50 mL) and the filtrate was washed with 

aqueous NaHCO3 (100 mL).  The aqueous layer was separated and extracted with EtOAc (3x70 

mL).  The combined organic layers were washed with brine (100 mL), dried (MgSO4), and 

concentrated under reduced pressure to give a colorless to light yellow solid that required no 

further purification.  m.p. = 64-65 ˚C. Rf 0.30 (10% EtOAc/hexane). 1H NMR (300 MHz, CDCl3) 

δ 1.46 (br s), 1.51 (br s), 1.67 (br s), 2.08 (s, 3H), 3.96 (d, J=10.5 Hz), 4.06 (dd, J=10.5, 3.3 Hz), 

6.40 (d, J=3.3 Hz). 13C NMR (75 MHz, CDCl3, rotamers*) δ 21.3 (CH3), 24.0 (CH3), 24.7* 

(CH3), 26.5 (CH3), 27.4* (CH3), 28.5 (CH3), 69.6 (CH2), 81.2 (CH), 81.8 (C), 82.8* (CH), 95.3 

(C), 151.0 (C), 170.7 (C). IR (neat) 2982, 1738, 1709 cm-1. HRMS (ESI) calcd for [M+Na]+ 
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282.1312.  Found 282.1318. 

Ammonium bromide (3.23 g, 32.9 mmol) was added to a solution of crude acetate in 

toluene (37 mL).  The suspension was refluxed for 16 h with a Dean-Stark trap two-thirds filled 

with 15% w/w aqueous NaOH.  After cooling to room temperature, the brown slurry was 

transferred with Et2O to a separatory funnel containing aqueous NaHCO3 (100 mL).  The 

aqueous layer was separated and extracted with Et2O (3x70 mL).  The combined organic layers 

were washed with brine (100 mL), dried (MgSO4), and concentrated under reduced pressure.  

The crude oil was purified by flash column chromatography (prewashed with 2 L 1% 

Et3N/EtOAc, 2 L EtOAc, and 2 L 5% EtOAc/hexane; elute 2 L 5% EtOAc/hexane) to give a 

yellow to off-white solid 2B1 (1.03 g, 42% over two steps). m.p. = 59-60 ˚C. Rf 0.54 (10% 

EtOAc/hexane).  1H NMR (300 MHz, CDCl3). δ 1.48 (br s, 9H), 1.63 (br s, 3H), 1.68 (br s, 3H), 

5.96 (br s), 6.04 (br s), 6.10 (br s), 6.24 (br s).  13C NMR (75 MHz, CDCl3, rotamers*) δ 24.4 

(CH3), 25.4* (CH3), 28.5 (CH3), 80.5 (C), 81.0* (C), 98.1 (CH), 98.5* (CH), 108.9 (C), 128.9 

(CH), 129.6* (CH), 149.5 (C), 149.9* (C).  IR (neat) 2977, 1686, 1394, 1086 cm-1.  HRMS (EI) 

calcd for [M]+ 199.1203.  Found 199.1208. 

1,1-Dimethylethyl (S)-4-formyl-2,2-dimethyl-3-oxazolidinecarboxylate  [(S)-2A4] 

 Under an inert atmosphere, (S,S,S)-BDP (174 mg, 0.133 mmol) and Rh(CO)2(acac) (27 

mg, 0.106 mmol) were dissolved in THF (3.64 mL) in a 40.5 cm-long pressure bottle sealed with 

a custom head (equipped with pressure gauge, filling/venting valve, and a septum-sealed valve) 

and pressurized to 140 psi with syngas.  After the solution stirred at 55 ˚C for 20 min, the 

pressure was reduced to about 15 psi and alkene 2B1 (1.06 g, 5.32 mmol) was added as a 

solution in THF (7 mL) via syringe.  The pressure was increased to 140 psi and the reaction was 

stirred at 55 ˚C for 3 d.  After cooling to room temperature, the syngas was vented and the 
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solution concentrated in vacuo.  The regioselectivity was determined to be 20:1 by comparison 

of the aldehyde peaks in the 1H NMR spectrum of the crude oil [minor regiomeric aldehyde δ 

9.76 (d, J=1.2 Hz)].  The crude oil was purified by flash column chromatography (20% 

EtOAc/hexane) to give a colorless to yellow oil  (0.85 g, 70%). Rf  0.35 (20% EtOAc/hexane). 

1H NMR (300 MHz, CDCl3) δ 1.44 (br s), 1.52 (br s), 1.56 (s), 1.61 (s), 1.66 (s) 4.00-4.16 (m, 

2H), 4.16-4.40 (m, 1H), 9.55 (d, J=2.4 Hz), 9.61 (d, J=0.9 Hz, rotamer). 13C NMR (75 MHz, 

CDCl3, rotamer*) δ 24.0 (CH3), 24.9* (CH3), 26.0 (CH3), 26.9* (CH3), 28.5 (CH3), 63.7* (CH2), 

64.1 (CH2), 64.9 (CH), 81.3 (C), 81.6* (C), 94.5 (C), 95.3* (C), 101.0 (C), 151.5 (C), 152.8* 

(C), 199.6 (CH). IR (neat) 2981, 1739, 1709, 1370 cm-1. HRMS (ESI) calcd for [M+Na]+ 

252.1207. Found 252.1194. 

1,1-Dimethylethyl (R)-4-formyl-2,2-dimethyl-3-oxazolidinecarboxylate  [(R)-2A4] 

 Under an inert atmosphere, (R,R,S)-BDP (160 mg, 0.122 mmol) and Rh(CO)2(acac) (25 

mg, 0.097 mmol) were dissolved in THF (2.74 mL) in a 40.5-cm long pressure bottle sealed with 

a custom head (equipped with pressure gauge, filling/venting valve, and a septum-sealed valve) 

and pressurized to 140 psi with syngas.  The solution stirred at 55 ˚C for 20 min, the pressure 

reduced to about 15 psi and alkene 2B1 (0.97 g, 4.87 mmol) was added as a solution in THF (7 

mL) via syringe.  The pressure was increased to 140 psi and the reaction was stirred at 55 ˚C for 

3 d.  After cooling to room temperature, the syngas was vented and the solution concentrated in 

vacuo.  The regioselectivity was determined to be 13:1 by comparison of the aldehyde peaks in 

the 1H NMR spectrum of the crude oil [minor regiomeric aldehyde δ 9.76 (d, J=1.2 Hz)].  The 

crude oil was purified by flash column chromatography (20% EtOAc/hexane) to give a colorless 

to yellow oil  (0.79 g, 71%). Rf  0.35 (20% EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 1.44 

(br s), 1.52 (br s), 1.56 (s), 1.61 (s), 1.66 (s), 4.00-4.16 (m, 2H), 4.16-4.40 (m 1H), 9.55 (d, J=2.4 
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Hz), 9.61 (d, J=0.9 Hz, rotamer). 13C NMR (75 MHz, CDCl3, rotamer*) δ 24.0 (CH3), 24.9* 

(CH3), 26.0 (CH3), 26.9* (CH3), 28.5 (CH3), 63.7*(CH2), 64.1 (CH2), 64.9 (CH), 81.3 (C), 81.6* 

(C), 94.5 (C), 95.3* (C), 101.0 (C), 151.5 (C), 152.8* (C), 199.6 (CH). IR (neat) 2981, 1739, 

1709, 1370 cm-1. HRMS (ESI) calcd for [M+Na]+ 252.1207. Found 252.1194. 

1,1-Dimethylethyl 4-hydroxymethyl-2,2-dimethyl-3-oxazolidinecarboxylate (2F1) 

 NaBH4 (0.18 g, 4.83 mmol) was added to a solution of aldehyde 2A4 (0.79 g, 3.45 mmol) 

in MeOH (35 mL) at 0 ˚C. The solution was stirred at 0 ˚C for 1 h, quenched with saturated 

aqueous NH4Cl (10 mL), warmed to room temperature, and extracted with EtOAc (2 x 20 mL).  

The combined organic layers were dried (MgSO4), filtered, and concentrated to give a white 

solid suspended in a colorless oil.  The crude oil was dissolved in EtOAc (10 mL), dried 

(MgSO4), filtered, and the solvent removed in vacuo to give a colorless oil (0.67 g, 84%) that 

required no further purification. Rf 0.51 (50% EtOAc/hexanes) 1H NMR (300 MHz, CDCl3) 

δ1.49 (br s, 12H), 1.55 (br s, 3H), 3.5-3.7 (m, 1H), 3.7-4.2 (m, 5H). 13C NMR (75 MHz, CDCl3, 

rotamer*) δ 23.2* (CH3), 24.7 (CH3), 26.9* (CH3), 27.3 (CH3), 28.6 (CH3), 58.5* (CH), 59.6 

(CH), 63.1* (CH2), 65.2 (CH2), 65.4 (CH2), 80.2* (C), 81.3 (C), 94.2 (C), 152.0* (C), 154.2 (C). 

IR (neat) 3011, 1656, 1405 cm-1. HRMS (ESI) calcd for [M+Na]+ 254.1363.  Found 254.1359. 

1,1-Dimethylethyl-4-(4-bromobenzoyloxymethyl)-2,2-dimethyl-3-oxazolidinecarboxylate 

(2F2) 

4-Bromobenzoyl chloride (0.43 g, 1.95 mmol) was added to a solution of alcohol 2F1 

(0.30 g, 1.30 mmol), DMAP (16 mg, 0.13 mmol), and Et3N (0.27 mL, 1.95 mmol) in CH2Cl2 (3.0 

mL) and the solution stirred overnight.  The reaction mixture was diluted with CH2Cl2 (12 mL), 

washed with 10 mL aq. NaHCO3, dried (MgSO4), and concentrated in vacuo.  The crude oil was 

purified by flash column chromatography (5% EtOAc/hexane to 10% EtOAc/hexane) to give 
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0.38 g (70%) of a light yellow to colorless oil that solidified with cold storage. m.p. 48-49 ˚C. 

Rf= 0.53 (20% EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 1.48 (s), 1.50 (s), 1.53 (s), 1.57 

(s), 1.62 (s), 3.90-4.10 (m, 3H), 4.20-4.50 (m, 3H), 7.59 (m, 2H), 7.91 (d, J=8.7 Hz, 2H). 13C 

NMR (75 MHz, CDCl3, rotamer*) δ 23.3*, (CH3), 24.5 (CH3), 26.9* (CH3), 27.8 (CH3), 28.6 

(CH3), 55.8 (CH), 56.0* (CH), 64.2 (CH2), 65.3 (CH2), 65.5* (CH2), 77.5 (C), 80.5 (C), 80.8* 

(C), 93.9 (C), 94.5* (C), 128.3* (C), 128.5 (C), 129.0* (C), 129.1 (C), 165.7* (C), 165.8 (C). IR 

(neat) 2979, 1725, 1697, 1591 cm-1. HRMS (ESI) calcd for [M+H]+ 414.0911.  Found 414.0919. 

[α]D
22 = +31.3 (c = 1.0, CHCl3). 

4,5-Dibromo-2,2-dimethyl-1,3-dioxolane (2H2)  

 A solution of 2,2-dimethyl-1,3-dioxolane (2H1) (1 mL, 9.07 mmol), N-

bromosuccinimide (3.23 g, 18.14 mmol), and AIBN (30 mg, 0.18 mmol) in benzene (45 mL) 

was heated to reflux under Ar.  Once the red color of the hot solution turned colorless to light 

yellow and the solids had dissolved (typically less than 10 min), the solution was cooled to room 

temperature and filtered from the crystallized succinimide with a cannula filter (a 16 gauge 

needle with Kimwipe® secured over the blunt end) and the crystals were washed with benzene.  

Benzene was removed by distillation under aspirator pressure and the oil was purified by 

kugelrohr distillation (up to 90 ˚C, 1 Torr) to give a colorless oil that turned orange with 

exposure to air or after sitting out at room temperature. 1H NMR (300 MHz, CDCl3) δ 1.72 (s, 

6H), 6.82 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 26.7 (CH3), 88.6 (CH), 121.1 (C). HRMS (EI) 

calcd for [M-CH3]+• 242.8651.  Found 242.8639. Because of the instability of 2H2, the Rf was 

not determined and an IR spectrum was not recorded.  
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Chapter 3. Efforts Towards the Total Synthesis of 

Tapentadol via an Asymmetric Hydroformylation/ 

Reductive Amination One-Pot Sequence 
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3.1 Background 

 Tapentadol (3A5) (Scheme 3A) was first reported in 1996 and was found to be both a µ-

opioid agonist and norepinephrine reuptake inhibitor;1 in 2008, it was approved for the treatment 

of moderate to severe pain in adults in the U.S.2 Many µ-opioid inhibitors are powerful pain 

relievers, but they can have significant side effects and prolonged use runs the risk of developing 

tolerance, dependence, and addiction. The dual action mechanism of tapentadol could enhance 

beneficial pharmacological effects and while minimizing unwanted interactions and symptoms.1c 

As part of our program to develop efficient asymmetric hydroformylation (AHF) tandem 

reactions, tapentadol was chosen as a target because its methyl stereocenter beta to a dimethyl 

amine could be synthesized via tandem AHF/reductive amination (RA) of a vinyl group. 

Scheme 3A. Industrial Synthesis of Tapentadol 
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 In the industrial synthesis, the dimethyl amine functionality is added via a Mannich 

reaction with aryl ethyl ketone 3A1 to set the methyl stereocenter of 3A2 as a racemate.3 It is 

resolved to the desired enantiomer via the diastereomeric salts produced by (R,R)-di-O-

benzoyltartaric acid and neutralized with sodium hydroxide.  Ethyl Grignard addition selectively 

forms tertiary alcohol 3A3 by chelation of magnesium with the amine and the ketone. 

Esterification with trifluoroacetic anhydride and subsequent elimination of trifluoroacetic acid 
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produces a mixture of alkenes (3A4), which are hydrogenated over palladium on carbon to set 

the ethyl stereocenter with a modest 5.5:1 d.r. Selective crystallization with TMSCl and water 

allows for the isolation of the HCl salt of 3A5. Many patents have been published for the 

preparation of tapentadol,4 but a notable development is an asymmetric Mannich reaction to set 

the methyl stereocenter of 3A2.5 

3.2 Styrene AHF Strategy 

 Our initial retrosynthetic analysis recognized that a tandem AHF/RA sequence would 

produce tapentadol from vinyl group 3B1 (Scheme 3B).  The vinyl group of 3B1 could be 

produced from an aldehyde resulting from the AHF of Z-β-methyl styrene 3B2 using the 

bisdiazaphos (BDP) ligands developed by the Landis group.6 Styrene 3B2 would be accessed via 

a selective hydrogenation of an aryl alkyne, produced from iodophenol 3B3. 

Scheme 3B. Styrene Strategy Retrosynthesic Analysis 

HO NMe2
HO HO HO I

1. Sonogashira coupling
2. selective hydrogenation

1. AHF
2. olefinationAHF/RA

3A5 3B1 3B2 3B3  

 Synthesis of 3B2 began with a Sonogashira coupling of 3-iodophenol (3B3) and propyne 

that proceeded in high yield (Scheme 3C).7 Attempts at selective reduction of the alkyne to the 

Z-olefin via Lindlar hydrogenation8 resulted in mixtures of 3B2, trans-alkene from 

isomerization, and n-propylphenol from over-reduction; these mixtures were inseparable by 

column chromatography.  The trans-alkene was particularly undesirable because it underwent 

AHF more slowly than 3B2 and gave poorer enantioselectivity.6 Several attempts were made to 

reduce the alkyne with diimide,9 but no reactivity was observed. Reduction with nickel boride10 

produced 3B2 with complete conversion and alkene selectivity with only minor over-reduction 
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(determined by 1H NMR). The n-propylphenol impurity was of little consequence because it is 

unreactive to AHF, unlike the trans-alkene or alkyne. 

Scheme 3C. Styrene AHF Strategy Forward Synthesis 
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AHF of 3B2 produced a mixture of α- and β-aldehydes, favoring the desired α-aldehyde 

3C1 11-12:1 and in 77% isolated yield.  Higher concentrations of 3B2 were found to give lower 

regioselectivity and AHF conditions were not further optimized before results necessitated a 

change in strategy (vide infra). 

Olefination of 3C1 to 3B1 with methylenetriphenylphosphorane proceeded in good yield 

but despite similar precedent11 resulted in an apparent erosion of e.r. A direct comparison of the 

enantiomeric purity of 3C1 and 3B1 was not possible since the e.r. of 3C1 was not determined.  

However, due to the similarity of 3C1 with styrene AHF data published by the Landis group6 we 

assumed a significant erosion of enantiopurity with the Wittig olefination. We did not consider 

the olefination a problem, however, as many methods are available for the conversion of an 

aldehyde to a vinyl group.12 

Analysis of the AHF of monosubstituted olefin 3B1 revealed that the desired α-chiral 

aldehyde (3C3) was the minor product.  The linear hydroformylation (LHF) product, 3C4, was 

the major product because the steric interactions of 3B1 override the small amount of electronic 

direction by the distant aromatic ring.  While there were many other options for transformation 
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of 3C1 to 3B1 without epimerizing the stereocenter,12 the remarkably poor results from the 

hydroformylation of 3B1 necessitated a change in strategy. 

3.3 Diene AHF Strategy 

 A new synthesis was conceived wherein a tandem or one-pot hydroformylation/reductive 

amination of diene 3D2 would produce amine 3D1 (Scheme 3D). The Landis group had reported 

that diene AHF proceeded with better regioselectivity than styrene AHF,13 and setting the methyl 

stereocenter of 3D1 first would solve the AHF problem that sabotaged the previous styrene 

AHF-based strategy. Hydrogenation of the styrene 3D1 would follow precedent in the patent 

literature to produce 3A5.3 Diene 3D2 would be accessed via a Suzuki coupling of commercially 

available boronic ester 3D3 and bromodiene 3D4, which had been reported and not isolated14 but 

could be prepared from crotonaldehyde. 

Scheme 3D. Diene AHF Strategy Retrosynthetic Analysis 
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Bromination of crotonaldehyde (3E1) proceeded as reported to give vinyl bromide 3E2 

as a 9-10:1 mixture of alkene diastereomers (Scheme 3E),15 but Wittig olefination proved 

problematic. The steps required to remove triphenylphosphine oxide coupled with the volatility 

of diene 3D4 to render Wittig olefination unusable. Alternatively, a two-step Peterson olefination 

was employed based on the synthesis of similar dienes in the literature.16 The addition of 

(trimethylsilyl)methylmagnesium chloride to 3E2 produced 3E3 in excellent yield and purity.16a 

Treatment of 3E3 with pTsOH•H2O in Et2O cleanly generated diene 3D4.16b Since the 

byproducts of the Peterson olefination were water and TMSOH, it was reasoned that distillation 
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would quickly and easily separate 3D4. However, attempts to isolate 3D4 by either filtration 

through a silica gel plug or distillation failed; heating 3D4 and TMSOH resulted in an unknown 

product. Fortunately, TMSOH was innocuous in the subsequent coupling reaction, and a one-pot 

Peterson olefination/Suzuki coupling was developed that reliably produced aryl diene 3D2 in 

greater than 73% yield from 3E3.17   

Scheme 3E. Synthesis of Diene 3D2. 
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AHF of 3D2 produced aldehyde 3F1 with 9:1 branched:linear regioselectivity (b:l). 

Additionally, it improved the alkene d.r. from 10:1 Z:E to >19:1 Z:E (Scheme 3F) and 3F1 could 

be isolated in 50% yield.  The low yield of 3F1 is the result of purification by flash column 

chromatography; the crude yield was about 90% (determined by 1H NMR spectroscopy). 

Experiments with 3:1 CO:H2 led to poorer regioselectivity and shorter reaction times eroded 

conversion. A one-pot AHF/RA protocol was used instead of a tandem reaction because of the 

ease of monitoring the AHF by 1H NMR spectroscopy and the optimal concentrations for the 

AHF and the RA procedures.  The RA proceeded with excellent conversion by crude 1H NMR 

spectroscopy but isolation of 3D1 was difficult due to its polarity and poor elution during flash 

column chromatography, resulting in a 54% yield from diene 3D2.  RA experiments on isolated 

3F1 provided crude 3D1 (no flash column chromatography) with reasonable purity in nearly 

quantitative yield (up to 90% purity determined by 1H NMR spectroscopy).  Based on published 
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examples of RA of α-aryl and allylic aldehydes we expected the methyl stereocenter to be 

unaffected by the RA.18 

Scheme 3F. One-Pot AHF/RA of 3D2. 
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To analyze the enantioselectivity of the AHF and to confirm the retention of the 

stereocenter through the RA, 3F1 was reduced to primary alcohol 3G1 and esterified with 4-

bromobenzoyl chloride to produce diester 3G2 (Scheme 3G). The e.r. was determined by SFC to 

be 22:78, but the absolute configuration of the major enantiomer was not determined. AHF with 

the (R,R,S)-BDP ligand at 42 ˚C resulted in an identical e.r. to AHF at 55 ˚C. Conversely, AHF 

with the diastereomeric (S,S,S)-BDP ligand produced regioselectivity of 18:1 and an e.r. of 

57:43. 

Scheme 3G. Reduction and Esterification for Enantioanalysis 
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The fact that the alkene Z:E ratio improved in the AHF of 3D2 to 3F1 gave us insight 

into the very poor enantioselectivity of the AHF. Landis and coworkers had previously reported 

that allylic rhodium intermediates are able interconvert via σ-π-σ allyl shifts during diene 

hydroformylation.13 Examining the possible rearrangements for the allyl rhodium intermediates 

produced by the AHF of 3D2, we realized that both alkene diastereomers could be converted to 

all four diastereomers of 3F1 (Scheme 3H). 



 54 
Since the ligated rhodium center is chiral, an allylic shift that inverts the methyl 

stereocenter produces a diastereomeric allyl rhodium species. The pseudo-symmetry of the η3-  

allyl rhodium species is illustrated in 3H2.  The C-C bond of the aryl ring and the allyl system is 

likely rotating freely, given the elevated temperature (50 ˚C). Even if rotation were not free, the 

hydroxyl is sufficiently removed from the two methyl groups to limit its influence on the 

conformation of the Rh-π-allyl species. The rapid equilibrium of allyl rhodium intermediates  

Scheme 3H. Allyl-Rh Isomerization During AHF of 3D2 
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3H1, 3H3, 3H4 and 3H5 sets up a Curtin-Hammett situation where carbonyl insertion and 

hydrogenolysis of each allyl rhodium intermediate gives rise to a separate stereoisomer of 3F1. 

Since 3F1 has an increased ratio of Z:E olefins, from 9:1 to 19:1, the most reactive intermediates 

toward carbonyl insertion must be 3H1 and 3H5, as these two allyl-rhodium intermediates have 

a Z olefin. Intermediates 3H3 and 3H4 have an E olefin, which is not observed, so these 

intermediates must not be competitive in the production of 3F1. Boltzmann distribution 

calculations determined the energy difference between the aldehyde-forming barriers to be about 

0.81 kcal/mol at 50 ˚C.  Figure 3A illustrates this scenario between the allyl rhodium 

intermediates 3H1, 3H2, and 3H3. Since this barrier difference is so low, it is unlikely that 

hydroformylation would proceed at temperatures low enough to prevent the allyl rhodium 

equilibrium from competitively forming the undesired S enantiomer of 3D1.  

Figure 3A. Hypothetical Curtin-Hammett Scenario from Diene 3D2 
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 Hydrogenation of allylic amine 3D1 was not optimized and produced a 1.3:1 mixture of 

diastereomers 3A5 and 3I1, though the major component was not determined (Scheme 3I). 
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Patent precedent cited at best a 5.5:1 (3A5:3I1) mixture of diastereomers with H2 and Pd/C in 

concentrated HCl/EtOH, 3 but these conditions did not scale down to bench quantities well 

enough for effective hydrogenation. A higher Pd/C loading (100 mg/mmol vs. 18 mg/mmol) was 

required for hydrogenation of the styrene. 

Scheme 3I. Hydrogenation of 3D1 

 

3.4 Trisubstituted Olefin Strategy 

 In order to work around the Rh-allyl intermediate equilibrium that caused the AHF of 

3D2 to proceed with poor enantioselectivity, a synthesis was imagined in which AHF of a 

trisubstituted olefin would set both stereocenters of 3A5 in the same step. For a proof of concept 

experiment, olefin 3J2 was synthesized from phenylacetylene (3J1) (Scheme J).19  The Landis 

group has found that high temperatures (>100 ˚C) are required to react 1,1-disubstituted 

olefins,20 so an initial temperature of 100 ˚C was utilized.  After 48 hours, complete conversion 

was observed, but three aldehyde signals were present in the crude 1H NMR spectrum.  The 

Scheme J. Trisubstituted Olefin Preparation and AHF. 

(R,R,S)-BDP, Rh(CO)2(acac)
140 psi CO/H2 THF, 100 ˚C, 48 h

O O
O

majorminorminor

RhL*

CO, H2

β-hydride
elimination

LHFAHF

3J1 3J2 3J3 3J4

3J5 3J6

EtMgBr, CuI, LiBr
MeI, HMPA, THF

7% YND

3J7

 

HO NMe2
H2, Pd/C

EtOH
HO NMe2

3D1 3A5

+ HO NMe2

3I1
61% (unoptimized)



 57 
major aldehyde signal was a triplet corresponding to linear hydroformylation (LHF) product 

3J7.  The other two were the doublets corresponding to α-chiral aldehydes 3J5 (desired product) 

and 3J6 (undesired product).  This product mixture arises from the reversibility of the alkene 

insertion into the Rh-H bond.  Initial insertion sets the ethyl stereocenter, but the alkyl rhodium 

intermediate can react in two ways: CO insertion or β-hydride elimination. Insertion of CO forms 

the desired aldehyde 3J5, but β-hydride elimination from the more accessible methyl group 

produces monosubstituted alkene 3J4. 3J4 is very similar to 3B1 from the original styrene-based 

strategy (Scheme 3C), and both 3B1 and 3J2 hydroformylate to give a mixture of linear aldehyde 

and branched aldehyde, with the linear aldehyde 3J7 as the major product since there is little 

electronic direction of the alkene insertion from the phenyl group.  

Since 3J4 is formed after the ethyl stereocenter is set by the insertion of the alkene of 3J2 

into the Rh-H bond, this stereocenter is the same for all three aldehyde products. The steric 

differences between trisubstituted alkene 3J2 and mono-substituted alkene 3J4 result in AHF 

producing opposite configurations of the methyl stereocenter; AHF of 3J4 produces 3J6, which 

is diastereomeric to 3J5 from the AHF of 3J2.   

Since AHF of 3J2 did not result in any useful conversion to the desired aldehyde 3J5 this 

route was not pursued beyond this exploratory reaction. These results illustrate some of the 

fundamental problems of reactivity on the catalytic cycle that must be solved for effective AHF 

of trisubstituted olefins. 

3.5 Future Directions 

 Of the three strategies explored, AHF of diene 3D2 (Scheme 3F) has the most potential to 

be corrected with present technology to produce tapentadol in high enantiopurity via an AHF/RA 

one-pot or tandem reaction. The AHF selectivity could be rectified by the use of an allylic 
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auxiliary. Thiophenol ethers have been employed with Evans’ oxazolidinone auxiliaries to 

allow for increased selectivity in formal acetate aldol reactions,21 and are removable by 

hydrogenolysis with Raney nickel.22 Thioether 3K1 would perturb the energy difference between 

the allyl rhodium intermediates (3K2 and 3K3) and its larger steric bulk would disfavor 

rearrangement to the isomeric allyl rhodium intermediate 3K3 (Scheme K).  Styrene 

hydrogenation and thioester removal of styrene 3K4 could then be accomplished simultaneously 

or as a one-pot procedure.  It is worth noting, however, that the use of an auxiliary is inherently 

un-atom economical and thus counteracts some of the benefits of AHF tandem or one-pot 

reactions.  

The synthesis of thioether 3K1 could closely follow that of diene 3D2 (Scheme L).  Known 

thiophenolcrotonaldehyde 3L1 is prepared from crotonaldehyde23 and can then be subjected to 

the same bromination/elimination protocol as in Scheme 3E to generate vinyl bromide 3L2. 

Olefination could be done with a Wittig reagent, instead of a two-step Peterson olefination, since 

diene 3L3 will be much more robust and polar than bromodiene 3D4.  Suzuki coupling with 

MIDA boronate 3D3 will add the aryl moiety and complete the synthesis of 3K1. 

Scheme K. Proposed Use of Thioether Directing Group for Synthesis of 3A5 
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Scheme L. Proposed Synthesis of 3K1 
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 After the AHF/RA protocol proposed in Scheme K, the hydrogenation of trisubstituted 

alkene 3K4 could be controlled by a catalyst with a chiral ligand to produce 3A5. The Andersson 

group has published several chiral ligands that have excellent enantioselectivity for trisubstituted 

olefins (Scheme M).24  The ligand 3M3 in particular is good precedent for the desired 

transformation. 

Scheme M. Example Chiral Ligand for Catalyst-Controlled Hydrogenation 
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Each of the attempted synthetic strategies encountered a general problem in current AHF 

technology. The styrene AHF strategy was foiled by poor regioselectivity when steric direction 

prevailed over limited electronic direction. AHF of an aryl diene (3D2) resulted in a mixture of 

enantiomers from equilibrating allylic rhodium intermediates on the AHF catalytic cycle. 

Experiments with AHF of a tri-substituted olefin (3J2) produced a mixture of aldehydes from 

competitive Rh-catalyzed rearrangement of the alkene and subsequent hydroformylation. Further 

research into new catalyst/ligand systems will eventually solve these problems, however, and the 
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capability of AHF to produce valuable chiral aldehydes will continue to grow with continued 

research. 

Experimental Details 

(Z)-2-bromo-2-butenal (3E2) 

 Bromine (1.25 mL, 24.3 mmol) was added dropwise to a solution of crotonaldehyde (2.0 

mL, 24.3 mmol) in CH2Cl2 (49 mL) at 0 ˚C and the solution stirred for 20 min.  Triethylamine 

(4.1 mL, 29.2 mmol) was slowly added and the mixture stirred at 0 ˚C for 1 h.  The mixture was 

quenched with H2O, separated, dried (Na2SO4) and purified by kugelrohr distillation (1.5 Torr, 

75 ˚C) to give 3E2 (3.25 g, 80%).  The d.r. was determined to be better than 10:1 Z:E by 

comparing the aldehyde peaks in the 1H NMR [(E)-aldehyde δ 9.76 (s)]. Rf 0.33 (10% 

EtOAc/hexanes). 1H NMR (300 MHz , CDCl3) δ 2.16 (d, J=6.6 Hz, 2H), 7.29 (q, J=6.6 Hz, 1H), 

9.23 (s, 1H). 13C NMR (75 MHz, CDCl3) δ 18.1 (CH3), 130.2 (C), 151.2 (CH), 186.2 (CH). IR 

(neat) 2831, 1699, 1623, 1434 cm-1. HRMS (EI) m/z calcd for [M-H]+• 147.9519. Found 

147.9512. 

(Z)-3-bromo-1-(trimethylsilyl)pent-3-en-2-ol (3E3) 

 A solution of 3E2 (5.84 g, 39.2 mmol) in Et2O (15 mL) was added to a solution of 

(trimethylsilyl)methylmagnesium chloride in Et2O (1 M, 63 mL) at 0 ˚C and stirred for 16 h.  

The mixture was slowly quenched with saturated aqueous NH4Cl, separated, and the aqueous 

layer extracted twice with Et2O. The organic layer was dried (Na2SO4) and concentrated to give a 

white to off-white solid that did not require further purification (9.57 g, 97%). The solid was 

stored at room temperature for 1.5 months before decomposition. A sample was purified by 

kuglerohr distillation (1 Torr, 90 ˚C) for characterization. Rf 0.58 (20% EtOAc/hexanes). mp 37-

39 ˚C. 1H NMR (300 MHz , CDCl3) δ 0.04 (s, 9H), 1.09 (AB of ABX, 2H), 1.76 (d, J =6.3 Hz, 3 
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H), 4.25 (X of ABX, 1 H), 6.02 (q, J=6.3 Hz). 13C NMR (75 MHz, CDCl3) -0.9 (CH3), 16.5 

(CH2), 25.5 (CH3), 75.0 (CH), 123.8 (CH), 135.9 (C). IR (neat) 3382, 2954, 1657, 1419 cm-1. 

HRMS (EI) m/z calcd for [M-Me] +• 220.9992. Found 220.9984. 

(Z)-3-bromo-1,3-pentadiene (3D4) (mixture with TMSOH) 

 TsOH•H2O (0.18 g, 0.935 mmol) was added to a solution of 3E3 (2.35 g, 9.35 mmol) in 

Et2O (9.4 mL) and the reaction stirred at room temperature until TLC indicated complete 

consumption of 3E3.  The biphasic solution was used crude in the Suzuki coupling. In an attempt 

to purifiy 3D4, the H2O layer was removed by pipet and the solvent removed by distillation at 

atmospheric pressure. The crude oil was diluted with pentane and flushed through a silica gel 

plug and washed with additional pentane. Concentration by distillation at atmospheric pressure 

produced an oil containing 3D4 and TMSOH by 1H and 13C NMR spectroscopy. Rf 0.66 

(hexane) 1H NMR (300 MHz , CDCl3) δ 1.90 (d, J=6.7 Hz, 3H), 5.15 (d, J=10.4 Hz, 1H), 5.52 

(d, J=16.3 Hz, 1H), 6.06 (q, J=6.8 Hz, 1H), 6.32 (dd, J=16.3, 10.4 Hz, 1H). 13C NMR (75 MHz, 

CDCl3) δ 15.3 (CH3), 115.0 (CH2), 125.3 (C), 127.6 (CH), 133.8 (CH). Ir (neat mixture) 3012, 

2957, 1638, 1410, 1253 cm-1. HRMS (EI) m/z calcd for [M]+• 1459726. Found 145.9718.  

(Z)-3-(3-hydroxyphenyl)-1,3-pentadiene (3D2) 

 To the crude reaction mixture of 3D4 (9.35 mmol in 9.4 mL Et2O) was added THF (39 

mL), H2O (3.9 mL), KOAc (0.76 g, 7.79 mmol), K2CO3 (4.31 g, 31.2 mmol), 3-hydroxyphenyl 

boronic acid MIDA ester (3D3) (1.94 g, 7.79 mmol), and PdCl2(dppf)•CH2Cl2 (318 mg, 0.39 

mmol). The flask was equipped with a condenser and heated to 70 ˚C for 16 h.  After cooling to 

room temperature, the solution was partitioned with Et2O and H2O and the aqueous layer 

extracted with Et2O.  The combined organic phases were dried (Na2SO4) and concentrated in 

vacuo.  Purification of the residue by flash column chromatography (10% EtOAc/hexane) and 
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kugelrohr distillation (1 Torr, 90 ˚C) produced 0.99 g (79%) of 3D2. Rf 0.52 (20% 

EtOAc/hexane) 1H NMR (300 MHz , CDCl3) δ 1.60 (d, J=7.1 Hz), 4.71 (d, J=16.8 Hz, 1H), 

4.72 (s, 1H), 4.96 (d, J=10.6, 1H), 5.79 (q, J=7.1 Hz, 1H), 6.53 (dd, J=17.3, 10.6 Hz, 1H), 6.61 

(s, 1H), 6.66-6.82 (m, 1H), 7.25 (t, J=7.8 Hz, 1H). 13C NMR (75 MHz, CDCl3) 15.5 (CH3), 

113.9 (CH), 114.1 (CH), 116.7 (CH), 122.5 (CH), 128.3 (CH), 129.6 (CH), 139.6 (C), 140.6 

(CH), 142.2 (C), 155.5 (C). IR (neat ) 3387, 2855, 1633, 1582 cm-1. HRMS (EI) m/z calcd for 

[M]-• 160.0883. Found 160.0882. 

(Z)-(2R)-3-(3-hydroxyphenyl)-2-methyl-3-pentenal (2F1) 

 Under an inert atmosphere, 3D2 (200 mg, 1.25 mmol), (R,R,S)-BDP (40 mg, 0.032 mmol), 

and Rh(CO)2(acac) (6 mg, 0.024 mmol) were dissolved in 2.52 mL THF and placed in a 10.5 cm 

long high pressure tube equipped with a head that allowed for gas filling, venting, and aliquot 

removal through a septum. The vessel was charged with 150 psi syngas and stirred at 50 ˚C for 

48 h.  Completion and regioselectivity were determined by 1H NMR spectroscopy of a 

concentrated aliquot of the reaction solution [regiomeric aldehyde δ 9.70, (t, J=1.5 Hz)]. Rf 0.38 

(20% EtOAc/hexane) 1H NMR (CDCl3, 300 MHz) δ 1.18 (d, J=6.9 Hz, 3H), 1.62 (d, J=6.6 Hz, 

3H), 3.30 (q, J=6.9 Hz, 1H), 4.92 (s, 1H), 5.64 (q, J=6.9 Hz, 1H), 6.57 (d, J=1.8 Hz, 1H), 6.64 

(d, J=7.5 Hz, 1H), 6.75 (dd, J=8.1, 2.5 Hz, 1H), 7.21 (t, J=7.8 Hz , 1H), 9.66 (d, J=1.5 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 13.4 (CH3), 15.2 (CH3), 55.2 (CH), 114.4 (CH), 115.8 (CH), 121.2 

(CH), 126.5 (CH), 129.8 (CH), 138.3 (C), 141.1 (C), 155.9 (C), 203.2 (C). IR (neat) 3394, 2979, 

1719, 1580 cm-1. HRMS (EI) m/z calcd for [M-H]- 189.0921. Found 189.0919. [α]D
21 = -14 (0.7, 

CHCl3). 

 (Z)-(2R)-1-(dimethylamino)-3-(3-hydroxyphenyl)-2-methyl-3-pentene (3D1) 

 The crude reaction mixture of 3D2 (1.25 mmol) was diluted with 2.5 mL THF. Me2NH 
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(2.0 M in THF, 0.69 mL, 1.38 mmol), AcOH (70 µL, 1.25 mmol), and STAB-H (397 mg, 1.88 

mmol) were added and the slurry stirred for 16 h at room temperature.  The mixture was poured 

into aqueous Na2CO3 (1 M, 50 mL) and extracted with EtOAc. The combined organic layers 

were washed with brine, dried (Na2SO4), and concentrated. The crude oil was purified by flash 

column chromatography (20% MeOH/CH2Cl2). Rf  0.32 (20% MeOH/CH2Cl2) 1H NMR (300 

mHz, CDCl3) δ 1.00 (d, J=6.8 Hz, 3H), 1.38 (d, J=6.7 Hz, 3H), 2.08 (dd, J=11.7, 6.7 Hz, 1H), 

2.24 (s, 6H), 2.39 (dd, J=12.1, 7.3 Hz, 1H), 2.59 (sextet, J=7.1 Hz, 1H), 5.53 (q, J=6.7 Hz, 1H), 

6.49-6.58 (m, 1H), 6.60 (d, J=7.6 Hz, 1H), 6.71 (dd, J=7.7, 2.1 Hz, 1H), 7.16 (t, J=7.1 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 14.8 (CH3), 19.1 (CH3), 39.8 (CH), 45.8 (CH3), 65.3 (CH2), 113.9 

(CH), 116.3 (CH), 121.4 (CH), 121.7 (CH), 129.2 (CH), 142.1 (C), 144.8 (C), 156.4 (C). IR 

(neat) 3306, 2967, 1578, 1445 cm-1. HRMS (EI) m/z calcd for [M-H]-• 220.1696. Found 

220.1687. [α]D
21 = 0.04 (0.1, CHCl3). 

(3R,2R)- and (3S,2R)-3-(3-hydroxyphenyl)-N,N,2-trimethylpentylamine (3A5) and (3I1) 

 Pd/C (5%, 14 mg) was added to a solution of 3D1 (31 mg, 0.141 mmol) in EtOH (0.71 

mL) and the flask flushed with a balloon of H2. The depleted balloon was replaced with a full 

balloon of H2 and the slurry stirred for 16 h.  The slurry was diluted with EtOAc and filtered 

through a half-inch layer of Celite®. The filtrate was concentrated in vacuo and the residue 

purified by flash column chromatography (10% MeOH/CH2Cl2) to give a yellow oil (19 mg, 

61%). NMR spectroscopy revealed this oil to be a mix of both diasteromers at 1:1.3 ratio (the 

major component was not determined). Rf 0.22 (10% MeOH/CH2Cl2). 1H NMR (300 MHz, 

CDCl3) δ 0.68 (t, J=7.3 Hz, 3H), 0.76 (t, J=7.3 Hz, 4H), 0.92 (d, J=6.8 Hz, 4H), 1.17 (d, J=6.5 

Hz, 3H), 1.26 (s, 2H), 1.41-1.58 (m, 3H), 1.58-1.72 (m, 3H), 1.94-2.13 (m, 3H), 2.14-2.28 (m, 

1H), 2.43 (dd, J=12.5, 8.5 Hz, 2H), 2.55 (s, 6H), 2.59 (s, 6H), 2.75 (dd, J=12.6, 5.3 Hz), 2H), 
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6.60 (dd, J=11.6, 7.6 Hz, 3H), 6.67-6.85 (m, 5H), 7.10 (td, J=8.7, 3.4 Hz, 3H), 7.33 (br s, 2H). 

13C NMR (75 MHz, CDCl3) δ 12.3 (CH3), 12.7 (CH3), 15.2 (CH3), 16.9 (CH3), 25.3 (CH2), 25.5 

(CH2), 29.9 (CH2), 34.8 (CH2), 35.4 (CH2), 44.5 (CH), 44.8 (CH), 50.2 (CH), 51.7 (CH), 64.1 

(CH2), 114.1 (CH), 114.4 (CH), 115.4 (CH), 116.5 (CH), 120.1 (CH), 120.6 (CH), 129.4 (CH), 

129.8 (CH), 142.8 (C), 144.3 (C), 156.8 (C), 157.4 (C). HRMS (ESI) m/z calcd for [M+H]+ 

222.1775 Found 222.1773.  IR spectra and specific rotations were not obtained because 3A5 and 

3I1 were not separated. 

(Z)-(2R)-3-(3-hydroxyphenyl)-2-methyl-3-pentenol (3G1) 

 NaBH4 (18 mg, 0.486 mmol) was added to a solution of 3F1 (66 mg, 0.347 mmol) in 

MeOH (3.5 mL) at 0 ˚C and stirred for 1.5 h.  Saturated aqueous NH4Cl was added and the 

mixture extracted with EtOAc, dried (Na2SO4) and concentrated.  The crude oil was purified by 

flash column chromatography (40% EtOAc/hexane) to give 3G1 as a colorless oil (63 mg, 94%). 

Rf 0.38 (50% EtOAc/hexane) 1H NMR (CDCl3, 300 MHz) δ 1.02 (d, J=7.0 Hz, 3H), 1.52 (dd, 

J=6.7, 0.6 Hz, 3H), 1.63 (s, 1H), 2.62 (sextet, J=6.8 Hz, 1H), 3.47 (m, 2H), 5.15 (s, 1H), 5.61 

(qd, J=6.7, 0.8 Hz, 1H), 6.58 (dd, J=2.5, 1.5 Hz, 1H), 6.65 (dt, J=7.5, 1.2 Hz, 1H), 6.74 (ddd, 

J=8.1, 2.6, 1.0 Hz, Hz), 7.21 (t, J=7.8 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 14.8 (CH3), 16.4 

(CH3), 44.4 (CH2), 65.9 (CH), 114.0 (CH), 116.1 (CH), 121.4 (CH), 123.4 (CH), 130.0 (CH), 

141.5 (C), 143.1 (C), 156.0 (C). IR (neat) 3331, 2975, 2933, 1579, 1489 cm-1. HRMS (EI) m/z 

calcd for [M-H]-• 189.0921. Found 189.0919. [α]D
21 = 0.8 (0.4, CHCl3). 

 (Z)-(2R)-1-(4-bromobenzoyl)-3-(3-(4-bromobenzoylphenyl)-2-methyl-3-pentene (3G2) 

 A mixture of 3G1 (29 mg, 0.151 mmol), 4-bromobenzoyl chloride (83 mg, 0.377 mmol), 

Et3N (0.06 mL, 0.453 mmol), DMAP (9 mg, 0.076 mmol), and CH2Cl2 (0.76 mL) was stirred for 

3 h at room temperature.  The slurry was diluted with saturated aqueous NH4Cl and extracted 
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with Et2O.  The organic layer was dried (Na2SO4) and concentrated and the crude oil purified 

by flash column chromatography (20% EtOAc/hexane) to give diester 3G2 as a colorless oil. Rf 

0.38 (20% EtOAc/hexane). 1H NMR (CDCl3, 300 MHz) δ 1.17 (d, J=7.0 Hz, 3H), 1.55 (d, J=6.5 

Hz, 3H), 2.94 (sextet, J=7.0 Hz, 1H), 4.12-4.30 (m, 2H), 5.68 (q, J=6.6 Hz, 1H), 6.94-7.01 (m, 

1H), 7.03 (dt, J=7.6, 1.2 Hz, 1H), 7.13 (ddd, J=8.2, 2.4, 1.0 Hz, 1H), 7.39 (t, J=7.9 Hz, 1H), 

7.54 (d, J=8.6 Hz, 2H), 7.64 (d, J=8.6 Hz, 2H), 7.83 (d, J=8.6 Hz, 2H), 8.04 (d, J=8.6 Hz, 2H). 

13C NMR (CDCl3, 75 MHz) δ 14.7 (CH3), 16.8 (CH3), 40.8 (CH) 68.5 (CH2), 120.0 (CH), 122.2 

(CH), 123.4 (CH), 126.7 (CH), 128.0 (C), 128.3 (C), 128.5 (C), 128.8 (CH), 129.2 (C), 129.3 

(CH), 131.1 (CH), 131.6 (CH), 131.7 (CH), 132.0 (CH), 141.7 (C), 142.0 (C), 150.6 (C), 164.4 

(C), 165.7 (C). IR (neat) 2975, 2867, 1740, 1591, 1485 cm-1. HRMS (EI) m/z calcd for [M-H]+• 

189.0921. Found 189.0919. [α]D
21 = 9 (1.0, CHCl3). 

E-3-phenyl-2-pentene (3J2) 

 EtMgBr (1.0 M, 21.9 mL, 21.9 mmol) was added dropwise to a solution of LiBr (1.90 g, 

21.9 mmol) and CuI (2.08 g, 10.9 mmol) in THF (10 mL) at -60 ˚C and the solution stirred for 1 

h. A solution of phenylacetylene (3J1) (1 mL, 9.11 mmol) and HMPA (6 mL) in THF (12 mL) 

was slowly added and the solution stirred at -60 ˚C for 10 min.  A mixture of MeI (1.36 mL, 21.9 

mmol) and HMPA (3.6 mL) was slowly added and the solution stirred at -60 ˚C for 5 min before 

being warmed to room temperature and stirred for 16 h. The solution was poured into saturated 

aqueous ammonium chloride (100 mL) containing NaCN (2 g) and extracted with hexane.  The 

combined organic phases were dried (Na2SO4) and concentrated. Purification of the crude oil by 

flash column chromatography (hexane) produced 3J2 as a colorless oil that was sufficiently pure 

for the AHF experiment (95 mg, 7%). Rf 0.58 (hexane). 1H NMR (CDCl3, 300 MHz) δ 0.99 (t, 

J=7.5 Hz, 3H), 1.80 (d, J=6.9 Hz, 3H), 2.52 (q, J=7.5 Hz, 2H), 5.73 (q, J=6.9 Hz, 1H), 6.77-
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7.84 (m, 5H). 13C NMR (CDCl3, 75 MHz) 13.5 (CH3), 14.2 (CH3), 22.8 (CH2), 122.3 (CH), 

126.4 (CH), 126.6 (CH), 128.4 (CH), 142.6 (C), 143.3 (C). IR 2967, 2932, 1599, 1494 cm-1. 

HRMS (EI) m/z calcd for [M]+• 146.1091. Found 146.1083.  

AHF of 3J2 

 A solution of 3J2 (95 mg, 0.65 mmol), (R,R,S)-BDP (21 mg, 0.016 mmol), and 

Rh(CO)2(acac) (3.4 mg, 0.13 mmol) in PhMe (1.3 mL) was placed in a 10.5 cm long high 

pressure tube equipped with a head that allowed for gas filling, venting, and aliquot removal 

through a septum. The vessel was charged with 120 psi syngas and stirred at 100 ˚C for 48 h. 

Analysis of an aliquot by 1H NMR spectroscopy revealed >95% consumption of 3J1 and the 

presence of three aldehyde signals (d, 9.67; t, 9.66; d, 9.56; J values for all three <1 Hz). 
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4.1 Background and [2+2+2] Strategies 

Dihydro- and tetrahydropyrans are pervasive substructures of natural products (Figure 

4A) and the Burke group has used several strategies for pyran construction in many natural 

product syntheses.1 Bicyclic pyrans are a particular synthetic challenge because of their often 

complex stereochemistry and sterically-crowded architecture. 

Figure 4A. Natural Products Containing Pyrans and Bicyclic Pyrans  
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Cortistatin A, isolated in 2006 with potent antiangiogenesis activity (IC50=1.8 pM) 

against human umbilical vein endothelial cells,2 has been a popular synthetic target,3 and as part 

of the design of our own synthesis we envisioned combining an alkene-alkyne coupling like the 

Alder ene reactions published by Trost,4 Zhang,5 and Nicolaou,6 with the [2+2+2] results 

reported by Kovalev and coworkers7 to make a new [2+2+2] cyclization of an alkene, an alkyne, 

and a ketone (Scheme 4A).8 

Our envisioned mechanism would begin with the cyclization of the alkyne and alkene of 

4B1 with the Rh or Ru catalyst to form metallocycle 4B2 (Scheme 4B). Insertion of the ketone 

into the vinyl metal bond would create fused bicyclic oxametallocycle 4B3. Alternatively, the 

ketone could react with the alkyne to make fused bicyclic oxametallocycle 4B4, which would 
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then undergo alkene insertion to form 4B3. Reductive elimination would form the final C-O 

bond of 4B5 and liberate the catalyst. 

Scheme 4A. Precedent for a New [2+2+2] Reaction 
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Scheme 4B. Predicted Mechanisms of Proposed [2+2+2] Cyclization 
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 An obvious potential problem was the established alkyne trimerization catalyzed by 

rhodium and/or ruthenium (Scheme 4C).8 An effective catalyst would have to select for the 

desired intramolecular enynone [2+2+2] over the undesired trimolecular alkyne [2+2+2]. 

Scheme 4C. Anticipated Alkyne Trimerization Problem 
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Our initial enynone substrate was readily accessed from methallyl alcohol (4D1) 

(Scheme 4D). A Johnson orthoester Claisen rearrangement produced ethyl ester 4D2 in 71% 

yield9 and the ester was converted to Weinreb amide 4D3 in 72% yield.10 Vinyl Grignard 

addition11 furnished vinyl ketone 4D4, which was used crude due to decomposition during 

purification. Propargyl dimethyl malonate (4D6), prepared in 62% yield from dimethyl malonate 

(4D5),12 smoothly underwent Michael addition to 4D4, catalyzed by sodium 

tetramethoxyborate,13 to furnish enynone 4D7 in 75% yield from 4D3. With enynone in hand our 

efforts then turned to screening conditions for the [2+2+2] cyclization of 4D7 to tricycle 4D8. 

Scheme 4D. Enynone Substrate Synthesis and Screening 
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Experiments with [Ru(dppb)Cl]2 and RhCl(PPh3)3 at 10% and 20% loading, with or 

without AgSbF6 as an additive and in toluene, MeCN, or 1,2-dichloroethane at several 

concentrations between 0.1 and 0.3 M resulted in complex mixtures that were difficult to 

analyze.  Mass spectrometry and 13C NMR spectroscopy revealed that alkyne dimerization 
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products were the major products. Attempts at screening intermolecular reactions with a 

variety of Rh(I) catalytic conditions, including Kovalev’s conditions,7 resulted either in benzenes 

4D11 and 4D12 from alkyne trimerization of alkynoate 4D10 or no reaction with isolated alkyne 

or propargylic ester 4D13. We decided to focus our efforts by using the CpRu(MeCN)3PF6 

catalyst popularized by Trost to form medium rings by intramolecular alkene-alkyne coupling.4b  

Scheme 4E. Synthesis of Alkynoate Esters for Cyclization with CpRu(MeCN)3PF6  
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 An alkynoate ester substrate for CpRu(MeCN)3PF6-catalyzed cyclization was synthetized 

in the hope that the alkene and tethered alkynoate would combine to form a 10-membered ring 

(Scheme 4E).  Mono-TBS protection of 1,3-propanediol (4E1) proceeded in 74% yield.14 

Subsequent mesylation15 and iodination via Finkelstein reaction16 provided primary iodide 4E4 

in nearly quantitative yield.  Alkylation of the dienolate of methyl dimethylacrylic acid provided 

β,γ-unsaturated ester 4E5 in excellent yield.17 Reduction of the ester functionality with LiAlH4 

proceeded in 94% yield.18 Protection of primary alcohol 4E6 as a PMB ether19 and TBAF 

deprotection of the TBS ether20 to produce primary alcohol 4E8 was accomplished in more 

modest 72% and 76% yields, respectively.  DCC coupling with butynoic and propiolic acids 

produced alknenyl alkynoates 4E9 in modest to excellent yields.21 Cyclization experiments with 

the CpRu(MeCN)3PF6 catalyst in acetone, CH2Cl2, and DMF at room temperature and reflux 
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failed to induce any noticeable reactivity. With these disappointing results we decided to 

return to enynone substrates to work on a holistic development of a [2+2+2] cyclization. 

 An enynone substrate was synthesized from glycidol (4F1) (Scheme 4F).  Alkylation 

with methallylmagnesium chloride proceeded in 73% yield,22 and selective esterification with 

benzoyl chloride was achieved in 79% yield.23 Ketone 4F4 was obtained in 85% yield from 

secondary alcohol 4F3 by oxidation with Dess-Martin periodinane.24 Ester hydrolysis with a  

Scheme 4F. Alkynoate and Propargyl Ether Substrates 4F6 and 4F12 
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Et3N/H2O/MeOH mixture proceeded in 70% yield,25 but DCC coupling with phenylpropiolic 

acid produced enynone 4F6 in a disappointing 35% yield.21 Cyclization experiments resulted 

only in recovered 4F6. We thought that the constrained geometry of the ester linkage might be 

inhibiting cyclization so an enynone substrate with a propargylic ether was devised. 

Displacement of ethyl 4-chloroacetoacetate (4F9) by propargylic alcohol proceeded in 67% 

yield.26 Allylation of 4F10 with methallyl chloride in 68% yield27 and saponification/ 
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decarboxylation in 53% yield28 produced propargylic ether substrate 4F12, which also was 

unreactive in cyclization experiments.  

Because the desired cyclization did not occur despite experiments with several enyne and 

enynone substrates, we began to look at the rhodium-catalyzed addition of aryl boronic acids to 

alkynes.29-31 The work of Murakami,30 Hayashi,31 and others has shown that vinyl rhodium 

species formed by the addition of an aryl boronic acid to an alkyne are nucleophilic to several 

electrophiles, including carbonyls. We thought a vinyl rhodium species formed in this manner 

could initiate the reactivity we had been seeking (Scheme 4G). The rhodium-catalyzed addition 

of phenylboronic acid to 4F12 proceeded to form the substituted tetrahydrofuran ring as 

expected, but in low yield. Murakami observed similar yield with an ether substrate due to the 

absence of a Thorpe-Ingold effect to aid cyclization.30a Additionally, there was no impetus for 

the appended alkene to react with the formed styrenyl alkene. 

Scheme 4G. Rh-Catalyzed Addition of Aryl Boronic Acids to Alkynes 
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4.2 Development of a Rhodium-Mediated Domino Annulation (RMDA) 

Inspired by the Rh(I) catalyzed addition of aryl boronic acids to δ-alkynyl ketones 

(Scheme 4G), we posited that an α-boryl-α,β-unsaturated carboxylic ester (4H2) could also insert 

into a δ-alkynyl ketone (4H1) to form a vinyl rhodium intermediate (4H3) that could attack the 

pendant ketone (Scheme H). The resultant tertiary rhodium alkoxide (4H4) could perform an 

oxa-Michael addition to form dihydropyran 4H5, a formal [2+2+2] product. We referred to this 

strategy as a rhodium-mediated domino annulation (RMDA). In 2010, Nishimura and Hiyashi 

reported the only example of an α-boryl-α,β-unsaturated carboxylic ester trifluoroborate salt 

adding across an alkyne with a rhodium catalyst.31c 

Scheme 4H. Proposed Vinyl Boronic Ester/Oxa-Michael Formal [2+2+2] 
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Alkynyl ketone (4H1) was prepared by successive alkylation of dimethyl malonate (4D5) 

with chloroacetone32 and propargyl bromide12 (Scheme I) in 57% overall yield. Boronic ester 4I3 

was prepared from ethyl propiolate (4I2) in a single step with catalytic Stryker’s reagent and 

pinacolborane by the method of Lipshutz and Aue in 50% yield.33 Combination of 4H1 and 4I3 

in dioxane/H2O with 5% [Rh(OH)(cod)]2 at ambient temperature did not produce the desired 

oxa-Michael product 4I4; tertiary alcohol 4I5 was the major product. Increasing the reaction 

temperature also did not yield 4I4, but instead exclusively produced a mixture of lactones: 4I6,  
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Scheme 4I. Substrate Synthesis and Initial Cyclization Experiments 
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resulting from lactonization of 4I5, and 4I8, whose structure was determined from 1H NMR 

spectra of mixtures of 4I6 and 4I8. Isomeric 4I8 is presumably formed by oxa-Michael attack of 

water on the ethylidine of 4I6 to form alcohol 4I7. Bond rotation and retro-oxa-Michael addition 

would then generate the E-exo-ethylidine of 4I8. The E configuration is more stable because of 

A1,3 strain between the vinyl methyl group and the lactone carbonyl.  No products were observed 

that would result from a 1,2-addition of 4I3 across the alkyne; thus attack of the pendant ketone 

must be very rapid. RMDA was recognized as a new method for the construction of these 

functionalized fused ring systems through the formation of two new C-C bonds and a new C-O 

bond. 

Initial optimization experiments confirmed the need for high temperature (105 ˚C) and an 

18 h reaction time for effective lactonization of 4I5 to 4I6. A 5% loading of [Rh(OH)(cod)]2 was 

also required for conversion. The use of [RhCl(cod)]2 and deviation from a 1:1 molar ratio of 

4H1 and 4I3 resulted in lower yields but higher yields were obtained by screening small-scale 

reactions (0.2 mmol) in sealed 4-dram vials at 105 ˚C.  
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Screening of reaction additives revealed that transesterification catalysts Ti(OiPr)4

34 

and Otera’s catalyst35 were ineffective, likely in part due to the aqueous medium, but aqueous 

KOH was beneficial (Scheme J). The positive effects of KOH must arise from combined effects 

of the potassium and hydroxide ions, since additives with only one of these ions (K2CO3, KOAc, 

KHCO3, LiOH, NaOH, CsOH, and NH4OH) are not as effective.  

Scheme 4J. Optimization of the RMDA 
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Dilution of the reaction from 0.1 to 0.01 M resulted in increased isolated yields of 4I6 

and reduced formation of the isomeric lactone 4I8. Despite other additives giving high yields as 

single data points as determined by 1H NMR spectroscopy, the most consistent isolated yields of 

4I6 were obtained with 0.1 equivalents of a 0.1 M aqueous KOH solution and in a 0.01 M 

solution in dioxane in a sealed pressure flask. 

Having established suitable conditions for the annulation, our attention turned to the 

synthesis of additional boronic esters and ketones to explore the versatility of the RMDA 

(Scheme 4K). Stryker’s reagent-catalyzed hydroboration of alkynoates served as a reliable 

method for the synthesis of several boronate esters,33 although yields were lower than those of 
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the published examples. Boryl-substituted cinnamate 4K6, also reported by Lipshutz and 

coworkers, was synthesized in 47% yield as a 4:1 mixture of diastereomers instead of the 

published 95% yield and 10:1 d.r.33 Despite the decreased yields, known alkynoate esters 4K136 

and 4K337 and commercially available 4K5 were converted to boronic esters 4K2, 4K4, and 4K6 

by this method in sufficient quantities for use in annulation experiments. 

Scheme 4K. Synthesis of Additional Substrates 
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 Cyclohexenone boronic ester 4K10 was synthesized from known silyl ether 4K738 by 

palladium-catalyzed borylation,39 desilylation,40 and oxidation by Dess-Martin periodinane24 in 

an unoptimized overall yield of 11% from 4K7. Cyclohexene-2-boronic acid has been prepared 

by lithium-halogen exchange,41 but this borylation proved unreliable. The masking of the ketone 

functionality as a silyl ether was necessary because the ketone is too electron withdrawing for 

effective borylation. Attempts to borylate the free alcohol or MOM ether did not product the 

borylate product, likely due to coordination of the oxygen to the palladium center slowing down 

catalyst turnover. Butyl ketone 4K12 was synthesized from known tosylate 4K1142 and 4D6 in 
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45% yield. In a similar fashion, internal alkyne 4K14 was prepared in 59% yield from 

ketomalonate 4I1 and known mesylate 4K13.43 

 Annulation experiments with the determined conditions with boronic esters 4K2 and 4K4 

had unexpected poor results (Scheme 4L).  It was hypothesized that the KOH made the solution 

too basic and that its exclusion would improve yields of lactones 4L1 and 4L2.  Substitution of 

the aqueous 0.1 M KOH solution for an equal volume of H2O improved isolated yields for 4L1 

and 4L2.  Experiments with 4I3 revealed that using H2O instead of aqueous KOH resulted in 

very similar isolated yields of 4I6. Boronic ester 4K6 was not subjected to the KOH conditions, 

and lactone 4L3 was isolated as a 1:1 mixture of alkene diastereomers, resulting from the 

Scheme 4L. RMDA Results 
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isomerization of the exo-benzylidine to avoid A1,3 strain with the lactone carbonyl. The typical 

63% isolated yield of lactones equals an average yield of 86% for each of the three new bonds 

formed. The improvement in isolated yields of the protected alcohols 4L1 and 4L2 and the very 

similar yields of 4I6 using H2O instead of aqueous KOH in the annulation reaction caused a 

change of our standard reaction conditions. 

Cyclohexenone boronic ester 4K10 cyclized with alkynyl ketone 4H1 to form adduct 

4L4, which, with the addition of CSA and HC(OMe)3 to the reaction mixture,44 eliminated H2O 

to form 4L5 in 12% isolated yield instead of forming the desired mixed acetal 4L6. This 

elimination might have also resulted from the acidity of silica gel during purification. The 

geometry of the alkene has not been determined, though 1H and 13C NMR spectroscopy indicate 

a single diastereomer. The E-isomer (shown) minimizes allylic strain of the triene. 

 Commercially available boryl benzoate 4L7, a β-boryl carboxylic ester, underwent 

incomplete lactonization with the standard annulation conditions, producing a 63% yield of a 1:1 

mixture of tertiary alcohol 4L8 and lactone 4L9. Limited rotation around the alkenyl-aryl bond 

due to the steric congestion with the substituted cyclopentanol would limit the ester’s contact 

with the alcohol, disfavoring lactonization. Subjection of this mixture to Otera’s catalyst35 

completed the lactonization but resulted in a modest 67% isolated yield of 4L9, likely due to the 

sterically congested tertiary alcohol, rotation around the alkenyl-aryl bond breaking conjugation, 

and the strained tricyclic lactone formed. Figure 4B shows the crystal structure of 4L9 and 

clearly illustrates the tricyclic system formed in the RMDA. 
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Figure 4B. Crystal Structure of 4L9 

 

 The steric limitations of the δ-alkynyl ketone were explored with substrates 4K12 and 

4K14 (Scheme M). Increasing the ketone alkyl chain length did not greatly affect the yield of 

isolated lactone, as shown by the 60% yield of butyl ketone lactone 4M1. In contrast, conversion 

of the terminal alkyne to an n-propyl substituted internal alkyne resulted in a great  

Scheme M. δ-Alkynyl Ketone Substrates 
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reduction in yield to 38% of lactone 4M3. This significant decline can be attributed to the greater 

steric hindrance of the alkyne, which slows down its reaction with the vinyl rhodium species. 

This delay allows the vinyl rhodium species to decompose or undergo side reactions.  The steric 

hindrance of 4K14 did not affect the regiochemistry of the alkyne insertion. No product was 

isolated that would have resulted from a reversal of the regiochemistry of the insertion into the 

rhodium-carbon bond, suggesting that the insertion has excellent regioselectivity despite the 
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differences in steric bulk of each side of the alkyne. This regioselectivity has been observed 

repeatedly and it is likely due to ketone coordination to the rhodium center, which pre-organizes 

the insertion reaction (4M2).29b 

4.3 Efforts Toward the Total Synthesis of Linderagalactone C 

 To demonstrate the efficacy of the RMDA, we embarked on a total synthesis of the 

recently discovered natural product linderagalactone C (4N1) (Scheme 4N).45 The key RMDA 

would result from the combination of boronic ester 4N2 and δ-alkynyl ketone 4N3. Formation of 

the syn stereochemistry of the cyclopropane and lactone ring would be favored, with selectivity 

coming from the coordination of the carbonyl of 4N3 to the Rh catalyst after insertion of the 

alkyne. Attack of the vinyl rhodium on the less-hindered face of the ketone would set the desired 

stereochemistry of the tertiary alcohol.  

Scheme 4N. Retrosynthetic Analysis of 4N1 
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Since 4N4 has been prepared from citraconic anhydride (4N5),46 we thought a Suzuki-

Miyaura coupling with bis(pinacolato)diboron would furnish the boronic ester coupling partner 

quickly and efficiently.31c The sterically congested ketone (4N3) could be prepared from 

substituted cyclohexenone 4N6 via epoxidation, hydrazone formation, and Eschenmoser-Tanabe 

fragmentation.47 The unstaturated ketone functionality would be the product of a chromium-

mediated oxidative rearrangement of allylic alcohol (4N7).48 Alcohol 4N7 would be synthesized 
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from commercially available ketone 4N8 by Corey-Chaykovsky cyclopropanation,49 

dehydrogenation of the saturated ketone via selenoxide elimination,50 and the addition of 

methylmagnesium bromide.48 

Conversion of 4N5 to 4N4 was more challenging than anticipated (Scheme O). The 

previously reported conditions (neat 4N5 and bromine standing for seven days) were 

unattractive,46 so a dibromination/elimination protocol was attempted instead.51 This procedure 

resulted in decomposition with a variety of bases. Dimethyl bromo- (4O1) 51 and iodocitraconate 

esters (4O2)52 were prepared but proved unreactive to all attempted palladium-catalyzed 

borylation conditions,31c,39,53 presumably because of the extreme electron deficiency resulting 

from the carbonyls. A single experiment with 4O2 yielded the dehalogenated diester, resulting 

from palladium insertion into the C-I bond followed by protonolysis, but these results could not 

be exploited for a successful synthesis of 4O3. Experiments to directly borylate the copper 

enolates resulting from copper-mediated conjugate addition of methyllithium52a or a methyl 

Grignard reagent52b to dimethyl acetylenedicarboxylate resulted only in vinyl protonation. This 

lack of reactivity is consistent with the non-nuclophilicity for which copper enolates of this type 

are notorious.54 

Scheme 4O. Efforts to Synthesize 4N2 and Synthetic Equivalent 4O3 

O

O

O

O

O

O
Br

CO2Me

CO2MeBr
CO2Me

CO2MepinB

Br2; base, CH2Cl2

B2pin2 or pinBH, [Pd]

B2pin2 or pinBH, [Pd]4N5 4N4

4O1

4O3

no reaction

no reaction

CO2Me

CO2MeI

4O2

decomposition

 

The synthesis of the δ-alkynyl ketone (4N3) subunit of linderagalactone C started with 

cyclopropanation of 4N8, which proceeded in a slightly higher 65% yield than previous reports 
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(Scheme 4P).49 Many oxidation procedures were attempted to dehydrogenate ketone 4P1, but 

they were plagued by reactivity issues; of those that did react, poor conversion was a problem. 

Our initial strategy of dehydrogenation using a selenoxide elimination50 illustrates these issues. 

Conversion to the α-selenyl ketone was low, and ketones 4P1 and 4P3 were inseparable by 

chromatography, requiring purification of the α-selenyl ketone before oxidation to 4P3.  

However, recovery of 4P3 was hampered by significant decomposition during chromatography, 

resulting in unsatisfactory isolated yields. Several oxidation protocols were tested, including 

DDQ,55 SeO2,56 methyl benzenesulfinate,57 and benzeneselenic anhydride,58 but reactivity and 

isolation were problematic with these conditions as well; if 4P3 was formed, its purification was 

difficult.  A Saegusa oxidation was determined to be the best procedure.59 Silylation of 4P1 with 

TMSCl60 proceeded in nearly quantitative yield and treatment of the resultant silyl enol ether 

4P2 with one equivalent of Pd(OAc)2 effected the oxidation product 4P3 with high yield and 

acceptable purity.59 The Larock modification of catalytic Pd(OAc)2 and bubbling O2 through the 

reaction mixture replicated these results, producing 4P3 in good yield.61 Fairly significant silyl 

impurities had to be tolerated in the purified 4P3 because of its instability to silica gel 

chromatography and the failure of kuglerohr and reduced pressure distillation to remove the 

impurities. 

With unsaturated ketone 4P3 in hand, methylation with methyllithium in diethyl ether 

was found to be the most efficient protocol for the generation of tertiary alcohol 4N7.48 

Unfortunately, 4N7 was also difficult to purify due to its volatility and sensitivity towards silica 

gel, but it was isolated in sufficient purity to undergo oxidative rearrangement by PCC to 

unsaturated ketone 4N6. This ketone, while still volatile, was stable to silica gel prewashed with 

Et3N and was isolated in 38% yield.48 Epoxidation of 4N6 was straightforward using standard 
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Scheme 4P. Forward Synthesis of δ-Alkynyl Ketone 4N3 
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nucleophilic epoxidation conditions and crude epoxide 4P4 required no purification,47b but 

treatment of 4P4 with various conditions to achieve an Eschenmoster-Tanabe fragmentation 

failed to induce the desired fragmentation to 4N3.47a-d,h-i The cyclopropane is probably initiating 

undesired reactions. With too weak of an acid, no reaction occurs, but once an acid is strong 

enough to induce reactivity several products are formed and those that were able to be isolated 

were not the desired ketone 4N3. Reaction pathways to relieve the ring strain of the 

cyclopropane seem to be more likely than the desired Eschenmoser-Tanabe fragmentation. A 

revised synthesis of 4N3 is required before 4N1 can be completed. 

4.4 Future Directions 

Since palladium-catalyzed borylation of 4O1 and 4O2 does not work because of the 

extreme electron withdrawing power of the two carbonyls, an alternative strategy must be 

investigated. The desired 1,4-dicarbonyl structure could be masked as a furan (Scheme Q). 

Known iodofuran 4Q162 can be converted to boronic ester 4Q2 by Pd-catalyzed borylation,63 

which is much more established on furans than for α-haloesters.31c Oxidation of the furan with 

singlet oxygen and PCC64 or mCPBA and PCC65 would produce boryl citraconic anhydride 4N2. 

If the anhydride functionality were hydrolyzed during the RMDA, the lactonization would 

probably not occur. To avoid hydrolization, 4N2 can be converted to dimethyl ester 4O3.66 If the 
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pinacaol boronic ester is not stable to any of these reactions, it could be converted to the more 

robust MIDA boronic ester.67  

Scheme Q. Potential Syntheses of 4N2 and 4O3 
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A second strategy to access 4Q3 would start with vinyl iodide 4O2.52 Reduction of both 

esters68 and protection of the resultant allylic alcohols69 as silyl ethers would remove the electron 

withdrawing effect of the carbonyls, facilitating Pd-catalyzed borylation of 4Q4 to 4Q5.39,63 

Deprotection40 and double Swern oxidation70 to avoid formation of a lactone would be followed 

by oxidation of dialdehyde 4Q6 with a double Pinnick oxidation70 and double esterification71 to 

form 4O3. The use of 4O3 in the RMDA would necessitate a saponification step to complete the 

synthesis of 4N1. 

Scheme 4R. Proposed Alternate Synthesis of 4N3 and Completion of 4N1 
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A substitute synthesis of 4N3 was designed from known alkyne 4R2  (Scheme 4R).72 

Deprotection of the silyl ether73 and oxidation to aldehyde 4R424 permits a Wittig olefination74 to 

enyne 4R5. Cyclopropanation of the cis-alkene with the rhodium catalyst developed by Davies 

and coworkers would produce a mixture of diastereomers of 4R6.75 Saponification and 

decarboxylation would form enolate 4R7. Despite suffering increased ring strain, enolates of 

cyclopropyl ketones and esters have been synthetized, studied, utilized, and trapped as silyl enol 

ethers.76 Kinetic protonation of 4R9 on the less substituted side of the cyclopropane ring would 

form cis-substituted 4N3.77,78 Thermodynamic conditions (KOH in ethylene glycol at 170 ˚C) to 

saponify a β-keto ethyl ester have been shown to give mixtures of trans- and cis-substituted 

cyclopropanes.77 Although there is little data for the kinetic protonation of exo-cyclic enolates of 

cyclopropyl carbonyl compounds, several studies on larger rings have been made.78 RMDA with 

anhydride 4N2 would form 4N1. 

Many features of RMDA warrant further investigation. Since the lactonization requires 

high temperature, microwave or sonication techniques have the potential to greatly improve 

efficiency, especially with regard to the reaction time.1a,79 Additionally, several chiral ligands 

have been used for a variety of arylboronic acid additions to alkynes.29 These ligands can be 

screened for their effectiveness in controlling the stereochemistry of the RMDA.  

The alkynone substrate has a wide variety of options for expanding synthetic utility. Certain 

structural features are important for effective RMDA cyclization, notably that the alkyne and 

ketone fragments are held in close-enough proximity to encourage cyclization. Several structural 

motifs can be explored and exploited, especially cis alkenes and rigid functional groups such as 

fused rings like cyclic acetals (4S1)80 and carbamates (Scheme 4S).81 These more rigid systems 

can be used to form larger rings during the RMDA. Ynolates (4S3)82 could prove more reactive 
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than internal alkynes towards insertion into the Rh-C bond and would form an enol ether 

(4S4), which as a protected carbonyl could serve as a handle for further manipulation. The 

transient vinyl rhodium intermediates resulting from boronic acid insertion into alkynes have 

been shown to react with a variety of appended electrophiles,29-31 so there is great potential for a 

breadth of substrates with wide synthetic applicability. For example, lactams (4S6) could be 

formed from attack of imines (4S5). Murakami has shown that attack of the vinyl rhodium 

intermediate on an ester forms a cyclic ketone.30c Known ester 4S783 would provide a simple 

proof of concept experiment for the expansion of this methodology with alkenyl boronic esters.  

The alkene could also be substituted with other functional groups, besides esters, to further react 

with the newly formed ketone (4S8).  

Scheme 4S. Potential Structural Features for Broadening RMDA Applicability 
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A trifluoroboronate salt has been shown to transmetallate to rhodium(I) and undergo 

alkyne insertion in similar conditions (4S9).31c Other boronic esters besides pinacol should prove 

comparably reactive (4S10 and 4S11). A more general and efficient synthesis of electron-

deficient vinyl boronic esters would help improve substrate scope and availability. Perhaps a 

boryl-Horner-Wadsworth-Emmons reagent (4S12), similar to the bromoketophosphonate 

developed by Tago and Kogen,69 could be synthesized and used for the direct conversion of 

carbonyls to Z-alkenyl boronic esters (4S13). New modes of reactivity can be explored as well. 

Increasing steric bulk of the carboxylic ester (4S14) could favor an oxa-Michael addition over 

transesterification, forming the formal [2+2+2] product 4S15 that was the original goal of this 

research program. Additionally, substitution of the carboxylic ester with another electron 

withdrawing group, such as a nitro group, could also favor 1,4 addition, especially if 1,2-addition 

was not an option. Since many electrophiles react with the vinyl rhodium intermediate29-31 a wide 

variety of product motifs are possible.  

RMDA possesses great potential for development into a powerful synthetic 

transformation. The use of a catalyst and benign organoboron intermediates, as well as the 

domino formation of several carbon-carbon and carbon-heteroatom bonds, potentially in a 

stereoselective manner, makes for a very potent synthetic reaction. Mild conditions have been 

developed and the compatibility of RMDA with several functional groups has been 

demonstrated. Progress was made toward the synthesis of natural product linderagalactone C 

(4N1) to showcase RMDA’s utility, but attempts to use an Eschenmoster-Tanabe fragmentation 

to synthesize a required δ-alkynyl ketone (4N3) failed, thereby delaying completion of the 

synthesis until the ketone is synthesized by other methods. Synthesis of the requisite boronic 

ester (4N2) for the synthesis of 4N1 has been frustrated by the inability to convert electron poor 
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vinyl bromides and iodides into vinyl boronic esters with palladium catalyzed borylation 

reactions. Alternative syntheses for both of these intermediates have been proposed and several 

suggestions for expansion of RMDA have been proposed that would greatly increase its 

synthetic utility. 

Experimental Details 

Dimethyl 2-(prop-2-yn-1-yl)malonate (4D6) 

 A solution of dimethyl malonate (4D5) (22.9 mL, 200 mmol), propargyl bromide (14.9 

mL, 100 mL), and K2CO3 (41.5 g, 300 mmol) in acetone (500 mL) is stirred for 16 h. The solids 

are filtered off on a silica gel plug and the plug is rinsed with acetone. The combined filtrates are 

concentrated and the residue distilled (75 ˚C, 2 Torr) to give 4D6 as a colorless oil (10.57 g, 

62%). Rf 0.42 (20% EtOAc/hexane). 1H NMR (CDCl3, 400 MHz) δ 2.03 (t, J=2.7 Hz, 1H), 2.80 

(dd, J=7.7, 2.6 Hz, 2H), 3.62 (t, J=7.7 Hz, 1H), 3.78 (s, 6H). 13C NMR (CDCl3, 100 MHz) δ 

18.5 (CH2), 50.9 (CH), 52.9 (CH3), 70.5 (CH), 79.8 (C), 168.3 (C). IR (neat) 3289, 3958, 2124 

1740 cm-1. HRMS (EI) m/z calcd for [M+Na]+ 193.0472. Found 193.0469. 

Dimethyl 2-(2-oxopropyl)-2-(prop-2-yn-1-yl)malonate (4H1) 

 To a 0 ˚C suspension of NaH (1.28 g, 31.9 mmol, 60% in mineral oil) in THF (53 mL) was 

added 4I1 (5.0 g, 26.6 mmol) and the suspension stirred for 30 min. Propargyl bromide (4.35 g, 

29.3 mmol, 80% w/w solution in PhMe) was added and the solution stirred for 16 h, quenched 

with H2O, and extracted twice with EtOAc. The organic phases were washed with brine, dried 

(Na2SO4) and concentrated in vacuo.  The crude oil was purified by flash column 

chromatography (15% EtOAc/hexane) to yield 4H1 as a colorless oil (4.78 g, 79%). Rf 0.29 

(20% EtOAc/hexane). 1H NMR (CDCl3, 300 MHz) δ 2.03 (t, J=2.7 Hz, 1H), 2.20 (s, 3H), 3.02 

(d, J=2.7 Hz, 1H), 3.37 (s, 2H), 3.75 (s, 6H). 13C NMR (CDCl3, 75 MHz) δ 23.5 (CH3), 30.4 
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(CH2), 45.6 (CH3), 53.5 (CH3), 54.5 (CH3), 72.9 (CH), 79.3 (C), 169.7 (C), 205.5 (C). IR 

(neat) 3282, 2957, 1740 cm-1. HRMS (ESI) m/z calc for [M+Na]+ 249.0734. Found 249.0744. 

Dimethyl 2-(2-oxopropyl)malonate (4I1) 

 Dimethyl malonate (4D5) (37 mL, 327 mmol) was added dropwise to a 0 ˚C suspension of 

NaH (6.52 g, 163 mmol, 60% in mineral oil) in THF (800 mL). Tetrabutylammonium iodide (6.0 

g, 16.3 mmol) and chloroacetone (13 mL, 163 mmol) were added sequentially and the reaction 

stirred for 16 h. The reaction was partitioned with water and diethyl ether. The aqueous phase 

was extracted three times with diethyl ether and the combined organic phases dried (Na2SO4) and 

concentrated in vacuo. The crude oil was purified by flash column chromatography (10% 

EtOAc/hexane to 20% EtOAc/hexane) to yield 4I1 as a colorless oil (22.02 g, 72%) Rf 0.16 

(20% EtOAc/hexane). 1H NMR (CDCl3, 300 MHz) δ 2.21 (s, 3H), 3.08 (d, J= 7.1 Hz, 2H), 3.75 

(s, 6H), 3.89 (t, J=7.1 Hz, 1H). 13C NMR (CDCl3, 75 MHz) δ 29.9 (CH3), 42.3 (CH2), 46.7 (CH), 

53.0 (CH3), 169.4 (C), 205.0 (C). IR (neat) 2958, 1737, 1437 cm-1. HRMS (ESI) m/z calcd for 

[M+Na]+ 211.0577. Found 211.0573. 

(Z)-Ethyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-enoate (4I3) 

 General procedure for hydroboration: Under an atmosphere of argon, 4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (1.4 mL, 9.42 mL) was added to a 0 ˚C solution of [(Ph3P)CuH]6 (59 mg, 

0.030 mmol) and Ph3P (90 mg, 0.342 mmol) in THF (8.6 mL). After stirring for 5 min, ethyl 

propiolate (1.0 mL, 8.56 mmol) was added dropwise and the reaction stirred at 0 ˚C for 10 min.  

The solution was concentrated and the resultant oil was purified by flash column 

chromatography (7% EtOAc/hexane) to yield 4I3 as a colorless oil (1.03 g, 50%). Rf 0.35 (7% 

EtOAc/hexane). 1H NMR (CDCl3, 400 MHz) δ 1.27 (s, 9H), 1.30 (t, J=7.1 Hz, 3H), 1.99 (d, 

J=7.0 Hz, 3H), 4.23 (q, J=7.1 Hz, 2H), 6.82 (q, J=7.0 Hz, 1H). 13C NMR CDCl3, 100 MHz) δ 
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14.3 (CH3), 17.1 (CH3), 24.7 (CH3), 60.1 (CH2), 83.8 (C), 151.6 (CH), 162.2 C. IR (neat) 

2981, 2936, 1721, 1631, 1444 cm-1. HRMS (ESI) m/z calc for [M+H]+ 240.1642. Found 

240.1655. 

(Z)-Dimethyl 4-((Z)-2-(ethoxycarbonyl)but-2-en-1-ylidene)-3-hydroxy-3-

methylcyclopentane-1,1-dicarboxylate (4I5) 

 Rf 0.16 (20% EtOAc/hexane) 1H NMR (CDCl3, 400 MHz) δ 1.31 (t, J=7.1 Hz, 3H), 1.39 

(s, 3H), 2.01 (dd, J=7.3, 1.5 Hz, 3H), 2.29 (d, J=14.1 Hz, 1H), 2.59 (dd, J=14.1, 2.6 Hz, 1H), 

3.02 (dd, J=16.8, 2.6 Hz), 3.18 (d, J=16.8 Hz, 1H), 3.38 (s, 1H), 2.73 (s, 3H), 3.76 (s, 3H), 4.23 

(q, J=7.1 Hz, 2H), 6.03 (s, 1H), 6.32 (qd, J=7.2, 1.3 Hz, 1H). 13C NMR (CDCl3, 100 MHz) δ 

14.4 (CH3), 16.0 (CH2), 26.7 (CH3), 42.6 (CH2), 51.0 (CH2), 53.0 (CH3), 53.2 (CH3), 57.2 (C), 

60.9 (CH2), 122.8 (CH), 129.7 (C), 140.3 (C), 146.5 (C), 168.0 (C), 171.9 (C), 173.3 (C). IR 

3495, 2956, 1732, 1436 cm-1. HRMS (ESI) m/z calcd for [M+NH4]+ 341.1595. Found 341.1597. 

(Z)-Dimethyl 3-ethylidene-7a-methyl-2-oxo-2,3,7,7a-tetrahydrocyclopenta[b]pyran-6,6(5H)-

dicarboxylate (4I6) 

 General procedure for RMDA: A solution of 4H1 (112 mg, 0.5 mmol), 4I3 (120 mg, 0.5 

mmol), [Rh(OH)(cod)]2 (11 mg, 0.025 mmol), and H2O. (0.5 mL) in dioxane (50 mL) was stirred 

for 18 h at 105 ˚C in a pressure flask and cooled to room temperature, diluted with EtOAc, and 

washed with brine.  The organic solution was dried (Na2SO4) and concentrated onto Florisil® and 

purified by flash column chromatography (10% EtOAc/hexane) to yield 4I6 as a yellow oil (92 

mg, 63%). 1H NMR (CDCl3, 300 MHz) δ 1.45 (s, 3H), 2.24 (d, J=7.5 Hz, 3H), 2.65 (d, J= 14.4 

Hz, 1H), 2.78 (d, J=14.4 Hz, 1H), 3.08 (d, J=17.2 Hz, 1H), 3.17 (d, J=17.2 Hz, 1H), 3.74 (s, 3H), 

3.78 (s, 3H), 6.07 (s, 1H), 6.22 (q, J=7.5 Hz, 1H). 13C NMR (CDCl3, 75 MHz) δ 16.4 (CH3), 27.9 

(CH3), 36.1 (CH2), 45.6 (CH2), 53.4 (2 CH3), 56.7 (C), 85.7 (C), 120.4 (CH), 122.8 (C), 140.2 
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(C), 142.9 (CH), 164.0 (C), 171.5 (C), 171.9 (C). IR (neat) 2956, 1733, 1623, 1435 cm-1. 

HRMS (ESI) m/z calcd for [M+Na]+ 363.1415. Found 363.1421. 

 

 (Z)-Ethyl 4-((tert-butyldimethylsilyl)oxy)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)but-2-enoate (4K2) 

 Following the general procedure, flash column chromatography (7% EtOAc/hexane) and 

kugelrohr distillation (120 ˚C, 1.5 Torr) produced 4K2 in 45% yield. Rf 0.43 (7% EtOAc/hexane) 

1H NMR (CDCl3, 300 MHz) δ 0.06 (s, 6H), 0.90 (s, 9H), 1.28 (s, 12H), 1.28 (t, J=7.1 Hz, 3H), 

4.19 (q, J=7.1 Hz, 2H), 4.61 (d, J=4.6 Hz, 2H), 6.86 (t, J=4.6 Hz, 1H). 13C NMR (CDCl3, 75 

MHz) δ -5.1 (CH3), 1.4 (CH3), 18.6 (C), 24.9 (CH3), 26.7 (CH3), 60.5 (CH2), 63.2 (CH2), 84.1 

(C), 160.2 (CH), 168.3 (C). IR (neat) 2391, 1717, 1628 cm-1. HRMS (ESI) m/z calcd for [M+H]+ 

370.2456. Found 370.2447. 

(Z)-Ethyl 6-(methoxymethoxy)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-2-enoate 

(4K4) 

 Following the general procedure, flash column chromatography (20% Et2O/hexane) 

produced and fractional kugelrohr distillation (120-150 ˚C, 1.5 Torr) produced 4K4 in 27% 

yield. Rf 0.33 (20% EtOAc/hexane).  1H NMR (CDCl3, 400 MHz) δ 1.27 (s, 12H), 1.29 (t, J=7.6 

Hz, 3H), 1.76 (pentet, J=6.7 Hz, 2H), 2.47 (q, J=7.5 Hz, 2H), 3.35 (s, 3H), 2.53 (t, J=6.5 Hz, 

2H), 4.22 (q, J=7.1 Hz, 2H), 4.61 (s, 2H), 6.70 (t, J=7.4 Hz, 1H). 13C NMR (CDCl3, 100 MHz) δ 

14.3 (CH3), 24.7 (CH3), 28.0 (CH2), 28.8 (CH2), 55.2 (CH3), 60.2 (CH2), 67.2 (CH2), 83.9 (C), 

96.4 (CH2), 155.5 (CH), 169.2 (C). IR (neat) 2980, 2824, 1721, 1627 cm-1. HRMS (EI) m/z calcd 

for [M+H]+ 328.2167. Found 328.2157. 

tert-Butyldimethyl((2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-2-en-1-
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yl)oxy)silane (4K8) 

 In an unoptimized procedure, 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.49 mL, 3.37 

mmol) was added to a solution of known silyl ether 4K7 (655 mg, 2.25 mmol), 

PdCl2(dppf)•CH2Cl2 (92 mg, 0.113 mmol), and Et3N (0.94 mL, 6.75 mmol) in dioxane (11.3 

mL). A brief period of gas evolution was observed and the solution was heated to 80 ˚C for 20 h. 

After cooling to 25 ˚C, the suspension was partitioned with Et2O and H2O and the aqueous layer 

was extracted with Et2O. The combined organic phases were dried (Na2SO4) and concentrated in 

vacuo. The residue was purified by flash column chromatography (5% Et2O/hexane) and 

kugelrohr distillation (130 ˚C, 1 Torr) to give 4K8 as a colorless oil (250 mg, 33%). Rf 0.56 

(10% Et2O/hexane).  1H NMR (CDCl3, 400 MHz) δ 0.10 (s, 3H), 0.11 (s, 3H), 0.89 (s, 9H), 1.24 

(s, 6H), 1.25 (s, 6H), 1.4-2.2 (m, 6H), 4.35 (t, J=3.9 Hz, 1H), 6.61 (t, J=3.6 Hz, 1H). 13C NMR 

(CDCl3, 100 MHz) δ -4.2 (CH3), -4.1 (CH3), 0.2o (C), 17.5 (CH3), 18.4 (CH3), 24.9 (CH3), 25.4 

(CH2), 26.3 (CH3), 26.9 (CH2), 32.2 (CH2), 65.5 (CH), 83.2 (C), 145.1 (CH). IR (neat) 2931, 

2857, 1635 cm-1. HRMS (EI) m/z calcd for [M-C4H9]+• 280.1776. Found 280.1768 

2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-2-enol (4K9) 

 A solution of 4K8 (250 mg, 0.739 mmol), pinacol (0.44 g, 3.69 mmol), and PPTS (55 mg, 

0.222 mmol) in EtOH (3.7 mL) was stirred at 55 ˚C for 13 h. After cooling to 25 ˚C, the reaction 

was partitioned with EtOAc and H2O and the aqueous layer extracted three times with EtOAc. 

The combined organic phases were washed with H2O, dried (Na2SO4) and concentrated in vacuo 

to give an oil that was purified by flash column chromatography (10% EtOAc/hexane) to give 

4K9 as a light yellow oil (92 mg, 55%). Rr 0.40 (20% EtOAc/hexane). 1H NMR (CDCl3, 400 

MHz) δ 1.28 (s, 12H), 1.50-1.65 (m, 2H), 1.68-1.84 (m, 1H), 1.83-1.98 (m, 1H), 1.99-2.22 (m, 

2H), 4.37 (t, J=3.9 Hz, 1H), 6.66 (t, J=3.4 Hz, 1H). 13C NMR (CDCl3, 100 MHz) δ 19.2 (CH2), 
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24.8 (CH2), 26.6 (CH3), 30.5 (CH2), 67.0 (CH), 83.6 (C), 145.4 (C). IR (neat) 3446, 2933, 

1632 cm-1. HRMS (ESI) m/z calcd for [M]+
 223.1615. Found 223.1608. 

 

2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-2-enone (4K10) 

 In an unoptimized procedure, a solution of 4K9 (92 mg, 0.411 mmol) and Dess-Martin 

periodinane (0.21 g, 0.493 mmol) in CH2Cl2 (4.1 mL) was stirred at r.t. for 30 min and diluted 

with Et2O. The solids were removed by filtration through Celite® with Et2O and the filtrate 

concentrated. The residue was triturated with Et2O, filtered, and concentrated in vacuo. The 

resultant oil was purified by flash column chromatography (50% Et2O/hexane) to give a light 

yellow oil (54 mg, 59%). Rf 0.43 (50% EtOAc/hexane) 1H NMR (CDCl3, 400 MHz) δ 1.30 (s, 

12H), 2.00 (pentet, J=6.2 Hz, 2H), 2.24-2.97 (m, 4H), 7.62 (t, J=3.9 Hz, 1H). 13C NMR (CDCl3, 

100 MHz) δ 22.6 (CH2), 24.7 (CH3), 27.1 (CH2), 38.7 (CH2), 83.7 (C), 162.7 (CH), 200.6 (C). IR 

(neat) 2979, 1678, 1387 cm-1. HRMS (ESI) m/z calcd for [M]+ 221.1459. Found 221.1452. 

Dimethyl 2-(2-oxohexyl)-2-(prop-2-yn-1-yl)malonate (4K12) 

 In an unoptimized procedure, a mixture of 4D6 (0.31 g, 1.81 mmol), 4K11 (0.49 g, 1.81 

mmol), NaI (54 mg, 0.363 mmol), and K2CO3 (0.75 g, 5.43 mmol) in acetone (9.1 mL) was 

heated at reflux for 16 h. After cooling to 23 ˚C, the suspension was diluted with Et2O and 

filtered through a pad of Celite®.  The filtrate was concentrated in vacuo, dissolved in Et2O, and 

washed three times with 4 M aqueous NaOH.  The organic solution was dried (Na2SO4) and 

concentrated in vacuo and purified by flash column chromatography (10% EtOAc/hexane). The 

isolated material was a mixture of desired 4K12 and 4D6 an Et2O solution was washed four 

times with aqueous 1 M NaOH, dried, and concentrated to give sufficiently pure 4K12 (0.22 g, 

45%). Rf 0.42 (20% EtOAc/hexane). 1H NMR (CDCl3, 400 MHz) δ 0.90 (t, J=7.3 Hz, 3H), 1.32 
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(sextet, J=7.4 Hz, 2H), 1.56 (pentet, J=7.5 Hz, 2H), 2.02 (t, J=2.7 Hz, 2H), 2.45 (t, J=7.4, 

2H), 3.01 (d, J=2.7 Hz, 2H), 3.34 (s, 2H), 2.74 (s, 6H). 13C (CDCl3, 100 MHz) δ 13.9 (CH3), 

22.3 (CH2), 23.4 (CH2), 26.0 (CH2), 42.7 (CH2), 44.7 (CH2), 53.2 (CH3), 54.4 (C), 71.9 (CH), 

79.3 (C), 169.8 (C), 208.1 (C). IR 3282, 2958, 2122, 1743 cm-1. HRMS (ESI) m/z calcd for 

[M+Na] 291.1203. Found 291.1200. 

Dimethyl 2-(hex-2-yn-1-yl)-2-(2-oxopropyl)malonate (4K14) 

 To a 0 ˚C suspension of NaH (0.33 g, 8.24 mmol, 60% in mineral oil) in THF (20 mL) 

was added 4I1 (1.41 g, 7.49 mmol) and the suspension stirred for 10 min. A solution of 4K13 

(1.32 g, 7.49 mmol) in THF (5 mL) was added and the solution stirred for 16 h. The solution was 

quenched with saturated aqueous NH4Cl and extracted with Et2O. The organic extract was dried 

(Na2SO4), concentrated in vacuo, and the crude oil purified by flash column chromatography 

(10% EtOAc/hexane) to yield 4K14 as a colorless oil (1.18 g, 59%). Rf 0.53 (20% 

EtOAc/hexane) 1H NMR (CDCl3, 300 MHz) δ 0.95 (t, J=7.3 Hz, 3H), 1.48 (sextet, J=7.3 Hz, 

2H) 2.10 (tt, J=7.0, 2.4 Hz, 2H), 2.19 (s, 3H), 2.95 (t, J=2.4 Hz, 2H), 3.34 (s, 2H), 3.73 (s, 6H). 

13C NMR (CDCl3, 75 MHz) δ 13.6 (CH3), 20.8 (CH2), 22.5 (CH2), 24.0 (CH2), 30.4 (CH3), 45.8 

(CH2), 53.2 (CH3), 55.0 (C), 74.9 (C), 84.0 (C), 170.1 (C), 205.6 (C). IR (neat) 2960, 2875, 

2308, 1743, 1436 cm-1. HRMS (ESI) m/z calcd for [M+Na]+ 291.1203. Found 291.1204. 

(Z)-Dimethyl 3-(2-((tert-butyldimethylsilyl)oxy)ethylidene)-7a-methyl-2-oxo-2,3,7,7a-

tetrahydrocyclopenta[b]pyran-6,6(5H)-dicarboxylate (4L1) 

 Following the general procedure, flash column chromatography (10% EtOAc/hexane) 

produced 4L1 in 58% yield. Rf 0.35 (20% EtOAc/hexane) 1H NMR (CDCl3, 400 MHz) δ 0.077 

(s, 3H), 0.082 (s, 3H), 0.91 (s, 9H), 1.45 (s, 3H), 2.66 (d, J=14.3 Hz, 1H), 2.78 (d, J=14.3 Hz, 

1H), 3.10 (d, J=17.4 Hz, 1H), 3.19 (d, J=17.4 Hz, 1H), 3.74 (s, 3H), 3.78 (s, 3H), 4.80 (d, J=4.7 
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Hz, 2H), 6.09 (s, 1H), 6.19 (t, J=4.7 Hz, 1H). 13C NMR (CDCl3, 100 MHz) δ -5.1 (CH3), 

18.4 (C), 26.1 (CH3), 28.2 (CH3), 36.1 (CH2), 45.5 (CH2), 53.5 (CH3), 56.7 (CH3), 62.8 (CH2), 

86.4 (C), 119.5 (CH), 120.1 (C), 141.6 (C), 149.3 (CH), 163.8 (C), 171.4 (C), 171.8 (C). IR 

(neat) 2956, 2857, 1736 1436 cm-1. HRMS (ESI) m/z calcd for [M+Na]+ 447.1810. Found 

447.1801. 

(Z)-Dimethyl 3-(4-(methoxymethoxy)butylidene)-7a-methyl-2-oxo-2,3,7,7a-

tetrahydrocyclopenta[b]pyran-6,6(5H)-dicarboxylate (4L2) 

 Following the general procedure, flash column chromatography (35% Et2O/hexane) 

produced 4L2 in 63% yield. Rf 0.19 (50% Et2O/hexane). 1H NMR (CDCl3, 400 MHz) δ 1.44 (s, 

3H), 1.77 (ddt, J=16.5, 8.4, 6.7 Hz, 2H), 2.66 (d, J=14.3 Hz, 1H), 2.78 (d, J=14.1 Hz, 1H), 2.77-

2.97 (m, 2H), 3.09 (d, J=17.2 Hz, 1H), 3.17 (d, J=17.3 Hz, 1H), 3.36 (s, 3H), 3.56 (t, J=6.5 Hz, 

2H), 3.74 (s, 3H), 3.78 (s, 3H), 4.61 (s, 2H), 6.07 (s, 1H), 6.11 (t, J=7.5 Hz, 1H). 13C NMR 

(CDCl3, 100 MHz) δ 26.8 (CH2), 27.8 (CH3), 29.3 (CH2), 35.9 (CH2), 45.5 (CH2), 53.5 (CH3), 

55.2 (CH3), 56.6 (C), 67.3 (CH2), 85.6 (C), 96.5 (CH2), 120.2 (CH), 119.2 (C), 120.2 (C), 121.9 

(C), 140.5 (C), 147.4 (CH), 163.7 (C), 171.3 (C), 171.8 (C). IR (neat) 2954, 2252, 1735, 1617 

cm-1. HRMS (EI) m/z calcd for [M+Na]+ 405.1520. Found 405.1535. 

(E)-and (Z)-Dimethyl 3-benzylidene-7a-methyl-2-oxo-2,3,7,7a-

tetrahydrocyclopenta[b]pyran-6,6(5H)-dicarboxylate (4L3) 

 Following the general procedure, flash column chromatography (20% EtOAc/hexane) 

produced 4L3 in 63% yield as a 1:1 mixture of Z:E diastereomers. Rf 0.16 (20% EtOAc/hexane). 

1H NMR (CDCl3, 400 MHz, *E diastereomer) δ 1.54 (s, 3H), 1.55* (s, 3H), 2.65-2.90 (m, 4H), 

3.10-3.35 (m, 4H), 3.72* (s, 3H), 3.74 (s, 3H), 3.79 (s, 3H), 3.79* (s, 3H), 6.27 (s, 1H), 6.60* (s, 

1H), 6.82 (s, 1H), 7.26-7.48 (m, 10H), 7.5 (d, J=1.6 Hz, 2H), 7.60 (d, J=1.6 Hz), 7.76* (s, 1H). 
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13C NMR (CDCl3, 100 MIz, *E diastereomer) δ 27.9 (CH3), 28.1* (CH3), 36.1 (CH2), 36.8* 

(CH2), 45.4* (CH2), 45.5 (CH2), 53.3 (CH3), 53.4 (CH3), 56.8* (C), 56.9 (C), 85.5 (C), 86.0* 

(C), 116.4* (CH), 121.0 (C), 121.3 (C), 121.4 (CH), 128.0 (C), 128.7 (CH), 129.3* (CH), 129.4* 

(CH), 130.0 (CH), 130.5 (CH), 134.5 (C), 134.8 (C), 137.7* (CH), 141.5 (CH), 142.7* (CH), 

144.5 (C), 163.4* (C), 165.7 (C), 171.1 (C), 171.2* (C), 171.6* (C), 171.7 (C). IR (neat) 2955, 

738, 1605 cm-1. HRMS (ESI) m/z calcd for [M+NH4]+ 374.1599. Found 374.1585. 

(Z)-Dimethyl 3-methyl-4-((6-oxocyclohex-2-en-1-ylidene)methyl)cyclopent-3-ene-1,1-

dicarboxylate (4L5) 

 A solution of 4H1 (88 mg, 0.396 mmol), 4K10 (88 mg, 0.396 mmol), [Rh(OH)(cod)]2 (9 

mg, 0.020 mmol) and H2O (0.40 mL) in dioxane (40 mL) was sealed in a pressure flask and 

stirred at 105 ˚C for 18 h. After cooling to 25 ˚C, MeOH (8 mL), HC(OMe)3 (8 mL), and CSA 

(18 mg, 0.079 mmol) were added and the solution stirred for 1 h. The solution was concentrated 

in vacuo and purified by flash column chromatography (10% EtOAc/hexane) producing 4L5 (14 

mg, 12%). Rf 0.27 (20% EtOAc/hexane). 1H NMR (CDCl3, 400 MHz) δ 1.84 (s, 3H), 2.55-2.63 

(m, 2H), 2.65-2.71 (m, 2H), 3.07 (s, 2H), 3.11 (s, 2H), 3.73 (s, 6H), 5.85 (dt, J=9.0, 4.0 Hz, 1H) 

6.20 (s, 1H), 6.26 (d, J=9.7 Hz, 1H). 13C NMR (CDCl3, 100 MHz) δ 14.7 (CH3), 27.3 (CH2), 

40.7 (CH2), 42.2 (CH2), 46.0 (CH2), 52.9 (CH3, two signals), 57.9 (C), 127.6 (CH), 128.0 (CH), 

131.1 (C), 132.3 (CH), 132.4 (C), 144.5 (C), 172.4 (C, two signals), 201.7 (C). IR (neat) 2926, 

2851, 1735, 1695 cm-1. HRMS (ESI) m/z calcd for [M+Na]+ 327.1203. Found 327.1212. 

Dimethyl 3a-methyl-5-oxo-3,3a-dihydro-1H-benzo[e]cyclopenta[b]oxepine-2,2(5H)-

dicarboxylate (4L8) 

 Following the general procedure, flash column chromatography (35% Et2O/hexane) 

produced a mixture of 4L8 and 4L9 in 63% yield. Rf 0.17 (50% Et2O/hexane). 1H NMR (CDCl3, 
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400 MHz) δ 1.06 (s, 3H), 1.37 (t, J=7.1 Hz, 3H), 2.21 (d, J=14.1 Hz, 1H), 2.59 (dd, J=14.1, 

2.0 Hz, 1H), 3.14 (dd, J=16.9, 2.6 Hz, 1H), 3.34 (s, 1H), 3.37 (dt, J=17.0, 1.9 Hz, 1H), 3.75 (s, 

3H), 3.81 (s, 3H), 4.33 (qd, J=7.1, 2.1 Hz, 2H), 6.75 (s, 1H), 7.22-7.38 (m, 1H), 7.36-7.61 (m, 

2H), 7.89 (d, J=7.6 Hz, 1H). 13C NMR (CDCl3, 100 MHz) δ 14.3 (CH3), 26.8 (CH3), 42.1 (CH2), 

50.8 (CH2), 52.9 (CH3), 53.1 (CH3), 57.2 (C), 61.0 (C), 125.1 (CH), 127.0 (CH), 129.5 (C), 

130.0 (CH), 131.36 (CH), 131.38 (CH), 138.4 (C), 144.5 (C), 167.6 (C), 171.9 (C), 173.4 (C). IR 

(neat) 3514, 2925, 1719, 1598, 1569 cm-1. HRMS (EI) m/z calcd for [M+H]+ 377.1595. Found 

377.1585. 

Dimethyl 3a-methyl-5-oxo-3,3a-dihydro-1H-benzo[e]cyclopenta[b]oxepine-2,2(5H)-

dicarboxylate (4L9) 

 A mixture of 4L8 and 4L9 (108 mg, 0.306 mmol) and Otera’s catalyst (37 mg, 0.0306 

mmol) in PhMe (6.2 mL) was heated at 105 ˚C for 18 h. After cooling to 25 ˚C the mixture was 

concentrated and purified by flash column chromatography (50% Et2O/hexane) to give 4L9 (68 

mg, 67%). Rf 0.19 (50% Et2O/hexane). mp 178-180 ˚C. 1H NMR (CDCl3, 400 MHz) δ 1.41 (s, 

3H), 2.68 (d, J=14.5 Hz, 1H), 3.00-3.16 (m, 2H), 3.40 (dt, J=16.5, 1.6 Hz, 1H), 3.77 (s, 3H), 

3.79 (s, 3H), 6.62 (s, 1H), 7.19 (d, J=7.6 Hz, 1H), 7.30-7.38 (m, 1H), 7.50 (td, J=7.6, 1.3 Hz, 

1H), 7.93-8.04 (m, 1H). 13C NMR (CDCl3, 100 MHz) δ 22.2 (CH3), 41.0 (CH2), 49.7 (CH2), 53.2 

(CH3, two signals), 57.7 (C), 84.0 (C), 125.2 (CH), 127.6 (CH), 129.0 (CH), 131.2 (C), 132.5 

(CH), 132.8 (CH), 134.6 (CH), 147.4 (C), 168.0 (C), 170.5 (C), 171.2 (C). IR (neat) 2954, 1741, 

1720, 1695, 1440 cm-1. HRMS (EI) m/z calcd for [M+NH4]+
 348.1442. Found 348.3441. 

(Z)-Dimethyl 7a-butyl-3-ethylidene-2-oxo-2,3,7,7a-tetrahydrocyclopenta[b]pyran-6,6(5H)-

dicarboxylate (4M1) 

 Following the general procedure, flash column chromatography (10% EtOAc/hexane) 
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produced 4M1 in 60% yield. Rf 0.36 (20% EtOAc/hexane) 1H NMR (CDCl3, 400 MHz) δ 

0.86 (t, J=7.0 Hz, 3H), 1.2-1.4 (m, 4H), 1.5-1.8 (m, 2H), 2.24 (d, J=7.5 Hz, 3H), 2.67 (d, J=14.4 

Hz, 1H), 2.74 (d, J=14.4 Hz, 1H), 3.07 (s, 3H), 3.73 (s, 3H), 3.77 (s, 3H), 6.11 (s, 1H), 6.19 (q, 

J=7.5 Hz, 1H). 13C NMR (CDCl3, 100 MHz) δ 13.9 (CH3), 16.3 (CH2), 22.6 (CH2), 25.2 (CH2), 

36.2 (CH3), 40.1 (CH2), 44.0 (CH2), 53.2 (CH3), 56.3 (CH3), 88.3 (C), 121.3 (CH), 122.9 (C), 

138.4 (C), 142.5 (CH), 164.0 (C), 171.4 (C), 171.8 (C). IR (neat) 2956, 1726, 1435 cm-1. HRMS 

(ESI) m/z calcd for [M+H]+ 337.1646. Found 337.1648. 

 (Z)-Dimethyl 3-ethylidene-7a-methyl-2-oxo-4-propyl-2,3,7,7a-

tetrahydrocyclopenta[b]pyran-6,6(5H)-dicarboxylate (4M3) 

Following the general procedure, flash column chromatography (10% EtOAc/hexane) 

produced 4M3 in 38% yield. Rf= 0.31 (20% EtOAc/hexane). 1H NMR (CDCl3, 300 MHz) δ 0.90 

(t, J=7.4 Hz, 3H), 1.39 (s, 3H), 1.31-1.51 (m, 2H), 2.22 (d, J=7.4 Hz, 3H), 2.10-2.34 (m, 2H), 

2.65 (d, J=14.3 Hz, 1H), 2.80 (d, J=14.3 Hz, 1H), 3.07 (d, J=17.6 Hz, 1H), 3.19 (d, J=17.5 Hz, 

1H), 3.73 (s, 3H), 3.78 (s, 3H), 6.33 (q, J=7.4 Hz, 1H). 13C NMR (CDCl3, 75 MHz) δ 14.1 

(CH3), 16.4 (CH2), 21.3 (CH3), 27.7 (CH3), 31.3 (CH2), 35.1 (CH2), 45.7 (CH2), 53.4 (2 CH3), 

56.9 (C), 85.0 (C), 125.0 (C), 129.7 (C), 136.3 (C), 138.2 (CH), 171.5 (C), 172.0 (C). IR (neat) 

2959, 1718, 1624, 1437 cm-1. HRMS (ESI) m/z calcd for [M+NH4]+ 354.1912. Found 354.1913. 

5,5-Dimethylbicyclohept[4.1.0]-2-one (4P1) 

 Trimethylsulfoxonium iodide (2.11 g, 9.61 mmol) was added to a suspension of NaH 

(0.38 g, 9.61 mmol, 60% in mineral oil) in DMSO (12 mL) and the mixture stirred at 25 ˚C for 

15 minutes before 4,4-dimethyl-2-cyclohexen-1-one (4N8) (1.0 mL, 8.01 mmol) was added neat. 

The reaction was stirred for 20 minutes at 25 ˚C then warmed to 55 ˚C for 2 h.  After cooling to 

25 ˚C, the reaction was diluted with H2O and extracted three times with Et2O. The organic 
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extracts were dried (Na2SO4) and concentrated in vacuo to give a crude oil which was 

purified by flash column chromatography (15% EtOAc/hexane) to give 4P1 as a colorless slushy 

solid (743 mg, 67%). Rf 0.35 (20% EtOAc/hexane). 1H NMR (CDCl3, 400 MHz) δ 1.05-1.10 

(m, 1H), 1.12 (s, 6H), 1.21 (td, J=5.6, 4.4 Hz, 1H), 1.29-1.39 (m, 1H), 1.45 (dtd, 7.6, 6.0, 1.8 Hz, 

1H), 1.50-1.61 (m, 1H), 1.8 (ddd, J=9.7, 7.5, 4.4 Hz 1H), 2.14-2.55 (m, 2H). 13C NMR (75 MHz, 

CDCl3) δ 10.4 (CH2), 26.8 (CH), 27.3 (CH3), 28.8 (C), 30.1 (CH3), 30.55 (CH), 30.59 (CH2), 

33.4 (CH2), 209.7 (C). IR (neat) 2957, 2871, 1692, 1474 cm-1. HRMS (EI) calcd for [M]+• 

138.1040.  Found 138.1032. 

5,5-Dimethyl-2-trimethylsiloxybicyclohept[4.1.0]-2-ene (4P2) 

 A solution of n-BuLi (6.5 mL, 13 mmol, 2.0 M in hexanes) was slowly added to a 

solution of iPr2NH (1.82 mL, 13 mmol) in THF (7 mL) at -78 ˚C and the solution stirred for 30 

min at this temperature.  A solution of 4P1 (1.201 g, 8.69 mmol) in THF (5.8 mL) was added 

dropwise and the solution stirred at -78 ˚C for 1 h. TMSCl (2.54, 20 mmol) was added neat and 

the solution stirred for 30 min at -78 ˚C, warmed to 0 ˚C and stirred for 30 min at 0 ˚C. The 

reaction was poured into pentane (20 mL) and H2O (20 mL). The aqueous phase was removed 

and the organic phase was washed twice with H2O, dried (Na2SO4), and concentrated in vacuo. 

The crude oil was passed through a 1.5-inch plug of SiO2 with 100 mL 5% Et2O/pentane and the 

plug rinsed with 10 mL pentane. Solvent was removed in vacuo to yield 4P2 as a colorless oil 

(1.79 g, 98%). Rf 0.81 (10% Et2O/hexane). 1H NMR (300 MHz, CDCl3) δ 0.21 (s, 9H), 0.61 (dt, 

J=5.9, 4.4 Hz, 1H), 0.77 (td, J=8.3, 4.5 Hz, 1H), 0.94-1.05 (m, 1H), 0.99 (s, 3H), 1.06 (s, 3H), 

1.09-1.2 (m, 1H), 1.57 (ddd, J=16.1, 7.1, 2.0 Hz, 1H), 1.66 (dd, J=16.1, 8 Hz, 1H), 4.47 (dt, 

J=6.8, 2.1 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 0.5 (CH3), 9.9 (CH2), 15.4 (CH), 27.4 (CH), 
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28.7 (CH3), 30.1 (CH3), 34.3 (CH2), 97.0 (CH), 152.1 (C). IR (neat) 2955, 1660, 1462 cm-1. 

HRMS (EI) calcd for [M]+• 210.1435. Found 210.1429.  

 

 

5,5-Dimethylbicyclohept[4.1.0]-3-en-2-one (4P3) 

 O2 was bubbled through a solution of Pd(OAc)2 (197 mg, 0.879 mmol) and 4P2 (1.85 g, 

8.79 mmol) in DMSO (35 mL) stirring at 23 ˚C for 20 h. The reaction was diluted with Et2O and 

partitioned with H2O. The organic phase was washed with H2O and brine, dried, and 

concentrated in vacuo to give 4P3 (1.07 g, 89%) that required no purification. Rf 0.35 (20% 

EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 0.82 (ddd, J=6.2, 4.7, 4.3 Hz, 1H), 1.22 (s, 3H), 

1.19-1.25 (m, 1H), 1.26 (s, 3H), 1.49-1.76 m, 1H), 1.92 (dddd, J=9.0, 7.4, 4.2, 1.4 Hz, 1H), 5.67 

(dd, J=10.4, 1.5 Hz), 6.21 (dd, J=10.4, 2.4 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 13.2 (CH2), 

25.1 (CH), 27.2 (CH), 27.5 (CH3), 31.6 (CH3), 33.7 (C), 124.1 (CH), 153.9 (CH), 198.3 (C). IR 

(neat) 2962, 2870, 1663, 1467 cm-1. HRMS (EI) calcd for [M]+• 136.0883. Found136.0878. 

2,5,5-Trimethylbicyclohept[4.1.0]-3-en-2-ol (4N7) 

 MeLi (3.5 mL, 10.6 mmol, 1.6 M in Et2O) was added dropwise to a solution of 4P3 (0.48 

g, 7.12 mmol) in Et2O (17.6 mL) at -78 ˚C and the solution stirred for 16 h. After carefully 

quenching with saturated aqueous NH4Cl, the mixture was further diluted with H2O, the aqueous 

layer removed, and the organic phase dried and concentrated.  Kugelrhor distillation of the crude 

oil (90 ˚C, 1.5 Torr) produced a mixture of diastereomers of 4N7 as a colorless oil (0.38 g, 70%). 

Rf 0.40 (major diastereomer), 0.47 (minor diastereomer) (20% EtOAc/hexane). 1H NMR (300 

MHz, CDCl3, minor diasteromer*) δ 0.17-0.25 (m, 1H), 0.45-0.55 (m, 1H), 0.95-1.10 (m, 1H), 

1.03 (s, 3H), 1.10 (s, 3H), 1.20* (s, 3H), 1.25-1.30 (m, 1H), 1.32 (s, 3H), 1.35-1.43 (m, 1H), 1.42 
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(s, 3H), 1.64* (s, 1H), 1.66 (s, 1H), 5.13 (dd, J=10.3, 2.0 Hz, 1H), 5.28 (dd, J=10.3, 1.8 Hz, 

1H), 5.33* (dd, J=10.2, 1.6 Hz, 1H). 13C NMR (75 MHz, CDCl3, minor diasteromer*) δ 4.5 

(CH2), 5.8* (CH2), 22.8* (CH), 23.5* (CH), 24.2 (CH), 24.8 (CH), 28.8 (CH3), 28.9* (CH3), 

29.3* (CH3), 30.6 (CH3), 31.2 (CH3), 31.7 (C), 31.8* (C), 32.4* (CH3), 68.3* (C), 69.1 (C), 

128.6* (CH), 129.7 (CH), 133.8 (CH), 137.0* (CH). IR (neat) 3375, 2963, 2866, 1465 cm-1. 

HRMS (EI) calcd for [M-Me]+˚ 137.0961. Found 137.0962. 

2,5,5-Trimethylbicyclohept[4.1.0]-2-en-4-one (4N6) 

 Celite® (1.06 g) and PCC (1.06 g, 4.90 mmol) were added sequentially to a solution of 

4N7 (373 mg, 2.45 mmol) in CH2Cl2 (12.3 mL) and the suspension stirred for 16 h. After 

dilution with Et2O, the suspension was filtered through a pad of Celite® with Et2O and 

concentrated onto Florisil®. Purification by flash column chromatography (the column was 

flushed with 1% Et3N/EtOAc, 100% EtOAc, and 10% EtOAc/hexane before loading the crude-

impregnated Florisil® and elution with 10% EtOAc/hexane) gave 4N6 as a light-yellow oil (132 

mg, 38%). Rf 0.53 (20% EtOAc/hexane). 1H NMR (400 MHz, CDCl3) δ 0.01 (dt, J=6.3, 3.9 Hz, 

1H), 1.12 (s, 3H), 1.20 (s, 3H), 1.27 (td, J=8.4, 4.0 Hz, 1H), 1.32-1.43 (m, 1H), 1.51 (td, J=7.8, 

3.9 Hz, 1H), 2.05 (d, J=1.3 Hz, 3H), 5.46 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 17.6 (CH), 

21.5 (CH2), 23.6 (CH3), 25.2 (CH), 29.8 (CH3), 40.3 (C), 119.2 (CH), 164.6 (C), 201.7 (C). IR 

(neat) 2965, 2928, 2867, 1661, 1442 cm-1. HRMS (EI) calcd for [M]+• 150.1040. Found 

150.1044. 

2,6,6-Trimethyl-3-oxatricyclo[5.1.0.02,4]octan-5-one (4P4) 

 Aqueous NaOH (0.05 mL, 0.275 mmol, 6 M) was added to a solution of 4N6 (69 mg, 

0.459 mmol) in MeOH (1.5 mL) and the solution stirred for 5 min at which point aqueous H2O2 

(0.13 mL, 1.15 mmol, 30% wt.) was added dropwise and the solution stirred for 16 h. The 
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mixture was diluted with Et2O and washed three times with H2O. The organic phase was 

dried (Na2CO3) and concentrated in vacuo to give 4P4 as a colorless oil that required no further 

purification. Rf 0.68 (20% EtOAc/hexane). 1H NMR (400 MHz, CDCl3) δ -0.01 (q, J=5.5 Hz, 

1H), 0.83 (td, J=8.4, 5.5 Hz, 1H), 1.09 (td, J=8.2, 5.9 Hz, 1H), 1.12 (s, 3H), 1.38 (s, 3H), 1.57 

(td, J=8.1, 4.9 Hz, 1H), 1.54 (s, 3H), 3.04 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 9.3 (CH2), 

17.6 (CH), 22.3 (CH3), 24.8 (CH), 25.4 (CH3), 26.9 (CH3), 42.7 (C), 63.0 (CH), 69.3 (C), 210.2 

(C). IR (neat) 2969, 1703, 1653 cm-1. HRMS (EI) calcd for [M-H]+• 166.0989. Found 166.0986. 
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