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Genetic diversity is inherently a spatial process of stochastic and directional 

evolutionary forces, as well as the interactions between such forces with the underlying 

environment.  Combined, these factors may operate simultaneously and are challenging to 

understand, particularly in highly-mobile species or species whose genetic properties have 

dependence on or influence from human activities.  In this dissertation, I employed 

molecular technologies and spatial analyses to examine genetic diversity and structure in 

Red Junglefowl (Gallus gallus), an important agricultural species.  My aim was to 

understand how spatial processes affect genetic diversity and how landscape patterns may 

influence population structure at microgeographic scales.  I screened 212 wild Red 

Junglefowl sampled across diverse habitats in South Central Vietnam with two genomic 

tools.  First, amplified fragment length polymorphism (AFLP) surveyed genome-wide 

neutral variation.  Second, a single nucleotide polymorphism (SNP) panel interrogated 84 

sites spanning the entire 242 Kb major histocompatibility complex (MHC) B-locus.  

Analyses of 289 neutral AFLP markers identified a metapopulation structure.  Red 
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Junglefowl in all sampled localities displayed high degree of interspecific-population 

differentiation (overall FST = 0.1028) with no evidence of contemporary long-distance 

genetic exchanges especially across the major barrier Annamite Mountain Range.  Fine-scale 

spatial landscape models detected substantial intraspecific genetic subdivision to distances as 

low as 5 km.  The magnitude of spatial neutral variation of the ground-dwelling pheasants, 

however, showed no causative relationship between landscape features of landcover and 

topography.  After screening 398 chromosomes, 310 unique MHC haplotypes (77.89%) were 

identified.  Comparison to 17 lines of domestic chickens also screened with the SNP panel 

indicated that wild Red Junglefowl have extraordinarily high haplotypic diversity.  The vast 

majority of variation in MHC haplotypes (94.51%) occurred within individuals while genetic 

differentiation between populations was negligible (overall FST = 0.0083).  Likely 

augmented by recombination, the B-locus also exhibited a few areas of strong linkage 

suggesting perhaps concerted evolution against a common pathogen.  Overall, the results 

suggest the spatial pattern of MHC is adaptive and under the influence of balancing 

selection.  Neutral markers reflect demographic processes and movements of the Red 

Junglefowl.  I conclude that wild populations of Red Junglefowl in Vietnam represent one of 

the richest resources of natural genomic variation.  Both neutral and adaptive genetic 

diversity should be equally considered in a spatial research framework for future 

management of animal genetic diversity, including application to agricultural stock 

improvement. 
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INTRODUCTION TO THE THESIS 

In this dissertation, I employed two molecular genetic technologies and numerous 

spatially explicit models to examine genetic diversity and population structure in Red 

Junglefowl (Gallus gallus), the ancestor to domesticated chickens.  Drawing from a 

framework of landscape genetics, I specifically focused on understanding how spatial 

processes of genetic diversity and landscape patterns occur and interact with each other at 

microgeographic scales.  While landscape genetics is an emerging and empirical field, 

emergent themes offer the best possible information about the effects of landscape patterns 

on genetic variation in a spatially explicit manner (Manel et al. 2003).  Here, I view 

landscape genetics as an interdisciplinary activity where landscapes and spatial ecology are 

the stage on which the play of genetic diversity, evolution, as well as the current human-

induced conservation issues unfolds.  With equal focus on the spatial components of the 

intervening landscapes and the ecological genetic components of Red Junglefowl, this 

dissertation aims to answer practical research questions at the interface of ecology, 

evolution, and resource management.  Moreover, because Red Junglefowl has significant 

agricultural importance, my research will forge new connections to poultry genetics by 

offering access to a previously unavailable genetic resource.  
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Spatial component of landscape genetics 

As landscapes and environments become more heterogeneous and increase in 

complexity, connectivity between landscape components becomes more important in 

influencing gene flow, which in turn affects genetic variation and viability of living 

organisms.  Making realistic spatial interpretations for rapidly changing landscapes, as well 

as for population genetics, remains an obstacle in landscape genetics (Balkenhol et al. 

2009a).  Spatial interpretations of landscape connectivity reciprocally evolved from fields of 

landscape ecology and population genetics.  Early models of metapopulation dynamics 

(Hanski and Gilpin 1997), landscape ecology (Turner et al. 2001), and geographical genetics 

(Epperson 2003) focused on discrete populations in a matrix composed of suitable patches 

intermixed among unsuitable habitat patches.  Natural populations in these models were well 

defined in an island patch-based context and their connectivity was expressed as a simple 

function of geographic distances.  Such models relied on mechanistic assumptions and were 

limited in null-hypothesis testing, such as testing for the presence of barriers to gene flow.  

More recently, studies have explored continuously distributed individuals or patchily 

distributed clusters of individuals with low densities between these clusters (Manel et al. 

2003).  This new spatial interpretation not only seeks to describe landscapes and genetic 

variation as spatially explicit gradients but also expresses their distributions in individual-

based models to provide much higher resolution of the landscape-genetics relationship 

(Bolliger et al. 2014). 

Despite its increased realistic spatial interpretation, landscape genetics is still 

encumbered by analytical problems (Balkenhol et al. 2009a, Guillot et al. 2009) mostly due 
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to spatial patterns intrinsically present in both physical and biological variables of the study 

systems (Legendre et al. 2002).  Spatial processes such as gene flow, the phenomenon of 

spatial autocorrelation (Legendre 1993), and environment-induced genetic variation - or 

spatial dependence (Wagner and Fortin 2005) - are inherent in ecological and evolutionary 

processes.  These spatial phenomena, however, violate the assumption of independent and 

identical distribution (i.i.d.), hence perturb significant tests and inflate Type I errors 

(Dormann et al. 2007, Guillot et al. 2009).  Multivariate analyses and distance-based 

geostatistical methods are considered a more appropriate way for detecting non-linear and 

non-independent data in landscape genetics (Wagner et al. 2005, Legendre and Fortin 2010).  

Essentially, researchers need to develop general and hypothesis-driven analytical framework 

to test for specific landscape-genetic mechanisms in their study system of interdisciplinary 

landscape genetics (Balkenhol et al. 2009b, Guillot et al. 2009). 

Ecological genetics with applied focuses 

The spatial framework in landscape genetics could hold great promise in research and 

resource management if relevant ecological focuses, good research systems, and applied 

solutions are clearly delineated.  Many research programs and disciplines, such as the fields 

of molecular ecology and conservation genetics (Diniz et al. 2008), have furthered our 

understanding of the spatial and geographical components of genetic diversity.  As a direct 

consequence, biodiversity conservation is including more genetically-themed information in 

decision making processes.  Application of ecological genetics aims to preserve species in 

rapidly changing environments.  Advantageously, the field of landscape genetics is 



4 
 

advancing this goal in two distinctive ways.  First, instead of limiting analyses of genetic 

data only to summary descriptions of genetic diversity, landscape genetics advocates the use 

of neutral genetic markers within a spatially explicit context to determine patterns, if any, in 

local adaptation of populations (Schoville et al. 2012).  Typically, neutral genetic population 

processes include migration, dispersal, and gene flow (Frankham et al. 2004).  By examining 

the spatial distributions of alleles at different spatial hierarchies using a wide variety of 

organisms, landscape genetics has a better likelihood to determine the causal relationship 

between environmental variables and adaptive genetic variability.  The second and more 

recent approach, is concerned with the processes of adaptive genetic variation which 

describes the biological function and local adaptations of entire genomic regions (Bolliger et 

al. 2014). 

Both approaches have their own advantages.  Neutral genetic markers, such as 

AFLPs and microsatellites, are relatively inexpensive and could be obtained in large volume 

to reveal ample levels of genetic variation at most loci.  Alternatively, adaptive variation 

studies in the field of quantitative genetics could find significant heritability for most traits.  

However, the integration between the two approaches in landscape genetics, or in the 

biological sciences in general, was considered by Phillips (2005) as ‘caught between 

molecular knowledge in the absence of adaptive context and ecological context in the 

absence of molecular details’ (p. 16).  Future advances in the field of landscape genetics will 

require reconciling adaptive and neutral variation assessments to determine how genes under 

selection disperse across landscape, and how gene flow counterbalances local adaptation 

(Manel and Holderegger 2013).  An additional area of improvement may involve empirical 
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and applied foci wherein genetic variation for ecologically or agricultural important traits (or 

both) is described in natural populations to the determination of the genetic basis of 

phenotypic and fitness differences on the landscapes (Schoville et al. 2012) and between kin 

species (Bernatchez and Landry 2003). 

Dissertation organization and research questions 

This dissertation has three research chapters.  The chapters are unified by two 

themes.  First, they share a common focal species and sampling region.  I sampled 

populations of wild Red Junglefowl (Gallus gallus) distributed in geographically diverse 

habitats in South Central Vietnam.  Still considered by IUCN a non-threatened species, wild 

populations of Red Junglefowl have recently experienced considerable anthropogenic 

influences which may affect their long-term conservation (Peterson and Brisbin 1998, Fuller 

and Garson 2000).  Red Junglefowl are considered the direct ancestor of domestic chickens 

(Fumihito et al. 1994).  The domestication of wild fowl occurred several thousands of years 

ago (ca. 3000 – 6000 ybp), presumably in South and Southeast Asia and spreading globally 

through human dispersal and cultural development (Storey et al. 2012).  Today, the global 

poultry industry is experiencing massive reductions of genetic diversity in commercial 

chicken breeds that subsequently may bring poultry (and other livestock) to a “selection 

wall” for growth and reproductive traits (Muir et al. 2008).  Especially important are newly 

emerging diseases such as West Nile Virus and Avian Influenza.  Not only do these diseases 

affect poultry and wild birds, but also exhibit considerable potential for zoonotic diseases 

(Berlin et al. 2008, Downing et al. 2009).  Wild populations of Red Junglefowl are likely to 
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provide the richest resource of genomic variation to poultry genetic management and could 

be a key genetic reservoir for maintaining a healthy poultry industry as well as minimizing 

the zoonotic potential of industrial-scale agriculture. 

Second, I take advantage of two molecular techniques, neutral amplified fragment-

length polymorphisms (AFLPs) markers and adaptive major histocompatibility complex 

(MHC), to characterize the ecological genetics of wild Red Junglefowl.  AFLPs (Vos et al. 

1995) are a marker system based on simple nucleotide substitution scoring based on allele-

presence and absence.  Although AFLPs cannot distinguish heterozygote genotypes, they 

have a proven history in population studies as it balances the necessity for more complete 

genomic coverage with a level of resolution capable of identifying individuals (Bonin et al. 

2007).  In contrast, MHC is a locus under intense selection and exhibits some of the most 

polymorphic genes known (Hess and Edwards 2002).  Hundreds of alleles and single 

nucleotide polymorphisms (SNPs) have been described at certain MHC loci in laboratory 

strains of chickens (Fulton et al. 2006).  Currently, not much is known about MHC variation 

in non-commercial chickens (Izadi et al. 2011) and even less in wild populations of Red 

Junglefowl.  In the wild, selective pressures from a variety of environmental factors could 

generate extraordinary degrees of polymorphism that exceed either those detected in neutral 

loci or MHC in commercial breeds.  My overall goal is to determine levels of genetic 

diversity and structure and to evaluate if landscape has any affect on its distribution. 

In Chapter 1, the primary research question is: what are major spatial processes 

influencing neutral genetic diversity in Red Junglefowl across the South Central Vietnam 

landscape?  I hypothesize that the ground-dwelling Red Junglefowl exhibit substantial inter-
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population variation across the landscape due to habitat fragmentation and limited fine-scale 

gene flow, which is mediated by strong natal philopatry.  Coarse-scale analyses evaluate the 

magnitude of population-level differentiation while local, fine-scale analyses reflect how 

evolutionary forces such as spatial process and demography may have influenced the local 

population structure of Red Junglefowl.  Typically, ecological genetics studies focus on 

population-based sampling and analyzing.  In addition, spatial processes such as isolation-

by-distance and the effects of sampling scales have not been thoroughly addressed in 

geographical-level genetics models.  To address these issues, I employed and evaluated 

complementary methods of ordination, correlograms, and Bayesian clustering in determining 

patterns of neutral AFLP variation in the Red Junglefowl at different spatial scales.  I 

emphasized the utility of intensive computation in clustering method in order to produce 

high-resolution genetic structure for wild populations.  Alternatively, deterministic 

individual-based models such as gradient analyses can provide intuitive information about 

genetic variation from reasonable size dataset with strong population structures. 

In Chapter 2, using the neutral diversity and population structure conceived in 

Chapter 1, I asked whether geographic distances or patterns of major landscape features were 

deciding factors responsible for the extent of such spatial variation.  Currently, hypothesis 

testing in the individual-based framework in landscape genetics is mostly based on a null 

model known as the Island Model.  This non-spatial framework is, therefore, confounded 

with spatial and non-independent data such as auto-correlated genotypes and environment-

induced genetic variation.  Distinguishing different spatial phenomena in both responding 

genetic structure and the explanatory landscapes will correctly determine the causative 
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relationship between them.  I focused on landcover and topography as two major landscape 

features in driving genetic variation of the widespread and locally abundant Red Junglefowl.  

Although the two landscape features vary within each study site, I hypothesize that Red 

Junglefowl are sufficiently flexible in their habitat requirements relative to the local 

landscape variation. Thus, I expect that elevation and land cover do not influence the birds’ 

genetic structures.  I developed a spatially explicit analytical framework wherein integrative 

methods of multivariate analysis, geostatistics, and GIS techniques are applicable for the 

research objective.  Overall, this chapter and its research methods contribute to the 

developing discipline of landscape genetics, specifically the utility of distance-based and 

individual-based methods correlating genetic variation with landscape features.   

Chapter 3 is an adaptive genetic variation study designed to characterize diversity at 

the MHC region, an essential component of immune system responses and functions.  I 

sought to answer if the functional MHC genes in wild Red Junglefowl are, indeed, retained 

at high diversity and variation compared to neutrality variation described in Chapter 1 and to 

intensively selected chicken lines.  Differences between the adaptive and neutral diversity 

will provide insights into the evolution history of Red Junglefowl.  Balancing selection is 

thought to enhance MHC variation and the effects of genetic drift and gene flow has shaped 

the distribution of neutral variation in populations.  Also, understanding how natural and 

artificial selection affect MHC in the wild and domestic birds (poultry) will create new 

avenues to understand linkage between immune system genetic variation and disease 

resistance.  Considering the extent of the geographical sampling and the range of different 

habitats, I hypothesize that wild Red Junglefowl possess great diversity in their MHC genes.  
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To test this hypothesis, I used a novel high-density SNP detection system to genotype and 

assess nucleotide diversity at 84 sites distributed across approximately 240 Kp of the MHC 

B-locus in wild Red Junglefowl.  The data set was then analyzed by extensive Bayesian 

inferences to reconstruct chromosomal MHC haplotypes, and from there, nucleotide 

diversity and population structure were estimated.  The combination of high-throughput 

genotyping and population genetics models in the chapter represents the first comprehensive 

MHC haplotypic assessment in any wild bird species. 

The three research chapters in the dissertation were formatted as independent 

manuscripts for publication in scientific journals.  I made some minor formatting 

adjustments for the sake of consistency among chapters.  I was the primary contributor for 

each chapter conducting data collection, analytical development, analysis, and writing.  My 

PhD advisor and committee chair, Dr. Mark Berres, is a coauthor on all chapters, 

contributing to research design, idea refinement, and manuscript revisions.  We collaborated 

with Dr. Janet Fulton to generate the MHC data in Red Junglefowl in Chapter 3.  
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CHAPTER 1 

Spatial genetic structure of the wild Red Junglefowl (Gallus gallus)                 

in their core distribution range in South Central Vietnam  
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ABSTRACT 

Human activities have caused significant evolutionary change in species of 

agricultural importance through artificial selection and domestication.  Threats to wild 

ancestors of agricultural animals can range from global eradication of the wild progenitor, to 

a pronounced reduction of genetic diversity, or to genetic contamination from domesticated 

stocks.  Large-scale evaluations of genetic diversity are of central importance to the 

conservation of genetic resources and agriculture science, yet severely lacking for the wild 

ancestral populations of domestic stocks in their remaining habitats.  We perform the first 

large-scale spatially explicit study to characterize the genetic diversity of wild populations of 

Red Junglefowl (Gallus gallus) from geographically and ecologically diverse tropical 

habitats in South Central Vietnam.  Results of Bayesian clustering and population genetics 

models show a strong signature of population structure (overall FST = 0.1028) of Red 

Junglefowl in a geographical context wherein distinct population clusters comprise a 

metapopulation.  Spatial analyses also suggest, in contrast to the birds’ large geographic 

distribution and their ubiquitous relationship with domestic chickens, a high degree of fine-

scale genetic subdivision also exist at distances as low as 5 km.  Our results suggest that the 

current natural populations of Red Junglefowl in Vietnam are small and isolated, and are 

therefore susceptible to endogenous threats to their genetic diversity and perhaps may also 

be at risk to genetic introgression from native domestic chickens. 

Keywords:  AFLP, Bayesian cluster analysis, gene flow, metapopulation, Red Junglefowl, 

spatial genetic variation. 
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INTRODUCTION 

Chickens are among the most important domesticated animals, making tremendous 

contributions to human society in both economic and nutritional terms (Muir et al. 2008), but 

also as model systems for scientific research (Delany 2006).  The domestication of wild fowl 

occurred several thousands of years ago, and spread globally following human demographic 

and cultural development (Storey et al. 2012).  This process surely played a significant role 

in reshaping the genetic composition and phenotypic traits of wild fowl into modern chicken 

breeds (FAO. 2007, Groeneveld et al. 2010).  Today, the global poultry industry represents a 

multi-billion dollar business with more than 40 billion chickens produced annually (Muir et 

al. 2008).  The industry is predominantly governed by trans-national companies who create 

and market a few lines of intensively-selected chicken lines world-wide (FAO. 2007).  This 

has resulted in massive genetic diversity reductions in commercial chickens that 

subsequently may bring poultry livestock to a perceived “selection wall” for growth and 

reproductive traits (Muir et al. 2008), as well as increase their susceptibility to zoonotic 

diseases (Berlin et al. 2008, Downing et al. 2009). 

In addition to the lack of genetic diversity in commercially-bred chickens, indigenous 

or heritage chicken breeds (i.e., noncommercial lines historically created through selective 

breeding and locally maintained) are at a far greater risk of declining genetic diversity 

compared to other domesticated mammal and avian species (Fulton and Delany 2003, FAO. 

2007).  Maintaining and improving genetic diversity in chickens (poultry in general) are 

critical for long-term sustainable agriculture wherein the common approach has been only to 
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maintain the extent of genetic variation within and among breeds, strains, and lines 

(Granevitze et al. 2007, Lenstra et al. 2012).  Indigenous breeds of chickens have strong 

potential to recover genetic variation in commercial chicken lines (Muir et al. 2008).  Breeds 

native to Southeast Asia are of particular interest since they share the most likely origin of 

domestication (Berthouly et al. 2010, Ngo et al. 2010).  The indigenous chicken lines are 

considerably divergent and contain distinct genotypes compared to the inbred broilers and 

layers (Mekchay et al. 2014). 

However, it is imperative to recognize that Red Junglefowl (Gallus gallus), the wild 

progenitors of all domesticated chickens, still exist in their native habitats (Fumihito et al. 

1994, Johnsgard 1999).  Red Junglefowl are medium size birds (~ 500 - 1 000 g) and mainly 

ground-dwelling.  Morphological and demographical characters of the species such as short 

rounded wings, polygynous breeding, and female promiscuity indicate the birds have limited 

migration range and natal dispersal is the primary mode of gene flow (Johnsgard 1999). 

Naturally occurring Red Junglefowl are likely to provide the richest resource of genomic 

variation since they were not subjected to a domestication process; extant populations of Red 

Junglefowl likely still maintain the ancestral alleles of which very little remain in our highly 

derived commercial lines.  Therefore, the potential for Red Junglefowl to augment poultry 

genetic management is considerable and should be an invaluable genetic reservoir for 

maintaining a healthy poultry industry.  In addition, calling attention to the genetic value of 

wild Red Junglefowl populations by initiating early investigations into the population 

genetic structure and gene flow among natural Red Junglefowl populations will inform 

landscape management efforts and help to conserve these wild populations. 
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Within the Indo-Burma biodiversity hotspot, South Central Vietnam is the core range 

of Red Junglefowl distribution (Johnsgard 1999).  Red Junglefowl are distributed in South 

Central Vietnam from lowlands to about 600 m in elevation, across a highly variable 

environmental gradient and heterogeneous landscape.  The biogeography of our focal region 

is characterized by the Annamite Mountain Range (Trường Sơn) featuring high plateaus of 

approximately 200 km in length with elevations ranging up to 2 400 m.  Tropical lowland 

forests occur in the eastern coastal areas and become more abundant in the south, while dry, 

deciduous forests are found mainly in the northwest.  Red Junglefowl presumingly had a 

continuous distribution over their preferred, mostly secondary, habitats with the Annamite 

acting as an extended landscape barriers to the species’ dispersal.  The current landscape in 

South Central Vietnam has small and severely fragmented natural habitats that potentially 

influence the spatial genetic diversity of the Red Junglefowl and call into question the 

likelihood for continued survival. 

In this study, we characterized the genetic population structure of wild Red 

Junglefowl in the South Central region of Vietnam.  Few genetic studies of the species have 

been conducted (Storey et al. 2012) and genetic purity of Red Junglefowl in those studies is 

questionable (Brisbin et al. 2002).  Abundant evidence shows that genetic exchange does 

occur between feral or free-ranging domestic chickens and wild Red Junglefowl (Peterson 

and Brisbin 1998, Berthouly et al. 2010, Mekchay et al. 2014).  Our first aim is to study 

neutral genetic variation in wild populations of Red Junglefowl in geographically diverse 

habitats to determine whether landscape barriers and differentiation by means of isolation-

by-distance along ecological gradients characterize the coarse- and fine-scale genetic 
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diversity.  Coarse-scale analyses will evaluate the magnitude of population-level 

differentiation while local, fine-scale analyses will reflect how evolutionary forces such as 

spatial process and demography may have influenced the population structure of Red 

Junglefowl.  We hypothesize that the Red Junglefowl exhibit substantial interspecific 

population variation across the landscape due to habitat fragmentation and limited gene flow 

mediated by strong natal philopatry.  We demonstrate the utility of intensive Bayesian 

computational clustering, with different clustering resolutions, and distance-based methods 

to investigate the relative influences of spatial processes and neutral genetic variation on 

population structure of this remarkable important species of pheasant. 

MATERIALS AND METHODS 

Field sampling 

We sampled Red Junglefowl in seven protected areas in South Central Vietnam 

during three dry seasons in 2012, 2013, and 2014.  The tropical dry season in the Annamite 

Mountain Range occurs from January to May and overlaps with the breeding season of Red 

Junglefowl.  During this time, mating and territorial defense facilitate the location and 

sampling of birds.  Outside of this time period, Red Junglefowl become very secretive and 

extraordinarily difficult to locate and nearly impossible to capture.  Sampling sites were 

chosen in protected areas and included Bi Đúp Núi Bà National Park (BDP), Cát Tiên 

National Park and Đồng Nai Nature Reserve (hereafter CTN as the two sites are connected), 

Hòn Bà Nature Reserve (HBA), Lò Gò Sa Mát National Park (LGO), Núi Chúa National 

Park (NCA), Tà Kóu Nature Reserve (TKU), and Yok Đôn National Park (YDN) (Figure 
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1.1).  Selection of sites was based on the presence of suitable junglefowl habitat and their 

relatively symmetrical distances from the putative barrier of the Annamite Mountain Range.  

The average area of each field sites was approximately 50 000 hectares. They mostly feature 

natural habitats of lowland tropical rainforest (≤ 600 m in elevation) and they are separated 

apart from one another (~ 180 km) by residential and non-natural habitats.  Although Red 

Junglefowl appear able to tolerate significant habitat degradation, extensive farmland 

conversion and pervasive hunting in South Central Vietnam likely fractured a once 

continuous Red Junglefowl population into small, isolated populations. The sampling 

regions chosen reflect a range of isolation from human influences. 

We live-captured Red Junglefowl with non-lethal walking snares (Bub 1991) adapted 

from local trapping customs.  Decoy domestic roosters trained to produce territorial 

vocalizations (“baiting cocks”) augmented our trapping efforts.  A total of 212 birds were 

sampled from the seven field sites (Figure 1.1, Table 1.1).  We determined age and sex of 

captured birds by plumage characteristics with 172 roosters, 23 hens, and 17 juvenile chicks 

(< 3 months old).  Within sites, the average distance between capture localities was 1.12 km 

(max 26 km, min 0 m of birds in the same flock) depending on capture opportunities.  

Capture rates were estimated to be 0.92 bird per work day as the junglefowl were still highly 

elusive (despite being strongly territorial) in their mating season.  We initially attempted to 

capture equal numbers of male and female junglefowl to understand sex-biased dispersal and 

home range.  However, the use of snares alone had very low capture efficiency and required 

extra sampling efforts in checking and maintaining the snare lines.  With the assistance of 

decoy roosters, we had greater capture efficiency but mainly lured and captured the 
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territorial male junglefowl.  Generally in all field sites, we mostly observed and sampled 

junglefowl in mature secondary-growth habitats.  Bamboo forests, which have clear 

understory floor and often sprout after fire, provide ideal habitat and an excellent food 

source for the ground-dwelling junglefowl. 

We marked the sampled birds with numbered aluminum bands.  At all sampling 

localities, we recorded geographical coordinates and characterized major vegetation 

structure.  Coordinates for each trapped Red Junglefowl were taken with a GPS receiver.  

For each bird, a 20 - 200 µL blood sample was obtained from the brachial vein and stored in 

a lysis buffer (0.1 M Tris-HCl pH 8.0, 0.01 M EDTA, 4% SDS) (Longmire et al. 2000) until 

DNA extraction.  We used a higher SDS concentration than the recommended 2% to better 

lyse and preserve blood cells in high temperature field conditions.  

Genotyping of AFLP profiles 

We generated AFLP profiles (Vos et al. 1995) for our samples with modified 

protocols (Marschalek and Berres 2014).  Genomic DNA was extracted from blood using the 

Promega Wizard DNA Isolation kit (Promega Corp., Madison, WI, USA) and was assessed 

visually with 1% agarose gel electrophoresis for non-degraded, high molecular weight DNA.  

We tried various combinations of restriction enzyme pairs, pre-selective primer pairs (x3) 

and selective primer pairs (x24), and chose the ones that maximized the number of fragments 

that met a criterion of full resolution profiles (Berres 2003).  We digested 200 ng of high 

quality DNA to completion with 20U restriction enzymes EcoRI (5’-G|AATTC-3’) and 20U 

AseI (5’-AT|TAAT-3’) at 37 °C overnight followed by a 20 min heat treatment at 65 °C.  
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The digested fragments were ligated at 16oC overnight with 400U T4 DNA ligase to double-

stranded oligonucleotide adapters with overhangs complementary to the digested ends.  

Ligated samples were diluted 1:4 with 10mM Tris-HCl (pH 8.0) to produce DNA templates 

for polymerase chain reaction (PCR) amplification. 

Pre-selective PCR was performed in 50 µL volumes of 10 µL diluted ligation DNA 

with PCR mixture (1x GoTaq Flexi Buffer, 1.5 mM MgCl2, 0.05 mM dNTP, 2% deionized 

formamide, 1.25U Taq DNA Pol I) and 15 pmoles each of primer pairs EcoRI+C/AseI+G or 

EcoRI+G/AseI+G.  Thermocycling conditions consisted of one cycle of 72 °C for 2 min, an 

initial denature at 94 °C for 1 min followed by 25 cycles each of 94 °C for 50 s, 56 °C anneal 

for 1 min, and 72 °C extension for 2 min.  Pre-selective amplification products were diluted 

1:19 with 10 mM Tris-HCl (pH 8.0) but those with lower amplification (determined by 

visual inspection on an ethidium bromide stained 1% agarose gel) were diluted 1:9. 

Selective PCR amplification was performed in 25 µL volumes containing 5 µL 

diluted pre-selective amplification product with PCR mixture (1x GoTaq Flexi Buffer, 2 mM 

MgCl2, 0.2 mM dNTP, 2% deionized formamide, 0.625U Taq DNA Pol I) and 5 pmoles 

HPLC-purified primer EcoRI+CAT labeled with 6-carboxyfluorescein (6-FAM), and 25 

pmoles AseI+GA or with 5 pmoles HPLC-purified primer EcoRI+GG labeled with 6-

carboxyfluorescein (6-FAM), and 25 pmoles AseI+GC.  Thermocycling conditions consisted 

of an initial 94 °C denature for 1 min followed by 10 cycles of a 1 min annealing touchdown 

(1 °C decrease each cycle) from 65 °C to 56 °C each with a 72 °C extension for 2 min.  The 

selective amplification was completed with 18 cycles of 95 °C for 50 s, 56 °C for 1 min, and 

72 °C for 2 min.  Selectively amplified PCR products were purified over Sephadex G75 and 
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stored at -80 °C.  One µL of purified product was combined with 13.5 µL deionized 

formamide and 0.5 µL Geneflo 625 (mobility standard, CHIMERx Molecular Biology 

Products) for electrophoresis on an ABI 3730xl DNA Analyzer (Biotechnology Center, UW-

Madison, WI). 

AFLP profiles were categorized (binned) by a partially automated scoring process.  

First, we used RawGeno package (Arrigo et al. 2009) in the open-source R 3.1.2 

environment (R Development Core Team 2011) to create bins of homologous amplicons 

based on their electrophoretic mobility (converted in units of base pairs).  The maximum bin 

width was chose to be 1.2 base pairs and unconstrained for narrower bins).  This procedure 

generated a binary matrix of presence/absence (1/0) scores for each amplicon in the AFLP 

fingerprint.  Trace files of the individual samples were then visually inspected in DAx 8.0 

(van Mierlo Inc., The Netherlands).  Replicable PCR generation of AFLP fingerprints 

usually yields amplicons with a relative fluorescence intensity (RFU) between 1 000 and    

15 000.  Peaks with RFU of less than 50 were eliminated from the analysis.  Comparing bins 

created by RawGeno and DAx, each of which uses a differing binning algorithm, allowed us 

to evaluate errors in amplicon assignment.  In cases where bins did not match, visual 

inspection and manual bin reconstruction was performed. 

General data analysis 

The AFLP data matrix of 212 wild-caught Red Junglefowl was analyzed with two 

approaches: an individual approach based on band scores and a population approach using 

allele frequencies.  The approaches are intrinsically different in their complexities, 
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assumptions, and computational requirements.  At individual level, we calculated 

coefficients of similarity (Jaccard 1908) for Red Junglefowl AFLP profiles using the R-

package ecodist (Goslee and Urban 2007). This software generated a square matrix of 

genetic (dis)similarities.  We then employed three complementary steps of spatial and non-

spatial unconstrained ordination and created correlograms to determine patterns of genetic 

differentiation at different spatial scales, i.e. clusters, clines, and isolation-by-distance (IBD) 

(Wright 1943).  At the population level, we combined Bayesian inferences and population 

genetic summary statistics to estimate allele frequencies, identify populations, and calculate 

pairwise FST-values.  The population-based methods convert the observed bi-allelic AFLP 

data into frequencies and assume linkage and Hardy-Weinberg equilibrium (HWE), implicit 

assumptions that are often violated in naturally occurring populations.  Performance of 

individual approach and population approach, particularly how spatial scales are 

incorporated and described in the models, is discussed in detail in this study. 

Individual-based analyses 

We employed the centered and scaled Principal Component Analysis PCA (Jongman 

et al. 1995) in the R-package ade4 (Dray and Dufour 2007) with the R-package pca3d 

display (Weiner 2013) for clustering ordination, in order to identify groupings based on 

overall genetic variation in Red Junglefowl.  We then tested the PCA’s principal components 

using Moran’s I (Moran 1950) with Monte Carlo randomization method (1 000 

permutations) in the R-package spdep (Bivand et al. 2008) for spatial autocorrelation.  We 

used spatial PCA (sPCA), an exploratory procedure in the R-package adegenet (Jombart et 
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al. 2008) to investigate the correlation between geographic distance and genetic variation.  

The procedure may be useful to identify fine-scale spatial patterns of genetic variability 

when mapping the spatial components of the principal components’ scores.  As suggested by 

Jombart et al. (2008), we modified the default symmetrical Gabriel connectivity graph 

setting in sPCA to provide spatially explicit locations and estimate spatial ranges.  The 

sPCA’s first principal component’s scores were then regressed to their localities by a linear 

least-squared method and the residuals were visually interpolated (by inverse distance 

weighting) across the sampling region using open-sourced QGIS 2.4 Chugiak (QGIS 

Development Team 2014). 

In order to determine the presence and, more importantly, spatial range of 

relatedness, we constructed correlograms among all Red Junglefowl samples.  Correlograms 

(Sokal 1986) differ from ordinations as they are not global statistic procedure per se. 

Moreover, visual evaluation better describes the spatial range of influence between samples 

(IBD).  An IBD pattern would be expected if dispersal is restricted only by distance, with 

increasing genetic differentiation occurring over greater geographical distances.  If a 

landscape feature restricts dispersal, individuals captured in close proximity may be very 

different genetically and an IBD pattern may not occur.  We employed the R-package ncf 

(Bjornstad 2013) to construct Mantel multivariate (cross) correlogram with 1 000 

permutations (Mantel 1967, Bjornstad et al. 1999) and equal discrete distance classes in 10 

km.  
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Population-based analyses 

We first examined patterns of population genetic variation using summary statistics.  

First, a Bayesian method with uniform prior distributions between samples (Zhivotovsky 

1999) was performed in AFLPsurv (Vekemans et al. 2002).  For each observed population, 

we calculated the expected heterozygosity (HE), proportion of polymorphic sites, and 

pairwise genetic differentiation (FST) tested with a randomization procedure consisting of     

1 000 permutations.  We used the rarefaction function in the R-package vegan (Oksanen et 

al. 2013) to create thresholds for expected private allelic richness by considering equally-

sized random subsamples from each population (Kalinowski 2004) and then recorded the 

numbers of observed private alleles that were greater than the threshold of 5% of the total 

subsample size. 

To test if distinct populations existed in our sample, we used the Bayesian 

clustering method in the R-package Geneland 4.0.4 (Guillot et al. 2005) with admixture and 

correlated allele frequencies for dominant AFLP markers.  Similar to the band-based 

ordination methods, the clustering models were both spatially explicit (using sampling 

geographic coordinates and genotypes) and non-spatial (genotypes only).  Both models were 

subjected to 2 000 000 Markov chain Monte Carlo (MCMC) iterations, thinning by a factor 

of 100 times. A posterior burn-in of 2 000 iterations was allowed (i.e. 200 000 burn-in out of 

the total 2 000 0000 MCMC iterations).  We ran each model 1 000 times on UW-Madison’s 

HTCondor high-throughput computer system and computed the average posterior 

distributions of modal  populations. K∆
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Apart from the stochastic nature of the MCMC sampling and the high 

dimensionality of the dataset, biological phenomena will influence how individuals are 

apportioned into specific population.  First is the relative relationship between our sampling 

scale and the spatial range of the Red Junglefowl, which we assumed was regulated by 

home-range demography and possibly the intrinsic quality of the sampling habitats.  

Increased habitat connectivity may increase dispersal, thereby preventing genetic 

differentiation, and affect the potential resolution of inferred genetic clusters.  Second, since 

our sample design was opportunistic within a site, some Red Junglefowl may be sampled 

from cryptic linages or populations that are quite different to the well-represented junglefowl 

in our sampling pool.  If individuals meeting these criteria are sampled at low density, 

assignment into specific populations will be more difficult to achieve, particularly at the 

global scale of our sampling design. 

We addressed the global sampling issue by running additional clustering inferences 

for each site individually to evaluate differentiation in population membership.  The 

additional Geneland models, as well as sPCA ordinations and correlogram correlations, for 

the local sampling sites (local models) were parameterized similarly to the models with all 

samples included (global models).  The local correlograms had finer discrete distance class 

at 1 km to reflect maximum distance of about 20 km within a local sampling site.  With 

clustering models at both global and local scales, aside from the important mean log 

posterior density distribution of reported by Geneland and our estimation of modal K 

values out of 1 000 replicates, we also constructed dendrograms of average linkage of 

unweighted pair group method with arithmetic mean (UPGMA) among our samples (Figure 

K∆
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1.7).  The UPGMA topology does not depict phylogenetic relationships or structure per se, 

but rather the mean posterior probability of common cluster memberships.  A probability of 

0.00 indicates that two Red Junglefowl were always placed in the same population cluster in 

1 000 runs, whereas a probability of 1.0 indicated that the two Red Junglefowl were never 

grouped together in any of the replicates.  Junglefowl that consistently changed their 

memberships in both global and local clustering models may represent sampled from rare, 

under-represented, or cryptic populations. 

RESULTS 

The two selective primer pairs yielded 389 replicable polymorphic AFLP loci 

ranging from 50 to 616 base pairs.  The monomorphic sites were 42, or ~ 90% of the total 

profiles was polymorphic.  Plotting pairwise genetic dissimilarities of the Red Junglefowl 

versus their localities (Figure 1.2A) and global Mantel correlogram (Figure 1.2B) both 

indicated an absence of spatial autocorrelation (r = 0.11, p < 0.001).  This demonstrated that 

a confounding IBD effect generally does not exist and our spatial analyses are unbiased by 

our sampling strategy. 

Patterns of genetic differentiation 

The first three PCA principal components (PC) identified clear genetic differentiation 

among the seven sampling sites (Figure 1.3).  The first PC (explaining 10.43% of total 

variance, Moran’s I = 0.49, p < 0.001) separated not only geographical clusters of the Red 

Junglefowl but also reveal considerable genetic structure within the two largest and least 
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disturbed sites (lowland tropical forest CTN and highland dry forest YDN).  The second PC 

(5.57% of variance, I = 0.42, p < 0.001) and third PC (4.35% of variance, I = 0.42, p< 0.001) 

reinforced partitions observed in CTN and YDN, again both had significant within-site 

genetic differentiation.  The HBA site, which is in the northeast foothills of the Annamite 

Mountain Range, had a central position in the PCA plot and showed overlaps with the 

clusters of CTN and YDN which are in the further west of the Annamite Mountain Range.  

Although this observation may suggest low levels of genetic exchanges across this range, but 

it is also possible that it results from a lack of resolution in the PCA analysis. 

The global sPCA in all 212 Red Junglefowl samples resulted in high positive 

eigenvalues and uniformly low negative eigenvalues (Figure 1.4A - insert).  This, together 

with the overall well-defined sPCA’s regressed gradient variances (Figure 1.4A), illustrated 

monotonic clines of genetic similarities along the east and the west sides of the Annamite 

Mountain Range landscape.  Specifically, we found evidence of local structure within 

individual sPCA models in the four major sampling sites (CTN, LGO, HBA, and YDN) 

(Figure 1.4B, Figure 1.5 a).  Both the eigenvalues and residual values of the local sPCA 

scores indicated that Red Junglefowl in lowland habitats south of the Annamite (CTN and 

LGO) had less intraspecific genetic structure (fewer groups represented in the sites) and thus 

exhibited a high degree of genetic variance within each group.  The Red Junglefowl in the 

northern highlands of the Annamite (HBA and YDN) had the opposite spatial pattern, with 

more groups identified (high positive eigenvalues) and lower within-group variance (dense 

contours of the sPCA scores). 



29 
 

  

The spatial autocorrelation analyses of cumulative distance classes indicated that the 

Red Junglefowl in South Central Vietnam exhibited genetic correlation at fine scales and 

were very site specific (Figure 1.5 b).  The HBA site (and YDN to a lesser degree) showed 

high degrees of genetic relatedness between the neighboring Red Junglefowl.  Then, spatial 

autocorrelation steadily declined to distances of approximately 5 km, where it had negative 

correlation as distance increased.  The two lowland sites of CTN and LGO, again, had high 

variance among neighboring samples and showed no autocorrelation.  Overall, the four 

correlograms revealed a transition to negative values at roughly ~ 5 - 6 km distance. 

Population structure 

Genetic diversity characterized by the previous summary statistics showed a high 

degree of polymorphism and evidence of private alleles in each sampling site (Table 1.1).  

The overall FST for genetic differentiation is 0.1028 (95% resampling confidence interval -

0.0106 to 0.0111).  Statistically significant genetic differentiation also existed among the 

four major sampling sites (Table 1.1), the lowland sites and highland sites were different in 

their genetic differentiation.  Pairwise FST values ranged from 0.0267 (of HBA/YDN is the 

most well connected pair) to greater than 0.1500 for long-distance pairs across the Annamite 

(Figure 1.6). 

Bayesian clustering in our non-spatial global model (based on genotypes of all 212 

samples) converged on an estimate of eight clusters from the seven studied sites (UPGMA - 

similar to Figure 1.7, not shown).  Each of three sites in the west of the Annamite (CTN, 

LGO, and YDN) formed a distinct genetic cluster.  CTN and YDN are the two larger sites 
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and were further divided into two individual clusters each, as previously observed in the 

PCA diagram (Figure 1.2).  The HBA also formed a unique genetic cluster and then within 

it, four additional clusters representing possibly admixed populations in the far-east coastal 

region (HBA-NCA-TKU), northern highlands (HBA-BDP and HBA-YDN) and along the 

east side of the Annamite (HBA-CTN).  Upon incorporating geographic localities (spatial 

model), Geneland also estimated eight geographic/genetic clusters (Figure 1.7).  The inferred 

cluster memberships were almost identical between the spatial and non-spatial model 

(regression R2 = 0.788, p < 0.001).  In both the spatial and non-spatial models, the modal 

number of populations was = 9 (43% of 1 000 runs).  Red Junglefowl from each of these 

geographic sites tended to cluster with birds from the same region.  There are, however, 

some exceptions as these clusters included some junglefowl from other geographic areas that 

could represent migrants or perhaps an artifact caused by under-represented sampling of 

individuals in genetically distinct populations. 

Additional resolution was identified when focused at local scale (Figure 1.5 c-d).  

The Red Junglefowl in CTN were generally assigned to three distinct clusters (61%, or 610 

out of 1 000 runs had = 3) instead of two as being inferred by the global model.  

Biologically, this may be reflective of two relatively disturbed bamboo forests in the middle 

of the reserve and a large well protected region connected by northern corridor (represented 

as two regions at the two sides in the map).  HBA, the most complex topographical area 

among the four major sites, also had one additional cluster (from 4 to 5 in 42% of replicates).  

Here, the more disturbed central region was separated into two different clusters.  The two 

topographically flat sites, LGO and YDN, yielded more population clusters under local 

K∆

K∆
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models (from 1 to 4 in 74% of replicates in LGO, and from 2 to 4 in 55% in YDN).  There 

was no clear pattern of cluster assignment based on geography in these two sites; the model 

mostly assigned junglefowl with proximal geographic localities to the same clusters.  This 

result is realistic as the absence of topography may promote greater connectivity. 

We observed that FST likely underestimated genetic differentiation among our 

sampled populations.  The estimation of FST is based on observed heterozygosities and 

would be downward biased when interspecific heterozygosities vary among the sampled 

individual populations (Hedrick 2005).  As such, when applied FST estimation in the inferred 

genetic clusters (e.g. the modal =9 for the global clustering or the added up 18 from 

individual local models), genetic differentiation in our data sharply increased to 0.1468 for 

the whole sampling region and up to 0.3169 pairwise between individual sites with the 

majority of them were greater than 0.1500 (not reported here).  This confirmed the strong 

population structure of junglefowl in South Central Vietnam as already observed by the 

ordination and Bayesian methods. 

DISCUSSION 

Spatial pattern and population structure 

We found strong population genetic structure at coarse geographic scales and 

evidence of fine-scale genetic subdivision at distances as low as 5 km.  The average 

sampling distance of 1.12 km in our study appears to be appropriate for detecting genetically 

divergent groups of junglefowl, especially as we did not detect IBD among the birds.  Here, 

K∆
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we discuss the importance of genetic structure and the scale of spatial ranges in the studied 

Red Junglefowl, and the implications of these results for genetic management and 

conservation. 

Across our sampling region, the Annamite Mountain Range is likely an impassable 

barrier for ground-dwelling pheasants, including Red Junglefowl, particularly between the 

southern lowland and eastern coastal sites.  Although Red Junglefowl can occupy habitats up  

to 1 800 m in elevation (Johnsgard 1999), we rarely observed Red Junglefowl over 600 m.  

The birds sampled at high elevations were all from the northern highland BDP site, and they 

exhibited substantial genetic differentiation from lowland populations.  Moving further to the 

YDN northwest highlands, we observed even greater genetic differentiation between their 

highland sub-populations and the lowland populations (not reported here, mentioned in the 

biased FST section).  Evolutionary and ecological evidence places South Central Vietnam at 

the convergence of two biogeographic regions, mostly due to the Annamite Mountain 

Range: the Annamese Mountains region consists of subtropical drier monsoon habitats in the 

northwest uplands, and the Cochinchina region of moist tropical lowlands in the south and 

an acrid microclimatic region in the eastern coast (MacKinnon 1997, Sterling and Hurley 

2005).  The inferred genetic clusters of Red Junglefowl in our study were geographically 

concordant to these regions and confirm the importance of the Annamite to the broad-scale 

population genetic diversity of this species. 

The eastern coastal sampling sites contained fewer private alleles compared to those 

in the western regions of the Annamite.  The coastal birds were also consistently grouped 

into an overall population regardless of the geographic distances between sites.  This 
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contrasts to the highland Red Junglefowl, which separate into distinct population clusters 

even across short spatial distances.  Natural dispersal and movement of Red Junglefowl in 

the coastal region may be limited by the inherent lack of landscape connectivity, as human 

population densities are very high in this region.  However, movement could presumably be 

enhanced by human capture, transport, and release of wild Red Junglefowl (undoubtedly 

having occurred over thousands of years) or by genetic introgression from domestic fowl 

(Storey et al. 2012).  Under artificial selection and substantial inbreeding, genetic 

differentiation of domesticated animals are driven by genetic drift (low effective population 

sizes) causing rapid fixation of allele frequencies, whereas allele frequency changes will be 

more gradual in most wild populations (Lenstra et al. 2012).  Understanding the mechanism 

of reduced genetic variation in the coastal Red Junglefowl cluster is not possible with our 

current dataset, but has important implications for future research of how genetic diversity is 

being lost in wild Red Junglefowl populations.  It is also useful to note that if introgressive 

hybridization actually occurs, the human transport of female Red Junglefowl may occur 

largely to the exclusion of males (Storey et al. 2012).  Although known to be polygynous, 

the mating system of Red Junglefowl has not been studied in detail.  Nevertheless, 

territorially dominant males presumably drive only young males to disperse.  Thus, the rate 

of introgression could be limited by male dispersal distance and reproductive success of 

these introgressed males.  

Importantly, our fine-scale spatial analyses suggested distinct characters of 

metapopulation structure in our sampling sites.  Local genetic structure within isolated 

population clusters typically arises when gene flow and the dispersal range of the organisms 
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are limited.  Short-distance dispersal and home range ecology are perhaps the least studied 

topic in birds (Paradis et al. 1998).  It is commonly believed that birds have few behavioral 

limitations to dispersal due to their substantial vagility (With et al. 1997).  However, some 

recent studies have shown a strong effect of limited dispersal on genetic structure, especially 

due to sex-biased dispersal (Pierson et al. 2010).  In our study, Red Junglefowl had well-

defined geographic distribution and some evidence of admixture between sites in close 

proximity (between two southern lowland sites CTN-LGO, or between three northern 

highlands YDN-BDP-HBA, or between the panmictic coastal sites HBA-NCA-TKU).  

Long-distance genetic similarity was rarely observed in the region.  The classical stepping-

stone model for this genetic pattern can be ruled out as there was no correlation between 

geographic distances and genetic dissimilarity.  On the other hand, a metapopulation 

structure resulting from the fragmentation of a formerly continuous population or model of 

completely subdivided populations is not possible based on our data but could be addressed 

through simulation studies.  Under both of these models, our observed pattern of population 

genetic differentiation implied quite limited gene flow. 

Spatial sampling design and model performance 

The Monte Carlo inference in Bayesian clustering methods employs resampling 

randomizations of the observed data as a basis for inference.  The presence of IBD - i.e. 

regular increase or decrease in genetic variability with geographic distance due to non-

random mating or limited dispersal - generally leads to many false positives in Bayesian 

clustering inferences (Meirmans 2012).  It is also possible that the model will fail to explain 
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spatially explicit genetic variation (Frantz et al. 2009, Schwartz and McKelvey 2009).  

Stratified sampling, such as we employed in this study, is particularly effective for gradient 

analysis in landscape genetics (Storfer et al. 2007) and helps to determine whether or not 

IBD patterns exist.  The lack of significant IBD in our study suggests that our Bayesian 

clustering inferences are robust.  Balkenhol (2009) provided insightful perspectives about 

model settings, necessary requirements, as well as the importance of combining different 

methods in Bayesian clustering procedures.  In this present study, we emphasized the utility 

and application of intensive computation when performing the Bayesian MCMC clustering 

method.  With support of a high-throughput computing system, we were able to base our 

inferences on 1 000 runs when typically 5 or 10 runs are performed for genetic population 

studies.  This enhanced capability allowed us to construct average posterior densities of 

individual population membership and served to add an additional interpretive dimension.  

As a statistical procedure, this allowed us more confidence that stochastic processes inherent 

to high-dimensional MCMC inferences did not bias the underlying genetic characteristics in 

our dataset.  Deterministic individual-based methods, such as PCA and sPCA models 

employed in this study, do provide intuitive information about genetic variation from 

reasonably sized datasets with strong population structure. They also helped to provide a 

framework in which to guide more sophisticated analyses. 

The caveat of applying spatially explicit Bayesian clustering in relation to a spatial 

sampling design, however, is that sampling randomness does not hold at very fine scales, as 

most living organism are genetically correlated at these scales (Guillot et al. 2009).  This 

represents trade-offs not only in spatial analysis procedures (Fortin and Dale 2005) but also 
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in sampling schemes for spatial and landscape genetics (Guillot et al. 2009).  In our global 

spatial models, when all data points were included, the requirement of complete spatial 

randomness (CSR) is generally met.  These models, however, provide low resolution in 

identifying transition areas between local population clusters.  On the other hand, our 

analyses focusing on the local spatial scale identified unique structure in transition areas 

between populations inhabiting pristine forest and disturbed sites. This interesting 

information suggests that Red Junglefowl may utilize human modified landscapes, though 

these areas are likely recolonized secondarily from more pristine forests.  As a ground-

dwelling species, Red Junglefowl have specialized feeding and territory requirements of 

open canopy and clear understory floor to feed on leaf-litter invertebrates (Beebe 1926).  We 

suggest that secondary or marginal habitat preference in Red Junglefowl allows the birds to 

quickly cross open landscape structure but this also makes them particularly prone to 

hybridizing with domesticated chickens inhabiting the area. 

Conservation and management implications 

The ordination and Bayesian analyses used in this study found a very complex 

population structure in Red Junglefowl.  Our models supported a metapopulation with 

divergent clusters of Red Junglefowl occurring over large-scale landscapes.  Whether these 

populations have been separated by unsuitable habitats or due to the birds’ spatial range 

remains unclear.  Given the current level of human activities in at least some of the regions, 

it is unlikely that Red Junglefowl in the existing protected areas are or will be connected by 

natural dispersal.  A metapopulation with limited gene flow will quickly accrue genetic 
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divergences and is significant to diversity of the species (Keyghobadi 2007).  Curiously, if 

there is a desire to conserve alleles of Red Junglefowl, separating a once large and 

contiguous population into many small sub-populations is an ideal means to achieve this 

goal (Denniston 1978). 

Using Red Junglefowl as a model species, and the results of our current analyses, we 

expect that metapopulation patterns also occur in other Phasianids occurring in or endemic to 

the same region.  In contrast to Red Junglefowl, the distribution and habitat requirements are 

much narrower, and in many cases, remain unstudied.  The relevance of our research with 

wild Red Junglefowl in their core distribution ranges has important implications for genetic 

resource management and conservation of this species of agricultural importance.  

From a broad-scale perspective, the characterization of geographically structured Red 

Junglefowl populations suggests site-specific conservation strategies for the species, e.g. the 

designation of a distinct management unit (Moritz 1994).  Given our observed patterns of 

genetic diversity, we emphasize the importance of populations in the western portions of the 

Annamite Mountain Range.  In this area, large Red Junglefowl populations still occur in 

well-protected natural habitats and exhibit high intraspecific genetic variation.  Historically, 

the Annamite Mountain Range likely acted as a topographical barrier to Red Junglefowl.  

The eastern coastal areas currently have less genetic variation, likely due to substantial 

human impacts; much of the historical variation may already be lost. 

Whether the observed divergences in the wild Red Junglefowl in this present study 

will lead to conservation of the species and applications in future poultry genetic 
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management depends on additional initiatives to further identify ancestral lineages, 

resiliency to current environmental changes, and management programs that sustain the core 

distribution ranges of the species in South and Southeast Asia.  Further efforts to estimate 

adaptive variation, such as immunological diversity at the well-known major 

histocompatibility complex (MHC) (Hess and Edwards 2002), may strengthen the appeal of 

preserving wild Red Junglefowl and related species.  Research on functional genetic 

diversity in Red Junglefowl could highlight their importance in understanding the significant 

of variation as considerable genetic diversity has been lost at both academic and industry 

locations over the past four decades (Fulton and Delany 2003).
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Table 1.1:  Genetic diversity of Red Junglefowl in seven field sites. 

Abbreviations: sample sizes (N); proportion of polymorphic markers (PLP); expected heterozygosity 

(HE) with standard error (s.e.); private alleles (PA); genetic differentiation (FST with 95% resampling 

confidence intervals) (for the four major sampling sites with > 30 samples). Bi Doup - Nui Ba 

National Park (BDP), Cat Tien National Park and Dong Nai Nature Reserve (CTN), Hon Ba Nature 

Reserve (HBA), Lo Go Sa Mat National Park (LGO), Nui Chua National Park (NCA), Ta Kou Nature 

Reserve (TKU), and Yok Don National Park (YDN). 

Sampling 
sites N PLP He (± s.e) PA FST 

(95% resampling confidence) 

BDP 5 0.296 0.1242 ± 0.0091 1 -- 

CTN 44 0.445 0.1533 ± 0.0086 16 0.0713  
(-0.0132, 0.0129) 

HBA 56 0.427 0.1492 ± 0.0086 8 0.1392  
(-0.0098, 0.0123) 

LGO 34 0.368 0.1243 ± 0.0083 9 0.0625  
(-0.0124, 0.0160) 

NCA 6 0.386 0.1380 ± 0.0089 3 -- 

TKU 9 0.432 0.1432 ± 0.0091 9 -- 

YDN 58 0.458 0.1916 ± 0.0089 33 0.1559  
(-0.0165, 0.0216) 
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Figure 1.1:  Sampling sites with the Annamite topography.  

 

Bi Doup - Nui Ba National Park (BDP), Cat Tien National Park and Dong Nai Nature Reserve 

(CTN), Hon Ba Nature Reserve (HBA), Lo Go Sa Mat National Park (LGO), Nui Chua National 

Park (NCA), Ta Kou Nature Reserve (TKU), and Yok Don National Park (YDN).
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Figure 1.2:  Overall spatial genetic patterns for all sampling sites. 

 

(A) Pairwise genetic over geographic distances and (B) Correlogram of genetic correlation with 

numbers indicate pair-wise dissimilarities within the distance classes.  
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Figure 1.3:  Principal Component Analysis of genetic variation. 

 



 
 

  

Figure 1.4:  Spatial Principal Component Analysis (sPCA).  

 

(A) Global scale.  (B) Local scale (B).  Dots are samples, contours define similarities in the component scores across the landscape.  Inserts 

are the respective eigenvalues of the sPCAs. 
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Figure 1.5:  Spatial population structure. 

. 

(a) sPCA, (b) correlogram, (c) Bayesian global clustering, (d) Bayesian local clustering.  

Legends: (a) dots: samples, contours: component scores for similarity; (b) ordinate: correlations; 

abscissa: cumulative distance classes; error bars:  95% confidence bootstrapped; dashed lines: 

confidence intervals of 1 000 permutations around the null hypothesis of a random distribution; (c) 

& (d) dots: samples, color regions are the posterior probability spatial clusters; plots represent only 

one run (out of 1 000) that has highest log posterior density.
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Figure 1.6:  Pairwise genetic differentiation FST and geographic distances. 

 

FST is above the diagonal and d geographic distances in kilometers is below the diagonal. 
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Figure 1.7:  Geneland’s UPGMA dendrogram.  

 

From 1 000 iterations of global Geneland’s Bayesian clustering (spatial model) with three inserts 

representing local clustering (LGO, CTN, and YDN). 
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CHAPTER 2 

Spatial dependence models and correlation of neutral genetic variation             

in Red Junglefowl (Gallus gallus)  
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ABSTRACT 

Context:  Hypothesis tests in landscape genetic frameworks are typically based on a non-

spatial null model, the Island Model, the assumptions of which are confounded when using 

spatially organized and biologically non-independent data.  Spatial genetic processes such as 

restricted gene flow, autocorrelated allele frequencies, and environment-induced genetic 

variation create many unrealistic assumptions within the Island Model; real (natural) 

populations are very likely to violate these assumptions and create substantial analytical bias. 

Objectives:  We present a spatially explicit framework that integrates methods of 

multivariate analysis, geostatistics, and GIS techniques, all of which are applicable for 

analysis of spatial data.  To evaluate if genetic variation has a spatial dependence on 

landscape features, we examined if geographic distances or patterns of major landscape 

features were the primary factors responsible for the extent of genetic structure in a 

terrestrial pheasant species, Red Junglefowl (Gallus gallus). 

Methods:  We used a dataset containing 386 neutral genetic markers in 192 Red Junglefowl 

sampled from four diverse landscapes in South Central Vietnam.  Using observed and 

simulated genetic data, we evaluated the relative influences of landscape features, sampling 

localities, and genetic population structure to determine if landscape features modulated 

patterns of observed allele frequencies. 

Results:  Allele frequencies were weakly autocorrelated in Red Junglefowl that were trapped 

within 6 km of each other in the two lowland populations and there was no genetic 

autocorrelation at any sampling extent in the two highland populations.  We found no 
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evidence of spatial dependence in genetic variation to the two landscape features of 

landcover and topography.  This suggests that the spatial genetic variation in the Red 

Junglefowl is more related to demography or specific movement characteristics (or both) 

rather than any dependence on landscape or sampling arrangements. 

Conclusions:  A spatially-explicit framework was able to exclude any correlative strength of 

genetic variation and landscape features in natural populations of Red Junglefowl.  The 

application of landscape genetics promotes aims of improving conservation planning for Red 

Junglefowl and other related Phasianids, many of which are critically endangered.  In this 

case study, spatial genetic variation of this agriculturally important predecessor suggests site-

specific conservation plans, particularly in areas with increased human activity. 

Keywords: autocorrelation, multivariate analysis, geostatistics, landscape genetics, Red 

Junglefowl, spatial dependence.  
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INTRODUCTION 

One primary goal of population genetics, particularly when applied to naturally 

occurring populations of organisms, is to detect and locate genetic discontinuities.  If spatial 

delineations are observed within a population, it is often concluded that each population is a 

distinct, evolutionary operational unit, perhaps connected to other nearby populations by 

some estimated level of gene flow.  Analyses of this type are important as they can be used 

to guide species management decisions, population reintroduction, and the monitoring of 

threatened species.  However, identifying the reason(s) why these discontinuities occur is 

often only possible in limited cases, generally as an effect of physical landscape features or 

demographic characteristics of the study organism. Interpretation of the source of the genetic 

pattern becomes even more difficult if population differentiation occurs, but does so in a 

putatively “uniform” environment.  A new approach, landscape genetics, has emerged as an 

empirical discipline designed to integrate information about landscape features and their 

effects on genetic variation in a spatially explicit manner (Manel et al. 2003, Anderson et al. 

2010). 

Like classical population genetics and phylogeography, landscape genetics also seeks 

to detect and locate genetic discontinuities in natural populations (Diniz et al. 2009).  

Importantly, it also seeks to assess the correlation of these discontinuities with landscape and 

environmental features.  Thus, while both disciplines are concerned with microevolutionary 

processes, landscape genetics is more concerned with how genetic structure is created across 

space explicitly.  The prevailing framework in landscape genetics is to first collect genetic 

samples of organisms, preferably at fine scales across a landscape.  Second, molecular 
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technologies are applied to detect genetic variation and the presence or absence of genetic 

structure.  This is best accomplished with clustering methods that do not predefine a 

population (e.g. collection site).  Third, an attempt is made to correlate patterns of allelic 

diversity with landscape features using spatially explicit models. 

Hypothesis tests in this framework are typically based on a non-spatial null model, 

the Island Model (Wright 1943).  However, particularly in natural populations, assumptions 

implicit under this model are often violated when using spatial,  categorical, and strongly 

multivariate information such as genetic markers (Wagner and Fortin 2005).  Naturally 

occurring spatially dependent processes such as gene flow may be autocorrelated , or 

isolation-by-distance (IBD) (Wright 1943) - the equivalent term ‘spatial autocorrelation’ 

(Legendre 1993) - and environmentally induced genetic variation creates many unrealistic 

assumptions that violate the Island Model framework. 

Spatial autocorrelation is a phenomenon where values of some variables sampled at 

nearby locations are not independent from each other (Legendre 1993).  For example, in 

continuously distributed populations with genetic autocorrelation, individual dispersal is 

expected to be patterned such that levels of gene flow gradually decrease with increasing 

geographic distances.  This scenario will create a gradient of genetic differentiation among 

individuals, the patterns of which depend on not only demography but also the dispersal 

process itself (e.g. one- or two-dimensional movement patterns).  Essentially, the dispersal 

process is also dependent on the landscape or some environment features, themselves 

likewise have spatial autocorrelation in their patterns.  This may act as confounding factor 

and create additional spatial structuring or ‘spatial dependence’ in genetic variation 
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(Jongman et al. 1995, Wagner and Fortin 2005, Dormann et al. 2007).  Although being 

indispensable parts in ecological and evolutionary processes, the two spatial phenomena of 

autocorrelation and dependence violate the assumption of independent and identical 

distribution (i.i.d.) in statistical tests and hence perturb significant tests and inflate Type I 

errors (Dormann et al. 2007, Guillot et al. 2009). 

Specifically, hypothesis tests in landscape genetics studies that attempt to correlate 

genetic variation and environmental features may be confounded in at least two ways.  First, 

models that estimate spatial genetic variation and population structure, including Bayesian 

clustering methods, are biased by the presence of genetic IBD (Frantz et al. 2009, Schwartz 

and McKelvey 2009, Meirmans 2012).  Here, the Bayesian inference algorithms may 

erroneously create local genetic clusters - equivalent to populations - from samples whose 

genetic differentiation comprise a gradient due to spatially correlated allele frequencies.  

Second, tests for landscape correlation and hierarchical population structure, such as 

Mantel’s permutation (Mantel 1967, Sokal 1986), are also biased by spatial dependence and 

non-independent data.  These biases underestimate sampling variances and introduce 

unpredictable and spurious effects (Balkenhol et al. 2009, Guillot et al. 2009, Meirmans 

2012).  The development, testing, and application of spatially explicit models combined with 

assessment of causative relationships between genetic variation and landscape features will 

make the application of landscape genetics to natural populations more accurate and precise. 

The present study aims to determine if spatial autocorrelation exists in wild 

populations of Red Junglefowl (Gallus gallus) and whether or not their allelic distribution is 

correlated with landscape features of landcover and topography.  The Red Junglefowl, a 
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medium-sized ground-dwelling pheasant, is widely considered the direct ancestor of 

domestic chickens.  Before spreading globally through human-mediated dispersal (Storey et 

al. 2012), the domestication of wild junglefowl was thought to initiate in Asia, likely from 

Red and Green Junglefowl and perhaps other related lineages (Fumihito et al. 1994, Eriksson 

et al. 2008).  Red Junglefowl occur in lowland tropical rainforests up to 600 m in South and 

Southeast Asia. Natural habitats in these areas have been greatly modified in recent decades 

(Fuller and Garson 2000).  However, many protected areas still contain Red Junglefowl and 

the species is locally abundant in wooded habitats.  Some authors even consider the a species 

a presumptive forest indicator (Beebe 1926, Johnsgard 1999).  

In a recent study, we documented a strong global and fine-scale genetic structure of 

Red Junglefowl populations in the South Central region of Vietnam (Chapter 1).  

Populations were assigned to different genetic clusters along two sides of the Annamite 

Mountain Range, a major dispersal barrier to Red Junglefowl in the region.  Our analysis 

suggested a ‘classical’ metapopulation structure where, contradictory to the overall range 

and natural abundance of the species, intra-population genetic differentiation was significant 

and long-distance dispersal either no longer occurred or was maintained at very low levels. 

Given the expansive distribution of Red Junglefowl and seemingly large, yet 

apparently genetically isolated populations, we predict geographic distance and the breeding 

structure per se to be the most important factors that explain local genetic variation in Red 

Junglefowl in the study landscapes.  Although the two concerned landscape features in the 

study of landscape and topography vary within each landscape, we hypothesize that Red 

Junglefowl are sufficiently flexible in their habitat requirements relative to the local 
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landscape variation, and thus we expect that elevation and land cover - or spatial dependence 

- will not influence the birds’ genetic structure. 

METHODS 

Study area and sampling 

We sampled wild Red Junglefowl (N = 192) in four protected areas in South Central 

Vietnam: Cát Tiên National Park and Đồng Nai Nature Reserve (hereafter CTN as the two 

sites are connected, n = 44), Hòn Bà Nature Reserve (HBA, n = 56), Lò Gò Sa Mát National 

Park (LGO, n = 34), and Yok Đôn National Park (YDN, n = 58) (Figure 2.1).  The sites are 

separated from one another (~ 230 km) by residential and non-natural habitats.  They were 

divided into two groups based on altitudinal ranges and habitat types.  The average elevation 

of lowland sampling localities in CTN and LGO was 80 m (range: 5 - 120 m) above sea level 

and predominantly featured lowland tropical rainforest.  The average elevation of highland 

sites (HBA and YDN) was 250 m (range: 60 - 450 m) above sea level and was composed of 

mixed tropical and deciduous forests.  Sites CTN and YDN were the two larger reserves 

(mean: 99 000 hectares) compared to HBA and LGO (mean: 22 000 hectares). 

Red Junglefowl were live-captured by the walking-snare method (Chapter 1) in three 

dry seasons in 2012, 2013, and 2014.  We stratified sampling within the field sites to account 

for the presence of junglefowl and capture opportunities.  We computed the point pattern K̂

function (Ripley 1981) to quantify the influence of stratified sampling in relation to genetic 

variation and landscape features.  The significance of K̂ in each field site was estimated with 
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1 000 Monte Carlo simulations using the spatstat package (Baddeley and Turner 2005) in the 

open-source R 3.1.2 environment (R Development Core Team 2011). 

Genetic analyses 

Blood samples from live-captured junglefowl were used as a source of DNA for 

genetic analyses.  We generated AFLP fingerprints with two primer pairs EcoRI+CAT/ 

AseI+GA and EcoRI+GG/ AseI+GC from our DNA samples.  Once all alleles were binned, a 

total of 386 loci were available for this study. Genetic variation and population structure of 

these AFLP profiles were examined using both summary statistics and Bayesian clustering 

method.  For each sampling site, the software AFLPsurv (Vekemans 2002), using a uniform 

prior distribution (Zhivotovsky 1999) of allele frequencies, estimated moderate to strong 

average population structure (FST) (Table 2.1) among the four sampling sites.  The Bayesian 

clustering method also allocated individuals into populations reflecting the four sites.  

Additionally, evidence of local population sub-structure, ranging from 3 to 5 clusters, was 

identified. (Table 2.1).  Local K populations were estimated by the R-package Geneland 

4.0.4 (Guillot et al. 2005) with 2 000 000 Monte Carlo Markov Chain and 1 000 replications.  

Details of the field sampling, AFLP genotyping, and genetic variation analyses were 

previously presented (Chapter 1). 

General analytical approach 

Our current method is based on multi-scale ordination procedure (Wagner 2004), 

integrating Canonical Correspondence Analysis (CCA) of direct gradient analysis (ter Braak 
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1995) and geostatistical variogram analysis (Ripley 1981) to determine whether landscape 

patterns influenced genetic variation.  Multiscale ordination was originally presented by 

Noy-Meir and Anderson (1971) for block size variance analysis (lattice data), then was 

further developed by ver Hoef and Glenn-Lewin (1989) for assessing species associations 

over different geographic ranges and scales.  We adapted Wagner’s integration of 

geostatistics (2004) by combining the R-package vegan (Oksanen et al. 2013) into our 

analytical approach.  Our study extended the application of these integrative procedures with 

landscape genetics using individual-based grid-based remote sensing landscape determinants 

and molecular variances.  In brief, the analytical approach (Figure 2.2) began with estimating 

resemblance matrices of pair-wise dissimilarity coefficients for genetic relatedness (G) and 

cost distances of landscape features (L) for each field site.  We then followed with the 

constrained ordination CCA for describing the deviance of G from expectations under the 

influence of the concerned L landscape pattern.  We also performed unconstrained 

Correspondence Analysis (CA) separately on G and L to evaluate their spatial patterns.  The 

CCA’s standardized outcome matrix (Q) was then regressed onto L to decompose the total 

variances into fitted variance matrix (Qfit) and residual matrix (Qres).  To describe the spatial 

dependence in the covariances, two separated variogram matrices Q2
fit(h) and Q2

res(h) were 

calculated for the decomposed values, and then their variograms were constructed. 

The formation of the response G and predictive L matrices of dissimilarity 

coefficients was an essential step in our analytical procedures.  There are various methods 

and terms that are used to describe individual-based pairwise dissimilarity coefficients of 

genetic variation and landscape features.  Bonin et al. (2007) provided a detailed review of 
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measures for genetic dissimilarities in AFLP profiles where the Jaccard index (Jaccard 1908) 

is arguably most applicable.  The AFLP genetic technology only describes a binary, two 

allele system, presence/absence (1/0).  Heterozygotes of so-called dominant genetic markers, 

such as those produce by AFLP, cannot routinely be identified and thus were subsumed into 

the presence category.  For landscape features, the properties of dissimilarity coefficients 

between two observation points can be described as landscape connectivity or its inverse 

landscape resistance (Turner and Gardner 1990, Spear et al. 2010), effective or functional 

distance (Ferreras 2001), least-cost distance/path (Adriaensen et al. 2003), resistance 

distance (McRae 2006), or conductance matrix (van Etten and Hijmans 2010).  To avoid 

confusion, in this context we used the terms ‘dissimilarity coefficients’ for the pairwise 

AFLP genetic relatedness in our Red Junglefowl samples and in the simulated genetic data 

(see next section)  and ‘cost distances’ for the structural translation of the landscape feature 

connectivity between observations.  Both types essentially have semi-metric properties and 

are particularly applicable to non-Euclidean measurements (Legendre and Anderson 1999) 

such as those observed in landscape genetics. 

Dissimilarity coefficients of genetic relatedness 

We calculated the genetic dissimilarity coefficient matrix under the assumption that 

the AFLP loci are independent, under Hardy-Weinberg equilibrium and IBD does not exist.  

To evaluate the response, we explored the observed data together with three simulated 

scenarios.  These three simulated sets of spatially organized allele frequencies had similar 

sampling sizes and sampling arrangements as in the observed data.  They were different in 
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their spatial allele frequency distributions: one set had spatially organized allele frequencies, 

one with random spatially organized local K populations (as with the observed data), and one 

exhibiting a panmictic population.  In the first case, the population memberships for 

individual samples were also inferred from the observed data. 

We followed the simulation algorithms of Guillot and Santos (2009) using 

Geneland where all three scenarios had correlated allele frequencies and high genetic 

differentiation (FST = 0.30) between their local populations.  We simulated local populations 

such that their allele frequencies were sampled from independent Dirichlet distributions in 

which they exchange genes from a unique and common migrant pool (Excoffier et al. 2009, 

Guillot and Santos 2009).  We calculated Gobs and Gsim matrices of genetic dissimilarities, 

respectively, from the observed and simulated allele frequencies using the R-package ecodist 

(Goslee and Urban 2007), then performed unconstrained ordination CA, regression, and 

constructed their distance-based variograms (see Multiscale ordination and geostatistics). 

Cost distances of landscape resistance 

The L matrix of pairwise cost distances are the cumulative costs of connectivity 

between two observations (Adriaensen et al. 2003, Spear et al. 2010).  This involved the 

establishing of friction maps (grid) of transition surfaces and a least-cost algorithm 

describing the pairwise cumulative cost distances of Red Junglefowl on these surfaces. 

We constructed two transition surfaces from two GIS source layers: a radar 

topography image (90 m, Farr et al. 2007) and an enhanced thematic landcover image (15 m, 
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USGS Landsat 7 ETP Plus).  The friction layers were re-rasterized at a pixel resolution of 90 

m and re-classified between 1 and 100 in each layer using the R-package raster  (Hijmans 

2014).  Grid cell values in the transition layers were defined as a continuous gradient.  Their 

source values, ranging from 0 to 2 345 m for elevations and from 1 to 255 for spectral 

signatures of landcover in South Central Vietnam, were reclassified (no supervision) to 

numbers between 1 and 100 allowing each layer to have equal importance relative to 

connectivity (Cushman et al. 2006).  The transition surfaces imposed objective assumptions 

of mobility with 1 for optimum conditions and 100 for most unsuitable habitat in each 

surface. 

We calculated landscape cost distances based on a symmetrical eight-direction 

movement and least-cost algorithm (Adriaensen et al. 2003) using the R-package gdistance 

(van Etten and Hijmans 2010).  The eight-direction neighbor allows for movements along 

the diagonal of the cells and the least-cost calculations create matrices of Lele and Lcov, 

respectively, for elevation and landcover cost distances. 

Multiscale ordination and geostatistics 

Multiscale ordination CCA of G to Lele or Lcov produced the re-scaled Q matrix 

(standardization) that describes the deviances of the genotypic G from those expected after 

partialling out the effects of exogenous L landscape factors.  This is equivalent to an 

assumption that the studied genotypes are independent with their landscapes (Borcard et al. 

2011, Oksanen et al. 2013).  To evaluate this assumption, we performed weighted linear 

regression of the standardized Q to the explanatory L in order to partition the total variances 
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in Q into explained and residual variances.  The explained variances were presented in a 

matrix of fitted values, Qfit, describing the influence of landscape features’ cost distances on 

genetic relatedness (or spatial dependence), and the residual variances were in a matrix of 

residuals, Qres, reflecting the intrinsic genetic variation (or spatial autocorrelation). 

We calculated variogram matrices of Q2(h), Q2
fit(h), and Q2

res(h) to spatially describe 

covariances in the total Q, the fitted values Qfit, and the residuals Qres as a function of 

distance h.  The variograms had equal discrete distance classes of h = 1 000 m reflecting the 

observed defensed territory sizes of the rooster junglefowl.  We also performed significance 

tests for spatial autocorrelation for the residual values and the total variances for each 

distance class using the R-package vegan (Oksanen et al. 2013) with 1 000 Mantel-

permutations and α = 0.05 (Wagner 2004, Borcard et al. 2011).  Following Wagner (2004), 

we simulated a point-wise 95 percent confident interval envelope for the total variances 

Q2(h) matrix to test the statistical significance of deviation from the null hypothesis. 

RESULTS 

Sampling arrangements and genetic structure 

We sampled 192 Red Junglefowl in the four study sites in South Central Vietnam, 

mostly in mature secondary growth forests.  Within sites, the average distance between 

capture localities was 1.12 km (max 26 km, min 0 m of birds in the same flock) depending 

on capture opportunities.  Capture of Red Junglefowl was highest in bamboo-dominated 

forests where forest floors were clear of understory and seasonal fires provide sprouting food 
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sources and predator-escape clearance.  Spatial arrangements of Red Junglefowl had ad hoc 

positive K̂ values describing moderate to strong clustered spatial patterns in the four study 

sites (Figure 2.3 a).  The site HBA had particularly strong aggregated sampling due to 

habitat patchiness and steep topography in the area.  The observed overall genetic 

differentiation FST among all four study sites was 0.14.  Our Bayesian clustering models also 

detected between 3 and 5 local population clusters in the study sites (Figure 2.3 b and Table 

2.1).  Within-site genetic differentiation (FST) differed between the lowland and highland 

sites: 0.06 to 0.07 respectively in the two lowland sites (CTN and LGO) and 0.14 and 0.16 

respectively in the two highland (and topographically more heterogeneous) sites (HBA and 

YDN) (Table 2.1). 

Spatial autocorrelation by CA models 

The observed differences in genetic differentiation between the lowland and 

highland sites also revealed evidence of their genetic spatial patterns (Figure 2.3 c).  The 

homogenous lowland sites with weak within-site genetic differentiation also had weak 

spatial autocorrelation in their proximity distance classes (~ 2 - 3 km) whereas the two 

highland sites displayed autocorrelated genotypes at close distances and then accrued strong 

increases in their variances up to 6 km.  The highland sites HBA and YDN featured some 

degree of landscape or sampling heterogeneity:  sampling localities in HBA strongly 

aggregated in three clusters in the foothill of the Annamite and the large YDN site had 

mosaic habitats of bamboos, deciduous forests, and seasonal forest fires.  Beyond 6 km and 
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particularly 8 km, genetic variance appeared to be spatially independent in the all four field 

sites. 

Comparison of the above data set (Figure 2.3 b & c) with the simulation scenario 

with spatial structure (Figure 2.4 a & d) revealed that genetic differentiation (the only 

parameter differing between the two sets), in fact, has influences on spatial genetic pattern.  

Increased genetic differentiation reduced sampling errors and increased autocorrelated 

variances in the simulated scenario, a situation similar to the previous comparison between 

spatial genetic patterns in the lowland and highland sites.  We observed that total inertia in 

the simulated scenario did not substantially increase from increasing genetic differentiation 

(Table 2.1), suggesting that the geostatistical variograms are more sensitive in detecting 

spatial trends than the unconstrained CA procedure. 

Next, comparison of the three simulated patterns showed that the two hypothetical 

spatial genetic patterns (the random and panmictic scenarios) have greater influences on the 

spatial variance trends than those from sampling aggregations or genetic differentiation.  

Spatial variance trends were negligible in the absence of spatial genetic structure in these 

two scenarios (Figure 2.4 b-c and e-f).  Strong aggregated sampling efforts, such as those in 

HBA, but with either random or panmictic genetic structure, may result in similar no-trend 

spatial variances.  While the three simulated scenarios all had strong large genetic 

differentiation (FST = 0.30), this parameter was not a deciding factor for spatial genetic 

trends as in the above comparison case with the observed spatial genetic patterns.   
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From three settings above, given our spatially organized genetic data, we concluded 

that the integrative methods of ordination CA and geostatistical variograms can effectively 

detect and describe distance-based variances of the Red Junglefowl in the four study sites. 

Spatial dependence by landscape patterns in CCA models 

Trends of spatial genetic variance in the sampled Red Junglefowl were explained by 

landscape patterns in two ways.  First, the observed variance of the CA-based spatial genetic 

patterns (previous section) and of the CA-based landscape variations were operating 

differently within the study spatial ranges.  The two landscape patterns of elevation and 

landcover had variances that were strongly correlated at close distances with no observed 

sampling errors (i.e., no nugget effect) (Figure 2.5 a-b).  They also had relatively large 

amount of their total inertias compared to those of genetic variances (Table 2.1). 

However, the strongly correlated landscape patterns did not explicitly account for the 

spatial patterns of genetic variances in the four field sites.  Our CCA-based variogram 

models had very low sill values (less than 0.05) describing subtle degrees of spatial 

dependence (Figure 2.5 c) where the spatial phenomenon seemed to be site-specific.  Such 

instances should be interpreted with caution.  Again, the lowland and highland sites were 

different in their spatial dependence of genetic variation compared to the local landscape 

patterns.  Both CA-based and CCA-based variograms of the CTN and LGO lowlands had 

similar spatial genetic patterns where we identified weak spatial autocorrelation of genetic 

variation in the CA-based models (Figure 2.3 c) and weak decreases of residual variances in 

the CCA-based variograms (Figure 2.5 c) for the first two or three distance classes (~ 2 - 3 
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km).  When removed, these correlated effects in the lowland sites would result in flat 

variance trends in their spatial dependence analyses.  This suggested spatial independence of 

genetic variation to landscape features in the two lowland sites.  

CA-based and CCA-based variograms of the two highland sites were opposite in how 

their spatial genetic variation was organized.  There were correlated genotypes detected in 

these two sites by our CA models (Figure 2.3 c) but virtually no CCA-based residuals 

observed (Figure 2.5 c).  We ruled out the contributions of genetic differentiation and spatial 

arrangements to the spatial variance trends here, as these factors were already examined in 

the three simulated data sets.  Of the total inertias recorded in the CCA models, the two 

landscape features of elevation and landscover patterns accounted for less than 2% of genetic 

variances in the two highland sites (Table 2.1).  Therefore, we concluded that the highland 

sites’ spatial genetic trends appeared to be explained mostly by the underlying genetic 

structure (local K populations) rather than dependence on any landscape feature we 

analyzed. 

In general, the CCA-based spatial dependence analysis here observed that beyond     

3 km the genetic residuals in the two lowland parks appeared to be spatially independent as 

showed in HBA and YDN thorough their full spatial ranges.  Weak spatial dependence 

implied an insignificant role of both elevation and landcover to the extent of observed local 

genetic variation in all the four study sites.  The total variances (of both explained and 

residual variances) did not exceed the point-wise envelop of the variograms at any distance 

class and not in any study site (Figure 2.5 c).  This suggested the genetic-landscape 

correlation does not depend on scale and that a regionalized (local) analysis is not necessary. 
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DISCUSSION 

Many empirical landscape genetic studies use individual-based approaches to 

quantify autocorrelation in genetic variation and then correlate them to the landscape 

determinants (e.g. Coulon et al. 2004, Broquet et al. 2006, Cushman et al. 2006).  Spatial 

dependence between landscape and responding variables has been mainly investigated in the 

fields of landscape ecology and community ecology (e.g. Wagner 2003, Wagner 2004).  Our 

study is the first to address the spatial phenomenon of dependence and autocorrelated 

residuals in the responding genetic variables hypothesized to be created by landscape 

features.  The integrated analyses of ordination, regression, and geostatistics in our study 

gave the important finding that elevation and landcover are not responsible for the extent of 

genetic variation in the ground-dwelling Red Junglefowl. 

There are two analytical advantages in our method for spatially non-independent 

data.  First, multiple regressions in CCA and in the subsequent step in our models are 

powerful techniques in dealing with non-stationary processes (Legendre 1993).  The means 

and variances in G and particularly in L matrices are dependent on locations due to spatial 

autocorrelation.  Regressions help to de-trend the data by removing the means but not 

affecting the variances (while often related to the means) and may still depend on locations 

(Haining 2003).  These re-trended and partitioned data, which is achieved by the subsequent 

regression step, then can be used in any conventional statistical methods where 

independence assumption may be appropriate.  Second, distance-based geostatistical 

variograms directly deal with both spatial autocorrelation and dependence and are useful in 

describing the concerned genetic variation as a function of geographic distances.  We 
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demonstrated here that variograms are more sensitive and informative in detecting and 

describing spatial genetic patterns. 

Analytical sales vs Model structures 

One of the major challenges in landscape genetics research is to characterize spatial 

heterogeneity in a manner and a scale meaningful to the phenomenon under consideration 

(McGarigal et al. 2009).  Expressing spatial landscape heterogeneity and dependence in 

genetic variation can be especially problematic as the two processes of ecology and 

evolution are generally operating at different temporal and spatial scales (Anderson et al. 

2010).  We applied two different analytical scale and model structure procedures to evaluate 

our spatially explicit data.  

In correcting the effects of spatial autocorrelation in genetic variation, population 

genetic studies may perform resampling adjustment to finer scales (Storfer et al. 2007) or 

separating local and regional geographic extents in their models (Frichot et al. 2013).  

Oftentimes, the assumption of random mating is considered reasonable on local scales and 

extents.  This assumption becomes more questionable as the spatial scale of the study 

domain increases and IBD will likely occur.  Whereas sampling scales and capture 

opportunities normally cannot be influenced in molecular ecology studies, our three 

simulated scenarios suggested spatial sampling, at least to the extent of sampling 

arrangement, does not attribute to the distribution of genetic variation and correlated 

genotypes.  Regarding the separate local extents, in this study we considered each study site 

separately with 1.12 km average distance between samples.  Distance-based variogram 
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analyses confirmed that spatial autocorrelation merely existed in the four local models 

relative to the ecological extent of the studied Red Junglefowl. 

In modeling spatial dependency, consider a regression relationship between the 

response genetic data y and the landscape determinants x: εβββ +×++×+= nn xxy ...110  

where ε represents the error term.  There are two general approaches in dealing withε : to 

quantify it in model residuals (‘soaking-up’ errors) or to incorporate spatial autocorrelation 

into the model structure (‘filtering’ errors) (Diniz et al. 2009).  ‘Soaking up’ spatial 

dependence or quantifying and separating the correlated residuals by ordination and 

regression techniques is the main approach in this present study. 

Alternatively, we used the ‘filtering’ approach with Bayesian clustering for 

redefining population membership in the response variables (Chapter 1) (Figure 2.3 d).  We 

ran 1 000 Markov chain Monte Carlo replications of a spatially explicit genetic model to 

define an average posterior probability of any two individuals occurring in the same cluster.  

This procedure generated dendrograms of average linkage of unweighted pair group method 

with arithmetic mean (UPGMA) for the Red Junglefowl.  We treated the UPGMA 

relationships inferred Ginf genetic dissimilarity matrix in depicting the mean posterior 

probability of common cluster memberships.  A probability at 0.00 in UPGMA indicates that 

two individuals always were placed in the same cluster in the 1 000 replicates.  This is 

equivalent to a genetic dissimilarity coefficient equal to 0.00 in Ginf indicating two 

junglefowl are identical in their AFLP profiles.  Whereas UPGMA and Ginf genetic 

dissimilarity were equal 1.00 when two junglefowl were never grouped together by the 
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clustering algorithm.  This effectively removed the nugget effect in the variogram of Ginf 

(Figure 2.3 d) implying no sampling variances existed.  The total inertia in CA model for 

Ginf also significantly increased (Table 2.1).  In a sense, the procedure ‘filtered’ spatial 

autocorrelation in the responding variables and made them more equivalent in correlating to 

the highly patchy landscape determinants (not reported here). 

Classification of grid-based transition layers 

The CA-based variograms of the two landscape features did not have sill values 

when their variance curves increased with distance throughout the sampling extents and 

there was apparent absence of the upper constant variance values (Figure 2.5 a-b).  This 

indicated highly heterogeneous landscape configurations on continuous surfaces in the four 

study sites.  The determinant landscape variables may intrinsically change rapidly in space 

(with topography data) or being highly autocorrelated because of recent fragmented impacts 

(with landscover data).  Such spatial heterogeneities are not uncommon in natural systems 

where patterns of landscape features generally change more rapidly in space than genetic 

variation.  Additionally, we observed that the choice of landscape distance measures, which 

include the grid-based landscape transition layers and the least-cost distances that are the 

spatially explicit trajectories drawn on such layers, also influences the proportion of 

variation in the cost matrices in our study.  This did not necessarily affect the significance of 

the relationship between the responding genetic variables and the cost distance matrix 

entries.  However, thorough evaluations in the topic may be useful (Zapala and Schork 

2006).  Between the two entities in calculating landscape distance measures in this study, 

least-cost modeling is well-established (e.g. Adriaensen et al. 2003) in the fields of landscape 
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ecology and landscape genetics.  We stressed the application of least-cost method in 

estimating ‘distance’ and characterizing pairwise cumulative costs or distances of 

connectivity between two observations.  This differed from the method’s original measure in 

‘path’ modeling which has more focuses in pattern analysis or population-specific 

connectivity indices. 

Because the least-cost model and its L cost distance matrix were estimated from grid-

based representations of the landscape, the quality of the source GIS rasters and the 

classification and customization of them in producing the transition layers, as well as the 

cumulative movement costs, were required for the reliability and robustness of the method.  

The underlying movement and the assigned cost values to grid cells are not known on most 

study species (including Red Junglefowl) in landscape genetic research (Epps et al. 2007). 

Direct GIS applications in landscape models, such as customization in landscape 

connectivity model and classification of remote sensing rasterized images, are normally 

unavailable to most researchers (Etherington 2011).  In our study, the cumulative landscape 

distance costs were inferred from unsupervised classifications of elevation values and 

spectral signatures of landscover.  We determined them based on the observed abundance 

data on junglefowl in lowland wooded habitats.  As such, those values may reflect habitat 

use of the Red Junglefowl but not necessarily their movement costs.  With GIS models, high 

resolution imageries (e.g. at least 5 m or higher) can be used to improve habitat and 

landcover classifications (Lo and Choi 2004).  This mechanistic interpretation, however, has 

not always resulted in realistic transition layers for the study species as little is known on the 

relative permeability of the species in relation to its habitat requirements and movements.  



75 
 

  

For example, research conducted by Broquet et al. (2006) on the American Marten, a locally 

common species in wooded habitats similar to Red Junglefowl, found that the spatial 

resolution of 75 m best represent the balance between least-cost model accuracy and the 

ecology of the species. 

We examined the influence of landscape classification methods on the significance of 

landscape distance measures and spatial dependence analysis, then, evaluated the 

performance of our landscape models.  The unsupervised classification schemes employed in 

this study were modified in two different scenarios whereas kept the spatial resolution of the 

two source GIS rasters fixed at 90 m (Figure 2.6).  This generated new transition layers for 

elevation and for landcover and implicitly converted the landscape configurations from grid-

based GIS rasters (fine grains) to pattern-liked landscape metrics (coarse grains).  The two 

modified landscape classification schemes may help to offset the shortfall in our method for 

not addrressing the classical pattern analyses of landscape configuration (e.g. Turner et al. 

2001).  The implications of using population-specific versus pair-wise measurements are 

topics needed for further elaborated in the field of landscape genetics (Balkenhol et al. 

2009).  Here, the modified landscape transition layers provided different L cost matrices that 

had similar variograms and they did not significantly affect the outcomes of spatial 

dependency analysis (e.g. Figure 2.5 c).  Therefore, we believed that, given our genotypic 

data and their spatial arrangements, landscape metrics and pattern analyses may not be useful 

in describing genetic variation and movement of the locally common junglefowl in our field 

sites. 
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In conclusion, population genetic structure of Red Junglefowl was not influenced by 

spatial dependence to the two landscape features of elevation and landcover.  Although 

primarily terrestrial, Red Junglefowl are highly mobile and have the capacity to move over a 

wide varieties of habitats and landscape terrain.  This mobility may be all that is required to 

create local population structure with negligible presence of IBD effects.  Whether the 

spatial genetic structure of the Red Junglefowl observed in the study was created only by 

demography and/or breeding system remains an open question.  It may be addressed by 

evaluating the population genetic patterns in other related junglefowl and other pheasant 

species.  Here, this study contributed to the developing discipline of landscape genetics, 

specifically the utility of distance-based and individual-based methods correlating genetic 

variation with landscape features.  The integrative and spatially explicit methods could be 

valuable in disentangling the relative effects of the two spatial phenomena of autocorrelation 

and dependence to provide reliable conclusions about spatial extents of the study species in 

respect to the influences of population structure and spatial sampling arrangements.
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Table 2.1:  Local population genetic structure and their variances.  

n - sampling sizes, K - local populations, CA - correspondence analysis, CCA - canonical correspondence 

analysis.* only for spatially structure scenario. 

Site CTN HBA LGO YDN 

n 44 56 34 58 

FST 0.071 0.139 0.063 0.156 

K 3 5 4 4 

Variances of CA of observed genetic data 3.70% 3.10% 4.10% 4.30% 

Variances of CA of simulated* genetic data 5.20% 4.70% 5.50% 4.40% 

Variances of CA of ‘imposed clustering’ genetic data 37.70% 28.10% 53.20% 24.20% 

Variances of CA of elevation 20.40% 21.50% 23.60% 21.70% 

Variances of CA of landcover 22.10% 37.70% 25.90% 18.90% 

Variances of CCA with elevation 6.84% 1.10% 13.60% 1.38% 

Variances of CCA with landcover 5.67% 1.06% 15.20% 1.38% 
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Figure 2.1:  Sampling sites in South Central Vietnam.  

 

 

With the putative Annamite landscape barriers. Sampling sites: Cat Tien National Park and Dong 

Nai Nature Reserve (here after CTN, as the two sites are connected), Hon Ba Nature Reserve (HBA), 

Lo Go Sa Mat National Park (LGO), and Yok Don National Park (YDN). 



 
 

  

Figure 2.2:  Schematic diagram of Multiscale Ordination framework. 

 

(a) a dissimilarity coefficient matrix from a genotypic data, (b) a cost distance matrix from least-cost modeling on landscape transition 

surfaces, (c) ordination methods of CA correspondence analysis and CCA canonical correspondence analysis, and (d) regression and 

geostatistical variograms. 84 
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Figure 2.3:  Spatial structure in the four field sites. 

 

(a) Observed Ripley’s K̂ point pattern analysis of sampling arrangement (blue) in relation to a 

theoretical complete spatial randomness K (red) and its Monte Carlo simulation (shading). KK >ˆ  

and falls outside the shading areas indicates a clustered pattern. The K entities were plotted as 

distance of argument (abscissa, km) vs theoretical Poisson distribution (ordinate).  (b) Observed 

Bayesian posterior genetic cluster memberships. Dots are the study’s georeferenced samples. Color 

regions and dot colors are the posterior probability spatial clusters. Plots represent only one run 

(out of 1 000) that has highest log posterior density for better visual communication.  (c) Observed 

variograms of CA-based genetic variance trends to distance.  (d) Inferred (with ‘imposed’ spatial 

autocorrelation) variograms of CA-based genetic variance trends for nugget removing effect.  Filled 

points are significant autocorrelated.  Mantel-permutations for the respective distance classes. 

Distance is in km.  
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Figure 2.4:  Population structure and variograms of three simulated data sets.  

 

(a-c) Bayesian posterior genetic cluster memberships for three simulated scenarios of spatially 

structured (a), random (b), and panmictic (c). (d-f) variograms of CA-based genetic variance trends 

for three simulated scenarios of spatially structured (d), random (e), and panmictic (f) to distance. 

Legends are as of Figure 2.3. 
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Figure 2.5:  Variograms of spatial autocorrelation and dependence. 

 

(a) CA-based landscape variances of Elevation. (b) CA-based landscape variances of Landscover.  

(c) Spatial partitioning of CCA-based genetic variances to Elevation (similar results with 

Landscover, not reported here). Red is total variances (explained and residual variances). Blue is 

residual variances. Dashed lines are point-wise 95 percent confident interval envelope for the total 

variances.  
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Figure 2.6:  Classification schemes for raster images.  

A 
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Figure 2.6 (cont.) 

B 

 

(A) Elevation and (B) Landscover raster images. (a) Unsupervised classification scheme 1-100. (b) 

Cell density plots of (a). (c) Log-transformation of the 1-100 scale (now from 0 to 2). (d)  Cell density 

plots of (c). (e) Quantile reclassification (now with only 4 categorical values). (f) Cell density plots of 

(e). 
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CHAPTER 3 

Genetic variation of the Major Histocompatibility Complex (MHC)                                                    

in wild Red Junglefowl (Gallus gallus)  
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ABSTRACT 

The major histocompatibility complex (MHC) is a multi-family cluster of genes that 

encodes proteins that modulate immuno-responsiveness.  While studies of MHC are 

relatively common in domesticated poultry, almost nothing is known about this highly 

polymorphic locus from wild Red Junglefowl (Gallus Gallus), the progenitor of domestic 

chickens.  We investigated the diversity of MHC within and among four wild Red 

Junglefowl populations across diversified natural habitats in South Central Vietnam.  Based 

on an 84 SNP panel spanning nearly 242 Kb of the MHC B-locus, we identified 313 unique 

haplotypes in 398 chromosomes.  None of these haplotypes have been described before and 

we did not observed any domestic haplotype variants in the wild populations of Red 

Junglefowl.  Analysis of molecular variance (AMOVA) revealed that 94.51% of observed 

variation was accounted for by within individual diversity.  Little genetic variance was 

apportioned within and among populations, the latter only accounting for 0.83%.  We found 

evidence of recombination, including hotspots, and limited linkage disequilibrium among 

loci.  Compared to domestic chickens, our results suggest extraordinarily high haplotype 

diversity remains in wild Red Junglefowl and is consistent with a pattern of balancing 

selection.  Wild Red Junglefowl populations in Vietnam, therefore, represent one of the 

richest resources of natural genomic variation that could directly help to improve agricultural 

diversity.   

Keywords: adaptive variation, balancing selection, Major Histocompatibility Complex, 

MHC class B, Red Junglefowl.  
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INTRODUCTION 

Our current livestock diversity originated from wild ancestors by altering the genome 

of these animals through domestication process (i.e. artificial selection) over many thousands 

of years of human influence.  Intensified agricultural activities have recently driven 

agricultural genetic diversity to a potential crisis: the extent of genetic variation within and 

among livestock breeds, strains, and lines - which are cornerstones of agricultural diversity - 

have been precipitously eroded in the past few decades (FAO 2007, Groeneveld et al. 2010).  

In poultry, considerable genetic diversity has been lost by promoting intensively-selected 

inbred commercial chicken lines (Muir et al. 2008), replacing indigenous and non-

commercial heritage breeds (FAO 2007), and eliminating specialized research breeds in 

academia and industry (Fulton and Delany 2003, Delany 2006). 

Essentially, the current genetic composition in derived domestic livestock contains 

only a small fraction of the genetic diversity present their wild ancestors, most of which are 

now either extinct or highly endangered (FAO 2007).  This situation is very different from 

species of crop plants whose ancestors still remain in the wild, often at the centers of their 

origin, and represent an invaluable source of genetic variation accessible for current and 

future breeding initiatives (FAO 2007).  The capacity of wild progenitors of domesticated 

animals to maintain genetic diversity and to adapt to changing environments, therefore, 

remains vital not only for the health of their natural populations but also presents an 

untapped source of genetic information to maintain and improve current and future 

agricultural diversity in livestock breeds and lines.  
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In this respect, Red Junglefowl (Gallus gallus) is an interesting species, representing 

one of the few remaining identifiable ancestors to a domesticated animal line (FAO 2007).  

Moreover, wild populations of Red Junglefowl still occur naturally in their native ranges 

(Johnsgard 1999, Brisbin et al. 2002), a sizeable region extending from Southeast to Central 

Asia.  Before spreading globally through human-mediated dispersal (Storey et al. 2012), 

chicken domestication is believed to have initiated historically in South and Southeast Asia 

from wild Red Junglefowl, perhaps with inclusion of some other junglefowl lineages 

(Fumihito et al. 1994, Eriksson et al. 2008).  The habitat preference of Red Junglefowl is 

lowland tropical rainforests in the Asian continent where natural habitats have been greatly 

modified in recent decades (Fuller and Garson 2000). 

For the purposes of this study, it is imperative to emphasize the importance of 

documenting the sampling origin of Red Junglefowl, particularly in previous studies from 

which samples were taken for DNA analysis from ‘wild’ breeds.  Japp & Hollander (1954) 

first proposed that the Red Junglefowl be the standard wildtype in chicken genetics.  

However, in most, if not all, cases of previous genetic studies, the ‘wild’ Southeast Asia 

junglefowl samples were from zoo birds or other populations of unknown geographic 

localities (e.g. Fumihito et al. 1994, Granevitze et al. 2007, Berlin et al. 2008, Berthouly et 

al. 2010, Ngo et al. 2010, Worley et al. 2010, Mekchay et al. 2014).  Even the Red 

Junglefowl female that formed the Gallus gallus reference sequence is known to be 

considerably introgressed with White Leghorn alleles.  Essentially, the wild behavior of Red 

Junglefowl is extreme comparing to other large and threatened species in the same 

Phasianidae family; it does not tolerate captivity (pers. obs., Collias and Collias 1996, 
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Brisbin et al. 2002, Codon 2012).  Thus, any Red Junglefowl obtained from captive 

populations must have been crossed with domestic lines in order to maintain them.  Indeed, 

only after a 3 or 4 generations of crossing wild male Red Junglefowl to domestic heritage 

females (e.g. ‘gà tre’’) will offspring survive well and tolerate humans (pers. obs.).  Efforts 

for in-captivity breeding of pure wildtype Red Junglefowl have been attempted, but 

apparently always end in failure (pers. obs.; pers. comm.). 

In the current study, we are the first to sample wild Red Junglefowl in geographically 

diverse habitats in South Central Vietnam.  Analyses of the neutral amplified fragment 

length polymorphisms (AFLP) from the samples showed significant spatial variability 

wherein distinct population clusters of Red Junglefowl comprise a metapopulation structure 

(Chapter 1).  Fine-scale analysis of genetic information and landscape models suggested that 

the magnitude of intraspecific population differentiation was considerable but indicated no 

causative relationship from landcover and elevation but rather demography and movements 

of the birds (Chapter 2).  These observed spatial genetic patterns in the wild Red Junglefowl, 

however, reflect analyses conditioned on neutral genetic markers to study population 

structure and an ecological extension of spatially explicit theory (Holderegger et al. 2006).  

Neutral variation, by definition, is not subject to selective processes.  Nevertheless, 

genetic diversity is an inherently dynamic process involving not only stochastic but also 

directional forces where living organisms may experience selective pressures from a variety 

of exogenous factors and local adaptations (Frankham et al. 2004).  Availability of the wild 

progenitor species of domestic livestock lines enable us to understanding evolutionary 

genetic processes in wild populations, but also will be essential to evaluate how 
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domestication has altered the ‘progenitor’ genome.  In the context of changing climates and 

emerging infectious diseases, understanding how processes linked to natural and artificial 

selection affect genes and gene families will create new avenues to understand linkage 

between immune systems and genetic variation, and the evolution and ecology of the 

organisms themselves. 

The current study examines adaptive genetic diversity in the Major 

Histocompatibility Complex (MHC) B-locus region in wild Red Junglefowl.  The avian 

MHC B-locus occurs on chromosome 16 and has significantly different content and 

organization than mammalian MHC but at least aspects of specific genes are functionally 

equivalent (Guillemot et al. 1989, Kaufman et al. 1999a, 1999b, Afanassieff et al. 2001, 

Rogers et al. 2003, Hunt et al. 2006).  Because of extensive genetic variation that is subject 

to intense balancing selection, the MHC offers a paradigm of adaptive evolution study at 

molecular level (Edwards and Hedrick 1998).  The most convincing associations between 

specific MHC haplotypes and pathogen resistance and susceptibility are known from 

domestic chickens.  In chickens, the MHC B haplotypes have strong associations with 

disease resistance, such as to Marek’s disease (Bacon 1987), and the gene complex has been 

studied extensively in commercial flocks (e.g. Fulton et al. 2006, Guangxin et al. 2014), as 

well as in non-commercial breeds (e.g. Izadi et al. 2011), but not in their wild ancestors, Red 

Junglefowl. 

Using an extensive single nucleotide polymorphisms (SNP) panel, this study aims to 

quantify levels of diversity and variation in MHC B in four natural Red Junglefowl 

populations in South Central Vietnam.  SNPs are one of the most common types of genetic 
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variation in eukaryotic genomes that are increasingly employed in conservation genetics and 

analysis of population evolutionary history.  Considering the extent of the geographical 

sampling and the range of different habitats, we hypothesize that wild Red Junglefowl 

possess great diversity in their MHC B haplotypes.  Our hypothesis is further conditioned on 

the fact that commercial selection has undoubtedly reduced allelic diversity even within 

domesticated chicken lines by 50% (e.g. Fulton et al. 2006, Muir et al. 2008, unpubl. data).  

In concert with immunological studies, understanding how natural and artificial selection 

affect MHC will create new avenues to understand linkage between immune system genetic 

variation, disease resistance, and the evolution and ecology of the organisms themselves. If 

substantially different MHC variation exists, populations of wild Red Junglefowl will serve 

as genetic resources in future breeding and conservation programs. 

MATERIALS AND METHODS 

Field sampling 

Red Junglefowl (N = 199) were live-captured by the walking-snare method (Chapter 

1) from four protected areas in South Central Vietnam in three dry seasons in 2012, 2013, 

and 2014.  The sampling sites are Cát Tiên National Park and Đồng Nai Reserve (hereafter 

CTN as the two sites are connected, n = 46), Hòn Bà Nature Reserve (HBA, n = 56), Lò Gò 

Sa Mát National Park (LGO, n = 39), and Yok Đôn National Park (YDN, n = 58) (Figure 

1.1).  Selection of sites was based on the presence of suitable habitats.  The study sites 

mostly feature natural habitats of lowland tropical rainforest (≤ 600 m in elevation) and they 

are separated apart from one another (~ 180 km) by residential and non-natural habitats. 
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Red Junglefowl are medium-sized pheasants (~ 500 - 1 000 g) and mainly ground-

dwelling.  We sampled 163 roosters, 19 hens, and 17 juvenile chicks (< 3 month old, with 

rearing female junglefowl).  The birds showed key phenotypic and behavioral characteristics 

of pure, wildtype Red Junglefowl as previously described in their native range in Southeast 

Asia (Beebe 1926, Delacour 1977).  They have slender blackish tarsi in both sexes, longer 

spur-lengths in male roosters, and complete absence of a comb in adult female hens.  

Morphologically, the males undergo a summer moult of the neck hackles to an overall dark 

‘eclipse’ plumage following the breeding season (generally June-September, which is also 

the rainy season) (Brisbin et al. 2002).  In their natural habitats, Red Junglefowl are 

extremely timid and do not tolerate the presence of humans.  High densities of Red 

Junglefowl occur in bamboo-dominated forests where clear understory forest floors and 

seasonal natural fires provide sprouting food sources and predator-escape clearance for the 

ground-dwelling birds.  The species utilizes a polygynous breeding characterized by female 

promiscuity.  Natal dispersal is the primary mode of gene flow (Johnsgard 1999).  Young 

non-territorial male roosters have a fairly large home range, and often move up to a few 

kilometers per day (unpubl. data). 

Collection of genomic DNA and genotyping 

For each bird, 20 - 200 µL of blood was obtained from the brachial vein and stored in 

a lysis buffer (0.1 M Tris-HCl pH 8.0, 0.01 M EDTA, 4% SDS) (Longmire et al. 2000) until 

DNA extraction.  We used higher SDS concentration to better lyse and preserve blood cells 

in high temperature field conditions.  Genomic DNA was extracted from blood using the 
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Promega Wizard DNA Isolation kit (Promega Corp., Madison, WI, USA) and was assessed 

visually with 1% agarose gel electrophoresis to confirm non-degraded, high molecular 

weight DNA. 

We focused on SNPs located in a 241 833 base pair (bp) region of the MHC B-locus 

(GenBank accession number AB268588).  This region was originally sequenced by Shiina et 

al. (2007) (Figure 3.2) and established the framework for comparative MHC genomics in 

avian species (e.g. Hosomichi et al. 2006).  The targeted SNPs were then adapted to the 

KASP (Kompetitive Allele Specific PCR) high-throughput genotyping platform (Semagn et 

al. 2014), to create a panel of 84 SNPs specifically for commercial lines of layers, broilers, 

and heritage chicken breeds (e.g. Fulton et al. 2014).  We applied this SNP panel to 199 Red 

Junglefowl obtained in Central Vietnam. 

The KASP genotyping relies on competitive allele-specific PCR that accurately 

scores bi-allelic SNPs and InDels (insertions and deletions) at specific loci.  For each SNP 

tested, we chose KASP primers using the following criteria: (1) a SNP must be flanked by at 

least 50 bp on either side and exhibit sequence characteristics amenable to primer design; (2) 

the frequency difference between the two genotypes must be ≥ 5; and (3) the read depth must 

be ≥ 5.  For each SNP, two allele-specific forward primers and one common reverse primer 

were designed.  We performed KASP assays in a final reaction volume of 5 μL containing 1x 

KASP reaction mix, 0.07 μL of assay mix (12 μM each allele-specific forward primer and 30 

μM reverse primer) and 10 - 20 ng of genomic DNA.  Amplifications were performed in 

thermal-cyclers with cycles of 15 min at 94 °C, 10 touchdown cycles of 20 s at 94 °C and    

60 s at 65 - 57 °C (the annealing temperature was reduced 0.8 °C per cycle), 26 - 35 cycles 
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of 20 s at 94 °C, and 60 s at 57 °C.  Fluorescence detection of the reactions was performed 

using an Omega Fluorostar scanner (BMG LABTECH GmbH, Offenburg, Germany).  Data 

were analyzed using the KlusterCaller 1.1 software (KBioscience). 

Haplotype analyses 

Since chickens are diploid organisms, the determination of a haplotype from a set of 

genotypic SNPs is not immediately possible.  For example, consider two SNPs occurring on 

the same chromosome, both with alleles A and G.  If both SNPs are observed as 

heterozygotes, it is unclear whether one chromosome contains allele A at both loci and the 

other chromosome contains allele G in both loci, or whether one chromosome contains allele 

A at the first locus and allele G at the second locus and the other chromosome contains 

alleles G and A, respectively.  Therefore, in the absence of extended pedigrees (which are 

rarely available for wild populations) construction of haplotypes from genotypic SNP 

information requires statistical inference (Browning and Browning 2011). 

We used PHASE 2.1.1 (Stephens et al. 2001), a program that yields Bayesian 

estimates of haplotypes and their frequencies from genotypic data under the assumption of 

random mating, to estimate haplotypes from genotypic SNP data (simultaneously using all 

the 84 SNPs).  During the haplotype reconstruction process, each allele in a SNP genotype is 

assigned to one or the other parental chromosome, assuming the presence of recombination. 

Also, it is worth mentioning that while we collected Red Junglefowl samples in other field 

sites across the South Central region of Vietnam (Chapter 1). However, we restricted MHC 

haplotype reconstruction analyses to include only the four largest populations due to 
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concerns that the haplotype phasing accuracy decreases markedly with smaller sample sizes 

(Browning and Browning 2009, 2011). 

Also using PHASE, we estimated the recombination rate ρ between SNPs across the 

study MHC region.  Here ρ is the factor by which the recombination rate between any two 

loci exceeds the background recombination parameter Nc4ˆ =ρ  (Posada 2002, Rokas et al. 

2003) itself derived from the MHC SNP data set.  Advantageously, PHASE generates a 

posterior probability distribution of the recombination parameter and can be checked for 

convergence.  When estimating recombination rates, we employed the MR model in PHASE, 

which makes explicit allowance for intragenic recombination.  Runs consisted of 1 000 

iterations as a burn-in, 1 000 secondary iterations, and a thinning interval of 1.  The 

commonly cited value of r = 0.0004 per site (equivalent to 1 recombination event per million 

bp per generation) was used as the initial starting point.  Each dataset was run 10 times with 

a different starting seed, and checked for convergence by checking consistency among 

haplotype frequency estimates and the goodness-of-fit measure for each of the 10 runs.  The 

final haplotype assignments were taken from the replicate with the best average goodness-of-

fit. 

As recommended by Posada & Crandall (2001), we used another estimation 

procedure to estimate the same population recombination parameter from the MHC sequence 

data.  The presence and significance of inter-site recombination was evaluated with 

SequenceLDhot (Fearnhead 2006).  This method used an approximate marginal likelihood 

method of Fearnhead and Donnelly (2002) to detect recombination hotspots (sites exhibiting 
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levels of recombination much larger than the background rate) from population genetic data.  

A likelihood ratio (LR) statistic is calculated for each locus to test if a hotspot is present.  If 

the LR exceeds a chosen recombination rate, the SNP or SNPs associated are indicative of a 

recombination hotspot.  A value of 10 corresponds to a false-positive rate of < 1 hotspot in 

1.2 Mb.  As our coverage region is much smaller (approximately 1/5), we chose a smaller 

value because the test as originally formulated may be too conservative.  A simple plot of the 

LR statistics can be visualized to assess differences in recombination at different positions 

along the MHC B-locus. 

For measures of polymorphism and neutrality, we employed the program DNAsp 

5.10.1 (Librado and Rozas 2009) to calculate basic sequence statistics including nucleotide 

diversity (π) and Tajima’s D.  The D statistic (Tajima 1989) is commonly used to distinguish 

between a neutrally evolving sequence from one evolving under a non-random process, e.g. 

directional or balancing selection.  The number of pairwise differences between haplotypes 

(Rohlf 1973) was also computed, and based on a parsimony distance criterion, used to create 

a minimum spanning tree to depict genetic distances among the haplotypes found in each 

population (Prim 1957).  Hierarchical topologies for the sampled MHC haplotypes were 

created using the online service “Interactive Tree of Life” (Letunic and Bork 2011). 

To capture the strength of linkage disequilibrium (LD) between pairs of MHC SNP 

markers, we first computed for each SNP locus an exact test of Hardy Weinberg equilibrium 

(HWE) (Wigginton et al. 2005).  Next, we estimated LD between each consecutive SNPs 

with the pairwise disequilibrium coefficient D′ (Lewontin 1964) using Haploview 4.2 

(Barrett et al. 2005).  Although LD is preferably estimated using high-frequency 
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polymorphisms (Reich et al. 2001) we accepted the default parameters to include SNPs 

showing a minor allele frequency (MAF) of at least 0.05.  To define a set of consecutive 

sites between which there is little or no evidence of recombination - a haplotype block - we 

used the D′-based criteria of (Gabriel et al. 2002), as implemented in Haploview, for each 

Red Junglefowl population separately. 

Finally, we estimated how genetic variance was partitioned within and among the 

constructed MHC haplotypes in the four Red Junglefowl populations using an analysis of 

variance framework (Weir 1996) for molecular data - AMOVA (Excoffier et al. 1992) 

implemented in Arlequin 3.5 (Excoffier and Lischer 2010) .  This technique treats haplotype 

distances as deviations from an estimate of the group mean, and uses the squared deviations 

as variances.  Significance of the covariance components associated with the three levels of 

genetic structure was tested in our data (haplotypes within individuals, haplotypes within 

populations, and haplotypes among populations).  Alerquin also estimated genetic covariance 

- a parameter equivalent to genetic differentiation FST - among the four sampled populations.  

Statistical significance was tested by permuting individual genotypes among populations    

10 000 times.   

RESULTS 

MHC haplotype variation 

We successfully genotyped 199 individual Red Junglefowl (398 chromosomes) 

using the KASP 84-SNP platform.  The 84 loci were distributed across 241 833 bp region of 
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the MHC B-locus, an average of 1 site per 2.9 Kb (Table 3.1).  Of the 84 loci examined, 79 

(94%) were polymorphic.  Despite this high level of nucleotide variation, none of the loci 

exhibited more than two alleles (Table 3.1).  Haplotypes inferred by PHASE, assuming the 

presence of recombination, met or exceeded 80% for nearly all SNPs. 

Stratified by each population, a total of 313 haplotypes were identified (Table 3.2). 

Three of these (0.96%) were shared between populations: h180 was shared between the sites 

HBA and LGO, h178 between HBA and YDN, and h241 between LGO and YDN.  CTN did 

not have shared haplotypes with the other field sites.  Thus, 310 unique haplotypes 

distributed among 398 chromosomes (78%) were identified, indicating extraordinarily high 

haplotype diversity in wild Red Junglefowl.  All of the 310 haplotypes found in Red 

Junglefowl, to the best of our knowledge, have not been reported in domestic chickens, 

either commercial lines or heritage breeds. 

Within a population, haplotype diversity was also considerable.  All (100%) of the 

haplotypes in CTN were unique.  Haplotype duplication was minimal in the remaining three 

population samples, generally with no more than two occurring.  Nevertheless, haplotype 

diversity (Hd) approached 100% in HBA (99%), LGO (98%), and YDN (99%) (Table 3.2).  

A few haplotypes occurred at higher frequencies in HBA, LGO, and YDN.  In these 

population samples, 8, 6, and 5 occurrences of a specific haplotype were observed, 

respectively.  The highest haplotype frequency recorded occurred in HBA where haplotype 

h147 was found in 8 of 112 chromosomes (7.14%). 
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Nucleotide diversity π in the study MHC region was substantial and consistent, 

averaging approximately 28% across each population.  The same was true for estimates of 

Tajima’s D (average = 2.1, p < 0.05) showing strong evidence that the MHC B-locus in Red 

Junglefowl departed from expectations of neutrality (Table 3.2). 

Estimates of MHC recombination 

The overall background recombination parameter ρ̂  in the MHC B-locus in the four 

sampling populations were relatively low, but consistent across each population: CTN: 

0.0065; HBA: 0.0020; LGO: 0.0013; YDN: 0.0024 recombination events per bp per 

generation (Table 3.2).  The average recombination rate between SNPs, however, ranged 

between 1.13 and 1.34.  Moreover, there was evidence that several recombination ‘hotspots’ 

( ρ significantly higher than the average and background rates) (Figure 3.3A, 3.4A, 3.5A, 

3.6A).  In general, the region spanning approximately 180-235 Kb exhibited the lowest 

estimates of recombination in all four populations.  There was strong evidence for variable 

recombination across the entire MHC B-locus; the recombination rate between SNP pairs 

was neither consistent across the MHC region nor was it similar between populations.   

Individuals sampled from CTN exhibited more hotspots of recombination than the 

other three sampling sites.  The least amount of recombination occurred in the LGO 

population likely due to the fact that the number of haplotypes identified were nearly half 

that of the other three populations.  This was not a consequence of haplotype diversity since 

it was similar in magnitude.  Rather, the sample size (specifically the number of 
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chromosomes sampled) was reduced considerably because of genotyping failures.  Efforts 

are underway to redo these samples.   

Analysis of the MHC SNP dataset with SequenceLDhat yielded similar magnitudes 

and patterns of recombination as estimated by PHASE (not shown) many of which met the 

requirements of statistical significance for hotspots (Figure 3.7). 

Estimates of MHC linkage disequilibrium 

The population recombination rate affects the extent of LD (Hill and Robertson 

1968) and is an important facet in the evolutionary history of a population.  Prior to 

measuring evidence for pairwise LD between each SNP site across the study MHC B-locus, 

SNP frequencies at each of the 84 sites were evaluated in terms of HWE expectations and 

minimum allele frequency (MAF).  In both cases, failure to remove sites exhibiting these 

characteristics will bias significantly the results of any LD analysis.  Three instances of 

deviation from HW expectations were found (p < 0.001), two (SNPs 14 and 79) in HBA and 

one (SNP-65) in YDN (Table 3.1).  A limited but variable number of monomorphic loci 

occurred in each population and along with the three sites exhibiting extreme allele 

frequencies, removed prior to the LD analysis. 

Overall, very little evidence of LD across the 242 Kb MHC region is present in any 

of the four populations and consistent with the elevated inter-site recombination and hotspots 

we found by the PHASE inferences.  However, a number of LD blocks were identified 

(Figure 3.3B, 3.4B, 3.5B, 3.6B).  One LD block comprising SNPs 81 and 82, separated by 1 

794 bp, was common in each analysis and exhibited a D’= 1 (complete linkage) and 
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logarithm (base 10) of odds of linkage (LOD) > 2 (large LOD scores favor the presence of 

linkage) in each case.  A second LD block linked SNPs 61 and 62 across 2 030 bp, but 

occurred only in individuals sampled from YDN (Figure 3.6B).  In HBA and to a lesser 

extent in CTN, high values of D’ persisted but were not strong enough to meet significance 

requirements because of reduced LOD scores (small LOD scores indicate that linkage is less 

likely) (Figure 3.3B, 3.4B).  The remaining LD blocks included SNPs 21, 22, and 23 in 

populations CTN, HBA, LGO, and YDN and SNPs 50 and 51 in LGO and YDN. 

MHC population structure 

Analysis of the 310 MHC haplotypes suggested a diverse distribution where the Red 

Junglefowl haplotypes appeared to evenly distribute over the four sampling sites (Figure 

3.8).  The most striking feature of the MHC haplotypes is a lack of spatial organization.  The 

hierarchically arranged network (minimum spanning tree) of haplotypes for individual 

sampling sites displayed a dispersive pattern: variants of MHC generally showed no 

clustering arrangements (Figure 3.9, 3.10, 3.11, 3.12).  Those that did (Figure 3.11 and 3.12) 

were likely indicative with close familial relationships (see discussion). 

AMOVA indicated that the overwhelming majority of genetic variation was 

partitioned within individuals (94.51%, p < 0.001).  In contrast, substantially less genetic 

variation was attributable within populations (4.66%, p < 0.001) or among populations 

(0.83%, p < 0.001) (Table 3.3).  In contrast to observations made with neutral loci (Chapter 

1), the observed overall FST among the four study sites was 0.83% (p < 0.001), indicating 
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very low levels of genetic differentiation in MHC haplotypes among the four Red 

Junglefowl populations surveyed. 

DISCUSSION 

MHC genes are among the most polymorphic genes in vertebrate animals.  As a 

result of their diversity, MHC molecules have received considerable attention in the fields of 

evolutionary and conservation biology, and especially in immunogenetics.  The study of 

fitness effects of disease resistance and the costs of adaptive immune responses in avian 

species has been driven primarily by commercial enterprises seeking to create more disease 

resistant lines of poultry (e.g. Fulton et al. 2014).  Using a high-density SNP detection 

system, we assessed nucleotide diversity at 84 sites distributed across ~ 240 Kb of the MHC 

B-locus in 199 wild-caught Red Junglefowl.  Genetic samples (blood) from these birds were 

obtained from four geographically distinct regions in South Central Vietnam, each exhibiting 

distinct ecological and environmental characteristics.  The most striking result of this 

research is the extensive amount of nucleotide and haplotype variation characterized in the 

MHC B-locus: nearly 80% of the 398 chromosomes exhibited a unique haplotype. 

Originally, we hypothesized that Red Junglefowl were likely to demonstrate 

extensive MHC diversity.  Because they were sampled in ecologically diverse sites, recently 

disconnected from migration, and perhaps exposed to differing pathogen repertoires, we also 

predicted a presence of strong population structure similar to that observed with neutral 

markers (Chapter 1).  Although we observed a tremendous amount of MHC haplotype 



108 
 

  

variation, there was also a total lack of spatial organization even within a population.  The 

genetic variation measured as expected heterozygosity was always greater for MHC 

(between 0.2753 and 0.2894, Table 3.2) than for neutral ALFP markers in the studied Red 

Junglefowl that previously described (between 0.1243 and 0.1916, Chapter 1).  

Two other lines of evidence support the absence of spatial pattern in wild Red 

Junglefowl.  First, genetic differentiation, as measured by FST of the MHC data among the 

four study sites, was essentially zero (0.0083).  The absence of among-population variation 

contrasted strongly that that observed with neutral markers (0.1400, Chapter 1).  Our 

analytical methods also identified substantial intraspecific population structure with the 

neutral AFLP markers (Chapter 1).  Second, the genetic covariance attributable to within 

(4.66%) and among-population (0.83%) levels was only a small fraction of the total within 

level variance.  Note that variance estimation in AMOVA has been derived under several 

different models and they may have different outcomes in their estimated covariance 

components.  The fixed-population model employed here is considered limited in explaining 

evolutionary forces causing population differentiation (Weir 1996).  Nevertheless, the 

substantial amount of SNP variation observed at individual level (94.51%) strongly suggests 

diverse MHC B-locus variation occurs without regard to a geographical context in Red 

Junglefowl. 

Agricultural genetic diversity 

The best-studied MHC genes in birds come from those species of agricultural 

significance such as chicken, pheasant, quail, duck, and turkey (e.g. Kaufman et al. 1999b, 
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Shiina et al. 2004, Shiina et al. 2007, Chaves et al. 2009, Chaves et al. 2011).  But unlike 

their mammalian counterparts, the genomic structure of MHC differs considerably within 

avian species (Hess and Edwards 2002).  This makes direct comparisons more challenging 

and likely confounded further by significant differences in genotyping technologies (e.g. 

Jacob et al. 2000, Miller et al. 2004).  Our current study has a distinct comparative advantage 

as we obtained a data set of 17 commercial lines that were genotyped with the same KASP 

technology at the identical MHC loci (Table 3.4).  Without any doubt, the haplotype 

diversity of the wild-caught Red Junglefowl is increased substantially compared to 

commercial lines.  None of the 310 Red Junglefowl MHC B-locus haplotypes overlaps with 

any haplotype in the commercial lines and even those of many additional heritage breeds 

(Fulton, pers. comm.). 

Fulton and Delany (2003) brought attention to the continuing rapid decline of both 

commercial and heritage poultry lines.  Recent research evaluating influences of commercial 

selection practices on the chicken genome has established convincingly a reduction of allelic 

diversity in chicken lines (Muir et al. 2008).  Our current research also confirms this 

substantial reduction in genetic diversity: selective breeding practices for desirable 

agricultural traits, including MHC, have reduced significantly the level of genetic variation 

in commercial lines (Table 3.4). Importantly, the reduction in genetic diversity described by 

previous research is limited only to domesticated chickens, not their wild ancestors, Red 

Junglefowl.  The unusually high polymorphism of Red Junglefowl MHC discovered in our 

study will further assist an understanding of adaptive polymorphism and a genetic basis of 

pathogen resistance (Zuckerkandl  and Pauling 1965).  The most convincing associations 
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between specific MHC haplotypes and pathogen resistance and susceptibility are already 

known from domestic chickens.  For example, resistance to a virus that causes Marek’s 

Disease reaches 95% if an individual possesses the B-21 MHC haplotype yet is 0% with the 

B-19 haplotype (Biggs et al. 1968).  Incredibly, a portion of one Red Junglefowl haplotype is 

only one SNP different from the B-21 MHC haplotype that confers 95% resistance to 

Marek’s Disease. 

Adaptive variation and selection 

The question as to why there is so much MHC B-locus diversity in Red Junglefowl 

remains unanswered.  Extensive variation at MHC loci is generally thought to be maintained 

by balancing selection (Hess and Edwards 2002), itself modulated by host-parasite 

coevolution.  We estimated Tajima’s D, a comparison of the average number of nucleotide 

pairwise differences (π) and the number of segregating sites (S) (Table 3.2).  In the absence 

of demographic changes (e.g. population expansion or contraction, high levels of inter-

population migration), positive selection (selective sweeps) is indicated by negative values 

of D.  Under the influence of balancing selection, alleles are kept at intermediate frequencies 

producing positive values of D because more pairwise differences exist relative to 

segregating sites.  In all four populations, Tajima’s D averaged about 2.1 and was 

statistically significant at p < 0.05 (Table 3.2) indicating strong evidence that substitution 

patterns in Red Junglefowl MHC experience balancing selection. 

The exact nature and major driving mechanisms of balancing selection are often 

debated (Hess and Edwards 2002).  In avian species, recent empirical studies support a 
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predominant hypothesis of MHC-dependent mate choice where reproductive selection 

mechanisms maintain heterozygosity in natural populations (e.g. Von Schantz et al. 1989, 

Parker 2002, Ekblom et al. 2007).  However, a method to distinguish between loci within the 

MHC region and closely linked loci as the target of mate choice in these studies remains 

unclear (Tregenza and Wedell 2000).  Many other hypotheses have been proposed to account 

for disease-based selection to the extent of MHC diversity, particularly in model species, as 

previously mentioned. 

The above hypotheses regarding MHC diversity and elevated polymorphism are not 

mutually exclusive.  Given the focus of our study, we could only conclude that 

recombination does play a role in MHC haplotype diversity in the wild Red Junglefowl. 

Whether this is a historical vestige or an ongoing contemporary process cannot be 

determined with the samples we have currently.  While long-term effects of balancing 

selection and evolutionary forces acting to maintain MHC diversity are not in doubt, 

understanding contemporary forces to MHC genes is far more interesting in Red Junglefowl, 

as at some sampling sites, there was a close association with domestic chickens.  

Domestication of the chicken is thought to have occurred in Southeast Asia, probably 

present-day Vietnam or South China or both (Berthouly et al. 2010, Miao et al. 2013).  

Mitochondria-based molecular evidence showed that the process of poultry domestication, 

like all other livestock species, occurred in several places and probably deployed several 

divergent lineages of wild ancestors (Nishibori et al. 2005, Eriksson et al. 2008).  

Subsequently, wild alleles of genes in natural populations of the original progenitors may 

have been replaced through intensive cross-breeding with domestic stocks (Peterson and 
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Brisbin 1998, Berthouly et al. 2010).  The ubiquity of human populations and widespread 

occurrence of free-ranging chickens in Southeast Asia are raising fears of introgression 

between wild Red Junglefowl and domestic chickens. 

Our findings indicate that none of analyzed Red Junglefowl haplotypes overlap with 

any haplotype in the commercial lines.  Moreover, a small sample of local (heritage) breeds 

had no evidence of similar MHC haplotypes (data not shown).  Together, these findings 

suggest allelic introgression between wild and domesticized fowls has not occurred.  

However, MHC haplotypes may not be the best sequence to use for these comparisons. 

Unique MHC haplotypes from Red Junglefowl in this study were at least affected to some 

degree of recombination sufficient enough to reduce the amount of LD.  It is commonly 

believed that the two evolutionary forces attribute to distinct patterns in the MHC genes in 

model avian species (Edwards et al. 1995).  However, the potential for recombination 

analysis and LD mapping in natural populations is dependent on how genetic diversity 

across the genome is structured in populations, about which there is so far almost no 

knowledge for the great majority of wild species.  With balancing selection, new MHC 

variants are favorable and can persist over long periods in natural populations, and that could 

explain the observed levels of MHC haplotype variation in our Red Junglefowl samples.  

Particularly under circumstances where the pathogen repertoire is diverse or changes rapidly, 

multiple MHC loci with highly polymorphic molecules are necessary for presentation of 

exogenous pathogen-derived peptides to effector T cells. 
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MHC recombinants 

In contrast to mammals, the close relationship between avian MHC haplotypes and 

role in disease resistance may in part be due to its more compact system and general absence 

of non-immune related genes (Kaufman et al. 1999b).  From a population genetic point of 

view, recombination produces new haplotypes and increases the genetic variation in a 

population, by breaking up existing linkage between gene loci. But the relatively small size 

of the chicken MHC (at least compared to MHC in mammals) may restrict recombination 

between different loci.  For example, recombinant individuals between the MHC B–L and 

B–F loci are extremely rare in commercial chicken lines (Hala et al. 1989). 

Our investigation of recombination in Red Junglefowl MHC suggested that while 

recombination within the MHC B-locus does occur, its magnitude is highly variable across 

both the entire MHC locus and between populations.  While uncommon, at least two 

hotspots of recombination were identified in each of the four populations.  However, despite 

the rarity of MHC recombination observed in domestic chickens, recombination in natural 

populations of Red Junglefowl populations likely contributes to increased diversity in MHC 

loci. 

The population recombination rate also affects the extent of LD (Hill and Robertson 

1968).  Unfortunately, studies of MHC LD in natural populations of birds remain rare.  A 

recent study by Edwards and Dillon (2004) examined a 40  Kb region of MHC Class II locus 

in Red-winged Blackbirds (Agelaius phoeniceus).  They found evidence of high LD only 

across a few hundred base pairs, nearly identical to what our current study discovered.  In 
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contrast, Heifetz et al. (2005) found significant LD extending over several centimorgans in 

commercial populations of domestic chicken but these results may have limited relevance to 

comparisons with wild Red Junglefowl populations. 

The expected magnitude of LD between different alleles is dependent on the age of 

the original mutation and the rate of recombination between loci (Stumpf and McVean 

2003).  Based on studies of the domestic chicken, it has been suggested that birds have high-

recombination rates exclusive of MHC regions (e.g. Z-Chromosome) (Hillier et al. 2004), a 

phenomenon that would prevent extensive LD from occurring.  The current study 

demonstrated that very little LD exists in MHC in Red Junglefowl.  Remarkably consistent 

across the four sampled populations, the occurrence of high LD was restricted primarily to  

regions less than 1 Kb although a roughly 2 Kb region was also identified.  These findings 

mirror those found by Edwards and Dillon (2004) and also in MHC of the wild turkeys 

(Meleagris gallopavo) (Chaves et al. 2011). 

LD blocks are expected to depend on the sample populations.  Generally, as 

effective population size (Ne) increases, the smaller the blocks will be.  The similar 

magnitude and distribution of small LD blocks across four widely separated populations of 

Red Junglefowl suggests that not only is Ne large in these populations, but also similar in 

size.  Consistent with this interpretation are similar rates of recombination across these 

regions.  Blocks of LD can arise by chance even when recombination rates are uniform.  If 

the recombination hotspots identified in the Red Junglefowl populations are real, then at 

least some aspects of the LD blocks is transferable between populations, an event that is 

unlikely to occur at the large geographic scales present in my study.  Importantly, this may 
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suggest that some aspect of the environment (e.g. pathogens) is selecting for these non-

random association of alleles.  However, demographic transfer (e.g. dispersal) of LD blocks 

could certainly occur at smaller scales like the scale of my field sampling.  However, if 

recombination rates are in fact low, then LD blocks should be more reflective of historical 

recombination events since only very old recombination events can result in LD block 

boundaries that are shared between isolated populations. 

Sampling and haplotype diversity analyses 

Red Junglefowl have a polygynous breeding system and males are highly territorial 

during the breeding season.  Our field method of walking snares with decoy roosters mainly 

lured and captured the dominant roosters of the flocks along our sampling localities (here, 

‘flock’ in a broad sense refers to our observed social unit).  The average geographic distance 

between the samples was 1.09 km depending on capture opportunities (min 0 m of birds in 

the same flock or same family, max from 14 to 26 km within a collection area).  As a 

consequence, in most cases, we did not have knowledge about family structure that we could 

compare to our haplotype networks, except in the three following circumstances. 

In LGO, we (presumptively) knew the relationships of two families that were 

sampled less than 300 m apart.  Each family had a rearing hen and two young chicks.  Of the 

six birds, we were able to match the each family member to a specific haplotype: haplotype 

cluster of h232 (hen) - h233 - h234 (chick) - h235 (chick) belong to one family and cluster of 

h255 (hen) - h254 (chick) belong to another family (insert, Figure 3.11).  Haplotypes of the 

remaining chick in the second family were not grouped in the cluster, likely due to 
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inheritance from different males, as multiple sire matings do occur regularly in Red 

Junglefowl and other avian species (Collias and Collias 1996).  Alternatively, a 

recombination event could also have taken place.  In YDN, five MHC variants of h289 - 

h292 - h277 - h286 - h279 belong to five male Red Junglefowl sampled in the same vicinity 

(insert, Figure 3.12).  Average distance between these five birds was just more than a 

hundred meters whereas h277 and h279 belong to two first-year non-territorial male roosters 

captured together. 

We previously concluded in our landscape models that the spatial neutral genetic 

variation in Red Junglefowl is driven more by species movement and demography than by 

spatial dependence on landscape features or sampling arrangements (Chapter 2).  It is useful 

to re-evaluate the topic considering adaptive MHC variation, specifically in site CTN.  Even 

though the sampling arrangement in CTN was not randomly distributed per se (Chapter 2), 

the Red Junglefowl inhabiting the area appeared to evenly distribute within habitat types.  

The park is very well protected, with no major within-site landscape barriers, compared to 

the other three sites.  HBA is located in the foothills of the Annamite Mountain Range and 

the spatial sampling scheme there was strongly aggregated and influenced by habitat 

patchiness and steep topography.  LGO is fairly small in area and features the most disturbed 

lowland habitats, although population densities of Red Junglefowl still remain high.  YDN 

has deciduous forests with a major river bisecting the park, and seasonal forest fires are 

common.  Sampling conditions, therefore, could attribute the amount of MHC diversity in 

CTN and quality of the sampling habitats but this topic remains an open question and needs 

further investigation. 
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Altogether, caution should be taken in interpreting the network of the MHC 

haplotypes in the study.  With balancing selection acting on MHC diversity, new MHC 

variants will arise and persist but need sufficient time for recombination (or mutation) to 

separate markers.  These forces may act at very localized physical scales (even within a 

single exon).  From our three topological ‘family’ clusters in LGO and YDN and from the 

observed diversity in CTN MHC haplotypes mentioned before, we recommend the 

interpretation of Red Junglefowl MHC haplotype networks be used only for a determination 

of similarity analysis haplotype per se, rather than inferring any evolutionary relatedness 

among the birds. 

Spatial process of adaptive genetic variation 

In a geographical context, the diversity of MHC genes is also expected to be under 

the influences of spatial processes and local environmental factors.  In the previous study 

using neutral AFLP markers, we identified a metapopulation structure in Red Junglefowl 

wherein the birds displayed high degree of intra- and inter-specific-population patterns.  

Evidence of fine-scale genetic subdivision was detectable at distances as low as 5 km 

(Chapter 1).  Spatial analyses of neutral variation in Red Junglefowl also ruled out long-

distance gene flow (stepping-stone model).  Instead, a metapopulation structure may have 

resulted from fragmentation of a formerly panmictic population.  The spatial patterns of 

MHC variability are very different to this metapopulation neutrality structure, as described 

throughout in this manuscript.  This has several implications in the evolution history of Red 

Junglefowl, as well as future management and breeding programs.  First, balancing selection, 
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perhaps modulated in part by extensive recombination, has facilitated the generation and 

retention of MHC polymorphism in Red Junglefowl, perhaps to an extent that counters the 

effects of genetic drift and gene flow that shape neutral genetic variation.  Adaptively 

derived diversity present in the wild Red Junglefowl may be indicative of balancing 

selection and narrower tolerance to the underlying environments.  However, our analysis so 

far has not been able to confirm this hypothesis, except to show that certain linkage blocks 

are present in some, but not all populations.  Thus, neutral processes are not sufficient to 

explain completely spatial genetic variation in wild Red Junglefowl and currently there are 

few ecologically meaningful genes, except MHC, that are well-enough understood for these 

kind of studies.  We conclude that the analysis of adaptive MHC variation in Red Junglefowl 

provides insights into one of the richest resources of natural genomic variation that could 

directly help to improve agricultural diversity.   
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Table 3.1:  SNP diversity in the four sampling sites. 

Heterozygosities have observed values (Obs H) and predicted values (Pred H) with Hardy-Weinberg 

p values (HWpval). MAF is minor allele frequency (of at least 0.05). 

 



Obs H Pred H HW pval MAF Alleles Obs H Pred H HW pval MAF Alleles

SNP-1 30189 0.0000 0.0000 1.0000 0.000 C:C 0.0000 0.0000 1.0000 0.000 C:C
SNP-2 30246 0.0650 0.0630 1.0000 0.033 C:T 0.0890 0.0850 1.0000 0.045 C:T
SNP-3 43262 0.3910 0.4230 0.7947 0.304 G:A 0.2140 0.3370 0.0213 0.214 G:A
SNP-4 48730 0.0220 0.0220 1.0000 0.011 G:T 0.0890 0.0850 1.0000 0.045 G:T
SNP-5 49108 0.4570 0.4880 0.8268 0.424 C:T 0.4290 0.4480 0.9120 0.339 C:T
SNP-6 55684 0.6090 0.4850 0.1717 0.413 T:C 0.5000 0.4690 0.8881 0.375 T:C
SNP-7 57047 0.0000 0.0000 1.0000 0.000 C:C 0.0000 0.0000 1.0000 0.000 C:C
SNP-8 59015 0.1740 0.1590 1.0000 0.087 G:C 0.1430 0.1330 1.0000 0.071 G:C
SNP-9 64656 0.5870 0.4940 0.3648 0.446 G:A 0.4290 0.4990 0.3875 0.482 A:G
SNP-10 68273 0.5000 0.4320 0.5152 0.315 A:G 0.4640 0.4360 0.9249 0.321 A:G
SNP-11 69257 0.0000 0.0000 1.0000 0.000 G:G 0.0000 0.0000 1.0000 0.000 G:G
SNP-12 75065 0.1960 0.2110 0.9834 0.120 A:T 0.2320 0.2820 0.3462 0.170 A:T
SNP-13 81752 0.5220 0.4230 0.2417 0.304 C:T 0.4820 0.4300 0.5987 0.312 C:T
SNP-14 85359 0.0870 0.0830 1.0000 0.043 G:C 0.0000 0.1330 0.0000 0.071 G:C
SNP-15 89076 0.0430 0.0430 1.0000 0.022 C:T 0.0180 0.0180 1.0000 0.009 C:T
SNP-16 94952 0.2170 0.2870 0.2229 0.174 C:T 0.2320 0.3840 0.0090 0.259 C:T
SNP-17 95066 0.1740 0.1590 1.0000 0.087 C:T 0.0710 0.0690 1.0000 0.036 C:T
SNP-18 95599 0.3480 0.3640 0.9926 0.239 G:A 0.2500 0.2190 0.7917 0.125 G:A
SNP-19 95934 0.1090 0.1030 1.0000 0.054 C:G 0.0180 0.0180 1.0000 0.009 C:G
SNP-20 97054 0.1520 0.1410 1.0000 0.076 G:A 0.3040 0.2570 0.4780 0.152 G:A
SNP-21 100610 0.3700 0.4150 0.6334 0.293 G:A 0.3390 0.3470 1.0000 0.223 G:A
SNP-22 100714 0.5220 0.4760 0.7964 0.391 C:T 0.4460 0.4420 1.0000 0.330 C:T
SNP-23 101288 0.5220 0.4910 0.9671 0.435 T:G 0.5180 0.4640 0.6118 0.366 T:G
SNP-24 101676 0.0430 0.0430 1.0000 0.022 T:G 0.0000 0.0000 1.0000 0.000 T:T
SNP-25 102094 0.3480 0.3150 0.9155 0.196 T:C 0.1610 0.1770 0.8378 0.098 T:C
SNP-26 103030 0.4570 0.4320 1.0000 0.315 C:T 0.4290 0.3750 0.5289 0.250 C:T
SNP-27 103447 0.4570 0.3750 0.3081 0.250 C:T 0.4110 0.4000 1.0000 0.277 C:T
SNP-28 104523 0.2170 0.2580 0.5159 0.152 C:T 0.2140 0.1910 1.0000 0.107 C:T

CTN HBA
Locus 
Name Position
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Obs H Pred H HW pval MAF Alleles Obs H Pred H HW pval MAF Alleles

CTN HBA
Locus 
Name Position

SNP-29 108085 0.3910 0.4850 0.2776 0.413 T:C 0.3750 0.4300 0.4712 0.312 T:C
SNP-30 109194 0.4780 0.4400 0.8613 0.326 C:T 0.4110 0.4730 0.4373 0.384 C:T
SNP-31 109949 0.5430 0.4710 0.5163 0.380 C:T 0.3570 0.4360 0.2613 0.321 C:T
SNP-32 111557 0.0000 0.0000 1.0000 0.000 T:T 0.0000 0.0000 1.0000 0.000 T:T
SNP-33 112362 0.4780 0.4050 0.4385 0.283 G:A 0.3040 0.3840 0.1994 0.259 G:A
SNP-34 112488 0.4350 0.4850 0.6343 0.413 G:A 0.4640 0.4970 0.7649 0.464 A:G
SNP-35 116315 0.1300 0.1590 0.5647 0.087 A:G 0.1430 0.1330 1.0000 0.071 A:G
SNP-36 116687 0.3260 0.3280 1.0000 0.207 T:C 0.2320 0.2820 0.3462 0.170 T:C
SNP-37 117533 0.5220 0.4540 0.5391 0.348 G:A 0.5180 0.4540 0.4900 0.348 G:A
SNP-38 119134 0.4780 0.4230 0.6584 0.304 C:T 0.4460 0.4730 0.8322 0.384 C:T
SNP-39 120084 0.1960 0.2430 0.3967 0.141 T:C 0.2320 0.3050 0.1628 0.188 T:C
SNP-40 120680 0.4130 0.3960 1.0000 0.272 T:C 0.1960 0.2320 0.4732 0.134 T:C
SNP-41 122472 0.0220 0.0630 0.0659 0.033 G:A 0.0890 0.0850 1.0000 0.045 G:A
SNP-42 124279 0.1520 0.1410 1.0000 0.076 T:C 0.0890 0.0850 1.0000 0.045 T:C
SNP-43 124920 0.1740 0.1590 1.0000 0.087 C:T 0.1790 0.1630 1.0000 0.089 C:T
SNP-44 125176 0.2390 0.2430 1.0000 0.141 G:T 0.3750 0.3050 0.1976 0.188 G:T
SNP-45 125504 0.5000 0.4470 0.6938 0.337 C:T 0.4110 0.3840 0.9352 0.259 C:T
SNP-46 125845 0.3480 0.4050 0.4877 0.283 C:T 0.4640 0.4990 0.7440 0.482 C:T
SNP-47 126281 0.5220 0.4660 0.6773 0.370 G:A 0.4290 0.4080 1.0000 0.286 G:A
SNP-48 136539 0.3910 0.4910 0.2444 0.435 T:G 0.3390 0.5000 0.0260 0.491 G:T
SNP-49 136733 0.3040 0.3860 0.2583 0.261 G:T 0.3930 0.4940 0.1805 0.446 G:T
SNP-50 137666 0.3480 0.3860 0.6989 0.261 T:C 0.2680 0.3050 0.5601 0.188 T:C
SNP-51 138420 0.3700 0.4150 0.6334 0.293 C:T 0.3210 0.3920 0.2779 0.268 C:T
SNP-52 141694 0.3910 0.4050 1.0000 0.283 C:T 0.5180 0.4730 0.7223 0.384 C:T
SNP-53 142652 0.2170 0.1940 1.0000 0.109 A:C 0.1070 0.1010 1.0000 0.054 A:C
SNP-54 143396 0.2390 0.2430 1.0000 0.141 C:T 0.3040 0.4000 0.1247 0.277 C:T
SNP-55 147308 0.2610 0.2870 0.7901 0.174 G:A 0.4460 0.4160 0.8833 0.295 G:A
SNP-56 148723 0.4350 0.4760 0.7165 0.391 G:A 0.4640 0.4770 1.0000 0.393 G:A 128



Obs H Pred H HW pval MAF Alleles Obs H Pred H HW pval MAF Alleles

CTN HBA
Locus 
Name Position

SNP-57 149999 0.1300 0.1220 1.0000 0.065 T:C 0.0710 0.0690 1.0000 0.036 T:C
SNP-58 156169 0.1520 0.1410 1.0000 0.076 G:A 0.1610 0.1770 0.8378 0.098 G:A
SNP-59 157474 0.1960 0.2110 0.9834 0.120 G:A 0.1610 0.1480 1.0000 0.080 G:A
SNP-60 158754 0.1300 0.1220 1.0000 0.065 C:T 0.0890 0.2050 0.0018 0.116 C:T
SNP-61 161219 0.3910 0.4230 0.7947 0.304 G:A 0.3040 0.4540 0.0243 0.348 G:A
SNP-62 163249 0.3260 0.4810 0.0494 0.402 A:G 0.5000 0.4770 0.9935 0.393 A:G
SNP-63 163580 0.2830 0.3280 0.5463 0.207 G:A 0.2860 0.3750 0.1381 0.250 G:A
SNP-64 168754 0.4570 0.4150 0.8147 0.293 C:G 0.5180 0.4420 0.3633 0.330 C:G
SNP-65 169823 0.3040 0.4050 0.1608 0.283 G:A 0.2140 0.3570 0.0097 0.232 G:A
SNP-66 170413 0.2830 0.2730 1.0000 0.163 G:A 0.1430 0.1630 0.7115 0.089 G:A
SNP-67 171391 0.5000 0.4150 0.3310 0.293 C:G 0.3930 0.3570 0.7745 0.232 C:G
SNP-68 175929 0.3260 0.3280 1.0000 0.207 G:A 0.3210 0.2700 0.3925 0.161 G:A
SNP-69 176828 0.0430 0.0430 1.0000 0.022 G:T 0.0540 0.0520 1.0000 0.027 G:T
SNP-70 177699 0.3700 0.3750 1.0000 0.250 G:A 0.3210 0.3570 0.6434 0.232 G:A
SNP-71 181329 0.1960 0.2110 0.9834 0.120 C:T 0.3390 0.2820 0.3173 0.170 C:T
SNP-72 182702 0.2830 0.4600 0.0174 0.359 C:A 0.4460 0.4300 1.0000 0.312 C:A
SNP-73 190516 0.0000 0.0000 1.0000 0.000 G:G 0.0180 0.0180 1.0000 0.009 G:A
SNP-74 199162 0.5220 0.4540 0.5391 0.348 G:A 0.3750 0.3470 0.9088 0.223 G:A
SNP-75 201654 0.5000 0.4320 0.5152 0.315 A:G 0.3930 0.4770 0.2656 0.393 A:G
SNP-76 207680 0.0000 0.0000 1.0000 0.000 G:G 0.0000 0.0000 1.0000 0.000 G:G
SNP-77 208958 0.1520 0.1410 1.0000 0.076 A:T 0.0180 0.0180 1.0000 0.009 A:T
SNP-78 213445 0.0000 0.0000 1.0000 0.000 C:C 0.0000 0.0000 1.0000 0.000 C:C
SNP-79 225208 0.0000 0.0000 1.0000 0.000 G:G 0.0000 0.1330 0.0000 0.071 G:A
SNP-80 232805 0.5650 0.4990 0.5953 0.478 G:A 0.4820 0.4960 0.9936 0.455 A:G
SNP-81 234371 0.5220 0.4050 0.1161 0.283 T:C 0.5180 0.4990 1.0000 0.473 T:C
SNP-82 236165 0.4780 0.4990 0.9505 0.478 C:T 0.5180 0.4730 0.7223 0.384 T:C
SNP-83 238448 0.3480 0.3860 0.6989 0.261 C:T 0.3210 0.3370 0.9537 0.214 C:T
SNP-84 240933 0.0650 0.0630 1.0000 0.033 G:C 0.0000 0.0000 1.0000 0.000 G:G 129



SNP-1 30189
SNP-2 30246
SNP-3 43262
SNP-4 48730
SNP-5 49108
SNP-6 55684
SNP-7 57047
SNP-8 59015
SNP-9 64656
SNP-10 68273
SNP-11 69257
SNP-12 75065
SNP-13 81752
SNP-14 85359
SNP-15 89076
SNP-16 94952
SNP-17 95066
SNP-18 95599
SNP-19 95934
SNP-20 97054
SNP-21 100610
SNP-22 100714
SNP-23 101288
SNP-24 101676
SNP-25 102094
SNP-26 103030
SNP-27 103447
SNP-28 104523

Locus 
Name Position

Obs H Pred H HW pval MAF Alleles Obs H Pred H HW pval MAF Alleles

0.0000 0.0000 1.0000 0.000 C:C 0.0000 0.0000 1.0000 0.000 C:C
0.0000 0.0000 1.0000 0.000 C:C 0.0000 0.0000 1.0000 0.000 C:C
0.3680 0.4780 0.2450 0.395 G:A 0.4660 0.4670 1.0000 0.371 G:A
0.0260 0.0260 1.0000 0.013 G:T 0.1380 0.1580 0.6900 0.086 G:T
0.3160 0.3320 1.0000 0.211 C:T 0.4660 0.4880 0.8807 0.422 C:T
0.2890 0.4970 0.0179 0.461 T:C 0.4310 0.4820 0.5460 0.405 T:C
0.0000 0.0000 1.0000 0.000 C:C 0.0000 0.0000 1.0000 0.000 C:C
0.1580 0.1450 1.0000 0.079 G:C 0.0520 0.0820 0.1716 0.043 G:C
0.2890 0.4410 0.0659 0.329 A:G 0.5520 0.4950 0.5836 0.448 A:G
0.2630 0.3880 0.1021 0.263 A:G 0.3620 0.4210 0.4024 0.302 A:G
0.0000 0.0000 1.0000 0.000 G:G 0.0000 0.0000 1.0000 0.000 G:G
0.0790 0.1230 0.2612 0.066 A:T 0.1030 0.1280 0.4552 0.069 A:T
0.3680 0.4880 0.2060 0.421 C:T 0.5000 0.5000 1.0000 0.491 C:T
0.2890 0.2480 0.8606 0.145 G:C 0.0860 0.1130 0.3492 0.060 G:C
0.0000 0.0000 1.0000 0.000 C:C 0.0340 0.0340 1.0000 0.017 C:T
0.2630 0.4320 0.0346 0.316 C:T 0.3790 0.4280 0.5225 0.310 C:T
0.0260 0.0760 0.0800 0.039 C:T 0.0690 0.0670 1.0000 0.034 C:T
0.1580 0.1450 1.0000 0.079 G:A 0.3100 0.3480 0.5873 0.224 G:A
0.0000 0.0000 1.0000 0.000 C:C 0.1210 0.1720 0.1338 0.095 C:G
0.0790 0.0760 1.0000 0.039 G:A 0.1550 0.1430 1.0000 0.078 G:A
0.2370 0.4580 0.0064 0.355 G:A 0.2930 0.3750 0.1693 0.250 G:A
0.4210 0.4990 0.4717 0.474 C:T 0.3280 0.4750 0.0307 0.388 C:T
0.4470 0.5000 0.6859 0.487 T:G 0.3620 0.4880 0.0764 0.422 T:G
0.0000 0.0000 1.0000 0.000 T:T 0.1030 0.0980 1.0000 0.052 T:G
0.1320 0.1670 0.5222 0.092 T:C 0.2590 0.2740 0.9252 0.164 T:C
0.3160 0.3610 0.6496 0.237 C:T 0.2760 0.2620 1.0000 0.155 C:T
0.2890 0.3750 0.2846 0.250 C:T 0.5170 0.4900 0.9363 0.431 C:T
0.1840 0.4000 0.0031 0.276 C:T 0.1550 0.2250 0.0803 0.129 C:T

YDNLGO
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Locus 
Name Position

SNP-29 108085
SNP-30 109194
SNP-31 109949
SNP-32 111557
SNP-33 112362
SNP-34 112488
SNP-35 116315
SNP-36 116687
SNP-37 117533
SNP-38 119134
SNP-39 120084
SNP-40 120680
SNP-41 122472
SNP-42 124279
SNP-43 124920
SNP-44 125176
SNP-45 125504
SNP-46 125845
SNP-47 126281
SNP-48 136539
SNP-49 136733
SNP-50 137666
SNP-51 138420
SNP-52 141694
SNP-53 142652
SNP-54 143396
SNP-55 147308
SNP-56 148723

Obs H Pred H HW pval MAF Alleles Obs H Pred H HW pval MAF Alleles

YDNLGO

0.2630 0.4650 0.0150 0.368 T:C 0.4660 0.4820 0.9537 0.405 T:C
0.3680 0.4110 0.7218 0.289 C:T 0.3620 0.4070 0.5463 0.284 C:T
0.2630 0.3610 0.1894 0.237 C:T 0.3100 0.4140 0.0982 0.293 C:T
0.0000 0.0000 1.0000 0.000 T:T 0.0000 0.0000 1.0000 0.000 T:T
0.2630 0.2290 1.0000 0.132 G:A 0.4480 0.4850 0.7056 0.414 G:A
0.4470 0.5000 0.6859 0.487 G:A 0.3970 0.4210 0.8254 0.302 G:A
0.2110 0.1880 1.0000 0.105 A:G 0.1720 0.1580 1.0000 0.086 A:G
0.1580 0.1450 1.0000 0.079 T:C 0.0860 0.1720 0.0090 0.095 T:C
0.2890 0.4830 0.0250 0.408 G:A 0.5340 0.4960 0.7984 0.457 A:G
0.4210 0.4940 0.5006 0.447 C:T 0.4140 0.4520 0.6696 0.345 C:T
0.3680 0.4500 0.3944 0.342 T:C 0.3100 0.2620 0.4196 0.155 T:C
0.0530 0.0510 1.0000 0.026 T:C 0.3100 0.4410 0.0441 0.328 T:C
0.0000 0.0000 1.0000 0.000 G:G 0.1030 0.0980 1.0000 0.052 G:A
0.2370 0.2840 0.5477 0.171 T:C 0.1380 0.1580 0.6900 0.086 T:C
0.0530 0.1450 0.0163 0.079 C:T 0.0340 0.0340 1.0000 0.017 C:T
0.2110 0.3880 0.0148 0.263 G:T 0.2760 0.2380 0.6031 0.138 G:T
0.2890 0.4410 0.0659 0.329 C:T 0.2760 0.3660 0.1164 0.241 C:T
0.2110 0.4320 0.0042 0.316 C:T 0.4310 0.4460 0.9645 0.336 C:T
0.3160 0.4940 0.0449 0.447 G:A 0.4660 0.4460 1.0000 0.336 G:A
0.3160 0.4320 0.1701 0.316 T:G 0.5170 0.4950 0.9879 0.448 T:G
0.2630 0.4780 0.0110 0.395 G:T 0.3450 0.3660 0.8517 0.241 G:T
0.1840 0.3470 0.0153 0.224 T:C 0.3970 0.3570 0.7074 0.233 T:C
0.2890 0.4000 0.1672 0.276 C:T 0.5000 0.4880 1.0000 0.422 C:T
0.5000 0.4970 1.0000 0.461 C:T 0.4830 0.4990 0.9542 0.483 C:T
0.0000 0.0510 0.0267 0.026 A:C 0.1900 0.1720 1.0000 0.095 A:C
0.2370 0.2840 0.5477 0.171 C:T 0.3450 0.4280 0.2136 0.310 C:T
0.1580 0.3010 0.0195 0.184 G:A 0.1210 0.1720 0.1338 0.095 G:A
0.3160 0.4990 0.0409 0.474 A:G 0.3790 0.4620 0.2503 0.362 G:A 131



Locus 
Name Position

SNP-57 149999
SNP-58 156169
SNP-59 157474
SNP-60 158754
SNP-61 161219
SNP-62 163249
SNP-63 163580
SNP-64 168754
SNP-65 169823
SNP-66 170413
SNP-67 171391
SNP-68 175929
SNP-69 176828
SNP-70 177699
SNP-71 181329
SNP-72 182702
SNP-73 190516
SNP-74 199162
SNP-75 201654
SNP-76 207680
SNP-77 208958
SNP-78 213445
SNP-79 225208
SNP-80 232805
SNP-81 234371
SNP-82 236165
SNP-83 238448
SNP-84 240933

Obs H Pred H HW pval MAF Alleles Obs H Pred H HW pval MAF Alleles

YDNLGO

0.0000 0.0000 1.0000 0.000 T:T 0.0690 0.0670 1.0000 0.034 T:C
0.0530 0.1000 0.1589 0.053 G:A 0.0340 0.0340 1.0000 0.017 G:A
0.3420 0.3170 1.0000 0.197 G:A 0.1550 0.2250 0.0803 0.129 G:A
0.1840 0.1670 1.0000 0.092 C:T 0.0520 0.0820 0.1716 0.043 C:T
0.2630 0.3880 0.1021 0.263 G:A 0.5000 0.5000 1.0000 0.491 G:A
0.2110 0.4320 0.0042 0.316 A:G 0.4310 0.3750 0.4774 0.250 A:G
0.1580 0.1880 0.6721 0.105 G:A 0.2240 0.2250 1.0000 0.129 G:A
0.2890 0.4410 0.0659 0.329 C:G 0.4140 0.4140 1.0000 0.293 C:G
0.3950 0.4720 0.4503 0.382 G:A 0.2070 0.4280 0.0002 0.310 G:A
0.1050 0.1450 0.3836 0.079 G:A 0.2590 0.2740 0.9252 0.164 G:A
0.3420 0.3750 0.8181 0.250 C:G 0.4660 0.4340 0.8705 0.319 C:G
0.4210 0.3880 1.0000 0.263 G:A 0.2410 0.4000 0.0069 0.276 G:A
0.0530 0.0510 1.0000 0.026 G:T 0.0690 0.0670 1.0000 0.034 G:T
0.3160 0.3320 1.0000 0.211 G:A 0.2590 0.2250 0.7083 0.129 G:A
0.1320 0.1670 0.5222 0.092 C:T 0.2410 0.2380 1.0000 0.138 C:T
0.3680 0.4650 0.3047 0.368 C:A 0.4830 0.4900 1.0000 0.431 C:A
0.0260 0.0260 1.0000 0.013 G:A 0.0000 0.0000 1.0000 0.000 G:G
0.2110 0.3880 0.0148 0.263 G:A 0.5340 0.4990 0.8275 0.474 G:A
0.4740 0.4990 0.9477 0.474 A:G 0.3970 0.3920 1.0000 0.267 A:G
0.0000 0.0000 1.0000 0.000 G:G 0.0340 0.0340 1.0000 0.017 G:A
0.0000 0.0510 0.0267 0.026 A:T 0.1210 0.1130 1.0000 0.060 A:T
0.0000 0.0000 1.0000 0.000 C:C 0.0000 0.0000 1.0000 0.000 C:C
0.0000 0.0000 1.0000 0.000 G:G 0.0000 0.0000 1.0000 0.000 G:G
0.3420 0.4410 0.2664 0.329 A:G 0.3100 0.4620 0.0223 0.362 A:G
0.2110 0.4650 0.0016 0.368 T:C 0.3280 0.4070 0.2172 0.284 T:C
0.3420 0.5000 0.0855 0.487 T:C 0.3620 0.5000 0.0551 0.491 T:C
0.2110 0.3010 0.1674 0.184 C:T 0.3620 0.4570 0.1721 0.353 C:T
0.1320 0.1230 1.0000 0.066 G:C 0.0000 0.0000 1.0000 0.000 G:G 132
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Table 3.2:  Haplotype diversity and statistics of Red Junglefowl in the four sampling sites. 

Site CTN HBA LGO YDN 

Sample 46 56 39 58 

Total haplotypes 92 112 78 116 

Unique haplotypes 92 82 48 91 

Haplotype diversity Hd 100% 98.97% 97.86% 99.39% 

Gene diversity 76 76 71 75 

Average number of difference K 24.5745 23.9067 23.4393 24.1789 

Nucleotide diversity π 0.2926 0.2846 0.2790 0.2878 

Tajima’s D 2.1236 2.1381 2.0641 2.2986 

Segregation site S 76 76 71 75 

Recombination parameter ρ̂  0.0065 0.0020 0.0013 0.0024 

Recombination rate (average) ρ  1.3100 1.3000 1.13000 1.3400 

Expected heterozygosity HE  0.2894 0.2821 0.2753 0.2854 

     
 

Gene diversity is number of polymorphic loci (out of total 84 loci). All Tajima’ D for neutrality tests 

are significant (p < 0.05), indicating balancing selection.  
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Table 3.3: Analysis of Molecular Variance (AMOVA). 

Source of Variation Degree of 
freedom 

Sum of 
Squares 

Variance 
components 

Percentage 
of variation 

Among K populations 3 2.791 0.00417 0.83% 

Among N individuals within K 
populations 195 101.187 0.02370 4.66% 

Within N individuals 199 94.000 0.47236 94.51% 

Total 397 197.977 0.49980 100.00% 

 

N = 199 Red Junglefowl, K = 4 populations.  
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Table 3.4:  Comparison of MHC haplotypes recorded in different studies. 

Red Junglefowl (this study) and in commercial chicken lines (unpubl. data). 

Line type No. 
Samples 

No. 
Haplotypes 

Haplotype 
percentage 

Red Junglefowl 199 310 77.89% 

Broiler-UAB-AMC-1957 71 8 5.63% 

Broiler-UAB-AMC-1978S 64 5 3.91% 

Broiler-UAB-AMC-1978D 78 10 6.41% 

Broiler-UGA-ACRB 100 11 5.50% 

Broiler-UGA-ARB 71 4 2.82% 

Broiler-UAR-RB 54 7 6.48% 

Standard-UAB-BPR 76 4 2.63% 

Standard-UAB-SBPR 80 4 2.50% 

Standard-USK-BPR 96 2 1.04% 

Standard-UAB-SRIR 80 4 2.50% 

Standard-UAB-WL 72 3 2.08% 

Standard-UAB-LS 77 3 1.95% 

Standard-UAB-NH 73 4 2.74% 

Standard-Ill-NH 94 3 1.60% 

Standard-UAB-BL 76 1 0.66% 

Synthetic-Ill-PC 92 3 1.63% 

Synthetic-USK-EPI 97 9 4.64% 
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Figure 3.1:  Sampling sites in South Central Vietnam. 

 

With the putative Annamite landscape barriers.  Sampling sites: Cat Tien National Park and Dong 

Nai Nature Reserve (here after CTN, as the two sites are connected), Hon Ba Nature Reserve (HBA), 

Lo Go Sa Mat National Park (LGO), and Yok Don National Park (YDN). 



 
 

  

Figure 3.2:  Diagram of MHC B-locus in chickens (after Shiina et al. 2007). 
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Figure 3.3:  MHC recombinants in CTN. 

 

(A) Recombination. (B) Linkage Disequilibrium.  Estimate of recombination rates ρ (per base pair) - 

as the factor by which recombination between any two loci exceeds the background recombination 

parameter ρ̂ .  D′ is the pairwise disequilibrium coefficient and LOD score is logarithm (base 10) of 

odds for linkage.  Black ‘triangle’ is haplotype block with high LD.  
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Figure 3.4:  MHC recombinants in HBA. 

 

(A) Recombination. (B) Linkage Disequilibrium.  Estimate of recombination rates ρ (per base pair) - 

as the factor by which recombination between any two loci exceeds the background recombination 

parameter ρ̂ .  D′ is the pairwise disequilibrium coefficient and LOD score is logarithm (base 10) of 

odds for linkage.  Black ‘triangle’ is haplotype block with high LD.  
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Figure 3.5:  MHC recombinants in LGO. 

 

(A) Recombination. (B) Linkage Disequilibrium.  Estimate of recombination rates ρ (per base pair) - 

as the factor by which recombination between any two loci exceeds the background recombination 

parameter ρ̂ .  D′ is the pairwise disequilibrium coefficient and LOD score is logarithm (base 10) of 

odds for linkage.  Black ‘triangle’ is haplotype block with high LD.  
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Figure 3.6:  MHC recombinants in YDN. 

 

(A) Recombination. (B) Linkage Disequilibrium.  Estimate of recombination rates ρ (per base pair) - 

as the factor by which recombination between any two loci exceeds the background recombination 

parameter ρ̂ .  D′ is the pairwise disequilibrium coefficient and LOD score is logarithm (base 10) of 

odds for linkage.  Black ‘triangle’ is haplotype block with high LD.  



142 
 

  

Figure 3.7:  MHC recombination estimated by SequenceLDhat. 
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Figure 3.8:  Haplotype network for four field sites. 
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Figure 3.9:  Haplotype network in CTN. 
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Figure 3.10:  Haplotype network in HBA. 
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Figure 3.11:  Haplotype network in LGO. 
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Figure 3.12:  Haplotype network in YDN. 
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