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abstract

Advancements in the field of machine learning has made deep neural
networks (DNNs) ubiquitous. Their application in the domain of natural
language processing (NLP) with sequence-based models (models which
process sequence of data) has been particularly remarkable and has led
to powerful tools such as ChatGPT. This has been a result of advanced
model architectures (e.g., Transformers), improved training techniques,
as well as the transformative change in the scale of both model and dataset
size. Training such models however can be extremely computationally
expensive; some of the largest sequence-based models today take over
a month to train on ∼4500 GPUs, which are the primary workhorses for
DNNs. Thus, this dissertation attempts to reduce these costs by identifying
and leveraging cross-stack opportunities to maximize the models’ use of
GPU resources.

Identifying such opportunities requires accurate profiling and char-
acterization of these models. However this is challenging due to long
executions times of model training, constantly evolving models, as well
as large resource requirements (for large-scale distributed setups). Thus,
we first devise a mechanism, SeqPoint, to create a short but representa-
tive execution profile from thousands of heterogeneous training iterations
of sequence-based models. Next, we do a detailed characterization of
Transformer models on GPUs. Our characterization focuses on algorith-
mic understanding of the model and their hardware implications, also
including the impact of their ever-evolving behavior. Finally, we devise
mechanisms to efficiently study several Transformer models in different
types of distributed, multi-device setups (the de-facto setup in which they
are trained/deployed today). Our characterization shows that while there
has been considerable improvements done at each layer of the comput-
ing stack to improve these models, lack of information from other layers
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prevents them to reach their maximum potential.
First, gradient descent weight updates of these models are often ex-

tremely memory-bound and can under-utilize modern accelerators. This
is because weight updates require accessing a substantial amount of data,
typically several times the size of the parameters themselves, and entail
very few computations. We leverage this algorithmic understanding to
offload weight updates to near-memory compute units while executing
the remaining operations on the GPU compute units. By significantly
reducing data movement and enabling very high bandwidth access to
data, near-memory compute improves model efficiency and performance.
Second, we find that even with extremely well tuned BLAS libraries, con-
currently executing multiple matrix multiplications (GEMMs) seldom
improves GPU throughput. This is because operator libraries are tuned
offline assuming isolated execution. We devise GOLDYLOC, which selects
GEMM kernels optimized for the global resources available during execu-
tion and minimizes resource contention during concurrent executions. It
further introduces a dynamic logic to control the amount of concurrency
for improved performance. Finally, our multi-GPU characterization re-
veals that often inter-device communication kernels in distributed setups
are serialized with compute kernels, causing sub-optimal performance
scaling and idle network/compute resources. To overcome this, we devise
T3 which hides the communication cost by enabling fine-grained over-
lap of communication with their producer computations. This overlap
is done transparently in hardware, minimizing programmer overheads
and furthermore uses DMA engines and near-memory compute units for
communication to reduce resource contention with the producer compu-
tations.

Overall, by providing detailed characterization of these increasingly
important models and accelerating them via a tighter flow of information
between the application, libraries and hardware, this thesis contributes to
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the synergistic evolution of machine learning and systems which has been
key to the rapid and disruptive advancements in machine learning.
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1 introduction

The field of Machine Learning (ML), particularly deep neural networks
(DNNs), has played a transformative role in society, showcasing sig-
nificant accuracy improvements across diverse tasks including speech
recognition [282, 292], language modeling [41, 62, 226], machine trans-
lation [87, 273], multi-modal understanding [3, 39, 270], image classifi-
cation [64, 88, 133, 149, 257, 267, 268], recommendations [179] and au-
tonomous agents [150]. These improvements are attributed to advance-
ments in model architectures [273], increase in model parameters or size
as well as the scale of the datasets the models are trained on. This be-
came especially true for sequence-based models or models which process
sequence of information such as text, audio, and video. From the adoption
of recurrent networks for language tasks to the emergence of attention-based
Transformer models, alongside training techniques that enabled training
on vast datasets, including the entire internet, these models have demon-
strated applicability across multiple domains (vision, video) [38] and have
paved the way for advancements in artificial general intelligence [238].

Consequently, sequence-based models have become a significant driver
for future hardware requirements. While GPUs have been the primary
computing platform for DNNs due to the strong combination of pro-
grammability, performance, and energy efficiency they offer, they have
also undergone substantial enhancements. To meet the surge in the compu-
tational demand in training and deploying sequence-based models (due
to scaling model size, datasets, and applicability), the prevailing strategy
has been to increase the GPU’s computational capabilities. This is done by
increasing GPU cores (streaming multiprocessors or SMs for NVIDIA and
compute units or CUs for AMD) and memory bandwidth. Furthermore,
specialized hardware enhancements, including TensorCores [188], Matrix
Core Engines [20], and Transformer engines [196] have been introduced.
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These efforts have resulted in GPU FLOPS more than doubling with each
generation [9, 21, 25, 188, 194, 200]. To further meet the computational
demands, powerful nodes featuring multiple GPUs interconnected with
high-bandwidth links have also emerged [26, 199]. This has enabled large-
scale distributed setups of these models. For instance, some of the largest
sequence-based models today train for over a month on approximately
4500 GPUs [263]. Given these increasingly large hardware resources
availed by these models, the fundamental question is: do these models
indeed utilize all these resources well? And if they do not, how can we
improve these systems and make their executions efficient? Thus, this
dissertation answers these questions by identifying inefficient execution phases
and leveraging cross-stack opportunities to improve sequence-based models’ use
of hardware resources while also accelerating them.

In Chapters 3, 4 and 5 of the dissertation, we focus on the profiling
and characterization of contemporary sequence-based models on GPUs
to pinpoint inefficiencies in their execution. Compared to Convolutional
Neural Networks (CNNs) and Multi-layer Perceptrons (MLPs), profiling
sequence-based models’ training executions can be challenging due to their
input sequence length-dependent iterations and large datasets with vary-
ing input sequence lengths. To overcome this, we first devised a sampling
mechanism called SeqPoint (summarized in Section 1.1.1 and detailed in
Chapter 3) to enable quick and accurate profiling and characterization of
recurrent-based models, the state-of-the-art sequence-based model at the
time. We next also do a detailed characterization of Transformer models
on a GPU, which succeeded recurrent networks in several sequence-based
tasks (summarized in Section 1.1.2 and detailed in Chapter 4). Unlike prior
studies, we take into account the several flavors of Transformer models that
were introduced by studying the impact of evolving model parameters as
well as training techniques. Finally, recognizing the exponential scaling
of model size that followed, requiring different types of large-scale dis-
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tributed setups, we also characterize multi-GPU execution of Transformer
models. We overcome the challenges with exhaustively profiling them (in
terms of time, effort and resource availability) by developing algorithmic
and empirical strategies. These helped us evaluate the inter-GPU com-
munication costs in executing very large as well as futuristic Transformer
models (summarized in Section 1.1.3 and detailed in Chapter 5).

Overall, these analyses reveal three primary inefficient primitives preva-
lent in sequence-based models. First, not all model operations are GPU-
amenable. Model executions consist of memory-bound weight update
algorithms that require significant data movement between memory and
GPU compute units (CUs) and leave CUs underutilized. Second, GPU-
amenable matrix-multiply operations or GEMMs can also underutilize
CUs and while sequence-based models have abundant opportunities to
concurrently execute independent GEMMs, they seldom provide expected
benefits. Finally, multi-GPU model executions have extended serialized
inter-GPU communication phases which limit throughput scaling and
result in idle compute resources. Notably, while these inefficient operators
are prominently observed in sequence-based models, they represent fun-
damental primitives, although not always dominant, in most other DNNs
as well. In addition, these studies reveal opportunities to leverage informa-
tion from across the stack (application, libraries, runtime and hardware)
to improve execution efficiencies.

In Chapters 6, 7 and 8 of the dissertation we mitigate the identified
inefficiencies via cross-stack optimizations. First, instead of having en-
tire end-to-end application offloaded to a single accelerator such as a
GPU, we demonstrate the efficacy of using algorithm understanding to
selectively offload memory-bound weight update algorithms to emerging
compute-enhanced memories. This strategy improves efficiency of these
memory-bound phases by leveraging the high-bandwidth access to data
that 3D-stacked memories enable while also reducing data movement
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between GPU compute units and memory (summarized in Section 1.2.1
and detailed in Chapter 6). Second, we address sub-optimal concurrent
General Matrix Multiply (GEMM) executions on GPUs with GOLDYLOC
(summarized in Section 1.2.2 and detailed in Chapter 7). Unlike current
GPU systems, GOLDYLOC extends the GEMM library to include ker-
nel implementations optimized for shared resource environments during
concurrency. It additionally uses runtime information to both select the
appropriate kernel implementation as well as to dynamically control the
amount of concurrency to exploit. Together, these improve overall GPU
resource utilization and throughput. Finally, we tackle the challenge of
serialized communication in T3 (summarized in Section 1.2.3 and detailed
in Chapter 8) by leveraging application understanding about their pre-
ceding (producer) operations and overlapping them with communication
in a fine-grained manner. T3 uses a configurable hardware track and
trigger mechanism to mitigate software complexities of interleaving. It
further leverages near-memory computing and DMA engines to minimize
resource contention arising from the overlap. This enables communication
costs to be largely hidden, and improves the utilization of both compute
units and inter-GPU links. Overall, these optimizations highlight the need
for information flow between different layers of compute abstractions
(application, libraries, runtime, and hardware) to improve GPU resource
utilization. Below we provide a summary of each of the chapters:
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1.1 Analysis of Sequence-based Models on
GPUs

1.1.1 SeqPoint: Identifying Representative Iterations of
Sequence-based Neural Networks

Detailed profiling and characterization of DNN training remains difficult
as these applications often run for hours to days on real hardware. Prior
works have exploited the iterative nature of DNNs to profile a few training
iterations to represent the entire training run. While such a strategy is
sound for networks like CNNs, where the nature of the computation is
largely input independent, we observe in this work that this approach is
sub-optimal for sequence-based neural networks (SQNNs) such as RNNs.
The amount and nature of computations in SQNNs can vary for each input,
resulting in heterogeneity across iterations. Thus, arbitrarily selecting a
few iterations is insufficient to accurately summarize the behavior of the
entire training run.

To tackle this challenge, we carefully study the factors that impact
SQNN training iterations and identify input sequence length as the key
determining factor for variations across iterations. We then use this obser-
vation to characterize all iterations of an SQNN training run (requiring no
profiling or simulation of the application) and select representative itera-
tions, which we term SeqPoints. We analyze two state-of-the-art SQNNs,
DeepSpeech2 and Google’s Neural Machine Translation (GNMT), and
show that SeqPoints can represent their entire training runs accurately,
resulting in geomean errors of only 0.11% and 0.53%, respectively, when
projecting overall runtime and 0.13% and 1.50% when projecting speedups
due to architectural changes. This high accuracy is achieved while reduc-
ing the time needed for profiling by 345× and 214× for the two networks
compared to full training runs. As a result, SeqPoint can enable analysis
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of SQNN training runs in mere minutes instead of hours or days.

1.1.2 Demystifying Transformers: System Design
Implications

Transformer-based networks [273], a successor of RNNs, became the pre-
ferred algorithm for natural language processing. These networks, along
with transfer learning, gave rise to models like the Bi-directional Encoder
Representation from Transformer (BERT) [62], which marked a shift to-
wards deeper knowledge transfer by applying massive pre-trained models
to different tasks. Understanding Transformer models’ underlying behav-
iors is vital to designing efficient accelerators for them. Thus, we study the
computationally and time-intensive training phase of Transformer models
and identify how its algorithmic behavior can guide future accelerator
design. We focus on BERT and identify key operations which are worthy
of attention in accelerator design. In particular, we focus on the manifes-
tation, size, and arithmetic behavior of these operations which remain
constant irrespective of hardware choice. To capture future Transformer
trends, we also show and discuss implications of these behaviors as net-
works and inputs get larger. Moreover, we study the impact of key training
techniques like distributed training, checkpointing, and mixed-precision
training. The key takeaways from this analysis are:

• Optimizer updates are very memory intensive. Their runtime scales
linearly with transformer layer count and quadratically with layer
size and thus are important to optimize for.

• GEMMs dominate Transformer runtime but have heterogeneity.
Some GEMMs are smaller and thus may not fully utilize accelerators
and may also be memory-bound. GEMM proportion also increases
with layer size.
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• Non-GEMMs (add, multiply, scale, reduce) are memory-bound
and a considerable proportion of runtime. Their proportion drops
with increasing layer size as they scale only linearly with it (unlike
GEMMs and updates, which are quadratic).

• Reducing precision makes optimizing memory-intensive operations
crucial. At lower precision, GEMMs speed up more than non-GEMMs
due to faster arithmetic and reduced memory traffic. Furthermore,
updates use higher (FP32) precision data to maintain accuracy and
remain unaffected.

• Tensor Slicing is bottlenecked by communication as the latter is
serialized with computations. Its cost increases with device count.

1.1.3 Computation vs. Communication Scaling for Future
Transformers on Future Hardware

Scaling of neural network models has increased the reliance on efficient dis-
tributed training techniques. Accordingly, like other distributed comput-
ing scenarios, it is important to understand how compute and communication
will scale relative to one another as models scale and hardware evolves? A careful
study which answers this question can better guide the design of future
systems which can efficiently train future large models. Accordingly, we
comprehensively analyze compute vs. communication (Comp-vs.-Comm)
scaling for future Transformer models on future hardware, across multiple
axes (algorithmic, empirical, hardware evolution).

We first perform an algorithmic analysis of compute and communica-
tion operations in Transformer models. Our algorithmic analysis shows
that the complexity of compute operations is often higher than communi-
cation volume (data size). We call this compute’s edge over communication.
A compute-dominated execution profile is often a positive edge because
compute (FLOPS) scaling has received considerably more attention than
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communication (bandwidth) scaling, and often optimizations are em-
ployed to overlap communication with useful compute. Thus, compute’s
edge also helps hide communication costs. However, model scaling and
memory capacity trends are stressing this edge.

We quantify this edge by empirically studying how Comp-vs.-Comm
scales for future models on future hardware. This approach has several
challenges, including requiring studying many model/hardware evolution
scenarios. Our empirical strategy addresses these challenges by (a) de-
signing controlled experiments (guided by our algorithmic analysis), (b)
executing only certain regions-of-interest (ROIs), and (c) using operator-
level models which we show accurately (<15% error) project operator
runtime trends for varying hyperparameters. These enable us to study
hundreds of future models/hardware scenarios at 2100× lower profiling
costs. Our experiments show that communication will be a significant
portion (40-75%) of runtime as models and hardware evolve. Moreover,
communication that is often hidden by overlapped computation in today’s
models cannot be hidden in future, larger models. Overall, this work high-
lights communication’s increasingly large role as models scale, discusses
promising techniques to potentially tackle communication, and discusses
how our analysis influences their potential improvements.

1.2 Improving Sequence-based Models’
Efficiency on GPUs

1.2.1 Processing Optimizer Updates in Memory

Our characterization reveals how memory-bound gradient descent up-
dates of billions of Transformer parameters can under-utilize modern ac-
celerators like GPU. To overcome this, we offload updates to near-memory com-
pute units [215] while still executing the compute-bound GEMMs on the
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GPUs. Mapping a sequence of operations to memory requires few expen-
sive synchronizations with GPU compute units, and provides increased
data access bandwidth along with concurrency of multiple DRAM banks.
Thus, it accelerates weight updates, by 3.8× for a popular Transformer,
BERT. Finally, it considerably reduces (∼13×) expensive data movement
from DRAM to GPU compute units.

1.2.2 GOLDYLOC: Global Optimizations and
Light-weight Dynamic Logic for Concurrency

Concurrently executing multiple operations can help improve the device’s
compute utilization, especially with small and low-utilizing computations
observed in our characterization of sequence-based networks. However,
effectively harnessing it on GPUs for important primitives such as general
matrix multiplications (GEMMs) remains challenging. GPU libraries ex-
haustively optimize kernel implementations for performance/efficiency of
key operators like GEMMs. However, this tuning assumes the availability
of all GPU resources, assuming each kernel executes in isolation and can
utilize all GPU resources. This approach is highly efficient when kernels
execute in isolation, but causes slowdowns when executed concurrently
with other operators due to resource sharing and contention. Moreover,
concurrency can only be statically exposed and controlled from within
an application. This does not take into consideration the dynamic execu-
tion environment (e.g., varying input size, multiple applications) – often
exacerbating contention. These issues limit performance benefits from
concurrently executing independent operations.

Accordingly, we propose GOLDYLOC. GOLDYLOC augments kernel
tuning to identify efficient kernels for both isolation and global resource
environments resulting from varying degrees of concurrent execution. To
find the latter GOLDYLOC tunes kernels offline with resource constraints
which emulates various shared resource environments. Similar to the
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baseline where kernels have unique properties per GEMM input, tuning
for concurrency also makes unique trade-offs per input to efficiently share
resources. Moreover, we also augment the GPU’s command processor
(CP) to dynamically control concurrency using a predictor (trained of-
fline) which selects the type and degree of concurrent GEMMs to execute
given the available independent GEMMs and their inputs. This includes
detecting when sequential execution is preferred. Overall, GOLDYLOC
improves performance of concurrent GEMMs on real hardware by up to
2.5× (43% geomean per workload) over sequential execution and up to
2× (18% geomean per workload) over statically controlled and isolated
tuned concurrent executions on GPUs.

1.2.3 T3: Transparent Tracking & Triggering for
Fine-grained Overlap of Compute & Collectives

Extended phases of inter-device communication can reduce the scaling
efficiency of DNNs in large distributed setups. While some distributed
techniques can overlap, and thus, hide this communication with indepen-
dent computations, techniques such as Tensor Parallelism (TP) inherently
serialize communication with model execution. One approach to hide
this serialized communication is to interleave it with the producer of the
communicated data (usually a GEMM) in a fine-grained manner. However,
enabling this fine-grained overlap in current systems either requires ex-
pensive fine-grained synchronization [107] or changes to GEMM kernels
which can be disruptive to GPU software infrastructure [278]. Further-
more, overlapped compute and communication contend for both compute
units and memory bandwidth, reducing overlap’s efficacy [107, 278].

To overcome these challenges, we propose T3 which applies hardware-
software co-design to transparently overlap serialized communication
while minimizing resource contention with compute. T3 transparently
fuses producer operations with the subsequent communication via a sim-
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ple configuration of the producer’s output address space to initiate com-
munication directly on the producer’s store, requiring minimal applica-
tion changes. At the hardware level, T3 uses uses a light-weight and
programmable hardware tracker to track the producer/communication
progress and trigger communication using pre-programmed DMA com-
mands, requiring no additional GPU compute resources. It further uses
compute-enhanced memories [125, 145] to atomically update memory loca-
tions on stores thus freeing GPU compute units and reducing memory
traffic from communication’s attendant compute. As a result, T3 reduces
resource contention, and efficiently overlaps serialized communication
with computation. For important Transformer models like T-NLG, T3
speeds up communication-heavy sublayers by 30% geomean (max 47%)
and reduces data movement by 22% geomean (max 36%). Furthermore,
T3’s benefits persist as models scale: geomean 29% for sublayers in ∼500-
billion parameter models, PALM and MT-NLG.

1.3 Contributions
The main contributions of this dissertation are:

• Fast & Accurate Profiling: we devise a systematic mechanism to
profile sequence-based models which otherwise took several days to
run on native hardware. By identifying few representative training
iterations to profile, SeqPoint made fast and accurate characterization
of these models possible.

• Identified Inefficiencies in Transformer Executions on GPUs: We
provide a detailed characterization of the, then emerging, Trans-
former networks to identify and expose inefficiencies in their execu-
tion on state-of-the-art GPUs. This also includes impact of varying
hyperparameters and training techniques to incorporate the ever-
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evolving field of ML. The observations from this study inspired
several other pieces of the dissertation.

• Operator-level Details for Accurate Evaluations: Our study of
Transformers also provides details on the manifestation and size
of all its constituent operators, which were instrumental in our eval-
uations of subsequent proposals. As an example, it helped us derive
the size of matrix-multiplication operations (GEMMs) which were
used to evaluate both GOLDYLOC and T3. Absence of such a study
can cause works to build accelerators with matrix-vector engines for
models which actually perform matrix-matrix operations [89].

• Algorithmic Communication Costs: We devise a mechanism to
algorithmically project the relative importance of computation and
communication in large-scale distributed setups. This provides a
system-agnostic analysis of communication costs, as well as helps
understand how model evolution influences them.

• Project Communication Costs in Large Distributed Setups: We
devise a strategy for a practical empirical analysis of several Trans-
former models on large-scale distributed setups and demonstrate
how inter-device communication will play an increasingly large role
as models scale.

• Appropriate operator-accelerator mapping: We showcase the po-
tential of offloading memory-bound weight update algorithm to
near-memory compute units while still executing compute-bound
GEMM on GPUs.

• Efficient Concurrent GEMM Execution on GPUs: We show how
important primitives like GEMMs, that GPUs heavily optimize for,
can underutilize resources even when run concurrently on a single
GPU. The key reason for these inefficiencies is the indifference of GPU
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GEMM libraries toward the execution environment as well as and
inability for GPU runtimes to control the amount of concurrency. We
develop GOLDYLOC which provides kernel implementations that
are aware of global resources in shared environments. It also allows
GPU scheduler to control the number of concurrent kernels based
on dynamic information about the size and count of independent
operations. This tighter flow of information between the hardware,
runtime and libraries improves overall throughput and efficiency.

• Efficient Fine-grained Overlap of Communication with Compute:
We show how serialized communication in distributed DNN setups
can leave GPUs idle for an elongated period of time, causing poor
application throughput scaling and wasted cycles in datacenters. We
propose T3 which efficiently fuses and overlaps computations with
communication in a fine-grained manner. Furthermore, it does so
without disrupting complex software infrastructure, a key challenge
in prior works. Thus by leveraging the producer-consumer relation-
ship in the algorithm, we improve overall efficiency of a distributed
setup.

• Support for DNNs in GPU Architecture Simulators: We also ex-
tended and released support for the widely-used, popular GPU
simulator, GPGPU-Sim [36], to run DNNs [147].

1.4 Outline
The dissertation is organized as follows: in Chapter 2, we provide all the
required background for this dissertation. Chapters 3, 4, and 5 detail
our work on the profiling mechanism, characterization of NLP models,
and analysis of communication in distributed multi-GPU setups. The key
takeaways from this characterization motivate our proposals in the next
three chapters. Chapter 6 discusses accelerating memory-bound weight
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updates using near-memory computing. Chapter 7 provides details of
our work on efficient concurrent execution of GEMMs (GOLDYLOC).
Chapter 8 demonstrates our work on fine-grained interleaving of compute
and communication using T3 for distributed ML. Finally, Chapter 9 sum-
marizes the document, and provides reflections and future work based on
this dissertation.
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2 background

This chapter covers the background for the entire thesis. Relevant back-
ground for each chapter is specified below:

• SeqPoint: DNN Training (Section 2.1.1), Batching & Minibatches
(Section 2.1.3), RNNs: Recurrence-based Networks (Section 2.2.1).

• Characterizing Transformers: Transfer Learning: Pre-training &
Fine-tuning (Section 2.1.2), Transformers (Section 2.2.2), Distributed
Computing for DNNs (Section 2.3), Gradient Descent Optimizers
(Section 2.4.2).

• Computation vs. Communication Analysis: Transformers (Sec-
tion 2.2.2), Distributed Computing for DNNs (Section 2.3), Collec-
tive Communication (Section 2.4.3)

• Near-memory Optimizer Updates: Gradient Descent Optimizers
(Section 2.4.2), DRAM (Section 2.5)

• GOLDYLOC: RNNs: Recurrence-based Networks (Section 2.2.1),
Transformers (Section 2.2.2), GEMMs: GEneral Matrix Multiplica-
tions (Section 2.4.1)

• T3: Transformers (Section 2.2.2), Distributed Computing for DNNs
(Section 2.3), Collective Communication (Section 2.4.3)

2.1 Deep Neural Networks (DNN)

2.1.1 DNN Training

Most DNNs have large numbers of tunable parameters (or weights) that
are learned using large amounts of data during a training phase. Once
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trained, the network can be deployed to operate on new inputs, which is
referred to as inference. During training, an input (e.g., an image) is fed into
the network and is propagated forward through a collection of layers that
form the network until an output is generated. Each layer takes the output
of the previous layer, computes on it and feeds its result or activation to
the next layer. At the end of this forward propagation, the generated output
is compared to the known correct output to compute an error. The error
generated in the forward pass is propagated backwards through the layers
of the network during a backward propagation of the network. During this
back propagation, each layer generates the input gradient (or error) to
propagate to the previous layer, as well as a weight gradient that is used to
update the tunable parameters of the layer (to minimize the error).

2.1.2 Transfer Learning: Pre-training & Fine-tuning
In transfer learning, a model trained for a particular task is reused for dif-
ferent tasks. Transfer learning has been widely adopted in the language
domain. Language models have a long pre-training phase where the model
learns the language using large unlabeled datasets (e.g., Wikipedia), in-
dependent of any target task. Once pre-trained, they are fine-tuned during
which they are trained on a labeled dataset for a specific task with minimal
model changes. As an example, a single pre-trained model can be tuned
independently for 11 different tasks [62].

2.1.3 Batching & Minibatches

To improve hardware utilization (particularly on parallel platforms such
as GPUs) and to improve the stability of convergence, the training phase
is often performed in groups of inputs known as minibatches or, simply,
batches. Figure 2.1(top) illustrates an example of forming batches of size
four for a text-based training set. The number of inputs in a batch is
referred to as the batch size. In batch-based training, all inputs of a batch
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Figure 2.1: Training phase of sequence-based models.

perform the forward traversal using the same set of weights, and then
the backward pass is performed for all inputs of the batch, computing
the corresponding errors and updating the weights. The forward and
backward traversal of the input through the network is referred to as an
iteration. A set of iterations making up a single pass through the entire
dataset is referred to as an epoch, as illustrated by Figure 2.1(bottom).
Training of a network typically consists of multiple epochs (i.e., multiple
passes over the entire training set) until a convergence criterion is met.

2.2 Sequence-based Networks
Sequence-based networks are a class of DNNs which, unlike other DNNs
(e.g., CNNs), process a sequence of information (e.g., a sentence) to learn
the tokens (e.g., words) and relationship between them (e.g., context of a
sentence). This makes them a good fit for natural language tasks including
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language modeling [62], speech recognition [90], and translation [273].
There are two main types of sequence-based networks, recurrent and
Transformer networks that we detail in Sections 2.2.1 and 2.2.2, respec-
tively.

2.2.1 RNNs: Recurrence-based Networks

Recurrent neural networks (RNNs) are a class of sequence-based networks
which process sequences. As shown in Figure 2.2, a given layer in an RNN
processes each input token (e.g., word in a sentence) or it a time. Similar
to other DNNs, it propagates the output to the next layer. However, unlike
other DNNs, it also produces a hidden state ht−1 which is updated each
time a token is processed as shown by the equation below:

ht = f (W it + U ht−1 + b )
where W is the input-hidden weight matrix and U is the recurrent weight
matrix and b is a bias term. Each RNN layer thus loops through all tokens
in the input sequence, updating the hidden state which allow them to
capture and remember information (e.g., context of a sentence) across
multiple tokens. This however introduces sequential dependency between
token processing within a layer. The number of tokens (or times-steps)
represents the sequence length (SL) of the input to the RNN. Finally, RNNs
can be of different types depending on the layer type. Vanilla, Long Short
Term Memory (LSTM) [94], and Gated Recurrent Unit (GRU) [52] are
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three widely-used types of RNNs, which differ in how they process input
and hidden states as well as the parameters they store. The iterative
processing of one token at a time makes them well suited to real-time
sequence processing tasks such as speech recognition.

RNN’s input and hidden state processing manifest as matrix multipli-
cations (GEMMs). While hidden state processing across tokens within a
layer have dependencies and are processed independently, input process-
ing of tokens may be combined into a single or few GEMMs [31].

2.2.2 Transformers

Transformers [273] are another class of sequence-based models which have
increasingly replaced RNNs to become the general-purpose architecture
for a wide range of tasks and domains. Recent work has shown that
many different modalities are using Transformers as their base model
(e.g., 41% of text, 22% of image) [38]. The basic building block of these
Transformers is an encoder or decoder layer which is repeated multiple
times (Figure 2.3(a)). They also have an input embedding layer that
provides the first layer with an input representation/vector of token as
well as an output classification layer. As shown in Figure 2.3(b), each
encoder/decoder block contains an attention layer and a fully connected
(FC) layer, both of which are followed by a residual connection and layer
normalization. The encoder and decoder blocks are similar, except the
decoder’s attention GEMM input is masked to consider only past tokens,
which causes different computational inference behavior but does not
affect training.

The evolution of Transformer models has largely focused on changing
Transformer block type (encoder vs. decoder, or both), increasing the
number of Transformer blocks, and/or increasing layer widths. This is
true for all Transformer models; starting with the model BERT [62] (with
0.3 billion parameters), to its most recent successor, MT-NLG (with 540
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Figure 2.3: BERT hierarchical model breakdown.

billion parameters), and many others in between [41, 58, 138, 154, 226,
256, 266, 284]. Thus, while Transformer models have become larger with
different hyperparameters, their fundamental computational components
are largely the same. Therefore, throughout this dissertation, we use BERT
as our baseline model and change its hyperparameters to study/evaluate
larger Transformer models.

2.2.2.1 Attention
Attention (Figure 2.3(c, d)) is an essential component of Transformer-based
models (e.g., BERT) described in Section 2.2.2. Given an input sequence,
attention networks output a representation of the sequence such that each
output token of the sequence is encoded with weighted information from
all (or a subset, for masked attention used by decoder layers) other tokens
in the sequence. This all-to-all encoding of information enables attention
to process all tokens independently (unlike sequential RNNs), but also
quadratically increases computations with increasing length of the input
sequence.

2.2.2.2 Transformers Layer Manifestations

The attention sub-layer and fully connected (FC) sub-layer (as shown in
Figure 2.4(a)) manifest as matrix multiplication operations (GEMMs).
The residual connections and layer normalizations which manifest as
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element-wise operations and are often fused [66, 72, 264, 275] with the
GEMMs. As shown in Figure 2.4(b), these GEMMs entail multiplication of
layers’ weight matrices by an input matrix (with each vector representing
an input token). During training, the input matrices contain multiple
tokens from one or more (if batched) input sequence(s). During inference,
there are two execution phases: a prompt phase to process all tokens in the
input sequence(s) and a token generation phase to iteratively process and
generate one token at a time for each input sequence [211]. The prompt
phase operations are similar to those in training, while the generation
phase has GEMMs with small input matrices or matrix-vector operations
(GEMVs) if there is no batching.

2.2.2.3 Transformer Hyperparamters

Transformer models are defined by several hyperparameters that we use
throughout the dissertation. Layer count denotes the number of Trans-
former encoder/decoder layers in the model. The hidden dimension of an
attention sub-layer is the layer width and is usually same as the embedding
size which is the size of each input token/vector. Intermediate dimension
is the layer width of the feed-forward, fully-connected sub-layer, and is
usually 4× the hidden dimension. Finally, the inputs to a model are dic-
tated by the batch-size as well as the length of the inputs, sequence length
(described in Section 2.2.1).

2.3 Distributed Computing for DNNs
Most Transformer models’ memory capacity requirements exceed a sin-
gle device. Thus, they employ distributed techniques and use multiple
accelerators (e.g., GPUs) collaboratively. Furthermore, the aggregate
computational capacity of multiple devices also accelerates training by
enabling the processing of large input datasets in parallel. Thus, since
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Transformers and their datasets (usually large corpora of unlabeled text)
have increased by several orders of magnitude in size, distributed tech-
niques are often mandatory and increasingly require many devices. This
scaling will only increase for future models.

2.3.1 Distributed Techniques & Associated
Communication

DNNs, and specifically, Transformers employ many distributed techniques,
each with associated communication between devices. Data parallelism (DP)
trains model replicas on multiple devices, each on a disjoint set of the
dataset, and requires communication and reduction of layer gradients
across all devices every iteration. Tensor parallelism (TP) [256] and pipeline
parallelism (e.g., GPipe) [99] are two types of model parallelism which slice
a single model across multiple devices. While the former slices each layer
requiring activations to be communicated and reduced across devices,
the latter partitions the model layer-wise requiring peer-to-peer transfer
of activations. ZeRO-based optimizations [230] also slice model weights
across devices or offload them to slower but larger (e.g., CPU) memo-
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ries, and require the corresponding weights to be gathered before layer
executions. Finally expert parallelism [128] partitions mixture-of-expert
(MoE) models [69, 228] such that each device hosts a single expert and
requires exchange of input data based on input-to-expert mapping. In
this dissertation, we focus on DP and TP, two of the most effective and
widely adopted distributed techniques described in detail in Sections 2.3.2
and 2.3.3.

2.3.2 Data Parallelism

The most common and straightforward distributed ML technique is data
parallelism, in which the model is replicated on multipled (D) devices,
with the input dataset partitioned amongst them. Each device iterates
over its own dataset (using a mini-batch of b) and trains its model while
synchronizing with all the other devices every iteration.1 During synchro-
nization, local gradients from all devices are averaged and re-distributed
using an all-reduce collective and each model updates its parameters us-
ing these accumulated gradients. This enables large mini-batch (D ∗ b)
training, otherwise not feasible with a single device’s memory capacity.

2.3.3 Tensor Parallelism

Tensor Parallelism (TP) [256] effectively increases the memory capacity
available to a model by splitting the model across M devices (illustrated in
Figure 2.4(b) & (c)). It splits a model layer (or tensor) across devices such
that each device holds and thus operates on a subset of layer parameters.
This slicing causes each device to generate only a partial layer activation
(and error) during training’s forward (and backward) passes, which
require an all-reduce to generate the final layer output (Figure 2.4(c)).

1This does not hold for asynchronous training, which converts fine-grained synchro-
nization into data accesses but may increase convergence time [60].
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Furthermore, a layer’s forward and backward executions are dependent
on another layer’s all-reduce of activations and errors.

2.4 Important DNN Operations
This section describes some of the important DNN primitives that domi-
nate model execution as we show in Chapters 4 and 5.

2.4.1 GEMMs: GEneral Matrix Multiplications

2.4.1.1 GEMM’s dominance

A prominent computation that GPUs accelerate are highly parallelizable
GEMM operations. Most of a DNN’s execution manifest as GEMMs [89,
216, 225]. While networks also manifest other operations, including element-
wise adds and multiplies, activation functions, and layer normalization [33],
they are often fused with preceding operations (commonly with GEMMs)
using kernel fusion [66, 72, 264, 275] and tensor contractions [1, 126, 127,
180, 255] to avoid redundant memory traffic and reduce kernel launch
overheads. Figure 2.5(a) shows a common DNN setup: DNNs have a
series of layers, each of which executes as a GEMM between the input and
the layer’s weight matrix.

2.4.1.2 GEMM Operation

As shown in Figure 2.5(b), a GEMM multiplies two input tensors A and
B of size MxK and NxK, respectively, to generate an output tensor C of
size MxN. This involves 2 ∗M ∗N ∗ K floating point multiplies and adds.
The values of M, N and K are usually dictated by model hyperparameters
such as layer width, batch-size, and/or input length (sequence length).
Additionally, the input tensors may be used transposed or non-transposed
or both (e.g., transposed in forward propagation but non-transposed in
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Figure 2.5: (a) Toy DNN GEMM computation. (b) High-level GEMM
implementation on a GPU.

backprop). We represent the transpose of A and B input tensors by T1, T2
(e.g., 1,0 implies only one of them is transposed).

2.4.1.3 GEMM GPU Implementation

In GPU GEMM implementations C is often blocked/tiled (Tile in Fig-
ure 2.5(b)) with each work group (WG) usually responsible for a single
tile (loop 1). Each thread in the WG multiplies and accumulates a row(s)
with its respective column(s) within the innermost loop (loop 2). These
threads often leverage fast on-chip shared memory or local data share
(LDS) to store row/column data. Several optimizations are usually ap-
plied, including executing a subset of WGs at a time (which impacts cache
reuse), prefetching data from memory to the LDS, and coalescing. Un-
like other operations, applying these optimizations make GPU GEMM
implementations quite complex, with hundreds of tunable features per
size/transpose combination. Thus, to improve performance, vendors rigor-
ously tune implementations for GEMMs of different sizes, corresponding
to different layer types or parameters [23].
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2.4.1.4 Important DNNs with GEMMs

GEMMs are prominent in both RNNs and Transformers but differ in size
and therefore, properties. RNNs process one token of the input sequence
at a time [52, 94, 248]. The token processing manifest as one or more
GEMM(s) and the sequential nature of the algorithm makes the GEMM’s
input tensor (in Figure 2.5) small, with one of the dimensions equal to the
input batch size. Transformers use attention layers [34, 273] to represent
a token as the weighted sum of all the input’s other input tokens. Thus,
Transformers layers process all tokens of an input sequence in parallel
as a single operation that manifests as a GEMM. However, each input in
a batch must be processed independently, as a separate GEMM, in the
attention layer.
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DNN Model /
OP Type Intra-model Backprop Checkpointing Multi-instance

Transformers ✓ 1 , 2 ✓ 6 ✓ 7 ✓ 8
RNNs ✓ 3 , 4 , 5 ✓ 6 ✓ 7 ✓ 8
CNNs X ✓ 6 ✓ 7 ✓ 8

Recommendation X ✓ 6 ✓ 7 ✓ 8
Other DNNs Varies ✓ 6 ✓ 7 ✓ 8

Table 2.1: Concurrency opportunities in DNNs; the circled numbers refer
to Figure 2.6.

2.4.1.5 Opportunities for GEMM concurrency in DNNs

As shown in Figure 2.6 and Table 2.1, DNNs possess considerable operation
parallelism from their model architecture: independent query/key/value
generation in the linear layers, and independent (batched) attention com-
putations for unique sequence length (SL) inputs in Transformers ( 1 and
2 in Figure 2.6), respectively. Similarly, independent input processing in

the time dimension and hidden state processing across layers in RNNs
introduce operation parallelism ( 3 , 4 , 5 ). Training algorithms also
have additional parallelism opportunities that apply to all DNNs (e.g.,
CNNs, Recommendation) as highlighted in Table 2.1. These include inde-
pendent weight and input gradient calculations during back-propagation
( 6 ) and activation recomputing due to checkpointing ( 7 ). Finally, while
not applicable during training (due to large memory capacity require-
ments), multiple DNN inference instances ( 8 ) are deployed on the same
GPU in production environments which provides additional concurrency
opportunities [53, 54, 75, 115, 121, 189, 193, 271, 285].

2.4.2 Gradient Descent Optimizers
Gradient descent is the most common algorithm used to train neural net-
works. It minimizes an objective function (usually the loss) parameterized
by the model’s parameters. Models today use various algorithms to further
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Figure 2.7: LAMB Optimizer Algorithm.

optimize gradient descent to converge faster. These optimizers help derive
appropriate learning rates for different model parameters and for different
training stages, but at the cost of additional optimizer parameters.

While DNNs are compatible with many different optimizers, they have
recently used complex optimizers such as ADAM [129] and LAMB [287],
which have proven effective for very large effective batch-sizes. Figure 2.7
details the LAMB algorithm, which updates the model parameters at the
end of the model’s forward and backward gradient calculations, once
every (few) iteration(s). It is executed in two stages; in the first stage
(LAMBStage1), it determines the update values (u) and learning rate
multiplier using additional momentum (m) and velocity (v) parameters
from the past iterations and gradients (g) of the current iteration. In the
second stage (LAMBStage2), it updates the model weights (w) using
these update and learning rate values. This pair of two stages are exe-
cuted independently for every layer in the model, with each set accessing
independent data (weights, gradients and optimizer parameters of the
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TABLE I: Different parallelism approach communications

Parallelism Activations during
the forward pass

Weight
gradients

Input
gradients

Data
Model
Hybrid partially partially partially

[28]1. Each NAM consists of a massively parallel compute
engine; henceforth called Neural Processing Unit (NPU); high-
bandwidth memory (e.g. HBM), and a Neural Messaging Unit
(NMU). NMUs play the role of a traditional Network Interface
Card (NIC) but simpler and purpose-built for accelerator
fabrics. The hierarchical scale-up fabric comprises of very high
bandwidth intra-package NAM links for module-to-module
communication within package (⇠500GB/s [28]) and longer
distance inter-package NAP links (⇠25 GB/s per link [6]) for
enabling communication spanning multiple chassis or racks.
Figure 3 shows example scale-up topologies.

As shown in Figure 1, distributed DNN training involves a
complex inter-dependent SW/HW design-space. To best of our
knowledge this is the first effort to systematically explore this
vast design space for end-to-end-training for future accelerator
system designs.

A. Parallelization Strategies

The common parallelization techniques for partitioning work
across multiple nodes, are data parallelism (replicating the
entire model, model parallelism (splitting the model), pipelined
parallelism, or some combination of these. In data-parallel,
each node is assigned a subset of samples and during each
iteration, works on its minibatch (chosen from its own dataset)
to produce the local gradients. In model parallel, the nodes
have the same data-sets and work on the same minibatch,
but since the model is divided, each model is responsible
for a portion of model gradients. In, hybrid-parallel, nodes
are divided into different groups and the training within the
group is data-parallel/model-parallel while between groups is
model-parallel/data-parallel.

The different parallelism approaches have different indi-
cations in terms of communication patterns between the
nodes. Table I shows when data should be exchanged for
different parallelism approaches. In data-parallel approach,
weight gradients should be exchanged among all nodes since
each node calculates the gradients over a subset of the inputs
and hence, the gradients of all nodes should be accumulated to
generate the updated weights for the next step. In model-parallel
scheme, each node produces a part of the output activations and
input gradients during the forward pass and back-propagation,
respectively. Hence these values must be communicated across
all nodes. The hybrid parallel is in between the data-parallel
and model-parallel and its communication behavior is in
the middle as well. Consequently, the nodes within a data-
parallel/model-parallel group in the hybrid-parallel have the

1Our classification is not limited to accelerators and can be extended to
CPUs as well - a CPU socket is a NAM and a multi-socket system is a NAP.
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same communication pattern as the data-parallel/model-parallel
schemes.

B. Collective Communication Mechanisms

As Table I indicates, different communications are initiated at
different phases for different parallelism approaches. However,
all of these communications are handled by using some set
of collective communication operations described in Figure
4. Collective communications refer to a set of operations in
which multiple nodes participate in data exchange to perform
a certain operation over the data. In general, four different
collective communication algorithms are the main contributor
in DNN training communication: (i) reduce-scatter, (ii) all-
gather, (iii) all-reduce, and (iv) all-to-all. Figure 4 shows the
initial state and the final state for an example of four nodes
participating in the collective communication. Among these
operations, all-reduce has the most frequent usage and can
be done using a reduce-scatter followed by an all-gather. The

TABLE I: Different parallelism approach communications
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gradients

Input
gradients

Data
Model
Hybrid partially partially partially
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(NMU). NMUs play the role of a traditional Network Interface
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fabrics. The hierarchical scale-up fabric comprises of very high
bandwidth intra-package NAM links for module-to-module
communication within package (⇠500GB/s [28]) and longer
distance inter-package NAP links (⇠25 GB/s per link [6]) for
enabling communication spanning multiple chassis or racks.
Figure 3 shows example scale-up topologies.

As shown in Figure 1, distributed DNN training involves a
complex inter-dependent SW/HW design-space. To best of our
knowledge this is the first effort to systematically explore this
vast design space for end-to-end-training for future accelerator
system designs.

A. Parallelization Strategies

The common parallelization techniques for partitioning work
across multiple nodes, are data parallelism (replicating the
entire model, model parallelism (splitting the model), pipelined
parallelism, or some combination of these. In data-parallel,
each node is assigned a subset of samples and during each
iteration, works on its minibatch (chosen from its own dataset)
to produce the local gradients. In model parallel, the nodes
have the same data-sets and work on the same minibatch,
but since the model is divided, each model is responsible
for a portion of model gradients. In, hybrid-parallel, nodes
are divided into different groups and the training within the
group is data-parallel/model-parallel while between groups is
model-parallel/data-parallel.

The different parallelism approaches have different indi-
cations in terms of communication patterns between the
nodes. Table I shows when data should be exchanged for
different parallelism approaches. In data-parallel approach,
weight gradients should be exchanged among all nodes since
each node calculates the gradients over a subset of the inputs
and hence, the gradients of all nodes should be accumulated to
generate the updated weights for the next step. In model-parallel
scheme, each node produces a part of the output activations and
input gradients during the forward pass and back-propagation,
respectively. Hence these values must be communicated across
all nodes. The hybrid parallel is in between the data-parallel
and model-parallel and its communication behavior is in
the middle as well. Consequently, the nodes within a data-
parallel/model-parallel group in the hybrid-parallel have the
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same communication pattern as the data-parallel/model-parallel
schemes.

B. Collective Communication Mechanisms

As Table I indicates, different communications are initiated at
different phases for different parallelism approaches. However,
all of these communications are handled by using some set
of collective communication operations described in Figure
4. Collective communications refer to a set of operations in
which multiple nodes participate in data exchange to perform
a certain operation over the data. In general, four different
collective communication algorithms are the main contributor
in DNN training communication: (i) reduce-scatter, (ii) all-
gather, (iii) all-reduce, and (iv) all-to-all. Figure 4 shows the
initial state and the final state for an example of four nodes
participating in the collective communication. Among these
operations, all-reduce has the most frequent usage and can
be done using a reduce-scatter followed by an all-gather. The

TABLE I: Different parallelism approach communications

Parallelism Activations during
the forward pass

Weight
gradients

Input
gradients

Data
Model
Hybrid partially partially partially

[28]1. Each NAM consists of a massively parallel compute
engine; henceforth called Neural Processing Unit (NPU); high-
bandwidth memory (e.g. HBM), and a Neural Messaging Unit
(NMU). NMUs play the role of a traditional Network Interface
Card (NIC) but simpler and purpose-built for accelerator
fabrics. The hierarchical scale-up fabric comprises of very high
bandwidth intra-package NAM links for module-to-module
communication within package (⇠500GB/s [28]) and longer
distance inter-package NAP links (⇠25 GB/s per link [6]) for
enabling communication spanning multiple chassis or racks.
Figure 3 shows example scale-up topologies.

As shown in Figure 1, distributed DNN training involves a
complex inter-dependent SW/HW design-space. To best of our
knowledge this is the first effort to systematically explore this
vast design space for end-to-end-training for future accelerator
system designs.

A. Parallelization Strategies

The common parallelization techniques for partitioning work
across multiple nodes, are data parallelism (replicating the
entire model, model parallelism (splitting the model), pipelined
parallelism, or some combination of these. In data-parallel,
each node is assigned a subset of samples and during each
iteration, works on its minibatch (chosen from its own dataset)
to produce the local gradients. In model parallel, the nodes
have the same data-sets and work on the same minibatch,
but since the model is divided, each model is responsible
for a portion of model gradients. In, hybrid-parallel, nodes
are divided into different groups and the training within the
group is data-parallel/model-parallel while between groups is
model-parallel/data-parallel.

The different parallelism approaches have different indi-
cations in terms of communication patterns between the
nodes. Table I shows when data should be exchanged for
different parallelism approaches. In data-parallel approach,
weight gradients should be exchanged among all nodes since
each node calculates the gradients over a subset of the inputs
and hence, the gradients of all nodes should be accumulated to
generate the updated weights for the next step. In model-parallel
scheme, each node produces a part of the output activations and
input gradients during the forward pass and back-propagation,
respectively. Hence these values must be communicated across
all nodes. The hybrid parallel is in between the data-parallel
and model-parallel and its communication behavior is in
the middle as well. Consequently, the nodes within a data-
parallel/model-parallel group in the hybrid-parallel have the

1Our classification is not limited to accelerators and can be extended to
CPUs as well - a CPU socket is a NAM and a multi-socket system is a NAP.
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same communication pattern as the data-parallel/model-parallel
schemes.

B. Collective Communication Mechanisms

As Table I indicates, different communications are initiated at
different phases for different parallelism approaches. However,
all of these communications are handled by using some set
of collective communication operations described in Figure
4. Collective communications refer to a set of operations in
which multiple nodes participate in data exchange to perform
a certain operation over the data. In general, four different
collective communication algorithms are the main contributor
in DNN training communication: (i) reduce-scatter, (ii) all-
gather, (iii) all-reduce, and (iv) all-to-all. Figure 4 shows the
initial state and the final state for an example of four nodes
participating in the collective communication. Among these
operations, all-reduce has the most frequent usage and can
be done using a reduce-scatter followed by an all-gather. The
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bandwidth memory (e.g. HBM), and a Neural Messaging Unit
(NMU). NMUs play the role of a traditional Network Interface
Card (NIC) but simpler and purpose-built for accelerator
fabrics. The hierarchical scale-up fabric comprises of very high
bandwidth intra-package NAM links for module-to-module
communication within package (⇠500GB/s [28]) and longer
distance inter-package NAP links (⇠25 GB/s per link [6]) for
enabling communication spanning multiple chassis or racks.
Figure 3 shows example scale-up topologies.

As shown in Figure 1, distributed DNN training involves a
complex inter-dependent SW/HW design-space. To best of our
knowledge this is the first effort to systematically explore this
vast design space for end-to-end-training for future accelerator
system designs.

A. Parallelization Strategies

The common parallelization techniques for partitioning work
across multiple nodes, are data parallelism (replicating the
entire model, model parallelism (splitting the model), pipelined
parallelism, or some combination of these. In data-parallel,
each node is assigned a subset of samples and during each
iteration, works on its minibatch (chosen from its own dataset)
to produce the local gradients. In model parallel, the nodes
have the same data-sets and work on the same minibatch,
but since the model is divided, each model is responsible
for a portion of model gradients. In, hybrid-parallel, nodes
are divided into different groups and the training within the
group is data-parallel/model-parallel while between groups is
model-parallel/data-parallel.

The different parallelism approaches have different indi-
cations in terms of communication patterns between the
nodes. Table I shows when data should be exchanged for
different parallelism approaches. In data-parallel approach,
weight gradients should be exchanged among all nodes since
each node calculates the gradients over a subset of the inputs
and hence, the gradients of all nodes should be accumulated to
generate the updated weights for the next step. In model-parallel
scheme, each node produces a part of the output activations and
input gradients during the forward pass and back-propagation,
respectively. Hence these values must be communicated across
all nodes. The hybrid parallel is in between the data-parallel
and model-parallel and its communication behavior is in
the middle as well. Consequently, the nodes within a data-
parallel/model-parallel group in the hybrid-parallel have the

1Our classification is not limited to accelerators and can be extended to
CPUs as well - a CPU socket is a NAM and a multi-socket system is a NAP.
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same communication pattern as the data-parallel/model-parallel
schemes.

B. Collective Communication Mechanisms

As Table I indicates, different communications are initiated at
different phases for different parallelism approaches. However,
all of these communications are handled by using some set
of collective communication operations described in Figure
4. Collective communications refer to a set of operations in
which multiple nodes participate in data exchange to perform
a certain operation over the data. In general, four different
collective communication algorithms are the main contributor
in DNN training communication: (i) reduce-scatter, (ii) all-
gather, (iii) all-reduce, and (iv) all-to-all. Figure 4 shows the
initial state and the final state for an example of four nodes
participating in the collective communication. Among these
operations, all-reduce has the most frequent usage and can
be done using a reduce-scatter followed by an all-gather. The

Figure 2.8: Common collective operations used in DNN execution [236].

corresponding layer).

2.4.3 Collective Communication
The communication patterns described in Section 2.3.1 are handled by
collectives such as reduce-scatter, all-reduce, all-gather, all-to-all. As shown in
Figure 2.8, each of these involve communication and at times, arithmetic
operations (e.g., reduction) on the communicated data. In this disserta-
tion, we focus on the all-reduce collective used in the widely adopted DP
and TP setup described in Section 2.3.1. All-reduce can have multiple
implementations optimized for different inter-connect topologies and dis-
tributed setups. One of the most bandwidth-optimal and commonly used
implementation is the ring implementation.

2.4.3.1 All-Reduce & Ring Implementation

The all-reduce (AR) collective reduces (element-wise sums) arrays from
each of the devices. Although there are multiple implementations of
AR, one of the most bandwidth-efficient, and thus most commonly used,
implementations is ring-AR. Ring-AR consists of a ring reduce-scatter
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Figure 2.9: Ring implementation of reduce-scatter collective.

(ring-RS) followed by a ring all-gather (ring-AG). As shown in Figure 2.9,
ring-RS is done in multiple steps. The arrays are chunked on each device,
and during each step, all devices send their copy of a unique chunk to
their neighbor in the ring. The devices then reduce their local copy of the
chunk with the received copy and forward it to their neighbor in the next
step. With N devices and the array chunked N ways, this process requires
N− 1 steps until each device has a completely reduced copy of one chunk.
Ring-AG is similar but does not have reductions; it also requires N − 1
steps until each device has all the reduced chunks. We use AR, RS, and
AG to refer to the ring implementation of these collectives throughout the
dissertation.

2.5 DRAM

2.5.1 Organization
DRAM is organized hierarchically as depicted in Figure 2.10 [6]. The
lowest level of this hierarchy is a 2D array of memory cells and several of
these are grouped into sub-arrays. The sense amplifiers of the 2D arrays
collectively form a local row buffer of the sub-arrays. Several sub-arrays
form banks, wherein sense-amplifiers at bank-level form the global row
buffer. A typical DRAM chip contains multiple such banks.
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Unlike prior proposals which either simply rely on host accelerator
with a passive memory [17, 24, 39] or transform memory into an
accelerator [19, 32, 35, 46] our proposed approach is collaborative
because both the memory and accelerator play an active role in ML
acceleration.

We believe our above observation, that ML workloads bene�t
from a collaborative acceleration approach between a compute-
centric host accelerator and active memory components, is broadly
applicable to many types of accelerators and accompanying near-
data processing (NDP) architectures that can exploit greater mem-
ory bandwidth than is available to the host accelerator. While the
choice of a speci�c NDP architecture is a key factor which dictates
the bene�t for our proposed approach, in this work, we instead fo-
cus on demonstrating the viability of collaborative acceleration and
not on proposing a novel NDP architecture. As such, we analyze a
set of ML workloads using a GPU as a host accelerator and an exam-
ple NDP approach that places ALUs near each DRAM bank. Recent
work [43] has demonstrated the desirable performance/complexity
tradeo�s associated with such an NDP design relative to a range
of other NDP options. Our analysis shows that even a simple NDP
design like the one we consider can accelerate data-intensive com-
putations in ML by as much as 20⇥. A more powerful and optimized
NDP design could deliver even greater bene�ts for our approach.

Further, we also demonstrate the e�cacy of our proposed ap-
proach for a suite of ML workloads. We show that o�oading data-
intensive computations within ML workloads to memory can de-
liver speedups as high as 20% with average speedups of 14% for a
variety of ML workloads. Finally, we also show that with increasing
e�orts to build better accelerators for compute-intensive computa-
tions [7, 22, 33], these bene�ts will likely increase.

The contributions of this work are as follows:

• We make the key observation that data-intensive compu-
tations in ML – which manifest low compute-to-byte ratio,
considerably contribute to the overall execution time. Prior
ML acceleration works, however, focus on compute-intensive
computations and do not target such data-intensive compu-
tations.

• We further identify that such data-intensive computations
unlock an interesting opportunity to accelerate ML work-
loads for a class of architectures which harness near-data
processing (NDP).

• We show how even a simple NDP design like near-bank ALUs
in memory stand to considerably accelerate data-intensive
computations in ML workloads by as high as 20⇥.

• As ML workloads have data-intensive and compute-intensive
computations interspersed with each other, we make a case
for a more collaborative approach to ML acceleration, termed
Co-ML, where both host accelerator and memory play an
active role in ML acceleration by accelerating compute-
intensive and data-intensive computations respectively.

• For a suite of ML workloads we demonstrate that our pro-
posed approach, Co-ML, can deliver speedups as high as 20%
with average speedups of 14%. As accelerators are beefed
up with each generation, we show how these bene�ts will
likely increase.

2 BACKGROUND
This section gives background on DRAM organization, 3D stacked
memories, and some preliminary background on Machine Learning
(ML) computations which are all relevant to this work.

2.1 DRAM Organization
DRAM is organized as a hierarchy of (mostly) two-dimensional
structures as depicted in Figure 1. The lowest level of this hierar-
chy is termed mats which comprises of 2D array of memory cells,
horizontal wordlines, vertical bitlines, and sense ampli�ers at the
periphery. Several, mats are grouped into sub-arrays. The sense
ampli�ers of the mats of a sub-array collectively form a local row
bu�er. Several sub-arrays form banks, wherein sense-ampli�ers at
bank-level form the global row bu�er. A column decoder and mul-
tiplexer enable each bank to select a subset of the bits from the
row bu�er for reading or writing. A typical DRAM chip contains a
multitude of such banks.

Base (“logic”) die

DRAM
 dies

Sub-array

3 2

Bank
3d stack

Col Decoder

1

Local row-buffer

Possible NDP units location

Figure 1: DRAM organization. Also depicted, locations for
placing NDP units.

In mainstream DDR-based memory systems, a single dual-inline
memory module (DIMM) consists of one or more sets of memory
chips that are accessed in parallel (e.g., a 64-bit data bus may be
served by four DRAM chips with 16-bit-wide, or x16 interfaces).
Multiple such sets of chips on a DIMM are called ranks and share
a single memory interface bus to the host. Chip-select signals in
the memory interface identify which rank is accessed on any given
operation. Each DIMM is accessed over an independent memory
interface from the host and is referred to as a channel.

When a DRAM memory access is to be performed, the appro-
priate channel, rank, and bank are selected based on the physical
address of the memory operation. However, before a read or write
can take place, the relevant row of the selected bank must be ac-
tivated. A row is activated by driving the appropriate word line
and transferring the values stored in that DRAM row to the local
and global row bu�ers. Once the data from the row is in the global
row bu�er ( row open), a column from that is selected based on the
address of the access. Note that, to access another row in the same
bank, an open row �rst has to be closed by precharging the bitlines.

Figure 2.10: DRAM organization and locations for placing NMC units [6].

In mainstream DDR-based memory systems, a single dual-inline mem-
ory module (DIMM) consists of one or more sets of memory chips that are
accessed in parallel (e.g., a 64-bit data bus may be served by four DRAM
chips with 16-bit-wide, or x16 interfaces). Multiple such sets of chips on
a DIMM are called ranks and share a single memory interface bus to the
host. Chip-select signals in the memory interface identify which rank is
accessed on any given operation. Each DIMM is accessed over an indepen-
dent memory interface from the host and is referred to as a channel. When
a DRAM memory access is to be performed, the appropriate channel,
rank, and bank are selected based on the physical address of the memory
operation. However, before a read or write can take place, the relevant row
of the selected bank must be activated. A row is activated by driving the
appropriate word line and transferring the values stored in that DRAM
row to the local and global row buffers. Once the data from the row is in
the global row buffer (row open), a column from that is selected based
on the address of the access. To access another row in the same bank, an
open row first has to be closed by precharging the bitlines.
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2.5.2 Near-Memory Computing (NMC)
Given the inherent hierarchy in the DRAM organization, NMC designers
typically face a choice in where to place compute logic which is depicted
in Figure 2.10 [6]. Most NMC designs implement compute units near
DRAM banks 2 . While it requires memory dies changes, incurs area
overheads, and restricts data placement (all data needed for a compu-
tation should be in the same bank), this design point has considerable
bandwidth advantage as compared to the host accelerator which can be
as high as 14× [43]. Some NMC designs push computation logic within
each sub-array in DRAM 3 . It provides the highest memory bandwidth
advantage by enabling access to all (or many) sub arrays in parallel. How-
ever, such a design incurs high complexity, area, and power costs as well
as limited data accessibility due to the large number of ALUs and each
ALU being associated with a relatively small amount of memory (data
for compute must be located in the same sub-array). Alternatively, they
can be implemented on the base die of the HBM stack as indicated by
1 in Figure 2.10. These designs, however offer no memory bandwidth

advantage.

2.6 Summary
In this chapter, we presented the background essential to understanding
this dissertation. We described the basic concepts in deep learning and
specifically, sequence-based models. We also include an overview of the
distributed setups they use. We detailed the key primitives in these models
that the dissertation optimizes for. Finally, we provided an overview of
DRAM organization and ways to augment it for near-memory computing.
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3 profiling sequence-based networks with
seqpoint

Profiling and characterization of application behavior forms the ground-
work that guides optimizations at various levels of the hardware-software
stack from architecture to system design to compilers and libraries. Given
the importance of understanding program behavior, there exist a plethora
of tools and techniques that work at various levels of the system stack
and provide the necessary insights which help researchers and developers
design the next-generation of architectural, system level, and software
optimizations. However, for complex workloads such as DNNs, applica-
tion characterization is difficult due to large datasets and long runtimes
of several hours to days on hardware. Furthermore, given the complex
software stack such networks are based on, it is often challenging to re-
produce their execution environment and run realistic workloads with
real-world datasets on architectural simulators.

Prior work address this challenge by harnessing the iterative nature of
DNN training to profile a few iterations after warm-up phase [295] While
this works well for DNNs such as CNNs where the amount and nature
of computations are independent of the inputs, it is inadequate for the
increasingly important class of sequence-based neural networks (which
we refer to as SQNNs), such as RNNs and Transformers. The amount
and nature of computations in SQNNs vary with the inputs, resulting in
heterogeneous iterations during training.

We tackle this challenge by exploiting the underlying features of the
algorithms to identify a small subset of the training iterations that can accu-
rately summarize the overall DNN training run. To this end, we character-
ize the factors that affect the execution profile of training iterations for two
popular RNN-based SQNNs from the MLPerf [168] suite: DeepSpeech2
(DS2) [29] and Google’s Neural Machine Translation (GNMT) [280]. Our
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characterization shows that the input sequence-length of an iteration (Sec-
tion 2.2.2.3) is the key factor that leads to variations in an iteration’s execu-
tion profile. As such, exercising a small, curated set of sequence lengths in
the training dataset can enable us create a representative execution profile
of a long training run.

In order to select such a set of sequence lengths, we exploit the insight
that inputs of similar sequence lengths have similar execution profiles.
In tandem with this observation, we extend ideas from the well-known
SimPoint [254] approach to cluster sequence lengths together. Then, we
pick a representative sequence length from each cluster, which we call
SeqPoint. Similar to SimPoints, we assign weights to SeqPoints and use the
weighted sum/average of SeqPoints to project the behavior of the overall
training run.

We compare SeqPoint-based projections to measurements of full train-
ing runs and show that it can accurately summarize the entire training
while significantly reducing the number of profiled iterations Moreover,
SeqPoint can be used as a stepping stone to simulate complex SQNNs on
architecture simulators. This chapter is based on the paper, SeqPoint: Iden-
tifying Representative Iterations of Sequence-based Neural Networks, published
in ISPASS 2020 [217].

The relevant background for this chapter is provided in Chapter 2. The
rest of this chapter is organized as follows. In Section 3.1, we describe
challenges with profiling SQNN training. Next, in Section 3.2 we provide
a summary of our study to find factors that affect the execution profile of
DS2 and GNMT. In Section 3.3, we describe our proposal SeqPoint. We
evaluate the efficacy of SeqPoints in Section 3.4 and characterize GNMT
in Section 3.5. In Sections 3.6 and 3.7 we discuss SeqPoints’s applicabili-
ty/extensions and related work, respectively. Finally, we summarize and
conclude in Section 3.8.
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Figure 3.1: Comparing iterations of CNNs and SQNNs.

3.1 Challenges
To address the challenge of long execution times prior works identified rep-
resentative portions of program execution and used their characteristics
to guide whole program optimization [218, 254]. While selecting repre-
sentative portions is difficult because the behavior of programs change
over time, past work [295] has exploited the iterative nature of DNNs
(Section 2.1.3) to pick a few iterations of the training phase as representa-
tive of the entire training run. Although this strategy is sound for CNNs,
where the characteristics of the computation is largely the same across
different inputs, it is sub-optimal for SQNNs where the amount and na-
ture of computation can vary with each input. Figure 3.1 depicts this
fundamental difference between CNNs and SQNNs such as RNNs. As
discussed in Section 2.1.3, the training phase of DNNs is a collection of
iterations, each with its input batch of data. While the input batch does
not affect the computation performed for CNN training, the unroll factor
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of RNNs (Section 2.2.1) is dictated by the input batch. This leads to het-
erogeneous iterations for SQNNs with differing computations unlike the
homogeneous iterations of CNNs training.

The heterogeneity of iterations in SQNNs is manifested in their archi-
tectural behavior as depicted in Figure 3.2. In the figure we compare a few
hardware performance counter metrics (averaged across all operations)
for two representative iterations of DS2 and GNMT (methodology dis-
cussed in Section 3.4). Specifically, we show performance counter data for
the memory system behavior (read memory traffic, memory write stall
behavior). These statistics differ by about 22% and 30% across iterations
for DS2 and GNMT. Thus, generalizing the entire training run based on a
few arbitrarily selected training iterations will likely be inaccurate since
the selected iterations either may not represent iterations that have a major
impact on the overall training run or will have different behavior from
other iterations.

Due to this heterogeneity, a potential strategy to truly characterize the
training phase of an SQNN is to profile a single training epoch instead
of the entire training run. This suffices as different training epochs are
largely homogeneous and encompass all possible iterations as discussed
in Section 2.1.3. However, even a single training epoch for complex DNNs
such as DS2 and GNMT can possibly run hours to days on real-world
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datasets making profiling an entire epoch impractical.
Finally, unlike prior works [73, 291] which primarily focus on spe-

cific layers within SQNNs, we focus on characterizing the overall training
phase of end-to-end networks. An end-to-end SQNN, such as DS2, of-
ten comprises several heterogeneous layers in a specific configuration
(e.g., convolution, batch-normalization, and GRU). Thus, characterizing
individual layers often misses out on interactions between such heteroge-
neous layers. In summary, existing mechanisms to profile and characterize
SQNN training phase remain either inadequate or impractical. We aim to
tackle this challenge by identifying representative iterations whose char-
acteristics can accurately summarize the behavior of the entire training
phase for SQNNs.

3.2 Characterizing iteration execution profile
The discussion in Section 3.1 illustrated that the heterogeneity of training
iterations in SQNNs makes it difficult to select arbitrary training iterations
and consider their behavior representative of the training run. Thus, we
must carefully select iterations that are representative of the behavior of
the entire training run. Accordingly, we analyze the applications to deduce
key factors that decide an iteration’s execution profile and use this to select
representative iterations for the training phase.

3.2.1 Execution Profile

The execution profile of an iteration is directly related to the computations
it executes. As training of SQNNs is typically executed on accelerators such
as GPUs [295], in this work, we discuss the execution profiles in the context
of GPU computations. Computation on a GPU is typically invoked as
’kernels’ (analogous to functions in CPU parlance). As such, the execution
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M K N
sl-1 sl-2

GNMT GEMM-a 36549 1024 6016 576
GEMM-b 1024 36549 6016 576

DS2 GEMM-a 29 1600 25728 3776
GEMM-b 1600 29 25728 3776

Table 3.1: Dimensions for the same GEMM operation across two iterations.

profile of an iteration comprises the distribution of the invoked kernels as
well as their respective runtimes.

3.2.2 Factors Determining Execution Profile

3.2.2.1 Sequence Length

As discussed in Section 2.1, the computations in an SQNN iteration largely
decide its execution profile (i.e., the kernels and their runtimes). These
computations in turn are determined by network dimensions (e.g., num-
ber of layers, hidden state size) and inputs to an iteration. As such, an
iteration’s execution profile is largely dictated by the network dimensions
and inputs to the iteration.

Throughout a training run, the network dimensions stay constant.
However, inputs vary per iteration, and are dictated by batch size and,
for SQNNs, the length of the input sequences. Although the sequence
length (SL) may vary for each input of a batch, most SQNNs will pick a
single SL for the entire batch (usually the longest SL in the batch) and
pad the remaining inputs. Accordingly, while batch size is kept constant
throughout the training run, the input SL varies per batch based on the
specific inputs.

Input SL can affect the execution profile of an iteration in the following
different ways:
First, some layers (attention, fully connected classifier) in a heterogeneous
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SQNN process the entire input sequence causing the inputs to such lay-
ers (and their operations) to differ across iterations with different SLs.
Table 3.1 depicts the input matrix sizes (M, N, K) for two such GEMM
operations (GEMM-a, GEMM-b) across two iterations. The matrix dimen-
sions differ and consequently, their runtime and contribution to the overall
execution profile differ. The rest of the layers (GRUs, LSTMs) usually
process one token of the sequence at a time, and hence have fixed-size
inputs across iterations.
Second, due to the variation in input sizes of operations, different kernels
(optimized for certain input sizes) may get invoked across different itera-
tions. Figure 3.3 illustrates this with a pair of iterations from both GNMT
and DS2. It shows the proportion of unique and common (overlap) ker-
nels and while there can be several kernels common to both the iterations,
there are up to 20% of kernels which are unique to either iteration.
Third, some layers in a heterogeneous SQNN are executed a fixed number
of times per iteration (e.g., attention, convolution, fully connected), and
some are executed as many times as there are tokens in an input sequence
or SL times (e.g., due to unrolling of RNN layers described in Section 2.2.1).



40

0%

20%

40%

60%

80%

100%

sl-1 sl-2

%
 R

u
n

ti
m

e 
C

o
n

tr
ib

u
ti

o
n

GEMM-1 others scalar-op

GEMM-2 reduce

0%

20%

40%

60%

80%

100%

sl-1 sl-2

%
 R

u
n

ti
m

e 
C

o
n

tr
ib

u
ti

o
n

GEMM-1 GEMM-2 Rest

Figure 3.4: Kernel distribution differs based on sequence length [Left:
GNMT, Right: DS2]

This implies that the proportion of these layers, and thus, of their respective
kernels, change across iterations. This in combination with the points
above, causes the kernel distribution of operations to differ across iterations
as depicted in Figure 3.4. For example, the runtime contributions of kernels
”GEMM-1” and ”reduce” differ significantly based on the iteration’s SL in
GNMT.

Thus, we make the following key observations of how SL impacts the
execution profile of SQNN training iterations:
Key observation 3.1: Sequence length can differ across iterations and dictates
the proportion of operations in an iteration.
Key observation 3.2: The total number and type of kernels invoked differ based
on the iteration’s sequence length.
Key observation 3.3: A given kernel can have different input dimensions across
iterations and, thus, contribute to the overall execution profile differently.

3.2.2.2 Training Dataset

Multiple datasets are often available to train a given DNN. As discussed in
Section 2.1.3, the dataset dictates the number of iterations within a single
training epoch and also the iteration inputs. As such, we observe that
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representative training iterations are largely tied to the underlying training
dataset. Furthermore, the training dataset stays constant across all epochs
of a single training run. Epochs may only differ in the order in which the
samples in the dataset are processed (and thus the order of heterogeneous
iterations). Thus, considering iterations within one epoch is sufficient for
identifying a representative set of iterations for the entire training.
Key observation 3.4: Since the training dataset is constant during training,
considering iterations within a single training epoch is sufficient to generate a
representative training phase.

3.2.2.3 Iteration Temporal Placement

As discussed above, the input SL is the key determinant of execution time
of an iteration. Thus, in the absence of data-dependent optimizations (e.g.,
exploiting sparsity, which we do not consider in this work), the behavior
of all iterations with a given SL will largely stay the same.
Key observation 3.5: Unless data-dependent optimizations are used, consid-
ering iterations corresponding to unique sequence lengths suffices to generate a
representative training phase.

3.2.2.4 Vocabulary

The vocabulary of a dataset in sequence-based networks refers to the
unique set of symbols (e.g., words) that appear in a given dataset. The
vocabulary size remains fixed across iterations of a training phase and has
a considerable effect on the execution time (lookup time when converting
symbols to vectors, input dimensions to operations). Therefore, while
sampling training iterations (which may refer to a subset of the dataset),
it is important to keep the vocabulary size unchanged to preserve the
representativeness of the iterations.
Key observation 3.6: Since the dataset’s vocabulary determines a considerable
fraction of the per-iteration execution time, we must use the full vocabulary size
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of the original dataset.

3.2.3 Non-Training Phase Computations

While DNN training largely comprises training iterations, there are also
other computations.

3.2.3.1 Evaluation Phase

DNN training includes an evaluation phase at the end of every epoch to
determine if a desired level of accuracy has been reached and training
can be terminated. The evaluation phase has an independent dataset
associated with it and is typically very small compared to the training
phase. Unsurprisingly, empirically we observe that it only takes up to
2-3% of the total training time and thus can be ignored when creating a
representative training run.

3.2.3.2 Autotune

Most high-level ML software frameworks employ an ’autotune’ phase
at the beginning of a training run to identify the optimal kernel to run
for each computation in the network. It is usually an expensive process
and affects the runtime of the first iteration (CNNs) or epoch (SQNNs).
However, since autotune only runs once, we can easily ignore it when
creating a representative training run.
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Figure 3.5: Histogram of SQNN sequence lengths.

3.3 SeqPoint: Representative Iterations for
SQNNs

3.3.1 Challenge: Large Sequence Length Space

In Section 3.2 we analyzed SQNN training and identified several key
factors that affect identifying representative iterations. In particular, SL is
the key determining factor for variations in execution profile of training
iterations. Thus, to select representative iterations of an SQNN training
phase, in theory we could include all unique SLs in the training run.
However, as Figure 3.5 shows, this is challenging because representative
datasets for complex SQNNs like DS2 and GNMT have a large number
of unique SLs. Consequently, including all unique SLs would lead to a
representative set with up to half of all iterations in an epoch (e.g., DS2
with the LibriSpeech [207] 100 hours dataset). Moreover, the SLs in a
given training run are also a function of the batch size. Since most SQNNs
pick a single SL (often the maximum SL within the batch of inputs) for an
iteration, smaller batch sizes have more unique SLs. Thus, simply selecting
all unique SLs is not sufficient, and additional work is needed to identify
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Figure 3.6: Execution profile with varying sequence length for GNMT.

a smaller set that retains the representativeness of using every unique SL.

3.3.2 SeqPoint Overview

Although SQNNs have a large number of unique SLs (Section 3.3.1), each
with a unique execution profile (Section 3.2.2.1), similarly sized SLs have
similarity in their execution profiles. Figure 3.6 shows that SLs that are
close to each other (e.g., 87 and 89, or 192 and 197), have similar kernel
distributions. Furthermore, Figure 3.7 shows that similarly sized SLs also
have similar runtimes. We propose to exploit this similarity to create a
smaller, yet still representative set of training iterations, taking inspiration
from the well-known SimPoint methodology [254].

SimPoint divides program execution into slices and represents each
slice with an architecture-independent metric: basic-block vector (BBV)
which comprises basic blocks and their counts. It then uses clustering
over the BBVs and selects a single representative of each cluster termed
as SimPoint. In addition, it assigns weights to each SimPoint. Program
behavior under SimPoint is then the weighted average of behaviors of
individual SimPoints.

In a similar vein, we exploit similarity in SLs to bin them and select
a single SL as the representative of each bin, which we term as SeqPoint.
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Figure 3.7: Runtime vs sequence length for (a) GNMT and (b) DS2.

In addition, similar to SimPoint, we also assign weights to each of the
SeqPoints. The behavior of the entire training run is then a weighted
average of all the SeqPoints. Overall, we use a SimPoint-like strategy to
create a small, representative subset of the overall training run that is
practical to profile and analyze.

3.3.3 SeqPoint Mechanism

Figure 3.8 depicts our SeqPoint mechanism. As illustrated in the flowchart,
we first execute a single epoch of the SQNN training with the desired
network, dataset, and batch size and log all the unique SLs exercised along
with the runtime of the respective iterations ( 1 ). We also log the training
time of the epoch. If desired, to control the training duration, the user can
set a threshold, n, which decides the number of unique SLs to be included
in the representative training run. If the total number of unique SLs is less
than this threshold (n = 10 for our purposes), we include all unique SLs
as SeqPoints.

However, if the number of unique sequence lengths is more than n, we
bin the observed SLs into k buckets (k = 5, initially) each corresponding
to a different SL range ( 2 ). Our binning of contiguous sequence length
ranges is driven by the the fact that SLs in close proximity to one another
behave similarly (Section 3.3.2).
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Figure 3.8: SeqPoint overview.
Next, we pick as the representative from each bin the SL whose runtime

(s) is closest to the average runtime of the bin and consider it as a SeqPoint
( 3 ). This choice exploits the fact that iteration runtime is a good enough
proxy of the program execution behavior, as shown in Figure 3.7.

In the absence of binning, we assign each SeqPoint a weight (w) equal
to the frequency of its occurrence in one epoch of the training phase. In the
presence of binning, the weight assigned is the size of the bin the SeqPoint
belongs to ( 4 ).

Next, to evaluate the accuracy of the selected SeqPoints, we calculate
the weighted sum of the runtimes of each SeqPoint as follows ( 5 ):

Predicted Statistic = w1 ∗ s1 +w2 ∗ s2 + .. +wk ∗ sk (3.1)

If the error between the predicted and actual runtime exceeds an error
threshold e (specified by the user, 6 ), we increment k by one and repeat
steps 2 to 6 until the threshold is met. Note that, to predict statistics that
are ratios (e.g., throughput, IPC, etc), the value in Equation 3.1 should be
normalized by the sum of all weights.

Overall, given the architectural independence of the SeqPoint method-
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ology, once the SeqPoints for a given combination of model, dataset, and
batch size are identified, they can be used to profile the SQNN on any
system setup. Further, while we focus on runtime, the methodology can
use any other statistic (or collection of statistics) that varies with SL.

3.4 Evaluation

3.4.1 Hardware & Profiling Setup

Our system consists of an AMD Ryzen™ Threadripper [13] CPU and a
Radeon™ Vega Frontier Edition GPU [17]1. The GPU has 64 compute
units (CUs) and 16GB of HBM2 [110]. Our software stack comprises
TensorFlow [19] built on top of the AMD ROCm platform[18], and calls
into MIOpen [15] and rocBLAS [14], AMD’s high-performance machine
learning libraries. We use the Radeon Compute Profiler [16], a perfor-
mance analysis tool, to gather kernel runtimes and other GPU performance
counter data.

3.4.2 Networks and Inputs

We study two state-of-the-art SQNNs: GNMT, which is used for machine
translation, and DS2, which is used for speech recognition. GNMT has
three main components: (a) an encoder with seven uni-directional and
one bi-directional Long Short Term Memory (LSTM) layers, (b) a decoder
with eight unidirectional LSTM layers, (c) an attention network, which is a
feedforward network connecting the encoder and decoder and (d) a fully-
connected layer. DS2 has five bi-directional Gated Recurrent Unit (GRU),
two convolutional, one fully-connected, and one batch-normalization lay-

1Given the fast-evolving GPU space with improved ML-specific optimizations built
into each generation, we use a setup with the latest available GPU for ML at the time.
Thus, the GPU used in this chapter differs from those in Chapters 4, 7, 5 & 8.
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Config GCLK #CU L1 $ L2 $
#1 1.6 GHz 64 16 KB 4 MB
#2 852 MHz 64 16 KB 4 MB
#3 1.6 GHz 16 16 KB 4 MB
#4 1.6 GHz 64 0 KB 4 MB
#5 1.6 GHz 64 16 KB 0 MB

Table 3.2: Configurations used to evaluate SeqPoint

ers. We use the IWSLT 2015 [47] and LibriSpeech [207] datasets with a
batch size of 64 for GNMT and DS2 respectively.

3.4.3 Methodology

Hardware configurations: To show the efficacy of SeqPoint, we evalu-
ate its ability to project both the overall program execution behavior and
execution speedups under various hardware configurations for the two
SQNNs detailed above. Table 3.2 lists the hardware configurations we
study. We create five different configurations by varying GPU core fre-
quency (GCLK) and number of active CUs, and by enabling or disabling
its L1 and L2 caches. Further, we use total training time as a proxy for
program execution behavior and study speedups in terms of increase in
training throughput (samples/s).
SeqPoints: We generate the SeqPoints and their weights for GNMT and
DS2 following the steps detailed in Section 3.3.3. Our methodology iden-
tified 15 SeqPoints for GNMT and 8 for DS2, respectively. Note that Se-
qPoints only need to be identified once, and we do so using config #1.
Subsequently, only the SeqPoints are executed on the other configurations.
Therefore, representative execution profiles of GNMT and DS2 training
can be generated by executing only 15 and 8 iterations, respectively.
SeqPoint alternatives: We compare SeqPoint to other alternatives and
prior approaches in our evaluation.
Frequent, Median, Worst: Prior work [293] used a single iteration as a proxy
for the entire training run. By harnessing our insight that SL is a key
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Figure 3.9: Error in total training time projections for DS2.

factor which causes heterogeneous iterations in SQNNs, we devise three
strategies to select a single iteration as a representative. Frequent selects
the most frequently occurring SL, as it has the most likelihood of being
picked in a random selection. Median selects an iteration with the median
SL. Finally, worst selects an iteration with the worst case error to provide a
bound on possible error when arbitrarily selecting a single iteration.
Prior: Prior uses a sampling based approach [295] that samples 50 itera-
tions after a fixed warmup period.

3.4.4 Projecting Program Execution Behavior

As discussed in Section 3.4.3, we use total training time as a proxy for
program execution behavior. Figure 3.9 and Figure 3.10 show the error in
projecting the total training time of DS2 and GNMT incurred by SeqPoint
and its alternatives (calculated by multiplying average iteration time with
the number of iteration in an epoch) for the configurations in Table 3.2.

As Figure 3.9 and Figure 3.10 depict, while we identified SeqPoints us-
ing only config #1, they can accurately project training time across a variety
of system parameters resulting in geomean errors of 0.11% and 0.53% for
DS2 and GNMT, respectively, across the configurations evaluated. This
shows that our methodology allows for the SeqPoints to be identified once
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Figure 3.10: Error in total training time projections for GNMT.

and be used repeatedly to make accurate program behavior projections
across a wide range of architecture and software stack variants.

Moreover, Figure 3.9 and Figure 3.10 show that SeqPoint alternatives
which use a single training iteration to make projections have higher errors.
For example, frequent, despite being the most frequent SL, has high error
(20-35%) and thus is not very representative of the full training run. This
is due to the fact that the most frequently occurring SL is not necessarily
representative of the distribution of training iterations. Similarly, selecting
median results in an error as high as 10%.

Despite the projection errors, both frequent and median were careful
selections for a representative iteration based on our understanding of
the underlying SL distribution. Selecting an arbitrary, fixed iteration is
fraught with higher risk of projection errors as illustrated by worst in both
the figures.

Figure 3.9 and Figure 3.10 show that prior results in lower errors (about
6%) for DS2 for certain configurations, but performs poorly both for other
configurations and GNMT in general. Prior’s low error for certain config-
urations is a consequence of an artifact of DS2’s computation: DS2 sorts
SLs in the first training epoch, leading to prior selecting a set of iterations
whose runtimes dominate the training run. Nevertheless, SeqPoint out-
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Figure 3.11: Error in performance speedup projections for DS2.

performs prior by over 5% and, more importantly, does so while running
one-third and one-sixth of the iterations as compared to prior for GNMT
and DS2, respectively.

3.4.5 Projecting Performance Speedups

We next evaluate SeqPoint’s ability to project speedups as we vary hard-
ware configurations. To do so, we plot the error (delta) in projecting
percentage throughput (samples/s) change between config #1 and other
configurations under study.

Figure 3.11 and Figure 3.12 show that SeqPoint outperforms all studied
alternatives in projecting speedups with geomean errors of 0.13% and
1.50% for DS2 and GNMT, respectively. This further demonstrates SeqPoint
methodology’s ability to be representative of the entire training run.

Among the SeqPoint alternatives that select single iterations, we ob-
serve that while median and frequent perform worse than SeqPoint, their
errors are sometimes within acceptable margins (e.g., 2.5% for DS2). This
is due to the fact that both median and frequent select SLs which are exer-
cised often. Combined with the SL distribution skew in DS2 (Figure 3.5),
this enables them to accurately predict the relative variation across config-
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Figure 3.12: Error in performance speedup projections for GNMT.

urations reflected in the speedups. With a more uniform SL distribution,
as is the case for GNMT, median and frequent exhibit higher errors of up
to 9%. Further, as in Section 3.4.4, worst shows the perils of selecting an
arbitrary training iteration: errors as high as 22% and 27% for GNMT and
DS2 respectively.

We observe in Figure 3.11 and Figure 3.12 that prior does as well as
SeqPoint in all cases except when predicting for config #4 for DS2. First,
note that, while SeqPoint carefully picks points in SL space and weights
them, prior simply picks a subset of the SL space. Depending on the overlap
between these two sets it is possible, though not certain, for prior to select
SLs which together are representative of overall training speedup for a
specific hardware configuration.

For some configurations, however, prior can have higher errors as is the
case for config #4 to #1 uplift. The region prior picks its iterations from
is depicted by 1 in Figure 3.13. The figure also shows that region 2 , of
which 1 is a subset, has a constant (and given the skew in Figure 3.5(a),
also close to overall) uplift for all configs but config #4, thus, leading to
higher errors for prior in projecting config #4 to #1 uplift. This further
underscores the need to carefully select iterations from the SL space as
our proposed SeqPoint methodology does.
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3.4.6 Profiling Speedups

A key benefit of SeqPoint is that it reduces the time required to profile an
end-to-end SQNN model training from hours/days to mere minutes/sec-
onds while being extremely accurate. By carefully selecting representa-
tive iterations, SeqPoint reduces profiling overheads by 40× and 72×, for
GNMT and DS2 respectively. Moreover, given each SeqPoint is an inde-
pendent iteration, they can be executed in parallel (on different machines)
which further speeds up profiling by 214× and 345×, for GNMT and DS2
respectively.

Finally, while we have evaluated SeqPoint only for smaller datasets
(LibriSpeech’s 100 hours dataset [207] and IWSLT15 dataset [47] for DS2
and GNMT, respectively), applying SeqPoint to larger datasets such as
the LibriSpeech 500 hours and WMT16 [40], which we observed to have
similar SL ranges to the evaluated shorter datasets, can lead to much higher
speedups than what we observe for these smaller ones.
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3.5 GNMT Case Study
Characterizing GNMT (using its SeqPoints) reveals that more than 50%
of its time is spent executing matrix multiplications (GEMMs). While the
remaining time is spent executing element-wise operations, we believe,
better software libraries [31] implementing kernel fusion for RNNs can
fuse these with the remaining GEMMs. We further find that a majority of
the GEMMs in RNNs have a low GPU utilization: 80% of the GEMMs have
utilizations between 20-40% even with a batch-size of 64. This is because of
sequential processing in RNN layers; layers process only a single token of
an input sequence at a time causing GEMMs to have one of the dimensions
as just the batch size. Increasing batch size only partially helps; as shown
in Figure 3.14, half of the GEMMs still have utilization of <50% at a batch
size of 256. Furthermore, it may not be possible to achieve such large batch
sizes due to both hardware memory capacity limitations and algorithmic
convergence.
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3.6 Discussion

3.6.1 Enabling Network-level Simulation for SQNNs

Simulating an entire GPU application on a cycle-level simulator [83, 147] is
often impractical, especially for long-running SQNN training applications.
To aid in successful simulation of long-running applications, prior works
have attempted to identify representative regions within applications and
porting them to simulators for CPUs [45, 134, 218, 254, 281] and GPUs [98,
118].

Such techniques, however, require some form of program analysis,
simulation, or profiling which can have significant overhead of up to 10×
to 30×, making them infeasible for SQNN training (which run for days to
months on native hardware). In contrast, SeqPoint reduces SQNN training
profiling time to a few seconds to minutes by identifying few representative
iterations. This, along with recent techniques to identify and simulate
only few kernels (or portion of kernels) of a DNN model iteration [32]
can enable representative network-level simulations of SQNN training.

3.6.2 Other SQNNs

While our analysis focuses on two SQNNs, SeqPoint applies to other net-
works as well. An insight of this work is to identify input SL as a key factor
which determines the variations in execution profile (kernel distribution)
for training iterations. As such, any SQNN consisting of layers whose
computation varies with input SL can benefit from SeqPoint methodology
to reduce the representative training runtime. A wide swath of networks
fall into this category which employ layers including, but not limited to,
attention (e.g., Transformer [273], BERT [62], and GNMT [280]), convo-
lution (e.g., ConvS2S [76], DS2 [29]), and other recurrence-based ones
(e.g., Seq2Seq [158] and ByteNet [117]).
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3.6.3 Sophisticated Clustering of SQNN Iterations

We also considered a more sophisticated approach to tame the SQNN train-
ing SL space via k-means clustering [162]. In this approach, we applied
k-means clustering to execution profiles of all iterations. However, we ob-
served that our simple methodology to bin SLs (Section 3.3.3) performs as
well as k-means clustering and, as such, we use the simpler approach. We
believe this to be a consequence of the fact that iteration runtime (which
we use) is a good proxy for execution profile of SQNN iterations.

3.6.4 Architecture and Software Independence

The SeqPoint methodology we propose relies entirely on the character-
istics of the SQNN model and the dataset it is trained on. Therefore,
while our system setup consists of AMD hardware/software stack and the
TensorFlow framework, the insights we highlight and the methodology
we adopt applies to any other system (e.g., NVIDIA) and/or framework
(e.g., PyTorch, Tensorflow). Further, while we demonstrate the efficacy
of SeqPoints in the context of GPUs, since SeqPoint uses architecture-
independent metrics (e.g., SL), our methodology is also equally applicable
to CPUs and other accelerators.

3.6.5 SQNN Inference

While the focus of this chapter has been on SQNN training, our insights
can be useful in the context of SQNN inference as well. Our observation
that SL is a key factor that dictates variations between SQNN iterations
is equally applicable to inference. Further, our methodology to bin SLs
to tame the SL space can also help characterize inference runs in order to
optimize for them.
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3.7 Related Work
As discussed in Section 3.1, prior works [4, 293, 295] assume homogeneity
in training iterations of SQNNs, which we show is not the case. By being
cognizant of heterogeneity in training iterations, our proposed methodol-
ogy can generate a short set of representative training iterations (SeqPoints)
that have lower error as compared to these prior techniques.

Other works, side-step end-to-end profiling of SQNN training and
instead focus on analyzing individual layers [73, 291] using microbench-
marks such as DeepBench [175, 176]. However, real-world networks such
as DS2 and GNMT comprise several different types of layers (e.g., convo-
lution, attention), interactions among which remain uncaptured by these
prior techniques. In contrast, by considering entire iterations, SeqPoint
captures these interactions.

Finally, as discussed in Section 3.6.1, prior works [45, 98, 118, 134,
218, 254, 281] which identify representative portions in applications are
unwieldy for long training runs. However, SeqPoint considerably reduces
the training run and paves the way for such techniques to be used in
architectural simulation of SQNN training.

3.8 Chapter Summary
Profiling and characterization of SQNN training runs remain challenging
given their hours-to-days native runs. In this chapter, we showed that
prior works that characterize SQNNs are oblivious to the heterogeneity
in training iterations and, as such, are ill-equipped to create small, repre-
sentative training runs that faithfully summarize entire training phases.
To address this, we used the insight that input sequence length (SL) is
a key factor that dictates the heterogeneity of SQNN training iterations.
Then, we designed a new scheme, SeqPoint, that clusters unique SLs and
selects a representative point from each cluster. We showed our identi-
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fied SeqPoints are representative of the entire training run with low error
and reduce the training iterations to be profiled by up to two orders of
magnitude for state-of-the-art, end-to-end SQNNs. Using SeqPoints, we
studied the dominant GEMM operations in GNMT training and found
them to have very poor device utilization which we address in Chapter 7.
Overall, we not only make profiling and characterization of SQNN training
tractable but also pave the way for network-level simulations for SQNNs.
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4 demystifying transformers

In the previous chapter, we devised a methodology to profile and charac-
terize the extremely long-running training phase of RNN-based models,
a subclass of sequence-based models (Section 2.1). In this chapter, we
focus on Transformers, another important class of sequence-based models
(Section 2.2.2).

Transformers [273] have become a popular general-purpose architec-
ture for a wide range of tasks/domains. Recent work has shown that many
different modalities are using Transformers as their base model (e.g., 41%
of text, 22% of image) [38]. These networks, along with transfer learn-
ing, mark a shift towards deeper knowledge transfer by applying massive
pre-trained models to different tasks. They use unsupervised learning
to train on massively large unlabeled datasets (e.g., Wikipedia), which
along with their network architecture, helped them outperform their pre-
decessors on several Natural Language Processing (NLP) tasks. Google’s
Bi-directional Encoder Representation from Transformer (BERT) [62] is
one of the first Transformers introduced for NLP. Several, larger, Trans-
former models have been introduced since BERT, with its most recent
successor being MT-NLG (540 billion parameters), and many others in
between [41, 58, 138, 154, 226, 256, 266, 284]. The evolution of these Trans-
former models however, has largely focused on changing Transformer
block type (encoder vs. decoder), increasing the number of Transformer
blocks, and/or increasing layer widths (Section 2.2.2). Given their increas-
ing popularity and massive computational demands, understanding their
underlying behaviors is vital to designing efficient accelerators for them.

Thus, in this chapter, we characterize the computationally and time-
intensive training phase of Transformer models and identify how their
algorithmic behavior can guide future accelerator design. We focus on
BERT and identify key operations that are worthy of attention in accel-
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erator design. While there have been some prior works that character-
ize Transformers, they miss important details such as the manifestation
of layer operations and detailed runtime breakdown amongst all opera-
tions [274, 279, 289]. Consequently, some works build accelerators with
matrix-vector engines for BERT layers which actually perform matrix-
matrix operations [84, 89]. Thus, we focus our characterization on the
manifestation, size, and arithmetic behavior of BERT’s constituent opera-
tions which remain constant irrespective of hardware choice. Our results
show that although computations that manifest as matrix multiplications
dominate BERT’s execution, they have considerable heterogeneity. Further-
more, we characterize memory-intensive computations which also feature
prominently in BERT but have received less attention. Additionally, and
to capture future Transformer trends, we vary BERT’s hyperparameters
and analyze the implications of these behaviors as networks and inputs
get larger. Finally, we study the impact of key training techniques like
distributed training, checkpointing, and mixed-precision training, which
are employed to scale network training. More broadly, we identify ineffi-
cient execution phases in Transformer-based models that we address later
in this dissertation (Chapters 6, 7 and 8). This chapter is based on the
paper, Demystifying BERT: System Design Implications, published in IISWC
2022 [216].

The relevant background for this chapter is provided in Chapter 2.
The rest of this chapter is organized as follows: Section 4.1 details our
experimental setup. Section 4.2 provides a detailed runtime breakdown
of BERT and analyzes its constituents. Section 4.3, 4.4, and 4.5 describe
our observations from sweeping model hyperparameters, employing ac-
tivation checkpointing, and multi-GPU training, respectively. Table 4.1
summarizes our main takeaways. Sections 4.6 and 4.7 discuss applicability,
extensions of this work and other related work. Finally, we conclude with
summary in Section 4.8.
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Takeaway Algorithmic Explanation Sec.

LAMB optimizer is
very memory
intensive & important
to optimize for.

LAMB updates 340M BERT parameters
& is the second-highest training time contri-
butor. It reads data worth 4× the model
size and has few element-wise operations.
LAMB’s runtime scales linearly with trans-
former layer count & quadratically with
layer size.

4.2.1
4.2.3
4.3

GEMMs dominate runti-
me but have heterogeneity.

BERT processes all input sequence tokens
in parallel & thus layers manifest as GEMMs,
even if mini-batch is one. Linear and Batched-
GEMMs in attention are smaller than in FC
& thus may not fully utilize accelerators &
may also be memory-bound. GEMM propor-
tion also increases with layer size.

4.2.1
4.2.2
4.3

Non-GEMMs are memo-
ry-bound & a considerable
proportion of runtime.

These constitute element-wise (add, mul,
scale) & reduction operations. Their prop-
ortion drops with increasing layer size
as they scale only linearly with it (unlike
GEMMs & LAMB, which are quadratic).

4.2.3
4.3

Reducing precision
makes optimizing
memory-intensive
operations crucial.

GEMMs speedup more than others in half
precision due to faster arithmetic & reduced
memory traffic. Non-GEMMs only benefit
from reduced footprint of reduced precision
data. LAMB uses high (FP32) precision data
to maintain accuracy and is unaffected.

4.2.1
4.2.3

Tensor Slicing is bottlen-
ecked by communication.

Communication is serialized with comp-
utations in tensor slicing. Its cost increases
with device count.

4.5.2

Table 4.1: Summary of takeaways

4.1 Experimental Setup
4.1.1 System

Our system consists of an AMD Ryzen™ Threadripper™ CPU [13] and an
AMD Instinct™ MI100 GPU [21]1 with 32GB of HBM2 [110]. Our software

1Given the fast-evolving GPU space with improved ML-specific optimizations built
into each GPU generation, our setup uses the latest available GPU for ML at the time.
Thus, the GPU used for studies in this chapter differs from those in Chapters 3, 5 & 8.
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stack is built on top of the AMD ROCm™ platform [18] with PyTorch
v1.7. Although many accelerators are used to train BERT, we choose GPUs
for this study because of their wide availability and popularity for DNN
training. However, our takeaways are accelerator agnostic and should be
applicable to other GPUs, accelerators, and frameworks suitable for ma-
chine learning. Since our goal is to characterize BERT training in a platform
independent manner, we focus on relative importance of its operations, as
well as the size and nature of operations, which in turn depend on BERT’s
network architecture, hyperparameters, and selected training mechanism
(e.g., mixed precision; model versus data parallelization strategy). Thus,
this approach provides fundamental value in guiding architecture design
based on deep, algorithmic understanding of the application instead of
solely profiling-based analysis, since architectures, both within and across
vendors, evolve considerably from one generation to another. We discuss
this further in Section 4.6.

4.1.2 BERT Phases

We analyze the BERT pre-training phase. Since fine-tuning requires only
minor model tweaks and is similar to the more intensive pre-training,
studying pre-training provides a solid understanding of BERT’s overall
training behavior while focusing on the costliest - most important to accel-
erate - part. We focus on Phase-1 (n=128) of pre-training with a mini-batch
size (B) of 32 and discuss how Phase-2’s (n=512) characteristics differ.
Finally, we study both single and mixed precision (MP) training to discuss
how bottlenecks shift with reduced precision. Tables 4.2a and 4.2b list the
acronyms we use to refer to model details and training techniques.
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Acronym Parameter
B mini-batch size

dmodel Hidden Dim.
h #Attention Heads
dff Intermediate Dim.
N Layer Count
n Sequence Length

(a) BERT hyperparameters

Acronym Full Form
FC Fully-connected
EW Element-wise
LN LayerNorm
DR Dropout
RC Residual Conn.
MP Mixed Precision

(b) BERT acronyms
Table 4.2: BERT hyperparameters, GEMMs and acronyms.

4.1.3 BERT Hyperparameters

Although BERT has several configurations [272], we focus on the largest
and most accurate one: BERT Large. BERT Large model contains 24 Trans-
former layers (N) with a hidden state size (dmodel) of 1024, 16 attention
heads (h) and an intermediate dimension (dff, usually 4∗dmodel) of 4096.
Since these hyperparameters can scale in future models, we also study
their impact on BERT’s execution profile in Section 4.3. Throughout the
remainder of the paper, we use these symbols to refer to the parameters,
as shown in Table 4.2a.

4.1.4 Profiling Mechanism

Profiling entire BERT pre-training (with the English Wikipedia dataset [62])
can be impractical. Although CNNs can be characterized by profiling a
single training iteration [160, 208, 293, 295], NLP model iterations can
be heterogeneous due to varying input sequence length as we showed
in Chapter 3. However, BERT’s training iterations operate on same-size
inputs within a phase. Thus, we profile and study a single training iter-
ation (after a set of warm-up iterations) per pre-training phase. We use
rocProf [12] to gather runtime and other performance counter data.
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Figure 4.1: Runtime breakdown of BERT pre-training.

4.2 Compute & Memory Demands of BERT
Operations

A BERT iteration performs (a) a forward (FWD) phase to process input
sequences to produce an output, (b) a backpropagation (backprop, or
BWD) phase to calculate the loss in output prediction and weight gradi-
ents, and (c) an update phase to update the weights using the gradients.
Table 4.3 describes three GEMM operations and activation sizes for each
important BERT sub-layer: one for FWD and one each for BWD activation
and weight gradient calculation. Throughout we represent a matrix as
MxN, a GEMM as MxNxK, and a product of two variables as a ∗ b.

4.2.1 Runtime Breakdown

We first present a high-level runtime breakdown amongst different net-
work layers and training phases. In all the runtime distribution plots
we consider a layer’s FWD and BWD phases together and show weight
updates separately. Figure 4.1 shows this for different phases, B, and pre-
cisions: Phi-Bj-FPk, where i represents the phase (Phase-1 or Phase-2), j
is the mini-batch size, and k is the number of floating-point (FP) bits used
in the experiment. Note that, FP16 here refers to mixed precision training



65

[184] where FWD and BWD use FP16 inputs, weights, and gradients, but
updates are in FP32 to maintain accuracy.

As expected, for all the configurations, the Transformer layers dom-
inate (68-85%) the runtime while the output and input embedding lay-
ers constitute only a small proportion (3-7%). Interestingly, the LAMB
optimizer (Section 2.4.2) is consistently the second highest contributor
(7-25%). Its proportion is higher at smaller token counts (n ∗ B) (e.g.,
Ph1-B4-FP32 and Ph2-B4-FP32 have a higher LAMB proportion than Ph1-
B32-FP32). This occurs because the FWD and BWD runtimes depend
on token count, while the weight update runtime is only proportional
to model size. LAMB’s proportion also increases with MP training (in
Ph1-B32-FP16 and Ph2-B4-FP16). In MP, LAMB still updates a higher
(FP32) precision copy of weights, and thus its runtime is not affected.
Other operations speedup up due to faster arithmetic and reduced mem-
ory accesses at lower precision. Its proportion will further increase with
more aggressive quantization [249].
Key observation 4.1: Transformer layers dominate (68-85%) BERT run-
time. Output and embedding layers contribution is negligible.
Takeaway 4.1: LAMB updates are the second highest contributor (7-
10%) to BERT’s training time. Their contribution increases (25%) with
decreasing token count per iteration.
Takeaway 4.2: LAMB updates become more important (16-19%) to opti-
mize for with mixed-precision training.

Figure 4.2 presents a hierarchical breakdown of Transformer layers for
single (Ph1-B32-FP32) and MP (Ph1-B32-FP16) training (labels represent
their contribution to overall training time). The second bar, Transformer,
shows the runtime breakdown among the Transformer layer’s compo-
nents: the attention layer, the Fully Connected (FC) feed-forward layer,
as well as the combined dropout (DR), residual connection (RC), and
Layer Normalization (LN) layers. Overall, FC layer has a higher runtime
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Figure 4.2: Hierarchical breakdown of BERT pre-training runtime. Labels
show contribution to overall training time (SM=Softmax in this figure).

contribution compared to the attention layer due to its larger (4×) inter-
mediate dimension (Section 4.1.3). Additionally, the combined DR, RC
and LN layers have a smaller, but non-negligible (5% in FP32, 9% in MP)
contribution per iteration.

The third bar of Figure 4.2, breakdown of the Attention layer, shows
that a significant portion of the runtime (22% in FP32, 19% in MP) is
spent on linear operations (linear in Figure 2.3(c)). These operations are
required to project each of the inputs query, key, and value vectors (of
length dmodel) into h different vectors (of dimension dmodel/h) to be
operated on by h attention heads (detailed in Section 4.2.2). The actual
attention operation (Figure 2.3(d)) represented by Attn. BGEMM and
Scale+Mask+DR+Softmax, constitute a much smaller proportion (7% in
FP32, 9% in MP) of the overall runtime. The feed-forward sub-layer, FC,
of BERT’s Transformer layers (last bar in Figure 4.2) consist of two fully-
connected connections with a Gaussian Error Linear Unit (GeLu) [92]
activation in between. The FC connections (FC GEMMs+Grad) dominate
the runtime with GeLu contributing to 13% in FP32 and 15% in MP.
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Operation FWD BWD Grad. Activation BWD Grad. Weight
Linear dmodel x n*B x dmodel dmodel x n*B x dmodel dmodel x dmodel x n*B

Attn. Score n x n x dmodel/h, B=B*h n x dmodel/h x n, B=B*h dmodel/h x n x n, B=B*h
Attn. O/p dmodel/h x n x n, B=B*h dmodel/h x n x n, B=B*h n x n x dmodel/h, B=B*h

FC-1 dff x n*B x dmodel dmodel x n*B x dff dmodel x dff x n*B
FC-2 dmodel x n*B x dff dff x n*B x dmodel dff x dmodel x n*B

Table 4.3: Architecture-agnostic sizes of BERT GEMMs.

Finally, the proportion of linear and FC layers decreases considerably
(from 57% in FP32 to 42% in MP) compared to other operations when
executed with MP implying they benefit more from the drop in preci-
sion. These layers manifest as GEMMs (details in Section 4.2.2) and
their speedup can be attributed to both faster arithmetic (Matrix Core
Engine [20]) and smaller memory footprint.
Key observation 4.2: Linear and FC layers dominate (57%, FP32) BERT
runtime. The rest of the time is spent executing several smaller operations.
Takeaway 4.3: Reducing precision speeds up GEMMs in the dominant
linear and FC connections more than other operations, reducing their
overall contribution (42% in MP).
Takeaway 4.4: Attention operations constitute a very small proportion
(7% in FP32, 9% in MP) of BERT runtime.

4.2.2 GEMM Operations in BERT

Since GEMMs constitute a large proportion (55% in FP32 and 36% in MP)
of BERT’s iteration time, we next characterize these and their compute
requirements. There are three sets of GEMMs in BERT’s Transformer
layers, corresponding to the attention computations, the linear transform
operation, and the fully connected layers.

As illustrated in Figure 4.3 (within the dotted box), the attention head
takes the query (qn) and key (kn) vectors of all the tokens in the input and
calculates the attention score (an) between every token pair through the
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Figure 4.3: Computations in the Attention layer.

product of their respective query and key vectors using a GEMM. Since
there are h independent attention heads working in parallel, there are h

GEMMs executed in parallel per input sequence (h = 2 in Figure 4.3).
Furthermore, since a training iteration operates on a mini-batch (B) of
inputs, there are B ∗ h GEMMs invoked as a single batched-GEMM kernel
(Attn. B-GEMM in Figure 4.2 and Attn. Score in Table 4.3). The attention
scores are then used to calculate the weighted sum (yn) of all value vectors
(vn) in the input sequence, also invoked as a batched-GEMM (Attn. O/p
in Table 4.3) with B ∗ h parallel GEMMs. While there are several (B ∗ h)
parallel GEMMs in this operation, each of them is quite small (dimensions
of n and dmodel/h).

To enable multiple attention heads, the query, key, and value vectors of
the tokens are first linearly projected (outside the dotted box in Figure 4.3,
left) into h smaller (dmodel/h) feature vectors. All the token vectors of
all the input sequences in a mini-batch are usually combined into a single
(B ∗ n) x dmodel matrix. Thus, unlike in RNNs, a batch size of one does
not lead to matrix-vector operations in Transformers. Using the learned
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Figure 4.4: Arithmetic intensity of BERT’s training GEMMs. It shows that
not all of BERT’s GEMMs are equal.

Weights (Wk, Wq, Wv), the tokens are linearly projected via three different
GEMMs which dominate the attention layer runtime (Linear GEMMs in
Figure 4.2 and Table 4.3). These GEMM outputs are then split to create
the query, key, and value vectors for each of the attention heads. The
concatenated outputs of the attention heads are also projected back using
Wo (outside the dotted box in Figure 4.3, right). Finally, the FC layers use
their learned Weights (4× the linear weights) to operate on the output of
the attention layer. This creates two large FC GEMMs (Table 4.3 FC-1 &
FC-2) which dominate the execution time of the FC layer (Figure 4.2).

Usually, larger, and squarer GEMMs perform better on modern ac-
celerators by leveraging the highly parallel accelerator’s compute power,
exploiting data reuse, and better hiding memory latency. However, not
all of BERT’s GEMMs and B-GEMMs fit this paradigm. We analyze this
by using the arithmetic intensity (ops/byte) of all GEMMs (labeled as
transposeA, transposeB,M,N,K, [batch]) in a BERT’s Transformer layer
(Ph1-B-32-FP32) as shown in Figure 4.4. An algorithm’s arithmetic inten-
sity is the number of operations it performs for every byte of data read.
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If it performs very few operations on each byte of data, it will likely be
bottlenecked by memory bandwidth and vice-versa. It is an important pa-
rameter used to gauge if operations benefit from more compute, or higher
memory bandwidth. Figure 4.4 shows that while the FC GEMMs are large
and extremely compute-intensive, the linear transform GEMMs are not,
with 4× smaller matrix dimensions and smaller ops/byte ratios. Further-
more, the attention layer’s B-GEMM matrices are even smaller, leading to
extremely low ops/byte ratio. We further plot their memory bandwidth
requirements normalized to the maximum bandwidth achieved by any
BERT operation (i.e., element-wise or EW multiply) in Figure 4.5. Attn.
GEMMs have much higher (70%) memory bandwidth requirements com-
pared to the other GEMMs (only 20%), making them memory-bound in
contrast to the commonly occurring compute-bound GEMMs in DNNs.
Takeaway 4.5: GEMM dimensions in BERT are a multiple of the input
token count (i.e., B ∗ n), and layer’s hidden size (dmodel or dff) and
scale with these parameters. Unlike RNNs, a B of one does not lead to
matrix-vector operations.
Takeaway 4.6: Not all GEMMs in BERT are equal. Smaller, skinnier
GEMMs in BERT’s attention layer are memory-bound and can under-
utilize highly parallel accelerators.

4.2.3 Non-GEMM Operations in BERT

In Section 4.2.1, we observed that 45% (FP32) and 64% (MP) of BERT’s
training time is spent executing non-GEMM operations. Thus, accelerators
for BERT-like models must optimize both GEMMs and these operations.
There are four parts of BERT pre-training where we observe these opera-
tions: (1) LAMB, (2) scale, mask, dropout (DR) and softmax, (3) GeLU
activation, and (4) DR, residual connection (RC), and layer normalization
(LN). Input and output layer operations are omitted as they are a small
proportion, especially as model sizes grow (Section 4.3.2). Figure 4.5
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Figure 4.5: BERT op’s arithmetic intensity & bandwidth requirements
(SM=Softmax in this figure).

includes memory bandwidth requirements and ops/byte ratios of the four
phases.
LAMB Updates: The LAMB algorithm described in background Sec-
tion 2.4.2 is 7-25% of BERT’s iteration time, and can further increase with
increasing model size (Section 4.3.2), smaller token size per iteration, or
MP training. It is implemented as two stages in [184]. LAMBStage1 (Fig-
ure 4.5) determines the update values and learning rate multiplier using
additional momentum (m) and velocity (v) states from past iterations
and gradients of the current iteration (all of which are the same size as
the model parameters being updated, shown as MxN of the BWD Grad.
Weight GEMMs in Table 4.3). This stage performs multiple EW add, mul-
tiply, divide, scale, and square-root operations on these parameters and
therefore, has very low arithmetic intensity (Figure 4.5) making it memory
intensive. The second stage (LAMBStage2 in Figure 4.5) updates model
weights with stage 1’s output also using multiple EW operations and has
similar memory characteristics to stage 1. These two stages are executed
for each layer, and access the corresponding layer’s data (weights, gradi-
ents, and optimizer parameters). Therefore, each set has no data reuse
across kernels (its impact on kernel fusion is discussed in Section 6.1).
Moreover, LAMB must perform the L2 Norm (reduction) across all the
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model’s gradients before it can update any parameter, which serializes the
model update with respect to the entire model backprop.
Takeaway 4.7: The memory-intensive LAMB optimizer reads 4× more
data than the model size and has few EW operations.
Scale, Mask, Dropout & Softmax: The attention head generates attention
scores between token pairs. These scores are normalized and operated on
by a mask, softmax, and dropout functions (Scale+Mask+DR+Softmax
in Figure 4.2) before being used to calculate the weighted representation
of each token in the input. The normalization kernel multiplies each
element of the input matrix with a constant value. The mask and DR
operations, invoked as separate kernels, involve an EW add and multiply of
the activation matrix with a mask and DR matrix, respectively. Therefore,
all three perform only a single operation on each data read. Finally, softmax
performs a series of EW operations on the input matrix, which improves
its arithmetic intensity, but it is still not very compute intensive. Thus,
these operations have high memory bandwidth requirements (Figure 4.5).
GeLU: GeLu activation [92] is executed between two FC GEMMs and
consists of a series of EW add, multiply, divide, and ERF (error function)
as shown in Equation 4.1:

GELU(x) = x ∗ 1
2 ∗ [1 + erf(

x√
2
)] (4.1)

When invoked as separate kernels, these operations have very low ops/byte
ratios, as shown in Figure 4.5. Along with the large input activation size
(output of FC GEMM), this makes these kernels memory bandwidth
bound.
Dropout, Residual Connection, & Layer Normalization: Outputs of the
FC and attention sublayers are applied the DR, RC, and LN (DR+RC+LN
in Figure 4.2) function as shown in Figure 2.3(b) (Add & Norm). DR
randomly sets activation elements to zero using an EW multiply. RC does
EW addition of the input to the output of a sublayer. Thus, these kernels
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have an arithmetic intensity of less than one (Figure 4.5). Finally, LN [33]
is a reduction operation and requires calculation of mean/variance of
rows/columns, followed by a few EW operations. However, it still has a
very low arithmetic intensity as shown in Figure 4.5. Consequently, these
kernels are memory bandwidth bound.

While LAMB kernels remain unchanged in MP training (since up-
dates are in FP32), most other memory bandwidth bound kernels speed
up by 1.5 − 1.9× in MP. However, this speedup is much smaller than
GEMMs, thereby increasing the relative proportion of these operations in
MP training. Thus, non-GEMM operations become even more important
to optimize for when training with reduced precision.
Takeaway 4.8: BERT has multiple memory-bound elementwise operations
that make up to 30% of its (FP32) runtime.
Takeaway 4.9: Optimizing memory-bound operations is even more im-
portant for BERT’s reduced precision training, where they make up 46%
of all operations.

4.3 Effects of Hyperparameter Sweep
Most Transformer-based NLP models have a similar structure to BERT
and vary largely in their model/input sizes (discussed in Section 2.2.2).
However, Transformer training characteristics can change as models get
larger and deeper, with evolving hyperparameters like Transformer layer
count, hidden dimension, mini-batch and sequence length. Thus, we next
analyze and characterize the impact of these hyperparameters on BERT’s
execution profile.
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4.3.1 Input Size: Mini-batch Size (B), Sequence Length
(n)

B and n impact training convergence and throughput. Increasing B im-
proves throughput but may hurt convergence, especially in data-parallel
training (Section 4.5). Conversely, increasing n improves accuracy but
increases training costs. B and n decide the token count processed in a
BERT iteration. Thus, increasing them increases the total computations
in the forward and backward gradient calculations while keeping the
parameter update computation (which only depends on model size) con-
stant. Figure 4.6 highlights this: as B ranges from 4 to 32 LAMB updates
constitute 25% to 7% of training time.

Within the Transformer layer the input size’s impact varies across lay-
ers/operations. The impact depends on the layer type and its relationship
with the input. For example, a layer with a MxNxK GEMM has operations
proportional to M ∗N ∗K. Thus, increasing any dimension would linearly
scale operation count. Since B ∗ n forms one of the Linear and FC GEMM
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dimensions (Table 4.3), their operations scales linearly with B or n. This
is similar to its impact on other operations (e.g., EW, reduce) which op-
erate on activations with one of the dimensions as B ∗ n. The number of
GEMMs in attention B-GEMMs, and thus its runtime, also scale linearly
with B (Table 4.3). Thus, the breakdowns of the Transformer layers with
a constant n (128) but varying B (from 4 to 32) remains largely the same
in Figure 4.6.

The efficiency of operations at each size also impacts the proportions:
for higher Bs, attention and DR+RC+LN proportions drop, while FC’s
increases. Operations with small matrices may not be able to utilize the
accelerator’s peak throughput and/or memory bandwidth. A smaller B∗n,
along with 4× smaller hidden dimension, can lead to smaller matrices in
attention and DR+RC+LN layer as compared to the FC layer. Accordingly,
increasing B (from 4 to 16 in Figure 4.6) improves the size of matrices,
which improves these layers’ throughput more than others, causing their
overall runtime proportion to drop. The benefits, however, diminish with
further increase in B.

Changing n has a similar impact as B, except attention operations (B-
GEMMs in Table 4.3 and Scale+Mask+DR+SM) scale quadratically with n

but only linearly with B. Thus, increasing n from 128 to 512 (and changing
B from 16 to 4 to keep token count same) increases their proportion from
7% to 17% (B-GEMMs’ proportion increases from 3% to 8%) as shown
in Figure 4.6. This also implies that, unlike B, Transformer iteration time
increases super-linearly with n.
Key observation 4.3: B impacts all layers similarly due to their linear
dependence on it. Increasing it sometimes improves throughput.
Takeaway 4.10: Higher n makes attention operations important.
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4.3.2 Model Size: Layer Count (N), Hidden Dimension
(dmodel)

BERT model size is dictated by N and hidden sizes, dmodel and dff. In-
crease in N linearly scales the count of every operation pertaining to a
Transformer layer and LAMB update (parameter count also scales lin-
early). Intuitively, this does not change the Transformer layer breakdown,
but runtime proportions of both the Transformer layers and LAMB up-
date slightly increase as operation count in the input and output layers
remain constant. Conversely, increasing layer widths (i.e., dmodel and dff)
increases the size of weight matrices and input to layer operations. Thus,
it changes two of MxNxK GEMM’s dimensions (see Table 4.3) and scales
GEMM computation count quadratically. Since other layer operations
only scale linearly with dmodel or dff, the proportion of linear and FC
GEMMs increase with increasing layer size. Figure 4.7 highlights this with
three different model configurations (C1, C2, and C3, where C2 is the
BERT-Large configuration): proportion of these GEMMs in configuration
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C3 (i.e., similar to Megatron-LM-BERT with 2× higher dmodel than C2)
is much higher than in C2. Furthermore, the "Transformer" breakdown
shows that FC runtime proportion increases compared to the attention
layer. This indicates that (similar to changing B) throughput of linear
GEMMs increase more than FC GEMMs’, causing their runtimes to scale
differently. Finally, the proportion of LAMB update increases considerably
with larger layers (34% for C3). Unlike the linear scaling with N, param-
eter count and thus LAMB operations scale quadratically with dmodel

and/or dff (if dmodel = 1024, layer parameters = 1024 ∗ 1024). Thus,
optimizing for complex optimizers like LAMB, which thus far had not
been studied in detail, is increasingly important as Transformer models
grow deeper and larger.
Key observation 4.4: GEMM and LAMB updates scale linearly and remain
important as Transformer layer counts increase.
Takeaway 4.11: GEMM and LAMB runtime proportions increase with
larger Transformer layers due to their quadratic relationship with layer
size.

4.4 Effects of Activation Checkpointing
Activation (or gradient) checkpointing helps overcome device memory
capacity issues. Instead of saving all layer activations from the forward
pass to use in backprop, it checkpoints a limited set of activations and re-
computes the others on demand during backprop. This reduces a model’s
memory capacity requirements and enables training a large model or a
model with larger B on a single device. It, however, adds considerable re-
computation overheads. We executed BERT Large training with activation
checkpointing, which checkpoints activations at four (

√
N) different points

and recomputes activations after backprop of every six Transformer layers.
This increases kernel count by ∼33% and runtime by ∼27%. However, the
breakdown within Transformer layers remains similar. Furthermore, since
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LAMB remains unaffected, its proportion drops.

4.5 Effects of Multi-device Training
Although studying BERT training on a single device is important and
reveals interesting computational behaviors, BERT is usually trained in a
multi-device environment using data parallelism (DP), a form of model
parallelism called tensor slicing (TS), or both (Section 2.3). Thus, in this
section we first describe our profiling strategy for multi-device training.
Next, we characterize training BERT Large on 128 GPUs using DP and TS
(Megatron-LM [256] with 2-way and 8-way TS) approaches.

4.5.1 Modeling Multi-device Training
We construct per-device execution profiles in a distributed setting by build-
ing an analytical model from a single GPU’s data. We use an analytical
model because the publicly available BERT implementations are not op-
timized for multiple devices. For example, they do not overlap gradient
computation and communication in DP training, without which network
communication becomes a bottleneck. Thus, to avoid drawing incorrect
conclusions we instead model the behavior analytically to take optimiza-
tions like these into account. This model also allows us to study different
multi-device configurations and can project performance for hypothetical
GPU/network improvements. We briefly describe how we model DP and
TS training below:
Modeling Data Parallelism: Since DP training replicates the model on
every device (described in Section 2.3.2), the per-device computation
matches single-device training. Additionally, an all-reduce operation gath-
ers each device’s gradients (during backprop). To estimate all-reduce’s
communication costs, we use the gradient sizes and ring all-reduce algo-
rithm [80]. To estimate communication time, we divide the gradient sizes
by the communication bandwidth assuming PCIe™ 4.0. Finally, since
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the communication and computations of different layer’s gradients are
independent, they can be overlapped (e.g., layer L’s gradients are commu-
nicated while the device calculates gradients for layer L−1). We model this
overlap by taking the maximum of the computation and communication
times for every pair of consecutive layers.
Modeling Tensor Slicing: Megatron-LM splits most of the layer’s op-
erations across all devices as described in Section 2.3.3. Some involve
splitting of weight matrices horizontally, while others are split vertically.
The remaining layers (e.g., LN) are replicated across devices to reduce
communication overheads. Figure 2.4(b) and (c) illustrate this change for
the FC layer operations sliced across two devices. To model TS computa-
tions, we execute BERT operations with the expected input dimensions
after splitting and replicating the layers. Since each device only updates a
fraction of the weight matrices, the LAMB operations are also split equally
amongst the GPUs. Finally, there are four all-reduce operations executed
per forward and backward pass of a Transformer layer. We estimate this
communication time using the approach described above. However, unlike
in DP, these all-reduce operations cannot be overlapped with computations
due to data dependencies.

4.5.2 Multi-GPU Training Profile

Figure 4.8 compares the execution breakdown within a single GPU partic-
ipating in different distributed training mechanisms.
Data Parallel: The per-GPU execution profiles of BERT’s DP approach
with overlap, D2 (DP, B=16 w/ overlap) in Figure 4.8, is similar to a
single GPU training, S1 (w/ B=16). This is unsurprising as each GPU
has a copy of the model and independently computes the entire forward,
backprop, and update phases. Although DP requires additional inter-GPU
communication of local gradients, this cost (except for the first layer) can
be hidden by overlapping computations and using a fast channel such
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as PCIe 4.0™. D1 (DP, B=16, w/o overlap) uses the same data parallel
approach as D2 but communicates gradients after the entire backprop,
highlighting this cost. Consequently, a significant portion of D1’s runtime
(19%) is spent communicating gradients. Recent work has also shown that
these communication overheads and redundant updates could potentially
be reduced by making each device gather a reduced copy of a subset of
gradients and only update the corresponding subset of parameters [229].
However, certain optimizers such as LAMB require normalization of all
the layers’ gradients at the beginning of the algorithm, thus requiring at
least a single device to have a copy of all gradients.
Tensor Slicing: Figure 4.8 shows the per-GPU runtime breakdown for TS
implementations: T1 (TS, 2-way, B=16) and T2 (TS, 8-way, B=64). The
reduction in parameters going from 2-way to 8-way TS enables the increase
in B. The high-level iteration breakdown of T1 is similar to S1, single-GPU
training with the same B (16). However, there are two differences. First, T1
spends considerable time (9%) communicating activations and gradients.
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Second, LAMB’s proportion scales by half as each device is responsible
for half of the model’s parameters. These changes are more prominent in
T2 which uses eight devices. The communication costs increase to about
42% due to the larger volume of data communicated (due to its larger
B). Moreover, the proportion of LAMB is negligible in T2 with 8-way
partitioning of parameters and is unaffected by an increase in B. As device
count continues to increase, this trend continues since the total data traffic
increases with device count while the per-device computations scale down
proportional to device count and any scaling of B to improve per-device
computations would also scale the communication volume. Finally, T2
also highlights that the proportion of replicated layers (DR+RC+LN),
which are memory-intensive, increases with device count.
Key observation 4.5: The compute and memory-bound operation break-
down in a data-parallel, multi-GPU setting is similar to single-GPU train-
ing due to data parallel’s ability to overlap most communication with
computation.
Takeaway 4.12: Proportion of memory-bound LAMB updates drops for
model-parallel, multi-GPU training as parameter count per device scales
inversely with device count.
Takeaway 4.13: The communication volume (and runtime) increases
with tensor-sliced devices due to a larger B.

To validate our analytical model, we compared our observations to
prior work and found the takeaways to be similar [236, 256]. Megatron-
LM observed near-linear scaling as they increase the number of devices in
the DP training of BERT, implying little impact from synchronization and
communication. Similarly, ASTRA-SIM show that using a DP approach
for some ML algorithms can provide a near-perfect overlap of commu-
nication and computation, although this can change if compute speeds
up much faster than communication. These observations are in line with
our observation 4.5. Furthermore, Megatron-LM also shows that BERT
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training’s scaling efficiency drops with more TS devices due to increased
communication overheads. This is also in line with our Takeaway 4.13.

Although we assume a homogeneous topology and network band-
width, our takeaways also hold for non-homogeneous networks. Commu-
nication costs will not change for DP since communication and compute
are overlapped. Although TS is more sensitive to communication, al-
gorithms are often optimized for the underlying substrate (e.g., TS is
usually employed within a node for higher bandwidth). Furthermore,
while non–homogeneous networks within a node can change absolute
communication cost (bottlenecked by the slowest connection), increasing
cost with additional TS devices would still hold.

4.6 Discussion

4.6.1 Other Accelerators

While our analysis largely focused on a GPU, by focusing on platform-
independent analysis, our takeaways can also guide BERT or other Trans-
former analysis on other devices or accelerators. Most of the observations
(4.1, 4.4, 4.5) and takeaways (4.1, 4.2, 4.5-4.7, 4.11-4.13) are architecture-
agnostic, only depending on BERT’s architecture and the manifestation,
size, computational complexity, and arithmetic intensity of its training
operations. Thus, they hold regardless of the profiled accelerator. For
example, analysis of BERT inference on CPUs shows that observation
4.1, which is purely based on model architecture, is also applicable to
CPUs (differences between BERT training and inference are discussed in
Section 4.6.2) [63]. Although some takeaways (e.g., 4.8) about operation
runtime distribution might differ across accelerators, one can approximately
extrapolate these proportions to another device by comparing the device’s
compute and memory bandwidth ratios. For example, the measured pro-
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portion of memory-bound and GEMM operations on an AMD Instinct™
MI100 GPU are similar to other commercial GPUs with similar compute
and bandwidth ratios [102]. While differences in GPU architectures can
also impact this distribution, we believe they would be small enough
to not alter the application’s compute- or memory-boundedness. This
demonstrates the value of architecture-independent takeaways and using
any particular device only secondarily. Finally, since compute generally
improves faster than memory, takeaways (4.7, 4.8, 4.9) involving the mem-
ory boundedness of BERT operations will either hold or be amplified in
current and future accelerators.

4.6.2 BERT Fine-tuning & Inference

Although we focus on BERT’s pre-training phase, our takeaways also hold
for fine-tuning since the latter uses the same training techniques and model
with changes only to the output layer (which is often simpler and thus
negligible). For example, the output layer of SQUAD (Q&A) [231] is sim-
pler than tasks BERT is pre-trained for, requiring fewer GEMMs and thus
making it a negligible component of SQUAD fine-tuning. Importantly,
just like pre-training, the Transformer layers still dominate the runtime.
BERT’s inference differs from pre-training since the former does not re-
quire backpropagation and parameter updates. Since backpropagation
has approximately 2× more operations as a forward pass with similar
properties, the breakdown of the Transformer layer’s execution during
inference would remain similar to pre-training. However, the high-level
breakdown of an inference iteration would not include LAMB updates.

4.6.3 Other NLP Models

Although several Transformer-based models have been proposed after
BERT, we focus on BERT as it embodies several of the essential trends that



84

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

FWD BWD-Grad FWD BWD-Grad

Ph2, B=4 Ph1, B=32

Sp
e

ed
u

p
 (

o
ve

r 
3

S) 3S 3F

Figure 4.9: Impact of fusing 3 Linear GEMMs (3F vs. non-fused serial, 3S,
execution).

[AMD Official Use Only - General] 1024 2048 1024X =

X =
X =

1024

Weights Inputs Outputs

1024
X =

3072

Weights Input Output
Fusion

2048 2048 2048 3072

Figure 4.10: Fusion of Attention linear GEMMs in BERT.

are important when optimizing accelerators for these networks (discussed
in Section 2.2.2). Furthermore, our analysis on the impact of larger and
deeper models as well as of different input sizes (Section 4.3) capture
future Transformer trends.

4.6.4 Optimizations for BERT

• GEMM Fusion: Fusing multiple smaller, independent GEMMs with
a common input matrix into a single, large GEMM is another com-
mon optimization (Section 2.4). Figure 4.10 shows how the indepen-
dent linear transform GEMMs of the attention layers can be fused.
Since these GEMMs operate on the same input matrix and their re-
spective weight matrices, Wq,Wk, and Wv (Figure 4.10, left), they
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can be fused such that the weight matrices are concatenated, and
the input matrix is read once (Figure 4.10, right). The output of this
GEMM is simply the output of the three individual GEMMs concate-
nated, which can be split for subsequent use. Figure 4.9 examines
the impact of this fusion on both FWD and BWD Grad. GEMMs of
the linear layer. Fusion improves performance by up to 62% by en-
abling reuse of the common input matrix and increasing parallelism
by using a larger matrix dimension. Its impact is higher when the
input matrices are small (smaller token count or hidden dimension).
Along with data layout improvements, such fusion can speed up
BERT training considerably [102].

• GEMM Accelerators: A dynamically configurable accelerator would
be well positioned to process the diverse sets of GEMMs. As shown in
Section 4.2.2, GEMMs corresponding to BERT’S different sub-layers
have different characteristics. While some GEMMs, such as those in
the FC layer, are larger and compute-bound, others, such as those
of the attention-heads, are small and memory-bound. Therefore, a
GEMM’s requirements can vary as its size, shape, or memory layout
change, making a single implementation and/or policy for a GEMM
accelerator sub-optimal.

• In-Network Processing: In-network processing involves acceleration
of computations by adding compute capabilities to network switches.
Such accelerators reduce the need for CPUs or GPUs to perform
network-related operations, and eliminate the interference between
computation and communication operations. In particular these
accelerators have shown considerable gains for collective operations
such as All-Reduce [130], used heavily in both model and data-
parallel distributed training (discussed in Section 4.5).
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4.7 Related Work
Characterizing DNNs: Prior work characterize ML workloads, especially
CNNs, RNNs and recommendation models. Although most focus on
inference [237, 274, 289], some also characterize training [82, 164, 295].
However, Transformer-based models, an important optimization target
for modern systems, have received less attention; especially the expensive
pre-training phase we focus on. Works that include Transformer charac-
terization either do not provide detailed runtime breakdown amongst
operations, only focus on its FC layers, or focus on inference rather than
training [84, 274, 279, 289]. Instead, we focus on detailed end-to-end
breakdown which helps in identifying LAMB or optimizer updates as
one of the important candidates for Transformer acceleration. We also
show how Transformer operations scale with varying hyperparameters
and when employing different training techniques, which can be useful to
project bottlenecks when training future Transformer models. While some
works [63, 191] examine the impact of sweeping input size on through-
put, they either do not include in-depth characterization that explains the
behavior or are focused on inference in CPUs.
Optimizing Transformers: Recent work has also designed accelerators for
Transformer-based networks. However, the relative lack of comprehensive
characterization of Transformers has led these works to overlook impor-
tant characteristics of self-attention. For example, recent works design
both efficient matrix-vector [84, 89] and matrix-matrix engines [51] to
accelerate BERT even though BERT does not execute matrix-vector opera-
tion the majority of the time, as our work shows. Unlike in RNNs where
tokens are processed one at a time, Transformer layers process all the
tokens of the input sequence in parallel. This leads to matrix, rather than
vector, operations in Transformer layers even if mini-batch is one (e.g.,
during inference) as illustrated in Figure 4.3. Although some prior work
acknowledges this property when comparing their accelerator against
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GPUs [84], it did not influence the accelerator’s design. This confusion
about matrix-vector operations in BERT underscores the necessity of our
work – understanding DNNs at an algorithmic level – before building
efficient accelerators for them. Very few works optimize for non-GEMM
operations or data-intensive phases [102], which we show have a signif-
icant runtime contribution that increases with reducing precision and
increasing layer size. Amongst non-GEMMs, complex optimizers (e.g.,
LAMB), used in modern NLPs, have received little attention; we highlight
LAMB’s bandwidth-intensive characteristics and demonstrate how near-
memory computing can help accelerate it. Finally, other works optimize
Transformer inference [53, 63, 68, 276] or memory management [239].
Near-Memory Computing for Optimizers [125]: GradPIM [125] evalu-
ated NMC for optimizers. However, they only evaluate simple momentum-
based optimizers and focus on CNNs, which have an order of magnitude
fewer parameters to update compared to NLP models.

4.8 Chapter Summary
BERT has been a groundbreaking innovation in NLP. Its accuracy stems
from its Transformer architecture, millions of parameters, and its ability
to train on enormous, unlabeled datasets. Its success has also inspired
several popular models that are larger but have a similar structure to
BERT. However, training these models is expensive due to their large
compute and memory requirements. They pose challenges to system
designers that must be met through deeper understanding of algorithmic
behaviors as the waning of Moore’s Law changes the virtuous synergy
that has helped propel prior transformative improvements of ML and
NLP. Thus, we focus on BERT’s most expensive component, pre-training,
analyze its execution, and provide a detailed characterization that acts as
an exemplar for optimizing Transformer networks. Moreover, we further
analyze how these characteristics change with evolving hyperparameters,



88

and training techniques, including mixed precision and in a distributed
setting. Our analysis identified inefficiencies (memory-bound updates,
small/underutilizing GEMMs) in their single-GPU execution which we
address in Chapters 6 and 7. It also motivated our extended analysis of
multi-GPU communication costs in Chapter 5, which we subsequently
optimized for in Chapter 8. Overall, this characterization in this chapter
identified several acceleration opportunities for Transformer networks.
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5 tale of two cs: computation vs.
communication scaling for future transformers
on future hardware

Chapter 4 provided a detailed characterization of Transformers on a sin-
gle GPU. It also briefly explored the impact of distributed, multi-GPU,
training on BERT’s execution and showed that, while communication
from some setups can be overlapped and hidden, other setups have seri-
alized communication costs. Thus, and given the rapid scaling in size of
these Transformer models (e.g., 1000× increase in parameters) without
the necessary growth in GPU memory (only 5×) [230], it is important to
understand how compute and communication in distributed training will scale
relative to one another as both DNNs scale and hardware evolves.

To guide the design of future systems to more efficiently train future
large models, in this chapter, we perform this analysis, which we term
Comp-vs.-Comm. We perform a comprehensive multi-axial (algorith-
mic, empirical, hardware evolution) Comp-vs.-Comm analysis for future
Transformer models on future hardware. Figure 5.1 summarizes our ap-
proach. We first perform an algorithmic analysis. This analysis provides
a system-agnostic view of Comp-vs.-Comm scaling, which is important
given the wide variety of system/infrastructure capabilities, ranging from
standalone accelerators to accelerator clusters with state-of-art intercon-
nects. Our algorithmic analysis shows that the complexity of compute
operations is often higher than communication volume (data size). We
call this compute’s edge over communication. A compute-dominated
execution profile is often a positive edge because (a) traditionally, and
especially for accelerators, compute (FLOPS) scaling has received con-
siderably more attention than communication (bandwidth) scaling, and
(b) often algorithmic/system optimizations are employed to overlap com-
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Figure 5.1: Overview of Comp-vs.-Comm analysis.

munication with useful compute. Thus, compute’s edge also helps hide
communication costs. Compute enjoys this edge for both serialized and
overlapped compute and communication scenarios – both of which occur
in distributed training. However, model scaling and memory capacity
trends are stressing this edge.

To understand how compute’s edge may be impacted by future models
and future hardware, we empirically study Comp-vs.-Comm scaling. This
approach has several challenges, including requiring studying many mod-
el/hardware evolution scenarios, each of which incurs significant profiling
costs. Our empirical strategy addresses these challenges by (a) designing
controlled experiments (guided by our algorithmic analysis), (b) execut-
ing only certain regions-of-interest (ROIs) and (c) using operator-level
models which we show accurately capture runtime trends of operations
for varying hyperparameters. These enable us to study hundreds of future
models/hardware scenarios at 2100× lower profiling costs.

Our empirical strategy-driven experiments back up the conclusions
from our algorithmic analysis. Specifically, we find that the compute’s
edge over communication is stressed: up to 50% of a future Transformer’s
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training time will be spent communicating data. Furthermore, communi-
cation that is overlapped or hidden today can exceed the compute time in
future models, further increasing communication’s proportion. Moreover,
if past hardware evolution trends on the scaling of compute capability vis-
a-vis communication bandwidth continue, communication will become
an even bigger bottleneck (> 75% of training execution) on future systems.
Overall, our work highlights communication’s increasingly large role as
Transformer models scale and motivates our proposal, T3 (Chapter 8).
This chapter is based on the paper, Tale of Two Cs: Computation vs. Com-
munication Scaling for Future Transformers on Future Hardware, published in
IISWC 2023 [213].

The relevant background for this chapter is provided in Chapter 2. The
rest of this chapter is organized as follows. In Section 5.1, we motivate
the study and introduce the terminology we use to describe different
communication flavors. Next, in Section 5.2 we provide an algorithmic
analysis of communication vs computations. In Section 5.3, we describe
our strategy to empirically study communication vs computations and
discuss the corresponding results. In Sections 5.5 and 5.6 we discuss
the applicability/extensions of this work and related work, respectively.
Finally, we summarize this chapter and our key takeaways from all the
characterization work in this dissertation in Section 5.7

5.1 Motivation

5.1.1 Distributed Training Techniques and Associated
Communication

All distributed training techniques have associated communication between
devices as described in Section 2.3.1. These communication patterns are
handled by collectives as described in Section 2.4.3. In this chapter, we
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focus on all-reduce (detailed in Section 2.4.3.1), the collective used in two
of the most effective and widely adopted distributed techniques used by
Transformer models: data and tensor parallelism (described in Sections 2.3.2
and 2.3.3). We discuss the communication impact of other techniques in
Section 5.5, Beyond DP & TP.

5.1.1.1 All-reduce Communication Flavors

As described in Section 2.4.3.1, the all-reduce (AR) collective reduces
copies of data generated by all participating devices such that each device
contains a completely reduced version of the data. AR has different im-
plementations optimized for different system topologies. While the AR
collective remains the same, involving both communication and compute
(e.g., element-wise summation), in both data parallelism (DP) and tensor
parallelism (TP) setups its usage and thus its impact on the overall training
behavior differs.

5.1.1.2 Data Parallelism (DP) & Slack Advantage

As described in Section 2.3.2, devices in DP all-reduce their weight gradi-
ents during the backward training pass to keep the model copies in sync.
This all-reduce of gradients from one layer can happen asynchronously
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with the gradient calculation of another layer (Figure 5.2(a)). Thus, the
associated communication can potentially be overlapped and hidden by
computations. However, complete overlap is only possible if the execution
of computations equals or exceeds that of communication. We call this
difference in overlapped compute and communication executions of each
layer compute’s slack advantage (Figure 5.2(a)).

5.1.1.3 Tensor/Horizontal Parallel (TP) & Amdahl’s Law Edge

TP, as described in Section 2.3.3, splits model layers across devices and
requires all-reduce to generate the final layer activations and errors (illus-
trated in Figure 5.3). This implies that a layer’s forward and backward
executions are dependent on another layer’s all-reduce of activations and
errors. Thus, unlike DP, in TP compute and communication are not asyn-
chronous and communication is on the critical path of model execution
(Figure 5.2(b)). We call the difference in compute and serialized commu-
nication executions compute’s Amdahl’s Law edge (Figure 5.2(b)).

5.1.2 Why Study Evolution of Compute vs.
Communication Scaling

Although communication is necessary for distributed training, it may
limit throughput scaling with increasing device count and cause com-
pute resources to be idle when communication is on the critical path.
Further, unlike a system’s compute throughput, which accelerator de-
signers have heavily focused on, network bandwidth has not scaled as
much (e.g., 12× compute improvement versus 2× network bandwidth
improvement [130]). If compute continues to scale more rapidly, when
coupled with increasing communication volume, training future large-
scale models on future systems will be inefficient. Thus, it is important to
understand how Comp-vs.-Comm scale relative to one another as models
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scale and hardware evolves. To address this we perform a multi-axial
(algorithmic, empirical, hardware evolution) analysis of Comp-vs.-Comm
scaling which will both inform and guide future system design to better
support large-scale training of future models.

5.2 Comp-vs.-Comm: Algorithmic Analysis
We analyze compute and communication algorithmically as it provides a
strong foundation to draw meaningful conclusions about future models.
Moreover, as we demonstrate (Section 5.3), it also helps to create an em-
pirical strategy to study model scaling on future hardware using existing
hardware. Additionally, and equally importantly, it provides a system and
infrastructure agnostic view of Comp-vs.-Comm scaling – ensuring that
the takeaways are relevant regardless of studied system.
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5.2.1 Distributed Techniques Studied

Although there are other distributed techniques and technique combina-
tions, we study Transformers in the most commonly used data parallel
(DP) and tensor parallel (TP) setups [55, 256]. DP and TP are imperative
to divide and conquer large datasets and models, respectively. Further-
more, DP and TP are heavily supported in popular DNN frameworks such
as TensorFlow and PyTorch.

5.2.2 Important Hyperparameters

The size, and thus cost, of model components is dictated by a model’s hy-
perparameters [216]. As shown in Figure 5.3(a), the key hyperparameters
that impact the size of weights, and activations in Transformers are: layer
width or hidden dimension (H), input batch size (B), and input sequence
length (SL). Although other hyperparameters are tuned during training
(e.g., layer count, learning rate), they do not directly impact the size of
operations.

Distributed setups can also impact the size of operations. In DP, since
the model is replicated, operation size is unaffected. Conversely, as shown
in Figure 5.3(b)’s dotted box, TP slices the operations. Hence, the number
of devices a model is split across, the TP degree,1 also impacts operation
size. Thus, we use H,B,SL and TP to analyze Comp-vs.-Comm in an
algorithmic and hardware-agnostic manner (Section 5.2.3).

5.2.3 Amdahl’s Law Edge for Compute

As described in Sections 5.1.1.2 and 5.1.1.3, a distributed setup with DP
and TP introduces communication in the form of all-reduce. Here we
consider the TP-related communication that all-reduces partial activations.
As shown in Figure 5.4(b), this communication, hereafter referred to as

1We use TP to refer to both tensor parallelism and its degree.
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serialized communication, is on the critical path of model execution. To
assess compute’s relative edge or Amdahl’s Law edge (Section 5.1.1.3),
we find the relative contribution of all compute and serialized commu-
nication operations in a Transformer block. Since a model consists of
multiple Transformer blocks of the same size, studying compute and com-
munication within a single block is sufficient to characterize this for an
entire model. For compute, this includes matrix multiplications (GEMMs)
which represent Transformer’s key layers (attention and FC, Section 2.2.2)
and other element-wise and reduction operations that constitute the re-
maining activation functions and normalization layers. However, modern
Transformer implementations usually fuse [66, 72, 264, 275] non-GEMM
operations with the preceding GEMM to increase on-chip data reuse.

Thus, our algorithmic analysis only considers the dominant GEMMs
for compute. Since GEMMs are usually compute-bound, we evaluate
their algorithmic cost as the number of operations (multiplies and adds)
they perform: 2 · M · N · K (where M, N, and K are matrix dimensions
and are derived from model hyperparameters, as shown in Figure 5.3).
In a Transformer block, there are three key sets of GEMMs [216], with
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computational complexities (with TP) shown in Equations 5.1- 5.4 (and
in 1 in Figure 5.4(b)).

FC GEMM Ops. = 2 · (4 ·H ·H/TP · SL · B)
= O(H2 · SL · B/TP)

(5.1)

Attention GEMM Ops. = 2 · (H/TP · SL · SL · B)
= O(H · SL2 · B/TP)

(5.2)

Linear GEMM Ops. = 3 · 2 · (H/TP ·H · SL · B)
= O(H2 · SL · B/TP)

(5.3)

Total Comp. Ops. = O(H · SL · B/TP · (H+ SL)) (5.4)

For serialized communication, we consider the total bytes of data that
are all-reduced. In TP, layers’ output activations and errors are all-reduced.
Their sizes are a multiple (depending on precision) of the GEMMs’ output
matrices sizes (i.e., M ·N), and can also be represented in terms of the
hyperparameters (see Figure 5.3). In a Transformer block, there are four
serialized all-reduce operations, all with complexity shown in Equation 5.5
(and in 1 in Figure 5.4(b)).

Total Comm. Bytes = (precision/8) · (H · SL · B)
= O(H · SL · B)

(5.5)

Using Equations 5.4 and 5.5, we find the ratio between the number
of compute operations and communicated bytes in Equation 5.6. This
represents the complexity of Amdahl’s Law edge that compute has over
communication ( 2 in Figure 5.4(b)).

Amdahl’s law edge = O((H2 · SL · B/TP)+
(H · SL2 · B/TP))/O(H · SL · B)
= O((H + SL)/TP)

(5.6)
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This complexity has two implications. First, given the values of these
hyperparameters in state-of-the-art Transformers (Section 5.2.5), with (H+

SL) being always greater than TP, compute (ops) enjoys an algorithmic
edge over communication (bytes). Second, this edge can decrease if the
required TP degree increases more than the increase in (H+ SL) between
Transformer models, resulting in an overall increase in communication
proportion.

5.2.4 Slack Advantage for Compute

Similar to our serialized communication analysis, we also study DP’s over-
lapped communication that all-reduces partial gradients in backprop, as
illustrated in Figure 5.4(a). We algorithmically analyze the relative cost of
compute and overlapped communication and assess compute’s ability to
hide communication (Section 5.1.1.2). Unlike serialized communication,
analyzing overlapped communication per Transformer layer is sufficient.
Unlike TP, gradient communication occurs only in backpropagation, is
done for every layer, and is usually overlapped with gradient/error cal-
culating GEMMs. Thus, we can study the overlap efficacy by analyzing
the compute and communication at every layer during backprop. For
compute, we consider GEMMs which calculate backprop weight gradient
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and error (or input gradient); for communication we consider the weight
gradient size that is all-reduced. Absolute values of compute and commu-
nication can differ across layers: for example, with 4× layer widths, the
compute and communication costs in FC layers are 4× those of attention.
However, their complexities with respect to hyperparameters are the same.
Thus, while Equations 5.7 and 5.8 derive these complexities for the FC
layer ( 1 in Figure 5.4(b)) they also hold and summarize algorithmic
behavior for all Transformer layers.

FC weight gradient + Error GEMM Ops. = 4 · (4 ·H ·H/TP · SL · B)
= O(H2 · SL · B/TP)

(5.7)

Comm. bytes = (precision/8) · (4 ·H ·H/TP)

= O(H2/TP)
(5.8)

Slack advantage = O(H2 · SL · B/TP)/O(H2/TP)

= O(SL · B)
(5.9)

Equation 5.9 ( 2 in Figure 5.4(b)) uses Equations 5.7 and 5.8 to find
the ratio between the number of GEMM operations and total bytes com-
municated or all-reduced, and the complexity of compute’s slack (i.e.,
ability to hide communication). This SL · B factor provides compute oper-
ations additional slack to hide the cost of bytes communicated. However,
decreasing the input size (SL · B) can decrease the slack and potentially
expose communication costs.

5.2.5 Model Scaling Stresses Compute Edge/Slack

Our analysis in Sections 5.2.4 and 5.2.3 show that, algorithmically, compute
has both an Amdahl’s Law edge over serialized communication and slack
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to hide the overlapped communication. However, the extent of this edge
and slack varies depending on the hyperparameters: the edge grows as H
or SL increases but decreases if TP increases. Similarly, slack grows with
increasing B or SL. In recent years H and SL have increased considerably
across Transformer models [41, 55, 62, 167, 226, 227, 256, 263].2 As shown
in Figure 5.5, these trends are expected to continue since larger H and
SL are strongly correlated with improved model quality [227]. However,
model parameters scale quadratically with H and activations scale linearly
with both H and SL – thus increasing Transformers’ memory requirements.
Figure 5.5 uses H·H and H·SL values to show memory requirement scaling
for parameters and activations. These results show that if the trend of
linear scaling of device memory capacity continues, the gap between
available device memory capacity and models’ future memory demand
will increase. Consequently, using smaller B’s to reduce activation sizes,
and larger TP slicing to distribute parameters have become imperative to

2Although recent work has improved accuracy by increasing training token count
instead of model size [95], scaling H is still the most widely used technique to improve
model quality. Further, our empirical analysis shows that compute throughput scale
faster than network bandwidth – thus increasing communication even for a fixed H.
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limit memory pressure (detailed in Section 5.3.3.2 and Figure 5.8(b)). If
this trend in B and TP exceeds the corresponding increase in H and SL, the
resulting algorithmic edge ratios (i.e., (H+ SL)/TP) and slack (i.e., SL ·B)
can decrease, exposing additional communication on the critical path. We
show this scaling in Figure 5.6, which plots compute’s algorithmic slack
and edge over communication for all studied Transformers, normalized to
that of BERT’s. Due to a considerable decrease in B (=1), compute’s slack
has reduced by ∼75%. Similarly, if TP is scaled to fit these models (details
in Section 5.3.3.2) compute’s edge can decrease by ∼80%.

The SL ·B values for futuristic models increase as we project larger SLs
for them while B remains at the minimum of one. In reality, SL scaling is
also often limited by memory capacity and will result in the slack being
constant. Consequently, model scaling and memory capacity trends are
stressing compute’s algorithmic edge over communication.

This algorithmic analysis also does not account for the cost of executing
an operation or communicating a byte. Thus, an individual Transformer’s
compute ops to communication bytes ratio does not directly translate to
execution time ratio, and compute may actually have no/smaller edge
and slack (explored further in Section 5.3). Nevertheless, our algorithmic
analysis provides insights on how evolving Transformers affect edge and
slack.

5.3 Comp-vs.-Comm: Empirical Analysis
Thus far our analysis has shown that compute enjoys an algorithmic edge
over communication, but this edge is being stressed as models evolve
(Section 5.2). We next use empirical analysis to quantify this edge. Since
an exhaustive empirical study can be expensive, we propose a strategy
based on our algorithmic analysis that uses existing hardware to project
Comp-vs.-Comm for any future model on future hardware.
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5.3.1 Empirical Analysis Challenges

An empirical analysis must be designed carefully because model evolution
can cause an explosion of scenarios (hyperparameters) to consider and,
consequently, experiments to run. This is further exacerbated when con-
sidering hardware evolution due to many hardware parameters. Thus, it is
important to carefully identify variables of interest when designing experi-
ments to study both model and hardware evolution. Moreover, even with a
disciplined exploration of the hyperparameters and hardware parameters,
profiling costs can still be very high, especially in scenarios requiring entire
training iterations to be profiled. Thus, careful examination of the variable
space, close attention to controlling profiling overheads, and high-fidelity
model and hardware evolution designs are paramount to empirically study
Comp-vs.-Comm scaling for future models and hardware.

5.3.2 Proposed Empirical Strategy

Next, we discuss the components (Figure 5.7) of our empirical strategy to
overcome the aforementioned challenges.
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5.3.2.1 Step 1: High-fidelity Model Evolution

To effectively study Comp-vs.-Comm scaling for future models, we must
carefully consider model evolution. Section 5.2.5 demonstrated that histor-
ically models have scaled both the hidden dimension (H) and sequence
length (SL) to improve accuracy. Other hyperparameters (batch-size B

and degree of tensor-parallelism, TP) depend on a system’s resources
(e.g., compute and memory capacity). A naive but exhaustive exploration
of such a hyperparameter space will help faithfully study model evolution.
However, even after excluding unrealistic configurations (e.g., large H and
large B with a small TP), it would require running an impractically large
number of experiments.

We overcome this challenge by anchoring on our algorithmic analy-
sis. Specifically, we use the Comp-vs.-Comm scaling ratios identified in
Section 5.2 to design controlled experiments. For scenarios where commu-
nication is overlapped with computation (e.g., DP), since algorithmically
the Comp-vs.-Comm ratio is O(SL ·B), we focus on sweeping SL ·B for dif-
ferent H values to study how compute’s slack advantage scales for future
models. However, this still requires several different (from H, and SL · B)
iterations to be profiled. Furthermore, for serialized communication (e.g.,
TP), since the ratio of Comp-vs.-Comm is O((H + SL)/TP), we can only
factor out B. We identify additional strategies to tame this exploration
(Section 5.3.2.2).

5.3.2.2 Step 2: Taming Ground-truth Cost

Although algorithmic analysis helps prune the search space, further solu-
tions are needed to reduce profiling costs. Accordingly, similar to prior
work [217] we use application understanding to identify and study only
specific fractions of executions where possible. When entire iteration times
are required, we rely on high-fidelity operator-level models to project the
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Parameter / Setup Value
H 1K, 2K, 4K, 8K, 16K, 32K, 64K

{B}, {SL} {1,4}, {1K, 2K, 4K, 8K}
{TP degree}, {DP degree} {4, 8, 16, 32, 64, 128, 256}, {Any}

Table 5.1: Parameters and setup of models studied.

runtime of different Transformer configurations without actually running
them. We further explain these strategies below.
Step 2.a: Region of Interest (ROI) Extraction: As discussed in Sec-
tion 5.2.4, to study overlapped Comp-vs.-Comm (e.g., in DP) it suffices to
extract the specific compute (e.g., GEMMs) and communication fractions
(e.g., all-reduce) which will manifest for future models and profile the
execution of only these regions in hardware. These controlled experiments
help us study how compute’s slack, to hide communication, will evolve as
models scale and hardware evolves, and avoids the cost of running the
entire training iteration for all configurations of interest.
Step 2.b: Operator-level Models: For serialized Comp-vs.-Comm (e.g.,
in TP), executing ROI regions is insufficient. To quantify how much Am-
dahl’s Law edge compute enjoys over communication, it is necessary to
study entire training iterations. However, we observe that building high-
fidelity operator-level models and combining their results can help us
project entire network behavior. Specifically, for every operator in the
Transformer layer’s execution that repeats during a training iteration (e.g.,
GEMMs and layer-normalization), we use algorithmic analysis to iden-
tify hyperparameters that affect its execution time. Given the operator’s
execution time for a hyperparameter configuration, we can project the
execution time for any different set of hyperparameter values. Thus, these
operator-level models project Transformer behavior for a wide variety of
hyperparameter values without significant profiling costs. Moreover, our
evaluation (Section 5.3.3.8) shows that these operator-level models are
reliable and accurately capture the behavior of operations with changing
hyperparameters.
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5.3.2.3 Step 3: High-fidelity Hardware Evolution

Similar to model evolution, a disciplined hardware parameter search space
is equally important. Accordingly, we identified the key drivers impor-
tant to Comp-vs.-Comm scaling: compute throughput (FLOPS), network
bandwidth, and memory bandwidth. Of these, we focus on the first two
factors. Although communication performance is impacted by all three fac-
tors, efficient communication primitive (e.g., all-reduce) implementations
are pipelined. Thus, they can overlap memory accesses with network trans-
fers – and since network transfers usually dominate, memory bandwidth
has a relatively smaller impact. Moreover, while compute operations de-
pend on both compute FLOPS and memory bandwidth, key Transformer
operations (e.g., GEMMs) are often compute-bound (e.g., Gshard reports
>85% peak FLOPS utilization [146]) and have low memory bandwidth
utilization [216]. Thus, we focus on compute FLOPS and network band-
width, specifically on their relative scaling ratios based on historical data
for GPUs from different vendors (discussed in Section 5.3.3.6).

5.3.2.4 Benefits Compared to Exhaustive Profiling

Our empirical strategy reduces execution and profiling costs (Section 5.3.3.8)
of Comp-vs.-Comm analysis for future models on future hardware. First,
our algorithmic analysis helps identify a subset of hyperparameters to
sweep, limiting the combinations to consider (SL · B rather than indi-
vidually sweeping SL and B). Second, the operator-level models enable
projection of iteration times for many (196) different configurations us-
ing the execution and profiling of a single iteration. Finally, focusing
on specific ROIs avoids executing end-to-end iterations for overlapped
communication.
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5.3.3 Observations from Experimental Analysis

5.3.3.1 System Setup

We run experiments based on our empirical strategy using a system with
an AMD Ryzen™ Threadripper™ CPU and four AMD Instinct™ MI210 ac-
celerators (GPUs) [25] (Figure 5.8(a)), each with 64GB HBM3. The GPUs
are fully connected using AMD Infinity Fabric™ links with bidirectional
link bandwidth of 100GB/s. These links form multiple rings, providing
a peak ring all-reduce bandwidth of 150GB/s. We also calibrated our
system’s performance and found it was similar to prior work using other
commercial systems [107]. Finally, our software stack uses AMD’s open
source ROCm™ version 5.2 [18] with PyTorch v1.7, the rocBLAS [14]
BLAS library, and the RCCL [10] communication collectives library.

5.3.3.2 Models & Cluster Setup

To study a range of Transformers (Figure 5.5) we evaluate the hyperpa-
rameter combinations and distributed setups listed in Table 5.1.

3Given the fast-evolving GPU space with improved ML-specific optimizations built
into each generation, we use a setup with the latest available GPU for ML at the time.
Thus, the GPU used for studies in this chapter differs from those in Chapters 3 & 4.
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Model Setup (H, B, SL): Scaling Transformers typically involves scaling H

and SL [227]. Thus, for H we examine power-of-two values up to 16K and
for SL up to 2K, as they represent a wide spectrum of modern Transformers.
Additionally, to project future model behavior we scale H to 32K (Future-1
with 1 trillion parameters) and 64K (Future-2 with ten trillion parameters)
with SLs of 4K and 8K, respectively. For B, we consider small values of
one and four. Smaller Bs (and larger TPs discussed in Section 5.2.5) are
required to bridge the large gap between required and available memory
capacity (Section 5.2.5). In fact, most modern larger models (e.g., MT-
NLG [263] and PALM [55]) already use the smallest B of one.
Training Cluster Setup (TP degree, DP degree): We study a range of TP
and DP degrees:
TP degree: We determine the appropriate TP range based on modern
Transformer setups. We start with the 3.9B parameters Megatron-LM
model (Mega.-LM_BERT), the first publicly known Transformer to use
tensor-parallelism with TP of eight. To estimate the TP for a future Trans-
former, we consider device memory capacity and model size. Assuming a
capacity of eight devices (=baseTP) is required for Mega.-LM_BERT, we
estimate a larger model’s TP by scaling up baseTP by the ratio (p) of its
model size compared to that of Mega.-LM_BERT. To account for potential
device memory capacity increases in the same time period, we divide the
projected TP by the memory capacity scaling ratio (s) in that time period.
Thus, the required TP degree is baseTP ∗ (p/s). Figure 5.8(b) shows the
scaling of Transformers, and device memory capacities, as well as the
resulting scaling of TP (p/s) required to fit the Transformers, all normal-
ized to Mega.-LM_BERT. Since memory scaling (16GB [9] to 64GB [25])
has not been proportional to Transformer model scaling (8.3B [256] to
540B [55]), TP needs to be scaled by 40-60×. With a baseTP of eight, this
implies that the required TP degree can be ∼250-550. Although TP has
increased over the last few years as models scale, considerable innova-
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tions in interconnect technology will be necessary to realize such large
TPs. Furthermore, pipeline parallelism can also be relied on to limit TP.
Consequently, we study a range of TP values up until 256.
DP degree: Our data-parallel empirical analysis is largely agnostic to
DP degree. Unlike TP, compute FLOPS and overall communication size
are not dictated by DP degree. Furthermore, while we use a four-GPU
(N = 4) setup, it also provides us with a reasonable, albeit conservative,
estimate of communication time on larger setups because (ring) all-reduce
traffic scaling is small at large device counts ((N − 1)/N is ∼ 1 for large
N). However, increasing device count also increases synchronization cost
between devices, causing the actual communication time to be slightly
higher. Furthermore, DP training is usually setup on large-scale multi-
node, often heterogeneous, systems with slower inter-node links. Since
we did not have access to any of these machines, we instead optimistically
estimate the communication times using intra-node links and discuss the
implications of this in Section 5.3.3.7.

5.3.3.3 Profiling Setup

For the overlapped communication analysis, as discussed in Section 5.3.2.2
we extract relevant regions from training iteration (compute and communi-
cation operations) and execute only these relevant regions for all possible
hyperparameter combinations under consideration (Table 5.1). Although
in reality they execute concurrently, we execute and study them in isolation
to avoid interference slowdowns from shared resources and to understand
their optimal characteristics in isolation. For serialized communication
analysis, we first profile BERT [62] training iterations on a single GPU as
a baseline. Next, we employ our operator-level models (Section 5.3.2.2)
to project training runtime for hundreds of Transformer configurations.
Finally, we use rocProf [12] to measure GPU kernel execution times.
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5.3.3.4 Amdahl’s Law Edge Analysis

Using our empirical strategy (Section 5.3.2), hyperparameter trends (Sec-
tion 5.2.5), and estimated TP values (Section 5.3.3.2), we project the pro-
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portion of serialized communication as compared to compute. Figure 5.9
shows the fraction of Transformer training time spent on communica-
tion for a subset of varying H, SL, and TP values. It includes a medium
Transformer (∼T-NLG [167]), one of today’s largest publicly-known Trans-
former models (∼PALM [55]), and a futuristic Transformer (Future-2).
For a fixed H and SL · B (a line), the communication proportion increases
with increasing TP. Conversely, with fixed TP it decreases with either
an increasing H or SL. These trends mirror our algorithmic takeaways
(Section 5.2.3). Furthermore, the communication fraction is considerable
and increases as models scale. Models of different sizes require different
TP values to train (discussed in Section 5.3.3.2). While a TP degree of 16
can potentially suffice for a model with H = 4K (e.g., T-NLG), it has to
be scaled for larger models (e.g., TP of 64 for H of 16K). These parameter
combinations are highlighted in blue in Figure 5.9 and show that commu-
nication increases to a considerable 50% of the execution time for a model
with H = 64K (Future-2). This trend also correlates with our algorithmic
takeaways (Section 5.2.3): with SL constant, and similar scaling of H and
TP, the denominator of (H+SL)/TP scales much more, causing compute’s
Amdahl’s Law edge to decrease.

5.3.3.5 Slack Advantage Analysis

We estimate the fraction of time that communication is overlapped with
compute using our empirical strategy (Section 5.3.2) and hyperparameter
trends (Section 5.2.5). This helps estimate both how well compute’s slack
advantage can hide communication costs and how this slack scales. More-
over, these estimates hold irrespective of the degree of DP. Figure 5.10
shows that the overlapped time decreases as the product of SL and B

(SL · B in Figure 5.10) increases, similar to our algorithmic takeaway in
Section 5.2.4. Additionally, the overlap percentage is higher at smaller
H, causing smaller remaining slack. Our algorithmic analysis did not
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account for this since it is an artifact of hardware execution. Additionally
smaller H, and thus smaller communication sizes do not fully use the net-
work bandwidth capacity of devices that larger sizes can. This results in a
sub-linear increase in communication costs until the network bandwidth
saturates. Conversely, compute operations are large enough to saturate
compute FLOPS. Thus, the slower communication at smaller sizes creates
a larger overlap and leaves less compute slack.

Furthermore, the communication overlap percentages are very high,
ranging from 17% to 140% for the range of H,SL, and B values, with a
fixed TP degree of 16 and irrespective of the DP degree. In particular, the
highlighted blue region shows that for the common SL · B value of 4K,
across a range of models, communication forms 20-55% of compute time,
leaving smaller compute slack. Moreover, this percentage is likely to be
much higher if this communication occurs in large multi-node setups with
slower network links than the high-bandwidth intra-node links we study.
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5.3.3.6 Future Hardware Analysis

Thus far we have estimated the Comp-vs.-Comm costs while training
Transformers on current systems. However, evolving hardware can change
these estimates and shift application bottlenecks. Thus, we next estimate
the Comp-vs.-Comm costs for future systems, using past hardware trends
to help inform future system design. First we estimate the relative scaling
of compute FLOPS versus network bandwidth, which we call flop-vs.-bw.
This value varies across GPU generations as well as vendors. Between 2018
and 2020, compute FLOPS scaled by ∼5× [188, 194] and ∼7× [9, 21], while
corresponding network bandwidth scaled only by ∼2× [188, 194] and
∼1.7× [9, 21], respectively. This implies that compute FLOPS have scaled
relatively more than network bandwidth: by ∼2-4×. We use these relative
flop-vs.-bw ratios to scale the compute time estimated in Sections 5.3.3.4 and
5.3.3.5 and project its resulting slack advantage and Amdahl’s Law edge
over communication. Reducing precision can further disproportionately
scale compute FLOPS more than network, causing this ratio to be much
higher (discussed further in Section 5.5, Number-formats).
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Figure 5.12 shows that, with 2× and 4× flop-vs.-bw scaling, serialized
communication starts to dominate training execution. The range increases
from 20-50% to 30-65% and 40-75%, respectively, for the configurations in
Section 5.3.3.4. Similarly, compute acceleration also reduces, or even elimi-
nates, compute’s slack to overlap communication. Figure 5.11 shows that
the overlapped communication is 50-100% and 80-210% of compute time
with 2× and 4× flop-vs.-bw scaling, and communication is exposed (i.e.,
on the critical path) in many cases (when >= 100%). Furthermore, these
communication percentages will increase in inter-node setups (discussed
in Section 5.3.3.7). Thus, if similar trends in hardware evolution continue,
communication will become a critical bottleneck in training Transformers.

5.3.3.7 End-to-end Comp-vs.-Comm Case Study: Combining
Serialized & Overlapped Communication

Figure 5.13 shows the combined impact of both TP and DP for a large
futuristic Transformer model. 47% of time is spent on serialized commu-
nication while 9% is spent on overlapped communication. Since the latter
is completely hidden by independent (backprop GEMM) computations,
47% of the overall communication is on the critical path.

Lower inter-node communication bandwidth and interference slow-
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Figure 5.14: Effectiveness of Operator-level modeling.

down also affect overlapped communication (∼8× [235]). The former is
pertinent since portions of DP’s overlapped communication may be sent
over inter-node links. The latter is pertinent since communication can
potentially slow down due to interference during its concurrent execution
with compute [235]. The third scenario in Figure 5.13 shows their im-
pact – DP-directed communication is no longer completely hidden. Thus,
with TP-directed communication serialized and DP-directed communica-
tion only partially overlapped, total communication will become a larger
bottleneck for future Transformer training.

5.3.3.8 Evaluating Operator-level Model

Hardware execution of all models and system setups can provide a more
accurate Comp-vs.-Comm analysis. Although ROI extraction makes this
possible for the overlapped communication study in DP, measuring the
end-to-end model breakdown in order to evaluate serialized communi-
cation for all configurations is impractical. Thus, to study the end-to-end
breakdown of a future model’s training execution we project the runtime
of all its individual components using our operator model (Section 5.3.2.2).
Here we evaluate the approach’s effectiveness and benefits:
Accuracy: To evaluate the operator-level model’s effectiveness, we compare
the projected runtimes of operations and communication against those
measured on hardware while sweeping hyperparameters and data size,
respectively. Figure 5.14 shows this comparison for three operators which
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cover a spectrum of Transformer hardware characteristics: compute-bound
GEMMs, memory-bandwidth bound LayerNorm, and the all-reduce com-
munication collective. For GEMM and LayerNorm, we show the projected
and measured execution times for different hyperparameter (H, SL) val-
ues. For all-reduce, we compare them for a range of array sizes. These
results are normalized by the measured execution time of the operation
(or communication) using the base hyperparameter (or array size) used
for projections.

Figure 5.14(a) shows how linearly scaling Transformer GEMMs’ run-
times with SL accurately captures their hardware behavior as SL varies.
Similarly, scaling GEMM’s runtime quadratically with the H (layer width)
captures hardware trends with increasing H. However, individual errors
in projecting GEMM runtimes are not negligible as operator efficiency
changes with input size. Generally, GEMM efficiency improves as input
sizes increase, causing runtime scaling ratios to be smaller than the ratios
of input sizes. This pattern continues until GEMMs achieve near-peak
efficiency, after which runtime scaling becomes analogous to input size
scaling. Thus, errors with projecting future GEMM runtimes using a small
operation size as the baseline can be large. Although we use BERT as the
baseline model, its GEMMs do not achieve peak efficiency. This results in
the projected GEMM runtimes for future models to be higher, as demon-
strated in Figure 5.14(a). Although the smaller-than-projected GEMM
runtimes suggest that the proportion of TP-related communication for
larger models is slightly higher, it does not alter our main insights. For
example, while the error may improve by using a larger baseline model,
and thus operation sizes, Figure 5.14’s trends and our key takeaways will
still hold. Overall, across all studied GEMMs, the model projects run-
time with an error of ∼15%. Similarly, Figure 5.14(b) shows we accurately
model LayerNorm’s runtime, which is linear with both SL and H: ∼7%
geomean error. Finally, Figure 5.14(c) shows our model accurately models
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all-reduce trends as data size varies: ∼11% geomean error. Although effi-
ciency also impacts the projections of these operators (e.g., due to better
memory and network bandwidth utilization), its impact is small since
they are usually close to saturation in the baseline models.
Profiling Speedups: Finally, exhaustively studying hundreds of configura-
tions (parameter combinations from Table 5.1) without actually executing
them saves considerable profiling time and effort. Specifically, our strat-
egy avoids executing ∼198 different Transformers (some very expensive),
reducing profiling costs by three orders of magnitude (2100×) compared
to serialized Comp-vs.-Comm for the 198 configurations. We also avoid
executing end-to-end iterations, specifically the forward propagation, to
estimate the overlapped Comp-vs.-Comm costs. This speeds up profiling
by 1.5×.

5.4 ML/System Evolution Recommendations
Our Comp-vs.-Comm analysis demonstrates that communication is start-
ing to become a considerable bottleneck for distributed training. Here we
discuss some promising techniques that stand to tackle this challenge and
also discuss how our analysis influences their potential improvements.

5.4.1 System-aware ML Evolution

Design of novel DNNs is often influenced by constraints of the underlying
hardware and vice-versa (e.g., number formats in ML).
Comp-vs.-Comm influence: Our analysis shows that stressing certain hyper-
parameters more than others (e.g., scaleSLmore thanH) stands to strengthen
compute vis-a-vis communication. This is so, as first, scaling SL improves
both the edge and the slack compute has over communication (Section 5.2).
While scaling H helps increase compute’s edge, it stresses memory capac-
ity (for parameters) quadratically. As such, model evolution which scales



117

SL more than H is likely to have a lower communication fraction than vice-
a-versa. Furthermore, existing works have also shown that scaling SL can
improve model accuracy / results across various applications [95, 242, 290].
Thus both accuracy and efficiency stand to benefit from scaling SL.

5.4.2 Communication Offloads/Fusion

Some techniques offload communication from an accelerator (e.g., GPU)
to a co-processor (e.g., ASIC, FPGA, DPU) [27, 235] which are specialized
to accelerate communication. They can address communication which
can be overlapped with computation (e.g., data parallelism). To tackle
communication on critical path, techniques that break communication
abstractions and optimize for pipelining/overlap of data generation and
communication can be employed [70, 107, 278].
Comp-vs.-Comm influence: Our analysis indicates that both serialized and
overlapped communication are important. Consequently, a judicious
combination of both offload and fusion will be necessary for future Trans-
formers. We show this in Chapter 8 with T3.

5.4.3 Processing-in-memory (PIM)

Several commercial realizations of Processing-in-memory (PIM), which
push compute units closer to memory, have recently emerged that can
accelerate and reduce memory traffic resulting from memory-heavy oper-
ations [250, 261].
Comp-vs.-Comm influence: Lowering communication-induced memory traf-
fic can help improve efficiency. This can be enabled by efficient support for
in-memory atomics with PIM which can lower memory traffic required for
the reduction computation in an all-reduce primitive. This also stands to
lower interference in memory between communication and computation
executing on the accelerator. We implement this in Chapter 8 as part of T3.
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5.4.4 Processing-in-network (PIN)

Processing data during traversal is also promising [241, 251]. Specifi-
cally, techniques that enhance existing network switches to execute col-
lectives [81, 130, 153] halve the network’s transmitted bytes compared to
a bandwidth-optimal ring all-reduce [35]. This is because devices only
send their copies of data to the switches once and receive the reduced
version from the switches. Unlike in software-based ring/direct all-reduce
approaches where devices send and receive arrays twice; for reduce-scatter
and all-gather. However, PIN-based techniques are limited to topologies
with switches.
Comp-vs.-Comm influence: As switch-based collectives are limited in their
bandwidth benefit (∼2x), our analysis shows that judiciously combining
them with fusion will be necessary for future Transformers given the
fraction of execution time bottlenecked by communication.

5.5 Discussion
Beyond DP & TP: While we focus on DP and TP, communication from
other distributed techniques can be folded into our analysis. Mixture-of-
experts (MoE) sparsely activate parts of a network to reduce computational
costs [69, 228]. Besides DP and TP, MoEs also deploy expert parallelism
with additional serialized all-to-all communication – which can be incor-
porated into our serialized communication analysis. Overall, due to this
additional communication and reduced computation, MoEs potentially
increase the fraction of communication even further. Pipeline Parallelism
(PP) partitions a model to assign a subset of layers to each device such
that devices execute their layers in a pipelined manner [99]. We do not
focus on PP as it adds pipeline bubbles which either degrades efficiency
or requires a large number of micro-batches, which add memory pressure
and degrade model quality. Nevertheless, our overlapped communication
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methodology/analysis can be extended to include the peer-to-peer commu-
nication of activations between PP devices. Finally, the Fully Shared Data
Parallel (FSDP) technique combines DP’s and TP’s benefits by distributing
weights amongst DP devices and asynchronously gathering them just be-
fore layer computation. This adds additional overlapped communication
in both forward and backward execution passes, which we could extend
our slack analysis to examine.
Large/Other System Setups: Large Language Model (LLM) training
usually uses both DP and TP: TP is employed within nodes and DP across
nodes. Thus, DP-related communication occurs over slower inter-node
links (e.g., Ethernet). While our empirical analysis focuses on intra-node
setups with faster network links, it can be extended to encompass other
network types. Nonetheless, our algorithmic analysis for identifying slack
remains applicable and can also be utilized to reduce the time and effort
needed for empirically estimating slack/overlap in large clusters.

Finally, while our empirical analysis uses a single GPU/hardware type,
it can be extended to consider other hardware types (e.g., accelerators or
GPU systems from other vendors). Recent work has shown that Transform-
ers operations runtime can be calculated using their sizes and hardware
specifications such as FLOPS, memory bandwidth, and intra-node band-
width (albeit with efficiency considerations) [169]. Thus, our operator-
level model could also be enhanced to project runtimes for another device
using the ratios of the devices’ specifications.
Large System Memory: Techniques to place the model state in system
memory (CPU-attached DDR, NVMe memory) can help reduce accel-
erator memory pressure [198, 230, 240]. While this limits the required
model-parallel (TP or PP) degrees and inter-accelerator communication,
it can increase training time due to the limited compute capacity of fewer
devices. Nevertheless, our methodology can be used to model communica-
tion for the resulting TP and be extended to include additional overlapped
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communication between CPU/NVMe and accelerator memory.
Number-formats: Number formats with lower number of bits [166, 247]
have both computational and communication benefits during training.
Our analysis and methodology, although for state-of-art mixed-precision
training, are largely agnostic to the formats. Further, compute time can
potentially decrease more than communication at smaller number formats.
As such, the key takeaways of our analysis will likely carry over to these
alternate formats.
Fine-tuning & Inference: Our takeaways hold for fine-tuning since it
uses the same techniques and model as pre-training. Conversely, infer-
ence has much smaller memory requirements [79, 93] and thus can avoid
distributed setups and communication. If deployed in distributed se-
tups [210, 228], our methodology and takeaways will continue to hold.
Other DNNs: While we focus on Transformers due to their generality,
our proposed methodology can be translated as is and/or extended to
other DNNs. Specifically, our insights on ROI extraction and operator-
level projections can be easily translated to other models. Similarly, our
algorithmic analysis-based empirical strategy can be extended for other
DNNs.

5.6 Related Work
DNN Characterization DNNs, especially Transformers, are an impor-
tant application domain that are driving system optimizations. Conse-
quently, there have been several works on benchmarking and character-
izing them [4, 82, 164, 237, 274, 289, 293, 295, 295]. However, unlike our
work, these focus on compute bottlenecks in single-device DNN execu-
tions and thus do not characterize the communication costs that arise
in multi-device, distributed setups. Instead, we focus on characterizing
the relative cost of communication compared to compute operations and
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show that more communication-focused innovations will be needed in
the future.
Studying & Accelerating Communication: Other works study and/or
optimize for communication in distributed setups [57, 130, 216, 235, 278].
However, unlike our work they do not examine how communication costs,
and thus benefits of their optimizations, evolve across different Transform-
ers, hardware capability, and different distributed techniques. While some
works [63, 191] examine the throughput impact of sweeping a subset of
hyperparameters, they either do not include in-depth characterization that
examines the behavior or are on a single device.

5.7 Chapter Summary
Scaling of Transformers models and their datasets has necessitated very
large-scale distributed setups, which raises the key question: how will
compute vs. communication (Comp-vs.-Comm) scale as models scale and hard-
ware evolves? In this chapter, we conducted a multi-axial (algorithmic,
experimental, hardware evolution) analysis of Comp-vs.-Comm scaling
for Transformer models. Our system-agnostic, algorithmic analysis high-
lighted that while compute has enjoyed an edge over communication,
future model and hardware trends are likely to make communication
dominant soon. We also empirically studied Comp-vs.-Comm for future
Transformer models as hardware evolves. By extracting specific regions
of interest and modeling future operator runtimes, we enabled the study
of hundreds of future Transformers/hardware scenarios with 2100× less
profiling costs. These experiments validated that communication will
play an increasingly large role (40-75%) in a distributed training setup
as models scale. Finally, we discuss how our analysis influences some
promising techniques and technologies. This chapter’s findings serve as
the basis for our proposal in Chapter 8.
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5.7.1 Key takeaways from SQNN characterization

Here we summarize some of the key takeaways from characterizing sequence-
based models (from this and previous Chapters 3, 4) that subsequent
chapters (Chapters 6, 7, and 8) address.
5.7.1.1 Memory-bound operations
Chapter 4 highlights the importance of non-GEMM (optimizer update,
other element-wise) operations (Section 4.2.3); about 30-40% of BERT
training time is spent on memory-intensive operations. Furthermore, it
showed how reducing batch size (common for data-parallel training),
reducing precision, and increasing layer size (Section 4.3.2) can make
optimizing for non-GEMMs even more important. Moreover, as GEMMs
speed up, the remaining memory-intensive operations will become the
bottleneck. We address this in Chapter 6.

5.7.1.2 Ineffective Operational Parallelism
GEMM operations which constitute the major proportion of runtime in
both RNN and attention-based SQNNs can often be small with low GPU
utilization as shown in Sections 3.5 and 4.2.2. While this can be alleviated
by leveraging the abundant parallelism in networks and training tech-
niques, we show in Chapter 7 that executing such operations concurrently
on the GPU is not always beneficial. We study issues with exploiting and
improving concurrency amongst GEMMs in detail in Chapter 7.

5.7.1.3 Exposed inter-device communication
As shown in this chapter, multi-device training can add considerable
communication overheads. While in data parallelism, the cost of this
communication and reduction can often be hidden with the execution of
model backpropagation, as models and hardware evolve, these costs can
get exposed. Communication in tensor slicing is already in the critical path
(between layers) of model execution as shown in Figure 2.3.3. As models
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scale and require larger distributed setups, these communication costs
start to dominate model execution times. These exposed communication
overheads leave GPUs idle and cause sub-linear scaling of application
throughput with multiple devices. We address this with our proposal T3
in Chapter 8.
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6 near-memory computing for optimizer updates

Chapter 4 highlighted the importance of non-GEMM operations (Sec-
tion 4.2.3): about 30-46% of BERT training time is spent on memory-bound
operations with low operation-to-byte ratios. These include the optimizer
update algorithm responsible for updating all model parameters at the
end of each training iteration (Section 2.4.2) as well as other interleaved
element-wise operations required through the network. While the run-
time of element-wise operations scales linearly with model size, those
of optimizer updates scale quadratically due to the quadratic increases
in model parameters in larger models (Takeaway 4-11). Furthermore,
optimizer updates are always performed at a higher precision despite the
reduced precision of forward and backward propagation through layers.
Therefore, the runtime contribution of optimizer updates can increase with
the current trend of scaling model parameters and reducing precision and
thus, is an important bottleneck in training Transformer models.

To address this bottleneck, in this chapter we first explore a key software
optimization, kernel fusion (Section 2.4), which can reduce expensive data
movement by re-using more data in on-chip memories. However, we
find kernel fusion only helps optimizer updates to a certain extent such
as when there is a series of element-wise operations with a producer-
consumer relationship. Optimizer updates access multiple large arrays
that require DRAM accesses and cannot be avoided by fusion. To overcome
this challenge, we propose to leverage emerging near-memory computing
(NMC) devices and offload these memory-intensive update operations to
ALUs near memory. We show that the sequence of highly parallelizable
operations in optimizer algorithms lends well to the NMC architecture
with ALUs associated with each DRAM bank and requires only a few
cross-bank synchronizations. Our evaluation shows that the optimizer
algorithm, LAMB (used by BERT) can be sped up by at least 3.8× which
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results in a 9% speedup of end-to-end BERT training. The benefits further
increase with enhancements to NMC ALUs as well as by considering a
more realistic GPU baseline in our evaluations. This chapter details an
optimization briefly discussed in the paper, Demystifying BERT: System
Design Implications, published in IISWC 2022 [216].

The relevant background for this chapter is provided in Chapter 2.
The rest of this chapter is organized as follows: Section 6.1 discusses and
evaluates a common software optimization, kernel fusion. Section 6.2
provides an overview of a system with near-memory computing (NMC).
Sections 6.3 and 6.4 demonstrate and evaluate LAMB’s execution using
NMC. Finally, Section 6.5 discusses related work and we conclude with a
summary in Section 6.6.

6.1 Kernel Fusion
Fusion combines two or more consecutive GPU kernels, potentially with
a producer-consumer relationship, into a single one. It improves per-
formance by preventing data from being flushed into global memory
between kernel calls [8, 91, 132, 258, 259], thus reducing duplicate mem-
ory accesses [31, 71, 72, 148, 187, 260, 264, 275]. Thus, data reuse across
operations is often directly correlated with improved performance from
their fusion. Data-intensive phases in BERT (e.g., GeLu, DR+RC+LN,
and Scale+Mask+DR+Soft in Section 4.2.3) in which the output of one
operation feeds into the next are perfect scenarios for applying kernel
fusion.

The LAMB algorithm described in background Section 2.4.2 and Fig-
ure 2.7 is implemented as two stages in [184]. LAMBStage1 determines
per-layer update values and learning rate multiplier using momentum (m)
and velocity (v) states from past iterations, and gradients of the current
iteration (all of the same size as the model parameters being updated).
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This stage performs multiple element-wise add, multiply, divide, scale,
and square-root operations on these parameters. LAMB then performs
the L2 Norm (reduction) of the per-layer update values which is used by
the second stage (LAMBStage2 in Figure 2.7) to update model weights
using multiple element-wise operations. LAMB operations in each stage
are already fused in PyTorch [184]. These two stages are executed for each
layer and access the corresponding layer’s data (weights, gradients, and
optimizer parameters).

Further fusion of the algorithm across stages (but for a single layer)
can be complex. This is because it requires fusing the L2 norm operations
with preceding element-wise operations which can be non-trivial and
expensive as it would involve data reduction across multiple GPU work-
groups. Furthermore, there is little benefit from fusing LAMB operations
of different layers. This is evident in Figure 6.1 which shows the impact
of fusion on kernel counts, runtime and memory accesses. Fusion is very
effective for LayerNorm; runtime and memory traffic scale similar to ker-
nel count (by 6 − 8×) implying high data-reuse opportunities across the
unfused kernels. However, for Adam,1 the reduction in memory accesses
and runtime (6−8×) is not proportionate to that of kernel count (≈ 250×).
This is because most of these kernels access independent data - data corre-
sponding to the different model layers without any producer-consumer
relationship or reuse.

6.2 Near-Memory Computing
Near-memory computing (NMC) can help accelerate BERT’s memory-
intensive phases. It performs operations using specialized ALUs that are
part of the main memory thus avoiding additional latency and energy to
read and write data to and from memory [6, 125]. It further provides very

1Adam is an alternate to LAMB; we chose Adam for this study because its unfused
and fused versions were publicly available.
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(a) (b)Figure 6.1: Impact of fusing kernels vs. non-fused serial execution

high bandwidth accesses to data from the ALU units. Furthermore, it also
overcomes the capacity issue that on-chip memory faces, as computations
can span all the banks in memory, thereby providing the illusion of an
extremely large on-chip cache. In this section we describe and evaluate
one way of leveraging NMC for BERT’s memory-intensive phases.

6.2.1 Enhancing GPU with NMC

We consider a system where the compute-intensive phases such as GEMMs
are executed on the GPU, as is done today, and only the memory-intensive
operations are offloaded to units close to memory. While there are several
memory-intensive operations in Transformer networks, we mainly focus
on the optimizer algorithms, i.e., LAMB which is used for BERT training.
We focus on these algorithms because they consist of a sequence of element-
wise operations (detailed in Section 4.2.3) and are usually invoked towards
the end of a training iteration after the GPU compute units have made
all their memory updates. Thus, executing them on NMC units may not
require frequent synchronization between the NMC and GPU compute
units, which can be expensive. Moreover, as described in Section 6.1,
these algorithms access large amounts of disjoint data with no producer-
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consumer relationship and thus provide no data reuse opportunities. Thus
any additional kernel fusion cannot reduce data accesses to the memory
(Section 6.1).

6.2.2 NMC System Details

Placement: We consider a near-bank NMC architecture which, as dis-
cussed in background Section 2.5.2, has a good balance between band-
width advantage and costs. Placing ALUs at each bank, enabling parallel
access to all (or many) banks, leads to fewer ALUs and, thus, reduced
cost and increased memory capacity accessible by each ALU. Further re-
ductions in ALU count can be achieved by sharing ALUs among multiple
banks. However, reduced ALU count limits performance as fewer opera-
tions can occur in parallel. A more thorough discussion of design tradeoffs
can be found in prior works focused on NMC [6, 89, 125, 145]. Here, we
consider a balanced design point with ALUs at each bank. This is similar
to recent proposals by major memory vendors [125, 143, 145].
Orchestration: The NMC compute units operate on commands sent from
the host. To parallelize operations across all banks, the command is broad-
casted across all memory channels of DRAM. Since all banks sharing a
channel operate on the same command, bits in the command used to
identify a particular bank are freed up to encode ALU instructions.
ALU design: We adopt an ALU design similar to those explored by other
works. It supports data width equivalent to the bank output width (e.g.,
256b) and supports operations on multiple smaller data words in a SIMD
fashion (e.g., 16b, 32b). It has temporary storage or registers to store
intermediate values. The source of data to an ALU can thus be either
memory, an immediate (constant) value from GPU, or these registers. The
ALU supports the basic operations necessary for ML operations: add, mul,
shift and scale in all floating point and integer formats.
Data mapping: Having compute units on each bank requires all data
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Figure 6.2: Operations in LAMB algorithm with embedded NMC com-
mands for L2 Normalization operations (TS= Temporary Storage).

corresponding to operations available locally and are aligned similarly in a
bank. Modern memory systems typically use lower physical address bits
to select a channel and a bank and higher address bits to select a row. Thus
this can be accomplished by allocating data structures at physical page
granularity that’s large enough to encompass the channel and bank bit
positions within the page offset. This ensures that data structures operated
upon are aligned similarly across banks.

6.3 Accelerating LAMB using NMC
Figure 6.2 shows a sequence of operations in the LAMB optimizer that are
executed independently for every parameter matrix/vector in the model.
As shown, the algorithm reads and writes 13 parameters ( 1 to 13 ) with
few interspersed element-wise operations. While most of the operations
are simple element-wise multiplies and adds, it also uses additional L2
normalization operations on all gradients, and per-layer parameter and
update values. L2 normalization of an array involves squaring all ele-
ments, summing them all up and calculating its square-root. While these
operations can be fused with kernels which generate the array, they are
executed as a separate kernel on the GPUs. These kernels are optimized
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Figure 6.3: Orchestration of NMC instructions to compute the final stage
of LAMB, LAMBStage2 (TS= Temporary Storage).

for fewer inter-thread and inter-block communication that are required to
reduce the array. However, this causes additional memory accesses. When
using NMC, while data located within a bank can be reduced efficiently,
since the data arrays are spread across banks, further reduction would
either require inter-bank communication or a reduction by the host GPU.
To avoid complexity, we take the latter approach for the L2 Normalization
of all gradients (Figure 6.2).

Figure 6.3 demonstrates the execution of a few instructions using NMC.
Specifically, it shows the execution of the final stage (LAMBStage2 as
described in background Section 2.4.2 and detailed in Section 4.2.3) and
shown in Figure 6.2) of the LAMB optimizer in which the update matrix is
scaled and subtracted from the parameter matrix. The first instruction (1)
involves reading the update values from memory, scaling them and storing
them in the temporary storage, the second instruction (2) involves reading
the parameter values from memory, subtracting from it the values stored
in the TS, and storing the updated parameter in the TS. Finally, instruction
(3) involves storing the updated parameter value back in memory. Note
that some of the operation in LAMB, i.e., the L2 normalizations, require
reduction of data both within and across banks. To accomplish the latter,
the GPU reads in the partially reduced values from each bank to do a
global reduction and returns the generated value using subsequent NMC
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instructions.

6.4 Evaluating LAMB execution on NMC
We evaluate the execution of the entire LAMB algorithm using NMC and
compare it against its execution on the GPU. We model the execution of
LAMB on NMC units using common DRAM timing parameters from prior
works [6, 125, 145]. Since consecutive element-wise operations such as
shown in Figure 6.3 rely heavily on temporary storage, we vary the size
of this temporary storage to study its impact. Finally, for comparison, we
model an optimistic GPU execution comprising of only (minimal) data
reads and writes to memory, not considering any temporary values that
can be cached in on-chip memory. We use the peak HBM bandwidth to
calculate the time taken for the memory accesses, but also consider more
realistic cases when the bandwidth utilization is 80 and 90% of the peak.

Figure 6.4 summarizes the speedup LAMB can achieve via NMC.
LAMB speeds up by about 3.8×, using NMC compared to an ideal GPU
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execution which reads/writes at peak memory bandwidth. The speedup
increases to about 4.7× and 4.6× if the temporary storage size on the NMC
compute units is increased by 4×. Larger temporary storage enables larger
reads/writes from DRAM rows on each activation, thus reducing the
total DRAM row activations required. Furthermore, comparing against
more realistic GPU memory bandwidth (80% peak) for baseline, NMC
speedups are up to 5.8× and 5.7×. Given LAMB contributes to 10-20%
of BERT’s total iteration time (shown in Chapter 4), executing LAMB on
NMC can accelerate BERT execution by up to 9-20%.

6.5 Related Work
Many works leverage NMC’s data movement and performance benefits
to accelerate specific ML primitives [6, 143, 145], but this is the first work
that showcases NMC’s benefit in accelerating weight updates algorithms
that are used across all DNNs. GradPIM [125] also evaluated NMC for
optimizers. However, they only evaluated simple momentum-based opti-
mizers and focused on CNNs, which have an order of magnitude fewer
parameters to update compared to NLP models.

6.6 Chapter Summary
Our characterization in Chapter 4 revealed how memory-bound gradient
descent updates of billions of Transformer parameters can under-utilize
modern accelerators like GPU. To overcome this, in this chapter, we of-
floaded these updates to near-memory compute units. Mapping a se-
quence of operations to memory required few expensive synchronizations
with GPU compute units, and provided increased data access bandwidth
along with concurrency of multiple DRAM banks. This accelerated weight
updates by 3.8× for the Transformer, BERT. Finally, it considerably reduced
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(∼13×) expensive data movement between DRAM and GPU compute
units.
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7 goldyloc: global optimizations & lightweight
dynamic logic for concurrency

Although DNN compute requirements have scaled [78, 115, 173, 256], our
characterization of sequence-based networks in Chapters 3 and 4 showed
that their individual operations often do not have high GPU utilization.
GEMMs, which make up 30-65% of the runtime in RNNs and Transformer
networks [273], only utilize 40-50% of a GPU [102, 108, 216, 256, 289]. This
is further worsened as floating point operations per second (FLOPS) has
significantly scaled across GPU generations (e.g., ∼7× in two years [9, 21]).

A useful technique to improve this compute utilization is to concur-
rently execute independent operations. Programmers often expose inde-
pendent operations via streams [11, 157, 185] within applications and use
multi-instance deployments [22, 202]. Systems also greedily maximize
the number of concurrent operations. However, naively executing all in-
dependent operations concurrently can be sub-optimal and may degrade
performance. There are two key factors that impact this. First, operations
must be aware of and optimized for shared resources during concurrent
execution (Operator Optimization Environment). Second, operators whose
performance degrades considerably from sharing resources must avoid
concurrent executions (Concurrency Control Logic). We use these factors as
axes (Table 7.1) to describe current GPUs and prior works that leverage
concurrency.

Current GPUs optimize operator implementations for isolated environ-
ments. GPU libraries exhaustively optimize implementations for perfor-
mance/efficiency of key operators like GEMMs. However, this tuning
assumes the availability of all GPU resources, and does not consider the
global resource environment during execution from potential intra- and
inter-process concurrency. Thus, while these operators are fast and effi-
cient when executed in isolation on devices, they can suffer significant
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Operator Optimization Environment
Isolated Global

Static Current GPUs RAMMER[161],
Elastic Kernels[206]Concurrency

Control Logic Dynamic Queue/WF
schedulers GOLDYLOC

Table 7.1: Mechanisms to exploit concurrency on GPUs, including oper-
ators optimized in isolation vs. for global resources and static/dynamic
concurrency management.

slowdowns when executed concurrently with other operators due to re-
source sharing and contention.

Furthermore, current GPUs statically manage concurrency within an
application (e.g., using streams), while the hardware concurrently sched-
ules as many operations (kernels) as possible. However, the concurrency
benefits and/or opportunities available within a device can change dynam-
ically with varying application inputs [217] and multiple simultaneous
processes. Thus, the number of concurrent GPU kernels can be higher or
lower than desired, exacerbating contention and hurting performance.

Unfortunately, both globally optimized kernel implementations and
dynamically controlling concurrency are challenging to realize. GEMMs
based on their input can be bottlenecked by different resources (e.g., mem-
ory, compute) during concurrency. Furthermore, and similar to base-
line BLAS libraries, each GEMM of a given size requires unique kernel
implementations to optimize for the bottlenecked resource. Manually
identifying such implementations can be challenging. Moreover, we find
(Section 7.2) that a combination of multiple factors including tensor sizes,
input sizes, shapes, memory layouts, and kernel implementations dictate
whether and how much concurrency is beneficial. Thus, concurrency
benefits cannot be determined at runtime using simple heuristics.

Accordingly, we propose GOLDYLOC. GOLDYLOC augments kernel
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tuning to identify, for each input, efficient kernels for both isolation and
global resource environments resulting from varying degrees of concur-
rent execution. To find the latter GOLDYLOC tunes kernels offline with
resource constraints which emulates various shared resource environments.
Similar to the baseline, isolated-tuned BLAS libraries, where kernels have
unique properties per GEMM input, tuning for concurrency also makes
unique trade-offs per input to efficiently share resources while also limit-
ing a GEMM’s performance degradation. To select the appropriate kernels
at runtime based on the global resource environment and concurrency,
GOLDYLOC extends the kernel scheduling data structure to include point-
ers to globally optimized kernels. This allows the GPU’s command pro-
cessor (CP), the interface between software and hardware responsible
for scheduling work on the GPU, to select the appropriate kernel at run-
time. Moreover, we also augment the GPU’s CP to dynamically control
the executed concurrency using a predictor (trained offline) to select the
appropriate concurrency to exploit – i.e., which type and degree of concur-
rent GEMMs to select given the available independent GEMMs and their
inputs. This includes detecting when sequential execution is preferred
when concurrency hurts performance. To our knowledge, GOLDYLOC is
the first to combine dynamic concurrency control and globally optimized
GPU kernels.

We evaluate GOLDYLOC on a real GPU using AMD’s open-source
BLAS infrastructure [14, 23]. Overall, across 410 GEMMs from modern
DNNs, GOLDYLOC improves performance by up to 2.5× (43% geomean
per app) over sequential execution and 2× (18% geomean per app) over
naively exploiting all parallelism, without requiring hardware changes.
GOLDYLOC also improves performance in GPUs with explicit resource
partitions [202], and GOLDYLOC’s benefits increase with reduced pre-
cision and as FLOPS scale, underscoring its importance given hardware
scaling trends. This chapter is based on the paper, GOLDYLOC: Global Op-



137

timizations & Lightweight DYnamic LOgic for Concurrency, which is currently
under submission.

The relevant background for this chapter is provided in Chapter 2.
The rest of this chapter is organized as follows. Section 7.1 motivates the
need to optimize for concurrent GEMMs on GPUs. In Section 7.2, we
describe challenges with improving GEMM libraries and GPU runtimes
for efficient concurrent GEMMs. Section 7.3 provides the details of our
proposal GOLDYLOC. We describe the methodology used to evaluate the
efficacy of GOLDYLOC in Section 7.4 and show results in Section 7.5. In
Sections 7.6 and 7.7 we discuss GOLDYLOC’s applicability/extensions
and related work, respectively. Finally, we summarize and conclude in
Section 7.8.

7.1 Motivation

7.1.1 Scaling GPUs and low utilizing GEMMs

GPUs compute cores (e.g., AMD CUs, NVIDIA SMs) and, therefore, their
peak achievable FLOPS, have scaled considerably; for example, between
2018 and 2020, FLOPS scaled by ∼7× [9, 21]. However, application utiliza-
tion of these GPUs, especially for NLP-based DNNs, has often remained
low. GEMMs GPU utilization can be low when the input/output matrix
sizes (Figure 2.5(a)) are small. This is common in DNNs (Section 2.2)
due to their training/inference setup and/or algorithmic properties, in-
cluding lower input batch sizes, short Transformer input sequences, and
sequential RNN input token processing. Reducing input batch sizes helps
memory capacity requirements, improves convergence during training,
and helps meet application deadlines during inference [104]. However,
smaller input batch sizes also limit matrix sizes, hurting utilization and
throughput (e.g., only up to 23% of TPU peak throughput [116]). Short
Transformer input sequences (e.g., length 512 BERT attention GEMMs
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Figure 7.1: (a) GEMM sizes with fewer FLOPs benefit less from concur-
rency (b) GEMM sizes with the same FLOPs can have different concur-
rency behavior. GEMM FLOPs= 2*M*N*K.

only achieve 25% of peak throughput across vendors [102, 216]), and
sequential RNN input token processing also limit matrix sizes (e.g., 2-30%
utilization [96, 151, 161, 291]). Figure 2.5(a)’s weight matrix can also be
small: BERT GEMMs only achieve 40-50% of peak FLOPs across GPU
vendors [102, 216, 256, 289]. Larger models may use tensor parallelism to
slice matrices [186], which reduces per-device memory capacity pressure
but decreases their GEMM utilization. These utilization trends will also
worsen with continued GPU FLOP scaling.

7.1.2 Sub-optimal GEMM concurrency in GPUs

While there are abundant opportunities to concurrently execute low uti-
lization GEMMs as shown in Figure 2.6 and Table 2.1, they often provide
small performance improvements on GPUs. Figure 7.1 illustrates this with
a few examples. First, Figure 7.1(a) shows the speedup of concurrently
executing two and four independent GEMMs (IG=2, 4), with the size
of GEMMs (particularly the dimension N) increasing from left to right.
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While the largest GEMMs achieve ≈ 19% speedup over their sequential
execution, the smaller ones (with fewer FLOPs), achieve much smaller
speedups.

Figure 7.1(b) shows speedups for the three sets of IGs with the same
FLOPs, but different input tensor shapes (the first two) or transposes (the
last two). In the first two cases speedups over sequential execution are
similar or slightly increase as concurrency degree increases from 2 to 8
IGs. However, for 16 IGs performance degrades in the first case. For the
last case, with a transposed tensor, performance degrades for any number
of IGs beyond two. Thus, naively executing all IGs concurrently can be
sub-optimal. Furthermore, GEMMs with similar compute requirements
can have very different concurrency behavior.

7.2 Challenges with GEMM Concurrency
Next, we further investigate how Section 7.1.2’s examples reinforce Ta-
ble 7.1’s two key challenges with leveraging concurrency on current GPUs.

7.2.1 Isolation-tuned kernel implementations

Figure 7.1 shows that GEMMs with the largest FLOPs benefit more from
concurrency. Besides size, these GEMMs have different kernel imple-
mentations (e.g., the largest GEMM has the largest tile size, among other
differences). A GEMM’s kernel implementation involves tens of features
that are tuned to improve its isolated GPU execution (Section 2.4.1.3). As
a GEMM’s hardware requirements differ based on its input (size, shape,
transpose), they also prefer unique kernel features for maximum perfor-
mance: the 410 GEMM sizes we study (Section 7.4) chose 291 unique
kernel implementations.

Kernel implementations also have a significant impact on concurrent
performance: a larger tile size reduces the number of WGs a GEMM
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Figure 7.2: GEMM behavior with different kernel implementations.
Kernels-1 and -2 are the GEMMs’ isolated tuned kernels; Kernels-3 and -4
are alternate implementations with smaller memory traffic and fewer WG
waves, respectively.

executes but increases the extent of data reuse at the LDS. Features such as
coalescing limit global memory traffic while also increasing register/LDS
requirements and decreasing per CU occupancy. The WG count and
occupancy impact how concurrent GEMMs share CU resources, while data
reuse and total memory traffic impact how they share the cache/memory
bandwidth. Similarly, every other feature has a unique trade-off.

Figure 7.2 compares the two smaller FLOPs GEMMs from Figure 7.1
with alternate, more concurrency-amenable kernels. Isolation-tuned Kernel-
1 and Kernel-2 are tuned for the GEMM’s performance in isolation, as
done by BLAS libraries. Kernel-3 improves both LDS reuse (via larger tile
size) and the kernels’ accesses to the LDS (via padding and prefetching)
compared to Kernel-1, which reduces the (4k_128_1K_00) GEMM’s global
memory accesses and improves its concurrent performance with two in-
dependent GEMMs by 1.34×. Conversely, Kernel-4 slightly increases the
number of WGs (smaller tile size) and reduces LDS requirements (via
less coalescing) compared to Kernel-2, which improves the GEMM’s CU
occupancy by 2× for 4k_256_1K_00 and reduces the number of waves
(set of WGs a kernel simultaneously executes on a GPU). This improves
the GEMMs’ overlap and increases speedup by 1.22× for two concurrent
GEMMs.
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Figure 7.3: (a) Speedups over sequential execution for 2 & 16 concurrent
GEMMs (2P & 16P) versus the #waves in their isolated execution. (b)
Speedups of GEMMs with fixed #waves but with varying K, input shape,
or transpose.

Overall, these exemplar results show that considering the global re-
source environments for kernel implementations, based on the operations
executing concurrently can improve performance. However, there are two
challenges in realizing them: (a) GEMMs have different (e.g., memory,
compute) bottlenecks depending on the input properties and must opti-
mize for different resources as shown in Figure 7.2 and (b) there are several
features, each with a unique trade-off, that can be tweaked to optimize
for the bottlenecked resource – and similar to the baseline BLAS libraries,
these will differ for each GEMM input. Thus, manually identifying such
alternative implementations can be challenging. Therefore, we need a
method to identify globally optimized kernels across many GEMMs.

7.2.2 Static concurrency control

Figure 7.3(a) examines how the 410 studied GEMMs (Section 7.4) perform
when two and 16 independent GEMMs are run concurrently. The x-axis
shows the number of waves used by the GEMM kernels. While the general
trend shows that smaller wave GEMMs see better concurrency behavior
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(higher 2-IG speedups and benefits with higher concurrency degrees, 16-
IG), and matches our earlier observation (Section 7.2.1) that smaller/fewer
waves enable better overlap/sharing of CUs, the behavior varies quite a bit
for GEMMs with similar waves. We highlight this using examples 1 , 2 ,
and 3 , zoomed in on the right in Figure 7.3(b). 1 shows that benefits of
concurrently executing GEMMs with the same M,N, T1, and T2, as well
as waves but differing K dimensions can vary considerably; performance
degrades at K of 1024 and 2048. The summation dimension (K) deter-
mines the amount of work performed and data read per thread and per
WG. Our profiling of isolated GEMM execution1 shows that increasing
K also increases the memory reads-to-input matrix size ratio, implying
larger K GEMMs are more prone to Last-Level Cache (LLC) and memory
bandwidth contention.

Similarly the transpose combination (T1,T2) determines the GEMM
input tensors’ layout in memory and thus its memory access pattern.
Certain transpose combinations have better data locality and improve
cache/bandwidth sharing during concurrency. 2 in Figure 7.3(b) which
has the same GEMM dimensions and similar waves as 1 , but a different
(0, 0) transpose, does not see performance degradation as in 1 . Finally,
the shape of tensors also dictates behavior. Generally, similar-sized inputs
(M ∼ N) indicate that input rows and columns have similar cache reuse.
Therefore, 3 , which has similarly-sized inputs but larger GEMMs with
more waves, also does not see 1 ’s performance degradation.

There are many such varied behaviors amongst the 410 GEMMs in Fig-
ure 7.3(a). Whether GEMM concurrency is beneficial is dictated by a com-
bination of input sizes, tensor shapes, layout, and kernel implementations.
These concurrency benefits cannot be determined via simple heuristics
and require profiling. Although offline profiling could potentially identify
the right amount of concurrency to exploit in every intra-application case,

1AMD and NVIDIA GPUs currently do not support performance counter monitoring
with concurrent kernels.
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Figure 7.4: GOLDYLOC overview and baseline comparison.

since inputs and the number of parallel operations change dynamically
(via multi-instance deployments) profiling for all possible combinations
is onerous. Conversely, profiling at runtime can add significant overheads,
and diminish concurrency benefits. Thus, GPUs need a lightweight, dy-
namic logic to manage concurrency.

7.3 GOLDYLOC Design

7.3.1 Overview

Figure 7.4 depicts the baseline system (left) and GOLDYLOC (right). We
only show system components that GOLDYLOC affects. In the baseline,
there is a one-time GEMM library tuning for a given GPU such that, for
a given GEMM size, at runtime the library returns a kernel optimized
for its isolated execution (Section 7.2.1). At runtime the CP, an embed-
ded programmable microprocessor within the GPU, acts as the interface
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Acronym Definition Acronym Definition
CD Concurrency Degree CP Command Processor
RC Resource Constraint CU Compute Unit
nP n Parallel GEMMs KO Kernel Object
GO Globally Optimized LLC Last Level Cache

Table 7.2: GOLDYLOC Acronyms

between the software and hardware [140, 142]. It schedules as many in-
dependent GPU kernels as resources permit [205, 222], either exposed
by programmers via streams/queues statically [157, 185] and/or from
multiple processes. In Figure 7.4, the CP may schedule all four available
GEMMs concurrently, each using an isolation-tuned kernel.

GOLDYLOC (Figure 7.4, right) redesigns GPU libraries and run-
time to add concurrency awareness to the system. Similar to the baseline
GOLDYLOC requires a one-time tuning of the GEMM library for a given
GPU. However, GOLDYLOC enhances the tuning methodology: for a
given GEMM size, at runtime the library returns both a kernel optimized
for isolated execution and also kernels which are globally optimized for
multiple concurrency degrees (CDs, i.e., number of concurrent GEMMs,
Section 7.3.2). GOLDYLOC further programs the CP with a lightweight
dynamic logic to control the amount of concurrency on the GPU (Sec-
tion 7.3.3). At runtime, given a set of independent GEMMs and their glob-
ally optimized kernels, the CP predicts a performant CD and schedules
that many GEMMs with appropriate kernels. In Figure 7.4, the CP dynam-
ically predicts and schedules two out of the four GEMMs with kernels
globally optimized for a CD of two. Thus, GOLDYLOC only dynamically
executes concurrent GEMMs which can improve overall performance, with
kernels optimized for a global shared resource environment.
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7.3.2 Globally optimized (GO) GEMM kernels

Concurrently executing GEMMs with kernels tuned for isolated execution,
as in the baseline, is suboptimal (Section 7.2.1) and may also hurt per-
formance (Figure 7.3). The baseline’s rigorous benchmarking minimizes
a kernel’s latency assuming all GPU resources are available for a single
GEMM. This leads to kernels that may end up hoarding resources that
must be shared during concurrent executions (e.g., isolated tuned Kernel-1
is cache/memory bandwidth-heavy, Kernel-2 is CU-heavy). Therefore,
GPUs must use kernels that are globally optimized (GO) for the available
(shared) resources (e.g., Kernel-3 and Kernel-4 which limit the respective
GEMMs’ bandwidth and CU usage, respectively). This requires identify-
ing, for each given GEMM, which resources must be optimized for, and
which kernel feature(s) to focus on to achieve that. GOLDYLOC identi-
fies such kernel implementations by augmenting the tuning process to
include resource constraints (RCs). Executing GEMMs with RCs em-
ulates a concurrent environment where resources are shared, and thus
limited. Thus, tuning the kernel for each GEMM in such RC environments
(Section 7.3.2.1) can automatically help identify the features optimized
for the bottlenecked resource.

7.3.2.1 Resource-constrained (RC) tuning

When incorporating RC into tuning, we must consider: which resources
to focus on and how to augment tuning?

The most pertinent GPU resources are: compute units (CUs), cache,
registers, LDS, and memory bandwidth. Although GPU configurations
can be modified to limit a kernel’s on-chip resources (e.g., CUs, cache,
LDS) [202, 205], limiting memory bandwidth is more difficult. Sophisti-
cated data placement (e.g., over a subset of memory channels) adds signif-
icant software complexity. Moreover, while tweaking memory frequency
is possible, it may lead to lower access latency that may not be represen-
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Figure 7.5: (a) GOLDYLOC’s tuning methodology for a single GEMM for
concurrency degree = 2P. (b) Identifying optimal concurrency degree for a
single GEMM feature, and taming its overhead using a logistic regression-
based model.

tative of access latency during concurrent execution. Thus, we focus on
constraining CU count and LLC size. We create two RC configurations in
addition to baseline GPU configuration (GPU): GPU/2 (halves #CUs and
LLC size) and GPU/4 (quarters #CUs and LLC size). We selected these
based on available parallelism (or concurrency degree, CD) and empirical
results which show little benefit from stricter RCs (Section 7.6).

Figure 7.5a shows how GOLDYLOC tunes for a given GEMM (GEMM-
Fn). The baseline tuning process rigorously benchmarks the available
GPU kernels (Kernel List (KL)) on a resource-unconstrained GPU config-
uration. Our tuning process also examines GPU/2 and GPU/4 (Step 1 ).
Next, using the set of most efficient kernels from Step 1 , we benchmark
concurrent execution for each CD of interest (e.g., 2P, 4P) (Step 2 ). We
benchmark kernels from all three RC configurations for all CDs. For ex-
ample, for CD=2P we benchmark kernels most efficient for GPU, GPU/2,
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and GPU/4. The smallest runtime kernel is preferred for the given GEMM
and CD (K2 in Figure 7.5a). It is possible that a kernel tuned for isolated
execution (RC=GPU) is preferred for concurrency as well. This happens
if the GEMM is bound by a resource during its isolated execution and
already selects the appropriate kernel to use that resource, requiring no
further RC-tuning. For example, very large compute-bound GEMMs will
often use kernels that limit the total WG and wave count. This is also pos-
sible for small GEMMs at low CD which already have sufficient overlap
and few waves. (e.g., GEMMs with 0.5 waves will not benefit further from
0.25 waves if CD=2P). To reduce the benchmarking cost in Step 2 , we
also propose using similarity analysis amongst GEMMs to determine the
RC config for every CD (discussed in Section 7.6).

7.3.2.2 Globally optimized GEMM library

The baseline GEMM library has GEMM inputs and associated GPU kernels
optimized for isolated execution. GOLDYLOC augments this library (Fig-
ure 7.6): during runtime for each GEMM it also returns pointers to globally
optimized (GO) kernels efficient for the global resource environment per
CD ( 1 ).

7.3.3 Dynamic logic for concurrency control

Baseline GPUs statically control concurrency within applications, with-
out knowledge about dynamic input sizes or number of processes. This
can degrade performance because, as observed in Section 7.2.2, not all
concurrency is beneficial, even when using GO kernels. Moreover, while
dynamic control is important, determining the appropriate amount of con-
currency at runtime is challenging. It depends on a combination of factors
(GEMMs’ tensor size, shape, and layout as well as kernel implementation
(Figure 7.3(b)) and requires profiling which can add significant overheads
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at runtime. To overcome this, GOLDYLOC uses one-time offline profiling
of a subset of GEMMs and trains a lightweight predictor to determine the
appropriate CD to execute at runtime.
Offline profiling & predictor dataset: Figure 7.5b depicts offline profiling
which identifies the appropriate CD for a GEMM and creates the dataset
used to train the predictor. For a given GEMM GOLDYLOC benchmarks
the kernels identified by the GO GEMM library with their associated
CD (e.g., 2P uses GO K2). Amongst all possible CDs, it associates this
GEMM with the CD that delivers the most speedup over its corresponding
serial execution. Increasing the number of concurrent GEMMs up to this
CD improves performance but further increases either provide no further
improvement or degrade performance. Thus, the final executed CD should
be the minimum of this preferred CD and the available GEMMs.

Based on our observations in Section 7.2.2 GOLDYLOC uses GEMM
dimensions and its per-CD kernels’ (#WGs, occupancy, and #waves) as the
predictor’s input features as they capture all input, implementation, and
underlying GPU’s hardware properties. #WGs is a function of output size
(M×N) and determines total parallelism within the GEMM. Occupancy
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Figure 7.7: GOLDYLOC’s dynamic logic.

accounts for each WG’s resource requirements, hardware resources per
CU, and potential L1 cache contention. Wave count incorporates total
CU count in hardware, kernel tile size, and potential for overlap. Finally,
size (specifically, K) and shape (M, N) provide information on memory
contention. We also considered other individual kernel features (e.g.,
grid size, LDS/register size) and performance data, but found minimal
accuracy improvements.
Logistic regression model details: To compare different CD’s relative
benefits GOLDYLOC trains a multi-class (one class per CD) logistic re-
gression model [46, 97, 262]. Logistic regression is appropriate as GEMMs
have multiple input features with near-linear relationships with concur-
rency benefits (e.g., speedup drops with increasing K) and because it
generates a multi-class output (either no concurrency or CD of 2, 4, 8,
16). The predictor calculates the probability of preferring one CD over
the rest (one-vs-rest, OvR) and predicts the appropriate CD, including no
concurrency. Training it fits (learns the weights of) Equation 7.1:

P =
eX×W∑C
i eX×Wi

(7.1)

whereP is the probability vector to select one CD over the rest,X (x1, x2, .., xn)
are input features, W is the weight matrix and C is the possible CD count.

The predictor is trained on the dataset created via offline profiling. In
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the training dataset all GEMMs’ features are mapped to their preferred CD
(Figure 7.5b’s table). To create a more exhaustive dataset GOLDYLOC in-
cludes additional GEMMs beyond the evaluated applications, for a total of
1072 GEMMs. We apply min-max normalization to normalize the dataset
feature values. GOLDYLOC trains the model offline once per GPU (accu-
racy discussed in Section 7.5.6) using 90% and 10% samples for training
and testing, respectively. After training it predicts the appropriate CD (1S,
2P, 4P, 8P, or 16P, Figure 7.7). Given the queued GEMMs’ feature vector, X,
and learned weights, W, it calculates the probability to choose each possi-
ble CDs (total C) with Equation 7.1 and selects the one with maximum
probability. The final chosen CD is the minimum of the predicted CD and
available GEMMs. Figure 7.6 shows how GOLDYLOC incorporates this
predictor into the GPU CP (discussed further in Section 7.3.4).

7.3.4 Integrating GOLDYLOC into GPU’s CP

Kernel-packet Extensions: To schedule a GEMM on a GPU, CPUs en-
queue a kernel packet [24] in the CP’s queues on that GPU. This packet
includes a pointer to the kernel object (KO) that is invoked to execute the
GEMM, along with its associated metadata such as the kernel’s input ar-
guments and features (e.g., WG size). The packet also includes additional
header, setup, and reserved bytes. Since identifying the appropriate GO
kernel, and thus the appropriate KO, for a given GEMM requires dynamic
information about available parallelism and input sizes, a kernel packet
cannot be pre-mapped to a single KO. Instead, GOLDYLOC extends kernel
packets to include a map of KO pointers and metadata for each GO kernel
(max three per GEMM from the three RC configurations) from the GO
library (Section 7.3.2.2). These extensions add a little overhead, but since
KOs are relatively small and only in CP memory until dispatch completes,
the packets still fit in the CP’s memory.
Command Processor Extensions: At runtime, existing GPU CPs inspect
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all available software queues (streams) and their kernels to schedule as
many independent kernels from separate queues as resources permit [205,
222]. Thus, the CP is well suited to dynamically control the amount of
concurrency. GOLDYLOC programs the CP to inspect the kernel packets
at the head of all active queues ( 2 in Figure 7.6) for available independent
GEMMs that could execute concurrently. This includes (a) checking if the
kernels are GEMMs or non-GEMMs, (b) if there are multiple GEMMs,
reading the necessary features from queued packets, and (c) calculating
the remaining features (occupancy and waves) needed for prediction. The
CP performs these operations each time a queue’s head changes – when
a kernel finishes dispatching its WGs or when new work is enqueued.
CP functionality is unchanged if it detects a single GEMM and/or non-
GEMMs. For multiple GEMMs, given the number and features of the
GEMMs, the CP predicts the appropriate CD ( 3 in Figure 7.6). both the
right (set of) GEMM(s) and how many GEMMs to execute concurrently.
Finally, the CP updates the packet contents of each GEMM in the queue
heads to point to the KO corresponding to the GO kernel for that CD ( 4
in Figure 7.6) which are then executed on the GPU (( 5 in Figure 7.6)).

7.4 Methodology

7.4.1 System Setup

We evaluate GOLDYLOC with AMD’s ROCm™ because it has an open-
source BLAS tuning framework that performed similarly to other BLAS
libraries. We use an AMD Ryzen™ Threadripper™ CPU [13] and an AMD
Instinct™ MI100 GPU [21]2 with 32GB of HBM2 [110]. We calibrated our

2Given the fast-evolving GPU space with improved ML-specific optimizations built
into each generation, we use a setup with the latest available GPU for ML at the time.
Thus, the GPU used in this chapter is same as that in Chapter 4 but differs from those in
Chapters 3, 5 & 8.
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system’s baseline performance and found it was similar to other commer-
cial systems and prior work [102]: they had similar FLOPS relative to the
peaks, 90% of all studied GEMMs had differences within -12% to +10%.

Our software extends AMD’s ROCm™ 4.1 [18] by using Tensile [23]
for tuning and rocBLAS [14] to build the custom BLAS libraries. Both the
tuner and the library utilize Matrix Core Engines [20].

7.4.2 Applications and GEMMs Studied

To evaluate GOLDYLOC we use 410 GEMMs (Table 7.3) from forward and
backward passes of state-of-the-art RNNs and Transformers while varying
their batch and token sizes ("Input Params" in Table 7.3). We evaluate
independent GEMMs both within and across networks for multi-instance
inference deployments (Section 2.4.1.5): 2, 4, 8, and 16 instances (there
were diminishing returns beyond 16). To create a more representative
dataset we include additional GEMMs (1072 total). The GEMM’s ranges
are: 32K-168M for output size (M*N, dictates parallelism), and 64-20K for
K dimension (dictates data per thread/WG). They represent a wide variety
of memory and compute-bound behavior; ops/byte (dictates memory-
boundedness) ranges from 28-1400. We also study concurrent strided
batched-GEMM (B-GEMMs) from Transformer Attention layers (with
over 40 combination of different SLs). Finally, we examine full and half
precision GEMMs.

7.4.3 Measurement

For GO kernel tuning and profiling for dynamic predictor datasets (Sec-
tion 7.3), we execute GEMMs with different resource constraints (RCs),
concurrency degrees (CDs, via GPU streams), and kernels. We exe-
cute GEMMs back-to-back on the same stream multiple times to average
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Network Hyperparameters Input Params
GNMT [280] H=512;1024 B=64;128;256;512

DeepSpeech2 (DS2) [29] H=800 B=64;128;256
RNN-T [90] H=2048 B=64;128;256;512

Transformer [273] H=512;1024 Tokens=512;1024;2048;4096;
3072;8192

BERT [62] H=768;1024 Tokens=2048;3072;4096;8192
GPT-2 [226] H=1280;1600 Tokens=2048;3072;4096;8192
GPT-3 [41] H=4096;5140 Tokens=2048;3072;4096;8192

Megatron-LM_BERT [256] H=1024;2048;2560 Tokens=2048;3072;4096;8192
Megatron-LM_GPT [256] H=1920;3072 Tokens=2048;3072;4096;8192

Turing-NLG [167] H=4256 Tokens=2048;3072;4096;8192

Table 7.3: Benchmarks with hyperparameters and inputs.

out queuing delays in concurrent setups. We measure runtimes using
rocProf [12].

7.4.4 GOLDYLOC Performance Measurement

7.4.4.1 Globally Optimized (GO)-Kernels

We modify Tensile [23] tuning infrastructure to create a custom globally
optimized library (Section 7.3.2). Sequential GEMM applications are
linked to the baseline library. We create two binaries of the concurrent
GEMM application, each linked to the baseline or GO library. To evalu-
ate GO-Kernels, for each GEMM size, we find the speedup of both the
concurrent binaries (with different CDs) over the sequential run of the
GEMM.

7.4.4.2 GOLDYLOC

Although the dynamic control logic can be implemented in existing GPUs
by reprogramming the CP, GPU vendors have not disclosed an API [140,
142, 234, 285]. We also implemented our changes in gem5’s CP [42, 83,
156, 243] but its performance trends did not match real hardware [106,
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232, 233]. Thus, we evaluate GOLDYLOC by measuring the runtime of
concurrent GEMMs with CD predicted by the dynamic logic (using the
custom GO library) on real hardware and add our CP change overheads.

We model the CP’s dynamic detection, prediction, and selection (Sec-
tion 7.3.4) latency. This includes the CP’s kernel packet reads and writes
from queues and logistic regression model execution. We model the CP’s
latency assuming the CP runs at 1.5 GHz [181] and the CP’s memory
access latency is 31 cycles [131]. Given 32 software streams maximum,
the CP takes ≈0.32 µs to read or write the necessary queues. Finally, we
estimate the predictor overhead by executing it on a CPU with similar
specifications to the CP. Collectively, the total time for the CP to inspect,
predict, and write queues is 8 µs (implications discussed in Section 7.5.5).
Overall, this setup closely mimics executions on real GPUs, since we add
GOLDYLOC’s overheads to runtimes from a real GPU for each given
GEMM.

7.4.5 Configurations

Since our experiments use a real GPU (Section 7.4.1), we can only perform
apples-to-apples quantitative comparisons against other strategies that
run on real GPUs (we qualitatively compare against other schemes in
Section 7.7). We evaluate the following configurations:

• Sequential uses the isolated tuning and executes all GEMMs sequen-
tially.

• Default uses isolated tuning and baseline GPU to execute all avail-
able GEMM (via streams) concurrently given GPU resource.

• Globally optimized-Kernels (GO-Kernels) uses global resource-
aware tuning and baseline GPU.
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• GOLDYLOC uses GO-Kernels and dynamic logic at CP to predict
the appropriate CD.

• Oracle uses GO-Kernels and always chooses the right CD, including
sequential execution if no CD provides ⩾ 5% benefit.

Additionally, we also evaluate GOLDYLOC on GPU configurations
with explicit resource partitions:

• CU-Partition uses CU masking [204] to statically partition CUs
across streams.

• Resource-Partition statically partitions CUs, LLC, and memory band-
width across streams [22, 202]. Since our GPU only supports par-
titioning CUs, we simulate nP concurrent GEMMs for Resource-
Partition by executing a single GEMM with 1/n CUs, 1/n LLC (by
reducing cache size), and 1/n memory bandwidth (by varying mem-
ory clock frequency (MCLK)). This model is optimistic, since parti-
tions’ combined usually have have fewer resources than the overall
GPU [202]. Furthermore, since our setup can only halve MCLK, we
only include 2P results for Resource-Partition and provide optimistic
projections for higher CDs (Section 7.5.9).

We also evaluated Rammer [161] and ElasticKernels [206]. However,
ElasticKernels does not support kernels that use LDS, which all of our
GEMMs do, and our baseline outperformed Rammer by 88%, which only
supports the older ROCm 3.5. Thus, we do not show results for Rammer.

7.5 Results
Figures 7.8, 7.9, 7.10, and 7.11 show GOLDYLOC’s benefits over sequential
execution for with 2, 4, 8, and 16 independent GEMMs, respectively. These
are run on the default GPU configuration (non-resource partitioned).
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Figure 7.8: Per-app GEMMs geomean speedups with 2 independent
GEMMs
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Figure 7.9: Per-app GEMMs geomean speedups with 4 independent
GEMMs

Overall, GOLDYLOC’s geomean benefits increase with more independent
GEMMs. However, the speedups vary considerably for GEMMs across
applications.
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Figure 7.10: Per-app GEMMs geomean speedups with 8 independent
GEMMs
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Figure 7.11: Per-app GEMMs geomean speedups with 16 independent
GEMMs

7.5.1 Exploiting Concurrency (default)

With two independent GEMMs, default provides 10% geomean speedup
over executing them sequentially. However, for almost all GEMMs, further
increase in independent GEMMs do not always improve throughput and
cause severe slowdowns for GEMMs from large hyperparameter appli-
cations (e.g., gpt2, tnlg). Thus, naively executing all available GEMMs
concurrently without tuning for concurrency leads to low speedups. More-
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over, default’s geomean speedup across all GEMMs drops (10% to 7%) as
concurrency increases to 16 independent GEMMs.
Result-7.1: Naively executing all available GEMMs concurrently without tuning
for concurrency leads to small speedups. Moreover, the benefits drop further as
concurrency increases.

7.5.2 Globally Optimized (GO)-Kernels

GO-Kernels which are optimized for global resources considerably improve
performance (Figures 7.8 to 7.11). With improved benefits, they enable
higher CDs that default cannot.
GO-Kernel Properties: Each GEMM, given its input properties, makes
unique trade-offs under resource constraints to pick a uniquely different
kernel than its isolated counterpart. However, there are two key trends:
fewer/partial waves and reduced global memory requests. In many cases,
GO-Kernels have a larger tile size than their isolated counterpart. Larger
tiles improve LDS reuse, reducing LLC/memory requests and thus con-
tention. While larger tile size also decreases the total #WGs, it can increase
per-WG resource requirements (e.g., LDS). Thus, GO-Kernels also change
other kernel features to balance performance and per-WG requirements
and limit the drop in per-CU occupancy. This combination reduces #waves
and improves overlap. GO-kernels can also have a relatively smaller tile
size, but also a higher occupancy which also reduces the kernel’s #waves.

Figure 7.12 plots the ratio of #waves and per-wave LLC accesses/misses
in GO-Kernels vs. isolated kernels. The ratios are largely < 1, indicating
that GO-Kernels have fewer waves and LLC accesses/misses than their
isolation-tuned counterparts, making them better for globally sharing
resources (Section 7.2.1). Occasionally (right side of graph), #waves de-
crease and LLC activity significantly increases but the latter’s absolute
values are very small. Thus, the resource-constrained tuning employed by
GOLDYLOC properly emulates concurrent execution environments.
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Figure 7.12: Globally optimized (GO)-Kernel properties.

Result-7.2: Global resource-aware, GO-Kernels uniquely differ from their isolated
counterparts.
Result-7.3: GO-Kernels have fewer resource requirements, execute in fewer
#waves, and have lower global memory traffic compared to their isolated counter-
parts.
GO-Kernels Benefits: In CD=2P, GO-Kernels have a maximum speedup
of 52% over default and achieve more than 20% and 10% speedup for 11%,
and 24% of the 410 GEMM sizes, respectively. GEMM sizes that did not
benefit from GO-kernels with 2P do benefit at higher CDs; 53% of GEMMs
in 16P (vs. 34% in 2P) benefit from GO-kernels. Furthermore, the benefits
of GO-kernels increase at 16P: 2× maximum speedup, 25% of all GEMMs
obtain > 20% speedup, and 43% of all GEMMs obtain > 10% speedup, all
over default.

Since not all GEMMs benefit from GO-Kernels (Section 7.3.2.2), per-
application benefits depend on how many of an application’s GEMMs use
GO-Kernels and the extent of their benefits (Figures 7.8 to 7.11). Most
gnmt, transformer, and mega-bert GEMMs prefer GO-Kernels and achieve
higher speedups over default and sequential execution: 7-9% and 20-28%
geomean speedup in 2P and 11-20% and 30-42% in 16P. For applications
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with few GEMMs that prefer RC-tuning, benefits over default are only up to
5% for CD=2P but 9-17% geomean for CD=16P. Finally, large-dimension
GEMMs from large networks (e.g., gpt2, tnlg) are often compute-bound
and do not benefit from GO-Kernels. Across all GEMMs in Figures 7.8
to 7.11, GO-Kernels achieve 5% and 10% geomean speedups over default
for CDs of 2P and 16P, respectively. For 4P and 8P CDs, GO-Kernels
achieve up to 1.7× and 2× speedups, respectively, with 9% geomean
speedups. Overall, GO-Kernels’s benefits are large for small- and medium-
sized workloads and increase at higher CDs. Thus choosing globally
optimized kernels is important.
Result-7.4: GO-Kernels’s benefits are high for small- and medium-sized work-
loads. Its benefits increase at higher CDs.

7.5.3 GOLDYLOC

Two GEMMs with GO-Kernels often execute concurrently without heavy
contention. Thus, GOLDYLOC, which dynamically controls concurrency
(Section 7.3.3) often provides no additional benefits for two indepen-
dent GEMMs. However, its benefits increase as available independent
GEMMs increase. Large compute-bound GEMMs in gpt2, gpt3, and tnlg
suffer at CDs > 2 because their large per-WG data increase LLC thrashing
for more than two concurrent GEMMs. GOLDYLOC accurately predicts
this, improving overall performance by 10% over GO-Kernels. Moreover,
GOLDYLOC mispredictions only hurt 7% of GEMMs (Section 7.5.6). Over-
all, GOLDYLOC improves performance by up to 35% (3% geomean) over
GO-Kernels and by 5%, 10%, 11%, and 12% geomean for 2P, 4P, 8P and 16P,
respectively, over default.
Result-7.5: GOLDYLOC predicts performant CDs and improves geomean GEMM
performance by up to 12% over default.
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Figure 7.13: Select GEMMs, GOLDYLOC (CD=16).

7.5.4 Range and Distribution of Benefits

To demonstrate the range of GOLDYLOC’s benefits, Figure 7.13 plots their
speedups for 16 independent GEMMs for few GEMM sizes. In the best
cases (rnnt, transf., mega_gpt GEMMs), GO-Kernels improves performance
(up to 2×). In others (tnlg, ds2, bert, gnmt, gpt2, mega_bert), GO-Kernels
provides little benefit, but GOLDYLOC selects a more performant CD.
In the worst case (gpt3), GO-Kernels do not help, and GOLDYLOC mis-
predicts, hurting performance. Compared to default, across 410 GEMMs
GOLDYLOC improves 64% of cases, has no impact on 29%, and degrades
performance only in 7% of cases.

7.5.5 CP Overheads

To avoid increasing the critical path, CP attempts to perform the prediction,
packet setup, and queue prioritization (Section 7.4) in parallel with prior
executing kernels. Thus, the 8 µs overhead is incurred only for the initial
kernel and if prior kernels are short (< 8µs). We study kernel runtime
distributions (including non-GEMMs) of several DNNs and all but two
kernels have runtimes greater than 8 µs as shown in Figure 7.14. Thus, the
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latency can be hidden without impacting end-to-end time.
Result-7.6: GOLDYLOC’s overheads are small and can be hidden.

7.5.6 Logistic Regression Model Accuracy

The accuracy of the Logistic regression-based model for 2, 4, 8, and 16 avail-
able GEMM scenarios is 82%, 70%, 62% and 47%, respectively. GOLDYLOC’s
accuracy decreases with higher number of available GEMMs, which have
more output classes. However, when GOLDYLOC is incorrect, often mul-
tiple CDs provide similar (better than default) performance. Thus, it still
selects a high-performance CD and provides most of Oracle’s benefits.
Training with a more exhaustive set of GEMM sizes could further improve
accuracy and reduce the gap between GOLDYLOC and Oracle.

7.5.7 Heterogeneous GEMMs & Batched-GEMMs

GOLDYLOC also improves the performance of heterogeneous concur-
rent GEMMs, where concurrent GEMMs have unique input sizes. For
brevity, we only consider two unique GEMMs. GO-Kernels, which are
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heterogeneity-agnostic provide 3-10% geomean speedup over default for
CD=2-16P. Further, GOLDYLOC’s prediction logic is extrapolated for het-
erogeneity and provides up to 5% additional speedup for CD=16. For 16
independent GEMMs, the CP executes all concurrently only if both unique
GEMMs prefer 16P. If not, CP makes decisions assuming two sets of 8
independent homogeneous GEMMs. Overall this provides 15% geomean
speedup over default in 16P.

GOLDYLOC also helps with heterogeneous concurrent batched-GEMMs
(B-GEMMs) [183]. B-GEMMs execute many small, independent, and
same-sized GEMMs in one kernel [2, 111]. Transformers execute indepen-
dent B-GEMMs to process variable-length inputs. Applying GO-Kernels
to 2P heterogeneous B-GEMMs provides up to 1.94× and 1.5× speedups,
and geomeans speedups of 5% and 8%, respectively.
Result-7.7: GOLDYLOC accelerates heterogeneous concurrent GEMMs by 15%
geomean over default in 16P.
Result-7.8: GOLDYLOC accelerates heterogeneous concurrent strided batched-
GEMMs by 8% geomean over default in 4P.

7.5.8 Reduced Precision

Figure 7.15 examines FP16 precisions [20, 73, 165, 190, 203, 223, 277] impact
on GOLDYLOC. Since FP16 throughput on the same device is higher than
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FP32’s, its peak concurrency speedup also increases (Figure 7.15(a)). The
curve also shifts left with FP16, implying more potential benefits with
larger sizes. While concurrency benefits with larger (e.g., tnlg) GEMMs
could be higher in FP16 than FP32, it is not observed due to concurrency-
unawareness. Thus, CG-Tuning speeds up 16P GEMMs with gpt2, gpt3,
and tnlg sizes by 10%, 14%, and 6% geomean, respectively (Figure 7.15(b)).
Similarly, GOLDYLOC’s FP16 benefits will also increase at higher CDs.
Finally, although CG-SP would be retrained to consider precision, it will
still provide benefits by controlling the CD.
Result-7.9: GOLDYLOC benefits increase for large GEMMs at FP16.

7.5.9 GOLDYLOC with Resource Partitioning

Figure 7.16 evaluates resource partitioned configurations with default,
and GO-Kernels’s impact on them for CD=2P. CU-Partition has little or no
benefit over sequential execution and is often worse than default due to
shared memory resource contention and leaving resources of a partial
wave (tail, Section 7.2) within a partition underutilized. Conversely, the
optimistic Resource-Partition’s dedicated memory resources help it outper-
form default (similar to prior work [61, 269]). Nevertheless, partitioning
resources defines constraints, making RC-tuning important for improved
performance. For CD=2P simply reusing default tuned concurrency-aware
kernels (Section 7.5.2) provides up to 1.4× and 1.6× (3% and 4% geomean)
benefits over CU-Partition and Resource-Partition, respectively. Further tun-
ing GOLDYLOC for these configurations increases them to 6% and 9%
geomean (Figure 7.16). Benefits further increase for higher CDs: 5-22%
for 4-8P over CU-Partition and 7% over an optimistic 4P Resource-Partition.

Result-7.10: While partitioning resources improves performance over default,
concurrency-aware tuning further accelerates it.
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Figure 7.16: GOLDYLOC (CD=2P) with default & CU/Resource partition.

7.5.10 End-to-end Speedups

RNNs and Transformers have significant intra-network parallelism. RNN-
based GNMT model (H=1024) can execute up to eight (layer) GEMMs in
parallel. Thus, GOLDYLOC speeds up its iterations by ∼14% and ∼13% (for
batch size 128 and 256, respectively) over default. GOLDYLOC also speeds
up parallel Attention B-GEMMs and gradient GEMMs in Transformers:
GOLDYLOC speeds up BERT’s iteration times by 5-12% over default.

7.5.11 GEMM Fusion

While GEMM fusion [71, 148, 187] improves throughput by concatenat-
ing independent GEMMs’ matrices into larger ones, it is applicable only
if GEMMs share an input matrix or if the application sums all of the
GEMM outputs. Its benefits also saturate as matrix sizes grow. In RNNs,
the extent of fusion also determines the amount of available parallelism
amongst other operations. For example, for the GNMT model evaluated in
Section 7.5.10, although fully fusing all possible GEMMs improves perfor-
mance by 19% over sequential execution, it causes other, smaller GEMMs
(Section 2.4.1.5) to be serialized, while providing little benefit beyond
fusing eight GEMMs. Leveraging concurrency with GOLDYLOC instead
outperforms it by 10% (14% over default).
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Result-7.11: GOLDYLOC speeds up GNMT by 14% over default, and by 10%
over maximum GEMM fusion.

7.6 Discussion

7.6.1 Reducing Tuning Overhead

GO-Kernels’s one-time cost can be reduced by predicting a GEMM’s pre-
ferred RC configurations (PRCs) for a given CD. We exploit K-Nearest
Neighbor (KNN)-based classification to predict a new GEMM’s PRC based
on the PRC of K closest GEMMs by Euclidean distance. We exhaustively
tune for 20% of GEMMs (Section 7.3.2 and predict the PRC for the remain-
ing 80%, using size (M ∗ N) and default kernels’ tile size to determine
closeness. Along with dynamic control, it still improves performance over
default by 2-9% overall (for CD=2-16P).

7.6.2 Non-GEMM Kernels

DNNs also have interspersed non-GEMM kernels, including element-
wise adds, multiplies, reductions, and activation functions. Most of these
kernels are bottlenecked by memory accesses. To overcome this, software
frequently uses optimizations such as kernel fusion to fuse series of such
operations into a single kernel, and often with preceding GEMMs, to
avoid redundant global memory accesses. This significantly reduce the
runtime of non-GEMM kernels. Thus, as mentioned in Section 7.4, we
focus on GEMMs because they constitute the majority of runtime in DNNs.
Furthermore, unlike non-GEMM kernels, libraries are rigorously tuned
for different GEMM input sizes for performance, leaving much room for
improvement in case of concurrent execution.
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7.6.3 Additional Resource Constraints

For tuning, we evaluate only two RC configurations (GPU/2 and GPU/4 in
Section 7.3.2.1). Stricter RCs (GPU/8 and GPU/16) provided little benefit,
likely because kernels become prohibitively slow at such low resources
to provide any concurrency benefits. However, at the considerable rate
with which GPU compute scales, stricter RCs may become necessary. We
also tried constraining memory bandwidth (BW) using memory clock
frequency (MCLK) as a proxy (constraining BW via specific memory allo-
cations was beyond the scope of this work) but found limited additional
benefits. This may be because constraining MCLK also impacts memory
latency which may not be representative of concurrent execution envi-
ronments. Constraining additional shared resources may provide more
concurrency-amenable kernels.

7.6.4 Sparsity

Prior work has shown that significant sparsity exists in many of these
networks [56, 85, 177, 209, 294]. Leveraging sparsity is especially useful for
very large networks with large parameter matrices. Although evaluating
the additional behavior when exploiting sparsity is beyond the scope of
this work, we expect concurrency will become more important as sparsity
reduces the amount of computation in GEMMs.

7.6.5 Other DNNs

GOLDYLOC can also help CNNs, Multilayer Perceptron (MLP) layers in
recommendation models [82], and Graph Neural Network’s [265]. Their
inter-GEMM parallelism arises from gradient descent, checkpointing, and
multi-instance runs (Section 2.4.1.5). For example, GOLDYLOC speeds
up MLPerf’s ResNet-50 and DLRM independent GEMMs by up to 21%
and 36%, respectively.
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Figure 7.17: CD=4P speedups for multiple GPU configurations.

7.6.6 Scaling GPUs Configuration

Due to constantly scaling GPUs, we study GOLDYLOC’s benefits by chang-
ing hardware resources. As shown in Figure 7.17, we use GPU-Quarter
(32 CUs, 2 MB LLC), GPU-Half (64 CUs, 4 MB LLC), and the original
GPU (120 CUs, 8 MB LLC) and find that GOLDYLOC’s benefits are higher
(benefits increase from 3% in GPU-Quarter to 12% in GPU) as GPUs scale
up. Scaling GPU computing with memory bandwidth fixed increases
contention, making GOLDYLOC more effective.

7.6.7 Power-aware tuning

Both GOLDYLOC and the baseline tuning consider performance to be
the key determinant in choosing both the right kernel implementation
as well as concurrency degree. However, other factors such as power
may be the limiting factor [170]. If power-aware tuning is required, both
Baseline and GOLDYLOC can be modified to additionally measure the
peak power during the kernel executions. Kernels choices can then be nar-
rowed down (e.g., in step 1 of Figure 7.5a) based on the desired maximum
power, and the appropriate implementation can be selected given these
constraints. Similarly, the concurrency control logic can also be trained to
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Approach /
Features

GPU
Support

Globally
Optimized

Dynamic
Control

No App.
Changes

Herald [136] X X ✓ ✓
Magma [119] X X ✓ ✓
Veltair [155] X ✓ ✓ ✓

Queue Schedulers ✓ X ✓ ✓
Wavefront Schedulers ✓ X X ✓

Rammer [161] ✓ Partial X Partial
Elastic Kernels [206] ✓ Partial X ✓

Batched-GEMM [183] ✓ Partial X X
GOLDYLOC ✓ ✓ ✓ ✓

Table 7.4: Comparing GOLDYLOC to prior work.

avoid concurrency degrees which exceed the desired power threshold.

7.7 Related Work
Table 7.4 compares GOLDYLOC to other state-of-the-art schemes that use
a range of solutions to exploit parallelism. We compare GOLDYLOC with
these approaches based on four key features detailed below.
Other Devices: Similar to GOLDYLOC, Veltair [155] optimizes for multi-
tenancy on CPUs, while MAGMA [119] and HERALD [136] focus on
accelerators. Although a similar goal, their optimizations differ since
they either target latency-oriented CPUs [155] or dataflow-based accelera-
tors [119, 136].
GPU Scheduling: Other works improve concurrency via better wavefront-
[74, 86, 103, 105, 113, 137, 144, 152, 178, 244–246, 283, 288] and queue-
[5, 49, 50, 67, 75, 96, 120, 285] scheduling. They dynamically managing
intra- and/or inter-kernel concurrency with heuristics (e.g., deadlines, syn-
chronization, cache contention, and stalls). However, unlike GOLDYLOC,
they use kernels optimized for isolation despite the number of concurrent
operations and therefore are globally suboptimal.



170

Globally optimized kernels: Rammer [161] and Elastic Kernels (EK) par-
tially design globally-optimized kernels. EK dynamically adjusts kernels’
WorkGroup/grid sizes to maximize overlap but does not apply to kernels
that use shared memory or local data share (LDS) like GEMMs [206].
Rammer re-compiles applications and their kernels to exploit operational
parallelism within an application. However, Rammer uses simple GEMM
implementations unlike those in state-of-the-art BLAS libraries [14, 201].
Additionally, batched-GEMMs [2, 111, 183] also execute small indepen-
dent GEMMs within a kernel but require expensive data layout/applica-
tion changes and are not applicable to heterogeneous and inter-application
GEMMs. Finally, unlike RAMMER and batched-GEMMs, GOLDYLOC
requires no application changes.

Collectively, these state-of-the-art schemes use a range of solutions to
exploit parallelism. However, none of them select kernels optimized for
global resource environments and consider the system’s dynamic behavior.
Moreover, GOLDYLOC is the only approach to provide all four important
features.

7.8 Chapter Summary
Exploiting concurrency is difficult in GPUs as they use kernels tuned
in isolation, manage concurrency statically, or both. GOLDYLOC solves
this for key GEMM operations by (1) tuning kernels for globally shared
resources during concurrency, and (2) dynamically controlling how many
GEMMs to execute concurrently. GOLDYLOC improves performance by
2.5× max (43% geomean per-app) over sequential execution and 2× max
(18% geomean per-app) over concurrent execution in current GPUs.
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8 t3: transparent tracking & triggering for
fine-grained overlap of compute & collectives

In Chapter 5 we showed that Transformers frequently use distributed
techniques which can add considerable communication overheads to their
execution. These overheads are especially high with the TP which requires
an all-reduce that is typically serialized with other compute during model
execution, as shown in Figure 8.1(a). This all-reduce, as we show in
Chapter 5, can be a significant proportion of runtime (∼45%), resulting
in a sub-linear increase in model throughput as the number of devices
increases.

While some prior works have sped up communication by up to 2×
with in-network computation, they are topology-dependent (e.g., requiring
switches) and further, cannot eliminate serialized communication from the
critical path [130]. Distributed techniques with abundant coarse-grained
independent compute (e.g., DP) often overlap (and hide) communication
with independent computations to improve efficiency. Although serialized
communication scenarios also offer such potential, they require a fine-
grained overlap of computation and communication, which presents its
own challenges. Enabling their fine-grained overlap in current systems
either requires expensive fine-grained synchronization [107] or changes to
matrix multiplication (GEMMs) kernels which can be disruptive to GPU
software infrastructure [278] (Section 8.2.1). Furthermore, overlapped
compute and communication contend for both compute units and memory
bandwidth, reducing overlap’s efficacy [107, 278] (Section 8.2.2). Prior
approaches that reduce contention only address coarse-grained overlap
of compute and communication in cases like DP and lack support for
fine-grained overlap in serialized collectives [235]. Moreover, they rely on
dedicated accelerators. Therefore, no existing technique achieves a transparent
overlap of serialized communication with computation while minimizing resource
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Figure 8.1: T3 overview.

contention.
To overcome these, we propose T3 (Figure 8.1(b)). T3 transparently

fuses producer operations with the subsequent communication by con-
figuring the producer’s output address space to initiate communication di-
rectly on the producer’s store, requiring minimal application changes.
It uses a lightweight and programmable hardware tracker to track the
producer/communication progress and triggers communication using
pre-programmed DMA commands, requiring no additional GPU com-
pute resources for communication. Furthermore, to reduce contention
for memory bandwidth between the producer and communication, T3
leverages recently proposed compute-enhanced memories [125, 145] to
atomically update memory on stores, thus reducing memory traffic due to
communication-related reductions. Finally, T3 employs a simple yet effec-
tive arbitration policy between the producer and communication memory
streams to minimize any remaining contention.

We extend Accel-Sim [124] to accurately model multi-GPU systems (6%
error). Our results show that T3 speeds up sliced Transformer sub-layers
from models like Mega-GPT-2 [256] and T-NLG [167] by 30% geomean
(max 47%) and reduces data movement by 22% geomean (max 36%).
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Furthermore, T3’s benefits persist as models scale: geomean 29% for sub-
layers in ∼500-billion parameter models, PALM and MT-NLG. Overall, T3
transparently overlaps serialized communication with minimal resource
contention. This improves compute and network utilization, and in turn,
can enable better throughput scaling with increasing device count. This
chapter is based on the paper, T3: Transparent Tracking & Triggering for
Fine-grained Overlap of Compute & Collectives, which appears in ASPLOS
2024 [214].

The relevant background for this chapter is provided in Chapter 2.
The rest of this chapter is organized as follows. Section 8.1 motivates the
need to optimize for serialized communication. In Section 8.2, we describe
challenges with fine-grained interleaving of compute and communica-
tion. Section 8.3 provides the details of our proposal T3. We describe the
methodology used to evaluate the efficacy of T3 in Section 8.4 and show
results in Section 8.5. In Sections 8.6 and 8.7 we discuss T3’s applicabili-
ty/extensions and related work, respectively. Finally, we summarize and
conclude in Section 8.8.

8.1 Motivation

8.1.1 All-Reduce is on the Critical Path & can be Large

Transformers require TP [256] to increase the aggregate memory capacity
available to them. However, it requires ARs on the critical path (between
layers). Figures 2.4(b) and 2.4(c) show the FC sub-layer’s original op-
erations versus the operations when sliced across two devices (TP=2 in
Figure 2.4(c)). Each device (dotted box) only has a slice of the weights.
Since the GEMM corresponding to the second sliced weight only gen-
erates a partial output, it requires an AR before the next layer executes
(highlighted by "Sliced GEMM→AR"). These GEMM and AR operations
execute as separate kernels and are serialized.
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These serialized ARs can become a bottleneck. Figure 8.2 shows the exe-
cution time breakdown of Transformers between "Sliced GEMM→AR" and
other operations for multiple current and futuristic Transformers (setup
detailed in Section 8.4.1.2, 8.4.2). For large models (e.g., Mega-GPT-2, T-
NLG) we consider 8- and 16-device TP. For very large models (e.g., PALM,
MT-NLG) we consider 32-way slicing, and for futuristic ones with one
and ten trillion parameters, we consider 64-way sharding. The increasing
TP slicing is necessary because these models’ larger sizes cannot fit in 16
GPUs [213] and the increased slicing is also enabled by nodes with larger
device counts [198, 278]. Like prior work [130, 169, 213], we find that
communication is a considerable fraction of the overall runtime: Megatron-
GPT-2 (Mega-GPT-2) and T-NLG spend up to 34% and 43% of their train-
ing and inference (prompt phase) time on communication. These trends
also hold for the very large and futuristic Transformers: communication
can be up to 46% and 44% of their runtime, respectively. Additionally,
since compute FLOPS scales much more than network bandwidth [77],
these proportions will only increase in the future (Section 5.3.3.6). For
example, if the GEMMs become 2× faster, communication increases to 75%
of model execution time – making scaling to multiple devices extremely in-
efficient and potentially leaving GPUs idle while communication happens.
Thus, addressing serialized AR is critical to Transformer scaling.

8.1.2 Enabling Compute-Communication Overlap

Overlapping collective kernels with independent compute kernels has
been key to scaling DNNs in other distributed approaches (e.g., GPipe [99],
DP). While TP does not have independent kernels to overlap AR with,
we observe that it can benefit from a fine-grained overlap with the pro-
ducer GEMM itself. Transformer GEMMs have large outputs, which are
tiled/blocked and require many GPU WGs to complete. Consequently,
a GEMM cannot always execute all its WGs concurrently on the limited
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Figure 8.2: Transformer time spent on reduce-scatter (RS) and all-gather
(AG) collectives as well as GEMMs which require collectives.

number of GPU CUs. Thus, a GEMM executes and generates output in
multiple stages, where each stage is a set of WGs that the CUs can accom-
modate. This holds even for sliced GEMMs that require AR. As shown in
Figure 8.3, GEMMs in TP are sliced in the K (or dot-product) dimension
which decreases compute per WG, but the output size, WG count, and WG
stages remain the same. We utilize this observation to enable fine-grained
overlap: communication of one stage’s output data can be overlapped
with compute of the next stage. However, achieving practical and efficient
fine-grained overlap is challenging as we describe in Section 8.2.

8.2 Challenges With Fine-grained
Compute-Communication Overlap

This section details key challenges with the fine-grained overlap of com-
pute and communication.
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still generates the same number of data blocks.

8.2.1 Complex & Expensive to Implement in Software

The producer and collective operations execute as separate kernels on
GPUs; the producer (GEMM) generates the data, after which the collec-
tive orchestrates their bulk communication and reduction. Extending the
software for their fine-grained interleaving can be complex and expen-
sive. It would involve breaking the producer and collective into smaller
kernels or using dynamic parallelism, both of which can increase launch
overheads and synchronization costs. Alternatively, it can be achieved by
writing fused GEMM and collective kernels, but this can incur significant
programming effort [66, 72, 264, 275]. First, BLAS libraries have hundreds
of GEMM kernels optimized for different input sizes and GPU architecture,
generated via an expensive tuning process [23]. Second, collectives are
also of different types, and each has implementations optimized for differ-
ent topologies. Creating fused kernels for every combination of GEMM
and collective implementations can thus be extremely complex and expen-
sive. Hence, it is imperative to achieve a fine-grained overlap of compute
and communication without altering GEMM implementations.
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Figure 8.4: Evaluating how the benefits of overlapping GEMM and RS,
across model layers, are impacted by CU sharing. The X-axis shows how
CUs are split between GEMM and AR, using the GPU setup from Table 8.1,
in the format A-B. A represents the number of CUs the GEMM uses, while
B represents the number of CUs AR uses. Ideal assumes no sharing, the
GEMM has all CUs, and AR is free.

8.2.2 Resource Contention Between Producer & Collective

Overlapped GEMM and AR contend for GPU resources, specifically CUs
and memory bandwidth, which slow down overall execution.

8.2.2.1 Compute Sharing

Concurrently executing GEMM and AR kernels must share CUs and their
components including L1 cache, LDS, and vector registers. This contention
may affect their performance relative to their isolated execution. Figure 8.4
evaluates the impact of concurrently executing GEMM and AR using our
setup in Section 8.4.1.1 and Table 8.1. Specifically, Figure 8.4 shows the
(normalized) GEMM and AR time for Mega-GPT-2 and T-NLG (with
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TP=8) sub-layers (Attn. and FC-2) when run in isolation with varying CU
count splits (e.g., the 72-8 bars show GEMM’s isolated execution time with
72 CUs and AR’s with eight CUs). For each case, it also shows potential-
overlap-speedup, the speedup overlapping AR and GEMM can obtain versus
sequentially executing GEMM and AR when each has all 80 CUs. We
calculate the overlapped time as max(GEMM time, AR time). The ideal
case assumes no sharing impact: the GEMM has all the 80 CUs and the
AR is fast but free (evaluated by running it with all 80 CUs in isolation).
As a result, the ideal case has the maximum potential overlap speedup of
1.7× geomean. However, AR slows down considerably (geomean ∼41%
slowdown) when allocated only eight CUs (72-8 case) compared to when
it had all CUs. This significantly decreases the potential-overlap-speedup
to 1.2× geomean. While AR performance improves with 16 CUs (only ∼7%
slowdown in 64-16 case), GEMMs slow down (geomean ∼21% slowdown)
since they now only have 64 CUs. Overall, while better than the 72-8 case,
potential speedups fall short (1.5× geomean) compared to the ideal case.
Moreover, this assumes no contention due to memory bandwidth sharing
(discussed next) and thus underestimates slowdowns. Overall, sharing of
CUs reduces overlapping efficacy and it is crucial to preserve the compute
resources dedicated to GEMMs.

8.2.2.2 Memory Bandwidth Sharing

GEMM and AR kernels also compete for memory bandwidth when run
concurrently. As shown in Figure 2.9, at each step AR kernels a) read an
array chunk from memory to send it to one neighbor GPU and also b)
write to memory the chunk it received from another neighbor. Reduce-
scatter (RS) additionally requires a memory read of the local chunk for
reduction. Moreover, the memory traffic due to AR communication can be
bursty. This additional, bursty memory traffic due to AR can slow down
critical memory accesses by the producer GEMM, with the impact higher
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Figure 8.5: Overview of fused GEMM and ring reduce-scatter with T3 on
a four-GPU node.

for GEMMs for which inputs do not fit in GPU’s last level cache (LLC) as
we will show in our evaluation in Section 8.5.1.2 and Figure 8.15. Thus,
to enhance overlap efficiency, it is essential to limit memory traffic due to
communication and/or limit their contention with GEMM.

Prior work also studied contention between communication and com-
putation [235], albeit in DP setups with coarse-grained GEMM and AR
overlap. They show that AR slows down by up to 2.4× when run concur-
rently with GEMMs, and the slowdown is even higher when run concur-
rently with memory-intensive embedding lookups in recommendation
models. For TP, they obtain a 1.4× slowdown when executed concurrently
with GEMMs.

8.3 T3: Transparent Tracking & Triggering
To overcome the aforementioned challenges of complex software and
resource contention with fine-grained overlap of compute and communi-
cation, we propose T3.
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8.3.1 T3 Overview

Modern GPUs first execute the producer GEMMs and store their outputs
in their local memory. Afterwards they initiate the collective operation
(Section 2.9). T3 instead initiates the collective immediately as GEMMs
generate data to enable fine-grained overlap. It uses a track & trigger
mechanism to monitor GEMM’s/collective’s progress and to orchestrate
communication, requiring no additional CUs (Section 8.3.2). It leverages
near-memory compute (NMC) for reductions to reduce memory traffic
due to communication (Section 8.3.3). Finally, it does these transparently,
with minor kernel modifications (Section 8.3.4).

Figure 8.5 illustrates a four-device reduce-scatter (RS) overlapped with
its producer GEMM. This GEMM executes in multiple stages of WGs dic-
tated by its input and kernel implementation (Section 8.1.2), while RS
executes in multiple steps dictated by the number of devices involved
(Section 2.4.3.1). For simplicity of illustration, we show the number of
GEMM stages to be one more than the number of required ring steps.
In each step, a GEMM stage’s execution and reduction of its output hap-
pen in parallel to the communication of the previous stage output. In
the first step, the output is communicated to remote devices directly by
the GEMM (remote_update). The later, steady state, steps require a DMA
(dma_update). For N devices, this steady state step is performed N − 2
times, on different chunks. Focusing on GPU-0 in the steady state, step-2,
as shown in Figures 8.5, the GPU executes/generates output for GEMM
stage-3 while also receiving (via DMA) a copy of stage’3 output (blue)
from its neighbor, GPU-1. This occurs in parallel to GPU-0’s DMA of the
reduced copy of GEMM stage-2 data (yellow) to GPU-3, thus overlapping
communication. T3 leverages NMC to atomically update memory loca-
tions on these local and DMA updates, resulting in a partially reduced
copy of the stage-3 chunk without requiring additional reads or GPU CUs
(Section 8.3.3). Once they complete, GPU-0 initiates a dma_update of the
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Figure 8.6: GPU with highlighted T3 enhancements (in orange) executing
a steady-state fused GEMM-RS step.

chunk to its neighbor’s (GPU-3) memory as shown in step-3. This auto-
matic tracking of updates and DMA triggering is done using a lightweight
and programmable hardware Tracker, further reducing dependency on
GPU CUs (Section 8.3.2). These remote / DMA updates are done transpar-
ently by configuring the GEMM’s output address mapping, with minor
application and kernel modifications (Section 8.3.4).

We also make minor runtime and hardware changes to improve T3’s
performance. To enable the perfect overlap of GEMM and RS in Figure 8.5,
we stagger the scheduling of GEMM WGs across GPUs (Section 8.3.4).
Moreover, we also augment the memory system with a simple yet ef-
fective memory controller arbitration (MCA) policy to manage memory
contention between compute and communication (Section 8.3.5).

Figure 8.6 shows a GPU with T3’s enhancements (in orange) executing
the steady state step described above. The GPU executes the GEMM to
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generate local updates for a stage ( L1 ). Concurrently the GPU receives

DMA updates for the same stage ( D1a ) and sends DMA updates for

the previous stage ( D1b ). At the memory controller, the modified MCA
arbitrates between the local and DMA traffic to prevent contention. Fol-

lowing this, the updates are sent to NMC-enhanced DRAM ( L2a , D2a )

while the Tracker is updated with their progress ( L2b , D2b ). Once the
Tracker observes the required local and DMA updates to a memory region,
it triggers their DMA transfer to the neighbor GPU ( L3 ).

We use the 4-GPU GEMM-RS overlap as a running example to describe
T3. RS is more challenging to overlap due to reductions and extra mem-
ory traffic. Further, the ring configuration is more complex than others.
Thus, we detail T3 using ring-RS and discuss additional collectives in
Section 8.6.1.

8.3.2 T3 Tracking & Triggering

T3’s programmable track & trigger mechanism is key to transparently en-
abling fine-grained overlap of producer and collective without using com-
pute resources. As shown in Figure 8.7, T3 automatically transfers copies
of data between devices when ready (e.g., in Figure 8.5, T3 triggers DMA
update of stage-2 data from GPU-0 to GPU-3 once both GPU-0’s local and
GPU-1’s remote updates are complete). This is enabled by a lightweight
Tracker at the memory controller, that tracks local and remote/DMA ac-
cesses to memory regions and triggers a DMA transfer once the required
accesses are complete. Since the condition when a DMA is triggered (e.g.,
number of remote and local updates) and DMA transfer details (e.g.,
addresses, operation type) vary per collective type and implementation,
they are programmed ahead of time using address space configuration
(detailed in Section 8.3.4 and Figure 8.10).
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Figure 8.7: T3 Track & Trigger.

8.3.2.1 Tracker

The Tracker tracks both local and remote memory updates of a GEMM
stage and triggers its DMA. As shown in Figure 8.7(a) and (b), it does so
at wavefront (WF, i.e., a group of threads that execute in lockstep) granu-
larity 1 – i.e., the Tracker tracks the memory region a WF updates. This
assumes tiled GEMM implementations and that each WF/WG generates
a complete tile of data, as is the case in all evaluated GEMMs [30, 201].
However, T3 can also handle other implementation (Section 8.6.7). An
update increments the counter at its corresponding WF’s (wf_id) Tracker
entry 2 . This is done by all local, remote, and DMA updates that arrive at
the GPU’s memory controller (e.g., GPU-0 does not track GEMM stage-1
as its WFs neither write locally nor are its remote updates received). The
incremented counter value is checked for a maximum threshold, which is
set to the product of WF output size (wf_tile_size) and the total updates
expected per element 3 . The wf_tile_size is determined by the GPU
driver using the output size and WF count ((M ∗N)/#WF). The total up-
dates expected per element for ring-RS is two but changes with collective
type/implementation and is thus configurable (detailed in Section 8.3.4).
Once the threshold is reached, the final write triggers the DMA ( 4 in
Figure 8.7(c) and detailed in Section 8.3.2.2). The Tracker is checked once
the accesses are enqueued in the memory controller queue (MCQ) and
thus are not in the critical path.
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WF-based tracking is beneficial as a producer’s (or GEMM’s) stage
may not update contiguous memory regions. As shown in Figure 8.7(a)
this can happen due to column-major allocation of arrays in BLAS li-
braries [14, 201] and row-major scheduling. This makes address-based
tracking expensive (requires storing several addresses or complex table
indexing functions) which WF-based tracking avoids. The Tracker has a
total of 256 entries, indexed using the WG ID’s LSBs, wg_lsb (8 bits). Each
entry is set associative and is tagged using wg_msb,wf_id. wg_msb is
log_2(maxWGsPerStage/256) bits andwf_id is three bits for a maximum
of eight WFs per WG. We set the maximum entries based on the maximum
WGs possible in a producer stage. Each entry has a starting virtual address
(smallest address per WF), and an accesses counter, making the Tracker
size 19KB. The tracking additionally requires the source wg_id and wf_id
as metadata in memory accesses and forwarding of their virtual addresses
to the memory controller (to trigger the DMA in Section 8.3.2.2).

8.3.2.2 Triggering DMA

Once the required accesses to a WF’s memory region are issued, T3 DMAs
the data to the remote GPU ( 4 in Figure 8.7(c)). As shown in Fig-
ure 8.7(c), the DMA commands are pre-programmed by the GPU driver
and are configurable (detailed in Section 8.3.4 and Figure 8.10) as the
DMA regions/operations can differ based on the collective type and im-
plementation. The granularity of the DMA block/table entry is set to be
equal to or larger than the Tracker granularity (wf_tile). The memory
access which completes the required accesses at the Tracker entry (Sec-
tion 8.3.2.1) marks the corresponding DMA entry ready and also populates
it with the wg_id and wf_id which are required by the destination GPU’s
Tracker. If DMA blocks are a multiple of wf_tile, an additional counter
per DMA entry can track their completion. Using the pre-programmed
starting source/destination virtual address, wf_tile_size, and the output
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dimensions (M, N), the DMA engine dynamically generates the remaining
virtual addresses to initiate the DMA.

8.3.3 Near-Memory Reductions

To perform reductions on producer and DMA updates without occupy-
ing GPU compute resources, T3 leverages compute-enhanced memories.
We assume an HBM-based DRAM architecture with near-memory op-
and-store support as has been proposed by recent works [174, 220]. We
envision such compute support to be implemented via ALUs near DRAM
banks as has recently been proposed by memory vendors [125, 145]. How-
ever, T3 can also leverage other reduction substrates (Section 8.6.4).

T3 leverages this near-memory computing (NMC) capability to enable
GEMM stores and DMA transfers to directly update and reduce copies of
data, when required by collectives. For DMA transfers, the operation type
(store vs. updates) is directly specified in the command (address space
configuration in Figure 8.10 and Section 8.3.4). For GEMMs, we utilize
two flags. First, we use an "uncached" flag during memory allocation to
ensure that the output is not cached in any GPU’s caches (such allocations
are supported in existing GPUs). Thus, writes are directly sent to DRAM
which acts as the point of aggregation for all (local, remote, DMA) updates.
The queuing of updates in the memory controller queue guarantees their
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Figure 8.9: Remote address mapping for T3 GEMM-RS over four GPUs.

atomicity; at any given time, only a single instruction can be issued and
executed by near-bank ALUs. Second, we use an "update" flag in the
GEMM API call to enable stores of the GEMM to update the DRAM. The
"update" flag is sent (via kernel packets [24]) to the CUs to tag the kernel’s
stores with one-bit "update" info (similar to prior work [112, 114, 219]).
These are processed by the memory controller to generate the op-and-store
commands.

In addition to freeing up CUs for GEMMs, NMC helps reduce memory
traffic due to communication. Figure 8.8 shows memory accesses in a
steady-state RS step in baseline and with T3. In baseline RS, CUs read two
copies of data (local copy, and received copy from the previous neighbor)
and write the reduced data to the next neighbor’s memory. T3 only re-
quires one read of the data to DMA update the neighbor GPU memory
using NMC. Overall, T3 with NMC reduces the dependence on GPU CUs
and further reduces (or eliminates if using direct-RS, discussed further in
Section 8.6.1) data movement required for communication.

8.3.4 Configuring Producer’s Output Address Space

Modifying producer kernels, especially for many GEMMs of different
shapes and sizes, to fuse and overlap collectives, can be impractical (Sec-
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// output matrix allocation
malloc (ar_0, GPU-0, uncached)
…..
malloc (ar_3, GPU-3, uncached)

// maps arrays of one device to another
remote_map (ar_0[0],  ar_3[0])
…..
remote_map (ar_3[3], ar_2[3])

// maps arrays of one device to another for DMA
// indicates total stores required to trigger DMA
// also indicates DMA store’s function (update)
dma_map (ar_0[1], ar_3[1], 2, update)
dma_map (ar_0[2], ar_3[2], 2, update)
…..
dma_map (ar_3[2], ar_2[2], 2, update)
dma_map (ar_3[3], ar_2[3], 2, update)

// allocate and configure output arrays
t3_malloc ( ar_0, ar_1, ar_2, ar_3, 
 GPU-0, GPU-1 , GPU-2 , GPU-3    
reduce_scatter, ring )

// allocate input matrices
malloc (A0,GPU-0)
malloc (B0,GPU-0)
…..
malloc (A3,GPU-3)
malloc (B3,GPU-3)

// execute GEMMs
gemm (ar_0, A0, B0, update)
…..
gemm (ar_3, A3, B3, update)

remote_unmap (all)

Figure 8.10: Configuring producer output for T3 GEMM-RS over four
GPUs.

tion 8.2.1). T3 avoids this by configuring the producer’s output address
space mapping which is used to program the Tracker and DMA com-
mands. Figures 8.9 and 8.10 show this configuration for GPU-0 from the
fused GEMM-RS example in Figure 8.5.

Since there are four devices, GEMM’s output array is chunked four
ways. In GPU-0, the GEMM writes its stage-1 output directly to GPU-3’s
memory (step-1 in Figure 8.5), while its stage-2 and stage-3 output is first
written to local memory and later DMA’d to GPU-3 (stage-4 is only written
locally once and is not DMA’d). Thus, GPU-0 requires memory mappings
of these chunks with that of GPU-3 as shown in Figure 8.9. This configu-
ration differs per collective type and topology-optimized implementation
(see Section 8.6.1) and, similar to modern collective implementations,
can be pre-defined in collective libraries [10, 192]. Figure 8.10 shows an
example of this using pseudo-code.

The configuration in Figure 8.10 defines this mapping for the GEMM
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output using two different API calls: remote_map and dma_map. remote_map
is used for fine-grained remote writes/updates (for stage-1), which uses
existing GPU support for peer-to-peer load/store by threads [195]. Con-
versely, dma_map is used for coarse-grained DMA writes/updates (for
stage-2,3) which leverages existing support for memory copies by DMA
engines in GPUs (e.g., DirectGMA and others [171, 172, 195]). A dma_map
call also defines the DMA functionality (store vs. update), and its trig-
gering condition (number of stores/updates per element). It can also be
extended to specify granularity (wf_tiles per DMA block in Figure 8.7(c)).
These calls are used to pre-program the Tracker and DMA commands to
enable automatic communication of data when ready (Section 8.3.2).

Fusion in ring-based collectives also benefits from producers (on differ-
ent devices) generating data chunks in a staggered manner. In Figure 8.5,
GPUs stagger the generated data by one stage; in step-1, GPU-0 executes
stage-1, while GPU-1 executes stage-2, and so forth. This is enabled by
staggering WG scheduling across devices. Alternatively, it can also be
enabled by fetching appropriate implementation from BLAS libraries with
staggered output tile-to-WG mapping amongst producer kernels. Overall,
configuring the output address space mitigates the need to change GEMM
implementations to enable fusion with collectives.

8.3.5 Communication-aware MC Arbitration (MCA):

Finally, careful scheduling of memory accesses by the producer kernel
and those resulting from communication is crucial to efficiently overlap
them. In Section 8.5.1 we show that a memory controller (MC) arbitration
policy which a) round-robins between issuing memory accesses from
the compute and communication streams and b) falls back to the other
stream if the current stream is empty, results in producer kernel slow-
downs. Communication-related memory accesses appear in bursts and
can occupy DRAM queues, stalling the compute kernel’s critical memory
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reads/writes. Simply prioritizing producer kernel accesses as they appear
is also insufficient as prior communication-related memory accesses may
already occupy DRAM queues. Finally, giving the local compute stream
dedicated access results in wasted cycles and memory bandwidth under-
utilization. Thus, an efficient overlap of compute and communication
requires a dynamic arbitration policy that addresses both contention and
under-utilization.

We implement a simple yet dynamic arbitration policy to overcome
this. The MC always prioritizes compute stream accesses, but if empty,
falls back to communication stream. Additionally, it monitors the DRAM
queue occupancy and only issues communication-related accesses if occu-
pancy is below a threshold. This ensures sufficient room in the queues for
future compute stream accesses and prevents their stalls. The occupancy
threshold depends on the memory-intensiveness of compute kernels (e.g.,
smaller if memory-intensive, and vice-versa). This is determined dynam-
ically: MC detects the memory intensiveness of a kernel by monitoring
occupancy during its isolated execution (the first stage in Figure 8.5).
Finally, the MC tracks cycles elapsed since the last issue from the com-
munication stream and prioritizes it if it exceeds a limit to ensure it is
not starved. Additionally, the communication stream is drained at the
producer kernel boundary.

8.4 Methodology

8.4.1 Setup

8.4.1.1 Multi-GPU Simulation

Although a number of popular, open source GPU simulators are pub-
licly available [37, 83, 147, 286], we chose to evaluate T3 using Accel-
Sim [124] because it provides high fidelity for modern GPUs [122]. Like
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System
#GPUs 8, 16

Inter-GPU
Interconnect

Ring, 150 GB/s Bi-directional
500 ns link latency

Per-GPU Config
#CUs 80, 1.4 GHz

Per-CU Config 2K threads, 128KB unified LDS + L1 cache
(with no write-allocate), 256KB RF

L2 16MB, 64 banks, 1.4 GHz

HBM2 1 TB/s, 1 GHz, CCDWL=4,
Bank Grp.=4, rest [48]

Table 8.1: Simulation setup.

prior work [123], we extended Accel-Sim to simulate a multi-GPU sys-
tem. We observe that in a multi-GPU DNN setup all GPU’s executions are
homogeneous (Figures 2.4 and 8.8). Thus, we evaluate both our multi-
GPU baseline and T3 by modeling all the activities pertaining to a single
GPU. This includes modeling the Tracker which is accessed/updated in
parallel with the store/DMA operations and uncached NMC updates. Al-
though we do not model the DMA engine in the simulator, we do model
its inter-GPU communication (communication resulting from RS both in
the baseline and T3’s fused GEMM-RS) by executing the compute opera-
tions (e.g., GEMM [30, 201]) in Accel-Sim and using Accel-Sim’s front-end
tracing functionality to inject the additional inter-GPU communication
traffic. The Tracker’s DMA triggering overheads are negligible since the
DMA commands are pre-queued during the setup process (Figure 8.10)
as is often done, especially for ML operations which are repetitive [100].
Table 8.1 details the GPU configuration we use to evaluate T3, which is
the latest GPU architecture Accel-Sim completely supports. Commercial
GPUs with such a configuration support a 150 GB/s interconnection ring
bandwidth [182]. Since recent GPUs frequently scale compute faster than
other resources, we also evaluate another configuration with increased
CU count while the other parameters stay the same in Section 8.6.5.
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Store trace (to sub-array-2)

Generation rate from sim.

Network: size / BW + Lat.

sub-array-1

Figure 8.11: Simulating multi-GPU reduce-scatter.

Figure 8.11 describes our multi-GPU simulation of RS. In each RS step, a
GPU performs a reduction of a sub-array and sends it to the neighbor GPU
while also receiving a reduced sub-array (corresponding to a different
chunk) from another neighbor GPU (Figures 2.9 and 8.8(a)). The simu-
lator executes the reduction of the array as-is. Simulating the incoming
network traffic requires: (a) determining packet addresses, (b) generating
packets at the appropriate rate, and (c) modeling the interconnect costs.
Packet addresses are determined using the store trace of WGs from the
reduction kernel. Next, since GPU executions are homogeneous, remote
traffic is generated at the same rate as the GPU generates the reduction
output (which is filtered out to be sent to remote GPU). This also implicitly
includes slowdowns due to compute/communication interference at the
remote GPU. Finally, we add the interconnect costs to these packets as
they arrive, assuming a simple link bandwidth and latency model of the
interconnect. To validate this setup, we compare simulated RS times on
four GPUs with hardware measurements from a four-GPU node with
AMD Instinct™ MI210 GPUs [25] with same ring network bandwidth as
simulated (Table 8.1). Figure 8.12 shows that simulation closely follows
hardware trends for a range of sizes (6-192 MB): 6% geomean error versus
the ideal dotted line.
Near-Memory Computing: We modify the simulator’s HBM to model
NMC updates. Further, memory vendor proposals indicate that NMC
operations can be issued without a significant increase in DRAM timings;
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Figure 8.12: Validation of multi-GPU reduce-scatter simulation.

back-to-back NMC operations can be issued to the same bank group with
the same column-to-column access (CCDL) delay [125]. To model the
additional cost of NMC op-and-store operations (Section 8.3.3), we modify
the simulator’s HBM to use a 2× higher CCDL delay (termed CCDWL)
following those operations (see Table 8.1).

8.4.1.2 End-to-End Transformer Iteration

To evaluate end-to-end iterations with T3, we scale the GEMMs and RS
times in the baseline Transformer breakdown (shown in Figure 8.2) by
their simulated speedups (described in Section 8.4.1.1). We leverage a
combination of hardware data and analytical modeling as done by prior
works [169, 213] to get the end-to-end breakdowns of models in their
distributed setups. We use a single-GPU mixed-precision [165] execu-
tion of MLPerf v1.1 [168] BERT on an AMD Instinct™ MI210 accelerator
(GPU) [25] and scale its operation times based on changing hyperpa-
rameters and setup (e.g., sliced GEMM). This is beneficial as it helps us
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Model Name Hyperparams Inputs TP degree
Mega-GPT-2 H=3072, L=74 SL=1K, B=16 8, 16

T-NLG H=4256, L=78 SL=1K, B=8 8, 16
GPT-3 H=12K, L=96 SL=1K, B=2 32
PALM H=18K, L=118 SL=1K, B=2 32

MT-NLG H=20K, L=105 SL=1K, B=2 32

Table 8.2: Studied models, their hyperparameters & setup.

evaluate larger futuristic models (Transformer models are similar differing
only in layers size/counts [169, 215]) and takes into account several GPU
optimizations for Transformers [59, 65] already in MLPerf implementa-
tions. Our projections further match those measured by prior works. For
example, AR’s percentage runtime contribution projected for Mega-GPT-
2 with TP-16 matches prior works’ measurements on a similar system
configuration [130].

8.4.2 Applications, Deployment & GEMMs

Models and their deployment: Since Transformers are fast-evolving, we
evaluate T3’s impact on a range of Transformer models and TP degrees
(Table 8.2). For Megatron-GPT-2 (Mega-GPT-2) [256] and T-NLG [167]
we use 16K and 8K input tokens (= input-length * batch-size) and TP
degrees of eight and 16, given their modern intra-node setups [107, 130,
167, 256]. For larger Transformers like PALM [55], GPT-3 [41], and MT-
NLG [263]) we use a higher slicing degree of 32 given their increasingly
large memory capacity requirements [213] and availability of nodes with
larger device counts that can enable this slicing [115, 198, 252]. Note that
we consider similar TP degrees for both training and inference. While the
inference memory capacity requirements are smaller compared to training
a model (since there are no gradients, optimizer states, and master weight
copies during inference), higher TP degrees are preferred to minimize
latency, even though the reduction in latency may not be proportional to



194

the increase in TP. For instance, the LLaMA-7B model (with a size of 13GB
using 16-bit parameters) can fit on a single device but is deployed with
a TP of 8 for optimal performance [224]. Therefore, it is crucial that we
evaluate and improve these setups. Finally, we evaluate mixed-precision
training which entails half-precision (FP16) forward and backpropagation
and single-precision (FP32) weight updates. Similarly, we evaluate FP16
inference.
GEMMs: GEMMs from the aforementioned applications are simulated
using implementations from state-of-the-art BLAS libraries [30, 201]. Most
GEMMs (including all GEMMs we evaluate) use a tiled GEMM imple-
mentation where each WG generates a complete tile of data (other im-
plementations discussed in Section 8.6.7). Further, we evaluate GEMMs
with both non-transposed (e.g., backward GEMMs) and transposed (e.g.,
forward GEMMs) input tensors, as observed in MLPerf’s BERT [164, 237].

8.4.3 Configurations

To evaluate T3’s efficacy we use the following configurations:

• Sequential: is the baseline configuration. Like modern systems,
sequential executes sliced GEMMs and the following AR kernels
sequentially.

• T3: is our proposal which fuses and overlaps GEMM with RS (as
described in Section 8.3), followed by sequential all-gather (AG).

• T3-MCA: uses fused GEMM-RS as in T3, but also includes the mem-
ory controller arbitration (MCA) discussed in Section 8.3.5.

• Ideal-GEMM-RS-Overlap: represents ideal GEMM and RS overlap
in software. Thus, its performance is the maximum of the GEMM’s
and the RS’s isolated kernel execution times, followed by the AG
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Figure 8.13: Transformer sub-layer runtime distribution.

time. Moreover, it assumes no dependency constraints or resource
contention between GEMM and RS.

• Ideal-RS+NMC: uses RS with near-memory computing, which can
provide additional speedup beyond a perfect overlap. Thus, its per-
formance is max(GEMM, RS+NMC) over Ideal-GEMM-RS-Overlap.

8.5 Results

8.5.1 Execution Time Distribution & Speedups

Figures 8.13 and 8.14 show results for all sliced sub-layers in Transformers
which require an AR: output projection (OP) and fully-connected-2 (FC-2)
in forward pass (fwd) and fully-connected-1 (FC-1) and input projection
(IP) in backprop (bwd). We show these for Mega-GPT-2 and T-NLG, as
well as two TP setups (TP of 8 and 16). Figure 8.13 shows each case’s
runtime distribution between the GEMM, RS, and AG. Figure 8.14 shows
their speedup over sequential using T3, T3-MCA, as well as their speedups
assuming an ideal overlap of GEMM with RS (Ideal-GEMM-RS-Overlap)



196

and additional speedups resulting from a faster RS with NMC (Ideal
RS+NMC).

8.5.1.1 Ideal Speedups

Figure 8.14 shows the ideal possible speedups and breaks them into two
parts: first from overlapping the GEMM and RS kernels (Ideal-GEMM-RS-
Overlap) and second from improved RS performance due to NMC (Ideal
RS+NMC).

In Figure 8.14 Ideal-GEMM-RS-Overlap (without resource and data-
dependency constraints) shows considerable benefits from overlapping the
producer GEMM and following RS: 50% max speedup and 35% geomean
versus Sequential. Speedups vary both within and across models and
depend on the isolated execution times of GEMM and RS (Figure 8.13).
The situations where the GEMM and RS runtimes are similar (similar
proportions in Figure 8.13) have the maximum potential since the GEMM
hides all of RS’s cost. For example, FC-1 in T-NLG with TP=16 obtains
50% speedup. Alternatively, the cases in which the GEMM and RS times
are skewed show the least benefit since most of the GEMM or RS cost is
exposed. For example, Ideal-GEMM-RS-Overlap speedup is only 15% for
OP in Mega-GPT with TP=16. However, the latter is uncommon and is a
consequence of slicing a very small layer (OP is the smallest among all). It
does not hold for other sub-layers within the same model, or larger models
as shown in the figures (also see Section 8.5.4). For a given hardware setup,
these execution time ratios, and thus Ideal-GEMM-RS-Overlap speedups
are dictated by layer parameters [213].

In Figure 8.14 Ideal-RS+NMC shows that additional speedup is pos-
sible beyond what perfect overlap provides. Besides freeing all the CUs
for GEMMs, performing RS reductions near memory also lowers RS’s
memory traffic (described in Section 8.3.3). This speeds up RS by 7% and
3% with TP=8 and TP=16, respectively. NMC only reduces RS’s final step



197

0%

10%

20%

30%

40%

50%

60%

OP FC-2 FC-1 IP OP FC-2 FC-1 IP OP FC-2 FC-1 IP OP FC-2 FC-1 IP

fwd bwd fwd bwd fwd bwd fwd bwd T T

TP=16 TP=8 TP=16 TP=8

Mega-GPT-2(H=3K_SLB=16K) T-NLG(H=4256_SLB=8K) Geomean

%
 S

p
e

ed
u

p
 o

ve
r 

Se
q

u
en

ti
al

 G
EM

M
->

R
S T3 T3-MCA Ideal RS+NMC Ideal GEMM-RS-Overlap

TP
=1

6

TP
=8

Figure 8.14: Transformer sub-layer speedups with T3
.

time as interconnect costs dominate all prior steps and thus its runtime
benefit decreases as TP, and thus total steps, increases. As shown in Fig-
ure 8.14, this faster RS can reduce overlapped time and provide additional
speedups of up to 4%. Intuitively, the impact of a faster RS is only evident
in layers in which RS is longer running than GEMM and is otherwise
hidden when overlapped.

8.5.1.2 T3 Speedups

T3 transparently overlaps GEMMs with their corresponding consumer
RS in a fine-grained manner. Moreover, T3’s lightweight track-&-trigger
mechanism and use of near-memory compute frees all CUs for GEMMs
and reduces DRAM traffic (Figure 8.16 and Section 8.5.2), respectively.
Thus, T3 achieves speedups of up to 39% (20% geomean, yellow bars,
Figure 8.14).

Individual speedups vary considerably and are largely impacted by
the extent of contention between DRAM traffic from the GEMM and the
concurrent, RS (details in Section 8.5.2). For OP layers, T3 achieves close to
the Ideal-GEMM-RS-Overlap speedups, and even exceeds them in certain
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cases. This happens because the OP GEMMs are small and fit largely in
the LLC, having very small DRAM read traffic in Sequential (shown in
Figure 8.16). Thus, the additional DRAM traffic from the overlapped RS
in T3 has little impact on the GEMMs’ progress/execution. Instead, T3
further improves RS runtimes in these cases via NMC and enables part
of the additional Ideal-RS+NMC speedups. Finally, although the track &
trigger mechanism operates at a small WF granularity, generally data from
multiple WFs/WGs of a GEMM stage are ready to be sent concurrently,
resulting in high network bandwidth utilization. Furthermore, even when
this is not true, T3 can tolerate this because compute/GEMM execution
and communication are overlapped, hiding the latency.

In many other cases, and especially the much larger FC layers, the
benefits are far from those with Ideal-GEMM-RS-Overlap (>15% slower).
Figure 8.15 shows the DRAM traffic (Y-axis) and the GEMM slowdown
(X-axis) with fine-grained overlapping, compared to the GEMM’s isolated
execution. An isolated GEMM as shown in Figure 8.15(a) executes in
multiple stages (Section 8.1.2), each with a read phase (blue) followed
by a bursty write phase, which limit read traffic. Overlapping RS induces
additional DRAM traffic, as shown in Figure 8.15(b). Besides additional
traffic, in T3, GEMM, and RS writes directly update memory using NMC
(Section 8.3.3). These additional bursts of reads (RS_reads for a stage are
issued as soon as both the local and neighbors’ copies have updated the
memory) and updates (RS_updates for the next stage from the previous
neighbor) can further stall local GEMM reads as shown, causing GEMM
to slow down considerably.

8.5.1.3 T3-MCA Speedups

T3-MCA (Section 8.3.5) limits GEMM reads stalls due to bursty RS traf-
fic (Section 8.5.1.2, Figure 8.15) using a simple arbitration logic. It pre-
vents RS traffic from completely occupying DRAM queues by limiting
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Figure 8.15: Overall DRAM traffic in (a) baseline GEMM, (b) T3, for T-
NLG FC-2 with TP=8 and SLB=4K.

communication-related accesses when a DRAM queue occupancy reaches
a threshold (5, 10, 30, or no limit) determined by the memory intensity of
the GEMM kernel. T3-MCA provides considerable benefits over sequen-
tial execution; maximum of 47% and geomean of 30% (29% maximum and
13% geomean over T3). Furthermore, the geomean speedup with T3-MCA
is only 5% smaller than Ideal-GEMM-RS-Overlap. There are individual
cases where T3-MCA is far from ideal (e.g., FC-1 in T-NLG with TP=16).
These represent cases where L2 bypassing (for near-memory update) of
GEMM writes hurts the GEMM’s performance. Consequently, the overall
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Figure 8.16: DRAM access per sub-layer.

overlapped runtime also increases.

8.5.2 Data Movement Reductions

Besides improved performance, T3 and T3-MCA also reduce data move-
ment to and from DRAM by a maximum of 36% and an average of 22%
for the sub-layers. Figure 8.16 shows the total memory accesses and their
detailed breakdown (amongst GEMM, RS and AG reads/writes) for a
single GPU across all cases. While the AG reads/write remain constant
between baseline (sequential) and T3-MCA, there is a combination of
reasons which impact the rest: (a) fusion of GEMM and RS eliminates
local writes from GEMM’s first stage and reads from RS’s first step, (b)
near-memory reductions eliminate reading of partial copies every RS step,
as well as the reads and writes in the final step’s reduction, and (c) LLC
bypassing of GEMM’s output writes improves input read caching for
cache-sensitive GEMMs, reducing GEMM’s local reads. These impacts
also vary depending on the TP degree: the one-time reductions (in the
first and last RS step) have a much higher impact with smaller TP degrees



201

0%
2%
4%
6%
8%

10 %
12 %
14 %
16 %
18 %

TP=8 TP=16 TP=8 TP=16 TP=32 TP=32 TP=32 TP=8 TP=16 TP=8 TP=16 TP=32 TP=32 TP=32

Mega -GPT-2,
SLB=1 6K

T-NLG, SLB=8 K GPT-3 ,
SLB=2 K

PALM,
SLB=2 K

MT-
NLG,

SLB=2 K

Mega -GPT-2,
SLB=1 6K

T-NLG, SLB=8 K GPT-3 ,
SLB=2 K

PALM,
SLB=2 K

MT-
NLG,

SLB=2 K

Train ing Infere nce

%
 S

pe
ed

up
 o

ve
r S

eq
ue

nt
ia

l G
EM

M
->

AR T3 T3-MCA Ideal-RS-Overlap

Figure 8.17: End-to-end model speedups.

due to fewer overall RS steps. Conversely, GEMM read caching impact is
higher with a larger TP degree; larger TP/slicing leads to smaller, more
LLC-amenable GEMMs. Overall, RS’s reads reduce by 2.4× geomean
(2.5× for TP=8, 2.2× for TP=16), both GEMM’s and RS’s writes reduce by
10% geomean (14% for TP=8, 7% for TP=16), and finally GEMM’s reads
decrease by 1.6× geomean (1.2× for TP=8, 2× for TP=16).

8.5.3 End-to-end Model Speedups

As shown in Figure 8.17, T3 and T3-MCA speed up model training by
a maximum of 9% and 12%, and geomean of 7% and 10%, respectively.
Benefits are higher at larger TPs due to the overall higher proportion of the
sliced sub-layers requiring AR (Section 8.2). Similarly, prompt processing
and/or large input token processing during inference is also sped up by
a maximum of 12% and 15%, and geomean of 9% and 12% with T3 and
T3-MCA, respectively. Inference speedups are better due to the overall
higher proportion of sliced sub-layers resulting from no backprop compute.
Finally, the MLPerfv1.1 implementation we evaluate does not include a key
fusion optimization [59], which makes the non-sliced attention operations
a significant 40-45% of execution time. Thus, we expect T3’s and T3-MCA’s
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benefits to be much higher for newer MLPerf implementations.

8.5.4 Impact on Larger Transformers

We also evaluate larger Transformers with higher TP degrees. Similar to
the smaller models, layer-level speedups are high; max 35% and geomean
of 29% for GPT-3 (175B parameters), PALM (530B parameters), and MT-
NLG (540B parameters). As shown in Figure 8.17, these lead to up to
12% and 14% end-to-end speedup in their training and prompt phase of
inference, respectively. Thus, T3-MCA also effectively speeds up larger
models.

8.6 Discussion

8.6.1 Other Collectives Implementation & Types

T3 supports other collectives and implementations via the configuration
of GEMM’s output address space (Section 8.3.4).
Other implementations: Collectives can have multiple implementations
optimized for different topologies. We focus on ring since it is commonly
used in intra-node setups where tensor slicing is employed [109]. T3 can
also support the direct RS implementation in a fully-connected topology.
At every GEMM stage, the output from each device is scattered across the
remaining devices using dedicated links and reduced at the destination.
This is accomplished by changing the configuration in Figure 8.10 to slice
each GEMM stage output and remote_map each slice to a remote device. In
this case T3 eliminates memory accesses by the collective as it is completely
orchestrated using GEMM stores. Similarly, it can also support other, inter-
node implementations via appropriate programming of the track & trigger
mechanism.
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Other types: Similarly, T3 also supports other collectives. A ring/direct all-
gather (AG) reuses ring-RS’s configuration and setup, except the GEMMs
and DMA transfers do not update memory locations. Similar to AG, T3
can also support an all-to-all collective where devices exchange sub-arrays,
except here the remote/dma_mapped GEMM output is not written to local
memory.

8.6.2 Other Distributed Techniques

Although we focus on communication in tensor-parallel (TP) setups, T3
is also applicable in other distributed setups where a producer’s output is
communicated via a collective.
Expert Parallelism: Similar to TP, expert parallelism in Mixture-of-experts
(MoEs) [69, 228] require serialized all-to-all communication which can be
fused with T3 as discussed in Section 8.6.1.
Data & Pipeline Parallelism: T3 also applies to data-parallel and pipeline-
parallel setups which require RS, and peer-to-peer transfers, respectively.
While T3’s overlapping benefits may not provide additional benefits in
such cases (these communications can be overlapped with other indepen-
dent kernels), T3’s NMC and MCA techniques can help reduce memory
bandwidth contention in these cases as well.
TP with All-gather: T3 can be extended for distributed setups where the
collective’s output requires overlapping with a long-running consumer
operation. This is required if the producer is short-running (e.g., TP which
all-gather’s activations). Overlapping collective-consumer pairs is simi-
lar in principle to overlapping producer-collective and requires similar
tracking/triggering mechanisms. The Tracker would track “all-gathered-
input→GEMM-WG” instead of “GEMM-WG→all-reduced-output”. More-
over, instead of triggering a DMA, it would trigger a WG scheduling event
(such as in Lustig & Martonosi [159]). This can be challenging since the
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“all-gathered-input→GEMM-WG” mapping can be kernel implementation
dependent. However, additional programming hints could overcome this.

8.6.3 Generative Inference

While we focus on the communication-heavy training and prompt phase
of inference, T3 is also applicable in the generation phase of inference. Due
to smaller input token counts (Section 2.2.2.2), these phases are bound by
memory accesses of model weights and can benefit from the aggregate
memory bandwidth of multiple devices that TP provides [28]. The re-
sulting all-reduce of activations, while smaller than those in training and
thus potentially latency-bound (due to small token counts), can still be
overlapped and hidden with GEMM executions using T3.

8.6.4 Other Reduction Substrates

While T3 leverages NMC for atomic updates required in reduction-based
collectives (e.g., RS, AR), it is not a requirement. Such updates could also
be handled via system-wide atomics on uncached data without significant
loss in performance. Similarly, T3 can also leverage switches for reductions
as shown by prior works [130].

8.6.5 Future Hardware & Lower Precision

Since compute FLOPS have scaled much more than network link band-
widths across hardware generations [77, 188, 194, 200], communication
will likely be a larger proportion of the end-to-end execution both in
more recent systems than the one we evaluate and in the future. Simi-
larly, lowering precision [166, 247] decreases compute time much more
(quadratically) than communication (linearly). Thus, the benefits of hid-
ing communication with techniques like T3 will also apply to other GPU
configurations and datatypes besides 16b.
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Figure 8.18: T3 on future hardware with 2× compute.

To evaluate T3’s hiding capability in future systems, we study a sys-
tem configuration where compute FLOPS scale more than network link
bandwidth (2×), which we term GPU-2X-CU. While the scaling GPU
FLOPs across generations largely result from more powerful CUs (larg-
er/faster tensor processing), we simulate it by scaling the number of CUs
and keeping the underlying network the same. This enables us to use
the latest/validated GPU model and GEMM traces that Accel-Sim sup-
ports [124]. Figure 8.18 shows that for larger layers (FC-2) where compute
time dominates, compute becomes faster with 2× CUs which lowers the
compute:communication ratio across the models. This shortens the critical
path and leads to larger benefits with overlapping compute and commu-
nication with T3. Conversely, for smaller layers (OP), where compute and
communication are more balanced, faster compute exposes communica-
tion on critical path, lowering T3’s benefits. Note that, for such scenarios,
communication optimizations will be necessary [44, 253]. Nevertheless,
the larger layers have a more prominent impact on overall execution and
for these, T3’s benefits only improve.
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8.6.6 NMC for Following Operations

Collectives, specifically all-reduce in Transformers, are usually followed
by other memory-intensive operations on all devices (e.g., parameter
updates in DP [215] or residual/dropout layers in TP). These opera-
tions redundantly operate on the entire all-reduced array on each device.
With T3, these following memory-intensive operations can be executed
using NMC [215] on (reduced) sub-arrays of data before they are all-
gathered/broadcasted to the remaining devices, thus reducing redun-
dancy, and further accelerating distributed Transformer models.

8.6.7 Other GEMM Implementations

T3 focuses on the most common tiled GEMM implementation with a
WG/WF responsible to generate an entire tile/sub-tile of data. However,
T3 can support other implementations, such as split-K [197]. A split-K
implementation slices work in the accumulation or K dimension, such
that multiple WGs are responsible for a single tile, each generating a
partial tile that is reduced after. Split-K increases parallelism when the
output size (MxN) is small but the K dimension is large. However, tensor-
sliced GEMMs, which require AR, have large output sizes and small K
dimensions. Naively, T3 with a split-K implementation (with more than
one update to an element) will cause multiple local and remote updates
per memory location. To prevent this, T3 can use the kernel packets’ tile-
size metadata to deduce split-k degree (=(#WGs * tile-size)/(M*N)), i.e.,
the number of updates per element. The virtual addresses in the tracker
(Section 8.3.2.1) can be used to determine WFs/WGs/tracker entries that
update the same tile, allowing the tracker to trigger remote DMA only
after all updates to the tile are complete.
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8.6.8 Multi-node Setups

Tensor-parallelism, with serialized communication is usually employed
within a node, which generally has high-speed homogeneous links. How-
ever, T3 can also be applied to serialized communication in inter-node
setups with slower and often heterogeneous links. Consequently, com-
munication costs can be much larger than GEMM executions, potentially
limiting the benefits from fine-grained overlap: once the computation is
completely overlapped, the remaining communication costs will be ex-
posed [278]. Nevertheless, T3 can still provide benefits from hiding the
GEMM execution cost as much as possible.

8.6.9 Communication in High Performance Computing
(HPC)

There have been several works to optimize for inter-node communication
in supercomputers for HPC applications. Similar to our work, their goal
has been to overlap communication with compute, while also reducing the
overhead to initiate communication via NIC. The closest to T3 are works
such as GPUDirect Async [7] and GPU-TN [139] in which the GPU initi-
ates communication and are classified as GPU native networking [139].
While the former enables initiation at kernel boundaries and thus only en-
ables coarse-grained overlap with compute, the latter enables intra-kernel
communication and finer-grained overlap. However, GPU-TN requires
kernel changes to distinguish stores which initiate communication as well
as to tag them with an identifier. T3 avoids this by creating appropriate
mappings of the output array and leverages the workgroup / wavefront
IDs for tracking. This in turn avoids the modification of hundreds of
kernels in BLAS libraries. Additionally, it leverages NMC for reductions
required by communication. Thus works such GPU-TN for NIC-based
communication can be extended with ideas from T3.
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Approach /
Features

GPU
Support

Transparent
Comm.

Overlap
Comm.

Reduce
Contention

No Addl.
Accelerator

Topology-
independent

In-switch [130] ✓ X X ✓ X X
ACE [235] ✓ X X ✓ X X

CoCoNet [107] ✓ X ✓ X ✓ ✓
Overlap

Google [278] X X ✓ X ✓ ✓

T3-MCA ✓ ✓ ✓ ✓ ✓ ✓

Table 8.3: Comparing T3-MCA to prior work.

8.7 Related Work
Table 8.3 compares T3-MCA with prior works across several key metrics.
Some prior work has designed in-switch collectives to speed up communica-
tion by up to 2× [130]. However, this cannot eliminate serialized commu-
nication from the critical path. Furthermore, they are topology-dependent,
requiring switches. Enabling fine-grained overlap of compute and commu-
nication is essential to effectively hide the cost of communication. Existing
attempts to do this, like CocoNet[107] and Google Decomposition [278], have
limitations. Google Decomposition requires changes to matrix multiplication
(GEMMs) kernels which can be disruptive to GPU software infrastructure
(Section 8.2.1).

Furthermore, both approaches can suffer from hardware resource con-
tention between compute and communication (Section 8.2.2). Works that
reduce contention only address coarse-grained overlap of compute and
communication in cases like DP, lacking support for fine-grained overlap in
serialized collectives [235]. Moreover, they rely on dedicated accelerators.
Other recent work fuses communication within the computation kernel to
enable fine-grained overlap, such that a GPU kernel performs both com-
putation and dependent communication at the WG level [221]. However,
this requires explicit changes to the compute kernels and is not readily
applicable for collectives involving simple arithmetic operation such as
reduce-scatter – which will still be limited by inter-GPU synchronization.
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Finally, other work like Syndicate increases coarse-grained overlap oppor-
tunities and efficiency in distributed training. However, Syndicate cannot
hide serialized communication [163]. T3-MCA overcomes these shortcomings
and achieves a transparent overlap of serialized communication with compute,
while minimizing resource contention.

8.8 Chapter Summary
Transformer models increasingly rely on distributed techniques, requiring
communication between multiple devices. As we showed in Chapter 5,
this communication can limit scaling efficiency, especially for techniques
like TP which serializes communication with model execution. While a
fine-grained overlap of the serialized communication with its producer
computation can help hide the cost, realizing it with GPUs is challenging
due to software complexities and resource contention between compute
and communication. To overcome this, in this chapter, we proposed T3,
which transparently and efficiently fuses and overlaps serialized inter-
device communication with the producer’s compute. It orchestrates com-
munication on the producer’s stores by configuring the producer’s output
address space mapping and using a programmable track and trigger mech-
anism in hardware. This reduces application impact and also eliminates
contention for GPU compute resources. T3 additionally uses near-memory
computing and a memory-controller arbitration policy to reduce memory-
bandwidth contention. Overall, T3 improved performance by 30% ge-
omean (max 47%) and reduced data movement by 22% geomean (max
36%) over state-of-the-art approaches. Moreover, T3’s benefits hold as
models and hardware scale.
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9 conclusion & future work

In contemporary computing, DNNs, particularly sequence-based net-
works, have emerged as predominant workloads on hardware devices.
The size of these networks, the scale of the datasets they are trained on,
and the range of tasks they are applied to have grown exponentially. Con-
sequently, the computational demand for training and deploying these
models has also surged. For instance, some of the largest NLP models
today require over a month for training on approximately 4500 GPUs.
While the common strategy has been to increase the computational capa-
bilities of GPUs and/or to increase the number of GPUs, the fundamental
question is: do these application indeed utilize all these resources? In this
dissertation, we answer this question through detailed characterization
and identify opportunities to enhance their execution efficiency.

In Chapters 3, 4 and 5 of the dissertation, we profiled and characterized
contemporary sequence-based models to identify hardware inefficien-
cies in their execution. This analysis specifically focused on recurrent-
based and state-of-the-art Transformer models on GPUs. Given the input
length-dependent, heterogeneous, training iterations of these sequence-
based models and the thousands of training iterations resulting from large
datasets, we devised SeqPoint for their quick yet accurate profiling. More-
over, recognizing the ever-evolving and increasingly large nature of these
models, we developed strategies to project their future behaviors. Their
characterizations exposed three primary inefficient phases in sequence-
based models. These include memory-bound weight update algorithms,
underutilization of concurrent matrix-multiplication (GEMM) operations,
and the idling of compute resources during serialized inter-device com-
munication phases.

In Chapters 6, 7 and 8 of the dissertation, we introduced cross-stack
approaches aimed at mitigating these identified inefficiencies. First, we
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demonstrated the efficacy of selectively offloading memory-bound weight
update algorithms to emerging compute-enhanced memories. This strat-
egy significantly enhanced performance while concurrently reducing data
movement and also making GPU compute units available for other opera-
tions. Second, we addressed sub-optimal concurrent GEMM executions on
GPUs via GOLDYLOC. GOLDYLOC uses runtime information to choose
kernel implementations optimized for shared resource environments as
well as to dynamically control the amount of concurrency to exploit. This
improved concurrent GEMM throughput and execution efficiency. Finally,
we tackled the challenge of serialized communication phases with T3
which interleaves communication with their preceding producer oper-
ations in a fine-grained manner. T3 uses a hardware track and trigger
mechanism to mitigate software complexities as well as leverages near-
memory computing and DMA engines to minimize resource contention
resulting from the overlap. Overall, these optimizations highlight the need
for information flow between different layers of compute abstractions
(application, libraries, runtime, and hardware) to improve GPU resource
utilization.

In this chapter, we first summarize each part of this dissertation (Sec-
tion 9.1) and present the various lessons we learned through the course
of this dissertation work (Section 9.2). We then discuss some directions
for future work (Section 9.3).
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9.1 Summary

9.1.1 Analysis of Sequence-based Models on GPUs

9.1.1.1 SeqPoint: Identifying Representative Training Iterations to
Profile

Profiling and characterizing entire training runs of sequence-based mod-
els (e.g., natural language models) is challenging given their hours-to-
days native runs. We observed that prior works which characterize them
are oblivious to the heterogeneity in training iterations and, as such, are
ill-equipped to create small, representative training runs that faithfully
summarize entire training phases.

To address this, we first observed that input SL is a key factor that
dictates the heterogeneity in training iterations of sequence-based models.
Then, we designed a new scheme that clusters unique SLs and selects
representative points in each cluster, termed a SeqPoint. We showed our
identified SeqPoints are representative of the entire training run with
low error. Finally, this mechanism reduced profiled training iterations by
up to two orders of magnitude for state-of-the-art, end-to-end sequence-
based models. Overall, this mechanism not only makes profiling and
characterization of these models training tractable but also paves the way
for their network-level simulations.

9.1.1.2 Characterization of Transformers Models

NLP uses increasingly large Transformer models that tackle challenging
problems and are driving the requirements of future systems. To this
end, we studied the computationally and time-intensive training phase of
NLP models and identified how its algorithmic behavior can guide future
accelerator design. We focused on BERT (Bi-directional Encoder Repre-
sentations from Transformer), one of the most popular Transformer-based
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NLP models, and identified key operations which are worthy of atten-
tion in accelerator design. In particular, we focused on the manifestation,
size, and arithmetic behavior of these operations which remain constant
irrespective of hardware choice.

Our results showed that although computations which manifest as ma-
trix multiplications dominate BERT’s execution, they have considerable het-
erogeneity and may not always fully utilize accelerators. Furthermore, we
characterized memory-intensive computations which also feature promi-
nently in BERT but have received less attention, especially the optimizer
algorithms used to update model weights. To capture future Transformer
trends, we vary key model hyperparameters and showed implications
of these behaviors as networks and their inputs get larger. Moreover,
we study the impact of key training techniques like distributed training,
checkpointing, and mixed-precision training. Overall, this work identified
several inefficiencies and opportunities to accelerate Transformer-based
models, which we address in subsequent chapters.

9.1.1.3 Characterizing the Scaling Communication in Multi-GPU
Transformers Setups

Scaling of Transformers models and their datasets has necessitated very
large-scale distributed setups, which raises the key question: how will com-
pute vs. communication (Comp-vs.-Comm) scale as models scale and hardware
evolves? We conducted a multi-axial (algorithmic, experimental, hardware
evolution) analysis of Comp-vs.-Comm scaling for Transformer models.
Our system-agnostic, algorithmic analysis highlighted that while compute
has enjoyed an edge over communication, future model and hardware
trends are likely to make communication dominant soon. We also empiri-
cally studied Comp-vs.-Comm for future Transformer models as hardware
evolves. By extracting specific regions of interest and modeling future
operator runtimes, we enabled the study of hundreds of future Transform-
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ers/hardware scenarios with 2100× less profiling costs. These experiments
validated that communication will play an increasingly large role (40-75%)
in a distributed training setup as models scale. Overall, our multi-axial
analysis shows the need for effective scaling of communication capabilities,
and discusses how our analysis influences some promising techniques
and technologies.

9.1.2 Improving Sequence-based Models’ Efficiency on
GPUs

9.1.2.1 Offloading Optimizer Updates to Compute Units Near Memory

Our characterization revealed how memory-bound gradient descent up-
dates of billions of Transformer parameters can under-utilize modern
accelerators like GPU. To overcome this, we offloaded updates to near-
memory compute units. Mapping a sequence of operations to memory
required few expensive synchronizations with GPU compute units, and
provided increased data access bandwidth along with concurrency of
multiple DRAM banks. Thus, it accelerated weight updates by 3.8× for
a popular Transformer, BERT. Finally, it considerably reduced (∼13×)
expensive data movement between DRAM and GPU compute units.

9.1.2.2 Globally Optimized Libraries & Scheduling Logic for
Concurrent GEMMs

Modern accelerators like GPUs are increasingly executing independent
operations concurrently to improve the device’s compute utilization. How-
ever, effectively harnessing it on GPUs for important primitives such as
GEMMs remains challenging. Although modern GPUs have significant
hardware and software support for GEMMs, their kernel implementations
typically assume each kernel executes in isolation and can utilize all GPU
resources. This approach is highly efficient when kernels execute in iso-
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lation, but causes significant resource contention when kernels execute
concurrently. Moreover, current approaches often only statically expose
and control parallelism within an application, without considering the
dynamic execution environment (e.g., varying input size) – often exacerbat-
ing contention. These issues limit performance benefits from concurrently
executing independent operations.

Accordingly, we proposed GOLDYLOC which considers both the glob-
ally optimized kernel implementations which are aware of the shared GPU
resources during concurrent executions. Further we introduced a light-
weight dynamic logic to schedule only performant concurrent operations.
Overall, GOLDYLOC improved performance of concurrent GEMMs on
real hardware by up to 2.5× (43% geomean per workload) over sequential
execution and up to 2× (18% geomean per workload) over static, isolated
parallelism in GPUs.

9.1.2.3 Transparent Track & Trigger for Fine-grained Overlap of
Compute & Communication

Transformer models increasingly rely on distributed techniques, requir-
ing communication between multiple devices. This communication can
limit scaling efficiency, especially for techniques like Tensor Parallelism
(TP) which serialize communication with model execution. While a fine-
grained overlap of the serialized communication with its producer compu-
tation can help hide the cost, realizing it with GPUs is challenging due to
software complexities and resource contention between compute and com-
munication. To overcome this, we proposed T3, which transparently and
efficiently fuses and overlaps serialized inter-device communication with
the producer’s compute. It orchestrates communication on the producer’s
stores by configuring the producer’s output address space mapping and
using a programmable track and trigger mechanism in hardware. This re-
duces application impact and also eliminates contention for GPU compute



216

resources. T3 additionally uses near-memory computing and a memory-
controller arbitration policy to reduce memory-bandwidth contention.
Overall, T3 improved performance by 30% geomean (max 47%) and re-
duces data movement by 22% geomean (max 36%) over state-of-the-art
approaches. Moreover, T3’s benefits hold as models and hardware scale.

9.2 Reflection
In this section, we present our observations and lessons we learned while
working on this dissertation.

Characterizing new workloads is important. Characterization of new
workloads, as we did with the then emerging sequence-based networks,
is important as each new model architecture comes with unique opportu-
nities. As an example, CNNs, which were well studied, are constituted of
several GEMMs and weight updates. Although sequence-based models
(RNNs and Transformers) also consist of similar primitives, our char-
acterization of these models revealed unique concurrency and memory-
bandwidth challenges in GPUs and opportunities to improve their per-
formance as shown in Chapters 7 and 6. Such characterization can also
help find pertinent primitives that can be independently simulated on
hardware simulators as shown in Chapter 8, rather than executing end-
to-end models which is impractical. Finally, detailed characterization can
also help provide feedback to application/algorithms/software engineers
and enable a stronger ML algorithm and system co-design across the com-
puting stack. For example, in Chapter 5 we identified that scaling the
hyperparameter sequence length (SL) has a smaller impact in terms of
added communication overheads than the scaling of layer width (hidden
dimension or H).
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Algorithmic understanding of applications helps. Algorithmic under-
standing of applications is also important as it can help avoid exhaustive
profiling of applications. Understanding the impact of hyperparameters
helped us identify as well as explain some of the trends in Chapters 3, 4,
and 5. With a fixed model architecture, and number of kernels, these
can also help project trends for other models as we showed in Chapters 4
and 5. However, this can be challenging since the behavior of certain
operations can change with input. For example many GEMMs’ efficiency
improve with scaling input size until they saturates. Thus, while profiling
is important to accurately measure their runtime, once they reach the
achievable peak efficiency / FLOPS, they become predictable with high
accuracy. In these scenarios, using a combination of both hardware and
analytical model can be sufficient as we show in Chapter 5.

Need for information flow between different layers of system abstrac-
tions. Abstractions are important as they help divide and conquer the
development of complex systems. However, they can leave considerable
system performance on the table. We observe this as one of the common
cause across several of the inefficiencies discussed in the this dissertation.
In Chapter 6 we showed how offloading entire end-to-end applications to
a single accelerator (e.g., GPUs) for programmability rather than carefully
identifying individual function properties and mapping them to appropri-
ate architectures (e.g., near-memory compute units) can not only be power
inefficient and have excessive data movement, but also limit performance.
Similarly in Chapters 7 and 8 we show that although dedicated libraries
for key ML primitives (e.g., cuBLAS/rocBLAS for GEMM, NCCL/RCCL
for collectives) which are independently optimized for different hardware
architectures are performant, they can be inefficient considering global
and dynamic execution environments. Information about globally shared
resources during execution helped improved concurrent GEMM perfor-
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mance in Chapter 7. Similarly, we showed in Chapter 8 that information
about preceding and succeeding operations in applications can enable
additional fusion and parallelization opportunities which are otherwise
lost in abstractions. Thus, information flow between different levels of
abstractions – application, libraries, hardware – is needed to fully utilize
hardware resources.

Need to better use existing, powerful hardware Similar to the consid-
erable push towards building better software stack for domain-specific
accelerators, a similar push for better GPU hardware-software integration
is needed to maximally use their compute capabilities. While GPUs have
been built with high memory bandwidth technology, applications at the
best only use 70-80% of the provided bandwidth. Thus is due to inefficient
software implementations, shared bus architecture, and other overheads.
Similarly, GPUs provide considerably high FLOPS capacity which only
scales every generation, especially with the adoption of chiplet-based ar-
chitectures. However, application utilizations of these FLOPS is low even
when there is not a scarcity of work due to inefficient runtimes. Finally,
while scaling inter-device bandwidth considerably speeds up communi-
cation, they remain idle for a significant amount of time while the GPU
computes. Thus, mechanisms for fine-grained compute-communication,
and even leveraging idle links/GPUs to distribute work dynamically can
help. Overall, these findings underscore the importance of improving the
utilization of our existing, powerful, hardware.

Power & energy implications: The focus of this dissertation was to im-
prove GPU resource efficiency and thus performance of applications. How-
ever, energy and power are also critical aspects when it comes to system
design. While not evaluated, each of our proposals in Chapters 6, 7 and 8
uniquely impact system power and energy. Offloading weight updates
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to NMC units in Chapter 6 reduced how much data is transferred across
the memory interface as well as the memory requests sent from the GPU
to memory. This has the potential to reduce both GPU power and en-
ergy consumption. GOLDYLOC in Chapter 7 is also energy efficient as
it improved overall GPU throughput via concurrency. However, it can
potentially increase the GPU’s dynamic power. Considering the power
limits of the GPU when choosing the amount of concurrency to exploit
can be a potential future direction for GOLDYLOC. Finally, T3 can also
considerably improve energy efficiency as it overlaps communication with
compute (limiting idle compute units and interconnects) and reduces
data movement to memory. However, similar to GOLDYLOC, it has the
potential to increase dynamic power consumption by keeping GPU com-
pute units, memory (concurrent communication-related traffic) as well as
interconnects active at the same time.

Focus on key primitives increases applicability beyond Sequence-based
models: While the motivation for this dissertation has been to optimize
for sequence-based models on GPUs, these proposals can also be applied
to other DNNs as well as high-performance computing (HPC) applica-
tions. The three key primitives that are the focus of this dissertation –
optimizer/weight updates, GEMMs, and communication collectives – are
fundamental to deep learning. As a result, these primitives are present in
most other DNN models, such as CNNs and recommendation systems.
Thus, all the proposals – NMC offloading, GOLDYLOC, and T3 can be
applied to other DNNs, although with varying benefits. Similarly, these
optimizations would remain applicable even with the extremely dynamic
field of ML, with constantly evolving model architectures. Finally, com-
munication is extremely important even in large-scale HPC applications
with many scenarios having a similar producer-consumer relationship we
leveraged in T3 [139, 141]. While there has been considerable work to re-
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duce overheads of GPU-initiated communication, especially in inter-node
scenarios, key ideas of T3 can be applied to HPC applications as well.

9.3 Future Work
In this section, we outline directions in which our work could be extended
in the future.

Characterization:

• While this dissertation focused largely on dense models, there are
several flavors of these models that have been introduced since, in-
cluding sparse attention and mixture-of-experts (MoEs), to reduce
their computational complexity. Understanding the impact of these
on current hardware and whether GPU systems are able to lever-
age this introduced sparsity will be a useful next step, especially
given the limited hardware support for sparsity on GPUs. Similarly,
understanding the sparsity support on hardware to design better
sparse ML algorithms is another avenue for a stronger ML-systems
co-design.

• Similarly, the recent increase in interest and wide-spread adoption
of generative inference both across application domains and hard-
ware substrates (datacenter, personal laptops, edge devices) also
demands that we characterize them.

Near-memory Computing (NMC):

• In Chapter 8 we showed that concurrent GPU and NMC operations
which share memory bandwidth can cause slowdowns and reduce
the efficacy of overlap. A more exhaustive study of the interference
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including when NMC commands are generated by GPU compute
units, the different types of NMC commands with varying laten-
cies, as well as the different types of NMC command orchestrations
(broadcast vs fine-grained) is worth pursuing.

• Similarly, extending this to other substrates such as CPUs and accel-
erators which also stand to benefit from NMC.

• Many memory-bound phases are interspersed throughput train-
ing execution; gradient accumulation, weight updates, quantiza-
tion [101]. As mentioned in Chapter 6, finding contiguous portions
of applications reduce GPU-NMC synchronization overheads. Thus
designing end-to-end ML algorithms to enable better use of such
hardware support can considerably improve performance.

• Finally, while training efficiency thrives on large input batching, the
latter is not favorable during inference/deployment as it can increase
execution latency and thus the response time of applications. Small
or no batching results in matrix-vector (GEMV) or skinny GEMMs
which are usually memory-bound. Finding ways to leverage NMC
during inference can alleviate some performance challenges during
inference.

GPU Concurrency:

• While we focus on the dominant GEMM operations in Chapter 7,
GOLDYLOC can be extended to other operators such as activation
functions, reduction, and other prominent element-wise operations.
The latter, since memory-bound, may provide additional challenges
and opportunities to improve performance (concurrent compute-
bound GEMM with memory-bound activation functions).

• Sparsity, which reduces the amount of data read as well as compute
performed, further frees resources for and provides opportunity for
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concurrency. Thus applying GOLDYLOC to sparse computations
can unlock additional performance benefits.

• Finally, GOLDYLOC leverages existing tuning infrastructure to find
optimized concurrency-aware kernels optimized for global resources.
While we present some potential benefits of using techniques such
K-Nearest Neighbor to reduce tuning overheads, a more strategic use
of ML techniques can beneficial to automatically find appropriate
kernels not only for shared, concurrent scenarios but also to augment
the baseline isolated performance tuning.

Communication:

• Extending T3 to inter-node setups without shared memory support
can add additional overheads of address translations. Furthermore,
inter-node setups can have complex topologies and heterogeneous
links, requiring smarter orchestration of the compute kernels and
communication.

• Finally, similar to how the fine-grained interleaving of GEMMs and
communication unlocked performance benefits from better utiliz-
ing compute and interconnect resources, other producer-consumer
pairs (such as a compute-bound GEMM followed by memory-bound
element-wise operation) can also benefit from the same [135, 212].
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