
Cross-stack Optimizations for Sequence-based Models on GPUs

by

Suchita Pati

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024

Date of final oral examination: 02/08/2024

Final Oral Committee:
Matthew D. Sinclair (Advisor), Assistant Professor, Computer Sciences
Mikko Lipasti, Professor, Electrical & Computer Engineering
Joshua San Miguel, Assistant Professor, Electrical & Computer Engineer-
ing
Shivaram Venkatraman, Assistant Professor, Computer Sciences
Shaizeen Aga, Principal Member of Technical Staff, AMD Research & Ad-
vanced Development

© Copyright by Suchita Pati 2024
All Rights Reserved

i

To Mummy, Papa, and Chima for their love, support, and sacrifice.

ii

acknowledgments

There have been many people instrumental in making this PhD research
successful. First and foremost, I would like to sincerely thank my advi-
sor Prof. Matthew D. Sinclair for guiding and supporting me through
graduate school. Matt mentored me from my early days as a master’s
student, encouraging me to pursue a PhD and providing me the freedom
to follow my research interests. I have learned and grown in many ways
beyond research under his guidance. His meticulous feedback on papers
sharpened my writing over the years, his patience through the numerous
practice sessions helped me improve my presentation abilities, and our
many simulator debugging sessions made me a patient developer. His
passion to teach, consistent availability and willingness to help are also
things I will always admire. And most importantly, his understanding
and support during the challenges encountered along my PhD journey
has been key to its successful completion.

I would also like to express my gratitude to my collaborators and men-
tors, Dr. Shaizeen Aga and Dr. Nuwan Jayasena. The Young Architect
workshop Shaizeen co-organized introduced me to the broader architec-
ture community, which played a crucial role in my decision to pursue a
PhD. The internship opportunity with Nuwan and Shaizeen at AMD Re-
search during my early PhD days was quite productive and their guidance
has been pivotal in shaping my research ever since. Learning about near-
memory computing from the experts, and integrating it into my PhD work,
has been an enriching experience. Their invaluable industry insights have
also ensured this dissertation’s relevance and impact. I am also fortunate
to have worked with Dr. Mahzabeen Islam. Her attention to detail was
immensely helpful towards the final stages of my PhD.

I would like to express my deepest appreciation to other members of
my committee – Prof. Mikko Lipasti, Prof. Joshua San Miguel and Prof.

iii

Shivaram Venkataraman. Their feedback and questions during my pre-
liminary exam and defense helped improve the research and thesis. I am
also grateful to Mikko and Josh for their enjoyable computer architecture
courses (752 and 757, respectively) as well as for their recommendations
that helped me continue on as a PhD student. And Shiv’s insightful com-
ments on machine learning and systems helped made this thesis stronger.

Next, I thank all members of the HAL Research group including Kyle
Roarty, Preyesh Dalmia, Rohan Mahapatra, Reese Kuper, Rajesh Shashi
Kumar, Rutwik Jain, Brandon Tran, Tanmay Anand, Vishnu Ramadas,
and many others. I appreciate their feedback on my research during the
various group meetings and the opportunity to learn from the diverse
set of projects they worked on. Outside the group, I would like to thank
all the exceptional seniors and peers across the architecture labs at UW-
Madison, including Gokul Subramanian Ravi, Swapnil Haria, Pratyush
Mahapatra, Di Wu, Shyam Murthy, Abhishek Bhattacharyya, and many
others. I thoroughly enjoyed our discussions and appreciated their advice
at different stages of graduate school. Overall, it was wonderful to be part
of an incredible architecture research community.

A PhD wasn’t even on my radar until I met my mentor and manager at
AMD India, Dr. Kanishka Lahiri. He guided me as I began my career as an
engineer fresh out of undergrad, introduced me to architecture research,
and supported me as I explored the idea of graduate school. His faith
in my abilities as a researcher and his guidance have helped shape my
career in ways I never imagined. For that, I will always be grateful to him.
I would also like to thank Dr. John Kalamatianos for mentoring me as a
research intern during my first year of grad school and recommending for
a PhD.

Many others have helped me during my PhD. I would like to take this
opportunity to express my appreciation to all of the CS, CSL and ISS staff
for their help and support. Specifically, Angela Thorp and Stacey Sykes for

iv

helping with all the administrative processes related to graduate school.
I would like to thank Dr. Gabe Loh and Dr. Ganesh Dasika, and others
who were part of the AMD Author Program process for helping improve
the quality of the papers.

I have been fortunate to have been surrounded with extremely support-
ive friends during all the highs and lows of the PhD. Gokul Subramanian
Ravi’s work ethic always inspired me. He kept me motivated and con-
fident, helping me push through tough times. I am thankful to Varsha
Swaminathan for being the most caring apartment-mate I could ask for.
She helped make our small apartment a home away from home. I am
thankful for having constant cheerleaders Shuvam Gupta and Archana
Dhyani. Their energy kept me going on long work days. I am thankful
to Aaditya Chandrasekhar, Anjali, and Anthony Rebello for all their help
and for always being available for a chat. I also thank Aishwarya Ren-
garajan, Ashwin Varadarajan, Nikhil Agarwal, Pratyush Mahapatra, Yash
Trivedi, Ragini Rathore, Vigneshwar Ravisankar, and Nivvetha Srinivasan
for supporting me in many ways through graduate school and making life
in Madison wonderful.

I cannot begin to express my thanks to my wonderful family. My
late grandparents Ram Narayan Pujari, Damodar Pati, and Kalyani Pati
supported my decision to pursue a PhD and have been instrumental in
all my career choices. I wish they were here to see this day. My grand-
mother, Subasini Pujari, continues to offer unwavering support to this day.
I’m grateful to my cousin, Abhijit Hota, for being my family away from
home, and helping me settle in Madison and Bay Area. Additionally, I
appreciate the support of my aunt, uncle and cousin, Dr. Sujata Pujari,
Dr. Datteswar Hota, and Aditi Hota, for their help in smoothly navigating
through medical challenges.

I do not have enough words to thank my parents, Susmita Pati and
Chitta Ranjan Pati. They have always supported my decisions, despite

v

their own expectations and desires, often defying traditional social norms.
They have also been a source of motivation. My mum with her energy,
enthusiasm, and determination to get things done, served as a boost even
through phone calls from thousands of miles away. It helped me get
through those endless nights of deadlines. Dad set an example very early
in my life that anything is possible with sincerity and hard work. These
values have proven invaluable during my PhD. His keen interest in my
research, and wisdom were also very helpful, despite his experience in
a vastly different domain. Finally, this acknowledgement is incomplete
without mentioning my elder sister and brother-in-law, Rachita Pati and
Raghavender Yadati. Rachita has been my go-to person in times of crisis,
not only because she can help me the best, but also because conversations
with her are often filled with laughter. She has also made defying norms
easy for me. Finally, a big thank you to Raghav for bringing joy into
our lives and for filling the void of my absence back home. My family’s
encouragement, love, and most importantly, faith in me have helped me
through rejections, and at some of my lowest points during the PhD. For
this, I will be forever indebted to them.

vi

contents

Contents . vi

List of Tables . xiv

List of Figures . xv

Abstract . xx

1 Introduction . 1
1.1 Analysis of Sequence-based Models on GPUs 5

1.1.1 SeqPoint: Identifying Representative Iterations of
Sequence-based Neural Networks 5

1.1.2 Demystifying Transformers: System Design Implica-
tions . 6

1.1.3 Computation vs. Communication Scaling for Future
Transformers on Future Hardware 7

1.2 Improving Sequence-based Models’ Efficiency on GPUs . . 8
1.2.1 Processing Optimizer Updates in Memory 8
1.2.2 GOLDYLOC: Global Optimizations and Light-weight

Dynamic Logic for Concurrency 9
1.2.3 T3: Transparent Tracking & Triggering for Fine-grained

Overlap of Compute & Collectives 10
1.3 Contributions . 11
1.4 Outline . 13

2 Background . 15
2.1 Deep Neural Networks (DNN) 15

2.1.1 DNN Training . 15
2.1.2 Transfer Learning: Pre-training & Fine-tuning . . . 16

vii

2.1.3 Batching & Minibatches 16
2.2 Sequence-based Networks 17

2.2.1 RNNs: Recurrence-based Networks 18
2.2.2 Transformers . 19

2.3 Distributed Computing for DNNs 21
2.3.1 Distributed Techniques & Associated Communication 22
2.3.2 Data Parallelism . 23
2.3.3 Tensor Parallelism . 23

2.4 Important DNN Operations 24
2.4.1 GEMMs: GEneral Matrix Multiplications 24
2.4.2 Gradient Descent Optimizers 27
2.4.3 Collective Communication 29

2.5 DRAM . 30
2.5.1 Organization . 30
2.5.2 Near-Memory Computing (NMC) 32

2.6 Summary . 32

3 Profiling Sequence-based Networks with SeqPoint 33
3.1 Challenges . 35
3.2 Characterizing iteration execution profile 37

3.2.1 Execution Profile . 37
3.2.2 Factors Determining Execution Profile 38
3.2.3 Non-Training Phase Computations 42

3.3 SeqPoint: Representative Iterations for SQNNs 43
3.3.1 Challenge: Large Sequence Length Space 43
3.3.2 SeqPoint Overview 44
3.3.3 SeqPoint Mechanism 45

3.4 Evaluation . 47
3.4.1 Hardware & Profiling Setup 47
3.4.2 Networks and Inputs 47
3.4.3 Methodology . 48

viii

3.4.4 Projecting Program Execution Behavior 49

3.4.5 Projecting Performance Speedups 51

3.4.6 Pro�ling Speedups 53

3.5 GNMT Case Study . 54

3.6 Discussion . 55

3.6.1 Enabling Network-level Simulation for SQNNs . . . 55

3.6.2 Other SQNNs . 55

3.6.3 Sophisticated Clustering of SQNN Iterations 56

3.6.4 Architecture and Software Independence 56

3.6.5 SQNN Inference . 56

3.7 Related Work . 57

3.8 Chapter Summary . 57

4 Demystifying Transformers . 59

4.1 Experimental Setup . 61

4.1.1 System . 61

4.1.2 BERT Phases . 62

4.1.3 BERT Hyperparameters 63

4.1.4 Pro�ling Mechanism 63

4.2 Compute & Memory Demands of BERT Operations 64

4.2.1 Runtime Breakdown 64

4.2.2 GEMM Operations in BERT 67

4.2.3 Non-GEMM Operations in BERT 70

4.3 E�ects of Hyperparameter Sweep 73

4.3.1 Input Size: Mini-batch Size (B), Sequence Length (n) 74

4.3.2 Model Size: Layer Count (N), Hidden Dimension

(dmodel) . 76

4.4 E�ects of Activation Checkpointing 77

4.5 E�ects of Multi-device Training 78

4.5.1 Modeling Multi-device Training 78

4.5.2 Multi-GPU Training Pro�le 79

ix

4.6 Discussion . 82

4.6.1 Other Accelerators 82

4.6.2 BERT Fine-tuning & Inference 83

4.6.3 Other NLP Models 83

4.6.4 Optimizations for BERT 84

4.7 Related Work . 86

4.8 Chapter Summary . 87

5 Tale of Two Cs: Computation vs. Communication Scaling for

Future Transformers on Future Hardware 89

5.1 Motivation . 91

5.1.1 Distributed Training Techniques and Associated Com-

munication . 91

5.1.2 Why Study Evolution of Compute vs. Communica-

tion Scaling . 93

5.2 Comp-vs.-Comm: Algorithmic Analysis 94

5.2.1 Distributed Techniques Studied 95

5.2.2 Important Hyperparameters 95

5.2.3 Amdahl's Law Edge for Compute 95

5.2.4 Slack Advantage for Compute 98

5.2.5 Model Scaling Stresses Compute Edge/Slack 99

5.3 Comp-vs.-Comm: Empirical Analysis 101

5.3.1 Empirical Analysis Challenges 102

5.3.2 Proposed Empirical Strategy 102

5.3.3 Observations from Experimental Analysis 106

5.4 ML/System Evolution Recommendations 116

5.4.1 System-aware ML Evolution 116

5.4.2 Communication O�oads/Fusion 117

5.4.3 Processing-in-memory (PIM) 117

5.4.4 Processing-in-network (PIN) 118

5.5 Discussion . 118

x

5.6 Related Work . 120

5.7 Chapter Summary . 121

5.7.1 Key takeaways from SQNN characterization 122

6 Near-memory Computing for Optimizer Updates 124

6.1 Kernel Fusion . 125

6.2 Near-Memory Computing 126

6.2.1 Enhancing GPU with NMC 127

6.2.2 NMC System Details 128

6.3 Accelerating LAMB using NMC 129

6.4 Evaluating LAMB execution on NMC 131

6.5 Related Work . 132

6.6 Chapter Summary . 132

7 GOLDYLOC: Global Optimizations & Lightweight Dynamic

Logic for Concurrency . 134

7.1 Motivation . 137

7.1.1 Scaling GPUs and low utilizing GEMMs 137

7.1.2 Sub-optimal GEMM concurrency in GPUs 138

7.2 Challenges with GEMM Concurrency 139

7.2.1 Isolation-tuned kernel implementations 139

7.2.2 Static concurrency control 141

7.3 GOLDYLOC Design . 143

7.3.1 Overview . 143

7.3.2 Globally optimized (GO) GEMM kernels 145

7.3.3 Dynamic logic for concurrency control 147

7.3.4 Integrating GOLDYLOC into GPU's CP 150

7.4 Methodology . 151

7.4.1 System Setup . 151

7.4.2 Applications and GEMMs Studied 152

7.4.3 Measurement . 152

xi

7.4.4 GOLDYLOC Performance Measurement 153

7.4.5 Con�gurations . 154

7.5 Results . 155

7.5.1 Exploiting Concurrency (default) 157

7.5.2 Globally Optimized (GO)-Kernels 158

7.5.3 GOLDYLOC . 160

7.5.4 Range and Distribution of Bene�ts 161

7.5.5 CP Overheads . 161

7.5.6 Logistic Regression Model Accuracy 162

7.5.7 Heterogeneous GEMMs & Batched-GEMMs 162

7.5.8 Reduced Precision 163

7.5.9 GOLDYLOC with Resource Partitioning 164

7.5.10 End-to-end Speedups 165

7.5.11 GEMM Fusion . 165

7.6 Discussion . 166

7.6.1 Reducing Tuning Overhead 166

7.6.2 Non-GEMM Kernels 166

7.6.3 Additional Resource Constraints 167

7.6.4 Sparsity . 167

7.6.5 Other DNNs . 167

7.6.6 Scaling GPUs Con�guration 168

7.6.7 Power-aware tuning 168

7.7 Related Work . 169

7.8 Chapter Summary . 170

8 T3: Transparent Tracking & Triggering for Fine-grained Over-

lap of Compute & Collectives . 171

8.1 Motivation . 173

8.1.1 All-Reduce is on the Critical Path & can be Large . . 173

8.1.2 Enabling Compute-Communication Overlap 174

xii

8.2 Challenges With Fine-grained Compute-Communication

Overlap . 175

8.2.1 Complex & Expensive to Implement in Software . . 176

8.2.2 Resource Contention Between Producer & Collective 177

8.3 T3: Transparent Tracking & Triggering 179

8.3.1 T3 Overview . 180

8.3.2 T3 Tracking & Triggering 182

8.3.3 Near-Memory Reductions 185

8.3.4 Con�guring Producer's Output Address Space . . . 186

8.3.5 Communication-aware MC Arbitration (MCA): . . 188

8.4 Methodology . 189

8.4.1 Setup . 189

8.4.2 Applications, Deployment & GEMMs 193

8.4.3 Con�gurations . 194

8.5 Results . 195

8.5.1 Execution Time Distribution & Speedups 195

8.5.2 Data Movement Reductions 200

8.5.3 End-to-end Model Speedups 201

8.5.4 Impact on Larger Transformers 202

8.6 Discussion . 202

8.6.1 Other Collectives Implementation & Types 202

8.6.2 Other Distributed Techniques 203

8.6.3 Generative Inference 204

8.6.4 Other Reduction Substrates 204

8.6.5 Future Hardware & Lower Precision 204

8.6.6 NMC for Following Operations 206

8.6.7 Other GEMM Implementations 206

8.6.8 Multi-node Setups 207

8.6.9 Communication in High Performance Computing

(HPC) . 207

xiii

8.7 Related Work . 208

8.8 Chapter Summary . 209

9 Conclusion & Future Work . 210

9.1 Summary . 212

9.1.1 Analysis of Sequence-based Models on GPUs 212

9.1.2 Improving Sequence-based Models' E�ciency on

GPUs . 214

9.2 Re�ection . 216

9.3 Future Work . 220

Bibliography . 223

xiv

list of tables

2.1 Concurrency opportunities in DNNs; the circled numbers refer

to Figure 2.6. 27

3.1 Dimensions for the same GEMM operation across two iterations. 38

3.2 Con�gurations used to evaluate SeqPoint 48

4.1 Summary of takeaways . 61

4.2 BERT hyperparameters, GEMMs and acronyms. 63

4.3 Architecture-agnostic sizes of BERT GEMMs. 67

5.1 Parameters and setup of models studied. 104

7.1 Mechanisms to exploit concurrency on GPUs, including opera-

tors optimized in isolation vs. for global resources and static/-

dynamic concurrency management. 135

7.2 GOLDYLOC Acronyms . 144

7.3 Benchmarks with hyperparameters and inputs. 153

7.4 Comparing GOLDYLOC to prior work. 169

8.1 Simulation setup. 190

8.2 Studied models, their hyperparameters & setup. 193

8.3 Comparing T3-MCA to prior work. 208

xv

list of figures

2.1 Training phase of sequence-based models. 17

2.2 Left: A single layer of an RNN. Right: Unrolled RNN process-

ing an input sequence. 18

2.3 BERT hierarchical model breakdown. 20

2.4 (a) Transformer (b) Fully-connected (FC) layer (c) Tensor-

sliced FC layer with all-Reduce on the critical path. 22

2.5 (a) Toy DNN GEMM computation. (b) High-level GEMM

implementation on a GPU. 25

2.6 ML algorithms with independent operations. 26

2.7 LAMB Optimizer Algorithm. 28

2.8 Common collective operations used in DNN execution [236]. . 29

2.9 Ring implementation of reduce-scatter collective. 30

2.10 DRAM organization and locations for placing NMC units [6]. 31

3.1 Comparing iterations of CNNs and SQNNs. 35

3.2 Architectural statistics for two training iterations. 36

3.3 The number and types of kernels invoked di�er based on se-

quence length. 39

3.4 Kernel distribution di�ers based on sequence length [Left:

GNMT, Right: DS2] . 40

3.5 Histogram of SQNN sequence lengths. 43

3.6 Execution pro�le with varying sequence length for GNMT. . . 44

3.7 Runtime vs sequence length for (a) GNMT and (b) DS2. . . . 45

3.8 SeqPoint overview. 46

3.9 Error in total training time projections for DS2. 49

3.10 Error in total training time projections for GNMT. 50

3.11 Error in performance speedup projections for DS2. 51

3.12 Error in performance speedup projections for GNMT. 52

xvi

3.13 Sensitivity to GCLK, CU count, L1 cache and L2 cache of dif-

ferent sequence length iterations in DS2. 53

3.14 GEMM utilization in GNMT with increasing batch size. 54

4.1 Runtime breakdown of BERT pre-training. 64

4.2 Hierarchical breakdown of BERT pre-training runtime. Labels

show contribution to overall training time (SM=Softmax in this

�gure). 66

4.3 Computations in the Attention layer. 68

4.4 Arithmetic intensity of BERT's training GEMMs. It shows that

not all of BERT's GEMMs are equal. 69

4.5 BERT op's arithmetic intensity & bandwidth requirements

(SM=Softmax in this �gure). 71

4.6 Impact of scaling mini-batch size & sequence length (SM=Softmax

in this �gure). 74

4.7 Impact of scaling Transformer layer size (SM=Softmax in this

�gure). 76

4.8 BERT iteration breakdown in a multi-GPU setup (SM=Softmax

in this �gure). 80

4.9 Impact of fusing 3 Linear GEMMs (3Fvs. non-fused serial, 3S,

execution). 84

4.10 Fusion of Attention linear GEMMs in BERT. 84

5.1 Overview of Comp-vs.-Comm analysis. 90

5.2 All-reduce in (a) data & (b) tensor parallelism. 92

5.3 Layer operations (a) original, or w/ DP (b) w/ TP. 94

5.4 Comp's (a) slack over overlapped Comm. (b) edge over serial-

ized Comm. 96

5.5 Model and device memory capacity trends. 98

5.6 Algorithmic scaling of slack and edge. 100

5.7 Components of proposed empirical strategy. 102

xvii

5.8 System: (a) 4-GPU node (b) TP scaling with model size. . . . 106

5.9 Fraction of serialized comm. time. 109

5.10 Overlapped comm. as a percentage of comp. time. 109

5.11 Hardware evolution impact on overlapped comm. as a percent-

age of comp. time. 111

5.12 Impact of hardware evolution on fraction of serialized commu-

nication time. 112

5.13 Overall Comp-vs.-Comm Case Study. Setup: H=64K, B=1,

SL=4K, TP degree=128, �op-vs.-bw scale=4x. 113

5.14 E�ectiveness of Operator-level modeling. 114

6.1 Impact of fusing kernels vs. non-fused serial execution 127

6.2 Operations in LAMB algorithm with embedded NMC com-

mands for L2 Normalization operations (TS= Temporary Stor-

age). 129

6.3 Orchestration of NMC instructions to compute the �nal stage

of LAMB, LAMBStage2 (TS= Temporary Storage). 130

6.4 Speedup of LAMB using NMC compared to GPU (TS=Temporary

Storage). 131

7.1 (a) GEMM sizes with fewer FLOPs bene�t less from concur-

rency (b) GEMM sizes with the same FLOPs can have di�erent

concurrency behavior. GEMM FLOPs= 2*M*N*K. 138

7.2 GEMM behavior with di�erent kernel implementations. Kernels-

1 and -2 are the GEMMs' isolated tuned kernels; Kernels-3 and

-4 are alternate implementations with smaller memory tra�c

and fewer WG waves, respectively. 140

7.3 (a) Speedups over sequential execution for 2 & 16 concurrent

GEMMs (2P & 16P) versus the #waves in their isolated exe-

cution. (b) Speedups of GEMMs with �xed #waves but with

varying K, input shape, or transpose. 141

xviii

7.4 GOLDYLOC overview and baseline comparison. 143

7.5 (a) GOLDYLOC 's tuning methodology for a single GEMM for

concurrency degree = 2P. (b) Identifying optimal concurrency

degree for a single GEMM feature, and taming its overhead

using a logistic regression-based model. 146

7.6 GOLDYLOC GEMM library and dynamic logic. 148

7.7 GOLDYLOC's dynamic logic. 149

7.8 Per-app GEMMs geomean speedups with 2 independent GEMMs 156

7.9 Per-app GEMMs geomean speedups with 4 independent GEMMs 156

7.10 Per-app GEMMs geomean speedups with 8 independent GEMMs 157

7.11 Per-app GEMMs geomean speedups with 16 independent GEMMs 157

7.12 Globally optimized (GO)-Kernel properties. 159

7.13 Select GEMMs, GOLDYLOC (CD=16). 161

7.14 Distribution of kernel runtimes (2 samples with < 8 � s are

excluded). 162

7.15 FP16 (a) vs. FP32 2P concurrency with varying GEMM sizes

(b) 16P bene�ts with GOLDYLOC-Kernels. 163

7.16 GOLDYLOC (CD=2P) with default& CU/Resource partition. . 165

7.17 CD=4P speedups for multiple GPU con�gurations. 168

8.1 T3 overview. 172

8.2 Transformer time spent on reduce-scatter (RS) and all-gather

(AG) collectives as well as GEMMs which require collectives. . 175

8.3 GEMM (left) when sliced in the dot-product dimension (right)

still generates the same number of data blocks. 176

xix

8.4 Evaluating how the bene�ts of overlapping GEMM and RS,

across model layers, are impacted by CU sharing. The X-axis

shows how CUs are split between GEMM and AR, using the

GPU setup from Table 8.1, in the format A-B. A represents

the number of CUs the GEMM uses, while B represents the

number of CUs AR uses. Ideal assumes no sharing, the GEMM

has all CUs, and AR is free. 177

8.5 Overview of fused GEMM and ring reduce-scatter with T3 on

a four-GPU node. 179

8.6 GPU with highlighted T3 enhancements (in orange) executing

a steady-state fused GEMM-RS step. 181

8.7 T3 Track & Trigger. 183

8.8 HBM reads & writes in steady-state reduce-scatter step. 185

8.9 Remote address mapping for T3 GEMM-RS over four GPUs. . 186

8.10 Con�guring producer output for T3 GEMM-RS over four GPUs. 187

8.11 Simulating multi-GPU reduce-scatter. 191

8.12 Validation of multi-GPU reduce-scatter simulation. 192

8.13 Transformer sub-layer runtime distribution. 195

8.14 Transformer sub-layer speedups with T3 197

8.15 Overall DRAM tra�c in (a) baseline GEMM, (b) T3, for T-NLG

FC-2 with TP=8 and SLB=4K. 199

8.16 DRAM access per sub-layer. 200

8.17 End-to-end model speedups. 201

8.18 T3 on future hardware with 2 � compute. 205

xx

abstract

Advancements in the �eld of machine learning has made deep neural

networks (DNNs) ubiquitous. Their application in the domain of natural

language processing (NLP) with sequence-based models(models which

process sequence of data) has been particularly remarkable and has led

to powerful tools such as ChatGPT. This has been a result of advanced

model architectures (e.g., Transformers), improved training techniques,

as well as the transformative change in the scale of both model and dataset

size. Training such models however can be extremely computationally

expensive; some of the largest sequence-based models today take over

a month to train on � 4500 GPUs, which are the primary workhorses for

DNNs. Thus, this dissertation attempts to reduce these costs by identifying

and leveraging cross-stack opportunities to maximize the models' use of

GPU resources.

Identifying such opportunities requires accurate pro�ling and char-

acterization of these models. However this is challenging due to long

executions times of model training, constantly evolving models, as well

as large resource requirements (for large-scale distributed setups). Thus,

we �rst devise a mechanism, SeqPoint, to create a short but representa-

tive execution pro�le from thousands of heterogeneous training iterations

of sequence-based models. Next, we do a detailed characterization of

Transformer models on GPUs. Our characterization focuses on algorith-

mic understanding of the model and their hardware implications, also

including the impact of their ever-evolving behavior. Finally, we devise

mechanisms to e�ciently study several Transformer models in di�erent

types of distributed, multi-device setups (the de-facto setup in which they

are trained/deployed today). Our characterization shows that while there

has been considerable improvements done at each layer of the comput-

ing stack to improve these models, lack of information from other layers

xxi

prevents them to reach their maximum potential.

First, gradient descent weight updates of these models are often ex-

tremely memory-bound and can under-utilize modern accelerators. This

is because weight updates require accessing a substantial amount of data,

typically several times the size of the parameters themselves, and entail

very few computations. We leverage this algorithmic understanding to

o�oad weight updates to near-memory compute units while executing

the remaining operations on the GPU compute units. By signi�cantly

reducing data movement and enabling very high bandwidth access to

data, near-memory compute improves model e�ciency and performance.

Second, we �nd that even with extremely well tuned BLAS libraries, con-

currently executing multiple matrix multiplications (GEMMs) seldom

improves GPU throughput. This is because operator libraries are tuned

o�ine assuming isolated execution. We devise GOLDYLOC, which selects

GEMM kernels optimized for the global resources available during execu-

tion and minimizes resource contention during concurrent executions. It

further introduces a dynamic logic to control the amount of concurrency

for improved performance. Finally, our multi-GPU characterization re-

veals that often inter-device communication kernels in distributed setups

are serialized with compute kernels, causing sub-optimal performance

scaling and idle network/compute resources. To overcome this, we devise

T3 which hides the communication cost by enabling �ne-grained over-

lap of communication with their producer computations. This overlap

is done transparently in hardware, minimizing programmer overheads

and furthermore uses DMA engines and near-memory compute units for

communication to reduce resource contention with the producer compu-

tations.

Overall, by providing detailed characterization of these increasingly

important models and accelerating them via a tighter �ow of information

between the application, libraries and hardware, this thesis contributes to

xxii

the synergistic evolution of machine learning and systems which has been

key to the rapid and disruptive advancements in machine learning.

1

1 introduction

The �eld of Machine Learning (ML), particularly deep neural networks

(DNNs), has played a transformative role in society, showcasing sig-

ni�cant accuracy improvements across diverse tasks including speech

recognition [282, 292], language modeling [41, 62, 226], machine trans-

lation [87, 273], multi-modal understanding [3, 39, 270], image classi�-

cation [64, 88, 133, 149, 257, 267, 268], recommendations [179] and au-

tonomous agents [150]. These improvements are attributed to advance-

ments in model architectures [273], increase in model parameters or size

as well as the scale of the datasets the models are trained on. This be-

came especially true for sequence-based models or models which process

sequence of information such as text, audio, and video. From the adoption

of recurrentnetworks for language tasks to the emergence ofattention-based

Transformer models, alongside training techniques that enabled training

on vast datasets, including the entire internet, these models have demon-

strated applicability across multiple domains (vision, video) [38] and have

paved the way for advancements in arti�cial general intelligence [238].

Consequently, sequence-based models have become a signi�cant driver

for future hardware requirements. While GPUs have been the primary

computing platform for DNNs due to the strong combination of pro-

grammability, performance, and energy e�ciency they o�er, they have

also undergone substantial enhancements. To meet the surge in the compu-

tational demand in training and deploying sequence-based models (due

to scaling model size, datasets, and applicability), the prevailing strategy

has been to increase the GPU's computational capabilities. This is done by

increasing GPU cores (streaming multiprocessors or SMs for NVIDIA and

compute units or CUs for AMD) and memory bandwidth. Furthermore,

specialized hardware enhancements, including TensorCores [188], Matrix

Core Engines [20], and Transformer engines [196] have been introduced.

2

These e�orts have resulted in GPU FLOPS more than doubling with each

generation [9, 21, 25, 188, 194, 200]. To further meet the computational

demands, powerful nodes featuring multiple GPUs interconnected with

high-bandwidth links have also emerged [26, 199]. This has enabled large-

scale distributed setups of these models. For instance, some of the largest

sequence-based models today train for over a month on approximately

4500 GPUs [263]. Given these increasingly large hardware resources

availed by these models, the fundamental question is: do these models

indeed utilize all these resources well? And if they do not, how can we

improve these systems and make their executions e�cient? Thus, this

dissertation answers these questions by identifying ine�cient execution phases

and leveraging cross-stack opportunities to improve sequence-based models' use

of hardware resources while also accelerating them.

In Chapters 3, 4 and 5 of the dissertation, we focus on the pro�ling

and characterization of contemporary sequence-based models on GPUs

to pinpoint ine�ciencies in their execution. Compared to Convolutional

Neural Networks (CNNs) and Multi-layer Perceptrons (MLPs), pro�ling

sequence-based models' training executions can be challenging due to their

input sequence length-dependent iterations and large datasets with vary-

ing input sequence lengths. To overcome this, we �rst devised a sampling

mechanism called SeqPoint (summarized in Section 1.1.1 and detailed in

Chapter 3) to enable quick and accurate pro�ling and characterization of

recurrent-based models, the state-of-the-art sequence-based model at the

time. We next also do a detailed characterization of Transformer models

on a GPU, which succeeded recurrent networks in several sequence-based

tasks (summarized in Section 1.1.2 and detailed in Chapter 4). Unlike prior

studies, we take into account the several �avors of Transformer models that

were introduced by studying the impact of evolving model parameters as

well as training techniques. Finally, recognizing the exponential scaling

of model size that followed, requiring di�erent types of large-scale dis-

3

tributed setups, we also characterize multi-GPU execution of Transformer

models. We overcome the challenges with exhaustively pro�ling them (in

terms of time, e�ort and resource availability) by developing algorithmic

and empirical strategies. These helped us evaluate the inter-GPU com-

munication costs in executing very large as well as futuristic Transformer

models (summarized in Section 1.1.3 and detailed in Chapter 5).

Overall, these analyses reveal three primary ine�cient primitives preva-

lent in sequence-based models. First, not all model operations are GPU-

amenable. Model executions consist of memory-bound weight update

algorithms that require signi�cant data movement between memory and

GPU compute units (CUs) and leave CUs underutilized. Second, GPU-

amenable matrix-multiply operations or GEMMs can also underutilize

CUs and while sequence-based models have abundant opportunities to

concurrently execute independent GEMMs, they seldom provide expected

bene�ts. Finally, multi-GPU model executions have extended serialized

inter-GPU communication phases which limit throughput scaling and

result in idle compute resources. Notably, while these ine�cient operators

are prominently observed in sequence-based models, they represent fun-

damental primitives, although not always dominant, in most other DNNs

as well. In addition, these studies reveal opportunities to leverage informa-

tion from across the stack (application, libraries, runtime and hardware)

to improve execution e�ciencies.

In Chapters 6, 7 and 8 of the dissertation we mitigate the identi�ed

ine�ciencies via cross-stack optimizations. First, instead of having en-

tire end-to-end application o�oaded to a single accelerator such as a

GPU, we demonstrate the e�cacy of using algorithm understanding to

selectively o�oad memory-bound weight update algorithms to emerging

compute-enhanced memories. This strategy improves e�ciency of these

memory-bound phases by leveraging the high-bandwidth access to data

that 3D-stacked memories enable while also reducing data movement

4

between GPU compute units and memory (summarized in Section 1.2.1

and detailed in Chapter 6). Second, we address sub-optimal concurrent

General Matrix Multiply (GEMM) executions on GPUs with GOLDYLOC

(summarized in Section 1.2.2 and detailed in Chapter 7). Unlike current

GPU systems, GOLDYLOC extends the GEMM library to include ker-

nel implementations optimized for shared resource environments during

concurrency. It additionally uses runtime information to both select the

appropriate kernel implementation as well as to dynamically control the

amount of concurrency to exploit. Together, these improve overall GPU

resource utilization and throughput. Finally, we tackle the challenge of

serialized communication in T3 (summarized in Section 1.2.3 and detailed

in Chapter 8) by leveraging application understanding about their pre-

ceding (producer) operations and overlapping them with communication

in a �ne-grained manner. T3 uses a con�gurable hardware track and

trigger mechanism to mitigate software complexities of interleaving. It

further leverages near-memory computing and DMA engines to minimize

resource contention arising from the overlap. This enables communication

costs to be largely hidden, and improves the utilization of both compute

units and inter-GPU links. Overall, these optimizations highlight the need

for information �ow between di�erent layers of compute abstractions

(application, libraries, runtime, and hardware) to improve GPU resource

utilization. Below we provide a summary of each of the chapters:

5

1.1 Analysis of Sequence-based Models on

GPUs

1.1.1 SeqPoint: Identifying Representative Iterations of

Sequence-based Neural Networks

Detailed pro�ling and characterization of DNN training remains di�cult

as these applications often run for hours to days on real hardware. Prior

works have exploited the iterative nature of DNNs to pro�le a few training

iterations to represent the entire training run. While such a strategy is

sound for networks like CNNs, where the nature of the computation is

largely input independent, we observe in this work that this approach is

sub-optimal for sequence-based neural networks (SQNNs) such as RNNs.

The amount and nature of computations in SQNNs can vary for each input,

resulting in heterogeneity across iterations. Thus, arbitrarily selecting a

few iterations is insu�cient to accurately summarize the behavior of the

entire training run.

To tackle this challenge, we carefully study the factors that impact

SQNN training iterations and identify input sequence lengthas the key

determining factor for variations across iterations. We then use this obser-

vation to characterize all iterations of an SQNN training run (requiring no

pro�ling or simulation of the application) and select representative itera-

tions, which we term SeqPoints. We analyze two state-of-the-art SQNNs,

DeepSpeech2 and Google's Neural Machine Translation (GNMT), and

show that SeqPoints can represent their entire training runs accurately,

resulting in geomean errors of only 0.11% and 0.53%, respectively, when

projecting overall runtime and 0.13% and 1.50% when projecting speedups

due to architectural changes. This high accuracy is achieved while reduc-

ing the time needed for pro�ling by 345 � and 214� for the two networks

compared to full training runs. As a result, SeqPoint can enable analysis

6

of SQNN training runs in mere minutes instead of hours or days.

1.1.2 Demystifying Transformers: System Design

Implications

Transformer-based networks [273], a successor of RNNs, became the pre-

ferred algorithm for natural language processing. These networks, along

with transfer learning, gave rise to models like the Bi-directional Encoder

Representation from Transformer (BERT) [62], which marked a shift to-

wards deeper knowledge transfer by applying massive pre-trained models

to di�erent tasks. Understanding Transformer models' underlying behav-

iors is vital to designing e�cient accelerators for them. Thus, we study the

computationally and time-intensive training phase of Transformer models

and identify how its algorithmic behavior can guide future accelerator

design. We focus on BERT and identify key operations which are worthy

of attention in accelerator design. In particular, we focus on the manifes-

tation, size, and arithmetic behavior of these operations which remain

constant irrespective of hardware choice. To capture future Transformer

trends, we also show and discuss implications of these behaviors as net-

works and inputs get larger. Moreover, we study the impact of key training

techniques like distributed training, checkpointing, and mixed-precision

training. The key takeaways from this analysis are:

• Optimizer updates are very memory intensive. Their runtime scales

linearly with transformer layer count and quadratically with layer

size and thus are important to optimize for.

• GEMMs dominate Transformer runtime but have heterogeneity.

Some GEMMs are smaller and thus may not fully utilize accelerators

and may also be memory-bound. GEMM proportion also increases

with layer size.

7

• Non-GEMMs (add, multiply, scale, reduce) are memory-bound

and a considerable proportion of runtime. Their proportion drops

with increasing layer size as they scale only linearly with it (unlike

GEMMs and updates, which are quadratic).

• Reducing precision makes optimizing memory-intensive operations

crucial. At lower precision, GEMMs speed up more than non-GEMMs

due to faster arithmetic and reduced memory tra�c. Furthermore,

updates use higher (FP32) precision data to maintain accuracy and

remain una�ected.

• Tensor Slicing is bottlenecked by communication as the latter is

serialized with computations. Its cost increases with device count.

1.1.3 Computation vs. Communication Scaling for Future

Transformers on Future Hardware

Scaling of neural network models has increased the reliance on e�cient dis-

tributed training techniques. Accordingly, like other distributed comput-

ing scenarios, it is important to understand how compute and communication

will scale relative to one another as models scale and hardware evolves?A careful

study which answers this question can better guide the design of future

systems which can e�ciently train future large models. Accordingly, we

comprehensively analyze compute vs. communication (Comp-vs.-Comm)

scaling for future Transformer models on future hardware, across multiple

axes (algorithmic, empirical, hardware evolution).

We �rst perform an algorithmic analysis of compute and communica-

tion operations in Transformer models. Our algorithmic analysis shows

that the complexity of compute operations is often higher than communi-

cation volume (data size). We call this compute's edgeover communication.

A compute-dominated execution pro�le is often a positive edge because

compute (FLOPS) scaling has received considerably more attention than

8

communication (bandwidth) scaling, and often optimizations are em-

ployed to overlap communication with useful compute. Thus, compute's

edge also helps hide communication costs. However, model scaling and

memory capacity trends are stressing this edge.

We quantify this edge by empirically studying how Comp-vs.-Comm

scales for future models on future hardware. This approach has several

challenges, including requiring studying many model/hardware evolution

scenarios. Our empirical strategy addresses these challenges by (a) de-

signing controlled experiments (guided by our algorithmic analysis), (b)

executing only certain regions-of-interest (ROIs), and (c) using operator-

level models which we show accurately (< 15% error) project operator

runtime trends for varying hyperparameters. These enable us to study

hundreds of future models/hardware scenarios at 2100 � lower pro�ling

costs. Our experiments show that communication will be a signi�cant

portion (40-75%) of runtime as models and hardware evolve. Moreover,

communication that is often hidden by overlapped computation in today's

models cannot be hidden in future, larger models. Overall, this work high-

lights communication's increasingly large role as models scale, discusses

promising techniques to potentially tackle communication, and discusses

how our analysis in�uences their potential improvements.

1.2 Improving Sequence-based Models'

E�ciency on GPUs

1.2.1 Processing Optimizer Updates in Memory

Our characterization reveals how memory-bound gradient descent up-

dates of billions of Transformer parameters can under-utilize modern ac-

celerators like GPU. To overcome this, we o�oad updates to near-memory com-

pute units[215] while still executing the compute-bound GEMMs on the

9

GPUs. Mapping a sequence of operations to memory requires few expen-

sive synchronizations with GPU compute units, and provides increased

data access bandwidth along with concurrency of multiple DRAM banks.

Thus, it accelerates weight updates, by 3.8� for a popular Transformer,

BERT. Finally, it considerably reduces (� 13�) expensive data movement

from DRAM to GPU compute units.

1.2.2 GOLDYLOC: Global Optimizations and

Light-weight Dynamic Logic for Concurrency

Concurrently executing multiple operations can help improve the device's

compute utilization, especially with small and low-utilizing computations

observed in our characterization of sequence-based networks. However,

e�ectively harnessing it on GPUs for important primitives such as general

matrix multiplications (GEMMs) remains challenging. GPU libraries ex-

haustively optimize kernel implementations for performance/e�ciency of

key operators like GEMMs. However, this tuning assumes the availability

of all GPU resources, assuming each kernel executes inisolationand can

utilize all GPU resources. This approach is highly e�cient when kernels

execute in isolation, but causes slowdowns when executed concurrently

with other operators due to resource sharing and contention. Moreover,

concurrency can only be statically exposed and controlled from within

an application. This does not take into consideration the dynamic execu-

tion environment (e.g., varying input size, multiple applications) – often

exacerbating contention. These issues limit performance bene�ts from

concurrently executing independent operations.

Accordingly, we propose GOLDYLOC . GOLDYLOC augments kernel

tuning to identify e�cient kernels for both isolation and globalresource

environments resulting from varying degrees of concurrent execution. To

�nd the latter GOLDYLOC tunes kernels o�ine with resource constraints

which emulates various shared resource environments. Similar to the

10

baseline where kernels have unique properties per GEMM input, tuning

for concurrency also makes unique trade-o�s per input to e�ciently share

resources. Moreover, we also augment the GPU's command processor

(CP) to dynamicallycontrol concurrency using a predictor (trained of-

�ine) which selects the type and degree of concurrent GEMMs to execute

given the available independent GEMMs and their inputs. This includes

detecting when sequential execution is preferred. Overall, GOLDYLOC

improves performance of concurrent GEMMs on real hardware by up to

2.5� (43% geomean per workload) over sequential execution and up to

2� (18% geomean per workload) over statically controlled and isolated

tuned concurrent executions on GPUs.

1.2.3 T3: Transparent Tracking & Triggering for

Fine-grained Overlap of Compute & Collectives

Extended phases of inter-device communication can reduce the scaling

e�ciency of DNNs in large distributed setups. While some distributed

techniques can overlap, and thus, hide this communication with indepen-

dent computations, techniques such as Tensor Parallelism (TP) inherently

serialize communication with model execution. One approach to hide

this serialized communication is to interleave it with the producer of the

communicated data (usually a GEMM) in a �ne-grainedmanner. However,

enabling this �ne-grained overlap in current systems either requires ex-

pensive �ne-grained synchronization [107] or changes to GEMM kernels

which can be disruptive to GPU software infrastructure [278]. Further-

more, overlapped compute and communication contend for both compute

units and memory bandwidth, reducing overlap's e�cacy [107, 278].

To overcome these challenges, we propose T3 which applies hardware-

software co-design to transparently overlap serialized communication

while minimizing resource contention with compute. T3 transparently

fusesproducer operations with the subsequent communication via a sim-

11

ple con�guration of the producer's output address space to initiate com-

munication directly on the producer's store, requiring minimal applica-

tion changes. At the hardware level, T3 uses uses a light-weight and

programmable hardware trackerto track the producer/communication

progress and trigger communication using pre-programmed DMA com-

mands, requiring no additional GPU compute resources. It further uses

compute-enhanced memories[125, 145] to atomically update memory loca-

tions on stores thus freeing GPU compute units and reducing memory

tra�c from communication's attendant compute. As a result, T3 reduces

resource contention, and e�ciently overlaps serialized communication

with computation. For important Transformer models like T-NLG, T3

speeds up communication-heavy sublayers by 30% geomean (max 47%)

and reduces data movement by 22% geomean (max 36%). Furthermore,

T3's bene�ts persist as models scale: geomean 29% for sublayers in� 500-

billion parameter models, PALM and MT-NLG.

1.3 Contributions

The main contributions of this dissertation are:

• Fast & Accurate Pro�ling: we devise a systematic mechanism to

pro�le sequence-based models which otherwise took several days to

run on native hardware. By identifying few representative training

iterations to pro�le, SeqPoint made fast and accurate characterization

of these models possible.

• Identi�ed Ine�ciencies in Transformer Executions on GPUs: We

provide a detailed characterization of the, then emerging, Trans-

former networks to identify and expose ine�ciencies in their execu-

tion on state-of-the-art GPUs. This also includes impact of varying

hyperparameters and training techniques to incorporate the ever-

12

evolving �eld of ML. The observations from this study inspired

several other pieces of the dissertation.

• Operator-level Details for Accurate Evaluations: Our study of

Transformers also provides details on the manifestation and size

of all its constituent operators, which were instrumental in our eval-

uations of subsequent proposals. As an example, it helped us derive

the size of matrix-multiplication operations (GEMMs) which were

used to evaluate both GOLDYLOC and T3. Absence of such a study

can cause works to build accelerators with matrix-vector engines for

models which actually perform matrix-matrix operations [89].

• Algorithmic Communication Costs : We devise a mechanism to

algorithmically project the relative importance of computation and

communication in large-scale distributed setups. This provides a

system-agnostic analysis of communication costs, as well as helps

understand how model evolution in�uences them.

• Project Communication Costs in Large Distributed Setups : We

devise a strategy for a practical empirical analysis of several Trans-

former models on large-scale distributed setups and demonstrate

how inter-device communication will play an increasingly large role

as models scale.

• Appropriate operator-accelerator mapping : We showcase the po-

tential of o�oading memory-bound weight update algorithm to

near-memory compute units while still executing compute-bound

GEMM on GPUs.

• E�cient Concurrent GEMM Execution on GPUs : We show how

important primitives like GEMMs, that GPUs heavily optimize for,

can underutilize resources even when run concurrently on a single

GPU. The key reason for these ine�ciencies is the indi�erence of GPU

13

GEMM libraries toward the execution environment as well as and

inability for GPU runtimes to control the amount of concurrency. We

develop GOLDYLOC which provides kernel implementations that

are aware of global resources in shared environments. It also allows

GPU scheduler to control the number of concurrent kernels based

on dynamic information about the size and count of independent

operations. This tighter �ow of information between the hardware,

runtime and libraries improves overall throughput and e�ciency.

• E�cient Fine-grained Overlap of Communication with Compute :

We show how serialized communication in distributed DNN setups

can leave GPUs idle for an elongated period of time, causing poor

application throughput scaling and wasted cycles in datacenters. We

propose T3 which e�ciently fuses and overlaps computations with

communication in a �ne-grained manner. Furthermore, it does so

without disrupting complex software infrastructure, a key challenge

in prior works. Thus by leveraging the producer-consumer relation-

ship in the algorithm, we improve overall e�ciency of a distributed

setup.

• Support for DNNs in GPU Architecture Simulators : We also ex-

tended and released support for the widely-used, popular GPU

simulator, GPGPU-Sim [36], to run DNNs [147].

1.4 Outline
The dissertation is organized as follows: in Chapter 2, we provide all the

required background for this dissertation. Chapters 3, 4, and 5 detail

our work on the pro�ling mechanism, characterization of NLP models,

and analysis of communication in distributed multi-GPU setups. The key

takeaways from this characterization motivate our proposals in the next

three chapters. Chapter 6 discusses accelerating memory-bound weight

14

updates using near-memory computing. Chapter 7 provides details of

our work on e�cient concurrent execution of GEMMs (GOLDYLOC).

Chapter 8 demonstrates our work on �ne-grained interleaving of compute

and communication using T3 for distributed ML. Finally, Chapter 9 sum-

marizes the document, and provides re�ections and future work based on

this dissertation.

15

2 background

This chapter covers the background for the entire thesis. Relevant back-

ground for each chapter is speci�ed below:

• SeqPoint: DNN Training (Section 2.1.1), Batching & Minibatches

(Section 2.1.3), RNNs: Recurrence-based Networks (Section 2.2.1).

• Characterizing Transformers: Transfer Learning: Pre-training &

Fine-tuning (Section 2.1.2), Transformers (Section 2.2.2), Distributed

Computing for DNNs (Section 2.3), Gradient Descent Optimizers

(Section 2.4.2).

• Computation vs. Communication Analysis: Transformers (Sec-

tion 2.2.2), Distributed Computing for DNNs (Section 2.3), Collec-

tive Communication (Section 2.4.3)

• Near-memory Optimizer Updates: Gradient Descent Optimizers

(Section 2.4.2), DRAM (Section 2.5)

• GOLDYLOC: RNNs: Recurrence-based Networks (Section 2.2.1),

Transformers (Section 2.2.2), GEMMs: GEneral Matrix Multiplica-

tions (Section 2.4.1)

• T3: Transformers (Section 2.2.2), Distributed Computing for DNNs

(Section 2.3), Collective Communication (Section 2.4.3)

2.1 Deep Neural Networks (DNN)

2.1.1 DNN Training

Most DNNs have large numbers of tunable parameters (or weights) that

are learned using large amounts of data during a training phase. Once

16

trained, the network can be deployed to operate on new inputs, which is

referred to as inference. During training, an input (e.g., an image) is fed into

the network and is propagated forward through a collection of layers that

form the network until an output is generated. Each layer takes the output

of the previous layer, computes on it and feeds its result or activationto

the next layer. At the end of this forward propagation, the generated output

is compared to the known correct output to compute an error. The error

generated in the forward pass is propagated backwards through the layers

of the network during a backward propagationof the network. During this

back propagation, each layer generates theinput gradient (or error) to

propagate to the previous layer, as well as a weight gradientthat is used to

update the tunable parameters of the layer (to minimize the error).

2.1.2 Transfer Learning: Pre-training & Fine-tuning
In transfer learning, a model trained for a particular task is reused for dif-

ferent tasks. Transfer learning has been widely adopted in the language

domain. Language models have a long pre-trainingphase where the model

learns the language using large unlabeled datasets (e.g., Wikipedia), in-

dependent of any target task. Once pre-trained, they are �ne-tuned during

which they are trained on a labeled dataset for a speci�c task with minimal

model changes. As an example, a single pre-trained model can be tuned

independently for 11 di�erent tasks [62].

2.1.3 Batching & Minibatches

To improve hardware utilization (particularly on parallel platforms such

as GPUs) and to improve the stability of convergence, the training phase

is often performed in groups of inputs known as minibatchesor, simply,

batches. Figure 2.1(top) illustrates an example of forming batches of size

four for a text-based training set. The number of inputs in a batch is

referred to as the batch size. In batch-based training, all inputs of a batch

17

Figure 2.1: Training phase of sequence-based models.

perform the forward traversal using the same set of weights, and then

the backward pass is performed for all inputs of the batch, computing

the corresponding errors and updating the weights. The forward and

backward traversal of the input through the network is referred to as an

iteration. A set of iterations making up a single pass through the entire

dataset is referred to as an epoch, as illustrated by Figure 2.1(bottom).

Training of a network typically consists of multiple epochs (i.e., multiple

passes over the entire training set) until a convergence criterion is met.

2.2 Sequence-based Networks

Sequence-based networks are a class of DNNs which, unlike other DNNs

(e.g., CNNs), process a sequence of information (e.g., a sentence) to learn

the tokens (e.g., words) and relationship between them (e.g., context of a

sentence). This makes them a good �t for natural language tasks including

18

Figure 2.2: Left: A single layer of an RNN. Right: Unrolled RNN processing
an input sequence.

language modeling [62], speech recognition [90], and translation [273].

There are two main types of sequence-based networks, recurrent and

Transformer networks that we detail in Sections 2.2.1 and 2.2.2, respec-

tively.

2.2.1 RNNs: Recurrence-based Networks

Recurrent neural networks (RNNs) are a class of sequence-based networks

which process sequences. As shown in Figure 2.2, a given layer in an RNN

processes each input token (e.g., word in a sentence) or i t a time. Similar

to other DNNs, it propagates the output to the next layer. However, unlike

other DNNs, it also produces a hidden state h t - 1 which is updated each

time a token is processed as shown by the equation below:

h t = f (W i t + U h t - 1 + b)

where W is the input-hidden weight matrix and U is the recurrent weight

matrix and b is a bias term. Each RNN layer thus loops through all tokens

in the input sequence, updating the hidden state which allow them to

capture and remember information (e.g., context of a sentence) across

multiple tokens. This however introduces sequential dependency between

token processing within a layer. The number of tokens (or times-steps)

represents thesequence length(SL) of the input to the RNN. Finally, RNNs

can be of di�erent types depending on the layer type. Vanilla, Long Short

Term Memory (LSTM) [94], and Gated Recurrent Unit (GRU) [52] are

19

three widely-used types of RNNs, which di�er in how they process input

and hidden states as well as the parameters they store. The iterative

processing of one token at a time makes them well suited to real-time

sequence processing tasks such as speech recognition.

RNN's input and hidden state processing manifest as matrix multipli-

cations (GEMMs). While hidden state processing across tokens within a

layer have dependencies and are processed independently, input process-

ing of tokens may be combined into a single or few GEMMs [31].

2.2.2 Transformers

Transformers [273] are another class of sequence-based models which have

increasingly replaced RNNs to become the general-purpose architecture

for a wide range of tasks and domains. Recent work has shown that

many di�erent modalities are using Transformers as their base model

(e.g., 41% of text, 22% of image) [38]. The basic building block of these

Transformers is an encoderor decoderlayer which is repeated multiple

times (Figure 2.3(a)). They also have an input embedding layer that

provides the �rst layer with an input representation/vector of token as

well as an output classi�cation layer. As shown in Figure 2.3(b), each

encoder/decoder block contains an attention layer and a fully connected

(FC) layer, both of which are followed by a residual connection and layer

normalization. The encoder and decoder blocks are similar, except the

decoder's attention GEMM input is masked to consider only past tokens,

which causes di�erent computational inference behavior but does not

a�ect training.

The evolution of Transformer models has largely focused on changing

Transformer block type (encoder vs. decoder, or both), increasing the

number of Transformer blocks, and/or increasing layer widths. This is

true for all Transformer models; starting with the model BERT [62] (with

0.3 billion parameters), to its most recent successor, MT-NLG (with 540

20

Figure 2.3: BERT hierarchical model breakdown.

billion parameters), and many others in between [41, 58, 138, 154, 226,

256, 266, 284]. Thus, while Transformer models have become larger with

di�erent hyperparameters, their fundamental computational components

are largely the same. Therefore, throughout this dissertation, we use BERT

as our baseline model and change its hyperparameters to study/evaluate

larger Transformer models.

2.2.2.1 Attention

Attention (Figure 2.3(c, d)) is an essential component of Transformer-based

models (e.g., BERT) described in Section 2.2.2. Given an input sequence,

attention networks output a representation of the sequence such that each

output token of the sequence is encoded with weightedinformation from

all (or a subset, for masked attention used by decoder layers) other tokens

in the sequence. This all-to-all encoding of information enables attention

to process all tokens independently (unlike sequential RNNs), but also

quadratically increases computations with increasing length of the input

sequence.

2.2.2.2 Transformers Layer Manifestations

The attention sub-layer and fully connected (FC) sub-layer (as shown in

Figure 2.4(a)) manifest as matrix multiplication operations (GEMMs).

The residual connections and layer normalizations which manifest as

21

element-wise operations and are often fused [66, 72, 264, 275] with the

GEMMs. As shown in Figure 2.4(b), these GEMMs entail multiplication of

layers' weight matrices by an input matrix (with each vector representing

an input token). During training, the input matrices contain multiple

tokens from one or more (if batched) input sequence(s). During inference,

there are two execution phases: apromptphase to process all tokens in the

input sequence(s) and a token generationphase to iteratively process and

generate one token at a time for each input sequence [211]. The prompt

phase operations are similar to those in training, while the generation

phase has GEMMs with small input matrices or matrix-vector operations

(GEMVs) if there is no batching.

2.2.2.3 Transformer Hyperparamters

Transformer models are de�ned by several hyperparameters that we use

throughout the dissertation. Layer countdenotes the number of Trans-

former encoder/decoder layers in the model. The hidden dimensionof an

attention sub-layer is the layer width and is usually same as the embedding

sizewhich is the size of each input token/vector. Intermediate dimension

is the layer width of the feed-forward, fully-connected sub-layer, and is

usually 4� the hidden dimension. Finally, the inputs to a model are dic-

tated by the batch-sizeas well as the length of the inputs, sequence length

(described in Section 2.2.1).

2.3 Distributed Computing for DNNs

Most Transformer models' memory capacity requirements exceed a sin-

gle device. Thus, they employ distributed techniques and use multiple

accelerators (e.g., GPUs) collaboratively. Furthermore, the aggregate

computational capacity of multiple devices also accelerates training by

enabling the processing of large input datasets in parallel. Thus, since

22

Figure 2.4: (a) Transformer (b) Fully-connected (FC) layer (c) Tensor-
sliced FC layer with all-Reduce on the critical path.

Transformers and their datasets (usually large corpora of unlabeled text)

have increased by several orders of magnitude in size, distributed tech-

niques are often mandatory and increasingly require many devices. This

scaling will only increase for future models.

2.3.1 Distributed Techniques & Associated

Communication

DNNs, and speci�cally, Transformers employ many distributed techniques,

each with associatedcommunicationbetween devices. Data parallelism(DP)

trains model replicas on multiple devices, each on a disjoint set of the

dataset, and requires communication and reduction of layer gradients

across all devices every iteration. Tensor parallelism(TP) [256] and pipeline

parallelism(e.g., GPipe) [99] are two types of model parallelismwhich slice

a single model across multiple devices. While the former slices each layer

requiring activations to be communicated and reduced across devices,

the latter partitions the model layer-wise requiring peer-to-peer transfer

of activations. ZeRO-based optimizations [230] also slice model weights

across devices or o�oad them to slower but larger (e.g., CPU) memo-

23

ries, and require the corresponding weights to be gathered before layer

executions. Finally expert parallelism [128] partitions mixture-of-expert

(MoE) models [69, 228] such that each device hosts a single expert and

requires exchange of input data based on input-to-expert mapping. In

this dissertation, we focus on DP and TP, two of the most e�ective and

widely adopted distributed techniques described in detail in Sections 2.3.2

and 2.3.3.

2.3.2 Data Parallelism

The most common and straightforward distributed ML technique is data

parallelism , in which the model is replicated on multipled (D) devices,

with the input dataset partitioned amongst them. Each device iterates

over its own dataset (using a mini-batch of b) and trains its model while

synchronizing with all the other devices every iteration. 1 During synchro-

nization, local gradients from all devices are averaged and re-distributed

using an all-reducecollective and each model updates its parameters us-

ing these accumulated gradients. This enables large mini-batch (D � b)

training, otherwise not feasible with a single device's memory capacity.

2.3.3 Tensor Parallelism

Tensor Parallelism (TP) [256] e�ectively increases the memory capacity

available to a model by splitting the model across M devices (illustrated in

Figure 2.4(b) & (c)). It splits a model layer (or tensor) across devices such

that each device holds and thus operates on a subset of layer parameters.

This slicing causes each device to generate only a partial layer activation

(and error) during training's forward (and backward) passes, which

require an all-reduce to generate the �nal layer output (Figure 2.4(c)).
1This does not hold for asynchronous training, which converts �ne-grained synchro-

nization into data accesses but may increase convergence time [60].

24

Furthermore, a layer's forward and backward executions are dependent

on another layer's all-reduce of activations and errors.

2.4 Important DNN Operations

This section describes some of the important DNN primitives that domi-

nate model execution as we show in Chapters 4 and 5.

2.4.1 GEMMs: GEneral Matrix Multiplications

2.4.1.1 GEMM's dominance

A prominent computation that GPUs accelerate are highly parallelizable

GEMM operations. Most of a DNN's execution manifest as GEMMs [89,

216, 225]. While networks also manifest other operations, including element-

wise adds and multiplies, activation functions, and layer normalization [33],

they are often fused with preceding operations (commonly with GEMMs)

using kernel fusion [66, 72, 264, 275] and tensor contractions [1, 126, 127,

180, 255] to avoid redundant memory tra�c and reduce kernel launch

overheads. Figure 2.5(a) shows a common DNN setup: DNNs have a

series of layers, each of which executes as a GEMM between the input and

the layer's weight matrix.

2.4.1.2 GEMM Operation

As shown in Figure 2.5(b), a GEMM multiplies two input tensors A and

B of size MxK and NxK , respectively, to generate an output tensor C of

size MxN . This involves 2 � M � N � K �oating point multiplies and adds.

The values of M , N and K are usually dictated by model hyperparameters

such as layer width, batch-size, and/or input length (sequence length).

Additionally, the input tensors may be used transposed or non-transposed

or both (e.g., transposed in forward propagation but non-transposed in

25

Figure 2.5: (a) Toy DNN GEMM computation. (b) High-level GEMM
implementation on a GPU.

backprop). We represent the transpose of A and B input tensors by T1,T2

(e.g., 1,0 implies only one of them is transposed).

2.4.1.3 GEMM GPU Implementation

In GPU GEMM implementations C is often blocked/tiled (Tile in Fig-

ure 2.5(b)) with each work group (WG) usually responsible for a single

tile (loop 1). Each thread in the WG multiplies and accumulates a row(s)

with its respective column(s) within the innermost loop (loop 2). These

threads often leverage fast on-chip shared memory or local data share

(LDS) to store row/column data. Several optimizations are usually ap-

plied, including executing a subset of WGs at a time (which impacts cache

reuse), prefetching data from memory to the LDS, and coalescing. Un-

like other operations, applying these optimizations make GPU GEMM

implementations quite complex, with hundreds of tunable features per

size/transpose combination. Thus, to improve performance, vendors rigor-

ously tune implementations for GEMMs of di�erent sizes, corresponding

to di�erent layer types or parameters [23].

26

Figure 2.6: ML algorithms with independent operations.

2.4.1.4 Important DNNs with GEMMs

GEMMs are prominent in both RNNs and Transformers but di�er in size

and therefore, properties. RNNs process one token of the input sequence

at a time [52, 94, 248]. The token processing manifest as one or more

GEMM(s) and the sequential nature of the algorithm makes the GEMM's

input tensor (in Figure 2.5) small, with one of the dimensions equal to the

input batch size. Transformers use attention layers [34, 273] to represent

a token as the weighted sum of all the input's other input tokens. Thus,

Transformers layers process all tokens of an input sequence in parallel

as a single operation that manifests as a GEMM. However, each input in

a batch must be processed independently, as a separate GEMM, in the

attention layer.

27

DNN Model /
OP Type

Intra-model Backprop Checkpointing Multi-instance

Transformers X 1 , 2 X 6 X 7 X 8
RNNs X 3 , 4 , 5 X 6 X 7 X 8
CNNs X X 6 X 7 X 8

Recommendation X X 6 X 7 X 8
Other DNNs Varies X 6 X 7 X 8

Table 2.1: Concurrency opportunities in DNNs; the circled numbers refer
to Figure 2.6.

2.4.1.5 Opportunities for GEMM concurrency in DNNs

As shown in Figure 2.6 and Table 2.1, DNNs possess considerable operation

parallelism from their model architecture: independent query/key/value

generation in the linear layers, and independent (batched) attention com-

putations for unique sequence length (SL) inputs in Transformers (1 and

2 in Figure 2.6), respectively. Similarly, independent input processing in

the time dimension and hidden state processing across layers in RNNs

introduce operation parallelism (3 , 4 , 5). Training algorithms also

have additional parallelism opportunities that apply to all DNNs (e.g.,

CNNs, Recommendation) as highlighted in Table 2.1. These include inde-

pendent weight and input gradient calculations during back-propagation

(6) and activation recomputing due to checkpointing (7). Finally, while

not applicable during training (due to large memory capacity require-

ments), multiple DNN inference instances (8) are deployed on the same

GPU in production environments which provides additional concurrency

opportunities [53, 54, 75, 115, 121, 189, 193, 271, 285].

2.4.2 Gradient Descent Optimizers
Gradient descentis the most common algorithm used to train neural net-

works. It minimizes an objective function(usually the loss) parameterized

by the model's parameters. Models today use various algorithms to further

28

Figure 2.7: LAMB Optimizer Algorithm.

optimize gradient descent to converge faster. These optimizers help derive

appropriate learning rates for di�erent model parameters and for di�erent

training stages, but at the cost of additional optimizer parameters.

While DNNs are compatible with many di�erent optimizers, they have

recently used complex optimizers such as ADAM [129] and LAMB [287],

which have proven e�ective for very large e�ective batch-sizes. Figure 2.7

details the LAMB algorithm, which updates the model parameters at the

end of the model's forward and backward gradient calculations, once

every (few) iteration(s). It is executed in two stages; in the �rst stage

(LAMBStage1), it determines the update values (u) and learning rate

multiplier using additional momentum(m) and velocity(v) parameters

from the past iterations and gradients (g) of the current iteration. In the

second stage (LAMBStage2), it updates the model weights (w) using

these update and learning rate values. This pair of two stages are exe-

cuted independently for every layer in the model, with each set accessing

independent data (weights, gradients and optimizer parameters of the

29

Figure 2.8: Common collective operations used in DNN execution [236].

corresponding layer).

2.4.3 Collective Communication
The communication patterns described in Section 2.3.1 are handled by

collectivessuch asreduce-scatter, all-reduce, all-gather, all-to-all. As shown in

Figure 2.8, each of these involve communication and at times, arithmetic

operations (e.g., reduction) on the communicated data. In this disserta-

tion, we focus on the all-reduce collective used in the widely adopted DP

and TP setup described in Section 2.3.1. All-reduce can have multiple

implementations optimized for di�erent inter-connect topologies and dis-

tributed setups. One of the most bandwidth-optimal and commonly used

implementation is the ring implementation.

2.4.3.1 All-Reduce & Ring Implementation

The all-reduce (AR) collective reduces (element-wise sums) arrays from

each of the devices. Although there are multiple implementations of

AR, one of the most bandwidth-e�cient, and thus most commonly used,

implementations is ring-AR. Ring-AR consists of a ring reduce-scatter

30

Figure 2.9: Ring implementation of reduce-scatter collective.

(ring-RS) followed by a ring all-gather (ring-AG). As shown in Figure 2.9,

ring-RS is done in multiple steps. The arrays are chunked on each device,

and during each step, all devices send their copy of a uniquechunk to

their neighbor in the ring. The devices then reduce their local copy of the

chunk with the received copy and forward it to their neighbor in the next

step. With N devices and the array chunked N ways, this process requires

N - 1 steps until each device has a completely reduced copy of one chunk.

Ring-AG is similar but does not have reductions; it also requires N - 1

steps until each device has all the reduced chunks. We use AR, RS, and

AG to refer to the ring implementation of these collectives throughout the

dissertation.

2.5 DRAM

2.5.1 Organization
DRAM is organized hierarchically as depicted in Figure 2.10 [6]. The

lowest level of this hierarchy is a 2D array of memory cells and several of

these are grouped into sub-arrays. The sense ampli�ers of the 2D arrays

collectively form a local row bu�er of the sub-arrays. Several sub-arrays

form banks, wherein sense-ampli�ers at bank-level form the global row

bu�er. A typical DRAM chip contains multiple such banks.

31

Figure 2.10: DRAM organization and locations for placing NMC units [6].

In mainstream DDR-based memory systems, a single dual-inline mem-

ory module (DIMM) consists of one or more sets of memory chips that are

accessed in parallel (e.g., a 64-bit data bus may be served by four DRAM

chips with 16-bit-wide, or x16 interfaces). Multiple such sets of chips on

a DIMM are called ranks and share a single memory interface bus to the

host. Chip-select signals in the memory interface identify which rank is

accessed on any given operation. Each DIMM is accessed over an indepen-

dent memory interface from the host and is referred to as a channel. When

a DRAM memory access is to be performed, the appropriate channel,

rank, and bank are selected based on the physical address of the memory

operation. However, before a read or write can take place, the relevant row

of the selected bank must be activated. A row is activated by driving the

appropriate word line and transferring the values stored in that DRAM

row to the local and global row bu�ers. Once the data from the row is in

the global row bu�er (row open), a column from that is selected based

on the address of the access. To access another row in the same bank, an

open row �rst has to be closed by precharging the bitlines.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Analysis of Sequence-based Models on GPUs
	SeqPoint: Identifying Representative Iterations of Sequence-based Neural Networks
	Demystifying Transformers: System Design Implications
	Computation vs. Communication Scaling for Future Transformers on Future Hardware

	Improving Sequence-based Models' Efficiency on GPUs
	Processing Optimizer Updates in Memory
	GOLDYLOC: Global Optimizations and Light-weight Dynamic Logic for Concurrency
	T3: Transparent Tracking & Triggering for Fine-grained Overlap of Compute & Collectives

	Contributions
	Outline

	Background
	Deep Neural Networks (DNN)
	DNN Training
	Transfer Learning: Pre-training & Fine-tuning
	Batching & Minibatches

	Sequence-based Networks
	RNNs: Recurrence-based Networks
	Transformers

	Distributed Computing for DNNs
	Distributed Techniques & Associated Communication
	Data Parallelism
	Tensor Parallelism

	Important DNN Operations
	GEMMs: GEneral Matrix Multiplications
	Gradient Descent Optimizers
	Collective Communication

	DRAM
	Organization
	Near-Memory Computing (NMC)

	Summary

	Profiling Sequence-based Networks with SeqPoint
	Challenges
	Characterizing iteration execution profile
	Execution Profile
	Factors Determining Execution Profile
	Non-Training Phase Computations

	SeqPoint: Representative Iterations for SQNNs
	Challenge: Large Sequence Length Space
	SeqPoint Overview
	SeqPoint Mechanism

	Evaluation
	Hardware & Profiling Setup
	Networks and Inputs
	Methodology
	Projecting Program Execution Behavior
	Projecting Performance Speedups
	Profiling Speedups

	GNMT Case Study
	Discussion
	Enabling Network-level Simulation for SQNNs
	Other SQNNs
	Sophisticated Clustering of SQNN Iterations
	Architecture and Software Independence
	SQNN Inference

	Related Work
	Chapter Summary

	Demystifying Transformers
	Experimental Setup
	System
	BERT Phases
	BERT Hyperparameters
	Profiling Mechanism

	Compute & Memory Demands of BERT Operations
	Runtime Breakdown
	GEMM Operations in BERT
	Non-GEMM Operations in BERT

	Effects of Hyperparameter Sweep
	Input Size: Mini-batch Size (B), Sequence Length (n)
	Model Size: Layer Count (N), Hidden Dimension (dmodel)

	Effects of Activation Checkpointing
	Effects of Multi-device Training
	Modeling Multi-device Training
	Multi-GPU Training Profile

	Discussion
	Other Accelerators
	BERT Fine-tuning & Inference
	Other NLP Models
	Optimizations for BERT

	Related Work
	Chapter Summary

	Tale of Two Cs: Computation vs. Communication Scaling for Future Transformers on Future Hardware
	Motivation
	Distributed Training Techniques and Associated Communication
	Why Study Evolution of Compute vs. Communication Scaling

	Comp-vs.-Comm: Algorithmic Analysis
	Distributed Techniques Studied
	Important Hyperparameters
	Amdahl's Law Edge for Compute
	Slack Advantage for Compute
	Model Scaling Stresses Compute Edge/Slack

	Comp-vs.-Comm: Empirical Analysis
	Empirical Analysis Challenges
	Proposed Empirical Strategy
	Observations from Experimental Analysis

	ML/System Evolution Recommendations
	System-aware ML Evolution
	Communication Offloads/Fusion
	Processing-in-memory (PIM)
	Processing-in-network (PIN)

	Discussion
	Related Work
	Chapter Summary
	Key takeaways from SQNN characterization

	Near-memory Computing for Optimizer Updates
	Kernel Fusion
	Near-Memory Computing
	Enhancing GPU with NMC
	NMC System Details

	Accelerating LAMB using NMC
	Evaluating LAMB execution on NMC
	Related Work
	Chapter Summary

	GOLDYLOC: Global Optimizations & Lightweight Dynamic Logic for Concurrency
	Motivation
	Scaling GPUs and low utilizing GEMMs
	Sub-optimal GEMM concurrency in GPUs

	Challenges with GEMM Concurrency
	Isolation-tuned kernel implementations
	Static concurrency control

	GOLDYLOC Design
	Overview
	Globally optimized (GO) GEMM kernels
	Dynamic logic for concurrency control
	Integrating GOLDYLOC into GPU's CP

	Methodology
	System Setup
	Applications and GEMMs Studied
	Measurement
	GOLDYLOC Performance Measurement
	Configurations

	Results
	Exploiting Concurrency (default)
	Globally Optimized (GO)-Kernels
	GOLDYLOC
	Range and Distribution of Benefits
	CP Overheads
	Logistic Regression Model Accuracy
	Heterogeneous GEMMs & Batched-GEMMs
	Reduced Precision
	GOLDYLOC with Resource Partitioning
	End-to-end Speedups
	GEMM Fusion

	Discussion
	Reducing Tuning Overhead
	Non-GEMM Kernels
	Additional Resource Constraints
	Sparsity
	Other DNNs
	Scaling GPUs Configuration
	Power-aware tuning

	Related Work
	Chapter Summary

	T3: Transparent Tracking & Triggering for Fine-grained Overlap of Compute & Collectives
	Motivation
	All-Reduce is on the Critical Path & can be Large
	Enabling Compute-Communication Overlap

	Challenges With Fine-grained Compute-Communication Overlap
	Complex & Expensive to Implement in Software
	Resource Contention Between Producer & Collective

	T3: Transparent Tracking & Triggering
	T3 Overview
	T3 Tracking & Triggering
	Near-Memory Reductions
	Configuring Producer's Output Address Space
	Communication-aware MC Arbitration (MCA):

	Methodology
	Setup
	Applications, Deployment & GEMMs
	Configurations

	Results
	Execution Time Distribution & Speedups
	Data Movement Reductions
	End-to-end Model Speedups
	Impact on Larger Transformers

	Discussion
	Other Collectives Implementation & Types
	Other Distributed Techniques
	Generative Inference
	Other Reduction Substrates
	Future Hardware & Lower Precision
	NMC for Following Operations
	Other GEMM Implementations
	Multi-node Setups
	Communication in High Performance Computing (HPC)

	Related Work
	Chapter Summary

	Conclusion & Future Work
	Summary
	Analysis of Sequence-based Models on GPUs
	Improving Sequence-based Models’ Efficiency on GPUs

	Reflection
	Future Work

	Bibliography

