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abstract

Advancements in the �eld of machine learning has made deep neural

networks (DNNs) ubiquitous. Their application in the domain of natural

language processing (NLP) with sequence-based models(models which

process sequence of data) has been particularly remarkable and has led

to powerful tools such as ChatGPT. This has been a result of advanced

model architectures (e.g., Transformers), improved training techniques,

as well as the transformative change in the scale of both model and dataset

size. Training such models however can be extremely computationally

expensive; some of the largest sequence-based models today take over

a month to train on � 4500 GPUs, which are the primary workhorses for

DNNs. Thus, this dissertation attempts to reduce these costs by identifying

and leveraging cross-stack opportunities to maximize the models' use of

GPU resources.

Identifying such opportunities requires accurate pro�ling and char-

acterization of these models. However this is challenging due to long

executions times of model training, constantly evolving models, as well

as large resource requirements (for large-scale distributed setups). Thus,

we �rst devise a mechanism, SeqPoint, to create a short but representa-

tive execution pro�le from thousands of heterogeneous training iterations

of sequence-based models. Next, we do a detailed characterization of

Transformer models on GPUs. Our characterization focuses on algorith-

mic understanding of the model and their hardware implications, also

including the impact of their ever-evolving behavior. Finally, we devise

mechanisms to e�ciently study several Transformer models in di�erent

types of distributed, multi-device setups (the de-facto setup in which they

are trained/deployed today). Our characterization shows that while there

has been considerable improvements done at each layer of the comput-

ing stack to improve these models, lack of information from other layers
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prevents them to reach their maximum potential.

First, gradient descent weight updates of these models are often ex-

tremely memory-bound and can under-utilize modern accelerators. This

is because weight updates require accessing a substantial amount of data,

typically several times the size of the parameters themselves, and entail

very few computations. We leverage this algorithmic understanding to

o�oad weight updates to near-memory compute units while executing

the remaining operations on the GPU compute units. By signi�cantly

reducing data movement and enabling very high bandwidth access to

data, near-memory compute improves model e�ciency and performance.

Second, we �nd that even with extremely well tuned BLAS libraries, con-

currently executing multiple matrix multiplications (GEMMs) seldom

improves GPU throughput. This is because operator libraries are tuned

o�ine assuming isolated execution. We devise GOLDYLOC, which selects

GEMM kernels optimized for the global resources available during execu-

tion and minimizes resource contention during concurrent executions. It

further introduces a dynamic logic to control the amount of concurrency

for improved performance. Finally, our multi-GPU characterization re-

veals that often inter-device communication kernels in distributed setups

are serialized with compute kernels, causing sub-optimal performance

scaling and idle network/compute resources. To overcome this, we devise

T3 which hides the communication cost by enabling �ne-grained over-

lap of communication with their producer computations. This overlap

is done transparently in hardware, minimizing programmer overheads

and furthermore uses DMA engines and near-memory compute units for

communication to reduce resource contention with the producer compu-

tations.

Overall, by providing detailed characterization of these increasingly

important models and accelerating them via a tighter �ow of information

between the application, libraries and hardware, this thesis contributes to
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the synergistic evolution of machine learning and systems which has been

key to the rapid and disruptive advancements in machine learning.
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1 introduction

The �eld of Machine Learning (ML), particularly deep neural networks

(DNNs), has played a transformative role in society, showcasing sig-

ni�cant accuracy improvements across diverse tasks including speech

recognition [ 282, 292], language modeling [ 41, 62, 226], machine trans-

lation [ 87, 273], multi-modal understanding [ 3, 39, 270], image classi�-

cation [ 64, 88, 133, 149, 257, 267, 268], recommendations [ 179] and au-

tonomous agents [150]. These improvements are attributed to advance-

ments in model architectures [ 273], increase in model parameters or size

as well as the scale of the datasets the models are trained on. This be-

came especially true for sequence-based models or models which process

sequence of information such as text, audio, and video. From the adoption

of recurrentnetworks for language tasks to the emergence ofattention-based

Transformer models, alongside training techniques that enabled training

on vast datasets, including the entire internet, these models have demon-

strated applicability across multiple domains (vision, video) [ 38] and have

paved the way for advancements in arti�cial general intelligence [238].

Consequently, sequence-based models have become a signi�cant driver

for future hardware requirements. While GPUs have been the primary

computing platform for DNNs due to the strong combination of pro-

grammability, performance, and energy e�ciency they o�er, they have

also undergone substantial enhancements. To meet the surge in the compu-

tational demand in training and deploying sequence-based models (due

to scaling model size, datasets, and applicability), the prevailing strategy

has been to increase the GPU's computational capabilities. This is done by

increasing GPU cores (streaming multiprocessors or SMs for NVIDIA and

compute units or CUs for AMD) and memory bandwidth. Furthermore,

specialized hardware enhancements, including TensorCores [188], Matrix

Core Engines [20], and Transformer engines [ 196] have been introduced.
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These e�orts have resulted in GPU FLOPS more than doubling with each

generation [ 9, 21, 25, 188, 194, 200]. To further meet the computational

demands, powerful nodes featuring multiple GPUs interconnected with

high-bandwidth links have also emerged [ 26, 199]. This has enabled large-

scale distributed setups of these models. For instance, some of the largest

sequence-based models today train for over a month on approximately

4500 GPUs [263]. Given these increasingly large hardware resources

availed by these models, the fundamental question is: do these models

indeed utilize all these resources well? And if they do not, how can we

improve these systems and make their executions e�cient? Thus, this

dissertation answers these questions by identifying ine�cient execution phases

and leveraging cross-stack opportunities to improve sequence-based models' use

of hardware resources while also accelerating them.

In Chapters 3, 4 and 5 of the dissertation, we focus on the pro�ling

and characterization of contemporary sequence-based models on GPUs

to pinpoint ine�ciencies in their execution. Compared to Convolutional

Neural Networks (CNNs) and Multi-layer Perceptrons (MLPs), pro�ling

sequence-based models' training executions can be challenging due to their

input sequence length-dependent iterations and large datasets with vary-

ing input sequence lengths. To overcome this, we �rst devised a sampling

mechanism called SeqPoint (summarized in Section 1.1.1 and detailed in

Chapter 3) to enable quick and accurate pro�ling and characterization of

recurrent-based models, the state-of-the-art sequence-based model at the

time. We next also do a detailed characterization of Transformer models

on a GPU, which succeeded recurrent networks in several sequence-based

tasks (summarized in Section 1.1.2 and detailed in Chapter 4). Unlike prior

studies, we take into account the several �avors of Transformer models that

were introduced by studying the impact of evolving model parameters as

well as training techniques. Finally, recognizing the exponential scaling

of model size that followed, requiring di�erent types of large-scale dis-
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tributed setups, we also characterize multi-GPU execution of Transformer

models. We overcome the challenges with exhaustively pro�ling them (in

terms of time, e�ort and resource availability) by developing algorithmic

and empirical strategies. These helped us evaluate the inter-GPU com-

munication costs in executing very large as well as futuristic Transformer

models (summarized in Section 1.1.3 and detailed in Chapter 5).

Overall, these analyses reveal three primary ine�cient primitives preva-

lent in sequence-based models. First, not all model operations are GPU-

amenable. Model executions consist of memory-bound weight update

algorithms that require signi�cant data movement between memory and

GPU compute units (CUs) and leave CUs underutilized. Second, GPU-

amenable matrix-multiply operations or GEMMs can also underutilize

CUs and while sequence-based models have abundant opportunities to

concurrently execute independent GEMMs, they seldom provide expected

bene�ts. Finally, multi-GPU model executions have extended serialized

inter-GPU communication phases which limit throughput scaling and

result in idle compute resources. Notably, while these ine�cient operators

are prominently observed in sequence-based models, they represent fun-

damental primitives, although not always dominant, in most other DNNs

as well. In addition, these studies reveal opportunities to leverage informa-

tion from across the stack (application, libraries, runtime and hardware)

to improve execution e�ciencies.

In Chapters 6, 7 and 8 of the dissertation we mitigate the identi�ed

ine�ciencies via cross-stack optimizations. First, instead of having en-

tire end-to-end application o�oaded to a single accelerator such as a

GPU, we demonstrate the e�cacy of using algorithm understanding to

selectively o�oad memory-bound weight update algorithms to emerging

compute-enhanced memories. This strategy improves e�ciency of these

memory-bound phases by leveraging the high-bandwidth access to data

that 3D-stacked memories enable while also reducing data movement
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between GPU compute units and memory (summarized in Section 1.2.1

and detailed in Chapter 6). Second, we address sub-optimal concurrent

General Matrix Multiply (GEMM) executions on GPUs with GOLDYLOC

(summarized in Section 1.2.2 and detailed in Chapter 7). Unlike current

GPU systems, GOLDYLOC extends the GEMM library to include ker-

nel implementations optimized for shared resource environments during

concurrency. It additionally uses runtime information to both select the

appropriate kernel implementation as well as to dynamically control the

amount of concurrency to exploit. Together, these improve overall GPU

resource utilization and throughput. Finally, we tackle the challenge of

serialized communication in T3 (summarized in Section 1.2.3 and detailed

in Chapter 8) by leveraging application understanding about their pre-

ceding (producer) operations and overlapping them with communication

in a �ne-grained manner. T3 uses a con�gurable hardware track and

trigger mechanism to mitigate software complexities of interleaving. It

further leverages near-memory computing and DMA engines to minimize

resource contention arising from the overlap. This enables communication

costs to be largely hidden, and improves the utilization of both compute

units and inter-GPU links. Overall, these optimizations highlight the need

for information �ow between di�erent layers of compute abstractions

(application, libraries, runtime, and hardware) to improve GPU resource

utilization. Below we provide a summary of each of the chapters:
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1.1 Analysis of Sequence-based Models on

GPUs

1.1.1 SeqPoint: Identifying Representative Iterations of

Sequence-based Neural Networks

Detailed pro�ling and characterization of DNN training remains di�cult

as these applications often run for hours to days on real hardware. Prior

works have exploited the iterative nature of DNNs to pro�le a few training

iterations to represent the entire training run. While such a strategy is

sound for networks like CNNs, where the nature of the computation is

largely input independent, we observe in this work that this approach is

sub-optimal for sequence-based neural networks (SQNNs) such as RNNs.

The amount and nature of computations in SQNNs can vary for each input,

resulting in heterogeneity across iterations. Thus, arbitrarily selecting a

few iterations is insu�cient to accurately summarize the behavior of the

entire training run.

To tackle this challenge, we carefully study the factors that impact

SQNN training iterations and identify input sequence lengthas the key

determining factor for variations across iterations. We then use this obser-

vation to characterize all iterations of an SQNN training run (requiring no

pro�ling or simulation of the application) and select representative itera-

tions, which we term SeqPoints. We analyze two state-of-the-art SQNNs,

DeepSpeech2 and Google's Neural Machine Translation (GNMT), and

show that SeqPoints can represent their entire training runs accurately,

resulting in geomean errors of only 0.11% and 0.53%, respectively, when

projecting overall runtime and 0.13% and 1.50% when projecting speedups

due to architectural changes. This high accuracy is achieved while reduc-

ing the time needed for pro�ling by 345 � and 214� for the two networks

compared to full training runs. As a result, SeqPoint can enable analysis
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of SQNN training runs in mere minutes instead of hours or days.

1.1.2 Demystifying Transformers: System Design

Implications

Transformer-based networks [ 273], a successor of RNNs, became the pre-

ferred algorithm for natural language processing. These networks, along

with transfer learning, gave rise to models like the Bi-directional Encoder

Representation from Transformer (BERT) [ 62], which marked a shift to-

wards deeper knowledge transfer by applying massive pre-trained models

to di�erent tasks. Understanding Transformer models' underlying behav-

iors is vital to designing e�cient accelerators for them. Thus, we study the

computationally and time-intensive training phase of Transformer models

and identify how its algorithmic behavior can guide future accelerator

design. We focus on BERT and identify key operations which are worthy

of attention in accelerator design. In particular, we focus on the manifes-

tation, size, and arithmetic behavior of these operations which remain

constant irrespective of hardware choice. To capture future Transformer

trends, we also show and discuss implications of these behaviors as net-

works and inputs get larger. Moreover, we study the impact of key training

techniques like distributed training, checkpointing, and mixed-precision

training. The key takeaways from this analysis are:

• Optimizer updates are very memory intensive. Their runtime scales

linearly with transformer layer count and quadratically with layer

size and thus are important to optimize for.

• GEMMs dominate Transformer runtime but have heterogeneity.

Some GEMMs are smaller and thus may not fully utilize accelerators

and may also be memory-bound. GEMM proportion also increases

with layer size.
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• Non-GEMMs (add, multiply, scale, reduce) are memory-bound

and a considerable proportion of runtime. Their proportion drops

with increasing layer size as they scale only linearly with it (unlike

GEMMs and updates, which are quadratic).

• Reducing precision makes optimizing memory-intensive operations

crucial. At lower precision, GEMMs speed up more than non-GEMMs

due to faster arithmetic and reduced memory tra�c. Furthermore,

updates use higher (FP32) precision data to maintain accuracy and

remain una�ected.

• Tensor Slicing is bottlenecked by communication as the latter is

serialized with computations. Its cost increases with device count.

1.1.3 Computation vs. Communication Scaling for Future

Transformers on Future Hardware

Scaling of neural network models has increased the reliance on e�cient dis-

tributed training techniques. Accordingly, like other distributed comput-

ing scenarios, it is important to understand how compute and communication

will scale relative to one another as models scale and hardware evolves?A careful

study which answers this question can better guide the design of future

systems which can e�ciently train future large models. Accordingly, we

comprehensively analyze compute vs. communication ( Comp-vs.-Comm)

scaling for future Transformer models on future hardware, across multiple

axes (algorithmic, empirical, hardware evolution).

We �rst perform an algorithmic analysis of compute and communica-

tion operations in Transformer models. Our algorithmic analysis shows

that the complexity of compute operations is often higher than communi-

cation volume (data size). We call this compute's edgeover communication.

A compute-dominated execution pro�le is often a positive edge because

compute (FLOPS) scaling has received considerably more attention than
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communication (bandwidth) scaling, and often optimizations are em-

ployed to overlap communication with useful compute. Thus, compute's

edge also helps hide communication costs. However, model scaling and

memory capacity trends are stressing this edge.

We quantify this edge by empirically studying how Comp-vs.-Comm

scales for future models on future hardware. This approach has several

challenges, including requiring studying many model/hardware evolution

scenarios. Our empirical strategy addresses these challenges by (a) de-

signing controlled experiments (guided by our algorithmic analysis), (b)

executing only certain regions-of-interest (ROIs), and (c) using operator-

level models which we show accurately ( < 15% error) project operator

runtime trends for varying hyperparameters. These enable us to study

hundreds of future models/hardware scenarios at 2100 � lower pro�ling

costs. Our experiments show that communication will be a signi�cant

portion (40-75%) of runtime as models and hardware evolve. Moreover,

communication that is often hidden by overlapped computation in today's

models cannot be hidden in future, larger models. Overall, this work high-

lights communication's increasingly large role as models scale, discusses

promising techniques to potentially tackle communication, and discusses

how our analysis in�uences their potential improvements.

1.2 Improving Sequence-based Models'

E�ciency on GPUs

1.2.1 Processing Optimizer Updates in Memory

Our characterization reveals how memory-bound gradient descent up-

dates of billions of Transformer parameters can under-utilize modern ac-

celerators like GPU. To overcome this, we o�oad updates to near-memory com-

pute units[ 215] while still executing the compute-bound GEMMs on the
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GPUs. Mapping a sequence of operations to memory requires few expen-

sive synchronizations with GPU compute units, and provides increased

data access bandwidth along with concurrency of multiple DRAM banks.

Thus, it accelerates weight updates, by 3.8� for a popular Transformer,

BERT. Finally, it considerably reduces ( � 13� ) expensive data movement

from DRAM to GPU compute units.

1.2.2 GOLDYLOC: Global Optimizations and

Light-weight Dynamic Logic for Concurrency

Concurrently executing multiple operations can help improve the device's

compute utilization, especially with small and low-utilizing computations

observed in our characterization of sequence-based networks. However,

e�ectively harnessing it on GPUs for important primitives such as general

matrix multiplications (GEMMs) remains challenging. GPU libraries ex-

haustively optimize kernel implementations for performance/e�ciency of

key operators like GEMMs. However, this tuning assumes the availability

of all GPU resources, assuming each kernel executes inisolationand can

utilize all GPU resources. This approach is highly e�cient when kernels

execute in isolation, but causes slowdowns when executed concurrently

with other operators due to resource sharing and contention. Moreover,

concurrency can only be statically exposed and controlled from within

an application. This does not take into consideration the dynamic execu-

tion environment (e.g., varying input size, multiple applications) – often

exacerbating contention. These issues limit performance bene�ts from

concurrently executing independent operations.

Accordingly, we propose GOLDYLOC . GOLDYLOC augments kernel

tuning to identify e�cient kernels for both isolation and globalresource

environments resulting from varying degrees of concurrent execution. To

�nd the latter GOLDYLOC tunes kernels o�ine with resource constraints

which emulates various shared resource environments. Similar to the
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baseline where kernels have unique properties per GEMM input, tuning

for concurrency also makes unique trade-o�s per input to e�ciently share

resources. Moreover, we also augment the GPU's command processor

(CP) to dynamicallycontrol concurrency using a predictor (trained of-

�ine) which selects the type and degree of concurrent GEMMs to execute

given the available independent GEMMs and their inputs. This includes

detecting when sequential execution is preferred. Overall, GOLDYLOC

improves performance of concurrent GEMMs on real hardware by up to

2.5� (43% geomean per workload) over sequential execution and up to

2� (18% geomean per workload) over statically controlled and isolated

tuned concurrent executions on GPUs.

1.2.3 T3: Transparent Tracking & Triggering for

Fine-grained Overlap of Compute & Collectives

Extended phases of inter-device communication can reduce the scaling

e�ciency of DNNs in large distributed setups. While some distributed

techniques can overlap, and thus, hide this communication with indepen-

dent computations, techniques such as Tensor Parallelism (TP) inherently

serialize communication with model execution. One approach to hide

this serialized communication is to interleave it with the producer of the

communicated data (usually a GEMM) in a �ne-grainedmanner. However,

enabling this �ne-grained overlap in current systems either requires ex-

pensive �ne-grained synchronization [ 107] or changes to GEMM kernels

which can be disruptive to GPU software infrastructure [ 278]. Further-

more, overlapped compute and communication contend for both compute

units and memory bandwidth, reducing overlap's e�cacy [107, 278].

To overcome these challenges, we propose T3 which applies hardware-

software co-design to transparently overlap serialized communication

while minimizing resource contention with compute. T3 transparently

fusesproducer operations with the subsequent communication via a sim-
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ple con�guration of the producer's output address space to initiate com-

munication directly on the producer's store, requiring minimal applica-

tion changes. At the hardware level, T3 uses uses a light-weight and

programmable hardware trackerto track the producer/communication

progress and trigger communication using pre-programmed DMA com-

mands, requiring no additional GPU compute resources. It further uses

compute-enhanced memories[ 125, 145] to atomically update memory loca-

tions on stores thus freeing GPU compute units and reducing memory

tra�c from communication's attendant compute. As a result, T3 reduces

resource contention, and e�ciently overlaps serialized communication

with computation. For important Transformer models like T-NLG, T3

speeds up communication-heavy sublayers by 30% geomean (max 47%)

and reduces data movement by 22% geomean (max 36%). Furthermore,

T3's bene�ts persist as models scale: geomean 29% for sublayers in� 500-

billion parameter models, PALM and MT-NLG.

1.3 Contributions

The main contributions of this dissertation are:

• Fast & Accurate Pro�ling: we devise a systematic mechanism to

pro�le sequence-based models which otherwise took several days to

run on native hardware. By identifying few representative training

iterations to pro�le, SeqPoint made fast and accurate characterization

of these models possible.

• Identi�ed Ine�ciencies in Transformer Executions on GPUs: We

provide a detailed characterization of the, then emerging, Trans-

former networks to identify and expose ine�ciencies in their execu-

tion on state-of-the-art GPUs. This also includes impact of varying

hyperparameters and training techniques to incorporate the ever-
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evolving �eld of ML. The observations from this study inspired

several other pieces of the dissertation.

• Operator-level Details for Accurate Evaluations: Our study of

Transformers also provides details on the manifestation and size

of all its constituent operators, which were instrumental in our eval-

uations of subsequent proposals. As an example, it helped us derive

the size of matrix-multiplication operations (GEMMs) which were

used to evaluate both GOLDYLOC and T3. Absence of such a study

can cause works to build accelerators with matrix-vector engines for

models which actually perform matrix-matrix operations [89].

• Algorithmic Communication Costs : We devise a mechanism to

algorithmically project the relative importance of computation and

communication in large-scale distributed setups. This provides a

system-agnostic analysis of communication costs, as well as helps

understand how model evolution in�uences them.

• Project Communication Costs in Large Distributed Setups : We

devise a strategy for a practical empirical analysis of several Trans-

former models on large-scale distributed setups and demonstrate

how inter-device communication will play an increasingly large role

as models scale.

• Appropriate operator-accelerator mapping : We showcase the po-

tential of o�oading memory-bound weight update algorithm to

near-memory compute units while still executing compute-bound

GEMM on GPUs.

• E�cient Concurrent GEMM Execution on GPUs : We show how

important primitives like GEMMs, that GPUs heavily optimize for,

can underutilize resources even when run concurrently on a single

GPU. The key reason for these ine�ciencies is the indi�erence of GPU
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GEMM libraries toward the execution environment as well as and

inability for GPU runtimes to control the amount of concurrency. We

develop GOLDYLOC which provides kernel implementations that

are aware of global resources in shared environments. It also allows

GPU scheduler to control the number of concurrent kernels based

on dynamic information about the size and count of independent

operations. This tighter �ow of information between the hardware,

runtime and libraries improves overall throughput and e�ciency.

• E�cient Fine-grained Overlap of Communication with Compute :

We show how serialized communication in distributed DNN setups

can leave GPUs idle for an elongated period of time, causing poor

application throughput scaling and wasted cycles in datacenters. We

propose T3 which e�ciently fuses and overlaps computations with

communication in a �ne-grained manner. Furthermore, it does so

without disrupting complex software infrastructure, a key challenge

in prior works. Thus by leveraging the producer-consumer relation-

ship in the algorithm, we improve overall e�ciency of a distributed

setup.

• Support for DNNs in GPU Architecture Simulators : We also ex-

tended and released support for the widely-used, popular GPU

simulator, GPGPU-Sim [36], to run DNNs [147].

1.4 Outline
The dissertation is organized as follows: in Chapter 2, we provide all the

required background for this dissertation. Chapters 3, 4, and 5 detail

our work on the pro�ling mechanism, characterization of NLP models,

and analysis of communication in distributed multi-GPU setups. The key

takeaways from this characterization motivate our proposals in the next

three chapters. Chapter 6 discusses accelerating memory-bound weight
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updates using near-memory computing. Chapter 7 provides details of

our work on e�cient concurrent execution of GEMMs (GOLDYLOC).

Chapter 8 demonstrates our work on �ne-grained interleaving of compute

and communication using T3 for distributed ML. Finally, Chapter 9 sum-

marizes the document, and provides re�ections and future work based on

this dissertation.
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2 background

This chapter covers the background for the entire thesis. Relevant back-

ground for each chapter is speci�ed below:

• SeqPoint: DNN Training (Section 2.1.1), Batching & Minibatches

(Section 2.1.3), RNNs: Recurrence-based Networks (Section 2.2.1).

• Characterizing Transformers: Transfer Learning: Pre-training &

Fine-tuning (Section 2.1.2), Transformers (Section 2.2.2), Distributed

Computing for DNNs (Section 2.3), Gradient Descent Optimizers

(Section 2.4.2).

• Computation vs. Communication Analysis: Transformers (Sec-

tion 2.2.2), Distributed Computing for DNNs (Section 2.3), Collec-

tive Communication (Section 2.4.3)

• Near-memory Optimizer Updates: Gradient Descent Optimizers

(Section 2.4.2), DRAM (Section 2.5)

• GOLDYLOC: RNNs: Recurrence-based Networks (Section 2.2.1),

Transformers (Section 2.2.2), GEMMs: GEneral Matrix Multiplica-

tions (Section 2.4.1)

• T3: Transformers (Section 2.2.2), Distributed Computing for DNNs

(Section 2.3), Collective Communication (Section 2.4.3)

2.1 Deep Neural Networks (DNN)

2.1.1 DNN Training

Most DNNs have large numbers of tunable parameters (or weights) that

are learned using large amounts of data during a training phase. Once
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trained, the network can be deployed to operate on new inputs, which is

referred to as inference. During training, an input (e.g., an image) is fed into

the network and is propagated forward through a collection of layers that

form the network until an output is generated. Each layer takes the output

of the previous layer, computes on it and feeds its result or activationto

the next layer. At the end of this forward propagation, the generated output

is compared to the known correct output to compute an error. The error

generated in the forward pass is propagated backwards through the layers

of the network during a backward propagationof the network. During this

back propagation, each layer generates theinput gradient (or error) to

propagate to the previous layer, as well as a weight gradientthat is used to

update the tunable parameters of the layer (to minimize the error).

2.1.2 Transfer Learning: Pre-training & Fine-tuning
In transfer learning, a model trained for a particular task is reused for dif-

ferent tasks. Transfer learning has been widely adopted in the language

domain. Language models have a long pre-trainingphase where the model

learns the language using large unlabeled datasets (e.g., Wikipedia), in-

dependent of any target task. Once pre-trained, they are �ne-tuned during

which they are trained on a labeled dataset for a speci�c task with minimal

model changes. As an example, a single pre-trained model can be tuned

independently for 11 di�erent tasks [62].

2.1.3 Batching & Minibatches

To improve hardware utilization (particularly on parallel platforms such

as GPUs) and to improve the stability of convergence, the training phase

is often performed in groups of inputs known as minibatchesor, simply,

batches. Figure 2.1(top) illustrates an example of forming batches of size

four for a text-based training set. The number of inputs in a batch is

referred to as the batch size. In batch-based training, all inputs of a batch



17

Figure 2.1: Training phase of sequence-based models.

perform the forward traversal using the same set of weights, and then

the backward pass is performed for all inputs of the batch, computing

the corresponding errors and updating the weights. The forward and

backward traversal of the input through the network is referred to as an

iteration. A set of iterations making up a single pass through the entire

dataset is referred to as an epoch, as illustrated by Figure 2.1(bottom).

Training of a network typically consists of multiple epochs (i.e., multiple

passes over the entire training set) until a convergence criterion is met.

2.2 Sequence-based Networks

Sequence-based networks are a class of DNNs which, unlike other DNNs

(e.g., CNNs), process a sequence of information (e.g., a sentence) to learn

the tokens (e.g., words) and relationship between them (e.g., context of a

sentence). This makes them a good �t for natural language tasks including
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Figure 2.2: Left: A single layer of an RNN. Right: Unrolled RNN processing
an input sequence.

language modeling [ 62], speech recognition [ 90], and translation [ 273].

There are two main types of sequence-based networks, recurrent and

Transformer networks that we detail in Sections 2.2.1 and 2.2.2, respec-

tively.

2.2.1 RNNs: Recurrence-based Networks

Recurrent neural networks (RNNs) are a class of sequence-based networks

which process sequences. As shown in Figure 2.2, a given layer in an RNN

processes each input token (e.g., word in a sentence) or i t a time. Similar

to other DNNs, it propagates the output to the next layer. However, unlike

other DNNs, it also produces a hidden state h t - 1 which is updated each

time a token is processed as shown by the equation below:

h t = f (W i t + U h t - 1 + b )

where W is the input-hidden weight matrix and U is the recurrent weight

matrix and b is a bias term. Each RNN layer thus loops through all tokens

in the input sequence, updating the hidden state which allow them to

capture and remember information (e.g., context of a sentence) across

multiple tokens. This however introduces sequential dependency between

token processing within a layer. The number of tokens (or times-steps)

represents thesequence length(SL) of the input to the RNN. Finally, RNNs

can be of di�erent types depending on the layer type. Vanilla, Long Short

Term Memory (LSTM) [ 94], and Gated Recurrent Unit (GRU) [ 52] are
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three widely-used types of RNNs, which di�er in how they process input

and hidden states as well as the parameters they store. The iterative

processing of one token at a time makes them well suited to real-time

sequence processing tasks such as speech recognition.

RNN's input and hidden state processing manifest as matrix multipli-

cations (GEMMs). While hidden state processing across tokens within a

layer have dependencies and are processed independently, input process-

ing of tokens may be combined into a single or few GEMMs [31].

2.2.2 Transformers

Transformers [ 273] are another class of sequence-based models which have

increasingly replaced RNNs to become the general-purpose architecture

for a wide range of tasks and domains. Recent work has shown that

many di�erent modalities are using Transformers as their base model

(e.g., 41% of text, 22% of image) [38]. The basic building block of these

Transformers is an encoderor decoderlayer which is repeated multiple

times (Figure 2.3(a)). They also have an input embedding layer that

provides the �rst layer with an input representation/vector of token as

well as an output classi�cation layer. As shown in Figure 2.3(b), each

encoder/decoder block contains an attention layer and a fully connected

(FC) layer, both of which are followed by a residual connection and layer

normalization. The encoder and decoder blocks are similar, except the

decoder's attention GEMM input is masked to consider only past tokens,

which causes di�erent computational inference behavior but does not

a�ect training.

The evolution of Transformer models has largely focused on changing

Transformer block type (encoder vs. decoder, or both), increasing the

number of Transformer blocks, and/or increasing layer widths. This is

true for all Transformer models; starting with the model BERT [ 62] (with

0.3 billion parameters), to its most recent successor, MT-NLG (with 540
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Figure 2.3: BERT hierarchical model breakdown.

billion parameters), and many others in between [ 41, 58, 138, 154, 226,

256, 266, 284]. Thus, while Transformer models have become larger with

di�erent hyperparameters, their fundamental computational components

are largely the same. Therefore, throughout this dissertation, we use BERT

as our baseline model and change its hyperparameters to study/evaluate

larger Transformer models.

2.2.2.1 Attention

Attention (Figure 2.3(c, d)) is an essential component of Transformer-based

models (e.g., BERT) described in Section 2.2.2. Given an input sequence,

attention networks output a representation of the sequence such that each

output token of the sequence is encoded with weightedinformation from

all (or a subset, for masked attention used by decoder layers) other tokens

in the sequence. This all-to-all encoding of information enables attention

to process all tokens independently (unlike sequential RNNs), but also

quadratically increases computations with increasing length of the input

sequence.

2.2.2.2 Transformers Layer Manifestations

The attention sub-layer and fully connected (FC) sub-layer (as shown in

Figure 2.4(a)) manifest as matrix multiplication operations (GEMMs).

The residual connections and layer normalizations which manifest as
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element-wise operations and are often fused [ 66, 72, 264, 275] with the

GEMMs. As shown in Figure 2.4(b), these GEMMs entail multiplication of

layers' weight matrices by an input matrix (with each vector representing

an input token). During training, the input matrices contain multiple

tokens from one or more (if batched) input sequence(s). During inference,

there are two execution phases: apromptphase to process all tokens in the

input sequence(s) and a token generationphase to iteratively process and

generate one token at a time for each input sequence [211]. The prompt

phase operations are similar to those in training, while the generation

phase has GEMMs with small input matrices or matrix-vector operations

(GEMVs) if there is no batching.

2.2.2.3 Transformer Hyperparamters

Transformer models are de�ned by several hyperparameters that we use

throughout the dissertation. Layer countdenotes the number of Trans-

former encoder/decoder layers in the model. The hidden dimensionof an

attention sub-layer is the layer width and is usually same as the embedding

sizewhich is the size of each input token/vector. Intermediate dimension

is the layer width of the feed-forward, fully-connected sub-layer, and is

usually 4� the hidden dimension. Finally, the inputs to a model are dic-

tated by the batch-sizeas well as the length of the inputs, sequence length

(described in Section 2.2.1).

2.3 Distributed Computing for DNNs

Most Transformer models' memory capacity requirements exceed a sin-

gle device. Thus, they employ distributed techniques and use multiple

accelerators (e.g., GPUs) collaboratively. Furthermore, the aggregate

computational capacity of multiple devices also accelerates training by

enabling the processing of large input datasets in parallel. Thus, since
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Figure 2.4: (a) Transformer (b) Fully-connected (FC) layer (c) Tensor-
sliced FC layer with all-Reduce on the critical path.

Transformers and their datasets (usually large corpora of unlabeled text)

have increased by several orders of magnitude in size, distributed tech-

niques are often mandatory and increasingly require many devices. This

scaling will only increase for future models.

2.3.1 Distributed Techniques & Associated

Communication

DNNs, and speci�cally, Transformers employ many distributed techniques,

each with associatedcommunicationbetween devices. Data parallelism(DP)

trains model replicas on multiple devices, each on a disjoint set of the

dataset, and requires communication and reduction of layer gradients

across all devices every iteration. Tensor parallelism(TP) [ 256] and pipeline

parallelism(e.g., GPipe) [ 99] are two types of model parallelismwhich slice

a single model across multiple devices. While the former slices each layer

requiring activations to be communicated and reduced across devices,

the latter partitions the model layer-wise requiring peer-to-peer transfer

of activations. ZeRO-based optimizations [ 230] also slice model weights

across devices or o�oad them to slower but larger (e.g., CPU) memo-
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ries, and require the corresponding weights to be gathered before layer

executions. Finally expert parallelism [ 128] partitions mixture-of-expert

(MoE) models [ 69, 228] such that each device hosts a single expert and

requires exchange of input data based on input-to-expert mapping. In

this dissertation, we focus on DP and TP, two of the most e�ective and

widely adopted distributed techniques described in detail in Sections 2.3.2

and 2.3.3.

2.3.2 Data Parallelism

The most common and straightforward distributed ML technique is data

parallelism , in which the model is replicated on multipled ( D) devices,

with the input dataset partitioned amongst them. Each device iterates

over its own dataset (using a mini-batch of b) and trains its model while

synchronizing with all the other devices every iteration. 1 During synchro-

nization, local gradients from all devices are averaged and re-distributed

using an all-reducecollective and each model updates its parameters us-

ing these accumulated gradients. This enables large mini-batch (D � b)

training, otherwise not feasible with a single device's memory capacity.

2.3.3 Tensor Parallelism

Tensor Parallelism (TP) [ 256] e�ectively increases the memory capacity

available to a model by splitting the model across M devices (illustrated in

Figure 2.4(b) & (c)). It splits a model layer (or tensor) across devices such

that each device holds and thus operates on a subset of layer parameters.

This slicing causes each device to generate only a partial layer activation

(and error) during training's forward (and backward) passes, which

require an all-reduce to generate the �nal layer output (Figure 2.4(c)).
1This does not hold for asynchronous training, which converts �ne-grained synchro-

nization into data accesses but may increase convergence time [60].
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Furthermore, a layer's forward and backward executions are dependent

on another layer's all-reduce of activations and errors.

2.4 Important DNN Operations

This section describes some of the important DNN primitives that domi-

nate model execution as we show in Chapters 4 and 5.

2.4.1 GEMMs: GEneral Matrix Multiplications

2.4.1.1 GEMM's dominance

A prominent computation that GPUs accelerate are highly parallelizable

GEMM operations. Most of a DNN's execution manifest as GEMMs [ 89,

216, 225]. While networks also manifest other operations, including element-

wise adds and multiplies, activation functions, and layer normalization [ 33],

they are often fused with preceding operations (commonly with GEMMs)

using kernel fusion [ 66, 72, 264, 275] and tensor contractions [ 1, 126, 127,

180, 255] to avoid redundant memory tra�c and reduce kernel launch

overheads. Figure 2.5(a) shows a common DNN setup: DNNs have a

series of layers, each of which executes as a GEMM between the input and

the layer's weight matrix.

2.4.1.2 GEMM Operation

As shown in Figure 2.5(b), a GEMM multiplies two input tensors A and

B of size MxK and NxK , respectively, to generate an output tensor C of

size MxN . This involves 2 � M � N � K �oating point multiplies and adds.

The values of M , N and K are usually dictated by model hyperparameters

such as layer width, batch-size, and/or input length (sequence length).

Additionally, the input tensors may be used transposed or non-transposed

or both (e.g., transposed in forward propagation but non-transposed in
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Figure 2.5: (a) Toy DNN GEMM computation. (b) High-level GEMM
implementation on a GPU.

backprop). We represent the transpose of A and B input tensors by T1,T2

(e.g., 1,0 implies only one of them is transposed).

2.4.1.3 GEMM GPU Implementation

In GPU GEMM implementations C is often blocked/tiled ( Tile in Fig-

ure 2.5(b)) with each work group (WG) usually responsible for a single

tile (loop 1). Each thread in the WG multiplies and accumulates a row(s)

with its respective column(s) within the innermost loop (loop 2). These

threads often leverage fast on-chip shared memory or local data share

(LDS) to store row/column data. Several optimizations are usually ap-

plied, including executing a subset of WGs at a time (which impacts cache

reuse), prefetching data from memory to the LDS, and coalescing. Un-

like other operations, applying these optimizations make GPU GEMM

implementations quite complex, with hundreds of tunable features per

size/transpose combination. Thus, to improve performance, vendors rigor-

ously tune implementations for GEMMs of di�erent sizes, corresponding

to di�erent layer types or parameters [23].
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Figure 2.6: ML algorithms with independent operations.

2.4.1.4 Important DNNs with GEMMs

GEMMs are prominent in both RNNs and Transformers but di�er in size

and therefore, properties. RNNs process one token of the input sequence

at a time [ 52, 94, 248]. The token processing manifest as one or more

GEMM(s) and the sequential nature of the algorithm makes the GEMM's

input tensor (in Figure 2.5) small, with one of the dimensions equal to the

input batch size. Transformers use attention layers [ 34, 273] to represent

a token as the weighted sum of all the input's other input tokens. Thus,

Transformers layers process all tokens of an input sequence in parallel

as a single operation that manifests as a GEMM. However, each input in

a batch must be processed independently, as a separate GEMM, in the

attention layer.
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DNN Model /
OP Type

Intra-model Backprop Checkpointing Multi-instance

Transformers X 1 , 2 X 6 X 7 X 8
RNNs X 3 , 4 , 5 X 6 X 7 X 8
CNNs X X 6 X 7 X 8

Recommendation X X 6 X 7 X 8
Other DNNs Varies X 6 X 7 X 8

Table 2.1: Concurrency opportunities in DNNs; the circled numbers refer
to Figure 2.6.

2.4.1.5 Opportunities for GEMM concurrency in DNNs

As shown in Figure 2.6 and Table 2.1, DNNs possess considerable operation

parallelism from their model architecture: independent query/key/value

generation in the linear layers, and independent (batched) attention com-

putations for unique sequence length (SL) inputs in Transformers ( 1 and

2 in Figure 2.6), respectively. Similarly, independent input processing in

the time dimension and hidden state processing across layers in RNNs

introduce operation parallelism ( 3 , 4 , 5 ). Training algorithms also

have additional parallelism opportunities that apply to all DNNs (e.g.,

CNNs, Recommendation) as highlighted in Table 2.1. These include inde-

pendent weight and input gradient calculations during back-propagation

( 6 ) and activation recomputing due to checkpointing ( 7 ). Finally, while

not applicable during training (due to large memory capacity require-

ments), multiple DNN inference instances ( 8 ) are deployed on the same

GPU in production environments which provides additional concurrency

opportunities [53, 54, 75, 115, 121, 189, 193, 271, 285].

2.4.2 Gradient Descent Optimizers
Gradient descentis the most common algorithm used to train neural net-

works. It minimizes an objective function(usually the loss) parameterized

by the model's parameters. Models today use various algorithms to further
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Figure 2.7: LAMB Optimizer Algorithm.

optimize gradient descent to converge faster. These optimizers help derive

appropriate learning rates for di�erent model parameters and for di�erent

training stages, but at the cost of additional optimizer parameters.

While DNNs are compatible with many di�erent optimizers, they have

recently used complex optimizers such as ADAM [ 129] and LAMB [ 287],

which have proven e�ective for very large e�ective batch-sizes. Figure 2.7

details the LAMB algorithm, which updates the model parameters at the

end of the model's forward and backward gradient calculations, once

every (few) iteration(s). It is executed in two stages; in the �rst stage

(LAMBStage1), it determines the update values ( u) and learning rate

multiplier using additional momentum(m) and velocity(v) parameters

from the past iterations and gradients ( g) of the current iteration. In the

second stage (LAMBStage2), it updates the model weights ( w) using

these update and learning rate values. This pair of two stages are exe-

cuted independently for every layer in the model, with each set accessing

independent data (weights, gradients and optimizer parameters of the
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Figure 2.8: Common collective operations used in DNN execution [236].

corresponding layer).

2.4.3 Collective Communication
The communication patterns described in Section 2.3.1 are handled by

collectivessuch asreduce-scatter, all-reduce, all-gather, all-to-all. As shown in

Figure 2.8, each of these involve communication and at times, arithmetic

operations (e.g., reduction) on the communicated data. In this disserta-

tion, we focus on the all-reduce collective used in the widely adopted DP

and TP setup described in Section 2.3.1. All-reduce can have multiple

implementations optimized for di�erent inter-connect topologies and dis-

tributed setups. One of the most bandwidth-optimal and commonly used

implementation is the ring implementation.

2.4.3.1 All-Reduce & Ring Implementation

The all-reduce (AR) collective reduces (element-wise sums) arrays from

each of the devices. Although there are multiple implementations of

AR, one of the most bandwidth-e�cient, and thus most commonly used,

implementations is ring-AR. Ring-AR consists of a ring reduce-scatter
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Figure 2.9: Ring implementation of reduce-scatter collective.

(ring-RS) followed by a ring all-gather (ring-AG). As shown in Figure 2.9,

ring-RS is done in multiple steps. The arrays are chunked on each device,

and during each step, all devices send their copy of a uniquechunk to

their neighbor in the ring. The devices then reduce their local copy of the

chunk with the received copy and forward it to their neighbor in the next

step. With N devices and the array chunked N ways, this process requires

N - 1 steps until each device has a completely reduced copy of one chunk.

Ring-AG is similar but does not have reductions; it also requires N - 1

steps until each device has all the reduced chunks. We use AR, RS, and

AG to refer to the ring implementation of these collectives throughout the

dissertation.

2.5 DRAM

2.5.1 Organization
DRAM is organized hierarchically as depicted in Figure 2.10 [ 6]. The

lowest level of this hierarchy is a 2D array of memory cells and several of

these are grouped into sub-arrays. The sense ampli�ers of the 2D arrays

collectively form a local row bu�er of the sub-arrays. Several sub-arrays

form banks, wherein sense-ampli�ers at bank-level form the global row

bu�er. A typical DRAM chip contains multiple such banks.
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Figure 2.10: DRAM organization and locations for placing NMC units [ 6].

In mainstream DDR-based memory systems, a single dual-inline mem-

ory module (DIMM) consists of one or more sets of memory chips that are

accessed in parallel (e.g., a 64-bit data bus may be served by four DRAM

chips with 16-bit-wide, or x16 interfaces). Multiple such sets of chips on

a DIMM are called ranks and share a single memory interface bus to the

host. Chip-select signals in the memory interface identify which rank is

accessed on any given operation. Each DIMM is accessed over an indepen-

dent memory interface from the host and is referred to as a channel. When

a DRAM memory access is to be performed, the appropriate channel,

rank, and bank are selected based on the physical address of the memory

operation. However, before a read or write can take place, the relevant row

of the selected bank must be activated. A row is activated by driving the

appropriate word line and transferring the values stored in that DRAM

row to the local and global row bu�ers. Once the data from the row is in

the global row bu�er (row open), a column from that is selected based

on the address of the access. To access another row in the same bank, an

open row �rst has to be closed by precharging the bitlines.
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