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ABSTRACT

Development of Novel Technologies for Human
Pluripotent Stem Cell Biomanufacturing
Kaivalya Molugu
Under the supervision of Professor Krishanu Saha

at the University of Wisconsin-Madison

Somatic cell reprogramming to generate patient-specific induced pluripotent stem
cells (iPSCs) and gene editing of iPSCs are important steps in many biomanufacturing
applications, including disease modeling, drug discovery, and personalized cell therapies.
However, the process of reprogramming is slow and inefficient leading to a heterogeneous
population of cells, making it difficult to isolate high-quality iPSCs for downstream applica-
tions. Moreover, gene editing of iPSCs can typically be inefficient and laborious, involving
multiple steps, requiring lengthy cell culture periods, drug selection, and several clonal
events.

This thesis aims to develop new technologies to address the aforementioned chal-
lenges associated with reprogramming and gene editing of iPSCs. First, I present a platform
to visually track the nucleus of reprogramming cell populations in real-time using high-
content analysis, allowing the facile identification of high-quality iPSCs. Second, I combine
this platform with label-free high-resolution optical metabolic imaging to build single-cell
reprogramming trajectories and subsequently study reprogramming heterogeneity. Finally,
I demonstrate a chromatin-modulation based CRISPR-Cas9 gene editing workflow to in-
crease the efficiency of iPSC gene editing. Overall, these methods demonstrate an important

step towards advancement in the biomanufacturing of iPSCs for clinical applications.
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1 INTRODUCTION AND BACKGROUND

1.1 Induced Pluripotent Stem Cells

Pluripotent stem cells (PSCs) have the ability to self-renew indefinitely and develop into
three primary germ layers of the early embryo and therefore into all cells of a multicellular
organism other than the extra-embryonic tissues such as the placenta [1]. PSCs are typically
confined to the early stages of embryonic development and represent a powerful system to
study gene function and the physiological processes that occur during human development.
PSCs also offer a rare route to studying the pathogenesis of the human genetic disease,
especially for childhood developmental and age-related degenerative diseases, and to
test new drugs [2]. The capacity of PSCs to differentiate into specific cell types could
be leveraged in regenerative medicine to treat damaged or diseased tissues through cell
replacement therapies [3, 4]. Accordingly, understanding the biology of pluripotency
remains a pivotal aim in the fields of human development, drug discovery, and regenerative
medicine.

Two commonly studied types of PSCs include embryonic stem cells (ESCs) and
induced PSCs (iPSCs). Both the derivation of ESCs [5] and the generation of iPSCs [6] were
awarded the Nobel Prizes in 2007 and 2012, respectively. ESCs are isolated from the inner
cell mass of pre-implantation embryos [5, 7] but the use of human ESCs is greatly restricted
due to inherent ethical issues, limited access to human embryos available for research,
and risk of immunological rejection. Over the past decade, an alternative approach called
reprogramming was developed to generate iPSCs from somatic cells, through the ectopic
expression of a small set of transcription factors (Oct4, Sox2, c-Myc, Klf4; OSKM) [8],
Nanog or RNA binding protein (Lin28) [9]. iPSC characterization has revealed that they
are truly pluripotent, i.e., they have nearly identical gene expression profiles to ESCs; and

show teratoma formation, chimera generation, and tetraploid complementation [10-12].
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Figure 1.1: Generation of induced pluripotent stem cells (iPSCs) and their applications.
Adult somatic cells isolated from patients can be reprogrammed to form iPSCs using re-
programming factors (OSKM). These iPSCs can then be directly differentiated to cell types
from the three germ layers and used for disease modeling, drug screening, and personal-
ized cell therapy. Alternatively, the iPSCs can be edited by gene editing technologies for
gene insertion, gene disruption, and gene correction. These gene-edited iPSCs can then be

used for further applications. Created with BioRender.com.

iPSCs thus represent a unique self-renewing cell source that carry the genome
of the patient, facilitating dissection of the genetic causes of disease [13-15], and are
immunologically matched to the patient, facilitating the engraftment of any cell therapies
developed from these cells with a reduced risk of immune rejection. Moreover, iPSCs can
also be genetically corrected using gene editing technologies like zinc finger nucleases

(ZFN) [16], transcription activator-like effector nucleases (TALENSs) [17], and clustered


https://biorender.com/

3
regularly interspaced short palindromic repeats and CRISPR associated protein (CRISPR-

Cas9) [18], re-differentiated into the desired cell type, and transplanted or transfused back
into the same patient (Figure 1.1).

Despite the key advances of iPSCs in regenerative medicine, several challenges need
to be addressed before iPSCs can be employed as viable therapeutic. One of the major
challenges is the variability and heterogeneity that is associated with the processes of repro-
gramming and gene editing of iPSCs, thus warranting the development of technologies to
enable further intensive investigations to understand the biology of these processes. Such
enhanced technologies will contribute to moving iPSC-based regenerative medicine closer
to clinical practice and applications in precision medicine. The following sections detail

the current state-of-art technologies used for reprogramming and gene editing of iPSCs.

1.2 Cellular Reprogramming

Reprogramming to iPSCs can be achieved by administering defined exogenous transcription
factors to somatic cells [6, 9]. However, this process can be slow and incomplete, resulting
in highly heterogeneous populations of cells [19]. This makes it difficult to identify and
isolate the cells that will undergo the necessary events for successful reprogramming.
Moreover, the efficiency of this process is relatively low, ranging between 0.1% to 10%
for most somatic cell types [20, 21]. There are also safety concerns associated with the
overexpression of the reprogramming factors, including genetic mutations, gene insertions,
epigenetic changes, incomplete reprogramming, and immunogenicity [12, 22-24].

Since the discovery of reprogramming in 2006, there have been extensive efforts to
understand and engineer the reprogramming process to improve its speed, efficacy, and
safety. Firstly, the consistency and reproducibility of the reprogramming process have been
significantly augmented by establishing chemically defined, xeno-free culture conditions

for deriving and maintaining iPSCs [25, 26], and by controlled delivery and expression
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of reprogramming factors [27-29]. Secondly, a variety of alternative transcription factors
and small molecules have been used to enhance cellular transitions during reprogram-
ming, including metabolic regulators, epigenetic remodelers, cell cycle regulators, and
pathway modulators [8, 30, 31]. Finally, the safety of the reprogramming process has been
enhanced by use of non-integrating reprogramming methods, including adenoviruses [32],
expression plasmids[33], piggyBac transposition [34], Sendai virus[35], direct delivery of
reprogramming proteins[36], mRNAs [37], episomal vectors[38], chemical compounds
[39] and self-replicative RNA [40], to combat the risk of transgene activation and insertional
mutagenesis associated with traditional retroviral and lentiviral methods [41].

Even with these methodological and technical improvements, the efficiency of
reprogramming remains low. Currently, two mechanistic theories, the elite and stochastic
models, have been proposed to explain low reprogramming efficiencies [42] (Figure 1.2).
According to the elite model, reprogramming would take place only in a few predisposed
cells within a population, and according to the stochastic model most or all cells are
competent for reprogramming at low probabilities. While some reports provide support
for the elite model [43-48], other reports support the stochastic model [27, 49-51]. Thus, the
mechanism of reprogramming continues to be debated and a comprehensive understanding

of the mechanisms behind reprogramming is still lacking.

Epigenetic Changes during Reprogramming

The reprogramming process involves extensive global genetic and epigenetic changes,
including major changes in chromatin and DNA methylation, and multiple players syn-
ergistically establish new transcriptional networks and remove epigenetic barriers [52].
Recent studies have demonstrated that there are two waves of transcriptional changes
that occur during reprogramming, one immediately following the induction of the repro-
gramming factors and the other occurring later to activate the pluripotency gene network

[53].
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Figure 1.2: Elite and stochastic models of reprogramming. In the elite model, only a small
number (light gray) of somatic cells (magenta) can be reprogrammed either partially or
completely to iPSCs (green). In the stochastic model, most somatic cells (magenta) initiate
the reprogramming process, but only a few can achieve complete reprogramming to iPSCs

(green). Created with BioRender.com.

At the level of the epigenome, these changes include chromatin reorganization, DNA

demethylation of promoter regions of pluripotency genes (NANOG, SOX2 and OCT4),
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reactivation of the somatically silenced X chromosome, and genome wide resetting of
histone posttranslational modifications [54-56]. While some locus specific chromatin
marks are established early [57], global changes in histone modification profiles [58] and
DNA methylation [53] occur late in the reprogramming process, concurrent with the
activation of pluripotency network.

Overall, these epigenome changes can manifest as changes in chromatin architec-
ture during reprogramming. For instance, the global chromatin architecture has a more
dispersed chromatin conformation characterized by a paucity of heterochromatin marks
(H3K9me3) and an abundance of euchromatin marks (pan-H3ac, pan-H4ac, H3K36me2,
H3K9ac, and H3K4me3) in iPSCs compared to somatic cells [59]. The modulation of
chromatin architecture can then provide a basis for changes in nuclear morphology as well
as gene expression [54, 60, 61], and has been studied in the context of reprogramming
[55, 62]. High-resolution imaging of reprogramming cells has identified that nuclear ge-
ometry is dramatically altered during reprogramming [54, 63 ]. However, specific nuclear
changes during the heterogeneous middle stages of reprogramming process have not been
comprehensively characterized, especially in intact reprogramming cultures. In this thesis,
I embark upon this challenge by longitudinal characterization of nuclear changes that
occur during human somatic cell reprogramming and subsequently construct a predictive

mathematical model for the identification of high-quality iPSCs.

Metabolic Changes during Reprogramming

Glycolysis and OXPHOS are two major metabolic pathways to provide energy for cells.
Glycolysis converts glucose into 2 molecules of ATP, NADH, and pyruvate, via a series of
metabolic reactions. This process is oxygen-independent and when the oxygen is available,
the pyruvate is transported to mitochondria and converted to acetyl-CoA. Acetyl CoA is
turther oxidized in the tricarboxylic (TCA) cycle (or Krebs cycle), generating the electron

carriers, NADH and FADH,, to deliver the electrons to the electron transport chain (ETC).
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The flow of electrons through ETC results in the pumping of protons from mitochondrial
inner matrix to the outer matrix. ATP is synthesized through ATP synthase when protons
tlow back to the mitochondrial matrix. This process is called Oxidative Phosphorylation
(OXPHOS) and produces 36 ATP molecules.

Compared to differentiated somatic cells, iPSCs are highly proliferative and have
unique metabolic requirements [64]. Proliferation requires energy and significant amounts
of nucleotides, lipids, and amino acids to assemble the two daughter cells that are produced
with every cell division. Although OXPHOS produces far more ATP compared to glycolysis,
iPSCs favor glycolysis regardless of oxygen availability (Warburg effect [64]) since it ensures
that some glucose is diverted to generate precursors such as acetyl-CoA for fatty acid
synthesis, glycolytic intermediates for nonessential amino acids, and ribose for nucleotides.
During reprogramming, somatic cells thus undergo a metabolic shift from OXPHOS to
glycolysis [65, 66]. This metabolic shift has been shown to be triggered by a transient
OXPHOS burst, resulting in the initiation and progression of reprogramming to iPSCs [67,
68]. Moreover, the OXPHOS burst has been proposed to be induced by the expression of
estrogen-related nuclear receptors (ERRx and ERRy) [69], which then could result in the
increase of reactive oxygen species (ROS) production, leading to activation of Hypoxia-
inducible factor 1 (HIF1) and enhancement of the glycolytic rate [70].

In addition to these metabolic pathway changes, mitochondrial changes occur during
the process of reprogramming. For instance, mitochondrial DNA (mtDNA) decreases
during reprogramming [71], and mitochondria reverts to a more immature ESC-like state
in terms of morphology, cellular distribution, and OXPHOS efficiency [71, 72].

Recent evidence also indicates that the metabolic shift during reprogramming occurs
prior to changes in gene expression and that the modulation of glycolytic metabolism or
OXPHOS can alter reprogramming efficiency [73-75]. This suggests that cell metabolism
plays an important role in determining cell fate rather than passively responding to cell

tate changes. However, there is still a lack of understanding of how dynamic cellular
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metabolism changes that occur during reprogramming may impact pluripotency, notably
the heterogeneous middle stage of reprogramming. In this thesis, I addressed this challenge
by developing a high-content imaging platform to longitudinally track metabolic changes
in situ during human somatic cell reprogramming and subsequently built single-cell repro-

gramming trajectories to gain deeper insights into reprogramming heterogeneity.

1.3 Genome Editing

Genome editing is a method by which cellular DNA sequences can be precisely manipulated
to alter cell fates and traits of an organism [76]. This method allows genetic material to
be added, removed, or altered at particular locations in the genome, and has a wide
variety of uses in the biomedical field. Specifically, the pairing of gene editing technology
with human iPSCs offers enormous potential for the development of autologous cell-
based gene therapies for genetic diseases and can overcome the problem of immune
rejection associated with allogeneic cell therapy. Moreover, since iPSCs have an unlimited
proliferative ability, they can be used to generate an unlimited supply of syngeneic patient-
derived transplantable gene-corrected cells [77]. Gene-edited iPSCs can be also used for
disease modeling [78], screening potential new therapeutics [79], testing toxic side-effects
of drug treatments [80], as they accurately represent the genetic background or cellular
physiology of the patient [81]. Therefore, an increased basic understanding of gene editing
would improve the efficiency of industrial processes of generating the aforementioned
classes of precision medicine interventions.

Genome editing is typically initiated through the induction of a break within the
DNA using a molecular pair of scissors, typically endonuclease enzymes, which can then
be repaired by different cellular mechanisms. Most recently, engineered molecular machin-
ery [18, 82-86] derived from bacterial immune pathways—known as clustered regularly

interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins
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(CRISPR—Cas systems) [87]—have revolutionized genome editing [88-90], overcoming

many of the hurdles of previous systems. The key advancement of the CRISPR-Cas9 system
is the use of an easily designed single guide RNA (sgRNA) in combination with a universal
endonuclease that creates double stranded breaks (DSB) at a defined point in the genome.
Use of RNA rather than protein-binding motifs imparts a higher level of specificity to
gene editing, unlike the traditional engineered DNA-cleaving enzymes, i.e, meganucleases
[91], zinc-finger nucleases (ZFNs) [16] and transcription activator-like effector nucleases

(TALENS) [17].

Mechanisms of CRISPR-Cas9 Genome Editing

CRISPR-Cas9 exploits a ribonucleoprotein (RNP) complex consisting of two essential
components: 1) a protein, SpyCas9 (referred to as “Cas9” hereafter), that localizes to the
genome; and 2) a single-guide RNA (gRNA or sgRNA). sgRNA consists of 1) transactivat-
ing crispr (tracrRNA), short synthetic RNA composed of a scaffold sequence necessary for
Cas9 binding; and 2) crispr RNA (crRNA), a user-defined 20 nucleotide spacer that defines
the genomic target to be modified [92, 93]. The DNA recognition site must be adjacent to a
short motif (the protospacer adjacent motif or PAM) that acts as a switch enabling Cas9
to create DSB at the target site. In cells of all multicellular organisms, including humans,
such double-stranded DNA breaks induce DNA repair by endogenous cellular pathways
that can introduce alterations to the DNA sequence, including small sequence changes or

genetic insertions [94, 95].
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Figure 1.3: Schematic of DSB repair mechanisms induced by CRISPR-Cas9. DNA
double stranded breaks (DSBs) induced by CRISPR-Cas9 can be repaired by: 1) non-
homologous end-joining (NHE]), 2) microhomology-mediated end joining (MME]J), and
3) homology directed repair (HDR). NHE] repair can produce variable-length insertion
(yellow) and deletion (green) mutations at the site of the DSB. In MME] repair, the mi-
crohomology sequences (green and blue) exposed at the target site are annealed to each
other, often leading to predictable small deletions. HDR repair can introduce precise point
mutations or insertions (pink) from a single-stranded or double-stranded DNA donor

template. Created with BioRender.com.

Three major DNA repair pathways resolve Cas9-induced DSBs: end joining (non-

homologous or microhomology mediated, NHE] or MME]) and homology-directed repair
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(HDR) (Figure 1.3). In most cells, NHE] is the predominant mechanism of repair that

rejoins DSBs with minimal processing as quickly as 30 minutes after break induction [96].
The DSB is rejoined through the addition or subtraction of nucleotides thus resulting in new
mutations in the genome known as insertion/deletion mutations (indels). NHE] is active
throughout the cell cycle and has a higher capacity for repair, as there is no requirement
for a repair template or extensive DNA synthesis [97, 98]. In contrast to NHE], HDR is
inherently precise because it proceeds via DNA 5’-3” end resection followed by DSB repair
using a homologous nucleic acid donor template (double-stranded or single-stranded)
[99]. HDR is considerably slower than NHE] and MME], requiring seven or more hours
to complete [96]. Moreover, HDR is primarily limited to the S and G2 phases of cell
cycle, concurrent with the availability of the homologous sequence that is used as a repair
template [100]. These two DNA repair pathways are currently being exploited to conduct
targeted genomic changes in various clinical trials [101]: 1) gene editing through HDR
used to replace a pathogenic variant or insert foreign DNA elements to restore the wild-
type (WT) expression of a missing or truncated gene, and 2) NHE] used to remove DNA
elements leading to aberrant expression of genes or to gain a therapeutic function.

MME] is a relatively recent defined pathway that shares characteristics of both NHE]
and HDR pathways [102, 103] and is beginning to exploited as a strategy for therapeutic
gene knockouts [103, 104 ] and corrections [102, 105, 106]. Similar to NHEJ, MME] joins
the broken DSB ends without a repair template from an exogenous donor and requires
initial DSB end resection like in the case of HDR [107]. However, resection during MME]
is relatively short and exposes 5-25 base pairs (bp) homologies on opposite strands that
anneal to one another. MME] repair is low in GO/G1 phase and is increased during S and
G2 phases of the cell cycle [107].

The clinical utility of genome editing depends predominantly on precision (fraction
of on-target edits that produce the desired genetic outcome) and accuracy (ratio of on-

versus off-target genetic changes) of the process. Firstly, precision in gene editing is limited
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by the high variability in genotypic outcomes of the commonly deployed NHE] repair

pathway or the low efficiency of the more precise HDR pathway. Currently, CRISPR-Cas9
gene editing efficiency varies from 2% to approximately 25% depending on the cell type
[18], which is not yet up to the requirements for clinical use. This shortcoming often results
in complicated, labor-intensive, and destructive selection processes for characterizing and
identifying gene edits of interest from heterogeneous human cell populations [108, 109].

Specifically in iPSCs, gene editing can involve multiple steps, requiring lengthy
cell culture periods, drug selection, and several clonal events (i.e., initial reprogramming,
gene targeting, and subsequent genetic excision of a selection cassette [13, 110]). The
selection of rare edited iPSC clones can be particularly difficult because they grow poorly as
single cells [111, 112]. Low accuracy or off-target mutagenesis can also be a major concern,
particularly for clinical applications. Off-target sites that were not predicted by standard
bioinformatic sequence analysis were uncovered by latest techniques such as digenome-seq
[113], CIRCLE-seq [114], CHANGE-seq [115], GUIDE-seq [116], DISCOVER-seq [117] and
integrase-deficient lentiviral vectors [118]. Varying rates of off-target events were reported
ranging from >1000 per sgRNA sequence [119] to negligible effects [120], thus warranting
better evaluation of off-target sites.

Overall, there is a need to improve the precision and accuracy of genome editing
and expand the throughput of current in vitro human culture systems where novel genome
editing approaches can be evaluated within human cells and tissues. In particular, ad-
vanced iPSC genome editing capabilities could eventually expand the suite of personalized
regenerative medicine applications and human preclinical model systems, ranging from
patient-specific cell lines to complex human tissues derived from stem cells.

Since the inception of genome editing, there have been extensive efforts to under-
stand the mechanisms underlying genome editing and to engineer the process to improve
its specificity, efficiency, and versatility. Firstly, modified nuclease strategies, such as base

[121] and prime editors [122], that use different pathways for gene modification have
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been designed. Secondly, other natural and engineered Cas9 variants have been identified
and developed with distinct and enhanced targeting properties [123], including Cas12a
(Cpfl), Cas12b (C2cl), Fokl fused to dCas9, Cas9-HF1, eSpCs9, evoCas9, and HypaCas9.
Thirdly, Cas9 variants with distinct protospacer-adjacent motif (PAM) recognition sites
have been generated, including VQR and VRER variants [124], and xCas9 [125]. Fourthly,
sgRNAs have been modified with respect to their length, structure, and chemistry to reduce
off-target properties. Finally, small molecules affecting DNA repair [126, 127] and cell
cycle modulators [128] have been used to control and promote editing. Although these
developments are promising, the underlying genomic context, particularly the chromatin
state of the target locus, can also significantly influence the CRISPR-Cas9 gene editing
outcomes [115, 129, 130]. However, the underlying mechanisms of how Cas9 interacts
with chromatinized DNA are still not clear, warranting a deeper understanding of these

mechanisms.

Chromatin Structure in Cas9-mediated Genome Editing

The chromatin structure of the genomic target has been reported to have an influence
on Cas9 binding and gene editing efficiencies [115, 129, 131], thus leading to variable
gene editing outcomes in different cell types both in vitro and in vivo. For instance, closed
chromatin (heterochromatin) can negatively affect Cas9 binding [132-136] or delay CRISPR-
Cas9 mutagenesis [137], nucleosomes can block or present a hurdle for Cas9 access to
PAM sites [138-141], and active transcription in open chromatin (euchromatin) states can
directly stimulate DNA cleavage by influencing Cas9 release states in a strand-specific
manner [129, 142]. Moreover, the off-target binding of Cas9 to “seed” sequences can
directly correlate with DNase I hypersensitivity of sequences [119] and inversely correlate
with CpG methylation sites, thus indicating a possible correlation between off-target sites
and their chromatin structure [113, 135, 137].

Local chromatin can also impact the choice of DNA repair pathway [143-146].
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While some studies showed that active histone mark H3K36me3 and inactive H3K9me?2 /3

heterochromatin marks, promote HDR over NHE] [144, 147, 148]; some studies found no
major change in the balance between NHE] and HDR between closed chromatin and open
chromatin states of a sequence [134, 137]. A recent study also showed that heterochromatin
is more prone to MME] as compared to NHE] and that the shift depends on precise
heterochromatin marks present [149].

Since the chromatin state of the target site has been shown to have a strong effect
on the accessibility of DNA to Cas9, recent approaches to manipulate the chromatin state
have emerged to modulate gene editing efficiency. One way in which the open or closed
state of chromatin structure can be controlled is by the balance of histone acetylation and
deacetylation, which is regulated by two groups of enzymes called HAT (histone acetyl-
transferase) and HDAC (histone deacetylase) [150, 151]. While histone acetylation leads
to euchromatin, histone deacetylation leads to heterochromatin. Hence, small-molecule
HDAC inhibitors, such as trichostatin A (TSA), romidepsin, valproic acid and entinostat,
have been used to improve gene editing [133, 152-154].0n the other hand, HAT inhibitors
such as C646 (p300/CBP inhibitor) and MG149 (Tip60 and MOZ inhibitor), have been
shown to decrease gene editing efficiencies [ 133]. However, the effect of these HATs or
HDACs on genome editing of CRISPR-Cas9 is yet to be extensively characterized in iPSCs.
Though the chromatin structure has been shown to impact the off-target effects [113, 135,
137, 155] of editors and the potency of edited iPSCs [62, 156], these effects have not been
thoroughly investigated thus far. In this thesis, I tackle the aforementioned challenge by
extensively characterizing the impact of chromatin modulation (via Trichostatin A; HDAC

inhibitor) on CRISPR-Cas9 gene editing outcomes in iPSCs.
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2 TRACKING AND PREDICTING HUMAN SOMATIC CELL
REPROGRAMMING USING NUCLEAR CHARACTERISTICS

Work in this chapter was adapted from:

Tracking and Predicting Human Somatic Cell Reprogramming Using Nuclear Charac-
teristics

Kaivalya Molugu*, Ty Harkness*, Jared Carlson-Stevermer, Ryan Prestil, Nicole Piscopo,
Stephanie Seymour, Gavin Knight, Randolph Ashton and, Krishanu Saha

Biophysical Journal 2020 May 5,118(9):2086-2102.

*These authors contributed equally.
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2.1 Abstract

Reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) gen-
erates valuable resources for disease modeling, cell therapy, and regenerative medicine.
However, the reprogramming process can be stochastic and inefficient, creating many
partially-reprogrammed intermediates and non-reprogrammed cells in addition to fully-
reprogrammed iPSCs. Much of the work to identify, evaluate, and enrich for iPSCs during
reprogramming relies on methods that fix, destroy, or singularize cell cultures, thereby
disrupting each cell’s microenvironment. Here we develop a micropatterned substrate that
allows for dynamic live-cell microscopy of hundreds of cell subpopulations undergoing
reprogramming while preserving many of the biophysical and biochemical cues within
the cells” microenvironment. On this substrate, we were able to both watch and physically
confine cells into discrete islands during the reprogramming of human somatic cells from
skin biopsies and blood draws obtained from healthy donors. Using high-content analysis,
we identified a combination of eight nuclear characteristics that can be used to generate
a computational model to predict the progression of reprogramming and distinguish
partially-reprogrammed cells from those that are fully-reprogrammed. This approach
to track reprogramming in situ using micropatterned substrates could aid in biomanu-
facturing of therapeutically-relevant iPSCs, and be used to elucidate multiscale cellular
changes (cell-cell interactions as well as subcellular changes) that accompany human cell

fate transitions.

2.2 Introduction

Somatic cell reprogramming to induced pluripotent stem cells (iPSCs) is an important step
in many workflows involving drug discovery, regenerative medicine, and toxicology. How-
ever, reprogramming is a stochastic process resulting in highly heterogeneous populations

of cells that include fully-reprogrammed iPSCs, partially-reprogrammed intermediates,
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and non-reprogrammed cells [27, 49, 157, 158]. The quality control of iPSC colony de-
termination is extremely important for its downstream expansion and maintenance of a
homogeneous culture of undifferentiated cells [159]. Failure to select high-quality (fully-
reprogrammed) iPSCs during the reprogramming process may result in cell lines that
require increased maintenance by manual cell culture practices, insufficient downstream
differentiation into functional cells, and unreliable experimental outcomes. The reprogram-
ming process still routinely involves significant manual handling and expert judgement
in picking the high-quality iPSCs and is not typically automated. Therefore, it is essential
to develop reliable quantitative methods to select high-quality iPSCs by eliminating the
contamination from partially-reprogrammed intermediates and non-reprogrammed cells
[160]. This could further result in significant gains in creating robust cell therapies and
disease models.

Current approaches for assessing pluripotency and identifying high-quality iPSCs
are time-consuming, costly, destructive, and often descriptive rather than quantitative.
Cellular morphology has been used as an approach to identify high-quality iPSCs [160—
162]. However, manual picking of iPSC colonies based on cellular morphology can be time
consuming, tedious, and qualitative. Even recent quantitative evaluation methods based on
cellular morphology have had limited success in the field and are not widely implemented
[163, 164]. Immunofluorescence staining or reporter systems to detect pluripotency mark-
ers such as Oct-4, Nanog, TRA-1-60, and TRA-1-81 [165-167] have been coupled with
automated fluorescence microscopy or flow cytometry for the detection of high-quality
iPSCs. However, this kind of probe-based labelling can cause potential safety issues for
downstream applications and might also require cell fixation. Additionally, teratoma as-
says, embryoid body assays, PluriTest, and TagMan hPSC Scorecard™ assays [168-171] are
time-consuming and have limited resolution, as they are unable to distinguish high-quality
iPSC lines composed of a high percentage of pluripotent stem cells from those that may be

more heterogeneous in nature and contain a subpopulation of cells that are pluripotent.
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Moreover, such multi-week characterization methods of isolated potential iPSC subpopula-
tions have the problem of leading to significant cell culture artifacts [172] and increased
costs [173]. The high number of cells that do not undergo successful reprogramming also
means that single-cell assays profile many cells that do not fully reprogram, thus limiting
the throughput of such assays (e.g., RNA-seq, ChIP-seq, ATAC-seq) [49, 53, 158, 174, 175].
Such methods also disrupt the cellular microenvironment, including cell-cell junctions, and
drastically perturb the cytoskeleton, thus resulting in significant changes in the biophysical
properties of cells undergoing reprogramming. Microenvironment disruption is a concern
during reprogramming, as the cellular microenvironment can initiate cytoskeletal signaling
cascades that act to regulate the structure of the nuclear lamina [176] and in turn affect the
epigenetic state of cells. Such disruption in the epigenetic state may result in low-quality
iPSCs that have limited differentiation potential. Further, the nuclear lamina has been
shown to play an active role in genome-wide gene expression by physically repressing
genes [176-179].

Changes in nuclear morphology have been characterized in reprogramming of
mouse cells [157], and in human cells [ 63 ]. High resolution imaging of reprogramming cells
has identified that nuclear geometry is dramatically altered during reprogramming [54, 63].
This may be due to the expression of kinases that activate cytoskeletal remodeling processes
which are critical for reprogramming [180]. These biophysical changes have traditionally
been studied in the context of mesenchymal-to-epithelial transition (MET), a process
that occurs relatively early during reprogramming [181-183], concurrent with epigenetic
changes indicating a loss of somatic identity, known as erasure [57, 182, 184]. However,
specific nuclear changes during the epigenetic reprogramming process have not been
comprehensively characterized, especially in intact cultures undergoing reprogramming.

Here, we describe a microcontact printed (uCP) platform that dissects cell cultures
undergoing reprogramming into hundreds of subpopulations with ~ 10° cells in each

subpopulation and allows for high-content dynamic live-cell microscopy of these cell
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subpopulations. This platform supports reprogramming of fibroblasts from skin biopsies
and erythroid progenitor cells (EPCs) from routine blood draws, representing the two most
common sources of somatic cells for reprogramming [9, 41, 185, 186]. Three-dimensional
principal component maps generated using a combination of eight nuclear characteristics
were used to track reprogramming progression and distinguish non-reprogrammed cells
and partially-reprogrammed intermediates from those that were fully-reprogrammed.
These maps are consistent with and complement the insights obtained by single cell analysis
[49, 58,158, 187-190]. Further, high-quality iPSCs were isolated within 3-4 weeks using this
platform. Overall, generating a comprehensive map of nuclear characteristics as well as a
quantitative predictive model using our method, helps in the identification of homogeneous

populations of high-quality iPSCs in a non-destructive, quantitative, and reliable manner.

2.3 Results

Controlled adhesion of reprogramming cells

We utilized a cell culture platform, the microcontact printed well plate (LCP Well Plate)
[191], to control cell adhesion of both fibroblasts and EPCs during reprogramming. The
nCP Well Plate is formed by creating hydrophilic polyethylene glycol (PEG) brushes that
resist protein adsorption at defined locations on a gold-coated glass sheet. This sheet is then
combined with a bottomless standard tissue culture 24-well plate to form a pCP Well Plate
(Figure A.1A). We next seeded these plates with Oct4-Sox2-Klf4-cMyc reprogrammable
human fibroblasts [63] or with human erythroid progenitor cells (EPCs) electroporated
using four episomal reprogramming plasmids encoding Oct4, shRNA knockdown of
p53, Sox2, Klf4, L-Myc, Lin28, and miR302-367 cluster [33, 192]. Within hours after cell
attachment, this platform (Figure 2.1) constrained cell-to-cell contacts and controlled the
geometry of multicellular subpopulations. We were able to pattern cell subpopulations into

various geometries and within microfeatures (uFeatures) of a defined diameter (Figure
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A.2C).
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Figure 2.1: Reprogramming fibroblasts and erythroid progenitor cells (EPCs) on mi-
cropatterned substrates. A) Brightfield image of a portion of the uCP Well. B) Repre-
sentative images of the progression of a human somatic cell subpopulation (fibroblasts
or EPCs) on a single 300 um radius circular pFeature through a reprogramming time
course. C) Representative image of a 300 um radius circular pFeature with f-iPSC (from
fibroblasts) and e-iPSC (from EPCs) colonies, stained with TRA-1-60 and Nanog, markers

of pluripotency.

We next assessed the ability of the uCP Well Plate to sustain long-term reprogram-

ming studies that occur over several weeks. The high-content imaging capabilities enabled
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us to track each individual cell subpopulation (>30 pFeatures per well in a 24-well plate)
longitudinally at multiple time points [191, 193]. Starting fibroblasts, reprogramming
intermediates, and endpoint iPSCs remained viable, attached, and confined to the desired
nFeatures during the erasure of somatic cell identity and the establishment of pluripotency
network over a 3-4 week reprogramming time course (Figure A.1B). For human EPCs
undergoing reprogramming, these substrates permitted the adhesion of reprogramming
intermediates and endpoint iPSCs over a 2-3 week time course, allowing for the tracking
of middle to late stages of reprogramming, including the establishment stage. The day 21
and day 17 time points were picked to be the reprogramming endpoints for fibroblasts
and EPCs respectively as there were several iPSC colonies per well at these time points
without significant overgrowth within a uFeature, which can make it difficult to analyze
single cell behavior. When pFeatures were stained at these reprogramming endpoints
for the iPSC markers, Nanog and TRA-1-60 [41, 194], we found that there were several
marker-positive iPSC colonies on the pFeatures (Figure 2.1C). The iPSC colonies obtained
from fibroblasts and EPCs are termed as “f-iPSC” and “e-iPSC”, respectively. In separate
experiments that co-cultured human pluripotent stem cells (hPSCs) with fibroblasts, we
ensured strong adhesion of each cell type for more than one month (Figure A.1B). Thus,
one cell type does not displace or cause detachment of one cell type over another in our
platform. Using a previously established protocol, we were also able to track live repro-
gramming cell subpopulations on pFeatures with antibodies targeting cell surface markers
identifying fibroblasts and pluripotent cells [63, 160, 195] (Figure A.1C) and found that
fibroblasts (CD44" /TRA-1-60"), {-iPSCs (CD44 /TRA-1-60%), and reprogramming interme-
diate (CD44 /TRA-1-60") cells were readily detected on the same pFeature. These changes
correspond to two distinct phases of reprogramming, the erasure of somatic cell identity to
a reprogramming intermediate cell state followed by the establishment of pluripotency
(Figure A.1C). These results demonstrate that the micropatterned substrate can impose

physical constraints on each cell population over the entire course of reprogramming for
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fibroblasts and during the establishment stages for reprogramming EPCs.

Establishment of iPSCs on micropatterned substrates

We next explored the effect of our pCP Well Plates on the establishment of pluripotency, a
stage where cells are adherent and constrained on the micropatterned substrates. pFeatures
with fibroblasts and EPCs undergoing reprogramming were fixed at their respective re-
programming endpoints and then immunostained for Nanog, a bona-fide marker of fully-
reprogrammed iPSCs [49, 196]. We found that there was a wide range of endpoint Nanog
percentages (the percentage of the total number of nuclei within a single pFeature positive
for Nanog expression, termed “endpoint Nanog™ percentage”) within a single puFeature
(Figure 2.2). Furthermore, due to the 3D nature of reprogrammed pFeatures, we tested
whether the endpoint Nanog™ percentage varied within a uFeature at several distances
away from the substrate (z-axis) and found no significant changes in this z-direction (Figure
A.2A,B). With the imaging plane parallel to the substrate, we then studied the relationship
between the area of the circular pFeature and the endpoint Nanog™* percentage of the
uFeature. For fibroblasts undergoing reprogramming, a significant change in the median
endpoint Nanog™ percentage was observed only between pFeatures of 400 um and 700
um radii (Figure 2.2B). For EPCs undergoing reprogramming, the uFeatures had similar
median endpoint Nanog* percentages (Figure 2.2C) irrespective of the uFeature radius.
It has previously been shown that confinement of cells into different geometries
causes different stress patterns and subsequently differing downstream effects [197]. To
explore this effect, we modulated the geometry of uFeatures on our plates without changing
their surface area (Figure A.2C). We seeded fibroblasts, started reprogramming, and
measured the endpoint Nanog* percentage on each puFeature. We found that uFeatures
had similar endpoint Nanog™ percentages irrespective of the puFeature geometry (Figure
2.2D). We next tested the effect of changing initial fibroblast seeding density on endpoint

Nanog™ percentages. The endpoint Nanog™ percentage increased after a critical seeding
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density of 50,000 cells per well (Figure 2.2E).
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Figure 2.2: A broad variety of reprogramming outcomes are captured on nearly all mi-
cropatterned substrates. A) Representative images of 300 um radius circular pFeatures
with reprogramming fibroblasts and EPCs at their respective endpoints, classified into
20% endpoint Nanog™ bins. B) Violin plots showing the distribution of endpoint Nanog™*
percentages as a function of the circular uFeature radius for reprogramming fibroblasts
(n = 3 biological replicates, 36 technical replicates each). C) Violin plots showing the
distribution of endpoint Nanog™ percentages as a function of circular uFeature radius
for reprogramming EPCs.uFeatures had similar median endpoint Nanog* percentages
irrespective of the circular uFeature radius (n = 2 biological replicates, 36 technical repli-
cates each). D) Violin plots showing the distribution of endpoint Nanog™* percentages
on differently shaped pFeatures for reprogramming fibroblasts. There was no significant
difference in median endpoint Nanog™ percentages between the six different shapes (n
= 3 biological replicates, 100 technical replicates each). E) Violin plots showing the dis-
tribution of endpoint Nanog™ percentages as a function of seeding fibroblast density (n
= 3 biological replicates, 100 technical replicates each). Black and white dots represent
technical replicates with non-zero endpoint Nanog™* percentage in fibroblasts and EPCs,
respectively. p-values calculated using Brown-Forsythe and Welch one-way ANOVA: ns =
p = 0.05, * for p <0.05, ** for p <0.01, ** for p <0.001, *** for p <0.0001).

Increased cell number may help with clustering and erasure of somatic cell identity
resulting in higher endpoint Nanog™ percentages. While the above results suggest that
there may be some cell type-dependent inherent characteristic of area available for cell
attachment that influences endpoint Nanog™ percentage, we did not find a strong consistent
effect across the cell types by modulating substrate patterning. Therefore, we focused our
subsequent studies instead at the inter-uFeature heterogeneity (Figure 2.2A), where cells

varied greatly in morphology and reprogramming outcome.
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Nuclear characteristics to track cell state

In our immunocytochemistry images of cells undergoing reprogramming, we noted dra-
matic changes in shape, size, and clustering of nuclei throughout the reprogramming
process. For example, fibroblast nuclei are elongated and far apart from each other, whereas
hPSC nuclei are circular and close together. We hypothesized that these changes could
be used as a tool to track progression of cells through the reprogramming process. As a
proof-of-concept for distinguishing cell state by tracking nuclei on a single uFeature, we
seeded three distinct cell types on to the uCP Well Plates: human pluripotent stem cells
(hPSCs), fibroblasts, and neural progenitor cells (NPCs), and used Hoechst dye to track
nuclear characteristics through high-content imaging. The images were then used as inputs
for a high-content analysis CellProfiler software pipeline [198] to identify nuclei within the
images and output a set of geometrical, intensity, and clustering measurements (Figure
2.3A). We started with a large dataset of 33 nuclear characteristics (Table A.1) that was
then filtered to a set of 8 core characteristics by evaluating correlation between measured
variables. These core characteristics are area, perimeter, mean radius, nuclear shape index
(NSI), extent, solidity, nearest neighbor, and number of neighbors. We initially attempted
to identify different cell types by analyzing individual nuclei present in a single circular
nFeature of 300 um radius using two methods: principal components analysis (PCA) [199]
and t-distributed stochastic neighbor embedding (t-SNE) [200]. However, neither method
could faithfully distinguish the three different cell types from each other (Figure 2.3C).
We next turned to analyzing nuclear characteristics on a per-uFeature basis (i.e., average
nuclear characteristics of all the nuclei within a single uFeature) for each cell type using
the same methods rather than analyzing the nuclear characteristics on a per-cell basis.
Cell types analyzed at a pFeature level separated cleanly using both methods but were
more highly clustered using PCA (Figure 2.3D). The multicellular nature of a pFeature
includes information on cell-to-cell distances (e.g., clustering) and packing of cells that can

influence nuclear shape and size. Based on the results in Figure 2.3, we found that these
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multicellular measurements contain important information in distinguishing cell types,
and thus we proceeded with this method for investigating cell types generated during
reprogramming.

Measuring Nuclear Characteristics
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Figure 2.3: Average nuclear characteristics of pFeatures can separate cell types better
than single cell nuclear characteristics. A) CellProfiler pipeline to identify eight core
nuclear characteristics. B) Separation of cell types using single cell characteristics with
t-SNE (top) and PCA (bottom) algorithms. No distinct clusters were identified. Each dot
represents nuclear characteristics of a single nucleus within a pFeature (n = 1000 cells
for each cell type). C) Separation of cell types using nuclear characteristics averaged over
uFeatures. Distinct cell populations were visible using t-SNE and PCA. Each dot represents
averaged nuclear characteristics of the nuclei within a single pFeature (n = 28-35 pFeatures
analyzed for each cell type). Percent variance explained by the individual PC components

is indicated within the parentheses.

Changes in nuclear characteristics during reprogramming

To determine whether reprogramming cells can be tracked using nuclear characteristics on
a per-uFeature basis, we stained the nuclei of control hPSCs and fibroblasts undergoing
reprogramming with Hoechst dye on 300 um radius circular features at four intermediate
time points (day 4, 8, 12, and 20) as well as at the beginning (day 0) and endpoint of
reprogramming (day 21). When nuclear characteristics were plotted on a per-pFeature
basis for each time point in a reduced three-dimensional PCA map, a progression from
fibroblasts to f-iPSCs emerged when using three principal components (PCs) (Figure
2.4A). The three PCs captured 95% of the variance in the nuclear characteristics (Figure
2.4C). By analyzing the loadings of each PC, we found that PC1 is largely driven by
variables describing nuclear shape (extent, perimeter, solidity, NSI; henceforth referred to as
“shape-PC1”) while PC2 corresponds largely to changes in nuclear size (area, mean radius;
henceforth referred to as “size-PC2”) (Figure 2.4D). In contrast, PC3 is dominated by shifts
in nuclear clustering (nearest neighbor, number of neighbors; henceforth referred to as

“clustering-PC3”). High values of shape-PC1, size-PC2, clustering-PC3 indicate circular,
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large-sized, less clustered nuclei while low values of shape-PC1, size-PC2, clustering-PC3

indicate non-circular, small-sized, highly clustered nuclei, respectively.
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Figure 2.4: Changes in nuclear characteristics of fibroblasts during reprogramming. A)
Principal component analysis of per-pFeature nuclear measurements on human fibroblasts
undergoing reprogramming. Centroid values for each reprogramming time point (large
boxes color coded by the time point) indicate a 3D spiral of reprogramming progression.
Model was generated for circular pFeatures of 300 um radius using 49 technical replicates
(small boxes color coded by the time point) at each time point. Percent variance explained
by the individual PC components is indicated within the parentheses. B) Violin plots
showing the distribution of individual PCs as a function of the reprogramming time
point for fibroblasts undergoing reprogramming (49 technical replicates at each time
point represented by color coded boxes and 153 technical replicates at Day 21, p-values
generated by one-way ANOVA using the Brown-Forsythe and Welch test for multiple
comparisons to Day 0; ns = p > 0.05, * for p <0.05, ** for p <0.01, *** for p <0.001, **** for p
<0.0001). Representative nuclei with high and low PC values are shown next to each axis.
C) Three PCs explained 95% of the variance in the PCA model while including additional
components had diminishing returns. D) Stacked column bar graph showing loadings of
the PCA model for each of the first three PCs. The height of the bar represents the loading
value. Based on the loading, PCs can be roughly broken down to correspond to shape, size,

clustering of the nuclei.

Upon focusing on the centroids of per-uFeature nuclear characteristics at each time
point (represented as large boxes), we observed a spiral trajectory in the progression of
cell state from fibroblast through erasure to reprogramming intermediate and finally
establishment to f-iPSC (Figure 2.4A). Moreover, day 0 fibroblasts are the farthest away
from any other population. Endpoint uFeatures clustered closer to hPSCs than any of the
reprogramming intermediates at day 4, 8, 12, and 20. Additionally, there was a biphasic
progression in shape-PC1 and size-PC2, while clustering-PC3 progressed in a monotonic

fashion (Figure 2.4B).
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The largest shifts in PCA map occur between days 0-8 corresponding with erasure
of fibroblast identity. Temporally, this shift matches closely with the well-studied MET
that occurs within the first 10 days of reprogramming and involves dramatic shifts in cell
morphology [181-183]. Following erasure, there was a clustering of time points between
Day 8-20 corresponding to the rise of a reprogramming intermediate cell state (CD44" /TRA-
1-607) (Figure A.1C). A final transition corresponding to establishment of pluripotency
occurred between day 20 and the endpoint of reprogramming. Nuclei following establish-
ment are highly circular, densely packed and cluster closely to hPSCs in the PCA map. To
further confirm our PCA map, hierarchical clustering was used to determine the distance
among experimental time points as well as variables. As seen in the PCA map, solidity,
extent, and NSI are closely related, as are the number of neighbors and distance to the
nearest neighbor (Figure A.3).

At the endpoint of reprogramming, there was a wide range of successfully repro-
grammed pFeatures as indicated by the wide range of endpoint Nanog* percentages
(Figure 2.2A). When nuclear characteristics of endpoint uFeatures were plotted on a per-
nFeature basis in the PCA map, pFeatures that showed no reprogramming (0% Nanog™)
clustered the closest to the four intermediate time points and farthest from the hPSCs
as compared to the other endpoint uFeatures (1-100% Nanog*). Conversely, endpoint
nFeatures that highly reprogrammed (81-100% Nanog™) clustered the closest to hPSCs
(Figure 2.5A). Overall, the endpoint pFeatures clustered more closely to hPSCs as their
Nanog™ percentage increased. When we plotted the individual PC coordinates as a func-
tion of the endpoint Nanog* percentage in the uFeature (Figure 2.5B), we found that
shape-PC1 underwent a biphasic change, while size-PC2 and clustering-PC3 changed in
more of a monotonic fashion, resembling the changes that occurred in these PCs from
Day 12 onwards during the late/establishment phase of reprogramming (Figure 2.4B). Put
together, this suggests that cells within these pFeatures may have started the establishment

of pluripotency but had variable latency periods at the intermediate cell stage.
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Figure 2.5: Mapping endpoint heterogeneity in reprogramming across pFeatures for
both fibroblasts and EPCs. A) Fibroblast reprogramming PCA space (centroid values
for each fibroblast reprogramming time point boxed as in Figure 4A) with endpoint re-
programming fibroblast data, for circular pFeatures of 300 um radius, color coded by
endpoint Nanog* percentage. Low Nanog™ features clustered closely to time points of
intermediate cell states while features that expressed high levels of Nanog clustered closely
to hPSCs. Percent variance explained by the individual PC components is indicated within
the parentheses. B) Violin plots showing the distribution of individual PCs as a function of
the endpoint Nanog* percentage for reprogramming fibroblasts (n = 5 biological replicates,
total number of endpoint uFeatures = 153, p-values generated by one-way ANOVA using
the Brown-Forsythe and Welch test for multiple comparisons to 0% endpoint Nanog™ per-
centage; ns = p >0.05, * for p <0.05, ** for p <0.01, *** for p <0.001, *** for p <0.0001). C)
Fibroblast reprogramming PCA space (centroid values for each fibroblast reprogramming
time point boxed as in Figure 4A) with endpoint reprogramming EPC data, for circular
teatures with radius varying from 100-800 pm, color coded by endpoint Nanog™ percent-
age. Low Nanog™ features clustered closely to time points of intermediate reprogramming
tibroblast states while features that expressed high levels of Nanog clustered closely to
hPSCs. Percent variance explained by the individual PC components is indicated within
the parentheses. D) Violin plots showing the distribution of individual PCs as a function
of the endpoint Nanog* percentage for reprogramming EPCs (n = 10 biological replicates,
total number of endpoint puFeatures = 229, p-values generated by one-way ANOVA using
the Brown-Forsythe and Welch test for multiple comparisons to 0% endpoint Nanog*

percentage; ns = p > 0.05, * for p <0.05, ** for p <0.01, ** for p <0.001, **** for p <0.0001).

Next, nuclear characteristics of uFeatures (circular pfeatures with radius varying
from 100-800 um) were plotted on a per-pFeature basis for EPCs undergoing reprogram-

ming in the PCA map that was previously generated for fibroblasts undergoing reprogram-
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ming (Figure 2.4A), to investigate if the PCA map is dependent on the reprogramming

system. We fixed and stained endpoint pFeatures on Day 18 for Nanog and found again
that there was a wide range of outcomes (Figure 2.2A). We found that regardless of the
reprogramming system and the uFeature radius, uFeatures that showed no reprogramming
(0% Nanog™) clustered the closest to the day 4 intermediate time point and the farthest to
hPSCs when compared to the other endpoint pFeatures (1-100% Nanog*). pFeatures that
were more reprogrammed, 81-100% Nanog®, clustered the closest to hPSCs (Figure 2.5C).
Moreover, like in the case of fibroblasts undergoing reprogramming, the EPCs undergoing
reprogramming clustered more closely to hPSCs as their endpoint Nanog™ percentage
increased. Additionally, the 0% Nanog™ endpoint uFeatures in the case of EPCs undergoing
reprogramming were more broadly distributed in the PCA map as compared to the 0%
Nanog™ endpoint uFeatures of fibroblasts undergoing reprogramming. We reasoned that
the non-adherent nature of starting EPCs and the variability associated with the episomal
reprogramming system used for EPCs might contribute to this phenomenon.

When we plotted the individual PCs as a function of the endpoint Nanog™ percentage
for EPCs undergoing reprogramming (Figure 2.5D), we observed that shape-PC1 and
size-PC2 decreased in a roughly monotonic fashion while clustering-PC3 increased in a
monotonic fashion. These PC changes are observed even when 300 um radius pFeatures
were exclusively considered (Figure A.4B). The decrease in shape-PC1 and increase in
clustering-PC3 for EPCs undergoing reprogramming were similar to the changes that
occurred with fibroblast-derived cells at higher levels of reprogramming (endpoint Nanog™*
percentage from 41 to 100%) (Figure 2.5B). In contrast, pFeatures in the 0-40% endpoint
Nanog™* range were more different between fibroblasts and EPCs. This could be because 1)
starting/early intermediate cells are adherent versus nonadherent for fibroblasts versus
EPCs, respectively, and 2) EPCs are closer to hPSCs on the Waddington epigenetic landscape
than fibroblasts [201]. Size-PC2 decreased for EPCs while it increased for fibroblasts as the

endpoint Nanog™* percentage of the uFeatures increased (Figure 2.5D). The nuclear size
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of starting EPCs is larger than fibroblasts ( 6 um versus 3.5 um diameter), and we find
that nuclear size changes during reprogramming diverge across these two reprogramming
systems, while the changes in shape and clustering during reprogramming are more similar
across the two systems.

Put together, our results indicate that eight core nuclear characteristics of cells
reprogramming on a pFeature can be used to determine the coordinates of that uFeature
within the PCA map, and this location can further be used to estimate the percentage of

Nanog™ cells in that given pFeature.

Predicting reprogramming using nuclear characteristics

If analysis of nuclear characteristics can separate reprogramming intermediate cell states
from one another, we reasoned that these same measurements would be able to predict
which pFeatures were successfully reprogrammed at the end of the reprogramming time
course. Creation of a prediction model could be used to aid in the rapid purification of
high-quality iPSCs. We generated a partial least squares regression model (PLSR) using
the eight minimal nuclear characteristics at the reprogramming endpoint, described previ-
ously as inputs and outputted the expected endpoint Nanog™* percentage. The resulting
three-component PLSR model explained 89% (Figure 2.6A) of the variance in endpoint re-
programming fibroblast cultures and relied heavily on NSI, distance to the nearest neighbor,
and number of neighbors (Figure 2.6B). The three-component model was highly predictive
of reprogramming with a root mean square error of prediction (RMSE) of 0.11 (Figure
2.6C). In the case of EPCs, the three-component PLSR model explained 70% (Figure 2.6A)
of the variance in endpoint EPC cultures and relied heavily on neighbor characteristics,
solidity, and NSI (Figure 2.6B). Again, the model was highly predictive of reprogramming
with RMSE of 0.18 (Figure 6D). We compared these models to a third PLSR model using
TRA-1-60 (a popularly used live cell surface marker for identifying iPSCs) expression levels

as the inputs. This third model was not as predictive of reprogramming, with RMSE of
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0.28 (Figure A.5A). We further confirmed that TRA-1-60 expression was not wholly pre-

dictive of Nanog expression by staining for both markers and observing significant staining

differences between the two immunostained cell populations (Figure A.5B). TRA-1-60

expression is activated prior to Nanog during reprogramming [160], and many cells that

express TRA-1-60 never transition to a fully pluripotent state [202].
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Figure 2.6: Nuclear characteristics predict reprogramming outcomes at the reprogram-
ming endpoint. A) Percent variance explained by the principle components in the partial
least squares regression (PLSR) model for reprogramming fibroblasts (black) and EPCs
(white). Three principal components explained over 85% of the data for fibroblasts and
over 70% of the data for EPCs while including additional PCs showed limited gains. B)
Stacked column bar graph showing model coefficients of PLSR model for reprogramming
fibroblasts (black) and EPCs (white). The height of the bar represents the value of the
model coefficient. Nuclear shape and neighbor characteristics heavily influenced the fibrob-
last model. Neighbor characteristics, solidity, and NSI heavily influenced the EPC model.
C) PLSR model for reprogramming fibroblasts predicting endpoint Nanog™ fraction of
nFeatures using only nuclear characteristics. Data points are individual pFeatures color
coded by endpoint Nanog™* percentage. Model was predictive of reprogramming with
low error (RMSE=0.11) (n = 5 biological replicates, total number of endpoint puFeatures =
153). D) PLSR model for reprogramming EPCs predicting endpoint Nanog* fraction of
nFeatures using only nuclear characteristics. Data points are individual pFeatures color
coded by endpoint Nanog™ percentage. Model was predictive of reprogramming with low
error (RMSE=0.18) (n = 10 biological replicates, total number of endpoint pFeatures =
229).

Isolation of high-quality iPSCs

The terminal goal of any reprogramming platform is to successfully isolate iPSCs that
can be used for downstream applications. Overall, reprogramming on pCP Well Plates
enabled the simple isolation of high-quality iPSC lines with minimal time and effort spent
on purification. The physical separation of micropatterns from one another, combined
with high fraction of Nanog expressing cells, even up to 100%, throughout the pFeature

resulted in easy picking and isolation of reprogrammed f-iPSCs (Figure 2.7A) and e-iPSCs
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(Figure 2.7B). However, we observed that even the picking of low-quality {-iPSC colonies
based on early TRA-1-60 expression (Figure 2.7C) resulted in the presence of Nanog*
cells that could be isolated following one additional round of picking (Figure 2.7D,E).
We confirmed that these cells expressed Nanog at the same level as control hPSCs using
flow cytometry (Figure 2.7F). To stringently assess the pluripotency of established lines,
we cultured cells isolated from two separate uFeatures for 10+ passages in fully-defined
stem cell media and then formed embryoid bodies (f-EBs) using the AggreWell method.
f-iPSCs and f-EBs were then subjected to the TagMan Scorecard™ assay, a benchmarked
quantitative assay for pluripotency [171]. f-iPSCs had an expression profile similar to nine
control hPSC lines and f-EBs expressed genes indicative of all three germ layers (Figures
2.7G, A.6A). These results indicate that reprogrammed cell lines isolated from the uCP
Well Plate are fully-pluripotent. Moreover, karyograms of fibroblasts, {-iPSCs, EPCs, and
e-iPSCs exhibited a normal karyotype with no major chromosome abnormalities detected
before and after reprogramming, indicating that this reprogramming platform can be
utilized for generating genetically-stable iPSC lines (Figure A.6B-E). Additionally, cell
cycle analysis (Figure A.7) shows that f-iPSCs have a higher percentage of cells in S phase
than starting fibroblasts. Both e-iPSCs and EPCs have a high percentage of cells in S phase.
The high percentage of cells in S phase indicates that f-iPSCs and e-iPSCs generated using
our platform proliferate and divide rapidly, similar to iPSCs generated using standard

methods [203].
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Figure 2.7: uCP Well Plates enable isolation of high-quality iPSC populations. A)
Confocal image of 300 um radius circular pFeature with reprogramming fibroblasts that
underwent full reprogramming. B) Confocal image of 300 um radius circular pFeature
with EPCs that underwent full reprogramming. C-E) Representative images of the isolation
of high-quality f-iPSC lines from pFeatures. C) Day 21 live cell subpopulation live-stained
with CD44 (red) and TRA-1-60 (green) antibodies. D) Cell subpopulation from (C) three
days after picking from a pFeature. White arrow represents expanding iPSC colony. E)
f-iPSC line after one picking step from (D) and several passages in standard pluripotent
culture conditions. F) Flow cytometry histogram indicating the percentage of Nanog™*
cells before (D) and after (E) one purification step. G) Tagman Scorecard™ of {-iPSCs and
differentiated embryoid bodies (f-EB) from reprogramming. Two f-iPSC clones expressed
pluripotency factors at the same level as nine benchmarked hPSC lines. EBs generated from
f-iPSC lines expressed high levels of genes for all three germ layers, significantly above the
benchmarked hPSC lines. Blue boxes are downregulated while red boxes are upregulated

compared to 9 control hPSC lines.

2.4 Discussion

The longitudinal study of cell subpopulations within the microcontact printed substrates
produced rich datasets for mapping cell fate transitions and trajectories within reprogram-
ming cultures. The maps generated by our approach, using nuclear characteristics of
reprogramming cells, are quantitative and reflect some of the complexity seen by flow
and mass cytometry in mouse reprogramming cultures [158, 175]. While mouse and
human reprogramming have important differences, nearly all studies describe erasure and
establishment or maturation of PSCs. A large variety of intermediate cell states were also

identified by flow and mass cytometry, which is consistent with the heterogeneity seen
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in our maps, notably after erasure and during establishment. Stochasticity in reprogram-
ming during this establishment stage has been attributed to variable reprogramming factor
expression and degradation, proliferation rates, or the stochastic nature of remodeling
various epigenetic marks. Simple expression of one to three live cell surface markers could
be identified to distinguish various subpopulations within these maps, such as SSEA1
in mouse studies and TRA-1-60 in human studies. These strategies have been used to
fractionate and enrich for iPSC colony identification within these heterogeneous cultures.
Our regression model based on subpopulation nuclear analysis outperformed such a sur-
face marker strategy (Figure 2.6), indicating that multidimensional analysis can be useful
for isolating desired cell types from these cultures. Single-cell RNA-sequencing of these
cell states [58, 187, 189, 190, 204, 205] are complementary and likely provide additional
insights into mapping and understanding heterogeneity during reprogramming at the
transcriptional level.

Microenvironmental signaling from cell-cell contact, mechanotransduction, and
paracrine soluble factors within the uFeatures are likely reflected in nuclear morphology
and organization. Such signaling can establish different “in vitro niches” with cell culture
systems, and microenvironmental signaling is known to vary across discrete cell types
described during stem cell differentiation [206-208] and somatic cell reprogramming [47,
209]. We utilized subpopulation nuclear morphology and clustering data to distinguish cell
types more effectively than via single cell analysis (Figure 2.3B,C). Notably, clustering in-
formation of cells is lost during single cell analysis but was highly loaded in clustering-PC3
(Figure 2.4D) and had a high coefficient in the regression models (Figure 2.6). Cytoskeletal
staining provided little additional information for our efforts to distinguish NPCs, fibrob-
lasts, and hPSCs (data not shown), indicating that nuclear organization and morphology
correlated with cytoskeletal changes. It is anticipated that additional stains or reporters of
the cell [210-212] — plasma membrane, metabolic activity, mitochondria, focal adhesion,

mitotic spindle, and chromatin mobility — could complement these maps and add addi-
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tional information to distinguish each cell state. While detailed high-content analysis of
each of these aspects of cells has potential to clarify the reprogramming map, our analysis
sought to identify a minimal set of nuclear characteristics to distinguish iPSCs from somatic
and intermediate reprogramming cell states. Because none of the measurements relied on
the intensity of the nuclear stain, we anticipate a wide variety of live nuclear dyes could
enable nuclear tracking to obtain these minimal measurements. These capabilities would
complement other live staining strategies to mark highly dividing cells [160] and metabolic
shifts [212] during reprogramming. Alternatively, we anticipate that label-free imaging
[213] could also enable live nuclear tracking without the usage of any external dyes to stain
the nucleus. We expect nuclear characteristics to be more reliable than visual identification
of iPSCs as flat cell colonies with tightly-packed cells [41].

Nuclear geometry is dramatically altered during reprogramming [63, 191] Further-
more, the packing and mobility of chromatin shift during cell fate changes, notably at
points during stem cell differentiation [59, 214] and at the beginning and end of repro-
gramming [54]. Watching these changes in situ during stem cell differentiation permits the
isolation of specific cell types of defined potency [206, 215]. More recently, super-resolution
imaging of nuclei has successfully forecast transitions within stem cell cultures [216]. Simi-
lar studies with our microcontact printed substrates could characterize these chromatin
dynamics during reprogramming, notably during the heterogeneous establishment stage
of reprogramming.

Fully-pluripotent iPSCs were readily isolated from the micropatterns. The pres-
ence of nearly 100% Nanog positive pFeatures with f-iPSCs and e-iPSCs was surprising
(Figure 2.7A,B), given the overall low efficiencies of reprogramming when considering
the entire well. This may reflect context-specific eliteness that was recently observed in
murine reprogramming with barcoded cells [47]. Future work with fate mapping and
clonal tracing [217-219] in our system is needed to confirm that the final cells arose from

single or multiple cells that progressed through the establishment transition. Because
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many cell types firmly adhered to the surface when we performed co-culture analysis
(Figure A.1), we anticipate that some enhanced local reprogramming occurred on these
nFeatures, although these studies were underpowered to make firm conclusions about
such mechanisms that may include various roles for. cell adhesion, cell volume, actomyosin
contractility and nuclear lamins. Utilization of the micropatterned substrates to probe
these mechanisms in future work has strong potential to provide deeper insight in the
biophysical and microenvironmental signaling involved in epigenetic reprogramming.

Our approach is complementary to other imaging modalities for dissecting complex
reprogramming cultures [e.g., on cell surface markers [157, 173, 202], metabolic markers
[220], or dye uptake [157, 221]] and could be implemented in a variety of formats [e.g.,
microfluidic [222], uShear [223]]. Notably, the microcontact printed substrate enables the
non-destructive optical tracking of subcellular changes within reprogramming populations,
in contrast to current methods to identify high-quality iPSCs which require that cells be
fixed [e.g., immunocytochemistry], destroyed during the preparation of cell extracts [e.g.,
PluriTest [170]], or differentiated [e.g., embryoid body formation [169] and teratoma assays
[168]]. Our method can also reduce the labor and time required for analyzing iPSC quality
as multiple iPSC clones can be analyzed simultaneously on these microcontact printed
substrates with minimal sample processing. Moreover, manufacturing micropatterned
substrates is relatively easy and cheap. Only Hoechst dye and confocal microscopy are
required for imaging, making it readily capable of being integrated into workflows for
characterizing the quality of iPSCs in a cost-effective manner. Additionally, the starting
fibroblasts, intermediate cells, and fully-reprogrammed endpoint f-iPSCs all adhere onto
the micropatterned substrates with minimal detachment, thereby enabling novel control
over cell adhesion during all stages of fibroblast reprogramming. For human EPCs, these
substrates permit adhesion of intermediate cells and fully-reprogrammed endpoint e-iPSCs,
and thus aid in the study of the establishment phase of reprogramming.

Limitations of the current micropatterning approach include 2D imaging, culture
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duration, and potential issues with dye compatibility for live cell imaging. Although we
did not develop significantly different predictions of reprogramming when using imaging
data at different z-planes (Figure A.2), comprehensive 3D imaging of each pFeature could
provide maps at higher resolution to further dissect the differences in morphological and
clustering changes further away from the cell-substrate interface. Second, there is a limited
duration of culture before cells overgrow the pFeature and potentially detach from the
pattern, depending on the balance of cell-cell adhesion versus cell-substrate adhesion. For
the reprogramming experiments described here, circular features with radii varying from
100-800 pm have been used for about ~20-40 days of culture, although the cell seeding
density or micropatterned geometry could be easily changed [191, 224] to study other
epigenetic reprogramming processes. Finally, live tracking applications may be limited
for some cell lines, as imaging of live cells through uses of fluorescent dyes may cause
DNA crosslinking, damage, and toxicity. Low dye concentrations and short incubation
periods can potentially avoid these artifacts [205, 206, 225]. To mitigate these effects further,
different dyes can also be tested [226] or label-free imaging can be used [213]. While we
developed a quantitative model for predicting the Nanog positive iPSC colonies at the
reprogramming endpoint, We anticipate that this work can be developed further to predict
the ability of iPSC colony formation at earlier time points of reprogramming. We also
envisage that this work can be utilized to study downstream cell differentiation, cell line
development, or direct reprogramming processes to identify appropriate cells in a fully
traceable and quantitative way for regenerative medicine and precision medicine [227-229]
applications. Because skin and blood constitute the majority of cell sources for research
and clinical-grade reprogramming projects and biobanks [230] and since these substrates
dissect reprogramming cultures into small subpopulations, these substrates have strong
potential to advance the manufacturing and isolation of high-quality iPSCs for a variety of

disease modeling and regenerative medicine applications.
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2.5 Materials and Methods

Cell culture and derivation of cell lines

Fibroblasts: Fibroblast reprogramming experiments were performed using the previously
reported C1.2 human secondary fibroblast line (28, 45), which incorporates the stably
integrated transgenes Oct4, Sox2, K1f4, and c-Myc on doxycycline (DXC)-inducible cassettes.
All £-iPSCs were generated through DXC-mediated reprogramming of the C1.2 line.

Fibroblasts were maintained on gelatin-coated polystyrene tissue culture plates in
fibroblast media containing DMEM-high glucose (Thermo Fisher Scientific, Waltham, MA)
supplemented with 10% Fetal Bovine Serum (Thermo Fisher Scientific), 1 mM L-glutamine
(Thermo Fisher Scientific), 1% non-essential amino acids (EMD Millipore, Burlington,
MA), and 1% Penicillin/Streptomycin (Thermo Fisher Scientific). They were passaged
with 0.05% trypsin (Thermo Fisher Scientific) every 3-5 days.

Erythroid Progenitor Cells (EPCs): EPCs were isolated from fresh peripheral hu-
man blood that was obtained from healthy donors (Interstate Blood Bank, Memphis, TN).
Blood was processed within 24 hours of collection, where hematopoietic progenitor cells
were extracted from whole blood using negative selection (RosetteSep; StemCell Technolo-
gies, Vancouver, Canada) and cultured in polystyrene tissue culture plates in erythroid
expansion medium (StemCell Technologies) for 9 days to enrich for EPCs. EPCs were
then examined by performing flow cytometry analysis for CD71 (334107; Biolegend, San
Diego, CA), erythroid cell surface marker. Human Pluripotent Stem Cells (hPSCs): Trans-
genic hPSCs constitutively expressing H2B-mCherry and LifeAct-GFP were generated via
CRISPR/Cas9 introduction of the H2B-mCherry plasmid to the AAVSI locus and lentiviral
transduction of LifeAct-GFP (#51010; Addgene, Watertown, MA) to the hESC WA(Q9 line
(WiCell Research Institute, Madison, WI). The H2B-mCherry plasmid was generated by
cloning the H2B-mCherry sequence (#20972; Addgene) into the GFP sequence of the AAV-
CAGGS-EGFP plasmid (#22212; Addgene) and was electroporated with Cas9 plasmids [18,
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231]. Clonal isolation of homogeneous cell lines constitutively expressing H2B-mCherry
and LifeAct-GFP was then performed [63, 191]. The resultant transgenic hPSCs were
maintained on Matrigel-coated polystyrene tissue culture plates in E8§ medium, formulated
in-house according to an established recipe [25, 26]. E8 medium was fed daily and the
cells were typically passaged using Versene EDTA (Thermo Fisher Scientific, Waltham,
MA) every 3-5 days. During passaging, the culture media was often supplemented with
the Rho kinase inhibitor Y-27632 (Sigma-Aldrich, St. Louis, MO) at a 10 uM concentration

to encourage cell survival. All cells were maintained at 37°C and 5% CO..

uCP Well Plate construction

Micropatterned substrates or uCP Well Plates were constructed as previously described
[191]. In brief, large PDMS stamps were used with traditional microcontact printing
techniques [224] to pattern a thin sheet of gold-coated glass (Coresix Precision Glass,
Williamsburg, VA) which had been precut to the size of a standard tissue culture plate.
Once patterned, the glass was then fastened to the bottom of a bottomless 24-well plate
via medical-grade double sided tape (ARcare 90106; Adhesives Research, Glen Rock, PA).
Bottomless well plates were made in-house by removing well bottoms of standard tissue
culture plates (Fisher Scientific, Hampton, NH) using a laser cutter (Universal Lasers

Systems) or purchased directly (Greiner Bio-One, Monroe, NC).

Reprogramming

Fibroblasts: C1.2 secondary fibroblasts were seeded onto micropatterned substrates, at a
seeding density of 100k cells/well, in fibroblast media one day prior to reprogramming
initiation. The following day, media was switched to E7 (E8 without TGF-{3) supplemented
with hydrocortisone (49), and DXC was added at 2 pg/mL (5 tM) to activate expression of

the reprogramming factors. Media was changed every other day, and cells were passaged
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before reaching full confluence. After the first passage, DXC was removed from E8 media
and iPSCs were maintained in standard pluripotent culture as described above.
Erythroid Progenitor Cells (EPCs): Day 9 EPCs were electroporated with four episo-
mal reprogramming plasmids encoding Oct4, shRNA knockdown of p53 (#27077; Addgene,
Watertown, MA); Sox2, Klf4 (#27078; Addgene); L-Myc, Lin28 (#27080; Addgene); miR302-
367 cluster (#98748; Addgene), using the P3 Primary Cell 4D-Nucleofector Kit (Lonza) and
the EO-100 program. Electroporated EPCs were seeded onto micropatterned substrates
with erythroid expansion medium (StemCell Technologies) at a seeding density of 1000k
cells/well. Cells were supplemented with ReproleSR (StemCell Technologies, Vancouver,
Canada) on alternate days starting from Day 3 without removing any medium from the
well. On Day 9, the medium was entirely switched to ReproleSR, and the ReproleSR

medium was changed daily starting from Day 10.

Isolation of iPSCs

To isolate high-quality iPSC lines, candidate colonies were picked from micropatterns
using a 200 pL micropipette tip and transferred to Matrigel-coated polystyrene tissue
culture plates in mTeSR1 media (WiCell Research Institute, Madison, WI). If additional
purification was required, one additional manual picking step with a 200 uL micropipette
tip was performed. During picking and subsequent passaging, the culture media was often
supplemented with the Rho kinase inhibitor Y-27632 (Sigma-Aldrich, St. Louis, MO) ata 10
1M concentration to encourage cell survival and establish clonal lines. iPSCs obtained from
EPCs were maintained in mTeSR1 media on Matrigel-coated polystyrene tissue culture
plates and passaged with ReLeSR (StemCell Technologies, Vancouver, Canada) every 3-5
days. All cells were maintained at 37°C and 5% CO,.
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Antibodies and Staining

All cells were fixed for 15 minutes with 4% paraformaldehyde in PBS (Sigma-Aldrich,
St. Louis, MO) and permeabilized with 0.5% Triton-X (Sigma-Aldrich) for >4 hours at
room temperature before staining. Hoechst (H1399; Thermo Fisher Scientific, Waltham,
MA) was used at 5 pg/mL with 15 min incubation at room temperature to stain nuclei.
Primary antibodies were applied overnight at 4°C in a blocking buffer of 5% donkey serum
(Sigma-Aldrich) at the following concentrations: CD44-PE (555479; BD Biosciences, San
Jose, CA) 1:200; TRA-1-60 (MAB4360; EMD Millipore, Burlington, MA) 1:100; Nanog
(AF1997; R&D Systems, Minneapolis, MN) 1:200; CD71 (334107; Biolegend, San Diego,
CA) 1:100. Secondary antibodies were obtained from Thermo Fisher Scientific and applied
in a blocking buffer of 5% donkey serum for one hour at room temperature at concentrations
of 1:400 — 1:800. For live-cell stains, antibodies were added to the appropriate cell culture
media at equivalent dilutions to those used for fixed cells. Two-hour incubations were used

for primary antibodies, followed by 30-minute incubations for secondary antibodies.

High-content analysis

High-content image analysis was performed similarly to previously published methods
[191]. A Nikon Eclipse Ti epifluorescence microscope was used to acquire single 10x
images of each micropattern, and a Nikon AR1 confocal microscope was used to acquire
60x stitched images of each micropattern using the z-plane closest to the micropatterned
substrate for reprogramming studies. Images were processed using image analysis software
CellProfiler [198], which analyzed images as described in Figure 2.3. Objects < 75um? in
area were filtered out of the data set to exclude apoptotic or other debris, and neighbors
were identified by expanding objects until all pixels on the object boundaries were touching
one another. Two objects are neighbors if any of their boundary pixels are adjacent after

expansion.
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PCA and PLSR

CellProfiler nuclear measurements were averaged across each uFeature and fed as mean
values into PCA analysis via MATLAB software and into PLSR analysis via JMP Pro
software. PLSR was performed using the NIPALS method and predictions were tested
and validated using K-Fold validation with 7 folds. Endpoint Nanog™ percentages were
obtained by calculating the total area of the nuclei in each micropattern expressing Nanog,

multiplying by 100, and then dividing by the total area of the nuclei stained by Hoechst.

Statistics

p-values were calculated using Welch and Brown-Forsythe one-way ANOVA (considering
unequal variances across different groups) or two-way ANOVA with GraphPad Prism
software. Statistical tests were deemed significant at o < 0.05. Technical replicates are
defined as distinct uFeatures within an experiment. Biological replicates are experiments
performed at distinct time points during reprogramming. Outliers were identified as
1.5*IQR and excluded from statistical test. Outlier data points are still shown for illustration.

No a priori power calculations were performed.

Karyotype Analysis

Cells cultured for atleast 5 passages were grown to 60-80% confluence and shipped for
karyotype analysis to WiCell Research Institute, Madison, WI. G-banded karyotyping
was performed using standard cytogenetic protocols [232]. Metaphase preparations were
digitally captured with Applied Spectral Imaging software and hardware. For each cell
line, 20 GTL-banded metaphases were counted, of which a minimum of 5 were analyzed
and karyotyped. Results were reported in accordance with guidelines established by the

International System for Cytogenetic Nomenclature 2016 [233].
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Cell cycle analysis

Cell cycle phases were obtained by propidium iodide (PI) staining followed by analysis
with flow cytometry as previously described [234]. In brief, cells were grown to 60-80%
confluence and fixed for two hours in 70% ethanol at 4°C. After ethanol fixation, cells were
centrifuged at 900 x g for 5 minutes and ethanol was removed. Cells were washed twice
with D-PBS buffer (Thermo Fisher Scientific), re-suspended in 1 mL D-PBS containing
0.5 ng/mL DNase-free, protease-free RNase A (Thermo Fisher Scientific) and 50ug/mL
propidium iodide (Thermo Fisher Scientific), and then incubated for overnight at 4°C.
Data collection was performed using Attune™ NxT Flow Cytometer. Cell cycle analysis
was performed using ModFit LT software (Verity Software House, Topsham, ME) after
excluding debris, doublets and clumps by gating on the BL2-H (PI-H) versus BL2-A (PI-A)

plot.
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3 LABEL-FREE OPTICAL METABOLIC IMAGING TO TRACK HUMAN
SOMATIC CELL REPROGRAMMING

Work in this chapter was adapted from:

Label-free Optical Metabolic Imaging to Track Human Somatic Cell Reprogramming
Kaivalya Molugu, Giovanni A. Battistini, Tiffany M. Heaster, Jacob Rouw, Emmanuel C.
Guzman, Melissa C. Skala, Krishanu Saha

Article in preparation.
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3.1 Abstract

The process of reprogramming patient samples to human induced pluripotent stem cells
(iPSCs) is stochastic, asynchronous, and inefficient leading to a heterogeneous population
of cells. Hence, identifying and evaluating the quality of cells during reprogramming in
real-time could provide new strategies to develop high-quality iPSC cultures and lines.
Here, we developed a micropatterned platform for non-destructive, label-free autoflu-
orescence live-cell imaging of NAD(P)H and FAD to track the reprogramming status
of single cells. Erythroid progenitor cells(EPCs) isolated from human peripheral blood
showed distinct patterns of autofluorescence lifetime and nuclear morphometry at differ-
ent timepoints during reprogramming. Random forest models classified starting EPCs,
partially-reprogrammed intermediate cells, and iPSCs with 95% accuracy and single-cell
reprogramming trajectories provided insights into reprogramming heterogeneity. This
combination of micropatterning, autofluorescence imaging, and machine learning provides
a unique non-destructive method to assess the quality of iPSCs in real-time for various
applications in regenerative medicine, cell therapy biomanufacturing, drug development,

and disease modeling.

3.2 Introduction

Derivation of patient-specific induced pluripotent stem cells (iPSCs) from their somatic
cells via reprogramming generates a unique self-renewing cell source for disease modeling,
drug discovery, toxicology, and personalized cell therapies. These cells carry the genome of
the patient, facilitating elucidation of the genetic causes of disease, and are immunologically
matched to the patient, facilitating the engraftment of any cell therapies developed from
these cells [235-237].

With several clinical trials planned and underway [238], there has been a significant

progress in developing iPSC-based cell therapies in the recent years. However, several chal-
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lenges remain before successful commercial translation and wide usage of iPSC technology
[239]. Firstly, derivation of high quality iPSCs must be efficient, rapid, and cost-effective
for ensuring that patients receive their treatments in a timely fashion. Secondly, ensuring
the safety and quality of iPSCs is extremely important. Finally, iPSC-derived cell therapies
require scalable and standardized manufacturing processes to overcome the inconsistencies
arising from variability in starting materials, process reagents, microenvironmental fluctu-
ations, and stochasticity of the reprogramming process [240]. Current typical assays used
for quality control of GMP (good manufacturing practices)-grade iPSCs include testing for
cell line identity (STR analysis, SNP analysis, genomic sequencing), genomic instability
(G-banding, chromosomal microarray, Nanostring technology), pluripotency (marker
expression analysis via flow cytometry or immunochemistry, embryoid body analysis,
teratoma assays, Pluritest, TagMan Scorecard Assay) and residual reprogramming factors
(PCR or immunochemistry) [229, 241-243]. However, these methods are low-throughput,
labor-intensive, time-consuming, and require destructive processing. While recent studies
have indicated that automated machine learning can be used identify cell structures from
label-free brightfield images that cannot be manually identified [244-248], non-destructive
automated deep learning methods to identify iPSCs based on cellular morphology have
had limited success in the field [160, 163, 164]. Hence, it is important to develop new stan-
dardized platforms for biomanufacturing of iPSCs that are integration-free, fast, efficient,
scalable, and easily transferrable to GMP-compliant conditions.

Previous studies indicate that somatic cells undergo dramatic metabolic changes
throughout reprogramming. Somatic cells primarily utilize mitochondrial oxidative phos-
phorylation (OXPHOS) for proliferation. However, pluripotent cells favor glycolysis, in
a manner reminiscent of the Warburg effect in cancer cells [64, 73]. During reprogram-
ming, somatic cells thus undergo a metabolic shift from OXPHOS to glycolysis [65, 66],
triggered by a transient OXPHOS burst, resulting in initiation and progression of repro-

gramming to iPSCs [67-69]. Recent evidence also indicates that this metabolic shift occurs



53

prior to changes in gene expression and that the modulation of glycolytic metabolism or
OXPHOS alters reprogramming efficiency [73-75]. This suggests that cell metabolism
plays an important role in determining cell fate rather than passively responding to cell
fate changes. High-resolution imaging of reprogramming cells has identified that nuclear
geometry is also dramatically altered during reprogramming [54, 63, 249]. Therefore,
monitoring metabolic and nuclear changes during reprogramming could reveal insights
into the reprogramming process and aid in the subsequent identification of iPSCs.

Optical Metabolic Imaging (OMI) is a non-invasive and label-free two-photon mi-
croscopy technique that can provide dynamic measurements of cellular metabolism at a
single-cell level. It is based on the quantification of endogenous fluorescence of metabolic
coenzymes, NADH and FAD [250], which are both used across several cellular metabolic
processes. NADH and NADPH have overlapping fluorescence properties and are col-
lectively referred to as NAD(P)H [251]. The optical redox ratio, defined as the ratio of
NAD(P)H intensity to total NAD(P)H and FAD intensity, provides a measure of the relative
oxidation-reduction state of the cell [252, 253]. Fluorescence lifetime imaging microscopy
(FLIM) of NAD(P)H and FAD provides additional information specific to protein binding
activity. The two-component decays of NAD(P)H and FAD measure the short (1) and
long () fluorescence lifetimes that correspond to the free or bound states of these coen-
zymes [254-256], along with the fractional contributions of short (o) and long lifetimes
(x2). Since NAD(P)H and FAD are found predominantly in the cytoplasm, the lack of
fluorescence signal in the images can also be used to identify cell borders and nuclei [257].
Thus, OMI provides multiple readouts for cell metabolism and nuclear morphometry to
track metabolic and nuclear changes of cells undergoing reprogramming.

Here, we address some of the challenges associated with the biomanufacturing
of iPSCs by developing a facile microcontact printed (uCP) platform [191, 249, 258] to
non-invasively monitor metabolic and nuclear changes during 25-day reprogramming of

erythroid progenitor cells (EPCs) to iPSCs using the combination of OMI with quantitative
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image analysis. With this study, we demonstrated that OMI is sensitive to the metabolic
and nuclear differences during reprogramming, performed accurate classification to deter-
mine the reprogramming status of cells using machine learning models, and subsequently
built single-cell reprogramming trajectories [259]. Our label-free, non-destructive, rapid,
scalable method to track reprogramming could provide a valuable resource for the scien-
tific community towards developing a standardized procedure to derive iPSCs that are

putatively GMP compliant.

3.3 Results

Establishment of reprogramming on microcontact printed substrates

We first designed a microcontact printed (uCP) substrate to spatially control the adhesion
of EPCs undergoing reprogramming [191, 193, 249]. The uCP substrate is formed by
Matrigel coating of 300um radius circular regions, referred to as uFeatures, on a 35mm
ibiTreat dish that allows for cell adhesion. Remaining regions of the dish are then backfilled
with polycationic graft copolymer, PLL-g-PEG, that resists protein adsorption and prevents
cell adhesion in these regions [260, 261] (Figure B.1A).The ibiTreat dishes are made of gas-
permeable material, enabling maintenance of carbon dioxide or oxygen exchange during
cell culture, and have high optical quality. These properties make the dishes suitable for two-
photon microscopy during reprogramming. To verify the stability of the Matrigel-coated
circular regions, we immunofluorescence labeled for laminin which is a major component
of Matrigel [hughes_Matrigel_2010]. Fluorescence imaging showed laminin consistently
within the circular pFeatures indicating uniform patterning of Matrigel (Figure 3.1A).
We next assessed the ability of the pCP substrates to enable cell attachment by seeding
two different cell types, i.e., normal human dermal fibroblasts (NHDFs) and H9 human
embryonic stem cells (H9 ESCs). We observed that both NHDFs and ESCs remained viable,

attached, and confined to the circular uFeatures indicating that the uCP substrates enable
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spatial control of cell attachment (Figure B.1B).

Next, we isolated peripheral blood mononuclear cells (PBMCs) from peripheral
blood of healthy human donors and further enriched them for EPCs. We examined the
enrichment of EPCs by flow cytometry with erythroid cell surface marker CD71 [262].
Flow cytometry confirmed the presence of enriched EPCs showing that >98% of the cells
expressed CD71 on day 10 of culture (Figure B.1C).

We electroporated the EPCs with four episomal reprogramming plasmids, encoding
Oct4, shRNA knockdown of p53, Sox2, K1f4, L-Myc, Lin28, and miR302-367 cluster; and
seeded them onto uCP substrates [33, 192]. We assessed the ability of the pCP substrates
to sustain long-term reprogramming studies by performing high-content imaging to track
individual pFeatures (>30 pFeatures per 35mm dish) longitudinally at multiple timepoints
over the 3-week reprogramming time course. Day 22 was picked as the reprogramming
endpoint because there were several iPSC colonies at this timepoint without significant
outgrowth within a puFeature, enabling analysis at single-cell resolution. While starting
EPCs are non-adherent, reprogramming intermediates (IMs) and endpoint iPSCs adhere
to the circular pFeatures within the pCP substrates (Figure 3.1A) indicating that uCP
substrates can support reprogramming of EPCs. Overall, the uCP platform provides
unique spatial control over reprogramming cells and enables high-content quantitative

imaging of reprogramming.
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Figure 3.1: NAD(P)H and FAD autofluorescence imaging revealed metabolic differ-
ences between EPCs, IMs and iPSCs. A) Left: Matrigel-coated pFeatures on ibiTreat dish
visualized with anti-laminin antibody (red) shows good fidelity in the transfer from the
Matrigel-coated PDMS mold. Scale bar, 100 pm. Right: Representative images of the
progression of EPCs on a single 300 um radius circular pFeature through a reprogramming
time course. B) Top: Image analysis pipeline to identify 11 metabolic (red) and 8 nuclear
(blue) parameters using ilastik and CellProfiler software. Bottom: Schematic representa-
tion of cell metabolism with a focus on NADH and FAD. NADH and FAD are highlighted as
the fluorescent molecules in the diagram, and molecules in bold indicate the net direction
of the reaction. C) Representtive optical redox ratio, NAD(P)Hrt,, and FADt,, images (3
uFeatures selected from 36 pFeatures acquired from 3 different donors) for EPC, IM, and
iPSC. Color bars are indicated on the right. Scale bar, 100 um. D) Single-cell quantitative
analysis of metabolic parameters: optical redox ratio, NAD(P)Ht,,, NAD(P)H«,, FADT,,,
FAD«;; and nuclear parameters: area, perimeter and mean radius (n = 561, 990, 586 for
EPC, IM, and iPSC respectively). Data are presented as median with interquartile range
for each cell type. Statistical significance was determined by one-way analysis of variance
(ANOVA) using the Kruskal-Wallis test for multiple comparisons; ns = p >0.05, * for p
<0.05, ** for p <0.01, *** for p <0.001, **** for p <0.0001).

OMI reveals distinct metabolic changes during reprogramming

Metabolic state plays an important role in regulating reprogramming and pluripotency
of iPSCs [263-267] and can be non-invasively monitored via OMI. NADH is an electron
donor and FAD is an electron acceptor, both present in all cells as coenzymes for metabolic
reactions. For example, glycolysis in the cytoplasm generates NADH and pyruvate, while
OXPHOS consumes NADH and produces FAD (Figure 3.1B). Autofluorescence imaging

of NADH and FAD is thus dynamically responsive to the oxidation-reduction state of a
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cell and is influenced by many reactions [250, 268].

We tracked the autofluorescence dynamics of NAD(P)H and FAD by performing
OMI on uCP substrates at different timepoints during EPC reprogramming. In these
autofluorescent images, the nucleus remains dark as NAD(P)H is primarily located in
cytosol and mitochondria, and FAD is primarily located in mitochondria. The NAD(P)H
images were used as inputs for ilastik software [269] to identify the nuclei. The identified
nuclei were then used as an input for high-content CellProfiler software [198] pipeline to
segment the cytoplasm, and measure various metabolic and nuclear parameters (Figure
3.1B). Overall, a total of 11 metabolic parameters (Optical Redox Ratio, [NAD(P)H],
NAD(P)Hay, NAD(P)Ht, NAD(P)Ht, , NAD(P)Hr,, , [FAD], FAD«,, FADT, , FADT;,
FADt,,), and 8 nuclear parameters [249] (Area, Perimeter, MeanRad, NSI, Solidity, Extent,
#Neigh, 1stNeigh) were measured by the analysis pipeline (Table B.1). Additionally,
immunofluorescence labelling verified the cell type at these different timepoints, i.e., EPCs
(CD71%, Nanog"), IMs (CD71°, Nanog"), and iPSCs (CD71", Nanog*). NAD(P)H and FAD
autofluorescence imaging revealed metabolic differences between starting EPCs, IMs, and
iPSCs (Figures 3.1,B.2, B.3).

We observed a significant increase in the optical redox ratio (iPSC>IM>EPC) during
the process of reprogramming (Figure 3.1D), indicating that EPCs are more oxidized than
IMs and iPSCs. Additionally, we noted that patterned IMs and iPSCs have significantly
higher optical redox ratios as compared to their non-patterned counterparts (Figure B.2K).
This observation is consistent with previous studies which show that mechanical cues can
regulate the relative use of glycolysis [270-273] and may require further investigation.

Next, we observed that NAD(P)H and FAD lifetime components undergo biphasic
changes during the progress of reprogramming. FAD lifetime components undergo a
more significant change relative to the NAD(P)H components (Figures 3.1D, B.2A-]).
The fraction of protein-bound FAD (FAD«,) undergoes a decrease from EPCs to IMs

and then an increase from IMs to iPSCs, which could be reflective of the OXPHOS burst
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[67-69]. FADT,, is inversely related to FAD«x; and therefore changes accordingly. Similar

biphasic changes occur in nuclear parameters during reprogramming, consistent with our
previously study [249] (Figures B.1D, B.3).

We noted that H9 ESCs have metabolic and nuclear parameters similar to iPSCs, as
expected. Fibroblasts had metabolic parameters significantly different from EPCs (Figure
B.2). This could be because 1) fibroblasts are adherent while starting EPCs are non-
adherent, 2) fibroblasts and EPCs occupy distinct locations in Waddington landscape [201 ]
with different proliferation rates and energy needs.

Taken together, autofluorescence imaging of NAD(P)H and FAD showed significant

changes during reprogramming.

OMI enables the classification of reprogramming cells with high

accuracy

Uniform Manifold Approximation and Projection (UMAP) [274], a dimension reduction
technique, was used to visualize how cells cluster from metabolic and nuclear parame-
ters onto 2D space. Neighbors were defined through Jaccard similarity coefficient com-
puted across the metabolic parameters and nuclear parameters. UMAP was chosen over
t-distributed stochastic neighbor embedding (t-SNE) [200] because UMAP (Figure 3.2)
separated EPCs, IMs, and iPSCs better than t-SNE (Figure B.4A). Moreover, UMAP has a
higher speed, includes non-metric distance functions, and preserves the global structure of
the data.

We used UMAP to visualize how cells cluster exclusively from the 11 metabolic
parameters (Figure 3.2B) and exclusively from the 8 nuclear parameters (Figure 3.2C).
While these UMAP representations revealed separation of EPCs, IMs, and iPSCs; UMAP
generated using both metabolic and nuclear parameters provided a cleaner separation
between EPCs, IMs, and iPSCs (Figure 3.2A). We also plotted a heatmap representation

of the z-score of metabolic and nuclear parameters at the donor level (each row is the
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mean data of a single donor and cell type) to examine donor heterogeneity. While EPCs
and iPSCs obtained from different donors clustered together on the heatmap, IMs showed
interdonor heterogeneity (Figure B.4B). In summary, clustering of 11 metabolic and 8
nuclear parameters by using UMAP and z-score heatmap clustering showed that EPCs,
IMs, and iPSCs can be distinguished based on these parameters.

Next, classification models were developed based on 11 metabolic and 8 nuclear pa-
rameters to predict the reprogramming status of cells, i.e., EPCs, IMs, or iPSCs. Supervised
machine learning classification (Naive Bayes, K-nearest neighbor) and regression algo-
rithms (logistic regression, and random forest) [275] were implemented to test the predic-
tion accuracy for iPSCs when all the metabolic and nuclear parameters are used. To protect
against over-fitting, the classification models were trained using 15-fold cross-validation
on single-cell data from three different donors with reprogramming status assigned from
morphological characteristics and tested on data with same cell CD71 and Nanog staining
validation from three donors (completely independent and non-overlapping observations).
Receiver operator characteristic (ROC) curves of the test data revealed highest classification
accuracy for predicting iPSCs (area under the curve AUC = 0.993), IMs (AUC = 0.993) and
EPCs (AUC = 0.999) when random forest classification model was used (Figures 3.2D,
B.4C,D). We thus used the random forest classification model for further analysis in this

study.
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Figure 3.2: Optical metabolic imaging enables classification of cells based on their re-
programming status. Uniform Manifold Approximation and Projection (UMAP) dimen-
sionality reduction was performed on A) all 11 metabolic and 8 nuclear parameters, B) only
11 metabolic parameters, and C) only 8 nuclear parameters for each cell, projected onto
2D space. UMAP shows separation of different cell types (EPCs, IMs, and iPSCs). Each
color corresponds to a different cell type. Data are from three different donors. Each dot
represents a single cell, and n =561, 990, and 586 cells for EPC, IM, and iPSC, respectively.
D) Model performance of the different classifiers (random forest, simple logistic, k-nearest
neighbor (IBk), naive bayes) for iPSCs was evaluated by receiver operating characteristic
(ROC) curves using all 11 metabolic and 8 nuclear parameters. The area under the curve
(AUC) is provided for each classifier as indicated in the legend. E) Parameter weights for
random forest classification of EPCs, IMs, and iPSCs using gain ratio method. Analysis was
performed at a single-cell level using three different donors. F) Classification accuracy with
respect to number of parameters was evaluated based on the gain ratio parameter selection
with the random forest model. The number of parameters included in the random forest
model is indicated on the x-axis. G) Model performance of the random forest classifier
for iPSCs was evaluated by ROC curves using different metabolic and nuclear parameter
combinations as labelled. AUC is provided for each parameter combination as indicated in
the legend. H) Imaging time (left y-axis) and accuracy score (right y-axis) evaluation of
the random forest classifier for different metabolic and nuclear parameter combinations as

labeled.

Gain ratio analysis revealed that FAD lifetime components, FAD«x;, FADt; and
FADrt,,, are the most important parameters for classifying the reprogramming status of
cells (Figure 3.2E). This is consistent with the observation FAD lifetime components are
significantly different among EPCs, IMs, and iPSCs (Figures 3.1, B.2). We then plotted

the accuracy score as a function of the number of parameters (chosen based on the gain
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ratio values for random forest classifier) used for classification. This plot revealed that the
accuracy score increases with the number of parameters until 8 parameters and plateaus
thereafter (Figure 3.2F). We additionally noted that using FAD lifetime variables exclusively
(FAD T, T1, T2, 011; collected in the FAD channel alone), high classification accuracy can be
achieved for predicting iPSCs (AUC = 0.944), IMs (AUC = 0.968) and EPCs (AUC = 0.998)
(Figures 3.2G, B.4E,F). Using only FAD lifetime parameters ensures minimal imaging time
of 2.5 min per puFeature (Figure 3.2H), and no additional reliance on intensity parameters
which are associated with higher variability due to the confounding factors of intensity
levels (throughput due to laser power, detector gain and inner filter effects). Hence, FAD

lifetime parameters alone are sufficient to predict the reprogramming status of cells.

Pseudotemporal ordering of single cells reveals heterogeneous cell

populations

To study the heterogeneity of reprogramming pFeatures, we used 11 metabolic and 8 nuclear
parameters to construct pseudotime single-cell trajectories of cellular reprogramming using
Monocle3 program [259, 276]. The resultant trajectories consisted of EPCs, IMs, and iPSCs
distributed across 10 clusters, 4 branching events, and a disconnected branch (Figure 3.3A-
C). Notably, pseudotime highly correlated with the actual reprogramming time points
(Figures 3.3B, B.5A).

The starting EPCs were heterogeneous and occupied three clusters (Clusters: 1,
2, 3). While cluster 2 consists of starting EPCs that undergo reprogramming, clusters 1
and 3 constituted the disconnected branch with EPCs that may not easily be permissive to
reprogramming. iPSCs predominantly occupied two clusters (clusters 7, 10) irrespective
of the reprogramming timepoint, while IMs belonged to several clusters (clusters 4, 5, 6, 8,
9) with clusters 6 and 8 concentrated at the unsuccessful reprogramming branches (Figure
3.3C). Overall, this single-cell trajectory map is indicative of reprogramming heterogeneity,

i.e., cells that advance right at branch points 1, 2, and 3 completely reprogram to iPSCs
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within 25 days of reprogramming initiation, while cells that proceed left at branch points 1
and 3 remain at the intermediate stage (Figure 3.3A).

Subsequent heatmap analysis on the clusters in the single-cell reprogramming
trajectory map revealed that the clusters exhibited correlation patterns based on their
reprogramming status, i.e., EPCs (cluster 2) have a high correlation to early IMs (cluster
4), while late IMs (cluster 5, 6, 8, 9) demonstrate high correlation to iPSCs (cluster 10)
(Figure 3.3D). We then compared IMs that undergo reprogramming (cluster 9) and the IMs
(cluster 6 and 8) that do not reprogram to iPSCs, and noted differences in their NAD(P)H
lifetime components, indicating that these parameters might play a role in determining
reprogramming cell fate.

To further examine the parameters that distinguished the cell clusters (Figure B.5B),
we performed spatial correlation analysis using Moran’s I [277]. When the parameters
were ranked by their effect size (Moran’s I), FAD lifetime parameters (FAD 1y, T2, Trm)
were found to be the most important in distinguishing clusters followed by NAD(P)H
lifetime parameters (NAD(P)H T,, o1, T1) (Figures B.5B). This result is consistent with
high gain ratio values for FAD lifetime parameters (Figure 3.2D) and the observation that
FAD lifetime parameters are significantly different among EPCs, IMs, and iPSCs (Figure
3.1D).

Overall, while FAD parameters are important in distinguishing EPCs, IMs, and
iPSCs; NAD(P)H parameters are key for determining the eventual reprogramming fate
of cells. When we plotted the identified important metabolic parameters as a function
of pseudotime, we observed that they undergo biphasic changes during reprogramming
potentially representative of the OXPHOS burst (Figure 3.4E-J). These pseudotime tra-
jectory plots provided increased temporal resolution as compared to our previous plots
(Figure B.2). Taken together, our reprogramming trajectory analyses provided insights into
reprogramming heterogeneity at a high temporal resolution and unprecedented single-cell

resolution.
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Figure 3.3: Construction of single-cell reprogramming trajectories using metabolic and
nuclear parameters reveals heterogeneity during reprogramming. Trajectory of repro-
gramming EPCs constructed from the metabolic and nuclear parameters based on UMAP
dimension reduction using Monocle (Code 1) showed four branch points, colored by A)
cell type and B) pseudotime. C) Monocle UMAP plots showing clustering of reprogram-
ming EPCs. Samples were grouped into 10 clusters. Cells colored by cluster. D) Heatmap
representing the metabolic and nuclear parameters of 10 clusters. Each column is a separate
cell group based on the generated clusters and each row represents a single metabolic or
nuclear parameter. Dotplots indicating the expression of E) FADT,, F) FAD«y, G) FADT,,,
H) NAD(P)HT,, I) NAD(P)He; and, J) NAD(P)Hrt, along the pseudotime. Smooth lines
are composed of multiple dots representing the mean expression level at each pseudotime,

regardless of the cell type. Four branch points are labelled on the smooth lines.

Isolation of high-quality iPSCs

The terminal goal of any reprogramming platform is to successfully isolate iPSCs that can
be used for downstream applications. Using the combination of OMI, uCP platform, and
machine learning models developed in this study, we were able to successfully isolate
high-quality iPSCs (Figure 3.4).

First, we tracked the metabolic and nuclear parameters of pFeatures throughout the
reprogramming timecourse using OMI (Figure 3.4A). Second, we employed our random
forest classification model to predict the reprogramming status of the tracked pFeatures
(Figure 3.4B). Third, we inferred the pseudotimes during the reprogramming timecourse
to monitor the progress of the puFeatures along the reprogramming trajectory (Figure
3.4C). Finally, we performed immunostaining on the pFeatures, which showed that the
reprogramming status predictions made by the machine learning models correlated well

with the actual staining (Figure 3.4D).
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Figure 3.4: Optical metabolic imaging of pFeatures aids in the identification and isola-
tion of iPSC populations. A) Representative optical redox ratio images of a single pFeature
at different days through the reprogramming time course. The color bar is indicated on the
right. Scale bar, 100 ym. B) Stacked column bar graph showing variation in the distribution
of cell types during reprogramming as predicted by random forest classifier using all
metabolic and nuclear parameters. The color of the bar corresponds to the cell type and
the height of the bar represents the percentage of cell types. C) Violin plots showing the
distribution of reprogramming pseudotime of single cells within a pFeature as a function
of the actual reprogramming timepoint. Statistical significance was determined by one-way
analysis of variance (ANOVA) using the Kruskal-Wallis test for multiple comparisons to
Day 0; ns = p >0.05, * for p <0.05, ** for p <0.01, *** for p <0.001, *** for p <0.0001).
D) Representative images of cell subpopulations on pFeatures at different days through
the reprogramming time course, stained using antibodies against Hoechst (blue), TRA-
1-60 (white), Nanog (green) ,and CD71 (magenta). E) Representative image of iPSC
colony isolated from a pFeature, stained with Hoechst (nuclear dye), TRA-1-60, and Nanog
(pluripotency markers). Scale bar, 50 ym. F) iPSCs derived from pCP substrates show
normal karyotype suggesting that no major chromosome abnormality was present within

cells after reprogramming.

We then went on to isolating iPSCs from the uCP platform based on the predictions
made by the random forest classification model. The physical separation of micropatterns
from one another, combined with high fraction of predicted iPSC cells, even up to 100%,
throughout the pFeature resulted in easy picking and isolation of reprogrammed iPSCs.
We further confirmed that the isolated iPSCs expressed pluripotency markers (Figure 3.4E)
and showed no genomic abnormalities (Figure 3.4F), indicating that our reprogramming

platform can be used to generate genetically-stable iPSC lines.
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3.4 Discussion

Here, we report a non-invasive, high-throughput, quantitative, and label-free imaging
platform to predict the reprogramming status of EPCs by combining micropatterning, live-
cell autofluorescence imaging and automated machine learning. We are able to predict the
reprogramming status of EPCs at any timepoint during reprogramming with a prediction
accuracy of 95% and model performance of 0.99 (AUC of ROC) using random forest
classification model with 11 metabolic parameters and 8 nuclear parameters. Additionally,
we presented the single-cell roadmap of EPC reprogramming, which reveals diverse cell
fate trajectories of individual reprogramming cells.

Recent evidence indicates that metabolic changes during reprogramming include
decreasing OXPHOS and increasing glycolysis [65, 72], along with a transient hyper-
energetic metabolic state, called as OXPHOS burst. This OXPHOS burst occurs at an
early stage of reprogramming and shows characteristics of both high OXPHOS and high
glycolysis, which could be a regulatory cue for the overall shift of reprogramming [68-70,
278]. These changes are accompanied by alterations in the amounts of corresponding
metabolites and have been confirmed by genome-wide analyses of gene expression, protein
levels and metabolomic profiling [53, 66, 279, 280]. The shifts in cellular metabolism
affect enzymes that control epigenetic configuration [281], which can impact chromatin
reorganization and provide a basis for changes in nuclear morphology as well as gene
expression during reprogramming [55, 60, 62, 249]. Consistent with these studies, the
redox ratio increases during reprogramming (Figure 3.1D), which could be indicative of
increased glycolysis during reprogramming.

The changes in NAD(P)H and FAD lifetime parameters that occur during repro-
gramming (Figures 3.1, B.2) could reflect changes in quencher concentrations, such as
oxygen, tyrosine, or tryptophan, or changes in local temperature and pH [250, 282, 283].
Specifically, the biphasic changes in the metabolic and nuclear parameters could be tran-

sient due to the increased production of ROS by mitochondria [250, 268, 284, 285] during
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OXPHOS burst. The generated ROS further serves as a signal to activate Nuclear Factor

(erythroid derived 2)-like-2 (NRF-2), which then induces hypoxia-inducible factors (HIFs)
that could promote glycolysis during reprogramming by increasing the expression levels of
the glycolysis-related genes [65, 66, 70]. Moreover, the importance of FAD parameters for
distinguishing various reprogramming cell types (Figures 3.1, B.2 3.2E, B.5B) could point
to the significant changes in the mitochondrial microenvironment during reprogramming.
The differences in NAD(P)H lifetime parameters between IMs that successfully undergo
reprogramming and the ones that don’t, may suggest the role of NAD(P)H in impacting
reprogramming barriers and warrants further investigation.

The classification analysis revealed that models trained on all 11 metabolic and 8
nuclear parameters yielded the highest accuracy for classification of reprogramming status
of cells. Random forest classification using only FAD lifetime parameters yielded compara-
tively high ROC AUC values (Figures 3.2G, B.4E,F). Additionally, FAD lifetime parameters
were more accurate for predicting reprogramming status than using nuclear parameters
alone, which can be obtained using widefield or confocal fluorescence microscopy. Imaging
only FAD lifetime parameters significantly reduces the time of imaging especially when
multiple pFeatures are trying to be assessed for iPSC quality at a manufacturing scale and
also eliminates the variability associated with intensity measurements.

Our single-cell reprogramming trajectory maps built based on metabolic and nuclear
parameters (Figure 3.3) could indicate that the reprogramming process could be proceeded
by a combination of elite and stochastic models [42]. While there seems to be a fraction of
starting EPCs that are refractory towards reprogramming supporting of the elite model
of reprogramming [47], there is also a fraction of intermediate cells at various stages of
reprogramming that do not completely reprogram to iPSCs corroborating the stochastic
model of reprogramming [27].

Much of the current work to understand the heterogeneity during reprogramming

relies on bulk analysis [175, 181, 183] or single-cell analysis techniques [49, 58, 158, 187-190,
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204, 205]. While bulk samples obscure variability in both the starting cell population and

during fate conversion, owing to the variable kinetics and low efficiency of reprogramming;
single-cell techniques disrupt the cells” microenvironment, resulting in significant changes
in the biophysical properties of cells undergoing reprogramming. Our reprogramming
platform overcomes these challenges of the current methods by using the combination of
uCP platform, OMI, and Monocle algorithm. Firstly, uCP platform ensures an intact mi-
croenvironment for reprogramming cells while also allowing for analysis at the single-cell
level. Secondly, OMI has several spatial and temporal resolution advantages compared
with traditional assays enabling greater insights into reprogramming heterogeneity. OMI
can be performed at high resolution to enable measurements at the single-cell level and
is non-destructive allowing for spatial integrity measurements of neighboring cells. OMI
also has a high temporal resolution enabling time-course study of reprogramming. Finally,
Monocle algorithm [259] is a trajectory inference method that learns combinatorial changes
which each cell must go through as a part of the reprogramming process, and subsequently
places each cell at its proper location in the trajectory, thus overcoming the problems of
reprogramming trajectories built based on absolute time points which disregard the asyn-
chrony of the reprogramming process. Overall, we hope that the generated reprogramming
trajectories will help deepen our understanding of the mechanisms of the reprogramming
process. In addition, understanding these mechanisms can contribute to the identification
of somatic cells or early reprogramming cells which are refractory towards reprogramming,
and thus be used to increase the success rate of iPSC generation from patient-derived
primary cells or cell lines.

Our reprogramming platform could contribute to the long-term commercial success
of iPSC-derived therapies by migrating the iPSC manufacturing process from laborious,
time-consuming, error-prone high-risk lab bench protocol to an industrial-scale, GMP-
compliant manufacturing system. Firstly, uCP platform involves direct ECM printing

onto optically clear substrates (Figure B.1) and does not involve any gold coating unlike
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traditional microcontact printing methods [231, 286], making the process cost-effective
and simpler by eliminating the need for cleanroom access. We were also able to isolate
fully pluripotent iPSCs without any genomic abnormalities (Figure 3.4) using this uCP
platform, indicating that this platform could be adapted for biomanufacturing of GMP-
grade iPSCs. Secondly, we used erythroid progenitor cells isolated from peripheral blood
as the starting cell type for reprogramming due to their lack of genomic rearrangements
and demonstrated reprogramming ability [186, 287]. Moreover, blood collection is a
minimally invasive procedure, and collected cells are naturally replaced as the tissue is
self-renewing, making it suitable for generating iPSCs. Thirdly, we used a combination of
oriP/EBNA-based viral-free non-integrating episomal reprogramming plasmids described
previously [192, 288], that avoid the safety concerns surrounding the use of integrating
viral vectors. Moreover, these episomes are lost at around 5% per cell generation due
to defects in plasmid synthesis and partitioning and thus iPSCs devoid of plasmids can
easily be isolated for clinical applications [38, 289]. We also used xeno-free components
for feeder-free reprogramming and maintenance of iPSCs to eliminate the inconsistencies
arising from the undefined nature of xeno-components and ensures GMP compliance.
Finally, the autofluorescence imaging technique is label-free unlike other methods to study
metabolism like electron microscopy, immunocytochemistry, and colorimetric metabolic
assays. It also enables non-destructive real-time monitoring of live cells with lower sample
phototoxicity compared to single-photon excitation [250]. Taken together, the processes of
nCP platform fabrication, reprogramming, autofluorescence imaging, iPSC identification
based on machine learning models and iPSC isolation can all be automated, and be ex-
tended to different reprogramming methods [290]); to other starting cell types (fibroblasts,
keratinocytes); to other parameters (cell morphology [160, 163, 164] and mitochondrial
structure [72, 279, 291]), and to other processes (direct reprogramming, differentiation
[292-295]); making it an attractive platform for biomanufacturing of industrial-scale iPSCs

and iPSC-derived cells.
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3.5 Materials and Methods

EPC isolation and cell culture

EPCs were isolated from fresh peripheral human blood that was obtained from healthy
donors (Interstate Blood Bank, Memphis, TN). Blood was processed within 24 hours of
collection, where hematopoietic progenitor cells were extracted from whole blood using
negative selection (RosetteSep; STEMCELL Technologies) and cultured in polystyrene
tissue culture plates in erythroid expansion medium (STEMCELL Technologies) for 10
days to enrich for EPCs. Enriched EPCs from Day 10 were examined by staining with APC
Anti-Human CD71 antibody (334107; Biolegend; 1:100) and incubating for 1 hour at room

temperature. Data were collected on Attune Nxt flow cytometer and analyzed with Flow]Jo.

Micropattern Design and PDMS stamp production

First, a template with the feature designs was created in AutoCAD (Autodesk). The
template was then sent to the Advance Reproductions Corporation, MA for the fabrication
of a photomask, and a 6-inch patterned Si wafer was fabricated by the Microtechnology
Core, University of Wisconsin-Madison, WI [296]. Using soft photolithography techniques,
the Si wafer was spin-coated with a SU-8 negative photoresist (Y13273 1000L 1GL, MICRO
CHEM) and exposed to UV light. The Si mold was then developed for 45 minutes in SU-8
developer (PGMEA, 537543, Sigma) which yielded features with a height of 150 um. The
Si mold was then washed with acetone and isopropyl alcohol.

Elastomeric stamps used for microcontact printing were generated by standard soft
lithographic techniques. Briefly, the silicon mold was rendered inert by overnight exposure
in vapors of (tridecafluoro-1, 1, 2, 2-tetrahydrooctyl) trichlorosilane. Polydimethylsiloxane
(Sylgard 184 silicon elastomer base, 3097366-1004, Dow Corning) (PDMS) was prepared
at a ratio of 1:10 curing agent (Sylgard 184 silicone elastomer curing agent, 3097358-1004,

Dow Corning) and degassed in a vacuum for 30 minutes. The PDMS was then poured
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over the SU-8 silicon mold on a hot plate and baked at 60 °C overnight to create the PDMS

stamp.

uwCP Well Plate construction

Microcontact patterned (nCP) substrates were constructed based on previous studies [260,
261, 297]. In brief, polydimethylsiloxane (PDMS) stamps with 300 pm radius circular
features were coated with Matrigel (WiCell Research Institute) for 24 h. After 24 h, the
Matrigel-coated PDMS stamp was dried with N, and placed onto 35 mm cell culture treated
ibiTreat dishes (81156; Ibidi). A 50 g weight was added on top of the PDMS stamps to
ensure even pattern transfer from the Matrigel-coated PDMS stamp to the ibiTreat dish.
This setup was incubated for 2 h at 37°C. The 35 mm ibiTreat dish was then backfilled
for 30 min at RT with PLL (20 kDa)-g-(3.5)-PEG (0.1 mg/mL solution) (Susos AG), a
graft polymer solution with a 20 kDa PLL backbone with 2 kDa PEG side chains and a
grafting ratio of 3.5 (mean PLL monomer units per PEG side chain). The ibiTreat dish was
then washed with PBS and exposed to UV light for 15 min for sterilization to yield the

micropatterned substrate.

Reprogramming

Day 10 EPCs were electroporated with four episomal reprogramming plasmids encoding
Oct4, shRNA knockdown of p53 (#27077; Addgene, Watertown, MA); Sox2, K1f4 (#27078;
Addgene); L-Myc, Lin28 (#27080; Addgene); miR302-367 cluster (#98748; Addgene),
using the P3 Primary Cell 4D-Nucleofector Kit (Lonza) and the EO-100 program [33, 192].
Electroporated EPCs were seeded onto micropatterned substrates with erythroid expansion
medium (STEMCELL Technologies) at a seeding density of 2000k cells/dish. Cells were
supplemented with ReproleSR (STEMCELL Technologies) on alternate days starting from

Day 3 without removing any medium from the well. On Day 9, the medium was entirely
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switched to ReproleSR, and the ReproleSR medium was changed daily starting from Day

10.

Isolation of iPSCs

To isolate high-quality iPSC lines, candidate colonies were picked from micropatterns
using a 200 pL micropipette tip and transferred to Matrigel-coated polystyrene tissue
culture plates in mTeSR1 media (WiCell Research Institute, Madison, WI). If additional
purification was required, one additional manual picking step with a 200 uL micropipette
tip was performed. During picking and subsequent passaging, the culture media was
often supplemented with the Rho kinase inhibitor Y-27632 (Sigma-Aldrich) at a 10 uM
concentration to encourage cell survival and establish clonal lines. iPSCs obtained from
EPCs were maintained in mTeSR1 media on Matrigel-coated polystyrene tissue culture
plates and passaged with ReLeSR (STEMCELL Technologies) every 3-5 days. All cells

were maintained at 37°C and 5% CO,.

Cell Culture

H9 Embryonic Stem Cell (ESC) line was obtained from WiCell Research Institute, Madison,
WI and was maintained in mTeSR1 medium on Matrigel-coated tissue culture polystyrene
plates. Cells were passaged every 4-5 days at a ratio of 1:8 using ReLeSR solution (STEM-
CELL Technologies). Human Dermal Fibroblast (HDF) line was a gift from Dr. Bikash
Pattnaik (UW-Madison) which was obtained from biopsy skin sample of an anonymous
donor through the University of Wisconsin Foundation. HDFs were cultured in DMEM
(11965092, ThermokFisher Scientific) supplemented with 10% FBS (WiCell Research Insti-
tute) and 1% Penicillin/Streptomycin (15140122, ThermoFisher Scientific). All cells were
maintained at 37°C in 5% CO,, and tested monthly for possible mycoplasma contamination

(WiCell Research Institute).
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Antibodies and Staining

All cells were fixed for 15 minutes with 4% paraformaldehyde in PBS (Sigma-Aldrich, St.
Louis, MO) and permeabilized with 0.5% Triton-X (Sigma-Aldrich) for >4 hours at room
temperature before staining. Hoechst (H1399; Thermo Fisher Scientific) was used at 5
pg/mL with 15 min incubation at room temperature to stain nuclei. Primary antibodies
were applied overnight at 4°C in a blocking buffer of 5% donkey serum (Sigma-Aldrich)
at the following concentrations: Anti-Laminin (L9393; Sigma-Alrich) 1:500; TRA-1-60
(MAB4360; EMD Millipore) 1:100; Nanog (AF1997; R&D Systems) 1:200; CD71 (334107;
Biolegend) 1:100. Secondary antibodies were obtained from Thermo Fisher Scientific and
applied in a blocking buffer of 5% donkey serum for one hour at room temperature at
concentrations of 1:400 — 1:800. A Nikon Eclipse Ti epifluorescence microscope was used
to acquire single 10x images of each micropattern, and a Nikon AR1 confocal microscope
was used to acquire 60x stitched images of each micropattern using the z-plane closest to

the micropatterned substrate for reprogramming studies.

Autofluorescence Imaging of NAD(P)H and FAD

Fluorescence lifetime imaging (FLIM) was performed at different timepoints during repro-
gramming by an Ultima two-photon microscope (Bruker) composed of an ultrafast tunable
excitation laser source (Insight DS+, Spectra Physics) coupled to a Nikon Ti-E inverted
microscope with time-correlated single-photon counting electronics (SPC-150, Becker &
Hickl, Berlin, Germany). The laser source enables sequential excitation of NAD(P)H at
750 nm and FAD at 890 nm. NAD(P)H and FAD images were acquired through 440/80
nm and 550/100 nm bandpass filters (Chroma), respectively, using Gallium arsenide phos-
phide (GaAsP) photomultiplier tubes (PMTs; H7422, Hamamatsu). The laser power at the
sample was approximately 3.5 mW for NAD(P)H and 6 mW for FAD. Lifetime imaging
using time-correlated single-photon counting electronics (SPC-150, Becker & Hickl) was

performed within Prairie View Atlas Mosaic Imaging (Bruker Fluorescence Microscopy) to
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capture the entire pFeature. Fluorescence lifetime decays with 512-time bins were acquired
across 512 x 512 pixel images with a pixel dwell time of 4.8 ps and an integration period
of 60 seconds. Photon count rates were 1-5 x 10° and monitored during image acquisi-
tion to ensure that no photobleaching occurred. All samples were placed on a stage-top
incubator and illuminated through a 40x/1.15 NA objective (Nikon). The short lifetime of
red-blood-cell fluorescence at 890 nm was used as the instrument response function and
had a full-width half maximum of 240 ps. A YG fluorescent bead (t = 2.13+0.03 ns, n= 6)

was imaged daily as a fluorescence lifetime standard [212, 250].

Image Analysis

Fluorescence lifetime decays were analyzed to extract fluorescence lifetime components
via SPCImage software (Becker & Hickl). A threshold was used to exclude pixels with low
fluorescence signal (that is, background). Fluorescence lifetime decays were deconvolved
from the instrument response function and fit to a two-component exponential decay
model, I(t) = oye V™ + oye™ /™ + C, where I(t) is the fluorescence intensity as a function
of time t after the laser pulse, x; and «; are the fractional contributions of the short and
long lifetime components, respectively (that is, oy + &, = 1), T3 and T, are the short
and long lifetime components, respectively, and C accounts for background light. Both
NAD(P)H and FAD can exist in quenched (short lifetime) and unquenched (long lifetime)
configurations; the fluorescence decays of NAD(P)H and FAD are therefore fit to two
components. Fluorescence intensity images were generated by integrating photon counts
over the per-pixel fluorescence decays. A pixel classifier was trained on 15 images using
ilastik [269] software to identify the pixels within the nuclei in NAD(P)H images. An
object classifier was then used to identify the nuclei in NAD(P)H images using the pixel
classifier along with the following parameters: Method = Simple, Threshold = 0.3, Smooth
= 1, Size Filter Min = 15 pixels, Size Filter Max = 500 pixels. A customized CellProfiler

[198] pipeline was then used to obtain metabolic and nuclear parameters. The CellProfiler
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pipeline applied the following steps: Primary objects (nuclei) were inputted from ilastik.
Secondary objects (cells) were then identified in the NAD(P)H intensity image by outward
propagation of the primary objects. Cytoplasm masks were determined by subtracting the
nucleus mask from the cell mask. Cytoplasm masks were applied to all images to determine
single-cell redox ratio and NAD(P)H and FAD lifetime parameters. A total of 11 metabolic
parameters were analyzed for each cell cytoplasm: Optical Redox Ratio, [NAD(P)H],
NAD(P)H«,, NAD(P)HT,, NAD(P)HT,, NAD(P)HT.,, [FAD], FAD«,, FADT,, FADT,,
FADt,,. A total of 8 nuclear parameters were analyzed for each nucleus: Area, Perimeter,
MeanRad, NSI, Solidity, Extent, #Neigh, 1stNeigh. Representative images of the optical
redox ratio (fluorescence intensity of NAD(P)H divided by the summed intensity of
NAD(P)H and FAD) and mean fluorescence lifetimes (t,, = o171 + x»T>) of NAD(P)H

and FAD were computed using the Fiji software.

UMAP clustering

Clustering of cells across EPCs, IMs, and iPSCs was represented using Uniform Manifold
Approximation and Projection (UMAP). UMAP dimensionality reduction was imple-
mented using R on all 11 OMI parameters (optical redox ratio, NAD(P)H t,,,, T1, T2, 1, &2;
FAD 1., T1, T2, &1, 0z) and/or all 8 nuclear parameters (Area, Perimeter, MeanRad, NSI,
Solidity, Extent, #Neigh, 1stNeigh) for projection in 2D space. The following parameters
were used for UMAP visualizations: “n_neighbors”: 20; “min_dist”: 0.3, “metric”: jaccard,

"n_components” : 2.

Z-score hierarchical clustering

Z-score of each metabolic and nuclear parameter for each cell was calculated. Z-score
= (Hobserved — Hrow/ Orow) Where Hopserved is the mean value of each parameter for each cell,
low iS the mean value of each parameter for all cells together, and 0,4, is the standard

deviation of each parameter across all cells. Heatmaps of z-scores for all OMI variables were
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generated to visualize differences in each parameter between different cells. Heatmaps

were generated in Python.

Classification Methods

Random forest, simple logistic, k-nearest neighbor (IBk), and naive bayes classification
methods were trained to classify reprogramming cells into EPCs, IMs, and iPSCs using
Weka software [298]. All data were randomly partitioned into training and test datasets us-
ing 15-fold cross-validation for training and test proportions of 93.3% and 6.7%, respectively.
Each model was replicated 100 times; new training and test data were generated before
each iteration. Parameter weights for metabolic and nuclear parameters were extracted
using the GainRatioAttributeEval function in Weka to determine the contribution of each
variable to the trained classification models. Receiver operating characteristic (ROC) curves
were generated to evaluate the classification model performance on classification of test set
data and are the average of 100 iterations of data that was randomly selected from training
and test sets. All of the ROC curves displayed were constructed from the test datasets

using the model generated from the training data sets.

Karyotype Analysis

Cells cultured for atleast 5 passages were grown to 60-80% confluence and shipped for
karyotype analysis to WiCell Research Institute, Madison, WI. G-banded karyotyping
was performed using standard cytogenetic protocols [232]. Metaphase preparations were
digitally captured with Applied Spectral Imaging software and hardware. For each cell
line, 20 GTL-banded metaphases were counted, of which a minimum of 5 were analyzed
and karyotyped. Results were reported in accordance with guidelines established by the

International System for Cytogenetic Nomenclature 2016 [233].



80
Statistics

p-values were calculated using non-parametric Kruskal-Wallis test for multiple unmatched
comparisons with GraphPad Prism software. Statistical tests were deemed significant at
a < 0.05. Technical replicates are defined as distinct uFeatures within an experiment.
Biological replicates are experiments performed with different donors. No a priori power

calculations were performed.
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4 CHROMATIN MODULATION FOR EFFICIENT CRISPR-CASQ GENE
EDITING OF HUMAN PLURIPOTENT STEM CELLS

Work in this chapter was adapted from:

Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem
Cells

Kaivalya Molugu, Namita Khajanchi, Cicera R. Lazzarotto, Kirstan Gimse, Amritava Das,
Shengdar Q. Tsai, Krishanu Saha

Article in preparation.
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4,1 Abstract

Genome-edited human induced pluripotent stem cells (iPSCs) have broad applications in
disease modeling, drug discovery, and regenerative medicine. Despite the development
of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, the
gene editing process is inefficient and can take several weeks to months to generate edited
iPSC clones. One of the major challenges is that chromatin compaction limits the Cas9
protein access to the target DNA. To overcome these challenges, we developed a strategy
to improve the speed and efficiency of the iPSC gene editing process via the application
of histone modifier, Trichostatin A (TSA; Class I and II histone deacetylase inhibitor or
HDAC inhibitor). We observed that TSA increased the gene-editing efficiency of iPSCs by
~3.5 fold and shifted the DNA repair pathway balance slightly towards non-homologous
end-joining repair pathway (NHE]) over microhomology-mediated end joining pathway
(MME]J); while concurrently ensuring no increased off-target effects, retaining pluripotency
and genomic integrity. We also developed an in situ imaging-based pipeline to quantify the
TSA-induced change in chromatin condensation of iPSCs to rapidly enable the identification
of iPSCs that are amenable to gene editing. Overall, we developed a method to generate
edited iPSCs rapidly and efficiently, which could further aid in the biomanufacturing of

therapeutically relevant gene-edited iPSCs.

4.2 Introduction

The pairing of gene editing technologies with human iPSCs for disease modeling overcomes
the problem of animal models and human immortalized cell line models which do not
accurately represent the genetic background or cellular physiology of the patient [81, 88,
299, 300]. Human iPSC-based models are thus a valuable resource for studying disease
mechanisms [78, 301, 302], screening potential new therapeutics and testing toxic side-

effects of drug treatments [79, 80, 303-305]. Moreover, performing gene editing on patient-
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derived iPSCs prior to differentiation enables the generation of isogenic iPSC lines which
can function as a control for studying the genetic disease model of interest [306-308].
Additionally, gene-corrected patient-specific iPSCs can be used for cellular therapies [309—
314] and could overcome the problem of immune rejection.

However, the process of gene-editing iPSCs is typically laborious and inefficient
involving multiple steps, requiring lengthy cell culture periods, drug selection, and several
clonal events (i.e., initial reprogramming, gene targeting, and subsequent genetic excision
of a selection cassette [110, 192, 315, 316]). Also, the selection of rare targeted clones
in iPSCs can be particularly difficult because they grow poorly as single cells [111, 317].
Several recent approaches have been developed to improve the specificity, efficiency, and
versatility of the CRISPR-Cas9 gene editing process by optimizing the structure of gRNAs
[318-320], or by using modified nucleases strategies [121, 122], natural and engineered
Cas9 variants [124, 125, 321], and small molecules [126-128]. However, these techniques
still generate heterogeneous human cell populations that require time-consuming and
laborious steps significant subsequent characterization steps for on-target edits, off-target
effects, and unknown disease-causing mutations or risk variants [110]. Therefore, there
is a need to overcome these limitations for enabling the use of gene-edited iPSC for cell
therapies.

Recent work indicates that chromatin structure of the target can have significant
effects on Cas9 binding and gene editing efficiencies [115, 129, 131, 301], thus leading to
variation in targeting efficiency and choice of DNA repair pathway [143, 145, 146, 148,
149]. Studies have shown that closed chromatin can negatively affect Cas9 binding [130,
133-136] or delay CRISPR-Cas9 mutagenesis [137], nucleosomes can block or present a
hurdle for Cas9 access to DNA [138-140], and active transcription in open chromatin state
can directly stimulate DNA cleavage by influencing Cas9 release states in a strand-specific
manner [129, 142]. Moreover, off-target binding of Cas9 to "seed" sequences has been

shown to correlate with DNase I hypersensitivity sequences and inversely correlate with
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CpG methylation sites [113, 135, 137]. Although these studies have shown chromatin

structure can play a key role in gene editing and strategies have emerged to manipulate
chromatin state to modulate gene editing efficiency [133, 152-154], they are primarily
based on immortalized cell lines or cancer cell lines which may not be clinically relevant.
Moreover, though chromatin structure has been shown to impact off-target effects [113,
135, 137, 155] and the potency of iPSCs [62, 156], the impact of chromatin structure on
off-target effects and the potency of iPSCs in the context of gene editing has not been well
characterized. Here we address these challenges using a two-part strategy to study the
impact of chromatin structure on gene editing outcomes in iPSCs via the application of a
small molecule known to promote open chromatin state, called Trichostatin A (TSA; Class I
and II histone deacetylase inhibitor or HDAC inhibitor) [322]. First, we used live, in situ nu-
clear imaging to quantify the TSA-induced change in global chromatin state of iPSC nuclei,
called chromatin condensation [323]. Second, we performed extensive characterization to
assess the impact of TSA on gene editing outcomes i.e., on-target efficiencies, DNA repair
pathways, off-target effects, pluripotency, and genomic integrity of the iPSCs. We observed
that chromatin decondensation via TSA, increased the gene editing efficiency of iPSCs by
~3.5 fold and shifted the DNA repair pathway balance slightly towards non-homologous
end-joining repair pathway (NHE]) over microhomology-mediated end joining pathway
(MMEJ), while simultaneously ensuring genomic integrity and no increased off-target
effects. Overall, we developed a strategy for rapid and in situ imaging-based identification
of iPSCs amenable to gene editing, and also engineered the gene editing process to generate

edited iPSCs efficiently.
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4.3 Results

Optimization of Trichostatin A treatment for iPSC gene editing

We sought to develop a simple, yet robust, workflow to introduce mutations in iPSCs
without extensive use of deep sequencing (Figure 4.1A). We thus utilized a mono-allelic
mEGFP tagged HISTIH2B] WTC-11 human iPSC line (tag at C-terminus) [210] as it
provides two-fold advantages. First, targeting the mEGFP locus allows for easy assessment
of iPSC editing efficiency via fluorescence imaging or flow cytometry, since the percentage
of GFP" cells showed a strong linear correlation with the indel percentage determined by
deep sequencing of genomic DNA (Figure C.1A; R? = 0.9307). Second, these iPSCs enable
in situ live imaging of their cell nuclei to monitor chromatin changes during the process of
CRISPR-Cas9 gene editing. We employed the Alt-R® CRISPR-Cas9 2-part single guide RNA
(sgRNA) system (IDT), which consists of 1) crRNA sequence to target the mEGFP locus
in iPSCs (Figure 4.1B), and 2) ATTO 550 fluorescent dye labelled tracrRNA that binds to
Cas9. We tested a range of TSA concentrations (0-200 ng/mL) on iPSCs to determine the
effect of TSA on cell viability. We observed that cell viability decreased with the increase
in TSA concentration (Figure C.1B), with a considerable decrease for TSA concentration
> 25 ng/mL. We thus used TSA concentrations of 0, 3.13, 6.25, and 12.5 ng/mL for our
further studies. Next, we assessed a range of TSA treatment durations (0-24 hours) and
two methods for delivery for the Cas9 RNP complex (lipofection and electroporation)
to determine the optimal conditions for gene editing. Since TSA treatment duration of
20 hours (Figure C.1C) and lipofection (Figure C.1D) yielded the highest gene editing

efficiencies, we implemented these conditions for our subsequent experiments.

Trichostatin A enhances gene editing efficiency of iPSCs

After streamlining the gene editing strategy, we next sought to examine the effect of TSA

treatment on the gene editing efficiency of iPSCs. We first pre-treated the iPSCs with TSA
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(0, 3.13, 6.25, and 12.5 ng/mL) and subsequently imaged their nuclei. The images were

then used as inputs for a CellProfiler software [198] pipeline to output the chromatin
condensation% of the nuclei (Figure C.2A), defined as the ratio of total heterochromatin
intensity to the total nuclear intensity [323]. Immunofluorescence labeling validated the
heterochromatin foci identified in the GFP images by the CellProfiler pipeline i.e., the
H3K9Ac euchromatin histone mark was excluded from the heterochromatin foci, while
the H3K9Me3 heterochromatin histone mark overlapped with the heterochromatin foci
(Figure C.2B). Thus, chromatin condensation % is representative of the global chromatin
state of cells.

The nuclear image analysis pipeline revealed a decrease in chromatin condensation%
upon TSA treatment (Figure 4.1C,D), indicating that our nuclear imaging pipeline is
sensitive to the chromatin decondensation induced by TSA. We then assessed the dose-
dependence of Cas9 RNP transfection efficiency (% ATTO 5507 cells/viable cells)) by
performing flow cytometry analysis on day 2 after Cas9 RNP delivery. We noted high
transfection efficiencies >95% (Figure 4.1F), indicating successful delivery of Cas9 RNP
independent of the TSA concentration. Furthermore, flow cytometry analysis on day 6
after Cas9 RNP delivery revealed a positive correlation between that the gene editing
efficiency (% GFP" cells/viable cells) and the dose of TSA for concentrations up to 6.25
ng/mL (Figure 4.1G). While increasing the concentration of TSA to 6.25 ng/mL showed
~3.5 fold increase in gene editing efficiency, an additional increase in the TSA concentration
to 12.5 ng/mL did not increase the editing efficiency further. We reasoned that this could be
due to the higher cell toxicity that occurred at 12.5 ng/mL TSA concentration (Figure 4.1E).
Taken together, these results indicate that nuclear imaging is sensitive to the chromatin
condensation changes induced by TSA and that TSA enhances CRISPR-Cas9 mediated

gene editing in a dose-dependent manner.
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Figure 4.1: Trichostatin A increases CRISPR-Cas9 mediated gene editing efficiency of
iPSCs. A) Schematic showing the TSA-based gene editing strategy and analyses. B)
Schematic of the HISTTH2BJ-mEGFP locus with gRNA target sequence, PAM sequence,
and cut-site (black arrow) labelled. C) Representative images of HISTIH2BJ-GFP reporter
iPSC nuclei after TSA treatment (0, 3.13, 6.25, 12.5 ng/mL). Bright green spots indicate het-
erochromatin foci; Scale bar: 10 /mum. D) Box plots showing the distribution of chromatin
condensation %. Chromatin condensation % decreases with the application of TSA (n =
20 nuclei, 3 technical replicates per condition). E) Representative density flow cytometry
plots showing Ghost Dye™ Red 780 viability dye levels on iPSCs treated with TSA. The
quantification bar graph on the right indicates that cell viability (% GhostDye" cells/total
cells) decreases upon TSA treatment. F) Histograms showing ATTO 550 expression on
day 2 after Cas9 RNP delivery. The quantification bar graph on the right indicates that
transfection efficiency (% ATTO 550* cells/viable cells) does not change significantly upon
TSA treatment. G) Histograms showing GFP expression on day 6 after Cas9 RNP deliv-
ery. The quantification bar graph on the right indicates that gene editing efficiency (%
GFP" cells/viable cells) increases upon TSA treatment. Data represented in bar graphs are
represented as mean + SEM, n = 6 technical replicates per condition from 2 independent
experiments, p-values generated by Mann-Whitney non-parametric t-test for multiple com-
parisons to 0 ng/mL TSA; ns = p >0.05, * for p <0.05, ** for p <0.01, ** for p <0.001, ****
for p <0.0001.

Deep sequencing of edited iPSCs reveals changes in indel profiles

To gain a more detailed analysis of gene-edited events in iPSCs, we performed deep se-
quencing on edited cells obtained after TSA treatment. We harvested the genomic DNA on
day 6 after Cas9 RNP delivery. PCR using primers flanking the gRNA target sites was then

performed and prepared for next-generation sequencing (NGS) using the Illumina MiniSeq
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system. Sequencing data was then analyzed using the CRISPAltRations tool [324], which

allowed for quantitative analysis of observed indel mutations and their spatial distribution
in the target region (Figure 4.2A, Table C.4). We found the highest frequency of indels
three to four nucleotides upstream from the protospacer adjacent motif (PAM) sequence
(Figure 4.2A), consistent with reports of type II CRISPR systems. Next, we observed that
the percentage of edited reads containing insertion and deletion events increased upon TSA
treatment (Figure 4.2B,D), while the insertion and deletion profiles around the cut site
were similar (Figure 4.2C,E). Furthermore, we noted that edited reads contained higher
deletion events (~50-70%) than insertion events (~5-15%). Similar observations were re-
ported in deep sequencing analysis of human cells edited by S. Pyogenes Cas9 (SpyCas9)
[18]. We also observed that the percentage of edited reads with Single Nucleotide Poly-
morphisms (SNPs) decreased upon chromatin decondensation via TSA treatment (Figure
4.2F), while the relative distribution of SNPs around the cut site remained similar(Figure
C.2A). This is consistent with reports that indicate nucleosomes are enriched in SNPs [325,
326]. We next analyzed the variation in MME] and NHE] upon TSA treatment. While %in-
dels with NHE] increased, %indels with MME] decreased upon chromatin decondensation
via TSA treatment indicating DNA repair pathway balance shift towards NHE]J (Figure
4.2G,H). This is consistent with the recent study that demonstrated that NHE] is biased
towards euchromatin, while MME] is more efficient in heterochromatin contexts [149].
Taken together, these results indicate that TSA treatment leads to shifts in indel profiles

and the DNA repair pathway balance of edited iPSCs.
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Figure 4.2: Deep sequencing reveals shift in indel profiles upon TSA treatment. A)
Representative indel profile for iPSCs edited with mEGFP targeting gRNA, TSA treatment:
6.25 ng/mL. Allele frequencies are indicated on the right. B) Bar graphs showing increased
% edited reads with insertions upon TSA treatment. C) Representative insertion profiles
20 bp around the gRNA cut site. D) Bar graph showing increased % edited reads with
deletions upon TSA treatment. E) Representative deletion profiles 20 bp around the gRNA
cut site. Bar graphs showing F) increased % edited reads with only SNPs, G) increased
%indels with NHE], and H) decreased % indels with MME], upon TSA treatment. Data
represented in bar graphs are represented as mean + SEM, n = 3 technical replicates
per condition , p-values generated by non-parametric Kruskal-Wallis test for multiple
unmatched comparisons for multiple comparisons to 0 ng/mL TSA; ns = p >0.05, * for p

<0.05, ** for p <0.01, ** for p <0.001, **** for p <0.0001.

Off-target profiling and karyotypic analysis of edited iPSCs

Highly sensitive genome-wide, off-target analysis for our TSA-based editing strategy was
assayed by CHANGE-seq [115], which yielded a frequency distribution of the potential
off-target sites(Figure 4.3A,B, Table C.2). Top 12 off-target sites were amplified from
genomic DNA using the rhAmp-Seq system (IDT) and subsequently sequenced using the
[llumina MiniSeq system. Sequencing data was then analyzed using the CRISPAltRations
tool [324], which allowed for quantitative analysis of observed indel mutations (Table
C.5). We found that indel reads at off-target sites primarily constituted of SNPs and indel%
at off-target sites did not increase upon TSA treatment (Figure4.3C-F). Furthermore, we
found that the highest normalized on-target edit ratio was obtained for TSA concentration
of 6.25 ng/mL, representative of the optimal TSA concentration for generating gene editing
iPSCs. Corroborating with this observation, we did not note any significant increase in

local chromatin accessibility at the off-target sites upon TSA treatment (Figure C.3).
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Multiple gene-edited iPSC clones were isolated from the 6.25 ng/mL TSA treatment

condition and expanded for subsequent characterization for pluripotency and any genomic
abnormalities. Bulk-RNA sequencing (Table C.6) indicated that TSA treatment did not
decrease gene expression of pluripotency marker genes (OCT4, NANOG, SOX2, TRA-1-
60), indicating that TSA treatment does not affect the pluripotency of iPSCs. Besides, we
observed no changes in iPSC morphology during long-term culture of the edited cells,
indicating that TSA treatment does not cause aberrations in iPSC morphology. Karyotyping
analysis indicated no genomic abnormalities in four of the five clones, while one clone
showed an interstitial duplication in the long (q) arm of chromosome 20 in five of the
twenty cells examined. This is a known recurrent acquired duplication at this location in

human pluripotent stem cell cultures.
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Figure 4.3: Off-target and karyotypic analysis of edited iPSCs. A) Visualization of sites
detected by CHANGE-seq. The intended target mEGFP sequence is shown in the top line.
Cleaved sites (off-target) are shown below and are ordered top to bottom by CHANGE-
seq read count, with mismatches to the intended target sequence indicated by colored
nucleotides. Insertions are shown in smaller lettering between genomic positions, deletions
are shown by (-). Note that output is truncated to the top 12 sites. B) Manhattan plot
of CHANGE-seq-detected off-target sites organized by chromosomal position with bar
heights representing CHANGE-seq read count. C-F) Indel% at mEGFP on-target and top
12 off-target sites detected by CHANGE-seq, assayed by thAmpSeq system. While the
on-target indel % increases with TSA concentration, the off-target indel % remains the same.
G) Normalized on-target edit ratio for each of the 12 off-target sites plotted as a function
of TSA concentration. TSA concentration of 6.25 ng/mL yields the highest normalized
on-target edit ratio. H) Four of the five edited isolated iPSC clones (TSA treatment; 6.25
ng/mL) showed normal karyotype suggesting that no major chromosome abnormalities
after TSA-induced gene editing. Data represented in bar graphs are represented as mean
+ SEM, n = 3 technical replicates per condition, p-values generated by non-parametric
Kruskal-Wallis test for multiple unmatched comparisons to on-target site; ns = p >0.05, *

for p <0.05, ** for p <0.01, *** for p <0.001, **** for p <0.0001.

TSA promotes gene editing at multiple open and closed chromatin loci

Finally, we selected multiple gRNA sequences targeting different sites of open (HIST1H2B]
and AAVST) and closed chromatin (TRAC) to investigate if the observed TSA-induced
increase in gene-editing efficiency is specific to the gRNA sequence or the chromatin state
of the target locus. We noted that TSA treatment increased gene-editing efficiency at all
the sites independent of the gRNA sequence and initial chromatin state of the loci (Figure

4.4A). Corroborating with this observation, we noted an increase in the local chromatin
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accessibility at the on-target sites upon TSA treatment (Figure C.4A).

To further study the impact of TSA on iPSCs, we performed bulk-RNA sequencing
on TSA-treated iPSCs, and preliminary analysis showed that there were several upregulated
and downregulated genes upon TSA treatment (Table C.6), which are involved in cell
cycle regulation (MAGEA4, DHRS2), cell signaling (STMN?2) and cell growth regulation
(ERBB2, AHRR). A more detailed investigation with more replicates can allude to pathways

involved in TSA-induced increase in gene editing efficiency.
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Figure 4.4: TSA increases gene editing efficiency at multiple open and closed chromatin
loci. Bar graphs showing increased % editing efficiencies upon TSA treatment for 2 sites
each at HIST1H2B] (open), AAVS1 (open), and TRAC (closed) loci (n=1 technical repli-

cate).
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4.4 Discussion

Overall, we described an easy and rapid chromatin modulation-based CRISPR-Cas9 work-
flow to manufacture gene-edited iPSCs efficiently. We used TSA (HDAC inhibitor) as the
chromatin modulator, quantified TSA-induced chromatin decondensation using nuclear
imaging, and subsequently edited multiple open and closed chromatin loci in HIST1H2B]
tagged mEGFP reporter iPSCs.

Relative to the traditional CRISPR-Cas9 gene editing workflow, our streamlined
manufacturing workflow can: 1) increase the gene-editing efficiency up to ~3.5 fold while
ensuring no increased off-target mutations, and maintenance of pluripotency and genomic
integrity; 2) increase DNA repair by NHE] relative to MME]J; and 3) identify iPSCs more
amenable to gene editing based on nuclear imaging outputs, thus enabling the reduction in
cost and times associated with culturing and passaging to isolate rare edited iPSC clones.

To gain deeper insights into the mechanisms involved in TSA-induced gene editing
and push capabilities of this strategy, we performed scATAC and bulk-RNA sequencing
experiments to identify genome-wide changes in chromatin accessibility and gene expres-
sion. While our imaging pipeline revealed TSA-induced chromatin condensation changes
at the global level, scATAC-seq analysis revealed local changes in chromatin accessibility
at different regions in the genome (data not shown). Moreover, preliminary bulk-RNA
sequencing revealed several differentially regulated genes (Table C.6) across the genome.
However, further experiments and analyses need to be performed to identify the relevant
differentially regulated genes and pathways in a statistically significant manner. The knowl-
edge obtained from these sequencing studies can then be utilized to engineer the global
epigenome using small molecules or the local epigenome using strategies like siRNA [327]
and nuclease dead Cas9 (dCas9) [328], to further increase the gene editing efficiency of
iPSCs.

Additionally, our workflow can also enable the assessment of other biological pro-

cesses like cell proliferation, apoptosis, and DNA damage via imaging of GFP, CellEvent
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Caspase 3/7 Detection reagent [329], and immunostained histone H2AX phosphorylation

[330], respectively. Thus, the action of small molecules or any other perturbation and
the impacted processes could be tracked in parallel in each well via high-content nuclear
imaging. This study can also be extended in the future to study NHE] vs HDR (using an
HDR activated GFP to BFP switch), to other natural [87] or engineered [331] Cas enzyme
variants, to other epigenetic modifiers using GFP tagging approach, and to other cell types
including primary cells, cardiomyocytes, T-cells, and neural progenitors. Finally, since
iPSCs are a heterogeneous population, studying changes at the single-cell level may help
elucidate genome editing mechanisms more than looking at bulk level data. scATAC-
seq data generated from transfected iPSCs can be coupled to genome editing outcome
(via genotyping of transcriptomes [332]) for a single cell level look at the differences in
the transcriptional program between edited and unedited cells. The use of single-cell
sequencing-based techniques may also be useful where GFP tagging or confocal imaging

is not facile (e.g. primary T-cells).

4.5 Materials and Methods

Cell culture

Mono-allelic mEGFP-tagged HISTIH2B] human iPSCs (AICS-0061-036) were obtained
from Allen Institute for Cell Science. This cell line was derived from the WTC parental
line (GM25256) released by the Conklin Laboratory at the J. David Gladstone Institute.
iPSCs were maintained in mTeSR1 medium on Matrigel (WiCell) coated tissue culture
polystyrene plates (BD Falcon). Cells were passaged every 4-5 days at a ratio of 1:8 using
ReLeSR solution (STEMCELL Technologies). All cells were maintained at 37°C in 5% CO,

and tested monthly for possible mycoplasma contamination.
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Chemical reagents

Trichostatin A (Millipore Sigma) was resuspended in DMSO at stock concentrations of 2
mg/mL. Aliquots were then stored at -20° C. The purity of the inhibitor was assessed by
Millipore Sigma (>99%).

Cell viability

Flow cytometry was performed using Ghost Dye™ Red 780 viability dye (Tonbo Biosciences)
to determine the dose range of the TSA that can be administrated to the cells without
affecting cell viability. iPSCs (15,000 per well) were cultured overnight and incubated
with TSA in 96-well plates for 24 h. The next day, cells were singularized using Accutase
(STEMCELL technologies), washed with PBS, centrifuged at 300g for 5 minutes, and Ghost
Dye™ Red 780 viability dye was added at 1:1000 concentration for 20 minutes at room
temperature. Cells were then washed with PBS, spun down at 300g for 5 minutes, and
resuspended in 300 pL of PBS. Cells were run on an Attune NxT" flow cytometer (Thermo

Fisher Scientific) and subsequent analysis was performed using Flowjo software (BD).

SpyCas9 RNP preparation

RNPs were produced by complexing a two-component gRNA to SpyCas9. In brief, tracr-
RNA and crRNA were ordered from IDT, suspended in nuclease-free duplex buffer at 100
1M, and stored in single-use aliquots at -20°C. tracrRNA and crRNA were thawed, and
0.0625 pL of each component was mixed 1:1 by volume and annealed by incubation at
room temperature for 5 minutes to form a 50 uM sgRNA solution for each well of a 96
well plate. Recombinant sSNLS-SpCas9-sNLS Cas9 (Aldevron, 10mg/mL) was added to
the complexed gRNA at a 1:1 molar ratio (1000 ng/well, Total 0.1 uL) and incubated for 5

minutes at room temperature to form RNP.
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RNP delivery

iPSCs were singularized using Accutase and counted using a Countess II FL Automated
Cell Counter (Thermo Fisher Scientific) with 0.4% Trypan Blue viability stain (Thermo
Fisher Scientific). iPSCs were then seeded at 15,000 cells/well on 96 well glass bottom
plates (Cellvis) in mTeSR1 (WiCell) and 10 uM ROCK inhibitor (Y27632, Selleckchem),
two days before lipofection or electroporation. On the following day, iPSCs were treated
with TSA (0-200 ng/mL) for 16 — 24 hours.

iPSC lipofections were performed using 0.5 pL Lipofectamine Stem Cell Reagent/well
(1000 ng Cas9/well and sgRNA at 1:1 molar ratio). Cells remained undisturbed for 48
hours and were then passaged 1:4 using ReLeSR solution followed by daily mTeSR1 media
changes for 4 additional days before downstream analysis.

iPSC electroporations were performed using the 4D-Nucleofector System (Lonza)
as per the manufacturer’s instructions. Briefly, iPSCs were harvested using Accutase
(STEMCELL Technologies) and counted. 2 x 10° cells per electroporation were then
centrifuged at 300g for 5 min. Media was aspirated and cells were resuspended using 20
ul of P3 solution (Lonza) with 3pug of Cas9 and sgRNA at a 1:1 molar ratio. iPSCs were
then electroporated using protocol CB-150. After nucleofection, samples were incubated in
nucleocuvettes at room temperature for 15 min before plating into 6 x 10* cells per well on
96 well glass bottom plate in mTeSR1 media +10pM ROCK inhibitor. Media was changed

24 hours post-transfection and replaced with mTeSR1 medium.

Flow cytometry and fluorescence activated cell sorting

Flow cytometry was performed on singularized iPSCs using AttuneNxt flow cytometer
(ThermoFisher Scientific) and analyzed using the Flow]Jo Software. Ghost Dye™ Red
780, ATTO 550, and GFP fluorescence were detected using 780/60, 585/16, and 530/30
filters in BL1, YL1, and RL3 positions, respectively. Gates were established by running

singularized untransfected iPSCs. The percentage of viable cells was calculated as the ratio
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of Ghost Dye™ Red 780- cells to the total number of single cells. Transfection efficiency
was calculated as the percentage of ATTO 550" cells to the total number of viable cells
on day 2 post-transfection. Gene editing efficiency was calculated as the percentage of
GFP" cells to the total number of viable cells on day 6 post-transfection. For the sorting
experiments, iPSCs were singularized 6 days post-transfection using Accutase, washed
with PBS + 20 uM ROCK inhibitor, centrifuged at 300g for 5 minutes. Ghost Dye™ Red 780
viability dye (Tonbo Biosciences) was then added at 1:1000 concentration for 20 minutes
at room temperature. Cells were washed again with PBS + 20 uM ROCK inhibitor, spun
down at 300g for 5 minutes, and resuspended in 300 uL of FACS buffer (PBS + 2% BSA
+ 20 uM ROCK inhibitor). GFP~ Cells were then sorted into tubes containing mTeSR1 +
20 pM ROCK inhibitor, and seeded onto Matrigel-coated 6 well polystyrene plates at 100

cells/well to obtain single-cell iPSC clones.

Next Generation Sequencing of genomic DNA

DNA was isolated from iPSCs by adding 50 pL of DNA QuickExtract/well (Epicentre)
following treatment by Accutase and centrifugation. The DNA extract solution was incu-
bated at 65°C for 15min, 68°C for 15min, and finally 98°C for 10min. Genomic PCR was
performed according to the manufacturer’s instructions using Q5 Hot Start polymerase
(NEB); primers are listed in Table C.1. Sequencing indices were added with a second
round of PCR using indexing primers (IDT), followed by a purification using AMPure XP
magnetic bead purification kit (Beckman Coulter). Samples were pooled and sequenced
on an [llumina MiniSeq at a run length of 1 x 150 bp or 2 x 150 bp according to the

manufacturer’s instructions. Analysis was performed using CRISPR RGEN (rgenome.net).

Genome-wide, off-target analysis

Genomic DNA from iPSCs was isolated using Gentra Puregene Kit (Qiagen) according to

the manufacturer’s instructions. CHANGE-seq was performed as previously described


https://rgenome.net/
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[115]. Briefly, purified genomic DNA was tagmented with a custom Tn5-transposome to
an average length of 400 bp, followed by gap repair with Kapa HiFi HotStart Uracil + DNA
Polymerase (KAPA Biosystems) and Taq DNA ligase (NEB). Gap-repaired tagmented DNA
was treated with USER enzyme (NEB) and T4 polynucleotide kinase (NEB). Intramolecular
circularization of the DNA was performed with T4 DNA ligase (NEB) and residual linear
DNA was degraded by a cocktail of exonucleases containing Plasmid-Safe ATP-dependent
DNase (Lucigen), Lambda exonuclease (NEB), and Exonuclease I (NEB). In vitro cleavage
reactions were performed with 125 ng of exonuclease-treated circularized DNA, 90 nM of
SpCas9 protein (NEB), NEB buffer 3.1 (NEB) and 270 nM of sgRNA, in a 50 pL volume.
Cleaved products were A-tailed, ligated with a hairpin adaptor (NEB), treated with USER
enzyme (NEB), and amplified by PCR with barcoded universal primers NEBNext Multiplex
Oligos for Illumina (NEB), using Kapa HiFi Polymerase (KAPA Biosystems). Libraries
were quantified by qPCR (KAPA Biosystems) and sequenced with 151 bp paired-end reads
on an [llumina NextSeq instrument. CHANGE-seq data analyses were performed using
open-source CHANGE-seq analysis software [115].

To determine the indel frequency at CHANGE-seqg-identified off-target sites, on-
and off-target sites for were amplified from iPSC genomic DNA obtained using thAmpSeq
system (IDT), with primers listed in Table C.3, and sequencing libraries were generated
according to the manufacturer’s instructions. Sequencing was then performed with 150-
bp paired-end reads on an Illumina Miniseq instrument. Analysis was performed using

CRISPAltRations: IDT rhAmpSeq CRISPR analysis tool [324].

Nuclei isolation and single-cell ATAC sequencing

Isolation, washing, and counting of nuclei suspensions were performed according to the
Demonstrated Protocol: Nuclei Isolation for Single Cell ATAC Sequencing (10x Genomics;
CG000169 Rev D). Briefly, 1,50,000 cells were added to a 2 mL microcentrifuge tube and

centrifuged at 300g for 45 min at 4°C. The supernatant was removed without disrupting
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the cell pellet, and 100 pL chilled Lysis Buffer (10 mM Tris-HC1 (pH 7.4), 10 mM NaCl, 3

mM MgCl,, 0.1% Tween-20, 0.1% Nonidet P40 Substitute, 0.01% digitonin and 1% BSA)
was added and mixed 10 times. The microcentrifuge tube was then incubated on ice for 5
min. Following lysis, 1 ml chilled Wash Buffer (10 mM Tris-HCI (pH 7.4), 10 mM NaCl, 3
mM MgCl,, 0.1% Tween-20 and 1% BSA) was added and the resulting solution was mixed
5 times. Nuclei were centrifuged at 500g for 5 min at 4°C and the supernatant was removed
without disrupting the nuclei pellet. Nuclei were resuspended in chilled Diluted Nuclei
Buffer (10x Genomics; 2000153) at approximately 6,000 nuclei per puL. The resulting nuclei
concentration was then determined with a Countess II FL Automated Cell Counter using
trypan blue inclusion. Nuclei were then immediately used to generate scATAC-seq libraries
according to the Chromium Single Cell ATAC Reagent Kits User Guide v1.1 (10x Genomics;
000209 Rev D). Libraries were sequenced using the Illumina NovaSeq 6000 system using
S1 flow cell and target depth of 30k-37k reads/nuclei. FASTQ files were aligned with
Cellranger ATAC 2.0 to custom reference Human GRCh38 genome. Downstream analyses

were performed using the ArchR software package [333] in R (Code 2).

RNA extraction and Bulk RNA sequencing

RNA was extracted from iPSCs in one well of 6-well plate using the GenElute Total RNA Pu-
rification Kit (Millipore Sigma) according to the manufacturer’s instructions. RNA was then
quantified using Nanodrop 2000 (ThermoFisher Scientific) and the integrity of samples
were confirmed with the following three criteria for inclusion: 1) a concentration> 50ng/ml,
2) an A260/A280 rating of 1.8 and 2.1, and 3) an A260/A230 ratio> 1.8. Total RNA was
submitted to the University of Wisconsin-Madison Biotechnology Center and was verified
for purity and integrity via the NanoDrop One Spectrophotometer and Agilent 2100 BioAn-
alyzer, respectively. Samples that met the Illumina sample input guidelines were prepared
according to the TruSeq® Stranded Total Sample Preparation Guide (1000000040499 v00)

using the [llumina® TruSeq® Stranded Total Sample Preparation kits (Illumina Inc., San
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Diego, California, USA) and sequenced on an Illumina NovaSeq 6000 system at a run
length 2 x 150 bp and target read depth of 30 million reads/sample at the University of
Wisconsin-Madison Biotechnology Center. For analysis, alignments and gene counts were
generated against GENCODE human transcriptome version 37 using Salmon [334]. Tran-
scripts were annotated to the gene level using the tximport package in [335] and exported
to CSV format (Code 3). Normalized counts were then extracted and genes with read
counts < 10 were filtered out. Fold change was then calculated as the ratio of the reads of

the TSA-treated iPSCs to the untreated iPSCs.

Antibodies and Staining

All cells were fixed for 15 minutes with 4% paraformaldehyde in PBS (Sigma-Aldrich,
St. Louis, MO) and permeabilized with 0.5% Triton-X (Sigma-Aldrich) for >4 hours at
room temperature before staining. Hoechst (H1399; Thermo Fisher Scientific, Waltham,
MA) was used at 5 pg/mL with 15 min incubation at room temperature to stain nuclei.
Primary antibodies were applied overnight at 4°C in a blocking buffer of 5% donkey
serum (Sigma-Aldrich) at the following concentrations: H3K9Me3 (ab8898; Abcam) 1:500;
H3K9Ac (39918; Active Motif) 1:100; H3K27Me3 (C36B11; Cell Signaling Technology)
1:200. Secondary antibodies were obtained from Thermo Fisher Scientific and applied in a
blocking buffer of 5% donkey serum for one hour at room temperature at concentrations
of 1:400 — 1:800. A Nikon Eclipse Ti epifluorescence microscope was used to acquire 100x
images. Images were processed using image analysis software CellProfiler [ 198] to calculate

the chromatin condensation values [323], as described in Figure C.2A.

Karyotyping

Cells cultured for atleast 5 passages were grown to 60-80% confluence and shipped for
karyotype analysis to WiCell Research Institute, Madison, WI. G-banded karyotyping

was performed using standard cytogenetic protocols [232]. Metaphase preparations were
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digitally captured with Applied Spectral Imaging software and hardware. For each cell

line, 20 GTL-banded metaphases were counted, of which a minimum of 5 were analyzed
and karyotyped. Results were reported in accordance with guidelines established by the

International System for Cytogenetic Nomenclature 2016 [233].

Statistical Analysis

Unless otherwise specified, p-values were calculated using a non-parametric Kruskal-Wallis
test for multiple unmatched comparisons with GraphPad Prism software. Statistical tests
were deemed significant at & < 0.05. Technical replicates are defined as distinct wells
within an experiment. Biological replicates are experiments performed with different

passages of iPSCs. No a priori power calculations were performed.
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5 CONCLUSION AND FUTURE DIRECTIONS

This thesis aimed to develop new technologies for reprogramming and gene editing of iPSCs
to address the challenges in iPSC biomanufacturing. First, I presented microcontact printed
platform as a method to visually track the nucleus of reprogramming cell populations in
real-time using high-content analysis in a non-destruction fashion. Use of this platform
aided in the development of a predictive model to identify and isolate high-quality iPSCs
based on nuclear morphometrics. Second, I additionally tracked cellular metabolism during
reprogramming on the microcontact printed platform using label-free, high-resolution
autofluorescence live-cell imaging. Complementing nuclear morphometrics with cell
metabolic measurements resulted in predictive models for iPSC identification with higher
accuracy. Finally, I designed a new CRISPR-Cas9 gene editing platform based on chromatin
modulation. This platform increased the efficiency of generating gene-edited iPSCs. Overall,
these methods represent an important step towards the biomanufacturing of iPSCs for

clinical applications.

Efficient generation and identification of reprogrammed iPSCs

In chapter two, we described a new microcontact printed platform that allows for non-
destructive dynamic live-cell microscopy of hundreds of microscale cell subpopulations
undergoing reprogramming while also preserving many of the biophysical and biochemi-
cal cues within the cells’ microenvironment. On this substrate, we were able to both watch
and physically confine cells into discrete micron-sized islands during the reprogramming
of human somatic cells from skin biopsies and blood draws obtained from healthy donors.
Using high-content analysis, we identified a combination of eight nuclear morphometric
characteristics that can be used to track the progression of reprogramming and distinguish
partially reprogrammed cells from those that are fully reprogrammed to iPSCs. These eight

nuclear characteristics were then used to construct a regression model (RMSE = 0.15) to
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identify and isolate high-quality iPSCs. In chapter three, we complemented these eight

nuclear measurements with eleven other cell metabolism measurements using label-free,
live cell autofluorescence imaging, called Optical Metabolic Imaging (OMI). Machine
learning models were then built to determine the reprogramming status of cells, namely
non-reprogrammed somatic cells, partially reprogrammed intermediates, or fully repro-
grammed iPSCs. We showed that adding eleven metabolic measurements to the previously
identified eight nuclear measurements increased the accuracy of iPSC identification from
70% to 95%. Furthermore, we constructed single-cell reprogramming trajectories based
on the metabolic and nuclear measurements and identified four branch points that could
determine whether the starting somatic cells become completely reprogrammed to iPSCs.

These studies are among the first in the reprogramming literature to use live-cell
imaging-based nuclear and metabolic outputs to predict reprogramming. The use of uCP
technology along with machine learning models represented a step forward from the
laborious, time-consuming, error-prone lab bench protocol of identifying and isolating
iPSCs to a more rapid, automated, and standardized method, which has immense potential
to meet the industry standards for iPSC biomanufacturing [239]. Further, this platform
could be used to image additional stains or reporters of the cell [47, 191, 210, 336, 337],
such as plasma membrane, mitochondria, focal adhesion, mitotic spindle, and chromatin
mobility, to complement our studies and add additional information to distinguish each re-
programming state. Such a novel imaging-based analysis can offer an orthogonal approach
to investigating mechanisms of human somatic cell reprogramming that will be comple-
mentary to studies of transcript and protein expression. The imaging-based approach
can also further be used in conjunction with trajectory inference methods [338] to build
single-cell reprogramming maps, which could subsequently aid in the identification of
novel alternate cell states and additional “roadblocks” during the reprogramming process
[180, 202]. Another interesting observation made during our study was the occurrence of

nuclear and metabolic measurement shifts that favor reprogramming, upon cell confine-
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ment to micron-sized islands on microcontact printed substrates. This was in conjunction
with other recent studies that indicated that biophysical microenvironment can affect nu-
clear [191, 197, 323, 339] and metabolic state of cells [271-273, 340], indicating that cell
confinement using our platform could be used as a potential strategy for improving the
efficiencies of the reprogramming process. Overall, our approach to track reprogramming
in situ using micropatterned substrates could aid in the biomanufacturing of therapeutically
relevant iPSCs and be used to elucidate multiscale cellular and sub-cellular changes that

accompany human cell fate transitions.

Efficient generation of gene edited iPSCs

The microcontact printed platform in chapters two and three focused on the identification
and isolation of high-quality iPSCs, an approach to streamlining the manufacturing process
of iPSCs. Next, we sought to develop an approach to streamline the process of iPSC gene
editing, another major bottleneck in the manufacturing of therapeutically relevant iPSCs.
To this end, in chapter four, we developed a novel strategy to modulate the chromatin state
of iPSCs to promote gene editing of iPSCs and additionally performed nuclear imaging to
identify iPSCs more amenable to gene editing.

We used TSA (HDAC inhibitor) as the chromatin modulator in our study, which is
known to promote an open chromatin state. We subsequently edited multiple open and
closed chromatin loci in HISTTH2BJ tagged mEGFP reporter iPSCs and noted that the gene
editing efficiency of iPSCs increased up to ~3.5 fold upon TSA treatment. We additionally
demonstrated a shift towards NHE] over MME] upon TSA treatment, indicating that
our strategy could potentially be used to specifically engineer gene-edited iPSCs geared
towards the DNA repair pathway of user’s choice. Further interrogation of the edited
iPSC populations showed that our strategy did not compromise with the pluripotency
or genomic integrity of edited cell lines and that minimal off-target editing occurred at

predicted sites. We also developed a nuclear imaging-based pipeline that is sensitive
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to the chromatin changes induced by TSA treatment, thus paving the way for rapid in
situ identification of iPSCs that enable higher gene editing efficiencies. To gain deeper
insights into the mechanisms involved in TSA-induced gene editing and subsequently push
capabilities of this strategy, we performed preliminary bulk-RNA sequencing experiments
that showed several differentially regulated genes. However, further experiments and
analyses need to be performed to identify the differentially regulated genes and pathways
in a statistically significant manner.

Our study was supported by several other strategies that showed that chromatin
modulation impacts gene editing efficiency [130, 133, 137, 138, 141, 149, 154]. However,
our study was the first to perform a thorough on-target indel profiling and off-target
profiling of the edited cells. Additionally, we were also the first to develop an imaging-
based strategy to identify iPSCs more suitable for gene editing. To broaden the adoption
of this strategy, several adaptations could be implemented. Firstly, this study could be
extended to study TSA-induced DNA repair pathway balance shift between NHE] and HDR
by implementing a GFP to BFP switch [341], and to other classes of chromatin modulators
such as HAT inhibitors [342] and DNMT inhibitors [343]. Secondly, our strategy can
also be easily extended to non-GFP reporter cell lines and used in conjunction with live
nuclear dyes [226] or label-free nuclear imaging methods [213, 344] to ensure compliance
with clinical standards. Thirdly, this strategy can be extended to other natural [87] or
engineered [331] Cas enzyme variants (e.g., high fidelity enzymes, base editors) and to
other cell types, including iPSC-derivatives, adult stem cells, and primary cells for disease-
specific applications. Finally, this study could be implemented on previously established
microcontact printed substrates [193] to obtain edited clones on micron-sized islands

enabling easier isolation of clonal edited iPSC populations.
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Towards more efficient biomanufacturing of iPSCs

Overall, integrating the technologies in this thesis can enable nuclear imaging-based iden-
tification of the reprogramming stage most amenable to CRISPR-Cas9 gene editing. This
knowledge could further aid in the implementation of simultaneous reprogramming and
gene editing [192, 345] on our microcontact printed platform to additionally enhance
the efficiency and reduce the timeline of the iPSC biomanufacturing process. Although
several challenges remain before the clinical use of iPSCs, we believe that the development
of rapid, efficient, and safe reprogramming and genome editing technologies will lead
to the advancement of iPSC-based from bench to the bedside. We hope that this thesis
contributes to the adaptation of reprogramming and gene editing technologies into the

clinic and advances human health.
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A SUPPLEMENTAL FIGURES AND TABLES FOR CHAPTER 2
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Figure A.1: Micropatterned plates enable live tracking of reprogramming. A) Schematic
showing the generation of uCP Well Plates. Gold-coated glass is stamped with initiator
solution using PDMS mold and then reacted in PEG solution. Glass is then combined
with a standard bottomless 24-well plate that has a double side adhesive attached. B) Co-
culture of two different cell types on a single pFeature. Brightfield only cells are fibroblasts.
H2B-mCherry/Actin-GFP cells are hPSCs. C) Representative images of the progression
of a fibroblast subpopulation on a single pFeature through establishment. Cells were live

stained using antibodies against TRA-1-60 (green) and CD44 (red).
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Figure A.2: Z-stack analysis and representative micropattern geometries. A) Endpoint
Nanog+ percentage in reprogramming fibroblasts as a function of z-distance from the
substrate. Endpoint Nanog+ percentages did not vary with height. B) Representative
images of Nanog expression with increasing z-distance. C) Representative bright field

images of reprogramming fibroblasts on six different pFeature shapes.
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Figure A.3: Hierarchical clustering analysis of nuclear characteristics. Hierarchical clus-
tering of each time point in fibroblast reprogramming and endpoint reprogramming fibrob-
last data (classified into 20% bins of Nanog+ pFeatures). Z-score represents the correlation
distance. 60-100% positive pFeatures clustered closely to hPSCs, while reprogramming
fibroblast intermediates broadly shared nuclear characteristics. Seeded fibroblasts prior
to reprogramming (Day 0) were unlike any other cell type. Clustering based on nuclear

characteristics is similar to what was found via PCA loadings in Figure 2.4D.
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Figure A.4: Principal component analysis of EPCs reprogramming on 300 um radius
circular features.A) Fibroblast reprogramming PCA map (centroid values for each repro-
gramming time point boxed as in Figure 2.4A) with endpoint reprogramming EPC data,
for circular pFeatures of 300 pm radius, color coded by endpoint Nanog+ percentage. Low
Nanog+ features clustered closely to time points of intermediate cells states while features
that expressed high levels of Nanog clustered closely to hPSCs. Percent variance explained
by the individual PC components is indicated within the parentheses. B) Violin plots show-
ing the distribution of individual PCs as a function of the endpoint Nanog+ percentage
for reprogramming EPCs on 300 um radius circular features (n = 4 biological replicates,
total number of endpoint puFeatures = 103, p-values generated by one-way ANOVA using
the Brown-Forsythe and Welch test for multiple comparisons to 0% endpoint Nanog+

percentage; ns = p > 0.05, * for p <0.05, ** for p <0.01, *** for p <0.001, **** for p <0.0001).
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Figure A.5: Performance of TRA-1-60 as a pluripotency marker. A) PLSR model for
reprogramming fibroblasts predicting Nanog+ fraction using TRA-1-60 staining as input
variable. Model was less predictive (RMSE=0.28) than use of nuclear characteristics (n = 3
biological replicates, total number of uFeatures = 114). B) Representative image showing

difference between TRA-1-60 expression and Nanog expression in f-iPSCs.
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Figure A.6: Standardized gene expression from Scorecard™ assay and karyotype anal-
ysis. A) Both f-iPSC clones upregulated genes associated with self-renewal. Embryoid
bodies (f-EBs) formed from both clones expressed genes associated with all three germ
layers. Data is compared to 9 standard hPSC lines (grey box-and-whisker plots). Karyo-
grams of B) fibroblasts, C) {-iPSCs, D) EPCs, and E) e-iPSCs show normal karyotype
suggesting that no major chromosome abnormality was present within cells before or after

reprogramming.
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Figure A.7: Cell cycle distribution of cells before and after reprogramming. Representa-
tive flow cytometry graphs for A) fibroblasts, B) {-iPSCs, C) EPCs, and D) e-iPSCs. Cells
were stained with propidium iodide and analyzed 24 hours after staining by flow cytometry.
E) Percentage of fibroblasts and {-iPSCs in various cell cycle phases. f-iPSCs have a higher
percentage of cells in S-phase as compared to the starting fibroblasts. F) Percentage of
EPCs and e-iPSCs in various cell cycle phases. Both e-iPSCs and starting EPCs have a high
percentage of cells in S-phase. Data represent mean + SD of triplicates. p-values generated
by two-way ANOVA using Bonferroni’s test for multiple comparisons to fibroblasts or

EPCs; ns = p > 0.05, * for p <0.05, ** for p <0.01, ** for p <0.001, **** for p <0.0001).
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# Measurement

Description

1 Area

2 Perimeter (Perim)

3 Nuclear Shape Index (NSI)

4 Mean Radius (MeanRad)

5 Solidity (Solid)

6 Extent

7 Distance to closest neighbor
(1st Neigh)

8 Number of neighbors (#Neigh)

9 Compactness

10 Eccentricity

11 Form Factor

The total number of pixels within an ob-
ject.

The total number of pixels around the
boundary of an object.

NSI = 47tA /P2, where A is the area and
P is the perimeter of an ellipse around
the object’s major and minor axes. NSI
= 1 for a perfect circle and approaches 0
with elongation

The mean distance of any pixel in the
object to the closest pixel outside of the
object.

The proportion of pixels in the convex
hull that are also in the object: Object
Area/Convex hull Area

The proportion of pixels in the bound-
ing box that are also in the object: Object
Area/Bounding Box Area

The distance to the closest object in pix-
els.

The total number of neighbor objects.

The mean squared distance of the object’s
pixels from the centroid divided by the
area. A filled circle will have a compact-
ness of 1, with irregular objects or objects
with holes having a value greater than 1.

The eccentricity of the ellipse that has the
same second-moments as the region. The
eccentricity is the ratio of the distance be-
tween the foci of the ellipse and its major
axis length. The value is between 0 and
1.

Calculated as 4m*Area/Perimeter2.
Equals 1 for a perfectly circular object.

Table A.1: Nuclear characteristics used to create reprogramming models. Description
of the 33 nuclear characteristics that were measured. These nuclear characteristics were
obtained after processing Hoechst-stained images using a CellProfiler pipeline. Eight core
nuclear characteristics used to create reprogramming models are bolded.
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Measurement

Description

12

13

14

15

16

17

18

19

20

21

22

Major Axis Length

Minor Axis Length

Maximum Feret Diameter

Integrated Intensity Edge
Integrated Intensity
MAD Intensity

Mass Displacement

Maximum Intensity
Mean Intensity Edge

Std Intensity

Distance to second closest neighbor

The length (in pixels) of the major axis of
the ellipse that has the same normalized
second central moments as the region.

The length (in pixels) of the minor axis of
the ellipse that has the same normalized
second central moments as the region.

The Feret diameter is the distance be-
tween two parallel lines tangent on either
side of the object. The maximum Feret
diameter is the largest possible Feret di-
ameter.

The sum of the edge pixel intensities of
an object.

The sum of the pixel intensities within
an object.

The median absolute deviation (MAD)
value of the intensities within the object.

The distance between the centers of grav-
ity in the gray-level representation of the
object and the binary representation of
the object.

The maximal pixel intensity within an
object.

The average edge pixel intensity of an
object.

The standard deviation of the pixel inten-
sities within an object.

The distance to the second closest object
(in units of pixels).

Table A.1: Nuclear characteristics used to create reprogramming models. Description
of the 33 nuclear characteristics that were measured. These nuclear characteristics were
obtained after processing Hoechst-stained images using a CellProfiler pipeline. Eight core
nuclear characteristics used to create reprogramming models are bolded.
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# Measurement Description

23 Percent Touching Percent of the object’s boundary pixels
that touch neighbors, after the objects
have been expanded to the specified dis-
tance. Note that this measurement is
only available if you use the same set of
objects for both objects and neighbors.

24-28 Mean Fractional Intensity Mean fractional intensity at a given ra-
dius; calculated as fraction of total in-
tensity normalized by fraction of pixels
at a given radius. (Measured from each
object’s center to its boundary within a
set of 5 bins, i.e., rings.)

28-33 Radial CV Coefficient of variation of intensity
within a ring, calculated across 8 slices.
(Measured from each object’s center to
its boundary within a set of 5 bins, i.e.,
rings.)

Table A.1: Nuclear characteristics used to create reprogramming models. Description
of the 33 nuclear characteristics that were measured. These nuclear characteristics were
obtained after processing Hoechst-stained images using a CellProfiler pipeline. Eight core
nuclear characteristics used to create reprogramming models are bolded.
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A
PDMS stamp Coat with matrigel Stamp onto Add PLL-g-PEG Seed cells
overnight 35 mm ibiTreat dish  as backfilling material
B HDF H9 ESC C

98.3% CD71*
EPCs

Count

0 10 100 100 100 10 10

CD71 Intensity

Figure B.1: Micropatterned substrates enable controlled cell adhesion. A) Schematic
showing the fabrication of pCP substrates. PDMS mold is coated with Matrigel and stamped
onto a 35 mm ibiTreat dish. PLL-g-PEG solution is then added to backfill the non-printed
regions. Fabricated micropatterned substrates are then ready to be seeded with cells.B)
Representative images of HDFs and H9 ESCs adhered to 300 ym radius circular pFeatures
on micropatterned substrates. Scale bar, 100 pm. C) Flow cytometry histogram indicating
the percentage of CD71+ cells after 10 days of EPC culture and prior to electroporation

with reprogramming plasmids.
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Figure B.2: Metabolic parameter changes during reprogramming of EPCs. A) Repre-
sentative optical redox ratio, NAD(P)Ht,, and FADr,, images for HDFs and H9 ESCs.
Color bars are indicated on the right. Scale bar, 100 pm. Single-cell quantitative analysis
of B) optical redox ratio, C) NAD(P)Hrt,,, D) FADt,,, E) NAD(P)Hw;, F) NAD(P)HT,,
G) NAD(P)Hr,, H) FADwy, I) FADTy, and J) FADT, for HDFs, EPCs, IMs, iPSCs and
H9 ESCs (n = 459, 561, 990, 586, 35 respectively). K) Single-cell quantitative analysis of
optical redox ratio for non-patterned (NP) and patterned (P) reprogramming cells (IMs
and iPSCs). Data are presented as median with interquartile range for each cell type.
Statistical significance was determined by one-way analysis of variance (ANOVA) using
the Kruskal-Wallis test for multiple comparisons; ns = p >0.05, * for p <0.05, ** for p <0.01,
*** for p <0.001, *** for p <0.0001).
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Figure B.4: OMI enables accurate classification of EPCs and IMs. A) t-distributed
stochastic neighbor embedding (t-SNE) dimensionality reduction was performed on all
11 metabolic and 8 nuclear parameters for each cell, projected onto 2D space and shows
poor separation of different cell types (EPCs, IMs, and iPSCs). Each color corresponds to
a different cell type. Data are from three different donors. Each dot represents a single
cell, and n =561, 990, and 586 cells for EPCs, IMs, and iPSCs, respectively. B) Heat map of
z-scores of metabolic and nuclear parameters; each row is the mean data aggregating all
cells from a single donor and cell type (EPCs, IMs, iPSCs); n = 3 biologically independent
donors. ROC curves for C) EPCs and, D) iPSCs for different classifiers computed using all
11 metabolic and 8 nuclear parameters. AUC is provided for each classifier as indicated in
the legend. ROC curves for E) EPCs and, F) iPSCs for different classifiers computed using
different parameter combinations. AUC is provided for each parameter combination as

indicated in the legend.
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Figure B.5: Metabolic and nuclear parameter changes along the reprogramming trajec-
tory. A) Trajectory of reprogramming EPCs constructed from the metabolic and nuclear
parameters based on UMAP dimension reduction using Monocle, colored by day of EPC
reprogramming. B) Metabolic and nuclear parameters ranked by their Moran’s I (effect
size) on the construction of single-cell reprogramming trajectory. UMAP plots based on
Figure 5A highlighting the change of expression of top six metabolic parameters C) FADt;,
D) FADwy, E) FADt,,, F) NAD(P)HTt,, G) NAD(P)Hexy and, H) NAD(P)Hr, during

reprogramming of EPCs.
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# Measurement Description

1 [NAD(P)H] NAD(P)H autofluorescence

2 [FAD] FAD autofluorescence

3 Redox Ratio [NAD(P)H]/([NAD(P)H + [FAD])

4 NAD(P)Ht1 NAD(P)H short lifetime value

5 NAD(P)Ht2 NAD(P)H long lifetime value

6 NAD(P)Hx Fraction of free NAD(P)H

7 FADT FAD short lifetime value

8 FADT, FAD longtime value

9 FADyy Fraction of bound FAD

10 NAD(P)Ht,, Mean NAD(P)H fluorescence lifetime 1, = o171 + T2

11 FADT,, Mean FAD fluorescence lifetime T,,, = x17T1 + 0o To

12 Area The total number of pixels within an object.

13 Perimeter (Perim) The total number of pixels around the boundary of an object.
14 Nuclear Shape Index NSI = 47tA/P?, where A is the area and P is the perimeter of an ellipse

(NSI) around the object’s major and minor axes. NSI = 1 for a perfect circle and
approaches 0 with elongation

15 Mean Radius
(MeanRad)

16 Solidity (Solid)

The mean distance of any pixel in the object to the closest pixel outside of
the object.

The proportion of pixels in the convex hull that are also in the object: Object
Area/Convex hull Area

17 Extent The proportion of pixels in the bounding box that are also in the object:
Object Area/Bounding Box Area
18 Distance to closest The distance to the closest object in pixels.

neighbor (1st Neigh)

19 Number of neighbors
(#Neigh)

The total number of neighbor objects.

Table B.1: Metabolic and nuclear parameters used to create reprogramming models. De-
scription of the 11 metabolic (red) and 8 nuclear (blue) parameters that were measured.
These parameters were obtained after processing NAD(P)H and FAD images using an
image analysis pipeline described in Figure 3.1B.
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##Install necessary packages ##
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager: :install(version = "3.12")

BiocManager: :install(c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats',
'limma', 'S4Vectors', 'SingleCellExperiment',
'SummarizedExperiment', 'batchelor', 'Matrix.utils'))

install.packages("devtools")
devtools: :install_github('cole-trapnell-lab/leidenbase')
devtools: :install_github('cole-trapnell-lab/monocle3')
install.packages("reshape2", "stringi", "robustbase")
library(monocle3)
library(ggplot2)
library(dplyr)
##Input raw data files##
#Need 3 matrices in .csv format. (1) expr_matriz with rows as metabolic/nuclear
— parameters and cells as columns.
#(2) Phenodata with cells as rows and characteristics such as reprogramming day,uFeature
— number, donor number,and cell type.
#(3) Featuredata with metabolic/nuclear parameters as rows and a column called
— gene_short_name for sure (a few functions are dependent on this).
expr_matrix <- read.csv("ControlData.csv")
expr_matrix2 <- as.matrix(expr_matrix[,-1])
rownames (expr_matrix2) <- as.matrix(expr_matrix[,1]) #setting first column as Tow names
sample_sheet <- read.csv("Phenodata.csv")
sample_sheet2 <- as.matrix(sample_sheet[,-1])
rownames (sample_sheet2) <- as.matrix(sample_sheet[,1]) #setting first column as row names
gene_annotation <- read.csv("featuredata.csv")
gene_annotation2 <- as.matrix(gene_annotation[,-1])
rownames (gene_annotation2) <- as.matrix(gene_annotation[,1]) #setting first column as row
— names
##Create cds data frame##
cds <- new_cell_data_set(as.matrix(expr_matrix2), cell_metadata = sample_sheet2,
— gene_metadata = gene_annotation2)
##Normalize and preprocess the data using PCA##
cds <- preprocess_cds(cds, num_dim = 19)
plot_pc_variance_explained(cds)
##Reduce dimension using UMAP##
cds <- reduce_dimension(cds, preprocess_method = c("PCA"), reduction_method = c("UMAP"))
plot_cells(cds, reduction_method="UMAP", color_cells_by="CellType") +
< scale_color_manual (values = c("#C000CO", "#008000", "#AOAOA4"
##Check and remove batch effects##
plot_cells(cds, reduction_method="UMAP", color_cells_by="DonorNumber")
cds = align_cds(cds, num_dim = 19, alignment_group = "DonorNumber")
##Clustercel Ls##
cds = cluster_cells(cds, reduction_method = c("UMAP"), k = 100, cluster_method =
— c("louvain") )
plot_cells(cds)
##Build Trajectories##
cds <- learn_graph(
cds,
use_partition = TRUE,
close_loop = FALSE,
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learn_graph_control = NULL,
verbose = FALSE
)
##Pseudotime ordering##
plot_cells(cds,
color_cells_by = "Dayday",
label_cell_groups=FALSE,
label _leaves=TRUE,
label_branch_points=TRUE,
graph_label_size=1.5)
cds <- order_cells(cds)
plot_cells(cds,
color_cells_by = "pseudotime",
label_cell_groups=FALSE,
label_leaves=FALSE,
label_branch_points=FALSE,
graph_label_size=1.5)
##Plot Differential Expression of metabolic and nuclear parameters##
Parameters <- c("FADA1", "FADtm", "FADT2")
Parameters_cds <- cds[rowData(cds)$gene_short_name %inj, Parameters]
plot_genes_in_pseudotime (Parameters_cds,
color_cells_by="CellType",
min_expr=0.5) + scale_color_manual(values = c("#C000CO",
—  "#008000", "#AOAOA4"))
##Heat map of differential expression by cell type##
pr_graph_test_res <- graph_test(cds, neighbor_graph="knn", cores=38)
pr_graph_test_res
pr_deg_ids <- row.names(cds)
gene_module_df <- find_gene_modules(cds[pr_deg_ids,], resolution=1e-2) #4 dataframe in
— which the first column contains gene ids or short gene names and the second contains
— groups. If NULL, genes are mot grouped.
cell_group_df <- tibble::tibble(cell=row.names(colData(cds)),
cell_group=colData(cds)$CellType)

Listing 1: R code used to construct single-cell reprogramming trajectories.
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Figure C.1: Optimization of Trichostatin A treatment for iPSC gene editing. A) Plot of
editing indel % obtained from NGS sequencing of genomic DNA and from flow cytometry
analysis (R? = 0.9307). B) Plot showing % viable cells as a function of TSA concentration.
The viability (% GhostDye" cells/total cells) of iPSCs drops significantly for TSA concen-
trations geq 25 ng/mL. C) Bar graph showing gene editing efficiency (%GFP" cells) as
a function of TSA application time. TSA application duration of 20 hours prior to Cas9
RNP delivery yielded the highest gene editing efficiencies, and was thus used as the TSA
application time for the entire study. D) Bar graph showing gene editing efficiency (%GFP-
cells) for different methods of Cas9 RNP delivery. Since lipofection yielded higher gene
editing efficiencies, it was used as the method of Cas9 RNP delivery for the entire study.
Data represented in bar graphs are represented as mean + SEM, n = 3 technical replicates
per condition, p-values generated by non-parametric Kruskal-Wallis test for multiple un-
matched comparisons to 0 ng/mL TSA ; ns = p geq0.05, * for p <0.05, ** for p <0.01, *** for
p <0.001, *** for p <0.0001.
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Figure C.2: CellProfiler pipeline to determine global chromatin condensation percent-
age of cell nuclei. A) The CellProfiler pipeline calculates the global chromatin percentage
of the identified nuclei as the total heterochromatin intensity to the total nuclear intensity.
Chromatin condensation percentage values for the HISTIH2B]-mEGFP iPSC nuclei are
indicated in yellow on each nucleus and the histogram depicts the frequency distribution
of the chromatin condensation percentage values. B) Representative images of iPSC nuclei
stained with H3K9Me3 (heterochromatin mark) and (euchromatin mark); Scale bar: 10

wm.
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Figure C.3: Additional on-target profiling of edited iPSCs. A) Depiction of SNP profiles
at different TSA concentrations. Bar graphs showing increased B) % templated insertions,
and C) % GC insertions with the increase in TSA concentration. Data represented in bar
graphs are represented as mean + SEM, n = 3 technical replicates per condition, p-values
generated by non-parametric Kruskal-Wallis test for multiple unmatched comparisons to
0 ng/mL TSA; ns = p geq 0.05, * for p <0.05, ** for p <0.01, *** for p <0.001, **** for p
<0.0001.
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Figure C.5: Chromatin accessibility analysis at different open and chromatin loci.
scATAC-seq plots for A) HISTIH2B] (open), B) AAVS1 (open), and C) TRAC (closed).

Chromatin accessibility around various on-target cut-sites (black arrow) increases upon

TSA treatment.
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Target Locus

gRNA (5 to 3)

NGS Forward Primer (5
to 3")

NGS Reverse Primer (5
to 3’)

GFP

HIST1H2BJ_Site_1

HIST1H2B]J_Site_2

AAVS1_Site_8

AAVS]_Site_10

TRAC_Site_2

TRAC_Site_3

GCTGAAGCACTGCACG
CCGT

TCTGCTCCCGCCCCGA
AAAA

GGTGACGGCCTTAGTA
CCCT

GCTGTCCTGAAGTGGA
CATA

GGGAACCCAGCGAGT
GAAGA

GCTGGTACACGGCAGG
GTCA

GAGAATCAAAATCGGT
GAAT

CGGCAAGCTGACCCTG
AAGTTC

CCTGCTCACGCTGTTIT
TCC

TCACCTCCAGGGAGAT
CCAG

TTGCCTGGACACCCCG
TTCTCCT

CTTCCTTCTCGGCGCTG
CACCAC

GCCTGGGTTGGGGCAA
AGAGGGA

GCCTGGGTTGGGGCAA
AGAGGGA

CGTCCAGGAGCGCACC
ATCTTC

TCGCTTCTTGCCGTCTT
TCTT

TGAACAGCTCCTCGCC
CTTG

GCCACATTAACCGGCC
CTGGGAA

AGCCAGGGAGACGGG
GTACTTTGG

GTTGCTCCAGGCCACA
GCACTGT

GTTGCTCCAGGCCACA
GCACTGT

Table C.1: Guide RNA and primer sequences.



Name #Chromosome Start End Genomic Coordinate Strand Read Site_Sequence Site
Count Substitution#

OoT1 chr19 43463243 43463266  chr19:43463243-43463266 + 2452  GCTGTAGCACTCCACGCCGTITGG 2
o712 chr9 98626054 98626076  chr9:98626054-98626076 1030

OT3 chr3 73404993 73405016  chr3:73404993-73405016 - 548  AGCAAAGCACTGCACACAGTGGG 6
OT4 chrb 6422338 6422361 chr5:6422338-6422361 - 524  CAGGAAGCACTGCACACTGTGGG 5
OT5 chr8 51474994 51475018  chr8:51474994-51475018 + 338

OT6 chr4 5703158 5703181 chr4:5703158-5703181 - 322 AAAGAAGCACTGCATGCTGTAGG 5
oT17 chrl 89051013 89051036  chr1:89051013-89051036 + 300 CCTGCACCCTTGCACGCCATTGG 6
OT8 chrb 151028994 151029017 chr5:151028994-151029017 - 274  GAAGAAGCACCACACACAGTAGG 6
o719 chr13 114129061 114129084 chr13:114129061-114129084 + 254  GAGGAGGCACTGCACGCCTTGGG 4
OT10 chrl6 489418 489441 chr16:489418-489441 + 254  ATAGAAGCACAACACGCAGTGGG 6
OT11 chr9 37922745 37922768  chr9:37922745-37922768 + 252 GCTCAAGCACTGCACCCCGTGGG 2
OT12 chr13 25135132 25135155  chr13:25135132-25135155 - 200 AGTGAAGCAAAACACACCGTAGG 6
OT13 chrl6 489418 489441 chr16:489418-489441 + 174  ATAGAAGCACAACACGCAGTGGG 6
OT14 chrl 84346679 84346702  chrl:84346679-84346702 + 168  ATTGTAGCACAGCATGCTGTTGG 6
OT15 chrl5 80849498 80849521  chr15:80849498-80849521 + 134  GCTCACCCACTTCACGCCGTGGG 4
OT16 chr4 94720214 94720237  chr4:94720214-94720237 + 132 GGGCAAGCCTTGCACACCGTTGG 6
OoT17 chrl3 100548625 100548648 chr13:100548625-100548648 + 130 GGAGAGGGACTGCACACAGTGGG 6
OT18 chrl2 132318694 132318716 ¢chr12:132318694-132318716 + 120

OT19 chr8 135379753 135379776  chr8:135379753-135379776 + 118  GCACACCCACTGCACACCGTGGA 6
OT20 chr? 128351804 128351827 chr7:128351804-128351827 - 112 TATGAGGTGCTGCACGCCCTGGG 6
OT21 chr5 38456159 38456182  chr5:38456159-38456182 - 108  TAGGAAGCACTGCACATCGTAGG 5

Table C.2: Modifications of off-target sites of the GFP locus in iPSCs detected by CHANGE-seq. Target sequence for all
analysis was GCTGAAGCACTGCACGCCGTNGG. Only top 50 loci with the highest Nuclease Read Counts are included. E



Read Site

Name #Chromosome Start End Genomic Coordinate Strand Site_Sequence
Count Substitution#

07122 chr8 51474994 51475018  chr8:51474994-51475018 + 108

OT23 chrl5 22272189 22272212 chr15:22272189-22272212 - 100 AATGACACACTGCACGACGTGTG 6
OT24 chr2 32648726 32648749  chr2:32648726-32648749 - 100 TGTGAGGCACTGCACCCAGTAGG 5
OT25 chrl4 77261231 77261254  chr14:77261231-77261254 + 98 CCTCAGGCACTGCATGCCCTGGG 5
OT26 chrll 365544 365567 chr11:365544-365567 + 96 CCTGCAGTGTTGCACGCTGTITGG 6
oT27 chrl?7 73490267 73490290  chr17:73490267-73490290 - 94 CCTCCAGCCCTGCAAGCAGTGGG 6
OT28 chr5 142181271 142181294 chr5:142181271-142181294 - 94 GCACCAGCCCTGCACGCCCTGCG 6
07129 chr3 8397815 8397838 chr3:8397815-8397838 + 90 ATTGAACTCCTGCACGCCGTCGG 5
OT30 chr10 77250682 77250705  chr10:77250682-77250705 - 88 GCTGAAGCATTGCACGCTGGTGC 4
OT31 chr22 20063932 20063955  chr22:20063932-20063955 - 88 ACATACGCAGTGCACCCCGTGGG 6
OT32 chr4 88191200 88191223  chr4:88191200-88191223 - 84 CTTGGAGCACTGCACGCAGTGAG 5
OT33 chrl6 67690285 67690308  chrl16:67690285-67690308 - 82 TCAGAAGTCTTGCACGCTGITGG 6
0T34 chr2 241775589 241775612  chr2:241775589-241775612 + 76 GAGGATGCAGGGCACGCCGGTGG 6
OT35 chr6 131085171 131085193  chr6:131085171-131085193 - 76

OT36 chrl6 2526520 2526543 chr16:2526520-2526543 - 74 TCTGGGGGAGTGCACGCAGTGGG 6
o137 chr2 235007697 235007720 chr2:235007697-235007720 - 72 TCTCAAGCACTGCACGCCTGGTC 6
OT38 chrl2 32661527 32661550  chr12:32661527-32661550 + 70 GCTCAATCACTGCACGCAGTGAG 4
OT39 chr22 20569442 20569465  chr22:20569442-20569465 - 70 GCAGGCGCACTGCCAGCTGTGGG 6
OT40 chr4 122744364 122744387  chr4:122744364-122744387 + 70 GATGAAAGCCTGCACACAGTGGG 6
OT41 chr5 79831437 79831460  chr5:79831437-79831460 - 70 GCCTGGGACCTGCACGCCGTITGG 6
OT42 chr9 136432758 136432781 chr9:136432758-136432781 + 70 GGCCCAGCACGGCACGCCCTCGG 6
OT43 chrl2 76923253 76923276  chrl2:76923253-76923276 - 68 GATGTACCATTGCATGTCGTTGG 6

Table C.2: Modifications of off-target sites of the GFP locus in iPSCs detected by CHANGE-seq. Target sequence for all E
analysis was GCTGAAGCACTGCACGCCGTNGG. Only top 50 loci with the highest Nuclease Read Counts are included.



Read Site

Name #Chromosome Start End Genomic Coordinate Strand Site_Sequence
Count Substitution#

OT44 chrl 205457245 205457268 chr1:205457245-205457268 + 68 GCTGTGGCTGAGGACGCCGTCGG 6

OT45 chrl 1161377 1161400 chr1:1161377-1161400 - 66 GGTGAGCCACCGCACGCCATGGG 5

OT46 chrl 245608179 245608202 chr1:245608179-245608202 + 64 GAGAAAGCAGTGCACACCGTCGG 5
OT47 chr22 49823489 49823512  chr22:49823489-49823512 + 62 GTTGGGGCACAGCACACAGTCGG 6

OT48 chr10 131387191 131387214 chr10:131387191-131387214 - 60 GGAAAAACACAGCACACCGTGGG 6

OT49 chrl6 4694177 4694201 chr16:4694177-4694201 + 60

OT50 chrl 1355229 1355252 chr1:1355229-1355252 + 58 GGGGAAGCACTCACGGCCGICGG 6

Table C.2: Modifications of off-target sites of the GFP locus in iPSCs detected by CHANGE-seq. Target sequence for all
analysis was GCTGAAGCACTGCACGCCGTNGG.Only top 50 loci with the highest Nuclease Read Counts are included.
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Target Name Assay ID rhAmp-seq Forward Primer (5 to 3") rhAmp-seq Reverse Primer (5’ to 3")

On-target RH.3219B4F53C434137Z0Z /thSeq-f/ TGAAGTTCATCTGCACCACrCGGC  /rhSeq-r/CGTCCTTGAAGAAGATGGTGrCG
A/GT4/ CTC/GT3/

OoT1 RH.1987151E363D44DZ0Z /thSeq-f/CTTGTAGACATGATCGCTGGrCGT  /rhSeq-r/ACACCTTTTCTTCCTCTCGGrCTCC
TG/GT1/ C/GT3/

o712 RH.B3BF69D7C4164C5Z0Z  /rthSeq-f/CTTAAGACAGGGAAGTCAGGrGC  /rhSeq-r/ACAATATATGGTCCTTTGCGArCA
TCA/GT2/ GCC/GT1/

OT3 RH.F4D7BA568E2D41FZ0Z  /thSeq-f/GCGGCATATGGCAAGTTATTATGr /rhSeq-r/CTTCATTTAAGTCATGCAGCAGATr
GAGAA/GT2/ CAGTA/GT2/

OT4 RH.24F70E12F5C848270Z /thSeq-f/ AACAGCTTGATCCTGGArCTTCC/ /rhSeq-r/CCCAGCAGAACCATAACArCAGA
GT2/ A/GT3/

OT5 RH.6542C4B62E8248DZ0Z /thSeq-f/CACATTGAAATTTACGTACGGCrA  /rhSeq-r/TTGTGACTGTGATCTGATGTGrGC
ATTG/GT4/ TGG/GT2/

OTé6 RH.47BE9BC9747547BZ0Z /thSeq-f/ TCATCAATAGGTTCATGGCAArCT /rhSeq-r/GGAACATCAATAGGTTCTTGGrAT
GTG/GT4/ ACT/GT1/

oT17 RH.A2EC2BCC4A6B41EZ0Z  /thSeq-f/CCACAACATCAGGAAGTGTrGAC /rhSeq-r/TGCCAGAACAGAATCAAGCTCT
AG/GT3/ CTC/GT3/

OT8 RH.C3366BFE4D0845270Z /thSeq-f/CTCACCCCTCACTGGTrCCACT/GT  /rhSeq-r/CCTTTACCCTGCCCCArCCTTC/GT
2/ 1/

OoT9 RH.092E25CF3C2E47FZ0Z /thSeq-f/CACATGTATCAAGATAAGGCGCr /rhSeq-r/TATCATGCATGACTGAGCCArCA
CACAT/GT1/ CTT/GT3/

OT10 RH.32D6E4ESDF4A4FCZ0Z  /rhSeq-f/GAGGCCTCATGATCATAAGTGAr /rhSeq-r/TAGCCCTCAGAAGTACGTACrCC
GTCTT/GT3/ AGA/GT3/

OT11 RH.2129E4AB36B24EBZ0Z /thSeq-f/GGCTCCATGAACCTCTAGTrCTGT  /rhSeq-r/TGGATGCAGCAGGAGAAGrGGAC
G/GT2/ A/GT2/

OT12 RH.0292A0CF06D346720Z /thSeq-f/CTCCTGTCCTGTCACCTTTrCACTA /rhSeq-r/TGCCAGCAATAAGACCTCArGAA

/GT2/

TG/GT1/

Table C.3: rhAmpSeq primer sequences for on-target and top 12 off-target sites for the GFP locus.
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Reference

CGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTA

Sequence CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC -
Read Count Insertion Insertion Inserted Deletion Deletion Deleted Snp Snp Allele
Start Stop Bases Start Stop Bases Position base Frequency
47116 0 0 0 0 0 0 0 0 73.04919456
5885 0 0 0 81 84 CGG 0 0 9.124172468
1048 0 0 0 82 83 G 0 0 1.624831393
478 0 0 0 81 83 CG 0 0 0.741096761
472 83 83 T 0 0 0 0 0 0.731794291
429 83 83 G 0 0 0 0 0 0.665126591
251 0 0 0 82 92 GGCGTGCAGT 0 0 0.38915332
230 0 0 0 82 90 GGCGTGCA 0 0 0.356594676
217 0 0 0 81 100 CGGCGTGCAGTGCTTCAGC 0 0 0.336439325
201 83,85 83,85 TA 0 0 0 0 0 0.311632738
190 0 0 0 80 83 ACG 0 0 0.294578211
179 0 0 0 83 85 GC 0 0 0.277523683
152 83 83 TA 0 0 0 0 0 0.235662568
143 0 0 0 83 96 GCGTGCAGTGCTT 0 0 0.221708864
142 0 0 0 77 83 CCTACG 0 0 0.220158452
134 0 0 0 0 0 0 86 C 0.207755159
128 0 0 0 0 0 0 76 G 0.198452689
126 0 0 0 75 92 GACCTACGGCGTGCAGT 0 0 0.195351866
126 83 83 A 0 0 0 0 0 0.195351866

Table C.4: Representative indel profile for iPSCs edited with mEGFP targeting gRNA. TSA treatment: 6.25 ng/mL.
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Reference

CGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTA

Sequence CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC -
Read Count Insertion Insertion Inserted Deletion Deletion Deleted Snp Snp Allele
Start Bases Start Stop Bases Position base Frequency
124 0 0 0 83 90 GCGTGCA 0 0 0.192251043
124 0 0 0 83 87 GCGT 0 0 0.192251043
122 0 0 0 78 102 CTACGGCGTGCAGTGCTTC 0 0 0.189150219
AGCCG
116 0 0 0 81 93 CGGCGTIGCAGTG 0 0 0.17984775
108 0 0 0 78 93 CTACGGCGTGCAGTG 0 0 0.167444457
103 0 0 0 82 87 GGCGT 0 0 0.159692398
102 0 0 0 81 96 CGGCGTGCAGTGCTT 0 0 0.158141987
101 0 0 0 82 98 GGCGTGCAGTGCTTCA 0 0 0.156591575
101 0 0 0 0 0 0 89 G 0.156591575
101 0 0 0 85 86 G 0 0 0.156591575
99 0 0 0 83 92 GCGTGCAGT 0 0 0.153490752
97 0 0 0 83 97 GCGTGCAGTGCTTC 0 0 0.150389929
91 0 0 0 81 99 CGGCGTGCAGTGCTTCAG 0 0 0.141087459
87 83 83 TGCAGT 0 0 0 0 0 0.134885812
GCTTCA
85 0 0 0 65 94 TGACCACCCTGACCTACGG 0 0 0.131784989

CGTGCAGTGC

Table C.4: Representative indel profile for iPSCs edited with mEGFP targeting gRNA. TSA treatment: 6.25 ng/mL.
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Reference

CGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTA

Sequence CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC -
Read Count Insertion Insertion Inserted Deletion Deletion Deleted Snp Snp Allele
Start Bases Start Stop Bases Position base Frequency
84 0 0 0 0 0 0 79 C 0.130234577
82 0 0 0 83 103 GCGTGCAGTGCITCAGCCG 0 0 0.127133754
C
82 0 0 0 83 89 GCGTGC 0 0 0.127133754
77 0 0 0 75 82 GACCTAC 0 0 0.119381696
76 0 0 0 78 88 CTACGGCGTG 0 0 0.117831284
73 0 0 0 0 0 0 84 G 0.113180049
73 0 0 0 81 88 CGGCGIG 0 0 0.113180049
72 0 0 0 67 88 ACCACCCTGACCTACGGCG 0 0 0.111629638
TG
71 0 0 0 80 94 ACGGCGTGCAGTGC 0 0 0.110079226
68 83 83 TCA 0 0 0 84 G 0.105427991
67 0 0 0 81 82 C 82 A 0.103877579
65 0 0 0 83 94 GCGTGCAGTGC 0 0 0.100776756
61 0 0 0 0 0 0 82 C 0.09457511
61 0 0 0 75 83 GACCTACG 0 0 0.09457511
60 0 0 0 0 0 0 80 G 0.093024698
59 0 0 0 66 92 GACCACCCTGACCTACGGC 0 0 0.091474286
GTGCAGT

Table C.4: Representative indel profile for iPSCs edited with mEGFP targeting gRNA. TSA treatment: 6.25 ng/mL.
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Insertion Insertion Inserted Deletion Deletion Deleted Snp Snp Allele
Sample Read Count

Start Stop Bases Start Stop Bases Position base Frequency
OT1 79164 0 0 0 0 0 0 0 0 97.32361294
OT1 238 0 0 0 0 0 0 103 C 0.29259537
OT1 193 0 0 0 0 0 0 94 C 0.237272716
oT1 176 0 0 0 0 0 0 104 C 0.216373047
OT1 133 0 0 0 0 0 0 97 G 0.163509177
OT1 105 0 0 0 0 0 0 99 A 0.129086193
OoT2 132705 0 0 0 0 0 0 0 0 97.13936448
OT2 432 0 0 0 0 0 0 105 G 0.316221736
OT2 398 0 0 0 0 0 0 96 G 0.291333914
OT2 287 0 0 0 0 0 0 101 C 0.210082496
oT2 273 0 0 0 0 0 0 91 G 0.199834569
OT2 193 0 0 0 0 0 0 99 T 0.141274988
OT2 173 0 0 0 0 0 0 93 C 0.126635093
o712 147 0 0 0 0 0 0 100 A 0.10760323
OT2 136 0 0 0 0 0 0 104 A 0.099551287
OT2 135 0 0 0 0 0 0 95 T 0.098819292
OoT2 106 0 0 0 0 0 0 102 A 0.077591444
oT2 102 0 0 0 0 0 0 103 A 0.074663465
OT2 102 0 0 0 0 0 0 94 A 0.074663465
OT2 101 0 0 0 0 0 0 94 C 0.073931471
OoT2 101 0 0 0 0 0 0 97 A 0.073931471
OT12 101 0 0 0 0 0 0 92 T 0.073931471
o712 100 0 0 0 0 0 0 98 T 0.073199476
OT3 141608 0 0 0 0 0 0 0 0 96.63700388
OT3 588 0 0 0 0 0 0 85 C 0.401266583

Table C.5: Representative off-target profile at top 12 off-target sites for iPSCs edited with mEGFP targeting gRNA. TSA
treatment: 6.25 ng/mL.)
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Insertion Insertion Inserted Deletion Deletion Deleted Snp Snp Allele
Sample Read Count

Start Stop Bases Start Stop Bases Position base Frequency
OT3 544 0 0 0 0 0 0 86 C 0.371239832
OT3 433 0 0 0 0 0 0 96 C 0.295490528
OT3 375 0 0 0 0 0 0 94 C 0.255909811
oT3 361 0 0 0 0 0 0 99 G 0.246355844
OT3 319 0 0 0 0 0 0 92 C 0.217693946
OT3 263 0 0 0 0 0 0 90 G 0.17947808
OT3 178 0 0 0 0 0 0 87 T 0.121471857
OT3 140 0 0 0 0 0 0 88 T 0.095539663
OT3 129 0 0 0 0 0 0 98 T 0.088032975
OT3 126 0 0 0 0 0 0 93 A 0.085985696
OT3 114 0 0 0 0 0 0 97 A 0.077796582
OT3 113 0 0 0 0 0 0 89 T 0.077114156
OT3 113 0 0 0 0 0 0 95 A 0.077114156
OT4 10919 0 0 0 0 0 0 0 0 97.1527716
OT5 71249 0 0 0 0 0 0 0 0 97.21119343
OT5 220 0 0 0 0 0 0 66 G 0.300165091
OT5 174 0 0 0 0 0 0 56 G 0.237403299
OT5 171 0 0 0 0 0 0 53 C 0.233310139
OT5 134 0 0 0 0 0 0 63 C 0.182827828
OT5 119 0 0 0 0 0 0 62 G 0.162362026
OT5 107 0 0 0 0 0 0 65 C 0.145989385
OT6 50427 0 0 0 0 0 0 0 0 96.85021223
OT6 179 0 0 0 0 0 0 101 C 0.343787812
OT6 151 0 0 0 0 0 0 100 C 0.290010947
OTé6 121 0 0 0 0 0 0 114 G 0.232392878

Table C.5: Representative off-target profile at top 12 off-target sites for iPSCs edited with mEGFP targeting gRNA. TSA
treatment: 6.25 ng/mL.
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Ensembl ID Gene Name Log?2 fold change

Top 10 Upregulated genes

ENSG00000104435.14 STMN2 7.277846866
ENSG00000147381.11 MAGEA4 6.754650943
ENSG00000285958.1  NA 6.238488914
ENSG00000100867.15 DHRS2 5.767017043
ENSG00000259033.2 NA 5.42751645

ENSG00000179520.11  SLC17A8 5.065863469
ENSG00000124092.12 CTCFL 4799176432
ENSG00000129538.14 RINASE1 4.744349224
ENSG00000173210.20 ABLIM3 4.70542518

ENSG00000164542.13 KIAA0895 4.691769828

Top 10 Downregulated Genes

ENSG00000259040.5  BLOCIS5-TXNDC5  -2.958457066

ENSG00000270066.3  NA -2.791940422
ENSG00000172780.17 RAB43 -2.724658478
ENSG00000285130.2 NA -2.225404414
ENSG00000118194.20 TNNT2 -2.176186417
ENSG00000174776.11 WDR49 -2.080537629
ENSG00000063438.19 AHRR -2.066344405
ENSG00000225783.8  MIAT -2.016967788
ENSG00000141736.14 ERBB2 -1.962932601
ENSG00000138161.14 CUZD1 -1.811777849

Pluripotency genes

ENSG00000128567.17 TRA-1-60 -0.178778459
ENSG00000204531.20 OCT4 -0.005607251
ENSG00000111704.11 NANOG 0.177296752
ENSG00000181449.4  SOX2 0.081692895

Table C.6: Top 10 upregulated and downregulated genes in iPSCs after 6.25 ng/mL TSA
treatment.

library (ArchR)
#Create a folder with the fragment files called "Fragment_Files"
inputFiles <- getInputFiles("Fragment_Files")
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inputFiles
#Setting default genome to hg38
addArchRGenome ("hg38")
# Setting default number of parallel threads to 2
addArchRThreads(threads = 2, force = TRUE)
#Creating Arrow Files
ArrowFiles <- createArrowFiles(
inputFiles = inputFiles,
sampleNames = names(inputFiles),
filterTSS = 4,
filterFrags = 1000,
addTileMat = TRUE,
addGeneScoreMat = TRUE
)
#Show Arrow Files
ArrowFiles
#Inferring doublet scores
doubScores <- addDoubletScores(
input = ArrowFiles,

k = 10, #Refers to how many cells near a "pseudo-doublet" to count.
knnMethod = "UMAP", #Refers to the embedding to use for nearest neighbor search.

LSIMethod = 1

)

## Creating an ArchR Project ##

projl <- ArchRProject(
ArrowFiles = ArrowFiles,
outputDirectory = "Outputs",
copyArrows = FALSE

)

projl

pasteO("Memory Size = ", round(object.size(projl) / 1076, 3), " MB")

getAvailableMatrices(proj1)

# Plotting Sample Statistics from ArchR Project

pl <- plotGroups(
ArchRProj = projli,
groupBy = "Sample",
colorBy = "cellColData",
name = "TSSEnrichment",
plotAs = "ridges"

)

pl

p2 <- plotGroups(
ArchRProj = proji,
groupBy = "Sample",
colorBy = "cellColData",
name = "TSSEnrichment",
plotAs = "violin",
alpha = 0.4,
addBoxPlot = TRUE

)

p2

p3 <- plotGroups(
ArchRProj = proji,
groupBy = "Sample",
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colorBy = "cellColData",
name = "loglO(nFrags)",
plotAs = "ridges"
)
p3
p4 <- plotGroups(
ArchRProj = projl,
groupBy = "Sample",
colorBy = "cellColData",
name = "loglO(nFrags)",
plotAs = "violin",
alpha = 0.4,
addBoxPlot = TRUE
)
p4
plotPDF(pl,p2,p3,p4, name = "QC-Sample-Statistics.pdf", ArchRProj = projl, addDOC =
— FALSE, width = 4, height = 4)
# Plotting Sample Fragment Size Dist. and TSS Enrichment Profiles
pl <- plotFragmentSizes(ArchRProj = projl)
pl
p2 <- plotTSSEnrichment (ArchRProj = projl)
P2
plotPDF(pl,p2, name = "QC-Sample-FragSizes-TSSProfile.pdf", ArchRProj = projl, addDOC =
— FALSE, width = 5, height = 5)
# Filtering Doublets
proj2 <- filterDoublets(proj1)
proj2
#Saving ArchR project
saveArchRProject (ArchRProj = proj2, outputDirectory = "Save-Proj2", load = TRUE)
## Dimensionality Reduction ##
# Iterative Latent Semantic Indexing (LSI)
proj2 <- addIterativeLSI(
ArchRProj = proj2,
useMatrix = "TileMatrix",
name = "IterativeLSI",
iterations = 2,
clusterParams = list( #See Seurat::FindClusters
resolution = c(0.2),
sampleCells = 10000,
n.start = 10
),
varFeatures = 25000,
dimsToUse = 1:30
)
# Batch Effect Correction with Harmony
proj2 <- addHarmony(
ArchRProj = proj2,
reducedDims = "IterativeLSI",
name = "Harmony",
groupBy = "Sample"
)
## Clustering ##
proj2 <- addClusters(
input = proj2,
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reducedDims = "IterativeLSI",
method = "Seurat",
name = "Clusters",
resolution = 0.8
)
head (proj2$Clusters)
table(proj2$Clusters)
cM <- confusionMatrix(pasteO(proj2$Clusters), pasteO(proj2$Sample))
cM
library(pheatmap)
cM <- cM / Matrix::rowSums(cM)
p <- pheatmap: :pheatmap(
mat = as.matrix(cM),
color = paletteContinuous("whiteBlue"),
border_color = "black"

)
P

plotPDF(p, name = "HeatMap.pdf", ArchRProj = proj2, addDOC = FALSE, width = 5, height

— 5)

# Clustering using scran
#projHeme2 <- addClusters(

# input = projHemeZ2,

# reducedDims = "IterativeLSI",
# method = "scran",

# mname = "ScranClusters”,

# k =15

#)

## Single Cell Embeddings ##

# UMAP

proj2 <- addUMAP(

ArchRProj = proj2,

reducedDims = "IterativeLSI",

name = "UMAP",

nNeighbors = 30,

minDist = 0.5,

metric = "cosine"
)
pl <- plotEmbedding(ArchRProj = proj2, colorBy = "cellColData", name = "Sample",
— embedding = "UMAP")
p2 <- plotEmbedding(ArchRProj
— embedding = "UMAP")
gghlignPlots(pl, p2, type = "h")

proj2, colorBy = "cellColData", name = "Clusters",

152

plotPDF(pl,p2, name = "Plot-UMAP-Sample-Clusters.pdf", ArchRProj = proj2, addDOC = FALSE,

— width = 5, height = 5)
#t-SNE
proj2 <- addTSNE(
ArchRProj = proj2,
reducedDims = "IterativeLSI",
name = "TSNE",
perplexity = 30
)
pl <- plotEmbedding(ArchRProj = proj2, colorBy = '"cellColData", name = "Sample",
< embedding = "TSNE")
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p2 <- plotEmbedding(ArchRProj = proj2, colorBy = "cellColData", name = "Clusters",
— embedding = "TSNE")
ggAlignPlots(pl, p2, type = "h")
# Dimensional Reduction After Harmony
# UMAP
proj2 <- addUMAP(

ArchRProj = proj2,

reducedDims = "Harmony",

name = "UMAPHarmony",

nNeighbors = 30,

minDist = 0.5,

metric = "cosine"
)
p3 <- plotEmbedding(ArchRProj = proj2, colorBy = '"cellColData", name = "Sample",
— embedding = "UMAPHarmony")
p4 <- plotEmbedding(ArchRProj = proj2, colorBy = '"cellColData", name = "Clusters",
< embedding = "UMAPHarmony")
ggAlignPlots(p3, p4, type = "h")
plotPDF(pl,p2,p3,p4, name = "Plot-tSNEHarmony-Sample-Clusters.pdf", ArchRProj = proj2,
— addDOC = FALSE, width = 5, height = 5)
# t-SNE
proj2 <- addTSNE(

ArchRProj = proj2,

reducedDims = "Harmony",

name = "TSNEHarmony",

perplexity = 30
)
p3 <- plotEmbedding(ArchRProj = proj2, colorBy
— embedding = "TSNEHarmony")
p4 <- plotEmbedding(ArchRProj = proj2, colorBy
— embedding = "TSNEHarmony")
ggAlignPlots(p3, p4, type = "h")
## Identifying Marker Genes ##
devtools: :install_github("immunogenomics/presto")
markersGS <- getMarkerFeatures(

ArchRProj = proj2,

useMatrix = "GeneScoreMatrix",

groupBy = "Clusters",

bias = c("TSSEnrichment", "loglO(nFrags)"),

testMethod = "wilcoxon"
)
markerList <- getMarkers(markersGS, cutOff = "FDR <= 0.01 & Log2FC >= 1.25")
#markerList$C6
#write. table(markerList, file="markersGS.tzt",sep = "\t", row.names = TRUE)
markerGenes <- c("Nanog", "Poubfl", "Sox2")
heatmapGS <- markerHeatmap(

seMarker = markersGS,

cut0ff = "FDR <= 0.01 & Log2FC >= 1.25",

labelMarkers = NULL,

transpose = TRUE
)
ComplexHeatmap: :draw(heatmapGS, heatmap_legend_side = "bot", annotation_legend_side =
— "bot")

"cellColData", name = "Sample",

"cellColData", name "Clusters",
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plotPDF (heatmapGS, name = "GeneScores-Marker-Heatmap", width = 8, height = 6, ArchRProj =

< projHeme2, addDOC = FALSE)
p <~ plotEmbedding(
ArchRProj = proj2,
colorBy = "GeneScoreMatrix",
name = markerGenes,
embedding = "UMAP",
quantCut = ¢(0.01, 0.95),
imputeWeights = NULL
)
p$Nanog
install.packages("Rmagic")
markerGenes <- c(
"Nanog", "Poubfl", "Sox2"
)
p <~ plotEmbedding(
ArchRProj = proj2,
colorBy = "GeneScoreMatrix",
name = markerGenes,
embedding = "UMAP",
imputeWeights = getImputeWeights(proj2)
)
install.packages("rhandsontable")

plotPDF(pl,p2,p3,p4, name = "Plot-UMAP2Harmony-Sample-Clusters.pdf", ArchRProj = proj2,

— addDOC = FALSE, width = 5, height = 5)
## Pseudo-Bulk Replicates in ArchR ##

proj3 <- addGroupCoverages(ArchRProj = proj2, groupBy = "Clusters")
##install MACSZ2 by running the following command in terminal window

#pip install MACS2

pathToMacs2 <- findMacs2()

proj3 <- addReproduciblePeakSet (
ArchRProj = proj3,
groupBy = "Clusters",
pathToMacs2 = pathToMacs2

)

getPeakSet (proj3)

#Calling peaks with Tile Matriz

projTmp <- addReproduciblePeakSet(
ArchRProj = proj3,
groupBy = "Clusters",
peakMethod = "Tiles",
method = "p"

)

getPeakSet (projTmp)

#Comparing methods

length(subsetByOverlaps (getPeakSet(proj3), getPeakSet(projTmp))) /

— length(getPeakSet (proj3)) #0.5834776

length(subsetByOverlaps (getPeakSet (projTmp), getPeakSet(proj3))) /
— length(getPeakSet (projTmp)) #0.9292217

length(subsetByOverlaps (resize(getPeakSet (proj3), 1000, "center"), getPeakSet (projTmp)))

— / length(getPeakSet(proj3)) #0.613327

length(subsetByOverlaps (getPeakSet (projTmp), resize(getPeakSet(proj3), 1000, "center")))

— / length(getPeakSet (projTmp)) #0.9698539

#Save ArchR project
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253 saveArchRProject (ArchRProj = proj3, outputDirectory = "Save-Proj3", load = FALSE)

254 # Add Peak Matriz

255 addArchRThreads(threads = 1, force = TRUE)

256 proj4 <- addPeakMatrix(proj3)

257 getAvailableMatrices(proj4)

258 ## Identifying Marker Peaks ##

259 table(proj4$Clusters)

260 markersPeaks_cluster <- getMarkerFeatures(

261 ArchRProj = proj4,

262 useMatrix = "PeakMatrix",

263 groupBy = "Clusters",

264 bias = c("TSSEnrichment", "loglO(nFrags)"),

265 testMethod = "wilcoxon"

266 )

267 markersPeaks _cluster

268 markerList_cluster <- getMarkers(markersPeaks_cluster, cutOff = "FDR <= 0.01 & Log2FC >=
«— 1", returnGR = TRUE)

269 markerList_cluster

270 markersPeaks_sample <- getMarkerFeatures(

271 ArchRProj = proj4,

272 useMatrix = "PeakMatrix",

273 groupBy = "Sample",

274 bias = c("TSSEnrichment", "loglO(nFrags)"),

275 testMethod = "wilcoxon"

276 )

277 markersPeaks_sample

278 markerList_sample <- getMarkers(markersPeaks_sample, cutOff = "FDR <= 0.01 & Log2FC >=
— 1", returnGR = TRUE)

279 markerList_sample

280 ## Plotting Marker Peaks ##

281 # Marker Peak Heatmaps

282 heatmapPeaks_cluster <- markerHeatmap (

283 seMarker = markersPeaks_cluster,

284 cutOff = "FDR <= 0.1 & Log2FC >= 0.5",

285 transpose = TRUE

286 )

287 draw(heatmapPeaks_cluster, heatmap_legend_side = "bot", annotation_legend_side = "bot")
288 heatmapPeaks_sample <- markerHeatmap(

289 seMarker = markersPeaks_sample,

290 cut0Off = "FDR <= 0.1 & Log2FC >= 0.5",

291 transpose = TRUE

292 )

293 draw(heatmapPeaks_sample, heatmap_legend_side = "bot", annotation_legend_side = "bot")

294 # Marker Peak MA and Volcano Plots

295 pma <- markerPlot(seMarker = markersPeaks_sample, name = "ESC", cutOff = "FDR <= 0.1 &
— Log2FC >= 1", plotAs = "MA")

296 pma

297 pv <- markerPlot(seMarker = markersPeaks_sample, name = "ESC", cutOff = "FDR <= 0.1 &
< Log2FC >= 1", plotAs = "Volcano")

298  pv

299 # Marker Peaks in Browser Tracks

300 set.seed(100)

301 p <- plotBrowserTrack(

302 ArchRProj = proj4,
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groupBy = "Sample",
geneSymbol = c("NANOG"),
features = getMarkers(markersPeaks_sample, cutOff = "FDR <= 0.1 & Log2FC >= 1",
< returnGR = TRUE),
upstream = 50000,
downstream = 50000
)
grid: :grid.newpage()
grid: :grid.draw(p$NANOG)
## Pairwise Testing Between Groups ##
markerTest <- getMarkerFeatures(
ArchRProj = proj4,

useMatrix = "PeakMatrix",
groupBy = "Sample",
testMethod = "wilcoxon",
bias = c("TSSEnrichment", "loglO(nFrags)"),
useGroups = "Count_A",
bgdGroups = "Count_B"
)
pma <- markerPlot(seMarker = markerTest, name = "Count_A", cutOff = "FDR <= 0.1 &
— abs(Log2FC) >= 1", plotAs = "MA")
pma

pv <- markerPlot(seMarker = markerTest, name = "Count_A", cutOff = "FDR <= 0.1 &
— abs(Log2FC) >= 1", plotAs = "Volcano")

pv

Listing 2: R code used for scATAC-seq analysis.
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library ("tximport")
library("readr")
library("GenomicFeatures")
#Creating GFF file
gffFile <-

— "C:/Users/Documents/R/win-library/4.0/tximportData/extdata/gencode.v37.annotation.gtf"

#Creating TxDb object

txdb <- makeTxDbFromGFF(file=gffFile)

k <- keys(txdb, keytype = "GENEID")

df <- select(txdb, keys = k, keytype = "GENEID", columns = "TXNAME")
tx2gene <- df[, 2:1]

head (tx2gene)

#Locating the directory with transcript abundance estimate files
dir<- "C:/Users//salmon_iPSC"

#Creating a vector for quantification files

samples <- read.table(file.path(dir, "samples.txt"), header = TRUE)
samples

files <- file.path(dir,"quants", samples$run, "quant.sf")

names (files) <- samples$run

files

#Importing transcript level estimates

txi <- tximport(files, type = "salmon", tx2gene = tx2gene)
names (txi)

head (txi$counts)

#Exporting the read counts to a csv file

write.csv(txi, file = 'C:/Users/Documents/Counts.csv')

Listing 3: R code used for bulk-RNA seq analysis.
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D DISSECTING MOLECULAR MECHANISMS OF ASTROCYTE-NEURON
INTERACTION IN RETT SYNDROME

Work in this chapter was adapted from:
Dissecting Molecular Mechanisms of Astrocyte-Neuron Interaction in Rett Syndrome
Using Arrays of Gene-Edited, Patient-derived Cells

Kaivalya Molugu, Jason Kim, Greta Brown, Qiang Chang, Krishanu Saha
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D.1 Introduction

Rett syndrome (RTT) is a pervasive developmental disorder of the brain that generates
dysfunction in both neurons and astrocytes. While neuron-astrocyte interaction has been
observed in culture and animals, the molecular mechanisms mediating this interaction
are poorly understood. In this project, we utilized several human stem cell models of
RTT and expertise in astrocyte-neuron co-culture as well as morphological and functional
analysis of these cells. In addition, we developed a new platform to array microscale
islands of astrocyte-neuron co-cultures, gene-edit them in high-throughput, and analyze
them in situ with high content analysis without dissociating these cultures. This novel
system effectively separates neurons from dense cultures into isolated “islands’ that can be
easily analyzed for complexity. Overall, this project examined whether automated analysis
of spatially isolated astrocyte-neuron co-cultures is feasible, and has been applying this
new approach to understand neuronal biology with human RTT stem cell models. In the
long term, this platform can be adapted further to advance drug discovery/toxicology for

neurodevelopmental disorders.

D.2 Methodology and Results

Micropatterned culture and imaging system was established for richer classification of
neurite complexity. First, a microscale system was generated in a 24-well format by creating
hydrophilic polyethylene glycol (PEG) brushes that resist protein adsorption at defined
locations on a gold-coated glass sheet. This sheet was then combined with a bottomless
standard tissue culture 24-well plate to form the microscale system (Figure D.1). Initial
attempts were made to pattern astrocyte-neuronal co-cultures into circles of defined radii
varying from 100 to 300 pm (pFeatures) and then identified 100 pm radius circles to be
the most suitable for obtaining single neuron attachment per pFeature. Next, several

pilot experiments were run on 24-well plates patterned with 128 circles of 100um radius
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in each well, to identify the optimal seeding density, culture time, and image settings.
Wild-type mouse astrocytes were plated on the patterned well plates. As expected, cell
localized to the areas defined by the micropatterning. The astrocytes seeded uniformly
on the substrates and have persisted over the course of the experiments. One week later,
human stem-cell-derived neurons (H9-GFP neurons) were plated on top of the astrocytes,
with a seeding density of neurons ranging from 1.0 x 10* to 6.4 x 10° cells/well. Some
representative bright field (astrocytes + neurons) and GFP channel (neurons) images
are shown in Figure D.1B. Minimal or no attachment of neurons was observed at lower
seeding densities, multiple neurons attached per pFeature at higher seeding densities.
An optimal neuron seeding density of 16 x 10* cells/well yielded maximum number of
uFeatures with single neuron attachment. Overall, a robust protocol and methodology have
been established to consistently produce 12-well and 24-well plates with two optimized
micropatterns (400-600 um diameter islands; 75-701 single neurons/well).

The accuracy and speed of the microscale system are currently being evaluated with H9-
GFP human embryonic stem cell (hESC)-derived neural cells that have well-characterized
differences in complexity. This methodology uses mouse astrocytes as a feeder layer, and
we have generated these cells by passaging the cultures several times to remove all the
mouse neurons. An in vitro human cell-based RTT model will be generated via MECP2
gene knockout in H9-GFP neurons using CRISPR-Cas9 genome editors. The MECP2 gene
has four exons, with different isoforms being expressed from exons 1 and 2. As exon 3 is
the first shared exon among all isoforms, exon 3 was chosen as the target exon to ablate
all MeCP2 protein isoforms. Two single guide RNAs (sgRNAs) were designed within
exon 3 (Figure D.2A) using the inDelphi and Benchling software programs to ensure high
frameshift frequency, high on-target score, and low off-target score. The sgRNAs were
individually cloned into the lentiCRISPRv2-mCherry plasmid, which encodes SpCas9-P2A-
mCherry and the sgRNA cloning site (Figure D.2B). Using BsmBI digestion of the plasmid,

sgRNAs were cloned into the guide RNA scaffold, which was verified via Sanger sequencing
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(Figure D.2). After packaging these constructs, lentivirus was tested by performing viral
transductions on 3T3 cells and Human Embryonic Kidney cells (HEKSs) plated at a seeding
density of 2500 cells/well of a 96-well plate (data shown for 3T3 cells only), with 0 to
8 units of virus per well (1 unit of virus = 1.5 uL of freshly prepared virus). 3T3 cells
were imaged using an epifluorescence microscope on day 2 after transduction (Figure
D.2D) and flow cytometry was performed on day 3 after transduction (Figure D.2E,F),
where noted mCherry™ cells were noted indicating a successful viral infection for both
the sgRNAs. These MECP2 genome editors were then used to transduce H9-GFP stem
cells and differentiated them into neurons using the neural differentiation protocol (Figure
D.3).

At present, several samples with variable neuronal complexity are awaiting immunostaining
analysis to quantify the neuronal complexity. The next phase of this work is to apply this

platform to human neurons that model RTT and Fragile X Syndrome (FXS).

D.3 Significance of Research

This work has established a high-throughput platform that incorporates an innovative
approach to gene edit and measures neuronal complexity using automated methods with-
out requiring manual tracing of neurons, which is labor-intensive. These methods will
shed light on the molecular mechanisms underpinning lower neurite complexity in RTT
patients, and potentially identify molecular targets for therapeutic interventions. Because
the approach can easily be utilized with different genome editors targeting any portion of
the genome, this platform can be applied to a broad spectrum of experiments aimed at un-
derstanding the genetic and molecular mechanisms of many other neurological disorders,

including autism and schizophrenia.
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Figure D.1: Astrocyte-neuronal co-cultures on patterned 24-well platform. A) Schematic
showing the generation of microscale well platform. Gold-coated glass is stamped with
initiator solution using PDMS mold and then reacted in PEG solution. Glass is then
combined with a standard bottomless 24-well plate that has a double side adhesive attached.
B) Representative images of mouse astrocyte-H9 GFP neuron co-cultures (BF) on patterned
well plates at different neuron (GFP channel) seeding densities. Each island is 100 pm in

radius. Images are taken 3 days after seeding the H9-GFP neurons.
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Figure D.2: Production and testing of a genome editor to generate a human RTT model.
This example illustrates the production and testing of a lentivirus with a CRISPR-Cas9
sgRNA targeting exon 3 of MECP2. A) Schematic of the human MECP2 locus with the
two sgRNAs target sequences, protoadjacent motif (PAM) sequences, and cut-sites (black
arrow) labeled. B) Schematic of the LentiCRISPRv2-mCherry plasmid consisting of SpCas9,
sgRNA, and mCherry expression constructs. C) Sanger sequencing results of the cloned
plasmid to verify the presence of the sgRNA insert. D) Representative images of untrans-
fected 3T3 cells and cells transduced with 8 units of sgRNA1 and sgRNA2 virus per well (1
unit of virus = 1.5 L of freshly prepared virus). Brightfield shows the 3T3 cells and the red
channel shows the mCherry+ 3T3 cells. E) Flow cytometry analysis of untransfected 3T3
cells and cells transduced with 8 units of sgRNAT and sgRNA2 virus per well. Percentage
of mCherry+ cells are labeled. F) Plot of the percentage of mCherry+ cells versus the
units of sgRNA1 and sgRNAZ2 virus added per well of 3T3s (n=2). p-values generated by
two-way ANOVA using the Dunnett’s test for multiple comparisons to untransfected cells;

ns = p >0.05, * for p <0.05, ** for p <0.01, ** for p <0.001, **** for p <0.0001.
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Figure D.3: Neuronal differentiation of human embryonic stem cells using dual SMAD
inhibition. A) Schematic of the protocol for neural differentiation using dual SMAD inhi-
bition. The protocol includes 4 steps: 1) Growing human embryonic stem cells (hESCs) to
50% confluency (days 0-3). 2) Neural induction (days 3-10) to neural progenitors, by using
Neural Differentiation Medium (NDM = DMEM/F12, Neurobasal, B27, N2) and blocking
SMAD signaling using TGF-f3 inhibitor SB431542 and BMP inhibitor LDN193189. 3) Neuro-
sphere formation by dissociating cells using dispase, and further neurosphere maintenance
and expansion (days 10-20) in low attachment flasks by supplementing NDM with bFGF
growth factor and heparin to stabilize the bFGF. 4) Neural maturation (days 20-30), by
dissociating neurospheres with accutase and re-plating them on Matrigel-coated plates in
the presence of brain-derived neurotrophic factor (BDNF), glia-derived neurotrophic factor
(GDNF), and compound E (for blockade of Notch signaling). B) Brightfield representative
images of H9 hESCs, neural progenitors, neurospheres, and neurons on days 3, 10, 12, 30 of
neural differentiation. The plating of dissociated neurospheres in this protocol produced

the most consistent attachment of mature neurons on our platform.
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