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ABSTRACT

Entity matching (EM) identifies data instances that refer to the same real-world entity, such as

(David Smith, UWMadison) and (D. M. Smith, UWM). This problem has been a long-standing

challenge in data management and will be even more critical in the age of data science. Most

current EM works focus only on developing matching algorithms. Going forward, we argue that

far more efforts should be devoted to building EM systems, in order to significantly advance the

field.

We discuss the limitations of current EM systems, then present as a solution Magellan, a new

kind of EM systems. Magellan is novel in four important aspects. (1) It provides how-to guides

that tell users what to do in each EM scenario, step by step. (2) It provides tools to help users

do these steps; the tools seek to cover the entire EM pipeline, not just matching and blocking

as current EM systems do. (3) Tools are built on top of the data analysis and Big Data stacks

in Python, allowing Magellan to naturally integrate into the Python ecosystem of data science

tools, and to borrow a rich set of capabilities in data cleaning, IE, visualization, learning, etc. (4)

Magellan provides a powerful scripting environment to facilitate interactive experimentation and

quick “patching” of the system.

While promising, realizing the above novelties raises major challenges. First, it turns out that

developing effective how-to guides, even for very simple EM scenarios such as applying supervised

learning to match, is already quite difficult and complex. Second, developing tools to support

these guides is equally difficult. In particular, current EM work may have dismissed many steps

in the EM pipeline as engineering. But here we show that many such steps (e.g., loading the
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data, sampling and labeling, debugging, etc.) do raise difficult research challenges. Finally, while

most current EM systems are stand-alone monoliths, Magellan is designed to be placed within an

ecosystem and is expected to play well with others (e.g., other Python packages). We distinguish

this by saying that current EM systems are closed-world systems whereas Magellan is an open-

world system, because it relies on many other systems in the eco-system in order to provide the

fullest amount of support to the user doing EM. It turns out that building open-world systems raises

non-trivial challenges, such as designing the right data structures and managing metadata, among

many others.

In this dissertation we discuss how we have addressed these challenges, built, and open sourced

Magellan. As far as we can tell, Magellan is the most comprehensive open-source EM system to-

day (August 2018), in terms of the number of features it supports. Magellan has been successfully

used in several domain science projects in academia and projects in industry. We describe these

“in the wild” experience with Magellan, as well as extensive experiments in controlled settings.

Finally, we discuss lessons learned and many possible future research directions. Beside concrete

contributions, this dissertation also introduces a new template of research, system development,

and education for EM, with many potential impacts.
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Chapter 1

Introduction

This dissertation studies entity matching: the problem of finding data instances that refer to the

same real-world entity, such as (David Smith, UW-Madison) versus (D. M. Smith, UWM), and

(The Return of the King, 2003) versus (LOTR: Return of the King, 2003).

We begin this chapter by showing that entity matching (EM) is a fundamental step in numerous

data management applications, and will become even more critical in the age of data science. Next,

we discuss the challenges of EM, state-of-the-art solutions, and their limitations. We then outline

our Magellan solution to these limitations. Finally, we list the contributions and give a road map

to the rest of the dissertation.

1.1 Applications of Entity Matching

Entity matching has had a long history, dating back to the late 50s (see [102, 55, 128, 82, 83,

63, 43, 37, 56, 51] for recent books, surveys, and tutorials; see also the related work chapter).

One of the earliest applications of EM arose from the need to match persons for census purposes,

among others [104, 57, 127, 129].

These early works originated from the statistics community. Starting in the 1980s, however,

EM also received increasing attention in the database, data mining, Web, and AI communities,

due to the need to integrate data that come from multiple disparate sources. This problem and its

variants are often known as data integration [51]. For example, when an e-retailer acquires another

e-retailer, it often ends up with two databases that keep track of their customers (e.g., their names,

addresses, phones, etc.), and has to integrate these two databases into a single unified database. To
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do so, it must be able to match, i.e., identify the same customer across the two databases. Other

important applications include integrating datasets for mining [70, 69], matching entities on the

World-Wide Web (e.g., publications) [97], and matching entities on the Semantic Web [51].

Today, as data science grows, EM is receiving even more attention. This is because many data

science applications must first perform data integration (DI) to combine the raw data from multiple

sources, before analysis can be carried out to extract insights. The DI process in turn often requires

EM [49].

1.2 Challenges of EM, Current Solutions, and Their Limitations

Entity matching has long been known to raise two major challenges: accuracy and scalability.

First, EM is difficult to perform accurately, because the same entity may appear in many different

formats. For example, a person name such as “David Smith” may appear as “D. Smith”, “Dave M.

Smith”, “Prof. D. Smith”, etc. Second, EM is difficult to perform on a large scale. Consider for

example matching two tables A and B, each having 100,000 tuples. Suppose each tuple describes

a person and suppose that our goal is to find all tuple pairs (a ∈ A, b ∈ B) that match. Then a

naive solution would enumerate and consider matching all 10 billions of tuple pairs in the entire

Cartesian product A×B, which is practically infeasible.

Numerous solutions have been proposed to address these two challenges ([37, 56], see the re-

lated work chapter). Despite all this attention, however, today we do not really know whether the

field is making good progress. The vast majority of EM works have focused on developing algo-

rithmic solutions. But we know very little about whether these (ever-more-complex) algorithms

are indeed useful in practice.

The field has also built mostly isolated EM system prototypes, which are hard to use and

combine, and are often not powerful enough for real-world applications. This makes it difficult to

decide what to teach in data science and data integration classes. Teaching complex EM algorithms

and asking students to do projects using our prototype systems can train them well for doing EM

research, but are not likely to train them well for solving real-world EM problems in later jobs.
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Similarly, outreach to real users (e.g., domain scientists) is difficult. Given that we have mostly

focused on “point EM problems” (as we discuss later), we do not know how to help them solve

end-to-end EM tasks. That is, we cannot tell them how to start, what algorithms to consider, what

systems to use, and what they need to do manually in each step of the EM process.

In short, today our EM effort in research, system development, education, and outreach seem

disjointed from one another, and disconnected from real-world applications. As data science

grows, this state of affairs makes it hard to figure out how we can best relate and contribute to

this major new field.

1.3 Goals of the Dissertation

In this dissertation we take the first steps in addressing the above problems. We begin by

arguing that the key to move forward (and indeed, to tie everything together) is to devote far more

effort to building EM systems.

EM is engineering by nature. We cannot just keep developing EM algorithmic solutions in

a vacuum. This is akin to continuing to develop join algorithms without building the rest of the

RDBMSs. At some point we need to build end-to-end EM systems and work with real users to

evaluate these algorithms, to integrate disparate R&D efforts, and to make practical impacts.

In this aspect, EM can take inspiration from RDBMSs and Big Data systems. Pioneering

systems such as System R, Ingres, Hadoop, and Spark have really helped push these fields forward,

by helping to evaluate research ideas, providing an architectural blueprint for the entire community

to focus on, facilitating more advanced systems, and making widespread real-world impacts.

The question then is what kinds of EM systems we should build, and how? The goal of this

dissertation is to explore answers to this question. Toward this goal, we proceed with the following

steps:

1. Analyze current academic and industrial EM systems to understand the limitations that pre-

vent them from being extensively in practice.
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2. Propose the Magellan system architecture, which seeks to manage the entire EM process.

Magellan manages this process in two stages: development and production. For each stage,

it provides a how-to guide to the user, identifies the pain points in the guide, and provides

(semi-)automatic tools to address these pain points. Tools are being built into the ecosystem

of open-source data science tools in Python.

3. Discuss how to develop the development stage and the production stage of Magellan from

a user’s perspective. That is, how to create how-to guides for users, to identify pain points,

and to develop tools for the pain points.

4. Discuss how to develop both stages from a developer’s perspective. That is, what kinds of

challenges developers face as they build guidance and tools for the stages.

5. Evaluate Magellan in both controlled settings as well as “in the wild”, via teaching and

outreach to domain science projects in academia and projects in industry.

1.4 Overview of the Solutions

We now outline our solutions to the above problem steps.

1.4.1 The Case for Entity Matching Management Systems

Limitations of Current EM Systems: We begin by analyzing 18 major non-commercial systems

(e.g., D-Dupe, DuDe, Febrl, Dedoop, Nadeef), and 15 major commercial ones (e.g., Tamr, Data

Ladder, Informatica Data Quality). Then we show that these systems suffer from four limitations

that prevent them from being used extensively in practice.

• First, when performing EM users often must execute many steps, e.g., blocking, matching,

exploring, cleaning, debugging, sampling, labeling, estimating accuracy, etc. Current sys-

tems however do not cover the entire EM pipeline, providing support for only a few steps

(e.g., blocking, matching), while ignoring less well-known yet equally critical steps (e.g.,

debugging, sampling).
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• Second, EM steps often exploit many techniques, e.g., learning, mining, visualization, outlier

detection, information extraction (IE), crowdsourcing, etc. Today however it is very difficult

to exploit a wide range of such techniques. Incorporating all such techniques into a single

EM system is extremely difficult. EM is often an iterative process. So the alternate solution

of moving data repeatedly among an EM system, a data cleaning system, an IE system, etc.

does not work either, as it is tedious and time consuming. A major problem here is that most

current EM systems are standalone monoliths that are not designed from the scratch to “play

well” with other systems.

• Third, users often have to write code to “patch” the system, either to implement a lacking

functionality (e.g., extracting product weights) or to glue together system components. Ide-

ally such coding should be done using a script language in an interactive environment, to

enable rapid prototyping and iteration. Most current EM systems however do not provide

such facilities.

• Finally, in many EM scenarios users often do not know how to proceed end to end. Suppose a

user wants to perform EM with at least 95% precision and 80% recall. Should he or she start

out using a learning or rule-based EM approach? If learning-based, then which technique to

select among the many existing ones? How to debug? What to do if after many tries the user

still cannot reach 80% recall? Current EM systems provide no answers to such questions.

The Magellan Solution: To address these limitations, we propose Magellan, a new kind of EM

systems. Magellan (named after Ferdinand Magellan, the first end-to-end explorer of the globe)

is novel in several important aspects.

• First, Magellan provides how-to guides that tell users what to do in each EM scenario, step

by step.

• Second, Magellan identifies the pain points of the steps (in the guide), then provides tools

that help users do those pain points. These tools seek to cover the entire EM pipeline (e.g.,

debugging, sampling), not just the matching and blocking steps.
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• Third, the tools are being built on top of the Python data analysis and Big Data stacks.

Specifically, we propose that users solve an EM scenario in two stages. In the development

stage users find an accurate EM workflow using data samples. Then in the production stage

users execute this workflow on the entirety of data.

We observe that the development stage basically performs data analysis. So we develop tools

for this stage on top of the well-known Python data analysis stack, which provide a rich set

of tools such as pandas, scikit-learn, matplotlib, etc. Similarly, we develop tools for the

production stage on top of the Python Big Data stack (e.g., Pydoop, mrjob, PySpark, etc.).

Thus, Magellan is well integrated with the Python data eco-system, allowing users to easily

exploit a wide range of techniques in learning, mining, visualization, IE, etc.

• Finally, an added benefit of integration with Python is that Magellan is situated in a powerful

interactive scripting environment that users can use to prototype code to “patch” the system.

As described, it is important to note that the how-to guides are not user manuals. Instead, they are

detailed algorithms for the human user. A “rule of thumb” is that if the user knows how to code,

he or she should be able to use the guide to execute the end-to-end EM scenario, even without

utilizing any tool (of course, this can take a long time, but the key is that the user should be able to

do it). In practice, the guide can utilize any appropriate (semi-)automatic existing tools.

Another important point to note is that unlike current EM systems, which often focus on provid-

ing implementations for just a few important problems in the EM process (e.g., blocking, matching,

see Chapter 2), Magellan seeks to manage all aspects of the end-to-end EM process. We refer to

this kind of systems as entity matching management systems (EMMSs). Further, since Magellan

heavily involves the human user (as a “first-class citizen” of the EM process), it is an example of

“human-in-the-loop” data management systems, which have received significant recent attention

[48].

EM Scenarios Considered: In practice, there is a wide variety of EM scenarios (e.g., matching

two tables, matching a table to a knowledge base, matching within a single table, etc.) [51]. As a

first step, in this dissertation, we will build Magellan to handle a few common scenarios, and hope
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that future work can extend it to more scenarios (over time). Specifically, we focus on (1) matching

two tables using supervised learning, (2) matching two tables using rules, and (3) matching two

tables using both supervised learning and rules.

1.4.2 The Development Stage of Magellan

With the high-level architecture of Magellan sketched out, we turn our attention to developing

the development stage of Magellan, from a user’s perspective. That is, what does a user expect to

have in this stage, and how is that useful to the user?

To answer these questions, we begin by developing a how-to guide for the scenario of matching

two tables using supervised learning. The guide states that to match two tables A and B, the user

should load the tables into Magellan, do blocking, label a sample of tuple pairs, use the sample

to iteratively find and debug a learning-based matcher, then return this matcher and its estimated

matching accuracy.

For each of the above steps, we identify pain points, and discuss tools that we have developed

for those pain points, as well as desirable future tools. We then build on the above how-to guide

to develop guides for the other two EM scenarios (matching two tables using rules and matching

using both learning and rules).

We show that even for relatively simple EM scenarios such as those discussed above, a good

guide can already be quite complex. Thus developing how-to guides is a major challenge, but such

guides are absolutely critical in order to successfully guide the user through the EM process.

We also show that each step of the guide, including those that prior work may have viewed as

trivial or engineering (e.g., sampling, labeling), can raise many interesting re- search challenges.

We provide preliminary solutions to several such challenges in this work. But much more remains

to be done.

Finally, we show that the current guides and tools are already highly promising, in that users

can already use them to achieve high matching accuracy on diverse data sets. Specifically, we

report on extensive experiments with graduate students at UW-Madison in a data science class

project. (Later we describe our experience applying Magellan “in the wild”, to real-world EM
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scenarios in domain science projects and at companies. That experience further demonstrates the

above promise and highlights challenges for future work.)

1.4.3 The Production Stage of Magellan

Earlier we have considered the development stage. Specifically, we considered developing

how-to guides and tools to help the user experiment and find an accurate EM workflow, using

data samples. In the next step, we consider the production stage, in which the user executes this

workflow on the entirety of data, i.e., on the two original tables to be matched.

There are numerous challenges in the production stage, such as scaling, crash recovery, log-

ging, etc. We will focus on scaling. We first motivate our scaling considerations and define our

problem settings. In particular, we argue for the need to develop a how-to guide for users on how

to handle scaling challenges in the production stage.

Next, we describe such preliminary guides for several scaling scenarios. We then identify pain

points in the guides and develop tools for the pain points. Specifically, we develop tools to tune

the parameters of the implementation versions of several EM commands. We present experiments

showing that even preliminary tuning tools can already be useful to the user. Overall, our work in

this part, even though still preliminary, shows the promise of following the “how-to guide / pain

points / tools” template that we have successfully used for the development stage.

1.4.4 Building Magellan

In the next step, we discuss the above two stages from a developers perspective. That is, how

developers should build these stages, what challenges they will face, and how they can address

those challenges.

We begin by discussing the development stage. Here, we note that while most current EM

systems are stand-alone monoliths, Magellan is designed to be placed within an “ecosystem” and

is expected to “play well” with others (e.g., other Python packages). We say that Magellan is an

“open-world system”, because it relies on many other systems in the ecosystem in order to provide

the fullest amount of support to the user doing EM.
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In this context, the biggest challenges developers face arise from the need to make the Python

packages interoperate. Example challenges include how to design appropriate data structures (for

interoperability purposes), how to manage metadata (when packages can manage one anothers

metadata), how to handle missing values across the packages, and more. We discuss how these

challenges arise in the context of open-world systems, to which Magellan belongs, and our pre-

liminary solutions. This is in contrast to “close-world systems” such as RDBMSs.

We then discuss the production stage. Here a major challenge is scaling the Python commands

that users may want to execute. We discuss current common scaling solutions (such as custom

optimizations for a single core or multiple cores), analyze them, then create a how-to guide for

developers (on how to scale Magellans commands). We used this guide to scale a subset of

current commands. Finally, we discuss the current status of the open-source implementation of the

Magellan system.

1.4.5 Magellan “in the Wild”: Successes and Lessons Learned

In the past three years we have started to address the above challenges. Specifically, we have

open sourced Magellan [13]. As far as we can tell, Magellan is the most comprehensive open-

source EM system today, in terms of the number of features it supports.

Magellan has been successfully used in five domain science projects at UW-Madison (in eco-

nomics, biomedicine, environmental science [80, 89, 107, 28]), and at several companies (e.g.,

Johnson Controls, Marshfield Clinic, Recruit Holdings [4], WalmartLabs). For example, at Wal-

martLabs it improved the recall of a deployed EM solution by 34%, while reducing precision

slightly by 0.65%. It has also been used by 400+ students to match real-world data in five data

science classes at UW-Madison (e.g., [5]).

Applying Magellan to the above real-world applications raised many research challenges. Ex-

amples include helping users finalize their matching definition [80, 48], debugging blocking [94],

debugging rule-based EM [105], human-in-the-loop EM [48], applying deep learning to match

textual data [101], hands-off string matching, data cleaning, and more.
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We have started to address some of these research challenges [94, 101, 105, 48], describe case

studies [80], and summarize the lessons learned [48, 80]. Magellan and the data generated in this

project have also been used by other research groups (e.g., [53, 62]).

In the last part of the dissertation, we briefly describe how we have successfully applied Mag-

ellan “in the wild” to a number of EM projects in domain science and industry, as described above.

We then describe a case study of end-to- end EM in applied economics in detail. The goal is to

make very concrete many challenges that arise during EM in practice. As far as we can tell, no

academic publication has discussed a detailed execution of end-to-end EM in practice. Finally,

based on our experience, including working on the above applied economics case, we discuss a set

of lessons learned.

1.5 Contributions of the Dissertation

1.5.1 Concrete Contributions

As described, this dissertation makes the following concrete contributions:

• First, we analyze 33 commercial and open-source EM systems and identify four major limi-

tations that prevent these systems from being used extensively in practice.

• Second, we propose Magellan, a new kind of EM systems that addresses the above limita-

tions.

• Third, we address the development stage in Magellan for matching two tables using super-

vised learning and rules. Specifically, we develop how-to guides and tools for the pain points

in the guide, and extensively evaluate them using real users.

• Fourth, we address the production stage in Magellan for scaling a single step in an EM

workflow that gets executed on a single machine with multiple cores. Specifically, we de-

velop how-to guide for developers to scale a single step and develop how-to guides for users

to use these scaled implementations. We then develop tools for the pain points and evaluate

them using real-world data sets.



11

• Fifth, we have developed and open-sourced Magellan system. As far as we can tell, Mag-

ellan is the most comprehensive open-source EM system today, in terms of the number of

features it supports.

• Finally, we have successfully applied Magellan to multiple EM projects in academia and

industry, and described in detail one such case, end to end. Based on this experience, we

discuss a number of lessons learned.

1.5.2 Potential Broader Impacts

Beside the above concrete contributions, this dissertation introduces a new template of research,

system development, and education for EM, with potential research and practical impacts.

Specifically, it introduces a new research template for EM. The current paradigm focuses

largely on developing algorithmic solutions for blocking and matching, two important steps in the

EM process. However, this dissertation argues that EM processes often involve many other “pain

points”. It proposes a new research template in which we move beyond examining just blocking

and matching. Instead, we would (a) develop a step-by-step how-to guide that captures the entire

end-to-end EM process, (b) examine the guide to identify all true pain points of the EM process,

then (c) develop solutions and tools for the pain points. The dissertation confirms that there are

indeed many other pain points (e.g., data labeling, debugging, EM-centric cleaning, and defining

the notion of match), that solving these pain points is critical for developing practical EM tools,

and that addressing them raises many novel research challenges.

The dissertation then introduces a new system building template for EM. Most current EM

systems are built as stand-alone monolithic systems. However, the dissertation makes the case

that such systems are very difficult to extend, customize, and combined. It observes that many

EM steps essentially perform data science tasks, and that there exist already vibrant ecosystems of

open-source data science tools (e.g., those in Python and R), which are being used heavily by data

scientists to solve these tasks.

Thus, the dissertation proposes to develop EM tools within such data science ecosystems. This

way, the EM tools can easily exploit other tools in the ecosystems, and at the same time make
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such ecosystems better at solving DI problems. Compared to current system building practices,

this is different in two ways. First, it suggests that instead of building isolated stand-alone systems

for EM (the way we built RDBMSs for relational data management), we should focus on building

ecosystems of tools. Second, it suggests that researchers working on EM in our community should

“connect” with the vibrant and expanding ecosystems of open-source data science tools and build

our EM tools directly into those ecosystems.

The new research and system development template articulated by this dissertation suggests

a new way to teach and train our students in EM. Today, we teach our students isolated research

problems, and ask them to do projects using mostly stand-alone research-prototype EM tools that

industry is often unfamiliar with. In this new way, first we teach our students to solve EM problems

end-to-end, to identify pain points, and to find or develop new tools to solve the pain points. Thus,

they are solving EM problems grounded in practice. Second, we train them in using tools in the

open-source data science ecosystems, which they are likely to use again in industry. Finally, if

we develop new research tools, they will be parts of such ecosystems and thus can be naturally

evaluated by students in their class projects.

Finally, while this dissertation focuses on EM, its templates can potentially be applied to solve

other DI problems as well, such as schema matching, information extraction, data cleaning, etc. In

fact, a recent work of ours [49] has proposed such a system building agenda for data integration,

based on the work in this dissertation.

1.6 Outline

The rest of this dissertation is organized as follows. Chapter 2 discusses the limitations of

current EM systems and then describes Magellan. Chapters 3 and 4 discuss the development and

production stages in Magellan for matching two tables using supervised learning and rules, from a

user’s perspective. Chapter 5 discusses building the Magellan system as a part of the Python data

ecosystem, from a developer’s perspective. Chapter 6 describes applying Magellan “in the wild”:

successes and lessons learned. It also describes a case study of solving an EM problem end to end

using Magellan. Chapter 7 discusses the related work, and Chapter 9 concludes.
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Parts of this dissertation have been published in database conferences. Magellan (Chapters 2,

3, 4) is described in two VLDB-16 papers [77, 79] and in SIGMOD Record [81].Our experience

of matching grant descriptions (Chapter 6) is included as a part of Magellan case studies [80].

Many of the lessons we have learned in the course of developing Magellan have been discussed

in [48, 49].
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Chapter 2

The Case for Entity Matching Management Systems

In this chapter, we first describe entity matching (EM). Next, we discuss current EM systems

and their limitations. We then make a case for entity matching management systems and discuss

what these systems should do. As an example of such systems, we propose Magellan, which we

will build into the Python ecosystem of open-source data science tools.

2.1 Entity Matching

Entity Matching (EM), also known as record linkage, data matching, etc., has received much

attention in the past few decades [37, 56]. A common EM scenario finds all tuple pairs (a, b)

that match, i.e., refer to the same real-world entity, between two tables A and B (see Figure 2.1).

Other EM scenarios include matching tuples within a single table, matching into a knowledge base,

matching XML data, etc. [37, 50].

Most EM works have developed matching algorithms, exploiting rules, learning, clustering,

crowdsourcing, among others [37, 56]. The focus is on improving the matching accuracy and

reducing costs (e.g., run time). Trying to match all pairs in A × B often takes very long. So

users often employ heuristics to remove obviously non-matched pairs (e.g., products with different

colors), in a step called blocking, before matching the remaining pairs. Several works have studied

this step, focusing on scaling it up to large amounts of data (see the chapter on related work).
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Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Name City State

David D. Smith Madison WI

Daniel W. Smith Middleton WI

a1 

a2 

a3  

b1

b2

Matches

(a1, b1)  

(a3, b2)  

Table A Table B

Figure 2.1: An example of matching two tables.

2.2 Current Entity Matching Systems

In contrast to the extensive effort on matching algorithms (e.g., 96 papers were published on

this topic in 2009-2014 alone, in SIGMOD, VLDB, ICDE, KDD, and WWW), there has been rela-

tively little work on building EM systems. As of early 2016 we counted 18 major non-commercial

systems (e.g., D-Dupe, DuDe, Febrl, Dedoop, Nadeef), and 15 major commercial ones (e.g., Tamr,

Data Ladder, Informatica Data Quality). In what follows we examine these two types of systems

in detail.

2.2.1 Non-Commercial EM Systems

Table 2.1 summarizes the characteristics of 18 non-commercial systems (see [37] for a discus-

sion of such systems up to 2012). Empty cells mean reliable information cannot be gleaned from

the documentation and system examination. This table shows that

• The systems focus on the scenarios of matching within a single table or across two tables.

• They provide a wide range of methods for the well-known blocking and matching steps, but

little guidance on how to select appropriate blockers and matchers.

• Eight systems provide limited data exploration capabilities (e.g., browsing, showing statistics

about the data) and cleaning capabilities (mostly ways to perform relatively simple transfor-

mations such as regex-based ones and to clean certain common attributes such as person

names). No system provides support for less well-known but critical steps such as debug-

ging, sampling, and labeling.
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Name Affiliation Scenarios Blocking Matching Exploration, 
cleaning 

User 
 interface Language Open  

source Scaling 

Active Atlas 
University of 

Southern 
California 

Single table, two 
tables Hash-based ML-based (decision 

tree) No GUI, 
commandline Java No No 

BigMatch US Census 
Bureau 

Single table, two 
tables 

Attribute 
equivalence, rule-

based 
Not supported No Commandline C No 

Yes (supports 
parallelism on 
a single node) 

D-Dupe University of 
Maryland 

Single table, two 
tables 

Attribute 
equivalence Relational clustering   GUI C# No No 

Dedoop University of 
Leipzig Single table 

Attribute 
equivalence, 

sorted 
neighborhood 

ML-based (decision 
tree, logistic 

regression, SVM 
etc.) 

No GUI Java No Yes (Hadoop) 

Dedupe Datamade Single table, two 
tables 

Canopy clustering, 
predicate-based 

Agglomerative 
hierarchical 

clustering-based 

Browsing, 
statistics, basic 
transformation, 
cleaning certain 
attribute types 

Commandline Python Yes Yes 

DuDe University of 
Potsdam 

Single table, two 
tables 

Sorted 
neighborhood Rule-based Statistics Commandline Java Yes No 

Febrl 
Australian 
National 

University 

Single table, two 
tables 

Full index, 
blocking index, 
sorting index, 

suffixarray index, 
qgram index, 
canopy index, 

stringmap index 

Fellegi-Sunter, 
optimal threshold, 

k-means, 
FarthestFirst, SVM, 

TwoStep 

Browsing, 
statistics, basic 
transformation, 
cleaning certain 
attribute types 

GUI, 
commandline Python Yes No 

FRIL Emory 
University 

Single table, two 
tables 

Attribute 
equivalence, 

sorted 
neighborhood 

Expectation 
maximization 

Basic 
transformation, 
cleaning certain 
attribute types 

GUI Java Yes 
Yes (supports 
parallelism on 
a single node) 

MARLIN University of 
Texas at Austin   Canopy clustering ML-based (decision 

tree, SVM)         No 

Merge 
Toolbox 

University of 
Duisburg-Eissen 

Single table, two 
tables 

Attribute 
equivalence, 

canopy clustering 

Probabilistic, 
expectation 

maximization 
No GUI Java No No 

NADEEF 
Qatar Computing 

Research 
Institute 

Single table, two 
tables   Rule-based No GUI Java No No 

OYSTER University of 
Arkansas 

Single table, two 
tables 

Attribute 
equivalence Rule-based Statistics Commandline Java Yes No 

pydedupe 
GPoulter 
(GitHub 

username) 

Single table, two 
tables 

Attribute 
equivalence 

ML-based, rule-
based 

Browsing, 
statistics, basic 
transformation, 
cleaning certain 

data types 

Commandline Python Yes No 

RecordLinkag
e 

Institute of 
Medical 

Biostatistics, 
Germany 

Single table, two 
tables 

Attribute 
equivalence 

ML-based, 
probabilistic 

Browsing, 
statistics, basic 
transformation, 
cleaning certain 
attribute types 

Commandline R Yes No 

SERF Stanford 
University Single table   R-Swoosh algorithm No Commandline Java No No 

Silk Free University 
of Berlin RDF data   Rule-based Browsing, basic 

transformation GUI Java Yes 

Yes (supports 
parallelism on 
a single node, 

Hadoop) 

TAILOR Purdue 
University 

Single table, two 
tables 

Attribute 
equivalence, 

sorted 
neighborhood 

Probabilisitic, 
clustering, hybrid, 

induction 
No GUI Java No No 

WHIRL William Cohen     Vector space model   Commandline C++ No No 

Table 2.1: Characteristics of 18 non-commercial EM systems.
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• No system provides how-to guides that tell users how to do EM, step by step. And no system

emphasizes a clear distinction between the development stage and the production stage (i.e.,

guiding users to develop a good EM workflow in the development stage and then execute the

workflow in the production stage).

• Less than half of the systems are open source. No system provides any easy interfacing with

data science stacks (and is not intentionally designed to interface with such stacks).

• Thirteen systems are written in languages such as C, C#, C++, and Java, and thus are not

situated in a powerful scripting environment that facilitates rapid and iterative experimenta-

tion (e.g., examining the effect of a data cleaning operation, trying out a different blocker or

matcher).

• About half of the systems provide just commandline interfaces, while the remaining half also

provide GUIs. A few systems provide limited scaling capabilities.

2.2.2 Commercial EM Systems

We compiled a list of 15 commercial EM systems from our experience working in industry,

and from examining quarterly reports such as “The Forrester Wave: Data Quality Solutions” [64]

and other trade literature. Tables 2.2-2.3 summarize the characteristics of these systems. Again,

the empty cells in the tables mean reliable information cannot be gleaned from the documentation

and system examination.

Table 2.2 summarizes the general characteristics of the commercial systems. It shows that

• Five systems focus exclusively on EM. The remaining ten systems provide EM as a part of

data integration or cleaning pipelines.

• The systems focus on the scenarios of matching within a single table or across two tables.

Unlike non-commercial systems, these systems have very sophisticated GUI or Web-based

user interfaces.
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  Purpose and how EM fits in Supported EM 
scenarios 

Main user 
interface 

Distinction between 
dev. and prod. stages Language Scripting 

environment 
DataMatch 
from Data 

Ladder 

Data cleaning, data matching. 
EM forms the core of their 

solution 
Multiple tables GUI No   No 

Dedupe.io 
Record linkage, deduplication. 

EM forms the core of their 
solution 

Single table, two tables Web-based No   No 

FuzzyDupes 
Duplicate detection, data 

cleaning. EM forms the core of 
their solution 

Single table, two tables GUI No   No 

Graphlab 
Create 

EM is offered as a service on 
top of their GraphLab platform 

Single table, two tables, 
linking records to a KB Web-based   C++ Yes 

IBM 
InfoSphere 

Customer data analytics. EM is 
supported by a component 
(BigMatch) in the product 

Single table, two tables Web-based   Java No 

Informatica 
Data Quality 

Improve data quality. EM forms 
a part of data quality pipeline Single table, two tables GUI     No 

LinkageWiz 
Data matching and data 

cleaning. EM forms the core of 
their solution 

Single table, two tables GUI No   No 

Oracle 
Enterprise 

Data Quality 

Improve data quality. EM forms 
a part of data quality pipeline Single table, two tables GUI     No 

Pentaho Data 
Integration 

ETL, data integration. EM 
forms a part of ETL/data 

integration pipe line 
Single table, two tables GUI   Java No 

SAP Data 
Services 

Improve data quality, data 
integration. EM forms a part of 

data integration pipeline 
Single table, two tables GUI No     

SAS Data 
Quality 

Improve data quality. EM forms 
a part of data quality pipeline 

Single table, multiple 
tables Web-based     Limited support 

Strategic 
Matching 

Data matching and data 
cleaning. EM forms the core of 

their solution 
Single table, two tables GUI No   No 

Talend Data 
Quality 

Improve data quality. EM forms 
a part of data quality pipeline Single table, two tables GUI     No 

Tamr Data curation. EM forms a part 
of data curation pipeline Multiple tables Web-based No Java No 

Trillium Data 
Quality 

Improve data quality. EM forms 
a part of data quality pipeline 

Single table, multiple 
tables GUI     No 

Table 2.2: Characteristics of 15 commercial EM systems (Part 1).

• There is no how-to guide that tells users how to do EM, step by step. Instead, the vendors sell

consulting services (sometimes called “data stewarding”) that presumably help users use the
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  Supported data 
formats/sources 

Data 
exploration 

support 

Data 
cleaning 
support 

Down 
sampling 

input 
table(s) 

Blocking 

Support to 
combine 
multiple 
blockers 

Debugging 
blocker 
output 

Labeling 
 data Matching 

Debugging 
matcher 
output 

Scaling 

DataMatch from 
Data Ladder 

Relational databases, 
XLS, DB2, CSV, 

delimited text files 

Browsing, 
statistics Yes No Not supported No No No Rule-based Limited 

support Yes 

Dedupe.io Relational databases 
(Postgres), CSV, XLS,       

Canopy 
clustering, 

predicate-based 
blocking 

No No Yes Clustering-
based (AHC) 

Limited 
support Yes 

FuzzyDupes 
Relational databases, 
XLS, CSV, delimited 

text files 
    No   No No No     Yes 

Graphlab Create 

Relational databases, 
CSV, Pandas 

dataframes , HDFS, 
Amazon S3, JSON 

Browsing, 
statistics     Attribute 

equivalence No     Clustering-
based (KNN)   Yes (Hadoop, 

Spark) 

IBM InfoSphere 

Relational databases, 
XLS, delimited text 
files, XML, JSON, 

HDFS, text files 

Browsing, 
statistics Yes   

Attribute 
equivalence, 

blocking based 
on first 3 

characters, 
phonetic codes 

      Rule-based   Yes (Hadoop) 

Informatica 
Data Quality 

Relational databases, 
CSV, excel, XML, 
delimited text files, 

HDFS 

Browsing, 
statistics Yes No Attribute 

equivalence No No No Rule-based   Yes 

LinkageWiz XLS, delimited text 
files, SPSS 

Browsing, 
statistics Yes No Attribute 

equivalence No No No Rule-based Limited 
support   

Oracle 
Enterprise Data 

Quality 

Relational databases, 
XLS, delimited text files 

Browsing, 
statistics Yes No   No No No Rule-based Limited 

support 

Yes (Hadoop, 
Hive, HBase, 
Pig, Sqoop, 

Spark) 

Pentaho Data 
Integration 

Relation databases, 
CSV, XML, JSON, 
MongoDB, NuoDB, 

Couchbase, Avro 

Browsing, 
statistics Yes       No   Rule-based   

Yes (Hadoop, 
Spark, Mongo 
DB, Splunk, 
Cassandra) 

SAP Data 
Services 

Relational databases, 
CSV, XLS, JSON, 

XML, HDFS 

Browsing, 
statistics Yes No Attribute 

equivalence No No No Rule-based   Yes (Hadoop, 
Spark) 

SAS Data 
Quality 

Relational databases, 
XLS and delimited text 

files, XML 

Browsing, 
statistics Yes   Not supported       Hash-based   Yes (Hadoop) 

Strategic 
Matching 

Relational databases 
(SQL server), MS 

Access, SAS 

Browsing, 
statistics Yes No     No No Rule-based Limited 

support   

Talend Data 
Quality 

Relational databases, 
CSV, XLS, XML, 
JSON, EBCDIC 

Browsing, 
statistics Yes No Attribute 

equivalence No No No Rule-based Limited 
support 

Yes (Hadoop, 
Spark) 

Tamr 

Relational databases, 
JSON, XML, YAML, 

RDF, HDFS, Hive, 
Amazon/redshift, 

Google cloud storage, 
MongoDB, Cloudant, 
Cassandra, CSV, XLS 

    No Modified k-
means No No Yes Rule-based Limited 

support Yes 

Trillium Data 
Quality 

Relational databases, 
CSV, XLS, JSON, 

HDFS, NoSQL 

Browsing, 
statistics Yes           Rule-based   Yes (Hadoop, 

Spark) 

Table 2.3: Characteristics of 15 commercial EM systems (Part 2).

systems. Seven systems make no distinction between the development stage and the produc-

tion stage. For the remaining eight systems we cannot reliably tell from the documentation,

but they do not seem to make such a distinction either.
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• Many systems use languages such as C++ and Java. As far as we can tell, no system (except

GraphLab Create) is situated in a powerful scripting environment for rapid and iterative

experimentation.

• No system is open source and designed to interface well with tools in a data science stack.

Table 2.3 summarizes the support for the entire EM pipeline in these systems. It shows that

• These systems support far more types of input data (e.g., relational tables, JSON, CSV,

XML) than the non-commercial systems.

• There seems to be more support for data exploration and cleaning (compared to non-commercial

systems), though still limited. Data exploration is typically accomplished via GUIs that dis-

play statistics about the data (e.g., the percentage of missing values of an attribute). Many

systems provide tools to clean common kinds of attributes (e.g., addresses, phone numbers,

person names). But powerful general-purpose data cleaning tools are typically missing.

• Interestingly, these systems do not seem to provide as many different types of blocking and

matching as the non-commercial systems. For example, the most common type of supported

blocking is attribute equivalence, and the most common type of supported matching is rule-

based. It is possible that these systems need to scale EM to very large amounts of data and so

they intentionally limit the set of blocking and matching techniques considered for now, to

ensure scalability. Indeed, virtually all systems provide capabilities to scale, using Hadoop

and Spark.

• There is very limited or no support for other critical steps of the EM pipeline, such as sam-

pling, debugging, and labeling. For example, there is no support for debugging blockers,

and support for debugging matchers is typically limited to showing which EM rule fires on

a given tuple pair.

We now describe a few selected commercial systems, specifically SAS Data Quality, Informat-

ica Data Quality, DataMatch, and Tamr.
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SAS Data Quality: This system (henceforth SAS for short) provides EM as a part of their data

quality pipeline. SAS focuses on the scenarios of matching within a single table or across multiple

tables. The EM workflow supported in SAS consists of five major steps.

First, the user loads the data into SAS. SAS supports various data formats and sources, such

as Excel, CSV, XML, delimited text files, relational databases, and HDFS.

Second, the user explores the loaded data. SAS lets the user perform pattern analysis, column

analysis, and domain analysis. In pattern analysis the user can verify if the data values in an

attribute match the expected pattern (e.g., 9-digits for SSN, 10-digits for phone numbers), and

visualize the distribution and frequency for various patterns, e.g., how many phone numbers were

of the form (xxx) xxx-xxxx). In column analysis, the user can explore various statistics (e.g.,

cardinality, number of missing values, range, min, mean, median) of a column in a table. In

domain analysis, the user can verify if the data conforms to the expected or accepted data values

and ranges (e.g., age is between 0 and 150 years).

Third, the user cleans and standardizes the data. In cleaning, the user can fix capitalization in

data values, remove punctuations, break a “full name” column into “first name” and “last name”

columns by specifying a delimiter, etc. In standardization, the user specifies that an attribute is

of the type “name”, “address”, “phone”, etc. and SAS makes sure that names are capitalized

consistently, addresses use “st.” as an abbreviation for street names, etc.

Fourth, the user performs hash-based matching in a single table or across multiple tables.

Specifically, the user first selects the attributes (say a1, a2, a3) to consider for matching. For every

tuple t, SAS will then generate a hash code, h(t), which is a concatenation of multiple smaller

hash codes, one per attribute, i.e., h(t) = h(t.a1)!h(t.a2)!h(t.a3), where ! is the concatenating

delimiter. SAS generates the hash code per attribute by taking two inputs from the user: (a) type

value for the attribute from a pre-defined set, comprising standard types such as name, address,

organization, date, zip, and (b) a sensitivity value for the attribute telling SAS how sensitive the

hashing function should be to variations in values (e.g., a low sensitivity will result in same hash

code for Rob, Robert, Bob, Bobby; a moderate sensitivity will result in same hash code for Rob
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and Robert, but a different hash code for Bob and Bobby; a high sensitivity will result in different

hash codes for each of them).

Finally, after the hash codes have been generated for each tuple in a table (or multiple tables),

SAS will show the tuples grouped into clusters, each cluster having tuples with the same hash code.

The user then consolidates the data by taking one of the three actions of deleting (i.e., physically

deleting duplicate tuples), merging (i.e., keeping the best information across multiple tuples), or

retaining all the tuples.

Informatica Data Quality: This system provides EM as a part of its data quality pipeline.

Specifically, it supports matching within a single table or across two tables. The supported EM

workflow consists of six steps.

First, the user loads the data into the system. The system supports various data formats such as

CSV, Excel, XML, delimited text files etc.

Second, the user explores the data to identify attributes to use for blocking and matching.

The system provides tools to analyze individual attributes and explore various statistics about the

attributes.

Third, the user cleans and standardizes the data. Specifically, the user can fix variations in

format or spelling, remove punctuations, fix capitalization etc. Further, the system also provides

support to standardize certain attribute types like address, phone number etc.

Fourth, the user performs blocking by selecting an attribute to be used as a blocking key.

Records with the same blocking key are grouped together.

Fifth, the user performs matching within each group. Specifically, the system supports four

types of matchers: Hamming distance, edit distance, Jaro distance, and bigram. The user needs to

specify which matchers to use, along with a matching threshold and weights for different match-

ers. Record pairs whose aggregate score is greater than or equal to the matching threshold are

considered duplicates. The system groups the matching record pairs into clusters.

Finally, the user examines the clusters of records and decides to either consolidate the duplicate

records into a master record or delete the duplicate records.
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DataMatch: DataMatch from Data Ladder provides a software suite for data cleansing, matching,

and deduplication. Entity matching is the core of their solution. Specifically, the tool supports

deduplicating a single table or matching multiple tables. The matching workflow consists of the

following six steps: (1) loading the data, (2) profiling, (3) cleaning and standardizing, (4) matching,

(5) viewing and consolidating the results, and (6) exporting the results.

The user begins by loading the data into the tool (the tool supports various data formats/sources

such as XLS, SQL server, MySQL, MS Access, CSV, DB2, and delimited text file). Next, the user

can explore the data to assess the data quality and get some useful statistics (e.g., missing val-

ues, presence of non-printable characters, mean, median, mode). Next, the user can clean and

standardize the data. The tool provides support for basic transformations such as making strings

uppercase/lowercase/proper case, removing non-printable characters, removing characters speci-

fied by the user, and cleaning email using predefined regular expressions. Further, the tool also

provides support to standardize certain attribute types such as person names, address, etc.

After cleaning, the user will perform matching. The tool supports only rule-based matching.

Specifically, the user will specify the features (using a predefined list of similarity functions) to be

computed for the attributes from the tables, and provide a matching threshold. Tuple pairs with the

aggregate score greater than or equal to the matching threshold are considered matches. Next, the

user can view and consolidate the matched tuple pairs. The user can manually review and clean

the matches by flagging tuple pairs as non-matches.

Next, the matched tuple pairs are clustered by the system into groups, where all tuples in a

group match and tuples across groups do not. Next, the user can specify how the group should

be merged to form a canonical tuple. Specifically, for each attribute the user can specify whether

the longest string should be taken, the average value (in the case of numerical values) should be

taken, etc. Also, the user can control this decision per tuple pair. Finally, the user can export the

results. The tool provides exporting the results to various file formats/sinks such as XLS, SQL

server, MySQL, MS Access, CSV, DB2, and delimited text file.

Tamr: This system has entity matching as a component in a data curation pipeline. This EM

component effectively does deduplication and merging: given a set of tuples D, clusters them into
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groups of matching tuples, and then merges each group into a super tuple. Toward this goal, Tamr

starts by performing blocking on the set of tuples D. Specifically, it creates a set of categories,

then use some relatively inexpensive similarity measure to assign each tuple in D to one or several

categories. Only tuples within each category will be matched against one another.

Next, Tamr obtains a set of tuple pairs and asks users to manually label them as matched /

non-matched. Tamr takes care to ensure that there are a sufficient number of matched tuple pairs

in this set. Next, Tamr uses the labeled data to learn a set of matching rules. These rules use the

similarity scores among the attributes of a tuple pair, or the probability distributions of attribute

similarities for matching and non-matching pairs (these probabilities in turn are learned using a

Naive Bayes classifier). Next, the matching rules are applied to find matching tuple pairs. Tamr

then runs a correlation clustering algorithm that uses the matching information to group tuples into

matching group. Finally, all tuples within each group are consolidated using user-defined rules to

form a super tuple.

2.3 Key Limitations of Current Systems

Overall, we found that commercial EM systems are better than non-commercial EM systems

in terms of support for the types of input data, user interfaces, data exploration and cleaning, and

scaling. They appear less powerful than the non-commercial ones in terms of the types of supported

blocking and matching techniques. Both types of systems however suffer from the following four

major problems that we believe prevent these systems from being used widely in practice:

1. Systems Do Not Cover the Entire EM Pipeline: When performing EM users often must

execute many steps, e.g., blocking, matching, exploration, cleaning, extraction (IE), debugging,

sampling, labeling, etc. Current systems provide support for only a few steps in this pipeline,

while ignoring less well-known yet equally critical steps. For example, all 33 systems that we have

examined provide support for blocking and matching. Twenty systems provide limited support for

data exploration and cleaning. There is no meaningful support for any other steps (e.g., debugging,
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sampling, etc.). Even for blocking the systems merely provide a set of blockers that users can call;

there is no support for selecting and debugging blockers, and for combining multiple blockers.

2. Difficult to Exploit a Wide Range of Techniques: Practical EM often requires a wide range

of techniques, e.g., learning, mining, visualization, data cleaning, IE, SQL querying, crowdsourc-

ing, keyword search, etc. For example, to improve matching accuracy, a user may want to clean

the values of attribute “Publisher” in a table, or extract brand names from “Product Title”, or build

a histogram for “Price”. The user may also want to build a matcher that uses learning, crowdsourc-

ing, or some statistical techniques.

Current EM systems do not provide enough support for these techniques, and there is no easy

way to do so. Incorporating all such techniques into a single system is extremely difficult. But the

alternate solution of just moving data among a current EM system and systems that do cleaning, IE,

visualization, etc. is also difficult and time consuming. A fundamental reason is that most current

EM systems are stand-alone monoliths that are not designed from the scratch to “play well” with

other systems. For example, many current EM systems were written in C, C++, C#, and Java, using

proprietary data structures. Since EM is often iterative, we need to repeatedly move data among

these EM systems and cleaning/IE/etc systems. But this requires repeated reading/writing of data

to disk followed by complicated data conversion.

3. Difficult to Write Code to “Patch” the System: In practice users often have to write code,

either to implement a lacking functionality (e.g., to extract product weights, or to clean the dates),

or to tie together system components. It is difficult to write such code correctly in “one shot”.

Thus ideally such coding should be done using an interactive scripting environment, to enable

rapid prototyping and iteration. This code often needs access to the rest of the system, so ideally

the system should be in such an environment too. Unfortunately only 5 out of 33 systems provide

such settings (using Python and R).

4. Little Guidance for Users on How to Match: In our experience this is by far the most serious

problem with using current EM systems in practice. In many EM scenarios users simply do not

know what to do: how to start, what to do next? Interestingly, even the simple task of taking a
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sample and labeling it (to train a learning-based matcher) can be quite complicated in practice,

as we show in Section 3.2.3. Thus, it is not enough to just build a system consisting of a set of

tools. It is also critical to provide step-by-step guidance to users on how to use the tools to handle

a particular EM scenario. No EM system that we have examined provides such guidance.

2.4 Entity Matching Management Systems

To address the above limitations, we propose to build a new kind of EM systems. In contrast

to current EM systems, which mostly provide a set of implemented matchers/blockers, these new

systems are far more advanced. First and foremost, they seek to handle a wide variety of EM

scenarios. These scenarios can use very different EM workflows. So it is difficult to build a single

system to handle all EM scenarios. Instead, we should build a set of systems, each handling a

well-defined set of similar EM scenarios. Each system should target the following goals:

1. How-to Guide: Users will have to be “in the loop”. So it is critical that the system provides

a how-to guide that tells users what to do and how to do it. The guide is a detailed algorithm

for the human user. A “rule of thumb” is that if the user knows how to code, he or she

should be able to use the guide to execute the EM scenario, even without utilizing any tool

(of course, this can take a long time, but the key is that the user should be able to do it).

2. User Burden: The system should minimize the user burden. It should provide a rich set of

tools to help users easily do each EM step (focusing for example on the pain points of the

step), and do so for all steps of the EM pipeline, not just matching and blocking. Special

attention should be paid to debugging, which is critical in practice.

3. Runtime: The system should minimize tool runtimes and scale tools up to large amounts of

data.

4. Expandability: It should be easy to extend the system with any existing or future techniques

that can be useful for EM (e.g., cleaning, IE, learning, crowdsourcing). Users should be able

to easily “patch” the system using an interactive scripting environment.
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Of these goals, “expandability” deserves more discussion. If we can build a single “super-

system” for EM, do we need expandability? We believe it is very difficult to build such a system.

First, it would be immensely complex to build just an initial system that incorporates all of the

techniques mentioned in Goal 4. Indeed, despite decades of development, today no EM system

comes close to achieving this.

Second, it would be very time consuming to maintain and keep this initial system up-to-date,

especially with the latest advances (e.g., crowdsourcing, deep learning).

Third, and most importantly, a generic EM system is unlikely to perform equally well for

multiple domains (e.g., biomedicine, social media, payroll). Hence we often need to extend and

customize it to a particular target domain, e.g., adding a data cleaning package specifically de-

signed for biomedical data (written by biomedical researchers). For the above three reasons, we

believe that EM systems should be fundamentally expandable.

Clearly, systems that target the above goals seek to manage all aspects of the end-to-end EM

process. So we refer to this kind of systems as entity matching management systems (EMMSs).

Building EMMSs is difficult, long-term, and will require a new kind of architecture compared to

current EM systems. In the rest of this chapter we describe Magellan, an attempt to build such an

EMMS.

2.5 The Magellan Approach

Figure 2.2 shows the Magellan architecture. The system targets a set of EM scenarios. For

each EM scenario it provides a how-to guide. The guide proposes that the user solve the scenario

in two stages: development and production.

In the development stage, the user seeks to develop a good EM workflow (e.g., one with high

matching accuracy). The guide tells the user what to do, step by step. For each step the user can use

a set of supporting tools, each of which is in turn a set of Python commands. This stage is typically

done using data samples. In the production stage, the guide tells the user how to implement and

execute the EM workflow on the entirety of data, again using a set of supporting tools.
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Figure 2.2: The Magellan architecture.

Both stages have access to the Python script language and interactive environment (e.g., IPython).

Further, tools for these stages are built on top of the Python data analysis stack and the Python

Big Data stack, respectively. Thus, Magellan is an “open-world” system, as it often has to bor-

row functionalities (e.g., cleaning, extraction, visualization) from other Python packages on these

stacks.

Finally, the current Magellan is geared toward power users (who can program). We envision

that in the future facilities for lay users (e.g., GUIs, wizards) can be laid on top (see Figure 2.2),

and lay user actions can be translated into sequences of commands in the underlying Magellan.

2.5.1 EM Scenarios and Workflows

We classify EM scenarios along four dimensions:

• Problems: Matching two tables; matching within a table; matching a table into a knowledge

base; etc.

• Solutions: Using learning; using learning and rules; performing data cleaning, blocking,

then matching; performing IE, then cleaning, blocking, and matching; etc.
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Figure 2.3: The EM workflow for the learning-based matching scenario.

• Domains: Matching two tables of biomedical data; matching e-commerce products given a

large product taxonomy as background knowledge; etc.

• Performance: Precision must be at least 92%, while maximizing recall as much as possible;

both precision and recall must be at least 80%, and run time under four hours; etc.

An EM scenario can constrain multiple dimensions, e.g., matching two tables of e-commerce

products using a rule-based approach with desired precision of at least 95%.

Clearly there is a wide variety of EM scenarios. So we will build Magellan to handle a few

common scenarios, and then extend it to more similar scenarios over time. Specifically, for now

we will consider the three scenarios that match two given relational tables A and B using (1)

supervised learning, (2) rules, and (3) learning plus rules, respectively. These scenarios are very

common. In practice, users often try Scenario 1 or 2, and if neither works, then a combination of

them (Scenario 3).

EM Workflows: As discussed earlier, to handle an EM scenario, a user often has to execute many

steps, such as cleaning, IE, blocking, matching, etc. The combination of these steps form an EM

workflow. Figure 2.3 shows a sample workflow of matching two tables using supervised learning.

2.5.2 The Development Stage versus the Production Stage

From our experience with real-world users’ doing EM, we propose that the how-to guide tell

the user to solve the EM scenario in two stages: development and production. In the development

stage the user tries to find a good EM workflow, e.g., one with high matching accuracy. This is

typically done using data samples. In the production stage the user applies the workflow to the

entirety of data. Since this data is often large, a major concern here is to scale up the workflow.
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Other concerns include quality monitoring, logging, crash recovery, etc. The following example

illustrates these two stages.

Example 2.5.1. Consider matching two tables A and B each having 1M tuples. Working with such

large tables will be very time consuming in the development stage, especially given the iterative

nature of this stage. Thus, in the development stage the user U starts by sampling two smaller

tables A′ and B′ from A and B, respectively. Next, U performs blocking on A′ and B′. The goal

is to remove as many obviously non-matched tuple pairs as possible, while minimizing the number

of matching pairs accidentally removed. U may need to try various blocking strategies to come up

with what he or she judges to be the best.

The blocking step can be viewed as removing tuple pairs from A′ × B′. Let C be the set of

remaining tuple pairs. Next, U may take a sample S from C, examine S, and manually write

matching rules, e.g., “If titles match and the numbers of pages match then the two books match”.

U may need to try out these rules on S and adjust them as necessary. The goal is to develop

matching rules that are as accurate as possible.

Once U has been satisfied with the accuracy of the matching rules, the production stage begins.

In this stage, U executes the EM workflow that consists of the developed blocking strategy and

matching rules on the original tables A and B. To scale, U may need to rewrite the code for

blocking and matching to use Hadoop or Spark. �

As described, these two stages are very different in nature: one goes for accuracy and the other

goes for scaling (among others). Consequently, they will require very different sets of tools. We

now discuss developing tools for these stages.

Development Stage on a Data Analysis Stack: We observe that what users try to do in the

development stage is very similar in nature to data analysis tasks, which analyze data to discover

insights. Indeed, creating EM rules can be viewed as analyzing (or mining) the data to discover

accurate EM rules. Conversely, to create EM rules, users also often have to perform many data

analysis tasks, e.g., cleaning, visualizing, finding outliers, IE, etc.
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As a result, if we are to develop tools for the development stage in isolation, within a stand-

alone monolithic system, as current work has done, we would need to somehow provide a powerful

data analysis environment, in order for these tools to be effective. This is clearly very difficult to

do.

So instead, we propose that tools for the development stage be developed on top of an open-

source data analysis stack, so that they can take full advantage of all the data analysis tools already

(or will be) available in that stack. In particular, two major data analysis stacks have recently

been developed, based on R and Python (new stacks such as the Berkeley Data Analytics Stack

are also being proposed). The Python stack for example includes the general-purpose Python

language, numpy and scipy packages for numerical/array computing, pandas for relational data

management, scikit-learn for machine learning, among others. More tools are being added all

the time, in the form of Python packages. By Oct 2015, there were 490 packages available in

the popular Anaconda distribution. There is a vibrant community of contributors to continuously

improve this stack.

For Magellan, since our initial target audience is the IT community, where we believe Python

is more familiar, we have been developing tools for the development stage on the Python data

analysis stack.

Production Stage on a Big Data Stack: In a similar vein, we propose that tools for the production

stage, where scaling is a major focus, be developed on top of a Big Data stack. Magellan uses

the Python Big Data stack, which consists of many software packages to run MapReduce (e.g.,

Pydoop, mrjob), Spark (e.g., PySpark), and parallel and distributed computing in general (e.g., pp,

dispy).

Together, the data analysis stack and the Big Data stack in Python form PyData, an ecosystem

of open-source data science tools. We discuss this ecosystem in detail in Section 7.3, to further

motivate our decision for building Magellan into this ecosystem. We also discuss developing the

development stage and the production stage for Magellan in detail in the next two chapters.
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Expandability Revisited: We are now in a position to discuss how Magellan addresses the

expandability requirement outlined in Section 2.4. Current EM systems address expandability in

two ways: adding external libraries or moving data among a set of stand-alone systems (e.g., an

EM system, an IE system, a visualization system, etc.).

Both methods are problematic. To add an external library we need to write extra code to convert

between the data structures used by the system and the library. This is time consuming and may not

even be feasible if we do not have access to the system code. Moving data repeatedly among a set

of stand-alone systems is very cumbersome as it requires repeatedly writing data to disk, reading

data from disk, and converting between the various data formats.

As discussed in Section 2.3, the root of these problems is that most current EM systems are

not designed from the scratch to support expandability. In contrast, Magellan assumes that there

is already an ecosystem of “systems” (in form of Python packages) that have been designed to

expand (i.e., “play well” with one another) and that Magellan will have to be in that ecosystem

and to “play well” too.

In sum, the Magellan solution for expandability is to design the system such that it can be eas-

ily “plugged” into an existing and expanding data management ecosystem, and that it can combine

well with tools in this ecosystem. As an aside, this approach also brings the non-trivial benefit that

we are filling in “gaps” in the Python data management ecosystem. This ecosystem is important

because more and more users are using its tools to analyze data, but so far good EM tools (and

good data integration tools in general) have been missing, seriously hampering user efforts.
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Chapter 3

The Development Stage of Magellan

In the previous chapter we have proposed to develop the Magellan system, a new kind of

EM system to address the limitations of current EM systems. We have described the high-level

architecture of Magellan. Specifically, this architecture consists of two stages: development stage

and production stage.

In the development stage, the user tries to develop an accurate EM workflow, using data sample.

In the production stage, the user executes this workflow over the original tables. Magellan must

provide how-to guides to both stages, which tell the user what to do, step by step, end to end. It

should also identify the pain points of the guides and provide semi-automated tools to help address

these pain points. Finally, the tools should be built into PyData, i.e., the Python ecosystem of

open-source data science tools.

We now elaborate on these two stages.

• This chapter discusses the development stage from a user’s perspective. That is, what does

a user expect to have in this stage, and how is that useful to the user?

• The next chapter (Chapter 4) discusses the production stage, also from a user’s perspective.

• Chapter 5 then discusses building both stages from a developer’s perspective. That is, what

challenges do developers face in building these two stages, and what can they do?

In the rest of this chapter we discuss the development stage from a user’s perspective. Specifically,

we discuss considering a small set of EM scenarios, creating the how-to guides for these scenarios,

identifying the pain points, and developing the tools to address the pain point.
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1. Load tables A and B into Magellan. Downsample if necessary.

2. Perform blocking on the tables to obtain a set of
candidate tuple pairs C.

3. Take a random sample S from C and label pairs in S as
matched / non-matched. 

4. Create a set of features then convert S into a set of feature vectors H.
Split H into a development set I and an evaluation set J.

5. Repeat until out of debugging ideas or out of time:

(a) Perform cross validation on I to select the best matcher.
Let this matcher be X.

(b) Debug X using I. This may change the matcher X, the data, labels,
and the set of features, thus changing I and J.

6. Let Y be the best matcher obtained in Step 5. Train Y on I,
then apply to J and report the matching accuracy on J.

Figure 3.1: The top-level steps of the how-to guide for the EM scenario of matching using super-
vised learning.

Our work here is not complete, in the sense that the guides and tools can, and should be, further

extended and refined in future work. We show however that the current guides and tools are already

highly promising, in that users can already use them to achieve high matching accuracy on diverse

data sets.

3.1 How-to Guides and Tools

Recall from Chapter 2 that in the current Magellan system we target three EM scenarios:

matching two tables A and B using (1) supervised learning, (2) rules, and (3) both learning and

rules. In what follows we will focus on Scenario 1, briefly discussing Scenarios 2-3 in Section

3.2.7.

We now discuss developing how-to guides and tools to support Scenario 1. Our goal is twofold:

• First, we show that even for relatively simple EM scenarios (e.g., matching using supervised

learning), a good guide can already be quite complex. Thus developing how-to guides is a

major challenge, but such guides are absolutely critical in order to successfully guide the

user through the EM process.
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c1: down_sample_tables (A, B, B_size, k)
c2: debug_blocker (A, B, C, output_size = 200)
c3: get_features_for_matching (A, B)
c4: select_matcher (matchers, table, exclude_attrs, target_attr, k = 5)
c5: vis_debug_dt (matcher, train, test, exclude_attrs, target_attr)

Figure 3.2: Sample commands from Magellan.

• Second, we show that each step of the guide, including those that prior work may have

viewed as trivial or engineering (e.g., sampling, labeling), can raise many interesting re-

search challenges. We provide preliminary solutions to several such challenges in this work.

But much more remains to be done.

The Current Guide for Learning-Based EM: Figure 3.1 shows the current guide for Scenario

1: matching using supervised learning. The figure lists only the top six steps. While each step may

sound like fairly informal advice (e.g., “create a set of features”), the full guide itself (available

with Magellan’s release) is considerably more complex and actually spells out in detail what to

do (e.g., run a Magellan command to automatically create the features). We developed this guide

based on observing how real-world users (e.g., at WalmartLabs and Johnson Control) as well as

students in several UW-Madison classes handled this scenario.

The guide states that to match two tables A and B, the user should load the tables into Magellan

(Step 1), do blocking (Step 2), label a sample of tuple pairs (Step 3), use the sample to iteratively

find and debug a learning-based matcher (Steps 4-5), then return this matcher and its estimated

matching accuracy (Step 6).

3.2 Steps of the How-To Guide

We now discuss the steps of the above how-to guide, possible tools to support them, and tools

that we have actually developed. Our goal is to automate each step as much as possible, and

where it is not possible, then to provide detailed guidance to the user. We focus on discussing

problems with current solutions, the design alternatives, and opportunities for automation. For

ease of exposition, we will assume that tables A and B share the same schema.
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3.2.1 Loading and Downsampling Tables

Downsampling Tables: We begin by loading the two tables A and B into memory. If these

tables are large (e.g., each having 100K+ tuples), we should sample smaller tables A′ and B′ from

A and B respectively, then do the development stage with these smaller tables. Since this stage

is iterative by nature, working with large tables can be very time consuming and frustrating to the

user. Random sampling however does not work, because tables A′ and B′ may end up sharing very

few matches, i.e., matching tuples (especially if the number of matches between A and B is small

to begin with). Thus we need a tool that samples more intelligently, to ensure a reasonable number

of matches between A′ and B′.

We have developed such a tool, shown as the Magellan command c1 in Figure 3.2. This

command first randomly selects B size tuples from table B to be table B′. For each tuple x ∈ B′,

it finds a set P of k/2 tuples from A that may match x (using the heuristic that if a tuple in A

shares many tokens with x, then it is more likely to match x), and a set Q of k/2 tuples randomly

selected from A \ P . Table A′ will consist of all tuples in such P s and Qs. The idea is for A′ and

B′ to share some matches yet be as representative of A and B as possible. To find P , the command

relies on the heuristic that if two tuples share many tokens, then they are likely to match. Thus, it

builds an inverted index I of (token, tuple id) over table A, probes I to find all tuples in A that

share tokens with x, rank these tuples in decreasing number of shared tokens, then take (up to) the

top k/2 tuples to be the set P . Note that index I is built only once, at the start of the command.

The command then randomly samples k − |P | tuples in A \ P to be the set Q.

More Sophisticated Downsampling Solutions: The above command was fast and quite effective

in our experiments. However it has a limitation: it may not get all important matching categories

into A′ and B′. If so, the EM workflow created using A′ and B′ may not work well on the original

tables A and B. For example, consider matching companies. Tables A and B may contain two

matching categories: (1) tuples with similar company names and addresses match because they

refer to the same company, and (2) tuples with similar company names but different addresses

may still match because they refer to different branches of the same company. Using the above
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command, tables A′ and B′ may contain many tuple pairs of Case 1, but no or very few pairs

of Case 2. To address this problem, we are working on a better “downsampler”. Our idea is to

use clustering to create groups of matching tuples, then analyze these groups to infer matching

categories, then sample from the categories. Major challenges here include how to effectively

cluster tuples from the large tables A and B, and how to define and infer matching categories

accurately.

3.2.2 Blocking to Create Candidate Tuple Pairs

In the next step, we apply blocking to the two tables A′ and B′ to remove obviously non-

matched tuple pairs. Ideally, this step should be automated (as much as possible). Toward this

goal, we distinguish three cases.

(1) We already know which matcher we want to use. Then it may be possible to analyze the

matcher to infer a blocker, thereby completely automating the blocking step. For example, when

matching two sets of strings (a special case of EM [37]), often we already know the matcher we

want to use (e.g., jaccard(x, y) > 0.8, i.e., predicting two strings x and y matched if their Jaccard

score exceeds 0.8). Prior work [37] has analyzed such matchers to infer efficient blockers that do

not remove true matches. Thus, debugging the blocker is also not necessary.

(2) We do not know yet which matcher we want to use, but we have a set T of tuple pairs

labeled matched / no-matched. Then it may be possible to partially automate the blocking step.

Specifically, the system can use T to learn a blocker and propose it to the user (e.g., training a

random forest then extracting the negative rules of the forest as blocker candidates [66]). The user

still has to debug the blocker to check that it does not accidentally remove too many true matches.

(3) We do not know yet which matcher we want to use, and we have no labeled data. This

is the case considered in this work, since all we have so far are the two tables A′ and B′. In this

case the user often faces three problems (which have not been addressed by current work): (a) how

to select the best blocker, (b) how to debug a given blocker, and (c) how to know when to stop?

Among these, the first problem is open to partial automation.
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Selecting the Best Blocker: A straightforward solution is to label a set of tuple pairs (e.g.,

selected using active learning [66]), then use it to automatically propose a blocker, as in Case 2.

To propose good blockers, however, this solution may require labeling hundreds of tuple pairs

[66], incurring a sizable burden on the user. This solution may also be unnecessarily complex. In

practice, a user often can use domain knowledge to quickly propose good blockers, e.g., “matching

books must share the same ISBN”, in a matter of minutes. Hence, our how-to guide tries to help

the user identify these “low-hanging fruits” first.

Specifically, many blocking solutions have been developed, e.g., overlap, attribute equivalence

(AE), sorted neighborhood (SNB), hash-based, rule-based, etc. [37]. From our experience, we

recommend that the user try successively more complex blockers, and stop when the number of

the tuple pairs surviving blocking is already sufficiently small. Specifically, the user can try overlap

blocking first (e.g., “matching tuples must share at least k tokens in an attribute x”), then AE (e.g.,

“matching tuples must share the same value for an attribute y”). These blockers are very fast,

and can significantly cut down on the number of candidate tuple pairs. Next, the user can try

other well-known blocking methods (e.g., SNB, hash) if appropriate. This means the user can

use multiple blockers and combine them in a flexible fashion (e.g., applying AE to the output of

overlap blocking). Finally, if the user still wants to reduce the number of candidate tuple pairs

further, then he or she can try rule-based blocking. It is difficult to manually come up with good

blocking rules. So we will develop a tool to automatically propose rules, as in Case 2, using the

technique in [66], which uses active learning to select tuple pairs for the user to label.

Debugging Blockers: Given a blocker L, how do we know if it does not remove too many

matches? We have developed a debugger to answer this question [94], shown as command c2 in

Figure 3.2. Suppose applying L to A′ and B′ produces a set C of tuple pairs (a ∈ A′, b ∈ B′).

Then D = A′ × B′ \ C is the set of all tuple pairs removed by L. The debugger examines D to

return a list of k tuple pairs in D that are most likely to match (k = 200 is the default). The user U

examines this list. If U finds many matches in the list, then that means blocker L has removed too

many matches. U would need to modify L to be less “aggressive”, then apply the debugger again.
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Eventually if U finds no or very few matches in the list, U can assume that L has removed no or

very few matches, and thus is good enough.

Developing this debugger raises two challenges. First, how can it judge that a tuple pair is likely

to match? Second, how can it search D very fast (given that debugging is interactive by nature)?

To address the first challenge, we first select a set of attributes judged to be discriminative, in that

if two tuples (a ∈ A′, b ∈ B′) share similar or identical values for most of these attributes, then

they are likely to match. Let x be an attribute, we compute

• unique(x,A′) to be the number of unique values of x in A′ divided by the number of non-

empty values of x in A′,

• missing(x,A′) to be the number of missing values of x in A′ divided by the number of

tuples in A′, and

• s(x,A′) = unique(x,A′) + 1−missing(x,A′).

The score s(x,A′) indicates how discriminative attribute x is in table A′. Intuitively, the higher

unique(x,A′), the more likely that a value of x can uniquely identify a tuple in A′, unless x has

a lot of missing values, which is taken into account using 1 −missing(x,A′). Defining s(x,B′)

similarly, we can define a discriminativeness score for x across both tables: s(x) = s(x,A′) ·

s(x,B′). We then select the top k attributes with the highest s(x) scores (where k is pre-specified),

to be used in the debugger.

Let the set of selected attributes be T . For each tuple a ∈ A′, let t(a) be the string resulting

from concatenating the values of the selected attributes. Define t(b) similarly for each tuple b ∈ B′.

Let J(t(a), t(b)) be the Jaccard score between t(a) and t(b), assuming each of these strings have

been tokenized into a set of 3-grams. Then the debugger returns the top k tuple pairs (a, b) in

D = A′ × B′ \ C with the highest J(t(a), t(b)) scores. Intuitively, the debugger states that these

pairs are likely to be matches, so the user should check them. To find these pairs fast, the debugger

uses indexes on the tables.

Knowing When to Stop Modifying the Blockers: How do we know when to stop tuning a

blocker L? Suppose applying L to A′ and B′ produces the set of tuple pairs block(L,A′, B′).
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The conventional wisdom is to stop when block(L,A′, B′) fits into memory or is already small

enough so that the matching step can process it efficiently. In practice, however, this often does not

work. For example, since we work with A′ and B′, samples from the original tables, monitoring

|block(L,A′, B′)| does not make sense. Instead, we want to monitor |block(L,A,B)|. But applying

L to the large tables A and B can be very time consuming, making the iterative process of tuning

L impractical. Further, in many practical scenarios (e.g., e-commerce), the data to be matched can

arrive in batches, over weeks, rendering moot the question of estimating |block(L,A,B)|.

As a result, in many practical settings users want blockers that have (1) high pruning power,

i.e., maximizing 1− |block(L,A′, B′)|/|A′ ×B′|, and (2) high recall, i.e., maximizing the ratio of

the number of matches in block(L,A′, B′) divided by the number of matches in A′×B′. Users can

measure the pruning power, but so far they have had no way to estimate recall. This is where our

debugger comes in. In our experiments (see Section 3.3) users reported they had used our debugger

to find matches that the blocker L had removed, and when they found no or only a few matches,

they concluded that L had achieved high recall and stopped tuning the blocker.

3.2.3 Sampling and Labeling Tuple Pairs

Let L be the blocker we have created. Suppose applying L to tables A′ and B′ produces a set

of tuple pairs C. In the next step, user U should take a sample S from C, then label the pairs in S

as matched / no-matched, to be used later for training matchers, among others.

At a first glance, this step seems very simple: why not just take a random sample and label it?

Unfortunately in practice this is far more complicated. For example, suppose C contains relatively

few matches (either because there are few matches between A′ and B′, or because blocking was

too liberal, resulting in a large C). Then a random sample S from C may contain no or few

matches. But the user U often does not recognize this until U has labeled most of the pairs in S.

This is a waste of U ’s time and can be quite serious in cases where labeling is time consuming

or requires expensive domain experts (e.g., labeling drug pairs when we worked with Marshfield

Clinic). Taking another random sample does not solve the problem because it is likely to also

contain no or few matches.



41

To address this problem, our guide builds on [66] to propose that user U sample and label in

iterations. Specifically, suppose U wants a sample S of size n. In the first iteration, U takes and

labels a random sample S1 of size k from C, where k is a small number. If there are enough

matches in S1, then U can conclude that the “density” of matches in C is high, and just randomly

sample n−k more pairs from C. Otherwise, the “density” of matches in C is low. So U must re-do

the blocking step, perhaps by creating new blocking rules that remove more non-matching tuple

pairs in C, thereby increasing the density of matches in C. After blocking, U can take another

random sample S2 also of size k from C, then label S2. If there are enough matches in S2, then U

can conclude that the density of matches in C has become high, and just randomly sample n− 2k

more pairs from C, and so on.

3.2.4 Selecting a Matcher

Once user U has labeled a sample S, U uses S to select a good initial learning-based matcher.

Today most EM systems supply the user with a set of such matchers, e.g., decision tree, Naive

Bayes, SVM, etc., but do not tell the user how to select a good one. Our guide addresses this

problem. Specifically, user U first calls the command c3 in Figure 3.2 to create a set of features

F = {f1, . . . , fm}, where each feature fi is a function that maps a tuple pair (a, b) into a value.

This command creates all possible features between the attributes of tables A′ and B′, using a

set of heuristics. For example, if attribute name is textual, then the command creates feature

name 3gram jac that returns the Jaccard score between the 3-gram sets of the two names (of

tuples a and b). Next, U converts each tuple pair in the labeled set S into a feature vector (us-

ing features in F ), thus converting S into a set H of feature vectors. Next, U splits H into a

development set I and an evaluation set J .

Let M be the set of all learning-based matchers supplied by the EM system. Next, U uses

command c4 in Figure 3.2 to perform cross validation on I for all matchers in M , then examines

the results to select a good matcher. Command c4 highlights the matcher with the highest accuracy.

However, if a matcher achieves just slightly lower accuracy (than the best one) but produces results

that are easier to explain and debug (e.g., a decision tree), then c4 highlights that matcher as well,
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for the user’s consideration. Thus, the entire process of selecting a matcher can be automated (if

the user does not want to be involved), and in fact Magellan does provide a single command to

execute the entire process.

3.2.5 Debugging a Matcher

Let the selected matcher be X . In the next step user U debugs X to improve its accuracy. Such

debugging is critical in practice, yet has received very little attention in the research community.

Our guide suggests that user U debug in three steps: (1) identify and understand the matching

mistakes made by X , (2) categorize these mistakes, and (3) take actions to fix common categories

of mistakes.

Identifying and Understanding Matching Mistakes: U should split the development set I into

two sets P and Q, train X on P then apply it to Q. Since U knows the labels of the pairs in Q,

he or she knows the matching mistakes made by X in Q. These are false positives (non-matching

pairs predicted matching) and false negatives (matching pairs predicted not). Addressing them

helps improve precision and recall, respectively.

Next U should try to understand why X makes each mistake. For example, let (a, b) ∈ Q be a

pair labeled “matched” for which X has predicted “not matched”. To understand why, U can start

by using a debugger that explains how X comes to that prediction. For example, if X is a decision

tree then the debugger (invoked using command c5 in Figure 3.2) can show the path from the root

of the tree to the leaf that (a, b) has traversed. Examining this path, as well as the pair (a, b) and its

label, can reveal where things go wrong. In general things can go wrong in four ways:

• The data can be dirty, e.g., the price value is incorrect.

• The label can be wrong, e.g., (a, b) should have been labeled “not matched”.

• The feature set is problematic. A feature is misleading, or a new feature is desired, e.g., we

need a new feature that extracts and compares the publishers.
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• The learning algorithm employed by X is problematic, e.g., a parameter such as “maximal

depth to be searched” is set to be too small.

Currently Magellan has debuggers for a set of learning-based matchers, e.g., decision tree, random

forest. We are working on improving these debuggers and developing debuggers for more learning

algorithms.

Categorizing Matching Mistakes: After U has examined all or a large number of matching mis-

takes, he or she can categorize them, based on problems with data, label, feature, and the learning

algorithm. Examining all or most mistakes is very time consuming. Thus a consistent feedback we

have received from real-world users is that they would love a tool that can automatically examine

and give a preliminary categorization of the types of the matching mistakes. As far as we can tell,

no such tool exists today.

Handling Common Categories of Mistakes: Next U should try to fix common categories of

mistakes by modifying the data, labels, set of features, and the learning algorithm. This part often

involves data cleaning and extraction (IE), e.g., normalizing all values of attribute “affiliation”, or

extracting publishers from attribute “desc” then creating a new feature comparing the publishers.

This part is often also very time consuming. Real-world users have consistently indicated needing

support in at least two areas. First, they want to know exactly what kinds of data cleaning and IE

operations they need to do to fix the mistakes. Naturally they want to do as minimally as possible.

Second, re-executing the entire EM process after each tiny change to see if it “fixes” the mistakes

is very time consuming. Hence, users want an “what-if” tool that can quickly show the effect of a

hypothetical change.

Proxy Debugging: Suppose we need to debug a matcher X but there is no debugger for X , or

the debugger exists but is not very informative. In this case X is effectively a “blackbox”. To

address this problem, in Magellan we have introduced a novel debugging method. In particular,

we propose to train another matcher X ′ for which there is a debugger, then use that debugger to

debug X ′, instead of X . This “proxy debugging” process cannot fix problems with the learning

algorithm of X , but it can reveal problems with the data, labels, features, and fixing them can
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Figure 3.3: The EM workflow for the learning-based matching scenario.

potentially improve the accuracy of X itself. Section 3.3 shows cases of proxy debugging working

quite well in practice.

Selecting a Matcher Again: So far we have discussed selecting a good initial learning-based

matcher X , then debugging X using the development set I . To debug, user U splits I into training

set P and testing set Q, then identifies and fixes mistakes in Q. Note that this splitting of I into

P and Q can be done multiple times. Subsequently, since the data, labels, and features may have

changed, U would want to do cross validation again to select a new “best matcher”, and so on (see

Step 5 in Figure 3.1).

3.2.6 The Resulting EM Workflow

After executing the above steps, user U has in effect created an EM workflow, as shown in

Figure 3.3. Since this workflow will be used in the production stage, it takes as input the two

original tables A and B. Next, it performs a set of data cleaning, IE, and transformation operations

on these tables. These operations are derived from the debugging step discussed in Section 3.2.5.

Next, the workflow applies the blockers created in Section 3.2.2 to obtain a set of candidate tuple

pairs C. Finally, the workflow applies the learning-based matcher created in Section 3.2.5 to the

pairs in C. Note that the steps of sampling and labeling a sample S do not appear in this workflow,

because we need them only in the development stage, in order to create, debug, and train matchers.

Once we have found a good learning-based matcher (and have trained it using S), we do not have

to execute those steps again in the production stage.
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3.2.7 How-to Guides for Scenarios with Rules

Recall that Magellan currently targets three EM scenarios. So far we have discussed a how-

to guide and tools for Scenario 1: matching using supervised learning. We now briefly discuss

Scenarios 2 and 3.

Scenario 2 uses only rules to match. This is desirable in practice for various reasons (e.g.,

when matching medicine it is often important that we can explain the matching decision). For this

scenario, we have developed guides and tools to help users (a) create matching rules manually, (b)

create rules using a set of labeled tuple pairs, or (c) create rules using active learning. Scenario

3 uses both supervised learning and rules. Users often want this when using neither learning nor

rules alone gives them the desired accuracy. For this scenario, we have also developed a guide

and tools to help users. Our guide suggests that users do learning-based EM first, as described

earlier for Scenario 1, then add matching rules “on top” of the learning-based matcher, to improve

matching accuracy.

Team Domain Size of 
Table A 

Size of 
Table B 

Cand.
Set 

 Size 

Initial Learning-Based 
Matcher (A) 

Final Learning-Based 
Matcher (B) Num. of  

Iterations 
 (C)  

Final Learning + 
Rules  Matcher (D) Num. of  

Iterations 
 (E) 

Diff. in F1 
between 

(D) and (A) 
in % P R F1 P R F1 P R F1 

1 Vehicles 4786 9003 8009 71.2 71.2 71.2 91.43 94.12 92.75 4 100 100 100 2 30.27 
2 Movies 7391 6408 78079 99.28 95.13 97.04 98.21 100 99.1 2 100 100 100 1 2.12 

3 Movies 3000 3000 1000000 98.9 99.44 99.5 98.63 98.63 98.63 1 98.63 98.63 98.63 0 -0.87 

4 Movies 3000 3000 36000 68.2 69.16 68.6 98 100 98.99 3 98 100 98.99 1 44.3 

5 Movies 6225 6392 54028 100 95.23 97.44 100 100 100 3 100 100 100 1 2.63 

6 Restaurants 6960 3897 10630 100 37.5 54.55 100 88.89 94.12 3 100 88.89 94.12 1 72.54 

7 Electronic Products 4559 5001 823832 73 51 59 73.3 64.71 68.75 2 100 64.71 78.57 1 33.17 

8 Music 6907 55923 58692 92 79.31 85.19 90.48 82.61 86.36 2 100 92.16 95.92 2 1.37 

9 Restaurants 9947 28787 400000 100 78.5 87.6 94.44 97.14 95.77 4 94.44 97.14 95.77 0 9.33 

10 Cosmetic 11026 6445 36026 56 56 56 96.67 87.88 92.06 3 96.43 87.1 91.53 4 64.39 

11 E-Books 6482 14110 13652 96.67 96.67 96.67 100 95.65 97.78 4 100 98.33 99.13 1 1.15 

12 Beer 4346 3000 4334961 84.5 59.6 65.7 100 60.87 75.68 4 91.3 91.3 91.3 4 15.19 

13 Books 3506 3508 2016 93.46 100 96.67 91.6 100 95.65 2 91.6 100 95.65 0 -1.06 

14 Books 3967 3701 4029 74.17 82.2 82.5 100 84.85 91.8 3 100 84.85 91.8 5 11.27 

15 Anime 4000 4000 138344 95.9 88.9 92.2 100 100 100 2 100 100 100 1 8.46 

16 Books 3021 3098 931 74.2 100 85.2 96.34 84.95 90.29 2 94.51 92.47 93.48 1 5.97 

17 Movies 3556 6913 504 94.2 99.33 96.6 95.04 94.26 94.65 2 95.04 94.26 94.65 1 -2.02 

18 Books 8600 9000 492 91.6 100 84.8 94.8 100 90.2 3 100 92.31 96 1 6.37 

19 Restaurants 11840 5223 5278 98.6 93.8 96.1 95.6 94.02 95.57 2 100 94.12 96.97 1 -0.55 

20 Books 3000 3000 257183 94.24 72.88 81.71 90.91 83.33 86.96 2 92.31 100 96 1 6.43 

21 Literature 3885 3123 1590633 84.4 86.9 85.5 100 95.65 97.83 3 100 95.65 97.83 0 14.42 

22 Restaurants 3014 5883 78190 100 93.59 96.55 100 100 100 5 100 100 100 0 3.57 

23 E-Books 6501 14110 18381 94.6 92.5 93.4 94.6 97.22 95.89 2 100 100 100 1 2.67 

24 Baby Products 10000 5000 11000 78.6 44.8 57.7 96.43 72.97 83.08 5 100 72.97 84.37 2 43.99 

Table 3.1: Large-scale experiments with Magellan on Web data.
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3.3 Empirical Evaluation

We now show that the current guide and tools are already highly promising, in that users can

already use them to achieve high matching accuracy on diverse data sets. Specifically, in what

follows we report on experiments with graduate students at UW-Madison. Chapter 6 describes

our experience applying Magellan “in the wild”, to real-world EM scenarios in domain science

projects and at companies. That experience further demonstrates the above promise (and highlights

challenges for future work).

As of March 2018, Magellan [13] consists of 6 Python packages, 37K lines of code, and 104

commands. It has been developed over 3 years by 13 developers. So far 400+ students (including

90+ undergraduates) have used Magellan in 5 data science classes at UW-Madison. These students

can be considered the equivalents of power users at organizations. They know Python but are not

experts in EM.

In each class, we asked the students to form team of 2-3 students, then asked each team to

find two data-rich Web sites, extract and convert data from them into two relational tables, then

apply Magellan to match tuples across the tables [45]. We typically asked each team to do the EM

scenario of supervised learning followed by rules, and aim for precision of at least 90% with recall

as high as possible (a very common scenario in practice).

We now describe in detail our experience with the Fall 2015 class, which consisted of 44

students divided into 24 teams. The first four columns of Table 3.1 show the teams, domains, and

the sizes of the two tables, respectively. Note that two teams may cover the same domain, e.g.,

“Movies”, but extract from different sites. Overall, there are 12 domains, and the tables have 7,313

tuples on average, with 5-17 attributes. We asked each team to do the EM scenario of supervised

learning followed by rules, and aim for precision of at least 90% with recall as high as possible.

This is a very common scenario in practice.

The Baseline Performance: The columns under “Initial Learning-Based Matcher (A)” show

the matching accuracies achieved by the best learning-based matcher (after cross validation, see

Section 3.2.4): P = 56 − 100%, R = 37.5 − 100%, F1 = 56 − 99.5%. These results show that
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many of these tables are not easy to match, as the best learning-based matcher selected after cross

validation does not achieve high accuracy. In what follows we will see how Magellan was able to

significantly improve these accuracies.

Using the How-to Guide: The columns under “Final Learning+Rule Matcher (D)” show the

final matching accuracies that the teams obtained: P = 91.3 − 100%, R = 64.7 − 100%, F1 =

78.6 − 100%. All 24 teams achieved precision exceeding 90%, and 20 teams also achieved recall

exceeding 90%. (Four teams had recall below 90% because their data were quite dirty, with many

missing values.) All teams reported being able to follow the how-to guide. Together with qual-

itative feedback from the teams, this suggests that users can follow Magellan’s how-to guide to

achieve high matching accuracy on diverse data sets. We elaborate on these results below, broken

down by blocking and matching.

Blocking and Debugging Blockers: All teams used 1-5 blockers (e.g., attribute equivalence,

overlap, rule-based), for an average of 3. On average 3 different types of blockers were used per

team. This suggests that it is relatively easy to create a blocking pipeline with diverse blocker

types. All teams debugged their blockers, in 1-10 iterations, for an average of 5. 18 out of 24

teams used our debugger (see Section 3.2.2), and reported that it helped in four ways.

• Cleaning data: By examining tuple pairs (returned by the debugger) that are matches acci-

dentally removed by blocking, 12 teams discovered data that should be cleaned. For exam-

ple, one team removed the edition information from book titles, and another team normalized

the date formats in the input tables.

• Finding the correct blocker types and attributes: 12 teams were able to use the debug-

ger for these purposes. For example, one team found that using attribute equivalence (AE)

blocker over “phone” removed many matches, because the phone numbers were not updated.

So they decided to use “zipcode” instead. Another team started with AE over “name” then

realized that the blocker did not work well because many names were misspelled. So they

decided to use a rule-based blocker instead.
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• Tuning blocker parameters: 18 teams used the debugger for this purpose, e.g., to change

the overlap size for “address” in an overlap blocker, or to use a different threshold for a

Jaccard measure in a rule-based blocker.

• Knowing when to stop:12 teams explicitly mentioned in their reports that when the debug-

ger returned no or very few matches, they concluded that the blocking pipeline had done

well, and stopped tuning this pipeline.

Teams reported spending 4-32 hours on blocking (including reading documentations). Overall,

21 out of 24 teams were able to prune away more than 95% of |A × B|, with an average re-

duction of 97.3%, suggesting that they were able to construct blocking with high pruning rate.

Feedback-wise, teams reported liking (a) the ability to create rich and flexible blocking sequences

with different types of blockers, (b) the diverse range of blocker types provided by Magellan, and

(c) the debugger. They complained that certain types of blockers (e.g., rule-based ones) were still

slow (an issue that we are currently addressing).

Matching and Debugging Matchers: Recall from Section 3.2.5 that after cross validation on

labeled data to select the best learning-based matcher X , user U iteratively debugged X to improve

its accuracy. Teams performed 1-5 debugging iterations, for an average of 3 (see Column “Num of

Iterations (C)” in Table 3.1). The actions they took were:

• Feature selection: 21 teams added and deleted features, e.g., adding more phone related

features, removing style related features.

• Data cleaning: 12 teams cleaned data based on the debugging result, e.g., normalizing

colors using a dictionary, detecting that the tables have different date formats. 16 teams

found and fixed incorrect labels during debugging.

• Parameter tuning: 3 teams tuned the parameters of the learning algorithm, e.g., modifying

the maximum depth of decision tree based on debugging results.
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These debugging actions helped improve accuracies significantly, from 56-100% to 73.3-100%

precision, and 37.5-100% to 61-100% recall (compare columns under “A” with those under “B” in

Table 3.1).

Adding rules further improves accuracy. 19 teams added 1-5 rules, found in 1-5 iterations (see

column “E”). This improved precision from 73.3-100% to 91.3-100% and recall from 61-100% to

64.7-100% (compare columns under “D” with those under “B”). Overall, Magellan improved the

baseline accuracy in columns “A” significantly, by as much as 72.5% F1, for an average of 18.8%

F1. For 3 teams, however, accuracy dropped by 0.87-2.02% F1. This is because the baseline F1s

already exceeded 94%, and when teams tried to add rules to increase F1 further, they overfit the

development set.

Teams reported spending 5-50 hours, for an average of 12 hours (including reading documen-

tation and labeling samples) on matching. They reported liking debugger support, ease of creating

custom features for matchers, and support for rules to improve learning-based matching. They

would like to have more debugger support, including better ordering and visualization of matching

mistakes.

Summary: Our experience with the development stage of Magellan suggest that users can

successfully follow the how-to guide to achieve high EM accuracy on diverse data sets. In fact, we

consider the how-to guide to be the single most important component of the system. Without it,

users are lost: they do not even know where to start, when to use what tools, and how.

Our experience further suggests that the various tools developed for the development stage

(e.g., debuggers) can be highly effective in helping the users. It also clearly shows that practical

EM requires a wide range of capabilities, e.g., cleaning, extraction, visualization, underscoring

the importance of placing Magellan in an ecosystem that provides such capabilities. (In fact,

Magellan currently uses 12 packages in the Python ecosystem to provide such capabilities.)
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Chapter 4

The Production Stage of Magellan

In the previous chapter we have considered the development stage. Specifically, we considered

developing how-to guides and tools to help the user experiment and find an accurate EM workflow,

using data samples. In this chapter we consider the production stage, in which the user executes

this workflow on the entirety of data, i.e., on the two original tables to be matched.

There are numerous challenges in the production stage, such as scaling, crash recovery, log-

ging, etc. We will focus on scaling. We first motivate our scaling considerations and define our

problem settings. In particular, we argue for the need to develop a how-to guide for users on how

to handle scaling challenges in the production stage. Next, we describe such preliminary guides

for several scaling scenarios. We then identify pain points in the guides and develop tools for the

pain points. Specifically, we develop tools to tune the parameters of the implementation versions

of several EM commands. We present experiments showing that even preliminary tuning tools can

already be very useful to the user.

Overall, our work in this chapter, even though still preliminary, shows the promise of following

the “how-to guide / pain points / tools” template that we have successfully used for the development

stage.

4.1 Motivations and Our Problem Setting

Recall that in the production stage our goal is to execute a workflow W (which was discovered

in the development stage) on the entirety of data, e.g., on the two original tables. This raises many
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challenges, including scaling, crash recovery, logging, etc. In this work we will focus on scaling,

i.e., executing the workflow W fast.

Focusing on Scaling Each Individual Python Command: A common way to scale is to opti-

mize the run time of the entire workflow W , e.g., we can define a set of operators, compile W into

a DAG of these operators, optimize and then execute the DAG. This is reminiscent of the scaling

approach of RDBMSs.

The above approach however assumes that the user is interested in executing the entire work-

flow W in one shot. In many cases, we observe that the user may want to execute only fragments

of W (perhaps one fragment after another). There are many reasons for this. The user may want

to execute a fragment, inspect the output, debug, and repeat if necessary, before executing the next

fragment. Different user groups may be in charge of executing different parts of the workflow. The

user may want to interleave the development stage with the production stage. For example, after

discovering a good blocking method in the development stage, the user may want to execute that

blocking method on the entirety of data (thus being in the production stage), before continuing

with the development stage by sampling from the blocking output, and so on.

As a result, we will not focus on scaling the entire workflow W in this thesis. Rather, we

focus on scaling its fragments. In particular, the workflow W often consists of multiple Python

commands (each performing an action, such as blocking, matching, etc.). So as a first step, we

will focus on scaling each individual Python command (that Magellan provides for the production

stage).

Focusing on a Single Machine Setting: Each Python command in the production stage can be

executed on a single machine or a cluster of machines, depending on what computing environments

the user has and what implementations of the command are available to the user. As a first step,

in this work we will focus on scaling such Python commands on a single machine setting. Within

this setting, we will consider both the scenario of using a single core and using multiple cores.
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Limitations of Current Scaling Approaches: Now that we have scoped our settings, we consider

how to scale a single Python command. A straightforward baseline is to just develop an imple-

mentation that is highly optimized for time (in a way similar to developing an highly optimized

implementation for a join operation). This however does not work because a different implementa-

tion may work best for different datasets. For example, a simple Python implementation targeting

a single core (on a single machine) may be fastest for small datasets, but will not scale to large

datasets. This is again reminiscent of the fact that different join implementations exist (e.g., hash

join, nested loop join, index join, etc.), and each implementation is best in a different context.

As a result, we start by asking what implementations of a single Python command are com-

monly available (for the single-machine setting). From now on, we also refer to such implementa-

tions as command versions, where there is no ambiguity. We observe that the following versions

are commonly available in practice (see Chapter 5 fore more discussions on these versions):

• Single-core version: This version executes using a single core in the machine. The single-

core versions are implemented using Python. This is typically the first version that devel-

opers implement for a Python command, as it is the simplest version to implement. Later if

this version (in Python) appears not fast enough, developers may rewrite certain parts of it in

Cython.

• Multi-core version developed using automatic parallel frameworks: This version uses

multiple cores and is implemented using the primitives from an automatic parallel frame-

work (e.g., Dask [113]). This version often includes multiple scaling parameters such as

the number of partitions of the input tables, choice of the scheduler, etc. If the single-core

version is not fast enough (e.g., based on feedback from many users), then developers are

likely to develop this version, because developing it by using a framework such as Dask to

modify the single-core version code is relatively painless.

• Custom multi-core version: This version uses multiple cores and is implemented using

Python multiprocessing libraries [7, 14]. It often requires the developers to have a deep
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knowledge about how the command works and then use that knowledge to provide cus-

tomized optimizations. Like the previous version, this version also often include multiple

parameters that the user needs to set, such as the number of partitions of the original tables.

Typically this version is developed when it appears that both the single-core version and the

automatic multi-core version are not fast enough for many users.

In practice, the above versions often are developed over time, and either all three or a subset

of them are available. This raises a major challenge. In the production stage, when the user has

to execute a Python command, suppose this command has all three versions available, which one

should the user chose?

The above question is reminiscent of how to select a join implementation (e.g., hash-, index-,

or nested loop join) to execute a join operation in RDBMSs. The common solution there is to use

an optimizer. Roughly speaking, this optimizer estimates the runtime of each join implementation

and then selects the fastest one.

In our context, however, it is not clear how to develop such an optimizer. The main reason

is that it is very difficult to estimate the runtime of each version. For example, a version such as

“multi-core automatic” often has many parameters that can be tuned (e.g., how many partitions

for Table A and how many partitions for Table B, assuming that we want to match A and B).

Depending on how we tune these parameters, the runtime can vary drastically. We cannot however

assume tuning will be a part of the optimization process, because tuning can take a significant

amount of time, e.g., minutes or tens of minutes. So the total optimization time can end up being

higher than the time it takes to execute a command version.

In short, today it is still unclear how to optimize in our contexts such that the optimization time

is negligible. For example, any optimization method appears to require tuning, and tuning can still

take a very long time.

Another problem is that in practice, users often do not always need to run a command in the

least amount of time. Suppose the single-core command version takes 20 minutes, but a user does

not really need the result until a few days from now, then this command version is perfectly fine for

him or her. So the goal of optimizing to select the fastest command version is a bit of an “overkill”.
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Our Proposed Solution: To address the above issues, we propose to develop a how-to guide for

users on which command version to use in which context, and what to do next if that version is

too slow. We then analyze the how-to guide to identify pain points, then develop tools for the pain

points. This is the same solution approach we have used for the development stage, as discussed

in Chapter 3.

It is important to note that our solution here will be somewhat preliminary, because we focus

on the development stage in this dissertation. However, it will provide evidence to suggest that

the same “how-to guide / pain points / tools” approach is also highly promising for the production

stage.

4.2 Developing a How-to Guide for Users

We observe that there are many different possible scenarios based on the available versions

of a command. In this dissertation, we target three scenarios: (1) only a single-core version is

available, (2) a single-core version and a multi-core version using Dask are available, and (3) a

single-core version, a multi-core version using Dask, and a custom multi-core version are available.

Developing how-to guides for these scenarios is important as they commonly occur in practice. In

what follows we describe an initial guide for these scenarios.

Guide for Scenario 1: Since only a single-core version available in this scenario, the user should

execute it. If it does not appear fast enough (for example, the user may abort the command in the

middle because it already takes too long, or the command finishes but the user wants to run it again,

in less time), then the user should check if there are parameters to tune, tune those, and execute

again. If even this is not fast enough (or if there is no parameter to tune), then the user should

try a more powerful machine with more RAM. (More RAM ensures that any memory-intensive

operations will likely have enough memory to operate, especially when other users also run jobs

on the same machine.)

Guide for Scenario 2: In this scenario a single-core version and a multi-core version using Dask

are available. If the tables are small (e.g., under 300 tuples each), the user should execute the
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single-core version. Running a multi-core version here would incur an overhead of initial setup

cost and serialization/deserialization time while moving the data between the cores, and thus may

be slower than the single-core version.

If the tables are not small, or the single-core version is not fast enough, the user should execute

the multi-core version using Dask (using the default values for the scaling parameters). If this

version is not fast enough, the user should tune the parameters and execute the version again. If

this is still not fast enough, the user should try using a more powerful machine with more cores

and RAM.

Guide for Scenario 3: In this scenario a single-core version, multi-core version using Dask, and

multi-core custom version are available. If the tables are small (e.g., under 300 tuples each), the

user should execute the single-core version.

If the tables are not small, or the single-core version is not fast enough, the user should execute

the multi-core custom version (using the default values for the scaling parameters). This version

is executed before the multi-core Dask version because the custom multi-core version is expected

to include custom optimizations that make the execution faster. If this is not fast enough, the user

should tune the scaling parameters and execute the command again.

If this is still not fast enough, the user should execute the multi-core Dask version. This version

is executed because it may be the case that the custom multi-core version is not suited for the

current input tables. If this is not fast enough, the user should tune the parameters and execute

the command again. If this is still not fast enough, the user should try using a more powerful

workstation with more cores and RAM. In the new workstation, the user should follow the same

guide and start by executing the custom multi-core version using the default values for the scaling

parameters.

4.3 Identifying Pain Points and Developing Tools

We now consider the pain points of the above how-to guide and developing tools to address the

pain points. A clear pain point is tuning the parameters of a command version. If a user uses the
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Figure 4.1: Runtime vs the number of table partitions for the downsampling command.

default values or does not set the right values for the parameters, the runtime performance may be

poor and it may not meet his or her goals. For example, Figure 4.1 shows the impact of the number

of partitions of input tables on the runtimes of the downsampling command. The figure shows that

the runtimes vary a lot and bad parameter settings will result in significantly increased runtimes. It

is hard however for a user to try different possible combinations of parameter values and choose the

best one. To address this, we focus on developing tools to tune parameters of command versions.

There are two options to develop tools to tune parameters: (1) develop a generic tool that can

be used for all commands, and (2) develop command-specific tools, i.e., for each time-intensive

command we will develop a tool just for tuning that command.

In this dissertation, we focus on developing command-specific tools. First, it is not clear yet

how to develop a generic tool that works well for all commands. By developing command-specific

tools, we hope that we will learn lessons that can be applied to developing generic tuning tools in

the future. Second, the goal of this dissertation is not to develop the best tuning tools. Rather, for

this part of the dissertation, the goal is to demonstrate that even basic tuning tools can already be

very useful for the users.

More concretely, we will focus on developing tools to tune the parameters of the multi-core

Dask versions for two command: downsampler and overlap blocker.
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There has been a lot of work on parameter tuning [87, 88, 72, 122, 90]. Our goal is to develop

a preliminary tool to tune the parameters of commands. (Again, our goal is to demonstrate that

even basic tuning tools can already be very useful for the users.) So we will focus on developing a

tool using the “staged tuning” approach and leave other approaches for future work. Staged tuning

is a sequential, greedy approach. The key idea of this approach is to tune one parameter at a time.

For example, if there are three parameters to tune, we tune the first parameter with the other two

parameters set to some default values. Next, we tune the second parameter with the first parameter

set to the tuned value and the third parameter set to a default value. Finally, we tune the third

parameter with the first two parameters set to the tuned values.

4.3.1 Developing a Tuning Tool for the Downsampling Command

To develop a tool to tune the parameters of the downsampling command, we will first describe

the procedure used for the multi-core Dask version of this command. Then we will use this proce-

dure to develop a tool to tune the parameters.

4.3.1.1 The Dask Implementation Version

We will first describe the procedure used for the single-core version of the command, followed

by the changes made to create the multi-core Dask version. Conceptually, given two large tables

A and B, the goal of this command is to create two smaller tables, A′ and B′. In the single-

core version, the command first randomly selects B size tuples from B to make table B′. Next,

it concatenates the string attributes in table A, preprocesses (e.g., removes punctuations, special

characters, etc.) and tokenizes these concatenated strings, and uses these tokens to build an inverted

index. Then for each x ∈ B′, it concatenates the string attributes, preprocesses and tokenizes the

concatenated string, and finds a set P of k/2 tuples that may match with x using the inverted index,

and a set Q of k/2 tuples randomly selected from A \ P . Table A′ will thus consist of all tuples in

such P s and Qs.

In the multi-core Dask version of this command, the same sequence of steps is followed as in

the single-core version, except that the tables A and B′ are split into multiple partitions of equal
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size. These partitions are used to build and probe the inverted index in parallel. Specifically, the

multi-core Dask version of the command first randomly selects B size tuples from B to make table

B′. Next, it splits table A into nA partitions of equal size. Then for each partition, it concatenates

the string attributes, preprocesses and tokenizes these concatenated strings in parallel. Next, it

takes a union of these tokens and builds an inverted index. Then it splits table B′ into nB partitions

of equal size. Next, for each partition and each tuple x in this partition, it concatenates the string

attributes, preprocesses and tokenizes this concatenated string, and finds a set P of k/2 tuples that

may match with x using the inverted index, and a set Q of k/2 tuples randomly selected from

A \ P , in parallel. Table A′ will then consist of all tuples in such P s and Qs.

Based on the procedure for the multi-core Dask version, there are three parameters to tune: (1)

whether input tables A and B must be swapped, (2) nA, the number of partitions into which to

split table A, and (3) nB, the number of partitions into which to split table B′. These parameters

have a significant impact on the runtime performance. For example, the number of partitions in

tables A and B′ determine the data size that gets processed in parallel. If there is a computation

skew in these partitions (i.e., if some partitions require more time to complete), then the number of

partitions will have a significant impact on the overall runtime.

4.3.1.2 Tuning the Dask Version

We will now describe the algorithm used to tune the parameters of the downsampling com-

mand. Conceptually, the algorithm takes two tables A and B′ as input and performs the following

steps. First, it takes a sample of tables A and B′. Next, it decides the order in which the parameters

must be tuned. Next, it decides the range of values for each of these parameters. Then it selects

the best configuration for these parameters using staged tuning. Finally, it returns the best config-

uration. Though the procedure is simple, it includes at least three challenges. First, how should

we sample the input tables? Second, in what order must the parameters be tuned? Third, what

should be the range of values for each parameter? We will now discuss each of these challenges

and proposed solutions.



59

Sampling: In the Dask procedure, we observed that the input table B is sampled to get B′. Our

goal is to sample the tables A and B′, as these tables are used in the subsequent steps. A naive

solution would be to sample them randomly. However, this solution does not work, as the sampled

tables may not be representative of the input tables with respect to the processing of tuples. To

address this, we use a stratified sampling approach to sample the input tables. Specifically, we

sample the table A by first concatenating the string attributes in each tuple, then taking a stratified

sample using the lengths of these concatenated strings, and finally ordering these tuples as in the

original table A. The intuition here is that while building the inverted index using table A, most of

the compute time is spent in preprocessing and tokenizing the concatenated strings. The runtimes

of these two operations depend on the lengths of the concatenated strings. So taking a stratified

sample using the lengths of these concatenated strings will include a representative set of tuples

from table A. We reorder these sampled tuples as in the input table A, to capture the computation

skew among the partitions in table A. Specifically, in the multi-core Dask version, the table is

partitioned in the following manner. If there are 1M tuples in table A and if nA is 10, then the first

partition will include the first 100K tuples from table A, the second partition will include the next

100K tuples, and so on. These partitions can have different computation times, and it is important

to capture these variations in the sampled tables. So we reorder the sampled tuples as in the original

table in order to mimic the computation skew (as much as possible) of the original table. Similarly,

we sample table B′ by taking a stratified sample using the number of tuples in A by which each

tuple in B′ must be probed. Currently, the size of the sampled tables is set to 10 percent of the

input table sizes. For example, if table A includes 1000 tuples, then the sampled table will include

100 tuples.

Ordering of Parameters: There are three parameters to tune in the multi-core Dask version

of the downsampling command: (1) whether input tables A and B must be swapped, (2) nA, the

number of partitions into which to split table A, and (3) nB, the number of partitions into which to

split table B′. It is obvious from the procedure for the multi-core Dask version that the decision,

whether or not swap the input tables has to be made first, as it determines what table should be

used to build the inverted index and what table should be used to probe. So this parameter is tuned
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first. Between nA and nB, the parameter nB is tuned first, as the probing time is typically longer

than the index-building time. Finally, nA is tuned.

Choice of Parameter Values: The parameter for swapping the input tables can take two values:

True or False. If the tables have to be swapped, then we return True; otherwise, we return False.

The number of partitions in table A (i.e., nA) can ideally take any value in the range [1, N ], where

N is the number of tuples in A. If nA is set to N , then each partition will include a single tuple.

However, N can be large (in the order of millions), so selecting the best value in this large range

is hard. To address this, currently, we have set N to be 128. Even in this range, it will be very

time-consuming to consider every value between 1 and N . So currently, we consider only a subset

of values in this range. Specifically, we start with the number of cores, nc, in the machine, and

then double this value until it reaches 128. The intuition here is that increased runtimes are often

caused by the computation skew in the partitions of table A. In such cases, ideally, we must find

the partition that takes longer to finish processing and then split that partition further. However,

this requires modifying the existing implementation to collect more diagnostic information. So as

a workaround, we split all the partitions, essentially doubling the number of partitions. Thus, the

value range for the number partitions in table A (i.e. nA) is set to [nc, 128]. Similarly, the value

range for the number of partitions in table B′ (i.e. nB) is set to [nc, 128].

Selecting the Best Configuration: To select the best configuration, first we decide if the input

tables need to be swapped. To do this, we first randomly sample B size tuples from B to get B′.

Next, we sample the tables A and B′, using stratified sampling, to get the sampled tables SA and

SB. Then we execute the multi-core Dask version using the sampled tables. While executing the

multi-core Dask version, we set the parameters, B size equal to the size of SB, so that SB is not

sampled in the command. Next, we repeat the above procedure by swapping the input tables A

and B. While we execute the multi-core Dask version, the number of partitions, nA, nB, are set to

the number of cores in the machine. We choose whether or not to swap the input tables based on

the runtimes of the multi-core Dask version using the sampled tables. If the runtime is lower when

the sampled tables are swapped, then we choose to swap the input tables; otherwise, we retain the
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same order given in the input. Based on this decision, we use the appropriate sampled tables, SA

and SB, for tuning the other parameters.

Next, we select the number of partitions for table B′. Specifically, we iterate through a subset

of values in the range [nc, 128], execute the multi-core Dask version for each of the different values

(starting with nc and doubling each time till it reaches 128), and select the maximum value before

which the runtime starts increasing. While running this, we set the number of partitions for table

A to the number of cores in the machine. Next, we select the number of partitions for table A. We

follow the same procedure that we followed while selecting the number of partitions for table B′.

While running this, the number of partitions for B′ is assigned to the value found in the previous

step. Finally, we return the selected configuration to the user as an ordered list (X, Y, Z), where X

tells the user whether the tables need to be swapped, Y is the number of partitions for table A, and

Z is the number of partitions for table B′.

4.3.2 Developing a Tuning Tool for the Overlap Blocker Command

To develop a tool to tune the parameters of the overlap blocker command, we will first de-

scribe the procedure used for the multi-core Dask version of this command. Then we will use this

procedure to develop a tool to tune the parameters.

4.3.2.1 The Dask Implementation Version

We will first describe the procedure for the single-core version of the command, followed by

the changes made to create the multi-core Dask version. Conceptually, given two tables A and

B, a blocking attribute block attr, and an overlap threshold K, the goal of the overlap blocker

is to return the tuple pairs from these input tables that share at least K tokens in block attr. We

assume that both tables A and B include the block attr. In the single-core version, the overlap

blocker first preprocesses and tokenizes the strings in the block attr column in table A. Then it

uses these tokens to build an inverted index. Next, for each string in the block attr column in table

B, it preprocesses and tokenizes the string, finds a set of tuples from A that share at least K tokens
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(using the inverted index), and creates a set P of such satisfying tuple pairs. Finally, it creates a

new table by taking a union of all such P s and returns this table to the user.

In the multi-core Dask version of the overlap blocker, the same sequence of steps is followed

as in the single-core version, except that the input tables A and B are split into multiple partitions

of equal size and these partitions are used to build and probe the inverted index in parallel. Specif-

ically, this implementation of the blocker first splits table A into nA partitions of equal size. Then

for each partition, it preprocesses and tokenizes the string in the block attr column, in parallel.

Next, it takes a union of all these tokens and builds an inverted index. Then it splits B into nB

partitions of equal size. Next, for each partition and each string in the block attr column in this

partition, it preprocesses and tokenizes the string, finds tuples in table A that share at least K to-

kens (using the inverted index), and then creates a set P of such satisfying tuple pairs in parallel.

Then it creates a new table using all such P s and returns this table to the user.

4.3.2.2 Tuning the Dask Version

We will now describe the algorithm for tuning the Dask procedure. This algorithm is similar

to the algorithm for tuning the parameters of the downsampling command. Conceptually, the

algorithm takes tables A and B as input and performs the following steps. First, it takes a sample

of tables A and B. Next, it decides the order in which the parameters must be tuned. Next, it

decides the range of values for each of the parameters. Then it selects the best configuration for

these parameters using staged tuning. Finally, it returns the best configuration.

Sampling: A naive solution is to sample the input tables randomly. However, this solution does

not work, as the sampled tables may not be representative of the input tables with respect to the

processing of tuples. To address this, we use a stratified sampling approach to sample the input

tables. Specifically, we sample table A by first concatenating the string attributes in each tuple,

then taking a stratified sample using the lengths of the concatenated strings, and finally ordering

the tuples as in the original table A. We reorder the sampled tuples as in the input table A in order

to capture the computation skew among the partitions in table A. Currently, the size of the sampled
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tables is set to 10 percent of the input table sizes. For example, if table A includes 1000 tuples,

then the sampled table will include 100 tuples.

Ordering of Parameters: There are three parameters to tune for the multi-core Dask version:

(1) whether input tables A and B must be swapped, (2) nA, the number of partitions into which to

split table A, and (3) nB, the number of partitions into which to split table B. It is obvious from

the procedure of the multi-core Dask version that the decision, whether or not to swap the input

tables must be made first, as it determines the table that should be used to build the inverted index

and the table that should be used to probe. So this parameter is tuned first. Between nA and nB,

the parameter nB is tuned first, as the probing time is typically longer than the index-building time.

Finally, nA is tuned.

Choice of Parameter Values: The parameter for swapping the input tables can take two values:

True or False. If the tables have to be swapped, then we return True; otherwise, we return False.

We observe that the procedures for the downsampling command and for the overlap blocker are

similar. Specifically, both include building an inverted index using one table and probing using

another table. So we use the same range of values for nA and nB. Specifically, the range of the

number of partitions for table A (i.e., nA) is set to [nc, 128], where nc is the number of cores in the

machine. Similarly, the range of the number partitions for table B is set to [nc, 128].

Selecting the Best Configuration: To select the best configuration, we must first decide whether

the input tables need to swapped. Specifically, first we sample the input tables A and B using

stratified sampling to get the sampled tables SA and SB. Then we execute the multi-core Dask

version using the sampled tables. Next, we repeat the above procedure by swapping the input

tables A and B. While we execute the multi-core Dask version, the number of partitions nA and

nB, are set to the number of cores in the machine. We select the best configuration between

swapping and not swapping the input tables based on the runtimes of the command executed using

the sampled tables. Based on this decision, we use the appropriate sampled tables SA and SB to

tune other parameters.
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Dataset
Table A

(num of rows, 
num of cols)

Table B
(num of rows, 
num of cols)

Citations (1823978,  7) (2512927, 7) 

Drugs (446048,  10) (440048,  10)

Songs (1000000,  8) (1000000,  8)

Songs/Tracks (961594, 4) (734486, 6)

FEC (3000000, 21) (3000000, 21)

Table 4.1: Data sets for evaluating the tuning tools for the downsampling and overlap blocker
commands.

Next, we select the number of partitions for table B. Specifically, we iterate through a subset of

values in the range [nc, 128], execute the multi-core Dask version for each of the different values,

and choose the maximum value before which the runtime starts increasing. While running this, we

set the number of partitions for table A to the number of cores in the machine. Next, we select the

number of partitions for table A. We follow the same procedure we followed to select the number

of partitions for table B. While running this, the number of partitions for B is assigned to the value

found in the previous step. Finally, we return the selected configuration to the user as an ordered

list (X, Y, Z), where X tells the user whether the tables need to be swapped, Y is the number of

partitions for table A, and Z is the number of partitions for table B. The user will then use this

configuration to execute the multi-core Dask version.

4.4 Empirical Evaluation

We now evaluate the tuning tools for the downsampling and overlap blocker commands. We

consider five real-world data sets in Table 4.1, which describes Citations, Drugs, Songs, Songs &

Tracks, and Federal Election Commission (FEC) data sets, respectively. We ran experiments on a

Linux machine with a 4-core Intel i5-3570 3.1GHz processor with 16 GB of RAM.
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Dataset Baseline 
Configuration

Baseline 
Config. 

Runtime

Configuration 
by 

Tuning Tool

Tuning Tool 
Config.

Runtime

Best 
Configuration

Best 
Config.

Runtime

Time taken
 by Tuning 

Tool

Citations (False, 4, 4) 2475s (False, 16, 16) 1301s (False, 64, 32) 899s 356s

Drugs (False, 4, 4) 984s (False, 8, 16) 895s (True, 32, 16) 593s 183s

Songs (False, 4, 4) 379s (False, 4, 16) 309s (False, 32, 32) 241s 132s
Songs/
Tracks (False, 4, 4) 1339s (True, 8, 16) 871s (True, 64, 32) 673s 347s

FEC (False, 4, 4) 1284s (False,  8, 16) 1187s (False, 2, 128) 920s 484s

Table 4.2: Overall performance of the tuning tool for downsampling.

4.4.1 Evaluating the Tuning Tool for Downsampling

We now examine the performance of the tool to tune the parameters of the downsampling

command. The results are shown in Table 4.2. The first column identifies the data sets. The

B size parameter for all the experiments was set to 100K.

Baseline Performance: The column “Baseline Configuration” shows the baseline configuration

of parameters. The configuration is shown as an ordered list (X, Y, Z) where X indicates whether

the input tables are swapped, Y is the number of partitions of table A, and Z is the number of

partitions of table B′. The baseline configuration includes the default values for these parameters.

The column “Baseline Config. Runtime” shows the runtime of the command using the default

configuration.

Performance of the Tuning Tool: The columns “Configuration by Tuning Tool” and “Tuning

Tool Config. Runtime” show the configuration selected by the tool and the runtime of the multi-

core Dask version using this configuration. The results show that the tuning tool is able to reduce

the runtime significantly compared to the baseline, for all five datasets, by as much as 47.4% (for

Citations).

Comparison with the Best Configuration: The columns “Best Configuration” and “Best Config.

Runtime” show the best parameter configuration and the runtime of the multi-core Dask version

using this best configuration. We obtained this configuration by doing an exhaustive search of all
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possible parameter values within a pre-specified range. We observe that the tuning tool provides

a reasonable configuration but not the best configuration. For example, for the Citations data set

the best configuration is 402 seconds better than the configuration found by the tuning tool, and on

average, the best configuration is 247 seconds better than the runtime from using the configuration

given by the tuning tool. This indicates that there is still room for improvement.

The Tuning Time: The column “Time Taken by Tuning Tool” shows the time taken by the

tuning tool to return a configuration. This time ranges from relatively low (132 seconds for Songs)

to relatively high (484 seconds for FEC).

The total times (tuning time plus execution time) for the five datasets are 1657, 1078, 441,

1218, and 1671 seconds, respectively. Thus, the tuning tool works well on two datasets (Citations

and Songs/Tracks), where the total times are still quite a bit lower than the time of the baseline

configuration. On the other three datasets, the tuning tool does not work as well, mainly due to the

overhead of tuning.

Discussion: The experimental results suggest that

• Even the simplest tuning method of staged tuning can already produce configurations that are

much faster than the default configurations (despite the fact that these default configurations

have been careful selected by experienced developers). This underscores the importance and

promise of tuning.

• Staged tuning however is still falling short of finding the best configuration. So more sophis-

ticated tuning should be examined.

• Tuning however can incur a considerable overhead, and it is not yet clear when it will help

(once we have factored in the tuning overhead). There are clearly cases where tuning can

help a lot, such as in the case of Citations. But in other cases, the overhead of tuning may

negate its effect. More research is necessary on this topic.
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Dataset Baseline
Configuration

Baseline 
Config. 

Runtime

Configuration 
by 

Tuning Tool

Tuning Tool 
Config.

Runtime

Best 
Configuration

Best 
Config.

Runtime

Time taken
 by Tuning 

Tool

Citations (False, 4, 4) 392s (False, 8, 8) 314s (True, 64, 32) 260s 170s

Drugs (False, 4, 4) 41s (False, 8, 16) 23.07s (True, 16, 32) 18.06s 42s

Songs (False, 4, 4) 58s (False, 16, 16) 42s (False, 2, 64) 35.1s 45s
Songs/
Tracks (False, 4, 4) 124s (True, 8, 16) 91s (True, 64, 128) 68.1s 82s

FEC (False, 4, 4) 15s (False,  4, 4) 15s (False, 64, 16) 14s 28s

Table 4.3: Overall performance of the tuning tool for the overlap blocker command.

4.4.2 Evaluating the Tuning Tool for Overlap Blocker

We now examine the performance of the tuning tool for the overlap blocker. The results are

shown in Table 4.3. The input tables have 100K tuples each, and the blocking was performed with

the overlap threshold set to 3.

Baseline Performance: The column “Baseline Configuration” shows the baseline configuration

of parameters. The configuration is shown as an ordered list (X, Y, Z), where X indicates whether

the input tables are swapped, Y is the number of partitions of table A, and Z is the number of

partitions of table B. The baseline configuration includes the default values for these parameters.

The column “Baseline Config. Runtime” shows the runtime of the command using the default

configuration.

Performance of the Tuning Tool: The columns “Configuration by Tuning Tool” and “Tuning

Tool Config. Runtime” show the configuration selected by the tuning tool and the runtime of the

multi-core Dask version using this configuration. The results show that these runtimes are less or

equal to those of the baseline configurations, sometimes by as much as 44% (e.g., for Drugs).

Comparison with the Best Configuration: The columns “Best Configuration” and “Best Config.

Runtime” show the best configuration and the runtime of the multi-core Dask version using this

configuration. These runtimes are less than those of the tuned configurations, suggesting that there

is still room for tuning improvement.
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Tuning Time: The column “Time Taken by Tuning Tool” shows the time taken by the tuning tool

to return a configuration. This time ranges from 28 seconds to 170 seconds. For all five datasets,

the tuning time plus the execution time is higher than the time of the baseline configuration. The

main conclusions we can draw from this set of experiments are similar to those drawn in the case

of tuning tool for the downsampling command.

4.4.3 Summary

Our experiments clearly show that tuning can make a command version run much faster than

using the baseline (default) version. They also show that even a simple tuning method such as

staged tuning can already achieve significant gains.

But the experiments also show that tuning overhead can be considerable, as suspected, and

adding this to the execution time may result in more time than simply executing the baseline

version.

This brings up the question of where the current tuning tool can be useful. We envision several

scenarios, all involving the user running a Dask version of a command.

• If this version ran too slowly, but it has finished, and the user does not have to run it again

several more times, then there is no need to tune nor to execute this version again.

• If the version has finished, is judged too slow by the user, and the user also needs to run it at

least several more times, then tuning is highly recommended. In this case, the overhead of

tuning will be offset by the savings over several runs (as can be seen from the experimental

results).

• If the version has run for a while but seemed to be slow, the user may take a risk in stopping

it, performing tuning, then rerunning it again.

Given the above considerations, one may ask why not just build an optimizer that also involves

tuning? In other words, why not just always tune? The problem with this is that this means there

is always an overhead of tuning every time the user executes a command version. We suspect that

there are many scenarios where even an untuned version may already produce acceptable runtime
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for the user. In such cases, tuning is a waste of time. Hence, we do not advocate always tuning.

Future research is clearly necessary to speed up the tuning process, perform better tuning, and

examine scenarios where the tuning tools can be helpful.
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Chapter 5

Building Magellan

In Chapters 3 and 4 we have discussed the development and production stages from a user’s

perspective. For example, we discussed creating how-to guides for users, identifying the pain

points in the guides, and developing tools that users can use to address these pain points.

We now discuss these two stages from a developer’s perspective. That is, how developers

should build these stages, what challenges they will face, and how they can address those chal-

lenges.

We begin by discussing the development stage. Here, the biggest challenges developers face

arise from the need to make the Python packages interoperate. Example challenges include how to

design appropriate data structures (for interoperability purposes), how to manage metadata (when

packages can manage one another’s metadata), how to handle missing values across the packages,

and more. We discuss how these challenges arise in the context of open-world systems, to which

Magellan belongs. This is in contrast to close-world systems such as RDBMSs.

We then discuss the production stage. Here a major challenge is scaling the Python commands

that users may want to execute. We discuss current common scaling solutions (such as custom

optimizations for a single core or multiple cores), analyze them, then create a how-to guide for

developers (on how to scale Magellan’s commands). We used this guide to scale a subset of

current commands. Finally, we discuss the current status of the open-source implementation of the

Magellan system.
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5.1 Challenges of the Development Stage

In Chapter 3 we discussed developing how-to guides and tools. We now turn to the challenge

of designing these tools as commands in Python. This challenge turned out to be highly non-trivial.

It raises a fundamental question: what do we mean by “building on top of a data analysis stack”?

To answer, we introduce the notion of closed-world vs. open-world systems for EM contexts. We

show that Magellan should be built as an open-world system, but building such systems raises

difficult problems such as designing appropriate data structures and managing metadata. Finally,

we discuss how Magellan addresses these problems. As we will see, at the core, the key challenge

facing the developers for the development state is interoperability: how to build commands and

packages such that they can easily interoperate.

5.1.1 Closed-World versus Open-World Systems

A closed-world system controls its own data. This data can only be manipulated by its own

commands. For this system, its own world is the only world. There is nothing else out there and

thus it does not have a notion of having to “play well” with other systems. It is often said that

RDBMSs are such closed-world systems. Virtually all current EM systems can also be viewed as

closed-world systems. In contrast, an open-world system K is aware that there is a whole world

“out there”, teeming with other systems, and that it will have to interact with them. The system

therefore possesses the following characteristics:

• K expects other systems to be able to manipulate K’s own data.

• K may also be called upon by other systems to manipulate their own data.

• K is designed in a way that facilitates such interaction.

Thus, by building Magellan on the Python data analysis stack we mean building an open-world

system as described above (where “other systems” are current and future Python packages in the

stack). This is necessary because, as discussed earlier, in order to do successful EM, Magellan will

need to rely on a wide range of external systems to supply tools in learning, mining, visualization,
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cleaning, IE, etc. Building an open-world system however raises difficult problems. In what

follows we discuss problems with data structures and metadata. (We have also encountered several

other problems, such as missing values, data type mismatch, package version incompatibilities,

etc., but will not discuss them in this dissertation.)

5.1.2 Designing Data Structures

At the heart of Magellan is a set of tables. The tuples to be matched are stored in two tables A

and B. The intermediate and final results can also be stored in tables. Thus, an important question

is how to implement the tables. A popular Python package called pandas has been developed to

store and process tables, using a data structure called “data frame”. Thus, the simplest solution is to

implement Magellan’s tables as data frames. A problem is that data frames cannot store metadata,

e.g., a constraint that an attribute is a key of a table.

A second choice is to define a new Python class called MTable, say, where each MTable object

has multiple fields, one field points to a data frame holding the tuples, another field points to the key

attributes, and so on. Yet a third choice is to subclass the data frame class to define a new Python

class called MDataFrame, say, which have fields such as “keys”, “creation-date”, etc. besides the

inherited data frame holding the tuples.

From the perspective of building open-world systems, as discussed in Section 5.1.1, the last two

choices are bad because they make it difficult for external systems to operate on Magellan’s data.

Specifically, MTable is a completely unfamiliar class to existing Python packages. So commands

in these packages cannot operate on MTable objects directly. We would need to redefine these

commands, a time-consuming and brittle process.

MDataFrame is somewhat better. Since it is a subclass of data frame, any existing command

(external to Magellan) that knows data frames can operate on MDataFrame objects. Unfortunately

the commands may return inappropriate types of objects. For example, a command deleting a row

in an MDataFrame object would return a data frame object, because being an external command

it is not aware of the MDataFrame class. This can be quite confusing to users, who want external

commands to work smoothly on Magellan’s objects.
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For these reasons, we take the first choice: storing Magellan’s tables as data frames. Since

virtually any existing Python package that manipulates tables can manipulate data frames, this

maximizes the chance that commands from these packages can work seamlessly on Magellan’s

tables. In general, we propose that an open-world system K use the data structures that are most

common to other systems to store its data. This brings two important benefits: it is easier for other

systems to operate on K’s data, and there will be far more tools available to help K manipulate its

own data. If it is not possible to use common data structures, K should provide procedures that

convert between its own data structures and the ones commonly used by other open-world systems.

5.1.3 Managing Metadata

We have discussed storing Magellan’s tables as data frames. Data frames however cannot hold

metadata (e.g., key and foreign key constraints, date last modified, ownership). Thus we will store

such metadata in a central catalog. Regardless of where we store the metadata, however, letting

external commands directly manipulate Magellan’s data leads to a problem: the metadata can

become inconsistent. For example, suppose we have created a table A and stored in the central

catalog that “sid” is a key for A. There is nothing to prevent a user U from invoking an external

command (of a non-Magellan package) on A to remove “sid”. This command however is not

aware of the central catalog (which is internal to Magellan). So after its execution, the catalog still

claims that “sid” is a key for A, even though A no longer contains “sid”. As another example, an

external command may delete a tuple from a table participating in a key-foreign key relationship,

rendering this relationship invalid, while the catalog still claims that it is valid.

In principle we can rewrite the external commands to be metadata aware. But given the large

number of external commands that Magellan users may want to use, and the rapid changes for

these commands, rewriting all or most of them in one shot is impractical. In particular, if a user U

discovers a new package that he or she wants to use, we do not want to force U to wait until Magel-

lan’s developers have had a chance to rewrite the commands in the package to be metadata aware.

But allowing U to use the commands immediately, “as is”, can lead to inconsistent metadata, as

discussed above.
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To address this problem, we design each Magellan’s command c from the scratch to be meta-

data aware. Specifically, we write c such that at the start, it checks for all constraints that it requires

to be true, in order for it to function properly. For example, c may know that in order to operate

on table A, it needs a key attribute. So it looks up the central catalog to obtain the constraint that

“sid” is a key for A. Command c then checks this constraint to the extent possible. If it finds this

constraint invalid, then it alerts the user and asks him or her to fix this constraint.

Command c will not proceed until all required constraints have been verified. During its exe-

cution, it will try to manage metadata properly. In addition, if it encounters an invalid constraint

it will alert the user, but will continue its execution, as this constraint is not critical for its correct

execution (those constraints have been checked at the start of the command). For example, if it

finds a dangling tuple due to a violation of a foreign key constraint, it may just alert the user, ignore

the tuple, and then continue.

5.2 Challenges of the Production Stage

As we have discussed several times in this dissertation, the first and foremost challenge of the

production stage is scaling. In particular, how should we, i.e., developers, scale the execution of

the entire EM workflow or the execution of pieces of this workflow?

In this chapter we focus on answering the above question. Recall that an EM workflow consists

of multiple Python commands, such as those that perform blocking and matching, among others.

We will focus on scaling the execution of a single such Python command, leaving scaling larger

units (such as a workflow fragment consisting of a sequence of commands) for future work.

In this context, note that in Chapter 4 we have discussed scaling from a user’s perspective.

That is, how can a user execute a Python command fast, given several implementations of this

command? Here we approach this question from a developer’s perspective. That is, how should

developers scale Python commands? We will focus on the setting of a single machine with multiple

cores, leaving other settings such as a cluster of machines for future work.

We will pursue the following attack plan:
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• First, we will analyze the pros and cons of the main current methods to scale a Python

command.

• Based on that analysis, we will develop a how-to guide for developers, which tell them how

to scale a Python command in Magellan. This guide is important as we envision that multi-

ple developers will want to further extend Magellan, such as trying to scale the commands

in the production stage. If so, we want to have a guidance to them on how to do so.

• Finally, we will use this how-to guide ourselves to scale a set of time-itensive Python com-

mands for the production stage.

As we will see, the end result is that for each command, we have developed several implementation

versions. Chapter 4 already discussed how users can select among these versions, using a how-to

guide (note that that guide is for users, and is distinct from the how-to guide mentioned above for

developers).

Finally, we note that even though we focus on scaling Python commands for the production

stage, much of what we discuss here can be applied to scaling commands for the development

stage as well.

5.2.1 Analyzing Current Scaling Methods

There are currently four common methods to scale Python commands on a single machine

with multiple cores: custom optimization for a single core, using a faster language for a single

core, custom optimization for multiple cores, and using an automatic parallelization framework

(e.g., Dask, PySpark) for multiple cores. We now briefly explain and then analyze these methods.

5.2.1.1 Four Common Scaling Methods

Custom Optimization for a Single Core: In this method, a command is modified by using

optimized libraries (in place of default ones) [6, 20, 8], employing better data structures, applying

algorithmic changes, and using platform-specific optimizations [86]. This method has the advan-

tage that the modified Python code is relatively easy to reason with, as the faster libraries and data
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structures are often drop-in replacements for existing ones. But this method has the following

disadvantages. First, the developer needs to know the implementation details of the command to

understand the impact of these optimizations. Second, debugging becomes harder when platform-

specific optimizations are used. Finally, platform-specific optimizations are applicable only to a

subset of platforms, thereby limiting the broad applicability of the code.

Using a Faster Language for a Single Core: Here the command is rewritten using faster lan-

guages such as Cython [26]. Cython is a superset of the Python programming language. It supports

calling C functions and declaring types for variables and class attributes. Code written in Cython

is first translated to C, then compiled to CPython extension modules. When these modules are

executed they provide C-like performance. However, this method has three disadvantages. First, it

requires a significant rewriting of some parts of existing code. Second, it is harder to write bug-free

code using Cython. Specifically, the Cython constructs that speed up the execution often resemble

C language and writing a bug-free code using such constructs is hard. Finally, it is harder to debug

code written in Cython compared to code written in Python.

Custom Optimization for Multiple Cores: Here the command is modified to execute in par-

allel using multiple cores of the machine. Specifically, their Python code is rewritten using the

multiprocessing libraries in Python [7, 12, 14]. This method has two disadvantages. First, imple-

menting a parallel version of a command is not straightforward. Specifically, the developer has

to identify the tasks performed by the current code, find the dependencies between these tasks,

identify those tasks that could be executed in parallel, and finally manually fix the execution order

of these tasks using the multiprocessing libraries. Second, it is non-trivial to debug a command

that is implemented to execute in parallel.

Using an Automatic Parallelization Framework for Multiple Cores: Here the command is

modified using the primitives from an automatic parallelization framework [113, 16]. Specifically,

the code is either annotated or rewritten using the primitives provided by such a framework without

worrying about parallelism. When the command is executed using the framework, the framework

will internally use these primitives to execute the command in parallel. The exact set of primitives
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def block_tables(A, B, overlap_threshold):

    pre_processed_A = pre_process(A)

    pre_processed_B = pre_process(B)

    inv_index_A = build_inv_index(pre_processed_A)

    probe_result = probe(inv_index_A, pre_processed_B, 

                                  overlap_threshold)

    result = post_process(probe_result)

    return result

Figure 5.1: An example implementation of overlap blocker for a single core.

and the way to use them vary among different frameworks. However, the overall idea of using

these primitives to implement a command and using the framework to automatically interpret these

primitives to execute the command in parallel remains the same. Example frameworks include

Dask and PySpark [113, 16].

In the rest of this section we will illustrate these frameworks by briefly discussing how Dask

works. An example of modifying a command using Dask [113] is shown in Figures 5.1, 5.2, and

5.3. Figure 5.1 shows a single-core implementation of a command that performs overlap blocking

over two tables. This command takes in two tables, a blocking attribute, and an overlap threshold

as input. For ease of exposition, we assume that both the input tables include the blocking attribute

in their columns. Next, the command preprocesses the input tables and builds an inverted index

using the preprocessed first table. Then it probes the inverted index using the preprocessed second

table and identifies the tuple pairs that satisfy the blocking threshold. Finally, it post-processes the

tuple pairs and returns the result back to the user.

Suppose after writing this single-core implementation, the developer realizes that the code runs

too slowly, then he or she can easily “daskify” it as shown in Figure 5.2. Specifically, the developer

identifies parts of the code that can be converted to a DAG and annotates it with the “delayed”

primitive. Afterward, when the user executes the annotated command, Dask first creates a directed

acyclic graph (DAG) for this implementation using the “delayed” annotations as shown in Figure

5.3. In the DAG, a circle indicates a task in each line of this updated Python implementation.
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def block_tables(A, B, overlap_threshold):

    pre_processed_A = delayed(pre_process)(A)

    pre_processed_B = delayed(pre_process)(B)

    inv_index_A = delayed(build_inv_index)(pre_processed_A)

    probe_result = delayed(probe)(inv_index_A, pre_processed_B, 

                                         overlap_threshold)

    result = delayed(post_process)(probe_result)

    return result

Figure 5.2: The Python implementation for overlap blocker annotated using “delayed.” This is the
“daskified” version of the single-core Python code shown earlier in Figure 5.1.

The rectangular boxes indicate outputs of the tasks. Dask then creates a schedule based on these

dependencies in the DAG. Finally, Dask executes this schedule using multiple cores in the machine.

Automatic parallelization frameworks such as Dask have a disadvantage similar to that of the

previous approach, i.e., debugging parallel executions of tasks is difficult. However, these frame-

works often provide good monitoring and debugging tools that alleviate the debugging problems.

5.2.1.2 Dask versus PySpark

There are two well-known automatic parallelization frameworks: Dask and PySpark. For the

developers of the production stage of Magellan, we would like to recommend using one of these

frameworks. In what follows we discuss both frameworks, in order to make a selection.

Dask [113] is a parallel computing framework for analytical computing. It is composed of

three main components: (1) the ability to create graphs with a light annotation of normal Python

code, (2) the ability to schedule the tasks in the graph dynamically, and (3) the inclusion of big

data collections such as parallel arrays and dataframes that extend numpy [124] and pandas [98].
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Figure 5.3: A DAG created by Dask when executing the code shown in Figure 5.2.

PySpark [16] is a Python library that provides a Python interface to Apache Spark [133].

Apache Spark is a general-purpose cluster computing framework. Similar to Dask, PySpark con-

structs a graph from the Python code (written using Spark primitives). It then dynamically sched-

ules and executes the tasks in the graph. Spark also includes big data collections such as dataframes

similar to Dask dataframes. We now discuss the above two frameworks from several perspectives.

Integration with the PyData Ecosystem: Dask is written in Python. Since it is Python native,

it integrates well with the Python data ecosystem. Specifically, it couples with and scales libraries

such as numpy, pandas, and scikit-learn. It also interoperates well with C, C++, or other natively

compiled code linked through Python.

Spark was written in Scala with interfaces for Python and R. It interoperates well with other

JVM code. Since it is not Python native, it does not integrate as well with the PyData ecosystem.

Instead, Spark includes its own ecosystem. For example, it includes tools for machine learning,

graphs, and streaming. [100, 3].

Maturity: Dask was started in 2014 and the software is still maturing. However, it extends

mature packages in PyData ecosystem such as numpy and pandas. Spark was started in 2010 and

the software is relatively well matured. It is used widely in the industry and it has become one of

the dominant players in big data analytics space.

Scope: Dask aimed to support use cases that are more common with scientific and business users.

Specifically, it focused on users who mainly use numpy, pandas, and scikit-learn, and required
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scaling a custom code written in Python. Spark is more focused on traditional business intelligence

operations such as SQL and machine learning.

Scaling: Both Dask and Spark support scaling the same code from a single machine to a cluster of

machines, but in different ways. Dask was designed to scale on a single machine first. Specifically,

it supports executing the Python code on a single machine by using multiple threads or processes.

Support for executing code on a cluster was added later. The main reason for prioritizing a single

machine (over a cluster) was to support data scientists who want to analyze moderate-size data sets

(for example 50 GB) that can fit in a single machine. Spark was designed primarily to scale to a

cluster of machines. Executing on a single machine is typically used for the debugging purposes.

In Spark, the design priority was to support processing big data (for example terabytes of data)

using a cluster of machines.

Custom Parallelism: Dask allows users to specify an arbitrary task graph by simple annotations

to the existing Python code and then executes this graph using a single machine or a cluster of

machines. Spark does not allow for annotating existing Python code to specify an arbitrary task

graph. It typically expects users to compose a workflow using their high-level primitives such as

map, reduce, group by, and join. In other words, if the developer has written a single-code Python

code and now is looking to scale it up, then using Dask would incur less change to the code than

using PySpark.

5.2.1.3 Selecting Dask

Based on the above discussion, we chose to focus on Dask. First, since it is native to Python, it

integrates well with the PyData ecosystem. Second, Dask can be used to scale single-core arbitrary

Python code using simple annotations. This is a big advantage from a developer’s perspective. We

expect that in Magellan’s context, many times a developer will start out writing single-core Python

code for a command, as writing such code is much easier to start with. Then if the code is slow, the

developer will look to scale it up, with minimal effort. Dask fits this requirement as it will require

only light annotations of the code. In contrast, Spark will require a significant rewrite of the code.
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Dataset
Table A

(num. rows, 
num. cols)

Table B
(num. rows, 
num. cols)

Citations (1823978,  7) (2512927, 7) 

Songs (1000000,  8) (1000000,  8)

Table 5.1: Data sets for performance comparison between Dask and custom multi-core versions.

Indeed, our experience has been that Dask does not require too much annotation effort. Specif-

ically, we took the single-core version of 12 Python commands that were developed as part of

Magellan and annotated these commands using the Dask primitives. This required annotating less

than 300 lines of code and minimal rewriting to handle data parallelism, which took 2 weeks of

development effort with one developer.

5.2.1.4 Using Dask versus Custom Optimization for Multiple Cores

To scale up a Python command for multiple cores, we can use either Dask or custom optimiza-

tion. Intuitively, custom optimization often takes far more time, but should be at least competitive

with or can yield faster runtimes than Dask. Still, we are interested in knowing how much worse

Dask would perform for Magellan commands, compared to custom optimization. This can inform

our design of the how-to guide for developers.

In this section we examine this issue. We considered two real-world data sets: Citations

and Songs [45], which contain 1M-2.5M tuples in each table (see Table 5.1). We considered 12

compute-intensive commands from Magellan. These commands are described in Table 5.2. The

first column specifies the EM step that a command performs, the second column specifies the type

of the operation in this EM step, and the third column specifies the exact command in Magellan.

For Dask implementation, we took the single-core version of the 12 commands (see Table 5.2)

from Magellan and modified them using the Dask primitives. For custom multi-core implemen-

tation, we took the single-core version of the same 12 commands and reimplemented them using

multiprocessing libraries [7, 14] in Python. We ran the experiments on a Linux machine with 4

cores, Intel i5-3570 3.1GHz processor, and 16GB of RAM. The specific input data set sizes varied

based on the command semantics and they are described in their corresponding sections below.



82

Step Type Command in Magellan

Down sampling NA down_sample

Blocking

Attribute  Equivalence 
Blocker block_tables

Attribute Equivalence 
Blocker block_candset

Overlap Blocker block_tables
Overlap Blocker block_candset

Rule-based Blocker block_tables
Rule-based Blocker block_candset
Blackbox Blocker block_tables
Blackbox Blocker block_candset

Extract feature 
vectors NA extract_feat_vecs

Select matcher NA select_matcher

Predict matches NA predict_matches

Table 5.2: Magellan commands used for performance comparison between Dask and custom
multi-core versions.

Dataset Output Sample 
Size

Runtime for 
Custom Version

Runtime for 
DaskVersion

Memory Usage for
 Custom Version (GB)

Memory Usage for 
Dask Version (GB)

Songs
100K 2.37m 2.27m 1.53 1.6

200K 4.65m 4.34m 1.57 1.73

Citations
100K 8.2m 7.9m 3.5 3.6

200K 18.1m 16.3m 3.6 3.8

Table 5.3: Runtime and memory usage comparison for the downsampling command.

Downsampling: We consider two cases based on the sizes of the output tables: 100K tuples and

200K tuples. The runtime performance and the memory used in each of these cases is shown in

Table 5.3.

We observe that both the Dask version and the custom multi-core version provide similar run-

time performance, and that the Dask version consumes slightly more memory compared to the

custom multi-core version. This is because of the extra metadata (such as the task dependencies

and completed tasks) maintained by Dask scheduler while executing the DAG.
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Blocker Type Dataset Input Table 
Size

Runtime for 
Custom Version

Runtime for 
DaskVersion

Memory Usage for
 Custom Version 

(GB)

Memory Usage for
Dask Version 

(GB)

Attribute Equivalence

Songs
100K 49.7s 48.6s 6.3 6.4

200K DNC DNC DNC DNC

Citations
100K 32.2s 33.9s 6 6.2

200K DNC DNC DNC DNC

Overlap

Songs
100K 26.09s 24.59s 2.04 2.3

200K 102.8s 93.96s 6.8 7.31

Citations
100K 41.67s 35.28s 1.64 2.04

200K 146.38s 138 4.9 5.6

Table 5.4: Runtime and memory usage comparison for two blockers.

Blocker Type Dataset Input Table 
Size

Runtime for 
Custom Version

Runtime for 
DaskVersion

Memory Usage for
 Custom Version 

(GB)

Memory Usage for
Dask Version 

(GB)

Rule-based

Songs
100K 22s 23s 1.9 2.32

200K 73s 74.29s 2.8 3.44

Citations
100K 34s 33.1s 1.8 2.08

200K 94.2s 92.3s 2.8 3.2

Blackbox

Songs
100K 4.2h 4.1h 3.1 3.4

200K 16.45h 15.5h 5.4 5.7

Citations
100K 6.1h 5.33h 4.1 4.3

200K 22.54h 21.32h 6.8 7.1

Table 5.5: Runtime and memory usage comparison for the rule-based and blackbox blockers.

Blocking: We consider four different blockers: attribute equivalence, overlap, rule-based, and

black box. For each blocker, we consider two cases: blocking two tables and blocking a candidate

set.
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The blocking of two tables is run for sample sizes 100K and 200K for each of the Songs and

Citations data sets. The results of blocking for different blockers and the sampled data sets are

shown in Tables 5.5 and 5.4.

Overall, both the Dask version and the custom multi-core version provide similar runtime per-

formance, and the Dask version uses more memory. Specifically, Dask uses 10.5% more memory

on average compared to the custom multi-core version. But if we zoom in to the case of attribute

equivalence blocker for the Citations data set with the sampled tables for size 200K, we see that

the run did not complete (marked as “DNC”). This is because the number of output tuple pairs

generated were too large and they consumed all the memory in the machine. The corresponding

process was subsequently killed by the operating system.

Blocker Type Dataset Runtime for 
Custom Version

Runtime for 
DaskVersion

Memory Usage for
 Custom Version 

(GB)

Memory Usage for
Dask Version 

(GB)

Attribute Equivalence
Songs 28s 27s 3.6 3.97

Citations 25.8s 24s 3.9 4.1

Overlap
Songs 102s 103.46s 3.5 3.92

Citations 172.8a 170.7s 3.95 4.25

Rule-based
Songs 650s 616s 3.5 3.9

Citations 574.11s 556s 4 4.1

Blackbox
Songs 315s 278s 2.9 3.3

Citations 257s 232s 2.8 3.2

Table 5.6: Runtime and memory usage comparison for blocking on a candidate set.

To compare the performance of blocking on a candidate set (a set of tuple pairs obtained from

blocking over two tables), we considered two tables: one obtained from the Songs data set and

the other obtained from the Citations data set. Specifically, these tables were obtained by applying

overlap blocker over the sampled Songs and Citations data sets with 100K tuples.
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The candidate set from Songs data set has 13M tuples and the candidate set from the Citations

data set has 17M tuples. The results are shown in Table 5.6. We observe similar runtime perfor-

mances between the Dask version and the custom multi-core version. But the Dask version uses

9.6% more memory on average compared to the custom multi-core version.

Dataset Runtime for 
Custom Version

Runtime for 
DaskVersion

Memory Usage for
 Custom Version 

(GB)

Memory Usage for
Dask Version 

(GB)

Songs 139.4s 133s 2.9 3.3

Citations 431.8s 423s 2.8 3.4

Table 5.7: Runtime and memory usage comparison for converting a candidate set to a set of feature
vectors.

Converting a Candidate Set to a Set of Feature Vectors: This command was run for a candidate

set of size 139K for Songs and 550K for Citations data sets. These candidate sets were obtained

by applying a sequence of overlap blocker and rule-based blocker over the sampled Songs and

Citations data sets (with 100K tuples). The number of features generated were 44 for Songs and

24 for Citations. The results are shown in Table 5.7. We observe similar runtime performances

between the Dask version and the customized version. The Dask version uses 14.1% more memory

on average compared to the custom multi-core version.

Dataset Runtime for 
Custom Version

Runtime for 
DaskVersion

Memory Usage for
 Custom Version 

(GB)

Memory Usage for
Dask Version 

(GB)

Songs 45.65s 41.81s 1.46 1.59

Citations 40.49s 35.84a 1.53 1.62

Table 5.8: Runtime and memory usage comparison for selecting a matcher.

Selecting a Matcher: This command was run for a sample of 500 tuples from the sets of feature

vectors of Songs and Citations data sets. We considered five different matchers and used five-fold

cross validation to select the best matcher. The results are shown in Table 5.8. We observe similar
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runtime performances for the Dask version and the customized version. The Dask version uses

6.8% more memory on average compared to the custom multi-core version.

Dataset Runtime for 
Custom Version

Runtime for 
DaskVersion

Memory Usage for
 Custom Version 

(GB)

Memory Usage for
Dask Version 

(GB)

Songs 1.5s 1.43s 2.1 2.4

Citations 2.89s 3.09s 2.2 2.34

Table 5.9: Runtime and memory usage comparison for predicting the matches.

Predicting the Matches: We predicted the matches for the feature vectors of sizes 139K and

550K from Songs and Citations data sets. We used a pre-trained random forest model for prediction

purposes. The results are shown in Table 5.9. Similar to previous results, here the runtimes were

similar and the Dask version used 9.8% more memory on average compared to the custom multi-

core version.

Summary: Our results show that the Dask and custom multi-core versions provide similar run

time performances. The Dask version uses more memory (specifically in the range 2.4%-18.7%)

compared to the customized version, mainly because of the metadata that Dask stores for its inter-

nal purposes.

Some of our experiments (e.g., blocking two tables using attribute equivalence blocker) did

not complete because of the memory error caused by too many tuple pairs produced. This issue

was not specific to Dask. We observed a similar result for the customized version of the same

command. This indicates that we should avoid keeping unnecessary data in the memory as much

as possible. Dask provides such features, to some extent, and exploring these features is left for

future work.

5.2.2 Creating a How-to Guide for Developers and Applying the Guide

Based on our analysis of current scaling methods for a single machine in Python, we have

developed an initial guide for Magellan developers to scale Magellan commands on a single

machine using multiple cores. We will now describe this guide. The guide states that the developer
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should first start with a single-core implementation using Python. This is simple to do in practice

and this version often performs well for smaller data sets.

If the command (i.e., the above version) is not fast enough, apply simple custom optimizations

(e.g., using better data structures) to the single-core code. If the command is still not fast enough,

the developer should implement a multi-core version using Dask. This implementation typically

requires minimal modifications to the Python code written for a single core.

Finally, if the command is still not fast enough, the developer should implement a custom

multi-core version. This implementation would require the developer to rewrite the code using

multiprocessing libraries in Python, write some parts of the code in Cython, apply custom opti-

mizations such as integrating external modules written in C, perform speculative execution, using

shared memory for updates, etc. This might require significant development effort.

Note that in the above guide, we do not ask the developers to implement the single-core Cython

version. Based on our experience, it is difficult for developers to develop a Cython version of the

commands. Further, after a Cython version has been developed, it is difficult to maintain, because

it is often difficult for other developers to understand and update the code.

We have used the above how-to guide to scale 12 compute-intensive Python commands in

Magellan (e.g., downsampling, blocking, generating feature vectors, etc.), by developing the Dask

versions of these commands.

5.3 The Current Open-Source Implementation of Magellan

So far in this chapter we have discussed the challenges that developers face in implementing

the development stage and the production stage of Magellan. We have also discussed preliminary

solutions to some of these challenges. We have used these solutions to implement both stages.

In particular, Magellan has been in development since June 2015. We have developed how-

to guides and implemented seven different tools for the pain points in those guides. These tools

were implemented using 12 different packages in the Python data ecosystem. Over the past three

years, 13 developers contributed to the Magellan system. As of June 2018, Magellan consists of

6 Python packages with 37K lines of code and 104 commands. We have open sourced Magellan
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[13]. As far as we can tell, Magellan is the most comprehensive open-source EM system today, in

terms of the number of features it supports.
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Chapter 6

Magellan “in the Wild”: Successes and Lessons Learned

In this chapter we first describe how we have successfully applied Magellan “in the wild” to a

number of EM projects in domain science and industry. We then describe a case study of end-to-

end EM in applied economics in detail. The goal is to make very concrete many challenges that

arise during EM in practice. As far as we can tell, no academic publication has discussed a detailed

execution of end-to-end EM in practice. Finally, based on our experience, including working on

the above applied economics case, we discuss a set of lessons learned.

6.1 Applying Magellan to Projects in Domain Science and Industry

So far Magellan has been applied to five projects in three domain sciences at UW-Madison.

• A team of applied economists used Magellan to match two tables of 1,832 and 1,916 grant

descriptions, respectively [80]. Magellan achieved significantly better accuracy, improving

recall by 23% while achieving comparable precision, compared to a rule-based EM solution

deployed at [80]. We describe the above EM project in detail below. The same team also used

Magellan to match two tables of 1,851 and 13.5M organization descriptions, respectively.

This project has resulted in a technical report, several planned publications, and a plan to

deploy Magellan in production.

• A team in biomedicine used Magellan to match two tables of 453K and 451K of drug

descriptions, achieving 99.1% precision and 95.2% recall [89, 107]. This project has resulted

in a poster paper [89], a workshop paper [67], and several invited talks (e.g., see [107]).
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• A team in geography used Magellan to match cattle ranches in Brazil, improving recall

by more than 40% while achieving roughly the same precision, compared to a rule-based

matching system in production. Magellan is currently being put into production for this

team (as of August 2018).

• Another team in biomedicine used Magellan to match attribute names within a community

data repository [28]. This project has resulted in a journal paper [28] and a community

database available publicly on the Web (metasra.biostat.wisc.edu).

• Finally, a team in environmental sciences also used Magellan to match attribute names

within a community data repository. These last two examples show how Magellan can

also be used to match schema elements, not just data instances.

Magellan has also been used for EM at several companies, including WalmartLabs, Johnson

Control, Marshfield Clinic, Recruit Holdings, and American Family Insurance. At WalmartLabs,

Magellan was able to help improve the recall of a deployed EM solution by 34% while reducing

precision slightly by 0.65%. Johnson Control has used Magellan to match addresses (between ta-

bles of size 90K vs. 231K) and vendors (within a single table of size 50K). Marshfield Clinic was

involved in the drug matching project described earlier [89, 107]. Recruit Holdings used Magel-

lan to match stores, companies, and properties (e.g., de-duplicating 10K store names with 98.9%

accuracy) [4]. Finally, American Family Insurance, a Fortune 500 company, has used Magellan to

match customers from multiple databases [2].

6.2 Entity Matching in Applied Economics: A Case Study

Though a lot of work has been done on EM, as far as we can tell, no work has described an

end-to-end case study. Here we describe a case study that we worked on in collaboration with

applied economists at UW-Madison. The goal is to make very concrete many challenges that arise

during EM in practice.
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6.2.1 The EM Problem at UMETRICS

UMETRICS is an abbreviation for “Universities: Measuring the Impacts of Research and In-

novation, Competitiveness and Science” [19]. It is a consortium aimed to create independent sta-

tistical evidence about the value of university research and to provide answers regarding how the

funds allocated from different government agencies such as the U.S. Department of Agriculture

(USDA) and the National Institutes of Health (NIH) are used for research in the universities.

As a part of this effort, the Institute for Research on Innovation & Science (IRIS) [10] was

created to manage the UMETRICS effort. It is a member-driven organization created by and for

the universities. Specifically, IRIS’s goal is to build a platform for the whole community involving

funding agencies and universities and to make UMETRICS a trusted and national data source to

quantify the impact of funding that supports university research.

To make this a reality, at the core, this involves matching the research projects for which the

funds were granted (by the funding agencies) and the research projects in the universities. UMET-

RICS contains data on research projects, researchers, and graduate students supported by fed-

eral grants for each university. Similarly, funding agencies maintain grants given to the research

projects in different universities. Specifically, the funding agencies typically maintain a record of

the research project title, principal investigators of the project, funding duration, university name,

etc. Similarly, UMETRICS maintains a record of the research project title, funding source, funding

duration, etc., for each research project in a university.

Matching these research grants between the funding agencies and UMETRICS is an EM prob-

lem, which is not straightforward. For example, the same research project can have different

research titles recorded in UMETRICS and funding agencies. As another example, a grant given

by a funding agency to a research project may be distributed to many smaller projects in the uni-

versity, and this information will be recorded in multiple entries in UMETRICS, so matching these

entries is not trivial.

UW-Madison is a participant in the UMETRICS consortium. The team from UW-Madison

included members from the UW-Madison Economics department. We will refer to this team as the

UW-UMetrics team. The funding information from different agencies was stored across multiple
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data sets. The UW-UMetrics team’s goal was to match these data sets to the UMETRICS records

that are specific to UW-Madison. Specifically, their plan was to first create an initial matching

solution, then measure the accuracy of this solution (as this will have an impact on the analysis

done over the matches), and finally improve the matching solution to achieve better accuracy.

The UW-UMetrics team created a rule-based matching solution for each funding agency. Be-

fore we started working with them closely, we let them first implement their solution and decided

to provide consulting help for specific problems such as debugging the matches and evaluating the

match results. However, after multiple iterations of meetings, we observed that no streamlined

matching process existed.

We then decided to get involved to solve the matching problem, and we decided to start by con-

sidering only a small part of the problem. Specifically, we considered matching the records from

the USDA data set (which contained funding information from the USDA) to the UW-Madison

records in the UMETRICS data set because we realized that this is already a complex enough prob-

lem. We worked closely with the UW-UMetrics team to do the matching. The UW-UMetrics team

consisted of a professor, a PhD student, and an hourly paid student. Our team included a professor,

a PhD student, and a professional master’s program (PMP) student. We decided to use Magellan

to perform the matching. Specifically, our goal was to follow the how-to guide and use the tools

that were developed as a part of Magellan to perform the matching. In the following sections, we

discuss the steps we followed. We intentionally discuss them in chronological order to show how

zig-zag the process was. We will also discuss details such as where the files are stored, how the

two teams communicated, so highlight the logistic aspects of executing such a data science project

(in a distributed fashion).

6.2.2 Exploring and Understanding Input Tables

We received the raw data as flat files in CSV format from the UW-UMetrics team. These files

were stored in a Google Drive folder, and the UW-UMetrics team gave read access permissions

to our Gmail accounts. Once we gained access to the raw data, we started by exploring and
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understanding the tables in them. Our goal was to understand the “entities” in these tables and

the relationships among them.

First, we downloaded the raw data from the Google Drive folder onto our local disk. There were

six files with the “UMETRICS” prefix and one file with the “USDA” prefix. From the file names,

we assumed that the names with the “UMETRICS” prefix would correspond to UMETRICS-

related tables and the file with the “USDA” prefix would correspond to USDA table. Next, we

explored each one of these tables to get a brief understanding of the information included in them

and the data values in their columns. Specifically, for each table, we browsed over a few sample

rows that were randomly selected from the table and printed some general statistics such as the

number of unique values, number of missing values, mean, median, etc., for each column. To

explore the tables, we used a combination of different tools. Specifically, we used pandas [98]

and MS Excel to explore the smaller tables and SQLite to explore the larger tables (e.g., > 300K

records). To profile the tables, we used the pandas-profiling tool [15] and custom Python scripts.

Schemas of UMETRICS Tables: The schemas of the six UMETRICS tables are listed below:

UMETRICSAwardAggMatching(UniqueAwardNumber,AwardTitle, FundingSource,

FirstTransDate, LastTransDate,RecipientAccountNumber,

TotalOverheadCharged,

TotalExpenditures, NumberOfTransactions, DataFileYearEarliest, DataFileYearLatest,

SubOrgUnit, CampusID)

UMETRICSSubAwardMatching(UniqueAwardNumber, Address, BldgName, City, Country,

DUNS, DomesticZipCode, EIN, ForeignZipCode, ObjectCode, OrgName, OrganizationID,

POBox, PeriodEndDate, PeriodStartDate, RecipientAccountNumber, StrName, StrNumber,

SubAwardPaymentAmount, DataFileYear)

UMETRICSOrgUnitsMatching(CampusId, SubOrgUnit, CampusName, SubOrgUnitName,

DataFileYear)
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UMETRICSEmployeeMatching(UniqueAwardNumber, PeriodStartDate, PeriodEndDate,

RecipientAccountNumber, DeidentifiedEmployeeIdNumber, FullName,

OccupationalClassification, JobTitle, ObjectCode, SOCCode, FteStatus,

ProportionOfEarningsAllocated, DataFileYear)

UMETRICSVendorMatching(UniqueAwardNumber, PeriodStartDate, PeriodEndDate,

RecipientAccountNumber, ObjectCode, OrganizationID, EIN, DUNS, VendorPaymentAmount,

OrgName, POBox, BldgNum, StrNumber, StrName, Address, City, State, DomesticZipCode,

ForeignZipCode, Country, DataFileYear)

UMETRICSObjectCodesMatching(ObjectCode, ObjectCodeText, DataFileYear)

Entities in UMETRICS Tables: Based on our exploration and profiling of the UMETRICS

tables, we noted conceptually the entities (as much as we could) that each table corresponded

to. “UMETRICSAwardAggMatching” included information about awards, i.e., research grants. It

included funding information for the research projects in the university. “UMETRICSSubAward-

Matching” included information about how the awards are split into multiple sub-awards to fund

the research projects. “UMETRICSOrgUnitsMatching” included information about different orga-

nization units to which the awards were given. “UMETRICSEmployeeMatching” included infor-

mation about the employees in the university, and “UMETRICSVendorMatching” included infor-

mation about the vendors interacting with the university. We were not clear about the information

included in the “UMETRICSObjectCodesMatching” table.

Relationships in UMETRICS Tables: We observed that “UMETRICSAwardAggMatching”

was the central table to which most other tables (except “UMETRICSObjectCodesMatching”)

could be joined using the key-foreign key relationship. The column “UniqueAwardNumber” was

the primary key of the “UMETRICSAwardAggMatching” table. The tables “UMETRICSEmploy-

eeMatching,” “UMETRICSVendorMatching,” and “UMETRICSSubAwardMatching” included the

“UniqueAwardNumber” column, which could be joined with the ”UniqueAwardNumber” of the

“UMETRICSAwardAggMatching” table. The table “UMETRICSOrgUnitsMatching” included a
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UMETRICS

Table Name Num. Rows Num. Cols
UMETRICSAwardAggMatching 1336 13
UMETRICSEmployeesMatching 1454070 13
UMETRICSObjectCodesMatching 4574 3
UMETRICSOrgUnitMatching 264 5
UMETRICSSubAwardMatching 21470 23
UMETRICSVendorMatching 377746 21

USDA

Table Name Num. Rows Num. Cols
USDAAwardMatching 1915 78

Figure 6.1: Summary of original UMETRICS and USDA tables given by UW-UMetrics team.

“CampusId” column that could be joined with “CampusId” in the “UMETRICSAwardAggMatch-

ing” table. The table “UMETRICSObjectCodesMatching” included an “ObjectCode” column that

could be joined with the “ObjectCode” column in the “UMETRICSEmployeeMatching” table.

The USDA Table: Only one table contained USDA information. The table included 78 columns.

Because of space constraints, a partial schema of the table including the first few columns and the

last column is shown below.

USDAAwardMatching(AccessionNumber, ProjectTitle, AwardNumber, ProjectStartDate,

ProjectEndDate, ProjectDirector, SponsoringAgency,.., Financial: USDAContracts,

Grants, Coop Agmt)

The table included a single entity containing USDA award-related information, and “Acces-

sionNumber” was the primary key for this table. A summary including the number of rows and

columns for each table is shown in Figure 6.1. A few example rows from UMETRICS tables are

shown in Figures 6.2, 6.3, 6.4, and 6.5, and a few example rows from the USDA table are shown

in Figure 6.6.
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Figure 6.2: Example rows from UMETRICS tables (part 1).

6.2.3 Understanding Match Definition

After exploring the tables, we have obtained an understanding of the entities and their relation-

ships. However, we did not know how to use these tables to match the awards. We were not clear

about which tables were relevant for matching and what it meant to be a match for a record pair

from UMETRICS and USDA. We contacted the UW-UMetrics team to gain a clear understanding

of the matching problem. They provided us with a document [54] that included information about

the most relevant tables, matching definition, and a few examples of matching and non-matching

record pairs. The document stated that only three tables (among seven) were most relevant for

matching and provided the following matching definition.

• M1. If a part of “UniqueAwardNumber” in UMETRICS matches “Award Number” in USDA,

then the record pair can be considered a match. Specifically, “UniqueAwardNumber” can

take the form “XX.XXX YYYY-YYYY-YYYYY-YYYYY”. If “YYYY-YYYY-YYYYY-

YYYYY” matches the “Award Number,” then the record pair is a match. An example of

such a match is shown in Figure 6.7.
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Figure 6.3: Example rows from UMETRICS tables (part 2).

• M2. A number of records in USDA do not have values for “Award Number.” In such cases,

the records may be matched by checking whether the “AwardTitle” (in UMETRICS) and the

“Project Title” in USDA are similar. An example of such a match is shown in Figure 6.8.

• M3. A record pair from UMETRICS and USDA can also be matched by comparing the

individuals involved in the project.

From the above matching definition, we could infer one positive matching rule based on

M1. Specifically, for a record pair from UMETRICS and USDA tables, if the second part of

“UniqueAwardNumber” in the UMETRICS record matches exactly the “Award Number” in the

USDA record, then the record pair could be declared a match. One possibility at this stage was

to use this positive rule and filter out all the positive matches and proceed with a smaller set for

matching. We did not do that because we were not sure whether the match definition had been

stabilized yet. So we decided to incorporate this rule as a part of the blocking step. Apart from

M1, the other two instructions (M2 and M3) in the above matching definition are not precise. For

example, what does it mean to say “similar,” or what if the award and project titles are an exact

match, but the titles were very generic (for example, “Lab Supplies”). Clearly we cannot write

them as rules, apply them over the input tables, and get the match results.

As we see here, matching definitions are written in English, which can be verbose and impre-

cise. Business owners often train analysts to perform matching. These analysts often gain experi-

ence over time and tune their understanding of a “match.” Specifically, they do this by exploring

a wide variety of examples and constantly checking with the business owners when in doubt. This

suggests that understanding a matching definition is an iterative process that involves continuous

interaction with the business owners.
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UMETRICSSubAwardMatching

Unique
Award

Number

Address BldgNum City Country DUNS Domestic
ZipCode

EIN Foreign
Zip

Code

Object
Code

93.395 
MSN1006
83

8701 Watertown 
Plank Road

NaN Milwaukee US 937639060 53226-05
09

390806261 NaN 3845

47.078 
MSN1021
20

110 
TECHNOLOGY 
CENTER BLDG

NaN UNIVERSI
TY PARK

US 3403953 16802-70
00

246000376 NaN 3845

Org
Name

Organization
ID

POBox Period
End
Date

Period
Start
Date

Recipient
Account
Number

Srt
Name

Srt
Number

State Str
Name

Str
Number

SubAward
Payment
Amount

Data
File
Year

MEDICAL 
COLLEGE OF 
WISCONSIN

007H055 NaN 2008-02-21 2008-02-21 MSN100683 NaN NaN WI NaN NaN 4114 2008

PENNSYLVANIA 
STATE 
UNIVERSITY

G067944 NaN 2007-11-05 2007-11-05 MSN102120 NaN NaN PA NaN NaN 2843.97 2008

Figure 6.4: Example rows from UMETRICS tables (part 3).

6.2.4 Subsetting and Transforming Input Tables

Recall that we were given seven tables that included information about UMETRICS and USDA

awards. Specifically, UMETRICS tables included information about how the funding from differ-

ent agencies was used for the research projects at UW-Madison, and the USDA table included

information about funding from the USDA to research projects at UW-Madison. Even with this

moderate number of tables, the matching process will be difficult if we have to include all UMET-

RICS and USDA tables. So we decided to subset the tables (i.e., selecting only a portion of infor-

mation from the tables, perhaps even using just a subset of the tables) and apply transformations

to get two tables that can be used for matching.

We used the matching document provided by the UW-UMetrics team to subset the tables and

apply transformations. Specifically, we first selected three tables (as judged relevant by the domain

experts, i.e., the UW-UMetrics team), we did a basic sanity check for these tables, then we checked

the remaining tables to see if they contained any relevant information for matching, and finally we

applied transformations to get two tables that can be used for matching purposes.

First, we selected three tables judged most relevant for matching by the UW-UMetrics team.

Specifically, the document mentioned that only three tables were relevant for matching: (1) “UMET-

RICSAwardAggMatching,” (2) “UMETRICSEmployeeMatching,” and (3) “USDAAwardMatch-

ing.” Next, we double checked that “UniqueAwardNumber” and “Accession Number” were indeed
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Figure 6.5: Example rows from UMETRICS tables (part 4).

Accession
Number

Project Title Sponsoring
 Agency

Funding
 Mechanism

Award 
Number

Initial 
Award

Fiscal Year

Recipient 
Organization

Recipient 
DUNS

Project 
Director

Multistate 
Project

 Number

Project 
Number

Project 
Start Date

Project 
End Date

Project 
Start 

Fiscal 
Year

… … Financial: USDA 
Contracts, 

Grants, Coop Agmt

175763 GENETIC 
ORGANIZATION 
AND EPIGENETIC 
SILENCING OF 
MAIZE R GENES

State 
Agricultural 
Experiment 
Station

State Funding NaN NaN SAES – 
UNIVERSITY 
OF WISCONSIN

NaN Kermicle, 
J.L

NaN WIS04059 1997-07-01 2010-09-30 1997 … … NaN

190977 The Changing 
Location and Extent 
of the Wildland-
Urban Interface 
During the 1990's

State 
Agricultural 
Experiment 
Station

State Funding NaN NaN SAES – 
UNIVERSITY 
OF WISCONSIN

NaN Hammer, 
R

NaN WIS04593 2001-10-01 2011-09-30 2002 … … NaN

Figure 6.6: Example rows from the USDA table.

the key columns in the “UMETRICSAwardAggMatching” and “USDAAwardMatching” tables and

the “UniqueAwardNumber” was indeed a foreign key in the “UMETRICSEmployeesMatching” ta-

ble with valid values and could be joined with the “UMETRICSAggAwardMatching” table. We

used Magellan tools and pandas to perform these validations.

Then we checked the remaining UMETRICS tables to see if they contained any relevant in-

formation for matching. To do this, first we listed the column names for each table. Next, we

found similar column names between the USDA and UMETRICS tables. Specifically, we found

similar column names by manual inspection. For example, we observed that “Recipient Organi-

zation” and “Recipient DUNS” from the USDA table were similar to “OrgName” and “DUNS”

in the “UMETRICSVendorMatching” table. Next, we checked to determine whether the columns

with similar names included similar values. Specifically, we checked for any overlap of values and

checked the distribution of values using general statistics such as mean, median, etc. Based on this

check, we observed that “OrgName”and “DUNS” from the “UMETRICSVendorMatching” table

did not include overlapping values with “Recipient Organization” and “Recipient DUNS,” so we

decided to ignore them. In this step, we primarily used pandas and custom Python scripts to check



100

UMETRICS USDA
field value field value

UniqueAwardNumber 10.200 
2008-34103-19449 Accession Number 214335

AwardTitle

DEVELOPMENT OF 
IPM-BASED CORN 
FUNGICIDE 
GUIDELINES FOR 
THE NORTH 
CENTRAL STATES

Project Title

Development of IPM-
Based Corn Fungicide 
Guidelines for the North 
Central States

FirstTransDate 10/1/08 Award Number 2008-34103-19449

FirstTransDate 10/1/08 Project Start Date 8/15/08

Project End Date 8/14/11
    Project Director ESKER, PAUL 

Figure 6.7: Example of matching pairs based on Award Number.

the overlap and the distribution of values. Finally, we applied transformations to the subsetted ta-

bles. Specifically, we performed three transformations: (1) projecting out UMETRICS and USDA

tables to create two tables with relevant columns for matching, (2) matching the columns between

the tables and renaming them with the same names, and (3) adding a key column with a unique

sequence of numbers. In the following, we explain the above steps in detail.

First, as mentioned in the matching definition document, we selected the relevant tables (“UMET-

RICSAwardAggMatching,” “USDAAwardMatching”) for matching and created two new tables

that included only the relevant columns in them. The schemas of the newly created tables are

shown below.

UMETRICSProjected(UniqueAwardNumber, AwardTitle, FirstTransDate,

LastTransDate)

USDAProjected(Award Number, Project Title, Project Start Date,

Project End Date, Accession Number, Project Director)

Next, we matched the column names between the two tables and renamed them with the same

name. Specifically, we matched “UniqueAwardNumber,” “AwardTitle,” “FirstTransDate,” “Last-

TransDate” from the “UMETRICSProjected” table to “Award Number,” “Project Title,” “Project
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UMETRICS USDA
field value field value

UniqueAwardNumber 10.203 WIS01040 Accession Number 206746

AwardTitle

SWAMP DODDER 
(CUSCUTA 
GRONOVII) APPLIED 
ECOLOGY AND 
MANAGEMENT IN 
CARROT 
PRODUCTION

Project Title

Swamp Dodder (Cuscuta 
gronovii) Applied 
Ecology and 
Management in Carrot 
Production

FirstTransDate 10/1/07 Award Number -

LastTransDate 12/31/08 Project Start Date 10/1/06

Project End Date 9/30/08

    Project Director Colquhoun, J. 

Figure 6.8: Example of matching pairs based on Award Title.

Start Date,” “Project End Date,” respectively. We named them “AwardNumber,” “AwardTitle,”

“FirstTransDate,” “LastTransDate.” We renamed “Project Director” in the “USDAProjected” table

as “EmployeeName.” The updated schemas are shown below.

UMETRICSProjected(AwardNumber, AwardTitle, FirstTransDate, LastTransDate)

USDAProjected(AwardNumber, AwardTitle, FirstTransDate, LastTransDate,

AccessionNumber, EmployeeName)

Then we added a new column, “EmployeeName,” to the “UMETRICSProjected” table. To add

this column, we joined the “UMETRICSProjected” table with the “UMETRICSEmployeesMatch-

ing” table on the “AwardNumber” and “UniqueAwardNumber” columns. There were multiple

employee names for the same award in the “UMETRICSEmployeesMatching” table. Therefore,

for each award, these employee names were concatenated, and each employee name was separated

by the | character. Finally, we added a key column (“RecordId”) to the “UMETRICSProjected”

and “USDAProjected” tables. This key column included just a sequence of numbers to uniquely

identify the records. The final schema of “UMETRICSProjected” and “USDAProjected” is given

below.
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Figure 6.9: Example rows from the UMETRICSProjected and USDAProjected tables after pre-
processing.

UMETRICSProjected(RecordId, AwardNumber, AwardTitle, FirstTransDate,

LastTransDate, EmployeeName)

USDAProjected(RecordId, AwardNumber, AwardTitle, FirstTransDate,

LastTransDate, AccessionNumber, EmployeeName)

The “AccessionNumber” was included in the USDAProjected table because the UW-UMetrics

team required the output matches to be listed as pairs of “UniqueAwardNumber” and “Accession-

Number.” We mainly used pandas, Magellan tools, and custom Python scripts to perform the

joining and transformations. A few example rows from preprocessed the “UMETRICSProjected”

and “USDAProjected” tables are shown in Figure 6.9.

6.2.5 Blocking

After applying the transformations, the input tables included 1336 and 1915 records respec-

tively. Because the individual tables were relatively small, an obvious choice would be to take a

Cartesian product (of the input tables) and match the record pairs in the Cartesian product. How-

ever, to perform the matching and to evaluate the match results, we must first take a sample from
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this set (of record pairs in the Cartesian product) and label them. In our case, the Cartesian product

of the input tables would result in 2.5M record pairs, and most of them would be non-matches.

Random sampling from this set will result in very few matches. Therefore, we applied blocking

to the projected input tables to remove obvious non-matching record pairs. We used the matching

definition provided by the UW-UMetrics team to guide the blocking step.

First, we applied a blocking scheme to include all the record pairs that satisfy M1. We did this

because, if M1 is indeed a positive matching rule, then all the record pairs satisfying M1 must be

included in the candidate set. Recall that M1 specified that a record pair is a match if the second

half of the string in the “AwardNumber” column of the “UMETRICSProjected” table matches

exactly the “AwardNumber” column in the “USDAProjected” table. To include all the record pairs

that satisfy M1, we decided to apply an attribute equivalence blocker to these tables. An attribute

equivalence blocker will include a record pair only if the value of the blocking attribute is exactly

the same between the two input tables. In our case, the attribute equivalence blocker cannot be

applied directly because the “AwardNumber” from “UMETRICSProjected” and “USDAProjected”

cannot be compared for an exact match. Therefore, we first used a regular expression to extract the

suffix of the column values in the “AwardNumber” of the “UMETRICSProjected” table and stored

the result as a temporary column, “TempAwardNumber,” in the same table. Then we applied the

attribute equivalence blocker using “TempAwardNumber” from the “UMETRICSProjected” table

and “AwardNumber” from the “USDAProjected” table as blocking attributes to obtain a candidate

set C1. This blocking scheme resulted in a candidate set C1. After blocking, we removed the

temporary column (“TempAwardNumber”) from the “UMETRICSProjected” table.

Next, based on the matching definition M2, we decided to include the record pairs that have

similar award titles. We explored the award titles between the “USDAProjected” and “UMETRIC-

SProjected” tables and observed that the titles were not short and that they included multiple to-

kens. Intuitively, two similar award titles would include at least a few overlapping tokens between

them. Therefore, we decided to apply an overlap blocker over the input tables using “AwardTitle”

as the blocking attribute. An overlap blocker will discard a record pair if the number of overlapping

tokens is less than an overlap threshold K. To apply the overlap blocker, first, we normalized all the
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strings in the “AwardTitle” column by lower casing and removing special characters such as single

quotation marks, double quotation marks, hash symbols, exclamation marks, round braces, curly

braces, etc. We did this normalization because, when we explored the award titles, we observed

that the use of letter cases and special characters in the “AwardTitle” column was inconsistent. For

example, some titles were in lower case and some others were in upper case, some titles included

double quotation marks and some titles did not, and so on. Next, we performed overlap blocking

using a word-level tokenizer, and we set the overlap threshold to 3 after trying a few other thresh-

olds (for example the threshold of 1 resulted in 200K record pairs, and a threshold of 7 resulted in

a few hundred record pairs). Finally, after applying the overlap blocker, we obtained a candidate

set C2.

Next, from the semantics of the overlap blocker, we knew that this blocker would drop the

record pairs if the number of tokens in the blocking attribute was less than the overlap threshold

K (in our case, K was 3), so we explored the award titles between the two tables to see if similar

titles with fewer than 3 tokens existed, and we found quite a few such title pairs. To include these

record pairs, we decided to apply an overlap-coefficient-based blocking over the input tables using

“AwardTitle” as the blocking attribute. For two strings X and Y , the overlap coefficient is given

by the following equation:

overlap coefficient(X, Y ) =
|X ∩ Y |

min(|X|, |Y |)

The semantics of the overlap coefficient is similar to the overlap measure, except that in the overlap

coefficient, the number of overlapping tokens is normalized by the minimum of the number of

tokens in the input strings. For example, if two sets of tokens each with cardinality 2 exist and if

they include same tokens, then the overlap coefficient will be 1. To apply the overlap-coefficient

blocker, we performed the steps similar to those for the overlap blocker. Specifically, first we lower

cased all the strings in the “AwardTitle” column, then we removed special characters such as single

quotation marks, double quotation marks, hash symbols, exclamation marks, round braces, curly

braces, etc., and finally, we performed overlap-coefficient blocking using a word-level tokenizer

and a threshold of 0.7 (after trying a few other thresholds) to obtain a candidate set C3.
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Then we took a union of C1, C2, and C3 to obtain a consolidated candidate set C. The candidate

set C contained 3177 record pairs. Finally, we checked for any potentially missing matches in

C using a blocking debugger for one iteration. We observed that the top pairs returned by the

blocking debugger had a low similarity, and hence we decided to stop modifying the blocking

pipeline further. We primarily used Magellan tools for blocking. We also used custom Python

scripts and pandas commands to preprocess the columns before applying blocking.

6.2.6 Sampling and Labeling

After the blocking step, we decided to obtain labeled record pairs from the UW-UMetrics team.

Labeled record pairs are essential for selecting the best learning-based matcher and then training

this matcher to predict matches in the candidate set. Sampling and labeling is not straightforward

because the candidate set is skewed with relatively few matches and the match definition is still

evolving. Also, because we are collaborating with an external team, we had to manage the logistics

for labeling.

We began by having an email conversation with the UW-UMetrics team and then followed

up with a face-to-face meeting to discuss the logistics of labeling the record pairs. Initially, we

proposed to email the record pairs as a CSV file that they could download to their local machine and

use tools such as MS Excel to mark the record pairs as a match or a no-match. The UW-UMetrics

team stated that a mechanism that would allow multiple users to label the record pairs would be

good because different members of their team could label the record pairs, thus speeding up the

labeling process. Following their feedback, we decided to reuse a cloud-based labeling tool that we

developed for another project (drug matching) to label the record pairs. The cloud-based tool would

allow multiple users to label the record pairs with a good UI, but the tool had the constraint that

only one person could label at a particular time. The UW-UMetrics team accepted that restriction

and mentioned that they would discuss the matter internally and schedule the labeling.

Next, we performed the sampling and labeling steps iteratively. Our goal for this step was to

obtain a sufficient number of positive matches in the labeled set. We first took a random sample
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of 100 record pairs from the candidate set; then we uploaded the sampled pairs into the cloud-

based labeling tool and asked the UW-UMetrics team to label the record pairs. Specifically, we

asked them to label each record pair with “Yes” if they matched, “No” if they did not match, and

“Unsure” if they were not sure about the match.

The UW-UMetrics team trained a student to label using the tool. The student, with guidance

from the senior members of the UW-UMetrics team, labeled the record pairs for matching. Mean-

while, we labeled the same set of record pairs internally based on our understanding of the match

definition.

After the first set of labeled pairs, we cross-checked their labels against our labels. We observed

22 mismatched labels. Specifically, one record pair was marked as a no-match despite satisfying

the matching rule, M1, and the other 21 record pairs had similar award titles, but they were marked

as a mix of match, no-match, and primarily unsures. We had a face-to-face discussion with the UW-

UMetrics team about the mismatches. During our meeting, the UW-UMetrics team confirmed that

the record pair satisfying M1 must be declared as match (they also confirmed that M1 is indeed a

positive matching rule), and for others, they mentioned that, though the award titles were similar,

some of them were not unique enough to be declared matches. They said that they would have a

closer look at the mismatches and update the labels. After the discussion, we shared the record

pairs with mismatched labels using Google Sheets, and the UW-UMetrics team updated 4 labels

to “Yes” and the rest retained the original labels. After the updated labels were submitted, 15 pairs

were labeled as “Yes,”, 63 labeled “No,” and 21 labeled “Unsure.”

Next, because we had only 15 positive matches, we decided to obtain more labeled pairs. We

had an email conversation with the UW-UMetrics team and conveyed that they would need to label

at least 100-200 more record pairs to obtain a sufficient number of positive matches. Following

this, we internally decided to obtain record pairs labeled in two iterations, with 100 record pairs per

iteration. As per the plan, we sampled 100 record pairs, uploaded the sampled pairs into the cloud-

based labeling tool, and asked the UW-UMetrics team to label them. After they finished labeling,

the labeled set included 29 pairs labeled “Yes,” 63 labeled “No,” and 8 labeled “Unsure.” Then we
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sampled another 100 record pairs and followed the above procedure. In this set, we obtained 24

pairs labeled “Yes,” 71 labeled “No,” and 5 labeled “Unsure.”

Finally, we consolidated the 300 labeled pairs, and in total, 68 pairs labeled “Yes,” 195 pairs

“No,” and 37 pairs “Unsure.” Because we obtained a sufficient number of positive matches, we

decided to stop seeking more labeled pairs.

After we obtained the consolidated set of labeled pairs, we decided to debug the labels because

these labeled examples were to be used to train a matcher, and any errors in the labeled data would

impact the predicted matches. To debug the labels, we used the leave-one-out cross-validation

method. Specifically, first, we trained an ML matcher over all the labeled record pairs except one,

next we predicted the label for the left-out record pair, and finally we compared the label predicted

by the ML model and the label given by the UW-UMetrics team. We used random forest as the ML

matcher, and we removed the unsure and the sure matches (record pairs that satisfy M1) from the

labeled data before debugging the labels. We applied the leave-one-out cross-validation method

using the labeled record pairs and observed the following discrepancies.

• D1. Record pairs were predicted matches, but labeled as a no-matches if the award titles were

very similar except for the fact that the award title in the “USDAProjected” table included

the suffix “NC/NRSP.”

• D2. Record pairs were predicted as matches but labeled as no-matches if the award number

were different but the award titles were the same or very similar.

• D3. Record pairs were predicted as matches but labeled a mix of matches and no-matches

if the award number was missing from the “USDAProjected” table but the award titles were

very similar.

Following this, we had an email conversation and a face-to-face meeting with the UW-UMetrics team

to clarify the ambiguities. Specifically, we shared example record pairs (using Google Sheets) for

each of the above discrepancies. During the discussion, the UW-UMetrics team (based on their

domain knowledge) mentioned that for D1, the labels should be updated as unsure. For D2, the

original labels must be retained. For D3, the labels must be updated as matches if the transaction



108

dates for the awards are within a difference of few years (e.g., two years). Based on the above un-

derstanding, the UW-UMetrics team updated the labeled set and provided us with it. After all the

changes, the labeled set included 300 labeled pairs, 68 labeled “Yes,” 200 pairs labeled as “No,”

and 32 pairs labeled as “Unsure.”

6.2.7 Matching

After we received the updated set of labels from the UW-UMetrics team, we decided to use

the labeled data to produce matches between the “UMETRICSProjected” and “USDAProjected”

tables. We used the labeled set first to select the best learning-based matcher and then used the

selected matcher to predict the matches in the candidate set.

6.2.7.1 Selecting a Matcher

To select the best matcher, we used Magellan. First, we removed the record pairs labeled

“Unsure” and sure matches (record pairs that satisfy M1) in the labeled set and then converted the

labeled set into a set of feature vectors. We observed some missing values, and we imputed those

missing values with the mean value of their respective columns.

Next, we selected the best matcher using five-fold cross-validation. We used decision tree,

SVM, random forest, logistic regression, naive Bayes, and linear regression matchers to select

the best one. Among the matchers, the random forest matcher performed the best but had low

precision, recall, and F1.

Then we debugged the random forest matcher using Magellan. Specifically, first, we split the

labeled data into two sets, training and testing sets, then we trained the random forest matcher on

the training set, debugged the matcher using the testing set, and finally, we observed that many

mismatches were occurring because of award titles with different letter cases, so we decided to

add more features to handle them.

Next, we added award title-related features that handled variance in letter cases and selected

the best matcher again. In this iteration, the decision tree performed the best with precision at 97%,

recall at 95% and F1 at 94.7%, on average.
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UMETRICS 

Candidate Set 
C 

USDA 

block 

sample/label 

matches 

select matcher M 

predict using M 

Figure 6.10: The initial EM workflow for matching UMETRICS and USDA data sets.

UMETRICS Unique 
Award Number UMETRICS Award Title USDA Award 

Number USDA Award Title

00.070 58-1935-6-655

HOW DO THE SEROTYPES 4B SPECIFIC 
GENES OF LISTERIAMONOCYTOGENES 
CONTRIBUTE TO THE PATHOGENESIS OF 
LISTERIOSIS?

 

HOW DO THE SEROTYPE 4B 
SPECIFIC GENES OF LISTERIA 
MONOCYTOGENES 
CONTRIBUTE TO THE 
PATHOGENESIS OF 
LISTERIOSIS?

00.070 T-7-3655-121 FY07 RSA AGRICARS: POST-HARVEST 
PHYSIOLOGY OF POTATO TUBERS   Post-harvest physiology of potato 

tubers

Figure 6.11: One-one matches between UMETRICS and USDA tables.

Finally, we debugged the matcher using the decision tree matcher debugger (in Magellan) to

see if the accuracy could be improved further. We tried adding more features, but they did not

result in any improvement in accuracy numbers. Therefore, we decided to stop and selected the

decision tree as the best matcher.

6.2.7.2 Predicting the Matches

To predict the matches, we first trained the decision tree using the feature vectors from the

labeled set. Next, we removed the record pairs satisfying the positive matching rule (210 record

pairs) from the candidate set. Then we converted the updated candidate set into feature vectors and

imputed the missing values with the mean of their respective columns. Finally, we used the trained

matcher to predict the matches and non-matches in the candidate set. The overall EM workflow

is shown in Figure 6.10. In the predicted set, we obtained 807 matches. In total, we obtained

1017 matches, including the record pairs that satisfied the positive matching rule. We shared the

predicted matches in a CSV file with the UW-UMetrics team and followed up with a face-to-face

meeting to discuss the results.
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UMETRICS Unique 
Award Number UMETRICS Award Title USDA Award 

Number USDA Award Title

10.200 2008-34266-19271 BABCOCK INSTITUTE FOR INTERNATIONAL 
DAIRY RESEARCH AND DEVELOPMENT 2005-34266-16416

The Babcock Institute for 
International Dairy Research and 
Development

10.200 2008-34266-19271 BABCOCK INSTITUTE FOR INTERNATIONAL 
DAIRY RESEARCH AND DEVELOPMENT 2010-34266-20760 Babcock Institute for International 

Dairy Research and Development

Figure 6.12: One-many matches between UMETRICS and USDA tables.

UMETRICS Unique 
Award Number UMETRICS Award Title USDA Award 

Number USDA Award Title

10.200 2005-34101-15664 THE ORGANIZATION, REGULATION, AND 
PERFORMANCE OF THE US FOOD SYSTEM 2001-34101-10526

The Organization, Regulation and 
Performance of the U.S. Food 
System

10.200 2006-34101-16999
FOOD SYSTEM RESEARCH GROUP: "THE 
ORGANIZATION, REGULATION AND 
PERFORMANCE OF THE US FOOD SYSTEM"

2001-34101-10526
The Organization, Regulation and 
Performance of the U.S. Food 
System

Figure 6.13: Many-one matches between UMETRICS and USDA tables.

Discussion on One-One, One-Many, and Many-One Matches: During the discussion, we

observed a gap between the UW-UMetrics team’s definition of a match between UMETRICS and

USDA awards and our understanding of the same. Specifically, the UW-UMetrics team intended to

cluster the records in the “UMETRICSProjected” and “USDAProjected” tables and then perform

matching between them. However, we were matching records from the “UMETRICSProjected”

table to records in the “USDAProjected” table.

Following this, we analyzed the one-one, one-many, and many-one match predictions and

shared our analysis with the UW-UMetrics team. A few examples of one-one, one-many, many-

one matches are shown in Figures 6.11, 6.12, and 6.13. We had another face-to-face discussion

with them, and in that meeting, the UW-UMetrics team decided that they would go ahead with the

definition that one record from the “UMETRICSProjected” table can match many records in the

“USDAProjected” table.

6.2.8 Match Results from the Existing Solution

After we predicted the matches, we had an email conversation with the UW-UMetrics team

and followed up with a face-to-face meeting to discuss the next steps. During the meeting, it was
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decided that the predicted matches produced by us must be compared with the matches produced

by IRIS. IRIS had developed a tool that was being used to produce matches between UMETRICS

and USDA. The IRIS tool was installed in a virtual desktop infrastructure (VDI), meaning that the

tool was deployed on a secure remote server and the UW-UMetrics team uses a remote desktop

connection to access the tool.

To compare the match results, we had to either obtain the matched data from the IRIS tool or

send our match results to the UW-UMetrics team, and they would use the IRIS tool to compare

the matches. After discussing the matter with the UW-UMetrics team, it was decided that the

UW-UMetrics team would retrieve the IRIS matches from the VDI and use them to compare our

matches.

6.2.9 Updated Match Definition and More Data

After the UW-UMetrics team obtained the matches from the IRIS tool and the predictions from

us, they manually went through the match results and observed two things: (1) another positive

matching rule existed using the project number and award number, and (2) the file containing the

table “UMETRICSAwardAggMatching” was incomplete and it must include more records.

6.2.9.1 Updated Match Definition

While the UW-UMetrics team members went through the matches, they observed another

positive rule that could be used to pull more sure matches directly from the “UMETRICSProjected”

and “USDAProjected” tables. Following this, we received the following positive matching rule

from the UW-UMetrics team.

Positive Matching Rule: If the award number from UMETRICS matches the project number

in USDA, then the record pair is considered a match. After they shared the positive rule with

us, first we checked to determine whether the ML matcher was already learning the rule from the

labeled data. Specifically, we checked how many record pairs in the candidate set that satisfy the

above rule were predicted as matches. We observed that 397 out of 411 of such record pairs in

the candidate set were predicted as matches, which means that the matcher included most of the
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record pairs that satisfy the rule. Next, we checked to determine whether the blocker pipeline was

discarding any record pairs that satisfy the new rule. Specifically, we checked how many record

pairs in the Cartesian product of the “UMETRICSProjected” and “USDAProjected” tables that

satisfy the above rule were included in the candidate set. We observed that 473 such record pairs

existed in the Cartesian product, and the candidate set included 411 records, which means that the

blocking pipeline was discarding a few record pairs. Finally, we decided (internally) to write a

Python script capturing the new matching rule and apply it on the input tables directly to obtain

the sure matches.

6.2.9.2 More Data

When the UW-UMetrics team was manually inspecting the matches produced by IRIS, they

observed that some of the award numbers declared as matches were not present in the matches

produced by us. Then they checked to determine whether the original table that was given to us;

i.e., “UMETRICSAwardAggMatching” included those matching award numbers. They observed

that the original data given to us was incomplete, missing 496 records. We had an email conversa-

tion with the UW-UMetrics team to decide whether they had to send a consolidated file including

all the UMETRICS awards or just the extra records. Based on the discussion, we decided that

the UW-UMetrics team would send us a CSV file with only the missing records, including all the

columns as before.

6.2.10 Updated EM Pipeline

The UW-UMetrics team emailed us the extra records in a CSV file format. We had an internal

discussion on how should we incorporate the updated match definition and handle the extra records.

Our goal was to minimize the changes we had to make to our existing workflow. Based on the

discussion, we decided that we would handle the extra records separately from the original tables,

and we came up with the following procedure (see Figure 6.14)
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UMETRICS Sure Matches 
C1 

R1 Candidate Set 
C2 

rules
 

block 

C2-C1 = C 

select matcher 

predict using M USDA 

Extra 
USDA 

Sure Matches 
D1 

R2 

Candidate Set 
D2 

rules
 

block 

D2-D1 = D predict using M 
UMETRICS 

M 

Labeled Pairs 

Figure 6.14: The updated EM workflow to accommodate extra data and positive matching rules.

• First, apply the sure-match rules to the original input tables. Specifically, apply the rule

M1 (from the match definition) and the positive matching rule involving award number and

project number to obtain a set, and call this set C1.

• Next, apply the blocking pipeline as before and obtain a candidate set, and call this set C2.

• Then remove the sure matches (C1) from the set C2 to obtain a set C; this set C is what will

be predicted as matches and non-matches.

• Next, use the labeled set without the sure matches to train the best matcher and predict on

C, and call the resulting matches R1.

• Then repeat the above steps for the extra records in UMETRICS and the whole USDA table

until a set of sure matches (D1) and a candidate set for prediction (D) are obtained (until

step 3 in this procedure).

• Then apply the best matcher obtained using labeled data (in step 4) to the candidate set

obtained from the extra records to get match predictions. Call this set R2.

• Finally, the union of C1, D1, R1, and R2 will include the consolidated set of matches.

We applied the above procedure and obtained a consolidated set of 1137 matches. Specifically,

first, we applied the sure matches rule to obtain 683 sure matches from the original input tables and
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55 sure matches from the additional records. Then we applied the blocking pipeline and removed

the sure matches, and this resulted in a candidate set from the original input tables including 2556

record pairs and a candidate set from the extra records including 1220 record pairs. Next, we

removed the sure matches from the labeled set and selected the best matcher. The best matcher

was the decision tree. Finally, we applied the decision tree matcher to the candidate sets and

obtained 399 matches from the original tables and no matches from the additional records.

6.2.10.1 Accuracy Estimation

Now, with the updated predicted matches and IRIS matches, we needed to estimate the accu-

racy of our matcher and how well it compared with the IRIS matcher. Here, the challenge was to

estimate the accuracy of the matcher over the whole input tables. Ideally, if we have the true labels

for the record pairs in the Cartesian product, then we can compute the accuracy directly. However,

having the true labels would mean that there was no need to do the matching in the first place. To

address this, we had a face-to-face meeting with the UW-UMetrics team and decided to follow

Corleone [66] approach to estimate the precision and recall for the two matchers and then use the

accuracy numbers to compare them.

First, we observed that, to use the Corleone approach, both the IRIS and our predicted matches

must be from the same candidate set of record pairs. Therefore, we checked for any award number-

accession number pairs from the IRIS matches that were not included in our consolidated candidate

set (from the original and extra records). We observed only one such record pair, and when we

checked with the UW-UMetrics team, they mentioned that the award number in question was a

terminated award (no longer valid) and could be discarded safely. Next, we needed to obtain a

labeled set for estimation purposes. To do this, first, we took a random sample of 200 record pairs

from the consolidated candidate set. Then we uploaded the sample to the cloud-based labeling tool

and finally asked the UW-UMetrics team to label them as before. The UW-UMetrics team used

the tool (as before) and labeled the record pairs. The labeled set included 54 matches.

Then we followed the Corleone approach to estimate precision and recall. Specifically, we

used the labeled data and estimated the precision and recall for each matcher. We estimated that our
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matcher had precision in the range (79.6%, 86.01%) and recall in the range (96.8%, 99.42%). The

IRIS matcher had precision in the range (100%, 100%) and recall in the range (52.7%, 62.07%).

We observed that the precision for the IRIS matcher was high compared to ours, but its recall was

low. The estimated precision of our matcher was low, but the recall was high. In other words, our

matcher found more actual matches than the IRIS matcher.

Next, we asked the UW-UMetrics team to label another 200 record pairs because the interval

size of the estimated precision and recall was large. As before, we randomly sampled another 200

record pairs, uploaded them to the cloud-based labeling tool, and asked the UW-UMetrics team

to label the record pairs. After they finished labeling, we estimated the precision and recall again.

Now, with 400 labeled pairs, our matcher had an estimated precision in the range (75.2%, 80.3%)

and recall in the range (98.1%, 99.6%). The IRIS matcher had precision in the range (100%, 100%)

and recall in the range (65.1%, 71.8%). Finally, we shared the results with UW-UMetrics team

and discussed the final estimated precision and recall numbers. The UW-UMetrics team liked the

the fact that our matcher was able to find more matches than the IRIS matcher.

6.2.11 Improving Accuracy Using Rules

Though we received a positive feedback from the UW-UMetrics team, we had an internal

discussion on how to improve the precision. Specifically, the question was how we could improve

the precision without affecting the recall much. Based on our discussion, we decided that if we

could obtain some domain-specific rules from the experts (the UW-UMetrics team) to reduce the

number of false positives, then we could apply these rules to the predictions from the learning-

based matcher and thus improve the precision.

Following this, we had an email conversation with the UW-UMetrics team to understand how

we could reduce the number of false positives. The UW-UMetrics team iterated over the predicted

matches and then, based on their domain knowledge, they defined a negative rule (i.e., the rule will

flip matches to non-matches) that could be applied after the predictions from the learning-based

matcher. The rule is defined as follows. A record pair is considered a no-match if one of the

following rules is satisfied.
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“Unique Award Number” 
Pattern 

in UMETRICS

Matching 
“Award Number”
Pattern in USDA

Matching 
“Project Number”
Pattern in USDA

YYYY-#####-##### YYYY-#####-##### WIS#####

WIS##### ##-#####-##### ####-#####-###-##X

##-XX-########-###   WISX-YYYY-#####

##-####-####-XX    

##-####-#-###    

MSN ######    

Figure 6.15: Valid patterns in UMETRICS and USDA for applying rules.

• Award numbers from UMETRICS and USDA are “comparable,” (defined below), and they

are not the same.

• Award number from UMETRICS and a project number from USDA are “comparable,” and

they are not the same.

In the above rule, “comparable” means that the award numbers are considered (for this rule)

only if they have the same pattern. For example, if the UMETRICS award number is “03-CS-

112313000-031” and the USDA award number is “2001-34101-10526,” then the award numbers

are not comparable because they follow different patterns. Specifically, a UMETRICS award

number follows the pattern “##-XX-########-###,” and the USDA award number follows the

pattern “YYYY-#####-#####” (here, “#” is any number, “X” is any character, and “YYYY” is

four-digit year). As another example, if the UMETRICS award number is “W1S01560” and the

USDA project number is “WIS04509” then they are comparable because they follow the same

pattern (because the values are different this pair will be considered a non-match). Specifically,

UMETRICS award number and USDA award number, follow the pattern “WIS#####.” The UW-

UMetrics team shared us the list of possible patterns for the award numbers from UMETRICS and

USDA and project numbers from USDA (see Figure 6.15).
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select matcher 

predict using M USDA 
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apply neg. rules S1 
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Figure 6.16: Updated EM workflow with negative rules applied to the results from the learning-
based matcher.

6.2.11.1 Accuracy Estimation After Applying Rules

We applied the negative rule (provided by the UW-UMetrics team) to the matches and decided

to estimate the accuracy again. Conceptually, the learning-based matcher followed by rules could

be considered just another matcher like the IRIS matcher. The updated EM procedure is shown in

Figure 6.16. Specifically, the matches (R1, R2) obtained from the machine learning-based matcher

were applied with rules to get S1 and S2. The final set of matches was obtained by taking the union

of C1, D1, S1, and S2.

We consider this new workflow a new matcher. Because the candidate set of this new matcher is

same the as that of the learning-based matcher from our previous iteration, we can reuse the labeled

set. We used the Corleone approach for estimating the new precision and recall. We estimated that

our new matcher (decision tree followed by rules) had precision in the range (96.7%, 98.8%) and

recall in the range (94.2%, 97.05%). In contrast, the learning-based matcher (without rules) had

precision in the range (75.2%, 80.3%) and recall in the range (98.1%, 99.6%). The IRIS matcher

had the precision in the range (100%, 100%) and recall in the range (65.1%, 71.8%). The learning-

based matcher followed by rules had a significant improvement in precision with a small drop in

recall.
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We shared our estimated results with the UW-UMetrics team, and they were quite pleased with

the results. The director of the team said this in an email conversation after we shared the results:

That is really stupendous news! I’m surprised to see how much you were able to raise

the precision and recall.

...

Thanks for all your brilliant work on this.

Following this, we decided to stop improving the accuracy and shared the final set of matches with

the UW-UMetrics team. Specifically, the final set contained 845 matches. We shared the results in

a CSV file including the “UniqueAwardNumber”and “Accession Number” pairs for the matches.

6.2.12 Next Steps

As the next step, UW-UMetrics wanted us to package the matcher so they could move it into

a protected environment (similar to the IRIS matcher) to do matching for other data slices. It is

similar to moving the workflow that was developed (in the development stage) into production.

This step is not straightforward and involves the following three challenges. First, the workflow

is not straightforward. It involves rules at multiple places (to find sure matches and to update the

predictions from the learning-based matcher) and a machine learning-based matcher. Second, the

new data may be dirty, so we need to monitor the accuracy of the match results. Third, if the

accuracy is not good enough, we should have a mechanism to move back to the development stage

and update the workflow. Currently, we are working with the UW-UMetrics team to package the

matcher and move it into their environment.

6.3 Lessons Learned

We now discuss lessons learned from using Magellan “in the wild”. First, we discuss lessons

learned from using Magellan in the applied economics project. Then we discuss lessons learned

from other projects.
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6.3.1 Lessons Learned from the Applied Economics Project

In this project we followed the Magellan how-to guide closely to solve the EM problem (as

described earlier). Because Magellan integrates well with the PyData ecosystem, we used tools

developed in Magellan and tools in the PyData to perform matching. We will now discuss what

worked well with Magellan and what did not.

Exploring and Cleaning the Tables: We primarily used pandas-profiling (integrated with Mag-

ellan), pandas commands, and custom Python scripts to explore the input tables. We observed

that the PyData ecosystem lacked proper tools for exploring and profiling tables. Specifically, the

pandas-profiling tool hung when we tried to profile a table that included a few million records,

and the tool included only basic features. We had to write custom Python scripts to profile the

data sets. Similar to exploration tools, the PyData ecosystem lacked the right tools for cleaning

purposes. We primarily used pandas commands and often Python scripts to clean the data sets.

Blocking: The tools developed as a part of Magellan served well for blocking purposes. It

scaled well for the data sets had for the EM problem at hand. Also, the blocking debugger from

Magellan helped to find when to stop updating the blocking pipeline. Specifically, we decided

to stop modifying the blocking schemes after we observed that the top few record pairs from the

debugger had low similarity scores.

Sampling and Labeling: The sampling tool in Magellan worked well for sampling. However,

we observed that the standalone labeling tool in Magellan lacked an expressive UI and included

only minimal features. We observed that the users wanted a web-based tool (with a good GUI) to

do labeling collaboratively. Currently, we are working toward building such a labeling tool.

Matching: We used Magellan to perform supervised learning-based matching. Also, while

doing the matching, we had to include triggers to update the results from the machine learning

matcher. Magellan included features to support triggers, and they were easy to use. The matching

debuggers in Magellan served well for this problem. However, often, we receive feedback from

other users to include debuggers for more matchers and to provide expressive UIs. We are working

toward developing debuggers for more matchers and improving current debuggers.
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Evaluation: We used Magellan to perform the evaluation, and it worked well. The tool imple-

mented the Corleone solution for evaluating the match results.

Overall, the tools developed as a part of Magellan and tools in the PyData ecosystem worked

well for EM purposes. However, we found a few gaps. First, no proper tools for exploring and

cleaning the data sets existed. Second, no good labeling tools existed for labeling in a collabo-

rative fashion. Third, during the EM process, the existing pipeline could be updated for various

reasons (e.g., more data, positive matching rules, etc.). Currently, we handle these updates manu-

ally in Magellan. We need to have tools and mechanisms to easily handle updates to existing EM

pipelines. We are currently working on developing such tools to include as a part of Magellan.

6.3.2 Lessons Learned from Other Projects

We now discuss lessons learned from other projects.

Understanding the Data/Problem/Solution: This is perhaps the most important lesson we

learned from the Magellan experience. It is clear that, in many cases, the user starts with a very

limited understanding of the data, the problem, and the capabilities of the solution (which is Mag-

ellan in this case). First, the user may have no idea that the data is dirty (e.g., project titles

containing extra strings), or that parts of the data are simply incorrect, that parts of the data are so

incomplete or ambiguous that even domain experts cannot match them.

Second, the user may also think that he or she knows the problem, i.e., the “match” definition,

e.g., what it means for two records to match. However, we have found that this is rarely the case

in practice, and it can have serious consequences. For example, a user who thinks he or she knows

the match definition will perform blocking and sampling based on that knowledge. When the user

performs labeling, he or she will encounter ambiguous cases that will require the user to revise

the current match definition and execute the previous steps again, thus incurring unnecessary time.

Finally, the users may not be fully aware of the capabilities of the solution. For example, if the

current precision is 92% from the learning-based matcher and suppose the user wants to add rules

to improve the precision, can he or she use Magellan or new tools to be explored? Most often we

get such queries from the users despite the elaborate documentation and examples provided.
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Output Knowledge about the Problem/Data/Tools: As discussed earlier, at the start of the

development stage, the user often knows very little about the problem definition, the data profile,

and the tools? capabilities. he or she often gains far more knowledge about these along the way.

We found that at the end of the development process, it is often highly desirable for the user to

output, not just a good EM workflow, but also knowledge about the problem/data/tools.

For example, besides a good EM workflow, the user U can produce a report listing possible

match definitions, the selected definition, and the reasons for selecting it. U can produce another

report listing various problems with the data, how they can affect EM, actions that should be

avoided, as well as actions that can be taken to fix the problems. For example, this document can

say that there are many missing and dirty values in column “state”, hence do not do blocking using

“state” (e.g., drop all record pairs whose records disagree on “state”). Finally, the user can produce

a report discussing the capabilities of the tools on the current tables and actions taken based on

those (e.g., learning-based matchers do not appear to work well here for such and such reasons,

and hence rule-based matching is added, to reach the desired EM accuracy).

Having such reports is tremendously useful because EM is an iterative rather than “one-shot”

process. Even after an EM work flow has been pushed into production, problems often occur,

which necessitates working in the development stage again to repair/fine tune the EM workflow.

Having access to such reports makes this process much easier (especially in the case the user has

moved on, and a new data scientist is now debugging the EM process). Also, maintaining such

report will help to solve similar problems later.

Different Solutions for Different Parts of the Data: Another important observation is that the

vast majority of current EM works treat the input data as of uniform quality, but in practice, this is

rarely the case. Instead, the data commonly contains dirty data of varying degree, incorrect data,

and incomplete data that even domain experts cannot match. It makes no sense trying to debug the

system, then spending more time and money to match incorrect and incomplete data. As a result,

it is important to have tools that help the user explore and understand the data, then ways to help

the user “split” the data into different parts and develop different EM strategies for different parts

of the data.



122

Support for Easy Collaboration: We found that in many EM settings there is actually a team

of people wanting to work on the problem. Most often they collaborate to label a data set, debug,

clean the data, etc. For example, in the case study discussed in this chapter the UW-UMetrics

team collaboratively labeled and helped to debug the labeled data. However, most current tools are

rudimentary in helping users to collaborate. They often require tools so that they can efficiently

communicate their findings about the dataproblemsolution and converge at end (e.g., to a single

match definition) As a result, it is important to develop tools that help user for easy collaboration.

More Expressive UIs: Another feedback that we have received from many users is that current

UIs are too limited. More expressive UIs are highly desirable. For example, when the user per-

forms labeling, they are limited to just labeling record pairs a common feedback that we received

is provide capabilities to update the record pairs inline. As another example, some indicated that a

UI that shows them a cluster of records (that are supposed to match) may help them “label” data

faster than showing one record pair at a time. Perhaps more expressive UIs would make users more

efficient as well.
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Chapter 7

Related Work

Throughout this dissertation we have discussed related work (such as work on building EM

systems, discussed in Chapter 2). We now discuss additional related work, from multiple perspec-

tives.

7.1 Data Integration

Data integration (DI), broadly interpreted as covering all major data preparation steps such as

data extraction, exploration, profiling, cleaning, matching, and merging [51]. This topic is also

known as data wrangling, munging, curation, unification, fusion, preparation, and more. Over the

past few decades, DI has received much attention, and tremendous progress has been made (e.g.,

[125, 106, 108, 85, 115, 110, 41, 78, 131, 91, 92, 38, 47, 120, 68, 119, 35, 95, 130, 96, 109, 84,

29, 59, 52, 74, 29, 32]). Today, as data science grows, DI is receiving even more attention. This

is because many data science applications must first perform DI to combine the raw data from

multiple sources, before analysis can be carried out to extract insights. Entity matching (EM)

is a major problem in DI, and is the focus of this dissertation. The solutions developed in this

dissertation can potentially be applied to other problems in DI, as we discuss in [49].
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7.2 Entity Matching

Numerous EM algorithms have been proposed [37, 56]. But far fewer EM systems have been

developed. We discussed these systems in Chapter 2 (see also [37]). For matching using super-

vised learning, some of these systems provide only a set of matchers. None provides support for

sampling, labeling, selecting and debugging blockers and matchers, as Magellan does.

Some recent works have discussed desirable properties for EM systems, e.g., being extensible

and easy-to-deploy [44], being flexible and open source [36], and the ability to construct complex

EM workflow consisting of distinct phases, each requiring a specific technique depending on the

given application and data requirements [58]. These works do not discuss covering the entire EM

pipeline, how-to guides, building on top of data analysis and Big Data stacks, and open-world

systems, as we do in Magellan.

Several works have addressed scaling up blocking (e.g., [42, 76, 123, 21]), learning blockers

[30, 46], and using crowdsourcing for blocking [66] (see [39] for a survey). As far as we know,

there has been no work on debugging blocking, as we do in Magellan.

On sampling and labeling, several works have studied active sampling [116, 24, 27]. These

methods however are not directly applicable in our context, where we need a representative sample

in order to estimate the matching accuracy. For this purpose our work is closest to [66], which uses

crowdsourcing to sample and label.

Debugging learning models has received relatively little attention, even though it is critical in

practice, as this paper has demonstrated. Prior works help users build, inspect and visualize specific

ML models (e.g., decision trees [23], Naive Bayes [25], SVM [33], ensemble model [121]). But

they do not allow users to examine errors and inspect raw data. In this aspect, the work closest

to ours is [22], which addresses iterative building and debugging of supervised learning models.

The system proposed in [22] can potentially be implemented as a Magellan’s tool for debugging

learning-based matchers.

The notion of “open world” has been discussed in [60], but in the context of crowd workers’

manipulating data inside an RDBMS. Here we discuss a related but different notion of open-world
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systems that often interact with and manipulate each other’s data. In this vein, the work [31] is

related in that it discusses the API design of the scikit-learn package and its design choices to

seamlessly tie in with other packages in Python.

On scaling the EM workflows, there has been several work on developing platforms for the

specification, optimization, and parallel execution of directed acyclic graphs (DAGs) of operators

[75, 111, 73, 65, 118, 114, 93]. But,they focus on scaling aspects of the workflow but do not

address helping users providing how-to guides and tools as we do in Magellan.

On evaluating Dask performance, the work [112] provides benchmark results of Dask for a

variety of different workloads under increasing scales of data set size and cluster size. In [99],

the authors study the performance and applicability of Dask for scientific imaging workloads in a

cluster setting. Our work is related to [99] but we focus of EM workloads on a single machine.

Several works have addressed parameter tuning problem in the context of self-tuning databases

[34, 122, 71, 72]. In [87, 88]. the authors develop a system on top of hadoop to set the parameter

values in the presence of skew for scientific user-defined functions. In [90] the authors perform pa-

rameter tuning for schema matching. Our work uses the technique developed in [90] for parameter

tuning.

Finally, there has not been many case studies published that describe solving an end-to-end EM

problem in the wild. In [40], the authors provide a technical report summarizing the techniques

that they followed to match bank-related information In our work, we focus on the end-to-end steps

followed to solve a EM problem and not just on the techniques used.

7.3 The PyData Ecosystem of Open-Source Data Science Tools

In the past decade, using open-source tools to do data science has received significant growing

attention. The two most well-known ecosystems of such open-source tools are in Python and R.

In this dissertation we focus on the Python data ecosystem, popularly known as PyData. We now

discuss PyData in detail, to further motivate our decision to build Magellan into PyData.
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What Do They Do? First and foremost, the PyData community has been building a variety of

tools (typically released as Python packages). These tools seek to solve data problems (e.g., Web

crawling, data acquisition, extraction), implement cross-cutting techniques (e.g., learning, visu-

alization), and help users manage their work (e.g., Jupyter notebook). As of May 2018, there

are 138,000+ packages available on pypi.org (compared to “just” 86,000 packages in August

2016). Popular packages include NumPy (49M downloads), pandas (27.7M downloads), mat-

plotlib (13.8M downloads), scikit-learn (20.9M downloads), jupyter (4.9M downloads), etc.

The community has also developed extensive software infrastructure to build tools, and ways to

manage/package/distribute tools. Examples include nose, setuptools, pypi.org, anaconda, conda-

forge, etc. They have also been extensively educating developers and users, using books, tuto-

rials, conferences, etc. Recent conferences include PyData (with many conferences per year, see

pydata.org), JupyterCon, AnacondaCon, and more. Universities also often hold many annual Data

Carpentry Workshops (see datacarpentry.org) to train students and scientists in working with Py-

Data. Finally, the PyData community has fostered many players (companies, non-profits, groups

at universities) to work on the above issues. Examples include Anaconda Inc (formerly Contin-

uum Analytics, which releases the popular anaconda distribution of selected PyData packages),

NumFocus (a non-profit organization that supports many PyData projects), datacarpentry.org

(building communities teaching universal data literacy), softwarecarpentry.org (teaching basic

lab skills for research computing), and more.

Why Are They Successful? Our experience suggests four main reasons. The first obvious reason

is that PyData tools are free and open-source, making it cheap and easy for a wide variety of users

to use and customize. Many domain scientists in particular prefer open-source tools, because

they are free, easy to install and use, and can better ensure transparency and reproducibility (than

“blackbox” commercial software). The second reason, also somewhat obvious, is the extensive

community effort to assist developers and users, as detailed earlier. The third, less obvious, reason

is that PyData tools are practical, i.e., they often are developed to address creators’ pain points.

Other users doing the same task often have the same pain points and thus find these tools useful.
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Finally, the most important reason, in our opinion, is the conscious and extensive effort to

develop an ecosystem of interoperable tools and the ease of interoperability of these tools. As

discussed earlier, solving EM problems often requires many capabilities (e.g., exploration, visu-

alization, etc.). No single tool today can offer all such capabilities, so EM (and data science in

general) is often done by using a set of tools, each offering some capabilities. For this to work, tool

interoperability is critical, and PyData appears to do this far better than any other EM platforms,

in the following ways. (a) The interactive Python environment makes it easy to interoperate: one

just has to import a new tool and the tool can immediately work on existing data structures al-

ready in memory. (b) Tool creators understand the importance of interoperability and thus often

consciously try to make tools easy to interoperate. (c) Much community effort has also been spent

on making popular tools easy to interoperate. For example, for many years Anaconda Inc. has

been selecting the most popular PyData packages (536 as of May 2018), curating and making sure

that they can interoperate well, then releasing them as the popular anaconda data science platform

(with over 4.5M users, as of May 2018).

What Are Their Problems? From data integration (DI) perspectives we observe several prob-

lems. First, even though PyData packages cover all major steps of DI, they are very weak in certain

steps. For example, there are many outstanding packages for data acquisition, exploration (e.g., us-

ing visualization and statistics), and transformation. But until recently there are few good packages

for string matching and similarity join, schema matching, and entity matching, among others.

Second, there is very little guidance on how to solve DI problems. For example, there is very

little published discussion on the challenges and solutions for missing values, string matching,

entity/schema matching, etc. Third, most current PyData packages do not scale to data larger

than memory and to multicore/machine cluster settings (though solutions such as Dask have been

proposed).

Finally, building data tools that interoperate raises many challenges, e.g., how to manage meta-

data/missing values/type mismatch across packages. Currently only some of these challenges have

been addressed, in an ad-hoc fashion. Clearly, solving all of these problems can significantly

benefit from the deep expertise of the DI research community.
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Chapter 8

Discussion and Future Work

We have discussed numerous opportunities for future work throughout this dissertation. First,

Magellan has unearthed many research problems, such as exploring multiple match definitions,

performing collaborative EM, developing expressive UIs to perform EM efficiently, etc. These

research problems can be further examined to extend Magellan with more capabilities.

Second, the production stage in Magellan should be explored further. Executing the production

stage workflows across different production environments (e.g., cluster of machines, machines

with GPUs and CPUs, etc.) and exploring methods to easily transition between the production and

development stage are important.

Third, the how-to guides developed as a part of Magellan can be used to help determine which

capabilities to add to CloudMatcher [67] to make it useful in performing EM end-to-end.

Fourth, currently we handle only the EM scenario of matching two tables. Exploring other EM

scenarios (e.g., matching entity mentions in text, privacy preserving entity matching) is important

(see more below).

Finally, applying the Magellan approach of solving EM problems (by providing how-to guides,

developing tools for pain points, etc.) to other problem domains such as data science is another

important future direction.

In addition to the above future directions, the reader may wonder if Magellan will be able to

solve all different types of EM problems out there. Our goal in this dissertation is not to show

that we can develop a single EM management system (EMMS) that unifies all existing EM ap-

proaches. In fact, given the wide variety of existing EM approaches (that use a wide variety of EM

workflows), we suspect it would be extremely difficult to build a single unifying EMMS.
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Instead, our goal is to show that (a) it is important to go beyond EM algorithms to develop

EM systems, (b) current EM systems have major limitations that prevent their widespread use in

practice, (c) we can develop a methodology and architecture, as exemplified by Magellan, to build

what we call “EM management systems” that address these limitations, and (d) doing so also raises

many novel research challenges.

Our hope is that the methodology and architecture of Magellan, as well as lessons learned

building it, can be used as a “unifying template” to develop other EMMSs. We envision that each

EMMS will address a set of related EM scenarios using a set of Python packages, but that the

systems can seamlessly reuse a large portion of one another’s code and commands. (It is important

to note that we do not think each EM scenario merits its own EMMS; an EMMS can address

multiple EM scenarios, as we discuss at the end of this section.) To make the above discussion

more concrete, in what follows we will discuss how the methodology, architecture, and lessons

of Magellan, which so far has focused on the EM scenario of matching two tables using learning

and rules, can be applied to three additional EM scenarios: matching strings, linking a table into a

knowledge base, and EM using iterative blocking.

8.1 Matching Strings

This is the problem of finding strings from a single given set or across two given sets that refer

to the same real-world entity, e.g., “David Smith” and “Dave M. Smith”. This problem is a special

case of EM, but due to its restrictive setting, it has typically been studied apart from EM, and

numerous string matching solutions have been developed [103, 50].

Most string matching solutions focus on developing similarity measures (e.g., edit distance,

Jaccard, TF/IDF, soft TF/IDF, etc) and scaling up matching a large number of string pairs. The

latter is often studied under the topic “string similarity joins” or “set similarity joins” [117, 132].

To scale, many techniques called “filtering” have been developed, such as length filtering, prefix

filtering, etc. For example, length filtering states that two strings x and y match only if their lengths

satisfy a constraint. Given this property, we can build an index on the length of the strings, then

use this index to quickly find string pairs that can possibly match.
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Figure 8.1: The EM workflow for the learning-based matching scenario.

Today string matching suffers from problems similar to those of EM, namely there are numer-

ous matching algorithms but very few effective end-to-end string matching systems. In particular,

many software packages exist that implement string similarity measures (e.g., SimMetrics [18],

SecondString [17], Jellyfish [11], Abydos [1]), but surprisingly very few open-source packages

exist that scale up these measures (Flamingo [9] is one such package). There is also no user guid-

ance, e.g., to select a good string similarity measure and to debug the filtering and matching steps.

To address these problems, we advocate building end-to-end string matching systems, and we

believe that the methodology/architecture/lessons of Magellan can be applied here. Specifically,

1. First we consider a few common string matching scenarios. One such scenario is to match

two large sets of strings A and B.

2. Next, we develop a how-to guide for this scenario. This guide proposes that the user matches

A and B in two stages: development and production. In the development state the user

tries to come up with an accurate string matching workflow. Similar to the current Magel-

lan’s workflow (see Figure 8.1), this workflow consists of cleaning/extracting/transforming,

blocking, then matching (where blocking basically implements one or more filtering strate-

gies).

3. To help the user develop this workflow, we can provide tools similar to those in Magellan.

For example, we need a tool to sample sets A and B to produce two smaller sets A′ and B′;

we need tools to help debug the blockers and matchers; and so on.

4. To help the user execute the workflow fast in the production stage, we will develop tools that

scale up steps of the workflow, on a single machine or a cluster (using Hadoop or Spark).
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Since the workflow for string matching described above is relatively similar to those of the current

Magellan system, we can consider extending Magellan to this string matching scenario.

Figure 8.2: The EM workflow for the scenario of matching using iterative blocking.

8.2 Linking a Table into a Knowledge Base

We now examine the problem of linking a table into a knowledge base (KB). A KB captures

information about a particular domain. It typically consists of a taxonomy of concepts (that cover

the domain), a set of instances for each concept, relationships among the concepts, and domain

integrity constraints. Given a table and a KB, we want to find all pairs x, y) such that x is a tuple in

the table and y is an instance in the KB and they refer to the same real-world entity. For example,

let A(name, phone, address, affiliation) be a table where each tuple describes a person. Let

K be a KB that contains a set of person instances (e.g., those of concepts such as professor and

student). Then we want to link each tuple in A to the instance in K (if any) that describes the

same person. A growing body of work (including some of our own [61]) has examined this EM

scenario, as it arises in a growing number of applications (e.g., search, data integration, question

answering, query interpretation). We believe that the current Magellan solution can be applied to

this problem, but it may also need to be extended. Specifically, we can proceed as follows:

1. Each concept in the KB K is typically described using a set of attributes (e.g., “phone”,

“organization”, etc for concept professor), so each instance is typically described using a

set of attribute-value pairs. As such, we can extract all “person” instances from K and store

them in a relational table B.

2. Our linking problem then reduces to matching tuple pairs between tables A and B, and a

Magellan-like system can be applied to this problem.
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3. If the above approach already produces sufficiently high EM accuracy (e.g., greater than a

desired threshold), then we stop. Otherwise, we need to exploit KB-specific information to

increase the accuracy. Many solutions to do this have been proposed, and we can consider

implementing those solutions as extensions to the current Magellan.

For example, in a recent work [61] we have developed the following solution. Suppose the

EM pipeline so far has predicted that a tuple x matches an instance y. To verify, classify x

into a node C in the taxonomy (e.g., “Academic Personnel”), then check if y is an instance

of a concept in the subtree rooted at C. If not, then we can conclude that x does not match y.

We can implement this solution (as well as others) as extensions to the Magellan’s pipeline

considered so far.

Building on the above ideas, we propose to develop a table-to-KB EM management system. First,

we will develop a how-to guide based on Steps 1-3 described above. This guide will subsume the

how-to guide of the current Magellan, but significantly extend it. The new EM workflow will start

with the current EM workflow of Magellan (which consists of cleaning/extracting/transforming,

blocking, then matching), but extend it with steps that exploit KB-specific information to improve

accuracy (as described above). We will still distinguish the development stage and the production

stage. In the development stage the user can use all Magellan tools, but we will also develop tools

specifically to help exploit KB-specific information.

While it is possible to extend the current Magellan to handle linking a table into a KB, we

believe it is better to build this as a separate (though related) table-to-KB EM management system

that addresses just this table-to-KB EM scenario. First, this system will already be quite com-

plex. So separating it from the current Magellan makes it simpler to manage conceptually and

implementation-wise. Second, and more importantly, we suspect that a generic table-to-KB solu-

tion may not work well for all domains. For example, a solution that works well for social media

may not work well for biomedicine, and vice versa. Thus, we may need to have a generic table-to-

KB system and ways to help users customize this system to each domain of interest. This generic

table-to-KB system can be implemented as a set of Python packages (which can rely quite heavily

on the current Magellan packages).
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8.3 EM Using Iterative Blocking

So far Magellan has considered EM scenarios that cleanly separate the blocking and matching

steps. However, some EM scenarios, such as iterative blocking [126], interleave the two. The

iterative blocking approach takes as input a table of tuples A and outputs a partition of A into

groups such that all tuples within a group match and tuples across groups do not match. Briefly,

this approach (see Figure ibworkflow) works as follows.

1. First, we use multiple blocking heuristics to partition A into multiple blocks. For exam-

ple, one heuristic partitions A based on “zipcode”; another heuristic partitions A based on

“affiliation”. Note that a tuple from A can end up in multiple blocks.

2. Next, for each block D, we preprocess it, then apply a CER (i.e., “core entity resolution”)

algorithm to partition D into groups of matching tuples. Each such group forms a “super”

tuple.

3. Next, we send the newly created “super” tuples to all the other blocks. The intuition is that if

a block B1 has two tuples s and t, then by comparing them in isolation, we may not be able

to decide that they match. However, if we have just applied the CER algorithm to a different

block B2 and determined that s matches r, then we can send the super tuple (s, r) to B1 and

this time with the information from r, we may be able to decide that (s, r) matches t (and

thus s matches t).

4. Then we repeat Steps 2-3 again, until no new super tuples are created. At this point we can

examine the groups in the blocks to produce the final partition of A.

As described, in principle we can extend the current Magellan solution to incorporate this

approach. First, the current Magellan assumes blocking will produce a set of candidate tuple

pairs. We can extend blocking to produce a set of blocks (each of which is a set of tuples), to

handle Step 1 (described above). Second, we can encapsulate Steps 2-3 in a matcher, which takes

as input a set of blocks and outputs a final partition of table A. As such, the workflow in Figure

8.2 reduces to the typical workflow of current Magellan shown in Figure 3.3.
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In practice, we do not believe extending the current Magellan is a good idea. The iterative

blocking approach is sufficiently different from the current EM approaches considered in the cur-

rent Magellan system (which clearly separates out the blocking and matching steps) that it is best

to place it in a new EM management system. However, we should still be able to apply the same

methodology/architecture/lessons in building Magellan to building this new EMMS. For example,

we need to start with a concrete how-to guide that gives step-by-step instructions to the user, then

consider how to reuse Magellan’s tools or build new tools to help the user do these steps.

For example, at the start, how do we know which blocking heuristics to use and how to debug

these heuristics? Another important decision (in the development stage) is to select and debug

the CER algorithm. The paper [126] describes an elegant iterative blocking framework. But this

framework assumes a set of blocking heuristics and a CER algorithm have already been specified.

The new EMMS should help the user make these decisions, which can have a great effect on the

ultimate accuracy of the EM process. And in helping the user make these decisions, the new

EMMS can reuse many tools provided by the current Magellan. For example, the Magellan tool

to debug a blocker (described in Section 3.2.2) can also be used here to debug and find out which

set of blocking heuristics to use. Finally, we note that the iterative blocking algorithm works in

a way that is similar to the way many EM-by-clustering algorithms work. Thus, when we build

a clustering-based EMMS, we can also consider whether that EMMS can also naturally cover the

iterative blocking algorithm.

8.4 How Many EMMSs Do We Need?

The above discussion may give the impression that each EM scenario merits its own EMMS.

We do not believe this should be the case. Instead, if a set of EM scenarios are naturally related,

they all should be addressed in a single EMMS. For example, the current Magellan can naturally

handle EM scenarios that use supervised learning, rules, and a combination of both. (Note that

each of these is actually a “group” of EM scenarios. For example, there are EM scenarios using

supervised learning that aim for high precision, high recall, high F-1, etc.) As another example,

many clustering-based EM scenarios follow sufficiently similar algorithms that they should be
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grouped into a single EMMS. And this EMMS may be able to incorporate the iterative blocking

scenario described earlier as well.

At the moment we do not yet know how many EMMSs we will ultimately need to cover most

common EM scenarios. But we expect that over time, as we attempt to extend Magellan or build

new EMMSs to cover new EM scenarios, this situation will become clearer. Further, as discussed

earlier, we believe that the methodology, architecture, and lessons of Magellan can be applied to

build these EMMSs. Finally, even though this chapter has focused on EM, we believe that this

methodology/architecture/lessons may also carry over to building systems that manage other kinds

of problems, such as schema matching, IE, and data cleaning.
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Chapter 9

Conclusions

In this dissertation we have argued that significantly more attention should be paid to building

EM systems. We then proposed Magellan a new kind of EM systems, which is novel in several

important aspects: how-to guides, tools to support the entire EM pipeline, tight integration with

the PyData eco-system, open world vs. closed world systems, and easy access to an interactive

script environment.

We have shown that realizing the above novelties raises major challenges in developing effec-

tive how-to guides, developing tools to address the pain points of the guides, and designing the

system to be “open world”, in that it can easily interoperate with other systems and tools in the

Python data science ecosystem.

We have discussed how we addressed these challenges, built, and open sourced Magellan. As

far as we can tell, Magellan is the most comprehensive open-source EM system today (August

2018), in terms of the number of features it supports. Magellan has been successfully used in sev-

eral domain science projects in academia and projects in industry. We have described these “in the

wild” experience with Magellan, as well as extensive experiments in controlled settings. Finally,

we have discussed lessons learned and many possible future research directions. Beside concrete

contributions, this dissertation also introduces a new template of research, system development,

and education for EM, with many potential impacts.
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[24] A. Arasu, M. Götz, and R. Kaushik. On active learning of record matching packages. SIG-
MOD, 2010.

[25] B. Becker, R. Kohavi, and D. Sommerfield. Visualizing the simple Bayesian classifier. In
Information Visualization in Data Mining and Knowledge Discovery, 2002.

[26] S. Behnel et al. Cython: The best of both worlds. Computing in Science Engineering,
13(2):31 –39, 2011.

[27] K. Bellare, S. Iyengar, A. G. Parameswaran, and V. Rastogi. Active sampling for entity
matching. KDD, 2012.

[28] M. Bernstein et al. MetaSRA: normalized human sample-specific metadata for the sequence
read archive. Bioinformatics, 33(18):2914–2923, 2017.

[29] P. A. Bernstein and L. M. Haas. Information integration in the enterprise. Commun. ACM,
51(9):72–79, 2008.

[30] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learning to scale up record
linkage. ICDM, 2006.

[31] L. Buitinck et al. API design for machine learning software: experiences from the scikit-
learn project. arXiv preprint arXiv:1309.0238, 2013.

[32] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables: exploring the
power of tables on the web. PVLDB, 1(1):538–549, 2008.

[33] D. Caragea, D. Cook, and V. Honavar. Gaining insights into support vector machine pattern
classifiers using projection-based tour methods. KDD, 2001.

[34] S. Chaudhuri and G. Weikum. Rethinking database system architecture: Towards a self-
tuning risc-style database system. In Proceedings of the 26th International Conference on
Very Large Data Bases, VLDB ’00, pages 1–10, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.



139

[35] C. Chen et al. Biggorilla: An open-source ecosystem for data preparation and integration.
In IEEE Data Eng. Bulleting. Special Issue on Data Integration, 2018.

[36] P. Christen. Febrl: A freely available record linkage system with a graphical user interface.
HDKM, 2008.

[37] P. Christen. Data Matching. Springer, 2012.

[38] P. Christen. Data Matching: Concepts and Techniques for Record Linkage, Entity Resolu-
tion, and Duplicate Detection. Springer, 2012.

[39] P. Christen. A survey of indexing techniques for scalable record linkage and deduplication.
IEEE TKDE, 24(9):1537–1555, 2012.

[40] F. W. Christopher-Johannes Schild, Simone Schultz. Linking deutsche bundesbank company
data using machine-learning-based classification. 2017.

[41] X. Chu et al. Distributed data deduplication. In PVLDB, 2016.

[42] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data deduplication. PVLDB, 9(11):864–875,
2016.

[43] W. Cohen. A mini-course on record linkage and matching, 2004.
http://www.cs.cmu.edu/~wcohen.

[44] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, and N. Tang.
Nadeef: A commodity data cleaning system. SIGMOD, 2013.

[45] S. Das et al. The Magellan data repository. https://sites.google.com/site/

anhaidgroup/projects/data.

[46] A. Das Sarma, A. Jain, A. Machanavajjhala, and P. Bohannon. An automatic blocking
mechanism for large-scale de-duplication tasks. CIKM, 2012.

[47] D. Deng et al. The data civilizer system. In CIDR, 2017.

[48] A. Doan et al. Human-in-the-loop challenges for entity matching: A midterm report. In
HILDA, 2017.

[49] A. Doan et al. Toward a system building agenda for data integration and cleaning. In IEEE
Data Engineering Bulletin, Special Issue on Data Integration (to appear), 2018.

[50] A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1st edition, 2012.

[51] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,
2012.



140

[52] X. L. Dong and D. Srivastava. Big Data Integration. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool, 2015.

[53] M. Ebraheem et al. DeepER–deep entity resolution. arXiv preprint arXiv:1710.00597,
2017.

[54] B. H. Elan Segarra and Others. Matching overview and examples. https://goog.gl/6rPboz.

[55] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A survey. IEEE
Transactions on Knowledge and Data Engineering, 19(1):1–16, 2007.

[56] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey.
IEEE TKDE, 19(1):1–16, 2007.

[57] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical
Society, 64(328):1183–1210, 1969.

[58] M. Fortini, M. Scannapieco, L. Tosco, and T. Tuoto. Towards an open source toolkit for
building record linkage workflows. In In Proc. of the SIGMOD Workshop on Information
Quality in Information Systems, 2006.

[59] M. J. Franklin, A. Y. Halevy, and D. Maier. From databases to dataspaces: a new abstraction
for information management. SIGMOD Record, 34(4):27–33, 2005.

[60] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. CrowdDB: answering
queries with crowdsourcing. SIGMOD, 2011.

[61] A. Gattani et al. Entity extraction, linking, classification, and tagging for social media: A
Wikipedia-based approach. PVLDB, 6(11):1126–1137, 2013.

[62] C. Ge et al. Private exploration primitives for data cleaning. arXiv preprint
arXiv:1712.10266, 2017.

[63] L. Getoor and R. Miller. Data and metadata alignment, 2007. Tutorial, the Alberto Mendel-
zon Workshop on the Foundations of Databases and the Web.

[64] M. Goetz. The forrester wave: Data quality solutions. In Forrester Quarterly Report, 2015.

[65] I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor, A. Clement, and S. Hand. Musketeer:
all for one, one for all in data processing systems. In EuroSys, 2015.

[66] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X. Zhu. Corleone:
Hands-off crowdsourcing for entity matching. SIGMOD, 2014.

[67] Y. Govind et al. Cloudmatcher: A cloud/crowd service for entity matching. In BIGDAS,
2017.



141

[68] J. Heer et al. Predictive interaction for data transformation. In CIDR, 2015.

[69] M. A. Hernandez and S. J. Stolfo. The merge/purge problem for large databases. In Proc.
of the SIGMOD Conf., pages 127–138, 1995.

[70] M. A. Hernández and S. J. Stolfo. Real-world data is dirty: Data cleansing and the
merge/purge problem. Data Mining and Knowledge Discovery, 2:9–37, 1998.

[71] H. Herodotou and S. Babu. Automated sql tuning through trial and (sometimes) error. In
Proceedings of the Second International Workshop on Testing Database Systems, DBTest
’09, pages 12:1–12:6, New York, NY, USA, 2009. ACM.

[72] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu. Starfish: A
self-tuning system for big data analytics. In In CIDR, pages 261–272, 2011.

[73] F. Hueske, M. Peters, A. Krettek, M. Ringwald, K. Tzoumas, V. Markl, and J.-C. Freytag.
Peeking into the optimization of data flow programs with mapreduce-style udfs. In ICDE,
2013.

[74] I. F. Ilyas and X. Chu. Trends in cleaning relational data: Consistency and deduplication.
Foundations and Trends in Databases, 5(4):281–393, 2015.

[75] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz,
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