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abstract

Nuclear forensics is a nuclear security capability that is broadly defined as material

attribution in the event of a nuclear incident. Improvement and research is needed for

technical components of this process. One such area is the provenance of non-detonated

special nuclear material; studied here is spent nuclear fuel (SNF), which is applicable

in a scenario involving the unlawful use of commercial byproducts from nuclear power

reactors. The experimental process involves measuring known forensics signatures to

ascertain the reactor parameters that produced the material, assisting in locating its

source. This work proposes the use of statistical methods to determine these quantities

instead of empirical relationships.

The purpose of this work is to probe the feasibility of this method with a focus on

field-deployable detection. Thus, two experiments are conducted, the first informing the

second by providing a baseline of performance. Both experiments use simulated nuclide

measurements as observations and reactor operation parameters as the prediction goals.

First, machine learning algorithms are employed with full-knowledge training data, i.e.,

nuclide vectors from simulations that mimic lab-based mass spectrometry. The error in

the mass measurements is artificially increased to probe the prediction performance with

respect to information reduction. Second, this machine learning workflow is performed

on training data analogous to a field-deployed gamma detector that can only measure

radionuclides. The detector configuration is varied so that the information reduction

now represents decreasing detector energy resolution. The results are evaluated using

the error of the reactor parameter predictions.

The reactor parameters of interest are the reactor type and three quantities that

can attribute SNF: burnup, initial 235U enrichment, and time since irradiation. The

algorithms used to predict these quantities are k-nearest neighbors, decision trees, and

maximum log-likelihood calculations. The first experiment predicts all of these quantities



xv

well using the three algorithms, except for k-nearest neighbors predicting time since

irradiation. For the second experiment, most of the detector configurations predict

burnup well, none of them predict enrichment well, and the time since irradiation results

perform on or near the baseline. This approach is an exploratory study; the results are

promising and warrant further study.
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1 let them eat steak: a chapter for the

non-scientist

This chapter was written to convey my PhD work to the general public and was supported
by the Wisconsin Initiative for Science Literacy (WISL). I have much gratitude to WISL
and Prof. Bassam Shakhashiri for the editing assistance and the opportunity.

Writing this chapter is a also result of me keeping a promise to myself, and so despite its
cheesy approach to telling a tale of science, it is a beautiful and important moment for me.
I have a lot of people to credit for helping bring this story from a parallel universe into
reality: Anna Stephenson for the illustrations and helping me convert my graphics from
sterile science to adorable art; Robin Kinchen Cenac (and Reya!) and Louise Opotowsky
for overall creative guidance and for suffering through highly technical explanations of my
work to prepare me for writing this chapter; Prof. Paul P.H. Wilson, Almost-Dr. Kalin
Keisling, Dr. Dinh Truong, and Dr. Richard Rojas Delgado for feedback and suggestions
on my fake country names; and last, never least, but always the littlest, Ninjita Binjita,
for the all-important role of lap warmer.

Narrator:
Welcome, curious companions! Our good friend has got a tale to tell. But they cannot
tell this story on their own, so they asked me to give you some background and science
along the way.

Be warned: the country names are drawn from a parallel universe with different nations
and international relations. Any similarities to countries that exist in this universe
are purely coincidental. Additionally, there are fantastical details throughout the tale,
and the capability of our curious companions to decipher between fantasy and science
is presumed. This parallel universe also doesn’t have an Earth with the same climate
crisis, so the steak in this analogy is definitely from a happy cow on a regenerative farm.

Background & Introduction

Many underappreciated jobs keep a civilization functioning. For example, excluding
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New Orleanians and other People of the Pothole (yes, New Orleans exists in the parallel
universe), you probably don’t think about how you hold the expectation that your roads
are drivable. There are those responsible for moving your garbage out of sight and mind,
there are also people who clean up roadkill, and there are those who clear the shards
of a car accident with fascinating speed. In fact, when any civic role functions well, it
isn’t noticed. It is an odd result of a well-functioning society that the most essential
components remain unseen until they no longer function. Jobs like this exist at the
federal level, generally unseen, because they are so crucial they regularly get bipartisan
support. This is a story about those people.

Now to our friend…

Imagine the scene: they were sitting in their backyard in perfect weather,
breeze blowing, flowers flowering, and chipmunks chirping, eyes closed as
the sun warms their skin. Suddenly they felt a chill, and opened their eyes
to a dark sky.

Except it wasn’t a dark sky, it was a drone hovering over them with a
package for delivery! C’est mystérieux! They hadn’t ordered anything.
What could it be?

Why, it was a package of nuclear material (Narrator: well-packaged, because
we are not irradiating our friend) delivered anonymously. Turns out, they
unknowingly intercepted the attempted smuggling of nuclear material to
construct a weapon inside the borders of United Fissions of Uranium (the
UFU). And now our friend is officially in the middle of an international
drama. What to do? Who to tell?

Narrator:
I actually don’t know who they should have told; federal jurisdictional decisions for
nuclear incidents is not the drama being told today. But the authorities quickly found
out and figured that out for themselves.
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Our friend’s day is quite ruined. Illustration by Anna Stephenson

This turns out to be a misdelivered package, because nuclear terrorists are
people too…that sometimes make typos. The UFU authorities believe that
there are many more packages on their way to different locations, but having
no intel on where to intercept them, they need to know where this material
came from to locate the terrorist group responsible. They need nuclear
security experts, and FAST.

Narrator:
Enter: nuclear security. This is not to be confused with nuclear safety, that is, making
sure nuclear power reactors behave and do not have accidents that harm the environment



4

and the beings in it—a more-than-worthy effort, but not the one being discussed here.
The nuclear security enterprise instead focuses on preventing or mitigating undesirable
outcomes of a different variety, like nuclear terrorism. Nuclear security’s goal is keeping
all of the nuclear material in the world inside a regulatory pipeline, so none of it gets
into the hands of people who want to do others harm.

In this universe:
A high profile example of nuclear security at work, at least on a diplomatic level, is the
Joint Comprehensive Plan of Action1, better known as the Iran nuclear deal. Personal
opinions (if you have them) and recent news (if you’ve seen it) aside, its purpose is
to keep a closer eye on the country to be sure they aren’t developing the capabilities
necessary to make weapons. Another part of the nuclear security effort is a strong
nuclear forensics capability. Nuclear forensics begins after a nuclear incident occurs,
which sadly, happens. This incident can be some intact material drone-delivered to a
friend by mistake, or it could be something even worse, like the detonation of a nuclear
weapon. Just in 2019, the International Atomic Energy Agency confirmed malicious
intent for six incidents of trafficked nuclear material2.

Most might think of forensics as catching a murderer, but this is more like catching
the nuclear smuggler. Given some nuclear material (a body) and composition of the
material/how it was encased and transported (the clues around it like blood and
fingerprints), how/from where was the nuclear material obtained and/or smuggled (what
conclusions can be drawn about the murder)? In both situations, forensics work ideally
leads to blaming, with court-admissible proof, someone for the illegal act. Fingerprints
of humans are important to a murder investigation, and likewise, there are fingerprints
of nuclear materials that can provide their point of origin and/or where they were
processed.

Slight correction: They need nuclear forensics experts, and FAST.

These UFU authorities are in luck, since our friend happens to be a hobby

1For more information on the JCPOA, see this fact sheet
2Here is the 2020 document that contains this information

https://www.armscontrol.org/factsheets/JCPOA-at-a-glance
https://www.iaea.org/sites/default/files/20/02/itdb-factsheet-2020.pdf
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nuclear forensics scientist! As a citizen scientist, they cannot use actual
nuclear materials or well-equipped laboratories to test their methods and
ideas. Our friend instead uses their software development and simulation
skills to study their favorite topic of attributing mysterious nuclear materials
to their point of origin. This is now their chance to unveil a research method
to the authorities and see if they can help prevent a nuclear weapon from
being detonated in the UFU in time.

But the authorities are not sure. Some experimental method developed by a
grad student hobby scientist surely wouldn’t work? Also, it’s not validated,
so it wouldn’t hold up in court. But the race to save lives is on. “What,”
they ask, “do ya got cookin’?”

Narrator:
I’ll tell you all about what our friend has cookin’: some steak. But hold on, I’ll get
there in a minute.

From a visual inspection, the nuclear material in question has been determined to be
nuclear fuel after it’s been loaded into, used in, and removed from a nuclear reactor. By
performing some to-be-discussed nuclear forensics approaches on this material, we can
figure out all of the details of this fuel related to its creation, time in the reactor, and
how long it has been out of the reactor.

First, I need to define some terms for you. There are four main concepts that are covered:
reactor type, burnup, enrichment, and time since irradiation. Ideally, the process of
determining these parameters can pinpoint a sample of nuclear fuel to the exact reactor
it came out of!

Let’s consider the nuclear fuel as food, specifically, steak. We can think of the reactor as
the type of pan our steak was cooked in. If it’s cast iron, it’ll make a different steak than
a $10 nonstick pan that’s only nonstick for 3 uses (the parallel universe shares some
similar woes). The same is true for nuclear fuel; it looks quite different depending on
which reactor type it spent time in. Our friend focuses on three main types of nuclear
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If you imagine nuclear fuel as steak, you might be able to figure out the
reactor that made it! Illustration by Anna Stephenson

reactors, called pressurized water reactors (PWRs), boiling water reactors (BWRs), and
pressurized heavy water reactors (PHWRs)3; different countries use one or a mix of
these three main technologies. (More than these three exist, but these are the ones our
friend wants to focus on.)

There’s also a measurement called burnup. In steak-talk, this is how well-done it is (more
accurately, it is how much energy your steak produces, but it is more “well-done” as it
cooks longer and produces more energy), and would be measured in energy produced

3We won’t cover any details about these reactors here, but if you’re curious about different types of
nuclear reactors, here is a great summary.

http://www.world-nuclear.org/uploadedFiles/org/WNA/Publications/Nuclear_Information/Pocket%20Guide%20Reactors.pdf
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per unit of raw steak. In nuclear-talk, it’s measured in energy (mega- or gigawatt-days)
per metric ton of initial uranium (MWd/MTU or GWd/MTU).

Next, the enrichment, meaning % uranium-235 (235U) enrichment, which refers to how
much of this type of uranium is in the nuclear fuel when it’s freshly made. A lot of the
time, nuclear engineers refer to a specific element from the periodic table with a mass
number attached, like 235U, as nuclides, because the concept of nuclides emphasizes
nuclear properties, which can differ drastically even though they are the same element
on the periodic table. “U” is shorthand for uranium, and the mass number 235 refers to
the number of protons (92) plus neutrons (143) in the nucleus of the atom. The protons
have a positive charge, and the neutrons have no charge; the protons are balanced by
the negative charge of an equal number of electrons, but we aren’t worried about those
right now. 235U is a special nuclide that nuclear engineers call fissile4: when it absorbs
an extra neutron, it splits into two atoms and releases some energy. When this energy
is harnessed into our electrical grid, it’s great, but that energy can also be harnessed
into a weapon, which is not great. This is like the calorie content or fat content of your
steak. The more fat, the more calories, and so the more energy it can supply. In nuclear
fuel, more fissile material in the form of a higher 235U enrichment means that the fuel
can provide more energy than a fuel of lower enrichment. Uranium naturally has 0.7%
235U in it, but commercial nuclear fuel is commonly enriched up to 5%.

Last, the time since irradiation measures how long the nuclear fuel, or steak, has been
cooling after it leaves the reactor, or pan. Nuclear fuel is intensely radioactive when
it leaves the reactor, which produces a lot of heat, so it needs to cool off for a few
years to be able to be stored longer term without heat dissipating measures (which is
submerging the nuclear fuel in water; think of the fuel as taking a several year vacation
in a swimming pool). This is just like our steak needing to rest a little before it’s
consumed. And that’s about as far as this metaphor can go, because aside from some
recent Godzilla movies, I don’t think any of us are eating nuclear waste (in this universe,
at least).

4For more information on nuclides and what fissile means, check out this link.

https://whatisnuclear.com/isotopes.html
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If a nuclear material spent time in a nuclear reactor, these four parameters, part of
what we will call the reactor operation history, are important to identifying where it
came from. Next, we will talk about how identifying where it came from can happen in
an investigation.

It’s as simple as this ↑. Illustration by Anna Stephenson

After some of-unknown-origin nuclear material believed to be from a reactor enters
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our consciousness, some measurements will be taken by technicians working with the
government. For example, this could be something called gamma spectroscopy, which
is pictured in the process below. This detector measures a type of radioactivity called
gamma rays5, and gamma rays have different energies. So the material is just sitting
there spitting out gamma rays left and right and up and down and the detector is just
sitting there measuring the ones that hit it. It collects counts of gamma rays associated
with an energy; this is called a gamma spectrum. Gamma rays of certain energies are
known to come from certain nuclides.

Knowing how much of certain radioactive nuclides is in a material can tell us about the
reactor operation history: the reactor type (pan), burnup (doneness), enrichment (fat),
and time since irradiation (rest time). After determining these parameters, a specialist
can pinpoint a specific reactor somewhere in the world (via access to a reactor history
database) that created the material and investigators can use that to move forward with
their work.

Methodology

In the time it took to get through the lesson above, a foe had enough time
to arrive on the scene: an official government scientist. This scientist has a
different priority: precision over speed. Our friend’s research is driven by
“how fast can I get an answer?”, whereas the scientist is driven by “what’s
the most correct answer?” These two priorities in this situation are at odds,
but both equally important. The authorities need an answer, and fast, but
it needs to be the right one because otherwise many UFU lives are at risk.

Our friend was in the middle of telling the authorities about their fast nuclear
fuel-identifying machine learning approach when this scientist arrived, so
they got to listen in:

“Machine learning is a field under the umbrella of artificial intelligence, which

5Gamma rays are really cool, and if you read this article, you’ll think so too!

https://www.symmetrymagazine.org/article/incredible-hulking-facts-about-gamma-rays
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allows computers to imitate human behavior. Scientists are using machine
learning in many fields to solve complex problems, and so I wanted to see if
it could be useful in my favorite area of study: nuclear forensics.”

Pointing to the top of the diagram, they say, “So, I first simulated hundreds
of thousands of examples of nuclear fuel scenarios: different reactor types,
many levels of burnup, different levels of 235U enrichment, and times since
irradiation spanning up to 16 years. Each simulation gives me lists of
nuclides and their measurements that are important to determining those
four parameters. Machine learning professionals call these lists of nuclides
the features, and the parameters are labels. All together, it’s called a training
data set.”

Pointing to the middle, “Next, this training data is put into a machine
learning algorithm6, which is how people teach computers to teach themselves
with some software method. Using the training data set, the algorithm
creates a model, which is usually a model we can’t see or understand as
humans. They are quite secretive creatures, don’t you think? Anyway,
there are many different types of algorithms, and I have tested out some
simple ones to see if this approach is even remotely feasible. These also
happen to be the less-secretive type of algorithms so we can understand
what the models are doing. One seems to work really well, called maximum
log-likelihood (MLL) calculations7, and I think it’s good enough to use to
save UFU.”

Last, they point to the bottom of the diagram. “So now we have the
model. If we take the same measurements that exist in the training database
features, then we can use the model to give us a predicted label, in this case
burnup. But because I’m doing this experimentally, I know the actual label
because I simulated this unknown nuclear material. So in this way, I can
measure the prediction errors and refine my method.”
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Again, it’s as simple as this ↑. Illustration by Anna Stephenson
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The UFU authorities’ eyes glazed over, but the scientist was excited. They
were thinking, “My oh my, we could use this! I have a database just like this
of the most perfect simulated nuclide measurements that I can use back at
the lab! I never really knew what to do with it, so I took a screenshot of a
few entries and used it as my desktop background; databases are beautiful.”

But our friend didn’t think the scientist could take the proper measurements
in time. Our friend uses this method with a different kind of training set,
one that is created by simulating detectors that can take measurements in
minutes (Narrator: remember the gamma spectroscopy from above?), with
the expectation that this would help in a real world scenario like this one.
The gamma detectors measure the radioactivity of the sample, which is
more difficult to get a direct answer from than the scientist’s method in the
lab, but our friend is all about speed. The measurements the scientist needs
to take to match the sample with their training database involve dissolving
the material and making many different measurements of the nuclides using
a technique called mass spectrometry8. It gives super accurate results that
will do well with the machine learning method, but the measurements take
weeks.

They fought about this for about an hour, which was silly because our friend
could have taken the gamma measurements in a fraction of that time and
been off to use their machine learning model. But, tensions were high, egos
were flaring, and everyone wanted to save lives.

The UFU authorities deglazed their eyes and looked at each other, then
at our friend, then at the scientist. After some telepathic decision making,
they said, “We choose……”

6For a better introduction to machine learning, read this!
7If you have institutional access to journals, here’s the method’s first paper.
8I tried to find a non-company-affiliated source that explained this simply, but failed. This is a

good explanation, though, if you’re curious about mass spectrometry.

https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
https://www.tandfonline.com/doi/full/10.1080/00295450.2017.1401442
https://www.jeolusa.com/RESOURCES/Analytical-Instruments/Mass-Spectrometry-Basics
https://www.jeolusa.com/RESOURCES/Analytical-Instruments/Mass-Spectrometry-Basics
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Narrator:
Now, you, curious companion, must choose your own adventure. Do we use our friend’s
speedy strategy or do we trust the scientist’s careful course of action? Remember, we
want to be fast, which our friend can most likely do, but we also want to be right, which
the scientist can most likely do.

Illustration by Anna Stephenson

“…our friend!” Now the race is on to
measure the material with a gamma
detector and predict the fuel’s reactor
operation history. For a hobbyist, our
friend has a pretty great gamma detec-
tor: a portable high-purity germanium
detector. It can detect the gamma rays
very precisely, and our friend always
wants to use the best detector they can
get their hands on.

“…the scientist!” Now the scientist takes
the nuclear fuel to start making mea-
surements. Back in their fancy state-of-
the-art lab with all the mass spectrome-
try equipment a radiochemist could ever
dream of, the scientist and their team
get started. One week goes by, two
weeks go by. And by the third week the
scientist and their team had measured
29 nuclides in the nuclear fuel sample
to high precision!
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This process doesn’t require
advanced training. Illustration by

Anna Stephenson

Using the technical assistance of the
UFU authorities, our friend was able
to protect themself against radiation
and take the sample out of its packag-
ing to get the best measurements pos-
sible. They let the detector measure
the sample for 10 minutes, et voilà: a
gamma spectrum of the sample. Our
friend then took the gamma spectrum
and compared it against their machine-
learned model that was created using a
training set composed of 450, 000 simu-
lated gamma spectra of different types
of nuclear fuel. And out popped an
answer:

This process is complicated, but
here are some snapshots.
Illustration by Anna Stephenson

Now they were ready to borrow our
friend’s machine learning method to
predict the parameters of the reactor
operation history. The scientist then
took the list of 29 nuclides and their
measurements and compared that infor-
mation against their machine-learned
model that was created using a training
set composed of 450, 000 of the exact
same 29 simulated measurements of dif-
ferent types of nuclear fuel. And out
popped an answer:
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Results

Reactor Type BWR
Burnup 44.02 GW d/MT U

Enrichment 2.04 % 235U
Time Since Irrad 5.34 years

“Ok! We got it!” said our friend. Given
these values, some of the UFU author-
ities specializing in worldwide reactor
operational history databases were able
to determine this came from a reactor
in the Democratic People’s Republic of
Thoria (DPRT).

This made sense to everyone because the
DPRT had been a threat for some time.
Everyone knew their missiles couldn’t
get to the UFU, so they must have con-
cocted a different plan.

It was a matter of hours before the
UFU had hundreds of DPRT conspir-
ators in custody. With the culprits
contained, the drone-delivered material
didn’t make it to the bomb assembly
location, and the day was saved!

…Except, three weeks later, the capital
city of Curiumville was bombed.

Reactor Type BWR
Burnup 44.02 GW d/MT U

Enrichment 4.11 % 235U
Time Since Irrad 4.65 years

“Ok! We got it!” said the scientist.
Given these values, some of the UFU
authorities specializing in worldwide re-
actor operational history databases were
able to determine this came from a re-
actor in …GASP!

The Commonwealth of Puerto Plutonio,
a Territory of the UFU?! This made
no sense! We thought they liked being
colonized!

It was now a rush to track down the
conspirators since there wasn’t much
intelligence data on them. The UFU
was scrambling.

And in the middle of the scramble, the
capital city of Curiumville was bombed.
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Narrator:
Now, curious companion, you are both permitted and encouraged to read the other
adventure.

After weeks went by the UFU authorities with the help of the scientist were able to
confirm the actual parameters:

Reactor Type BWR
Burnup 44.02 GWd/MTU

Enrichment 4.11 % 235U
Time Since Irradiation 4.86 years

Our friend’s experimental machine learning method isn’t so bad for a method developed
with little resources! Their gamma spectroscopy-based approach predicted the correct
reactor type and burnup. Most significantly, though, their method did not predict
the 235U enrichment well, and this is what led to the false blame on the DPRT. (The
time since irradiation was also 6 months too long, but didn’t heavily impact the false
attribution like the enrichment did.) The scientist’s mass spectrometry-based approach
was clearly more accurate for all four parameters. The reactor type, burnup, and
enrichment were correctly predicted. Although the time since irradiation was off by 2-3
months, this error didn’t result in any false blame being allocated.

In both versions, luckily, the bomb didn’t detonate and no one died. It was too rushed
of a job, and with the nuclear test ban treaty, no one actually knows their nuclear
weapons WILL work. You didn’t think our friend’s tale was going that dark, did you?

“Hey,” the scientist said to our friend, “I’m famished.” Our friend said, “Oh
goodness, me too!” They looked at each other, and after some telepathic
decision making, agreed on a nice steak.
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The end. Illustration by Anna Stephenson

Discussion & Conclusions

This machine learning-based research protocol is designed to answer the question:
How does the ability to determine forensic-relevant spent nuclear fuel attributes using
machine-learning techniques degrade as less information is available? The dissertation
written after this chapter answers that in much more detail than the two scenarios
presented here, but I hope to have communicated the basics of what I’m doing to a
general audience. I actually don’t use any real-measured samples by which to compare
the different types of training sets (the samples in this story are a part of my work, but
simulated), but I do use a real-world set of test cases with the 29 nuclide mass training
set. There are many challenges with doing this yet to be resolved, so it is not presented
here in a research snapshot.
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The lack of a feel-good resolution in this tale is not meant to reduce confidence in our
national nuclear forensics capability or my research project, but rather to show how
science does not necessarily result in clear-cut answers to questions. Much of the time,
asking a question and answering it using the scientific method creates more questions
than answers. For example, there are questions about why the gamma spectra approach
gave such a wrong enrichment prediction (something echoed in my results, which are
aggregate statistics of 450, 000 cases versus the one case presented here). Another
question might be whether a 3-month or 6-month time since irradiation prediction error
is too large of an error, or an acceptable error.

Author Commentary

Last, I wanted to make a short statement about my work on an even broader scale.

Every scientist should take note of the ethical and political implications of their work.
Yes, I said it: science is political9! Although the morality of preventing or mitigating
a nuclear disaster is not necessarily in question, the nuclear field (both commercial
power and defense/the nuclear weapon program) is far from blameless when it comes to
destroying human bodies and the environment. The mining industry caused uranium
contamination and early death for many Diné in Navajo Nation and payouts/cleanup
only began recently10, plutonium production during World War II has resulted in the
displacement and illness of US citizens around Hanford, WA, and government-sanctioned
human radiation experiments were conducted on unwitting people and children. None
of this (and so much more that’s not mentioned here) comes as a surprise knowing the
entire nuclear enterprise sits on a foundation of well-documented racism11. Last, the
obvious must be stated: the US is the only country to ever deploy a nuclear weapon
against another country, where the human toll was undeniably brutal12. This and much
more is documented in a list of resources curated by Kalin Kiesling with help from the

9Everyone knows it!
10For more information about the 500 abandoned mines and the cleanup efforts, read more here.
11Here’s a good article on nuclear’s racist roots.
12And Black American journalists exposed the government’s lies about it

https://www.scientificamerican.com/article/yes-science-is-political/
https://www.epa.gov/navajo-nation-uranium-cleanup/abandoned-mines-cleanup
https://thebulletin.org/2020/08/a-call-for-antiracist-action-and-accountability-in-the-us-nuclear-community/
https://www.nytimes.com/2021/08/09/science/charles-loeb-atomic-bomb.html?smid=url-share 
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nuclear community13.

None of this means that nuclear power as an energy source is inherently evil, but the
industry and our government must acknowledge and take responsibility for abusing
both the land and the beings on it. It is hard to hold this knowledge and still want
to participate in nuclear science, but if more people in nuclear science and industry
also hold this knowledge, then maybe taking life and land for granted can be less of
a norm. Of course, better policy is always a stronger influence. Why am I saying all
of this inside a(n unofficial) chapter in a nuclear engineering dissertation? Science is
political, and so I must be too.

13The resources are curated in this Google document.

https://docs.google.com/document/d/e/2PACX-1vQuRSix5J31G4yhH-Z0kwmlpXe6OgS9MXg6l-LBEOVNDPDAPVivPSrJ7A71TMCsW2EdvGMepZCcwdTP/pub
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2 introduction

The realm of nuclear security involves parallel efforts in nonproliferation (verification

of treaty compliance, monitoring for smuggling, proper storage and transportation of

nuclear materials), cyber security, minimizing stocks of weaponizable materials, disaster

response training, and nuclear forensics. Nuclear forensics is the process by which

nuclear material out of regulatory control is analyzed to provide attribution. All of these

efforts have been continually improving, but there was an unaddressed gap regarding

the ability of the United States (US) to coordinate and respond to a nuclear incident,

especially with the technical portion of nuclear forensics: characterization and analysis.

After all, the first textbook on the topic was published in 2005 [1]. In 2006, the US

Department of Homeland Security (DHS) founded the National Technical Nuclear

Forensics Center (NTNFC) within the Domestic Nuclear Detection Office (DNDO), with

the mission to establish a robust nuclear forensics capability by attributing radioactive

materials with demonstrable proof. This endeavor was and is highly dependent on

inter-agency cooperation. In 2017 - 2018, the DNDO was absorbed into the newer

Countering Weapons of Mass Destruction (CWMD) office, and in 2019, much of the

nuclear forensics research operation was moved to multiple offices within the Department

of Energy (DOE) National Nuclear Security Administration (NNSA).

There is much overlap between nuclear nonproliferation and safeguards and nuclear

forensics, although they are distinct nuclear security disciplines. Both fields are concerned

with radiological and isotopic measurements of nuclear materials. So, areas like material

collection techniques and detector technology are broadly beneficial to both fields.

However, much of the time, safeguards must probe a nuclear material or process in a

non-destructive manner or in a way that does not reveal proprietary technology; hence,

safeguards has limitations that nuclear forensics does not. Therefore, radiochemical

separations (a destructive process for material characterization) and identifying forensic
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signatures are areas important to nuclear forensics. These approaches within nuclear

forensics can vary based on whether the material being collected is pre-detonation (e.g.,

spent nuclear fuel (SNF)) or post-detonation (e.g., bomb debris).

As mentioned, nuclear forensics is deployed as a response to a nuclear incident. Given

that the incident could vary from a weapon detonation to an unknown type of nuclear

material being found outside of regulatory control, there are many approaches that a

nuclear forensics investigation could take. The incident type that this work addresses is

that of interception of intact SNF, perhaps being transported or smuggled into a country.

The design of the study reflects this scenario, where there is a small amount of spent

fuel from a common commercial reactor. This could be on its way to being reprocessed

to extract the plutonium (in certain cases where there is enough fissile material), or it

could be intended for a "dirty bomb", or radiological dispersal device.

This project uses statistical methods to model the production history of a nuclear

material using measurements of nuclides present in SNF. The SNF is identified in

this work by focusing on four characteristics in particular that can potentially provide

material attribution: reactor type, burnup, initial uranium-235 (235U) enrichment, and

time since fuel irradiation.

1. The reactor type is classified as one of the three most common types of com-

mercial power reactors: pressurized water reactor (PWR), boiling water reactor

(BWR), or pressurized heavy water reactor (PHWR).

2. The burnup describes how much energy was produced by the fuel, taking on

the units megawatt-days (or gigawatt-days) per metric ton of heavy metal (or

initial uranium); it is referred to in this work as MWd/MTU , and sometimes

GWd/MTU .

3. The enrichment is the percentage of 235U with respect to the entire amount of

uranium in the fuel, and is reported as % 235U.
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4. Lastly, the time since irradiation is defined as how long the fuel has been out

of the reactor core, and is measured usually in days, but sometimes years. It may

also be referred to as cooling time.

While the methodology in this exploratory work is limited to the scenario where

the SNF in question is from three chosen types of common commercial power reactors

(PWRs, BWRs, PHWRs), it could be expanded or applied to other scenarios. In the pre-

detonation realm with SNF, there are several commercial reactor types not considered,

there are small modular reactors in development that would be of interest, and there is

also the exclusion of research reactors. Moving beyond SNF, other nuclear materials

are sometimes of interest, e.g., uranium ore concentrate (UOC) or highly enriched

non-irradiated uranium. This approach could also be applied to post-detonation as well,

perhaps using measured swipe samples from a weapons detonation to answer questions

about the where the nuclear material in the weapon may have come from.

2.1 Motivation

Preventing nuclear terrorism is important work that has relevance along the entire

lifetime of nuclear material, from the beginning (e.g., enrichment facility inspections) to

the end (e.g., SNF management). The International Atomic Energy Agency (IAEA)

tracks reports of radioactive material out of regulatory control via the Incident and

Trafficking Database (ITDB) [2], and the incidents that are confirmed or likely to

be related to trafficking or malicious use are summarized in Figure 2.1. These are

the circumstances in which a robust nuclear forensics capability is beneficial, since a

combination of nuclear forensics and intelligence is required to investigate such incidents.

Nuclear forensics is an important aspect of deterring nuclear terrorism even though it

is not, at first glance, obvious preventative nuclear security. The most common defense
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Figure 2.1: Incidents reported to the IAEA ITDB related to malicious use. Included
are highly enriched uranium (12), plutonium (2), plutonium-beryllium neutron sources
(5) [2]

of the field is that nuclear forensics deters state actors, not terrorist organizations.

While it is true that a strong capability encourages governments to be more active in

prevention of nuclear terrorism, it can also deter the terrorist organizations as well by

increasing their chances of failure. Small destructive successes tend to be more valued

than high-risk mass destruction. Nuclear forensics can also assist in cutting off certain

suppliers of nuclear materials or technologies (e.g., nuclear specialists that are only

involved for financial reasons, access to state suppliers), building a concrete barrier to

nuclear terrorism. Therefore, nuclear forensics is considered to impede nuclear terrorism

in both tangible and abstract ways [3].

Following the prevention value of nuclear forensics, it is important to understand
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the process of the technical portion of the investigation and how that can be improved.

In the event of a nuclear incident, such as the retrieval of stolen special nuclear material

(SNM) or the detonation of a dirty bomb, it is necessary to learn as much as possible

about the source of the materials in a timely manner. In the case of non-detonated

SNM, knowing the processes that produced it is crucial to determine the chain of

custody of the interdicted material. Section 2.1.1 covers the specific needs of the nuclear

forensics community for SNF provenance, and Section 2.1.2 discusses how computational

approaches are useful, with a focus on why statistical methods in particular are being

pursued.

2.1.1 Needs in Nuclear Forensics

The process of technical nuclear forensics includes the analysis and interpretation of

nuclear material to determine its history, whether that be intercepted SNF, UOC, or

the debris from an exploded nuclear device. After the technical portion is complete,

intelligence data is used to aid in material attribution; this is the overall goal of nuclear

forensics.

After a nuclear incident, the material or debris is sampled and evaluated through

many techniques that provide the following information: material structure, chemical

and elemental compositions, and radioisotopic compositions and/or ratios. These

measurements or ratios comprise the forensic signatures of the sample in question.

These signatures can be analyzed with specific domain knowledge; for example, UOC

will have trace elements depending on where it was mined from. They can also be

analyzed against a materials reference database in the case of SNF.

Measurement needs and techniques vary vastly depending on the material, as does

the type of signature. This study focuses on non-detonated materials, specifically, SNF.

Tracing the source to an entity or state depends on determining if some intercepted
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SNF is from an undisclosed reactor or a commercial fuel cycle. This can be done by

following the steps shown in Figure 2.2. First, select chemical and elemental signatures

and isotopic ratios are obtained, and these measurements are compared to those in

an existing forensics database of reference SNF. The signatures for SNF correlate to

characteristics that can, in a best case scenario with a reactor history database, point

to the exact reactor from which the fuel was intercepted. The reactor parameters of

interest are the reactor type, fuel type, enrichment at beginning of irradiation, cooling

time, and burnup [4, 5, 6].

Figure 2.2: An example workflow for a nuclear forensics investigation.

The current and future work of this study are designed based on two primary needs

to bolster the US nuclear forensics capability: post-incident rapid characterization, and

forensics database challenges and imperfection.

First, our best measurement techniques cannot be available in an emergency scenario,

and fast measurements typically yield inaccurate results. Currently, both radiological

measurements and mass spectrometry are used in nuclear forensics exercises. Because

these techniques have a multitude of variants within each category, there are differing

levels of measurement uncertainties. A lofty goal would be to develop methods that

provide instantaneous information, reliable enough to guide an investigation (e.g., within

24 hours). In the case of SNF, it takes weeks in a lab to measure isotopes via advanced

(cooled detector) gamma spectroscopy and mass spectrometry equipment. A handheld

detector that measures gamma spectra could provide the fast measurements to calculate

isotopic ratios for the above-mentioned fuel parameters of interest. However, while

this nondestructive analysis is rapid, it is also difficult to evaluate because of the
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presence of overlapping peaks and the fact that uncertainties differ significantly because

of the detector response, environment, storage, electronics, etc. Broadly speaking,

there is a time/cost and information tradeoff. On one hand, gamma spectra give less

information at a higher uncertainty than the near-perfect results of the destructive mass

spectrometry techniques used for characterization, such as inductively coupled plasma

mass spectrometry [7]. On the other hand, gamma detection is both faster and cheaper

than mass spectrometry techniques.

Second, forensics databases present challenges; this is three-fold. Because these

databases are kept by individual countries and the reactor operation history information

is well-guarded, it may be difficult to study SNM from a country that has a different

fuel cycle. It is proposed that using simulated SNF may be able to combat this issue.

Next, because of the values needed for material provenance, forensics databases are

highly multidimensional. Additionally, because of the number of measurement types,

the forensics databases have inconsistent uncertainties or missing data entries [8]. Thus,

direct comparison between measurement results and a database therefore may not yield

accurate parameter predictions. Using statistical models may be able to overcome these

two challenges, and is introduced next in Section 2.1.2.

2.1.2 Contribution of Statistical Methods

As previously mentioned, there are two main issues that are being addressed for forensics

of SNF: database issues and speed of characterization. Many have begun considering

computational techniques developed by nuclear engineers to calculate the parameters

relevant to nuclear forensics analysis. One example is the INverse DEPletion THeory

(INDEPTH) tool [4, 5, 6, 9, 10, 11]. INDEPTH uses an iterative optimization method

involving many forward simulations to obtain reactor parameters of interest given some

initial guesses.



27

Another approach utilizes statistical methods to solve nuclear forensics problems, such

as implementing searching algorithms for the database comparison step [12] or machine

learning (ML) algorithms for determining reactor parameters from SNF characteristics

[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. A variety of ML tools have been used

to characterize SNF by predicting categories (e.g., reactor type, fuel type) as well as

predicting values (e.g., burnup, initial 235U enrichment, time since fuel irradiation). The

former uses classification algorithms and the latter uses regression algorithms, many of

which can be altered to perform both classification and regression.

Statistical methods have the uniqueness of requiring minimal domain knowledge

via methods or ML algorithms that predict the characteristics or values of interest

[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In the case of most ML algorithms,

they first create a black-box (meaning, unable to be human-interpreted) statistical

model using the entries of measurements in a database. From that, they can predict the

reactor parameters of an unknown sample based on that model. Having an ML model

based on a large number of simulations may also overcome the challenges of missing

data, irregular uncertainty, or lack of information on other fuel cycles. This logic also

follows for other computational methods using a large number of simulations. Although

they may not involve a reusable model, they also could overcome missing data, irregular

uncertainties, or ignorance of different or non-commercial fuel cycles. Also, statistical

methods can be employed to reduce the dimensions in the forensics databases (i.e.,

reducing the number of forensics signatures required to be measured), which is another

valuable characteristic.

2.2 Methodology

The main goal of the technical portion of a forensics investigation is to provide a means

of nuclear material attribution by taking and analyzing measurements of the unknown
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material. The methodology of this work is based on this process. The top panel in Figure

2.3 shows an example technical nuclear forensics workflow as it could occur in the real

world for a pre-detonation scenario. After a sample is obtained, characterization begins.

With a focus on SNF, elemental, chemical, and radiological measurements are taken.

They are compared to databases filled with previously measured standard materials with

known reactor parameters, and/or the reactor parameters are calculated from empirical

relationships. These steps might be performed iteratively in a real investigation, first

using non-destructive measurements (e.g., gamma spectroscopy), and then destructive

measurements (e.g., mass spectrometry). The reactor parameters could then allow the

lookup of reactor history information, if available, and these results would be provided

to investigators.

Figure 2.3: Schematic comparing nuclear forensics investigative workflow in the top
panel with research approaches for physical and computational experiments.

Next, the investigation process can be translated to an experimental workflow. The

middle and bottom panels in Figure 2.3 are analogous physical and computational

experiments, respectively. Both of these experimental scenarios would have validated

measurements of SNF; the middle panel shows this being done in the laboratory and the
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bottom panel shows that these are values from a simulation. The goal of an experimental

laboratory study is to test or develop empirical relationships between forensics signatures

and the desired reactor parameters. The goal of computational studies can be this,

finding new empirical relationships, or performing forensics workflows prior to the

implementation of new reactor technologies. For studying alternative measurement

techniques or a slight difference in the overall approach, a researcher would iterate

through multiple studies using known materials to probe sensitivities or other weaknesses

in the procedure.

As mentioned, these processes have informed the experimental design of this work,

which follows the bottom panel in Figure 2.3. A test sample of simulated SNF will

undergo a measurement that is computed using techniques that mimic destructive or

non-destructive measurements of nuclides present in the sample. Using a statistical

model, the measurements are compared to a database of SNF entries and their reactor

parameters, finding a closest match or prediction for the test sample. Since the test

sample has previously known parameters, the error in the prediction can be measured

and the method can be tuned.

In addition to the steps of an investigation informing the experimental protocol,

there are other considerations to take into account. In the simulation and statistical

learning paradigm, it is important to determine how much information to what quality

is needed to train an ML model. Because creating databases from real measurements

to represent SNF from reactor technologies from around the world is not within the

scope of this project, the database in this study will be created from simulations via the

Standardized Computer Analyses for Licensing Evaluation (SCALE) [26] system using

Oak Ridge Isotope GENeration (ORIGEN) [27, 28]. This is the first process shown in

Figure 2.4, referred to as training data because this is what input information is called

in ML. It is covered in Section 4.1.
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Figure 2.4: Flowchart of the steps the experimental methodology for this work.

The second process shown in Figure 2.4 is information reduction, and is detailed in

Sections 4.2 and 5.2. This refers to measurement error and/or the measurement type

that provides the nuclide information, and allows the extension of this workflow to better

mimic constraints seen in a real-world setting. For example, the primary example here

is the reduction of information quality via gamma ray detector, which provide less exact

nuclide information than, e.g., mass spectrometry. The radionuclide concentrations from

the simulations can be converted into gamma energies, which then undergo a detector

response calculation to represent real as-measured gamma spectra as closely as possible.

If an algorithm could overcome the limitations of gamma detection and still provide

useful results, this would warrant further studies and perhaps be field-applicable.

The third step is to choose a method that performs model creation via statistical

learning. Statistical learners have varied strengths and weaknesses based on what is

being predicted and how they implement optimization. Introduced in Section 3.2.1

and implemented in Section 4.3 are three methods: k-nearest neighbors, decision trees,

and maximum log-likelihood (MLL) calculations. The first two are implemented via
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a python ML library, scikit-learn [29]. The MLL method was originally developed for

similar attribution work [23, 24, 25] and was implemented in python.

After the training is complete, the results of each models’ predictions must be

evaluated according to their prediction performance, denoted as the fourth process

in Figure 2.4. The machine-learned model predicts the parameters of a previously

unseen test set. The difference between the model predictions and the actual simulated

parameters is known as the testing error or prediction error. This is outlined in Section

3.2.2.1, and the results are in Sections 4.4 and 5.4.

Thus, ultimately, this research protocol is designed to answer the question How does

the ability to determine forensic-relevant spent nuclear fuel attributes using machine-

learning techniques degrade as less information is available?.

2.3 Goals

The main purpose of this work is to evaluate the utility of statistical methods as

an approach to determine nuclear forensics-relevant quantities as less information is

available. ML algorithms (k-nearest neighbors, decision trees, and MLL calculations)

are used to train models to provide these categories (reactor type) and values (burnup,

enrichment, and time since irradiation) from the available information. The training

data is simulated, which provides an array of nuclide measurements as the features

( ~X). The prediction parameters of interest (~y) are provided from the simulation inputs.

Information reduction on ~X is carried out using artificially injected random error or

computationally generated gamma spectra. The prediction errors (~ytrue versus ~ypred)

will be studied to draw conclusions about the capability of statistical methods to inform

nuclear material attribution with less precise detection techniques.

The necessary background is covered in Chapter 3. First, an introduction to the

broader field of nuclear forensics is in Section 3.1 to place this work in the context of the
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technical mission areas. After that, a short discussion of the field of ML, the algorithms

used, and model performance considerations are in Section 3.2. Lastly, a review of

statistical methods being used in studies of forensics analysis is covered in Section 3.3.

After the existing work is discussed, the first experimental procedure is outlined in

Chapter 4: Reactor Parameter Prediction Using Nuclide Masses. This experiment is

done as a demonstration of the methodology with the "perfect knowledge" of nuclide

masses. These measurements also undergo information reduction by way of randomly

applied uniform error. The performance of test cases drawn from the training data is

presented and discussed, as well as the performance of real external test cases of nuclide

concentration measurements. The methodology and implementation of the experimental

components are introduced in four subsections: the simulated training data is in Section

4.1, the information reduction is in Section 4.2, the details for training models are in

Section 4.3, and the performance evaluation is in Section 4.4. Within the performance

evaluation, the random error injection results are in Section 4.4.1 and the performance

using a real world set of test cases in Section 4.4.2.

Next, the second experimental procedure is explored in Chapter 5: Reactor Parameter

Prediction Using Processed Gamma Spectra. This experiment’s purpose is to probe the

usefulness of field-deployable detectors for giving rapid information about presumed

SNF. The information reduction is achieved by using computational gamma spectra of

various detectors with decreasing detector energy resolution. The performance of the

prediction of reactor parameters is measured by using test cases drawn from the training

set, where there is a training set for each detector in this study. The methodology

follows the same workflow as the first experiment, but updates to the components will

be covered: the new training set features are in Section 5.1, the information reduction

from full nuclide knowledge to processed gamma spectra is in Section 5.2, the changes to

the training models are in Section 5.3, and the performance evaluation is in Section 5.4.
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Lastly, the concluding remarks are discussed in Chapter 6. After a summary in

Section 6.1, the main conclusions drawn from the results in Sections 4.4 and 5.4 are

covered in Section 6.2. There are also many avenues that this work does not explore

and several ways to extend this work; these are outlined in Section 6.3.
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3 background and literature review

This chapter provides background and a literature review of the necessary components

for this project. Section 3.1 outlines the broader field of technical nuclear forensics,

with a focus on the area that motivates this project. Section 3.2 introduces the field

of machine learning for an uninitiated audience, covers the relevant algorithms, and

presents the methods field practitioners use for validation. Finally, the marriage of

Sections 3.1 and 3.2 is presented in Section 3.3, which is a review of previous work

applying statistical methods to the nuclear forensics analysis of pre-detonated nuclear

materials.

3.1 Nuclear Forensics

Nuclear forensics comprises a large part of an investigation into a nuclear incident, such

as interdicted nuclear material or the detonation of a weapon containing radioactive

components. The forensics portion of the investigation encompasses both the analysis

of nuclear material and/or related paraphernalia as well as the interpretation of these

results to establish nuclear material provenance. The former has many technical aspects,

relying on a range of nuclear science and chemistry. The latter involves intelligence and

political considerations of the material analyses for attribution. This review will only

consider the technical portion of the nuclear forensics workflow.

First discussed are the types of forensic investigations in Section 3.1.1, followed by an

introduction to inverse problem theory in Section 3.1.2 as a way to frame the forensics

problem.
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3.1.1 Types of Nuclear Forensics Investigations

The technical programs researching improvements to the US’s nuclear forensics capabili-

ties are split between the type of material being investigated. The analysis of irradiated

debris from a weapon has different collection and measurement requirements than a

mass of special nuclear material (SNM). This separates the field into post-detonation

and pre-detonation nuclear forensics. While both are discussed below in Sections 3.1.1.1

and 3.1.1.2, respectively, there is more focus on pre-detonation topics since this work is

based on spent nuclear fuel (SNF).

3.1.1.1 Post-Detonation

Post-detonation nuclear forensics requires a diverse set of measurements to obtain the

following information: identification of nuclear material, reconstruction of the weapon

device design, and reactor parameters for nuclear material provenance. This could

apply to an improvised nuclear device or a nuclear bomb. In conjunction with the

measurements and characterization are a large array of logistical concerns, including

recovery efforts, personnel safety, and material collection cataloging and transportation.

In the case of a full explosion using fissile material, the collection of materials and

debris occurs as quickly as possible. It can be in the crater created by the explosion,

further away from the center in the fallout, and in the atmosphere above or downwind

from the detonation. These are collected by finding glass-like material near the epicenter,

debris swipes in the fallout region, and advanced particle collection in the atmosphere

via an airplane, respectively. While the epicenter cannot be reached for some time, the

debris and atmosphere measurements of radioactive material can provide the yield of the

weapon and whether it was made using uranium or plutonium. This along with other

physical and chemical measurement allow device reconstruction to begin. Attribution

begins to narrow to specific countries or organizations based on this information. [3]
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The research needs for post-detonation focus on material collection and analysis as

well as nuclear device modeling for reconstruction purposes. Ideally, most material sample

collection would be done using automatic instrumentation. Additionally, bolstering

the existing device modeling code for reverse engineering is needed. And, as with pre-

detonation, a database of standard materials must be both strengthened and centralized.

[3]

3.1.1.2 Pre-Detonation

Pre-detonation nuclear forensics investigations occur for every scenario in which non-

detonated nuclear material has been found or intercepted. Although this could technically

be an intact bomb, it is more likely that SNM intended for a weapon would be the target

of an investigation since attempts at materials smuggling are much more common. The

range of intact materials for measurement could be as small as a gram-sized plutonium

sample or as large as a shipment of uranium ore concentrate (UOC). The goal is to

determine the provenance of the SNM, which in the case of SNF is generally done by

reconstructing the irradiation process that created the material.

For SNF, where the material was obtained is the first step of the investigation. This

would be gleaned from the reactor parameters and storage history (e.g., reactor type,

cooling time, burnup), which requires first measuring and calculating certain values:

isotopic ratios, concentration of chemical compounds, or existence of trace elements.

Both radiological methods (e.g., gamma spectroscopy) and ionization methods (e.g.,

mass spectrometry) measure these quantities.

Although this is less of a humanitarian emergency than a post-detonation inves-

tigation, it is still important to have rapid characterization capabilities via on-site

non-destructive analyses. There could be weapons construction already in progress that

would need to be curtailed as quickly as possible, or other related malicious intent that

a faster investigation could potentially derail. As previously discussed in Section 2.1,
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however, the faster measurements result in poor measurement quality. Also, there is a

need for research to combat the database issues, as an insufficient forensics database

can reduce the accuracy and/or certainty of a reconstructed set of reactor parameters.

Another area of research is deeper study of known forensics signatures or discovering

new signatures with modeling, simulation, or statistical methods.

3.1.2 Nuclear Forensics as an Inverse Problem

Nuclear forensics is a traditional inverse problem, which has been well documented

mathematically and applied to a range of scientific disciplines. Understanding inverse

problem theory can help systematically define the limitations of certain solution methods.

This section provides an introduction to the topic as well as its application to nuclear

forensics.

As outlined in a textbook on the formal approach to inverse problem theory [30],

the study of a typical physical system encompasses three areas:

1. Model parameterization
2. Forward problem: predict measurement values given model parameters
3. Inverse problem: predict model parameters given measurement values

First, this shows that it is important to consider the parameters that comprise

a model; this is denoted as the model space. This is not every measurable quantity;

domain knowledge is necessary to determine the model space. In the nuclear forensics

context for SNF, this would consist of the reactor operation history parameters. For

example, this could be the time since irradiation because the SNF decays and material

measurements are different depending on when the measurement is taken.

Second, understanding the physical system also requires an understanding of the

forward problem. Predicting how a certain set of values of model parameters will affect

the resulting measurements is a problem with a unique solution. The breadth of these
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end measurements provides the data space, which are all the conceivable results of a given

forward problem. So for SNF this would be, e.g., the range of nuclide measurements

typical of a commercial reactor.

Lastly, the inverse problem is predicting the model parameters (like time since

irradiation) given a solution (like an assay of nuclide measurements). It is statistical in

nature; there is a probability that the measured nuclides are caused by some value of a

model parameter. Thus, the problem is ill-posed because a prediction is not guaranteed

to be unique [31].

This can be done by directly inverting the model for a solution, or it can be done

from first principles or empirical relationships, which typically requires iterative forward

modeling that converges upon a solution. These two approaches (direct inversion and

forward modeling) are compared in some nuclear forensics work in Reference [32], where

the authors are discussing the discrimination capability of their approaches as it applies

to plutonium powder from reprocessing. For forward modeling, they included two

different linear models to obtain the parameters of interest: a frequentist linear model

and a Bayesian linear model. For direct inversion, they employed principal components

regression and partial least squares regression. While the data set in the paper did not

provide enough measurements to effectively discriminate, it is interesting to compare

both inverse problem approaches in the same work. The authors point out that finding

agreement using several methods can be important to proving the predictions are robust.

Another example of iterative forward modeling being used in a nuclear forensics

context is in a suite of work using INverse DEPletion THeory (INDEPTH), a tool

developed at Oak Ridge National Laboratory [4, 5, 6, 9, 10, 11]. An initial report on

the methodology discusses the approach INDEPTH uses [4] and a later report discusses

INDEPTH with more detailed examples [11].

Through a nonlinear least-squares regression algorithm, repeated runs of ORIGEN-
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Table 3.1: Example set of results from INDEPTH solving the inverse problem being
described in this work in Reference [11].

Automatic Rapid Processing (ORIGEN-ARP) are carried out given an initial guess. The

squared error residual is calculated from comparing the computed nuclide measurements

against a set of known nuclide measurements, and the repetition terminates when

the sum of the squared error is at some minimum. [4] This approach was also tested

with fission product measurements [5] and later with gamma spectra [6]. Table 3.1

shows an example of the results from a set of samples that have the same uranium-235

(235U) enrichment and time since irradiation but different burnups. The average error

for the enrichment is 5.83%, but the other two parameters are both predicted within

approximately 1% error.

The iterative forward modeling approach has much merit, but another approach is

to use statistical methods to determine relationships between nuclide measurements and

reactor operation parameters. According to Reference [32] in which forward modeling

was compared against direct inversion methods, the statistical approach in this work is

also considered direct inversion. The background for this is introduced next in Section

3.2 and is later discussed within the context of nuclear forensics in Section 3.3.

3.1.3 Nuclide Signatures for Nuclear Forensics of Spent Fuel

This work focuses on the nuclides created in the fuel (or pre-existing ones that remain

in the fuel) from its time in a nuclear reactor as the forensic signatures of interest. Thus,

what follows is a discussion on how some nuclides can provide information about reactor
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type, burnup, 235U enrichment, and time since irradiation. Since the reactors considered

here are common commercial reactors that use uranium-oxide fuel, this configuration is

the focus and not, e.g., mixed-oxide fuel from reprocessing that could be used in a light

water reactor (LWR).

The groups of nuclides tracked fall into two categories: actinides and fission products.

There are isotopes of both actinides and fission products tracked for SNF attribution in

this work. Few actinides are naturally occurring (e.g., thorium and uranium), and the

rest are created in the reactor core through neutron captures of other actinides that

do not lead to fission. Fission products are the fragments of fissile isotopes (they can

also be created by neutron capture of the fragments, or radioactive decay of either of

these), which is usually 235U, but could be 239Pu or 241Pu (for uranium-oxide fuel). The

non-uranium and non-plutonium actinides are present in much lower quantities than

the fission products.

In SNF, the buildup of actinides is dependent on neutron capture (or the lack

thereof) of (initially) uranium isotopes and the buildup of fission products is dependent

on initially 235U fissions, and later 239Pu fissions. Thus, the neutron energy spectrum

in the reactor affects the levels of both actinides and fission products. This allows the

distinguishing of different reactor types. Their creation is of course also linked to the

initial enrichment and initial amounts of various uranium isotopes via the number of

fissions that can occur. The burnup of the fuel also impacts the amount of these nuclides,

since more are created as the fuel remains in the reactor core longer. The radionuclides

with long half lives also can contribute to the time since irradiation determination.

While some nuclides might be a strong contributor to the knowledge of one of the

parameters, it is more common that they contribute information about multiple.

The buildup of 239Pu is an example, where it is formed by the neutron capture of
238U. This is dependent on the neutron energy, so gives some indication of reactor type,
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but it is also dependent on the amount of 238U in the fuel, which gives some indication of

initial 235U enrichment. It also will capture neutrons and make higher mass plutonium

isotopes or fission the longer the fuel is in the reactor core. Therefore, it is also linked

to the burnup.

As mentioned, many of the nuclides of interest are linked to multiple reactor operation

parameters of interest, so it can be difficult to use a small number of these nuclide

signatures to effectively determine all four parameters. Reference [31] covers the

degeneracy of the solution space of burnup, enrichment, and time since irradiation when

only one nuclide is measured. Tested were long-lived nuclides such as 137Cs, 154Eu,
244Cm and short-lived nuclides such as 134Cs, 144Ce, 106Ru. The degeneracy of the

solution space decreases as more nuclides are considered.

It can also be useful to use ratios of nuclides to address the issue of decoupling the

dependence from one parameter so that the ratio can be used as a signature for another

parameter. Reference [23] has a list of 10 ratios used with exactly this purpose. For

example, 137Cs could be a useful signature for time since irradiation, but it is also heavily

linked to burnup. Since 133Cs is also a burnup indicator but is stable, taking their

ratio removes the dependence on burnup and allows that quantity to be used as a time

since irradiation signature. Reactor type determination (in this reference, distinguishing

LWRs from fast breeder reactors) is similarly done with the ratio 150Sm/149Sm. The

fission product 149Sm is a neutron poison, meaning it easily captures many of the thermal

neutrons (but not fast neutrons) that are capable of producing fissions in LWRs. Thus,

the ratio is dependent on the burnup but with a strong dependency on the neutron

energy spectrum, allowing easy distinction between reactor types that depend on fast

versus thermal neutrons.
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3.2 Machine Learning

Machine learning (ML) is a sub-field of artificial intelligence (AI) within the broad

category of computer science. The goal of AI is to create computer systems that

respond to their environment according to some set of criteria or goal [33]. For example,

self-driving vehicles have computers on board that learn to avoid curbs and humans.

While its use has been increasing in the commercial sector, there is also much anecdotal

evidence to support the existence of a rapid increase of AI use in academic research

across many disciplines beyond robotics. AI systems have been used in detection (e.g.,

fraud or spam), medical diagnostics, user analysis (e.g., Netflix ratings), and a host of

scientific disciplines that have increasing amounts of multivariate data.

ML research focuses on the underlying algorithms using mathematical optimization,

methods for pattern recognition, and computational statistics. Much of the recent

advances to the field of AI have occurred in the statistical realm, which forgoes domain

knowledge in favor of large data sets. In this work, there is no distinction made between

the terminology of machine learning and statistics. Additionally, this study is not

concerned with computational time, but rather the ability to correctly predict values

and categories relevant to the nuclear forensics mission. This restricts the relevancy

of the algorithms to the underlying theory and its impact on the resulting model’s

accuracy.

ML algorithms can be separated into two main categories: unsupervised and super-

vised learning. The former groups or interprets a set of input data, predicting patterns

or structures. The latter includes both the input and output data, enabling the ML

model to predict future outputs. Broadly speaking, the unsupervised learning algorithms

are designed for clustering data sets or dimensionality reduction (i.e., determining some

subset or linear combination of features most relevant to the input data) of data sets.

Supervised learning algorithms predict both discrete and continuous values via classi-
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fication and regression, respectively. Some algorithms can perform both classification

and regression, and neural networks can even be modified to perform either supervised

or unsupervised learning.[34]

Figure 3.1: Diagram of a supervised machine learning process: a model created from a
training data set and a statistical learner (with an optional dimensionality reduction
step) allows a prediction when introduced with a test sample. If the actual label is
known, an error in model performance can be calculated.

As shown in Figure 3.1, a typical (supervised) machine learning workflow begins

with a training data set, which has a number of instances, or rows of samples, commonly

referred to as entries later in this work. Each entry has some attributes, also referred to

as features. It also has a label, which can be a categorical label or discrete/continuous

values.

The training data are then inserted into a statistical learner, where the learner is

capable of predicting labels given a set of features. The algorithm for the statistical

learner calculates some objective, minimizes or maximizes that objective, and provides

some model. This model can be evaluated using a testing set that has the same set

of features and labels (but different observations). The comparison of what the model

predicts and the actual label gives the testing error. Depending on the performance



44

and application, the model may need improvement from more training and/or some

changes in the algorithm parameters. Once the model is performing well enough and

validated, it is finalized; then a user can provide a single test sample and a value can be

predicted from that.

This study performs regression tasks using supervised learning algorithms. Differences

among the structure underlying mathematics of the algorithms impact the ML models.

Therefore, the algorithms used in this study will be discussed in Section 3.2.1. Next, a

discussion on model performance and prediction errors takes place in Section 3.2.2.

3.2.1 Algorithms for Statistical Learning

For relevant nuclear forensics predictions, both classification and regression algorithms

must be used. For example, one may want to predict the reactor type label given

some measurement-based features of SNF of an unknown source. This would require

a classification algorithm. Or perhaps the input fuel composition is relevant to an

investigation on weapons intent, so a regression algorithm would be used.

To limit the scope of this work, it cannot be an exhaustive study of ML methods.

Therefore, three algorithms are presented in this section: k-nearest neighbors, decision

trees, and maximum log-likelihood (MLL) calculations. They were chosen based on

their simplicity; this work has yet to be benchmarked using simple algorithms so a more

complex treatment of the training sets in this work would be premature. Additionally,

in part because of their simplicity, they are all "white box" methods. This is unique in

the ML universe, since most algorithms create a black box model that is unable to be

analyzed by a human. The decision trees method provides an output model that can be

used to discern behavior and understand predictions, and k-nearest neighbors and MLL

calculations do not create a model at all. Individual predictions can still be analyzed,

however, since the procedures are so simple.
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3.2.1.1 Nearest Neighbors

Nearest neighbors classification and regression are unique algorithms in that they are

instance-based; they do not actually generalize, but instead track the observations in the

training set. The main metric for this algorithm is distance (or dissimilarity) between

the test sample and the closest training sample(s) in the vicinity. During prediction, the

algorithm will calculate a value based on the instance that is closest to the current test

sample. Thus, there is not any learning, but instead a direct comparison between an

unknown sample and the space that the training set populates. The predictions from

nearest neighbors can be quite accurate, but are highly unstable to perturbations [34].

The process of prediction with k-nearest neighbors is as follows. First, the distances

between the test sample and each of the training set instances are calculated. Most

commonly the Euclidean distance is used, but this walk-through uses the Manhattan

distance:

di =
Nfeats∑

j=1
|xj,train − xj,test| (3.1)

where i is each training set instance, and j refers to each feature in the training set.

The lowest k di are chosen. For k-nearest neighbors regression, the value, y is predicted

using the following equation.

y(x) = 1∑
i wi

k∑
i=1

wi · yi (3.2)

where wi is either uniform and takes on a value of 1 or is distance-based and takes

on a value of 1/di and x is the full set of features. The regression equation averages

the closest k neighbors for an estimate of the unknown sample. In k-nearest neighbors

classification, the class label y is predicted using the mode of the nearest neighbors

selected using the k smallest di, or when wi is 1/di, the weighted mode is used to choose

the predicted label.
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Figure 3.2: Schematic of k-nearest neighbors regression, showing how changing k alters
the predicted label value y.

Figure 3.2 provides a pictorial explanation of Equation 3.2 for a prediction where

there is one feature. In this figure, there is a test sample with a feature, valued at xi,

indicated with the grey dotted line. The three circles represent the neighborhood given

by the value of k, and the darker dots on the line represent the reported prediction y for

each choice of k. In this illustration, k = 1 or k = 2 provide a more accurate prediction

according to a visual inspection of the trend, but higher values of k can be useful, and

will be discussed in Section 3.2.2.2.

3.2.1.2 Decision Trees

Decision trees are a common choice because they are simple to implement and provide an

interpretable model. However, the predictions from decision trees, similar to k-nearest

neighbors, are unstable to perturbations. What follows is a highly simplified explanation

of the Classification and Regression Trees algorithm for growing decision trees, showing

only the equations for splitting criteria. A more complete treatment can be found in
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Reference [34] or in the User Guide in Reference [29].

At their core, decision trees algorithms split the feature space into different regions.

Decision trees are constructed by iteratively finding places in the feature space at

which to split the data to best predict a label. Some measure of information gain

(more accurately the opposite, impurity, denoted here as H is used to select a splitting

criterion at each split, which maximizes differentiation between average label values

in regression or groups similar labels together in classification. This process continues

until some externally set stopping requirement is met, or no information gain can be

made by continuing to create splits.

Each split creates two new nodes on the tree, where the node has to find a new

splitting criterion. In the math that follows, there are nodes given by m, and a number

of samples in each node given by Nsamples,m. The individual node samples are counted

by i, and so the sample labels are yi. The impurity at the node is denoted as H(m). In

classification, the node impurity H(m) can be measured by the Gini index, where pm,k

is the proportion of class k observations at the node:

pm,k = 1
Nsamples,m

Nsamples,m∑
i=1

I(yi = k)

H(m) =
∑

k

pm,k(1− pm,k)
(3.3)

Note that I() here is being used to refer to the indicator function, where when y = k it

takes a value of 1 and when y 6= k it takes a value of 0. And in regression, the node

impurity H(m) can be measured by the mean squared error, where ȳm is the average

value of the samples in the node.

ȳm = 1
Nsamples,m

Nsamples,m∑
i=1

yi,m

H(m) = 1
Nsamples,m

Nsamples,m∑
i=1

(yi − ȳi,m)2

(3.4)
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The splitting criterion with the lowest impurity is the one that is chosen to make

the split. This will partition the feature space and the splitting process will continue

until a pre-defined tree size or number of samples per node. Without a pre-defined

stopping point the tree will grow until there is one sample per node. This process can

be understood more intuitively by studying Figure 3.3. Note that this tree was created

using a maximum tree depth of 3 for visualization purposes in order to explain the

process, so is not indicative of a real decision tree.

Figure 3.3: Example of a decision tree process, where maximum tree depth is limited to
3.

In Figure 3.3, each node has the following information: the splitting criterion, Gini

impurity value, percentage of samples in the training set in the node, a value list

(explained below), and the majority class present in the node. In the visualization, the

shading of the colors in the tree are bolder for there being a higher fraction of a single

class. As a method that produces a model that can be understood by humans, the

reasoning for the splits is also discussed.
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The first split is determined to occur at the feature 149Sm on whether the nuclide

measurement is above or below a value of −1.33. Note that this value is negative

because of the scaling process the training set is put through, described in Section 4.3.

This is an unsurprising split because the creation of 149Sm is heavily dependent on the

neutron energy spectrum and thus helps distinguish reactor types. The majority class

at this node is boiling water reactor (BWR) which is expected since the training set

is 72% BWR. The values list indicates the fraction of each class in the node, which is

alphabetically ordered by [BWR, PHWR, PWR]. It is even among the three because the

class weights are balanced. This splitting criterion provides a Gini impurity score of

0.67, which represents the minimum Gini impurity of all the candidate splits, but also

indicates there are multiple classes represented in this node (again, expected). It would

be 0 if there were only one class in the node.

The next level of the decision tree in Figure 3.3 has two nodes. The top node has a

splitting criterion of whether 239Pu is above or below a value of −0.91. This is also an

unsurprising choice for the decision tree because its creation and destruction is heavily

dependent on the enrichment, since pressurized heavy water reactors (PHWRs) have

more 238U available for neutron capture. This node contains a majority of the PHWR

class, but also a fraction of 0.08 of the BWR class. Even though the PHWR class is

only 1.5% of the training set (see Section 4.1), this node has 7.9% of the training set

samples. The next level split for the top node has fractions of 0.97 PHWR and 1.0

BWR in the next two nodes, with Gini impurities of 0.06 and 0.0, respectively. This is

a rapid approach to zero considering the size of the training set and number of features.

The lower node has a splitting criterion of whether 242mAm is above or below 0.68.

This one is less obvious of a choice, but is in the decay chain of 241Pu (if it does not

fission), which is created by a series of neutron captures. This links 242mAm to a

dependence on the neutron energy spectrum and therefore makes it somewhat capable
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of distinguishing reactor type. The remaining 92.1% of the training set is in this node,

and there is only a slight majority of the (balanced) pressurized water reactor (PWR)

class, which is why the shading is nearly white. The Gini impurity for the top node is

0.15. This is much lower than the Gini impurity of 0.5 for the bottom node, which is

more evenly split between two classes. The next level split for the bottom node made

modest improvements over the Gini impurity of 0.5, and would need to go much deeper

to properly classify PWR versus BWR. This suggests that 242mAm is only a moderate

reactor type indicator.

3.2.1.3 Maximum Log-Likelihood Calculations

The MLL calculations approach applied here is based on a method developed to do

similar work [23, 24, 25]. That work involved matching nuclear material samples based

on some select measurements to entries in a database of containing those measurements

(see Section 3.3). Each database entry also has a similar list of labels to the labels being

predicted in this work: reactor type, burnup, and time since irradiation.

Interestingly, the MLL calculations method works exactly like k-nearest neighbors

with k = 1, where there is no model but a prediction according to the closest match

database entry. There is one detail that differs, however: the selection criterion. Whereas

k-nearest neighbors minimizes distance/dissimilarity, this approach instead maximizes

similarity via a likelihood function. An "unknown" test sample is compared against the

training set using the likelihood calculation between that sample and the training set

entries. The higher the likelihood, the higher the probability that the database entry

represents the sample. The likelihood is in Equation 3.5, whereas the log-likelihood is

used more often in practice, shown in Equation 3.6 [23].

L(M |xtest) =
∏

i

1
σi,train

√
2π

exp −(xi,test − xi,train)2

2σ2
i,train

(3.5)
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ln(L(M |xtest)) =
∑

i

ln( 1
σi,train

√
2π

)− (xi,test − xi,train)2

2σ2
i,train

(3.6)

Although these equations were borrowed directly from Reference [23], some of the

variables have been changed for better cohesion with the terminology in this work. The

likelihood is a measure of the probability that a model M produced the measurements

seen in the test sample, given by L(M |xtest). In both Equations 3.5 and 3.6, x refers to

the set of features, and xi,test and xi,train are the individual features for the test sample

and the training set entries, respectively. The uncertainty of the measurement associated

with each feature is represented by σi,train.

3.2.2 Algorithm Performance

After a model is trained, its performance must be evaluated. The following discusses the

considerations taken for the evaluation of the prediction performance for the algorithms

used in this work.

ML algorithms are heavily dependent on the training inputs and algorithm parameters

given to them, such as training set sizes, regularization (defined below in Section 3.2.2.2),

number of features in the training set, algorithm hyperparameters, etc. To obtain

reliable models, one must both choose or create a training set carefully and study the

impact of various algorithm parameters on the error. Various error metrics are first

covered in Section 3.2.2.1 before the causes of error are discussed in Section 3.2.2.2.

3.2.2.1 Testing Error

The creation of an ML model is (usually) a hidden process. Although the model emerges

from a black box, there are ways to evaluate its generalization (i.e., prediction) capability.

This is done by removing a small portion of the database for use as a testing set. The

rest of the data set is known as the training set and is used to train a model. After

training, the test set is used to calculate the model’s error to unseen test samples. This
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error is typically referred to as the testing error, as it is measuring the ability of the

model to predict future cases that were not introduced in the training phase. Next, the

various metrics used to evaluate classification and regression are covered.

Reactor Type Classification

For the classification of reactor type, it is typical to use an accuracy score for

classification, where the total number of correct predictions is taken as a fraction of the

entire sample set.

accuracy = 1
Nsamples

Nsamples∑
i=1

I(ypred,i = ytrue,i) (3.7)

Note that I(x) here is being used to refer to the indicator function, where when x is

true it takes a value of 1 and when x is false it takes a value of 0.

But training sets can have an uneven number of classes represented. A more fair

scoring system for imbalanced data sets is instead balanced accuracy, which averages

the accuracy of each class according to its class frequency. This still provides a range

from 0 to 1, but the meaning of the score has changed from the accuracy score. This is

done by first defining a sample weight based on its class frequency wi [29]:

wi = 1∑
j I(yj = yi)

(3.8)

for j classes and i samples. Thus, the balanced accuracy is the following.

balanced-accuracy = 1∑
i wi

Nsamples∑
i=1

wi · I(ypred,i = ytrue,i) (3.9)

In this work, however, the balanced accuracy is used with adjusted=True in scikit-learn.

After computing the balanced accuracy, this rescales the range to − 1
1−Nclasses

to 1, where

0 is considered random scoring.

In addition to the metrics which combine the knowledge of true positive and true
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Figure 3.4: Example of a confusion matrix for the three reactor types

negative predictions, it is also important to study the misclassifications. Confusion

matrices show both the true positive predictions and the false positive predictions,

which can be useful information in understanding an imperfect accuracy or balanced

accuracy score. For example, Figure 3.4 pictures an example confusion matrix that

could result from this data set, where a fraction of PHWRs are correctly predicted (0.9),

but there are some misclassified as BWR (0.1). While there are no PWRs or BWRs

misclassified as PHWR, they do get misclassified as each other: 0.3 PWRs and 0.1

BWRs get misclassified as the other. Note that each row must add up to 1, since those

are the true class labels. The columns do not generally add up to 1 (unless there are no

misclassifications or the confusion matrix is symmetric).

Regression Mean Error Calculations

For the three regression cases, there are a few metrics that are being calculated to

measure prediction performance: the mean absolute error (MAE), median absolute error

(MedAE), and mean absolute percentage error (MAPE). The most common metrics to

use for comparing regression errors are root-mean-squared error (RMSE) or MAE, but

these mean errors do not provide the full picture. The MedAE can provide interesting

insight into a middle-ground or majority behavior. Also, the relative error via MAPE

can provide insight especially when there is a large span of values for a regression case;
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a large absolute error could be a small relative error. Therefore, they are all tracked.

The MAE, MedAE, and MAPE are calculated as follows, respectively, for each label j

(which is suppressed in the math below for clarity).

MAE = 1
Nsamples

Nsamples∑
i=1

|ytrue,i − ypred,i| (3.10)

MedAE = median(| ytrue,1 − ypred,1 |, . . . , | ytrue,n − ypred,n |) (3.11)

MAPE = 100
Nsamples

·
Nsamples∑

i=1

|ytrue,i − ypred,i|
ytrue,i

(3.12)

Cross Validation

A testing set that would be used during training to give feedback, a cross-validation

(CV) set, can provide a faster convergence to a satisfactory model. As shown in Figure

3.5, this can be done by splitting the data set into three groups: a large training set, a

small CV set, and a small testing set.

Figure 3.5: Illustration of two ways of performing CV: a one-time split, or k-fold CV.

However, in practice, multiple rounds of CV steps are used provide a better estimate

of model performance by increasing the number of testing sets. This is referred to

as k-fold cross-validation. An example where k = 3 is illustrated in Figure 3.5. One
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partition of the training set is designated as the testing set, and a model is trained

with the rest. This returns the testing error for that first testing partition. Following

the first training phase, another begins, this time with a different subset as the testing

set. In total, this process is performed three times, giving three models. Since each

partition becomes a testing set at one point, all entries in the training set are tested,

which reduces the chance that the model is being tested with a misrepresentative testing

set. In most applications, the testing error results from each partition (which are an

average of all test cases in that partition) are averaged to provide a picture of the model

performance. However, this work instead focuses on the aggregate statistics of all the

individual test case errors taken together, regardless of which partition they were in.

3.2.2.2 Model Complexity

In statistical learning, there are two sources of error that need to be simultaneously

minimized: bias and variance. Bias is caused by simplifications in the model, so the

error is caused by missed relationships in the data; high bias is an indication of an

underfit model. Variance is caused by including random noise in the model, so the

error is caused by oversensitivity to that noise; high variance is an indication of an

overfit model. What follows is a discussion on error considerations that all reduce to

one concept: how complex should a model be to best predict a previously unseen test

sample?

Figure 3.6 shows the tradeoff between the bias and variance. The shape of the total

error curve has a minimum that we seek to achieve with our model. Some bias is desired

in order to generalize to future unknown data. But, some variance is positive for the

model because it captures the relationships in the data that the bias counteracts.

Regularization refers to introducing a term into the ML model to prevent overfitting;

it is used in many ML algorithms to reduce the model complexity and therefore the

resulting variance. This would be represented by increasing k in k-nearest neighbors,
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Figure 3.6: Schematic showing the sources of error, bias and variance, and how they
behave with respect to model complexity in the bias-variance trade-off.

or reducing the maximum features a decision trees implementation could consider for

splitting. The top three windows in Figure 3.7 show the effects of regularization on a

simple linear regression model. With heavy regularization comes high bias, represented

by the left-most window. The right-most window shows a low regularization scenario,

where most individual points are tracked by the model, but generalizing beyond that

might be problematic. The middle plot represents an approximately well-fit model.

Diagnostic plots show the testing errors with respect to some variable on the

horizontal axis. Typically this variable is related in some way to the model complexity.

This provides insight into the model’s fitness, and whether small tweaks can be made

to increase bias or variance to improve testing performance. Put another way, these

approaches can evaluate under- or over-fitting. When the horizontal axis is related to

regularization parameters, often referred to as algorithm hyperparameters in this work,

it is known as a validation curve. A full treatment of validation curves is not considered
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Figure 3.7: Diagram showing effect of model complexity/regularization at three different
levels on model performance.

here, but Figure 3.7 shows the portion relevant to the discussion in the bottom plot.

The negative prediction error is plotted on the vertical axis so that the orientation of

higher is better is maintained. A parameter influencing model complexity is on the

horizontal axis. The testing error is typically low for the high bias and high variance

models, but there usually exists an optimum parameter for model complexity for most

training data sets.

Another parameter indirectly influencing model complexity is the training set size.

When the training set size is plotted on the horizontal axis as either the percentage of

the training set used or the absolute number of observations, it is called a learning curve.

These allow for the user to evaluate the optimum number of training set observations to

include in the training phase. This is relevant in a scenario like this work where the
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training set is large (large being a relative term).

The training set size must be large and diverse enough to be considered independent

and identically distributed (i.i.d.) because most ML algorithms are developed upon this

assumption. Sometimes this is not possible, and the training data are skewed, i.e., a

portion of the data is over-represented. This must be handled explicitly, but since each

algorithm handles skewed data differently, it is currently beyond the scope of this work.

Instead, attempts were made to best create an i.i.d. training set, which is covered in

Section 4.1.2.

Another area worthy of investigation is the other dimension of the training set: the

number of features included for model training. This is not usually a value that would

be plotted on the horizontal axis of a diagnostic plot (unless one’s data is predisposed to

this kind of study), but is considered in this work. The feature set selection is discussed

in Sections 4.1.3, 5.1, and 5.2.

In practice, plotting learning and validation curves can be iterative. But too many

optimizations will result in a poorly performing model when exposed to data outside

of the training set, so there is a risk associated with better prediction after using

optimization tools. This increase in performance from over-optimization could be linked

to the training set performance and might not generalize outside of the specific type of

input data used. A workaround for this scenario is to obtain more data for the set or to

obtain a completely different data set altogether.

3.3 Applications of Statistical Methods to Nuclear

Forensics Analysis

Although the body of literature in the area of proposed research is not expansive, there

have been a number of relevant studies. These, in some way, are related to the the
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prediction of forensics-applicable categories or quantities of nuclear materials using

statistical methods. With regards to broader forensics capabilities, materials from

different steps of the nuclear fuel cycle are being studied. Even though each material has

its own forensics signatures, the process of applying statistical methods to the analysis

of material provenance is similar for each.

For example, on the front end of the fuel cycle, an entity may have obtained UOC if

they have enrichment capabilities. One study performed statistical analyses on UOC

from 21 sources (throughout seven countries) using 30 concentration measurements of

various elements, isotopes, and compounds, e.g., sodium, magnesium, thorium, uranium-

234, or halide compounds [19]. The goal of classifying the source and the country was

reached 60% and 85% of the time, respectively, with the unique method developed in

the paper (an iterative partial least squares discrimination analysis approach), which

outperformed decision trees and k-nearest neighbors.

On the back end, an organization might have interest in SNF if they have reprocessing

capabilities. Or, perhaps already separated plutonium from SNF has been intercepted

and needs to be traced. Another study addresses this by performing factor analysis on

theoretical separated plutonium from various sources of Oak Ridge Isotope GENeration

(ORIGEN)-simulated SNF based on their composition at the end of irradiation [16].

Since in this study all materials are the same age, five plutonium isotopes (A = 238−242)

correctly predicted a test sample. However, taking different times since irradiation and

reprocessing into account requires more isotopic measurements.

3.3.1 Factor Analysis Work

In addition to the immediately aforementioned work, there is a suite of work on per-

forming classification using factor analysis or isotopic ratios in combination with visual

distinction. Although factor analysis explicitly requires the input of domain knowledge,
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it is a valuable first step towards understanding how statistical methods can provide

insightful models to classify materials. This series of work seeks to accomplish classifica-

tion of a reactor history (reactor type, enrichment, burnup) using the distinguishability

between similar sets of samples, as pictured in Figure 3.8.

Figure 3.8: Example from Reference [16] on using factor analysis to show similarities
between classes of SNF for visual identification.

The chronologically earliest study in this grouping of publications [14] uses ORIGEN-

simulated uranium and plutonium (234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu and
242Pu) of various SNF designations. These simulated measurements are subject to factor

analysis and the results usually plotted. The unknown samples in this work are in visual

alignment with the factor-analysis-determined groupings. Reference [17] extends that

study (same statistical method, same list of isotopes) to real measured samples from the

Spent Fuel isotopic COMPOsition (SFCOMPO) database [35, 36]. The goal here was to

determine whether the factor analysis approach could distinguish the chosen SFCOMPO

entries well, and the results confirm the goal was achieved. Reference [18] uses three

plutonium ratios (242Pu/240Pu, 238Pu/PuTotal, and 239Pu/240Pu) to accomplish the same

goal with simulated SNF without factor analysis, and the results are similar.

This work mostly relies on actinides for identifying SNF [14, 16, 17, 18], but the use
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of fission products is also promising [15]. This particular publication was interesting

because the author chose to use one set of fission products to represent a typical mass

spectrometry assay (133Cs, 140Ce, 150Sm, 152Sm, 144Nd, 145Nd, 146Nd, 148Nd, 150Nd), and

another set to represent what could be determined from a gamma detector (95Zr, 95Nb,
106Ru, 134Cs, 137Cs, 144Ce). This approach is successful when the simulation uncertainty

is below 3% [15].

3.3.2 Other Classification Work

There are other papers on statistical methods that focus on the classification of the

reactor type for unknown samples. One study simulated and tracked 34 nuclides of a set

of typical commercial nuclear power reactors and their operation parameters, but first

used statistical dimensionality reduction (via Laplacian eigenmaps) before subjecting

the training data to reactor type classification, comparing linear discriminant analysis,

quadratic discriminant analysis, random forests, and Parzen window classifiers [21, 22].

Condensing the 34 features into three has not only computational and potentially

discriminatory benefits, there are visualization benefits as shown in Figure 3.9. This plot

and this work also highlights and addresses a known problem: reliable discrimination

between SNF from PWRs and BWRs.

Another paper compared principal components analysis and partial least squares

discriminant analysis to classify reactor type [20]. As with the above, a set of SNF

from typical commercial power reactors from around the world were simulated and

used as test samples for this attribution step, but unlike the above they chose to focus

on uranium and plutonium isotopes to address the challenge of identifying chemically

separated uranium or plutonium. This work uses a qualitative visual distinguishability

discussion to choose the better method of partial least squares discriminant analysis.
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Figure 3.9: Results of leveraging a pre-processing step of dimensionality reduction for
visualization purposes, from Reference [22].

3.3.3 Regression Work

Switching the focus to regression, one work combines the use of statistical methods

with an investigation of those methods when faced with information reduction via

random nuclide measurement errors in the training data set [13]. Additionally, feature

reduction was investigated by using various nuclide compositions: the top 200 nuclides

by concentration in each vector, fission products only, and a principal components

analysis-derived shortened nuclide list.

Using these various feature sets, three methods were also compared. First and

second, the nearest neighbor algorithm with two different distance metrics was used:

Manhattan distance (L1 norm, or sum of absolute differences of Cartesian coordinates)

and Euclidean distance (L2 norm, or square root of the sum of squared differences of

Cartesian coordinates). The nearest neighbor approaches classified reactor type and

predicted burnup. Third, ridge regression with an L2 norm for regularization was only

applied to burnup prediction. In both classification and regression cases, using the
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Figure 3.10: Plot from Reference [13] that shows the degradation of burnup prediction
performance with respect to increasing training set error for three algorithm implemen-
tations and three feature sets.

fission products nuclide list with both nearest neighbor methods performed the best.

All other nuclide lists quickly devolved to random guesses with an increase in nuclide

error in the case of reactor prediction, and more than 100% error in the case of burnup

prediction. Figure 3.10 shows the behavior of burnup prediction at low training set

error (under 1%) for the various methods with feature set combinations.

3.3.4 Maximum Log-Likelihood Calculations

Another set of publications focuses on a novel methodology for attributing separated

plutonium with different reactor histories. Although many commonly used statistical

methods have been previously discussed in this section, this approach is unique: a MLL

calculation approach for determining the similarity of a test sample to a database of

simulated samples [23].
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Figure 3.11: Plot from Reference [23] that shows a sample being assigned burnup and
time since irradiation values based on a likelihood maximum.

Since this approach was developed to attribute weapons-grade plutonium, the training

database is simulated with low burnup values, and there are 5000 one-day time steps.

The reactor type, burnup, and time since irradiation comprise the labels, and the

features are a set of 10 carefully selected isotope ratios.

Figure 3.11 shows one of the results, where a simulated sample of 4.39GWd/MTU

burnup and 3652 days time since irradiation is tested against the training database via

likelihood calculations of the feature set of 10 isotope ratios; the maximum is visibly

close to the ground truths. This method was later validated with experimental samples,

in Reference [25].

After experimental validation, sensitivity studies were conducted in Reference [24].

Figure 3.12 shows a set of results from the increasing of uncertainty for the same

sample being predicted in Figure 3.11. It is interesting that the likelihood decrease
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Figure 3.12: Results from a sensitivity study on the MLL method where uncertainty of
the training set was increased. The levels shown here are (a) 7%, (b) 14%, (c) 21%, and
(d) 28% [24].

happens faster on the time since irradiation axis than on the burnup axis. The main

result from the sensitivity studies is that while a different sample was robust to the

increased uncertainty and was predicted at the 99% confidence level even at the highest

uncertainty (28%), the sample shown here was predicted at only a 68% confidence level

at the highest uncertainty.

3.3.5 Summary

The factor analysis works [14, 15, 16, 17, 18] and other visualization- and classification-

based works [20, 21, 22] helped provide a foundation by which to understand the scope

of problem of attributing SNF. Additionally, some of these use the SFCOMPO database

in their study design [17, 21]. While Reference [17] uses the factor analysis method

directly on some subset of SFCOMPO database entries, Reference [21] uses nine samples
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from the database as test cases for both reactor type classification and burnup/235U

enrichment. This work instead tests all available SFCOMPO entries after some filtering

steps are carried out to remove cases that are not approximated by the training set.

Reference [15] chooses a set of nuclides based on a comparison of mass spectrometry to

gamma spectroscopy, which also happens in this work. However, there is no indication

that there is a gamma detector-based treatment of the chosen fission products. It is

presumed they are using mass- or activity-based values to represent the features in their

training set.

Reference [19] performs prediction of UOC provenance, comparing a newly developed

method against two simple algorithms; this informed the method of choosing of algo-

rithms in this work. It is important to first create a benchmark a simple approach before

scaling up to more complex treatments of the data. The approach in this reference

used k-nearest neighbors, decision trees, and a unique iterative method. It is actually a

coincidence that the first two methods match the ones chosen for this work, because

other methods were tested before deciding to use both k-nearest neighbors and decision

trees. Still, this work chooses a different third method to implement and shifts the focus

to SNF.

This third method is the MLL calculations developed in References [23, 24, 25].

The mathematical framework for MLL calculations is in Section 3.2.1. There are a few

differences in implementation. This work focuses on SNF instead of a material source

presumed to be separated plutonium. Additionally, the time steps in the references are

much smaller than what exists in the training set in this work, and these publications

focus on a set of 10 isotope ratios as the feature set. Also, instead of studying two

well-characterized samples (that were at first simulated but then irradiated and real

measurements were taken), this work instead is focused on the aggregate statistics of

many predictions. Despite these differences, this approach is still applicable to and an



67

asset for this work.

A paper that greatly influenced the development of this study [13] seeded the

decision to evaluate the effect of information reduction on the predictive capabilities of

the statistical methods used. While the first experiment in Chapter 4 uses a similar

application of random error, the experiment in Chapter 5 instead uses detectors with

decreasing energy resolution to accomplish information reduction.

In summary, there is limited treatment of statistical methods predicting any nuclear

material’s attributes when facing information reduction in the literature. There is

also limited use of the SFCOMPO database as a testing set. The first experiment in

Chapter 4 addresses these thin areas of previous work. There is no work to the author’s

knowledge using a gamma detector-based treatment for the measurement of nuclides for

use in statistical approaches, and the second experiment in Chapter 5 concentrates on

this.
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4 reactor parameter prediction using nuclide

masses

This chapter covers the parameter prediction workflow using nuclide masses as the input

features. The methodology is introduced by detailing each experimental component and

its implementation. This is split into four sections, which correspond to the four steps

summarized in Figure 4.1.

Figure 4.1: Flowchart of the experimental methodology and the way each step is being
implemented.

Section 4.1 discusses how the training data set is obtained through simulations

and computational means. The initial training data simulated via Oak Ridge Isotope

GENeration (ORIGEN) is detailed in Section 4.1 This provides a set of spent nuclear

fuel (SNF) observations with known reactor operation parameters, i.e., labels that are

to be predicted. The four labels being predicted are as follows:
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1. The classification of the reactor type is one of the three most common commercial

power reactors: pressurized water reactor (PWR), boiling water reactor (BWR),

or pressurized heavy water reactor (PHWR).

2. The burnup describes how much energy was produced by the fuel and has the

units: MWd/MTU (or GWd/MTU), mega (or giga) watt-days per metric ton of

initial uranium.

3. The enrichment is the percentage of uranium-235 (235U) with respect to the

entire amount of uranium in the fuel: % 235U.

4. Lastly, the time since irradiation, or cooling time, is defined as how long the

fuel has been out of the reactor core: days (or years).

Next, the information reduction step is covered in Section 4.2, where uniform error

is randomly applied. After this, the less-precise training data sets will be input to a

statistical learner for the next step: training models.

Section 4.3 details the implementation of the algorithms introduced in 3.2.1. They

use the features and labels in the training data sets to formulate a model.

After this, the algorithms must be evaluated for their prediction performance when

given test samples (i.e., a new SNF measurement that has no labels according the to

algorithm). The approach is shown in Section 4.4. First presented is the prediction

performance of samples that are taken out of the training data set to be used as test cases,

which is shown in Section 4.4.1. Second, an external test set with nuclide concentrations

is used to show how this approach performs with real world measurements. This is

discussed in Section 4.4.2.
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4.1 Training Data Simulation

Figure 4.2: First portion of the flowchart from Figure 4.1 being described in this section.

Of interest to an entity trying to create a weapon is partially irradiated fuel if they have

plutonium separations capabilities or any radioactive substance in the case of a dirty

bomb. Thus, this work focuses on SNF from commercial power reactors. Ideally, a large

enough database of SNF nuclide assays would be able to be used for this work. As a

sufficiently large enough database does not exist, the database will be simulated via

ORIGEN [27, 28].

4.1.1 Simulation Fidelity

Nuclear fuel cycle studies involve tracking the material flow of nuclear fuel. This can

be anywhere from mining to waste management, or focus on a process step in between.

Fuel cycle studies are not necessarily nuclear-specific. For example, they can be used to

evaluate economic predictions, environmental impact, transportation planning, etc. In

order to draw conclusions from these studies, it is common to use a nuclear fuel cycle

simulator that tracks the quantities of interest. These allow the comparison of different

fuel types, reactor technologies, material processing steps, etc.

There are simplifications researchers need to make in order to experiment in a

controlled way. Fuel cycle simulators, built for a specific needs, must remove complicating

factors that are less relevant to the study. For example, one tool might be suited well

to large-scale systems analysis with little nuclear physics included in the models, and

another might focus on detailed isotopics within a system to track plutonium.
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Because a large portion of a nuclear forensics investigation relies on measuring

isotopics, this work used ORIGEN [27], which is a part of the Standardized Computer

Analyses for Licensing Evaluation (SCALE) 6.2 modeling and simulation suite of

computational tools developed for nuclear design and safety [26]. ORIGEN was chosen

for its physically detailed models of activation, depletion, and decay. Specifically, the

ARP module of the code was used: ORIGEN-Automatic Rapid Processing (ORIGEN-

ARP) [28].

ORIGEN calculates time-dependent nuclide concentrations (or quantities derived

from these) that result from activation and depletion calculations. The physics (i.e.,

neutron transport and decay) calculations are carried out in other SCALE modules that

solve the depletion equations. This generates libraries for ORIGEN that include the

probabilities of reaction (i.e., cross sections) for the system.

To obtain an SNF recipe from a reactor simulation, ORIGEN uses the desired input

power generation with the cross section library to calculate a flux, the resulting depletion,

and the end composition (i.e., isotopic recipes or nuclide vectors). Another output

is decay; the composition is computed using decay equations with nuclear data [37].

These compositions provide source terms for other calculations, such as decay emission

spectra from neutrons, alpha particles, beta particles, and gamma rays. Other derived

quantities like activity, decay heat, or radiological hazard factors are also an option.

ORIGEN-ARP allows users to access a wider range of simulations by interpolating

between the pre-calculated libraries instead of creating new libraries. The libraries

contained in ORIGEN-ARP for various reactor technologies and fuel assemblies are

optimized to sets of 235U enrichments for the relevant coolant and moderator densities.

They also contain optimized burnup steps, which informed the burnup steps used in

this work [28]. The SNF simulated in this work comes from a homogenized reactor core,

and so does not take axial variations of burnup into account. Through ORIGEN, given
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Table 4.1: Example set of results from work that uses SFCOMPO test cases for PWR
simulation benchmarking of SCALE in Reference [38].
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an initial material composition, some reactor operation parameters, and a reactor type,

one can quickly perform many different nuclear reactor simulations and obtain SNF

recipes. Since there are nearly 500k simulations being used in this work, ORIGEN-ARP

is able to provide these simulations with relative computational ease.

Of course, there may be some losses in simulation fidelity by taking this route.

ORIGEN-ARP is well-validated for light water reactor (LWR) SNF [39]. Additionally,

recycled SNF in the form of mixed oxide fuel has been benchmarked for the relevant

reactors [40]. Still, there are some nuclides for which simulations are not well-matched to

the experimental measurements. The systematic overprediction of Eu154 is documented

in Reference [41]. Some details of computed versus experimental nuclide compositions

for PHWRs are covered in Reference [42]. Table 4.1 shows a small slice of the results in

Reference [38]. This work uses several SCALE modules to simulate nuclide measurements,

and using a former release of Spent Fuel isotopic COMPOsition (SFCOMPO) [35, 36],

compares these to the experimental measurements. Although ORIGEN-ARP was

not used, some reactor core simplifications were made, where the target fuel rod had

individual mixtures specified and the remainder of the core was homogenized. The E
C

in the table refers to the experimental to calculated ratio of each measurement, for

which there are three sets of comparisons (labeled at the top by "Sample ID"). The

highlighting is for nuclides that are in one or both of the experiments in this work, and

tend to have larger errors. The first sample is a lower burnup and has the largest errors.

In summary, it is important to note that that the simulated training set as ground

truth is not perfect truth, with the level of inaccuracy varying for some nuclides more

than others. The prediction performance will be impacted by the poorly simulated

nuclides, but a detailed study on which nuclide measurements to exclude is outside of

the scope of this work.
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4.1.2 Training Set Labels

The design of the training set is dependent on a number of factors. First, it must have

a sufficient number of burnup sets and time since irradiation steps to provide robust

prediction. This is chosen by maximizing the steps for both parameters, while balancing

the computational limitations of a large training set. Through previous experience, an

approximate limit would be around 106 database entries for the specific calculations in

this work and employing reasonable computational limitations.

PWR BWR PHWR

CE14x14 GE7x7-0 CANDU19
W17x17 Abb8x8-1 CANDU28
S18x18 Atrium10x10-9 CANDU37
BW15x15 SVEA64-1
VVER440
VVER1000

(a) ORIGEN designations for reactor technologies and fuel assembly design.

PWR BWR PHWR

Power Density [MW/MTU] 25, 35, 41 10, 22 2.2, 18, 22
Burnup [GWd/MTU] 2–68 1–68 0.45–12.6
Moderator Density [g/cc] 0.71 {0.1, 0.3, 0.5, 0.7} 0.84
Enrichment [% 235U] {0.5, 1.5, 2, 3, 4, 5} {0.5, 1.5, 2, 3, 4, 5} 0.711
Cooling Time [days] {0–6000} in 100-day steps

(b) Simulation parameters for ORIGEN input files.

Table 4.2: Training set database design and parameters for ORIGEN input files.

Secondly, the training set must represent what exists in the real world. This was

accomplished by studying the spread of parameters in the SFCOMPO database [35, 36].

To ensure this, a variety of reactor types and assembly designs were included, listed in

Table 4.2a. Table 4.2b lists the rest of the simulation inputs. These include not only

the labels of prediction interest, 235U enrichment, burnup, and time since irradiation,
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but also other important simulation input parameters such as the reactor power density

and the moderator density. (Water is both the moderator and coolant in all simulated

reactor types.)

Figure 4.3: A combination of histograms and scatter plots to visualize the distribution
of prediction labels in the training set.

The third factor influencing database design is machine learning (ML) algorithm

performance. As mentioned in Section 3.2.2, many algorithms are developed with the

assumption that the training set will be independent and identically distributed (i.i.d.).

This is important so that the model does not overvalue or overfit a certain area in

the training space. With the training set design, there are predetermined values for

enrichment, burnup, and time since irradiation. While there are 21− 28 burnup steps
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(depending on the reactor type) and 61 cooling time steps, there are only 6 values

for enrichment. This creates the risk that the algorithm will end up being unable to

generalize outside of those discrete values. Therefore, the burnup steps and time steps

are perturbed randomly in a range that is ±10% and ±30% from the originally defined

values, respectively. The enrichment also gets perturbed by ±10%, and not more because

the cross-section libraries in ORIGEN-ARP are pre-calculated for those enrichment

values, so deviating too far from them would result in inaccurate SNF simulations. The

power densities and moderator densities were kept at the values defined in Table 4.2b.

Additionally, natural variations in 234U and 236U were not considered. The percentage

of the two uranium isotopes in fresh fuel were kept the same for all SNF simulations:

0.0356% for 234U and 0.0184% for 236U. The 0-valued burnup and cooling time entries

were then filtered out so that the future calculations of relative error would be possible

for all predictions.

The resulting training set is 450240 (or 4.5× 105) entries. Figure 4.3 visualizes the

somewhat even distribution of the burnup and cooling time parameters, and shows the

lack of even distribution of the enrichment parameter through a combination of scatter

plots and histograms. Note that there are many more BWRs present in the histograms

because of the multiple moderator densities simulated (see Table 4.2b). The number of

PWR, BWR, and PHWR entries in the training set is 120960 (26.8%), 322560 (71.6%),

and 6720 (1.5%), respectively.

4.1.3 Training Set Features

The other design decision regarding the training set is related to which nuclides to

track, i.e., the features. For this experiment, nuclide masses are necessary, and the most

common measurements in SFCOMPO guide the list of nuclides tracked.

The set of training features of 29 nuclide masses listed in Table 4.3 was designed
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with the following reasons in mind. First, the training set feature measurement units

are chosen to be convertable to those present in the external, real-world test set: the

SFCOMPO database. The ORIGEN simulations output the nuclide masses in grams, g,

and they are converted to the units of milligrams per gram of initial uranium, mg/gUi,

when the models are externally tested against SFCOMPO. Second, the 29 nuclides

chosen were based on the presence of measurements in SFCOMPO, where these were

present in at least 100 of the samples in the database. The external test set is described

in more detail in Section 4.4.2. These choices are made so that the training set entries

mimic a full assay being done via mass spectrometry techniques, and thus represents

what this work refers to as "perfect knowledge" scenario.

241Am 242mAm 243Am 242Cm 244Cm 134Cs 137Cs 154Eu
143Nd 144Nd 145Nd 146Nd 148Nd 150Nd 237Np 238Pu
239Pu 240Pu 241Pu 242Pu 147Sm 149Sm 150Sm 151Sm
152Sm 234U 235U 236U 238U

Table 4.3: Set of features saved for the first experiment, nuclide masses measured in
grams. The bold nuclide masses overlap with the nuclides in Table 5.1.

4.2 Information Reduction

Figure 4.4: Second portion of the flowchart from Figure 4.1 being described in this
section.

In this section, the information quality reduction is implemented as increasing the error

of the nuclide mass measurements in the training database. After this, the statistical
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models will be evaluated as to how they perform under increasing error in the nuclide

measurements.

The training database for the first experiment is meant to be a proof of principle with

the developed methodology, and mimic a scenario where there is "perfect knowledge"

of a set of nuclides of interest. But the overall goal of this project is to determine how

much information to what quality is needed to train an ML model that can provide

SNF attribution by correctly predicting the reactor type, burnup, 235U enrichment, and

time since irradiation. Therefore error and uncertainty were injected into the nuclide

mass measurements in the training database for the machine learning algorithms and

maximum log-likelihood (MLL) calculations, respectively.

4.2.1 Scikit Algorithms

For the k-nearest neighbor and decision tree algorithms, a uniform error is applied

randomly to each nuclide mass as follows. For a maximum error percentage of Emax,

each nuclide mass is perturbed by a random value in the range: [100−Emax, 100+Emax].

This occurs for 10 error levels between 0% < Emax < 20%: 0, 1, 2, 5, 8, 10, 12, 15, 18,

20. Therefore the 0% error case represents full knowledge of nuclide masses, and that

knowledge slowly decreases up to 20%.

4.2.2 Maximum Log-Likelihood Calculations

For the MLL calculations, a uniform uncertainty was introduced to each nuclide mass.

The uncertainty is calculated from error propagation of Equation 3.6 [23, 24]. Thus,

each nuclide is given an uncertainty of 1, 5, 10, 15, and 20% via:

σ2
LogL =

∑
i

(
xi,test − xi,train

σ2
i,train

)2

(σ2
i,train + σ2

i,test) (4.1)
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where xi,train and xi,test are the nuclide measurements for the simulated/training set

samples and the test samples, respectively, and σi,train and σi,test are their respective

standard deviations calculated from the four uncertainty levels listed above.

4.3 Statistical Learning Implementation

Figure 4.5: Third portion of the flowchart from Figure 4.1 being described in this
section.

Since this work has yet to be benchmarked with simple algorithms, two straightforward

algorithms were chosen, k-nearest neighbors and decision trees, and were introduced in

Section 3.2.1. Also covered in that section is the mathematical framework of the MLL

calculation method. The implementation details of these three approaches are covered

here.

4.3.1 Scikit-learn Algorithms

The machine learning toolkit chosen for this work is scikit-learn [29], a package in python.

Virtually all modern ML toolkits will have acceptably fast and reliable algorithms, but

the use of python provides a platform for seamless integration of all the tools in the

workflow. This section walks through the implementation of the two scikit algorithms.

The first step is splitting the training set into the features ( ~X, with 29 nuclide

mass measurements), and a single set of labels (~y, e.g., burnup). After this, the set of

features ~X is scaled so that there is a zero mean and unit variance; this is done because

the magnitude of the features vary widely and it can be either helpful or required for
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many scikit-learn algorithms. Next, the two algorithms are initialized. The labels that

require regression analysis (burnup, enrichment, cooling time) are predicted using the

KNeighborsRegressor and DecisionTreeRegressor in scikit-learn. The reactor type

label uses classifiers: KNeighborsClassifier and DecisionTreeClassifier.

Each algorithm has a list of hyperparameters that impact the model complexity and

prediction performance, as discussed in Section 3.2.2.2. Since this work is a demonstrative

investigation, many of the default choices are retained. However, some of these were tuned

using hyperparameter optimization, shown in Table 4.4. Hyperparameter optimization

involves completing the training, predicting, and error evaluation process for a list of

parameters that are of a continuous nature. This process is carried out with k for

k-nearest neighbors, choosing the value that provides the best results. For decision

trees, the maximum features was chosen to be 29 because the performance was highly

variable otherwise, but this is not necessarily ideal for the best performance. Instead,

only the maximum depth was tuned via optimization. There are also other parameters

governing algorithm behavior that have a discrete set of choices. The selections made for

each of these algorithms is summarized below (note this is just a subset of all available

hyperparameters [29]):

1. KNeighborsClassifier & KNeighborsRegressor

• Number of nearest neighbors (k) to include changes for each prediction

category and is in Table 4.4.

• Distance metric is "Manhattan" (aka L1 loss, or absolute differences): di =∑Nfeats

j=1 |xj,train − xj,test|.

• Sample weighting is with respect to distance and not uniform : wi = 1/di.

2. DecisionTreeClassifier & DecisionTreeRegressor

• Maximum number of features included is the length of the feature set: 29.
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• Maximum depth of decision tree changes for each prediction category and is

in Table 4.4.

• For both the classifier and regressor, the default splitting criterion (function

for measuring the quality of a split) is kept. This is the Gini impurity for the

former (see Equation 3.3), and mean squared error (aka L2 loss, see Equation

3.4) for the latter.

• For the classifier, the class_weight is "balanced", meaning that the weights

are inversely proportional to the frequency of each class (PWR, BWR, PHWR)

in the training set.

Prediction
Parameter

k
(N neighbors)

Max
Depth

Max
Features

Reactor Type 4 56 29
Burnup 1 77 29
Enrichment 2 45 29
Cooling Time 1 73 29

Table 4.4: Optimized algorithm hyperparameters for the 29 nuclide mass training set.

After the algorithms are initialized, the training set iteratively undergoes error

injection according to the method in Section 4.2. Next, the (information reduced) data

set is preprocessed by scaling and normalization because the nuclide concentrations vary

by many orders of magnitude. After this, the training data features have a zero mean

and unit variance. The initialized algorithm is then used to fit the training set and is

then ready for prediction of "unseen" test samples.

Introduced in Section 3.2.2.1, these algorithms provide predictions based on the

k-fold cross-validation (CV) approach (not to be confused with the k in k-nearest

neighbors). Tested were 5, 10, and 15 CV folds and they all performed similarly because

the training set is large. The results shown in Table 4.5 show the percent change in the



82

% Difference,
k=5 to k=10

% Difference,
k=5 to k=15

kNN DTree kNN DTree

Reactor Type 0.4 0.2 0.4 0.4
Burnup -4.0 -2.1 -5.2 -2.6
Enrichment -5.1 -6.1 -6.6 -6.7
Time Since Irradiation -1.8 -3.1 -2.3 -3.8

Table 4.5: Comparison of prediction errors between different k-fold CV implementations.

accuracy score or mean absolute error (MAE) relative to when k = 5. This means that

the accuracy score is under 0.5% higher for reactor type predictions for both k-nearest

neighbors and decision trees changing k folds from 5 to 10 or 15. And the MAEs are

slightly lower (under 7% difference) when changing k folds to 10 or 15. Given the

close performance, the number of CV folds was chosen to be 5 based on computational

expediency. The KFold cross-validator with observation shuffling (i.e., the data set was

shuffled prior to splitting) in the scikit package carried out this task for the regression

prediction cases. For reactor type classification, the StratifiedKFold cross-validator

was used since there is an imbalance of classes in the training database.

Because the performance needs to be compared to the MLL predictions, the scikit

method cross_val_predict was used, as it returns the predictions of each CV fold as

it becomes the test set. Thus, the entire training set becomes a test case at some point,

and the predictions return equal the number of entries in the training set.

The scripts written to run the scikit-learn algorithms were deployed using Univer-

sity of Wisconsin (UW)-Madison’s Center for High Throughput Computing (CHTC)

resources and the UW campus grid.
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4.3.2 Maximum Log-Likelihood Calculations

The MLL calculation method is implemented in python using the SciPy statistics toolkit

and NumPy functionality [43, 44]. In this method, one test sample is removed from the

training set at a time, and the log-likelihood calculation in Equation 3.6 is performed

between the test sample and all the rows of the training set. The observation with the

largest log-likelihood is returned as the predicted labels. Just like with the scikit-learn

algorithm-based predictions, the entire training set becomes a test sample at some point,

so the predictions returned equal the number of entries in the training set.

A key difference in how the MLL method provides predictions is that it returns

all the labels together, so it is not doing any generalizing on the continuous variable

labels (burnup, enrichment, and cooling time). It is analogous to k-nearest neighbors

where k = 1, because there is no model being created, it just matches upon the call for

prediction. Because of this, the MLL method performing well is highly dependent on

the training set being sufficiently large.

The scripts written to run the MLL calculations were deployed using UW–Madison’s

CHTC resources, the UW campus grid, and the Open Science Grid (OSG) [45, 46].

4.4 Prediction Performance Evaluation

Figure 4.6: Fourth portion of the flowchart from Figure 4.1 being described in this
section.

As previously introduced in Section 3.2.2.1, the prediction performance is measured by

evaluating the accuracy of the reactor type classification or the error of the regression
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cases (burnup, 235U enrichment, cooling time). These performance metrics for all four

prediction types are compared across the three algorithms used: k-nearest neighbors

(denoted in plots as kNN ), decision trees (denoted in plots as Dec Tree or DTree), and

MLL calculations.

4.4.1 Random Error Impacts on Prediction

To judge the degradation of predictions of the algorithms with increasing nuclide mass

measurement error (i.e., reduced information quality, detailed in Section 4.2), several

plots are made with the introduced error on the horizontal axis and a prediction

performance metric on the vertical axis. The vertical axis is always oriented so that

lower is poorer performance and higher is better performance. This is why Figures

4.9–4.11 present a negative error on the vertical axis. Additionally, the data points on

all the plots have a small horizontal separation to show error bars that are otherwise

impossible to see.

In all of the results in this section, the statistics being reported is on all entries in

the training set. This means that for the performance metrics introduced in Section

3.2.2.1, the calculations will all include Nsamples = 4.5× 105.

4.4.1.1 Reactor Type Classification

Figure 4.7 shows the balanced accuracy of reactor type classification, where a score of 1

is perfect prediction and a score of 0 is random classification. The error bars reflect a

99% confidence interval. While the two scikit-learn algorithms follow a very similar path

of decreased accuracy as the error increases, the MLL calculation approach appears

to be more robust to the nuclide mass measurement error. Another interesting result

is that the MLL calculation performs slightly worse for low errors. If the expected

measurement errors of nuclide masses in a training database or in a test sample can
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be guaranteed to be better than 2%, the MLL calculation is no longer the obvious

preferred choice for reactor type prediction.

Figure 4.7: Prediction performance of reactor type as measured by balanced accuracy
with respect to uniform/random error applied to the nuclide mass measurements in the
training set.

Although the balanced accuracy score provides more information about classification

performance for an imbalanced data set (the training set is 26.8% PWR, 71.6% BWR,

and 1.5% PHWR), it still does not provide much detail about what is being misclassified.

To probe this further, Figure 4.8 shows three sets of confusion matrices, originally

introduced in Section 3.2.2.1. The off-diagonal squares are the fraction of false positives

for each reactor type, where the predicted label (horizontal axis) is something other

than the true label (vertical axis). The false positive fractions are normalized to the

number of true labels. Below the fractions inside the pixels are the raw numbers of false

positives. The diagonal squares have three numbers in them. The top numbers are the

fraction of true positives for each reactor type (normalized to true labels), where the

predicted label (horizontal axis) is equal to the true label (vertical axis). The middle

number in parentheses is the true positive fraction subtracted by one: TP− 1. Again,

the bottom number is the raw number of true positives.

A coloring is introduced to quickly identify departures from the ideal solution.
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Figure 4.8: Confusion matrices of reactor type prediction for each algorithm at three
training set error levels: 1%, 10%, and 20%, in the top, middle, and bottom panels,
respectively.

However, if the coloring is based on the true positive fraction, the diagonal has an ideal

of 1 and the off-diagonal has an ideal of 0. By relying on the TP − 1 for the diagonal

elements, the ideal is 0 for all pixels, with departures from ideal being negative on

the diagonal and positive on the off-diagonals. To allow the fractions to be rapidly

perceived, a colorbar provides perceptually uniform shading for these pixels that deviate

from 0. The deviation from 0 to the negative in the diagonal pixels is thus a different

color (brown) than the deviation from 0 to the positive in the off-diagonal pixels (teal).
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Perfect performance is represented by the middle of the colorbar, white.

In the top panel of Figure 4.8, the three algorithms are presented for the 1% random

error case. In Figure 4.7, one can see these three data points on the plot clustered near

the top showing almost-perfect performance. (Recall that the true positive fractions

in the confusion matrices do not map directly to the balanced accuracy score, which

puts more weight on the underrepresented classes.) The confusion matrices give more

dimension to this near-perfect reactor type classification performance. The majority of

the misclassification is in PWRs being classified as BWRs: 0.4% for k-nearest neighbors

and decision trees, and 1.6% for MLL calculations. However, there are also some BWRs

that are misclassified as PWRs: 0.1% for k-nearest neighbors and decision trees, and

0.5% for MLL calculations. There are zero misclassified PHWR cases and zero LWR

cases misclassified as PHWR; the value of 0.000 to three decimals fraction here represents

a real zero-count, but this is not necessarily the case for the other sets of confusion

matrices. The PWR/BWR distinction is known to be a difficult problem[20], so the

correct PHWR classifications are not particularly notable for this discussion.

The middle panel of Figure 4.8 shows confusion matrices for the three algorithms for

the 10% random error case. In Figure 4.7, one can see these three data points on the

plot, where the MLL point is near a balanced accuracy score of 1, and the scikit-learn

algorithms both have score of around 0.93. As with the 1% error case, the majority

of the misclassification is in PWRs being classified as BWRs: 11.3% for k-nearest

neighbors, 10.3% for decision trees, and 1.7% for MLL calculations. The BWRs are

being misclassified as PWRs at the following percentages: 3.4% for k-nearest neighbors,

3.6% for decision trees, and 0.5% for MLL calculations. Note how the performance of

the MLL calculations are nearly the same for both error levels, which is shown by the

MLL line in Figure 4.7. Because of the normalization, the LWRs that are misclassified

as PHWRs appear to be zero. However, this does happen, just rarely: 15 BWRs are
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classified as PHWR using decision trees. Also, k-nearest neighbors and decision trees

misclassified PHWR as an LWR 2 times using the former and 20 times using the latter

(no PHWR misclassifications happened using MLL).

The bottom panel of Figure 4.8 shows confusion matrices for the three algorithms

for the 20% random error case. In Figure 4.7, one can see these three data points on

the plot, where the MLL point is near a balanced accuracy score of 0.97, k-nearest

neighbors is around 0.83, and decision trees is around 0.86. As with the previous two

error cases, the majority of the misclassification is in PWRs being classified as BWRs:

24.6% for k-nearest neighbors, 20.3% for decision trees, and 5.6% for MLL calculations.

The BWRs are being misclassified as PWRs at the following percentages: 7.9% for

k-nearest neighbors, 7.3% for decision trees, and 0.5% for MLL calculations. PHWRs

are misclassified as an LWR 100 times for k-nearest neighbors, 82 times for decision

trees, and 0 times for MLL calculations. LWRs were misclassified as PHWR 42 times

for k-nearest neighbors, 66 times for decision trees, and 0 times for MLL calculations.

4.4.1.2 Regression Results

Each set of plots for a given prediction parameter in this section shows both the relative

error (mean absolute percentage error (MAPE)) and the absolute error (MAE). In

addition to the MAE on the second plot for each regression case, the median absolute

error (MedAE) is represented as a triangle on the plot as well. These three errors taken

together provide more detailed information about the performance of each algorithm

when faced with training set noise. As previously mentioned, the vertical axis has

negative errors, so that higher is always better.

Figure 4.9 demonstrates the burnup prediction performance, with the MAPE in

Figure 4.9a and the MAE and MedAE in Figure 4.9b. In these figures, the error bars

reflect one standard deviation of the percentage errors or the absolute errors, respectively.

As with the reactor type prediction in Figure 4.7, the MLL method is robust to training
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(a) Negative MAPE of burnup regression with
respect to random error.

(b) Negative MAE of burnup regression with
respect to random error.

Figure 4.9: Prediction performance of burnup as measured by relative and absolute
errors with respect to uniform/random error applied to the nuclide mass measurements
in the training set.

set error but performs slightly worse at low error values. All three methods calculate

burnup with a maximum error of -5% or −1000MWd/MTU at 20% error in the training

set. The MedAEs show a more encouraging picture of the performance as compared to

the MAEs. It is interesting that the scikit-learn algorithms and the MLL calculations

diverge at 5% training set error for MAPE and MAE, but at 10% training set error for

the MedAE.

Figure 4.10 demonstrates the 235U enrichment prediction performance, with the

MAPE in Figure 4.10a and the MAE and MedAE in Figure 4.10b. In these figures, the

error bars reflect one standard deviation of the percentage errors or the absolute errors,

respectively. Again, the MLL method is robust to training set error but performs slightly

worse at low error values. All three methods calculate enrichment with a maximum

error of -6% or −0.17 % 235U at 20% error in the training set. Again, the MedAEs

show a more encouraging picture of the performance as compared to the MAEs. The

scikit-learn algorithms and the MLL calculations diverge at 10% training set error for

MAPE and MAE, but at 15% training set error for the MedAE.
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(a) Negative MAPE of 235U enrichment regres-
sion with respect to random error.

(b) Negative MAE of 235U enrichment regres-
sion with respect to random error.

Figure 4.10: Prediction performance of enrichment as measured by relative and absolute
errors with respect to uniform/random error applied to the nuclide mass measurements
in the training set.

(a) Negative MAPE of time since irradiation
regression with respect to random error.

(b) Negative MAE of time since irradiation
regression with respect to random error.

Figure 4.11: Prediction performance of time since irradiation as measured by relative
and absolute errors with respect to uniform/random error applied to the nuclide mass
measurements in the training set.

Last, the time since irradiation prediction performance for the three algorithms

with respect to increasing nuclide mass error is pictured in Figure 4.11. The MAPE is

shown in Figure 4.11a, including an inset to show more detail about the behavior of
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the decision trees and MLL calculations curves, and the MAE and MedAE are shown

in Figure 4.11b. The error bars reflect one standard deviation of the percentage errors

or the absolute errors, respectively. The MLL method is most robust to training set

error, but for this prediction parameter, the behavior of k-nearest neighbors is unique

here versus the previous two regression categories. Time since irradiation is predicted

with a maximum error of -30% or −550 days at 20% error in the training set using the

k-nearest neighbors algorithm. If one ignores the clearly anomalous k-nearest neighbors

performance by using the inset in Figure 4.11a and focuses instead on decision trees,

those values are -6% and −120 days. The MLL calculations remain nearly constant

at approximately 2% prediction error for all training set error levels. The MedAE, as

usual, shows a more encouraging picture of the performance as compared to the MAE.

Overall, the robustness to training set error that is present in the MLL calculations

applies to all of the prediction parameters. The decision trees performance is second

best, and k-nearest neighbors performs the worst. In the case of time since irradiation,

k-nearest neighbors degrades incredibly fast with introduced training set error. While it

is difficult to draw a baseline for minimum acceptable behavior on these plots, these

performances can serve as a benchmark for the work presented in Chapter 5.

4.4.1.3 Model Generalization

Although a key takeaway from Section 4.4.1 is that the MLL calculations are the most

resilient to introduced error in the training set features for all four prediction categories,

there is another aspect of the algorithm performance not explicitly shown in those plots:

generalization. MLL does not generalize to unseen data; it provides predictions based

on finding the closest training set entry to the test sample. It (usually) outperforms the

scikit-learn methods in part because the training set is so large. This is also true for

the k-nearest neighbor implementations where k = 1 (burnup and cooling time, as seen

in Table 4.4).
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(a) Balanced accuracy of reactor type classifi-
cation with respect to training set size.

(b) Negative MAPE of burnup regression with
respect to to training set size.

(c) Negative MAPE of 235U enrichment re-
gression with respect to training set size.

(d) Negative MAPE of time since irradiation
regression with respect to training set size.

Figure 4.12: Learning curves for reactor type, burnup, enrichment, and time since
irradiation with respect to increasing fraction of the training set, for 5% training set
random error.

One way to show that an algorithm is generalizing well in comparison to others is

to view the shape of its learning curve (introduced in Section 3.2.2.2): the prediction

performance with respect to training set size. It is crucial to have the training sets be

identical for each algorithm, so they were created in advance and the learning curves are

constructed manually rather than relying on the scikit-learn method. Smaller training
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sets were created from the original one by taking 80%, 60%, 40%, and 20% of the entries.

The training sets are all stratified so that the original fractions of BWR, PWR, and

PHWR are retained. They are also built on top of one another, so the 20%-size training

set is contained within the 40%-size set, and so forth.

Learning curves were constructed for all four prediction categories, demonstrated in

Figure 4.12. As in Figures 4.7–4.11 , the vertical axis is always oriented so that lower

is poorer performance and higher is better performance; also, the error bars reflect a

99% confidence interval for Figure 4.12a, and one standard deviation of the average

percentage errors for Figures 4.12b–4.12d. These learning curves represent the 5%

random error case in Figures 4.7–4.11, so the scores/errors in these figures are the data

points at the 100% training set level in Figure 4.12. Therefore, the leftmost data in

Figure 4.12 will show the MLL point being slightly above the scikit-learn points for the

reactor type, burnup, and enrichment predictions, and the k-nearest neighbor point is

below the MLL and decision trees points for time since irradiation.

Figure 4.12a shows that the balanced accuracy score of reactor type classification for

the MLL calculations decreases more at lower training set size than for the scikit-learn

algorithms. Here, the curve crosses below the k-nearest neighbors curve at the lowest

training set size of 20%. For the burnup MAPE in Figure 4.12b and the enrichment

MAPE in Figure 4.12c, the MLL curve crosses below both of the scikit-learn algorithm

curves. This happens between 20% and 40% training set size for burnup, and between

40% and 60% training set size for enrichment. Lastly, Figure 4.12d shows a different

arrangement, which is to be expected from the results shown in Figure 4.11, where the

k-nearest neighbors performance is significantly worse than the other two algorithms.

Because the k-nearest neighbors curve and error bars are so large, there is an inset

showing a closeup of the other two curves above -6%. The decision trees and MLL

calculations curves now appear to follow the trend in the burnup and enrichment cases,
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and the MLL curve crosses under the decision trees curve between 20% and 40% training

set size.

There is a dependence on training set size for all three algorithms in Figure 4.12. For

the most part, the k-nearest neighbors and decision trees curves follow an approximately

parallel path, whereas the MLL method shows an increased rate of degradation at low

training set sizes. Since this training set is large enough, i.e., the prediction parameters

were included in small enough steps, that MLL has consistent performance at the larger

sizes, there is not a concern in this work about its inability to generalize. It must be

noted, however, that the MLL approach requires a fine grid of simulation parameters in

a training database to perform better than the simple scikit-learn algorithms.

4.4.1.4 Reactor Type Prior Knowledge

There is similar work being done to this work that focuses on similar prediction categories

but in a serial manner, i.e., first determining the reactor type before moving forward

with other predictions [47]. This work predicts reactor operation parameters while blind

to the reactor type, but it makes sense intuitively that having previous knowledge of

the reactor type would allow more accurate regression of these parameters. Therefore,

the change in regression performance from the reactor type-blind predictions to having

prior knowledge of the reactor type is discussed.

The workflow was repeated for the three regression cases where they were trained

on reactor type-specific training sets. A 5% random error was applied to these training

sets, and the 5% random error full training set was used as comparison. The errors

for each algorithm (k-nearest neighbors, decision trees, and MLL calculations) were

tallied for each regression category (burnup, enrichment, and time since irradiation)

and within that, for each reactor type (PWR, BWR, PHWR). Two sets of error were

tracked: whether the reactor type was known or unknown prior to prediction.

Table 4.6 shows the MAPEs for each regression category and within that, for each
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reactor type (PWR, BWR, PHWR). The columns are separated first by the algorithms

and second by whether the reactor type was known or unknown prior to prediction,

denoted as K and U, respectively. Most of these relative errors are quite low, and

around or under 2%. So, e.g., despite burnup prediction from PHWRs improving, it

was by 0.61%, a precision of which may not be of concern. Still, these performance

differences can be looked at in more detail.

kNN Dec Trees MLL Calcs

Prediction
Parameter

Reactor
Type

K U K U K U

Burnup
% [MWd/MTU ]

PWR 0.60 0.66 0.54 0.75 0.24 0.25
BWR 0.88 0.90 0.60 0.66 0.40 0.40
PHWR 0.66 1.27 0.14 0.54 0.28 0.28

Enrichment
% [% 235U]

PWR 0.85 0.99 0.36 0.48 0.26 0.29
BWR 1.14 1.16 0.51 0.54 0.45 0.46
PHWR 0.00 0.00 0.00 0.02 0.00 0.00

Time Since
Irradiation
% [days]

PWR 11.44 10.48 2.35 2.19 1.55 1.46
BWR 15.39 15.48 2.27 2.28 2.06 2.05
PHWR 19.32 34.41 4.96 4.52 2.30 2.30

Table 4.6: MAPEs for the three prediction cases for each algorithm at 5% training set
error. K refers to known reactor type and U refers to unknown reactor type prior to
regression.

To better see these performance differences, the percent change in prediction MAE

for each algorithm and reactor type between the reactor type being known versus

unknown prior to prediction was calculated as: 100 · MAEunknown−MAEknown

MAEunknown
. This was

chosen to be relative to the unknown error since that is the benchmark in this case.

Figure 4.13 is three heatmaps that show this percent change for each prediction category,

algorithm, and reactor type. This value is reflected by a diverging color bar as well as a

positive or negative percentage in each square. The positive percentages indicate the

error decreased/improved from the unknown reactor type case to the known reactor
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type case. The negative percentages indicate the error increased/worsened from the

unknown to the known case.

Figure 4.13: Heatmaps for the three regression cases showing the percent difference in
prediction error between a known reactor type and unknown reactor type using a 5%
training set error.

For burnup prediction, most differences are within ±10% except for three scenarios.

The decision tree algorithm has improved burnup prediction for PWRs by 22.0% and

for PHWRs by 71.1% given a known reactor type. The k-nearest neighbors algorithm

has 49.5% improved burnup prediction for the PHWR. For 235U enrichment, the PWR

predictions improve by approximately 18% for the scikit-learn algorithms. Even though

the value is within ±10%, this is the only scenario where there is an appreciable difference

in MLL performance. The decision tree enrichment prediction of PHWRs also has a

sizeable improvement of 100.0%. The time since irradiation predictions for the most

part do not show improvement outside of ±10%. Of note is some volatile behavior for

the PHWR case with the scikit-learn algorithms. While k-nearest neighbors improves

by 29.8%, the decision tree predictions were worse by 12.5%. Since the main concern

here is showing how prediction performance improves with prior reactor type knowledge,

this reduction in performance is odd but not worthy of further investigation.

The improvements in the PHWR predictions are not surprising since the generaliza-

tion of the scikit-learn algorithms could lead to the unique PHWR cases being ignored,
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since they are after all only 1.5% of the training set. Another interesting result is that

the BWR predictions experience no large changes, which makes sense given that they

comprise 72% of the training set. Also, the MLL predictions are approximately the

same, which is expected because this algorithm does not generalize, and the prediction

comes as a set of labels and is therefore already linked to the reactor type. Overall, it is

important to be aware that the regression labels coming from a PHWR will be unlikely

to be optimal results (except for those from MLL calculations).

4.4.2 SFCOMPO Test Set

The testing described in Section 4.4.1 describes the process of evaluating the method-

ology with test cases drawn from the training database. It is also helpful to test the

methodology against real assays of SNF. The SFCOMPO database was created to allow

access to these sorts of measurements linked to the reactor operation parameters being

predicted in this work [35, 36]. The only parameter not part of the SFCOMPO database

is the time since irradiation, so that is not predicted here.

The database used in this work is a filtered version of all the entries in the original

database. First, only the nuclide concentration measurements are kept so that the

training set measurements could be converted to the units in SFCOMPO. The assays

in SFCOMPO are presented as nuclide concentrations with the units milligrams per

grams of initial uranium, or mg/gUi. The training set of nuclide measurements in

grams is converted to these concentration units prior to prediction is converted to these

concentration units prior to prediction. Second, only the PWR, BWR, and PHWR

entries are retained and all other reactor types are excluded. Third, uranium-gadolinium

fuels are not simulated in the training set and therefore are also removed from the

testing set. Last, duplicate entries for some measurements exist and the first entry is

kept in these cases.
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Figure 4.14: Scatter plot showing the range of reactor operation parameters in the
SFCOMPO testing set that are being predicted.

In all, there are 505 test cases that are able to compare against the training database.

The number of each reactor type is as follows: 312 PWRs, 165 BWRs, and 28 PHWRs.

The space of enrichment and burnup values is visualized in Figure 4.14. These are

sufficiently represented in the training set design, as pictured in Figure 4.3, although

the proportions of PWR and BWR are approximately opposite to the training set.

There is one main issue with using SFCOMPO as a testing set: missing nuclide

measurements. The feature set of 29 nuclides in Table 4.3 was chosen based on the

frequency of these measurements being present in the database at an arbitrary level of

100 measurements. This happened before filtering the uranium-gadolinium fuel, so there

are some nuclide measurements present at under 100 counts. Each nuclide’s frequency

in SFCOMPO is listed in Table 4.7. While every assay contains several plutonium

measurements and most contain uranium measurements as well, the remaining nuclides
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are present at a much lower rate.

241Am 237 145Nd 162 147Sm 97
242mAm 110 146Nd 139 149Sm 97

243Am 203 148Nd 275 150Sm 97
242Cm 214 150Nd 121 151Sm 97
244Cm 269 237Np 155 152Sm 97

134Cs 113 238Pu 369 234U 355
137Cs 185 239Pu 505 235U 479
154Eu 100 240Pu 505 236U 462
143Nd 162 241Pu 504 238U 433
144Nd 113 242Pu 505

Table 4.7: Number of assays each nuclide is measured for in the SFCOMPO database.

Although some algorithms in theory can handle null values in the testing stage,

scikit-learn does not currently include this capability. The MLL method is designed to

handle null values, however. This is done by converting them to zero and filtering out

all zero-valued nuclides during the likelihood calculations. But there is a technique more

commonly applied than imputing missing values with zero. This involves taking the

mean or median of the existing feature measurements in the testing set and applying

that value to the assays in which it is missing. The remainder of this section discusses

using the three algorithms to predict the SFCOMPO test cases where the nulls are both

imputed using zero and the mean.

4.4.2.1 Reactor Type Classification

Table 4.8 presents two metrics for the two missing value techniques: the accuracy and

balanced accuracy scores. The accuracy scores for both the mean-imputed nulls and

zero-imputed nulls test sets are mostly under 0.62, which is the fraction of PWR entries.

Therefore, a classifier could predict PWR every time and do better than these accuracy

scores. For the zero-imputed nulls test set predictions using MLL, however, the accuracy
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of 0.72 does exceed the "majority guess" accuracy of 0.62. Since MLL calculations

filter out null values, it is expected that the scores will be higher for all prediction

categories where MLL is being used with the zero-imputed nulls test set. This expected

MLL performance also holds true when looking at the balanced accuracy score. A

balanced accuracy score of 0 denotes random guessing, but it can also be negative if

the classifications are worse than random guessing. The balanced accuracy of 0.63 for

the zero-imputed nulls case is a promising result. The balanced accuracies of k-nearest

neighbors and decision trees are all quite low. Also, the higher accuracies correspond to

lower balanced accuracies, and vice versa. Therefore, further investigation is necessary.

Accuracy Scores Balanced Accuracy Scores

Null Handling kNN DTree MLL kNN DTree MLL

Mean Imputation 0.52 0.60 0.39 0.09 0.12 -0.01
Zero Imputation 0.45 0.42 0.72 0.21 0.30 0.63

Table 4.8: Accuracy and balanced accuracy scores for reactor type prediction of the
SFCOMPO test cases.

Figure 4.15 allows for a deeper look into what is happening with the reactor type

predictions for both of the SFCOMPO test sets by studying the confusion matrices,

which are introduced in Sections 3.2.2.1 and 4.4.1.1. The matrices from using mean-

imputed null values are in the top panel and the matrices from using zero-imputed null

values are in the bottom panel. The scikit-learn algorithms have a higher accuracy

for the mean-imputed test set than their zero-imputed counterparts, but the balanced

accuracies follow the opposite direction. For k-nearest neighbors, mean-imputed nulls

cause more than half of the PWRs and all of the PHWRs to be misclassified as BWRs.

Additionally, 28.5% BWRs are misclassified as PWRs. For the zero-imputed nulls test

set, there is a much larger correct BWR classification percentage, but also a much larger

PWR misclassification percentage. The PHWR true positive percentage increases from
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Figure 4.15: Confusion matrices of reactor type prediction for each algorithm using
two missing entry techniques: imputation with mean values (top panel) and with zero
(bottom panel).

0 to 25%. BWR (32% of test cases) and PHWR (5.5% of test cases) are the two minority

classes in the database. Because they both have higher true positive fractions but

there were overall fewer correct predictions (from a much higher PWR misclassification)

from the mean-imputed nulls to the zero-imputed nulls, the accuracy decreased but the

balanced accuracy increased.

Decision trees follows a similar pattern the the k-nearest neighbors example. The

PWR misclassification increases from the mean-imputed nulls to the zero-imputed nulls

test set in a similar manner, although the original PWR true positive fraction is higher

(leading to a higher accuracy for the mean-imputed nulls case). As before, the BWR

correct classification increases drastically from the mean-imputed nulls to zero-imputed

nulls case. Additionally, the PHWR classification improvement from mean-imputed

nulls to zero-imputed nulls is better for decision trees than for k-nearest neighbors.
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Therefore, again, the accuracy decreased and the balanced accuracy increased. The

larger improvement for the minority classes has led to the larger balanced accuracy

improvement for decision trees.

In Figure 4.15, the confusion matrices for the MLL calculations tell a very different

story than those for the scikit-learn algorithms. The only similarity is that using mean-

imputed nulls causes all PHWRs to be classified as BWRs. PWRs are misclassified as

BWRs at 78.2%, and BWRs are misclassified as PWRs at 22.4%. For the zero-imputed

nulls test set, PHWRs and PWRs true positive percentages sharply improve to 92.9%

and 79.5%, respectively. The true positive rate for BWRs, however, decreases from 77.0%

to 53.9%. This is the opposite trend from both of the scikit-learn algorithms. Despite

the misclassification increase for BWRs, both the accuracy score and balanced accuracy

score increase for MLL calculations when moving from using mean-imputed null values

to zero-imputed null values in the test set. The improvement in MLL classification is

likely because the mean-imputed nulls test set hides information rather than removing

it from consideration, which is what the zero-imputed nulls test set does.

All three algorithms using both test sets tend towards misclassifying PHWRs as

BWRs (except for MLL calculations using zero-imputed null missing values). This is

likely because BWRs comprise the majority of the training set (72%), and no matter

how the missing measurements are handled there may be too little information to predict

these well with most algorithms. For the two scikit-learn algorithms, the zero-imputed

nulls test set predicts BWRs the majority of the time (despite there being 50% correct

PHWR prediction for decision trees). This also is likely from BWR being the training

set majority class, so with many nuclides measuring at zero, there are likely to be

few good matches, and the majority class becomes the most likely prediction. This

explanation is possibly applicable to the mean-imputed nulls test set as well, but the

behavior pattern is less clear because the mean-imputed nulls give more information
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for these algorithms than zero-imputed nulls (since the zero-imputed values cannot

be removed from consideration), so a larger proportion of PWRs are being predicted

properly.

4.4.2.2 Regression Cases

Next, the prediction of SFCOMPO test samples for the regression cases will be discussed.

There is no time since irradiation value in the database, so only burnup and 235U

enrichment are discussed here. While the mean and median errors for burnup and

enrichment prediction are listed in Tables 4.9 and 4.10, respectively, there are also box

plots included for both absolute and relative errors in Figures 4.16 and 4.18, respectively.

Box plots were chosen since they can provide a larger amount of information than just

a mean or median value. The white triangles represent the mean error, and the white

line in notched box is the median error. The box itself is the 25% (Q1) and 75% (Q3)

quartiles at the bottom and top, respectively. The error bars or whiskers are meant

to represent the spread of all errors minus the outliers. The bottom whisker reaches

to Q1− 1.5(Q3−Q1) and the top whisker reaches to Q3 + 1.5(Q3−Q1). Any values

outside of the total whisker range, 4(Q3−Q1), are considered outliers. [48] Lastly, there

are plots of the true value versus the predicted value for both burnup and enrichment

in Figures 4.17 and 4.19, respectively.

Burnup

The expected results that MLL will perform better with the zero-imputed nulls test

set also holds true for the regression cases, as shown in Table 4.9. While the scikit-learn

algorithms have a moderate increase in both the mean and median burnup errors from

the mean-imputed nulls to the zero-imputed nulls, the MLL calculations have an order

of magnitude decrease in error when moving in that same direction. Seeing this trend

between Figures 4.16a and 4.16c is a little difficult due to the different ranges on the

vertical axes, but the drastic improvement in MLL burnup error from the mean-imputed
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nulls in Figure 4.16a to the zero-imputed nulls in Figure 4.16c is still visually clear. In

the latter figure, there is one outlier for k-nearest neighbors and 39 for MLL calculations.

Mean Errors [GWd/MTU ] Median Errors [GWd/MTU ]

Null Handling kNN DTree MLL kNN DTree MLL

Mean Imputation 9.43 10.89 13.17 7.26 8.28 10.84
Zero Imputation 14.88 15.18 3.53 11.47 8.79 1.70

Table 4.9: Mean and median errors for burnup prediction of the SFCOMPO test cases.

Although the mean and median errors are contained in the range of 1−15GWd/MTU ,

the large spread in burnup errors in Figures 4.16a and 4.16c for all three algorithms was

broad enough to warrant an investigation into the range of relative errors, expressed

as percent errors in Figures 4.16b and 4.16d. In Figure 4.16b there are 75, 72, and 73

outliers (all around 15% of the test database) for the k-nearest neighbors, decision trees,

and MLL calculations, respectively. In Figure 4.16d there are 45 outliers for the MLL

calculations.

The large ranges seen for the mean-imputed nulls test set in Figure 4.16b are because

of large overpredictions of low burnups (< 10 GWd/MTU), since a small number in

the denominator will yield a high percentage error. A large subset of the low burnup

cases are PHWRs. Their burnups are also unlikely to be predicted well because of

the inability of PHWR reactors to be represented accurately with this methodology.

Removing the PHWR reactors from the results removes all outliers with percentage

errors larger than 1750%. That is still a very high relative error, but there are other

low burnup cases in the database. Removing PHWRs does not significantly alter the

zero-imputed nulls results in Figure 4.16d.

The range of percentage errors for the zero-imputed nulls test set in Figure 4.16d

tells a different story. There is only one case (an MLL outlier) that is above 100%

error. While the absolute errors for the scikit-learn algorithms in Figure 4.16c span a
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(a) Box plots of burnup errors using mean-
imputed null values.

(b) Box plots of burnup percentage errors using
mean-imputed null values.

(c) Box plots of burnup errors using zero-
imputed null values.

(d) Box plots of burnup percentage errors using
zero-imputed null values.

Figure 4.16: Box plots of burnup prediction errors and percentage errors for each
algorithm using two missing entry techniques: imputation with mean values and with
zero.

larger range than their counterparts in Figure 4.16a, their relative errors remain within

0− 100%. The only case that predicts the burnup well is the MLL method with the

zero-imputed missing values treatment of the SFCOMPO test set, but about 8% of the

test cases are outliers. If the best-case median error of 1.7GWd/MTU in Table 4.9 were

to also correspond to a lower relative error, then that would be an acceptable result.
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However, while the MLL calculations have a percentage error below 20% at the 75%

quartile, the non-outlier data reaches almost 40% and the 8% of the data reaches 100%.

(a) True versus predicted burnup using mean-imputed null values.

(b) True versus predicted burnup using zero-imputed null values.

Figure 4.17: True versus predicted burnup for each algorithm using two missing entry
techniques for SFCOMPO: imputation with mean values and with zero.

To better understand the high errors in Figure 4.16 and especially the relative

error outliers, Figure 4.17 presents the plots of the true burnup versus the predicted

burnup for each test sample in SFCOMPO for each algorithm and both imputation

techniques. The colorbar is the percentage error and was chosen with the range up

to 200%. This is in order to show the difference between the large errors below the

diagonal line generally having a maximum error of 100%, whereas the mispredicted

low-burnup cases have errors exceeding 200%. First, Figure 4.17a shows that all of the

large errors are centered around a certain predicted burnup range, 30− 40GWd/MTU .
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This is happening because mean imputation technique is being applied to a data set

where the measurements likely only exist for a small range of burnup values, and each

test sample is likely to have many missing values. The very large relative errors from

Figure 4.16b (200%− 5000%) are clustered in the same place for all three algorithms.

For Figure 4.17b, the large-error predictions are shown clustered towards the bottom.

This makes sense for the scikit-learn algorithms since the zero measurements are easily

interpreted as low burnup. Of course, this is not the case for the MLL calculations since

the zero values are filtered.

Overall, the absolute errors in Table 4.9 tell a much more encouraging story than the

box plots in Figure 4.16, so investigating beyond the mean and median absolute errors

was necessary to show the real picture of this unique testing scenario. The additional

details provided by directly plotting the true versus predicted burnup in Figure 4.17 is

crucial in understanding how the null-value handling methods impacted the results.
235U Enrichment

For both reactor type classification and burnup regression, the zero-imputed nulls

test set predicted by MLL calculations far outperform all other algorithm/test set

scenarios. However, the enrichment regression results break this trend. Table 4.10 shows

that decision trees outperform the other methods, and furthermore, there isn’t a large

difference in performance between the two test sets, especially seeing that the median

absolute error is the same for both test sets. The other two algorithms follow their

previous behavior: moving from mean-imputed nulls to zero-imputed nulls, k-nearest

neighbors has worse performance and MLL calculations has better performance.

The mean and median absolute errors are also visible with more statistical information

in the box plots in Figure 4.18. The outliers for decision trees and MLL calculations are

30 and 16 for the mean-imputed nulls in Figure 4.18a, respectively. So although decision

trees provides a typically low absolute error, the outliers reach nearly as far as the
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Mean Errors [% 235U] Median Errors [% 235U]

Null Handling kNN DTree MLL kNN DTree MLL

Mean Imputation 0.72 0.31 1.25 0.50 0.22 1.13
Zero Imputation 1.67 0.36 0.49 2.02 0.22 0.35

Table 4.10: Mean and median errors for enrichment prediction of the SFCOMPO test
cases.

spread of k-nearest neighbors. The number of outliers for the zero-imputed nulls results

in Figure 4.18c are 45 and 16 for decision trees and MLL calculations, respectively. The

spread of the outliers for these algorithms is similar to the previous figure, but k-nearest

neighbors has a larger spread of absolute error.

Again, a look at the relative errors gives a different sense of these results. Figures

4.18b and 4.18d present the percent error statistics for the mean-imputed nulls and

zero-imputed nulls test sets, respectively. In Figure 4.18b there are 57, 39, and 49

outliers for the k-nearest neighbors, decision trees, and MLL calculations, respectively.

In Figure 4.18d there are 44 and 23 outliers for the decision trees and MLL calculations,

respectively.

As with the burnup regression, the high percentage errors are caused by a large

overprediction of enrichments that are of low value. All of the PHWRs fit into this

category, and removing them from the results removes the outliers with the highest

errors from the mean-imputed nulls results in Figure 4.18b, leaving a maximum of

250% enrichment error. This is still a high maximum error because there are other low

enrichments not belonging to the PHWR class that remain overpredicted. As with the

burnup, removing PHWRs does not significantly alter the zero-imputed nulls results in

Figure 4.18d.

Unlike the case with burnup, the decision trees algorithm gives a better performance

that is null handling-independent than the other algorithm/test set scenarios. Although
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(a) Box plots of enrichment errors using mean-
imputed null values.

(b) Box plots of enrichment percentage errors
using mean-imputed null values.

(c) Box plots of enrichment errors using zero-
imputed null values.

(d) Box plots of enrichment percentage errors
using zero-imputed null values.

Figure 4.18: Box plots of enrichment prediction errors and percentage errors for each
algorithm using two missing entry techniques: imputation with mean values and with
zero.

there was a slightly worse mean absolute error for the zero-imputed nulls test set (the

median absolute error was the same), the relative error remains below 100% for all

outliers, as seen in Figure 4.18d. This makes the decision trees algorithm with the

zero-imputed nulls test set the best performing case for enrichment regression. It

is an unexpected result to have either one of the scikit algorithms outperform MLL
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calculations for the zero-imputed nulls test set, since they tended to have lower errors

using the mean-imputed nulls test set. But decision trees are capable of ignoring certain

features if they do not lower the node impurity (recall Equations 3.3 and 3.4), so it is

not an unexpected result without an explanation.

(a) True versus predicted enrichment using mean-imputed null values.

(b) True versus predicted enrichment using zero-imputed null values.

Figure 4.19: True versus predicted enrichment for each algorithm using two missing
entry techniques for SFCOMPO: imputation with mean values and with zero.

To better understand the high errors in Figure 4.18 and especially the relative

error outliers, Figure 4.19 presents the plots of the true 235U enrichment versus the

predicted 235U enrichment for each test sample in SFCOMPO for each algorithm and

both imputation techniques. The colorbar is the percentage error and was chosen with

the range up to 200%. This is in order to show the difference between the large errors

below the diagonal line generally having a maximum error of 100%, whereas the errors
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above the diagonal line can exceed 200%. First, Figure 4.19a does not follow the same

pattern as its burnup counterpart (Figure 4.17a) where the predictions are clustered at

a certain level due to the mean imputation. There is still a general trend of lower levels

of enrichment being over-predicted, which are the large relative error cases. This is not

happening because the missing values are not strong enrichment indicators, because

there is a clear effect when they are imputed with zero, as shown in Figure 4.19b. Here,

the large-error predictions are shown clustered towards the bottom for the scikit-learn

algorithms. As with burnup (Figure 4.17b), this is not the case for the MLL calculations

since the zero values are filtered.

Overall, as with the case with burnup, the mean and median absolute errors in Table

4.10 tell a much more encouraging story than the box plots in Figure 4.18. Looking

at the spread of absolute errors and the large relative errors gives the sense that the

enrichment predictions are quite poor as a whole. This does not mean it is hopeless;

the decision tree approach here warrants more investigation since the spread of errors in

Figure 4.18c is under 1.0% 235U. The additional details provided by directly plotting

the true versus predicted enrichment in Figure 4.19 is helpful in understanding how the

null-value handling methods impacted the results.

4.5 Summary

This chapter covers the details of the methodology in four main sections: training set

simulations, information reduction, statistical methods implementation, and performance

evaluation. This approach mimics the situation where there is a full set of well-measured

nuclides, some of which require destructive techniques to measure.

First, in Section 4.1, the training data is simulated. The features are an array of

nuclide measurements, and the prediction parameters are the simulation inputs: reactor

type, burnup, 235U enrichment, and time since irradiation. Given the chosen inputs, the



112

makeup of 4.5× 105 SNF entries are simulated using ORIGEN [26, 27, 28].

Second, in Section 4.2, information reduction on the training set is carried out using

randomly injected uniform error. The random error is used to study the robustness of

the methodology to artificial noise in the feature set, which is comprised of 29 nuclide

masses. The introduced training set error is increased up to 20%.

Third, in Section 4.3, three algorithms, k-nearest neighbors, decision trees, and MLL

calculations, are used to train models to predict the four reactor parameters of interest.

The first two are algorithms implemented using the scikit-learn python ML toolkit,

and MLL is implemented in python leveraging SciPy and NumPy for fast likelihood

calculations [29, 43, 44]. For the scikit algorithms, the hyperparameters governing model

complexity were optimized to minimize the prediction errors.

Fourth, in Section 4.4, the prediction errors are evaluated to draw conclusions

about the capability of the chosen statistical methods to inform SNF attribution with

increasingly less precise material measurements. For Section 4.4.1, the prediction

performance is measured by using the training set to provide testing samples. The

entire training set is tested at some point for all three algorithms. Sections 4.4.1.1 and

4.4.1.2 show the results of information reduction by injecting noise into the training set

(randomly applied uniform error). Next, the impacts of training set size are evaluated

to understand the effects of model generalization in Section 4.4.1.3. After this, the

impacts of having prior knowledge of the reactor type on the quality of prediction of

the regression cases are studied in Section 4.4.1.4. Last, the external testing set, the

SFCOMPO database, is used to test this methodology in Section 4.4.2.

Sections 4.4.1.1 and 4.4.1.2 cover the impacts of increasing training set error on

the four prediction parameters. The reactor type classification shows a tendency for

PWRs to be misclassified as BWR, and less so vice versa. The few misclassified PHWRs

also tend towards BWR. Neither of these findings are surprising because BWR is the



113

majority class. A more balanced training set and/or better simulation fidelity would

be required to improve these misclassifications. Burnup, 235U enrichment, and time

since irradiation relative prediction errors are all above -6% (if the anomalous k-nearest

neighbors results for time since irradiation are excluded), even at 20% training set error.

For all four prediction categories, the MLL calculations method is the most resilient

to introduced error, followed by decision trees then k-nearest neighbors. Interestingly,

at the 1% training set error level, MLL calculations tend to do slightly worse than the

scikit-learn algorithms. The behaviors of each algorithm’s performance degradation

for reactor type, burnup, and enrichment all behave in a similar fashion. But for time

since irradiation, the k-nearest neighbors prediction performance has a drastic drop

that starts with even 1% introduced training set error. While it is difficult to draw a

line and say which algorithm’s performance is acceptable or "good enough" (especially

considering the relative errors are all under 6%), the prediction performances at 20%

training set error are used as a minimum baseline for future work.

In Section 4.4.1.3, the impacts of fewer training set entries are implemented to

investigate how the algorithms each generalize to unseen samples. Using the training

set that has 5% error, it was reduced in four steps from its full size, the lowest size

being 20% of the full training set. Although the MLL calculations perform above the

scikit-learn algorithms at most sizes, the data points at 20% training set size show

MLL below one or both of the scikit-learn algorithms. The takeaway is that while this

training set is more than large enough to achieve good performance from a high variance

approach, the performance may not hold with a different training set design.

Section 4.4.1.4 shows whether the burnup, enrichment, and time since irradiation

predictions benefit from having the prior knowledge of reactor type. The largest

improvement is for the PHWR (only 1.5% of training set) regression cases for the scikit-

learn algorithms, whereas there is no improvement for MLL calculations. Because the
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BWR class dominates the training set, there is modest improvement in PWR regression

cases as well for the scikit-learn algorithms. These results indicate regression cases

linked to PHWRs may not perform well.

Last in this chapter is Section 4.4.2, where the performance of this methodology

using real world test cases of nuclide concentration measurements via the SFCOMPO

database is demonstrated. While the training set design spans the label space that

exists in SFCOMPO, there are many missing measurements from the features in the

training set, which is comprised of 29 nuclide masses. Because of an imbalanced training

set and the method used to handle the null values, the reactor type classification results

are mostly poor (except for the MLL calculations with the zero-imputed nulls testing

set with a balanced accuracy score of 0.63), which extends to the regression cases. It is

again true that investigating relative error statistics alongside absolute error statistics

provides a fuller picture of the regression of the SFCOMPO database entries. The MLL

calculations perform the best for burnup and the decision trees perform the best for 235U

enrichment (both with the zero-imputed nulls testing set), but many of the prediction

errors are still large. An investigation into the true versus predicted values (especially

for burnup) shows that the mean-imputed nulls database is clearly not worth further

investigation, but much improvement could be made to the zero-imputed nulls method.

It is possible that because most of the 505 entries contain many of the of-interest

uranium and plutonium isotopes, that this testing set should be used only in a study

limited to those isotopes. They are known to provide good discrimination on their

own [14, 15, 16, 17, 18, 20]. There are two areas for improvement: new approaches to

testing set features (using only plutonium and uranium isotopes, different approaches

to null value imputation) and improving the simulation fidelity of the training set. The

SFCOMPO database has challenges to being used as an external testing set with this

methodology, but could be improved with more consideration.
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5 reactor parameter prediction using processed

gamma spectra

This chapter covers the parameter prediction workflow using processed spectra as the

input features. The methodology from Chapter 4 is reapplied with new implementations

surrounding the training set moving beyond full knowledge of nuclide masses to degraded

knowledge of processed gamma spectra. This is described in four sections that correspond

to the four steps summarized in Figure 5.1.

Figure 5.1: Flowchart of the experimental methodology and the way each step is being
implemented.

The full description of the simulations and training labels can be found in Section

4.1. Section 5.1 provides the updates on the features used in the training set. This

results in a set of spent nuclear fuel (SNF) observations with the same known reactor

operation parameters, i.e., labels that are to be predicted, but new nuclide features.

Next, the information reduction step is covered in Section 5.2. Here, computational
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gamma spectra are created via the GAmma Detector Response and Analysis Software

(GADRAS) tool; six detectors with decreasing energy resolution were chosen. The

approach for processing the spectra from these detectors is outlined here as well.

The increasingly less-precise training data sets are input to a statistical learner for

the next step: training models. These use the features (from processed spectra) and

labels (reactor parameters/simulation inputs) in the training data sets to formulate a

model. This is introduced in Section 4.3, and the updates for this experiment are in

Section 5.3.

Lastly, the algorithms must be evaluated for their prediction performance when

given test samples (i.e., a new SNF measurement that has no labels according the to

algorithm). This follows much of what was introduced in Section 4.4, and the updates

to the approach is shown in Section 5.4.

5.1 Training Data Simulation

Figure 5.2: First portion of the flowchart from Figure 5.1 being described in this section.

In the second experiment, activities of radionuclides are necessary to calculate gamma

spectra from these values. The Oak Ridge Isotope GENeration (ORIGEN) simulations

and their inputs are the same as Section 4.1, but the outputs tracked are a different set

of nuclides, measured in Ci, or Curies. In this experiment, the full knowledge scenario

is the set of 32 nuclide activities found in Table 5.1. The simulation parameters that

are being predicted are the same:
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1. The classification of the reactor type: pressurized water reactor (PWR), boiling

water reactor (BWR), or pressurized heavy water reactor (PHWR).

2. The burnup: MWd/MTU (or GWd/MTU), mega (or giga) watt-days per metric

ton of initial uranium.

3. The uranium-235 (235U) enrichment: % 235U.

4. The time since irradiation, or cooling time: days (or years).

227Ac 241Am 243Am 133Ba 249Cf 252Cf 243Cm 244Cm
245Cm 134Cs 137Cs 152Eu 154Eu 166mHo 85Kr 94Nb
236Np 237Np 231Pa 146Pm 236Pu 238Pu 239Pu 240Pu
226Ra 125Sb 228Th 229Th 232U 233U 234U 235U

Table 5.1: Set of features saved for the second experiment, nuclide activities measured
in Ci. The bold nuclide activities overlap with the nuclides in Table 4.3.

The second feature set with 32 nuclide activities listed in Table 5.1 was designed

with the following reasons in mind. First, nuclide activities are the most straightforward

units to use for application to the detector response function (DRF) in the GADRAS

tool for the second experiment. This process is used to obtain gamma spectra for each

SNF entry in the database, which is detailed in 5.2. Second, these specific nuclides were

chosen because they remained after four steps of filtering:

1. They exist in the 196-long radionuclide list in GADRAS.

2. They have an activity above 1× 10−7 Ci (cutoff chosen to filter out nuclides that

are unlikely to produce gamma energy peaks).

3. They have a half-life longer than 1 year (cutoff chosen based on maximum time

since irradiation of 16 years).
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4. They have at least one gamma energy line above 200 keV (cutoff chosen based on

low-energy gamma energy peaks being difficult to discern in some detectors).

This one initial training set will undergo several transformations to become six

training sets (one for each detector) for each spectra-processing approach (three for each

set of detectors). This is described next in Section 5.2.

5.2 Information Reduction

Figure 5.3: Second portion of the flowchart from Figure 5.1 being described in this
section.

The overall goal of this project is to determine how much information to what quality

is needed to train a machine learning (ML) model that can provide SNF attribution

by correctly predicting the reactor type, burnup, 235U enrichment, and time since

irradiation. In this section, the information quality is treated as the energy resolution

of gamma spectra from several detectors. This is because field-deployable detectors are

of interest.

This process is outlined here for the second experiment, in which a gamma spectrum

is computed for each sample in the database from the nuclide activities in Section

5.1. The GADRAS code [49] developed at Sandia National Laboratories will provide

computational gamma spectra. There are three steps to this process: inputting the

radionuclide activities into a DRF to compute gamma spectra, processing the gamma

spectra into a smaller feature set, and applying a statistical counting error to those

features.
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Step 1: Computational Gamma Detection

The first step is obtaining a gamma spectrum for every SNF entry in the database;

this is done using GADRAS. The GADRAS tool includes many capabilities related to

radiation detection and spectra analysis; its predominant use is related to the simulation

of the detection of gamma rays and neutrons from user-defined sources and detector

configurations. A combined first principles and empirical modeling approach based on

interaction cross sections and radiation scattering inform the DRF code to calculate

typical gamma detector spectrum features, e.g., photopeaks and the Compton continuum.

Although new detectors can be created and calibrated within the software, this work

employs the use of pre-calibrated detectors. Thus, given a source, which is a list of

radionuclides and their activities in this case, GADRAS applies a DRF from a given

detector configuration to the gamma energy lines from these radionuclides and models

the spectrum. [49]

The nuclide activity data requires some processing to be used in this way. The

activities that come from the ORIGEN simulations are based on there being 1MT of

initial uranium-based fuel. Not only is this quantity an unlikely amount to be smuggled,

it would overwhelm a detector at the calibrated source-detector distances in GADRAS.

Therefore, the material (and resulting nuclide activities) are scaled to be 1 g of SNF.

For the GADRAS calculations, the primary input is a nuclide activity vector as the

source, and the output is an array of energy bins (measured in keV ) and the counts per

energy bin as the spectrum. The sources are provided without any background; this is

because any spectrum would undergo background subtraction before further analysis.

Additionally, the nuclides are pre-decayed in ORIGEN to correspond to various cooling

times, but a source age must be provided to GADRAS as a non-zero value (otherwise,

important decay transitions are missed). Various source times (10 sec, 30 sec, 1 min,

5 min, 10 min, 20 min, 30 min, 1 hr, 2 hr) were tested for two samples, and both a
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qualitative visual analysis of the major photopeaks plus a study of the total counts

leveling off was used to choose a nonzero age for the material. At a source age of

20 minutes, the expected peaks are visible and the total counts had reached a value

similar to the longer ages tested.

The other input information is related to the detector configuration. User-chosen

variables are the source-detector distance [cm], height of source-detector setup from

nearest surface [cm], the live time [s], and the number of channels for the detector.

The detector configuration file in GADRAS contains much more information, however.

In it, there are a number of parameters from calibration results, detector geometry,

information about scattering, and shielding information (shielding is not considered in

this work).

Detector
% FWHM
@ 661 keV

Distance
(cm)

Height
(cm)

Live Time
(s)

Num
Channels

In-Lab HPGe 0.21 100.0 84.0 600 8192
Portable HPGe 0.29 100.0 100.0 600 8192
CZT 1.20 100.0 100.0 600 1024
SrI2 2.94 100.0 100.0 600 1024
LaBr3 3.63 213.0 84.5 2400 1024
NaI 7.74 213.0 85.4 2400 1024

Table 5.2: Select details of 6 detector setups used to obtain gamma spectra-based
training databases.

Training databases were created for the six detectors outlined in Table 5.2. They

were chosen to compare the highest energy resolution detector, a lab-based high-purity

germanium (HPGe), against the rest, in order of decreasing energy resolution: portable

HPGe, cadmium zinc telluride (CZT), strontium iodide (SrI2), lanthanum bromide

(LaBr3), and sodium iodide (NaI) detectors. This is displayed in the table by including

the full width at half maximum (FWHM) of the 661 keV peak for 137Cs. GADRAS

is used to create a spectrum for every SNF entry in the 32 nuclide activity training
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database using these six detector configurations. At this point, there are six versions

of the original database, one for each detector. The database entries are each a full

gamma spectrum of a given SNF sample for the detector setup in that training set.

Step 2: Processing Gamma Spectra

The second step covers the processing of the gamma spectrum generated for each

SNF entry into a training set. It is not computationally prudent to use full gamma

spectra for training and testing, since the spectra returned have 1024 or 8192 bins, and

machine learning algorithms are not designed to handle thousands of features. Thus,

these spectra are processed into fewer features.

There is much ongoing work on the topic of attributing SNF with gamma detection

using targeted or advanced measurement techniques [50, 51, 52] and using innovative

spectra evaluation and radioisotope identification methods [53, 54, 55, 56, 57, 58, 59, 60].

Since this is a topic of active research and the approaches are heavily detector-dependent,

a simple processing approach is developed here. Since all entries in a given training set

are background-subtracted spectra using the same detector setup and calibration for

the same measurement duration, each photopeak can be directly compared to other

photopeaks in the training set. This is accomplished by comparing them via an area

under the curve: placing an energy window on a peak, and summing the counts of the

bins within that energy window.

There are two main design choices here: the width of the energy windows and the

number of energy windows to include. First, the energy window width is a value that

is fixed for each detector prior to processing. The different energy window widths are

listed in Table 5.3. They are chosen manually; the spectra were plotted and different

values were tested and visually analyzed to be sure the windows were encompassing

the peaks. This was preferable to some linear function based on the detector energy

resolution because, e.g., the LaBr3 and NaI detectors have the same human-chosen
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window but the energy resolutions are different (see Table 5.2).

Detector
Energy Window
Size [keV]

# of Energy Windows

Auto Short Long

In-Lab HPGe 2 206 42 151
Portable HPGe 3 120 42 151
CZT 8 30 42 151
SrI2 10 17 42 151
LaBr3 12 19 42 151
NaI 12 9 42 151

Table 5.3: Energy window sizes and list lengths for 6 detector setups used to process
the gamma spectra-based training databases.

The second design decision is the number of energy windows to include. Table 5.3 lists

three energy window list length columns, Auto, Short, and Long. These correspond to

different processed training sets that have a different number of energy windows included.

There are two approaches taken: a nuclear physics-based method that generates an

energy window list based on the gamma energies expected to be detected (short and

long), and an automatic peak search of a manually chosen gamma spectrum in the full

gamma spectra training database (auto).

The first energy window list method provides the short and long lists in Table

5.3; the length of these lists are the same for all detectors because they are based on

the gamma energies most likely to be detected, which is independent of the detector

quality. To obtain these lists, the expected number of decays of each gamma energy is

calculated based on the activities of the 32 tracked nuclides using the Python for Nuclear

Engineering toolkit [61] from a reference sample in the training set. This reference

sample emerged as the sample of choice because it contains the superset of gamma

energies of all tested samples, of which there were nine (three for each reactor type).

After the expected number of decays for each gamma energy for all 32 nuclides are
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calculated, an arbitrary minimum number of decays is selected to filter out the gamma

energies that are unlikely to produce counts high enough to be detected. The first

arbitrary minimum number of decays is set at 5× 108 decays, and the long list of 151

gamma energies that remain above this cutoff is created. A list of length 151 is likely to

contain many features that do not contribute discrimination to the models, and thus

they may add noise to the training set, so a shorter list is needed. So, a higher arbitrary

minimum of 5× 1010 decays is chosen; this threshold creates the short list of 42 gamma

energies.

The short and long lists of gamma energies correspond to the nuclides in Table 5.4.

The 12 nuclides listed come from the long list, and the subset of seven bold nuclides

come from the short list. To determine a "full knowledge" scenario for the detector-based

training sets, two training sets are also created with the 7- and 12-nuclide activity lists.

It should be noted that several (three for each reactor type) training set entries were

selected based on sampling evenly throughout the training set parameters, with the

intention that there would be a set of gamma energies comprised from multiple entries.

However, one sample emerged as a superset of the others. This sample is thus chosen

for the second method, discussed next.

241Am 243Am 243Cm
244Cm 245Cm 134Cs
137Cs 152Eu 154Eu
85Kr 238Pu 125Sb

Table 5.4: Nuclides that are represented by the gamma energy lines in the energy lists.
The entire set of 12 nuclides belongs to the long list, and the 7 bold nuclides belong to
the short list.

The column denoted as Auto in Table 5.3 is obtained by a physics-free approach. It

is based on a peak search of a spectrum in the full gamma spectra training database.

The previously mentioned sample is selected for all six detectors, and a peak searching
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algorithm implemented in python using the SciPy toolkit [43] is applied. Using the peak

search on the six different spectra for the same sample, the resulting number of energy

windows for each detector is in Table 5.3.

Figure 5.4: Slice of an example gamma spectrum in one of the training databases
showing the windows over the gamma energy peaks. This is the portable HPGe with
the auto energy window list and the reference sample’s spectrum.

After the three energy window lists are created, the full gamma spectra database

of a given detector are processed into three training sets, one for each list. Next, as

previously mentioned, the energy window width for each detector is used to sum the

binned counts for each energy window list entry. This is visualized in Figure 5.4, where

a portion of a portable HPGe spectrum is shown with the ±3 keV windows from the

auto energy window list. Three training sets are created for each detector, resulting in

18 detector-based processed gamma spectra training sets.

Step 3: Apply Statistical Counting Error

The third step involves the inclusion of the counting error for the summed energy

windows. This is quite simple mathematically speaking, as statistical counting error

of n counts is
√
n. As in Section 4.2, this error gets applied in the same way for the

scikit-learn algorithms, where the uniform error is applied randomly within the range

[xi−
√
xi, xi +√xi] for each summed energy window xi. For the maximum log-likelihood
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(MLL) calculations, Equation 4.1 is used, where σi = √xi.

In summary, there are three steps taken to arrive at training databases based on

gamma spectra from six chosen detectors. Unlike the simple increase in training set

error applied in Chapter 4, each step of the process adds an additional layer of reduced

information quality, which are listed here:

1. Instead of "perfect" radionuclide activity knowledge, they are being measured by

a gamma detector.

2. The processing of the gamma spectra can be highly variable.

3. The
√
n error of counts-based detection is included.

5.3 Statistical Learning Implementation

Figure 5.5: Third portion of the flowchart from Figure 5.1 being described in this
section.

The chosen algorithms (k-nearest neighbors, decision trees, and MLL calculations)

are introduced in Section 3.2.1 and their implementation details are in Section 4.3.

This section will therefore only cover the implementation differences from the previous

work. The MLL calculations are implemented identically to Chapter 4. However, the

scikit-learn algorithms in this experiment did undergo a new round of hyperparameter

optimization.

The full list of 22 training sets that undergo training and prediction are as follows:

• 1 set of nuclide masses (29 nuclide masses from Chapter 4)
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• 3 sets of nuclide activities

– 32 nuclide activities (full knowledge scenario for all nuclides, whether or not

they are present in a quantity able to be detected)

– 12 nuclide activities (full knowledge for long energy windows list)

– 7 nuclide activities (full knowledge for short energy windows list)

• 18 detector-based processed spectra sets

– Auto energy windows lists applied to six detectors (lab-based HPGe, portable

HPGe, CZT, SrI2, LaBr3, NaI)

– Short energy windows lists applied to six detectors above

– Long energy windows lists applied to six detectors above

Table 5.5 lists the hyperparameter optimization results for the 22 training sets.

Because the 29 nuclide mass training set is included in this chapter for comparison, its

optimization results are also listed here. The number of features for decision trees are

not limited because the test runs for optimization provided highly variable results. The

only case where this is not true is with the auto energy windows list for the lab-based

HPGe with a length of 206; the maximum features for this one case are limited to 150.

Instead, optimization was carried out only on the maximum depth for decision trees

with keeping the full length of features. This is an area that could undergo deeper

exploration than what occurs in this work, since the training sets with large feature sets

can become overfit.

The optimization took place in two rounds, where the first round had a coarser

grid of k for k-nearest neighbors and maximum depth for decision trees and the second

round had a finer grid of parameters. The 7 & 12 nuclide activity training sets were

optimized separately but contain averages of the two results for the maximum depth,
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Training Set
Description

Prediction
Parameter

k
(N neighbors)

Max
Depth

Max
Features

29
Nuclide
Masses

Reactor Type 4 56 29
Burnup 1 77 29
Enrichment 1 73 29
Cooling Time 2 45 29

32
Nuclide
Activities

Reactor Type 1 41 32
Burnup 1 49 32
Enrichment 1 67 32
Cooling Time 7 56 32

7 or 12
Nuclide
Activities

Reactor Type 1 67 7 or 12
Burnup 1 78 7 or 12
Enrichment 1 60 7 or 12
Cooling Time 4 68 7 or 12

Energy
Windows:
Short

Reactor Type 1 62 42
Burnup 1 62 42
Enrichment 4 64 42
Cooling Time 2 54 42

Energy
Windows:
Long

Reactor Type 4 62 151
Burnup 1 51 151
Enrichment 5 73 151
Cooling Time 2 64 151

Energy
Windows:
Auto

Reactor Type 2 61 None or 150
Burnup 1 52 None or 150
Enrichment 4 67 None or 150
Cooling Time 2 58 None or 150

Table 5.5: Optimized algorithm hyperparameters; the energy lists took all detectors
into account.

and the higher value of k when the two did not match. The k and maximum depths

were averaged across all six detectors for each energy window list length (short, long,

and auto). There were fairly consistent results from the short and long lists, but the

variable length of the auto-generated energy windows lists (in Table 5.3) gave a wider

range of ideal hyperparameters.
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5.4 Performance Evaluation

Figure 5.6: Fourth portion of the flowchart from Figure 5.1 being described in this
section.

The prediction performance is measured by the balanced accuracy of the reactor type

classification or the absolute and/or relative error of the regression cases (burnup, 235U

enrichment, cooling time), which were introduced in Section 3.2.2.1. These performance

metrics for all four prediction types and all six detectors are compared across the three

algorithms used: k-nearest neighbors (denoted in plots as kNN ), decision trees (denoted

in plots as Dec Tree or DTree), and MLL calculations. In all of the results in this section,

the statistics being reported is on all 4.5× 105 entries in the training set.

Figure 5.7: Demonstration of plot format being used to evaluate the results, shown in
order to explain the axes and baseline.

In order to evaluate the prediction performance degradation with decreasing infor-

mation quality via detector energy resolution, a basic plot format is presented, pictured
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in Figure 5.7. There are three plots for each prediction parameter, corresponding to the

three energy window lists: auto, short, and long. The vertical axis is always oriented

so that higher levels indicate better performance, so is plotted as accuracy score or

negative error.

The horizontal axis is oriented so that reduced information travels rightward. First,

the 29 nuclide mass training set is included for comparison, followed by the 32 nuclide

activity training set, which is intended to represent a full knowledge scenario of nuclide

activities before gamma detection. These are both the same for all three energy window

lists. The 7 & 12 nuclide activities are next, and they represent the full knowledge

scenario for the post-gamma detection short and long energy window lists, respectively.

So if a window is presenting the short energy window list results, it will include the data

point from the 7 nuclide activity training set; the long energy window list results present

the 12 nuclide activities results. The 12 nuclide activity training set is used for the

auto energy window list plots, but it is not possible to know which set best represents

the auto results since the peak search approach does not take physics into account and

it varies across detectors. All of the nuclide mass/nuclide activity training sets are

predicted with a 1% training set error applied, so that there is a non-zero but low error

estimate mimicking near-perfect information. Last, the six detectors are in order of

decreasing detector energy resolution. Thus, for each prediction parameter, there are

three plots for each energy window list with these nine horizontal axis categories.

The last component of Figure 5.7 is the red horizontal line. It represents a minimum

acceptable performance, interpreted from the results in Section 4.4. It is drawn at the

level of the worst performing algorithm at 20% training set error. This is therefore

somewhat arbitrary, but if the detectors cannot predict above this level, it means

that a detector-based training set with only counting error cannot reach the level of

performance of 20% error in a training set based on an assay of 29 nuclide masses.
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5.4.1 Reactor Type Classification

To judge the degradation of algorithm predictions with decreasing information quality

(detailed in Section 5.2), a plot based on Figure 5.7 is presented for each energy window

list (auto, short, and long). Figure 5.8 shows the balanced accuracy of reactor type

classification for the previously described horizontal axis, where a score of 1 is perfect

prediction and a score of 0 is random classification. The error bars (which are not visible

past the marker size on the plots) reflect a 99% confidence interval. The red baseline

that indicates a minimum acceptable performance is at 0.84 balanced accuracy, which

is based on the lowest performance of all three algorithms at 20% training set error for

the 29 nuclide mass training set in Figure 4.7.

Figure 5.8: Prediction performance of reactor type as measured by balanced accuracy
with respect to decreasing detector energy resolution for three types of processed gamma
spectra.

The previous results in Figure 4.7 show the k-nearest neighbors line emerging with

the lowest performance with decreasing information, and it is interesting that this

pattern did not emerge with the detectors’ performances in Figure 5.8. Instead, for

the auto and short energy windows lists, the k-nearest neighbors performance is below

MLL calculations and above decision trees (except in the two unique cases in the auto

energy windows list). This broader trend does not hold for some specific cases, however.
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For the lab-based and portable HPGes, k-nearest neighbors has the worst performance

among all three algorithms for the auto and long lists, and drastically so for the two

unique auto list cases of extremely poor performance. In terms of the baseline, there is

one instance of k-nearest neighbors being above it: the lab-based HPGe with the short

energy windows list. This is the only instance of a scikit-learn algorithm out-performing

the baseline for this entire set of results.

There are no detector-based training sets at all for which decision trees performs

above the baseline. For the last four detectors on the horizontal axis and all three energy

windows lists, decision trees almost consistently performs the worst.

The MLL calculations are the best performing algorithm on on three plots. For

the auto energy windows list, the lab-based HPGe and SrI2 detector-based training

sets perform above the baseline. For the short and long energy windows lists, only the

lab-based HPGe is above the baseline.

Only the first three horizontal axis categories exceed the baseline for all three

algorithms, which is expected for the various levels of full-knowledge represented. The

baseline may or may not be drawn at a reasonable level with which to distinguish

"acceptable" performance, but given its location, only the lab-based HPGe detector with

MLL calculations performs at an acceptable level.

Next, the comparison of the gamma spectra processing will be discussed, neglecting

the baseline. The short energy windows list performs the best across the three methods

used to process the gamma spectra when considering all three algorithms. But for this

set of results, the MLL calculations using the auto energy windows list performs the

best. The auto energy windows lists even has one of the scintillator detectors (SrI2)

outperform the baseline for MLL, but the scikit-learn algorithms for the solid state

detectors perform erratically. The variable behavior of the auto energy windows list

would require further study, but the fact that the SrI2 detector outperforms all of the
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solid state detectors speaks to how an automatic peak search should not be discarded

as a method. The auto energy windows list set of points for SrI2 outperforms even the

portable HPGe on the short energy windows list. The slightly worse outcomes for the

long energy windows list are to be expected from the algorithms having to deal with a

lot of non-useable features, especially for the last four detectors, since their spectra will

not contain measurable peaks from many of the gamma energies in that list.

As in Section 4.4.1, the reactor type classification performance discussion would not

be complete without the added detail that confusion matrices supply (see Sections 3.2.2.1

and 4.4.1.1 for an introduction to confusion matrices). First, the four "full knowledge"

training sets are presented in Figure 5.9. Note that the color bar extends from -0.1 to

0.1, which is a very small range. The results in all four panels are all quite accurate, so a

small color bar range is necessary to make a visual distinction of performance relative to

the other full knowledge cases. The 29 nuclide mass training set (top panel) is repeated

from the 1% training set error case in Figure 4.8. For the 32 nuclide activity training

set (second panel), the numbers are approximately the same, but interestingly, they

improve slightly for k-nearest neighbors and MLL calculations. A visible increase in

misclassification is clear with the 12 and 7 nuclide activity training sets, especially for

decision trees. The starkest increase in misclassification is with PWRs being classified

as BWRs. This increases from about 5% to about 10% from the 12 nuclides set to the 7

nuclides set. For the 7 nuclides set decision trees classification, the misclassification of

PHWRs as BWRs reaches about 5%. By contrast, the same misclassification is 3% for

k-nearest neighbors and 1% for MLL calculations.

Next, Figures 5.10, 5.11, and 5.12 show the confusion matrices for all six detectors

(in the same order top-to-bottom as the horizontal axis in Figure 5.8) for the auto, short,

and long energy windows list training sets, respectively. For these figures, the color bar

range is much wider (-0.65 to 0.65) than with the more accurate results in Figure 5.9.
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Figure 5.9: Confusion matrices of reactor type prediction for each algorithm for different
training sets (all at a 1% error level): 29 nuclide masses, 32 nuclide activities, 12 nuclide
activities, and 7 nuclide activities.
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Figure 5.10: Confusion matrices for auto energy window list training sets.
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Figure 5.11: Confusion matrices for short energy window list training sets.



136

Figure 5.12: Confusion matrices for long energy window list training sets.
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In Figure 5.10, the two poorly performing k-nearest neighbors HPGe cases are the

most noticeable confusion matrices visually. The k-nearest neighbors performances for

the two HPGes were notably poor in the plot, and the confusion matrices for these two

cases explains why: not only are 40.8% and 62.1% of PHWRs being misclassified as

BWRs for the lab-based and portable HPGes, respectively, 31.2% and 42.9% of the

PWRs are misclassified as BWRs for the same two detectors, respectively.

By contrast, the anomalous high performance of the SrI2 detector training set, for

all three algorithms, can be seen in its panel that is paler in color than its surroundings.

The confusion matrix (in the fourth panel) for those data points show no more than

16% of BWR-misclassified PWRs and PHWRs for k-nearest neighbors, no more than

23% for decision trees and no more than 13% for MLL calculations.

Aside from the two poorly performing k-nearest neighbors cases, the decision trees

column has the boldest colors/poorest performance. The lowest BWR misclassification

value is 22%. Additionally, it can be visually perceived at a glance that the MLL

column has better performance than the other two algorithms. This is expected from

the higher balanced accuracy scores in Figure 5.8. Throughout all six panels, the highest

misclassification value is 25%.

Next, Figure 5.11 is on the following page, providing more detail about the reactor

type classification than is seen in the middle plot in Figure 5.8. The better classification

performance across all algorithms can be seen instantly, since the color bar spans the

same range as with Figure 5.10. Again, the relatively poor performance of decision trees

can be seen with the bolder colors compared to the two other algorithms. For decision

trees, the misclassification of PHWRs as BWRs reaches 32.8%, whereas those values

are 25.2% for k-nearest neighbors and 21.2$ for MLL calculations.

Last, Figure 5.12 provides more classification detail on the third plot in Figure

5.8. The MLL performance takes a similar shape at a slightly lower balanced accuracy
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score compared to the short auto energy windows list, seen in Figure 5.8 and in the

comparison of Figures 5.11 and 5.12. What makes the long energy windows list results

unique is that k-nearest neighbors and decision trees have very close balanced accuracy

scores for the bottom four detectors. By looking at their confusion matrices, one can

see that the misclassification patterns are also similar. The first two detectors, both

of the HPGes, have notably lower classification performance for k-nearest neighbors,

however. This may or may not be related to the reason the two training sets from these

detectors perform significantly worse for the auto energy windows list.

The two extreme k-nearest neighbors cases for the two HPGes is a behavior that

will repeat for not-yet-discussed prediction parameters. The most likely explanation is

that the automatic peak search step (as opposed to predefining the selection of peaks

based on expected gamma energy photopeaks) finds peaks that are adding noise and

not information to the energy windows lists. Since these algorithms all suffer from high

variance, it is possible that this peak search approach is causing these two detectors

(which have a high energy resolution) to succumb to the additional noise. This should be

contrasted with the case of the SrI2 detector, where it is one of the only detector-based

training sets to exceed the baseline defined level.

Overall, the sets of confusion matrices presented in Figures 5.9-5.12 show various

degrees of the same misclassification pattern. With less information, more PWRs and

PHWRs get classified as BWRs. Since about 72% of the training set is an entry on

BWR, this pattern is expected.

5.4.2 Regression Results

In this section, the results of the regression cases (burnup, enrichment, and time since

irradiation) are presented. For each prediction parameter, the plot format described

in Figure 5.7 is used to show the mean absolute percentage error (MAPE) for each of
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the three energy window lists. However, while seeing the performance decrease with all

three algorithms on the same plot is helpful for getting a bigger picture of the results, a

more detailed visual is also helpful.

Introduced in Section 4.4.2.2, box plots provide increased statistical detail and a

direct comparison of mean and median error for each data point, which each taken alone

can paint a drastically different picture of the results. These box plots have a small

variation from the original description, however. The mean absolute error (MAE) is now

represented by black triangles, since many are above the 75% quartile level (i.e., outside

of the box). The median absolute error (MedAE) remains represented by a white line,

which may be hard to see in some plots because many median errors are near zero.

There is one set of boxes for each algorithm for a given energy window list-based

set of detector training sets. Because these are box plots, they are not oriented to the

"higher is better" standard of the vertical axis of the original prediction performance

plots. There are the same red baselines, but they are now at a positive value since the

vertical axis is no longer negative. In order to see the spread of the data and compare

the mean and median errors, the outliers were suppressed from the box plots. There are

many outliers in these results, and the values can be quite large. Each set of box plots

is therefore repeated with a set of box plots with the outliers included.

Lastly, the full knowledge cases (the 29 nuclide masses, and the 32, 12, and 7 nuclide

activities sets) are not able to be represented on the same scale as the detector training

set results, so they are excluded from the box plot figures.

5.4.2.1 Burnup Regression

The baseline performance in Figure 5.13 is at -4% MAPE for burnup, chosen by the

lowest performance of the three algorithms at the reference point of 20% training set

error for the 29 nuclide mass training set in Figure 4.9a. In Figures 5.14 and 5.15, the

red baseline is at 1000MWd/MTU , from the reference point in Figure 4.9b. In these
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Figure 5.13: Prediction performance of burnup measured by MAPE with respect to
decreasing detector energy resolution for three types of processed gamma spectra.

two sets of plots, the baseline is at a positive value because the box plots do not have a

negative vertical axis.

Figure 5.13 shows encouraging results about the burnup prediction for all three

algorithms and all three energy windows lists used to process the gamma spectra. There

is overall a gradual decrease from perfect knowledge starting at close to 0% error to the

lowest energy resolution detector at about -1.5%. There are two anomalous cases, as

with the reactor type results in Figure 5.8: the predictions using k-nearest neighbors for

the two HPGe detectors processed with the auto energy windows list. The reason for

this behavior is discussed at the end of Section 5.4.1.

Next, in Figures 5.14 and 5.15 the vertical axis orientation flips to positive absolute

error, so that higher values are worse and the goal is to have the mean and median errors

be below the red line. Most of the burnup errors in Figures 5.14a, 5.14b, and 5.14c are

below the red line, except for the MAE from the portable HPGe. This set of errors from

the portable HPGe also encompass a range than reaches up to > 3500 MWd/MTU ,

which is about 4× higher than the other box plots in all three subfigures.

The burnup predictions for the most part perform better than the red line, for all

algorithms and gamma spectra-processing methods. Of course, the MLL calculations
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(a) Burnup prediction error box plots for auto energy windows list.

(b) Burnup prediction error box plots for short energy windows list.

(c) Burnup prediction error box plots for long energy windows list.

Figure 5.14: Prediction performance of burnup for six detectors as shown by box plots
without outliers shown.
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(a) Burnup prediction error box plots for auto energy windows list.

(b) Burnup prediction error box plots for short energy windows list.

(c) Burnup prediction error box plots for long energy windows list.

Figure 5.15: Prediction performance of burnup for six detectors as shown by box plots
with outliers shown.
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consistently have the lowest errors. In all but the two HPGe cases with the auto energy

windows list, the MedAEs are close to zero. This indicates that there are very good

predictions for at least half of the training set. However, the MAEs are all above the

75% quartile, which suggests the errors that do exist are quite large relative to the

interquartile range.

Furthermore, looking at the sets of box plots with outliers present in Figure 5.15

shows that there are many errors far outside of the full range of burnup errors that reach

up to almost 20000MWd/MTU (for decision trees with the short energy windows list in

Figure 5.15b), an error that has a magnitude of about 30% of the largest burnup value

in the training set. Figure 5.13 shows that these large MAEs are actually are of low

relative error with the data points all being above -1.5%. The number of outliers ranges

from an average between 53k and 65k per box for the two scikit-learn algorithms, and

about 76k per box for the MLL calculations. This means that 12− 17% of the training

set samples are outliers. The high magnitude errors along with the large number of

outliers contributes to the standard deviations in Figure 5.13, which are so large that it

is difficult to conclusively define a trend.

The overall flatness of the boxplots and better-than-baseline performance indicates

that the features needed to determine burnup are easily measured by all detector

configurations.

5.4.2.2 235U Enrichment Regression

The baseline performance for the enrichment predictions in Figure 5.16 is at -6% MAPE,

chosen by the lowest performance of the three algorithms at the reference point of 20%

training set error for the 29 nuclide mass training set in in Figure 4.10a. In Figures 5.17

and 5.18, the red baseline is at 0.17 % 235U, from the reference point in Figure 4.10b. In

these two sets of plots, the baseline is at a positive value because the box plots do not

have a negative vertical axis.
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Figure 5.16: Prediction performance of 235U enrichment measured by MAPE with
respect to decreasing detector energy resolution for three types of processed gamma
spectra.

Figure 5.16 shows discouraging results about the 235U enrichment prediction for all

three algorithms and all three energy windows lists used to process the gamma spectra.

Taken as a whole, the data points in Figure 5.16 have a distinct shape, similar to the

behavior in Figure 5.8. The three full knowledge cases have near-perfect enrichment

prediction and the six detectors for all three energy windows lists are nearly flat, where

most data points are in the -50% to -30% range. This is a large range but also a high

relative error. As with the other previously discussed prediction types, there are two

anomalous cases: the prediction using k-nearest neighbors for the two HPGe detectors

processed with the auto energy windows list. The reason for this behavior is discussed

at the end of Section 5.4.1. In this set of results, k-nearest neighbors usually performs

the worst or, when it does not, about equal to decision trees. The MLL calculations

are the best performing for the auto energy windows list, but the results in the short

and long energy windows lists shows decision trees performing close to and sometimes

outperforming MLL.

Next, in Figures 5.17 and 5.18 the vertical axis orientation flips to positive absolute

error, so that higher values are worse and the goal is to have the mean and median

errors be below the red line. Unlike with the burnup errors being mostly below the red
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(a) 235U enrichment prediction error box plots for auto energy windows list.

(b) 235U enrichment prediction error box plots for short energy windows list.

(c) 235U enrichment prediction error box plots for long energy windows list.

Figure 5.17: Prediction performance of 235U enrichment for six detectors as shown by
box plots without outliers shown.
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(a) 235U enrichment prediction error box plots for auto energy windows list.

(b) 235U enrichment prediction error box plots for short energy windows list.

(c) 235U enrichment prediction error box plots for long energy windows list.

Figure 5.18: Prediction performance of 235U enrichment for six detectors as shown by
box plots with outliers shown.
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line in Figure 5.14, this is not the case for enrichment. None of the MAEs are below the

red line, and the majority of the MedAEs are also above it. There are a few box plots

where the MedAE is below the red line: the first four detectors processed with the auto

energy windows list as predicted using MLL, and the lab-based HPGe processed with

both the short and long lists for decision trees and MLL calculations. Interestingly, the

red line appears to run across the bottom quartile for the k-nearest neighbor predictions

for all three energy windows lists, which indicates about 25% of those predictions are

below the standard defined using mass-based information.

The range of errors reaches to about 3 % 235U without outliers, which is a large

magnitude since the maximum enrichment is about 5 % 235U. All nine combinations

of algorithm and energy windows list in Figure 5.18 have outliers that reach the full

5 % 235U, indicating that some of the 0.5% enriched fuels are being mispredicted at a 5%

level. Furthermore, an error that large is of the magnitude of the highest enrichment

level in the training set. The number of outliers ranges from an average of about 18k for

the k-nearest neighbors boxes, and about 14k per box for the decision trees and MLL

calculations, meaning about 3-4% of the training set samples are outliers. Although

there are much fewer outliers than with the burnup predictions, the wide range of MAE

magnitudes and the large MAPEs contribute to the large standard deviations in Figure

5.16. Again, the standard deviations are so large that it is difficult to conclusively define

a trend.

The overall flatness of the boxplots and far-below-baseline performance indicates

that the features needed to determine enrichment are not well-measured by any of the

detector configurations.

5.4.2.3 Time Since Irradiation Regression

The original baseline performance for the time since irradiation predictions in Figure

5.19 were at -30% MAPE, chosen by the lowest performance of the three algorithms at
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Figure 5.19: Prediction performance of time since irradiation measured by MAPE with
respect to decreasing detector energy resolution for three types of processed gamma
spectra.

the reference point of 20% training set error for the 29 nuclide mass training set in in

Figure 4.11a. However, the k-nearest neighbors algorithm in that plot had exceptionally

poor performance compared to the other two algorithms, so all of the results from

the detector-based training sets (including those predicted using k-nearest neighbors,

oddly enough) far outperform this baseline. Therefore, a new one was chosen based on

the decision trees performance at the reference point in Figure 4.11a, at a MAPE of

-6%. Similarly, in Figures 5.20 and 5.21, the original baseline is at 550 days and the

updated red baseline is at 120 days, from the k-nearest neighbors and decision trees

performances, respectively, at the reference point in Figure 4.11b. In these two sets of

plots, the baseline is at a positive value because the box plots do not have a negative

vertical axis.

Figure 5.19 shows the relative error results from the time since irradiation prediction

for all three algorithms and all three energy windows lists used to process the gamma

spectra. There is a gradual decrease from perfect knowledge, in contrast to enrichment

but similar to burnup, starting at close to -2% error to the lowest energy resolution

detector at about -10%. The red line in these plots makes for an interesting delineation

of the results, since there are 2 or 3 MLL data points in each plot that are on or exceed
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(a) Time since irradiation prediction performance box plots for auto energy windows list.

(b) Time since irradiation prediction performance box plots for short energy windows list.

(c) Time since irradiation prediction performance box plots for long energy windows list.

Figure 5.20: Prediction performance of time since irradiation for six detectors as shown
by box plots without outliers shown.
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(a) Time since irradiation prediction performance box plots for auto energy windows list.

(b) Time since irradiation prediction performance box plots for short energy windows list.

(c) Time since irradiation prediction performance box plots for long energy windows list.

Figure 5.21: Prediction performance of time since irradiation for six detectors as shown
by box plots with outliers shown.
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the baseline. Additionally, the decision trees data points for the lab-based HPGe for

the short and long energy windows lists also exceed the baseline. The remainder of the

detector-based training sets are below the baseline. Notably, the k-nearest neighbors

case with the 29 nuclide masses training set is below the line at about -10%. This is from

the previously mentioned issues with this algorithm’s performance with this particular

prediction parameter. For reactor type, burnup, and enrichment, the predictions using

k-nearest neighbors for the two HPGe detectors processed with the auto energy windows

list performed drastically worse than the rest of the scenarios. For time since irradiation,

however, this is only true for the portable HPGe. The reason for this behavior is

discussed at the end of Section 5.4.1.

Next, in Figures 5.20 and 5.21 the vertical axis orientation flips to positive absolute

error, so that higher values are worse and the goal is to have the mean and median

errors be below the red line. The auto energy windows list results in Figure 5.20a have

many of the MAEs and all of the MedAEs below the red line. The MAEs of the two

HPGes for k-nearest neighbors are above it, and the CZT and NaI detectors for decision

trees are above it as well. Nearly all of the cooling time errors in Figures 5.20b, and

5.20c are on or below the red line, except for the MAE of the decision trees results

for the NaI detector. Other than the portable HPGe box which encompasses a range

reaching 1000 days, the range of absolute errors rarely exceeds 400 days, or a little over

a year. Taking an aggregate view of the three plots, many of the MAEs are around

100 days.

Although the range of absolute errors typically reaches to around 400 days, the

outliers in Figure 5.21 reach to about 10x that level to approximately 4000 days. This

error magnitude is about 70% of the largest time since irradiation level in the training

set. The number of outliers have an average of about 26k per box for the two scikit-learn

algorithms, and about 41k per box for the MLL calculations. This means that 6− 9%
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of the training set samples are outliers. The high magnitude errors along with the large

number of outliers contributes to the standard deviations in Figure 5.19, which are so

large that it is difficult to conclusively define a trend.

The overall flatness of the boxplots and close-to-baseline performance indicates that

the features needed to determine time since irradiation are close to adequately measured

by most of the detector configurations.

5.5 Summary

This chapter covers the details of the methodology in four main sections: training set

simulations, information reduction, statistical methods implementation, and performance

evaluation. This approach focuses on the situation where there are only nuclides present

in the training sets that are measured in a non-destructive manner, i.e., via gamma

detectors.

First, in Section 5.1, the training data is simulated using the same inputs as in

Section 4.1. For this training set, however, the features tracked are 32 radionuclides.

Second, in Section 5.2, information reduction on the training set is carried out using

computationally generated gamma spectra. The training set is initially comprised of

nuclide activities, and GADRAS computes the gamma spectra via DRFs for six detectors

[49] using the inputs of the nuclide activity measurements for each SNF entry. Each

detector-based training set undergoes processing by summing the counts of the bins of

each energy window from three different lists: the auto, short, and long energy windows

lists. These training sets are intended to answer the question of whether field-deployable

detectors can give enough information about radionuclides to successfully attribute

SNF.

Third, in Section 5.3, the updates to the algorithm implementation from Section

4.3 are covered. The three algorithms, k-nearest neighbors, decision trees, and MLL
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calculations, are used to train models to predict the four reactor parameters of interest.

The new training sets also first underwent hyperparameter optimization.

Fourth, in Section 5.4, the prediction errors are presented to evaluate the ability of

this methodology to attribute SNF with non-destructive measurements of radionuclides.

The reactor type classification is discussed in Section 5.4.1 and the regression cases are

discussed in Section 5.4.2.3. The performance of the prediction of reactor parameters is

measured by using test cases drawn from the training set.

The reactor type classification results are presented in Section 5.4.1. The MLL

calculations consistently perform the best across the algorithms, and the short energy

windows list has the best performance across the energy windows lists. Most of the

misclassifications are PWR and PHWR being labeled as BWR. The automatic peak

searching results in erratic behavior for the scikit-learn algorithms because the high

energy resolution detectors perform poorly but one of the lower energy resolution

detectors performed very well. Most of the algorithm-detector combinations do not

exceed the baseline, and the only cases that do are the MLL calculations for the lab-

based HPGe with all three energy windows lists and the MLL calculations for the SrI2

detector with the auto energy windows list. Since most of the detector-based data points

do not exceed the baseline for balanced accuracy, reactor type classification only meets

the standard defined using mass-based information for the four aforementioned cases

and the three full-knowledge training sets.

Next, the regression cases are shown in Section 5.4.2.3. The burnup predictions for

all the algorithms and energy windows lists outperform the baseline, except in one case

of k-nearest neighbors being used with the auto energy windows list. The enrichment

predictions for the set of six detectors all falls below the baseline, however, and the time

since irradiation predictions all are very close to the baseline, with some points right

above it and some right below it. The spread of outliers encompasses 3− 17% of the
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training set depending on the case, and in most cases the magnitude of the outlier errors

is of significant concern, although most of the median errors paint a better picture of

the performance. Based on the performances relative to the baseline for each regression

case, burnup performs above the standard, enrichment performs far under the standard,

and time since irradiation has several cases that perform on or near the baseline and

thus are very close to the minimum standard.

For all three regression cases, there is little contrast among the three energy windows

lists. The auto list has more erratic behavior, and the short list has a slight but not

significant average performance over the long list. This indicates that the performance

of the methodology in this work is largely independent of the gamma spectra processing

approaches.
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6 conclusions and future work

This chapter focuses on concluding remarks and future work. First, a summary is

outlined in Section 6.1, Next, in Section 6.2, the main experimental results from each

section are brought together to discuss the bigger picture of this work. Additionally,

there are areas of the methodology that are simplified and several avenues this work

could pursue, so this is discussed in Section 6.3.

6.1 Summary

The main research question that this work addresses is as follows: How does the ability

to determine forensic-relevant spent nuclear fuel attributes using machine-learning

techniques degrade as less information is available?. The workflow to examine this

question takes place in four steps.

First, the training data is simulated, which provides an array of nuclide measurements

as the features. The prediction parameters are the simulation inputs: reactor type,

burnup, 235U enrichment, and time since irradiation. The reactor types are one of three

common commercial reactors: PWR, BWR, or PHWR. The burnup is measured in

MWd/MTU , the enrichment is measured in %235U, and the time since irradiation is

measured in days. The size of the training set is 4.5 × 105 SNF entries, which were

simulated using ORIGEN [26, 27, 28]. These steps are covered in Sections 4.1 and 5.1.

Second, information reduction on the training set is carried out using randomly

injected uniform error or computationally generated gamma spectra. For the former,

the training set is comprised of nuclide masses and the random error is used to study the

robustness of the methodology to artificial noise in the feature set. For the latter, the

training set becomes lists of summed energy windows of the gamma spectra, which were

computed from nuclide activity measurements using GADRAS DRFs for six detectors
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[49]. Each detector-based training set undergoes three different methods of processing

the gamma spectra, denoted as auto, short, and long energy windows lists. These steps

are covered in Sections 4.2 and 5.2.

Third, three algorithms are used to predict the four reactor operation parameters in

this work: k-nearest neighbors, decision trees, from the scikit-learn python ML toolkit,

and MLL calculations, implemented in python using SciPy and NumPy [29, 43, 44]. For

the scikit algorithms, the hyperparameters governing model complexity were optimized

to minimize the prediction errors. All of the code was run using University of Wisconsin

(UW)–Madison’s Center for High Throughput Computing (CHTC) resources, the UW

campus grid, and the Open Science Grid (OSG) [45, 46]. These steps are covered in

Sections 4.3 and 5.3.

Fourth, the prediction errors are evaluated to understand the increase in error as the

information supplied is less precise. This impacts the conclusions that can be formed

about the capability of simple statistical methods to inform nuclear material attribution.

The testing samples come directly from the training set, and the prediction errors from

these testing sample are what is studied for the performance. When a test sample is

used, it is first removed from the training set so that there is no exact replica of it in the

training stage. This testing scheme allows the entire training set to be tested eventually.

It is accomplished via 5-fold cross-validation (CV) for the scikit-learn algorithms and

by testing one training set entry at a time for the MLL calculations. These results are

presented in Sections 4.4 and 5.4, and are summarized as follows.

6.2 Conclusions

Reactor Parameter Prediction Using Nuclide Masses

Sections 4.4.1.1 and 4.4.1.2 demonstrate the impacts of injected training set noise on

the prediction parameters. Aside from the k-nearest neighbors prediction of time since



157

irradiation, all of the algorithms follow a similar pattern for each prediction scenario.

The MLL calculations are the most resilient to introduced error, followed by decision

trees then k-nearest neighbors. It is difficult to state whether or not these results are

"good enough" on their own, but they do serve as a useful baseline for the results in

Chapter 5.

Next, the model generalization is studied in Section 4.4.1.3 by creating learning

curves using 20− 100% of the training set. It shows that the training set is large enough

for the MLL calculations to remain the best performing method until the 20% training

set size, when those data points dip below one or both of the scikit-learn algorithms

depending on the prediction parameter. This performance is highly dependent on the

training set design because these are qualitatively high variance methods (compared to

common algorithms not shown in this work) that do not generalize well.

Section 4.4.1.4 investigates the effect of having reactor type prior knowledge on

burnup, enrichment, and time since irradiation prediction. There is modest and signif-

icant improvement for PWR and PHWR cases, respectively, since they are both the

minority classes in the training set. These improvements only exist for the scikit-learn

algorithms, since the MLL calculations are not affected by reactor type knowledge. The

key takeaway is that regression cases linked to PHWRs are not expected to perform well.

The last study in this chapter is in Section 4.4.2, where an external test set is

used that is comprised of measurements from real commercial power SNF from around

the world: the Spent Fuel isotopic COMPOsition (SFCOMPO) database. The main

challenge with this database are that many entries only contain measurements for

uranium and plutonium isotopes, and the missing measurements are inconsistent. Two

methods were implemented: imputing the null values with the mean of a given feature,

and imputing the null values with zero. The reactor type classification results are very

poor except for the MLL predictions using zero-valued nulls. This combination also best
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predicts the burnup, but oddly, the decision trees for both methods of null handling

best predicts the enrichment. Overall, the errors are still quite large, so the SFCOMPO

database presents challenges to being used with this methodology. The techniques for

improving the performance are discussed next in the future work suggestions, Section

6.3.

Reactor Parameter Prediction Using Processed Gamma Spectra

The reactor type classification results are first covered in Section 5.4.1. Unsurprisingly,

the MLL calculations consistently perform the best across the algorithms. There is a

slightly better overall performance by the short energy windows list as compared to the

others, although the large variation by the auto energy windows lists has some data

points performing better. The confusion matrices show the details of every data point,

but most of the misclassifications are PWR and PHWR being labeled as BWR. The

only algorithm-detector combinations that exceed the baseline are the MLL calculations

for the lab-based HPGe with all three energy windows lists and the MLL calculations

for the SrI2 detector with the auto energy windows list. Given the choice in baseline,

reactor type classification is only acceptable for the four cases exceeding it and the three

full-knowledge training sets.

Next, the regression cases are shown in Section 5.4.2.3. Regardless of the energy

windows list, the detector-based training sets all do the following for the MAPE and

MAE: the burnup tends to far outperform the baseline, the enrichment consistently

underperforms with respect to the baseline, and the time since irradiation has values

along the baseline, where many are below line but close to it. The spread of absolute

errors including the outliers shows that there is a significant portion of the training

set that is being predicted with very large errors; the spread of outliers encompassed

3− 17% of the training set depending on the case. Studying these results with respect

to the MedAE, the burnup and time since irradiation predictions do well with respect
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to their baselines. Relative to the baseline, the burnup prediction performs well over

an acceptable level, enrichment prediction performs well under an acceptable level, and

time since irradiation prediction has several cases that perform at or near the acceptable

level. Additionally, there is not a large difference in performance among the three energy

windows lists. This suggests that the performance is independent of the gamma spectra

processing approaches.

Post-Conclusions Discussion

Despite many of the nuclides that are included in the short and long energy windows

lists having known poor simulation quality [38, 42], the burnup prediction clearly had

enough information to do well. The poor enrichment prediction is likely because the

detected radionuclides are not enrichment indicators, although 152Eu is and should

be included in the long energy windows list (although it is not guaranteed to be a

well-resolved feature). Additionally, it is likely that gamma detection alone cannot

resolve the enrichment, and that passive neutron detection would be required, e.g. via

measuring 244Cm [31]. The time steps in the training set being about 100 days was a

limiting factor in its quality of prediction; many of the MAE values were around this

level in the second experiment.

There is a clear leader throughout all of the results in terms of being a consistent best

performer: the MLL calculations. The reason it can perform well, though, is because

of the large number of simulations. If there were to be a training set of much higher

fidelity but larger steps between the training set labels, it is possible MLL would not be

a top performer.

The two scikit-learn algorithms still had some interesting variation in their predic-

tion capabilities despite usually under-performing. Decision trees best predicted the

enrichment for the external testing set scenario with SFCOMPO. For all of the 0%

training set error cases in the first experiment, the scikit-learn algorithms performed
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better. The MLL robustness to error is likely from the different manners in which the

error was applied. The scikit-learn approach was to change the training set feature itself

to a new value within some range based on the error, but the MLL approach was to

include this error instead as uncertainty. In this way, it is not affecting the features

directly, just the resulting uncertainty of the log-likelihood calculation. If the same

approach was used, or some error existed in the measurements, MLL again might not

be the best choice.

Another way in which the implementation differed was the 5-fold CV being used as

the testing protocol for the scikit-learn algorithms. For 5 rounds, 20% of the training

set is removed as a testing set, where eventually all 5 folds are tested. By contrast,

the MLL test samples get removed a single entry at a time. If the training set were to

be more sparsely populated with the same range of each label, this would be of larger

concern. From the learning curves in Figure 4.12, it appears that reducing the training

set by 20% would in theory not impact the MLL performance, but it is still a major

difference in implementation.

It should be noted that the injection of error in the training set in the same manner

as the test samples is not necessarily realistic. In a real-world scenario, the training

database would be quite accurate and the testing samples might have variable error.

The nuclide-based feature sets (i.e., 29 nuclide masses and 32 nuclide activities) in

both experiments were determined by external factors, i.e., the SFCOMPO database

measurements and the radionuclides available in GADRAS. Since each training set is

designed to be able to predict all four labels, not all features are relevant to a given

label. This could add noise for a given label prediction if there are only a handful of

relevant features.

With respect to the number of features affecting the prediction performance for the

detector-based training sets, the overall similarity of performance among the three energy



161

windows lists might mean that the feature numbers are not impacting the algorithms

much. Another explanation is that they all include too many features (outside of the

scintillator detectors with the auto energy windows list). It is possible that even the

short list with 42 features has too high of a dimension for these methods to perform

well. The statement from above also applies, that if only a few features are relevant,

the remaining ones only add noise.

The automatic peak searching approach results in erratic behavior for the scikit-learn

algorithms. Noting the poor performance of the high energy resolution detectors, this is

presumably from the added noise of including all peaks instead of just targeted peaks

like the other two lists. It is still a promising approach for the lower energy resolution

detectors, and possibly even the high energy resolution detectors since in theory one

could filter the noise from the detector peak searches.

6.3 Future Work

When designing any study, simplifications and assumptions must be made to take a

first-order look at the problem. Additionally, any good exploration is likely to generate

more questions than answers. This final section covers a list of future work based on

the the simplifications made and questions created.

6.3.1 Training Set Features

Simulation Fidelity

ORIGEN-Automatic Rapid Processing (ORIGEN-ARP) not only offers compu-

tational expediency, but the training set creation was able to be fully scripted and

automatically carried out. The 4.5× 105 entries in the training set were simulated in a

matter of hours on a personal computer.
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Section 4.1.1 discusses the fidelity of the simulations used to create the training

database, and how the ground truth in this work is therefore not perfect truth. The

first improvement to be made with the training set is filtering out problematic-to-

simulate nuclides, such as 125Sb. An exercise was carried out to compare ORIGEN-ARP

simulations to an entry in SFCOMPO, and there were some nuclide discrepancies

that reached 40%. It would be better to remove these from consideration if they are

systematically poorly simulated.

One level beyond this would be to forego the convenience that ORIGEN-ARP provides

and use higher fidelity simulations in Standardized Computer Analyses for Licensing

Evaluation (SCALE). Maximizing the accuracy of the training set is worthwhile, since

it is a static entity that is only simulated once.

Feature Set Study

The lists of training set features in this work were not chosen based on knowledge of

nuclear reactor operation and the best signatures for the various labels being predicted

(reactor type, burnup, 235U enrichment, time since irradiation). Instead, they were chosen

based on the nuclide availability in the SFCOMPO database and the computational

gamma spectra tool, GADRAS, which gave 29 and 32 nuclides, respectively.

For the 29 nuclide mass training set, a small feature importance exercise was carried

out to determine if these lists could be reduced further. This was carried out by

using SelectKBest(score_func=f_regression, k=29).fit(X,y) (or f_classif for

reactor type classification), sorting the scores of the features, choosing the top N features

for each label, and taking the set of features together for all labels. The resulting set of

best-scoring features for all the labels included most or all of the original list depending

on the arbitrary decision of N . This could be further refined by combining domain

knowledge of reactor physics and a more structured statistical feature importance

approach. Furthermore, because mass spectrometry provides ratios of nuclides, studying
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how various ratios perform versus nuclide masses or nuclide concentrations with respect

to initial uranium mass would be prudent.

Gamma Spectra Processing

For the 32 nuclide activity training set, the most detectable gamma energies emerged

from the short and long energy windows lists to include from 7 and 12 nuclides,

respectively, shown in Table 5.4. So in this way, nuclear physics performed the feature

selection. It is clear from the results that the 7- and 12-nuclide lists performed quite well,

and exceeded the baseline for all four prediction scenarios. However, there were many

high energy photopeaks excluded from these lists that might provide more information.

These were captured via the auto peak search method, but the resulting energy windows

list did not provide better results (and in some cases with k-nearest neighbors, provided

worse performance).

There is much work on the topic of automatic radioisotope identification [53, 54,

55, 56, 57, 58, 59, 60] as well as the topic of elucidating typically undetectable nuclides

using gamma spectroscopy with advanced detection techniques [50, 51]. So, this simple

approach should be refined with a study on the latest gamma spectra processing tools

and which are suitable to process a training set of 4.5× 105 spectra within a reasonable

amount of time.

In addition to the gamma spectra processing itself, there are also more advanced

detection techniques being studied that could clarify peaks from nuclides that typically

are not detectable. A Compton suppression measurement technique allows low-intensity

peaks to be more detectable [51]. An Ultra-High Rate HPGe system operates such that

peaks at the high energy end of the spectrum can be detected at large enough counts

[50]. It is possible these approaches could be simulated and studied at a statistical level.

Further, adding simulated neutron detection to be able to resolve the 235U enrichment

would be necessary if limiting the approach to passive radioactivity detection. This is
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possible in GADRAS.

6.3.2 Statistical Method Optimization

The methods in this work all have high variance, and so it would have seemed prudent to

apply stronger regularization. However, hyperparameter optimization did not shift the

high variance defaults much towards more bias. The resulting inability to generalize likely

was a contributing factor to the large errors in the results when using the SFCOMPO

database as a testing set. A closer look at optimization is warranted in tandem with

the above work on the feature sets for each label.

Since the MLL approach is essentially k-nearest neighbors with k = 1 and a different

loss metric, the MLL calculations could be expanded to include the option to have k

samples averaged for a response, which would increase the bias. Another option would

be to use the likelihood calculations as custom sample weights within the k-nearest

neighbors algorithm. The implementation of k-nearest neighbors in this work used

Manhattan distance di with samples weighted by 1/di. This would change the sample

weights to L(M |xtest), the likelihood as calculated in Equation 3.5.

It is entirely possible that optimizing the methods in this work can only improve the

prediction performance by a minimal amount, and that more complex methods could

be beneficial. Because of this possibility, a broader survey of statistical methods with

this training set is another possible next step.

6.3.3 Serial Prediction

Figure 4.13 shows that for some combinations of prediction label and algorithm, there is

an improvement in the regression performance for the PHWR class, and less so for some

PWR cases. (There was no significant improvement seen for any reactor type/regression

case combination for the MLL calculations.) It is important to attribute PHWR fuels,
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since plutonium builds up faster in these reactors and so they pose a larger risk than

other typical commercial SNF. Given the majority of the database is comprised of BWR

entries, the improvement is not surprising; it is the lack of improvement in the other

cases that is unexpected. Either way, it makes sense to first determine the reactor type

before performing the other predictions if not using the MLL approach. One example

of this being done is in Reference [47].

Performing regression after first classifying the reactor type means much care

should be taken to have a robust reactor type classification algorithm. One way

to ensure better classification is by implementing a study that leverages receiver op-

erating characteristic (ROC) curves. ROC curves plot the true positive rate (vertical

axis, True Positives
True Positives + False Negatives) with respect to the false positive rate (horizontal axis,

False Positives
False Positives + True Negatives) for various decision thresholds, as shown in Figure 6.1 [62].

During prediction of a test sample, the scikit-learn classifiers calculate a probability

that the sample belongs to a given class. In binary prediction, the default threshold is

0.5. A probability above this threshold means the sample will be predicted to belong

to the positive class, and below that the sample will belong to the negative class. In

multi-class prediction, the highest probability is chosen as the predicted class.

An ideal classifier would have values along the vertical axis and then straight across

the top, meaning beyond some threshold value there are zero false positives. On the

other end of the spectrum, if the classifier being used in Figure 6.1 were only choosing

classes randomly, it would follow an x = y diagonal line. The one shown here performs

somewhere in between these two extremes.

If the algorithm returns the probabilities of class belonging instead of the predicted

class, the threshold can be tuned after the fact to complete predictions. With this work,

e.g., the decision threshold could be manually tuned to require a higher threshold for

BWR classification. If that were the case, there could be fewer misclassifications of
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Figure 6.1: Example of an ROC curve showing the decision threshold (probability of
class belonging) changing from ∞ to 0.1; this is borrowed from Reference [62].

PHWRs and PWRs as BWRs. The issues with regression of PHWRs could then be

resolved if they were accurately classified as such beforehand.

6.3.4 SFCOMPO

The SFCOMPO database being used as an external test set within the framework of

this methodology performed poorly in the sense that some relative errors were extremely

large. Section 4.4.2 shows the results using two different methods for handling the

missing measurement values: imputation with the mean value of a given nuclide, and

replacing the null values with zero.

One way to improve the results is using the previously discussed serial prediction
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approach, where the reactor type is first determined before the regression cases are

predicted using training sets that only include entries from the predicted reactor type.

This was partially touched on in Section 4.4.2 by discussing the largest relative errors

disappearing when PHWRs were removed from consideration. Another way that might

improve the results is with better simulation fidelity, also previously discussed.

A third approach is revisiting the method by which the missing measurements are

handled. One option is to side-step the missing nuclide measurements all together.

Reducing the training set to only consider uranium and plutonium isotopes accomplishes

this; the majority of measurements in the training set would exist and there would be

very few missing measurements. This is essentially what the zero-valued nulls with MLL

calculations does, and likely why it performed the best for the reactor type and burnup

predictions (and a close second for the 235U enrichment prediction).

Although the zero-null values approach is likely to always perform the best with MLL

calculations, there are better approaches than mean (or median) null value imputation.

For example, one could take a k-nearest neighbors approach to imputation where the

mean, median, or mode of the k-closest samples are used for imputation (rather than the

mean, median, or mode of the entire column in that testing set). Another approach for

handling missing values is outlined in Reference [8], where a novel imputation approach

for the SFCOMPO database, called Monte Carlo Bayesian Database Generation, is

discussed.
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